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Zusammenfassung

Die Umfeldwahrnehmung spielt eine entscheidende Rolle bei modernen Fahrerassistenz-
systemen oder Anwendungen für autonomes Fahren. Um die Limitierungen einzelner
Sensoren zu überwinden, müssen die Daten mehrerer Sensoren kombiniert werden. Diese
Sensordatenfusion spielt eine entscheidende Rolle als Teil eines sicherheitskritischen Sys-
tems, das auf die Informationen seiner direkten Umgebung angewiesen ist.

In dieser Arbeit stellen wir einen gridbasierten Ansatz zur Sensordatenfusion vor, der die
Fusion in einem sehr frühen Verarbeitungszustand ermöglicht. Um die Sensordaten von
Lidar- und Radarsensoren in dieser gridbasierten Fusion zu ermöglichen, beschreiben wir
inverse Sensormodelle für beide Technologien. Mit Hilfe dieser inversen Sensormodelle
werden die Sensorrohdaten in eine gridbasierte Darstellung, die für die Fusion benötigt
wird, überführt.

Ein Nachteil von klassischen Belegungskarten ist, dass sie von einer statischen Umgebung
ausgehen. Deshalb zeigen wir eine Erweiterung der klassischen Belegungskarte, die es
nicht nur ermöglicht, die dynamische Belegung, sondern auch die Geschwindigkeit der
einzelnen Zellen zu schätzen.

Des Weiteren schlagen wir vor, eine online generierte Orientierungskarte als a priori In-
formation für die Initialisierung von Partikeln zu verwenden. Dieses zusätzliche Wissen
führt zu einer schnelleren Konvergenz der Partikel und damit zu einer besseren Dy-
namikschätzung der Zellen. Dadurch verbessert sich auch die geschätzte Geschwindigkeit
der extrahierten Objekte, was wiederum zu einer verbesserten Gesamtperformance des
vorgestellten Ansatzes führt.

Mit der so erzeugten dynamischen Belegungskarte ist es möglich, den Freiraum im Sinne
von befahrbarer Fläche zu extrahieren. Zusätzlich schlagen wir eine Methode vor, um
(dynamische) Objekte aus der Belegungskarte zu extrahieren. Um die Qualität der ex-
trahierten Objekte zu verbessern, verwenden wir einen Kalman-Filter basierten Ansatz
zur Objektverfolgung. Durch das Bereitstellen dieser beiden Schnittstellen (Freiraumkon-
tur und dynamische Objektliste) ist es möglich, das von uns vorgeschlagene System der
Umfeldwahrnehmung für aktuelle Fahrerassistenzsysteme zu verwenden.

Um unseren Ansatz zur Umfeldwahrnehmung zu validieren, evaluieren wir die Ergeb-
nisse anhand eines offenen Datensatzes. Diese Auswertung zeigt, dass die vorgeschlagene
Methode funktioniert und vergleicht die Ergebnisse aus verschiedenen Verarbeitungsstufen.
Zusätzlich zeigen wir die Eignung unseres Ansatzes für den Einsatz auf einem Steuergerät
mit einer Laufzeitmessung.
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Abstract

Environment perception plays a crucial role in advanced driver assistance systems or
autonomous driving applications. To overcome the limitations of single sensors, the
data of multiple sensors has to be combined. This sensor data fusion is a critical part
of a safety-critical system, which depends on the information of its direct surrounding
environment.

In this work we propose a grid-based sensor data fusion approach, which allows sensor
data fusion on a very low processing level. To enable the use of lidar and radar sensor
data in this grid-based fusion, we present inverse sensor models for both technologies.
Those inverse sensor models transform the raw sensor data in the grid representation
used for data fusion.

One drawback of classic occupancy grid maps is, that they rely on the environment to
be static. Therefore we show an extension to the classic occupancy grid mapping, which
allows not only to estimate dynamic occupancy, but also to estimate the velocity of the
single cells.

In addition we propose to take usage of an online generated orientation prior, which
leads to a faster convergence of the used particles. The better velocity estimation of the
particles allows a better dynamic estimation of the extracted objects and therefore leads
to a better overall performance of the proposed method.

With this generated dynamic grid map it is possible to extract freespace, in terms of
drivable area. Additionally we propose a method to extract (dynamic) objects out of
the grid map. To improve the quality of the extracted objects, we use a standard
Kalman filter based object tracking approach. Providing those two representations of the
environment (freespace contour and dynamic object list) allows us to use our proposed
system for current driver assistance systems.

To validate our proposed environment perception system we evaluate the results using
an open data set. This evaluation shows that the proposed method is working and
compares the results at different processing stages. Furthermore, we show that the
proposed perception system is able to run on an automotive ECU by measuring the
runtime performance.
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1 Introduction

1.1 Motivation

Advanced driver assistance systems (ADAS), providing more comfort and safety for the
driver and passengers of modern cars, play an important part in modern cars. With fur-
ther research and development in the area of driver assistance systems and autonomous
driving, those system will be part of even more vehicles in the future. The first com-
panies are already testing self-driving cars on public roads [1, 2] and car manufacturers
are selling so called Autopilot systems [3, 4]. Additionally, various different autonomous
driving mini-buses, commonly known as shuttles, have been announced in Europe (e.g.
[5, 6]) recently. Even with the already available systems and efforts brought into bringing
those autonomous vehicles to the street, there are still a lot of challenges in this area.
One limiting factor for the autonomous driving is the environment perception ([7, 8]).

The used sensors around the vehicle in combination with their detection and tracking
algorithms are the interface of the vehicle to its surrounding world in terms of its input
signals. All decision making processes, e.g. deciding whether to brake, rely on those
input information. Therefore the environment perception needs to supply a precise
representation of its surrounding environment. Not only the position and kinematics of
the obstacles around the ego vehicle are important, but also knowing the areas where
no obstacles are located in (so called freespace) plays a crucial role.
In order to provide the information in the required quality of today’s and future

driving functions, an information fusion of multiple sensors is required. With a single
sensor the requirements in terms of range and full surround view are not feasible. Using
multiple sensors the quality and robustness of the perception system can be improved.
Furthermore, the advantages of different sensor technologies, e.g. the precision of lidar
sensors can be combined with the high range, radial velocity measurement principle and
weather robustness of radar sensors.
Another crucial point are the overall costs for the perception system. As car manufac-

turers are producing those system for mass markets and are continuing to bring ADAS
also into smaller and cheaper vehicles, the environment perception should be able to scale
with a different number or configuration of input sensors. Therefore it is important to
design an environment perception in a scalable manner.
Most of the current driving functions rely on either an object list of the dynamic

objects or a contour list of the surrounding freespace or both inputs. These two data
formats have the huge advantage of describing the vehicle’s surroundings in a very com-
pressed way in terms of data size. This allows to transfer the information even over low
bandwidth buses, e.g. CAN. The drawback on the other side is, that, with the compres-
sion, a simplification of the environment has to be made, which is less generic. One goal
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1 Introduction

of the environment perception should be to be as simplified/abstract as required, but on
the other hand as generic as possible.

1.2 State of the Art

. . .

Radar

. . .

Lidar

Tracker

Fusion

Objects

Grid map

Free-
space

Dynamic

Static

Figure 1.1: State of the art sensor data fusion

Most of today’s environment perception systems work as shown in figure 1.1. The
processing of the dynamic part of the surroundings is separated from the processing of
the static part. The object tracking in the dynamic part is usually further divided into
single sensor object tracking tasks, where those tracked object lists are fused into one
object list containing all the dynamic objects (e.g. cars) of the surroundings later on.
This approach has several advantages:

• Parallelization: Not only the static and dynamic processing can be run in parallel,
but also each single object tracker is independent of the other ones. Often the
object tracking algorithms are even executed on the sensors itself.

• Abstract interface: The interface for tracked objects, the output format of the
object trackers, can be defined on quite an abstract level, allowing a sensor-type
independent data format. Therefore replacing single sensors is possible, as long as
the sensor specific object tracker is replaced with the sensor.

• Avoid unnecessary computation: In cases where only the dynamic or only the static
environment is of interest (e.g. ACC or automated parking systems), the compu-
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1.3 Related Work

tation of the not required parts can be easily switched off to save computational
power.

On the downside, this approach has two major disadvantages, the first one is the loss
of information through processing. In each processing step information is lost, due to
the processing itself, as well as to the simplification, which arises from the abstraction
of the interface. For instance consider a vehicle, which is partly sensed by two sensors.
Each of those two sensors is detecting a too small portion of the vehicle, so that none of
the follow up trackers is generating a tracked object. Combining the raw measurements
of both sensors on the other hand would lead to enough evidence for a (hypothetical)
common tracker to establish a tracked object.
The second main drawback is the potential inconsistency of both representations.

As the detection and tracking of dynamic objects is completely decoupled from the
estimation of the static surroundings, both representations do not have to match each
other perfectly. If one sensor detects an object, but another sensor is not detecting
anything in the region of that object, it is possible that the static processing postulates
freespace in that area, while the dynamic processing is estimating a moving car in the
same area.
With the stated drawbacks it seems to be obvious, that the best choice for an environ-

ment perception system is the direct fusion of raw sensor data and then estimate dynamic
objects and freespace only based on this fused data simultaneously. This approach in-
deed promises good results, but it comes with the cost of a very sensorset specific system
with a high computational effort. Therefore we choose a grid-based fusion approach as
middle course to fuse sensor data at a very low processing level, but still have a generic
interface to support multiple sensorset configurations.

1.3 Related Work

The occupancy grid mapping approach was originally introduced by Moravec and Elfes
in 1985 [9] for static environments. Various approaches have been developed to enable
the basic principle of the occupancy grid mapping to also model dynamic environments.
One approach is to use the occupancy grid map to model the static environment and ad-
ditionally classify cells into dynamic and static. [10] and [11] use such classified dynamic
cells as input for their object tracking algorithm, whereas their model of the static sur-
roundings is based on the occupancy grid. In [12] the authors use two separate layers of
grids. One grid is used for the estimation of occupancy probability, the other one for the
dynamic probability estimation. With the information accumulated in both grid layers,
object hypothesis are extracted and used in a particle-based object tracking algorithm
afterwards.
Yuan et al. present a particle-based multiple model approach for a dynamic occupancy

grid [13]. In their work they use particles to model the occupancy and dynamic state of
grid cells in a two-stage process. The work described in [14] uses a binary Bayesian state
to model the occupancy/freeness of each cell. The velocity of the cells is represented by
an additional random variable, containing all possible velocities in a discrete manner.

3
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Based on this work, Gindele et al. present an extension using prior map information
[15] in order to improve the map prediction, hence improving the overall performance.
[16] uses a Bayesian occupancy grid for occupancy estimation, but models the velocity
distribution of the cells using particles. This combined approach allows comparable
results with much lower requirements on memory consumption and increases runtime
performance. Tanzmeister [17], Steyer [18] et al. propose using a grid map based on
the Dempster-Shafer theory to model the states of cells in combination with particles
to model the dynamics of the surroundings. This work is the basis of the dynamic
grid described in chapter 3.2, e.g. we carry over the same set of hypothesis, the static
prediction formula and the linear prediction of the particles itself as well as the color
scheme for the mass visualization.

A very efficient way to model inverse sensor models for lidar and radar sensors is to
calculate the occupancy estimates in a polar grid first and transform it into a Cartesian
one afterwards. Homm et al. present such an approach for the inverse sensor model
taking advantage of the parallel processing capabilities of a GPU [19]. In [20] Werber
et al. present radar specific adaptations for inverse sensor models, compared to lidar
models. One key difference is that radar sensors can also detect objects located behind
other objects, which would be occluded for lidar sensors. This difference has to be
considered in the design of the appropriate inverse sensor model. The work described
in [21] argues, that regions without any detections, have to be considered as freespace.
Especially, this is the case on roads or parking lots without traffic, where the road itself
is not providing any detections so that no freespace assumption can be generated in
traditional inverse radar sensor models.

In [22] Lindenmaier et al. describe different association methods used for a track to
track fusion approach. They present a point to point association method as well as one
using the 2-D extension of objects. Furthermore they describe a frame based birth model,
which is very similar to the one we are using. Diehl et al. use a dynamic occupancy
grid mapping approach for fusing only on radar data [23]. The objects are extracted
purely based on the static and dynamic estimated cell masses. With their work they
demonstrate, that the grid-based fusion approach works with using only radar sensors
and is sufficient for object estimation. In [24] Steyer et al. use the dynamic occupancy
grid of [18] to extract objects based on the dynamic occupancy estimation of cells. For
clustering of the dynamic cells, a combination of a density-based and connectivity-based
method is used. Additionally the particles get labeled with the track id for better
clustering in future time frames. In [25] this concept is extended by using an unscented
Kalman filter (UKF) to track the extracted objects and to address the objects shape
estimation in terms of length and width of the corresponding bounding box.

The dissertation published 2021 by Steyer [26] describes a very similar approach as
ours: the grid-based sensor fusion, the dynamic grid estimation using predict/update
cycles, as well as an additional object tracking in the end. Although we use a very
similar approach, the single steps differs in detail. Steyer is using camera sensors as
additional input to radar and lidar sensors, but is not providing detailed description
of the implemented sensor models. Furthermore, we extended the grid prediction by
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using an online generated orientation prior and prefer faster approaches in favor of ECU
compatibility.

1.4 Contribution & Goals

Goals The main goal of this work is to develop an environment perception approach,
which provides all relevant information of the vehicle’s surroundings to the (autonomous)
driving function. The proposed method has to be capable of fusing multiple sensors using
a very generic abstraction layer. Furthermore the approach has to be scalable regarding
the number of used sensors.

The proposed method should also be able to operate as a replacement of existing
perception approaches, hence it has to provide the traditional interfaces of object and
contour list for dynamic objects and freespace information.

Finally, the implementation of the proposed algorithm in this work has to be fast
enough to run on an automotive ECU, fusing the data of multiple sensors.

Contribution In this thesis we present a straight forward derivation of a dynamic
Bayesian occupancy grid, based on the static one. Furthermore, we justify the advan-
tages of the particle-based Dempster-Shafer approach over the Bayesian one and extend
it using an online generated orientation prior. Additionally, we introduce a derivation
for inverse lidar and radar sensor models and how they can be fused together. The
extraction of the freespace contour and the object extraction with additional tracking
closes the gap between our proposed grid-based environment modeling and the tradi-
tional object / freespace model used in current systems. We propose to use common
image processing methods, a simple thresholding and a connected component algorithm
to extract object hypothesis from the dynamic grid.

Publications and Supervised Theses Parts of this thesis have been published as peer-
reviewed conference papers:

• In [27], we present a straight forward derivation of the prediction and update rule
of the dynamic occupancy grid, based on the well-known static Bayesian occupancy
grid mapping. The content of this publication is summarized in section 3.1.

• In [28], we present the online generation of an orientation prior of newly initialized
particles. This orientation prior is used during the particle re-sampling (3.2.2.2),
whereas the generation of the orientation prior is described in 3.2.3.

Furthermore the author wants to thank Youssef Jazi for his Master Thesis [29], in
which object tracking based on a dynamic grid as input is investigated. This work lays
the foundation of the object tracking described in chapter 5.
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Figure 1.2: System overview

1.5 Structure of This Work

In chapter 2 we give a summary of the static occupancy grid map approach, using the
classic Bayesian approach, as well as using a Dempster-Shafer approach. Additionally,
the inverse sensor models (2.3) are presented in this chapter. Those sensor models work
as input data for the grid mapping, as shown in the upper left corner of figure 1.2.
Chapter 3 describes the extension of the static occupancy grid to a dynamic one and

introduces the online orientation prior. Furthermore, we discuss the advantages of using
a particle-based Dempster-Shafer dynamic grid here. This part is illustrated in the lower
left part of figure 1.2.
The freespace extraction, shown in the lower right part of figure 1.2 is described in

chapter 4, whereas the object extraction and tracking part (upper right part of the
figure) is described in chapter 5. Both chapters are using the output of the dynamic
grid as their inputs to provide the required information for the traditional object and
contour list interface to describe dynamic objects and freespace around the vehicle.
An evaluation and validation of our approach is presented in chapter 6. In chapter 7

we conclude this work and give an outlook for further research.
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2 Static Occupancy Grid

The static occupancy grid is the standard approach for representing a static environment
in today’s driver assistance and autonomous driving systems. The basic idea of grid-
based representations is dividing the environment in small cells and estimating the state
of the environment for every single cell individually.
This chapter presents the basics of such a grid-based approach using Bayes theory and
introduces an alternative using Dempster-Shafer theory.

Sensor
measurements

Update
grid map

Updated
grid map M

Predict
grid map

Predicted
grid map M̄

Inverse sensor models

Grid mapping

Figure 2.1: Overview of static occupancy grid mapping

Figure 2.1 gives a small overview of the static occupancy grid mapping and the role
of the inverse sensor models. In case of the static occupancy grid the Predict grid
map function is usually an identity function, which predicts the cells as they are and is
therefore not handled in this section. In some implementations the predict function can
be used to translate/rotate the grid according to the ego vehicle movement or implement
features like decay of outdated information.

2.1 Bayes

The main idea of the Bayesian occupancy grid is to divide the hard problem of estimating
the occupancy of surrounding environment into estimating the occupancy of single cells.
Thrun et al. [30, pp. 85–90] give a great introduction into the Bayes filtering process in
the grid map.

The traditional occupancy grid for static environment uses two main assumptions,
which are discussed in the following section.
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2 Static Occupancy Grid

Binary Cell State Each cell is assumed to be either occupied or empty (free). This
assumption directly motivates the usage of a binary random variable to represent a cell
state: O ∈ {occ, emp}. With only two possible states, each state is the complementary
of the other leading to: P (O = occ) = 1− P (O = emp).

Independence of the Cells The overall goal of the static grid map is to estimate
the most likely occupancy map over all cells P (O). For computational reasons the
cells are assumed to be independent of each other: P (O) =

∏
c P (Oc). Additionally

this independence assumption allows a very efficient way of estimating the occupancy
probability of every cell in a parallel way.

Derivation of Update Rule With those two assumption the goal of the occupancy grid
mapping can be formulated as to give a probability of how likely a cell is being occupied
(or free) after a given set of measurements Z1:t. We call this P (Oc|Z1:t).

Using Bayes rule P (Oc|Z1:t) can be calculated as:

P (Oc|Z1:t) = P (Oc|Zt, Z1:t−1)

=
P (Zt|Oc, Z

1:t−1) P (Oc, Z
1:t−1)

P (Zt, Z1:t−1)

=
P (Zt|Oc, Z

1:t−1) P (Oc|Z1:t−1) P (Z1:t−1)

P (Zt|Z1:t−1) P (Z1:t−1)

=
P (Zt|Oc, Z

1:t−1) P (Oc|Z1:t−1)

P (Zt|Z1:t−1)
.

Assuming that Oc contains all relevant information of the measurements, which have
been used for updating so far, P (Zt|Oc, Z

1:t−1) can be substituted with P (Zt|Oc) leading
to following simplification:

P (Oc|Z1:t) =
P (Zt|Oc) P (Oc|Z1:t−1)

P (Zt|Z1:t−1)
.

Applying Bayes rule again, leads to:

P (Oc|Z1:t) =
P (Oc|Zt) P (Zt) P (Oc|Z1:t−1)

P (Oc) P (Zt|Z1:t−1)
.

Exploiting the nature of a binary random variable the odds-ratio representation R(X)
is equivalent to the representation using probability values P (X):

P (X)

1− P (X)
= R(X)

P (X) =
R(X)

1 +R(X)
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2.1 Bayes

The odds-ratio representation allows further simplification of the update formula:

P (Oc|Z1:t)

1− P (Oc|Z1:t)
=

P (Oc|Z1:t)

P (¬Oc|Z1:t)

=

P (Oc|Zt) ���P (Zt) P (Oc|Z1:t−1)

P (Oc) ((((((
P (Zt|Z1:t−1)

P (¬Oc|Zt) ���P (Zt) P (¬Oc|Z1:t−1)

P (¬Oc) ((((((
P (Zt|Z1:t−1)

=
P (Oc|Zt) P (Oc|Z1:t−1) P (¬Oc)

P (¬Oc|Zt) P (¬Oc|Z1:t−1) P (Oc)

=
P (Oc|Zt)

1− P (Oc|Zt)︸ ︷︷ ︸
Update term

· P (Oc|Z1:t−1)

1− P (Oc|Z1:t−1)︸ ︷︷ ︸
Recursive term

· 1− P (Oc)

P (Oc)︸ ︷︷ ︸
Prior

. (2.1)

The derivation of the update formula (eq. 2.1) shows, that estimation of the occupancy
probability of a cell c (P (Oc|Z1:t)) only depends on

• an update term P (Oc|Zt), which denotes the conditional probability of being oc-
cupied given only the current measurement Zt (more details in section 2.3),

• the previous estimation P (Oc|Z1:t−1), after all previous measurements apart from
the latest one (Zt), and

• a prior probability of being occupied given no measurement data P (Oc).

Most commonly the prior occupancy probability P (Oc) is set to 50%, meaning that
the probability of being occupied equals the probability of being free. This additional
assumption eliminates the third factor in equation 2.1 and makes the update formula
even more handy to use:

P (Oc|Z1:t)

1− P (Oc|Z1:t)
=

P (Oc|Zt)

1− P (Oc|Zt)
· P (Oc|Z1:t−1)

1− P (Oc|Z1:t−1)
. (2.2)

For numerical and performance reasons the logarithmic version of eq. 2.2 is commonly
used:

l(x) = ln

(
P (x)

1− P (x)

)
l(Oc|Z1:t) = l(Oc|Zt) + l(Oc|Z1:t−1) (2.3)

Furthermore, minimal and maximal thresholds for l(Oc|Z1:t) are used to avoid numeric
instabilities and final (not updatable) probability values:

l̂(Oc|Z1:t) =


lmax , l(Oc|Z1:t) > lmax

lmin , l(Oc|Z1:t) < lmin

l(Oc|Z1:t) , otherwise
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2 Static Occupancy Grid

Example We take a look at two examples. In the first case we estimate a cell c two
times as occupied with a probability of 60% (table 2.1). In the second case we estimate
a cell c with an occupancy probability of 30% (so more likely being free than occupied)
and at the second time t = 2 with an occupancy probability of 84% (table 2.2).

t P (Oc|Zt) l(Oc|Zt) P (Oc|Z1:t) l(Oc|Z1:t)

0 - - 0.5 0

1 0.60 0.405 0.60 0.405

2 0.60 0.405 0.69 0.811

Table 2.1: Example 1 for Bayesian update rule

t P (Oc|Zt) l(Oc|Zt) P (Oc|Z1:t) l(Oc|Z1:t)

0 - - 0.5 0

1 0.30 -0.847 0.30 -0.847

2 0.84 1.658 0.69 0.811

Table 2.2: Example 2 for Bayesian update rule

As shown in the tables above, in both cases the occupancy probability estimation
after the two timestamps is at 69%. Using the Bayesian approach, it is not possible to
differentiate between the both cases in the end, although it makes a huge difference if
a cell as been sensed two times as occupied or if it has been free and, due to a moving
object, has been occupied later.

2.2 Dempster Shafer

The Dempster-Shafer theory, or also called theory of belief functions or evidence theory,
can be seen as a generalization of Bayesian theory. As in the Bayesian case described
above, the independence of the cells is assumed, but instead of a binary random variable,
the hypotheses are modeled with values representing the degree of belief (referred as
mass). Furthermore, the Bayes update rule is replaced with an adapted combination
rule, which will be described in this section.

Hypotheses There exist two distinct possibilities for a cell’s state for the static grid:
either the cell is empty/free (F ) or the cell is (static) occupied (S). This set of possibil-
ities

Θ = {F, S} (2.4)
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defines the following frame of discernment (power set):

2Θ = {∅, {F}, {S}, {F, S}} . (2.5)

For better readability obvious brackets and commas will be skipped from here on,
leading to following simplified notation:

2Θ = {∅, F, S, FS} . (2.6)

Every element in the frame of discernment is called a hypothesis. The ∅ describes the
hypothesis that none of the assumed possibilities is true, in this case the cell is neither
empty nor occupied. The FS hypothesis describes that a cell is either free or occupied.

Degree of Belief For every hypothesis θ ∈ 2Θ a mass function m(θ) is defined. The
mass function can be seen as subjective probability and is used to calculate the belief
and plausibility value of a hypothesis. Like probability values, the mass functions also
have to follow two constraints:

m(θ) ≥ 0, ∀θ ∈ 2Θ∑
θ∈2Θ

m(θ) = 1.

With those constraints the mass function of the Θ hypothesis is not necessarily mod-
eled explicitly, but can be calculated form the remaining mass functions.

Belief and Plausibility The belief of a hypothesis θ is defined as the sum over all masses
of subsets of θ:

bel(θ) =
∑
γ|γ⊆θ

m(γ), (2.7)

and is a lower bound for the probability of θ. The plausibility of a hypothesis θ is the
sum of all masses of sets that intersect θ:

pl(θ) =
∑

γ|γ∩θ ̸=∅

m(γ), (2.8)

and is an upper bound for the probability of θ. In short: the probability of a hypothesis
P (θ) is bound by the belief and plausibility as:

bel(θ) ≤ P (θ) ≤ pl(θ).

For a complete and distinct set of possibilities the belief and plausibility of the empty
hypothesis are 0, whereas for the universal hypothesis they have to be equal to 1. This
concludes that the mass of the empty hypothesis has to be 0.

bel(∅) = pl(∅) = 0

⇒ m(∅) = 0

bel(Θ) = pl(Θ) = 1

11



2 Static Occupancy Grid

Combination Rule Combining two sets of masses m1 and m2 plays an important role
in the update process of a Dempster-Shafer grid map. The update process is modeled
as combination of the previous grid map with the current sensor measurement. The
combination rule is defined as:

m1,2(∅) = 0 (2.9)

m̂1,2(θ ̸= ∅) = (m1 ⊕m2)(θ)

=
∑

θ1∩θ2=θ

m1(θ1) ·m2(θ2) (2.10)

ζ1,2 =
∑

θ1∩θ2=∅

m1(θ1) ·m2(θ2), (2.11)

with the conflict term ζ1,2. The standard combination rule distributes the conflict mass
over all combined masses:

m1,2(θ) =
m̂1,2(θ)

1− ζ1,2
. (2.12)

Other possible ways to deal with the conflict term are either the addition to Θ:

m1,2(θ ̸= Θ) = m̂1,2(θ)

m1,2(Θ) = m̂1,2(Θ) + ζ1,2, (2.13)

or the distribution based on expert knowledge, which will be utilized in chapter 3.2.

Example We use the same two examples as in 2.1. In the first example (table 2.3) the
cell is both times estimated as occupied with a low “probability”. In the second example
(table 2.4) the cell is first being estimated as free and then estimated as occupied. Both
tables show the current estimation z(θ), the grid map result m(θ) and the lower and
upper bound of the corresponding probabilities (belief & plausibility), with assigning
the conflict mass ζ to FS.

t z(F ) z(S) m(F ) m(S) P (F ) P (S)

0 - - 0 0 [0.00; 1.00] [0.00; 1.00]

1 0 0.20 0 0.20 [0.00; 0.80] [0.20; 1.00]

2 0 0.20 0 0.36 [0.00; 0.64] [0.36; 1.00]

Table 2.3: Example 1 for Dempster Shafer update rule

Using the Dempster Shafer theory, the different estimation of the two measurements
is reflected in the final grid map. This effect, in combination with a custom conflict
assignment, plays a crucial role in section 3.2.
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2.3 Sensor Models

t z(F ) z(S) m(F ) m(S) P (F ) P (S)

0 - - 0 0 [0.00; 1.00] [0.00; 1.00]

1 0.40 0 0.40 0 [0.40; 1.00] [0.00; 0.60]

2 0 0.68 0.13 0.41 [0.13; 0.59] [0.41; 0.87]

Table 2.4: Example 2 for Dempster Shafer update rule

2.3 Sensor Models

Sensor models, or inverse sensor models, play a crucial role in the occupancy grid map-
ping approach, since those models transform the rather abstract sensor data into a grid
representation. This grid representation can then be used to fuse multiple sensors (e.g.
figure 2.2) or to update the actual grid map in a generalized sensor-independent manner.

Sections 2.3.2 and 2.3.3 describe the used sensor models for lidar and radar sensors
used in this work, whereas section 2.3.4 explains the fusion of multiple sensor grids into
one final sensor grid.

Radar
detections 1

Radar
detections 2

Radar
detections 3

Lidar
detections

Radar
model

Radar
model

Radar
model

Lidar
model

Radar
grid Zt

R1

Radar
grid Zt

R2

Radar
grid Zt

R3

Lidar
grid Zt

L

Radar
merger

Radar
grid Zt

R

Merge
grids

Final sensor
grid Zt

Figure 2.2: Overview of a system with three radar and one lidar sensor.

2.3.1 Polar Sensor Model

Both sensor technologies used throughout this work, namely lidar (2.3.2) and radar
(2.3.3) sensors, follow a polar measurement principle. The sensors are measuring a
distance r for a given (horizontal) angle or angular segment φ. For sensors capable
of measuring 3-D points an additional angular parameter, the evaluation angle ϑ, is
measured.

Although the fusion and accumulation of the occupancy grid is done using Carte-
sian coordinates, performing the preprocessing in a polar grid has two main advantages,
caused by the mentioned nature of measurement. The first advantage is, that often the
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2 Static Occupancy Grid

uncertainties of measurement data are given in the measurement system, e.g. maximal
error in measured range or azimuth angle. Processing of the data using the same coor-
dinate frame allows considering such conditions in a much easier and straight forward
manner.

Secondly, the occupancy probability of the inverse sensor models at a given posi-
tion relies mainly on detections under the respective horizontal angle of this position.
Therefore only a few or none dependencies between detections of different angles exists,
allowing a parallelizable implementation of the inverse sensor models using a polar grid.

The two inverse sensor models discussed in the following section are using the same
algorithmic structure:

1. Preprocessing of the polar grid

2. Detection counting

3. Occupancy probability calculation

4. Transformation into Cartesian cells

Preprocessing The first step is a preprocessing or cleanup of the sensor’s polar grid. In
this step all information, which does not rely on any sensor measurement is calculated
and stored in the polar cells. The calculation of the expected freespace probability in
absence of any detection data is performed here.

Detection Counting Afterwards, there is a detection counting step, where the polar
grid is populated with values like, how many detections are located in each polar cell,
or how many detections are located behind the current cell, albeit in the same angular
bin. The calculations are done using the respective detection lists. This is the only step,
in which the detection lists are accessed. All relevant information for the subsequent
processing steps are included as information in the polar grid after this step.

Occupancy Probability Calculation After the processing of the detection list itself, the
occupancy probability of each polar cell is calculated based on the information of the
first preprocessing step. This results in an occupancy probability value for each cell in
the polar grid.

Cartesian Transformation Finally, the occupancy probabilities of the polar cells are
transformed into a Cartesian grid for updating the grid map itself, figure 2.4 shows an
example. As there exist no unambiguous assignment of a Cartesian and polar cell, a
bi-linear interpolation or maximum function is used for the transformation. Given a
Cartesian cell c with its center at (x, y) the corresponding polar coordinates (r, φ) are
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2.3 Sensor Models

Figure 2.3: Cartesian grid (red) overlay on a polar grid (black). Two Cartesian center points
are connected with their closest polar center points (p0, p1, p2, p3) using blue lines.

defined as:

r =
√

x2 + y2 (2.14)

φ =

{
+arccos x

r , y ≥ 0

− arccos x
r , y < 0

. (2.15)

With the cell size (∆r,∆φ) of the polar grid, the closest polar cells are (see fig. 2.3):

p0 =

(⌊
r

∆r

⌋
,

⌊
φ

∆φ

⌋)
(2.16)

p1 = p0 + (1, 0) (2.17)

p2 = p0 + (0, 1) (2.18)

p3 = p0 + (1, 1). (2.19)

Using the bilinear interpolation method the occupancy probability of Cartesian cell c
can be calculated as:

P (Oc|Zt) = η ·
(
(r1 − r) · (φ1 − φ) · P (Op0 |Zt) (2.20)

+(r − r0) · (φ1 − φ) · P (Op1 |Zt) (2.21)

+(r1 − r) · (φ− φ0) · P (Op2 |Zt) (2.22)

+(r − r0) · (φ− φ0) · P (Op3 |Zt)
)
. (2.23)

In case of the max function the transformed occupancy probability is given by:

P (Oc|Zt) = max
(
P (Op0 |Zt), P (Op1 |Zt), P (Op2 |Zt), P (Op3 |Zt)

)
. (2.24)
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The bilinear interpolation method provides good results in cases, where a certain
uncertainty of the measurement position is included in the polar grid, e.g. if a single
measurement affects more than one single cell. Whereas the max function method is
superior if one detection can be located in exactly one polar cell and is not influencing
the neighboring ones.

(a) Polar grid (b) Cartesian grid

Figure 2.4: Example of a transformation from polar to Cartesian grid. Green cells represent
freespace, whereas purple cells represent occupancy. Black cells represent detec-
tions classified as ground and are shown only in the polar coordinate system for
orientation.

2.3.2 Lidar Sensor Model

Lidar sensors normally provide a very regular scan pattern, e.g. one distance measure-
ment every 0.2◦ horizontal and 2◦ vertical (e.g. [31]). Furthermore, lidar sensors are
currently the most accurate sensors in terms of position. Therefore they are perfectly
suited for occupancy grids. This subsection defines the data structure of the lidar de-
tections and a novel approach for an inverse lidar sensor model based on the discussed
polar sensor model (2.3.1). The angular resolution of the used polar grid is chosen to
match the angular resolution of the lidar sensor or, to favor runtime performance over
accuracy, to be an integral multiple of it.

2.3.2.1 Input Data

For the proposed inverse lidar sensor model, the lidar sensor is expected to work in
a fixed scanning pattern. Especially every ∆φ (horizontal) and ∆ϑ (vertical) angle a
distance measurement is expected. With this assumption the lidar scan can also be
interpreted as image, where every row corresponds to a vertical measurement angle and
every column corresponds to a horizontal measurement angle. The pixel intensity/color
would be the measured distance.
With this regularity of scan pattern, every detection (or pixel of the hypothetical

image) has to provide the following information per scan point:

• azimuth angle φ,
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• elevation angle ϑ,

• measured distance r,

• flag indicating if a distance could be measured for this scan point,

• classification whether this detection is classified as ground point or not (see [32]
for a lidar ground-point classifier).

Additional information such as the intensity of the measured reflection can be used as
filter criteria, but are not considered in this section.

2.3.2.2 Occupancy Estimation

The novel inverse lidar sensor model presented in this work follows the steps mentioned
in 2.3.1 and is described in this section.

Preprocessing For the inverse lidar sensor model no preprocessing of the polar grid,
except the reset of the polar cells, is necessary. The information stored per cell c is listed
in the table below.

Name Description Start value

nobject Number of rays hitting an object in this cell 0

nground Number of rays hitting the ground in this cell 0

ntraversing Number of rays traversing this cell without hitting
anything in this cell

0

zray,min Minimum z coordinate of a traversing ray zmax

zray,max Maximum z coordinate of a traversing ray zmin

P (Oc|Zt) Estimated occupancy probability for this cell 0.5

Table 2.5: Information stored in each cell c

Detection Counting For every detection, a ray originating at the sensor with the length
of the measured distance or the sensor’s maximum range is traversed. For every traversed
polar cell the value of ntraversing is incremented and the values of zray,min and zray,max are
updated with the respective height of the ray at the given location. If the cell of the
measured distance is reached nobject or nground is incremented instead, depending on the
classification of the detection. zray,min and zray,max are not updated in case of the last
cell. The pseudo code for the detection counting is shown in algorithm 1.
Figure 2.5 shows an example of a single angular bin from the polar grid. The sensor

is placed on the left and an example object is placed on the right (shown as gray box).
Three rays are reaching the ground plane in front of the object (shown in green), two
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Algorithm 1: Inserting a ray into the polar grid

1 for r ← 0 to rmax do
2 z ← GetCurrentRayZ()
3 if z < zmin or z > zmax then
4 break;
5 end
6

7 if AtTargetCell() and ClassifiedAsGround() then
8 nground ← nground + 1
9 else if AtTargetCell() and ClassifiedAsObject() then

10 nobject ← nobject + 1
11 else
12 ntraversing ← ntraversing + 1
13 zray,min ← min (zray,min, z)
14 zray,max ← max (zray,max, z)

15 end

16 end

rays are hitting the object (shown in red) and another three rays are not hitting anything
(shown in blue). In table 2.6 the resulting numbers of the detection counting for the
three cells c1, c2 and c3 (as marked in the figure) are presented.

z

r

zmax

zmin

z1

c1 c2 c3

Sensor

Figure 2.5: Rays hitting the ground, an obstacle, or nothing for one horizontal angle φ.

Occupancy Probability Calculation The occupancy probability is calculated purely on
the information in the polar grid, the detection list itself is not used anymore. In the
case of at least one object detection counted in cell c (nobject > 0) the cell is considered
as occupied and the number of traversing or ground-classified counts (nground, ntraversing)
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Cell nobject nground ntraversing zray, min zray, max

c1 0 0 7 z1 zSensor

c2 0 1 5 zmin zSensor

c3 2 0 2 z1 zSensor

Table 2.6: Detection counting result of three example cells, illustrated in figure 2.5

is not taken into account. The occupancy probability of the cell is estimated as:

P (Oc|Zt) =
1

2
+

1− (pfalse-positive)
nobject

2

= 1−
(pfalse-positive)

nobject

2
, (2.25)

or alternatively using the Dempster-Shafer framework:

Zc(SD) = 1− (pfalse-positive)
nobject

Zc(FSD) = 1− Zc(SD), (2.26)

with pfalse-positive being the probability of a false-positive detection. In the reference
implementation a false-positive probability of 5% is used.

If no object is detected in the current cell, the cell can either be considered as free
or as unknown, figure 2.6 illustrates an example. Caused by the occlusion of a closer
object a possible object (marked with the “?” in the figure) cannot be detected by the
sensor. To avoid freespace estimation in such blind-spot areas, no freespace estimation is
taking place behind objects, unless a ground detection has been counted. The occupancy
probability estimation for the blind-spot areas is therefore:

P (Oc|Zt) =
1

2
Zc(FSD) = 1 (2.27)

In the cases, where a ground detection, but no object is counted, freespace is more
likely than occupancy and therefore freespace is estimated. Freespace is defined as the
absence of some reference object with a fixed horizontal width wref and a fixed height
href (e.g. wref = href = 0.1m). All potential smaller objects are not considered as false-
negatives. To estimate the probability of being free, we have to answer the question of
how likely the reference object should have been measured. To answer that question
we calculate the covered (vertical) area Acovered of the cell, as well as maximal possible
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z

r

Sensor

??

Figure 2.6: Illustrating possible objects in blind spot areas and occupied, free and unknown
estimated areas.

covered area Acovered,max:

wcovered = ∆φ · rc (2.28)

hcovered = zray,max − zray,min (2.29)

hcovered,max = zmax − zmin (2.30)

Acovered = wcovered · hcovered (2.31)

Acovered,max = wcovered · hcovered,max, (2.32)

with rc being the range of the cell and zray, min, zray, max being the cell’s result of the
Detection Counting step. With those results, the average area of every traversing ray is
calculated:

Āray =
Acovered

nground + ntraversing
. (2.33)

Additionally the area of the reference object, covered by this cell, has to be limited
by the covered width and height of that cell:

Aref = min (wcovered, wref) ·min (hcovered, href) . (2.34)

Assuming a uniform distribution of the traversing rays through the covered area, we
can now calculate the detection probability of the reference object in the given cell:

pdetect =
Acovered

Acovered,max
·max

(
Aref

Āray
, 1

)
. (2.35)

Putting together the detection probability of the reference object and the fact, that no
object has been detected in this cell leads to following occupancy probability estimation:

P (Oc|Zt) =
1

2
− pdetect

2
Zc(F ) = pdetect

Zc(FSD) = 1− Zc(F ). (2.36)
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Cartesian Transformation The last processing step is the transformation of the polar
grid into a Cartesian one for incorporation into the actual grid map. As our inverse lidar
model does not include any angular or range uncertainties for the lidar detections, i.e.
every detection influences exactly one angular bin, we prefer the max operator instead of
the interpolation for the transformation into Cartesian (see 2.3.1). Using interpolation
would cause some structures, like fences, to be blurred out, as some rays will traverse
such structures. In the domain of autonomous driving, a solid occupied structure in the
grid is preferred.

2.3.3 Radar Sensor Model

Apart from cameras, radar is the most commonly used sensor technology for environment
perception today. The two most important advantages of radar sensors are their ability
to measure the radial velocity, as well as their robustness in terms of weather conditions.
This subsection lists the data structure of radar detections and shows the novel inverse
radar sensor model implemented in this work.

2.3.3.1 Input Data

For the proposed inverse radar sensor model only a two-dimensional radar sensor is
assumed, meaning that no elevation angle or height information is provided. If the
sensor provides such an information, the measured distance has to be projected on the
2-D x-/y-plane. Therefore the proposed inverse sensor needs the following information
per radar detection:

• azimuth angle φ

• measured distance r

• measured radial velocity vrad

Additional information, such as the signal to noise ratio (SNR), or radar cross section
(RCS), can be used for filtering or further enhancement of the proposed inverse radar
sensor model, but are not part of this work.

2.3.3.2 Occupancy Estimation

Our proposed inverse radar sensor model is divided into four processing steps, following
the convention mentioned in 2.3.1. First the default freespace probability in case of
the absence of any detection is calculated, followed by some sort of ray counting. The
final occupancy calculation based on the counting result and the transformation into
Cartesian coordinates finalizes the proposed sensor model.

Preprocessing Similar to the inverse lidar sensor model (2.3.2) we define freespace as
the absence of a reference object. Instead of defining the reference object with a fixed
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dimension, a reflecting surface σref is used to define the reference object. The received
power Pr at the radar sensor can be estimated using the radar equation [33]:

Pr =
PtAr

(4π)2︸ ︷︷ ︸
= const

·σ ·G(φ) · r−4, (2.37)

given the transmitting power Pt, the effective aperture area Ar, the radar cross section
(RCS) of the target σ, the distance between the sensor and the target r, and the an-
gle dependent antenna gain G(φ). For the proposed inverse radar sensor model, the
transmitting power Pt and the effective aperture area Ar are assumed to be constant for
the sensor. Furthermore we assume a minimal power threshold Pr,min, which is used to
distinguish between measurements and noise.
We use a simple exponential function to model the antenna gain of the radar sensor,

which can be replaced by a more accurate one, if the specifics from the used sensor are
known:

G(φ) = Gmax · exp
(
−γ · φ

2

Φ2

)
. (2.38)

This model of the antenna gain uses a maximal gain Gmax for the main axis of the
sensor, some positive tuning parameter γ, as well as the maximal angle Φ defining the
sensor’s field of view.
With the detection probability basically being a function over the signal to noise ratio

(SNR, [34]), we can express the detection probability of our reference object with respect
to the angle and range using the following function:

pdetect =
1

1 +
Pr,min

Pr

(2.39)

pdetect(r, φ) =
1

1 + Pr,min · C · σ−1
ref · r4 ·G(φ)−1

. (2.40)

This detection probability pdetect(r, φ) of the reference object, scaled by a factor αfree,
is used as freespace probability in the absence of detections. As this inverse radar model
is considering the impact of detections in the later occupancy calculation step, we insert
this freespace “probability” as default value in our polar grid cell’s pfree. Note that as
this value does not depend on the current detections, the default freeness probability
can be precomputed and re-used in every update cycle (example shown in figure 2.7).

Detection Counting Due to the higher uncertainty of the radar sensor, all polar bins
in the range φ ± 2σφ are updated by the detections with azimuth angle φ and range
r. σφ is a sensor specific parameter for the expected standard deviation of detections
in their azimuth angle. Figure 2.8 illustrates the affected cells for each detection. Cells
with ranges less than rmin or more than r+2σr are not updated and skipped completely.
Cells with ranges lower than r − 2σr are considered as more likely to be free, whereas
cells with higher ranges are considered more likely to be occupied.
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Figure 2.7: Detection probability pdetect of our reference object on a radar’s field of view with
max range 100m and aperture angle 120◦.
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2σφ

Figure 2.8: Showing the areas, which are ignored, estimated as freespace or as occupied, with
respect to the given uncertainty (σr, σφ). Dotted lines represent borders of the
underlying polar cells.

All cells of the considered polar bins with a radius rc above rmin and below the current
detection (rc ∈ [rmin, r − 2σr]) are considered to be more likely free than occupied. We
model the freeness “probability” with a quadratic decay in range as well as in the angle
difference to the given detection point:

fφ(φc) = γangle, free − γangle, free ·
(
φc − φ

2σφ

)2

(2.41)

fr(rc) = γrange, free − γrange, free ·
(
rc − rmin

r − rmin

)2

(2.42)

fr,φ(rc, φc) = fφ(φc) · fr(rc), (2.43)

with γangle, free and γrange, free being constant parameters for the inverse sensor model.

In the area, which is considered to be measured as occupied (rc ∈ [r ± 2σr]), we
assume a Gaussian distribution of the measured detection. Therefore the probability
density function is:

p(R,Φ) ∼ N (r −R, σ2
r ) · N (φ− Φ, σ2

φ). (2.44)
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2 Static Occupancy Grid

The occupancy for a given cell c can then be estimated using the probability density
function (eq. 2.44) and the area of the cell Ac (given by the polar grid resolution):

o(rc, φc) = Ac · p(rc, φc). (2.45)

For every polar cell c we can define two subsets of all detections (r, φ) ∈ D. In the first
subset Fc all detections indicating freespace are included, whereas in the second subset
Oc all detections indicating occupancy are included:

Fc = {(r, φ) ∈ D|r ≥ rc + 2σr ∧ φ ∈ [φc ± 2σφ]} (2.46)

Oc = {(r, φ) ∈ D|r ∈ [rc ± 2σr] ∧ φ ∈ [φc ± 2σφ]}. (2.47)

With these two subsets, we can calculate a freeness vfree and an occupancy vocc value
for every cell:

vfree = min

1, αfree · pdetect(r, φ) +
∑

(r,φ)∈Fc

fr,φ(rc, φc)

 (2.48)

vocc = min

1,
∑

(r,φ)∈Oc

or,φ(Ac)

 . (2.49)

Figure 2.9 shows an example for the two values, given two detections.
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Figure 2.9: The freeness vfree and occupancy vocc values for different ranges. This example
shows the impact of two detections at ranges 40m and 70m.
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Occupancy Probability Calculation With the results of the ray counting and the de-
fault freespace, we are able to estimate the occupancy probability for every cell.

In order to model occlusion caused by closer detections, we are considering every
angular bin individually. For better readability we skip the angular coordinate in this
section for now and use vfree(r) and vocc(r) as functions returning the freeness and
occupancy value for the cell with range index r.

We define the sum of occupancy probabilities over all closer cells as:

O(r) = min

(
1,

r∑
i=1

o(i)

)
. (2.50)

The occupancy probability of a single cell with range index r is:

o(r) = max (0, vocc(r)− λO(r − 1)) , (2.51)

with λ being a fixed sensor parameter, defining the occlusion impact of previous detec-
tions. The freeness probability is defined as:

f(r) = max (0, vfree(r)−O(r)) . (2.52)

Figure 2.10 shows the occupancy and freeness probabilities using the example of the
same two detections as previously.
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Figure 2.10: Occupancy o(r) and freeness f(r) probabilities for different ranges. This example
shows the effect of the same two detections at ranges 40m and 70m as in figure
2.9. Occlusion impact chosen as λ = 1

4 .
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Combining both values leads to the final occupancy probability / masses of the cell c:

P (Oc|Zt) =

{
1+o(r)

2 , o(r) > 0
1−f(r)

2 , otherwise
(2.53)

Zc(SD) =

{
o(r) , o(r) > 0

0 , otherwise
(2.54)

Zc(F ) =

{
0 , o(r) > 0

f(r) , otherwise
(2.55)

Zc(FSD) = 1− Zc(SD)− Zc(F ). (2.56)

Cartesian Transformation The last step of the inverse radar sensor is the transforma-
tion into a Cartesian grid. Since we modeled the sensor uncertainties with an impact
on not only the measured cell itself, but also its neighboring cells, we recommend the
bi-linear interpolation over the max-operator in the case of radar sensors.

2.3.3.3 Dynamic Estimation

One of the advantages using radar sensors is the fact, that they measure a radial velocity
vrad for every detection. This additional information is often used to distinguish between
“static” and “dynamic” detections. Since the radial velocity is only a projection of
the real velocity vector, static detection cannot be distinguished from velocity vectors
orthogonal to the sensor. Therefore only dynamic detections can be identified as such,
and all non-dynamic classified detections are either static or dynamic (moving only
tangentially to the sensor).

Ego Motion Compensation The very first step before taking advantage of the mea-
sured radial velocities is to compensate the measured values by the own ego motion.
The kinematics of the own vehicle have a huge impact on the measured velocities of
the target point, e.g. if the ego vehicle is driving with 20m/s, a detection caused by a
static object directly in front of the vehicle would be measured with a radial velocity of
−20m/s.

To correct the measured radial velocity, we subtract the expected radial velocity of a
static detection at the exact same position. Therefore we transform a virtual detection at
the location of each detection with an attached velocity vector v of (0, 0)T from the static
world coordinate system into the moving sensor coordinate system (see A.2) and name
the transformed velocity vector vs. The expected radial velocity of this virtual static
detection can be calculated using vector projection given the position of the detection
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2.3 Sensor Models

Figure 2.11: Radar-detections of a static guardrail and moving target vehicle. The vehicle with
the mounted radar sensor is coming from the bottom and making a right turn to
enter the lane of the target vehicle. The measured radial velocities by the sensor
are shown in green, whereas the compensated radial velocities are shown in black.

within the sensor coordinate system:

ps =

(
cos (φ)
sin (φ)

)
· r (2.57)

v̂rad =
pTs · vs√
pTs · ps

. (2.58)

The ego motion compensated radial velocity ṽrad is then:

ṽrad = vrad − v̂rad. (2.59)

To qualify a detection as “dynamic”, we use an exponential function to provide a
dynamic belief value between 0 and 1 (see 2.12):

pdynamic = 1− exp

(
−

ṽ2rad
2 · σ2

vrad

)
. (2.60)

In the case of using Dempster-Shafer masses as output of the sensor model, we assign
the ratio of pdynamic from the static or dynamic mass SD (eq. 2.56) to the dynamic
occupied mass D as follows:

Zc(D)← pdynamic · Zc(SD) (2.61)

Zc(SD)← Zc(SD)− Zc(D). (2.62)

Gaussian Velocity Estimation Based on the ego motion compensated radial velocity
ṽrad we want to generate a statement for the 2-D velocity vector of the detection target.
As getting the velocity vector out of a single measured radial velocity is not possible,
we want to model our assumed velocity using a Gaussian distribution. Under the as-
sumption, that the absolute speed is limited by some constant vmax, it follows, that with
a higher absolute radial velocity, the possible absolute tangential velocity component is
getting smaller (see fig. 2.13).
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D
y
n
a
m
ic

b
el
ie
f
p
d
y
n
a
m
ic

Figure 2.12: Belief for dynamic qualification of a radar detection given the ego motion com-
pensated radial velocity.

The maximal tangential velocity value is defined by the assumed overall maximal
speed value vmax and the radial velocity ṽrad:

v2tan, max = v2max − ṽ2rad. (2.63)

We assume the standard deviation of the radial velocity component to be a sensor
specific constant σvrad . The standard deviation of the tangential component on the
other hand is approximated by half of the maximal possible tangential velocity:

σ2
vtan =

(vtan, max

2

)2
(2.64)

=
1

4

(
v2max − v2rad

)
. (2.65)

Given the standard deviations for the radial and tangential velocity components, as
well as the measured angle (in world coordinates) φ̃, we can express the Gaussian ap-
proximation of the velocity with mean v and covariance matrix Σv (fig. 2.14):

R =

(
cos φ̃ − sin φ̃
sin φ̃ cos φ̃

)
(2.66)

v =

(
vx
vy

)
= R

(
ṽrad
0

)
(2.67)

=

(
cos φ̃ · ṽrad
sin φ̃ · ṽrad

)
(2.68)

Σv = R

(
σ2
vrad

0
0 σ2

vtan

)
RT . (2.69)
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vrad

vtan

vmax

Figure 2.13: Two (blue and cyan) possible radial velocities (drawn as arrows) and their corre-
sponding possible tangential velocity components (drawn as double-arrows).

2.3.4 Sensor Fusion

Instead of fusing the sensor grids prior to actually updating the grid map, all single
sensor grids can be applied also directly to the grid map itself. Fusing the sensor grids
beforehand has two main advantages, first of all the fusion can be easily parallelized
(compare the parallel streams in fig. 2.2), but the second and even more important
reason is that fusion between the different sensors can be controlled separately from the
fusion with the accumulated data.

Fusion Using Bayes To fuse two sensor grids (P1(Oc|Zt
1) and P2(Oc|Zt

2)), we can simply
use an addition in the logarithmic odds representation (compare with eq. 2.3):

l(Oc|Zt
1, Z

t
2) = l(Oc|Zt

1) + l(Oc|Zt
2). (2.70)

The fused occupancy estimation l(Oc|Zt
1,2) can then be used to update the grid map

itself. As the Bayesian framework has no explicit way of dealing with conflicts (e.g.
sensor 1 estimates the cell as being free, whereas sensor 2 estimates the same cell as
being occupied), the only options to influence the sensor fusion here is to limit the
allowed contribution of each sensor, by applying a min/max operation before executing
the addition or using a weighted sum:

l̃(Oc|Zt
1) = min

(
τmax, sensor1,max

(
τmin, sensor1, l(Oc|Zt

1)
))

(2.71)

l̃(Oc|Zt
2) = min

(
τmax, sensor2,max

(
τmin, sensor2, l(Oc|Zt

2)
))

(2.72)

l(Oc|Zt
1, Z

t
2) = α1 · l̃(Oc|Zt

1) + α2 · l̃(Oc|Zt
2). (2.73)

In our implementation we prefer using the Dempster-Shafer framework, which allows
us to handle the conflicts in a more direct fashion, as described in the following para-
graphs.
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Figure 2.14: Estimation (σrad, σtan) of the ground-truth velocity vGT from the radial velocity
vector ṽrad.

Dempster-Shafer Fusion of Two Lidar Grids In this paragraph we want to discuss the
grid fusion of two grids generated by our inverse lidar sensor model (section 2.3.2): Z1

and Z2. We use the default combination rule, as described in section 2.2:

Z1,2 = Z1 ⊕ Z2. (2.74)

In the case of lidar grids, we only have the masses for F , SD and FSD, leading to
following conflicts:

ζ1 = Z1(F ) · Z2(SD) (2.75)

ζ2 = Z1(SD) · Z2(F ), (2.76)

namely one sensor stating that a cell is free, whereas the other sensor is stating that the
cell is occupied. For the lidar/lidar fusion we simply assign the conflict masses to the
unknown mass FSD as there is no reasonable way, why we should trust one sensor over
the other:

Z1,2(FSD)← ζ1 + ζ2. (2.77)

Dempster-Shafer Fusion of Two Radar Grids The fusion of two sensor grids, generated
by our inverse radar sensor model (section 2.3.3) differs only slightly compared to the
fusion of two lidar grids. As we do have the additional mass D as output in the radar
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grids, we get two additional conflicts:

ζ3 = Z1(F ) · Z2(D) (2.78)

ζ4 = Z1(D) · Z2(F ). (2.79)

With the same reasoning as before, we assign those two conflict masses additionally
to the FSD mass, as in 2.77:

Z1,2(FSD)← ζ3 + ζ4. (2.80)

Dempster-Shafer Fusion of Lidar and Radar Grids In the case of fusing the sensor
grid of a lidar ZL and a radar grid ZR, the same four conflicts mentioned previously
(ζ1, ζ2, ζ3, ζ4) may occur. Due to the high precision of the lidar compared to the radar,
we trust the estimation of the lidar sensor more and therefore assign all conflict masses
in favor of the lidar sensor:

ζ1 = ZL(F ) · ZR(SD) (2.81)

ζ2 = ZL(SD) · ZR(F ) (2.82)

ζ3 = ZL(F ) · ZR(D) (2.83)

ζ4 = ZL(D) · ZR(F ) (2.84)

Z1,2(F )← ζ1 + ζ3 (2.85)

Z1,2(D)← ζ4 (2.86)

Z1,2(SD)← ζ2. (2.87)

Note, that the exact same argumentation holds true, if instead of the lidar grid a
already fused lidar and radar grid is fused again.

Fusion of Gaussian Velocity Estimations In some cases we do get two or more velocity
estimations for the same cell from different sensors (e.g. car in front of the ego vehicle
is seen by two radar sensors). Therefore we need to fuse the information of sensor 1
(v1,Σv1) with the information of sensor 2 (v2,Σv2) to get the joint distribution v,Σv:

v = Σv2 (Σv1 +Σv2)
−1 v1 +Σv1 (Σv1 +Σv2)

−1 v2 (2.88)

Σv = Σ1 (Σv1 +Σv2)
−1Σ2. (2.89)

Figure 2.15 shows an example of two such velocity estimations and the resulting joint
distribution.
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Figure 2.15: Fusion of two Gaussian velocity distributions
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The dynamic occupancy grid can be interpreted as an extension of the static occupancy
grid (chapter 2) for dynamic environments. In addition to the estimation of occupancy
probability, the dynamic occupancy grid also provides an estimation of the velocity of
the cells. In that sense the static occupancy grid is a special case of the dynamic one,
with a fixed velocity of 0. In this chapter we will present the dynamic extension for both
the occupancy grids generated using traditional Bayes (2.1) as well as Dempster-Shafer
(2.2).

Sensor
measurements

Update
grid map

Updated
grid map M

Predict
grid map

Predicted
grid map M̄

Inverse sensor models

Grid mapping

Figure 3.1: Overview of dynamic occupancy grid mapping

The dynamic occupancy grid uses classic update/predict cycles to estimate the static
and dynamic environment (fig. 3.1).

3.1 Bayes 4-D

In section 2.1 the update formula for a static occupancy grid using Bayes’ theorem was
derived as (2.1):

P (Oc|Z1:t)

1− P (Oc|Z1:t)
=

P (Oc|Zt)

1− P (Oc|Zt)
· P (Oc|Z1:t−1)

1− P (Oc|Z1:t−1)
· 1− P (Oc)

P (Oc)
.

In a static environment the occupancy of a single cell should not change over time.
In a dynamic environment a changing occupancy of cells is caused by moving objects,
therefore the update formula has to be modified. Rather than updating conditional
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probabilities of time-invariant occupancyOc, different time stamps have to be considered:

P (Ot
c |Z1:t)

1− P (Ot
c |Z1:t)

=
P (Ot

c |Zt)

1− P (Ot
c |Zt)

· P (Ot
c |Z1:t−1)

1− P (Ot
c |Z1:t−1)

· 1− P (Ot
c)

P (Ot
c)

. (3.1)

As in the static case, we assume a prior occupancy probability of 50%, which eliminates
the last factor:

P (Ot
c|Z1:t)

1− P (Ot
c|Z1:t)

=
P (Ot

c|Zt)

1− P (Ot
c|Zt)

· P (Ot
c|Z1:t−1)

1− P (Ot
c|Z1:t−1)

. (3.2)

Equation 3.2 defines the occupancy probability of a cell c being occupied at time t,
given all sensor measurements up to time t. The included inverse sensor model P (Ot

c|Zt)
stays the same as in the static occupancy grid since the occupancy estimation task for
time t given the sensor measurement of time t did not change. The recursive term
P (Ot

c|Z1:t−1) on the other hand predicts the cell’s occupancy probability for time t,
given the past sensor measurements up to time t − 1. Unlike in the static case, where
this prediction can be modeled using the identity function, the dynamic case requires
this prediction function to be specified.

3.1.1 Prediction Formula

The presented prediction formula is based on the following assumptions:

• In addition to the occupancy probability, each cell also has a velocity distribution.

• Only occupancy has a velocity, freespace is defined as not occupied and is not
associated with a velocity.

• The velocity is described in terms of cells per discrete update cycle.

• The movement between cells is constant and the motion follows a linear model
between two time points.

• A cell c is only reachable from exactly one other cell given a specific velocity v:
csource + v = cdestination.

• Cells outside the mapped area are treated as unknown regarding initial occupancy
and velocity distribution.

• The initial velocity distribution of a cell is uniform (same as for the occupancy).

Following the stated assumptions, the joint distribution of being occupied with a
given velocity can be computed. As no change in the velocity is assumed, a cell c being
occupied with velocity v at time t has the same probability as cell c− v at time t− 1:

P (Ot
c = occ, V t

c = v|Z1:t−1) = P (Ot−1
c−v = occ, V t−1

c−v = v|Z1:t−1)

= P (Ot−1
c−v = occ|Z1:t−1) · P (V t−1

c−v = v|Ot−1
c−v = occ, Z1:t−1).

(3.3)
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This calculation requires the information of the velocity distribution and the occupancy
probability to be stored for every cell, which is covered by our assumptions.
Next the predicted occupancy probability can be calculated by marginalization:

P (Ot
c = occ|Z1:t−1) =

∑
v∈V

P (Ot
c = occ, V t

c = v|Z1:t−1). (3.4)

This predicted occupancy probability is used in equation 3.2 in combination with the
result of the inverse sensor model (section 2.3) to estimate the occupancy probability for
time t. In order to have the required information for the next prediction cycle (eq. 3.3),
the velocity distribution, given that the cell is occupied, has to be re-calculated using
the joint distribution:

P (V t
c = v|Ot

c = occ, Z1:t−1) =
P (Ot

c = occ, V t
c = v|Z1:t−1)

P (Ot
c = occ|Z1:t−1)

. (3.5)

As mentioned we assume a uniform distribution as initial value, meaning that each
velocity is equally likely:

P (V 0
c = v|O0

c = occ) =
1

|V|
. (3.6)

3.1.2 Forgetting Old Measurements

To enable faster correction of erroneous sensor data or prediction results and to increase
the uncertainty of cells that have not been updated for a longer period of time, we
introduce a forgetting factor ε. The forgetting factor ε represents the weight of the new
state being equal to the initial state and extends the prediction equation (3.3):

P (Ot
c = occ, V t

c = v|Z1:t−1) =

(1 − ε) · P (Ot−1
c−v = occ|Z1:t−1) · P (V t−1

c−v = v|Ot−1
c−v = occ, Z1:t−1)

+ ε · P (O0
c = occ) · P (V 0

c = v|O0
c = occ). (3.7)

With the initial values of the occupancy P (O0
c = occ) and the velocity distribution

P (V 0
c = v|O0

c = occ) being cell and velocity independent constants, we can substitute
the last term with:

ε · P (O0
c = occ) · P (V 0

c = v|O0
c = occ) =

ε

2 · |V|
. (3.8)

The forgetting factor ε ensures that the dynamic occupancy map will convert to its
initial state if no updates during measurements can be applied. Furthermore it also
prevents the occupancy probabilities from getting too close to 0 or 1, which would lead
to numeric instabilities.
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3.1.3 Static Map as Special Dynamic Case

It is important to mention, that the static occupancy grid map is only a special case of
the dynamic occupancy grid map, which in turn makes the proposed dynamic occupancy
grid map a generalization of the static one. In the static case the probability of the cells
having a velocity of 0 is 100%, leading to the probability of having v ̸= 0 of 0%:

P (V t−1
c−v = 0|Ot−1

c−v) = 1 (3.9)

P (V t−1
c−v ̸= 0|Ot−1

c−v) = 0, (3.10)

inserting this values into the joint distribution equation 3.3 leads to following occupancy
prediction:

P (Ot
c = occ|Z1:t−1) = P (Ot

c = occ, V t
c = 0|Z1:t−1) (3.11)

= P (Ot−1
c = occ|Z1:t−1), (3.12)

which is equal to the static prediction used in eq. 2.2.

3.1.4 Example

We illustrate the described algorithm using a simple one-dimensional example. For this
we use the following setup:

• a grid map with 81 cells (C = {c ∈ Z : 0 ≤ c ≤ 80}),

• a distance measuring sensor located at c = 0,

• a fixed set of allowed velocities (V = {v ∈ Z : −3 ≤ v ≤ +3}), and

• a single target starting at position c = 30 with a constant velocity of v = +2.
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(a) Measurement model for object located at c =
30.
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(b) Updated occupancy map for time stamp t =
1 given measurement Z1.

Figure 3.2: Measurement model P (Ot
c|Zt), and updated occupancy map P (Oc|Z1:t) for t = 1.

The blue vertical line denotes the real position (ground-truth).

Our simple inverse sensor model P (Ot
c|Zt) is assuming an occupancy probability of

40% in front of the detection (ground-truth object), an occupancy probability of 80%
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3.1 Bayes 4-D

at the location of the object, and a value of 50% behind the object, as shown in figure
3.2a.
Figure 3.2b shows the map after incorporating the first measurement. The updated

occupancy probabilities match with the inverse sensor model, as the initial values of 0.5
represents basically no prior information. As the update (eq. 3.2) is not affecting the
velocity distribution, the probabilities for the single values are equivalent to their initial
value (eq. 3.6) of 1

|V| =
1
7 .
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(a) Predicted occupancy map for time stamp t =
6 given measurements Z1:5.
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(b) Updated occupancy map for time stamp t =
6 given the latest measurement Z6.

Figure 3.3: Predicted occupancy map P (Ot
c|Z1:t−1) and updated occupancy map P (Ot

c|Z1:t)
for t = 6. The blue vertical line denotes the real position (ground-truth).

After a few (here: five) time steps (figure 3.3), the predicted and updated map shows
low occupancy probabilities in front of the object, as well as a high occupancy probability
at the location of the object: P (O6

40 = occ|Z1:5) = 0.77. Furthermore the correct velocity
of +2 is estimated as the most likely one with a probability of: P (V 6

40 = +2|O6
40 =

occ, Z1:5) = 0.50.
This small example shows, that the proposed system is able to estimate a cell velocity

without explicit velocity measurements.

3.1.5 Limitations in Two Dimensions

Although the presented example only illustrated a one-dimensional world, the actual
framework can be easily extended to two dimensions:

• The coordinate c has now two components, one for each dimension: c = (cx, cy)
⊤ ∈

C ⊆ Z2, and

• the velocity V is also expressed using two components: v = (vx, vy)
⊤ ∈ V ⊆ Z2.

The set of possible values for the velocities V has to be defined using the absolute
velocity value:

V2-D = {(vx, vy)⊤ ∈ Z2 |
√

v2x + v2y ≤ vmax}.

The total number of possible velocities |V| can be approximated using the formula for
calculating the area of a disk:

|V| ≈ v2maxπ.

37



3 Dynamic Occupancy Grid

As the complete velocity distribution has to be stored for every single cell, the amount
of required memory increases not only quadratically with the dimension of the grid map,
but it also increases quadratically with the maximum allowed velocity value.

Let’s consider the following inner city automotive setup with:

• The grid map covering an area of 120m× 120m around the vehicle,

• a cell-size of 0.125m× 0.125m,

• an update/predict frequency of 16Hz, and

• a maximum allowed velocity value vmax of 72 km = 20m/s.

This setup leads to a total number of cells:

N =
120

0.125
· 120

0.125
= 960 · 960 = 921 600.

Converting the maximum velocity to “cells per time step” we get the total number of
possible velocities:

vmax =
20m/s

16Hz · 0.125m
= 10

|V| ≈ 102π ≈ 315.

We chose the single precision float data type to store our probability values. The size
of a float is 4B (byte). Therefore, we get a total memory requirement of:

MemoryRequirement = N · (1 + |V|) · 4B
= 921 600 · (1 + 315) · 4B
= 1 164 902 400B

≈ 1.1GiB.

Storing and processing of such an amount of data may be feasible with the processing
power of today’s computers, but is not feasible to work on an automotive ECU. Further-
more, this requirement increases quadratically with the maximum supported velocity
value or the configured grid map size.

The majority of cells surrounding the vehicle is either unknown, freespace or static
occupied. Only a very small amount of the cells actually represent a dynamic occupied
area. Evaluating our ground-truth data set (chapter 6.1) shows that on average only
0.235% of the cells are dynamic occupied, with a maximum of 0.674%. Therefore storing
and processing of the velocity distribution for every single cell is a waste of memory and
computation time. This conclusion leads us to the following section, where an alternative
approach is presented, which focuses on the processing of the dynamic occupied areas.
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3.2 Particle Dempster Shafer Hybrid

3.2 Particle Dempster Shafer Hybrid

The dynamic particle-based Dempster Shafer hybrid is an extension of the static one
presented in 2.2. The main idea of the particle filter Dempster Shafer hybrid approach
is to keep the computational efforts in unknown, empty or static areas of the grid map at
a minimum, while enabling the required computation in dynamic areas. This balancing
is essentially made possible by two key actions.

The first measure is to extend the set of possible hypothesis to F ree-space, Static-
occupied and Dynamic-occupied. This allows the classification of areas with dynamic
occupancy directly on the cell’s mass distribution. Secondly the prediction of the dy-
namic occupancy masses is carried out by a fixed number of particles, allowing a “con-
stant” runtime and allows to focus the prediction computation on the areas of the map,
where movement is expected.

In this section we will discuss the update and prediction steps of the Particle Dempster
Shafer Hybrid.

Hypotheses In addition to the two possible hypotheses of the static Dempster Shafer
grid, a third one D for dynamic occupied is added, ending up in:

Θ = {F, S,D}. (3.13)

This results in following frame of discernment (power set):

2Θ = {∅, F, S,D, FS, FD, SD,Θ}. (3.14)

We follow the argumentation of [18] and define the mass of static occupied or freespace
to be 0, as both events are mutually exclusive. As the mass of none hypothesis is also
defined as 0, we end up with following possible hypothesis:

• F : Freespace: the cell is currently estimated as being free.

• S: Static occupied: the cell is currently estimated as static occupied.

• D: Dynamic occupied: the cell is currently estimated as dynamic occupied.

• FD: Freespace or Dynamic occupied: the cell is currently considered as free or
dynamic occupied, meaning that the cell represents drivable area, e.g. it has been
sensed as free before but is currently not sensed and hence could be occupied by a
dynamic object again.

• SD: Static or Dynamic occupied: the cell is considered to be occupied, but it
cannot be determined if it is occupied by a static or dynamic object.

• FSD: Either of the 3 hypothesis is possible, e.g. nothing is known about this cell
(yet).
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Particles Next to the cells, where the information about the mass distribution is stored,
we also use particles for the dynamic prediction and velocity estimation of the cells. The
total number of the particles over the complete grid map is chosen to be constant.
Nevertheless the distribution of the particles over the cells changes from frame to frame.
Each particle pi carries the following information:

• 2-D position xi: This position is absolute and interpreted in meters. The corre-
sponding cell index for this position is denoted as c(xi).

• 2-D velocity vector vi: The velocity vector is also absolute and interpreted in
meters per second.

• Age ai: The age describes how old a given particle is and is incremented in every
prediction cycle. New particles start with an age of zero.

• Weight ωi: The weight of the particle (between 0 and 1).

The weights of all particles belonging to the same cell are defined to sum up to 1:∑
i|c(xi)=c

ωi = 1. (3.15)

This definition explicitly means that the sum of the particle weights in the complete
grid map is neither defined to sum up to one, nor is expected to stay constant during
multiple prediction cycles.

As the dynamics of the cells are represented by its associated particles, the estimated
velocity vector of each cell c is calculated as a weighted sum over all particles belonging
to that cell, which have a given minimum age τa:

vc = η
∑

i|c(xi)=c∧a≥τa

(ωi · vi) (3.16)

η−1 =
∑

i|c(xi)=c∧a≥τa

ωi. (3.17)

3.2.1 Update

The update of the dynamic grid can be separated into two steps. During the first step
(3.2.1.1) the mass values of the latest map prediction M̄ t (see 3.2.2) are updated with
the mass values from generated sensor grid Zt (see 2.3). Afterwards the particle weights
will be adjusted (3.2.1.2) using the velocity estimation of the generated sensor grid (see
2.3.4).

3.2.1.1 Cell Updates

This first update step is based on the standard combination rule with a few adaptions.
As the sensor grid Zt contains mass values for θZ ∈ {F,D, SD,FSD} and the predicted
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3.2 Particle Dempster Shafer Hybrid

map M̄ t values for θM̄ ∈ {S,D, FD, SD,FSD}, the following conflicts can occur:

ζ1 = M̄(S) · Z(F ) (3.18)

ζ2 = M̄(S) · Z(D) (3.19)

ζ3 = M̄(D) · Z(F ) (3.20)

ζ4 = M̄(SD) · Z(F ) (3.21)

The conflict mass ζ1 is equally assigned to S and F as there is no reason to prefer one
over the other:

M(S)← 1

2
ζ1 (3.22)

M(F )← 1

2
ζ1. (3.23)

In the second case, in which the predicted grid estimates static occupancy, whereas
the current sensor measurement is indicating dynamic occupancy, we assign the conflict
mass to the static or dynamic occupancy mass value:

M(SD)← ζ2. (3.24)

The third and fourth conflict masses ζ3, ζ4 occur, because the sensor measurement
indicates freespace, whereas the prediction is estimating occupancy. In this case we
trust the current measurement more than the prediction assigning both conflict masses
to F :

M(F )← ζ3 + ζ4. (3.25)

Additionally to the assignment of conflict masses, the update rule of the static or
dynamic occupancy mass is modified similar to [18]. As both, the lidar and the radar,
sensor models are not able to separate static occupancy, there would be no evidence for
static occupancy at all. On the other hand, if a single cell is repeatedly sensed as being
occupied it is highly likely that this cell is static occupied. Following this argumentation
leads to the modification of the update rule in the case of SD:

M(SD) =̂ M̄(SD) · Z(FSD)︸ ︷︷ ︸
λ1

+ M̄(SD) · Z(SD)︸ ︷︷ ︸
λ2

+ M̄(FSD) · Z(SD)︸ ︷︷ ︸
λ3

(3.26)

M(S)← β · λ2 (3.27)

M(SD)← −β · λ2 (3.28)
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Final Update Rule Summarizing the conflict assignments and the modification of the
SD combination leads to following update formula:

M(F ) =
(
M̄ ⊕ Z

)
(F ) +

1

2
ζ1 + ζ3 + ζ4 (3.29)

M(S) =
(
M̄ ⊕ Z

)
(S) +

1

2
ζ1 + βλ2 (3.30)

M(D) =
(
M̄ ⊕ Z

)
(D) (3.31)

M(FD) =
(
M̄ ⊕ Z

)
(FD) (3.32)

M(SD) =
(
M̄ ⊕ Z

)
(SD) + ζ2 − βλ2 (3.33)

M(FSD) =
(
M̄ ⊕ Z

)
(FSD) (3.34)

3.2.1.2 Particle Updates

In this update step the particle weights will be updated, if a velocity estimation is
available for the particular cell. The velocity estimation of the sensor grid Zt for a cell c
is given as a two dimensional Gaussian distribution with mean value vz,c and covariance
matrix Σz,c. In order to consider this velocity information we multiply the weight ωi

of each particle i, which is located in the particular cell, with the density value of the
Gaussian velocity distribution, regarding the particle’s velocity vi:

ω̂i = ωi ·
exp

(
−1

2 (vi − vz,c)
T Σ−1

z,c (vi − vz,c)
)

√
(2π)2 |Σz,c|

(3.35)

After this update, the weights have to be normalized to sum up to one for each cell:

ωi =
ω̂i∑
i ω̂i

(3.36)

Modifying the particle weights in this way, enables us to incorporate measured velocity
components of the radar sensor. The additional velocity information leads to a faster
convergence using the particles and therefore to a better velocity information in our
dynamic grid approach.

3.2.2 Prediction

The grid map prediction can be separated into the static and the dynamic prediction
part as illustrated in figure 3.4 and is explained in this section.
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Figure 3.4: Dynamic grid prediction overview

3.2.2.1 Static Prediction

The static prediction “predicts” the mass values, which do not move and can be expressed
with following prediction equations of [18]:

M̃ t+1(F ) = 0 (3.37)

M̃ t+1(S) = M t(S) (3.38)

M̃ t+1(D) = 0 (3.39)

M̃ t+1(FD) =
M t(FD) +M t(F )

1−M t(D)
(3.40)

M̃ t+1(SD) = M t(SD) (3.41)

M̃ t+1(FSD) = 1−
(
M̃ t+1(S) + M̃ t+1(FD) + M̃ t+1(SD)

)
. (3.42)

We do not predict any freespace, because cells, which are estimated as being free in the
current timestamp can be occupied by a moving object in the next timestamp. Static
occupied cells are predicted to be static occupied in the next timestamp, as they are
not expected to move. The static prediction is not applied to any dynamic occupancy,
but uses the mass value of dynamic occupancy to adapt the predicted mass value of
being free or dynamic occupied FD. The mass value of being dynamic occupied or free
is determined by the mass values of being F or FD. Unclassified occupancy (static or
dynamic) is predicted to stay at its place as the static prediction only accounts for the
static nature of SD. Lastly, all the masses that are not assigned during the prediction
are assigned to FSD.

3.2.2.2 Dynamic Prediction

The dynamic prediction can be divided into several processing steps. First of all, a par-
ticle re-sampling is followed by a normalization. Finally, the particles will be predicted
in order to transport the dynamic occupancy evidence.

Particle Re-Sampling At the beginning the particle re-sampling takes place. The parti-
cles are sampled according to the “weight” of the individual cells. To sample N particles
we draw N cells, where those particles will be located in. The likelihood of a cell c being
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selected is determined by its sampling weight ωc. The sampling weight is calculated
based on the cell’s SD and D masses and the age of the last update ac:

ωc =
max (8− ac , 0)

8
· (Mc(SD) +Mc(D)) .

The first factor, defined by the age of the last update, ensures that dynamic predic-
tion in areas, which have not been sensed (for a while), will disappear as there are no
particles populated there. The second factor, the sum of the static or dynamic and
dynamic occupancy mass, ensures that the particles are located in cells where we do
expect movement. Areas with only static occupancy or freespace are not populated and
therefore no processing power is consumed to predict movement in areas without any
dynamic movement. Furthermore, areas which are completely unknown (M(FSD)) are
not considered for the dynamic prediction. With this particle distribution we focus the
dynamic prediction on areas, where (potential) movement occurs.

For every selected cell c we generate a new particle with a probability of Mc(SD)
Mc(SD)+Mc(D) ,

otherwise an existing particle is copied.
A new particle is always located at the center of the selected cell. The velocity vector

vi of that new particle pi is either sampled using the orientation map (see 3.2.3) or
follows a uniform distribution over the possible velocities (see fig. 3.5):

φi =

{
atan2(Φ̃c) , Φ̃c available

U(0, 2π) , otherwise
(3.43)

vi =

(
cos(φi)
sin(φi)

)
· vmax ·

√
U(0, 1). (3.44)
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Figure 3.5: Uniform sampling of velocities. The left image is using the uniform sampling U(0, 1)
for the absolute velocity value, whereas the right images is using

√
U(0, 1).

For copying an existing particle, one of the existing particles of that cell is drawn with
respect to its weight ωp.

44



3.2 Particle Dempster Shafer Hybrid

Particle Normalization After the re-sampling of the particles, the new sampled par-
ticles’ weights have to be normalized to sum up to one for each cell. To normalize the
particles for a particular cell c, the weights of those particles are divided by the sum of
all particle weights belonging to that cell:

η =
∑

i|c(xi)=c

ωi (3.45)

ωi ← η−1 · ωi, ∀i|c(xi) = c (3.46)

Particle Prediction For the prediction of the dynamic parts of the map, all particles
are predicted using a constant linear motion model, as in [16]:

vt+1
i = vti +N (0, σ2

p)

xt+1
i = xti + δt · vt+1

i

at+1
i = ati + 1

ωt+1
i = ωt

i ·
(
M t

c(xi)
(D) +M t

c(xi)
(SD)

)
,

where vi is the velocity vector, xi the position and ai the age of particle i. N (0, σ2
p)

denotes a 0-centered Gaussian noise term with variance σ2
p and δt the timespan of the

prediction. The weight of the particle ωi is multiplied with the dynamic occupancy mass
value of the corresponding cell. This allows us to give particles originating from a cell
with high evidence of dynamic occupancy higher weights than particles from cells with
low evidence of being (dynamic) occupied.

We use the particle prediction to transport the evidence of being dynamic occupied
from their source location to the destination cell. Every particle i transports a portion
of the dynamic mass value of its source location proportional to its weight ωi. In order
to allow the transition from dynamic occupancy masses to static occupancy masses we
transfer a part of the the dynamic mass D to the static/dynamic mass SD according to
the particle’s speed value s = ∥v∥2 (shown in fig. 3.6):

fS(s) = e−(
s
α)

2

. (3.47)
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Figure 3.6: Amount of static mass during prediction for given particle speed (α = 0.85m/s).

Using the predicted particles and the information about their source xti and destination
location xt+1

i the dynamic prediction of the grid cells becomes:

M̂ t+1
c (F ) = 0 (3.48)

M̂ t+1
c (S) = 0 (3.49)

M̂ t+1
c (D) =

∑
i|c(xt+1

i )=c

[
ωt
i · (1− fS(v

t+1
i )) ·

(
M t

c(xt
i)
(D) +M t

c(xt
i)
(SD)

)]
(3.50)

M̂ t+1
c (FD) = 0 (3.51)

M̂ t+1
c (SD) =

∑
i|c(xt+1

i )=c

[
ωt
i · fS(vt+1

i ) ·
(
M t

c(xt
i)
(D) +M t

c(xt
i)
(SD)

)]
(3.52)

M̂ t+1
c (FSD) = 1−

(
M̂ t+1

c (D) + M̂ t+1
c (SD)

)
. (3.53)

Note that due to the assumed independence of single cells, the predicted dynamic
mass values can exceed 1.0, e.g. if particles of two or more cells are predicted into the
same destination cell. Therefore the predicted dynamic mass values have to be limited
to ensure:

M̂ t+1
c (D) ≤ 1.0 (3.54)

M̂ t+1
c (SD) ≤ 1.0 (3.55)

M̂ t+1
c (FSD) ≥ 0.0 (3.56)

Additionally all particle weights have to be normalized again in order to fulfill 3.15
after the prediction.
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3.2.2.3 Combination of Static and Dynamic Prediction

To generate the final predicted grid map M̄ t+1, given the static M̃ t+1 and dynamic
M̂ t+1 prediction, we use the standard combination rule again. This combination causes
exactly one conflict mass:

ζ1 = M̃ t+1(S) · M̂ t+1(D). (3.57)

We assign this conflict to the static occupancy mass S, because the evidence for
being static occupied is accumulated using several measurements, whereas the dynamic
occupancy mass D is estimated using a prediction with some uncertainty. Therefore the
final combination of the two predictions can be formulated as:

M̄ t+1
c (F ) = 0 (3.58)

M̄ t+1
c (S) =

(
M̃ t+1 ⊕ M̂ t+1

)
(S) + ζ1 (3.59)

M̄ t+1
c (D) =

(
M̃ t+1 ⊕ M̂ t+1

)
(D) (3.60)

M̄ t+1
c (FD) =

(
M̃ t+1 ⊕ M̂ t+1

)
(FD) (3.61)

M̄ t+1
c (SD) =

(
M̃ t+1 ⊕ M̂ t+1

)
(SD) (3.62)

M̄ t+1
c (FSD) =

(
M̃ t+1 ⊕ M̂ t+1

)
(FSD). (3.63)

3.2.3 Online Generated Orientation Prior

In order to optimize the initialization of new particles we propose to add an online
generated orientation prior. This prior information about the orientation is used during
the generation of new particles (eq. 3.43). Figure 3.7 shows the impact of having such
a prior information on the distribution of newly created particles. With the majority
of new particles pointing in the corrected direction of movement (e.g. if a new object
is entering the field of view) a much faster convergence in velocity estimation can be
achieved. This leads to a better static/dynamic classification and velocity estimation for
the grid cells.

We store this orientation information as unit vector Φ̃ =
(
Φ̃x, Φ̃y

)T
for every cell.

This orientation vector indicates the direction of movement of (possible) objects at the
cell location. If there is no prior orientation information available for one cell, the
orientation vector is set to zero. As we do no want to use any additional information,
such as map data, we need to calculate this prior information continuously within the
existing framework.

After each map prediction step (3.2.2), we will update the online estimated orientation
vector. To calculate the new orientation estimate, we use the orientation information
of the previous timestamp Φt and the current estimation of the cell velocity (eq. 3.16),
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Figure 3.7: 50 uniform sampled particles (blue) and 50 particles sampled using the prior orien-
tation (red).

weighted by a fixed decay factor γ and the dynamic mass of the cell M(D):

Φ̂t+1
c = Φt

c + γ ·M t+1
c (D) · vc

∥vc∥
(3.64)

Φt+1
c =

Φ̂t+1
c

∥Φ̂t+1
c ∥

. (3.65)

(a) Current orientation of v of cells. (b) Current orientation map Φ of cells.

Figure 3.8: Color encoded angles of current velocity estimation and orientation map.

Figure 3.8 shows an example of the current velocity estimation of the dynamic grid
and the generated orientation map. For cells, which are considered static (M(S) > τS),
the orientation estimation is not performed, as single false estimated particles would
lead to pointless orientation estimates for future particles in those areas. Furthermore,
the orientation of the remaining cells is only updated if the estimated velocity is above
a certain threshold (vc > τv). At low speeds the orientation based on the velocity vector
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is very error prune, as small errors in the velocity estimation can lead to rather huge
errors in the orientation.
To further improve the generated orientation map, we apply a Gaussian kernel on

the estimated orientation map Φ, resulting in a smoothed version and our final online
generated orientation prior map Φ̃ (see fig. 3.9). Applying this smoothing operation
removes single outliers and closes potential gaps (cells, where no orientation could be
estimated). Note that cells without any orientation estimation (or Φc = 0) have to be
excluded in the calculation of the “blurred” orientation, to prevent negative influences
on the result.

(a) Current orientation map Φ of cells. (b) Current smoothed orientation map Φ̃ of cells.

Figure 3.9: Color encoded angles of orientation map before and after smoothing.

The online generated orientation map Φ̃ is used as prior information during the ini-
tialization of new particles, as described in eq. 3.43. The advantages of using such a
prior information is shown during evaluation in 6.3.2.2 and 6.3.3.

3.2.4 Memory Consumption in Two Dimensions

Let’s consider the same setup as in 3.1.5:

• the grid map covering an area of 120m× 120m around the vehicle and

• a cell-size of 0.125m× 0.125m.

For every grid cell we need to store the mass values for F , S, D, FD and SD (FSD
can be calculated using the others). Additionally we store the two coordinates of the
orientation prior Φ̃ leading to 7 values per cell.

We use the same number of particles as cells. For each particle we store the age, the
x/y position, the x/y velocity vector and the weight of the particle, leading to 6 values
per cell.
Using this configuration we end up with 13 values per cell, which leads to an overall

memory consumption of:

MemoryRequirement = 13 ·N · 4B (3.66)

= 13 · 921 600 · 4B (3.67)

= 47 923 200B (3.68)

≈ 46MiB. (3.69)
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Using 46MiB of memory is a magnitude less than the 1.1GiB required by the Bayesian
approach. Processing of 46MiB in one cycle is absolutely feasible using modern com-
puters and upcoming automotive ECUs.

3.2.5 Example

The example shown in figure 3.10 is based on scene-0757 of the used dataset during the
evaluation (6.1). The ego vehicle, located in the center of the images is driving straight
towards the upper left corner of the image. The ego vehicle is approaching an intersection
with crossing traffic (all ground-truth objects are drawn with black bounding boxes).
As shown in figure 3.10b, the visible dynamic objects behind the ego vehicle (1 and

6) and the two crossing objects (8 and 16) are classified as dynamic occupied (drawn
in blue). Most of the structures next to the road are classified as static occupied (red),
whereas the road itself is classified as free/drivable (green and cyan).
Figure 3.10c shows the orientation of the current estimated velocity vector of the cells.

The orientation of this estimation is matching the velocity vectors of the ground-truth
objects. The generated orientation prior is shown in figure 3.10d.
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3.2 Particle Dempster Shafer Hybrid

(a) Input sensor grid Zt, using three Radar and
one Lidar sensors. Freespace F is shown in
green, dynamic occupancy D in blue, (static
or dynamic) occupancy SD in purple and un-
known area FSD in white.

(b) Updated grid map M t. Same coloring used
as in 3.10a, with additionally FD (freespace
or dynamic occupancy) shown in cyan and
static occupancy S shown in red.

(c) Orientation of the estimated velocities. Col-
oring of the angles as shown by the color
wheel in the bottom left corner.

(d) Online generated orientation prior. Using
the same coloring as in figure 3.10c.

Figure 3.10: Screenshots of the dynamic grid map using data of scene scene-0757. Ground-
truth objects are shown in black for reader’s understanding.
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4 Freespace Extraction

Next to the list of tracked objects (chapter 5), freespace contours are the most important
input for driver assistance systems and autonomous driving applications. With the
freespace contours the area, which is safe to drive, can be described in a very compressed
manner and is often used to describe the static environment around a vehicle in contrast
to the dynamic environment of the tracked object list.
The freespace extraction in the dynamic grid does not differ from the standard freespace

extraction used for static grid maps. The only slight difference is the summation of
masses to get the freespace “probability” to be used for extraction, as dynamic occu-
pancy can be easily integrated into the extracted freespace.
Figure 4.1 shows the output of the dynamic grid (chapter 3) which acts as input for

the freespace extraction algorithm. The vehicle (located in the center of the image) is
driving towards the upper left and approaching a traffic junction with crossing objects.
The current road is flanked by a building on the left and a fence on the right (both shown
as solid red-ish lines). The dynamic crossing vehicles, as well as one vehicle following
the ego are shown as blue pixels.

Figure 4.1: Input: Dynamic grid map. Green illustrates freespace M(F ), red static occupancy
M(S), blue dynamic occupancy M(D), cyan free or dynamic occupancy M(FD),
purple static or dynamic occupancy M(SD) and white unknown cells M(FSD).

In the first step belief values for being free or occupied are extracted from the dynamic
grid output. In the case of freespace detection we interpret dynamic occupied cells as
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4 Freespace Extraction

being free, since we are mainly interested in freespace defined as general drivable area
instead of actual empty areas. Therefore we define the belief of being free as:

bel(free) = M(F ) +M(D) +M(FD). (4.1)

Static occupied cells on the contrary are not allowed to be part of the extracted
freespace. In the case of not knowing whether occupied cells are static or dynamic
occupied, we choose the conservative interpretation and define the occupancy belief
accordingly:

bel(occ) = M(S) +M(SD). (4.2)

The extracted free and occupied beliefs are shown in the following figure 4.2.

(a) Extracted freespace belief bel(free). (b) Extracted occupancy belief bel(occ).

Figure 4.2: Extracted values for being freespace or occupied area. Black pixels corresponds to
values of 0, white pixels to values of 1.

In order to find the contours of the freespace we generate binary images from the
freespace and occupancy belief images by applying a thresholding operation. Note that
we are interested in extracting the freespace in the end, so the occupancy image gets
inverted to represent a not occupied mask. The result of the operation is shown in figure
4.3:

B(free) = (bel(free) > τfree) (4.3)

B(¬occ) = (bel(occ) < τocc) . (4.4)

To filter false-negatives from the free mask and to close small gaps (e.g. single cells
not sensed or below the threshold τfree) a morphological close transformation [35] is
applied to the binary mask B(free) (fig. 4.4a). To prevent occupied cells from being
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(a) Binary mask of being free B(free). (b) Binary mask of being not occupied B(¬occ).

Figure 4.3: Binary mask for being free B(free) and not occupied B(¬occ). White values rep-
resent true, black values false.

contained in the freespace mask, the resulted binary mask after the close transformation
will be masked by the not occupied mask later. With the same argumentation as for
the free mask, a morphological erode transformation [36] is applied to the not occupied
mask. This erode transformation also ensures a certain safety margin around occupied
obstacles.

(a) Extracted freespace, after
applying the morph opera-
tion.

(b) Extracted occupied space,
after applying the morph
operation.

(c) Final binary map for
freespace contour extrac-
tion.

Figure 4.4: Freespace and occupied areas after applying the morph operations and combining
both masks.

Figure 4.4 shows the two binary masks B(free) and B(¬occ) after applying the mor-
phological transformations as well as the combined mask B = B(free) ∧B(¬occ).
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4 Freespace Extraction

(a) Extracted Contours. (b) Final contours drawn on the input grid.

Figure 4.5: Extracted freespace contours. Contours indicating freespace are drawn in black,
whereas the occupied “holes” are shown in purple.

On the final binary mask B, a state of the art contour extraction method (e.g. [37]) is
applied to get the freespace contours as shown in figure 4.5a. As freespace areas, which
can not be reached from the current ego position, are of no interest for autonomous
driving functions, those contours are filtered out. Figure 4.5b shows the final result
drawn on the original input data.
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5 Object Tracking

Updated
grid map M

Extract
objects

Object
clusters

Update
objects

Object
tracks

Predict
objects

Predicted
objects

Figure 5.1: System overview for object tracking

The object tracking part takes the updated grid map M as input. This input contains
information about the estimation of dynamic/static occupied as well as velocity vectors
for each cell (see chapter 3). From the given input data, cells are extracted and clustered
to form the object measurements. This process is described in detail in section 5.1. The
extracted object measurements serve as input for the actual object tracker, described in
section 5.2. Figure 5.1 illustrates the architecture of the object tracking.
The overall goal of this part of the work is to provide autonomous driving functions or

ADAS system a sparse and established format to deal with dynamic objects: a dynamic
object list. Another advantage of this output format compared to the grid map itself
lies in the higher smoothness of the object tracks due to the additional use of a vehicle
kinematics model. Furthermore, predictions of dynamic objects can be handled more
efficiently than predictions of the grid map.

5.1 Object Extraction

The object extraction part takes the updated grid map (see 3) as input (see fig. 5.2) and
tries to extract object clusters. These object clusters serve as input measurements for the
actual object tracking. Additionally we use predicted object tracks from the last cycle as
supportive input hints. As the object tracking is focused on tracking dynamic objects,
the extraction part only extracts static cells, if they provide information regarding an
already existing object track.

Cell Extraction In the first step the belief values for being occupied and being dynamic
occupied are extracted (figures 5.3a and 5.3b):

bel(occ) = M(S) +M(D) +M(SD)

bel(dyn.occ) = M(D).
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5 Object Tracking

Figure 5.2: Input: Dynamic grid map. Green illustrates freespace M(F ), red static occupancy
M(S), blue dynamic occupancy M(D), cyan free or dynamic occupancy M(FD),
purple static or dynamic occupancy M(SD) and white unknown cells M(FSD).

In order to extract the object clusters we generate binary images from the extraction
by applying simple thresholding (figures 5.3c and 5.3d):

B(occ) = (bel(occ) > τocc)

B(dyn.occ) = (bel(dyn.occ) > τdyn.occ) .

Clustering On the binary mask of being occupied B(occ) (fig. 5.3c) we perform a state-
of-the-art connected component algorithm (e.g. [38]) in order to get our cell clusters,
figure 5.4a shows an example of resulting clusters. The generated clusters also contain a
lot of static structures (e.g. buildings). Therefore we filter out all clusters, which contain
less than 25% of cells being included in the input hints or being considered as dynamic
occupied cells, as defined with B(dyn.occ) (figure 5.4b). Keeping static clusters, which
are located where we expect already tracked objects, allows us to keep tracking objects,
which become temporarily static, e.g. when they stop in front of a traffic light.

The filter method using only occupancy clusters with a certain amount of dynamic
cells instead of only extracting dynamic occupied cells has the advantage of reducing false
positives in the object extraction process. The green rectangles in figures 5.3 and 5.4
show a (static) wall as an example. Parts of the wall have been estimated as dynamic
occupied (due to wrong sensor measurements), but due to the high amount of static
occupancy estimation in the structure, this cluster is not considered a dynamic object.
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5.1 Object Extraction

Bounding Box Estimation For the estimation of the cluster’s bounding box, we first
estimate the cluster’s velocity vector by taking a weighted mean value of all cells c in
the cluster C:

v̂C = η ·
∑
c∈C

(Mc(D) · vc)

We use the orientation of the estimated velocity vector as orientation of the estimated
bounding box. In cases, where no velocity can be estimated or the absolute value of the
estimated velocity vector is very low, we use a rotating calipers approach [39] to find a
rotated rectangle enclosing all cells of the cluster, with minimum area.
Once the orientation of the resulting bounding box is fixed, the estimation of the

length and width is a trivial task, which leads to the final extracted object measurement
as shown in figure 5.4c.
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5 Object Tracking

(a) Extracted occupancy belief bel(occ). (b) Extracted dynamic occupancy belief
bel(dyn.occ).

(c) Binary mask of being occupied B(occ). (d) Binary mask of being dynamic occupied
B(dyn.occ).

Figure 5.3: Extracted values and binary masks for being occupied and dynamic occupied areas.
Black pixels corresponds to values of 0 or false, white pixels to values of 1 or true.
The green rectangle highlights a true negative object extraction (see also fig. 5.4).
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5.1 Object Extraction

(a) Cell clusters using the connected component
method.

(b) Cell clusters after filtering

(c) Cell clusters with estimated bounding box
and velocity vector.

(d) Extracted objects (black) and ground-truth
object list (red) drawn on the input grid.

Figure 5.4: Extracted cell clusters, before and after the filtering for dynamic clusters and final
measurement result. The green rectangle highlights a true negative object extrac-
tion.
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5 Object Tracking

5.2 Object Tracking

After the object extraction step, described in the previous section, the extracted object
measurements are used as input for the actual object tracking part. The goal of the
object tracking is to enhance the quality of the object list and to reduce false positives.
Furthermore, the object tracking assigns track ids, which allows association of the same
object over time.

5.2.1 Object Track

For the object tracking itself we use an extended Kalman filter (EKF) with the following
state vector:

x =



x
y
v
Ψ
a

Ψ̇

 ,

with x, y being the object’s center position in world coordinates [m], v being the absolute
velocity [m/s], Ψ being the object’s orientation, a being the longitudinal acceleration
[m/s2] and Ψ̇ being the change of the orientation over time [1/s]. Additional following
information are updated separately and are therefore stored next to the object state:

• ID: unique track identifier,

• Last match: time of the last update,

• Existence probability: Probability that the object really exists,

• Length: object’s length in meter and

• Width: object’s width in meter.

5.2.2 Association

The goal of the association step is to decide which measurement corresponds to which
predicted object. This association is required for selecting the correct measurements for
updating the predicted tracks, as well as to decide which measurements are not related
to any tracked objects and therefore create new object tracks.

Due to the preprocessing of the dynamic grid (chapter 3) and the clustering and object
extraction (section 5.1) we already get good object measurements, especially in terms of
their position (see 6.3.3). Therefore we use the intersection over union (IoU) as metric
to calculate our distance measure between object tracks and measurements. To compute
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5.2 Object Tracking
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Figure 5.5: Three arbitrary object tracks shown in black and four object extractions shown in
red. The intersection area of tracks with measurements is filled with red.

the intersection over union of one predicted object i and the measurement j, the area of
overlap has to be divided by the area of the union:

IoUij =
Ai ∩Aj

Ai +Aj − (Ai ∩Aj)
. (5.1)

In order to compensate a certain amount of error in the prediction, we add a fixed
margin µ to the tracked object length and width for the IoU calculation, figure 5.5
shows object predictions in black with the added margin as dashed bounding boxes.
The measurements are drawn in red and the intersecting area is also filled in red. The
considered areas for the predicted objects and measurements are given by their bounding
boxes defined by the length l and width w.

We defined the distance between a predicted object i and the measurement j as the
opposite of the IoU:

di,j = 1− IoUij . (5.2)

With the distances between all predicted objects and all measurements we choose a
greedy algorithm for the actual association:

Algorithm 2: Association algorithm for object updates

1 while di,j < 1 exists do
2 Select ı̂, ȷ̂ = argmini,j di,j ;

3 Update tracked object ı̂ with measurement ȷ̂;
4 Prevent further updates of object ı̂: dı̂,j = 1;
5 Prevent further updates with measurement ȷ̂: di,ȷ̂ = 1;

6 end

All object measurements without any overlap with predicted tracks are used to ini-
tialize new object tracks.
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5 Object Tracking

Taking the example of figure 5.5 the distance matrix between the 3 predicted object
tracks and the 4 measurements will look like

D =

1 0.94 0.81 1
1 1 1 0.87
1 1 1 1

 , (5.3)

resulting in object 1 being updated with measurement 3 and object 2 being updated
using measurement 4. Object 3 is not receiving any update and with measurement 1 a
new track will be initialized. Measurement 2 will be ignored, because measurement 3 is
the one with a smaller distance to object 1.

5.2.3 Track Management

Within the track management the lifetime of object tracks is managed. In this section
we describe how new object tracks are created and how existing object tracks are deleted
or not considered anymore. Therefore the object track’s existence probability is used.

Track Birth We create a new object track, if an object measurement cannot be associ-
ated to any existing track and the measurement is not considered to be a static object.
We want to avoid using the object tracking framework for arbitrary static objects, which
are already covered by the grid map. Object measurements are considered to be static if
their estimated absolute velocity is below a certain threshold or if the sum of static mass
S is exceeding the sum of the dynamic mass D within the cells in the measurement.
For object measurements not classified as static, a new object track is instantiated

with the measurement acting as initial state vector, length and width for the new track.
Additionally, the track is assigned a new unique ID and its existence probability P (E)
is set to an initial value of 0.5.

Existence Probability The existence probability of each track is updated during the
objects update cycle. The goal is to estimate the object existence probability E given
the object measurements up to the current time Z1:t. This probability estimation cor-
responds to the estimation of the occupancy of a single cell in the Bayesian occupancy
grid (chapter 2.1). Therefore we can use the same update rule in logarithmic version as
in eq. 2.3:

l
(
E|Z1:t

)
= l

(
E|Zt

)︸ ︷︷ ︸
Update term

+ l
(
E|Z1:t−1

)︸ ︷︷ ︸
Previous estimation

. (5.4)

In our implementation we use two constant terms for updating the existence probabil-
ity of an object track. If the track is associated with one of the current measurements,
the existence probability is increased, otherwise the existence probability is decreased.
Objects not exceeding a probability threshold are suppressed until the threshold is

reached by consecutive measurements. This means a new initiated track has to be
confirmed by some consecutive measurement to track associations before the track will
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5.2 Object Tracking

be part of the algorithm’s output object list. For tracks to be considered as object hints
in the extraction step (section 5.1) an even higher threshold has to be reached. This is,
because we only want to influence the extraction step, if we are certain about an object’s
existence in order to prevent false-positives from confirming themselves.

Track Death Object tracks with an existence probability below a predefined threshold
are removed from the list and not considered anymore. Additionally we remove tracks
existing for a given time interval, but without any change in their positions. The second
case prevents static objects in the track list, which have been added due to a wrong
dynamic classification by the dynamic grid (chapter 3).

5.2.4 Update

During the track update step the predicted object track will be updated with the infor-
mation of the associated object measurement.

x

y

RL ML

RC
MC

FC

RR MR FR

EST

x

y

FL

Figure 5.6: Object is shown in black with its 9 reference points: (R)ear/(M)iddle/(F)ront -
(L)eft/(C)enter/(R)ight. The dashed gray rectangle shows the area of the object
considered for the intersection over union calculation. The red bounding box shows
a potential measurement for that object. The best matching reference point is
highlighted in blue, whereas the intersection area with the object is shown in green.
The measurement estimation point EST is shown in purple.

Reference Point In the general case the measured object will not cover the complete
object, but only a part of it. Normally only one side/edge or a corner of that object
can be detected at a given time step. Therefore it is not possible to simply update
the object’s center with the measured position. To compensate this effect, we use nine
reference points on the object track and measurement: the four corners, the center of
the four sides and the center of the bounding box (see figure. 5.6). When updating the
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5 Object Tracking

object we use the reference point, which has the smallest Euclidean distance between
the object track and the measurement.

Length and Width Updates The length and width of the tracked objects are not
part of the EKF state, as their update is treated differently. We do expect to see only
part of the objects at a time, meaning that the measured dimension of the object is not
normally distributed and therefore not suited to be tracked with a Kalman Filter. In our
implementation we use some sort of exponential smoothing, where the smoothing factor
depends firstly on the age of the tracked object aobject and secondly on the measurement
having a larger or smaller length/width than our tracked object:

α (atrack, dtrack, dmeas) =

{
1

atrack
, dtrack ≤ dmeas

1
10·atrack , dtrack > dmeas

,

where d is one of the dimensions, either length or width. The update of the track’s
dimension is then calculated as follows:

dt+1
track = (1− α) dttrack + α · dmeas

State Update The update of the object state xt and the corresponding covariance
matrix P t is defined by the EKF in the following way:

yt+1 = zt+1 − h
(
x̄t+1

)
(Innovation) (5.5)

St+1 = Ht+1P̄ t+1
(
Ht+1

)T
+Rt+1 (Innovation covariance) (5.6)

Kt+1 = P̄ t+1
(
Ht+1

)T (
St+1

)−1
(Kalman gain) (5.7)

xt+1 = x̄t+1 +Kt+1yt+1 (Updated state) (5.8)

P t+1 = P̄ t+1 −Kt+1Ht+1P̄ t+1, (Updated state covariance) (5.9)

with h being a non-linear observation function, which estimates the measurement vector
zt+1 given the predicted state vector x̄t+1. Ht+1 presents the Jacobian matrix of the
function h. The predicted state covariance matrix is given as P̄ t+1 and the observation
covariance matrix is given as Rt+1.
In order to update our object state vector according to the EKF update rule, we have

to define the observation function h, which has to estimate the measurement’s center
based on the state vector x̄t+1 and the additional information stored in our object track.
We use the information of the best matched reference point r and the length and width of
the tracked object (ltrack, wtrack) as well as the measurement bounding box (lmeas, wmeas)
as additional parameters for h.

The goal is to estimate the measurement at the estimation point EST (compare figure
5.6), which is located at the same offset to the reference point of the tracked object, as
it has on the measurement bounding box. We therefore define a helper function p (eq.
5.10), which returns the coordinate of the reference point relative to the object/mea-
surement’s center point.

66



5.2 Object Tracking

p(l, w, r) =



(
l
2 ,

w
2

)T
, if r = FL(

0, w2
)T

, if r = ML(
− l

2 ,
w
2

)T
, if r = RL(

− l
2 , 0
)T

, if r = RC(
− l

2 ,−
w
2

)T
, if r = RR(

0,−w
2

)T
, if r = MR(

l
2 ,−

w
2

)T
, if r = FR(

l
2 , 0
)T

, if r = FC

(0, 0)T , if r = MC

(5.10)

The estimation point EST (in object coordinates), given the best matching reference
point r, can then be expressed as:

ESTrelative =

(
ex
ey

)
(5.11)

= p (ltrack, wtrack, r)− p (lmeas, wmeas, r) . (5.12)

Transforming this track-relative coordinate into world coordinates (eq. A.2) allows us
to formulate the final observation function h:

h
(
x̄t+1

)
=


x̃t+1

ỹt+1

ṽt+1

Ψ̃t+1

 (5.13)

=


cos
(
Ψ̄t+1

)
ex − sin

(
Ψ̄t+1

)
ey + x̄t+1

sin
(
Ψ̄t+1

)
ex + cos

(
Ψ̄t+1

)
ey + ȳt+1

v̄t+1

Ψ̄t+1

 . (5.14)

The corresponding Jacobian Ht+1 is then defined as:

Ht+1 =


1 0 0 − sin

(
Ψ̄t+1

)
ex − cos

(
Ψ̄t+1

)
ey 0 0

0 1 0 cos
(
Ψ̄t+1

)
ex − sin

(
Ψ̄t+1

)
ey 0 0

0 0 1 0 0 0
0 0 0 1 0 0

 . (5.15)

For the observation noise covariance matrix Rt+1 we use a diagonal matrix with
predefined variances for the single measurement components.
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5.2.5 Prediction

To predict the object state xt and the corresponding covariance matrix P t to time t+1
the standard prediction rule of the EKF applies:

x̄t+1 = f
(
xt, δt

)
(Predicted state) (5.16)

P̄ t+1 = F tP t
(
F t
)T

+Qt, (Predicted state covariance) (5.17)

with f being a non-linear prediction function, δt being the time difference between the
previous timestamp and the predicted one, F t being the Jacobian of the prediction
function evaluated at xt and Qt being the prediction noise covariance matrix.

We use a Constant Turn-Rate & (longitudinal) Acceleration (CTRA) motion model
for our prediction function. The derivation of the motion model is described in appendix
B and leads to following prediction function:

f
(
xt, δt

)
=



x̄t+1

ȳt+1

v̄t+1

Ψ̄t+1

āt+1

¯̇Ψt+1

 (5.18)

x̄t+1 =

xt +
v̄t+1·(sin(Ψ̄t+1)−sin(Ψt))+at sin(Ψt)·δt

Ψ̇t
− at(cos(Ψt)−cos(Ψ̄t+1))

(Ψ̇t)
2 Ψ̇t ̸= 0

xt + cos(Ψt)
(
vtδt +

1
2a

tδ2t
)

Ψ̇t = 0

(5.19)

ȳt+1 =

yt +
v̄t+1·(cos(Ψt)−cos(Ψ̄t+1))−at cos(Ψt)·δt

Ψ̇t
− at(sin(Ψt)−sin(Ψ̄t+1))

(Ψ̇t)
2 Ψ̇t ̸= 0

yt + sin(Ψt)
(
vtδt +

1
2a

tδ2t
)

Ψ̇t = 0

(5.20)

v̄t+1 = vt + at · δt (5.21)

Ψ̄t+1 = Ψt + Ψ̇t · δt (5.22)

āt+1 = at (5.23)

¯̇Ψt+1 = Ψ̇t. (5.24)

The Jacobian F t is defined as:

F t =


∂x̄t+1

∂xt . . . ∂x̄t+1

∂Ψ̇t

...
. . .

...
∂ ¯̇Ψt+1

∂xt . . . ∂ ¯̇Ψt+1

∂Ψ̇t

 , (5.25)

with the partial derivatives listed in B.3. For the prediction noise covariance matrix Qt

we use a diagonal matrix with predefined variances for the single state components.
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In this chapter we present the data we used for evaluating the proposed sensor fusion
framework and how we extracted ground-truth data to compare against the output of
the implemented algorithm. This chapter consists of three sections. The first section 6.1
discusses the data source we used for evaluation and the extraction for our ground-truth
data. The second section 6.2 presents the methods used for evaluation, and lastly, 6.3
contains the results of our proposed method and shows the advantages of single features.

6.1 Evaluation Data

Our evaluation is based on the Mini subset of ten scenes provided by nuScenes: A
multimodal dataset for autonomous driving [40]. The dataset contains raw senor data of
three radar and one lidar sensor together with the position of the ego vehicle as well as
3-D object annotations and classified map data. Therefore, this dataset is well suited to
test our sensor models and fusion approach.

Figure 6.1: An example from the nuScenes dataset [40]. This example shows the annotated
3-D objects projected into the image of the six cameras. The bottom row shows a
bird’s eye view of the radar and lidar data with the annotated objects as well as an
extraction of the corresponding map.
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Name Location Description

scene-0061 Singapore Parked truck, construction, intersection, turn left, fol-
lowing a van

scene-0103 Boston Many peds right, wait for turning car, long bike rack
left, cyclist

scene-0553 Boston Wait at intersection, bicycle, large truck, peds crossing
crosswalk, ped with stroller

scene-0655 Boston Parking lot, parked cars, jaywalker, bendy bus, gar-
dening vehicles

scene-0757 Boston Arrive at busy intersection, bus, wait at intersection,
bicycle, peds

scene-0796 Singapore Scooter, peds on sidewalk, bus, cars, truck, fake con-
struction worker, bicycle, cross intersection, car over-
taking us

scene-0916 Singapore Parking lot, bicycle rack, parked bicycles, bus, many
peds, parked scooters, parked motorcycle

scene-1077 Singapore Night, big street, bus stop, high speed, construction
vehicle

scene-1094 Singapore Night, after rain, many peds, PMD, ped with bag,
jaywalker, truck, scooter

scene-1100 Singapore Night, peds in sidewalk, peds cross crosswalk, scooter,
PMD, difficult lighting

Table 6.1: Overview of the scenes contained in the mini-dataset

Each provided scene consists of 20 seconds of driving with annotated frames every
0.5 second. The mini-dataset already includes recordings from two different locations
(Boston and Singapore) and a variety of different scenarios and/or conditions, as constant
driving, busy intersections, day and night-time, etc. Figure 6.1 shows an annotated
sample as example. Table 6.1 lists all scenes included in the dataset and used throughout
our evaluation.

6.1.1 Reference Grids

For the evaluation of the sensor models (2.3) and our fused grid map (3), we generated
so called reference grids in order to enable a cell-wise comparison with the results of our
proposed algorithms.

Freespace and Occupancy To generate reference grids based on the annotated data
from the data-set, we first define areas labeled as drivable area and walkway (figure 6.3)
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Figure 6.2: Example of the provided map data for a given location.

to be our reference freespace. Note, that we assume that area to be free (if currently
not occupied by an object), but do not make any statement about other areas. In
particular, we do not state that other areas do not contain freespace. In the second
step we extracted all annotated 3-D objects and generate an occupancy grid out of them
(figure 6.4a). Subtracting the cells occupied by objects from the static freespace bitmap
leads to our final reference bitmap of the current freespace (figure 6.4b).

Velocity Additionally to the reference bitmaps for freespace and occupancy we also
generate reference grids for the velocity of single cells. The only locations, where the
reference velocity can be calculated, are those cells, which are currently occupied by an
object (see fig. 6.4a). From the dataset the location and orientation of object o at time t
is given as T t

o and αt
o. Given the location of cell c in world coordinates XW

c , the location
can be transformed into the vehicle coordinate system of object o at the current time t,
denoted as XV,t

c (see A.5). Computing the reverse transformation (eq. A.5), but using
the object’s future position T t+1

o and αt+1
o , results in the position, where the content of

the cell c is moving to: XW,t+1
c . Taking the difference in position over the time difference
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(a) Extracted drivable area. (b) Extracted walkway.

Figure 6.3: Extracted bitmask for drivable area and walkway based on the map extraction
shown in 6.2.

gives us the reference velocity of cell c at the current time t:

ϑt
c =

XW,t+1
c −XW

c

∆t
. (6.1)

Figures 6.4c and 6.4d show the orientation and absolute speed value of the extracted
reference velocity information, used in the evaluation. Applying a threshold on the
expected cell velocities, static occupied cells can be distinguished from dynamic ones.
This leads us to the final reference grid as shown in figure 6.5.

6.1.2 Ground-Truth Object List

To evaluate the object extraction (5.1) and tracking (5.2) methods we use the so called
annotations from the nuScenes dataset. Those annotations, available for each annotated
frame every 0.5 second, provide bounding boxes defining the position of objects seen in
that frame.
The relevant informations for our evaluation are:

• translation: the position of the bounding box center in global coordinates,

• size: the dimension of the bounding box in length and width and

• rotation: the orientation of the bounding box.

Additionally to the already provided attributes, we estimate the object’s velocity
vector and rotation rate, based on the current and future/past pose of the object.
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6.1 Evaluation Data

(a) Occupied cells based on annotated objects. (b) Current freespace based on map data and an-
notated objects.

(c) Orientation of occupied cells. The angles are
encoded by the color scheme shown in the
lower left corner.

(d) Speed of occupied cells. The color encoding
(right bar) covers a speed range from 0 (blue)
to 20m/s (red).

Figure 6.4: Reference grids based on the map data and annotated objects in the nuScenes data-
set.
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Figure 6.5: Ground-truth mapM with freespace (F ) shown in green, static occupancy (S) in
red and dynamic occupancy (D) in blue. Unknown area (FSD) is shown in white.
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6.2 Evaluation Method

In this section we describe how we evaluate our algorithm using the reference data
described in the previous section (6.1). The main focus of the evaluation is to get a
metric for comparison of the different processing steps rather then to have an absolute
benchmark.

6.2.1 Grid Evaluation

Mass Estimations A rather simple, but powerful, evaluation method for the sensor
models (2.3), as well as for the dynamic grid (3), is to compare the ground-truth map
(fig. 6.5) with the estimated cell masses.
For every possible ground-truth classification ϑ ∈ {F, S,D}, we calculate the sum of

the estimated mass values ϑ̂ ∈ {F, S,D, FD, SD} of all cells c:

Σϑ

(
ϑ̂
)
=

∑
c|Mc=ϑ

M
(
ϑ̂
)
, (6.2)

with the ground-truth reference map Mc and the map to be evaluated: M . We call
this sum divided by the maximal possible value our detection score, which we use for
comparison and interpretation of our results:

χϑ

(
ϑ̂
)
=

Σϑ

(
ϑ̂
)

∑
c|Mc=ϑ 1

. (6.3)

These scores for every possible combination of expected mass (ground-truth) and
estimated mass from the algorithms is summed up for all timestamps of each scene
and over all scenes. Additionally we calculate the detections scores for different ranges
around the vehicle.
Figure 6.6 shows the number of cells (and therefore also the maximal possible detection

score) depending on the distance to the vehicle. As expected we see an almost quadratic
increase of the number of cells with the distance. The plot also shows that the number
of freespace cells is a few magnitudes higher than the number of occupied cells. The
number of static occupied cells is also three times higher than the number of dynamic
occupied cells.

Velocity Estimations In addition to the described evaluation method for the mass
estimations, we also calculate the difference in the estimated velocity v and the reference
one V for every cell, where a reference velocity is available:

δv =
√
(v − V )T (v − V ). (6.4)

In order to calculate our velocity scores, we count the number of cells, where the
velocity error is below 1, 2 and 4m/s. With this method we get the percentage of cells
with a velocity error of less than δv. The advantage of this method compared to others,
e.g. calculating the mean error, is that the score cannot get worse, if more cells are
getting an estimation.
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Figure 6.6: Maximum score values over different ranges. All 10 scenes summed up (C.1). The
gray line acts only as orientation for a quadratic increase over range.

6.2.2 Object Evaluation

This section describes how the object list from our grid extraction or object tracking
algorithm is evaluated with the given ground-truth object list.

Initialization The proposed dynamic grid (chapter 3) and the object tracking (chapter
5.2) are accumulating current and past data, by using predict/update cycles. Using such
approaches leads to a certain initial phase of the algorithms. As we do not want to focus
on the initialization phase during the evaluation, we skip the first 2 seconds of the scenes
in the evaluation data.

Object Association For the association between the estimated objects ô ∈ Ô and the
ground-truth objects o ∈ O we use the same intersection over union (IoU) approach as
described in 5.2.2, but with a higher margin µ = 2m. Associated objects are counted
as true positive and their attributes are compared as described in the next paragraph.
Estimated objects with no associated ground-truth object are counted as false-positive,
whereas each ground-truth object without any associated estimated object is counted as
false-negative.

In case that more than one estimated object is associated with a ground-truth object,
only the match with the highest IoU ratio is used for the comparison evaluation. All
the other matches are neither considered as true-positive nor as false-positive, but are
ignored for the further evaluation. The most common case, where one ground-truth
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object could be associated with more estimated ones, is if the ground-truth object is
partly hidden, e.g. when only its front and rear part can be sensed.

Sensitivity and Precision To compare the number of objects being detected (and as-
sociated) with the number of ground-truth objects, we count the following values:

• true positive (tp): The number of correctly detected objects (output object can be
associated with a ground-truth object).

• false negative (fn): Number of ground-truth objects, which were not associated
with any output object, i.e. undetected objects.

• false positive (fp): An output object, which were not associated with any ground-
truth object, i.e. detected objects, which do not exist.

Additionally we calculate the sensitivity, precision and the F1 score (harmonic mean
of sensitivity and precision) as follows:

sensitivity =
tp

tp + fn
(6.5)

precision =
tp

tp + fp
(6.6)

F1 score = 2 · precision · sensitivity
precision + sensitivity

(6.7)

Object Filtering Since with our approach no new object tracks are created for static
objects, we do not consider the static ground-truth objects in the evaluation. Only if the
ground-truth object has moved previously, but is now standing still (e.g. car stopping at
an intersection) it is, however, included in the evaluation. We consider the objects with
no previous movement as part of the static environment and therefore they are excluded
from the freespace estimation (chapter 4), as well as from the dynamic object list.

Comparison To compare the ground-truth object with its matched estimated object,
we simply look at the difference of their attributes in terms of:

• position,

• orientation,

• speed,

• length and

• width.

In terms of the position the Euclidean distance between the best matched reference point
is chosen (see fig. 5.6). The evaluation results in sections 6.3.3 and 6.3.4 will state the
median (P50%) error as well as the 25% (P25%) and 75% percentile (P75%).
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6.3 Results

This section shows the qualitative results of our proposed algorithm. We chose a cell-size
of 0.125m× 0.125m to generate those results. With the grid dimension set to 960× 960
cells, this leads to an area of 120m × 120m around the vehicle. The total number of
used particles was configured to 921 600, which means one particle per cell on average.

6.3.1 Sensor Models
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Figure 6.7: Detection scores for freespace of different radar and lidar sensors. All 10 scenes
summed up (C.2). The line style shows the different sensor grids as shown in the
legend, the color encodes the type of detection score: green: F , blue: D, purple:
SD.

Freespace The most obvious observation of the freespace results (fig 6.7) is that the
detection score of freespace estimation is declining with the range. This is especially the
case for the lidar sensor (dotted line). This result is expected due to the design of our
lidar sensor model (2.3.2). With higher distances the number of rays traversing a cell
is reduced, either due to occlusion of targets on their way or simply due to the angular
measurement principle, leading to higher uncertainty in the freespace estimation.
The increase in the beginning can be explained with the fact, that the lidar sensor has
some defined vertical opening angle and therefore the area next to the vehicle cannot be
sensed.
The radar sensors (2.3.3, shown as dashed lines here) on the other side, do not es-

timate any freespace up to their configured minimum range (in this case 10m around
the vehicle). For ranges greater than that the area covered by the sensors increases
quadratically, explaining the increase for ranges between 10m and 30m, but same as
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with the lidar sensors, with higher distance the uncertainty in the freespace estimation
is increasing, leading to a nearly constant freespace detection score for distances greater
than 30m.
The best freespace estimation is achieved with the combined output of the sensor

models (2.3.4). The combination of all three radar sensors (dashed lines) is outperform-
ing each single radar freespace estimation (other forms of dashed lines), which in turn is
outperformed by the fusion of all four sensor estimates (dashed/dotted line).
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Figure 6.8: Detection scores for freespace of different radar and lidar sensors, without the
freespace estimation. For a complete picture see figure 6.7. The line style shows the
different sensor grids as shown in the legend, the color encodes the type of detection
score: blue: D, purple: SD.

The number of false estimations of the freespace is very low, so it can be barely seen in
figure 6.7, therefore figure 6.8 shows the same data, but without the correct estimation
of freespace. We basically see the same curves in the graph as with the correct freespace
estimation, but at a much smaller level. Again the lidar acts as the dominant sensor,
as specified in the sensor fusion (2.3.4). The false classifications are mainly caused
by inaccurate sensor measurements (or mismatches between sensor data and reference
data), non permanent obstacles (e.g. scaffolding or fences on walkways), houses adjacent
to walkways, wrong classified ground-points (e.g. curbstone not classified as ground),
or small objects (e.g. cones) not labeled in the ground-truth data. Examples of some
wrong classifications can be seen in figure 6.9.
In summary we see good results in the estimation of the freespace area, with a very

small amount of wrong classifications.
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(a) Output of the fused sensor grid. Blue background shows the reference freespace, green shows the
(correct) estimated freespace, whereas red shows the “wrong” estimated occupancy.

(b) Top row: left, middle and right front camera images. Bottom row: left, middle and right rear camera
images.

Figure 6.9: Example output of scene scene-0757 at t = 6.81 s. Four different sources of wrong
occupancy estimation in freespace are marked with colored rectangles. Yellow:
scaffolding on the walkway, purple: wall next to the walkway, blue: small mismatch
between measured distance and reference data, green: fence on the street/walkway.
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Figure 6.10: Detection scores for static occupancy of different radar and lidar sensors. All 10
scenes summed up (C.3). The line style shows the different sensor grids as shown
in the legend, the color encodes the type of detection score: green: F , blue: D,
purple: SD.

Static Occupancy Since none of our proposed sensor models (2.3) is estimating static
occupancy S, we can only evaluate the estimation of static or dynamic occupancy SD
and dynamic occupancy D against freespace F . Figure 6.10 depicts the detection scores
in case of static occupied cells. What we can observe here again is the high accuracy
of the lidar sensor (dotted lines) compared to the radar sensors, while also delivering a
very low score for a wrong estimation of freespace. Similar to the freespace case, the
limited range of the lidar sensor can be seen here as well. The main reason for the poor
estimation performance compared to the freespace is, that the sensor can only see one
or two edges of a static object, whereas the reference map classifies the whole area of
the object as being static occupied (figure 6.12).

Figure 6.11 shows the detection scores only for the radar sensors and the fusion of
those. Merely the front-looking radar sensor has a higher detection score for occupancy
(SD + D) than for freespace. Because the field of views of the radar sensors are mainly
not overlapping, the combined radar output differs only in a larger covered area, hence
performing very similar to the single sensors. Therefore the radar sensor is not perform-
ing well in case of the static occupied reference cells.

Using the combined sensor grid (lidar and radar sensors) results in a better detection
score of SD compared to the single technologies over all ranges, but has also the drawback
of a higher freespace F detections score than using the lidar sensor only.

In summary the combined sensor grid again provides the best results and delivers a
decent detection score for the static occupied reference cells.
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Figure 6.11: Detection scores for static occupancy of different radar sensors. All 10 scenes
summed up. For a complete picture see figure 6.10. The line style shows the
different sensor grids as shown in the legend, the color encodes the type of detection
score: green: F , blue: D, purple: SD.
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(a) Output of the fused sensor grid. Blue background shows the reference static occupancy, green shows
the correct estimated static occupancy, whereas red shows the wrong estimated freespace.

(b) Top row: left, middle and right front camera images. Bottom row: left, middle and right rear camera
images.

Figure 6.12: Example output of scene scene-0553 at t = 3.00 s. Two examples of low static
occupancy estimation are marked with colored rectangles. Blue: truck behind the
ego vehicle, purple: car directly behind the ego vehicle.
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Figure 6.13: Detection scores for dynamic occupancy of different radar and lidar sensors. All
10 scenes summed up (C.4). The line style shows the different sensor grids as
shown in the legend, the color encodes the type of detection score: green: F , blue:
D, purple: SD.

Dynamic Occupancy In the near range (< 30m) where the lidar sensor has the higher
impact, the detection scores for static or dynamic occupied SD are the dominant ones.
As the lidar sensor cannot distinguish between static or dynamic, this result is the
expected one. The radar sensors on the other hand can classify most dynamic objects
correctly and therefore the detection score for those is the dominant contribution of the
radar sensors. Both estimates are dominating the wrong freespace estimation.
Again, the reason for the general low detection scores, compared to those of the

reference freespace cells, is the visibility of merely the edges of the dynamic objects
(figure 6.14).
With the combination of the lidar and radar sensor grids, the good occupancy esti-

mation of the lidar in the close-range is combined with the dynamic classification of the
radar sensors. This leads to a superior result compared to the single sensor technologies.
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(a) Output of the fused sensor grid. Blue background shows the reference dynamic occupancy, green
shows the correct estimated occupancy (D+SD), whereas red shows the wrong estimated freespace.

(b) Top row: left, middle and right front camera images. Bottom row: left, middle and right rear camera
images.

Figure 6.14: Example output of scene scene-0103 at t = 9.31 s. Two examples of low dynamic
occupancy estimation are marked with colored rectangles. Both showing that only
small parts of the objects are sensed by the sensor models.
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Figure 6.15: Detection scores for dynamic occupancy of different radar and lidar sensors. All 10
scenes summed up. Dotted lines show the cell percentage with a maximal velocity
error of 1m/s, dashed lines with 2m/s and solid lines with 4m/s. (C.5)

Velocity Estimation Figure 6.15 shows the velocity estimation score of the single radar
sensors, as well as for the combined grid. As the lidar sensor is not providing any velocity
information at all, evaluating the lidar or the combined sensor grid in terms of velocity
estimation is meaningless.

The low percentage of “correctly” estimated cells has various reasons. One reason is
that at most two edges of an object can be sensed, as already mentioned. Additionally
not the entire surroundings of the vehicle are within the field of view of the radar
sensors. Another reason is that the radar sensors are only measuring the radial velocity
component, and hence the tangential component is completely missing.
The combined sensor grid of the three radar sensor receives better velocity scores, but

almost exclusively due to the combined sensor field of view.
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6.3.2 Dynamic Grid

6.3.2.1 Comparison Against Sensor Grids
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Figure 6.16: Detection scores for freespace of the input sensor grid and the dynamic grid. All
10 scenes summed up (C.6). The line style shows the different evaluation input
as shown in the legend, the color encodes the type of detection score: green: F ,
red: S, blue: D, cyan: FD, purple: SD.

Freespace Figure 6.16 shows the detection score for freespace areas of the (combined)
sensor grid, as well as for the dynamic occupancy grid (3). The estimation of being
freespace F of the dynamic grid is almost equal to the sensor grid, as expected by the
given combination rule (3.2.1.1). The highest detection score is given by the estimation
of freespace or dynamic occupancy FD, which results in the accumulation of freespace
measurements. With increasing distance to the vehicle, the uncertainty of freespace
estimation decreases, leading to lower detection scores.
Estimation of occupancy in case of our reference freespace occurs only with a very low

detection score and is caused by wrong sensor measurements or, in case of D, by wrong
prediction of dynamic occupancy.
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Figure 6.17: Detection scores for static occupancy of the input sensor grid and the dynamic
grid. All 10 scenes summed up. (C.7). The line style shows the different evaluation
input as shown in the legend, the color encodes the type of detection score: green:
F , red: S, blue: D, cyan: FD, purple: SD, gray: sum of S, D and SD.

Static Occupancy The detection scores in case of static occupancy are shown in figure
6.17. The estimations for being free or dynamic occupied FD and static or dynamic
occupied SD are getting the highest detection scores, with a small exception of S for
smaller ranges. The accumulated grid suffers from the same visible edge issue as the
sensor grids, but to a lower extent. Due to driving past static objects more than two
edges can be sensed.
Combining the different estimations of being occupied S +D + SD (shown in gray)

would get the highest detection scores. This means that static occupied cells are esti-
mated as occupied in most cases. We want to note that static structures (e.g. buildings)
are not part of our reference data, however we do see good results for the static occupancy
estimation as well.
The estimation of being static occupied S of the dynamic grid is getting better de-

tections scores than the occupancy estimation of the sensor grid. This result is also
expected since the accumulation of static environments is the most common use-case of
occupancy grid maps.
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Figure 6.18: Detection scores for dynamic occupancy of the input sensor grid and the dynamic
grid. All 10 scenes summed up (C.8). The line style shows the different evaluation
input as shown in the legend, the color encodes the type of detection score: green:
F , red: S, blue: D, cyan: FD, purple: SD.

Dynamic Occupancy For dynamic occupied cells, the detection scores of D of the
dynamic grid outperforms the complete occupancy estimation of the sensor grid (fig.
6.18). The high detection scores of being free or dynamic occupied FD are again caused
by the visibility of only one or two edges of an object. If an objects is moving into an
area that was sensed as free before, only the edges can be sensed as occupied, whereas
a large amount of the occupying object will be located in an area which is estimated
as FD. The estimation of being freespace F almost equals the estimation of the sensor
grid and therefore does not require any additional explanation here.
The estimation of being dynamic occupied D of the dynamic occupancy grid works

well. Since the dynamic estimation is mainly based on the prediction step, which also
includes a velocity estimation, this conclusion leads us directly to the next paragraph:
the evaluation of the estimated velocity.
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Figure 6.19: Percentage of cells with an estimated velocity within a given error compared to
the reference value. Only cells with a reference velocity are considered. Dotted
lines show the cell percentage with a maximal velocity error of 1m/s, dashed lines
with 2m/s and solid lines with 4m/s. (C.9)

Velocity Estimation Figure 6.19 compares the estimated velocity of the cells with the
measured velocity of the sensor grid. Since the measurement of velocity is very limited,
as discussed in the previous section, the estimated velocity of the proposed dynamic
grid clearly outperforms the sensor grid in every range. This observation shows that the
velocity estimation works regardless of the provided velocities of the sensor grids.

Summary The comparison of the output of the dynamic occupancy grid with the sensor
grid shows the advantage of the dynamic occupancy over using the sensor grids alone. In
terms of the ground-truth freespace, the detection scores for freespace are superior by a
factor of three, whereas the wrong classification of freespace stays very low. Additionally
in terms of ground-truth static occupancy we see a similar outperformance compared to
the frame by frame input of the sensor grid. The major reason for both enhancements of
the classification of freespace and static occupancy can be explained by the accumulation
of non dynamic parts of the environment.
For the dynamic occupancy and velocity estimation the prediction step, using the

particles to transport information, is the key factor. The proposed predict and update
cycle on grid level leads to an estimation output a single frame sensor cannot reach.
As lidar sensors cannot measure velocity at all and the radar sensors can only measure
one of two velocity components, the velocity estimation in the dynamic grid is a key
advantage.
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6.3.2.2 Impact of the Orientation Prior
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Figure 6.20: Detection scores in percentage for freespace of dynamic grid, with and without
using the online orientation prior. All 10 scenes summed up (C.10). The line style
indicates whether the online generated orientation prior is used or not. The color
encodes the type of detection score: green: F , red: S, blue: D, cyan: FD, purple:
SD.

Freespace In terms of the detection score of freespace, we do not see any significant
difference in the dynamic grid output between using the online generated orientation
prior information and not using it.
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Figure 6.21: Detection scores in percentage for static occupancy of dynamic grid, with and
without using the online orientation prior. All 10 scenes summed up (C.11). The
line style indicates whether the online generated orientation prior is used or not.
The color encodes the type of detection score: green: F , red: S, blue: D, cyan:
FD, purple: SD.

Static Occupancy In the case of static occupied cells, we observe a small increase in
the static occupied S score, if the online orientation prior is used. The detection scores
for (static or dynamic) occupied also improve if the online orientation prior is used. On
the other side the detection scores for wrong classification of being dynamic occupied D
is lower, than without having the prior information. This leads to the conclusion, that
more cells are correctly estimated as static S or (static or dynamic SD) occupied by
using the proposed online orientation prior.
For cells being incorrectly classified as F or FD, the orientation prior has no significant

impact.
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Figure 6.22: Detection scores in percentage for dynamic occupancy of dynamic grid, with and
without using the online orientation prior. All 10 scenes summed up (C.12). The
line style indicates whether the online generated orientation prior is used or not.
The color encodes the type of detection score: green: F , red: S, blue: D, cyan:
FD, purple: SD.

Dynamic Occupancy The evaluation of the detection scores for dynamic occupied cells
shows that the detection score for D is significantly higher with the orientation prior
information than without it. At the same time the estimation as being FD is decreased
noticeably. The detection scores for S and SD are slightly lower than without using the
prior information.

The wrong estimation of being freespace F is not affected by the online orientation
prior.

For the dynamic occupied cells, we can reach the same conclusion as in the static
occupied case: the online orientation prior leads to better classification of occupied cells.
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Figure 6.23: Percentage of cells with an estimated velocity within a given error compared to
the reference value. Only cells with a reference velocity are considered. Dotted
lines show the cell percentage with a maximal velocity error of 1m/s, dashed lines
with 2m/s and solid lines with 4m/s. (C.13)

Velocity Estimation The comparison of the percentage of cells with a given error in
velocity gives us a slightly more differentiated picture. Although the percentage of cells
with a speed error below 1m/s is slightly higher with the orientation prior, the percentage
of cells within a higher velocity error is smaller than without using the prior information.
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6.3.3 Object Extraction

In this section we will evaluate the proposed object extraction method (5.1). Additionally
we show the impact of the online generated orientation prior (3.2.3) on the extracted
objects.

Comparison Value For the comparison of the position, orientation, speed and dimen-
sion of the objects we use the 25%-percentile P25%, the median value P50%, the 75%-
percentile P75% and the mean value of the error. Additionally we show the “comparison”
percentile value for the extracted objects using the orientation prior. This value is the
q-percentile error Pq of the extracted objects using the prior. The value q is defined by
the number of true positives of the extracted objects without the orientation prior: n−
and the ones with the prior information: n+:

q = 50% · n−
n+

. (6.8)

Using this definition of the q-percentile error of the extracted objects with the prior
information allows a comparison with the median error of the objects generated without
the orientation prior. The median error of the objects, without using the prior, defines
the maximal error of the n−

2 best extracted objects. The q-percentile error of the ex-
tracted objects, with using the prior information, also gives us the maximal error of
the n−

2 best objects, whereas the median error of the “prior” objects is giving us the
maximal error of the n+

2 best objects. In the general case we expect n+ > n−, as the
orientation prior should lead to more true positives.

Confusion Matrix Figure 6.24 shows the number of true positives, false positives and
false negatives for different ranges. The additional input of the online generated prior
leads to more true positives (and hence less false negatives) at the cost of significantly
increased number of false positives. This effect is also clearly visible in the sensitivity
and precision scores (fig 6.25), where the method with the orientation prior is leading
to smaller precision, but higher sensitivity. With the F1 score being better through all
ranges we conclude a positive effect of the online generated orientation prior for the
object extraction.
In close areas (< 10m) and far areas (> 40m) the F1 score of the extracted objects

with the orientation prior is at most 50%. These results are showing room for further
improvements. One approach to decrease the number of false positives and false negatives
and simultaneously increase the number of true positives is to use this data as input for
an object tracking algorithm (see section 5.2). The results of the object tracking are
listed in 6.3.4.
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Figure 6.24: True positives, false negatives and false positives over different ranges. All 10
scenes summed up (C.14).
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Figure 6.25: Sensitivity, precision and F1 score over different ranges. Solid lines show the
result without using the orientation prior, dashed lines show the result using the
orientation prior. All 10 scenes summed up (C.14).
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Figure 6.26: Position error of extracted objects over different ranges. All 10 scenes summed
up. (C.15)

Position With a mean error of roughly 40 cm and a median error around 35 cm (fig.
6.26) the position accuracy of the extracted object is very good over all ranges, regardless
whether the orientation prior is used or not. The chosen association method using
intersection over union (5.2.2) relies on a good position. Taking into account the various
sources of errors, such as ego position, sensor data, cell prediction and cell discretization,
a mean position error of 40 cm shows that the presented approach is working. Overall,
the object extraction with using the orientation prior provides slightly better results in
terms of position estimation than the one without using this information. The small
increase in the mean error is caused by the higher number of associated true positives,
as indicated by the Pq value.
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Figure 6.27: Orientation error of extracted objects over different ranges. All 10 scenes summed
up. (C.16)

Orientation The orientation error of the object extraction using the orientation prior
information is significantly better than without using this information (fig. 6.27). The
median error of 3◦ of the extractions using the prior information shows a very good
orientation measurement on at least half of the measurements. The corresponding mean
error of 7◦ indicates outliers with a bad orientation estimation. Nevertheless, with 75%
of the object measurements having an orientation error of less than 8◦, the quality
of the object extraction should be sufficient for most use-cases, at least in terms of
orientation. Using the online generated orientation prior dramatically increases the
orientation estimation quality of the extracted objects.
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Figure 6.28: Speed error of extracted objects over different ranges. All 10 scenes summed up.
(C.17)

Speed The object extraction using the online generated orientation prior information
shows a better speed estimation in the near field, whereas the extracted objects without
using the prior information show a better mean error in speed at range above 20m. The
Pq error of the objects using the prior information is better than the P50% error of the
objects without using the additional information. This indicates that the worse result of
the extraction using the prior is due to the higher number of associated true positives.
The plot shows that the grid’s speed estimation works well, regardless of the usage of

the online generated orientation prior information. Nevertheless a mean error in speed
of approximately 2.5m/s is not sufficient for driver assistance systems or autonomous
driving. Therefore the speed estimation of the dynamic objects has to be enhanced by
the object tracking.
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Figure 6.29: Length error of extracted objects over different ranges. All 10 scenes summed up.
(C.18)

Length & Width Both errors, in length and width (fig. 6.29 and 6.30), are increasing
with larger distances to the ego vehicle. Although this effect is more visible in the
length error (as the objects are longer than wide), the reason for both is the same. With
a higher distance to the sensor, the probability that only parts of the object can be
sensed is higher. The main reasons for that are: The object is leaving the sensors field
of view, the object is (partly) hidden by other objects, or the object is sensed too small
due to the polar sensing principle (sec. 2.3.1). The object tracking should also lead to
better results in terms of the object dimension. For most autonomous driving functions
the shown quality in length and width estimation should be sufficient. Especially in the
close range (< 15m), where the correct dimension estimation is the most important, the
extracted objects have a good dimension estimation.
The usage of the online generated prior shows superior results, probably caused by

the better orientation estimation, resulting in a more correct orientation of the bounding
box, which in turn defines the estimated dimension of the object.
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Figure 6.30: Width error of extracted objects over different ranges. All 10 scenes summed up.
(C.19)
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6.3.4 Object Tracking

The object tracking algorithm (section 5.2) uses the extracted objects as input data.
Therefore, we compare the results of the tracking algorithm with the object extraction
results of the previous section (6.3.3). In this section we are only using the extracted ob-
jects using the online generated orientation prior information, since the previous section
showed its superior performance.
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Figure 6.31: True positives, false negatives and false positives for object extractions and tracked
objects. All 10 scenes summed up (C.20).

Confusion Matrix Throughout all different ranges, the object tracking algorithm is
generating more true positives (and therefore less false negatives) than only applying
the object extraction method (fig. 6.31), leading to a better sensitivity (fig. 6.32). In
terms of the false positives, applying the object tracking algorithm leads to a reduction
of nearly 50% for the complete range. Most false positives are introduced by wrong
sensor measurements. As this inconsistencies are not very stable over time, the object
management is able to filter the majority of those false positives. This reduction of false
positives leads to the better precision as shown in fig. 6.32.
In terms of true positives, false positives and false negatives, the additionally ob-

ject tracking algorithm outperforms the approach of only extracting objects from the
grid. The sole drawback at this point is the additional delay in detecting new objects,
introduced by the added initial phase of the tracking algorithm.
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Figure 6.32: Sensitivity and precision rate for object extractions and tracked objects. Solid
lines show the result of extracted objects, dashed lines show the result of tracked
objects. All 10 scenes summed up (C.20).
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Figure 6.33: Position error of extracted and tracked objects. All 10 scenes summed up. (C.21)

Position The error in position of the tracked objects with a median of ca. 0.5m and
a mean of 0.7m is significant higher than the error of the object extractions. The
only conclusion here is that our prediction model (5.2.5) is introducing a new source of
positioning error.
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Figure 6.34: Orientation error of extracted and tracked objects. All 10 scenes summed up.
(C.22)

Orientation The estimated orientation of the tracked objects have the same error range
as the extracted object measurements (median: 3.5◦ mean: 7.0◦) for the ranges of 30m
and above (fig. 6.34). In the closer surroundings of the vehicle the orientation error
of the tracked objects is larger than the one of the extracted objects. The comparison
percentile of the tracked objects is showing a smaller error of the tracked objects in the
near field. The reason for this can be explained as follows: The few correct extracted
objects close to the vehicle have a very precise orientation estimation, but the majority
of the objects are not detected by the extraction at all. These additional true positives
of the object tracking algorithm have a worse orientation estimation and therefore are
leading to higher orientation errors of the tracked objects in the near field.

105



6 Evaluation & Validation

5 10 15 20 25 30 35 40 45 50

0

1

2

3

4

5

Range [m]

E
rr
o
r
[m

/s
]

Error for speed

Extractions: Mean
Extractions: Median
Tracks: Mean
Tracks: Median
Tracks: Comparison

Figure 6.35: Speed error of extracted and tracked objects. All 10 scenes summed up. (C.23)

Speed In terms of speed estimation of the objects, the object tracking approach out-
performs the extraction-only approach significantly (fig. 6.35). With a median and
mean error of 1m/s, or 1.5m/s respectively, the estimated speed signal is well suited
for driving functions. In terms of speed estimation the advantage of using an additional
object tracking method is clearly visible.
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Figure 6.36: Length error of extracted and tracked objects. All 10 scenes summed up. (C.24)

Length & Width The estimated object dimensions of the tracked objects is quite
consistent over the different ranges (figures 6.36 and 6.37). This consistency is expected
by the restriction in terms of length and width updates during the tracking process (see
5.2.4). Only in the near field the dimension errors of the tracked objects are higher
compared to the extracted ones. This effect can be explained with the comparison
percentile value: Due to the higher sensitivity of the tracked objects the error is increased.
On the other hand the dimension estimation of the extracted object is very good in this
area. Nevertheless the dimension estimation error of the tracked object is within an
acceptable range.
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Figure 6.37: Width error of extracted and tracked objects. All 10 scenes summed up. (C.25)
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Summary Using an additionally object tracking filter on top of the extracted objects
leads to a significant improvement of the detected objects. Especially in terms of sensitiv-
ity and precision, the usage of the object tracking filter is superior. The object tracking
allows to reduce false positives and stabilizes the existing object tracks. Additionally
using the object tracking allows a much better estimation of the speed values.

6.4 Runtime

This section shows the results of our runtime measurements. Our implementation is
divided into two parts. The first part, the prediction and update of the dynamic grid,
is implemented using CUDA and runs on the graphics processing unit (GPU). The
processing in this part consists of:

• Prediction of the previous map to the current timestamp:

– Static prediction (3.2.2.1)

– Dynamic prediction, including particle re-sampling (3.2.2.2)

– Combination of both prediction (3.2.2.3)

– Calculation of the online generated orientation prior (3.2.3)

• Update of the predicted map with new sensor data:

– Copy of the sensor data to device (GPU) memory

– Calculation of the single sensor grids (2.3)

– Fusion of the sensor grids into a common one (2.3.4)

– Update of the mass values of the dynamic grid (3.2.1.1)

– Update of the particle weights based on velocity measurements (3.2.1.2)

We reference this two steps as Prediction and Update in this section and the total
runtime of both steps as GPU processing.

The second part of our implementation is implemented using C++ and runs on the
central processing unit (CPU). The processing in the CPU part consists of:

• Copy of the updated dynamic grid from GPU memory to CPU memory

• Freespace extraction (4)

• Object tracking including the extraction (5)

We use the italic naming of those three steps again as reference in this section. The
total runtime of all three steps is referenced as CPU processing.

Since both parts, the GPU and CPU processing, are running on different computing
resources, they can easily be parallelized. While the CPU part is processing the data
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Figure 6.38: Timing of the processing steps and their distribution between GPU and CPU.
The row labeled Sensor data shows the arrival of new sensor data, the bottom
row Output data indicates the transmitting of the extracted freespace and object
list to the driving function.

of time t, the GPU part can already process the data of the next timestamp t + 1 (see
figure 6.38).

The runtime measurements presented in this section, are using the same configuration
as in previous evaluation (cellsize of 0.125m, gridsize of 120m, one particle per cell on
average, three radar sensors and one lidar sensor).

6.4.1 Developer Notebook

In this subsection we present the runtime of the algorithm on a modern developer note-
book.
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Figure 6.39: Box and whisker plots of the GPU processing runtime on the developer notebook
for the different scenes. The box extends from the 25% to the 75% percentile,
whereas the whiskers extend from the 0.3% to the 99.7% percentile. The median
is displayed as the orange line.
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Figure 6.39 shows the runtime of the GPU processing over the various scenes. Al-
though the scenes are quite different, the runtime stays relatively constant. We attribute
this to the fact that the number of operations performed in the GPU processing, espe-
cially in the Prediction, is almost constant regardless of the environment. Figure 6.40
supports this thesis by showing the runtime of the GPU processing over time for one
scene. The prediction runtime stays constant, whereas the update runtime has some vari-
ations. The differences in the update runtime can be explained by the varying number
of measurements on the sensor input.
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Figure 6.40: Runtime of the GPU processing parts of scene 1 over time on the developer note-
book.

The runtime of the CPU processing is shown in figures 6.41 and 6.42. We see a relative
constant runtime over the different scenes as well as over time for one scene. We want
to point out, that the data transfer from the GPU to the CPU memory of the dynamic
grid output takes a significant amount of time.
In summary we can clearly see that the GPU processing as well as the CPU processing

take less than 50ms of time. This runtime performance allows the algorithm to run at
20Hz using the chosen sensor configuration on a standard notebook hardware.

111



6 Evaluation & Validation

1 2 3 4 5 6 7 8 9 10

25

30

35

40

45

50

Scene

R
u
n
ti
m
e
[m

s]

CPU Runtime

Figure 6.41: Box and whisker plots of the CPU processing runtime on the developer notebook
for the different scenes. The box extends from the 25% to the 75% percentile,
whereas the whiskers extend from the 0.3% to the 99.7% percentile. The median
is displayed as the orange line.
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Figure 6.42: Runtime of the CPU processing parts of scene 1 over time on the developer note-
book.
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6.4.2 Electronic Control Unit (ECU)

The runtime evaluation presented in this section was carried out on a prototype of an up-
coming high performance ECU. Although we use the same dataset as input, we reduced
the grid size from 120m×120m to 108m×108m here. Otherwise the configuration and
algorithms are unchanged.
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Figure 6.43: Box and whisker plots of the GPU processing runtime on the ECU for the different
scenes. The box extends from the 25% to the 75% percentile, whereas the whiskers
extend from the 0.3% to the 99.7% percentile. The median is displayed as the
orange line.

Figures 6.43 and 6.44 show the same runtime characteristics of the GPU processing on
the ECU as discussed in the previous section on the developer notebook: the runtime of
the processing is very constant over different scenes and time. The only difference is the
absolute runtime on the ECU: we see a runtime of nearly 100ms, whereas the notebook
runtime was below 50ms.
The runtime measurements of the CPU processing (figure 6.45 and 6.46) show also

the same behavior as on the developer notebook, with the absolute runtime being the
only difference.
With a runtime of below 100ms, for both the GPU and CPU processing, we achieve a

frame-rate of 10Hz on an ECU with our algorithm. Note that this runtime on the ECU
contains the sensor fusion of one lidar and three radar sensor on a grid map, as well as
the freespace and object tracking algorithm.
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Figure 6.44: Runtime of the GPU processing parts of scene 1 over time on the ECU.
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Figure 6.45: Box and whisker plots of the CPU processing runtime on the ECU for the different
scenes. The box extends from the 25% to the 75% percentile, whereas the whiskers
extend from the 0.3% to the 99.7% percentile. The median is displayed as the
orange line.
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Figure 6.46: Runtime of the CPU processing parts of scene 1 over time on the ECU.
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Environment perception plays a crucial role in advanced driver assistance systems and
autonomous driving. Therefore it is essential to invest in research and development
of perception algorithms. Every processing step in the perception pipeline, from the
sensor preprocessing, to feature extraction, to fusion and to object tracking, has to
be optimized in order to get the best results for the driving functions. Even with
new sensor generations, sensor detections will always contain certain errors, such as
measurement noise and misdetections. A powerful perception pipeline has to handle
such circumstances to provide a good environment representation.

In this work we presented a grid-based fusion approach for multiple radar and lidar
sensors. This grid-based method makes no, or only very few, assumptions about the
environment and is therefore usable in a very wide range of applications. Our approach
is estimating the occupancy as well as the velocity of each cell using particles. The
presented algorithm architecture is highly scalable regarding the number of used sensors.

We presented a grid-based fusion approach, which also acts as an abstraction layer for
the sensor data. The dynamic grid can handle arbitrary sensor data, as long as it can
provide its output as an occupancy grid. For the two most used range based sensors,
radar and lidar, we presented such inverse sensor models. These sensor models estimate
the occupancy of grid cells using single sensor measurements.

Furthermore we introduced the so called online generated orientation prior and showed
how it enhances the perception output. Using this type of prior information during
particle initialization allows a faster convergence of the particles, which are used to
estimate the cell velocities. This orientation information is calculated online, so no
further input for the algorithm is required.

Although we think that a grid-based representation of the environment is well suited
for autonomous driving tasks, e.g. collision avoidance or path planning, we understand
the demand of a more compressed representation. Therefore we presented two extraction
methods to provide well established interfaces for the environment representation: A
freespace contour list for the static environment and an object list for the dynamic
environment. To improve the quality of the object list, we proposed a standard object
tracking method using an extended Kalman filter, taking advantage of the knowledge
about a vehicle motion model.

The proposed method in this work is well suited to be parallelized for running on
graphics processing units (GPUs). Since the prediction and update of the single cells
are independent of each other, each cell (or particle) can be calculated in parallel. In
the runtime evaluation we showed that our proposed algorithm is real time capable on
upcoming electronic control units (ECU). Future ECUs (e.g. [41]) will allow even faster
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execution of such parallelized algorithms, allowing the fusion of more sensors and/or
using bigger grid maps.

We validated the proposed method using an open data set and showed that this grid-
based fusion works with a set of four sensors and that the sensor fusion outperforms
single sensor configurations. The evaluation also showed that there is still room for
further improvements. Therefore we are looking forward to upcoming publications in
this area.
Our proposed algorithm is based on range based sensors only, especially radar and

lidar sensors. A possible addition is the integration of camera sensors. The integration
of stereo cameras should be possible similar to the lidar implementation, because both
sensors are providing a dense point cloud. Using mono cameras on the other hand
is more challenging, since the estimated range of detected objects is very noisy. A
big advantage of camera sensors is their classification capability. Therefore we expect
cameras to improve the dynamic/static classification as supplementary sensors to radar
and lidar sensors.
Another interesting research question is how to extract lane information from the grid

map. The proposed freespace extraction can act as a starting point for that. Furthermore
it would be interesting whether the online generated orientation prior can help to improve
the lane estimation. In order to improve the velocity estimation of the cells, an extension
of the online generated orientation prior by the absolute speed value could possibly lead
to better results.
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A Coordinate Transformations

A.1 Location Transformation

Point1

Point2

x

y

x′

y′

T =

(
3
2

)

α = 35◦

3

2

5.5

4.5

7

6

3.48

0.61

5.57

0.98

Figure A.1: Two example points shown in an outer (blue) and an inner (red) coordinate system

Inner to Outer System

This section describes the coordinate transformation from an inner to an outer coordinate
system. This transformation corresponds to a transformation of the red coordinate
system into the blue one shown in figure A.1. First we have to rotate the inner system
by an angle of α clockwise, which corresponds to a point rotation by α anti-clockwise.
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A Coordinate Transformations

Therefore the rotation matrix Ri→o is:

Ri→o =

(
cos(α) − sin(α)
sin(α) cos(α)

)
(A.1)

After the rotation the coordinates have to be shifted to match the outer coordinate
system by adding the origin offset T :

Xo = Ri→o Xi + T (A.2)

This equation can be rewritten to one matrix multiplication using the transformation
matrix Mi→o:

Mi→o =

(
Ri→o T
0 1

)
(A.3)(

Xo

1

)
= Mi→o

(
Xi

1

)
(A.4)

Example We use Point1 from figure A.1 as an example. The information required for
the transformation is:

Ri→o =

(
cos(35◦) − sin(35◦)
sin(35◦) cos(35◦)

)
≈
(
0.8192 −0.5736
0.5736 0.8192

)
T =

(
3
2

)
Xi =

(
3.48
0.61

)
Inserting these values in the transformation equation (A.2) results in the coordinates

of that point in the outer (blue) system:

Xo =

(
0.8192 −0.5736
0.5736 0.8192

)(
3.48
0.61

)
+

(
3
2

)
=

(
2.5
2.5

)
+

(
3
2

)
Xo =

(
5.5
4.5

)
Outer to Inner System

To convert points from the outer (blue) to the inner (red) coordinate system, we apply
the inverse operations (in reversed order) as in the previous section (see A.1). First we
subtract the coordinate offset T and then we rotate by −α:

Xi = Ro→i (Xo − T )

Xi = Ro→i Xo −Ro→i T (A.5)
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A.2 Velocity Transformation

with:

Ro→i =

(
cos(−α) − sin(−α)
sin(−α) cos(−α)

)
=

(
cos(α) sin(α)
− sin(α) cos(α)

)
= R−1

i→o

As in the opposite tranformation, this transformation formula (A.5) can also be written
with only one matrix multiplication:

Mo→i =

(
Ro→i (−Ro→i T )
0 1

)
(A.6)(

Xi

1

)
= Mo→i

(
Xo

1

)
(A.7)

Example For this example we use Point2 of figure A.1:

Ro→i =

(
cos(35◦) sin(35◦)
− sin(35◦) cos(35◦)

)
≈
(

0.8192 0.5736
−0.5736 0.8192

)
T =

(
3
2

)
Xo =

(
7
6

)

Using the transformation equation A.5, we get:

Xi =

(
0.8192 0.5736
−0.5736 0.8192

)(
7
6

)
−
(

0.8192 0.5736
−0.5736 0.8192

)(
3
2

)
=

(
9.176
0.9

)
−
(

3.605
−0.082

)
Xi =

(
5.57
0.98

)

A.2 Velocity Transformation

For the velocity transformation, the transformation equations (A.2 and A.5) have to be
derived with respect to the time.
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A Coordinate Transformations

Inner to Outer System

The transformation formula for velocities from the inner (red) into the outer (blue)
coordinate system is a derivative of A.2:

Ẋo =
d

dt
(Ri→o Xi + T )

= Ṙi→o Xi +Ri→o Ẋi + Ṫ (A.8)

Ṙi→o is the derivative of the rotation matrix and denotes the change in orientation:

Ṙi→o =
d

dt

(
cos(α) − sin(α)
sin(α) cos(α)

)
=

(
− sin(α) α̇ − cos(α) α̇
cos(α) α̇ − sin(α) α̇

)
The transformation of position and velocity can be combined into one single matrix

multiplication: Xo

Ẋo

1

 = Ni→o

Xi

Ẋi

1


=

Ri→o 0 T

Ṙi→o Ri→o Ṫ
0 0 1

Xi

Ẋi

1


Outer to Inner System

The derivation for the reverse transformation is analogously:

Ẋi =
d

dt
(Ro→i Xo −Ro→iT )

= Ṙo→i Xo +Ro→i Ẋo − Ṙo→i T −Ro→i Ṫ (A.9)

with:

Ṙo→i =
d

dt

(
cos(α) sin(α)
− sin(α) cos(α)

)
=

(
− sin(α) α̇ cos(α) α̇
− cos(α) α̇ − sin(α) α̇

)
̸= Ṙ−1

i→o

Written as single matrix multiplication:Xi

Ẋi

1

 = No→i

Xo

Ẋo

1


=

Ro→i 0 (−Ro→i T )

Ṙo→i Ro→i (−Ṙo→i T −Ro→i Ṫ )
0 0 1

Xo

Ẋo

1
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A.3 Acceleration Transformation

A.3 Acceleration Transformation

For the acceleration transformation, the velocity transformation equations (A.8 and A.9)
have to be differentiated again with respect to time.

Inner to Outer System

The transformation formula for accelerations from the inner (red) into the outer (blue)
coordinate system is a derivative of A.8:

Ẍo =
d

dt

(
Ṙi→o Xi +Ri→o Ẋi + Ṫ

)
= R̈i→o Xi + Ṙi→o Ẋi + Ṙi→o Ẋi +Ri→o Ẍi + T̈

= R̈i→o Xi + 2 Ṙi→o Ẋi +Ri→o Ẍi + T̈

R̈i→o is the second order derivative of the rotation matrix and denotes the change in
orientation velocity:

R̈i→o =
d

dt
Ṙi→o

=
d

dt

(
− sin(α) α̇ − cos(α) α̇
cos(α) α̇ − sin(α) α̇

)
=

(
− cos(α) α̇2 − sin(α) α̈ sin(α) α̇2 − cos(α) α̈
− sin(α) α̇2 + cos(α) α̈ − cos(α) α̇2 − sin(α) α̈

)
The transformation of position, velocity and acceleration can be combined into one

single matrix multiplication:
Xo

Ẋo

Ẍo

1

 = Li→o


Xi

Ẋi

Ẍi

1



=


Ri→o 0 0 T

Ṙi→o Ri→o 0 Ṫ

R̈i→o 2Ṙi→o Ri→o T̈
0 0 0 1



Xi

Ẋi

Ẍi

1


Outer to Inner System

The derivation for the reverse transformation is analogously:

Ẍi =
d

dt

(
Ṙo→i Xo +Ro→i Ẋo − Ṙo→i T −Ro→i Ṫ

)
(A.10)

= Ṙo→i Ẋo + R̈o→i Xo +Ro→i Ẍo + Ṙo→i Ẋo − Ṙo→i Ṫ − R̈o→i T −Ro→i T̈ − Ṙo→i Ṫ
(A.11)

= 2 Ṙo→i Ẋo + R̈o→i Xo +Ro→i Ẍo − 2 Ṙo→i Ṫ − R̈o→i T −Ro→i T̈ (A.12)
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A Coordinate Transformations

with:

R̈o→i =
d

dt
Ṙo→i

=
d

dt

(
− sin(α) α̇ cos(α) α̇
− cos(α) α̇ − sin(α) α̇

)
=

(
− cos(α) α̇2 − sin(α) α̈ − sin(α) α̇2 + cos(α) α̈
sin(α) α̇2 − cos(α) α̈ − cos(α) α̇2 − sin(α) α̈

)

Written as single matrix multiplication:


Xi

Ẋi

Ẍi

1

 = Lo→i


Xo

Ẋo

Ẍo

1



=


Ro→i 0 0 (−Ro→i T )

Ṙo→i Ro→i 0 (−Ṙo→i T −Ro→i Ṫ )

R̈o→i 2 Ṙo→i Ro→i (−2 Ṙo→iṪ − R̈o→iT −Ro→iT̈ )
0 0 0 1



Xo

Ẋo

Ẍo

1



A.4 Extend to Three Dimensions

Using the formulas for three dimensions extends the position (X), velocity (Ẋ), offset
(T ) and offset velocity (Ṫ ) vector to 3x1 vectors. The rotation matrices (Ri→o and Ro→i)
will become 3x3 matrices and are a combination of three single rotations (around each
of the three coordinate axis):

Ri→o = Rz
i→o Ry

i→o Rx
i→o

=

cos(αz) − sin(αz) 0
sin(αz) cos(αz) 0

0 0 1

 cos(αy) 0 sin(αy)
0 1 0

− sin(αy) 0 cos(αy)

1 0 0
0 cos(αx) − sin(αx)
0 sin(αx) cos(αx)


Ro→i = Rx

o→i R
y
o→i R

z
o→i

=

1 0 0
0 cos(αx) sin(αx)
0 − sin(αx) cos(αx)

cos(αy) 0 − sin(αy)
0 1 0

sin(αy) 0 cos(αy)

 cos(αz) sin(αz) 0
− sin(αz) cos(αz) 0

0 0 1
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A.4 Extend to Three Dimensions

Derivation of the Rotation Matrices

Inner to Outer

Ṙi→o = Ṙz
i→o Ry

i→o Rx
i→o +Rz

i→o Ṙy
i→o Rx

i→o +Rz
i→o Ry

i→o Ṙx
i→o

Ṙz
i→o =

− sin(αz) α̇z − cos(αz) α̇z 0
cos(αz) α̇z − sin(αz) α̇z 0

0 0 0


Ṙy

i→o =

− sin(αy) α̇y 0 cos(αy) α̇y

0 0 0
− cos(αy) α̇y 0 − sin(αy) α̇y


Ṙx

i→o =

0 0 0
0 − sin(αx) α̇x − cos(αx) α̇x

0 cos(αx) α̇x − sin(αx) α̇x



Outer to Inner

Ṙo→i = Ṙx
o→i R

y
o→i R

z
o→i +Rx

o→i Ṙ
y
o→i R

z
o→i +Rx

o→i R
y
o→i Ṙ

z
o→i

Ṙx
o→i =

0 0 0
0 − sin(αx) α̇x cos(αx) α̇x

0 − cos(αx) α̇x − sin(αx) α̇x


Ṙy

o→i =

− sin(αy) α̇y 0 − cos(αy) α̇y

0 0 0
cos(αy) α̇y 0 − sin(αy) α̇y


Ṙz

o→i =

− sin(αz) α̇z cos(αz) α̇z 0
− cos(αz) α̇z − sin(αz) α̇z 0

0 0 0
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B Motion Model

B.1 General

We define a motion model with Constant Turn-Rate & (longitudinal) Acceleration.

Definitions

• x(t) X-position in meters

• y(t) Y-position in meters

• Ψ(t) Orientation in radiants

• v(t) (Longitudinal) velocity in meters per seconds

• Ψ̇(t) Change of orientation in radiants per seconds

• v̇(t) = a(t) (Longitudinal) acceleration in meters per square-seconds

Start Conditions

x(0) = x0

y(0) = y0

Ψ(0) = Ψ0

v(0) = v0

Constants

Ψ̇(t) = Ψ̇

v̇(t) = a

Differential Equations

ẋ(t) = cos (Ψ(t)) · v(t)
ẏ(t) = sin (Ψ(t)) · v(t)
Ψ̇(t) = Ψ̇

v̇(t) = a
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B Motion Model

B.2 Solution

Pose

x(t) =

x0 +
v(t)·(sin(Ψ(t))−sin(Ψ0))

Ψ̇
−

a
(

cos(Ψ0)−cos(Ψ(t))

Ψ̇
−sin(Ψ0)·t

)
Ψ̇

Ψ̇ ̸= 0

x0 + cos(Ψ)
(
v0t+

1
2at

2
)

Ψ̇ = 0

y(t) =

y0 +
v(t)·(cos(Ψ0)−cos(Ψ(t)))

Ψ̇
−

a
(
cos(Ψ0)·t− sin(Ψ(t))−sin(Ψ0)

Ψ̇

)
Ψ̇

Ψ̇ ̸= 0

y0 + sin(Ψ)
(
v0t+

1
2at

2
)

Ψ̇ = 0

Ψ(t) = Ψ0 + Ψ̇ · t

Velocity

v(t) = v0 + a · t
Ψ̇(t) = Ψ̇

Acceleration

v̇(t) = a(t) = a

B.3 Partial Derivatives

Pose

∂x

∂x0
= 1

∂x

∂y0
= 0

∂x

∂v0
=


sin(Ψ0+Ψ̇0·t)−sin(Ψ0)

Ψ̇0
Ψ̇0 ̸= 0

cos (Ψ0) · t Ψ̇0 = 0

∂x

∂Ψ0
=


v0(cos(Ψ0+Ψ̇0·t)−cos(Ψ0))+a0·t·cos(Ψ0+Ψ̇0·t)

Ψ̇0
+

a0(sin(Ψ0)−sin(Ψ0+Ψ̇0·t))
Ψ̇2

0

Ψ̇0 ̸= 0

− sin (Ψ0)
(
v0 · t+ 1

2 · a0 · t
2
)

Ψ̇0 = 0

∂x

∂a0
=


t sin(Ψ0+Ψ̇0·t)

Ψ̇0
+

cos(Ψ0+Ψ̇0·t)−cos(Ψ0)

Ψ̇2
0

Ψ̇0 ̸= 0

1
2 cos (Ψ0) t

2 Ψ̇0 = 0

∂x

∂Ψ̇0

=


t(v0+a0t) cos(Ψ0+Ψ̇0·t)

Ψ̇0
+

v0(sin(Ψ0)−sin(Ψ0+Ψ̇0·t))−2a0·t·sin(Ψ0+Ψ̇0·t)
Ψ̇2

0

+
2a0(cos(Ψ0)−cos(Ψ0+Ψ̇0·t))

Ψ̇3
0

Ψ̇0 ̸= 0

0 Ψ̇0 = 0
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∂y

∂x0
= 0

∂y

∂y0
= 1

∂y

∂v0
=


cos(Ψ0)−cos(Ψ0+Ψ̇0·t)

Ψ̇0
Ψ̇0 ̸= 0

sin(Ψ0) · t Ψ̇0 = 0

∂y

∂Ψ0
=


v0(sin(Ψ0+Ψ̇0·t)−sin(Ψ0))+a0·t·sin(Ψ0+Ψ̇0·t)

Ψ̇0
+

a0(cos(Ψ0+Ψ̇0·t)−cos(Ψ0))
Ψ̇2

0

Ψ̇0 ̸= 0

cos (Ψ0)
(
v0 · t+ 1

2 · a0 · t
2
)

Ψ̇0 = 0

∂y

∂a0
=


sin(Ψ0+Ψ̇0·t)−sin(Ψ0)

Ψ̇2
0

− t·cos(Ψ0+Ψ̇0·t)
Ψ̇0

Ψ̇0 ̸= 0

1
2 sin (Ψ0) t

2 Ψ̇0 = 0

∂y

∂Ψ̇0

=


t(v0+a0t) sin(Ψ0+Ψ̇0·t)

Ψ̇0
+

v0(cos(Ψ0+Ψ̇0·t)−cos(Ψ0))+2a0·t·cos(Ψ0+Ψ̇0·t)
Ψ̇2

0

+
2a0(sin(Ψ0)−sin(Ψ0+Ψ̇0·t))

Ψ̇3
0

Ψ̇0 ̸= 0

0 Ψ̇0 = 0

∂Ψ

∂x0
= 0

∂Ψ

∂y0
= 0

∂Ψ

∂v0
= 0

∂Ψ

∂Ψ0
= 1

∂Ψ

∂a0
= 0

∂Ψ

∂Ψ̇0

= t
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Velocity

∂v

∂x0
= 0

∂v

∂y0
= 0

∂v

∂v0
= 1

∂v

∂Ψ0
= 0

∂v

∂a0
= t

∂v

∂Ψ̇0

= 0

∂Ψ̇

∂x0
= 0

∂Ψ̇

∂y0
= 0

∂Ψ̇

∂v0
= 0

∂Ψ̇

∂Ψ0
= 0

∂Ψ̇

∂a0
= 0

∂Ψ̇

∂Ψ̇0

= 1
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B.4 Mathematical Derivation

Acceleration

∂a

∂x0
= 0

∂a

∂y0
= 0

∂a

∂v0
= 0

∂a

∂Ψ0
= 0

∂a

∂a0
= 1

∂a

∂Ψ̇0

= 0

B.4 Mathematical Derivation

v(t) = v0 +

∫ t

0
v̇(τ) dτ

= v0 +

∫ t

0
a dτ

= v0 + [a · τ ]t0
v(t) = v0 + a · t

Ψ(t) = Ψ0 +

∫ t

0
Ψ̇(τ) dτ

= Ψ0 +
[
Ψ̇ · τ

]t
0

Ψ(t) = Ψ0 + Ψ̇ · t
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x(t) = x0 +

∫ t

0
cos (Ψ(τ)) · v(τ) dτ

= x0 +

[(∫ τ

0
cos (Ψ(α)) dα

)
v(τ)

]t
0

−
∫ t

0

((∫ τ

0
cos (Ψ(α)) dα

)
v̇(τ)

)
dτ

= x0 +

[
v(τ)

Ψ̇

(
sin
(
Ψ0 + Ψ̇τ

)
− sin (Ψ0)

)]t
0

−
∫ t

0

(
v̇(τ)

Ψ̇

(
sin
(
Ψ0 + Ψ̇τ

)
− sin (Ψ0)

))
dτ (Eq. B.3)

= x0 +
v0 + a · t

Ψ̇

(
sin
(
Ψ0 + Ψ̇ · t

)
− sin (Ψ0)

)
−
∫ t

0

(
v̇(τ)

Ψ̇

(
sin
(
Ψ0 + Ψ̇τ

)
− sin (Ψ0)

))
dτ

= x0 +
v0 + a · t

Ψ̇

(
sin
(
Ψ0 + Ψ̇ · t

)
− sin (Ψ0)

)
− a

Ψ̇

(
1

Ψ̇

(
cos (Ψ0)− cos

(
Ψ0 + Ψ̇t

))
− sin (Ψ0) · t

)
(Eq. B.5)

= x0 +
v(t) · (sin (Ψ(t))− sin (Ψ0))

Ψ̇
−

a
(
cos(Ψ0)−cos(Ψ(t))

Ψ̇
− sin(Ψ0) · t

)
Ψ̇

(B.1)

y(t) = y0 +

∫ t

0
sin (Ψ(τ)) · v(τ) dτ

= y0 +

[(∫ τ

0
sin (Ψ(α)) dα

)
v(τ)

]t
0

−
∫ t

0

((∫ τ

0
sin (Ψ(α)) dα

)
v̇(τ)

)
dτ

= y0 +

[
v(τ)

Ψ̇

(
cos (Ψ0)− cos

(
Ψ0 + Ψ̇τ

))]t
0

−
∫ t

0

(
v̇(τ)

Ψ̇

(
cos (Ψ0)− cos

(
Ψ0 + Ψ̇t

)))
dτ (Eq. B.4)

= y0 +
v(t)

Ψ̇

(
cos (Ψ0)− cos

(
Ψ0 + Ψ̇t

))
−
∫ t

0

(
v̇(τ)

Ψ̇

(
cos (Ψ0)− cos

(
Ψ0 + Ψ̇t

)))
dτ

= y0 +
v(t)

Ψ̇

(
cos (Ψ0)− cos

(
Ψ0 + Ψ̇t

))
− a

Ψ̇

(
cos (Ψ0) · t−

1

Ψ̇

(
sin
(
Ψ0 + Ψ̇t

)
− sin (Ψ0)

))
(Eq. B.6)

= y0 +
v(t) · (cos (Ψ0)− cos (Ψ(t)))

Ψ̇
−

a
(
cos (Ψ0) · t− sin(Ψ(t))−sin(Ψ0)

Ψ̇

)
Ψ̇

(B.2)
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B.5 Auxiliary Calculations

B.5 Auxiliary Calculations

∫ t

0
cos (Ψ(τ)) dτ =

∫ t

0
cos
(
Ψ0 + Ψ̇ · τ

)
dτ

=
1

Ψ̇

∫ t

0
cos
(
Ψ0 + Ψ̇ · τ

)
Ψ̇ dτ

=
1

Ψ̇

∫ Ψ0+Ψ̇τ

Ψ0

cosx dx (Integration by substitution)

=
1

Ψ̇
[sinx]Ψ0+Ψ̇τ

Ψ0∫ t

0
cos (Ψ(τ)) dτ =

1

Ψ̇

(
sin
(
Ψ0 + Ψ̇t

)
− sin (Ψ0)

)
(B.3)

∫ t

0
sin (Ψ(τ)) dτ =

∫ t

0
sin
(
Ψ0 + Ψ̇ · τ

)
dτ

=
1

Ψ̇

∫ t

0
sin
(
Ψ0 + Ψ̇ · τ

)
Ψ̇ dτ

=
1

Ψ̇

∫ Ψ0+Ψ̇τ

Ψ0

sinx dx (Integration by substitution)

=
1

Ψ̇
[− cosx]Ψ0+Ψ̇τ

Ψ0∫ t

0
sin (Ψ(τ)) dτ =

1

Ψ̇

(
cos (Ψ0)− cos

(
Ψ0 + Ψ̇t

))
(B.4)

∫ t

0

(
v̇(τ)

Ψ̇

(
sin
(
Ψ0 + Ψ̇τ

)
− sin (Ψ0)

))
dτ =

=
a

Ψ̇

∫ t

0

(
sin
(
Ψ0 + Ψ̇τ

)
− sin (Ψ0)

)
dτ

=
a

Ψ̇

(∫ t

0
sin
(
Ψ0 + Ψ̇τ

)
dτ −

∫ t

0
sin (Ψ0) dτ

)
=

a

Ψ̇

(∫ t

0
sin
(
Ψ0 + Ψ̇τ

)
dτ − sin (Ψ0) · t

)
=

a

Ψ̇

(
1

Ψ̇

(
cos (Ψ0)− cos

(
Ψ0 + Ψ̇t

))
− sin (Ψ0) · t

)
(Insert eq. B.4) (B.5)

137



B Motion Model

∫ t

0

(
v̇(τ)

Ψ̇

(
cos (Ψ0)− cos

(
Ψ0 + Ψ̇τ

)))
dτ =

=
a

Ψ̇

(∫ t

0
cos (Ψ0) dτ −

∫ t

0
cos
(
Ψ0 + Ψ̇τ

)
dτ

)
=

a

Ψ̇

(
cos (Ψ0) · t−

∫ t

0
cos
(
Ψ0 + Ψ̇τ

)
dτ

)
=

a

Ψ̇

(
cos (Ψ0) · t−

1

Ψ̇

(
sin
(
Ψ0 + Ψ̇t

)
− sin (Ψ0)

))
(Insert eq. B.3) (B.6)

138



C Evaluation Results

C.1 Grid Evaluation

Range F S D

5m 1 579 225 37 696 8 421

10m 5 231 105 195 351 32 791

15m 10 642 021 402 950 91 455

20m 17 049 042 662 217 182 239

30m 31 512 866 1 262 973 390 591

40m 47 410 914 1 670 790 571 799

60m 83 021 330 2 258 569 781 428

90m 100 716 903 2 362 658 861 507

Table C.1: Maximum score values over different ranges. All 10 scenes summed up. See figure
6.6.

Range Lidar Radar Combined

F SD F D SD F D SD

5m 12.7 0.2 0.0 0.0 0.0 12.7 0.0 0.2

10m 24.2 0.3 0.2 0.0 0.0 24.4 0.0 0.3

15m 20.5 0.4 1.9 0.0 0.0 22.1 0.0 0.4

20m 15.9 0.3 3.0 0.0 0.0 18.6 0.0 0.4

30m 9.7 0.3 3.4 0.0 0.1 12.9 0.0 0.3

40m 6.6 0.2 3.2 0.1 0.1 9.6 0.1 0.3

60m 3.8 0.1 2.3 0.1 0.1 6.0 0.1 0.2

90m 3.1 0.1 2.0 0.1 0.1 5.0 0.1 0.2

Table C.2: Detection scores in percentage for freespace of lidar, radar and combined sensor
grid. All 10 scenes summed up. See figure 6.7.
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Range Lidar Radar Combined

F SD F D SD F D SD

5m 2.1 12.9 0.0 0.0 0.0 2.1 0.0 12.9

10m 0.8 10.9 0.0 0.0 0.0 0.8 0.0 10.9

15m 0.5 8.3 0.9 0.0 0.4 1.4 0.0 8.6

20m 0.4 6.2 1.0 0.1 0.5 1.3 0.1 6.7

30m 0.2 4.0 0.8 0.1 0.6 1.0 0.1 4.5

40m 0.2 3.1 0.8 0.1 0.6 0.9 0.1 3.7

60m 0.1 2.4 0.7 0.1 0.7 0.8 0.1 3.1

90m 0.1 2.3 0.6 0.1 0.7 0.7 0.1 2.9

Table C.3: Detection scores in percentage for static occupancy of lidar, radar and combined
sensor grid. All 10 scenes summed up. See figure 6.10.

Range Lidar Radar Combined

F SD F D SD F D SD

5m 1.7 12.9 0.0 0.0 0.0 1.7 0.0 12.9

10m 0.7 14.6 0.1 0.0 0.0 0.8 0.0 14.6

15m 0.5 9.6 1.4 2.3 0.0 1.7 2.3 9.4

20m 0.4 6.8 1.7 3.2 0.1 2.0 3.2 6.6

30m 0.3 4.3 1.3 3.9 0.2 1.5 3.9 4.3

40m 0.2 3.1 1.1 4.1 0.1 1.2 4.1 3.1

60m 0.1 2.4 0.9 4.1 0.1 1.0 4.1 2.3

90m 0.1 2.1 0.8 4.1 0.1 0.9 4.1 2.1

Table C.4: Detection scores in percentage for dynamic occupancy of lidar, radar and combined
sensor grid. All 10 scenes summed up. See figure 6.13.
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Sensor Front Rear-right Rear-left Combined

Error [ms ] 1 2 4 1 2 4 1 2 4 1 2 4

5m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

10m 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

15m 0.1 0.1 0.1 0.4 0.6 0.8 0.4 0.5 0.9 0.8 1.1 1.5

20m 0.2 0.3 0.4 0.5 0.7 1.0 0.5 0.8 1.2 1.2 1.7 2.2

30m 0.6 0.8 0.9 0.7 0.9 1.0 0.7 0.9 1.2 1.8 2.3 2.8

40m 0.7 0.9 1.1 0.8 1.1 1.3 0.9 1.1 1.4 2.2 2.7 3.4

60m 0.8 1.1 1.4 0.8 1.0 1.3 0.8 1.1 1.4 2.2 2.9 3.5

90m 0.9 1.2 1.5 0.8 1.0 1.2 0.8 1.0 1.4 2.3 2.9 3.6

Table C.5: Percentage of cells with an estimated velocity within a given error compared to the
reference value. Only cells with a reference velocity are considered. This table shows
the result of the three single radar sensors, as well as the combined sensor grid. See
figure 6.15.

Range Sensor grid Dynamic grid

F D SD F S D FD SD

5m 12.7 0.0 0.2 12.7 0.3 1.2 50.1 0.2

10m 24.4 0.0 0.3 24.4 0.3 1.5 53.3 0.3

15m 22.1 0.0 0.4 22.1 0.5 1.6 54.7 0.4

20m 18.6 0.0 0.4 18.6 0.4 1.5 54.0 0.5

30m 12.9 0.0 0.3 12.9 0.4 1.3 47.4 0.7

40m 9.6 0.1 0.3 9.6 0.4 1.2 40.5 0.8

60m 6.0 0.1 0.2 6.0 0.3 0.9 29.5 1.0

90m 5.0 0.1 0.2 5.0 0.3 0.8 25.6 1.0

Table C.6: Detection scores in percentage for freespace of the input sensor grid and the dynamic
grid. All 10 scenes summed up. See figure 6.16.
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Range Sensor grid Dynamic grid

F D SD F S D FD SD

5m 2.1 0.0 12.9 2.1 19.5 7.6 13.2 10.9

10m 0.8 0.0 10.9 0.7 14.5 11.3 5.8 11.8

15m 1.4 0.0 8.6 1.3 11.7 10.6 10.2 11.4

20m 1.3 0.1 6.7 1.3 9.2 9.3 10.5 10.4

30m 1.0 0.1 4.5 1.0 6.2 7.0 9.2 8.5

40m 0.9 0.1 3.7 0.9 5.2 6.1 8.9 8.0

60m 0.8 0.1 3.1 0.8 4.3 5.0 8.1 7.6

90m 0.7 0.1 2.9 0.7 4.1 4.8 7.8 7.4

Table C.7: Detection scores in percentage for static occupancy of the input sensor grid and the
dynamic grid. All 10 scenes summed up. See figure 6.17.

Range Sensor grid Dynamic grid

F D SD F S D FD SD

5m 1.7 0.0 12.9 1.7 1.8 32.7 21.8 6.6

10m 0.8 0.0 14.6 0.8 2.4 34.9 20.9 8.4

15m 1.7 2.3 9.4 1.7 1.7 29.5 28.9 6.3

20m 2.0 3.2 6.6 1.9 1.1 25.6 31.8 4.8

30m 1.5 3.9 4.3 1.5 0.7 19.5 29.2 3.6

40m 1.2 4.1 3.1 1.2 0.6 17.0 26.2 3.1

60m 1.0 4.1 2.3 1.0 0.4 14.6 21.9 2.6

90m 0.9 4.1 2.1 0.9 0.4 14.0 20.4 2.4

Table C.8: Detection scores in percentage for dynamic occupancy of the input sensor grid and
the dynamic grid. All 10 scenes summed up. See figure 6.18.
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Sensor grid Dynamic grid

Error [ms ] 1 2 4 1 2 4

5m 0.0 0.0 0.0 29.2 36.3 46.5

10m 0.0 0.0 0.0 19.1 27.2 39.6

15m 0.8 1.1 1.5 15.2 23.1 35.4

20m 1.2 1.7 2.2 12.8 19.8 31.0

30m 1.8 2.3 2.8 9.6 15.0 23.9

40m 2.2 2.7 3.4 8.5 13.2 21.0

60m 2.2 2.9 3.5 7.2 11.1 17.7

90m 2.3 2.9 3.6 6.9 10.6 16.9

Table C.9: Percentage of cells with an estimated velocity within a given error compared to the
reference value. Only cells with a reference velocity are considered. This table shows
the result of the input sensor grid and the dynamic grid. See figure 6.19.

Range With orientation prior Without orientation prior

F S D FD SD F S D FD SD

5m 12.7 0.3 1.2 50.1 0.2 12.7 0.3 1.3 50.1 0.2

10m 24.4 0.3 1.5 53.3 0.3 24.4 0.4 1.6 53.2 0.3

15m 22.1 0.5 1.6 54.7 0.4 22.1 0.5 1.6 54.7 0.4

20m 18.6 0.4 1.5 54.0 0.5 18.6 0.5 1.5 53.9 0.5

30m 12.9 0.4 1.3 47.4 0.7 12.9 0.4 1.4 47.4 0.7

40m 9.6 0.4 1.2 40.5 0.8 9.6 0.4 1.2 40.5 0.8

60m 6.0 0.3 0.9 29.5 1.0 6.0 0.3 0.9 29.5 1.0

90m 5.0 0.3 0.8 25.6 1.0 5.0 0.3 0.8 25.6 1.0

Table C.10: Detection scores in percentage for freespace of the dynamic grid, with and without
using the online orientation prior. All 10 scenes summed up. See figure 6.20.
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Range With orientation prior Without orientation prior

F S D FD SD F S D FD SD

5m 2.1 19.5 7.6 13.2 10.9 2.1 18.9 8.4 13.2 9.9

10m 0.7 14.5 11.3 5.8 11.8 0.7 13.3 12.9 5.7 10.4

15m 1.3 11.7 10.6 10.2 11.4 1.3 10.6 12.1 10.2 10.0

20m 1.3 9.2 9.3 10.5 10.4 1.3 8.3 10.6 10.4 9.0

30m 1.0 6.2 7.0 9.2 8.5 1.0 5.6 8.0 9.1 7.4

40m 0.9 5.2 6.1 8.9 8.0 0.9 4.7 6.9 8.8 7.0

60m 0.8 4.3 5.0 8.1 7.6 0.8 3.8 5.7 8.0 6.7

90m 0.7 4.1 4.8 7.8 7.4 0.7 3.7 5.5 7.8 6.6

Table C.11: Detection scores in percentage for static occupancy of the dynamic grid, with and
without using the online orientation prior. All 10 scenes summed up. See figure
6.21.

Range With orientation prior Without orientation prior

F S D FD SD F S D FD SD

5m 1.7 1.8 32.7 21.8 6.6 1.7 3.2 25.0 27.2 7.6

10m 0.8 2.4 34.9 20.9 8.4 0.8 3.7 26.3 26.0 10.3

15m 1.7 1.7 29.5 28.9 6.3 1.7 2.5 23.5 32.7 7.3

20m 1.9 1.1 25.6 31.8 4.8 1.9 1.6 21.2 34.5 5.6

30m 1.5 0.7 19.5 29.2 3.6 1.5 1.0 16.7 30.8 4.1

40m 1.2 0.6 17.0 26.2 3.1 1.2 0.8 14.9 27.6 3.4

60m 1.0 0.4 14.6 21.9 2.6 1.0 0.6 12.9 23.0 2.8

90m 0.9 0.4 14.0 20.4 2.4 0.9 0.5 12.4 21.4 2.6

Table C.12: Detection scores in percentage for dynamic occupancy of the dynamic grid, with
and without using the online orientation prior. All 10 scenes summed up. See
figure 6.22.
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Range With prior Without prior

Error [ms ] 1 2 4 1 2 4

5m 29.2 36.3 46.5 28.3 37.3 49.2

10m 19.1 27.2 39.6 18.9 29.5 46.0

15m 15.2 23.1 35.4 14.3 24.1 40.0

20m 12.8 19.8 31.0 11.5 19.8 33.9

30m 9.6 15.0 23.9 8.3 14.4 25.1

40m 8.5 13.2 21.0 7.2 12.4 21.7

60m 7.2 11.1 17.7 6.1 10.4 18.1

90m 6.9 10.6 16.9 5.8 9.9 17.3

Table C.13: Percentage of cells with an estimated velocity within a given error compared to
the reference value. Only cells with a reference velocity are considered. This table
shows the result of the dynamic grid, with and without using the online orientation
prior. See figure 6.23.
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C.2 Objects Evaluation

C.2.1 Object Extractions

Without orientation prior With orientation prior

Range TP FN FP Sen. Pre. F1 TP FN FP Sen. Pre. F1

5m 10 42 1 19 % 91 % 32 % 16 36 16 31 % 50 % 38 %

10m 35 85 12 29 % 74 % 42 % 60 60 56 50 % 52 % 51 %

15m 80 172 20 32 % 80 % 45 % 160 92 103 63 % 61 % 62 %

20m 145 278 44 34 % 77 % 47 % 288 135 172 68 % 63 % 65 %

30m 323 543 141 37 % 70 % 49 % 537 329 413 62 % 57 % 59 %

40m 490 737 251 40 % 66 % 50 % 718 509 674 59 % 52 % 55 %

50m 560 871 368 39 % 60 % 47 % 794 637 868 55 % 48 % 51 %

Table C.14: True positives, false negatives, false positives, sensivity, precision and F1 score over
different ranges. All 10 scenes summed up. See figures 6.24 and 6.25.

Without orientation prior With orientation prior

Range P25% P50% P75% Mean P25% P50% P75% Mean Pq

5m 0.13 0.14 0.18 0.24 0.25 0.54 0.75 0.64 0.38

10m 0.12 0.18 0.31 0.26 0.18 0.26 0.55 0.42 0.20

15m 0.13 0.27 0.42 0.33 0.17 0.25 0.41 0.36 0.17

20m 0.16 0.29 0.45 0.35 0.17 0.27 0.43 0.37 0.17

30m 0.22 0.33 0.55 0.42 0.20 0.32 0.47 0.42 0.23

40m 0.22 0.35 0.58 0.43 0.21 0.34 0.50 0.43 0.25

50m 0.23 0.37 0.64 0.45 0.22 0.35 0.53 0.45 0.27

Table C.15: Position error [m] of extracted objects with and without using the online generated
orientation prior over different ranges. All 10 scenes summed up. See figure 6.26.
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Without orientation prior With orientation prior

Range P25% P50% P75% Mean P25% P50% P75% Mean Pq

5m 6.37 14.18 18.73 12.82 1.33 2.74 4.00 3.64 1.54

10m 4.63 10.25 15.57 10.84 1.65 2.93 8.63 6.80 2.02

15m 4.53 9.37 16.42 12.03 1.59 2.95 7.78 6.51 1.59

20m 2.51 6.37 16.89 12.07 1.63 3.39 8.17 7.01 1.64

30m 2.79 8.30 18.59 12.83 1.50 3.11 7.61 6.79 1.78

40m 2.95 7.85 18.06 12.61 1.46 3.12 7.89 6.97 1.95

50m 3.21 8.68 18.44 12.98 1.51 3.34 8.23 7.29 2.14

Table C.16: Orientation error [deg] of extracted objects with and without using the online
generated orientation prior over different ranges. All 10 scenes summed up. See
figure 6.27.

Without orientation prior With orientation prior

Range P25% P50% P75% Mean P25% P50% P75% Mean Pq

5m 5.02 7.64 8.27 6.50 1.84 2.04 4.78 3.01 1.94

10m 1.63 4.28 8.00 4.70 1.84 2.73 4.80 3.19 1.92

15m 0.93 2.91 7.21 3.94 2.02 3.40 4.79 3.51 2.02

20m 0.77 1.92 4.32 2.92 1.43 2.78 4.41 3.00 1.43

30m 0.69 1.46 3.22 2.34 0.96 2.01 3.69 2.46 1.17

40m 0.65 1.53 3.20 2.25 0.76 1.76 3.28 2.23 1.11

50m 0.67 1.68 3.24 2.32 0.79 1.74 3.21 2.22 1.18

Table C.17: Speed error [m/s] of extracted objects with and without using the online generated
orientation prior over different ranges. All 10 scenes summed up. See figure 6.28.
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Without orientation prior With orientation prior

Range P25% P50% P75% Mean P25% P50% P75% Mean Pq

5m 0.32 0.56 0.92 0.66 0.16 0.20 0.81 1.30 0.17

10m 0.37 0.70 1.12 0.99 0.16 0.26 0.60 0.75 0.18

15m 0.51 1.26 2.99 1.80 0.22 0.54 1.45 1.12 0.22

20m 0.62 1.66 3.31 2.13 0.27 0.74 2.34 1.45 0.27

30m 0.95 2.83 3.70 2.55 0.45 1.47 3.12 1.91 0.56

40m 1.88 3.09 3.74 2.81 0.62 2.37 3.22 2.19 1.04

50m 2.08 3.18 3.81 2.91 0.68 2.47 3.34 2.27 1.38

Table C.18: Length error [m] of extracted objects with and without using the online generated
orientation prior over different ranges. All 10 scenes summed up. See figure 6.29.

Without orientation prior With orientation prior

Range P25% P50% P75% Mean P25% P50% P75% Mean Pq

5m 0.15 0.23 0.31 0.29 0.11 0.21 0.48 0.38 0.13

10m 0.09 0.20 0.37 0.33 0.09 0.20 0.47 0.30 0.10

15m 0.16 0.33 0.94 0.56 0.12 0.28 0.81 0.48 0.12

20m 0.22 0.59 1.08 0.68 0.15 0.46 1.05 0.62 0.15

30m 0.34 0.86 1.25 0.85 0.22 0.76 1.17 0.75 0.28

40m 0.34 0.82 1.19 0.82 0.23 0.70 1.15 0.73 0.36

50m 0.34 0.83 1.22 0.82 0.23 0.68 1.15 0.73 0.38

Table C.19: Width error [m] of extracted objects with and without using the online generated
orientation prior over different ranges. All 10 scenes summed up. See figure 6.30.
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C.2.2 Tracked Objects

Extracted objects Tracked objects

Range TP FN FP Sen. Pre. F1 TP FN FP Sen. Pre. F1

5m 16 36 16 31 % 50 % 38 % 50 2 10 96 % 83 % 89 %

10m 60 60 56 50 % 52 % 51 % 98 22 41 82 % 71 % 76 %

15m 160 92 103 63 % 61 % 62 % 206 46 62 82 % 77 % 79 %

20m 288 135 172 68 % 63 % 65 % 330 93 99 78 % 77 % 77 %

30m 537 329 413 62 % 57 % 59 % 599 267 231 69 % 72 % 71 %

40m 718 509 674 59 % 52 % 55 % 792 435 363 65 % 69 % 66 %

50m 794 637 868 55 % 48 % 51 % 868 563 481 61 % 64 % 62 %

Table C.20: True positives, false negatives and false positives over different ranges. All 10
scenes summed up. See figures 6.31 and 6.32.

Extracted objects Tracked objects

Range P25% P50% P75% Mean P25% P50% P75% Mean Pq

5m 0.25 0.54 0.75 0.64 0.22 0.39 1.22 1.31 0.17

10m 0.18 0.26 0.55 0.42 0.24 0.42 0.75 0.58 0.27

15m 0.17 0.25 0.41 0.36 0.24 0.41 0.75 0.61 0.32

20m 0.17 0.27 0.43 0.37 0.25 0.43 0.78 0.60 0.37

30m 0.20 0.32 0.47 0.42 0.30 0.49 0.84 0.66 0.45

40m 0.21 0.34 0.50 0.43 0.28 0.48 0.86 0.67 0.44

50m 0.22 0.35 0.53 0.45 0.29 0.50 0.88 0.69 0.46

Table C.21: Position error [m] of tracked objects over different ranges. All 10 scenes summed
up. See figure 6.33.
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Extracted objects Tracked objects

Range P25% P50% P75% Mean P25% P50% P75% Mean Pq

5m 1.33 2.74 4.00 3.64 2.98 11.67 16.61 10.86 1.78

10m 1.65 2.93 8.63 6.80 2.06 6.09 16.36 9.42 2.51

15m 1.59 2.95 7.78 6.51 1.69 4.11 13.87 7.82 2.70

20m 1.63 3.39 8.17 7.01 1.66 4.27 10.93 7.82 3.20

30m 1.50 3.11 7.61 6.79 1.36 3.24 9.00 6.86 2.76

40m 1.46 3.12 7.89 6.97 1.33 3.20 8.47 6.75 2.75

50m 1.51 3.34 8.23 7.29 1.31 3.21 8.16 6.67 2.82

Table C.22: Orientation error [deg] of tracked objects over different ranges. All 10 scenes
summed up. See figure 6.34.

Extracted objects Tracked objects

Range P25% P50% P75% Mean P25% P50% P75% Mean Pq

5m 1.84 2.04 4.78 3.01 0.05 0.31 0.80 0.65 0.04

10m 1.84 2.73 4.80 3.19 0.24 1.20 2.12 1.28 0.41

15m 2.02 3.40 4.79 3.51 0.75 1.67 2.32 1.61 1.37

20m 1.43 2.78 4.41 3.00 0.62 1.44 2.22 1.50 1.24

30m 0.96 2.01 3.69 2.46 0.46 1.13 1.99 1.33 0.97

40m 0.76 1.76 3.28 2.23 0.40 0.93 1.84 1.22 0.83

50m 0.79 1.74 3.21 2.22 0.39 0.93 1.83 1.21 0.85

Table C.23: Speed error [m/s] of tracked objects over different ranges. All 10 scenes summed
up. See figure 6.35.
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Extracted objects Tracked objects

Range P25% P50% P75% Mean P25% P50% P75% Mean Pq

5m 0.16 0.20 0.81 1.30 0.36 0.56 4.13 1.82 0.32

10m 0.16 0.26 0.60 0.75 0.35 0.66 1.80 1.41 0.39

15m 0.22 0.54 1.45 1.12 0.35 0.79 1.43 1.24 0.55

20m 0.27 0.74 2.34 1.45 0.35 0.80 1.61 1.30 0.66

30m 0.45 1.47 3.12 1.91 0.38 0.86 2.11 1.39 0.79

40m 0.62 2.37 3.22 2.19 0.42 1.04 2.35 1.51 0.89

50m 0.68 2.47 3.34 2.27 0.42 1.02 2.38 1.51 0.86

Table C.24: Length error [m] of tracked objects over different ranges. All 10 scenes summed
up. See figure 6.36.

Extracted objects Tracked objects

Range P25% P50% P75% Mean P25% P50% P75% Mean Pq

5m 0.11 0.21 0.48 0.38 0.16 0.58 0.62 0.41 0.09

10m 0.09 0.20 0.47 0.30 0.21 0.57 0.62 0.47 0.34

15m 0.12 0.28 0.81 0.48 0.25 0.51 0.63 0.47 0.34

20m 0.15 0.46 1.05 0.62 0.21 0.42 0.64 0.48 0.34

30m 0.22 0.76 1.17 0.75 0.24 0.53 0.68 0.52 0.43

40m 0.23 0.70 1.15 0.73 0.21 0.47 0.67 0.50 0.42

50m 0.23 0.68 1.15 0.73 0.20 0.46 0.67 0.50 0.42

Table C.25: Width error [m] of tracked objects over different ranges. All 10 scenes summed up.
See figure 6.37.
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