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Abstract—Human path-planning operates differently from deterministic AI-based path-planning algorithms due to the decay and
distortion in a human’s spatial memory and the lack of complete scene knowledge. Here, we present a cognitive model of path-planning
that simulates human-like learning of unfamiliar environments, supports systematic degradation in spatial memory, and distorts spatial
recall during path-planning. We propose a Dynamic Hierarchical Cognitive Graph (DHCG) representation to encode the environment
structure by incorporating two critical spatial memory biases during exploration: categorical adjustment and sequence order effect. We
then extend the “Fine-To-Coarse” (FTC), the most prevalent path-planning heuristic, to incorporate spatial uncertainty during recall
through the DHCG. We conducted a lab-based Virtual Reality (VR) experiment to validate the proposed cognitive path-planning
model and made three observations: (1) a statistically significant impact of sequence order effect on participants’ route-choices, (2)
approximately three hierarchical levels in the DHCG according to participants’ recall data, and (3) similar trajectories and significantly
similar wayfinding performances between participants and simulated cognitive agents on identical path-planning tasks. Furthermore, we
performed two detailed simulation experiments with different FTC variants on a Manhattan-style grid. Experimental results demonstrate
that the proposed cognitive path-planning model successfully produces human-like paths and can capture human wayfinding’s complex
and dynamic nature, which traditional AI-based path-planning algorithms cannot capture.

Index Terms—Cognitive Path-Planning, Human Wayfinding, Fine-To-Course, Spatial Memory, Agglomerative Hierarchical Clustering

✦

1 INTRODUCTION

Remarkable strides have been made in computer graphics, im-
mersive game technology, and pedestrian simulation. With the
advancement of virtual and augmented reality technology in terms
of computation power and reduced cost, computational heavy and
realistic games (e.g., Call of Duty, Black Ops Cold War) are
getting more realistic with outstanding graphics, surround sound,
and in-game physics. Even though such games now deliver a
sense of realism that mimics the real world in great detail, the
immersive element is still lacking when it comes to the behavior
of NPCs. According to [1], the believability of NPC behavior is
crucial for immersion in games. Although, it is possible to add
randomness to NPC’s navigation behavior to simulate variation
in decision-making. But, such variation may not look realistic,
and it is highly likely, that a human player might understand the
underlying random phenomena and get off-put by it.

One of the critical challenges to the modeling and simula-
tion of realistic pedestrian evacuation behavior is developing a
cognitive path-planning model that mimics the decision-making
process based on incomplete and distorted spatial memory. In the
last decade, several works on agent navigation have focused on
producing realistic local behaviors [2], [3], [4] by formulating
tasks in a biologically plausible way [5]. However, there is still
a disconnect between AI-based techniques for path planning [6],
[7], which focuses on efficiency and optimality considerations,
and cognitive studies [8], [9], [10] which seek to understand how
humans navigate in complex spaces fundamentally. This work
aims to bridge the gap between AI-based path-planning techniques
and cognitive wayfinding techniques to aid in realistic pedestrian
simulation and enhance computer games’ realistic experiences
by leveraging Virtual Reality (VR)-based behavioral study. The
three main objectives for conducting the VR experiment are (1)

Parameterization of the proposed hierarchical data structure to
model a realistic path planning model. (2) To validate, formalize
and model the existing theories of spatial distortion during path
planning. (3) To validate human and agent wayfinding behaviors
for evaluation.

A variety of research in cognitive science, artificial intel-
ligence, and virtual humans has been conducted to investigate
the fundamental principles by which humans navigate. The im-
portance of cognitive maps [11], and cognitive graphs [12] for
navigation has gained widespread acceptance in the research com-
munity. In 1948, Tolman [11] suggested that rodents develop an
internal model of their space called a cognitive map. The cognitive
map’s important role in flexible navigation was also evident under
various adaptive situations (e.g., goal, transition, and reward reval-
uation). Some research also suggests that spatial representations
should be characterized as cognitive graphs consisting of locations
connected by paths [12]. Cognitive maps and cognitive graphs can
coexist without competing against each other. These two forms of
spatial representations can operate concurrently or independently
and may incorporate both spatial and nonspatial knowledge [13].
Originally, the cognitive map was characterized as geometrical
and non-hierarchical, but more recent research suggests that spatial
representations are hierarchical and complex, encoding other types
of information in addition to simple geometry [8], [10], [14].
Evidence from [15], [16] argues in favor of the importance of
nonspatial features (i.e., high-frequency names, number of turns,
frequency of visits) for the grouping of landmarks while men-
tally representing an environment. Investigations using distance
judgments [17], direction judgments [18], and the spatial recall
of objects’ locations [19] suggest that spatial representations are
prone to distortions that are systematic rather than random. Such
distortions in memory are primarily caused by the perceptual orga-
nization that people impose on the environment. Multiple studies
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have confirmed that classifying stimuli into categories [20] and
the sequence in which they are observed [21] can affect the way
the stimuli are perceived, thus resulting in biases. Two prominent
causes of spatial memory distortion are Categorical Adjustment
(CA) [22] and Sequence order Effect (SE) [21]. The CA model
formalizes the tendency to parse spatial layouts into categories
and estimate objects’ locations within those layouts by combining
information from different hierarchical spatial categories. In the
SE model, the location of a category’s center is influenced by the
order with which landmarks were experienced during navigation.
According to the SE model, this center location shifts toward
landmarks observed earlier in navigation.

To model the fact that mental spatial representation is hier-
archical, we propose a Dynamic Hierarchical Cognitive Graph
(DHCG) representation based on Euclidean and non-Euclidean
landmarks features. We employ Agglomerative Hierarchical Clus-
tering (AHC) and extract hierarchical levels based on empirical
evidence (Section 6) to identify distinctive clusters based on the
spatiotemporal landmark features observed during the agent’s nav-
igation. To model distortions in spatial memory while considering
the sequence order of visited landmarks and the systematic bias
of recalled landmarks towards the category center, we incorporate
Categorical Adjustment (CA) [22] and Sequence order Effect (SE)
[21] models. Finally, we consolidate the above findings into a
cognitive path-planning model that is stochastic and subjective by
extending the most commonly used Fine-to-Coarse (FTC) strategy
(proposed in [23] and supported by [9]). We also performed a lab-
based Virtual Reality (VR) experiment to understand the influence
of exploration duration and the order of landmark visits on a
cognitive graph and to tune the number of hierarchical levels in a
cognitive graph.

Findings from the VR experiment revealed a moderate neg-
ative correlation between exploration duration and wayfinding
performance in terms of distance traveled (i.e., exploration time
increased while average path-distance for six wayfinding tasks
decreased). We also found a strong positive correlation between
the sequence order of landmark visits and route choices at in-
tersections. Similar results for the sequence order effect were
also observed with agent simulations that employed the proposed
cognitive path-planning model. In these simulations, we observed
a reduction of ∼21% on Path Edit Distance (PED) for the tra-
jectories generated after 10 and 20 minutes of familiarization. A
gradual increase in the agents’ (FTC+CA) path distance during
path-planning was also observed after 0, 10, and 20 minutes of
memory decay, highlighting an increase in distortions caused by
CA during spatial recall over an extended time. Finally, multiple
simulations on a Manhattan-style grid environment are performed
that showcase the difference between the proposed cognitive path-
planning algorithm and an AI-based path-planning algorithm.

The primary goal of this paper is to propose a realistic
(human-like) path-planning model for a Non-Playable Charac-
ter (NPC) to exhibit engaging and believable game-play and
for advancing pedestrian dynamic simulators and virtual-reality-
based games. Adding realistic spatial memory to agents also
enhances general circulation and egress simulations, which can
assist designers/architects in the early design process of a building.
The key contributions of this paper are: (1) The paper proposes
a cognitively inspired Dynamic Hierarchical Cognitive Graph
(DHCG) to encode an occupant’s short-term memory in an un-
familiar environment based on their exploration pattern. (2) The
paper improves the most commonly employed human wayfinding

heuristic, ”Fine-To-Course” by adding distortions to spatial recall
during wayfinding. (3) The paper grounds the parameterization of
the proposed data structure on behavioral data collected from a
VR study. (4) The paper presents simulation results that bear a
high resemblance to human participants in terms of path distance,
the number of turns in the path, and the landmarks used along the
path.

2 RELATED WORK

2.1 Cognitive Models of Navigation
The early traditional view of mental spatial representations is that
they take the form of Euclidean non-hierarchical cognitive maps
[11], [24]. Here, we highlight some of the non-hierarchical cog-
nitive map-based path-planning models. The Tour model was one
of the first computational models to capture the non-hierarchical
cognitive map [24]. The locations, order of the places visited,
and local intersections’ geometry was the Tour model’s building
blocks. In addition, a real-time, biologically plausible neural
network capable of inferring paths to remote places with the
cognitive map’s assistance was proposed in [25]. Similarly, an
abstract representation of allocentric maps of an environment-
based computational model for robot exploration was proposed
in [26]. These allocentric maps were computed using the shapes
of surfaces and boundaries relative to the robot’s location. To
generate more precise knowledge of the exploration space and
improve metrical mapping techniques, a spatial memory model
HSSH (Hybrid Spatial Semantic Hierarchy) was proposed in [27],
extending the SSH (Spatial Semantic Hierarchy) model proposed
in [28]. In contrast, [29] attempts to generate a cognitive-map-
like representation using an incomplete plan of the environment.
This agent effectively uses distance and orientation information
to find the way back home. Recently, [30] proposed a wayfinding
model for an autonomous agent based on a dynamic cognitive
map using landmarks. This work incorporates memory decay and
spatial memory distortion but relies on an outdated distortion
model based on a non-hierarchical cognitive map.

Research in spatial cognition and artificial intelligence sug-
gests that cognitive maps can also be hierarchical [8], [31], [32].
Research done in [10], [13], [33] suggests that a human’s cognitive
map contains three levels of associative memory (i.e., survey,
graph, and route) to form a hierarchy in which higher levels
encompass the lower levels. Inspired by spatial cognition research,
[34] proposes a hierarchical model to solve the traveling salesman
problem (TSP). A computational model of spatial navigation based
on the hierarchical representation of the space is also proposed in
[10]. Their model describes the experimental data collected in [8],
which provides strong evidence for the environment’s hierarchical
organization. Spatial representations such as Geographic Informa-
tion System tend to fit the hierarchical organization [35] naturally.
In a hierarchy, objects are arranged as ordered structures over
several distinct levels. Objects at higher levels are more abstract
than the detailed lower-level objects. One of the advantages of the
hierarchical grouping of objects is that it allows complex tasks
to be broken down into multiple independent subtasks, allowing
the simulation of parallel distributed architectures. Therefore, we
believe that hierarchical representations present some properties
that suit human spatial memory modeling and thus cognitive maps.
For a complete understanding of the work done in the field of
cognitive maps and cognitive graphs, we guide readers towards
[12], [36], [37], [38], [39].
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2.2 AI Techniques for Navigation

Inspired by human cognition, researchers have proposed vari-
ous hierarchical spatial representations of the environment and
hierarchical search algorithms that perform path-planning to
overcome the computationally challenging problem of real-time
path-planning in a large-scale environment. Multiple hierarchical
approaches such as HPA* [6], Hierarchical Path-Finding Theta
(HPT*) [7], Coarse-to-Fine (CFA*) [40], and Fine-To-Coarse
(FTC-A*) [41] have been proposed to quickly produce abstract
paths and to improve the path-planning speed. HPA* partitions the
search space into rectangular blocks of large spaces and computes
optimal local paths between a limited set of entrances and exits
in the blocks. Subsequently, in [7], the authors proposed HPT*
by combining HPA* with Theta*. The notable difference between
HPA* and HPT* is the replacement of A* with Theta* as a sub-
routine. These authors found that HPT* (compared to HPA*)
resulted in a lower number of visited nodes and lower memory
requirements for large open maps with distant nodes having a
line of sight. Unlike human navigation behavior, HPA* and CFA*
return a complete global path. [23] suggests that human beings
plan an incomplete path in the beginning of a route to start moving
immediately. In [40], the authors proposed a two-step-based path-
planning Coarse-to-Fine A* algorithm. By this method, no new
graph is needed to abstract the search space. Instead, a simple
grid representation is used to form another coarser-resolution
grid map. The authors’ goal was to preserve the original grid
map’s occupancy structure by systematically reducing the grid
map resolution. Recently, reinforcement learning (RL) has been
employed to train human-like navigational agents [42], [43], [44]
by learning a map from egocentric views, employing a Deep-
RL framework for robot navigation using depth information from
an RGB-D sensor, and learning a partial map using a deep
neural network. Notably, this work is able capture several human
wayfinding behaviors without using global knowledge. However,
these works generalize the agent’s ability on pixel-level variations,
work only in a small environment, are not biologically plausible,
and lack the formation of human-like memory. We argue that a
much richer environment involving local landmarks as cues and
distortions in spatial memory recall is essential to aid human-like
path-planning.

Inspired by the work done in [23] and motivated by the
absence of a computational model for FTC wayfinding heuristics,
the authors in [41] proposed an FTC-A* robot navigation system
that integrates regionalized spatial representations with an efficient
path-planner. Fine-grained route planning is performed between
neighboring regions, while coarse route planning is performed
between distant regions to reduce the search space. Our work
extends this work specifically in two ways. First, we produce
an experience-driven and dynamic hierarchical spatial represen-
tation with time instead of a fixed two-level regionalized spatial
representation. Second, we incorporate spatial memory distortions
in path-planning that naturally occur due to memory decay. The
motivation behind our proposed cognitive path-planning model is
to develop a method that can perform human-like path-planning
in an unfamiliar environment. Specifically, we want to develop a
path-planning model that learns an environment during general
exploration and builds a cognitive map without relying on a
complete environmental representation as proposed in most prior
works.

3 OVERVIEW

An overview of the major components of the proposed framework
is provided by Figure 1. We propose a dynamic hierarchical
cognitive graph representation DHCG of spatial memory to en-
able human-like path-planning. We first formulate a similarity
metric for comparing landmarks, which is supported by studies
on human cognition. Next, we apply this metric to a hierarchical
clustering algorithm and produce a three-level hierarchy, which
has the same number of levels as human spatial memory. Finally,
we introduce spatial memory distortions from elapsed time and
interfering landmarks, which influence how paths are recalled
from the DHCG (Section 4). In Section 5, we adapt FTC, the
path-planning heuristic most commonly used by humans, to the
DHCG. Computationally, it computes a subgraph from the DHCG,
in which landmarks closer to the agent are represented by low-
level nodes in the DHCG with fine-grained information and land-
marks closer to the goal are represented by high-level nodes with
coarse-grained information. This enables the agent to make local
decisions using a coarse mental heading toward its goal. Next, we
conduct a lab-based Virtual Reality (VR) experiment to investigate
and validate our hypotheses on the impact of exploration duration
and exploration patterns on the formation of a cognitive map and
subsequent wayfinding decisions (Section 6). We validate and test
the proposed cognitive path-planning model against participants’
data in Section 7. Finally, to showcase the model’s generalizability,
we simulate cognitive wayfinding behavior on an irregularly
shaped real-world building using multiple variations of FTC with
and without distortions in Section 8.

4 DYNAMIC HIERARCHICAL COGNITIVE GRAPH
(DHCG)
We provide a detailed description of our contributions to cognitive
graphs and cognitive path-planning research in the following two
sections.

Features Definition Weights Type

Path Distance Walking distance
between two landmarks 0.4 Spatial

Visibility Visibility between two
landmarks (binary) 0.1 Spatial

Recency Time elapsed from last
visit (in seconds) 0.2 Non-spatial

Frequency
Number of times two
neighbouring landmarks
are visited from each other

0.3 Non-spatial

TABLE 1: Selected features for clustering landmarks using ag-
glomerative hierarchical clustering.

4.1 Clustering Metric for Landmarks
The selection of an appropriate metric is crucial in the develop-
ment of DHCG. Based on previous research, both spatial and non-
spatial factors influence the clustering of regions in the cognitive
map. In Table 1, we describe the four features that constitute
the comparison metric for Agglomerative Hierarchical Clustering
(AHC): path distance, visibility, recency, and frequency. The path
distance between two landmarks has been shown to have a stronger
correlation to the grouping of landmarks [45] and has thus been
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Fig. 1: Framework Overview. We present a cognitive model of agent path-planning that simulates human-like learning of unfamiliar
environments: (1) We propose a DHCG representation to encode the environment structure. (2) The influence of the landmarks
sequence order and the systematic bias towards the center of the location’s cluster is incorporated to model spatial recall errors due to
memory decay. (3) The ”Fine-To-Coarse” (FTC) path-planning heuristic commonly applied by humans during navigation is extended
to incorporate spatial uncertainty during recall. (4) We conduct a VR experiment to validate the proposed path-planning model.

given the highest weight. The visibility between two landmarks
enables an association to be formed between them, so landmarks
that are visible from each other’s locations are grouped in the
same cluster [46]. To incorporate the temporal clustering effect,
landmarks that are visited immediately after each other tend
to be grouped together [47]. Finally, landmarks that are visited
frequently from each other (e.g., the entrance of a building and a
reception desk) also tend to be grouped [45]. Each of these features
is pair-wise (i.e., between two landmarks). For each landmark,
these features are used to create a (4 · n)-dimensional feature
vector that compares the landmark with every other landmark
for each of the 4 features, where n is the number of landmarks
observed during navigation. Not all features contribute equally to
the clustering process, and they vary among individual humans.
For this study, we have assigned weights to individual features
based on prior studies [45], [46], [47].

4.2 Distortion in Spatial Memory
People tend to cluster their spatial memory according to both
spatial and non-spatial properties in a hierarchy [8], [14]. During
navigation and cued spatial memory recall, the distance of an
object/location which belongs to the same cluster as a cued
object is systematically underestimated (i.e., closer than the actual
distance between them), and the distance to an object/location
from a different cluster from the cued object is overestimated (i.e.,
further than the actual distance between them) [23], [31], [32].
Category Adjustment. Humans use clusters from their hierarchi-
cal cognitive map to estimate a goal location during spatial mem-
ory recall, which can become distorted. The Category Adjustment
model by [22] offers a computational explanation for reconstruc-
tive distortion effects by combining information from two separate
spatial memory representations. These two representations are a
fine-grained location representing a specific place and a category
that stores the center of the cluster to which that place belongs
(i.e., the prototypical location of the category). Due to the decay
of working memory, the fine-grained location becomes uncertain,

forcing the inference of its location from its spatial category. This
produces a systematic bias towards the category center, which is
modeled by a Bayesian process. According to CA, the estimated
location of a place (R) is computed as a weighted combination
of its category center (ρ) and the fine-grained location (C). The
weight (λ) varies as a function of category dispersion (σ2

ρ) and the
degree of imprecision surrounding the fine-grained location (σ2

C )
as shown in Figure 2.

Fig. 2: The category adjustment model used for spatial recall
errors during the estimation of goal locations. The Bayesian
combination of information about the prior distribution with the
present distribution of inexactness surrounding the true value for
C results in biased estimates that are more likely to be pulled
towards the cluster center.

Sequence Effect on Category Center Location. Findings in
[21] provide evidence that the location of a category center is
influenced by the order in which locations are visited, and shifts
toward the nodes visited earlier. In other words, the temporal order
in which the landmarks are visited in a cluster impacts the location
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of the category center. Thus, we propose to formulate the shifted
category center location (Cx, Cy) as shown in Equation 1:

Cx =

∑n
i=1 L

i
xS

i∑n
i=1 S

i
;Cy =

∑n
i=1 L

i
yS

i∑n
i=1 S

i
, (1)

where the magnitude of sequence order shift for the ith
landmark is given by Si = 1/it

∣∣ 0 ≤ t < n. n represents
the total number of landmarks within the cluster. it represents
the landmark’s sequence order during the navigation process in
that cluster. Li

x, L
i
y are the X,Y coordinates of the ith landmark

inside the concerned category.

4.3 Memory Decay
Two significant opinions exist in the literature on memory decay.
Some researchers provide evidence for memory decay due to
elapsed time [48], and others provide evidence for decay due
to interference effects [49]. Recently, researchers have converged
on the idea that both factors influence memory decay. Based on
existing memory theory, the authors in [50] modeled decay due to
time and interference, as shown in Equation 2 from their paper. To
model memory decay in our framework, we propose replacing the
activation of an item with the time of landmark observation during
navigation. The probability p(j) of recalling the jth landmark is
given by:

p(j) =
s · e−rj/m∑N−1

i=0 s · e−ri/m
, (2)

where s is the salience of a landmark when it was last observed,
and r is the time since the landmark was last observed. m is
the memory strength constant that determines the rate of memory
decay over time. Based on the trajectory data collected in the
VR experiment (Section 6), the observed value of m = 105.
According to the study in [51], the decline in participant’s visual
working memory between 1 and 4 seconds was small and not
statistically significant, but the decline in visual working memory
between 4 and 10 seconds was large and significant. Based on
the above finding, we introduce a parameter, Memory Decay Rate
(β), that is randomly sampled from a range of (4-10) in simulation
experiments (Sections 7 and 8).

4.4 Agglomerate Hierarchical Clustering
Given the strong evidence for the hierarchical organization of
the human spatial memory, we propose a dynamic hierarchical
cognitive graph (DHCG) to encode environmental structure. We
analyze navigational landmarks by applying Agglomerative Hi-
erarchical Clustering (AHC), which has been popular for several
biological applications. AHC is well-suited for clustering objects
into a hierarchy. The resulting dendrogram highlights the progres-
sive grouping of the data that can be leveraged to identify the
suitable number of classes into which the data can be grouped.
Research into human memory has shown two common types of
natural clustering: temporal and semantic. Using AHC wherein no
apriori information about the number of clusters is required, we
can efficiently parameterize by employing hand-picked features
(Table 1). By default, AHC returns a binary tree (known as a
dendrogram), resulting in at least log2(n) hierarchical levels for
n-many landmarks. According to our findings from participants’
recall data (Section 6) and the three levels of associative memory
observed in humans [13], [33], the DHCG is limited to three

Fig. 3: (left) Dendrogram showcasing Levels 1, 2, and 3 clusters
formed after Agglomerative Hierarchical Clustering for an agent
after 20 minutes of exploration in East-To-West direction. (right)
Ordered tree derived from one participant recall data after 20
minutes of exploration in East-To-West direction.

hierarchical levels by truncating the dendrogram at three levels.
The lowest of these levels consists of the individual landmarks, as
shown in Figure 3. Each of the other two levels is found by first
specifying a threshold on the inter-cluster distance that is stored
in each node of the dendrogram. The level at that threshold is the
set of all nodes with the highest inter-cluster distance less than the
threshold, in which nodes are not ancestors of each other. As a
result, each landmark at Level 1 is in its own cluster and has an
abstract parent node in Level 2 that clusters the Level 1 node with
others. The same principle applies between Level 2 and Level 3
nodes.

The DHCG is formally represented by G =< L,E >, where
L is an array of 3 sets of nodes [L1, L2, L3], each Ll containing
the nodes in level l, and E is the set of edges between any
two nodes. Intra-level edges represent routes between landmarks
or groups of landmarks, while inter-level edges represent cluster
membership.

5 COGNITIVELY-BASED PATH-PLANNING

In this section, we utilize the DHCG representation of the en-
vironment to extend the well-established Fine-To-Coarse (FTC)
wayfinding heuristic [23].

5.1 Abstract Subgraph Construction

FTC uses different hierarchical levels of the DHCG simulta-
neously during path-planning. This is achieved by computing
an abstract subgraph from the DHCG (Algorithm 1) in which
locations close to the agent’s position are known with fine-grained
details and information becomes more abstract with distance. In
order to create an abstract subgraph AG =< Na, E

out >, we
first define the operation φ(n, l), which takes a node n and returns
the cluster in Level l to which n belongs. Using this formulation,
we define several key variables sl = φ(s1, l), l ∈ [1, 3], and
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dl = φ(d1, l), l ∈ [1, 3], where sl and dl are either the start and
destination nodes or their parent nodes in L2 and L3 (line 2).
Additionally, φ(n, l) can be used to determine whether two nodes
belong to the same L2 or L3 parent node. Within each hierarchical
level of the DHCG, nodes should be connected if and only if they
are connected by an edge in L1, which corresponds to a direct
physical route (e.g., lines 6 - 10 for Level 1). For Levels 2 and
3, we compute the L1 edges that are inter-cluster (i.e., belonging
to two nodes with different parent nodes in L2; lines 11 - 19 for
Level 2). This implicitly includes edges between different parent
nodes in L3. The edges in the abstract graph are initialized to
the L1 edges that are fully contained within s2. This represents
the fine-grained information close to the start location. The coarse
information further from the start is added from the L1 inter-
cluster edges that are either contained in s3 (between L2 clusters)
or spanning between different L3 nodes are added to the abstract
graph. This ensures that a navigable path exists from the s1 to the
d3, the L3 parent node of the destination.

5.2 Abstract Subgraph Pathfinding
With small modifications to their cost values and destinations,
existing pathfinding algorithms such as Uniform Cost Search, A*,
and D* Lite [52], which typically operate on non-hierarchical
graphs, can be used for path-planning on the DHCG using the
abstract subgraph, which collapses the three hierarchical levels
into one. First, depending on the location of the ultimate destina-
tion d1 with respect to the start s1, the immediate destination may
change. If d1 and s1 are in different L3 clusters, the destination
becomes d3. If they are in different L2 clusters but are both
under s3, the destination becomes d2. If they are both in s2,
the destination remains unchanged. Next, the values used to keep
track of path costs are redefined to leverage information from the
DHCG. Based on the work of [30], the cost function balances
between path distance and landmark salience using a parameter
α ∈ [0, 1]. For each edge in the abstract subgraph, the distance
values are normalized, and for each node, the salience values are
normalized. Then, in order to compute the cost c(u, v) from node
u to node v, the normalized distance δ(u, v) and salience σ(v)
are combined as follows:

c(u, v) = (α) · δ(u, v) + (1− α) ·
(
1− σ(v)

)
.

When node v represents a cluster of landmarks instead of an
individual landmark, its salience value becomes the minimum
among its landmarks [53]. To maintain the human-like nature of
salience preference, we randomly assign the salience value α from
a range of [0,1].

5.3 Introducing Distortions in Fine-To-Coarse Planning
Despite evidence that the original formulation of FTC explains
human wayfinding well, FTC was originally ignorant to the
distortions that constantly influence human spatial memory. We
have identified two notable biases of spatial memory (i.e., category
adjustment and sequence order shift) to incorporate into the
FTC heuristic. Category Adjustment (CA) biases the recall of a
landmark’s location towards the centroid of the cluster to which it
belongs, and the Sequence order Effect (SE) biases a landmark’s
recalled position towards landmarks seen earlier. In order to reach
its goal, an agent must repeatedly apply the FTC path-planning
heuristic. Irrespective of an agent’s position, the agent’s recalled
heading towards higher-level nodes should be distorted by SE.

Algorithm 1 Abstract Subgraph
Input: A navigation graph G =< N,E >, where N is a set
of visited landmarks and E is a set of corridors/paths connecting
those landmarks
Input: φ =< n,Li > A dictionary of landmarks clusters at L2,
and L3, where n represents a landmark
Input: start nodes s, and destination nodes d
Output: A single-level Abstract Subgraph AG =< Na, E

out >,
where Na is the set of abstract nodes

1: Na ← {}, Einter ← {}
2: L2 ← φ[s][0], L3 ← φ[s][1]
3: for e ∈ G do
4: if φ[es][0] ̸= φ[ed][0] then
5: Einter ← e

//Add L1 Edges to Abstract Graph (AG)
6: for e ∈ G do
7: if φ[es][0] = L2 & φ[ed][0] = L2 then
8: Na ← es
9: Na ← ed

10: Eout ← e
//Add L2 Edges to Abstract Graph (AG)

11: for e ∈ Einter do
12: if φ[es][1] = L3 & φ[ed][1] = L3 then
13: if φ[es][0] = L2 then
14: enew ←WE < es, φ[ed][0], 1 >
15: else if φ[ed][0] = L2 then
16: enew ←WE < es[0], ed, 1 >
17: else
18: enew ←WE < φ[es][0], φ[ed][0], 1 >
19: Eout ← enew

//Add L3 Edges to Abstract Graph (AG)
20: for e ∈ Einter do
21: if φ[es][1] ̸= φ[ed][1] then
22: if φ[es][1] = L3 then
23: if φ[es][0] = L2 then
24: enew ←WE < es, φ[ed][1], 1 >
25: else
26: enew ←WE < φ[es][0], φ[ed][1], 1 >
27: else if φ[ed][1] = L3 then
28: if φ[ed][0] = L2 then
29: enew ←WE < φ[es][1], ed, 1 >
30: else
31: enew ←WE < φ[es][1], φ[ed][0], 1 >
32: else
33: enew ←WE < φ[es][1], φ[ed][1], 1 >
34: Eout ← enew
35: return < Na, E

out >

This distortion plays a role when the agent performs path-planning
on its abstract subgraph and estimates distances. On the other
hand, CA plays an increasingly large role as the agent nears its
goal. The agent’s separation from its goal at L3 will become a
separation at L2 and then L1. As the level of the goal’s abstraction
becomes increasingly fine-grained, the higher-level goal clusters
will bias the goal’s recalled position.
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5.4 Parameterizing Agglomerative Hierarchical Clus-
tering
Two essential parameters required in the AHC formulation are
(1) number of hierarchical levels in a hierarchical cognitive map
and (2) the number of nodes at each level. We perform a VR
experiment to determine Parameter 1 (Section 6). In this section,
we present our method to identify Parameter 2 and provide
theoretical proof for its validity. Humans are known to use least-
effort heuristics (e.g., FTC) for decision-making [8]. Accordingly,
we use this principle to determine our parameters for AHC (i.e.,
the number of nodes in Levels 2 and 3). We formulate effort/cost
as the computational complexity of path-planning on the abstract
subgraph, which is a function of the number of nodes n and edges.
We compute the expected number of nodes in an abstract subgraph
using Eq. 3. We compute the expected number of nodes in an
abstract subgraph y(n, j, k) using Eq. 3, where Level 2 has nj

nodes and Level 3 has nk nodes. We are interested in finding
the exponents j and k, which minimize the average size of the
abstract graph (i.e., the total number of nodes) and in turn reduces
the cost of path-planning. We first solve dy/dk = 0 (Eq. 4),
which yields k = j/2 for n > 0, and then dy/dj = 0 (Eq. 5),
which yields j = 2/3 and k = 1/3 for n > 0. Therefore, we
truncate the AHC dendrogram at two inter-cluster distances where
the number of clusters becomes n2/3 for L2 and then n1/3 for L3.
If the number of levels in the DHCG were to increase, the optimal
number of clusters for each additional level would always be the
square root of the previous level’s number. For instance, the fourth
level would have nk/2 = n1/6 clusters.

y(n, j, k) =
(
|L3| − 1

)
+

(
|L2|/|L3| − 1

)
+ n/|L2|

y(n, j, k) = nk + nj−k + n1−j − 2 (3)

dy/dk = n−k(n2k − nj)log(n) = 0 (4)

dy/dj = n−j(n1.5j − n
)
log(n) = 0 (5)

6 INVESTIGATING FACTORS IMPACTING THE COG-
NITIVE MAP

Fig. 4: Top-down view of the floor plan of a real-world shopping
mall. Black circles represent the locations of 15 landmarks. Blue
and red trajectories represent the exploration directions for East-
To-West and West-To-East navigation directions.

6.1 Purpose
We performed a Virtual Reality (VR) experiment to empirically
compute the number of hierarchical levels in a cognitive map (Sec-

Fig. 5: Behavioral Experiment Protocol

tion 6.5.1). During this experiment, participants completed two
trials that were each divided into three phases (i.e., exploration,
cued-recall of landmark locations, and immersive wayfinding
tasks). Participants were randomly assigned to two groups that
determined the order with which landmarks were seen during
exploration. Participants were exposed to each landmark twice
with either exploration pattern (i.e., West-To-East and East-To-
West). Moreover, the distribution of participants in two groups
was randomized, and the order of wayfinding tasks was also
presented in random order. We believe the randomness could have
eliminated or minimized the impact of any biases that may arise
in the experiment (e.g., laziness and lack of attention) during the
experiment. For this human participant data, we investigated two
hypotheses. Specifically, we expected exploration duration to be
negatively correlated with wayfinding performance (H1) and the
order in which landmarks were seen during exploration to bias
the order with which landmarks were visited during wayfinding
(H2). In Section 7, we also compare the human participants and
cognitive agents in terms of path-planning behavior.

6.2 Participants
Ethics approval was acquired for all experiments from the ethics
commission at ETH Zurich (EK 2019-N-79). All participants were
university students. Participants were informed that they would
receive 5 SGD as a bonus if they performed the experiment
thoughtfully and accurately to the best of their capabilities. At
the end of the experiment, all participants were paid the additional
performance bonus irrespective of their performance. In total, all
participants received 25 SGD upon completion of the experiment.
No other eligibility criteria based on experience were set. Partic-
ipant self-reports of gender indicated that 58.53% of them were
male and 41.47% of them were female. Participants’ ages ranged
from 20 to 32 years (Mean = 22.51, Standard Deviation = 1.98).
A total of 41 participants’ data was collected. A between-subject
design was chosen, and participants were divided into two groups
(Group 1: 21 participants, Group 2: 20 participants) to learn the
environment in two different orders. Group 1 participants were
asked to learn the environment in a East-To-West (EW) direction,
and Group 2 participants learned the same environment in a West-
To-East (WE) direction (see Figure 4 and Table 4).

6.3 Materials
A 3D model of a real-world shopping mall (i.e., ION Orchard in
Singapore) served as the virtual environment (Figure 4). Fifteen
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Wayfinding Tasks 1a 1b 1c 2a 2b 2c

Origin-Destination b-h l-a o-g c-k j-b i-d

TABLE 2: Six wayfinding tasks used for the VR experiment.
Please refer to Figure 4 for the locations of the origin and
destination landmarks in the virtual environment.

salient landmarks were placed around intersections that were
identified as crucial for wayfinding. The environment did not have
any signage or crowd flow during either training or testing phases,
so participants had to rely on the shape of the environment and
the landmarks themselves to complete the tasks. In the physical
environment, participants sat on a chair positioned approximately
1.5 meters from the center of a computer screen (i.e., a Samsung
monitor with a 28-inch diagonal and a resolution of 3840 × 2160
pixels).

6.4 Procedure
The experiment protocol is described in Figure 5. Participants
were asked to complete a consent form before starting the experi-
ment. After informed consent, participants were asked to perform
two trials (∼25 mins. each). Each trial consisted of three phases:
(1) exploring the environment passively via video segments, (2)
performing three cued recall tasks, and (3) performing three
wayfinding tasks.

In Phase 1, participants were passively moved along a route
by viewing multiple video segments (∼1 min. each). The videos
were recorded from a first-person perspective (with an eye height
of 1.72 m and a walking speed of 1.5 m/s) and explored specific
sections of the virtual environment. In each video clip, multiple
landmarks were traversed, and each subsequent video continued
from the location where the last video ended. All 15 landmarks
were seen more than once during this exploration phase. We asked
participants to watch videos rather than actively navigate the route
to ensure identical stimuli for all participants. The participants
were specifically instructed to learn the locations of all landmarks
for subsequent cued recall and wayfinding tasks.

In Phase 2, participants were asked to perform a cued spatial
recall task three times. Three landmark cues were preselected out
of 15 landmarks. Landmarks were selected if they were at least
two nodes apart, excluding the first and last landmarks shown
during phase 1. Participants were instructed to recall the landmarks
starting with the cue and including all of the landmarks in the
environment. The name of the cued landmark was presented as
text on the screen. Participants were then shown a total of 22
landmark names as text in randomized order, including 14 correct
landmarks and 8 distractor landmarks. The distractor landmarks
were added to deter participants from guessing. At the beginning
of the experiment, participants were also informed that they would
be incentivized for recalling the landmarks correctly.

Phase 3 was conducted immediately after the cued recall
phase. In Phase 3, participants performed three wayfinding tasks
(Tasks 1a, 1b, and 1c) as highlighted in Table 2) in the same
environment that they learned via video-based exploration in
Phase 1. For each wayfinding task, the origin and destination
pair was preselected from the set of 15 landmarks. Unique origin-
destination pairs were preselected so that multiple alternative paths
were possible and included landmarks with high betweenness
centrality. In graph theory, g(v) =

∑
s̸=v ̸=t σst(v)/σst, where

σst is the total number of shortest paths from node s to node t
and σst(v) is the number of those paths that pass through v) in
the paths.

For Trial 2, a new set of videos (∼1 min. each and recorded
keeping the same navigational direction as Trial 1) were shown to
the participants. In Phase 2 of Trial 2, three different landmarks
were preselected and used as cues that were not chosen during
Trial 1. Finally, in Phase 3, three different sets of origin-destination
pairs were employed (i.e., not chosen in Trial 1; Tasks 2a, 2b, and
2c as highlighted in Table 2) using the same preselection criteria
as for Trial 1. Overall, each participant performed a total of six
cued recall and six wayfinding tasks. The preselected landmark
cues and origin-destination pairs were kept the same for the two
participant groups.

6.5 Results
6.5.1 Parameter Computation
One essential parameter required in the computational model
of the dynamic hierarchical cognitive graph is the number of
hierarchy levels (L). Below, we present our method to compute
the parameter using participants’ cued spatial recall data from
Trial 2 (i.e., 20 minutes of exploration). We chose not to use the
recall data from Trial 1 (i.e., after 10 minutes of environment
familiarization) for parameter computation for two reasons. First,
not all landmarks were visited twice or more in 10 minutes of
exploration, and second, there is a higher likelihood of forming
a more substantial mental representation of the environment after
20 minutes of exploration compared to 10 minutes.

As discussed in Section 6.4, participants were asked to perform
three cued recall tasks that each began with different landmarks.
This method was intended to reveal their individual mental rep-
resentations of the environment and their basis for clustering
the environment into regions at various hierarchical levels. We
presume that participants would have imagined moving from the
cued recall landmark to another close landmark based on their
mental representations recently formulated during the exploration
phase. The ordered tree algorithm proposed in [54] and supported
in [8] is used to represent clusters in the recall data. The output
of the algorithm is an ordered tree ( Figure 3 (right)). The tree
represents the clusters at multiple levels that the ordered tree
algorithm has uncovered from the recall orders. To compute the
number of levels, we generate a cumulative distribution of the
number of clusters at all levels for four conditions (i.e., two
navigation durations and two navigation directions). An average
of 95% of the clusters were represented by Levels 1 through 3.
To quantitatively evaluate the number of hierarchical levels, we
constructed a scree plot with participants’ recall data. A scree plot
(Figure 6) shows the eigenvalues on the y-axis and the number of
levels on the x-axis. At Level 3, we notice that the slope of the
curve is clearly leveling off (i.e., forming an elbow), indicating the
number of hierarchical levels that includes a representative set of
clusters formed in the cognitive map. Thus, we approximate the
number of hierarchical level as three in a cognitive map, which is
also supported in [10], [13], [33].

6.5.2 Hypothesis 1: Impact of Exploration Duration
To examine the impact of exploration duration on the development
of a cognitive map, we examined participants’ performance on
six wayfinding tasks after exploring the environment for 10 and
20 minutes (i.e., constructing a mental representation of the
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Fig. 6: Scree plot for the cumulative distribution of the number of
clusters at each level from participants’ recall data.

environment). The average path-distance traveled by participants
is presented in Table 3. An independent-samples, two-tailed t-
test was conducted to test for a difference between different
exploration duration conditions. Participants who learned the en-
vironment for 10 minutes with a East-To-West navigation order
(M = 248.64, SD = 53.52) compared to the same 15 participants
exposed to the environment for an additional 10 minutes (M =
182.19, SD = 46.64) demonstrated a significant reduction in path-
distance for the wayfinding tasks, t(28) = 2.29, p = .04. However,
we did not notice a similar significant reduction in path-distance
for West-To-East navigation order for 10-minute (M = 234.53,
SD = 81.88) and 20-minute exploration duration conditions (M
= 199.65, SD = 56.48), t(28) = 0.85, p = 0.4. Overall, we
notice a moderate negative correlation of exploration duration with
wayfinding performance (∼21%, p = .04659). Thus, Hypothesis
H1 can be accepted.

East-To-West
(EW)

West-To-East
(RW)

Exploration
Duration (mins) 10 20 10 20

Task 1a 245.36±42.55 193.93±24.65 205.63±25.87 245.05±118.79

Task 1b 344.15±175.42 221.36±23.01 268.55±68.61 217.8±29.13

Task 1c 190.92±24.16 199.16±37.34 195.17±23.29 172.68±2.91

Task 2a 257.13±173.43 153.98±14.25 271.91±209.61 192.32±70.63

Task 2b 247.86±110.58 222.90±61.27 352.50±303.02 263.65±224.78

Task 2c 206.39±154.11 101.79±16.09 113.42±19.38 106.45±24.32

Average 248.635±53.52 182.186±46.64 234.53±81.88 199.65±56.48

TABLE 3: Participants’ path-planning data for six wayfinding
tasks after familiarizing with the environment for 10 and 20
minutes.

6.5.3 Hypothesis 2: Sequence Order Effect

To investigate the impact of the sequence order in which land-
marks were visited during the exploration phase (i.e., independent
variable) on the navigation pattern (i.e., dependent variable), we
examined participants’ performance for six wayfinding tasks under
two exploration duration conditions (i.e., 10 and 20 minutes) and
two navigational directions. In Group 1 (East-To-West), partic-
ipants learned the environment starting at the left side of the
environment. In Group 2 (West-To-East), participants learned the
environment starting at the right side of the environment. In Table
4, we showcase the landmark visit orders for both navigation
directions.

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

East-To-West a b c d e g h i f j m n k l o

West-To-East o l m i j k n h f g e d c a b

TABLE 4: Landmark visit order under two navigation conditions

Fig. 7: Visualization of humans’ and agent’s trajectories to show-
case the impact of landmarks sequence order on wayfinding
trajectories for two navigation tasks. The trajectories in blue
represent wayfinding paths when participants/agent were trained
with the East-To-West navigation order. The trajectories in red
represent the wayfinding paths when they were trained with
the West-To-East navigation order during the exploration phase.
We notice similar eastward/rightward shifts in particpiant and
agent trajectories when exposed to landmarks in the East-To-West
sequence.

For trajectories produced by participants during a wayfinding
task, we compute a list of nearest landmark traversed per trajectory
(e.g., ”abcdgh” for Task 1a trajectory). We then compute the
total sum of the landmarks visited using Table 4 for the respec-
tive navigation pattern in both groups. For the above example,
the distance computed for East-To-West (EW) for the example
trajectory ”abcdgh” is (a)1+(b)2+(c)3+(d)4+(g)6+(h)7 = 23. We
repeat the process for all six wayfinding tasks for all participants
in both navigation direction conditions. An independent-samples,
two-tailed t-test was performed to test for a difference between
navigation directions in terms of navigation pattern. For an ex-
ploration duration of 10 minutes, the 15 participants who were
training from East-To-West (M = 55.9, SD = 19.80) compared to
the 15 participants trained in the West-To-East navigation order
(M = 63.92, SD = 21.49) demonstrated significant difference in
navigation patterns, t(28) = -1.758, p = .041. Similarly, for the
exploration duration of 20 minutes, the 15 participants who were
training from East-To-West (M = 50.04, SD = 12.21) compared
to the 15 participants trained in the West-To-East navigation order
(M = 65.21, SD = 19.76) also demonstrated significant difference
in navigation pattern, t(28) = -4.20, p < .01. In Figure 7 (top), we
notice distinctive eastward (trajectories visualized in blue (Figure
7)) and westward shifts (trajectories visualized in red (Figure 7))
in the trajectories of participants when trained using EW and RW
navigation patterns, respectively. Crawford and colleagues [21]
provided evidence that the sequence order of presented stimuli
has an effect on recalling spatial locations by conducting an
experiment using paper packets of 50 mm tall × 280 mm wide
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(refer to Experiment 1 section in [21] for detailed experiment
procedure). Based on the above findings, we believe that a similar
sequence order effect can be established in recalling real-world
spatial location during human wayfinding. Thus, Hypothesis H2
can be accepted.

7 COMPARISON OF HUMAN AND COGNITIVE
AGENT BEHAVIOR

To validate and test the proposed cognitive path-planning model,
we compare it against participants’ data. We begin by replicating
the process of cognitive map development in agents similar to
the process that human participants presumably followed during
the VR experiment. The cognitive agent explored the environment
(i.e., the 3D model of ION Orchard in Singapore) using the same
trajectories used to train the participants during the exploration
phase. A total of four different cognitive map models for the agent
were developed (i.e., two exploration directions of East-To-West
and West-To-East, and two exploration durations of 10 and 20
minutes). We performed simulations for four different versions
of the cognitive path-planning algorithm (i.e., (1) Fine to Coarse
(FTC), (2) Fine to Coarse + Categorical Adjustment (FTC+CA),
(3) Fine to Coarse + Sequence order Effect (FTC + SE), and
(4) Fine to Coarse + Categorical Adjustment + Sequence order
Effect (FTC+CA+SE)). Each version of the algorithm employed
the specified distortion during the computation of the DHCG and
its influence on the cluster’s centroid to bias destination location
during spatial memory-based recall. Below, we demonstrate two
measures of average distance traveled and the average path edit
distance for four scenarios on six wayfinding tasks (specified
in Table 2 and 3) and compare the results with participants’
behavioral data (baseline) by sampling 25 cognitive agents.

7.1 Preliminaries
To realistically simulate the interaction of an agent with the 3D
environment, we modeled human-like visual perception. A first-
person character-based 3D avatar was designed with an average
eye height of 1.72m above the ground. Both horizontal and vertical
fields of view (FOV) were modeled (i.e., 120 degrees and 60
degrees, respectively) to account for human neck rotations. The
walking speed of 1.5 m/sec was assigned to simulate an average
human walking speed. The agents walked the same trajectories as
humans to mimic human-like learning of the environment during
exploration. Like humans, the agent’s visual perception model was
able to detect the salient landmarks placed at crucial intersec-
tions. After the end of the exploration stage, a navigation graph
was formulated with landmarks as nodes and the path/corridors
connecting those landmarks as edges. The formulated navigation
graph was employed in the construction of a DHCG, as discussed
in Section 4. To maintain human-like variability in path-planning,
two parameters (i.e., Salience Preference α in the range of 0–1
and Memory Decay Rate β in the range of 4–10) were selected
randomly per agent. For each condition and each algorithm ver-
sion, 25 agents performed the identical six wayfinding tasks that
the participants performed.

7.2 Validation of Hierarchical Tree Structures
In Section 4, we proposed a hierarchical representation of spatial
memory using AHC, the elected features for clustering, and the
identification of the number of levels in a cognitive map. To

Hierarchical Tree Structures

Baseline Shallow Balanced Deep Proposed Algorithm

ALD 3.59 1 2 7.5 3.73

ABF 3.67 14 3.87 1 3.5

TABLE 5: We illustrate the distance between the proposed hierar-
chical model of the cognitive map with the baseline (i.e., ordered
tree generated from participants’ recall data), two extreme tree
structures (i.e., shallow and deep), and one ideal tree structure
in terms of two metrics: Average Landmarks Depth (ALD) and
Average Branching Factor (ABF). We report the average value of
two exploration directions over 20 minutes of exploration.

validate the quality and similarity of the proposed hierarchical
structures produced by our algorithm, we compare it with the or-
dered tree formed from participants’ recall data (i.e., baseline). For
comparing two hierarchical tree structures, we need a similarity
measure. The task is not only to compare the topology but also
the content of the clusters formed in the structure. However, to
our knowledge, there is very little in the literature about hierarchy
comparison [55]. Below, we propose two metrics for comparing
trees formed from the proposed algorithm and baseline (i.e.,
participant recall data).

• Average Landmarks Depth (ALD) - We introduce a
measure similar to the diversity measure mentioned in [56]
that counts the average number of times landmarks appear
in the hierarchical tree. If this measure is higher for one
hierarchical tree structure than another, then there are more
diverse routes in the former tree structure.

• Average Branching Factor (ABF) - The branching factor
of the hierarchical tree at each level provides a measure
of the spatial memory dispersion. If a hierarchical tree
has large branching factors on average, then the mental
clustering of space in a cognitive map is more dispersed in
general.

In Table 5, we highlight the statistics of the proposed similarity
measures for the hierarchical tree structure from the proposed
algorithm and ordered trees from participants’ recall data. The re-
sults highlight the closeness in the hierarchical structure generated
from the proposed algorithm with the baseline.

7.3 Sequence Order Effect
To investigate the impact of landmark visit order on the agent’s
wayfinding performance, we examine the trajectories generated
by the FTC model in combination with the distortion caused
by the sequence order effect (i.e., FTC+SE). The same data
analysis protocol was followed as for the human participant
data, as discussed in Section 6.5.3. An independent-samples, two-
tailed t-test was conducted to test for differences between 10-
minute and 20-minute exploration duration conditions for each
navigation direction. Overall, agents who were trained from East-
to-West demonstrated a significant difference in the wayfinding
trajectories compared to the agents when trained from West-To-
East navigation order, t(48) = -2.51, p = .019. In Figure 7 (bottom),
we visualize the agent trajectories for two different navigation
directions. Similar to humans, we notice a significant rightward
and leftward bias in the trajectories generated under East-To-West
and West-To-East conditions, respectively. The proposed cognitive
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Fig. 8: (a,b,c) Comparison between participants’ trajectories (red) and the agent’s trajectories (blue) produced using FTC+CA+SE (20
minutes exploration) for three navigation tasks under both (East-To-West and West-To-East exploration direction conditions.

Exploration Duration

10 minutes + 3 Navigation tasks 20 minutes + 3 Navigation tasks

Algorithm Avg. Path Edit Distance Avg. Path Edit Distance

Human Participants N.A. N.A.

FTC 2.25 1.80

FTC + CA 2.43 1.97

FTC + SE 2.23 1.76

FTC + CA + SE 2.29 1.80

TABLE 6: The table showcases results for different combinations
of FTC in comparison with participants’ data (baseline) collected
using the VR data for 10 or 20 minutes exposure to the environ-
ment.

Fig. 9: Visualization of agents’ trajectories to showcase the impact
of memory decay for three elapsed-time intervals (i.e., 0, 10, and
20 minutes) compared with a standard A* based shortest path.

path-planning model could successfully replicate the sequence
order effect as observed in humans and produce a strong positive
correlation between the wayfinding trajectories and navigation
direction.

7.4 Impact of Exploration Duration

To examine the impact of exploration durations on the develop-
ment of the DHCG, we examined agents’ performance on six
wayfinding tasks after 10 and 20 minutes of exploration. The
average path edit distance (PED) for different versions of the FTC
are presented in Table 6. We notice a significant reduction (˜21%)
in the PED between the human trajectories and agents trajectories
produced after 10 and 20 minutes of exploration. After longer

exploration of twenty minutes, the reduction of PED indicates
some convergence between human and agent trajectories. This
may be because agents, similar to humans, could manage to
find shortcuts between two locations. The closest match to the
participants’ trajectories was produced using the sequence order
effect (FTC+SE).

Trajectories for three randomly selected navigation tasks for
both participants and agents, which employed the FTC+CA+SE
strategy, after 20 minutes of exploration are visualized in Figure 8
(a-c). The route selections at multiple decision points for all three
tasks were similar for both agent and human participants, which is
evident by the overlap of blue and red trajectories. We notice that
for the same wayfinding task (e.g., Task 1c), two different paths
are observed by both human participants and cognitive agents.
This is due to the SE distortion caused by the two different
navigation directions (EW and WE) during training. For Task 3
in particular (Figure 8 (b)), the average path edit distance between
the participant and agent trajectories is 1, which is near perfect.
The difference in average traversed distance (13.86 meters) and
average travel time (4.92 seconds) over six tasks further evidence
the similarities between human and agent trajectories.

7.5 Distortion Effect: Categorical Adjustment

To validate the impact of Categorical Adjustment (CA), we ex-
amine the trajectories generated by employing the FTC model in
combination with the distortion caused by CA (i.e., FTC+CA) for
three elapsed time of 0, 10, and 20 minutes after exploring/learning
the environment for 20 mins. At a time interval of 0 mins, there
is no memory decay on DHCG, and the landmark salience value
is high. The saliency value of landmarks (i.e., nodes in DHCG)
reduces with elapsed time as per Section 4.3. We highlight the
trajectories generated by employing an FTC+CA in Figure 9
compared to A* trajectories. Trajectories generated by FTC+CA
(0 mins) are distinctively closer to the trajectories generated by
A* in terms of traversed distance and landmarks traversed at key
decision points. Thus, it highlights the fact that in the presence
of strong memory (i.e., minimal distortion in landmarks location),
the proposed path-planning algorithm manages to find the shortest
path between the source and the destination, often observed in
human wayfinding under strong spatial memory conditions. More-
over, we notice a gradual increase in traversed distance after 10
and 20 minutes of memory decay. In Figure 9, we distinctly notice
variations in trajectories due to the distortion accumulating over
time. The CA effect causes these variations in trajectories during
the spatial recall. Lower salience values for recalled landmarks are
associated with more bias towards the cluster center and thus more
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changes in the nodes and edges traversed between the source and
destination nodes during path-planning on DHCG.

8 SIMULATION RESULTS ON A MANHATTAN GRID

We elect a uniform grid environment with multiple regular inter-
sections to exemplify the spatial distortion biases in route selection
at decision points. A 3D model of a 10 × 10 Manhattan grid
was used to conduct these simulations (Figure 10). One start
location and ten destinations were preselected. We compared the
path-planning results between A* and FTC and its variants to
demonstrate the influence of each type of distortion on agent
wayfinding behavior. The parameters S = 105 (memory strength)
and α = 0.5 (preference of path distance over memory) were
used to generate all simulation results. In Figure 10 and Table 7,
we present qualitative and quantitative results respectively.

In the scenario of East-To-West navigation direction by an
agent, we observe an increase in average total distance traveled for
10 wayfinding tasks in comparison to the shortest path produced
by A* (i.e., 117.56). The different combinations of the proposed
cognitive path-planning algorithm, ranked in terms of average total
distance and path edit distance, were FTC (avg dist = 131.14, PED
= 10.8), FTC+CA (avg dist = 144.23, PED = 10.9), FTC+SE (avg
dist = 134.03, PED = 9.3), and FTC+CA+SE (avg dist = 150.38,
PED = 10.6). Both CA and SE distortion strategies increased the
path distance compared to A* and FTC (i.e., complete knowledge
and no distortion). The longest distances traveled were observed
in FTC+CA+SE. Moreover, the average total path edit distance
of 10.9 is observed the most for the FTC+CA combination. The
visualized trajectories in Figure 10 also highlight the variations in
route choices qualitatively. The trajectories produced by AI-based
path-planning (A* in this case) fail to produce realistic paths and
produce fixed and similar-looking paths. Recently, inspired by the
natural path-creation process [57] proposed a method to efficiently
supervise the path of NPC in an interactive virtual environment
such as a game or VR by estimating a weight map and path
similarity based on the user’s path. The goal was to provide a new
route to the NPC by referring to the user’s movement trajectory
rather than a fixed path. In our model, we achieve similar goals
of human-player in VR-like path without relying on the human-
player path dataset. In Figure 10 we notice the variation in trajecto-
ries with different combinations of FTC and distortions. A game-
level designer can employ different distortion types as a plug-and-
play feature to FTC to mimic varied human movement behavior.
Moreover, more distortions can be investigated and formulated to
extend our proposed path-planning algorithm in the future. Figure
12 demonstrates the difference in the formulation of DHCG due
to navigation pattern. The variation in cluster formation is caused
by features F (i.e., frequency of visit between adjacent nodes) and
R (i.e., the last visited time of nodes). Path distance and visibility
features remain the same in both scenarios.

8.1 Distortion due to Category Adjustment
Figure 11 (left) presents the difference in paths using FTC and
FTC+CA for one navigation task. An important measure that
decides the level of distortion in a cluster is the memory (i.e.,
landmarks salience) of the visited nodes for that cluster. In the
East-To-West exploration direction, the nodes marked as zone A
were visited earlier than the nodes marked as Zone B, resulting in
higher salience for zone B nodes due to recency effect [58]. This
is similar to how humans remember the landmarks strongly if

Left to right exploration Right to left exploration

Algorithm Navigation
Tasks Distance Path Edit

Distance Turns Distance Path Edit
Distance Turns

A* 1 87.6 N.A. 0 87.62 N.A. 0

5 121.6 N.A. 4 121.6 N.A. 4

10 161.5 N.A. 4 161.5 N.A. 4

FTC 1 119 11 5 118.3 9 8

5 129.2 8 4 152.3 13 4

10 167.3 13 6 170.6 8 4

FTC+CA 1 120.3 11 5 120.9 9 8

5 147.7 9 4 154.2 13 4

10 175.5 14 5 172.9 8 4

FTC+SE 1 123.1 9 4 87.7 0 0

5 131.6 10 4 135.7 11 4

10 172.5 14 7 174.4 15 4

FTC+CA+SE 1 123.8 12 5 124 9 8

5 133.1 8 6 157.3 13 4

10 192.7 14 5 176.8 8 4

TABLE 7: Comparison of various metrics for three navigation
tasks for various combinations of the proposed cognitive path-
planning algorithm on Manhattan grid. Two opposite exploration
directions were used to build the agent’s cognitive map.

visited last. Due to higher memory values, nodes on the right side
of the grid may be more likely to become clustered together and
thus distort the center of the abstract nodes towards zone B nodes
at level two of the DHCG. As a consequence, the agent selected
to make a late turn in the presence of CA-based distortion. The
same behavior occurs again at the later stage of the path-planning
(marked as zone C).

8.2 Distortion due to Sequence Order Effect

Figure 11 (right) highlights the difference in paths using FTC
and FTC+SE for one navigation task. The landmarks (i.e., nodes)
visited earlier have a more substantial impact on the cluster center
due to primacy effect [58], causing it to be distorted towards
the initially visited nodes as per equation 1. In the West-To-East
exploration direction, nodes marked as zone E were visited earlier
than the nodes marked as zone D, which were visited earlier in
East-To-West exploration. Thus, we see a series of distortions
towards the left and right side of the Manhattan grid over the
entire path for the wayfinding trajectories generated by the agent
who explored the environment in East-To-West and West-To-East
directions, respectively.

Fig. 12: Comparison between clusters formed using East-To-West
and West-To-East exploration direction on a Manhattan grid. Level
1 landmarks are shown as point in red, and Level 2 and 3 clusters
are visualized in green and blue, respectively.
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Fig. 10: Visualization of agent’s trajectories using various combinations of FTC with distortions. A* based path-planning is used for
comparison. Agent’s start location is at bottom left corner of the grid. Trajectories from ten different navigation tasks were recorded.
The destination locations are marked using 1 to 10.

Fig. 11: Visualization of distortion in path-planning caused by
category adjustment and sequence effect. (left) Agent’s path
computed using FTC (red) and FTC + CA (blue) for navigation
task 10. (right) Agent’s path computed with sequence order effect
(FTC+SE) after learning the environment in East-To-West (green)
and West-To-East (magenta) exploration directions.

9 CONCLUSION & FUTURE WORKS

Unlike prior static and comprehensive representations of
environment-based path-planning models, this paper proposes
a computational model of cognitive path-planning to simu-
late human-like wayfinding behavior, which incorporates spa-
tial memory distortions. The proposed model can produce a
unique/subjective mental representation of the environment, en-
code the spatiotemporal sequence effects of landmark visits, and
generate paths based on memory decay and approximation. A
desktop-based VR experiment is performed with 41 participants
to parameterize and validate the proposed model. There are three
significant contributions of this work. (1) We propose a Dynamic
Hierarchical Cognitive Graph representation (DHCG) to encode
the environment structure based on the agent’s exploration pattern
that models a subjective mental representation of an environment.
(2) We extend the most commonly employed wayfinding heuristic
FTC to accommodate CA and SE distortions while systemat-
ically varying memory decay to formulate a novel cognitive
path-planning model. (3) We ground the parameterization of the
proposed data structure on behavioral data collected from a VR-
based study. The results obtained in our simulations showcase
the effectiveness of the proposed model for closely replicating
human-like route decisions and overall trajectories based on iden-
tical exploration patterns. The proposed cognitive path-planning
model is sufficiently fast for real-time path-planning in a large

and complex environment. We believe that the proposed model’s
results are the first steps towards building a realistic human-like
wayfinding model that captures spatial memory distortion in route
selection during path-planning.
Limitations. Each agent must maintain its own independent spa-
tial memory, which both increases the computational complexity
and requires frequent updates (i.e., each navigational decision
point/intersection) for acquiring and decaying information.
Future Works. We would specifically like to understand and
compute the memory decay rate on spatial memory with elapsed
time. Most theories in spatial navigation treat path integration and
cognitive map as two distinct and detached mechanisms for human
navigation. We hypothesize that path integration may play a role
in the formulation of cognitive maps. In the future, we will like to
investigate this underlying mechanism, if any.
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