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Gestalt Principles Emerge When Learning
Universal Sound Source Separation

Han Li , Kean Chen , and Bernhard U. Seeber

Abstract—Sound source separation is an essential aspect in au-
ditory scene analysis, which is still an urgent challenge for machine
hearing. In this paper, a fully convolutional time-domain audio sep-
aration network (ConvTasNet) is trained for universal two-source
separation, consisting of speech, environmental sounds, and music.
Besides the separation performance of the network, the underlying
separation mechanisms are our main concern. Through a series of
classic auditory segregation experiments, we systematically explore
the principles learned by the network for simultaneous and sequen-
tial organization. The results show that without prior knowledge of
auditory scene analysis imparted on the network, it spontaneously
learns the separation mechanisms from raw waveforms that are
similar to those which have developed over many years in humans.
The Gestalt principles for separation in the human auditory sys-
tem are shown to be effective in our network: harmonicity, onset
synchrony and common fate (coherent modulation in amplitude
and frequency), proximity, continuity, similarity. The universal
sound source separation network following Gestalt principles is not
limited to specific sources and can be applied to various acoustic
situations like human hearing, providing new directions for solving
the problem of auditory scene analysis.

Index Terms—Gestalt principles, separation mechanisms,
universal source separation.

I. INTRODUCTION

IN OUR daily lives, auditory scenes with multiple sound
sources are ubiquitous. One of the most remarkable abilities

of the human auditory system is to separate and track one source
from complex scenes seemingly without effort. According to the
seminal book of Bregman [1], auditory scene analysis (ASA) is
based on two mechanisms, primitive and schema-driven group-
ing. The primitive grouping mechanism relies on intrinsic sound
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attributes (or cues) such as fundamental frequency, onset, loud-
ness, etc., and is regarded as an innate, bottom-up process for
simultaneous grouping and for binding components over time.
Components in mixtures are separated and arranged into streams
according to the Gestalt principles, including the principle of
proximity, similarity, continuation, and common fate. On the
other hand, the schema-driven mechanism represents top-down
processing. Listeners exploit learned knowledge and attention
to the further processing of complex auditory scenes.

Computational auditory scene analysis (CASA) models are
technical source separation systems based on human auditory
segregation principles. Many CASA systems model auditory
scene analysis as a two-stage process: segmentation of time-
frequency elements and grouping into auditory objects and
streams [2]. Segmentation relies on the estimation of intrinsic,
bottom-up sound attributes, such as pitch (e.g., Wang-Brown,
1999 [3]), amplitude modulation (Hu-Wang, 2004 [4]), or onsets
(Hu-Wang, 2007 [5]). Then, according to continuity, synchrony,
or other primitive grouping principles, these time-frequency
segments are next grouped simultaneously across frequency
and sequentially across time and frequency to produce auditory
objects. Although these typical CASA models attempt to extract
meaningful and biologically plausible cues, the accuracy of these
cues, such as pitch or onset estimation in complex acoustic
conditions, cannot be guaranteed, resulting in limited model
performance.

With the development of neural networks, the approach to
explicitly extract features has been gradually weakened. Also,
the biological rational for modeling the process of auditory
scene analysis is often no longer the main concern, but the
improvement of separation performance for technical applica-
tions. Since these approaches do not mimic the auditory sys-
tem’s operation, they are not CASA models, but rather acoustic
source separation or acoustic scene analysis approaches. Various
supervised networks have been used in source separation and
made great progress, especially for speech separation [6]–[8],
such as convolutional neural networks (CNNs), recurrent neural
networks (RNNs), and generative adversarial networks (GANs).
Recently proposed end-to-end time-domain speech separation
systems, such as Conv-TasNet [9] and DPRNN-TasNet [10],
even surpassed the performance of ideal time-frequency masks.

Although performance has improved when using deep learn-
ing approaches, the underlying separation mechanisms of the
network are more obscure. It is still unknown whether the
separation is based on general primitive grouping principles,
like in human hearing, or the pattern modeling of specific sound
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sources. If the network separates sounds based on general Gestalt
principles like human hearing, this could be instructive for
developing generalizing networks that do not depend on specific
sound sources. In addition, it helps to explain the “black box”
of deep networks, which is also an important issue that hinders
the development of deep learning.

Few attempts have been made to interpret networks in bio-
logical terms. Francl and McDermott [11] demonstrated that
trained networks can replicate key properties of mammalian
spatial hearing, such as the sensitivity to monaural spectral cues
and interaural time and level differences. Elhilali et al. [12]
trained a hierarchical inference model to mimic the human au-
ditory system for separation, demonstrating that some grouping
principles are effective in this hierarchical inference model,
such as harmonicity or frequency separation. However, due to
the unsupervised learning, the model was not optimized for
separation tasks, the accuracy for separation of actual complex
sounds was not clear.

To our knowledge, except for our previous attempt to test
some separation principles learned by the network [13], [14],
there is no evidence that a supervised deep network for source
separation can learn the Gestalt principles spontaneously like
human hearing. In this study, we focus on the separation of
two arbitrary sources in a monaural mixture consisting of a
wide variety of sounds (speech, environmental sounds, music).
A state-of-the-art end-to-end time-domain source separation
framework, ConvTasNet, is adapted for separating arbitrary
sources in Section III. In Section IV, the separation mechanisms
are then explored through a series of classic auditory segre-
gation experiments to test Gestalt principles. The experiments
demonstrate, to our knowledge for the first time, that the Gestalt
principles are intrinsically learned with supervised deep learning
from unrelated natural sounds – a process and network that
does not directly imitate the biological processing stages of the
auditory system. The approach paves the way to establishing
a universal separation network that can adapt to all scenes and
achieve a segregation performance like in human hearing.

II. AUDITORY GROUPING PRINCIPLES

The ‘Gestalt’ concept originated in the 1920s [15] to explain
visual object perception and was later extended to the audi-
tory domain, c.f. the review by Bregman [1]. Combined with
more psychological and physiological experiments, the Gestalt
principles evolved into more specific principles for auditory
scene analysis, such as harmonicity and onset synchrony. In the
following, these specific Gestalt principles are introduced for
simultaneous and sequential grouping.

For auditory perception, scene analysis can be divided into
simultaneous and sequential organization, which depicts the pro-
cesses for fusing and separating components across frequency
and across time into one or multiple auditory objects, or sources.
For simultaneous organization, there is a consensus that har-
monicity and onset synchrony are the most important principles
for segregating concurrent sounds in the auditory system [16]. In
addition, common fate is also an important principle addressing
the dynamic changes of concurrent sounds.

Harmonicity is a strong, common spectral regularity in natural
sounds, especially in speech and music. It refers to the situation
that frequencies of components are integer multiples of a com-
mon fundamental frequency (F0), which typically results from
one single source. A wide range of psychoacoustic experiments
on harmonicity for segregation and pitch perception has been
conducted [17], showing that F0 differences aid concurrent
sound segregation. Taking the identification of two sounds with
different F0 as an example, experiments with double-vowels
[18] and with orchestral instruments [19] show consistently
that identification performance improves gradually as the F0
difference increases to two semitones and then asymptotes for
further F0 difference increases [20].

If different frequency components change in the same way
at the same time, they probably arise from the same source
[1], [21] - the principle of “common fate” proposed by Gestalt
psychologists [15]. Common fate in auditory scene analysis can
be defined in terms of correlated changes in their amplitudes
(amplitude modulation, AM) and their frequencies (frequency
modulation, FM). AM refers to slow temporal fluctuations of
the sound’s intensity. Synchrony of the onset (common onset) is
a special and critical example of AM, which has been shown to
be one of the most powerful temporal principle for simultaneous
component grouping [22]. When components share a common
onset, it is likely that they have originated from the same source.
On the contrary, components that start at sufficiently different
times tend to be heard as separated sources. An onset asynchrony
of about 30–50 ms is enough for affecting auditory grouping of
pure tones [23] or the identification of double-vowels [24]. This
principle is taken out from the common fate principle separately
for detailed analysis.

The common fate principle here refers to coherent modulation
in amplitude (AM) and frequency (FM). The role of AM for
simultaneous grouping is common and useful; the modulation
in speech caused by the opening and closing of the vocal cords
contributes to the fusion of acoustic components [25]. When two
tones are amplitude modulated by the same rate, they tended
to be fused more strongly than when modulated with different
rates. Moreover, components from the same source often share a
common pattern of frequency modulation [26], which is thought
to also contribute to fusion. Small fluctuations in frequency are
common in speech and music instrument sounds, ranging from
less than 1 percent to 10 percent of the carrier frequency, which is
called “micromodulation” [1], [27], [28]. The micromodulation
affects all frequency components that stem from one source,
causing them to move in parallel and group into one coherent
object.

The sequential organization is the process that assigns audi-
tory time-frequency elements arriving sequentially over time
to appropriate sources, which is often regarded as auditory
streaming for the human auditory system [1]. For components
in sequences, proximity, similarity, and continuity of their at-
tributes are the most important principles for their sequential
organization [29].

Proximity is the most intuitive and widely investigated Gestalt
principle. It plays an essential role in auditory scene analysis,
which refers to the proximity in frequency, time, loudness,
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and other source attributes. In 1975, van Noorden [30] pro-
posed the well-known temporal coherence boundary for auditory
streaming based on frequency and temporal proximity. It shows
that if the frequency and temporal distance between successive
frequency components is large, they are more likely assigned to
two streams by the auditory system.

The law of good continuation is a further Gestalt principle,
which refers to the acoustic properties of components that are
continuous or with a smooth transition, such as frequency or
loudness. Any sequence that exhibits acoustic contiguity has
probably come from one source. Abrupt changes in these at-
tributes often mean the emergence of new sound sources.

The principle of similarity usually refers to a multidimen-
sional sound attribute, timbre. Timbre is a complex auditory
attribute relating to the spectro-temporal composition of stimuli
that otherwise do not differ in pitch and loudness. It has been
demonstrated that timbre dissimilarity can serve segregation
[31]–[33].

After training the network, a series of experiments are con-
ducted in Section IV to explore whether these specific Gestalt
principles have been learned by the network.

III. SEPARATION NETWORK MODEL

A. Framework

With the development of deep learning, many source sepa-
ration networks have made significant progress, especially for
speech separation. However, few attempts have been made to
separate arbitrary sources in monaural recordings [34], [35].
In this study, one end-to-end fully convolutional time-domain
separation network (ConvTasNet) proposed by Luo et al. [9] is
adapted to separate universal sound sources.

ConvTasNet follows the unified separation framework:
encoder-separator-decoder. First, an encoder transforms the
mixture waveform into intermediate representations by con-
volving with the framed mixture x with N encoding filters
{hEnc

n (t)}n=0,...,N−1 of length L:

X(k, n) =
L−1∑

t=0

x(t+ kH)hEnc
n (t), (1)

where k ∈ {0, . . . ,K − 1}is the frame index of the waveform
and H is the hop size. In this study, the encoder is freely learned
through the training process by a 1-D convolutional layer. A
rectified linear unit (RELU) layer is next applied to obtain non-
negative X+(k, n) for the following separator.

The separator is used to estimate weighting functions (masks)
for two sources through the time-dilated convolutional network
(TDCN). It is chosen as three 1-D convolutional modules, and
each module contains eight stacked 1-D convolutional blocks
with different dilation factors. Other parameters are the same
as the best non-causal model reported by Luo et al. [9]. The
mask for the i-th source (Mi(k, n)) is then multiplied with the
mixture:

Yi(k, n) = X+(k, n)�Mi(k, n), (2)

where � indicates point-wise multiplication. Reconstructed
waveforms are calculated by transposed convolution with N de-
coding filters {hDec

n (t)}n=0,...,N−1 and overlap-add operation:

ŝi(t) =
K−1∑

k=0

N−1∑

n=0

Yi(k, n)h
Dec
n (t− kH). (3)

B. Dataset

In this study, we attempt to train a universal network to
adapt to various acoustic scenes. Therefore, we used a universal
dataset to train ConvTasNet, including environmental sounds
(e.g., vehicle noise, bells, animal calls, etc.) from the BBC sound
effects dataset [36], speech from the LibriSpeech database [37],
and music without vocals from the musan database [38]. For
data pre-processing, files only with background noise or with
multiple overlapping sounds were excluded. All segments were
downsampled to 16 kHz and cut to 3 s length. Environmental
sounds, speech, and music had the same proportion in the
dataset.

To create mixtures, two source clips were chosen randomly
and mixed with random signal-to-noise ratios (SNRs) between
−5 dB and +5 dB. To avoid confusion, mixing from the same
sound source was not allowed, such as the same speaker, the
same music track, or the same class (e.g., cars) in the environ-
mental sound. Overall, the dataset included 180000 clips (150
hours), of which 70% were randomly selected for training (105
hours), 20% for cross-validation (30 hours), and 10% for testing
(15 hours).

C. Training and Evaluation Setup

The scale-invariant source-to-distortion ratio (SI-SDR) [39]
is used as an objective training target and measure of separation
accuracy. It directly calculates the fidelity in the time domain by
comparing the given true source s and the estimated source ŝ ,
which can be expressed as

SI− SDR(s, ŝ) = 10 log10
‖αs‖2

‖αs− ŝ‖2 , (4)

whereα = < s, ŝ >/‖s‖2 , and<> indicates the inner product.
SI-SDR improvement (SI-SDRi) is the difference between out-
put SI-SDR and input SI-SDR, where the network output signal
and input mixture signal are regarded as ŝ to calculate output
SI-SDR and input SI-SDR through (4), respectively.

Permutation invariant training (PIT) [40] is adopted to address
the source label permutation problem, which aligns the network
output and the given true source during training. All possible
assignments between estimated and clean sources (ŝ1 ∼ s1,
ŝ1 ∼ s2, ŝ2 ∼ s1, ŝ2 ∼ s2) are listed. Then the SI-SDR is calcu-
lated for each assignment to get the pairwise scores. The max-
imum score for different assignments is chosen as the training
objective.

All experiments are implemented with the Asteroid toolkit
[41] and are trained through the Adam optimizer for 100 epochs.
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TABLE I
SI-SDRI (DB) FOR MIXTURES FROM DIFFERENT SOURCE TYPES AND AVERAGE IN THE TEST DATASET

Where Best Results of ConvTasNet and IRM are Shown in Bold.

D. Results

The separation performance for the test dataset is shown in
Table I. As mentioned before, our model is used for a univer-
sal dataset, which includes speech, environmental sounds, and
music. In the following, not only the average results but also the
results for different source types are presented.

The encoder in ConvTasNet is framewise, where the kernel
size (also called window size) in the 1-D convolutional layer
controls the frame rate, which determines the context viewed
by the network and is an important parameter for separation
performance. The results of the ideal ratio mask (IRM) are
calculated for comparison. IRM indicates the ratio of the target
source energy to mixture energy in spectro-temporal units. It is
one commonly used indicator of the dataset difficulty. Because
the IRM is based on the spectrogram, the STFT is also calculated
with different window sizes for comparison.

For ConvTasNet, the best average SI-SDRi is 11.70 dB and
obtained when the window size is 2 ms. Compared with the
IRM, the network shows promising results. In general, the per-
formance is different for different source types. The separation of
speech outperforms others, where speech and music separation is
14.28 dB, followed by speech and speech separation (13.45 dB),
then speech and environmental sounds separation (13.41 dB).
They are comparable or even surpass corresponding best IRMs.
This may be due to the unique harmonic structure of speech
which is more easily learned by the network. In contrast to
speech separation, the performance for other mixture types is
not satisfactory, where separation of music from music is the
worst. A piece of music in the dataset is not played by only one
instrument. It includes many tracks with various instruments,
such as piano, drums, bass et al. When different music pieces
are mixed, especially for similar music genres, it will be hard
to separate all different instruments into the respective source
signal mixtures. The IRM results of music and music separation
are also the worst among other mixtures, indicating greater
difficulty. Different types of sound sources have their own unique
characteristics and may affect the learning of principles, which
could be interesting for future study.

The performance of ConvTasNet decreases as window size
increases, which is opposite to the trend of the IRM. The

introduction of dilated convolution with increasing dilation fac-
tors in the network ensures that neurons in the highest layer
of ConvTasNet can be affected by a long enough context [42].
A smaller window size allows the network to have a higher
temporal resolution for each frame, which improves separation
performance. The effect of window size on performance varies
with the type of source. The separation of speech and other
sources is sensitive to the window size, while environmental
sounds and music are less so.

In addition to the average values in Table I, scatter plots are
provided to see the distribution of model separation results. Fig. 1
shows scatter plots of input SI-SDR and SI-SDRi (dB) of the
results of ConvTasNet with 2 ms window size for mixtures from
different source types in the test dataset. The color scale is the
density estimated by Gaussian kernel density estimation. The
results generally show a downward trend, indicating that for
lower input SI-SDR it is easier to obtain a larger SI-SDRi, which
was previously observed [43]. In addition, the distribution of
speech and other sources separation is more compact with a
higher cluster center and fewer failure cases, while it is less
concentrated for separations of environment sounds and music.

Taking the separation of speech and dog barking as an exam-
ple, Fig. 2 shows the spectrogram of the mixture, both sources,
and the two separated outputs of the network. The SI-SDRi for
both sources are 12.11 dB and 9.81 dB, respectively. It can be
seen from the figure that except for some instantaneous compo-
nents, these two sources are well separated and reconstructed.

IV. SEPARATION MECHANISMS FOR SIMULTANEOUS AND

SEQUENTIAL ORGANIZATION

The trained ConvTasNet model achieved good performance
for universal source separation. But what are the underlying
separation mechanisms? Is separation based on modeled patterns
of specific sound sources or on generalized primitive grouping
principles?

In perception, auditory scene analysis can be divided into
simultaneous and sequential organization. Simultaneous organi-
zation forms an object from concurrent components across fre-
quency, while sequential organization links components across
time. For the auditory system, the main grouping principles
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Fig. 1. Scatter plots of input SI-SDR and SI-SDRi (dB) for different source types in the test dataset, where (a)–(f) show different combinations of speech,
environmental sounds, and music, respectively. Warmer colors indicate higher density, which is estimated by Gaussian kernel density estimation.

Fig. 2. The spectrogram of (a) mixture, (b)–(c) given true sources, and
(d)–(e) estimated sources of the network, where two sources are speech and
dog barking. Because the energy above 4 kHz is small, for better readability the
maximum value of the y-axis is set to 4 kHz.

for simultaneous organization are harmonicity, onset synchrony,
and common fate (AM and FM).

The proximity in frequency and time, the similarity in timbre,
and continuity are predominant in the sequential organization.
In this paper, we chose a set of classic segregation experiments
probing simultaneous and sequential organization to test the
model’s functioning.

A. Methods and Stimuli

The Gestalt principles are often investigated one by one
through artificial stimuli composed of discrete frequency com-
ponents in most research on ASA [1]. We follow this approach

with a series of experiments from classic ASA literature using
two sound stimuli summed in the one input channel of the trained
network.

Because the network is trained with a universal sound source
dataset and has been verified that the network is capable of
separating complex natural sources. Artificial stimuli that the
network has not seen before are used to test the network’s un-
derlying mechanisms. These artificial stimuli completely differ
in their kind and their spectral and temporal composition from
the training dataset. Only when networks generalize segregation
principles, the separation performance of untrained artificial
stimuli may follow that of human auditory scene analysis.

All experiments are conducted on the best model (ConvTas-
Net with 2 ms window size) trained by the universal dataset
from Section III-B without any other adjustment. The network
separation result (SI-SDRi) is used as a performance indicator
to analyze the principle’s effect.

Two types of stimuli are used in the simultaneous and sequen-
tial organization experiments, respectively. The stimuli used for
probing simultaneous organization are two harmonic complexes
with different fundamental frequencies (F0) with or without
common onset, as shown in Fig. 3(a). The duration of the
stimulus is 3 s, including 200 ms raised-cosine onset and offset
ramps to reduce transient effects. Each component in the mixture
has equal amplitude, which means that the SNR of the two
sources is equal to 0. There are three harmonics in one source,
and F01 is fixed at 110 Hz. Here, four simultaneous organization
experiments are conducted to test harmonicity, onset synchrony,
and common fate (AM and FM), respectively.

For experiment 1, the stimuli are two groups of harmonics
with different F0 and with common onset. F0 differences (ΔF0s)
are varied from 0 to 12 semitones in steps of 0.1 semitones. The
semitone scale is adopted in this paper because it is commonly
used in psychoacoustic experiments [44], and the perceived pitch
of complex tones is generally proportional to the logarithm of
the frequency. Each semitone is one-twelfth of an octave, and an
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Fig. 3. Schematic spectrogram of the stimuli used in the experiments.
(a) Simultaneous organization experiments, where black and gray indicate two
concurrent sound sources. They are two harmonic complexes with different
fundamental frequencies. (b) Sequential organization experiments, where A and
B represent alternating sources appearing in sequence. They may be pure tones
or harmonic complexes, differing in parameters like fundamental frequency,
timbre, or any other property.

octave is an interval between one tone and another with double
its frequency. When f2 is one semitone higher than f1 , f2 =
f1 × 21/12.

Then we introduce onset asynchrony into the harmonicity
experiment to study the contribution of onset asynchrony to
segregation. For experiment 2, Δonset is varied from 0 s to
1.5 s (half of the duration of source 1) in steps of 0.01 s, where
Δonset indicates the delay of source 2 from source 1.

Finally, we conducted two experiments to test whether the
introduction of AM (experiment 3) and FM (experiment 4) with
different modulation depths and rates contribute to separation.
The parameters (ΔF0 and Δonset) that have been tested in the
above experiments are fixed, and a case with partial segregation
based on harmonicity is chosen here (ΔF0 = 1.5 semitones, and
Δonset = 0 s). Source 1 is unmodulated as before and all three
components in source 2 are sinusoidally modulated in amplitude
or in frequency.

In the AM experiment, the modulation depth is varied from 0
to 100% in steps of 2%, and the modulation rate is changed from
0 to 5 Hz in steps of 0.1 Hz. In the FM experiment, because mi-
cromodulation is the common pattern of frequency modulation
in natural sounds and can be perceived by the auditory system,
the modulation depth here is varied from 0 to 10% in steps of
0.2%. The modulation rate is varied from 0 to 5 Hz in steps of
0.1 Hz.

For sequential organization experiments, a classic stimulus
paradigm proposed by van Noorden [30] for auditory streaming
is used, including two alternating components A and B with
different frequency and tone repetition time (TRT(ms), the onset
to onset time for two adjacent tones), as shown in Fig. 3(b). A and
B are 40 ms in duration, including 5 ms raised-cosine onset and
offset ramps to reduce transient effects. Each sequence consists
of 10 A-B components in total. A and B can be pure tones or

Fig. 4. Harmonicity experiment: SI-SDRi (dB) as a function of F0 differences
between two complex tones, where ΔF0 (F02–F01, semitones) is marked on
the bottom x-axis, and the ratio of F02 to F01 is marked on the upper x-axis.

harmonic complex tones. In the following, three experiments
are conducted to investigate whether proximity, continuity, and
similarity principles emerge through model training.

For the proximity experiment, the proximity in frequency and
time is investigated. A and B are pure tones. B-tones are fixed at
1 kHz, and A-tones are varied from 0 to 15 semitones below B
tones in steps of 0.2 semitones. TRT varies from 50 to 200 ms in
steps of 2 ms. These parameters are replicated from the classic
psychoacoustic experiment of van Noorden [30] to compare the
model’s behavior with human performance.

For the continuity experiment, we introduce smooth fre-
quency transitions between successive tones on the basis of the
proximity experiment, which changes “discrete” tones A and
B to be “connected”. The samples in frequency transitions are
generated through a logarithmic swept-frequency cosine signal
[45], where the start and end frequency are frequency of tone A
and B, respectively.

For similarity in the timbre experiment, due to the mul-
tidimensional nature of timbre, it is difficult to quantify the
similarity in timbre space since the relationship of components
in amplitude, temporal, and spectral spacing contribute. Here,
the timbre differences stem from using different sets of three
adjacent harmonics. Two alternating sources A and B with three
harmonics to the same fundamental frequency (F0 = 110 Hz)
and with equal amplitude are presented which provide the same
pitch. A set of 10 timbres (T1–T10) with different harmonic
numbers are created, where T1 uses harmonics 1, 2, and 3, T2
uses harmonics 2, 3, and 4, and T10 uses harmonics 10, 11,
and 12. The harmonics have a duration of 250 ms with 20 ms
raised-cosine onsets and offsets ramps and the TRT is 350 ms.

B. Results of Simultaneous Organization Experiments

1) Harmonicity: For the first experiment probing segregation
of simultaneous harmonic complex tones by differences in fun-
damental frequency, results are shown in Fig. 4 as SI-SDRi (dB)
as a function of F0 differences, whereΔF0 (F02–F01, semitones)
is marked on the bottom x-axis, and the ratio of F02 to F01 is
marked on the upper x-axis. When ΔF0 < 2 semitones, the net-
work separation performance increases asΔF0 increases. When
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ΔF0 is at 2–10 semitones, as ΔF0 increases, the separation
performance fluctuates with one semitone period. When ΔF0
is at 10–12 semitones, the first harmonic of F02 is close enough
to the second harmonic of F01, and it tends to be perceived as a
unitary source again.

The symmetric increase and decrease at 0–2 and 10–12 semi-
tones result in the same conclusion that ΔF0 contributes to
the separation of the sound source, which is consistent with
the auditory system [46]. Within a certain range, the increase
of ΔF0 significantly promotes segregation, such as the 0–2
semitones range for double-vowel recognition [18], and fewer
further improvements beyond this range can be obtained.

When ΔF0 exceeds that range, that is, for 2–10 semitones
difference, the difficulties to separate two sources when ΔF0
is an integer multiple of semitones are also evidence for the
role of harmonicity for component grouping. In these cases, all
the components from sources 1 and 2 are integer multiples of
semitones, they are more harmonic, resulting in grouping into
one source. It is evidence for supporting that the semitone is
the smallest interval commonly used in Western tonal music
[47]. If tones are not in the semitone scale, they tend to be
segregated and perceived as dissonant and unpleasant. Further,
the result is consistent with the theory of musical consonance
[48]–[50], which is an auditory perceptual phenomenon that
simple frequency ratios between two tones give much higher
consonance than other ratios. The most consonant intervals are
with ratios 1:2 (F01 = 110 Hz, F02 = 220 Hz, ΔF0 = 12
semitones), 2:3 (F01 = 110 Hz, F02 = 165 Hz, ΔF0 = 7
semitones), 3:4 (F01 = 110 Hz, F02 = 146.8 Hz, ΔF0 = 5
semitones), 4:5 (F01 = 110 Hz, F02 = 138.6 Hz, ΔF0 = 4
semitones), which correspond to the local minima of SI-SDRi
in Fig. 4 that are more difficult to separate.

The input and outputs of the network for two stimuli with
different a) ΔF0 = 7 semitones and b) 7.7 semitones are shown
in Fig. 5 to explain how the network exploits the harmonic
constraints to assign these six frequency components to one
or two sources. The worst separation performance in 2–10
semitones is reached for ΔF0 = 7 semitones, a fifth in music
and a highly consonant tone combination widely used in music
(“power chord”). As shown in Fig. 5(a), the 3rd harmonic of
source 1 is identical to the 2nd harmonic of source 2, where
F01 = 110 Hz and F02 = 165 Hz. All components with the most
energy in the mixture are assigned to one estimate. The energy
in the other estimate is small, but some components emerge
that do not exist in the stimuli, a series of harmonics of 55 Hz. It
indicates that components are estimated by the network based on
harmonic constraints. When the component frequencies of two
sources share harmonic relationships, they are likely be regarded
as the same sound source and even evoke virtual fundamental
frequencies [48].

Another example that harmonicity is exploited to separate two
sources is ΔF0 = 7.7 semitones, as shown in Fig. 5(b). When
ΔF0 is not an integer multiple of semitones, there is no specific
harmonic relationship between F0 of the two sound sources.
Then, according to the harmonicity between the three compo-
nents of each sound source, all components can be correctly
assigned to two sources.

Fig. 5. The input and outputs of the network for two stimuli with different
ΔF0, 7 semitones (a) and 7.7 semitones (b). The top panels show the spectrum
of the input mixture, and the middle and bottom panels show the two sources’
estimates.

In general, for concurrent components, harmonicity is learned
by the network and used effectively for separation. The har-
monicity principle exploited by the network is consistent with
the auditory system in the following aspects. First, within the
range of 2 semitones, ΔF0 contributes to source separation.
Second, components are always assigned due to harmonic con-
straints. Based on whether the harmonicity is within each source
or across two sources, the harmonicity has two effects on separa-
tion, beneficial or hindering. When the fundamental frequencies
of the two sound sources have no harmonic relationship, that is,
only components belonging to the same source are harmonic,
they will be correctly separated into two sound sources due to
the harmonicity within each source. When ΔF0 is an integer
multiple of semitones, all components from two sources share
a harmonic relationship. At this time, the harmonicity helps to
combine all components into a single source and hinders the
separation of the two sound sources.

2) Onset Synchrony: Results of SI-SDRi (dB) as a function
of Δonset for ΔF0 = 1.6, 7.0, 7.7 semitones are shown in
Fig. 6. For ΔF0 = 1.6 semitones, a condition which shows some
segregation already for simultaneous onsets, SI-SDRi increases
with the increase of Δonset. Onset asynchrony is segregation-
promoting, consistent with the auditory system. Specifically,
SI-SDRi increases rapidly when a slight delay (<100 ms) breaks
the synchronization of both sources, and then increases gradually
until it approaches the asymptote. Asynchrony of more than
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Fig. 6. Onset synchrony experiment: SI-SDRi (dB) as a function of Δonset
(s) between two complex tones for ΔF0 = 1.6, 7.0 and 7.7 semitones, where
the first 100 ms for ΔF0 = 1.6 semitones are zoomed in.

Fig. 7. Onset synchrony experiment: SI-SDRi (dB) as a function of ΔF0
(semitones) and Δonset (s): (a) 3D view, (b) projection on the SI-SDRi–ΔF0
plane, (c) projection on the SI-SDRi–Δonset plane, and (d) projection on the
ΔF0–Δonset plane. Warmer colors indicate a better separation.

30 ms has been shown to be helpful for auditory separation
[51], and similarly for ConvTasNet, the impact of 10–20 ms
Δonset is also relatively small while for Δonset of 30–50 ms a
rapid increase in segregation occurs. For ΔF0 = 7.7 semitones,
a condition that is already well segregated with simultaneous
onsets, the contribution of Δonset is limited. However, when
ΔF0 is in integer multiples of semitones (ΔF0= 7.0 semitones),
onset asynchrony-based segregation is not sufficiently powerful
to overcome grouping due to harmonicity with ConvTasNet.
Regardless of Δonset, the network tends to fuse all components
into one source. In this case, harmonicity has a greater weight
than onset asynchrony for the network.

Having seen that both harmonicity and onset synchrony
contribute to segregation by the network, we are interested in
their detailed interaction. Fig. 7 shows separation performance
as a function of both parameters. As visible in Fig. 7(b), the
introduction of Δonset does not change the trend between
SI-SDRi and ΔF0. The separation performance is dominated
by ΔF0, whereas onset asynchrony contributes only in cases
with partial segregation based on F0, as one would expect. The

Fig. 8. Common fate experiment: SI-SDRi (dB) as a function of modulation
rate and depth in amplitude modulation (a) or in frequency modulation (b).

contribution of Δonset is different for different F0, and three
typical cases have been analyzed in Fig. 6. The projection on
the ΔF0–Δonset plane in Fig. 7(d) indicates that harmonicity
and onset asynchrony contribute almost independently.

In summary, for the network, harmonicity is the overall dom-
inant principle in inducing simultaneous segregation, but onset
asynchrony also facilitates segregation, especially for conditions
with partial separation by harmonicity. These two principles are
processed almost independently.

3) Common Fate: Results of experiment 3 (AM) and exper-
iment 4 (FM) are given in Fig. 8(a) and (b), respectively. For the
AM experiment, the introduction of low-rate AM into one of the
two sources helps to group these three harmonic components that
share the same modulation, resulting in increased separation.
The thresholds of AM depth and rate that effectively promote
separation are about 30% and 0.3 Hz for this experiment. Be-
yond this threshold, separation performance increases with the
increase of modulation depth and rate. Segregation appears to
peak at around 3–4 Hz, the syllable rate of speech, which also
agrees with the maximum perceived fluctuation strength [52].

For the FM experiment, the introduction of micromodulation
bring obvious benefits for separation. It provides new support
for grouping three harmonics that share the same pattern of
fluctuation in frequency in addition to the harmonicity principle.
Segregation peaks at a modulation depth of 3%–5%. For the
auditory system, it is the effective range of FM in voiced portions
of speech [27].
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Fig. 9. Proximity experiment: SI-SDRi (dB) for tone sequences separation as
a function of ΔF (semitones) and TRT (ms) in a 2D color map. The temporal
coherence boundary obtained by van Noorden’s psychoacoustic experiments
[30] is indicated by the white dashed line.

Fig. 10. Continuity experiment: SI-SDRi (dB) for tone sequences separation
as in Fig. 9, but with a smooth frequency transition, where warmer colors indicate
a better separation between A and B tones.

In general, a difference in amplitude and frequency modula-
tion assists source separation. These phenomena are consistent
with the auditory system, and it is plausible to believe that
common fate is learned effectively by the network.

C. Results of Sequential Organization Experiments

1) Proximity: Results of the experiment with alternating tone
sequences are given as SI-SDRi (dB) as a function of ΔF and
TRT in Fig. 9. When ΔF is large and TRT is short (top left
corner of Fig. 9), tone sequences A and B are more likely to be
separated. On the contrary, the proximity in frequency and time
will hinder model separation. It is consistent with the temporal
coherence boundary presented by van Noorden [30]: when the
tone interval is higher than the temporal coherence boundary (the
white dashed line in Fig. 9), listeners tend to perceive two sound
sources. It appears that the proximity principle in frequency
and time is learned automatically by the network with a similar
parametric outcome as in humans.

2) Continuity: Results of continuity experiment are shown
in Fig. 10, again as SI-SDRi (dB) as a function of ΔF and TRT.
The contribution of continuity, introduced in the experiment by
linking A and B tones by logarithmic sweeps, is understood
by comparison against the proximity experiment with discrete

Fig. 11. Spectrogram of the mixture (top row) and two sources estimated by
the network (rows 2 and 3) for ΔF = 5.6 semitones and TRT = 0.08 s. The
left column shows in panels (a) (b) (c) results from the proximity experiment,
in which A-B tones alternate, while the right column, panels (d) (e) (f), shows
results from the continuity experiment in which A-B tones were connected with
logarithmic sweeps.

frequency jumps. Compared with Fig. 9, the results in Fig. 10
share the same general trend that when ΔF is large and TRT
is short (top left corner of Fig. 10), mixtures are more likely
to be separated. More importantly, regardless of the interval in
the time-frequency domain, the separation performance signifi-
cantly dropped after the introduction of a smooth transition. The
good continuation hinders sequential segregation effectively.

The spectrogram of the mixture and the two sources estimated
by the network for ΔF = 5.6 semitones and TRT = 0.08 s
are shown in Fig. 11 for direct comparison without (left col-
umn, proximity experiment) and with (right column, continuity
experiment) continuation. Without continuation, the model en-
tirely separates the mixture into two sources of high and low
frequencies. On the contrary, mixtures are grouped into one
source by the network when consecutive tones are connected
with the frequency transitions.

3) Similarity: Results for sequential segregation based on
timbre are shown in Fig. 12. When source A and B are more
similar in timbre, that is, harmonics of source A and B with the
same F0 are in a closer frequency region, they are more likely to
integrate into one stream. On the contrary, when the differences
in spectral spacing are larger (upper-left and lower-right corner),
they are separated into two sources by the network despite shar-
ing the same fundamental frequency and intensity. It indicates
that the timbre differences, here from differences in the spectral
centroid, can be learned by the model and are used effectively
for separation as an additional cue.

V. COMPETITION AND COOPERATION OF SIMULTANEOUS AND

SEQUENTIAL ORGANIZATION

If a group of sound components can be regarded as arising
from the same physical source, they should have a simultaneous
or sequential relationship. As mentioned in the above sections,
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Fig. 12. Similarity experiment: SI-SDRi (dB) for separation of alternating
complex tones A and B with different timbre, but identical F0.

Fig. 13. Schematic spectrogram of the stimuli used in this experiment, replot-
ted after Bregman and Pinker, Fig. 1 [23]. There are alternating tones A, B and
C, where simultaneous integration tends to group B and C tones and sequential
integration tends to group A and B tones. Here, this separation pattern (sequences
A is regarded as source 1 and complex tones B and C is source 2) is used to
calculate the SI-SDRi of the network. The dashed arrows indicate the change
direction of tones.

there are various factors that promote the appropriate separation
of mixtures. Harmonicity, onset synchrony, and common fate
(AM and FM) are predominant for the simultaneous organiza-
tion. The sequential organization is affected by proximity and
continuity in frequency and time and the similarity in timbre.
These factors are cooperative and competitive, and the relative
importance of these factors for separation is a matter of debate
and likely situation-dependent.

For the human auditory system, the competition and cooper-
ation of simultaneous and sequential organization was explored
by Bregman and Pinker [23]. They presented one well-known or-
ganization principle, the old-plus-new heuristic. It can be stated
that “If any part of a sound can be plausibly interpreted as being
a continuation of an earlier sound, then it should be.”, which
gives priority to sequential grouping. In this section, following
their classical experiment, we give an example of how different
principles compete and cooperate to control the separation of
mixtures.

A. Methods and Stimuli

As shown in Fig. 13, for alternating tones A, B, and C, the
simultaneous organization tends to integrate B and C into one
source, which is accompanied by a series of pure tones A.
However, the sequential grouping facilitates the integration of A

and B and destroys the integration of the complex tone B-C. It
can be thought that tones A and C compete to decide which one
can be combined with B. In this experiment, the calculation of
SI-SDRi is based on the separation of tones A vs. complex tones
B-C, where source 1 is sequence A, and source 2 is complex
tones B and C. For the other possible separation pattern, that
source 1 is the alternating tones A and B, while source 2 is tone
C, the results are similar and will not be repeated here.

In our experiment, four factors and their interactions are
considered to analyze the dominant factors for fusion. The
frequency of B-tones is fixed at 220 Hz, and tone duration
is 100 ms. A-tones separate from B in frequency by 0 to 12
semitones in steps of 1 semitone and TRT between A and B is
varied from 100 ms to 300 ms in steps of 20 ms. These two
parameters are used to control the proximity in frequency and
time for the strength of sequential grouping. On the contrary,
the harmonicity and onset synchrony between tones B and C
determine simultaneous organization. C tones are varied from
10 semitones to 14 semitones below B tones in steps of 0.5
semitones, when ΔF is −12 semitones means that C tones
(110 Hz) and B tones (220 Hz) are harmonically related. The
onset of C tones is varied from 0 to 50 ms behind B in steps of
5 ms to investigate the contribution of common onsets to fusion.

B. Results

The separation results as a function of the four factors are
shown in Fig. 14. There is a total of 13∗11 subgraphs, which
represent the results under different ΔF between A and B
(ΔFAB) and different conditions of TRT. These two parameters
control sequential grouping. In each subgraph, SI-SDRi (dB) is
given as function of ΔF between B and C (ΔFBC) and Δonset
between tones B and C (ΔonsetBC), which control simultaneous
integration.

We start with the overall analysis of the effect of ΔFAB and
TRT for sequential grouping. For all subgraphs under different
ΔFAB and TRT, they show one generally that when ΔFAB is
larger and TRT is shorter, the separation between tones A and
complex tones B-C is better. This demonstrates that the proxim-
ity principle in frequency and time for sequential separation is
effective. When the tone interval in frequency and time is higher
than the temporal coherence boundary, they tend to be separated.

Fig. 14 is divided into panels (a)–(d) according to separation
performance. For panels (a) and (b), ΔFAB is large enough
(≥6 semitones) for sequential organization to separate tones A
and B according to the proximity principle. The presence of
tones C also facilitates the grouping of tones C and B and the
separation of tones A from tones B. In this condition, sequential
and simultaneous organization are cooperative to separate tones
A from the complex of tones B-C. As shown in the spectrogram
(a1) and (b1), sources 1 and 2 are correctly separated.

For panel (c), ΔFAB is less than 6 semitones and the time
interval is less than 200 ms (TRT ≤ 200 ms). There is fierce
competition between sequential and simultaneous grouping. The
sequential organization here tends to combine tones A and B be-
causeΔFAB<6 semitones, while tones B and C are also affected
by simultaneous organization. The spectrograms of three typical
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Fig. 14. For separation of source 1 (tones A) and source 2 (complex tones B-C), each subgraph represents SI-SDRi (dB) as a function of ΔonsetBC (ms)
and ΔFBC (semitones), both controlling simultaneous integration, while the overall axes present subpanels as a function of TRT (ms) and ΔFAB (semitones),
controlling sequential integration. (a)–(d) panels are divided according to the different separation performances. In addition, 6 typical cases (a1) (b1) (c1) (c2) (c3)
(d1) are marked by black boxes, whose spectrograms of mixture and two sources estimated by the network are shown, respectively.

cases (c1) (c2) (c3) are shown in Fig. 14. For (c1), it is a special
case that tones A and B are continuous (frequency of tones A and
B is 220 Hz and TRT = 100 ms), resulting in a strong sequential
grouping of tones A and B, which destroys the simultaneous
grouping of tones B and C. For the other subgraphs of panel
(c), if tones B and C are harmonic (ΔFBC = −12 semitones)
and synchronous (ΔonsetBC = 0 ms), they will integrate into
one source regardless of the proximity between tones A and
B, as visible in panel (c2). In this situation, it is plausible
to believe that harmonicity and synchrony for simultaneous
grouping are stronger than effects of sequential grouping. With
the introduction of onset asynchrony or mistuning of harmonics,
the force of simultaneous grouping between B and C weakens.
As shown in panel (c3), tones B combine with A in sequence
again, and tones C are separated.

For panel (d), especially for ΔFAB ≤ 3 semitones, regardless
of the relationship between tones B and C, the separation per-
formance is very poor. As shown in panel (d1), three tones are
grouped into one source. According to the proximity principle,
for large TRTs, sequential organization will force the compo-
nents to integrate into one stream, i.e., the separation process is
dominated by sequential organization. In summary, the analysis
shows that using ConvTasNet for segregation, principles for
simultaneous and sequential separation compete and cooperate
in dealing with segregation of acoustic scenes similar to the

auditory system, and the relative importance of principles for
separation depends on the specific situation.

VI. GROUPING BASED ON HARMONICITY IN COMPLEX

STIMULI

In the above sections, simple artificial stimuli commonly
used in psychoacoustic experiments are adopted to illustrate that
Gestalt principles have been acquired by the network. We now
explore whether these segregation principles generalize to more
complex stimuli, such as speech.

Harmonicity is a prominent characteristic of the voiced parts
of speech and it has been established in many psychoacoustic
experiments to play a critical role in natural sound source separa-
tion [17]. In Section IV we have demonstrated the segregation of
two complex tones with different F0s based on the harmonicity
principle. We now explore the effectiveness of harmonicity in
the separation of speech by destroying the harmonicity. McDer-
mott et al. [53] used the STRAIGHT with sinusoidal modeling
[54] to manipulate the harmonicity in speech and conducted
psychoacoustic experiments to reveal the role of harmonicity for
natural speech separation. The results showed that inharmonic
speech was less intelligible for concurrent sentences, indicating
that harmonicity contributes to auditory segregation.
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Fig. 15. The spectrogram of one sentence spoken by a female speaker, where (a1)–(a5) indicate the original speech sentence, synthetic harmonic speech and
synthetic inharmonic speech jittered by 0.1, 0.3, 0.5 of the F0, and (b1)–(b5) indicate the corresponding estimates by the network.

A. Methods and Stimuli

STRAIGHT [55] is a speech analysis and synthesis
vocoder. For a speech utterance, STRAIGHT estimates speech
parameters of voiced excitation (the time-varying F0), unvoiced
excitation (the time-varying spectral parameters of aperiodic
components), and vocal tract filter (the time-varying spectral
envelope). Then these estimated parameters can be manipulated
to synthesize more altered speech signals. Here, STRAIGHT
with sinusoidal modeling is used to generate speech with inhar-
monic carrier components while preserving other attributes. It
models the voiced excitation as a sum of sinusoids, permitting
frequency components to be manipulated individually.

In this experiment, the random jittering manipulation to each
component is adopted rather than shifting by fixed frequencies
to ensure that components no longer have any spectra regularity.

The first 30 harmonics of sources are randomly jittered indi-
vidually. The n-th inharmonic carrier component fn is generated
by jittering the n-th harmonic with a random proportion of F0,

fn = nF0 + cnF0,

where cn is a random value that follows a uniform distribution
between −c and c. The jitter magnitude (c) is used to control the
degree of inharmonicity, which is fixed as 0.1, 0.2, 0.3, 0.4, and
0.5.

Taking one sentence spoken by a female speaker as an exam-
ple, the spectrogram of the original speech sentence, synthetic
harmonic speech, and synthetic inharmonic speech jittered by
0.1, 0.3, 0.5 are shown in Fig. 15(a1)–(a5), respectively. It can
be seen that the synthetic harmonic speech is highly similar
to the original speech, demonstrating the high accuracy of
STRAIGHT for analysis and synthesis. For inharmonic speech,
each component is randomly shifted upwards or downwards with
a random proportion of F0, while the spectrotemporal envelope
that conveys the information is preserved. In quiet, it sounds
like harmonic speech accompanied by some whistle or some
reverberation.

In this experiment, 1000 speech sentences are selected from
the LibriSpeech dataset [37], which are not included in the
network training dataset. For each sentence, 5 jitter magnitudes
(c = 0.1, 0.2, 0.3, 0.4, 0.5) are explored, and 100 random jitter
patterns for each jitter magnitude are created to avoid accidental
harmonicity in a random jitter pattern. To create mixtures, two
synthetic sentences with the same jitter degree are selected
randomly and mixed with equivalent energy. The cross mixture
of different jitter degrees is not tested, such as 0.1 jitter for one
sentence and 0.2 jitter for another sentence. There is a total of
1000×5×100 mixture clips, and each clip is 3 s in length with
a 16 kHz sample frequency.

B. Results

Before the analysis of experiment results, the spectrograms
of one example sentence spoken by a female speaker are shown
in Fig. 15. When the example sentence and another sentence
spoken by a male speaker are mixed correspondingly (the same
degree of inharmonicity), the spectrograms of the network es-
timation are shown in (b1)–(b5). It is visually apparent that the
example sentence is well separated and reconstructed for both
original and synthetic harmonic cases in (b1) and (b2). However,
when the harmonic components are perturbed by random jitters,
even by 0.1 of the F0, the separated sentence is filled with
other interferences and loses some necessary components. If
frequency components are not subject to strict harmonic con-
straints, their assignment to appropriate sources is more difficult
for the network and the separation performance decreases with
the increase of the degree of inharmonicity.

Results of separating two concurrent sentences with different
degrees of inharmonicity are given by SI-SDRi (dB) in Fig. 16.
For mixtures of 1000 speech sentences from the LibriSpeech
dataset (‘original’), the average SI-SDRi is 14.47 dB, which
is comparable with the result of speech and speech separation
reported in Section III. For synthetic harmonic mixtures, the
average SI-SDRi is 12.46 dB. This reduction of about 2 dB is
due to the accuracy of estimation and synthesis of STRAIGHT,
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Fig. 16. SI-SDRi (dB) as a function of the degree of inharmonicity in the vow-
els of a synthetic sentence. ‘Original’ indicates the separation of the two original
sentences, ‘0’ indicates the separation of two synthetic harmonic sentences, and
‘0.1’–‘0.5’ indicates the separation of two synthetic inharmonic sentences with
harmonics jittered by 0.1–0.5 of the F0. Error bars indicate the standard deviation
of results for 1000×5×100 mixture clips.

where some instantaneous components are not accurately
synthesized. For the effect of harmonicity, once the harmonicity
is destroyed, even jittered by 0.1 of the F0 will make the
average separation performance drop sharply to 4.13 dB. As
the degree of inharmonicity further increases, the separation
performance decreases gently and tends to level off when the
jitter magnitude is larger than 0.3 (c > 0.3). The performances
in our network are consistent with that in psychoacoustic exper-
iments obtained by McDermott et al. [53], which illustrated that
the intelligibility of concurrent words or sentences decreased
with the degree of inharmonicity for the human auditory system.

In summary, for concurrent sentences, inharmonicity hinders
the grouping of frequency components and the separation per-
formance decreases with the degree of inharmonicity increases.
This suggests that the network uses harmonicity principles to
separate speech. The harmonicity principle is still effective in
the separation of complex sound sources.

VII. DISCUSSION

Two general approaches have been followed to solve sound
source separation problems: one is to separate sources through
the imitation of the auditory system, while the other is to base it
solely on statistical signal processing.

The first approach develops a model with biological rational
based on knowledge from psychoacoustics and auditory neu-
roscience (CASA models) [2]. Conceptually, CASA models
operate as a two-stage process: segmentation and grouping.
Segmentation is based on the representation of sound attributes.
Hu and Wang [4] estimated attributes (pitch and AM) through
the imitation of auditory peripheral and mid-level processing.
Recently, more auditory central processes have appeared in
CASA models. Elhilali et al. [56] mimicked human cortical pro-
cessing to segregate auditory objects, which mapped the acoustic
waveform into a 4-D cortical representation. Elhilali et al. [12]
learned spectro-temporal representations through a stochastic
neural network with two layers, including a local analysis layer

and a long-range analysis layer to mimic the simultaneous and
sequential organization in the auditory system respectively.

After obtaining the effective representation of sound at-
tributes, CASA models tend to group segments on the basis
of Gestalt principles, such as the proximity in pitch explored by
Hu and Wang [4], dynamic similarity reflected by an integrative
and clustering stage [56], and temporal coherence via Hebbian
learning [12]. One or few specific grouping principles, rather
than all principles, are implemented in traditional CASA models
and dominate the process of separation. If CASA models are
tested with the simple stimuli in our study, they are likely to have
similar behavior characteristics with humans in some principles
but not all aspects.

Traditional CASA models separate sound sources by carefully
modeling the auditory system, while the current understanding
of auditory neuroscience is not sufficient to develop a system
as intelligent as humans. The opportunities to learn principles
through task optimization are lost in those unsupervised models,
which makes them particularly effective for simple stimuli and
cannot be generalized to natural sources in complex scenes.

The second approach treats source separation as a supervised
learning problem. In recent years, these statistical deep network
models have achieved excellent performance in natural source
separation. However, few attempts have been made to investigate
the biological plausibility of this kind of network because these
models do not appear to mimic the auditory system in a particular
way and network weights are hard to interpret. In this paper, we
demonstrate that similar separation mechanisms emerge in our
statistical network as they are present in human hearing. This
means that without accurate biological modeling, a network that
follows Gestalt rules can be obtained.

Is the ultimate destination of deep learning to be able to
spontaneously learn the same optimization criteria like human
beings? Francl and McDermott [11] showed that for localization,
trained networks can spontaneously operate similarly to human
spatial hearing. In our study, the trained network has also been
shown to behave similarly to human hearing – in this case
the more complex auditory scene analysis. We believe that
observing the emergence of (segregation) mechanisms purely on
the basis of statistical signal processing has a profound influence
on the study of deep learning and auditory neuroscience.

The trained network is not limited to some specific sound
sources but depends on generalized primitive grouping princi-
ples. The underlying generalization suggests a general source
separation network that can adapt to all scenes and achieve
selective hearing like the human auditory system. The work
also provides a new perspective on network interpretation: the
underlying mechanisms are explored through Gestalt experi-
ments following those developed in many years of auditory
research, which goes beyond the visualization of features or filter
activation and can be used to probe specific hypotheses while
building on a wealth of previous experience. The hypothesis
testing helps explain the “black box” of the network and in turn
guides further network optimization.

On the other hand, the emergence of separation mechanisms
through network learning can also help our understanding of the
processes in the human auditory system. As an ideal observer,

Authorized licensed use limited to: Technische Universitaet Muenchen. Downloaded on June 17,2022 at 13:59:27 UTC from IEEE Xplore.  Restrictions apply. 



1890 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 30, 2022

the network can nonetheless test a lot of stimuli, which could be
instructive for future psychoacoustic experiments.

VIII. CONCLUSION

In this study, a convolutional deep neural network, Con-
vTasNet, is developed to separate arbitrary sounds in the time
domain, including speech, music, and environmental sounds.
The SI-SDRi of the best-performing network is 11.70 dB,
which is comparable or even surpasses the result of IRMs. This
demonstrates that our network has an excellent ability to separate
natural complex sound sources.

For this network, that is capable of solving actual separation
problems, the underlying separation mechanisms are investi-
gated. At first, the method of Gestalt psychologists is adopted,
where simple stimuli are used to explore principles one by
one on simultaneous and sequential organization. There are
fundamental differences between the training dataset (natu-
ral sources) and the highly specific and abstracted artificial
stimuli made of tones. These differences make sure that only
when networks generalize segregation principles, the separation
performance of untrained artificial stimuli may follow that of
human auditory scene analysis. Then, speech stimuli are gener-
ated with inharmonic carrier components while preserving other
attributes to explore whether the harmonicity principle can be
generalized to complex stimuli.

To our knowledge, it is the first demonstration that Gestalt
principles underlying human auditory scene analysis are learned
by supervised deep learning from unrelated sound sources with
a completely statistical model that does not have any particular
auditory-related process. The experiments probing simultaneous
organization demonstrate that harmonicity, onset asynchrony,
and coherent AM and FM assist the segregation. For sequential
grouping, proximity in time and frequency is in a consistent
manner with the emergence of a temporal coherence boundary
like in the auditory system. A good continuation in frequency
also exerts a strong force to integrate components into sequences.
The similarity in timbre, as studied with varying spectral cen-
troid, contributes to separation beyond the effects of fundamen-
tal frequency and intensity. These principles for simultaneous
and sequential organization are shown to be cooperative and
competitive, and the relative importance of these principles for
separation is situation dependent. In addition, the experiment of
concurrent sentence separation illustrates that the harmonicity
principle is still effective in the separation of complex sound
sources.

In summary, without prior knowledge about auditory scene
analysis principles imparted on the network, it learns separation
mechanisms similar to those in the human auditory system,
which provides a new perspective for the problem of auditory
scene analysis. Since ConvTasNet is a purely statistical model
aiming to optimally segregate sound sources, results suggest that
the mechanisms developed in the auditory system over many
years have evolved for optimal segregation based on statistical
characteristics of the acoustical signal.

Our study is the first step for exploring auditory-like mecha-
nisms learned by deep networks. In the future, the comparison

of network results and psychoacoustic experiments may extend
to other experiments and objective measures. In addition, how
the networks’ specific structure contributes to performance over
data statistics is also worth exploring. It is not yet clear whether
other kinds of networks can learn similar separation mechanisms
from unrelated natural sounds.
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