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Abstract

Nanomechanical resonators are widely used as sensors because they are highly
susceptible to their surrounding environment. The performance or quality factor
of these devices can, for instance, be boosted by increasing the tensile stress or
decreasing the amount of material defects. Stressed crystalline materials are partic-
ularly interesting as they combine both methods and offer, therefore, unprecedented
quality factors. Here, we investigate freely suspended doubly clamped nanome-
chanical string resonators fabricated from highly stressed crystalline 3C-SiC(111).
We develop a new fabrication process that relies on a two step ICP-RIE process.
The resulting string resonators are characterized with the help of piezo actuation
and an interferometric detection scheme. We measure the Young’s modulus with
a method based on the eigenmode spectrum of nanomechanical string resonators,
which is susceptible to the stress and crystal orientation of the corresponding
strings. The resulting values of four different materials are compared to the litera-
ture, indicating that the Young’s modulus depends on a wafer’s growth conditions.
We find a universal length dependence of the tensile stress in string resonators.
Furthermore, we use an elastic model to describe our findings, revealing that minor
geometry adaptions can already boost the stress significantly.
We analyze the quality factor as a function of the length and mode number. An
advanced dissipation dilution model developed by Ignacio Wilson-Rae describes
our findings almost perfectly. With the extracted dissipation factor from the model
and the measured quality factors, we calculate the loss angle and find it to be
constant over a wide frequency range.
We measure the string resonator’s dissipation and frequency between 4 K and room
temperature. The measurements suggest thermally activated defects at 180 K. Fur-
thermore, a hysteresis-like behavior at 23 K is analyzed and compared to another
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crystalline material.
Additionally, we implement a dielectric driving scheme that allows tuning of the
frequency and dissipation by applying a dc voltage. Finally, the temperature de-
pendence of the an asymmetric avoided crossing of two mechanical modes is
discussed.
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Zusammenfassung

In dieser Arbeit werden doppelt eingespannte nanomechanische Saitenresonatoren
aus stark verspanntem kristallinem 3C-SiC(111) untersucht. Wir entwickeln ein
zuverlässiges Herstellungsverfahren, das auf einem neuen zweistufigen ICP-RIE
Rezept beruht. Die Saitenresonatoren werden mittels eines Piezoantriebs und
einem interferometrischen Ausleseverfahren charakterisiert. In einem nächsten
Schritt messen wir das Elastizitätsmodul mit einer neu entwickelten Methode, die
auf dem Eigenmodenspektrum der Saitenresonatoren basiert. Dadurch reagiert
dieses Verfahren insbesondere auf Stressänderungen im Resonator. Wir ermitteln
das Elastizitätsmodul für vier unterschiedliche Materialien und vergleichen diese
mit Literaturwerten. Es zeigt sich, dass das Elastizitätsmodul von den Wachstums-
bedingungen des Wafers abhängt.
Mithilfe der Euler-Bernoulli Balkentheorie bestimmen wir die Zugpannung von
Saitenresonatoren. Wir zeigen für mehrere Materialien eine Längenabhängigkeit
der Zugpannung. Zur Beschreibung unserer Ergebnisse wird ein elastisches Modell
verwendet, welches zeigt, dass bereits geringe Geometrieanpassungen die Zugpan-
nung deutlich erhöhen können.
Wir messen den Qualitätsfaktor in Abhängigkeit der Länge und der Modennummer.
Ein neues, von Ignacio Wilson-Rae entwickeltes, Modell beschreibt unsere Ergeb-
nisse nahezu perfekt. Mit den extrahierten Parametern aus dem Modell und den
gemessenen Qualitätsfaktoren berechnen wir die Verluste (loss angle) und stellen
fest, dass sie über einen breiten Frequenzbereich konstant sind.
Wir messen die Verluste und die Frequenz des String-Resonators für Temperaturen
zwischen 4 K und Raumtemperatur. Die Messungen deuten auf thermisch aktivierte
Defekte bei circa 180 K hin. Außerdem diskutieren wir ein hystereseähnliches
Verhalten bei 23 K und vergleichen es mit dem Verhalten eines anderen kristalli-
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nen Materials. Zusätzlich implementieren wir ein dielektrisches Antriebsschema,
welches die Verschiebung der Frequenz und der Dämpfung durch Anlegen einer
Spannung ermöglicht. Zuletzt diskutieren wir die Temperaturabhängigkeit der
Kopplung zwischen zwei mechanischen Moden.
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1
Introduction

In 1824, J. J. Berzelius accidentally discovered silicon carbide (SiC) during an
attempt to produce diamonds.1–3 Although it was quickly realized that this novel
material has exceptional properties, silicon was favored for applications due to
an easier fabrication process.3 Today, nearly every electronic device features at
least a few silicon based components.4 One big branch are microelectromechanical
systems (MEMS), which are used as sensors for e.g. pressure and acceleration.4

Hidden from our eyes, these sensors decide when to deploy a car’s airbag, count
steps in a smartwatch, and measure the tilting angle in our smartphone. However, Si
sensors are not very well suited for applications with high powers, high voltages, or
high temperatures. Since SiC excels exactly under these circumstances, the interest
in SiC was reignited over 150 years after its discovery.3,5–7 Initially, SiC MEMS
sensors have especially been deployed for gas turbines and combustion engines,
where the sensors have to withstand temperatures above 400 °C.3,6–8 Nowadays, a
plethora of different sensors exist, harnessing, among others, SiC’s high breakdown
field, excellent physical stability, and chemical inertness.3,5–7,9,10

Shrinking the size of sensors from micro- to nanometers brings us in the domain of
nanoelectromechanical systems (NEMS). The reduced mass allows for ultra low
mass,11–16, force17,18, and torque sensing,19,20 with a precision in the yoctogram,
zeptonewton and yoctonewtonmeter regime, respectively. One particular NEMS
system is a doubly clamped freely suspended string resonator. Introducing tensile
stress to the resonator boosts the quality factor, an important figure of merit in the
NEMS community, that is closely related to the inverse of the dissipation. Many of
these devices are fabricated from amorphous silicon nitride21–26 and offer very high
quality factors.26 However, crystalline materials, such as SiC, offer a lower defect
density and should therefore be able to outperform their SiN counterparts.27–30

On top of that, the high yield strength31 and the immense crystal-lattice mismatch
between SiC and Si promise a very high tensile stress. Indeed, first measurements
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on SiC nanoresonators confirm exceptional quality factors.27,28 Because SiC is a
comparatively new material in nanomechnaics, many material parameters, that are
well known for Si or SiN, are still unknown for SiC.32 In this work we try to further
incorporate this amazing material in the field of nanomechanics. More specifically,
we analyze doubly clamped freely suspended nanomechanical string resonators
fabricated from highly stressed 3C-SiC(111).
The structure of the thesis is as follows: In Chap. 2 the relevant basic theory is
introduced. We discuss a string resonator’s behavior in the Euler-Bernoulli beam
theory framework. Approximating the string by a harmonic oscillator allows us to
determine the amplitude response and the quality factor. Additionally, we discuss
the dissipation dilution model, the dielectric driving scheme and the coupling of
mechanical modes. Chapter 3 starts with a general introduction to SiC. Furthermore,
the fabrication process is presented in detail, including our new two step ICP-RIE
process to release the string resonators. Our measurement setups for room and low
temperatures are discussed in Chap. 4. Additionally, we characterize several string
resonators and compare different measurement techniques. In Chap. 5, we present
a novel method to extract the Young’s modulus from the eigenmode spectrum
of the string resonators. This, in turn, allows us to determine the tensile stress,
which is discussed in Chap. 6. Additionally, the length dependence of the tensile
stress is analyzed with the help of an elastic model, which can be used for further
stress engineering. The quality factor as a function of mode number is discussed
in Chap. 7 with the help of an advanced loss dilution model developed by Ignacio
Wilson-Rae. With the extracted dilution factor and the measured quality factor,
we can calculate the loss angle over a frequency span of 80 MHz. In Chap. 8 we
take a closer look at the temperature dependence of a string resonator’s dissipation
and frequency. As discussed in Chap. 8, we implement a dielectric driving scheme
with SiC and analyze the avoided crossing of two mechanical modes.
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2
Theory Basics

2.1 Nanomechanical String Resonators
The structures analyzed in this thesis are doubly clamped nanomechanical string
resonators, which consist of a freely suspended string held in place by two clamping
pads as schematically shown in Fig. 2.1. In order to be classified as nano, at least
one dimension has to be below one micron.33 As the typical thickness h and width
w of our resonators are in the range of (a few) 100 nm, this definition is well
fulfilled. The length L, on the other hand, is between 10 and 100 µm.

String resonators have two dominant vibrating directions, namely the out-of-plane
(oop) and in-plane (ip) direction as visualized in Fig. 2.1. The mechanical modes
of beams (and stringsa) can be mathematically described by the Euler-Bernoulli

L

x

y
z

y

z

w

h

Figure 2.1: Visualization of the fundamental out-of-plane (left) and in-plane (right)
modes of a string resonator with length L. The width w and thickness h are
shown on the string’s cross-section. Adapted from Ref. [34].

aStrings are beams under tensile stress.
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2.1 Nanomechanical String Resonators

beam theory, developed in the 18th century by Euler and Bernoulli.35 A detailed
derivation will be omitted at this point but can be found in many books, such
as Refs. [33, 36–38]. The theory works best for prismatic beams (L/h > 10)
with negligible rotational inertia and shear deformation.33,38 Assuming a doubly
clamped beam with tensile stress σ that consists of a linear elastic material (i.e. it
obeys Hooke’s law), the equation of motion is:33

EI
∂4u(x, t)

∂x4
− σA∂

2u(x, t)

∂x2
+ ρA

∂2u(x, t)

∂t2
= 0, (2.1)

where u(x, t) is the displacement, x the position along the beam, t the time, E
Young’s modulus, I the area moment of inertia, A the beams’s cross section,
and ρ the density. This equation can be solved analytically for simply supported
boundary conditions (see Fig. 2.2), yielding the theoretical eigenfrequency of the
oop mode33,36,37

fn =
n2π

2L2

√
Eh2

12ρ

√
1 +

12σL2

n2π2Eh2
, (2.2)

where n is the mode number. If 12σL2

n2π2Eh2 � 1,b which holds for a high tensile stress
and low mode numbers, Eq. (2.2) simplifies to the string model

fn ≈
n

2L

√
σ

ρ
. (2.3)

As expected from this equation and confirmed by measurements on stress dom-
inated strings, the frequency scales approximately linearly with the mode num-
ber n.39 For a 110 µm long string, for which we measure a frequency of 2.69 MHz,
both Eq. (2.2) and (2.3) predict a frequency of 2.79 MHz. This is in agreement
with the literature, where it has been reported that the Euler-Bernoulli beam theory
slightly overestimates the eigenfrequencies of beam resonators.35,40

Simply supported boundary conditions (vanishing curvature at the clamping points,
see Fig. 2.2) are valid to determine the eigenfrequencies of strings with negli-
gible flexural rigidity, which is normally a good approximation for strings with
high tensile stress.33 The mode shape of real string resonators, however, is not
reproduced correctly, especially close to the clamping points, where the finite
flexural rigidity leads to a local bending at the clamping pads.41 This issue is better
addressed by employing doubly clamped boundary conditions (vanishing slope
at the clamping points, see Fig. 2.2), which provide a better approximation to the
real beam shape. However, the mathematical complexity increases drastically and
the equation of motion is therefore solved numerically. In Chap. 7 we present an
analytical approximation that is acquired via Taylor expansion.

bThe flexural rigidity of the string is neglected.
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Chapter 2. Theory Basics

simply supported clamped

Figure 2.2: Schematic of simply supported (left, vanishing curvature at the clamping
points) and clamped (right, vanishing slope at the clamping points) boundary
conditions. The latter reproduces the mode shape of an actual string resonator
more accurately by including the local bending close to the clamping pads.

2.2 Driven Harmonic Resonator
The behavior of a driven and damped nanomechanical string resonator can be de-
scribed with the help of a harmonic oscillator. A detailed discussion and derivation
can be found for instance in Refs. [33, 37]. For that, the resonator is reduced to a
point mass with effective mass m, which depends on the real mass, the resonator’s
geometry, and the mode in question. For the fundamental oop mode of a doubly
clamped string resonator, the effective mass corresponds to half the real physical
mass and is located in the center of the antinode.33,42 For a driven and damped
resonator in the linear regime, we get the equation of motion

z̈ + Γż + ω2
0z =

F̃

m
, (2.4)

where z is the displacement, Γ the damping rate, ω0 = 2πf0 the eigenfrequency (i.e.
the frequency without damping), and F̃ = Fd cos(wdt) the drive at the frequency
ωd. Solving the complexified versionc of the differential Eq. (2.4) with the ansatz
z(t) = z0 exp(iωdt) gives us the amplitude response A33,43

A (ωd) = |z0| =
Fd

m
√

(ω2
0 − ω2

d)
2

+ Γ2ω2
d

(2.5)

of the driven resonator. The power response (or intensity), which is A2, and the
amplitude response correspond to a Lorentzian and the square root of a Lorentzian
function, respectively.

The sharpness of a resonance curve is determined by the damping Γ. A higher
damping results in a flatter curve, as visualized in Fig. 2.3. Another figure of

cThe complexified version reads z̈ + Γż + ω2
0z = Fd

m exp (iωdt).
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2.2 Driven Harmonic Resonator
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Figure 2.3: Calculated amplitude response (see Eq. (2.5)) as a function of detuning
(ωd − ω0) around the resonance frequency for three different damping rates
Γ.

merit, which is closely related to the damping, is the quality factor Q. It is defined
as the ratio of stored energy W to dissipated energy ∆W during one resonance
cycle:33

Q = 2π
W

∆W
=
ω0

Γ

√
1− Γ2

2ω2
0

. (2.6)

In case of high Q resonators (i.e. Γ2

2ω2
0
� 1), Eq. (2.6) can be reduced to

Q ≈ ω0

Γ
=

ω0

∆ω
, (2.7)

where ∆ω is the full width at half maximum. A reliable method to determine the
quality factor (or damping) of a resonator is to fit the square root of a Lorentzian to
its amplitude response.

Ring down measurements are another possibility to extract the quality factor. They
are particularly useful for very high Q resonators, where the recording of resonance
curves gets increasingly difficult due to the low required bandwidth (see Sec. C).
To that end, we measure the amplitude or energy decay over time. Fitting an
exponential function of the form

|z(t)| ∝ exp

(
−t− t0

2τ

)
(amplitude decay),

|z(t)|2 ∝ exp

(
−t− t0

τ

)
(energy decay) (2.8)

yields the decay time τ = Γ−1, from which we can calculate the quality factor or
damping. Here, t0 corresponds to the time at which the power is switched off as
explained in more detail in Sec. C.
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Chapter 2. Theory Basics

2.3 Dissipation Dilution
Stressed nanomechanical systems outperform their unstressed counterparts by sev-
eral orders of magnitude in terms of quality factors, but the underlying mechanism
remained elusive until the concept of dissipation dilution was introduced. The
basic idea routes back to González et al., who worked on a mass suspended by an
inelastic wire in the course of the LIGO project.44,45 One decade later, Unterrei-
thmeier et al. explained the mode dependent damping of highly stressed silicon
nitride (SiN) string resonators via an oscillation of the local strain46 and in 2012
Yu et al. introduced the dissipation dilution model as it is known today.47

The oscillation of a string resonator gives rise to a strain and stress spatial dis-
tribution as visualized in Fig. 2.4 (b). If they are not perfectly in phase, energy
is dissipated, which can mathematically be described with a complex Young’s
modulus Ẽ:46

Ẽ = ERe + iEIm. (2.9)

Here, ERe = E is the conventional Young’s modulus (also called storage modulus),
which is in phase with the strain, and EIm is the so called loss modulus, which
is out of phase with the strain.48 Assuming δ to be the phase between stress and
strain, the loss tangent tan(δ) can be written as48

tan(δ) =
EIm

ERe
= Q−1

intr, (2.10)

(a) (b)

Figure 2.4: (a) Elastic energies as a function of the tensile stress for a 35 µm string res-
onator. In the model by Unterrethmeier et al. the Euler-Bernoulli beam theory
is solved numerically for doubly-clamped boundary conditions. Therefore, it
does take into account the bending close to the clamping points. (b) Color
coded strain distribution of the second mode of a string resonator.
Reprinted figure with permission from Ref. [46]. Copyright (2022) by the
American Physical Society. Small adaptations in (a).
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2.4 Dielectric Actuation Scheme

where Qintr is the intrinsic quality factor of the material (i.e. an unstressed version
of the resonator). Note that Qintr is frequency independent as shown in Chap. 7 and
Refs. [49, 50].
As we know from Eq. (2.6), the quality factor is the total stored energy divided by
the dissipated energy during one oscillation cycle. The stored energy can be divided
into a part originating from the bending and a part from the overall elongation.51

The dissipated energy, on the other hand, is only proportional to the bending energy
but does not depend on the elongation energy.46 Furthermore, the elongation energy
scales linearly with the tensile stress while the bending energy depends only very
weakly on it as shown in Fig. 2.4 (a). Therefore, the stored energy increases much
faster than the dissipation when the tensile stress raises. In other words, a higher
tensile stress leads to a higher quality factor. In order to obtain quantitative values
with this theory, we have to take into account the local bending at the clamping
pads.46 To this end the Euler-Bernoulli beam theory has to be solved with the
boundary conditions of a doubly clamped beam, which requires numerical methods
as demonstrated in the work by Unterreithmeier et al.51.
The dissipation dilution model from Yu et al., on the other hand, gives us the quality
factor without the need for numerical calculations. Here, the intrinsic quality factor
of a stressed string resonator is given analytically by47,52

Qintr,σ = Qintr

 2λ︸︷︷︸
clamping

+n2π2λ2︸ ︷︷ ︸
antinode

−1

with λ =
h

L

√
E

12σ
, (2.11)

where n is the mode number, h the thickness, L the length, and σ the tensile stress.
The expression in brackets enhances Qintr for λ� 1, which holds true for stressed
string resonators,d, and is therefore called enhancement factor or dilution factor. It
is composed of two contributions: The left term originates from the curvature of
the string close to the clamping points and the right term from the bending of the
antinodes.52 As λ� 1 for the string resonator considered in this work, the left term
(bending at the clamping pads) is dominant for small mode numbers. However,
since the right term depends on the mode number n, it dominates Qintr,σ for high
mode numbers.

2.4 Dielectric Actuation Scheme
In 2009 Unterreithmeier et al.51 presented the on-chip dielectric driving scheme that
we employ in this work. In comparison to a magnetomotive53 or capacitive54–56

dFor a typical SiC string resonator (h = 110 nm L = 110 µm, σ = 1.1 GPa) as used in this
work, λ ≈ 0.0055.
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Chapter 2. Theory Basics

drive, it does not require a metallized resonator, which would increase the
damping.56–58 A direct current (dc) voltage Udc applied to a set of electrodes,
which are placed adjacent to the string resonator, gives rise to an inhomogeneous
electric field, polarizing the dielectric resonator. This polarization effect can be
well approximated by dipoles which interact with the electric field ~E and are, thus,
subject to the force ~F 59

~F = ~p ∇ ~E, (2.12)

where ~p = α~E is the electric dipole moment and α the polarizability. This force,
which is known as Kelvin polarization force,e pulls the string resonator towards
the highest field gradient.41 Note that the force would vanish for a homogeneous
electric field (∇ ~E = 0). To this end, the electrodes are placed with a small vertical
and horizontal offset with respect to the resonator, resulting in an inhomogeneous
electric field in the vicinity of the resonator. If an additional radio frequency (rf)
voltage Urf is applied to the electrodes, this force is modulated and the resonator is
actuated. The resulting force can be approximated by51

F (Udc + Urf) ∝ (Udc + Urf)
2 ≈ U2

dc + 2UdcUrf. (2.13)

Both Udc and Urf influence the strength of the drive: While the rf voltage drives the
oscillation of the resonator, the dc voltage independently controls the strength of
the polarization.51 Hence, for Udc = 0 V the driving force vanishes completely.f As
derived in Ref. [63], the dc voltage gives rise to an additional electrically induced
spring constant ke, which influences the resonance frequency:

f(ke) =
1

2π

√
k0 + ke
m

≈ f0 + cdcU
2
dc, (2.14)

where f0 is the resonance frequency for zero dc voltage and cdc is a parameter,
depending, among others, on the sample geometry, frequency, and mass. For our
sample geometry, cdc has a different sign for the oop and ip mode, i.e. they tune in
different frequency directions as demonstrated in Sec. 9.1.
Interestingly, not only the frequency but also the damping (and thus the quality
factor) is affected by the applied dc voltage. Similar to Eq. (2.14), we get a
quadratic dependence of the total damping63

Γ = Γ0 + Γd(Udc) = Γ0 + cΓU
2
dc (2.15)

on the dc voltage. Here, Γ0 is the damping with zero dc voltage, Γd the dielectric
damping, and cΓ a constant that is closely related to cdc.

eThe same mechanism is used in biophysics to manipulate and control particles.60–62

fIn Eq. (2.13) we neglected the term U2
rf , which is valid for the drive powers used in this

work. Note that it would actuate at twice the drive frequency as we get U2
rf = (Ud cos(ωdt))

2
=

U2
d

2 (cos(2ωdt) + 1) for a drive of the form Urf = Ud cos(ωdt).
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2.4 Dielectric Actuation Scheme

2.4.1 Dielectric Coupling of Two Mechanical Modes

The following section is mostly based on my Master’s thesis:

Y. S. Klaß, "Multi-electrode geometries for refined dielectric control of
nanoelectromechanical systems", Master’s thesis at Universität Konstanz
(2017). Ref. [64].

The text of this work was written by me and therefore the following section
contains original passages.

The strong coupling regime can be reached with a plethora of different systems,
e.g. coupling of a single photon to a superconducting qubit,65 a mechanical
mode to an optical cavity,66,67 a single quantum dot to a cavity,68–70, an atom
to a microresonator,71 and different mechanical modes of a drum resonator.72

Generally speaking, the strong coupling regime requires the coupling rate Γc to
exceed the damping rate Γ of the system. Mathematically, this corresponds to the
relation

Γc � Γ. (2.16)

In our experiment, we have strong coupling between the mechanical oop and ip
mode, similar to the findings of Refs. [23, 73, 74]. Due to the rectangular cross-
section of the string, the frequencies of the oop and ip mode are separated by
approximately 100 kHz when no voltage is applied. However, by applying a dc
voltage, we can tune both modes into resonance, where they are able to exchange
energy. As expected from the strong coupling regime, the frequency of the modes
do not cross but repel each other, leading to the typical avoided crossing (see
Sec. 9.2). The coupling of those mechanical modes can be described with the help
of the differential equations of two coupled harmonic oscillators.73,75 For the sake
of simplicity, the detailed calculations will be omitted at this point. The frequency
splitting is given by73

Γc =

√
k0 + 2kc

m
−
√
k0

m
, (2.17)

where m is the string’s effective mass, kc the coupling spring constant, and k0 the
spring constant at the voltage with zero detuning.
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3
SiC – a Novel Material for Nanomechanics

3.1 Basic Information about SiC
SiC is a IV-IV semiconductor formed by silicon (Si) and carbon (C) atoms bonded
in a tetrahedron as depicted in Fig. 3.1 (a). Each tetrahedron has four Si atoms at
the corners and one C atom in the middle (or equivalently four C atoms and one
Si atom). The distance between Si-Si (or C-C) atoms is 3.08 Å76 and the distance
between neighboring Si-C atoms is 1.89 Å.76–78 As typical for a tetrahedron, the
angles Si-Si-Si and Si-C-Si (also called tetrahedral bond angle) are α = 60° and
β = 109.5°, respectively.

Because the atomic order is fixed in two dimensions, we have bilayersa of Si-
C as can be seen in Fig. 3.1 (d,e).5,6,80–82 In the remaining direction, however,
the bilayers can form different stacking sequences, defining the unit cell of the
corresponding polytype. To maintain the tetrahedral bonds, each bilayer can
only be oriented in three ways, denoted as A, B, and C, with the restriction
that it can not match the orientation of its neighboring bilayers, as visualized
in Fig. 3.1 (c).76 This one dimensional polymorphism is called polytypism.7,81,83

In total, there exist over 250 polytypes, some of them with stacking sequences
of hundreds of bilayers.81,83 Among all these, the most relevant polytypes are
4H-SiC, 6H-SiC and 3C-SiC.81,84 Here, the number indicates the periodicity in
the stacking sequence and the following letter the crystal symmetry (C - cubic,
H - hexagonal, and R - rhombohedral). Historically, SiC with a cubic symmetry is
also called β-SiC and SiC with a hexagonal or rhombohedral symmetry is called
α-SiC. For example, 6H-SiC has a stacking order of ABCACB ABCACB . . . with
hexagonal symmetry (Fig. 3.1 (e)). 3C-SiC, on the other hand, has a stacking

aNote that each tetrahedron contributes with three Si atoms and one C atom to this bilayer. The
remaining Si atom belongs already to the next bilayer.
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3.1 Basic Information about SiC
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Figure 3.1: (a) Tetrahedron composed of three Si atoms in the corners and one C atom in
the middle. The distance between Si-Si (or C-C) atoms is aSi-Si = 3.08 Å76

and the distance between neighboring Si-C atoms is aSi-C = 1.89 Å.76–78

The angle Si-Si-Si is α = 60° and the angle Si-C-Si β = 109.5°.
(b) Visualization of the 3C-SiC zinc blende structure, which exhibits a lattice
constant of a3C = 4.36 Å.76,77,79 Note how the unit cell is constructed from
multiple tetrahedrons. (c) Different lattice sites that can be occupied by the
Si-C bilayers are denoted as A,B, and C. (d,e) Stacking sequence of 3C-SiC
(d) and 6H-SiC (e). In horizontal direction there is only one stacking order
possible, ABC ABC . . ., no matter the polytype.
(c) Adapted from Ref. [76]. (d,e) Adapted from Refs. [5, 80].

order of ABC ABC . . . (Fig. 3.1 (d)) and it is the only known polytype with a cubic
symmetry (zinc blende) as schematically depicted in Fig. 3.1 (b).7 Although based
on the same material, different polytypes exhibit different physical properties. The
indirect band gap for instance ranges from 2.4 eV (3C-SiC) to 3.0 eV (6H-SiC) to
3.2 eV (4H-SiC).6 Furthermore, SiC is one of the hardest elements on earth with a
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Chapter 3. SiC – a Novel Material for Nanomechanics

Mohs hardness of 9.84 Due to its high chemical resistance, it can be employed in
very harsh environments.84

3.1.1 Thin Film 3C-SiC on Si
Epitaxial growth of thin film 3C-SiCb on Si is a challenging task due to the immense
lattice mismatch of approximately 20 %, which has been leading to unsatisfactory
results for decades (e.g. cracks, nonuniform layers).86–88 In 1982 Shigehiro et al.87

laid the foundation for the modern SiC deposition technique by introducing a buffer
layer between Si and SiC. A (low pressure) chemical vapor deposition (LPCVD)
reactor, whose working principle is explained in Ref. [89], is used for a two step
growing procedure that we describe in the following.c

First, a buffer layer is generated by carbonizationd of silicon.87,88,90 For that pur-
pose, the CVD reactor is rapidly heated up to around 1000 °Ce and supplied with a
hydrocarbon gas (e.g. C3H8 or C2H2), that serves as a carbon source.87,90 The C
atoms penetrate the Si wafer’s surface and form a SiC buffer layer.91,92 By changing
different parameters during the carbonization process, the resulting layer’s proper-
ties (thickness, appearance, roughness) can be altered significantly.89,92 Hu et al.
reported that the carbonized thickness and the C/Si atomic ratio saturate at approx-
imately 1.4 nm and 0.9 - 1, respectively, after eight minutes of carbonization.92

Additionally, it is shown that both under and over carbonization reduces the quality
of the later grown SiC film.92 The carbonization process gives rise to defects in
the Si-SiC interface that are called voids or etch pits.88,91,93,94 They have a trian-
gular shape on Si(111) surfaces as shown in Fig. 3.2. For Si(100), on the other
hand, they are smaller and have a square shape.88,93,94 It is widely accepted that
these voids form by out diffusion of Si from the substrate.88,91,94,95 Fine tuning
the carbonization parameters can reduce the number of voids significantly88 or
make them disappear entirely.95 Second, crystalline 3C-SiC is grown on top of
the buffer layer. For that the reactor is again heated to approximately 1000 °C and
silane (e.g. SiH4) and hydrocarbon gases (e.g. C3H8 or C2H2) serve as Si and C
sources.87–91 Importantly, the Si substrate dictates the crystalline direction of the
SiC film, i.e. SiC(111) grows on Si(111) and SiC(100) on Si(100).96 By regulating
the temperature, atomic ratio of the incoming C/Si atoms, and other parameters the
properties of the SiC film can be altered as explained in Sec. 3.1.2 for the tensile

b4H- and 6H-SiC can also be grown epitaxially. For that, however, a hexagonal substrate is
required, as discussed in Refs. [84, 85].

cBefore these two steps, a cleaning step normally takes place, which is not described here.
dSometimes it is also called nucleation
eIn the literature there exist many recipes with vastly different carbonization times, temperatures,

and gases. The given number is just an order of magnitude.
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3.1 Basic Information about SiC

200 µm

Figure 3.2: SEM image of the Si(111) surface after the removal of the overlying
3C-SiC(111). One can clearly see the typical triangular voids that origi-
nate from the carbonization process.

stress.84,91,95,97–100

3.1.2 Tensile Stress in 3C-SiC Films

To achieve the best possible mechanical quality factors, it is crucial to have a high
tensile stress in the device layer as already discussed in Sec. 2.3. Normally, the
stress of crystalline materials can be calculated via the lattice mismatch of the
substrate and the device layer.101 For SiC, however, the immense lattice mismatch
demands a buffer layer as explained in the previous Sec. 3.1.1. Therefore, we can
not determine the tensile stress from the crystal structure. In the literature one
can find some information about what kind of material, orientation, and growing
parameters should be used to achieve the maximal tensile stress.
Although SiC(111) and SiC(100) should, in principle, feature a similar lattice
mismatch and thermal expansion coefficient (and thus a similar stress), Iacopi et
al.96 demonstrated that SiC(111) films exhibit a significantly higher tensile stress.
To be more precise, for a thickness of 60 nm they found a stress of 360 MPa for
SiC(100) and a stress of 900 MPa for SiC(111). The difference can be attributed to
a more efficient stress relief via defects (e.g. stacking faults) in SiC(111).96

The thickness of the film is another possibility to manipulate the residual stress
of SiC. It has been shown that the carbonization layer is highly compressed with
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up to 800 MPa. To this end, really thin films (< 25 nm) exhibit a compressive or
very small tensile stress.95 Increasing the thickness to around 200 nm also raises
the tensile stress continuously for SiC(111).95 For SiC(100), on the other hand, the
stress decreases slightly from 100 nm onward.95 For thicknesses in the micrometer
regime, the tensile stress of SiC(111) remains relatively constant, while it drops
to approximately 180 MPa for SiC(100).96 Again, this can be explained with the
more efficient stress relief via stacking faults.
For the sake of completeness, it should also be mentioned that the atomic ratio C/Si
during the growth,97,102, the growth duration,97,103, the carbonization temperature,96

the growth temperature,96,100,103 and the location on the wafer (the tensile stress
is higher in the center of the wafer)103 significantly affect the tensile stress. In
conclusion, to maximize the tensile stress, we would need a SiC(111) wafer that
has been grown with a high C/Si atomic ratio, a high carbonization temperature,
a high growth temperature, a thickness of around 150(50) nm, and with a long
growth duration (small growth rate).

3.2 Fabrication Process
Developing the top-down fabrication process of doubly clamped, highly stressed
string resonators made out of 3C-SiC(111) has been one of the major parts of
this thesis. Our wafers consist of approximately 110 nm SiC epitaxially grown
on top of 1000 µm Si by NovaSiC. All wafers used during my work are listed in
App. A. To ensure evenly sized chips with clean edges, the wafers are diced up
in squares of 5× 5 mm2 by Wafer & Glassubstrate Dicing GmbH & Co. KG, as
indicated in Fig. 3.3. These chips are the basis for all further fabrication steps.
In Sec. 3.2.1 and 3.2.2 the fabrication process for strings only and strings with
adjacent electrodes is presented, respectively. Both are summarized tabularly in
App. B.

3.2.1 A Harp of Strings
The harp like structure employed in this work hosts a set of eleven resonators with
lengths ranging from 10 µm to 110 µm in steps of 10 µm, as visualized in Fig. 3.4.
The required fabrication steps are explained in the next sections.

Labeling and Cleaning

Because SiC is a crystalline material, where certain material parameters like the
tensile stress and the Young’s modulus can depend on the crystal direction, it is
important to know the crystal orientation. To this end, many wafers feature a flat,
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Scratch
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Figure 3.3: Visualization of important crystal directions for a (111)-Wafer. The wafer’s
flat marks the [112̄] direction. On the bottom right, the individual squared
chips are indicated. A zoomed-in version of one of them can be seen in (b),
showing the scratch, which is used to preserve knowledge about the crystal
directions, and four write fields (blue squares).

marking a particular crystal direction. For our (111) wafers, the flat is parallel
to the [112̄] direction, as visualized in Fig. 3.3 (a). At the very beginning of our
fabrication process, the 5 × 5 mm2 chip is marked with a scratch perpendicular
to the wafer’s flat (i.e. parallel to the [1̄10] direction) on the side closer to the
flat. On the backside, it is additionally labeled with a unique code. After that, it
is thoroughly cleaned in acetone and isopropyl alcohol (IPA) to provide a clean
surface for the upcoming processing, cf. Fig. 3.5 (a).

Electron Beam Lithography for Resonators

For our structure, it is sufficient to deposit a single layer of electron beam resist. A
spin coater is used to get a uniform 450 nm polymethyl methacrylatef (PMMA)
layer on the clean chip. This is achieved with a 30 s spin at a speed of 5000 rpm.
It is important to thoroughly clean the chip’s underside with acetone in order to
avoid PMMA residues that would lead to a slight tilt in the upcoming lithography
step. By placing the chip for 90 s on a 180 °C hot plate, the PMMA is tempered.
No conductive layer (like chromium or electrag) is required because the silicon
substrate features a sufficient conductivity. This holds true for all tested SiC wafers,

fAllresist PMMA 950k A6 (672.06)
gAllresist Protective Coating PMMA-Electra 92
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10 µm 10 µm

(b)(a)

Clamping Pad

String Resonator

Figure 3.4: (a) Lithographic structure of string resonators with a length ranging from
10 µm up to 110 µm in steps of 10 µm. (b) SEM image of a finished sample
showing the harp like structure. Note that undercut areas at the edge of the
clamping pads appear white.

even those not intentionally doped.
All structures presented in this work have been exposed with a Zeiss Crossbeam
1540XB with the software neomicra smile 2 at the University of Konstanz. Dose
tests have been used to fine tune the exposure parameters. We recommend the
following settings: a working distance of 8.6 mm, an acceleration voltage of 10 kV,
an aperture of 20 µm, a dose of 170 µC cm−2 for the clamping pads and 255 µC cm−2

for the string resonators. Since PMMA is a positive resist and we use later Cr as
an etch mask, we expose the areas where the resonators will later be located, as
visualized in Fig. 3.5 (b). To develop the sample, it is first dipped in MIBK:IPA
(1:3) for 50 s and then in IPA to stop the development process. This removes the
previously exposed resist.

Evaporation of the Resonator Etch Mask

Thermal or electron beam evaporation is used to deposit a 30 nm chromium etch
mask on the sample, as shown in Fig. 3.5 (c). We recommend an evaporation rate
of 1 Å s−1. In Sec. 3.3.2, we discuss the difference between an etch mask made out
of aluminum (Al) and Cr.
The PMMA and the chromium on top are removed by placing the sample in acetone
in an ultrasonic bath set to the lowest power for approximately five minutes. After
this lift-off step (Fig. 3.5 (d)), we clean the sample in IPA for another two minutes.
Cutting the lift-off procedure short can result in residual chromium sticking to the
surface.
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(a) (b) (c)

(d) (e) (f)

SiC PMMA PMMA (exposed) Cr Si 

Figure 3.5: Step-by-step explanation of the fabrication of a doubly clamped string res-
onator made out of 3C-SiC(111) without any electrodes. Different colors
correspond to different materials. The individual figures show: (a) blank
chip, (b) electron beam lithography of a PMMA covered chip, (c) evapora-
tion of chromium, (d) lift-off, (e) ICP-RIE step, and (f) final removal of the
chromium etching mask.

Releasing the Resonator

Inductively coupled plasma reactive ion etching (ICP-RIE)h is utilized to define
the structure laterally and to undercut the string resonators. For that we run a
process with the gases sulfur hexafluoride SF6 and argon Ar for 150 s at 10 °C.
Here, we take advantage of the fact that silicon is etched not only vertically but
also horizontally during this process. After the ICP-RIE step, the string resonator
is already fully released, as displayed in Fig. 3.5 (e). The chromium etch mask,
which is still partially on the sample, reacts with the SF6, rendering it very resilient
against chemical removal. To circumvent this problem a followup ICP-RIE argon
mill is used to remove the affected layer of chromium. For that purpose a 45 s etch
at 10 °C is sufficient. More details about the exact settings of the ICP-RIE and the
ICP-RIE etching step in general can be found in App. B and Sec. 3.3, respectively.
Next, we have to remove the chromium etch mask from our structures. The
chip is immersed in IPA and afterward transferred into two consecutive water
baths. A 40 s dip in Chromium Etchanti removes the remaining etch mask. Again
two consecutive water baths are utilized to clean the sample thoroughly before
immersing it in IPA again. When moving the chip between two beakers, always
ensure that a small droplet of liquid remains on it. Otherwise, the surface tension

hICP-RIE Oxford Plasmalab 100
iTransene Company Inc. Chromium Etchant 1020
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could damage the fragile resonators.
In the last step, the sample is dried with the help of a Critical Point Dryer.j Here,
IPA is slowly exchanged with liquid CO2 and then heated under high pressure to
reach the supercritical phase. The pressure is slowly released to bring it to the gas
phase. Like this, we avoid the harmful surface tension. A schematic of the finished
sample can be seen in Fig. 3.5 (f). Fig. 3.4 (b) shows an SEM image of a finished
harp.

3.2.2 Strings with Adjacent Electrodes
In order to apply the dielectric drive that our group is employing for silicon nitrite
strings, we need two adjacent electrodes next to the resonators. After a lot of
refinement, the lithographic design converged to the one shown in Fig. 3.6 (a,b).
Compared to the string only design, we have notably enlarged the clamping pads to
compensate for longer ICP etching times, which are needed to reliably undercut the
resonators. Furthermore, we have increased the width of the electrodes (compared
to designs used for SiN, see e.g. Refs. [64, 104]) to prevent a full undercut of the
electrodes, which would detach them from the underlying material.
While some fabrication steps are identical to those presented in Sec. 3.2.1, some
vary a bit or are completely new. For the sake of completeness, all fabrication steps
are mentioned, but only the new ones are elaborated.

Labeling and Cleaning

This step remains completely unchanged. The sample is labeled and scratched to
preserve the knowledge about the crystal orientation. Then it is cleaned in acetone
and IPA.

Electron Beam Lithography for Electrodes

We start with fabricating the electrodes and alignment markers.k As described in
detail in Sec. 3.2.1, PMMA is applied via spin coating at a speed of 5000 rpm and
afterward tempered on the hotplate. To reduce the SEM’s writing time, we use
two different apertures, namely 20 µm and 60 µm. It is essential to align them to
each other as they normally have a slight offset. Details regarding this alignment
can be found in the manual of the respective SEM software. First, the delicate

jBaltec CPD 030
kNote that we can not easily change the fabrication order. It is important that we first process

the electrodes as they are made out of gold, which is well visible in the SEM. The etch mask for the
strings, on the other hand, is made out of chromium, which is hardly visible in the SEM. Hence,
aligning the electrodes and strings would be much more difficult.
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Bond Pad

Alignment Marker

Electrodes

Feed Lines

Figure 3.6: (a) Schematic write field of strings with adjacent electrodes. Blue corresponds
to clamping pads and string resonators, purple to alignment markers, light
yellow to electrodes, and dark yellow to bond pads. The blue digits 0.25
reflect the nominal width of the string resonators. For easier alignment a set
of triangles (purple) pointing to the first marker are present. The dark yellow
bond pads are written with an aperture of 60 µm and the remaining structure
is written with a 20 µm aperture. A zoomed-in version of the inner structure
can be seen in (b). SEM images of finished samples are shown in (c) and (d).
On (d) one can clearly see that the string resonator is underetched.

electrodes and markers (light yellow and purple in Fig. 3.6 (a)) are written with the
high resolution 20 µm aperture, as visualized in Fig. 3.7 (b). Second, the large bond
pads and feed lines to the electrodes (dark yellow in Fig. 3.6 (a)) are written with
the faster 60 µm aperture. To accommodate a small offset of the structures written
with the two different apertures, an overlap of the big leads and the electrodes are
included in the design (see Fig. 3.6 (a)).
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(d) (e) (f)

SiC PMMA PMMA (exposed) Cr AuSi 
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Figure 3.7: Step-by-step explanation of the fabrication of a doubly clamped string res-
onator made out of 3C-SiC(111) with adjacent gold electrodes. Different
colors correspond to different materials. The individual figures schematically
show: (a) blank chip, (b) electron beam lithography for the electrodes and
markers, (c) evaporation of chromium and gold, (d) lift-off, (e) electron beam
lithography for the string resonators, (f) evaporation of chromium, (g) lift-off,
(h) ICP-RIE step, and (i) final removing of the chromium etch mask.

Afterward, we develop the sample in MIBK:IPA for 50 s and stop the development
process with a rinse in IPA.

Evaporation of the Electrodes

Thermal or electron beam evaporation is used to deposit 5 nml of chromium, 50 nm
of gold, and 30 nm of chromium on the sample. In Fig. 3.7 (c) one can see a
visualization of this stack. We recommend an evaporation rate of 1 Å s−1 for both
chromium and gold. While the first thin layer of chromium serves as an adhesive
layer between SiC and gold, the second thicker layer of Cr corresponds to an etch
mask for the electrodes. In a lift-off process, we remove the remaining PMMA
together with the metal layers on top, as presented in Fig. 3.7 (d).

lWe have found that 5 nm Cr offer considerable more adhesion than 3 nm.
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Adding String Resonators

Now we can exactly follow the steps presented in Sec. 3.2.1 with one little ex-
ception: In the SEM we have to precisely align the strings to the already existing
electrodes. Note that we can not simply take a look at the whole structure as this
would expose the PMMA. Therefore, we only scan the close vicinity of the four
alignment markers and manually mark the center of each of them.m Based on
these marks, the software is able to determine the location of the electrodes by
correcting for tilt, magnification, and lateral and horizontal offset. This correction
has to be repeated every time the stage is moved, e.g. when going to a different
write field. After the alignment, we can now fabricate the string resonator ex-
actly as described earlier in Sec. 3.2.1. This means we write the string with the
20 µm aperture (Fig. 3.7 (e)), develop the sample, evaporate 30 nm of chromium
(Fig. 3.7 (f)), perform the lift-off (Fig. 3.7 (g)), run an ICP-RIE etch (Fig. 3.7 (h)),
remove the remaining chromium layer (Fig. 3.7 (i)), and finally dry the sample
in the CPD. Fig. 3.6 (c) and (d) show SEM micrographs of finished samples with
electrodes.

3.3 ICP-RIE Etch
The ICP-RIE etch step is a crucial part of our fabrication process, in which SiC
and Si are etched anisotropic and isotropic, respectively. A detailed analysis of the
etching of Si in a SF6 ICP-RIE step can be found in Refs. [105–107]. Panduranga
et al.105 have analyzed the isotropy of a SF6 etching step for different structures. It
turns out that Si is approximately etched twice as fast in vertical than in horizontal
direction. The exact value, however, depends on the etching time, the employed
ICP-RIE recipe, and the distance between the structures. To be more precise: the
shorter the distance between two etched structures, the lower the isotropy.105

3.3.1 Determining the ICP-RIE Etch Rate
In order to develop a working ICP-RIE recipe to fabricate string resonators, it is
crucial to know the etch rate of SiC. For that purpose, we create a sample with
multiple rectangular aluminum (Al) structures with both a width and a distance to
each other of 10 µm. The Al serves as an etch mask. Then we etch the sample for a
certain time span, remove the Al, and measure the step height of multiple rectangles.

mFor the initial localization of a new write field, we are always searching for the top left marker.
For this purpose, we have guiding triangles that lead towards the correct marker, as visualized in
Fig. 3.6 (b). As soon as this marker is successfully located, we can easily find the remaining three
markers and scan them for alignment.
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Figure 3.8: Etched depth as function of the ICP-RIE etch time for a SiC sample. Blue
dotes and error bars correspond to the mean and the standard deviation,
respectively. The red line is a linear fit with the equation 2.5 nm s−1·t+1.5 nm.
For etching we used our SF6 and Ar recipe on a sample consisting of 110 nm
3C-SiC(111) on top of Si(111) substrate (Wafer A, see App. A).

From that data we calculate the mean and standard deviation and repeat the same
procedure for six different times t. The resulting plot can be seen in Fig. 3.8. Note
that the SiC has a thickness of 110 nm, i.e. after a 45 s etch we just breach the
SiC-Si interface. As expected, we get a linear dependence between etching time
and depth. Fitting the data with a linear function yields 2.5 nm s−1 · t+ 1.5 nm, i.e.
we have an etch rate of 2.5 nm s−1 or 150 nm min−1.

3.3.2 Chromium vs. Aluminum Etch Mask

Here, we compare chromium and aluminum as a material for etch masks. As the
etch masks directly imprint their smoothness on the underlying material (this could
be a resonator, clamping pad, or electrode) during the ICP-RIE etch, it is crucial
for them to have smooth edges. Resonators with rough edges have reduced quality
factors. While Cr delivers really smooth edges, Al has a rough surface with big
clusters as clearly visible in Fig. 3.9. To improve the overall smoothness for Al, we
have tried various countermeasures: First, we tried to increase the evaporation rate
from 1 Å s−1 to 2 Å s−1, the resulting structure is depicted in Fig. 3.9 (c). The higher
rate results in more grain and bigger clusters and, therefore, a rougher resonator.
This is in agreement with Bordo and Rubahn108 who analyzed the dependency of
the evaporation rate (from 1 Å s−1 to 20 Å s−1) on the grain size and smoothness
for evaporated Al. They found that a reduction of the evaporation rate benefits
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3.3 ICP-RIE Etch
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Figure 3.9: SEM images of etch masks fabricated out of chromium (a) and aluminum
(b-d). On (a,b,d) one can see the transition between the etch mask for
the clamp (bottom part of the images) and for the string resonator (upper
part of the images). On (c), just a small section of the string is displayed.
White text on the upper left side of all the images indicate the settings
used for the corresponding evaporation process, where E-Beam stands for
electron beam evaporation, Thermal for thermal evaporation, RT for room
temperature, and LN2 for liquid nitrogen temperature. (a) and (b) show the
best etch mask we can fabricate with the respective material. (c) and (d)
compare two evaporation rates and two evaporation methods, respectively.
The small cracks originate from gold sputtering, which increases the contrast
and prohibits charging effects in the SEM. This is necessary as all samples
are made out of SiN on fused silica.

the smoothness.108 We have not tried to evaporate slower than 1 Å s−1, but this
could potentially increase the smoothness. Second, we compared electron beam
and thermal evaporation, as displayed in Fig. 3.9 (d). Thermal evaporation offers
noticeable smaller clusters and an overall smoother etch mask, but it still has some
surface roughness. Lastly, we tried to cool the sample with liquid nitrogen (LN2)
during electron beam evaporation. This was done by my colleague Anh Tuan Le in
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Chapter 3. SiC – a Novel Material for Nanomechanics

Prof. Dr. Elke Scheer’s laboratory at the University of Konstanz. Unfortunately,
we are not able to recall the evaporation rate. As can be seen in Fig. 3.9 (b),
evaporating on a cooled sample nearly completely eliminates the formation of
clusters. The edges are the smoothest of all the tried methods, but still it can not
compete with the nearly perfect surface of evaporated chromium (see Fig. 3.9 (a)).
Additionally, cooling the sample to LN2 temperature is also time consuming.
Note that cobalt has been used by our group extensively with very reliable re-
sults some years ago (not shown here). If chromium can not be used due to any
fabrication issues or restrictions, this is an alternative worth considering.

3.3.3 Chromium Removal – Argon Mill
As mentioned earlier, the chromium etch mask reacts with the SF6 during the
ICP-RIE etch, rendering it very resilient against chemical removal. Clean Cr has an
etch rate of 60 nm s−1 in Chromium Etchant.n After the ICP-RIE, this rate drops by
a factor of 2000 to 0.03 nm s−1. This process would not only be time consuming but
would also dissolve the Cr below the gold electrodes (i.e. the adhesive layer), which
is hardly affected by the SF6. To circumvent this problem a followup ICP-RIE
argon mill is used to remove the affected Cr layer. Afterward, the original etch rate
is restored. It is still important to leave the sample as short as possible (40 s) in the
Chromium Etchant to avoid the removal of the electrodes.

3.4 KOH Wet Etch
As an alternative to the ICP-RIE to undercut the SiC samples, potassium hydroxide
(KOH) can be used as it etches Si but does barely react with SiC. Chemically, the
etching works as follows:109–111

Si + 2 OH– + 2 H2O→ SiO2(OH)2 –
2 + 2 H2.

The aggravating part here is the formation of hydrogen gas (H2) at the sample
surface. Small hydrogen gas bubbles can stick to the surface, preventing the KOH
from reaching the Si underneath. Therefore, they act as random micromasks
that stop the etching process locally.112 In order to remove these bubbles upon
creation, a magnetic stirrer is added to the KOH solution. Through this constant
movement, they detach from the sample surface and thus interfere less with the
etching process. Furthermore, the etching process is very sensitive to temperature.
As expected, a higher temperature leads to a higher etch rate. The concentration,

nFor the sake of completeness, it should be mentioned that 25 nm Al dissolve in 7 min, leading
to an etch rate of 0.06 nm s−1. We have not analyzed if the etch rate of Al is affected by the ICP.
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3.4 KOH Wet Etch

on the other, hand has a much weaker influence.110,113,114 Hence, a thermometer
is used to precisely monitor the temperature to ensure consistent etch rates. The
magnetic stirrer guarantees a uniform heat distribution within the KOH solution.
The crystal direction plays also an important role for the etch rate. Most
importantly, in the [111] direction nearly no etching is observed compared to
the other crystal directions.110 According to Seidel et al.110 the etch rate ratio
[110] : [100] : [111] is 160 : 100 : 1 at room temperature and 50 : 30 : 1 at 100 °C.
Therefore, our vertical etching depth ([111]) is still primarily determined by the
ICP-RIE.

To undercut a string without adjacent electrodes, we use 10 g KOH pellets
dissolved in 100 mL at a temperature of 40 °C for 15 min. If the sample features
adjacent electrodes, the etch rate is decreased due to the narrow gap between the
electrodes and resonators. In this case, we recommend increasing the temperature
to 50 °C and reducing the time to 10 min. However, as we can fully undercut our
string resonators with the ICP-RIE, the KOH etching step is obsolete, especially as
the ICP-RIE delivers more consistent results.
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4
Characterization of String Resonators

In this chapter we establish the experimental framework used in all the experiments
of this work. In particular, this chapter introduces the measurement setups at
room and low temperature and describes the three different measurement methods
employed in this work.

4.1 Experimental Setups
In order to detect the vibrations of our nanomechanical string resonators we rely
on an optical detection scheme, namely, a Fabry-Pérot interferometer. This mea-
surement scheme is implemented in two different setups, one at room temperature
(RT) and one at low temperatures (LT). For the sake of simplicity, the first setup is
explained with a piezo and the second one with a dielectric drive. However, the
electronic wiring and thus the drive mechanism are interchangeable.

4.1.1 Room Temperature Setup
A schematic visualization of the setup for RT measurements with piezo actuation
is shown in Fig. 4.1. The light from a 1550 nm fiber based lasera is collimated
and centered into a free space beam. The light is then guided through a half-wave
(λ/2 in Fig. 4.1) and quarter-wave plate (λ/4) which allow for the control of the
polarization state of the light beam. The polarized light passes a PBS; depending on
the polarization direction the amount of reflection and transmission is determined,
allowing for a precise reduction of the laser power. The polarization state of
the light is then transformed into circular polarization by another quarter-wave

aNKT Photonics Koheras Basic E15
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4.1 Experimental Setups

plate. An objectiveb focuses the light on the string resonator, where the light is
reflected. Because our laser spot exceeds the width of our string resonator, the light
is also reflected from the substrate and interferes with the light coming from the
resonator, imprinting the movement of the resonator on the light. The quarter-wave
plate converts the circular to a linear polarization. Due to a phase shift of π that
occurred during the reflection, the light is reflected at the PBS and focused onto
photo detector. The signal is then send to the vector network analyzer (VNA). For
imaging, a LED and a camera are added to the setup with the help of two 92:8
beam splitters. The LED illuminates the sample which is then pictured by the
camera. This allows for a precise positioning of the individual string resonators
with respect to the laser spot. An Attocube three axis positioning system is used to
move the sample in the vacuum chamber. The vacuum is kept below 1× 10−4 mbar
to exclude gas damping. The sample holder, which is thoroughly described in
Sec. 4.1.3, hosts the sample and the piezo. The piezo is driven by a radio frequency
(rf) signal emitted by the VNA.

92:8 λ/2λ/4λ/4 PBS

Camera

VNA

PD

Objective

CollimatorLaser

Sample

LED

92:8

Vacuum chamber

xyz
stage P

Z
T

Optical fiber
Laser beam

Electrical cable

~
rf

Figure 4.1: Visualization of the measurement setup with piezo actuation at room tem-
perature that is used to detect the vibrations from nanomechanical string
resonators. PBS - polarizing beam, PD - photo detector, PZT - piezo, VNA -
vector network analyzer. Adapted from Ref. [34].
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Chapter 4. Characterization of String Resonators

4.1.2 Low Temperature Setup
The working principle of the optical detection in the LT setup is identical to the
one presented in Sec. 4.1.1, although the setup is arranged slightly differently.
The free space PBS, and the quarter- and half-wave plates are replaced by a fiber
based circulator as visualized in Fig. 4.2. Both the VNA and the spectrum analyzer
are connected to the electrical output of the photo detector. This is required for
ring-down measurements, which are explained in Sec. 4.4 and App. C. For the
dielectric drive, the VNA’s rf signal and a direct current (dc) signal are combined
with the help of a bias tee. It is then guided via the sample holder (see Sec. 4.1.3
for details) and bond wires to the electrodes. The underlying drive mechanism is
explained in Sec. 2.4.

The optical dry cryostatc is cooled with a helium compressor that is connected to the
cold head, which is the coldest place in the cryostat. The cold head and all the parts
that are directly connected to it, such as the stage and the screws, are fabricated
from titanium. A three axis positioning system (stage) is used to position the string

SA

92:8

Camera

PD

Objective Collimator

Laser

Sample

LED

92:8

Vacuum chamber

xyz
stage

Optical fiber
Laser beam

Electrical cable
~

VNA

rf

Cold
head

TS

Heater

±dc

Circulator

40 K shield

Straps

Figure 4.2: Visualization of the measurement setup with a dielectric drive at low tem-
peratures that is used to detect the vibrations from nanomechanical string
resonators. Additionally, we are able to perform ring-down measurements
with this electronic setup. The yellow square on the sample indicates a bond
pad. SA - spectrum analyzer, PD - photo detector, TS - temperature sensor,
VNA - vector network analyzer. Adapted from Ref. [34].

bMitutoyo Plan Apo NIR 100X, numerical aperture 0.5
cAttocube attoDRY800
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4.1 Experimental Setups

resonators with respect to the laser. On top of the stage, a temperature sensor
(TS) and a resistive heater allow for a precise control of the sample’s temperature.
In order to improve the thermalization of the sample, thermal straps are directly
connecting the cold head to the plate below the sample holder, containing the
temperature sensor and the heater as indicated in Fig. 4.2. Note that the objectived

is also directly mounted on the cold head and therefore cooled to low temperatures.
The cold head and the components attached to it are completely encapsulated by a
40 K shield made out of aluminum. It is essential that the shield is sealed as good
as possible, because even small holes lead to a significant increase in temperature.
The whole setup is mounted on an air damped table to prevent vibrations of the
compressor to interfere with the measurement.

4.1.3 Sample Holder
Each of our sample holders serves two prime purposes: First, it safely connects the
sample to the positioning and cooling systems and, secondly, gives us electrical
access to the sample. All sample holders are based on a metal (mostly aluminum)
plate with four screw holes that are used to attach them to the positioners from
Attocube (see Fig. 4.3 (a-c)). To establish a piezo drive, a piezo element is glued
to the metal plate with a thin layer of indium.e A droplet of old photoresist or
conductive silver (low temperature measurements) attaches the sample onto the
piezo. Figure 4.3 (d) shows a detailed sketch of the used materials. For electrical
access, a two pin header is glued with epoxy to the base plate. One of the pins is
soldered to the plate (ground) and the other one on top of the piezo as shown in
Fig. 4.3 (a,b).
For samples with electrodes, a special gold coated printed circuit board (PCB)
comes into play as depicted in Fig. 4.3 (d,e). Indium is used to glue the board to
the metal plate. By that the gold plated areas with holes in them are electrically
connected to the sample holder and therefore to ground. Bond wires link the
string’s electrodes to two different ports of the PCB, which in turn lead to pin
heads. No matter the driving technique, the pin heads are electrically connected to
our measurement devices.

In the course of this work, several improvements have been implemented to increase
the quality of the sample holders especially in terms of thermalization. The very
first generation of sample holders, which is shown in Fig. 4.3 (a), is based on
a 2.5 mm thick metal plate cut with a big cutter from bulk material. Due to
this procedure, the whole base plate is slightly bent (see Fig. 4.3 (a)), reducing
the thermal contact to the underlying cold plate of the cryostat significantly. To

dattoMICROSCOPY LT-LWDO/0.55 CFM I 50X, numerical aperture 0.55
eResearch Kit from Indium Corporation of America
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Figure 4.3: Top and side view of the first (a) and second generation (b,c) of sample
holders. For samples with electrodes, where we want to utilize the dielectric
drive, a special electric board is used as shown in (c). In (e) a close-up of the
board and its connections to the sample is shown. The cross section, at the
position marked by the blue line in (a), is visualized in (d).

overcome this issue, thicker plates are cut and smoothed with the help of a lathe as
shown in Fig. 4.3 (b,c).
To further improve the thermal contact, the old photoresist, which glues the sample
to the holder, is replaced by conductive silver. Additionally, photoresist gets brittle
at low temperature, which can result in the sample detaching from the sample
holder.
Lastly, the piezo and the indium layer are removed for samples that can be driven
dielectrically. This should again enhance the thermalization because ceramics have
a bad thermal conductivity. Hence, the sample is directly glued to the metal base
plate as shown in Fig. 4.3 (c).
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4.2 VNA Measurement

4.1.4 Is a Good Laser Worth It?
A bad laser with a lot of phase noise leads to a scattering over time of the measured
quality factor of an InGaP string resonator.f This is shown in Fig. 4.4, where we
display the quality factor measured over time, first with a noisy laser (Agilent
81940A Tunable Laser, Laser 1) and second with a low noise laser (NKT Photonics
Koheras Basic E15, Laser 2). Clearly, the scattering of the quality factor is reduced
significantly by using a low noise laser. While the mean value is hardly affected, the
standard deviation drops by a factor of 5 from 7.8× 104 to 1.5× 104. Therefore,
nearly all measurements within this work are recorded with Laser 2.

Laser 1 Laser 2

Figure 4.4: Quality factor as a function of time, measured with Agilent 81940A Tunable
Laser (Laser 1) and NKT Photonics Koheras Basic E15 (Laser 2). The
Quality factor is measured via a ring-down (see Sec. 4.4). The data was
recorded on sample C at 33 K.

4.2 VNA Measurement
One way to determine the resonance frequency and quality factor of a resonator is
to perform a frequency sweep with a vector network analyzer (VNA). By fitting a
Lorentzian function to the data, we are able to extract the frequency and quality
factor as shown in Fig. 4.5 for three different strings. As expected from Euler-
Bernoulli beam theory, shorter strings offer higher frequencies (compare Fig. 4.5 (a-
c)). In order to gain reliable results of the quality factor, it is mandatory to choose
an adequate bandwidth and a power for which the resonator remains in the linear
regime. The data shown in Fig. 4.5 (a), for instance, is recorded with a power
of −110 dBm and a bandwidth of 1 Hz, leading to a measurement time of around
30 min. Fluctuations and drifts during this time can influence the data. Ring-downs

fThis sample was fabricated by my colleague Maximilian Bückle.
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Chapter 4. Characterization of String Resonators

are a faster and more reliable method in these cases, shown in Sec. 4.4 and App. C.
For strings with slightly lower quality factors, however, VNA measurement are a
feasible option as visible in Fig. 4.5 (b,c).

110 µm

2.7 MHz

60 µm

5.0 MHz

30 µm

15.2 MHz

(a) (b) (c)

Figure 4.5: Amplitude as a function of frequency for three different string resonators
recorded with a VNA. Blue points and red lines corresponds to measured
data and a Lorentzian fit, respectively. The length, resonance frequency
and quality factor are: (a) 110 µm, 2.7 MHz, 360 000; (b) 60 µm, 5.0 MHz,
160 000; (c) 30 µm, 15.2 MHz, 80 000. The data was recorded on sample A
at room temperature.

4.3 Calibration with Thermal Motion

Even in the absence of an active drive a thermal force is actuating our resonator,
resulting in the so called thermal or Brownian motion. Conveniently, it can be
utilized to translate the measured voltage signal into an actual amplitude in meters.
Here we follow the procedure presented by Hauer et al.42 For that we introduce
the one-sided displacement power spectral density Szz(ω) (units m2 Hz−1), which
is the density of power as a function of frequency. By integrating Szz(ω) over
all frequencies, we can directly recover the mean-square amplitude 〈z2〉 of the
resonator:42,115

〈z2〉 =
1

2π

∫ ∞
0

Szz(ω) dω. (4.1)

The SA, however, delivers a voltage power spectral density Svv(ω) = U(ω)2

B
(units

V2 Hz−1), where U is the measured voltage and B the SA’s bandwidth, from which
we can not directly retrieve the amplitude. Generally, the power spectral density of
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4.3 Calibration with Thermal Motion

the driving force SFF(ω) and Szz(ω) are related via

Szz(ω) = |χ(ω)|2 SFF(ω),

=
1

m2
(

(ω2
0 − ω2)

2
+ (ωΓ)2

) · SFF(ω), (4.2)

where χ is the mechanical susceptibility. If the resonator is only driven by ther-
mal noise, SFF(ω) can be replaced by a frequency independent force Sth

FF. The
corresponding mean-square amplitude is (see App. I)

〈z2〉 =
Sth

FF

4Γω2
0m

2
, (4.3)

with the effective mass m.g Additionally, the equipartition theorem can be used to
determine 〈z2〉 due to the thermal excitation:42,116,117

1

2
mω2

0〈z2〉 =
1

2
kBT, (4.4)

where kB is the Boltzmann constant and T the temperature.h Combining Eq. (4.3)
and (4.4) yields

Sth
FF = 4ΓkBTm. (4.5)

By inserting this into Eq. (4.2), we get

Szz(ω) =
4ΓkBT

m
(

(ω2
0 − ω2)

2
+ (ωΓ)2

) , (4.6)

which is the theoretical amplitude power spectral density of our thermally driven
resonator. Next we connect the theoretical Szz(ω) and measured Svv(ω) power
spectral density with a conversion factor α (units m V−1):

Svv(ω) = Snf
vv +

1

α2
Szz(ω), (4.7)

where Snf
vv is the noise floor. If we know α, we can transform our measured voltage

to actual amplitudes.

gNote that this approximation is only valid if 2ω0 > Γ, which holds true for our high Q
resonators.

hIn the literature this equation is often given as 1
2k〈z

2〉 = 1
2kBT , where k is the effective

spring constant. Since ω2
0 = k

m , it is identical to Eq. (4.4).
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(a) (b)

Figure 4.6: Amplitude as a function of detuning for a thermal (a) and external (b)
drive. Colored dots correspond to measured data and red lines to fits to
the data. Fitting Eq. (4.7) to the data shown in (a) yields a conversion factor
α = 20 µm V−1. In (b) the drive powers are −55 dBm (dark blue), −65 dBm
(blue), and −75 dBm (light blue). Note that the setup, sample, and laser spot
on the sample remained completely unchanged between the measurements (a)
and (b) to guarantee a constant conversion factor α. The data was recorded
on a 110 µm string of sample B at room temperature.

In Fig. 4.6 (a) you can see the thermal motion of sample B at room tempera-
ture. By fitting Eq. (4.7) to the data, we are able to extract the conversion factor
α = 20 µm V−1, allowing us to determine the amplitude in meters. As shown on
the right axis of Fig. 4.6 (a), the thermal motion of this 110 µm string is 8 pm,
which just below the 11.7 pm measured for a similar string in Ref. [118]. Note that
the quality factor of sample B (Q ≈ 100 000) is considerable smaller than the one
presented in Ref. [118] (Q ≈ 400 000). Driving the sample with an external drive
increases the amplitude significantly as shown in Fig. 4.6 (b). For a drive power of
−55 dBm, we can for instance reach an amplitude of more than 2 nm. The conver-
sion factor α depends massively on the setup, the sample, and, unfortunately, the
current position of the laser spot on the string resonator. As it is impractical to recal-
ibrate after every move of the sample, we normally present the amplitude in units
of volt. The conversion factor α and the noise floor Snf

vv = 9.5× 10−16 V2 Hz−
1
2

yield a sensitivity of42

η =
√
Snf

vv α
2 = 0.6 pm Hz−

1
2 , (4.8)
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4.4 Ring-Down Measurement

which is very close to the 2 pm Hz−
1
2 presented by my colleague Jana Ochsi for a

similar setup.119

4.4 Ring-Down Measurement
Ring-down measurements are a fast and reliable option to determine the quality
factor of high Q resonators. The measurement principle is explained in App. C.
Figure 4.7 shows two ring-down measurements, recorded on sample A and B.
The data is fitted with Eq. (2.8), yielding decay times of 0.015 s and 0.007 s. The
quality factor can then be calculated with

Q = 2πf0τ, (4.9)

where f0 is the resonance frequency. For the aforementioned decay times, we
get quality factors of 250 000 and 95 000, respectively. Determining even higher
quality factors, as shown in Chap. 8, is also feasible via ring-downs. On the other
hand, for very small quality factors and/or very high frequencies, the decay times
are very small. At this point, it gets very challenging to capture and evaluate ring-
downs. VNA measurements are, therefore, the better option for these circumstances
as they appear e.g. for very high harmonics (see Chap. 5, 6, and 7).

p
W

p
W

(a) (b)

Figure 4.7: Ring-down measurement of sample A (a) and B (b). The extracted quality
factors are 250 000 and 95 000, respectively. The red line is an exponential
decay (Eq. (2.8)) fitted to the data (blue dots).

iHere we are referring to the data presented in Appendix C.2,119 which is recorded on a SiC
sample driven dielectrically and measured optically. Our sample B, on the other hand, is actuated by
a piezo. A noise floor of Snf

vv = 5.9× 10−11 V2 Hz−
1
2 and a conversion factor of α = 0.3 µm V−1

are given in the text.
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Chapter 4. Characterization of String Resonators

4.5 Comparing Quality Factors

In the previous sections, we introduced three different measurement techniques
to determine the quality factor of a string resonator. Here, we compare them for
different scenarios with the results summarized in Tab. 4.1.
As mentioned before, the VNA sweep, the SA thermal motion (if the signal to noise
is sufficient) and ring-down measurements can be used to determine the quality
factor of resonators with Qs below 100 000.
In the case of a high Q resonator, where the quality factor of the fundamental mode
is in the range of 300 000 to 500 000, the ring-down is the best method. Depending
on the fluctuations and drifts of the resonance frequency, the VNA measurement
may also be a valid option. The recording of the thermal motion, on the other
hand, is much faster but does not, at least for most of our measurement, deliver the
desired precision. This can for instance be seen in the first line of Tab. 4.1 and is
consistent within a multitude of our measurements.
For even higher quality factors, which are reached in essentially all our low tem-
perature measurements, the ring-down is the only available option. Both the VNA
sweep and the thermal motion erratically over- or underestimate the quality factor,
depending on the fluctuations. Note, however, that both VNA as well as the SA

Table 4.1: Comparison of the extracted quality factor for the aforementioned
methods: VNA frequency sweep (Sec. 4.2), SA thermal motion (see
Sec. 4.3), and ring-down (see Secs. 4.4 and App. C). Italic values are not
very trustworthy. The VNA measurement of Sample A and F as well as
all thermal motions were recorded with a bandwidth of 1 Hz. RT and LT
correspond to room and low temperatures. Note that Sample A suffered
from some non reversible degradation over time (more than a year),
i.e. different measurements can not be directly compared. However, all
quality factors shown in a single line in this table have been measured
within very short time intervals and are therefore comparable. Note that
we only included data measured on the fundamental mode of various
110 µm SiC string resonators.

Sample VNA Therm. Motion Ring-Down
(×103) (×103) (×103)

Sample A (RT) 363 270 356
Sample A (LT) – 2900 2500
Sample A (LT) – 2200 3600
Sample B (RT) 98 96 95
Sample F (LT) 700 – 800

37



4.5 Comparing Quality Factors

are able to reliably extract the frequency at low temperatures. Further, we want to
point out again that both the frequency and the quality factor for higher harmonics
(i.e. high frequency and low quality factor) can only be extracted with the help of
VNA sweeps.
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5
Determining Young’s Modulus

The following chapter is based on our manuscript:

Y. S. Klaß, M. Bückle, J. Doster, R. Braive, and E. M. Weig, “Determining
Young’s modulus via the eigenmode spectrum of a nanomechanical string
resonator”, submitted manuscript (2022). Ref. [32]

The samples were fabricated by M. Bückle (InGaP, material provided by R.
Braive) and me (SiC and SiN). The measurements were performed by M.
Bückle (InGaP and SiN) and me (SiC). Some preliminary measurements
were performed by J. Doster. Data analysis was done by E. M. Weig
and me. The manuscript was written by E. M. Weig and me. Therefore,
the following chapter contains many original passages. This includes the
chapter’s introduction, Sec. 5.2 with all subsections, but excludes Sec. 5.1,
which is not part of the manuscript. Figures are reproduced from Ref. [32].

Young’s modulus of a material determines its stiffness under uniaxial loading. It
is a crucial material parameter for many applications involving mechanical or
acoustic degrees of freedom, including nano- and micromechanical systems,135

cavity optomechanics,136 surface or bulk acoustic waves, including quantum
acoustics,137,138 nanophononics,139 or solid-state-based spin mechanics.140 The
precise knowledge of Young’s modulus is necessary for quantitative prediction or
characterization of those devices’ performance. However, the value of Young’s
modulus of most materials has been known to strongly depend on growth and
even nanofabrication conditions such that relying on literature values may lead to
significant deviations.98–100,141 This is apparent from Fig. 5.1 where we show exam-
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ples of experimentally and theoretically determined values of Young’s modulus
along with common literature values for three different materials. For instance, for
amorphous stoichiometric Si3N4 grown by low pressure chemical vapor deposi-
tion experimental values between 160 GPa46 and 370 GPa125 have been reported.
The situation is considerably more complex for crystalline materials, for which
additional parameters such as the crystal direction or the specific crystal structure
affect the elastic properties. For these materials, Young’s modulus can, in principle,
be calculated via the elastic constants of the crystal101. However, its determination
may be impeded by the lack of literature values of the elastic constants of crystal
structure under investigation because the database for theoretical values is scarce
for some materials. This is seen for the ternary semiconductor alloy In1−xGaxP,
where even the gallium content x influences Young’s modulus.101 For 3C-SiC theo-
retical predictions vary between 125 GPa130 and 466 GPa134 because the literature
provides differing values of the elastic constants, even surpassing the spread of
experimentally determined values. This is demonstrated in detail in Sec. 5.1.

While Young’s modulus of macroscopic bulk or thin film samples is conve-
niently characterized using ultrasonic methods120,142 or static techniques such

Figure 5.1: Young’s modulus for In0.415Ga0.585P, 3C-SiC, and LPCVD Si3N4. Our
measured values and uncertainties are shown as filled colored circles and
colored shades, respectively, whereas literature values are represented as
open symbols. Colored open triangles correspond to values computed form
literature values of the elastic constants, matching the crystal direction
of the investigated resonators. Measured and other literature values are
shown as open black diamonds and crosses, respectively. For the sake of
visibility we omit all stated uncertainties. Values are taken from: 1[46],
2[120], 3[121], 4[24], 5[122], 6[123], 7[124], 8[125], 9[126], 10[52], 11[26,
127],12[128],13[129], 14[95], 15[96] , 16[100], 17[130], 18[131], 19[132],
20[133], 21[134], 22[101]. Labels for measured values are found below the
corresponding symbol, while all other labels are situated above. Adapted
from Ref. [32].
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Chapter 5. Determining Young’s Modulus

as nanoindentation96, load deflection121,125 or bulge testing95,122,124, determining
its value on a nanostructure is far from trivial. For freely suspended nanobeams
and cantilevers, a dynamical characterization via the eigenfrequency provides
reliable results.24,98,99,123,143 However, this method is severely limited for nanome-
chanical devices such as membranes or strings subject to a strong intrinsic tensile
prestress where the contribution of the bending rigidity and thus Young’s mod-
ulus to the eigenfrequency becomes negligible.a In Sec. 5.2, which is based on
our manuscript,32 we present a method to determine Young’s modulus of a string
resonator that is susceptible to the stress and orientation of the material.

5.1 Calculating Young’s Modulus
As long as we are within the linear regime (Hooke’s law), stress σ and strain ε are
related via144

σ = Cε, (5.1)
ε = Sσ, (5.2)

where C and S are the compliance and stiffness tensor, respectively.145–147 In case
of an isotropic material like SiN this simplifies to the well known form σ = Eε. For
an anisotropic material (e.g. SiC, InGaP), C and S have to be fourth grade tensors
(34 = 81 entries per tensor) to fully capture the problem. Utilizing 3C-SiC’s cubic
symmetry enables us to reduce these to 6 × 6 matrices with only 3 independent
entries, yielding144

σ1

σ2

σ3

σ4

σ5

σ6

 =


c11 c12 c12 0 0 0
c12 c11 c12 0 0 0
c12 c12 c11 0 0 0
0 0 0 c44 0 0
0 0 0 0 c44 0
0 0 0 0 0 c44




ε1
ε2
ε3
ε4
ε5
ε6

 (5.3)

for Eq. (5.1), where cij are the elastic constants of the respective material. Here,
we used Voigt notation, thus σ1, σ2, and σ3 correspond to the normal stress in the
crystal direction [100] (x-axis), [010] (y-axis), and [001] (z-axis), respectively. On
the other hand, σ4, σ5, and σ6 represent different shear stress components. Young’s
modulus of the [100] direction (x-axis) can be calculated by inverting the very first
entry of the stiffness matrix s11, i.e.

aThe fit does in fact converge to a similar value as we find with our new method. This, however,
is only true if we use all available eigenmodes. Reducing the number of modes leads to a significant
deviation from the expected value. While the Matlab fitting command fitnlm, which is normally
used by our group, does not work correctly, the command nlinfit is able to fit the data. Note that the
resulting stress is complex and one has to take the real part.
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Figure 5.2: Visualization of the required axis rotations to calculate Young’s modulus. On
the right side we assume a length of a for the cube, leading to a diagonal
length of

√
2a.

E[100] = (s11)−1 . (5.4)

In order to calculate Young’s modulus in an arbitrary direction we have to rotate the
matrix in a way that the rotated x-axis aligns with the desired direction. Note that
the exact mathematical expressions for these operations can be found in Refs. [34,
147]. In order to calculate Young’s modulus for the (111)-plane, we first have to
rotate our matrix by 3π

4
about the original z-axis, which aligns the new x′-axisb

with the [−110] direction. Next, we perform a rotation by arctan
(√

2
)
≈ 54.74°

(see Fig. 5.2) about the x′-axis, tilting the z′-axis (identical to the original z-axis)
in the [111] direction. Note that both the x′′-axis (identical to the x′-axis) and the
y′′-axis are located in the (111)-plane.c Therefore, if we now rotate our matrix by
an angle θ about the z′′-axis, we can utilize Eq. (5.4) to extract Young’s modulus in
this direction. As the resulting equation E(θ) is very lengthy, it is omitted at this
point. By inserting the three elastic constants c11, c12, and c44 of SiC we can finally
determine Young’s modulus for every direction on our (111)-wafer. However,
a wide range of different elastic constants can be found in literature, leading to
Young’s moduli of 125 GPa,130 286 GPa,131 419 GPa,132 452 GPa,133, 466 GPa,134

or 517 GPa148 in the [1̄1̄2] direction, which corresponds to the orientation of our
SiC string resonators. As we will show in Sec. 5.2, the elastic constants

bHere we use the following notation: For every rotation applied to the system, we add one
prime to the axis’ names, i.e. x′, and x′′-axis are rotated once, and twice, respectively.

cIf the plane (hkl) contains the direction [uvw] (or is parallel to it), the relation hu+kv+lw = 0
holds. For example, the direction [1̄1̄2], which corresponds to the orientation of our SiC resonators,
is within the (111)-plane, because −1− 1 + 2 = 0.
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Chapter 5. Determining Young’s Modulus

c11 = 352 GPa,
c12 = 140 GPa, (5.5)
c44 = 233 GPa,

from Ref. [132] fit the best to our measured Young’s modulus of 400 GPa. These
values result in Young’s modulusE(θ) shown in Fig. 5.3. Clearly, Young’s modulus
is almost perfectly isotropic with a value of approximately 419 GPa. Note that all
analyzed elastic constants (Refs. [130–134, 148]) suggest a very high isotropy of
Young’s modulus in the (111)-plane. In other planes, however, this does not hold
true.

5.2 Determining Young’s Modulus via the Eigen-
mode Spectrum

5.2.1 Theoretical Considerations

According to the Euler-Bernoulli beam theory the out-of-plane flexural eigen-
frequencies of a doubly clamped string subjected to tensile stress with simply
supported boundary conditions is given by Eq. (2.2). Slightly rewriting this equa-

(a) (b)

Figure 5.3: Dependence of Young’s modulus on the crystal direction in the (111)-plane
with the elastic constants from Ref. [132] (see Eq. (5.5)). The results are
shown in polar (a) and cartesian coordinates (b). The dashed circular lines
in (a) correspond to values of 300 GPa, 400 GPa, and 500 GPa, respectively
(from inside to outside). Orange dots indicate the crystal directions that are
parallel to our SiC string resonators.
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5.2 Determining Young’s Modulus via the Eigenmode Spectrum

tion gives us

fn =
n2π

2L2

√
Eh2

12ρ
+

σL2

n2π2ρ
, (5.6)

where n is the mode number, L the length and h the thickness of the resonator, ρ
the density, E Young’s modulus and σ the tensile stress. For the case of strongly
stressed nanostrings, the bending contribution to the eigenfrequency, i.e. the first
term under the square root, has only a minor contribution compared to the signifi-
cantly larger stress term. Hence, the eigenfrequency-vs.-mode number diagram
will approximate the linear behavior of a vibrating string, fn ≈ (n/2L)

√
σ/ρ.

So, even for, a large number of measured harmonic eigenmodes, only minute
deviations from linear behavior imply that Young’s modulus can only be extracted
with large uncertainty. However, computing f 2

n/n
2 for two different mode numbers

and subtracting them from each other allows it to cancel the stress term from the
equation, yielding

f 2
n

n2
− f 2

m

m2
= E

π2h2(n2 −m2)

48L4ρ
, (5.7)

with m 6= n. This equation can be solved for Young’s modulus

E =
48L4ρ

π2h2(n2 −m2)
·
(
f 2
n

n2
− f 2

m

m2

)
, (5.8)

which allows us to determine Young’s modulus from just the basic dimensions of
the string resonator, the density, and the measured eigenfrequency of two different
modes.

5.2.2 Propagation of Uncertainty
In order to get a better understanding of the contributions to the individual un-
certainty of the measured Young’s modulus, we calculate the propagation of
uncertainty. To this end, we assume an uncertainty for the eigenfrequency δf ,
length δL, thickness δh, and density δρ, leading to:

δE =
48L4ρ

π2h2

(∣∣∣∣ 2fn
n2(n2 −m2)

∣∣∣∣ · δfn +

∣∣∣∣ 2fm
m2(n2 −m2)

∣∣∣∣ · δfm
+

∣∣∣∣ f 2
n

n2(n2 −m2)
− f 2

m

m2(n2 −m2)

∣∣∣∣ [ 4

L
δL+

2

h
δh+

1

ρ
δρ

])
. (5.9)

This enables us to determine the complete error δE for each combination of n and
m by inserting the measured frequencies fn,m. In order to interpolate between the
integer values of n and m, we insert the eigenfrequencies of the Euler-Bernoulli
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Chapter 5. Determining Young’s Modulus

beam theory (see Eqs. (5.6) and (2.2)) in Eq. (5.9) and obtain the simplified
expression

δE =
48L4ρ

π2h2

(∣∣∣∣ 2fn
n2(n2 −m2)

∣∣∣∣ · δfn +

∣∣∣∣ 2fm
m2(n2 −m2)

∣∣∣∣ · δfm)
+

4E

L
δL+

2E

h
δh+

E

ρ
δρ. (5.10)

Interestingly, only the contribution of the eigenfrequency uncertainty depends
on the mode numbers n and m (and hence their difference ∆), whereas the con-
tributions of the other three uncertainties are constant. The four summands of
Eqs. (5.9) (color points) and (5.10) (solid lines) are plotted individually in Fig. 5.4
as a function of the mode number n for a 110 µm SiC string and the uncertainties
shown in Tab. 5.1. The second mode number m is fixed exemplary to m = 1
and 20. For small n and for n ≈ m, the eigenfrequency uncertainty provides
the dominant contribution to δE. For all other values of n, δE is dominated by
the constant uncertainties of the resonator thickness, the density, and the length,
whereas the contribution of the eigenfrequency uncertainty becomes negligible.
Therefore, a precise determination of Young’s modulus calls for a large number
of measured harmonic eigenmodes, leading to large ∆ = |m− n| and, hence,
smaller uncertainties. Note that all three constant contributions are proportional to
Young’s modulus, resulting in a similar relative uncertainty of approximately 10 %
as shown in Tab. 5.2.

5.2.3 Measuring the Eigenmode Spectrum
To validate the proposed method, we are analyzing samples fabricated from four
different wafers on the three material platforms outlined already in Fig. 5.1. First,

Table 5.1: Parameters used for the calculations, including the measured length of
the strings, the density, and the uncertainty of the frequency. Adapted
from Ref. [32].

SiN-FS SiN-Si SiC InGaP
h (nm) 100(2) 100(2) 110(2) 100(1)
L string 1 (µm) 107.7(5) 100.4(5) 109.9(5) 110.5(5)
L string 2 (µm) 88.0(5) 90.3(5) 99.9(5) 90.5(5)
L string 3 (µm) 78.2(5) 70.2(5) 89.8(5) 80.5(5)
ρ (g/cm3) 3.1(1)149–151 3.1(1)149–151 3.2(1)78,152 4.4(1)153

δf (h) 0.25 0.25 0.25 0.25
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5.2 Determining Young’s Modulus via the Eigenmode Spectrum

m = 20

m = 1

Figure 5.4: Contributions of the individual uncertainties of the 110 µm SiC string for
two fixed mode numbers m = 1 (top) and m = 20 (bottom). The colored
symbols are calculated with Eq. (5.9) and the measured frequencies fn,m.
The colored solid lines are computed with Eq. (5.10) where we used the
values of fn,m predicted by Euler–Bernoulli beam theory. The data was
recorded on a 110 nm string of sample A. Adapted from Ref. [32].

we use wafer W1, which consists of 110 nm 3C-SiC on a Si substrate (denoted
as SiC). Two wafers consist of 100 nm LPCVD-grown amorphous stoichiometric
Si3N4 on a fused silica substrate (denoted as SiN-FS) and on a sacrificial layer of
SiO2 atop a silicon substrate (SiN-Si), respectively. The fourth wafer comprises
a 100 nm thick In0.415Ga0.585P film epitaxially grown atop a sacrificial layer of
Al0.85Ga0.15As on a GaAs wafer (denoted as InGaP). All four resonator materials
exhibit a substantial amount of intrinsic tensile prestress. Details regarding the
wafers are listed in App. A.

On all these wafers we fabricate a harp of nanostrings, which we introduced in
Sec. 3.2.1. As a reminder, the length of the resonator on such a harp range from
10 µm to 110 µm in steps of 10 µm. Since the length has a significant impact on
the stress of the string resonator (see Chap. 6 and Ref. [39]) and the stress might
have an impact of Young’s modulus,154 we focus solely on the three longest strings
of each sample for which the tensile stress converges to a constant value.39 The
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Chapter 5. Determining Young’s Modulus

Figure 5.5: Measured eigenfrequency as a function of the mode number for the three
longest SiN-FS strings including fits of the string model (solid lines). Inset
depicts the frequency response of the fundamental mode (n = 1, L =
110 µm, f1 = 3.37 MHz), including a Lorentzian fit (solid lines) to the data
(dots). The data was recorded on a 110 nm string of sample D. Adapted from
Ref. [32].

frequency response of a series of higher harmonics is measured via VNA sweeps
in combination with the RT setup and piezo actuation (see Sec. 4.1.1 and 4.2).
Figure 6.1 depicts the results for the three longest SiN-FS strings, exhibiting up
to 29 eigenmodes. In order to demonstrate the nearly linear behavior, the data
is fitted with the string model (see Eq. 2.3) with σ being the only free parameter.
The slight deviation observed for high mode numbers is a consequence of the
bending contribution neglected in this approximation. Note the fit of the full model
(Eq. (5.6), not shown here), which we utilize in Chap. 6, yields a somewhat better
agreement, however, Young’s modulus can not be reliably extracted as a second
free parameter in the stress-dominated regime.

5.3 Determining Young’s Modulus

Combining the measured eigenmode spectrum with Eqs. (5.8) and (5.9) allows us to
finally determine Young’s modulus along with its uncertainty. All input parameters
as well as their uncertainties are listed in Tab. 5.1. To get as much statistics as
possible, we introduce the difference of two mode numbers ∆ = |m− n| as a
parameter. For instance, ∆ = 5 corresponds to the combinations (n = 1,m = 6),
(2, 7), (3, 8), . . .. For each ∆ we calculate the mean value ofE and δE, respectively.
The obtained values of Young’s modulus are depicted as a function of ∆ for all four
materials in Fig. 5.6. Note that only ∆ values comprising two or more combinations
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5.3 Determining Young’s Modulus

Table 5.2: Young’s modulus including the total uncertainty determined for the
four different materials. Adapted from Ref. [32].

SiN-FS SiN-Si SiC InGaP
E (GPa) 254(28) 198(22) 400(38) 108(7)

of mode numbers are shown. The individual combinations E(∆) contributing to E
for a specific ∆ are visualized as gray dots, whereas the mean values of Young’s
modulus E for each value of ∆ are included as colored circles. Clearly, Young’s
modulus of each material converges to a specific value for increasing ∆. These
values are extracted by averaging over the obtained values of E and summarized in
Tab. 5.2. Note that only the upper half of the available ∆ points are included in the
averaging process to avoid some systematic distortions appearing for low ∆. The
uncertainty associated with the mean Young’s modulus δE is indicated by gray
shades. As discussed in detail in Sec. 5.2.2, the ∆-dependence of the uncertainty
arises solely from the uncertainty in the eigenfrequency determination. Therefore,
this contribution to the total uncertainty is highlighted separately as colored error
bars. For small ∆, a large uncertainty in the eigenfrequency determination is
observed which dominates the complete uncertainty δE. It coincides with a
considerable scatter of the individual combinations, which is also attributed to the
impact of the eigenfrequency determination. As expected, for increasing ∆, the
uncertainty in the eigenfrequency determination decreases, such that the complete
uncertainty δE becomes dominated by the constant contribution originating from
the uncertainties in the density, thickness and length of the string. The total
uncertainty is obtained by averaging δE over the upper half of the available ∆
points. It is also included in Tab. 5.2.

5.3.1 Discussion

Our determined values of Young’s modulus are included in the literature overview
shown in Fig. 5.1 as colored dots. Clearly, the determined values coincide with
the parameter corridor suggested by our analysis of the existing literature: For
InGaP, where no independent literature values are available we rely on the value
presented by my colleagues M. Bückle et al. in Ref. [101]. Similar to Sec. 5.1,
they utilized the elastic constants of InGaP with the appropriate Ga content (x =
0.585) and crystal orientation ([110]) to calculate Young’s modulus, yielding
E th

InGaP = 123 GPa,101,153, which is rather close to our experimentally determined
value of EInGaP = 108(7) GPa. For SiC we measure a Young’s modulus of ESiC =
400(36) GPa which is in perfect agreement with the experimentally determined
literature values of 398 GPa95 and 400 GPa96 by Iacopi et al.. It is also in good
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InGaP

SiC SiN-FS

SiN-Si

Figure 5.6: Determined Young’s modulus as a function of ∆ for the four different materi-
als SiC (green), SiN-FS (orange), SiN-Si (red), and InGaP (blue). Gray dots
correspond to individual combinations of |m− n|. Their mean values E(∆)
are shown as colored dots. While all combinations of n, m are included
in the calculation of E for a given ∆, not all of them are shown as gray
dots as some heavy outliers appearing mostly for low values of ∆ have been
truncated for the sake of visibility. The complete uncertainty is represented
by the gray shade, whereas its ∆-dependent contribution arising from the
uncertainty in the eigenfrequency determination is represented by the colored
error bars. The data was recorded on sample A, C, D, and E. Adapted from
Ref. [32].

agreement with the elastic constants published by Li and Bradt,132 yielding 419 GPa
for the orientation of our string resonators. Interestingly, SiN-FS and SiN-Si exhibit
significantly different Young’s moduli of ESiN-FS = 254(26) GPa and ESiN-Si =
198(21) GPa, respectively. In Fig. 5.1 we can see two small clusters of measured
Young’s moduli around our determined values, suggesting that the exact Young’s
modulus depends on growth conditions and the subjacent substrate material even
for the case of an amorphous resonator material.
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5.4 Conclusion
In this chapter, we investigate a new method to determine Young’s modulus via the
eigenmode spectrum of nanomechanical string resonators. It is susceptible to the
stress and orientation of the resonator’s material. We extract Young’s modulus for
four different materials, including a well-defined uncertainty. A comparison with
literature reveals not only very small deviations but also a growth dependence of
Young’s modulus.
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6
Universal Length Dependence of Tensile Stress

The following chapter is based on our publication:

M. Bückle†, Y. S. Klaß†, F. B. Nägele, R. Braive, and E. M. Weig,
“Universal length dependence of tensile stress in nanomechanical string
resonators”, Physical Review Applied 15, 034063 (2021). Copyright (2022)
by the American Physical Society. Ref. [39].

The samples were fabricated by M. Bückle (InGaP, material provided by R.
Braive) and me (SiC and SiN). The measurements were performed by M.
Bückle (InGaP and SiN) and me (SiC). Some preliminary measurements
were performed by F. B. Nägele. The theoretical model and data analysis
was joint work from M. Bückle and me. The manuscript was written by
E. M. Weig, M. Bückle and me. Therefore, the following chapter contains
many original passages.
Figures are reproduced from Ref. [39].

† These authors contributed equally to this work.

The one-dimensional tensile stress in the string resonators is not solely determined
by elastic material properties, but significantly depends, as we show in this chapter,
on its length and other geometric parameters. This allows one to increase the
tensile stress by approximately 50 % by using shorter strings and thus boost the
dissipation dilution. As discussed in Chap. 2.3, a higher tensile stress directly
translates into higher quality factors. Since the same behavior is observed for
four different wafers (the same as in Chap. 5) featuring the three complementary

51



6.1 Extracting the Tensile Stress

device layers SiC (Wafer A), SiN, and InGaP, the observed length dependence
of the tensile stress seems to be material independent. We explain the model
we developed that captures the observed features. It describes the geometric
reconstruction of the string resonator by a combination of two effects that determine
the stress distribution in the device layer: The vertical release of the string leads
to a deformation of the clamping structure, while the subsequent lateral release
undercuts the clamping pads. This is explained in depth in Sec. 6.2.

6.1 Extracting the Tensile Stress

As a first step we have to determine the tensile stress of individual string resonators.
Similar to Chap. 5, we utilize for that the data of the frequency fn as a function
of the mode number n. This time, however, all available lengths are considered.
The data is fitted with the solution of the Euler–Bernoulli beam theory (in Chap. 5
we used only the string model) for a doubly clamped string with simply supported
boundary conditions (Eq. 2.3) as shown in Fig. 6.1. As the tensile stress σ is the
only free fitting parameter, we can directly extract it from the fit algorithm. For
the Young’s modulus we used the parameter determined in Chap. 5. The obtained
stress values are shown as a function of the resonator length for all four materials

Mode Number

SiN-FSSiC

Figure 6.1: Eigenfrequencies of the out-of-plane modes as a function of the mode number
for SiC (left) and SiN-FS (right) string resonators. The resonator lengths
range from 10 µm to 110 µm for both materials. Fits of the eigenfrequencies
using the full Euler-Bernoulli model (Eq. (2.2)) are included as solid lines.
The data was recorded on sample A and D. The right plot is adapted from
Ref. [39].
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Chapter 6. Universal Length Dependence of Tensile Stress

in Fig. 6.2.a Clearly, the tensile stress is not constant, but decreases for increasing
resonator length. The same qualitative behavior is observed in all four material
systems.

6.2 Elastic Model
To describe this behavior, we have developed a model that is based on elastic
theory. As such, it is material independent and can be applied to all materials
under investigation. The model assumes a prismatic string of length L, width w
and thickness h1. Its cross-sectional area is As = w h1. On both ends, the string
is attached to a rectangular clamping structure. It consists of a clamping pad in
the device layer with lithographic dimensions 2ax and 2ay, as well as thickness
h1 (Fig. 6.3 (a)), which is supported by a pedestal of height h0 in the underlying

SiC

InGaP SiN-Si

SiN-FS

Figure 6.2: Experimentally determined tensile stress as a function of the length of the
nanostring for all four material systems. Fits of Eq. (6.9) are included as
solid lines. The obtained fit parameters are summarized in Tab. 6.2. The
shaded areas indicate the uncertainty resulting from measurement errors of
the pedestal height h0 and undercut auc. The data was recorded on sample A,
C, D, and E. Adapted from Ref. [39]

aAs a reminder: In contrast to our publication [39], we use here the previously determined
Young’s moduli from Chap. 5. At the time of publication, we relied on literature values. Conse-
quently, values and figures are marginally different to the ones presented in our publication.
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sacrificial or substrate layer (Fig. 6.3 (b,c)). As a result of the isotropic wet (InGaP,
SiN) or dry (SiC) etching process required to release the nanostrings, the clamping
pads exhibit a certain undercut auc, i.e. the width of the pad 2ax is larger than
that of the remaining pedestal 2ap = 2ax − 2auc. The cross-sectional area of the
clamping pad (in yz-plane) is Ap = 2ay h1. The geometric parameters of the four
investigated samples are summarized in Tab. 6.1. To achieve accurate results it is
crucial to know the exact dimensions of the individual structures.b A sketch of the
relevant dimensions is shown in Fig. 6.3. The thickness of the device layers h1

are taken from the growth protocol of the manufacturers. For SiC we confirmed

Δpax

h0

h1

(a) (b)

L(c)

ΔL/2

Δc
Δp

ΔL/2

Δc
Δp

2ax 2axL

2ay w

auc

z

y

x

z

x

z

x

Figure 6.3: Sample geometry and parameters of the model. (a) Lithographic dimen-
sions of the nanostring and its clamping pads. (b) Cross section through
the clamping structure illustrating the shearing contraction of the pedestal
following the vertical release of the structure. (c) Cross section through
the clamping structure illustrating the lateral contraction of the undercut
areas of the clamping pad following the horizontal release. Combining the
vertical and horizontal releases leads to the string’s length change of ∆L.
Areas supported by a pedestal are colored in dark blue, undercut areas of
the clamping pads are indicated by a lighter color and the string is marked
with the lightest blue. Dotted lines serve as guides to the eye. Adapted from
Ref. [39].

bAs a reminder in Chap. 5, we only needed the exact length and thickness of the string resonator.
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Table 6.1: Geometric parameters of the investigated samples. Adapted from
Ref. [39].

h1 h0 2ax 2ay auc w
(nm) (nm) (µm) (µm) (nm) (nm)

SiN-FS 100(2) 460(20) 13.7(2) 13.6(2) 570(100) 420(25)
SiN-Si 100(2) 365(20) 14.1(2) 15.0(2) 410(150) 340(25)
SiC 110(2) 570(40) 14.2(2) 15.0(2) 860(150) 360(30)
InGaP 100(1) 990(10) 12.7(2) 13.3(2) 640(170) 250(15)

the thickness by means of ellipsometry.c The pedestal height h0 is determined
with the help of an atomic force microscope.d All the remaining dimensions are
extracted via SEM imaging as demonstrated in Fig. 6.4. While the length and width
of both the string and pedestal are straight forward to extract (see Fig. 6.4 (b-d)),
the undercut auc is a more challenging task. For InGaP, SiC and SiN-FS, there is a
clear contrast change between supported and unsupported areas of the clamping
pad, which is sufficient to measure the undercut, as can be seen in Fig. 6.4 (c,e).
However, SiN-Si does not have a clear contrast change as shown in Fig. 6.4 (b).
To overcome this challenge, parts of the pedestal are removed with a focus ion
beam (FIB), exposing the undercut (see in Fig. 6.4 (f)) and allows for a precise
measurement of the undercut. As already mentioned in previous chapters, all
material parameters are listed in App. A.

As we show in the following, the tensile stress in the device layer atop an unstressed
sacrificial layer or substrate gives rise to a balance of forces that in turn leads to a
length- and geometry-dependent change in the one-dimensional tensile stress of
the nanostring. To quantify the contributing forces, we roughly follow the process
sequence required to fabricate a freely suspended nanostring (see Sec. 3.2.1). First,
we consider the vertical release of the nanostructure. It comprises all vertical
etching contributions, notably the ICP-RIE dry etch and the isotropic chemical wet
etch (only InGaP and SiN). Consequently, we neglect horizontal contributions from
the ICP-RIE and chemical wet etch at this point. The vertical release penetrates
both the device layer and the sacrificial (InGaP and SiN-Si) or substrate layer (SiC
and SiN-FS) and defines the height of the pedestal h0. Following this vertical
release, the tensile-stressed device layer will slightly contract and induce a certain
amount of shear in the pedestal (Fig. 6.3 (b)). As a result, the tensile stress in the
pad relaxes to a value σp.
Second, the lateral release is considered. It accounts for the lateral etching during

cThe measurement and analysis was performed by Gillian Kiliani at the University of Konstanz.
dThis measurement was peformed by Ralf Messmer.
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2ax

auc

2ay

w
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auc
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Figure 6.4: Extraction of the required dimensions. (a) Schematic sketch of the clamp-
ing structure including the undercut and the pedestal. Dark and light blue
correspond to supported and undercut areas, respectively. (b) SEM image
of a SiN-Si clamping structure to determine the pedestal widths. (c) SEM
image of an InGaP sample that is used to extract the length of the strings.
(d) Close-up SEM image of a SiN-Si string resonator to determine the width
of the string. (e) Close-up of a InGaP clamping pad. The clear contrast
change between supported and unsupported areas can be used to determine
the undercut. It corresponds to the location indicated by the green square in
(c). (f) Angled SEM image of the SiN-Si clamping pad. A FIB was used
ot expose the undercut by removing material at the edge of the clamping
structure. It corresponds to the location indicated by the orange square in (b).
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Chapter 6. Universal Length Dependence of Tensile Stress

the nanostring release. As a result of this lateral release, the two-dimensional stress
in the nanostring relaxes in the direction perpendicular to the string (y direction).
At the same time, the now undercut parts of the tensile-stressed clamping pad
contract because they are no longer strained by the underlying material. Therefore,
additional stress is applied on the nanostring (Fig. 6.3 (c)). The combination of the
described effects gives rise to the tensile stress experienced by the nanostring σ. The
model assumes a clear separation between the vertical and lateral release, which
are described in the following two sections, respectively, and neglects geometric
and elastic reconfigurations of the sheared pedestal and stressed clamping pad
arising from the lateral releases, which we can safely assume to be small.

Pedestal Shear from Vertical Release

To evaluate the shear of the pedestal induced by the vertical release of the structure,
we first consider an isolated clamping structure and focus on its cross section along
the x-z direction as indicated in Fig. 6.3 (b). The resonator will be included at a
later stage. Following the vertical release of the structure, the strong tensile stress
in the device layer leads to a contraction of the clamping pad in order to minimize
internal forces. This contraction leads to a shear of the pedestal (see Fig. 6.3 (b)).
The reconfiguration of the clamping structure stops once equilibrium between the
reduced tensile force and the counteracting shearing force is reached. The shear
stress τ of such a shear-constrained material system can be expressed as155

τ = σ2Dh1k tanh (kax) , k =

√
G0

h0

1

E1h1

(6.1)

where h0 and h1 are the heights of the pedestal and the clamping pad, respectively,
G0 is the shear modulus of the pedestal, E1 is Young’s modulus of the clamping
pad, and σ2D is the initial two-dimensional stress in the device layer. This results
in the contraction of the clamping pad by ∆p from its original half-width ax:

∆p =
h0

G0

τ =
σ2D

E1k
tanh (kax) . (6.2)

In consequence, the tensile stress in the clamping pad is reduced to

σp = σ2D − E1
∆p

ax
(6.3)

according to Hooke’s law. Note that a similar model that also accounts for addi-
tional shear in the device layer is presented in Ref. [156]. For the sake of simplicity,
we neglect the minute counterforce exerted by the presence of the resonator, which
will lead to a slightly reduced contraction of the pad to which it is attached. An
experimental verification of the contraction of the clamping pad following the
vertical release is discussed in Sec. 6.4.
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6.2 Elastic Model

Undercut of Clamping Pads from Lateral Release

The lateral release of the nanostrings results in an undercut of the clamping pads.
More specifically, the width of the pedestal is reduced by auc from all sides such
that the rim of the clamping pad gets freely suspended as shown in Figs. 6.3 (c) and
6.4 (f). This enables a relaxation of the tensile force in the undercut parts of the
pads (as they are no longer counteracted by the material underneath) that gives rise
to a contraction by an amount ∆c. The resulting contracting force acting on the
interface between the clamping pad and the nanostring can be expressed as

Fc = σpAp − E1
∆c

auc

Ap, (6.4)

where σp is the remaining tensile stress in the clamping pad following the vertical
release, and E1

∆c
auc

is its reduction in the undercut part of the clamping pad, again
according to Hooke’s law. Note that in the absence of the nanostring, the suspended
part of the clamping pad fully relaxes such that Fc = 0. In the presence of the
nanostring, however, the contracting force of the clamping pad is counteracted by a
second force acting on the interface between the clamping pad and the nanostring
which is associated with the elongation ∆L of the nanostring

Fs = σ∞As + E1
∆L

L
As, (6.5)

where σ∞ is the one-dimensional stress of an infinitely long nanostring after the
lateral release, and E1

∆L
L

is its modification according to Hooke’s law.

The equilibrium condition for the clamping pad - nanostring interface

Fc = Fs (6.6)

determines the final geometric reconfiguration of the clamping pad and the string,
under the boundary condition that the total length of the compound between the
centers of the clamping pads has to be conserved,

2∆p+ 2∆c = ∆L. (6.7)

Equations (6.6) and (6.7) form a second-order system of linear equations with the
unknown parameters ∆L and ∆c. The third unknown ∆p is determined using
Eq. (6.2). Solving for the elongation of the resonator yields

∆L = 2L
(Apaucσp + ApE1∆p− Asaucσ∞)

E1 (2Asauc + ApL)
. (6.8)
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Chapter 6. Universal Length Dependence of Tensile Stress

This length change of the resonator directly translates into an additional strain
ε = ∆L/L, giving rise to a length-dependent stress σ(L) of the doubly clamped
string resonator via Hooke’s law

σ(L) = σ∞ + E1
∆L

L
. (6.9)

To validate the theoretical model, we fit Eq. (6.9) to the experimental data measured
on all four material systems, using the geometric and material parameters specified
in Tabs. 6.1 and A.4. The initial two-dimensional stress σ2D, which is needed
to determine σp, can be calculated from the epitaxial lattice mismatch of the
crystalline InGaP sample. Following the calculations of Ref. [101], we obtain
a value of of 0.95 GPa, which is used as a input parameter for the model. In
principle, the same argument can be made for SiC which is also an epitaxially
grown crystalline thin-film material. However, as already discussed in Sec. 3.1.1,
the crystallization of 3C-SiC atop a Si wafer is more complex due to the large
lattice mismatch. Therefore, the tensile stress can not be calculated and we set σ2D

as an additional fit parameter for SiC. The same applies for the amorphous thin-film
materials SiN-FS and SiN-Si. The one-dimensional stress σ∞ is employed as a fit
parameter for all material systems. The results of the fits are included in Fig. 6.2
as solid lines. The shaded area represents the model’s uncertainty arising from
the error of the input parameters. As long as As � Ap and auc � L, the length
dependence of Eq. (6.9) can be approximated as σ(L) ∝ 1/L. This holds true for
all nanostrings under investigation, such that a 1/L dependence of the stress can be
assumed. We find remarkable agreement between the model and the experimental
data. This is particularly noteworthy for the case of the InGaP samples for which
only one fit parameter, σ∞, is employed. In the above approximation of smallAsauc

it corresponds to a vertical offset and thus the limit σ(L→∞). Also the results
for SiN and SiC, which involve two fitting parameters, show good agreement
between the model and the experimental data. Again, σ∞ can be interpreted as the
tensile stress of an infinitely long string, whereas the two-dimensional stress in the
as-grown device layer σ2D can, at least to some extent, be compared to literature
values.

In Tab. 6.2 we summarize the parameters obtained from the elastic model as well as
the fit parameters for the case of the longest strings. The as-grown two-dimensional
stress in low-pressure chemical vapor deposition (LPCVD) grown stoichiometric
SiN on silicon is found to depend on growth conditions, but has been reported to
amount to 1.1 GPa26,157 and 1.4 GPa,51 which is close to the value found here. The
same applies for high stress 3C-SiC(111), for which an as-grown two-dimensional
stress of 1.3 GPa has been reported,95 which is somewhat lower than our result.
But, as thoroughly discussed in section 3.1.2, the tensile stress in SiC depends
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6.2 Elastic Model

Table 6.2: Parameters of the elastic model for the case of a long string, as well as
two-dimensional and one-dimensional stress. Adapted from Ref. [39].

∆p ∆c ∆L σ2D σ∞
(nm) (nm) (nm) (GPa) (GPa)

SiN-FS 8 6 28 3.18a 1.56a

SiN-Si 3 2 10 1.20a 0.90a

SiC 3 4 13 1.97a 1.05a

InGaP 3 5 15 0.95b 0.55a

aFrom fit
bCalculated with σ2D = ε‖E1/(1− ν1).101

significantly on the growth parameters. The growth of high stress SiN on a fused
silica substrate is poorly characterized, and no comparison with the literature could
be obtained. Certainly, all observed two-dimensional stress values are well within
the yield strength of the respective material, which amounts to approximately 6-
7 GPa (or even 12 GPa according to Ref. [158]) for high stress LPCVD-deposited
SiN26,157,159 and 21 GPa for SiC.31

A more general consideration of the length dependence of the tensile stress accord-
ing to Eqs. (6.8) and (6.9) reveals that two geometric parameters, the height of the
pedestal h0 and the undercut of the pedestal auc, dominate the stress enhancement
of short nanostrings. This suggests that maximum tensile stress can be achieved
for short strings with large h0 and auc. However, it has to be noted that this limit
can only be achieved for sufficiently large clamping pads avoiding a softening of
the entire clamping structure under overly large undercuts, an unwanted side effect
that is not accounted for in our model.

Finally, we discuss the relation between σ∞ and σ2D. For a one-dimensional
nanostring processed from a thin film under biaxial and isotropic stress, the
one-dimensional stress follows from the initial two-dimensional stress accord-
ing to

σ1D = σ2D(1− ν1). (6.10)

For the nanostrings under investigation, this simple picture does not hold, as the
stress relaxation along the y direction upon releasing the string assumes a more
complicated stress configuration following the contraction of the device layer de-
scribed by the first part of our model. Not only does the contraction of the clamps
by an amount ∆p reduced the two-dimensional stress in the clamping pads from
σ2D to σp. A similar contraction also occurs along the y direction of the string, such
that the tensile stress in the string before the lateral release cannot be considered
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Chapter 6. Universal Length Dependence of Tensile Stress

isotropic. Additionally, we wish to note that high-resolution x-ray diffraction mea-
surements performed on In1−xGaxP wafers have shown a compositional variation
in the direction normal to the substrate.101 This can furthermore lead to strain
gradients inside the device layer. A similar observation has been made for 3C-SiC
in Ref. [27]. This suggests that a more thorough analysis of the length-dependent
stress should assume a three-dimensional strain tensor accounting for a vertical
strain gradient rather than a biaxial isotropic thin-film stress σ2D.

6.3 Finite Element Method Simulations
The geometric reconfiguration of the pedestal, the clamping pad and the string
was explored in more detail by finite element method (FEM) simulations to
validate our theoretical considerations. To this end, the individual 10 µm long and
300 nm wide SiN-FS string resonator held in place by two SiO2 pedestals on a
SiO2 substrate shown in Fig. 6.5 is simulated. The thickness of the device layer
is set to 100 nm, a 500 nm undercut and a pedestal height of 1 µm is assumed, as
well as an initial two-dimensional tensile stress of 2.9 GPa. A perfectly matched
layer is included to mimic an infinite substrate, but did not noticeably influence
the result. A close look at Fig. 6.5 clearly reveals the shearing of the pedestal
as well as the contraction of the clamping pad due to the stressed device layer.
Also apparent is the resulting elongation and enhanced tensile stress in the string,
which, for the case of the extremely short length of the simulated string, even
exceeds the remaining tensile stress in the clamping pad. These observations
qualitatively support all assumptions of the elastic model. Further FEM simula-

z

x
y

z

xy

Figure 6.5: FEM simulations of a single string resonator with an initial stress of 2.9 GPa.
The stress is color coded (the darker the color the higher the stress). Further-
more, we set a thickness of 100 nm for the device layer, a 500 nm undercut
and a pedestal height of 1 µm. The black lines correspond to the original
size of the individual structure. The deformation is exaggerated for better
visibility. Adapted from Ref. [39].
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6.4 Measuring the Pedestal Contraction

tions and an in-depth analysis can be found in the thesis of Maximilian Bückle [34].

6.4 Measuring the Pedestal Contraction
To further support our elastic model, we have experimentally quantified the shearing
of the pedestal using the test structures discussed in the following. An array of
quadratic pedestals is fabricated on SiN-FS (see Fig. 6.6 (a,c)), the material for
which the biggest contraction is expected (see Tab. 6.2). As shown in Fig. 6.6 (a,b),
the uncontracted width of a pedestal is 2a and the pedestal-pedestal distance is d.
An anistropic ICP-RIE etch step (etching depth of around 350 nm) allows for a
contraction of the pedestal by 2∆p to 2acon = 2a− 2∆p. Because the contraction

Δp

2a

2acon

d

d
~

(a) (b)

2a 2acon

Δp

2a

Δp2aconΔp

d
~
d

694 nm

696 nm

696 nm

828 nm

823 nm

828 nm

(c) (d)
prior to ICP-RIE after ICP-RIE

Figure 6.6: Array of pedestals (a) and a close up (b) including length annotations.
Dashed lines and solid lines correspond to the pedestal before and after
contraction, respectively. (c) SEM image of the array structure before it was
etched. (d) SEM image of the gap between two pedestals before (left) and
after (right) contraction. Taken from Ref. [39].
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Chapter 6. Universal Length Dependence of Tensile Stress

is in the nanometer regime and the pedestal in the micrometer regime, we can not
simply image the whole pedestal and directly measure 2a and 2acon and calculate
the contraction 2∆p, as this is beyond the resolution of our scanning electron
microscope. However, as indicated schematically in Fig. 6.6 (b), the separation
of two closely-spaced pedestals of the test structure can be mapped out with a
higher resolution. Comparison of their spacing before and after the contraction, d
and d̃, respectively, indeed yields an increase of the gap as shown in Fig. 6.6 (d),
indicating a contraction of the clamping structure. For our sample chip we measure
an average value of d = 793(6) nm.

6.5 Conclusion
In this chapter, we investigate the length dependent stress of nanomechanical string
resonators fabricated on four different material platforms. For that, the stress
of individual string is determined by fitting Euler-Bernoulli beam theory to its
eigenmode spectrum. Across all four materials, we find that shorter strings are
considerable more stressed. A simple elastic model, relying on the geometric re-
construction during vertical and lateral release, is used to describe the experimental
findings. To a good approximation, the stress follows a 1/L dependence. Our
model predicts that changes of the string’s geometry can increase or decrease the
resulting stress allowing to stress-engineer the quality factor.
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7
Generalized Loss Dilution Model

The following chapter is based on our unpublished manuscript, which is in
preparation:

Y. S. Klaß, I. Wilson-Rae, and E. M. Weig, “Constancy of the undiluted
inverse Q from the stress-diluted dissipation of crystalline nanomechanical
resonators”, unpublished manuscript (2022). Ref. [49]

The sample was fabricated by me (SiC). All measurements were performed
by me. The theory was developed by Ignacio Wilson-Rae. The data analysis
was performed by I. Wilson-Rae and me. The interpretation presented in this
work relies on discussions of E. M. Weig, I. Wilson-Rae, and me. The theory
is reproduced with the permission of I. Wilson-Rae. Figures are reproduced
from Ref. [49].

So far, we have solely focused on the frequency of the measured eigenmode
spectrum. Now we want to discuss the quality factor as a function of mode number.
Ignacio Wilson-Rae developed a novel loss dilution model that is not limited to high
stress string resonators in contrast to the often used model from Yu et al.47. As these
models are very susceptible to the tensile stress values, we use Euler-Bernoulli
beam theory with realistic doubly clamped boundary conditions to extract the
resonator’s stress from their eigenmode spectrum (see Sec. 7.1). With the dilution
factor predicted by the model and the measured frequency, we can determine the
intrinsic quality factor and loss angle over a frequency range of 80 MHz as shown
in Sec. 7.3.
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7.1 Euler-Bernoulli Beam Theory with Clamped Boundary Conditions

7.1 Euler-Bernoulli Beam Theory with Clamped
Boundary Conditions

Simply supported boundary conditions (see Fig. 2.2), that are often utilized in the
Euler-Bernoulli framework to describe string resonators, do not perfectly reproduce
the actual shape of the eigenmodes, as already discussed in Sec. 2.1. It does offer,
however, a very good approximation and, most notably, an exact analytical solution.
Clamped boundary conditions reproduce the mode shape better but, up to date,
there is no exact solution available (without e.g. Taylor expansion). Here, we
present an analytical approximation. The calculations were performed by Ignacio
Wilson-Rae and the derivation will be presented in our publication [49]. The
out-of-plane frequency of a string resonator in the Euler-Bernoulli framework with
doubly clamped boundary conditions can be approximated by49

fn =
n

2L

√√√√σ

ρ

(
1 +

2

L

√
Eh2

3σ
+

1

L2

Eh2

σ

)
+
(nπ
L

)2 Eh2

12ρ
, (7.1)

where L is the length of the resonator, n the mode number, σ the tensile stress, ρ the
density, E the Young’s modulus, and h the thickness of the device layer. Figure 7.1
shows a fit of Eq. (7.1) to the SiC eigenmode spectrum, which we already used
in Chap. 5 and 6. The fit reproduces the measured data nearly perfectly for all
available lengths. Interestingly, we get exactly the same course for clamped and
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Figure 7.1: Eigenfrequencies of the oop modes as a function of the mode number. The
measured frequencies of resonators of different lengths are shown as colored
dots. Solid lines represent a fit of Eq. (7.1), i.e. the Euler-Bernoulli model
with clamped boundary conditions. The data was recorded on sample A.
Reproduced from Ref. [49].
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simply supported boundary conditions (see App. D for a comparison). However, the
fit with clamped boundary conditions yields slightly lower stress values, especially
for the shorter strings.a

7.2 Generalized Dilution Model
In order to describe the behavior of the quality factor as a function of mode number,
we introduce a new generalized loss dilution model. We omit here the derivation,
but it will be included in our upcoming publication [49]. The loss dilution model
has the general form

Q−1 = Q−1
intr D

−1
n , (7.2)

with Qintr the intrinsic quality factor and D the mode dependent dilution factor.
Additionally, we define the loss angle (sometimes also referred to as loss tangent
or loss) as the inverse undiluted quality factor

φ := Q−1
intr. (7.3)

In the model derived by Ignacio Wilson-Rae the dilution factor is49

D−1
o/e,n =

k2
n

κ(kn)2

1± sin(knL)
knL

∓ κ(kn)
k2
nL

1∓cos(knL)
1∓cosh(κ(kn)L)

[sinh(κ(kn)L)± κ(kn)L]

1± sin(knL)
knL

∓ k2
n

κ(kn)3L
1∓cos(knL)

1∓cosh(κ(kn)L)
[sinh(κ(kn)L)± κ(kn)L]

,

(7.4)

where κ(kn) =
√
k2
n + κ2

0, κ−1
0 =

√
Eh2

12σ
the penetration depth of the end correc-

tion (from the clamped-clamped boundary conditions) in the string, and knL with
n ∈ N the roots of

0 = 2kκ(k) (1− cos(k) cosh(κ(k)L)) + κ2
0L

2 sin(k) sinh(κ(k)L). (7.5)

The signs (± and ∓) in Eq. (7.4) depend on the parity (odd / even) of the mode
number. While the intrinsic quality factor is a constant material parameter (as
we show later), D decreases with increasing mode number. For example, the
first and 17th mode of the 110 µm string feature a dilution factor of 88 and 11,
respectively. In contrast to the model from Yu et al.47, we do not rely on the string
approximation, i.e. high tensile stress and low mode numbers with κ0L � 1
and κ2

0 � k2
n. Figure 7.3 shows the inverse dilution factor for the dissipation

dilution model with (dashed line, referred to as established model) and without
aThe elastic model of Chap. 6 does still fit the stress values very well (see App. D).
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(solid lines, advanced model) assuming the string approximation. Note that κ0L is
a dimensionless parameter that depends on the stress and length of the considered
string. While the advanced model converges to a value of one for vanishing stress,
the established model diverges due to the invalidity of the string approximation
in this regime. Physically, we expect that lim

σ→0
D = 1 and D−1 ≤ 1 as an inverse

dilution factor greater than one would actually decrease the intrinsic quality factor.
As κ0L increases, both models converge because the string approximation becomes
more valid. Furthermore, we can see that for low mode numbers, the deviation is

Figure 7.2: Inverse dilution factor as a function of the dimensionless parameter κ0L. The
solid and dashed lines correspond to a loss dilution model assuming and not
assuming the string approximation, respectively. Different colors symbolize
different modes. For the sake of visibility, we omit even mode numbers at
this point, but they are shown in App. E. Colored dots depict the parameters
κ0L and n of our resonators. The gray shade in the upper figure indicates the
parameter space of the lower plot. Adapted from Ref. [49].
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smaller than for higher mode numbers. In fact, for the first and second mode (see
App. E), there is barely any deviation (except for κ0L < 20). On the other hand,
the deviations are beyond 20 % for very high mode numbers.

Now we fit our advanced loss dilution model (i.e. Eq. (7.2) with (7.4)) to the
measured quality factors as shown in Fig. 7.3.b We generally find a very good

Figure 7.3: Inverse and regular quality factor as a function of mode number. Different
colors correspond to different resonator lengths. Colored dots and solid lines
are the measured data points and the fit of Eq. (7.2), respectively. If a colored
dot has a black contour, it is ignored by the fitting algorithm. The insets
show the amplitude response of the diamond and stars. The yellow line
corresponds to the Lorentzian fit that is used to extract the quality factor. The
data was recorded on sample A. Adapted from Ref. [49].

bHere, we use the stress values from Euler-Bernoulli beam theory with doubly clamped
boundary conditions (see Sec. 7.1).
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7.3 Constant Loss Angle

agreement, especially for higher mode numbers and strings shorter than 90 µm.
The model slightly underestimates the first mode of the three longest strings. In
fact, the biggest deviation is found for the fundamental mode of the 110 µm string,
where we measure 397 000 and the model predicts 252 000.c The established
model from Yu et al.47 has a comparable deviation to this data point. However, for
mode numbers bigger than two, the deviation drops below 4 % for this string.

7.3 Constant Loss Angle
More than 20 years ago, several groups measured on macroscopic objects that the
intrinsic quality factor or (undiluted) loss angle should be independent or only
weakly dependent on the frequency.44,160,161 In 2018 Fedorov et al.50 presented
measurements indicating a constant loss angle for nanomechanical resonators.
With the dilution factor determined by our model and the measured quality factors,
we are able to calculate the intrinsic quality factor and loss angle with equation
(7.2). Note that this is only valid if clamping losses can be neglected, as it will
be discussed in detail in our upcoming publication [49]. To rule them out, the
quality factors of all modes are measured twice. First on a thin aluminum sample
holder (25 × 20 × 2.5 mm3, see Fig. 4.3 (a)) and then on a very chunky copper
holder (25 × 20 × 20 mm3). For the case of clamping-loss limited resonators,
the higher acoustic mismatch and the higher density of copper should reduce
the clamping losses and, therefore, increase the measured quality factors.52,162,163

However, the measurements are very similar, i.e. the resonators are not limited by
clamping losses. Figure 7.4 shows the resulting intrinsic quality factor and loss
angle over a frequency range of 80 MHz. In the presented frequency range, both
the loss angle as well as the intrinsic quality factor are nearly constant. This was
already suggested by measurements on macroscopic44,160,161 and nanomechanical50

devices, but it was never measured on such a wide frequency range. For very low
frequencies, we find three outliers corresponding to the fundamental modes (n = 1)
of the three longest strings. As already discussed in Sec. 7.2 and shown in Fig. 7.3,
the model underestimates these quality factors, resulting in an overestimation of
the intrinsic quality factors (see Eq. (7.2)). The mean and standard deviation of
the intrinsic quality factor and loss angle are Q̄intr = 2900(330) and φ̄ = 3.48(34),
respectively.d According to literature, amorphous SiN string resonators have an
intrinsic quality factor between 2000 and 4000.34,50,52. My colleague Maximilian
Bückle34 measured Qintr < 2500 for crystalline InGaP and, very recently, Beccari
et al.30 reported a value of 8400 for strained crystalline Si at 8 K. Keep in mind

cA similar behavior is found for a second SiC data set and for Maximilian Bückle’s InGaP
samples.

dNote that we included all data points and thus also the three outliers.
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that cryogenic temperatures should result in lower intrinsic quality factors.27,30

Generally, one would expect crystalline materials to exhibit fewer material defects
and, therefore, a higher intrinsic quality factor. But what is limiting our intrinsic
quality factor? Although the latter question is still open for SiC and there is
currently no available literature on the topic, it is known that surface loss limits
the intrinsic quality factor in SiN resonators for thicknesses below a few hundred
nanometers.52 Increasing the thickness of the string resonator and hence reducing
the surface-to-volume ratio diminishes the effect of surface loss until the intrinsic
quality factor is dominated by volume loss.52 One option to validate if we are indeed

Figure 7.4: Intrinsic quality factor and (undiluted) loss angle as a function of frequency.
The horizontal line and shade indicate the mean and standard deviation with
values of Q̄intr = 2900(330) and φ̄ = 3.48(34). Colored dots correspond
to different string lengths. The error bars give the uncertainty due to the
uncertainty of the string’s thickness. The data was measured on sample A.
Adapted from Ref. [49].
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limited by surface loss would be to perform a thickness-dependent measurement of
the intrinsic quality factor. Alternatively, we could fabricate strings with different
widths, which also affects the surface-to-volume ratio.
Taking another look at Eq. (7.2) one sees that there are two ways to boost the quality
factor of our resonators, apart from applying considerable more complex methods
such as soft clamping. The first is to increase the intrinsic quality factor. As just
discussed, this could probably be achieved by reducing the surface-to-volume ratio.
Secondly, we could increase the dilution, which is stress dominated. Raising the
stress can be achieved by, e.g., optimizing the sample geometry (see Chap. 6) or by
adapting the growth parameters of the wafer (see Chap. 3.1.2).

7.4 Conclusion
In this chapter, we introduce an analytical approximation of the Euler-Bernoulli
beam theory for doubly clamped boundary conditions, showing very good agree-
ment with our data. Furthermore, we discuss a loss dilution model developed by
Ignacio Wilson-Rae. Compared to other models, it does not rely on the string
approximation and is therefore valid for a significantly wider parameter range.
This allows us to perform a comprehensive analysis of 99 resonator modes cov-
ering lengths between 20 µm and 110 µm, mode indices up to 25, and spanning a
frequency range of 80 MHz. It reveals a constant stress angle, indicating that it
is frequency independent, as already suggested by other groups for much smaller
frequency spans.
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8
SiC at Low Temperatures

Temperature dependent measurements of a material or device can be used to
reveal information about the limiting loss mechanisms. One example are thermally
activated defects, which are often modeled by two-level systems (TLS), as they lead
to characteristic dissipation maxima.30,164–168 To this end, we cool our SiC string
resonators to cryogenic temperatures (see setup in Sec. 4.1.2). As described in

(a) (b)

p
W

Figure 8.1: Thermal motion (a) and ring-down (b) of a 110 µm SiC string at 5.5 K.
The blue dots correspond to measured data. The red lines are a complex
Lorentzian and an exponential decay fitted to this data, yielding quality fac-
tors of Qthm = 2.9× 106 and Qrd = 2.5× 106, respectively. The thermal
motion is only used to find the resonance frequency. The data was recorded
on a 110 µm string of sample A.
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8.1 Temperature Dependent Frequency and Dissipation

detail in App. C, we determine the resonance frequency with the help of the thermal
motion (if measurable) and the quality factor via a ring-down. Close to the base
cryostat temperature, which is around 4.2 K, we reach the highest quality factors
of 2.5 to 3.5 million for 110 µm SiC strings. The thermal motion (f0 = 2.72 MHz)
and a ring-down are shown in Fig. 8.1, illustrating the small linewidth (Γ = 6.9 Hz)
and high quality factor (Qrd = 2.5× 106).

8.1 Temperature Dependent Frequency and Dissipa-
tion

Repeating the just presented measurement over a wide range of temperatures allows
us to extract the temperature dependence of the frequency, quality factor, and dissi-
pation. For that, we cool the system to base temperature (around 4.2 K) and utilize
an internal resistive heater regulated by a PID (proportional–integral–derivative)
controller. With that we can reach and stabilize temperatures ranging from base
temperature up to 220 K. Another method that does not rely on the heater is to
measure during the cool down procedure, where we can access temperature from
300 K down to 4.2 K. However, the sample position drifts during the cool down
due to the susceptibility of the positioners to the temperature change. These drifts –
that have to be corrected manually – lead to a change in the relative position of the
laser beam and the resonator, causing a change in the local heating of the resonator
and, therefore, the frequency.a Comparing the data of our cool downs reveals that
the course of the frequency can not be extracted reliably (see App. F). However, as
the behavior of the quality factor and damping are similar in every cool down, they
seem slightly more trustworthy.

Figure 8.2 shows the frequency, quality factor and damping as a function of
temperature. The frequency increases from 2.68 MHz at room temperature (RT)
to 2.705 MHz at low temperatures with a small but broad dip at around 180 K. A
frequency increase indicates a stress increase in the device layer. By comparing
the thermal expansion coefficient of SiC and Si over a certain temperature range,
we are able to predict the theoretical stress and frequency change. The thermal

aWhen using the heater, the drifts are significantly reduced because we only change the
temperature locally around the heating element. During the cool down, on the other hand, the whole
system is cooled, leading to more pronounced drifts. Furthermore, the cool down can not be paused
and, hence, the temperature can never stabilize, i.e. we have to measure while the positioners are
slowly drifting. At a temperature of around 40 K the positioners move to such an extent that we are
not able to acquire any data anymore (see missing data in Fig. 8.2). Although a single data point is
measured within 20 s, the small linewidth and the fast drift make it impossible to drive the resonator
on resonance prior to a ring-down measurement.
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Chapter 8. SiC at Low Temperatures

expansion coefficient α(T ) of a material is defined as169

α(T ) =
1

LRT

dL(T )

dT
, (8.1)

where T is the temperature, LRT the length at RT, and L(T ) the length.b To

Figure 8.2: Measured frequency, quality factor, and damping as a function of temperature,
recorded on a 110 µm SiC string. The temperature of the upward pointing
triangles is set with the in-built heater. The shaded downward pointing trian-
gles are acquired during a cool down of the cryostat. Note that for the shaded
data, a slightly lower laser power is used, explaining the minor deviations in
terms of quality factor and damping. The green star symbolizes the frequency
at room temperature. The quality factor is plotted on a logarithmic scale for
the sake of visibility. The data was recorded on sample A.

bWe follow the ISO definition (also utilized in Ref. [169]). It uses the length at RT in the whole
temperature range, which is in slight contrast to the physical definition.169 However, the deviation
is very small and therefore it is very convenient because we can measure the length of our resonator
only at RT.169
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8.1 Temperature Dependent Frequency and Dissipation

calculate the expansion due to a temperature change from TRT to T , we have to
integrate Eq. (8.1), yielding∫ T

TRT

α(T̃ ) dT̃ =
1

LRT

(L(T )− L(TRT)) =:
∆LT

LRT

. (8.2)

Hence, the length change ∆LT is

∆LT = LRT

∫ T

TRT

α(T̃ ) dT̃ . (8.3)

A relative change of α(T ) for Si and SiC leads to an additional strain ε(T ) and
stress σ(T ) in the material:

σ(T ) = Eε(T ) = E
∆LSi

T −∆LSiC
T

LRT

, (8.4)

where E is the Young’s modulus. With the string model (see Eq. (2.3)) we can
relate the additional stress to a frequency change

∆f(T ) ≈ 1

2LRT

√
σRT + σ(T )

ρ
− fRT, (8.5)

where fRT and σRT are the frequency and stress at RT, respectively. While the
literature provides reliable α(T ) for Si,169–171 it is scarce for SiC134,172 in the tem-
perature range relevant for us. For a rough approximation we use part of the values

(a) (b)

Figure 8.3: (a) Thermal expansion coefficient for Si169 and SiC134 as a function of
temperature. (b) Calculated frequency change (see Eq.(8.5)) compared to
room temperature of a 110 µm SiC string.
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Chapter 8. SiC at Low Temperatures

provided by Refs. [134] (SiC) and [169] (Si) as shown in Fig. 8.3 (a). By numeri-
cal integration of Eq. (8.3) and combining it with Eq. (8.5), we can approximate
the frequency change as plotted in Fig. 8.3 (b). Similar to our measured data in
Fig. 8.2, the model predicts a frequency dip at around 160 K with a frequency shift
of 15 kHz, which is slightly more than the measured 5 kHz. Further, the model
underestimates the frequency shift at base temperature by an order of magnitude.
Note that the stress change and distribution in a real string is way more complex
than assumed in our simple model since it includes e.g. shear and gradients.

Taking a close look at the dependence of the dissipation (quality factor) on the
temperature, we can see that we have Γ = 70 Hz (Q = 230 000) at RT and 6.6 Hz
(2.6× 106) at 5.1 K. Once fully thermalized, the damping drops just below Γ =
5 Hz, which corresponds to Q = 3.6× 106 (not shown).c As a rule of thumb, the
quality factor improves by an order of magnitude when cooled to low temperatures.
The dissipation peak at 190 K is in agreement with measurements performed on
SiO2,167 SiN,168 and Si30 and can most likely be attributed to thermally activated
defects.

Figure 8.4 shows a more detailed measurement performed between 5 K and 31 K.
For that, we first heat the sample from 5 K to 35 K in steps of 2 K (orange upward
pointing triangle). We let the sample thermalize at every temperature for an hour
before the frequency, quality factor, and damping are measured several times. We
calculate the mean and standard deviation, which are shown as symbols and error
bars (hardly visible) in Fig 8.4. Then the sample is cooled back in exactly the same
manner (blue downward pointing triangle). Intuitively, one would expect that both
paths yield the same results. Around 23 K, however, we can see a hysteresis: If
we are heating the system, we get a damping dip (peak in quality factor), reaching
values of Γ = 11 Hz (Q = 1.6× 106). If we are cooling the sample, on the other
hand, the dip is barely reproduced, but we get a nearly constant behavior in the
presented temperature range with a value of 7 Hz (2.3× 106) at 23 K. Note how
the two paths of the quality factor and dissipation are merging at 15 K and 28 K.
This does not hold true for the frequency, where the two paths are not merging
again. Upon very close inspection, one can notice a saddle point of the orange
frequency data at 23 K, which can not be found in the blue data set.
In the literature, a hysteresis of the dissipation due to temperature change has never
been reported. We want to point out that it could also be an artifact which is not

cAs mentioned before, sample A, on which this data was measured, degraded over time (it
probably accumulated dirt in the course of a year). Therefore, one has to be careful when comparing
different figures/measurements. However, the data presented in one figure are always comparable
as recorded within a relatively short time period.
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8.1 Temperature Dependent Frequency and Dissipation

originating from the sample.d As thoroughly discussed in Sec. 8.3, the damping
dip is indeed reproduced for thermalization times of multiple days. This suggests
that both sets of measurements do follow the same path. The work of Zink et

3C-SiC

Figure 8.4: Measured frequency, quality factor, and damping as a function of temperature,
recorded on a 110 µm SiC string. The frequency is extracted via the thermal
motion and the quality factor, and damping via ring-downs. The temperature
is controlled with the help of a heater. We start at 5 K and increase the
temperature gradually to 31 K. The corresponding data is shown as orange
upward pointing triangles. Then the temperature is slowly decreased again,
shown as blue downward pointing triangles. Symbols and error bars are
the mean and standard deviation (hardly visible) of several measurements
performed at one temperature. The data was recorded on sample A.

dThis includes foremost a bad thermalization of the sample (see Sec. 8.3). Alberto Beccari
suggested that the hysteresis could be caused by the condensation of residual gas molecules on
the sample surface or by mechanical vibration of the compressor. Another possibility is a phase
transition in the materials of the positioning system, which was considered unlikely by Attocube
engineers.
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Chapter 8. SiC at Low Temperatures

al.166 suggests the presence of TLS for similar temperatures in Si that could cause
another dissipation dip similar to the one at 180 K.
The bad thermalization should reveal itself in the form of a dip in the thermal
conductivity K. According to the data shown in Ref. [78], K is following the
expected T−N behavior at this temperature with N = 1.8 (see App. G). Si, on the
other hand, has a thermal conductivity maximum around 20 K, indicating that the
substrate is not the heat flow bottle neck.173–175

8.2 Comparison to InGaP
To better understand the hysteresis, we performed the same measurement on
an InGaP sample.e In Fig. 8.5, the temperature dependence of the frequency,
quality factor, and damping are shown between 5 K and 70 K. We follow the
same procedure described in Sec. 8.1 for SiC. Due to a power outage, we could,
unfortunately, not finish the blue data set.
Generally, we can find a very similar behavior as for SiC. This includes the
dissipation dip in the orange data (increasing temperatures) that is not reproduced
in the blue data (decreasing temperatures). If the sample thermalizes for several
days, the dissipation is actually reproduced, as shown by the light blue data with
the black edge in Fig. 8.5 (see Sec. 8.3 for more details). In the range between
30 K and 65 K both paths match perfectly. The orange frequency data exhibits a
dip at 20 K, which is not reproduced by the blue data.

8.3 Long Thermalization
In the previous section, the thermalization time between two temperature steps
was around one (SiC) to two (InGaP) hours. Now we increase the time for InGaP
by an order of magnitude to analyze how the frequency and dissipation behave
once the sample is fully thermalized. For that, we heat the sample to 56 K and then
reduce the temperature to 5 K and track frequency and damping over several hours.
As shown in Fig. 8.6, the damping stabilized nearly instantly while the frequency
continues to drift linearly even after seven hours. The frequency detuning over the
whole measurement sums up to 0.7 kHz.
Next, the system is heated to 22 K, which is right in the dissipation dip. Here, we
are following the orange path of Fig. 8.5. In a day, the damping increases linearly
from 11 Hz to 13 Hz. Note the kink in the course of the frequency detuning after a
few hours. Within the measurement time, the sample drifted about 1 kHz.

eThe sample was fabricated by my colleague Maximilian Bückle. All measurements and the
data analysis were performed by myself.
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8.3 Long Thermalization

Heating the sample further to 33 K reveals a comparatively fast stabilization of
both frequency and damping. After two hours, the string resonator seems nearly
completely thermalized.

InGaP

Figure 8.5: Measured frequency, quality factor, and damping as a function of temperature,
recorded on a 110 µm InGaP string. While the frequency is extracted by a
frequency sweep performed on a VNA, the quality factor, and damping is
determined via ring-downs. The temperature is controlled with the help of a
heater. We start at 5 K and increase the temperature gradually to 70 K. The
corresponding data is shown as orange upward pointing triangles. Then the
temperature is slowly decreased again, shown as blue downward pointing
triangles. Between two temperature steps, the system thermalizes for at
least two hours. The light blue triangles with the black edge indicate the
frequency, quality factor and damping after thermalizing for more than 81 h.
They correspond to the data marked in Fig. 8.6. Triangles and error bars are
the mean and standard deviation (hardly visible) of several measurements
performed at one temperature. The data was recorded on sample C.
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Chapter 8. SiC at Low Temperatures

Now we cool the sample back to 22 K, by which we are jumping to the blue path
of Fig. 8.5. Even after more than 81 h the sample is still not fully thermalized. In
course of this time the damping (quality factor) increased from 7.4 Hz (1.35× 106)
to 16.6 Hz (0.60× 106) and the frequency shifted by more than 4 kHz. Again we
see a kink in the course of the frequency.

With those long time measurements, we have gained some interesting insights:
Outside the dissipation dip, the damping stabilizes rapidly. This is expected from
Figs. 8.4 and 8.5 where both measurement paths match perfectly in terms of
damping. The frequency at 5 K, on the other hand, drifts towards lower frequencies
even after hours.
Within the dissipation dip (i.e. at 22 K) the thermalization of the dissipation
is dramatically slower. Fitting a linear model to the two data sets (5 K→ 22 K
and 33 K→ 22 K, fit not shown) yields a very similar rate of 0.1 Hz h−1 for both.
Consequently, the difference is not the thermalization rate but the starting point,

 56K      5K

 33K      22K  22K       33K

 5K      22K

Figure 8.6: Frequency and damping of an InGaP string as a function of thermalization
time for four different temperature transitions. The two temperatures stated
on top of each plot give the current (right side, marked with blue shade) and
previous temperature (left side). The data with the black edge in the lower
right image is also plotted in Fig. 8.5. The data was recorded on sample C.
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8.3 Long Thermalization

which is 11 Hz (5 K→ 22 K) and 7 Hz (33 K→ 22 K), respectively.f

8.3.1 Improving the Thermalization
As mentioned earlier, several possibilities could cause the hysteresis-like behavior.
Arguably the most probable option is a bad thermal contact of the string resonators
to the cryostat’s cold head. In this section, we discuss the possible countermeasures
to improve the thermalization of our sample.

Improved Sample Holder

We discussed this already in Sec. 4.1.3. In summary, the first generation of sample
holders has a slight bow, leading to a small contact area to the underlying material
and, hence, a low heat flow. Furthermore, conductive silver instead of an old
photoresist is used to glue the sample to the holder, which should also enhance the
thermal contact. However, we could not find a change in the previously discussed
features.

Dielectric Drive

While all measurements shown in this chapter are actuated by a piezo, we also
tried the dielectric drive (see Chap. 9 and Sec. 2.4). Consequently, we glue the
sample directly to the sample holder without needing a piezo element in between.
This test was already performed on a second generation sample holder. Again, the
behavior of the sample remained unchanged.

Stroboscopic Measurement

The incoming laser light we use for detection heats the string resonator due to
absorption. To minimize this effect, we operate the laser at the lowest power
possible, which is around 1 mW. Note that this is the output power of the laser and
the power reaching the string resonator is significantly lower. In order to showcase
that we are not limited by laser heating, we repeat the measurement 33 K→ 22 K
presented in Fig. 8.6. This time, however, the laser is mostly blocked and we
just unblock it to measure a single data point every few hours. In Fig. 8.7 we
compare the two measurement methods and find a remarkable agreement over
hours. We conclude, therefore, that there is no laser heating for these parameters at
this temperature. In App. H, we show a string resonator heated by a laser.

fThese values correspond to the intercepts of the linear fits.
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Chapter 8. SiC at Low Temperatures

 33K      22K

Figure 8.7: Stroboscopic measurement of the frequency and damping to rule out laser
heating of a 110 µm InGaP string. The measurement is taken at a temperature
of 22 K coming from 33 K. Blue and orange dots belong to the stroboscopic
measurement and shaded dots of the respective color to the same measure-
ment performed without blanking the laser (see bottom left of Fig. 8.4). The
data was recorded on sample C.

Better Connection to Cold Head

Prof. Dr. Elke Scheer suggested to use fine copper threads to establish a better
thermal connection between the sample and the cold head. However, this has not
been tested yet but is subject to further investigation.

Shorter String Resonators

Each string can only be thermalized via two small clamping points. Therefore,
it could be beneficial to use shorter string resonators, which should thermalize
faster as they store less heat. However, this has not been tested yet but is subject to
further investigation.

Different Setup

In order to rule out any side effects of the setup on the measurement, we could run
the same measurements in a different setup. However, this has not been tested yet
but is subject to further investigation.

8.4 Conclusion
In this chapter, we investigate the temperature dependence of the frequency and
damping of nanomechanical SiC string resonators. The mismatch of the thermal
expansion coefficients partly explains the frequency tuning. A dissipation peak
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8.4 Conclusion

at 180 K indicates thermally activated defects, which agrees with measurements
performed on amorphous SiN and strained crystalline Si. At around 23 K we find
another dissipation dip, which seems, at first glance, to depend on the direction
of the temperature sweep. Long thermalization measurements reveal that the dip
is reproduced in both temperature sweep direction with thermalization times of
multiple days. Again, thermally activated TLS could explain this feature. We expect
to gain further insight into TLS by reducing the temperature to the millikelvin
regime, where resonant absorption of phonons should occur.176
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9
Dielectric Drive

In this chapter, we implement the dielectric driving scheme with SiC string res-
onators, enabling us to tune both the frequency and the damping. The leakage
current of our doped wafers melts the bond wires for voltages above half a volt.
Therefore, we employ a new set of not intentionally doped wafers that reduce the
current to a similar level as for insulating SiN. While the dielectrically driven res-
onators presented in this work suffer from low quality factors (Q < 100 000), the
etching process has recently been optimized, allowing for quality factors >200 000
as shown in Felix David’s master thesis [177].

9.1 Dielectric Tuning
The dielectric actuation scheme enables us to tune the frequency and the dissipation
quadratically by applying a dc voltage to the electrodes (see Sec. 2.4). In order to
measure the frequency tuning, we first fix the dc voltage and give the system about
30 min to stabilize. Then, we perform a VNA sweep (see Sec. 4.2) and extract the
resonance frequencies of the oop and ip mode. Afterwards, the voltage is changed
and the procedure repeated. Figure. 9.1 shows the frequency tuning for a 100 µm
SiC string at a temperature of 90 K. The upper and lower branch correspond in this
case to the ip and oop mode, respectively.a Clearly, the frequency shift is stronger
for positive than for negative voltages, which does not agree with the measurement
performed on SiN.63,64 This tuning behavior is found to be very reproducible and
does not depend on the sweep direction of the voltage. To capture the asymmetry,

aThis is in agreement with Euler-Bernoulli beam theory as our strings are fabricated wider than
their thickness.
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Figure 9.1: Resonance frequency of the fundamental oop and ip mode as a function of
voltage. Dark blue dots correspond to measured data and colored lines to
quadratic fits. In order to take the asymmetric behavior into account, we fit
Eq. 9.1 to the data, which considers negative (orange line) and positive (green
line) voltages separately. Data points with an insufficient signal-to-noise ratio
are excluded. The data was recorded on a 100 µm string of sample G at 90 K.

we fit a function on the form

f(Udc) =

{
f0 + cdc−(Udc − U0)2 for Udc ≤ 0,
f0 + cdc+(Udc − U0)2 for Udc > 0

(9.1)

to our data, yielding the coefficients

cip,90K
dc− = −1.76 kHz V−2, cip,90K

dc+ = −3.90 kHz V−2,

coop,90K
dc− = 0.76 kHz V−2, coop,90K

dc+ = 2.00 kHz V−2.

Positive voltages shift the frequency approximately twice as much as negative
voltages. Similar to Ref. [63], we also find that the ip tunes twice as fast as
the oop mode. The offset voltage U0 is below 0.5 V for all fits and takes into
account trapped charges in the resonator’s material that shift the vertex of the
parabolas.63 Rieger et al.63 report cdc = 0.438 Hz V−2 for the oop mode of a 55 µm
SiN string resonator, which is lower than our values. Note, however, that cdc is
influenced by many parameters like the resonator’s mass and frequency. Therefore,
the comparison should be treated with care and we do not dare to make conclusive
statements about the materials.

Not only the frequency depends on the applied dc voltage but also the damping
as shown in Fig 9.2 for low (5 K) and room temperature. Again we can see an
asymmetry between positive and negative voltages. Therefore, we fit an equation
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Figure 9.2: Dissipation as a function of dc voltage at low (5 K, blue dots) and room
(orange) temperature. A fit similar to Eq. 9.1 is shown as red lines. The data
was recorded on an ip mode of sample H.

similar to Eq. 9.1 to the data, yielding the coefficients

cip,RT
Γ− = 2.0 kHz V−2, cip,RT

Γ+ = 4.0 kHz V−2,

cip,LT
Γ− = 0.1 kHz V−2, cip,LT

Γ+ = 0.3 kHz V−2.

Positive voltages increase the damping more than twice as much as negative
voltages. By sweeping the voltage from 0 V to 4 V, the damping increases from
Γ = 1 kHz (Q = 25 000) to 64 kHz (250) at RT and from 0.1 kHz (152 000) to
5.4 kHz (3000) at LT. This suggests that our SiC is really affected by dielectric
damping. Rieger et al.63 report a value of cΓ = 5.2 Hz V−2 for a SiN resonator at
RT, which is nearly two orders of magnitude lower than our values. Again, this
comparison has to be treated with some care as already mentioned previously.

For dc voltages beyond ±8 V, our longest string resonators are displaced to such
an extent that they touch the electrodes and stick to them permanently, as shown in
Fig. 9.2. Shorter strings exhibit a higher stress and smaller displacements and are
therefore less prone to stick to the electrodes. To this end, we limit ourselves to dc
voltages between ±8 V in all our experiments.

9.2 Coupling of Two Mechanical Modes
The dielectric tuning allows us to tune the frequency of the oop and ip modes in
different directions and, therefore, into resonance. Then, these modes can couple
to each other and exchange energy, leading to the characteristic avoided crossing
as introduced in Sec. 2.4.1. Figure 9.4 summarizes how we measure and extract
the frequency splitting from an avoided crossing. First, we measure multiple VNA
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9.2 Coupling of Two Mechanical Modes

20 µm 1 µm

1 µm

Figure 9.3: SEM image of string resonators with adjacent electrodes. After applying a
voltage of more than 10 V the string touched the electrode and stuck to it.

sweeps at different voltages and join them to one color map (Fig. 9.4,left image).
Second, we extract the resonance frequencies of the two branches, as indicated
by the green and orange dots (middle image). Peaks with an insufficient signal-
to-noise ratio (SNR) are excluded automatically.b Lastly, we fit the model of the
avoided crossing73 (two coupled harmonic oscillators) to the extracted frequencies
and determine the frequency splitting (right image).

Figure 9.4: Process flow of the determination of the frequency splitting of an avoided
crossing. Left image: Several VNA sweeps are combined to one color map.
Middle: Extraction of the frequencies of the two modes. Right: Fitting of the
data with the avoided crossing model. This measurement was recorded on a
100 µm string of sample G at 90 K

bThe automatic exclusion of peaks works as follows: The mean amplitude of the whole color
plot is taken as the noise level. Peaks that are smaller than three times this noise level are excluded.
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5 K

90 K

Figure 9.5: Resonator amplitude in volts as a function of frequency and applied dc
voltage recorded at 5 K (top) and 90 K (bottom). The data was recorded on a
100 µm string of sample G.

In Fig. 9.4 we limited ourselves to negative voltages. Taking also the positive
voltages into account reveals a second avoided crossing as shown in Fig. 9.5. It
features, however, a noticeably smaller frequency splitting. For a temperature of
90 K, the frequency splitting is Γc− = 12.7 kHz and Γc+ = 2.4 kHz at negative
and positive voltages, respectively, which corresponds to a difference of a factor
of five. Note that this behavior is perfectly reproducible and does not depend on
the direction of the voltage sweep. Again, we can see the asymmetric frequency
tuning discussed in Sec. 9.1.

We also want to examine the temperature dependence of the avoided crossing. For
that we vary the temperature between 5 K and 90 K (both are plotted in Fig. 9.5)
and extract the frequency splitting for the avoided crossings at negative and positive
voltages. A summary of the resulting values can be found in Tab. 9.1. For higher
temperatures, the center of the avoided crossings moves towards lower voltages.
While the left avoided crossing at negative voltages is not within the accessible
voltage range at 5 K (see Fig. 9.5 (top)), it is well resolved at 90 K (see Fig. 9.5
(bottom)). Furthermore, we find that lower temperatures lead to a slightly wider
frequency splitting. For example, the left avoided crossing decreases from 15.0 kHz
at 30 K to 12.7 kHz at 90 K.
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Table 9.1: Frequency splitting of the avoided crossing at negative (Γc−) and
positive (Γc+) voltages. Missing values (–) are either caused by a not
perfectly converging fit or because the avoided crossing is not withing
the accessible voltage range. Italic values are not very reliable. The
data was recorded on a 100 µm string of sample G.

Temperature Γc− Γc+

(K) (kHz) (kHz)
5 – 6.0

20 15.1 5.6
30 15.0 2.7
40 13.9 –
60 – 3.2
90 12.7 2.4
RT – –

9.3 Conclusion
In this chapter, we successfully implemented the dielectric actuation scheme for
SiC. We find that a dc voltage sweep leads to an asymmetric frequency and
dielectric tuning, which seems much stronger than in SiN. To keep the quality
factor as high as possible, it is beneficial to tune towards negative instead of positive
voltages. Further, the temperature dependence of the avoided crossing is analyzed,
exhibiting that higher temperatures decrease the frequency splitting. Again, we find
an asymmetric behavior, where the frequency splitting of the avoided crossing at
negative is bigger than at positive voltages. This behavior as well as the frequency
and dissipation tuning are subject to further investigation.
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10
Outlook and Summary

This work investigates high Q nanomechanical string resonators fabricated from
crystalline 3C-SiC(111). In order to harness the full potential of this material,
we determine two growth dependent material parameters: The Young’s modulus
and the tensile stress. Due to the high tensile stress, SiC string resonators offer
exceptional quality factors at room and low temperatures. We measure a constant
loss angle over a broad frequency range with the help of a new dissipation model
developed by Ignacio Wilson-Rae.

Since SiC has not been used in our group before, we first develop a top-down
nanofabrication process. The most challenging part of the process was the release
of the final resonator. The best and most reliable results are achieved with our
new isotropic two step ICP-RIE process.a A Fabry-Pérot interferometer combined
with piezo actuation is used to characterize the fabricated sample. We measure
exceptional quality factors of around 400 000 at room temperature without utilizing
stress engineering or phononic bandgaps.
Because the Young’s modulus and the tensile stress depend on growth parameters,
we could not rely on literature values. To this end, we developed a new method
to determine the Young’s modulus by analyzing the eigenmode spectrum of our
resonators. Consequently, it is susceptible to the orientation and stress of the
resonator’s material. For our SiC(111), we find a Young’s modulus of 400 GPa,
which is, according to our calculations, valid for all directions in the (111)-plane.
Knowing the exact Young’s modulus allows us to extract the tensile stress for
individual string resonators. It turns out that the stress depends on the length of the
resonator, following approximately σ(L) ∝ L−1. We find this effect for SiC, SiN,

aRecently, we developed an even better three step ICP-IRE process presented in Felix David’s
master thesis [177].
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as well as InGaP, suggesting that this effect is material independent. With the help
of an elastic model, we can replicate our findings and predict which geometric
changes affect the resonator’s stress, paving the way for stress engineering.
We measure the quality factor as a function of mode number and resonator length.
This data is fit with an advanced dissipation dilution model developed by Ignacio
Wilson-Rae, which offers unprecedented precision for the extracted dilution
factor. We find a constant loss angle over a range of 80 MHz, indicating that it is
frequency independent.
Cooling the SiC resonators to low temperatures boosts the quality factor up to
3.5× 106. Temperature dependent measurements of the dissipation and frequency
indicate thermally activated defects at 180 K. For both SiC and InGaP we find
a hysteresis-like behavior at around 23 K that vanishes for thermalization times
of multiple days. Thermally activated defects could again be the origin of this
behavior. However, further investigations are needed to understand the underlying
physics. This includes, for instance, cooling the system to millikelvin, where we
expect resonant absorption of phonons.
Lastly, we implement the dielectric driving scheme with SiC string resonators,
allowing us to tune the frequency and dissipation of the mechanical modes.
Both show an asymmetric behavior, which is not found in SiN. We also
find that the dielectric damping in SiC is around two orders of magnitude
stronger than in SiN. Additionally, we analyzed the temperature dependence of
the avoided crossing, exhibiting that lower temperatures lead to a stronger coupling.

In collaboration with the group of Artur Erbe and Georgy Astakhov from the
Helmholtz-Zentrum Dresden-Rossendorf, we plan to analyze ion-induced defects
in the resonator’s material. Characterization before and after the implantation
should reveal any radiation damage or effects of the defects on the mechanical
quality factor. Additionally, this couples the motion of the string resonator to the
defects.
Further, we plan to combine the exceptional quality factor of SiC with a newly
developed 3D Cavity from Anh Tuan Le,178 allowing for optomechanical experi-
ments. This is especially interesting in combination with aluminum electrodes,
as we did in our collaboration with Eddy Collin.179 Cooling to millikelvin would
provide us with a superconducting cavity and electrodes.
My colleague Jana Ochs119 presented a plethora of interesting nonlinear phe-
nomena in her thesis. However, she was slightly hampered by the inability to
resolve the thermal motion of the SiN resonator. This problem would be solved
by switching to SiC because we can easily resolve the thermal motion. Vin-
cent Blavy started already to join both projects during his internship in our group.180
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A
Samples, Wafers and Material Parameters

Table A.1 and A.2 list all samples and wafers that are used in this work. Table A.3
summarizes the growth parameters of the wafers employed in Chap. 5 and 6,
stating the thickness of the device layer, sacrificial layer (if the system has one),
substrate, and the corresponding supplier. The two SiN wafers were grown by Low
Pressure Chemical Vapor Deposition (LPCVD), the SiC in a two-stage Chemical
Vapor Deposition process, and the In1−xGaxP using Metal-Organic Chemical
Vapor Deposition (MOCVD). All material parameters employed in the theoretical
calculations are listed in Tab. A.4.

Table A.1: Sample name, material (wafer number), label (backside of the sample)
and person that fabricated the chip.

Material Label Electrodes Fabricated by
Sample A 3C-SiC (W1) WC100 No me
Sample B 3C-SiC (W1) VD3 No F. David
Sample C InGaP No M. Bückle
Sample D SiN-FS GD1 No me
Sample E SiN-Si No me
Sample F 3C-SiC (W5) WA100 Yes me
Sample G 3C-SiC (W5) N2C10 Yes me
Sample H 3C-SiC (W5) N2C11 Yes me
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Table A.2: Basic parameters of the SiC wafers. All non SiC wafers are listed in
Tab. A.3 The thickness of most wafers is determined via ellipsometry.

Device layer Substrate Doping ID Chapter
W1 110 nm 3C-SiC(111) 1 mm Si doped 18C1-008 5, 6, 7
W2 210 nm 3C-SiC(111) 1 mm Si doped 19C1-017
W3 210 nm 3C-SiC(111) 1 mm Si doped 19C1-018
W4 210 nma 3C-SiC(100) 1 mm Si doped 19C1-173
W5 120 nm 3C-SiC(111) 1 mm Si nid 21C1-012 9, 8
W6 30 nm 3C-SiC(111) 1 mm Si nid 21C1-015
W7 90 nm 3C-SiC(111) 1 mm Si nid 21C1-020

aThis thickness was never confirmed via ellipsometry, therefore, we do not have
reliable data about the thickness.

Table A.3: Basic parameters of the non SiC wafers on which the string resonators
were fabricated that are presented in Chap. 5 and 6. All SiC wafers are
listed in Tab. A.2. Adapted from Ref. [39].

resonator / device layer sacrificial layer substrate source
SiC (W1) 110 nm 3C-SiC — Si(111) NOVASiC
SiN-FS 100 nm SiN — SiO2 HSG-IMIT
SiN-Si 100 nm SiN 400 nm SiO2 Si(100) HSG-IMIT
In1−xGaxP 100 nm In0.415Ga0.585P 1000 nm Al0.85Ga0.15As GaAs CNRS

Table A.4: Young’s modulus, shear modulus and density of the materials used
within this work. All shear mouduli where calculated via G = E

2(1+ν)
.

Adapted from Ref. [39].

Young’s modulus E Shear modulus G Poisson’s ratio ν density ρ
(GPa) (GPa) (g/cm3)

SiC 400(36)a 184 0.14149 3.2(1)78,152

Si 160149 66 0.22149 2.4149

SiN-FS 254(26)a 104 0.25149 3.1(1)149–151

SiN-Si 198(21)a 104 0.25149 3.1(1)149–151

SiO2 73149 31 0.17149 2.2149

In1−xGaxP 108(7)a 47 0.32153b 4.4153

GaAs 75149 29 0.31153 5.3149

aMeasured by us, as demonstrated in Chap. 5.
bCalculated with ν = c12

c11+c12
where cij are the elastic constants.
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B
Process Parameters

B.1 Harp of Strings
Preparation

Process step Equipment Details
Labelling Diamond scratcher mark crystal direction

label sample

Cleaning Ultrasonic bath & acetone lowest intensity, 2 min
Ultrasonic bath & IPA lowest intensity, 2 min
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B.1 Harp of Strings

Electron Beam Lithography

Process step Equipment Details
Spin coat Spincoater & Ramp up: 1 s at 800 rpm

PMMA 950k A6 Spin: 30 s at 5000 rpm

Softbake Hot plate 90 s at 180 °C

Lithography Zeiss Crossbeam Aperture: 20 µm
Acceleration voltage: 10 kV
Working distance: 8.6 mm
Dose clamping pad: 170 µC cm−2

Dose strings: 255 µC cm−2

Aperture: 20 µm
Aperture: 20 µm

Develop MIBK:IPA (1:3) 50 s
IPA at least 1 min

Evaporation of the Etch Mask

Process step Equipment Details
Evaporation E-beam evaporator or Chromium:

thermal evaporator 30 nm at 1 Å s−1

Lift-off Ultrasonic bath & acetone lowest intensity, 10 min
Ultrasonic bath & IPA lowest intensity, 2 min
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Chapter B. Process Parameters

Releasing the resonator

Process step Equipment Details
SF6 Etch ICP-RIE Time: 150 s

ICP-Power: 350 W
RF-Power: 65 W
SF6 flow: 2 sccm
Ar flow: 4 sccm
Pressure: 2 mTorr
Temperature: 10 °C

Ar mill ICP-RIE Time: 45 s
ICP-Power: 800 W
RF-Power: 70 W
Ar flow: 30 sccm
Pressure: 3 mTorr
Temperature: 10 °C

Removing etch mask IPA (60 °C) dip in IPA
DI water dip in 2 consecutive baths
Chromium Etchant 40 s
DI water dip in 2 consecutive baths
IPA dip in IPA

Drying Critical point dryer Exchange Gas: CO2
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B.2 Strings with Adjacent Electrodes

B.2 Strings with Adjacent Electrodes
Preparation

Process step Equipment Details
Labelling Diamond scratcher mark crystal direction

label sample

Cleaning Ultrasonic bath & ace-
tone

lowest intensity, 2 min

Ultrasonic bath & IPA lowest intensity, 2 min

Electron Beam Lithography (Electrodes)

Process step Equipment Details
Spin coat Spincoater & Ramp up: 1 s at 800 rpm

PMMA 950k A6 Spin: 30 s at 5000 rpm

Softbake Hot plate 90 s at 180 °C

Lithography Zeiss Crossbeam Acceleration voltage: 10 kV
Working distance: 8.6 mm
Aperture electrodes: 20 µm
Dose electrodes: 170 µC cm−2

Aperture bond pads: 60 µm
Dose bond pads: 190 µC cm−2

Develop MIBK:IPA (1:3) 50 s
IPA at least 1 min
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Chapter B. Process Parameters

Evaporation of the Electrodes

Process step Equipment Details
Evaporation E-beam evaporator or Cr: 5 nm at 1 Å s−1

thermal evaporator Au: 50 nm at 1 Å s−1

Cr: 5 nm at 1 Å s−1

Lift-off Ultrasonic bath & acetone lowest intensity, 10 min
Ultrasonic bath & IPA lowest intensity, 2 min

Electron Beam Lithography (Strings)

Process step Equipment Details
Spin coat Spincoater & Ramp up: 1 s at 800 rpm

PMMA 950k A6 Spin: 30 s at 5000 rpm

Softbake Hot plate 90 s at 180 °C

Lithography Zeiss Crossbeam Aperture: 20 µm
Acceleration voltage: 10 kV
Working distance: 8.6 mm
Dose clamping pad: 170 µC cm−2

Dose strings: 255 µC cm−2

Aperture: 20 µm

Develop MIBK:IPA (1:3) 50 s
IPA at least 1 min

101



B.2 Strings with Adjacent Electrodes

Evaporation of the Etch Mask (Strings)

Process step Equipment Details
Evaporation E-beam evaporator or Cr: 30 nm at 1 Å s−1

thermal evaporator

Lift-off Ultrasonic bath & acetone lowest intensity, 10 min
Ultrasonic bath & IPA lowest intensity, 2 min

Releasing the resonator

Process step Equipment Details
SF6 Etch ICP-RIE Time: 150 s

ICP-Power: 350 W
RF-Power: 65 W
SF6 flow: 2 sccm
Ar flow: 4 sccm
Pressure: 2 mTorr
Temperature: 10 °C

Ar mill ICP-RIE Time: 45 s
ICP-Power: 800 W
RF-Power: 70 W
Ar flow: 30 sccm
Pressure: 3 mTorr
Temperature: 10 °C

Removing etch mask IPA (60 °C) dip in IPA
DI water dip in 2 consecutive baths
Chromium Etchant 40 s
DI water dip in 2 consecutive baths
IPA dip in IPA

Drying Critical point dryer Exchange Gas: CO2
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C
Measuring Ring-Downs with VNA and SA

Here, we describe a measurement scheme to perform a ring-down with a vector
network analyzer (VNA) and a spectrum analyzer (SA). For every ring down
measurement, we have to determine the resonance frequency of the corresponding
mode, drive at this frequency, switch off the drive, and measure the energy decay.
As we utilize a VNA and SA for that, we have to use the wiring presented in Fig. 4.2.
If the signal-to-noise ratio (SNR) is sufficient, the resonance frequency is extracted
via the thermal motion, measured with the SA. Otherwise, the VNA has to be used.
Because we are only interested in the resonance frequency (and not the quality
factor), we are able to use a relatively high bandwidth of around 100 Hz - 1000 Hz,
which allows for a quick extraction of the resonance frequency while completely
underestimating the quality factor. Next, we use the VNA to drive exactly at the
extracted frequency with a 1 Hz bandwidth and 8001 points. In order to get a
clean drive spectrum (i.e., a single sharp peak at the drive frequency), it is crucial
to stick to those parameters. Otherwise, parasitic drive peaks can arise, disturbing
the measurement. Now we are ready to perform the actual measurement. For that,
we turn on the output of the VNA with the previously mentioned settings. Then we
start the time resolved SA measurementa and switch off the power shortly after,
which leads to the characteristic energy decay. By fitting Eq. (2.8) to the recorded
data, we can extract the ring-down time τ and calculate the quality factor.

aThe SA needs to be in zero span mode. Also, a sufficient ring-up time of at least 3 s is
important.

103



104



D
Comparison of Euler-Bernoulli Boundary Conditions

Figure. D.1 shows a comparison of Euler-Bernoulli beam theory with clamped and
simply supported boundary conditions. We find that they follow exactly the same
course but yield slightly different stress values as can be seen in Fig. D.2. Note
that our elastic model from Chap. 6 is still fitting very well.

simply supportedclamped

Figure D.1: Eigenfrequencies of the oop modes as a function of the mode number. The
measured frequencies of resonators of different length are shown as colored
dots. The solid and dashed line corresponds to a fit of the Euler-Bernoulli
beam theory with clamped and simply supported boundary conditions, re-
spectively. The data was recorded on sample A.
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simply supported clamped

Figure D.2: Stress as a function of resonator length. The stress values are determined
by fitting Euler-Bernoulli beam theory with simply supported (blue dots)
and clamped boundary conditions (orange) to the data (see Fig. D.1). Fits
of Eq. (6.9) are included as solid lines. The shaded areas indicate the
uncertainty resulting from measurement errors of the pedestal height h0 and
undercut auc. The data was recorded on sample A.
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E
Even Mode Numbers of the Loss Dilution Model

Figure E.1 shows the inverse dilution factor as a function of the dimensionless
parameter κ0L for even mode numbers.
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Figure E.1: Inverse dilution factor as a function of the dimensionless parameter κ0L.
The solid and dashed lines correspond to a loss dilution model assuming
and not assuming the string approximation, respectively. Different colors
symbolize different modes. For the sake of visibility, we omit odd mode
numbers at this point, but they are shown in Fig. 7.2. Colored dots depict the
parameters κ0L and n of our resonators.
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F
Comparison of Multiple Cooldowns

As explained in Chap. 8, the positioners drift during the cooldown of the cryostat.
Here, we compare the frequency and damping acquired during three different
cooldowns. While the behavior of the damping is nearly identical for the three
runs, the course of the frequency changes significantly. Note that the plot limits are
identical for all three images. Significantly less drifting and reproducible results
can be achieved with an internal heater.
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Figure F.1: Measured frequency and damping as a function of temperature for three
different cooldowns. All measurements are performed in the same setup and
on the same sample. The data was recorded on sample A.
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G
Thermal Conductivity SiC

The thermal conductivity of 3C-SiC follows

K = AT−N (G.1)

in the temperature range shown in Fig. G.1. Fitting Eq. (G.1) to the data78 presented
in Fig. G.1, yields the parameter N = 1.8.
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Figure G.1: Thermal conductivity K of 3C-SiC in the range between 9 K and 40 K. The
blue data points and the red line correspond to data points takenn from
Ref. [78] and a the fit of Eq. (G.1).
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H
Laser Heating at Cryogenic Temperatures

To show a laser heated string resonator at low temperatures, we combine a high laser
power with a stroboscopic measurement. First, the sample is radiated for a while
with an initial laser power of around 12 mW. Then, the laser is blocked and just
unblocked to take several fast measurements (see Fig. H.1 fist five hours). Clearly,
the damping decreases over time until it stabilizes at around 10 Hz, indicating that
the sample is now thermalized. Parallel to that, the frequency increases. Comparing
this to the measurements in Chap. 8 suggests a raise in the string’s temperature.
After five hours, we switch back to a continuous measurement (still a laser power
of 12 mW), leading to an increase in temperature. Three hours later (i.e. eight

Figure H.1: Stroboscopic measurement of the frequency and damping of a 110 µm SiC
string at low temperatures. At times where no data is shown, the laser is
blocked to allow the sample too cool down. After five hours the laser is
turned on permanently with a power of 12 mW. After eight hours the laser
power is increased to 40 mW.
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hours in Fig.H.1) the laser power is raised to approximately 40 mW). Again the
string’s temperature is increasing, as can be seen from the course of the frequency
and damping.
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I
Supporting Calculations: Calibration with Thermal
Amplitude

These calculations are based on personal communication with Sophia and
Jonathan Rau.

In Sec. 4.3 we follow the calculations of Hauer et al. [42] to calibrate our setup via
a thermal motion. They quote Ref. [181] for the calculations of

∫ ∞
0

1

(ω2
0 − ω2)2 + (Γω)2

dω =
π

2Γω2
0

. (I.1)

While the result is correct, the calculations are partially questionable. Here, we try
to provide a mathematically more accurate calculation of Eq. (I.1). For that we
assume 2ω0 > Γ, which is valid for high Q resonators. First, we notice

∫ ∞
−∞

1

(ω2
0 − ω2)2 + (Γω)2

dω =

∫ ∞
−∞

1

(ω2 − Γωi− ω2
0)(ω2 + Γωi− ω2

0)
dω

=

∫ ∞
−∞

1(
ω − s+Γi

2

) (
ω − −s+Γi

2

) (
ω − s−Γi

2

) (
ω − −s−Γi

2

)dω,
with s :=

√
4ω2

0 − Γ2. Applying the residue theorem182 known from complex
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analysis leads to∫ ∞
−∞

1

(ω2
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dω

=
2πi(
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2
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) (
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2
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ω − −s−Γi
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ω=−s+Γi

2

=
2πi

sΓi(s+ Γi)
+

2πi

−s(−s+ Γi)Γi

=
2π(−s+ Γi)

sΓ(s+ Γi)(−s+ Γi)
− 2π(s+ Γi)

sΓ(s+ Γi)(−s+ Γi)

=
4πs

sΓ(Γ2 + s2)

=
π

Γω2
0

.

Due to symmetry reasons, we get∫ ∞
0

1

(ω2
0 − ω2)2 + (Γω)2

dω =
π

2Γω2
0

,

which is identical to the result stated in Ref. [181].
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