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• Laser scanning and photogrammetric technologies are fused in the pipeline.

• Semantic information in images is mapped to 3D laser-scanned point

clouds.

• Small objects of different classes are detected in the creation of digital

twins.

• Text information is recognised and used to enrich digital twins.
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Abstract

This paper addresses the challenge of enriching geometric digital twins of

buildings, with a particular emphasis on capturing small but important en-

tities from the electrical and the fire-safety domain, such as signs, sockets,

switches, smoke alarms, etc. Unlike most previous research that focussed on

structural elements and processed laser point clouds and images separately,

we propose a novel method that fuses laser scanning and photogrammetry

methods to capture the relevant objects, recognise them in 2D images and

then map these to a 3D space. The considered object classes include elec-

trical elements (light switch, light, speaker, socket, elevator button), safety

elements (emergency switch, smoke alarm, fire extinguisher, escape sign),

plumbing system elements (pipes), and other objects with useful information
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(door sign, board). Semantic information like class labels is extracted by

applying AI-based image segmentation and then mapped to the 3D point

cloud, segmenting the point cloud into point clusters. We subsequently fit

geometric primitives to the point clusters and extract text information by

AI-based text detection and recognition. The final output of our proposed

method is an information-rich digital twin of buildings that contains geomet-

ric information, semantic information such as object categories and useful

text information which is valuable in many aspects, like condition monitor-

ing, facility maintenance and management. In summary, the paper presents a

nearly fully-automated pipeline to enrich a geometric digital twin of buildings

with details and provides a comprehensive case study.

Keywords: digital twin, deep learning, object detection, text recognition,

3D reconstruction
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1. Introduction1

This research is about enriching Geometric Digital Twins (GDTs) with2

small objects. By enriching, we refer here to the process of adding more cat-3

egories of objects to the GDTs of basic elements in a building. By geometric4

digital twins, we refer here to a digital twin with geometric data only. A5

digital twin of a building here is defined as a regular-updated digital replica6

of a physical building that can represent the current condition of the building7

[1]. By small objects, we refer here to the elements that are smaller in scale8

in comparison with structural elements (like walls, floors, ceilings). In this9
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paper, we focus on enriching geometric digital building twins by adding these10

elements. Meanwhile, instead of only segmenting point clouds, we extract11

text information such as object IDs to recognise object instances.12

Generating a geometric digital twin of an existing asset is a process that13

consists of the following steps: (1) capturing raw visual and spatial data in the14

form of RGB imagery and laser-scanned point clouds; (2) detecting geometric15

objects and geometric relationships of objects in the raw data. Step 1 of this16

process is significantly more automated than step 2 and requires much fewer17

labour hours [2]. The cost and effort needed to complete step 2 for most18

assets appear to counteract the perceived value of the resulting GDTs. Step19

2 can be broken down into the detection of large objects (such as ceilings,20

floors, walls) and small objects (such as fire extinguishers, smoke alarms) by21

their scale. Several recent methods have been proposed for the former ([3],22

[4], [5]), and have been validated to robustly automate this task. However,23

no method has yet been proposed for the latter. This is the challenge that24

this paper aims to focus on.25

Apart from those relatively large structural elements, small elements26

(such as fire alarms, emergency switches) should also be included in an en-27

riched building twin, these being helpful for facility managers. In the Repair28

and Maintenance (R&M) activities of a building, Mechanical, Electrical and29

Plumbing (MEP) costs usually constitute the largest share of total costs [6].30

Therefore, a building twin would be more valuable if it were to contain those31

elements that are frequently required in facility management processes. In32

addition, facility management involves more accurate data about the floor33

plans, space utilization, asset location, and technical plants [7]. Text infor-34
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mation such as room numbers and serial numbers (IDs) next to assets that35

can identify the corresponding assets (as shown in Figure 1) is very helpful,36

especially when managing large facilities. These IDs exactly represent the37

corresponding object instances in an asset and make the link between phys-38

ical assets and digital twins much clearer. Therefore, it is valuable to add39

the information to an enriched digital twin of buildings. Unfortunately, this40

work is currently mostly manual work.41

In summary, the great manual effort required to create an enriched digital42

twin is too costly when compared with the perceived value of the resulting43

model. For these reasons, there is a high demand for a higher degree of44

automation in the generation of an information-rich digital building twin.45

In this paper, the authors propose a novel framework to enrich a geometric46

building twin by fusing point cloud processing and object detection in images.47

The proposed method of information enrichment can be used to complete48

as-built models generated by other methods of creating geometric digital49

twins of structural elements. In particular, this paper presents the following50

contributions:51

a) Because the performance of detecting small-scale elements directly52

in point clouds is significantly lower than in images, unlike most previous53

methods that exclusively use point clouds as input, the approach presented54

here extracts semantic information from images by deep learning and then55

maps the extracted semantic information to laser-scanned point clouds.56

b) While most of the previous approaches only detect primary elements57

(like ceilings, walls, floors, windows and doors), our proposed method in-58

cludes small but highly relevant objects in the energy and the fire-safety59

4



sub-systems that are essential for maintaining and monitoring buildings (like60

smoke alarms, emergency switches);61

c) In order to create an information-rich building twin, other useful infor-62

mation (text and numbers) is detected in images by applying optical charac-63

ter recognition (OCR) technologies to detect object IDs and recognise object64

instances. Some examples are shown in Figure 1. The detected machine-65

encoded texts include the room number on the door sign, as well as numbers66

or text corresponding to the detected objects, which helps to identify the67

object instance in the physical asset.68

(a) Room number on the door
sign

(b) Serial number on the fire
switch

(c) Serial number next to the
smoke alarm

Figure 1: Text information in a building

The rest of this paper is organised as follows: research background in-69

cluding state of the art is reviewed in Section 2; the proposed pipeline is70

introduced in Section 3 in detail; experiments and implementation details71

are shown in Section 4; conclusions and future work are discussed in Section72

5.73
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2. Background74

In this paper, the authors aim to enrich a geometric digital building75

twin. Apart from structural objects such as ceilings, floors and walls, a76

rich building twin should also contain other small but important objects, for77

example objects from the energy and fire-safety sub-systems such as smoke78

alarms, emergency switches, etc. In our previous research [3], we have already79

reconstructed ceilings, floors, and walls of buildings by initially detecting the80

void space inside rooms. These structural elements do not fall within the81

scope of this paper. Compared to structural elements in a building, other82

components are usually small in size and have different geometry properties,83

which makes it hard to apply the same methods to detect those small-scale84

elements. Therefore, 2D information from images and 3D information from85

laser-scanned point clouds are connected and integrated into the proposed86

approach. We believe that this combination provides a significant advantage87

over using the laser-scanned point cloud alone, especially for detecting small-88

scale components in a building. In addition, text information, including serial89

numbers and IDs, can also be extracted from 2D images, and the detected90

information can be used to enrich the digital twin further.91

Recent research into small objects detection is discussed in Section 2.1. As92

object detection and text recognition in images are achieved by deep learning93

in our approach, recent research in both fields is introduced in Section 2.294

and 2.3 respectively. Finally, research gaps are summarised in Section 2.4.95
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2.1. Secondary object reconstruction in buildings96

With regard to elements located on wall surfaces, such as sockets and97

light switches, in [8], the authors designed a robot that can recognise doors,98

door handles, and sockets to achieve the door task and plugging task. The99

electrical outlet pattern is detected in camera images by feature detection,100

and a laser scanning sensor is used to find the pose of a wall. In [9], the101

authors detect light switches and sockets in orthographic 2D images by a102

random forest classifier. They use a feature descriptor pool to measure the103

probability of the detection. A method was designed in [10] that allows a104

mobile robot to get on/off an elevator in a multistory building. An algorithm105

is presented for recognising elevator buttons, where the input image is first106

converted to a binary image, and then the candidates of buttons and floor107

numbers are filtered out and ambiguous candidates are rejected by applying108

a neural network. While most of these methods are used to help robots109

recognise specific objects in the environment and perform a given task, little110

work has been done in the AEC domain. In [6], the authors proposed a111

method to detect objects such as switches, ducts and signs in a coloured point112

cloud. Depending on whether the objects have geometric discontinuities113

or colour discontinuities in the wall area, potential regions of interest are114

computed in depth images and colour images with regard to the wall plane,115

respectively. The region of interest is then matched to a predefined depth116

model database and a predefined colour model database that contain object117

classes in the scene.118

With regard to elements mounted on the ceiling such as lighting, in [11],119

the authors proposed a recognition method based on thermal-mapped point120
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clouds for building elements consisting of electrical systems and heating, ven-121

tilation, and air-conditioning (HVAC) components. Assuming the tempera-122

tures of these elements are different from other parts of the ceiling, the points123

of corresponding elements can be extracted from the point cloud. In [12], the124

authors used two steps to recognise objects in thermal-mapped point clouds:125

segmentation with thermal information and classification with geometric in-126

formation. The target objects are light fixtures on the ceilings, monitors on127

the wall and humans in the environment. In [13], the authors extract the ceil-128

ing plane first and then convert the laser-scanned point cloud to an image of129

the ceiling. Fluorescent lightings and circular low-energy bulbs are detected130

from the image by Harris corner detector and Hough transformation. In [14],131

a method to detect tunnel luminaires from the point cloud is proposed. In132

this approach, they use assumptions that are only valid in the tunnel, for133

example luminaires are located at higher points at the side of the tunnel and134

have brighter colour patterns than their surroundings.135

With regard to identifying pipes, in [15], the authors proposed a method136

to detect pipe spools in a cluttered point cloud. The method used cur-137

vature estimation, points clustering, and feature matching to extract pipe138

spool objects. In an office building, pipes are rarely visible because they139

are usually located inside the walls or behind suspended ceilings. In [16],140

the authors proposed a neural network to segment RGBD images into 13141

building component classes which include classes of small components such142

as duct, plumbing, conduit, etc. In [17], the authors used deep learning to143

detect and differentiate between different pipes in laser scanning point clouds144

of industrial facilities.145
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2.2. Object detection networks and transfer learning146

In computer vision, object detection refers to identifying an object and147

precisely estimating its location [18]. One of the most widely used algorithms148

in object detection is Region-based Convolutional Neural Network (RCNN)149

(RCNN) [19]. In RCNN, regions of interest are identified first and then150

classified by Convolutional Neural Network (CNN) to detect objects in the151

regions. Since original RCNN is relatively slow, some variants of RCNN have152

been proposed, like fast-RCNN [20], mask-RCNN [21].153

In the AEC domain, researchers have also applied and proposed different154

network architectures to achieve their research objectives, for example defect155

and damage detection ([22], [23], [24]), worker detection on construction sites156

([25], [26], [27]).157

A neural network can be trained from scratch on a specific dataset. How-158

ever, in order to achieve optimal results, it requires a large training set as well159

as substantial processing time [28]. Therefore, transfer learning [29] is pro-160

posed to overcome the problems and improve performance. Transfer learning161

is a process where a neural network is pre-trained on a related larger dataset162

and re-trained on a user-specific dataset. Currently, there are several large,163

publicly available datasets that are used to pre-train a neural network, such164

as ImageNet [30], which contains more than one million images for training,165

the Pascal VOC 2012 dataset that contains more than 20,000 images [31],166

the COCO dataset contains more than 300,000 images [32] with 2.5 million167

instances.168
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2.3. Text detection and recognition169

In a building, some elements contain texts and numbers that are also170

valuable for facility management, such as room numbers on a door sign. In171

large facilities, entities of some electrical elements (such as smoke alarms,172

emergency switches) usually have a unique serial number in order to clearly173

label entities and make facility management more efficient. It is also very174

helpful to attach this information to the objects in the building twin, recog-175

nising and identifying objects at an instance level. There are usually two176

steps to extracting the information from images: text detection and text177

recognition.178

With regard to text detection, neural networks that are used in object179

detection can also be used to detect text in an image, such as Mask-RCNN180

[21] because text area can also be considered a type of object. Researchers181

have also proposed neural networks that aim to detect text in an image, like182

[33], [34], [35], [36], [37]. These networks were proposed to detect arbitrary-183

shaped text in an image and can be trained on large, publicly available184

datasets like ImageNet [30].185

With regard to text recognition, some neural networks have been pro-186

posed to recognise regular and irregular text in an image, like [38], [39], [40],187

[41]. These networks can be trained on text image datasets, such as the Syn-188

thText dataset [42], which contains approximately 800 thousand synthetic189

scene-text images, the COCO-Text dataset [43] with more than 60 thousand190

real images and around 239 thousand annotated text instances.191

In the field of building reconstruction, only a few previous works deal with192

text detection and recognition, and these focus on CAD drawings. In [44],193
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the authors used Optical Character Recognition (OCR) technology to extract194

text information from CAD drawings and then added detected information195

to the as-is digital model of buildings. In [45], the authors applied OCR to196

extract the object information from the images of structural drawings (i.e.,197

grids, columns and beams) and generate Industry Foundation Class (IFC)198

models for buildings.199

2.4. Research gaps200

We summarise the research gaps in enriching a geometric digital twin of201

buildings as follows:202

a) Previous work focuses solely on structural elements and does not con-203

sider other smaller but still valuable objects in a building. While some re-204

searchers detect geometric and colour discontinuities to find specific classes of205

small objects in images, these approaches do not apply AI-based methods to206

enhance the performance of detection in point clouds. Moreover, most pre-207

vious work dealt with only some classes of objects, and there is still a lack of208

comprehensive object categories when creating a building twin. The reason209

is that, unlike structural elements, visible small object classes differentiate210

much in different facilities.211

b) Most previous work used only point clouds to achieve object detection212

and reconstruction. 3D deep learning networks for point cloud segmentation213

perform well for structural elements but much worse for smaller objects, as214

shown in Table 3. Because methods of object detection in 2D images are215

more mature and can provide better performance than those in 3D point216

clouds, there is a potential performance improvement when concatenating217

the information from various input sources. But there is still a lack of a218
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straightforward way to map information in images to point clouds.219

c) While text information like object IDs attached to corresponding ob-220

jects is also important in a rich building twin, none of the previous works221

considered adding text information, while such information can usually be222

extracted only in 2D images. There is still a lack of creating a comprehen-223

sive information-rich building twin which contains geometric and semantic224

information.225

3. Proposed solution226

3.1. Scope227

In our previous research [3], we already reconstructed structural elements,228

so that these do not fall within the scope of this paper. In this paper, we229

propose a novel approach that processes information from images as well as230

point clouds together. Our methods focus on 12 important and relatively231

small-scale elements (compared to walls, ceilings, floors) in buildings: light232

switch, emergency switch, light, smoke alarm, escape sign, speaker, fire ex-233

tinguisher, socket, pipe, board, door sign, elevator button, trash bin.234

3.2. Overview235

The overall process of the proposed method is illustrated in Figure 2. The236

inputs for our proposed method are point clouds acquired by laser scanners237

and videos or images captured in the same area of a building. It should238

be noticed that we also collect an annotated image dataset that contains239

the target objects. But these images are only used to train a deep learning240

model and are not required in the reconstruction pipeline. The outputs are241
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point clusters with labels and a mesh model for each element that is found.242

All points in one point cluster have an identical label. The overall goal is to243

create a comprehensive digital building model represented by mesh geometry244

and enriched with semantic information of the detected elements. To achieve245

this, we map information in 2D images onto a 3D laser-scanned point cloud.246

We start by detecting objects in images or videos by applying the transfer247

learning technique. The next step is to construct a photogrammetric point248

cloud and align this point cloud to the laser-scanned point cloud. Subse-249

quently, the semantic information from 2D images or videos is projected250

onto the 3D point cloud. After finding a best-fitting label for each point, we251

obtain the output point clusters of different objects. In the final step, we fit252

a pre-defined mesh model to each found instance.253

3.3. Object detection in image254

In this step, we aim to detect the 12 element classes listed in Section 3.1255

from images or videos. Recently, Deep Neural Networks (DNN) [46], espe-256

cially the introduction of RCNN [19], have proven effective in object detection257

in 2D images [47]. But we still need to prepare our own dataset because those258

publicly available datasets, like Imagenet [30], one of the largest online avail-259

able image datasets, does not contain all of the categories we need. Even260

if some of the target categories are present in Imagenet, such as fire alarms261

and fire extinguishers, there are no labelled instances available. Therefore,262

we cannot detect the target objects in images or videos that were captured263

in buildings by publicly available pre-trained models because these models264

are trained on a dataset lacking the categories we require. The available265

networks must be re-trained for our application domain. In the conducted266
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Figure 2: The overall procedure of the proposed method

research, we prepared our own dataset by manually labelling images that we267

captured in public buildings, more precisely office buildings on the inner-city268
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campus of the Technical University of Munich (TUM).269

In practice, there is no required minimum number of images when training270

a neural network. In Imagenet [30], categories like fire/smoke alarm and fire271

bell contain hundreds of labelled images. If we follow the similar setup that272

each category has hundreds of images, thousands of images are required for273

a dataset with 12 classes, which leads to a huge amount of labelling work.274

Considering the vast human effort to label these images manually, we decided275

to use transfer learning techniques. As its name implies, transfer learning276

[29] means using the knowledge learned previously to solve new, but related277

problems. When starting with a pre-trained model that has already been278

trained on thousands of images, we do not need as many images as if we279

were training a network from scratch because the model has already ”seen”280

and ”learnt” from lots of images.281

Object detection in images results in finding a bounding box for a detected282

instance. Obviously, some regions within the bounding box do not belong to283

this instance, especially when the object is not a rectangle or inclined in the284

image. Since we want to map semantic information obtained in 2D images285

to the 3D point cloud in further steps, we need to reduce this kind of error286

here and apply image segmentation instead of instance detection. To this287

end, we use a variant of CNN called Mask RCNN [21] that detects objects288

in images by generating a mask for each instance. By doing so, we can find289

a more precise contour of the object instance than the mere bounding box.290

Some results of image segmentation and bounding box prediction of various291

objects are illustrated in Figure 3.292
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Figure 3: The object detection result by image segmentation mask and bounding box

3.4. Creating a photogrammetric point cloud293

In [48], the authors used the photogrammetric point cloud to connect294

images and Building Information Modeling (BIM) models. Similarly, in our295
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proposed approach, the photogrammetric point cloud acts as the bridge that296

connects 2D information in images with 3D information in the laser-scanned297

point cloud. In the photogrammetric process, the extrinsic and intrinsic298

camera parameter matrices of pictures are estimated. Images or videos are299

supposed to be taken from different viewpoints within the area and cover as300

much information as possible. In our approach, we apply COLMAP [49] [50],301

an open-source Structure-from-Motion (SfM) and Multi-View Stereo (MVS)302

software, to reconstruct photogrammetric point clouds. The input of SfM is303

a set of overlapping images taken from different viewpoints. It starts with304

feature detection and extraction, continues with feature matching and geo-305

metric verification, and then reconstructs the object in 3D space, including306

the reconstructed intrinsic and extrinsic camera parameters of all images.307

MVS takes the output of SfM to compute depth and normal information for308

pixels in all images and creates a dense point cloud of the scene.309

The estimated camera poses (position and orientation) of each image310

and the reconstructed sparse photogrammetric point cloud are illustrated in311

Figure 4. As we can see, the edges are reconstructed quite well, while plane312

faces of elements like walls, ceilings, and floors are missing. This is because313

almost no features can be detected and extracted on these weakly textured314

surfaces, like a planar white wall, in the SfM process. However, these weakly315

textured surfaces can be captured quite well by laser scanners. This is one of316

the reasons why we propose the use of both laser-scanned point clouds and317

images to create sufficiently detailed and complete digital twins. In this way,318

we can acquire all of the required information by using both techniques to319

capture buildings.320
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(a) Camera poses in sparse model (b) Reconstructed dense dense point cloud

Figure 4: An example of estimated camera poses and the reconstructed point cloud

3.5. Point clouds alignment321

Laser scanners measure the distance by transmitting light and sensing322

the return from objects [51] so that laser-scanned point clouds represent the323

actual scale of the environment. In contrast, photogrammetric point clouds324

extract information from 2D images – they do not represent the actual scale325

in world units unless additional information is considered, such as the size of326

an object. To perform the necessary registration of the two point clouds, we327

align the photogrammetric point cloud with the laser-scanned point cloud so328

that the photogrammetric point cloud also represents the environment in its329

actual size.330

The photogrammetric point cloud is transformed to the coordinate of

laser-scanned point cloud by

Q = MP, (1)

where P denotes the point set of the photogrammetric point cloud, Q de-331

notes the point set of the photogrammetric point cloud transformed to the332

coordinate of the laser-scanned point cloud, M denotes the transformation333

matrix that transforms points from the coordinate of the photogrammetric334
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point cloud to the coordinate of the laser-scanned point cloud.335

4 × 4 transformation matrices are widely used to represent non-linear

transformations in 3D space. In our approach, we use two steps to determine

the 4 × 4 transformation matrix: the rough alignment step and the refine-

ment step. In the rough alignment step, we use 4 pairs of points from the

photogrammetric point cloud and laser-scanned point cloud to compute the

roughly estimated transformation matrix from photogrammetric point cloud

coordinate to laser-scanned point cloud coordinate, denoted by M1. In this

step, we only need to select points roughly and get a rough alignment result.

These point pairs can be chosen at random, and could be any key points in

point clouds, such as room and door corners, the centre of an object, etc.

After rough alignment, we use the Iterative Closest Point (ICP) algorithm

[52], to refine the alignment and obtain the refinement transformation matrix

M2. The overall transformation matrix M can be computed by

M = M2M1. (2)

The photogrammetric point cloud can then be transformed to the coordinates336

of the laser-scanned point cloud by applying Equation 1. This alignment337

process is illustrated in Figure 5. When comparing the marked area in Figure338

5c with that in Figure 5d, it is clear that the refinement step improves the339

alignment result.340

3.6. Find visible laser scanning points in each image341

In this step, we determine whether a point from the laser-scanned point342

cloud is visible in each image that is used to reconstruct the photogrammetric343
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(a) Four picked points in laser-scanned point cloud
(b) Four picked points in photogrammetric point
cloud

(c) Rough alignment result (Photogrammetric point
cloud is set to red color)

(d) Refined alignment result (Photogrammetric
point cloud is set to red color)

Figure 5: The alignment process of photogrammetric and laser-scanned point cloud

point cloud. Because the photogrammetric point cloud and the laser-scanned344

point cloud are aligned already, the estimated parameters (extrinsic and in-345

trinsic camera parameters) from the reconstruction process are also mapped346

into 3D space. The extrinsic camera matrix and intrinsic parameter matrix347

are known for each image or frame of a video. Based on the matrices, we348

can find which points are visible at each camera position and captured in the349

corresponding image.350

As the transformation matrix that transforms points from a photogram-

metric point cloud coordinate to a laser-scanned point cloud coordinate is

M, any point p =
[
x0, y0, z0

]T
in the original laser-scanned point cloud S
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can be transformed to the coordinate of the photogrammetric point cloud by
x1

y1

z1

d1

 = M−1


x0

y0

z0

1

 , (3)

where
[
x0, y0, z0, 1

]T
is the homogeneous coordinates of this point p, M−1 is

the inverse matrix of M, and
[
x1, y1, z1, d1

]T
is the new calculated homoge-

neous coordinates of the point in the coordinate of photogrammetric point

cloud. Normalization is then applied by dividing each vector component by

d1, 
x2

y2

z2

1

 =
1

d1


x1

y1

z1

d1

 , (4)

where
[
x2, y2, z2, 1

]T
is the normalized homogeneous coordinate vector of351

point p in the coordinate of photogrammetric point cloud.352

The next step is to transform every point from the coordinate of the

photogrammetric point cloud to the camera coordinate of the image. In this

paper, we use N to denote the whole image set that is used to reconstruct

the photogrammetric point cloud, ni to denote the ith image in the image set

N. For one single image ni, M
i
ext and Mi

int denote the corresponding camera

extrinsic and intrinsic parameter matrices. The extrinsic parameter matrix
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can be defined as

Mi
ext =

 Ri Ti

0 0 0 1

 , (5)

where Ri is the 3 × 3 rotation matrix Ri =


ri11 ri12 ri13

ri21 ri22 ri23

ri31 ri32 ri33

, and Ti is the353

3× 1 translation matrix Ti =


ti1

ti2

ti3

 of the image ni.354

The intrinsic parameter matrix can be represented by

Mi
int =


fx s cx

0 fy cy

0 0 1

 , (6)

where fx and fy are the effective focal length of the camera measured in

units of image pixels in the horizontal and vertical directions, cx and cy are

the pixel coordinates of the principal point. Additionally, s denotes the skew

coefficient for the camera. This is zero if the image axis is perpendicular to

the image plane. It should be noticed that no distortion is assumed here. 3D

points can be then transformed in camera coordinates by
x3

y3

z3

1

 = Mi
out


x2

y2

z2

1

 =


ri11 ri12 ri13 ti1

ri21 ri22 ri23 ti2

ri31 ri32 ri33 ti3

0 0 0 1




x2

y2

z2

1

 (7)
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and subsequently transformed to the image plane by computing
x4

y4

z4

 = Mi
int =


fx s cx

0 fy cy

0 0 1



x3

y3

z3

 , (8)

where x3, y3, z3 are coordinates in the camera coordinate, and x4, y4, z4 are

the perspective projected coordinates on the image coordinate. By homo-

geneous coordinate normalisation, we obtain the image coordinates of the

projected point in the image plane:
u

v

1

 =
1

z4


x4

y4

z4

 , (9)

where u and v are the pixel coordinates in the horizontal and vertical direction355

in the image plane.356

By using the Equations 3 to 9, all points in the original laser-scanned point

cloud can be projected into the image plane. However, there are points in the

cloud that are not in the field of view of the given camera pose and intrinsic

parameters. Assuming the dimension of the image in pixels is W × H, if a

point (x0, y0, z0) in the original laser-scanned point cloud and its projected

point in the image plane (u, v) can be seen in the image, the point should

follow these conditions:

0 ≤ u ≤ W, 0 ≤ v ≤ H. (10)
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(a) An image captured in an area of a hallway (b) The same area in the laser-scanned point cloud

(c) Transform the point cloud to the camera frame
(camera at the origin)

(d) Visible points from laser-scanned point cloud
at the camera pose

Figure 6: The process of finding visible points in an image (ceiling points in the point
cloud are removed for better visualisation)

The process of checking the visibility of laser-scanned points for one image357

is illustrated in Figure 6. As we can see in subfigure (d), the visible area358

shown in the laser-scanned point cloud is identical to the image scene.359

Up to this step, the visibility of a point is only determined by the camera360

parameters. That means that as long as the points fulfil Condition 10, they361

are considered visible points, which makes the camera see ”through” the wall.362

As shown in Figure 7, it is obvious that some points should not be visible,363

like points behind the surface of the wall.364

We use the raycasting method [53] to remove those points that should not365
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Figure 7: Top view of visible points at camera position in Figure 6. Points behind the
wall (within the red dash line) are actually not visible from the camera pose.

be seen at the current camera position. However, rays might pass through366

the point cloud without intersecting any points because point clouds are367

actually discrete points in 3D space. Therefore, point clouds are usually368

voxelised before raycasting [54]. Figure 8 shows how raycasting works in a369

voxelised point cloud. Rays shoot from the camera position to each point in370

the point cloud. While a dark blue voxel means there are points within the371
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voxel, a light blue voxel indicates no points in the voxel. If a ray starting372

from the camera does not pass through any other dark blue voxels, its target373

point is visible at the camera position. In contrast, if a ray passes through at374

least one other dark voxel before reaching the target point, this target point375

is occluded by other voxels in between.376

Figure 8: Raycasting method in a voxelized point cloud. There are points in dark blue
voxels but no points in light blue voxels. Rays of dotted lines starting from the camera
intersect other dark blue voxels before reaching the target voxel. These target voxels are
occluded by the voxels between the camera and themselves.

The remaining visible points after applying the raycasting method to the377

point cloud are shown in Figure 9. In the raycasting process, the voxel size378

has an enormous impact on performance. A further discussion on finding the379

best voxel size is presented in Section 4.3.380
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Figure 9: Apply raycasting to the visible points at the camera position

3.7. Map 2D semantic information to a 3D space381

In this step, the semantic information detected from 2D images or videos382

in Section 3.3 is mapped to the 3D space. We use Mask-RCNN [21] to detect383

objects in images, and the result for each detected instance (like a board,384

a smoke alarm, etc.) is a mask. The mask is a matrix that is exactly the385

same size as the input image, but has only two values, 0 and 1. While pixels386

with a value of 0 are background, pixels with a value of 1 are where the387

detected instance is located in the image. As shown in Figure 10c, 10e, and388

10g, when a mask is applied to an image, only the image area that belongs389

to the detected area can be seen.390

In the previous step, all visible points (x0, y0, z0) in 3D space are already391

transformed to 2D coordinates (u, v) in the image plane. At this step, we392

check that every point in the image plane is in the predicted segmentation393

mask or the background area. Points located in the instance mask of three394

categories are shown in Figure 10c, 10e, and 10g for example.395

Because we use images/videos to reconstruct the photogrammetric point396

cloud, many images have overlapping areas. In order to record semantic infor-397
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(a) Image segmentation result (b) Visible points for the camera

(c) A detected board instance (d) The board points in 3D

(e) A door sign in image (f) The door sign points in 3D

(g) A light switch in image (h) The light switch in 3D

Figure 10: Image segmentation masks and corresponding points in 3D of different in-
stances

mation from all images, an M ×N matrix L is used to accumulate predicted398

information from all images, where M denotes the number of categories and399

N denotes the number of points in the laser-scanned point cloud. If the kth400
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point’s projection in the image plane is within a mask of category j, the401

term Lj,k in the matrix L would be increased by 1, where 1 ≤ j ≤ M and402

1 ≤ j ≤ L.403

One point in the laser-scanned point cloud is usually visible in multi-404

ple images, and the predicted labels from these images might be different.405

Therefore, it is necessary to retain all information and find the best-fitting406

label prediction for each point in later steps. The pseudocode of the method407

proposed in Section 3.5 to 3.7 is shown in Algorithm 1.408
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Algorithm 1 The mapping algorithm from 2D to 3D.

Input:
One point sk ∈ S, laser-scanned point cloud set S;
Image set used to reconstruct the photogrammetric point cloud N;
For image ni ∈ N, camera extrinsic and intrinsic parameter matrices Mi

ext

and Mi
int;

Predicted segmentation mask mi
j ∈ Ki for image ni, category j, Ki denotes

all predicted masks for image ni;
Transformation matrix from photogrammetric point cloud to laser-scanned
point cloud M;
Function to check whether a point is visible at a camera position α();
Function to check whether a point belongs to a mask β();
Initialize:
Matrix used to count labels for all points in point cloud L← O;
Algorithm:
for sk ∈ S do

Point in the coordinate of photogrammetric point cloud pk = M−1×sk
for ni ∈ N do

Point in image plane ck = Mi
int ×Mi

ext × pk

if α(ck) is FALSE then
continue

end if
for mi

j ∈ Ki do
if β(ck) is TRUE then

count label j for point k once, Lj,k = Lj,k + 1
end if

end for
end for

end for
return L

3.8. Find best-fitting labels for all points409

As described in the previous section, we need to find a best-fitting label410

for each point in 3D from the M ×N label matrix L.411

Two values are used to determine the best label for each point. For
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one point pi in the laser-scanned point cloud, Ni is the number of images

where the point can be seen, Lj,i is the number of images where the point

is within the predicted mask of category j. But it should be noted that Ni

is not equal to the sum of N j
i for all categories because a point could also

be located in the ”background” area instead of the mask area. Basically, a

point in the 3D point cloud would be assigned to the label with the maximum

occurrence from different images when it is predicted diversely in different

images. Furthermore, we use two values to represent how certain the label

assigned to the ith point pi is:

Ui = max
1≤j≤M

Lj,i/Ni, (11)

Vi = max
1≤j≤M

Lj,i/
M∑
j=1

Lj,i. (12)

Because the pixels at the border of the predicted mask area can proba-412

bly be mapped to an object’s surrounding points that do not belong to the413

object (for example, some points on the ceiling are predicted as points of a414

smoke alarm), these wrongly predicted points need to be removed. Unlike415

the points of an object, these neighbouring points do not appear in all im-416

ages of the object. Moreover, some of them may only appear in one image,417

but are predicted as object points. Therefore, it is not enough to rely solely418

on prediction accuracy from all images. The value Ui is used to filter the419

surrounding points out and we illustrate how it works in Figure 11.420

Figure 11a is a part of the point cloud that shows the ceiling and three421

kinds of objects (lighting, speaker, smoke alarm) mounted to it from the422
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(a) Bottom view of a ceiling and mounted objects
(red box: lighting, yellow box: speaker, green box:
smoke alarm).

(b) Mapping prediction to point cloud and distri-
bution of Ui

Figure 11: The distribution of Ui for a part of the point cloud of a ceiling

bottom view. Figure 11b shows the distribution of Ui. Many points on the423

ceiling are predicted as a point of the object because the prediction is mapped424

from 2D images that are taken from different views.425

Most of the surrounding points (ceiling points) are distributed in the426

low-value range of Ui. Figure 12a and Figure 12b show the points left after427

filtering out those points with the criteria Ui > 0.5 and Ui > 0.7. Objects’428

points can be extracted from their neighbouring points on the ceiling.429

Unlike Ui, which aims to remove surrounding points of an object, Vi is430

used to show how certain we are when assigning a class label with a point.431
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(a) Remaining point cloud after filtering Ui > 0.5 (b) Remaining point cloud after filtering Ui > 0.7

Figure 12: The remaining point cloud by filtering out ceiling points

Figure 13a shows the distribution of how certain we are when assigning the432

label that occurs mostly as the class of the point for the same area. In this433

case, it is quite certain that the assigned labels are correct as most points are434

located in the range close to 1. Figure 13a shows points in different colours435

according to their assigned labels.436

3.9. Fit shape to each point cluster437

In this step, we fit a geometric shape to each extracted point cluster.438

Different object types are reconstructed by varying strategies.439

For small objects mounted on the ceiling and wall (like smoke alarms,440

sockets, switches), the extracted point clusters from the previous section are441

projected on the plane of the ceiling or wall. By then fitting simple geometric442
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(a) The distribution of Vi (assigning the corre-
sponding label in Vi to the point)

(b) Points of different classes (red: light, blue:
speaker, green: smoke alarm)

Figure 13: The distribution of Vi and the extracted points of different classes

shapes (like circles and rectangles) in the wall or ceiling plane, the location443

and size in the 2D plane can be found. The reason we choose to fit geometric444

shapes in 2D planes rather than in 3D point clouds is: a) Some surfaces of445

the elements might not be captured when capturing buildings with a laser446

scanner. It is hard to fit geometric shapes in the 3D point cloud directly,447

especially for small elements (like smoke alarms) that lack points on their448

surface. b) Some elements are commonly standardised elements (sockets,449

light switches, smoke alarms) whose instances are identical across the entire450

facility. Fitting shapes in the 2D plane can also reduce the computing cost.451

The random sample consensus (RANSAC) algorithm [55] is used to fit452

circles for cylindrical objects (such as a light, speaker, smoke alarm) and453

rectangles for ”cuboid-like” objects (socket, switch, door sign, board, elevator454

button). We then extrude the 2D shapes from the wall or ceiling plane by455

default thickness (if available) or estimate the thickness of the object in the456
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3D point cluster by finding the maximum distance to the plane. The fitting457

circles of three classes of objects (light, speaker, smoke alarm) on the ceiling458

plane are shown in Figure 14 and corresponding extruded cylinders are shown459

in Figure 15 by way of example.460

(a) Bottom view of part of ceiling (Red box:
lighting, yellow box: speaker, green box: smoke
alarm)

(b) Fitting result on ceiling plane (red: lighting,
yellow: speaker, green: smoke alarm)

Figure 14: Bottom view of part of a ceiling and fitting result

With regard to pipes and fire extinguishers that are usually cylindrical,461

RANSAC is used to fit a cylinder to the point cluster and find its dimension462

and position. The extracted cylinder of a fire extinguisher is illustrated463

in Figure, 16 for example. As shown in Figure 16c, only one cylinder is464

reconstructed in this step, based on the major part of the fire extinguisher465

body. A more detailed structure of the fire extinguisher body and hose pipe466

would be ignored.467
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(a) Part of a ceiling in 3D space

(b) The fitting result in 3D space (red: lighting, yellow: speaker, green: smoke alarm)

Figure 15: Part of a ceiling and the fitting result in 3D space

(a) A fire extinguisher in point
cloud

(b) Point cluster of the fire ex-
tinguisher (c) Fit a cylinder to the cluster

Figure 16: Part of wall and the fitting result in 3D space

3.10. Text detection and recognition468

In this step, text information attached to objects is extracted from images.469

As shown in Figure 1, text information for facility management is available470

on or next to dedicated objects in a building, like the room number on a471
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door sign (shown in Figure 1a), the serial number on an emergency switch472

(shown in Figure 1b), the serial number next to a smoke alarm (shown in473

Figure 1c). Apart from detecting and recognising texts, the aim of this step474

is also to link the detected information to the corresponding objects.475

With regard to text detection, text can be located in the object area as476

well as next to the object (like numbers next to the smoke alarm in Figure 1).477

No valid result could be found for the second case if detecting text only within478

the object area. In order to solve this problem, we enlarge the predicted479

object area by increasing its width and length by 50%, assuming related texts480

to the object are within the enlarged region. The text detection network481

model with differentiable binarization [36], pre-trained on [42], is applied482

within the enlarged area and outputs the corresponding text bounding boxes.483

With regard to text recognition, the text recognition network model for484

irregular text [56] is applied to detected text bounding boxes. The recognised485

text is the information related to the corresponding object that contains or486

is close to the text area. The text detection and recognition result of a door487

sign and an emergency switch is illustrated in Figure 17. Most texts can488

be recognised correctly, especially those numbers that are very useful for489

building management.490

Although the network we used is designed and trained to work with491

multi-oriented texts, the recognition result would suffer if texts were not492

horizontally-oriented. Non-horizontally-oriented texts usually occur in the493

images of the ceiling because it is hard to make sure the texts in all images494

are horizontally-oriented when holding a camera to collect images. In order to495

solve this problem, we inserted an intermediate step between text detection496

37



(a) Text detection result on door sign (b) Text recognition result on door sign

(c) Text detection result on emergency
switch

(d) Text recognition result on emergency
switch

Figure 17: Text detection and recognition result

and text recognition. In this step, the detected text bounding box would be497

rotated to the position where its longer side is horizontal by assuming texts498

are oriented along the longer side. Two angles (clockwise and counterclock-499

wise) can rotate the bounding box to the horizontal position and produce500

two new bounding boxes. One of the angles would flip the text. The two501

new bounding boxes are then the input for the text recognition step. The502
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flipped texts can be discarded by the lower prediction score, and the results503

are shown in Section 4.2.3.504

In summary, the input to the proposed processing pipeline are images/videos505

and point clouds. Point clusters with semantic information are created by506

mapping semantic information detected by deep learning to the 3D point507

cloud. The 3D mesh model is reconstructed by fitting geometric shapes to508

point clusters and then enriched by useful information that is valuable for509

maintaining the building by detecting and recognising text information on510

or close to objects.511

4. Implementation and result512

4.1. Implementation513

The proposed processing pipeline is implemented in a software prototype514

written in C++ and Python and is tested in the point cloud collected in the515

Chair of Computational Modeling and Simulation at the Technical University516

of Munich (TUM) with the help of NAVVIS (www.navvis.com). The anno-517

tated dataset used for transfer learning contains more than 1000 instances,518

including 120 boards, 124 door signs, 34 elevator buttons, 52 emergency519

switches, 34 fire extinguishers, 30 escape signs, 357 lights, 94 light switches,520

45 pipes, 137 smoke alarms, 123 sockets, and 91 speakers. These images are521

taken in different areas of the buildings in the city centre campus at TUM.522

In point cloud processing, the PCL library [57] is used to implement the523

proposed algorithm. Object detection in images is done with Detectron2 [58].524

In our experiment, we use the pre-trained Mask-RCNN model [21] provided525

by Facebook [58] that has been trained on the COCO dataset (more than526
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Technology Language and library used automatic
or manual

Object detection in image by
Transfer learning (Section 3.3)

Python, Detectron2 [58] automatic

Creating photogrammetric
point clouds (Section 3.4)

Python, COLMAP [49] [50] automatic

Point clouds alignment (Sec-
tion 3.5)

None manual

Extract visible points (Section
3.6)

C++, PCL library [57] automatic

Map 2D information to 3D
space (Section 3.7)

C++ automatic

Find best-fitting labels (Sec-
tion 3.8)

C++ automatic

Fit shape to point clusters
(Section 3.9)

C++, PCL library [57] automatic

Text detection and recognition
(Section 3.10)

Python, MMOCR [59] automatic

Table 1: Implementation details of each step

100k images) [32] and retrained on our annotated dataset. The photogram-527

metric point cloud is created by using COLMAP [49] [50]; text detection528

and recognition are implemented by means of the MMOCR tool [59]. The529

detailed implementation information, including the used technologies and530

frameworks, is listed in Table 1.531

4.2. Results532

In this section, we present the results of our experiments from three as-533

pects, point cloud segmentation result, reconstruction result and, text recog-534

nition result. We use the mean Intersection over Union (mIoU), one of the535

common used evaluation metrics for semantic segmentation, to evaluate the536

performance of all 12 classes of small objects. Then we show the qualitative537
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Method mIoU
PointNet [62] 47.6
SPG [63] 62.1
DGCNN [64] 56.1
RSNet [65] 56.5
PointCNN [66] 65.4
KPConv [61] 69.6
Point transformer [67] 73.5

Table 2: Segmentation mIoUs on S3DIS dataset (evaluated with 6-fold cross-validation)

result of the reconstructed model and evaluate the quantitative results of538

three classes (smoke alarm, light, speaker) in the facility. At last, we com-539

pare the text recognition result with and without the method proposed of540

rotating text boxes in Section 3.10.541

4.2.1. Point cloud segmentation result542

In our proposed pipeline, 2D semantic information detected from images543

is mapped to a 3D point cloud to identify the respective point clusters. The544

result is in the same format as that of point cloud segmentation of 3D deep545

learning. We compared the segmentation results of our proposed approach546

with those of 3D deep learning. In this regard, the S3DIS dataset [60] con-547

tains the point cloud of the indoor environment that is similar to the point548

cloud captured on the TUM campus. As shown in Table 2, KPConv [61]549

is one of the best-performing network architectures with the mIoU around550

70%.551

We choose KPConv for the experiments with the annotated laser-scanned552

point clouds captured at TUM and consider these are the reference values553

for further comparisons. We trained our model with two different downsam-554
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Model wall ceiling floor smoke
alarm

light

KPConv (3cm) 89.0 96.5 97.6 29.1 69.4
KPConv (5cm) 88.2 96.2 97.8 18.6 65.2

Table 3: Segmentation mIoUs of related classes in our point cloud

pling sizes: 3cm and 5cm. As shown in Table 3, it is plain to see that the555

performance for large objects (wall, ceiling, floor) is much better than that556

for smaller objects. This result is consistent with that of the S3DIS dataset557

[60]. For a small object like a smoke alarm in particular, the performance is558

quite low, which means the current state-of-the-art network is not suitable559

for segmenting small objects. There are two possible explanations: a) the in-560

put point cloud resolution is too low for neural networks to understand small561

objects; b) small objects have much fewer points compared to larger ones562

(like a ceiling, floor, and wall), and the unequal class distribution means this563

has to be compensated during training, which could sacrifice the performance564

of some classes.565

The performance of our proposed approach for different classes is shown566

in Table 4. As we can see, compared with the state-of-the-art network that567

only uses point clouds as input, our approach with additional image input568

provides a significant improvement in the common classes which are available569

in the image as well as the point cloud (smoke alarm from 29.1% to 48.6%,570

light from 69.4% to 79.9%).571

4.2.2. Reconstruction result572

One example of the information-rich digital twin that is created by ap-573

plying our processing pipeline is illustrated in Figure 18. The digital twin is574
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68.0 67.0 80.8 62.2 85.7 70.1 79.9 47.6 39.1 48.6 61.1 64.5

Table 4: Segmentation mIoUs of small objects in our point cloud

a comprehensive model which includes geometric information (reconstructed575

3D geometric models), semantic information (point clusters of object in-576

stances with labels and useful text information).577

In Table 5, 6 and 7 we compare the dimension result for some objects in578

three categories from one area against the corresponding manually created579

model from the laser-scanned point cloud. As most of the absolute deviations580

of the radius are less than 0.01m, the performance is quite good, given the581

resolution of the point cloud we used is 0.005m. The relative deviations of582

smoke alarm diameters are relatively larger than those of the other two classes583

because the smoke alarms are smaller, which means an absolute deviation in584

a similar range results in a larger relative deviation value.585

4.2.3. Text recognition result586

In our experiments, the text recognition network model [56] works well if587

the text in an image is horizontally oriented and performs worse if the text588

is not horizontal. The comparison of recognition results for texts attached589

to two objects is shown in Figure 19.590

In order to improve the recognition result, we introduce a method of591

rotating the detected bounding boxes in Section 3.10. The corresponding592

43



No. radius ground truth deviation
(abs.)

deviation
(rel.% )

1 0.116 0.110 0.006 5.5
2 0.110 0.110 0 0
3 0.118 0.110 0.008 7.3
4 0.110 0.110 0 0
5 0.118 0.110 0.008 7.3
6 0.121 0.110 0.011 10.0
7 0.116 0.110 0.006 5.5
8 0.117 0.110 0.007 6.4
9 0.118 0.110 0.008 7.3
10 0.117 0.110 0.007 6.4
11 0.121 0.110 0.011 10.0
12 0.113 0.110 0.003 2.7

Table 5: Light radius comparison between model created from our approach and manually
created model: (m)

No. radius ground truth deviation
(abs.)

deviation
(rel.% )

1 0.072 0.070 0.002 2.9
2 0.063 0.070 0.007 10.0
3 0.068 0.070 0.002 2.9
4 0.073 0.070 0.003 4.3

Table 6: Speaker radius comparison between model created from our approach and
manually created model: (m)

No. radius ground truth deviation
(abs.)

deviation
(rel.% )

1 0.030 0.035 0.005 14.3
2 0.032 0.035 0.003 8.6
3 0.025 0.035 0.010 28.6
4 0.028 0.035 0.007 20.0
5 0.027 0.035 0.008 22.9

Table 7: Smoke alarm radius comparison between model created from our approach and
manually created model: (m)
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(a) Input point cloud (ceiling removed for visualisation)

(b) The created information-rich building twin

Figure 18: Input point cloud and the created elements of the building twin

result is shown in Figure 20, for example.593

In order to discard the prediction of flipped texts, prediction scores are594

checked. The recognised texts and corresponding prediction score of four595
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 19: Comparison of recognition results between non- and horizontally-oriented
text

(a) Two images of the same ob-
ject

(b) Counterclockwise rotation
to the horizontal position

(c) Clockwise rotation to the
horizontal position

Figure 20: Rotating the detected box to a horizontal position
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Image Nr. Text Score
1 501529/01 0.99995
2 LO/SEZSLOS 0.78154
3 501529/01 0.99824
4 LO/62SLOS 0.84252

Table 8: Recognised text and prediction score

horizontal bounding boxes in Figure 20 are listed in the Table 8. It is plain596

to see that two prediction scores (Nr.2 and Nr.4) are significantly lower than597

the other two (Nr.1 and Nr.3), which means the level of certainty is lower.598

And this lower prediction score comes from the flipped text. Therefore, it is599

very easy to identify the correct direction of text by analysing the prediction600

score. The texts from high score predictions are then chosen as the extracted601

text information if these predictions provide identical results (as in Table602

8, where they both predict ”501529/01”). If high score predictions are in603

conflict with each other, which usually happens when multiple images for the604

same object are available, all predicted texts are stored with their prediction605

scores. So the final decision is left up to the human user.606

4.3. Parameter study607

In Section 3.6, we use the ray-casting method to remove points that should608

not be visible at the given camera position. The aim of ray-casting is to make609

points visible in the real world that can also be seen in the point cloud. At610

the same time, it should not ”look through” the wall either, seeing points611

that should be occluded. Therefore, the voxel size in Figure 8 is essential.612

Figure 21 shows a comparison of four different voxel size: 2mm, 5mm,613

1cm, 2cm. As we can see, rays can still go through the wall with a resolution614
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of 2mm and 5mm, which makes the scene behind the wall visible. With a615

resolution of 2cm, the handrail and its fence cause too much occlusion, mak-616

ing a relatively large part of the wall that should not be occluded invisible.617

In this case, the voxel size of 1cm provides the best result. Moreover, the test618

point cloud resolution is also 1cm in Figure 21. This is not a coincidence,619

because a 1cm resolution point cloud means the distance between neighbour-620

ing points is around 1cm. Therefore, it is appropriate that the voxel size621

chosen for ray-casting is the same as the resolution of a point cloud, so that622

rays do not pass through a surface and at the same time avoid unnecessary623

occlusions.624

(a) 2mm voxel size (b) 5mm voxel size

(c) 1cm voxel size (d) 2cm voxel size

Figure 21: Ray-casting result with different voxel sizes
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4.4. Discussion625

As shown in Section 4.2, the proposed pipeline provides convincing re-626

sults in creating geometric digital twins of buildings from laser-scanned point627

clouds and images. Meanwhile, the method could be applied to other facili-628

ties if the environment is captured by a laser scanner and a camera. However,629

it should be noted that the photogrammetric process only works if a sufficient630

amount of images were taken differently from different viewpoints. It is hard631

to say a minimum required number of images for the photogrammetric pro-632

cess because it depends on different aspects, such as the facility size, number633

of objects, the camera lens, etc. But according to the authors’ experience,634

more images from various viewpoints usually improves the reconstruction635

result.636

In addition, we also test the photogrammetric process with images and637

frames extracted from videos. In our experiment, photogrammetric point638

clouds created by video frames are usually noisier than those from camera639

images. Furthermore, a camera with a higher resolution and larger field of640

view can also contribute to a higher-quality point cloud, which usually re-641

quires a longer computation time. As the photogrammetric process is only642

used to register images to laser-scanned point clouds, the strategies of in-643

creasing the quality of photogrammetric point clouds and reducing the cost644

are not in the scope of this paper.645

If the photogrammetric process in the pipeline fails, all the other parts646

can proceed as the same. But an alternative way to provide a camera’s647

intrinsic and extrinsic parameters should be included, for example, using the648

referenced images taken by modern laser scanners that have cameras during649
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data capturing, manually recording camera poses and calibrating parameters.650

Furthermore, there are still other limitations to our methods. Firstly, the651

object detection step can provide good results for standard objects like fire652

extinguishers, smoke alarms, etc. But it performs worse with objects that653

vary greatly in different environments, such as lights on the ceiling. More654

training pictures are required to solve this problem. Secondly, although we655

have already enlarged the number of reconstructed categories in the indoor656

environment, many other objects are still missing, such as desks, bookshelf,657

etc. These elements are also valuable in an information-rich building twin.658

5. Conclusion659

In conclusion, we propose a novel pipeline to enrich the geometric digital660

twin of buildings with small objects along with useful text information. It can661

be used to enrich and complete as-built models generated by other methods662

of creating digital twins. The contributions of the paper are as follows:663

a) Unlike most previous work that used only laser scanning or photogram-664

metric technologies, we fuse both to enhance information input. Semantic665

information detected by deep learning in image recognition is mapped into a666

3D point cloud to obtain point clusters of different classes;667

b) We put emphasis on the object classes in building twins that repre-668

sent electrical elements (light switch, light, speaker, socket, elevator button),669

safety elements (emergency switch, smoke alarm, fire extinguisher, escape670

sign), plumbing system elements (pipe), and other objects with useful infor-671

mation for facility management (door sign and boards);672

c) Apart from geometric and semantic information, we apply text detec-673
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tion and recognition technology to extract useful text information such as674

serial numbers and object IDs for related objects;675

d) The whole processing pipeline is almost completely automated. The676

only step that requires manual work is registering the photogrammetric and677

laser-scanned point cloud, which can be easily achieved by off-the-shelve678

software products.679

In future, we want to collect more data and continue adding more classes680

(like furniture) to the building twin. While we only fit simple geometric681

shapes (like a cylinder) to the extracted point clusters at present, more com-682

plex shapes or CAD models can be considered as a potential improvement683

for the building twin. Furthermore, we would also combine 3D deep learning684

in the point cloud and 2D deep learning in images in one framework that can685

probably improve the segmentation performance.686
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