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Abstract

This thesis proposes a coded modulation scheme to implement probabilistic shaping with
arbitrary symbol distributions. The considered scheme is based on polar codes, a class of
capacity-achieving, linear block codes with state-of-the-art finite-length performance and
an explicit construction. The scheme is analysed from a theoretical standpoint as well as
with numerical simulations. Furthermore, an extension to this scheme for state-dependent
shaping is proposed, as well as an application to dirty paper coding. The effectiveness
of this extension is shown in numerical simulations and its convergence properties are
discussed.
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1 Introduction

In 1948, Shannon [Sha48] proved maximally achievable information rates for a given noisy
channel using codes with infinite lengths. Ever since then, communications engineers
and information theorists are working on communication schemes which can approach
these information rates using codes with finite lengths. Traditionally, linear forward
error correction (FEC) codes are used which produce uniformly distributed channel input
symbols for uniformly distributed data bits. While these codes can provide decoding rules
with low probability of error without requiring too much overhead for redundancy, we
know from Shannon’s results that the optimal input distribution that achieves the channel
capacity is generally not uniform. In order to further increase efficiency of communication,
one can make use of distribution matching (DM) in addition to FEC. The goal of DM
is to generate codewords with symbols that are distributed according to more beneficial
distributions. As a FEC stage after DM spoils the symbol distribution and a DM stage the
FEC destroys desirable properties of the FEC code, FEC and DM have to be performed
in a coordinated manner. Such a joint coding for FEC and DM is called probabilistic
shaping.

While there exist efficient shaping schemes for performing minimum-energy DM [For92],
[KK93] or DM for symmetric target distributions, [BSS15], there is a lack of shaping
schemes that are able to perform DM with arbitrary target distributions. However, arbi-
trary target distributions come up in certain cases, for example for communication over
the intensity modulation (IM) channel or over the dirty paper channel [GP80], [Len18].
For these channels, the optimal input distribution does not contain any symmetries and
thus, arbitrary symbol shaping is required.

We propose a shaping scheme based on polar codes. Polar codes [Sto02] are the first
class of codes that were proven to achieve the capacity of discrete memoryless channels
(DMCs) [Arı09]. Not only do they provide an explicit construction, but they can also
be encoded and decoded with a complexity of Θ(N logN) with block length N [Arı09].
Thanks to efficient list decoding [TV15], polar codes proved to be competitive for short
and moderate block lengths, c.f. [CDJ+19]. Furthermore, there exist straightforward
and powerful extensions to coded modulation [SSSH13], [PYB+17] as well as to shaping
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1 Introduction

[HY13], [WSSY19], making polar codes a good candidate for this still ongoing search for
capacity-approaching communication systems.
In this thesis we build upon multilevel polar coded modulation [Ung82], [SSSH13] and
Honda-Yamamoto (HY) codes for probabilistic shaping [HY13]. We combine these two
concepts and propose multilevel Honda-Yamamoto (MLHY) coded modulation; a joint
DM and FEC coding scheme. We show that MLHY coding is able to realize arbitrary tar-
get distributions on higher-order modulation alphabets. Furthermore, we extend existing
polar coding proofs to MLHY coding and show that the proposed scheme achieves the
constellation-constrained capacity of a memoryless channel and provide error exponents
for the case of finite block lengths. To complement the theoretical results, we provide
simulated performance results for DM and shaping scenarios. In addition to that, we dis-
cuss theoretical aspects to the applicability of HY coding and MLHY to state-dependent
shaping, as is required for dirty paper coding (DPC). We give a short review on ap-
proaches to this problem and provide simulated results to show the practicability of the
assumptions required for the state-dependent MLHY DPC scheme.
The remaining thesis is structured as follows. Chapter 2 and Chapter 3 provide some
background on general aspects of information theory and a more focused review on polar
coding, respectively. After this, Chapter 4 introduces the polar coding-based shaping
scheme for higher-order coded modulation. For this scheme, we provide a theoretical
analysis as well as simulated performance results. In Chapter 5, we then give a short
introduction to channels with state and to DPC in particular. Chapter 6 extends the
scheme proposed in Chapter 4 to state-dependent shaping and shows an exemplary ap-
plication to DPC. The extension is again discussed from a theoretical standpoint and
simulated performance results are presented. Finally, Chapter 7 concludes this thesis.

4



2 Preliminaries

2.1 Notation

Random variables X or Y with distribution X,Y ∼ PX,Y are denoted by upper case
symbols whereas their realizations are denoted by lower case symbols x and y, respectively.
Vectors of realizations x or of random variables X are denoted by bold symbols. Elements
xi of vectors are denoted with lowered indices. Uppercase bold letters may also denote
matrices G. Sets X are denoted by calligraphic uppercase letters, their complement by
XC and their cardinality by |X |. The set difference is denoted as X \ Y = X ∩ YC . An
index set from N to M is denoted as N :M ≜ {N, . . . ,M}. For index sets starting at
index 1, we write JNK ≜ 1:N = {1, . . . , N}. An index set S may also index into a vector,
creating a substring xS with length |S|, e. g., xJNK. Blackboard uppercase letters F denote
fields.
All logarithms log x are with respect to base 2 if not stated otherwise. The Kronecker
power F⊗n of a matrix is defined as F ⊗ · · · ⊗ F︸ ︷︷ ︸

n times

with the tensor product A⊗B.

2.2 Quantities of Information

The definitions and relations introduced in the following review can be found in [CT06].
Let PX denote the probability distribution of a random variable X on a finite alphabet,
pX denote the probability mass function of a discrete random variable and fX denote the
probability density function of a continuous random variable. The probability of some
general event E is denoted by P(E). The converse probability is denoted by P(¬E) = 1−
P(E). Empirical stochastic quantities P̂(x) are denoted with a hat symbol. Conditioning
a random variable X on Y is denoted as X|Y . The set of all probability mass functions
over alphabet X is denoted as Π(X ).
A normally distributed random variable with mean µ and variance σ2 is denoted by
X ∼ N (µ, σ2) and a binary random variable X ∈ F2 with pX(1) = q is denoted by
X ∼ Ber(q).
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2 Preliminaries

The entropy of some probability distribution p quantifying the accompanying uncertainty
is defined as

H(p) = −
∑

x∈supp(p)

p(x) log p(x), (2.1)

where supp(g) =
{
x ∈ X : g(x) ̸= 0

}
is the support of a function g : X → R. For a

discrete random variable X ∼ pX , we define the entropy H(X) of a random variable as a
shorthand for

H(X) ≜ H(pX) = −E[log pX(X)], (2.2)

where E[·] denotes the expectation value. In the same manner, the empirical entropy
Ĥ(X) of a random variable is defined as the entropy of the respective empirical distribu-
tion

Ĥ(X) ≜ H(p̂X). (2.3)

For a continuous random variable X ∼ fX , the differential entropy is defined likewise as

h(X) = −E[log fX(X)]. (2.4)

Similarly, the conditional entropy for two random variables X,Y ∼ pX,Y is defined as

H(X|Y ) = −E[log pX|Y (X|Y )] (2.5)

and analogously for continuous random variables.

For discrete random variables,

0 ≤ H(X|Y ) ≤ H(X) ≤ log|X | (2.6)

with equalities H(X) = 0 for fully deterministic variables, H(X) = log|X | for X ∼ U(X ),
where U denotes the uniform distribution over X , and H(X) = H(X|Y ) if and only if
(iff) X and Y are stochastically independent. For differential entropies, only the relation
between h(X|Y ) and h(X) holds.

Finally, the mutual information (MI) between two random variables X and Y is defined
as

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) (2.7)

with straightforward extension to differential entropies. Furthermore, a conditioned def-
inition exists with

I(X;Y |S) = H(X|S)−H(X|Y, S) = H(Y |S)−H(Y |X,S). (2.8)
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2.3 Channel Models

Both, the MI as well as the entropy, obey the so-called chain rule so that

H(X1X2 . . . XN ) =
∑
i∈JNKH(Xi|X1, . . . , Xi−1) (2.9)

as well as
I(X1X2 . . . XN ;Y ) =

∑
i∈JNK I(Xi;Y |X1, . . . , Xi−1) (2.10)

holds.

2.3 Channel Models

2.3.1 General Channel Properties

Let W : X → Y denote a channel with input alphabet X , output alphabet Y and
transition probabilities W (y|x).
Such a channel W is discrete if both input and output are discrete random variables.
A channel W (y|x) is called strongly symmetric if it satisfies

{
W (y|x) : y ∈ Y

}
=

{
W (y|x′) : y ∈ Y

}
∀x, x′ ∈ X , (2.11){

W (y|x) : x ∈ X
}
=

{
W (y′|x) : x ∈ X

}
∀y, y′ ∈ Y . (2.12)

Such a channel has equal sets of transition probabilities for every input symbol and equal
sets of input likelihoods for each output symbol. When the output alphabet Y of a
channel W can be partitioned into sets Yi, so that each channel X → Yi is strongly
symmetric, the channel W is said to be symmetric.
Furthermore, a channel W is memoryless, if W (yi|xi) does not depend on the previ-
ous symbols xJi−1K and yJi−1K. For a memoryless channel, the joint probability of N

consecutive accesses is
WN (yJNK|xJNK) = ∏

i∈JNKW (yi|xi). (2.13)

Shannon [Sha48] proved that for coding over a memoryless channel with block length
N → ∞ and rate R < I(X;Y ), there exists a code whose decoding error probability
P(E) → 0, where E is the event of a block decoding error. Furthermore, for R > I(X;Y )

no such code exists and P(E) → 1 for N → ∞. Maximizing the MI with respect to the
channel input distribution provides this channel capacity

C = max
PX

I(X;Y ). (2.14)
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2 Preliminaries

Also, one can define constrained capacities s.t. PX ∈ π ⊆ Π(X ) such as the maximally
achievable rate under an average power constraint

C = max
PX

I(X;Y ) s.t. E[ ∥X∥2] ≤ Ptx. (2.15)

Shannon used random codes to prove these results. However, these codes are infeasible
for practical use, which motivates the search for practically usable channel codes with
good finite block length performances.

For a symmetric DMC W , the unconstrained channel capacity is achieved with a uniform
input distribution PX = U(X ). The symmetric capacity of a not necessarily symmetric
channel is defined as I(W ) = I(X;Y )

∣∣
X∼U(X )

= log|X |−H(X|Y )
∣∣
X∼U(X )

, which coincides
with the channel capacity for symmetric channels.

In a coded modulation setting with continuous channel input X , the effective input al-
phabet XCM of W as well as its distribution fX is constrained by the signal constellation
XCM ⊂ X . We call the achievable rate under this constraint the constellation-constrained
channel capacity. This is also known as the coded modulation capacity in the literature.

Channels W (y|x, s) can also be state dependent. When the channel state is known to the
transmitter as well as to the receiver acausally [EK11, Section 7.4], the capacity of the
system is

C = max
PX|S

I(X;Y |S) = max
PX|S

H(X|S)−H(X|Y, S) . (2.16)

A special case where the state is unknown to the receiver is considered in Chapter 5.

2.3.2 Degraded Channels

A so-called broadcast channel W (y1, y2|x) with outputs y1 and y2 is said to be physically
degraded if X — Y1 — Y2 forms a Markov chain.

We say that a conditional probability distribution PY2|X is stochastically degraded with
respect to a distribution PY1|X , denoted as PY2|X ⪯ PY1|X , if there exists a distribution
P̃Y2|Y1

such that
PY2|X(y2|x) =

∑
y1∈Y1

P̃Y2|Y1
(y2|y1)PY1|X(y1|x). (2.17)

This is the case when PY2|X and PY1|X are the marginals of some physically degraded
broadcast channel and X — Y1 — Y2 forms a Markov chain. One interpretation of this is
that everything that can be decoded from Y2 can also be decoded from Y1. The channel
PY1|X is in some sense more reliable than the channel PY2|X .

8



2.3 Channel Models

X ∼ PX

N ∼ N (0, σ2)

Y = X +N

Figure 2.1: AWGN channel.

For two channels PY2|X ⪯ PY1|X ,

I(X;Y2) ≤ I(X;Y1) (2.18)

because X — Y1 — Y2 forms a Markov chain. By subtracting H(X) and multiplying
with −1 at both sides, we also get

H(X|Y2) ≥ H(X|Y1). (2.19)

We remark that the statement cannot be made in the opposite direction. In general,
one cannot infer PY2|X ⪯ PY1|X from I(X;Y2) ≤ I(X;Y1) for two channels with the same
input X [EK11, Section 5.6].

2.3.3 The AWGN Channel

The additive white Gaussian noise (AWGN) channel with noise variance σ2 is a continu-
ous, symmetric channel Y = X +N with additive noise N ∼ N (0, σ2) that is stochasti-
cally independent of X. The channel can also be modeled as W (·|x) = N (x, σ2). A block
diagram is shown in Figure 2.1.

The MI of an AWGN channel is

I(X;Y ) = h(Y )− h(Y |X) = h(Y )− 1

2
log(2πeσ2) (2.20)

for X ⊆ R. Observing that the only term dependent on PX is h(Y ) = h(X+N), one can
use the independence of X and N to conclude that

P ∗
X = argmax

PX

H(X) (2.21)

is required to achieve capacity. This particular P ∗
X is called maximum-entropy distribu-

tion.

9
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0 2 4 6
0
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Figure 2.2: PAM Constellation and distribution for IM with M = 8, ∆ = 1, and√
E[ |X|2] ≈ 3.

For X = R and an average power constraint E[ ∥X∥2] ≤ Ptx, this maximum-entropy
distribution is a Gaussian distribution. For discrete X and an average power constraint,
PX resembles a discretized Gaussian distribution where

PX(x) ∝ exp(−c∥x∥2) (2.22)

with factor c depending on the specific X as well as on the constraint. This is also referred
to as Maxwell-Boltzmann distribution in some literature [KP93]. The continuous AWGN
channel has a channel capacity of C = 1

2 log(1 + γ) with the signal-to-noise ratio (SNR)
γ = E[ ∥X∥2]

σ2 . Complex signalling achieves a channel capacity of C = log(1 + γ).

2.3.4 The Intensity Modulation Channel

In many optical communication systems, transmission schemes only modulate the power
of the transmitted signal. As the power is a non-negative scalar, the possible constellations
are X ⊂ R+

0 . Other than that, this so-called IM channel can be modelled as an AWGN
channel [WDY+20].
We assume a finite pulse-amplitude modulation (PAM) constellation with M equidistant
symbols as shown in Figure 2.2. The parameter ∆ specifies the distance between two
adjacent symbols. As the channel is an AWGN channel, the constellation-constrained
capacity can again be achieved with a maximum entropy distribution. Using an average
power constraint, this distribution is again of the form PX(x) ∝ exp(−c∥x∥2). For given
SNR and M , the constellation-constrained MI I(X;Y ) is a function of ∆, which makes
the optimal ∆∗(γ) achieving the capacity a function of the SNR [BSS15].
As the constellation is one-sided, each symbol is associated with a probability that is
distinct from the probabilities of the other symbols. Furthermore, when each symbol x is
represented by m = logM bits xB,1, . . . , xB,m, then there is no decomposition PX(x) =

10
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Figure 2.3: Achievable rates for ASK and IM with M = 8.

P(xB,Jm−1K) · P(xB,m), i. e., it is not sufficient to distribute a bit xB,ℓ according to its
marginal, because P(xB,ℓ) ̸= P(xB,ℓ|xB,Jℓ−1K). As we will see in the next Section, these
aspects impose challenges on a practical communication scheme.

2.4 Probabilistic Shaping

In order to close the gap between channel capacity and practically implementable systems,
a transmission scheme aims at maximizing spectral efficiency (SE) and at minimizing the
probability of decoding error. The SE is defined as the rate in bits per channel use (bpcu),
at which information can be transmitted. By using non-uniform symbol distributions
PX , e. g., the maximum-entropy distributions discussed in the last two sections, higher
SEs becomes possible without requiring larger SNR. The shaping gain is defined as the
reduction in required SNR by using shaped instead of uniform transmission for a given
achievable rate. Figure 2.3 compares the achievable rates for amplitude-shift keying
(ASK) and PAM over the AWGN channel for uniform as well as optimal signalling. For
PAM with M = 8, shaping gains of over 2 dB are possible.
Generally, a communication system may assume uniformly distributed messages. For
most coded transmission schemes, also the parity bits are distributed uniformly [BSS15].
The generation of non-uniformly distributed codewords requires probabilistic shaping.
In accordance to the terminology from [CO90], we focus on direct probabilistic shaping
approaches. Direct probabilistic shaping tries to generate energy-optimal transmission
sequences by generating codewords, so that the empirical distribution of the transmitted
symbols follows a target distribution P̃X . This target distribution over the constellation

11



2 Preliminaries

is designed to approximate the distribution for which the channel capacity is achieved.
For this reason, these approaches are also often referred to as DM [GFAW20]. In case
the DM is implemented via a code, it is often called a shaping code.
To motivate the need for practical shaping schemes, we give a quick overview over existing
ideas and their limitations. We do not aim at covering all existing concepts and their
derived schemes exhaustively. A summary of existing schemes can be found in [BSS15]
and [GFAW20] with further references. We characterize a few conceptually important
schemes in the following list.

Gallager’s scheme proposed in [Gal68] and also known as alphabet extension, maps
many code symbols to one transmission symbol. With this, uniform code symbols
can realize arbitrary distributions PX(x) = a

b represented by rational numbers. As
the size of the extended alphabet increases with the denominator of the desired
probabilities, this scheme becomes infeasible for many scenarios.

Trellis shaping proposed in [For92] uses the trellis decoder of a convolutional shaping
code to generate the transmission sequence from an encoded data sequence. This ef-
fectively finds a minimum energy shaping codeword for a given FEC codeword. This
shaping codeword then represents the transmission sequence sent to the receiver.
The main problem of using trellis shaping in practical communication schemes is
the design and rate matching of the shaping code.

Probabilistic amplitude shaping (PAS) proposed in [BSS15] combines DM with lin-
ear FEC. PAS uses the uniformly distributed parity bits of the FEC as sign bits,
thus requiring a symmetric target distribution. The non-uniform amplitude shaping
is realized via DM such as the constant composition distribution matching (CCDM)
scheme proposed by [SB15] which maps a uniform, fixed-length input sequence to
a fixed-length output sequence with the desired distribution PX by using sequence
look-ups of sufficient size. PAS itself can only synthesize certain distributions. In
particular, the uniform parity bit shaping requires a distribution for symbols x rep-
resented by m bits xB,JmK to be decomposable as PX(x) = 1

2 P(xB,Jm−1K). Also, the
incorporated DM may suffer from large look-ups or suboptimal rates. Extensions to
non-uniform probabilistic shaping of the parity bits exist [BLCS19]. The syndrome
DM proposed there is non-trivial to implement efficiently.

HY coding is explained in more detail in Section 3.2.
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3 Polar Coding

This chapter presents polar coding proposed by Arıkan [Arı09] and its extensions to coded
modulation and probabilistic shaping proposed by Seidl et al. [SSSH13], and Honda and
Yamamoto [HY13], respectively.

3.1 Polar Codes for Error Correction

Polar codes, originally proposed for FEC in [Sto02], [Arı09], are an instance of linear
block codes where the general idea is to transform N = 2n, n ∈ N, consecutive accesses
to a symmetric binary-input DMC W : F2 → Y to a combined channel WN : FN

2 →
YN . An individual channel W (i)

N (y,uJi−1K|ui) with data bits u, observations y and index
i ∈ JNK is called bitchannel. The transform is constructed in a way, so that with N →
∞, the individual bitchannels tend to polarize to be either deterministic or completely
useless with transition probability p = 1

2 . Bitchannels that are useless are then set
to frozen values known at the receiver whereas deterministic bitchannels are used for
data transmission. Following Arıkan’s original construction, this polarizing transform is
achieved by recursively applying a 2×2 base transform also known as polarization kernel.
The originally proposed base transform encodes a vector u = [u1, u2] ∈ F2

2 using a kernel
matrix

F =

1 0

1 1

 (3.1)

to a codeword x = u · F = [u1 + u2, u2]. The transform is visualized in Figure 3.1.

u1

u2

W

W

y1

y2

x1

x2

Figure 3.1: Combined channel W2.
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x5

x6

x7

x8

Figure 3.2: Polar transform for N = 8.

Recursively applying this transform leads to a transform F⊗n with

x = u · F⊗n. (3.2)

A transform for a block length of N = 8 is shown in Figure 3.2. Each group of XOR-nodes
stemming from the recursive application is called a polarization stage.

As the linear kernel F as well as its recursive application F⊗n is invertible, the total
entropies of the random vectors U and X, H(U) and H(X), are equal. From this, also
the MI stays invariant under the base transform and I(U ;Y ) = I(X;Y ) = N I(W ).
Furthermore, it was shown by [Arı09], [AT09] that

∑
i∈JNK I(W (i)

N ) = I(X;Y ) and

lim
N→∞

1

N

∣∣∣∣{i : Z(W
(i)
N ) ≤ 2−Nβ

}∣∣∣∣ = I(W ), (3.3)

lim
N→∞

1

N

∣∣∣∣{i : Z(W
(i)
N ) ≥ 1− 2−Nβ

}∣∣∣∣ = 1− I(W ) (3.4)

with some β < 1
2 and the Bhattacharyya parameter Z(W ) =

∑
y

√
W (y|0)W (y|1) where

I(W ) ≈ 1 iff Z(W ) ≈ 0 and I(W ) ≈ 0 iff Z(W ) ≈ 1. Therefore, for any 0 < δ < 1,

lim
N→∞

1

N

∣∣∣∣{i : I(W (i)
N ) > 1− δ

}∣∣∣∣ = I(W ), (3.5)

lim
N→∞

1

N

∣∣∣∣{i : I(W (i)
N ) < δ

}∣∣∣∣ = 1− I(W ). (3.6)
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3.1 Polar Codes for Error Correction

Applying the chain rule of MI results in

I(U ;Y ) =

N∑
i=1

I(Ui;Y |UJi−1K). (3.7)

This decomposition gives rise to the so-called successive cancellation (SC) decoding, a
sequential soft-in hard-out decoding rule that first decodes u1 and then u2 given u1

recursively. For this, the SC decoder calculates the probabilities P(ui|uJi−1K,y) from the
provided P(xi|yi) for u = x(F⊗n)−1 so that x is a codeword, i. e., so that u adheres to
the known frozen bit positions and values.

With multiple polarization stages, this algorithm has a complexity of O(N logN) and
executes a specific decoding order that is different from the natural bit order. As the
definition of a bitchannel and the decomposition using the chain rule for MI rely on the
previous bits and thus on the decoding order, often BNF⊗n with the bit-reversal matrix
BN is used as polar transform instead. The bit-reversal matrix acts as a permutation
that assigns each index its bit-reversed index.

Example 1. For a polar code with n = 4 stages and thus a block length of N = 24 = 16,
each bitchannel index is represented by four bits. In that case, e. g., the index 12 (1100)
is assigned to index 3 (0011) and is therefore decoded fourth after bits 0, 8 and 4.

As the SC principle is based on the chain rule for MI, the decoder can be shown to be
capacity achieving in the case of N → ∞ [AT09]. In the finite-block length case, the SC
decoder was shown to have decoding error probabilities of P(E) = O(2−Nβ

) [KŞU10]. In
order to increase performance at smaller block lengths, Tal and Vardy [TV15] proposed a
successive cancellation list (SCL) decoder with decoding complexity of O(LN logN) with
list size L. This decoding rule allows to achieve error rates comparable with the more
complex and often larger low-density parity-check (LDPC) codes at short and moderate
block lengths around and also below 213 c.f. [CDJ+19]. To increase the performance of
the SCL decoder further, an outer cyclic redundancy check (CRC) code can be used to
prune invalid list items [TV15].

For the construction of a polar code and the allocation of data bits and frozen bits, the
symmetric capacity of each bitchannel needs to be determined. Those capacities depend
on the channel and need to be computed for the specific channel. This can always be
done in a Monte Carlo (MC) simulation, but more efficient approximations are available
[MT09], [TV13], [Tah17]. We remark that the theoretical polarization results as well as
the computed reliabilities use SC decoding. For SCL decoding, one may need to alter the
bitchannel allocation [RV19], [YPB+19].
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Extensions to systematic codes [LZH15] and log-likelihood ratio (LLR)-based decoding
[BBB15] exist.

3.2 Polar Codes for Probabilistic Shaping

Besides their capacity-achieving property for symmetric channels, polar codes also proved
to be asymptotically optimal for lossy and lossless source coding [KU10a], [Arı10]. This
property allows them to be used for channel input shaping as well, by employing a shaping
decoder at the transmitter similar to [For92].
Furthermore, polar codes decouple the error-correcting or information compressing re-
dundancy from the code in terms of its codewords. While the redundancy is defined by
the polar transform itself, the set of valid codewords is defined by choosing the positions
and values for the frozen bits. This can be used to construct structurally similar codes
with different codewords and also codes with partly overlapping codewords.
Based on this, Honda and Yamamoto [HY13] proposed a transmission scheme that allows
for joint FEC and DM using a single polar code. This polar code is defined by the positions
and values for the frozen bits as well as an additional set of bitchannel indices called
the shaping set. The bitchannels with the highest H(Ui|UJi−1K,Y ) are again allocated
for frozen bits. For DM, the bitchannels with the lowest H(Ui|UJi−1K) are chosen. We
call this transmission scheme HY coding, to differentiate it from other polar code-based
shaping schemes such as [MKM+19], [ZLJ+21].
This construction can be interpreted as follows. The bits chosen for FEC have
H(Ui|UJi−1K,Y ) ≈ 1. This entropy quantifies the uncertainty about Ui, or the “miss-
ing information” about Ui which still remains after knowing the channel observations y

as well as the previous bits uJi−1K. The larger this uncertainty, the higher the chance that
the decoder guesses the bit ui wrongly. If the uncertainty regarding bit Ui is 1 bit, the bit
is equivalent to a coin flip. This bit cannot be decoded successfully and is added to the
set of frozen bits, as knowledge about this bit is required for the decoding of later bits. If
the uncertainty regarding this bit is low, it can be decoded successfully with high proba-
bility. The same idea applies to H(Ui|UJi−1K), which quantifies the available entropy at
the transmitter. For non-uniform channel input distributions, one has H(X) < N log|X |.
Therefore, not all bitchannels will have H(Ui|UJi−1K) ≈ 1. For data bits, H(Ui|UJi−1K) ≈ 1

and the transmitter can fit 1 bit of information into bit Ui. For DM bits on the other
hand, H(Ui|UJi−1K) ≈ 0 and the bit Ui does not exhibit sufficient entropy, for the trans-
mitter to be able to fill it with data. These bits are decided based on the previous bits.
The construction is visualized in Figure 3.3.
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≈ 1 ≈ 0H(Ui|UJi−1K,Y )

H(X|Y ) 1−H(X|Y )

≈ 1 ≈ 0H(Ui|UJi−1K)
H(X) 1−H(X)

H(X)−H(X|Y ) = I(X;Y )

Figure 3.3: Bitchannel allocation for Honda-Yamamoto code [WSSY19].

The scheme in [HY13] modifies the encoder as well as the decoder. The encoder at the
transmitter is replaced with a probabilistic decoder that finds a random data word u with
the given data bits and frozen bits so that the empirical distribution of the respective
codeword x = uF⊗n obey the target bit probabilities. This shaping decoder can use
the original SC architecture that calculates the probabilities P(ui|uJi−1K). Instead of
deciding for the most likely bit argmaxui

P(ui|uJi−1K), the probabilistic decoder decides
ui randomly with probability P(ui|uJi−1K). The receiver uses two-fold SC decoding. Data
bits are decoded from channel observations using P(ui|uJi−1K,y) whereas DM bits are
decoded probabilistically from the a priori probabilities using P(ui|uJi−1K), identically
to the encoder. Decoding the DM bits from P(ui|uJi−1K) requires a common source of
randomness that is shared between encoder and decoder.

3.2.1 Achieving Capacity

To show the capacity achieving and diminishing error probability properties of this
scheme, the (source) Bhattacharyya parameter Z(X|Y ) for some random pair X,Y is
required.

Definition 1 (Bhattacharyya parameter [Arı10]). Let X ∼ Ber(p) and Y be two ran-
dom variables with some joint distribution (X,Y ) ∼ PXPY |X . Then the Bhattacharyya
parameter Z(X|Y ) is defined as

Z(X|Y ) = 2E
[√

PX|Y (0|Y )PX|Y (1|Y )

]
. (3.8)

This parameter Z(X|Y ) is used for polarization results and corresponds to the conditional
entropy as stated by the following proposition.

Proposition 1 ([Arı10, Proposition 2]).

(Z(X|Y ))2 ≤ H(X|Y ) ≤ Z(X|Y ). (3.9)
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X̃

X W (y|x) Y

X ⊕ X̃

W̃


Ỹ

Figure 3.4: Symmetrized channel W̃ .

Most importantly, this means that a conditional entropy H(X|Y ) polarizes together with
the respective Bhattacharyya parameter Z(X|Y ). Using a channel symmetrization argu-
ment by [Kor09], one can show that polar codes do not only polarize the transmission
over a symmetric channel but in fact polarize over any pair X,Y of random variables.
This is proven by introducing a symmetric channel W̃ : X̃ → Ỹ as shown in Figure 3.4 for
which I(W̃ ) = 1−H(X|Y ). Therefore, Arıkan’s original polarization theorem is applica-
ble to this symmetrized channel, which captures the important properties of the original
asymmetric channel. The respective result is covered in the next proposition.

Proposition 2. Let X ∼ Ber(p) and Y be two random variables with some joint distri-
bution (X,Y ) ∼ PXPY |X . Let X = UF⊗n be the polar transform of the random vector
U and N = 2n. Then for any β < 1

2 ,

lim
N→∞

1

N

∣∣∣∣{i : Z(Ui|UJi−1K,Y ) ≤ 2−Nβ
}∣∣∣∣ = 1−H(X|Y ), (3.10)

lim
N→∞

1

N

∣∣∣∣{i : Z(Ui|UJi−1K,Y ) ≥ 1− 2−Nβ
}∣∣∣∣ = H(X|Y ). (3.11)

Proof. The proof to this proposition can be found in the proof to Theorem 1 in [HY13,
Eqs. (38), (39)].

Based on this, we provide a sketch of the capacity proof from [HY13] hereinafter. For
this, we also need the following Lemma.

Lemma 1 ([Liu16, Lemma 4.3.2]). Let (X,Y, S) ∼ PX,Y,S be three random variables with
X = F2. Then,

Z(X|Y, S) ≤ Z(X|Y ). (3.12)

Using the polarization for any two variables suggested by Proposition 2, one can consider
the bitchannel entropies H(Ui|UJi−1K,Y ) and H(Ui|UJi−1K) (or their respective Bhat-
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tacharyya parameters), where the random variable Y is set to a constant for the second
expression. This leads to the four index sets denoted by

LU =
{
i : Z(Ui|UJi−1K) ≤ 2−Nβ

}
, (3.13)

HU =
{
i : Z(Ui|UJi−1K) ≥ 1− 2−Nβ

}
, (3.14)

LU |Y =
{
i : Z(Ui|UJi−1K,Y ) ≤ 2−Nβ

}
, (3.15)

HU |Y =
{
i : Z(Ui|UJi−1K,Y ) ≥ 1− 2−Nβ

}
. (3.16)

By Lemma 1, LU ⊆ LU |Y and thus LU ∩ HU |Y = ∅. Therefore, we can assign LU for
DM, HU |Y for FEC redundancy and HU ∩ LU |Y for data transmission. The proportion

of bitchannels for data transmission thus converges to the MI and limN→∞
|HU∩LU|Y |

N =

I(X;Y ). By choosing PX = argmaxPX
I(X;Y ), the proportion of data transmission bits

approaches the channel capacity. The authors of [HY13] show furthermore that such a
construction has a decoding error probability of P(E) = O(2−Nβ′

) with β′ < β < 1
2 for

uniformly chosen messages.

3.2.2 Practical Implementation

We remark that transmission of the all-zero codeword to speed up calculation of the
bitchannel reliabilities cannot be assumed in the asymmetric case anymore [WKP05].
While the theoretical proof requires probabilistic encoding as well as two-fold decoding,
a practical transmission scheme is also possible by using an unmodified polar decoder
and a deterministic encoder [CB15], [MHU18]. The unmodified receiver performs well in
practice, because by Equation (2.6) DM bitchannels with low H(Ui|UJi−1K) also have low
H(Ui|UJi−1K,Y ) ≤ H(Ui|UJi−1K). Therefore, those bits can as well be decoded successfully
from the channel outputs without the need for a shared source of randomness. The
deterministic encoder that finds the most likely data word instead of a random one also
works well in practice, as the bitchannels used for DM ideally have H(Ui|UJi−1K) ≈ 0.
Thus, even with a probabilistic decision rule, these bits are almost deterministic. To find
this deterministic most likely data word, an unmodified SC decoder is used. The frozen
bits for this decoder at the transmitter are set to the frozen bits as well as to the data bits
of the channel code. This decoder then finds the appropriate DM bits by applying SC
decoding. The data word found by the shaping decoder is then encoded with a normal
polar encoder, resulting in the most-likely codeword for the given data and frozen bits
and the target distribution. Decoding at transmitter and receiver can again be improved
using modified decoding rules such as SCL decoding.
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When list decoding is employed at the transmitter, then instead of the most likely code-
word one can also choose the codeword with minimum energy c.f. [For92]. As all options
in the list are valid codewords for the given data bits, each codeword in this list is a
valid choice for transmission. For priors PX that are Gaussian-type distributions, i. e.,
PX(x) ∝ exp(−c∥x∥2), the negative log-likelihood of a codeword is an affine function of
the energy, i. e., − log(P(x)) = m∥x∥2 + b with m > 0. Thus, the most likely codeword
is also the minimum-energy codeword for these distributions irrespectively of the code.
It is important to note that the deterministic encoder can only realize the target distribu-
tion accurately if all bitchannels used for DM have H(Ui|UJi−1K) ≈ 0 and the remaining
bitchannels have H(Ui|UJi−1K) ≈ 1. In practical applications, code construction may re-
sult in DM, FEC and data index sets which are slightly different from LU , HU |Y and
HU ∩ LU |Y , respectively. Especially when polar code constructions are reused at differ-
ent SNRs or when rate matching is implemented using the bitchannel selection, it may
happen that bitchannels with H(Ui|UJi−1K) ≫ 0 are used for DM. In this case, these
bits need to be encoded with a probabilistic decision rule. Otherwise, a deterministic
decision rule would result in an empirical entropy of Ĥ(Ui|UJi−1K) ≈ 0. Then, due to∑

i∈JNK H(Ui|UJi−1K) = H(X), the actual empirical entropy of the channel input distri-
bution would be Ĥ(X) < H(X). In this case, the generated distribution will differ from
the target distribution. With a different empirical distribution and different entropy, also
the energy of a codeword changes.

3.2.3 Discussion

The main advantage of this shaping scheme is two-fold. In comparison to Gallager’s
scheme, arbitrary target distributions can be achieved efficiently, even if there are no
small natural numbers a and b so that PX(x) ≈ a

b . On the other hand, this scheme is able
to shape bits with an arbitrary distribution whereas existing practical shaping schemes
require some symmetry constraints to be fulfilled. The scheme is able to perform DM on
data bits as well as parity bits, without an increase in decoding complexity.
Similar to trellis shaping, HY coding is an instance of coset coding [For88]. Coset coding
for shaping employs a shaping code so that multiple different codewords of the shaping
code may correspond to the same codeword of the channel code. Then, an encoder for
the channel code is combined with a decoder for the shaping code, where the shaping
decoder selects either a random or the most likely transmission sequence. Where trellis
shaping uses convolutional coding and trellis decoders, HY coding depends on the SC
decoding rule to find an approximate most likely transmission sequence. By this, the
favourable properties of polar codes can also be used for the shaping code. In particular,
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HY coding provides flexible rate adaption, provable capacity achievability and provable
decoding error convergence [HY13]. As both, the shaping code and the FEC code, are
defined via the polar transform and the DM frozen index set contains the FEC frozen
index set, the shaping code is trivially a subcode of the FEC code. Both codes can be
constructed as a single, joint code [HY13].

3.3 Polar-Coded Modulation

The second important extension of polar codes discussed here is polar-coded modulation
and in particular multilevel coding (MLC).
MLC [Ung82], [WFH99] protects each of the m bitlevels for a constellation with 2m

symbols with a separate code. For each bitlevel ℓ, the component code produces a length-
N binary codeword xB,ℓJNK. These codewords are then encoded to a symbol codeword xJNK
by applying a labelling rule xi = f(x

B,JmK
i ). The overall multilevel code has a rate

R =
∑

ℓ∈JmK Rℓ, where Rℓ is the rate of the ℓ-th component code. For decoding, the
multistage decoding (MSD) rule is used. MSD iteratively demaps and decodes a bitlevel
ℓ conditioned on the bits decoded at the previous bitlevels ℓ′ < ℓ. The binary-input
channel W : XB,ℓ → Y with side information XB,Jℓ−1K known at transmitter and receiver
is called equivalent channel [WFH99] and has an achievable rate

R̄ℓ = I(XB,ℓ;Y |XB,Jℓ−1K). (3.17)

By the chain rule of MI, the achievable rate of the whole multilevel code is equal to

R̄ =
∑
ℓ∈JmK R̄

ℓ = I(X;Y ). (3.18)

Choosing P ∗
X = argmaxPX

I(X;Y ) and PXB,ℓ|XB,Jℓ−1K so that
∏

ℓ∈JmK PXB,ℓ|XB,Jℓ−1K = P ∗
X ,

the achievable rate for MLC with MSD is the channel capacity.
Seidl et al. [SSSH13] proposed a straightforward way to combine MLC with polar codes.
They notice that both the polar transform as well as MLC rely on splitting and combining
channels and both decoding rules, SC decoding and MSD, implement the chain rule for
MI. This correspondence allows a direct combination of both, where the overall multilevel
polar code itself is treated as a polar-like code.
Their transmission scheme is based on MLC, where each of the m bitlevels for a con-
stellation with 2m symbols is protected by a separate length-N polar component code
and decoded iteratively. A block diagram depicting the multilevel polar code can be
seen in Figure 3.5. Instead of requiring an explicit rate allocation during code design

21



3 Polar Coding

F⊗n

F⊗n

F⊗n

Symbol
Mapping

Symbol
Mapping

Symbol
Mapping

Symbol
Mapping

0

0

0

u11

0

u21
0

u22

u31
u32
u33
u34

xB,1
1

xB,1
2

xB,1
3

xB,1
4

xB,2
1

xB,2
2

xB,2
3

xB,2
4

xB,3
1

xB,3
2

xB,3
3

xB,3
4

x1 x2 x3 x4

Figure 3.5: Multilevel Polar-Coded Modulation Scheme with m = 3 and N = 4.

as for standard MLC, considering the overall coding scheme as a single polar-like code
translates into an implicit rate allocation. This implicit rate allocation is done during the
polar code construction step. There, the reliabilities of all bitchannels from all bitlevels
are computed and the most reliable bitchannels are chosen for transmission. The dis-
tribution of information bitchannels and frozen bitchannels over the bitlevels results in
the implicit and optimal rate allocation. Also, since the overall code can be considered a
polar-like code with block length mN , the component codes can decrease in block length
by a factor of m without sacrificing code performance relative to a scalar polar code with
block length N [Sei15].
Furthermore, it can be shown that multilevel polar-coded modulation is capacity achiev-
ing with provably decreasing error probabilities [SSSH13], [Sei15].
The authors of the original work note that for MLC the labels should be chosen by set-
partitioning [WFH99] whereas for bit-interleaved coded modulation (BICM) the labels
should be chosen by Gray labelling.
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The efficient SCL-based decoder can be used for MSD as well, by making the decoding
lists of one component code available to the component code of the next bitlevel [PY18].
Also, there exist schemes to approximate bitchannel reliabilities in a computationally
more efficient manner using surrogate channels [BPYS17].
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4 Symbol Shaping using Polar-Coded
Modulation

In this chapter, we propose a coded modulation scheme which is able to provide arbitrary
symbol-level probabilistic shaping and which achieves the coded modulation capacity. We
first introduce the proposed MLHY coded modulation scheme and discuss its theoreti-
cal properties, before we consider aspects of construction. Finally, we show simulated
performance results.
The scheme aims at scenarios where the target distribution PX does not exhibit any
exploitable symmetries. Existing practical shaping schemes either require that the distri-
bution is symmetric, i. e., that it is decomposable as PX(x) = 1

2 P(xB,Jm−1K) [BSS15], or
they have to use very large alphabets in order to obtain arbitrary distributions [Gal68].
Also, MLC-based shaping schemes often only allow independent shaping of the bitlevels
[FHW98], which imposes a product distribution constraint onto PX . In particular, this is
the case when each bitlevel is shaped separately without the possibility of adapting the
shaping to the previous bitlevels.
To approach capacity with a practical scheme, a transmitter needs to generate channel
input sequences that follow a target distribution and that can be decoded with low er-
ror probability and low computational effort at the receiver. We use an approach that
integrates a source decoder as well as a channel encoder into the transmitter, where the
former executes the DM and the latter enables FEC. Following [HY13], we use a sin-
gle polar code for both. Similar to [BİX20], the encoding structure facilitates MLC to
implement

PX(xi) =
∏

ℓ∈JmKP(xB,ℓ
i |xB,Jℓ−1K

i ). (4.1)

4.1 Multilevel Honda-Yamamoto Coded Modulation

We combine the idea of using a polar decoder to find the most likely transmission sequence
with the extension of polar codes to MLC.
Figure 4.1 depicts the proposed scheme. To find the most likely transmission sequence
in a coded modulation case, the polar decoder at the transmitter is replaced with a
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Lm
i

XB,m Lm
i

... ...

Multistage Decoder Lℓ
i = L(xB,ℓ

i |xB,Jℓ−1K
i ) Multistage Decoder Lℓ

i = L(xB,ℓ
i |xB,Jℓ−1K

i , yi)

Figure 4.1: Multilevel Honda-Yamamoto Coded Modulation.

multistage decoder with polar decoders for its component codes. This multistage decoder
can be the same decoder as used on the receiver side which calculates the likelihoods for
each component code based on some input symbols and on the previously decided bits.
Instead of channel observations, the constant symbol prior PX is used for calculation of
the likelihoods at the transmitter. The resulting multilevel code is again treated as a
single code with regards to construction. We assume the same polarization stage count
n for each component code, an alphabet size of |X | = M = 2m and a one-to-one mapping
f : Ξ → X between label ξ and symbol x. Thus, the total block length is equal to N

channel uses and the binary block length is equal to Nm = 2nm bits.

Symbol Mapping Each transmission symbol xi ∈ X with i ∈ JNK is assigned with a
label ξi ∈ {0, . . . ,M − 1}. As the labelling f is bijective, the distributions PX and PΞ

describe the symbol distribution equivalently. Each label ξi can be represented by a group
of m bits x

B,JmK
i . With slight abuse of notation, we define PΞ(x

B,JmK) as the probability
PΞ(ξ) of the respective label ξ.

Encoding The component HY encoder for bitlevel ℓ encodes a sequence of uniform bits
uℓj ∼ U(F2) with j ∈ JN I(ℓ)K, where N I(ℓ) denotes the number of information bits of the
component code ℓ.

Each block of bits xB,ℓ for a bitlevel ℓ is a codeword of the component HY code. The
HY code is used to produce codewords where the bits are distributed according to
P(xB,ℓ

i |xB,Jℓ−1K
i ), so that the distribution for each label ξi is

P̂(ξi) = P̂(x
B,JmK
i ) =

∏
ℓ∈JmKP(xB,ℓ

i |xB,Jℓ−1K
i ) = PΞ(x

B,JmK
i ). (4.2)
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The probabilities P(xB,ℓ
i |xB,Jℓ−1K

i ) are calculated by the multistage decoder. For this, the
multistage decoder conditions PΞ on all previous bitlevels ℓ′ < ℓ and marginalizes PΞ over
all bitlevels ℓ′ > ℓ. We write

P(xB,ℓ
i |xB,Jℓ−1K

i ) =
P(x

B,JℓK
i )

P(x
B,Jℓ−1K
i )

=

∑
xB,ℓ+1:m
i

PΞ(x
B,JmK
i )∑

xB,ℓ:m
i

PΞ(x
B,JmK
i )

, (4.3)

where
∑

xB,ℓ:m
i

PΞ(x
B,JmK
i ) denotes the sum over all bitlevels ℓ < ℓ′ < m,

∑
xB,ℓ:m
i

PΞ(x
B,JmK
i ) =

∑
xB,ℓ
i ∈{0,1}

· · ·
∑

xB,m
i ∈{0,1}

PΞ(x
B,JmK
i ). (4.4)

The likelihoods P(xB,ℓ
i |xB,Jℓ−1K

i ) are then supplied to the HY encoder in order to encode
the input sequence uℓJN I(ℓ)K into a HY codeword xB,ℓ with the desired distribution.

This process happens successively. First the multistage decoder calculates P(xB,1
i ) for i ∈JNK. With this, the component encoder generates a HY codeword xB,1. This codeword

is then used by the multistage decoder to calculate P(xB,2
i |xB,1

i ) and supply those to the
next HY encoder. The process continues until each bitlevel generated a codeword xB,ℓ

with ℓ ∈ JmK. These HY codewords are then used for symbol mapping.
Depending on the used decision rule for the SC decoding, the encoder either finds the
most likely symbol codeword x given u and PX or generates symbol codewords x for u

randomly distributed according to PX .

Demapping and Decoding For demapping, the multistage decoder at the receiver
calculates the probabilities P(xB,ℓ

i |xB,Jℓ−1K
i , yi). Again, these condition on already de-

coded bits and marginalize over future bits so that

P(xB,ℓ
i |xB,Jℓ−1K

i , yi) ∝
∑

xB,ℓ+1:m
i

P(x
B,JmK
i |yi). (4.5)

Example 2. For on-off keying (OOK) with amplitude f(1) = ∆ and distribution PX(∆) =

p, PX(0) = 1−p over an AWGN channel Y = X+N with noise N ∼ N (0, σ2), the LLR-
based demapper calculates

L(xBi |yi) = ln
P(xBi = 0|yi)
P(xBi = 1|yi)

(4.6)

= ln
P(yi|xBi = 0)PX(0)

P(yi|xBi = 1)PX(∆)
(4.7)
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= ln
1− p

p
+ ln

exp(−1
2

∣∣ y
σ

∣∣2)
exp(−1

2

∣∣∣y−∆
σ

∣∣∣2) (4.8)

= ln
1− p

p
+

∆(∆− 2yi)

2σ2
, (4.9)

where the logarithms are natural logarithms.
Finally, provided with P(xB,ℓ

i |xB,Jℓ−1K
i , yi) for i ∈ JNK, the polar decoders calculate

P(ûℓi |ûℓJi−1K,xB,Jℓ−1K,y) as well as estimates for the HY codewords xB,ℓ. As with the
encoding process, this happens iteratively.
By changing the computation of the likelihoods, other decoding schemes can be realized.
In particular, by replacing the conditioning with marginalization, BICM-based schemes
similar to the one proposed by [İBX17], [İBX19] can be implemented as well. In that case,
the likelihoods can be computed and decoded in parallel but only product distributions
P(Ξ = xB,1· · ·xB,m) =

∏
ℓ∈JmK P(xB,ℓ) can be realized exactly.

The proposed MLHY coded modulation scheme is similar to the independently devel-
oped concept of polar lattices proposed in [Liu16], [LYLW18]. There, the authors use a
multilevel lattice scheme as proposed by [FTC00] with HY component codes. The main
difference between both schemes is that the scheme proposed in this work is more flexible
by not requiring lattice coding and can work for any constellation. This means that in
order to achieve the capacity of the general, continuous AWGN channel, a sufficiently
well-performing constellation has to be chosen. Also, in Section 4.3 we propose a more
straightforward construction procedure than the one described in [Liu16].

4.2 Theoretical Results

In this section we show that the proposed MLHY coded modulation scheme is capacity
achieving and can be decoded with diminishing decoding error probabilities for increasing
block lengths. As the achievable rates of any modulated transmission scheme are con-
strained by the constellation, we will show achievability with respect to the constellation-
constrained channel capacity.
We can combine the insight that bitchannels of multilevel polar codes still polarize with
the insight from Proposition 2 that H(Ui|UJi−1K,Y ) polarizes to H(X|Y ) for any Y . Then,
following the construction used by Honda and Yamamoto considering the two entropies
H(Ui|UJi−1K) and H(Ui|UJi−1K,Y ) instead of just H(Ui|UJi−1K,Y ), we expect a capacity-
achieving scheme.
We start by proving results for the binary-input equivalent channel for each component
code which we will then use to characterize the overall scheme.
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4.2 Theoretical Results

Lemma 2. Let X ∈ F2 and S be the input to a binary-input DMC W : X → Y with
side information S known at both the transmitter and the receiver acausally with joint
distribution (X,Y, S) ∼ PY |X,SPX|SPS. Then, there exists a HY transmission scheme
that for N → ∞ achieves the capacity of W , i. e., maxPX|S I(X;Y |S) s.t. PX|SPS ∈ π ⊆
Π(X × S) under a constraint π.

Proof. Let X = UF⊗n be the polar transform of U and N = 2n. Similar to the proof of
original HY coding [HY13, Proof of Theorem 1], we define

LU |S =
{
i : Z(Ui|UJi−1K,S) ≤ 2−Nβ

}
, (4.10)

HU |S =
{
i : Z(Ui|UJi−1K,S) ≥ 1− 2−Nβ

}
, (4.11)

LU |S,Y =
{
i : Z(Ui|UJi−1K,S,Y ) ≤ 2−Nβ

}
, (4.12)

HU |S,Y =
{
i : Z(Ui|UJi−1K,S,Y ) ≥ 1− 2−Nβ

}
(4.13)

with some β < 1
2 .

By Lemma 1, LU |S ⊆ LU |S,Y and thus LU |S ∩HU |S,Y = ∅. We again identify LU |S as DM
bits at the transmitter, HU |S,Y as FEC bits and HU |S ∩LU |S,Y as data transmission bits
with large degree of freedom at the encoder and low uncertainty at the decoder. With
Proposition 2, we see that

lim
N→∞

1

N

∣∣∣LU |S

∣∣∣ = 1−H(X|S) (4.14)

and
lim

N→∞

1

N

∣∣∣HU |S,Y

∣∣∣ = H(X|S, Y ). (4.15)

Furthermore, we note that

lim
N→∞

1

N

∣∣∣LC
U |S \ HU |S

∣∣∣ = 0 (4.16)

and equivalently for LU |S,Y and HU |S,Y .

We can see that

lim
N→∞

1

N

∣∣∣LU |S ∪HU |S,Y

∣∣∣ = lim
N→∞

∣∣∣LU |S

∣∣∣+∣∣∣HU |S,Y

∣∣∣−∣∣∣LU |S ∩HU |S,Y

∣∣∣
N

= 1−H(X|S) +H(X|S, Y )

= 1− I(X;Y |S)

(4.17)
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and thus limN→∞
1
N

∣∣∣LC
U |S ∩HC

U |S,Y

∣∣∣ = I(X;Y |S). From Equation (4.16), we can conclude

that limN→∞
1
N

∣∣∣HU |S ∩ LU |S,Y

∣∣∣ = I(X;Y |S).
By choosing PX|S = argmaxPX|S

I(X;Y |S) s.t. PX|S ∈ π, the proportion of data trans-

mission bitchannels 1
N

∣∣∣HU |S ∩ LU |S,Y

∣∣∣ approaches the channel capacity.

We can also extend the error exponent results proven for HY coding [HY13, Theorem 3]
to this case with side information.

Proposition 3 ([Liu16, Theorem 4.3.9]). Let W be the binary-input DMC with side
information as defined for Lemma 2. Then, the respective capacity-achieving HY scheme
for W has a decoding error probability of P(E) = O(2−Nβ′

) for β′ < β < 1
2 with increasing

block length N for a uniformly chosen message.

We can now proceed to the main theoretical results of this chapter.

Theorem 1. Let W : X → Y be a DMC with joint distribution X,Y ∼ PY |XPX and
|X | = 2m. Then, there exists a MLHY transmission scheme that for N → ∞ achieves
the channel capacity of W , i. e., maxPX

I(X;Y ) s.t. PX ∈ π ⊆ Π(X ) under an arbitrary
constraint π.

Proof. For an m-bit coded modulation scheme, each of the 2m symbols x ∈ X is
labelled with m bits xB,1 . . . , xB,m. The equivalent channel under MSD for each
bitlevel ℓ has binary input XB,ℓ, output Y and state XB,1, . . . , XB,ℓ−1 and has a MI
of I(XB,ℓ;Y |XB,Jℓ−1K). For each bitlevel, by Lemma 2, there exists a HY transmission
scheme that achieves the equivalent channel’s MI.
For component codes with equal block length, MLC has a code rate exactly equal to the
sum of the component code rates [WFH99]. Furthermore, under MSD the rates of the
component codes are summed and we have∑

ℓ∈JmK I(X
B,ℓ;Y |XB,Jℓ−1K) = I(XB,JmK;Y ). (4.18)

As each component HY code has a rate approaching I(XB,ℓ;Y |XB,Jℓ−1K), the code rate
of the MLHY scheme approaches I(XB,JmK;Y ), which is identical to I(X;Y ) because the
mapping f : Ξ → X is bijective.
Finally, by choosing PX = argmaxPX

I(X;Y ) s.t. PX ∈ π and supplying each component
encoder at bitlevel ℓ with the prior given by Equation (4.3) calculated by the multistage
decoder, the empirical distribution of X approaches PX and the code rate of the scheme
approaches the channel capacity.
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Theorem 2. MLHY coded modulation as in Theorem 1 has a decoding error probability
of P(E) = O(2−Nβ′

) for β′ < β < 1
2 with increasing symbol block length N for a uniformly

chosen message.

Proof. To account for the fact that each HY code for the bitlevel ℓ is decoded af-
ter the previous bitlevels were decoded, we analyse the decoding error probability
P(Eℓ|¬E1, . . . ,¬Eℓ−1) for each component code, for which we assume that the previous
bitlevels decoded correctly similarly to the analogous assumption made for SC decoding.
By Proposition 3, each bitlevel transmission scheme has a decoding error probability of
P(Eℓ|¬E1, . . . ,¬Eℓ−1) = O(2−Nβ′

) with β′ < β < 1
2 for uniformly chosen messages.

Thus, for each bitlevel ℓ there exists a positive constant cℓ and a block length Nℓ so
that P(Eℓ|¬E1, . . . ,¬Eℓ−1) ≤ cℓ2

−Nβ′ for all N > Nℓ. By choosing c = maxℓ∈JmK cℓ and
N0 = maxℓ∈JmK Nℓ, we can bound the error probability for any ℓ ∈ JmK by

P(Eℓ|¬E1, . . . ,¬Eℓ−1) ≤ c2−Nβ′ (4.19)

for all N > N0. The total decoding error probability under MSD for a sufficiently large
number of stages n is consequently

P(E) = 1−
∏

ℓ∈JmKP(¬Eℓ|¬EJℓ−1K) = 1−
∏

ℓ∈JmK
(
1− P(Eℓ|¬EJℓ−1K))︸ ︷︷ ︸

≥1−c2−Nβ′

≤ 1− (1− c2−Nβ′
)m

= 1−
m∑
k=0

(
m

k

)
(−c2−Nβ′

)k

= 1−
m∑
k=0

m!

k!(m− k)!
(−1)kck2−kNβ′

(a)
= mc2−Nβ′ −

m∑
k=2

(−1)k
m!

k!(m− k)!︸ ︷︷ ︸
≥−m!

ck2−kNβ′

≤ mc2−Nβ′
+

m∑
k=2

m!ck 2−kNβ′︸ ︷︷ ︸
≤2−2Nβ′ (b)

(c)
≤ mc2−Nβ′

+m!C2−2Nβ′

= 2−Nβ′
(mc+m!C 2−Nβ′︸ ︷︷ ︸

≤2

)

(d)
= O(2−Nβ′

)

(4.20)
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with

(a) from assuming m ≥ 2 and moving the terms for k = 0 and k = 1 out of the sum

with m!
k!(m−k)!(−c)k2−kNβ′

∣∣∣∣
k=0

= 1 and m!
k!(m−k)!(−c)k2−kNβ′

∣∣∣∣
k=1

= −mc2−Nβ′ ,

(b) since k ≥ 2 and Nβ′
> 0,

(c) by defining the constant C =
∑m

k=2 c
k and

(d) because mc+ 2m!C does not depend on N .

We further remark that with the assumption of m ≥ 2 for (a) we do not loose generality.
For m = 1, this scheme is equal to binary HY coding and all results from [HY13] are
applicable without modification.

Similarly to an extension of HY codes to the non-binary case [ŞTA09], [HY13], MLHY
coding achieves the channel capacity for arbitrary DMCs. In case the size of the channels
input alphabet is not a power of two, π can be chosen so that some symbols have proba-
bility zero. While construction as well as decoding of polar codes for non-binary inputs
impose additional complexity, c.f. [YS18] and references therein, construction, encoding
and decoding of MLHY codes can directly facilitate existing implementations for binary
MLC and polar coding.
We remark that the theorems can be easily extended from the DMC case to discrete-
input, continuous-output memoryless channels. This construction follows along the lines
of Shannon’s extension to continuous channels [Sha48, Part IV, Appendix 7] by dividing
Y into suitable subsets Yk ⊂ Y , k ∈ JKK and letting K → ∞. From this extension,
it then also follows that MLHY coding achieves the constellation-constrained capacity
of continuous channels. Furthermore, one can easily extend the proofs to channels with
state known ahead of time at both the receiver and the transmitter so that the achievable
rate is given by I(X;Y |S).
Comparing the decoding error probability of the MLHY transmission scheme with the
decoding error probability of a classical HY transmission scheme supports the claim that a
multilevel polar code can be treated as a polar-like code. Also in the case of an asymmetric
channel, the multilevel construction does not worsen the convergence properties of the
polar codes. We remark, though, that P(E) also increases with the number of bitlevels m,
as each bitlevel introduces a separate chance to decoding failure. This is not automatically
counteracted by the increased binary block length mN of the multilevel code, as the order
of P(E) is given in terms of the symbol block length N instead.
As with the scalar HY coding, the proof depends on probabilistic SC encoding and the
two-fold SC decoding. For practical use, those can be replaced by a deterministic encoder
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and a normal polar decoder. Also, existing SCL-based decoding rules for multilevel polar
codes can be used at the receiver as well as the transmitter to improve finite block length
performance.

4.3 Selection of Bitchannels

4.3.1 Conceptual Considerations

It is important to consider the proposed MLHY code as a single code. Applying the
original MLC formalism to HY coding naively results in conceptual problems. Whilst
for a symmetric channel the equivalent channels for each bitlevel are independent of each
other, this is not the case for asymmetric channels. Special care has to be taken with the
HY component codes.
When using a multilevel communication scheme over an asymmetric channel, the channels
of each bitlevel depend on each other. In that case, each equivalent channel ℓ depends
on the codewords transmitted over the previous bitlevels k < ℓ. As the polar code and
thereby also the HY code is constructed for an individual channel, this poses the question
on how to handle these state-dependent equivalent channels. This is a difference to the
multilevel polar-coded modulation proposed for symmetric channels, where a component
code always encodes for the same equivalent channel.
Conceptually, a similar problem also already exists for standard HY coding. Consider
a HY code with n stages over an asymmetric binary-input DMC. Adding a polarization
stage effectively couples two subsequent codewords and flips one of the codewords de-
pendent on the other one, so that two length-2n polar codes are chained together. Due
to the asymmetric channel, this bit-flip also changes the channel seen by one of those
two stage-n polar codes. Instead of constructing multiple distinct stage-n polar codes,
Honda and Yamamoto only consider the overall stage-(n + 1) polar code. As the en-
tropies H(Ui|UJi−1K) and H(Ui|UJi−1K,Y ) are expectation values and due to the law of
total expectation, i. e., E[X] = EY

[
E[X|Y ]

]
, this effectively averages over the respective

channels for the stage-n polar code experiencing the bit-flips.
We can apply the same intuition to a MLC-based HY coded modulation scheme. Using the
insights from [SSSH13] that a multilevel polar code can be considered as one single polar-
like code, we also consider the MLHY code as a single code. By replacing the SC decoder
with a multistage decoder and by replacing the encoder at the transmitter with a decoder,
we arrive at the desired scheme. Instead of constructing component codes conditional
to the previous bits, the entropies H(U ℓ

i |U ℓJi−1K,U Jℓ−1K) and H(U ℓ
i |U ℓJi−1K,U Jℓ−1K,Y ) for

all bitchannels i and all bitlevels ℓ are computed jointly. This effectively makes the
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component code consider an averaged equivalent channel. The additional conditioning on
U Jℓ−1K is adequate. Even though the individual component SC decoder does not consider
bits uJℓ−1K from the previous bitlevels, the likelihoods provided to the component decoder
by the multistage decoder do depend on these previous bits.

4.3.2 Code Construction

To select the bitchannels for DM, FEC and data transmission, we calculate
H(U ℓ

i |U ℓJi−1K,U Jℓ−1K,Y ) as well as H(U ℓ
i |U ℓJi−1K,U Jℓ−1K). This can be done using a MC

simulation that calculates the probabilities P(Ui|UJi−1K) for the complete MLHY code in
every iteration.
As the reliabilities for the full MLHY code are computed in one MC simulation, also
the implicit rate allocation can be facilitated. For this, we choose the bitchannels
with the highest H(U ℓ

i |U ℓJi−1K,U Jℓ−1K,Y ) from all bitlevels for FEC and the bitchannels
with the lowest H(U ℓ

i |U ℓJi−1K,U Jℓ−1K) from all bitlevels for DM. Heuristic rate allocation
schemes as proposed in [WFH99], [DPN21] are not required. Because of Equation (2.6),
H(U ℓ

i |U ℓJi−1K,U Jℓ−1K,Y ) ≤ H(U ℓ
i |U ℓJi−1K,U Jℓ−1K) and the bitchannel sets for FEC and DM

are disjoint.
The expectations H(U ℓ

i |U ℓJi−1K,U Jℓ−1K,Y ) and H(U ℓ
i |U ℓJi−1K,U Jℓ−1K) are with respect to

U as well as Y . Therefore, the MC simulation needs to sample U so that X ∼ PX .
To construct a MLHY code with SE of r in bpcu, we propose to first choose
the rN bitchannels for transmission that have the largest H(U ℓ

i |U ℓJi−1K,U Jℓ−1K) −
H(U ℓ

i |U ℓJi−1K,U Jℓ−1K,Y ) = I(U ℓ
i ;Y |U ℓJi−1K,U Jℓ−1K). The remaining bitchannels are

bitchannels with either low H(U ℓ
i |U ℓJi−1K,U Jℓ−1K) or high H(U ℓ

i |U ℓJi−1K,U Jℓ−1K,Y ). The
former ones are chosen for DM and the latter ones for FEC.
In case off-the-shelf polar codes with known reliability orderings are available, these can
be used for HY coding and MLHY coding without modification as well [İBX17]. For this,
one can choose the least reliable bitchannels for FEC and the most reliable bitchannels
for DM. Although this is not necessarily optimal, bitchannels with the lowest receiver un-
certainty H(U ℓ

i |U ℓJi−1K,U Jℓ−1K,Y ) are often also amongst the bitchannels with the lowest
transmitter freedom H(U ℓ

i |U ℓJi−1K,U Jℓ−1K).
Compared to the construction described by [WSSY19], where first the DM bits and
then the remaining bits are chosen, the proposed method does not require any simu-
lations to determine the number of DM bits. Compared to the construction described
by [İBX17], where the HY code is constructed using only bitchannel reliabilities, i. e.,
H(Ui|UJi−1K,Y ), the proposed method does not rely in the assumption that bitchannels
with lowest H(U ℓ

i |U ℓJi−1K,U Jℓ−1K,Y ) also have low H(U ℓ
i |U ℓJi−1K,U Jℓ−1K). The main differ-
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ence here in comparison to the construction detailed in [Liu16] is the used channel. Liu
proposes to construct each bitlevel separately, whereas we propose to optimize the entire
scheme using the coded modulation channel model directly. Their channel models used
to construct each bitlevel are the symmetrized channels Honda and Yamamoto used to
prove the polarization theorems. This results in a more complex construction procedure,
without providing any apparent benefits.

4.4 Simulation Results

In this chapter we present exemplary performance curves for the proposed MLHY scheme.
All bitchannel entropies as well as frame error rate (FER) performances were obtained
using MC methods.

4.4.1 Selection of Bitchannels

Figure 4.2 shows the bitchannel entropies H(U ℓ
i |U ℓJi−1K,U Jℓ−1K) for the two symbol distri-

butions shown in Figure 4.3. The symbols are labelled by set-partitioning [WFH99]. The
N = 128 bitchannels of each of the m = 3 bitlevels are shown concatenated together in
decoding order. The symbol entropy in X for the case optimized for an SNR of 16.5 dB is
H(X) ≈ 2.5 bit whereas for the case optimized for an SNR of 22.5 dB it is H(X) ≈ 2.92 bit.
For the higher-SNR case, the distribution is more uniform and thus less strong DM is
required. Therefore, also fewer bitchannels have H(U ℓ

i |U ℓJi−1K,U Jℓ−1K) ≈ 0 and more
bitchannels can be used for FEC and data. As with polar coding for FEC, the HY con-
struction optimizes the code to the specific channel and target distribution. We can see
this effect in Figure 4.2 and Figure 4.3. The steeper the target distribution and thus the
smaller its entropy, the higher the number of bitchannels with H(U ℓ

i |U ℓJi−1K,U Jℓ−1K) ≈ 0

and thus the lower the resulting DM rate.
For both cases in Figure 4.2, the DM bits in each bitlevel lie more towards the end, i. e.,
are bits that are decided after most of the other bits were decided. Furthermore, there
are more DM bits allocated to the bitlevel that is decoded last. This can be understood
as a generalization of sign-bit shaping introduced by [For92], as becomes more evident
from Figure 4.4 and Figure 4.5. These show the same bitchannel allocations, but for
ASK constellations. With sign-bit shaping, the last bit xB,m of a m-bit symbol is used
for DM. For this, xB,m is decided after the previous bitlevels. When the probabilities of
the two symbols which differ only in their last bit add up to 2

M , then sign-bit shaping can
realize the target distribution exactly. As an intuition behind this, the last bit decides
between two possible eventual symbols. Therefore, by deciding the last bit conditional
to the previous bits and by using proper labelling, the last bit can determine if a symbol
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Figure 4.2: Bitchannel entropies for PAM with M = 8 and N = 128 for an SNR of 16.5 dB
( ) and an SNR of 22.5 dB ( ).
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Figure 4.3: Optimal constellations for PAM with M = 8 for an SNR of 16.5 dB ( ) and
an SNR of 22.5 dB ( ).

has large or small amplitude and then decide for the smaller amplitude more often. This
concept is observable in one bitlevel as well as over the whole block. Within one bitlevel,
the later bits are mainly responsible for DM. Over the whole block, the last bitlevel will
be used for DM to a large extent whereas the first bitlevel requires almost no DM. In fact,
depending on the target distribution and the used labelling, MLHY can be an instance
of sign bit shaping when all DM bits are allocated to the final bitlevel only. This is
for example the case for the MLHY coding with the 8-ASK constellation for an SNR of
14.6 dB as shown above.

As with the polarization of X|Y , the polarization of X introduces weakly polarized
bitchannels in the finite-length case. This means that there are bitchannels with ei-
ther H(U ℓ

i |U ℓJi−1K,U Jℓ−1K) or H(U ℓ
i |U ℓJi−1K,U Jℓ−1K,Y ) neither close to 0 nor close to 1.

As the weakly polarized bitchannels for the two entropies are usually different ones, a
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Figure 4.4: Bitchannel entropies for ASK with M = 8 and N = 128 for an SNR of 8.6 dB
( ) and an SNR of 14.6 dB ( ).
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Figure 4.5: Optimal constellations for ASK with M = 8 for an SNR of 8.6 dB ( ) and
an SNR of 14.6 dB ( ).

HY construction increases the number of weakly polarized bitchannels compared to a
FEC-only polar construction.

4.4.2 Finite Block Length Distribution Matching

One commonly used metric to evaluate the finite length performance of a DM scheme is
the rate loss [BSS15, Sec. V-B], [WSSY19], [BİX20]

∆R = H(P̂X)− 1

N
H(P̂X). (4.21)

Assuming a MLHY based scheme which performs only DM, i. e., one that has no frozen
bits, the rate loss becomes

∆R = H(P̂X)− |U|
N

, (4.22)
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Figure 4.6: Rate loss for MLHY with L = 32 and CCDM with and M = 8 and M = 16.

where U denotes the bitchannels that are filled with uniform data. Typically, U consists
of the bitchannels with H(U ℓ

i |U ℓJi−1K,U Jℓ−1K) ≈ 1.
Equation (4.22) provides an additional argument to deterministic encoding over prob-
abilistic encoding. For probabilistic encoding, the bitchannels UC used for DM may
contain some randomness whereas for deterministic encoding they do not. This addi-
tional randomness increases H(P̂X) when the respective H(U ℓ

i |U ℓJi−1K,U Jℓ−1K) > 0. As
the number of data bitchannels |U| stays the same, this increases the rate loss. In many
cases, optimizing the rate loss is preferable [BİX20] which supports the choice towards a
fully deterministic encoder.
Figure 4.6 shows the rate loss for MLHY DM with fully deterministic SCL encoding as well
as CCDM [SB15] for different alphabet sizes. The target distribution with alphabet size
M = 8 is the distribution for an SNR of 16.5 dB from Figure 4.3. Figure 4.7 depicts the
target distribution with alphabet size M = 16 which is optimized for an SNR of 22.5 dB.
The MLHY code is constructed by using all bitchannels with H(U ℓ

i |U ℓJi−1K,U Jℓ−1K) ≤ 0.95

for DM and its generated empirical distribution P̂X is determined in a MC simulation.
Distribution and rate for the CCDM are determined by [BG16, Algorithm 2] and [BSS15,
Eq. (37)], respectively. The simulations only consider DM without any FEC.
Consistently with previous results [SG17], [WSSY19], CCDM shows lower rate losses for
large block lengths. For short block lengths up to 1024, MLHY dominates CCDM in
terms of rate loss. Furthermore, the increase of the number of symbols from M = 8 to
M = 16 worsens the rate loss of CCDM by a factor of 2. MLHY shows only negligible
penalties in rate loss from the increase in alphabet size. While MLHY may perform DM
with a higher rate loss at larger block lengths, it provides superior performance for short
block lengths and offers more flexibility for the design of joint DM and FEC schemes in
general.
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Figure 4.7: 16-PAM target distribution.

4.4.3 Coding for Channels with Symmetric Input Distributions

In this chapter we provide simulation results for transmission with ASK over the AWGN
channel. For such a scenario, efficient methods for joint DM and FEC, e. g., the already
mentioned PAS exist.
We compare MLHY with polar coded probabilistic amplitude shaping (PC-PAS) proposed
by [PYB+17]. PC-PAS uses the PAS architecture with a systematic multilevel polar code
as FEC and CCDM [SB15] as DM.
The MLHY simulations hereinafter employ SCL decoding at the transmitter as well as
at the receiver with L = 32. The fully deterministic receiver selects the maximum-likely
codeword and, as the channel input distribution is of sampled Gaussian type, thus also
the minimum-energy codeword. At the receiver, list decoding is aided by an outer CRC
code. Code design is performed for a chosen design signal-to-noise ratio (dSNR) as well
as a chosen SE by using the method described in Section 4.3. The dSNR also determines
the target distribution for the DM. Set-partitioning labelling [WFH99] is used to label
the channel input symbols.
Figure 4.8 shows performance curves for 8-ASK MLHY coding as well as PC-PAS. We
also compare our results to the random coding union bound (RCUB) [PPV10], which
we compute for the same channel input distribution as the distribution realized by the
MLHY encoder. The codes and bounds are designed for a SE of 1.75 bpcu. The two
bold black lines at 10.162 dB and 10.841 dB denote the constellation-constrained channel
capacities at this SE for shaped and uniform transmission, respectively. The theoretical
shaping gain is 0.679 dB.
Contrary to the MLHY code, the empirical distributions of the codewords of CCDM are
all of the same type. This allows an additional list pruning step for PC-PAS, where the
decoder candidates are checked to be of the correct type [PYB+17]. This type check
acts as an additional outer code, so that the length of the outer CRC for PC-PAS can
be reduced. A similar check might be possible with MLHY as well, although there the
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Figure 4.8: Performance of MLHY coding over the AWGN channel compared to PC-PAS
[PYB+17], uniform MLPC, and the RCUB, with an 8-ASK constellation,
L = 32, and at a SE = 1.75 bpcu. The MLHY codes use an outer CRC-8,
PC-PAS a CRC-4 together with a type check.

codewords are not necessarily of any type. Also, as the PC-PAS codes are constructed
using [BPYS17], they achieve optimal performance for different dSNRs than the MLHY
codes presented.
We observe comparable slopes in the shaped MLHY and uniform multilevel polar code
(MLPC) case, resulting in an almost constant shaping gain in the waterfall region. For
both block lengths N = 64 and N = 128 the codes perform close to the theoretical shaping
gain of 0.679 dB as well as close to the RCUB. Without any dedicated code optimization
beyond a coarse grid search over the dSNR, the MLHY scheme performs at least on par
with PC-PAS. This is in accordance to the rate loss discussion in the previous chapter.
Whilst the MLHY scheme has lower rate loss than CCDM and is therefore expected to
perform better at identical SEs, CCDM facilitates its rate loss at the decoder to prune the
list of candidate codewords and can thereby recover some performance. We remark that
MLHY performance may be further optimized by adjusting the dSNR, using separate
dSNR for DM and FEC construction, optimizing the bitchannel selection process and
optimizing the CRC code.
Figure 4.9 compares MLHY coding with PC-PAS for a 16-ASK transmission with SE of
3 bpcu and a block length of N = 1024. Again, MLHY performs slightly better than
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Figure 4.9: Performance of MLHY coding (dSNR = 19.8 dB, CRC-16) over the AWGN
channel compared to PC-PAS (CRC-8 with type check), uniform MLPC
(dSNR = 20.7 dB, CRC-16) and the RCUB, with a 16-ASK constellation,
N = 1024, L = 32, and at a SE = 3bpcu.

PC-PAS. Both achieve the theoretical shaping gain of 1.077 dB up to less than 0.1 dB

over large parts of the waterfall region.

4.4.4 Coding for Channels with Asymmetric Input Distributions

We also present results for PAM transmission over the IM channel. For this scenario,
PAS is not applicable as there are no symmetries in the optimal PX . Figure 4.10 depicts
performance curves for shaped MLHY, uniform MLPC as well as the achievable RCUB.
Codes and RCUB are designed identically as in the previous section. Again, the shaping
gains of MLHY coding almost attains the ideal ones of 1.746 dB at a SE of 1.75 bpcu and
1.495 dB at a SE of 3 bpcu. For both cases, 8-PAM at 1.75 bpcu at N = 64 and 16-PAM
at 3 bpcu at N = 1024, the shaping gain lies approximately 0.2 dB below the theoretical
gain for N → ∞. While MLHY coding for 8-PAM and short block length follows the
RCUB closely, for 16-PAM and longer block length there is still some gap. The slopes of
MLHY coding and the RCUB are comparable.
We also observe a decreased slope for the IM channel compared to the results for the
AWGN channel. This can also be observed from the RCUB for both block lengths.
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Figure 4.10: Performance of MLHY codes over the IM channel compared to uniform
MLPC and the RCUB. Both polar codes have L = 32.
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5 Coding with Side Information at the
Transmitter

5.1 The Gelfand-Pinsker Channel

Consider a channel W (y|x, s) with input X, output Y and state S. The state SJNK may
be unknown to the receiver, but is known to the transmitter ahead of time.
Gelfand and Pinsker [GP80] showed that the capacity of such a channel can be achieved
by introducing an auxiliary random variable Ξ, so that xi = f(ξi, si) with some function
f : Ξ×S → X . Using a random coding-based argument, they showed that the achievable
rate for this channel is equal to

RGP = I(Ξ;Y )− I(Ξ;S) = H(Ξ|S)−H(Ξ|Y ). (5.1)

From this, the channel capacity is

CGP = max
PΞ|S ,f

RGP. (5.2)

A block diagram of the channel model and the coding scheme used for their proof can be
seen in Figure 5.1. By [EK11, Theorem 7.3, Appendix C], one can upper-bound the size
of the alphabet of the auxiliary random variable Ξ required to achieve capacity by

|Ξ| ≤ min{|X | ·|S| ,|Y|+|S| − 1}. (5.3)

The expression for the achievable rate in Equation (5.1) can be interpreted as follows.
Traditionally, information is encoded directly into the transmission sequence x. By intro-

Ξ ∼ PΞ|S f(ξ, s) W (y|x, s)

S ∼ PS

Y
X

Figure 5.1: Gelfand-Pinsker channel.
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Ξ f(ξ, s)

S N

Y
X

Figure 5.2: Dirty paper channel.

ducing the mapping f , the label Ξ is separated from the symbol X, introducing additional
degrees of freedom for the coding scheme. With this additional freedom, interference can-
cellation can be decoupled from information encoding. When the encoding is constructed
accordingly, there is no need to decode the pairs (X,S) at the receiver. Instead, the
information sequence ξ is decoded directly. The state-dependent labelling rule effectively
abstracts away the channel state.
We can compare Equation (5.1) to the well known capacity equation for channels without
state, C = maxPX

H(X) − H(X|Y ). There, H(X) quantifies the degrees of freedom per
symbol which the transmitter can use to encode information into and H(X|Y ) quantifies
the remaining uncertainty that the receiver has to guess and which thus cannot carry
information.
Gelfand-Pinsker channels pose an additional problem to practical communication system
design. Not only is the capacity argument based on random codes infeasible for actual
implementation, but the optimization problem governing the capacity is non-convex.
Therefore, in addition to the search for good channel codes, also the search for good input
distributions PΞ|S , good constellations X (s) and good labelling rules f : Ξ × S → X is
non-trivial.

5.2 The Dirty Paper Channel

One important instance of the Gelfand-Pinsker channel is the dirty paper channel. The
dirty paper channel is a channel with additive interference and AWGN as shown in
Figure 5.2 and can be modelled as Y = X + S + N with N ∼ N (0, σ2

N ), S ∼ PS ,
X = f(Ξ, S) and Ξ ∼ PΞ|S .
For a Gaussian scenario with X ∼ N (0, σ2

X) and S ∼ N (0, σ2
S) and therefore Y ∼

N (0, σ2
Y ) with σ2

Y depending on σ2
X , σ2

S and σ2
N , Costa [Cos83] was able to show that the

channel capacity is equal to the AWGN capacity without interference.
For this, Ξ is chosen as Ξ = X + αS with a scalar α and X independent of S. For
α =

σ2
X

σ2
X+σ2

N
, the achievable rate RGP = H(Ξ|S)−H(Ξ|Y ) is equal to the AWGN capacity

RAWGN = 1
2 log(1 +

σ2
X

σ2
N
) that assumes no interference.
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5.3 Finite Constellation Dirty Paper Coding

Conceptually, this can be interpreted as leaving the distribution of X constant, while
shifting the information-carrying label Ξ in the direction of the interference symbol.
A practical implementation of dirty paper coding poses additional problems. As this
scheme assumes Gaussian signalling, the design of practically implementable schemes
is again non-trivial. Apart from the difficulty of finding an optimal distribution PΞ|S

and an optimal symbol mapping f , implementing the desired state-dependent shaping
is non-trivial as well. A search for such schemes is very well motivated, though, by the
astonishing result of RGP = RAWGN which suggests the possibility of communication over
channels with known interference without any sacrifice in rate. A more extensive review
of practical approaches to dirty paper coding can be found in [Len18] and references
therein. We remark that most practical dirty paper coding schemes are based on the
lattice strategies first proposed by [ZSE02], [EtB05], [ESZ05]. As those hardly compare
to the scheme proposed in this work and require the framework of lattice codes [FTC00],
we refrain from in-depth explanations.

5.3 Finite Constellation Dirty Paper Coding

One approach to design a practical dirty paper coding scheme is to assume finite constel-
lations. For this, the channel input constellation X as well as the interference alphabet S
are assumed to be discrete and finite. Assuming both alphabets to be finite can then be
exploited for the design of a dirty paper signalling scheme [Len18]. The motivation to con-
sider finite alphabet interference comes from one of the main applications of dirty paper
coding, coding for so-called broadcast channels. In this scenario, a transmitter wants to
send separate messages to multiple independent receivers over the same medium. There,
the transmission to the first user can be considered as known interference for the trans-
mission to the second user. Assuming digital modulation, this interference has a finite
alphabet. For infinite alphabet interference, e. g., Gaussian interference, the interference
can be quantized if methods for finite constellation interference should be applied.
The state-dependence can pose significant problems to schemes based on many-to-one
mappings, as this would require a mapping for each candidate distribution. Given that
such schemes often already suffer from too large alphabets, this becomes infeasible easily.
Also, schemes based on DM such as PAS and its extensions [BSS15], [BLCS19] need
additional complexity to provide a distribution matcher which is able to match symbols
xi according to arbitrary distributions PX without any exploitable symmetries.
Furthermore, a possible transmission scheme also needs to be able to shape symbols ac-
cording to asymmetric distributions [Len18]. Figure 5.3 shows an exemplary constellation
for dirty paper coding which requires asymmetric shaping. This constellation is optimized
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Figure 5.3: Exemplary PX|S dirty paper constellation with 1/Q = SIR = 5dB.

for a 4-ASK channel input constellation with a uniform binary phase-shift keying (BPSK)
interference, an SNR of 3 dB and a signal-to-interference ratio (SIR) of 5 dB. Depending
on if the interference symbol si is positive or negative, the channel input symbol xi should
be distributed either according to the blue or the yellow distribution, respectively.
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6 State-Dependent Shaping using
Polar-Coded Modulation

This chapter discusses HY coding for channels with state.
We assume a Gelfand-Pinsker channel W (y|x, s) with input X and output Y , where the
state SJNK is known at the transmitter ahead of time. To achieve capacity for such a
channel, separation of the label ξi and the transmission symbol xi = f(ξi, si) as well as a
state-dependent distribution Ξ ∼ PΞ|S is necessary.
Before we adapt the scheme proposed in Chapter 4 to state-dependent shaping, we begin
by discussing existing literature regarding state-dependent shaping for binary HY coding.
After this, we proceed with demonstrating a simple extension of the proposed MLHY
coding scheme to state-dependent shaping. We also discuss aspects of construction and
present numerical results of the state-dependent shaping scheme.

6.1 State-Dependent Honda-Yamamoto Coding

Extending HY coding to state-dependent shaping in a theoretically sound way is not as
straightforward as the extension to MLC and remains an open problem.
For HY coding, the decoder at the transmitter is initialized with the symbol prior PX .
In our extension to MLHY, we initialized the decoder for each bitlevel with the condi-
tioned and marginalized probabilities P(xB,ℓ

i |xB,Jℓ−1K
i ). This extension introduced a state

dependency to the provided probabilities. Although this changes the initial probabilities
PX – which are constant for binary HY coding – to varying initial probabilities and con-
ditions the considered bitchannel entropies, we showed that this construction maintains
polarization convergence.
The naive way to extend HY coding to a state-dependent shaping scenario suggests to

1. apply the (multilevel) polar transform to Ξ instead of X,

2. consider H(Ui|UJi−1K,S) and H(Ui|UJi−1K,Y ) for construction instead of
H(Ui|UJi−1K) and H(Ui|UJi−1K,Y ) and
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3. initialize the decoder at the transmitter using PX|S(xi|si), i ∈ JNK, instead of just
PX(xi).

Compared to the achievable rate without interference I(X;Y ), there is a reduction by
I(Ξ;S) = H(Ξ)−H(Ξ|S) in rate for Gelfand-Pinsker coding required to perform interfer-
ence cancellation. This is also reflected in the construction of the DM code, where H(Ξ|S)
instead of H(X) is polarized in order to realize conditional target distributions PΞ|S . Due
to H(Ξ|S) ≤ H(Ξ) ≤ log|Ξ|, this imposes additional constraints onto the encoding process
and may result in additional bitchannels with transmitter entropy H(Ui|UJi−1K,S) ≈ 0.
Therefore, the DM rate is expected to be decreased by an accordingly constructed HY-
based shaping scheme.
The main difficulty in applying this extension can be seen when coming back to the
proofs of the original HY coding [HY13] as well as of Lemma 2. For the allocation of
bitchannels to result in the Gelfand-Pinsker rate, i. e., RGP = limN→∞

1
N

∣∣∣HU |S ∩ LU |Y

∣∣∣ =
H(Ξ|S)−H(Ξ|Y ), the condition H(Ui|UJi−1K,Y ) ≤ H(Ui|UJi−1K,S) needs to hold. If this
condition does not hold, the set LU |S ∩HU |Y may be non-empty. This would mean that
there exists at least one bitchannel i, which cannot be decoded at the receiver and thus
needs to be frozen for decoding but which at the same time is also deterministic with
respect to SJNK and thus needs to be available for the shaping code in order to achieve
the desired distribution. In this case, the additional constraints from H(Ξ|S) do not allow
the direct use of such a HY-based coding scheme.
Handling such a case or showing that it does not occur is subject of several publications
which we review hereinafter.
We remark that L ⊆ HC and H ⊆ LC . In particular in the finite block length case
depending on the threshold δ, these sets may be proper subsets. To account for poorly
polarized bitchannels in the construction, most authors consider the set HU |Y \ HU |S ⊇
HU |Y ∩ LU |S for analysis. In this interpretation, HU |Y is used for FEC, HC

U |S ∩ HC
U |Y is

used for DM and HU |S \ HU |Y is used for data transmission.
The first to discuss the application of polar codes to Gelfand-Pinsker channels was
[KU10b], [KU10a]. There, the authors consider a binary dirty paper channel of the
form

Y = X ⊕ S ⊕ Z, with X = S = Z = F2. (6.1)

They argue that for PS|Ξ ⪯ PY |Ξ,
∣∣∣HU |Y \ HU |S

∣∣∣ = o(N), i. e., for any η > 0, there exists

a N0 such that for all N > N0, 1
N

∣∣∣HU |Y \ HU |S

∣∣∣ ≤ η.
To handle the remaining bit indices that are required for DM as well as FEC at the
same time, they propose to use these conflicting bits for DM and collect them. After a
sufficient number of conflicting bits are collected, they are transmitted using some (other)

48



6.1 State-Dependent Honda-Yamamoto Coding

channel code. From the view of the polar code, this creates a side channel for the receiver
that aids in decoding the conflicting bits. The proposed two-phase scheme has two main
problems. First, the use of multiple codes increases code design complexity. Second, the
system either requires large block lengths or the receiver needs to store a large number
of blocks before it can start decoding.
Using a construction similar to HY coding, [GAG14] propose polar coding schemes for
broadcast channels. They use the following result.

Proposition 4 ([GAG14, Lemma 7; Kor09, Lemma 1.8, Lemma 4.7]). Let Ξ, Y, S ∼
PΞ,Y,S be jointly distributed random variables with PS|Ξ ⪯ PY |Ξ. Let Ξ = UF⊗n be the
polar transform of the random vector U . Then, Z(Ui|UJi−1K,Y ) ≤ Z(Ui|UJi−1K,S) and
thus LU |S ⊆ LU |Y .

By combining these broadcast coding schemes with the two-phase idea explained above,
the authors of [MHSU14] propose a chained broadcast coding scheme that does not re-
quire stochastic degradation. The authors of [SC16] apply this chained coding scheme to
broadcast channels with side information.
Finally, the authors of [BB19], [BB20] improve on the bounds of 1

N

∣∣∣HU |Y \ HU |S

∣∣∣ for
binary DPC. They find that ∣∣∣HU |Y \ HU |S

∣∣∣ = O(Nν) (6.2)

with arbitrarily small ν > 0.
A similar problem occurs when constructing polar codes for so-called wiretap channels
which are dual to Gelfand-Pinsker channels in certain sense [GP19]. Suppose data u is
encoded to codeword x and sent to the intended receiver y over a channel W (y|x). An
eavesdropper may observe z with channel W (z|x). For a respective polar coding scheme,
bitchannels are evaluated based on their reliability at the receiver H(Ui|UJi−1K,Y ) and
their reliability at the eavesdropper H(Ui|UJi−1K,Z). Ideally, one chooses LU |Y ∩ HU |Z

for data transmission, HU |Y for FEC and LU |Z for random bits. The set HU |Y ∩ LU |Z is
desired to be empty, as it is required to be frozen for reliable decoding at the intended
receiver, but can also be decoded at the eavesdropper, which would leak information
about the used code.
In the literature discussing polar coding for wiretap channels, the same approaches exist
as discussed above. The authors of [MV11], [ŞV13], [LYL18] assume stochastically de-
graded channels. Using a chaining construction similar to the one proposed in [KU10a],
the authors of [ŞV13], [GB16] propose a multi-block coding scheme for general wire-
tap channels. We remark that the assumption of stochastically degraded channels is a
common assumption when discussing wiretap channels.
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Figure 6.1: Multilevel Honda-Yamamoto Coding for Dirty Paper Coding.

Furthermore, there is a second issue within the proof of converging decoding error prob-
abilities. The original proof uses a twofold decoder, where data bits are decoded based
on the channel outputs y and DM bits are decoded based on the known prior. This is
not possible in the Gelfand-Pinsker case, as the prior depends on the state S. The idea
behind Gelfand-Pinsker coding is to decode Ξ without the need of decoding (S,X). Thus,
the receiver does not know S and is not able to compute the prior. Although in practice
the decoder decodes all bits based on y, the known proofs for the convergence of P(E)
require the two-fold decoding.

6.2 State-Dependent Multilevel Honda-Yamamoto Coded
Modulation

In this section, we extend the MLHY transmission scheme proposed in Chapter 4 to
state-dependent shaping for DPC. For this construction, we assume that a MLHY code
with sufficient reliability and shaping capability is used and no conflicting bits exist, so
that LU |S ∩HU |Y = ∅.
To achieve the capacity with DPC, the state-dependent labelling rule f : Ξ × S → X is
required as well as some state-dependent distribution Ξ ∼ PΞ|S . The overall transmission
scheme is depicted in Figure 6.1. In comparison to Figure 4.1, Figure 6.1 introduces an
additional interference S which is also used to determine the likelihoods at the encoder as
well as the constellation mapping. Otherwise, the same MLC structure as already known
is used. For each bitlevel, the multistage decoder at the encoder provides the respective
HY encoder with a target distribution, so that eventually P̂Ξ|S = PΞ|S . At the decoder,
a multistage decoder with polar decoders for each component is used.
The labelling rule can be readily implemented in MLHY. As in the case without state,
a label ξi is represented by each bit group x

B,JmK
i which consists of the bits at index i of
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each codeword xB,ℓ at the ℓ-th bitlevel. Where in Chapter 4, we assumed a one-to-one
mapping between x and ξ, this is now implemented by the state-dependent mapping f ,
which can be a look-up table or a computation.
In order to realize the distribution PΞ|S , the multistage decoder calculates the likelihoods
P(xB,ℓ

i |xB,Jℓ−1K
i , si) and provides them to the polar decoders at each bitlevel ℓ. Again,

P(xB,ℓ|xB,Jℓ−1K, si) conditions PΞ|S on all bitlevels ℓ′ < ℓ and marginalizes PΞ|S over all
bitlevel ℓ′ > ℓ. With this, the polar decoder together with the multistage decoder finds
the most likely label sequence ξ given s, so that ξ is a codeword of the MLHY code.

6.3 Simulation Results

6.3.1 Selection of Bitchannels

As with the unmodified MLHY transmission scheme, we construct the MLHY code based
on two bitchannel entropies. Using a MC simulation, we calculate H(U ℓ

i |U ℓJi−1K,U Jℓ−1K,S)
and H(U ℓ

i |U ℓJi−1K,U Jℓ−1K,Y ), where U is sampled conditional on S so that Ξ, S, Y ∼
PΞ,S,Y .

Conditional Polarization

Although LU |S ⊆ LU |Y may not be guaranteed, we find that

H(U ℓ
i |U ℓJi−1K,U Jℓ−1K,S) ≥ H(U ℓ

i |U ℓJi−1K,U Jℓ−1K,Y ) (6.3)

may still hold in some practically relevant cases. Therefore, whether a chaining construc-
tion such as the one proposed by [KU10a] is necessary, has to be determined for each
specific channel individually. In case the computed uncertainties satisfy Equation (6.3),
the MLHY code can be used as-is for state-dependent shaping without any further mod-
ifications.
We observed that Equation (6.3) holds for the DPC scenarios discussed in [Len18, Sec-
tion 5.2]. There, achievable rates for DPC with a uniform BPSK interference and a SIR
of 5 dB are considered. DPC schemes and in particular the respective optimized condi-
tional distributions are proposed for BPSK signalling as well as 4-ASK signalling with
SNRs reaching from −5 dB to 20 dB. For these scenarios, the rate is strictly positive,
i. e., H(Ξ|S) > H(Ξ|Y ). Using the optimized symbol distributions presented there, Equa-
tion (6.3) holds for both constellation sizes over the considered SNR range and block
lengths 28 ≤ N ≤ 213.
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Figure 6.2: Bitchannel H(Ui|UJi−1K,S)−H(Ui|UJi−1K,Y ) for DPC with M = 2, N = 1024
and SNR = 2.5 dB.

0 128 256 384 512 640 768 896 1,024

0

0.5

1

Bitchannel i

R
i

Data
FEC

Figure 6.3: Bitchannel H(Ui|UJi−1K)−H(Ui|UJi−1K,Y ) for AWGN with M = 2, N = 1024
and SNR = 0.9 dB.

We remark that the bitchannel entropies and thus also whether Equation (6.3) holds
depends solely on PS,Ξ,Y and N . Therefore, it is a property of the channel together with
the used symbol constellation and distribution. Whether Equation (6.3) holds or not can
not be manipulated by code design, i. e., bitchannel selection alone.

Speed of Polarization

We further analyze whether the additional conditioning decreases finite length polariza-
tion effects. For this, we compare the number of weakly polarized bitchannels for the
AWGN channel and for the dirty paper channel.

52
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0 256 512 768 1,024 1,280 1,536 1,792 2,048

0

0.5

1

Bitchannel i

R
i

Data
FEC
DM

Figure 6.4: Bitchannel H(U ℓ
i |U ℓJi−1K,U Jℓ−1K,S) − H(U ℓ

i |U ℓJi−1K,U Jℓ−1K,Y ) for DPC with
M = 4, N = 1024 and SNR = 10dB.

Figure 6.2 and Figure 6.3 show

Ri = H(Ui|UJi−1K,S)−H(Ui|UJi−1K,Y ) = I(Ui;Y |UJi−1K)− I(Ui;S|UJi−1K) (6.4)

for each bitchannel for BPSK over the dirty paper channel and over the AWGN channel,
respectively. Analogously to the code construction explained in Section 4.3, the bitchan-
nels with the highest Ri are used for data transmission and the remaining bitchannels are
used for DM and FEC. In the figures, blue () bitchannels have high H(Ui|UJi−1K,Y ) and
are used for FEC, yellow () bitchannels have high Ri and are used for data transmission
and the remaining green () bitchannels have low H(Ui|UJi−1K,S) and are used for DM.
Both, the code for DPC as well as the code for the AWGN channel without interference,
have an identical number of data bitchannels and an identical threshold for Ri. The
constellation-constrained channel capacities for the corresponding SE are 0 dB for the
dirty paper channel and −1.2 dB for the AWGN channel. We define weakly polarized
bitchannels as bitchannels for which ε < Ri < 1− ε with threshold ε.
To achieve 457 out of mN = 1024 bitchannels for data transmission with a threshold of
ε ≈ 0.064, the code for DPC needs a back-off from capacity of 2.5 dB. For polar coding
over the AWGN channel, a back-off of 2.3 dB is enough to reach 457 data bitchannels with
this ε. At these parameters, the HY code for DPC has 240 weakly polarized bitchannels
and the polar code for the AWGN channel 219.
Figure 6.4 and Figure 6.5 show the bitchannel Ri for 4-ASK MLHY codes for transmission
over the dirty paper channel and over the AWGN channel, respectively. Both codes are
designed to have 1450 out of mN = 2048 bitchannels for data transmission and ε ≈ 0.064.
For the corresponding SE, the capacities are 8.5 dB for the dirty paper channel and 8 dB
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Figure 6.5: Bitchannel H(U ℓ
i |U ℓJi−1K,U Jℓ−1K) − H(U ℓ

i |U ℓJi−1K,U Jℓ−1K,Y ) for AWGN with
M = 4, N = 1024 and SNR = 9.5 dB.

for the AWGN channel. The MLHY code for DPC has 372 weakly polarized bitchannels
whereas the MLHY for the AWGN channel has 300. Both codes have a back-off from
capacity of 1.5 dB.

The examples for BPSK and 4-ASK show that DPC using MLHY codes is possible without
incurring overly large overhead. In the cases we analyze, the difference in back-off from
the respective capacity is below 0.5 dB for communication with and without interference.
Similarly, the increase in the number of weakly polarized bitchannels normalized to mN

is below 5% at N = 1024.

6.3.2 Coding for the Dirty Paper Channel

We compare performances for three cases, namely DPC, transmission over the same dirty
paper channel but treating the interference as an additional noise that is not known to
transmitter or receiver (interference as noise) and transmission over the respective AWGN
without any interference. The HY and MLHY codes used are constructed identically
to the ones in Section 4.4. The encoder decides deterministically for the minimum-
energy codeword out of the L = 32 SCL candidate codewords. For the transmission with
interference treated as noise, the receiver knows the distribution of the BPSK interference.
Furthermore, we compare the scheme proposed herein with the DPC scheme using linear
layered probabilistic shaping (LLPS) proposed by [BLCS19]. LLPS extends the PAS
architecture to asymmetric target distributions by turning the linear FEC into a coset
code, from which a codeword with the desired hamming weight is chosen. For their DPC
results, they use a rate 1/2 LDPC code with block length N = 1056.
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Figure 6.6: Performance of (ML)HY codes for DPC compared to LLPS [BLCS19],
(ML)HY with interference as noise and (ML)HY without interference. The
MLHY codes have N = 1024 and use an outer CRC-16.

Figure 6.6 shows FER performance vs SNR for communication over the dirty paper chan-
nel. The channel capacities for DPC and treating the interference as noise are denoted by
the two black bars in each figure. The DPC gain is the difference in SNR which is required
to achieve the same SE and FER when treating the interference as noise. HY-based DPC
for BPSK and MLHY-based DPC for 4-ASK constellations achieves DPC gains of 0.84 dB
and 7.25 dB, respectively. We observe that these gains lie above the theoretical DPC gains
of 0.75 dB and 7 dB. This is due to the more moderate slope of the interference as noise
case compared to the DPC case. We also compare DPC results to coding over an AWGN
channel without interference. Whilst for BPSK the finite-constellation DPC scheme has
a distance of 1 dB to 2 dB to the AWGN case [Len18, Section 5.2.3], [BLCS19], DPC for
4-ASK transmission can achieve almost the same rates as coding without interference
[Len18]. For finite-length HY, we observe a gap of 1.6 dB to AWGN performance and for
MLHY a gap of 0.5 dB.
We further observed that similar to the LDPC codes used by [BLCS19], DPC with polar
codes requires longer block lengths in order to achieve FER vs SNR slopes comparable
to the case without interference.
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7 Conclusion

In this thesis we present a joint FEC and DM scheme for arbitrary target distributions
on higher-order modulation alphabets based on MLC and polar coding. We prove that
the proposed MLHY scheme achieves the constellation-constrained capacity of a memo-
ryless channel and show that the multilevel construction does not worsen the O(2−Nβ′

)

error exponents of HY coding. We show an effective method for construction that only
requires the dSNR and the SE as parameters. Using numerical simulations, we demon-
strate performance results and observe that the theoretical shaping gain is recovered and
that MLHY coding slightly outperforms PC-PAS for short block lengths while being less
complex to implement and without any restrictions on the feasible target distributions.
Additionally, we extend MLHY to DPC and show that this construction is employable
in practice, even though a general theorem for its capacity achieving property for state-
dependent DM is not known. Still, the extension recovers the DPC gains in simulations
and almost achieves interference-free AWGN performance for 4-ASK transmission.

Future research might improve the theoretical foundation of HY-based DPC by deriving
necessary conditions under which LU |S ∩HU |Y = ∅, so that this construction is capacity
achieving. This might connect to the design of capacity achieving constellations and
distributions for finite-constellation DPC in general. Similarly, the existence of a good
higher-order modulation Marton-coding scheme based on the scheme proposed herein
seems likely and might motivate further works.

The implementation of MLHY coding requires the receiver to know the generated symbol
distribution P̂X . In case of deterministic encoding, this is not determined directly by the
prior PX fed to the DM SC decoder as with probabilistic encoding. Instead, P̂X also
depends heavily on the bitchannel selection and needs to be measured during code con-
struction. Future work might improve on this by finding more analytical or more efficient
approaches to determine P̂X and improved algorithms to select the DM bitchannels.

While polar codes were the first codes to be described via the polar transform, they
are not the only class of codes that can be constructed this way. By choosing different
bitchannels for DM or FEC, setting frozen bits depending on the previous bits [TM15]
or employing different decoding rules, the class of codes and coset codes that can be
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7 Conclusion

constructed using the polar transform includes many more interesting codes. Their ap-
plicability to a MLHY-based shaping scheme might be explored by further research.

58



Bibliography

[Arı09] E. Arıkan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Transactions on Information Theory, vol. 55, no. 7, pp. 3051–3073, Jun.
2009. doi: 10.1109/TIT.2009.2021379.

[Arı10] ——, “Source polarization,” in IEEE International Symposium on Informa-
tion Theory (ISIT), Austin, TX, Jun. 2010, pp. 899–903, isbn: 978-1-4244-
7892-7. doi: 10.1109/ISIT.2010.5513567.

[AT09] E. Arıkan and E. Telatar, “On the rate of channel polarization,” in IEEE
International Symposium on Information Theory (ISIT), Seoul, Korea, Jun.
2009, pp. 1493–1495, isbn: 978-1-4244-4312-3. doi: 10.1109/ISIT.2009.
5205856.

[BB19] B. Beilin and D. Burshtein, “On polar coding for binary dirty paper,”
in IEEE International Symposium on Information Theory (ISIT), Paris,
France, Sep. 2019, pp. 1402–1406, isbn: 978-1-5386-9291-2. doi: 10.1109/
ISIT.2019.8849333.

[BB20] ——, “On polar coding for side information channels,” IEEE Transactions
on Information Theory, p. 1, Nov. 2020. doi: 10.1109/TIT.2020.3035658.

[BBB15] A. Balatsoukas-Stimming, M. Bastani Parizi, and A. Burg, “LLR-based
successive cancellation list decoding of polar codes,” IEEE Transactions on
Signal Processing, vol. 63, no. 19, pp. 5165–5179, Jun. 2015. doi: 10.1109/
TSP.2015.2439211.

[BG16] G. Böcherer and B. C. Geiger, “Optimal quantization for distribution
synthesis,” IEEE Transactions on Information Theory, vol. 62, no. 11,
pp. 6162–6172, Sep. 2016. doi: 10.1109/TIT.2016.2610433.

[BİX20] R. Böhnke, O. İşcan, and W. Xu, “Multi-level distribution matching,” IEEE
Communications Letters, vol. 24, no. 9, pp. 2015–2019, May 2020. doi:
10.1109/LCOMM.2020.2993929.

I

https://doi.org/10.1109/TIT.2009.2021379
https://doi.org/10.1109/ISIT.2010.5513567
https://doi.org/10.1109/ISIT.2009.5205856
https://doi.org/10.1109/ISIT.2009.5205856
https://doi.org/10.1109/ISIT.2019.8849333
https://doi.org/10.1109/ISIT.2019.8849333
https://doi.org/10.1109/TIT.2020.3035658
https://doi.org/10.1109/TSP.2015.2439211
https://doi.org/10.1109/TSP.2015.2439211
https://doi.org/10.1109/TIT.2016.2610433
https://doi.org/10.1109/LCOMM.2020.2993929


Bibliography

[BLCS19] G. Böcherer, J. D. Lentner Ibañez, A. Cirino, and F. Steiner, Probabilistic
parity shaping for linear codes, Feb. 2019. [Online]. Available: http : / /
arxiv.org/pdf/1902.10648v1.

[BPYS17] G. Böcherer, T. Prinz, P. Yuan, and F. Steiner, “Efficient polar code con-
struction for higher-order modulation,” in IEEE Wireless Communications
and Networking Conference Workshops (WCNCW), San Francisco, CA,
Mar. 2017, pp. 1–6, isbn: 978-1-5090-5908-9. doi: 10.1109/WCNCW.2017.
7919039.

[BSS15] G. Böcherer, F. Steiner, and P. Schulte, “Bandwidth efficient and rate-
matched low-density parity-check coded modulation,” IEEE Transactions
on Communications, vol. 63, no. 12, pp. 4651–4665, Oct. 2015. doi: 10.
1109/TCOMM.2015.2494016.

[CB15] R. A. Chou and M. R. Bloch, “Using deterministic decisions for low-entropy
bits in the encoding and decoding of polar codes,” in Allerton Conference
on Communication, Control, and Computing, Monticello, IL: IEEE, Oct.
2015, pp. 1380–1385, isbn: 978-1-5090-1824-6. doi: 10.1109/ALLERTON.
2015.7447169.

[CDJ+19] M. C. Coşkun, G. Durisi, T. Jerkovits, G. Liva, W. Ryan, B. Stein, and F.
Steiner, “Efficient error-correcting codes in the short blocklength regime,”
Physical Communication, vol. 34, pp. 66–79, 2019. doi: https://doi.org/
10.1016/j.phycom.2019.03.004.

[CO90] A. R. Calderbank and L. H. Ozarow, “Nonequiprobable signaling on the
gaussian channel,” IEEE Transactions on Information Theory, vol. 36, no. 4,
pp. 726–740, Jul. 1990. doi: 10.1109/18.53734.

[Cos83] M. Costa, “Writing on dirty paper (corresp.),” IEEE Transactions on In-
formation Theory, vol. 29, no. 3, pp. 439–441, May 1983. doi: 10.1109/
TIT.1983.1056659.

[CT06] T. M. Cover and J. A. Thomas, Elements of information theory, 2nd ed.
Hoboken, N.J.: Wiley, 2006, isbn: 9780471241959.

[DPN21] J. Dai, J. Piao, and K. Niu, “Progressive rate-filling: A framework for agile
construction of multilevel polar-coded modulation,” IEEE Wireless Com-
munications Letters, vol. 10, no. 5, pp. 1123–1127, Feb. 2021. doi: 10.1109/
LWC.2021.3059841.

[EK11] A. El Gamal and Y.-H. Kim, Network information theory. Cambridge and
New York: Cambridge University Press, 2011, isbn: 9781139190916.

II

http://arxiv.org/pdf/1902.10648v1
http://arxiv.org/pdf/1902.10648v1
https://doi.org/10.1109/WCNCW.2017.7919039
https://doi.org/10.1109/WCNCW.2017.7919039
https://doi.org/10.1109/TCOMM.2015.2494016
https://doi.org/10.1109/TCOMM.2015.2494016
https://doi.org/10.1109/ALLERTON.2015.7447169
https://doi.org/10.1109/ALLERTON.2015.7447169
https://doi.org/https://doi.org/10.1016/j.phycom.2019.03.004
https://doi.org/https://doi.org/10.1016/j.phycom.2019.03.004
https://doi.org/10.1109/18.53734
https://doi.org/10.1109/TIT.1983.1056659
https://doi.org/10.1109/TIT.1983.1056659
https://doi.org/10.1109/LWC.2021.3059841
https://doi.org/10.1109/LWC.2021.3059841


Bibliography

[ESZ05] U. Erez, S. Shamai, and R. Zamir, “Capacity and lattice strategies for
canceling known interference,” IEEE Transactions on Information Theory,
vol. 51, no. 11, pp. 3820–3833, Oct. 2005. doi: 10.1109/TIT.2005.856935.

[EtB05] U. Erez and S. ten Brink, “A close-to-capacity dirty paper coding scheme,”
IEEE Transactions on Information Theory, vol. 51, no. 10, pp. 3417–3432,
Sep. 2005. doi: 10.1109/TIT.2005.855586.

[FHW98] R. F. Fischer, J. B. Huber, and U. Wachsmann, “On the combination of
multilevel coding and signal shaping,” in ITG Conference on Source and
Channel Coding, 1998, pp. 273–278.

[For88] G. Forney, “Coset codes. I. introduction and geometrical classification,”
IEEE Transactions on Information Theory, vol. 34, no. 5, pp. 1123–1151,
Sep. 1988. doi: 10.1109/18.21245.

[For92] ——, “Trellis shaping,” IEEE Transactions on Information Theory, vol. 38,
no. 2, pp. 281–300, Mar. 1992. doi: 10.1109/18.119687.

[FTC00] G. D. Forney, M. D. Trott, and S.-Y. Chung, “Sphere-bound-achieving coset
codes and multilevel coset codes,” IEEE Transactions on Information The-
ory, vol. 46, no. 3, pp. 820–850, May 2000. doi: 10.1109/18.841165.

[GAG14] N. Goela, E. Abbe, and M. Gastpar, “Polar codes for broadcast channels,”
IEEE Transactions on Information Theory, vol. 61, no. 2, pp. 758–782, Dec.
2014. doi: 10.1109/TIT.2014.2378172.

[Gal68] R. G. Gallager, Information theory and reliable communication. New York
[u.a.]: Wiley, 1968, isbn: 978-0-471-29048-3.

[GB16] T. C. Gulcu and A. Barg, “Achieving secrecy capacity of the wiretap channel
and broadcast channel with a confidential component,” IEEE Transactions
on Information Theory, vol. 63, no. 2, pp. 1311–1324, Nov. 2016. doi: 10.
1109/TIT.2016.2631223.

[GFAW20] Y. C. Gültekin, T. Fehenberger, A. Alvarado, and F. M. J. Willems, “Prob-
abilistic shaping for finite blocklengths: Distribution matching and sphere
shaping,” Entropy, vol. 22, no. 5, Apr. 2020. doi: 10.3390/e22050581.

[GP19] Z. Goldfeld and H. H. Permuter, “Wiretap and gelfand-pinsker channels
analogy and its applications,” IEEE Transactions on Information Theory,
vol. 65, no. 8, pp. 4979–4996, Apr. 2019. doi: 10.1109/TIT.2019.2910106.

III

https://doi.org/10.1109/TIT.2005.856935
https://doi.org/10.1109/TIT.2005.855586
https://doi.org/10.1109/18.21245
https://doi.org/10.1109/18.119687
https://doi.org/10.1109/18.841165
https://doi.org/10.1109/TIT.2014.2378172
https://doi.org/10.1109/TIT.2016.2631223
https://doi.org/10.1109/TIT.2016.2631223
https://doi.org/10.3390/e22050581
https://doi.org/10.1109/TIT.2019.2910106


Bibliography

[GP80] S. I. Gel’fand and M. S. Pinsker, “Coding for channels with random param-
eters,” Problems of Control and Information Theory, vol. 9, no. 1, pp. 19–
31, Jan. 1980.

[HY13] J. Honda and H. Yamamoto, “Polar coding without alphabet extension for
asymmetric models,” IEEE Transactions on Information Theory, vol. 59,
no. 12, pp. 7829–7838, Sep. 2013. doi: 10.1109/TIT.2013.2282305.

[İBX17] O. İşcan, R. Böhnke, and W. Xu, “Shaped polar codes for higher order
modulation,” IEEE Communications Letters, vol. 22, no. 2, pp. 252–255,
Oct. 2017. doi: 10.1109/LCOMM.2017.2766621.

[İBX19] ——, “Probabilistic shaping using 5G new radio polar codes,” IEEE Access,
vol. 7, pp. 22 579–22 587, Feb. 2019. doi: 10.1109/ACCESS.2019.2898103.

[KK93] A. Khandani and P. Kabal, “Shaping multidimensional signal spaces. I. op-
timum shaping, shell mapping,” IEEE Transactions on Information Theory,
vol. 39, no. 6, pp. 1799–1808, Nov. 1993. doi: 10.1109/18.265491.

[Kor09] S. B. Korada, “Polar codes for channel and source coding,” Doctoral Thesis,
École polytechnique fédérale de Lausanne, Jul. 2009. doi: 10.5075/epfl-
thesis-4461.

[KP93] F. R. Kschischang and S. Pasupathy, “Optimal nonuniform signaling for
gaussian channels,” IEEE Transactions on Information Theory, vol. 39,
no. 3, pp. 913–929, May 1993. doi: 10.1109/18.256499.

[KŞU10] S. B. Korada, E. Şaşoğlu, and R. L. Urbanke, “Polar codes: Characterization
of exponent, bounds, and constructions,” IEEE Transactions on Informa-
tion Theory, vol. 56, no. 12, pp. 6253–6264, Nov. 2010. doi: 10.1109/TIT.
2010.2080990.

[KU10a] S. B. Korada and R. L. Urbanke, “Polar codes are optimal for lossy source
coding,” IEEE Transactions on Information Theory, vol. 56, no. 4, pp. 1751–
1768, Mar. 2010. doi: 10.1109/TIT.2010.2040961.

[KU10b] ——, “Polar codes for slepian-wolf, wyner-ziv, and gelfand-pinsker,” in
IEEE Information Theory Workshop (ITW), Cairo, Egypt, Jan. 2010, pp. 1–
5, isbn: 978-1-4244-6372-5. doi: 10.1109/ITWKSPS.2010.5503220.

[Len18] J. D. Lentner Ibañez, “Dirty paper coding for higher-order modulation and
finite constellation interference,” Master’s Thesis, Technische Universität
München, Mar. 2018.

IV

https://doi.org/10.1109/TIT.2013.2282305
https://doi.org/10.1109/LCOMM.2017.2766621
https://doi.org/10.1109/ACCESS.2019.2898103
https://doi.org/10.1109/18.265491
https://doi.org/10.5075/epfl-thesis-4461
https://doi.org/10.5075/epfl-thesis-4461
https://doi.org/10.1109/18.256499
https://doi.org/10.1109/TIT.2010.2080990
https://doi.org/10.1109/TIT.2010.2080990
https://doi.org/10.1109/TIT.2010.2040961
https://doi.org/10.1109/ITWKSPS.2010.5503220


Bibliography

[Liu16] L. Liu, “Polar codes and polar lattices for efficient communication and
source quantization,” Doctoral Dissertation, Imperial College London, Sep.
2016. [Online]. Available: https://spiral.imperial.ac.uk/handle/
10044/1/48001.

[LYL18] L. Liu, Y. Yan, and C. Ling, “Achieving secrecy capacity of the gaussian
wiretap channel with polar lattices,” IEEE Transactions on Information
Theory, vol. 64, no. 3, pp. 1647–1665, Jan. 2018. doi: 10.1109/TIT.2018.
2794327.

[LYLW18] L. Liu, Y. Yan, C. Ling, and X. Wu, “Construction of capacity-achieving lat-
tice codes: Polar lattices,” IEEE Transactions on Communications, vol. 67,
no. 2, pp. 915–928, Oct. 2018. doi: 10.1109/TCOMM.2018.2876113.

[LZH15] L. Li, W. Zhang, and Y. Hu, On the error performance of systematic polar
codes, Apr. 2015. [Online]. Available: https://arxiv.org/pdf/1504.
04133.

[MHSU14] M. Mondelli, S. H. Hassani, I. Sason, and R. L. Urbanke, “Achieving mar-
ton’s region for broadcast channels using polar codes,” IEEE Transactions
on Information Theory, vol. 61, no. 2, pp. 783–800, Nov. 2014. doi: 10.
1109/TIT.2014.2368555.

[MHU18] M. Mondelli, S. H. Hassani, and R. L. Urbanke, “How to achieve the capac-
ity of asymmetric channels,” IEEE Transactions on Information Theory,
vol. 64, no. 5, pp. 3371–3393, Jan. 2018. doi: 10.1109/TIT.2018.2789885.

[MKM+19] T. Matsumine, T. Koike-Akino, D. S. Millar, K. Kojima, and K. Parsons,
“Polar-coded modulation for joint channel coding and probabilistic shap-
ing,” in Optical Fiber Communication Conference (OFC), San Diego, CA:
OSA, Apr. 2019, M4B.2, isbn: 978-1-943580-53-8. doi: 10.1364/OFC.2019.
M4B.2.

[MT09] R. Mori and T. Tanaka, “Performance and construction of polar codes on
symmetric binary-input memoryless channels,” in IEEE International Sym-
posium on Information Theory (ISIT), Seoul, Korea, Jun. 2009, pp. 1496–
1500, isbn: 978-1-4244-4312-3. doi: 10.1109/ISIT.2009.5205857.

[MV11] H. Mahdavifar and A. Vardy, “Achieving the secrecy capacity of wiretap
channels using polar codes,” IEEE Transactions on Information Theory,
vol. 57, no. 10, pp. 6428–6443, Oct. 2011. doi: 10.1109/TIT.2011.2162275.

V

https://spiral.imperial.ac.uk/handle/10044/1/48001
https://spiral.imperial.ac.uk/handle/10044/1/48001
https://doi.org/10.1109/TIT.2018.2794327
https://doi.org/10.1109/TIT.2018.2794327
https://doi.org/10.1109/TCOMM.2018.2876113
https://arxiv.org/pdf/1504.04133
https://arxiv.org/pdf/1504.04133
https://doi.org/10.1109/TIT.2014.2368555
https://doi.org/10.1109/TIT.2014.2368555
https://doi.org/10.1109/TIT.2018.2789885
https://doi.org/10.1364/OFC.2019.M4B.2
https://doi.org/10.1364/OFC.2019.M4B.2
https://doi.org/10.1109/ISIT.2009.5205857
https://doi.org/10.1109/TIT.2011.2162275


Bibliography

[PPV10] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the finite
blocklength regime,” IEEE Transactions on Information Theory, vol. 56,
no. 5, pp. 2307–2359, Apr. 2010. doi: 10.1109/TIT.2010.2043769.

[PY18] T. Prinz and P. Yuan, “Successive cancellation list decoding of BMERA
codes with application to higher-order modulation,” in IEEE International
Symposium on Turbo Codes & Iterative Information Processing (ISTC),
Hong Kong, China, Dec. 2018, pp. 1–5. doi: 10.1109/ISTC.2018.8625293.

[PYB+17] T. Prinz, P. Yuan, G. Böcherer, F. Steiner, O. İşcan, R. Böhnke, and W.
Xu, “Polar coded probabilistic amplitude shaping for short packets,” in
IEEE International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), Sapporo, Japan, Jul. 2017, pp. 1–5, isbn: 978-
1-5090-3009-5. doi: 10.1109/SPAWC.2017.8227653.

[RV19] M. Rowshan and E. Viterbo, “How to modify polar codes for list decoding,”
in IEEE International Symposium on Information Theory (ISIT), Paris,
France, Jul. 2019, pp. 1772–1776, isbn: 978-1-5386-9291-2. doi: 10.1109/
ISIT.2019.8849539.

[SB15] P. Schulte and G. Böcherer, “Constant composition distribution matching,”
IEEE Transactions on Information Theory, vol. 62, no. 1, pp. 430–434, Nov.
2015. doi: 10.1109/TIT.2015.2499181.

[SC16] J. Sima and W. Chen, “Polar codes for broadcast channels with receiver
message side information and noncausal state available at the encoder,” in
IEEE International Symposium on Information Theory (ISIT), Barcelona,
Spain, Jul. 2016, pp. 993–997. doi: 10.1109/ISIT.2016.7541448.

[Sei15] M. Seidl, “Polar coding: Finite-length aspects,” Doctoral Thesis, Friedrich-
Alexander-Universität Erlangen-Nürnberg, Apr. 2015. [Online]. Available:
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-62013.

[SG17] P. Schulte and B. C. Geiger, “Divergence scaling of fixed-length, binary-
output, one-to-one distribution matching,” in IEEE International Sym-
posium on Information Theory (ISIT), Aachen, Germany, Jun. 2017,
pp. 3075–3079. doi: 10.1109/ISIT.2017.8007095.

[Sha48] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948. doi: 10.1002/j.
1538-7305.1948.tb01338.x.

VI

https://doi.org/10.1109/TIT.2010.2043769
https://doi.org/10.1109/ISTC.2018.8625293
https://doi.org/10.1109/SPAWC.2017.8227653
https://doi.org/10.1109/ISIT.2019.8849539
https://doi.org/10.1109/ISIT.2019.8849539
https://doi.org/10.1109/TIT.2015.2499181
https://doi.org/10.1109/ISIT.2016.7541448
https://nbn-resolving.org/urn:nbn:de:bvb:29-opus4-62013
https://doi.org/10.1109/ISIT.2017.8007095
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x


Bibliography

[SSSH13] M. Seidl, A. Schenk, C. Stierstorfer, and J. B. Huber, “Polar-coded modu-
lation,” IEEE Transactions on Communications, vol. 61, no. 10, pp. 4108–
4119, Sep. 2013. doi: 10.1109/TCOMM.2013.090513.130433.

[ŞTA09] E. Şaşoğlu, E. Telatar, and E. Arıkan, “Polarization for arbitrary dis-
crete memoryless channels,” in IEEE Information Theory Workshop (ITW),
Taormina, Italy, Oct. 2009, pp. 144–148, isbn: 978-1-4244-4982-8. doi: 10.
1109/ITW.2009.5351487.

[Sto02] N. Stolte, “Rekursive codes mit der plotkin-konstruktion und ihre de-
codierung,” Ph.D. Thesis, Technische Universität Darmstadt, Jan. 2002.
[Online]. Available: http://elib.tu-darmstadt.de/diss/000183.

[ŞV13] E. Şaşoğlu and A. Vardy, “A new polar coding scheme for strong security
on wiretap channels,” in IEEE International Symposium on Information
Theory (ISIT), Istanbul, Turkey, Jul. 2013, pp. 1117–1121, isbn: 978-1-
4799-0446-4. doi: 10.1109/ISIT.2013.6620400.

[Tah17] B. Tahir, “Construction and performance of polar codes for transmission
over the awgn channel,” Master’s Thesis, Technische Universität Wien, Oct.
2017. [Online]. Available: https://resolver.obvsg.at/urn:nbn:at:at-
ubtuw:1-103376.

[TM15] P. Trifonov and V. Miloslavskaya, “Polar subcodes,” IEEE Journal on Se-
lected Areas in Communications, vol. 34, no. 2, pp. 254–266, Nov. 2015.
doi: 10.1109/JSAC.2015.2504269.

[TV13] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Transactions
on Information Theory, vol. 59, no. 10, pp. 6562–6582, Jul. 2013. doi: 10.
1109/TIT.2013.2272694.

[TV15] ——, “List decoding of polar codes,” IEEE Transactions on Information
Theory, vol. 61, no. 5, pp. 2213–2226, Mar. 2015. doi: 10.1109/TIT.2015.
2410251.

[Ung82] G. Ungerböck, “Channel coding with multilevel/phase signals,” IEEE
Transactions on Information Theory, vol. 28, no. 1, pp. 55–67, Jan. 1982.
doi: 10.1109/TIT.1982.1056454.

[WDY+20] T. Wiegart, F. Da Ros, M. P. Yankov, F. Steiner, S. Gaiarin, and R. D.
Wesel, “Probabilistically shaped 4-pam for short-reach im/dd links with a
peak power constraint,” Journal of Lightwave Technology, vol. 39, no. 2,
pp. 400–405, Oct. 2020. doi: 10.1109/JLT.2020.3029371.

VII

https://doi.org/10.1109/TCOMM.2013.090513.130433
https://doi.org/10.1109/ITW.2009.5351487
https://doi.org/10.1109/ITW.2009.5351487
http://elib.tu-darmstadt.de/diss/000183
https://doi.org/10.1109/ISIT.2013.6620400
https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-103376
https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-103376
https://doi.org/10.1109/JSAC.2015.2504269
https://doi.org/10.1109/TIT.2013.2272694
https://doi.org/10.1109/TIT.2013.2272694
https://doi.org/10.1109/TIT.2015.2410251
https://doi.org/10.1109/TIT.2015.2410251
https://doi.org/10.1109/TIT.1982.1056454
https://doi.org/10.1109/JLT.2020.3029371


Bibliography

[WFH99] U. Wachsmann, R. F. Fischer, and J. B. Huber, “Multilevel codes: Theoreti-
cal concepts and practical design rules,” IEEE Transactions on Information
Theory, vol. 45, no. 5, pp. 1361–1391, Jul. 1999. doi: 10.1109/18.771140.

[WKP05] C.-C. Wang, S. R. Kulkarni, and H. V. Poor, “Density evolution for asym-
metric memoryless channels,” IEEE Transactions on Information Theory,
vol. 51, no. 12, pp. 4216–4236, Nov. 2005. doi: 10.1109/TIT.2005.858931.

[WSSY19] T. Wiegart, F. Steiner, P. Schulte, and P. Yuan, “Shaped on–off keying using
polar codes,” IEEE Communications Letters, vol. 23, no. 11, pp. 1922–1926,
Jul. 2019. doi: 10.1109/LCOMM.2019.2930511.

[YPB+19] P. Yuan, T. Prinz, G. Böcherer, O. İşcan, R. Böhnke, and W. Xu, “Polar
code construction for list decoding,” in International ITG Conference on
Systems, Communications and Coding (SCC), Rostock, Germany: VDE,
Feb. 2019, pp. 1–6. doi: 10.30420/454862022.

[YS18] P. Yuan and F. Steiner, Construction and decoding algorithms for polar
codes based on 2×2 non-binary kernels, Jul. 2018. [Online]. Available: http:
//arxiv.org/pdf/1807.03767v2.

[ZLJ+21] H. Zhou, Y. Li, X. Jia, C. Gao, Y. Liu, J. Qiu, X. Hong, H. Guo, Y. Zuo,
and J. Wu, “Polar coded probabilistic shaping pam8 based on many-to-one
mapping for short-reach optical interconnection,” Optics express, vol. 29,
no. 7, pp. 10 209–10 220, Mar. 2021. doi: 10.1364/OE.418045.

[ZSE02] R. Zamir, S. Shamai, and U. Erez, “Nested linear/lattice codes for struc-
tured multiterminal binning,” IEEE Transactions on Information Theory,
vol. 48, no. 6, pp. 1250–1276, Aug. 2002. doi: 10.1109/TIT.2002.1003821.

VIII

https://doi.org/10.1109/18.771140
https://doi.org/10.1109/TIT.2005.858931
https://doi.org/10.1109/LCOMM.2019.2930511
https://doi.org/10.30420/454862022
http://arxiv.org/pdf/1807.03767v2
http://arxiv.org/pdf/1807.03767v2
https://doi.org/10.1364/OE.418045
https://doi.org/10.1109/TIT.2002.1003821

	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Quantities of Information
	2.3 Channel Models
	2.3.1 General Channel Properties
	2.3.2 Degraded Channels
	2.3.3 The AWGN Channel
	2.3.4 The Intensity Modulation Channel

	2.4 Probabilistic Shaping

	3 Polar Coding
	3.1 Polar Codes for Error Correction
	3.2 Polar Codes for Probabilistic Shaping
	3.2.1 Achieving Capacity
	3.2.2 Practical Implementation
	3.2.3 Discussion

	3.3 Polar-Coded Modulation

	4 Symbol Shaping using Polar-Coded Modulation
	4.1 Multilevel Honda-Yamamoto Coded Modulation
	4.2 Theoretical Results
	4.3 Selection of Bitchannels
	4.3.1 Conceptual Considerations
	4.3.2 Code Construction

	4.4 Simulation Results
	4.4.1 Selection of Bitchannels
	4.4.2 Finite Block Length Distribution Matching
	4.4.3 Coding for Channels with Symmetric Input Distributions
	4.4.4 Coding for Channels with Asymmetric Input Distributions


	5 Coding with Side Information at the Transmitter
	5.1 The Gelfand-Pinsker Channel
	5.2 The Dirty Paper Channel
	5.3 Finite Constellation Dirty Paper Coding

	6 State-Dependent Shaping using Polar-Coded Modulation
	6.1 State-Dependent Honda-Yamamoto Coding
	6.2 State-Dependent Multilevel Honda-Yamamoto Coded Modulation
	6.3 Simulation Results
	6.3.1 Selection of Bitchannels
	6.3.2 Coding for the Dirty Paper Channel


	7 Conclusion
	Bibliography

