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Abstract

We consider recovery from ptychographic measurements also known as Short-Time Fourier
Transform phase retrieval. That is, the unknown object of interest has to be reconstructed
from a set of diffraction patterns resulting from a series of localized illuminations. In this
thesis, we work with three iterative methods for reconstruction, namely, Amplitude Flow,
Error Reduction and Ptychographic Iterative Engine. We show that each can be seen
as a gradient method for an amplitude-based squared loss, which allows to establish
sublinear convergence guarantees for these methods. In addition, we study the Block
Phase Retrieval algorithm, a non-iterative method designed specifically for ptychographic
measurements and propose modifications for an improved performance.
Furthermore, we consider blind ptychographic reconstruction, a scenario where the illumi-
nation function is unknown and has to be estimated along with the object. We propose a
version of the Amplitude Flow algorithm based on the alternating minimization technique
with guaranteed sublinear convergence to a fixed point.
Finally, some of the previously discussed recovery methods are extended to the more
general case of polychromatic illumination.

Zusammenfassung

Wir betrachten das Problem der Rekonstruktion eines Objektes aus ptychographischen
Messungen, welches auch als Kurzzeit-Fourier-Transformation Phasenrekonstruktion beze-
ichnet wird. Das Ziel eines ptychographischen Experiments ist die Rekonstruktion eines
unbekannten Objektes aus Beugungsbildern, welche durch eine Serie lokalisierter Beleuch-
tungen erhalten werden. Im Rahmen dieser Arbeit betrachten wir drei iterative Rekon-
struktionsmethoden, welche als Amplitude Flow, Error Reduction sowie Ptychographic
Iterative Engine bezeichnet werden. Wir zeigen, dass jede dieser Methoden als eine
Variante eines Gradienten-Abstiegs-Verfahrens angewandet auf eine amplituden-basierte
quadratische Verlustfunktion, interpretiert werden kann. Mit Hilfe dieses Zusammen-
hangs beweisen wir, dass sublineare Konvergenz für alle aufgeführten Methoden garantiert
werden kann. Darüber hinaus untersuchen wir der sogenanten Block-Phase-Retrieval-
Algorithmus. Diese Methode wurde speziell für ptychographische Messungen entwickelt.
Wir stellen Anpassungen dieser Methode vor, welche eine verbesserte Leistungsfähigkeit
versprechen.
Des Weiteren betrachten wir das Problem der sogenannten blinden Ptychographie. Dies
bezeichnet ein Rekonstruktionsverfahren, in welchem neben dem Objekt auch die Beleuch-
tungsfunktion unbekannt ist und gleichzeitig mit dem Objekt aus den Daten rekonstruiert
werden muss. Für diese Problemstellung entwickeln wir eine Version des Amplitude Flow
Algorithmus, die auf einem alternierenden Minimierungsverfahren beruht. Wir beweisen,
dass dieses Verfahren sublinear zu einem Fixpunkt konvergiert.
Zuletzt erweitern wir einige der zuvor diskutierten Rekonstruktionsmethoden für den ve-
rallgemeinerten Fall einer polychromatischem Beleuchtung.
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Introduction

In microscopic and optical experiments, an object of interest is illuminated by a ray of
light. It further travels through a lens and as a result an inverted picture of the object
can be seen on a screen. However, for nanoscale microscopy this setup is not feasible
due to the absence of good quality lenses. Without optics it is only possible to capture a
diffraction pattern of the object and the recovery of the object from the diffraction pattern
has to be performed numerically. This problem is also called Fourier phase retrieval. It
is well-known [1] that, without additional assumptions on the object function, the unique
recovery is not possible, which is a major drawback in many applications. The desire to
mitigate this drawback led to alternative imaging methods, one of which is the so-called
ptychography [2, 3, 4].

Ptychography (Figure 1) is a lensless imaging technique, which aims to recover the object
of interest from a set of diffraction patterns. Each of these images is obtained by illumi-
nating a small region of the specimen at a time by penetrating light such as an electron
beam or an X-ray. As a result, the light encodes the information about the object and
propagates further to the detector, where the resulting diffraction pattern is recorded.
Then, the object is shifted and the next region is illuminated. The regions overlap and,
thus, the obtained diffraction patterns contain a surplus of information, which allows a
unique reconstruction of the object. Ptychographic recovery is also referred to as Short-
Time Fourier Transform (STFT) phase retrieval as the measurements are given by the
magnitudes of STFT of the specimen.

light

shift

object detector
far-field

Figure 1: An illustration of ptychographic experiment.
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The successful applications of ptychography [5, 6, 7, 8, 9, 10, 11, 12] also led to an extension
of this technique to other imaging scenarios, which include tomographic ptychography
[13, 14, 15, 16, 17, 18, 19], multislice ptychography [20, 21, 22, 23] and polychromatic
ptychography [24, 25]. These works contain applications in biology [13, 8, 18, 11], material
sciences [15, 14, 9, 16, 10, 17], crystallography [12, 23] and many other fields [7, 19, 21].
As the popularity of ptychography rose among the practitioners, it caused a growth of
data volumes and increased the demand for efficient reconstruction methods. In response,
many algorithms and techniques [26, 27, 28, 29, 30, 31, 32, 33, 34, 35] were developed
and used for reconstruction. Commonly, a typical algorithm requires an initial guess
and then generates a sequence of iterates in some way. At some point the algorithm
reaches a predefined stopping criteria and the final iterate is returned as the reconstructed
object. The mathematical justification for a good and fast performance of such methods
is a complicated task and often the available analysis is restricted to specific scenarios.
Therefore, these methods often depend on a good starting point, which is frequently found
by trial-and-error.
Despite of many forms of ptychographic imaging and related algorithms, many aspects
of ptychography lack an analytical understanding, which created a large number of con-
tributions by the mathematical community. We hope, that this thesis will provide a
contribution to a better understanding of ptychographic reconstruction. It contains the
following chapters and sections:

� In Chapter 1 we review the physics behind ptychography. Three core phenomena
will be considered. These are propagation of light, intensity of light and the inter-
action of light with an object. The combination of these three steps provides the
mathematical description of the diffraction patterns captured by the detector.

� Chapter 2 provides the reader with notation and mathematical concepts used through-
out the thesis. In particular, we review Wirtinger derivatives and results about stan-
dard and stochastic gradient descent for real-valued functions of complex variables.

� Chapter 3 is dedicated to the recovery from ptychographic measurements. Its first
part familiarizes the reader with the background on ptychographic recovery, which
includes the continuous ptychographic problem (Section 3.1) and its discretization
(Section 3.2). The main results regarding ambiguities, uniqueness and stability of
reconstruction for discrete ptychographic problem will be discussed in Section 3.3.
An overview of reconstruction algorithms can be found in Section 3.4.

The second part of Chapter 3 focuses on three iterative methods widely discussed
in the literature. Section 3.5.1 is dedicated to the gradient descent technique for
amplitude-based squared loss known as Amplitude Flow [36]. Section 3.5.2 is about
the Error Reduction algorithm [37, 38], which is an alternating projections approach.
Finally, the Ptychographic Iterative Engine (PIE) [39, 33], a computationally fast
method utilizing a single diffraction pattern at the time, is discussed in Section 3.5.3.
We show that the latter two algorithms can also be viewed as gradient methods for
the same amplitude-based squared loss function. More precisely, we show that Er-
ror Reduction is a scaled gradient descent and PIE is nothing else but a stochastic
gradient descent. Furthermore, based on the convergence theory for gradient meth-
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ods, we establish the guaranteed convergence of both algorithms and show that the
convergence speed is sublinear.

The last part of Chapter 3 studies the Block Phase Retrieval method for ptychogra-
phy [35, 40]. It is a non-iterative approach that possesses theoretical error bounds
for the reconstructed object, which makes this approach unique. As a drawback,
it is strongly restricted to the specific experimental setup. Section 3.6 covers the
main results on Block Phase Retrieval, including our modifications for a better
performance and relaxations of the setup restrictions.

� Blind ptychography is the main topic of Chapter 4. While in ptychography the
distribution of the light inside the illuminated region is assumed to be known and
is actively used during the recovery process, in blind ptychography it is considered
unknown and has to be reconstructed along with the object. Consequently, the
joint recovery is more complicated and requires special care. We propose a version
of Amplitude Flow for blind ptychography based on the alternating minimization
technique and derive its sublinear convergence speed.

� In Chapter 5, polychromatic ptychography is considered. Unlike ptychography
where the light consist of a single coherent wave, in polychromatic ptychography the
light is a mixture of several waves. We discuss how the mathematical description of
the resulting measurement process changes. Furthermore, we extend the results on
Amplitude Flow established for non-blind (Section 3.5.1) and blind ptychography
(Chapter 4) to the case of polychromatic light.

� Finally, in Chapter 6 we perform numerical trials to evaluate the performance of all
proposed algorithms. Based on specific performance measures, we select an optimal
modification of the Block Phase Retrieval algorithm. Then, it is used as an initial-
ization for Amplitude Flow, Error Reduction and PIE to improve the reconstruction
quality. Furthermore, we study reconstruction in case of blind, polychromatic and
blind polychromatic ptychography.



Chapter 1

Light, diffraction and ptychography

In this section, we review the physical background on the light diffraction and derive
the diffraction formulas for the ptychographic experiment. The presented results are a
compilation of the material found in [41, 42]. Our main goal is to familiarize the reader
with the physical model which is the starting point for the analysis provided in the rest
of the thesis. Hence, for the sake of readability and in order to avoid technicalities, we
allow ourselves to be not strictly mathematically rigorous. Namely we will assume that all
functions, measures, etc. belong to the appropriate spaces, so that all desired properties
apply.
In order to establish the mathematical description of the ptychographic measurements,
we decompose a single illumination within the ptychographic experiment into separate
steps (Figure 1.1):

1. The light from the source reaches the aperture plane, where it is mostly absorbed
and only propagates further through a small slit.

2. The localized light travels from the aperture plane to the object plane.

3. The light penetrates the object and encodes information about it.

4. The resulting light travels from the object plane to the detector plane.

5. The detector captures the incoming light.

Each step is separately explained on the basis of the electromagnetic (EM) wave theory
of the light and, in particular, the Maxwell’s equations [43]. That is, steps 2 and 4

Source
of

light

Localized
light Window

Exit
wave

Diffraction
pattern

Aperture plane Object plane

D
et
ec
to
r
p
la
n
eLocalization

by
aperture

Free
space

Interaction
with
object

Free
space

Figure 1.1: Schematics of the ptychographic experiment.
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1.1. ELECTRO-MAGNETIC WAVE IN FREE SPACE 9

correspond to the propagation of an EM wave in free space, i.e., without interaction
with the environment and obstacles, which is mathematically explained in Section 1.1.
Steps 1 and 3 are essentially an interaction of light wave with matter, which is covered
in Section 1.2. The last step is related to the notion of the optical intensity of EM wave,
which is the topic of Section 1.3.
The first two steps combined describe the distribution of the light reaching the object,
also known as the probe or the window. Given the window, steps 3-5 completely describe
the resulting image on the detector called the diffraction pattern and its mathematical
description can be found in Section 1.4. Furthermore, the formulas for the window cor-
responding to the circular aperture, a common choice in practice, and its approximation
are derived in Section 1.5.

1.1 Electro-magnetic wave in free space

In this section we study the propagation of an EM wave in free space. In particular, in
the setting of the ptychographic experiment, we are interested in the propagation of the
wave in a certain direction from the starting plane (either aperture or object) to the target
plane (object or detector, respectively). In such scenarios, the EM wave entering the free
space is assumed be known and its values at the target plane are to be determined.
A starting point in understanding the behavior of the light in free space are the Maxwell’s
equations [42]. They establish the relationship between an electric field E(s, t) : R3×R 7→
R and a magnetic field H(s, t) : R3 ×R 7→ R as a system of differential equations. In the
following ∇ = (∂x, ∂y, ∂z)

T denotes a vector of partial space derivatives and ∂t is the time
derivative, · is the inner or dot product and × is the vector product. The operations ∇×
and ∇· are also known as curl and divergence, respectively.
With these notations, the Maxwell’s equations in free space read as

∇× E = −µ0∂tH, ∇×H = ε0∂tE ,
∇ · E = 0, ∇ · H = 0,

where constants µ0 and ε0 are the magnetic permeability and the electric permittivity,
respectively. An application of the curl operation (∇×) to the first two equations and
usage of the identity

∇× (∇× E) = ∇(∇ · E)−∇2E (1.1)

combined with the third and fourth equations results in

∇2E − µ0ε0∂
2
t E = 0 and ∇2H− µ0ε0∂

2
tH = 0.

Hence, all components of the EM field satisfy the scalar wave equation

∆u− c−2
0 ∂2t u = 0, (1.2)

where we replaced ∇2 by the notation ∆ and used c0 = (µ0ε0)
−1/2. Note that c0 is the

speed of light. Therefore, from now on we will consider the scalar wave u as either of
components of electric E or magnetic H fields.
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A common way to approach the wave equation (1.2) is through the Fourier transform of
the wave u given by

u(s, t) =

∫

R
e2πiνtdσs(ν). (1.3)

The measure σs is called the spectral measure and it describes the frequency distribution
in each point s ∈ R3 of the space. Since u is a physical quantity, it is real-valued and the
spectral measure σr satisfies the symmetry condition

dσs(−ν) = dσs(ν). (1.4)

In an idealized ptychographic experiment, σs is the Dirac delta measure corresponding
to a single frequency ν ≥ 0. Such a wave is called monochromatic and in all other
cases, the wave is referred to as polychromatic. A large part of this thesis is concerned
with monochromatic ptychography. Polychromatic ptychography will be discussed in
Chapter 5.
For the monochromatic illumination, the spectral representation of u is given by

u(s, t) =
1

2
u(s)e2πiνt +

1

2
u(s)e−2πiνt = Re(u(s)e2πiνt), (1.5)

with the spectral density function u : R3 → C. Due to one-to-one correspondence between
the density u and the wave function u, it suffices to investigate the changes of u between
starting and target planes.
Returning to the wave equation (1.2), the substitution of the representation (1.5) implies
that the spectral density u is a solution of the Helmholtz equation

∆u+ k2u = 0, (1.6)

where k = 2πν/c0 denotes the wavenumber.
Without loss of generality, let the direction of propagation coincide with the z-axis and
let the starting and target planes be perpendicular to z-axis. We assume that the starting
plane is located at z = 0 and the target plane at z = d for a fixed distance parameter
d > 0. We will denote the projection of the density u on the corresponding planes as
u0 = u

∣∣
z=0

and ud = u
∣∣
z=d

. Assume that the behavior of the density u at the starting
plane is a priory known and the values of ud in the target plane are to be determined.
Since the Helmholtz equation (1.6) with boundary condition u0 = u

∣∣
z=0

is linear and
shift invariant, the mapping u0 7→ ud can be viewed as an input-output system. Thus,
the transformation between the starting and target planes is given by

ud = h ∗ u0, (1.7)

where ∗ denotes the convolution operation. The function h is called the impulse response
function since for the pointwise impulse input

u0(x̃, ỹ) = I(x,y)=(x̃,ỹ) :=

{
1, if x = x̃ and y = ỹ,

0, otherwise,

the system output will be ud = h(x, y) for all x, y ∈ R. It is more convenient to study
the input-output system in the Fourier domain related to the spatial coordinates. An
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application of the Fourier transform (denoted by ̂ or F) from both sides combined with
the convolution theorem [44, p. 8] leads to the equation

ûd(νx, νy) = ĥ(νx, νy)û0(νx, νy), (1.8)

for all spatial frequencies νx, νy ∈ R. The Fourier transform ĥ of the impulse response
function also known as the transfer function, can be determined by considering a plane
wave

u(x, y, z) = ei(kxx+kyy+kzz)

with the spatial wave numbers satisfying k2x+k
2
y+k

2
z = k2. This condition implies that u

is indeed a solution of the Helmholtz equation (1.6). Plugging u into (1.8) and performing
some computations leads to

ĥ(νx, νy) = eikzd = eid
√
k2−k2x−k2y = e2πid

√
ν2−ν2x−ν2y .

The exact formula for h, the inverse Fourier transform of the obtained function, has no
known closed form. The common approach in physics is to use the Fresnel or small angle
approximation

√
ν2 − ν2x − ν2y = ν

[
1− ν2x + ν2y

2ν2
+

1

8

(
ν2x + ν2y
ν2

)2

− . . .

]
≈ ν − ν2x + ν2y

2ν
,

which is most accurate when (ν2x + ν2y) is significantly smaller than ν2, so that the wave
mainly propagates along the z-axis. The usage of the Fresnel approximation leads to the
following expression for the transfer function

ĥ(νx, νy) ≈ e2πidνe−
πid
ν

(ν2x+ν
2
y).

The application of the inverse Fourier transform gives us the approximation of the impulse
transfer function by

h(x, y) ≈ −iν
d
e2πidνe

2πiν
2d

(x2+y2).

Finally, we are able to return back to the input-output relation (1.7), which gives us

ud(x, y) ≈
−iν
d
e2πidν

∫

R2

u0(x̃, ỹ)e
πiν
d

((x−x̃)2+(y−ỹ)2)dx̃dỹ.

Note that the squares in the last exponent can further be split into three parts,

(x− x̃)2 + (y − ỹ)2 = (x2 + y2)− 2(xx̃+ yỹ) + (x̃2 + ỹ2).

When the target plane is sufficiently far away from the starting plane, in the so-called
far-field, so that the fraction πν(x̃2+ ỹ2)/d is much smaller than 1, the third term can be
neglected. Then, the formula for ud is given by

ud(x, y) ≈
−iν
d
e2πidνe

πiν
d

(x2+y2)

∫

R2

u0(x̃, ỹ)e
−2πiν

d
(xx̃+yỹ)dx̃dỹ.
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After a change of variables in the integral, we observe that the input-output system of
the Helmholtz equation with Fresnel assumption and the target plane in the far-field acts
as a (scaled) Fourier transform in the spatial domain,

ud(s) ≈
−iν
d
e2πidνe

πiν
d

(x2+y2)Fu0

(νs
d

)
, (1.9)

for all s = (x, y) ∈ R2. We will use this approximation for the propagation of the light
wave in free space.

1.2 Light interaction with object

If an EM wave passes through a medium, the wave will be modified according to the
specific properties of the medium. In the process, it encodes the information about the
object and this phenomenon is the foundation for imaging applications. Thus, it is im-
portant to properly describe the change of the EM wave. While it is possible to study the
interaction process starting from Maxwell’s equations similarly to free space, it requires
involved investigation of the differential equations, which goes beyond the scope of this
thesis. Instead, a more phenomological model is used to describe this process. It describes
the exit wave ue as a multiplication of the incoming wave ui by an object transfer function
x, that means

ue(s) = x(s)ui(s), s ∈ R2. (1.10)

This model is known as multiplication assumption and is commonly used in imaging
applications [45, 46, 4].

The object transfer function x models two phenomena, the absorption and the refraction
of light, which are represented by the amplitude |x| and the phases of x/|x|. Both
the absorption and the refraction characterize the object locally and provide its spatial
representation, which is the main interest in the ptychographic experiment.

As illumination reaches the specimen, the light may be absorbed by the object, which
causes the reduction of energy in the exit wave. It is more likely to happen in the denser
areas of the specimen, which links absorption to the atomic density. In particular, if
the light is absorbed completely, in (1.10) it corresponds to |x(s)| = 0, and if nothing is
absorbed, then |ue(s)| = |ui(s)|, so that |x(s)| = 1.

Refraction, on the other hand, represents the change in the direction of propagation of
light caused by the scattering effects. In (1.10), this is represented by the multiplication
of the incoming wave ui(s) with x(s)/|x(s)|.

1.3 Intensity of light

The optical intensity I of the wave u is proportional to the time average of the squared
wave function,

I(s) ∝ ⟨|u(s, t)|2⟩ = 1

2T

∫ T

−T
|u(s, t)|2dt,



1.4. FORMULA OF DIFFRACTION PATTERN 13

where T > 0 is the exposure time. For the monochromatic wave u with spectral repre-
sentation (1.5), we obtain

1

2T

∫ T

−T
|u(s, t)|2dt = 1

2T

∫ T

−T

1

4
|u(s)e2πiνt + u(s)e−2πiνt)|2dt

=
1

2T

∫ T

−T

1

2
|u(s)|2 + 1

4
u2(s)e4πiνt +

1

4
u2(s)e−4πiνtdt

=
1

2
|u(s)|2 + 1

4
(u2(s) + u2(s)) sinc(4πνT ),

where sinc(t) := sin(t)/t. If T is much larger than 1/ν, the sinc function and the sec-
ond term vanish. Consequently, the optical intensity of the monochromatic wave u is
proportional to

I(s) ∝ |u(s)|2. (1.11)

1.4 Formula of diffraction pattern

Now, we are equipped for the mathematical description of the ptychographic experiment
and resulting diffraction patterns. Let us start by restating the selected coordinate system
in which z axis is aligned with the propagation of the light and axes x and y are perpen-
dicular to it. The object plane coincides with the x-y plane with z = 0. The detector
plane is parallel to the object plane with z = p, with the distance p > 0 sufficiently large
to satisfy the far-field assumption.
In this section, we assume that the window is already formed by the aperture and start
directly from its interaction with the object. Let w be the monochromatic light wave
representing the window with the spectral density in the object plane w : R2 → C. The
object transfer function is denoted by x : R2 → C. As the object is being shifted after
each illumination, its shift is represented mathematically via the family of the translation
operators Tr as

Tru(s) = u(s− r), with the dislocation parameter r = (rx, ry) ∈ R2,

for all s ∈ R2. Hence, by (1.10), the exit wave corresponding to the shift position r ∈ R2

of the object x illuminated by the window w is given by

ue(s) = (T−rx)(s)w(s).

The next step is the propagation of the exit wave from the object to the detector plane.
By (1.9), the spectral density of the exit wave in the detector plane is approximated by

up(s) ≈
−iν
p
e2πipνe

πiν
p

(x2+y2)F [wT−rx]

(
νs

p

)
, s = (x, y) ∈ R2.

The detector can only capture the energy of the incoming wave, which is proportional to
the squared magnitude |up(x, y)|2. Furthermore, the detector doesn’t record the energy
instantly and only captures the average energy over the period of exposure time, which
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is precisely the optical intensity of the wave up. We recall that by (1.11), the intensity of
up is proportional to

I(r, s) ∝ |up(s)|2 =
∣∣∣∣
ν

p
F [wT−rx]

(
νs

p

)∣∣∣∣
2

, s ∈ R2. (1.12)

The obtained formula is the general representation of the intensity observed at the detector
plane. Finally, the proportional factor does not play a role in the reconstruction process
and will be, therefore, ignored.

1.5 Circular aperture

In this section, we derive the mathematical description of the window if a circular aperture
is used for the localization of the light. In terms of our mathematical setup, let the
aperture plane be placed in parallel to the object plane at z = −pa < 0. We will
assume that the distance pa is sufficiently large so that the far-field assumption applies.
Furthermore, the center of the circular aperture is at (x, y) = (0, 0) and its radius is
denoted by R > 0.
In a perfect experimental setup, the source generates a plane monochromatic wave aligned
with the z-axis, which is given by

u(x, y, z, t) =
1

2
e2πi(νt+k(z+pa)) +

1

2
e−2πi(νt+k(z+pa)),

for some frequency ν and corresponding wavenumber k. The spectral density of the wave
u at z = −pa is given by

u(x, y) = 1.

The interaction of the wave u with the circular aperture leads to the spectral density of
the form

ul(x, y) = u(x, y)Ix2+y2≤R2 = Ix2+y2≤R2 . (1.13)

Next, the wave propagates from the aperture to the object, and the spectral density w of
the window is approximated by (1.9),

w(x, y) ≈ −iν
pa

e2πipaνe
πiν
pa

(x2+y2)F [ul]

(
νx

pa
,
νy

pa

)

∝ −iν
pa

e2πipaνe
πiν
pa

(x2+y2)J1(πνR
√
x2 + y2/pa)

πνR
√
x2 + y2/pa

, (1.14)

where J1 is the Bessel function of the first kind. Note that w is a radial function. The
behavior of the function J1(r)/r is shown in Figure 1.2. The intensity of the window w
corresponding to the circular aperture is referred to as the Airy disc.

Remark 1.5.1. Note that in the example above, the truncation of the wave by the aper-
ture is a crude approximation. As the wave propagates in all directions, the wave ua
is non-zero along the aperture plane so that the equation (1.13) is not valid as well as
the equation (1.14) for w. A correct derivation of the window w requires solving the
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Figure 1.2: Fourier transform of the circular aperture J1(r)/r and Gaussian bell
0.5e−r

2/7 as a functions of the radius r.

Maxwell’s equations in free space with boundary conditions corresponding to the shape of
the aperture known as Rayleigh-Sommerfeld diffraction formula. Nevertheless, both the
heuristic approach above and the correct derivation of w with circular aperture coincide,
which is not true in general.

Often, only the bright spot in the middle of the Airy disc is of interest and the varying
tails can be neglected. In such cases, the main peak of J1(r)/r is approximated by the
Gaussian bell 0.5e−r

2/7 (see Figure 1.2). Thus, the window is approximated by

wg(x, y) ∝
−iν
pa

e2πipaνe
πiν
pa

(x2+y2)e
−π2ν2R2(x2+y2)

7p2a . (1.15)



Chapter 2

Preliminaries and notation

In this chapter, we provide the notation and basic results, which will be used throughout
the thesis. Some section-specific definitions will appear later when required.

2.1 Sets, vectors and matrices

We start by recalling the standard definitions involving vectors, matrices and sets. For
more detailed material we refer the reader to [47, 48].
The complex unit will always be denoted by i. For a complex number z = α+iβ, α, β ∈ R,
its conjugate is given by z = α − iβ. The number α = Re(z) is called the real part of
z and β = Im(z) is the imaginary part. The absolute value (magnitude, amplitude) of a
complex number is |z| =

√
α2 + β2 and the phase of a non-zero complex number is given

by z/|z|. For z = 0 the phase is set to 1. The set of all complex numbers with magnitude
one will be denoted by T := {z ∈ C : |z| = 1}.
In this thesis, we will mainly work with a-dimensional vectors in either real or complex
vector spaces Ra and Ca, respectively. For our convenience, the entries of the vectors are
indexed from 0 to a− 1 and we will use the notation [a] := {0, . . . , a− 1} for index sets.
The vector in Ca containing only zero entries is denoted by 0a and the vector with all
entries equal to one is denoted by 1a. A vector v ∈ Ca is called non-vanishing if all its
entries are non-zero. The support of v is the set of indices corresponding to non-zero
entries of the vector v, i.e.,

supp(v) = {j ∈ [a] : vj ̸= 0}.

The span of vectors v0, . . . , vK−1 in Ca is the subspace of Ca containing all possible linear
combinations of these vectors,

span{vk, k ∈ [K]} =




∑

k∈[K]

αkvk : α ∈ CK



 .

For double indexed objects, it is convenient to use the set product notation, that is for
index sets J1 and J2, their product is given by

J1 × J2 := {(j1, j2) : j1 ∈ J1, j2 ∈ J2}.

16
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In case J1 = J2 = J , we may also write J 2. The cardinality of the set J is denoted by
|J |.
For p ≥ 1, the ℓp-norm of a vector v ∈ Ca is defined as

∥v∥p =





(∑
k∈[a] |vk|p

)1/p
, 1 ≤ p <∞,

maxk∈[a] |vk|, p = ∞.

The inner product of two vectors u, v ∈ Ca is given by

⟨u, v⟩ = v∗u =
∑

k∈[a]
ukvk.

If ⟨u, v⟩ = 0, the vectors u and v are orthogonal, which is denoted by u ⊥ v. The standard
basis {ek}k∈[a] of Ca are the vectors with entries (ek)j = 1, if k = j and (ek)j = 0 otherwise.
The projection of u ∈ Ca onto a set S ⊆ Ca is an element ũ ∈ S fulfilling

∥u− ũ∥2 ≤ ∥u− v∥2
for all v ∈ S. The operator, which maps u to ũ is called the projection operator onto S.
In general, projection ũ is not-unique, however, if S is a non-empty closed convex set, ũ
can be uniquely identified [49].
The space of complex a× b matrices is denoted by Ca×b. For a matrix B ∈ Ca×b, we will
refer to its entries as Bj,k, (j, k) ∈ [a] × [b]. The vector denoting the j-th row of B is
denoted by B(j) and the vector denoting the k-th column is denoted by B(k).
We will also denote the kernel and the image of B as

kerB := {v ∈ Cb : Bv = 0},
im(B) := {Bv ∈ Ca : v ∈ Cb},

respectively.
For ℓ ∈ [a] the ℓ-th diagonal of the square matrix B ∈ Ca×a is given by

dℓ(B)j = Bj,j−ℓmod a, j ∈ [a].

Larger values of ℓ correspond to the diagonals further below the main diagonal d0(B) and
we will also use negative values of ℓ for the reverse order from the main diagonal d0(B).
The rank rank(B) of the matrix B is the dimension of the vector space generated by the
columns of B. The trace of a square matrix B ∈ Ca×a is the sum of its diagonal entries

tr(B) =
∑

k∈[a]
Bk,k.

The transpose and complex conjugate transpose of a vector v or a matrix B are denoted
by vT , v∗ and BT , B∗, respectively. The matrix in Ca×b containing only zero entries is
denoted by Oa×b and with all entries equal to one - by 1a×b.
The Frobenius (Hilbert-Schmidt) inner product of two matrices U, V ∈ Ca×b is given by

⟨U, V ⟩F := tr(V ∗U) =
∑

(k,j)∈[a]×[b]

Uk,jV k,j.
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This inner product induces the Frobenius (Hilbert-Schmidt) norm

∥U∥F =
√
⟨U,U⟩F =

√ ∑

(k,j)∈[a]×[b]

|Uk,j|2.

For a vector v ∈ Ca, the diagonal matrix diag(v) ∈ Ca×a is formed by placing the entries
of the vector v onto the main diagonal, so that for k, j ∈ [a] it holds that

diag(v)k,j :=

{
vk k = j,

0 k ̸= j.

In many cases, we will apply entrywise operations to vectors or matrices. For a function
f : C → C, we will understand f(u) as a function f applied to each entry of u, f(u)j =
f(uj). The common examples of the entrywise operations are |u|, u2 and sgnu, where
sgn(z) = z/|z| if |z| ≠ 0 and 1 otherwise. Sometimes we would use an alternative version
of the sign function, sgn0(z), which is equal to sgn(z) for z ̸= 0 and sgn0(0) = 0.
In the text, we will sometimes denote by · the argument of the function, with respect to
which some transformation is performed, e.g. we will use the notation f(−·) for function
f(−s) .
An indicator function Ipredicate is a binary function, which is equal to 1 if the predicate is
true and 0 otherwise. The rounding up or down operations will be respectively denoted
by ⌈a⌉ and ⌊a⌋ a real number a.
The entrywise operations also apply to the arithmetic actions with vectors. In particular,
the entrywise (Hadamard) product of u and v in Ca is given by

(u ◦ v)j = ujvj, j ∈ [a].

The Hadamard product of two vectors u and v can be also presented as multiplication
with a diagonal matrix, that is u ◦ v = diag(u)v = diag(v)u.
The entrywise division of u ∈ Ca and non-vanishing v ∈ Ca is given by

(u/v)j = uj/vj, j ∈ [a].

Using the entrywise operations, we obtain the following properties of diagonal matrices,

diag(u) diag(v) = diag(u ◦ v), diag(u) + diag(v) = diag(u+ v), (diag(u))∗ = diag(u),

diag(u)−1 = diag(1/u), when uj ̸= 0 for all j ∈ [a].

We say that the mapping f : Ca → Cb is injective if for all pairs of vectors u, v ∈ Ca with
u ̸= v it holds that f(u) ̸= f(v). The matrix B ∈ Cb×a is injective if the corresponding
mapping v 7→ Bv is injective. The injectivity of B is equivalent to the condition rank(B) =
a.
For a square matrix B ∈ Ca×a with rank(B) = a, its inverse B−1 ∈ Ca×a satisfies
B−1B = BB−1 = Ia, where Ia = diag(1a) is the identity matrix in Ca×a. The matrix
B ∈ Cb×a, b ≥ a, is called orthogonal if it satisfies B∗B = Ia. The square orthogonal
matrix B ∈ Ca×a is a unitary matrix and its inverse is B−1 = B∗.
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The square matrix B ∈ Ca×a is called Hermitian if B = B∗ and the space of all Hermi-
tian a × a matrices is denoted by Ha. A Hermitian a × a matrix admits an eigenvalue
decomposition

B = UΛU∗,

where U is an a × a unitary matrix and Λ is an a × a real diagonal matrix. The entries
λj, j = 1, . . . , a, of the main diagonal of Λ are called eigenvalues and the corresponding
columns U (j) are referred to as the eigenvectors. The eigenvalues are sorted in decreasing
order and the number of non-zero eigenvalues coincides with the rank of the matrix B.
The eigenvector corresponding to the largest eigenvalue is referred to as top eigenvector.

In this thesis, we will require an error estimate for the recovery of the eigenvector of a
rank-one matrix corrupted by noise.

Lemma 2.1.1 ([40, Lemma A.2]). Let u ∈ Ca and U = uu∗. Consider V ∈ Ha and its
largest magnitude eigenvalue λ and the corresponding eigenvector v, ∥b∥2 = 1. Then,

min
|α|=1

∥∥∥u− α
√

|λ|v
∥∥∥
2
≤ (1 + 2

√
2) ∥U − V ∥F
∥u∥2

.

A Hermitian matrix B ∈ Ca×a is called positive semidefinite if for all v ∈ Ca it holds that
v∗Bv ≥ 0, which is equivalent to λj(B) ≥ 0 for all j = 1, . . . , a. Each positive semidefinite
matrix admits decomposition B = CC∗ and for each C ∈ Ca×b matrices CC∗ and C∗C
are positive semidefinite.

The analogue of the eigenvalue decomposition for non-square matrices is the singular
value decomposition (SVD). For a matrix B ∈ Cb×a its singular value decomposition is
given by

B = UΣV ∗,

where U ∈ Cb×b, V ∈ Ca×a are unitary matrices and Σ ∈ Rb×a is a matrix with diagonal
entries σj(B) ≥ 0, j = 1, . . . ,min{a, b}, sorted in decreasing order. The values σj(B)
are referred to as the singular values of the matrix B and the corresponding columns of
U and V as left and right singular vectors. The singular values σj and corresponding
columns U (j) correspond to the square root of eigenvalues of BB∗ and their eigenvectors.
Analogously, σj and columns V (j) correspond to the roots of eigenvalues of B∗B and their
eigenvectors. Moreover, if B is Hermitian, then the singular values are the magnitudes of
eigenvalues, sorted in decreasing order. If a matrix B has rank r, it holds that σr(B) > 0
and σr+1(B) = 0. Thus, it is sometimes more convenient to work with the SVD of B in
the form B = UΣV ∗, where U ∈ Cb×r, V ∈ Ca×r are orthogonal matrices and Σ ∈ Rr×r

is an invertible diagonal matrix with diagonal entries σj(B) > 0, j = 1, . . . , r, sorted in
decreasing order.

For p ≥ 1, the Schatten-p norm of a matrix B is given by the ℓp-norm of the vector
(σ1, . . . , σr), that is

∥B∥p = ∥(σ1, . . . , σr)∥p .
We will use the notation ∥·∥p to denote the Schatten-p norm of a matrix and the same
notation for ℓp-norm of a vector. Since vectors are denoted by small letters and matrices
by capital letters, it should be clear which norm is applied.
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By definition, the Schatten-∞ norm is the largest singular value σ1(B) and equals to the
spectral norm ∥B∥ of a matrix B defined as

∥B∥∞ := max
v∈Ca,∥v∥=1

∥Bv∥2 .

Furthermore, the Schatten-2 norm coincides with the Frobenius norm of a matrix B, that
is ∥B∥2 = ∥B∥F , and we will only use the notation ∥B∥F .
Note that the singular values of a diagonal matrix diag(u) are given by |u| and, therefore,
the spectral norm is equal to ∥u∥∞ and the Frobenius norm – to ∥u∥2.
Using the singular value decomposition, the Moore-Penrose pseudoinverse of the matrix
B is defined as

B† := V Σ−1U∗.

If B is a square invertible matrix, its pseudoinverse B† coincides with B−1. For an injective
matrix B ∈ Cb×a, b ≥ a, its pseudoinverse B† can be expressed as

B† = (B∗B)−1B∗. (2.1)

It satisfies

B†B = I and BB† is a projection operator onto the set im(B). (2.2)

For two matrices A ∈ Ca×b and B ∈ Cc×d, the tensor product A ⊗ B ∈ Cab×cd is defined
as

A⊗B =




A0,0B A0,1B . . . A0,b−1B
A1,0B A1,1B . . . A1,b−1B

...
...

. . .
...

Aa−1,0B Aa−1,1B . . . Aa−1,b−1B


 . (2.3)

Proposition 2.1.2 (Properties of tensor product). Let A,B ∈ Ca×b, C,D ∈ Cc×d, E ∈
Cb×e, F ∈ Cd×f and α, β ∈ C.

1. The tensor product is bilinear,

(αA+βB)⊗C = α(A⊗C)+β(B⊗C) and A⊗(αC+βD) = α(A⊗C)+β(A⊗D).

2. The tensor product distributes over matrix multiplication,

(A⊗ C)(E ⊗ F ) = AE ⊗ CF.

3. If the SVD of A is given by U1Σ1V
∗
1 and of B by U2Σ2V

∗
2 , then the SVD of A⊗ B

is given by
A⊗B = (U1 ⊗ U2)(Σ1 ⊗ Σ2)(V1 ⊗ V2)

∗.

Consequently, the spectral and Frobenius norms of A⊗B admit

∥A⊗B∥∞ = ∥A∥∞ ∥B∥∞ and ∥A⊗B∥F = ∥A∥F ∥B∥F .

In order to count the number of operations, we will use big O notation O(a), by which
we mean that at most ca operations are required for some constant c > 0.
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2.2 Fourier transform and related operators

The discrete Fourier transform of a vector v ∈ Ca is defined as

(Fav)k :=
∑

j∈[a]
vje

− 2πijk
a , k ∈ [a]. (2.4)

It corresponds to the matrix-vector multiplication Fav with the entries of the matrix
Fa ∈ Ca×a given by

(Fa)k,j = e−
2πijk

a , j, k ∈ [a].

We will refer to the vector Fav as the frequencies of the vector v or the representation of
v in the frequency domain.
The inverse discrete Fourier transform of a vector v ∈ Ca is defined as

(F−1
a v)k :=

1

a

∑

j∈[a]
vje

2πijk
a , k ∈ [a]. (2.5)

The corresponding matrix F−1
a with entries (F−1

a )k,j =
1
a
e−

2πijk
a , j, k ∈ [a], is indeed an

inverse of Fa. Basic properties of the discrete Fourier transform are summarized in the
next proposition.

Proposition 2.2.1. Let α, β ∈ C, r ∈ [a], u, v ∈ Ca.

1. The Fourier transform is a linear operation,

Fa(αu+ βv) = αFau+ βFav.

2. The inverse Fourier transform matrix satisfies F−1
a = 1

a
F ∗
a and we have

F ∗
aFa = FaF

∗
a = aIa.

3. The matrices 1√
a
Fa and

√
aF−1

a are unitary matrices and the Plancherel identity
holds,

∥Fau∥22 = a ∥u∥22 .

The family of the circular shift operators Sr : Ca → Ca, r ∈ Z, is defined as

(Sru)j := uj−rmod a for all j ∈ [a], u ∈ Ca, (2.6)

and the family of the modulation operators Mr : Ca → Ca, r ∈ [a], is given by

(Mru)j := e
2πijr

a uj for all j ∈ [a], u ∈ Ca. (2.7)

The corresponding matrix representations of Sr and Mr are

(Sr)k,j = Ik=j−rmod a, and (Mr)k,j = e
2πijr

a Ik=j.

These operators are closely related by the Fourier transform and we state their main
properties in the next proposition
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Proposition 2.2.2. Let r ∈ Z be arbitrary.

1. Both shift and modulo matrices are unitary and their adjoint/inverse satisfy

S∗
r = S−1

r = S−r and M
∗
r =M−1

r =M−r.

2. The modulation is the shift in the frequency domain, that is

FaSr =M−rFa.

The time reversal operator Ra transforms the vector v ∈ Ca as

(Rav)j = v−jmod a, j ∈ [a], (2.8)

with matrix representation

(Ra)k,j =

{
1, k = −jmod a,

0, otherwise.

The circular convolution of two vectors u, v ∈ Ca is given by

(u ∗a v)k =
∑

j∈[a]
ujvk−jmod a, k ∈ [a]. (2.9)

The circular convolution acts as an entrywise product of the frequencies of two vectors.

Theorem 2.2.3 (Circular convolution theorem). For all u, v ∈ Ca we have

Fa(u ∗a v) = (Fau) ◦ (Fav) and aFa(u ◦ v) = (Fau) ∗a (Fav).
The circular convolution can be represented by a matrix-vector product Cuv with

Cu =




u0 ua−1 ua−2 . . . u2 u1
u1 u0 ua−1 . . . u3 u2
u2 u1 u0 . . . u4 u3
...

...
...

. . .
...

...
ua−2 ua−3 ua−4 . . . u0 ua−1

ua−1 ua−2 ua−3 . . . u1 u0



.

A matrix of this form is called a convolution or circulant matrix and it satisfies

(Cu)j,k = uj−kmod a.

The consequence of Theorem 2.2.3 is that all convolution matrices admit the following
eigendecomposition.

Theorem 2.2.4 (Decomposition of circulant matrices). Let Cu ∈ Ca×a be a circulant
matrix. Then,

Cu =

(
1√
a
Fa

)∗
diag(aF−1

a [Rau])

(
1√
a
Fa

)
= F ∗

a diag(F
−1
a [(Cu)(0)])Fa,

where FA is the discrete Fourier transform (2.5) and (Cu)(0) denotes the 0-th row of the
matrix Cu.
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Returning to the time reversal operator, it possesses the following properties.

Proposition 2.2.5. 1. The time reversal matrix is Hermitian and unitary, that is

R∗
a = R−1 = Ra.

2. The time reversal and the discrete Fourier transform commutate,

FaRa = RaFa,

and, furthermore, the following identities hold true,

FaFa = aRa, Fau = RaFau, and |Fau|2 = Fa(u ∗a Rau).

3. Lastly, it satisfies
RaSr = S−rRa.

For dimensions b ≤ a, the projection operator Pb : Ca → Cb is defined as

(Pbu)j = uj, (2.10)

for all j ∈ [b], u ∈ Ca, and it is represented by a b× a matrix

(Pb)j,k = Ij=k, j ∈ [b], k ∈ [a].

The adjoint of Pb is the embedding operator, which appends a vector in Cb with a − b
zeros, so that

(P ∗
b v)k =

{
vk k ∈ [b],

0, k /∈ [b],
for all k ∈ [a], v ∈ Cb.

The matrix P ∗
b is orthogonal, i.e., it satisfies

(P ∗
b )

∗P ∗
b = PbP

∗
b = Ib and P

∗
b Pb =

[
Ib Ob×(a−b)

O(a−b)×b O(a−b)×(a−b)

]
, (2.11)

so that for all v with supp(v) ⊂ [b] we have

P ∗
b Pbv = v. (2.12)

2.3 Wirtinger derivatives

2.3.1 Definitions

In many sections of this thesis, we will perform first order optimization of real-valued
functions of complex variables, which will be based on Wirtinger derivatives [50]. In
this section we recall some basic facts about the Wirtinger derivatives based on [51, 52].
A function f : C 7→ C can be viewed as a function of two real variables, the real and
imaginary parts of the argument z = α + iβ. The function f is said to be differentiable
(in real sense) if the derivatives with respect to α and β exist.
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Then, the Wirtinger derivatives are defined as

∂f

∂z
:=

1

2

(
∂f

∂α
− i

∂f

∂β

)
,

∂f

∂z̄
:=

1

2

(
∂f

∂α
+ i

∂f

∂β

)
,

which is nothing else but a change of the coordinate system to the conjugate coordinates.
In this sense, we treat the function f as a function of z and z̄ instead of α and β.

Example 2.3.1. Consider f(z) = z = α + iβ. Its Wirtinger derivatives are

∂z

∂z
=

1

2

∂(α + iβ)

∂α
− i

2

∂(α + iβ)

∂β
=

1

2
− i2

2
= 1 and

∂z

∂z̄
= 0.

The obtained inequalities imply that z̄ can be treated as a constant when the derivative
with respect to z is computed and vice versa.

Similarly to the real analysis of multivariate functions, the Wirtinger derivatives are ex-
tended for f : Cd 7→ C, that is for z ∈ Cd they are given by

∂f

∂z
=

(
∂f

∂z1
, . . . ,

∂f

∂zd

)
and

∂f

∂z̄
=

(
∂f

∂z̄1
, . . . ,

∂f

∂z̄d

)
.

The computation of the Wirtinger derivatives is analogous to the standard real analysis
as the arithmetic operations and the chain rule extends to the complex case.

Theorem 2.3.2 (Properties of Wirtinger derivatives). Let f, g : Cd 7→ C, h : C 7→ C be
differentiable functions and let α, β ∈ C. Then, the following derivation rules apply:

1. Arithmetic actions

∂

∂z
(αf + βg) = α

∂f

∂z
+ β

∂g

∂z
,

∂

∂z̄
(αf + βg) = α

∂f

∂z̄
+ β

∂g

∂z̄
,

∂

∂z
(fg) =

∂f

∂z
g +

∂g

∂z
f,

∂

∂z̄
(fg) =

∂f

∂z̄
g +

∂g

∂z̄
f,

2. Chain rule

∂

∂z
h(f(z)) =

∂h

∂f
(f(z))

∂f

∂z
(z) +

∂h

∂f̄
(f(z))

∂f̄

∂z
(z),

∂

∂z̄
h(f(z)) =

∂h

∂f
(f(z))

∂f

∂z̄
(z) +

∂h

∂f̄
(f(z))

∂f̄

∂z̄
(z).

3. Conjugation rule
∂f

∂z
=
∂f̄

∂z̄
,

∂f

∂z̄
=
∂f̄

∂z
. (2.13)

The Wirtinger derivatives are particularly useful for optimization of real-valued functions
of complex variables. Let f : Cd 7→ R be a differentiable real-valued function. Its
differential can be rewritten in the form of the Witringer derivatives as

df =
∂f

∂α
dα +

∂f

∂β
dβ =

∂f

∂z
dz +

∂f

∂z̄
dz̄.
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Since f is real-valued, by (2.13) we have

∂f

∂z
=
∂f

∂z̄
,

and the differential simplifies to

df = 2Re

(
∂f

∂z
dz

)
.

It is maximal when dz is a scaled version of ∂f
∂z

= ∂f
∂z̄
, and, thus, ∂f

∂z̄
gives the direction

of the steepest ascent. Moreover, the critical points of f are those, where derivative with
respect to z̄ vanishes. For this reason, the gradient of f for variable z is defined as

∇zf :=

(
∂f

∂z̄

)T
=

(
∂f

∂z

)∗

and the full gradient is

∇f =

[
∇zf
∇z̄f

]
=

[∇zf

∇zf

]
.

The Hessian matrix of a function f is given by

∇2f =

[
∇2
z,zf ∇2

z̄,zf
∇2
z,z̄f ∇2

z̄,z̄f

]
,

with second order derivatives

∇2
z,zf =

∂

∂z
∇zf =

∂

∂z

(
∂f

∂z

)∗
, ∇2

z̄,zf =
∂

∂z̄
∇zf =

∂

∂z̄

(
∂f

∂z

)∗
,

∇2
z,z̄f =

∂

∂z

(
∂f

∂z̄

)∗
, ∇2

z̄,z̄f =
∂

∂z̄

(
∂f

∂z̄

)∗
.

For a real-valued function f , by (2.13) we obtain the equalities

∇2
z̄,z̄f = ∇2

z,zf and ∇2
z,z̄f = ∇2

z̄,zf. (2.14)

The Wirtinger analogue of the second order Taylor’s approximation theorem with residual
in integral form states the following.

Theorem 2.3.3. For all twice continuously differentiable functions f : Cd 7→ R and all
z, v ∈ Cd we have

f(z + v) = f(z) +

[∇zf

∇zf

]∗ [
v
v̄

]
+

[
v
v̄

]∗ ∫ 1

0

(1− s)∇2f(z + sv)ds

[
v
v̄

]
. (2.15)



26 CHAPTER 2. PRELIMINARIES AND NOTATION

2.3.2 Gradient descent

The Wirtinger derivatives play the key role in first order minimization of real-valued
functions of complex variables. Since ∇fz provides the direction steepest ascent, we
consider a gradient descent scheme with starting point z0 ∈ Cd and a sequence {zt}t≥0 of
iterates generated by

zt = zt−1 − µt∇zf(z
t−1), (2.16)

where µt denotes the learning rate for the t-th iteration. Under mild assumptions on the
function f , we can guarantee that gradient descent with constant learning rate µt = µc,
t ≥ 1 will decrease the value of the function f and eventually stop.

Theorem 2.3.4. Let f : Cd → [0,∞) be a twice differentiable function such that the
Wirtinger Hessian satisfies

[
u
ū

]∗
∇2f(z)

[
u
ū

]
≤ L

∥∥∥∥
[
u
ū

]∥∥∥∥
2

2

(2.17)

for all z, u ∈ Cd, where L > 0 is a constant independent of z. Let {zt}t≥0 be a sequence
generated by (2.16) with arbitrary starting point z0 ∈ Cd and learning rate µt = µc such
that 0 < µc ≤ 1/L holds. Then, we have

f(zt)− f(zt−1) ≤ −µt
∥∥∇zf(z

t)
∥∥2
2

(2.18)

for all t ≥ 1. In particular,

lim
t→∞

∥∥∇zf(z
t)
∥∥2
2
= 0 and min

t∈[T ]

∥∥∇zf(z
t)
∥∥2
2
≤ f(z0)

µcT
, (2.19)

for all T ≥ 1

Proof. The proof of (2.18) is based on the Taylor expansion of f using Wirtinger deriva-
tives, which gives

f(z + u) = f(z) +

[∇zf(z)

∇zf(z)

]∗ [
u
ū

]
+

[
u
ū

]∗ ∫ 1

0

(1− s)∇2f(z + s u) ds

[
u
ū

]
,

with z = zt−1, u = −µc∇zf(z
t−1). Using inequality (2.17) and the assumption on µc we

obtain that

f(zt)− f(zt−1) ≤ −µc
∥∥∥∥
[∇zf(z

t−1)

∇zf(zt−1)

]∥∥∥∥
2

2

+
µ2
cL

2

∥∥∥∥
[∇zf(z

t−1)

∇zf(zt−1)

]∥∥∥∥
2

2

≤ −2µc(1− µcL/2)
∥∥∇zf(z

t−1)
∥∥2
2

≤ −µc
∥∥∇zf(z

t−1)
∥∥2
2
,

for every t ≥ 1. To show (2.19) we note that for T > 0 we have

µc

T∑

t=1

∥∥∇zf(z
t−1)

∥∥2
2
≤ f(z0)− f(zT ) ≤ f(z0),
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which shows, that
∑∞

t=1 ∥∇zf(z
t−1)∥22 is convergent. Consequently, ∥∇zf(z

t−1)∥22 → 0 as
t→ ∞. Finally, for T > 0, boundedness of the series yields

min
t∈[T ]}

∥∥∇zf(z
t)
∥∥2
2
≤ 1

T

T−1∑

t=0

∥∥∇zf(z
t)
∥∥2
2
≤ f(z0)

µcT
.

Remark 2.3.5. The constant L in the condition (2.17) is not the Lipschitz constant of
the gradient ∇zf or smoothness constant of f . We recall that a function is said to be
L̂-smooth if for all z1, z2 ∈ Cd the inequality

∥∇zf(z1)−∇zf(z2)∥2 ≤ L̂ ∥z1 − z2∥2 ,

holds with constant L̂ ≥ 0. If f is twice continuously differentiable, L̂-smoothness is
equivalent to ∣∣∣∣

[
u
ū

]∗
∇2f(z)

[
u
ū

]∣∣∣∣ ≤ L̂

∥∥∥∥
[
u
ū

]∥∥∥∥
2

2

.

For convex functions, ∇2f(z) is a positive semidefinite matrix and constants L and L̂
are the same. However, for non-convex functions f the inequality (2.17) is a weaker
requirement than L̂–smoothness.

The choice of the constant learning rate in Theorem 2.3.4 is based on the worst case
scenario for all z ∈ Cn and may be suboptimal when

[
u
ū

]∗
∇2f(z)

[
u
ū

]
is much smaller than L

∥∥∥∥
[
u
ū

]∥∥∥∥
2

2

.

In this case, the so-called Armijo-Goldstein condition can be used to find a learning rate
allowing for a larger decrease of the objective. This condition reads as

f(z − µ∇zf(z))− f(z) ≤ −µ ∥∇zf(z)∥22 . (2.20)

A suitable learning rate is now determined iteratively by the following backtracking line
search algorithm, which we will call henceforth Armijo-Goldstein algorithm (AG, for
short).

Algorithm 1: Backtracking search or Armijo-Goldstein condition (AG)

Input : Differentiable function f : Cd → [0,+∞), current position z ∈ Cd,
initial value µ0 > 0 and decrease factor 0 < τ < 1.

Output: Selected learning rate µ.
for j = 0, 1, . . . do

if f(z − µj∇zf(z))− f(z) ≤ −µj ∥∇zf(z)∥22 then
return µ = µj

µj+1 = τµj

In addition, we make use of the fact that by Theorem 2.3.4 the constant learning rate
satisfies (2.20). Hence, by setting µ0 = µcτ

−N for N ∈ N ∪ {0}, AG will always stop
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at µN = µc after N iterations. Note that the so determined parameter µ depends on
f, z, τ, µc and the number of iterations N to meet the condition, i.e., µ = µ(f, z, τ, µc, N).
Moreover,

µcτ
−N ≥ µ ≥ µc (2.21)

by construction. Also, in case N = 0, the learning rate selected by AG coincides with the
constant learning rate µc.
The results of Theorem 2.3.4 extend to gradient descent with learning rates µt determined
by AG.

Theorem 2.3.6. Under the conditions of Theorem 2.3.4, a sequence {zt}t≥0 generated
by (2.16) with arbitrary starting point z0 ∈ Cd and learning rates µt = µt(f, z

t−1, τ, µc, N)
determined by Algorithm 1 satisfies (2.18) and (2.19).

Proof. Inequality (2.18) holds by construction. The rest of the proof is analogous to the
proof of Theorem 2.3.4.

At last, we note that the quadratic form in the condition (2.17) can be rewritten using
the equalities (2.14) as

[
u
ū

]∗
∇2f(z)

[
u
ū

]
=

[
u
ū

]∗ [∇2
z,zf ∇2

z̄,zf
∇2
z,z̄f ∇2

z̄,z̄f

] [
u
ū

]

= u∗∇2
z,zfu+ u∗∇2

z̄,zfū+ uT∇2
z,z̄fu+ uT∇2

z̄,z̄fū

= u∗∇2
z,zfu+ u∗∇2

z̄,zfū+ u∗∇2
z̄,zfū+ u∗∇2

z,zfu

= 2Re
(
u∗∇2

z,zfu+ u∗∇2
z̄,zfū

)
, (2.22)

which is more convenient when establishing the inequality (2.17).

2.3.3 Stochastic gradient descent

Stochastic gradient descent plays a major role in modern applications of optimization the-
ory. One of the reasons behind the popularity of this method is the reduced computational
complexity caused by only a partial evaluation of the gradient. For scenarios, where large
datasets have to be processed, this allows for an efficient minimization of the objective
function. We will consider a stochastic gradient descent scheme in the further sections
and, thus, we provide the reader with the necessary results regarding its weak convergence
based on [53]. The reader may also find more recent results on almost sure convergence
of the stochastic gradient descent in [54, 55]. Since the results in [53] are derived for
functions of real variables under the assumption that f is the L-smooth, we include the
proofs for the complex case and functions satisfying condition (2.17) for completeness.
Let f : Cd → R be a continuous differentiable function, which admits a decomposition

f(z) =
∑

r∈[R]

fr(z),

for all z ∈ Cd, where functions fr : Cd → R, r ∈ [R] for some R ∈ N are also continuous
differentiable functions. Then, the stochastic gradient of f in z direction is defined as

gf (z) :=
∑

r∈[R]

vr∇zfr(z), (2.23)
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for all z ∈ Cd, with vr being the sampling random variables. The random distribution of
the vector v ∈ CR is commonly chosen such that gf (z) is an unbiased estimate of ∇zf(z),
that is Egf (z) = ∇zf(z).
Now, let us consider the stochastic gradient descent scheme with a starting point z0 ∈ Cd

and a sequence of iterates generated by

zt = zt−1 − µtgf (z
t−1), (2.24)

where µt denotes the learning rate for the t-th iteration. Similarly to the gradient descent
discussed in the previous section, our goal is to show that for a suitable choice of a constant
learning rate the algorithm converges.

Theorem 2.3.7 (Version of [53, Theorem 2]). Let functions f, fr, r ∈ [R] be continu-
ously differentiable and assume that f is bounded from below by 0, is twice continuously
differentiable and satisfies the inequality (2.17) with constant L > 0. Assume that the
stochastic gradient gf (z) given by (2.23) satisfies Egf (z) = ∇zf(z) and

E ∥gf (z)∥22 ≤ Af(z) +B ∥∇zf(z)∥22 + C, (2.25)

for all z ∈ Cd and some constants A,B,C ≥ 0. Let {zt}t≥0 be a sequence determined
by (2.24) with an arbitrary starting point z0 ∈ Cd and the constant learning rate µt = µc
satisfying 0 < µc ≤ 1

BL
, where in the case B = 0 the right inequality is understood as

< +∞. Then, we have

min
t∈[T ]

E
∥∥∇zf(z

t)
∥∥2
2
≤
{
ALµcf(z

0)
[
1 + 1

TALµ2c

]
+ CLµc, A > 0,

f(z0)
Tµc

+ CLµc, A = 0.

Proof. We start by applying the Taylor expansion (2.15) of f , which gives

f(z + u) = f(z) +

[∇zf(z)

∇zf(z)

]∗ [
u
ū

]
+

[
u
ū

]∗ ∫ 1

0

(1− s)∇2f(z + s u) ds

[
u
ū

]
,

with z = zt, u = −µcgf (zt). Using the inequality (2.17) for f , for every t ≥ 0 we obtain

f(zt+1) ≤ f(zt) +

〈[−µcgf (zt)
−µcgf (zt)

]
,

[∇zf(z
t)

∇zf(zt)

]〉
+
L

2

∥∥∥∥
[−µcgf (zt)
−µcgf (zt)

]∥∥∥∥
2

2

= f(zt)− 2µcRe
〈
gf (z

t),∇zf(z
t)
〉
+ Lµ2

c

∥∥gf (zt)
∥∥2
2
. (2.26)

If we condition on zt, that is, we fix values of the random variables from previous iterations
and only consider the randomness resulting from sampling in the stochastic gradient
gf (z

t), by assumptions on gf , the conditional expectation is bounded by

E[f(zt+1) | zt] ≤ f(zt)− 2µc
〈
E[gf (zt) | zt],∇zf(z

t)
〉
+ Lµ2

cE
[∥∥gf (zt)

∥∥2
2
| zt
]

≤ f(zt)− 2µc
∥∥∇zf(z

t)
∥∥2
2
+ Lµ2

c

[
Af(z) +B

∥∥∇zf(z
t)
∥∥2
2
+ C

]

≤ −2µc

[
1− BLµc

2

] ∥∥∇zf(z
t)
∥∥2
2
+
[
1 + ALµ2

c

]
f(zt) + CLµ2

c

≤ −µc
∥∥∇zf(z

t)
∥∥2
2
+
[
1 + ALµ2

c

]
f(zt) + CLµ2

c ,
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where in the last line we used the condition on the learning rate for B > 1. If B = 0, the
inequality is trivial. By defining β := 1 + ALµ2

c , taking the expectation and multiplying
both sides with β−(t+1)µ−1

c we obtain

β−(t+1)µ−1
c Ef(zt+1) ≤ −β−(t+1)E

∥∥∇zf(z
t)
∥∥2
2
+ β−tµ−1

c Ef(zt) + CLµcβ
−(t+1).

Next, we rearrange the terms and sum up the obtained inequalities for t ∈ [T ], which
gives

∑

t∈[T ]
β−(t+1)E

∥∥∇zf(z
t)
∥∥2
2
≤ µ−1

c

∑

t∈[T ]
[β−tEf(zt)− β−(t+1)Ef(zt+1)] + CLµc

∑

t∈[T ]
β−(t+1)

≤ µ−1
c [f(z0)− βTEf(zT )] + CLµc

∑

t∈[T ]
β−(t+1)

≤ µ−1
c f(z0) + CLµc

∑

t∈[T ]
β−(t+1).

Therefore, mint∈[T ] E ∥∇zf(z
t)∥22 is bounded from above by

min
t∈[T ]

E
∥∥∇zf(z

t)
∥∥2
2
≤
∑

t∈[T ] β
−(t+1)E ∥∇zf(z

t)∥22∑
t∈[T ] β

−(t+1)

≤ f(z0)

µc
∑

t∈[T ] β
−(t+1)

+ CLµc.

If A = 0, then β = 1 and

min
t∈[T ]

E
∥∥∇zf(z

t)
∥∥2
2
≤ f(z0)

µcT
+ CLµc.

Otherwise, the sum in the denominator is the geometric sum, so that

∑

t∈[T ]
β−(t+1) = β−1β

−T − 1

β−1 − 1
=

1− βT

βT (1− β)
=

βT − 1

βT (β − 1)
,

and, thus, we have

min
t∈[T ]

E
∥∥∇zf(z

t)
∥∥2
2
≤ (β − 1)f(z0)

µc

βT

βT − 1
+ CLµc =

(β − 1)f(z0)

µc

[
1 +

1

βT − 1

]
+ CLµc.

Note that the function x 7→ 1 + 1
x
is decreasing on (0,+∞) and

βT − 1 =
[
1 + ALµ2

c

]T − 1 ≥ TALµ2
c .

Therefore, we obtain

min
t∈[T ]

E
∥∥∇zf(z

t)
∥∥2
2
≤ ALµcf(z

0)

[
1 +

1

TALµ2
c

]
+ CLµc.

Combining the two cases together concludes the proof.
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Theorem 2.3.7 further provides the following stopping criteria.

Corollary 2.3.8 ([53, Corollary 1]). Let the assumptions of Theorem 2.3.7 hold and fix
γ > 0. If the number of iterations T satisfies

T ≥ max

{
16LAf 2(z0)

γ4
,
4BLf(z0)

γ2
,
8CLf(z0)

γ4

}
,

and the constant learning rate fulfills

µc ≤ min

{
1√
TAL

,
1

BL
,
γ2

2CL

}
,

then the expected norms of the gradients satisfy

min
t∈[T ]

E
∥∥∇zf(z

t)
∥∥
2
≤ γ.

In the case A,B or C are equal to zero, the corresponding cases in the upper bound for the
learning rate µc are ignored and if either A = 0 or C = 0, the lower bound on T improves
by a constant factor.

Proof. We start with the case A > 0. By construction µc satisfies 1
TALµ2c

≥ 1, and by
Theorem 2.3.7, we have

min
t∈[T ]

E
∥∥∇zf(z

t)
∥∥2
2
≤ Aµcf(z

0)

[
1 +

1

TAµ2
c

]
+ CLµc =

2f(z0)

Tµc
+ CLµc.

The second term satisfies CLµc ≤ γ2/2 by the choice of µc. Hence, selecting

T ≥ 4f(z0)

γ2µc
≥ 4f(z0)

γ2min
{

1√
TAL

, 1
BL
, γ2

2CL

}

will provide the desired gradient bound. By splitting the minimum into three separate
cases we obtain

T ≥ 4
√
TALf(z0)

γ2
, T ≥ 4BLf(z0)

γ2
and T ≥ 8CLf(z0)

γ4
,

which is equivalent to

T ≥ 16ALf 2(z0)

γ4
, T ≥ 4BLf(z0)

γ2
and T ≥ 8CLf(z0)

γ4
.

For the case A = 0, the coefficient in front of f(z0) in Theorem 2.3.7 is better by a factor
of 2. For the case C = 0, we only need to require T ≥ 2f(z0)/µ2

cγ, which also improves
the bound by a factor of 2.

Comparing the results of Theorem 2.3.4 and Corollary 2.3.8, the two main differences are
prominent. Firstly, for gradient descent with µc = 1/L only T ≥ f(z0)Lγ−2 iterations are
required to achieve mint∈[T ] E ∥∇zf(z

t)∥2 ≤ γ. In comparison, stochastic gradient descent
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requires O(γ−4f 2(z0)) iterations, which is significantly slower. Secondly, for stochastic
gradient descent the choice of the constant learning rate depends on the number of iter-
ations of the algorithm. However, these two drawbacks are compensated by the reduced
computational complexity as the gradients ∇zfr are only evaluated for small subset of
[R].
Note that if gf (z) = ∇zf(z), then condition (2.25) is satisfied with A = C = 0 and
B = 1 and Theorem 2.3.7 becomes Theorem 2.3.4. For a random construction of gf (z)
via (2.23), the distribution of v is the determining factor for constants A,B,C. In this
thesis, we will only consider a sampling with replacement, however other choices are also
possible [53]. That is, the entries of v are given by

vr =
1

Kpr

∑

k∈[K]

vkr , (2.27)

where each vk ∈ RR is independently sampled with replacement from a set of standard
basis vectors {er}r∈[R] with probability 0 < pr ≤ 1 to pick er. The main components
in the establishment of (2.25) for this sampling scheme are summarized in the following
proposition.

Proposition 2.3.9 (Version of [53, Proposition 3]). Let v ∈ RR be defined as in (2.27) and
assume that for all r ∈ [R] functions fr : Cd → [0,+∞) are continuously differentiable.
Then, for all z ∈ Cd the stochastic gradient gf (z) given by (2.23) satisfies

Egf (z) = ∇zf(z) and E ∥gf (z)∥22 ≤
[
1− 1

K

]
∥∇zf(z)∥22 +

∑

r∈[R]

1

Kpr
∥∇zfr(z)∥22 .

Proof. Let us start by computing the expectation of vkr ,

Evkr =
∑

r′∈[R]

pr′(er′)r =
∑

r′∈[R]

pr′Ir′=r = pr. (2.28)

Therefore, by linearity of the expectation we obtain

Egf (z) =
∑

r∈[R]

Evr∇zfr(z) =
∑

r∈[R]

∇zfr(z)E


 1

Kpr

∑

k∈[K]

vkr




=
∑

r∈[R]

1

Kpr
∇zfr(z)

∑

k∈[K]

Evkr =
∑

r∈[R]

∇zfr(z) = ∇zf(z).

For the expectation of the squared norm we have,

E ∥gf (z)∥22 = E ⟨gf (z), gf (z)⟩ = E

〈∑

r1∈[R]

vr1∇zfr1(z),
∑

r2∈[R]

vr2∇zfr2(z)

〉

=
∑

r1,r2∈[R]

⟨∇zfr1(z),∇zfr2(z)⟩E[vr1vr2 ]. (2.29)
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We further compute the expectation by substituting (2.27), which yields

E[vr1vr2 ] = E


 1

Kpr1

∑

k1∈[K]

vk1r1
1

Kpr2

∑

k2∈[K]

vk2r2


 =

1

K2pr1pr2

∑

k1,k2∈[K]

E[vk1r1 v
k2
r2
]. (2.30)

The expectation E[vk1r1 v
k2
r2
] takes three possible values depending on k1, k2, r1, r2. Firstly,

if k1 ̸= k2 then vk1 and vk2 are independent and, thus, by (2.28) we obtain

E[vk1r1 v
k2
r2
] = Evk1r1Ev

k2
r2

= pr1pr2 .

The second case is k1 = k2, but r1 ̸= r2. Since v
k1 is always the standard basis vector ej

for some j ∈ [R], it implies that for any r1, r2 ∈ [R] such that r1 ̸= r2 either (ej)r1 = 0
or (ej)r2 = 0. Thus, it always holds that (ej)r1(ej)r2 = 0 and, consequently, vk1r1 v

k1
r2

= 0.
Hence, E[vk1r1 v

k2
r2
] = 0.

Lastly, if k1 = k2 and r1 = r2, we have

E[vk1r1 v
k2
r2
] = E[(vk1r1 )

2] = E[vk1r1 ] = pr1 ,

where we used that the entries of vk1 are either 0 or 1 and satisfy the equalities 02 = 0
and 12 = 1.
Combining all cases together gives

E[vk1r1 v
k2
r2
] =





pr1pr2 , k1 ̸= k2

0, k1 = k2, r1 ̸= r2

pr1 , k1 = k2, r1 = r2.

Substitution of this equality to (2.30) yields

E[vr1vr2 ] =
1

K2

∑

k1,k2∈[K]
k1 ̸=k2

1 +
1

K2pr1

∑

k∈[K]

Ir1=r2 = 1− 1

K
+

1

Kpr1
Ir1=r2 ,

and, consequently, by (2.29) we obtain

E ∥gf (z)∥22 =
[
1− 1

K

] ∑

r1,r2∈[R]

⟨∇zfr1(z),∇zfr2(z)⟩+
∑

r∈[R]

1

Kpr
⟨∇zfr(z),∇zfr(z)⟩

=

[
1− 1

K

]〈∑

r1∈[R]

∇zfr1(z),
∑

r2∈[R]

∇zfr2(z)

〉
+
∑

r∈[R]

1

Kpr
∥∇zfr(z)∥22

=

[
1− 1

K

]
∥∇zf(z)∥22 +

∑

r∈[R]

1

Kpr
∥∇zfr(z)∥22 .

If the sampling is uniform, so that

pr = 1/R, r ∈ [R], (2.31)

we obtain the following convergence guarantees for stochastic gradient descent.
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Corollary 2.3.10. Fix γ > 0. Assume that for all r ∈ [R] functions f, fr : Cd →
[0,+∞) are twice continuously differentiable and satisfy the inequality (2.17) with con-
stants L,Lr > 0. Let {zt}t≥0 be a sequence determined by (2.24) with an arbitrary starting
point z0 ∈ Cd, sampling (2.27) with probabilities (2.31) and constant learning rate µt = µc.
If the number of iterations T satisfies

T ≥ max

{
4LRmaxr∈[R] Lrf

2(z0)

Kγ4
,
2L(K − 1)f(z0)

Kγ2

}
,

and the constant learning rate fulfills

µc ≤ min

{√
K

TLRmaxr∈[R] Lr
,

K

L(K − 1)

}
,

then the expected norms of the gradient satisfy

min
t∈[T ]

E
∥∥∇zf(z

t)
∥∥
2
≤ γ.

In the case K = 1, the learning rate only needs to be µc ≤ (TLRmaxr∈[R] Lr)
−1/2.

Proof. Let us show that the stochastic gradient satisfies condition (2.25) with

A = Rmax
r∈[R]

Lr/K, B = 1− 1/K and C = 0.

In view of Proposition 2.3.9, we only need to bound
∑

r∈[R]
1

Kpr
∥∇zfr(z)∥22. For this, we

consider a single step of gradient descent applied to fr with starting point z and learning
rate µ = 1/Lr. Then, the assumptions of Theorem 2.3.4 are satisfied and the inequality
(2.18) gives

∥∇zfr(z)∥22 ≤ Lr[fr(z)− fr(z − 1
Lr
∇zfr(z))] ≤ Lrfr(z).

Combining this inequality with (2.31) leads to

∑

r∈[R]

1

Kpr
∥∇zfr(z)∥22 ≤

R

K

∑

r∈[R]

Lrfr(z) ≤
R

K
max
r∈[R]

Lrf(z),

and, hence, Proposition 2.3.9 yields

E ∥gf (z)∥22 ≤
[
1− 1

K

]
∥∇zf(z)∥22 +

R

K
max
r∈[R]

Lrf(z).

Thus, Corollary 2.3.8 applies, which concludes the proof.



Chapter 3

Ptychography

3.1 Continuous ptychographic problem

In this section we discuss the reconstruction of an object from diffraction patterns gener-
ated by monochromatic illumination in the ptychographic experiment.
We start with the intensity function of the diffraction patterns given by (1.12),

∣∣∣∣
ν

p
F [wT−rx]

(
νs

p

)∣∣∣∣
2

, r, s ∈ R2,

derived in Chapter 1 and for readability, we introduce a few simplifications. We recall that
the functions x,w : R2 → C denote the unknown object and the window, respectively, and
ν, p > 0 are fixed parameters describing the measurement process. Firstly, we introduce a
change of variable from s to ps/ν in order to avoid scaling in the argument of the Fourier
transform. Additionally, the intensity function is rescaled to remove the multiplicative
factor ν/p. Lastly, in this section we will work with the one-dimensional counterpart of
the problem.
As a result, the one-dimensional rescaled intensity function of the diffraction patterns is
given by

I(r, s) = |F [wT−rx] (s)|2 , s ∈ R, r ∈ R. (3.1)

From this point onward, we will concentrate on the mathematical aspects of the recovery
of x from the measurements I.
So far, we did not discuss the requirements on functions and operators involved and, thus,
let us make a step back and briefly reintroduce operators and functions rigorously.
We start by defining the Lp(Rk), k ∈ N spaces with parameter 1 ≤ p <∞ as

Lp(Rk) := {u : Rk → C : u – Lebesque measurable,

∫

Rk

|u(s)|pds < +∞},

with the norm

∥u∥p :=
(∫

Rk

|u(s)|pds
)1/p

.

Clearly, the space L2(Rk) is a Hilbert space with inner product

⟨u,v⟩ :=
∫

Rk

u(s)v(s)ds.

35
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The translation operator Tr with shift r ∈ R acting on functions u : R → R is defined by

Tru(s) = u(s− r), s ∈ R.

Since the Lebesque measure is translation invariant, we have Tru ∈ Lp(R) and ∥Tru∥p =
∥u∥p whenever u ∈ Lp(R). Moreover, the inverse of Tr is the reverse shift T−r, so that

T−rTru = TrT−ru = u.

The Fourier transform F on L1(Rk) is given by

Fu(ξ) :=

∫

Rk

u(s)e−2πi⟨s,ξ⟩ds.

It is pointwise well-defined, since

|Fu(ξ)| =
∣∣∣∣
∫

Rk

u(s)e−2πi⟨s,ξ⟩ds

∣∣∣∣ ≤
∫

Rk

|u(s)|ds = ∥u∥1 < +∞.

In particular, if we assume that x,w ∈ L2(R), the intensity function I is pointwise
well-defined, since by Cauchy-Schwarz inequality

|F [wT−rx](ξ)| ≤
∫

R
|wT−rx|(s)ds ≤ ∥w∥2 ∥T−rx∥2 = ∥w∥2 ∥x∥2 < +∞, ∀r ∈ R.

Further properties of the intensity function I can be deduced after a slight rearrangement
of its components,

I(r, s) = |F [wT−rx] (s) |2 = |F [(T−rTrw)T−rx] (s) |2 = |FT−r[xTrw] (s) |2

=

∣∣∣∣
∫

R
[xTrw] (q + r) e−2πiqsdq

∣∣∣∣
2

=

∣∣∣∣
∫

R
[xTrw] (q) e−2πi(q−r)sdq

∣∣∣∣
2

=
∣∣e2πirsF [xTrw] (s)

∣∣2 = |F [xTrw] (s)|2 =
∣∣F [xTrw] (s)

∣∣2 . (3.2)

The transform
Vw[x](r, s) := F [xTrw](s). (3.3)

is also known as the Short-Time Fourier Transform (STFT) with window w. When the
window is a Gaussian function w(s) = e−πs

2/a for a > 0, we refer to Vw[x] as Gabor
transform of x.
For STFT the following properties hold.

Theorem 3.1.1 (Selected properties of STFT). Let x,x′,w,w′ ∈ L2(R). Then, we have:

1. Vw[x] is a uniformly continuous function.

2. Vw is a linear operator, which maps L2(R) to L2(R2).

3. ⟨Vw[x],Vw′ [x′]⟩ = ⟨x,x′⟩⟨w,w′⟩. In particular, ∥Vw[x]∥2 = ∥x∥2 ∥w∥2.

4. If ⟨w,w′⟩ ≠ 0, then

x(q) =
1

⟨w′,w⟩

∫

R

∫

R
Vw[x](r, s)[Trw′](q)e2πiqsdrds. (3.4)
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Proof. See Lemma 3.1.1, Theorem 3.2.1, Corollaries 3.2.2 and 3.2.3 in [44].

The function

Sw[x] := |Vw[x]|2

is known as the spectrogram of the function x with respect to the window w. In view of
(3.2), I is the spectrogram of x with respect to w,

I =
∣∣F [xTrw] (s)

∣∣2 = |Vw[x]|2 = Sw[x] ∈ L1(R2),

and the continuous ptychographic problem is stated as

Find x ∈ L2(R) from data Sw[x].

If the phase function of the Fourier transform was known, the object x could be theoret-
ically recovered via (3.4) and, thus, the main obstacle is the reconstruction of the phases
of STFT Vw[x] from Sw[x]. The next example suggests, that it is impossible without
further assumptions.

Example 3.1.2. Consider two objects

x+(s) = Is∈[−2,−1] + Is∈[1,2] and x−(s) = Is∈[−2,−1] − Is∈[1,2]

and the window w(s) = w(s) = Is∈[0,1]. We note that x+,x−,w ∈ L2(R) and

∥x+∥22 = ∥x−∥22 = 2 and ∥w∥22 = 1.

For the indicator function Is∈[a,b], a, b ∈ R, a < b, its STFT with respect to w is given by

Vw[I·∈[a,b]](r, s) =

∫

R
Iq∈[a,b](q)Iq−r∈[0,1]e−2πiqsdq =

∫

[a,b]∩[r,r+1]

e−2πiqsdq

=

{
1

−2πis

(
e−2πismin{b,r+1} − e−2πismax{a,r}) , [a, b] ∩ [r, r + 1] ̸= ∅,

0, otherwise.

Then, using the obtained formula and the linearity of Vw[x±], STFT of both x+ and x−
with respect to w is given by

Vw[x±](r, s) =





1
−2πis

(
e−2πismin{−1,r+1} − e−2πismax{−2,r}) , r ∈ [−3,−1],

± 1
−2πis

(
e−2πismin{2,r+1} − e−2πismax{1,r}) , r ∈ [0, 2],

0, otherwise,

and, hence,

Sw[x+] = |Vw[x+]|2 = |Vw[x−]|2 = Sw[x−].

Therefore, it is not possible to distinguish Vw[x+] and Vw[x−] from the spectrogram
Sw[x±].
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In order to achieve the unique determination of the phase of STFT Vw[x], it is commonly
assumed that Vw[x] belongs to a certain subset of L2(R) [56, 57, 58, 1, 59, 60, 61, 62, 63,
64, 65] (we note, that meaning of “unique” is vague, with a proper definition to follow
in Section 3.3). However, even if the phases of Vw[x] are reconstructed, the numerical
evaluation of (3.4) is a hard task.
Another line of research inquires, which assumptions on x and w will allow to determine
x uniquely from the spectrogram measurements. For instance, in [66, 67, 68, 69] x has
compact support or x belongs to the Paley-Wiener spaces in [70], shift-invariant spaces
in [67, 71], modulation spaces in [72, 73], Hardy spaces in [58, 74] and many more. We
provide a more detailed overview of these results at the end of Section 3.3.
The reconstruction of x from the spectogram Sw can be also formulated as a deconvolution
problem [75, 76]. For a function u ∈ L2(R), define the Wigner distribution of u as

Wu(r, s) := F [u(r + ·/2)u(r − ·/2)](s) =
∫

R
u(r + τ/2)u(r − τ/2)e−2πisτdτ.

It possesses many properties, which can be found in [77, 78, 75, 44].

Theorem 3.1.3 (Selected properties of Wigner distribution). Let x ∈ L2(R). Then, we
have:

1. Wx is uniformly continuous and |Wx(r, s)| ≤ 2 ∥x∥22.

2. Wx(r, s) = 2e4πirsVx(−·)[x](2r, 2s) and, consequently, Wx ∈ L2(R2).

3. In particular, the spectrogram Sw satisfies the identity

Sw[x](r, s) =

∫

R

∫

R
Wx(q, τ)Ww(q − r, s− τ)dτdq.

Proof. See Lemma 4.3.1, Proposition 4.3.2 in [44] and equation (4.5) in [75]. The fact
that Wx ∈ L2(R2) is a consequence of Theorem 3.1.1.

The third property can be recast as a two-dimensional convolution of the Wigner distri-
bution Wx with kernel Kw(r, s) := Ww(−r, s),

Sw[x] =

∫

R

∫

R
Wx(q, τ)Kw(r − q, s− τ)dτdq =: Wx ∗ Kw.

To separate x from effects of the window, we solve the deconvolution problem, e.g. by
using the convolution theorem [44, p.8],

FSw[x] = F [Wx] · F [Kw]. (3.5)

under assumption that both Wx and Kw are L1(R2) functions. If F [Kw](r, s) ̸= 0 for
all r, s ∈ R, then Wx is recovered from the measurements and the next step is the
reconstruction of x from its Wigner distribution Wx. In [79, 5], this technique is called
the Wigner distribution deconvolution.
At last, we have to take into account that measurements are usually noisy, i.e.,

Y = I +N , (3.6)
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where N is the noise. It represents the cumulative error resulting from approximations,
which are performed in the derivation of the diffraction formula, the non-ideal measure-
ment environment and other unaccounted factors during the ptychographic experiment.
Clearly, the noise distorts the quality of the reconstruction and the theoretical analysis of
its impact on the performance of the algorithms is a major research topic.

3.2 Discrete ptychographic problem and connection

to phase retrieval

In numerical applications, a common approach is to approximate the continuous ptycho-
graphic problem by a discrete problem. As all physical objects are contained in a bounded
domain, we can without loss of generality assume that both x and w are supported on
[0, 1].
The transition from continuous to discrete problem is performed by an approximation of
the integral in

I(r, s) = |F [wT−rx]|2(s) =
∣∣∣∣
∫

R
[wT−rx](q)e

−2πiqsdq

∣∣∣∣
2

by a suitable quadrature rule. Generally, any quadrature rule which approximates the
integral sufficiently well would work, however there is a benefit of using the partition with
d ∈ N equidistant nodes {0, 1/d, . . . , (d− 1)/d}. Firstly, the detector stores illumination
data as an image, which is a sampled intensity function I at the equidistant points.
Secondly, this choice leads to the discrete Fourier transform, which can be efficiently
computed. Using the equidistant nodes, the Fourier transform of wT−rx is approximated
by

F [wT−rx](s) =

∫

R
[wT−rx](q)e

−2πiqsdq ≈ 1

d

∑

k∈[d]
[wT−rx]

(
k

d

)
e−

2πiks
d , s ∈ R

If we sample F [wT−rx](s) at points s ∈ [d] and restrict shifts to points on the lattice
{r/d, r ∈ Z}, then the integral is approximated by

F [wT−rx](s) ≈
1

d

∑

k∈[d]
w

(
k

d

)
x

(
k + r

d

)
e−

2πiks
d . (3.7)

Further, assuming that all shifts are circular shifts, the intensity measurements (3.1) are
approximated (up to scaling in d) by

Idj,r := |(Fd[w ◦ S−rx])j|2 , j ∈ [d], r ∈ R ⊆ Z,

where vectors x and w are defined as

xj = x(j/d), wj = w(j/d), j ∈ [d], (3.8)

and Sr is the circular shift operator (2.6). Then, the goal of the discrete ptychographic
problem is to

Reconstruct x ∈ Cd from data Idj,r.
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Remark 3.2.1. With the circular shift operation, the object x is periodically extended
once j+ r ≥ d, which allows to preserve group properties of the STFT transform given by
Proposition 2.2.2. The second outcome of the circularity is a restriction of shift positions
R from Z to subset of [d], since for values r /∈ [d] measurements will be identical to
rmod d ∈ [d]. We note that circularity of the shifts is important for Section 3.6, while
results of Section 3.5 are also applicable for non-circulant shifts.

Notation. For the rest of the section, all indices will be considered modulo d dropping
the mod d notation, unless it is necessary. For two indices j, k ∈ [d], we will use |j − k|c
to denote the distance accounting for the circularity,

|j − k|c := min{|j − k|, d− |j − k|}.

In most ptychographic experiments, the window illuminates only a small region of the
object and, therefore, the support of w is commonly smaller than [0, 1]. Assume that it
is given by an interval [0, δ/d] for parameter δ ∈ N, 1 < δ ≤ d. Then, by the equation
(3.8), the corresponding w has only δ non-zero entries.
In this case, each diffraction pattern encodes information about δ complex entries of the
object in d real-valued entries. This leads to an oversampling ratio d

2δ
, which is high if d

is much larger than δ. Consequently, reducing the sampling ratio may be beneficial for
practical applications, where the low memory usage is crucial for fast performance.

Example 3.2.2. Consider the recovery of a two-dimensional object represented by an
1024 × 1024 image. Let the window be an 1024 × 1024 image supported on the 64 × 64
bottom-left pixels. Assume that 128 shifts positions per axis are observed. If the sampling
ratio is not reduced, then for each position an 1024×1024 image of the diffraction pattern
is stored. Assuming that 4 Bytes per single pixel are used, the total required memory is

4 · 10242 · 1282 B = 236 B = 226 KB = 216 MB = 26 GB = 64 GB,

which does not fit into RAM of a standard modern laptop. On contrary, if for each position
only a 128× 128 subsampled image of the diffraction pattern is obtained, then the storage
requirements are

4 · 1282 · 1282 B = 230 B = 220 KB = 210 MB = 1 GB.

It is 64 times less and would easily fit into RAM.

Example 3.2.2 motivates to consider subsampled intensity measurements obtained by
reducing the number of frequency samples of I. Instead of s ∈ [d], let us consider the set

{
0,
d

m
, 2
d

m
, . . . , (m− 1)

d

m

}
=

{
j
d

m
, j ∈ [m]

}

of size m ∈ N, δ ≤ m ≤ d. Then, returning to the approximation (3.7), we obtain

F [wT−rx]

(
j
d

m

)
≈ 1

d

∑

k∈[d]
wkxk+re

− 2πikjd
dm =

1

d

∑

k∈[δ]
wkxk+re

− 2πikj
m ,
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where we used that supp(w) ⊆ [δ]. Consequently, the subsampled discrete intensity
measurements (up to scaling in d) are given by

Imj,r := |(FmPm[S−rx ◦ w])j|2 =

∣∣∣∣∣∣
∑

k∈[δ]
wkxk+re

− 2πikj
m

∣∣∣∣∣∣

2

, j ∈ [m], r ∈ R ⊆ [d],

with Pm denoting the projection operator (2.10).

Just as in the continuous case (3.6), the measurements may be corrupted by noise N ∈
Rm×|R|

Yj,r = Imj,r +Nj,r, j ∈ [m], r ∈ R ⊆ [d]. (PTY)

When all Nj,r = 0, we will refer to the measurements as noiseless and in all other cases
as noisy. For the rest of this chapter, we will concentrate on solving the following recon-
struction problem:

Reconstruct x ∈ Cd from data (PTY).

While some of the recovery methods in the literature are developed specifically for the
ptychographic measurements (PTY), many others were developed for measurements of
the form

yk = |(Ax)k|2 + nk, k ∈ [M ], (PR)

with measurement matrix A ∈ CM×d and noise n. The corresponding reconstruction
problem

Reconstruct x ∈ Cd from data (PR).

is known as the discrete phase retrieval problem. The connection between the two prob-
lems is observed by rewriting the Hadamard product as a diagonal matrix for each fixed
illumination location r,

FmPm[S−rx ◦ w] = FmPm[w ◦ S−rx] = FmPm diag(w)S−rx.

Combining all locations together as a block matrix, we obtain that in the ptychographic
case A is given by

A =



FmPm diag(w)S−r1

...
FmPm diag(w)S−rR


 , (3.9)

withM = m|R|. If R = [d], the matrix A corresponds to the Discrete Short-Time Fourier
Transform (STFT) with window w. If R ≠ [d], it is a subsampled STFT matrix.

Thus, the discrete ptychographic problem is a special case of the phase retrieval problem
and sometimes referred to as the ptychographic phase retrieval or STFT phase retrieval.

Notation. The blockwise representation of A allows to treat Y ∈ Rm×|R| as a vector y ∈
Rm|R| with entries y(j,r) := Yj,r. When working with ptychographic measurements (PTY),
we will use the notation Y,N ∈ Rm×|R| to refer to the matrix form of the measurements
and the noise, while y, n ∈ Rm|R| denotes their vector form.
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Notes and References. In the derivation of the formula (PTY), it is assumed that both
the window w and the object x are compactly supported on [0, 1]. This assumption also
implies that the support of wT−rx is bounded and due to the uncertainty principles [44,
Chapter 2.2], the intensity will have an unbounded support. Yet, practically it is impossible
to sample an unbounded wave due to the finite nature of the detector and, thus, the high
frequencies are left out which inevitably leads to errors. A detailed study on the arising
instabilities can be found in [80].

3.3 Ambiguities, uniqueness and stability of ptycho-

graphic phase retrieval

In this section we discuss the concept of unique reconstruction from ptychographic mea-
surements. Since ptychographic recovery is a special case of the phase retrieval problem,
some of the results apply directly. In particular, for the phase retrieval problem it is
known that unique recovery is generally not possible. Let

α ∈ T = {β ∈ C : |β| = 1}

and observe that for all x ∈ Cd the measurements (PR) generated by x and αx coincide,

|(A[αx])k|2 = |α(Ax)k|2 = |(Ax)k|2. (3.10)

Hence, the unique recovery of x ∈ Cd is not possible. The equation (3.10) establishes the
equivalence relation

x ∼ x′ ⇔ x = αx′ for some α ∈ T.

Therefore, a reconstruction is called unique, if it belongs to the set

{αx : α ∈ T},

which is also referred to as a recovery up to a global phase. We note that it is equivalent
to considering the unique recovery on the quotient space

Cd/ T := {{αx : α ∈ T} : x ∈ Cd}.

To account for the equivalence relation ∼ when measuring the distance between two
vectors x, x′ ∈ Cd, we use

dist(x, x′) := min
|α|=1

∥x− αx′∥2 . (3.11)

Lemma 3.3.1. The mapping dist(·, ·) is a metric on Cd/T.

Proof. Let x, x′ ∈ Cd. Firstly, dist(·, ·) is non-negative,

dist(x, x′) = min
|α|=1

∥x− αx′∥2 ≥ 0,

and if dist(x, x′) = 0, then by definition x = αx′, so that x ∼ x′.
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Secondly, it is symmetric as

dist(x, x′) = min
|α|=1

∥x− αx′∥2 = min
|β|=1

∥βx− x′∥2 = dist(x′, x).

Finally, we show that dist(·, ·) satisfies the triangle inequality. Let x, u, v ∈ Cd, Using the
triangle inequality for ∥·∥2, we obtain

dist(x, u) = min
|α|=1

∥x− αu∥2 = min
|α|=1

∥x− βv + βv − αu∥2 ≤ ∥x− βv∥2 + min
|α|=1

∥βv − αu∥2 ,

for any β ∈ T. By a substitution α′ = αβ with |α′| = 1, we rewrite the second term as

dist(βv, u) = min
|α|=1

∥βv − αu∥2 = min
|α|=1

∥∥v − αβu
∥∥
2
= min

|α′|=1
∥v − α′u∥2 = dist(v, u).

Hence, we have
dist(x, u) ≤ ∥x− βv∥2 + dist(v, u).

Since β ∈ T is arbitrary, we can select β as the minimizer of min|β|=1 ∥x− βv∥2, so that

dist(x, u) ≤ dist(x, v) + dist(v, u).

The reconstruction up to a global phase factor is the only known ambiguity occurring in
the phase retrieval problem for all A ∈ CM×d. However, further ambiguities may arise
depending on the choice of A.

Example 3.3.2. Let A be diagonal, so that A = diag(a) for some a ∈ Cd. Then, for all
x ∈ Cd and v ∈ Cd such that |vj| = 1, j ∈ [d] we have

|(A(x ◦ v))j| = |ajxjvj| = |ajxj| = |(Ax)j|.

Moreover, the same problem arises for A of the form

A =



diag(a1)

...
diag(ak)


 , for all k ∈ N, a1, . . . , ak ∈ Cd.

The last construction of A corresponds to the ptychographic measurements with δ = 1,
that is why we require that δ > 1.

Example 3.3.3 ([1, Proposition 2.1]). Let A = Fd. Then, for all x ∈ Cd, r ∈ [d], the ob-
jects x, Srx and Rdx generate the same measurements. In the first case Proposition 2.2.2
yields

|(FdSrx)j|2 = |(M−rFdx)j|2 = |e− 2πirj
d (Fdx)j|2 = |(Fdx)j|2.

In the second case, we apply Proposition 2.2.5, which gives us

|(FdRdx)j|2 = |(RdFdx)j|2 = |(RdRdFdx)j|2 = |(Fdx)j|2 = |(Fdx)j|2.
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Therefore, it is crucial to understand whether or not non-trivial ambiguities arise for the
ptychographic measurement matrix A as in (3.9). We note that the unique recovery up
to a global phase is equivalent the injectivity of the mapping {αx : α ∈ T} 7→ |Ax|2. In
the following, we show that weaker requirements on A are not sufficient.
For the linear measurements Ax, we know that injectivity of the matrix A is a necessary
and sufficient condition for the unique recovery of x. However, as Example 3.3.3 suggests,
for the measurements |Ax|2 with injective matrix A equal to Fd, non-trivial ambiguities
are present. Hence, the injectivity of A is not sufficient to ensure unique reconstruction.
On the other hand, it is a necessary condition.

Lemma 3.3.4. Let us consider the noiseless phase retrieval measurements (PR). If for
all x ∈ Cd the matrix A admits the unique reconstruction of x up to a global phase, then
A is injective.

Proof. Assume that A is not injective. Let 0d ∈ Cd be the vector with zero entries. Then,
there exists x ∈ Cd, x ̸= 0d such that (Ax)j = 0 = (A0d)j for all j ∈ [m]. It implies
that the measurements coincide, |(Ax)j|2 = |(A0d)j|2. However, A admits the unique
reconstruction up to a global phase and, thus, x = α0d = 0d, which contradicts x ̸= 0d.
Therefore, A is injective.

In the case of ptychographic measurement matrix (3.9), the injectivity of A has the
following characterization.

Lemma 3.3.5 (Necessary and sufficient conditions for injectivity of ptychographic mea-
surements). Consider the ptychographic measurements (PTY) and the corresponding mea-
surement matrix A (3.9). Let v be the vector in Rd with entries

vj = m
∑

r∈R
|(Srw)j|2 for all j ∈ [d],

where R denotes the set of observed shift positions. Then, A∗A = diag(v) and A is
injective if and only if vj > 0 for all j ∈ [d].

Proof. For the intensity measurements (PTY) we compute the matrix A∗A using the block
representation (3.9), which expands the derivation provided in [36, p.6]. More precisely,

A∗A =
∑

r∈R
(FmPm diag(w)S−r)

∗FmPm diag(w)S−r

=
∑

r∈R
(diag(w)S−r)

∗P ∗
mF

∗
mFmPm diag(w)S−r.

By Proposition 2.2.1, F ∗
mFm = mId and the summands simplify to

A∗A = m
∑

r∈R
(diag(w)S−r)

∗P ∗
mPm diag(w)S−r.

Since supp(w) = [δ] and in view of (2.12) we obtain

A∗A = m
∑

r∈R
(diag(w)S−r)

∗ diag(w)S−r.
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For the circular shift operators, the identity

(diag(w)S−ru)j = wjuj+r = ((Srw) ◦ u)j+r = (S−r diag(Srw)u)j,

holds for all u ∈ Cd and, thus,

(diag(w)S−r)
∗ diag(w)S−r = (S−r diag(Srw))

∗S−r diag(Srw)

= diag(Srw)
∗S∗

−rS−r diag(Srw).

Furthermore, by Proposition 2.2.2 the circular shift operator satisfies S∗
−rS−r = Id and

the adjoint of diag(Srw) is given by diag(Srw). Hence,

diag(Srw)
∗S∗

−rS−r diag(Srw) = diag(Srw) diag(Srw) = diag(|Srw|2).

Finally, we note that the sum of diagonal matrices is a diagonal matrix of the sum and,
therefore,

A∗A = m
∑

r∈R
diag(|Srw|2) = diag

(
m
∑

r∈R
|Srw|2

)
= diag(v).

Turning to the injectivity claim, let us assume that A is injective. Then, rankA = d ≤M
and A∗A = diag(v) is invertible, which implies that vj > 0 for all j ∈ [d].
For the reverse claim, assume that vj > 0 for all j ∈ [d]. By construction of v, the
inequality vj > 0 is true if there exists a shift position r, such that (Srw)j ̸= 0. Since
supp(w) ⊆ [δ], per single shift there are at most δ entries of v which are non-zero.
Therefore, at least ⌈d/δ⌉ shifts are needed if vj > 0 for all j ∈ [d]. Hence, the number of
measurements satisfies

M = m|R| ≥ m⌈d/δ⌉ ≥ md/δ ≥ d,

and the invertibility of A∗A = diag(v) implies that A is injective.

The result of Lemma 3.3.5 has a physical explanation. The entries of the vector vj
can be interpreted as the total intensity of light passing through the part of the object
corresponding to the entry xj. If some part was not illuminated (vj = 0), there is no
information about it in the measurements and, consequently, it cannot be identified.
Following our claim that the injectivity of A is not sufficient, the next example shows that
an even stronger requirement, namely the injectivity of the mapping
{αx : α ∈ T} 7→ {αAx : α ∈ T} is not sufficient.

Example 3.3.6. Consider two vectors x, x′ ∈ Cd such that dist(x, x′) > 0. Assume that
Ax′ = Ax ◦ v with entries of vector v satisfying |vj| = 1. Furthermore, assume that for
a pair j, k ∈ [M ], j ̸= k, the entries of v do not coincide, vj ̸= vk, and the corresponding
values |(Ax)j|, |(Ax)k| are non-zero. Then |Ax′| = |Ax| ◦ |v| = |Ax|, while

dist2(Ax′, Ax) = min
|α|=1

∥Ax′ − αAx∥22 ≥ min
|α|=1

[
|(Ax′)k − α(Ax)k|2 + |(Ax′)j − α(Ax)j|2

]

= min
|α|=1

[
|(Ax)k|2|vk − α|2 + |(Ax)j|2|vj − α|2

]

≥ min{|(Ax)k|2, |(Ax)j|2} · min
|α|=1

[
|vk − α|2 + |vj − α|2

]

≥ min{|(Ax)k|2, |(Ax)j|2} · |vk − vj|2/2 > 0,
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where we have used
|β − γ|2 ≤ (|β|+ |γ|)2 ≤ 2(|β|2 + |γ|2)

for β, γ ∈ C to obtain the last inequality.

Therefore, the injectivity of the mapping {αx : |α| = 1} 7→ |Ax|2 has to be considered in
order to ensure unique reconstruction. Results of [81] established that if the matrix A
corresponds to a generic frame with M ≥ 4d − 2, the mapping {αx : |α| = 1} 7→ |Ax|2
is injective with probability 1. Later, it was conjectured [82] and proved [83] that M ≥
4d− 4 measurements will suffice. It also was shown recently that M ≥ 4d ptychographic
measurements (PTY) are sufficient for the unique recovery, when both x and w are generic,
i.e., do not belong to a set of zero measure [84]. This set, however, is non-descriptive.
In the case of ptychographic measurements (PTY), the matrix A or the window w are
generally non-random and may belong to an event of probability zero. The next exam-
ple suggests that for the (non-random) measurements (PTY), a non-generic x can be
constructed such that a unique recovery is not possible.

Example 3.3.7. Consider the ptychographic measurements (PTY). Let d ≥ 2δ and
consider two objects x+, x− ∈ Cd such that

x+0 = x−0 = 1, x+δ = 1, x−δ = −1, x+j = x−j = 0, j ∈ [d]\{0, δ}.
Let us show that dist(x+, x−) > 0. By definition, we have

dist2(x+, x−) = min
|α|=1

∥∥x+ − αx−
∥∥2
2
= min

|α|=1
|1− α|2 + |1 + α|2 = min

|α|=1
2 + 2|α|2 = 4.

The intensity measurements for x+ are given by

Im,+j,r =

∣∣∣∣∣∣
∑

k∈[δ]
wkx

+
k+re

− 2πikj
m

∣∣∣∣∣∣

2

We note that at most one summand in the sum is non-zero, either x+0 or x+δ . The distance
between two indices (taking into account circularity) is

|0− δ|c = min{δ, d− δ} ≥ min{δ, 2δ − δ} = δ,

and due to supp(w) ⊆ [δ], they never appear in the sum simultaneously. Therefore, we
simplify Im,+j,r as

Im,+j,r =





|w−r|2, r ∈ {−δ + 1,−δ + 2, . . . , 0}
|wδ−r|2, r ∈ {1, 2, . . . , δ}
0, otherwise.

Since Im,+j,r is independent of the sign of x+δ , the measurements Im,−j,r for x− will be equal to

Im,+j,r and, thus, the unique recovery from the ptychographic measurements (PTY) is not
possible.

Example 3.3.7 shows that due to the local nature of the ptychographic measurements
(PTY), i.e., supp(w) ⊆ [δ], the non-trivial ambiguities arise when x has some zero entries.
The next result provides sufficient conditions for the uniqueness of reconstruction for
non-vanishing objects, that is |xj| > 0 for all j ∈ [d].
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Theorem 3.3.8 ([85, Theorem 2.4], also [86, Proposition III.4]). Consider the ptycho-
graphic measurements (PTY) and the corresponding measurement matrix A (3.9). Let
m = d and consider the set of shifts R = [d]. Assume that

[Fd(w ◦ Srw)]j ̸= 0 for r = 0, 1, j ∈ [d].

Then, the mapping {αx : α ∈ T} 7→ |Ax|2 is injective for all non-vanishing x ∈ Cd.

Theorem 3.3.8 only requires minor assumptions on the window and, in payoff, significantly
restricts x. The latest result, [87, Corollary 2.5], provides a tradeoff between the number
of allowed consequent zeros in x and the number of shifts r such that [Fd(w ◦ Srw)]j are
non-zero. Moreover, the notion of uniqueness may be extended to account for ambiguities
arising from the structure of supp(x) [87].
While the uniqueness of ptychographic reconstruction allows to determine the set {αx :
α ∈ T} from the measurements, it is also desirable that the inverse mapping |Ax|2 7→
{αx : α ∈ T} is continuous. It implies that for two sets of measurements which are alike,
the corresponding objects should be similar. This notion is known as the stability of phase
retrieval. The problem is called stable with respect to a norm ∥·∥ if there exists a constant
C > 0 such that for any x, x′ ∈ Cd the inequality

dist(x, x′) ≤ C ∥|Ax| − |Ax′|∥ (3.12)

holds. If the constant C depends on x, the problem is said to be locally stable. Note that
the inequality (3.12) implies the uniqueness of reconstruction, if |Ax| = |Ax′|. The con-
verse also holds for the discrete version of the phase retrieval problem. By [88, Proposition
1.4], if the problem has a unique solution for every x ∈ Cd, then there exists a constant
C > 0 such that the inequality (3.12) holds. However, in view of Example 3.3.7, this
result does not apply to the discrete ptychographic problem. Nevertheless, the stability
constant C can be estimated for subsets of Cd [89, 87].

Notes and References. The stable reconstruction is often studied in the context of
random matrices. Besides generic A [81, 83], a common choice is the matrix A with rows
drawn at random from a certain distribution, for which it suffices to have M = O(d)
measurements to achieve stability for real-valued objects [90, 91] as well as for complex-
valued objects [92]. For more structured random measurements the required sampling
complexity is near-optimal, M = O(d log d) [93, 94].
The uniqueness of reconstruction from the ptychographic measurements (PTY) was ad-
dressed by an earlier result [95], already mentioned [85, 86, 87] and graph-theoretical anal-
ysis [96]. The authors of [97, 98, 99] also consider an alternative measurement scenario
with non-circular shifts. An overview of these results can be found in [100].
The concept of uniqueness and stability is broadly studied for the continuous ptychographic
problem (3.1). It is well-known that injectivity is guaranteed, when the ambiguity function
of the window w is almost everywhere non-vanishing [71, 70]. Further relaxed require-
ments were derived under additional assumptions on the object x belonging to shift in-
variant subspaces [71] or Paley-Wiener spaces [70]. In [67], the authors derive injectivity
for subsampled continuous measurements in the special case of the Gabor transform.
While in the discrete case the uniqueness of reconstruction implies stability, the continuous
problem is known to be unstable. Several works derived its instability in general Hilbert
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[88] and Banach spaces [60] and specifically for the Gabor phase retrieval [101]. Moreover,
in [88] it was shown that for the discrete approximation of the continuous problem, the
stability constant degrades exponentially in the dimension of the approximation.

In order to achieve stability, the regions in which the measurements are non-vanishing has
to be considered [62]. Similar ideas are used in [72, 73, 102] to establish the stability of
the Gabor phase retrieval in local sense, i.e., the stability constant C is depending on x.

For an overview of results on injectivity and stability of the ptychographic phase retrieval
we refer the reader to [68].

3.4 Overview of recovery algorithms

Since the introduction of the phase retrieval problem, many recovery methods were de-
veloped and studied in the literature. All these algorithms can be classified into several
categories.

The first major group consists of projection methods, which consider the recovery from
the phase retrieval measurements as a problem of finding a point in an intersection of two
or more sets. One of the sets imposes that the measurements are satisfied and the other
provide additional constraints on the object. The most known among these methods is
Error Reduction [37, 103, 26, 104, 38, 105], which will be discussed in greater detail in
Section 3.5.2. Other prominent algorithms are Hybrid Input-Output [27, 103], Difference
Map [28], Averaged Successive Reflections [29], and Relaxed Averaged Alternating Re-
flectors [30] and many more. Some of the above-mentioned methods can be linked to
the Douglas-Rachford splitting [106, 107, 108, 29, 109], an optimization-based approach
towards finding the intersection of two sets as a minimizer of a sum of two functions.

Furthermore, the recovery from phase retrieval and ptychographic measurements is often
posed as an optimization of a certain (in general non-convex) loss function and, thus, the
reconstruction approaches are categorized based on the used optimization method.

The gradient methods for phase retrieval are mainly represented by Wirtinger and Am-
plitude flow algorithms [31, 32], which minimize the squared loss based on the magnitude
of the measurements (see Section 3.5.1). Later studies introduced variants of these algo-
rithms [110, 32, 111, 112, 113] with modified loss functions, that allowed then to avoid
stagnation and obtain faster convergence. An overview on many recent developments for
first order methods can be found in [114]. Some of the algorithms derived specifically
for ptychography [26, 39, 33, 115], such as Ptychographic Iterative Engine [39], belong
to the class of gradient-based techniques. We explain, why this inclusion is reasonable
in Section 3.5.3. While first order optimization methods are dominant in the literature,
second order approaches for phase retrieval were also considered, see [116, 117].

The third group is alternating minimization methods [118, 119, 120, 117, 121]. They
introduce supplementary variables to the optimization problem, such that the minimiza-
tion with respect to a single variable is much easier than the simultaneous minimization
of all variables. Then, for each iteration, the algorithm selects a single variable and
performs optimization with respect to it. The two most prominent subgroups are Alter-
nating Direction Method of Multipliers frequently applied to the augmented Lagrangian
function [118, 119] and Majorization-Minimization algorithms also known as Iteratively
Reweighted Least Squares [117, 120, 121]. The latter computes weights and then solves
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a weighted least squares problem.
The next group of algorithms is based on the relaxation of the original optimization
problem [34, 122, 123, 124, 125, 126, 92, 91, 127, 128, 129]. The relaxed problem is
convex, hence, easier to solve and its solution can be computed in polynomial time. If the
relaxation is tight, the solution of the relaxation coincides with the solution of the original
problem. A well-known instance of such techniques is PhaseLift [34, 122], which poses the
phase retrieval problem as a recovery of the rank-one matrix via rank minimization. The
rank of a matrix is a non-convex function and by replacing it with the nuclear norm, a
computationally feasible convex relaxation is obtained. Another example is the PhaseMax
algorithm [127], which relaxes recovery to linear programming.
With the rise of deep learning, neural networks were also applied to solve ptychography
and the phase retrieval problem [130, 131, 132, 133, 134, 135]. These applications include a
pure reconstruction via neural network [132], mixed approaches [133], a usage of generative
priors [131] and unrolling techniques [135].
Lastly, we would like to mention some methods, which do not belong to any of the cate-
gories above. Phase retrieval via polarization [136, 38, 137] recovers the unknown phases
of the measurements using synchronization and then inverts the Short-Time Fourier trans-
form. Another approach is the Block Phase Retrieval algorithm [35, 138, 139, 40, 140,
141, 142], which aims to reconstruct the object via the direct (non-iterative) inversion of
the measurements. Section 3.6 of this chapter is dedicated to Block Phase Retrieval.

3.5 Iterative Methods

3.5.1 Amplitude Flow

In this section we discuss the Amplitude Flow algorithm (AF), which performs gradient-
based minimization of the amplitude-based loss

L2(z) := L2(z;Q) =
∑

k∈[M ]

|
√
z∗Qkz −

√
yk|2, z ∈ Cd, (3.13)

where Q = {Qk}k∈[M ] ⊂ Hd is a family of Hermitian positive semidefinite measurement
matrices and y ∈ RM is the vector containing noisy measurements x∗Qkx, k ∈ [M ]. In
the case of the phase retrieval problem, the family corresponding to the measurement
matrix A is given by rank-one matrices Qk = aka

∗
k with ak being the conjugate of the

rows of the matrix A, so that (Az)k = a∗kz, z
∗Qkz = |(Az)k|2, and y is given by (PR).

Therefore, when working with the phase retrieval measurements, we will either use a short
notation L2 or L2(z;A) if matrix specification is necessary. While the introduction of Q
may seem artificial to the reader at this point, it allows to generalize the original proofs
for AF derived in [36] to other settings, such as polychromatic ptychography discussed in
Chapter 5.
The function L2 is non-negative and in absence of noise we have L2(x) = 0. If the
mapping {αz : |α| = 1} 7→ |Az|2 is injective, the set {αx : |α| = 1} contains all global
minimizers of L2 and, therefore, the object x can be recovered by minimizing the function
L2. Furthermore, if the problem is stable (3.12), even local minimizers of L2 with a small
function value provide a good approximation to x.
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The Amplitude Flow algorithm is a gradient descent scheme of the form (2.16) based on
the Wirtinger derivatives, which are reviewed in Section 2.3. That is, given an initial
guess z0 ∈ Cd, AF constructs a sequence of iterates {zt}t≥0 via

zt+1 = zt − µt∇zL2(z
t), t ≥ 0, (AF)

where µt > 0 denotes the so-called learning rate and ∇zL2 is the generalized Wirtinger
gradient of L2. The iteration process is continued until the gradient ∇zL2(z

t) vanishes,
which is equivalent to reaching a fixed point zt+1 = zt.

We note that the function L2 is not differentiable at points where z∗Qkz = 0 for some
k ∈ [M ] and a workaround is necessary to adapt the notion of the gradient for L2. For
this reason we consider a smoothed square loss for general quadratic measurements

L2,ε(z) := L2,ε(z;Q) =
∑

k∈[M ]

∣∣∣
√
z∗Qkz + ε−√

yk + ε
∣∣∣
2

, (3.14)

where ε ≥ 0 is a smoothing parameter.

The function L2,ε possesses some useful properties. Firstly, L2,ε is continuous in ε and, in
particular, it is right-continuous at ε = 0,

L2(z) = L2,0(z) = lim
ε→0+

L2,ε(z).

Secondly, if ε > 0 we can compute the gradient of L2,ε everywhere and properly define
the generalized gradient of L2 as the limit of the gradients as ε tends to zero.

Lemma 3.5.1. Let ε > 0. The function L2,ε is continuously differentiable with the
gradient

∇zL2,ε(z) =
∑

k∈[M ]

(
1−

√
yk + ε√

z∗Qkz + ε

)
Qkz.

Furthermore, the generalized gradient of L2 is defined as the pointwise limit

∇zL2(z) := lim
ε→0+

∇zL2,ε(z) =
∑

k∈[M ]

(
1−

√
yk√

z∗Qkz

)
Qkz,

where division 0/0 is set to 0, when Qkz = 0.

Proof. A single summand of L2,ε is given by

fk(z) :=
∣∣∣
√
z̄TQkz + ε−√

yk + ε
∣∣∣
2

=

∣∣∣∣
√
zTQT

k z̄ + ε−√
yk + ε

∣∣∣∣
2

, k ∈ [M ].



3.5. ITERATIVE METHODS 51

The gradient of fk can be evaluated by the chain rule (Theorem 2.3.2). We get

∇zfk(z) =

[
∂fk
∂z̄

(z)

]T
=

[
∂|
√
zTQT

k z̄ + ε−√
yk + ε|2

∂(
√
zTQT

k z̄ + ε−√
yk + ε)

· ∂
√
zTQT

k z̄ + ε−√
yk + ε

∂zTQT
k z̄ + ε

· ∂z
TQT

k z̄ + ε

∂z̄

]T

= 2
(√

zTQT z̄ + ε−√
yk + ε

) 1

2
√
zTQT

k z̄ + ε

[
zTQT

]T

=

(
1−

√
yk + ε√

zTQT
k z̄ + ε

)
Qkz =

(
1−

√
yk + ε√

z∗Qkz + ε

)
Qkz.

Then, by the linearity of the derivatives,

∇zL2,ε(z) =
∑

k∈[M ]

∇zfk(z) =
∑

k∈[M ]

(
1−

√
yk + ε√

z∗Qkz + ε

)
Qkz.

For the generalized gradient of L2 we consider two cases. If Qkz ̸= 0 for all k ∈ [M ],
then

√
yk + ε/

√
z∗Qkz + ε → √

yk/
√
z∗Qkz as ε → 0+. Note that in this case, L2 is

differentiable at z and its gradient coincides with the limit of ∇L2,ε(z), ε → 0+. On the
other hand, if Qkz = 0 for some k ∈ [M ], then we have

√
yk + ε√

z∗Qkz + ε
Qkz =

√
yk + ε√
0 + ε

· 0 = 0 → 0 =
yk√
z∗Qkz

Qkz, ε→ 0+,

with ambiguity 0/0 resolved as 0.

For the case of phase retrieval we get the following gradient formulas.

Corollary 3.5.2 (Gradient formulas for phase retrieval). Let ε > 0. For the phase
retrieval measurements (PR), the gradients of L2,ε and L2 are given by

∇zL2,ε(z;A) = A∗
[
IM − diag

( √
y + ε√

|Az|2 + ε

)]
Az

and
∇zL2(z;A) = A∗ [Az − sgn0(Az) ◦

√
y] ,

respectively.

Proof. Using that Qk = aka
∗
k and the results of Lemma 3.5.1, we have

∇zL2,ε(z) =
∑

k∈[M ]

[
1−

√
yk + ε√

z∗aka∗kz + ε

]
aka

∗
kz

=
∑

k∈[M ]

[
1−

√
yk + ε√

|(Az)k|2 + ε

]
ak(Az)k = A∗

[
IM − diag

( √
y + ε√

|Az|2 + ε

)]
Az.
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The formula for ∇zL2(z) is obtained by taking the limit ε→ 0, so that

∇zL2(z) =
∑

k∈[M ]

[
1−

√
yk

|(Az)k|

]
ak(Az)k

=
∑

k∈[M ]

ak

[
(Az)k −

√
yk

(Az)k
|(Az)k|

]
= A∗ [Az − sgn0(Az) ◦

√
y] ,

where the mapping of 0 to 0 in sgn0 is due to 0/0 being set to 0.

In order to analyze the gradient descent for the non-smooth function L2, we first consider
the gradient descent for the function L2,ε with iterations given by

zt+1 = zt − µt∇zL2,ε(z
t), t ≥ 0. (AFε)

If the learning rate µt is chosen as a constant or via Algorithm 1, Theorem 2.3.6 guarantees
the convergence of AFε when the Hessian matrix satisfies (2.17), which is shown to be
fulfilled in the next lemma.

Lemma 3.5.3. Let ε > 0. The function L2,ε is twice continuously differentiable and its
Hessian matrix satisfies

[
v
v̄

]∗
∇2L2,ε(z)

[
v
v̄

]
≤ 2v∗

∑

k∈[M ]

Qkv ≤

∥∥∥∥∥∥
∑

k∈[M ]

Qk

∥∥∥∥∥∥
∞

∥∥∥∥
[
v
v̄

]∥∥∥∥
2

2

for all z, v ∈ Cd.

Proof. First, we compute the second order derivatives ∇2
z,zL2,ε and ∇2

z̄,zL2,ε. Using that
Qk = Q∗

k, we obtain

∇z,zL2,ε(z) =
∂

∂z

∑

k∈[M ]

[
Qkz −

√
ykQkz√

z∗Qkz + ε

]

=
∑

k∈[M ]

[
Qk −

√
ykQk√

z∗Qkz + ε
+

√
ykQkzz

∗Qk

2(z∗Qkz + ε)3/2

]

=
∑

k∈[M ]

[
Qk −

√
ykQk√

z∗Qkz + ε
+

√
ykQkzz

∗Q∗
k

2(z∗Qkz + ε)3/2

]
,

∇z̄,zL2,ε(z) =
∂

∂z̄

∑

k∈[M ]

[
Qkz −

√
ykQkz√

zTQT
k z̄ + ε

]
=
∑

k∈[M ]

√
ykQkzz

TQT
k

2(z∗Qkz + ε)3/2
.

Moreover, as L2,ε is real-valued, (2.22) leads to

[
u
ū

]∗
∇2L2,ε(z)

[
u
ū

]
= 2Re

(
u∗∇2

z,zL2,εu+ u∗∇2
z̄,zL2,εū

)

= 2
∑

k∈[M ]

[
u∗Qku−

√
yku

∗Qku√
z∗Qkz + ε

+

√
yk|u∗Qkz|2

2(z∗Qkz + ε)3/2
+

√
yk ℜ(u∗Qkz)

2

2(z∗Qkz + ε)3/2

]
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Furthermore, Re(α) ≤ |α| yields
[
u
ū

]∗
∇2L2,ε(z)

[
u
ū

]
≤ 2

∑

k∈[M ]

[
u∗Qku−

√
yku

∗Qku√
z∗Qkz + ε

+

√
yk|u∗Qkz|2

(z∗Qkz + ε)3/2

]

≤ 2
∑

k∈[M ]

[
u∗Qku− ε

√
yku

∗Qku

(z∗Qkz + ε)3/2
+

√
yk(|u∗Qkz|2 − u∗Qku · z∗Qkz)

(z∗Qkz + ε)3/2

]
.

Since Qk is a positive semidefinite matrix, the second summand is bounded from above
by zero. The third term is also non-positive, as Qk can be written as Qk = R∗

kRk and, by
the Cauchy-Schwartz inequality we have

|u∗Qkz|2 ≤ ∥Rkz∥22 ∥Rku∥22 = z∗R∗
kRkz · u∗R∗

kRku = z∗Qkz · u∗Qku.

Thus, we arrive at

[
u
ū

]∗
∇2L2,ε(z)

[
u
ū

]
≤ 2

∑

k∈[M ]

u∗Qku = 2v∗
∑

k∈[M ]

Qkv ≤

∥∥∥∥∥∥
∑

k∈[M ]

Qk

∥∥∥∥∥∥
∞

∥∥∥∥
[
v
v̄

]∥∥∥∥
2

2

.

Consequently, by applying Theorem 2.3.6 we obtain convergence guarantees for the gra-
dient descent of the smoothed loss and by extension for AF.

Theorem 3.5.4. Let ε > 0. Set 0 < µc ≤ 1/
∥∥∥
∑

k∈[M ]Qk

∥∥∥
∞
. Let {zt}t≥0 be a se-

quence defined by AFε with arbitrary starting point z0 ∈ Cd and learning rates µt =
µt(L2,ε, z

t−1, τ, µc, N) determined by Algorithm 1. Then, we have

L2,ε(z
t)− L2,ε(z

t−1) ≤ −µt
∥∥∇zL2,ε(z

t)
∥∥2
2
,

for all t ≥ 1. In particular,

lim
t→∞

∥∥zt+1 − zt
∥∥2
2
= 0 and min

t∈[T ]

∥∥zt+1 − zt
∥∥2
2
≤ L2,ε(z

0)

T
∥∥∥
∑

k∈[M ]Qk

∥∥∥
∞

for all T ≥ 1. Furthermore, if the sequence {zt}t≥0 is instead defined by AF and the
learning rates µt = µt(L2, z

t−1, τ, µc, N) are determined by Algorithm 1, the inequalities
above hold with L2,ε and ∇zL2,ε replaced by L2 and ∇zL2, respectively.

Proof. The results for AFε follow directly from Theorem 2.3.6 and Lemma 3.5.3. We note
that zt+1 − zt = −µc∇zL2,ε(z

t) and, thus,

min
t∈[T ]

∥∥zt+1 − zt
∥∥2
2
= µ2

c min
t∈[T ]

∥∥∇zL2,ε(z
t)
∥∥2
2
≤ µ2

cL2,ε(z
0)

µcT
≤ L2,ε(z

0)

T
∥∥∥
∑

k∈[M ]Qk

∥∥∥
∞

.

For AF, let us consider a single iteration for the smoothed loss first,

z+ε = z − µc∇zL2,ε(z),
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for an arbitrary z ∈ Cd. Then, by what was shown above we have

L2,ε(z
+
ε )− L2,ε(z) ≤ −µc ∥∇zL2,ε(z)∥22 .

Since pointwise L2,ε converges to L2 as ε tends to zero from above, and∇zL2 = limε→0+∇zL2,ε,
taking the limit ε→ 0+ gives us

L2(z
+)− L2(z) ≤ −µc ∥∇zL2(z)∥22 ,

with z+ := z − µc∇zL2(z). Setting z = zt−1, we obtain

L2(z
t)− L2(z

t−1) ≤ −µc
∥∥∇zL2(z

t−1)
∥∥2
2

for all t ≥ 1. Therefore, the constant learning rate provides the desired decrease of the
loss function. Consequently, µt = µt(L2, z

t−1, τ, µc, N) determined by Algorithm 1 will
satisfy

L2(z
t)− L2(z

t−1) ≤ −µt
∥∥∇zL2(z

t−1)
∥∥2
2

by construction. The rest of the proof repeats the arguments of the proof of Theorem 2.3.6.

We restate the results of Theorem 3.5.4 specifically for the phase retrieval problem.

Theorem 3.5.5 (Version of [36, Theorem 1]). Consider measurements y of the form
(PR). Let 0 < µc ≤ ∥A∥−2

∞ and z0 ∈ Cd be arbitrary. Then, for a sequence {zt}t≥0 defined
by AF and learning rates µt = µt(L2, z

t−1, τ, µc, N) determined by Algorithm 1, we have

L2(z
t) ≥ L2(z

t+1) for all t ≥ 0,

lim
t→∞

∥∥zt+1 − zt
∥∥
2
= 0, and min

t∈[T ]

∥∥zt+1 − zt
∥∥2
2
≤ L2(z

0)

T ∥A∥2∞
,

for all T ≥ 1.

Proof. This result follows from Theorem 3.5.4 by observing that in the case of phase
retrieval measurements we have

∑

k∈[M ]

Qk =
∑

k∈[M ]

aka
∗
k = A∗A, so that

∥∥∥∥∥∥
∑

k∈[M ]

Qk

∥∥∥∥∥∥
∞

= ∥A∗A∥∞ = ∥A∥2∞ . (3.15)

Theorem 3.5.5 only guarantees convergence to a fixed point with a sublinear rate and the
fixed point is not necessarily a global minimizer of L2. Therefore, the initialization z0

is crucial for the convergence to the global minimum. In the case of ptychography, an
outcome of a non-iterative method, e.g. the Block Phase Retrieval algorithm discussed in
Section 3.6, is a good starting point. Furthermore, with a sufficiently good initialization
AF can achieve a linear convergence rate [86].
The computational complexity of AF for T ∈ N iterations is given by O(TMd). If
the learning rate is chosen to be µt = ∥A∥−2, the computation of the spectral norm
can be done with additional O(Md) operations by performing a fixed number of power
method iterations. Moreover, in the case of the ptychographic matrix A as in (3.9), the
spectral norm can be computed by Lemma 3.3.5 in O(|R|dδ) ≤ O(Md) operations and
the computational cost of a single iteration is O(|R|d+m|R| logm).
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Notes and References. In the literature, gradient-based methods for phase retrieval
have been intensively studied in recent years. In the initial work [31], a first order min-
imization known as the Wirtinger Flow algorithm was analyzed for the intensity loss∑

(|(Az)k|2 − yk)
2 under the assumption that the entries of A are independent complex

Gaussian random variables. Later, it was empirically observed that the amplitude-based
loss L2 exhibits smaller reconstruction errors [32], which caused many consequent works
on the alternations of the loss function L2 [110, 32, 111, 112, 113]. For a survey of gradi-
ent based solvers for phase retrieval see [114]. Recently, two algorithms exploring second
order approaches for phase retrieval were introduced in [116, 117].
Originally AF was derived and analyzed for random Gaussian measurements without noise
[32]. For such A, it is possible to construct a good starting point z0 via spectral initial-
ization [31] or null initialization [143], such that AF admits a linear convergence rate
to the set of true solutions {αx : |α| = 1}. Weaker convergence guarantees summarized
in Theorem 3.5.5 and applicable for any choice of the measurement matrix A were later
established in [36]. In [86] authors show that for the ptychographic measurements AF will
achieve linear convergence in a small neighborhood of the true solution.
Our main contribution in this section is Theorem 3.5.4, a generalization of the results of
[36] for quadratic measurements of the form z∗Qkz. While it does not provide any new
results for the phase retrieval problem, it extends AF to many other optical scenarios. In
particular, we will later use it in Chapter 5. An additional contribution is the analysis of
AF for the learning rates determined by Algorithm 1, which are used, for instance, in the
phasepack library for MATLAB [144].

3.5.2 Error Reduction

Error Reduction (ER) is an iterative algorithm for the phase retrieval problem. It con-
siders an initial guess z0 ∈ Cd and performs iterations

zt+1 = A† diag

( √
y

|Azt|

)
Azt, t ≥ 0. (ER)

The iterations are repeated until a fixed point is reached, i.e., zt+1 = zt. For T ∈ N
iterations of ER, O(Md2 + TMd) operations are required, where O(Md2) operations are
needed to compute the pseudoinverse and O(Md) operations are performed per iteration.
Let us consider ut := Azt, t ≥ 0. Then, the iteration of ER reads as

ut+1 = Azt+1 = AA† diag

( √
y

|Azt|

)
Azt = AA† diag

(√
y

|ut|

)
ut.

In this form, a single iteration of ER is explained as two consecutive projections of ut.

Lemma 3.5.6 ([38, Lemma 3.15]).

1. Consider the sets

Mk := {α ∈ C : |α| = √
yk}, k ∈ [M ].

The projection of α ∈ C\{0} onto Mk is given by
√
yk · sgn(α).
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2. Consider the set
M := {u ∈ CM : |u| = √

y},
which is the product of the one-dimensional sets Mk. The projection of non-
vanishing u ∈ CM onto M is given by

√
y ◦ sgnu.

3. Consider the set im(A). The projection of u ∈ CM onto im(A) is given by AA†u.

Therefore, ER first projects onto M, the set of all vectors u ∈ CM with modulus equal
to the measured values. Secondly, it is projected onto im(A). The sequential projections
onto M and im(A) allows for interpretation of ER as an alternating projection scheme.
If M was a convex set, then ER would converge to the intersection of two sets [145].
However, due to the non-convexity of M, the convergence of ut to the intersection of the
two sets is not guaranteed, which is a known problem of the ER algorithm. We note that,
if A allows for unique recovery and noise is absent, the intersection of M and im(A) is
given by {αx : |α| = 1} [38].
Another complication arising from the non-convexity of M is the non-uniqueness of the
projection onto M. Let yk ̸= 0 and consider the projection of α ∈ C onto Mk. If α
is nonzero, by Lemma 3.5.6, the closest point in Mk is given by

√
yk · sgnα. If α = 0,

all points in Mk have the same distance to zero and each of them could be used as the
projection. In the literature, it is resolved by setting the projection either to

√
y
k
or√

yke
iφ for a randomly selected angle φ ∈ [0, 2π). However, we will instead map zero

to zero, which is not precisely a projection, but can be interpreted as an average of all
possible projections,

0 =
1

2π

∫ 2π

0

√
yke

iφdφ.

Therefore, whenever (Azt)k = 0, we set (Azt)k/|(Azt)k| = 0, which corresponds to the
iterations

zt+1 = A†[
√
y ◦ sgn0(Az

t)], t ≥ 0.

It is known that if an initial guess z0 is chosen sufficiently close to the set {αx : |α| = 1},
the ER algorithm will converge to a point in this set in absence of noise [38, Theorem 3.16].
In general, ER does not converge globally to {αx : |α| = 1} [38, p. 830] and, moreover,
its convergence to a fixed point is not guaranteed, except of special cases A = Fd [103] or
A corresponding to the noncirculant equivalent of (3.9) [26].
For the initialization z0 of ER, the polarization method can be used [136, 38]. It constructs
a matrix with entries approximating sgn0(Axk)sgn0(Axℓ), k, ℓ ∈ [M ], from the measure-
ments and recovers sgn0(Axk) by solving the phase synchronization problem discussed in
Section 3.6.4.
The ER algorithm can also be interpreted as a projected gradient method [38, Section
3.8] applied to the minimization problem

min
u∈im(A)

∥|u| − √
y∥22 . (3.16)

We note that substituting Az for u, z ∈ Cd leads to an unconstrained minimization of
the amplitude-based loss (3.13), which suggests that ER can be interpreted as a gradient
method applied to the function L2 discussed in Section 3.5.1. We formalize this intuition
in the next lemma.
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Lemma 3.5.7. Let A be injective and consider the amplitude-based loss function L2 =
L2( · ;A) as in (3.13). Then, ER is a scaled gradient method with iterations given by

zt+1 = zt − (A∗A)−1∇zL2(z
t), t ≥ 0.

Proof. Due to the injectivity of A, the identities (2.1) and (2.2) hold. Therefore, the
iteration of ER can be rewritten as

zt+1 = A†[
√
y ◦ sgn0(Az

t)] = A†Azt − A†Azt + A†[
√
y ◦ sgn0(Az

t)]

= zt − A†[Azt −√
y ◦ sgn0(Az

t)] = zt − (A∗A)−1A∗[Azt −√
y ◦ sgn0(Az

t)]

= zt − (A∗A)−1∇zL2(z
t;A),

where in the last line we applied Corollary 3.5.2.

We emphasize that the result of Lemma 3.5.7 is only true if the ambiguity 0/0 in the
iteration of ER is defined as 0.
The reinterpretation of ER as a scaled gradient method allows to analyze the convergence
of the algorithm similarly to AF, which leads to an analogue of Theorem 3.5.5.

Theorem 3.5.8. Consider measurements y of the form (PR) with an injective measure-
ment matrix A. Then, for the sequence {zt}t≥0 defined by ER with an arbitrary starting
point z0 ∈ Cd we have

L2(z
t+1)− L2(z

t) ≤ −
∥∥(A†)∗∇zL2(z

t)
∥∥2
2
for all t ≥ 0,

lim
t→∞

∥∥zt+1 − zt
∥∥
2
= 0, and min

t∈[T ]

∥∥zt+1 − zt
∥∥2
2
≤ L2(z

0)

Tσ2
d(A)

,

for all T ≥ 1, where σd(A) denotes the smallest singular value of A.

Proof. In view of Lemma 3.5.7, let us consider a smoothed step of the ER algorithm,

z+ε := z − (A∗A)−1∇zL2,ε(z).

Note that (A∗A)−1 exists due to the injectivity of A. Similarly to the proof of Theo-
rem 3.5.4, we first show that a single step of the smoothed Error Reduction does not
increase the loss function L2,ε. Then we take the pointwise limit to obtain the desired re-
sult for L2. In order to derive that for each iteration the loss function does not increase, we
apply the Taylor’s theorem (2.15) with an arbitrary z ∈ Cd and v = −(A∗A)−1∇zL2,ε(z).
We note that by Lemma 3.5.3, the integral in (2.15) is bounded, as

∫ 1

0

(1− s)

[
v
v̄

]∗
∇2L2,ε(z + sv)

[
v
v̄

]
ds ≤ 2v∗A∗Av

∫ 1

0

(1− s)ds = v∗A∗Av.

Hence, by (2.15), we have

L2,ε(z
+
ε ) ≤ L2,ε(z)− 2[∇zL2,ε(z)]

∗(A∗A)−1∇zL2,ε(z)

+ [∇zL2,ε(z)]
∗((A∗A)−1)∗(A∗A)(A∗A)−1∇zL2,ε(z)

= L2,ε(z)− [∇zL2,ε(z)]
∗(A∗A)−1∇zL2,ε(z),
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where we used ((A∗A)−1)∗ = ((A∗A)∗)−1 = (A∗A)−1. Lemma 3.5.1 gives

z+ε → z+ := z − (A∗A)−1∇zL2(z), as ε→ 0+,

and, thus, taking the limit ε→ 0+ yields

L2(z
+) ≤ L2(z)− [∇zL2(z)]

∗(A∗A)−1∇zL2(z).

If z equals zt of ER, we obtain

L2(z
t+1) ≤ L2(z

t)− [∇zL2(z
t)]∗(A∗A)−1∇zL2(z

t) (3.17)

= L2(z
t)− [∇zL2(z

t)]∗(A∗A)−1A∗A(A∗A)−1∇zL2(z
t)

= L2(z
t)− [∇zL2(z

t)]∗A†(A†)∗∇zL2(z
t)

= L2(z
t)−

∥∥(A†)∗∇zL2(z
t)
∥∥2
2
,

where we used the identity (2.1).
In order to prove the remaining statements of Theorem 3.5.8, we need to link the decay
of the loss function to the iterates. By Lemma 3.5.7, we have that

∥∥zt+1 − zt
∥∥2
2
=
∥∥(A∗A)−1∇zL2(z

t)
∥∥2
2
= [∇zL2(z

t)]∗(A∗A)−1(A∗A)−1∇zL2(z
t).

Since A is injective, its singular value decomposition is given by A = UΣV ∗ with an
orthogonal U ∈ Cm×d, a unitary V ∈ Cd×d and an invertible diagonal matrix Σ ∈ Cd×d.
Then,

(A∗A)−1 = (V Σ2V ∗)−1 = (V ∗)−1Σ−2V −1 = V Σ−2V ∗ = (V Σ−1)(V Σ−1)∗

is the singular value decomposition of (A∗A)−1. By the definition of the spectral norm,
the squared distance between the iterates is bounded from above, as

∥∥zt+1 − zt
∥∥2
2
= (Σ−1V ∗∇zL2(z

t))∗Σ−2(Σ−1V ∗∇zL2(z
t))

=
∥∥Σ−1(Σ−1V ∗∇zL2(z

t))
∥∥2
2

≤
∥∥Σ−1

∥∥2 ∥∥Σ−1V ∗∇zL2(z
t)
∥∥2
2

= σ2
1(Σ

−1)[∇zL2(z
t)]∗V Σ−1Σ−1V ∗∇zL2(z

t)

= σ−2
d (A)[∇zL2(z

t)]∗(A∗A)−1∇zL2(z
t).

Next, we sum up the norms for T ≥ 1 iterations of ER and apply (3.17) to obtain

T−1∑

t=0

∥∥zt+1 − zt
∥∥2
2
≤ σ−2

d (A)
T−1∑

t=0

[∇zL2(z
t)]∗(A∗A)−1∇zL2(z

t)

≤ σ−2
d (A)

T−1∑

t=0

[
L2(z

t)− L2(z
t+1)

]

= σ−2
d (A)

[
L2(z

0)− L2(z
T )
]
≤ σ−2

d (A)L2(z
0),

where in the last line we used that L2(z) ≥ 0 for all z ∈ Cd. This implies that the
partial sum of the series

∑∞
t=0 ∥zt+1 − zt∥22 is bounded and, thus, the series converges.
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Consequently, the summands ∥zt+1 − zt∥22 are tending to zero as t → ∞. Furthermore,
we have

min
t∈[T ]

∥∥zt+1 − zt
∥∥2
2
≤ 1

T

T−1∑

t=0

∥∥zt+1 − zt
∥∥2
2
≤ L2(z

0)

Tσ2
d(A)

,

which concludes the proof.

Theorem 3.5.8 guarantees that, no matter how noisy the measurements are, ER will
always converge to a fixed point and the convergence rate is sublinear. However, even
in the absence of noise, it does not guarantee global convergence to a point in the set
{αx : |α| = 1}. Comparing Theorem 3.5.8 to Theorem 3.5.5, we observe that the constant
in the convergence rate of ER is worse by a factor σ2

1(A)/σ
2
d(A) compared to AF.

A further consequence of Lemma 3.5.7 is the equality of the fixed-point sets of both
algorithms.

Corollary 3.5.9. Let A be injective. Then, z ∈ Cd is a fixed point of ER if and only if
z is the fixed point of AF.

Proof. Let z ∈ Cd be a fixed point of ER. By Lemma 3.5.7, we have that

z = z − (A∗A)−1∇zL2(z),

which is equivalent to

(A∗A)−1∇zL2(z) = 0.

Since A is injective and (A∗A)−1 exists, this equality holds if and only if ∇zL2(z) = 0, so
that z is the fixed point of AF.

However, Corollary 3.5.9 does not imply that given the same initial guess z0, both algo-
rithms will necessarily converge to the same fixed point.
By Theorem 3.5.5 and Theorem 3.5.8, both algorithms seem to be comparable in terms
of convergence rate, and, by Corollary 3.5.9, in terms of critical points. However, for
T ∈ N iterations of ER, O(Md2 + TMd) operations are required, while AF only needs
O(TMd) operations. Thus, in general, ER is considerably slower in terms of computation
complexity. The next corollary shows that this difference is less significant in cases where
the columns of A are orthogonal.

Corollary 3.5.10. Let

A∗A = diag(v) for some v ∈ Rd, vℓ > 0, ℓ ∈ [d]. (3.18)

Then, for T ∈ N iterations both algorithms ER and AF require O(TMd) operations.
Furthermore, if A∗A = cId for some c > 0, then the iteration of ER coincides with the
iteration of AF for the constant learning rate µt = ∥A∥−2.

Proof. Using the condition (3.18), we obtain (A∗A)−1 = diag(1/v). Consequently, by
Lemma 3.5.7, the iteration of ER is given by

zt+1 = zt − (A∗A)−1∇zL2(z
t) = zt − diag(1/v)∇zL2(z

t).
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The computation of the gradient requires O(Md) operations. Both the multiplication
with diag(1/v) and the difference can be done in O(d) operations. Therefore, the total
number of operations for a single iteration of ER is given by O(Md + d) = O(Md),
which is the same order of operations as for a single iteration of AF. We also note that
∥A∥2 = maxℓ∈[d] |vℓ| and using the power method for the learning rate µc is not required.
If A∗A = cI, then

∥A∥2 = ∥A∗A∥ = ∥cId∥ = c and (A∗A)−1 = c−1Id = ∥A∥−2 Id.

Hence, using Lemma 3.5.7 for the iteration of ER, we have

zt+1 = zt − (A∗A)−1∇zL2(z
t) = zt − ∥A∥−2∇zL2(z

t),

which is precisely the iteration of AF with µt = ∥A∥−2.

While the condition (3.18) may seem restrictive, in many practical applications it is sat-
isfied. For instance, the equivalence of both algorithms was observed for the recovery
from Fourier magnitudes i.e., A = Fd in [103]. The next corollary shows that the condi-
tion (3.18) and, consequently, the results of Corollary 3.5.10 also hold for ptychographic
measurements.

Corollary 3.5.11. Consider the ptychographic measurements (PTY) with the ptycho-
graphic measurement matrix A as in (3.9). Then, A satisfies A∗A = diag(v) with

vℓ = m
∑

r∈R
|(Srw)ℓ|2.

Furthermore, if R = [d], we have vℓ = m ∥w∥22 for all ℓ ∈ [d]. Consequently, the results of
Corollary 3.5.10 apply and the computation cost of one ER iteration is given by O(|R|d+
m|R| logm).

Proof. By Lemma 3.3.5, the matrix A satisfies (3.18) with

vℓ = m
∑

r∈R
|(Srw)ℓ|2.

If R = [d], the entries of the vector v further simplify to

vℓ = m
∑

r∈R
|(Srw)ℓ|2 = m

∑

r∈[d]
|wℓ−r|2, ℓ ∈ [d].

Changing the order of summation yields

vℓ = m
∑

j∈[d]
|wj|2 = m ∥w∥22

for all ℓ ∈ [d]. Therefore, ER coincides with AF.
The computation of v requires O(|R|d) operations and the gradient is computed in
O(|R|d+m|R| logm) operations. Hence, one iteration of ER requiresO(|R|d+m|R| logm)
operations in total, which concludes the proof.
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Notes and References. ER was one of the first algorithms for phase retrieval introduced
in 1972 by Gerchberg and Saxton [37]. Later contributions [103], [104] and [38] classified
ER as an alternating projections technique and supplemented it with the detailed analysis
on the convergence and also provided an interpretation of the algorithm as a projected
gradient method.
Our contribution is the establishment of the connection between AF and ER by represent-
ing the latter as a scaled gradient method for the minimization of the amplitude-based
squared loss L2. It allows to guarantee the convergence of ER under the mild assumption
that A is injective, which was previously only available for cases A = Fd [103] and A corre-
sponding to non-circulant ptychographic measurements [26]. While the linear convergence
rate of ER under additional assumptions was derived in [146], the general sublinear con-
vergence rate, to our knowledge, has never been observed in the literature. These results
were outlined in our conference paper [147] and consequent publication [148].
We also note that the connection between projection methods and gradient methods was
previously established for the discrete case in [149] and in the continuous setting in [105].

3.5.3 Ptychographic Iterative Engine

The Ptychographic Iterative Engine (PIE) is an iterative algorithm designed for ptychog-
raphy. It is based on the idea that only measurements for a single illumination are used
in one iteration step. For an initial guess z0 ∈ Cd the t-th iterate zt, t ≥ 0 of the PIE
algorithm is constructed by performing the following steps.

Algorithm 2: PIE iteration, version of [39, 33]

Input : Ptychographic measurements Y as in (PTY), previous object iterate
zt ∈ Cd, parameter α > 0.

Output: zt+1 ∈ Cd.
1. Select a shift position rt ∈ R
2. Construct an exit wave ψ = S−rtzt ◦ w.
3. Compute its Fourier transform Ψ = FmPmψ.
4. Correct the magnitudes of Ψ as Ψ′ =

√
Y (rt) ◦ sgn0Ψ.

5. Find an exit wave ψ′ corresponding to Ψ′ via ψ′ = P ∗
mF

−1
m Ψ′.

6. Return zt+1 = zt + α
∥w∥2∞

Srt diag(w)[ψ
′ − ψ].

Note that the division by 0 occurs whenever |Ψj| = 0 for some j ∈ [m], which is resolved
by setting 0/0 as 0 (corresponding to sgn0) analogously to AF and ER.
In the literature two ways of choosing the shift positions rt are considered. Originally, in
[39], the shift rt was selected such that regions corresponding to rt−1 and rt overlap, that
is |rt−1 − rt|c < δ. Later, in [33, 115] indices rt are looping through the set R, which is
randomly shuffled every loop.
In terms of computational complexity, a single iteration requires O(d +m logm) opera-
tions, governed by the complexity of the shift and the fast Fourier transform. Therefore,
for T ∈ N iterations, O(Td+ Tm logm) operations are performed.
There are several interpretations of the PIE iteration. The first states that the iteration of
PIE computes the measurements corresponding to the current shift position r, and adjusts
the magnitudes if they do not agree with the measurements Y (r). Then, the algorithm
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moves from the previous position zt in the direction of the object corresponding to the
corrected measurements, which gives the new iterate zt+1. Therefore, α plays the role of
the learning rate and controls the step size. All steps of Algorithm 2 combined into one
gives the following update rule

zt+1 = zt +
αSrt diag(w)

∥w∥2∞

[
P ∗
mF

−1
m diag

( √
Y (rt)

|FmPm[S−rzt ◦ w]|

)
FmPm − Id

]
(S−rtz

t ◦ w).

(PIE)

In [150], the authors note that in this form the new iterate of PIE is the global minimizer
of the function

zt+1 = argmin
z∈Cd

∥S−rtz ◦ w − ψ′∥22 +
∥∥∥∥∥

[
∥w∥2∞
α

Id − diag(|Srtw|2)
]
(z − zt)

∥∥∥∥∥

2

2

.

Alternatively, the iteration of the PIE algorithm is the gradient descent step [115] for the
loss function

∥S−rtz ◦ w − ψ′∥22
with learning rate µ = α/ ∥w∥2∞.

In this section, we establish a novel understanding of the PIE algorithm as stochastic
gradient descent applied to the amplitude-based loss (3.13).

To this end, let us recall that the ptychographic measurements (PTY) are the phase
retrieval measurements of the form (PR) with the measurement matrix A given by (3.9).
By construction, the matrix A is the row-block matrix with blocks

Ar := FmPm diag(w)S−r, r ∈ R, (3.19)

and, thus, the function L2( · ;A) also splits into the sum of errors corresponding to separate
blocks. More precisely, we have

L2(z;A) =
∑

r∈R
L2(z;Ar), (3.20)

and we use this summation representation for the construction of the stochastic gradient
gL2 as in (2.23).

Theorem 3.5.12. Let A be the measurements matrix (3.9) corresponding to the ptycho-
graphic measurements (PTY). Consider the amplitude-based loss function L2 = L2( · ;A)
as in (3.13) and its decomposition (3.20). If for each iteration t ≥ 1, the shift position rt

is sampled uniformly at random from the set R, the iteration of PIE is given by

zt+1 = zt − µcgL2(z
t), (3.21)

where µc = α
m|R|∥w∥2∞

is the constant learning rate and gL2 is the stochastic gradient of

L2 given by (2.23). The sampling variables vr in gL2 correspond to the sampling with
replacement (2.27) for K = 1 and probabilities 1/|R| as in (2.31).
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Proof. The construction of Ar yields

Arz = FmPm[S−rz ◦ w].

Furthermore, by Proposition 2.2.1 and Proposition 2.2.2, we have F−1
m = 1

m
F ∗
m and Sr =

S∗
−r, so that

Sr diag(w)P
∗
mF

−1
m =

1

m
S∗
−r(diag(w))

∗P ∗
mF

∗
m =

1

m
A∗
r.

Since S−rz ◦ w is supported on [δ] ⊆ [m], by (2.11) we obtain

S−rz ◦ w = P ∗
mPm[S−rz ◦ w] =

1

m
P ∗
mF

∗
mFmPm[S−rz ◦ w] =

1

m
P ∗
mF

∗
mArz.

Using these equalities, we rewrite the iteration of PIE as

zt+1 = zt +
α

∥w∥2∞

[
1

m
A∗
rt diag

(√
Y (rt)

|Artzt|

)
FmPm − Srt diag(w)

]
(S−rtz

t ◦ w)

= zt +
α

∥w∥2∞

[
1

m
A∗
rt diag

(√
Y (rt)

|Artzt|

)
Artz

t − S∗
−rt(diag(w))

∗ 1

m
P ∗
mF

∗
mArtz

t

]

= zt +
α

∥w∥2∞

[
1

m
A∗
rt diag

(√
Y (rt)

|Artzt|

)
Artz

t − 1

m
A∗
rtArtz

t

]

= zt − α

m ∥w∥2∞
A∗
rt

[
Im − diag

(√
Y (rt)

|Artzt|

)]
Artz

t

= zt − α

m ∥w∥2∞
∇zL2(z

t;Art), (3.22)

where in the last line Corollary 3.5.2 was used. Let us consider a random vector v
corresponding to the sampling with replacement (2.27) with K = 1 and probabilities
1/|R|. Then, v is given by

v = |R|v̂,
where v̂ is sampled uniformly at random from a set of standard basis vectors {er}r∈R,
which is equivalent to sampling index r̂ from the set R. Therefore, the entries of v can
be written as

vr = |R|v̂r = |R|(er̂)r = |R|Ir̂=r,
and the stochastic gradient of L2 is equal to

gL2(z) =
∑

r∈R
vr∇zL2(z;Ar) = |R|

∑

r∈R
Ir̂=r∇zL2(z;Ar) = |R|∇zL2(z;Ar̂). (3.23)

Returning to (3.22), we recall that rt is selected uniformly at random from R and, thus,
follows the same distribution as r̂. Hence, we obtain

zt+1 = zt − α

m ∥w∥2∞
∇zL2(z

t;Art) = zt − α

m|R| ∥w∥2∞
gL2(z

t) = zt − µcgL2(z
t).
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The stochastic gradient descent representation of the PIE algorithm allows us to derive
the convergence of the method if the parameter α is chosen appropriately.

Theorem 3.5.13. Let {zt}t≥0 be a sequence determined by PIE with an arbitrary starting
point z0 ∈ Cd. Fix γ > 0. If the number of iterations T satisfies

T ≥ 4m2γ−4|R| ∥w∥2∞

∥∥∥∥∥
∑

r∈R
|Srw|2

∥∥∥∥∥
∞

L2
2(z

0),

and the parameter α fulfills

α ≤ ∥w∥∞
√

|R|√
T
∥∥∑

r∈R |Srw|2
∥∥
∞

,

then the expected norms of the gradients satisfy

min
t∈[T ]

E
∥∥∇zL2(z

t)
∥∥
2
≤ γ.

Proof. In Theorem 3.5.12 we established that PIE is the stochastic gradient descent ap-
plied to the function L2( · ;A) with A given by (3.9). Recall that the function L2 is not
differentiable everywhere and in order to apply Theorem 2.3.7 or its Corollary 2.3.10 pro-
viding the convergence guarantees for the stochastic gradient descent, we need to repeat
the smoothing argument used in the proofs of Theorem 3.5.4 and Theorem 3.5.8. That
is, consider a stochastic gradient descent applied to the smoothed amplitude-based loss
L2,ε( · ;A) given by (3.14) with parameter ε > 0. The function L2,ε is twice continuously
differentiable. The constants L and Lr, r ∈ R, in (2.17) are given by

L = ∥A∗A∥∞ = mmax
ℓ∈[d]

∑

r∈R
|Srw|2 = m

∥∥∥∥∥
∑

r∈R
|Srw|2

∥∥∥∥∥
∞

and Lr = ∥A∗
rAr∥∞ = m ∥w∥2∞ ,

(3.24)
where we used Lemma 3.5.3, the equations (3.15), and Lemma 3.3.5. If we repeat the
steps of the proof of Theorem 2.3.7 with f = L2,ε until inequality (2.26), we obtain

L2,ε(z
t+1) ≤ L2,ε(z

t)− 2µcRe
〈
gL2,ε(z

t),∇zL2,ε(z
t)
〉
+ Lµ2

c

∥∥gL2,ε(z
t)
∥∥2
2
.

As ε tends to zero from above, L2,ε(z) → L2(z) for all z ∈ Cd. Recall that the gen-
eralized gradient ∇zL2(z) is defined as limε→0+∇zL2,ε(z). Thus, the equality gL2(z) =
limε→0+ gL2,ε(z) also holds. Consequently, taking the limit ε→ 0+ yields

L2(z
t+1) ≤ L2(z

t)− 2µcRe
〈
gL2(z

t),∇zL2(z
t)
〉
+ Lµ2

c

∥∥gL2(z
t)
∥∥2
2
.

Then, we can repeat the rest of the proof of Theorem 2.3.7 and guarantee that the results
of Theorem 2.3.7 apply for L2. For the analogue of Corollary 2.3.10 we would also require
the inequality

∥∇zL2(z;Ar)∥22 ≤ LrL2(z;Ar),
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which is obtained by considering a single step of the gradient descent for L2,ε( · ;Ar) with
µ = 1/Lr. Then, by Theorem 2.3.4 and the inequality (2.18) in particular, we get

∥∇zL2,ε(z;Ar)∥22 ≤ LrL2,ε(z;Ar),

and taking ε→ 0+ grants the desired inequality.
Therefore, in order to establish the convergence of PIE in the sense that

min
t∈[T ]

E
∥∥∇zL2(z

t)
∥∥
2
≤ γ

for arbitrary γ > 0, we apply Corollary 2.3.10. For this we observe that by Theorem 3.5.12
the iteration of PIE is the stochastic gradient step which uses sampling with replacement
(2.27) with K = 1 and probabilities 1/|R|. Thus, by the requirements of Corollary 2.3.10,
the number of iterations T has to satisfy

T ≥ 4L|R|maxr∈R LrL2
2(z

0)

Kγ4
= 4m2γ−4|R| ∥w∥2∞

∥∥∥∥∥
∑

r∈R
|Srw|2

∥∥∥∥∥
∞

L2
2(z

0),

and the learning rate µc is chosen such that

µc ≤
√
K√

TL|R|maxr∈R Lr
=

1

m ∥w∥∞
√
T |R|

∥∥∑
r∈R |Srw|2

∥∥
∞

.

Since by Theorem 3.5.12 the learning rate is given by µc =
α

m|R|∥w∥2∞
, it implies that the

parameter α has to satisfy

α ≤ ∥w∥∞
√

|R|√
T
∥∥∑

r∈R |Srw|2
∥∥
∞

,

which concludes the proof.

We also consider a version of PIE, where the shift position rt is selected non-uniformly,
but based on the norms of the gradients. In this case, the probability that rt is equal to
r ∈ R is given by

ptr =
∥L2(z

t;Ar)∥2∑
r′∈R ∥L2(zt;Ar′)∥2

. (3.25)

We note that at least one ptr is larger than zero and division by 0 does not occur if and
only if ∥L2(z

t;A)∥2 > 0. Thus,
∑

r′∈R ∥L2(z
t;Art)∥2 will always be non-zero unless the

fixed point ∥L2(z
t;A)∥2 = 0 is reached. Furthermore, we can conclude that the following

holds.

Lemma 3.5.14. The fixed-point sets of AF, ER and PIE with sampling probabilities
(3.25) coincide.

Proof. Follows from Lemma 3.5.7 and the considerations above.
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Using norm-based probabilities requires a slight adjustment of the iteration of PIE, which
leads to the following algorithm

zt+1 = zt +
αSrt diag(w)

ptr ∥w∥2∞

[
P ∗
mF

−1
m diag

( √
Y (rt)

|FmPm[S−rzt ◦ w]|

)
FmPm − Id

]
(S−rtz

t ◦ w).

The computation of the norms requires additional operations, however, due to the locality
of the measurements, this increase is not high. Note that L2(z;Ar) only depends on the
entries of z in the set Jr := {r, r + 1, . . . , r + δ − 1}. Therefore, after a single step of
the modified PIE, the gradients corresponding to shifts r such that Jr ∩ Jrt = ∅ remain
the same and for the rest of the indices the gradients have to be computed again. These
are the shifts satisfying the condition |r − rt|c < δ and there are at most 2δ − 1 such
indices. For the initialization, we have to compute all gradients once, which results in
O(|R|d +m|R| logm) operations. Then, for each iteration at most 2δ − 1 gradients are
computed, which costs O(δd + mδ logm) operations. Hence, the total complexity for
T ∈ N iterations is O ((|R|+ Tδ)(d+m logm)).

However, we are not able to provide convergence guarantees and step size selection for
PIE with probabilities (3.25)

Notes and References. The PIE algorithm is a popular method among practitioners.
It was first introduced in [39] and later it was slightly adjusted and extended for the simul-
taneous estimation of the object and the window [33, 115]. In this section, we have only
considered the object estimation, while the joint estimation will be discussed in Chapter 4.

However, despite its popularity, no convergence analysis can be found in the literature.
Thus, our main contribution is the reinterpretation of PIE as stochastic gradient descent
and the derivation of its convergence guarantees summarized in Theorem 3.5.13.

Note that the stochastic version of AF was separately studied in [151, 152] under the
assumption that the entries of A are independent standard complex Gaussian random
variables, but the connection to PIE was not made. Another stochastic variant of AF
which randomly selects a single measurement is the randomized Kaczmarz algorithm for
phase retrieval [153, 154, 155, 156, 157].

Further details on the convergence of stochastic gradient descent for phase retrieval and
ptychography can be found in our recent preprint [158].

3.6 Block Phase Retrieval and its extensions

3.6.1 The idea of Block Phase Retrieval algorithm

In this section, we study the Block Phase Retrieval algorithm (BPR) [35, 40] developed
specifically for ptychographic measurements (PTY) with R = [d]. It is based on the
idea of lifting, where the measurements are presented in a high-dimensional space. More
precisely, define masks wj, j ∈ [m] as

wjk := (P ∗
mMjPmw)k = wke

2πikj
m =

{
wke

2πikj
m , k ∈ [δ],

0, otherwise,
(3.26)
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where Pm is the projection operator (2.10) andMj is the modulation operator (2.7). Then,
measurements are presented as linear operation applied to the rank-one matrix xx∗,

Imj,r =

∣∣∣∣∣∣
∑

k∈[δ]
wkxk+re

− 2πikj
m

∣∣∣∣∣∣

2

=
∣∣⟨S−rx,w

j⟩
∣∣2 =

∣∣⟨x, Srwj⟩
∣∣2 = x∗Srw

j(Srw
j)∗x

= tr(x∗Srw
j(Srw

j)∗x) = tr(Srw
j(Srw

j)∗xx∗) = ⟨xx∗, Srwj(Srwj)∗⟩F . (3.27)

Now, define a linear operator A acting on the space Hd of d× d Hermitian matrices as

A(Z)j,r := ⟨Z, Srwj(Srwj)∗⟩F . (3.28)

The intensity measurements can now be written as

Imj,r = A(xx∗)j,r, j ∈ [m], r ∈ R. (3.29)

In generalM = md < d2 and the obtained linear system (3.29) is underdetermined. Thus,
a direct recovery of xx∗ is not possible. Due to the condition that supp(w) = [δ], the
space span{Srwj(Srwj)∗, j ∈ [m], r ∈ [d]} is a subspace of Tδ given by

Tδ := {U ∈ Hd : Uk,ℓ = 0 for all k, ℓ ∈ [d] such that |ℓ− k|c ≥ δ} ⊆ Hd.

Hence, A(Z) only depends on a part of the entries in Z.
Let us denote by Tδ the projection operator onto Tδ, it is given as

Tδ(U)k,ℓ = Uk,ℓI|k−ℓ|c<δ =

{
Uk,ℓ, |k − ℓ|c < δ,

0, otherwise,
(3.30)

and visualized in Figure 3.1. Since xx∗−Tδ(xx
∗) is orthogonal to Tδ and Srwj(Srwj)∗ we

get

Imj,r = ⟨xx∗, Srwj(Srwj)∗⟩F = ⟨Tδ(xx∗), Srwj(Srwj)∗⟩F + ⟨xx∗ − Tδ(xx
∗), Srw

j(Srw
j)∗⟩F

= ⟨Tδ(xx∗), Srwj(Srwj)∗⟩F + 0 = A(Tδ(xx
∗))j,r.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗







Figure 3.1: Highlighted entries of the matrix form the space Tδ for d = 10, δ = 4.
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This shows that the intensity measurements only depend on the projection

X := Tδ(xx
∗). (3.31)

Hence, assuming that span{Srwj(Srwj)∗, j ∈ [m], r ∈ [d]} coincides with Tδ, the matrix
X is recovered from the measurements by applying the pseudoinverse of A restricted to
Tδ, that is

X = A
∣∣†
Tδ
(Im).

We note that for vectorized X, the operator A
∣∣
Tδ

is a matrix and its pseudoinverse is
obtained via the singular value decomposition. Since X is a Hermitian matrix in Tδ, it is
characterized by d real values on the main diagonal and (δ − 1)d complex values on the
lower triangular part. Hence, in total (2δ − 1)d real unknowns have to be recovered from
the measurements, which implies that the condition m ≥ 2δ − 1 has to be satisfied.

Remark 3.6.1. When d ≤ 2δ − 1, for k, ℓ ∈ [d] the distance between indices is bounded
from above, as

|k − ℓ|c = min{|k − ℓ|, d− |k − ℓ|} ≤ min{|k − ℓ|, 2δ − 1− |k − ℓ|}.

If |k − ℓ| < δ, then |k − ℓ|c < δ. Otherwise, if |k − ℓ| ≥ δ, we have

2δ − 1− |k − ℓ| ≤ 2δ − 1− δ = δ − 1,

and again |k − ℓ|c < δ. Therefore, by (3.30), the equality Tδ(U)k,ℓ = Uk,ℓ holds for
all indices k, ℓ ∈ [d], so that Tδ = Id and Tδ = Hd. It implies that X = xx∗, which
significantly simplifies the further recovery of x. Hence, we will concentrate on the case
d > 2δ − 1 which means Tδ ̸= Hd.

The next step is to recover x from X by employing the rank-one properties of xx∗ partially
preserved in X. By the definition of Tδ, the main diagonal of X is always recovered from
the measurements and it is given by

Xk,k = |xk|2.

Therefore, the magnitudes of x are reconstructed from the main diagonal.
The phases of x are obtained by computing the top eigenvector x̃ of the phase difference
matrix

sgn0(Xk,ℓ) =

{
sgnxksgnxℓ, Xk,ℓ ̸= 0,

0, otherwise,

and setting sgnx = sgn x̃. It is linked to the angular synchronization problem with more
detailed explanation to follow in Section 3.6.4. For now we only provide an intuition of
this step. Let x be non-vanishing, so that

∑d−1
ℓ=0 IXk,ℓ ̸=0 = 2δ − 1 for all k ∈ [d]. For the

true vector of phases sgnx we have

sgnx∗ sgn0(X) sgnx =
d−1∑

k,ℓ=0

sgnxk sgnxksgnxℓ sgnxℓIXk,ℓ ̸=0 =
d−1∑

k,ℓ=0

IXk,ℓ ̸=0 = (2δ − 1)d,
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and for any other vector v with ∥v∥2 =
√
d we obtain

|v∗ sgn0(X)v| ≤
d−1∑

k,ℓ=0

|vk||vj|IXk,ℓ ̸=0 ≤
d−1∑

k,ℓ=0

|vk|2 + |vj|2
2

IXk,ℓ ̸=0 =
d−1∑

k,ℓ=0

|vk|2IXk,ℓ ̸=0

=
d−1∑

k=0

|vk|2
d−1∑

ℓ=0

IXk,ℓ ̸=0 = (2δ − 1)
d−1∑

k=0

|vk|2 = (2δ − 1) ∥v∥22 = (2δ − 1)d,

where we used that X is Hermitian. Thus, sgnx is the top eigenvector of matrix sgn0(X).
Combining all steps together, BPR can be summarized in Algorithm 3.

Algorithm 3: Block Phase Retrieval [40]

Input : Ptychographic measurements Y ∈ Rm×d as in (PTY) with R = [d].
Output: z ∈ Cd with z ≈ e−iθx for some θ ∈ [0, 2π).
1. Compute Z = A|†Tδ

(Y ) ∈ Tδ as an Hermitian estimate of X.
2. Form the matrix of phase differences sgn0(Z) ∈ Tδ.
3. Compute the top eigenvector of sgn0(Z), denoted by z̃ ∈ Cd with ∥z̃∥2 =

√
d.

4. Set zj =
√
Zj,j · sgn z̃j for all j ∈ [d] to form z ∈ Cd.

Compared to AF, ER and PIE discussed in the previous sections, Algorithm 3 has three
main advantages and two disadvantages.
Firstly, it is non-iterative and, therefore, extremely fast [40]. Thanks to a special structure
of A, the action of the pseudoinverse in Step 1 can be efficiently computed and requires
O(δd log d) operations. We provide details on the computational complexity of Step 1 at
the end of Section 3.6.2.1. The search of the top eigenvector uses the sparsity of matrix
sgn0(Z) which grants a total complexity of O(δ2d log d).
Secondly, Algorithm 3 possess recovery guarantees as stated in the next theorem.

Theorem 3.6.2. [138, 40, Theorem 1] Consider the noisy ptychographic measurements
(PTY) with all shifts observed R = [d]. Let δ > 2, d ≥ 4δ, m = 2δ − 1 and the δd-th
singular value of the operator A denoted by σδd(A) be non-zero. If x ∈ Cd is non-vanishing
with |x|min := mink∈[d] |xk|, then the estimate z ∈ Cd produced by Algorithm 3 satisfies

dist(x, z) ≤ 24
∥x∥∞
|x|2min

· d2

δ5/2
· σ−1

δd (A) ∥N∥F + d1/4
√
σ−1
δd (A) ∥N∥F .

In particular, by Theorem 3.6.2, in the noiseless scenario Algorithm 3 uniquely identi-
fies non-vanishing vectors x from the ptychographic measurements. To our knowledge,
there are no recovery guarantees available for any other method for the ptychographic
measurements (PTY) in the literature.
Finally, BPR consists of three steps: the inversion, the magnitude and the phase esti-
mation. The structure of Algorithm 3 is modular and each step only depends on the
outcome of the previous steps. Thus, we can easily change procedures used for single
steps of Algorithm 3. Throughout the following sections, new methods are introduced
with separate recovery guarantees for each step, which are of the form

∥Z −X∥F ≤ f1(∥N∥F ),
∥|z| − |x|∥2 ≤ f2(∥Z −X∥F ),

dist(sgnx, sgn z) ≤ f3(∥Z −X∥F ),
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where f1, f2 and f3 are some non-decreasing functions from R to R possibly depending on
x. The recovery guarantees for Algorithm 3 are then obtained by combining these bounds
as

dist(x, z) = min
|α|=1

∥x− αz∥2 = min
|α|=1

∥|x| ◦ sgnx± α|x| ◦ sgn z − α|z| ◦ sgn z∥2
≤ min

|α|=|
∥|x| ◦ sgnx− α|x| ◦ sgn z∥+ ∥|x| − |z|∥2 (3.32)

≤ ∥x∥∞ dist(sgnx, sgn z) + ∥|x| − |z|∥2 ≤ ∥x∥∞ f3(f1(∥N∥F )) + f2(f1(∥N∥F )).

Returning to Theorem 3.6.2, we observe that it also highlights the weaknesses of BPR. The
singular value σδd(A) appearing in the bound might be small, which leads to sensitivity
of the algorithm to noise. Depending on the choice of the window w, the singular value
σδd(A) may be equal to 0, which means that the assumption

span{Srwj(Srwj)∗, j ∈ [m], r ∈ [d]} = Tδ

does no longer hold and the reconstruction process therefore fails.
Another problem of Algorithm 3 is the requirement R = [d]. In practice, it would be
preferable to work with a subsampled set of shifts. A compromise between theoretical
results on one hand and application demands on the other hand can be reached by exten-
sions of BPR [138, 139, 141, 159] to equidistant shifts R = {0, s, . . . , d − s} with a shift
length s < δ and divisor of d. Further relaxations to arbitrary sets R might be possible,
however the computational complexity and recovery guarantees are expected to degrade
due to the loss of the structure of R.
Furthermore, BPR is based on the circularity of shifts. For aperiodic objects, the circu-
larity can be introduced by padding an object with a proper amount of dummy entries
and artificial measurements. As a result, the window never overlaps with two disjoint
ends of the padded object simultaneously.
The rest of the section is structured in the following way. In Section 3.6.2.1, the inversion
step is discussed in detail and in subsequent Section 3.6.2.2 instabilities arising from a
certain class of windows are treated by regularization of the BPR algorithm. Section 3.6.3
provides an overview of more advanced magnitude estimation techniques in the literature
and in Section 3.6.4 the phase reconstruction step and its alternations are explained.
The extension of Algorithm 3 to equidistant shifts is the topic of Section 3.6.5. Finally,
we briefly discuss the implications of the recovery guarantees for BPR in the context of
uniqueness and stability of the reconstruction in Section 3.6.6.

Notes and References. The initial version of BPR was introduced in [35] with a greedy
phase reconstruction procedure. The subsequent work [40] replaced it with the eigenvalue-
based estimation and brought Algorithm 3 to its presented above form. Interestingly, a
similar algorithm was independently derived in [96]. Later work [160] extended BPR for a
two-dimensional setting for windows formed by a rank-one matrix. In [141], the authors
introduced a reinterpretation of the inversion step via Wigner distribution deconvolution,
which allowed to extend BPR for the two-dimensional reconstruction for an arbitrary win-
dow [142]. This connection also provides an understanding of BPR as a discrete version
of the Wigner distribution deconvolution algorithm [79, 5, 161]. Yet, other discretizations
are possible [162, 163].
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The various alternations of steps in Algorithm 3 are present in the literature [138, 140,
159, 164] and we will discuss each contribution in the following sections. Similarly, the
extensions of BPR to equidistant shifts [138, 139, 141, 159] will be covered in the corre-
sponding section.
We note that BPR can be linked to the analysis of uniqueness of reconstruction from the
ptychographic measurements (PTY) provided in [85, 70].
Finally, the lifting trick (3.27) is a foundation for another algorithm known as PhaseLift
[34, 122, 165, 124, 166, 92, 125, 126]. While BPR uses lifting to obtain the matrix X
and only then benefits from the inherited rank-one structure, PhaseLift recovers xx∗ by
solving a convex relaxation of the rank minimization problem.

3.6.2 Inversion step

In this section, we discuss the inversion step in detail. In the first half of the section we
show that the inversion step coincides with Wigner Distribution Deconvolution and in the
second half we address singularities and instabilities arising for certain classes of windows.

3.6.2.1 Inversion step as Wigner Distribution Deconvolution

In the previous section, the inversion step is viewed as an application of the pseudoinverse
matrix to the measurement vector in order to obtain the vectorized matrix X defined in
(3.31). It is a valid approach established in [35], but it requires careful manipulations
with vectorization, construction of matrices and their further decomposition. However,
the resulting formula for the pseudoinverse operator suggests that there is a connection
between the inversion and the time-frequency analysis.
The first major step towards the understanding of this connection was the discrete ana-
logue of the relation between intensity measurements and the Wigner distribution (3.5),
which is provided by the next theorem.

Theorem 3.6.3 (Wigner distribution deconvolution, version of [141, Theorem 4]). Con-
sider the noiseless ptychographic measurements (PTY) with all shifts, i.e., R = [d], and
m ≥ 2δ − 1. For j ∈ [m] define the transform

ρ(j) :=

{
j, j ≤ ⌊m/2⌋,
j −m, j > ⌊m/2⌋.

Then, for all j ∈ [m] the j-th row of the matrix F−1
m ImF T

d is given by

(F−1
m ImFd)(j) = Fd[x ◦ Sρ(j)x] ◦ Fd[w ◦ Sρ(j)w].

Furthermore, for δ ≤ j ≤ m− δ the coefficients Fd[w ◦ Sρ(j)w]k are zero.

Proof. It follows from the more general Theorem 3.6.4 applied to X. See also our discus-
sion below for further clarifications.

In order to make a connection between Theorem 3.6.3 and the inversion step, let us first
consider a matrix U in Tδ. It has 2δ − 1 non-zero diagonals

dρ(j)(U)k = Uk,k−ρ(j) for k ∈ [d], j ∈ [m], |ρ(j)| < δ,
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and due to the inclusion Tδ ⊆ Hd the matrix U is completely identified by its lower-
triangular diagonals dj(U), j ∈ [δ]. Specifically for X, the diagonals dρ(j)(X) satisfy

dρ(j)(X)k = Xk,k−ρ(j) = (xx∗)k,k−ρ(j) = xkxk−ρ(j) = (x ◦ Sρ(j)x)k, (3.33)

and, thus, Theorem 3.6.3 determines a relation between the Fourier coefficients of the
diagonals dρ(j)(X) and the measurements,

(F−1
m A(X)Fd)(j) = (F−1

m ImFd)(j) = Fd[d
ρ(j)(X)] ◦ Fd[w ◦ Sρ(j)w], j ∈ [m],

This is a linear system with respect to diagonals. Furthermore, the result of Theorem 3.6.3
can be extended for any matrix U ∈ Tδ.

Theorem 3.6.4. Consider the setup of Theorem 3.6.3. Let A be the measurement oper-
ator defined in (3.28). Then, for all U ∈ Tδ the equality

(F−1
m A(U)Fd)(j) = Fd[d

ρ(j)(U)] ◦ Fd[w ◦ Sρ(j)w], j ∈ [m].

holds. Furthermore, for δ ≤ j ≤ m− δ the coefficients Fd[w ◦ Sρ(j)w]k are zero.

Proof. By the definition of the measurements operator (3.28), we have

A(U)ℓ,r = ⟨U, Srwℓ(wℓ)∗S∗
r ⟩F .

An application of the inverse Fourier transform gives

F−1
m A(U)j,r =

1

m

∑

ℓ∈[m]

⟨U, Srwℓ(wℓ)∗S∗
r ⟩F e

2πijℓ
m

=

〈
U, Sr


 1

m

∑

ℓ∈[m]

wℓ(wℓ)∗e−
2πijℓ
m


S∗

r

〉

F

. (3.34)

Using the circularity of the complex exponential, we replace j with ρ(j),

e−
2πijℓ
m =

{
e−

2πijℓ
m , j ≤ ⌊m/2⌋

e−
2πi(j−m)ℓ

m , j > ⌊m/2⌋

}
= e−

2πiρ(j)ℓ
m .

The definition (3.26) of vectors wℓ for k, s ∈ [d] yields


 1

m

∑

ℓ∈[m]

wℓ(wℓ)∗e−
2πiρ(j)ℓ

m



k,s

= wkws
1

m

∑

ℓ∈[m]

e
2πiℓk
m e−

2πisℓ
m e−

2πiρ(j)ℓ
m (3.35)

= wkws
1

m

∑

ℓ∈[m]

e
2πiℓ(k−s−ρ(j))

m = wkwsI0=k−s−ρ(j)modm.

If either k ≥ δ or s ≥ δ, the factor wkws = 0 and we can write

wkwsI0=k−s−ρ(j)modm = 0 = wkwsI0=k−s−ρ(j)
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Let k, s ∈ [δ]. By the definition of ρ(j), the inequality |ρ(j)| ≤ ⌊m/2⌋ holds. Thus, using
the assumption m ≥ 2δ − 1, we have |k− s− ρ(j)| < δ + ⌊m/2⌋ ≤ m. It implies that the
modulo operation can be discarded, so that for all k, s ∈ [d]

wkwsI0=k−s−ρ(j)modm = wkwsI0=k−s−ρ(j). (3.36)

Substituting (3.35) and (3.36) in (3.34) gives

F−1
m A(U)j,r =

∑

k,s∈[d]
Uk,s


 1

m

∑

ℓ∈[m]

wℓ(wℓ)∗e−
2πiρ(j)ℓ

m



k−r,s−r

=
∑

k,s∈[d]
Uk,swk−rws−rI0=k−r−s+r−ρ(j) =

∑

k∈[d]
Uk,k−ρ(j)wk−rwk−ρ(j)−r

=
∑

k∈[d]
dρ(j)(U)k(w ◦ Sρ(j)w)k−r =

∑

k∈[d]
dρ(j)(U)k(Rd[w ◦ Sρ(j)w])r−k

=
(
dρ(j)(U) ∗d (Rd[w ◦ Sρ(j)w])

)
r
, (3.37)

where Rd denotes the time reversal operator (2.8) and ∗d is the circular convolution
(2.9). By the circular convolution theorem (Theorem 2.2.3), the application of the Fourier
transform with respect to the variable r leads to

(F−1
m A(U)Fd)(j) = (F−1

m A(U)F T
d )(j) = (F−1

m A(U))(j)F
T
d = Fd[d

ρ(j)(U)] ◦ FdRd[w ◦ Sρ(j)w].

By Proposition 2.2.5, the second term transforms into

FdRd[w ◦ Sρ(j)w]] = RdFd[w ◦ Sρ(j)w] = Fd[w ◦ Sρ(j)w] = Fd[w ◦ Sρ(j)w].

Finally, we note that for δ ≤ j ≤ m− δ the supports of w and Sρ(j)w do not overlap and,
consequently, Fd[w ◦ Sρ(j)w] = 0.

Remark 3.6.5. From the equation (3.37) it can be observed that m has no impact on
the number of equations with a right-hand side different from zero. The right-hand side
of (3.37) is non-zero if j < δ or j > m − δ for all choices of m, which is always 2δ − 1
values of j. Moreover, for each r ∈ R the left-hand side A(U)(r) is a real vector in Rm

and, hence, F−1
m A(U)(r) can also be described by 2δ − 1 real values. Thus, the dimension

of span{Srwℓ(wℓ)∗S∗
r , j ∈ [m], r ∈ R} over the field R is at most (2δ − 1)|R| and in the

absence of noise the choice of m has no significance for the dimension. However, in the
presence of noise, the entries of F−1

m (A(U) + N)j,r, δ ≤ j ≤ m − δ will only contain
noise. This allows to discard a part of the noise in the reconstruction process. Hence,
m/(2δ − 1) has a meaning of an oversampling ratio and its higher values provide better
noise robustness of the inversion step.

Firstly, Theorem 3.6.4 highlights that recovery of the diagonals outside Tδ is not possible
and we can restrict A to the subspace Tδ.
Secondly, since the operator A is real-valued for all U ∈ Tδ ⊆ Hd,

A(U)j,r = ⟨U, Srwℓ(Srwℓ)∗⟩F = (Srw
ℓ)∗USrw

ℓ ∈ R,
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the result of Theorem 3.6.4 is redundant for values of j > ⌊m/2⌋. More precisely, by the
symmetry of the discrete Fourier transform for real-valued vectors, we have

(F−1
m A(U)Fd)(j) = (F−1

m A(U))(j)Fd = (F−1
m A(U))(m−j)Fd = Rd(F−1

m A(U)Fd)(m−j).

This also can be viewed as a consequence of U being a Hermitian matrix with diagonals
satisfying

d−j(U)k = Uk,k+j = Uk+j,k = Uk+j,k−j+j = dj(U)k+j.

Thirdly, by rescaling the Fourier matrices,

[√
mF−1

m A(U)
1√
d
Fd

]

(j)

=
1√
d
Fd[d

j(U)] ◦ √mFd[w ◦ Sjw], j ∈ [δ],

we obtain that all transformations are unitary except for multipliers
√
mFd[w ◦ Sjw]k.

Hence, the set {√m|Fd[w ◦ Sjw]k|}j∈[δ],k∈[d] contains the singular values of the operator
A
∣∣
Tδ

and the linear system is not underdetermined whenever

σδd(A
∣∣
Tδ
) = min

j∈[δ],k∈[d]

√
m|Fd[w ◦ Sjw]k| > 0. (3.38)

This is equivalent to the assumption

Tδ = span{Srwj(Srwj)∗, j ∈ [m], r ∈ [d]}.

Finally, for a matrix V ∈ Rm×d the result of U = A
∣∣†
Tδ
(V ) is obtained by recovering the

diagonals via

dj(U) = F−1
d

[
(F−1

m V Fd)(j)

Fd[w ◦ Sjw]

]
, j ∈ [δ],

and the construction of U from its diagonals. It justifies that the pseudoinverse operator

A
∣∣†
Tδ

acts as the discrete Wigner distribution deconvolution applied to the given data V .

In particular, for noisy measurements Y = A(X) + N , the matrix Z obtained in Step 1
of Algorithm 3 satisfies

dj(Z) = F−1
d

[
(F−1

m Y Fd)(j)

Fd[w ◦ Sjw]

]
= dj(X) + F−1

d

[
(F−1

m NFd)(j)

Fd[w ◦ Sjw]

]
, j ∈ [δ]. (3.39)

A reconstruction error of the inversion step is quantified by the next corollary.

Corollary 3.6.6. Consider the noisy ptychographic measurements (PTY) with all shifts,
i.e., R = [d], and m ≥ 2δ−1. Assume that the inequality (3.38) holds. Let X be defined as
in (3.31) and Z be the matrix obtained in the Step 1 of Algorithm 3 by the reconstruction
of its diagonals via (3.39). Then

∥Z −X∥F ≤ σ−1
δd (A

∣∣
Tδ
) ∥N∥F .
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Proof. Since both X and Z are in Tδ, they are Hermitian. Then, we compute the Frobe-
nius norm by summing up the entries of Z −X along the diagonals,

∥Z −X∥2F =
∥∥d0(Z)− d0(X)

∥∥2
2
+

δ∑

j=1

∥∥dj(Z)− dj(X)
∥∥2
2
+
∥∥d−j(Z)− d−j(X)

∥∥2
2

=
∥∥d0(Z)− d0(X)

∥∥2
2
+

δ∑

j=1

2
∥∥dj(Z)− dj(X)

∥∥2
2
. (3.40)

By the equation (3.39) we have

∥∥dj(Z)− dj(X)
∥∥
2
=

∥∥∥∥∥F
−1
d

[
(F−1

m NFd)(j)

Fd[w ◦ Sρ(j)w]

]∥∥∥∥∥
2

=

∥∥∥∥∥
√
dF−1

d diag

(
1

√
mFd[w ◦ Sρ(j)w]

)
1√
d
Fd(

√
mF−1

m N)T(j)

∥∥∥∥∥
2

≤ σ−1
δd (A

∣∣
Tδ
)
∥∥(√mF−1

m N)(j)
∥∥
2
.

Then, the symmetry of the discrete Fourier transform for real vectors yields

∥Z −X∥2F ≤ σ−2
δd (A

∣∣
Tδ
)

[
∥∥(√mF−1

m N)(0)
∥∥2
2
+

δ∑

j=1

2
∥∥(√mF−1

m N)(j)
∥∥2
2

]

= σ−2
δd (A

∣∣
Tδ
)

[
∥∥(√mF−1

m N)(0)
∥∥2
2
+

δ∑

j=1

∥∥(√mF−1
m N)(j)

∥∥2
2
+
∥∥∥(
√
mF−1

m N)(m−j)

∥∥∥
2

2

]

≤ σ−2
δd (A

∣∣
Tδ
)
∥∥√mF−1

m N
∥∥2
F
= σ−2

δd (A
∣∣
Tδ
) ∥N∥2F . (3.41)

Notes and References. The matrix form of the pseudoinverse operator for vectorized
matrices U ∈ Tδ was established in the one-dimensional case in [35, 140] for m = 2δ− 1.
Its construction is heavily based on the computations of matrix multiplications. The results
of [35] were extended to the two-dimensional case [160] for special windows given by rank-
one matrices. This construction exploits the tensor decomposition and leads to a reduction
to the one-dimensional case.
In [141], an analogue of Theorem 3.6.3 is established for the case m ≥ 2δ−1 and m being
a divisor of d, which connects the inversion step to the discrete version of the Wigner
distribution deconvolution. Based on the relation between the diagonals of X and the in-
tensity measurements given in Theorem 3.6.3, the authors proposed recovery by diagonals

(3.39). However, the fact that it coincides with an application of the pseudoinverse A
∣∣†
Tδ

was only observed in numerical trials. One of the strong points of the results in [141]
is its matrix multiplication-free proof. This was later generalized to the two-dimensional
scenario in [142].
The first step towards the connection between two methods was made in Theorem 3 of our
earlier work [140]. The main contribution of this section is Theorem 3.6.4, which provides
a complete theoretical justification of the fact that the pseudoinverse- and the Wigner
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distribution deconvolution-based approaches coincide. Just as the proof of Theorem 3.6.3
in [141], the derivation of Theorem 3.6.4 does not require matrix multiplication. Thus, it
can be easily generalized to the two-dimensional scenario.
A benefit of our measurement setup is that the subsampling of intensities is performed
during the transition from the continuous to the discrete model, which allows to avoid the
additional assumption in [141] that m is a divisor of d.
We note that the recovery by diagonals in (3.39) consists only of the discrete Fourier
transforms and entrywise operations, which grants the computation complexity O(d log d)
per diagonal and total O(δd log d) for the inversion step.

3.6.2.2 Instabilities of inversion step and subspace completion

The crucial part of the inversion step is the assumption that the operator A
∣∣
Tδ

is injective

on Tδ, so that inequality (3.38) holds. In the original work on BPR [35], the authors used
the following window.

Proposition 3.6.7 ([35]). Let m = 2δ − 1 and consider an exponential window of the
form

wk =

{
1

(2δ−1)1/4
e−

j
α , k ∈ [δ],

0, k /∈ [δ],

with α = max{4, (δ − 1)/2}. Then, the minimal singular value satisfies

σδd(A
∣∣
Tδ
) >

7

20α
e−

δ−1
α > cδ−1,

for a constant c > 0.

Later, similar bounds on the smallest singular value were established for near-flat windows
[159], i.e.,

wk =





α + 1, k = 0,

1, k ∈ [δ]\{0},
0, k /∈ [δ].

A more general description of windows, which lead to an invertible operator A
∣∣
Tδ

was

given in [141].

Proposition 3.6.8 ([141, Proposition A1]). Consider a window w ∈ Cd with supp(w) =
[δ]. If

|w0| > (δ − 1)|w1| and |wk| ≥ |wk+1|, k ∈ [δ − 1],

then σδd(A
∣∣
Tδ
) > 0.

However, there are also examples for which A
∣∣
Tδ

is not invertible.

Example 3.6.9. Let d be even. Consider a window w which satisfies the following sym-
metry condition

wk = wδ−k−1, k ∈ [δ].
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Since supp(w) = [δ], we obtain

Fd[w ◦ Sjw]d/2 =
∑

k∈[d]
wkwk−je

− 2πikd
2d =

δ−1∑

k=j

wkwk−j(−1)k

=
δ−1∑

k=j

wδ+j−1−kwδ+j−1−k−j(−1)δ+j−1+k =
δ−1∑

k=j

wk−jwk(−1)δ+j−1+k,

where in the second line we changed the summation order and applied the symmetry of w.
Using a combination of representations above provides

Fd[w ◦ Sjw]d/2 =
1

2

δ−1∑

k=j

wkwk−j(−1)k +
1

2

δ−1∑

k=j

wk−jwk(−1)δ+j−1+k

=
1

2

δ−1∑

k=j

wkwk−j(−1)k(1 + (−1)δ+j−1).

If δ + j is even, then (−1)δ+j−1 = −1 and, hence, all summands are zero. Thus, for
j ∈ [δ] such that δ + j is even, we get

Fd[w ◦ Sjw]d/2 = 0.

In particular, Example 3.6.9 implies that for the discrete Gaussian window corresponding
to a discrete analogue of the Gabor transform

wk =

{
e−

(j−(δ−1)/2)2

a , k ∈ [δ],

0, k /∈ [δ],
(3.42)

the inversion step of BPR fails.
Even if A

∣∣
Tδ

has no zero singular values, the reconstruction of the diagonals via (3.39)

is sensitive to small values |Fd[w ◦ Sjw]| as noise is being amplified by |Fd[w ◦ Sjw]|−1.
Therefore, a regularization procedure is necessary. This can be achieved by ignoring the
reconstructed coefficients corresponding to the singular values of A

∣∣
Tδ

below a threshold
ε ≥ 0.
More precisely, let us consider the set

Sε := {(j, k) : j ∈ [δ], k ∈ [d], |Fd[w ◦ Sjw]k| ≤ ε},

and denote the complement of Sε by Scε := ([δ]× [d])\Sε. Then, the truncation procedure
replaces the Fourier coefficients corresponding to Sε with zero, i.e.,

Fd[d
j(Z)]k =

(F−1
m Y Fd)j,k

Fd[w ◦ Sjw]k
, ·I(j,k)∈Sc

ε
=

{
(F−1

m Y Fd)j,k

Fd[w◦Sjw]k
, (j, k) ∈ Scε ,

0, (j, k) ∈ Sε.
(3.43)

The resulting recovery procedure is summarized in Algorithm 4.
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Algorithm 4: Block Phase Retrieval with Truncation (BPR+TRε)

Input : Ptychographic measurements Y ∈ Rm×d as in (PTY) with R = [d],
truncation parameter ε ≥ 0.

Output: z ∈ Cd with z ≈ e−iθx for some θ ∈ [0, 2π).
1. Construct Fd[d

j(Z)]k via (3.43).
2. Construct the matrix Z by its diagonals.
3. Form the matrix of phase differences sgn0(Z) ∈ Tδ.
4. Compute the top eigenvector of sgn0(Z), denoted by z̃ ∈ Cd with ∥z̃∥2 =

√
d.

5. Set zj =
√
Zj,j · sgn z̃j for all j ∈ [d] to form z ∈ Cd.

Clearly, in the noiseless case the diagonal dj(Z) may not contain some frequencies of dj(X).
Thus, the exact reconstruction of X is not guaranteed. However, by this regularization
we achieve better robustness against noise as the next lemma suggests.

Lemma 3.6.10. Consider the noisy ptychographic measurements (PTY) with all shifts,
i.e., R = [d], and assume that m ≥ 2δ − 1. Denote by

σε(A
∣∣
Tδ
) :=

√
m min

(j,k)∈Sc
ε

|Fd[w ◦ Sjw]k| > 0

the smallest non-zero singular value above the threshold ε and let

sε := |{k ∈ [d] : (0, k) ∈ Sε}|+ 2|{(j, k) ∈ Sε : j ̸= 0}|. (3.44)

Let X be defined as in (3.31) and Z be the matrix obtained by the reconstruction of its
diagonals via (3.43). Then,

∥Z −X∥F ≤ σ−1
ε (A

∣∣
Tδ
) ∥n∥2 +

√
sε
d
∥x∥22 .

Proof. We aim to use (3.40), which splits the total error ∥Z −X∥F as a sum of errors on
the diagonals. Then, we bound the error for each diagonal separately. Using Plancherel’s
identity (Proposition 2.2.1), the error further splits as

∥∥dj(Z)− dj(X)
∥∥2
2
= d−1

∥∥Fddj(Z)− Fdd
j(X)

∥∥2
2
= d−1

∑

k∈[d]
|Fd[dj(Z)]k − Fd[d

j(X)]k|2

= d−1
∑

k∈[d]

∣∣∣∣∣
(F−1

m Y Fd)j,k

Fd[w ◦ Sjw]k
· I(j,k)∈Sc

ε
− Fd[d

j(X)]k

∣∣∣∣∣

2

.

If (j, k) ∈ Scε , we proceed by expanding Y via (PTY) and applying Theorem 3.6.4, simi-
larly to the proof of Corollary 3.6.6,

∣∣∣∣∣
(F−1

m Y Fd)j,k

Fd[w ◦ Sjw]k
· I(j,k)∈Sc

ε
− Fd[d

j(X)]k

∣∣∣∣∣

2

=

∣∣∣∣∣Fd[d
j(X)]k +

(F−1
m NFd)j,k

Fd[w ◦ Sjw]k
− Fd[d

j(X)]k

∣∣∣∣∣

2

=

∣∣∣∣∣
(F−1

m NFd)j,k

Fd[w ◦ Sjw]k

∣∣∣∣∣

2

≤ σ−2
ε (A

∣∣
Tδ
)
∣∣(√mF−1

m NFd)j,k
∣∣2 . (3.45)
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In case (j, k) ∈ Sε, we have

∣∣∣∣∣
(F−1

m Y Fd)j,k

Fd[w ◦ Sjw]k
· I(j,k)∈Sc

ε
− Fd[d

j(X)]k

∣∣∣∣∣

2

=
∣∣Fd[dj(X)]k

∣∣2 . (3.46)

The Fourier coefficient is bounded as

∣∣Fd[dj(X)]k
∣∣ =

∣∣∣∣∣∣
∑

ℓ∈[d]
dj(X)ℓe

− 2πikℓ
d

∣∣∣∣∣∣
≤
∑

ℓ∈[d]
|dj(X)ℓ| =

∑

ℓ∈[d]
|(x ◦ Sjx)ℓ|

=
∑

ℓ∈[d]
|xℓ||(Sjx)ℓ| ≤ ∥x∥2 ∥Sjx∥2 = ∥x∥22 , (3.47)

where we used equation (3.33) and Cauchy-Schwartz inequality. Combining bounds (3.45),
(3.46) and (3.47), we arrive at

∥∥dj(Z)− dj(X)
∥∥2
2
≤ σ−2

ε (A
∣∣
Tδ
)
∑

k:(j,k)∈Sc
ε

∣∣∣∣(
√
mF−1

m N
1√
d
Fd)j,k

∣∣∣∣
2

+
1

d

∑

k:(j,k)∈Sε

∥x∥42 .

Since 1√
d
Fd is a unitary matrix, the first sum is bounded by the squared norm of j-th row

of the matrix
√
mF−1

m N as

∑

k:(j,k)∈Sc
ε

∣∣∣∣(
√
mF−1

m N
1√
d
Fd)j,k

∣∣∣∣
2

≤
∑

k∈[d]

∣∣∣∣(
√
mF−1

m N
1√
d
Fd)j,k

∣∣∣∣
2

=

∥∥∥∥(
√
mF−1

m N
1√
d
Fd)(j)

∥∥∥∥
2

2

=

∥∥∥∥(
√
mF−1

m N)(j)
1√
d
Fd

∥∥∥∥
2

2

=
∥∥(√mF−1

m N)(j)
∥∥2
2
,

and, thus,

∥∥dj(Z)− dj(X)
∥∥2
2
≤ σ−2

ε (A
∣∣
Tδ
)
∥∥(√mF−1

m N)(j)
∥∥2
2
+

1

d

∑

k:(j,k)∈Sε

∥x∥42 .

Now, we use (3.40) split the total error ∥Z −X∥F into the errors on diagonals and apply
the obtained bound for each diagonal to get

∥Z −X∥2F ≤ σ−2
ε (A

∣∣
Tδ
)

[
∥∥(√mF−1

m N)(0)
∥∥2
2
+ 2

δ−1∑

j=1

∥∥(√mF−1
m N)(j)

∥∥2
2

]

+
∥x∥42
d


 ∑

k:(0,k)∈Sε

1 + 2
δ−1∑

j=1

∑

k:(j,k)∈Sε

1


 .

The second term is exactly sε and the first term can be bounded analogously to (3.41).
Hence, we have

∥Z −X∥2F ≤ σ−2
ε (A

∣∣
Tδ
) ∥n∥22 +

sε
d
∥x∥42 ≤

[
σ−1
ε (A

∣∣
Tδ
) ∥n∥2 +

√
sε
d
∥x∥22

]2
,

which concludes the proof.
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Lemma 3.6.10 highlights a tradeoff between a noise-induced error and an error obtained by
discarding information in the measurements via truncation. If the truncation parameter ε
is chosen too big, the value σ−1

ε (A
∣∣
Tδ
) is rather small and the impact of noise is minimized.

In contrast, sε given by (3.44) may be large and the truncation error is big. On the other
hand, for small ε noise becomes a dominating factor in the bound.
It is important to note that if the set Sε is not empty, the exact reconstruction via (3.43) for
all x ∈ Cd is not possible. In particular, this implies that for the discrete Gabor transform
(3.42), even in the noiseless case, the truncation procedure alone is not sufficient.
Since the inversion step is based on the direct inversion of the linear measurements in
the space Tδ, it completely ignores the rank-one structure of X = Tδ(xx

∗). Therefore,
δd Fourier coefficients of the diagonals Fd[d

j(X)]k are recovered, while there are only
d unknowns xk. Hence, the set {Fd[dj(X)]k : j ∈ [δ], k ∈ [d]} contains redundant
information about {xk, k ∈ [d]}. This implies that there exists a relation between the
Fourier coefficients, which allows to express Fd[d

j(X)]k as a combination of the remaining
coefficients. In particular, it is given by

dj(X) ◦ Sℓdj(X) = dℓ(X) ◦ Sjdℓ(X) for all j, ℓ ∈ [δ], (3.48)

which is a consequence of (3.33) as

dj(X) ◦ Sℓdj(X) = (x ◦ Sjx) ◦ Sℓ(x ◦ Sjx) = (x ◦ Sℓx) ◦ Sj(x ◦ Sℓx) = dℓ(X) ◦ Sjdℓ(X).

If the coefficients Fd[d
j(X)]k, (j, k) ∈ Sε, are lost due to the truncation procedure, using

the surplus information in Fd[d
j(X)]k, (j, k) ∈ Scε , their values can be potentially recovered

via (3.48). We note that (3.48) is a quadratic relation between the diagonals. Thus, the
recovery of the Fourier coefficients in Sε via (3.48) is equivalent to solving a system of
quadratic equations, which is in general as hard to solve as the ptychographic recovery
itself. However, in specific cases (3.48) reduces to a linear system with respect to the
unknown Fourier coefficients. The next theorem provides sufficient conditions for the
linear recovery of the lost coefficients motivated by Example 3.6.9.

Theorem 3.6.11 (Subspace completion). Let X be defined as in (3.31). Assume that

1. There is a diagonal dℓ(X), ℓ ∈ [δ], such that all Fourier coefficients are recovered,
that is (ℓ, k) ∈ Scε for all k ∈ [d].

2. For each diagonal dj(X), j ∈ [δ], at most one Fourier coefficient is lost,
|{k ∈ [d] : (j, k) ∈ Sε}| ≤ 1.

Then, (3.48) can be expressed as a linear system with respect to the unknown Fourier
coefficients and can be solved as a linear regression problem.

Proof. Let Fd[d
j(X)]k0 be the unknown Fourier coefficient of j-th diagonal. First, let us

rewrite (3.48) in terms of Fourier coefficients Fd[d
j(X)] via Theorem 2.2.3,

v := dFd[d
ℓ(X) ◦ Sjdℓ(X)] = dFd[d

j(X) ◦ Sℓdj(X)] = Fd[d
j(X)] ∗d Fd[Sℓdj(X)].

Using Propositions 2.2.2 and 2.2.5, we further rewrite the latter equality as

v = Fd[d
j(X)] ∗d Fd[Sℓdj(X)]

= Fd[d
j(X)] ∗dM−ℓFd[dj(X)] = Fd[d

j(X)] ∗dM−ℓRdFd[dj(X)].
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The expansion of the circular convolution for an index s ∈ [d] gives us

vs =
∑

k∈[d]
Fd[d

j(X)]k(M−ℓRdFd[dj(X)])s−k =
∑

k∈[d]
e

2πiℓ(k−s)
d Fd[d

j(X)]kFd[dj(X)]k−s.

Note that for s = 0, the right-hand side contains only |Fd[dj(X)]k|2 and the phase in-
formation about Fd[d

j(X)]k is lost. Therefore, we will only consider indices s ≥ 1. The
unknown coefficient Fd[d

j(X)]k0 appears in the sum twice, for k = k0 and k−smod d = k0,
which are distinct indices for s ≥ 1. Hence, we separate the unknowns from the rest of
the summands,

us := vs −
∑

k∈[d]
k ̸=k0,k−smod d ̸=k0

e
2πiℓ(k−s)

d Fd[d
j(X)]kFd[dj(X)]k−s

= e
2πiℓ(k0−s)

d Fd[d
j(X)]k0Fd[d

j(X)]k0−s + e
2πiℓk0

d Fd[d
j(X)]k0+sFd[d

j(X)]k0 .

Now, separating real and imaginary parts of the unknown coefficient Fd[d
j(X)]k0 leads to

us =
[
e

2πiℓ(k0−s)
d Fd[dj(X)]k0−s + e

2πiℓk0
d Fd[d

j(X)]k0+s

]
ReFd[d

j(X)]k0

+ i
[
e

2πiℓ(k0−s)
d Fd[dj(X)]k0−s − e

2πiℓk0
d Fd[d

j(X)]k0+s

]
ImFd[d

j(X)]k0

=: asReFd[d
j(X)]k0 + ibs ImFd[d

j(X)]k0 .

In the matrix form this reads as
[
Reus
Imus

]
=

[
Re as − Im bs
Im as Re bs

] [
ReFd[d

j(X)]k0
ImFd[d

j(X)]k0

]
=: Qs

[
ReFd[d

j(X)]k0
ImFd[d

j(X)]k0

]
.

Combining all s ≥ 1, we obtain




Reu1
Imu1

...
Reud−1

Imud−1



=



Q1
...

Qd−1



[
ReFd[d

j(X)]k0
ImFd[d

j(X)]k0

]
. (3.49)

Finally, this linear system can be solved to obtain Fd[d
j(X)]k0 .

Remark 3.6.12. We note that even if it is possible to establish the linear system (3.49),
it can be ill-conditioned. For instance, if all coefficients Fd[d

j(X)]k = 0, k ̸= k0, the
matrices Qs, s ≥ 1, are zero matrices and the linear system (3.49) cannot be solved.

If the assumptions of Theorem 3.6.11 hold, it is possible to recover lost Fourier coefficients
by solving the linear system (3.49). Otherwise, the same linear system can be used as a
heuristic procedure to improve the performance of the inversion step. In this case, all the
lost Fourier coefficients are initially set to zero and then they can be estimated one by
one by solving (3.49).
The revised version of BPR with subspace completion is summarized in Algorithm 5.
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Algorithm 5: Block Phase Retrieval with Subspace Completion (BPR+SCε)

Input : Ptychographic measurements Y ∈ Rm×d as in (PTY) with R = [d],
truncation parameter ε ≥ 0.

Output: z ∈ Cd with z ≈ e−iθx for some θ ∈ [0, 2π).
1. Construct Fd[d

j(Z)]k via (3.43).
2. One by one reconstruct Fd[d

j(Z)]k for (j, k) ∈ Sε via (3.49).
3. Construct the matrix Z by its diagonals.
4. Form the matrix of phase differences sgn0(Z) ∈ Tδ.
5. Compute the top eigenvector of sgn0(Z), denoted by z̃ ∈ Cd with ∥z̃∥2 =

√
d.

6. Set zj =
√
Zj,j · sgn z̃j for all j ∈ [d] to form z ∈ Cd.

We do not provide theoretical guarantees for Algorithm 5.

Notes and References. The material in this section is based on our publication [140].

We did not derive a reconstruction error bound for the inversion with subspace completion
analogous to Corollary 3.6.6 or Lemma 3.6.10. While an error bound is achievable, it
would quadratically depend on the noise norm, which limits its use unless the noise level
is small.

3.6.3 Magnitude estimation

In this section, we study different techniques to recover the magnitudes |x| from the matrix
X = Tδ(xx

∗).

3.6.3.1 Diagonal Magnitude Estimation

The first recovery method is the reconstruction from the main diagonal mentioned in
Section 3.6.1, which is based on the equality

√
Xj,j =

√
d0(X)j =

√
(x ◦ x)j =

√
|xj|2 = |xj|.

It is a fast way to construct an estimate of the magnitudes and the reconstruction error
bound is given by the next lemma.

Lemma 3.6.13 ([138, Lemma 7]). Let X,Z ∈ Hd and set |xj| =
√
Xj,j, |zj| =

√
|Zj,j|.

Then,

∥|x| − |z|∥2 ≤ d1/4
√
∥X − Z∥F .

Note that the bound in Lemma 3.6.13 depends on the dimension d. In the next subsection
we will state a dimensional-independent alternative to Lemma 3.6.13.

The major drawback of the Diagonal Estimation technique is the fact, that it ignores the
entries of X, which do not belong to the main diagonal. In the rest of Section 3.6.3, we
provide two alternatives, which use information beyond the main diagonal.
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3.6.3.2 Block Magnitude Estimation

In principle, inclusion of the off-diagonal entries should improve noise robustness of the
magnitude estimation. This motivated the authors in [40] and [138, 159] to explore
empirically and, respectively, theoretically a new method called Blockwise Magnitude
Estimation involving more entries of X. The main idea of the method is to extract blocks
from X, to estimate the magnitudes of x corresponding to each block separately and then
to combine the estimates together. More precisely, let us consider index sets Jp ⊆ [d],
p ∈ [P ] for some P ∈ N and vectors

(IJp)k =

{
1, k ∈ Jp,
0, otherwise.

Then, construct a block Xp, p ∈ [P ] by preserving the entries with indices in Jp and
nullifying the rest,

(Xp)k,ℓ := (diag(IJp)X diag(IJp))k,ℓ = Xk,ℓ(IJp)k(IJp)ℓ =
{
Xk,ℓ, k, ℓ ∈ Jp,
0, otherwise.

We require that
|ℓ− k|c < δ for all j, k ∈ Jp (3.50)

to ensure that all entries of Xp are recovered by the inversion step, i.e., supported withing
Tδ as shown in Figure 3.2. That is, by (3.50), for all k, ℓ ∈ Jp the corresponding diagonal
x ◦ Sk−ℓx is recovered via Theorem 3.6.4. Then, each block Xp is a rank-one matrix

Xp = xp(xp)∗ and |Xp| = |xp||xp|∗, p ∈ [P ],

where we use the notation
xp := IJp ◦ x. (3.51)

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗







Figure 3.2: Highlighted in blue are the entries, which form the space Tδ for d = 10,
δ = 4. The family of sets {Jp}p∈[4] is depicted in colors with J0 = {0, 1, 2, 3} in red,
J1 = {3, 4, 5} in green, J2 = {5, 7, 8} in yellow and J3 = {6, 9} in cyan. Note that
{Jp}p∈[4] satisfies (3.50) since all colored entries are part of Tδ. Furthermore, all
elements of the main diagonal are covered and, thus, (3.54) is satisfied as well.
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Therefore, |xp| can be recovered by computing the top eigenvector up, ∥up∥2 = 1 of the
matrix |Xp| corresponding to the largest magnitude eigenvalue ∥|Xp|∥∞ and observing
that

|xp| =
√

∥|Xp|∥∞|up|.

If an index k ∈ [d] belongs to multiple sets Jp, the entry |xk| is estimated several times.
Thus, by setting the counts

µk := |{p ∈ [P ] : k ∈ Jp}| (3.52)

as the number of times the entry |xk| is estimated, averaging the estimates yields

|xk| =
1

µk

∑

p∈[P ]

√
∥|Xp|∥∞|upk|.

The established estimate in the vector form reads as

|x| = diag(1/µ)
∑

p∈[P ]

√
∥|Xp|∥∞|up|. (3.53)

Note that if for some k ∈ [d], the count µk is zero, the corresponding entry |xk| was not
recovered. To avoid such scenarios, we require that all µk > 0, so that {Jp}p∈[P ] is a
covering of the set [d],

[d] ⊆
⋃

p∈[P ]

Jp. (3.54)

The Block Magnitude Estimation technique is summarized in Algorithm 6.

Algorithm 6: Block Magnitude Estimation, version of [138, 159]

Input : Matrix Z ∈ Tδ, a noisy version of X, sets {Jp}p∈[P ], satisfying (3.50)
and (3.54).

Output: v ∈ Rd with v ≈ |x|.
1. Construct Zp = diag(IJp)Z diag(IJp) ∈ Hd for all p ∈ [P ].
2. Compute the largest magnitude eigenvalue ∥|Zp|∥∞ and the corresponding
eigenvector vp ∈ Cd with ∥vp∥2 = 1 of the matrix |Zp| for all p ∈ [P ].
3. Compute µk = |{p ∈ [P ] : k ∈ Jp}| for k ∈ [d].
4. Construct v = diag(1/µ)

∑
p∈[P ]

√
∥|Zp|∥∞|vp|.

The computational complexity of Algorithm 6 can be computed by summing up the
complexities of the separate steps. In view of the condition (3.50), each Jp has at most
δ entries and, thus, for a single set Jp Step 1 requires O(δ2) operations and Step 2
requires O(δ2 log δ) operations to reach the machine precision. Also, for the same reason
Step 3 is performed in O(Pδ) operations. At last, Step 4 requires O(Pδ + d) operations
which grants the total complexity of O(d+ Pδ2 log δ). It is higher compared to the Main
Diagonal method which only requires O(d) operations, but if P = O(d) and δ is small,
the difference is not extreme.
The recovery guarantees for Algorithm 6 are provided by the next lemma.
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Lemma 3.6.14 (Version of [159, Proposition 6]). Let x ∈ Cd, Z ∈ Tδ and consider X
as in (3.31). Further, let {Jp}p∈[P ] be a family of sets satisfying conditions (3.50) and
(3.54). Let v be the output of Algorithm 6. Then,

∥v − |x|∥2 ≤
√

maxk∈[d] µk
minj∈[d] µj

· (1 + 2
√
2) ∥Z −X∥F

minp∈[P ] ∥xp∥2
,

where µk and xp are given by equations (3.52) and (3.51), respectively.

Proof of Lemma 3.6.14. Using the sum representations of v and |x| we get

∥v − |x|∥22 =

∥∥∥∥∥∥
diag(1/µ)


∑

p∈[P ]

√
∥|Zp|∥∞|vp| −

√
∥|Xp|∥∞|up|



∥∥∥∥∥∥

2

2

.

Recall that
√

∥|Xp|∥∞|up| = |xp| and expand the square of the norm on the right-hand
side as

∥v − |x|∥22 =
∑

k∈[d]

1

µ2
k


∑

p∈[P ]

√
∥|Zp|∥∞|vpk| − |xpk|




2

.

For a fixed k ∈ [d] each of the inner sums contains µk non-zero summands. We can apply
inequality 

∑

j∈[n]
aj




2

≤ n
∑

j∈[n]
a2j

for all a ∈ Rn to obtain

∥v − |x|∥22 ≤
∑

k∈[d]

1

µk

∑

p∈[P ]

∣∣∣∣
√

∥|Zp|∥∞|vpk| − |xpk|
∣∣∣∣
2

≤ 1

minj∈[d] µj

∑

p∈[P ]

∑

k∈[d]

∣∣∣∣
√

∥|Zp|∥∞|vpk| − |xpk|
∣∣∣∣
2

. (3.55)

By the reverse triangle inequality, each of the inner sums is bounded by

∑

k∈[d]

∣∣∣∣
√
∥|Zp|∥∞|vpk| − |xpk|

∣∣∣∣
2

≤
∑

k∈[d]

∣∣∣∣|x
p
k| − α

√
∥|Zp|∥∞vpk

∣∣∣∣
2

,

for any α, |α| = 1. Choosing α such that the right-hand side is minimized grants us

∑

k∈[d]

∣∣∣∣
√
∥|Zp|∥∞|vpk| − |xpk|

∣∣∣∣
2

≤ min
|α|=1

∑

k∈[d]

∣∣∣∣|x
p
k| − α

√
∥|Zp|∥∞vpk

∣∣∣∣
2

= dist2
(
|xp|,

√
∥|Zp|∥∞vp

)
.



86 CHAPTER 3. PTYCHOGRAPHY

By Lemma 2.1.1, we bound the resulting distance as

∑

k∈[d]

∣∣∣∣
√

∥|Zp|∥∞|vpk| − |xpk|
∣∣∣∣
2

≤ (1 + 2
√
2)2 ∥|Zp| − |Xp|∥2F
∥|xp|∥22

.

Note that ∥|xp|∥2 = ∥xp∥2 and by the reverse triangle inequality ∥|Zp| − |Xp|∥F ≤
∥Zp −Xp∥F . Hence, the final bound on the inner sum reads as

∑

k∈[d]

∣∣∣∣
√

∥|Zp|∥∞|vpk| − |xpk|
∣∣∣∣
2

≤ (1 + 2
√
2)2 ∥Zp −Xp∥2F
∥xp∥22

.

Applying it to (3.55), we obtain

∥v − |x|∥22 ≤
(1 + 2

√
2)2

minj∈[d] µj

∑

p∈[P ]

∥Zp −Xp∥2F
∥xp∥22

≤ 1

minj∈[d] µj
· (1 + 2

√
2)2

minp∈[P ] ∥xp∥22

∑

p∈[P ]

∥Zp −Xp∥2F .

In the sum
∑

p∈[P ] ∥Zp −Xp∥2F , the entries of the matrix Z − X appear multiple times.
More precisely, by the definitions of Zp and Xp we have that

∑

p∈[P ]

∥Zp −Xp∥2F =
∑

p∈[P ]

∑

k,ℓ∈[d]
|(Zp −Xp)k,ℓ|2 =

∑

p∈[P ]

∑

k,ℓ∈[d]
|(Z −X)k,ℓ|2Ik,ℓ∈Jp

=
∑

k,ℓ∈[d]
|(Z −X)k,ℓ|2

∑

p∈[P ]

Ik,ℓ∈Jp ≤
∑

k,ℓ∈[d]
|(Z −X)k,ℓ|2

∑

p∈[P ]

Ik∈Jp

=
∑

k,ℓ∈[d]
|(Z −X)k,ℓ|2µk ≤ max

k∈[d]
µk ∥Z −X∥2F .

Thus, we obtain

∥v − |x|∥22 ≤
maxk∈[d] µk
minj∈[d] µj

· (1 + 2
√
2)2 ∥Z −X∥2F

minp∈[P ] ∥xp∥22
,

which concludes the proof.

The bound of Lemma 3.6.14 depends on three components: the counts µk, the norms ∥xp∥2
and the error of the inversion step ∥Z −X∥F . It is dimension independent in comparison
to Lemma 3.6.13, since for a reasonable choice of family {Jp}p∈[P ], the term

maxk∈[d] µk
minj∈[d] µj

is either bounded by δ or even an absolute constant. However, the bound depends on
min ∥xp∥2, which may behave poorly. Yet, we will observe a similar dependency for the
phase reconstruction in Section 3.6.4.
For the rest of the subsection on Block Magnitude Estimations, we would like to discuss
a special construction of sets {Jp}p∈[P ], which is convenient to work with. Consider the
family {J γ

p }p∈[d] of P = d sets

J γ
p := {p, p+ 1, . . . , p+ γ − 1}, (3.56)

with width parameter 1 ≤ γ ≤ δ.
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Lemma 3.6.15. Let 1 ≤ γ ≤ δ. The family of sets {J γ
p }p∈[d] satisfies conditions (3.50)

and (3.54) with µk = γ.

Proof. Since {p} ⊆ J γ
p , we have that

[d] =
⋃

p∈[d]
{p} ⊆

⋃

p∈[d]
J γ
p .

and the condition (3.54) is satisfied. Also, by the definition of J γ
p , for all k, ℓ ∈ J γ

p ,

|ℓ− k|c < γ ≤ δ,

and (3.50) holds true. From the last equation, we observed that δ is the maximal possible
choice of γ for (3.50) to be satisfied. For k ∈ [d], we have that k ∈ J γ

p , p ∈ {k−γ+1, . . . , k}
and, thus, µk = γ.

This family has a few benefits to work with. Firstly, it uses all entries contained in the
diagonals d−γ+1(Z), . . . , d0(Z), . . . , dγ−1(Z). In particular, if Block Magnitude Estimation
is applied to {J δ

p }p∈[d], all entries of the matrix Z are used. Secondly, every entry of |x|
is estimated precisely γ times, so that µk = γ for all k ∈ [d].
Considering the fact that for larger γ Algorithm 6 would use more entries of Z, it may
seem that using family {J δ

p }p∈[d] would provide the best possible reconstruction. However,
that is not entirely true. On one hand, monotonicity applies.

Example 3.6.16. Consider two families {Jp′}p′∈[P ] and {J γ
p }p∈[d] such that

every set J γ
p is a superset of Jp′ for some p′ ∈ [P ]. (3.57)

Then, we have

∥∥∥xp′
∥∥∥
2

2
=
∥∥∥IJp′x

∥∥∥
2

2
=
∑

j∈[d]
|xj|2Ij∈Jp′ ≤

∑

j∈[d]
|xj|2Ij∈J γ

p
=
∥∥IJ γ

p
x
∥∥2
2
= ∥xp∥22 .

Hence, there exists p′ ∈ [P ] such that

min
p∈[d]

∥xp∥2 ≥
∥∥∥xp′

∥∥∥
2
≥ min

p′∈[P ]

∥∥∥xp′
∥∥∥
2
.

Moreover, maxk∈[d] µk/minj∈[d] µj ≥ 1 and, thus, the error bound provided by Lemma 3.6.14
for {J γ

p }p∈[d] is smaller than for {Jp′}p′∈[P ]. Therefore, if the condition (3.57) holds, the
family {J γ

p }p∈[d] is a better choice in terms of magnitude estimation error. In particular,
since J γ

p ⊆ J δ
p for all p ∈ [d], the maximal width family {J δ

p }p∈[d] is the best choice.

On the other hand, it is possible to construct a counterexample, in which (3.57) does not
hold and the family {J γ

p }p∈[d] is suboptimal in term of the error bound.

Example 3.6.17. Let 2 ≤ γ ≤ δ and d ≥ 2γ − 1. Consider two families {J γ
p }p∈[d] and

{J γ
p }p∈[d]\{0}. Note that J γ

p , p ̸= 0 are in both families and for J γ
0 there is no set in

{J γ
p }p∈[d]\{0}, which is contained in J γ

0 . Therefore, (3.57) does not hold.
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For the family {J γ
p }p∈[d] the counts satisfy µk = γ for all k ∈ [d] and for {J γ

p }p∈[d]\{0} the

counts are either µ
{0}
k = γ or µ

{0}
k = γ − 1 > 0.

Let 0 < ε < 1 be arbitrary and consider the object

xj =

{
ε, j ∈ [γ],

1, otherwise.

The squared norms ∥xp∥22 are given by

∥xp∥22 =
∑

j∈J γ
p

|xj|2 =
{
(γ − |p|)ε2 + |p|, p ∈ {−γ + 1, . . . , γ + 1},
γ, otherwise.

Consequently, using that ε < 1, the minimums of norms for both families are given by

min
p∈[d]

∥xp∥22 =
∥∥x0
∥∥2
2
= γε2

and

min
p∈[d]\{0}

∥xp∥22 =
∥∥x1
∥∥2
2
= (γ − 1)ε2 + 1

Therefore, the family dependent factors in the error bound of Lemma 3.6.14 are

1√
γε

for {J γ
p }p∈[d] and

√
γ

γ − 1
· 1√

(γ − 1)ε2 + 1
for {J γ

p }p∈[d]\{0}.

When ε tends to zero from above, the left fraction diverges to infinity, while the right
fraction converges to

√
γ/(γ − 1). Hence, for a sufficiently small ε, the error bound of

Lemma 3.6.14 for the family {J γ
p }p∈[d]\{0} is lower than for the family {J γ

p }p∈[d].
Now, consider x = 1d, i.e., xk = 1 for all k ∈ [d]. Then, ∥xp∥22 = γ for all p ∈ [d], and,
thus, the minimums for both families coincide,

min
p∈[d]

∥xp∥22 = min
p∈[d]\{0}

∥xp∥22 = γ.

Hence, the family dependent factors in the error bound of Lemma 3.6.14 are

1√
γ

for {J γ
p }p∈[d] and

√
γ

γ − 1
· 1√

γ
=

1√
γ − 1

for {J γ
p }p∈[d]\{0}.

Clearly, the factor for {J γ
p }p∈[d] is smaller for this object.

From these two examples we can conclude that the best choice in terms of the error bound
is always a subfamily of {J δ

p }p∈[d], depending on x. Since the object is unknown, it is
impossible to select the optimal family. In view of this uncertainty, {J δ

p }p∈[d] might be
the best choice.
At last, let us consider the special case γ = 1. Following Algorithm 6, the constructed
matrices |Zp| only have a single non-zero element |Zp,p| ≥ 0 on the main diagonal. Thus,
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it is a rank-one matrix with ∥|Zp|∥∞ = |Zp,p| and the corresponding eigenvector being the
standard basis vector ep. Therefore, the k-th entry of the estimate v is equal to

vk =
1

µk

∑

p∈[d]

√
∥|Zp|∥∞|(ep)k| =

√
|Zk,k|,

which implies that for {J 1
p }p∈[d] Block Magnitude Estimation coincides with Diagonal

Magnitude Estimation and Lemma 3.6.14 provides the dimension-independent error bound.

Corollary 3.6.18 ([159, Proposition 6]). Let X,Z ∈ Hd and set |xj| =
√
Xj,j, |zj| =√

|Zj,j|. Then,

∥|x| − |z|∥2 ≤
1 + 2

√
2

mink∈[d] |xk|2
∥X − Z∥F .

3.6.3.3 Log Magnitude Estimation

The third method for the magnitude reconstruction is based on the idea of converting the
problem to a linear system by applying the logarithm to the entries of |X|, which is why
we call this method Log Magnitude Estimation. The logarithm transform is used in the
linear regression to transform the multiplicative model into an additive model in terms
of logarithms and solve the least squares problem. Recall that the non-zero entries in the
lower triangular part of the matrix X are recovered by diagonals dj(X) = x◦Sjx, j ∈ [δ].
Consequently, for all k ∈ [d], j ∈ [δ], we have

|Xk,k−j| = |dj(X)k| = |(x ◦ Sjx)k| = |xk| · |xk−j|.

Assuming that |xk| ̸= 0 for all k ∈ [d], we apply the logarithm on both sides which leads
to the linear equations

log |Xk,k−j| = log |xk|+ log |xk−j|. (3.58)

Combining these equations in a matrix, we obtain

b(X) = B log |x|,

with the double indexed vector b(X) ∈ Rdδ defined as

b(k,j)(X) := log |Xk,k−j|, k ∈ [d], j ∈ [δ], (3.59)

and the matrix B ∈ Rdδ×d with entries

B(k,j),ℓ :=





2, j = 0 and k = ℓ,

1, j ̸= 0, and either k = ℓ or k − j = ℓ,

0, otherwise,

(3.60)

for k, ℓ ∈ [d], j ∈ [δ]. Alternatively, the entries of B can be compactly written via
indicators,

B(k,0),ℓ = 2Ik=ℓ, B(k,j),ℓ = Ik=ℓ + Ik−j=ℓ, k ∈ [d], j ∈ [d]\{0}. (3.61)



90 CHAPTER 3. PTYCHOGRAPHY

Therefore, if B is injective, log |x| can be recovered as a solution of the least squares
problem, that is

log |x| = B†b(X) = (B∗B)−1B∗b(X),

with B† being the pseudoinverse, and consequently,

|x| = elog |x| = e(B
∗B)−1B∗b(X), (3.62)

where all functions are applied entrywise.
The next theorem shows that B is injective and provides a direct computation of the
inverse matrix (B∗B)−1.

Theorem 3.6.19. Let d ≥ 2δ − 1. Consider the matrix B defined in (3.60). Then, B∗B
admits the decomposition

B∗B =
1√
d
F ∗
d diag(u)

1√
d
Fd,

with u ∈ Rd containing the eigenvalues

uk =

{
4δ, k = 0,

2δ + 1 +
sin(π(2δ−1)k

d )
sin(πk/d)

, k ∈ [d]\{0},

and satisfying
uk ≥ 4,

for all k ∈ [d]. Consequently, its inverse is given by

(B∗B)−1 =
1√
d
F ∗
d diag(1/u)

1√
d
Fd.

Proof. Let us compute the entries of B∗B ∈ Rd×d. For ℓ, s ∈ [d], we write

(B∗B)ℓ,s =
∑

k∈[d]

∑

j∈[δ]
B(k,j),ℓB(k,j),s =

∑

k∈[d]
B(k,0),ℓB(k,0),s +

∑

j∈[δ]\{0}

∑

k∈[d]
B(k,j),ℓB(k,j),s.

Substituting the indicator representation (3.61) for the entries of B, we obtain

(B∗B)ℓ,s =
∑

k∈[d]
4Ik=ℓIk=s +

∑

j∈[δ]\{0}

∑

k∈[d]
[Ik=ℓ + Ik−j=ℓ] · [Ik=s + Ik−j=s]

=
∑

k∈[d]
4Ik=ℓ=s +

∑

j∈[δ]\{0}

∑

k∈[d]
[Ik=ℓ=s + Is−ℓ=j,k=s + Ik=ℓ,j=ℓ−s + Ik−j=s=ℓ]

= 4Iℓ=s +
∑

j∈[δ]\{0}
[Iℓ=s + Is−ℓ=j + Iℓ−s=j + Is=ℓ]

If ℓ = s, the indicators Is−ℓ=j and Ij=s−ℓ are zero and the rest are ones, so that

(B∗B)ℓ,ℓ = 4 +
∑

j∈[δ]\{0}
2 = 4 + 2(δ − 1) = 2δ + 2. (3.63)
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If ℓ ̸= s, the indicator Is=ℓ is zero. For the second sum, if Is−ℓ=j0 = 1 for some 0 < j0 ≤
δ − 1, then s− ℓ = j0 and

ℓ− smod d = −j0mod d = −j0 + d ≥ −δ + 1 + 2δ − 1 = δ > j0.

Hence, the indicator Iℓ−s=j = 0 for all j ∈ [δ]\{0}. Analogously, if Iℓ−s=j0 = 1 for some
0 < j0 ≤ δ − 1, then Is−ℓ=j = 0 for all j ∈ [δ]\{0}. Consequently, there exists at most
one index j such that either Is−ℓ=j = 1 or Iℓ−s=j = 1. Moreover, if |s − ℓ|c ≥ δ, both
indicators are zero due to the inequality j < δ. Consequently,

(B∗B)ℓ,s = I|s−ℓ|c<δIℓ̸=s. (3.64)

For the decomposition of B∗B, we use equations (3.63) and (3.64) to rewrite the entries
of B∗B as

(B∗B)ℓ,s = (2δ + 2)Iℓ=s + I|ℓ−s|c<δIℓ̸=s = (2δ + 1)Iℓ=s + I|ℓ−s|c<δ

= (2δ + 1)(Id)ℓ,s + (1d×d)ℓ,sI|ℓ−s|c<δ = (2δ + 1)(Id)ℓ,s + (Tδ(1d×d))ℓ,s,

where 1d×d ∈ Cd×d denotes the matrix with all entries set to 1 and Tδ(1d×d) denotes its
projection onto Tδ given by (3.30). Therefore,

B∗B = (2δ + 1)Id + Tδ(1d×d). (3.65)

Note that by (3.30), the matrix Tδ(1d×d) is Hermitian and circulant, that is for all k, ℓ, s ∈
[d] the equality

Tδ(1d×d)k+s,ℓ+s = (1d×d)k+s,ℓ+sI|k+s−ℓ−s|<δ = I|k−ℓ|<δ = (1d×d)k,ℓI|k−ℓ|<δ = Tδ(1d×d)k,ℓ

holds. Therefore, by Theorem 2.2.4, Tδ(1d×d) admits the decomposition

Tδ(1d×d) = F ∗
d diag(F

−1
d [Tδ(1d×d)(0)])Fd =

1√
d
F ∗
d diag(dF

−1
d [Tδ(1d×d)(0)])

1√
d
Fd. (3.66)

The eigenvalues dF−1
d [Tδ(1d×d)(0)] are given by

dF−1
d [Tδ(1d×d)(0)]k =

∑

j∈[d]
Tδ(1d×d)0,je

2πijk
d =

∑

j∈[d]
I|j|c<δe

2πijk
d

=

[
1 +

δ−1∑

j=1

(
e

2πijk
d + e

−2πijk
d

)]
=

[
1 + 2

δ−1∑

j=1

cos

(
2πjk

d

)]
.

For k = 0, we have dF−1
d [Tδ(1d×d)(0)]k = 2δ − 1. For k ̸= 0, we apply a trigonometric

identity to transform the sum of cosines as

2
δ−1∑

j=1

cos

(
2πjk

d

)
=

δ−1∑

j=1

2 cos

(
2πjk

d

)
sin(πk/d)

sin(πk/d)

=
1

sin(πk/d)

δ−1∑

j=1

[
sin

(
2π(j + 1/2)k

d

)
− sin

(
2π(j − 1/2)k

d

)]

=
sin
(

2π(δ−1+1/2)k
d

)
− sin

(
2π(1−1/2)k

d

)

sin(πk/d)
=

sin
(
π(2δ−1)k

d

)

sin(πk/d)
− 1. (3.67)
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Then,

dF−1
d [Tδ(1d×d)(0)]k =

{
2δ − 1, k = 0,
sin(π(2δ−1)k

d )
sin(πk/d)

, k ̸= 0.
(3.68)

By Proposition 2.2.1, the identity matrix can be rewritten as

(2δ + 1)Id =
2δ + 1

d
F ∗
dFd = F ∗

d diag

(
2δ + 1

d
1d

)
Fd,

where 1d ∈ Cd is the vector with all entries equal to 1. Therefore, we combine the last
equality with (3.65), (3.66) and (3.68) to obtain

B∗B = F ∗
d diag

(
2δ + 1

d
1d

)
Fd + F ∗

d diag(F
−1
d [Tδ(1d×d)(0)])Fd =

1√
d
F ∗
d diag(u)

1√
d
Fd.

Since, 1√
d
F ∗
d and 1√

d
Fd are unitary matrices, diag(u) contains the unordered eigenvalues

of B∗B. Therefore, u0 = 4δ ≥ 4 and for k ̸= 0 via (3.67), we have

uk = 2δ + 1 +
sin
(
π(2δ−1)k

d

)

sin(πk/d)
= 2δ + 2 + 2

δ−1∑

j=1

cos

(
2πjk

d

)
≥ 2δ + 2− 2(δ − 1) = 4.

Remark 3.6.20. Note that if d < 2δ − 1, then by the equation (3.58) we have

log |Xδ−1,0| = log |xδ−1|+ log |x0|,
log |X0,0−(d−δ+1)| = log |X0,δ−1| = log |xδ−1|+ log |x0|,

which implies that the (δ− 1, δ− 1) row and the (d− δ+1, 0) row of B are equal. In fact,
it is a consequence of the following equality for diagonals

Sjdd−j(xx∗) = Sj(x ◦ Sd−jx) = Sjx ◦ Sdx = Sjx ◦ x = x ◦ Sjx = dj(xx∗), j ∈ [d].

Recall that the inversion step only recovers the first δ diagonals of xx∗ and X. Therefore,
if d ≥ 2δ − 1, for j ∈ [δ] the index d− j satisfies

d− j ≥ 2δ − 1− δ + 1 = δ > δ − 1.

Consequently, dd−j(xx∗) would not be used for the construction of B and the duplication
of the rows in B is avoided. On the contrary, for d < 2δ − 2, the index d− j is in [δ] for
some j ∈ [δ], which implies that some rows of B will be equal. For d = 2δ−2, consider the
diagonal with index d− δ+1 = δ− 1. Then, dd−δ+1(xx∗) = dδ−1(xx∗) and the duplication
of rows as above does not appear. Instead, the magnitudes within the diagonal dδ−1(xx∗)
duplicate,

dδ−1(xx∗)k = (x ◦ Sδ−1x)k = (Sδ−1(S−δ+1x ◦ x)k = (Sδ−1x ◦ x)k−δ+1 = dδ−1
k−δ+1,

which gives the duplication of the rows in B.
While the duplication of the rows has no impact on the reconstruction with Log Magnitude
Estimation, it would slightly change the analysis in Theorem 3.6.19, which is why we
excluded the case d < 2δ − 1 in this section.
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Theorem 3.6.19 guarantees that B∗B is invertible and that |x| can be recovered as
e(B

∗B)−1B∗b(X). Consequently, in the presence of noise, Log Magnitude Estimation is given
by

v = e(B
∗B)−1B∗b(Z), (3.69)

where Z is the outcome of the inversion step. We require that Zk,k−j ̸= 0, k ∈ [d], j ∈ [δ]
to ensure that the entries of b(Z) are finite. If Zk,k−j = 0, we can artificially increase its
value to Zk,k−j = ε for some small parameter ε > 0, which would add a little noise to Z.
Note that by (3.61), the vector B∗b(Z) can be computed as

(B∗b(Z))ℓ =
∑

k∈[d]

∑

j∈[δ]
B(k,j),ℓb(Z)(k,j)

=
∑

k∈[d]


Ik=ℓb(Z)(k,0) +

∑

j∈[δ]\{0}
[Ik=ℓ + Ik−j=ℓ] b(Z)(k,j)




= 2 log |Zℓ,ℓ|+
∑

j∈[δ]\{0}
[log |Zℓ,ℓ−j|+ log |Zℓ+j,ℓ|]

= 2 log |Zℓ,ℓ|+
∑

j∈[δ]\{0}
[log |Zℓ,ℓ−j|+ log |Zℓ,ℓ+j|],

which requires O(dδ) operations. Thanks to Theorem 3.6.19, the multiplication with
(B∗B)−1 can be computed using Fast Fourier transform, which has a computational com-
plexity of O(d log d). The entrywise computation of the exponent requires O(d) opera-
tions. Therefore, Log Magnitude Estimation requires O(d log d+ dδ) operations in total.
If δ = O(log d), then the computational complexity of Log Magnitude Estimation is
O(d log d), which is faster than O(d log2 d log log d) operations required for Block Magni-
tude Estimation.
Turning to the recovery guarantees for Log Magnitude Estimation, the following error
bound holds.

Lemma 3.6.21. Let x ∈ Cd be non-vanishing. Consider Z ∈ Tδ such that Zk,k−j ̸= 0 for
k ∈ [d], j ∈ [δ] and X as in (3.31). For the vector v obtained via (3.69) the inequality

∥|x| − v∥2 ≤
√
2 ∥x∥∞

[
e

1
2
∥(b(Z)−b(X))∥2 − 1

]

holds with b(X) and b(Z) given by (3.59).

Proof. We start by rewriting the vector v as a corrupted version of |x|. Using (3.62), we
get

v = e(B
∗B)−1B∗b(Z) = e(B

∗B)−1B∗b(X)+(B∗B)−1B∗(b(Z)−b(X))

= |x| ◦ e(B∗B)−1B∗(b(Z)−b(X)) =: |x| ◦ ew.

Then, we substitute the obtained representation into the error ∥|x| − v∥2, which gives

∥|x| − v∥22 = ∥|x| − |x| ◦ ew∥22 =
∑

j∈[d]
||xj| − |xj|ewj |2 ≤ ∥x∥2∞

∑

j∈[d]
|ewj − 1|2. (3.70)
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Next, we work with the individual summands and apply the Taylor expansion of the
exponential function,

|ewj − 1| =
∣∣∣∣∣

∞∑

k=0

wkj
k!

− 1

∣∣∣∣∣ =
∣∣∣∣∣

∞∑

k=1

wkj
k!

∣∣∣∣∣ ≤
∞∑

k=1

|wj|k
k!

= |wj|+
∞∑

k=2

|wj|k
k!

.

The inequality (α + β)2 ≤ 2α2 + 2β2 leads to the bound

|ewj − 1|2 ≤ 2|wj|2 + 2

[ ∞∑

k=2

|wj|k
k!

]2
,

and the sum over j ∈ [d] is then bounded by

∑

j∈[d]
|ewj − 1|2 = 2

∑

j∈[d]
|wj|2 + 2

∑

j∈[d]

[ ∞∑

k=2

|wj|k
k!

]2
≤ 2 ∥w∥22 + 2


∑

j∈[d]

∞∑

k=2

|wj|k
k!




2

= 2 ∥w∥22 + 2

[ ∞∑

k=2

∥w∥kk
k!

]2
≤ 2 ∥w∥22 + 2

[ ∞∑

k=2

∥w∥k2
k!

]2
.

Note that in the first line we used the inequality

∑

j∈[d]
a2j ≤


∑

j∈[d]
aj




2

, for all a ∈ Rd, aj ≥ 0, j ∈ [d],

and in the second the monotonicity of ℓp-norms, ∥a∥p ≤ ∥a∥q , p ≥ q was applied. The
Taylor expansion of the exponential function yields

∑

j∈[d]
|ewj − 1|2 ≤ 2 ∥w∥22 + 2

[ ∞∑

k=2

∥w∥k2
k!

]2
= 2 ∥w∥22 + 2

[ ∞∑

k=0

∥w∥k2
k!

− ∥w∥22 − 1

]2

= 2 ∥w∥22 + 2
[
e∥w∥2 − 1− ∥w∥2

]2

Then, using the inequality (α − β)2 ≤ α2 − β2 for α ≥ β ≥ 0 with α = e∥w∥2 − 1 =∑∞
k=1

∥w∥k2
k!

+ ∥w∥2 and β = ∥w∥2 we get

∑

j∈[d]
|ewj − 1|2 ≤ 2

[
e∥w∥2 − 1

]2
.

Substituting this result into (3.70), we see that

∥|x| − v∥2 ≤
√
2 ∥x∥∞

[
e∥w∥2 − 1

]
.

We continue to bound e∥w∥2 using the definition of the vector w,

∥w∥2 =
∥∥(B∗B)−1B∗(b(Z)− b(X))

∥∥
2
≤
∥∥(B∗B)−1B∗∥∥

∞ ∥(b(Z)− b(X))∥2 .
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Recall that ∥(B∗B)−1B∗∥∞ =
√
λ−1
d (B∗B) and, by Theorem 3.6.19, λd(B

∗B) ≥ 4. Then,

using the monotonicity of the exponential function we conclude that

∥|x| − v∥2 ≤
√
2 ∥x∥∞

[
e∥w∥2 − 1

]
≤

√
2 ∥x∥∞

[
e

1
2
∥(b(Z)−b(X))∥2 − 1

]
.

The resulting bound is different from those observed for the other two methods for magni-
tude estimation. The bound depicts noise in the form of ∥b(Z)− b(X)∥2, which decreases
to 0 as ∥b(Z)− b(X)∥2 → 0 or Z → X. However, it is hard (yet not impossible) to
compare e∥b(Z)−b(X)∥2 and ∥X − Z∥F resulting from the inversion step.
In the form above, Log Magnitude Estimation always employs all entries of Z. However,
we can customize which entries of Z are used in analogy to the choice of the partition
{Jp}p∈[P ] for Block Magnitude Estimation. While arbitrary entries of Z can be discarded,
we will only consider the scenario where a diagonal of Z is either completely excluded or
fully used for the magnitude estimation. Let us assume that only diagonals dj(Z) with
j ∈ J ⊂ [δ] are used for the reconstruction process. Then, we adjust the construction of
B and b as

B(k,j),ℓ :=





2, j = 0, j ∈ J and k = ℓ,

1, j ̸= 0, j ∈ J , and k = ℓ

1, j ̸= 0, j ∈ J , and k − j = ℓ

0, otherwise,

(3.71)

and

b(X)(k,j) =

{
log |Xk,k−j|, j ∈ J ,
0, j /∈ J .

Then, similarly to Theorem 3.6.19, we show that the matrix B∗B is invertible for the
adjusted construction of B.

Theorem 3.6.22. Let d ≥ 2δ− 1. Consider the matrix B defined in (3.71) with J ⊆ [δ].
Then, the matrix B∗B admits the decomposition

B∗B =
1√
d
F ∗
d diag(u)

1√
d
Fd,

with u ∈ Rd containing the eigenvalues

uk = 2I0∈J + 2|J |+ 2
∑

j∈J\{0}
cos

(
2πjk

d

)
.

If 0 ∈ J , then uk ≥ 4 for all k ∈ [d]. Otherwise, if 0 /∈ J and there are j1, j2 ∈ J , j1 < j2
such that j2 − j1 is coprime with d (has the biggest common divisor 1), then u satisfies
uk > 0 for all k ∈ [d]. Consequently, the inverse matrix is given by

(B∗B)−1 =
1√
d
F ∗
d diag(1/u)

1√
d
Fd.
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Proof. We only highlight the main differences from the proof of Theorem 3.6.19. Similarly
to (3.63) and (3.64), the entries of B∗B are given by

(B∗B)ℓ,ℓ = 4I0∈J +
∑

j∈J\{0}
2 = 4I0∈J + 2(|J | − I0∈J ) = 2I0∈J + 2|J |, ℓ ∈ [d],

(B∗B)ℓ,s = I|s−ℓ|c∈J , ℓ, s ∈ [d], ℓ ̸= s.

This computation requires the assumption d ≥ 2δ − 1. Since the entries (B∗B)ℓ,s only
depend on the difference |ℓ−s|c, the matrix B∗B is circulant and, thus, by Theorem 2.2.4
admits the decomposition

B∗B = F ∗
d diag(F

−1
d [(B∗B)(0)])Fd =

1√
d
F ∗
d diag(dF

−1
d [(B∗B)(0)])

1√
d
Fd

The eigenvalues u = dF−1
d [(B∗B)(0)] are given by

uk =
∑

j∈[d]
(B∗B)0,je

2πijk
d = 2I0∈J + 2|J |+

∑

j∈[d]\{0}:|j|c∈J
e

2πijk
d

= 2I0∈J + 2|J |+ 2
∑

j∈J\{0}
cos

(
2πjk

d

)
.

If 0 ∈ J , we can lower bound uk as

uk ≥ 2 + 2|J |+ 2
∑

j∈J\{0}
(−1) = 2 + 2|J | − 2(|J | − 1) = 4 > 0.

On the other hand, if 0 /∈ J , uk transforms to

uk = 2|J |+ 2
∑

j∈J
cos

(
2πjk

d

)
≥ 2|J | − 2|J | = 0,

with the equality in ≥ appearing if and only if all cosines are equal to −1. Let us prove by
contradiction that uk > 0. If k = 0, then all cosines are equal to one. Therefore, we only
need to consider k ∈ [d]\{0}. Recall the assumption that there are j1, j2 ∈ J , j1 < j2
such that j2 − j1 is coprime with d. Since cos(2πjpk/d) = −1, p = 1, 2, the arguments
satisfies

2πjpk/d = π + 2πθk,p, for some θk,p ∈ Z, p = 1, 2.

Taking the difference and simplifying the equation, we obtain

(j2 − j1)k/d = θk,2 − θk,1 ∈ Z.

Since j2− j1 is coprime with d, for all k ∈ [d]\{0} the integer (j2− j1)k is not divisible by
d and, thus, the left-hand side is not an integer unless j2 = j1, which contradicts j1 ̸= j2.
Hence, uk > 0.

The condition on the existence of indices j1, j2 ∈ J such that j1 < j2 and j2 − j1 is
coprime with d is satisfied if, for instance, j2 = j1 + 1 and two consequent diagonals are
used for reconstruction.
At last, we note that taking J = {0} leads to Diagonal Magnitude Estimation and,
thus, Log Magnitude Estimation is another possible generalization of Diagonal Magnitude
Estimation along with Block Magnitude Estimation.
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Notes and References. Diagonal Magnitude Estimation was used in [35] with a slightly
weaker version of Lemma 3.6.13. The constant factor in the bound as seen in Lemma 3.6.13
was later improved in [138].
The original version of Block Magnitude Estimation was proposed in [40] and later ana-
lyzed in [138, 159]. There is a minor difference to Algorithm 6: the construction of the
final estimate v in Step 4 used vp instead of |vp|, which may lead to negative entries of
the vector v. While the use of |v| instead of v would solve the issue with signs, we instead
incorporated the absolute values |vp| in the summation step, which helps to avoid poten-
tial subtractions of the signed values. The second benefit of using |vp| is the possibility
to include minor corrections to the original proof of Lemma 3.6.14, which contained an
error in application of Lemma 2.1.1. We also note that our version of Lemma 3.6.14
improves the bound of [138, 159] by a factor of

√
maxk∈[d] µk/minj∈[d] µj. Furthermore,

based on monotonicity (3.57) the authors of [159] claim that {J δ
p }p∈[d] is the optimal

choice for Block Magnitude Estimation. However, Example 3.6.17 shows this family to be
sub-optimal for some objects x.
Our main contribution is the Log Magnitude Estimation technique, which is an alternative
to Block Magnitude Estimation. While the theoretical recovery guarantees for Log Mag-
nitude Estimation are weaker, the numerical experiments in Section 6.1.2.3 suggest that
the performance of both methods is somewhat similar and Log Magnitude Estimation is
faster.
A preliminary version of Theorem 3.6.22 is a part of Master Thesis of Sarah Dörr jointly
supervised with Benedikt Diederichs and Felix Krahmer.
Finally, we would like to elaborate on the polynomial dependency on ∥X − Z∥F of the
error bound provided by Lemma 3.6.21. Recall that by the definition of b(Z) we have

|b(Z)(k,j) − b(X)(k,j)| =
∣∣∣∣log

|Zk,k−j|
|Xk,k−j|

∣∣∣∣ = log

(
1 +

||Zk,k−j| − |Xk,k−j||
min{|Xk,k−j|, |Zk,k−j|}

)
.

Hence, the monotonicity of the norms grants e
1
2
∥(b(Z)−b(X))∥2 ≤ e

1
2
∥(b(Z)−b(X))∥1 and the

latter exponent can be transformed into a product. The application of the geometric-
arithmetic mean inequality shows a polynomial dependency on ∥X − Z∥pF with p much
larger than one.

3.6.4 Phase estimation

3.6.4.1 Phase estimation as phase synchronization problem

In this section, we discuss the estimation of the phases sgn x from the matrixX = Tδ(xx
∗).

As it was seen in Section 3.6.1, the main component for this step is the matrix,

sgn0(Xk,ℓ) =

{
sgnxksgnxℓ, Xk,ℓ ̸= 0,

0, otherwise,

which contains information about the phases. Note the phases sgnx are characterized
by the angles sgnxk = eiφk , φ ∈ [0, 2π)d and, thus, the non-zero entries of the matrix
sgn0(Xk,ℓ) are given by

sgnxksgnxℓ = eiφke−iφℓ = ei(φk−φℓ).
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It implies that the matrix sgn0(Xk,ℓ) only contains information about the pairwise dif-
ferences φk − φℓ modulo 2π and, in practice, they are additionally corrupted by noise.
Therefore, we can reformulate the recovery of the phases as the angular or phase synchro-
nization problem:

Given a set of noisy pairwise differences φk − φℓmod 2π find φ ∈ [0, 2π)d.

Let us denote by E ⊂ [d]2 the set of pairs of indices for which the corresponding pairwise
noisy differences are known,

E := {(k, ℓ) ∈ [d]2 : noisy pairwise difference φk − φℓmod 2π is known and k ̸= ℓ},
(3.72)

where the case k = ℓ is excluded, since it does not contain information about the phases.
Then, the noiseless and noisy pairwise differences are represented by matrices

Φk,ℓ =

{
ei(φk−φℓ), (k, ℓ) ∈ E,

0, otherwise,
and Ψk,ℓ =

{
ei(φk−φj+ηk,ℓ), (k, ℓ) ∈ E,

0, otherwise,
(3.73)

respectively. The entries ηk,ℓ represent noise and satisfy ηk,ℓ = −ηℓ,k, so that both Φ and
Ψ are Hermitian.
Note that for all vectors φ ∈ [0, 2π)d the equality

φk − φℓ = (φk − θ)− (φℓ − θ)

is satisfied for arbitrary θ ∈ [0, 2π) and, thus, a vector φ̃ ∈ [0, 2π)d with φ̃k = φk − θ will
generate the same set of measurements as φ. Hence, the angular synchronization has a
global phase ambiguity similarly to the phase retrieval problem and the notion of unique
recovery is understood up to a global phase. Moreover, for a vector u = eiψ, ψ ∈ [0, 2π)d

we measure the distance to the true solution by

dist(eiφ, eiψ) = dist(sgn x, u) = min
|α|=1

∥sgnx− αu∥2 .

While the angular representation φ is more convenient to introduce the angular synchro-
nization problem, the sign notation sgnx is more suitable for formulation and analysis of
recovery algorithms. Note that the phases sgnx satisfy | sgnxk| = 1 and, thus,

sgnx ∈ {u ∈ Cd : |uk| = 1 for all k ∈ [d]} = Td.

Hence, our goal would be to find u ∈ Td, which fits the measurements the best, i.e., it is
a minimizer of the weighted Least Squares Problem (LSP)

min
u∈Td

1

2

∑

(k,ℓ)∈E
Wk,ℓ|uk −Ψk,ℓuℓ|2. (LSP)

The weighs Wk,ℓ satisfy

Wk,ℓ = 0, (k, ℓ) /∈ E, Wk,ℓ ̸= 0, (k, ℓ) ∈ E, Wk,ℓ = Wℓ,k, (k, ℓ) ∈ E. (3.74)
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Selecting Wk,ℓ = 1, (k, ℓ) ∈ E leads to an unweighted LSP. In the noiseless case, it
corresponds to finding a vector u, which approximates the phase information the best,

min
u∈Td

1

2

∑

(k,ℓ)∈E
|uk −Ψk,ℓuℓ|2 = min

u∈Td

1

2

∑

(k,ℓ)∈E
|uku∗ℓ −Ψk,ℓ|2 = min

u∈Td

1

2
∥PE(uu∗)−Ψ∥2F ,

where PE nullifies the entries, which are not in E. In the context of ptychography, it might
be more beneficial to select the weights based on the amplitude information available in
Z.

Example 3.6.23. Consider Z resulting from the first step of Algorithm 3. Set E =
{(k, ℓ) ∈ [d]2 : |Zk,ℓ| ̸= 0, k ̸= ℓ} and Ψ = sgn0(Z). Let v ∈ Rd be the result of the
magnitude estimation and assume that |Zk,ℓ| = vkvℓ for (k, ℓ) ∈ E. Then, selecting the
weights as Wk,ℓ = |Zk,ℓ|2 = v2kv

2
ℓ leads to the problem

min
u∈Td

1

2

∑

(k,ℓ)∈E
Wk,ℓ|uk −Ψk,ℓuℓ|2 = min

u∈Td

1

2

∑

(k,ℓ)∈E
|Zk,ℓ|2|uku∗ℓ − sgn0(Zk,ℓ)|2

= min
u∈Td

1

2

∑

(k,ℓ)∈E
|vkukvℓu∗ℓ − |Zk,ℓ| sgn0(Zk,ℓ)|2 = min

u∈Td

1

2
∥PE[(v ◦ u)(v ◦ u)∗]− Z∥2F ,

which searches for the phases u such that the entries of the rank-one matrix (v ◦u)(v ◦u)∗
are close to the measured entries of Z.

The choice of the weights based on the amplitudes of the matrix Z is also motivated by
the fact that for a small magnitude the phase is easier corrupted by noise than for a large
magnitude. Therefore, we would likely “trust” the phase information corresponding to
the large entries of Z more. Moreover, the amplitude-based weights indirectly imply that
for the entries of v ◦u with small magnitudes v, the incorrectly estimated phases u would
have a minor impact on the total error dist(x, v ◦ u) as the next example suggests.

Example 3.6.24. Let v and u be estimates of magnitudes and phases of x, respectively.
If for some j ∈ [d] the estimated magnitude vj satisfies vj ≤ ε for a small ε, then its
contribution to the estimation error

dist2(x, v ◦ u) = min
|α|=1

∑

k∈[d]
||xk| sgnxk − αvkuk|2

is bounded by

||xj| sgnxj − αvjuj| ≤ ||xj| sgnxj − vj sgnxj|+ |vj sgnxj − αvjuj|
= ||xj| − vj|+ vj| sgnxj − αuj|
≤ ||xj| − vj|+ vj(| sgnxj|+ |αuj|) ≤ ||xj| − vj|+ 2ε.

Hence, the contribution of uj to the estimation error is small. On the other hand, since
|Zk,ℓ| ≈ vkvℓ for (k, ℓ) ∈ E, the corresponding weights Wk,j are small and the error terms
Wk,j|uk −Ψk,juj|2 do not contribute much to the sum of squares. Thus, the solution u of
LSP tends to minimize the errors Wk,ℓ|uk−Ψk,ℓuℓ|2, k, ℓ ̸= j corresponding to the entries
with large magnitudes and ignores those errors corresponding to uj.
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The least squared loss in LSP is often explained by the maximum likelyhood estimation
for Gaussian noise, which does not apply to the measurement (3.73). Instead we motivate
this choice by a graph theoretic perspective. We will first introduce a few definitions,
which will be relevant in this section.
We will consider a weighted undirected graph G = (V,E,W ) with three components:
the vertex set V , the set of edges E and the weights W . In the context of angular
synchronization, each node corresponds to a single entry of the phase vector sgnx and,
thus, we set V = [d]. The edges are naturally identified with the observed noisy angular
differences and E is the set introduced in (3.72). We note that the pairs (k, k) are excluded
from E to avoid loops. The weights W are chosen to be the weights for LSP. Recall that
by (3.74), the weights Wk,ℓ are positive if and only if the corresponding edge (k, ℓ) is
present and since the graph is undirected, they are symmetric, Wk,ℓ = Wℓ,k.
The adjacency matrix AG of G is given by

(AG)k,ℓ =

{
1, (k, ℓ) ∈ E,

0, (k, ℓ) /∈ E.

With this notation, in view of (3.73), we can rewrite Φ as

Φ = AG ◦ sgnx sgnx∗ = diag(sgnx)AG diag(sgn x)∗. (3.75)

By construction, W satisfies W = W ◦ AG. Furthermore, if W = AG, we speak of G as
an unweighted graph.
The degree of vertex k is defined as

deg(k) :=
∑

ℓ:(k,ℓ)∈E
Wk,ℓ,

and the corresponding degree matrix is the diagonal matrix

D = diag
(
{deg(k)}k∈[d]

)
.

The Laplacian of the graph G is given by

LG = D −W.

As W is symmetric, the Laplacian is also symmetric. Moreover, using the symmetry of
W and Wk,ℓ ≥ 0, we have

u∗LGu = u∗(D −W )u =
∑

k∈[d]


deg(k)|uk|2 −

∑

ℓ:(k,ℓ)∈E
u∗kWk,ℓuℓ




=
∑

k∈[d]


|uk|2

∑

ℓ:(k,ℓ)∈E
Wk,ℓ −

1

2

∑

ℓ:(k,ℓ)∈E
u∗kWk,ℓuℓ −

1

2

∑

ℓ:(k,ℓ)∈E
u∗ℓWℓ,kuk




=
1

2

∑

(k,ℓ)∈E
Wk,ℓ(2|uk|2 − 2Re(u∗kuℓ)) =

1

2

∑

(k,ℓ)∈E
Wk,ℓ|uk − uℓ|2 ≥ 0, (3.76)
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for all u ∈ Cd. Hence, the Laplacian is positive semidefinite and, therefore, has a spectrum
consisting of non-negative real numbers,

0 = λd(LG) ≤ λd−1(LG) ≤ . . . ≤ λ1(LG).

Here λd(LG) = 0 follows from the observation that the vector 1d = (1, . . . , 1)T ∈ Rd

satisfies |(1d)ℓ− (1d)j| = 0 and, thus, by (3.76), we have 1∗dLG1d = 0. The spectral gap of
G is defined as τG := λd−1(LG) and the graph G is connected if and only if τG > 0 [167].
In that case, the kernel of LG is spanned by 1d.
Besides the Laplacian LG the normalized Laplacian LN of G is often used. It is defined
as

LN = D−1/2 LGD
−1/2.

Its spectrum also consists of non-negative real numbers and we write τN for its second
smallest eigenvalue λd−1(LN).
The data dependent Laplacians associated to Φ and Ψ are defined as

LΦ = D −W ◦ Φ, and LΨ = D −W ◦Ψ,

respectively. We note that the eigenvalues of LΦ and LG coincide. This is observed by
multiplying LΦ with the unitary diagonal matrix C = diag(sgn x) on both sides. More
precisely, using the commutativity of the diagonal matrices and the representation (3.75),
we have

C∗LΦC = C∗DC − C∗(W ◦ Φ)C = DC∗C − C∗(W ◦ (CAGC∗))C

= D −W ◦ (C∗CAGC
∗C) = D −W ◦ AG = D −W = LG.

In particular, it yields

λd(LΦ) = 0 with LΦ sgnx = 0 and λd−1(LΦ) = τG. (3.77)

Similarly to (3.76), we can rewrite

u∗LΦu =
1

2

∑

(k,ℓ)∈E
Wk,ℓ|uk − Φk,ℓuℓ|2 and u∗LΨu =

1

2

∑

(k,ℓ)∈E
Wk,ℓ|uk −Ψk,ℓuℓ|2,

which implies that both matrices are positive semidefinite.

3.6.4.2 Results for exact solution of phase synchronization

The last equation also allows for a compact representation of LSP,

min
u∈Td

1

2

∑

(k,ℓ)∈E
Wk,ℓ|uk −Ψk,ℓuℓ|2 = min

u∈Td
u∗LΨu. (3.78)

Using this form, we derive the first result connecting the graph properties to the existence
of unique solution to the angular synchronization.

Theorem 3.6.25. Consider a noiseless angular synchronization problem, so that Φ = Ψ.
The following statements hold true:
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1. The optimization problem LSP admits unique solution sgnx (up to a global phase)
if and only if kerLΦ ∩ Td = {α sgnx : α ∈ T}.

2. If τG > 0, then kerLΦ ∩ Td = {α sgnx : α ∈ T}.

Proof. 1. If kerLΦ ∩ Td = {α sgnx : α ∈ T}, then

sgnx∗LΦ sgnx = 0 and u∗LΦu > 0, for all u ∈ Td\{α sgnx : α ∈ T}.

Therefore, sgnx is the unique solution of LSP up to a global phase. On the contrary, let
sgnx ∈ Td be the unique solution up to a global phase. By (3.77) we have sgn x ∈ kerLΦ

and {α sgnx : α ∈ T} ⊆ kerLΦ ∩ Td. Assume that there exists u ∈ kerLΦ ∩ Td such
that dist(sgnx, u) > 0. Then, u∗LΦu = 0 and u is a solution of LSP different from sgn x,
which contradicts uniqueness. Thus, {α sgnx : α ∈ T} = kerLΦ ∩ Td.
2. By (3.77) we have λd(LΦ) = 0 with corresponding eigenvector sgnx. If λd−1(LΦ) =
τG > 0, the kernel is spanned by sgnx, that is kerLΦ = span{sgnx}. Hence, kerLΦ∩Td =
{α sgnx : α ∈ T}.

As a consequence of Theorem 3.6.25, uniqueness is equivalent to the condition kerLΦ ∩
Td = {α sgnx : α ∈ T}, which depends on the noiseless data in the form of LΦ. On the
other hand, the second part of Theorem 3.6.25 tells us that condition τG > 0 is sufficient
for unique reconstruction. Moreover, τG > 0 is equivalent to the graph G being connected,
which is independent of both Φ and W .

In the presence of noise, the quality of reconstruction can be measured by dist(sgnx, u)
and various results are available. The first result derived specifically for unweighted graphs
was derived in [138].

Theorem 3.6.26 ([138, Theorem 9]). Let Φ and Ψ be defined as in (3.73). Suppose
that G = (V,E) is an undirected and unweighted graph with τG > 0. Let u ∈ Td be the
minimizer of LSP. Then,

dist(sgnx, u) ≤ 2τ
−1/2
G ∥Φ−Ψ∥F .

This result is a special case of the next statement for weighted graphs, where we set
W = AG.

Theorem 3.6.27. Let Φ and Ψ be defined as in (3.73). Suppose that G = (V,E,W ) is
a weighted graph with τG > 0. Let u ∈ Td be the minimizer of LSP. Set R ∈ Rd×d as
Rk,ℓ = W

1/2
k,ℓ . Then,

dist(sgnx, u) ≤ 2τ
−1/2
G ∥R ◦ (Φ−Ψ)∥F . (3.79)

Proof. We will proceed by establishing the following three inequalities,

dist2(sgnx, u) ≤ 2τ−1
G u∗LΦu, (3.80)

2u∗LΦu ≤ 4u∗LΨu+ 4 ∥u∥2∞ sgnx∗LΨ sgnx, (3.81)

u∗LΨu ≤ sgnx∗LΨ sgnx. (3.82)
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Then, the consecutive application of these inequalities with the observation that ∥u∥∞ = 1
and

2 sgnx∗LΨ sgnx =
∑

(k,ℓ)∈E
Wk,ℓ| sgnxk −Ψk,ℓ sgnxℓ|2 =

∑

(k,ℓ)∈E
Wk,ℓ| sgnxksgnxℓ −Ψk,ℓ|2

=
∑

(k,ℓ)∈E
Wk,ℓ|Φk,ℓ −Ψk,ℓ|2 = ∥R ◦ (Φ−Ψ)∥2F , (3.83)

provides the result of Theorem 3.6.27. The inequalities (3.80), (3.81) and (3.82) are the
building blocks for other proofs in this section and we will later return to them.
It remains to prove the three inequalities. Since ∥sgnx∥22 = d and ∥u∥22 = d, we have that

dist2(sgnx, u) = min
|α|=1

∥sgnx− αu∥22 = min
|α|=1

∥sgnx∥22 + ∥αu∥22 − 2Re (α sgnx∗u)

= 2d− 2max
|α|=1

Re (α sgnx∗u) .

The term Re (α sgnx∗u) is maximal when sgnx∗u is aligned with the real axis, which
leads to the optimal value αo = sgn(sgnx∗u). Hence, we obtain

Re (αo sgnx
∗u) = Re

(
sgn(sgnx∗u) sgn(sgnx∗u) · | sgnx∗u|

)
= | sgnx∗u|, (3.84)

and
dist2(sgnx, u) = 2d− 2Re (αo sgnx

∗u) = 2d− 2| sgnx∗u|. (3.85)

The projection of αou onto the orthogonal complement of sgnx is given by

q := αou−
〈
αou,

sgnx

∥sgnx∥2

〉
sgnx

∥sgnx∥2
= αou−

| sgnx∗u|
d

sgnx,

where we used (3.84). Consequently, as q ⊥ x, the pythagorean theorem yields

∥q∥22 = ∥αou∥22−
∥∥∥∥
| sgnx∗u|

d
sgnx

∥∥∥∥
2

2

= ∥u∥22−
| sgnx∗u|2

d2
∥sgnx∥22 = d−| sgnx∗u|2

d
. (3.86)

With the Cauchy-Schwarz inequality and (3.85), this leads to

∥q∥22 = d− | sgnx∗u|2
d

≥ d− | sgnx∗u| = 1

2
dist2(sgnx, u).

Recall that by (3.77) and the condition λd−1(LΦ) = τG > 0, we have kerLΦ = span{sgnx}.
By the definition of q, it is orthogonal to the kernel of LΦ, which implies that

q∗LΦq =

(
αou−

| sgnx∗u|
d

sgnx

)∗
LΦ

(
αou−

| sgnx∗u|
d

sgnx

)
= u∗LΦu,

and
u∗LΦu = q∗LΦq ≥ λd−1(LΦ) ∥q∥22 ≥

τG
2

dist2(sgnx, u),

and the inequality (3.80) is proved.
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Now we will prove the inequality (3.81). For ease of notation, we introduce the following
auxiliary variables

gk := sgnxkuk, and Λk,ℓ := Φ∗
k,ℓΨk,ℓ.

Then, we rewrite 2u∗LΦu as

2u∗LΦu =
∑

(k,ℓ)∈E
Wk,ℓ|uk − Φk,ℓuℓ|2

=
∑

(k,ℓ)∈E
Wk,ℓ|uk − sgnxksgnxℓuℓ|2 =

∑

(k,ℓ)∈E
Wk,ℓ|gk − gℓ|2.

The inequality (α + β)2 ≤ 2α2 + 2β2 gives us

|gk − gℓ|2 = |gk − Λk,ℓgℓ + Λk,ℓgℓ − gℓ|2 ≤ 2|gk − Λk,ℓgℓ|2 + 2|gℓ|2|Λk,ℓ − 1|2.
Hence, we obtain

2u∗LΦu ≤ 2
∑

(k,ℓ)∈E
Wk,ℓ|gk − Λk,ℓgℓ|2 + 2

∑

(k,ℓ)∈E
Wk,ℓ|gk|2|Λk,ℓ − 1|2. (3.87)

For the first sum we observe that
∑

(k,ℓ)∈E
Wk,ℓ|gk − Λk,ℓgℓ|2 =

∑

(k,ℓ)∈E
Wk,ℓ|sgnxkuℓ − Φk,ℓΨk,ℓsgnxℓuℓ|2

=
∑

(k,ℓ)∈E
Wk,ℓ|sgnxkuℓ − sgnxk sgnxℓΨk,ℓsgnxℓuℓ|2

=
∑

(k,ℓ)∈E
Wk,ℓ|uk −Ψk,ℓuℓ|2 = 2u∗LΨu. (3.88)

For the second sum, the equalities |gk| = |sgnxkuk| = |uk| yield
∑

(k,ℓ)∈E
Wk,ℓ|gk|2|Λk,ℓ − 1|2 ≤ max

k∈[d]
|gk|2

∑

(k,ℓ)∈E
Wk,ℓ|Λk,ℓ − 1|2

= ∥u∥2∞
∑

(k,ℓ)∈E
Wk,ℓ|Λk,ℓ − 1|2.

The next step is to notice that
∑

(k,ℓ)∈E
Wk,ℓ|Λk,ℓ − 1|2 =

∑

(k,ℓ)∈E
Wk,ℓ|Φk,ℓΨk,ℓ − 1|2 =

∑

(k,ℓ)∈E
Wk,ℓ|sgnxk sgnxℓΨk,ℓ − 1|2

=
∑

(k,ℓ)∈E
Wk,ℓ| sgnxk −Ψk,ℓ sgnxℓ|2 = 2 sgn x∗LΨ sgnx,

and, thus, ∑

(k,ℓ)∈E
Wk,ℓ|gk|2|Λk,ℓ − 1|2 ≤ 2 ∥u∥2∞ sgnx∗LΨ sgnx.

Applying this bound and (3.88) to (3.87) gives us the desired inequality (3.81).
At last, for the inequality (3.82) we use the fact that u minimizes LSP, so that

u∗LΨu ≤ sgnx∗LΨ sgnx,

which concludes the proof.
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The term ∥R ◦ (Φ−Ψ)∥F is presented in the form of the weighted difference of true and
measured pairwise differences. However, it also has an alternative interpretation as a
value of the empirical least squares loss evaluated at the vector sgn x, namely

1

2
∥R ◦ (Φ−Ψ)∥2F = sgnx∗LΨ sgnx,

which represents the gap between the value of the noise-free objective sgnx∗LΦ sgnx = 0
and the noisy objective sgnx∗LΨ sgnx at the global minimum of the former one. In
addition, we note that ∥R ◦ (Φ−Ψ)∥F can be estimated from above as

∥R ◦ (Φ−Ψ)∥2F ≤ ∥W ◦ (Φ−Ψ)∥F · ∥Φ−Ψ∥F = ∥LΦ − LΨ∥F · ∥Φ−Ψ∥F , (3.89)

which is a mixture of the distances between the Laplacians and between the phase differ-
ences, two metrics often observed in the error bounds for angular synchronization. For
instance, the difference of the Laplacians can be observed in the alternative error bounds
for weighted LSP.

Theorem 3.6.28 ([138, Proposition 12 and Theorem 8]). Let Φ and Ψ be defined as in
(3.73). Suppose that G = (V,E,W ) is a weighted graph with τG > 0. Let u ∈ Td be the
minimizer of LSP. Then,

dist(sgnx, u) ≤ 2
√
dτ−1

G ∥W ◦ (Φ−Ψ)∥∞, (3.90)

and

dist(sgnx, u) ≤ 4
√
dτ−1

G ∥W ◦ (Φ−Ψ)∥∞ . (3.91)

Proof. By the inequality (3.80) it is only required to further bound u∗LΦu. Using the fact
that u minimizes LSP and that sgnx∗LΦ sgnx = 0, we have

u∗LΦu = u∗(LΦ − LΨ)u+ u∗LΨu ≤ u∗(LΦ − LΨ)u+ sgnx∗LΨ sgnx

= u∗(LΦ − LΨ)u− sgnx∗(LΦ − LΨ) sgnx. (3.92)

Then, applying the inequality

a∗Mb ≤ ∥M∥∞ ∥a∥2 ∥b∥2 , for all M ∈ Hd, a, b ∈ Cd, (3.93)

and observing that ∥u∥2 = ∥sgnx∥2 =
√
d we arrive at

u∗LΦu ≤ ∥LΦ − LΨ∥∞ (∥u∥22 + ∥sgnx∥22) = 2d ∥LΦ − LΨ∥∞ .

Hence, the inequality (3.80) yields

dist2(sgnx, u) ≤ 2τ−1
G u∗LΦu ≤ 4dτ−1

G ∥LΦ − LΨ∥∞ ,

which concludes the proof of the inequality (3.90). For (3.91), let αo be the minimizer of

dist(sgnx, u) = min
|α|=1

∥sgnx− αu∥2 .
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Then, we further rewrite (3.92) as

u∗LΦu ≤ (αou)
∗(LΦ − LΨ)αou− sgnx∗(Φ− LΨ) sgnx± (αou)

∗(LΦ − LΨ) sgnx

= (αou)
∗(LΦ − LΨ)(αou− sgnx) + (αou− sgnx)∗(LΦ − LΨ) sgnx.

Therefore, by (3.93) and the fact that ∥u∥2 = ∥sgnx∥2 =
√
d we have

u∗LΦu ≤ dist(sgnx, u) ∥LΦ − LΨ∥∞ (∥αou∥2 + ∥sgnx∥2) = 2
√
d dist(sgnx, u) ∥LΦ − LΨ∥∞ .

Combining the obtained inequality with (3.80) gives us

dist2(sgnx, u) ≤ 2τ−1
G u∗LΦu ≤ 4

√
dτ−1

G dist(sgnx, u) ∥LΦ − LΨ∥∞ ,

which is equivalent to

dist(sgnx, u) ≤ 4
√
dτ−1

G ∥LΦ − LΨ∥∞ .

As the square root in (3.90) leads to a slow convergence as noise diminishes, i.e., Ψ
approaches Φ, in many cases the bound (3.91) is stronger than (3.90). Our numerical
trials in [164] for unweighted graphs suggest that the bound (3.91) behaves similarly to
that of Theorem 3.6.26 and for weighted graphs, Theorem 3.6.27 provides empirically
stronger bounds.

3.6.4.3 Eigenvector relaxation of phase synchronization

Due to the quadratic constraint u ∈ Td, LSP is a non-convex quadratic minimization
problem with quadratic constraints and, thus, NP-hard in general. One way to obtain a
computationally feasible problem is to relax the constraint u ∈ Td to ∥u∥22 = d, which
leads to

min
∥u∥22=d

u∗LΨu. (EIG)

This is nothing else but the determination of the smallest eigenvalue of the matrix LΨ

and can be solved efficiently. Since the minimizer u is not necessarily in Td, it is further
projected on Td as sgnu. We will refer to this optimization problem as eigenvector
relaxation (EIG).
The first important result regarding the recovery with EIG derives a sufficient condition
on the graph for a successful recovery of the phases in the noiseless case.

Theorem 3.6.29. Consider a noiseless angular synchronization problem, so that Φ = Ψ.
The following statements hold true:

1. The optimization problem EIG admits the unique solution sgnx (up to a global
phase) if and only if τG > 0.

2. If sgnx is the unique solution of EIG, then sgnx is the unique solution of LSP.
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Proof. 1. Let us recall that by (3.77) we have sgnx ∈ kerLΦ and λd(LΦ) = 0. If
λd−1(LΦ) = τG > 0, the kernel is spanned by sgnx, i.e., kerLΦ = span{sgnx}. Hence,
for any u ∈ Cd with ∥u∥22 = d and u ⊥ sgnx it holds that u∗LΦu > 0 and u is not the
minimizer of EIG. Consequently, sgnx is the unique solution of EIG up to a global phase.
On the other hand, let sgnx be the unique solution of EIG and assume that τG = 0.
Then there exists u ⊥ sgnx such that u∗LΦu = 0, which contradicts the uniqueness of
the solution of EIG.
2. It is a consequence of 1. and Theorem 3.6.25.

Unlike LSP, EIG requires the slightly stronger condition τG > 0 to ensure the uniqueness
of reconstruction as a trade-off for the reduced hardness of the problem.
If noise is present, analogues of Theorems 3.6.26 and 3.6.28 are applicable.

Theorem 3.6.30. Let Φ and Ψ be defined as in (3.73). Suppose that G = (V,E,W ) is a

weighted graph with τG > 0. Set R ∈ Rd×d as Rk,ℓ = W
1/2
k,ℓ . Let u ∈ Td be the minimizer

of EIG. Then,

dist(sgnx, sgnu) ≤ 2τ
−1/2
G

√
2 + 2 ∥u∥2∞ ∥R ◦ (Φ−Ψ)∥F , (3.94)

dist(sgnx, sgnu) ≤ 4
√
dτ−1

G ∥W ◦ (Φ−Ψ)∥∞, (3.95)

dist(sgnx, sgnu) ≤ 8
√
dτ−1

G ∥W ◦ (Φ−Ψ)∥∞ . (3.96)

Proof. The proof of Theorem 3.6.30 slightly expands on the proofs of Theorems 3.6.26
and 3.6.28. The main addition is the inequality

dist(sgnx, sgnu) ≤ 2 dist(sgnx, u), (3.97)

which is a consequence of

| sgnα− β| ≤ 2|α− β| for all α, β ∈ C, |β| = 1. (3.98)

More precisely, we have

dist2(sgnx, sgnu) = min
|α|=1

∑

k∈[d]
| sgnxk − α sgnuk|2

≤ 4 min
|α|=1

∑

k∈[d]
| sgnxk − αuk|2 = 4dist2(sgnx, u).

Since proofs of the inequalities (3.80) and (3.81) only use that ∥u∥22 = d, they hold true
for the solution of EIG. The inequality (3.82) follows directly from the fact that u is the
minimizer of EIG. Therefore, by combining inequalities (3.97), (3.80), (3.81), (3.82) and
(3.83) we obtain

dist2(sgnx, sgnu) ≤ 4 dist2(sgnx, u) ≤ 8u∗LΦu

τG
≤ 16u∗LΨu+ 16 ∥u∥2∞ sgnx∗LΨ sgnx

τG

≤ 8(2 + 2 ∥u∥2∞) sgnx∗LΨ sgnx

τG
=

4(2 + 2 ∥u∥2∞) ∥R ◦ (Φ−Ψ)∥2F
τG

.

For the bounds (3.95) and (3.96), we use (3.97) and then repeat the steps of the proof of
Theorem 3.6.28 using that ∥u∥22 = d and that u is the minimizer of EIG.
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While the bounds (3.95) and (3.96) are slightly weaker counterparts of Theorem 3.6.28,

the bound (3.94) also includes the tightness penalty
√

2 + 2 ∥u∥2∞, which varies between 2

if the relaxation is tight, that is u ∈ Td, and
√
2 + 2d in the worst case. In our numerical

experiments in [164], however, this difference is not observed, which suggests that this
dimensional factor may be a proof artifact.
Another error bound for the eigenvector-based reconstruction was given in [40] for the
case of unweighted graphs. Their proof is based on the Cheeger inequality that is only
available for the normalized Laplacian [168], which is why the minimization problem in
their theorem has a different normalization than EIG. In the special case that deg(k) is a
constant for all k ∈ [d] (as in [40]), the two normalizations agree up to a constant. Using
the terminology introduced above their result reads as follows.

Theorem 3.6.31 ([40, Theorem 3], [138, Theorem 4]). Let Φ and Ψ be defined as in
(3.73). Suppose that G = (V,E) is an undirected connected and unweighted graph with
τN > 0. Let u ∈ Cd be the minimizer of

min
∥u∥22=d

u∗D−1/2LΨD
−1/2u.

Then,

dist(sgnx, sgnu) ≤ 19
∥Φ−Ψ∥F

τN
√
min
k∈[d]

deg(k)
.

This result has a constant factor instead of the ∥u∥∞-depending penalty, which potentially
makes it a stronger bound. We also refer the reader to Section 4.3.2 of [138] for the
comparison of τG and τN mink∈[d] deg(k).

3.6.4.4 Semidefinite relaxation of phase synchronization

An alternative approach to EIG is based on the idea of lifting the problem to the matrix
space. It makes use of the relation

u∗LΨu =
∑

k,ℓ∈E
u∗k (LΨ)k,ℓ uℓ = tr(LΨuu

∗).

With this, LSP transforms into

min
U∈Hd

tr(LΨU) (3.99)

s.t. Uk,k = 1, U ⪰ 0, rank(U) = 1.

The class of minimization problems with explicit rank constraints is known to include
many NP-hard instances [169, Chapter 2], so a common strategy is to perform a semi-
definite relaxation. For (3.99), the following semidefinite relaxation has been proposed in
[170],

min
U∈Hd

tr(LΨU) (SDP)

s.t. Uk,k = 1, U ⪰ 0.
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The solution U of SDP admits an eigenvalue decomposition

U =

rank(U)∑

j=1

λj(U)uju
∗
j . (3.100)

If U meets the rank condition in (3.99) one obtains that U = du1u
∗
1, where

√
du1 is a

solution of LSP. Without the rank condition, however, the solution of SDP may have
higher rank. In this case, the phase factors sgn(u1) corresponding to the eigenvector u1
associated with the largest eigenvalue are used as an approximation of the LSP solution
[171]. We note that SDP seeks for a d × d matrix, which constitutes O(d2) number of
unknowns.
Just like for LSP and EIG, we are able to establish a sufficient condition for a unique
reconstruction via SDP in the noiseless case.

Theorem 3.6.32. Consider a noiseless angular synchronization problem, so that Φ = Ψ.
The following statements hold true:

1. If τG > 0, the optimization problem SDP admits the unique solution sgnx sgnx∗.

2. If sgnx sgnx∗ is the unique solution of SDP, then sgnx is the unique solution of
LSP (up to a global phase).

Proof. 1. By (3.77), sgn x is the minimizer of LSP with the least squares loss being zero.
In view of LΦ ⪰ 0 and inequality

tr(LΦU) ≥ 0, for all U ∈ Hd,

the matrix sgnx sgnx∗ is the minimizer of SDP with the objective being zero. Hence,
every minimizer U of SDP satisfies tr(LΦU) = 0. Let us consider the eigendecomposition
of U given by (3.100). Substituting U into the objective of SDP, we obtain

0 = tr


LΦ

rank(U)∑

j=1

λj(U)uju
∗
j


 =

rank(U)∑

j=1

λj(U) tr(LΦuju
∗
j) =

rank(U)∑

j=1

λj(U)u
∗
jLΦuj.

Since λj(U) > 0 for all j = 1, . . . , rank(U), the above equality is only possible if uj ∈
ker(LΦ) for all j = 1, . . . , rank(U). Recall that uj are orthogonal and that under the
assumption τG > 0, the kernel is given by span{sgnx}. This implies that U has rank at
most 1. In fact, the zero matrix is not feasible. Thus, rank(U) = 1 and u1 = α sgnx for
some α ∈ C. Furthermore, u1 satisfies ∥u1∥2 = 1, which implies that u1 = α sgnx/

√
d for

some α ∈ T. Turning to the eigenvalues, the constraint Uk,k = 1 in SDP yields

1 = Uk,k = λ1(U)|(u1)k|2 = λ1(U)/d,

and, therefore, U = λ1(U)u1u
∗
1 = sgnx sgnx∗.

2. Assume that sgnx is not the unique minimizer of LSP. Then, there exists u ∈ kerLΦ∩Td
such that dist(sgnx, u) > 0. For a matrix uu∗ ⪰ 0 we have tr(LΦuu

∗) = 0 and (uu∗)k,k =
|uk|2 = 1. Therefore, uu∗ is a solution of SDP different from sgnx sgnx∗, which contradicts
the uniqueness of the solution.
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If noise is present, the reconstruction error bounds for SDP are not derived and, instead,
the bounds for LSP are used if the relaxation is tight, i.e., U has rank one. A sufficient
condition to guarantee the tightness of relaxation is given by the next lemma.

Lemma 3.6.33 ([138, Lemma 16]). Suppose that u ∈ Td is the minimizer of LSP and let
Luu∗ = D −W ◦ uu∗. If

∥LΨ − Luu∗∥F <
τG

1 +
√
d
,

then uu∗ is the minimizer of SDP.

As the spectral gap τG is typically rather small, as compared to the dimension d, the
tightness is guaranteed only for very small noise levels. In fact, our numerical simulations
in [164] show that the SDP relaxation is indeed not tight in many cases. Hence, we
propose error bounds for SDP, which hold true regardless of the tightness of relaxation.

Theorem 3.6.34. Let Φ and Ψ be defined as in (3.73). Suppose that G = (V,E,W ) is a

weighted graph with τG > 0. Set R ∈ Rd×d as Rk,ℓ = W
1/2
k,ℓ . Let U ∈ Hd be the minimizer of

SDP and set u1 ∈ Cd be the eigenvector corresponding to the largest magnitude eigenvalue
of U . Then,

dist(sgnx, sgn(u1)) ≤ 4τ
−1/2
G

√
erank(U) ∥R ◦ (Φ−Ψ)∥F , (3.101)

dist(sgnx, sgn(u1)) ≤
√

8d(1 + erank(U))τ−1
G ∥W ◦ (Φ−Ψ)∥∞, (3.102)

with effective rank erank(U) := ∥U∥1 / ∥U∥∞.

Proof. The proof of Theorem 3.6.34 resembles the proof of Theorem 3.6.30 with few
adaptations. Similarly, we use the inequality (3.98) to transit from sgn(u1) to

√
du1,

dist2(sgnx, sgn(u1)) = dist2
(
sgnx, sgn

(√
du1

))
≤ 4 dist2

(
sgnx,

√
du1

)

Since
∥∥∥
√
du1

∥∥∥
2

2
= d, we can apply the inequality (3.80), so that

dist2(sgnx, sgn(u1)) ≤ 4 dist
(
sgnx,

√
du1

)
≤ 8τ−1

G (
√
du1)

∗LΦ(
√
du1). (3.103)

For the error bound (3.101), we use (3.81) and obtain

dist2(sgnx, sgnu1) ≤ τ−1
G

[
16(

√
du1)

∗LΨ(
√
du1) + 16

∥∥∥
√
du1

∥∥∥
2

∞
sgnx∗LΨ sgnx

]
. (3.104)

Using that LΨ is positive semidefinite, the first summand is further bounded by

du∗1LΨu1 =
d

λ1(U)
λ1(U)u

∗
1LΨu1 ≤

d

λ1(U)

rank(U)∑

j=1

λj(U)u
∗
jLΨuj =

d

λ1(U)
⟨LΨ, U⟩F .

Since U is the minimizer of SDP, we have

du∗1LΨu1 ≤
d

λ1(U)
⟨LΨ, U⟩F ≤ d

λ1(U)
⟨LΨ, sgnx sgnx

∗⟩F =
d

λ1(U)
sgnx∗LΨ sgnx.

(3.105)
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For the second summand, the norm
∥∥∥
√
du1

∥∥∥
2

∞
can be bounded using the condition

Uk,k = 1 as

1 = Uk,k =




rank(U)∑

j=1

λj(U)uju
∗
j



k,k

=

rank(U)∑

j=1

λj(U)|(uj)k|2 ≥ λ1(U)|(u1)k|2,

and, thus, ∥∥∥
√
du1

∥∥∥
2

∞
= dmax

k∈[d]
|(u1)k|2 ≤

d

λ1(U)
.

Substituting this bound and (3.105) into (3.104), we obtain

dist2(sgnx, sgnu1) ≤ 32τ−1
G

d

λ1(U)
sgnx∗LΨ sgnx.

The proof of the inequality (3.101) is concluded, by observing that

d =
∑

k∈[d]
Uk,k = tr(U) = ∥U∥1 ,

so that

d/λ1(U) = ∥U∥1 / ∥U∥∞ = erank(U),

and applying (3.83),

dist2(sgnx, sgnu1) ≤ 16τ−1
G erank(U) ∥R ◦ (Φ−Ψ)∥2F .

Turning to the inequality (3.102), we start with (3.103) and transform the term u∗1LΦu1
analogously to the inequality (3.92) in the proof of Theorem 3.6.28. In view of (3.105),
(3.77) and (3.93), we get

u∗1LΦu1 = u∗1(LΦ − LΨ)u1 + u∗1LΨu1 ≤ u∗1(LΦ − LΨ)u1 +
1

λ1(U)
sgnx∗LΨ sgnx

≤ u∗1(LΦ − LΨ)u1 −
1

λ1(U)
sgnx∗(LΦ − LΨ) sgnx

≤ (∥u1∥22 +
1

λ1(U)
∥sgnx∥22) ∥LΦ − LΨ∥∞ = (1 + erank(U)) ∥LΦ − LΨ∥∞ .

An application of the obtained bound to (3.103) concludes the proof.

We note that both bounds in Theorem 3.6.34 include a tightness penalty in the form of
erank(U). If the relaxation is tight, U = uu∗ and erank(U) = 1. On the other hand, in
the worst case erank(U) can be as big as d. Just as the tightness penalty for EIG, it may
be a proof artifact, since in numerical trials in [164] the actual error does not show the
dependency on the effective rank.
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3.6.4.5 Results for phase synchronization in context of Block Phase Retrieval

Returning to ptychography, we would like to employ the angular synchronization for phase
estimation.
We construct the edge set E by considering the non-zero entries of the matrix Z recon-
structed in the inversion step,

E = {(k, ℓ) ∈ [d]2 : |Zk,ℓ| > 0 and k ̸= ℓ}. (3.106)

Recall that Z ∈ Tδ and, thus, E is determined by the non-zero elements of the first
δ diagonals dj(Z), j ∈ [δ]\{0}. If all of them are non-vanishing, we can estimate the
spectral gap from below.

Lemma 3.6.35 (Version of [40, Lemma 2] or [138, Lemma 2]). Let d ≥ 4δ and δ ≥ 3.
Assume that |dj(Z)k| > 0, j ∈ [δ]\{0}, k ∈ [d]. Consider an unweighted graph with the
edge set E as in (3.106). Then, the graph is connected and

τG ≥ π2δ3

3d2
.

Proof. Under the assumptions of the lemma, the adjacency matrix AG corresponding to
the edge set E in (3.106) is given by

AG = Tδ(1d×d)− Id,

where 1d×d is a matrix with all entries equal to 1 and Tδ is the projection onto the space
Tδ given by (3.30). Each node in the graph has degree 2δ− 2 and, thus, by the definition
of the graph Laplacian we have

LG = (2δ − 2)Id − AG = (2δ − 1)Id − Tδ(1d×d).

Recall that the eigendecomposition of Tδ(1d×d) was derived in (3.66) and its eigenvalues
are given by the equation (3.68). Moreover, in view of (3.67), we have that for eigenvalues
other than 2δ − 1, it holds that

sin
(
π(2δ−1)k

d

)

sin(πk/d)
= 2

δ−1∑

j=1

cos

(
2πjk

d

)
+ 1 ≤ 2(δ − 1) + 1 = 2δ − 1, (3.107)

so that 2δ − 1 is the largest eigenvalue of Tδ(1d×d). Hence, for the spectral gap it holds
that

τG = λd−1(LG)− λd(LG) = λd−1((2δ − 1)Id − Tδ(1d×d))− 0 = 2δ − 1− λ2(Tδ(1d×d))

= λ1(Tδ(1d×d))− λ2(Tδ(1d×d)).

In order to obtain the desired estimate from below for τG, the difference λ1(Tδ(1d×d)) −
λ2(Tδ(1d×d)) is analyzed by repeating the proof of [40, Lemma 2] or [138, Lemma 2].

Remark 3.6.36. If the assumption of Lemma 3.6.35 does not hold, for the vanishing
entries dj(Z)k we can artificially introduce noise dj(Z)k = εeiθ for a small threshold
ε > 0 and a randomly selected angle θ ∈ [0, 2π). It will slightly deteriorate the results,
but for weighted graphs the impact of the noise is minor. After these adjustments, the
assumption will be satisfied.
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We construct the phase difference matrices as

Φ = AG ◦ Tδ(sgnx sgnx∗) and Ψ = AG ◦ sgn0(Z).

The definition of Ψ naturally implies that the phase differences are only available if |Zk,ℓ| >
0, which is in line with the construction of E.
For the weights W we consider three possible cases. The first is the unweighted graph
with W = AG. If the object is non-vanishing, we observe that Φ = AG ◦ sgn0(X) and the
differences W ◦ (Ψ−Φ), R ◦ (Ψ−Φ) appearing throughout this section further simplify to

W ◦ (Ψ− Φ) = R ◦ (Ψ− Φ) = AG ◦ (sgn0(X)− sgn0(Z)).

Moreover, the following upper bound holds.

Lemma 3.6.37 (Version of [40, Lemma 6] or [138, Lemma 6]). Let mink∈[d] |xj| > 0.
Then,

∥AG ◦ (sgn0(X)− sgn0(Z))∥F ≤ ∥sgn0(X)− sgn0(Z)∥F ≤ 2 ∥X − Z∥F /min
k∈[d]

|xk|2.

Consequently, one of the error bounds, e.g., (3.94) combined with Lemmas 3.6.35 and 3.6.37
reads as

dist(sgnx, sgnu) ≤
4
√
3
√
2 + 2 ∥u∥2∞d ∥X − Z∥F
mink∈[d] |xk|2πδ3/2

,

where u is the solution of EIG.
In the second case, we consider a weighted graph with the weightsWk,ℓ = |Zk,ℓ|Ik ̸=ℓ. Note
that Wk,ℓ ̸= 0 if and only if (AG)k,ℓ ̸= 0 and if the assumptions of Lemma 3.6.35 hold,
the graph is connected and we can guarantee that τG > 0. However, stronger theoretical
lower bounds for the spectral gap are not available.
The second choice of weights is convenient for the error bounds expressed via the norm
∥W ◦ (Φ−Ψ)∥∞, which is bounded by

∥W ◦ (Φ−Ψ)∥∞ ≤ ∥W ◦ (Φ−Ψ)∥F = ∥|Z| ◦ (Φ−Ψ)∥F
≤ ∥|Z| ◦ Tδ(sgnx sgnx∗)± |X| ◦ Tδ(sgnx sgnx∗)− |Z| ◦ sgn0(Z)∥F
≤ ∥(|Z| − |X|) ◦ Tδ(sgnx sgnx∗)∥F + ∥X − Z∥F ≤ 2 ∥X − Z∥F ,

where the last inequality follows from the reverse triangle inequality. More precisely,

∥(|Z| − |X|) ◦ Tδ(sgnx sgnx∗)∥2F =
∑

k,ℓ∈[d]
||Zk,ℓ| − |Xk,ℓ||2| sgnxk|2| sgnxj|2

≤
∑

k,ℓ∈[d]
|Zk,ℓ −Xk,ℓ|2 = ∥X − Z∥2F .

Substituting the obtained inequality into the one of the error bounds, e.g., (3.91) gives us

dist(sgnx, u) ≤ 8τ−1
G

√
d ∥X − Z∥F ,

where u is the solution of LSP.
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The third and last example of the weight construction is the matrix with the squared
magnitudes Wk,ℓ = |Zk,ℓ|2Ik ̸=ℓ. In contrast to the previous case, this construction is more
convenient when working with the error bounds for angular synchronization based on the
norm ∥R ◦ (Φ−Ψ)∥F . Similarly, we have

∥R ◦ (Φ−Ψ)∥F ≤ ∥|Z| ◦ (Φ−Ψ)∥F ≤ 2 ∥X − Z∥F ,

and, for instance, the error bound (3.101) reads as

dist(sgnx, sgn(u1)) ≤ 8
√
τ−1
G erank(U) ∥X − Z∥F ,

with u1 being the top eigenvector of the solution U of SDP.
At last, we would like to consider the total error resulting from the estimation of x by
z = v ◦u with magnitudes v and phases u. It can be bounded from above by splitting the
magnitude and the phase estimation errors similarly to (3.32) as

dist(x, z) = min
|α|=1

∥x− αz∥2 = min
|α|=1

∥|x| ◦ sgnx± αv sgnx− αv ◦ u∥2
≤ ∥|x| − |z|∥2 + min

|α|=1
∥v sgnx− αv sgn z∥ = dist(v ◦ sgnx, v ◦ u) + ∥|x| − |z|∥2 .

We observe that the phase error is not the plain dist(sgnx, u) considered throughout this
section, but its weighted analogy dist(v ◦ sgnx, v ◦ u). In this case, the proofs of the
bounds can be adjusted to accommodate the weighted error. As an example, we provide
the scaled version of the error bound (3.94) and the rest are adjusted analogously.

Theorem 3.6.38. Let Φ and Ψ be defined as in (3.73). Suppose that G = (V,E,W ) is
a weighted graph with the Laplacian matrix LG and the spectral gap τG > 0. Let v be
a vector satisfying vk > 0, k ∈ [d] and let u be the minimizer of EIG. Set R ∈ Rd×d as

Rk,ℓ = W
1/2
k,ℓ . Then,

dist(v ◦ sgnx, v ◦ sgnu) ≤ 2
∥v∥2

∥v ◦ u∥2

√
2 + 2 ∥u∥2∞ ∥R ◦ (Φ−Ψ)∥F

λ
1/2
d−1(diag(v)

−1LG diag(v)−1)
. (3.108)

Sketch of the proof. The proofs of the inequalities (3.108) and (3.94) are similar and we
will only highlight the main differences. Two inequalities

dist2(v ◦ x, v ◦ sgnu) ≤ 4 dist2
(
v ◦ sgnx, ∥v∥2

∥v ◦ u∥2
v ◦ u

)
, (3.109)

and

dist2
(
v ◦ sgnx, ∥v∥2

∥v ◦ u∥2
v ◦ u

)
≤ ∥v∥22

∥v ◦ u∥22
2u∗LΦu

λd−1(diag(v)−1LG diag(v)−1)
(3.110)

replace the inequalities (3.97) and (3.80), respectively.
Combining the new inequalities with (3.81), (3.82) and (3.83) will grant us the inequality
(3.108). The first inequality is required to transit from v◦sgnu to v◦u using the inequality
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(3.98). The scaling factor guarantees that the norm of
∥v∥2

∥v◦u∥2
v ◦u is the same as the norm

of v◦sgnx, analogously to u having the same norm as sgn x in the proof of Theorem 3.6.30.
It is crucial for the proof of the second inequality, which allows us to transit from the
weighted reconstruction error to the least squares objective. Another difference to (3.94)
is the appearance of the matrix diag(v)−1LG diag(v)−1 instead of LG. This change is
important, as it makes the nominator free of the scaling matrix diag(v). The spectral gap
of the matrix diag(v)−1LG diag(v)−1 is bounded from below by

λd−1(diag(v)
−1LG diag(v)−1) ≥ λd−1(L)λ

2
d(diag(v)

−1) = τGλ
−2
1 (diag(v)) = τG ∥v∥−2

∞ > 0,

which implies that the nullspace of diag(v)−1LΦ diag(v)−1 is spanned by v ◦ sgnx.

We note that (3.108) generalizes (3.94) and by setting v = 1d both inequalities coincide.
We also observe that (3.108) introduces an additional factor ∥v∥2 / ∥v ◦ u∥2, which seems
to be a proof artifact. In fact, we believe that if the inequality (3.109) is avoided and
the proof techniques of Theorem 3.6.31 are used instead, it may be possible to avoid this
factor, but it would lead to a larger constant factor similarly to the difference between
(3.94) and the bound in Theorem 3.6.31.

If a single entry of v is zero, then λd−1(diag(v)
−1LG diag(v)−1) = 0 and Theorem 3.6.38

is no longer applicable. Moreover, even if v is non-vanishing with some small entries, it
strongly affects the aforementioned eigenvalue. In view of Example 3.6.24, we can ignore
the estimation of the phases corresponding to the small entries of v, which leads to the
following corollary.

Corollary 3.6.39. Let v ∈ Cd be a vector satisfying vk ≥ 0, k ∈ [d] and define index set

Jε := {k : |vk| ≤ ε},

for a threshold parameter ε ≥ 0. Let vε be a vector constructed by excluding the entries in
Jε. Consider a weighted graph G = (V,E,W ) and its subgraph Gε = (Vε, Eε,Wε) obtained
by removing the all nodes in Jε. Assume that the subgraph Gε is connected so that the
spectral gap of its Laplacian LG,ε is positive. Let Φ and Ψ be defined as in (3.73) and
construct Φε and Ψε by removing rows and columns corresponding to Jε. Let uε be the
eigenvector of norm one corresponding to the smallest eigenvalue of a matrix Dε−Wε◦Ψε

and construct an estimate of the phases u as

uk =

{
sgn(uε)k, k /∈ Jε,
eiθ, for random θ ∈ [0, 2π), k ∈ Jε.

Then,

dist(v ◦ sgnx, v ◦ u) ≤
(
4ε2|Jε|+ 4

∥vε∥22
∥vε ◦ uε∥22

(2 + 2 ∥uε∥2∞) ∥Rε ◦ (Φε −Ψε)∥2F
λd−|Jε|−1(diag(vε)−1LG,ε diag(vε)−1)

)1/2

,

where the matrix Rε is given by (Rε)k,ℓ = (Wε)
1/2
k,ℓ .
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Notes and References. Often, the choice of the quadratic loss function for the data
fidelity is motivated by the maximum likelihood estimation under additive Gaussian noise
[172, 173, 174, 175] with the availability of all pairwise differences. The only exception
is [176], where for pairs (k, ℓ) /∈ E the measurements Ψk,ℓ = e2πθk,ℓ with θk,ℓ uniformly
distributed in [0, 2π).
While the analysis in the mentioned works is not applicable for the measurements (3.73), it
provides an alternative look at the angular synchronization problem. Among the methods
analyzed for Gaussian noise are LSP, EIG, SDP as well as generalized power method
[172, 174] and an approach based on the cycle consistency combined with message passing
[177], which can be connected to the class of iteratively reweighted least squares algorithms
[178]. Sometimes, the angular synchronization is viewed as a special case of a more general
group synchronization problem [179, 180].
In applications to phase retrieval, the phase synchronization is either considered as a part
of the polarization approach [136] or in a context of the Block Phase Retrieval algorithm.
The polarization method proposed in [136] constructs the matrix of the phase differences
for the unknown phases of the measurements and uses the angular synchronization to re-
cover them. Phase retrieval via polarization was later generalized for the time-frequency
measurements [137] and used in ptychography as an initialization [38] for the Error Re-
duction algorithm discussed in Section 3.5.2.
Originally, BPR was derived with a greedy synchronization [35] and only later it was
replaced by the graph formulation of the problem for unweighted graphs and an eigenvalue-
based method of phase recovery [40]. In [138], the authors provided an expanded study of
LSP for weighted graphs. However, the recovery guarantees for EIG were not derived and
it motivated our work [164], results of which are covered in this section. In addition, we
included new error bounds for SDP summarized in Theorem 3.6.34, which are applicable
even when the relaxation is not tight.

3.6.5 Extension of Block Phase Retrieval for equidistant shifts

While BPR allows for a fast non-iterative reconstruction, it is unfortunately bound to the
setting where all shifts are present, R = [d]. In this section, we discuss two ways how to
relax this condition and make BPR suitable for the sets of equidistant shifts

Rs = {0, s, 2s, . . . , d− s} = {rs, r ∈ [d/s]} , (3.111)

with the shift length 1 ≤ s < δ such that s is a divisor of both δ and d. The condition
s < δ is required to ensure that two consequent illuminated regions overlap. The gener-
alization of BPR for equidistant shifts was proposed as an attempt to make it applicable
for practical scenarios, where all shifts are not available, while R is a lattice.
The main challenge for an extension of the BPR algorithm to the case of equidistant shifts
is the inversion step. Let us recall its outline and highlight the changes arising from the
increased shift size. The ptychographic measurements (PTY) can by written as

Yj,r = Imj,rs +Nj,r = As(xx
∗)j,r +Nj,r, (PTYs)

for j ∈ [m], r ∈ [d/s], with the linear measurement operator As : Hd → Rmd/s given by

As(Z)j,r := ⟨Z, Srswj(Srswj)∗⟩F . (3.112)



3.6. BLOCK PHASE RETRIEVAL AND ITS EXTENSIONS 117

We note that the space span{Srswj(Srswj)∗, j ∈ [m], r ∈ [d/s]} is a subspace of

Td,δ,s :=
{
U ∈ Hd : Uk,ℓ = 0, whenever k, ℓ ∈ [d] such that

both k, ℓ /∈ {rs, . . . , rs+ δ − 1} for all r ∈ [d/s]} . (3.113)

We will use the short notation Tδ,s for Td,δ,s unless the dimension parameter is not equal
to d. Then, in analogue to s = 1, we only measure the entries of xx∗, which belong to
Tδ,s, so that

Y = As(xx
∗) = As(Tδ,s(xx

∗)),

where Tδ,s denotes the projection on Tδ,s given by

Tδ,s(U)k,ℓ =

{
Uk,ℓ, (k, ℓ) ∈ {rs, . . . , rs+ δ − 1}2 for some r ∈ [d/s],

0, otherwise,
(3.114)

for all U ∈ Hd. The inversion step recovers Tδ,s(xx
∗) from the system of linear equations

(PTYs), which is only possible if this system is overdetermined. Otherwise, Tδ,s(xx
∗)

cannot be uniquely identified from the measurements. The unique recovery of Tδ,s(xx
∗)

can also be expressed in the form of an equality between spaces,

span{Srswj(Srswj)∗, j ∈ [m], r ∈ [r/s]} = Tδ,s.

Unfortunately, that is no longer true for s > 1.

Theorem 3.6.40. Let d ≥ 2δ − s. Then, the dimension of Tδ,s over the field R is given
by

dim(Tδ,s) = (2δ − s)d.

Furthermore, for s > 1

span{Srswj(Srswj)∗, j ∈ [m], r ∈ [d/s]} ≠ Tδ,s.

For the proof we need to introduce the space of block constant matrices

Cd×d
s :=




U ∈ Cd×d : U =




Ũ0,01s×s . . . Ũ0,d/s−11s×s
...

. . .
...

Ũd/s−1,01s×s . . . Ũd/s−1,d/s−11s×s


 , Ũ ∈ Cd/s×d/s





=
{
U ∈ Cd×d : U = Ũ ⊗ 1s×s, Ũ ∈ Cd/s×d/s

}

=
{
U ∈ Cd×d : Uk1s+ℓ1,k2s+ℓ2 = Ũk1,k2 , k1, k2 ∈ [d/s], ℓ1, ℓ2 ∈ [s], Ũ ∈ Cd/s×d/s

}
,

with 1s×s ∈ Rs×s denoting the matrix with all entries equal to 1 and ⊗ being the tensor
product (2.3). By definition, the space Cd×d

s is isomorphic to Cd/s×d/s with isomorphism
mapping ∼ : Cd×d

s → Cd/s×d/s acting as U 7→ Ũ .
The important properties related to Cd×d

s and Tδ,s are summarized in the next lemma.

Lemma 3.6.41. 1. The isomorphism ∼ is a linear mapping, that is for U, V ∈ Cd×d
s

and α, β ∈ C, [αU + βV ]∼ = αŨ + βṼ .
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∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗







Figure 3.3: Highlighted in green are entries of a matrix, which form the space Tδ,s for
d = 10, δ = 4 and s = 2. The s× s blocks correspond to constant values of the matrix
U ∈ Cd×d

s . Consequently, by considering the red blocks as single entries of Ũ , we observe
that [Tδ,s(U)]

∼ coincides with Td/s,δ/s,1, which is in accordance with Lemma 3.6.41.

2. Let U ∈ Cd×d
s . Then Tδ,s(U) ∈ Tδ,s ∩ Cd×d

s and [Tδ,s(U)]
∼ = Td/s,δ/s,1(Ũ), so that

Tδ,s(U) = Td/s,δ/s,1(Ũ)⊗ 1s×s.

For a visual justification of Lemma 3.6.41, we refer the reader to Figure 3.3.

Proof. 1. Follows directly from Proposition 2.1.2.
2. By (3.114), the matrix Tδ,s(U) is in Tδ,s. Let us show that for all index pairs (k1s +
ℓ1, k2s+ ℓ2), k1, k2 ∈ [d/s], ℓ1, ℓ2 ∈ [s], we have that Tδ,s(U)k1s+ℓ1,k2s+ℓ2 is a constant with
respect to ℓ1 and ℓ2, i.e., either the whole constant block is preserved or nullified completely
by the projection operator. If there exists r ∈ [d/s] such that (k1s + ℓ1, k2s + ℓ2) ∈
{rs, . . . , rs+ δ − 1}2, then it is equivalent to

rs ≤ kps+ ℓp < rs+ δ, p = 1, 2,

and
r ≤ kp + ℓp/s < r + δ/s, p = 1, 2.

Since r, r + δ/s, k1 and k2 are integers and 0 ≤ ℓp ≤ s− 1, p = 1, 2, we have that

r ≤ ⌊kp + ℓp/s⌋ = kp and r + δ/s ≥ ⌈kp + ℓp/s⌉ = kp + 1. p = 1, 2. (3.115)

Consequently, for any qp ∈ [s], p = 1, 2, we obtain

kps+ qp ≥ rs+ 0 = rs and kps+ qp ≤ (r + δ/s− 1)s+ s− 1 = rs+ δ − 1, p = 1, 2,

and (k1s+ q1, k2s+ q2) ∈ {rs, . . . , rs+ δ− 1}2. Therefore, by the definition (3.114) of the
projection operator Tδ,s, for all q1, q2 ∈ [s], the entries Tδ,s(U)k1s+q1,k2s+q2 satisfy

Tδ,s(U)k1s+q1,k2s+q2 = Uk1s+q1,k2s+q2 = Ũk1,k2 .

On the other hand, if (k1s + ℓ1, k2s + ℓ2) /∈ {rs, . . . , rs + δ − 1}2 for all r ∈ [d/s], then
for all q1, q2 ∈ [s] and all r ∈ [d/s] we have (k1s + q1, k2s + q2) /∈ {rs, . . . , rs + δ − 1}2.
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For a proof by contradiction, assume that there exists q1, q2 ∈ [s] and r ∈ [d/s] such
that (k1s + q1, k2s + q2) ∈ {rs, . . . , rs + δ − 1}2. Then, by the considerations above
(k1s + ℓ1, k2s + ℓ2) ∈ {rs, . . . , rs + δ − 1}2, which is impossible. Consequently, for all
q1, q2 ∈ [s] we have

Tδ,s(U)k1s+q1,k2s+q2 = 0.

Hence, Tδ,s(U) ∈ Cd×d
s and the inequalities (3.115) together with the definition (3.114)

yield

[Tδ,s(U)]
∼
k1,k2

=

{
Ũk1,k2 , (k1, k2) ∈ {r, . . . , r + δ/s− 1} for some r ∈ [d/s],

0, otherwise,

= Td/s,δ/s,1(Ũ)k1,k2 .

Now, we are ready to proof Theorem 3.6.40.

Proof of Theorem 3.6.40. We consider a matrix U ∈ Tδ,s and count the number of the
unknowns which may be non-zero. We note that the entries Uk,k on the main diagonal are
real-valued, which gives us one real unknown per entry. The off-diagonal entries Uk,ℓ are
complex and give two real unknowns per entry. However, since U is Hermitian, Uk,ℓ = U ℓ,k

holds and, thus, each non-zero entry contributes precisely one real unknown. Therefore,
the dimension of Tδ,s coincides with the cardinality of the index set

Ks := {(k, ℓ) ∈ [d]2 : there exists r ∈ [d/s] such that k, ℓ ∈ {rs, . . . , rs+ δ − 1}}.

Note that a pair (k, ℓ) belongs to Ks if and only if Tδ,s(1d×d)k,ℓ = 1. Hence, the cardinality
of Ks is given by

∥Tδ,s(1d×d)∥2F =
∑

(k,ℓ)∈Ks

1 = |Ks|.

The matrix 1d×d belongs to Cd×d
s with [1d×d]∼ = 1d/s×d/s. Then, by Lemma 3.6.41, we

have Tδ,s(1d×d) ∈ Tδ,s ∩ Cd×d
s with [Tδ,s(1d×d)]∼ = Td/s,δ/s,1(1d/s×d/s). The definitions of

the projection operators (3.114) and (3.30) yield

Td/s,δ/s,1(1d/s×d/s)k1,k2 =

{
(1d/s×d/s)k1,k2 , |k1 − k2|c < δ/s,

0, otherwise,
=

{
1, |k1 − k2|c < δ/s,

0, otherwise,

for k1, k2 ∈ [d/s]. If d/s ≤ (2δ/s − 1), then by Remark 3.6.1, condition |k1 − k2|c < δ/s
is always true and Td/s,δ/s,1 = Hd/s. If d/s ≥ (2δ/s − 1) for a fixed k1 ∈ [d/s], there are
precisely 2δ/s− 1 indices k2 ∈ [d/s] satisfying the condition |k1 − k2|c < δ/s.
Consequently, by Proposition 2.1.2 we obtain

|Ks| = ∥Tδ,s(1d×d)∥2F =
∥∥Td/s,δ/s,1(1d/s×d/s)

∥∥2
F
∥1s×s∥2F = s2

∑

k1,k2∈[d/s]
|Td/s,δ/s,1(1d/s×d/s)k1,k2|2

= s2
∑

k1∈[d/s]

∑

k2:|k1−k2|c<δ/s
1 = s2

∑

k1∈[d/s]
(2δ/s− 1) = (2δ − s)d.
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The proof is concluded by comparing dimensions of the spaces. In view of Remark 3.6.5,
the dimension of the span over R is at most (2δ− 1)|Rs| = (2δ− 1)d/s. Let us show that
(2δ − 1)d/s < (2δ − s)d for all 1 < s < δ. The desired inequality is equivalent to

s2 − 2δs+ 2δ − 1 < 0.

This polynomial has a positive leading coefficient 1 and two zeros s = 1 and s = 2δ − 1.
Therefore, for all 2 ≤ s ≤ 2δ − 2 it is negative and for δ > 1 we have 2δ − 2 ≥ δ. Hence,
s2 − 2δs+ 2δ − 1 < 0 for 1 < s < δ, which concludes the proof.

Theorem 3.6.40 tells us that the inversion step will fail in case s > 1 without further mod-
ifications. As a cure for this problem, there are three possible adjustments to ensure the
success of the inversion step. The first option is to enhance the recovery algorithm by in-
corporating the rank-one structure of the matrix xx∗, similarly to the subspace completion
in Section 3.6.2.2 or in analogy to low-rank matrix recovery [126, 92] or matrix completion
[181] methods. In the second case, additional assumptions on x can be made so that the
dimension of the space Tδ,s intersected with the space introduced by the assumptions will
be sufficiently small. The last option is to increase the number of measurements, so that
the dimension of the span will match the dimension of Tδ,s. In the rest of the section we
will discuss the latter two options.

3.6.5.1 Block Phase Retrieval for piecewise constant objects

In this subsection we will consider the recovery of objects in the subspace of piecewise
constant vectors

Cd
s := {u ∈ Cd : u = (ũ01

T
s , ũ11

T
s , . . . , ũd/s−11

T
s )

T , ũ ∈ Cd/s}
= {u ∈ Cd : uks+ℓ = ũk, k ∈ [d/s], ℓ ∈ [s] ũ ∈ Cd/s}, (3.116)

where 1s ∈ Rs is a vector with all entries equal to 1. By its definition, the space Cd
s is

isomorphic to Cd/s and we will abuse the notation for the isomorphism ∼ : Cd
s → Cd/s

acting as u 7→ ũ.
The choice of Cd

s is motivated by the structure of the set of shifts Rs. For r ∈ [d/s] we
note that [S−rsx]∼ = S−rx̃ and, hence, for x̃ all d/s shifts are observed. However, the
measurements with regard to x̃ are not of the form (PTY). More precisely,

|(FmPm[w ◦ S−rsx])j|2 =

∣∣∣∣∣∣
∑

t∈[δ]
wtxt+rse

− 2πitj
m

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
∑

k∈[δ/s]

∑

ℓ∈[s]
wks+ℓx(k+r)s+ℓe

− 2πi(ks+ℓ)j
m

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
∑

k∈[δ/s]
x̃k+re

− 2πikj
m/s

∑

ℓ∈[s]
wks+ℓe

− 2πiℓj
m

∣∣∣∣∣∣

2

, r ∈ [d/s], j ∈ [m],

where the second sum is not a constant with respect to j and, moreover, the fraction m/s
is not necessarily an integer. Nevertheless, by defining the masks

vjk := e
2πikj
m/s

∑

ℓ∈[s]
wks+ℓe

2πiℓj
m , j ∈ [m], k ∈ [d/r],
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with supp(vj) ⊆ [δ/s] the measurements with respect to x̃ are of the form

Yj,r = |⟨S−rx̃, v
j⟩|2 +Nj,r = |⟨x̃, Srvj⟩|2 +Nj,r, j ∈ [m], r ∈ [d/s]. (3.117)

Originally, the BPR algorithm is designed for the measurements (3.117) and can be applied
to recover x̃ [35]. We will not cover the details, however, it is important to mention that
the mapping Tδ,s(xx

∗) 7→ Y is based on multiple non-trivial matrix multiplications and,
consequently, the inversion step involves the computation of the pseudoinverse matrix for
d/s matrices of size m× δ/s. This may become a computational bottleneck if parameters
d, δ or m are large, e.g., when working with two-dimensional images.
One potential treatment of this problem is to discard some frequencies j ∈ [m] to reduce
the size of the matrices. Another approach is to avoid applying BPR to the measurements
(3.117) directly and to work with the object x ∈ Cd

s. In this way, it is possible to
reconstruct Td/s,δ/s,1(x̃x̃

∗) in the inversion step and to proceed with the rest of the steps
of Algorithm 3 for x̃. This allows to avoid the computation of pseudoinverse matrices
completely.
For x ∈ Cd

s, the entries of the matrix xx∗ are given by

(xx∗)k1s+ℓ1,k2s+ℓ2 = xk1s+ℓ1xk2s+ℓ2 = x̃k1x̃k2 = (x̃x̃∗)k1,k2

for all k1, k2 ∈ [d/s], ℓ1, ℓ2 ∈ [s], so that xx∗ ∈ Cd×d
s with [xx∗]∼ = x̃x̃∗. By Lemma 3.6.41

we have
Tδ,s(xx

∗) ∈ Tδ,s ∩ Cd×d
s and [Tδ,s(xx

∗)]∼ = Td/s,δ/s,1(x̃x̃
∗).

Therefore, we can consider the inversion of the measurements on the space Tδ,s ∩ Cd×d
s ,

which is isomorphic to Td/s,δ/s,1. By Theorem 3.6.40 the dimension of Td/s,δ/s,1 over
R is (2δ/s − 1)d/s, which is less than the dimension of the space spanned by the lifted
measurement vectors. Thus, it is possible to recover Td/s,δ/s,1(x̃x̃

∗) from the measurements.
This can be done by an analogue of Theorem 3.6.4 connecting the Fourier coefficients of
the diagonals of a matrix U ∈ Tδ,s ∩ Cd×d

s to the measurements As(U).

Theorem 3.6.42. Let m ≥ 2δ − s. Consider the measurement operator As defined in
(3.112) with the set of shifts Rs as in (3.111). Then, for all U ∈ Tδ,s ∩ Cd×d

s the equality

(F−1
m As(U)Fd/s)(js) = Fd/s[d

j(Ũ)] ◦ Fd/shj,

holds for all j ∈ [δ/s], with vectors hj ∈ Cd/s, j ∈ [δ/s], given by

hjk :=
∑

ℓ∈[s]
(Rd[w ◦ Sjsw])ks−ℓmod d. (3.118)

Proof. We note that the proof of Theorem 3.6.4 up to the equality (3.37) is valid for Rs.
We will use (3.37) only for js ∈ [m] with j ∈ [δ/s]. Because of that, it is possible to relax
condition m ≥ 2δ − 1 required for (3.36) to m ≥ 2δ − s, since the stronger inequality
ρ(js) = js ≤ δ − s is satisfied. Therefore, the equality (3.37) yields

F−1
m As(U)js,r =

(
djs(U) ∗d (Rd[w ◦ Sjsw])

)
rs
, j ∈ [δ/s], r ∈ [d/s].

By the definitions of djs(U) and Cd×d
s , for j ∈ [δ/s], k ∈ [d/s], ℓ ∈ [s], we have

djs(U)ks+ℓ = Uks+ℓ,ks+ℓ−js = Uks+ℓ,(k−j)s+ℓ = Ũk,k−j = dj(Ũ)k,
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so that djs(U) ∈ Cd
s and [djs(U)]∼ = dj(Ũ). Then, we expand the circular convolution as

F−1
m As(U)js,r =

∑

t∈[d]
djs(U)t(Rd[w ◦ Sjsw])rs−tmod d

=
∑

k∈[d/s]

∑

ℓ∈[s]
djs(U)ks+ℓ(Rd[w ◦ Sjsw])(r−k)s−ℓmod d

=
∑

k∈[d/s]
dj(Ũ)k

∑

ℓ∈[s]
(Rd[w ◦ Sjsw])(r−k)s−ℓmod d

=
∑

k∈[d/s]
dj(Ũ)kh

j
r−kmod d/s = (dj(Ũ) ∗d/s hj)r.

By the circular convolution theorem (Theorem 2.2.3), the application of the Fourier trans-
form Fd/s with respect to the variable r leads to

(F−1
m As(U)Fd/s)(js) = (F−1

m As(U)F
T
d/s)(js) = (F−1

m As(U))(js)F
T
d/s = Fd/s[d

j(Ũ)] ◦ Fd/shj.

In analogy to the inversion step for R = [d], for Rs we use Theorem 3.6.42 to construct a
matrix Z̃ ∈ Td/s,δ/s,1 from the noisy measurements Y = As(Tδ,s(xx

∗))+N by its diagonals

dj(Z̃), j ∈ [δ/s] as

dj(Z̃) = F−1
d/s

[
(F−1

m Y Fd/s)(js)
Fd/shj

]
= dj(Td/s,δ/s,1(x̃x̃

∗)) + F−1
d/s

[
(F−1

m NFd/s)(js)
Fd/shj

]
. (3.119)

We note that in contrast to the case s = 1, for s > 1 this procedure does not coincide

with As

∣∣†
Tδ,s∩Cd×d

s
(Y ) as in the proof of Theorem 3.6.42 we only use entries F−1

m As(U)ℓ,r,

for ℓ = js, j ∈ [δ/s], r ∈ [d/s], while the rest of the values for ℓ ∈ [m] are discarded.
Nevertheless, we can quantify the resulting reconstruction error.

Corollary 3.6.43. Let m ≥ 2δ − s. Consider the ptychographic measurements Y of the
form (PTYs) corresponding to the set of shifts Rs as in (3.111). Let hj be defined by
(3.118) and assume that

σ :=
√
m min

k,j∈[d/s]
|(Fd/shj)k| (3.120)

satisfies σ > 0. Then, for the matrix Z̃ constructed by (3.119) we have

∥∥∥Z̃ − Td/s,δ/s,1(x̃x̃
∗)
∥∥∥
F
≤ σ−1 ∥N∥F .

Proof. The proof is analogous to the proof of Corollary 3.6.6.

With the matrix Z̃, the steps of Algorithm 3 can be repeated in order to reconstruct z̃ ≈ x̃
and the complete recovery method is summarized below.
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Algorithm 7: Block Phase Retrieval for shifts Rs and objects in Cd
s

Input : Shift size 1 ≤ s < δ, s divisor of d and δ, noisy measurements
Y ∈ Rm×d/s of the form (PTYs) with Rs as in (3.111).

Output: z ∈ Cd
s with z ≈ e−iθx for some θ ∈ [0, 2π).

1. Construct Z̃ ∈ Td/s,δ/s,1 by its diagonals via (3.119) as an estimate of
Td/s,δ/s,1(x̃x̃

∗).

2. Estimate the magnitudes ṽ ∈ Rd/s from Z̃ by a method of choice.
3. Estimate the phases ũ ∈ Cd/s from Z̃ by a method of choice.
4. Set z̃ = ṽ ◦ ũ ∈ Cd/s to form z̃ ≈ x̃.
5. Construct z ∈ Cd

s isomorphic to z̃.

As Algorithm 7 performs the inversion step via (3.119) and then proceeds with recovery
of the magnitudes from Z̃ ≈ Td/s,δ/s,1(x̃x̃

∗). The dimension of the underlying problem

is smaller than for s = 1. This constitutes the computation complexity of O( δ
2d
s3

log d
s
+

md
s
logm) if Diagonal Magnitude Estimation is used.

Furthermore, both the truncation and the subspace completion techniques discussed in
Section 3.6.2.2 can be used for the inversion step to treat the cases when σ is either small
or equal to zero.
For the reconstruction error of Algorithm 7, we can recycle the results developed for the
case s = 1. For instance, if Algorithm 7 uses Diagonal Magnitude Estimation and the
unweighted phase synchronization, we obtain the following analogue of Theorem 3.6.2.

Corollary 3.6.44. Consider ptychographic measurements of the form (PTYs) with Rs

as in (3.111). Let the parameters satisfy δ > 2s, d ≥ 4δ, m ≥ 2δ − s and assume that
σ defined in (3.120) is non-zero. If x ∈ Cd

s is non-vanishing with |x|min := mink∈[d] |xk|,
then the estimate z ∈ Cd

s produced in Algorithm 7 satisfies

dist(x, z) ≤ 24
∥x∥∞
|x|2min

· sd
2

δ5/2
· σ−1 ∥N∥F + (ds)1/4

√
σ−1 ∥N∥F .

Proof. We observe that

dist2(x, z) = min
|α|=1

∥x− αz∥22 = min
|α|=1

∑

t∈[d]
|xt − αzt|2 = min

|α|=1

∑

k∈[d/s]

∑

ℓ∈[s]
|xks+ℓ − αzks+ℓ|2

= smin
|α|=1

∑

k∈[d/s]
|x̃k − αz̃k|2 = smin

|α|=1
∥x̃− αz̃∥22 = s dist2(x̃, z̃).

The distance dist(x̃, z̃) can be bounded by Theorem 3.6.2. Note that x̃, z̃ are in Cd/s and
in Theorem 3.6.2 parameters d and δ are replaced by d/s and δ/s, respectively. Hence,
the requirements on parameters δ/s ≥ 2 and d/s ≥ 4δ/s in Theorem 3.6.2 are satisfied.
The inversion step for s ≥ 1 in Corollary 3.6.43 requires m ≥ 2δ−s instead of m ≥ 2δ−1
for the case s = 1. Consequently, σδd(As) is replaced with σ. Therefore, we have that

dist(x, z) =
√
s dist(x̃, z̃) ≤ √

s

[
24

∥x̃∥∞
|x̃|2min

· (d/s)2

(δ/s)5/2
· σ−1 ∥N∥F + (d/s)1/4

√
σ−1 ∥N∥F

]

= 24
∥x∥∞
|x|2min

sd2

δ5/2
σ−1 ∥N∥F + s1/4d1/4

√
σ−1 ∥N∥F ,
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where it was used that

∥x∥∞ = max
t∈[d]

|xt| = max
k∈[d/s],ℓ∈[s]

|xks+ℓ| = max
k∈[d/s],ℓ∈[s]

|x̃k| = max
k∈[d/s]

|x̃k| = ∥x̃∥∞ ,

and, analogously, |x|min = |x̃|min.

In view of the inequality (3.32), this corollary can be adapted to any choice of the inversion,
the magnitude and the phase reconstruction steps.

3.6.5.2 Block Phase Retrieval for multiple windows

In this subsection, we suppose that the ptychographic experiment was repeated Q ∈ N
times. For each trial q ∈ [Q] a different window w(q) with supp(w(q)) ⊆ [δ] was used and
the resulting measurement operators (3.112), the measurements of the form (PTYs) and
the noise matrices are denoted by Aq

s, Y
q and N q, respectively.

By considering multiple experiments, the dimension of the span is bigger and, thus, it will
be possible to perform the inversion step for matrices in Tδ,s.
The framework for the reconstruction is a generalization of Theorem 3.6.4 and [141,
Theorem 4] for the equidistant shifts Rs.

Theorem 3.6.45. Let m ≥ 2δ − 1. Consider the measurement operator As defined in
(3.112) with the set of shifts Rs as in (3.111). For j ∈ [m] define the transform

ρ(j) :=

{
j, j ≤ ⌊m/2⌋,
j −m, j > ⌊m/2⌋.

Then, for all U ∈ Tδ,s the equality

(F−1
m As(U)Fd/s)j,r =

1

s

∑

k∈[s]
Fd[d

ρ(j)(U)]r−kd/sFd[w ◦ Sρ(j)w]r−kd/s, j ∈ [m], r ∈ [d/s]

holds. Furthermore, for δ ≤ j ≤ m− δ the coefficients Fd[w ◦ Sρ(j)w]k are zero.

Proof. We recall that the proof of Theorem 3.6.4 up to the equality (3.37) is valid for Rs.
Therefore, we have

F−1
m As(U)j,r =

(
dρ(j)(U) ∗d (Rd[w ◦ Sρ(j)w])

)
rs
, j ∈ [m], r ∈ [d/s].

Consider the subsampling operator Zs : Cd → Cd/s, which acts as (Zsv)r = vrs, r ∈ [d/s].
Then, the right-hand side can be written as Zsu

j with vectors uj := dρ(j)(U) ∗d (Rd[w ◦
Sρ(j)w]).
The application of the Fourier transform Fd/s with respect to the variable r leads to

(F−1
m As(U)Fd/s)(j) = (F−1

m As(U)F
T
d/s)(j) = (F−1

m As(U))(j)F
T
d/s = Fd/sZsu

j

By [141, Lemma 6], we obtain

(F−1
m As(U)Fd/s)j,r =

1

s

∑

k∈[s]
Fdu

j
r−kd/s =

1

s

∑

k∈[s]
Fd
[
dρ(j)(U) ∗d (Rd[w ◦ Sρ(j)w])

]
r−kd/s .
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The last step is to apply Theorem 2.2.3, which gives

(F−1
m As(U)Fd/s)j,r =

1

s

∑

k∈[s]
Fd[d

ρ(j)(U)]r−kd/sFdRd[w ◦ Sρ(j)w]r−kd/s,

and then Proposition 2.2.5, so that the second term is transformed to the desired form,

FdRd[w ◦ Sρ(j)w]] = RdFd[w ◦ Sρ(j)w] = Fd[w ◦ Sρ(j)w] = Fd[w ◦ Sρ(j)w].

The result of Theorem 3.6.45 once again justifies the dimension counting argument of
Theorem 3.6.40. For s unknowns on the right-hand side, only a single measurement is
available. Thus, repeating the ptychographic experiment Q ≥ s times should provide a
sufficient number of measurements for the reconstruction of the diagonals.

We recall that U ∈ Tδ,s is completely identified by its diagonals dj(U), j ∈ [δ]. For a
recovery procedure of a single diagonal dj(U), let us define vectors vj,r ∈ Cs with entries

vj,rk := Fd[d
j(U)]r−kd/s, k ∈ [s], r ∈ [d/s].

Note that the vectors vj,r can be viewed as the entries of Fd[d
j(U)]ℓ with ℓmod d/s = r.

Thus, the recovery of dj(U) is equivalent to the reconstruction of all vj,r, r ∈ [d/s].

For a fixed r ∈ [d/s] the application of Theorem 3.6.45 for Y q = Aq
s(Tδ,s(xx∗)) + N q,

q ∈ [Q] yields

(F−1
m Y qFd/s)j,r =

1

s

∑

k∈[s]
vj,rk Fd[w

(q) ◦ Sjw(q)]r−kd/s + (F−1
m N qFd/s)j,r.

Hence, by defining the vectors bj,r, nj,r ∈ CQ as

bj,rq = (F−1
m Y qFd/s)j,r and n

j,r
q = (F−1

m N qFd/s)j,r, q ∈ [Q],

respectively, and the matrices M j,r ∈ CQ×s with the entries

M j,r
q,k = Fd[w

(q) ◦ Sjw(q)]r−kd/s, (3.121)

we end up with the linear system

bj,rq =
1

s
M j,rvj,r + nj,r. (3.122)

Remark 3.6.46. In the case
⌊
δ−j
s

⌋
= 0, the diagonals dj(U) contain zero entries by

construction of the space Tδ,s (see Figure 3.4a below). Consequently, the linear system
(3.122) should be considered with respect to these non-zero entries of dj(U) instead of the
vectors vj,r. Alternatively, one may discard these diagonals in reconstruction and reduce
the requirement on m to m ≥ 2δ − s.
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If for all j ∈ [δ], r ∈ [d/s], the matrices M j,r are injective, we can obtain the least squares
solutions

uj,r := s(M j,r)†bj,rq , j ∈ [δ], r ∈ [d/s]. (3.123)

Then, we construct a matrix Z ∈ Tδ,s by its diagonals dj(Z), j ∈ [δ]. Their Fourier
coefficients Fd[d

j(Z)] are given by

Fd[d
j(Z)]r−kd/s = uj,rk , k ∈ [s], r ∈ [d/s], j ∈ [δ]. (3.124)

The resulting matrix Z is an approximation of Tδ,s(xx
∗) and the distance between these

two matrices is bounded by the next corollary.

Corollary 3.6.47. Letm ≥ 2δ−1 and Q ≥ s. For each q ∈ [Q] consider the ptychographic
measurements Y q of the form (PTYs) with window w(q), supp(w(q)) ⊆ [δ] and the set of
shifts Rs as in (3.111). Assume that

σmin :=

√
m

s
min

j∈[δ],r∈[d/s]
σs(M

j,r) (3.125)

satisfies σmin > 0. Then, for the matrix Z constructed via vectors uj,r, j ∈ [δ], r ∈ [d/s],
which are defined in (3.123), we have

∥Z − Td,δ(xx
∗)∥F ≤ σ−1

min


∑

q∈[Q]

∥N q∥2F




1/2

.

Proof. The proof follows the steps of the proof of Corollary 3.6.6. Let us denote X :=
Td,δ(xx

∗). The equation (3.40) yields

∥Z −X∥2F =
∥∥d0(Z)− d0(X)

∥∥2
2
+

δ∑

j=1

2
∥∥dj(Z)− dj(X)

∥∥2
2
.

By construction of Z, the Fourier coefficients of each diagonal is a collection of vectors
uj,r and, hence, we have

∥∥dj(Z)− dj(X)
∥∥2
2
=

1

d

∥∥Fd[dj(Z)]− Fd[d
j(X)]

∥∥2
2
=

1

d

∑

ℓ∈[d]
|Fd[dj(Z)]ℓ − Fd[d

j(X)]ℓ|2

=
1

d

∑

r∈[d/s]

∑

k∈[s]
|Fd[dj(Z)]r−kd/s − Fd[d

j(X)]r−kd/s|2

=
1

d

∑

r∈[d/s]

∑

k∈[s]
|uj,rk − vj,rk |2 = 1

d

∑

r∈[d/s]

∥∥uj,r − vj,r
∥∥2
2

Since
√
m/sσs(M

j,r) ≥ σmin > 0, each M j,r is injective and (M j,r)†M j,r = Is. Therefore,
the equation (3.123) further simplifies to

uj,r := s(M j,r)†bj,rq = vj,r + s(M j,r)†nj,r.
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Consequently, we obtain

∥∥dj(Z)− dj(X)
∥∥2
2
=
s2

d

∑

r∈[d/s]

∥∥(M j,r)†nj,r
∥∥2
2
≤ s2

d

∑

r∈[d/s]

∥∥(M j,r)†
∥∥2
∞
∥∥nj,r

∥∥2
2

=
s2

d

∑

r∈[d/s]
σ−2
s (M j,r)

∑

q∈[Q]

|(F−1
m N qFd/s)j,r|2

≤ ms

d
σ−2
min

∑

q∈[Q]

∥∥(F−1
m N qFd/s)(j)

∥∥2
2

= σ−2
min

∑

q∈[Q]

∥∥(√mF−1
m N q)(j)

∥∥2
2
.

Then, similarly to (3.41), the proof is concluded by using the symmetry of the discrete
Fourier transform for real vectors,

∥Z −X∥2F ≤ σ−2
min

∑

q∈[Q]

[
∥∥(√mF−1

m N q)(0)
∥∥2
2
+

δ∑

j=1

2
∥∥(√mF−1

m N q)(j)
∥∥2
2

]

= σ−2
min

∑

q∈[Q]

[
∥∥(√mF−1

m N q)(0)
∥∥2
2
+

δ∑

j=1

∥∥(√mF−1
m N q)(j)

∥∥2
2
+
∥∥∥(
√
mF−1

m N q)(m−j)

∥∥∥
2

2

]

≤ σ−2
min

∑

q∈[Q]

∥∥√mF−1
m N q

∥∥2
F
= σ−2

min

∑

q∈[Q]

∥N q∥2F .

We note that the recovery of Z from the measurements Y = {Y q}q∈[Q] corresponds to the

application of the pseudoinverse operator Z = {As

∣∣
Tδ,s

(Y q)}†q∈[Q]and σmin is precisely its

smallest non-trivial singular value.
Just as in the case s = 1, the choice of Q and w(q), q ∈ [Q], is crucial for the stability of
the reconstruction. Since M j,r is the Q × s matrix and has to be injective, the number
of windows Q should satisfy Q ≥ s. For example, let us consider a class of exponential
windows in analogy to Proposition 3.6.7, for which we guarantee that U can be recovered
from the measurements {Y q}q∈[Q].

Lemma 3.6.48. Let Q = s and consider windows w(q), q ∈ [s], of the form

w
(q)
k = e−kαqIk∈[δ] =

{
e−kαq , k ∈ [δ]

0, otherwise,

with parameters αq satisfying

αq+1 − αq ≥
log 2

2
, q ∈ [s− 1], (3.126)

α0 ≥
s− 1

s
αs−1 +

3

4s
log s+

(s+ 1)

2s
log 2 (3.127)

Then, U can be uniquely reconstructed from the noiseless system of linear equations
(3.122).
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The proof can be found in Appendix A. For symmetric windows, however, the inversion
step fails just as for s = 1.

Example 3.6.49. Let d be even. Consider windows w(q), q ∈ [Q], satisfying the following
symmetry condition

w
(q)
k = w

(q)
δ−k−1, k ∈ [δ].

In Example 3.6.9 we proved that

Fd[w
(q) ◦ Sjw(q)]d/2 = 0,

for j ∈ [δ] such that δ + j is even. Then, for r = d/2mod d/s the entries of M j,r

corresponding to the column k = s− ⌊s/2⌋ and an arbitrary row q ∈ [Q] is given by

M j,r
q,s−⌊s/2⌋ = Fd[w

(q) ◦ Sjw(q)]d/2mod d/s−(s−⌊s/2⌋)d/s

= Fd[w
(q) ◦ Sjw(q)]d/2mod d/s+⌊(d/2)/(d/s)⌋)d/s−d

= Fd[w
(q) ◦ Sjw(q)]d/2−d = Fd[w

(q) ◦ Sjw(q)]d/2 = 0,

where we used that the indices are understood modulo d. Consequently, M j,r has a zero
column and the linear system (3.122) is underdetermined.

Therefore, the truncation and the subspace completion procedures can be adapted for the
sets Rs with s > 1 (see Section 3.6.2.2).

For the computational complexity of the inversion step via (3.123) we sum up the com-
plexities of the performed operations. For the each q ∈ [Q], the matrix F−1

m Y qFd/s is
computed via the fast Fourier transform, which gives a complexity of

O(Q(d/s)m logm+Qm(d/s) log(d/s)) = O(Qdm
s

log d).

The construction of the matrices M j,r is performed by computing the fast Fourier trans-
form δQ times, once for each diagonal dj(Z), j ∈ [δ], and each window w(q), q ∈ [Q],
which gives O(δQd log d) operations. Furthermore, the computation of all pseudoinverses
(M j,r)† requires O(δ(d/s)Q2s) = O(δdQ2) operations. Finally, the construction of the
diagonals dj(Z) from uj,r is again performed via the fast Fourier transform with a total
complexity of O(δd log d). Therefore, the inversion step requires

O(Qdm
s

log d+ δQd log d+ δdQ2 + δd log d) = O(Qd(m/s log d+ δ log d+ δQ))

operations. If parameters m, s,Q are of order O(δ), then the complexity further simplifies
to O(δ2dmax{log d, δ}), which is slightly worse than O(δd log d) for s = 1.

Finally, we combine the established generalization of the inversion step for multiple win-
dows with the magnitude and the phase estimation steps.
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Algorithm 8: Block Phase Retrieval for shifts Rs and multiple windows

Input : Shift size 1 ≤ s < δ, s divisor of d and δ. For each window w(q), q ∈ [Q],
ptychographic measurements Y q ∈ Rm×d/s of the form (PTYs) with Rs

as in (3.111).
Output: z ∈ Cd with z ≈ e−iθx for some θ ∈ [0, 2π).
1. Construct uj,r for all j ∈ [δ], r ∈ [d/s] via (3.123).
2. Construct the Fourier coefficients of the diagonals dj(Z), j ∈ [δ] via (3.124).
3. Construct Z ∈ Td,δ,s by its diagonals dj(Z) as an estimate of Td,δ,s(xx

∗).
4. Estimate the magnitudes v ∈ Rd from Z by a method of choice.
5. Estimate the phases u ∈ Cd from Z by a method of choice.
6. Set z = v ◦ u ∈ Cd to form z ≈ x.

3.6.5.3 Magnitude and phase estimation methods for Tδ,s

In this subsection, we assume that Z ∈ Tδ,s, the outcome of the inversion step, is given
and the goal is to apply suitable magnitude and phase estimation techniques. We recall
that the structure of the space Tδ,s is different from Tδ,1 and, thus, the magnitude and
phase estimation methods, which were designed for Tδ,1, have to be adapted for Tδ,s.
We will often refer to the index set

Ks = {(k, ℓ) ∈ [d]2 : there exists r ∈ [d/s] such that both k, ℓ ∈ {rs, . . . , rs+ δ − 1}},

describing the non-zero entries of matrices in Tδ,s (see the proof of Theorem 3.6.40) and
Tδ,s(1d×d), which provides an alternative characterization of the set Ks as (k, ℓ) ∈ Ks if
and only if Tδ,s(1d×d)k,ℓ = 1.
The first approach discards some of the entries in Z and reduces the problem to the case
s = 1.

Lemma 3.6.50. Consider the spaces Tδ,s defined in (3.113). Then,

Tδ−s+1,1 ⊆ Tδ,s ⊆ Tδ,1.

Proof. Since all spaces are described by pairs (k, ℓ) ∈ [d]2 corresponding to the non-zero
entries of matrices in Tα,β, we can directly work with these pairs.
Let us start with the inclusion Tδ−s+1,1 ⊆ Tδ,s. By (3.30) and (3.114), it is sufficient to
show that for k, ℓ ∈ [d] such that |k− ℓ|c < δ− s+1 we have (k, ℓ) ∈ {rs, . . . , rs+ δ− 1}2
for some r ∈ [d/s]. Without loss of generality let ℓ = k + j with 0 ≤ j ≤ δ − s. Then, for
r = ⌊k/s⌋ we have

rs ≤ k ≤ ℓ = k + j ≤ ⌊k/s⌋s+ s− 1 + δ − s = rs+ δ − 1,

and, thus, (k, ℓ) ∈ Ks.
For the inclusion Tδ,s ⊆ Tδ,1 we have that if a pair (k, ℓ) ∈ Ks, then, by (3.113), it satisfies
(k, ℓ) ∈ {rs, . . . , rs+ δ − 1}2 for some r ∈ [d/s] and, thus, |k − ℓ|c < δ.

Hence, Z can be projected onto Tδ−s+1,1. Then, the magnitudes and phases are estimated
from Tδ−s+1,1(Z) as in Sections 3.6.3 and 3.6.4.



130 CHAPTER 3. PTYCHOGRAPHY

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗







(a) In green are the entries forming the space T4,2

and in blue are the entries, which form T4,1 but
not T4,2. Note that the entries in blue are zero
entries in corresponding diagonals of T4,2(xx

∗).

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗







(b) In red are the entries forming the space T3,1

and in green are the entries, which form in T4,2

but not T3,1.

Figure 3.4: Examples of space inclusions derived in Lemma 3.6.50 for d = 10.

As an alternative to the projection approach, the algorithms can be adapted specifically
for Tδ,s to avoid the loss of information.
For Diagonal Magnitude Estimation (Section 3.6.3.1), we observe that the main diagonal
is always present in Tδ,s. More precisely, by applying Lemma 3.6.50 for s = 2, we have
Tδ−1,1 ⊆ Tδ,1. Repeating the argument for smaller δ gives us Tα,1 ⊆ Tβ,1 for 1 ≤ α ≤ β ≤
d. Therefore, by T1,1 ⊆ Tδ−s+1,1 ⊆ Tδ,s, the main diagonal is present in Z and Diagonal
Magnitude Estimation is applicable in Algorithm 8.
For Block Magnitude Estimation (Section 3.6.3.2), the condition (3.50) on the family of
index sets {Jj}j∈P has to be replaced by

(k, ℓ) ∈ Ks for all k, ℓ ∈ Jj and all j ∈ [P ]. (3.128)

Then, the following construction of the index sets is valid.

Lemma 3.6.51. Consider a family of index sets {J δ
rs}r∈[d/s] with J γ

j defined in (3.56).
Then, the conditions (3.128) and (3.54) are satisfied and the counts µk given by (3.52)
satisfy µk = δ/s, k ∈ [d]. Hence, the Block Magnitude Estimation with {J δ

rs}r∈[d/s] can be
used in Algorithm 8.

Proof. Let k, ℓ ∈ J δ
rs for some r ∈ [d/s]. Then, (k, ℓ) ∈ {rs, . . . , rs + δ − 1}2 and, thus,

(k, ℓ) ∈ Ks. Hence, the condition (3.128) is satisfied. Since all sets J δ
rs are obtained by

shifting [δ] = J δ
0 by s, for each k ∈ [d] there are at most δ/s sets which include k, so that

µk ≤ δ/s. Let r1 = ⌊k/s⌋ − δ/s + 1 and r2 = ⌊k/s⌋. Then for all r ∈ {r1, r1 + 1, . . . , r2}
we have that

rs ≤ r2s = ⌊k/s⌋s ≤ k ≤ ⌊k/s⌋s+ s− 1 = r1s+ δ − 1 ≤ rs+ δ − 1,

and, thus, µk ≥ δ/s. Hence, µk = δ/s. We recall that the condition (3.54) is equivalent
to showing µk > 0, k ∈ [d].
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Turning to Log Magnitude Estimation (Section 3.6.3.3), we adjust the construction of the
matrix B ∈ Rdδ×d and the vector b(X) ∈ Rdδ to exclude all pairs (k, ℓ) /∈ Ks. Therefore,
we define

B(k,j),ℓ :=





2, j = 0 and k = ℓ,

1, j ̸= 0, k = ℓ, (k, k − j) ∈ Ks

1, j ̸= 0, k − j = ℓ, (k, k − j) ∈ Ks

0, otherwise,

(3.129)

and

b(X)(k,j) =

{
log |Xk,k−j|, (k, k − j) ∈ Ks,

0, (k, k − j) /∈ Ks,

for all k, ℓ ∈ [d], j ∈ [δ]. We note that we artificially introduce zero rows B((k,j)) and zero
measurements b(k,j) whenever (k, k − j) /∈ Ks to preserve the same indexing. In this way,
a part of the proofs for the case s > 1 is analogous to s = 1. With the new definitions,
we can show the invertibility of B∗B similarly to Theorem 3.6.19.

Theorem 3.6.52. Let d ≥ 2δ − s. Consider the matrix B defined in (3.129). Then, the
matrix B∗B admits the decomposition

B∗B = U∗ diag(z)U,

with the unitary matrix

U =

√
s√
d
Fd/s ⊗

1√
s
Fs =

1√
d




Fs Fs . . . Fs

Fs e−
2πi
d/sFs . . . e−

2πi(d/s−1)
d/s Fs

...
...

. . .
...

Fs e−
2πi(d/s−1)

d/s Fs . . . e−
2πi(d/s−1)(d/s−1)

d/s Fs



, (3.130)

and the vector z ∈ Rd containing the eigenvalues

zks+ℓ =





2δ − s+ 2, ℓ ̸= 0

4δ − 2s+ 2, ℓ = 0, k = 0,

2δ − s+ 2 + s
sin(π(2δ−s)k

d )
sin(πsk/d)

, ℓ = 0, k ∈ [d]\{0},

for indices k ∈ [d/s], ℓ ∈ [s]. The entries of z satisfy

zk ≥ 2s+ 2, for all k ∈ [d],

and, consequently, the inverse is given by

(B∗B)−1 = U∗ diag(1/z)U.

We recall that the proof of Theorem 3.6.19 is based on the decomposition of Tδ,1(1d×d) as
a circulant matrix. The next lemma provides a similar decomposition for Tδ,s(1d×d).
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Lemma 3.6.53 ([159, Lemma 1]). The matrix Tδ,s(1d×d) ∈ Hd has rank d/s and can be
decomposed as

Tδ,s(1d×d) = U∗ΛU,

with the unitary matrix U as in (3.130) and a diagonal matrix Λ ∈ Rd×d. The entries
with index ks+ ℓ, k ∈ [d/s], ℓ ∈ [s] on the main diagonal of Λ are given by

Λks+ℓ,ks+ℓ =

{
s
[
1 + 2

∑δ/s−1
j=1 cos

(
2πjk
d/s

)]
, ℓ = 0,

0, ℓ ̸= 0,

Proof. In the proof of Theorem 3.6.40, we have shown that Tδ,s(1d×d) ∈ Tδ,s ∩ Cd×d
s with

[Tδ,s(1d×d)]∼ = Td/s,δ/s,1(1d/s×d/s), so that

Tδ,s(1d×d) = Td/s,δ/s,1(1d/s×d/s)⊗ 1s×s.

For Td/s,δ/s,1(1d/s×d/s) in the proof of Theorem 3.6.52, we obtained the equation (3.66),
which reads as

Td/s,δ/s,1(1d/s×d/s) =

√
s√
d
F ∗
d/s diag(c)

√
s√
d
Fd/s,

with

ck = 1 + 2

δ/s−1∑

j=1

cos

(
2πjk

d/s

)
, k ∈ [d/s].

The matrix 1s×s satisfies

1s×s = 1s1
∗
s =

1√
s
F ∗
s diag(se0)

1√
s
Fs,

where e0 is the first standard basis vector. Then, by Proposition 2.1.2, we have

Tδ,s(1d×d) =

(√
s√
d
Fd/s ⊗

1√
s
Fs

)∗
(diag(c)⊗ diag(se0))

(√
s√
d
Fd/s ⊗

1√
s
Fs

)
= U∗ΛU.

Proof of Theorem 3.6.52. The proof is derived by repeating the proof of Theorem 3.6.19.
The entries of the matrix B∗B are computed analogously to (3.63) and (3.64) as

(B∗B)ℓ,ℓ = 4 +
∑

j∈[δ]\{0},
(ℓ,ℓ−j)∈Ks

2 = 3 +
∑

k∈[d]
I(ℓ,k)∈Ks , ℓ ∈ [d]

(B∗B)ℓ,k = I(ℓ,k)∈Ks , ℓ, k ∈ [d], ℓ ̸= k.

In view of I(ℓ,k)∈Ks = Tδ,s(1d×d)ℓ,k, we obtain

(B∗B)ℓ,ℓ = 3 +
∑

k∈[d]
Tδ,s(1d×d)ℓ,k and (B∗B)ℓ,k = Tδ,s(1d×d)ℓ,k.
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Moreover, if d ≥ 2δ − s, in the proof of Theorem 3.6.40 we have shown that for a fixed
ℓ ∈ [d] there are precisely 2δ − s values of index k ∈ [d], such that Tδ,s(1d×d)ℓ,k = 1.
Therefore, the diagonal entries are given by

(B∗B)ℓ,ℓ = 3 + 2δ − s = (2δ − s+ 2)(Id)ℓ,ℓ + Tδ,s(1d×d)ℓ,ℓ.

and

B∗B = (2δ − s+ 2)Id + Tδ,s(1d×d).

Consequently, using Lemma 3.6.53 and U∗U = Id, we rewrite B∗B as

B∗B = U∗[(2δ − s+ 2)Id]U + U∗ΛU = U∗ diag(z)U.

The definition of Λ and the equation (3.67) yield the formula for the entries of z. For all
k ∈ [d/s], ℓ ∈ [s]\{0}, we have zks+ℓ = 2δ − s+ 2 > 0. If ℓ = 0, we obtain

zks = 2δ − s+ 2 + s


1 + 2

δ/s−1∑

j=1

cos

(
2πjk

d/s

)


≥ 2δ − s+ 2 + s[1− 2(δ/s− 1)] = 2δ − s+ 2− 2δ + 3s = 2 + 2s.

Hence, B∗B is invertible and its inverse is given by U∗ diag(1/z)U .

Consequently, Log Magnitude Estimation can be used in Algorithm 8.

At last we turn to the phase synchronization (Section 3.6.4). We note, that the phase
synchronization was posed as a problem on a weighted graph without a specified construc-
tion of the edge set. The necessary condition for the phase synchronization to possess
a unique solution is that the graph is connected, which is equivalent to the spectral gap
being greater than zero and does not depend the chosen weights. Hence, in the following,
we show that for Tδ,s the corresponding unweighted graph is connected and, in addition,
we provide a lower bound for its spectral gap.

For the phase estimation within the BPR algorithm, according to (3.106) the edge set E
is given by

E = {(k, ℓ) ∈ [d]2 : |Zk,ℓ| > 0 and k ̸= ℓ}.

If Zk,ℓ ̸= 0 for all (k, ℓ) ∈ Ks, k ̸= ℓ, then we have

E = Ks\{(k, k) ∈ [d]2 : k ∈ [d]}, (3.131)

or equivalently AG = Tδ,s(1d×d)− Id.

Lemma 3.6.54 ([159]). Let d ≥ 4δ and δ ≥ 3s with s > 1. Assume that Zk,ℓ ̸= 0 for all
(k, ℓ) ∈ Ks, k ̸= ℓ, and consider an unweighted graph G = ([d], E) with the edge set E as
in (3.131). Then, the graph is connected and

τG ≥ min

{
π2δ3

3d2
, 2δ − s

}
.
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Proof. The proof generalizes the proof of Lemma 3.6.35. Retracing the steps, we start
with the adjacency matrix AG = Tδ,s(1d×d)− Id.
Since, d ≥ 4δ ≥ 2δ − s, we have shown in the proof of Theorem 3.6.40 that for a fixed
ℓ ∈ [d] there are precisely 2δ − s indices k ∈ [d], such that Tδ,s(1d×d)ℓ,k = 1. Therefore,
for each row of AG there are 2δ − s− 1 non-zero entries and, thus, each node has degree
2δ − s− 1. Thus, by the definition of the graph Laplacian we have

LG = (2δ − s− 1)Id − AG = (2δ − s)Id − Tδ,s(1d×d).

Then, similarly to the proof of Lemma 3.6.35 we have,

τG = λd−1(LG)− λd(LG) = λ1(Tδ,s(1d×d))− λ2(Tδ,s(1d×d)).

By Lemma 3.6.53, the eigenvalues of Tδ(1d×d) are either 0 or coincide with the eigenvalues
of Td/s,δ/s,1(1d/s×d/s) multiplied with s. Hence, we obtain

τG = smin{λ1(Td/s,δ/s,1(1d/s×d/s))− λ2(Td/s,δ/s,1(1d/s×d/s)), λ1(Td/s,δ/s,1(1d/s×d/s))− 0}.

By (3.107), we have λ1(Td/s,δ/s,1(1d/s×d/s)) = 2δ/s − 1. Moreover, since d/s ≥ 4δ/s and
δ/s ≥ 3, Lemma 3.6.35 yields

λ1(Td/s,δ/s,1(1d/s×d/s))− λ2(Td/s,δ/s,1(1d/s×d/s)) ≥
π2(δ/s)3

3(d/s)2
.

Then, the spectral gap is bounded from below by

τG ≥ min

{
π2s(δ/s)3

3(d/s)2
, s(2δ/s− 1)

}
= min

{
π2δ3

3d2
, 2δ − s

}
.

Consequently, the phase synchronization can be used in Algorithm 8.

Notes and References. The divisibility of δ by s is only required to simplify the proofs
and assumptions in this section and to obtain a regular structure of Tδ,s. In general, it is
not necessary.
The adaptation of BPR to the equidistant shifts was previously done in several works
[96, 138, 139, 141, 159]. In [96], the authors consider a version of BPR with Diagonal
Magnitude Estimation and the phase synchronization for multiple windows similarly to the
setup of Section 3.6.5.2 in the noiseless case. They show that under some assumptions on
w(q), q ∈ [Q], similar to the condition σmin > 0 in Corollary 3.6.47, non-vanishing objects
can be recovered from the measurements. In [138, 159] the authors consider recovery in
the presence of noise. They present the magnitude and phase estimation methods (except
of Log Magnitude Estimation) and show that they are applicable for Tδ,s. However, neither
the authors of [96] nor [138, 159] provide a construction of windows for which σmin > 0.
In [139], we independently derived the results of [138] covered in Section 3.6.5.3 and,
additionally, we provided the first possible construction of the windows (Lemma 3.6.48).
We note that our results in [139] were based on the matrix multiplication-based proof
similarly to [35] and in this thesis we reworked the proofs in Section 3.6.5.2 based on
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results from [141]. We note that working with multiple windows may not be a practical
solution as it requires at least s times more data to be obtained, stored and processed.
The authors of [141] also considered equidistant shifts combined with additional assump-
tions on the object. In [141, Theorem 2] the object x is assumed to be bandlimited, so
that supp(Fdx) ⊆ [γ] with parameter γ satisfying (d/s + 1)/2 ≤ γ ≤ 2δ − 1. Comparing
the lower and upper bounds, we observe that d ≤ s(4δ − 3), which in general requires
s = O(d/δ). In view of s < δ, this is quite restrictive. In comparison, in Section 3.6.5.1
we reconstruct d/s unknowns without any additional assumptions on s, δ, or d.
Furthermore, Algorithm 7 can be used as a heuristics for objects in Cd. Then, we recover
xs, a projection of x onto Cd

s from the measurements

|Ax|2 + n = |Axs + Ax⊥|2 + n = |Axs + n1|2 + n,

where x⊥ = x − xs. However, the noise is not additive and the derived reconstruction
guarantees do not apply.

3.6.6 Block Phase Retrieval, uniqueness and stability

In this section, we would like to briefly reflect on the reconstruction guarantees for BPR
and their reinterpretation as the uniqueness and stability results discussed in Section 3.3.
As the BPR algorithm can be viewed as a constructive proof of the uniqueness of the
reconstruction. If we translate the statement of Theorem 3.3.8 for the case R = [d] into
the context of BPR, the condition

[Fd(w ◦ Srw)]j ̸= 0 for r = 0, 1, j ∈ [d]

implies that the diagonals d0(X) and d1(X) are recovered in the inversion step. In the
absence of noise, the magnitudes of x are recovered with Diagonal Magnitude Estimation
from d0(X). The phases of x are recovered via angular synchronization and the unique
recovery is guaranteed by Theorem 3.6.29 for non-vanishing x as the underlying graph is
a connected loop. Consequently, x is uniquely recovered from the noiseless ptychographic
measurements, if in BPR for the magnitude and phase estimation the matrix T2(X) is
used instead of X. This is a weaker version of Theorem 3.6.2. Note that Theorem 3.6.2
requires the stronger assumption

[Fd(w ◦ Srw)]j ̸= 0 for r ∈ [δ], j ∈ [d].

These arguments extend to equidistant shifts R = Rs with s ≥ 1 for non-vanishing
piecewise constant objects x ∈ Cd

s similarly to Corollary 3.6.44.
Turning to stability, let us consider objects x, z ∈ Cd

s with noiseless ptychographic mea-
surements |Ax|2 and |Az|2 with A as in (3.9). By setting

y = |Az|2 = |Ax|2 + (|Az|2 − |Ax|2),

and applying BPR, the algorithm will reconstruct z. If a version of Corollary 3.6.44 is
used with the magnitude estimation error replaced by Corollary 3.6.18, the reconstruction
error is bounded from above by

dist(x, z) ≤
[
24
sd2

δ5/2
∥x∥∞ + (1 + 2

√
2)
√
s

]
1

|x|2min

σ−1
∥∥|Ax|2 − |Az|2

∥∥
2
.
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This can be interpreted as the local stability result on the set Cd
s. However, we must

note that the right-hand side depends on ∥|Ax|2 − |Az|2∥2 and not ∥|Ax| − |Az|∥2. This
quadratic dependency on x and z is compensated by the fraction ∥x∥∞ /|x|2min, where the
denominator is quadratic in x, while the nominator is only linear. We also note that these
local stability results are similar to [87, Theorem 3.6] for bandlimited objects.



Chapter 4

Blind ptychography

In this section we consider blind ptychography, a more challenging version of ptychography
discussed in the previous chapter. In ptychography, recovery of an unknown object x ∈ Cd

from the measurements (PTY) given by

Yj,r = Imj,r +Nj,r = |(FmPm[S−rx ◦ w])j|2 +Nj,r, j ∈ [m], r ∈ R ⊆ [d],

is considered under the assumption that a window w ∈ Cd with supp(w) = [δ] is known.
In practice, this assumption is not necessarily true and additionally the window has to be
estimated as well, which constitutes the following reconstruction problem:

Reconstruct x,w ∈ Cd with supp(w) = [δ] from data (PTY).

Recall that supp(w) = [δ] and, thus, the search space can be reduced by considering the
variable

ŵ := Pδw such that w = P ∗
δ ŵ,

where Pδ is the projection operator (2.10) on the first δ coordinates and P ∗
δ is its adjoint.

Let us rewrite the measurements (PTY) as a function of x and ŵ. First, we observe that

(Pm[S−rx ◦ w])k = (Pm[S−rx ◦ P ∗
δ ŵ])k = (S−rx)k(P

∗
δ ŵ)k =

{
(S−rx)kŵk, k ∈ [δ],

0, k ∈ [m]\[δ],

and

(P ∗
δ [PδS−rx ◦ ŵ])k =

{
(PδS−rx ◦ ŵ)k, k ∈ [δ],

0, k ∈ [m]\[δ], =
{
(S−rx)kŵk, k ∈ [δ],

0, k ∈ [m]\[δ].

Note that P ∗
δ maps Cδ to Cd in the first case and to Cm in the second case. Substituting

these equalities to the intensity measurements Y yields

Yj,r = |(FmPm[S−rx ◦ P ∗
δ ŵ])j|2 +Nj,r = |(FmP ∗

δ [PδS−rx ◦ ŵ])j|2 +Nj,r (BPTY)

for all j ∈ [m], r ∈ R. Consequently, the reconstruction problem can also be reformulated
in terms of x and ŵ.

Reconstruct x ∈ Cd, ŵ ∈ Cδ from data (BPTY).

137



138 CHAPTER 4. BLIND PTYCHOGRAPHY

4.1 Ambiguities and uniqueness of blind ptychogra-

phy

Similarly to the global phase factor ambiguity in ptychography, the blind ptychography
admits unavoidable ambiguities. We summarize the known ambiguities arising in blind
ptychography in the next statement.

Theorem 4.1.1 (General ambiguities arising in blind ptychography [182]). Consider
x ∈ Cd, ŵ ∈ Cδ and the corresponding ptychographic measurements (BPTY). Then,

1. (global phase ambiguity) for all α, β ∈ T the pair αx, βŵ produces the same mea-
surements (BPTY),

2. (scaling ambiguity) for all γ ∈ C\{0} the pair γx, ŵ/γ produces the same measure-
ments (BPTY),

3. (linear phase ambiguity) for all ρ ∈ R the pair z ∈ Cd, v̂ ∈ Cδ with zk = e−iρkxk,
k ∈ [d], and v̂k = eiρkŵk, k ∈ [δ], produces the same measurements (BPTY).

Proof. 1. For all α, β ∈ T we have

|(FmP ∗
m[PδS−rαx ◦ βŵ])j|2 = |α|2|β|2 |(FmP ∗

m[PδS−rx ◦ ŵ])j|2 = |(FmP ∗
m[PδS−rx ◦ ŵ])j|2 .

2. For all γ ∈ C\{0} we obtain

|(FmP ∗
m[PδS−rγx ◦ ŵ/γ])j|2 = |(FmP ∗

m[PδS−rx ◦ ŵ])jγ/γ|2 = |(FmP ∗
m[PδS−rx ◦ ŵ])j|2 .

3. Let z and v̂ be defined as in the statement of the theorem. Then, for all r ∈ R, k ∈ [δ],
we have

(PδS−rz ◦ v̂)k = zk+rv̂k = e−iρ(k+r)xk+re
iρkŵk = e−iρrxk+rŵk = e−iρr(PδS−rx ◦ ŵ)k,

and, consequently,

|(FmP ∗
m[PδS−rz ◦ v̂])j|2 =

∣∣e−iρr(FmP ∗
m[PδS−rx ◦ ŵ])j

∣∣2 = |(FmP ∗
m[PδS−rx ◦ ŵ])j|2 .

It is not known if the list of ambiguities provided by Theorem 4.1.1 is complete. However,
other ambiguities may arise depending on the choice of the set R.

Example 4.1.2 ([183, Proposition III.2]). Let R be the set of equidistant shifts Rs defined
by (3.111) with s being the divisor of d. Then, for any non-vanishing λ ∈ Cs the object-
window pairs x ∈ Cd, ŵ ∈ Cδ and z ∈ Cd, v̂ ∈ Cδ with

zk := xkλkmod s, k ∈ [d], and v̂k := ŵkλ
−1
kmod s, k ∈ [δ],

produce the same measurements (BPTY). More precisely, for all r ∈ [d/s] and k ∈ [δ] we
have

(PδS−rsz ◦ v̂)k = zk+rsv̂k = xk+rsŵkλk+rsmod sλ
−1
kmod s

= xk+rsŵkλkmod sλ
−1
kmod s = (PδS−rsx ◦ ŵ)k.
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Example 4.1.3 (Shift ambiguity). Let R be the set of equidistant shifts Rs defined by
(3.111) with s being the divisor of d and let δ = d. Then, for arbitrary q ∈ [d] the pairs
x,w and Sqx, Sqw produce the same measurements, similarly to Example 3.3.3. Then, by
Proposition 2.2.2, we have

|(Fd[S−rSqx ◦ Sqw])j|2 = |(FdSq[S−rx ◦ w])j|2 = |(M−qFd[S−rx ◦ w])j|2

= |e− 2πiqj
d (Fd[S−rx ◦ w])j|2 = |(Fd[S−rx ◦ w])j|2.

In view of these results, the unique recovery is understood to be the recovery of pairs x,w
up to any combination of the listed above ambiguities. The recent study on the uniqueness
of reconstruction for blind ptychography provides the following sufficient condition on the
number of measurements.

Theorem 4.1.4 ([84, Theorem 2.3]). Let m = d. Consider the ptychographic measure-
ments (BPTY) with the set of equidistant shifts Rs defined by (3.111) and s being the
divisor of d. If

M = d|Rs| ≥ 3(2δ − 1) +

⌈
(4d/s+ 1)(d− δ − 2d/s)

d/s

⌉
,

then the unique recovery is possible for all x ∈ Cd, ŵ ∈ Cδ except if (x, ŵ) ∈ N with N
being a set of zero measure.

Notes and References. The uniqueness and ambiguities of the blind ptychography are
sparsely studied in the literature.
It was derived that M ≥ 10(d + δ) measurements are sufficient for the unique recovery
[183]. Later, the previous results were improved in [84] to M ≥ 4d+2δ in Theorem 4.1.4.
Ambiguities arising in blind ptychography are mostly studied in [183, 182]. In addition to
the material covered in this section, in [182] the authors analyze the existence of further
ambiguities and study how to choose the set R, so that the additional ambiguities can be
avoided, e.g., Example 4.1.2.

4.2 Alternating Amplitude Flow for blind ptychog-

raphy

Turning to algorithms for blind ptychographic reconstruction, in this section we propose
a version of the Amplitude Flow algorithm discussed in Section 3.5.1. Recall that AF
is based on the minimization of the loss function L2. For blind ptychography, we will
consider the loss function

G(z, v̂) :=
∑

r∈R

∑

j∈[m]

∣∣∣∣
√
|(FmPm[S−rz ◦ P ∗

δ v̂])j|2 + ε−
√
Yj,r + ε

∣∣∣∣
2

+ αT ∥z∥22 + βT ∥v̂∥22

=
∑

r∈R

∑

j∈[m]

∣∣∣∣
√

|(FmP ∗
δ [PδS−rz ◦ v̂])j|2 + ε−

√
Yj,r + ε

∣∣∣∣
2

+ αT ∥z∥22 + βT ∥v̂∥22 . (4.1)
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with parameters ε, αT , βT ≥ 0. If the parameter ε > 0, the loss function is twice contin-
uously differentiable, which allows us to compute its Wirtinger gradient and potentially
apply the convergence theory derived in Section 2.3.

In the absence of noise, the true object-window pair x, ŵ minimizes the first term in
G. Furthermore, if unique recovery is possible, all global minimizers of the first term in
G are x, ŵ up to ambiguities discussed in the previous section. This suggests that the
minimization of G would lead to the recovery of x and ŵ. An additional inclusion of
Tikhonov regularization, i.e., αT , βT > 0, is beneficial in view of the scaling ambiguity
and will be crucial later in this section.

We note that G behaves similarly to a forth order polynomial in its argument (z, v̂).
This implies that the Hessian matrix behaves as a second order polynomial in (z, v̂) and
obtaining the inequality (2.17) with a fixed constant L, as required in Theorem 2.3.4, is
not possible in the most cases. Therefore, determining the learning rate for the gradient
descent in both unknowns,

[
zt

v̂t

]
=

[
zt−1

v̂t−1

]
− µt

[
∇zG(zt−1, v̂t−1)
∇v̂G(zt−1, v̂t−1)

]
,

becomes a complicated task and has to be performed in a non-trivial way. This, in general,
involves multiple extra evaluations of the loss function, which is costly if the dimensions
d, δ,m are large.

Instead we consider an alternating minimization approach to minimization of the loss G
with a flavor of [184]. That is, instead of simultaneous optimization of G with respect
both the object z and the window v̂, only one of two unknowns is optimized, while the
other remains to be fixed. Afterwards, their roles are swapped and the second unknown is
optimized, while the first remains to be fixed. The interchanges between the unknowns are
continued until the optimization with respect to either of unknowns provides no further
improvement on the value of the loss function G.

Algorithm 9: Alternating Amplitude Flow for blind ptychography (informal)

Input : Measurements Y as in (BPTY), number of iterations T ∈ N,
parameters ε > 0, αT , βT ≥ 0, initial guesses z0 ∈ Cd and v̂0 ∈ Cδ.

Output: z ∈ Cd and v̂ ∈ Cδ.
for t = 1, . . . , T do

zt = Optimize G with respect to z while v̂ = v̂t−1 is fixed.
v̂t = Optimize G with respect to v̂ while z = zt is fixed.

end
return z = zT , v̂ = v̂T .

The alternating minimization technique is a popular technique in optimization commu-
nity [185, 186, 187, 184] and it is sometimes used for blind ptychography. For instance,
an alternating minimization version of Douglas-Rachford splitting is considered in [109].
In this section, we choose a gradient descent-based optimization for the optimization
subproblems, which in both cases leads to a regularized version of the Amplitude Flow
algorithm discussed in Section 3.5.1. Before stating the formal algorithm in Section 4.2.3,
we formalize the optimization with respect to each of the variables in the next two sections.
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4.2.1 Optimization with respect to the object

Let us fix v̂ and consider G as a function of a single variable z. In this case we are able to
make use of the theory developed in Section 3.5.1. Firstly, we recall some concepts from
Section 3.5.1.
If v̂ is fixed, we can rewrite the phychographic measurements (PTY) in the form of the
phase retrieval measurements (PR) with the measurement matrix, the measurements and
the noise

Av̂ =



FmPm diag(P ∗

δ v̂)S−r1
...

FmPm diag(P ∗
δ v̂)S−rR


 , y =



Y (r1)

...
Y (rR)


 , n =



N (r1)

...
N (rR)


 , (4.2)

respectively, where Y (r) denotes the r-th column of the matrix Y . Then, the loss function
G can be written as

G(z, v̂) = L2,ε(z;Av̂) + αT ∥z∥22 + βT ∥v̂∥22 = H(z;Av̂, αT ) + βT ∥v̂∥22 , (4.3)

with L2,ε as in (3.14) and the supplementary loss function H : Cb → [0,+∞) defined by
the family of positive semidefinite matrices Q = {Qk}k∈[M ] ⊂ Hb and parameters ε, γ ≥ 0
as

H(t) = H(t;Q, γ) = L2,ε(t;Q) + γ ∥t∥22 , for all t ∈ Cb. (4.4)

Furthermore, we use the notation H(t;A, γ) instead of H(t;Q, γ), if Q corresponds to the
phase retrieval measurements (PR) with a measurement matrix A. Note that in (4.3), the
functionH(z;Av̂, αT ) includes all terms related to z and, therefore, minimization of G with
respect to z is equivalent to minimization ofH(z;Av̂, αT ) and∇zG(z, v) = ∇zH(z;Av̂, αT ).

Lemma 4.2.1. Let ε > 0. The function H is twice continuously differentiable with the
gradient given by

∇tH(t) =
∑

k∈[M ]

(
1−

√
yk + ε√

t∗Qkt+ ε

)
Qkt+ γt,

and its Hessian matrix satisfies

[
u
ū

]∗
∇2H(t)

[
u
ū

]
≤



∥∥∥∥∥∥
∑

k∈[M ]

Qk

∥∥∥∥∥∥
∞

+ γ



∥∥∥∥
[
u
ū

]∥∥∥∥
2

2

for all z, u ∈ Cb.

The proof follows by combining Lemma 3.5.1 with the next result.

Lemma 4.2.2. Consider a real-valued quadratic function

fM1,M2(t) := t∗M1t+Re
(
t∗M2t

)
= t∗M1t+

1
2
t∗M2t+

1
2
tTM2t,

with Hermitian matrices M1,M2 ∈ Hb. Then, for t ∈ Cb we have

∇tfM1,M2(t) =M∗
1 t+Re(M2)t and ∇2fM1,M2(t) =

[
M1 Re(M2)

Re(M2) M1

]
.
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Proof. By the definition of the Wirtinger derivatives, we have

∇tfM1,M2(t) = (t∗M1 + tT 1
2
(M2 +M∗

2 ))
∗ =M∗

1 t+
1
2
(M2 +MT

2 )t =M∗
1 t+Re(M2)t,

and

∇t,tfM1,M2(t) =M∗
1 =M1, ∇t̄,tfM1,M2(t) = Re(M2)

T = Re(M2).

Consequently, the Hessian matrix is constant with respect to z and according to (2.14) it
is given by

∇2fM1,M2(t) =

[
M1 Re(M2)

Re(M2) M1

]
.

Proof of Lemma 4.2.1. We note that

∥z∥22 = z∗z = z∗Idz = fId,Od×d
(z),

with Od×d denoting the zero matrix. Then, by linearity of the gradient and Lemmas 3.5.1
and 4.2.2, we obtain

∇zH(z) = ∇zL2,ε(z) + γ∇zfId,Od×d
(z) =

∑

k∈[M ]

(
1−

√
yk + ε√

z∗Qkz + ε

)
Qkz + γz.

Furthermore,
[
u
ū

]∗
∇2H(z)

[
u
ū

]
=

[
u
ū

]∗
∇2L2,ε(z)

[
u
ū

]
+ γ

[
u
ū

]∗
∇2fId,Od×d

(z)

[
u
ū

]

≤ 2u∗


∑

k∈[M ]

Qk + γId


u ≤



∥∥∥∥∥∥
∑

k∈[M ]

Qk

∥∥∥∥∥∥
∞

+ γ



∥∥∥∥
[
u
ū

]∥∥∥∥
2

2

.

Consequently, we can guarantee that the gradient descent applied to G for minimization
with respect to z will not increase the loss function on each step for a proper choice of
the learning rate.

Theorem 4.2.3. Fix ε > 0. Let z ∈ Cd, v̂ ∈ Cδ be arbitrary. Consider the iteration

z+ = z − µ∇zG(z, v̂),
with the gradient

∇zG(z, v̂) = A∗
v̂

[
IM − diag

( √
yk + ε√

|(Av̂z)k|2 + ε

)]
Av̂z + αT z, (4.5)

and the learning rate µ = µ(G, z, τ, µc, N) determined by Algorithm 1 where µc satisfies

0 < µc ≤
[
mmax

ℓ∈[d]

∑

r∈R
|(SrP ∗

δ v̂)ℓ|2 + αT

]−1

=: L−1
v̂ . (4.6)

Then,
G(z+, v̂)− G(z, v̂) ≤ −µ ∥∇zG(z, v̂)∥22 .
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Proof. In view of (4.3), we have

G(z, v̂) = H(z;Av̂, αT ) + βT ∥v̂∥22 and ∇zG(z, v̂) = ∇zH(z;Av̂, αT ).

By Corollary 3.5.2 and Lemma 4.2.1, the gradient ∇zG is given by (4.5). Moreover, the
gradient descent applied to G is equivalent to the gradient descent applied toH( · ;Av̂, αT ).
Note that the family {Qv̂

k}k∈[M ] corresponding to Av̂ is given by rank-one matrices Qv̂
k =

av̂k(a
v̂
k)

∗, k ∈ [M ]. The vectors av̂k are the conjugates of the rows of Av̂, so that (Av̂z)k =
(av̂k)

∗z. Therefore, Lemma 3.3.5 yields

∥∥∥∥∥∥
∑

k∈[M ]

Qv̂
k

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∑

k∈[M ]

av̂k(a
v̂
k)

∗

∥∥∥∥∥∥
∞

= ∥A∗
v̂Av̂∥∞ = mmax

ℓ∈[d]

∑

r∈R
|(SrP ∗

δ v̂)ℓ|2.

Hence, the choice of a constant learning rate µc satisfies the conditions of Theorem 2.3.6.
Thus, using Lemma 4.2.1, we obtain

H(z+;Av̂, αT )−H(z;Av̂, αT ) ≤ −µ ∥∇zH(z;Av̂, αT )∥22 .

The addition and subtraction of the term βT ∥v̂∥22 yields

G(z+, v̂)− G(z, v̂) = H(z+;Av̂, αT ) + βT ∥v̂∥22 −H(z;Av̂, αT )− βT ∥v̂∥22
≤ −µ ∥∇zH(z;Av̂, αT )∥22 = −µ ∥∇zG(z, v̂)∥22 .

4.2.2 Optimization with respect to the window

Now, let us fix z and consider G as a function of a single variable v̂. Similarly to the
previous section, the optimization with respect to v̂ can be reduced to the phase retrieval
problem of the form (PR). For this, we observe that the intensity measurements can be
rewritten as

Yj,r = |(FmP ∗
δ [PδS−rz ◦ ṽ])j|2 +Nj,r = |(FmP ∗

δ diag(PδS−rz)ṽ])j|2 +Nj,r,

for all j ∈ [m], r ∈ R. With the measurement matrix

Az =



FmP

∗
δ diag(PδS−r1z)

...
FmP

∗
δ diag(PδS−rRz)


 , (4.7)

the measurements y and the noise n as in (4.2), the recovery of v̂ is again a phase retrieval
problem. Returning to the loss function G, we combine the terms involving v̂ as

G(z, v̂) = L2,ε(v̂;Az) + αT ∥z∥22 + βT ∥v̂∥22 = H(v̂;Az, βT ) + αT ∥z∥22 , (4.8)

with the functions L2,ε and H defined in (3.14) and (4.4), respectively. Consequently,
first order minimization with respect to v̂ is analogous to minimization with respect to z,
which leads to the following result.
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Theorem 4.2.4. Fix ε > 0. Let z ∈ Cd, v̂ ∈ Cδ be arbitrary. Consider the iteration

v̂+ = v̂ − ν∇v̂G(z, v̂),

with the gradient

∇v̂G(z, v̂) = A∗
z

[
IM − diag

( √
yk + ε√

|(Azv̂)k|2 + ε

)]
Azv̂ + βT v̂, (4.9)

and the learning rate ν = ν(G, v̂, τ, νc, N) determined by Algorithm 1, where νc satisfies

0 < νc ≤
[
mmax

ℓ∈[δ]

∑

r∈R
|(S−rz)ℓ|2 + βT

]−1

=: L−1
z . (4.10)

Then,
G(z, v̂+)− G(z, v̂) ≤ −ν ∥∇v̂G(z, v̂)∥22 .

Proof. Due to the representation (4.8), the proof is analogous to the proof of Theo-
rem 4.2.3 and is based on Lemma 4.2.1, Corollary 3.5.2 and Theorem 2.3.6. The only
difference is the evaluation of the constant learning rate, which depends on Az. In order
to apply Theorem 2.3.6, we first justify that

νc ≤



∥∥∥∥∥∥
∑

k∈[M ]

Qz
k

∥∥∥∥∥∥
∞

+ βT


 ,

where {Qz
k}k∈[M ] is the family of rank-one matrices corresponding to the matrix Az. Recall

that by construction Qz
k = azk(a

z
k)

∗ with azk being the conjugate of k-th row of Az. Then,
we have ∥∥∥∥∥∥

∑

k∈[M ]

Qz
k

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
∑

k∈[M ]

azk(a
z
k)

∗

∥∥∥∥∥∥
∞

= ∥A∗
zAz∥∞ ,

and the product A∗
zAz is given by

A∗
zAz =

∑

r∈R
(FmP

∗
δ diag(PδS−rz))

∗FmP
∗
δ diag(PδS−rz)

=
∑

r∈R
diag(PδS−rz)PδF

∗
mFmP

∗
δ diag(PδS−rz).

Using Proposition 2.2.1 and (2.11), we arrive at

A∗
zAz =

∑

r∈R
diag(PδS−rz)Pδ(mIm)P

∗
δ diag(PδS−rz)

= m
∑

r∈R
diag(PδS−rz)Im diag(PδS−rz)

= m
∑

r∈R
diag(|PδS−rz|2) = m diag

(∑

r∈R
|PδS−rz|2

)
.
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Hence, the spectral norm of A∗
zAz is given by

∥∥∥∥∥∥
∑

k∈[M ]

Qz
k

∥∥∥∥∥∥
∞

= ∥A∗
zAz∥∞ = mmax

ℓ∈[δ]

(∑

r∈R
|PδS−rz|2

)

ℓ

= mmax
ℓ∈[δ]

∑

r∈R
|(S−rz)ℓ|2,

which concludes the proof.

4.2.3 Formal algorithm and convergence guarantees

Now that the optimization with respect to either z or v̂ is formalized, we can establish
the detailed reconstruction procedure for blind ptychography.

Algorithm 10: Alternating Amplitude Flow for blind ptychography

Input : Measurements Y as in (BPTY), number of iterations T ∈ N,
number of object and window subiterations Tz ∈ N and Tv̂ ∈ N,
parameters ε > 0, αT , βT ≥ 0, initial guesses z0 ∈ Cd and v̂0 ∈ Cδ,
AG parameters 0 < τ < 1, N ∈ N ∪ {0}.

Output: z ∈ Cd and v̂ ∈ Cδ.
for t = 1, . . . , T do

Let zt,0 = zt−1.
Set µt,c = L−1

v̂t−1 as in (4.6).
for i ∈ [Tz] do

Determine µt,i = µt,i(G, zt,i, τ, µt,c, N) via Algorithm 1.
Update zt,i+1 = zt,i − µt,i∇zG(zt,i, v̂t−1).

Let zt = zt,Tz and v̂t,0 = v̂t−1

Set νt,c = L−1
zt as in (4.10).

for j ∈ [Tv̂] do
Determine νt,j = νt,j(G, v̂t,j, τ, νt,c, N) via Algorithm 1.
Update v̂t,j+1 = v̂t,j − νt,j∇v̂G(zt, v̂t,j).

Let v̂t = v̂t,Tv̂ .
return z = zT , v̂ = v̂T .

Firstly, let us show that the learning rates are always finite.

Lemma 4.2.5. Let ε, αT , βT > 0. Then, for all z ∈ Cd and v̂ ∈ Cδ we have Lv̂ ≥ αT > 0
and Lz ≥ βT > 0. Furthermore, the learning rates µt,i and νt,j, i ∈ [Tz], j ∈ [Tv̂], t ≥ 1,
determined by Algorithm 10 are bounded from above by τ−N/αT and τ−N/βT , respectively.

Proof. By (4.6), Lv̂ satisfies Lv̂ ≥ αT > 0. For a learning rate µt,i determined by Algo-
rithm 1, the inequality (2.21) gives

µt,i ≤ τ−Nµt,c = τ−NL−1
v̂t−1 ≤ τ−N/αT <∞.

Analogously, Lz ≥ βT > 0 and νt,j ≤ τ−N/βT <∞.

Secondly, it is possible to derive the convergence of Algorithm 10 and to show the sublinear
convergence rate.
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Theorem 4.2.6. Let G : Cd×Cδ → [0,∞) be defined as in (4.1) with ε, αT , βT > 0. Con-
sider two sequences {zt}t≥0, {v̂t}t≥0 defined by Algorithm 10 with arbitrary starting points
z0 ∈ Cd, v̂0 ∈ Cδ and let µt,i and νt,i be the learning rates determined by Algorithm 10.
Then, for each subiteration of Algorithm 10 we have

G(zt,i+1, v̂t−1)− G(zt,i, v̂t−1) ≤ −µt,i
∥∥∇zG(zt,i, v̂t−1)

∥∥2
2

(4.11)

G(zt, v̂t,j+1)− G(zt, v̂t,j) ≤ −νt,j
∥∥∇v̂G(zt, v̂t,j)

∥∥2
2
. (4.12)

for every t ≥ 1 and i ∈ [Tz], j ∈ [Tv̂].
Moreover,

lim
t→∞

∥∥∇zG(zt, v̂t)
∥∥2
2
+
∥∥∇v̂G(zt, v̂t)

∥∥2
2
= 0,

where the rate of convergence is dominated by

max{α−1
T , β−1

T }mG2(z0, v̂0) + max{αT , βT}G(z0, v̂0)
T min{Tz, Tv̂}

.

Proof. Let t ≥ 1 be fixed. For each iteration of the object, v̂t−1 is fixed and the constant
learning rate µt,c = L−1

v̂t−1 satisfies the condition (4.6) by construction. Thus, by Theo-
rem 4.2.3 the inequality (4.11) holds. Analogously, Theorem 4.2.4 yields (4.12). These
estimates show that every subiteration of Algorithm 10 does not increase the value of the
loss function G(z, v̂). Furthermore, summing up the bound for the object and window
subiterations, we get

G(zt,Tz , v̂t−1)− G(zt,0, v̂t−1) ≤ −
∑

i∈[Tz ]
µt,i
∥∥∇zG(zt,i, v̂t−1)

∥∥2
2
,

G(zt, v̂t,Tv̂)− G(zt, v̂t,0) ≤ −
∑

j∈[Tv̂ ]
νt,j
∥∥∇v̂G(zt, v̂t,j)

∥∥2
2
.

Note that by construction

zt,Tz = zt, zt,0 = zt−1, v̂t,Tv̂ = v̂t, v̂t,0 = v̂t−1. (4.13)

Hence, combining the inequalities leads to
∑

i∈[Tz ]
µt,i
∥∥∇zG(zt,i, v̂t−1)

∥∥2
2
+
∑

j∈[Tv̂ ]
νt,j
∥∥∇v̂G(zt, v̂t,j)

∥∥2
2
≤ G(zt−1, v̂t−1)− G(zt, v̂t).

For a fixed T ≥ 1 the summation over t = 1, . . . , T gives

T∑

t=1


∑

i∈[Tz ]
µt,i
∥∥∇zG(zt,i, v̂t−1)

∥∥2
2
+
∑

j∈[Tv̂ ]
νt,j
∥∥∇v̂G(zt, v̂t,j)

∥∥2
2




≤
T∑

t=1

[
G(zt−1, v̂t−1)− G(zt, v̂t)

]
= G(z0, v̂0)− G(zT , v̂T ) ≤ G(z0, v̂0), (4.14)

where we used that G(z, v̂) ≥ 0. Hence, if T → ∞, we arrive at

∞∑

t=1


∑

i∈[Tz ]
µt,i
∥∥∇zG(zt,i, v̂t−1)

∥∥2
2
+
∑

j∈[Tv̂ ]
νt,j
∥∥∇v̂G(zt, v̂t,j)

∥∥2
2


 <∞,
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which implies that

∑

i∈[Tz ]
µt,i
∥∥∇zG(zt,i, v̂t−1)

∥∥2
2
+
∑

j∈[Tv̂ ]
νt,j
∥∥∇v̂G(zt, v̂t,j)

∥∥2
2
→ 0

as t→ ∞. Since all terms are non-negative we eventually get

µt,i
∥∥∇zG(zt,i, v̂t−1)

∥∥2
2
→ 0, and νt,j

∥∥∇v̂G(zt, v̂t,j)
∥∥2
2
→ 0

for all i ∈ [Tz], j ∈ [Tv̂] as t→ ∞.
In order to show the desired convergence for the norm of the gradients, we have to show
that the learning rates µt,i and νt,j are not converging to zero as t→ ∞ for all i, j. Since
the learning rate µt,i is determined by Algorithm 1, by (2.21) we have

µt,i ≥ µt,c = L−1
v̂t−1 . (4.15)

Hence, to prove that µt,i does not vanish is equivalent to show that the sequence {Lv̂t}t≥0

is bounded from above. Recall that by (4.6), Lv̂t is given by

Lv̂t = mmax
ℓ∈[d]

∑

r∈R
|(SrP ∗

δ v̂
t)ℓ|2 + αT ≤ mmax

ℓ∈[d]

∑

r∈[d]
|(SrP ∗

δ v̂
t)ℓ|2 + αT .

By changing the order of summation, we obtain

∑

r∈[d]
|(SrP ∗

δ v̂
t)ℓ|2 =

∑

r∈[d]
|(P ∗

δ v̂
t)r+ℓ|2 = ∥P ∗

δ v̂∥22 .

Since P ∗
δ only appends zeros, Lv̂t is further bounded from above by

Lv̂t ≤ mmax
ℓ∈[d]

∥∥P ∗
δ v̂

t
∥∥2
2
+ αT = m

∥∥v̂t
∥∥2
2
+ αT .

Consequently, {Lv̂t}t≥0 is bounded if and only if the sequence {∥v̂t∥22}t≥0 is bounded. Let

us show by contradiction that {∥v̂t∥22}t≥0 is bounded from above by G(z0, v̂0)/βT . More

precisely, assume that for some t0 ≥ 0, the opposite holds, i.e., ∥v̂t0∥22 > G(z0, v̂0)/βT .
Then, we obtain

G(zt0 , v̂t0) = H(zt0 ;Av̂t0 , αT ) + βT
∥∥v̂t0

∥∥2
2
≥ βT

∥∥v̂t0
∥∥2
2
> G(z0, v̂0),

which is not possible, since we showed in (4.14) that with each iteration the loss function
does not increase. Therefore, {∥v̂t∥22}t≥0 is bounded from above by G(z0, v̂0)/βT and
{Lv̂t}t≥0 is also bounded from above by

Lwin := mβ−1
T G(z0, v̂0) + αT > 0. (4.16)

The strict inequality is due to Lwin ≥ αT > 0. Hence, by (4.15),

µt,i ≥ L−1
win > 0, (4.17)

and we obtain ∥∥∇zG(zt,i, v̂t−1)
∥∥2
2
→ 0,
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as t→ ∞ for all i ∈ [Tz]. Similarly, {Lzt}t≥0 is bounded from above by

Lobj := mα−1
T G(z0, v̂0) + βT > 0,

so that for all j ∈ [Tv̂], we obtain

νt,j ≥ L−1
obj > 0 and

∥∥∇v̂G(zt, v̂t,j)
∥∥2
2
→ 0,

as t→ ∞. In particular,

∥∥∇zG(zt, v̂t)
∥∥2
2
=
∥∥∇zG(zt+1,0, v̂t)

∥∥2
2
→ 0 as t→ ∞,

∥∥∇v̂G(zt, v̂t−1)
∥∥2
2
=
∥∥∇v̂G(zt, v̂t,0)

∥∥2
2
→ 0 as t→ ∞.

Recall that our goal is to show that

lim
t→∞

∥∥∇zG(zt, v̂t)
∥∥2
2
+
∥∥∇v̂G(zt, v̂t)

∥∥2
2
= 0.

Thus, it remains to show ∥∇v̂G(zt, v̂t)∥22 → 0 as t→ ∞. Using the triangle inequality, we
obtain

0 ≤
∥∥∇v̂G(zt, v̂t)

∥∥
2
≤
∥∥∇v̂G(zt, v̂t)−∇v̂G(zt, v̂t−1)

∥∥
2
+
∥∥∇v̂G(zt, v̂t−1)

∥∥
2
.

It was already shown that the second summand converges to zero as t→ ∞. For the first
summand we can use the fact that ∇v̂G(z, v̂) is continuous for ε > 0. Therefore, the first
summand converges to zero if ∥v̂t − v̂t−1∥2 → 0 as t→ ∞. In fact, we have,

0 ≤
∥∥v̂t − v̂t−1

∥∥
2
=
∥∥v̂t,Tv̂ − v̂t,0

∥∥
2
=

∥∥∥∥∥∥
∑

j∈[Tv̂ ]
νt,j∇v̂G(zt, v̂t,j)

∥∥∥∥∥∥
2

≤
∑

j∈[Tv̂ ]
νt,j
∥∥∇v̂G(zt, v̂t,j)

∥∥
2
≤ τ−Nβ−1

T

∑

j∈[Tv̂ ]

∥∥∇v̂G(zt, v̂t,j)
∥∥
2
,

where in the last line we used Lemma 4.2.5. For t → ∞, we obtain ∥v̂t − v̂t−1∥2 → 0.
Consequently, by continuity ∥∇v̂G(zt, v̂t)−∇v̂G(zt, v̂t−1)∥2 → 0, which gives

∥∥∇v̂G(zt, v̂t)
∥∥
2
→ 0,

as t→ 0. For the convergence speed, we consider the sequence

st := max

{
min
i∈[Tz ]

∥∥∇zG(zt,i, v̂t−1)
∥∥2
2
, min
j∈[Tv̂ ]

∥∥∇v̂G(zt, v̂t,j)
∥∥2
2

}
.

If st is small, it follows that the gradient iterations in either direction are small and the
iterates are in a proximity of a fixed point. For a minimum of st, the following upper
bound applies,

min
t=1,...,T

st ≤ 1
T

T∑

t=1

st ≤ 1
T

T∑

t=1

[
min
i∈[Tz ]

∥∥∇zG(zt,i, v̂t−1)
∥∥2
2
+ min

j∈[Tv̂ ]

∥∥∇v̂G(zt, v̂t,j)
∥∥2
2

]
.
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The first minimum is bounded from above as

min
i∈[Tz ]

∥∥∇zG(zt,i, v̂t−1)
∥∥2
2
≤ 1

Tz

∑

i∈[Tz ]

∥∥∇zG(zt,i, v̂t−1)
∥∥2
2

≤ 1

Tzmini∈[Tz ] µt,i

∑

i∈[Tz ]
µt,i
∥∥∇zG(zt,i, v̂t−1)

∥∥2
2
.

and, similarly, the second minimum is bounded by

min
j∈[Tv̂ ]

∥∥∇v̂G(zt, v̂t,j)
∥∥2
2
≤ 1

Tv̂minj∈[Tv̂ ] νt,j

∑

j∈[Tv̂ ]
νt,j
∥∥∇v̂G(zt, v̂t,j)

∥∥2
2
.

Combined with (4.14), these bounds give

min
t=1,...,T

st ≤
1

T min{Tzmini∈[Tz ] µt,i, Tv̂minj∈[Tv̂ ] νt,j}
G(z0, v̂0)

≤ 1

T min{Tz, Tv̂}min{mini∈[Tz ] µt,i,minj∈[Tv̂ ] νt,j}
G(z0, v̂0).

In view of (4.17) and (4.16), for the learning rates µt,i we obtain

1

mini∈[Tz ] µt,i
≤ 1

µt,c
≤ Lobj = mβ−1

T G(z0, v̂0) + αT

≤ mmax{α−1
T , β−1

T }G(z0, v̂0) + max{αT , βT},

and for 1/minj∈[Tv̂ ] νt,j the upper bound is precisely the same. Then, we arrive at

min
t=1,...,T

st ≤
mmax{α−1

T , β−1
T }G2(z0, v̂0) + max{αT , βT}G(z0, v̂0)

T min{Tz, Tv̂}
.

The first main consequence of Theorem 4.2.6 is that Algorithm 10 will always stop, which
is not known for some of the methods applied in practice, for example the extended
Ptychographic Iterative Engine algorithm [33]. The second is that the gradient decay is
inversely proportional to the number of iterations and quadratically depends on the value
of the loss function G evaluated at the initial guess z0, v̂0. Thus, the starting point has a
major influence on the performance of the algorithm.
We note that the Tikhonov regularization is crucial in Theorem 4.2.6. While the quadratic
loss L2,ε(z;Av̂) is constant under rescaling z, v̂ 7→ γz, v̂/γ, γ ̸= 0 in accordance with the
scaling ambiguity, its gradient ∇zL2,ε(z;Av̂) is not. Thus, it is harder to control the norm
∥∇zL2,ε(z;Av̂)∥2. The inclusion of the Tikhonov regularization resolves the ambiguity
and allows to establish the convergence guarantees. Furthermore, we observe that the
convergence rate depends on max{α−1

T , β−1
T }, which grows to infinity as the regularization

parameters vanish.
Finally, we point out that similar to Theorem 3.5.5, Theorem 4.2.6 only grants convergence
to a fixed point of the loss function G, which is non necessarily is a global minimizer.
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4.2.4 Exclusion of Tikhonov regularization via reweighting

One of the issues arising from Algorithm 10 is the selection of the regularization parame-
ters αT and βT , which is done empirically in practice. This requires several trial-and-error
attempts to find good choices of αT , βT . For this reason we propose an alternative version
of Algorithm 10, which completely excludes the regularization terms. Since the Tikhonov
regularization was a key in controlling the scaling ambiguity and achieving the conver-
gence results in Theorem 4.2.6, an alternative way to resolve the ambiguity is required.
This is done by normalizing the fixed variable and scaling the other appropriately to pre-
serve the same value of the loss function G. However, the normalization procedure may
cause a division by zero, which has to be treated separately.

Algorithm 11: Alternating Amplitude Flow with reweighting

Input : Measurements Y as in (BPTY), number of iterations T ∈ N,
number of object and window subiterations Tz ∈ N and Tv̂ ∈ N,
parameter ε > 0, initial guesses z0 ∈ Cd and v̂0 ∈ Cδ\{0δ},
AG parameters 0 < τ < 1, N ∈ N ∪ {0}.

Output: z ∈ Cd and v̂ ∈ Cδ.
Set αT = 0, βT = 0 in G.
Set z0 = ∥v̂0∥2 z0 and v̂0nor = v̂0/ ∥v̂0∥2.
for t = 1, . . . , T do

Let zt,0 = zt−1.
Set µt,c = L−1

v̂t−1
nor

as in (4.6).

for i ∈ [Tz] do
Determine µt,i = µt,i(G, zt,i, τ, µt,c, N) via Algorithm 1.
Update zt,i+1 = zt,i − µt,i∇zG(zt,i, v̂t−1

nor ).

if
∥∥zt,Tz

∥∥
2
= 0 then

return z = zt,Tz , v̂ = v̂t−1
nor .

Let v̂t,0 =
∥∥zt,Tz

∥∥
2
v̂t−1
nor and ztnor = zt,Tz/

∥∥zt,Tz
∥∥
2

Set νt,c = L−1
ztnor

as in (4.10).

for j ∈ [Tv̂] do
Determine νt,j = νt,j(G, v̂t,j, τ, νt,c, N) via Algorithm 1.
Update v̂t,j+1 = v̂t,j − νt,j∇v̂G(ztnor, v̂t,j).

if
∥∥v̂t,Tv̂

∥∥
2
= 0 then

return z = ztnor, v̂ = v̂t,Tv̂ .

Let zt =
∥∥v̂t,Tv̂

∥∥
2
ztnor and v̂

t
nor = v̂t,Tv̂/

∥∥v̂t,Tv̂
∥∥
2
.

return z = zT , v̂ = v̂Tnor.

Similarly to Lemma 4.2.5, we show that the learning rates are always well-defined in
Algorithm 11.

Lemma 4.2.7. Let ε > 0, αT = 0, βT = 0. Assume that

∪r∈R{r, r + 1, . . . , r + δ − 1} = [d]. (4.18)

Then, for all z ∈ Cd and v̂ ∈ Cδ such that ∥z∥2 = 1 and ∥v̂∥2 = 1 we have Lv̂ ≥ m/δ > 0
and Lz ≥ m/d > 0. Furthermore, the learning rates µt,i and νt,j, i ∈ [Tz], j ∈ [Tv̂], t ≥ 1,
determined by Algorithm 11 are bounded by τ−Nδ/m and τ−Nd/m, respectively.
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Proof. In view of (4.6), Lv̂ is given by

Lv̂ = mmax
ℓ∈[d]

∑

r∈R
|(SrP ∗

δ v̂)ℓ|2 + αT = mmax
ℓ∈[d]

∑

r∈R
|(SrP ∗

δ v̂)ℓ|2.

Let r0 ∈ R and let ℓ0 ∈ [δ] be an index such that |v̂ℓ0| = ∥v̂∥∞. Then,

Lv̂ ≥ m
∑

r∈R
|(SrP ∗

δ v̂)ℓ0+r0|2 ≥ m|(Sr0P ∗
δ v̂)ℓ0+r0|2 = m|(P ∗

δ v̂)ℓ0 |2 = m|v̂ℓ0|2 = m ∥v̂∥2∞ .

Since ∥v̂∥2 = 1, the infinity norm is bounded from below as

1 = ∥v̂∥22 ≤ δ ∥v̂∥2∞ ,

which gives

Lv̂ ≥ m/δ.

Similarly, let ℓ1 ∈ [d] be such that |zℓ1| = ∥z∥∞. By (4.18), there exists r1 ∈ R such that
ℓ1 − r1 ∈ [δ]. Thus,

Lz = mmax
ℓ∈[δ]

∑

r∈R
|(S−rz)ℓ|2 + βT ≥ m

∑

r∈R
|(S−rz)ℓ1−r1|2

≥ m|(S−r1z)ℓ1−r1|2 = m|zℓ1|2 = m ∥z∥2∞ ≥ m/d.

Therefore, for the learning rates µt,i selected via Algorithm 1, the inequality (2.21) yields

µt,i ≤ τ−Nµt,c = τ−NL−1
v̂t−1 ≤ τ−Nδ/m <∞,

and analogously νt,j ≤ τ−Nd/m <∞.

The set ∪r∈R{r, r + 1, . . . , r + δ − 1} is the set of all observed entries of the object.
Then, (4.18) is similar to the condition on the injectivity of the matrix A provided by
Lemma 3.3.5, which requires that the whole object is illuminated during the experiments.
If some of the entries are not observed, i.e., the assumption (4.18) is violated, it may cause
a division by zero during the computation of the learning rates.

Example 4.2.8. Assume that (4.18) does not hold and there exists ℓ0 such that for all
r ∈ R we have ℓ0 /∈ {r, r+1, . . . , r+ δ− 1} or equivalently ℓ0 ̸= r+ ℓ for all ℓ ∈ [δ]. Let z
be the standard basis vector eℓ0 so that zℓ = Iℓ=ℓ0 , ℓ ∈ [d], and ∥z∥2 = 1. Then, we obtain

Lz = mmax
ℓ∈[δ]

∑

r∈R
|(S−rz)ℓ|2 = mmax

ℓ∈[δ]

∑

r∈R
|zr+ℓ|2 = mmax

ℓ∈[δ]

∑

r∈R
Ir+ℓ=ℓ0 = 0,

and the corresponding learning rate µc = L−1
z is undefined.

The convergence of Algorithm 10 is summarized in the next theorem.

Theorem 4.2.9. Let G : Cd×Cδ → [0,∞) be defined as in (4.1) with ε > 0, αT = 0, βT =
0. Assume that (4.18) holds. Consider the sequences and the learning rates determined



152 CHAPTER 4. BLIND PTYCHOGRAPHY

by Algorithm 11 with arbitrary starting points z0 ∈ Cd, v̂0 ∈ Cδ\{0d}. Then, for each
subiteration of Algorithm 11 we have

G(zt,i+1, v̂t−1
nor )− G(zt,i, v̂t−1

nor ) ≤ −µt,i
∥∥∇zG(zt,i, v̂t−1

nor )
∥∥2
2

(4.19)

G(ztnor, v̂t,j+1)− G(ztnor, v̂t,j) ≤ −νt,j
∥∥∇v̂G(ztnor, v̂t,j)

∥∥2
2
. (4.20)

for every t ≥ 1 and i ∈ [Tz], j ∈ [Tv̂].
If there exists a T0 ≥ 1 such that either

∥∥zT0,Tz
∥∥
2
= 0 or

∥∥v̂T0,Tv̂
∥∥
2
= 0, then

∥∥∇zG(zT0 , v̂T0)
∥∥2
2
+
∥∥∇v̂G(zT0 , v̂T0)

∥∥2
2
= 0.

Otherwise,

lim
t→∞

∥∥∇zG(zt, v̂tnor)
∥∥2
2
+
∥∥∇v̂G(zt, v̂tnor)

∥∥2
2
= 0.

In any case, the rate of convergence is dominated by

mG(z0, v̂0)
T1min{Tz, Tv̂}

,

where T1 := min{T0 − 1, T} is the total number of iterations Algorithm 11.

Proof. The structure of the proof resembles the proof of Theorem 4.2.6 and we will only
highlight the differences when necessary. The inequalities (4.19) and (4.20) are obtained
by applying Theorem 4.2.3 and Theorem 4.2.4, respectively.
If T0 ≥ 1 exists and

∥∥zT0,Tz
∥∥
2
= 0, then by (4.5) we obtain

∥∥∇zG(zT0,Tz , v̂T0−1
nor )

∥∥
2
= 0.

Furthermore, the matrix Az is the zero matrix, which in combination with (4.9) yields∥∥∇v̂G(zT0,Tz , v̂T0−1
nor )

∥∥
2
= 0. The case

∥∥v̂T0,Tv̂
∥∥
2
= 0 is analogous.

In the case T0 ≥ 1 does not exist, we repeat the series argument of Theorem 4.2.6, with
(4.13) is replaced by

G(zt,Tz , v̂t−1
nor ) = G(ztnor, v̂t,0) and G(ztnor, v̂t,Tv̂) = G(zt+1,0, v̂tnor). (4.21)

Consequently, we arrive at

µt,i
∥∥∇zG(zt,i, v̂t−1

nor )
∥∥2
2
→ 0, and νt,j

∥∥∇v̂G(ztnor, v̂t,j)
∥∥2
2
→ 0

for all i ∈ [Tz], j ∈ [Tv̂] as t→ ∞. Again, the learning rates are bounded from below by

µt,i ≥ µt,c = L−1

v̂t−1
nor

≥
[
m
∥∥v̂t−1

nor

∥∥2
2
+ αT

]−1

= m−1, (4.22)

and, analogously, νt,j ≥ m−1. Hence, we obtain

∥∥∇zG(zt,i, v̂t−1
nor )

∥∥2
2
→ 0, i ∈ [Tz], and

∥∥∇v̂G(ztnor, v̂t,j)
∥∥2
2
→ 0, j ∈ [Tv̂],

as t→ ∞. In particular,

∥∥∇zG(zt, v̂tnor)
∥∥2
2
=
∥∥∇zG(zt+1,0, v̂tnor)

∥∥2
2
→ 0 as t→ ∞, (4.23)

∥∥∇v̂G(ztnor, v̂t,0)
∥∥2
2
→ 0 as t→ ∞. (4.24)
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To prove that ∥∇v̂G(zt, v̂tnor)∥2 → 0 as t → ∞, we note that by (4.7) we have Az
t
=∥∥v̂t,Tv̂

∥∥
2
Az

t
nor . Therefore, the gradient satisfies

∇v̂G(zt, v̂tnor) = ∇v̂G(
∥∥v̂t,Tv̂

∥∥
2
ztnor, v̂

t,Tv̂/
∥∥v̂t,Tv̂

∥∥
2
) =

∥∥v̂t,Tv̂
∥∥
2
∇v̂G(ztnor, v̂t,Tv̂). (4.25)

In view of the construction of the iterates in Algorithm 11, the sequence {
∥∥v̂t,Tv̂

∥∥
2
}t≥1

satisfies
∥∥v̂t,Tv̂

∥∥
2
=
∥∥v̂t,Tv̂

∥∥
2
−
∥∥v̂t,0

∥∥
2
+
∥∥v̂t,0

∥∥
2
=
∥∥v̂t,Tv̂

∥∥
2
−
∥∥v̂t,0

∥∥
2
+
∥∥zt,Tz

∥∥
2

=
∥∥v̂t,Tv̂

∥∥
2
−
∥∥v̂t,0

∥∥
2
+
∥∥zt,Tz

∥∥
2
−
∥∥zt,0

∥∥
2
+
∥∥zt,0

∥∥
2

=
∥∥v̂t,Tv̂

∥∥
2
−
∥∥v̂t,0

∥∥
2
+
∥∥zt,Tz

∥∥
2
−
∥∥zt,0

∥∥
2
+
∥∥v̂t−1,Tv̂

∥∥
2
,

and, consequently,

0 ≤
∣∣∥∥v̂t,Tv̂

∥∥
2
−
∥∥v̂t−1,Tv̂

∥∥
2

∣∣ ≤
∣∣∥∥v̂t,Tv̂

∥∥
2
−
∥∥v̂t,0

∥∥
2

∣∣+
∣∣∥∥zt,Tz

∥∥
2
−
∥∥zt,0

∥∥
2

∣∣
≤
∥∥v̂t,Tv̂ − v̂t,0

∥∥
2
+
∥∥zt,Tz − zt,0

∥∥
2
.

Recalling that

v̂t,Tv̂ − v̂t,0 =
∑

j∈[Tv̂ ]
νt,j∇v̂G(ztnor, v̂t,j) and zt,Tz − zt,0 =

∑

i∈[Tz ]
µt,i∇zG(zt,i, v̂t−1

nor ),

by the triangle inequality and Lemma 4.2.7 we obtain

∥∥v̂t,Tv̂ − v̂t,0
∥∥
2
≤
∑

j∈[Tv̂ ]
νt,j
∥∥∇v̂G(ztnor, v̂t,j)

∥∥
2
≤ τ−Nd

m

∑

j∈[Tv̂ ]

∥∥∇v̂G(ztnor, v̂t,j)
∥∥
2
→ 0, (4.26)

as t → ∞ and, analogously,
∥∥zt,Tz − zt,0

∥∥
2
→ 0 as t → ∞. Consequently, {

∥∥v̂t,Tv̂
∥∥
2
}t≥1

is the Cauchy sequence and, thus, it converges and is also bounded from above by some
constant cnorm ≥ 0. Returning to (4.25), we use the obtained bound to get
∥∥∇v̂G(zt, v̂tnor)

∥∥
2
=
∥∥v̂t,Tv̂

∥∥
2

∥∥∇v̂G(ztnor, v̂t,Tv̂)
∥∥
2

≤ cnorm
[∥∥∇v̂G(ztnor, v̂t,Tv̂)−∇v̂G(ztnor, v̂t,0)

∥∥
2
+
∥∥∇v̂G(ztnor, v̂t,0)

∥∥
2

]
.

Since ε > 0, the gradient ∇v̂G is continuous and the first term converges to zero as
t → ∞ due to (4.26). The second term also converges to 0 as t → ∞ by (4.24) and,
hence, ∥∇v̂G(zt, v̂tnor)∥2 vanishes as t→ ∞. Combining this with (4.23) gives

lim
t→∞

∥∥∇zG(zt, v̂tnor)
∥∥2
2
+
∥∥∇v̂G(zt, v̂tnor)

∥∥2
2
= 0.

The derivation of the convergence speed is analogous to the proof of Theorem 4.2.6 and
considers

st := max

{
min
i∈[Tz ]

∥∥∇zG(zt,i, v̂t−1
nor )

∥∥2
2
, min
j∈[Tv̂ ]

∥∥∇v̂G(ztnor, v̂t,j)
∥∥2
2

}
,

for 1 ≤ t ≤ T1. Repeating the steps with an incorporation of the lower bound (4.22) for
the learning rates yields

min
t=1,...,T1

st ≤
mG(z0, v̂0)

T1min{Tz, Tv̂}
.
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Theorem 4.2.9 is similar to Theorem 4.2.6 in all aspects and the only difference is the
convergence rate, which in Theorem 4.2.9 is better and depends on G(z0, v̂0) linearly.
If Algorithm 11 terminates at some point

∥∥zT0,Tz
∥∥
2
= 0, it means that the gradient op-

timization with respect to object stopped at a local maximum. This is unlikely, but not
impossible. Similarly, points satisfying

∥∥v̂T0,Tv̂
∥∥
2
= 0 are local maxima for the optimiza-

tion with respect to the window. Furthermore, these points could also be an output of
Algorithm 10, but they require no special attention in Algorithm 10 as it does not perform
the normalization steps.

Finally, note that even if the condition (4.18) is not fulfilled, Algorithm 11 and its analysis
can be adjusted by only considering entries in ∪r∈R{r, r+1, . . . , r+δ−1} for normalization
and ignoring the rest.

4.3 Extended Ptychographic Iterative Engine

Among practitioners, the popular choice for recovery from the measurements (BPTY) is
extended Ptychographic Iterative Engine (ePIE). As the name suggests, it is an extension
of the PIE algorithm for the joint recovery of the object and the window. The algorithm
ePIE is initialized with a pair z0 ∈ Cd, v̂0 ∈ Cδ and constructs the t-th iterate by
performing the following steps.

Algorithm 12: ePIE iteration, version of [33]

Input : Shift position rt ∈ R and corresponding measurements Y (r), previous
iterates iterate zt ∈ Cd, v̂t ∈ Cδ, parameters α, β > 0.

Output: zt+1 ∈ Cd, v̂t+1 ∈ Cδ.
1. Select a shift position rt ∈ R.
2. Construct an exit wave ψ = S−rtzt ◦ P ∗

δ v̂
t.

3. Compute its Fourier transform Ψ = FmPmψ.
4. Correct the magnitudes of Ψ as Ψ′ =

√
Y (rt) ◦ sgn0Ψ.

5. Find an exit wave ψ′ corresponding to Ψ′ via ψ′ = P ∗
mF

−1
m Ψ′

6. Return

zt+1 = zt +
αSrt diag(v̂

t
)

∥v̂∥2∞
[ψ′ − ψ], v̂t+1 = v̂t +

β diag(PδS−rtz
t)

∥PδS−rtzt∥2∞
[ψ′ − ψ].

Several interpretations of the ePIE iterations are available in the literature, similarly to
PIE. The ePIE algorithm can also be understood as stochastic gradient descent analo-
gously to our interpretation of PIE in Section 3.5.3.We note that by (4.1), the function G
is already the sum of functions corresponding to the shift positions r ∈ R.

Theorem 4.3.1. Let G : Cd × Cδ → [0,∞) be defined as in (4.1) with ε = 0, αT = 0,
βT = 0. If for each iteration t ≥ 1, the shift position rt is sampled uniformly at random
from the set R, then, the iteration of ePIE is equal to

[
zt+1

v̂t+1

]
=

[
zt

v̂t

]
−
[
µtId Od×δ
Oδ×d νtIδ

]
gG(z

t, v̂t)
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where Oa×b ∈ Ca×b is the matrix with all entries equal to zero. The learning rates for the
object and the window are given by

µt =
α

m|R| ∥v̂t∥2∞
and νt =

β

m|R| ∥PδS−rtzt∥2∞
,

respectively, and gG is the stochastic gradient of G given by (2.23). The sampling variables
vr in gG correspond to the sampling with replacement (2.27) for K = 1 and probabilities
1/|R| as in (2.31).

Proof. Repeating the proof of Theorem 3.5.12, we obtain the analogue of (3.22), that is

zt+1 = zt − α

m ∥v̂t∥2∞
∇zL2(z

t;Av̂t,rt),

where Av̂,r denotes the row-block of matrix Av̂ corresponding to a shift position r ∈ R.
Similarly, we have

v̂t+1 = v̂t − β

m ∥PδS−rtzt∥2∞
∇v̂L2(v̂

t;Azt,rt),

with Az,r being the row-block of matrix Az corresponding to a shift position r ∈ R. Let
us denote by Gr the summands of the loss function G, so that

G(z, v̂) =
∑

r∈R
Gr(z, v̂)

and analogously to (4.3) and (4.8), we obtain

∇zGr(z, v̂) = ∇zL2(z;Av̂,r) and ∇v̂Gr(z, v̂) = ∇v̂L2(v̂;Az,r).

Furthermore, (3.23) yields

|R|gG(zt, v̂t) =
[
∇zGrt(zt, v̂t)
∇v̂Grt(z, v̂t)

]
=

[
∇zL2(z

t;Av̂t,rt)
∇v̂L2(v̂

t;Azt,rt)

]
,

and, consequently, we obtain

[
zt+1

v̂t+1

]
=

[
zt

v̂t

]
−




α
m∥v̂t∥2∞

∇zGrt(zt, v̂t)
β

m∥PδS−rtz
t∥2

∞
∇v̂Grt(zt, v̂t)


 =

[
zt

v̂t

]
−
[
µtId Od×δ
Oδ×d νtIδ

]
gG(z

t, v̂t).

Recall that at the beginning of Section 4.2, we argued that the function G (with ε > 0)
does not satisfy the inequality (2.17), while the most recent mathematical analysis of
stochastic gradient descent methods is derived under the assumption that (2.17) holds.
Therefore, despite of the stochastic gradient descent representation of ePIE, we are not
able to establish the convergence guarantees for ePIE, in contrast to Theorem 3.5.13 for
PIE.
Finally, we note that the learning rates are chosen as µt = α/|R| ∥Av̂t,rt∥2∞ and νt =

β/|R| ∥Azt,rt∥2∞, which corresponds to the constants in (2.17) for the functions Grt(·, v̂)
and Grt(z, ·), respectively.
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Notes and References. Several approaches towards blind ptychographic recovery are
present in the literature. In [188] an algorithm with guaranteed convergence based on
alternating direction method of multiplier is proposed. The previously mentioned alternat-
ing Douglas-Rachford splitting is considered in [109], however, its convergence for blind
ptychography is not analyzed. Another popular choice among practitioners is the extended
Ptychographic Iterative Engine algorithm or its variants [33], which performs simultaneous
optimization with respect to both the object and the window. Despite of its popularity, the
convergence of ePIE is not studied and strongly depends on the choice of the parameters.
The lack of convergence guarantees for extended Ptychographic Iterative Engine was the
starting point for our research, which resulted in the development of the two methods,
Algorithm 10 and Algorithm 11, with the guaranteed convergence. The only other method
in the literature with quantitative convergence is [189]. There certain similarities between
their algorithm and Algorithm 10 as both methods are based on alternating minimization.
The main difference is that in [189] the constraints on the norms ∥x∥2 and ∥w∥2 are set
explicitly, while in our case they are implicitly defined by the choice of Tikhonov regu-
larization parameters αT , βT and the initial guesses z0, v0. Furthermore, as the objective
functions are not the same, the sets of critical points might be different.
We note that it is possible to replace the gradient steps in Algorithm 11 with projection
iterations corresponding to the (smoothed) Error Reduction algorithm discussed in Sec-
tion 3.5.2. Because of the scaled gradient representation of Error Reduction provided in
Lemma 3.5.7, the resulting algorithm should posses convergence guarantees analogously
to Theorem 4.2.9. In the literature, alternating Error Reduction without reweighting is
discussed in [46].



Chapter 5

Polychromatic ptychography

So far we have focused on measurement setups where monochromatic light is used to illu-
minate the object. In practice, however, the illuminating light is almost never monochro-
matic. Instead the light usually consists of several spectral components. In this situation
an adaptation of the mathematical model is necessary.

5.1 Changes in measurement model

In Chapter 1, diffraction patterns obtained in ptychographic experiment were explained
by studying the physical phenomena for monochromatic waves. In this section, we expand
on results of Chapter 1 for polychromatic light and derive analogous characterization of
measurements. Hence, we will only highlight the main differences to the monochromatic
case. Similarly to Chapter 1, within this section, we will avoid technicalities and allow
ourselves to be not mathematically rigorous.

Recall that the mathematical description of ptychographic experiment is based on three
phenomena: propagation of wave in free space, its interaction with an object and intensity
of light. Their respective formulas where given by the equations (1.9), (1.10) and (1.11).
These equations slightly change as polychromatic light contains several components.

Retracing the steps of Section 1.1, we recall that for a component u of an electro-magnetic
field the wave equation (1.2) is satisfied. In the case of monochromatic waves, the Fourier
transform was used to transit to the Helmholtz equation (1.6). The application of the
Fourier transform can also be used for polychromatic waves. That is, the wave u is
decomposed into its spectral components via Fourier transform as

u(s, t) =

∫

R
e2πiνtdσs(ν),

with the spectral measure satisfying dσs(−ν) = dσs(ν), so that u is real-valued. Further-
more, we concentrate on the situation were σ is a linear combination of Dirac measures.
That means that the light consists of a finite number of well-separated spectral com-
ponents. Let L ∈ N be the number of monochromatic components and denote by νℓ,
ℓ ∈ [L], the frequencies of the monochromatic waves ordered in decreasing order, i.e.,

157
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ν0 > ν1 > . . . , νL−1. Then, the spectral measure is given by

σr(ν) =
1

2

∑

ℓ∈[L]
[uℓ(s)Iν=νℓ + uℓ(s)Iν=−νℓ ],

with uℓ being a density function corresponding to the frequency νℓ.
Consequently, u is given by

u(s, t) =
1

2

∑

ℓ∈[L]

[
uℓ(s)e

2πiνℓt + uℓ(s)e
−2πiνℓt

]
. (5.1)

and this decomposition of u leads to a separate Helmholtz equation for each frequency

∆uℓ + k2uℓ = 0, ℓ ∈ [L].

Therefore, the propagation of polychromatic waves in free space is approximated by (1.9)
applied to each frequency component uℓ separately. More precisely, for a polychromatic
wave with density functions (u0)ℓ, ℓ ∈ [L], propagating in free space from the x-y plane
with z = 0 to the x-y plane with z = d along the z-axis, the density functions (ud)ℓ at
z = d are approximated by

(ud)ℓ(s) ≈
−iνℓ
d

e2πidνℓe
πiνℓ
d

(x2+y2)F(u0)ℓ

(νℓs
d

)
, (5.2)

for s = (x, y) ∈ R2 and ℓ ∈ [L]. This approximation is more precise if d is sufficiently
large and the far-field assumption for frequency νℓ is satisfied.
An interaction of a polychromatic wave with an object is described by separate interactions
of monochromatic components with the object via (1.10). That is, for an incoming wave
ui with the density functions (ui)ℓ, ℓ ∈ [L], the density functions of the exit wave satisfy

(ue)ℓ(s) = xℓ(s)(ui)ℓ(s), s ∈ R2, ℓ ∈ [L], (5.3)

where xℓ : R2 → C, ℓ ∈ [L], are object transfer functions corresponding to frequencies νℓ.
The last building block of the ptychographic experiment is the intensity of light, which
at position s ∈ R2 for wave u is proportional to

I(s) ∝ ⟨|u(s, t)|2⟩ = 1

2T

∫ T

−T
|u(s, t)|2dt,

where T > 0 is the acquisition time. By (5.1), we have

|u(s, t)|2 = 1

4

∣∣∣∣∣∣
∑

ℓ∈[L]
uℓ(s)e

2πiνℓt + uℓ(s)e
−2πiνℓt

∣∣∣∣∣∣

2

=
1

4

∑

ℓ1,ℓ2∈[L]

[
uℓ1(s)uℓ2(s)e

2πit(νℓ2−νℓ1 ) + uℓ1(s)uℓ2(s)e
2πit(νℓ1−νℓ2 )

]

+
1

4

∑

ℓ1,ℓ2∈[L]

[
uℓ1(s)uℓ2(s)e

2πit(νℓ1+νℓ2 ) + uℓ1(s)uℓ2(s)e
−2πit(νℓ1+νℓ2 )

]
.
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Averaging this expression over a period of time (−T, T ), we arrive at

I(s) ∝ 1

2

∑

ℓ1,ℓ2∈[L]
Re(uℓ1(s)uℓ2(s)) sinc(2πT |νℓ1 − νℓ2|)

+
1

2

∑

ℓ1,ℓ2∈[L]
Re(uℓ1(s)uℓ2(s)) sinc(2πT (νℓ1 + νℓ2)).

If the acquisition time T is significantly larger than maxℓ1 ̸=ℓ2 |νℓ1 − νℓ2 |−1, the sinc func-
tion vanishes in all cases, except if its argument is zero. Therefore, the intensity of the
polychromatic wave u is proportional to the sum of intensities for each monochromatic
component,

I(s) ∝
∑

ℓ∈[L]
|uℓ(s)|2 , s ∈ R2. (5.4)

Consequently, let us consider the setting of the ptychographic experiment described in
Section 1.4. If a light source is polychromatic, the resulting window w is also polychro-
matic and is described by densities wℓ, ℓ ∈ [L]. For instance, if a plane polychromatic
wave is truncated by a circular aperture, in analogy to Section 1.5, each component wℓ

is given by (1.14) with νℓ substituted for ν.
Then, by replacing the equations (1.9), (1.10) and (1.11) in Section 1.4 with (5.2), (5.3)
and (5.4), respectively, the measurements obtained by the detector is essentially the sum
of the diffraction patterns for each monochromatic component,

I(r, s) ∝
∑

ℓ∈[L]

∣∣∣∣
νℓ
p
F [wℓT−rxℓ]

(
νℓs

p

)∣∣∣∣
2

, s, r ∈ R2, (5.5)

with Tr being the translation operator and p > 0 denoting the sufficiently large distance
from the object plane to the detector plane to satisfy the far-field assumption for all
frequencies νℓ, ℓ ∈ [L].

5.2 Discrete polychromatic ptychography

For simplicity, we will work with one-dimensional problem again. Without loss of general-
ity, we set p = 1, which is the same as changing the variable s and adjusting a proportional
constant in (5.4). This leads to the problem of finding a family of functions xℓ : R → C,
ℓ ∈ [L], from the measurements

I(r, s) =
∑

ℓ∈[L]
|νℓF [wℓT−rxℓ] (νℓs)|2 , s, r ∈ R. (5.6)

Furthermore, we will assume that both the object transfer functions xℓ and the density
functions wℓ are supported on the closed interval [0, 1]. For a discretization of the Fourier
transforms in (5.6), we are using the partition with equidistant nodes

Γd =

{
0

d
,
1

d
, . . . ,

d− 1

d

}
,
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+ + =

Figure 5.1: A diffraction pattern corresponding to polychromatic light consisting of
three monochromatic waves. The black square shows the size of the diffraction pattern

corresponding to the largest frequency.

and we consider shifts r of the form n
d
, n ∈ Z. This gives

F [wℓT−r/dxℓ](sνℓ) ≈ 1

d

∑

k∈[d]
xℓ

(
k + r

d

)
wℓ

(
k

d

)
I k+r

d
∈[0,1]e

− 2πiνℓsk

d (5.7)

=
1

d

∑

k∈[d]
xℓ

(
k

d

)
wℓ

(
k − r

d

)
I k−r

d
∈[0,1]e

− 2πiνℓsk

d e
2πiνℓsr

d , (5.8)

for r ∈ Z. Note that unlike in Chapter 3, we are not working with cyclic shifts, but
cutting out parts of xℓ or wℓ which lie in [0, 1]. We assume that the measurements
are only recorded for shift positions r in a set R ⊆ {−d,−d + 1, . . . , d} and denote the
cardinality of this set by R. The restriction to {−d,−d + 1, . . . , d} is a consequence of
the fact that the indicator function I k+r

d
∈[0,1] = 0 for all r /∈ {−d,−d + 1, . . . , d}. If

R = {−d,−d+ 1, . . . , d}, then all shits positions are present in the dataset.
The dual grid for the Fourier transform is dilated by νℓ and in order to avoid multiple
contributions from the largest frequency term in (5.8) we have to evaluate (5.8) on the
dual grid { 0

ν0
, 1
ν0
, . . . , d−1

ν0
}. This is represented by the black square in Figure 5.1. With

the notation

(xℓ)k = xℓ

(
k

d

)
and (wℓ)k = wℓ

(
k

d

)
,

we obtain the discretized polychromatic intensity measurements

I

(
r

d
,
j

ν0

)
≈ Ir,j :=

∑

ℓ∈[L]
ν2ℓ

∣∣∣∣∣∣
∑

k∈[d]
(xℓ)k(wℓ)k−rIk−r∈[0,d]e−

2πiνℓkj

ν0d

∣∣∣∣∣∣

2

, r ∈ R, j ∈ [d].

Furthermore, the measurements may be corrupted by noise N ∈ Rd×R,

Yr,j = Ir,j +Nr,j, j ∈ [d], r ∈ R. (5.9)

Therefore, the discrete polychromatic ptychographic problem reads as follows:

Reconstruct xℓ ∈ Cd, ℓ ∈ [L], from data (5.9).

In Section 5.5 we will also consider the blind discrete polychromatic ptychographic problem:

Reconstruct xℓ, wℓ ∈ Cd, ℓ ∈ [L], from data (5.9).
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We note that the subsampling of frequencies may be considered similarly to the monochro-
matic case in order to reduce data volumes.

5.3 Ambiguities

The polychromatic ptychography can be considered as a generalization of ptychography
as the both problems coincide for L = 1. That is, the measurements (5.6) for L = 1 are
precisely the measurements (3.1). Consequently, polychromatic ptychography is bound
to similar ambiguities.

Lemma 5.3.1. Let αℓ ∈ T, ℓ ∈ [L]. Then, xℓ, ℓ ∈ [L] and αℓxℓ, ℓ ∈ [L] generate the
same measurements.

Proof. It follows directly from equality

∣∣∣∣∣∣
∑

k∈[d]
(αℓxℓ)k(wℓ)k−rIk−r∈[0,d]e−

2πiνℓkj

ν0d

∣∣∣∣∣∣

2

=

∣∣∣∣∣∣
∑

k∈[d]
(xℓ)k(wℓ)k−rIk−r∈[0,d]e−

2πiνℓkj

ν0d

∣∣∣∣∣∣

2

.

Analogously, in the case of blind polychromatic ptychography, the ambiguities described
in Theorem 4.1.1 apply for each pair (xℓ, wℓ), ℓ ∈ [L] separately.

Theorem 5.3.2 (General ambiguities in blind polychromatic ptychography). Consider
xℓ, wℓ ∈ Cd, ℓ ∈ [L] and corresponding measurements (5.9). Then,

1. (global phase ambiguity) for all αℓ, βℓ ∈ T, ℓ ∈ [L] the pairs (αℓxℓ, βℓwℓ), ℓ ∈ [L]
produces the same measurements (5.9),

2. (scaling ambiguity) for all γℓ ∈ C\{0}, ℓ ∈ [L] pairs (γℓxℓ, wℓ/γℓ), ℓ ∈ [L] produces
the same measurements (5.9),

3. (linear phase ambiguity) for all ρℓ ∈ R, ℓ ∈ [L] pairs (zℓ, vℓ), ℓ ∈ [L] with (zℓ)k =
e−iρℓk(xℓ)k and (vℓ)k = eiρℓk(wℓ)k, k ∈ [d] produces the same measurements (5.9).

Proof. The proof is analogous to Theorem 4.1.1.

If we compare the number of unknowns in polychromatic ptychography to the monochro-
matic case, it is L times larger, yet the number of measurements remains the same.
Consequently, it is possible that other ambiguities, such as in Example 4.1.2 may arise.
However, their characterization is an open problem.

5.4 Amplitude Flow for polychromatic ptychography

In this section, we expand the Amplitude Flow algorithm for polychromatic ptychography.
For doing this, we first present the polychromatic measurements in a form of quadratic
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measurements as in (3.13). The first step towards the quadratic measurements is an
introduction of vectors awℓ,r,j ∈ Cd with entries

(awℓ,r,j)k = νℓ (wℓ)k−r Ik−r∈[0,d] e
2πiνℓkj

ν0d .

Then, we can rewrite the polychromatic measurements (5.2) as

Ir,j :=
∑

ℓ∈[L]

∣∣a∗wℓ,r,j
xℓ
∣∣2 , r ∈ R, j ∈ [d].

This can be further rewritten as follows. Define a family Qw = {Qw
r,j}j∈[d],r∈R of block

diagonal positive semidefinite matrices and vector

Qw
r,j =



aw0,r,ja

∗
w0,r,j

. . . 0
...

. . .
...

0 . . . awL−1,r,ja
∗
wL−1,r,j


 ∈ HdL, x =



x0
...

xL−1


 ∈ CdL, (5.10)

which gives
Yr,j = x∗Qw

r,jx+Nr,j, r ∈ R, j ∈ [d].

Hence, x can be recovered by minimizing the amplitude-based loss function (3.13) or its
smoothed version (3.14). Moreover, we include two additional regularization terms. The
first is the Tikhonov regularization ∥x∥22, which leads to the smoothness of the object in
the spatial domain. The second is the frequency smoothness term,

S(x;κ) :=
∑

ℓ∈[L−1]

κℓ ∥xℓ+1 − xℓ∥22 ,

with parameters κℓ > 0, ℓ ∈ [L− 1]. It can be used to impose Lipschitz continuity of the
object function xν in frequency ν or alternatively in wavelength ν−1. For instance, if the
parameters κℓ are set as 1

|ν−1
ℓ+1−ν

−1
ℓ |2 , this gives

S(x;κ) :=
∑

ℓ∈[L−1]

∥xℓ+1 − xℓ∥22
|ν−1
ℓ+1 − ν−1

ℓ |2 .

A minimization of S(x;κ) leads to a smaller constant c in the inequality

∥xℓ+1 − xℓ∥2 ≤ c|ν−1
ℓ+1 − ν−1

ℓ |.

Combining these terms, we establish an objective function

J (x;Qw, ε, αT , αS, κ) := L2,ε(x;Qw) + αT ∥x∥22 + αSS(x;κ). (5.11)

The Amplitude Flow (AF) for polychromatic ptychography reconstructs x by minimizing
J via gradient descent. That is, for an initial guess z0 ∈ CdL a sequence of iterates
{zt}t≥0 ⊂ CdL is determined by

zt+1 = zt − µt∇zJ (z),
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where µt > 0 is a suitable learning rate.
For the convergence analysis of AF, we aim to apply Theorem 3.5.4, but before that, we
derive a more convenient way to compute the gradient of J by introducing supplementary
matrices Awℓ,r ∈ Cd×d with rows

(Awℓ,r)(j) = a∗wℓ,r,j
. (5.12)

These matrices split into a product of two matrices Awℓ,r = FℓDwℓ,r, where the entries of
Fourier-like matrix Fℓ are given by

(Fℓ)j,k := e
− 2πiνℓkj

ν0d (5.13)

and Dwℓ,r is a diagonal matrix with entries

(Dwℓ,r)k,k := νℓ (wℓ)k−r Ik−r∈[0,d].

Furthermore, we also consider a block matrix Awℓ
∈ CdR×d and vectorize the measure-

ments as

Awℓ
=



Awℓ,r1

...
Awℓ,rR


 and y =



Y (r1)

...
Y (rR)


 , (5.14)

respectively. With these definitions we obtain the following properties for J .

Lemma 5.4.1. Let ε > 0. The function J is twice continuously differentiable with the
gradient given by

∇zℓJ (z) = A∗
wℓ


1−

√
y + ε√∑

ℓ∈[L] |Awℓ
z|2 + ε


Awℓ

zℓ

+ αT zℓ + αS(κℓ−1(zℓ − zℓ−1)Iℓ>0 + κℓ(zℓ − zℓ+1)Iℓ<L−1).

Moreover, the Hessian matrix of J satisfies inequality (2.17) with constant

Lw := max
ℓ∈[L]

ν2ℓ ∥Fℓ∥2∞ max
k∈[d]

∑

r∈R
|(wℓ)k−r|2Ik−r∈[0,d] + αT + αS ∥K∥∞ ,

for all z, u ∈ CdL, where a matrix K ∈ HL is defined by

Kj,k =





κk−1Ik>0 + κkIk<L−1, j = k,

−κk, j = k + 1,

−κk−1, j = k − 1,

0, otherwise.

(5.15)

Proof. By Lemma 3.5.1, the gradient is given by

∇zL2,ε(z) =
∑

j∈[d]

∑

r∈R

(
1−

√
yk + ε√

z∗Qw
r,jz + ε

)
Qw
r,jz.
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By construction, we have

Qw
r,jz =




aw0,r,ja
∗
w0,r,j

z0
...

awL−1,r,ja
∗
wL−1,r,j

zL−1


 =




(Aw0,r)(j)(Aw0,rz0)j
...

(AwL−1,r)(j)(AwL−1,rzL−1)j


 ,

and
z∗Qw

r,jz =
∑

ℓ∈[L]
|(Awℓ,rzℓ)j|2 =

∑

ℓ∈[L]
|(Awℓ

zℓ)j,r|2.

Consequently, the gradient with respect to the component zℓ is given by

∇zℓL2,ε(z) =
∑

r∈R

∑

j∈[d]


1−

√
Yr,j + ε√∑

ℓ∈[L] |(Awℓ,rzℓ)j|2 + ε


 (Awℓ,r)(j)(Awℓ,rzℓ)j

=
∑

r∈R
A∗
wℓ,r


Id −

√
Y(r) + ε√∑

ℓ∈[L] |Awℓ,rzℓ|2 + ε


Awℓ,rzℓ

= A∗
wℓ


IdL −

√
y + ε√∑

ℓ∈[L] |Awℓ
zℓ|2 + ε


Awℓ

zℓ.

Furthermore, by Lemma 3.5.1 we have

[
u
ū

]∗
∇2L2,ε(z)

[
u
ū

]
≤

∥∥∥∥∥∥
∑

r∈R

∑

j∈[d]
Qw
r,j

∥∥∥∥∥∥
∞

∥∥∥∥
[
u
ū

]∥∥∥∥
2

2

.

The sum of the matrices in the spectral norm is equal to

∑

r∈R

∑

j∈[d]
Qw
r,j =




∑
r∈R

∑
j∈[d] aw0,r,ja

∗
w0,r,j

. . . 0
...

. . .
...

0 . . .
∑

r∈R
∑

j∈[d] awL−1,r,ja
∗
wL−1,r,j




=



A∗
w0
Aw0 . . . 0
...

. . .
...

0 . . . A∗
wL−1

AwL−1
,




and for the block diagonal matrices the spectral norms satisfies
∥∥∥∥∥∥
∑

r∈R

∑

j∈[d]
Qw
r,j

∥∥∥∥∥∥
∞

= max
ℓ∈[L]

∥∥A∗
wℓ
Awℓ

∥∥
∞ = max

ℓ∈[L]
∥Awℓ

∥2∞ . (5.16)

Each matrix Awℓ
can be decomposed as

Awℓ
=



FℓDwℓ,r1

...
FℓDwℓ,rR


 =



Fℓ . . . 0
...

. . .
...

0 . . . Fℓ


 ·



Dwℓ,r1

...
Dwℓ,rR


 =: F̃ℓDwℓ
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and, thus, using the properties of the spectral norm and block diagonal matrices we get

∥Awℓ
∥2∞ ≤

∥∥∥F̃ℓ
∥∥∥
2

∞
∥Dwℓ

∥2∞ = ∥Fℓ∥2∞ ∥Dwℓ
∥2∞ . (5.17)

Moreover,

∥Dwℓ
∥2∞ =

∥∥D∗
wℓ
Dwℓ

∥∥
∞ =

∥∥∥∥∥
∑

r∈R
D∗
wℓ,r

Dwℓ,r

∥∥∥∥∥
∞

,

and since the resulting matrix is diagonal, we have

∥Dwℓ
∥2∞ = ν2ℓ max

k∈[d]

∑

r∈R
|(wℓ)k−r|2Ik−r∈[0,d]. (5.18)

Combining (5.16), (5.17) and (5.18), leads to
∥∥∥∥∥∥
∑

r∈R

∑

j∈[d]
Qw
r,j

∥∥∥∥∥∥
∞

≤ max
ℓ∈[L]

ν2ℓ ∥Fℓ∥2∞ max
k∈[d]

∑

r∈R
|(wℓ)k−r|2Ik−r∈[0,d].

From the proof of Lemma 4.2.1, we deduce that the gradient of αT ∥z∥22 is given by αT z
and its Hessian satisfies

[
u
ū

]∗
∇2(αT ∥z∥22)

[
u
ū

]
≤ αT

∥∥∥∥
[
u
ū

]∥∥∥∥
2

2

.

Finally, the smoothness penalty term S(z) can be rewritten as

S(z) =
∑

ℓ∈[L−1]

κℓ(z
∗
ℓ+1 − z∗ℓ )(zℓ+1 − zℓ) (5.19)

=
∑

ℓ∈[L−1]

κℓ(z
∗
ℓ+1zℓ+1 + z∗ℓ zℓ − z∗ℓ zℓ+1 − z∗ℓ+1zℓ) =

∑

ℓ∈[L−1]

κℓz
∗(Kℓ ⊗ Id)z, (5.20)

where ⊗ denotes the tensor product (2.3) and Kℓ ∈ RL×L is a matrix with four non-zero
entries

Kℓ
ℓ,ℓ = 1, Kℓ

ℓ+1,ℓ+1 = 1, Kℓ
ℓ,ℓ+1 = −1, Kℓ

ℓ+1,ℓ = −1.

From (5.19), we compute the gradient with respect to zℓ as

∇zℓS(z) = κℓ−1(zℓ − zℓ−1)Iℓ>0 + κℓ(zℓ − zℓ+1)Iℓ<L−1.

For the bound (2.17), the sum in (5.20) is combined into a single matrix

S(z) = z∗


 ∑

ℓ∈[L−1]

κℓK
ℓ ⊗ Id


 z = z∗(K ⊗ Id)z,

and the application of Lemma 4.2.2 gives

[
u
ū

]∗
∇2S(z)

[
u
ū

]
≤
∥∥∥∥
[
K ⊗ Id OdL

OdL K ⊗ Id

]∥∥∥∥
∞

∥∥∥∥
[
u
ū

]∥∥∥∥
2

2

.
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By the properties of block diagonal matrices and Proposition 2.1.2, we have
∥∥∥∥
[
K ⊗ Id OdL

OdL K ⊗ Id

]∥∥∥∥
∞

= ∥K ⊗ Id∥∞ = ∥K∥∞ ∥Id∥∞ = ∥K∥∞ .

Consequently, using the linearity of the Wirtinger derivatives, we obtain the desired gra-
dient formula and the estimate
[
u
ū

]∗
∇2J (z)

[
u
ū

]
=

[
u
ū

]∗
∇2L2,ε(z)

[
u
ū

]
+

[
u
ū

]∗
∇2(αT ∥z∥22)

[
u
ū

]
+

[
u
ū

]∗
∇2αSS(z)

[
u
ū

]

≤ Lw

∥∥∥∥
[
u
ū

]∥∥∥∥
2

2

,

for all z, u ∈ CdL.

Combining the results of Lemma 5.4.1 with Theorem 3.5.4, we obtain the following corol-
lary regarding the convergence of Amplitude Flow for polychromatic ptychography.

Corollary 5.4.2. Consider the family Qw = {Qw
r,j}j∈[d],r∈R defined by (5.14) and the ob-

jective function J = J ( · ;Qw, ε, αT , αS, κ) given by (5.11) with parameters ε, αT , αS, κℓ ≥
0, ℓ ∈ [L−1]. Fix a constant learning rate 0 < µc ≤ L−1

w with Lw defined in Lemma 5.4.1.
Let z0 ∈ CdL be arbitrary. Then, for a sequence {zt}t≥0 given by

zt+1 = zt − µt∇zJ (zt),

with learning rates µt = µ(J , zt, τ, µc, N) determined by Algorithm 1, we have

J (zt+1)− J (zt) ≤ −µt
∥∥∇zJ (zt)

∥∥2
2
,

for all t ≥ 0. In particular,

lim
t→∞

∥∥zt+1 − zt
∥∥2
2
= 0 and min

t∈[T ]

∥∥zt+1 − zt
∥∥2
2
≤ J (z0)

TLw
,

for all T ≥ 1.

5.5 Alternating Amplitude Flow for blind polychro-

matic ptychography

The Amplitude Flow algorithm can also be combined with an alternating minimization
to address blind polychromatic reconstruction as in Section 4.2. That is, we consider a
loss function

K(z, v) :=
∑

r∈R

∑

j∈[d]

∣∣∣∣∣∣∣∣

√√√√√
∑

ℓ∈[L]
ν2ℓ

∣∣∣∣∣∣
∑

k∈[d]
(zℓ)k(vℓ)k−rIk−r∈[0,d]e−

2πiνℓkj

ν0d

∣∣∣∣∣∣

2

+ ε−
√
Yr,j + ε

∣∣∣∣∣∣∣∣

2

+ αT ∥z∥22 + βT ∥v∥22 + αSS(z;κ
α) + βSS(v;κ

β), (5.21)
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with parameters ε, αT , αS, βT , βS ≥ 0 and v = (vT0 , . . . , v
T
L−1)

T representing all components
of the window as one long vector. The frequency smoothness penalty for object S(z)
and window S(w) use parameters καℓ ≥ 0 and κβℓ ≥ 0, ℓ ∈ [L − 1], respectively. The
corresponding matrices (5.15) are denoted by Kα and Kβ.
For a minimization of K with respect to the object variable, we observe that

K(z, v) = J (z;Qv, ε, αT , αS, κ
α) + βT ∥v∥22 + βSS(v;κ

β), (5.22)

and, thus, minimization of K(z, v) as a function of the object z is equivalent to the
minimization of J (z;Qv, ε, αT , αS, κ

α), which was discussed in the previous section.
For a minimization of K with respect to the window variable, the measurements are first
rewritten as

Ir,j =
∑

ℓ∈[L]
ν2ℓ

∣∣∣∣∣∣
∑

k∈[d]
(xℓ)k+r(wℓ)kIk+r∈[0,d]e−

2πiνℓkj

ν0d

∣∣∣∣∣∣

2

, r ∈ R, j ∈ [d].

Then, in analogy to the previous section, Ij,r is presented as a set of quadratic measure-
ments of the form w∗Qx

r,jw with w = (wT0 , . . . , w
T
L−1)

T ,

Qx
j,r =



ax0,r,ja

∗
x0,r,j

. . . 0
...

. . .
...

0 . . . axL−1,r,ja
∗
xL−1,r,j


 ∈ HdL, (5.23)

and

(axℓ,r,j)k = νℓ(xℓ)k+r Ik+r∈[0,d] e
2πiνℓkj

ν0d , k ∈ [d].

Consequently, for the minimization with respect to the window, the loss function K is
rewritten as

K(z, v) = J (v;Qz, ε, βT , βS, κ
β) + αT ∥z∥22 + αSS(z;κ

α), (5.24)

where Qz = {Qz
r,j}r∈R,j∈[d] is the family of positive semidefinite defined via (5.23) for

z. Therefore, the minimization of K(z, v) with respect to the window is equivalent to
a minimization of J (v;Qz, ε, βT , βS, κ

β) and can be performed via gradient descent. Its
convergence guarantees are analogous to Corollary 5.4.2.

Corollary 5.5.1. Consider the family Qz = {Qz
j,r}j∈[d],r∈R defined by (5.23) and the

loss function J = J (·;Qz, ε, βT , βS) given by (5.11) with parameters ε, βT , βS, κ
β
ℓ ≥ 0,

ℓ ∈ [L− 1]. Let

Lz := max
ℓ∈[L]

ν2ℓ ∥Fℓ∥2∞ max
k∈[d]

∑

r∈R
|(zℓ)k+r|2Ik+r∈[0,d] + βT + βS

∥∥Kβ
∥∥
∞ ,

with matrices Fℓ and K
β defined as in (5.13) and (5.15), respectively, and fix a constant

learning rate 0 < νc ≤ L−1
z . Then, for a sequence {vt}t≥0 given by

vt+1 = vt − νt∇vJ (vt),
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with arbitrary v0 ∈ CdL and learning rates νt = ν(J , vt, τ, νc, N) determined by Algo-
rithm 1, we have

J (vt+1)− J (vt) ≤ −νt
∥∥∇vJ (vt)

∥∥2
2
,

for all t ≥ 0. In particular,

lim
t→∞

∥∥vt+1 − vt
∥∥2
2
= 0 and min

t∈[T ]

∥∥vt+1 − vt
∥∥2
2
≤ J (v0)

TLz
,

for all T ≥ 1.

We note that in view of (5.22) and (5.24),
[
∇zK(z, v)
∇vK(z, v)

]
=

[
∇zJ(z;Qv, ε, αT , αS, κ

α)
∇vJ (v;Qz, ε, βT , βS, κ

β)

]
,

where in analogy to Lemma 5.4.1, the gradient of J (v;Qz, ε, βT , βS, κ
β) with respect to

components vℓ is given by

∇vℓJ (v;Qz, ε, βT , βS, κ
β) = A∗

zℓ


1−

√
y + ε√∑

ℓ∈[L] |Azℓv|2 + ε


Azℓvℓ

+ βTvℓ + βS(κ
β
ℓ−1(vℓ − vℓ−1)Iℓ>0 + κβℓ (vℓ − vℓ+1)Iℓ<L−1),

where Azℓ ∈ CdR×d are matrices with rows a∗zℓ,r,j.
Now, as the minimization with respect to each components is established, we can formulate
the alternating Amplitude Flow for blind polychromatic ptychography.

Algorithm 13: Alternating Amplitude Flow for blind polychromatic ptychog-
raphy

Input : Measurements Y as in (5.9), number of iterations T ∈ N,
number of object and window subiterations Tz ∈ N and Tv ∈ N,
parameters ε, αT , αS, βT , βS, κ

z
ℓ , κ

v
ℓ ≥ 0, ℓ ∈ [L− 1],

initial guesses z0, v0 ∈ CdL, AG parameters 0 < τ < 1, N ∈ N ∪ {0}.
Output: z, v ∈ CdL.
for t = 1, . . . , T do

Let zt,0 = zt−1.
Set µt,c = L−1

vt−1 as in Lemma 5.4.1.
for i ∈ [Tz] do

Determine µt,i = µt,i(K, zt,i, τ, µt,c, N) via Algorithm 1.
Update zt,i+1 = zt,i − µt,i∇zK(zt,i, vt−1).

Let zt = zt,Tz and vt,0 = vt−1

Set νt,c = L−1
zt as in Corollary 5.5.1.

for j ∈ [Tv] do
Determine νt,j = νt,j(K, vt,j, τ, νt,c, N) via Algorithm 1.
Update vt,j+1 = vt,j − νt,j∇vK(zt, vt,j).

Let vt = vt,Tv .
return z = zT , v = vT .

For Algorithm 13 similarly to Algorithm 10, we are able to show that the learning rates
are always finite.
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Lemma 5.5.2. Let ε, αT , βT > 0. Then, for all z, v ∈ CdL we have Lv ≥ αT > 0 and
Lz ≥ βT > 0. Furthermore, the learning rates µt,i and νt,j, i ∈ [Tz], j ∈ [Tv], t ≥ 1,
determined by Algorithm 13 are bounded by τ−N/αT and τ−N/βT , respectively.

Furthermore, we derive the convergence guarantees for Algorithm 13.

Theorem 5.5.3. Let K : CdL × CdL → [0,∞) be defined as in (5.21) with ε, αT , βT > 0
and αS, βS, κ

α
ℓ , κ

β
ℓ , ℓ ∈ [L − 1]. Consider the two sequences {zt}t≥0, {vt}t≥0 generated by

Algorithm 13 with arbitrary starting points z0, v0 ∈ CdL and let µt,i and νt,i be learning
rates determined by Algorithm 13. Then, for each subiteration of Algorithm 13 we have

K(zt,i+1, vt−1)−K(zt,i, vt−1) ≤ −µt,i
∥∥∇zK(zt,i, vt−1)

∥∥2
2

K(zt, vt,j+1)−K(zt, vt,j) ≤ −νt,j
∥∥∇vK(zt, vt,j)

∥∥2
2
.

for every t ≥ 1 and i ∈ [Tz], j ∈ [Tv].
Moreover,

lim
t→∞

∥∥∇zK(zt, vt)
∥∥2
2
+
∥∥∇vK(zt, vt)

∥∥2
2
= 0,

where the rate of convergence is dominated by

max{α−1
T , β−1

T }maxℓ∈[L] ν2ℓ ∥Fℓ∥2∞ K2(z0, v0) + max{α, β}K(z0, v0)

T min{Tz, Tv}
,

with α = αT + αS ∥Kα∥∞, β = βT + βS
∥∥Kβ

∥∥
∞ and the matrices Kα, Kβ as in (5.15).

The proofs are analogous to Lemma 4.2.5 and Theorem 4.2.6.

Notes and References. Polychromatic ptychography is significantly less studied in the
literature compared to monochromatic ptychography. Several algorithms [24, 190, 191,
192, 193, 194] were proposed for polychromatic reconstruction, all based either on mini-
mization of the loss function K without regularization or its analogue for Poisson max-
imum likelihood function and employ gradient-based approaches. Algorithm in [190] ap-
proaches polychromatic intensity as a convolution of separate monochromatic intensities.
In [192], the gradient descent is applied for the reconstruction of the exit waves, which
are later decoupled into the object and the window via least squares minimization. The
gradient descent is combined with the independent component analysis in [191]. In [24]
the authors establish the generalization of ePIE algorithm discussed in Section 4.3 for
polychromatic light. We note that it is equivalent to the stochastic gradient descent, in
analogy to Theorem 4.3.1. In [193], the idea of ePIE is extended by an inclusion of addi-
tional assumptions on the object. Another extension of polychromatic ePIE can be found
in [150] for illuminations with multiple orthogonal probes. There also exists a deep learn-
ing approach [194] based on generative priors. In comparison to these works, the main
advantage of our results, based on [195], are the supporting convergence guarantees.
The measurements of the form (5.5) arise not only in the case of polychromatic light, but
also when the multiple spatially incoherent beams are used in the ptychographic experiment
[196].
Note that we mostly build up upon the results established in Section 3.5.1 and Section 4.2.3,
which was the main motivation in considering the general quadratic measurements in the
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first place. In comparison to blind monochromatic ptychography in Section 4.2.4, we do
not provide a Tikhonov regularization-free algorithm for blind polychromatic ptychography.
While it is possible to derive an analogy of Algorithm 11 and Theorem 4.2.9 if αS = βS =
0, for other cases the scale invariance of the loss function (4.21) does not hold for K.
Finally, the main assumption behind the measurement formula (5.5) is that the acquisition
time of the detector T is significantly larger than maxℓ1 ̸=ℓ2 |νℓ1 − νℓ2|−1. If it is false, the
intensity will include extra terms, but the problem can still be transformed into a recovery
from quadratic measurements of the form x∗Qr,jx.



Chapter 6

Numerical experiments

6.1 Monochromatic ptychography

In this section we perform numerical experiments to study the performance of algorithms
for monochromatic ptychography discussed in this thesis.

6.1.1 Experimental setup

Our experiments are based on synthetic objects. That is we generate piecewise constant
objects in Cd with dimension d = 256 consisting of b ≤ d constant intervals. In order to do
so, we sample b− 1 indices {jk}k∈[b−1] from [d] uniformly at random without replacement.
The indices are ordered in increasing order {j(k)}k∈[b−1] and we additionally assign j(−1) =
0 and j(b−1) = d. These indices form intervals [j(k−1), j(k)), k ∈ [b], each corresponding to a
constant value of the generated object x. The values v ∈ Cb for the intervals are generated
by sampling b independent random complex Gaussian variables, vk = N (0, 1) + iN (0, 1).
Then, the object x is compiled by

xj = 2vk/ ∥v∥∞ , j ∈ [j(k−1), j(k)) for some k ∈ [b].

An example of such an object can be seen in Figure 6.1a.
As a window (Figure 6.1b), we use the discrete localized analogue of (1.15), which is given
by

wj =

{
exp

(
− (j−µ)2

2σ2δ2
+ iπ(j−µ)

2

2σ2δ2

)
, j ∈ [δ],

0, j /∈ [δ],
(6.1)

(a) Generated object with 16 intervals and d = 256. (b) Window,
δ = 32.

Figure 6.1: An example of an object and the window (6.1). The top line represents the
amplitudes with white corresponding to the largest magnitudes and black to zero. The

bottom line represents the phases on the RGB color wheel as in Figure 6.2.

171
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0 0.5 1.5 2

Figure 6.2: The representation of the phases eiφ by the color wheel for angles φ ∈ [0, 2π).

with µ = −0.5 + 0.5δ and σ2 = 0.05.
The ptychographic measurements are then computed according to (PTY) with a frequency
subsampling parameter m and a set of shifts R, which will vary between experiments and
will be specified separately. For most experiments the data is corrupted by Poisson noise,
which models random behavior of photons during the experiment. More precisely, we will
set

Yj,r =
m ∥w∥22
K

Pois

(
K

m ∥w∥22
Imj,r

)
,

where K denotes the number of photons used for a single illumination (shift position) dur-
ing the experiment (Figure 6.3). The number of photonsK takes values {102, 103, . . . , 109}
and serves as a measure of the noise level, in the sense that a higher K corresponds to
less noisy measurements. The number of photons can be roughly translated to the signal-
to-noise ratio (SNR)

SNR = 10 log10

(
∥Im∥2F

∥Y − Im∥2F

)

often used in the literature. In our case, the values of K roughly correspond to the values
{5, 15, . . . , 75} of SNR.
As a measure of reconstruction quality, the relative error (RE)

RE =
dist(z, x)

∥x∥2
is used, where dist(z, x) is given by (3.11) and accounts for the global phase ambiguity.
Another relevant metric is the relative measurement error (RME)

RME =

∑
j∈[m]

∑
r∈R ||FmPm[S−rz ◦ w]| −

√
Y j,r|2∑

j∈[m]

∑
r∈R |

√
Y j,r|2

=
L2(z;A)

L2(0d;A)
,

Shift, r

Fr
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nc
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 j
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(a) Noiseless Im.
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(b) Noisy Y .
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(c) Noise |N |.

Figure 6.3: Ptychographic measurements (PTY) for the object and the window from
Figure 6.1 with m = d and R = [d] and number of photons K = 105 and SNR ≈ 35.



6.1. MONOCHROMATIC PTYCHOGRAPHY 173

Table 6.1: The distribution of the singular values in the inversion step of BPR for
d = 256 and the window (6.1).

{0} [10−12, 10−3) [10−3, 10−2.5) [10−2.5, 10−2) [10−2, 10−1.5) [10−1.5, 0.1) [0.1, 1) [1, 13) Total

16 116 254 1080 2075 2799 1177 675 8192

where L2( · ;A) is the amplitude-based squared loss (3.13) with the measurement matrix
A given by (3.9) and 0d denotes the zero vector in Cd.
In the upcoming plots each data point is the average of the chosen metric based on 30
trials. All experiments are performed in Python on a laptop running Windows 10 Pro
with an Intel(R) Core(TM) i7-8550U processor and with 16 GB RAM.

6.1.2 Block Phase Retrieval

6.1.2.1 Noiseless reconstruction

The first experiment explores reconstruction capabilities of the Block Phase Retrieval
algorithm (BPR) (see Section 3.6) with Diagonal Magnitude Estimation and unweighted
angular synchronization, which was proposed in [40]. For these trials no subsampling in
frequencies is performed and all possible shifts positions are observed, so that m = d and
R = [d].
We start by performing a reconstruction with BPR in the noiseless case (Figure 6.4). Note
that despite the fact that the window (6.1) does not fit into the scope of Example 3.6.9,
singularities occur during the inversion step, which can also be seen in Table 6.1. There-
fore, we use BPR with the subspace completion technique (BPR + SCε) discussed in
Section 3.6.2.2 for the perfect reconstruction in the noiseless case. For comparison, the
reconstruction with the truncation of singular values BPR + TRε is also shown. For both
methods, ε ≥ 0 denotes the truncation threshold.
The reconstruction BPR + SC0 in Figure 6.4a is perfect and coincides with the original
object depicted in Figure 6.1a, which works as a proof of concept for the subspace recovery.
In contrast, minor high frequency artifacts can be seen in Figure 6.4b for reconstruction
with BPR + TR0 only using the truncation procedure.
Despite the perfect reconstruction in the noiseless case, BPR + SC0 with diagonal esti-

(a) BPR + SC0.

(b) BPR + TR0.

Figure 6.4: Reconstruction of the object with two versions of the BPR algorithm in the
noiseless case.
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Figure 6.5: Reconstruction with BPR in the presence of noise.

mation and unweighted angular synchronization is unstable in the presence of noise. In
Figure 6.5a we observe that the relative error for BPR as in Algorithm 5 does not decrease
until small noise levels. However, if the alternatives for the magnitude and the phase re-
construction are chosen and the regularization parameter is optimized, BPR achieves
better noise stability as can be seen in Figure 6.5. We will specify the optimal choices for
each component of BPR as we proceed with the numerical investigation.

6.1.2.2 Inversion step

The first component of the BPR algorithm is the inversion step, which reconstructs the
matrix Z, an approximation to the matrix X defined in (3.31), based on the pseudoin-
verse operator or equivalently on the Wigner Distribution Deconvolution as discussed in
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Figure 6.6: Performance of the truncation and subspace completion techniques for BPR.
BPR + TRε(q) selects q via (6.2).
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Section 3.6.2.1. Zero singular values are present for the window (6.1), see Table 6.1.
Thus, the inversion step can be performed with the truncation step (BPR + TRε as in
Algorithm 4) or with the additional subspace completion (BPR + SCε as in Algorithm 5).
While setting ε = 0 already suffices for a reconstruction with singularities, for larger val-
ues of ε both versions of BPR act as a regularization techniques. In the following ε will
be defined by parameter q, so that ε(q) is the empirical q-quantile and truncates q · 100%
of all singular values.

We note that assumption of the subspace completion stated in Theorem 3.6.11 may no
longer hold and the subspace completion acts as a heuristic. That is, if more than one
Fourier coefficient is lost for a single diagonal of Z, all lost coefficients are initially set to
zero and then one by one are reconstructed via (3.49).

In Figure 6.6, we observe how different values of ε(q) impact the reconstruction of X
in terms of the relative error ∥X − Z∥F / ∥X∥F and the runtime. The first outcome of
Figure 6.6a is that the subspace completion has no significant improvement over trun-
cation unless the noise is small. Furthermore, in Figure 6.6b the computation time of
BPR + SCε(q) is at least ten times larger than for BPR + TRε(q), which is caused by
the construction of the linear system (3.49). Moreover, the runtime increases with the
percentage q, i.e., the number of Fourier coefficients to be recovered via the subspace
completion.

Secondly, as the value of parameter q increases, the algorithm becomes more robust to
noise. However, we also observe that for larger q, e.g., 0.3, if the noise level decreases,
the relative error flattens. This is caused by the incorrect estimation of the lost Fourier
coefficients of the diagonals. The larger is the value of q, the higher is the percentage of
the truncated singular values and, thus, the larger is the loss of information and the faster
the flattening occurs. In the extreme case, for q = 0.8, 80% of the singular values are
below ε(0.8) and the good reconstruction quality is no longer possible. These observations
suggest that the optimal choice of q depends on the noise level represented by the number
of photons K. If K is assumed to be known, e.g., from experimental metadata, the choice

q = 0.9e−
| log10 K−2|3

45 + 0.005max{11− log10K, 0} (6.2)

is approximately optimal. The selection of parameter q in (6.2) is such that for a fixed
K the resulting q approximately coincides with the value providing the minimal relative
error in Table B.1.

Therefore, for the rest of the experiments, we will only use truncation with the choice of
ε(q) with q selected via (6.2).

In Figure 6.7 we investigate how the errors |X−Z| are distributed depending on the noise
level and the truncation parameter. For a high regularization threshold, the errors are
mainly concentrated far from the main diagonal. However, as ε decreases, the concentra-
tion of the errors shifts from the distant off-diagonals closer to the main diagonal. This
behavior does not depend on the number of photons K. For a noise-dependent choice of
ε this effect causes high errors for the off-diagonals and as the noise decreases, more and
more off-diagonals are estimated correctly.
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Figure 6.7: The average error |X − Z| resulting from the inversion step.
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Figure 6.8: Performance of different magnitude estimation techniques for BPR.

6.1.2.3 Magnitude estimation

For the magnitude estimation, we will consider the three methods discussed in Sec-
tion 3.6.3: Diagonal, Block and Log Magnitude Estimation techniques. For the latter
two methods, we will consider two variants: one, which uses all diagonals of Z and the
other, which only uses a subset of diagonals.
For Block Magnitude Estimation, we will use the covering {J γ

ℓ }ℓ∈[d], where sets J γ
ℓ are

defined as in (3.56). The parameter γ identifies how many diagonals are used for Block
Magnitude Estimation and we will consider two choices. The first uses all diagonals γ = δ
and, the second is an adaptive choice based on the percentage of the recovered Fourier
coefficients of the diagonals. That is for each possible γ = 1, . . . , δ the fraction

number of recovered Fourier coefficients for first γ diagonals

γd

is computed and the value of γ corresponding to the maximal value of the fraction is
selected. In the case that the maximal value of the fraction is below 0.6, we set γ as
1, so that Diagonal Magnitude estimation is used. The choice of the threshold 0.6 is
based on addition numerical trials exploring reconstruction errors for different values of
the threshold parameter shown in Table B.2.
Similarly, for Log Magnitude Estimation, either all diagonals are used or a subset J ⊂ [δ],
where for each diagonal dj(Z), j ∈ J , at least 80% of Fourier coefficients were recovered.
If none of the diagonals satisfy the 80% condition, only the main diagonal is used. Again,
the choice of the threshold 80% is based on additional trials summarized in Table B.3.
Figure 6.8a shows the relative error between the magnitude estimate v and actual mag-
nitude |x| for five selected reconstruction techniques. We observe that if the number of
photons K is low and, respectively, high noise is present, methods using all diagonals show
worse reconstruction than those depending only on the small subset of diagonals. In fact,
the adaptive methods coincide with Diagonal Magnitude Estimation for high noise level.
As noise decreases, the benefit from the inclusion of more diagonals is prominent with
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Figure 6.9: Performance of different weights for phase estimation within BPR

slightly better relative errors for Block Magnitude Estimation than for Log Magnitude
Estimation. In terms of runtime (Figure 6.8b), Block Magnitude Estimation consumes
more time than the other two methods, however, it is takes below one second to produce
the estimate. Notably, the runtime of Log Magnitude Estimation, which uses all diag-
onals, is just slightly slower than the runtime of Diagonal Magnitude Estimation based
only on the main diagonal of the matrix Z.

In view of the discussion above, the optimum in terms of the relative error is Block
Magnitude Estimation with the adaptive selection of diagonals.

6.1.2.4 Phase estimation

For the phase estimation, we solve the angular synchronization as discussed in Sec-
tion 3.6.4. We will only use the eigenvalue relaxation EIG for our experiments as the
semidefinite relaxation SDP requires an impractical amount of time for a single recon-
struction. In terms of weight choices, six scenarios are considered. The first three are
the unweighted case Wk,ℓ = I(k,ℓ)∈E, the amplitude weights Wk,ℓ = |Zk,ℓ|I(k,ℓ)∈E and the
squared amplitude weightsWk,ℓ = |Zk,ℓ|2I(k,ℓ)∈E, which were introduced in Section 3.6.4.5.
The second triple are the same weight scenarios, however, we only use diagonals where at
least 20% of the Fourier coefficients were recovered. If none of the diagonals satisfy this
condition only d1(Z) is used for the phase estimation. The choice of the threshold 20% is
based on additional trials with different thresholds presented in Table B.4.

Figure 6.9 shows the relative error between the obtained estimate u and the true vector of
phases sgnx given by dist(sgnx, u)/

√
d and the corresponding runtimes. We observe that

there is no significant difference between the angular synchronization applied to a subset
of the diagonals and to all diagonals. In terms of the weight choice, the smallest errors
are achieved for the amplitude weights Wk,ℓ = |Zk,ℓ|I(k,ℓ)∈E, and while the improvement
is mediocre, the runtime is only slightly longer than for the unweighted scenario. That is
why we choose the amplitude weights for the rest of the experiments.
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Consequently, the “optimal” BPR algorithm in Figure 6.5a is BPR + TRε with the reg-
ularization parameter ε(q) with the quantile value q selected via (6.2), adaptive Block
Magnitude Estimation and the phases, obtained via the eigenvalue relaxation of the an-
gular synchronization with the amplitude weights. We note that the optimality has to be
understood purely in the sense of empirical observations. While the “optimal” algorithm
is noise-aware, i.e., depends on K, it shows the reconstruction possibilities of BPR. In the
case where the number of photons is not available, the proper choice of q can be achieved
by trial-and-error with the relative measurement error as a performance metric.

6.1.2.5 Heuristics for larger shift

Let us now consider the ptychographic measurements with equidistant shifts, as discussed
in Section 3.6.5. That is the set of shifts R = Rs is given by (3.111), so that each time the
object is shifted by s pixels. In this case, the BPR algorithm as in Section 3.6 cannot be
applied, however, its adjustment can be applied under the assumption that the object x
belongs to the space Cd

s. This assumption is not true for our generated synthetic objects
and, thus, BPR as in Algorithm 7 is applied as a heuristics.
The resulting reconstruction errors for s ∈ {1, 2, 4, 8, 16} are summarized in Table 6.2.
We observe that for larger shift sizes s, the reconstruction error deteriorates and already
for s = 4 is at least 0.899. Furthermore, the relative error improves as K increases from
102 to 106 and then deteriorates, which suggests that the choice of the regularization
parameter ε(q) with quantile q selected via (6.2) is suboptimal. In addition to the relative
error presented in Table 6.2, examples of reconstructed objects are shown in Table 6.3.
While the phase reconstruction quickly deteriorates with increase of s, the magnitude
estimation is still quite accurate.
Additional numerical trials summarized in Table B.5 justified the hypothesis that the
choice of the regularization parameter q via is suboptimal. Thus, for the experiments
with Rs, we will instead select q via

q = max{0.8− 0.13(log10K − 2), 0.4} (6.3)

for s = 4. Despite the optimality of q, the errors are still high, since BPR still acts as a
heuristic. We also note that the formula for q depends on the window w and the shift size

Table 6.2: The impact of the shift size s on the reconstruction error of BPR. The last
row shows the average runtime.

K s = 1 s = 2 s = 4 s = 8 s = 16
102 1.139 1.206 1.239 1.194 1.162
103 1.187 1.170 1.276 1.189 1.242
104 0.730 1.095 1.109 1.258 1.237
105 0.241 0.535 0.930 1.233 1.280
106 0.121 0.242 0.899 1.257 1.263
107 0.082 0.201 1.019 1.205 1.273
108 0.041 0.204 1.066 1.208 1.380
109 0.022 0.225 1.131 1.313 1.392

avg. times, s 0.349 0.075 0.030 0.013 0.004
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Table 6.3: An example of reconstructions for different shift sizes with Algorithm 7. In
brackets is the overlap, given by (δ − s)/δ. K = 106.

True object

s = 1 (96.9%)

s = 2 (93.7%)

s = 4 (87.5%)

s = 8 (75%)

s = 16 (50%)

s and there is no unified approach towards its selection, which is an interesting direction
of future research.

6.1.3 Iterative methods

In this section, we will explore the performance of the iterative methods discussed in
Chapter 3. For all experiments, the shift size will be set to s = 4, so that R = Rs as in
Section 6.1.2.5 above. As the iterative methods are sensitive to the initial guess, we will
consider two possibilities. The first is a random guess, for which each entry of the object
is independently sampled from a distribution

z0,randj ∼ N (0, 1) + iN (0, 1), j ∈ [d].

The second option is initialization with BPR (acting as a heuristic), which was numerically
explored in Section 6.1.2.5. In order to identify the initialization in the plots, we will write
(rand) next to the algorithm’s name for the random initialization and (BPR) for the BPR
heuristic.

The first iterative algorithm is Amplitude Flow (AF), which was covered in Section 3.5.1.
Both for initialization of AF with random guess and with BPR, the learning rate is
constant and set to µc = ∥A∥−2

∞ , which is the maximal choice of a constant learning rate
with guaranteed convergence according to Theorem 3.5.5. Moreover, for AF with BPR
initialization, we will also select the learning rate µt via Armijo-Goldstein (AG) condition
(Algorithm 1) with τ = 0.5 and N = 2. This case will be denoted by AF(BPR)+AG. In
all three cases, AF runs for at most T = 5000 iterations or until the norm of the gradient
becomes smaller than 1.



6.1. MONOCHROMATIC PTYCHOGRAPHY 181

The second algorithm is Error Reduction (ER) from Section 3.5.2. Similarly to AF,
the ER methods stops computations after T = 5000 iteration or once the norm of the
difference between the iterates ∥zt+1 − zt∥2 is smaller than 10−3.

The last algorithm is Ptychographic Iterative Engine (PIE) introduced in Section 3.5.3.
We consider two versions of the PIE algorithm. The first, abbreviated as PIEunif , selects
the index rt uniformly at random and runs for T = 150000 iterations with the maximal
possible choice of parameter α according to Theorem 3.5.13. The second version uses
sampling with probabilities (3.25) based on the norms of the gradients. Since the compu-
tational complexity is approximately (2δ− 1)/s = 15.75 times larger, the number of iter-
ations is reduced to T = 15000. The parameter α is set α = ∥w∥2∞ /200

∥∥∑
r∈R |Srw|2

∥∥
∞.

First, let us consider how the number of photons impacts the reconstruction (Figure 6.10).
Starting with the relative measurement error, there is only a small difference between
random initialization and initialization with BPR for AF and ER. In contrast, PIE with
random initialization stops to improve around RME of 10−2.4, while PIE combined with
BPR shows RME of 10−3. In both cases, RME for PIE is significantly higher than for AF
and ER when the noise level is medium or low.

If we compare the algorithms in terms of the relative error, BPR initialization leads to
a lower relative error than random initialization. As in the case of RME, the relative
error for the versions of PIE is somewhat the same and is higher than for AF and ER.
Comparing AF to ER, the reconstruction with the latter is slightly better in terms of
RE. An additional usage of the Armijo-Goldstein condition for AF improves upon the
reconstruction error, so that the reconstruction error for AF(BPR)+AG are similar to
the error for ER(BPR) .

Turning to computation times (Table 6.4), we observe that there is no significant difference
between the two initializations for a high noise level. However, as the noise level decreases,
initialization with the BPR heuristic leads to a faster convergence of the AF and ER
algorithms. The inclusion of the AG condition for AF reduces the runtime by a factor of
two. The runtime of PIEnorm is approximately the same as of PIEunif , since the number
of iterations was decreased by a factor of ten. Finally, we note that the computational
cost of BPR can be neglected compared to the runtime of iterative algorithms.

Figure 6.11 shows how the errors progress for a single reconstruction process with each

Table 6.4: The average computation times in seconds of iterative methods.

K 102 103 104 105 106 107 108 109

BPR 0.026 0.024 0.032 0.035 0.033 0.033 0.032 0.037
AF(rand) 25.637 26.085 25.286 24.184 25.438 27.665 29.975 33.371
AF(BPR) 26.876 25.867 24.550 23.012 20.053 21.595 23.029 22.877

AF(BPR)+AG 13.646 14.064 12.213 11.818 9.981 10.498 11.443 10.745
ER(rand) 27.898 28.467 27.418 27.140 26.187 29.335 31.039 31.244
ER(BPR) 28.806 28.476 26.609 25.784 21.503 23.754 24.771 22.478

PIEunif (rand) 29.811 30.620 32.085 30.229 30.388 31.574 30.292 32.562
PIEunif (BPR) 29.818 30.673 31.523 29.905 29.952 31.039 29.514 32.422
PIEnorm(rand) 30.268 29.566 28.861 29.408 30.446 29.692 30.241 30.266
PIEnorm(BPR) 30.142 29.330 28.656 29.850 30.014 29.646 30.503 30.150
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(a) Amplitude Flow and Error Reduction.
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(b) Ptychographic Iterative Engine.

Figure 6.10: Performance of different iterative methods in the presence of noise.

iteration for the object shown in Figure 6.1a. We observe that with each iteration of AF
and ER the relative measurement error improves, which is in line with Theorems 3.5.5
and 3.5.8. Also the same holds for PIEunif , which is only guaranteed on average by The-
orem 3.5.13. For this particular object, the errors for ER and AF without AG are almost
the same. Furthermore, the measurement error for the random initialization stagnates
after 1000 iterations and the relative error suggests that the algorithms converge to wrong
fixed points. Similarly, a contrast between the initializations is observed for PIE algo-
rithms. This can also be seen by looking at the phases of the reconstructed object with
the random initialization in Table 6.5. We also note that reconstructions via PIE still
contain phase errors from the initialization with BPR, which suggests that more iterations
could lead to a better performance of the algorithms.
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(b) Ptychographic Iterative Engine. Black dashed line shows T = 15000, the stopping point of PIEnorm.

Figure 6.11: Evolution of the errors with respect to the number of performed iterations
for different iterative methods. K = 106.

6.1.4 Subsampling of frequencies

In this section, the subsampling of frequencies is considered, which allows to reduce the
memory requirements and the computational complexity of the algorithms. For our first
experiment regarding the subsampling, we consider six choices of the parameterm, equally
spaced from the minimal theoretical choice 2δ−1 (Theorem 3.6.3) to the maximal possible
m = d. For each choice of m we generate measurements with R = [d] and perform the
reconstruction with BPR. The resulting reconstruction errors are shown in Table 6.6.
Note that the number of photons K and corresponding SNR remains the same for all m.
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Table 6.5: Example of reconstructions with different iterative methods. K = 106.

True object

AF(rand)

ER(rand)

PIEunif (rand)

PIEnorm(rand)

BPR

AF(BPR)

AF(BPR)+ AG

ER(BPR)

PIEunif (BPR)

PIEnorm(BPR)

In the second experiment, we consider R = Rs with s = 4, as in Section 6.1.3 and
perform thirty reconstructions for each value of m and K via AF(BPR)+AG, discussed
in the previous section. The averaged errors of these trials are summarized in Table 6.7.

The main outcome of both experiments is that by decreasing m, i.e., the quality of diffrac-
tion patterns, the reconstruction error increases, however, simultaneously the runtime
decreases. As it is seen in Figure 6.12, despite the decrease of quality due to subsam-
pling, the main features of the object are visible. The trade-off between the runtime and
the quality of reconstruction provides an opportunity to obtain a quick noisy glance at
the object from the subsampled measurements and then use it as an initialization for an
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Table 6.6: The impact of the number of subsampled frequencies on the reconstruction
error for BPR. The last row shows the average runtime.

K m = 63 m = 102 m = 140 m = 179 m = 217 m = 256
102 1.228 1.227 1.196 1.194 1.184 1.169
103 1.121 1.129 1.134 1.144 1.077 1.141
104 0.821 0.750 0.736 0.779 0.821 0.646
105 0.372 0.297 0.287 0.296 0.239 0.262
106 0.216 0.181 0.161 0.137 0.134 0.126
107 0.124 0.117 0.085 0.084 0.066 0.086
108 0.071 0.062 0.046 0.049 0.040 0.046
109 0.044 0.031 0.025 0.024 0.020 0.020

avg. times, s 0.346 0.355 0.354 0.373 0.382 0.407

(a) With.

(b) Without.

(c) With.

(d) Without.

Figure 6.12: Reconstruction with BPR for R = [d] (left) and with AF(BPR)+AG for
R = Rs (right) with and without subsampling of frequencies in the presence of noise

(K = 106).

iterative method with unsubsampled diffraction patterns. This could be faster than run-
ning an iterative method initialized with BPR on the unsubsampled diffraction patterns.
When dimensions are large, this becomes even more crucial.

Table 6.7: The impact of the number of subsampled frequencies on the reconstruction
error for AF(BPR)+AG.

K m = 63 m = 102 m = 140 m = 179 m = 217 m = 256
102 0.865 0.874 0.781 0.696 0.667 0.710
103 0.812 0.651 0.558 0.533 0.490 0.429
104 0.698 0.443 0.468 0.502 0.358 0.451
105 0.385 0.433 0.467 0.383 0.254 0.363
106 0.579 0.523 0.527 0.295 0.340 0.246
107 0.592 0.445 0.397 0.339 0.282 0.376
108 0.471 0.516 0.446 0.364 0.340 0.294
109 0.511 0.517 0.331 0.295 0.300 0.323
times 3.238 6.170 8.066 12.382 12.909 13.439
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6.2 Blind Ptychography

In this section we consider blind ptychographic reconstruction. We keep the same exper-
imental setup as in the previous sections, so that m = d and R = Rs with s = 4.
The first algorithm is alternating Amplitude Flow (Algorithm 10) with smoothing param-
eter ε = 10−12, Tikhonov regularization αT = 10−2 and βT = 10−4. It performs T = 250
iterations with Tz = Tv̂ = 10 object and window subiterations, which in total gives 5000
gradient steps. The learning rates for object and window subiterations are selected via
AG condition (Algorithm 1) with τ = 0.5 and N = 2.
The second algorithm is alternating Amplitude Flow with reweighting (Algorithm 11)
with the same parameters, except that αT = βT = 0.
The third and last method is extended Ptychographic Iterative Engine in the form of
the stochastic gradient descent (Theorem 4.3.1) with learning rates µt = νt = 10−2.5 and
T = 150000 iterations.
We denote these algorithms as AAF, AAF+RW and ePIE, respectively. Furthermore
we consider the following initialization for the object and the window. The window
initialization is a rough approximation of the shape of the window (see Figure 6.13b) and
is given by

v1j =





0.05, 0 ≤ j < 4 or 28 ≤ j < 32,

0.3, 4 ≤ j < 8 or 24 ≤ j < 28,

0.6, 8 ≤ j < 12 or 20 ≤ j < 24,

1, 12 ≤ j < 20,

0, 20 ≤ j < 256.

(6.4)

The object is either randomly initialized or it is the result of the BPR reconstruction,
which uses v1 as window.
Figure 6.14 shows the resulting reconstruction errors for the different algorithms. We
observe that AAF and AAF+RW provide almost the same results, while ePIE performs
significantly worse. There is little difference between random initialization of the object
and initialization via BPR. Moreover, the relative error for the object reconstruction
does not drop below 0.5 and the relative error for the window reconstruction reaches the
minimum of 0.1.
This suggests that the algorithms often converge to fixed points which are not the global
minimizers. As the gradient methods are sensitive to the initialization, the reconstruction
quality may be improved by a better initialization. In order to prove this assumption,
we repeat the experiment with two different windows: v1 as before, for which the relative
error is 0.688 and a better approximation v2 from the space Cd

4 defined in (3.116). That
is, we construct v2 by setting up its isomorphic ṽ2 ∈ Cd/4, which is defined via (6.1) with

(a) True window. (b) Window initialization v1. (c) Window initialization v2.

Figure 6.13: Window initializations for blind ptychographic reconstruction.
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Figure 6.14: Performance of different iterative methods for blind ptychographic
reconstruction in the presence of noise.

δ = 8, µ = −0.5 + 0.5δ and σ2 = 0.05. The resulting window has a relative error of
0.161 and is shown in Figure 6.13c. For both windows, we use the BPR initialization
as a starting point for AAF+RW and ePIE. We exclude AAF, since its performance is
very similar to AAF+RW. The resulting reconstruction errors are shown in Figure 6.15
and the initialization with v2 significantly improves all errors. The improvement of the
reconstruction quality can also be seen in Table 6.8. Note that for this generated object
and this noise vector, AAF with random initialization and v1 performs as well as AFF
with BPR initialization and v2. Furthermore, in Table 6.8 we observe that minor shift
ambiguities as in Example 4.1.3 occur despite the fact that the condition δ = d is not
satisfied.

Finally, according to Table 6.9, the runtime of AAF is slightly longer than of ePIE,
while its non-blind analogue AF+AG was much faster than PIE (Table 6.4). This is a
consequence of an exclusion of the gradient norm stopping criterion.
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Figure 6.15: Impact of initialization on reconstruction quality via iterative methods for
blind ptychography in the presence of noise.
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Table 6.8: Example of blind reconstruction with different iterative methods. K = 106.

Algorithm Object Window

True

AAF(rand, v1)

ePIE(rand, v1)

BPR, v1

AAF(BPR, v1)

ePIE(BPR, v1)

BPR, v2

AAF(BPR, v2)

ePIE(BPR, v2)

6.3 Polychromatic ptychography

In this section we perform numerical experiments to explore the performance of gradient
descent methods for polychromatic ptychography.

6.3.1 Experimental setup

All our experiments will be performed on two-dimensional synthetic data within the
following setup. We will consider polychromatic light with L = 3 frequencies ν =
(1, 4/5, 2/3). For an object x an image of size d = 100 × 100 is used, where the real
and the imaginary parts are scaled images of the Shepp-Logan phantom and the camera-
man, respectively. We slightly alternate the real and imaginary parts for different ℓ ∈ [L]
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Table 6.9: The average runtime of different algorithms and initializations for blind
ptychography.

K 102 103 104 105 106 107 108 109

AAF(rand, v1) 48.553 46.891 47.147 47.025 46.219 46.676 47.332 46.734
AAF(rand, v1)+RW 48.306 46.851 46.875 46.474 45.732 46.583 47.116 46.295

AAF(BPR, v1) 48.733 46.906 47.027 46.806 46.119 46.696 47.308 46.500
AAF(BPR, v1)+RW 47.892 46.818 46.830 46.503 45.823 46.673 47.071 46.216
AF(BPR, v2)+RW 51.583 47.956 44.912 45.635 46.484 45.826 45.813 45.496
ePIE(rand, v1) 39.834 38.113 38.043 38.240 38.159 38.275 38.153 38.076
ePIE(BPR, v1) 40.083 37.937 38.072 38.161 38.005 38.007 38.163 37.963
ePIE(BPR, v2) 43.553 41.659 38.948 39.508 39.588 39.640 39.530 39.322

to imitate the dependence of the object on the frequencies as described in Figure 6.16.
The window w is assumed to be locally supported with supp(w) = [δ]2, δ = 40. Within
the support, its values are sampled from a Gaussian function,

(ŵℓ)k = e−∥k−µ∥22/2σ2

, ℓ ∈ [L], k ∈ [δ]2

where µ = ((δ−1)/2, (δ−1)/2) and σ2 = δ2/20 and then scaled so that wℓ =
√
ηℓŵ/ ∥ŵ∥2

with η = (0.2, 0.5, 0.3). For visualization, we refer the reader to Figure 6.17.
The set of shifts is selected by moving the center of the window along the Fermat spiral as
discussed in [197]. That is, in the polar coordinate system (ρ, ϕ) the center of the window
satisfies

ρk = csp
√
k, ϕk = kϕ0, 0 ≤ k ≤ ⌈0.5((d− δ)/csp)

2⌉ (6.5)

where the csp = 4.9 is the scaling factor of the radius and the initial angle ϕ0 is given by
ϕ0 = 2π( 2

1+
√
5
)2 ≈ 137.508◦. Then, the pairs (ρk, ϕk) are transformed into a Cartesian

coordinate system as r = (r1k, r
2
k) and the set R only contains those points r = (r1k +

d/2, r2k + d/2), for which all non-zero entries of w are contained inside the object domain
[d]2 as depicted in Figure 6.17.
Figure 5.1 shows the simulated measurements Ir,j given by (5.9). Furthermore, the mea-
surements are corrupted by Poisson noise, so that

Yr,j =
d

K
Pois

(
KIr,j
d

)
,

xℓ = 0.2ℓ+ +(1− 0.3ℓ)i =

, ℓ = 0

, ℓ = 1

, ℓ = 2

Figure 6.16: The synthetic object in polychromatic light, d = 100× 100, L = 3.
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Figure 6.17: The localized window of size 40× 40 and its shifts. Each red circle
indicates position of the window on the Fermat spiral (6.5).

where K = 106 represents the number of photons used for the experiment. Since we fix a
random seed for reproducible results, the SNR for all experiments is 38.69.
In order to measure the performance we will consider loss functions L2,ε,J ,K defined in
equations (3.14), (5.11) and (5.21), respectively, with ε = 10−8. In addition, with true
object x known for synthetic data, the total and componentwise relative object errors

TRE =


∑

ℓ∈[L]
dist2(xℓ, zℓ)




1/2

/ ∥x∥2 , and REℓ = dist(xℓ, zℓ)/ ∥zℓ∥2

can be evaluated and will be used for comparisons.

6.3.2 Amplitude Flow

We start with the non-blind polychromatic ptychography. In order to reconstruct the
object x, the Amplitude Flow algorithm discussed in Section 5.4 is employed. That is,
we perform the gradient descent minimization of the loss function J with parameters
αT = 10−2 and αS = 10−1. The weights for the smoothness penalty S are set to impose
the Lipschitz continuity in wavelength ν−1, that is κℓ = |ν−1

ℓ+1 − ν−1
ℓ |−2.

Figure 6.18: Reconstruction of the object with a known window. Each row corresponds
to a single frequency ℓ = 0, 1, 2. The two consecutive columns are the real and

imaginary parts of the object. In the figure, we show the true object x and iterates zt

for t = 0, 100, 500, 2000.
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For an initial guess of the object z0 the flat object is used, i.e., (z0)k = 1 for all k ∈
[d]2. The learning rate is set to be a constant µt = µc = L−1

w , where Lw is defined in
Lemma 5.4.1 (with appropriate parameters for the two-dimensional case). The outcome
of 2000 iterations of gradient descent is presented in Figure 6.18. We observe that already
after 100 iterations, a blurry object is visible, after 500 iterations the object is more
prominent and after 2000 iterations the edges of the Shepp-Logan phantom are smoothed.
The reconstruction is more precise for the entries of the object, which belong to a larger
number of regions. For those entries with lower number of overlaps, artifacts start to
occur due to the small amount of available information.
Note that in Figure 6.18, the objects zℓ, ℓ ∈ [L] are similar, but not the same, which
suggest that the smoothness penalty parameter αS = 10−1 was chosen small enough to
prevent the object being a constant function of frequencies, but large enough to impose
continuity in ν−1. In order to highlight the importance of the smoothness penalty, we
repeat the reconstruction with αS = 0 and plot the resulting reconstructed objects in
Figure 6.19. For αS = 0 the reconstruction is worse and more blurry.
Turning to numerical comparison, in both cases gradient descent decreases the loss J
on each step (Figure 6.20a) as guaranteed by Corollary 5.4.2. Note that for αS = 0 the
loss function L2,ε is better optimized, which points towards the overfitting phenomena
and its prevention by the inclusion of the smoothness penalty. This hypothesis is further
supported by the relative errors in Figure 6.20b. In contrast to the loss function, the
relative errors for the non-penalized solution are generally higher than for penalized.

6.3.3 Alternating Amplitude Flow

In the next experiment, we assume that the window w is unknown and the alternating
Amplitude Flow (Algorithm 13) is considered for the blind polychromatic reconstruction.

Figure 6.19: Comparison of the true object and the reconstructions with parameter
αS = 0.1 and αS = 0.
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(a) Objective function.
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Figure 6.20: Comparison of reconstructions with parameter αS = 0.1 and αS = 0. First
50 iterations are excluded for a better visualization.

The number of iterations is set to T = 200 with object and window subiterations Tz =
Tv = 10. This corresponds to a total of 4000 gradient steps, 2000 for each the object and
the window. The object regularization parameters αT , αS and parameter ε are chosen as
for the non-blind experiment above and the window regularization parameters are set to
βT = 0.1, βS = 10.

For the object initialization, the flat starting point z0 is used and the initial guess for the
window is given by v0ℓ =

√
ηℓv̂

0
ℓ/ ∥v̂0ℓ∥2 with

(v̂0ℓ )k =





2.3, ∥k − µ∥2 ≤
√
0.3δ/2,

1.3, ∥k − µ∥2 ≤
√
0.6δ/2,

0.3, ∥k − µ∥2 >
√
0.6δ/2, k ∈ [δ]2,

0, otherwise.

Figure 6.21: Reconstruction of the object for blind polychromatic ptychography. Each
row corresponds to a single frequency ℓ = 0, 1, 2. The two consecutive columns are the
real and imaginary parts of the object. In the figure, we show the true object x and

iterates zt of Algorithm 13 for t = 0, 10, 50, 200.
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Figure 6.22: Reconstruction of the window for blind polychromatic ptychography. Each
row corresponds to a single frequency ℓ = 1, 2, 3. The two consecutive columns are the
real and imaginary parts of the window. In the figure, we show the true window w and

iterates vt of Algorithm 13 for t = 0, 10, 50, 200.

The motivation behind this construction is to roughly imitate the shape of the true window
w, which would be sufficient to ensure a fast convergence to the true window.
Let us explore the performance of Algorithm 13. The reconstruction of the object gradu-
ally improves over the number of performed object subiterations, which can be observed
both in actual pictures provided by Figure 6.21 and in terms of errors in Figure 6.23a. On
the other hand, according to Figure 6.22 the reconstruction of the window visually quickly
stagnates. According to Figure 6.23b, the relative errors for the window reconstruction
only improve in the beginning and grow back to their initial values. From Figure 6.23c,
the stagnation in the reconstruction of the window may result from the overfitting, as the
values of L2,ε(z

t;Qvt) drop below L2,ε(x;Qw).
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Figure 6.23: Errors and loss functions during the blind polychromatic ptychographic
reconstruction.



Chapter 7

Outlook and future research

In the conclusion, we discuss the main outcomes of this thesis, open problems and potential
directions of future research.

By investigating Amplitude Flow, Error Reduction and Ptychographic Iterative Engine,
we observed that these algorithms can be seen as generalized gradient methods applied
to a non-convex and non-smooth loss function L2. While we established the sublinear
convergence of the algorithms to a fixed point, whether it can be strengthened to a
linear convergence rate or to a guaranteed convergence to a global minimum is unclear,
but numerical examples suggest otherwise. This is a common issue of gradient methods
applied to non-convex functions, however some studies for phase retrieval algorithms
[86, 146] guarantee linear convergence to a global minimum under additional assumptions.
The applicability of these assumptions to the ptychographic reconstruction could be an
interesting direction of future research.

The convergence properties are even less understood for blind ptychographic reconstruc-
tion. We were able to establish the convergence of alternating Amplitude Flow to a fixed
point with sublinear rate. However, the convergence analysis of extended Ptychographic
Iterative Engine as stochastic gradient descent requires a significant advances in available
methods and remains an open problem.

We note that these iterative algorithms for monochromatic ptychography and their analy-
sis can be extended to other measurements scenarios, such as polychromatic ptychography
in Chapter 5 or tomographic ptychography [198].

In Sections 6.1.3 and 6.2 we explored the use of Block Phase Retrieval algorithm as an
initialization for iterative methods in comparison to a random guess. The obtained re-
construction errors identify the starting point as an important parameter for the fast
convergence of the gradient methods. That is why the development of initialization al-
gorithms is crucial for a good and fast reconstruction. Moreover, the usage of so-called
pipelines of algorithms improves upon the reconstruction with a single method.

The numerical experiments for Block Phase Retrieval also highlighted several weak spots
of the algorithm, the first of which is the inversion step. While the regularization via
truncation, introduced in Section 3.6.2.2, decreases the relative error, the optimal choice
of the truncation threshold depends on the unknown noise level. Furthermore, for a better
noise robustness more advanced deconvolution methods may be used for the recovery of
the diagonals in the inversion step.

The second weakness are the restrictions, which Block Phase Retrieval imposes on the

194
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experimental setup. The extensions of Block Phase Retrieval to larger shifts between
illumination regions was addressed in Section 3.6.5.1 for piecewise constant objects as well
as in [141] for bandlimited objects. However, in Section 6.1.2.5, we applied the algorithm
outside these classes, i.e., as a heuristic, with limited success in phase reconstruction.
Thus, an extension to other classes of objects, e.g., with bounded total variation, may be
beneficial.
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Appendix A

Proof of Lemma 3.6.48

The proof of Lemma 3.6.48 consists of several steps. The first step is to decompose the
matrix M j,r defined in (3.121) into several simple components. Let us start with the
entries of the vector w(q) ◦ Sjw(q). We observe that for all j ∈ [δ] and q ∈ [s] we have

[w(q) ◦ Sjw(q)]t = w
(q)
t w

(q)
t−j = e−tαqIt∈[δ]e−(t−j)αqIt−j∈[δ] = e−2tαqejαqIt∈{j,j+1,...,δ−1}.

Consequently, the entries of the matrices M j,r, r ∈ [d/s], are given by

M j,r
q,k = Fd[w

(q) ◦ Sjw(q)]r−kd/s =
∑

t∈[d]
[w(q) ◦ Sjw(q)]te

2πi(r−kd/s)t
d

= ejαq

δ−1∑

t=j

e−2tαqe
2πi(r−kd/s)t

d , (A.1)

for all k ∈ [s]. Let us define

γj :=

⌊
δ − j

s

⌋
, and βj := δ − j − γjs.

Then, the proof splits into two cases.

A.1 Case γj = 0

Let us separately consider the case γj = 0, which is equivalent to δ − j < s. In view of
Remark 3.6.46 and by construction of the space Tδ,s we have

dj(U)t+ps = 0, 0 ≤ t < s− (δ − j), p ∈ [d/s].

Consequently, we can reduce the number of unknowns in the linear systems (3.122). That
is, we consider the vectors vj,r given by

vj,rk = Fd[d
j(U)]r−kd/s, k ∈ [s], r ∈ [d/s],
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and substitute the identity for diagonals above. This yields

vj,rk =
∑

t∈[s]

∑

p∈[d/s]
dj(U)t+pse

− 2πi(r−kd/s)(t+ps)
d

=
s−1∑

t=s−(δ−j)

∑

p∈[d/s]
dj(U)t+pse

− 2πirt
d e

2πikt
s e−

2πirps
d e2πikp

=
∑

t∈[δ−j]

∑

p∈[d/s]
dj(U)t+(p+1)s−δ+je

− 2πirt
d e

2πikt
s e−

2πir[(p+1)s−δ+j]
d e

2πik[s(p+1)−δ+j]
s

= e
2πikj

s

∑

t∈[δ−j]


 ∑

p∈[d/s]
dj(U)t+pse

− 2πir[(p+1)s−δ+j]
d


 e− 2πirt

d e
2πikt

s .

With supporting vectors

uj,rt :=
∑

p∈[d/s]
dj(U)t+(p+1)s−δ+je

− 2πir[(p+1)s−δ+j]
d , ur ∈ Cδ−j,

f rt := e−
2πirt

d , f r ∈ Cs,

we can rewrite the entries of vj,rk as

vj,rk = e
2πikj

s

∑

t∈[s]
[P ∗
δ−ju

j,r ◦ f r]te
2πikt

s = e
2πikj

s F ∗
s [P

∗
δ−ju

j,r ◦ f r]k = [MjF
∗
s diag(f

r)P ∗
δ−ju

j,r]k,

where Mj is the modulation operator (2.7). Returning to M j,r and its representation
(A.1), we note that it simplifies to

M j,r
q,k = ejαq

δ−1∑

t=j

e−2tαqe
2πi(r−kd/s)t

d

= e−jαqe
2πirj

d e−
2πikj

s

∑

t∈[δ−j]
e−2tαqe

2πirt
d e−

2πikt
s .

For further convenience, we introduce the following notation

aq := e−2αq , 1 > a0 > a1 > . . . > as−1 > 0, (A.2)

cq,n := (1, a1q, a
2
q, . . . , a

n−1
q )T ∈ Rn,

dj,rq := e−jαqe
2πirj

d , dj,r ∈ Cs,

Consequently, the entries of the matrix M j,r
q,k with new notation are given by

M j,r
q,k = (M−j)k,kd

j,r
q

∑

t∈[s]
[P ∗
δ−jc

q,δ−j ◦ f r]te−
2πikt

s ,

and M j,r is then

M j,r = diag(dj,r)



−P ∗

δ−jc
0,δ−j−
...

−P ∗
δ−jc

s,δ−j−


 diag(f r)FsM−j

=: diag(dj,r)Cδ−jPδ−j diag(f r)FsM−j.
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Then, the linear system (3.122) transforms into

bj,rq =
1

s
diag(dj,r)Cδ−jPδ−j diag(f r)FsM−jMjF

∗
s diag(f

r)P ∗
δ−ju

j,r + nj,r.

By Propositions 2.2.1 and 2.2.2 we have M−jMj = Is and
1
s
FsF

∗
s = Is. Also, vectors f r

satisfy |f rt | = 1, t ∈ [s], so that

diag(f r) diag(f r) = diag(|f r|2) = Is.

Moreover, by (2.11), Pδ−jP ∗
δ−j = Iδ−j, and thus, the system simplifies to

bj,rq = diag(dj,r)Cδ−juj,r + nj,r.

Note that diag(dj,r) is diagonal with nonzero entries and, thus, it is invertible. The
s × (δ − j) matrix Cδ−j is the tall Vandermonde matrix with unique generating entries
aq, q ∈ [s], and, hence, injective. Consequently, the vectors uj,r can be recovered from the
measurements by an application of the pseudoinverse

uj,r = (Cδ−j)† diag(dj,r)−1bj,rq .

The last step of the proof for the case γj = 0 is to note that

uj,rt = e−
2πir[s−δ+j]

d

∑

p∈[d/s]
dj(U)t+(p+1)s−δ+je

− 2πirp
d/s = e−

2πir[s−δ+j]
d Fd/s[d

j(U)t+s−δ+j+·s]r,

and, thus, the non-zero entries of diagonal dj(U) are recovered via the inverse Fourier
transform

dj(U)t+s−δ+j+ps =
s

d

∑

r∈[d/s]
e

2πir[s−δ+j]
d uj,rt e

2πirp
d/s , t ∈ [δ − j], p ∈ [d/s].

A.2 Case γj > 0

In this case we continue to transform representation (A.1) of the matrix M j,r. We split
t ∈ {j, j + 1 . . . , δ − 1} into t = j + t1s+ t2, where t1 ∈ [γj] and t2 ∈ [s]. This leads to

M j,r
q,k = e−jαqe

2πi(r−kd/s)j
d

∑

t∈[δ−j]
e−2tαqe

2πi(r−kd/s)t
d

= e−jαqe
2πirj

d e−
2πikj

s


 ∑

t1∈[γj ]

∑

t2∈[s]
e−2(t1s+t2)αqe

2πi(r−kd/s)(t1s+t2)
d

+
∑

t2∈[βj ]
e−2(γjs+t2)αqe

2πi(r−kd/s)(γjs+t2)

d




= e−jαqe
2πirj

d e−
2πikj

s


 ∑

t1∈[γj ]
e−2t1sαqe

2πirt1s
d e−2πikt1

∑

t2∈[s]
e−2t2αqe

2πirt2
d e−

2πikt2
s +

+e−2γjsαqe
2πirγjs

d e−2πikγj
∑

t2∈[βj ]
e−2t2αqe

2πirt2
d e−

2πikt2
s


 . (A.3)
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Note that the exponents e−2πikt1 and e−2πikγj are equal to one and vanish. With the vector

d2,j,rq :=

∑
t∈[γj ] e

−2tsαqe
2πirts

d

e−2γjsαqe
2πirγjs

d

, d2,j,r ∈ Cs

we rewrite the entries of M j,r as

M j,r
q,k = dj,rq (M−j)k,k

[
d2,j,rq [Fs diag(f r)c

q,j,s]k + [Fs diag(f r)P
∗
βj
cq,j,βj ]k

]
,

or the full matrix as

M j,r = diag(dj,rq )
[
diag(d2,j,r)Cs + CβjPβj

]
diag(f r)FsM−j.

The matrices diag(dj,rq ) and diag(f r) are diagonal with non-zero entries and, therefore,
invertible. The matrices Fs andM−j are also invertible and, thus, M j,r is invertible if and
only if the matrix

Gj,r := diag(d2,j,r)Cs + CβjPβj

is invertible. In order to obtain the invertibility of Gj,r, we show that its singular values
are positive by employing the following inequalities for singular values.

Theorem A.2.1 (Weil’s inequality for singular values, [48, Problem III.6.5]). Consider
A,B ∈ Cp×n for some 1 ≤ p ≤ n. Then, for all j ∈ [p] we have

|σj(A+B)− σj(A)| ≤ σ1(B),

which is equivalent to

σj(A)− σ1(B) ≤ σj(A+B) ≤ σj(A) + σ1(B).

In addition, we require a bound for singular values of a product of two matrices.

Theorem A.2.2 (Multiplication bounds [48, Problem III.6.2]). Consider A ∈ Cp×n and
B ∈ Cn×r for some 1 ≤ p ≤ n and 1 ≤ r. Then, for all j ∈ [p] we have

σj(AB) ≤ σj(A)σ1(B).

In particular, if one of the matrices is invertible, this leads to the following corollary.

Corollary A.2.3. Consider A ∈ Cn×p and invertible B ∈ Cn×n for some 1 ≤ p ≤ n.
Then, for all j ∈ [p] we have

σj(A)σn(B) ≤ σj(BA) ≤ σj(A)σ1(B),

Proof. For the upper bound we apply the previous theorem to (BA)T . That is, for j ∈ [p]
we have

σj(BA) = σj((BA)
T ) = σj(A

TBT ) ≤ σj(A
T )σ1(B

T ) = σj(A)σ1(B).

For the lower bound we apply the established inequality to Ã = BA and B̃ = B−1, which
gives

σj(A) = σj(B
−1BA) = σj(B̃Ã) ≤ σj(Ã)σ1(B̃) = σj(BA)σ1(B

−1) = σj(BA)
1

σn(B)
.
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Furthermore, we would require the bounds on the singular values for each component of
Gj,r. For diag(d2,j,r) we have the following statement.

Lemma A.2.4. The minimal singular value of the matrix diag(d2,j,r) satisfies

σs(diag(d
2,j,r)) ≥ a

−γjs
0 − 1

1 + as0
,

with a0 given by (A.2).

Proof. The matrix diag(d2,j,r) is diagonal and, thus, we have

σs(diag(d
2,j,r)) = min

q∈[s]
|d2,j,rq | = min

q∈[s]

∣∣∣∣∣

∑
t∈[γj ] e

−2tsαqe
2πirts

d

e−2γjsαqe
2πirγjs

d

∣∣∣∣∣

= min
q∈[s]

∣∣∣∣∣∣
1− e−2γjsαqe

2πirγjs

d

e−2γjsαq

(
1− e−2sαqe

2πirs
d

)

∣∣∣∣∣∣
,

where we used that the sum is a geometric sum with at least one non-zero summand due
to γj > 0. Computing the absolute values results in

σs(diag(d
2,j,r)) = min

q∈[s]

√
1 + e−4γjsαq − 2e−2γjsαq cos

(
2πrγjs

d

)

e−2γjsαq

√
1 + e−4sαq − 2e−2sαq cos

(
2πrs
d

)

≥ min
q∈[s]

√
1 + e−4γjsαq − 2e−2γjsαq

e−2γjsαq
√
1 + e−4sαq + 2e−2sαq

= min
q∈[s]

1− e−2γjsαq

e−2γjsαq(1 + e−2sαq)
= min

q∈[s]

e2(γj+1)sαq − e2sαq

1 + e2sαq
.

Let us consider the function

f(x) =
xγj+1 − x

1 + x
,

for x > 1. Its derivative is given by

f ′(x) =
((γj + 1)xγj − 1)(1 + x)− (xγj+1 − x)

(1 + x)2
=
γjx

γj+1 + (γj + 1)xγj − 1

(1 + x)2
.

Since x > 1 and γj > 0, we have

f ′(x) >
0 + (0 + 1) · 1− 1

(1 + x)2
= 0,

and, thus, f(x) is increasing for x > 1. Recall that by the assumption of Lemma 3.6.48
the parameters αq, q ∈ [s], satisfy 0 < α0 < α1 < . . . < αs−1. Hence, by the monotonicity
of the exponent

1 < e2sα0 < e2sα1 < . . . < e2sαs−1 ,

and by the monotonicity of f , we get

σs(diag(d
2,j,r)) ≥ e2(γj+1)sα0 − e2sα0

1 + e2sα0
=
a
−sγj
0 − 1

1 + as0
.
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For the Vandermonde matrix, the next lemma provides bounds on the maximal and the
minimal singular values.

Lemma A.2.5. Consider 1 ≤ n ≤ s. Let V be a s× n Vandermonde matrix

V =



1 a0 a20 . . . an−1

0
...

...
...

...
...

1 as−1 a2s−1 . . . an−1
s−1


 ,

with 1 > a0 > a1 > . . . > as−1 > 0 given by (A.2). Then,

σ1(V ) ≤ √
sn.

Furthermore, if n = s we have

σs(V ) ≥ minq∈[s−1](aq − aq+1)
s−1

√
s(1 + a0)s−1

.

Proof. For the maximal singular value, we use that σ2
1(V ) = ∥V ∥∞ ≤ ∥V ∥F and aq ≤ 1,

which leads to
σ2
1(V ) ≤ ∥V ∥2F =

∑

q∈[s]

∑

j∈[n]
|ajq|2 ≤ sn.

Now, set n equal to s, so that V is a square matrix. For the bound on the minimal
singular value of the inverse matrix, we apply the results of [199] (see also [200, pp. 46-47
and Lemma 2.1.8]), which states that

∥∥V −1
∥∥
∞ ≤ √

smax
q∈[s]

∏

p∈[s]
p̸=q

1 + ap
|aq − ap|

First, let us bound the denominator from below using the monotonicity of aq. For all
q ∈ [s], we have

∏

p∈[s]
p ̸=q

|aq − ap| =
q−1∏

p=0

(aq − ap)
s−1∏

p=q+1

(ap − aq)

≥ (aq−1 − aq)
q−1(aq − aq+1)

s−q ≥ min
q∈[s−1]

(aq − aq+1)
s−1.

Then, we obtain

∥∥V −1
∥∥
∞ ≤ √

s

maxq∈[s]
∏

p∈[s]
p̸=q

(1 + ap)

minq∈[s−1](aq − aq+1)s−1
≤ √

s
(1 + a0)

s−1

minq∈[s−1](aq − aq+1)s−1
.

The equality ∥V −1∥∞ = σs(V )−1 leads to the desired bound,

σs(V ) ≥ minq∈[s−1](aq − aq+1)
s−1

√
s(1 + a0)s−1

.
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Continuing with the proof of Lemma 3.6.48, we now bound the smallest singular value
of the matrix Gj,r using the established above bounds. That is, by Theorem A.2.1 and
Corollary A.2.3, we obtain

σs(G
j,r) ≥ σs(diag(d

2,j,r)Cs)− σ1(C
βjPβj) ≥ σs(diag(d

2,j,r))σs(C
s)− σ1(C

βjPβj).

Since the multiplication with Pβj only appends zero columns to Cβj , the spectral norm of
CβjPβj is equal to the spectral norm of Cβj , which is bounded from above by Lemma A.2.5.
Consequently, by Lemma A.2.4 and Lemma A.2.5 we have

σs(G
j,r) ≥ a

−γjs
0 − 1

1 + as0
· minq∈[s−1](aq − aq+1)

s−1

√
s(1 + a0)s−1

−
√
sβj

>
a−s0 − 1

1 + as0
· minq∈[s−1](aq − aq+1)

s−1

√
s(1 + a0)s−1

− s,

where we used that γj ≥ 1 and βj < s in the second line. Now, let us apply the
assumptions on αq, q ∈ [s]. That is, the inequality

αq+1 − 1
2
log 2 ≥ αq, q ∈ [s− 1],

is equivalent to
2aq+1 ≤ aq or aq+1 ≤ aq − aq+1,

and, hence,
min
q∈[s−1]

(aq − aq+1)
s−1 ≥ min

q∈[s−1]
as−1
q+1 = as−1

s−1.

This leads to

σs(G
j,r) >

(a−s0 − 1)as−1
s−1√

s(1 + as0)(1 + a0)s−1
− s =

(1− as0)a
−s
0 as−1

s−1√
s(1 + as0)(1 + a0)s−1

− s.

The second assumption

α0 ≥
s− 1

s
αs−1 +

3

4s
log s+

(s+ 1)

2s
log 2

is equivalent to
a−s0 ≥ a

−(s−1)
s−1 s3/22s+1

and implies as0 ≤ 1/2 < 1. Therefore, we obtain

σs(G
j,r) >

(1− as0)a
−(s−1)
s−1 s3/22s+1as−1

s−1√
s(1 + as0)(1 + a0)s−1

− s

=
(1− as0)2

s+1s

(1 + as0)(1 + a0)s−1
− s

>
2−12s+1s

2 · 2s−1
− s = s− s = 0,

so that the matrices Gj,r and M j,r are invertible and the proof is concluded.
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Finally, we show that there exists a feasible set of parameters αq, q ∈ [s]. Let us consider
the case when the first assumption holds with all equalities,

αq+1 = αq +
1
2
log 2, q ∈ [s− 1],

Then, it gives
αs−1 = α0 +

(s−1)
2

log 2,

and, consequently, the second assumption reads as

α0 ≥
s− 1

s
α0 +

(s−1)2

2s
log 2 +

3

4s
log s+

(s+ 1)

2s
log 2,

which is equivalent to

α0 ≥ s2−s+2
2

log 2 +
3

4
log s > 0.

We would like to note that our bounds in this proof are rough and it affects the assump-
tions on parameters αq. However, our main goal was to show that there exists a set of
windows, which lead to an invertible system (3.122) and it was achieved.



Appendix B

Extra tables

Table B.1: Average relative errors ∥X − Z∥F / ∥X∥F depending on the percentage of
truncated singular values during the inversion step of the Block Phase Retrieval

algorithm. The bold font highlights the minimum error among the values of q in each
column, excluding an adaptive choice of q in the last line.

K 102 103 104 105 106 107 108 109

q = 0.00 414.474 138.269 41.293 12.950 3.842 1.333 0.443 0.133
q = 0.005 244.099 79.466 24.888 7.500 2.204 0.765 0.252 0.088
q = 0.01 168.320 53.597 16.889 5.154 1.511 0.528 0.173 0.074
q = 0.02 109.446 35.171 11.077 3.385 1.008 0.356 0.138 0.088
q = 0.03 87.520 28.060 8.820 2.695 0.803 0.295 0.138 0.109
q = 0.04 75.099 24.069 7.562 2.316 0.695 0.264 0.140 0.118
q = 0.05 66.736 21.487 6.721 2.059 0.627 0.254 0.158 0.146
q = 0.06 61.108 19.690 6.173 1.887 0.581 0.252 0.170 0.160
q = 0.07 57.088 18.381 5.766 1.763 0.547 0.248 0.178 0.169
q = 0.08 53.441 17.247 5.413 1.654 0.521 0.253 0.191 0.185
q = 0.09 50.515 16.336 5.129 1.563 0.503 0.259 0.204 0.201
q = 0.10 48.040 15.530 4.885 1.491 0.485 0.260 0.210 0.208
q = 0.20 30.575 9.891 3.122 0.995 0.421 0.335 0.323 0.324
q = 0.30 20.239 6.547 2.104 0.746 0.440 0.414 0.411 0.411
q = 0.40 13.962 4.538 1.499 0.638 0.479 0.476 0.470 0.474
q = 0.50 9.767 3.196 1.131 0.617 0.538 0.544 0.540 0.543
q = 0.60 6.712 2.234 0.910 0.629 0.589 0.600 0.596 0.601
q = 0.70 4.301 1.512 0.791 0.663 0.643 0.656 0.652 0.656
q = 0.80 2.109 0.972 0.769 0.735 0.725 0.740 0.733 0.737
q = 0.90 0.873 0.845 0.848 0.846 0.841 0.844 0.845 0.846
via (6.2) 0.880 0.860 0.763 0.622 0.422 0.252 0.138 0.073

222



223

Table B.2: Average relative errors ∥|x| − v∥2 / ∥x∥2 depending on the percentage
parameter p used for the selection of the width γ for Block Magnitude Estimation.

Highlighted are the minimums for each column.

K 102 103 104 105 106 107 108 109

p = 0.1 0.165 0.171 0.171 0.140 0.100 0.070 0.033 0.019
p = 0.2 0.179 0.184 0.171 0.140 0.100 0.070 0.033 0.019
p = 0.3 0.179 0.184 0.151 0.140 0.100 0.070 0.033 0.019
p = 0.4 0.179 0.184 0.151 0.140 0.100 0.070 0.033 0.019
p = 0.5 0.179 0.184 0.151 0.140 0.100 0.070 0.033 0.019
p = 0.6 0.179 0.184 0.151 0.134 0.100 0.070 0.033 0.019
p = 0.7 0.179 0.184 0.151 0.134 0.100 0.070 0.033 0.019
p = 0.8 0.179 0.184 0.151 0.134 0.123 0.070 0.033 0.019
p = 0.9 0.179 0.184 0.151 0.134 0.123 0.070 0.033 0.019
p = 1.0 0.179 0.184 0.151 0.134 0.123 0.218 0.173 0.101

Table B.3: Average relative errors ∥|x| − v∥2 / ∥x∥2 depending on the choice of
percentage parameter p for the selection of diagonals used for Log Magnitude

Estimation. Highlighted are the minimum values along the columns.

K 102 103 104 105 106 107 108 109

p = 10% 0.291 0.434 0.306 0.211 0.121 0.083 0.041 0.030
p = 20% 0.179 0.184 0.329 0.197 0.121 0.083 0.041 0.030
p = 30% 0.179 0.184 0.346 0.245 0.131 0.083 0.041 0.030
p = 40% 0.179 0.184 0.151 0.222 0.134 0.083 0.041 0.030
p = 50% 0.179 0.184 0.151 0.222 0.134 0.083 0.041 0.030
p = 60% 0.179 0.184 0.151 0.225 0.132 0.083 0.041 0.030
p = 70% 0.179 0.184 0.151 0.235 0.124 0.082 0.041 0.030
p = 80% 0.179 0.184 0.151 0.134 0.115 0.082 0.041 0.030
p = 90% 0.179 0.184 0.151 0.134 0.132 0.081 0.041 0.030
p = 100% 0.179 0.184 0.151 0.134 0.123 0.296 0.048 0.027
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Table B.4: Average relative errors dist(x, u)/
√
d depending on the choice of percentage

parameter p for the selection of diagonals used for the angular synchronization.
Highlighted are the minimum value along the columns.

K 102 103 104 105 106 107 108 109

Unweighted
p = 10% 1.255 1.287 0.949 0.389 0.159 0.104 0.051 0.029
p = 20% 1.229 1.201 0.948 0.379 0.159 0.104 0.051 0.029
p = 30% 1.224 1.202 0.955 0.399 0.159 0.104 0.051 0.029
p = 40% 1.229 1.207 1.199 0.396 0.159 0.104 0.051 0.029
p = 50% 1.228 1.204 1.196 0.396 0.159 0.104 0.051 0.029
p = 60% 1.230 1.196 1.203 0.419 0.161 0.104 0.051 0.029
p = 70% 1.234 1.201 1.201 0.486 0.159 0.104 0.051 0.029
p = 80% 1.232 1.219 1.196 1.128 0.159 0.103 0.051 0.029
p = 90% 1.225 1.209 1.202 1.109 0.228 0.111 0.051 0.029
p = 100% 1.227 1.208 1.203 1.098 1.137 0.439 0.074 0.032

Amplitude Weights
p = 10% 1.171 1.218 0.845 0.324 0.137 0.094 0.044 0.027
p = 20% 1.195 1.198 0.849 0.322 0.137 0.094 0.044 0.027
p = 30% 1.195 1.198 0.927 0.331 0.137 0.094 0.044 0.027
p = 40% 1.195 1.198 1.160 0.349 0.137 0.094 0.044 0.027
p = 50% 1.195 1.198 1.160 0.349 0.137 0.094 0.044 0.027
p = 60% 1.195 1.198 1.160 0.368 0.139 0.094 0.044 0.027
p = 70% 1.195 1.198 1.160 0.433 0.137 0.094 0.044 0.027
p = 80% 1.195 1.198 1.160 1.089 0.139 0.093 0.044 0.027
p = 90% 1.195 1.198 1.160 1.089 0.199 0.099 0.044 0.027
p = 100% 1.195 1.198 1.160 1.089 1.146 0.346 0.059 0.024

Sq. Amplitude Weights
p = 10% 1.185 1.171 0.859 0.364 0.170 0.115 0.047 0.033
p = 20% 1.199 1.183 0.859 0.362 0.170 0.115 0.047 0.033
p = 30% 1.199 1.183 0.919 0.391 0.170 0.115 0.047 0.033
p = 40% 1.198 1.183 1.160 0.411 0.169 0.115 0.047 0.033
p = 50% 1.199 1.183 1.160 0.411 0.169 0.115 0.047 0.033
p = 60% 1.198 1.183 1.160 0.417 0.163 0.115 0.047 0.033
p = 70% 1.197 1.183 1.160 0.449 0.158 0.115 0.047 0.033
p = 80% 1.198 1.183 1.160 1.082 0.152 0.113 0.047 0.033
p = 90% 1.198 1.183 1.160 1.082 0.197 0.110 0.047 0.033
p = 100% 1.197 1.183 1.160 1.082 1.139 0.424 0.060 0.072
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Table B.5: The average relative errors ∥X − Z∥F / ∥X∥F depending on the percentage
of truncated singular values during the inversion step of the Block Phase Retrieval

algorithm with the shift size s = 4. The bold font highlights the minimum error among
the values of q in each column, excluding an adaptive choice of q in the last line.

K 102 103 104 105 106 107 108 109

q = 0.00 95.866 30.821 10.663 5.063 4.314 4.170 3.813 4.056
q = 0.01 74.596 23.950 8.315 3.486 2.516 2.289 2.268 2.441
q = 0.01 66.813 21.298 7.177 3.032 2.214 2.049 2.001 2.148
q = 0.02 62.727 20.209 6.817 2.871 2.121 1.963 1.920 2.049
q = 0.03 59.531 19.301 6.490 2.712 1.981 1.835 1.825 1.951
q = 0.04 23.344 7.452 2.845 1.741 1.608 1.515 1.526 1.682
q = 0.05 23.344 7.452 2.845 1.741 1.608 1.515 1.526 1.682
q = 0.06 23.344 7.452 2.845 1.741 1.608 1.515 1.526 1.682
q = 0.07 23.344 7.452 2.845 1.741 1.608 1.515 1.526 1.682
q = 0.08 23.344 7.452 2.845 1.741 1.608 1.515 1.526 1.682
q = 0.09 23.344 7.452 2.845 1.741 1.608 1.515 1.526 1.682
q = 0.10 23.344 7.452 2.845 1.741 1.608 1.515 1.526 1.682
q = 0.20 13.671 4.349 1.706 1.059 0.990 0.922 0.936 0.975
q = 0.30 7.210 2.405 1.112 0.862 0.840 0.801 0.808 0.834
q = 0.40 3.548 1.344 0.844 0.771 0.764 0.747 0.744 0.764
q = 0.50 2.005 1.000 0.843 0.824 0.823 0.810 0.809 0.826
q = 0.60 1.150 0.907 0.887 0.880 0.885 0.871 0.875 0.885
q = 0.70 0.919 0.880 0.886 0.880 0.886 0.876 0.881 0.888
q = 0.80 0.896 0.886 0.892 0.887 0.892 0.887 0.889 0.895
q = 0.90 0.941 0.940 0.944 0.940 0.944 0.940 0.942 0.945
via (6.3) 0.896 0.877 0.869 0.774 0.764 0.747 0.744 0.764
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