

APPLY NOISE FILTERS FOR BETTER FORECAST PERFORMANCE IN MACHINE LEARNING

Nhung Le*1,2,3, Benjamin Männel¹, Randa Natras⁴, Pierre Sakic⁵, Zhiguo Deng¹, Harald Schuh^{1,3}

- ¹GFZ German Research Centre for Geosciences, Germany (Corresponding: nhung@gfz-potsdam.de)
- ²Hanoi University of Natural Resources and Environment (HUNRE), Vietnam
- ³Technische Universität Berlin, Germany
- ⁴Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), Germany
- ⁵Institut de physique du globe de Paris, Université de Paris, Paris, France

Machine learning & Geodetic data analytics

Overview

Fig 2. Progress of data analytics in applied geodesy

Apply noise filters for better forecast performance of ML

Aim

Fig 4. One-month forecast of crustal motion (daily

sampling rate) at the IGS station BADH (Germany)

One-year forecast of Polar motion Real motions Predicted 2025 2020 2015 2010 2005 2000 1995 1990 1985 0.6 Y [Arcsec] 0.2 0.2 x [Arcsec]

Fig 3. One-month forecast of VTEC (daily sampling rate) at the IGS station BAKO (Indonesia) using Gaussian and Regression-Coarse Tree algorithms

using Quadratic Gaussian algorithm.

Smoothen: Cut-offs in forecast models

Remove: Extreme values/anomalies in forecast models

Fig 5. One-year forecast of Polar motion (daily sampling rate) using Bagged-Tree Ensemble algorithm.

Enhence: robustness in long-term forecasts

Investigation schemes

Fig 6. Flowchart of investigation schemes performed in this study

Sensitivity of noise filters on geodetic time series

Results

Filter noise of VTEC time series at IGS station THTI

Fig 7. Filter noise of VTEC time series (hourly sampling rate) at the IGS station THTI (French Polynesia) using 6 filtering algorithms, with the same moving window (24 hours) and statistical threshold (99%); "default" of polynomial function in Savitzky-Golay algorithm is degree 2.

Fiter noise of VTEC time series using Golay algorithm

Fig 8. Filter noise of VTEC time series (hourly sampling rate) at the IGS station THTI using **Savitzky-Golay**, with **polynomial degree 1,2,3, and 4**, moving window 24 hours, statistical threshold 99%.

- 2. Moving-median and Moving-mean filters are the least effective;
- 3. Lowess and Moving-median models are biased by anomalies in observations.

Apply noise filters in Earth's crust motion forecast

Results

Fig 9. Filter noise of GNSS time series for the one-month forecasts of Up component at IGS station POTS (Germany) in 2 schemes, using Savitzky-Golay (statistical threshold 99%).

Fig 10. Comparison of forecast accuracy in three cases: non-applied smooth, smooth inputs (scheme 1), and smooth outputs (scheme 2).

1. Scheme 1 (Fig 9) can **cause underfitting** (Ensemble, Trees, and SVM) and **overfitting** (Linear and Gaussian).

2. In three investigated cases (Fig 10), scheme 2 gets the **highest** accuracy and can overcome both underfitting and overfitting.

Apply noise filters in VTEC forecast

Results

Fig 11. Filter noise of the one-month forecast models of VTEC at the IGS station BAKO (Indonesia), using Savitzky-Golay at statistical threshold 99%.

Fig 12. Accuracy of forecast models before and after smoothed.

Smoothen cut-offs in the models based on Regression-tree algorithms, and **improve forecast perfomance.**

Apply noise filters in Polar motion parameter forecast

Results

Fig 13. Filter noise of the **one-year forecast** models (for y component) using **Savitzky-Golay** with polynomial degree 3, moving windows of 90, 180, and 210 days for Bagged-tree ensemble, Regression Trees, SVM, respectively.

Noise filters can **remove anomalies**, **extreme values** and **reduce variations** in the forecast models.

Fig 14. Filter noise of the one-month forecast models (for x component) using Savitzky-Golay at statistical threshold 99%.

Fig 15. Accuracy of the **one-month forecast** models (for x component) **before** and **after** smoothed.

Apply noise filters in geodetic time series analysis

Discussion

Fig 16. Filter noise of VTEC time series (hourly sampling rate) at the IGS station MQZG (New Zealand) using **Golay of degree 2, Lowess,** and **Moving-mean** algorithms, with statistical threshold 99%, moving window 24 hours.

Problems:

- 1. Applying different noise filters gives different patterns (Fig. 16). Thus, **data characteristics** might be **affected** after noise filtering.
- 2. Noise filtering can **mitigate anomalies** and **variation amplitude** in time series, but might also **lose valuable information** (e.g. in deformation analysis).

Solutions:

- 1. Identify firmly data characteristics and verify anomalies in time series before filtering noise;
- 2. Tune moving window sizes via trials to get the best-suited one;
- 3. Select **statistical thresholds** (95%, 97%, 99%...) based on the required accuracy of forecast models.

Summary & Outlook

Conclusion

Summary:

- 1. Savitzky-Golay filter is the most sensitive and flexible (via variety options of polynomial degrees and sliding windows), while Moving-median and Moving-mean filters are the least effective;
- 2. In Machine Learning, noise filtering should be applied in scheme 2;
- 3. Efficiency of noise filters on the **Polar motion forecast** models is **highest**;
- 4. Noise filters are **more sensitive** in the forecast models based on **Regression-Tree** and **SVM** algorithms but **less sufficient** on **Ensemble** and **Gaussian**.

Outlook:

- Extend investigations in forecast models based on deep learning;
- Research further potentials of combination of noise filtering and other hyperparameter tuning techniques in Machine learning;
- 3. Apply noise filtering techniques for global forecast models based on Machine learning.

Acknowledgements

The authors gratefully acknowledge:

- International GNSS Service (IGS) center;
- NOAA space weather prediction centre, USA;
- The world data centre for geomagnetism, Kyoto, Japan;
- Satellitenpositionierungsdienst der Deutschen Landesvermessung (SAPOS®), Germany;
- Space weather live, Belgium;
- The IERS (International Earth Rotation and Reference System services);
- MathWorks (MATLAB® Release 2022a);
- Dr. Gopi's GPS-TEC software 3.03, Release 2021 (Indian Institute of Geomagnetism), India.

for providing data, software, and open-code sources.

The authors would like to thank colleagues at GFZ German Research Centre for Geosciences; the Vietnamese AI4E group for constructive discussion and valuable suggestion.

Thank you!

Nhung Le*1,2,3, Benjamin Männel¹, Randa Natras⁴, Pierre Sakic⁵, Zhiguo Deng¹, Harald Schuh^{1,3}

¹GFZ German Research Centre for Geosciences, Germany (Corresponding: nhung@gfz-potsdam.de)

²Hanoi University of Natural Resources and Environment (HUNRE), Vietnam

³Technische Universität Berlin, Germany

⁴Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM), Germany

⁵Institut de physique du globe de Paris, Université de Paris, Paris, France

