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Abstract

In recent years, the world has witnessed a significant paradigm shift of certification criteria
from design-based to performance-based and probabilistic requirements in aviation. For
events that can lead to severe safety issues, the acceptable failure probabilities are usually
very small. This poses a serious challenge for designers to tune the control parameters in
order to satisfy the rare-event probabilistic requirements.

This thesis first presents a probabilistic performance-oriented control design optimiza-
tion approach, called reliability-based control optimization (RBCO). It performs control
design by solving a chance-constrained optimization problem that satisfies probabilistic
design requirements. To ensure the precise treatment of rare-event chance constraints,
the reliability analysis is conducted within the optimization loop. As a consequence, the
proposed RBCO framework can be used to search for control parameters that fulfill the
probabilistic requirements with a formal guarantee.

Subset simulation (SuS) is an accurate and efficient method for reliability analysis, but
it still requires a large number of true model evaluations to achieve sufficient accuracy. To
reduce this demand, the second part of this thesis incorporates different types of surrogate
modeling techniques into SuS. Global surrogates, namely, polynomial chaos expansion
(PCE) and response surface method (RSM), are first combined with SuS. Adaptive PCE
or RSM is applied to progressively refine the surrogate at each subset level. Aiming at
balancing the local and global prediction performance, an experimental design strategy is
developed for the surrogate refinement. However, global surrogates are more applicable to
weakly nonlinear applications. To this end, a local surrogate called moving least-squares
(MLS) is then implemented to handle highly nonlinear problems. An active learning
strategy is proposed to efficiently enrich the training set. For high-dimensional problems,
a dimensionality reduction method is introduced to filter out unnecessary expansion items.
Then, a more flexible surrogate called kriging is used to assist the SuS method which detects
both the global trend and the local variability. Adaptive trend detection and experimental
design strategies are proposed to further enhance the kriging modeling efficiency.

Finally, this thesis compares the performance of the introduced surrogate-accelerated
SuS techniques to the conventional SuS method, and gives a recommendation of approaches
to tackle different problems. The case studies demonstrate the real-life applicability of the
proposed methods.
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Kurzfassung

In den letzten Jahren vollzog sich ein Paradigmenwechsel im Bereich der Luftfahrt von
auslegungsbasierten Anforderungen hin zu leistungsbasierten und probabilistischen Anfor-
derungen. Fehlerereignisse, welche zu ernsthaften Sicherheitsproblemen führen, haben in
der Regel eine sehr geringe zulässige Ausfallwahrscheinlichkeit. Dies stellt die Entwickler
von Luftfahrtsystemen vor die große Herausforderung die Reglerparameter so abzustimmen,
dass diese die probabilistischen Anforderungen in Bezug auf die Eintrittswahrscheinlichkeit
seltener Ereignisse erfüllen.

In dieser Arbeit wird zunächst ein probabilistischer, leistungsorientierter Ansatz zur Op-
timierung des Steuerungsentwurfs vorgestellt, der als reliability-based control optimization
(RBCO) bezeichnet wird. Durch das Lösen eines Optimierungsproblem mit Zufallsbe-
schränkungen, ermöglicht RBCO den Entwurf von Flugsteuerungsystemen welche die
probabilistischen Anforderungen erfüllen. Um die Einhaltung der Anforderungen an die
zulässige Eintrittswahrscheinlichkeit für seltene Ereignisse zu gewährleisten, wird die Zu-
verlässigkeitsanalyse innerhalb der Optimierungsschleife durchgeführt. Der vorgeschlagene
RBCO-Ansatz kann folglich verwendet werden, um nach Kontrollparametern zu suchen,
die die probabilistischen Anforderungen mit einer formalen Garantie erfüllen.

Subset Simulation (SuS) ist eine genaue und effiziente Methode der Zuverlässigkeits-
analyse. Trotz ihrer Effizienz erfordert diese Methode immer noch eine große Anzahl
echter Modellbewertungen, um eine ausreichende Genauigkeit zu erreichen. Um diesen
Bedarf weiter zu reduzieren, werden im zweiten Teil dieser Arbeit verschiedene Arten
von Ersatzmodell-Modellierungstechniken in die SuS-Methodik integriert. Globale Er-
satzmodelle, nämlich polynomial chaos expansion (PCE) und Response Surface Method
(RSM), werden zunächst mit SuS kombiniert. Adaptive PCE oder RSM werden ange-
wandt, um das Ersatzmodell auf jeder Teilmengenebene schrittweise zu verfeinern. Mit
dem Ziel, ein Gleichgewicht zwischen lokaler und globaler Vorhersageleistung herzustel-
len, wird eine experimentelle Planungsstrategie für die Verfeinerung der Ersatzmodelle
entwickelt. Im Allgemeinen eignen sich globale Ersatzmodelle jedoch eher für schwach
nichtlineare Anwendungen. Um stark nichtlineare Probleme zu behandeln, wird ein lokales
Ersatzmodell namens moving least-squares (MLS) implementiert. Hierbei wird eine aktive
Lernstrategie vorgeschlagen, um die Trainingsmenge effizient anzureichern. Für hochdimen-
sionale Probleme wird eine Dimensionalitätsreduktions Methode angewendet, um weniger
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relevante Dimensionen herauszufiltern. Im Anschluss wird ein flexibleres Ersatzmodell
namens kriging verwendet, um die SuS-Methode zu unterstützen. Kriging Ersatzmodelle
berücksichtigen sowohl den globalen Trend, als auch lokale Variabilität. Mit dem Ziel, die
Effizienz der Kriging-Modellierung weiter zu verbessern, werden adaptive Strategien für
die Trenderkennung und die Trainingsdatenanreicherung implementiert.

Schließlich vergleicht diese Arbeit die Ergebnisse der vorgestellten Ersatzmodell-
beschleunigten SuS-Techniken mit derer der konventionellen SuS-Methode. Darüber hinaus
wird eine Empfehlung gegeben, wie die Ansätze verwendet werden können, um verschiedene
anspruchsvolle Probleme zu bewältigen. Fallstudien verdeutlichen die Anwendbarkeit der
vorgeschlagenen Methoden in der Praxis.
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Chapter 1

Introduction

1.1 Background and Motivation

Safety has always been a vital concern for aviation. An aircraft is a typical safety-
critical system, whose failure may lead to unaffordable consequences such as substantial
property damage, severe injury, and even loss of life. Driven by the ever increasing
safety considerations, stringent requirements are imposed on the development of aircraft
by certification authorities. According to the convention on international civil aviation,
“every aircraft engaged in international navigation shall be provided with a certificate of
airworthiness issued or rendered valid by the State in which it is registered” [1, p. 14]. For
example, the European Aviation Safety Agency (EASA) is responsible for the certification
of aircraft in the EU and for some European non-EU countries, whereas the Federal
Aviation Administration (FAA) is the counterpart in the U.S. The certificate testifies that
the aircraft meets the safety requirements set by the corresponding authority.

In recent years, there has been a significant paradigm shift in certification criteria. The
requirements are no longer formulated as deterministic limits, but acceptable probabilities
for specified failure events. For instance, according to the certification specifications for all
weather operations (CS-AWO) published by the EASA, the probability of exceeding certain
safety limits must be below the thresholds during the phase of automatic landing [2, p. 15].
The detailed requirements are given in Table 1.1, wherein the acceptable probabilities are
very small, typically of the order 10−5 to 10−8. Another example is the minimum level of
system reliability prescribed by the CS-25 certification specifications for large aircraft [3,
pp. 2-F-47–2-F-50]. It highly depends on the severity of the outcome, as illustrated in
Tables 1.2 and 1.3. If a failure condition only leads to minor effects, such as a slight
reduction in safety margins or functional capabilities, a slight increase in crew workload,
and some physical discomfort to passengers, the admissible failure probability is 10−3 per
flight hour. By contrast, for a catastrophic failure condition which can cause a hull loss
and multiple fatalities, the probability of occurrence must be less than 10−9 per flight hour.
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Table 1.1: Touchdown requirements for automatic landing [2, p. 15].

Touchdown performance
Probability threshold

Average1 Limit

Longitudinal touchdown earlier than 60 m from the threshold. 10−6 10−5

Longitudinal touchdown beyond 823 m from the threshold. 10−6 N/A

Longitudinal touchdown beyond 914 m from the threshold. N/A 10−5

Lateral touchdown more than 21 m from the runway centerline,
assuming a 45 m runway.

10−6 10−5

Exceed sink rate for structural limit load. 10−6 10−5

Exceed bank angle such that wing tip touches ground before wheels. 10−8 10−7

Exceed lateral velocity or slip angle for structural load limit. 10−6 10−5

Table 1.2: Relationship between the severity of failure effects and the classification of
failure conditions [3, p. 2-F-49].

Se
ve

rit
y

of
fa

ilu
re

eff
ec

ts

Effect on
aeroplane

No effect on
operational
capabilities

or safety

Slight
reduction in
functional
capabilities

or safety
margins

Significant
reduction in
functional
capabilities

or safety
margins

Large
reduction in
functional
capabilities

or safety
margins

Normally
with hull

loss

Effect on
occupants
excluding
flight crew

Inconvenience
Physical

discomfort

Physical
distress,
possibly
including
injuries

Serious or
fatal injury
to a small
number of

passengers or
cabin crew

Multiple
fatalities

Effect on
flight crew

No effect on
flight crew

Slight
increase in
workload

Physical
discomfort

or a
significant
increase in
workload

Physical
distress or
excessive

workload im-
pairs ability
to perform

tasks

Fatalities or
incapacita-

tion

Classification of
failure conditions

No safety
effect

Minor Major Hazardous Catastrophic

1The ‘Average’ column: all variables vary according to their distributions; The ‘Limit’ column: one
variable takes its most adverse value while others vary according to their distributions.
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Table 1.3: Relationship between the classification of failure conditions and acceptable
probabilities [3, p. 2-F-50].

Classification of
failure conditions

No safety
effect

Minor Major Hazardous Catastrophic

Allowable
qualitative
probability

No
probability
requirement

Probable Remote
Extremely

remote
Extremely
improbable

Allowable
quantitative
probability:

average
probability per
flight hour on
the order of:

No
probability
requirement

< 10−3 < 10−5 < 10−7 < 10−9

In the context of specifications with such small acceptable failure probabilities, it is of
great importance to assess the reliability of a function and all subsystems and components
contributing to its provision. Additionally, control parameters must be tuned to satisfy
functional requirements while maintaining the fulfillment of rare probabilistic safety and
certification requirements. This requires repeated evaluations of the closed-loop system
reliability. These demands motivate us to develop accurate and efficient reliability analysis
methods as well as reliability-guaranteed control design strategies.

1.2 State of the Art

This section first introduces the state of the art of reliability analysis methods. Afterwards,
an overview of design strategies under uncertainty is given. In the end, how the current
control design methods deal with uncertainties is summarized.

1.2.1 Reliability Analysis Methods

In the presence of uncertainties, a system may react outside of its nominal range, which
means the system encounters a failure. Given the model of uncertainties, reliability analysis
aims to quantitatively assess the probability of such failures [4, p. 1]. In this subsection,
all the presented approaches deal with black-box problems. They rely on the evaluation of
a computational model, without the knowledge of its inner structure. These methods can
be classified into three categories, i.e., approximation, simulation, and surrogate-based
approaches.
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1.2.1.1 Approximation Approaches

Approximation methods seek to approximate the limit-state function locally at a reference
point. The first-order reliability method (FORM) is an elementary approximation approach.
It was introduced by Hasofer and Lind [5] in 1974 to overcome the computational inefficiency
of Monte Carlo simulation (MCS) and successfully applied to structural problems. In
this method, reliability is evaluated based on the first-order Taylor expansion of the
limit-state function at the so-called most probable failure point (MPFP) (also known as
design point) in the standard space [6, Ch. 7]. Specifically, the FORM consists of three
steps, i.e., transform the random variables from the original space into the standard space,
search for the MPFP, and linearize the limit-state function at the MPFP and compute the
approximation of failure probability. Note that the FORM assumes a linear (or weakly
nonlinear) limit-state function with a unique MPFP. It may lead to a large estimation
bias if these assumptions are not satisfied.

To enhance the accuracy of the FORM, the second-order reliability method (SORM) [7]
has been developed. This method is a second-order refinement of the FORM. After the
MPFP is identified, the limit-state function is approximated by the second-order Taylor
expansion. By this means, in comparison with the FORM, the SORM achieves better
accuracy at the cost of computational expense.

Based on the FORM and SORM, several variants have been proposed to improve the
accuracy or efficiency. A first-order third-moment reliability method [8] was presented by
introducing the skewness of the transformed reliability margin into the reliability index.
Similarly, the moments up to the third-order are used to derive the second-order third-
moment reliability index in [9]. More recently, based on the fourth-moment standardization
function [10], the work in [11] proposed an explicit second-order fourth-moment reliability
index. These methods extend the FORM or SORM to address more general reliability
analysis problems. To maintain both high efficiency and accuracy, a SORM with first
order efficiency was proposed in [12]. With the aim of improving the accuracy of reliability
analysis, the work in [13] presented a direct SORM without parabolic approximation of
the fitted quadratic surface.

Although the FORM and SORM are very efficient, they may not achieve accurate
estimations especially for complicated and highly nonlinear limit-state functions [14].
These two methods only provide low-order approximations, thus introduce large estimation
errors in case of strong nonlinearity. In addition, for functions with multiple design points,
the FORM and SORM may result in biased failure probability estimates.
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1.2.1.2 Simulation Approaches

For complex systems with highly nonlinear limit-state functions, researchers are likely to
employ numerical simulation methods to estimate the failure probability without making
any hypothesis on the complexity of the limit-state functions. The common idea of this
type of methods is to generate samples in the output space and then find an estimate of
the failure probability.

The standard MCS method is one of the most widely used ways to solve reliability
analysis problems. Since it was originally developed in [15], it has been applied in many
research fields, such as statistics, physics, computer science, finance, and engineering.
The basic idea behind MCS is to draw samples according to the distribution of input
random variables and compute the percentage of outputs falling in the failure region. The
main strength of MCS is the strong robustness due to the fact that its accuracy does not
depend on the geometry of the failure domain and the dimension of random variables [16].
However, on the other hand, MCS suffers from inefficiency in estimating small probabilities.
To estimate a failure probability PF = 10−m with a 10% coefficient of variation (c.o.v.),
about 10m+2 samples are required [4, p. 11]. The inefficiency essentially stems from the
fact that most of the generated samples are not in the failure domain. Nevertheless, all
sampling-based methods for estimating rare events are based on MCS [16].

The efficiency of MCS can be enhanced by means of variance reduction techniques,
which aim at increasing the estimation precision with given simulation effort [17, Ch. 5].
Importance sampling (IS) [18, 19] is one of the most popular variance reduction strategies.
The fundamental concept of IS is to draw samples from the importance sampling density
(ISD) which is different from the distribution of interest, so as to generate samples that lie
more frequently in the failure domain. Its efficiency critically depends on the choice of
the ISD. However, choosing a good ISD that results in a low-variance IS estimator is a
challenging task, especially in high dimensions [16, 19, 20]. Thus, IS is often inefficient for
high-dimensional problems. A variety of sophisticated strategies have been proposed to
improve the performance of IS. Multiple importance sampling (MIS) methods (e.g. [21, 22])
employ a set of ISDs for the generation of samples. Because these schemes avoid entrusting
a single ISD, they generally provide more robust results. Moreover, adaptive importance
sampling (AIS) methods (e.g. [23–25]) enhance the efficiency by iteratively updating the
parameters of ISD based on the past samples.

Subset simulation (SuS) [26, 27] is an advanced stochastic simulation method for
reliability analysis which is based on Markov chain Monte Carlo (MCMC) [28, Ch. 6].
SuS estimates the rare failure probability by converting it into the product of a series
of much larger conditional probabilities. In comparison with MCS, SuS gains far higher
efficiency when achieving the same accuracy. Moreover, unlike IS, SuS does not suffer
from the curse of dimensionality [16]. The accuracy and efficiency of SuS depend on
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the ability of the implemented MCMC algorithm. Several MCMC sampling algorithms
have been developed motivated by the goal of improving the performance of SuS. Au
and Beck [26] introduced the modified Metropolis-Hastings (MH) algorithm based on a
component-wise sample generation to overcome the low acceptance ratio of the original
MH sampler for high-dimensional problems. With the aim of addressing the same issue,
the MH strategy with repeated sample generation was proposed by Santoso et al. [29].
To reduce the correlation between the states of the Markov chain in the component-wise
MH algorithm [26], Zuev and Katafygiotis [30] integrated the MH approach with delayed
rejection [31] into the component-wise MH algorithm. Additionally, Papaioannou et al. [32]
proposed the Gaussian conditional sampling method, in which the candidate samples
generated from the proposal probability density function (PDF) always differ from the
current sample.

Due to the superiority of SuS, it has been successfully applied in various fields, such
as fire risk analysis [33], structural reliability analysis [26, 34], wind [35] and nuclear
engineering [36]. Recently, pioneered by the Institute of Flight System Dynamics (FSD)
of the Technical University of Munich (TUM), SuS has been utilized in many aerospace
applications. The probability of conflict between aircraft is estimated in [37, 38]. A safety-
critical backup controller is assessed using SuS in [39]. The work in [40] implements SuS to
evaluate the hover performance of an electric vertical take-off and landing (eVTOL) aircraft.

1.2.1.3 Surrogate-Based Approaches

Although SuS is tailored to estimate the rare failure probability, it still requires at least
thousands of limit-state function evaluations to achieve sufficient estimation accuracy.
Therefore, conducting SuS for computationally expensive limit-state functions can be
a time-consuming task. In this context, many researchers resort to surrogate modeling
techniques to further enhance the efficiency of SuS.

Surrogate Modeling Techniques

Before reviewing surrogate-based approaches, a brief introduction of surrogate models for
reliability analysis and uncertainty propagation is given. Surrogate modeling in essence
makes useful predictions based on assumptions and limited information [41]. Actually, in
everyday life we attempt to save time and make predictions according to our assumptions
and experience. This is similar as what a surrogate model does. To be specific, a surrogate
model is a cheap-to-evaluate approximation model that intends to mimic the behavior of
a costly-to-evaluate true model [42]. A common assumption for the surrogate modeling
techniques discussed in this thesis is that the limit-state function is continuous.

Response surface method (RSM) [43] is an elementary and probably the most widely
used surrogate modeling technique. It assumes that the shape of the function can be
approximated by the chosen polynomial expansion, and exploits polynomial regression
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to build a global surrogate model. However, this assumption may be unfounded in many
applications, which indicates that polynomial approximation may be not flexible enough
to fit the true model (e.g. [44]). In addition, this method suffers from the curse of
dimensionality, since the number of training samples required for the regression generally
grows exponentially with the increase of dimension. Hence, RSM is unsuitable for highly
nonlinear or high-dimensional problems. Despite this, a polynomial response surface may
be an attractive choice for functions with weak nonlinearity, few dimensions, or where
data is very cheap to obtain. In particular, the expansion coefficients reflect the effect of
each term.

Moving least-squares (MLS) [45] consists in constructing lower-order local approxi-
mations and exhibits an attractive tradeoff between regression and interpolation. The
weighted least-squares (WLS) approach is used in the region of interest, and this region
“moves” with the point to be predicted. Since the calculation must be performed at every
prediction, the MLS method requires more computational expense in comparison with
RSM. On the other hand, the drawbacks of RSM are mitigated by this local approximation
technique. The locality of the approximation is governed by the weight function. However,
the parameters of the weight function are often hard to tune.

Polynomial chaos expansion (PCE) [46, 47] projects the function output onto a space
spanned by polynomials that are orthogonal with regard to the input probability measure.
This method can be interpreted as an extension of RSM. The main difference between
them is that the inputs of RSM are deterministic variables, whereas in PCE, the inputs
are random variables [48, Ch. 3]. A prominent property of the PCE approach is that it
guarantees the convergence of the approximation, which means the approximation error
reduces with the increase of the polynomial order. However, the convergence cannot be
guaranteed by the RSM method. The strategies for computing the PCE coefficients can
be divided into intrusive and non-intrusive ones according to whether they are coupled
with the limit-state function. Stochastic Galerkin is a typical intrusive method, whereas
popular non-intrusive techniques include pseudo projection, interpolation approach, and
least-squares method [49, 50].

The surrogate models mentioned above are all extensions of rigid polynomial, and thus
lacking of flexibility. This drawback can be avoided by kernel-based surrogate models such
as kriging and support vector machines. Kriging [51], also known as Gaussian process
modeling, is a statistical interpolation method based on Gaussian process governed by prior
covariance. Depending on the type of trend which refers to the mean of a kriging model, a
different naming is given to the surrogate model, i.e., simple kriging, ordinary kriging, and
universal kriging. Since the kriging prediction is considered as a realization of a Gaussian
random variable, the standard deviation of the prediction is derived. This built-in error
measure is the major advantage of kriging over other surrogate models mentioned in
this thesis. The generalization ability of kriging relies heavily on the proper choice of
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its hyperparameters. However, finding the optimal hyperparameters is a nontrivial task.
This time-consuming parameter selection stage limits this technique to problems of low
dimensionality (usually limited to around 20 [41]). Due to this expense, kriging is more
applicable to limit-state functions that are particularly computationally intensive.

Support vector machines (SVMs) [52] are supervised learning techniques that aim
at constructing an optimal hyperplane in the sense of the Vapnik-Chervonenkis (VC)
dimension, which can be interpreted as the complexity of problems. SVMs were initially
used in the context of binary classification and then extended to regression. Instead of
solving nonlinear problems directly, SVMs seek to map the sample points into the feature
space by means of kernels and then transform the nonlinear problems to linear ones. In
this way, SVMs are able to efficiently handle nonlinear functions. Similar with kriging,
the generalization ability of SVMs also depends on the suitable parameterization of the
kernel, which is a challenging task. Moreover, compared with surrogate models based on
rigid polynomial, SVMs necessitate longer training time.

Artificial neural networks (ANNs), usually simply called neural networks (NNs) [53],
are another type of surrogate model inspired by the biological neural networks. A NN
consists of a collection of connected nodes or neurons. A transfer or activation function is
built in within each neuron and each connection is assigned a weight. The architecture
of NNs is usually determined empirically. This is not trivial especially for complex
applications. Given the selected architecture, the training of NNs consists in finding
the optimal combination of biases and weights that minimizes a certain cost function.
Various global and local algorithms are developed to accomplish that. Back-propagation
is probably the most popular method among them.

Surrogate-Based Reliability Analysis Strategies

A common idea of surrogate-based approaches is to build a surrogate model and then replace
the true model evaluations with the predictions of the surrogate model. The constructed
surrogate model is usually used in conjunction with aforementioned approximation methods
or simulation methods.

The quadratic polynomial response surface was first utilized as a surrogate in structural
mechanics in [54]. Inspired by this seminal work, a variety of variants [55–58] have been
proposed with different basis functions (with or without cross terms) and training points
selection strategies. In all these works, the quadratic approximation is constructed around
the design point. In [59, 60], weighted regression is applied to build the response surface,
in which weights are allocated to the training samples according to their distances from the
failure surface. The work in [61] employs a forward selection procedure to determine the
most important regression terms with respect to statistical criteria. Recently, an adaptive
RSM that incorporates several techniques including model selection, cross validation, and
weighted regression is presented in [62].
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To overcome the weaknesses of RSM, MLS is applied for the approximation of the
region of interest in structural reliability analysis in [63, 64]. In [65], the MLS surrogate
is not only employed for prediction, but also involved in the selection process of sample
points. Besides the weight factor induced by MLS, the weights based on the distances from
the MPFP are also considered in [66]. The design point is updated successively within
an iterative MLS strategy in [67]. The work in [68] tunes the parameters of the weight
function in the MLS approach to explore better surrogate performance.

The intrusive use of PCE in reliability analysis was originally investigated in [69, 70].
Later on, the application of PCE has blown up with the emergence of non-intrusive
methods. To be specific, the regression method was developed and implemented in [71, 72].
In reliability analysis, RSM is used to fit the limit-state function in the vicinity of the
design point, whereas PCE is usually performed in the entire space and thus may not be
accurate enough in the tail of the output distribution. Focusing on this problem, a shifted
and windowed PCE was proposed in [73] to enhance the accuracy of the estimation in the
failure domain. The work in [74] derives a local error estimator and then an active learning
scheme so as to efficiently estimate the failure probability. To reduce the number of PCE
bases in high dimensions, the most significant expansion terms are adaptively detected
in [75, 76]. With the same purpose, the work in [77] introduces least angle regression
(LAR) to find the optimal basis functions for sparse PCE.

Kriging was first employed for reliability problems in [78]. Here, a fixed experimental
design strategy called progressive lattice sampling is presented for the construction of the
surrogate model. In [79], a sample enriching scheme based on the current design point
is implemented for kriging. These early works do not take advantage of the variance
information of kriging until the development of active learning approaches. Bichon et al. [80]
introduced the efficient global reliability analysis (EGRA), where the surrogate accuracy
is only enhanced in the vicinity of the limit-state and the indication on the vicinity is
provided by the proposed expected feasibility function (EFF). The adaptive kriging-based
Monte Carlo simulation (AK-MCS) approach was presented by Echard et al. [81], in
which the U-function has been devised to represent the reliability index on the risk of
misclassification. This work is a cornerstone of a variety of methods exploiting active
learning kriging. For instance, replacing the MCS part of the approach with IS or SuS leads
respectively to AK-IS [82] or AK-SuS [83]. The coupling of active learning kriging and SuS
was further explored in [84–86]. An alternative extension of AK-MCS is polynomial-chaos
kriging (PC-kriging) [87] which employs PCE to model the global trend and utilizes kriging
to capture the local behavior.

SVMs have not been introduced to the field of reliability analysis until the early 21st
century. The work in [88] considers reliability analysis as a classification problem and
exploits SVM classifier to divide samples into two groups, i.e., safe and failure points.
Similarly, the classifier is implemented for the assessment of failure probability for stochastic
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finite element models in [89]. Li et al. [90] has presented both SVM-based MCS and
SVM-based FORM to assess structural safety. Hurtado [91] combined SVMs with IS and
selected samples in the margin of SVMs as worth-testing points. Basudhar et al. [92]
investigated the use of SVM classifier for complex limit-state functions with multiple
failure domains or discontinuous responses. Bourinet et al. [93] adopted SVM classifier to
solve the classification problem between subset levels in SuS. Alternatively, support vector
regression (SVR), which leverages the principle of SVMs to tackle regression problems,
are utilized for reliability analysis. In [94], the authors employed a joint use of SVR and
adaptive Markov chain simulation for the assessment of reliability. Bourinet [95] developed
a 3-phase adaptive SVR for the accurate estimation of rare-event failure probability. Later,
the results are further explored for non-smooth limit-state functions in [96].

NN was initially applied to reliability analysis in [97], where a NN is trained for the
prediction of the critical load factor and the failure probability is then estimated using
MCS and IS. Hurtado and Alvarez [98] conducted a comprehensive comparison of different
NN options for reliability assessment. Deng et al. [99] replaced the original performance
function with the NN surrogate, whereupon MCS, FORM, and SORM are performed based
on this surrogate model. Cheng [100] proposed two NN-based genetic algorithms (GAs)
to reduce the computational effort of the traditional GA. In [101], the aforementioned
NN-based GA is further developed by implementing the uniform design method (UDM).
Papadopoulos et al. [102] integrated the robust NN surrogate into SuS to enhance the
efficiency of this advanced simulation technique. More recently, Xiao et al. [103] introduced
a novel adaptive sequential sampling strategy for NN. This method, in principle, also fits
other surrogate models.

1.2.2 Design Under Uncertainty

Design optimization, which is widely used in engineering, consists in searching for the
optimal design variables to achieve certain objective or/and satisfy the given constraint.
According to the types of objective function and constraint function, the design approaches
can be generally classified as in Table 1.4. The strategies that do not take uncertainties
into account are deterministic methods. Due to the limited knowledge of system model,
no one can ensure that the system will perform exactly as the nominal behavior. In this
context, a deterministic design may lead to unsatisfactory results. A better solution is to
account for uncertainties directly in the design optimization formulation.

Robust design optimization (RDO) and reliability-based design optimization (RBDO)
are the most common schemes considering the impact of uncertainty. RDO [105] establishes
a design framework that maximizes the performance while minimizing the sensitivity of
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Table 1.4: Classification of design approaches [104].

Type of objective function

None Deterministic Uncertain
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None — —
Unconstrained
optimization

Robust design
optimization

(RDO)

Deterministic
Admissible

design
Constrained
optimization

Constrained
RDO

Uncertain Reliable design

Reliability-based
design

optimization
(RBDO)

Reliability-based
robust design
optimization
(RBRDO)

performance. This insensitive solution guarantees that the design is robust to the probable
variations of uncertain parameters. The objective function is usually formulated in terms
of the mean value and standard deviation of the system performance.

The objective of RBDO [106] is to optimize the cost function under the fulfillment of
probabilistic (chance) constraints, thus seeking to find the best compromise between safety
and cost. In comparison with RDO, RBDO shifts the focus from objective function to
constraints and considers the hard limits from a probabilistic viewpoint. The methods used
to solve the RBDO problem are generally classified into three categories: the two-level,
the mono-level (also known as single loop), and the decoupled [106, 107]. The two-level
approach is a direct and effective way to tackle this problem. It consists of two loops, of
which the inner one estimates the failure probabilities using a reliability analysis method,
and the outer one explores the design space using an appropriate optimization algorithm.
However, such a reliability analysis procedure must be performed repeatedly, which requires
high computational expense in the case of complex systems. The mono-level and decoupled
approaches achieve higher efficiency by, respectively, reformulating and decoupling the
original RBDO problem. However, they both can suffer from multiple failure domains and
strong nonlinearities in the limit-state functions.

1.2.3 Control Design Methods Considering Uncertainties

In recent years, uncertainties have been frequently taken into account in various control
paradigms. Robust control [108] that aims at reducing the sensitivity to uncertainties is
the most widely used concept for the control design of uncertain systems. In conventional
robust methods, uncertainties are usually modeled as bounded sets and controllers are
designed against the worst case (e.g. [109–111]). However, hard bounds can hardly be
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quantified exactly in practice. Strict bounds or relaxed bounds would bring about either
over safe or unsafe outcomes. Meanwhile, the worst-case scenario may only occur with a
vanishingly small probability, thus diminishing the design space and sacrificing potential
performance as well as resulting in conservative controllers. In a broad sense, many
researchers (e.g. [112, 113]) optimize a weighted sum of the mean value and variance
of the quantity of interest to enhance the robustness. The work presented in [114]
introduces a type of random sampling method called scenario approach, to satisfy the
chance constraints irrespective of the uncertainty distribution. This method is robust to
all possible distributions, but may lead to conservative results when the distribution is
known. In addition, a large number of samples are required in this approach.

Chance constraints are often considered in the context of optimal control. Mesbah and
Streif [115] applied the Cantelli-Chebyshev inequality to convert chance constraints into
relaxed deterministic expressions with regard to mean and variance. Zhao and Kumar [116]
attempted to estimated chance constraints using the split-Bernstein approach, which is
a form of conservative approximation. Caillau et al. [117] developed an optimal control
framework, where the distribution of interest is approximated directly by the kernel density
estimation with a small sample set. Paulson and Mesbah [118] presented a moment-based
approximation strategy for joint chance constraints and the results show that it is less
conservative than the commonly used Cantelli-Chebyshev inequality.

Model predictive control (MPC) iteratively solves optimal control problems. Robust
MPC and stochastic MPC are two variants of MPC that account for the influence of
uncertainties. In [119], the min-max theory was introduced to MPC to achieve a worst-case
control design, thus enhancing the robustness. The work in [120] proposed a tube-based
MPC scheme which retains the disturbed response within an invariant tube. These robust
MPC strategies rely on deterministic uncertainty modeling in a bounded set. Besides,
chance constraints are also usually incorporated into the MPC formulation. The work
presented in [121] transforms probabilistic constraints into convex second-order cone
constraints which are only related to the mean value and variance. The Cantelli-Chebyshev
inequality are employed in [122, 123] to obtain computationally tractable but conservative
surrogates for the chance constraints. In addition, the before-mentioned scenario approach
was also implemented in stochastic MPC [124].

1.3 Objectives

As presented in Section 1.1, safety requirements have been specified in several certification
specifications in terms of admissible rare failure probabilities. In this context, to verify the
compliance with these specifications, it is of critical importance to evaluate the reliability
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of flight control systems. Among the approximation methods and simulation methods for
reliability analysis discussed in Section 1.2.1, SuS is tailored to estimate rare events, and
thus, appears to be the best choice for our problem.

Despite the superiority of SuS over its counterparts, it requires a large number of
performance evaluations to achieve sufficient estimation accuracy. However, assessing
the performance of flight control systems is known to be a costly task. This is mainly
because the quantity of interest is often time-dependent, and it is necessary to perform a
numerical simulation on an expensive-to-evaluate model to obtain a single sample for SuS.
For instance, in [40], the performance function is formulated as the root mean square error
between the true and estimated values of a time-domain response, and simulations are
conducted on a high-fidelity eVTOL aircraft model. Therefore, conducting a considerable
number of performance function evaluations is computationally intractable in practical
applications. To improve the efficiency of SuS for flight control systems, this thesis
resorts to integrating surrogate modeling techniques to reduce the number of calls to the
computationally demanding simulation model.

Based on the results of a successful estimation of the rare failure probability, designers
may seek to improve the performance of the system. As a typical example, one may
tune control parameters to satisfy the rare probabilistic requirements or explore further
performance while guaranteeing the fulfillment of the probabilistic requirements. However,
the control design strategies reviewed in Section 1.2.3 are not suitable to cope with this
kind of requirements. They either handle uncertainties in a conservative way (e.g., design
against the worst case and relax chance constraints), or focus on the events near the mean
values rather than the extreme ones, which leads to a shrunken design space or large
errors in the context of very small probabilistic requirements. To the best knowledge of
the author, existing control design methods in the literature cannot handle rare events
accurately, and essentially tend to transfer uncertainties into simple and computationally
tractable expressions. Motivated by this limitation, this thesis aims to develop a control
optimization framework based on a precise treatment of rare failure probabilities.

The main objectives of this thesis are listed as follows:

1. Develop a control design optimization framework which satisfies the rare probabilistic
requirements directly.

2. Implement surrogate modeling techniques to accelerate the estimation of statistical
information and failure probability.

3. Combine SuS with surrogate models and propose corresponding experimental de-
sign strategies to achieve efficient but yet accurate estimations for the rare failure
probability.
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4. Integrate dimensionality reduction methods to alleviate the computational complexity
issue caused by the curse of dimensionality of surrogate models.

1.4 Contributions

Following the objectives described in the previous section, the contributions of this thesis
are summarized in the remainder of this section.

1. Development of a reliability-based control design framework: Inspired by
the RBDO scheme discussed in Section 1.2.2, this thesis presents a new control
design method, reliability-based control optimization (RBCO), which satisfies the
chance constraints directly. The proposed framework consists of two loops: the inner
one estimates failure probabilities based on different types of surrogate-accelerated
reliability analysis approaches, and the outer one explores the design space using
optimization techniques. RBCO is a verification-driven method that guarantees the
direct fulfillment of probabilistic requirements. Compared with conventional control
design methods, the novel approach proposed here is shown to be less conservative
in the sense that it allows to explore further performance which is sacrificed by the
conventional ones.

The presented RBCO framework has been published in Journal of Guidance, Control,
and Dynamics [125].

2. Uncertainty propagation using polynomial chaos expansion (PCE) and
response surface method (RSM): PCE and RSM are employed to build global
surrogate models for the performance function of control systems. Based on the
constructed surrogates, the probability of violating an inequality constraint-based
performance metric is estimated at a low computational cost. Furthermore, subset
simulation (SuS) is combined with PCE and RSM to efficiently estimate rare failure
probabilities. A global surrogate is first built using PCE at the initial level of SuS,
after which RSM is applied to progressively refine the local surrogate at the following
subset levels. The novel concept of adaptive PCE and RSM are introduced to obtain
surrogates minimizing the cross-validation error. In order to balance the global
and local prediction behavior, an adaptive experimental design strategy is proposed
to choose the most valuable training samples from the full training set for the
surrogate refinement. Compared with SuS, this innovative surrogate-accelerated SuS
method tremendously reduces the required number of true model evaluations while
providing similar estimation quality. Additionally, an indicator is given to measure
the performance of the constructed surrogate model. This actively allows the user to
monitor the quality of the results and therefore provides the user confidence when
applying this method.
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The results on the uncertainty propagation using PCE and RSM are based on publi-
cations [126, 127].

3. Reliability analysis accelerated by moving least-squares (MLS): Although
PCE and RSM are easy to implement, they may suffer severely from large estimation
errors and the curse of dimensionality when encountering highly nonlinear and
high-dimensional applications. To mitigate these limitations, MLS is exploited
to construct a local low-order approximation for the performance function within
the procedure of SuS. Aiming at reducing the classification error between subset
levels, a new active learning strategy is proposed to add samples that are potentially
misclassified by the intermediate failure boundary to the training set. By this means,
in comparison with conventional SuS, the presented MLS-accelerated SuS gains
much higher efficiency while still providing comparative estimation quality. To deal
with high-dimensional problems, a novel dimensionality reduction strategy is further
proposed for MLS-accelerated SuS. Here, sensitivity analysis is first conducted to
rank the variables according to their importance with respect to the failure event.
Afterwards, unnecessary expansion terms are filtered out based on the ranking, thus
reducing the dimensionality of the feature space. With this dimensionality reduction
strategy, the required training effort can be reduced dramatically without sacrificing
the estimation accuracy.

The contribution related to the MLS-accelerated SuS approach has been partially
published in Journal of Guidance, Control, and Dynamics [125].

4. Kriging-assisted reliability assessment: In addition to the surrogate models
based on rigid polynomial expressions, a kriging-based approach is developed to
accelerate SuS. This thesis integrates the commonly implemented active learning
kriging into SuS. However, the time-demanding hyperparameter optimization step
limits kriging to low-dimensional applications. To address this issue, this thesis resorts
to a partial least-squares-based kriging which reduces the number of hyperparameters
and thereby the computational expense. Aiming at further speeding up the training
procedure, an experimental design strategy is developed to choose influential training
samples from the training set for the kriging model refinement. In addition, adaptive
PCE is employed to detect the best polynomial trend for kriging. It is shown that
the newly presented strategy requires the fewest number of calls to the true function
compared to its counterparts proposed in this thesis.

5. Comparisons of different surrogate models and applications to flight con-
trol systems: This thesis compares the performance of the introduced surrogate-
accelerated reliability analysis methods through several analytical illustrative exam-
ples. Given the comparison results, this thesis proposes a detailed recommendation
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of methods to tackle different types of problems. These approaches are then applied
to solve reliability assessment and RBCO problems for real-life flight control systems
with an application-relevant level of complexity.

1.5 Outline of the Thesis

Before introducing the novel methods developed in this thesis, Chapter 2 recalls the basics
of uncertainty propagation, including uncertainty representations, the failure probability
estimation problem, and several simulation methods for solving this problem. Chapter 3
presents a reliability-based control design optimization framework which can be used
to search for control parameters that satisfy probabilistic requirements with a formal
guarantee. In Chapter 4, two polynomial-based global surrogates, namely, PCE and RSM,
are employed to mimic the true model behaviors and achieve the uncertainty propagation
task. A local surrogate model called MLS is integrated into simulation methods to accelerate
the failure probability estimation procedure in Chapter 5. In Chapter 6, kriging surrogate
modeling technique, which considers both the global trend and the local variability, is
utilized to accelerate the simulation-based reliability analysis approaches. In addition,
kriging and kriging-accelerated SuS are compared with the counterparts using PCE/RSM
and MLS. In Chapter 7, the proposed methods are implemented to flight control systems
for evaluating the failure probability and tune the control parameters. Finally, Chapter 8
concludes this thesis and provides an outlook to future work. In this thesis, all simulation
results are obtained in Matlab R2020a.
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Chapter 2

Fundamentals of Uncertainty
Propagation

Uncertainty propagation is a class of problems that propagate uncertain inputs through a
given computational model and then characterize the statistical features of system outputs,
such as moments, failure probabilities, and distributions. This concept is illustrated in
Figure 2.1.

Figure 2.1: Uncertainty propagation framework.

This chapter presents the classification of uncertainties, the representation of uncer-
tainties, the failure probability estimation problem, and simulation methods for solving
this problem.

2.1 Uncertainties

2.1.1 Types of Uncertainties

Uncertainty arises from the limited knowledge of a state which makes it impossible to
exactly describe the state. It can be generally classified into two categories [128, Ch. 2]:

• Aleatory uncertainty, also known as stochastic uncertainty, is the inherent randomness
of phenomena. Every time we run the same experiment, the outcomes can differ
from each other. For example, if an airplane takes off from the same runway for
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several times, the trajectories may not be identical due to different temperature and
air pressure. If two same airplanes take off under the same condition, the outcomes
may not be exactly the same because of the differences in manufacturing process.
Herein, aleatory uncertainty lies in both the environment and the manufacturing
process.

• Epistemic uncertainty, also known as systematic uncertainty, stems from a lack of
knowledge about how a system should behave. For instance, when building an aircraft
model, engineers may suffer from insufficient understandings or simplify complicated
dynamics (e.g., the short period model). The resulting model uncertainties are
typical epistemic uncertainties. This kind of uncertainty can be reduced by collecting
more information, whereas aleatory uncertainty cannot.

2.1.2 Modeling of Uncertainties

Uncertainties have been represented using a variety of theories, such as probability theory,
interval analysis, and evidence theory. This subsection presents the first two types of
representations.

2.1.2.1 Probability Theory

Uncertainties are usually captured by random variables, which map possible outcomes to
real numbers. Random variables can be continuous and discrete. Only continuous random
variables are discussed in this thesis.

A continuous random variable Θ is described by its probability density function (PDF)
fΘ(θ), where θ is a realization of Θ. It reflects the relative likelihood that the random
variable equals the given outcome. For the sake of brevity, the subscript of fΘ(θ) will be
omitted whenever it is clear from the context. The PDF satisfies the following properties:

f(θ) ≥ 0,∫ ∞

−∞
f(θ)dθ = 1.

(2.1)

The cumulative distribution function (CDF) is defined by the probability that the random
variable Θ is smaller than or equal to the realization θ:

F (θ) = P[Θ ≤ θ] =
∫ θ

−∞
f(ϑ)dϑ. (2.2)

The CDF is a non-decreasing function with limits:

lim
θ→−∞

F (θ) = 0,

lim
θ→+∞

F (θ) = 1.
(2.3)
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Statistical moments are a set of parameters that provide the distribution information
of a random variable in a concise manner. The most typical types of moments are given
as follows.

(1) The mean, also known as the expected value or mathematical expectation, is the first
moment and defined as

µ = Ef [Θ] =
∫ ∞

−∞
θf(θ)dθ, (2.4)

where Ef is the mathematical expectation operator with regard to the PDF f(θ).

(2) The variance, which is the second central moment, measures how closely the outcomes
spread around the mean:

σ2 = Ef [(Θ − µ)2] =
∫ ∞

−∞
(θ − µ)2f(θ)dθ, (2.5)

where σ represents the standard deviation. A small variance means that the random
variable is tightly distributed, whereas a large variance indicates that the values
spread widely around the mean.

(3) The standardized third central moment is called the skewness. It describes the
asymmetry of a distribution and is defined as

τ = 1
σ3Ef [(Θ − µ)3] = 1

σ3

∫ ∞

−∞
(θ − µ)3f(θ)dθ. (2.6)

The skewness of a symmetric distribution is 0. A negative skewness indicates that
the asymmetric distribution is left-skewed, i.e., the left tail is longer than the right
one. If a distribution is skewed to the right, its skewness is positive.

(4) The standardized fourth central moment is known as the kurtosis. This parameter
shows the heaviness of the tails of a distribution. It is given by

κ = 1
σ4Ef [(Θ − µ)4] = 1

σ4

∫ ∞

−∞
(θ − µ)4f(θ)dθ. (2.7)

The kurtosis of a normal distribution is 3. If a distribution has light tails, the kurtosis
is small. On the contrary, heavy-tailed distributions have large kurtosis.

Commonly used distributions are given in Appendix A.

A random vector Θ = [Θ1,Θ2, . . . ,Θn]T is a collection of random variables. It is also
known as a multivariate random variable. The PDF and CDF of Θ can be written as

f(θ) = f(θ1, θ2, . . . , θn),
F (θ) = F (θ1, θ2, . . . , θn)

= P[Θ1 ≤ θ1,Θ2 ≤ θ2, . . . ,Θn ≤ θn],
(2.8)

where θ = [θ1, θ2, . . . , θn]T is a realization of Θ.
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Figure 2.2: Uncertainty representations.

2.1.2.2 Interval Analysis

In many situations, uncertainties are modeled as bounded intervals. A uncertain parameter
θ can take any value between the lower bound θlb and the upper bound θub irrespective of
the relative likelihood. Figure 2.2 shows examples of uncertainty representations using the
bounded interval and the PDF. The bounded interval is simple and easy to explain. It can
be an effective choice when the probability density is unavailable. However, it is nontrivial
to choose the interval bounds. A tight interval may lead to unsafe approximations whereas
a wide one can cause conservative results. Also, the uncertainty propagation within the
framework of interval analysis addresses only the bounds on risks without any statement
about how likely the risks are. These drawbacks can be avoided by modeling uncertainties
using the PDF. Therefore, this thesis exploits the PDF to represent uncertainties and
assumes that the joint PDF of uncertain parameters is available.

2.1.3 Isoprobabilistic Transformation

Uncertain inputs in surrogate modeling techniques and reliability analysis methods are often
required to be mutually independent or/and standard random variables. For instance, PCE
takes advantage of independent input components to construct orthonormal polynomials
by tensor product. FORM and SORM estimate failure probabilities in the standard normal
space. Therefore, it is necessary to convert any given random vector Θ into an independent
standard random vector Ξ (its realization is denoted by ξ) through an isoprobabilistic
transformation:

Ξ = T (Θ). (2.9)

2.1.3.1 Independent Variables

If the variables Θi, i = 1, . . . , n, are independent, the following transformation can be
performed for each component:

ξi = Φ−1(F (θi)), (2.10)
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where Φ(·) is the CDF of the standard normal distribution. In the special case of indepen-
dent normal variables, the isoprobabilistic transformation is simply the standardization:

ξi = θi − µΘi

σΘi

, (2.11)

where µΘi
and σΘi

are the mean and standard deviation of Θi.

2.1.3.2 Rosenblatt Transformation

Assume that the variables Θi are mutually dependent and the joint CDF is known, the
Rosenblatt transformation can be applied. Based on the fact that

F (θ1, θ2, . . . , θn) = F (θ1)F (θ2|θ1) · · ·F (θn|θ1, θ2, . . . , θn−1), (2.12)

where F (θi|θ1, . . . , θi−1) is the CDF of Θi conditioned by Θ1 = θ1, . . . ,Θi−1 = θi−1, the
Rosenblatt transformation [129] is defined as

ξ1 = Φ−1(F (θ1)),
ξ2 = Φ−1(F (θ2|θ1)),

...
ξn = Φ−1(F (θn|θ1, θ2, . . . , θn−1)).

(2.13)

The Rosenblatt transformation is accurate, but requires a full knowledge of the joint CDF
which may not be available in practical applications.

2.1.3.3 Nataf Transformation

The Nataf transformation [130] exploits the marginal CDF F (θi) and the correlation matrix
RΘ = [ρij]n×n to map a random vector from the physical space to the standard normal
space. First, the random vector Θ is transformed to Θ′ with zero mean, unit variance,
and correlation matrix RΘ′ = [ρ′

ij]n×n through the component-wise transformation

θ′
i = Φ−1(F (θi)). (2.14)

The relationship between ρij and ρ′
ij is given by

ρij =
∫ ∞

−∞

∫ ∞

−∞

(
θi − µΘi

σΘi

)(
θj − µΘj

σΘj

)
ϕ2(θ′

i, θ
′
j, ρ

′
ij)dθ′

idθ′
j, (2.15)

where ϕ2(·) represents the PDF of the bivariate standard normal distribution. The
computation of ρ′

ij via Equation (2.15) is rather complex, but empirical formulas for this
are derived in [130]. The second step is to transfer Θ′ to a mutually independent standard
normal random vector Ξ using the orthogonal transformation

Ξ = L−1Θ′, (2.16)

where L is the lower triangular matrix from the Cholesky decomposition of RΘ′ :

RΘ′ = LLT. (2.17)
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2.2 Failure Probability Estimation

Figure 2.3: Joint PDF f(θ), limit-state surface F0, failure domain F , and safe domain
F c.

2.2 Failure Probability Estimation

2.2.1 Definition of the Failure Domain

This thesis assumes that the quantity of interest of a system is described by a deterministic
scalar function g(θ), which is called the limit-state function or performance function. The
hypersurface F0 = {θ ∈ Ω : g(θ) = 0} divides Ω ⊆ Rn, where Ω is the support of the
random vector Θ, into a failure domain F = {θ ∈ Ω : g(θ) ≤ 0} and a safe domain
F c = {θ ∈ Ω : g(θ) > 0}. This hypersurface is known as the limit-state surface. These
concepts are visualized in Figure 2.3, where C is a constant and the contour represents the
joint PDF f(θ). The failure probability can be expressed as an integral over the uncertain
input space:

PF = P[g(θ) ≤ 0] =
∫

F
f(θ)dθ. (2.18)

By the isoprobabilistic transformation, the limit-state function becomes

g(θ) = g(T−1(ξ)) = G(ξ), (2.19)

and Equation (2.18) boils down to

PF = P[G(ξ) ≤ 0]. (2.20)

2.2.2 Evaluation of the Failure Probability

Approximation and simulation methods are two basic categories of strategies evaluating
the failure probability. The most widely used approximation methods are the FORM [6,
Ch. 7] and SORM [7]. Both approaches exploit the Taylor expansion of the limit-state
surface at the MPFP ξ∗ in the standard normal space to estimate the failure probability, as
illustrated in Figure 2.4. Here, ϕ(·) denotes the PDF of the standard normal distribution,
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Chapter 2: Fundamentals of Uncertainty Propagation

Figure 2.4: FORM and SORM approximation.

Ĝ1(ξ) = 0 and Ĝ2(ξ) = 0 denote the approximation of G(ξ) = 0 using the FORM and
SORM, respectively. Hence, the corresponding failure probability estimates are

P̂FORM
F = P[Ĝ1(ξ) ≤ 0] =

∫
Ĝ1(ξ)≤0

ϕ(ξ)dξ,

P̂ SORM
F = P[Ĝ2(ξ) ≤ 0] =

∫
Ĝ2(ξ)≤0

ϕ(ξ)dξ.
(2.21)

Simulation methods estimate the integral in Equation (2.18) by generating samples in
the output space and identifying the percentage of samples falling in the failure domain.
The most popular simulation methods are presented in the following sections.

2.3 Monte Carlo Simulation (MCS)

2.3.1 Standard Algorithm

Monte Carlo simulation (MCS) regards the integral in Equation (2.18) as an expectation:

PF =
∫

F
f(θ)dθ =

∫
Ω
IF(θ)f(θ)dθ = Ef [IF(Θ)], (2.22)

where IF(θ) is the indicator function of the failure event F :

IF(θ) =

 1, if θ ∈ F ,
0, if θ /∈ F .

(2.23)

The MCS estimator can be expressed as the sample mean of the indicator function:

P̂F = 1
N

N∑
i=1

IF(θ(i)), (2.24)

where {θ(i) : i = 1, . . . , N} are N independent and identically distributed (i.i.d.) samples
generated from f(θ). The conventional MCS method is summarized in Algorithm 1.
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2.3 Monte Carlo Simulation (MCS)

Algorithm 1 Conventional MCS algorithm
Input: The PDF of uncertain parameters f(θ); Limit-state function g(θ); The number of

samples N .
Output: The estimate of failure probability P̂F .

1: Generate N i.i.d. samples {θ(i) : i = 1, . . . , N} according to f(θ);
2: Calculate the corresponding limit-state values {g(θ(i)) : i = 1, . . . , N} and evaluate

the indicator values {IF(θ(i)) : i = 1, . . . , N};
3: Estimate the failure probability as in Equation (2.24);
4: return P̂F .

According to the strong law of large numbers (LLN) [131, Ch. 8], given a set of
i.i.d. samples {θ(i) : i = 1, . . . , N} drawn from f(θ) and any function h(·) with finite mean
Ef [h(Θ)], the sample average of {h(θ(i)) : i = 1, . . . , N} converges to the mean Ef [h(Θ)]
almost surely as N → ∞:

P
[

lim
N→∞

1
N

N∑
i=1

h(θ(i)) = Ef [h(Θ)]
]

= 1. (2.25)

Let h(·) = IF(·), one gets

lim
N→∞

1
N

N∑
i=1

IF(θ(i)) = Ef [IF(Θ)] = PF , (2.26)

which means that the MCS estimate converges to the true failure probability.

2.3.2 Statistics and Accuracy of the Estimator

2.3.2.1 Mean and Variance

The mean of the MCS estimator is

E
[
P̂F

]
= Ef

[
1
N

N∑
i=1

IF(θ(i))
]

= 1
N

N∑
i=1

Ef

[
IF(θ(i))

]
= Ef [IF(Θ)] = PF , (2.27)

demonstrating that the estimator is unbiased. Its variance is given by

Var
[
P̂F

]
= Varf

[
1
N

N∑
i=1

IF(θ(i))
]

= 1
N2

N∑
i=1

Varf

[
IF(θ(i))

]
= 1
N

Varf [IF(Θ)] . (2.28)

In essence, IF(Θ) is a Bernoulli-distributed random variable [131, Ch. 4], i.e.,

P [IF(Θ) = 1] = PF ,

P [IF(Θ) = 0] = 1 − PF ,
(2.29)

with mean and variance:
Ef [IF(Θ)] = PF ,

Varf [IF(Θ)] = PF (1 − PF ).
(2.30)
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Figure 2.5: Confidence interval for the standard normal distribution.

Inserting Equation (2.30) into (2.28) yields

Var
[
P̂F

]
= PF (1 − PF )

N
≈ P̂F (1 − P̂F )

N
. (2.31)

2.3.2.2 Confidence Interval and Coefficient of Variation

Based on the central limit theorem (CLT) [131, Ch. 8], the average of IF(θ(i)) tends to
obey the following normal distribution as N → ∞:

1
N

N∑
i=1

IF(θ(i)) ∼ N
(
Ef [IF(Θ)] , 1

N
Varf [IF(Θ)]

)
. (2.32)

This indicates that, when N is large enough, the MCS estimate is normally distributed:

P̂F ∼ N
(
E
[
P̂F

]
,Var

[
P̂F

])
. (2.33)

A confidence interval (CI) of the estimate is a range of possible values
[
P̂F,lb, P̂F,ub

]
with

a confidence level 1 − α, where α ∈ [0, 1]. The probability of an estimate falling in this
interval is 1 − α, whereas the probability of lying outside is α. For the standard normal
distribution, the CI is usually given by

[
Φ−1(α/2),Φ−1(1 − α/2)

]
, (2.34)

as illustrated in Figure 2.5. The CI of the normally distributed estimate in Equation (2.33)
is thus given by

[
P̂F,lb, P̂F,ub

]
=
[
E
[
P̂F

]
+ Φ−1(α/2)

√
Var

[
P̂F

]
,E
[
P̂F

]
+ Φ−1(1 − α/2)

√
Var

[
P̂F

]]

≈

P̂F + Φ−1(α/2)

√
P̂F (1 − P̂F )

N
, P̂F + Φ−1(1 − α/2)

√
P̂F (1 − P̂F )

N

 .
(2.35)
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The coefficient of variation (c.o.v.) is a commonly used parameter to evaluate the
accuracy of the estimator. It is defined as the relative standard deviation with regard to
the mean:

cv = σ

µ
. (2.36)

The c.o.v. of the MCS estimator is give by

cv =

√
Var

[
P̂F

]
E
[
P̂F

] =
√

1 − PF

NPF

≈

√√√√1 − P̂F

NP̂F

. (2.37)

The relative confidence interval can be derived by dividing Equation (2.35) by the true
probability and substituting Equation (2.37) into it, which results in:[

P̂F,lb/PF , P̂F,ub/PF

]
=
[
1 + Φ−1(α/2)cv, 1 + Φ−1(1 − α/2)cv

]
. (2.38)

This indicates that the relative confidence interval only depends on the c.o.v. given a
confidence level.

2.3.3 Efficiency of the Estimator

To achieve a desired accuracy cv, according to Equation (2.37), the required number of
samples is derived as:

Nreq = 1 − PF

c2
vPF

. (2.39)

For rare events, it can be approximated by Nreq ≈ 1/(c2
vPF ). For instance, estimating

a failure probability PF = 10−m with a 10% c.o.v. requires about 10m+2 samples. As a
consequence, MCS is inefficient at the assessment of rare failure probabilities. This results
from the fact that the MCS technique generates samples from the original PDF f(θ) but
most of these points do not lie in the failure domain. Also, achieving a prescribed accuracy
level needs sufficient number of samples in the failure domain.

2.4 Importance Sampling (IS)

2.4.1 Standard Algorithm

Importance sampling (IS) [18] is a variance reduction approach that seeks to improve the
efficiency of MCS by shifting the PDF for sampling towards the failure domain. The
failure probability in Equation (2.22) can be rewritten as

PF =
∫

Ω
IF(θ)f(θ)dθ =

∫
Ω
IF(θ)f(θ)

q(θ) q(θ)dθ

=
∫

Ω
IF(θ)w(θ)q(θ)dθ = Eq [IF(Θ)w(Θ)] ,

(2.40)
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Figure 2.6: General concept of IS.

Algorithm 2 Basic IS algorithm [18]
Input: The PDF of uncertain parameters f(θ); The importance sampling density q(θ);

Limit-state function g(θ); The number of samples N .
Output: The estimate of failure probability P̂F .

1: Generate N i.i.d. samples {θ(i) : i = 1, . . . , N} according to q(θ);
2: Calculate the corresponding limit-state values {g(θ(i)) : i = 1, . . . , N}, evaluate the

indicator values {IF(θ(i)) : i = 1, . . . , N}, and compute the importance weights
{w(θ(i)) : i = 1, . . . , N};

3: Estimate the failure probability as in Equation (2.41);
4: return P̂F .

where q(θ) is the importance sampling density (ISD), and w(θ) = f(θ)/q(θ) is the
importance weight function. Instead of drawing samples from the original PDF f(θ), the
IS method generates samples from the ISD q(θ) which is closer to the failure domain. This
concept is illustrated in Figure 2.6. The samples drawn from q(θ) are more likely to lie
in the failure domain. Therefore, fewer samples are required by IS to generate the same
number of failure sampling points. By this means, compared with MCS, IS gains higher
efficiency for failure probability evaluation.

The IS estimator is given by

P̂F = 1
N

N∑
i=1

IF(θ(i))w(θ(i)) = 1
N

N∑
i=1

IF(θ(i))f(θ(i))
q(θ(i)) , (2.41)

where {θ(i) : i = 1, . . . , N} are N i.i.d. samples generated from q(θ). According to the
strong law of large numbers (LLN) (see Equation (2.25)), the IS estimator converges almost
surely to the true failure probability:

lim
N→∞

1
N

N∑
i=1

IF(θ(i))w(θ(i)) = Eq [IF(Θ)w(Θ)] = PF . (2.42)

The basic IS algorithm is given in Algorithm 2, where the ISD q(θ) is prescribed. The
selection of the ISD will be discussed in Section 2.4.3.
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2.4 Importance Sampling (IS)

2.4.2 Statistics of the Estimator

The mean of the IS estimator is

E
[
P̂F

]
= Eq

[
1
N

N∑
i=1

IF(θ(i))w(θ(i))
]

= 1
N

N∑
i=1

Eq

[
IF(θ(i))w(θ(i))

]
= Eq [IF(Θ)w(Θ)] = PF ,

(2.43)

which proves that the IS estimator is unbiased. The variance of the estimation is

Var
[
P̂F

]
= Varq

[
1
N

N∑
i=1

IF(θ(i))w(θ(i))
]

= 1
N2

N∑
i=1

Varq

[
IF(θ(i))w(θ(i))

]
= 1
N

Varq [IF(Θ)w(Θ)] = 1
N

Varq

[
IF(Θ)f(Θ)

q(Θ)

]
.

(2.44)

Due to the following property of variance for any function h(·):

Var [h(Θ)] = E
[
h(Θ)2

]
− E [h(Θ)]2 , (2.45)

Equation (2.44) becomes

Var
[
P̂F

]
= 1
N

Eq

(IF(Θ)f(Θ)
q(Θ)

)2
− P 2

F

 . (2.46)

According to Equations (2.36), (2.43), and (2.46), the required number of samples given a
prescribed accuracy cv is computed by

Nreq =
Eq

[(
IF(Θ)f(Θ)

q(Θ)

)2
]

− P 2
F

c2
vP

2
F

. (2.47)

These results show that the accuracy and efficiency of the IS estimator highly depends on
the selection of the ISD q(θ). If q(θ) = f(θ), Equation (2.46) reduces to Equation (2.31)
and the IS estimator is equal to the MCS estimator. The key of IS is to choose a suitable
ISD that results in a lower variance than MCS. This is the reason why the IS approach is
a type of variance reduction technique.

2.4.3 Selection of the Importance Sampling Density

By minimizing the variance of IS, the optimal ISD is obtained:

q∗(θ) = f(θ|F) = IF(θ)f(θ)
PF

. (2.48)

The optimal ISD is shown in Figure 2.7. It is straightforward to show that this ISD
leads to a zero estimation variance. A single sample generated from q∗(θ) is sufficient to
accurately assess the failure probability. However, it is impossible to use the optimal ISD,
because the failure probability PF and the indicator function IF(θ) are unknown before
sampling.
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Figure 2.7: Optimal importance sampling density.

Figure 2.8: MPFP-based importance sampling density.

Various techniques have been developed to construct the ISD. A popular strategy is
shifting the mean of the original parameter distribution to the MPFP [18]. In the standard
normal space, the original parameter distribution is ϕ(ξ) and the ISD is given by

q(ξ) = ϕ(ξ − ξ∗), (2.49)

as illustrated in Figure 2.8. Drawing samples from q(ξ) which is closer to the failure
domain speeds up the convergence of the estimation. However, this method requires
the knowledge of the MPFP. Finding the MPFP is an optimization process, which is a
nontrivial task especially for high-dimensional problems.

2.4.4 Illustrative Example

Consider the following 2-dimensional reliability problem with a smooth limit-state function
given by

g(ξ) = a−
(
e0.1ξ1 + e0.1ξ2

)
, (2.50)

where a is a constant and ξi, i = 1, 2, are independent standard normal random variables,
i.e., ξi ∼ N (0, 1). The failure domain is defined as F = {ξ ∈ R2 : g(ξ) ≤ 0}. Figure 2.9
shows the sampling strategies of MCS and IS. Here, a = 2.49 and N = 2000 samples are
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Figure 2.9: Samples for MCS and IS.

generated by both approaches. As shown in Figure 2.9a, MCS draws samples from the
original PDF ϕ(ξ) and only a few samples fall in the failure domain. In Figure 2.9b, the
MPFP ξ∗ is first calculated by solving the following constrained optimization problem:

ξ∗ = arg min 1
2ξ

Tξ s.t. g(ξ) = 0. (2.51)

After that, IS generates samples from the ISD in Equation (2.49). A large proportion of
the generated samples lie in the failure domain. By shifting the PDF for sampling towards
the failure domain, the estimation accuracy is improved significantly.

The efficiency of MCS and IS is compared in Figure 2.10. In this graph, the required
number of samples for different accuracy levels cv = [0.05, 0.1, 0.2]T and probabilities of
different orders of magnitude are computed according to Equations (2.39) and (2.47).
These probabilities of different orders of magnitude and the corresponding a are listed in
Table 2.1. As illustrated in this figure, for both methods, more samples are necessary to
achieve a higher accuracy level or to estimate a smaller failure probability. It should be
emphasized that IS is considerably more efficient than MCS, especially for rare events.
The high efficiency of IS, in this example, is based on the accessibility of the MPFP. For
systems with multiple failure domains or complex nonlinearity where the MPFP is difficult
to find, the accuracy and efficiency of IS may be degraded.

Table 2.1: Parameters and the corresponding failure probabilities.

a 2.81 2.71 2.61 2.49 2.36 2.20

PF 1.01 × 10−6 1.05 × 10−5 9.81 × 10−5 1.11 × 10−3 1.07 × 10−2 9.49 × 10−2
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Figure 2.10: Number of samples required by MCS and IS for given c.o.v.

2.5 Subset Simulation (SuS)

2.5.1 Standard Algorithm

The subset simulation (SuS) method [26, 27] is an adaptive Markov chain Monte Carlo
(MCMC) procedure to efficiently estimate small failure probabilities. The basic idea
behind SuS is to introduce a series of nested intermediate failure domains or subsets Fj,
j = 1, 2, . . . ,m, with F1 ⊃ F2 ⊃ · · · ⊃ Fm = F , and then transcribe the small failure
probability into a product of larger conditional probabilities:

PF = P[Fm] = P[Fm|Fm−1]P[Fm−1] = · · ·

= P[Fm|Fm−1] · · ·P[F2|F1]P[F1] =
m∏

j=1
P[Fj|Fj−1],

(2.52)

where F0 = Ω is the support of the random variable Θ and P[F1|F0] = P[F1]. The
intermediate failure domains Fj, j = 1, 2, . . . ,m, are defined as Fj = {θ ∈ Ω : g(θ) ≤ bj},
where bj, j = 1, 2, . . . ,m, are intermediate thresholds and b1 > b2 > · · · > bm = 0. In
practice, bj, j = 1, . . . ,m− 1, are chosen to be the p0-percentile of the function responses
at each subset level (j-th level), such that the estimates of P[Fj|Fj−1], j = 1, . . . ,m− 1,
correspond to the preset conditional probability p0, whereas that of P[Fm|Fm−1] is greater
than or equal to p0. The conditional probability p0 should be large enough to enable the
efficient estimation of P[Fj|Fj−1], j = 1, . . . ,m, by simulation. It is demonstrated in [132]
that p0 ∈ [0.1, 0.3] leads to similar efficiency as the optimal choice of p0. In this thesis, p0

is chosen to be 0.1.
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Algorithm 3 Basic SuS algorithm [26, 27]
Input: The PDF of uncertain parameters f(θ); Limit-state function g(θ); Conditional

probability p0; The number of samples per subset level N .
Output: The estimate of failure probability P̂F .

1: Draw N i.i.d. samples {θ(i)
0 : i = 1, . . . , N} in accordance with f(θ);

2: Calculate the corresponding limit-state values {g(θ(i)
0 ) : i = 1, . . . , N};

3: Find b1 as the p0-percentile of the responses {g(θ(i)
0 ) : i = 1, . . . , N} and set F1 =

{θ ∈ Ω : g(θ) ≤ b1};
4: Set j = 1;
5: while bj > 0 do
6: Consider samples θ(i)

j−1 ∈ Fj as seeds {θ(i)
j−1,s : i = 1, . . . , Ns}, where Ns = p0N is

an integer;
7: Employ an MCMC sampling approach to generate N samples {θ(i)

j : i = 1, . . . , N}
from the seeds;

8: Obtain the corresponding limit-state values {g(θ(i)
j ) : i = 1, . . . , N};

9: Find bj+1 as the p0-percentile of {g(θ(i)
j ) : i = 1, . . . , N} and set Fj+1 = {θ ∈ Ω :

g(θ) ≤ bj+1};
10: Set j = j + 1;
11: end while
12: Set the total number of subsets m = j, set bm = 0, denote the number of samples

θ
(i)
m−1 ∈ F by NF , and estimate the failure probability as in Eq. (2.54);

13: return P̂F .

The probability P[F1|F0] is approximated by MCS through drawing i.i.d. samples from
f(θ). For estimating P[Fj|Fj−1], j = 2, . . . ,m, MCMC is implemented to generate samples
from the conditional joint PDF f(θ|Fj−1) using samples that fall in Fj−1 as seeds, where

f(θ|Fj−1) =
f(θ)IFj−1(θ)

P[Fj−1]
, j = 2, . . . ,m. (2.53)

MCMC algorithms will be discussed in detail in Section 2.5.2. In the end, the estimate of
failure probability is given by

P̂F = pm−1
0

NF

N
, (2.54)

where N is the number of samples at each subset level (j = 0, 1, . . . ,m− 1) and NF is the
number of samples lying in the failure domain at the last level of SuS. The general SuS
method is summarized in Algorithm 3.

An example illustrating the process of SuS is given in Figure 2.11. Herein, the reliability
problem in Section 2.4.4 with a = 2.49 is solved by SuS with p0 = 0.1 and N = 1000.
The uncertain parameters follow the independent standard normal distribution, which
means θ = ξ in this example. At the initial level, MCS samples ξ(i)

0 are drawn from
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Figure 2.11: SuS process.

ϕ(ξ), as shown in Figure 2.11a. The intermediate boundary {ξ ∈ Ω : g(ξ) = b1} and
the intermediate failure domain F1 (the region above the intermediate boundary) are
determined. Meanwhile, 10% of these samples lying in F1 are chosen as the seeds ξ(i)

0,s. Next,
MCMC sampling is employed to generate samples ξ(i)

1 that locate in F1, as illustrated in
Figure 2.11b. Then, the intermediate boundary {ξ ∈ Ω : g(ξ) = b2} and the intermediate
failure domain F2 are decided while the seeds ξ(i)

1,s are selected. The same steps (MCMC
sampling and finding seeds) are repeated until enough samples (≥ p0N) generated in a
certain level fall in the failure domain F . In this example, b3 = 0 and F3 = F , as depicted
in Figure 2.11c. Figure 2.11d shows all the subset levels. SuS detects the failure domain
gradually by choosing seeds and generating samples in the intermediate failure domain.
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2.5.2 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) sampling [28, Ch. 6] enables the efficient generation
of samples in accordance with an arbitrary target distribution. The samples are generated
as the states of Markov chains whose stationary distribution is the target distribution.
This subsection introduces the concept of Markov chain, the principle of MCMC, and
several popular MCMC algorithms.

2.5.2.1 Markov Chain

A Markov chain is a stochastic model that represents a sequence of random variables
Θ(i), i = 1, 2, . . . , with the following Markov property:

P
[
Θ(i+1) = θ(i+1)

∣∣∣Θ(1) = θ(1),Θ(2) = θ(2), . . . ,Θ(i) = θ(i)
]

=P
[
Θ(i+1) = θ(i+1)

∣∣∣Θ(i) = θ(i)
] (2.55)

for all i and θ(i). This property means that the future state depends only on the current
state and not on the previous states. If the transition probability does not change over
time, i.e.,

P
[
Θ(i+1) = θnew

∣∣∣Θ(i) = θold
]

= P
[
Θ(2) = θnew

∣∣∣Θ(1) = θold
]

(2.56)

for all i, θold, and θnew, the Markov chain is time-homogeneous. In the following context,
only the time-homogeneous Markov chain is discussed.

For a continuous state space, the conditional density of Θ(i+1) = θnew given Θ(i) = θold

is described by the transition density f(θnew|θold). For a discrete state space, transition
probabilities are collected by the transition matrix T ∈ [0, 1]n×n, where n is the size of the
state space. The elements Tkl describes the transition probability from the l-th state to
the k-th state:

Tkl = P
[
Θ(i+1) = θk

∣∣∣Θ(i) = θl

]
(2.57)

An example is given in Figure 2.12 with states S = {θ1, θ2, θ3} and transition matrix

T =


0.5 0.2 0.2
0.1 0.6 0.3
0.4 0.2 0.5

 . (2.58)

A Markov chain is irreducible or ergodic if any state in the state space is reachable from
any other states by finite transitions with positive probability. A state is called periodic if
it is visited at regular intervals, otherwise it is aperiodic. If the states of a Markov chain
are aperiodic, this Markov chain is called aperiodic. An irreducible and aperiodic Markov
chain has a stationary distribution π(θ) irrespective of its initial condition π(1)(θ):

π(i)(θ) → π(θ) as i → ∞, (2.59)
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Figure 2.12: Example of a discrete-state Markov chain with three states.

where π(i)(θ) is the distribution of Θ(i). For discrete-state Markov chains, Equation (2.59)
can be rewritten as

π(i) → π as i → ∞, (2.60)

where π(i) = [π(i)
1 , . . . , π(i)

n ]T represents the probability mass of Θ(i), each element describes
the probability of the corresponding state: π(i)

k = P[Θ(i) = θk], k = 1, . . . , n, and

π(i+1) = Tπ(i). (2.61)

The stationary probability mass is denoted by π. In the example depicted in Figure 2.12,
the probability mass vector converges to π = [0.2857, 0.3469, 0.3673]T given any initial
probability mass π(1). The transient period until the chain reaches its stationary distribu-
tion is called burn-in phase. After the burn-in phase i = 1, . . . , r, the distribution of Θ(i)

equals the stationary distribution

π(i)(θ) = π(θ) or π(i) = π (2.62)

for any i ≥ r. This property holds for a single chain as well, i.e., the distribution of
{θ(i+1), . . . , θ(i+k)} is equal to π(θ) or π for any k and i ≥ r. If the initial distribution
of a Markov chain is equivalent to the stationary distribution, then the Markov chain is
stationary, which means the previous property holds for any k and i.

A Markov chain satisfies the detailed balance condition if there exists a function π(θ)
satisfying

π(θold)f(θnew|θold) = π(θnew)f(θold|θnew) (2.63)

for every θold and θnew. If this condition is fulfilled, π(θ) is the stationary distribution of
the Markov chain. This is proved as follows:∫

π(θold)f(θnew|θold)dθold =
∫
π(θnew)f(θold|θnew)dθold

= π(θnew)
∫
f(θold|θnew)dθold = π(θnew),

(2.64)

which means that the distribution of the next state is equal to the current distribution
π(θ). The detailed balance condition indicates that the probability transferred from θold

to θnew is the same as the probability transferred from θnew back to θold. This condition is
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Figure 2.13: MCMC sampling in SuS.

sufficient but not necessary for π(θ) to be a stationary distribution. The detailed balance
condition for discrete-state Markov chains requires that there exists a probability mass
vector π = [π1, . . . , πn]T satisfying

πlTkl = πkTlk (2.65)

for any l and k. In the example shown in Figure 2.12, the stationary probability mass
π = [0.2857, 0.3469, 0.3673]T does not satisfy Equation (2.65).

2.5.2.2 MCMC Sampling

MCMC sampling consists in generating states of a Markov chain whose stationary distri-
bution is the target distribution. This is achieved by selecting a transition density that
results in an irreducible and aperiodic Markov chain and satisfies the detailed balance
condition with regard to the stationary distribution of the Markov chain. Note that the
samples generated by MCMC sampling are not independent, which is different with using
conventional MCS. Drawing independent samples is generally more efficient than generating
dependent samples. However, it is challenging or impossible to directly draw independent
samples from a complex distribution. In the following, how to apply MCMC sampling in
SuS is first introduced and then several popular MCMC algorithms are presented.

MCMC Sampling in SuS

At each level of SuS, Ns = p0N samples falling in the intermediate failure domain Fj are
selected as seeds for MCMC sampling. The number of chains is equal to the number of
seeds and N new samples are generated, as illustrated in Figure 2.13. As a result, each
seed generates a Markov chain with 1/p0 samples. An alternative choice is to draw N −Ns

new samples and there are N samples in total including the seeds in the intermediate
failure domain. Furthermore, the seeds at each level of SuS are already distributed as
the target stationary distribution f(θ|Fj). As a consequence, the derived samples comply
with the target distribution from the beginning of the MCMC sampling procedure. The
following MCMC algorithms which generate samples from a single seed can be easily
adapted to draw samples from multiple seeds.
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Metropolis-Hastings Algorithm

The Metropolis-Hastings (MH) algorithm employs a transition PDF f(θ̃|θ(i)) as follows to
sample from the target PDF π(θ):

f(θ̃|θ(i)) = pa(θ(i), θ̃)p(θ̃|θ(i)) + (1 − Pa(θ(i)))δ(θ̃ − θ(i)), (2.66)

where p(θ̃|θ(i)) is the proposal PDF, δ is the Dirac function, pa(θ(i), θ̃) is the acceptance
probability of a candidate sample θ̃ defined as

pa(θ(i), θ̃) = min
{

1, π(θ̃)p(θ(i)|θ̃)
π(θ(i))p(θ̃|θ(i))

}
, (2.67)

and
Pa(θ(i)) =

∫
pa(θ(i), θ̃)p(θ̃|θ(i))dθ̃. (2.68)

The proposal distribution is typically chosen as Gaussian or uniform distribution. For a
symmetric proposal density, p(θ(i)|θ̃) = p(θ̃|θ(i)), then the acceptance probability reduces
to

pa(θ(i), θ̃) = min
{

1, π(θ̃)
π(θ(i))

}
. (2.69)

It is trivial to show that the transition density in Equation (2.66) satisfies the detailed
balance condition when θ̃ = θ(i). For the case θ̃ ̸= θ(i), one has

π(θ(i))f(θ̃|θ(i)) = π(θ(i))pa(θ(i), θ̃)p(θ̃|θ(i))

= π(θ(i))p(θ̃|θ(i)) min
{

1, π(θ̃)p(θ(i)|θ̃)
π(θ(i))p(θ̃|θ(i))

}
.

(2.70)

By leveraging the identity

b · min
{

1, a
b

}
≡ a · min

{
1, b
a

}
, a, b > 0, (2.71)

Equation (2.70) becomes

π(θ(i))f(θ̃|θ(i)) = π(θ̃)p(θ(i)|θ̃) min
{

1, π(θ(i))p(θ̃|θ(i))
π(θ̃)p(θ(i)|θ̃)

}
= π(θ̃)f(θ(i)|θ̃),

(2.72)

indicating that the transition PDF in Equation (2.66) fulfills the detailed balance condition
regardless of the choice of the proposal PDF.

The MH algorithm consists of two main steps. First, a candidate sample θ̃ is generated
from the proposal PDF p(θ̃|θ(i)). Next, θ̃ is accepted as the new sample θ(i+1) with
probability pa(θ(i), θ̃), or rejected with the chain remaining the same: θ(i+1) = θ(i). The
detailed algorithm is given in Algorithm 4.
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Algorithm 4 Metropolis-Hastings algorithm [27, Ch. 4]
Input: Target distribution π(θ); Proposal PDF p(θ̃|θ(i)); Initial sample θ(0); The number

of samples N .
Output: Samples {θ(i) : i = 1, . . . , N} whose stationary distribution is π(θ).

1: for i = 0, . . . , N − 1 do
2: Generate a candidate sample θ̃ from p(θ̃|θ(i));
3: Calculate the acceptance probability pa(θ(i), θ̃) according to Equation (2.67);
4: Generate a sample u from U(0, 1);
5: if u ≤ pa(θ(i), θ̃) then
6: Accept θ̃ and set θ(i+1) = θ̃;
7: else
8: Reject θ̃ and set θ(i+1) = θ(i);
9: end if

10: end for
11: return {θ(i) : i = 1, . . . , N}.

In the context of SuS, the target distribution π(θ) = f(θ|Fj), j = 1, . . . ,m − 1.
Inserting Equation (2.53) into Equation (2.67) yields

pa(θ(i), θ̃) = min
{

1, f(θ̃|Fj)p(θ(i)|θ̃)
f(θ(i)|Fj)p(θ̃|θ(i))

}

= min
{

1, f(θ̃)p(θ(i)|θ̃)
f(θ(i))p(θ̃|θ(i))

IFj
(θ̃)

}

= min
{

1, f(θ̃)p(θ(i)|θ̃)
f(θ(i))p(θ̃|θ(i))

}
IFj

(θ̃)

= p̃a(θ(i), θ̃)IFj
(θ),

(2.73)

where
p̃a(θ(i), θ̃) = min

{
1, f(θ̃)p(θ(i)|θ̃)
f(θ(i))p(θ̃|θ(i))

}
. (2.74)

This suggests that the acceptance procedure is divided into two parts: accepting the
candidate θ̃ with probability p̃a(θ(i), θ̃) and accepting θ̃ if it falls in the intermediate
failure domain Fj. The MH algorithm for SuS is summarized in Algorithm 5. As is well
known, the MH algorithm suffers from inefficiency in high dimensions since the acceptance
probability p̃a(θ(i), θ̃) decreases significantly with growing dimensions [20, 26].

Component-Wise Metropolis-Hastings Algorithm

To overcome the low acceptance ratio of the MH algorithm for high-dimensional problems,
Au and Beck [26] proposed the component-wise MH algorithm in the context of SuS.
Instead of sampling from an n-dimensional proposal PDF p(θ̃|θ(i)) and accepting the
candidate with probability p̃a(θ(i), θ̃), the component-wise MH algorithm generates each
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Algorithm 5 The MH algorithm for SuS [32]
Input: The PDF of uncertain parameters f(θ); Failure domain Fj ; Proposal PDF p(θ̃|θ(i));

Initial sample θ(0); The number of samples N .
Output: Samples {θ(i) : i = 1, . . . , N} whose stationary distribution is f(θ|Fj).

1: for i = 0, . . . , N − 1 do
2: Generate a candidate sample θ̃ from p(θ̃|θ(i));
3: Calculate the acceptance probability p̃a(θ(i), θ̃) according to Equation (2.74);
4: Generate a sample u from U(0, 1);
5: if u ≤ p̃a(θ(i), θ̃) then
6: Accept θ̃ and set θ̄ = θ̃;
7: else
8: Reject θ̃ and set θ̄ = θ(i);
9: end if

10: if θ̄ ∈ Fj then
11: Accept θ̄ and set θ(i+1) = θ̄;
12: else
13: Reject θ̄ and set θ(i+1) = θ(i);
14: end if
15: end for
16: return {θ(i) : i = 1, . . . , N}.

sample component θ̃k, k = 1, . . . , n, from a 1-dimensional proposal density pk(θ̃k|θ(i)
k ) and

accepts θ̃k with probability

p̃a,k(θ(i)
k , θ̃k) = min

1, fk(θ̃k)pk(θ(i)
k |θ̃k)

fk(θ(i)
k )pk(θ̃k|θ(i)

k )

 . (2.75)

The component-wise transition density is defined as

fk(θ̃k|θ(i)
k ) = p̃a,k(θ(i)

k , θ̃k)pk(θ̃k|θ(i)
k ) + (1 − Pa,k(θ(i)

k ))δ(θ̃k − θ
(i)
k ), (2.76)

with
Pa,k(θ(i)

k ) =
∫
p̃a,k(θ(i)

k , θ̃k)pk(θ̃k|θ(i)
k )dθ̃k. (2.77)

Additionally, the random variable space is assumed to be independent:

f(θ) =
n∏

k=1
fk(θk). (2.78)

The component-wise MH algorithm is presented in Algorithm 6.

To show that the stationary distribution of the generated samples is f(θ|Fj), it is
necessary to prove that the Markov chain satisfies the detailed balance condition:

f(θ(i)|Fj)f(θ̃|θ(i)) = f(θ̃|Fj)f(θ(i)|θ̃). (2.79)
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Algorithm 6 The component-wise MH algorithm for SuS [26]
Input: The PDF of uncertain parameters fk(θk), k = 1, . . . , n; Failure domain Fj ; Proposal

PDF pk(θ̃k|θ(i)
k ), k = 1, . . . , n; Initial sample θ(0) = [θ(0)

1 , . . . , θ(0)
n ]T; The number of

samples N .
Output: Samples {θ(i) : i = 1, . . . , N} whose stationary distribution is f(θ|Fj).

1: for i = 0, . . . , N − 1 do
2: for k = 1, . . . , n do
3: Generate a sample component θ̃k from pk(θ̃k|θ(i)

k );
4: Calculate the acceptance probability p̃a,k(θ(i)

k , θ̃k) according to Equation (2.75);
5: Generate a sample u from U(0, 1);
6: if u ≤ p̃a,k(θ(i)

k , θ̃k) then
7: Accept θ̃k and set θ̄k = θ̃k;
8: else
9: Reject θ̃k and set θ̄k = θ

(i)
k ;

10: end if
11: end for
12: if θ̄ = [θ̄1, . . . , θ̄n]T ∈ Fj then
13: Accept θ̄ and set θ(i+1) = θ̄;
14: else
15: Reject θ̄ and set θ(i+1) = θ(i);
16: end if
17: end for
18: return {θ(i) : i = 1, . . . , N}.

It is trivial to show that this condition holds for θ̃ = θ(i) or any candidate does not lie in
Fj. Thus, the detailed balance condition remained to be demonstrated reduces to

f(θ(i))f(θ̃|θ(i)) = f(θ̃)f(θ(i)|θ̃), θ(i), θ̃ ∈ Fj, θ̃ ̸= θ(i). (2.80)

For each component, if θ̃k ̸= θ
(i)
k , one has

fk(θ(i)
k )fk(θ̃k|θ(i)

k ) = fk(θ(i)
k )p̃a,k(θ(i)

k , θ̃k)pk(θ̃k|θ(i)
k )

= fk(θ(i)
k )pk(θ̃k|θ(i)

k ) min

1, fk(θ̃k)pk(θ(i)
k |θ̃k)

fk(θ(i)
k )pk(θ̃k|θ(i)

k )


= fk(θ̃k)pk(θ(i)

k |θ̃k) min

1, fk(θ(i)
k )pk(θ̃k|θ(i)

k )
fk(θ̃k)pk(θ(i)

k |θ̃k)


= fk(θ̃k)fk(θ(i)

k |θ̃k),

(2.81)
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which indicates that the detailed balance condition is satisfied. Besides, it is straightforward
to show the fulfillment of the condition if θ̃k = θ

(i)
k . Due to the independence of random

variables, the transition PDF between two states in Fj can be expressed as follows:

f(θ̃|θ(i)) =
n∏

k=1
fk(θ̃k|θ(i)

k ). (2.82)

By substituting Equations (2.78) and (2.82) into f(θ(i))f(θ̃|θ(i)), for θ(i), θ̃ ∈ Fj , one gets

f(θ(i))f(θ̃|θ(i)) =
n∏

k=1
fk(θ(i)

k )fk(θ̃k|θ(i)
k )

=
n∏

k=1
fk(θ̃k)fk(θ(i)

k |θ̃k) = f(θ̃)f(θ(i)|θ̃).
(2.83)

Hence, Equation (2.80) is proved, and the chain {θ(i)} generated by the component-wise
MH algorithm satisfies the detailed balance condition.

There exists two phases concerning the acceptance of candidate samples: the previous
phase accepts samples with probability p̃a,k(θ(i)

k , θ̃k), and the latter phase based on whether
the candidates are located in Fj. Since each sample component is rejected independently
in the first phase with probability p̃r,k = 1 − p̃a,k(θ(i)

k , θ̃k), the rejection probability in this
phase is given by

P[R1] =
n∏

k=1
p̃r,k → 0 as n → ∞. (2.84)

Therefore, the component-wise MH algorithm is suitable for coping with high-dimensional
reliability analysis problems.

Gaussian Conditional Sampling

Gaussian conditional sampling, proposed by Papaioannou et al. [32], is another MCMC
sampling approach that addresses the low acceptance ratio of the MH algorithm in high
dimensions. This technique generates samples from a conditional PDF ϕn(ξ|Fj) in the
standard normal space, where ϕn(ξ) = ∏n

k=1 ϕ(ξk) denotes the n-dimensional independent
standard normal distribution. Any given random vector Θ can be transformed into an
independent standard normal random vector Ξ through the isoprobabilistic transformation
(see Section 2.1.3). The Gaussian conditional sampling algorithm draws samples ξ̃ from a
proposal density which is an n-dimensional independent normal distribution with mean
Rξ(i) and covariance I−RRT, denoted by ϕn(ξ̃−Rξ(i); I−RRT), where I is the identity
matrix, R = diag{ρ1, . . . , ρn} is a correlation matrix, and ρk, k = 1, . . . , n, are correlation
coefficients. The proposal density is represented as

p(ξ̃|ξ(i)) = ϕn(ξ̃ −Rξ(i); I −RRT)

=
n∏

k=1
ϕ(ξ̃k − ρkξ

(i)
k ; 1 − ρ2

k)

=
n∏

k=1
pk(ξ̃k|ξ(i)

k ),

(2.85)
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Algorithm 7 The Gaussian conditional sampling algorithm for SuS [32]
Input: Failure domain Fj ; Initial sample ξ(0); Correlation coefficient ρk, k = 1, . . . , n; The

number of samples N .
Output: Samples {ξ(i) : i = 1, . . . , N} whose stationary distribution is ϕn(ξ|Fj).

1: for i = 0, . . . , N − 1 do
2: for k = 1, . . . , n do
3: Generate a sample component ξ̃k from pk(ξ̃k|ξ(i)

k ) as in Equation (2.86);
4: end for
5: if ξ̃ ∈ Fj then
6: Accept ξ̃ and set ξ(i+1) = ξ̃;
7: else
8: Reject ξ̃ and set ξ(i+1) = ξ(i);
9: end if

10: end for
11: return {ξ(i) : i = 1, . . . , N}.

with
pk(ξ̃k|ξ(i)

k ) = ϕ(ξ̃k − ρkξ
(i)
k ; 1 − ρ2

k). (2.86)

The transition PDF is given by

f(ξ̃|ξ(i)) = ϕn(ξ̃ −Rξ(i); I −RRT)IFj
(ξ̃) + (1 − Pa(ξ(i)))δ(ξ̃ − ξ(i)), (2.87)

in which
Pa(ξ(i)) =

∫
ϕn(ξ̃ −Rξ(i); I −RRT)IFj

(ξ̃)dξ̃. (2.88)

The algorithm is summarized in Algorithm 7.

To show that the Markov chain generated by this algorithm satisfies the detailed
balance condition, it suffices to demonstrate that

ϕn(ξ(i)|Fj)f(ξ̃|ξ(i)) = ϕn(ξ̃|Fj)f(ξ(i)|ξ̃). (2.89)

It is straightforward to show that this condition is fulfilled if ξ̃ = ξ(i) or any candidate is
not in F . Hence, the detailed balance condition remained to be proved reduces to

ϕn(ξ(i))ϕn(ξ̃ −Rξ(i); I −RRT) = ϕn(ξ̃)ϕn(ξ(i) −Rξ̃; I −RRT), ξ(i), ξ̃ ∈ Fj, ξ̃ ̸= ξ(i).

(2.90)
Consider a 2n-dimensional normal random vector with zero mean as follows: Ξ1

Ξ2

 ∼ N

 0
0

 ,
 I R

RT I

 , (2.91)

where Ξ1 and Ξ2 are both n-dimensional normal random vectors. Then the conditional
distribution of Ξ2 given Ξ1 = ξ1 is

Ξ2|Ξ1 = ξ1 ∼ N
(
Rξ1, I −RRT

)
. (2.92)
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Consequently, the joint PDF of [Ξ1,Ξ2]T can be expressed as

ϕ2n(ξ; Σ) = ϕn(ξ1)ϕn(ξ2 −Rξ1; I −RRT), (2.93)

where ξ = [ξ1, ξ2]T and

Σ =
 I R

RT I

 . (2.94)

Similarly, one has
Ξ1|Ξ2 = ξ2 ∼ N

(
Rξ2, I −RRT

)
, (2.95)

ϕ2n(ξ; Σ) = ϕn(ξ2)ϕn(ξ1 −Rξ2; I −RRT). (2.96)

Equations (2.93) and (2.96) indicate that

ϕn(ξ1)ϕn(ξ2 −Rξ1; I −RRT) = ϕn(ξ2)ϕn(ξ1 −Rξ2; I −RRT). (2.97)

Setting ξ1 = ξ(i) and ξ2 = ξ̃ shows that Equation (2.90) is satisfied. This demonstrates
that the stationary distribution of the Markov chain {ξ(i)} generated by the Gaussian
conditional sampling algorithm is ϕn(ξ|Fj).

Recall that there are two phases concerning the acceptance of candidate samples in
Algorithm 5 and Algorithm 6. Also, the acceptance ratio in the first phase depends on the
dimension of uncertain parameters. For Gaussian conditional sampling, the acceptance
probability is

pa(ξ(i), ξ̃) = IFj
(ξ̃), (2.98)

which suggests that the candidates are always accepted (acceptance ratio equals 1) in the
first phase and no longer depends on the dimensions.

The acceptance rate of the Gaussian conditional sampling method relies on the choice of
the correlation coefficient ρk ∈ [0, 1]. Using a small ρk results in a relatively low acceptance
ratio pa(ξ(i), ξ̃), thus bringing about a large correlation among the generated samples
{ξ(i)}. However, choosing a larger ρk improves the acceptance ratio but leads to a high
dependency among the states of a chain, which also causes a large correlation. Thus, it is
a tradeoff between a high acceptance rate and a low correlation. Papaioannou et al. [32]
have shown that the optimal acceptance rate p∗

a ≈ 0.44 in terms of chain efficiency, which
measures the convergence rate of the Markov chain.

The work in [32] presents an adaptive Gaussian conditional sampling algorithm which
adjusts ρk in real time such that the acceptance rate is always around p∗

a. At each level of
SuS, Ns seeds are determined and each seed generates a Markov chain with 1/p0 samples.
Instead of creating Ns Markov chains in parallel, Na chains are generated first, where Na

and Ns/Na are both positive integers. After that, the average acceptance ratio of the Na

chains is evaluated. If the average acceptance probability is larger than p∗
a, smaller ρk

that can decrease the acceptance rate are used. Conversely, larger ρk are adopted if the
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average acceptance probability is smaller than p∗
a. This adaptation is conducted when

every Na chains are generated. By this means, the acceptance rate of the Ns Markov
chains remains around p∗

a. Specifically, the adaptation is achieved by choosing suitable
standard deviations

σk =
√

1 − ρ2
k. (2.99)

They are updated when every Na chains have been generated:

σl,k = min{1, λlσl−1,k}, (2.100)

where the adaptation step l = 1, . . . , Ns/Na and λl ∈ (0, 1) is a scaling factor. The starting
values σ0,k can either be prescribed constants or the standard deviations of the components
of the seeds. Then the correlation coefficients are computed by

ρk =
√

1 − σ2
l,k. (2.101)

The average acceptance ratio is assessed by

p̂a,l = 1
Na

Na∑
r=1

p̂a(ξ(r+(l−1)Na)
s ), (2.102)

where p̂a(ξ(r+(l−1)Na)
s ) is the acceptance rate of the chain starting from the seed ξ(r+(l−1)Na)

s .
The scaling factor λl is updated by

log λl+1 = log λl + ζl(p̂a,l − p∗
a), (2.103)

where ζl is a decreasing positive number and ζl = 1/
√
l here. The adaptive Gaussian

conditional sampling algorithm is given in Algorithm 8.

2.5.3 Statistics of the Estimator

The failure probability estimate P̂F in Equation (2.54) is asymptotically unbiased with
bias of order O(1/N) [26, 133]. This results from the correlation between the estimates of
conditional failure probabilities, and the correlation arises from the fact that the samples
θ

(i)
j−1 ∈ Fj are selected as seeds for the next subset level. Nonetheless, the bias is negligible

in comparison with the coefficient of variation (c.o.v.) of the estimate.

The c.o.v. of the probability estimate P̂F has been approximated to measure the
estimation accuracy in [26, 27, 132]. Let P̂j denote the estimate of the conditional failure
probability P[Fj|Fj−1], j = 1, . . . ,m. The c.o.v. of P̂j is estimated by

δj ≈

√√√√1 − P̂j

NP̂j

(1 + γj), (2.104)
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Algorithm 8 The adaptive Gaussian conditional sampling algorithm for SuS [32]
Input: Failure domain Fj; Initial samples {ξ(i)

s : i = 1, . . . , Ns}; Starting values of the
standard deviations σ0 = [σ0,1, . . . , σ0,n]T (optional); Adaptation interval Na; Initial
scaling factor λ1; The number of samples N .

Output: Samples {ξ(i) : i = 1, . . . , N} whose stationary distribution is ϕn(ξ|Fj).
1: for i = 0, . . . , N − 1 do
2: if σ0 is undefined then
3: for k = 1, . . . , n do
4: Compute the standard deviation σ̂k of the k-th component of the seeds;
5: Set σ0,k = σ̂k;
6: end for
7: end if
8: for l = 1, . . . , Ns/Na do
9: for k = 1, . . . , n do

10: Calculate σl,k according to Equation (2.100);
11: Compute the correlation coefficient ρk based on Equation (2.101);
12: end for
13: for r = (l − 1)Na + 1, . . . , lNa do
14: Generate 1/p0 samples {ξ(r−1)/p0+t : t = 1, . . . , 1/p0} from ξ(r)

s implementing
the Gaussian conditional sampling algorithm in Algorithm 7;

15: end for
16: Assess the average acceptance ratio p̂a,l of the Na chains as in Equation (2.102);
17: Update the scaling parameter λl+1 in accordance with Equation (2.103);
18: end for
19: end for
20: return {ξ(i) : i = 1, . . . , N}.

where γj is a factor accounting for the correlation among the MCMC samples at level j− 1
and

γ1 = 0,

γj = 2
N/Ns−1∑

k=1

(
1 − kNs

N

)
ρj(k), j = 2, . . . ,m.

(2.105)

Here, ρj(k) are the k-lag auto-correlation coefficients which are averaged based on the Ns

chains. They can be estimated by

ρj(k) ≈ 1
P̂j(1 − P̂j)

 1
N − kNs

Ns∑
l=1

N/Ns−k∑
r=1

IFj

(
θ

(l,r)
j−1

)
IFj

(
θ

(l,r+k)
j−1

)
− P̂ 2

j

 , (2.106)

wherein θ(l,r)
j−1 denotes the r-th sample in the l-th Markov chain at level j − 1.
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Figure 2.14: Failure probability estimation results using SuS.

The first-order estimate of the c.o.v. of P̂F is given by

cv ≈
√√√√ m∑

j=1

m∑
k=1

δjδkρjk, (2.107)

where ρjk represents the correlation coefficient between P̂j and P̂k. By assuming that
all the estimates P̂j and P̂k are uncorrelated, i.e., ρjk = 0 for all j ̸= k, or completely
correlated, i.e., ρjk = 1 for all j ̸= k, the lower and upper bounds of cv are approximated,
respectively, by

cv,lb ≈
√√√√ m∑

j=1
δ2

j ,

cv,ub ≈
√√√√ m∑

j=1

m∑
k=1

δjδk.

(2.108)

2.5.4 Illustrative Example

The reliability problem in Section 2.4.4 is solved by SuS with the following parameters:
N = 1000, p0 = 0.1, and a = 2.49. The component-wise MH algorithm is applied in
this example. All the SuS results, as well as the surrogate-accelerated SuS results in the
following chapters, are obtained using the Subset Simulation toolbox [134]. Figure 2.11
presents the sample points at each subset level. These samples approach the failure domain
level by level. Figure 2.14 shows the probability estimation results, where σ is the standard
deviation of the estimation approximated by Equation (2.36) with µ ≈ P̂F and cv ≈ ĉv,lb.
The 3-σ range can be narrowed down by increasing the number of samples per level N .
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Figure 2.15: Function outputs at each level of SuS.
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Figure 2.16: C.o.v. estimates for SuS with N = 1000 and p0 = 0.1.

Figure 2.15 depicts the histogram of the function responses for different subset levels.
The dashed lines represent the intermediate failure thresholds. By leveraging MCMC
sampling techniques, the samples generated at level 1 and level 2 cannot exceed the
corresponding thresholds. This enables the SuS method to reach the failure domain and
explore the distribution tail efficiently.

The c.o.v. estimates for probabilities of different orders of magnitude are shown in
Figure 2.16. The corresponding a are listed in Table 2.1. For each a, 100 independent
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Figure 2.17: Number of samples required by SuS and MCS

applications of SuS are conducted. In each simulation, both upper and lower bounds are
evaluated as in Section 2.5.3. The c.o.v. upper and lower bounds in this figure are the
average values of the 100 results. The empirical c.o.v., which is denoted by “emp. c.o.v.”
in the figure legend, is the sample c.o.v. of the 100 estimates of failure probability. The
empirical c.o.v. results lie between the upper and lower bounds, which demonstrates the
validity of the c.o.v. estimation in Section 2.5.3. For higher probabilities, the empirical
c.o.v. is closer to the lower bound, since there is less correlation between subset levels.

Figure 2.17 illustrates the efficiency of SuS via comparing the number of samples
required by SuS and MCS. The required number of samples for SuS is the average number
of model evaluations over the 100 runs. For MCS, to have a fair comparison, the number
of samples required to achieve the same accuracy level as in SuS is calculated using
Equation (2.39). The results indicate that SuS needs considerably fewer samples for
estimating small probabilities (≤ 10−2), thus gains much higher efficiency.
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Chapter 3

Reliability-Based Control
Optimization and Surrogate-Assisted
Reliability Analysis

This chapter presents a novel control design framework called reliability-based control
optimization (RBCO). It is a verification-driven approach that deals with probabilistic
requirements in a less conservative way when comparing with conventional control design
methods. In the following sections, system dynamics and the performance function are
first introduced. After that, the RBCO framework incorporating reliability analysis and
optimization is presented. In the end, surrogate modeling techniques are applied to
accelerate the reliability assessment procedure.

3.1 System Dynamics and Performance Function

Consider a class of closed-loop dynamic systems subject to parametric uncertainties:

.
x = f(x,u,θ,k),
y = h(x,u,θ),

(3.1)

where x ∈ Rnx is the state variable, u ∈ Rnu is the system input, and y ∈ Rny is the
controlled output. The uncertain parameters are represented by θ ∈ Rn with PDF f(θ).
The control parameters, denoted by k ∈ Rnk , are assumed to be uncorrelated with θ. The
state transition function f(·) and output function h(·) represent the closed-loop system
dynamics and are potentially unknown.

The requirements for deterministic systems are usually formulated as inequalities in
terms of target values for given metrics. The performance function g(k) is defined as the
margin to the threshold of the target value. If g(k) < 0, then the system fails to satisfy
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Figure 3.1: Performance function.

the requirement, otherwise it meets the requirement. For instance, if the requirement for
a linear system is that the overshoot σ% must be smaller than 10%, the corresponding
performance function can be defined as g(k) = 10% − σ%. For nondeterministic systems
with uncertainties, the requirements are often specified as inequalities where admissible
probabilities are imposed on the occurrence of the failure event g(θ,k) < 0. If the
system requirement, for example, is that the probability of overshoot exceeding 10% must
not be larger than 10−3, then the probabilistic requirement is described as inequality:
P[g(θ,k) < 0] ≤ 10−3, with performance function g(θ,k) = 10% − σ%.

Figure 3.1 illustrates the concept of performance function. It is a static system that
integrates the system dynamics and the evaluation of metrics. Herein, the metrics can
be either time-domain or frequency-domain specifications, such as the minimum distance
between aircraft [37], overshoot [39], the root mean square of the measurement error [40],
and the stability margin [135, p. 26]. Due to the potential complexity of the system
dynamics and the metrics evaluation process, the performance function is regarded as a
black-box system.

3.2 Reliability-Based Control Optimization

Given the plant model, control structure, uncertainty model, and design requirements,
reliability-based control optimization (RBCO) searches for control parameters within the
region where the occurrence probabilities of failure events satisfy the design requirements.
This can be characterized as a constrained optimization problem of the form:

min
k

c0(k),
s.t. ci(k) ≤ 0, i = 1, . . . , nc,

P[gi(θ,k) < 0] ≤ βi, i = 1, . . . , ng,

(3.2)

where c0(k) is the deterministic objective function, ci(k) ≤ 0, i = 1, . . . , nc, are standard
constraints, and P[gi(θ,k) < 0] ≤ βi, i = 1, . . . , ng, are reliability constraints, where βi, i =
1, . . . , ng, are the minimum safety requirements in terms of acceptable failure probabilities.
The objective function can also be the probability of a failure event P[g0(θ,k) < 0].
The standard constraints impose a bound on the admissible design space, in which
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Figure 3.2: Schema of the two-level approach to the RBCO problem.

Figure 3.3: Design spaces of different strategies.

the deterministic functions ci(k) are usually analytical or can be simply evaluated in
one simulation run. In contrast, the reliability constraints set thresholds on the failure
probabilities for each failure mode, whereby it is necessary for the performance functions
gi(θ,k) to be evaluated many times to estimate the failure probabilities.

In this thesis, a two-level approach is implemented to solve the RBCO problem in
Equation (3.2). It consists of two loops, of which the inner one estimates failure probabilities
and the outer one explores the design space, as shown in Figure 3.2. The reliability analysis
is discussed in the next section, and global search algorithms are implemented to explore
the entire design domain.

In conventional methods where controllers are designed in the presence of uncertainties,
verification is required to verify compliance with probabilistic requirements. The two-level
approach for RBCO searches for control parameters on the basis of the verification results,
thus directly ensuring that the probabilistic requirements are fulfilled. Furthermore, these
conventional control design methods usually treat chance constraints in a conservative
manner, thereby reducing the design space and sacrificing potential performance. The
design space D here is defined as all the control parameters k that satisfy the given
chance constraints. Worse still, these methods may not even find a solution due to the
conservative treatment of each chance constraint. In comparison with these conservative
treatments, the proposed RBCO framework estimates the failure probability more precisely,
which enables us to enlarge the design space and explore further performance. Figure 3.3
illustrates the design spaces of different strategies. Here, D∗ denotes the feasible design
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space, DR denotes the design space obtained by the RBCO framework, and DC denotes the
design space achieved by the conventional control design methods. Though RBCO is less
conservative, there is still a gap between DR and D∗ owing to the error of the reliability
analysis. The gap can be narrowed down by increasing the estimation accuracy of the
failure probability, but this demands higher computational cost. Therefore, it is a tradeoff
between the conservatism and computational efficiency.

The concepts of design spaces in Figure 3.3 are exemplified as follows. Assume that
the system performance g(θ,k) is normally distributed with zero mean, and the control
parameters are required to be tuned such that

P [g(θ,k) ≥ 1] ≤ 0.1. (3.3)

The control design methods in [115, 122] approximate chance constraints in a conserva-
tive manner by converting them into relaxed expressions using the Cantelli-Chebyshev
inequality:

P [z ≥ E [z] + λ] ≤ Var [z]
Var [z] + λ2 , (3.4)

where z is a random variable with finite variance, and λ is a positive number. By applying
this inequality and letting z = g(θ,k) and λ = 1, the requirement in Equation (3.3) is
converted to

Var [g(θ,k)]
Var [g(θ,k)] + 1 ≤ 0.1. (3.5)

Therefore, the design space is given by

DC = {k : Var [g(θ,k)] ≤ 0.111} . (3.6)

However, with the knowledge of the distribution of the system performance, Equation (3.3)
can be rewritten as

P [g(θ,k) ≥ 1] = 1 − Φ
 1√

Var [g(θ,k)]

 ≤ 0.1. (3.7)

The feasible design space is thus obtained as follows:

D∗ = {k : Var [g(θ,k)] ≤ 0.609} . (3.8)

For RBCO, assume that the probability is estimated by MCS or SuS with an accuracy
cv = 0.1. To achieve a high confidence level, we consider the 3-σ upper bound of the
estimate

(1 + 3cv)P̂ [g(θ,k) ≥ 1] ≤ 0.1. (3.9)

This corresponds to a more strict requirement than that in Equation (3.7):

P̂ [g(θ,k) ≥ 1] = 1 − Φ
 1√

Var [g(θ,k)]

 ≤ 0.077, (3.10)
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thus leading to the design space

DR = {k : Var [g(θ,k)] ≤ 0.492} . (3.11)

Obviously, the use of the Cantelli-Chebyshev inequality leads to a conservative design,
and the design space D∗ − DC = {k : 0.111 < Var [g(θ,k)] ≤ 0.609} is excluded by this
strategy. In essence, the conservative result stems from the fact that the Cantelli-Chebyshev
inequality is used to find a sufficient but not necessary condition for the original chance
constraint without considering the distribution information. However, the conservative
design can be significantly alleviated by the RBCO framework with a precise uncertainty
propagation. If the acceptable failure probability in Equation (3.3) is as small as 10−3 and
the accuracy of the probability estimation is cv = 0.3, then the design spaces are

DC = {k : Var [g(θ,k)] ≤ 0.001} ,
D∗ = {k : Var [g(θ,k)] ≤ 0.105} ,
DR = {k : Var [g(θ,k)] ≤ 0.093} .

(3.12)

The results show that the influence of the conservative design is more severe for rare-event
chance constraints, whereas the benefit of the RBCO framework is more prominent.

3.3 Surrogate-Accelerated Reliability Analysis

Simulation methods, such as MCS (see Section 2.3) and SuS (see Section 2.5), are
widely used to estimate the failure probability for complex systems without making
any hypothesis on the complexity of the performance function. To obtain sufficiently
accurate estimations, a large number of simulations are required. Each simulation takes a
different combination of uncertain parameters as the inputs of the performance function.
Unfortunately, the evaluation of the performance of a complex or high-fidelity model is
usually a time-consuming task. As a consequence, a precise uncertainty propagation may
require prohibitive computational cost, thus being infeasible in practice.

To enhance the efficiency of simulation methods, many researchers have attempted
to reduce the number of calls to the computationally demanding simulation model (also
called the true model) by combining surrogate modeling techniques with the simulation
approaches. A surrogate model ĝ(θ) is a cheap-to-evaluate model that mimics the behavior
of the expensive-to-evaluate true model g(θ), as shown in Figure 3.4. A common idea of
surrogate-based simulation methods is to build a surrogate model and then to replace the
true model evaluations with the predictions of the surrogate model.

The surrogate model is constructed as illustrated in Figure 3.5. First of all, initial
training samples θ(i)

t are determined. It is preferable to generate training samples spread
across the parameter space. This allows us to build a surrogate model that can make
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Figure 3.4: True model g and surrogate model ĝ.

Figure 3.5: Schema of surrogate modeling techniques.

predictions throughout the entire parameter space. In general, the initial training samples
can be drawn according to the distribution of uncertain parameters. Next, these training
samples are evaluated employing the true model g(θ). The pairs of training samples and
the corresponding true model responses T = {(θ(i)

t , g(θ(i)
t ))} are referred to as the training

set. The collected information is then utilized to construct a surrogate model ĝ(θ). Various
surrogate models can be exploited and three of them will be presented in detail in the
subsequent chapters. After that, the responses of the remaining non-training points θ(i)

r are
predicted by the surrogate model. So far, the predictions may not be sufficiently accurate.
To improve the prediction accuracy, it is necessary to add more samples to the training set
and refine the surrogate model using the updated training set. These new training points
are selected based on a certain criterion. This selection process is known as active learning.
Before the refinement of the surrogate model, the new training points are evaluated with
the true model. The enrichment and refinement steps may be repeated several times until
the updated surrogate model is sufficiently accurate. During the refinement phase, it is
possible that not all the training samples are necessary for updating the surrogate model.
In this case, a subset of the training set is chosen for the refinement. This step is called
experimental design.
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Figure 3.6: Surrogate-accelerated simulation methods.

By employing the surrogate modeling techniques, only a fraction of samples θ(i)
t

are evaluated using the true model, whereas others θ(i)
r are approximately evaluated

via the surrogate model, as shown in Figure 3.6. In this way, the number of calls to
the computationally demanding true model is reduced, thus accelerating the simulation
methods for reliability analysis.

3.4 Summary

This chapter proposed a novel control design optimization method called reliability-based
control optimization (RBCO). It verifies compliance with probabilistic requirements within
an optimization loop. This approach can be used to search for control parameters that
satisfy the probabilistic requirements with a formal guarantee. In order to evaluate the
failure probability in an accurate and efficient way, the framework combining simulation
methods with surrogate modeling techniques was presented.
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Chapter 4

Uncertainty Propagation Using
Polynomial-Based Global Surrogates

This chapter employs two polynomial-based global surrogate models, namely, response
surface method (RSM) and polynomial chaos expansion (PCE), to achieve the uncertainty
propagation task. The principles of RSM and PCE are introduced first. The following
section introduces the uncertainty propagation schemes based on RSM and PCE. Statistical
characteristics of the system output are evaluated analytically or numerically. Subsequently,
the last section combines the global surrogates with SuS to accelerate the process of the
rare failure probability estimation. Aiming at constructing the best surrogate at subset
levels, an adaptive experimental design strategy is proposed.

4.1 Response Surface Method (RSM)

4.1.1 RSM Model

RSM [43] is an elementary tool to establish the relationship between input variables and
model responses. Generally, the relationship, i.e., response surface, is approximated by a
low-order polynomial as follows:

ĝ(θ) =
p∑

k=1
αkψk(θ) = αTψ(θ), (4.1)

where θ = [θ1, . . . , θn]T is a vector of input parameters, p is the number of expansion
items, ψ(θ) = [ψ1(θ), . . . , ψp(θ)]T is a vector of basis functions, and α = [α1, . . . , αp]T is a
constant vector that consists of unknown expansion coefficients. The basis functions are
usually monomials up to a certain order denoted by d (≥ 1). For n = 2, for example, the
basis functions of the second-order expansion (d = 2) are given by

ψ(θ) =
[
1, θ1, θ2, θ

2
1, θ1θ2, θ

2
2

]T
. (4.2)
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Figure 4.1: Transformed performance function.

The number of expansion items is calculated by

p = (n+ d)!
n!d! . (4.3)

4.1.2 Computation of the Coefficients

Given the training set T = {(θ(i)
t , g(θ(i)

t )) : i = 1, . . . , Nt}, the coefficients can be obtained
using the ordinary least-squares (OLS) regression [136, Ch. 1] that minimizes the residual
sum of squares:

α = arg min
Nt∑
i=1

(
αTψ(θ(i)

t ) − g(θ(i)
t )
)2

=
(
ΨTΨ

)−1
ΨTy,

(4.4)

where

Ψ =


ψ(θ(1)

t )T

ψ(θ(2)
t )T

...
ψ(θ(Nt)

t )T

 =


ψ1(θ(1)

t ) ψ2(θ(1)
t ) · · · ψp(θ(1)

t )
ψ1(θ(2)

t ) ψ2(θ(2)
t ) · · · ψp(θ(2)

t )
... ... . . . ...

ψ1(θ(Nt)
t ) ψ2(θ(Nt)

t ) · · · ψp(θ(Nt)
t )

 (4.5)

is the experimental matrix, and y = [g(θ(1)
t ), . . . , g(θ(Nt)

t )]T.

4.2 Polynomial Chaos Expansion (PCE)

4.2.1 PCE Model

Similar with RSM, PCE [47, 49, 50] employs a weighted sum of basis functions to ap-
proximate the performance function g(θ). However, in PCE, orthogonal polynomials for
independent standard random variables are adopted as basis functions. Therefore, it is
necessary to transform any given random vector Θ into an independent standard random
vector Ξ via the isoprobabilistic transformation T (see Section 2.1.3). Accordingly, the
performance function to be approximated is converted from g(θ) into G(ξ), as illustrated
in Figure 4.1.
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Assume that the response of the performance function has a finite variance:

E
[
G(ξ)2

]
=
∫

Ω
G(ξ)2f(ξ)dξ < +∞, (4.6)

where Ω and f(ξ) are the support and PDF of Ξ, respectively. The response can be
expressed as an infinite weighted sum of orthogonal polynomials:

G(ξ) =
∞∑

k=0
αkψk(ξ), (4.7)

where ψk(ξ) denote the multivariate orthogonal polynomial basis functions and αk denote
the corresponding expansion coefficients. In practical problems, this expansion is usually
truncated up to a certain degree d:

Ĝ(ξ) =
p−1∑
k=0

αkψk(ξ) = αTψ(ξ), (4.8)

where ψ(ξ) = [ψ0(ξ), ψ1(ξ), . . . , ψp−1(ξ)]T, α = [α0, α1, . . . , αp−1]T, and the number of
expansion items p is obtained by

p = (n+ d)!
n!d! . (4.9)

4.2.2 Construction of Orthogonal Polynomial Bases

4.2.2.1 Univariate Orthogonal Polynomials

For a single random variable Ξ whose realization is denoted by ξ and any functions h1(·)
and h2(·), the inner product of h1(ξ) and h2(ξ) is defined as

⟨h1(ξ), h2(ξ)⟩ = E [h1(ξ)h2(ξ)] =
∫

Ω
h1(ξ)h2(ξ)f(ξ)dξ, (4.10)

where Ω is the support of Ξ and f(ξ) is the PDF of Ξ. Functions h1(·) and h2(·) are
orthogonal with respect to the probability measure P[dξ] = f(ξ)dξ if ⟨h1(ξ), h2(ξ)⟩ = 0.
One can build a family of orthogonal polynomials {ϕi(ξ), i ∈ N0} that satisfies

⟨ϕi(ξ), ϕj(ξ)⟩ =
∫

Ω
ϕi(ξ)ϕj(ξ)f(ξ)dξ = γiδij, (4.11)

where δij is the Kronecker function:

δij =

 1, if i = j,

0, if i ̸= j,
(4.12)

and
γi = ⟨ϕi(ξ), ϕi(ξ)⟩ = E

[
ϕi(ξ)2

]
. (4.13)

Monic orthogonal polynomials can be built by the following 3-term recurrence relation:

ϕ−1(ξ) = 0,
ϕ0(ξ) = 1,

ϕi+1(ξ) = (ξ − ai)ϕi(ξ) − biϕi−1(ξ), i ∈ N0,

(4.14)
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where ai and bi are constants computed by

ai = ⟨ξϕi(ξ), ϕi(ξ)⟩
⟨ϕi(ξ), ϕi(ξ)⟩

, (4.15)

bi = ⟨ϕi(ξ), ϕi(ξ)⟩
⟨ϕi−1(ξ), ϕi−1(ξ)⟩

. (4.16)

The classical families of orthogonal polynomials [47, 49] are listed in Table 4.1. Herein,
Γ(α + 1) is the gamma function and B(α + 1, β + 1) = Γ(α+1)Γ(β+1)

Γ(α+β+2) is the beta function.
Take Hermite polynomials [49] for an example, they satisfy the recurrence relation:

H−1(ξ) = 0,
H0(ξ) = 1,

Hi+1(ξ) = ξHi(ξ) − iHi−1(ξ), i ∈ N0,

(4.17)

and
⟨Hi(ξ), Hj(ξ)⟩ =

∫ ∞

−∞
Hi(ξ)Hj(ξ)f(ξ)dξ = i!δij. (4.18)

This indicates
γi = E

[
Hi(ξ)2

]
= i!. (4.19)

The first few Hermite polynomials are given in Table 4.2 and plotted in Figure 4.2. The
details for the remaining types of polynomials in Table 4.1 can be found in Appendix B.

Table 4.1: Classical families of orthogonal polynomials.

Type of variable Ξ Distribution f(ξ) Support Ω Orthogonal polynomials ϕi(ξ)

Gaussian N (0, 1) 1√
2π
e−ξ2/2 (−∞,∞) Hermite Hi(ξ)

Uniform U(−1, 1) 1
2 [−1, 1] Legendre Pi(ξ)

Gamma G(α, 1) ξαe−ξ

Γ(α+1) [0,∞) Laguerre Lα
i (ξ)

Beta B(α, β) (1−ξ)α(1+ξ)β

2α+β+1B(α+1,β+1) [−1, 1] Jacobi Jα,β
i (ξ)

Table 4.2: First few Hermite polynomials.

i Hi(ξ) E [Hi(ξ)2]

0 1 1
1 ξ 1
2 ξ2 − 1 2
3 ξ3 − 3ξ 6
4 ξ4 − 6ξ2 + 3 24
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Figure 4.2: First few Hermite polynomials.

4.2.2.2 Multivariate Orthogonal Polynomials

For random vectors, the orthogonal polynomials are constructed by the tensor product of
univariate orthogonal polynomials:

ψk(ξ) =
n∏

j=1
ϕmk

j
(ξj), (4.20)

wheremk = [mk
1, . . . ,m

k
n] represents the multi-index that contains all possible combinations

of univariate orthogonal polynomials. An example of the multi-index and corresponding
orthogonal polynomials in n = 3 dimensions is shown in Table 4.3, where

|mk| =
n∑

j=1
mk

j (4.21)

denotes the degree of the polynomial ψk(ξ). The support of Ξ is the Cartesian product of
that of each element:

Ω =
n∏

j=1
Ωj. (4.22)

The inner product of ψk(ξ) and ψr(ξ) is given by

⟨ψk(ξ), ψr(ξ)⟩ = E [ψk(ξ)ψr(ξ)] =
∫

Ω
ψk(ξ)ψr(ξ)f(ξ)dξ

=
∫

Ω1
· · ·

∫
Ωn

n∏
j=1

[
ϕmk

j
(ξj)ϕmr

j
(ξj)f(ξj)

]
dξn · · · dξ1

=
n∏

j=1

[∫
Ωj

ϕmk
j
(ξj)ϕmr

j
(ξj)f(ξj)dξj

]

= γ̃kδkr,

(4.23)
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Table 4.3: Example of the multi-index and corresponding polynomials in 3 dimensions.

Single index k Multi-index mk |mk| Orthogonal polynomials ψk(ξ)

0 [0 0 0] 0 ψ0(ξ) = ϕ0(ξ1)ϕ0(ξ2)ϕ0(ξ3)
1 [1 0 0] 1 ψ1(ξ) = ϕ1(ξ1)ϕ0(ξ2)ϕ0(ξ3)
2 [0 1 0] ψ2(ξ) = ϕ0(ξ1)ϕ1(ξ2)ϕ0(ξ3)
3 [0 0 1] ψ3(ξ) = ϕ0(ξ1)ϕ0(ξ2)ϕ1(ξ3)
4 [2 0 0] 2 ψ4(ξ) = ϕ2(ξ1)ϕ0(ξ2)ϕ0(ξ3)
5 [1 1 0] ψ5(ξ) = ϕ1(ξ1)ϕ1(ξ2)ϕ0(ξ3)
6 [1 0 1] ψ6(ξ) = ϕ1(ξ1)ϕ0(ξ2)ϕ1(ξ3)
7 [0 2 0] ψ7(ξ) = ϕ0(ξ1)ϕ2(ξ2)ϕ0(ξ3)
8 [0 1 1] ψ8(ξ) = ϕ0(ξ1)ϕ1(ξ2)ϕ1(ξ3)
9 [0 0 2] ψ9(ξ) = ϕ0(ξ1)ϕ0(ξ2)ϕ2(ξ3)
10 [3 0 0] 3 ψ10(ξ) = ϕ3(ξ1)ϕ0(ξ2)ϕ0(ξ3)
11 [2 1 0] ψ11(ξ) = ϕ2(ξ1)ϕ1(ξ2)ϕ0(ξ3)
· · · · · · · · ·

where
γ̃k = E

[
ψk(ξ)2

]
=

n∏
j=1

γmk
j
. (4.24)

This proves that the constructed multivariate polynomials are orthogonal to each other.

4.2.3 Truncation Error

Because of the orthogonal polynomial bases, the residual error of the estimation in
Equation (4.8) is orthogonal to the chosen bases:〈
G(ξ) − Ĝ(ξ), ψr(ξ)

〉
=
〈 ∞∑

k=p

αkψk(ξ), ψr(ξ)
〉

=
∞∑

k=p

αk ⟨ψk(ξ), ψr(ξ)⟩ = 0, 0 ≤ r < p.

(4.25)
The norm of the residual error is given by

∥G(ξ) − Ĝ(ξ)∥ =
√
E
[(
G(ξ) − Ĝ(ξ)

)2
]

=

√√√√√E

 ∞∑
k=p

∞∑
r=p

αkαrψk(ξ)ψr(ξ)


=
√√√√ ∞∑

k=p

∞∑
r=p

αkαr E [ψk(ξ)ψr(ξ)] =
√√√√ ∞∑

k=p

α2
kγ̃k,

(4.26)

which implies that the norm decreases with the addition of the polynomial basis and

lim
p→∞

∥G(ξ) − Ĝ(ξ)∥ = 0. (4.27)

This guarantees the convergence of the PCE surrogate model.
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4.2.4 Computation of the Coefficients

Once the polynomial bases are selected, the expansion coefficients shall be determined.
To achieve that, various techniques have been developed, which can be classified into
two categories, i.e., intrusive and non-intrusive approaches. Using the intrusive methods,
such as the stochastic Galerkin method [49, Ch. 6], deterministic equations which are
coupled with the system model are derived to compute the coefficients. This derivation is
nontrivial or even infeasible for complex or black-box problems. Moreover, it is necessary
to derive these deterministic equations tailored to different systems. By contrast, the
non-intrusive methods simply rely on the repeated run of the computational model, thus
being independent with the system model and easy to implement. In this subsection, two
popular non-intrusive schemes, i.e., spectral projection and regression, are presented.

4.2.4.1 Spectral Projection

The spectral projection method [49, Ch. 7] projects the response in Equation (4.7) against
each basis:

⟨G(ξ), ψr(ξ)⟩ =
〈 ∞∑

k=0
αkψk(ξ), ψr(ξ)

〉
=

∞∑
k=0

αk ⟨ψk(ξ), ψr(ξ)⟩

= αr ⟨ψr(ξ), ψr(ξ)⟩ = αrγ̃r.

(4.28)

Hence, the expansion coefficients are obtained by

αr = 1
γ̃r

⟨G(ξ), ψr(ξ)⟩ = 1
γ̃r

E [G(ξ)ψr(ξ)] = 1
γ̃r

∫
Ω
G(ξ)ψr(ξ)f(ξ)dξ. (4.29)

The estimation of αr in Equation (4.29) can be achieved by approximating the expectation
using the MCS approach. This, however, suffers from inefficiency. An alternative solution
is to evaluate the integral in Equation (4.29) via quadrature methods.

The 1-dimensional Gaussian quadrature rule is given by∫
Ω
h(ξ)f(ξ)dξ ≈

q∑
i=1

h(ξ(i))w(i), (4.30)

where h(·) denotes the function to be integrated against the weight function f(ξ), ξ(i)

and w(i) are quadrature nodes and the corresponding weights with q being the number of
quadrature nodes. This rule integrates exactly all polynomials of degree no greater than
2q − 1. Given a d-th order univariate PCE, the integrand h(ξ) = G(ξ)ϕr(ξ), which is the
1-dimensional case of G(ξ)ψr(ξ) in Equation (4.29), is of at most order 2d, implying that
q = d+ 1 integration nodes are required to obtain highly accurate integrals. These nodes
can be the zeros of polynomial ϕq(ξ), and the corresponding weights are calculated by

w(i) =
∫

Ω
f(ξ)

∏
1≤j≤q

j ̸=i

ξ − ξ(j)

ξ(i) − ξ(j) dξ. (4.31)
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4.2 Polynomial Chaos Expansion (PCE)

For the multi-dimensional case, Gaussian quadrature is achieved by a tensor product
of the previous 1-dimensional integration rule:

∫
Ω
h(ξ)f(ξ)dξ ≈

q1∑
mi

1=1
· · ·

qn∑
mi

n=1
h(ξ(mi

1)
1 , . . . , ξ(mi

n)
n )w(mi

1)
1 · · ·w(mi

n)
n

=
Q∑

i=1
h(ξ(i))w(i),

(4.32)

where ξ(mi
k)

k are the quadrature nodes in the k-th dimension, and w(mi
k)

k are the corresponding
weights. The multi-index [mi

1, . . . ,m
i
n] contains all possible combinations of nodes in each

dimension. The multivariate quadrature nodes and weights are ξ(i) = [ξ(mi
1)

1 , . . . , ξ(mi
n)

n ]T

and w(i) = w
(mi

1)
1 · · ·w(mi

n)
n , respectively. This quadrature requires Q = ∏n

j=1 qj evaluations
of the integrand.

An example applying Gaussian quadrature is given as follows. Consider the integral of
a bivariate polynomial:

I =
∫ 1

−1

∫ 1

−1

1
4(ξ2

1 + 1)ξ4
2dξ1dξ2 = 4

15 . (4.33)

Using Legendre polynomials Pk(ξ) in each component, the weight function f(ξ) = 1
4 and

the integrand h(ξ) = (ξ2
1 + 1)ξ4

2 . To integrate it exactly, 2 nodes are required in ξ1 whereas
3 nodes in ξ2. The quadrature nodes and the corresponding weights are listed in Table 4.4.
The integral in Equation (4.33) is estimated by

I ≈ 1
2

5
18h

− 1√
3
,−
√

3
5

+ 1
2

4
9h

(
− 1√

3
, 0
)

+ 1
2

5
18h

− 1√
3
,

√
3
5

+

1
2

5
18h

 1√
3
,−
√

3
5

+ 1
2

4
9h

(
1√
3
, 0
)

+ 1
2

5
18h

 1√
3
,

√
3
5

 = 4
15 .

(4.34)

This result is equal to the analytical solution given in Equation (4.33).

Using Gaussian quadrature, Equation (4.29) is estimated by

αr = 1
γ̃r

∫
Ω
G(ξ)ψr(ξ)f(ξ)dξ ≈ 1

γ̃r

Q∑
i=1

G(ξ(i))ψr(ξ(i))w(i). (4.35)

Table 4.4: Quadrature nodes and the corresponding weights.

k Zeros of Pk(ξ) Weights

1 0 1
2 −1/

√
3, 1/

√
3 1/2, 1/2

3 −
√

3/5, 0,
√

3/5 5/18, 4/9, 5/18
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Chapter 4: Uncertainty Propagation Using Polynomial-Based Global Surrogates

If the order of PCE in each dimension di = d, i = 1, . . . , n, then Q = (d + 1)n, which
means the required number of samples grows exponentially with the increase of the number
of uncertain parameters. This limits the tensor product quadrature to low-dimensional
problems. Alternatively, one can resort to Smolyak’s sparse quadrature [49, Ch. 7] to
reduce the number of required quadrature points in high dimensions.

4.2.4.2 Regression

The expansion coefficients can be estimated by the ordinary least-squares (OLS) regres-
sion [50] minimizing the residual sum of squares:

α = arg min
Nt∑
i=1

(
αTψ(ξ(i)

t ) −G(ξ(i)
t )
)2

=
(
ΨTΨ

)−1
ΨTy,

(4.36)

where T = {(ξ(i)
t , g(ξ(i)

t )) : i = 1, . . . , Nt} is a given training set,

Ψ =


ψ(ξ(1)

t )T

ψ(ξ(2)
t )T

...
ψ(ξ(Nt)

t )T

 =


ψ0(ξ(1)

t ) ψ1(ξ(1)
t ) · · · ψp−1(ξ(1)

t )
ψ0(ξ(2)

t ) ψ1(ξ(2)
t ) · · · ψp−1(ξ(2)

t )
... ... . . . ...

ψ0(ξ(Nt)
t ) ψ1(ξ(Nt)

t ) · · · ψp−1(ξ(Nt)
t )

 (4.37)

is the experimental matrix, and y = [G(ξ(1)
t ), . . . , G(ξ(Nt)

t )]T. A rule of thumb for des-
ignating the cardinality of training set is Nt ∈ [2p, 3p] [50]. The required number of
training samples is significantly more affordable than that in the isotropic tensor product
quadrature method (i.e., (d+ 1)n) for high-dimensional applications.

4.2.5 Statistical Information

After the computation of the expansion coefficients, the estimation of statistical information
is only a post-processing [50]. Given ψ0(ξ) = 1, the mean of G(ξ) is estimated by

µ̂ = E
[
Ĝ(ξ)

]
= E

[
Ĝ(ξ)ψ0(ξ)

]
= E

p−1∑
k=0

αkψk(ξ)ψ0(ξ)


=
p−1∑
k=0

αk E [ψk(ξ)ψ0(ξ)] = α0 E [ψ0(ξ)ψ0(ξ)] = α0.

(4.38)

The variance, which is the square of the standard deviation σ, can be approximated as

σ̂2 = E
[(
Ĝ(ξ) − µ̂

)2
]

= E


p−1∑

k=1
αkψk(ξ)

2
 = E

p−1∑
k=1

p−1∑
r=1

αkαrψk(ξ)ψr(ξ)


=
p−1∑
k=1

p−1∑
r=1

αkαr E [ψk(ξ)ψr(ξ)] =
p−1∑
k=1

α2
k E

[
ψk(ξ)2

]
=

p−1∑
k=1

α2
kγ̃k.

(4.39)
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The skewness and kurtosis of G(ξ) can be estimated by

τ̂ = 1
σ̂3 E

[(
Ĝ(ξ) − µ̂

)3
]

= 1
σ̂3 E


p−1∑

k=1
αkψk(ξ)

3


= 1
σ̂3

p−1∑
k=1

p−1∑
r=1

p−1∑
j=1

αkαrαj E [ψk(ξ)ψr(ξ)ψj(ξ)]

= 1
σ̂3

p−1∑
k=1

p−1∑
r=1

p−1∑
j=1

αkαrαj

n∏
i=1

emk
i mr

i mj
i
,

(4.40)

and

κ̂ = 1
σ̂4 E

[(
Ĝ(ξ) − µ̂

)4
]

= 1
σ̂4 E


p−1∑

k=1
αkψk(ξ)

4


= 1
σ̂4

p−1∑
k=1

p−1∑
r=1

p−1∑
j=1

p−1∑
l=1

αkαrαjαl E [ψk(ξ)ψr(ξ)ψj(ξ)ψl(ξ)]

= 1
σ̂4

p−1∑
k=1

p−1∑
r=1

p−1∑
j=1

p−1∑
l=1

αkαrαjαl

n∏
i=1

emk
i mr

i mj
i ml

i
,

(4.41)

where
emk

i mr
i mj

i
= E

[
ϕmk

i
(ξi)ϕmr

i
(ξi)ϕmj

i
(ξi)

]
, (4.42)

and
emk

i mr
i mj

i ml
i

= E
[
ϕmk

i
(ξi)ϕmr

i
(ξi)ϕmj

i
(ξi)ϕml

i
(ξi)

]
. (4.43)

Once the types of orthogonal polynomials are determined, emk
i mr

i mj
i

and emk
i mr

i mj
i ml

i
are

constant and sometimes can be evaluated analytically. For Hermite polynomials [49, p. 70],
for example,

emk
i mr

i mj
i

=


mk

i !mr
i !mj

i !
(s−mk

i )!(s−mr
i )!(s−mj

i )! , if 2s = mk
i +mr

i +mj
i is even and s ≥ mk

i ,m
r
i ,m

j
i ,

0, otherwise.
(4.44)

4.3 Uncertainty Propagation Using RSM and PCE

4.3.1 Uncertainty Propagation Framework

The uncertainty propagation schemes based on RSM and PCE are illustrated in Figures 4.3
and 4.4, respectively. Using RSM, a surrogate model ĝ(θ) is built regardless of the PDF
of θ. The inputs of RSM are thereby deterministic variables. With this cheap-to-evaluate
model, MCS is carried out to obtain a large number of simulations, and thus to estimate
the statistical characteristics of model responses, including moments, failure probabilities,

66



Chapter 4: Uncertainty Propagation Using Polynomial-Based Global Surrogates

Figure 4.3: Uncertainty propagation using RSM.

Figure 4.4: Uncertainty propagation using PCE.

and PDFs. Given MCS samples {θ(i) : i = 1, . . . , N}, the moments up to the fourth order
are approximated by

µ̂ = E [ĝ(θ)] ≈ 1
N

N∑
i=1

ĝ(θ(i)), (4.45)

σ̂2 = E
[
(ĝ(θ) − µ̂)2

]
≈ 1
N − 1

N∑
i=1

(
ĝ(θ(i)) − µ̂

)2
, (4.46)

τ̂ = 1
σ̂3 E

[
(ĝ(θ) − µ̂)3

]
≈ 1
σ̂3

1
N

N∑
i=1

(
ĝ(θ(i)) − µ̂

)3
, (4.47)

κ̂ = 1
σ̂4 E

[
(ĝ(θ) − µ̂)4

]
≈ 1
σ̂4

1
N

N∑
i=1

(
ĝ(θ(i)) − µ̂

)4
. (4.48)

The failure probability is estimated by

P̂F = E [I(ĝ(θ) ≤ 0)] ≈ 1
N

N∑
i=1

I
(
ĝ(θ(i)) ≤ 0

)
, (4.49)

where I(·) is an indicator function. The PDF of the model response z = g(θ) is approxi-
mated using the Kernel density estimation [137, Ch. 6]:

f̂(z) = 1
Nh

N∑
i=1

K

(
z − ĝ(θ(i))

h

)
, (4.50)

where h is a smoothing parameter called the bandwidth, and K(·) is the Gaussian Kernel
function:

K(t) = 1√
2π
e−t2/2. (4.51)

By contrast, PCE considers the distribution of the uncertain inputs, which means the
inputs of PCE are random variables. Due to this fact, on the one hand, the isoprobabilistic
transformation may be required before the implementation of PCE. On the other hand,
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Table 4.5: Comparisons between RSM and PCE.

Method Inputs
Isoprobabilistic
transformation

Expansion
bases

Convergence of
the approximation

RSM
Deterministic

variables
Not required Monomials Not guaranteed

PCE
Random
variables

Required
Orthogonal
polynomials

Guaranteed

the moments of the output can be computed directly once the expansion is determined
(see Section 4.2.5). Given the moment information, the failure probability based on the
fourth-moment (FM) method [138] is approximated as

βSM = µ

σ
,

βFM = 3(κ− 1)βSM + τ(β2
SM − 1)√

(9κ− 5τ 2 − 9)(κ− 1)
,

P̂F ≈ Φ(−βFM),

(4.52)

where βSM and βFM are the reliability indexes based on the second-moment method and
the fourth-moment method, respectively, and Φ(·) is the CDF of the standard normal
distribution. Note that the fourth-moment method is more appropriate for unimodal
bell-shaped distributions. Alternatively, like in RSM, the statistical characteristics can be
estimated by MCS given the constructed surrogate model.

Besides the above-mentioned differences between RSM and PCE, another is that PCE
guarantees the convergence of the approximation (see Section 4.2.3), but there is no such
guarantee in RSM. The comparisons between these two surrogate modeling techniques
are summarized in Table 4.5. Compared with RSM, PCE enjoys the advantage of easy
access to statistical moments and better convergence property, but the isoprobabilistic
transformation required by PCE may increase the complexity of the transformed model
G(ξ) to be approximated.

4.3.2 Adaptive RSM/PCE

In practical problems, one may not know where to truncate the expansions in RSM or
PCE. This subsection presents how to choose the optimal expansion bases in the regression
approach for both surrogate modeling techniques.
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Figure 4.5: Example of the overfitting phenomenon.

4.3.2.1 Error Estimation

The quality of the constructed surrogate model can be measured by the mean square error
of the residual, which is also called the empirical error :

εemp = 1
Nt

Nt∑
i=1

(
g(θ(i)

t ) − ĝ(θ(i)
t )
)2
, (4.53)

where T = {(θ(i)
t , g(θ(i)

t )) : i = 1, . . . , Nt} is a given training set. The normalized empirical
error is defined as

ε̃emp = εemp

Var
[
g(θ(i)

t )
] . (4.54)

The error is reduced with the increase of the expansion order until the surrogate model fits
the training set perfectly, i.e., εemp or ε̃emp is almost zero. However, with sufficiently high
order, the risk involved is that the approximation of the training samples can be extremely
good but very bad elsewhere. It means the surrogate model can be quite different with
that built by another training set. This situation is known as overfitting. An illustrative
example is given in Figure 4.5, where the true function is expressed as

g(θ) = 1
1 + 10θ2 . (4.55)

The 8th-order approximation fits the training points very well with ε̃emp = 7.5 × 10−24.
However, this approximation leads to erroneous predictions. Therefore, the surrogate
modeling error is usually underestimated by the empirical error.

The overfitting phenomenon can be avoided by cross validation, which separates the
known data into a training set and a validation set. The validation set is only used to
assess the prediction ability of the trained model. Specifically, leave-one-out (LOO) cross
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Algorithm 9 Adaptive RSM/PCE algorithm

Input: Training set T = {(θ(i)
t , g(θ(i)

t )) : i = 1, . . . , Nt}; The possible orders of the
expansion dmin : dmax.

Output: Surrogate model ĝ(θ).
1: for d = dmin : dmax do
2: Generate polynomial bases ψ;
3: Calculate the experimental matrix Ψ;
4: Solve the ordinary least-squares problem and obtain the expansion coefficients α;
5: Compute ε̃LOO(d) according to Equations (4.57) and (4.58);
6: end for
7: Identify the optimal expansion order d∗ = arg min ε̃LOO(d);
8: Obtain the d∗-th order expansion ĝ(θ);
9: return ĝ(θ).

validation [50] employs a single validation sample θ(i)
t to test the surrogate model ĝ(−i)(θ)

built from the remaining Nt − 1 points. The predicted residual error at θ(i) is given by

εi = g(θ(i)
t ) − ĝ(−i)(θ(i)

t ) = g(θ(i)
t ) − ĝ(θ(i)

t )
1 − hi

, (4.56)

where ĝ(θ) is the surrogate model constructed from the full training set, and hi is the i-th
diagonal term of matrix Ψ(ΨTΨ)−1ΨT. The LOO cross validation error is defined as

εLOO = 1
Nt

Nt∑
i=1

ε2
i = 1

Nt

Nt∑
i=1

g(θ(i)
t ) − ĝ(θ(i)

t )
1 − hi

2

. (4.57)

Similarly, the normalized LOO error is obtained by

ε̃LOO = εLOO

Var
[
g(θ(i)

t )
] . (4.58)

In the previous example where ε̃emp = 7.5 × 10−24, the corresponding LOO error is
ε̃LOO = 9.5, which better reflects the generalization ability of the surrogate model.

4.3.2.2 Adaptive RSM/PCE Algorithm

A polynomial-based global surrogate model with a low-order expansion may not be able to
capture the high-order features of the true model, whereas that with a high-order expansion
may suffer from the overfitting situation. To avoid such problems, an adaptive algorithm
that selects the optimal expansion order by minimizing the LOO error is presented in
Algorithm 9.
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Figure 4.6: PCE surrogate modeling errors.

4.3.3 Illustrative Examples

4.3.3.1 Uncertainty Propagation

Consider a 3-dimensional function as follows:

g(θ) = a−
(
e0.3θ1+1 + e0.3θ2+1 + e0.3θ3+1

)
, (4.59)

where a = 10 and θi, i = 1, 2, 3, are independent standard normal random variables,
i.e., θi ∼ N (0, 1). Both RSM and PCE are applied to approximate this function and
then estimate the statistical properties of the system response. Since the function inputs
are already independent standard random variables, there is no need to implement the
isoprobabilistic transformation for PCE.

In this example, the adaptive approach in Algorithm 9 is employed withNt = 80 training
samples and possible expansion orders dmin : dmax = 1 : 6. The approximation errors of
the surrogate models constructed by PCE of different orders are shown in Figure 4.6. The
empirical error and LOO error are calculated by Equations (4.54) and (4.58), respectively.
The normalized generalization error ε̃gen is estimated by MCS using a large test set with
N = 105 samples:

εgen = 1
N

N∑
i=1

(
g(θ(i)) − ĝ(θ(i))

)2
, (4.60)

ε̃gen = εgen

Var [g(θ(i))] . (4.61)
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Figure 4.7: PDF estimates of the function output.

This figure illustrates that the empirical error underestimates the generalization error,
especially when excessively high-order surrogate models are adopted. In contrast, the
LOO error is able to detect the overfitting situation, thus it is more reasonable to assess
the generalization ability of the surrogate model. Note that similar results can be obtained
using adaptive RSM and are omitted here. The overfitting problem here arises from the
lack of training samples for a 6th-order expansion. In practice, this can be easily avoided
by selecting sufficient training points for a desired expansion order. But the overfitting
may be caused by choosing a excessively high expansion order.

Table 4.6 and Figure 4.7 show the uncertainty propagation results exploiting different
methods. To compare the performance of different strategies, the results of MCS with
N = 105 samples are regarded as reference values. The uncertainty propagation schemes
in Section 4.3.1, i.e., MCS based on the RSM surrogate model (RSM + MCS), MCS based
on the PCE surrogate model (PCE + MCS), and the analytical approach based on the
PCE surrogate model (PCE + FM), are implemented with only Ncall = 80 true model

Table 4.6: Moment and failure probability estimation results of the function output.

Method µ σ τ κ PF Ncall

MCS 1.4698 1.5140 −0.5439 3.5360 0.1605 105

RSM + MCS 1.4698 1.5098 −0.5461 3.5472 0.1590 80
PCE + MCS 1.4698 1.5150 −0.5572 3.5415 0.1607 80
PCE + FM 1.4698 1.5113 −0.5478 3.5467 0.1562 80
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evaluations. The results obtained by the surrogate-assisted methods are almost equal to
those by the reference MCS. This demonstrates that the two global surrogate modeling
techniques are accurate and efficient, providing the nonlinearity of the true model can be
successfully captured by the selected basis functions.

4.3.3.2 The Influence of Isoprobabilistic Transformation

Consider the following 3-dimensional linear function:

g(θ) = a− (θ1 + θ2 + θ3) , (4.62)

where a = 10 and θi, i = 1, 2, 3, are i.i.d. lognormal random variables: θi = eµ+σξi , in
which µ = 1, σ = 0.3, and ξi are i.i.d. standard normal random variables: ξi ∼ N (0, 1).
Both adaptive RSM and adaptive PCE are implemented to approximate the true model.
RSM is able to deal with this linear function directly, whereas PCE needs to transform
the lognormal random variables into the standard normal space via the isoprobabilistic
transformation

T : ξi = log θi − µ

σ
,

T−1 : θi = eµ+σξi .
(4.63)

Hence, the transformed model G(ξ) is given by

G(ξ) = g(T−1(ξ)) = a−
(
e0.3ξ1+1 + e0.3ξ2+1 + e0.3ξ3+1

)
, (4.64)

which is the same as the function in the previous example.

The results of these two methods are listed in Table 4.7. The adaptive RSM recognizes
the linear approximation (expansion order d = 1) with p = 4 expansion items as the best
surrogate model. With only Nt = 2p = 8 training samples, this linear surrogate model
achieves a quite high accuracy level. In comparison, the adaptive PCE prefers to use
a higher-order expansion since the transformed model is nonlinear. Given 80 training
samples, the 5th-order polynomial expansion with 56 expansion items is the optimal choice.
It is suggested in this example that the isoprobabilistic transformation may increase the
complexity of the transformed model. This usually happens when the original model
shows weak nonlinearity but the distribution of uncertain parameters is uncommon or
complicated. In such cases, RSM can be a better choice than PCE.

Table 4.7: RSM and PCE surrogate modeling results.

Methods d p Nt ε̃LOO

RSM 1 4 8 1.2 × 10−28

PCE 5 56 80 8.4 × 10−12
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4.4 Rare Event Estimation Based on PCE and RSM

The uncertainty propagation schemes in Section 4.3.1 estimate failure probabilities by
performing MCS based on the PCE or RSM surrogate model. However, PCE and RSM are
global surrogate modeling techniques that focus on capturing the major trend of the true
model throughout the entire parameter space. Therefore, these schemes may bring in large
errors when estimating rare-event probabilities. SuS specializes in efficiently evaluating
rare events, but it may still require at least thousands of true model evaluations. Aiming at
estimating small failure probabilities in an accurate and efficient way, this section proposes
a new method called polynomial surrogate-based SuS (PS-SuS).

4.4.1 Polynomial Surrogate-Based SuS

As presented in Section 2.5, SuS explores the rare failure domain level by level. To enhance
its efficiency by reducing the number of true model evaluations, a surrogate model is
constructed to replace most of the calls to the true model with those to the surrogate
model. The surrogate model is refined progressively as the SuS samples approach the rare
failure domain. This general idea is visualized in Figure 4.8.

At the initial level of SuS, samples θ(i)
0 are first generated by MCS. A fraction of these

points are selected as training samples θ(i)
0,t, whereas the remaining non-training samples

are denoted by θ(i)
0,r. Subsequently, the training samples are evaluated by the true model

g(θ), and the training set is assigned as T = {(θ(i)
0,t, g(θ

(i)
0,t))}. A PCE or RSM surrogate

model ĝ(θ) is constructed employing this training set, and then used to estimate the
model outputs of the non-training points θ(i)

0,r. After that, the intermediate threshold b1 is
set as the p0-percentile of the function values {g(θ(i)

0,t)} ∪ {ĝ(θ(i)
0,r)}, and the intermediate

failure domain F1 is thereby defined. The samples θ(i)
0 ∈ F1 are chosen as seeds for the

next subset level, evaluated using the true model, and added to the training set T . The
surrogate model is refined as soon as the training set is updated. At the j-th subset level,
samples θ(i)

j are generated by the MCMC sampling strategy, in which candidates θ̃(i)
j

are proposed and then accepted or rejected according to whether or not they lie in the
intermediate failure domain Fj. The acceptance or rejection of the candidates is carried
out exploiting the latest surrogate model. θ(i)

j represent the resulting samples of this step.
Afterwards, the intermediate threshold bj+1 and the intermediate failure domain Fj+1 are
determined. The samples θ(i)

j that fall in Fj+1 are chosen as seeds for the next level and
added to T to refine the surrogate model. The previous steps are repeated until there are
enough samples in the target failure domain.

In addition to the initial training samples θ(i)
0,t, the points θ(i)

j ∈ Fj+1 at the j-th level
(j = 0, 1, . . . ,m− 1) are added to the training set. The new training samples spread over
the following subset to be explored, thus favors the refinement of the surrogate model in
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Figure 4.8: Polynomial surrogate-based SuS.

the domain of interest. The conventional SuS needs to evaluate the true model whenever
new samples are generated. If the component-wise MH algorithm (see Algorithm 6) is
applied, the number of calls to the true model for SuS with m levels is given by

Ncall ≈ mN, (4.65)

where N is the number of generated samples at each subset level. Due to the rejection
of candidates with a given probability, Ncall is smaller than mN but gets close to mN as
the dimension increases. In comparison, the PS-SuS method only calls the true model for
training samples, which means the number of true model evaluations equals the size of the
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training set. We denote p̃0N as the number of initial training samples θ(i)
0,t. The number

of calls to the true model for PS-SuS is given by

Ncall ≈ p̃0N + (m− 1)p0N =
(
p̃0 − p0

m
+ p0

)
mN. (4.66)

Similarly, because of the rejection step in the component-wise MH algorithm, not all the
p0N seeds at each level need to be assessed using the true model. Compared with SuS,
PS-SuS requires only a small proportion of true model evaluations, thus gaining much
higher efficiency.

The initial level of SuS is the direct MCS, thus users can choose whether to utilize PCE
or RSM in accordance with the distribution of uncertain parameters and the nonlinearity
of the true model. At the subsequent subset levels (j = 1, . . . ,m− 1), the samples follow
the conditional distribution

f(θ|Fj) =
f(θ)IFj

(θ)
P[Fj]

, (4.67)

which is not known, thus making it nontrivial to implement the isoprobabilistic transforma-
tion for PCE. As a consequence, it is recommended to employ RSM, which is independent
with the PDF of the uncertain parameters.

4.4.2 Adaptive Experimental Design Strategy

The fundamental idea of the PS-SuS approach has been presented in the previous subsection.
This subsection introduces an adaptive experimental design strategy that chooses the most
valuable training samples from the full training set to refine the surrogate model.

At the j-th level (j = 0, 1, . . . ,m− 2) of SuS, the training set is enriched with seeds
for the next level θ(i)

j ∈ Fj+1. One can use the full training set to update the global
surrogate model. However, a high percentage of existing training samples locate outside
the domain of interest Fj+1. This may result in capturing the main trend throughout the
entire space instead of the unique features in the interested domain Fj+1, thus leading to
large prediction errors in this intermediate failure domain. Alternatively, one can use only
training samples in Fj+1 to refine the surrogate model. But the refined surrogate lacks
confidence in predicting model responses outside this domain, or even generates erroneous
predictions. An example is given in Figure 4.9a, where the surrogate model built by the
last three training samples makes completely wrong predictions at the first two training
samples. To find a tradeoff that the obtained surrogate model can not only mimic the
model behaviors locally in Fj+1 but also detect the global trend, an adaptive strategy is
proposed in the following.

It is desirable that the updated surrogate model at the end of the j-th level is able
to accurately predict the responses of samples in Fj+1 = {θ ∈ Ω : g(θ) ≤ bj+1} and
distinguish whether or not a given sample should lie in Fj+1. With this target, the full
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a) Building surrogate using θ
(i)
t ∈ Fj+1 b) Adaptive experimental design

Figure 4.9: Adaptive experimental design for PS-SuS.

Algorithm 10 Adaptive experimental design strategy for PS-SuS

Input: Training set T = {(θ(i)
t , g(θ(i)

t )) : i = 1, . . . , Nt}; Intermediate threshold bj+1.
Output: Surrogate model ĝ(θ).

1: Divide T into a smaller training set T̃ = {(θ(i)
t , g(θ(i)

t )) : g(θ(i)
t ) ≤ bj+1} and a

validation set V = {(θ(i)
t , g(θ(i)

t )) : g(θ(i)
t ) > bj+1};

2: Set the possible expansion orders d = dmin : dmax;
3: Construct an RSM surrogate model ĝ(θ) using T̃ (Algorithm 9);
4: Estimate the function outputs of the samples in V employing ĝ(θ) and denote the

number of samples satisfying ĝ(θ(i)
t ) ≤ bj+1 by nf ;

5: while nf > 0 do
6: Move the nf misclassified samples from V to T̃ ;
7: Set the possible expansion orders d = dmin : dmax;
8: Build an RSM surrogate model ĝ(θ) using T̃ (Algorithm 9);
9: Estimate the function outputs of the samples in V exploiting ĝ(θ) and denote the

number of samples satisfying ĝ(θ(i)
t ) ≤ bj+1 by nf ;

10: end while
11: return ĝ(θ).

training set T is first divided into two sets, namely, a smaller training set T̃ including all
the training samples falling in Fj+1 and a validation set V = T \ T̃ . A global surrogate
model ĝ(θ) is constructed using T̃ . The samples in V are then adopted to assess the
generalization ability of ĝ(θ) outside Fj+1. If a sample θ(i) in V, which does not lie in
Fj+1, is predicted to fall in Fj+1 by ĝ(θ), e.g. the first two training samples in Figure 4.9a,
the generalization ability is not strong enough and the current surrogate ĝ(θ) should be
further improved. In this case, all the misclassified samples in V are moved to T̃ and
subsequently a new surrogate ĝ(θ) is built using the updated T̃ , as depicted in Figure 4.9b.
These steps are repeated until all the samples in V are correctly classified. This adaptive
experimental design strategy is summarized in Algorithm 10. In essence, SuS can be
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Algorithm 11 The PS-SuS approach
Input: The PDF of uncertain parameters f(θ); Limit-state function g(θ); Conditional

probability p0; The number of samples per subset level N ; The percentage of points
that are chosen as the initial training samples p̃0.

Output: The estimate of failure probability P̂F .
1: Draw N i.i.d. samples {θ(i)

0 : i = 1, . . . , N} in accordance with f(θ) and initialize an
empty training set T ;

2: Randomly select p̃0N training samples {θ(i)
0,t : i = 1, . . . , p̃0N} from the N samples,

where p̃0N is an integer, calculate the corresponding limit-state values {g(θ(i)
0,t) : i =

1, . . . , p̃0N}, and add these training samples to T ;
3: Build a PCE or RSM surrogate model ĝ(θ) with T and estimate the limit-state values

of the non-training samples {θ(i)
0,r : i = 1, . . . , (1 − p̃0)N} using ĝ(θ);

4: Find b1 as the p0-percentile of the N responses {g(θ(i)
0,t)} ∪ {ĝ(θ(i)

0,r)} and set F1 =
{θ ∈ Ω : g(θ) ≤ b1};

5: Set j = 1;
6: while bj > 0 do
7: Consider samples θ(i)

j−1 ∈ Fj as seeds {θ(i)
j−1,s : i = 1, . . . , Ns}, where Ns = p0N is

an integer;
8: Calculate the corresponding limit-state values {g(θ(i)

j−1,s) : i = 1, . . . , Ns} and add
these seeds to T ;

9: Update ĝ(θ) employing the adaptive experimental design strategy (Algorithm 10);
10: Propose N candidate samples {θ̃(i)

j : i = 1, . . . , N} from the seeds;
11: Estimate the limit-state values of these candidate samples using ĝ(θ);
12: Accept or reject θ̃(i)

j according to whether ĝ(θ̃(i)
j ) ≤ bj ; After rejection, the samples

are denoted by {θ(i)
j : i = 1, . . . , N} = {θ(i)

j,t } ∪ {θ(i)
j,r};

13: Find bj+1 as the p0-percentile of the N responses {g(θ(i)
j,t )} ∪ {ĝ(θ(i)

j,r)} and set
Fj+1 = {θ ∈ Ω : g(θ) ≤ bj+1};

14: Set j = j + 1;
15: end while
16: Set the total number of subsets m = j, set bm = 0, denote the number of samples

θ
(i)
m−1 ∈ F by NF , and estimate the failure probability as in Eq. (2.54);

17: return P̂F .

considered as a series of classification problems. At the j-th level, samples are classified to
two categories: those fall in Fj+1 and those do not. The proposed adaptive strategy aims
to achieve this classification task and provide accurate predictions for samples in Fj+1.
The latter goal is necessary to realize the precise classification at the following subset level.
Consequently, this novel scheme attempts to gain the best accuracy for PS-SuS. Applying
this strategy, the PS-SuS approach is given in Algorithm 11.
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Figure 4.10: Expansion orders and LOO errors at each level of PS-SuS

The generalization ability of the constructed surrogate model is evaluated by the LOO
error in Section 4.3.2. To assess the classification performance of the surrogate in the
PS-SuS method, the classification error is defined as the ratio of training samples that are
incorrectly classified:

εc = Nc

Nt

, (4.68)

where Nc is the number of misclassified training samples in T and Nt is the cardinality of T .
A large classification error indicates that the current global surrogate cannot successfully
achieve the classification task.

4.4.3 Illustrative Examples

Consider the 3-dimensional limit-state function in Equation (4.59) where a = 15 and
θi, i = 1, 2, 3, are i.i.d. Gaussian random variables with zero means and unit standard
deviations. The proposed PS-SuS method is implemented to evaluate the failure probability
P [g(θ) ≤ 0], with N = 2000, p0 = 0.1, p̃0 = 0.12, and dmin : dmax = 1 : 7.

At each subset level, adaptive PCE/RSM is performed to choose the best expansion
order that results in the minimum LOO error. The optimal expansion orders and the
corresponding LOO errors are depicted in Figure 4.10. Relatively high (4th–6th) orders
turn out to be the best choices which obtain very small LOO errors. Table 4.8 shows
the adaptive experimental design results. At each level, Ncall samples are added to the
full training set T , and a training set T̃ , which is a subset of T with Ntrain samples,
is employed to build a surrogate. The initial surrogate at Lv. 2, for example, leads to
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Figure 4.11: Surrogate estimates at each level of PS-SuS.

a classification error εc = 0.031. With the adaptive experimental design strategy (see
Algorithm 10), the training set T̃ is enriched by 19 samples and the refined surrogate is
able to properly classify all the samples in T . By contrast, the initial surrogates at the
first two levels are already accurate enough for the classification problem. In the end, the
surrogates at all levels provide sufficiently accurate predictions for samples in T̃ (due to
the very small LOO errors shown in Figure 4.10), as well as precise classification results
for elements in T .

Figure 4.11 compares the system outputs evaluated by the true model and the surrogate
model. These points lie close to the line y = x. In accordance with the small LOO errors in
Figure 4.10, this again proves the high accuracy of the surrogates. The failure probability
estimation results of SuS and PS-SuS with N = 2000 are presented in Figure 4.12 and
Table 4.9, where σ denotes the standard deviation of the estimation approximated by
Equation (2.36) with µ ≈ P̂F and cv ≈ ĉv,lb. The estimation results of PS-SuS are quite
similar to those of SuS, but only a fraction of true model evaluations are required by
PS-SuS. This thereby proves that the PS-SuS approach achieves comparable accuracy but
higher efficiency in contrast with SuS.

Table 4.8: Adaptive experimental design results at each level of PS-SuS.

Item Lv. 0 Lv. 1 Lv. 2 Lv. 3

Ncall 240 177 200 200
Ntrain 240 200 214 → 233 218 → 231
εc 0 0 0.031 → 0 0.016 → 0
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Figure 4.12: Failure probability estimation results using SuS and PS-SuS.

The efficiency and accuracy of the PS-SuS approach are further illustrated in Table 4.10
and Figure 4.13, where SuS and PS-SuS are carried out with different numbers of samples
per level: N = [500, 1000, 2000, 3000, 5000]T. For each N , 50 repeated applications of
these methods are conducted. Table 4.10 shows that the proposed method saves about
90% true model evaluations in comparison with conventional SuS. In Figure 4.13a, the
c.o.v. upper and lower bounds are the average values of the 50 estimates of ĉv,lb and ĉv,ub,
respectively, whereas the empirical c.o.v., denoted by “emp.”, is the sample c.o.v. of the

Table 4.9: Failure probability estimation results using SuS and PS-SuS.

Method P̂F [ĉv,lb, ĉv,ub] Ncall

SuS 5.82 × 10−4 [0.20, 0.37] 7933
PS-SuS 5.01 × 10−4 [0.20, 0.36] 817

Table 4.10: Average numbers of calls to the true model using SuS and PS-SuS.

N NSuS
call NPS-SuS

call

500 1938 202
1000 3954 408
2000 7947 815
3000 11918 1221
5000 19867 2035
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Figure 4.13: Failure probability estimation results using SuS and PS-SuS with different N .

50 failure probability estimates. It is shown that the empirical results lie between the
lower and upper bounds. In Figure 4.13b, the failure probability estimates are the mean
values of the 50 results, and the 3-σ ranges are approximated using the average probability
estimate and the empirical c.o.v. The statistical results of the two methods are very
similar, demonstrating that the highly efficient PS-SuS achieves the same accuracy level
as SuS in this example.
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4.5 Summary

This chapter first introduced the principles of two polynomial-based global surrogates, i.e.,
response surface method (RSM) and polynomial chaos expansion (PCE). After that, the
uncertainty propagation schemes based on RSM and PCE were summarized. Then, this
chapter proposed the polynomial surrogate-based SuS (PS-SuS) method integrating these
global surrogates into SuS. Herein, adaptive PCE or RSM was applied to progressively
refine the surrogate and an experimental design strategy was designed to choose the most
valuable training samples for the surrogate refinement.
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Chapter 5

Moving Least-Squares-Accelerated
Reliability Assessment

Two global surrogate models, RSM and PCE, have been utilized to mimic the behaviors
of performance functions in Chapter 4. Though they are easy to implement, they may
suffer from large estimation errors for highly nonlinear applications. To alleviate this
problem, this chapter employs a local surrogate model called moving least-squares (MLS)
to accelerate the simulation-based reliability analysis approaches. The principles of MLS
are presented first. The following section introduces the integration of MLS into simulation
methods and the strategy adaptively enriching the training set. After that, a two-stage
framework for MLS-based simulation approaches is proposed to tackle high-dimensional
problems based on a novel dimensionality reduction strategy. Finally, illustrative examples
are given to demonstrate the accuracy and efficiency of the proposed methods.

5.1 Moving Least-Squares (MLS)

5.1.1 MLS Method

The MLS method was first proposed in [139] to interpolate and smooth data. It allows us
to construct a surrogate model between interpolation and standard polynomial regression.
Similar to standard RSM, the limit-state function g(θ) can be estimated in terms of basis
functions ψk(θ) and corresponding adjusting coefficients αk(θ) as

ĝ(θ) =
p∑

k=1
αk(θ)ψk(θ) = α(θ)Tψ(θ), (5.1)

where p is the number of expansion items, ψ(θ) = [ψ1(θ), . . . , ψp(θ)]T, and α(θ) =
[α1(θ), . . . , αp(θ)]T. The function ψ(·) is also known as feature mapping, and the elements
ψk(θ) are thus called features. In the absence of any specific knowledge about the
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nonlinearity of g(θ), it is common to choose the basis functions as linear and quadratic
monomials [45]:

ψ(θ) =
[
1, θ1, θ2, . . . , θn, θ1θ2 . . . , θiθj, . . . , θ

2
1, θ

2
2, . . . , θ

2
n

]T
. (5.2)

In this thesis, monomials up to the 2nd order are utilized as basis functions.

Given the training set T = {(θ(i)
t , g(θ(i)

t )) : i = 1, . . . , Nt}, the coefficients can be
estimated by the weighted least-squares (WLS) method [45] minimizing the weighted
residual sum of squares:

α(θ) = arg min
Nt∑
i=1

w(θ(i)
t − θ)

(
α(θ)Tψ(θ(i)

t ) − g(θ(i)
t )
)2

=
(
ΨTWΨ

)−1
ΨTWy,

(5.3)

where w(θ(i)
t − θ) is the weight defining the relative importance of (θ(i)

t , g(θ(i)
t )), W is the

weight matrix, Ψ is the experimental matrix, and y is a vector of true function responses.
Let nt denote the number of activated samples whose weights are greater than 0. Without
loss of generality, assume that the first nt samples in the training set are activated, then

W =


w(θ(1)

t − θ) 0 · · · 0
0 w(θ(2)

t − θ) · · · 0
... ... . . . ...
0 0 · · · w(θ(nt)

t − θ)

 , (5.4)

Ψ =


ψ(θ(1)

t )T

ψ(θ(2)
t )T

...
ψ(θ(nt)

t )T

 =


ψ1(θ(1)

t ) ψ2(θ(1)
t ) · · · ψp(θ(1)

t )
ψ1(θ(2)

t ) ψ2(θ(2)
t ) · · · ψp(θ(2)

t )
... ... . . . ...

ψ1(θ(nt)
t ) ψ2(θ(nt)

t ) · · · ψp(θ(nt)
t )

 , (5.5)

and y = [g(θ(1)
t ), . . . , g(θ(nt)

t )]T. The weight function w(·) plays a crucial role as it
determines the degree to which the samples θ(i)

t influence the query point θ, i.e., the point
to be predicted. It decays continuously with increasing distance ∥θ(i)

t − θ∥2 and vanishes
beyond a certain region. This means that only the points closest to θ contribute to the
prediction of g(θ), and thus the approximation is local. The fixed region is called support
domain S. This concept is illustrated in Figure 5.1. Here, samples θ(i)

t , i = 1, . . . , 5, fall
in the support domain of the query point θ. Darker blue shades represent larger weights
and R denotes the radius of the support domain. The support domain moves with the
query point. This is the reason why this method is called “moving” least-squares. It also
indicates that the computation in Equations (5.1) and (5.3) must be carried out at every
query point. In this thesis, the cubic spline weight function [140] as follows is applied:

w(θ(i)
t − θ) =


4r3

θ − 4r2
θ + 2

3 , rθ ≤ 1
2 ,

−4
3r

3
θ + 4r2

θ − 4rθ + 4
3 ,

1
2 < rθ ≤ 1,

0, rθ > 1,

(5.6)
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Figure 5.1: Support domain of MLS.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5.2: Shape of the cubic spline weight function.

where rθ = ∥θ(i)
t − θ∥2/R. The shape of the cubic spline weight function is shown in

Figure 5.2. Besides, the quartic spline function and the exponential function [140] are
another two popular weight functions:

w(θ(i)
t − θ) =

 −3r4
θ + 8r3

θ − 6r2
θ + 1, rθ ≤ 1,

0, rθ > 1,
(5.7)

w(θ(i)
t − θ) =

 exp
(

− r2
θ

β2

)
, rθ ≤ 1,

0, rθ > 1,
(5.8)

where β is the shape parameter. These two functions exhibit similar bell shape as the
cubic spline weight function depicted in Figure 5.2.

In practice, to address the multicollinearity problem, the ridge regression (RR) estima-
tor [136, Ch. 1] minimizing the penalized weighted residual sum of squares is applied:

α(θ) = arg min
Nt∑
i=1

w(θ(i)
t − θ)

(
α(θ)Tψ(θ(i)

t ) − g(θ(i)
t )
)2

+ λ∥α(θ)∥2
2

=
(
ΨTWΨ + λIp

)−1
ΨTWy,

(5.9)
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Figure 5.3: MLS weights given query point θ = 0.5.

where Ip is the p× p identity matrix and λ is the ridge parameter which is usually a small
positive constant.

An example implementing the MLS surrogate model is given in the following. Consider
a 1-dimensional function expressed as

g(θ) = 1
1 + 10θ2 , −2 ≤ θ ≤ 2. (5.10)

Both MLS and RSM are applied to build surrogate models based on 11 given training
samples. Basis functions up to the 2nd order are used in MLS, whereas a 6th-order
polynomial expansion is adopted in RSM. Given a query point θ = 0.5, the weight function
for MLS is depicted in Figure 5.3. Only the training samples close to the query point are
considered when predicting the function value of the query point. Figure 5.4 shows the
fitting results of both surrogate modeling methods. In comparison with RSM, the MLS
regression model, which provides low-order local approximations, is more accurate and
flexible for approximating functions without a priori knowledge about the nonlinearity.

5.1.2 Kernel Ridge Regression

In this subsection, kernel ridge regression (KRR) [141, Ch. 14], which combines RR with
the kernel trick, is applied to solve the MLS regression problem in a more flexible manner.

The concept of kernel is first introduced. Given vectors x, z ∈ Rn and a feature
mapping ψ(·), the kernel function [142] is defined as

k(x, z) = ψ(x)Tψ(z). (5.11)
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Figure 5.4: Response approximation using MLS and RSM

The kernel function enables us to conduct the inner product in the feature space by simply
calculating the inner product in the original space, instead of explicitly computing the
inner product of the features. In general, the former operation is computationally cheaper
than the latter one. This approach is called the kernel trick.

Consider an example where the following polynomial kernel is used:

k(x, z) =
(
1 + xTz

)d
. (5.12)

Let n = 2, x = [x1, x2]T, z = [z1, z2]T, and d = 2, Equation (5.12) can be written as

k(x, z) = (1 + ⟨x, z⟩)2

= 1 + 2x1z1 + 2x2z2 + 2x1x2z1z2 + x2
1z

2
1 + x2

2z
2
2

= ⟨ψ(x),ψ(z)⟩,
(5.13)

which corresponds to the feature mapping

ψ(x) =
[
1,

√
2x1,

√
2x2,

√
2x1x2, x

2
1, x

2
2

]T
. (5.14)

This mapping is the same as the basis functions in Equation (5.2). The computation of
the inner product in a high-dimensional feature space ⟨ψ(x),ψ(z)⟩R6 can be simplified to
its counterpart in the original space ⟨x, z⟩R2 . More generally, the polynomial kernel in
Equation (5.12) corresponds to a feature mapping of dimension

p = (n+ d)!
n!d! . (5.15)

Though computing the corresponding ψ(·) is of complexity O(nd), calculating k(x, z) is
of complexity O(n).
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Recall that from Equation (5.9), one gets(
ΨTWΨ + λIp

)
α = ΨTWy

⇒ α = λ−1
(
ΨTWy − ΨTWΨα

)
= λ−1ΨT (Wy −WΨα) .

(5.16)

Let α = ΨTβ, then
ΨTβ = λ−1ΨT (Wy −WΨα) . (5.17)

This equation holds if the following equation is satisfied:

β = λ−1 (Wy −WΨα) . (5.18)

Equation (5.18) can be written as

λβ = Wy −WΨα

= Wy −WΨΨTβ

⇒
(
WΨΨT + λInt

)
β = Wy.

(5.19)

Thus, one obtains
β = (WK + λInt)

−1Wy, (5.20)

where

K = ΨΨT =


ψ(θ(1)

t )T

ψ(θ(2)
t )T

...
ψ(θ(nt)

t )T


[
ψ(θ(1)

t ),ψ(θ(2)
t ), . . . ,ψ(θ(nt)

t )
]

=


k(θ(1)

t ,θ
(1)
t ) k(θ(1)

t ,θ
(2)
t ) · · · k(θ(1)

t ,θ
(nt)
t )

k(θ(2)
t ,θ

(1)
t ) k(θ(2)

t ,θ
(2)
t ) · · · k(θ(2)

t ,θ
(nt)
t )

... ... . . . ...
k(θ(nt)

t ,θ
(1)
t ) k(θ(nt)

t ,θ
(2)
t ) · · · k(θ(nt)

t ,θ
(nt)
t )



(5.21)

is the kernel matrix.

Therefore, Equation (5.1) can be represented as

ĝ(θ) = βTΨψ(θ) = βTκ(θ) (5.22)

with

κ(θ) = Ψψ(θ) =


ψ(θ(1)

t )T

ψ(θ(2)
t )T

...
ψ(θ(nt)

t )T

ψ(θ) =


k(θ(1)

t ,θ)
k(θ(2)

t ,θ)
...

k(θ(nt)
t ,θ)

 . (5.23)

Compared with Equations (5.1) and (5.9), the MLS solution applying Equations (5.20)
and (5.22) does not require the calculation of features, but the computation of the kernel
function instead. Consequently, KRR is more flexible for complex fitting than RR. For basis
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Table 5.1: Comparisons between RR and KRR.

Method Flexibility Efficiency when nt ≫ p

RR More restricted More efficient
KRR More flexible Less efficient

functions up to the 2nd order (see Equation (5.2)), one can simply use the polynomial
kernel in Equation (5.12) with d = 2. Likewise, d can be modified accordingly if a
polynomial expansion of different order is required. Moreover, users can specify any type
of basis functions by defining the corresponding kernel function.

To obtain sufficient regression accuracy, the number of activated training samples nt,
i.e., the number of samples in the support domain, generally should be larger than the
number of unknown coefficients p. In this case, calculating the inverse of a square matrix of
order nt for KRR (see Equation (5.20)) requires more computational cost than calculating
the inverse of a square matrix of order p for RR (see Equation (5.9)). This suggests that
RR is more efficient than KRR when nt ≫ p. The comparisons between RR and KRR are
summarized in Table 5.1. These two estimators are different tradeoffs between flexibility
and efficiency. In the context of MLS, KRR with nt ∈ [1.2p, 2p] is recommended to find a
balance between estimation accuracy and efficiency.

5.2 MLS-Based Simulation Methods

This section combines MLS with MCS and SuS, and then proposes an active learning
strategy to reduce the influence of the surrogate error on the final estimation result.

5.2.1 MLS-Accelerated MCS

Similar with RSM and PCE (see Section 4.3.1), the MLS surrogate model can be employed
to accelerate MCS by replacing a large proportion of true model evaluations with the
surrogate model predictions. The general idea of the MLS-accelerated MCS (MLS-MCS)
method is illustrated in Figure 5.5.

First, N samples θ(i), i = 1, . . . , N, are generated by MCS. After that, a fraction of
them are chosen as training samples θ(i)

t , i = 1, . . . , Nt, and the rest non-training points
are represented by θ(i)

r . Then, the training samples are evaluated using the true model
g(θ), and the training set is specified as T = {(θ(i)

t , g(θ(i)
t ))}. Exploiting this training

set, an MLS surrogate model ĝ(θ) is built to predict the model outputs of θ(i)
r . With the

function values {g(θ(i)
t )} ∪ {ĝ(θ(i)

r )}, the failure probability is estimated as the percentage
of samples lying in the failure domain. The numbers of calls to the true model for MCS
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Figure 5.5: General idea of MLS-MCS.

and MLS-MCS are given by

NMCS
call = N, (5.24)

NMLS-MCS
call = Nt. (5.25)

5.2.2 MLS-Accelerated SuS

For rare events, the MLS surrogate can be integrated into the SuS approach to achieve
efficient and precise estimations. The general idea of MLS-accelerated SuS (MLS-SuS) is
visualized in Figure 5.6.

At the initial level of SuS, the samples θ(i)
0 are generated by MCS. Whereas at the

following subset levels (j = 1, . . . ,m− 1), the samples θ(i)
j are generated by the MCMC

sampling method. MCMC sampling strategies can generally be divided into two main
steps, i.e., the proposal of candidate samples θ̃(i)

j and the rejection of candidates according
to whether or not they lie in the intermediate failure domain. The samples after the
rejection step are denoted by θ(i)

j . With conventional SuS, the limit-state values of samples
θ

(i)
0 and θ̃(i)

j are all evaluated using the true model g(θ). In MLS-SuS, however, a small
set of training points θ(i)

0,t or θ̃(i)
j,t are selected from these samples and added to the training

set T to create or refine a surrogate model ĝ(θ). Afterwards, the limit-state values of
the remaining non-training samples θ(i)

0,r or θ̃(i)
j,r are predicted by the surrogate model.

The intermediate thresholds bj, j = 1, . . . ,m− 1, are set as the p0-percentiles of function
values {g(θ(i)

j−1,t)} ∪ {ĝ(θ(i)
j−1,r)}, and bm is set as 0. Accordingly, the intermediate failure

domains Fj, j = 1, . . . ,m, are defined as Fj = {θ ∈ Ω : g(θ) ≤ bj}. The samples
θ

(i)
j−1 ∈ Fj, j = 1, . . . ,m− 1, are selected as seeds for proposing new samples at the next

subset level.
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Figure 5.6: General idea of MLS-SuS.

In contrast with conventional SuS, the new MLS-SuS method significantly reduces the
number of calls to the true model Ncall. Applying the component-wise MH algorithm (see
Algorithm 6), the numbers of true model evaluations for SuS and MLS-SuS with m levels
are given by

NSuS
call ≈ mN, (5.26)

NMLS-SuS
call =

m−1∑
j=0

Nj,t, (5.27)
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where N is the number of generated samples at each subset level and Nj,t is the number
of training samples chosen at the j-th level. Because of the rejection of candidates with a
given probability, NSuS

call is smaller than mN but gets close to mN as the dimension grows.

5.2.3 Active Learning Strategy

The previous subsections introduce the fundamental idea of combining the MLS surrogate
with simulation-based reliability analysis methods. This subsection proposes an active
learning strategy that adding more training samples to the training set to improve the
estimation accuracy.

MCS can be regarded as the SuS with only a single level, and SuS can be summarized as
a repeated process of sampling and classification. This interpretation is shown in Figure 5.7.
At each level (j = 0, 1, . . . ,m− 1), samples are drawn and classified into two categories,
i.e., whether θ(i)

j ∈ Fj+1 or not. Besides that, at subset levels (j = 1, . . . ,m − 1), the
rejection of candidate points in MCMC sampling is also a classification problem: judging
whether or not θ̃(i)

j ∈ Fj.

In MLS-MCS and MLS-SuS, the classification is performed based on function values
{g(θ(i)

j,t )} ∪ {ĝ(θ(i)
j,r)} or {g(θ̃(i)

j,t )} ∪ {ĝ(θ̃(i)
j,r)}. However, the predictions provided by the

surrogate model may not be sufficiently precise, thus degrading the classification accuracy.
Moreover, the thresholds bj are set as the p0-percentiles of {g(θ(i)

j,t )} ∪ {ĝ(θ(i)
j,r)}, which

means that the classification boundary is influenced by the surrogate error as well.

To mitigate the effect of the surrogate error on the classification, more training samples
around the intermediate boundary {θ ∈ Ω : g(θ) = bj} are added to the training set
and the surrogate model nearby is thus refined. For this purpose, we predict not only
the limit-state values but also the variations of these estimations. Leave-one-out (LOO)
cross validation [137, Ch. 7] is performed for training samples. It removes one point θ(k)

t

from the training set T = {(θ(i)
t , g(θ(i)

t ))} and builds a surrogate model ĝ(−k)(θ) with the
remaining training points. The LOO error at θ(k)

t is defined as

ε
(k)
t =

∣∣∣g(θ(k)
t ) − ĝ(−k)(θ(k)

t )
∣∣∣ . (5.28)

This error reflects the gap between the actual nonlinearity and the nonlinearity assumed
in MLS. For non-training points θ(i)

r , we build another MLS surrogate model ĥ(θ) using
training samples {(θ(i)

t , ε
(i)
t )}, and then approximate the prediction errors of the non-

training points ϵ̂(i)
r . The prediction intervals are regarded as [ĝ(θ(i)

r ) − ϵ̂(i)
r , ĝ(θ(i)

r ) + ϵ̂(i)
r ]. So

far, two surrogate models are built: one for the limit-state function and the other one for
its prediction error. Employing RR (see Section 5.1.1), these two surrogates are given by

ĝ(θ) = ψ(θ)T
(
ΨTWΨ + λIp

)−1
ΨTWy, (5.29)

ĥ(θ) = ψ(θ)T
(
ΨTWΨ + λIp

)−1
ΨTWεt, (5.30)
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Figure 5.7: Interpretation of MCS and SuS.

where y = [g(θ(1)
t ), . . . , g(θ(nt)

t )]T and εt = [ε(1)
t , . . . , ε

(nt)
t ]T. The same basis functions

are used for building these two MLS surrogate models. This indicates that the matrix
ψ(θ)T

(
ΨTWΨ + λIp

)−1
ΨTW does not need to be calculated again for the second

surrogate. Consequently, the construction of the second surrogate requires almost no
additional computational expense. This result holds if KRR (see Section 5.1.2) is adopted
since the surrogates in this case are given by

ĝ(θ) = κ(θ)T (WK + λInt)
−1Wy, (5.31)

ĥ(θ) = κ(θ)T (WK + λInt)
−1Wεt. (5.32)
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a) The predictions of non-training samples b) The predictions after enriching the
training set

Figure 5.8: Active learning for MLS-MCS and MLS-SuS.

Algorithm 12 Active learning strategy for MLS-MCS and MLS-SuS

Input: Limit-state function g(θ); Training set T = {(θ(i)
t , g(θ(i)

t ))}; Surrogate model ĝ(θ);
Non-training samples θ(i)

r ; Intermediate threshold bj.
Output: Updated training set T = {(θ(i)

t , g(θ(i)
t ))}.

1: Compute the LOO errors of the training samples ϵ(i)
t as in Equation (5.28);

2: Build a surrogate model ĥ(θ) using training samples {(θ(i)
t , ϵ

(i)
t )} and estimate the

prediction errors of the non-training points ϵ̂(i)
r ;

3: Calculate the actual limit-state values g(θ(i)
r ) for the non-training samples satisfying

|ĝ(θ(i)
r ) − bj| < ϵ(i)

r and add these samples to T ;
4: return T = {(θ(i)

t , g(θ(i)
t ))}.

Aiming at solving the classification problem as mentioned in Figure 5.7, it is unnecessary
to guarantee that all the non-training samples are accurately predicted. The predictions of
the non-training points and the variations of these predictions are depicted in Figure 5.8a.
With the knowledge of the variations, for instance, the current surrogate model is confident
to make a statement that the first two samples are above the boundary {θ ∈ Ω : g(θ) = bj}.
However, the third sample is predicted to lie below the boundary but it is probable to lie
above instead. We select these maybe misclassified samples as additional training points
to update the surrogate. After that, the predictions and variations are also updated, as
presented in Figure 5.8b. The samples without variations denote the additional training
points, which are evaluated using the true model and then added to the training set T .
By this means, if the prediction intervals are estimated properly, it is guaranteed that the
samples are correctly classified and the introduction of the classification error is avoided.
The algorithm to adaptively enrich the training set is summarized in Algorithm 12. Besides
enhancing the classification accuracy, this strategy also benefits the optimization of the
intermediate threshold bj. In practice, the algorithm may be carried out several times
until all the non-training samples are correctly classified.
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Figure 5.9: Schema of the MLS-SuS approach.

To summarize, the MLS surrogate is incorporated into simulation approaches to reduce
the high demand of true model evaluations. But the introduction of the surrogate model
brings in the classification error which may impair the estimation accuracy of the failure
probability. To alleviate this side effect, an active learning strategy is proposed to improve
the classification accuracy and thus the final estimation accuracy. Applying this strategy,
the MLS-SuS method is shown schematically in Figure 5.9, and MLS-MCS is simply
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Algorithm 13 The MLS-SuS approach
Input: The PDF of uncertain parameters f(θ); Limit-state function g(θ); Conditional

probability p0; The number of samples per subset level N ; The percentage of points
that are chosen as the initial training samples p̃0.

Output: The estimate of failure probability P̂F .
1: Draw N i.i.d. samples {θ(i)

0 : i = 1, . . . , N} in accordance with f(θ) and initialize an
empty training set T ;

2: Randomly select p̃0N training samples {θ(i)
0,t : i = 1, . . . , p̃0N} from the N samples,

where p̃0N is an integer, calculate the corresponding limit-state values {g(θ(i)
0,t) : i =

1, . . . , p̃0N}, and add these training samples to T ;
3: Build an MLS surrogate model ĝ(θ) with T and estimate the limit-state values of the

non-training samples {θ(i)
0,r : i = 1, . . . , (1 − p̃0)N} using ĝ(θ);

4: Find b1 as the p0-percentile of the N responses {g(θ(i)
0,t)} ∪ {ĝ(θ(i)

0,r)};
5: Adaptively add samples that may be misclassified by the boundary {θ ∈ Ω : g(θ) = b1}

to T (Algorithm 12), update ĝ(θ) and b1, and set F1 = {θ ∈ Ω : g(θ) ≤ b1};
6: Set j = 1;
7: while bj > 0 do
8: Consider samples θ(i)

j−1 ∈ Fj as seeds {θ(i)
j−1,s : i = 1, . . . , Ns}, where Ns = p0N is

an integer;
9: Propose N candidate samples {θ̃(i)

j : i = 1, . . . , N} from the seeds;
10: Adaptively add samples that may be misclassified by {θ ∈ Ω : g(θ) = bj} to T

(Algorithm 12), update ĝ(θ), and get g(θ̃(i)
j ) or ĝ(θ̃(i)

j );
11: Accept or reject θ̃(i)

j according to whether ĝ(θ̃(i)
j ) ≤ bj ; After rejection, the samples

are denoted by {θ(i)
j : i = 1, . . . , N} = {θ(i)

j,t } ∪ {θ(i)
j,r};

12: Find bj+1 as the p0-percentile of the N responses {g(θ(i)
j,t )} ∪ {ĝ(θ(i)

j,r)};
13: Adaptively add samples that may be misclassified by {θ ∈ Ω : g(θ) = bj+1} to T

(Algorithm 12), update ĝ(θ) and bj+1, and set Fj+1 = {θ ∈ Ω : g(θ) ≤ bj+1};
14: Set j = j + 1;
15: end while
16: Set the total number of subsets m = j, set bm = 0, denote the number of samples

θ
(i)
m−1 ∈ F by NF , and estimate the failure probability as in Equation (2.54);

17: return P̂F .

the single-level MLS-SuS. The detailed algorithm for MLS-SuS is given in Algorithm 13.
Since the proposed active learning strategy seeks to eliminate the classification error,
the c.o.v. approximation for the conventional SuS (see Section 2.5.3) is still employed to
measure the estimation accuracy of the failure probability.
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Figure 5.10: Overlap between f(θk) and f(θk|F).

5.3 Dimensionality Reduction for MLS-Based Simu-
lation Methods

The computational expense for training an MLS surrogate grows significantly with the
number of uncertain parameters. To mitigate this problem, this section reduces the
dimensionality of the feature space based on the sensitivity analysis results.

5.3.1 Reliability Sensitivity Analysis

Given the MCS or SuS results, this subsection conducts global sensitivity analysis to
determine parameters that are sensitive (influential) to the failure event.

In reliability analysis, the system output can be considered as a binary variable, i.e.,
whether the system fails or not. The effect of each input variable θk, k = 1, . . . , n, on the
system failure can be measured by the sensitivity index [40, 143], which is defined as the
difference between the original PDF f(θk) and the failure-conditional PDF f(θk|F):

Sk = 1
2

∫
Ωk

|f(θk) − f(θk|F)| dθk, (5.33)

where Ωk is the support of θk. Let Ω+
k = {θk ∈ Ωk : f(θk) − f(θk|F) ≥ 0} and Ω−

k =
{θk ∈ Ωk : f(θk) − f(θk|F) < 0}, as illustrated in Figure 5.10, the sensitivity index Sk can
be represented as

Sk = 1
2

∫
Ω+

k

f(θk) − f(θk|F) dθk + 1
2

∫
Ω−

k

f(θk|F) − f(θk) dθk

= 1
2

(
1 −

∫
Ωk

min(f(θk), f(θk|F)) dθk

)
+ 1

2

(
1 −

∫
Ωk

min(f(θk), f(θk|F)) dθk

)
= 1 −

∫
Ωk

min (f(θk), f(θk|F)) dθk,

(5.34)
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where
∫

Ωk
min (f(θk), f(θk|F)) dθk is the overlapping area, i.e., the gray area shown in

Figure 5.10, and 0 ≤
∫

Ωk
min (f(θk), f(θk|F)) dθk ≤

∫
Ωk
f(θk)dθk = 1, thus the sensitivity

index Sk is the non-overlapping area and 0 ≤ Sk ≤ 1. The magnitude of Sk can be used
to rank the parameters in the sense of the importance to the failure event. A larger Sk

indicates that θk is more sensitive or influential to the system failure. Specifically, Sk = 0
means that θk is independent with the failure event.

For each intermediate failure domain of SuS Fj, j = 1, . . . ,m, the sensitivity index can
be generalized as

S
(j)
k = 1

2

∫
Ωk

|f(θk) − f(θk|Fj)| dθk

= 1 −
∫

Ωk

min (f(θk), f(θk|Fj)) dθk

(5.35)

The properties of Sk described above still hold after the generalization.

5.3.2 Dimensionality Reduction and Hybrid Kernel

As in Equation (5.2), linear and quadratic monomials are usually chosen as basis functions
for the MLS surrogate model [45]. Using all the first- and second-order combinations of
variables, the number of basis functions is

p = 1
2(n+ 1)(n+ 2), (5.36)

which increases polynomially with n, namely, the dimension of uncertain parameters. To
obtain sufficient regression accuracy, the number of training samples in the support domain
nt should be larger than the number of basis functions p. Hence, the number of training
samples also has a polynomial growth rate. Meanwhile, training an MLS surrogate model
requires repeated inversions of square matrices of order p or nt ∈ [1.2p, 2p], and the matrix
inversion is of complexity O(p3). As a consequence, the training time grows significantly as
n increases. This indicates that the MLS method suffers from the curse of dimensionality.

To overcome this issue, one may use only linear basis functions instead for MLS modeling.
However, the linear approximation usually sacrifices the fitting accuracy. Aiming at finding
a balance between computational cost and accuracy, we implement quadratic expansions
for sensitive variables but only linear approximations for insensitive ones. Motivated by
the fact that some quadratic terms may only contribute little to the surrogate accuracy,
this measure seeks to remove these terms with negligible impact. To be specific, if θk is
recognized as an insensitive variable, all the quadratic items with regard to θk are excluded.
For example, consider a 3-dimensional case and θ1 and θ2 are influential variables, the
feature mapping can be simplified as follows:

ψ(θ) =
[
1, θ1, θ2, θ3, θ1θ2, θ1θ3, θ2θ3, θ

2
1, θ

2
2, θ

2
3

]T
→ ψ(θ) =

[
1, θ1, θ2, θ3, θ1θ2, θ

2
1, θ

2
2

]T
.

(5.37)
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By this means, compared with the second-order expansion, the dimension of the feature
space is reduced, and the problem of the curse of dimensionality is thus alleviated. Though
the use of hybrid basis functions may lead to the loss of accuracy in the surrogate
modeling process, the active learning strategy in Section 5.2.3 is able to compensate for
the classification error.

The linear and quadratic kernels for the regression with first-order and second-order
expansions are given by

k(x, z) = 1 + xTz, (5.38)

k(x, z) =
(
1 + xTz

)2
, (5.39)

where vectors x, z ∈ Rn. The hybrid kernel for the regression with the above-mentioned
simplified basis functions is defined as a combination of linear and quadratic kernels:

k(x, z) = 1 + xTz +
(
xTQz

)2
, (5.40)

where Q = diag{q1, . . . , qn} is an indicator matrix, wherein qk, k = 1, . . . , n, are the
indicators of influential variables, which means qk = 1 if the k-th variable is sensitive to
the failure event and qk = 0 otherwise. Let n′ = ∑n

k=1 qk denote the number of influential
variables so that n′ ≤ n, then the number of the simplified basis functions is calculated as

p′ = 1 + n+ 1
2n

′(n′ + 1). (5.41)

In the previous 3-dimensional example where only the first two variables are sensitive to
the failure event, Q = diag{1, 1, 0} and the corresponding kernel is

k(x, z) = 1 + xTz +
(
xTQz

)2

= 1 +


x1

x2

x3


T 
z1

z2

z3

+



x1

x2

x3


T 

1 0 0
0 1 0
0 0 0



z1

z2

z3




2

= 1 + x1z1 + x2z2 + x3z3 + 2x1x2z1z2 + x2
1z

2
1 + x2

2z
2
2

= ⟨ψ(x),ψ(z)⟩,

(5.42)

which corresponds to the feature mapping

ψ(x) =
[
1, x1, x2, x3,

√
2x1x2, x

2
1, x

2
2

]T
. (5.43)

This result utilizes the same combinations of variables as that in Equation (5.37). Moreover,
in this example, n′ = 2 and p′ = 7. Figure 5.11 compares the number of features for the
second-order expansion (see Equation (5.36)) and that for the proposed dimensionality
reduction strategy (see Equation (5.41)) assuming that n′ = 1

2n. With this strategy, the
dimension of the feature space decreases greatly, especially for high-dimensional problems.
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Figure 5.11: Number of features for MLS.

Additionally, predicting the function value of a non-training point is of complexity O(p3).
As a result, this dimensionality reduction strategy dramatically reduces the training time.
In the case if it is necessary to update the sensitivity classification and rebuild the MLS
surrogate model, the hybrid kernel is quite flexible because there is no need to recalculate
the features and only the indicators qk need to be modified.

5.3.3 Two-Stage MLS-Accelerated MCS/SuS

This subsection integrates the dimensionality reduction strategy into the proposed MLS-
MCS and MLS-SuS approach in Section 5.2. Since MLS-MCS is simply a special case of
MLS-SuS, this section focuses on the improvement of the MLS-SuS method.

Before performing the MLS-SuS approach which is shown in Figure 5.9, we first detect
the sensitive components to determine the hybrid kernel, constituting the two-stage method
summarized in Figure 5.12. The first stage aims at identifying influential variables. First
of all, the SuS method is conducted with only few samples per subset level (the number of
samples per level is denoted by N0). Within this step, sparse points located in the safe
region and every intermediate failure region are obtained. However, with few samples per
subset level, the sensitive parameters may not be clearly distinguished [40]. Next, using
these points as training samples, MLS-SuS is carried out with more samples per level
but without enriching the training set. Afterwards, the sensitivity indices are evaluated
and the components with larger indices are taken as influential variables. To distinguish
the sensitive variables clearly, the last two steps may be repeated several times and the
sensitive ones may be updated in each iteration. At the second stage, the MLS-SuS method
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Figure 5.12: Schema of the two-stage MLS-SuS approach.

Algorithm 14 The two-stage MLS-SuS approach
Input: The PDF of uncertain parameters f(θ); Limit-state function g(θ); Conditional

probability p0; The number of samples per subset level N0, N .
Output: The estimate of failure probability P̂F .

1: Conduct conventional SuS (Algorithm 3) with N0 samples per subset level, and add
all these samples into the training set T ;

2: Initialize indicators qk = 0 and rk = 0, k = 1, . . . , n;
3: while ∑n

i=1 rk < n do
4: Given T , perform MLS-SuS (N samples per level) using the hybrid kernel in

Equation (5.40) without adding additional training samples;
5: Evaluate the sensitivity indices in Equation (5.33);
6: Set qk = 1 and rk = 1 if θk is clearly detected as a sensitive variable; Set qk = 0

and rk = 1 if θk is clearly detected as an insensitive variable;
7: Set rk = 0 if θk cannot be clearly distinguished;
8: end while
9: Perform the MLS-SuS approach (Algorithm 13) with N samples per level using the

hybrid kernel in Equation (5.40);
10: return P̂F .

in Figure 5.9 is performed using the determined hybrid kernel. The detailed algorithm
for the two-stage MLS-SuS is given in Algorithm 14. Here, as there is not any a priori
knowledge about the sensitivity ranking, the linear approximation (qk = 0 for all k) is
adopted in the beginning of the sensitivity analysis procedure. The influential variables
are detected progressively within several iterations. The indicators ri are introduced to
mark the variables that are clearly distinguished.
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Figure 5.13: Surrogate estimates before active learning.

5.4 Illustrative Examples

This section presents two examples to demonstrate the accuracy and efficiency of the
proposed MLS-based simulation methods.

5.4.1 Low-Dimensional Case

Consider the 3-dimensional function in Section 4.3.3:

g(θ) = a−
(
e0.3θ1+1 + e0.3θ2+1 + e0.3θ3+1

)
, (5.44)

where a = 10 and θi, i = 1, 2, 3, are independent standard normal random variables, i.e.,
θi ∼ N (0, 1). MLS-MCS with N = 2000 is implemented to assess the failure probability
P [g(θ) ≤ 0]. The system outputs evaluated by the true model and the surrogate model
are compared in Figures 5.13 and 5.14. They show the comparisons before and after
the active learning process. The closer these points lie to the line y = x, the more
accurate the estimations. These graphs thus provide an overview of the quality of the
surrogates. However, from the viewpoint of classification, the surrogate model does not
need to be accurate everywhere but should be able to properly classify the samples. In
Figure 5.13, the points falling in the red area are misclassified (marked as “wrong” in the
figure legend), whereas others are correctly classified (marked as “correct” in the legend).
These misclassified samples directly influence the estimation results. The active learning
strategy seeks to detect these erroneously classified samples and refine the surrogate model
nearby. After conducting this procedure, as shown in Figure 5.14, all the samples are
properly classified, thus avoiding the classification error caused by the surrogate error.
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Figure 5.14: Surrogate estimates after active learning.

This is further shown in Table 5.2. The same 2000 samples are utilized for MCS as those
for MLS-MCS. Before performing the active learning strategy, MLS-MCS results in a
biased failure probability estimate, which corresponds to Figure 5.13. With the active
learning step, MLS-MCS corrects the classification error and obtains the same estimate as
MCS, corresponding to Figure 5.14. Indeed, this step requires more true model evaluations,
but the total number of calls Ncall is still far lower than that for MCS.

Table 5.3 shows the estimation results of 100 repeated applications of MCS and MLS-
MCS. The failure probability estimates P̂F and the number of calls to the true model
Ncall are the average values of the 100 results, and the c.o.v. estimates ĉv are the sample

Table 5.2: Failure probability estimation results using MCS and MLS-MCS.

Method P̂F Ncall

MCS 0.1600 2000
MLS-MCS without active learning 0.1555 20

MLS-MCS with active learning 0.1600 53

Table 5.3: Failure probability estimation results using MCS and MLS-MCS with 100 runs.

Method P̂F ĉv Ncall

MCS 0.1607 0.0323 2000
MLS-MCS without active learning 0.1598 0.0426 20

MLS-MCS with active learning 0.1601 0.0315 69
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Figure 5.15: Update history of MLS-SuS intermediate thresholds.

c.o.v. of the 100 estimates of failure probability. The results show that MLS-MCS saves
a significant number of true model evaluations compared to MCS, and the use of active
learning improves the estimation accuracy of MLS-MCS to the same level as that of MCS.
This demonstrates that the proposed MLS-MCS approach is able to achieve comparable
estimates with MCS but requires much fewer true model evaluations.

Consider the limit-state function given in Equation (5.44) with a = 15. The MLS-
SuS method is applied to solve the reliability analysis problem. The active learning not
only refines the surrogate model around the intermediate boundary, but also adjusts the
intermediate threshold, which is the p0-percentile of the function responses at each subset
level. The update history of the intermediate thresholds is given in Figure 5.15, where
the reference value is the p0-percentile of the true model outputs. It is shown that the
thresholds tend to approach the exact values, thus improving the classification of samples.
Figure 5.16 compares the system outputs evaluated by the true model and the surrogate
model. It shows that the surrogates at all levels are sufficiently accurate to classify samples
properly. Figure 5.17 and Table 5.4 present the failure probability estimation results of a
single run using SuS and MLS-SuS with N = 2000 samples at each subset level, where
σ denotes the standard deviation of the estimation approximated by Equation (2.36)
with µ ≈ P̂F and cv ≈ ĉv,lb. The estimation results of MLS-SuS, including the CDF, the
failure probability, the c.o.v., and the 3-σ range, are quite close to those of SuS, thus
demonstrating the accuracy of MLS-SuS. With the help of the MLS surrogate, the number
of true model evaluations is reduced dramatically, from 7933 to 490.
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Figure 5.17: Failure probability estimation results using SuS and MLS-SuS.

The accuracy and efficiency of the MLS-SuS method are further illustrated in Table 5.5,
where 50 simulations of SuS and MLS-SuS are conducted. The failure probability P̂F ,

Table 5.4: Failure probability estimation results using SuS and MLS-SuS.

Method P̂F [ĉv,lb, ĉv,ub] Ncall

SuS 5.82 × 10−4 [0.20, 0.37] 7933
MLS-SuS 5.17 × 10−4 [0.21, 0.38] 490

107



5.4 Illustrative Examples

Table 5.5: Failure probability estimation results using SuS and MLS-SuS with 50 runs.

Method P̂F [ĉv,lb, ĉv,ub] ĉv Ncall

SuS 5.39 × 10−4 [0.20, 0.37] 0.24 7945
MLS-SuS 5.43 × 10−4 [0.20, 0.37] 0.26 446

the c.o.v. bounds ĉv,lb and ĉv,ub, and the number of calls to the true model Ncall are the
average values of the 50 results. The c.o.v. estimate ĉv is the sample c.o.v. of the 50 failure
probability estimates. Again, the statistical results prove that the MLS-SuS approach is
able to provide comparable estimation results at a significantly lower Ncall.

5.4.2 High-Dimensional Case

In this subsection, the benefits of the proposed dimensionality reduction strategy is
exemplified. Both the direct MLS-SuS without dimensionality reduction and the two-stage
MLS-SuS (with dimensionality reduction) are implemented, denoted by “MLS-SuS1” and
“MLS-SuS2”, respectively.

Consider the reliability analysis problem with the following 28-dimensional smooth
limit-state function:

g(θ) = a−
( 7∑

i=1
0.1e0.1θi +

14∑
i=8

0.5e0.1θi +
21∑

i=15
2e0.1θi +

28∑
i=22

8e0.1θi

)
, (5.45)

where a = 85 and θi, i = 1, . . . , 28, are i.i.d. Gaussian random variables with zero means
and unit standard deviations. The variables θi, i = 22, . . . , 28, influence the limit-state
value most because the coefficients of e0.1θi , i = 22, . . . , 28, are the largest.

The conventional SuS and MLS-SuS2 are applied to solve this reliability problem.
Figure 5.18 compares the sensitivity analysis results using both methods. The SuS
results in Figure 5.18a are regarded as reference, in which the number of samples per
level N = 2000. Figure 5.18b shows the results from the first stage of MLS-SuS2 (see
Figure 5.12). Herein, N0 = 50 samples per level are taken for the pure SuS in the first step.
This results in 300 model evaluations in this step. In the second step, N = 2000 points per
level are sampled for MLS-SuS. Since this step does not add additional training points, the
first stage calls the true model only 300 times. In both subfigures, each line illustrates how
the sensitivity index of θi varies with the subset levels. The 7 lines, whose corresponding
sensitivity indices are significantly greater than those of the rest of lines, correspond to
the last 7 variables. Therefore, these variables are identified as influential parameters by
both methods. This result is consistent with our a priori knowledge. Though only 300
true model evaluations are carried out, the proposed strategy is still able to distinguish
sensitive components clearly and correctly. At the second stage of MLS-SuS2, only the last
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Figure 5.18: Sensitivity index results at each level of SuS and MLS-SuS.

7 variables are considered as sensitive components and the hybrid kernel in Equation (5.40)
is implemented. This necessitates only 57 basis functions according to Equation (5.41),
whereas MLS-SuS1 would need 435 basis functions.

The accuracy and efficiency of the two-stage strategy are illustrated in Figures 5.19, 5.20,
and 5.21. In these graphs, three different methods, SuS, MLS-SuS1, and MLS-SuS2, are
conducted with different numbers of samples per level: N = [500, 1000, 2000, 3000, 5000]T.
For each N , 50 repeated applications of these methods are performed.

Figure 5.19a shows the c.o.v. results of the failure probability estimates. In each
simulation, both upper and lower bounds are evaluated as in Section 2.5.3. In this
subfigure, the c.o.v. upper and lower bounds are the average values of the 50 results. The
empirical c.o.v., which is represented by “emp.” in the figure legend, is the sample c.o.v. of
the 50 estimates of failure probability. It is shown that the three methods obtain very close
c.o.v. bounds. This is because MLS-SuS1 and MLS-SuS2 employ the same c.o.v. bound
estimation strategy as SuS. For empirical c.o.v., all the results are between the lower
and upper bounds. Both MLS-SuS1 and MLS-SuS2 achieve comparable empirical c.o.v.
results with SuS. Figure 5.19b compares the average failure probability estimates and the
corresponding 3-σ ranges. The probability estimates converge as we use more samples at
each subset level. The results of MLS-SuS2 are similar with those of SuS and MLS-SuS1,
thus demonstrating the accuracy of the two-stage MLS-SuS approach.

Figures 5.20 and 5.21 present the number of true model evaluations and the training
time of both MLS-SuS1 and MLS-SuS2. The curves show the average value of the 50
results. In Figure 5.20a, it is shown that fewer calls to the true model are required by
MLS-SuS2 when N is small, but more calls are required when N is large. This is caused
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Figure 5.19: Failure probability estimation results for SuS and MLS-SuS with different N .

by the complexity of surrogate model. Compared with MLS-SuS2, MLS-SuS1 needs to
approximate far more expansion coefficients, thus necessitates more samples to solve the
regression problem. On the contrary, a more complex surrogate results in more accurate
estimations, and hence MLS-SuS1 adds fewer additional samples to the training set. The
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Figure 5.20: Number of true model evaluations for MLS-SuS with different N .

former factor plays a more important role if only few samples are available, and the
latter dominates the results if there are adequate samples. With the dimension increasing,
MLS-SuS2 becomes even more efficient. Figure 5.20b demonstrates that the utilization of
the MLS surrogate greatly saves the required number of calls to the true model.

Figure 5.21 illustrates that MLS-SuS1 takes much (more than 10 times) longer training
time than MLS-SuS2. The complex surrogate model in MLS-SuS1 leads to a high-
dimensional matrix inversion problem, which indicates that this method suffers from the
curse of dimensionality. However, this is significantly alleviated by the dimensionality
reduction strategy of MLS-SuS2.
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Figure 5.21: Training time for MLS-SuS with different N .

To sum up, compared with SuS and MLS-SuS1, the two-stage MLS-SuS is able to
provide comparative estimations but with much less computational expense for high-
dimensional problems.

5.5 Summary

This chapter first recalled the mathematical basics of a local surrogate model called moving
least-squares (MLS). Then, the MLS-accelerated SuS (MLS-SuS) approach was proposed.
Based on the approximation of surrogate errors, an active learning strategy was introduced
to classify the SuS samples properly. Subsequently, a dimensionality reduction strategy for
MLS-SuS was developed to filter out unnecessary expansion items. Kernel ridge regression
was used to calculate the MLS coefficients in a flexible manner and the hybrid kernel
tailored to the proposed dimensionality reduction strategy was designed.
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Chapter 6

Kriging-Assisted Reliability Analysis

The surrogate models investigated in the previous two chapters are based on the rigid
polynomial expression, thus lacking of flexibility. This chapter exploits a more flexible
surrogate modeling technique, kriging, to accelerate the simulation-based reliability analysis
approaches. The mathematical framework of kriging is presented first. The following
section introduces a dimensionality reduction technique for kriging. Subsequently, the
combination of the kriging surrogate and SuS is proposed. The main elements including
active learning strategy, adaptive trend detection, and experimental design strategy are
discussed. In the end, kriging and kriging-assisted SuS are compared with the counterparts
using RSM/PCE and MLS.

6.1 Kriging

6.1.1 Kriging Model

Kriging [144, 145], also known as Gaussian process modeling, is a powerful surrogate model
for interpolating noise-free data. It regards the model response g(θ) as a realization of a
Gaussian process:

ĝ(θ) = µ(θ) + z(θ), (6.1)

where µ(θ) is the mean function or the trend, whereas z(θ) is a Gaussian process with
zero mean and autocovariance Cov[z(θ), z(θ′)] = σ2R(θ,θ′;η), in which σ2 denotes the
process variance and R(θ,θ′;η) denotes the autocorrelation function depending on the
hyperparameters η.

Different kriging models are distinguished in accordance with the types of the trend.
Simple kriging assumes the trend as a known constant, i.e., µ(θ) = 0. Ordinary kriging
considers the trend to be an unknown constant: µ(θ) = α0. More generally, universal
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kriging chooses a combination of basis functions as the trend, namely,

µ(θ) =
p∑

k=1
αkψk(θ) = αTψ(θ), (6.2)

where ψ(θ) = [ψ1(θ), . . . , ψp(θ)]T and α = [α1, . . . , αp]T are a vector of basis functions and
the corresponding coefficients, respectively. The linear and quadratic Taylor approximations
are commonly used trends [146].

The correlation function determines the influence of the observations on the query
samples. A correlation function is symmetric, i.e., R(θ,θ′;η) = R(θ′,θ;η). Additionally,
the correlation matrix, which is defined as

R =


R(θ(1),θ(1);η) R(θ(1),θ(2);η) · · · R(θ(1),θ(N);η)
R(θ(2),θ(1);η) R(θ(2),θ(2);η) · · · R(θ(2),θ(N);η)

... ... . . . ...
R(θ(N),θ(1);η) R(θ(N),θ(2);η) · · · R(θ(N),θ(N);η)

 , (6.3)

is positive semi-definite for any choice of samples θ(i), i = 1, . . . , N . A typical example is
the 1-dimensional Gaussian or squared exponential correlation function:

R(θ, θ′; η) = exp
(
−η(θ − θ′)2

)
, η > 0. (6.4)

It is a stationary correlation function that only depends on the distance between the two
points. A smaller distance corresponds to a larger correlation. Figure 6.1 depicts the
Gaussian correlation function with different η and the samples drawn from a zero-mean
unit-variance Gaussian process using the corresponding correlation functions. A smaller η
results in greater dependence on the observations around and thus a smoother sample path.
Other popular 1-dimensional stationary correlation functions are given in Appendix C.

For n-dimensional problems, multi-dimensional correlation functions can be built
from 1-dimensional ones. A multi-dimensional correlation function is isotropic if a single
hyperparameter is utilized for all the dimensions. An isotropic correlation function can be
constructed as

R(θ,θ′; η) =
n∏

k=1
R(θk, θ

′
k; η), (6.5)

where θk and θ′
k are the k-th components of θ and θ′, respectively. By contrast, a multi-

dimensional correlation function is anisotropic if a different hyperparameter is employed
in each dimension. An anisotropic correlation function can be built by

R(θ,θ′;η) =
n∏

k=1
R(θk, θ

′
k; ηk), (6.6)

where ηk is the k-th component of η. Compared with the isotropic choice, the introduction
of anisotropy increases the degrees of freedom of the approximation and dramatically
improves the accuracy of the surrogate model [147]. The most widely used correlation
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Figure 6.1: Gaussian correlation function and sample paths drawn from the corresponding
Gaussian process.

function is the anisotropic Gaussian correlation function given as follows:

R(θ,θ′;η) =
n∏

k=1
exp

(
−ηk(θk − θ′

k)2
)
. (6.7)

Appendix C lists several other commonly used stationary anisotropic correlation functions.
In the following context, the correlation function R(θ,θ′;η) is abbreviated as R(θ,θ′).
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6.1.2 Estimation of Kriging Parameters

The kriging parameters α, σ2, and η can be estimated by the maximum likelihood
estimation (MLE) [148, Ch. 4]. Given the training set T = {(θ(i)

t , g(θ(i)
t )) : i = 1, . . . , Nt},

the experimental matrix, the correlation matrix, and the output vector are defined,
respectively, by

Ψ =


ψ(θ(1)

t )T

ψ(θ(2)
t )T

...
ψ(θ(Nt)

t )T

 =


ψ1(θ(1)

t ) ψ2(θ(1)
t ) · · · ψp(θ(1)

t )
ψ1(θ(2)

t ) ψ2(θ(2)
t ) · · · ψp(θ(2)

t )
... ... . . . ...

ψ1(θ(Nt)
t ) ψ2(θ(Nt)

t ) · · · ψp(θ(Nt)
t )

 , (6.8)

R =


R(θ(1)

t ,θ
(1)
t ) R(θ(1)

t ,θ
(2)
t ) · · · R(θ(1)

t ,θ
(Nt)
t )

R(θ(2)
t ,θ

(1)
t ) R(θ(2)

t ,θ
(2)
t ) · · · R(θ(2)

t ,θ
(Nt)
t )

... ... . . . ...
R(θ(Nt)

t ,θ
(1)
t ) R(θ(Nt)

t ,θ
(2)
t ) · · · R(θ(Nt)

t ,θ
(Nt)
t )

 , (6.9)

and
y = [g(θ(1)

t ), g(θ(2)
t ), . . . , g(θ(Nt)

t )]T. (6.10)

Since y − Ψα is assumed to be a correlated zero-mean Gaussian vector, the marginal
likelihood function is given by

L(α, σ2,η;y) = 1√
(2πσ2)Nt|R|

exp
(

− 1
2σ2 (y − Ψα)TR−1(y − Ψα)

)
. (6.11)

The natural logarithm of the likelihood is

ln L(α, σ2,η;y) = −Nt

2 ln(2π) − Nt

2 ln(σ2) − 1
2 ln(|R|) − 1

2σ2 (y − Ψα)TR−1(y − Ψα).
(6.12)

By maximizing Equation (6.12), one gets the optimal estimates of α and σ2:

α̂ =
(
ΨTR−1Ψ

)−1
ΨTR−1y, (6.13)

σ̂2 = 1
Nt

(y − Ψα)TR−1(y − Ψα). (6.14)

Substituting Equations (6.13) and (6.14) into Equation (6.12), the log marginal likelihood
ln L(α, σ2,η;y) boils down to

ln L(η;y) = −Nt

2 (ln(2π) + 1) − Nt

2 ln(σ̂2) − 1
2 ln(|R|). (6.15)

Here, the first term is a constant, the second term represents the quality of the trend,
and the third term is a complexity penalty. Therefore, this log likelihood is a tradeoff
between flexibility and accuracy. The hyperparameters η are then obtained by maximizing
ln L(η;y):

η̂ = arg max
η

ln L(η;y). (6.16)
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6.1.3 Kriging Predictor

For any query point θ, based on the Gaussian assumption, the response vector [yT, ĝ(θ)]T

is Gaussian-distributed: y

ĝ(θ)

 ∼ N

 Ψα
ψ(θ)Tα

 , σ2

 R r(θ)
r(θ)T 1

 , (6.17)

where r(θ) = [R(θ,θ(1)
t ), · · · , R(θ,θ(Nt)

t )]T gathering the correlations between the query
point and the training samples. The variable ĝ(θ) conditional on the training data follows
the Gaussian distribution with mean mĝ(θ) and variance s2

ĝ(θ) [144, Ch. 3]:

ĝ(θ) ∼ N
(
mĝ(θ), s2

ĝ(θ)
)
, (6.18)

where
mĝ(θ) = ψ(θ)Tα̂+ r(θ)TR−1 (y − Ψα̂) , (6.19)

s2
ĝ(θ) = σ2

(
1 − r(θ)TR−1r(θ) + u(θ)T

(
ΨTR−1Ψ

)−1
u(θ)

)
, (6.20)

in which
u(θ) = ΨTR−1r(θ) −ψ(θ). (6.21)

This predictor has been proved to be the best linear unbiased predictor (BLUP) in [144,
Ch. 3]. The confidence interval of the prediction is given by

ĝ(θ) ∈
[
mĝ(θ) + Φ−1

(
α

2

)
sĝ(θ),mĝ(θ) + Φ−1

(
1 − α

2

)
sĝ(θ)

]
(6.22)

with a confidence level 1 − α.

Consider the case θ = θ
(i)
t , i = 1, . . . , Nt, then r(θ) is the i-th column of R. Therefore,

one has
R−1r(θ(i)

t ) = ei, (6.23)

r(θ(i)
t )TR−1 = eT

i , (6.24)

where ei is an unit column vector with a 1 at the i-th position. Consequently,

mĝ(θ(i)
t ) = ψ(θ(i)

t )Tα̂+ r(θ(i)
t )TR−1 (y − Ψα̂)

= ψ(θ(i)
t )Tα̂+ eT

i (y − Ψα̂)
= g(θ(i)

t ),
(6.25)

u(θ(i)
t ) = ΨTR−1r(θ(i)

t ) −ψ(θ(i)
t ) = ΨTei −ψ(θ(i)

t ) = 0, (6.26)

s2
ĝ(θ(i)

t ) = σ2
(

1 − r(θ(i)
t )TR−1r(θ(i)

t ) + u(θ(i)
t )T

(
ΨTR−1Ψ

)−1
u(θ(i)

t )
)

= σ2
(
1 − eT

i r(θ(i)
t )
)

= σ2
(
1 −R(θ(i)

t ,θ
(i)
t )
)

= 0.

(6.27)
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Figure 6.2: Kriging approximation.

This means
ĝ(θ(i)

t ) = g(θ(i)
t ), (6.28)

thus proving that kriging is an interpolation method.

A kriging approximation example is presented in Figure 6.2. Here, the 1-dimensional
true model is given by

g(θ) = sin(θ) + sin(2θ) + 0.5 sin(3θ) − 1. (6.29)

Simple kriging is applied with µ(θ) = 0, σ2 = 1, and η = 1.5. Note that the parameters
are prescribed and not the best choices as given in Section 6.1.2. The blue dashed line
represents the mean value estimated by Equation (6.19) and the shaded area denotes the
95% confidence interval calculated by Equation (6.22). It is also shown that the predictions
are exact at the training samples.

6.1.4 Modeling Steps

The steps for kriging modeling are summarized in Figure 6.3. First, users should choose the
basis functionsψ(θ) for the trend and the correlation function R(θ,θ′;η) (see Section 6.1.1).
Meanwhile, the training set T should be determined as well. Next, the hyperparameters η
are estimated by maximizing the likelihood function in Equation (6.15), after which the
remaining parameters α and σ2 are calculated based on Equations (6.13) and (6.14). In
the end, the prediction mĝ(θ) and the estimation variance s2

ĝ(θ) are obtained according to
Equations (6.19) and (6.20).
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Figure 6.3: Kriging modeling steps.

6.1.5 Benefits and Drawbacks

The most significant advantage of kriging is its built-in estimate of the prediction vari-
ance, which indicates the quality of the prediction. Kriging consists of a trend and a
Gaussian process, thus capturing both the global characteristic and the local variabil-
ity. As a consequence, it is flexible in accurately imitating the behaviors of limit-state
functions. Additionally, the best linear unbiased predictor provides interpolation results
and is asymptotically consistent when the actual correlation of the Gaussian process is
regular [149].

Because of these advantages, kriging has become increasingly popular. However, it
suffers from the curse of dimensionality. This is caused by two main reasons. On the one
hand, the optimization of hyperparameters requires inverting the correlation matrix of
size Nt ×Nt (see Equations (6.14), (6.15), and (6.16)), where Nt is the number of training
samples. The matrix inversion is of complexity O(N3

t ). As a result, the computational cost
grows dramatically with the increase of training samples. Moreover, a large training set is
usually necessary for complex or high-dimensional problems to build a sufficiently accurate
surrogate model. Therefore, it is computationally intensive to achieve the matrix inversion
task for such cases. On the other hand, the number of hyperparameters to be estimated
increases as the dimension grows (e.g., the correlation function in Equation (6.7)). The
time complexity for training a kriging model is O(N3

t NpNiter) [150], where Np is the number
of hyperparameters and Niter is the number of iterations for optimizing the hyperparameters.
A problem with a larger Np means a greater search space and requires a larger Niter. Thus,
the kriging modeling becomes even more computationally expensive in higher dimensions.

To overcome this challenge, one can implement two feasible strategies: reducing the
number of hyperparameters and reducing the number of training samples without sacrificing
the modeling accuracy. In this thesis, these strategies are accomplished in Section 6.2 and
Section 6.3.3, respectively.
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6.2 Partial Least-Squares Dimensionality Reduction

To alleviate the problem of the curse of dimensionality, this section employs partial
least-squares (PLS) to reduce the number of unknown hyperparameters, namely, the
dimensionality of the optimization search space.

6.2.1 Partial Least-Squares (PLS)

The PLS approach [151] projects the input variables onto a new space aiming at finding
the fundamental relations between the input variables and the responses. The new space
is established by selected latent variables or principal components.

Suppose that the N × n sample matrix Φ = [θ(1), . . . ,θ(N)]T and the N × 1 response
vector y = [g(θ(1)), . . . , g(θ(N))]T are mean-centered and properly scaled (e.g., normalized).
The first principal component is obtained as

ϑ1 = Φw1, (6.30)

where w1 is the best weight vector of size n × 1 maximizing the covariance between ϑ1

and y:
w1 = arg max

w:∥w∥=1
Cov[yTΦw,yTΦw]. (6.31)

The exact solution is given by

w1 = ΦTy

∥ΦTy∥
. (6.32)

Afterwards, the residuals of sample matrix and response vector are denoted, respectively,
by

Φ1 = Φ − ϑ1α
T
1 ,

y1 = y − c1ϑ1,
(6.33)

where α1 is an n× 1 vector containing the projection coefficients of Φ on the first principal
component ϑ1, and c1 represents the regression coefficient of y on ϑ1. They are evaluated
by

α1 = ΦTϑ1

ϑT
1ϑ1

,

c1 = ϑT
1y

ϑT
1ϑ1

.

(6.34)

Similarly, this procedure can be continued to extract more principal components ϑj from
the residuals Φj−1 and yj−1, j = 2, . . . ,m:

ϑj = Φj−1wj,

Φj = Φj−1 − ϑjα
T
j ,

yj = yj−1 − cjϑj.

(6.35)
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Figure 6.4: Principal directions detected by PLS.
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Figure 6.5: PLS predictions.

A 3-dimensional example is given in Figures 6.4 and 6.5 to illustrate the PLS approach.
Figure 6.4 depicts the inputs and two principal directions w1 and w2. Figure 6.5 shows the
PLS predictions based on the principal components ϑ1 and ϑ2, where yi = g(θ(i)) is the
i-th component of y, and ϑ1i and ϑ2i are the i-th component of ϑ1 and ϑ2, respectively.
In the subfigures, the closer these points lie to the line y = x, the more accurate the
predictions. As is shown in Figure 6.5b, the identified two principal components are able
to capture the main input-output relationship.
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Algorithm 15 PLS algorithm
Input: Sample matrix Φ; Response vector y; The number of principal components m.
Output: Rotation matrix W ∗.

1: Set Φ0 = Φ, y0 = y;
2: for j = 1 : m do
3: Compute the weight vector: wj = ΦT

j−1yj−1/∥ΦT
j−1yj−1∥;

4: Obtain the principal component ϑj = Φj−1wj;
5: Calculate the regression coefficients: αj = ΦT

j−1ϑj/ϑ
T
j ϑj, cj = ϑT

j yj−1/ϑ
T
j ϑj;

6: Compute the residuals: Φj = Φj−1 − ϑjα
T
j , yj = yj−1 − cjϑj;

7: end for
8: Assemble the weight matrix W and the coefficient matrix A;
9: Calculate the rotation matrix W ∗ according to Equation (6.38);

10: return W ∗.

The principal components can be written as

ϑj = Φj−1wj = Φw∗
j , j = 1, . . . ,m, (6.36)

where Φ0 = Φ. Then, one has

[ϑ1, . . . ,ϑm] = ΦW ∗, (6.37)

where W ∗ = [w∗
1, . . . ,w

∗
m] is the rotation matrix that rotates the original space into

the new space with principal directions wj, j = 1, . . . ,m. The rotation matrix can be
determined by [152]

W ∗ = W
(
ATW

)−1
, (6.38)

where W = [w1, . . . ,wm] is the weight matrix and A = [α1, . . . ,αm] is the coefficient
matrix. The PLS algorithm is summarized in Algorithm 15.

6.2.2 Correlation Functions Constructed by PLS

The PLS approach identifies the j-th principal component by Equation (6.36). For any
sample θ = [θ1, . . . , θn]T, the corresponding j-th principal component is calculated by

ϑj = w∗
j1θ1 + · · · + w∗

jnθn, (6.39)

where w∗
j = [w∗

j1, . . . , w
∗
jn]T. Since the items w∗

jkθk, k = 1, . . . , n, are equally important for
calculating ϑj, the correlation function for the linear transformation hj : [θ1, . . . , θn]T →
[w∗

j1θ1, . . . , w
∗
jnθn]T can be defined by the following isotropic correlation function:

Rj(hj(θ), hj(θ′); ηj) =
n∏

k=1
R
(
w∗

jkθk, w
∗
jkθ

′
k; ηj

)
(6.40)

122



Chapter 6: Kriging-Assisted Reliability Analysis

Figure 6.6: KPLS modeling steps.

A correlation function incorporating all the information of the first m (m < n) principal
components is constructed by the tensor product of Rj(hj(θ), hj(θ′); ηj), j = 1, . . . ,m, as
follows [153]:

RPLS(θ,θ′;η) =
m∏

j=1
Rj(hj(θ), hj(θ′); ηj), (6.41)

where η = [η1, . . . , ηm]T. In the anisotropic correlation function given in Equation (6.6),
n hyperparameters need to be estimated and they can be regarded as the measures of
how strongly the input variables influence the output. By rotating the original space, the
PLS correlation function in Equation (6.41) detects the principal directions and neglects
the unimportant ones, thus reducing the dimensionality of the optimization search space.
Although the PLS approach copes with the linear input-output relationship, the PLS
correlation function can also be used in nonlinear problems [153].

Consider the Gaussian correlation function, for example, the corresponding PLS
correlation function is given by

RPLS(θ,θ′;η) =
m∏

j=1

n∏
k=1

exp
(
−ηj(w∗

jkθk − w∗
jkθ

′
k)2
)
. (6.42)

It is demonstrated in [153] that this function is a special case of the anisotropic Gaussian
correlation function in Equation (6.7). The other commonly used PLS correlation functions
are listed in Appendix C.

The kriging model using the PLS correlation function is called PLS-accelerated kriging
(KPLS). The modeling steps are summarized in Figure 6.6.
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6.2.3 Illustrative Examples

This subsection considers the following Griewank function [153]:

g(θ) = 1 +
n∑

k=1

θ2
k

4000 −
n∏

k=1
cos

(
θk√
k

)
, (6.43)

where n = 10 and θk ∈ [−100, 100], k = 1, . . . , 10. Kriging (see Figure 6.3) and KPLS
(see Figure 6.6) are implemented to approximate this function and then predict the
model responses. They both utilize linear trends but employ the anisotropic Gaussian
correlation function in Equation (6.7) and the PLS Gaussian correlation function in
Equation (6.42), respectively. Additionally, the KPLS approach is applied with different
numbers of principal components: m = 1, 2, 3. In both methods, Nt = 100 uniformly
distributed training samples θ(i)

t are drawn to construct the kriging surrogate and a test
set with N = 5000 samples θ(i) is generated to evaluate the generalization ability of the
surrogate. All results are obtained in Matlab R2020a based on the ooDace toolbox [154].
The computations were done on a desktop PC equipped with a 4-core Intel(R) Core(TM)
i7-6700 CPU @3.40GHz.

Table 6.1 presents the training time ttrain required by both methods and the general-
ization error ε̃gen of the constructed surrogates. The generalization error is defined as

εgen = 1
N

N∑
i=1

(
g(θ(i)) − ĝ(θ(i))

)2
, (6.44)

ε̃gen = εgen

Var [g(θ(i))] . (6.45)

Each approach is conducted 50 times and the results are the average values of the 50
estimates. In this example, the KPLS method with a single principal component requires
the shortest training time but results in the largest error. The KPLS with 2 or 3 principal
components achieves the same accuracy level as the conventional kriging but needs far
fewer training time. The results demonstrate that the PLS dimensionality reduction
strategy is able to accelerate the training of the kriging surrogate model by reducing the
number of hyperparameters while maintaining the similar modeling accuracy.

Table 6.1: Kriging and KPLS surrogate modeling results.

Method ttrain (s) ε̃gen

Kriging 3.25 2.72 × 10−4

KPLS (m = 1) 0.05 4.22 × 10−4

KPLS (m = 2) 0.08 2.76 × 10−4

KPLS (m = 3) 0.14 2.42 × 10−4
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6.3 Kriging-Accelerated Simulation Methods

This section incorporates the kriging surrogate model into MCS and SuS to accelerate the
process of these simulation methods. Before that, the necessary elements regarding active
learning, trend identification, and experimental design are first introduced.

6.3.1 Active Learning Strategy

As described in Figure 5.7, SuS can be interpreted as a series of classification problems and
MCS is a special case of SuS. To measure the classification reliability of the constructed
surrogate model, the U-function is defined as [81]

U(θ) = |mĝ(θ) − b|
sĝ(θ) , (6.46)

where b is the classification boundary. If the function output is predicted to be larger than
b, i.e., ĝ(θ) = mĝ(θ) > b, then the probability that the prediction is no larger than b is
estimated by

P [ĝ(θ) ≤ b] = Φ
(
b−mĝ(θ)
sĝ(θ)

)
= Φ (−U(θ)) , (6.47)

since ĝ(θ) is assumed to be Gaussian-distributed with mean mĝ(θ) and variance s2
ĝ(θ).

This means that the probability of misclassification is Φ(−U(θ)). Similarly, one can obtain
the same misclassification probability for the case mĝ(θ) < b. Therefore, the U-function
values reflect the classification reliability and a smaller U-function value indicates that the
kriging surrogate is less confident in classifying the current sample correctly. In general, a
small U-function value results from a prediction close to the threshold b or/and a large
prediction variance.

To improve the classification accuracy of the kriging surrogate, the work in [81] proposed
an active learning strategy which chooses the sample with the smallest U-function value
as the best next point:

θ∗ = arg minU(θ(i)), (6.48)

adds it to the training set, and updates the kriging surrogate. The best next point has the
largest risk of misclassification, thus being the most valuable sample for enhancing the
classification accuracy. This learning process is repeated until all the samples are classified
with sufficient confidence:

minU(θ(i)) ≥ ub, (6.49)

where ub is the threshold for the stopping criterion. As suggested in [81], ub is chosen to
be 2 in this thesis. Because Φ(−2) ≈ 2.3%, this stopping criterion means that any sample
is correctly classified with a probability greater than 97.7%.
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Algorithm 16 Active learning strategy for the use of kriging in classification problems
Input: Current kriging surrogate model ĝ(θ); Samples {θ(i) : i = 1, . . . , N}; Classification

boundary b; Limit-state function g(θ); Training set T .
Output: Updated kriging surrogate model ĝ(θ).

1: Obtain the predictions and the prediction variances {(mĝ(θ(i)), s2
ĝ(θ(i))) : i = 1, . . . , N};

2: Calculate the U-function values {U(θ(i)) : i = 1, . . . , N} as in Equation (6.46);
3: Find the best next point θ∗ according to Equation (6.48);
4: while U(θ∗) < 2 do
5: Calculate the limit-state value g(θ∗) and add θ∗ to T ;
6: Refine ĝ(θ) using the updated T ;
7: Update the predictions and the variances {(mĝ(θ(i)), s2

ĝ(θ(i))) : i = 1, . . . , N}
employing the refined ĝ(θ);

8: Update the U-function values {U(θ(i)) : i = 1, . . . , N} as in Equation (6.46);
9: Find the best next point θ∗ according to Equation (6.48);

10: end while
11: return ĝ(θ).

The active learning strategy is summarized in Algorithm 16. Here, only a single point
is added to the training set in each iteration. The user can also add multiple samples every
time. The previous choice enriches the training set with the fewest number of samples,
whereas the latter one reduces the required number of kriging model refinements.

An example is given to showcase the active learning strategy. Consider the four-branch
function [87] as follows:

g(θ) = min



3 + 0.1 (θ1 − θ2)2 − θ1+θ2√
2

3 + 0.1 (θ1 − θ2)2 + θ1+θ2√
2

(θ1 − θ2) + 6√
2

(θ2 − θ1) + 6√
2


. (6.50)

The target is to judge whether the generated N = 100 samples θ(i) fall in the failure
domain F , namely, whether g(θ(i)) ≤ 0. First of all, 10 training samples θ(i)

t are selected
from θ(i) to construct the initial kriging surrogate ĝ(θ). After that, the active learning
strategy is exploited to enrich the training set and refine the surrogate. The learning
process is illustrated in Figure 6.7. Figure 6.7a shows the results before the learning
process. The red shaded area represents the domain that contains samples of interest for
enriching the training set SU = {θ ∈ Ω : U(θ) < 2}. The non-training points are classified
by the surrogate ĝ(θ), and a few of them are misclassified. Figure 6.7b depicts the results
when 10 samples have been added to the training set, and Figure 6.7c shows the final
learning results. With the enrichment of the training set and the refinement of the kriging
surrogate, SU becomes smaller and fewer samples are misclassified. In the end, there is
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c) Results after learning (Nt = 32)

Figure 6.7: Active learning process for the use of kriging in classification problems.

not any sample in SU or misclassified. Besides, all the new training samples locate around
the classification boundary, thus providing an efficient kriging model refinement process
for classification problems.

6.3.2 Trend Identification

Ordinary kriging is typically utilized when there is not any knowledge about the system
nonlinearity. However, the detection of non-constant trends enhances the prediction
accuracy and thus the modeling efficiency for classification problems [87]. This thesis
implements the adaptive PCE (see Algorithm 9) to identify the best polynomial trend in
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terms of the leave-one-out error. With the enrichment of the training set, the number of
training samples Nt may increase greatly. In this case, the maximal polynomial expansion
order dmax is chosen as the maximum order such that the number of expansion bases is no
larger than Nt:

(n+ dmax)!
n!dmax! ≤ Nt <

(n+ dmax + 1)!
n!(dmax + 1)! , (6.51)

where n is the dimension of uncertain inputs. The minimal expansion order dmin is set to
be 1, which corresponds to the linear approximation. Accordingly, the number of initial
training samples should not be smaller than n.

6.3.3 Experimental Design Strategy

Section 6.3.1 introduces the learning strategy enriching the training set for the use of
kriging in classification problems. However, as discussed in Section 6.1.5, the increasing
number of training samples requires more computational effort. To reduce this demand in
the joint use of kriging and SuS, this subsection proposes an experimental design strategy
that selects influential training points from the full training set to update the kriging
surrogate. Here, the full training set consists of all the samples that have been evaluated
using true model.

When kriging is applied within the framework of SuS, the goal of the kriging surrogate
is to distinguish whether or not the generated samples belong to the next intermediate
failure domain. Hence, the focus of the kriging surrogate moves as the samples approach
the failure domain. At the j-th level (j ≥ 1) of SuS, samples are drawn in the intermediate
failure domain Fj. The kriging surrogate needs to be refined locally to accurately find
the next intermediate boundary {θ ∈ Ω : g(θ) = bj+1} and classify the generated samples
based on the boundary. In this case, the training points in Fj−1\Fj , as shown in Figure 6.8,
are far away from the domain of interest, thereby contributing less to the update of the
kriging surrogate. This is because the stationary correlation function used in kriging only
depends on the distance between two points, and the function value decreases as the
distance grows.

Instead of using all the training samples to update the kriging surrogate [83, 84], this
thesis seeks to discard the unimportant ones to reduce the computational expense for the
kriging model refinement. As illustrated in Figure 6.8, at the j-th subset level (j ≥ 1), a
training set T̃ including all the training samples in Fj and a proportion of training points
in Fj−1\Fj is determined to refine the surrogate model. This indicates that T̃ ⊂ T . The
percentage of training samples that are discarded in Fj−1\Fj is denoted by pd. Specifically,
we record the latest prediction variances of the training points before they are added to
the training set and discard pd of them with smaller variances. Essentially, a sample with
larger variance contributes more to the global trend, whereas one with smaller variance
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Figure 6.8: Experimental design for the joint use of kriging and SuS.

Algorithm 17 Experimental design strategy for kriging at the j-th subset level (j ≥ 1)

Input: Training set T = {(θ(i)
t , g(θ(i)

t ))}; The latest prediction variances of training
samples before they are added to the training set s2

ĝ(θ(i)
t ); Intermediate threshold bj;

The percentage of discarded training samples pd.
Output: The training set for refining the kriging surrogate T̃ .

1: Divide T into two sets T̃ = {(θ(i)
t , g(θ(i)

t )) : g(θ(i)
t ) ≤ bj} and T \T̃ = {(θ(i)

t , g(θ(i)
t )) :

g(θ(i)
t ) > bj};

2: Find 1 − pd of the samples in T \T̃ with larger s2
ĝ(θ(i)

t ) and move them to T̃ ;
3: return T̃ .

focuses more on capturing the local variability. This measure attempts to neglect the local
characteristic in the safer domain but still retain the global feature. The experimental
design strategy at the j-th subset level is summarized in Algorithm 17. At the initial SuS
level, all the training samples are adopted to update the kriging surrogate, i.e., T̃ = T .

6.3.4 Kriging-Accelerated MCS/SuS

This subsection integrates the kriging surrogate into MCS and SuS to accelerate the
simulation procedure. Since MCS can be regarded as the SuS with only the initial level,
only kriging-accelerated SuS (kriging-SuS) is discussed in detail.

Figure 6.9 illustrates the main steps of the kriging-SuS approach. At the first subset
level, the initial kriging surrogate model ĝ(θ) is constructed using a fraction of samples.
One can choose to use conventional kriging or KPLS according to the complexity of the
problem. After that, the intermediate threshold b1 is determined. The active learning
strategy (see Section 6.3.1) iteratively enriches the training set around the boundary
{θ ∈ Ω : g(θ) = b1} with the most valuable point in terms of the U-function and then
refines the surrogate ĝ(θ). Meanwhile, b1 is updated repeatedly as well. The learning
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Figure 6.9: Schema of the kriging-SuS approach.

process terminates until the surrogate gains sufficient confidence in the classification results.
In the end, the samples falling in the intermediate failure domain F1 are considered as the
seeds for the next subset level.

At the j-th subset level (j = 1, . . . ,m−1), new samples are first generated from the seeds.
These points are accepted or rejected based on whether they lie in Fj from the viewpoint
of the latest ĝ(θ). Subsequently, the focus is shifted to the next intermediate threshold
bj+1. The active learning procedure is performed again to efficiently and accurately solve
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Algorithm 18 The kriging-SuS approach
Input: The PDF of uncertain parameters f(θ); Limit-state function g(θ); Conditional

probability p0; The number of samples per subset level N ; The percentage of points
that are chosen as the initial training samples p̃0; Correlation function R(θ,θ′;η); The
percentage of discarded training samples pd.

Output: The estimate of failure probability P̂F .
1: Draw N i.i.d. samples {θ(i)

0 : i = 1, . . . , N} in accordance with f(θ) and initialize an
empty training set T ;

2: Randomly select p̃0N training samples {θ(i)
0,t : i = 1, . . . , p̃0N} from the N samples,

where p̃0N is an integer, calculate the corresponding limit-state values {g(θ(i)
0,t) : i =

1, . . . , p̃0N}, and add these training samples to T ;
3: Identify the best polynomial trend order (Algorithm 9), build a kriging surrogate

model ĝ(θ), and obtain the predictions and the prediction variances of the N samples
{(mĝ(θ(i)

0 ), s2
ĝ(θ(i)

0 )) : i = 1, . . . , N};
4: Find b1 as the p0-percentile of the N predictions {mĝ(θ(i)

0 )};
5: Adaptively enrich T and update ĝ(θ) (Algorithm 16); In the meantime, update b1 and

set F1 = {θ ∈ Ω : g(θ) ≤ b1};
6: Set j = 1;
7: while bj > 0 do
8: Consider samples θ(i)

j−1 ∈ Fj as seeds {θ(i)
j−1,s : i = 1, . . . , Ns}, where Ns = p0N is

an integer;
9: Propose N candidate samples {θ̃(i)

j : i = 1, . . . , N} from the seeds;
10: Obtain the predictions of these candidate samples {mĝ(θ̃(i)

j ) : i = 1, . . . , N};
11: Accept or reject θ̃(i)

j based on whether mĝ(θ̃(i)
j ) ≤ bj; After rejection, the samples

are denoted by {θ(i)
j : i = 1, . . . , N};

12: Find bj+1 as the p0-percentile of the N predictions {mĝ(θ(i)
j )};

13: Identify the best trend order (Algorithm 9), adaptively enrich T and T̃ , and
update ĝ(θ) using T̃ (Algorithms 16 and 17); In the meantime, update bj+1 and
set Fj+1 = {θ ∈ Ω : g(θ) ≤ bj+1};

14: Set j = j + 1;
15: end while
16: Set the total number of subsets m = j, set bm = 0, denote the number of samples

θ
(i)
m−1 ∈ F by NF , and estimate the failure probability as in Equation (2.54);

17: return P̂F .

the new classification problem with the boundary {θ ∈ Ω : g(θ) = bj+1}. Additionally, the
experimental design strategy (see Section 6.3.3) is applied to reduce the cardinality of the
training set for refining the kriging surrogate. Finally, the samples in Fj+1 are identified as
the seeds for the next subset level. The detailed steps are presented in Algorithm 18. Here,
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the adaptive trend order selection (see Section 6.3.2) is only performed at the beginning of
each subset. Since the active learning strategy seeks to accurately classify the generated
samples, the c.o.v. approximation for the conventional SuS (see Section 2.5.3) is still
exploited to measure the estimation accuracy of the failure probability.

6.3.5 Illustrative Examples

Consider the 28-dimensional limit-state function in Section 5.4.2:

g(θ) = a−
( 7∑

i=1
0.1e0.1θi +

14∑
i=8

0.5e0.1θi +
21∑

i=15
2e0.1θi +

28∑
i=22

8e0.1θi

)
, (6.52)

where a = 85 and θi, i = 1, . . . , 28, are i.i.d. Gaussian random variables with zero means
and unit standard deviations. Kriging-SuS methods with different settings, as listed
in Table 6.2, are implemented to evaluate the failure probability P [g(θ) ≤ 0]. Here, m
represents the number of principal components for PLS and pd represents the percentage
of discarded training samples for experimental design.

Table 6.3 shows the evaluation results of 50 independent implementations of three
different methods, SuS, kriging-SuS, and KPLS-SuS1, with N = 2000 samples per subset
level. The failure probability P̂F , the c.o.v. bounds ĉv,lb and ĉv,ub, the number of calls to
the true model Ncall, and the training time ttrain are the average values of the 50 results,
whereas the c.o.v. estimate ĉv is the sample c.o.v. of the 50 failure probability estimates.
Kriging-SuS and KPLS-SuS1 are able to achieve similar probability estimates and the
same accuracy level as SuS. This is due to the fact that the active learning strategy
for kriging aims to provide sufficiently accurate classification results. Nonetheless, the
kriging-accelerated methods only need to evaluate the true model a few hundred times,

Table 6.2: Kriging-SuS methods with different settings.

Method Use PLS dimensionality reduction Use experimental design

kriging-SuS No No
KPLS-SuS1 Yes (m = 3) No
KPLS-SuS2 Yes (m = 3) Yes (pd = 0.5)

Table 6.3: Failure probability estimation results using SuS and kriging-SuS.

Method P̂F [ĉv,lb, ĉv,ub] ĉv Ncall ttrain (s)

SuS 5.54 × 10−6 [0.25, 0.58] 0.32 11920 — —
kriging-SuS 5.79 × 10−6 [0.25, 0.58] 0.33 176 1346
KPLS-SuS1 5.82 × 10−6 [0.25, 0.58] 0.29 184 35.3
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Figure 6.10: Training time for KPLS-SuS with different N .
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Figure 6.11: Number of true model evaluations for KPLS-SuS with different N .

which saves a considerable proportion of true model evaluations. The high efficiency is
accomplished at the cost of the training time. The basic kriging-SuS requires 1346 seconds
to iteratively update the kriging as the SuS samples approach the failure domain. However,
this demand can be greatly mitigated by the PLS dimensionality reduction strategy.

In the following, three methods, SuS, KPLS-SuS1, and KPLS-SuS2, are applied with
different numbers of samples per level: N = [500, 1000, 2000, 3000, 5000]T. For each N ,
50 independent applications of these methods are conducted. The simulation results are
shown in Figures 6.10, 6.11, and 6.12. Same as the results in Table 6.3, the training time,
the number of calls to the true model, the c.o.v. bounds, and the failure probability are
the average values of the 50 results. The empirical c.o.v., denoted by “emp.” in the figure
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Figure 6.12: Failure probability estimation results for SuS and KPLS-SuS with different N .

legend, is the sample c.o.v. of the 50 failure probability estimates. Figures 6.10 and 6.11
compare the training time and the number of true model evaluations required by the
KPLS-SuS methods. It is shown that the proposed experimental design strategy further
reduces the training time. The improvement gets more evident when the cardinality of
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the training set increases. In general, using a subset of the full training set to update
the kriging surrogate would add more samples to the training set than using the full set.
However, as depicted in Figure 6.11, the experimental design strategy does not necessitate
a larger full training set. The results demonstrate that the proposed strategy enhances the
training efficiency without requiring more true model evaluations. Figure 6.12 presents the
failure probability estimates and the corresponding c.o.v. results. All the results obtained
by the KPLS-SuS approaches are similar with those by the conventional SuS method, thus
proving the accuracy of the KPLS-SuS approaches.

6.4 Comparisons with Other Surrogates

6.4.1 Surrogate Modeling Techniques

The features of three types of surrogate modeling techniques, namely, RSM/PCE (see
Chapter 4), MLS (see Chapter 5), and kriging, are compared in Table 6.4. RSM/PCE
exploits the polynomial expansion to construct a global surrogate and then predicts
the true model responses. It is easy to implement but limited to weakly nonlinear and
low-dimensional problems.

Table 6.4: Feature comparisons of surrogate modeling techniques.

Method RSM/PCE MLS Kriging

Model assumption Polynomial Polynomial
Polynomial +

Gaussian process

Model type Global Local Global + local

Estimation of
model parameters

Ordinary
least-squares (OLS)

Weighted
least-squares (WLS)

Maximum likelihood
estimation (MLE)

Advantages Easy to implement

- More flexible than
global polynomial
models

- Applicable to highly
nonlinear problems

- Provides prediction
variances

- Interpolates known
samples

- More flexible than
polynomial models

- Applicable to highly
nonlinear problems

Disadvantages
Unsuitable for highly

nonlinear or high-
dimensional problems

Requires many
computations of

expansion coefficients

Requires much
computational effort
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Table 6.5: Performance comparisons of surrogate modeling techniques.

Flexibility Kriging > MLS > RSM/PCE

Accuracy Kriging > MLS > RSM/PCE

Required number of true model evaluations Kriging < MLS, RSM/PCE

Computational demand Kriging > MLS > RSM/PCE

By contrast, MLS builds a low-order polynomial surrogate locally for each unknown
point and assigns larger weights to the training points that are closer to the query point.
The local surrogate can be used to approximate any nonlinearity given enough training
points, thus being more flexible and accurate than RSM/PCE. A typical example is given
in Figure 5.4. MLS gains more flexibility and applicability at the expense of computational
cost. Since the local expansion must be conducted at every query point, MLS requires
more computational effort than RSM/PCE.

Kriging not only utilizes polynomials to detect the global trend but also employs
Gaussian process to capture the local variability. Therefore, it is more flexible than the
aforementioned polynomial-based surrogates and applicable to highly nonlinear problems.
In addition, it provides interpolation results as well as variance estimates for predictions.
An example is presented in Figure 6.2. Optimization techniques are generally applied to
find the best kriging parameters, thereby resulting in the optimal surrogate. Compared
with RSM/PCE and MLS, the optimization step enables kriging to accurately mimic the
true model behavior with a smaller number of training samples, but necessitates longer
training time.

Similar as RSM/PCE, the conventional MLS and kriging also suffer from the curse of
dimensionality, but respective strategies have been introduced to alleviate this problem.
The performance comparisons of these surrogate models are summarized in Table 6.5.

6.4.2 Surrogate-Based SuS Approaches

The main elements for the combination of SuS with each surrogate modeling method are
compared in Table 6.6. Polynomial surrogate-based SuS (PS-SuS) utilizes an adaptive
algorithm to select the optimal expansion order minimizing the leave-one-out (LOO) error.
Similarly, kriging-SuS applies this algorithm to detect the polynomial trend. By contrast,
MLS-SuS does not need such step since the second-order approximation is always adopted
in the proposed approach.

Aiming at accurately achieving the classification task within the SuS procedure, active
learning strategies are introduced for MLS-SuS and kriging-SuS. The MLS prediction error
is approximated and the samples that are more likely to be misclassified are added to
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Table 6.6: Main elements of each type of surrogate-accelerated SuS.

Method PS-SuS MLS-SuS Kriging-SuS

Adaptive
expansion order

d∗ = arg min ε̃LOO(d) — — d∗ = arg min ε̃LOO(d)

Active learning
strategy

— —
θ∗ = {θ(i) : |ĝ(θ(i)) −

bj | < ϵ(i)}
θ∗ = arg min U(θ(i))

Experimental
design strategy

Uses fewer training
samples outside Fj

— —
Uses fewer training
samples outside Fj

Dimensionality
reduction

— —
Performs sensitivity

analysis to detect the
influential variables

Applies PLS to
reduce the number of

hyperparameters

the training set. Likewise, samples with the least confidence for the kriging classification
results are chosen as the next training samples, wherein the confidence is represented by
the U-function value.

When updating the surrogate model in the intermediate failure domain Fj , experimental
design strategies are proposed for PS-SuS and kriging-SuS to neglect some unimportant
training samples outside Fj . However, these two methods have different purposes. PS-SuS
seeks to focus more on the domain of interest, whereas kriging-SuS attempts to reduce
the computational expense. Additionally, MLS-SuS does not need an experimental design
strategy because MLS automatically selects the training samples of interest from the full
training set for any query point.

For high-dimensional problems, dimensionality reduction techniques are developed to
save the training time. MLS-SuS conducts sensitivity analysis to detect the influential
variables and then reduces the dimensionality of the feature space. Kriging-SuS implements
partial least-squares (PLS) to reduce the number of unknown hyperparameters, i.e., the
dimensionality of the optimization search space.

As PS-SuS is limited to weakly nonlinear and low-dimensional problems, only the
implementations of MLS-SuS and kriging-SuS are discussed in the sequel. In Section 5.4.2
and Section 6.3.5, the MLS-SuS approach with dimensionality reduction and the KPLS-SuS
approach are implemented to solve the reliability analysis problem with a 28-dimensional
limit-state function. The estimation accuracy of both methods is quite similar with that
of SuS (see Figures 5.19 and 6.12). Figure 6.13 shows the required number of calls to the
true model and the percentage of saved calls in contrast to the conventional SuS. When
achieving sufficient accuracy level, both approaches are able to save a large proportion of
true model evaluations. Furthermore, KPLS-SuS outperforms MLS-SuS with two main
reasons. For one thing, MLS employs a fixed low-order polynomial to construct surrogates,
thus requiring more training samples for more complicated nonlinearity. By contrast,
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Figure 6.13: Number of true model evaluations for MLS-SuS and KPLS-SuS.

kriging is more flexible since both polynomial trend and Gaussian process are utilized
and the hyperparameters introduce additional degrees of freedom for the kriging model.
For another, the built-in error estimation enables kriging-SuS to actively choose the best
next training sample in a more efficient way. Though using fewer true model evaluations,
as depicted in Figure 6.14, KPLS-SuS necessitates more training time than MLS-SuS
when a large training set is necessary. This is because kriging needs to optimize the
hyperparameters, and the execution time increases dramatically as the number of training
samples grows.
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Figure 6.14: Training time for MLS-SuS and KPLS-SuS.

Table 6.7: Recommended application contexts for different types of surrogate-accelerated
SuS.

Method PS-SuS MLS-SuS Kriging-SuS

Nonlinearity Weak Weak/strong Weak/strong

Dimension Low Low/high Low/high

Computational
demand of the true
model evaluation

Low Low High

Based on the previous analysis and simulation results, PS-SuS is only suitable for
problems with weak nonlinearity, low dimensions, and relatively cheap-to-evaluate models.
However, MLS-SuS and kriging-SuS are not limited to weakly nonlinear or low-dimensional
problems. It is recommended to use kriging-SuS if evaluating the true model is much more
computationally expensive than solving the optimization problem, otherwise MLS-SuS is
suggested. The recommended application contexts are summarized in Table 6.7.

6.5 Summary

This chapter first recalled the mathematical basics of the kriging surrogate modeling
technique, as well as a dimensionality reduction strategy for kriging based on partial least-
squares (PLS). Then, the kriging-accelerated SuS (kriging-SuS) approach was presented,
for which an experimental design strategy was proposed to further improve the kriging
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modeling efficiency within the SuS framework. Finally, this chapter summarized the
applicability of three types of surrogate models and the corresponding surrogate-based
SuS approaches.
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Chapter 7

Application to Flight Control
Systems

In this chapter, the proposed surrogate-accelerated reliability analysis methods and the
novel reliability-based control optimization (RBCO) framework are implemented to flight
control systems for evaluating the failure probabilities and tuning the control parameters.
The simulation results illustrate the accuracy and efficiency of the surrogate-assisted
reliability assessment techniques as well as the ability of RBCO to directly guarantee the
fulfillment of probabilistic requirements.

7.1 Low-Dimensional Problem

7.1.1 DA42 Longitudinal Model

7.1.1.1 Enhanced Plant

The control plant is an aircraft model (Diamond DA42) comprising longitudinal plant
dynamics, actuator dynamics, structural mode, and notch filter, as depicted in Figure 7.1.

Figure 7.1: The closed-loop system for DA42 longitudinal model.
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The short-period approximation of the longitudinal plant model is represented as .
α
.
q

 =
 Zα Zq + 1
Mα Mq

 α

q

+
 Zη

Mη

 η, (7.1)

where α, q, and η denote the angle of attack, the pitch rate, and the elevator deflection,
respectively. The reference values of corresponding aerodynamic derivatives are: Zα =
−1.1933, Zq = 0.0055, Zη = 0.0291, Mα = −12.4139, Mq = −2.8390, and Mη = 6.4818.

The actuator dynamics is modeled as a second-order system with transfer function:

Ga(s) = ω2
a

s2 + 2ζaωa + ω2
a

, (7.2)

with the natural frequency ωa = 62.83 rad/s and the damping ratio ζa = 0.71.

The structural mode is simplified as a second-order, high-frequency, low-damped
dynamics superimposed on the feedback signals:

Gs(s) = ω2
s

s2 + 2ζsωs + ω2
s

, (7.3)

with the natural frequency ωs = 25.07 rad/s and the damping ratio ζs = 0.024. The
structural coupling can lead to a significant phase loss and an amplification around the
mode frequency. The notch filter is designed to attenuate these effects as follows:

Gn(s) = s2 + 2ζnωn + ω2
n

s2 + 2ζdωd + ω2
d

, (7.4)

where ωd = ωn = ωs, ζn = ζs, and ζd = 0.30.

7.1.1.2 Controller

A proportional-integral-derivative (PID) controller with feedforward control is applied as
follows:

.
qcmd = kHnz,cmd + knznz + kI

∫
(nz,cmd − nz) dt+ kqωy, (7.5)

where k = [kH , knz , kI , kq]T denotes the control parameters, nz,cmd is the command of
the vertical load factor, .qcmd is the pitch acceleration command, and nz and ωy are the
feedback signals of the vertical load factor and pitch rate, respectively.

7.1.1.3 Discrete Gust

To assess the system’s gust-rejection performance, the standard “1−cosine” gust (repre-
sented by d(t) in Figure 7.1) is introduced [155, p. 48]:

wz =


0, xg < 0,
vg

2

[
1 − cos

(
πxg

dg

)]
, 0 ≤ xg < dg,

vg, xg ≥ dg,

(7.6)
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Figure 7.2: Discrete gust with shape “1−cosine”.

where wz is the vertical wind velocity of the gust, xg is the horizontal distance traveled,
dg is the gust length, and vg is the gust amplitude. In this application, dg = 91.4 m and
vg = 13.9 m/s. The discrete gust is shown in Figure 7.2.

7.1.1.4 Parameter Uncertainties

Uncertainties in aerodynamic derivatives are considered and the relative values with respect
to the reference values are assumed to be normally distributed:

λMα = Mα/Mα,ref ∼ N (1, 0.22),
λMq = Mq/Mq,ref ∼ N (1, 0.22),
λMη = Mη/Mη,ref ∼ N (1, 0.22),

(7.7)

and the vector of parameter uncertainties θ = [λMα , λMq , λMη ]T.

7.1.1.5 Closed-Loop System

Finally, the closed-loop system in Figure 7.1 can be expressed as:

.
x = Acx+Bcu,

y = Ccx,
(7.8)

where the system state x consists of the notch filter states, the states of actuator dynamics,
the states of the short-period mode, the states due to the simplified structural mode on
feedback signals, and the state introduced by the integration element of the PID controller.
The input u = [r(t), d(t)]T = [nz,cmd, wz]T and the output y = nz. The matrices Ac, Bc

and Cc are functions of θ and k.
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Figure 7.3: Gust reaction given the nominal parameters.

7.1.2 Failure Probability Estimation

7.1.2.1 Large Failure Probability Estimation

Given the nominal control parameters k0 = [−1.2877,−0.9703, 3.2381,−5.6720]T, the
discrete gust wz depicted in Figure 7.2, and the reference values of the aerodynamic
derivatives, the gust reaction is shown in Figure 7.3. Considering the Gaussian-distributed
uncertainties θ, we assume the probability that the maximum negative deviation of the
gust reaction yg,min is lower than −0.5 is of interest:

P[g0(θ,k0) < 0] = P[yg,min < −0.5], (7.9)

where the performance function

g0(θ,k0) = yg,min + 0.5. (7.10)

MCS and surrogate-based MCS methods are applied to assess the failure probability in
Equation (7.9). Each method is performed through a number of 50 simulation runs. The
simulation parameters for each approach are listed in Table 7.1, where N is the number of
MCS samples, N0 is the number of initial training samples, d is the polynomial expansion
order, and R(θ,θ′;η) is the correlation function. Adaptive PCE is implemented in PCE-
MCS with the maximal order dmax = 6, whereas a linear trend is utilized for kriging-MCS.
In addition, the anisotropic Gaussian correlation function (denoted by “ani. Gaussian”) in
Equation (6.7) is adopted in kriging-MCS for the low-dimensional problem.

The simulation results are shown in Table 7.2, where the failure probability P̂F , the
number of calls to the true model Ncall, the total execution time ttotal, and the classification
error εc are the average values of the 50 results, whereas the c.o.v. estimate ĉv is the
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Table 7.1: Simulation parameters for MCS and surrogate-based MCS methods.

Method N N0 d R(θ,θ′;η)

MCS 2000 — — — — — —
PCE-MCS 2000 200 1 : 6 — —
MLS-MCS 2000 50 2 — —

kriging-MCS 2000 10 1 ani. Gaussian

Table 7.2: Simulation results for the estimation of P[yg,min < −0.5] using MCS and
surrogate-based MCS methods.

Method P̂F ĉv Ncall ttotal (s) εc

MCS 0.3042 0.0093 2000 12.2 — —
PCE-MCS 0.3046 0.0093 200 1.3 1 × 10−4

MLS-MCS 0.3036 0.0088 71 0.9 — —
kriging-MCS 0.3045 0.0110 38 1.8 — —

sample c.o.v. of the 50 failure probability estimates. The total execution time ttotal mainly
consists of the time evaluating the true model and that training the surrogate model.
The classification error εc is defined as the ratio of misclassified training samples (see
Equation (4.68)).

Table 7.2 shows that these approaches result in similar probability estimates and
estimation accuracy, but require different numbers of true model evaluations and execution
time. PCE-MCS only employs the initial training points to build a global surrogate.
By contrast, based on the initial training samples, the active learning strategies enable
MLS-MCS and kriging-MCS to adaptively enrich the training set with valuable candidate
samples until the surrogates are sufficiently accurate for the classification problem. Without
ensuring the classification accuracy, PCE-MCS needs the error εc to assess the classification
performance. The very small εc demonstrates that the nonlinearity of the true model is
relatively weak such that a polynomial approximation is able to solve the classification
problem properly. Because of the weak nonlinearity and the active learning strategies,
MLS-MCS and kriging-MCS only need to add few additional training samples to the
training set. In this example, MLS-MCS and kriging-MCS require far fewer true model
evaluations than PCE-MCS. Though kriging-MCS has the lowest demand for calling the
true model, it takes the longest training time. Considering both the model evaluation
time and the training time, MLS-MCS is the most efficient method for this problem.
Furthermore, all the surrogate-accelerated methods are much more efficient than the
conventional MCS.
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Figure 7.4: Number of true model evaluations for estimating P[yg,min < −0.5] using
surrogate-based MCS methods.
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Figure 7.5: Execution time for estimating P[yg,min < −0.5] using surrogate-based MCS
methods.

Given different N , the number of true model evaluations Ncall and the execution time
ttotal required by these surrogate-based MCS techniques are compared in Figures 7.4
and 7.5, respectively. In this example, PCE-MCS always employs 10% of the MCS
samples to construct the global surrogate. By contrast, the required Ncall for MLS-SuS
and kriging-SuS grows slowly with the increase of N due to the active learning strategies.
Kriging-SuS saves more calls than MLS-SuS, but necessitates longer training time. In the
end, kriging-SuS is generally the least efficient choice, whereas MLS-SuS finds the best
balance between the training time and the model evaluation time.
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7.1.2.2 Rare Failure Probability Estimation

In the following, the probabilities that the stability margins are lower than the correspond-
ing limits are considered:

P[g1(θ,k0) < 0] = P[kM < 6 dB],

P[g2(θ,k0) < 0] = P[ϕM < 45◦],
(7.11)

with performance functions
g1(θ,k0) = kM − 6 dB,
g2(θ,k0) = ϕM − 45◦,

(7.12)

where kM and ϕM are the gain margin and the phase margin, respectively.

SuS and surrogate-based SuS techniques are implemented to evaluate the failure
probabilities in Equation (7.11). As in Section 7.1.2.1, each approach is conducted through
a number of 50 simulation runs. The simulation parameters for each method are listed in
Table 7.3. Here, N denotes the number of samples at each subset level, p0 represents the
conditional probability for SuS, and pd is the percentage of discarded training samples
for kriging-SuS (see Section 6.3.3). The adaptive polynomial trend with the maximal
expansion order dmax = 4 is used for kriging-SuS.

The simulation results for the estimation of P[kM < 6 dB] are shown in Table 7.4.
The c.o.v. bounds ĉv,lb and ĉv,ub are the average values of the 50 approximations. The
probability estimates and estimation accuracy obtained by surrogate-assisted methods

Table 7.3: Simulation parameters for SuS and surrogate-based SuS methods.

Method N p0 N0 d R(θ,θ′;η) pd

SuS 2000 0.1 — — — — — — — —
PS-SuS 2000 0.1 240 1 : 6 — — — —

MLS-SuS 2000 0.1 50 2 — — — —
kriging-SuS 2000 0.1 10 1 : 4 ani. Gaussian 0.5

Table 7.4: Simulation results for the estimation of P[kM < 6 dB] using SuS and surrogate-
based SuS methods.

Method P̂F [ĉv,lb, ĉv,ub] ĉv Ncall ttotal (s) εc

SuS 9.55 × 10−7 [0.32, 0.78] 0.52 13232 94.3 — —
PS-SuS 9.75 × 10−7 [0.31, 0.77] 0.63 1331 10.7 4.25 × 10−5

MLS-SuS 8.51 × 10−7 [0.32, 0.78] 0.53 722 13.8 — —
kriging-SuS 9.77 × 10−7 [0.32, 0.77] 0.52 87 5.5 — —
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Figure 7.6: Number of true model evaluations for estimating P[kM < 6 dB] using
surrogate-based SuS methods.
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Figure 7.7: Execution time for estimating P[kM < 6 dB] using surrogate-based SuS
methods.

are similar with those obtained by SuS. The number of true model evaluations Ncall and
the execution time ttotal required by these surrogate-assisted SuS techniques are further
compared in Figures 7.6 and 7.7, where different N are exploited. Compared with SuS,
PS-SuS saves about 90% true model evaluations. More calls to the true model are saved by
MLS-SuS and kriging-SuS because of the active learning strategies. In addition, kriging-
SuS outperforms MLS-SuS since kriging attempts to construct the surrogate model in an
optimal way. All the surrogate-accelerated SuS methods are far more efficient than the
conventional SuS, and kriging-SuS is the best choice among them.
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Table 7.5: Simulation results for the estimation of P[ϕM < 45◦] using SuS and surrogate-
based SuS methods.

Method P̂F [ĉv,lb, ĉv,ub] ĉv Ncall ttotal (s) εc

SuS 3.33 × 10−5 [0.25, 0.55] 0.46 9940 67.9 — —
PS-SuS 3.29 × 10−5 [0.26, 0.55] 0.40 1014 8.1 3.53 × 10−3

MLS-SuS 3.72 × 10−5 [0.26, 0.54] 0.39 727 12.3 — —
kriging-SuS 3.39 × 10−5 [0.26, 0.55] 0.42 226 25.9 — —
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Figure 7.8: Number of true model evaluations for estimating P[ϕM < 45◦] using surrogate-
based SuS methods.

Similarly, given the parameters in Table 7.3, the simulation results for the estimation
of P[ϕM < 45◦] are listed in Table 7.5. Again, the proposed surrogate-assisted approaches
obtain similar probability estimates and estimation accuracy as the conventional SuS. The
classification error for PS-SuS in Table 7.5 is rather larger than that in Table 7.4, indicating
that the nonlinearity of g2(θ,k0) is more difficult to deal with. This is verified by the
fact that MLS-SuS and kriging-SuS need more additional training samples for estimating
P[ϕM < 45◦] although fewer subset levels are required. For different N , the number of true
model evaluations Ncall and the execution time ttotal required by these surrogate-assisted
SuS techniques are compared in Figures 7.8 and 7.9. In this example, among these methods,
kriging-SuS requires the fewest calls to the true model. However, using a smaller training
set does not necessarily mean it takes less execution time. Kriging-SuS needs far more
training time than MLS-SuS. In the end, it is less efficient than MLS-SuS. Nonetheless, in
the case where evaluating the true model is much more time-consuming than training the
kriging model, kriging-SuS would be the most attractive choice.
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Figure 7.9: Execution time for estimating P[ϕM < 45◦] using surrogate-based SuS methods.

To sum up, all the surrogate-based SuS approaches are able to provide sufficiently
accurate probability estimates and are more efficient than the conventional SuS. Users
may choose the most appropriate method according to the complexity of the reliability
analysis problem.

7.1.3 Control Parameter Optimization

The proposed surrogate-accelerated reliability assessment techniques have been proved
to be accurate and efficient. In this subsection, these methods and the RBCO approach
designed in Chapter 3 are implemented to evaluate the failure probability and search for
control parameters satisfying rare-event probabilistic requirements.

Assume that the goal of the control design optimization is to improve the disturbance
rejection behavior while guaranteeing the tracking performance and satisfying the stability
requirements. The objective function and probabilistic constraints are defined in Table 7.6.

Table 7.6: Objective function and probabilistic constraints for the RBCO problem.

Specification Performance function Objective function or constraint

yg,min g0(θ,k) = yg,min + 0.5 P[yg,min < −0.5]
kM g1(θ,k) = kM − 6 dB (1 + 3cv1)P[kM < 6 dB] ≤ 10−6

ϕM g2(θ,k) = ϕM − 45◦ (1 + 3cv2)P[ϕM < 45◦] ≤ 10−6

σ% g3(θ,k) = 20% − σ% P[σ% > 20%] ≤ 0.1
tr g4(θ,k) = 1 s − tr P[tr > 1 s] ≤ 0.1
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Table 7.7: Simulation results for the estimation of failure probabilities using SuS.

Failure probability P̂F [ĉv,lb, ĉv,ub] Ncall ttotal (s)

P[yg,min < −0.5] 0.119 — — 2000 11.8
P[kM < 6 dB] 5.63 × 10−8 [0.34, 0.93] 15882 108.7
P[ϕM < 45◦] 2.60 × 10−8 [0.33, 0.91] 15846 97.6
P[σ% > 20%] 6.10 × 10−2 [0.08, 0.10] 3986 23.1
P[tr > 1 s] 8.34 × 10−2 [0.07, 0.09] 3986 23.0

Table 7.8: Simulation results for the estimation of failure probabilities using surrogate-
based SuS methods.

Failure probability Method P̂F [ĉv,lb, ĉv,ub] Ncall ttotal (s)

P[yg,min < −0.5] MLS-SuS 0.119 — — 64 1.0
P[kM < 6 dB] kriging-SuS 8.78 × 10−8 [0.36, 0.94] 86 10.7
P[ϕM < 45◦] MLS-SuS 4.91 × 10−8 [0.34, 0.92] 1459 24.7
P[σ% > 20%] MLS-SuS 6.18 × 10−2 [0.08, 0.10] 188 2.9
P[tr > 1 s] MLS-SuS 8.57 × 10−2 [0.07, 0.08] 92 2.5

Here, σ% and tr are the overshoot and the rise time of the step response. The rise time
is defined as the time required for the response to rise from 0% to 80% of its final value.
Besides, cv1 and cv2 represent the coefficients of variation of the probability estimates
P[kM < 6 dB] and P[ϕM < 45◦], respectively. To ensure the fulfillment of the stability
requirements, the 3-σ upper bounds of the probability estimates are considered to satisfy
the rare-event chance constraints.

Based on the efficiency comparisons in previous subsection, kriging-SuS is employed
to estimate P[kM < 6 dB] and the rest failure probabilities are assessed by MLS-SuS.
N = 2000 samples are generated at each subset level. Solving the RBCO problem in
Equation (3.2) with the Matlab global solver surrogateopt [156] leads to the optimal design
k∗ = [−2.8397,−1.0703, 2.9698,−3.3762]T for the controller in Equation (7.5). Note that
the use of surrogate-assisted SuS methods within the RBCO problem greatly reduces the
computational expense. Given the designed control parameters, the failure probability
estimation results obtained by SuS and surrogate-accelerated SuS are listed in Tables 7.7
and 7.8, respectively. The SuS results are regarded as references. The results of the
surrogate-based SuS approaches, i.e., MLS-SuS and kriging-SuS, match well with the
reference results, but a large proportion of true model evaluations and the execution time
are saved. Moreover, the simulation results show that the probabilistic constraints given
in Table 7.6 are fulfilled directly by the RBCO framework.
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Figure 7.10: Pitch angle tracking results.

7.2 High-Dimensional Problem

7.2.1 High-Fidelity eVTOL Aircraft Model

An unmanned electric vertical take-off and landing (eVTOL) demonstrator aircraft has
been developed and numerically modeled at the Institute of Flight System Dynamics (FSD)
of the Technical University of Munich (TUM). In this section, the target is to assess the
attitude tracking performance of the critical flight control law (CFCL) for the high-fidelity
eVTOL model developed based on the work in [157, 158].

Figure 7.10 shows the reference of pitch angle Θref and the estimated pitch angle
response Θest given the pitch angle command Θcmd. In this application, the pitch angle
tracking performance is evaluated by the root mean square (RMS) error between Θref and
Θest

RMS(Θref − Θest). (7.13)

The failure event is defined as

RMS(Θref − Θest) > 0.45◦. (7.14)

Considering a number of 42 Gaussian-distributed uncertain parameters θ, it is assumed
that the following failure probability is of interest:

P[g(θ) < 0] = P[RMS(Θref − Θest) > 0.45◦], (7.15)

with performance function

g(θ) = 0.45◦ − RMS(Θref − Θest). (7.16)
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7.2.2 Rare Failure Probability Estimation

In practice, the simulation of the high-fidelity eVTOL model is accelerated by the Simulation
Accelerator toolbox [159]. As a consequence, one simulation run takes about 2.8 seconds.
According to the recommendations in Table 6.7, due to the unknown nonlinearity of the
performance function and its relatively low computational demand, the MLS-SuS approach
is implemented to estimate the failure probability in Equation (7.15).

Both the direct MLS-SuS without dimensionality reduction and the two-stage MLS-SuS
(with dimensionality reduction) are implemented, denoted by “MLS-SuS1” and “MLS-
SuS2”, respectively. Besides, the conventional SuS technique is applied for reference. The
simulation parameters for each method are listed in Table 7.9. Here, N denotes the number
of samples at each subset level, p0 represents the conditional probability for SuS, d is the
polynomial expansion order, and N0 is the number of samples at each subset level for the
pure SuS at the first stage of MLS-SuS2.

The simulation results are presented in the following. Figure 7.11a shows the sensitivity
analysis results of SuS, whereas Figure 7.11b shows those of the first stage of MLS-
SuS2. For SuS, N = 3000 samples are employed at each subset level. By contrast, only
N0 = 100 samples per level are used for the pure SuS at the first stage of MLS-SuS2. In
both subfigures, each line illustrates the relative importance of each uncertain parameter.
Similar as SuS, the first stage of MLS-SuS2 is able to clearly detect the most influential 9
variables. However, the latter approach only needs 400 samples in total to achieve that.
At the second stage of MLS-SuS2, only the detected 9 variables are regarded as sensitive
parameters and the hybrid kernel in Equation (5.40) is applied. This results in a feature
reduction from 946 to 88.

Table 7.10 lists the simulation results of these three methods. Both MLS-SuS1 and
MLS-SuS2 save a large number of calls to the true model Ncall, and the latter outperforms
the former. Compared with MLS-SuS2, the number of basis functions p for MLS-SuS1
is much larger, which generally requires more samples to build the surrogate model. In
this example, it is time-consuming to evaluate the system performance. The elapsed time
for evaluating the performance function tcall is proportional to the number of calls Ncall.
Additionally, MLS-SuS1 takes 1.11 × 104 seconds (about 3 hours) to iteratively update

Table 7.9: Simulation parameters for SuS and MLS-SuS methods.

Method N p0 d N0

SuS 3000 0.1 — — — —
MLS-SuS1 3000 0.1 2 — —
MLS-SuS2 3000 0.1 1 : 2 100
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Figure 7.11: Simulation results for the sensitivity analysis using SuS and MLS-SuS
methods.

Table 7.10: Simulation results for the failure probability estimation using SuS and MLS-
SuS methods.

Method P̂F [ĉv,lb, ĉv,ub] p Ncall tcall (s) ttrain (s) ttotal (s)

SuS 1.63 × 10−4 [0.17, 0.33] — — 12000 3.35 × 104 — — 3.35 × 104

MLS-SuS1 2.35 × 10−4 [0.16, 0.31] 946 4932 1.38 × 104 1.11 × 104 2.49 × 104

MLS-SuS2 1.93 × 10−4 [0.16, 0.32] 88 3066 8.57 × 103 64 8.63 × 103
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the surrogate, whereas MLS-SuS2 only needs 64 seconds (about 1 minute). The huge
gap is due to the difference of surrogate complexities. With simplified expansion (the
number of basis functions is reduced from 946 to 88), MLS-SuS2 is far more efficient
than MLS-SuS1 without losing the accuracy of failure probability estimation. The total
simulation time ttotal is generally a sum of the time evaluating the true model and the
training time. Although MLS-SuS1 is still more efficient than the conventional SuS, it
suffers from the curse of dimensionality. The two-stage MLS-SuS provides a successful
way to alleviate this problem.

7.3 Summary

This chapter implemented the proposed surrogate-accelerated reliability analysis techniques
and reliability-based control optimization (RBCO) framework to flight control systems.
The failure probabilities were estimated with a sufficient accuracy in an efficient way and
the control parameters were tuned to meet the probabilistic requirements with a formal
guarantee.
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Chapter 8

Conclusions and Perspectives

8.1 Conclusions

In this thesis, we investigated the surrogate-assisted reliability analysis and design problems
for flight control systems. Here we conclude the results of this thesis by chapters.

Aiming at satisfying the probabilistic requirements specified in the certification specifi-
cations in aviation, Chapter 3 proposed a novel control design optimization framework
called reliability-based control optimization (RBCO). The presented framework consists of
two loops: the inner loop evaluates the failure probabilities whereas the outer loop explores
the design space using optimization techniques. It is a verification-driven approach that
ensures the probabilistic requirements are directly fulfilled. In comparison with conven-
tional control design methods which treat chance constraints in a conservative manner,
this framework is able to enlarge the design space and explore further performance.

To accurately assess the probabilities of interest, simulation methods including Monte
Carlo simulation (MCS) and subset simulation (SuS) were employed without making any
hypothesis on the nonlinearity of the performance function. However, obtaining sufficiently
precise estimations requires a large number of performance function evaluations. To reduce
this demand, this thesis incorporated surrogate modeling techniques into the simulation
approaches by replacing some true model evaluations with the predictions of the surrogate
model.

Chapter 4 exploited two polynomial-based global surrogates, namely, response sur-
face method (RSM) and polynomial chaos expansion (PCE), to achieve the uncertainty
quantification task. Firstly, the uncertainty propagation schemes estimating the statistical
characteristics (including moments, failure probability, and PDF) of system outputs were
summarized. The differences between these two surrogates stem from different require-
ments for system inputs. Compared with RSM, PCE requires the knowledge of the input
distribution to find orthogonal polynomial bases, thus guaranteeing the convergence of
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the approximation and being able to estimate statistical moments analytically. However,
the isoprobabilistic transformation required by PCE may increase the complexity of the
transformed system. Subsequently, we introduced the polynomial surrogate-based SuS
(PS-SuS) approach that combines global surrogates with SuS. Adaptive PCE or RSM
searching for the optimal expansion order was applied to progressively refine the surro-
gate at each subset level. To detect both the local variability and the global trend, an
experimental design strategy was designed to choose the most valuable training samples
from the training set to update the surrogate model. Moreover, the classification error
was defined to monitor the quality of the estimation results for the PS-SuS method. The
accuracy and efficiency of the proposed approach were demonstrated by low-dimensional
illustrative examples.

Though the global surrogates are easy to implement, they may suffer from large
estimation errors for highly nonlinear applications. To alleviate this problem, Chapter 5
employed a local surrogate model called moving least-squares (MLS) to accelerate the
simulation-based reliability analysis methods. First, the MLS-accelerated SuS (MLS-
SuS) strategy was introduced. After that, surrogate errors were approximated based on
leave-one-out (LOO) cross validation. With the error approximation, an active learning
strategy which enriches the training set with potentially misclassified samples was proposed
to properly classify the generated samples. The numerical examples showed that, in
comparison with SuS, the proposed strategy saves a large proportion of calls to the true
model while providing comparative estimation accuracy. Furthermore, a dimensionality
reduction strategy was developed for MLS-SuS. Sensitivity analysis was first conducted
to rank the variables according to their importance level with respect to the failure
event. According to the ranking, unnecessary expansion items were then filtered out,
thus reducing the dimensionality of the feature space. For the flexible calculation of the
expansion coefficients, kernel ridge regression (KRR) was applied, and the hybrid kernel
tailored to the dimensionality reduction strategy was introduced. The simulation results
suggested that this strategy reduces the required training effort without sacrificing the
estimation accuracy.

Instead of leveraging surrogates that are based on the rigid polynomial expression,
Chapter 6 utilized a more flexible surrogate, called kriging, to mimic the true model behav-
ior during the SuS procedure. This chapter integrated the commonly implemented active
learning kriging into SuS, resulting the kriging-accelerated SuS (kriging-SuS) approach.
However, the conventional kriging suffers from the curse of dimensionality. Aiming at
overcoming this challenge, partial least-squares-based kriging (KPLS) was implemented to
reduce the number of unknown hyperparameters, which consequently saves the computa-
tional cost for optimizing hyperparameters. In order to enhance the modeling efficiency,
the adaptive PCE was implemented to identify the best polynomial trend. Considering
that the kriging training time grows dramatically with the enrichment of the training
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set, an experimental design strategy was proposed to mitigate this issue by selecting
influential training samples from the full training set for the refinement of the kriging
surrogate. Illustrative examples demonstrated the accuracy and efficiency of the proposed
kriging-SuS method. Finally, this chapter compared the performance of three types of
surrogate modeling techniques and the corresponding surrogate-based SuS approaches.
The applicability of RSM or PCE is limited to weakly nonlinear and low-dimensional
problems. Compared with MLS, kriging is more accurate and requires fewer number of
true model evaluations, but necessitates longer training time. Therefore, it is suggested to
apply kriging-SuS if the evaluation of the true model is more computationally expensive
than the optimization problem, otherwise MLS-SuS is recommended.

Chapter 7 is focused on the implementation of the proposed surrogate-based reliability
analysis methods and RBCO framework to flight control systems. The simulation results
demonstrated that the surrogate-assisted SuS approaches are able to provide sufficiently
accurate failure probability estimates and are more efficient than the conventional SuS.
The computational expense for solving the RBCO problem is thus drastically reduced by
these surrogate-based methods. Furthermore, the probabilistic requirements are satisfied
directly by the RBCO framework.

8.2 Perspectives

This section discusses the potential future work that may enhance the proposed methods.

It was shown in the thesis that the proposed RBCO framework can be used to search
for control parameters that satisfy the probabilistic requirements with a formal guarantee.
However, the reliability analysis procedure needs to be conducted repeatedly in the
optimization loop, thus requiring high computational expense. To reduce this demand, one
can consider adopting variable accuracy levels for probability estimation. Specifically, if
the probability to be estimated differs from the target probability by orders of magnitude,
an estimation with a large coefficient of variation (c.o.v.) would be sufficient. When the
probability to be estimated gets close to the target probability, it is necessary to increase
the estimation accuracy level accordingly.

The proposed RBCO framework is inspired by the two-level reliability-based design
optimization (RBDO) techniques. In comparison with the two-level methods for RBDO,
there exist various mono-level and decoupled approaches in the literature [106, 107]
which can be used to achieve higher efficiency by reformulating and decoupling the two-
level formulation. However, they both suffer from multiple failure domains and strong
nonlinearities in the limit-state functions. For future work, one can further develop a
scheme combining these three types of approaches appropriately by making a tradeoff
between accuracy and efficiency for the RBCO problem.

159



8.2 Perspectives

Since the active learning strategies in the MLS-SuS and kriging-SuS approaches seek
to classify samples with high confidence, the c.o.v. approximation for the conventional SuS
method is still exploited for these proposed methods. Simulation results demonstrate these
approaches obtains similar accuracy level for probability estimation as the conventional SuS
method. In order to achieve a more reliable accuracy estimation, the classification error
can be integrated into the c.o.v. approximation for the surrogate-based SuS techniques.

During the SuS procedure, the domain of interest progressively converges to the
targeting failure domain. At a certain subset level, the constructed surrogate model needs
to first identify whether or not the samples are lying in the current intermediate failure
domain, and then predict the model response for those samples that are within this domain.
An alternative approach would be constructing two surrogates: one for distinguishing
samples whether they are located in the domain of interest, and the other for mimicking
the model behaviors at the current level. This framework builds separated surrogates for
different tasks, which can be helpful to improve the efficiency of surrogate-assisted SuS
techniques.
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Appendix A

Commonly Used Distributions

Table A.1 lists several widely used continuous distributions.

Table A.1: Commonly used continuous distributions.

Distribution PDF Support Parameters
Uniform
U(a, b)

f(θ) = 1
b−a

a ≤ θ ≤ b
−∞ < a < ∞
a < b < ∞

Gaussian or Normal
N (µ, σ)

f(θ) = 1
σ

√
2π
e− (θ−µ)2

2σ2 −∞ < θ < ∞
−∞ < µ < ∞

σ > 0
Lognormal
LN (µ, σ)

f(θ) = 1
θσ

√
2π
e− (ln θ−µ)2

2σ2 0 < θ < ∞
−∞ < µ < ∞

σ > 0
Exponential

Exp(λ)
f(θ) = λe−λθ 0 ≤ θ < ∞ λ > 0

Gamma
G(α, β)

f(θ) = θαe−θ/β

βα+1Γ(α+1) 0 ≤ θ < ∞
α > −1
β > 0

Beta
B(α, β)

f(θ) = Γ(α+β+2)(1−θ)α(1+θ)β

2α+β+1Γ(α+1)Γ(β+1) −1 ≤ θ ≤ 1 α > −1
β > −1
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Appendix B

Orthogonal Polynomials

B.1 Legendre Polynomials

Legendre polynomials Pi(ξ) [49] are defined over [−1, 1] and orthogonal with respect to
the uniform distribution:

f(ξ) = 1
2 , ξ ∈ [−1, 1]. (B.1)

They satisfy the recurrence relation:

P−1(ξ) = 0,
P0(ξ) = 1,

(i+ 1)Pi+1(ξ) = (2i+ 1)ξPi(ξ) − iPi−1(ξ), i ∈ N0,

(B.2)

and
⟨Pi(ξ), Pj(ξ)⟩ =

∫ 1

−1
Pi(ξ)Pj(ξ)f(ξ)dξ = 1

2i+ 1δij. (B.3)

This indicates
γi = E

[
Pi(ξ)2

]
= 1

2i+ 1 . (B.4)

The first few Legendre polynomials are given in Table B.1 and plotted in Figure B.1.

Table B.1: First few Legendre polynomials.

i Pi(ξ) E [Pi(ξ)2]

0 1 1
1 ξ 1/3
2 1

2(3ξ2 − 1) 1/5
3 1

2(5ξ3 − 3ξ) 1/7
4 1

8(35ξ4 − 30ξ2 + 3) 1/9
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Figure B.1: First few Legendre polynomials.

B.2 Laguerre Polynomials

Laguerre polynomials Lα
i (ξ) [49] are defined over [0,∞) and orthogonal with respect to

the gamma distribution (see Appendix A) with β = 1:

f(ξ) = ξαe−ξ

Γ(α + 1) , ξ ∈ [0,∞), α > −1. (B.5)

They satisfy the recurrence relation:

Lα
−1(ξ) = 0,
Lα

0 (ξ) = 1,
(i+ 1)Lα

i+1(ξ) = (2i+ α + 1 − ξ)Lα
i (ξ) − (i+ α)Lα

i−1(ξ), i ∈ N0,

(B.6)

and 〈
Lα

i (ξ), Lα
j (ξ)

〉
=
∫ ∞

0
Lα

i (ξ)Lα
j (ξ)f(ξ)dξ = (α + 1)i

i! δij, (B.7)

where
(α)i = Γ(α + i)

Γ(α) (B.8)

is the Pochhammer symbol. This indicates

γi = E
[
Lα

i (ξ)2
]

= (α + 1)i

i! . (B.9)

Given α = 0, the first few Laguerre polynomials are listed in Table B.2 and plotted in
Figure B.2.

IV



Appendix B: Orthogonal Polynomials

Table B.2: First few Laguerre polynomials given α = 0.

i Lα
i (ξ) E [Lα

i (ξ)2]

0 1 1
1 −ξ + 1 1
2 1

2(ξ2 − 4ξ + 2) 1
3 1

6(−ξ3 + 9ξ2 − 18ξ + 6) 1
4 1

24(ξ4 − 16ξ3 + 72ξ2 − 96ξ + 24) 1
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Figure B.2: First few Laguerre polynomials given α = 0.

B.3 Jacobi Polynomials

Jacobi polynomials Jα,β
i (ξ) [49] are defined over [−1, 1] and orthogonal with respect to the

beta distribution:

f(ξ) = Γ(α + β + 2)
2α+β+1Γ(α + 1)Γ(β + 1)(1 − ξ)α(1 + ξ)β, ξ ∈ [−1, 1], α, β > −1. (B.10)

They satisfy the recurrence relation:

Jα,β
−1 (ξ) = 0,
Jα,β

0 (ξ) = 1,
2(i+ 1)(i+ α + β + 1)

(a+ 1)(a+ 2) Jα,β
i+1(ξ) =

(
ξ + α2 − β2

a(a+ 2)

)
Jα,β

i (ξ) − 2(i+ α)(i+ β)
a(a+ 1) Jα,β

i−1(ξ), i ∈ N0,

(B.11)
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where
a = 2i+ α + β. (B.12)

Jacobi polynomials satisfy the following orthogonality condition:
〈
Jα,β

i (ξ), Jα,β
j (ξ)

〉
=
∫ 1

−1
Jα,β

i (ξ)Jα,β
j (ξ)f(ξ)dξ

= (α + 1)i(β + 1)i

i!(2i+ α + β + 1)(α + β + 2)i−1
δij.

(B.13)

This indicates

γi = E
[
Jα,β

i (ξ)2
]

= (α + 1)i(β + 1)i

i!(2i+ α + β + 1)(α + β + 2)i−1
. (B.14)

Given α = 0 and β = 0, Equations (B.10), (B.11), and (B.13) reduce to Equations (B.1),
(B.2), and (B.3), respectively. This means that Legendre polynomials are a special case of
Jacobi polynomials.
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Appendix C

Stationary Correlation Functions

Tables C.1 and C.2 list several popular 1-dimensional and multi-dimensional stationary
correlation functions, respectively. Here, η ≥ 0 and ηk ≥ 0.

Table C.1: Commonly used 1-dimensional stationary correlation functions.

Correlation
function

Expression

Exponential exp
(
−η|θ − θ′|

)
Gaussian exp

(
−η(θ − θ′)2

)
Matérn 3/2

(
1 +

√
3η|θ − θ′|

)
exp

(
−

√
3η|θ − θ′|

)
Matérn 5/2

(
1 +

√
5η|θ − θ′| + 5

3η
2(θ − θ′)2

)
exp

(
−

√
5η|θ − θ′|

)

Table C.2: Commonly used stationary anisotropic correlation functions.

Correlation
function

Expression

Exponential
n∏

k=1
exp

(
−ηk|θk − θ′

k|
)

Gaussian
n∏

k=1
exp

(
−ηk(θk − θ′

k)2
)

Matérn 3/2
n∏

k=1

(
1 +

√
3ηk|θk − θ′

k|
)

exp
(
−

√
3ηk|θk − θ′

k|
)

Matérn 5/2
n∏

k=1

(
1 +

√
5ηk|θk − θ′

k| + 5
3η

2
k(θk − θ′

k)2
)

exp
(
−

√
5ηk|θk − θ′

k|
)
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Table C.3 presents PLS correlation functions [153] which are based on the anisotropic
correlation functions shown in Table C.2. Here, ηj ≥ 0, ϑjk = w∗

jkθk and ϑ′
jk = w∗

jkθ
′
k.

Table C.3: PLS correlation functions.

Correlation
function

Expression

Exponential
m∏

j=1

n∏
k=1

exp
(
−ηj|ϑjk − ϑ′

jk|
)

Gaussian
m∏

j=1

n∏
k=1

exp
(
−ηj(ϑjk − ϑ′

jk)2
)

Matérn 3/2
m∏

j=1

n∏
k=1

(
1 +

√
3ηj|ϑjk − ϑ′

jk|
)

exp
(
−

√
3ηj|ϑjk − ϑ′

jk|
)

Matérn 5/2
m∏

j=1

n∏
k=1

(
1 +

√
5ηj|ϑjk − ϑ′

jk| + 5
3η

2
j (ϑjk − ϑ′

jk)2
)

exp
(
−

√
5ηj|ϑjk − ϑ′

jk|
)
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