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Abstract

We are interested in secure communication without sharing a secret key. Currently, the
construction of an explicit and practical secure encoder and decoder with an optimal
performance is still an unsolved problem in the general case, except for some special
cases.

In the first part of the thesis, we constructed codes for secure transmission for a so-called
wiretap channel model. In the model there is a third party listening to the conversation
between sender and receiver. The channels between the transmitter and receivers are
noisy in the general case, assuming that for physical reasons the eavesdropper’s channel is
noisier than that of the legitimate receiver. We have constructed codes with a small Galois
field size (which are preferably binary) for simplified wiretap models. In the simplified
wiretap model, bursts of erasure occur in the channel to the legitimate transmitter, and the
eavesdropper is able to observe an interval of a prescribed length noiselessly. Purposefully,
codes were constructed that provide perfect security (strongest security metric) and error-
free decoding, and can be transmitted at the maximum possible secrecy rate.

In the second part of the thesis, we considered the so-called modular wiretap coding
scheme for secure transmission. The modular wiretap coding scheme consists of three
layers. The first layer is for secure transmission, realized by a randomized function. The
second and third layers are for reliable transmission, realized by a conventional error-
correcting code and a modulation scheme, respectively. The advantage of the modular
scheme is that no new error-correcting codes need to be constructed and it can be inte-
grated into existing systems without the need for costly system modifications. We ana-
lyzed the modular wiretap code for the AWGN channel and implemented it in Matlab.
We used the 3GPP standard for reliable transmission and a ”Universal Hash Function”
(UHF) in the first layer. The eavesdropper uses the maximum likelihood (ML) test as
an attack strategy. We considered the distinguishing security which is equivalent to the
semantic security in the asymptotic case. The distinguishing security can be assessed
by the probability of error. We have seen that for a given signal-to-noise ratio (SNR)
with increasing randomness at the encoder, the error probability converges towards the

maximum possible error probability.






Zusammenfassung

Wir sind an einer sicheren Kommunikation ohne gemeinsame Nutzung eines geheimen
Schliissels interessiert. Derzeit ist die Konstruktion expliziter und praktischer sicherer
Einkodierer und Dekodierer mit optimaler Leistung im allgemeinen Fall noch ein un-
gelostes Problem, abgesehen von einigen Spezialfallen.

Im ersten Teil der Thesis konstruieren wir Kodes zur sicheren Ubertragung fiir ein
sogenanntes Wiretap Kanal Model. In dem Model gibt es eine dritte Partei die der Un-
terhaltung zwischen Sender und Empfanger lauscht. Die Kanéle zwischen Sender und
Empfingern sind im allgemeinen Fall verrauscht, wobei angenommen wird, dass aus
physikalischen Griinden der Kanal des Lauschers verrauschter ist als der des legitimen
Empfangers. Wir haben fiir vereinfachte Wiretap Modelle Kodes mit kleiner Galois-
FeldgroBe (die vorzugsweise binér sind) konstruiert. In dem vereinfachten Wiretap Model
treten im Kanal zum legitimen Sender gebiindelte Loschungen auf, und der Lauscher ist
in der Lage ein Intervall einer vorgeschriebenen Léange rauschfrei zu beobachten. Gezielt
wurden Kodes konstruiert die perfekte Sicherheit (stérkste Sicherheitsmetrik) und fehler-
freie Dekodierung gewahrleisten und mit maximal moglicher sicheren Rate iibertragen
werden konnen.

Im zweiten Teil der Thesis haben wir das sogenannte modulare Wiretap Kodierungs
Schema zur sicheren Ubertragung betrachtet. Das modulare Wiretap Kodierungs Schema
besteht aus drei Schichten. Die erste Schicht dient der sicheren Ubertragung, realisiert
durch eine randomisierte Funktion. Die zweite und dritte Schicht dient der zuverlassigen
Ubertragung, realisiert durch jeweils einem konventionellen Fehlerkorrigierenden Kode
und einem Modulationsschema. Der Vorteil des modularen Schemas ist, dass keine neuen
fehlerkorrigierenden Kodes konstruiert werden miissen und es integriert werden kann in
bestehende Systeme ohne das System aufwendig anpassen zu miissen. Wir haben den
modularen Wiretap Kode fiir den AWGN Kanal analysiert und in Matlab implemen-
tiert. Zur zuverldssigen Ubertragung haben wir den 3GPP Standard verwendet und in
der ersten Schicht eine Universal Hash Function (UHF). Der Lauscher verwendet den
Maximum-Likelihood (ML) Test als Angriffsstrategie. Wir haben die differenzierende
Sicherheit betrachtet die aquivalent zur semantischen Sicherheit im asymptotischen Fall
ist. Die differenzierende Sicherheit kann tiber die Fehlerwahrscheinlichkeit bewertet wer-
den. Wir haben gesehen, dass fiir gegebenes Signal Rausch Verhéltnis (SNR) mit wach-
sendem Zufall am Einkodierer die Fehlerwahrscheinlichkeit gegen die maximal mdgliche

Fehlerwahrscheinlichkeit konvergiert.
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Basic Notations

Unless otherwise specified, we define the following notation.

N

natural numbers

real numbers

complex numbers

alphabet or set

max {z,0}, z e R

random variable implicitly defined on alphabet X’
cardinality of X

sequence (z1,...,T,)

probability distribution of the random variable X
probability density of the random variable X
probability distribution of X conditioned on Y
probability of the event (-)

per bit error probability

the average probability of error

binary entropy function

entropy of the discrete random variable X
entropy of X conditioned on Y

mutual information between X and Y

finite field with ¢ elements

n-dimensional space over F,

the set of n x k matrices over I,

k x k identity matrix

Hamming distance between x™ and y"
minimum distance of a code C'

generator matrix of a linear code C'

parity check matrix of a linear code C'

expectation with respect to X
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1. Introduction

The need for reliable and secure data communication over wireless networks is greater
than ever before. It is increasingly possible to listen into the communication between a
computer and a wireless router for example. Information-theoretic security is becoming
more significant as computation hardware is getting drastically cheaper every day; this
means that computational security schemes that are currently considered secure will no
longer be secure in the future. Information-theoretic security assumes that the eavesdrop-
per has limited access to the transmission, but an unlimited power to process it. On the
other hand, cryptographic security assumes that the eavesdropper of a secure transmis-
sion has unlimited access to the transmission, but a limited processing power. The idea
of using information theory to analyze cryptosystems was first introduced by Shannon in
his 1949 paper [1], in which a secret key is considered to protect confidential messages.
Wymner proposed an alternative approach to secure communication schemes in his seminal
paper [2], where he introduced the so-called wiretap channel model. He demonstrated
that secure communication is possible without sharing a secret key and determined the
secrecy capacity for a wiretap channel. Wyner’s model was later generalized by Csiszar
and Korner [3] and was further developed in [1]. Authors in [1] introduced the wiretap
channel II model, in which the legitimate transmitter communicates over a noiseless main
channel, while the eavesdropper has access to p noiseless bits (of his own choice) of the
length-n binary codeword. Authors in [1] showed that perfect security is attainable pro-
vided that p is not too large, and proposed a randomized coset coding scheme, where the
partition of the binary code C' = {0,1}" corresponds to a group code and its cosets, and

showed that it achieves the capacity-equivocation region.

Part Il

Several recent papers have studied various wiretap channels and provided results on se-
crecy capacity, e.g. by Thangaraj et al. [5] and Liu et al. [0]. Also among them are
wiretap channel models with delay constraints, e.g. [7],[3], [9], [L0]. Most of the literature
is concerned with wiretap channel models in which the eavesdropper only overhears the
transmission but does not try to modify the transmission. The wiretap channel with an
active eavesdropper was first considered by Lai et al. [11], where the goal of the receiver
is to detect whether the transmitted packet has been modified or not. Aggarwal et al.

[12] were the first who studied the model, where the eavesdropper not only noiselessly



1. Introduction

overhears a subset of the transmitted bits, but also modifies the bits, so that the legiti-
mate receiver receives a corrupted version of the sender’s codeword. In this model, they
designed a scheme that achieves a secrecy rate of (1 — e — h(e))™, where € = p/n is the
portion of the bits observed and erased by the eavesdropper and h(e) is the binary entropy.
However, existence of better achievable rates for the described channels remains an open

problem for arbitrary fields and code lengths.

Moreover, design of efficient coding schemes for both the wiretap channel and the
model of wiretap channel II with an active eavesdropper is also an open problem. This
motivates us first to introduce and study a model of wiretap channel II, where the abilities
of the eavesdropper are more restricted compared to the one in [12]. In our models,
the eavesdropper can observe an interval of p symbols from n transmitted symbols. In
addition, the active eavesdropper can erase the symbols in any interval of length B of
the transmitted codeword. It is worth noting that code constructions for this model
also work for the wiretap channel with an eavesdropper, where the main channel causes
erasures in any interval of length B. In both cases, the designer of the encoder has
to proceed on the assumption that the worst case can occur. In addition, neither the
transmitter nor the intended destination knows in advance which interval of length B
has been erased. However, we assume that the legitimate receiver of the message has a
physical advantage over the eavesdropper. In addition, we have constructed burst-erasure
wiretap codes for the streaming case where the legitimate receiver has to meet a decoding
delay deadline. In many emerging communication systems such as interactive voice and
video communication, internet of things, etc., low-delay is an important task along with
reconstruction of corrupted or lost data. The goal of our work is to design practical coding
schemes which achieve the maximum secrecy rate, perfect security, i.e., the adversary’s
observations are completely decoupled from the message, and perfect reliability, i.e., zero

error decoding.

Part 111

We consider the wiretap channel, where Alice (the sender) wants to convey messages
from a finite message set to Bob (the legitimate receiver) over a noisy channel. Eve (an
eavesdropper) observes a different noisy version of the channel input. Alice has to encode
the message so that Bob is able to decode the channel output, and so that Eve learns
as little as possible about the message from her observation. There are different ways
to measure security under a given security paradigm (weak, strong, perfect, semantic),
e.g. the total variation distance, the mutual information, the equivocation rate or the
advantage. We use the advantage at Eve as the security measure. The target value for
the advantage is also zero. We consider three communication scenarios, each reflecting
the operational meaning of different security measures and different assumptions about

Eve’s strengths. In the first two scenarios, the message distribution may be arbitrary,



1.1. Outline and Contribution

so these setups would be variants of “semantic security” in common terminology. In the
third scenario, the advantage is measured under the assumption of a uniformly distributed
message. This is usually referred to as “strong security”.

We consider a seeded modular code for the additive white Gaussian noise (AWGN)
wiretap channel consisting of a security layer, an error-correction layer and a modulation
layer for the reliable transmission from Alice to Bob. In the security layer, a function f
of certain properties is used, which depends on a randomly chosen seed s. We can assume
that before the transmission begins, the seed s is known to all participants. Practically, the
seed could have been sent by Alice before the communication started. Using seed recycling,
[13] showed that the rate loss can be asymptotically neglected. Note that a seed is different
from a key, because the seed is public and does not have to be kept secret from Eve. When
encoding the message, in the security layer the randomized inverse function f;! maps the
message M together with a randomly chosen seed s and a randomly generated vector r to
the input vector v of the forward error-correction (FEC) code. Any FEC code adapted for
the channel can be used. Then the codeword is modulated. At the receiver, the channel
output is demodulated, decoded and then the message is reconstructed using the seed and
fs- The error probability of the seeded modular code is at most as high as that of the
FEC code and of the modulation scheme. Eve knows the coding procedure, the channel,
the seed and the distribution of the message Pj;. The artificial randomness used in the
randomized inverse serves to confuse Eve.

The seeded modular coding scheme has the advantage that already-existing and long-
researched FEC codes can be used. Additionally, embedding in existing wireless systems
is associated with low refitting costs. The security aspect of wireless communications in
6G is of paramount importance to combat cybercriminal activities. This is especially true
because more and more people are using wireless networks (e.g. mobile networks and
WLAN) for online banking and personal e-mails, due to the widespread use of smart-
phones. But also in machine-to-machine communication in industry 4.0, the security of
wireless communication is enormously important for personal protection and to enable a
smooth production workstation. For further applications and more details, we refer to
[14], [15].

The functions we use for the security layer are universal hash functions (UHF). We call
a modular scheme that uses the UHF as the function in the security layer a modular UHF

scheme.

1.1. Outline and Contribution

Part I: Chapter 2 contains a review of fundamental results in information theory and
coding theory needed for the rest of the thesis. In Chapter 3, we first introduce the
notion of the wiretap channel and Wyner’s random encoding strategy which achieves the

secrecy capacity. Then we study the binary erasure wiretap channel II and describe an
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information-theoretic analysis of the coset coding scheme for this model.

Part I1: In chapter 4, we consider a wiretap channel IT with an active eavesdropper. The
eavesdropper is able to observe any interval of i symbol positions and erase the symbols in
any interval of B positions of a transmitted codeword. We present an explicit construction
of nested linear codes that achieve maximum secrecy rate for the finite length coding
regime with perfect security and zero-error decoding for any admissible code parameters.

In Chapter 5, we consider transmission of secure messages over a burst-erasure wiretap
channel under decoding delay constraint. For block codes we introduce and study delay-
optimal secure burst-erasure correcting (DO-SBE) codes that provide perfect security
and recover a burst of erasures of a limited length with minimum possible delay. Our
explicit constructions of DO-SBE block codes achieve maximum secrecy rate. We also
consider a model of a burst erasure wiretap channel for the streaming setup, where in any
sliding window of a given size, in a stream of encoded source packets, the eavesdropper
is able to observe packets in an interval of a given size. For that model we obtain an
information-theoretic upper bound on the secrecy rate for delay-optimal streaming codes.
We show that our block codes can be used for construction of delay-optimal burst-erasure
correcting streaming codes which provide perfect security and meet the upper bound for
a certain class of code parameters.

In Chapter 6, for streaming applications, we consider parallel burst erasure channels
in the presence of an eavesdropper. The legitimate receiver must perfectly recover each
source symbol subject to a decoding delay constraint without the eavesdropper gaining
any information from his observation. For a certain class of code parameters, we propose
delay-optimal M-link codes that recover a certain number of bursts of erasures of a limited
length each occurring on a separate link, and where the codes provide perfect security
even if the eavesdropper can observe a link of his choice. Our codes achieve the maximum
secrecy rate for the channel model.

Part I1I: In Chapter 7, we consider a seeded modular code for the additive white Gaus-
sian noise (AWGN) wiretap channel consisting of a security layer, an error-correction layer
and a modulation layer. For reliable transmission, we use any forward error-correction
(FEC) code and modulation method. In the security layer, a universal hash function
(UHF) is used, which depends on a randomly chosen seed s. We consider three commu-
nication scenarios in which the advantage (the security measure) at the eavesdropper is
measured in different ways. To assess the security performance, we derive the operational
meaning of the advantages in terms of the error probability.

In Chapter 8, we experimentally verify the information-theoretic security of a seeded
modular code for the AWGN wiretap channel consisting of a security layer, an error-
correction layer and a modulation layer. In the security layer, a universal hash function
(UHF) is used, which depends on a randomly chosen seed s. In the error-correction
layer and the modulation layer we use polar codes and quadrature amplitude modulation

QAM, respectively. The eavesdropper uses the maximum likelihood (ML) test as an attack
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strategy. We analyze the security in different communication scenarios using simulations.
Since the ML test as proposed in Chapter 7 goes with a high level of complexity, we
compare the performance of different attack strategies.

In Chapter 9, we use a seeded modular code as proposed in Chapter 7 for implementing
physical layer security in a wiretap scenario. We evaluate the performance of the seeded
modular code in an experimental setup with software defined radios and compare these
results to simulation results. In order to assess the security level of the scheme, we employ
the distinguishing security metric. In our experiments, we compare the distinguishing

error rate for different seeds and block lengths.
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Preliminaries






2. Basics of Information Theory and
Coding Theory

In this chapter, the first section contains a review of the basic notions of information
theory. In the second section we introduce basic notions of coding needed for the rest of
the thesis.

2.1. Elements of Information Theory

We need some definitions from information theory that will be used in the subsequent
chapters. Most of them can be found in the textbook [16]. In this section we use logarithms
to the base 2 and set 0log0 to 0.

Definition 2.1 (Shannon Entropy). Let X be a discrete random variable taking val-
ues in a finite alphabet X and probability distribution Px(-). The Shannon entropy or

uncertainty of X is defined as

H(X) = Z —Px(z)log Px(x).

zeX

The units of the entropy in this case are bits.

The entropy is a measure of the average uncertainty in the random variable.

Definition 2.2 (Binary Entropy Function h(p)). Consider the entropy H(X) of a
Bernoulli random variable X where X = 1 with probability p and X = 0 with probability
1 — p. The entropy of X is

h(p) = H(X) = —plogp — (1 — p)log(1 — p).

Definition 2.3 (Joint Entropy). The joint entropy of X and Y is defined by consid-

ering the concatenation XY as a new discrete random variable, i.e., we have

H(X,Y) =YY =Pxy(z,y)log Pxy(z,y).

zeX yey
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Definition 2.4 (Conditional Entropy). Given a joint distribution Pxy(-) and two
random variables X and Y take on values in the finite alphabets X and ), respectively,
the conditional entropy of Y given the event X = x with probability Pr(X = z) > 0 is
defined as

H(Y|X =) = Y —Pyix(ylz) log Prix(y|z),
yey

where

H(Y|X) =) Px(x)H(Y|X = z) = H(X,Y) — H(X).

zeX

Definition 2.5 (Mutual Information). The mutual information between two discrete

random variables X and Y is defined as

PXY(xvy)

PPy H(X) - H(X|Y).

I[(X;Y)= > Pyy(z,y)log
(z,y)eXxy

The mutual information I(X;Y) is a symmetric function, that is
I(X;Y) = I(Y; X),

which shows the dependence between the two random variables or, in other words, the
amount of information obtained about X by observing Y.
The mutual information /(X;Y) = 0 iff the random variables X and Y are statistically

independent.
Chain rule for entropy: The chain rule for entropy is equivalent to
H(Xl, XQ, .o 7Xn) = H(Xl) + H<X2|X1) + -+ H(Xn|X1,X2, RPN ;Xn71>-

Definition 2.6 (Markov Chain). A discrete stochastic process X1, Xa, ... is said to be

a Markov chain or a Markov process if forn =1,2,...,
Pr(Xps1 = Tpg1| Xp = Tny X1 = T, -, X = 1) = Pr(Xpgn = 2| Xy = 23)

for all x1,x9,...,Ty, Tny1 € X.

Data processing inequality: If X — Y — Z forms a Markov chain, then we have

I(X;Y)=21(X;Z)and I(Y; 2) 2 1(X; 2).

10



2.1. Elements of Information Theory
Equality iff I(X;Y|Z) = 0.

Fano’s inequality: Suppose both X and X take on values in the alphabet X', and let
P, = Pr(X # X). We have

H(X|X) < h(P,) + P.log(|X| - 1).

Definition 2.7 (Discrete Channel). Let X and ) be discrete alphabets, and P(y|x)
(or W(y|z)) be a transition probability matrix from X to ). A discrete channel P(y|z)
is a single-input single-output system with input random variable X taking values in X

and output random variable Y taking values in )} such that
Pr(X ==x,Y =y) = Pr(X = x)P(y|z)

for all (z,y) € X x ).

Definition 2.8 (Continuous Channel). A continuous channel p(y|z) is a system with
input random variable X and output random variable Y taking values in R such that Y

is related to X through p(y|z).

Definition 2.9 (Discrete Memoryless Channel (DMC)).
A sequence of channels {W,, : X™ — Y"}”_ is called a discrete memoryless channel (DMC)
with transition probability matrix W if

y |x HW yz|l’z
=1

Definition 2.10 (Channel Code for a DMC). An (n,|M)|) code for a DMC consists

of an encoding function

fM—-X"
and a decoding function

g: YY" — M.

The sequence f(i) € X™ withi e {1,2,...,|M]|} is called a codeword. The set of codewords
is called the codebook.

Definition 2.11 (Rate of a Channel Code). The rate of an (n,|M|) code for the
(X, P(y|z),)) channel is

log | M|

n

R =

11



2. Basics of Information Theory and Coding Theory

and is measured in terms of bits/transmission (i.e. channel use).
Definition 2.12 (Capacity). The capacity of a DMC with input X and output Y is
defined by

C=maxI(Y; X).
Px

The capacity of a DMC is the supremum of all achievable rates.

Definition 2.13 (Conditional Probability of Error). Let

Ai = Pr(g(Y™) # il (i) ZW I F@)I(g(y") # )

be the conditional probability of error given that index i was sent, where I(-) is the

indicator function.

Definition 2.14. The maximal probability of error of an (n,|M]|) code is

P, = max \;.
3

Definition 2.15. The average probability of error P for an (n, |M]) code is defined as

M|

r |M\ZA

Definition 2.16 (Achievability of a Rate). A rate R is said to be achievable if there
exists a sequence of (n, Q"R) codes such that the maximal probability of error \,,q. tends

to 0 as n — o0.

2.2. Elements of Error Correcting Codes

For our purposes we need to introduce only linear block codes. All definitions and state-
ments presented below can be found in a standard textbook on coding theory, e.g., [17]
or [16]. Throughout the thesis we use the following notation. I, denotes a finite field
with ¢ elements. Fy is an n-dimensional vector space over F, and IFZ;X”€ is the set of n x k

matrices over [F,.

Definition 2.17. A linear code with length n over I, is a subspace of Fy.

Definition 2.18. The weight of a codeword ¢, denoted by wt(c), is defined as the number

of non-zero entries of c.

Definition 2.19. The Hamming distance dy(u™,v"™) between two vectors u™,v" € F" is

the number of coordinates in which they differ.

12



2.2. Elements of Error Correcting Codes

Definition 2.20. Let C' be a code with at least two codewords. The minimum distance

d(C) of C is the smallest distance between distinct codewords, that is
d(C) = min {dg(u",v")|u",v" € C;u"™ # v"}.
If C' is a linear code, then d(C') = mingec cz0 wt(c).

Definition 2.21. If C is a linear code over F, with length n, dimension k, and minimum
distance d(C') = d, then we say that C' is an [n, k,d], code, or [n, k], code if d(C) is not

specified. The numbers n, k, and d are called the parameters of the linear code.
Definition 2.22. The dual code of an [n, k], code C denoted by C* is a null space of C.

Definition 2.23 (Generator matrix). A generator martix for a linear code C' is a ma-

trix G whose rows form a basis for C.

Definition 2.24 (Parity-check matrix). A parity check matrix H for C'is a generator

matrix for the dual code C*.

Let C be an [n, k|, code. Then C can be given by its generator matrix G¢, or the

parity check matrix Hq as follows
C = {U”EFZ:uszv"; u® EF';}
C={v"elF;:Hw")" =0}.

Theorem 2.1. Let H be a parity check matrix for a linear code C' of length n. Then C'
has distance d if and only if every subset of d — 1 columns of H are linearly independent,

and at least one set of d columns of H are linearly dependent.

Theorem 2.2 (Singleton bound). Let C be an [n, k,d|, code. Then |C| < ¢"~%**, or
equivalently d <n —k — 1.

Definition 2.25 (MDS code). An [n,k,d], code achieving the singleton bound is called

a maximum distance separable (MDS) code.

Theorem 2.3 (Properties of MDS codes). Let C be a linear [n, k,d], code. Let G
and H be respectively the generator and parity check matrices for C. The following claims

are equivalent:
e ( is an MDS code.
e Every subset of n — k columns in H is linearly independent.
e Every subset of k columns in G is linearly independent.

e C is an MDS code.

13



2. Basics of Information Theory and Coding Theory

An important class of MDS codes is the Reed-Solomon (RS) code. RS codes are [q —
1,k,q — k], MDS codes. A generator matrix of an RS code can be given with the help of

Vandermonde matrices. A Vandermonde matrix of order ¢ — 1 over F, is defined as

1 1 1
aq a9 Qg—1
2 2 2
V=1 a o g1 |
q—2 q—2 q—2
ai "t oay ... ag g
where ay,...,a,-1 are the nonzero elements of F,. Every first k (k < ¢ — 1) rows of

V results in a generator matrix of the [¢ — 1, k, ¢ — k], RS code. Thus RS codes have a
so called nested structure, that is every [¢ — 1,k,q — k], RS code, where 2 < k < ¢ —1,
contains the [¢ — 1,k —1,¢ — k + 1], RS code as a subcode.

14



3. The Wiretap Channel

In the first section, we consider the wiretap channel model and summarize the notions of
information-theoretic security on this channel. In addition, we explain the secrecy coding
method for the wiretap channel. In Section 3.2, we introduce the binary erasure wiretap
channel II (BEWC-II) model and describe an information-theoretic analysis of the coset

coding scheme for this model.

3.1. Wiretap Channel and Information-theoretic Security

Wyner [2] introduced the notion of a wiretap channel in 1975. It is the most basic channel
model that takes security into account. In Wyner’s model of secure communication and its
generalization to a broadcast scenario [3], a transmitter (Alice) wants to convey a secret
message to a legitimate receiver (Bob) through a discrete memoryless channel (DMC). The
message must be kept secret from an eavesdropper (Eve) who has a degraded version of
the legitimate receiver’s observation. Wyner’s original work showed that communication
with (asymptotic) perfect security and reliability is possible if the eavesdropper’s channel
is noisier than the main channel. Importantly, security is information-theoretic and does

not require a pre-shared secret key.

3.1.1. The Wiretap Channel Model

Consider the communication system, in Fig. 3.1. This system consists of three parties,
e Alice - the transmitter
e Bob - the legitimate receiver
e Eve - the eavesdropper.

The eavesdropper cannot influence Alice or the channel in any way.

Information-theoretic security usually considers the case where the wiretap channel is
memoryless, and has a discrete input alphabet and a discrete output alphabet. The input
alphabet is X', and the output alphabets are ) and Z for Bob and Eve, respectively. The
alphabets X', Y and Z are finite. For a memoryless channel, successive transmissions are
independent of each other and the channel is defined by its joint transition probability

Pyzx(y,z|z). In a wiretap channel, Alice communicates a message S* to Bob through

15



3. The Wiretap Channel

Sk

ALICE —» ENCODER

~

k

X" yn

DECODER

— BOB

ZTL
e

DECODER

—» EVE

Figure 3.1.: The wiretap channel model.

the main channel, which is chosen uniformly at random from the message set S*. Alice

performs this task by encoding S* as a vector X™ of length n and transmitting X”. Bob

and Eve receive noisy versions of S*, which we denote by Y™ and Z", via their respective

channels. The encoding of a message S* by Alice should be such that Bob is able to

decode S* reliably and Z™ provides as little information as possible to Eve about S*.

3.1.2. Historical Background

Wyner considered a physically degraded wiretap channel where the eavesdropper (Eve)

observes a degraded version of the signal obtained by the legitimate receiver.

X" - Y™ - Z" forms a Markov chain.

Degraded Wiretap Channel

Skz

ALICE —»

ENCODER —»

Thus,

~

k

DECODER

— BOB

DECODER

— EVE

Figure 3.2.: The general wiretap channel model.

A degraded wiretap channel W, is one in which for every n € N, and for every (", y", 2") €

X" x Yr x 2"

Wa(y", 2" ") = Wi (y"|z")Waa (2" [y"),

where Wy, ; : X" — Y™ and W, 5 : Y" — Z".
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3.1. Wiretap Channel and Information-theoretic Security

A discrete memoryless wiretap channel is stationary and memoryless in the sense that

Wii(y"|z") = le(yz|17z)7 and W, »(2"[y") = HWQ(Zz|yz)
i=1

i=1

for every (z™,y", 2") € X" x Y™ x Z".

Non-degraded Wiretap Channel

Csiszar and Korner [3] generalized Wyner’s model, where Eve’s observation Z™ need
not be a degraded version of Bob’s observation Y. The channel is denoted by X" —
(Y™, Z™) and is depicted in Fig. 3.3. This channel and the channels {W, : X" — Y"}
and {W, 2 : X" — Z"} from Alice to Bob and Alice to Eve, respectively, are discrete and

memoryless.

Sk Xn yn Gk
ALICE —» ENCODER ——» Wn(y", z"|:v") ——» DECODER +H—» BOB

zn
—  » DECODER —» EVE

Figure 3.3.: The generalized wiretap channel model.

3.1.3. Secrecy Capacity of the Wiretap Channel

In the information-theoretic approach, the secrecy performance of a code C' of length n
is measured in terms of the mutual information between the secret and Eve’s observation

L1(S*%; Z™) or by the equivocation rate at Eve

1
R™ = ZH(S*Z").
n

The equivocation rate is a measure of how much uncertainty Eve has about the message
Sk after observing Z". Because the encoder is assumed to be one-to-many mapping, the
equivocation H(S¥|Z™) is a positive number. A code of rate R™ with block length n
for the wiretap channel is given by a message set S* of cardinality |S*| = 2" and a
collection of disjoint subcodes {C = X"} i or. To encode a message S*, Alice chooses
one of the codewords in Cy uniformly at random and transmits it. Bob uses a decoder

g: Y™ — S* to determine which message was sent. We assume that the message S* is

17



3. The Wiretap Channel

uniformly distributed over S*. The average probability of error for the secrecy code is
defined as P\ = Pr(S% + ).

Remark 3.1. The (n, 2”R(")) code C' is assumed to be known by Alice, Bob and Eve,
although the source is only available to Alice and thus, the realizations of the discrete

memoryless source (DMS) used for encoding.

Definition 3.1. A rate-equivocation pair (R, R.) is said to be achievable for the wiretap
channel, if for every e > 0 there exists a sequence of codes of rate R™ with the average
probability of error P™ < ¢ as the code length n goes to infinity, and with the equivocation

rate R™ satisfying

lim R™ > R —¢,

n—0o0

lim R™ > R, —e.

n—0o0

() .

Figure 3.4.: A typical (R, R,) region.
We want R, to be as high as possible, and ideally it should equal the rate R.

Definition 3.2 (Perfect security). An encoder for the wiretap model achieves perfect
security in Shannon’s sense if the probability of error in Bob’s estimate S* is zero and the

mutual information between Eve’s observation Z" and the secret S* is zero; that is,

P = 0, (Reliability)
I(S* 2™ = o. (Security)

Hence, S* and Z" have to be independent random variables and we can obtain this
requirement if all messages are equally likely, that is S* ~ unif(S*), so that Eve can not
indicate the message.

Thus, perfect security can be obtained if

H(S*%)

n

= R.

1
R, = lim —H(S*|Z") = lim
n—0o0

n—o N,

18



3.1. Wiretap Channel and Information-theoretic Security

Definition 3.3 (Secrecy capacity). The maximum rate at which both objectives are

attainable is called the secrecy capacity C of the wiretap channel.

Theorem 3.2 (Csiszar and Korner[3]). The maximum perfect secrecy rate, i.e., the

secrecy capacity C for a discret memoryless wiretap channel can be calculated as follows:

C, = Uf}lii(m)[]w;y) - 1(U; 2)].

The notation U — X — (Y Z) forms a Markov chain in this order with the random

variables U, X,Y and Z. The auxiliary random variable U is used for calculation purposes
with [U| < |X].

For a degraded wiretap channel, i.e., P(y, z|x) = P(y|x)P(z|y), follows
HUY)-I(U; Z) = 1(U;Y|Z2) < I(X;Y|Z) = I(X;Y) - I(X; 2).

Hence, the secrecy capacity simplifies to

Cs = I1(X;Y)—-1(X;7)],

e [1(X:Y) ~ (X 2)]
and also holds for a general wiretap channel if Y is more capable than Z.

The secrecy capacity Cy is always positive unless, channel X — Y is less noisy than
channel X — Z.

Theorem 3.3 ([3]). If channel X — Y is less noisy than channel X — Z, the rate-
equivocation region of the wiretap channel X — (Y Z) contains all rate-equivocation
pairs (R, R.) that satisfy

0 < R.<IX;Y)-1(X;2),
Re < R < ](X, Y)
In Wyner’s work the secrecy capacity was determined under weak security conditions.
Later, Csiszar [18], and independently Maurer and Wolf [19], defined the notion of strong
security, and argued that this is a much better security condition compared to weak

security.

Definition 3.4 (Weak security).

lim lI(S’f; 7" =0, (S* ~ unif(S*)).

n—ao N

The rate of information leaked about S* through observing Z™ goes to zero as n goes to

infinity.
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3. The Wiretap Channel
Definition 3.5 (Strong security).

lim I(S*; Z™) =0, (S* ~ unif(S*)).
n—00
The total amount of information leaked about S* through observing Z™ goes to zero as n

goes to infinity.

The more stringent information-theoretic security metric was formalized by Bellare et

al. [20] by adapting the notion of semantic security used in computational cryptography

[21].

Definition 3.6 (Semantic security).

lim max I(S*; Z™) = 0.

n—o0 sk

Definition 3.7 (Perfect security).
I(S* Zz™) = 0.

The total amount of information leaked about S* through observing Z" is zero.

3.1.4. Coding for the Wiretap Channel according to Wyner

Wyner [2] introduced the stochastic encoding scheme to achieve the secrecy capacity
Cs of the wiretap channel. The stochastic encoding scheme serves to confuse the eaves-
dropper by allocating a message to many codewords at random. In the secrecy coding
scenario, deterministic encoders, in general, have a poorer secrecy performance compared
to stochastic encoders. Due to this, almost all secrecy coding makes use of stochastic
encoders.

Suppose, Alice wants to transmit one out of |S \k equally likely messages, i.e., a mes-
sage denoted S* is such that S* e {s’f,sg, . "stﬁ} and Pr(S* = s) = 1/|S|", where
1 <i<|S|". Consider a codebook C” of length n which is randomly partitioned into |S|*
subcodes C;, i.e. C' = |J, C;. Each message s* is associated with one subcode C. For
the case where |S| = 2, Fig. 3.5 shows the encoding process for a wiretap channel.

A message s* is encoded into 2™ which is chosen uniformly at random from the subcode
Cyr. The receiver on the main channel (Bob) decodes a word y" of length n with respect
to the overall code ¢’ into s*
(ML) decoding.

. One such decoding method is the maximum likelihood

Alice’s objective is to design a secure and reliable encoder. To guarantee reliability, the
legitimate receiver should be able to decode the message with error probability which

approaches zero for n — 0.
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3.2. The Binary Erasure Wiretap Channel 11

subcode with random selected
codewords for message 1

messages T
1 o (‘ \
2 : random selection
of codeword for
transmission of message 1
2k

Figure 3.5.: Encoding process for a wiretap channel.

lim P™ = 0.

n—00

To guarantee security, Eve should not gather any information from her observation.

1
lim —I1(S*; Z") = 0. (weak security)
n—oo N,
If an encoder with R, = log|S|" /n satisfies the security and reliability constraints for
a given wiretap channel, then such an encoder is said to achieve a secrecy rate R;.

A detailed information-theoretic overview of general wiretap channels can be found in

[22].

3.2. The Binary Erasure Wiretap Channel Il

Before constructing efficient coding schemes for our channel models in Part II where the
main and wiretapper’s channel are both erasure channels, we first study the binary erasure
wiretap channel II (BEWC-II) model, because it is a fundamental model and its analysis
is extendable to a lot of different wiretap models. The wiretapper’s channel is a binary
erasure channel (BEC) and the main channel is noiseless, as shown in Fig. 3.6.

The BEWC-IT model is a special case of the wiretap channel model. Thangaraj, et
al. [0] were the first who constructed explicit codes for the BEWC-II model. The two
legitimate nodes, Alice and Bob, want to communicate in the presence of an eavesdropper,
Eve.

We denote the channel between Alice and Eve by BEC(1 — ¢), i.e. the probability of
erasure in the wiretapper’s channel is 1 — e. The BEC is a memoryless channel, which
means that bits sent successively are erased independently. Alice’s objective is again to

convey a secret message S* to Bob without revealing it to Eve. Therefore, Alice encodes
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3. The Wiretap Channel

Sk Xn Yn Sk
ALICE —»{ ENCODER » DECODER |—» BOB
0 <—— 0/ 4
> 1> 7 —» DECODER (—» EVE
1 1
€

Figure 3.6.: The binary erasure wiretap channel II (BEWC-II) model.

Sk to a random variable X" and then sends X" over the BEWC-II. The secrecy capacity
Cs of the BEWC-II is [23]

Cs = Capacity(X — Y) — Capacity(X — Z) =1 —e.

3.2.1. Coset Coding for the Binary Erasure Wiretap Channel Il

A coset coding scheme, which was introduced by Wyner [2] and further studied by both
Ozarow and Wyner [1], is based on a linear code and its cosets. Given the blocklength
n and the rate R of the coset coding scheme, a binary linear block code C' of length n is

used as a starting point.

Ci=C+ay

Co=CH+Hay
cr -

Czk:C+a2k

Figure 3.7.: The partitioning of the code C” of all possible output vectors according to the
input message S*, where a; € C* and C* is an [n, k| code generated by G*
and the input message. Each coset C;, where i = 1, ..., 2", represents output
codewords corresponding to a certain message.

The stochastic encoding scheme called the coset coding scheme is illustrated in Fig. 3.7.
To transmit k-bit messages, consider an [n,n — k| linear code C' as the base code. Let G
be the generator matrix of C' with rows g,...,g,_, and let G* be the generator matrix
for the code C* with rows g¥,...,gF. The rows of G and G* form a basis for {0,1}" so
that C ® C* = {0,1}". The coset corresponding to a k-bit message s* = (s, 82, , S)
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3.2. The Binary Erasure Wiretap Channel 11

is determined as follows:

sk—>slg’1"+32g§+-~+skgz+(].

A secret k-bit message s* is mapped to a codeword 2" using the transformation

o" = 5187 + 528y + - + S + 181 + a2 + - + ek 8nk,

where e" % = (e, ey, ,e,_x) is a uniformly random (n — k)-bit vector. The corre-

spondence is deterministic but the encoding procedure has a random component in the
selection of the transmitted codeword. A k-bit message s* is encoded into an n-bit code-
word randomly selected from the coset of C' corresponding to s*. The encoding operation

can be described as a matrix multiplication:

where 2™ belongs to the code C” generated by G’. The goal of both the legitimate receiver
and the eavesdropper is to determine s* from their respective received vectors.

Restating the desired twofold objectives, the design of the codes C' and C” should be such
that (1) s* can be determined without error across the main channel, and (2) every s*

is equally likely across the wiretapper’s channel. Since the channel between Alice and

Bob is error-free, i.e., Pr(é"‘ # S*) = 0, Bob is able to find the syndrome s* of C by
st = H (x”)T, where C' is an [n,n — k| code and H is a carefully constructed k x n

parity-check matrix. How to provide security will be discussed in the next subsection.

3.2.2. Security Criterion for the Binary Erasure Wiretap Channel Il

Consider an eavesdropper’s observation Z" with g unerased bits in positions
(1,...,%,). The number and the position of these erasures may be random. To de-
velop a security criterion for the choice of C', we calculate the eavesdropper’s uncertainty
H(S*|Z™) by first evaluating H(S*|Z™ = 2™). We assume that the eavesdropper has infi-
nite computational power and complete knowledge of the code C'. But the knowledge of
the allocation of the codeword to the message is secret. As mentioned before, the code
C is an [n,n — k] code and the code C” is chosen to be the entire vector space {0,1}".
If a coset of code C' contains at least one vector that agrees with 2" € {0,1,7}" in the
unerased positions, we say that the coset is consistent with z”. Each coset corresponds

to a possible message for the eavesdropper.
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3. The Wiretap Channel

Lemma 3.4 ([5]). All cosets of C' that are consistent with 2™ contain the same number

of sequences consistent with z™.

Proof. Let v™ be a vector consistent with 2™ in the coset v™ + C. Let S be the set of all
vectors in v™ + C consistent with 2. Then, v™ + .5 is the set of all vectors in C' with zeros

in the positions revealed in z". That is,
v" 4+ S = {u" € C:u; =0 whenever z' #7}.

Note that |S| = |[v™ + S|, and this holds for any v™ which is consistent with 2". =

Proposition 3.5 ([5]). The total number of cosets of C' consistent with z" is denoted

by N(C,z"). Since each message is equally likely a priori, we get
H(S*|Z™ = 2™) = log N(C, 2™).
Proof.

H(Sk|Zzm = 2") = H(S*X™|z") — H(X"|S*2")
= H(X"|z")— H(X"|S*2").

The first term H(X"|z™) is the uncertainty in the codeword that was sent given the
observation z". Suppose NN is the number of sequences that are consistent with z”, then
H(X"z"™) = log N = log2™*, since all codewords are used with equal probability. For

the second term, holds

H(X™|S%2") = ZH(X"|Sk = 5", 2") Pz (s"]2").

sk

Here, H(X"|S*2") is the uncertainty in the codeword that was sent given the observation
2" and the coset corresponding to s* that was used. Since all codewords are used with
equal probability, and by Lemma 3.4 all cosets consistent with 2™ contain the same number
of sequences consistent with 2", the term is reduced to H(X"|S* = s*, 2") = log N, where

N, is the number of sequences consistent with 2™ in a coset consistent with z". Hence,

H(S*|z") =log N — logN, = logNﬂc =log N(C, 2"). n

The total number of cosets we have is 2¥, which implies that the total number of cosets
of C consistent with 2", N(C,2") < 2F. If N(C,2") = 2F, we say that 2" is secured by C
since the eavesdropper’s Pr(S*¥ = s*|Z" = 2") = 1/2* for every possible message s*. In

other words, if all cosets of C' are consistent with 2™ and all cosets have the same number
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3.2. The Binary Erasure Wiretap Channel 11

of vectors that match with 2", we obtain:

I(S* Z™) = H(S*) — H(S*|Z™)
= log 2" — ZPzn(z”)H(Sk\Z" =2z")

= k—H(S*Z2" = 2")
=k —log N(C,z")
—k—k=0.

The following theorem states a condition for a vector 2" to be secured by a code C.

Theorem 3.6 ([4], Lemma 4.1). Let G be the generator matrix of an [n,n — k| code
C, and let g; denote the i — th column of G, where i € {1,...,n}. The eavesdropper can
observe 1 of n bits of the transmitted codeword and the unerased positions are given by
{i1,42,- -+ ,i,}. Then 2™ is secured by C' if and only if the matrix G, = (8,8, ,&i,)
has rank p.

Sketch of Proof. Suppose p are the unerased positions of any n bit vector z”. If G, has
rank g then the code C' has codewords with all 2# possible sequences in the p unerased
positions. Since cosets are obtained by translating C, all cosets also have codewords
with all possible binary sequences in the u unerased positions. Therefore, N(C, z") = 2*
and I(S*;Z™) = 0. If G, has rank less than p, the code C' does not have all u-tuples
in the p unerased positions. So there exists at least one coset that does not contain a
given p-tuple in the p unerased positions, and N(C, z) < 2*. We obtain a necessary and
sufficient condition for communication in perfect security with respect to an eavesdropper

who observes any set of p unerased bits. [

Corollary 3.7. Let C be an [n,n — k| binary linear code with generator matrix G. Coset
coding with C' guarantees perfect security against an eavesdropper who observes any set

of u unerased bits, if and only if all submatrices of G with i columns have rank .

In the next chapter we will discuss a wiretap channel model in which the eavesdropper
is known to access no more than g of n transmitted bits. This model differs from the
BEWC-II of Fig. 3.6 in that the eavesdropper can, in principle, choose which p bits are

observed.
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4. Block Codes for a Burst-Erasure

Wiretap Channel

4.1. Introduction

In this chapter we present the wiretap channel II model with an active eavesdropper.
Ozarow and Wyner [1] introduced the wiretap channel II model, in which the transmitter
communicates over a noiseless main channel, while the eavesdropper can observe p bits
of the n-bit binary codeword transmitted to the legitimate receiver. They showed that
information-theoretic security can be achieved over this channel, introducing a stochastic
encoding scheme, called coset coding. Since then, researchers have studied various types
of wiretap channels and have provided fundamental results on secrecy capacity (see [24],
[22]). Most of the studies in this direction consider a passive eavesdropper model in which

the eavesdropper only overhears the transmission.

Contribution

In this chapter we present the wiretap channel II model with an active eavesdropper,
where the eavesdropper is not only able to overhear, but can also modify the transmission
sent to the legitimate receiver. In general, Bob observes a sequence Y, which is a function
of a codeword X" and of the eavesdropper’s transformation 7.

In the following, the eavesdropper is able to observe any interval of 1 symbol positions
and erase the symbols in any interval of B positions of a transmitted codeword. We
present explicit constructions of binary and non binary nested linear codes that achieve
the maximum secrecy rate for the finite length coding regime, with perfect security and
zero-error decoding for any admissible code parameters. It is worth to mention that our
construction works for both the burst-erasure wiretap channel model with an eavesdropper
and for the wiretap channel II model with an active eavesdropper that can cause a burst

of erasures.

Related Work

The wiretap channel with an active eavesdropper was first considered by Lai et al. [11],
where the goal of the receiver is to detect whether the transmitted packet has been mod-

ified or not. Aggarwal et al. [12] were the first who studied the model where the receiver
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not only needs to detect the changes made by the eavesdropper, but also to correct the
errors introduced by the eavesdropper. Boche and Schaefer [25] introduced and studied
arbitrarily varying wiretap channels with active eavesdroppers. Recently, a model of the
wiretap channel called the adversarial wiretap channel has been studied by Wang and
Safavi-Naini [20]. Rouayheb et al. [27] showed that the secure network coding problem
can be viewed as a network generalization of the wiretap channel II. A Wiretap network of
type II has been further studied by other authors (see a survey in [28] and its references).
Aggarwal et al. [12] considered two models for the wiretap channel I over a binary al-
phabet, where the eavesdropper can observe up to u bits noiselessly from n transmitted
bits and erase/replace the bits he observes. For the first model, they designed a coding
scheme that achieves a secrecy rate of (1 — e — h(e))*, where € = u/n is the portion of
the bits observed and erased by the eavesdropper and h(e) is the binary entropy. For the
second modification they showed that a secrecy rate Ry = (1 — e — h(2¢))* is achievable.
Deriving better achievable secrecy rates, as well as developing practical channel codes for
these models, is an open and seemingly difficult problem. In fact, the problem of designing
codes with the best perfect secrecy rates for both modification models is related to the

classical open problem of the best trade-off between rate and distance (see e.g. [29]).

Some Notes

Although the results in [12] show the existence of channel codes that achieve a positive
secrecy rate, developing practical channel codes for the models considered in [12] re-
mains an open problem. First, their approach for error correction in the main channel is
based on a random (Varshamov’s construction) coding argument. Second, to achieve the
equivocation rate of the eavesdropper, the latter code is partitioned into subcodes, where
the existence of a ”good partition” is shown again by a probabilistic argument (used in
Ozarow-Wyner [1]). We also note that deriving better bounds for the secrecy capacity of
the binary erasure wiretap channel with an active eavesdropper is an open problem. The
reason is that in the considered model, the channel is no i.i.d. and we need to consider a

worst case scenario.

It is worth mentioning that the problem discussed above becomes much easier in the
case where we allow the alphabet size ¢ to grow with the code length n < ¢ + 1. In this
case one can use MDS codes to achieve the maximum secrecy rate with perfect security
and zero error. However, the same can not be achieved for a fixed alphabet size and

growing n. This will be discussed in Section 4.4 in more detail.

All this motivates us to introduce and study another model of the wiretap channel II

with an active eavesdropper, where the abilities of the eavesdropper are more restricted.
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QOutline

In Section 4.2, we introduce the notions burst of erasures and burst-erasure correcting
codes, needed for the study of our model, where the eavesdropper is able to cause only
bursts of erasures in the main channel. We also characterize the limitations for linear
burst-erasure correcting codes over finite fields. In Section 4.3, we introduce a model of
wiretap channel II with an active eavesdropper and discuss our main objectives. Further-
more, we specify the properties of the secure nested code pairs (C’, C'), which are necessary
to fulfill the desirable objectives and determine an upper bound of the maximum equivo-
cation. In Section 4.4, we state our main results. Section 4.6 gives constructions of binary
and non binary linear nested codes achieving maximum secrecy rate for all admissible
parameters n, B, u. In Section 4.7 and 4.8, we present encoding and decoding procedures

for secure nested codes. Section 4.9 concludes with a discussion and open problems.

4.2. Burst-Erasure Correcting Codes

Burst-error correction is an important part of error control coding, as in many commu-
nication and storage systems errors tend to occur in clusters rather than independently
of each other. Two main types of bursts are typical in most communication systems:
bursts of erasures and bursts of errors (see [30]). Erasure bursts often occur in record-
ing, jammed, and some fading channels. For instance, in applications such as recording,
an important requirement is that the code used should be capable of correcting bursts
of erasures (in addition to random errors) caused by media defects such as scratches.
The correction of burst erasures also has application in wireless communication systems
limited by interference.

In the following, we will concentrate only on burst-erasure correcting codes. The notion

of a burst of erasure is defined in a natural way.

Definition 4.1. If the interval in a received sequence, formed by the first and the last
erased positions, is of length B, we say that a burst of erasure of length B or B-burst
erasure for short has been occurred. The pattern corresponding to this interval is called
a burst erasure pattern. If all cyclic shifts of bursts of length B are also considered as
burst patterns, we speak about wrap-around bursts of length B. In other words, all cyclic

shifts of bursts of length B are also considered as B-bursts.

A code capable of correcting all bursts of length B or less, is called a B-burst-erasure
correcting code. Correspondingly, we speak about a code capable of correcting B-burst
erasures including wrap-around bursts. The burst-erasure correction capabilities of linear
codes follow from a more general statement, for erasure correcting codes. The following

proposition follows from the proofs provided in [30)].
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Proposition 4.1. Let C be a linear [n, k|, code and let E;, be an erasure pattern with
coordinate positions L < I = {1,...,n}. Then C can correct E; (with zero error)
iff the columns of a parity check matrix Hs corresponding to indices in L are linearly
independent, or equivalently, iff the columns of a generator matrix G¢ corresponding to

indices in I\L have rank k.

Proof. Let y™ be the received sequence when the codeword x™ has been sent. Denote by
7, the subsequence of ™ with indices in L. Thus, in our case we have 27, ; =y, (the
unerased subsequence of z™). Clearly z7 can be uniquely recovered from Thr iff there
exists a unique codeword x™ with Thr = Yho satisfying Ho(z™)? = 0. It is easy to see
that the latter is possible iff the columns of Hs with indices in L are linearly independent.

Also note that y™ can be uniquely decoded to z", iff all patterns a’c?\L with 2" € C' are

distinct, that is | {f}\ it eC } | = ¢*. This clearly means that the columns of G¢ with

indices in I\ L have rank k. ]

Corollary 4.2. A linear [n, k], code C' is capable of correcting up to |L| = B erasures iff
any B columns of an Hq are linearly independent, or equivalently, iff any n — B columns

of a G¢ have rank k.

Remark 4.3. Note that the corollary implies that B < n — k, and in the case where
B =n — k, we have an MDS code.

Corollary 4.4. A linear [n, k], code C' is B-burst-erasure correcting iff every B consec-
utive columns of H¢ are linearly independent. Correspondingly, C' can correct B-burst-
erasures, including wrap-around bursts, iff every B cyclically consecutive columns of Hg

are linearly independent.

Corollary 4.5. If the [n, k], code C' is capable of correcting B-burst erasures, then we

have B < n — k and hence |C| < ¢"75.

Definition 4.2. An [n, k], code C capable of correcting B-burst erasures is called an
optimal burst-erasure correcting code if B = n — k. If C' can correct all burst erasures
of length n — k, including cyclic (wrap-around) bursts, then C' is called cyclically-optimal

burst-erasure correcting, or c-optimal for short.

Remark 4.6. Later we will see that for our purposes we need to design coding schemes

with optimal (respectively c- optimal) burst-erasure correcting codes.

Note that Proposition 4.1 implies that the following holds.

Proposition 4.7. If an [n, k], code C is a c-optimal burst-erasure correcting code, then

the dual code C* is a c-optimal burst-erasure correcting [n,n — k], code.

32



4.3. The Channel Model

Proof. C'is capable of correcting any (n— k)-burst erasures including wrap-around bursts.
This with Proposition 4.1 implies that any & cyclically consecutive columns of a G must
be linearly independent. Since G is a parity check matrix for the dual code C*, the

statement follows. n

Remark 4.8. We note that the statement does not extend to optimal codes, namely the
optimality of C' does not imply the optimality of C*. The reason is that the linear inde-
pendence of all n — k consecutive columns in Heo does not imply that every k consecutive

columns of G¢ are also linearly independent.

4.3. The Channel Model

In our model the abilities of the eavesdropper are restricted, compared to the model of
Aggarwal et al. [12], as follows. The eavesdropper can observe an interval of p symbols
from n transmitted symbols. In addition, it can erase the symbols in any interval of length
B of the transmitted codeword over the main channel. The channel under consideration

is depicted in Fig. 4.1.
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Figure 4.1.: A wiretap channel IT model with an active eavesdropper.

Alice has a uniformly distributed k-symbol random message S* € F’; that must be
conveyed to Bob by transmitting an n-symbol vector X™ € ' over the main channel. Eve
has noiseless access to the Alice - Bob communication channel with the ability to observe
any interval of p symbols and to erase the symbols in any interval of B positions of her
choice. In other words, Eve can cause any burst of erasures of length B in the channel.
Thus, the output is Y™ € (F, u {?})". Alice does not know anything about the erasures
on the main channel or the symbols being tapped by Eve. The only thing she knows is
that at most B-burst erasure can occur in the channel. Her task is to choose an encoding
scheme which ensures that Bob can decode the message with zero error, while Eve must
have complete equivocation over the message in spite of knowing the encoding procedure
and the p symbols observed by her own choice. We note that in our model Eve is able
to erase an arbitrary interval of positions up to length B, unlike the model considered in
Aggarwal et al. [12], where Eve can erase only the symbols she observes.

Our objective is to design a coding scheme which fulfills the tasks of Alice stated above.

These are:
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H(S*|y™) =0, (perfect reliability) (4.1)

H(S*|Z™) = H(S%), (perfect security) (4.2)

where the entropy is computed using base-q logarithms. At the same time, we wish
to achieve the maximum secrecy rate R; = k/n by explicit construction of a code (i.e.
encoder and decoder), given parameters n, B, p. In the following, we give a construction

of so called nested linear codes which carry out all the tasks.

4.3.1. Secure Linear Nested Codes

Informally, a linear code pair (C’,C) is called a nested code if C' = C’. The main code
(', also called the mother code, is partitioned into K cosets of C' which is called a coarse
code, thus K = |C’|/|C|. Each coset corresponds to a secret message and the transmission
scheme is the same as for the Ozarow-Wyner coset coding described in Section 3.2.1. Of
course for the purposes of reliability and security both codes C' and C’ must satisfy certain
properties. Note also that the mother code serves for the reliability and the coarse code is
used for stochastic encoding to provide security. Thus, the nested code approach is just a
generalization of the Ozarow-Wyner coset coding method, where C” is the whole space. A
nested code (C’, (') is called secure if it satisfies the conditions (4.1), (4.2) and its secrecy
rate Rg = R' — R, where R’ is the rate of C’ and R is the rate of C'. The nested code
approach has been used by many authors (see, for example, [0] and [31]), for the design
of secure coding schemes in different models of the wiretap channel. For our model of
wiretap channel II with an active eavesdropper, we also use the nested code approach. In
the following we will specify the properties of C’ and C' that must be satisfied in order to

achieve perfect security and reliability in our model of the wiretap channel.

4.3.2. Alice-Bob Communication

Let (C',C) be a nested code which we need to fulfill our tasks (4.1) and (4.2). Let C’
also be an [n,m], code. Suppose that a codeword 2" € C’ has been transmitted over the
channel and denote by C'(z™) the coset to which ™ belongs. Then C’ must be chosen in
such a way that for every received vector y™, Bob can determine the coset C'(z™), and
hence the message sent. Clearly, for this goal it is sufficient to recover z". In this case,
regardless of a B-burst erasure introduced by Eve (possibly based on her observation),
Bob should be able to decode y™ to ™, that is C’ must be an B-burst-erasure correcting
code. Moreover, it is desirable that C’ has the maximum rate, that is m = n — B. Thus,

we suppose that we can take an optimal B-burst-erasure correcting code as a mother
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code C’. We will see later that this is really the case, and moreover, this is a necessary

condition to achieve our task.

4.3.3. Alice-Eve Communication

We are now interested in how large the equivocation H(S*|Z") can be and what the
tradeoffs between parameters p, B, and n are. Let I = {1,...,n} be the coordinate set
and let £ < I be an interval of positions that Eve observes. Let I\M be an interval
chosen by Eve for erasures. Thus, Eve observes an interval denoted by X7 and Bob
observes the subsequence X}, (with the index set M) of the transmitted sequence X™.
The number of symbols p observed by Eve must be smaller than n — B, which is the
number of positions that Bob observes, for otherwise conditions (4.1) and (4.2) do not
hold. Indeed, if 4 = n — B, then Eve can choose B positions to erase, such that M < F
which in view of 4.1 implies that H(S*|Z") = 0.

For pn < m — B, suppose now that Eve chooses first the pattern X ) to be erased and
then observes an interval Xg such that £ < M. Then we have X" — X}, — X} and

hence

H(S*Z") = H(S*|XE) — H(S*|X})
= H(S"|X3) — H(S"| X3, X3 5)
= I(Sk3 ]r\L/[\E‘XE)
< H(X}p gl XE)
< H(X3np)
<(n—-B)—pu.
This together with (4.2) implies that the number of symbols k that can be securely
transmitted is upper bounded by £ < n — B — u. Thus, we have the following.

Theorem 4.9. For the wiretap channel II with an active eavesdropper that can observe
a fraction € = u/n of consecutive positions and erase a fraction ¥ = B/n of consecutive

positions from transmitted symbols, the secrecy rate R, = % is upper bounded by Ry <
(1—-9—¢)".

Remark 4.10. It is obvious that the same upper bound holds for the case where the

eavesdropper can respectively observe and erase arbitrary p and B positions.

4.4. Performance Criteria and Main Result

We are going now to analyze security constraints for the codes with a nested structure.

We note that although Ozarow and Wyner [1] consider only the binary case, their results
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on coset coding directly extend to codes over any finite field IF,. In other words we want
to resolve how to choose C' and C” to provide perfect security and maximum equivocation
with a nested code (C’, C). Let us turn for a moment to the Ozarow-Wyner coset coding
scheme, that is consider the case of noiseless main channels, thus C" = .

The algebraic secrecy criterion in [1] applied to our model says that perfect security is

achieved iff a generator matrix G¢ for C' satisfies the following property:

o Fuvery p consecutive columns of Go are linearly independent.

The fulfillment of this condition implies that for each Z™ with u consecutive unerased

positions, the following holds:

o Fvery coset of C has the same number of vectors which are consistent with Z™, that

15 vectors from which Z™ can be obtained by n — p erasures.

This means that we have perfect security, since every message is equally probable. Suppose
now we choose any ¢* (out of ¢"/|C|) cosets of C' for a secure transmission over a noiseless
channel. Then every Z" is again secure (that is the condition above holds again for
every Z") and we can transmit ¢* messages with perfect security. Thus, the security
depends only on C'. On the other hand, it is clear that maximum equivocation can be
achieved with the noiseless main channel if there exists an [n, u] code C' satisfying the
property above. Let C’ be an [n, m|, B-burst-erasure correcting code with C' < C’. Then
regardless of the choice of a B-burst pattern and p (consecutive) positions, to be observed
by Eve, Bob is able to correctly reconstruct the codeword sent by Alice. This situation
is actually equivalent to a scenario when the main channel is noiseless and only ¢™/|C|
cosets are chosen for encoding. Thus to achieve maximum equivocation, we have to choose
a nested code (C',C') where |C’| is as large as possible and |C| is as small as possible.
In other words, if we can choose as C’ an optimal B-burst-erasure correcting code, i.e.
an [n,n — B], code and an [n, u], code C satisfying the property stated above, then we
achieve the upper bound for the equivocation k < n — B — p, fulfilling both tasks (4.1)
and (4.2).

Clearly, these conditions for C' and C’ are necessary and sufficient. Let k& denote the
maximum equivocation, given parameters p, B, and n. Our observation is summarized

in the following theorem.

Theorem 4.11. In a wiretap channel II, with an active eavesdropper that can observe
any interval of j1 symbols, out of n transmitted symbols from F,, and erase any interval
of B symbols, one can convey securely and with zero error, at most k = (n — B — )"
symbols.

To achieve the positive secrecy rate Ry = k/n with a nested linear code pair (C', C'), where
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C" is a mother code and C' is a coarse code, the following three conditions are necessary

and sufficient:
en—DB>pu.

e The mother code C' is an [n,n — B], optimal burst-erasure (i.e. B-burst erasure)

correcting code.

e The coarse code C = C' is an [n, u], code such that its dual code C* is an [n,n —
], optimal burst-erasure (i.e. p-burst erasure) correcting code. The equivalent
condition is that every p consecutive columns of a generator matrix of C' are linearly

independent.

The next theorem shows the existence of secure nested codes (C’,C') satisfying the

conditions of Theorem 4.11. For ease of description, we denote m = n — B.

Theorem 4.12. (i) For arbitrary admissible parameters n, m, ui, that is for 1 < p <m <
n, and a finite field F, with the non-binary alphabet, there exist explicit constructions
of secure nested codes (C',C') that achieve the maximum secrecy rate Rg, (i.e. codes
satisfying the conditions of Theorem 4.11).

(ii) Such binary codes (C', C') exist for the following cases:
D1i<pu<m<n/2,
2)n/2 < p<m<n,
3)1<u<n/2<m<n,

where n = 2Bt if u < B, and n = 2ut if 4 > B, with t € N.

This theorem will be proved in Section 4.6.

We note here that similar arguments, as for Theorem 4.11 (together with Theorem 4.9),
give us the following necessary and sufficient conditions for achieving Ry = k/n, in the
case when the active eavesdropper is able to observe p symbols and erase B symbols by

their own choice:
e " and C are optimal respectively [n,n — B], and [n, u], erasure correcting codes.

This means that both C” and C are MDS codes (see Remark 4.3). The condition above
can be achieved if n < ¢ + 1. In particular, for n < ¢ — 1 we can use Reed-Solomon codes
[17] which are known to have a nested structure (see Section 2.2). However, there are no
known nontrivial MDS codes with n > ¢+ 2 (see [17]). Therefore, it is impractical to use

MDS codes for the purpose mentioned above, since in this case ¢ must grow with n.
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4.5. Preparations for Code Construction

In this subsection we study matrices over finite fields which have specified properties

required for construction of secure nested codes. We start with some new definitions.
Definition 4.3.

e An m x n (m < n) matrix G over a given finite field is called good if every m

consecutive columns in it are linearly independent.

e We call an m x n matrix G cyclically good (or c-good for short) if any m cyclically

consecutive columns of G are linearly independent.

The following observation is obvious.
Proposition 4.13. Let G be an m x n c-good matrix. Then:
e (G G) is also a c-good matrix.

o IfG = (I,, A), then (I, I,, A) is a c-good matrix.

Let (C’,C) be a secure nested code with given parameters n; m = n — B and pu satis-
fying the properties in Theorem 4.11. Then we can rephrase these properties in terms of

the matrices defined above as follows:

e A parity check matrix He of the mother code C” is an (n —m) x n good matrix.
e A generator matrix G¢ of the coarse code C'is a u x n good matrix.

Clearly (by Proposition 6.11), these properties are fulfilled if both G¢ and G¢ are c-good
matrices. In this case C” is also capable of correcting all wrap-around B-bursts. Moreover,
(C', C) remains secure if Eve also observes all cyclically consecutive intervals of length pu.
In our construction of nested (C’, (') codes, we essentially use c-good matrices. Therefore
we are now interested in how to construct c-good matrices over finite fields. This problem
has been solved by Hollmann and Tolhuizen in [32]. They gave explicit constructions of
c-good k x m matrices over [F, for all parameters k, n and g. The following result shows

that c-good matrices can be constructed recursively.

Theorem 4.14 ([32]). For every c-good m x n matrix, one can add a column such that

the resulting m x (n + 1) matrix is c-good.

Another construction in [32] is given by means of the 2" x 2" binary matrix M, defined

as follows. Let M; be the matrix
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1
M1:< 0)7
11

M, 0
and for r > 1, M, is defined as (M ) . In other words, M, is the r-th Kronecker

s T

power ME" of the matrix M;. Thus, for example

1 000
1 100
M2: .
1 010
I 111

Note that M, is a lower triangular matrix and it is symmetric with respect to the second
diagonal. The following property of the matrix M, allows to construct c-good k x n

matrices for all k and n.

Theorem 4.15 ([32]). Let k and n — k be positive integers, and let r be the smallest
integer such that k,n — k < 2". Let ) be a k x (n — k) matrix residing in the lower left
corner of M,. Then (I}, Q) is a k x n c-good matrix.

Note that the matrix @) is not necessarily c-good, although it is a good matrix (in view

of Theorem 4.15). The following property of M, is not mentioned in [32].

Proposition 4.16. Every k x 2" submatrix formed by the last k rows of M, is a c-good

matrix.

The proposition follows from a more general statement given below.

Definition 4.4. An m x n (m < n) matrix M is called a nested c-good (resp. good)
matrix if every k x n (k < m) submatrix formed by its last k rows is a c-good (resp.

good) matrix.
Proposition 4.17. Let M be an n x n nested c-good matrix. Then so is the matrix
M 0
(v v)
This proposition is a special case of the following theorem.

Lemma 4.18. Let A and D be respectively k x k and n x n nested c-good matrices over

F,. Then A® D is a kn x kn nested c-good matrix, where "®” is the Kronecker product.
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PT'OOf. Let A = (a'ij)i,jzl,.,.,k and D = (dij)i,jzl,...,na thus

CZHD algD c. alkD

anD axD ... agD
A@ D— 2% 2? 21.6

ale ang ce akkD

Let dy,...,d, be the columns of D and denote T, = (a1 D a.D ... aD), where

r e {1,...,k}. Now suppose there exists a nonzero vector a*" = (ay, ..., ag,) such that
T, (a*)T = 0. Since the columns of D are linearly independent, it follows that there exists
a column d; of D and a nonzero subsequence o, 0, Qjyon, .-, Qjp(k—1)n Of a*". such
that
k—1
d; 2 Ariy1Qjin = 0
i=0
and hence
k—1
Z Ariy1Qjpin = 0.
i=0

Let T be the submatrix of A ® D formed by its last m rows. We have to show that T’
is a c-good matrix. Note first that this is the case if m < n. This clearly follows from
the fact that D and hence T} is a nested c-good matrix. Now let m = nr + t, where
1<r<k-—1and0<t<n. Thus,

T,

where T),_, consists of the last t rows of Tj_,.

Let @ be an m x m submatrix of T" formed by m cyclically consecutive columns of
T. Note first that the set D,, := {d,1,dn2, .., dnn} (the elements of the last row in D)
consists of nonzero elements, since D is a nested c-good matrix. Now suppose there exists
a nonzero vector ™ = (f1,..., ) such that Q(8™)T = 0. Then it is not hard to see
that our observation above implies the following. There exists a nonzero subsequence
Bss Bsans - -y Bsenr of B, where 1 < s < n and an element d,; € D,,, such that

r

dns aj,s—&-i'ﬁs-‘rin:o) ]Zk’—’l",...,k’,
1=0

where the indices of 3 are taken modulo kn and the indices of a are taken modulo k. But
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this means that there are r + 1 (if ¢ > 1) cyclically consecutive columns in the last r + 1
rows of A which are linearly dependent, which is a contradiction. Similarly, for t = 0 we

have r linearly dependent columns in A. This completes the proof. [

Lemma 4.19. Let M be an m x m nested c-good matrix which is also symmetric with
respect to the second diagonal. Then for any k x (n — k) submatrix @) of M, residing in

the lower left corner, (I Q) is a k x n c-good matrix.

Proof. To prove the statement we have to show that both (I @) and (Q Ix) are good

matrices. This can be easily demonstrated with the help of the figure below.

k

(Q 1) = D

Figure 4.2.: Good matrices (I @) and (Q Ij).

Consider the k x k matrices M; and M, indicated in the Fig. 4.2 with bold line shapes.
It follows from the properties of M that both (k —¢) x (k — t) matrices A and D, where
max {2k —n,1} <t < k — 1, are invertible. This clearly implies that both & x k matrices

M, and M, are invertible as well, which completes the proof. [

We note that Lemma 4.18 (together with Lemma 4.19) gives a proof for Theorem 4.15,
which differs from the one in [32]. Moreover, it gives a possibility to construct a wider class

of nested n x n c-good matrices than that of M, matrices (with n = 2"). For example
1 00

consider the matrices A = |1 2 0| and M; = (1 0) over 3. Clearly, both are
111 b

nested c-good. Then by Lemma 4.18, every matrix A®™ @ M is nested c-good, where

m,k € Nu {0}. In general, it can be shown that for a given prime power ¢, there exist

c-good n x n matrices over F, for all 2 < n < ¢. This together with Theorem 4.18 gives

us a new class of c-good matrices over [F,. We will go into this in more detail in Section

5.3.

4.6. Proof of Theorem 4.12

We give now explicit constructions of secure nested codes (C’, C') that achieve the maxi-

mum secrecy rate. The nested codes are given by means of generator matrices for C’ and
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4. Block Codes for a Burst-Erasure Wiretap Channel

C which have properties clarified in the previous subsection. We denote by m = n — B
the dimension of the mother code C".
i) First we give a recursive construction of required codes, over every non binary finite

field aphabet, for all admissible parameters p, B,n. We use Theorem 4.14 and adapt it

%
to our nested codes. Let G' = o be an m x n c-good matrix, where G' is a u x n

good matrix. Such a matrix G’ clearly exists for n = m and 1 < u < m. Our goal is to
show that we can add a column x to G’ such that the resulting matrix (G’ x) gives us a
secure nested code with parameters n + 1, m, u.

Let g1,...,8n be the columns of G'. Consider then the submatrices Si,...,S,, of
G’, with S; = (8n-m+i+1, 8n-m+it2,--->8n+i-1); & = 1,...,m, where the column indices
greater than n are taken modulo n. In other words, the index sets of the columns in 5;
consist of the interval {n —m+2,...,n} and its m — 1 right cyclic shifts. Note that (G’ x)
is a c-good matrix if all matrices (S; x) are invertible. Let now D be an m x m matrix D
with rows {dy,...,dm}, such that d;’'S; = 0 with ¢ = 1,...,m. It can be shown that the
matrix D is invertible (see Lemma 4.24) and hence the matrix DG’ is a c-good matrix.
By definition of D, in each submatrix DS; of DG’, the ith row consists of zeros. The
latter clearly implies that by adding any column vector v = (vy,...,v,,)? with nonzero
entries to DG’ we get an m x (n+1) c-good matrix. Thus, for each v with nonzero entries
there exists a unique column vector x such that Dx = v. This in turn implies that for
every such a vector x, the matrix (G’ x) is c-good as well.

Let X denote the set of all such column vectors x. We now show that there exists
an x € X such that by adding it to G’ we get an m x (n + 1) matrix where the last u
rows form a good matrix. Without loss of generality, we may assume that G = (A 1,,).
Observe then that we are done, if there exists an x = (21, ..., 2,,)" € X with 2,41 # 0.
Suppose for a contradiction that z,,_,+1 = 0 for every x € X. Next, we note that the set
of all vectors v € Fi" with nonzero coordinates spans Fy* if ¢ # 2. This clearly implies
that X spans F{" as well, which is a contradiction, in view of our assumption on X. Thus,
there exists an x € X with z,,_,41 # 0. To find such an x we proceed as follows. Let
d = (dim—ps1s- - dmm—p+1)’ be the (m — p+ 1)th column of D. Let u = (ug,. .., um)"

be a column vector with the nonzero coordinates, such that u; # —d; y—pi1;1=1,...,m.
Furthermore, let x' = (24,...,],)" be such that Dx’ = u. Now if 2, ,., # 0, then
x = x'. Otherwise, we take x = (z1,...,2,,)", where z,,_,+1 = 1 and z; = @ elsewhere.

Then we have Dx = v, where v = u + d has nonzero coordinates. This completes the

proof.

Remark 4.20. We note that the code C' generated by G’ also tolerates wrap-around B-
burst erasures, that is reliable and secure transmission is provided when the eavesdropper

is able to cause any B-burst erasure including wrap-around bursts.

ii) We turn now to the binary case. We start with a special case n = 2" where we can

42



4.6. Proof of Theorem 4.12

directly apply Proposition 4.16. In this case, for any given parameters m and pu, we just
take the last m rows of M, for the generator matrix G’ of C’. This matrix is c-good, that is
(" is a c-optimal burst-erasure correcting [n, m] code. The matrix G’ in turn contains the
c-good p x n submatrix G formed by the last p rows. This clearly gives us a secure nested
code (C',C), where C'is the [n, u] (c-optimal) code, satisfying the properties of Theorem
4.11. Note that the same construction works with any n x n nested c-good matrix. In
fact, this is the simplest way to construct a secure nested code (C’,C'). However, nested
c-good n x nm matrices do not exist for every n € N. For example, in the binary case, it
can be easily shown that such matrices do not exist when n is odd.

1) Case 1 < p < m < n/2: For the construction of a secure nested code (C’,C') we

need two auxiliary results.

Lemma 4.21. Let C be an [n, k], code with a generator matrix G¢ and a parity check
matrix Ho. Let J < I be a subset of the index set I = {1,...,n} with |J| = k. If the
columns of G¢ with indices in J are linearly independent, then the columns of Ho with

indices in I\J are linearly independent.
Proof. This is a direct consequence of Proposition 4.1. [

Lemma 4.22. Let G' = (A D) be a k x n good matrix over F, with 1 < k < n/2, where
Ais a k x k matrix and D is a k x (n— k) matrix. Then the code C' with generator matrix

G = (D A) is an optimal burst-erasure correcting code.

Proof. Let I' = {1,...,n} be the (ordered) set of column indices in G" and let C’ be the
code generated by G’. Let also £ be the set of all intervals of length k in I’. Since for
every L € L the columns of G’ with indices in L are linearly independent, Lemma 4.21
implies that the columns of He with indices in I'\L are linearly independent. Then,
by Proposition 4.1, for every L € L the code C’ generated by G’ can correct the burst
of erasures in positions I'\L. Note now that in the new ordering of the columns [ =
{k+1,...,n,1,... k} the set of subsets {I'\L : L € L} contains all intervals of length
n—Fk in I. This means that C' can correct all bursts of erasures of length n — k, and hence

C' is optimal. -

Given positive integers r,n,m with n — p < 2", let M, be the matrix defined in the
A
previous subsection. Let Al be the m x (n — p) submatrix of M,., residing in the lower

2
left corner, where A is an (m — u) x (n — ) matrix and Ay is an g x (n — p) matrix.

(0 A
G= H.
I, A

In view of Theorem 4.15, (I, As) is an u x n c-good matrix and G is an m x n good

Define the m x n matrix G as

matrix. Let now g, ...,g, be the columns of G and denote by G’ the matrix defined as
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G*
G = (8m+1---8n 81---8m) = <G>

where G* and G are the resulting submatrices obtained from (0 A;) and (/,, A;) after
the corresponding permutation of columns. In fact, G’ is obtained by m cyclic shifts of
the columns of . By Lemma 4.22, the code C”’ generated by G’ is an (optimal) B-burst-
erasure correcting code. Denote by C' the code generated by G. Since (1, As) is a c-good
matrix, any cyclic shift of its columns also gives a c-good matrix. Thus, (C”, C') is a secure
nested code with maximum secrecy rate.

2) Case n/2 < p < m < n: This case is the "dual” to the previous case and follows

from the proposition below.

Proposition 4.23. If (C’,C) is a secure nested code satisfying the properties of Theorem
4.11, then so is the nested code (C+,C"t).

Proof. Let (C',C) be a secure nested code where C’ is an [n,m] code and C'is an [n, p]
code. Thus, C’ is an optimal burst-erasure correcting code, and C is an optimal [n, n— ]
burst-erasure correcting code. Furthermore, C'* = €’ is an [n,n — m] code, such that
its generator matrix is an (n — m) x n good matrix. Thus, we have a secure nested code
(C+,C™) with new parameters m; = n — i, g = n —m, By = pu, where n/2 < u; <

mi < n. ]

3) Case 1 < p < n/2 < m < n: In this case our construction extends only to specified
parameters. We distinguish between two subcases.
(i) p < B.
Let n = 2Bt, with t € N. Consider the following c-good B x n matrix H = (I; ;... I)).
N

2
Let C" be the [n,n — B] code with the parity check matrix H. By Proposition 4.7, a

generator matrix of C’ is also c-good and C’ is a c-optimal B-burst-erasure correcting
code. Note now that HHT = 0, that is the dual code C"* is self orthogonal, i.e. C'*+ < (.
Since for every 1 < p < B there exists a c-good p x B matrix A, the row space of H
contains a p x n submatrix G = (A A... A), which is also c-good in view of Proposition
4.13. This implies that there exists a m x n generator matrix G’ of C’, such that it
contains a c-good p x n submatrix. Thus we have a secure nested code (C’,C'), where C'
is the [n, 1] code generated by G.

(ii) p > B.

In this case we take n = 2ut, with t € N and proceed similarly. We consider a c-good
matrix G = (I, I,...1,) and note that GGT = 0. Clearly, G can be transformed to a

< 0

2t
matrix G (by linear operations on rows) such that G contains a B x n c-good submatrix

H. We now consider the [n,n — B] code C" with parity check matrix H. Note that C” is

a c-optimal burst-erasure correcting code since H is a c-good matrix. Thus

C'={z"eF!: Hx")" =0}.
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Since GGT = 0 implies in particular that HGT = 0, we conclude that the row space
of G is a subspace of C’. Therefore, the code C’" contains the rows of a c-good p x n
submatrix (G. Hence, there exists a generator matrix G’ of C’, which contains G, taken
as a generator matrix for the coarse code C. Thus, we get a secure nested code (C’, C)

satisfying conditions of Theorem 4.11.

4.7. Encoding and Decoding Schemes

In this section we present an encoding and decoding procedure for the secure nested codes
described in the previous section. By encoding we mean here the channel encoding and
each message as before is identified with a k-vector over a fixed finite field. The decoding
consists of two steps: (1) channel decoding, i.e. codeword recovering, and (2) message
decoding. Let (C’,C) be a linear nested code pair achieving maximum secrecy rate with
zero-error probability. Let C” (the mother code) be an [n,m = n — B], code and C' (the
coarse code) be an [n, 1], code. Recall that C’ is a B-burst-erasure correcting code and
C < (' has the property that any g consecutive columns of its generator matrix are
linearly independent. The maximum number of symbols that can be securely transmitted
equals k = m —pu =mn— B — p. Let us represent C’ as C' = C* + C, where C* is an
[n, m — ul, subcode of C” such that C* n C' = 0.

%

Furthermore, let G’ = o be a generator matrix of C’, where G* and G are generator
matrices of C* and C respectively. Observe now that we can choose the generator matrices
G* and G having the form shown in Fig. 4.3, where 0 is a k x (m — k) all-zero matrix

and A is an (m — k) x k matrix.

B
/—/%
G* = Iy, 0
k
/_/H
G = A Imfk

Figure 4.3.: Generator matrix G'.

This is clear because every m —k = p and m consecutive columns of generator matrices
of C'and C’ are linearly independent, respectively, and hence any generator matrix of C”
can be transformed to G and G* by elementary row operations.

Let us denote Gy = (A I,,_1) and H, = (I, — AT). Thus, H, is a parity check matrix
of the code generated by GG;. We are prepared now to describe the encoding and decoding

of a message tent through the main channel.
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Encoding

A message (s1,...,5Sk), is encoded to the codeword

G*
(X1, o xn) = (81,3 Sky €15+« s €mk) <G>’

where (e1,..., €, k) € IFZ”_’“ is chosen uniformly at random.
Suppose y"* = (Y1,...,Yn) is a vector received by Bob when the codeword z" =
(x1,...,2,) has been sent. Let {i,i +1,...,i+t— 1} be the coordinate positions where

a burst of erasures of length ¢t < B have occurred.

Channel Decoding

Let H be a B x n parity check matrix of the code C’' with the columns denoted by
hy,...,h,. Recall that any B consecutive columns of H are linearly independent. Con-
sidering the erased symbols (y;,...,y;+;—1) as unknowns and taking into account that
H(2™)T = 0, we have

it—1
Z yrhr = —ZIjhj.
r=4 JeT
This system of linear equations with at most B unknowns (y;,...,¥;4+s—1) has a unique
solution, since the columns h;, ... h;,, ; are linearly independent.
Message Decoding
If the submitted codeword (z1,...,x,,) is successfully recovered, then we claim that
($1y..y8K) = (z1,...,2xn)HT.

To show that the equality holds, we note that

(1, Tm) = (81,5 8k,0,...,0) + (e1,. .., em_k)G1.
;N/—J

m—Fk
Then
(21, xm)HE = (51,...,81,0,...,0)H + (e1,...,em_1)G1HT.

Since G1H{ = 0, we have

(1, &) HE = (s1,...,8,,0,...,0)H = (s1,...,5).

46



4.8. Low Complexity Channel Decoding

4.8. Low Complexity Channel Decoding

We note that the channel decoding approach described above is a standard decoding
technique, which is a kind of syndrome decoding and can be applied to any erasure
correcting linear code capable of correcting a given number of erasures. This technique
however, is not in general efficient. A suitable approach for erasure correction is the
iterative decoding, which is a powerful technique, especially, when applied to low density
parity check (LDPC) codes [33]. The basic idea of iterative decoding is to correct erasures
one-by-one. In each step a parity check equation is used, which involves precisely one
erasure position, thus allowing this erasure to be corrected. More specifically, let C' be a
binary [n, k] code capable of correcting B erasures. Let H be a matrix whose rows span
the dual code C*+. Thus H is a parity check matrix of C, possibly with some redundant
vectors from Ct. Let also h; = (hj1,...,hj,), with j = 1,...,7 (r = n — k) being the

rows of H. Thus, for any submitted codeword 2" = (z1,...,x,), we have
Zzihj7i = 0, j = 1,...,’/“.
i1

Now let 4™ = (y1,...,y,) be the received vector with B erased positions, when x™ has
been sent. Without loss of generality we may assume that y" = (7,...,7, Z511,...,Tn).
Suppose now there exists an h; € H such that h; contains precisely one 1 in the erased
positions, for example h; = (1,0,...,0,hj511,...,hjn). Then clearly we can correct the

first erasure in y" since we have

n
1.9y + Z l’ihjﬂ‘ =0,

i=B+1

and hence y; = a, where a = " .., ;h;; is known. This procedure is repeated until
all erasures in y" are corrected, or the procedure stops if no parity check h;, with the
above property, can be found for the set of current erasures. Therefore, we can correct
all erasure patterns if for each such pattern there exists a parity check h; which contains
a single 1 in the corresponding positions. Thus, for this decoding method, the choice
of a parity check matrix H (defined in a more general way) plays a crucial role. Recall
that for the standard decoding mentioned above, the choice of H does not play any role.
Notice now that for burst-erasure correcting codes, a weaker condition is required for the
successful use of an iterative decoding approach. Namely, given a parity check matrix H,
one can correct all B-burst erasures if for every burst erasure pattern of length B or less,
there exists a parity check h; € H which contains a single 1 in an erased position. In [34],
Fossorier showed that using iterative decoding approach to any binary B-burst-erasure

correcting [n, k| code, the decoder complexity is O(n?). In other words it is possible to

choose a parity check matrix H such that at most O(n?) binary operations are needed for
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successful decoding of any burst of length B or less.

We now show that in a special cases of our constructions of (C”, C') nested codes where
(" is an [n, m] optimal code, we can achieve decoding complexity not exceeding n.
Let n = 2Bt, te N (ie. n = #5), 1 < B.
The construction of a secure nested code (C’,C) for this case is described in subsection
4.12. C" is a c-optimal [n,m] code given by the B x 2Bt parity check matrix H =
(Ip Ip...Ig). Obviously H satisfies the required property for correction of all burst
erasures of length B or less. Moreover we need at most 2¢tB binary operations for the

correction of any B-burst erasure.

4.9. Conclusion

A model of a wiretap channel II with an active eavesdropper has been introduced and
studied. We have shown that with a coset coding approach, one can convey securely
and with zero-error decoding at most k = (n — B — )" symbols and consider necessary
and sufficient conditions for achieving the maximum secrecy rate R, = k/n. Linear
nested codes achieving maximum secrecy rate have been constructed for all admissible
parameters. The constructed nested codes provide also perfect security and zero error at
the receiver. The nested code consists of a so-called mother code C’ and a coarse code
C < C'. Zero-error decoding and perfect security can be achieved for given parameters n,
B and p, if and only if C is an optimal [n,n — B], burst-erasure correcting code and the

dual code C* of C is an optimal [n,n — ], burst-erasure correcting code, respectively.

Further, we showed that an iterative decoding approach can be effectively applied for
our constructions of nested codes.
We find it interesting to study other models of the wiretap channel II with an active
eavesdropper. An initial problem in this direction could be the study of a model where
the eavesdropper can observe any u consecutive symbols and is able to cause any burst of
errors of length B in the main channel. Furthermore, it would be interesting to consider
the models in the streaming setup where the legitimate receiver is subject to a delay

constraint.

4.10. Appendix

Lemma 4.24. Let S = (81,82, -,Sm—1,Sm,Sm+1, - - -»S2m_2) be an m x m matrix with
values in IF, and with its columns s;, ¢ = 1,...,2m — 2 of length m. Let
Siz (SZ‘,SZ‘+1,Si+2,...,Si_;,_m_l) s = 1,2,...,m,
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4.10. Appendix
be the m x m submatrices obtained by m consecutive columns of S and let

Qi:<Si+1asi+27"-7si+m—1> , 1=1,2,...,m,

be the m x m — 1 submatrices obtained by deleting the first column in each S;, i.e.
Si = (si, Q;). Assume S has the property that

rank(S;) =m and rank(Q;) =m—1, foralli=1,2,...,m.
Then there exists an invertible m x m matrix D with columns d¥, i = 1,...,m so that
d/Q;, =0, foralli=1,2,...,m. (4.3)

Proof. Each Q; has rank m — 1. Therefore it possess a non-trivial one-dimensional (left)
null space N'(Q;) and so we choose d; € N(Q7T) for each i = 1,...,m. By this choice, it
is clear that (4.3) it satisfied and so we only need to show that D is invertible.

To this end, let A = DS, be the m x m matrix whose entry a;; in row k£ and column

1 is given by the scalar product of d; and s;, i.e.
ak,i:dfsi, k,ie{l,Q,...,m}.

It follows from (4.3) that A is a lower triangular matrix, i.e. ay; = 0 whenever ¢ > k.
Moreover, all diagonal entries of A are nonzero, i.e. ay, # 0 for all k =1,2,...,m. In-
deed, aj,;x = d¥'sy = 0 would imply, in connection with (4.3), that dZ'S;, = 0 contradicting
the assumption that Sy has rank m. So since all diagonal entries of the lower triangular
matrix A are nonzero, it follows that det(A) = det(D) det(S;) # 0. Since rank(S;) = m,
we have det(S;) # 0 and so it follows that det(D) # 0, i.e. D is invertible. n
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5. Delay-Optimal Codes for a
Burst-Erasure Wiretap Channel

5.1. Introduction

We consider transmission of secure messages over a burst-erasure wiretap channel under
decoding delay constraint. In many emerging communication systems such as interactive
voice and video communication, internet of things, etc., low-delay is an important task
along with reconstruction of corrupted or lost data. Such systems are highly susceptible
to sporadic burst packet losses. The transmitter must encode a source stream of packets
sequentially, and the receiver must recover each source packet within a fixed playback
deadline. This naturally motivates the study of codes that achieve fast recovery from burst
losses. Moreover, communication systems that convey secret data, e.g. electronic payment
systems, must be protected against eavesdropping. Classical encryption methods only
offer security against eavesdropping if the encryption algorithms are sufficiently complex
and the eavesdropper’s computing power is limited. Since these security mechanisms can
only be implemented at higher protocol layers, this leads to noticeable delays. To avoid

these problems, security must be embedded in the physical layer.

Related Work

Martinian et al. [35],[7],[8] were the first to study low-delay burst-erasure correcting codes.
Their bounds and constructions provided the basis for several follow-up works, which con-

sidered different scenarios of low-delay communication such as low-delay multiple bursts

[36], multicasting [37], [38], average delay scenario [39], etc. Additional works devoted
to low-delay coding can be found in [9], [L0], [10], [11], [12],[43],[44],[45]. Martinian and
Trott [3] presented a construction of delay optimal streaming codes for a burst-erasure

channel. A stream of source packets {s [i]},., arrives sequentially at the encoder and is
mapped to a stream of channel packets {x [i]},5,. Each source packet s [i], respectively
each encoded packet x [i], is a vector of k symbols, resp. n symbols, from the same finite
field. The rate of the code is defined as R = k/n. The channel can introduce a burst
of erasures of length B, starting at any time i. The decoder is required to reconstruct
each source packet with delay of at most T, i.e. after receiving T' subsequent packets.

The construction in [3] consists of two steps: first constructing a delay optimal [T + B, T
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binary systematic block code followed by diagonal interleaving applied to that code. The
resulting code is a rate-T/(T + B) convolutional code that achieves the delay-burst bound
in [8]: T/B = max [1, {£-]. A code that meets the bound is called a delay-optimal code.

Contribution

We propose delay-optimal block codes as well as streaming codes for secure transmission
over a burst-erasure wiretap channel. The block codes are intended for a model of a
B-burst-erasure channel where the eavesdropper can noiselessly observe any interval of at
most p symbols from n symbols transmitted to the legitimate receiver. This model can
be viewed as a special case of the wiretap channel II introduced by Ozarow and Wyner
[1], with an additional requirement of low delay. We give explicit constructions of block
codes that achieve maximum secrecy rate, provide perfect security (i.e. the eavesdropper
can obtain no information about the secret message) and provide zero-error decoding with
minimum decoding delay. For the streaming setup, our model of a burst-erasure wiretap
channel is as follows. In any sliding window of size W the eavesdropper is able to observe
an interval of at most p packets by his choice. We present constructions of delay optimal

streaming codes that provide perfect security.

Outline

In Section 5.2, we introduce a model of a burst-erasure wiretap channel for a stream of
encoded packets. Section 5.3 includes definitions and the construction of special matrices
required for the construction of delay-optimal secure burst-erasure correcting (DO-SBE)
block codes. In Section 5.4 we present explicit constructions of two classes of DO-SBE
block codes over any finite field of order of at least three. The first is for systematic and
non-systematic block codes where B|T and u < T — B, and the second is for systematic
block codes for arbitrary 7' > 2B with p = T'— B. In Section 5.5, we use our DO-SBE
block codes to obtain delay-optimal burst-erasure convolutional codes by applying proper
diagonal interleaving. The resulting codes are shown to have perfect security. We derive
an upper bound for the secrecy rate of a delay-optimal streaming code and show that
this bound is achieved for a certain class of code parameters. Section VI concludes with

a discussion and problems for future research.

5.2. The Channel Maodel in the streaming setup

We consider the burst-erasure wiretap channel illustrated in Fig. 5.1, where each time
i = 0 the randomized encoder observes a source packet s[i] and transmits a channel
packet x [i]. The source packet consists of k symbols, while the channel packet consists

of n symbols over a common finite field F,. For each i € Z", the randomized encoding
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delay T'
ML e LU LSIN P i i W 3 ﬁ,
T+ B
{zlil}ixo
s L I [ ] | ——
—> Eavesdropper
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T+

Figure 5.1.: The channel model with erased packets indicated by crossed squares and
noiseless received packets by white squares.

function &; : F’;'(iﬂ) X IFg’(iH) — F7 of the (n, k, pu,T), streaming code maps causally’
a sequence of source packets {s[i]},., and a sequence of encoder packets {e[i]},., into a

channel packet x[i]. & is used by the source at time ¢ to encode s[i] according to

zli] = &((s[0], s [1]. .., s[i]), (e[0] e [1]. .., e[i])). (5.1)

The main channel causes erasures, i.e., the received channel packet y [i] is either erased
(denoted by ?) or passed to the legitimate receiver noiselessly, thus y [i] € Fy U {7}. The
erasures occur in bursts of length B. Moreover, the eavesdropper is able to observe an
interval of at most p packets in any sliding window of size W, which implies that any
two intervals of u packets observed by the eavesdropper are separated by at least W — 1
(undisclosed) packets. We assume that the packets s[0],s[1],... and e[0],e[1],... are
realizations of i.i.d. sequences Sy, Si,... and Ejy, Eq,... of random variables which are
uniformly distributed over IF’; and [, respectively. The eavesdropper’s channel output
induced by Sp,...,S; and Ey, ..., E; is Zy, ..., Z;, with realization z[i] € F} U {?} where
i=0,1,....

If a B-burst-erasure occurs, we require that an (n,k, g, T), streaming code can re-
construct any source packet s[i] with delay T', that is there exists a set of decoding
functions ¢; such that s[i] = pi(y[0],...,y[¢ +T]). In other words, using notation
Ay = Ay, ..., A;, we have H(Si|Y7™T) = 0, with ¢ = 0,1,..., where Y; is the random
variable that describes the receiver’s input. Furthermore, we require perfect security, that
is H(S3|Z:") = H(S}). Informally, the eavesdropper must have complete equivocation
over the source packets (messages) in spite of knowing the encoding procedure and the
observed packets. In this case we say that a streaming code has secrecy rate R, = %
Note that in advance (in the initialization phase), i.e. for i < 0, a constant number of
random packets e[i] must be securely transmitted to ensure perfect reliability and perfect
security in the first 7' transmitted packets. Since in the initialization phase the number

of pre-transmitted packets is constant, the resulting rate loss quickly converges to 0 as

IThe code is causal if in the encoding function the current channel packet is a function of the current
and previous source/encoder symbols of the source/encoder packets.
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5. Delay-Optimal Codes for a Burst-Erasure Wiretap Channel

the number of packet transmissions grows.

Definition 5.1. We denote an (n,k, u,T), streaming code as a (T, B, ji; W), streaming
code if the code can reconstruct any source packet within delay T if any erasure burst of
length B occurs, and if the code provides perfect security even if the eavesdropper is able

to observe an interval of at most p packets in any sliding window of size W

5.3. Preparation for the Code Constructions

In this section we provide matrices over finite fields, which have specific properties required
for the construction of block codes that we convert into streaming codes for the channel
model introduced in Section 5.2.

First we refer to the Definitions 4.2, 4.3 and 4.4.

Lemma 5.1. For a prime power q and any integer 1 < n < q there exists an n x n nested

c-good matrix over F,,.

Proof. Let V,, denote an n x n Vandermonde matrix over F,, where 1 <n < ¢ — 1, with
the rows written in reverse order, i.e. v;; = a7, and ay, ..., a, are nonzero elements in

F,. Note that V, is a nested c-good matrix. For n = ¢ we take the ¢ x ¢ nested c-good

matrix
1 0 0
Vg 0
1
where V,_ is a (¢ — 1) x (¢ — 1) Vandermonde matrix. m

Lemma 4.18 and 5.1 imply the following theorem.

Theorem 5.2. For a prime power q, let pi,pa, ..., Dx(q be all primes less than or equal
toq. Let N(q) := {p’flp’? . ~p:?$) ck;eNu {O}} Then for any n € N(q) there exists an

n x n nested c-good matrix over F,.

Remark 5.3. Note that any n x n nested c-good matrix can be brought to a nested
c-good lower triangular matrix. Recall that the Kronecker product of any two lower

triangular matrices again gives a lower triangular matrix.

Lemma 5.4. Let (Ir_p A) be a (T'— B) x T c-good matrix. Then the matrix G is also

c-good.
1 Oxir—n) 1
G- <0 B Bx(T—B) B> (5.2)
(

r-yx  Ir-p A
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5.4. DO-SBE Block Codes

The proof is provided in the Appendix.
Matrix G has been used in [8] for the construction of delay-optimal burst-erasure cor-

recting codes.

Theorem 5.5 ([8]). A [T+ B, T, block code with a systematic generator matrix of the

form (5.2) recovers a burst erasure of length B with delay T

5.4. DO-SBE Block Codes

We define block codes over [y, for small ¢, of dimension 7" and blocklength 7' + B that
we can apply in Section 5.5 to construct convolutional codes for the model introduced in
Section 5.2.

DO-SBE block codes can be used for delay-optimal transmissions of secret messages
over a burst-erasure wiretap channel, where the channel or the eavesdropper (in the case
of an active eavesdropper) causes an erasure burst of length B and the eavesdropper
observes an interval of at most p symbols noiselessly from n = 7'+ B symbols. For the

construction of DO-SBE block codes we use linear secure nested codes (see Section 4.3.1).

Definition 5.2. We say that a [T + B, T, code C' = (encoder &, decoder () is a delay-
optimal secure burst-erasure correcting (DO-SBE) block code and call it a u— [T+ B, T,
DO-SBE code if

(i) C' is an optimal burst-erasure correcting code.

(ii) The transmitter can convey k = T — j symbols with perfect security and the secrecy

rate of the code is Rs = ;:—;%, which in fact is maximum possible (see Chapter 4).

(iii) Every source symbol can be reconstructed with delay of at most T' (i.e. for a set
of decoding functions (; we have s; = (;(y1,...,yipr) withi = 1,... k), that is the
code is delay-optimal. In other words, for any B-burst erasure, all source symbols

s; must be recovered up to receiving y; ..

Codes satisfying conditions (i) and (ii) (without a delay constraint) are studied in
Chapter 4 where the construction of such codes for all admissible parameters T', B, i1, q
has been presented. For the construction, a nested code approach has been used. Recall
that a nested linear code is a pair (C”,C) of linear codes, C' = ', in F}, where (" is an
outer code and C'is called a coarse code. The outer code C’ is partitioned into cosets of
C' and each of |C'|/|C] cosets is put into correspondence with a secret message to be sent,

by a fixed bijective map. The inner code serves for reliability and the coarse code is used

G*
for stochastic encoding, to provide security. The code is given by a matrix G’ = ,

G

where G, respectively, G, is a generator matrix for the outer code, respectively, for the

coarse code.
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5. Delay-Optimal Codes for a Burst-Erasure Wiretap Channel

Remark 5.6. We emphasize that the codes constructed in Chapter 4 are not appropriate
for the given purposes. The codes in Chapter 4 do not guarantee low delay.

G*
Definition 5.3. We call a generator matrix G' = o for a DO-SBE code C" sys-
tematic, if both G* and G have a systematic form. Equivalently, we say that C’ is a

systematic DO-SBE code, or C' has a systematic encoder.

Lemma 5.7. For a prime power ¢ > 2, let T' € N(q) and « € F,\ {0,1}. Then for any
integer 1 < B < T there exists a T x (T + B) c-good matrix

I Opy(r— I
o _ (1B OBx-5) Ip 7 (5.3)
A C aA

where G := (A C aA) is a (T — B) x (T + B) nested good matrix and (C' aA) is a
(T — B) x T c-good matrix.

M Opxr-B
A C
[F, with ¢ > 2. Such a matrix exists for any 7" € N(g) in view of Theorem 5.2 (and Remark

| be a T x T lower triangular nested c-good matrix over

Proof. Let Q) =

=

5.3). Note then that G is a nested good matrix and (C' «A) is a (T'— B) x T c-good
M Opyir-p M
A C aA

matrices, since G” can be brought to G’ and to a matrix of the form (5.2) by elementary

matrix. Furthermore, G” := , and hence G’ in (5.3) are c-good

row operations. =

In the sequel we will show that there exist delay-optimal block codes that have the

same maximum secrecy rate as the codes without delay constraint.

G*
Lemma 5.8 ([46]). Let G’ = (G) be a T x (T + B) generator matrix for a linear

block code C', where G is a p x (T + B) submatrix of G'. Then C' satisfies requirements
(i) and (ii) in Definition 5.2, if the following three conditions are fulfilled:

(a) T'> p

(b) G’ is a c-good matrix. (Recall that in this case C' is also capable of correcting all

wrap-around B-burst erasures.)

(c) G is a good matrix.

Remark 5.9. 1. In fact, we can replace condition (b) by the following weaker condition:
(V') a generator matriz for the dual code C'* is good.
In this case (a), (V') and (c) are also necessary conditions.
2. It is also worth mentioning that if G' is a c-good matrix, then requirement (ii) (in
Definition 5.2) is satisfied even if the eavesdropper is able to observe any cyclic interval

(of codeword positions) of length p.
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5.4. DO-SBE Block Codes

Remark 5.10. When we consider the delay constraints we define the first B source

symbols as the urgent symbols and the remaining T' — B source symbols as non-urgent.

Next, we give constructions of p — [T' + B,T], DO-SBE block codes satisfying the
conditions in Lemma 5.8 and the delay constraint.

We first analyze the tradeoff between parameters T, B, u for systematic and non-
systematic y — [T"+ B, T], DO-SBE block codes, conditioned by construction.

Proposition 5.11. (i) For a u — [T + B,T], DO-SBE code C'" we have iy < T — B, or
equivalently B < k.

(ii) For a systematic u— T + B, T, DO-SBE code with p > 0 we have B < u < T — B,
or equivalently B < k <T — B. In particular, we have T' > 2.

*

G
Proof. Let G' = o be a generator matrix for a p—[7T'+ B, T|, DO-SBE code. Let M

be the submatrix of G’ formed by its first 7'+ 1 columns and M; be the submatrix of M
formed by the deletion of the last B columns and the first row denoted by m. Furthermore,
for an output y? ¥ let the erased set of positions E(y! %) = {T —B+2,...,T + 1}.
Observe then that the first source symbol s; can be recovered with delay 7', only if the
columns of M are linearly dependent.

(i) Suppose that > T'— B + 1. First note that m contains a nonzero entry in position
i € {l,...,T}, since the first T" columns of M are linearly independent. Clearly, if the

T+B)

nonzero positions of m are in E(y , then s; cannot be uniquely recovered. Thus, there

exists a nonzero position of m in {1,...,7 — B + 1}. Note then that M; has full rank in
view of the property of submatrix G, which is a contradiction.
(ii) Now suppose there exists a systematic p — [T+ B, T], DO-SBE code with yu < B.

Observe then that again matrix M; has full rank, which completes the proof. n

Next we present a construction of systematic and non-systematic DO-SBE block codes

for any 4 < T — B, in the case when B|T.
Theorem 5.12. Let T'e N(q) and T = tB, where ¢ > 2, t € N.

(i) For 0 < u < T — B there exists an explicit construction of a p— [T+ B, T], DO-SBE

code.

(ii) Fort > 2 and pn = iB; i€ {1,...,t — 1}, we have a p — [T+ B,T], DO-SBE code

with a systematic encoder.

Proof. (i) Consider the following T' x (T + B) generator matrix

CL11[B 0 0 T alllB
G/ a21M (ZQQM 0 s Oé(lglM
ath atQM s attM aath
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5. Delay-Optimal Codes for a Burst-Erasure Wiretap Channel

for a B-burst-erasure correcting code C’, where

a1 0 0 Ce a1

21 Q929 0 ... Qag
A=

At Gr2 ... G QGp

isatx (t+1) c-good matrix over F,, such that its first ¢ columns form a lower triangular
nested c-good matrix. Note that such a matrix exists for any 7' € N(q), in view of
Theorem 4.18. Furthermore, let M be a B x B nested c-good lower triangular matrix
over F, and a € F,\{0, 1}.

Clearly, without loss of generality, we may assume that a;; = 1. Note that G’ is a
matrix of the same form as (5.3). Hence, by Lemma 5.7, G’ is a tB x (t + 1)B c-good
matrix and its p x (¢ + 1) B submatrix, formed by the last p rows with 0 < p < (¢t —1)B,
is a good matrix. Thus, in view of Lemma 5.8, requirements (i) and (ii) in Definition 5.2
are satisfied.

Now we prove the delay constraint of the code. Suppose y" ™% = (y1,...,yp+1)B) is

an output of the channel. Then in each subvector y'*' = (y;, %15, -..,Vistp), Where

i e {l,..., B}, there is at most one erased symbol. Also note also that 3!t

.~ is a codeword

of the code C4 with generator matrix A, and y/™' = (s;, 8, ..., Bi,_,)A, where s; with
i =1,..., B is the i-th source symbol in a codeword of C’. Since C, is a single erasure
correcting code with delay ¢, source symbol s; can be reconstructed with delay of at most
tB =T. In case i <T — B, the symbols sp;1,...,sr_, are non urgent, that is they can
be reconstructed with delay smaller than 7T'. Notice that generator matrix G’ is universal
in the sense that it can be used for a DO-SBE block code for any y < 7' — B, however
it is not systematic and thus can not be mapped to convolutional codes for the channel
model given in Section 5.2 with the required properties.

(i) Let A = jl be a t x (t + 1) c-good matrix of the form as (5.3), where A; =

2

(I; Op =y a") with a” = (a1,...,a,)", 1 <r <t—1,and Ay isa (t—r) x (t+1) systematic

good matrix. Clearly we can assume that a; = 1. Then we take G’ = A® I and obtain a
G*
tB x (t+1)B c-good systematic matrix G’ = o > , where G* is a B x (t + 1) B matrix

and G is a (t —r)B x (t + 1) B good matrix. We now have 7' = tB and u = (¢t — r)B.

Clearly, the delay for recovering each s; is at most 7" (as in case (i)).

Example 5.13. (i) We construct a 3—(8,6], DO-SBE code, where B = 2 and T = tB =
1 001

6. We choose the 3 x 4 matrix A= 2 2 0 1
2111
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5.4. DO-SBE Block Codes

1
and matrix M = L) We take A® M and convert by elementary row operations the

first B rows in order to obtain

10000010
01000001
o 20200010
222200011
201010710
22111111

Note that the submatrix of G’ consisting of the last T"— B rows is nested good. We
can convey securely k = T — i = 3 source symbols, that is, the channel input vector is

(81, S2, 53, €1, €2, 63)-

Suppose the burst erasure affects either of the positions B + 1,...,T. For example,
x5 and xg are erased. For simplicity of description consider the channel output 3% =
(x1,...24,7,7, 27, 28). Clearly the unerased received symbols correspond to the codeword
symbols. The decoder has to reconstruct the urgent source symbols s; and s, with delay
T = 6, that is, upon receiving y; and yg, respectively. For i = 1, the codeword yj =
(1,3, 5, x7) of C4 has an erasure on position 3 that can be reconstructed upon receiving
x7, since C4 is a single erasure correcting code and thus s; can be recovered by solving

the following linear system of equations
xr1 =81 +7
7 = S + v,
where v = ag1 81, + az1 81, = azi(s3ma1 + exmar) + azi(eamar + ezma).
Similarly, we can recover s upon receiving ys.

Next, suppose an erasure burst occurs in the first or the last B positions. Observe that
we can reconstruct ss, e, es, ez by xs3,..., s and the 4 x 4 nonsingular submatrix of G’
residing at the bottom in the middle. Obviously, we can reconstruct s; and sy with delay

less than T', respectively.

A
(ii) For T'= 6 and B = 2 we choose . = 2. We take the same ¢ x t+1 matrix A = ( 1)

A
1001
=12 2 0 1| asabove, and bring the 2 x 4 matrix A; and the 1 x 4 matrix A, to a
2 1 11
systematic form, such that
1 001
A=10 1 0 1] Note that A, is still a good matrix. Now we take G’ = A® Ip to
1 21 2
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5. Delay-Optimal Codes for a Burst-Erasure Wiretap Channel

obtain
100 00O0T1TO0
01 00O00O0O0T1
o - 001000710 |
00010001
102 01020
0102010 2

with T'=tB =3-2and k =T — pu = 4. Note that for any burst erasure of length 2 s;
with ¢ = 1,2 can be reconstruct with delay of at most 7" = 6 as in case (i) of the example.

Our next construction of DO-SBE codes with a systematic encoder is suitable for every
admissible 7" and B.

G*
First we define a matrix G/ = ( o ) and show that G’ satisfies the conditions in Lemma
5.8.

Lemma 5.14. For ¢ > 2, integers B > 1 and T > 2B, let (IT,QB A) be a (T —2B) x
(T — B) c-good matrix. Then the matrix

Ip Opx(r—2B) OB Ip
G = Ip Opx(r—28) IB alp (5.4)
Or—2BxB  IT-2B A Or_2p)xB

is a c-good matrix and its submatrix G consisting of the last T'— B rows is a good matrix,

where a € F \{0, 1}.

Proof. Recall that a k x n c-good matrix exists for every k,n € N over any finite field (see
4.12). Thus, we have a (I7_sp A) c-good matrix for any B and T' > 2B. Note then that
(by Lemma 5.4) submatrix G; of matrix G

G - Ip Opx(r-28) IB (5.5)
Or—2B)xB  Ir—2B A

is c-good, since (IT,QB A) is c-good. The latter implies (by Lemma 5.4) that G is a
good matrix.
Now observe that by elementary row operations, matrix G’ can be brought to the

following systematic matrix

Ip Opx(r-B) IB (5.6)
Or_pyxp Ilo-p A)’

). Note that (I(T_B) A/) is c-good. Hence, by Lemma 5.4, G’ is

where A" =
Ip

60



5.4. DO-SBE Block Codes

c-good. [

Theorem 5.15. For positive integers T, B, ju, where T' > 2B and y ='T'— B, we have an
explicit construction of a u — [T + B, T, systematic DO-SBE code for any q > 3.

Proof. Lemma 5.14 together with Lemma 5.8 implies that the [T+ B, T'], (¢ > 2) code C’
with generator matrix G’ in (5.4) corrects any B-burst erasures, including wrap around
bursts. Moreover, code C’ provides perfect security and achieves maximum secrecy rate
R, = %. Thus, it remains to be shown that the code can reconstruct arbitrary source
symbol s;, ¢ = 1,..., B, with delay of at most T". We refer to Example 5.16.

Let E(y"™B) < {1,...,T + B} be the interval of bursty positions in y7 5. We have to
show that for each E(y" ) with |E(y"*#)| = B we can reconstruct every source symbol
si, © € {1,..., B}, with delay at most T. We refer only to the urgent symbols. Let
ie{l,...,B}.

Case 1: Suppose that E(y?™?) < {B +1,...,T}. Then s; can be reconstructed using
i-th and (¢ + T')-th unerased positions in y” *# and corresponding columns in G'.

Case 2: E(y'™P) < {1,...,2B—1} and E(y'™P) = {i,...,i+ B—1}. If i = 1, we

can determine sp.1,. .., s7, using the corresponding known symbols yp.1, ..., yr in y? 5.
Observe that s; = ;47 — aspy;. If © > 1, we first determine sq,...,s;_1 as in Case 1.
Consequently, we get sgy1,...,Sp4i—1. Now the source symbols in the erased positions
E(y"*B) can be determined thanks to G; in (5.5).

Case 3: E(y*5) c {(T'-B+2,...,T + B} and
Ey'*™?) = {T—-B+1+i,...,T +1i}. Using ypy1,...,yr_ps; we can determine the
erased symbols yr_gi144,...,yr. Hence, we can reconstruct si,...,sg from yi,...,yr
with delay at most T [

Here we note that unlike low-delay codes (e.g. codes in [¢]), in a secure code, optimal
decoding of source symbol s; (i.e. ith secret symbol) is not guaranteed even if the corre-

sponding code symbol z; is not erased.

Example 5.16. As an example of a code construction in Theorem 5.15, consider the

following matrix

10000710

. 0100001
G’:(G>= 1001020/ (5.7)

¢ 0100710 2

0011100

In view of the theorem (and Lemma 5.14), the code with generator matrix G’ is a
3 — [7,5]; systematic DO-SBE code.
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s1li] v1[i]

sali] -Dk’z vai]
sk,l[.i] - Ve—1]i]

s[i] v ]
C
h
a
el bl
ealil [ il
e,li] 0, [4]

Figure 5.2.: A convolutional code structure based on diagonal interleaving. D! denotes a

delay of i packets.

z[i] = s1[i] + ex [4] 52 [i] + ez [4] es [i] er[i—3]+eg[i—1] |eali —3] +ea[i —2] |s1[i—5]+2e1[i —5] | sali — 5]+ 2ey[i —5]
zli+1]=|s1[i+1]+ei[i+1][s2[i+1]+es[i+1] eai + 1] eifi—2]+eali] |eali—2]+eali—1]|s1[i—4] +2e1[i—4] | so[i —4]+ 2es[i —4]
cli+2]=|s1[i+2]+ei[i+2]|sali+2]+e2i+2] eai+2] erfi—1+es[i+1] | exli—1]+eali] |s1[i—3]+2e1[i—3]|sali—3]+2e2[i—3]
x[i+3]=|sy[i+3]+eg[i+3]|sai+3]+eali+3] es[i + 3] erfi] +esfi+2] exfi] +esli+1] |s1[i—2]+2e1[i—2] | sa[i —2]+2e3[i —2]
wli+d]=|si[i+4) +e[i+4|sx[i+4]+ea]i+1] es[i+4] eyfi+1]+es[i+3] |eali+1]+eali+2] [s;[i—1]+2e[i—1] | so[i —1] +2ep[i — 1]
w[i +5] =|s1[i + 5] +eq[i+5][sz[i + 5] +ea[i+ 5] e [i + 5] e1[i+2]+egli+4] |ea[i+2] +e3i+ 3] s1 [i] + 2eq [i] s [i] + 2eg [1]
i+ 6] =|s1[i + 6]+ ey [i +6][sg[i + 6] + ez i+ 6] e [i + 6] erli+ 3] +esli+5] |ep[i+3] +eafi+4] |[S1lit1]+2efi+1]| s2[i+1]+2eo[i+1]

Figure 5.3.: A secrecy rate-2/7 code constructed by diagonally interleaving the 3 —[7, 5],
DO-SBE block code.

5.5. The Secure Streaming Codes

In the following, we consider codes for the model introduced in Section 5.2. We analyze the
correction capability under delay constraint and the security condition of the convolutional
code obtained by a proper diagonal interleaving applied to a systematic DO-SBE block
code. The mapping from a nested block code (C,C") to a convolutional code is shown
ri] + plil,
,ei]). Furthermore, if

in Fig. 5.2. We note that the channel input packet at time i is z[i] =
where 7 [i] = fi(s[0],s[1],...,s[¢]) and p[i] = hi(e[0],e[1],...

G*
G = is a generator matrix for C’, then r[i] is the packet obtained by diagonal

interleaving applied to the block code generated by G*. Correspondingly, p[i] is the

resulting packet obtained by diagonal interleaving applied to the coarse code C.

Fig. 5.3 shows the convolutional code obtained by diagonal interleaving applied to the
3—[7,5]; DO-SBE code in Example 5.16. The ith line in the semi-infinite array represents
channel packet z[i]. The codewords of the block code appear along the diagonals, as

illustrated by the underlined symbols.
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5.5.1. The Achievability

Our systematic DO-SBE block codes differ from the systematic block codes in [35], [L0].
In contrast to the design of codes that serve only for reliable transmission, the source
symbols of s[i] are not immediately obtained from the channel symbols of z[i]. In our
construction of a convolutional code, the channel packet is produced causally from the

source stream and the randomly chosen stream.

In the following, we analyze the correction capability under the delay constraint and
the security conditions of the convolutional code obtained by diagonally interleaving the
systematic DO-SBE block code.

First, we give two definitions of convolutional codes.

Definition 5.4. An (n,k, u,w,T), convolutional code with encoder memory w and de-
G*
coding delay T is an (n, k, pu, T'), streaming code, constructed as follows: Let G’ = ( o ) .

For any i > 0, we obtain the packet

wfi] = > (s[i = (1 G;m™ + e[i — 1] G{™), (5.8)

=0

where G is a k x n matrix so that
G* = Z szconv (59)
1=0
and G{°™ is a p x n matrix so that
G=> G (5.10)
1=0
By convention we choose s[—1],...,s|[—w]| = 014 and e[—1],...,e[—w], which corre-

spond to i.i.d. sequences of random variables which are uniformly distributed over F#.

Definition 5.5. The mapping from source sequence to code sequence can be defined

by a multiplication with the generator matrix G’ = G*;(Z)U> of the (n,k,p,w,T),
convolutional code:
Gireonv Gureonv - Gycony
greme _ | O GE™ Gt (5.11)
Okxn  Ogxn -+ Gg™
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Ggonv Gionv . Gcwonv
0k><n Geonv .. (qeonv
0 w—1
G = ] ] _ ] (5.12)
Oixn  Opxn -+ G,

where G7™ and G§{™ are respectively k x n and pu x n matrices, | € [0,z]. Note that
(5.11) and (5.12) are truncated matrices.

We review the standard argument of interleaving a blockcode into a convolutional code
[47],[7], where we first address only the correctability of the convolutional code with delay

constraint. A similar lemma was shown by Fong et al. [10].

Lemma 5.17. Given an p — [T+ B,T], DO-SBE block code, we can construct an

(n,k,pu,T,T), convolutional code that is able to reconstruct any B-burst erasure and
*

recover source symbols with delay T. More specifically, let G' = o be the gener-

ator matrix of the p — [T+ B,T], DO-SBE block code. Let g ; with 0 < i < k — 1,

0<j<n—-landg,; withO<i¢<pu—1,0<j<n-—1 be the entries situated in row

i and column j of generator matrices G* and G, respectively. Then we can construct the

n — 1 generator matrices of the (n,k,u,n — 1,T), convolutional code as follows

Gl*com) — 0 dia o On—1—ln—
kxl g(go,l,gl,lﬂ Gn-1-1, 1) ifn—k<l<n-1
Ok 1) (1)
(5.13)
< Ouxl diag(ng? e 7gu—17l+ﬂ_1) ‘ Olu,x(nf/.tfl) ) 1f0 < l <n-— 1%
G = 0.1 | diag(goy, 91iv1- " 5 Gn-1-1n-1)

ifn—p<l<n-—1.
0(p—n+1)x (n—1)
(5.14)

Proof. See Appendix 5.7. n

Intuitively, the codewords of the block code appear along the diagonals of the convolu-
tional code. In other words, the parity check symbols are computed along diagonals of
the convolutional code. Thus if a B-burst erasure occurs, each affected codeword has an
erasure burst of length B or less in the diagonals. Since the codewords are elements of a
delay-optimal B-burst-erasure correcting code, the source symbols can be reconstructed
with delay of at most 7', which is optimal.

Next we analyze the security constraint. In Theorem 5.18 we state that for W > T + 1

in any time interval of length ¢ > 0,1, ..., the eavesdropper has full equivocation. Note
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that the size W of the sliding window is chosen such that the intervals of at most p

packets, observed by the eavesdropper, are separated by T" or more erased packets.

Theorem 5.18. Consider a burst erasure wiretap channel where the eavesdropper can
observe an interval of at most y packets in a sliding window of size T+1. The (n,k, ., T,T),
convolutional code, obtained by diagonally interleaving a u— [T'+ B, T, systematic DO-
SBE block code, attains perfect security.

Proof. Recall that each diagonal in the resulting streaming code is a codeword of the
p—|T+B,T], DO-SBE block code. Thus, the diagonals are independent random variables
taking values from FqT+B. Suppose the eavesdropper observes packets z[i],..., z[i + p —
1], which in fact is a p x (T + B) matrix (as illustrated in Fig. 5.3), and consider
all diagonals containing entries of this matrix. Let S* and Z7*8 (with some abuse of
notation) respectively, be the random variables corresponding to the source symbols and
the eavesdropper’s channel output of the block code which appears along one of the
diagonals. By construction of the block code, we have that H(S*|Z7*B) = k, and this
holds for every diagonal. It follows (from the structure of corresponding block codes)
that the p packets observed by the eavesdropper do not reveal any information about the
source symbols in those packets, as well as in any other interval of ;1 previously observed
packets, since they are separated by an interval of length at least 7. Since k =T — pu, we

get the result. n

We summarize our observations in the following theorem.

Theorem 5.19. We obtain by diagonally interleaving a u — [T+ B, T, systematic DO-

SBE block code a (T, B, ;T + 1), streaming code with k = T — u, n = T + B, which
T—p

achieves the secrecy rate R, = k/n = 7—%.

5.5.2. An Upper Bound for the Secrecy Rate

We consider a periodic erasure channel in the presence of an eavesdropper who can noise-
lessly observe an interval of p packets in any sliding window of size T' + 1 (see Fig.
5.4(a)). Every two successive B-bursts (respectively p-intervals observed by an eaves-
dropper), starting from the first interval of length 7'+ B, are separated by T packets. In
fact, the packet length of the period is ¢ = lem(T + B, T + ).

Let L; be the index set for the packets in the jth period, j = 1,2,.... Let M; < L;
and F; < L; be the index sets of the packets revealed respectively to the legitimate
receiver and to the eavesdropper in the jth period. Correspondingly, Vi, and Vg, are
the observations at the receiver and the eavesdropper (see Fig. 5.4(a)). Furthermore, S;
is a random variable representing the sequence of messages produced by the source in the
jth period, thus S; € Fi“. For an integer h > 1, we use Yj;, to denote Yy, ..., Vas, and

St for Sy,..., 8. Let UM;;+1 and Z/IE}T+1 respectively be observations of the receiver and
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the eavesdropper in the interval of T' successive outgoing packets after h periods in the

stream.
Clearly, to provide optimal delay and perfect security, the following must hold Vh > 1:
H(S!|\V, Uyx ) =0, (5.15)

h+1

H(S!| Vg, Uz ) = H(S}). (5.16)

Note that H(SP) = kfh, using the fact that all source packets have the same entropy.
Denote Wyn) = y]}\}l,UM:H and Wgp) = ygl,uE:H, where M (h) := Ul M; U M},
E(h) := V! E; U E} ;. Then (5.15) and (5.16) imply that

Wk = H(S{Wew) < H(ST, Waa Wem)

= HWumpem | Wem) + H(STWam), Wew)
< HWuayem) = HV ey Unig, ez, )

< hH(Vup\g,) + (T — p).

Denote a = |M;\E}| (recall that [Mi\E,| = [My\Es| = ...). Then, H(Ym,g,) < na. The
latter implies that

ha+T — p h—oo @

It = (h ¢

< (5.17)

k
n
In the case B = p and thus ¢ = T + B, we get H(Yu ) < n(T — p), and hence
R, < %, which matches the secrecy rate in Theorem 5.19.

Next we present a general upper bound. As an example see Fig. 5.4(b).

For positive integers T, B, p with B+ pu < T, let d = ged(T + B, T + p). Thus, we have
B =pu mod d, that is B = t1d + r, u = tod + r, for suitable nonnegative integers ¢4, to, r,

with r < d.

Theorem 5.20. The secrecy rate Rs of a delay-optimal burst-erasure correcting

(T, B, u; T + 1) streaming code is upper bounded by

T? — p(d)*
T (T+ B)(T +p)’

(5.18)
where p(d) = r, if d = 2r and p(d) = 2r — d otherwise.

Proof. Denote J(s) ={s,s+1,...,s+B—1},E(m) ={m,m+1,...,m+ u— 1}, where
0<s<Tand0<m<T+B—pu Let L:=L ={0,1,...,0—1}, B(s) ={te L:i
mod (T + B) € J(s)}, and E(m) ={je€ L:j mod (T + pu) € E(m)}.

Thus, B(s), respectively, £(m), is the set of erased packets, respectively, the set of

packets observed by the eavesdropper, in a time slot corresponding to one period, that is
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Yo Y
YEo Yi1
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(a) The periodic erasure channel with periodic length P = T + B
and B = pu.

g SOOI 0 0 O B " I B B O e

¢——F5 P t——— ">
T+ B T+u

——Fr——(—">
T T

(b) The periodic erasure channel with periodic length P = lem/(T +
w, T + B).

Figure 5.4.: The periodic erasure channel used in proving the upper bound, with indication
of which symbols are observed by the eavesdropper Yy ; (gray squares) and
by the legitimate receiver Y),; (white squares). Crossed squares are erasures
of length B.

within transmission of ¢ packets over the channel. Clearly
(T + B)(T + p) (T +p)B
L] =€ = , IB(s)] = ————, and [E(m)| =

(T'+ B)u
d d ’ ’

d

| Q)

Let @ := min|L\(B(s) u £(m))|. Then, in view of (8), the secrecy rate Ry <
Furthermore, observe that
a = |L| = [B(s)| = [€(m)] + min |B(s) n E(m)].
2

. T*-B )
Hence we get a = Tﬂ + min [B(s) n E(m)].

Our goal now is to determine f(7, B, i, s,m) := min |B(s) n E(m)| (later we use short

notation f instead), given admissible parameters T, B, p.

Note that B(s) nE(m) ={r e L:x =14 mod (T + B),z =j mod (T + u), (i,j) €
J(s) x E(m)}.

Also it is not hard to see that

f=min|B(0) n E(m)| = min |B(s) n £(0)|. (5.19)
The well-known Chinese Remainder Theorem, extended for non coprime moduli, tells

us that a system of congruences x =¢ mod (IT'+ B), z = j mod (T + p) has a solution

iff i = 7 mod d, and such a solution is unique modulo /. Hence,

B(s) nE(m) ={(i,7) € J(s) x E(m) :i= j mod d}. (5.20)
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Obviously we have the following partitions into d classes:

70 = 20), Bm)= | Elm),

where J4(0) = {i e J(0):i=s mod d} and Ex(m) ={je E(m):j=k mod d}.
Note then that in turn (5.20) implies that

|B( !—ZU N Eo(s)(m)], (5.21)

where o(s) € {m,...,m +d — 1} with o(s) = s mod d.
Next we claim that

f = |B(0) A E(r)]. (5.22)

To show this, recall that
B=r(ti+1)+ (d—r)ty and g =r(ty + 1) + (d — r)ts.
Observe then that the latter implies that for 1 <r < d — 1 we have

[Jo(O)] = |4 (0) = ... = [/ (0)) =t + 1,

()] = o (0] = ... = [Ju-1(0)] = 2, and for any m

[Em(m)| = [Emii(m)| = .. = |Epgra(m)] = 12 + 1,

|Epir(m)| = |Epyrii(m)| = ... = |Epya_1(m) = ty; in particular this holds for m = r

(that is for the case we need). In the case where r = 0 we have |J;(0)| = t; and |E;(m)| = t5
fori =0,1,...,d — 1 (and for any m).

Now (5.22) follows in view of (5.21) and the fact that for real numbers a4, ..., a, and
bi,...,b, the minimum of quantity Y, a,,bs,, taken over all rearrangments of these
sequences, is attained when a,, > ... > q,, and b,, < ... < b, .

Furthermore, (5.22) and (5.21) imply that in the case d = 2r we have the following:

fo= rt1 + Dta + (d — 2r)tits + r(ta + Dty = r(ty + t2) + diyts
—T

d

Similarly, in the case d < 2r we have

f = (d—’l“)(tl—|—1)t2+(QT’—d)(tl+1)(t2+1)+(d—7’)(t2+1)t1 = T(t1+t2+2)+d(t1t2—1) =
Bp—(d—r)?
d

= (via simple calculations)

, which implies that for integers T, B, u > 1, with B + u < T, we have

Bu — p(d)*

f= ; (5.23)

Note that for B = pu, we have f = 0, and for d = 1 the equality simplifies to f = Bp.
Thus, we have

T° —Bu  Bu—p(d)?® _T°—p(d)*
d d d

ISP

and hence

68



5.6. Conclusion and Discussion

~ 2 2
Ro<®_ T° — p(d) _
¢ (T+ B)(T+ p)

Remark 4. 1t is easy to see that in the case p < d/2 we have p(d) = r = p, which implies

T _—
that Ry < T+—g Note that the latter holds in a special case when u = B. [

5.6. Conclusion and Discussion

We have provided two constructions of delay-optimal B-burst-erasure correcting stream-
ing codes (or DO-SBE code for short) for a burst-erasure wiretap channel, where the
eavesdropper observes an interval of at most u packets in a sliding window of size T' + 1.
The first construction is suitable for parameters 7' = tB and pu = iB, where ¢t € N\ {0, 1}
and 7 € {1,...t — 1}, and the second is suitable for y = T'— B and any 7' > 2B. While
our DO-SBE block codes that we require for the construction of DO-SBE convolutional
codes achieve the maximum secrecy rate R;, our DO-SBE convolutional codes achieve the

maximum secrecy rate for a special case, that is if B = pu.

Clearly, if we vary the size W of the sliding window of the eavesdropper the maximum

secrecy rate also changes. For example, in the case u < B, if weput W =T+ B — u+ 1,

T—p
T+B

the set of erased packets and observations of the eavesdropper do not overlap. Similarly,

then R, achieves the upper bound since in this case in each period of size T'+ B
we require in case p > B to choose W = 2T+ 2B — 1+ 1 to obtain no intersections
of the set of erased packets and observations of the eavesdropper in each period of size
2(T + B). The question arises whether better secrecy rates can be achieved by converting
DO-SBE block codes into DO-SBE streaming codes for fix W. For future work it would
be interesting to construct DO-SBE streaming codes with a secrecy rate that matches
the upper bound for any B,u < T. Moreover it would be interesting to consider the
same problem for a multi-link scenario, or for a model where the channel injects isolated

erasures.

5.7. Appendix

5.7.1. Proof of Lemma 5.4

Since (IT_B A) is c-good, <—AT IB> is also c-good. We can observe that the parity

check matrix H = (—AT Ip Ip) of the code with generator matrix G is c-good and
thus G as well.
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5.7.2. Proof of Lemma 5.17

Suppose we are given a u— [T + B, T , Systematic DO-SBE block code with the generator
%
matrix G’ = ol We can construct an (n, k, 1, n—1,T"), convolutional code as follows:

For each i € Z* we can construct

xy i), xe [t + 1], ... zn[i + 0 — 1]
= (s1[t],s2[i +1],..., 86 [t + k= 1])G" + (e [i],e2[i + 1],...,e, [t + p—1])G
(5.24)

for each 7. Here we are coding the source symbols diagonally, as illustrated in Fig. 5.3.

From (5.24) to the encoded packet x[i] = xq [i],x2[i],...,x, [i] at time i, we get as
follows:
n—1 gil-‘rl
:1:[2']=Z(sl[i—l],SQ[i+1—l],...,sk[i+k:—1—l]) Ower | ° | Opseniy
=0 *
Ik,1+1
(5.25)
n—1 g1,1+1
+ (el[i_l]7e2[i+1_l]v'”aeu[i—i_:u_l_l]) O,u><l O,uxnflfl
=0 Gu,i+1
n—1 n—1
= sli =1 Gye™ + > eli — 1] G, (5.26)
1=0 1=0
where .
G* = (I P) with G* = Y Gf*™ (5.27)
1=0
and
n—1
G = (I, P) with G = ) G{™. (5.28)

1=0
Since the block code is causal, symbols from future packages can be considered as zero
symbols.

Now, we want to show that the (n, k, u,n — 1,T), convolutional code whose encoding
function at time ¢ is specified by (5.26), is able to decode packet s[i:] with delay of at
most 7T'. For any burst erasure of length B, the u—|[T"+ B, T , Systematic DO-SBE block
code is able to reconstruct symbol s;, t = 1,... &k with delay 7. According to (5.24),
the source symbols are coded along diagonals as illustrated with underlined symbols in
Fig. 6.2. This implies that the destination can reconstruct packet s[i] up to time ¢ + 7'
based on (y[0],y[1],...,y[i + T]), since each source symbol in B-erased consecutive

packets can be reconstructed separately, using the corresponding diagonals. We can see
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that due to the form of the generator matrix G’ it follows from (5.13) and (5.14) that
Gyeomw = (Fxn Geomw = X" for any | > T + 1, thus @ = T. We obtain an (n, k, u, T,T),

convolutional code.

71






6. Delay-Optimal Codes for Parallel
Burst-Erasure Channels with an

Eavesdropper

6.1. Introduction

For streaming applications, we consider parallel burst-erasure channels in the presence of
an eavesdropper. Peer-to-peer networks are subjected to different performance constraints
such as high throughput, low latency and high reliability. However, during transmission
different types of errors can occur, such as clustered and bursty packet losses, which
lead to low-quality video and high delay [18], [19]. The requirements on time-critical
communication systems are challenging, particularly when private or sensitive data must
be transmitted, which needs to be protected against eavesdropping attacks and active
attacks (e.g. payment transmission in a smart shop or machine-to-machine communication

in a smart factory).

Contribution

We consider block codes and streaming codes. We introduce a new channel model for
the transmission of block codes, which we refer to as the block channel model. The block
channel model consists of a sender, a legitimate receiver, M parallel channels and an
eavesdropper. Z links can experience a burst of erasures of length B, while the remaining
links are noiseless. The eavesdropper is able to observe a noiseless copy of any link of his
choice. He is able to switch between the links at any time. His restriction may be due to
the fact that he has access only to certain frequencies in a wireless system or to individual
nodes in a distributed storage system, e.g. because of his location, or on purpose to
remain undetected. For T'> B and Z = M — 1, we give explicit constructions of M-link
codes over a small finite field IF, that provide perfect security (i.e. the eavesdropper can
obtain no information about the message) and provide zero-error decoding with minimum
possible delay. More precisely, we distinguish two cases in the construction: 1) M is odd
and the code is binary and 2) M is even, where g > 2.

Our block codes can be mapped to M-link convolutional codes for the streaming channel

model, where we assume that in each of the Z links a burst erasure of at most B packets
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can occur in any sliding window of a fixed size, and where the eavesdropper can observe
one link of his choice noiselessly. The M-link convolutional codes provide perfect security
and provide zero-error decoding with minimum possible delay. Our codes achieve the
maximum secrecy rate for the channel models.

Moreover, in Section 6.5 we consider two similar models as in Section 6.2, with the
difference that the erasures in the main channel are caused by an active eavesdropper and
not by the noise. Furthermore, in the first model the eavesdropper is able to cause a burst
erasure of a fixed length in any single link. In the second model he can erase the complete
link. In addition, in the first model the eavesdropper is able to observe any interval of
length at most p in any link and in the second model he is able to observe any complete
link. For some admissible code parameters, again we first construct delay-optimal block
codes that provide perfect security, and then covert them to delay-optimal convolutional
codes that again provide perfect security in the respective setting. For both models we
construct codes that achieve the maximum secrecy rate for the channel models.

The mapping of a delay-optimal block code for a single link scenario (i.e. for a burst-
erasure wiretap channel) is shown in Section 5.5 and can be extended in a straightforward
manner to a multi-link scenario. For a single link without an eavesdropper, the authors
in [10] describe the mapping of delay-optimal erasure block codes to convolutional delay-
optimal erasure codes in detail. As in the previous works, we use causal codes. This

enables us to recover source symbols with a minimum possible delay (see [30]).

Related Work

In [35], Martinian considered an adversarial multi-link model where bursts of erasures are
injected in a single link. In [11], delay-optimal burst-erasure codes for parallel links were
designed for two types of errors - erasure burst and link outage. Additional works devoted
to low-delay coding can be found in [11], [12], [13]. We refer to Section 5.1 where more

works related to low-delay communication systems can be found.

QOutline

In Section 6.2, we describe the channel model in the streaming setup. In Section 6.3, we
describe the block code channel model and construct codes for that channel. The section
is divided into the achievability part and the converse part. In the achievability part, we
present explicit constructions of M-link codes for T'> B and Z = M — 1 over small finite
fields for the channel model. The converse part is proved by using the entropy argument.
In Section 6.4, we discuss the mapping from M-link block codes to M-link streaming
codes for the channel model given in Section 6.2. Section 6.4 is also divided into the
achievability and converse part. In Section 6.5, we consider two similar but simplified

models as in Section 6.2.

74



6.2. The Channel Model

6.2. The Channel Model

We consider an M-link channel consisting of a source and a sink to convey secure messages
to the legitimate receiver in parallel. At time ¢ > 0, the randomized encoder observes a
source packet s[i], and transmits each channel packet z [i, j] on the corresponding link,
where 7 = 1,..., M. The source packet consists of k£ symbols, while each channel packet
x [4,j] assigned to link j consists of n symbols over a common finite field F,. In the
streaming setup, we assume that in each of Z links a burst of erasures of length no longer
than B packets can occur in any sliding window of size W', and where the eavesdropper
can observe one link of his choice noiselessly. The sliding window model is considered in

many previous works (e.g. [12], [L0], etc.).

An (n,k,pn,T), M-link streaming code for an M-link channel model with an eaves-
dropper as given above consists of a set of M encoding functions {¢; ; }Jj\il and a decoding
function ¢;, where 7 is a time unit.

Encoding: The random encoding function &;; : IF’;'(HD X Fﬁ;'(iﬂ) — [} takes in
a source packet sequence {s[i]},., together with an encoder packet sequence {e[i]},.,
and maps them causally” into a packet z[i,j], consisting of n symbols over the same
finite field F,. In other words, z[i,j] = & ;(s[0],s[1]....s[i],e[0],e[l]....e[i]) =

Fi(s[0],s[1]...,s[i]) + fi;(e[0] ,e[1] ..., e[d]). Each source packet and encoder packet
consists of k symbols s[i] = (si[i],s2[i],....sx[i]) € Fr and p symbols
eli] = (e1[i],eali], ..., eui]) € F4, respectively.

Decoding: At the legitimate receiver, the decoding function ¢;.r : (Fy u {?})" (i+14T)
— F’; is defined as a packet decoder operating with delay 7', that is,
sli] = ¢isr({y[0,7], ..,y + T — 1, 4], y[i + T, j]}]]\/il) The secrecy rate of the code is
defined as: R, = k/n symbols per time unit. Note that in the initialization phase, i.e.
for i < 0, where Eve is not able to observe the whole link noiselessly (i.e. <7 + B) a
constant number of random packets e[i] must be securely transmitted to ensure perfect
reliability in the first T" transmitted packets. Since in the initialization phase the number
of pre-transmitted packets is constant, the resulting rate loss quickly converges to 0 as

the number of packet transmissions grows.

Definition 6.1. We denote an (n,k,u,T), M-link streaming code as a
(T, B,p, Z; W), M-link streaming code if the code can recover source packets with de-
lay T', even if in each of the Z links any burst of at most B erasures has occurred in a
sliding window of size W = T + 1, and if the code provides perfect security, even if the

eavesdropper is able to observe a complete link, that is, yt = n.

! In an M-link channel the windows can be seen as an M x W matrix with packets as its entries. If any
of the Z bursts affect source symbols that are coded at time ¢ in the corresponding links, the decoding
deadline for all source symbols that are coded at time i is i + T, i.e., Wy = {i,i+ 1,...,i + T}.

2The code is causal if in the encoding function the current channel packet is a function of the current
and previous source/encoder symbols.
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—

Sender ——| (T T IX[X[x[ ]

\_Z“,
1 Eavesdropper

Figure 6.1.: The channel model described in Section 6.3 with M = 3, Z = 2, T = 4,
B =3 and n = = 7. Crossed squares illustrate erasures. The eavesdropper
observes any link j € {1,..., M}.

D Receiver

6.3. The Secure B-Burst-Erasure correcting M-Link
Block Codes

We define M-link block codes over F, for small ¢ that we can apply to construct convo-
lutional codes for the model introduced in Section 6.2.

We consider channel symbol blocks of length n for each link 5, j=1,... M. Z =M —r
links experience erasures while r links remain noiseless. We assume that the erasures occur
as bursts of length B. Let 2 < {1,..., M} be the set of links where the erasure bursts
have occurred, and %; < {1,...,n} the set of B consecutive positions where the erasures
have occurred on link j € 2. Then the erasure pattern 2 = {(J, Bj)} o Where | Z| =7
and |#| = ZB. The transmitted symbols z[j, 7] € IF,, generated at time ¢, can either be
erased or passed to the receiver noiselessly, so that the receiver observes either y[j,i] =7
or y[j,i] = z[j,4], where ¢ = 1,...,n. Moreover, the eavesdropper is able to observe p
out of Mn symbols noiselessly. We consider an eavesdropper who observes a noiseless
copy of any link of his choice, i.e. = n. He can switch from x[j, ] to z[j’,i + 1], where
J,7'€{l,..., M}. Fig. 6.1 illustrates the channel model with three links.

It is assumed that a uniform source produces k& symbols over the finite field FF,. The
code operates as follows.

Encoding: Consider a set of M random encoding functions {Ej};\il The random
encoding function Ej : FF*# — F? takes in a source vector s* € F¥ and maps it together
with a random encoder vector e € Y into 27 € Fy', where k + p=:mand j =1,..., M.
The secrecy rate of the code is defined as: R, := k/n.

Let s[i] = (s[1,1],...,s[F;,i]) and e[i] = (e[1,1],...,e[L;,i]) be the sub-vectors of s*
and e respectively, where F; and L; are the numbers of source symbols and encoder
symbols respectively, injected at time i, ¢ = 1,...,n. At time i, the random encoding
function E;; generates the output z[j,i7] = E;;(s[i],e[i]), where E; = {E;;}}" |, k =
ST Fand p = S0 L

In the case where the code is causal, z[j,i] = Ej;(s[1],...,s[t],e[l],...,e[7]), with
j=1,..., M.
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Decoding: At the legitimate receiver, the decoding function D : (F, u {?})"*M — F:
maps the M channel outputs y7 = (y[j,1],y[j,2],...,ylj,n]), j = 1,..., M into the
reconstructed source symbol vector §* € IF’;.

We define a decoder operating with delay T as D;q : (F, U {?7})0+1>M — B that is,
§[il = Dir({yli 1] 905, 2] oyli i + T i = 1,k

We require codes that recover source symbols with delay T" and perform zero-error
decoding, i.e. 8 = s*. In formal terms, H(S*[Y",...,Y}%) = 0. Moreover we require
perfect security, that is H(S*|Z") = H(S*), where Z" € F} is the observation at the

eavesdropper.

Definition 6.2. An [Mn, k|, M-link code C' (that is we spread the vector of length Mn
into M equal sized sub-vectors to transmit them over M links), capable of correcting any
set of Z erasure bursts of length B such that Mn—k = Z B, which in fact is the maximum

possible, is called an optimal Z B-burst-erasure correcting M-link code.

For our purposes, we reformulate Proposition 4.1 to specify the necessary condition for

a burst-erasure correcting M-link block code.

Proposition 6.1. Let C' be a linear [Mn, k], code and let < % = {1,...,Mn} be
an erasure pattern that is the set of positions where erasures occur. Let Eg be the
erased symbols. Then C' can recover Ey iff the columns of a parity check matrix Hg
corresponding to indices in % are linearly independent, or equivalently, iff the columns of

a generator matrix G¢ corresponding to indices in #\% have rank k.

Next we provide causal M-link block codes for the channel model given in Section III,

where Z = M — 1.

Theorem 6.2. For the admissible parameters T' > B, ju, M,Z = M — 1, and a suitable
finite field F,, there exist causal delay-optimal M-link codes that are able to recover
source symbols with optimal delay even if Z B-burst erasures occur, where each B-burst
erasure occurs on a separate link, and perfect security is provided even if the eavesdropper

observes any link noiselessly, with maximum secrecy rate

k' m-—u ZB (M -1)T
R T 1
h n n T+ B T+ B (6.1)
Proof. We divide the proof into the achievability part and the converse part. |

Remark 6.3. In (6.1), for the two last equations we use 1 = n. =~ is the more general

expression, where m = Mn — ZB.

Remark 6.4. We can also use the block codes for a delay-optimal M -link channel model,
where the eavesdropper causes the erasure bursts of length B in any Z links and observes

a copy of any link.
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For o = 0, R, degrades to the rate in [11, Theorem 1, for L = 0], which is the maximum

possible for the multi-link scenario (without security constraint).

6.3.1. The Achievability

We deal with secure nested block codes described in 4.3.1. The block code for the M-link
channel has M samples for a given ”"time unit”, thus we write the encoder output for
link j with j =1,..., M as 2} = (z[j, 1], 2[,2],...,z[j,n]). The pair (j,7) indexes the
position of a symbol within the M-link coding block. Let GM~tn* = (G ||---|| Gyr) with

G* , G*
Gi=| 7| forj=1,...,M, or GM-link = for short. We represent the encoding
J e o’

operation as (z7 || -+ || 2) = (s*,e*) - (G1 ||+ || Gar), where G, is an m x n generator
matrix for link j = 1,..., M. GM~l"* is an m x Mn generator matrix for the outer code
Cand G' = (G} ||... || G%) is the u x Mn generator matrix for the coarse code C’, thus

. G
C' = C. GM7lnk consists of equal sized submatrices G; = (Gi ) .
J

In the following, a slight modification of Theorem 4.11 yields the conditions for an
optimal burst-erasure correcting nested M-link block code C' that provides perfect security

(without delay constraint).

G*

!/

Lemma 6.5. Let GM~link — ( ) be an m x Mn generator matrix for a linear M-link

block code C', where G is a jux Mn submatrix of GM~Y"%  Then C'is an optimal | %|-burst-
erasure correcting M-link code that can convey k = m — pu symbols with perfect security

and achieves the maximum secrecy rate Ry = = if the following three conditions are
tulfilled:

(a) m > p,

(b) the columns of GM~1"k for code C' are linearly independent on positions %\,
where .# = {1,...,Mn} and || = Mn — m (see Proposition 6.1),

(c) the columns of G' on position {i,...,i,}, the non-erased positions at the eaves-

dropper, are linearly independent.

In the sequel, we show that constructions for delay-optimal M-link codes satisfying (a),
(b), (¢) have the same maximum secrecy rate as the corresponding constructions for codes
satisfying (a), (b), (c) without delay constraint.

We provide codes for T'> Bandn=p=1T + B.

Next we show the tradeoff between r, T, B, M, k.

Proposition 6.6. Let k = tT, where t € N, and let r be a positive integer such that
|%B| = (M —r)B. Then M-link block codes for our channel model, which provide perfect
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security and recover source symbols with delay T', must satisfy:

i t=M+(i—2)and T =B
r=141 t=M-1andT > B
Z4+1 t=MandT > B.

Proof. According to Lemma 6.5, we have (M —r)B = M(T+ B)— (k+pu) = (M —1)(T +
B) — k, with p = T + B. We choose k = tT to ensure that for any burst pattern the
source symbols injected at time 4, that is s[i], can be recovered with delay T" using G_r
(see (5.2)) in each link. Thus, r = L(t — M) + L + 1. m

Note that F; =t for i = 1,...,T. Also note that in Proposition 6.6 we do not make a
statement about the existence of a code for our channel model.

Corollary 6.7. For T > B, a code as described in Proposition 6.6 is able to recover at
most (M — 1) B-burst erasures.

We use the result of Proposition 6.6 for the case where r = 1 in the following theorem.

Theorem 6.8. For Z = M —1, k = tT witht = M — 1 and for a suitable, small field size
q, there exist M-link codes for the channel model described in Section 6.3 that satisfy the

properties in Theorem 6.2.

Proof. In the following, the source symbols injected at time ¢ = 1,...,T are specified as
s[i] = (i, Sis1, - - -, Si+@—1yr) and the encoder symbols injected at time i = 1,...,7 + B
as e[i] = e;.

For a code that is able to recover M —1 bursts of length B (each occurring on a separate
link) within delay 7', and that provides perfect security if an eavesdropper is observing
noiselessly a link of his choice, we first select a proper field size ¢ = p™, where m > 1 is an
integer. For odd M > 2, we choose p = 2 and for even M > 2, we choose any prime p > 2,
with integer m > 1, so that a [T'+ B, T, linear code with systematic generator matrix
G_r (as in (5.2)) can be constructed. For odd M, define @ = 1. For even M we choose
any a € IF,\ {0}. We require (M — 1) mod p # 1 and (M —2) mod p # 0. The former
is required to ensure the linear independence of the columns at non-erased positions in
GM-link Ve will deal with the case M = 2 later. For any ¢ = p™, we can always choose
G_r for a code over F,, while maintaining its properties (i.e. G_r is still a generator matrix
for a delay-optimal B-burst-erasure correcting code).

Encoding: The encoding matrix of code C' is

GM—link _ G/ _ U®G.r : (6.2)
G L®I,

where U = (I(y—1) a™ ') is an (M — 1) x M matrix, ¢! is a column vector of length

M —1 and L is an M-length row vector with ones as its entries, except the last one, which
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is a (see Example 6.9). Note that the constructed code is causal by observing the source

symbols s[i] and the encoder symbols e[i] injected at time ¢ and the corresponding matrix

(e
G

For the case where M = 2, constructions for a delay-optimal code that meets the

G, j=1...,M.

conditions in Lemma 6.5 exist for 7" = B. The generator matrix for the code over F, with

G2-link _ G Opxas
Loy  Iop

Decoding: Now we want to show that for M > 2 and any admissible erasure pattern

q=2is

A we can recover any source symbols s [i] with a decoding delay not exceeding T'. For
simplicity of description we divide the source vector s* into equal sized sub-vectors s;fr, J =
1,...,M — 1. Define & < .# = {1,..., M} as the set of links where the erasure bursts
have occurred. With a slight abuse of notation, denote the noiseless link as .#\ 2. Let
By < {1,...,T + B} be the erasure pattern in the last link. In the case where .#\ 2 #
{M}, we first subtract the correctly received vector yiftgp = x%@ (after multiplying it

by a) from the vector transmitted on the last link. Then erasures on %), in the resulting

vector ci P =yl ¥F — ax?/;;r\gf can be reconstructed by aG_r (within delay T"). Note that
the sum of M —2 codewords encoded by aG_7 results again in a codeword of the linear code
with generator matrix aG . Thus we can determine 21,/ = 17 + ax;j\gp. Hereafter,
aij“B with j € 2\ {M} can be subtracted sequentially from the last link to obtain x?*B :
Finally, when M is odd, we only need to reconstruct e?*8 = 78 — (z1+5 4 4 271 +5)

to get SJT = x]TJFB —eT*B. When M is even, we obtain T + B (of which we only need
T) linear systems of equations with M — 1 equations and M — 1 unknowns, each. If we

convert the M — 1 equations to matrix form then we get the following (M —1) x (M —1)

0 a DR e a
: a 0 a - a : o :
matrix A = ) o _ |, where the entries m;; = 0 if ¢ = j and a otherwise.
a :
a a .. e O

To show the full rank of the matrix we can calculate the determinate of the matrix using
the Leibniz formula. We see that Hf‘i;l Mio;) = 0 if there is a permutation with a fixed
point, where o (i) is the function value of the permutation o at the point i and the set of

all such permutations, the so-called symmetric group, is denoted by Sy;_1. Thus we get

det(A) = o™~ (| {0 € Spr_1: fixpointfree, sgn(o) = 1} |

— |{o € Sp-1: fixpointfree, sgn(c) = —1}|).

According to [50], for even M (the number of even derangements - the number of odd
derangements) = M — 2 so that det(A) # 0 if p 4 (M — 2). Thus we obtain unique
solutions due to the condition (M — 2) mod p # 0. In the case where .#\Z = {M} we
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can immediately start by determining x;‘-m“B ,with j € Z. If M —1 mod p = 0, we can
recover the source symbols as is the case for odd M.

Note that each s|i] can be recovered within delay T, since G_r is the generator matrix of
a B-burst-erasure correcting code with decoding delay 7. Also note that G is cyclically
good, that is every T cyclically consecutive columns of the matrix are linearly independent,
j=1,..., M.

The decoding process for the case where M = 2 is obvious.

Security: Note that each matrix G is cyclically good. According to Lemma 6.5(c), the
code provides perfect security in the case where the eavesdropper observes any link of
his choice, that is 4 = T+ B. Moreover, perfect security holds, even if he switches from
x[g,1] to z[j’,i + 1], where 5/ € {0,..., M}\{j}.

In summary, we obtain an [M(T + B), MT + B], code that satisfies Lemma 6.5 and
additionally, can reconstruct the source symbols within delay 7', despite bursts occurring

that are arbitrarily positioned in the arbitrary M — 1 links. [

Observe that for 7' < B and Z = M — 1 we get m = pu, so that Lemma 6.5(a) is not
fulfilled and therefore no code exists for the channel model described in Section III with
a positive secrecy rate.

We give an example for "> B and r = 1.

Example 6.9. ForT =3, B=2, M =4 and Z = 3 we select ¢ = 3 and a = 2. Then we

have
G3 0345 0345 2G3

GA-tink _ 03.5 G3 03x5 2G3
03><5 03>< 5 G,S 2G,3
Is I, I, 2l

, (6.3)

1 0010 1 0 0 2
whereG3=|0 1 0 0 1|,U=]10 1 0 2|andL = (1 11 2). Suppose that
00111 0 01 2

the bursts of erasures have occurred on links 1,2,3 and suppose that on link 3 the first 2
positions are erased, such that y5 = (7,7, c3,ca,c5). Let Ci; = 592G 3 +s§?2G73 = 25— 217,
where | € {1,... ,3}\{3,]} and j,j € {1,...,3} with j # j. First we determine Ay =
$12G 3+ 552G 3 by ¢} , = x} — 223. Since the output transmitted over the last link passes
the channel noiselessly (that is y; = z3) and the output on link 3 has erasures in the first
two positions, we obtain (7,7, c3,cq,¢5) = ) — 2y5. Now, according to Theorem 5.5 we
can recover the erasures in (?,7,cs, ¢4, ¢5) to obtain ¢}, (and thus x3) by the code with
generator matrix 2G5 within T = 3. Similarly, we determine ¢} 5 = 532G 3 + 532G 5 and
53 = 552G 3 + 532G 5 by calculating x} — 2y and x§ — 27, respectively, and by the
code with generator matrix 2G 3. Then we can recover the source symbols as described

for the odd case, since 3 mod 3 = 0, that is by calculating s? = x] % — ¢"*5. Thus
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the source symbols injected at time i can be recovered within delay 3. Observe that
s[1] = (s1, 84, 87), $[2] = (s2, 85, g) and e[1] = ey, with F; =3 up toi =T and L; = 1 up

tor =n.

6.3.2. The Converse

We provide the converse result of Theorem 6.2. We proceed as in [141] where we prove the
upper bound on the secrecy rate by contradiction.

In the following, random variable X™\Y;,...,Y; with 1 < ¢ < j < n corresponds to
realization (zy,...,%—1,Tjt1,...,Zn). T[a,...,b] is denoted by z[a : b]. We assume that
the source symbols are i.i.d. uniform distributed over IF, and thus H(S) = log, |F,|. We

start with a useful lemma.

Lemma 6.10 (44]). Let X" = (Xy,...,X,,), withn > 2. IfH(S) > 0 and H(S|X™\X;) =
0, i=1,...,n, then H(X") <", H(X;).

Next we derive the upper bound for k, that is the number of source symbols that we
can securely convey over the M-link channel model described in Section 6.3. Let XM" be

the random variable of the realization (7 ||---|| %).

Proposition 6.11. In an M-link channel model, where on any of the Z links, respec-
tively, any B-burst erasure can occur and where an eavesdropper can choose i symbols

to observe, from F,, one can convey securely and with zero-error decoding, at most
k=Mn—Z2B—p (6.4)

symbols, on the condition that Mn — ZB > p.

Proof. For ease of description, let 2" = F}™ and 2" = F/. (6.4) follows from the

following two conditions:
H(S* XY™ X 5) =0, (perfect reliability) (6.5)

H(S*|Z") = k, (perfect security) (6.6)

where XM\ X2 € MNP and 2* < 2M" are the random variables of the revealed
symbols at the legitimate receiver and at the eavesdropper, respectively.

Let & = {1,...,Mn}. If p > Mn — ZB, and the set of positions ¥ = f\,@ of the
revealed symbols at the legitimate receiver and the set of positions of the revealed symbols
& < . at the eavesdropper are chosen so that £ < &, we have H(S*" XM\ X,) >
H(S*|Z"). Hence, conditions (6.5) and (6.6) do not hold for this case. Suppose now
< Mn—ZB and &,.Z are chosen such that & < . Then we have the following
necessary condition for achieving (6.5) and (6.6): k = H(S*|Z") — H(S*| XM™\ X ;) <
(Mn — ZB) — p, which is Proposition 6.11. m
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| Time [1[]2[3]4[5] [ Time [1]2][3[4]5]
Link 1 | X | X Link 1 | X | X

Link 2 | X | X Link 2 | X | X

Link 3 | X | X Link 3

Link 4 Link 4 X | X

Figure 6.2.: On the left, the table illustrates %, = {It}le and on the right &, =
(LY UJ((4,4) : (4,5)for T=3,B=2n=pu=5 M=4and Z = 3.
Crossed squares illustrate erasures.

For the case T' > B, we want to show that,
T>n—B. (6.7)

Suppose for a contradiction that 7' = n—B—1. Then s[1] must be reconstructed from time
n—B at the latest. Let S; be the random variable of s[1]. We divide each 27,7 =1,..., M
into distinct segments of length B, except the last positions, to obtain z[1: M, 1 : (n—B)].
Let X« (n—p) be the random variable of realization = [1: M,1: (n — B)]. Furthermore,
let Ng := [“52] be the number of segments in each 27. Let I;1 = {(j,1),...,(j, B)} . L2 =
{(,B+1),...,(5,2B)},....in, ={(y NgB—B+1),...,(j,n—=DB)},j=1,...,M be
the index sets of the segments. Overall there are M Np segments and we index them as

]1 = ]171, _[2 = ]2717. . IM+1 = ]1727. . IMNB = IM,NB-

We consider the following erasure patterns B, = {1 f;ll Ulz-14i,i=1,...,MNp—
Z + 1. We refer to Fig. 6.2 for an example. We assume that S; can be reconstructed at
n — B, which implies that H(SﬂXMx(n—B)\X@) = (0. According to Lemma 6.10, where
S=Sand X;=X;, ., i=1...,MNg—Z+1, we have

MNp—Z+1
H<XMX(W—B)\X{It}tZ:_11) < Zi:l H(XIZ71+1')
=k+upu—(M-1)B, (6.8)
where (6.8) follows from (6.4).
Now suppose the bursts of erasures occur on position

PBo = {1} UM, n— B +1),...,(M,n)}, as illustrated on the right side of Fig. 6.2.
Let X(ar—1)x 5 be the random variable of z [1 : (M — 1), (n — B + 1) : n]. Furthermore, let
us denote XMX(n*B)\X{It}tZ:EI as the random variable of realization z [Z : M,1: (n — B)]
together withz [1: (Z —1),(B+1): (n — B)]. For p = p/+p”, let Z,, and Z,,» be the ran-
dom variables of 2z, and z,, where 2z, = x[M-1,1:(n—DB)] and
2y = x[M—1,(n—B+1):n]. Let XMX(nfB)\(X{It}tZ;’Zu’) and X(y—1)xp\Zuw be
the random variables of symbols revealed to the legitimate receiver, except the sym-
bols observed by the eavesdropper. The source symbols S* must be reconstructed from

XMX(”*B)\X{It}tZ:_ll and X(Mfl)xBa hence,
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(S ‘)(]\4>< (n— B)\X{It}z 1 X(M 1)><B) = 0. But

0= H(Sk‘XMx(nfB)\X{]t}tZ;IM Xm-1)xB)

> H(S") + H(Xarx-5)\X(g2-1, Xr-1yx5/S*)

- H(XMX(H—B)\(X{Jt}tZ:—11> Zyw)) — H(X(a-1)x8\Zp)
— H

a)
(Z,) = H(S") ~ H(Xarxoe)\(X g2 Z))
— H(X(m-1)xB\Zur)

Y (k4 p— (M=1)B— )= (M=1)B— ") =0, (6.9)

where a) follows from (6.4), where

H(XMx(n—B)\X{]t}tZ:_117X(M—l)xB|Sk)
> H(Xnrxn-8)\X g 7-1, Xow-1yx) — H(SY)
=(Mn—-2ZB)—k=p

and  H (Xarxm-5)\X{p,y2-1, Xo-1xplS*) — H(Z,) = 0. D) follows from (6.8) and
H(XMX(nfB)\(X{Jt}Z 1 Zw)) = H(XMX(nfB)\X{It}f:—ll) - H(Zy), H(X(Mfl)xB\Zu’O =
H(X(v-1)x) — H(Z,»). As a consequence, we obtain by (6.4) and (6.7),

k ZB+
=—-< M- , 1
B n T+ B (6.10)

which matches the secrecy rate in Theorem 6.2 for y =7 + B and Z = M — 1.

6.4. The Secure Streaming Codes for the )M -Link

Channel

In this section we briefly discuss the mapping from M-link block codes to M-link streaming
codes for the channel model given in Section 6.2. We use diagonal interleaving to obtain
M-link streaming codes from M-link block codes described in Theorem 6.2. A detailed
description of the mapping for the case where M = 1 is given in Subsection 5.5.1. The
extension to the case M > 1 is straightforward.
We define the mapping of an M-link convolutional code that has encoder memory w,
. G*
from a causal and nested M-link block code with generator matrix GM—tink — (G’
Definition 6.3. An (n,k, p, @, T), M-link convolutional code with encoder memory w
is an (n, k, g, T'), streaming code for an M-link channel with an eavesdropper, constructed

as follows: For any i >0 and j = 1,..., M, we obtain the packet

=D (s[i =G + e[i = 1 GF™), (6.11)

=0
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where G797 Is a k x n matrix so that

n—1

G = Y G with GF = (G |-+ || Gy (612
1=0
and ;Cl""” is a jt X n matrix so that
n—1
G, =) G with G = (G ||+ || Gyy). (6.13)
1=0
By convention, we choose s[—1],...,s[—w| = 01xx and e[—1],...,e[—w], which corre-

spond to i.i.d random variables over F#'.

Here ;fgm’ = G;, and G3" corresponds to the [-th diagonal (starting from column )

of G_r in the corresponding link 7, and zeros elsewhere.

6.4.1. Achievability

We provide (n, k, 1, T), streaming codes for an M-link channel, where Z = M — 1 burst
erasures of length B < T can occur, each on a separate link, and where the eavesdropper

can observe any link noiselessly.

Theorem 6.12. For the admissible parameters T, B, u, M, k, q, there exists a (T, B, i, M —
1;T + 1), M-link streaming code as given in Definition 6.1, with secrecy rate
k- (M—-1)T

R,=—="""7 6.14
n T+ B ( )

obtained by diagonal interleaving causal M-link block codes described in Theorem 6.2.

Proof. In each link, each diagonal in the resulting M-link streaming code is an output
xJTJrB of the M-link block code, where j = 1,..., M. Thus, all M-tuples of diagonals are
5 1p Fig. 6.4, an M-tuple of

diagonals is underlined. The obtained M-link code allows us to reconstruct the source

independent random variables taking values from ]Féw

packets induced at time ¢ with delay of at most T". This follows from the property of the
corresponding M-link block code, since each source symbol in (M — 1)B erased packets
can be recovered with delay T', using the corresponding tuple of M diagonals.

Moreover, in Theorem 6.2 we see that due to the form of the generator matrix GM—1"* it
follows that ij"m’ = O7x(1+B), G;ff”” = Or4+Byx(r+p) for any [ = T+ 1, thus W =T +1,
and we can recover any burst of B erasures in link j as long as they are separated by at
least T" packets.

It remains to be shown that the code also provides perfect security. Let S¥,
XI+B ,XAT;FB and Z* respectively, be the random variables corresponding to the

source symbols, the output of the M-link block code with realization
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Yeo Ye
Link1 O TTTTTTTTITITITT] ---
Link 2 [ [x[x[ [ [ [X[x[ [ [ [X[X[ []---
D By T
Link M [X[X[ [ [ [X[xX[ [ [ [x[x[ [ []---

Figure 6.3.: The M-link channel used in proving the upper bound for 7' > B, with indi-
cation of which packets are observed by the eavesdropper Yz ; (gray squares).
Y(1\E), is indicated by white squares. Crossed squares are erasures of length

B.

(@1 P || -+ || «3;”) and the observation at the eavesdropper, where Z* € F¥. Re-
call that the eavesdropper can observe any link j, that is 4 = T + B. According to
Lemma 6.5 (c¢) (see also [1]), related to our model, perfect security is achieved iff the
matrix G for each j = 1,..., M is a (T'+ B) x (T'+ B) c-good matrix. The latter implies

ZT+B can be obtained

that each coset of C” has the same number of vectors from which
by (M — 1)(T + B) erasures. This means, by construction of the M-link block code that
we have perfect security, that is H(S*¥|Z7+5) = k. Now suppose the eavesdropper ob-
serves any link 7. Consider every M-tuples of diagonals of length T" + B separately. Let
S% be the random variable that corresponds to the source symbols of the M-link block
code which appears along the M-tuple diagonals, and Z7+? be the random variable that
corresponds to the eavesdropper’s channel output of the M-link block code which appears
along one of the M-tuple diagonals. By construction of the M-link block code, we have
that H(S*|ZT*B) = k. Thus, the mutual information I(S*; Z7"8) = 0 and this holds
for every M-tuple of diagonals. Furthermore, note that for any time unit ¢, the symbols
in packets x[i, 1], ..., z[i, M] are equiprobable and any 7'+ B consecutive packets in any
link are mutually independent. This follows as the codewords are i.i.d. vectors.

Thus any T+ B consecutive packets observed by the eavesdropper in any link j do
not reveal any information about the source symbols in those packets, as well as in the
remaining (M — 1) x (T + B) packets, and in previously observed packets. This is also
true when the eavesdropper changes the link it is observing.

Since k = M(T + B) — (M — 1)B — (T + B), we get the result. ]

6.4.2. Converse

Let I, = {1,...,P} and [ = {[j}jj\il’ j =1,..., M respectively, be the index set for the
packets in one period of length P = T+ B in link j and in link 1,... M. Let L < I
and £ = I;, j = 1,..., M respectively, be the index sets of the revealed packets at
the legitimate receiver and at the eavesdropper. In the ¢-th period, Yz, and Y7, are,
respectively, the observations at the eavesdropper and the legitimate receiver. Fig. 6.3

shows the time slots and the size of Yy for the case when 7' = 3 and B = 2. We assume
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that W = T + 1, that is, in each of the M — 1 links the erasure bursts of length B are
separated by T non-erased packets.

For any integer h > 1, we use YLh70_1 to denote Y7,0,Y71,..., Yz n—1. We require a coding
scheme that provides perfect reliability with delay T" and perfect security for each h > 1,
that is,

H(Sp™ |Y£61, ULn) 0, (perfect reliability) (6.15)
H(Sg_1|Y£51, Ugyn) = H(SE™), (perfect security) (6.16)

where Uy, and Ug, are, respectively, observations of the receiver and the eavesdropper
in the interval of MT and T successive outcome packets within the hA-th period, that
is |Upp| = MT and |Ugy| = T. Furthermore, S; is a random variable representing
the sequence of messages produced by the source in the i-th period, thus S; € Ff * and
H(S;) = P -k. We assume that all source packets have the same entropy. Denote
Wiy = Yﬂal,UL,h and Wg), = YEh’El,UEﬁ. Hence, for achieving (6.15) and (6.16) we

have the following necessary condition:

h-P-k=H(SI Wegp) < HSEY, Wi Wea)
= HWwe)yp|Wen) + H(Sg_lwa,h, Wgh)

< HWwmn) = HY by 0 Uwie)p)

< hH (Y g o) + n(MT —T).

The latter implies that

k <Im—i—]\4T—T;HOO a

R, =~ < = 5 (6.17)

3|

where a = |(L\FE), 0], that is H(Y(1\g)0) < na.
For the case T' > B, we have |L| = M(T + B) — (M —1)B and |E| = T + B in each

period. We obtain the following theorem.

Theorem 6.13. For T > B, P = T 4+ B, we obtain H(Ypg)o)
<[M(T+ B)— (M —1)B— (T + B)]-n, and hence Ry < M — (A;;BB —1, which matches

the secrecy rate in Theorem 6.12.

6.5. Delay-Optimal Parallel Link Channel with an Active
Eavesdropper and Z = 1

Here, we consider two similar models as in Section 6.2. In the first model Z = 1, that

is, (in any sliding window) a burst erasure of length B can occur in any single link. In
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Link 1
efil) = silil+el] sa[i] + €211 sali] + e i sili =3+ ssli 1] +eal] s2li =3+ sali =2 +es [1]
wli+1,1] =|si[i+ 1] +e [i+1]|s2[i+ 1 +eali+1|s5[i+1]+esi+1] si[i—2]+s3[i] +eq[i+1] spli— 2]+ s3[i— 1] +es5[i+1]
wli+2,1)=|s1[i+2 +er[i+2]|safi+2+exfi+2]|ssli+2+esli+2| si[i—1+ss[i+1]+esli+2] sali— 1] + s3] +e5[i +2]
wli+3 1) =[sifi+3]+erli+8]|s2(i+3]+eali+3)sslit3]+esli+3]| sliltsslit2reslits] soli] + 83 [i+ 1]+ es (i +3]
zli+4,1)=|s1[i+4]+e[i+4]|soli+4]+exi+4]|ssli+4]+es[i+4] | sili+1]+s3[i+3]+esfi+4] soli+1]+s3[i+2+es[i+4]
Link 2
w[i,2]=|  sali] +eild] 55 [i] + ea [i] s6 [i] + 3 [i] sai—3] +s6[i — 1] + e [d] 55 [0 = 3]+ s6[i = 2] + e [1]
wli+1,2]=|sg[i+1+e [i+1]|ssli+1+ea[i+1]|sg[i+ 1] +esli+1] syli— 2]+ sgli| +eqli+1] s5li—2]+se[i — 1] +es[i+1]
wli+2,2 =|sali+2+erfi+2|sslit2+elit2|slitA+eli+2 | sali—1+seliti+elit2 | s5li—1+soli] +esfi+2]
oli+3,2d=|sali+ 3] +er[i+3]|ss[i+3]+eali+8]soli+8]+esli+d] | saldltsolit2Atelits 55 [i] + 6 i 1)+ es i +3]
wlitd2)=safi+4+elit4)sslitd+teali+4|ssli+4+esli+4]| salitU+soli+d+eali+d] |sslit1]+solit2+eslitd]
Link 4
2(s1 [i] + 54 [i] 2(sa [i] + 55 [i] 2(sy [i] + 56 [i] 2suli =3 +sali =3 +s7li =3 | 2Aszli—3]+s5[i—3]+ss[i -3
z[i,4] = tsr[i] + e [i]) g li] + ea li]) Yo [i] + €3 [i]) +s3li—1]+s6[i — 1] +s9[i —1] +s3li— 2]+ s6[i — 2]+ 591 — 2]
dsrlteld) +es[i]) +es [i])
2si i+ +salit 1] | 2s2lit Y tss[itl | 2Asslit+seli+l] |2sifi-2+sali—A+sr[i—2 | 2sali—2+s5[i—2+ssli—2]
el Al= e i) | tsslit U+ ealit1]) | +solit 1)+ esli+1) s3] + 56 1] + 50 [1] desfi= 4 seli— 1]+ 50 [i 1]
PR L M B M 2 LNV +eqi+1]) +es i +1])
‘ 2on i+ 2 b sali+2] 2o i +2 oo fi+2] | 2sali+2+sofi+ | Her b Hsali=Ubarli= gy = 1) 4 s5fi = 1)+ ssli =)
I['+2‘4]:+57[i+2]+r—,1[i+2]) reslitdtenlita) | tsolit2+esli+2) +53[z+1]+56[:l+1]+59[1+1] +53[z]+5.6[1]+59[l]
E— +ea [i+2]) +es [i +2))
o[+ 8) + 2+ 3) | 2sa 48] 4548 | Asslid +oolivy) | 2nlltoaltarl] el bl ol
T3 =) i8] e 4 8 sl ea 48] | bsolih 8] eglitg) | Tl Aol Atsolixd sl aclid ]+ sl
Yeali+3)) tes[i+3)
’ sy [i+4) +sali+d]|2sali+d] +ss[i+3) | 2salird+sslitd | 21li+1+salit1)+srli+t1]| 2salitUtsslit]+ss[i+]]
Z[L+4‘4]:+.§'7[i+4]+(31[f+4]) boslitd]+eali+4] o i+4] + s [i + 4) +S3[i+3]+SG[.’LV+'3]+SQ[7',+3] +s3li+2]+s6li+2]+s9[i +2]
+eq [i +4]) +es [i +4])

Figure 6.4.: A (5,9,5,3,3)3 4-link convolutional code constructed by diagonally interleav-
ing the 4-link block code with generator matrix G*~'"* given in Example 6.9,
where Z =3, T =3, B = 2.

addition, the eavesdropper is able to observe any interval of length p in any link of his
choice. In the second model, a complete link may fail and the eavesdropper is able to
observe any complete link. We assume that the eavesdropper causes the erasures in any
link of the legitimate receiver. Furthermore, we consider the case where the eavesdropper

is able to change the link in which it causes erasures.

Again first we construct multi-link block codes and diagonally interleave them to multi-
link streaming codes. The multi-link block codes can be used for a wiretap channel II
model with delay constraint where the eavesdropper can choose any link and observe
noiselessly any interval of p symbols (also end-around) from n symbols transmitted to
the legitimate receiver. Additionally, the eavesdropper can cause any burst of erasures
of length B on any chosen link, that is Z = 1. We give explicit constructions of optimal

multi-link block codes that achieve maximum secrecy rate, provide perfect security (i.e.
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the eavesdropper can obtain no information about the secret message) and provide zero-
error decoding with minimum possible delay. Moreover, we consider a multi-link wiretap
channel II model with an active eavesdropper for streams of encoded packets. For T' > B,
we propose constructions of multi-link streaming codes for the case where the eavesdropper
can cause in any link and in any sliding window of size W; an interval of erasures of at
most B packets and observe any interval of at most p packets in any sliding window
of size W5 in the same link or in any other. The multi-link streaming codes provide
perfect security, zero-error decoding with delay 7" and have the maximum secrecy rate.
In Subsection 6.5.2, we discuss the case where the eavesdropper is able to switch between

the links, but it costs him ¢ time units.

When the channel packet x |7, 7*] at time 7 is transmitted over link j* then the legitimate
receiver observes either y [i, j*] = 7 if the channel packet at time i on link j* is erased
(caused by the eavesdropper) or y[i, j*| = x [i, 7*] if the channel packet is passed to the
receiver noiselessly. Correspondingly, the channel packets observed by the eavesdropper
on link j’ are either passed noiselessly, i.e. z[i,j'] = x [i, '] or are erased, i.e, z[i,j'] = 7.

The encoding and decoding procedure is the same as in Section 6.2. However, for T' > B,
we introduce an additional parameter V', which determines the length of an interval
of erased packets separating the observed packets of the eavesdropper. In Subsection
6.5.2, we specify V, ¢ and the window size W5, which are fully characterized by the
parameters n, k, y, T. When T' > B, we call a code that fulfills the above requirements a
(T, B, p, Z = 1; Wy, Ws)s M-link streaming code.

For the case where T' < B, we construct binary codes for a slightly different model,
where the eavesdropper can erase and observe a complete link of its choice. In this case,
V, Wy, Wy, d = 0. The code for the channel model where the eavesdropper can erase and
observe a complete link of its choice and that provides zero-error decoding within delay

T and provides perfect security, we denote as a (T, B, u, Z = 1)y M-link streaming code

6.5.1. Construction of the Multi-Link Block Codes

We define a secure delay-optimal B-burst-erasure correcting M -link block code that can
be converted to an M-link convolutional code for the channel model introduced in Section
6.5.

Definition 6.4. We call an M-link binary block code C' with generator matrix GM~tink —=

*
secure delay-optimal B-burst-erasure correcting, or p — (Mn, m) secure delay-

optimal B-burst-erasure correcting if
1) C'is an optimal burst-erasure correcting code, that is m = Mn — B.

2) The transmitter can convey k = m — p symbols with perfect security and the code
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has maximum secrecy rate

k - M-—B2 T>B
Rs _ M _ m % _ T+B (618)
n

n M—-1-% T<B,

where n = T + B for the case where T' > B.

3) Every source symbol can be reconstructed with delay of at most T'

*

, G
Definition 6.5. We call GM~link — o a systematic matrix if G* and G, the sub-
matrix of G', are of a systematic form, respectively, with j =1,..., M.
The next Lemma follows from Lemma 4.18.

Lemma 6.14. Let A be an r x n c-good matrix. Then A® I,,, is an rm x nm c-good

matrix, where ” ®” is the Kronecker product.

In the following we present systematic binary secure delay-optimal B-burst-erasure

correcting M-link block codes for the M-link channel model described above.

Theorem 6.15. There exist explicit constructions of systematic p — (Mn,m) secure
delay-optimal B-burst-erasure correcting M-link block codes that achieve the maximum

secrecy rate Ry given in (6.18) for the following cases:
1. For B< =T whereT' =tB, n =T + B and integer t > 2.
2. For B=u <T whereT =tB,n =T+ B, with integert > 1, and M - % is even.

3. For B <y <T where, T =tB,n=T + B and u =n/2, with t = 3.

4. For B =n = p with T = 0 and even M.

Proof. We divide the proof into two parts. The achievability we prove by the construction

given in the sequel and the converse is given below.

The Achievability

In the first three cases, the main idea is to construct for admissible integers ¢, M an (M (t+

1) —1) x M(t+1) systematic binary generator matrix G = | , | = ! M,
el ale G
1 M
j=1,..., M for a secure single erasure correcting M-link code. This, in fact, is the case

when G is c-good and the p/ x (t 4+ 1) submatrices G; of G for each j are c-good. (In this
case the eavesdropper is able to observe ' consecutive symbols from ¢ + 1, including cyclic

intervals of length 4/ in any link.) Then we apply the Kronecker product to G and Ip.
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The resulting (M (¢t + 1) — 1)B x M(t + 1)B matrix GM="k = (G, || -- - || Gir) is c-good
according to Lemma 6.14. Correspondingly, the u x (¢t + 1) B submatrices G’ of GM-link
are c-good, where y = i/ B. According to Lemma 6.5 we have an optimal B-burst-erasure
correcting M-link block code C' that provides perfect security even if the eavesdropper is
able to observe cyclic intervals of length p in the chosen link and that achieves the secrecy
rate given in (6.18). Then it remains to be shown that the code can reconstruct arbitrary
source symbols with delay of at most 7" in each link.

1. For any integer ¢ > 2, we construct an M(t + 1) — 1 x M(t + 1) matrix G =

(G| -+ || Gu), with
OG—1)(t+1)x(t+1)
/ Iy . Onv—1)(t+1)xt 1M-DE+D
Gj = ) GM = : y
Ov—1-j)t+1)x(t+1) I, 1
I, 1t

where j = 1,...,M —1 and 1" = (1,1,...,1)7 of length r. Note that G is c-good,
which contains c-good ¢ x (¢t + 1) submatrices G;, j=1,..., M.
Now we take (G ® Ip to obtain the binary systematic M (T + B) — B x M(T + B)

generator matrix

GMTIE = (Gy || Go || -+ || Gu), (6.19)
with
0(j—1)(T+B)x(T+B)

I O A

aQ, = T+B ’ Gar = (M=1)(T+B)xT
O(M—1-§)(T+B)x(T+B) Ir A

It A

for a secure B-burst-erasure correcting M-link block code, where j = 1,... ., M — 1.

Observe that A = 1'® Iz, A’ = 1(M-DE+D) & [ and that Gy=(Ir A),j=1,..., M,is
aT x (T + B) c-good matrix as well as G'.

To show that the M-link code can recover source symbols within delay 7' if a B-burst
erasure occurs, consider the output (x ( (t+1)5 |- H (t+1)5 ), where tB =T and (t + 1)B =
T+ B.

Note that the urgent source symbols are the first B symbols in xT+B jg=1....M
since they must be reconstructed with delay of at most 7. W.lo.g, suppose a B-

burst erasure occurs on the last link, that is, the burst erasure affects x(tH , then

@TVE | | tHlB) are recelved correctly. Let (z{f'||---[|z}}}) be, respectively, the
subvectors of (V|| |5 VP), where 4 = (2(),),2(j.i + B),.... (i + tB),
with i =1,...,Band j = 1,..., M. Note that (x t“H ]|xt+1), where 1 = 1,...,B is

the output of the ¢t-delay single erasure correcting M-link code with generator matrix G.
In subvector x4} = («(M,i),x(M,i+ B),...,x(M,i + tB)) of z}; UHUB there is at most
one erased symbol. Thus the source symbols can be reconstructed Wlth delay of at most
tB="1T.

2. For any integer ¢, consider the M (t+1)—1 x M(t+1) matrix G = (G4 || -+ || G)
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of the form

OG- (1) x(t+1)
Oar—1)(t+1) xt 1M=1)(E+)
Iy ( )(t+1)

éj = ) GM = I 4 0(75—1)><1 11 )

0(M—1—j)(t+1)+t—1x(t+1) 1
t4+1
Lyt "

wherej =1,...,M—1and 1, = (1,1,...,1) of length r. Observe that for even M (t+1),
(is a c-good matrix which contains c-good 1 x (¢4 1) submatrices G;, j=1,...,M. Then

GM—tink which is

the Kronecker product of G and Ip yields a c-good systematic matrix

the generator matrix for an optimal B-burst-erasure correcting M-link code with delay

T = tB. This we can show by arguing in the same way as in case 1. For even M (t+ 1) we

obtain that M - 752 is even since M (t + 1)B = M (T + B). Moreover, GM~""* contains

apux (T'+ B)M matrix G' = (G, ||...]| Gy) = (Ig---1 ...|| Ig---1Ig), which is
o ( ) Gl N Gy) = (eI |[...][ 15~ Ip)

(t4+1) times

c-good as well as G, j = 1,..., M.

3. For t = 3, consider the c-good 4M — 1 x 4M matrix G = (Gy || -+ || Gar) of the
form
0¢j—1)ax4 (M—1)4
7 On—1yaxe 1
Gj = ! ) GM = 1 04><1 1 s
Orvr—1-j)ar1x4
Iy I
I I

where 7 = 1,..., M —1. The Kronecker product of G and I yields a c-good systematic
4MB — B x 4M B matrix GM~li"k which contains M c-good p x B4 submatrices with
p = B(4/2). Obviously, we can recover each source symbol with delay of at most T' = 3B,
as in cases 1 and 2.

Thus we obtain a generator matrix for an optimal B-burst-erasure correcting M-link

code.
4. For any n = 1 > 1 and even M > 2, let GM=link = (G, || .-+ || Gis) with
O(jfl)nxn L(@l)
@=<5)= : @“:<””WX> Gu=| :
& O (a1 —2—5)(n) xn I 7
n
I
being an (M — 1)n x Mn systematic binary c-good matrix that contains an n x Mn
c-good submatrix G’ = (I, [|--- || 1), where G = I,,, j = 1,..., M. Note that if a
—_——
M times

link outage occurs on link j*, that is all the symbols transmitted over link j* are erased,
the source symbols s;4(j—1)n, = 1,...,n and j = 1,...,M — 2 can be reconstructed
immediately from symbols z[7,4], j € J\j*, where J = {1,...,M}. Thus delay T = 0.
Note that the code also can correct n erasures which can be distributed over several links
but must not occur at the same time, e.g. one deletion in the first link at time ¢ = 1 and
n — 1 deletions in the second link at time i = 2, ..., n.

According to Lemma 6.5 and since T = 0, we have a secure delay-optimal n-burst-
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erasure correcting M-link code, which is secured against an eavesdropper who is able to
observe a complete link of his choice and which achieves the secrecy rate as given in (6.18).
Note also that for odd M, GM~!"k is not c-good and the condition M > 2 is necessary
according to Lemma 6.5 (a). The latter applies since in the case where M = 2, the
generator matrix GM~!"* for an n-burst-erasure correcting code is of dimension n x 2n,

which implies that 4 = n = m.

Example 6.16. As an example of a code construction in Theorem 6.15 for case 1 where

M =2 T =pu =4 and B = 2, consider the following systematic generator matrix

1 0 010 0 1
01 00 01
G=(G||G)=1|00 1|0 0 1 |fora binary secure single erasure correcting
1 0 1{1 01
01 1|0 1 1
2-link block code, where t = 2. Then take G ® I to obtain the generator matrix
1 000O0O0}JO0OO0O0O0T1TO
0100000 0O0O0O01
00100O0)00O0O0OT1OQ0
0001O0O0|00O00O0©O01
G-tk _ 000O0T1TO0|0O0O0O0OT1OQ0
000O0O0T1T||00 0001
1000101 0O0O0T1TO0
01000101 0001
001010001010
000101000101

for a 4-(12,10) secure delay-optimal 2-burst-erasure correcting 2-link block code with

secrecy rate Ry = 1.

Converse

For T' > B, the converse can be proven as in Subsection 6.3.2 for the case Z = 1.

For the case T' < B, similar to [11], we want to show that
n < B. (6.20)

Suppose for a contradiction that n = B + 1.

Consider the erasure pattern %, = {(1,1),...,(1, B)}. Let X(a_1)x(r4+1) be the random
variable corresponding to x[2: M,1:T + 1], where T'+ 1 < B. Since S; (all source
symbols injected at time 1) is recovered at T+ 1, we have H (S, E1|Xn—1)x(r+1)) = 0.
We assume that the encoder symbols E, ..., F, are i.i.d. uniform distributed over F.

Next, we consider the erasure pattern %, = {(1,2),...,(1,n)}. The source symbols

S* must be reconstructed from Xjs,;, which corresponds to realization z[1 : M, 1] and
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X(M-1)x(n-1), which corresponds to realization z[2 : M,2 : n]. Hence,
H(S*| X w1, X(m-1)x(n-1)) = 0.
But

= H(S* X1, X(M-1)x(n—1))
= H(S*, Xarxt, X(ur-1)x(n-1)) — H(Xarx1, X(ar-1)x(n-1))

H(S*, Xarxts X(m-1yx(n—1)) — H(S1, Bv, X(0-1)xn)

b
) H(S*, Xarx1, X(i-1)x(n-1)) — H(f (Xr—1)x(+1))> X(a1-1)xn)

<)
> H(S*, Xarxt, X(r—1)x(n—1)) — H(Xm-1)n X(M—1)xn)

> H(S") + H(X 1, X(u-1)x (- S*) = H(X(a1-1)xn\Zy) — H(Z,,)
H(S") = H(X(s-1n\Z)
k —

(M =1n —p) =1,

\%

e

where a) follows the causality of the code, thus X; must be a function of S; and Ej, b)
follows Sy, Fy = f(X( )x(r+1)), ¢) follows that T+ 1 < n, d) follows from (6.4), where
H(XMxlaX(M 1)x(n—1) |S ) H(XMX17X(M 1)x(n ,1)) - (Sk) = (MTZ—B— k)) =u and
H(Xnrx1, X(r—1)x(n—1)|S*) — H(Z,,) = 0. Thus, (6.20) together with (6.4) imply
1

<M-1-%2 (6.21)

Ry = B

3|?‘

which matches the secrecy rate in Definition 6.4 and in Theorem 6.15.

6.5.2. The Multi-Link Streaming Codes

We use diagonal interleaving to obtain M-link streaming codes from M-link block codes
given in Theorem 6.15. For the case where M = 1, a detailed description of the mapping
is given in Subsection 5.5.1, and the extension of the case where M > 1 is straightforward.

We obtain the following result.

Theorem 6.17. For the admissible parameters T, B, u, M, there exist for T > B,
(T, B, u, 1;T + 1,W5)y M-link streaming codes, and for T < B, (T,B,u,1)y M-link

streaming codes with secrecy rate

k — M-E2%  T>p
n n M-1-% T<B,
obtained by diagonal interleaving systematic binary p — (Mmn,m) secure delay-optimal
B-burst-erasure correcting M-link block codes described in Theorem 6.15. Wy is case

dependent so that
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Link 1
z[i,1] = s1[i] + e [4] s [i] + e [i] s3[i] + es [i] sq[i] + eq [i] ssli]+er[i—4]+esli — 2] s li] +eali— 4] +eq i — 2]
i+ 1,1 =|s1[i+1]+e[i+1][se[i+1+ea[i+1|sz[i+1]+es[i+1] |[sali+1]+eqfi-+1]|ss[i+1]+er[i—3]+esli—1]|seli+1]+eali —3]+eqli—1]
wli+2,1]=|si[i+2)+er[i+2|sa[i+2+ex[i+2]|sslit+2+es[i+2 [sa[i+2+eali+2]| s5[i+2]+er[i—2]+esli] s6 i+ 2]+ e [i — 2]+ eq [4]
wli+3,1] =|si[i+3] +e[i+3]|s2[i+3]+eali+3]|s3[i+3]+esli+3] |sali+3]+eali+3]|s5[i+3]+er[i—1+esli+1]|seli+3]+exli—1]+eqli+1]
wli+4,1] =|si[i+4 +e[i+4]|so[i +4]+ea[i +4]|sz[i+4] +ez[i+4] |sali+4 +es[i+4]| ssli+td+eili] +esli+2] s6 i +4] + ez [i] + es [i + 2]
wfi+5,1] =|s1[i +5] +er[i+5]sa[i +5] +eafi+5] |s3[i+5]+es[i+5] |sali+5+eali+5||ssli+5+er[it+1]+esli+3]|selit+5+ealit1]+eqlit3
Link 2
. . . . . sy i — 4]+ sz [i — 2] + s5 [i] so (i — 4]+ s4 i — 2] + s6 [i]
z[i,2] = e [i] ez [i] es [i] eq [i) exli—4)+esli—2) eali— 4] +eali—2]
s1[i—3]+s3[i—1 ssli+1 soft—3]+s4[i —1 sgli+1
sli+ld=  eli+1] coli+1] 5 li+ 1] eali+1] i 51][;7 3][+es][it 1][ e 82][;r—§][+64][i+—i][ o
s1[i—2] +s3[i] +s5[0+2 Sofi— 2] +s4[i] +56t+2
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Figure 6.5.: A secrecy rate-1 code constructed by diagonally interleaving the 4 — (12, 10)
delay-optimal secure two-link block code (see Example 6.16).

T+1 ifV=T

ifV <T

(6.23)
o+ 1

In the latter case, the eavesdropper can observe either an interval of length of at most

or at most Wy — V' packets separated by V erased packets in any sliding window Wj.

Proof. For both the case where T'> B and T' < B, Lemma 5.17 can be extenden for the
M-link case in a straightforward way. Thus, the streaming codes obtained by diagonal in-
terleaving systematic binary u— (Mn, m) secure delay-optimal B-burst-erasure correcting
M-link block codes as described in Theorem 6.15 are able to recover source packets with
delay T when a B-burst-erasure occurs. Due to the form of the generator matrix GM—tnk
for the pu — (Mn,m) secure delay-optimal B-burst-erasure correcting M-link block code,
it follows that for u < 7" and for each j = 1,..., M, we have that G;{*" and G;flo"” are
zero-matrices for any [ > T + 1, thus w = T.

It remains to be shown that the M-link streaming code obtained by applying diagonal
interleaving to the M-link nested block code provides perfect security when the eaves-
dropper observes in any link j either p consecutive packets in any sliding window of size

Wy or the complete link, that is u = n.

Let Sk, X7, ..., X%, and ZM" respectively, be the random variables corresponding to
the source symbols, the output of the block code (z} || --- || 2;) and the observation at
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the eavesdropper on any link j = 1,..., M, where ZM" € (F, u {?})M". In the interest of
simplification, we consider Z*" instead of Z" € (F, u {?})* and complete the remaining
random variables of ZM" with ”?”. Recall that for 7" > B, we consider an eavesdropper
who is also able to observe any cyclic interval of length 4 in 27 In the case where T' < B,
all n symbols of the chosen link j can be observed, that is ;4 = n. According to Lemma
6.5 (c), related to our model, perfect security is achieved iff the submatrix G of G for
each j =1,..., M is a u x n c-good matrix. The latter implies that each coset of C” has
the same number of vectors from which ZM" can be obtained by Mn — p erasures. This
means, by construction of the secure nested M-link block code, we have perfect security,
that is, H(S¥|ZM") = k. Note that for T > B, the eavesdropper may observe any u
consecutive codeword symbols (also wrap-around) noiselessly from 7, which implies that
n — p symbols of 27 are erased. Now suppose the eavesdropper observes packets in link
j, e.g., z[i,j],...,z[i + p — 1, j], which is a g x n matrix (see Fig. 6.5). Consider every
M-tuples of diagonals of length n containing entries of this matrix. In Fig. 6.5, an M-
tuple of diagonals is underlined. Let S* and ZM", respectively, be the random variables
that correspond to the source symbols and the eavesdropper’s channel output of the block
code which appears along the M-tuple diagonals. By construction of the block code we
have that H(S*|ZM") = k, and this holds for every M-tuple of diagonals. Furthermore,
note that for any time slot 7 and link j the symbols in packet x[i, j| are equiprobable and
any p consecutive packets are mutually independent. This follows as the codewords are

1.1.d. vectors.

For i < 0, by convention we choose s[—1],...,s[=T] = O1xx and e[-1],...,e[-T],
that correspond to i.i.d random variables over F#. The latter is necessary to provide
perfect reliability and perfect security even if the eavesdropper observes any link j at

time 1.

W.lo.g, we consider link j. For T" > B with p < T + B < k, the subvector
(xu41[0, 7], .., 24]0, j]) of x[0, j] consists of the linear combination of the source sym-
bols (s,+1[0,7],...,54[0,7]) with g < k and the symbols of e [—1],...,e[=T]. Suppose,
the eavesdropper was observing a burst erasure of length V' > T before observing z[0, j],
then the encoder packets e [—1],...,e[—V] are unknown to him. By construction of the

block codes described in Theorem 6.15, the source symbols (s,41[0,7],...,5s4[0,7]) are

secured by e[—1],...,e[=T]. For the case where V' < T', by construction of the block
codes, the source symbols (s,11[0, 7], ..., s,4[0,j]) are secured by e [—1],...,e[-V]. Oth-
erwise, the last y — (n — T') rows at column-positions {u + 1,...,n} of G;. would be zero,

which would imply that the systematic matrix G;- is not c-good.

Thus any i consecutive packets observed by the eavesdropper in any link 5 do not reveal
any information about the source symbols in those packets as well as in other observed

packets, as long as they are separated by an interval of at least V' = n — u erased packets.
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The latter implies that for 7' > B,

T+1 V=T
W, = . (6.24)
p+l #V<T

For T' < B with p = n, each z[i, j] is a linear combination of source packet s|i] and
encoder packet e[i]. Thus for ¢ < 0, we can set any packet e[i] = 0 without violating the

security condition.

Discussion 1. Suppose the eavesdropper decides to change the link he observes. We
assume that this operation costs the eavesdropper ¢ time units. To provide perfect security
we have to choose 6 = V', since the eavesdropper could noiselessly observe the last p
packets before he jumps to the next link. When we allow the eavesdropper to switch
between the links where he causes bursts of erasures, we have to assume that the lost
time by changing the link is at least T, since we have to assume that the last packet has
been erased before he jumps to another link. Thus we have to choose § = max {T,V'} to
be able to communicate with perfect reliability and perfect security; however there is loss
in terms of the maximum secrecy rate R;. For T' = p we have 0 =V = T, which implies
that we can communicate with the maximum secrecy rate. Also note, that for the case
B = u we have Wi, = W5. Note that for the case where T' < B, due to the block code

construction 4 in the achievability part, 0 = 0.

6.5.3. Converse for the secrecy rate for streaming codes

Yeo
Be T, E
Link1l XDAILTTTIXIXET T T IXXETTT] ---
Link2 [ [ [T TTTTTTTTTTITITT]---
Link M [ [ [T TTTTTITTTTITTITT]---

Figure 6.6.: The M-link channel used in proving the upper bound for 7' > B, with indi-
cation of which packets are observed by the eavesdropper Yg; (gray squares).

Y(1\E), is indicated by white squares. Crossed squares are erasures of length
B.

In this section we provide the converse of Theorem 6.17. For T" > B, we consider a
periodic erasure channel in link 1 in the presence of an eavesdropper who can noiselessly

observe p packets in any sliding window of size

T+1 V=T
W,y = , (6.25)
p+1 #V<T
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where V =n — p, withn =T + B.

Let I = {1,... ,P}jj‘i1 and I, = {1,..., P}, j = 1,..., M, respectively, be the index
set for the packets in one period of length P = lem(V + p, T + B) and the index set for
the packets in one period of length P in link j. Let Lc I and Ec [;, 5 =1,..., M
be the index sets of the revealed packets in the M-link channel and the eavesdropper’s
link, respectively. In the i-th, period Yz, and Y7 ; are, respectively, the observations at
the eavesdropper and the legitimate receiver. Fig. 6.6 shows the time slots and the size
of Y for the case when V' < T and T = u. Each erasure burst of length B is separated
by T non-erased packets and the eavesdropper’s observation of u consecutive packets is
separated by V erased packets.

For any integer h > 1 we use Yﬁal to denote Y70, Y7 1,...,Yr 1. We require a coding
scheme that provides perfect reliability with delay T" and perfect security for each h > 1,
that is,

H(Sh™ |Y£0_1, Urn) =0, (perfect reliability) (6.26)
H(Sg_l\Yﬁal, Ugn) = H(S)™), (perfect security) (6.27)

where Uy, and Ug, are, respectively, observations of the receiver and the eavesdropper
in the interval of MT and T successive outcome packets within the A-th period, that is
ULyl = MT and |Ugy| = T. S; € FY'" and H(S) = P - k. We assume that all source
packets have the same entropy. Denote Wy, ;, = YL}fgl, Upy and Wiy, = Yg}gl, Ug n. Hence,

for achieving (6.26) and (6.27), we have the following necessary condition:

h-P-k=H(S;  \Wgy) — H(SE W)
< H(S§ Wl Wen) — H(S§ ™ W)
= HWwe)wWen) + HWen|Wen, Wig)n)
H(Sy™ Wi, Wep) = H(Sy™ W) < HWinm.a)
H(Yfi\é o Uneyn) < hHY gy o) + n(MT — ).

_l’_

The latter implies that

k' ha+ MT —p poep a
Ri=—<———— "5 —| 6.28
Ph P ( )

where a = |(L\FE), 0|, that is H(Y(1\g),0) < na.
For the case T' > B, we have |L| = (M —1)P + T and |E| = u in one period.

Theorem 6.18. ForT > B,V = T+ B—p such that P = T+ B, we obtain H(Y(1\g)0) <

[M(T + B) — B — ] - n, and hence Ry < M — TB%B‘, which matches the secrecy rate in
Theorem 6.17.
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For the case T' < B, according to [35], if a code can decode all bursts of length B with
delay T" < B, then it can decode when any link is completely erased. Thus, when we
choose P = B = n we obtain |L| = (M — 1)B and |E| = p, where pu < n.

Theorem 6.19. For ' < B, V. = B — u such that P = B, we obtain H(Y(1\p)0) <
[(M —1)B — u]-n, and hence Ry < M — B—;’i, which matches the secrecy rate in Theorem
6.17.

6.6. Conclusion

For admissible parameters T', B, u, M, Z, we constructed M-link codes over a small finite
field F, that can perfectly recover Z erasure bursts of length B in any sliding window of
size T' + 1, each occurring on a separate link with minimum possible delay. In addition,
the codes provide perfect security while the eavesdropper is observing an interval of at
most p packets in any sliding window of size Wy (W5 is case-dependent) or a copy of any
link, i.e. 4 = T+ B. The codes achieve the maximum secrecy rate for the channel models.

For Z > 1, it is worth mentioning that code constructions exist for a wider class of
code parameters for the channel model if the positions of the bursts are the same in the
corresponding Z links.

For future work it would be interesting to construct codes for the channel model where
Z =M and Z < M — 1 (perhaps using other methods of code construction). It would
also be interesting to consider parallel burst-erasure wiretap channels, where on each link

an eavesdropper is able to observe parts of the communication noiselessly.
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7. The Seeded Modular Code

7.1. Introduction

We consider a seeded modular code for the additive white Gaussian noise (AWGN) wire-
tap channel consisting of a security layer, an error-correction layer and a modulation layer.
For reliable transmission, we use any forward error-correction (FEC) code and modulation
method. In the security layer, a universal hash function (UHF) is used, which depends
on a randomly chosen seed s. We consider three communication scenarios in which the
advantage (the security measure) at the eavesdropper is measured in different ways. In
the first two scenarios, the message distribution may be arbitrary, so these setups would
be variants of “semantic security” in common terminology. In the third scenario, the
advantage is measured under the assumption of a uniformly distributed message. This
is usually referred to as “strong security”. The eavesdropper uses the maximum likeli-
hood (ML) test as an attack strategy. To assess the security performance, we derive the

operational meaning of the advantages in terms of the error probability.

Contribution

We consider three communication scenarios in which the advantage at the eavesdropper
is measured in different ways. Among them we consider the advantage at Eve under dis-
tinguishing security ' [13]. The difference between semantic security and distinguishing
security is that distinguishing security considers only the subclass of message distribu-
tions, whose support is a set of two equally probable messages. In [13] it is shown that
distinguishing security is equivalent to semantic security asymptotically, but distinguish-
ing security is easier to handle. That is, Eve observes a random vector Z¢ for any message
pair from the message set M, and tries to identify to which message Z¢ belongs. We an-
alyze Eve’s optimal attack strategy which is the maximum likelihood (ML) test. In the
first two scenarios we interpret Eve as active in the sense that she can choose the message
pair to be transmitted.

In preparation for the simulations, we consider different security metrics in each com-
munication scenario and show some relevant relationships between the advantages of the
three scenarios. Among them we extend the proof of Bellare et al. [20], which shows
that strong security implies semantic security, to the AWGN case with BPSK or QPSK

1 An early instance of distinguishability is used in [51].
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7. The Seeded Modular Code

input. Furthermore, we discuss the operational meanings of the distinguishing security
and the strong security. They amount to Eve performing an optimal ML test for every
message pair. For this purpose, we introduce a new strong security metric to compare
with the distinguishing security. Furthermore, we have made a working hypothesis; in-
creasing the average Hamming distance of a coset pair improves Eve’s performance and
thus increases her advantage. In Chapter 8 the simulations indicate that our hypothesis

might be correct.

Related Work

In information theory, UHF’s were first studied by Bennett et al. [52]. Hayashi [53]
proposed using the UHF as a technique for wiretap coding. In [54] and in [13], it is
shown that with a modular UHF scheme a variant of semantic security - where Eve can
choose the message distribution after getting to know the seed - can be achieved if the
wiretap channel is discrete, degraded and symmetric. Furthermore, it is shown that the
modular UHF scheme achieves secrecy capacity under semantic security in this case. In
the case of an additive white Gaussian noise (AWGN) channel, it is shown in [55] that
strong secrecy capacity can be achieved. In [50], a special UHF is used as the security
component, by which a variant of semantic security is achievable - where the message
distribution is arbitrary but independent of the seed - for arbitrary discrete memoryless
wiretap channels. Similar to [50], it can be shown that the modular UHF scheme is
semantically secure for the Gaussian channel. The seed it requires is longer than that
needed by, e.g., the function in [55] and in [13]. In [57], a novel type of functions called
biregular irreducible (BRI) functions is introduced and applied as security components
(instead of, e.g., universal hash functions) in seeded modular wiretap coding schemes.
In [57] it is shown that semantic security can be achieved for a discrete and Gaussian
wiretap channel by using BRI functions. During the preparation of this work, efficiently

computable BRI functions were constructed [55].

Previous works have already implemented and analyzed codes for the wiretap channel,
such as in [59], [00]. In [59], the performance of LDPC codes for the Gaussian wiretap
channel under strong security was analyzed. In [00], additional inner coding layers were
created that generate a discrete memoryless channel (DMC) for Eve and Bob so that the
outer wiretap code already available in [(1], [16] can be used. However, Eve is required
to process the channel output before security is evaluated. Moreover, strong security is
shown heuristically for the three layer coding scheme, and the migration effort in existing
systems is high compared to the proposed seeded modular coding scheme. In [(1] and in

[62], alternative concepts to the modular scheme are presented.
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1

s v ¢ @ e ~ fs -
M—»V—»X”—»X/C—»Y/C—»Yn—» —»M
: Ec ]
‘ Vi 1
| f |
s Seed §--------------- ‘

Figure 7.1.: A seeded modular code for the wiretap channel (7, E€), where n is the code-
wordlength of the FEC code and ¢ is the blocklength.

Outline

Section 7.2 introduces notation and provides the preliminary background about the AWGN
wiretap channel, as well as the AWGN wiretap code. Furthermore, we define the security
metrics if an unseeded modular scheme is used. In Section 7.3, we describe the seeded
modular UHF coding scheme for the AWGN wiretap channel and the explicit construction
of the code. We introduce three communication scenarios and define the corresponding se-
curity metrics. Then, we consider the relationships between the security metrics. Section
7.4 gives the operational meaning of the advantage at Eve under distinguishing secu-
rity and under strong security. Then we discuss how to maximize Eve’s performance to

simulate a worst case scenario. Section 7.5 concludes with discussion and open problems.

7.2. Preliminary

7.2.1. Notations

Throughout the paper, we write X ~ wunif(X) to denote that X is a uniform ran-
dom variable over some discrete set X. The logarithm log and the exponential func-
tion exp will always be taken to base 2. We denote by 0% a zero vector of length
k. The operation [-], selects the k most significant bits and (-||-) denotes the con-

catenation of two vectors. The statistical difference between X; and X, is defined by

||PX1 - PX2|| = %SX |pX1(x) _pX2($)| dr.

7.2.2. The AWGN Wiretap Channel

The goal of Alice is to communicate a message M € M of length log | M| to Bob (w.l.o.g.
we assume that M is a binary sequence), which is distributed according to Py;. Alice
performs this task by encoding M to a vector X’ € X’ of length ¢ and transmitting X'

For the case where the channels are AWGN, we have
Y' = X"+ Np, Z = X'+ Ng, (7.1)
where X’ € X' ¢ C and Ny and Ny are Gaussian noises of Bob’s channel 7" and Eve’s

channel F, respectively. We assume that Np and Ny are circularly symmetric accord-
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ing to CA(0,202) and CN(0,20%), respectively. Since the channel is memoryless, we
respectively obtain after ¢ channel uses Y’* = X' + N¢ and Z¢ = X'® + Nj,, where N¢
and Ny, are white Gaussian noises, respectively. Alice is subject to a transmission power
restriction P. The encoding of a message M by Alice should be such that Bob is able to
decode M reliably, and using the appropriate security metric, Z¢ should give Eve as little

advantage as possible about M.

7.2.3. The AWGN Wiretap Code and the Security Metrics

Definition 7.1. An (¢, ()-Code C. for the AWGN wiretap channel (T¢, E°) consists of a

stochastic encoder at the transmitter

E:M— X', (7.2)
and a decoder at the legitimate receiver

C: V> M. (7.3)

The maximum probability that the decoding fails is

~

P(C.) = max Pr((C o T*0 €)(m) # m) (7.4)

where ( o T o £ denotes the concatenation of (, the channels T and €.

We wish f’e(CC) to be small, then the transmission of messages through 7 applying the

wiretap code C. is close to noiseless.

At the same time, Eve observing the output of £ should learn as little as possible about
the message M, that is, we require the advantage to be close to zero. Let E¢(&(M))
be the channel output at Eve when message M was sent and encoded with &, so that
Z¢(M) = E*(§(M)).

We adopt the definitions (7.5) - (7.8) from [13]. The advantage at the eavesdropper

under semantic security (S5) is defined as follows:

Let h be a function defined on the message set M, so that h(M) is the image, then
Adv®S(&; E°) = Ifrll%j((mjtxpr(A(ZC(M)) = h(M)) — mgaXPT(g(k:) = h(M))), (7.5)

where A is the attack strategy of the eavesdropper, G is any simulator that has knowledge
of the length of the message k£ and the implicit knowledge of h and M.

The advantage at the eavesdropper under distinguishing security (D.S) is defined as
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follows:
dvP® (& E°) = Jnax 2Pr(A(my, my, Z°(mp)) = B) — 1
1
= max gf Ip(2°|ma) — p(2°|ma)| dz*, (7.6)

where B is uniformly distributed over {1,2} and the maximum is over all messages my,

mo and all {1, 2}-valued eavesdropper strategies A.

Furthermore, we consider the advantage under the mutual information security (M15S5):
AdvM5 (¢, E°) = max [(M; Z(M)), (7.7)

where the maximum is over all random variables M € M and M is assumed to be

distributed arbitrarily.

In information theory the more common security metric is mutual information security

for random messages (M 1S — R) also known as strong security:
AdvM5 (g E°) = 1(M; Z2°(M), (7.8)

where M ~ unif{M}.

In addition, we define the advantage under average distinguishing security (DS — R):

AdvDS_R(f; E¢) =

S5 [ e @)

2
|M‘ mi mQEM

A common interpretation of Adv®® is that the channel of Eve has d, bits of zs-security
if Adv®® < 27%s. We call d,, the security level.

Let C = {Cc(g)}geN be a sequence of AWGN wiretap codes for Bob’s channel with
blocklength ¢(g), where ¢ is a monotonically increasing function of g. We assume that the
1

channel input fulfills the average power constraint, that is, Zc(g |z}|?> < P. Note that

we consider the case where the modulation alphabet can change with the blocklength.

We call C an AWGN wiretap coding scheme, and wzs-secure if the scheme fulfills the

properties of the following definition.

Definition 7.2 (Achievable Asymptotic Secrecy Rate). A non-negative real num-

ber R, is called an achievable asymptotic secrecy rate under xs-security if there exists a

strictly increasing sequence {c(g)} ., and a sequence {Ce(g) }geN ({&u(q }geN , {Cc(g)}geN)
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of wiretap codes, where C.,) complies with the average transmit power P, such that

1
li —1 c = Rseca
gljglc () 08 |M (g)‘
: s . e(9)y
Jim Adv™ (e(g); 27) = 0,

lim PE(CC(g)) = 0.

g—©0

The supremum of all achievable asymptotic secrecy rates under xs-security is called the
xs secrecy capacity of the AWGN wiretap channel. The xs secrecy capacity is given as

follows.

Proposition 7.1. The xs secrecy capacity of the AWGN wiretap channel is for all
xs € {SS,DS,MIS, DS — R,MIS — R}

Cr(of, P) = Cu(og, P) 0 <o}

Cy(oF, 0%, P) = (7.10)
0 otherwise,
where Cp (o}, P) = log(1 + 35) and Cg(og, P) = log(1 + 35 ).
T E
This was shown in [63] for the case of strong security, i.e., for the case where xs € {MI1S —

R, DS — R}. In [6], it is shown that the secrecy capacity is given by C,(0%, 0%, P) if the

message may have an arbitrary distribution, i.e., for the case where zs € {M1S,SS, DS}.

Remark 7.2. According to Definition 7.2, it is possible that the sequence of codes C is
defined for a subsequence of the set of blocklengths, and analysis of the converse proofs
shows that the achievable secrecy rate is not increased compared with the secrecy rates

of the common definition, where the sequence of codes attains all blocklengths.

Next, we consider the equivalences® of the security metrics given above.
The following relationship between S S-security and DS-security for the discrete wiretap

channel setup is given in [13, Theorem 4.1], and can be extended to the Gaussian setup.
Adv®®(&; E°) < AdvP(€; E°) < 2Adv®S (&; E°). (7.11)

Thus, distinguishing security is equivalent to semantic security asymptotically.

Furthermore, according to [62, Proposition 1] we have

MIS (¢. 1c DS /¢, e |M|
Adv (& E9) < 2Adv™°(&; E°) log SAdDS (€, B’

AdvP5(€&; B¢) < 24/2AdvMIS (€; E¢). (7.12)

'We call two security measures equivalent if one security measure approaches 0 if and only if the other
approaches 0.
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If AdvP®(¢; E¢) decreases exponentially with ¢, then DS-security implies M IS-security.
The relationship between strong security and average distinguishing security is given

in the following proposition.

Proposition 7.3.

M|

Ad MIS—R - Ee© < 2Ad DS—R - E 1 )
v (57 ) v (67 ) og QAdUDS_R(g; EC)

(7.13)
Proof. We use the upper bound by [62, Appendix I], so that

AdvMI5=R (¢ B°) < 2 J

zCeZ¢

vlog!M|du—(2f . ~dp) log (ZJ vdp),
zceZe z

ceZc

where v = 1% [Pu(m) — Pype(m)| and dp = p(2°)dz* is the probability measure
associated to Z¢. Observe that,

VPrear = PoePull = | d (7.14)
zCeZ¢
where
|Pze v — Pre Py
~ 3 Pulm [ 1p(elm) = pl=)ld=
memM
1
= — > 5| IpGIm) = = ) p(zlma)|dzf
|'A/l‘m€./\/12J~C ’M‘mge/\/l
Z p(2ma) —29(Zc|””42>)|0[2C
‘M‘mGM JL ‘M’me./\/l
|M\2 2 Z f 2°lmy) — p(2°|ma)|dz°
mi1EM mQEM
= AdvP5R (¢ E°). (7.15)
| |

7.3. The Seeded Modular UHF Code

Fig. 7.1 shows a seeded modular wiretap code for the wiretap channel. We suppose, that
both, the channel of Bob and the channel of Eve are AWGN. We assume that Eve’s SNR
is smaller than Bob’s SNR and that all participants have seed s, e.g., because of access to
sufficient common randomness. A possible scenario is when Alice transmits the seed and
the message in succession. Furthermore, the seed is chosen according to a random variable
S which is uniformly distributed over a finite set S. We consider the seeded modular UHF
code (§,() for the AWGN wiretap channel (7, E€) that consists of a stochastic seeded
encoder at Alice £ : § x M — X’¢, and a seeded decoder at Bob ( : § x Y'* — M. The
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code consists of the following three layers; the modulation layer (x, ), the error-correction
layer (¥, ®) and the security layer (f; 1, f5), so that £ : xoWo f7l and ( = f,oPop, where
X, ¢ are the modulation and demodulation functions, respectively, and ¥, ® the encoding
and decoding functions of the linear FEC code, respectively. Functions f, and f; ! are
defined below. Bob’s goal is to decode the message m correctly. First, he demodulates
the noisy version y'* = z’* + N of the modulated codeword x’ by ¢ : y'¢ — y™ and then
decodes © = ®(y™). Finally, Bob decodes the message m as m = f,(0).

In the following, we consider binary FEC codes, but the code is not limited to a binary
alphabet. Denote by Fy the finite field with 2' elements, F = Fa\ {0}, and let * and @
denote multiplication and addition in Fy, respectively.

Security Layer: For two sets of V = {0,1}' and M = {0, 1}*, we use a family of UHF’s
F= {fs (0,1} {0, 1} |s € 8}, so by definition

S|

s € Slfslvr) = flw)}l < o (7.16)

for every vy # vy € {0,1}. Alice encodes the message m € {0, 1}" by using the randomized

inverse f;!(m), which uniformly at random picks an element v of the set {v' : f,(v') = m}.
We consider the following two families of UHEF’s:
1)
Fi= {fa,t (0,1} {0,1}k\aeF;‘l,teF25}, (7.17)
where fo.(v) = [(a*v) ®t], and s = (a,t) € S.

Accordingly, for some random vector R ~ unif({0,1}'%), the randomized inverse is
[ m) = a™h « ((m]|R) @), (7.18)

where ((m||R) @1t) € {0,1}".

Next, we show that Fj is a family of UHF’s; and thus that for every v; # vy € {0, 1}l,
(7.16) is fulfilled. Wegman and Carter [05] proved Proposition 7.4 for the case of finite
fields F,, with p prime.

Proposition 7.4. F; defined in (7.17) is a family of UHF’s.

Proof. For any given v; # v, € {0,1}' we have to count how many seeds satisfy f(v;) =
fs(v2) and thus satisfy [(a *v1) +t], = [(a * ve) + t],. We can reformulate the equation
to [(a*wv1)], + [t], = [(a=wv2)], + [t],, so that it remains to count how many a satisfy
0F = [a=vi], + [a*va], = [ax2], = [a=*(m]|r)],, where v/ = vy + vy = (m]|r). Since
a # 0!, there is a unique value a * v'. If we fix m, then there are 2'=% — 1 choices of a to
obtain 0¥ = [a = (m||r)],, and we have 2! choices for . We obtain 27%2!(2! — 2¥) choices

for (a,t), where 2772!(2! — 2%) < \23_k| .
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2)
Fy — {fs (0,1} > 0,1} [s € ]F2} (7.19)

where fs(v) = [s = v],, and the randomized inverse is

fol(m) =571 (m]|R). (7.20)

s

Remark 7.5. Proposition 7.4 is also valid for (7.19). Furthermore, for a restricted mes-

sage set, the functions are BRI functions [57].

Error-Correction Layer: In the error-correction layer, Alice encodes v using some FEC
code (¥, ®) of rate Rppc = l/n, so that

U(v) = 2" =G, (7.21)

where G is the [ x n generator matrix of the FEC code.

Modulation Layer: We consider BPSK and QAM. We denote the corresponding symbol
alphabet by X’ < C. It has size 2%mod | where R,,.q denotes the number of bits per symbol.
In the modulation layer, Alice modulates 2" to ' using a modulation scheme (, ¢), where
¢ =n/Ryoq- In order to satisfy the transmit power constraint, we choose it in such a way
that

1
P = 57 z;{ |2/ [2. (7.22)
r’'eX’

The product of Rrprc and R,,.q gives the effective rate
Repy = 1/c, (7.23)

which is the rate of Bob’s channel. The secrecy rate Ry.. is defined as

kK k
— = —R.¢r. 7.24
- el f ( )

Note that the blocklength is c.

7.3.1. Communication Scenarios

In the following, we introduce three communication scenarios where in analogy to Sec-
tion 7.2.3, we define the decoding error probability of Bob and the corresponding seeded
advantages at Eve under zs-security, where S is taken as additional knowledge of Eve.
For a better overview, we provide the security metrics with a number that indicates the

communication scenario.
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The achievable asymptotic secrecy rates R .. under xs-security of the seeded modular
UHF coding scheme for the AWGN wiretap channels can be defined analogous to Section

7.2.3 and are given in (7.10). For the case with seed, no converse is known.

Communication scenario 1: This is a communication scenario as considered by Bellare
and Tessaro in [60], where Eve can actively affect the selection of messages. In this
scenario, xs € {DSy, MISi}. If s = DSy, first a randomly chosen seed S € S is given,
and then Eve chooses a message pair (my, ms), where my, my € {0,1}*, so that the choice
of (my,ms) depends on the choice of the seed. If xs = MIS;, the process is the same

except that Eve chooses the conditional message distribution Py s.

The error probability of the seeded modular code (&, () is then defined as
P&, T, () = Es max Pr ((Y(8,m))) # m) . (7.25)
Since f,(f;1(m)) = m, the error depends only on the FEC code, the modulation mapping

and the channel.

We choose the FEC code and the modulation scheme so that P,(&,T¢, () is sufficiently
small (e.g. P.(£,T¢,¢) < 107" ). For the following scenarios, the error probabilities are
adjusted to Bob analogously to the advantages.

The seeded advantage at Eve under DS;-security is defined in [66] as follows:

AdvP51 (&, B4 S) = LZAmaX 2Pr(A(s,mi,mg, Z°(mp,s)) = B) — 1
seS

|S| ,TM1,M2
1 1 . . .
= g 2o s o | (el ) = p(etlma, o) dz
€S ¢
1
= E Z gf% HPZc|M=m1,8=s - PZc|M=m2,S=sH, (7_26)
seS

where B is uniformly distributed over {1,2} and the maximum is over all {1,2}-valued
eavesdropper strategies A and k-bit messages mi, my. Note, if the advantage is small,

then the probability of a seed appearing that is favorable for Eve is also small.

The seeded advantage at Eve under M IS;-security:

Adv™M91(¢; B4 S) = max I(M; Z°(M, S)|S). (7.27)

Pyis

Since Eve knows Pys and thus I(M;S), the advantage depends on the right term of
(7.27) only.

Communication scenario la: A possible similar scenario that we consider in Section 8.2
is the case where for a fixed channel and given code parameters, we choose a specific seed

from the seed set S. This corresponds to the case of unseeded encryption. The advantage

112



7.3. The Seeded Modular UHF Code
under D.S)q)-security given a specific seed s is

AdvP51) (& E% s) = max 2Pr(A(s,my, mg, Z°(mp,s)) = B) — 1

A7m17m2
1
= max —J Ip(2¢Imq, s) — p(2°|ma, s)| dz°
mi,m2 c
= Imax HPZC|M:m1,S:s — PZC\M:mg,S:sH' (728)
mi,m2

We are interested in seeds that are unfavorable for Eve. In Section 8.2 we are looking for
such seeds. This scenario would drastically reduce the complexity of the modular UHF

scheme because then the seed must only be made public once.

Remark 7.6. The security measures (7.5) - (7.9) and the equivalences from 7.2.3 for the

case without seed immediately apply to scenario 1a).

Communication Scenario 2: Depending on whether DSy or M 1S5 is considered, Eve
first chooses a message pair (mq,msy) or Py, that is beneficial for her, and only then is
S € § randomly chosen, so that the message and the seed are independent.

The seeded advantage at Eve under DSs-security:

AdvP (& ESS)

max 2Pr(A(S,my, ma, Z°(mp,S)) = B) — 1

A,;mi,ma

=m2f R
= Imax ||PZC|M mi, S s PZC|M:m2,S:S||7 (729)

i S|

where B, my, my and A are as in (7.26).

The seeded advantage at Eve under M [.S;-security:
AdvM%2(¢: B4 S) = max [(M; Z°(M, 5), S). (7.30)
M

Next, we will see that when the message is chosen independently of the seed, and using
(7.17), proposed by Hayashi [50], as the security component in the seeded modular scheme,
M ISs-security can be achieved with positive secrecy rate, i.e. Adv™%2(¢; E¢;S) tends
to 0. See also the next subsection. The following upper bound of the advantage at Eve
under M [ Ss-security has been first proven in a more general context in [56], in terms of
the conditional Renyi entropy. In [57] the result was extended, and is given in terms of

the smooth Renyi divergence.

Proposition 7.7. Given the family of UHF’s {fs : s € S} as proposed in (7.17), [50,

Lemma 21] implies

1 2
Adv™I% (& B 8) < 27 e = Reee (ORI 1 (5, ) Ruce, (7.31)

In
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where €(6,c)c — 0 for 6 — 0 and ¢ — o0, and Ry, and R.ss are given in (7.24) and (7.23),

respectively.
Proof. This follows immediately from [50, Lemma 21] and the discussion in [57]. ]

As a consequence of (7.31) we obtain the following corollary. Let (-)* = max(-,0).

Corollary 7.8. Using an FEC code and a modulation scheme, and using the family of
UHF'’s given in (7.17), the seeded modular UHF wiretap scheme C can achieve all secrecy

rates R.. satisfying
Ree < (Regy — (Crlog, P)+0)* (7.32)

with M 1Ss-security.

Proof. For ¢ — oo the right hand side of (7.31) should tend to zero. Therefore, we require
lim,eo(Refr — Rsee — (Ce(0%, P) +6)) > 0. Furthermore, for any §, one can choose
€(9, ) such that €(d,c)c — 0 as ¢ — o0, then lim. 4 €(, ¢)cRs. = 0. Since § can be
chosen arbitrarily small (but constant), one achieves any rate smaller than the right side

of (7.32). n

This implies that if R.;; can be arbitrarily close to the channel capacity Cr(o7, P),
the seeded modular UHF wiretap scheme can achieve the secrecy capacity under M 1.S;-
security. Here we refer to Proposition 7.1.

The inequality (7.31) says that Adv™M1%2(¢; B¢ S) < 27durs; if

P d
Ree ~ Repp —log (1 t 52 ) - MC[SQ- (7.33)
E

To achieve a certain security level dyrg, at a given Rge., Refr and P = 202SNRp, the

following approximately applies

P
dM152 >1—k— clog <1 + —) . (734)

202,
Under the same conditions as in Proposition 7.7, we can derive a bound for DSs-security.

Proposition 7.9. Given the family of UHF’s {fs : s € S} as proposed in (7.17), the
upper bound of AdvP%2(&; E¢; S) is

AdvP®2 (¢, B4 S) < 4N/ 2 e(Regs=Roce=(Culoh, P)+0)) 4 2¢(9, ¢), (7.35)
where €(d,¢) — 0 for 6 — 0 and ¢ — 0.

Corollary 7.8 for DSs-security also applies here.
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The inequality (7.35) says that AdvP2(¢; B¢, S) < 279ps: if

QdD52 +4

Rse(:(dDSg) ~ Reff - CE(O-%}?P) - c

(7.36)

To achieve a certain security level dpg, at a given R, ., R.;y and P = 20%5 NRpg, we

sec)

approximately obtain

1 P
dps, = 3 (l —k —clog (1 + E)) — 2. (7.37)

Remark 7.10. Since in scenario 2 Eve has to choose the message pair to be independent
of the seed AdvP%2(&; B4 S) < AdvP51(&; £ S), and thus we can upper bound dps, by
dps,. In Section 8.2, we use the right-hand side of (7.37) to determine the amount of

encoding randomness.

Remark 7.11. The estimations in Proposition 7.7 and 7.9 are valid for sufficiently large
¢ but we use it because of its simple form. Furthermore, the actual security parameters

are found by simulations anyway.

Communication scenario 3: We consider a communication scenario where the seed S € S
and the message M ~ unif({0,1}¥) are randomly chosen independently.

We introduce the seeded advantage at Eve under D.Ss-security:

AP E58) = e 3y 3 5 | plermn.s) = plelma. o)

S€ES M1,m2
€{0,1}*

|S|22k2 > 1 Pzeinsmmy s=s = Preipt—ma.s—s|

sES M1,m2
€{0,1}*

Z Z maXPr (s,my,mo, Z°(mp,s)) = B)—1, (7.38)

seS M1,m2
€{0,1}*

‘8’22’6

where B and A are as in (7.26). The uniform distribution of the message in this scenario
is reflected in the averaging over message pairs in (7.38). Adv”*? is a measure of strong
security that we consider in Section 8.2. A similar form already appears in [15].

The seeded advantage at Eve under M [Ss-security is given as follows:
AdvM53(¢, B¢, 8) = I(M; Z°(M, S), S). (7.39)

Since the communication scenario 2 is difficult to simulate (because the first thing to
do is to find a message pair that maximizes the advantage), Section 8.2 considers mainly
the communication scenarios 1, 1a) and 3, namely the DS;-security, DS}q)-security and
the DSjs-security.
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7.3.2. Relations between the Security Metrics
M I S5-Security Implies M 1S,-Security

To determine AdvP%2(&; E¢;S) and AdvP51(&; E¢; S) it is necessary to maximize over a
message pair, which raises problems. We therefore also consider Adv*!%:(¢; B¢ S) and
extend the proof of Bellare et al. [20] to the AWGN case. This shows that when the
channel is a binary input AWGN channel, the FEC code is linear and when f;!(m) is
given as in (7.20) then AdvMI%2(¢; B¢ S) decreases if Adv™!%3(¢; B¢ S) decreases. We
want to mention that for the unseeded case, an alternative proof exists in [67] that shows

the relationship when the channel is symmetric and the universal hash function is linear.

Consider an AWGN channel with zero mean and variance o%. Suppose we use BPSK
with X’ = {—a, a} and a uniform quantizer that maps Z to the nearest value in the set
Z = {-L+5,—L+%,...,L —%,L— 5}, sothat Z € Z. Furthermore, L can become
arbitrarily large, so that the Gaussian density function can be arbitrarily approximated
due to its smoothness, and thus the advantage as well. Note that we can partition the
AWGN channel outputs Z in such a way that for each subset, the matrix of transition
probabilities has the property that each row is a permutation of each other row and each
column is a permutation of each other column. Thus, the channel is symmetric according
to [08]. More precisely, the set of outputs of the X" —to— Z channel can be partitioned into
subsets, so that in terms of transition probability matrices of the subsets (using inputs as
rows and outputs of the subset as columns), with Z = U[i/f] z, we have for all z, 2* € Z,
that the list of probabilities of W{a, ] and W|[—a,-] and of W|-, 2] and W[, 2f] is the
same, respectively. Furthermore, the same applies to the AWGN channel if we use QPSK,
because this corresponds to two BPSK.

Consider the group (X’,®), where a is the identity and where 0 — a and 1 — —a.
Furthermore, let € : S x {0,1}" — X’ be a random function which can be realized by a
deterministic function € : 8 x {0,1}'"% x {0,1}" — &, that has an additional uniformly

at random input vector.

According to [13][Theorem 4.12], if a random function € : S x {0,1}" — X’ is separable

and message-linear and the channel E' : X' — Z is symmetric, then
AdvM%2(¢; B4, S) < Ado™MI%3 (¢ B¢ S), (7.40)
where ¢ is separable if
E(s,r,m) = &(s,1,08) @ E(s,07F m) (7.41)
for all se S, re {0,1}F and m € {0,1}", and message linear if

E(5,07F m+m/) = £(s,07%, m) @ &(s,07F, m) (7.42)
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for all s € S, m,m’ € {0, 1}k. Obviously, for the case where f; ! is given as in (7.20),
¢ = BPSK oWo f;!is separable and message-linear.

Since we can approximate the Gaussian density function arbitrarily close with the
appropriate partition of Z , (7.40) also holds for the continuous channel.

We summarize the result as follows.

Theorem 7.12. Let f;'(m) be as in (7.20) and let the randomized function ¢ = BPSKo
Vo fr1:8 x {0, 1}k — X' be a separable and message-linear encryption function, and
E: X' — Z asymmetric AWGN channel, then (7.40) is true.

D Ss3-Security Implies D.S;-Security

First, we review [00, Lemma 5.8].

Lemma 7.13. For the case where the channel F : X' — Z is symmetric and £ : S x

{0, 1}k — X' is a separable and message-linear function, ||Pze|m s — Pgze|s

| is the same

regardless of the choice of the input m € {0,1}".

Theorem 7.14. Let f;'(m) be as in (7.20). For the symmetric AWGN channel E :
X' — Z,if¢ = BPSKoWo f;1:8 x {0,1}* — X' is a separable and message-linear
randomized function, then

AdvP51(€; B4 S) < 2AdvP™3 (€5 B S). (7.43)

Proof. Let M ~ unif({0, 1}%).

AdUDS3(f;EC;S) _ WZ Z E J ) |p(20‘m1,8) —p(écymzys)‘dzc

1 1 1 . . .
> E D X 5 ) Ems) —pllsl:
€S m. ze
€{0,1}
1 1 C zC C
=18 242 Ip(2°|m, s) — p(2°s)|dz",
seS N

where the inequality follows from the triangle inequality and the last equality from Lemma
7.13. Moreover,

AdvDSl(f; EC;S) _ max _f |p(20|m1,3) —p(;}c|m278)| dz°¢
se =

1 1
< g mas 5 [ I, 9) o

1

* §J Ip(2°]s) = p(2*|ma, ) |d=*]
1 w1 y o

=275 ), ‘J [p(2°|m, s) — p(27]s)|d=", (7.44)
|S| seS 2 ¢
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where the inequality follows from the triangle inequality and the last equality follows from

Lemma 7.13. n

Note that a similar security measure to Adv??(¢; E¢; S) is defined in [66]:
RDS (¢. c. S sC c
Adv"™PS (¢, E4, S g2 Z o Z J 2%|m, s) — p(2°|s)|d=°. (7.45)
{0, 1}’c

They have the following relationship:

AdvP% (& B4 8) < 24dv™PS (¢ B S) < 2AdvP% (& % S). (7.46)

DSs-Security and M [S3-Security

The empirical study of mutual information is difficult and therefore we can only approach

the analysis of M IS3-security theoretically.

Proposition 7.15. Let £ : S x {0, 1}k — X' be a stochastic encoder and E° the channel
of Eve. Then,

2k
2AdvPSs(&; Ee; S)

Adv™M'% (¢ B4 S) < 2AdvP3 (€5 B¢, S) log (7.47)

Proof. For the AWGN channel (and the DMC channel) we can use the upper bound
proposed by [62, Appendix IJ:

2k:
2 | Pzemis=s — Pzejs=sPu|

Adv™M'53 (& B4 S) < 2| Pgeajs—s — Prejs—sPu| log (7.48)

Observe that,

Ado™'3(¢; B S)

a) 2k
< | ;2 HPZC M|S=s PZC|S SPMH log 5 HPZC7M|S:S — PZC‘S=SPMH
2 Z 2| Pyenris—s — Preyss o 2
¢ s ¢ s og s
’ seS Zns e \3| ZSES 2 HPZC,M|S:5 - PZ“\S:sPM

where a) follows from (7.48), and b) as —x log z is concave.

Furthermore,
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|S| 863 mle{O 1}’c mae{0,1}*
B f (p(=“bm, 5) — pl=lm, )
865 m1e{0,1}" mae{0, 1}’“

= AdvP% (& E% S). (7.49)

If AdvP5(&; B¢ S) decreases exponentially with ¢, then DSs-security implies MISs-

security.

DSs-Security and M [S>-Security

From (7.40) and (7.47) follows:

Proposition 7.16. Let ¢ : Sx {0, 1}k — X' be a separable and message-linear stochastic
encoder and E¢ a symmetric AWGN channel of Eve. Then,

2k:

A MISQ ,EIC, < 2A D53 .EC. 1 .
dU (57 78) dU (fa 78) Og 2Ad’UDS3(£; EC,S)

(7.50)

This is also true for f;*(m) given in (7.20). If AdvP%(¢; B4 S) decreases exponentially
with ¢, then DSj3-security implies M I Sy-security.

7.4. Measurement of security by simulation

7.4.1. Operational Meaning

We consider the operational meaning of the D.S;-security and DSs-security to be able to
evaluate the simulation results in Section 8. For simulations when considering distinguish-
ing security and strong security, we can use the ML decoder at Eve which is an optimal
attack strategy, because only message distributions with equally probable message pairs

are considered.

119



7. The Seeded Modular Code
Distinguishing Security of Scenarios 1 and 1a)

We can reformulate the first equation of (7.26) to obtain

AdvDSl(g; E*;S)

- EZ max Pr(A(s, m1, ma, Z(ma, 5)) = 1) = Pr(A(s,mq, mg, Z°(mg, 5)) = 1)
seS

= %ZAmax 1 — Pr(A(s,mi,ma, Z°(my,s)) = 2)
seS et

— Pr(A(s,ma,ma, Z(ma, 5)) = 1), (751)

where Pr(A(s,my,mo, Z°(my,s)) = 2) is the probability of error of the first kind,
and Pr(A(s, my, ma, Z¢(ma, s)) = 1) the probability of error of the second kind.

Every {1,2}-valued eavesdropper strategy z¢ — A(s,my, ma, 2¢) is a hypothesis test
for distinguishing m; and ms. Thus for fixed s,m;, my, the maximum over A in (7.51)
is attained by an ML test with threshold 7, as given in Subsection 7.4.2. Then (7.51)

becomes

AdoP51 (& B4 S) = |S| Z max (1 — Ai(s,my,ma,n) — Aa(s, m1, ma, 1)), (7.52)

where A\;(s,m1,m2,n) and Aa(s,mq, my,n) are the probability of error of the first kind

and the second kind, respectively.

If we define the distinguishing error rate at Eve:

3 , M, Mo, ) + )\2(87m1am2777))
9 )

DERg, (£ E% S =5 ann{bllllrln 2 (7.53)

then we can see that AdvP%1(¢; E¢;S) and DERg, (&; B¢ S) are two different representa-

tions of Eve’s performance and therefore can be translated into each other by
AdvP% (& E%S) =1—-2- DERp, (& E% S).

In all communication scenarios, we can use DERg as a benchmark value for the advan-

tage, where DERE close to 1/2 means “high security”.

Accordingly, (7.28) can be reformulated so that

AdvP519 (& E s) = max (1 — Ai(s,mq, ma,n) — Aa(s,m1, ma,n)). (7.54)

7,1mM1,Mm2

The distinguishing error rate at Eve for given 7, my, ms and s is then,

A1(s,m1,me,n) + Xa(s,m1,ma,n)

DERpg,, (s,m1,ma,n) = 5
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We define DEREM(S, my,me,n) for each message pair because we apply them in the

simulation.

The maximization over the message pair is discussed in Section 7.4.3.

Distinguishing Security of Scenario 3

Here, we obtain AdvP%:(&; E4 S) in terms of the probability of error of the first and the

second kind.

Proposition 7.17. Let £ : S x {0,1}¥ — X’ be a stochastic encoder and E° the channel
of Eve. Then,

AdvP> (& B%4S) = 1- A& ESS), (7.55)
where 5\(5, EC, S) = 22+|S| ZSES Zml’m2€{071}k minn()\l(s7 mi,ma, 77) + )\2(87 my,may, 77))

Proof. As in (7.52) and (7.54), we can replace the arbitrary distinguishing strategies .4
by ML tests. Thus

1
AdvP> (& E% S) = Z 2 mgx(l — Ai(s,ma, ma,m) — Aao(s, ma, ma, 1))

2k
2 |S| seS ml,mge{o,l}k

1 :
= 22k;|8| Z Z (1 - mln(/\l(s’mth)n) + >\2(S7mlam27n)))

s€S ml,mQE{O,l}k !
=1-\& E%S), (7.56)
with A(§; B¢ S) as defined in the statement. m

The corresponding distinguishing error rate at Eve is defined as

DERp (¢ B5S) — MEL5S) f 55, (7.57)

7.4.2. Attack strategy of the eavesdropper

Eve applies the ML test. Consider the log likelihood ratio with threshold n,

C >M=m1
LLR(=|s,my,ms) — log [ LES:m) log(n),
p(zls,ma) | <y,

where Eve decides for my if LLR(z°|s,m1,ms) is greater than or equal to logn and for

mey otherwise.
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For the case where the channel is AWGN, we use the following conditional probability

densities when message my, with b € {1,2} was sent,

psm) = g D) [t ) (@), (7.5%)

v:fs(v)=my =1

where x(V(v)); denotes the i-th symbol in the length-c channel input x(¥(v)) € C¢, and,

for any channel input 2’ € C and output z € C,

SNRg

exp(—|z — 2'|?’SNRp). (7.59)

w(z|x') =

7.4.3. Determining the Best Performance of Eve under DS;- Security

Now we focus on how to maximize (7.52) over the pair of messages out of the message
set {0,1}*. We consider the problem from the coding point of view and analyze the code

structure.

We want to analyze the relationship between the advantage at Eve under distinguishing
security and the Hamming distance of the chosen codeword pairs of the associated message
pair (mq,ms). If a message pair (my, ms) is chosen for which the codeword pairs have the

maximum Hamming distance, intuitively this should be close to optimal for Eve.

Recall that the randomized inverse of the UHF of (7.17) provides a stochastic mapping
from messages to the FEC inputs, so that as the message m is chosen, the encoder
chooses uniformly at random a vector v from the set {v" : fs(v') = m}, and encodes it to
a codeword 2" via the FEC code with generator matrix G. Therefore we do not search
for a single codeword pair but for a coset pair of codewords that have the maximum
average Hamming distance. Let us denote the set C'(m,s) := {v': fs(v') = m} G that
corresponds to a certain message m as coset, where C’(m, s) is a subset of the codeword
set of the seeded modular UHF wiretap code C, < {0,1}", with |C’(m,s)| = 2% and
IC.| = 2'. C'(m, s) is in fact a coset since the UHF is affine-linear and {0, 1}' corresponds
to the elements of GF(2'). Furthermore, Uh:L_ﬂkC”(mh, s) = Cp.

Thus, we consider the following working hypothesis. If a message pair is chosen for
which the cosets C’(mq,s) and C'(mas, s) have the maximum average Hamming distance
among all pairs of such sets, this should intuitively be close to optimal for Eve. For any
linear FEC code with [ x n generator matrix G, we first look for two cosets C'(mq,s) =
{v': fs(v)) =my} G, C'(mg,s) = {v": f(v") = my} G, whose codewords have in average
the maximum Hamming distance to each other, where my # my € {0,1}". The maximum

average Hamming distance of a coset pair (C’'(my,s), C’'(ma, s)) is defined as follows:

Amaz(s) = max dg(C'(my, s),C"'(ma, s)),

mi,m2
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where

! ! 1 n n
di(C'(ma,5), C'(m2, 5)) := 5 > > dylal,ah)

zeC’(my,s) §eC’(ma,s)

is the average Hamming distance between C’(mq,s) and C’(mg,s). We also define the
minimum such distance,
Amin(8) = min dg(C'(mq,s), C'(ma, s)).
mi,ma2
Remark 7.18. If we arrange the Hamming distances of all codeword pairs from the
coset pair in a matrix - whose columns number the codewords from coset 1 and whose
rows number the codewords from coset 2 - we see that the matrix is bisymmetric and

additionally that the diagonal and prediagonal each have uniform values. This insight

saves computational power.

To find a message pair or the corresponding coset pair of maximum average Hamming
distance, we analyze the code as follows. W.l.o.g. we can set t = 0, because both for ¢ = 0
and t # 0, the average Hamming distance between two cosets remains unchanged. Let
2"(m,r) € C'(m,s), where m and r specifies the codeword. Since (ml||r) = (m||0"=%) +

(0%||r) and the distributive law holds, we can write (7.18) as follows.
s~ (mllr) = 570 [(m]]07F) 4 (0F]]r) ] = 57« (m][07F) + 70« (0% |r).
Then (7.21) becomes
" (m,r) = (s~ = (m]|07F)G + (s« (0%||r))G. (7.60)

The set of n-bit vectors {s=* « (0| |r)}Vre{0,1}l*’“ G forms the coset C’'(0%, s), and the cosets
C'(my, s) are given by b;+C" with b; = (s~ +(m;]|0"=%))G, which correspond to message m;,
with i € {1,...,2%}. If vectors b; and by, i # j € {1,...,2"} have the maximum Hamming
distance then for any given r the corresponding codewords x™(m;,r) € C’(m;,s) and
2" (m;,r) € C'(mj, s) have the maximum Hamming distance, too. However, this gives no
information about the coset pairs which have the maximum average Hamming distance.
Since the codeword pairs are randomly selected from the coset pairs, their Hamming
distances are not known in advance. Furthermore, we could not theoretically show a
correlation between Adv”% and the Hamming distance of the codeword pairs. This is
where the simulations come into action, provided in Section 8.2. We gain helpful insights
into the interaction of seed and Eve’s advantage or the other code parameters, e.g., [,k.
Note that for higher order modulation, i.e. for j > 4, the performance of Eve depends
not only on the code but also on the modulation. Here it would be interesting for future

work to investigate how the interaction of code and modulation affects the performance
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of Eve by additionally analyzing the FKuclidean distance for the modulated words. Our
assumption is that the impact of the modulation decreases as the length of the random
vector r increases.

It is also interesting to see how the mean over the seed set affects the choice of message

pair. Let’s take a closer look at equation (7.52).

AdvP% (& E% S)

max max |1 — Pr Z1’¢fs(1)):7711 [Ti_, w(zi(ma, s)[x(¥(v))s)
’8| Z n mi,ma 1-P (szfs(v)_ma Hf:lw i ml?‘s)‘X(\Ij(U))i) < 77)

_pr<ZUfs m11_[ _ w(zi(ma, s)|x (¥ (v ]

(zi(
(W(v)):)
c =10
Zv:fs(v):mg Hi:l U)(ZZ‘ (m27 S) ’X(\P(v))z)
The probability ratio contains in both the denominator and the numerator Gaussian

(7.61)

where w(z|z") follows (7.59).

mixture densities, which makes the analysis difficult. Since in the case of DS;-security,
Eve selects the message pair that maximizes the advantage after the selection of the
seed, the selection of the message pair plays an important role. However, according to
Proposition 7.19 in the case where the message pair and the seed are chosen independently,
if our working hypothesis is correct, Adv”%2(¢; E¢; S) is independent of the choice of the

message pairs.

Proposition 7.19. The averaged Hamming distance of any coset pair, averaged over all

seeds s = (a,t) with a € F% | t € Fy, is independent of the choice of the message pair.

2l »

Proof. Let w be the Hamming weight, r € {0,1}'"" the random vector v(r) € f:(m,r)

and p = (a~'+t)G. Consider for any message pair my, my, and m = my +my the following

2 d((a™ = (ma]]r1))G + p, (™ = (mel|r2))G + p)

r1,72,8

— Z w((a™t * (my + ma||ry +12))G)

T1,72,0

- 227 Yula « (mline)
2, 2wl

ve{0,1}1\{0}! r

where the sum is over all a € F%,, all ry,ry € {0, 1}H€. Moreover, the last equation holds

2l
since for given m,r with (m||r) # 0 we have

{(a™" s+ (m||r))G:a " eFh} = {vG :veFy}. o

If our working hypothesis is true, then Adv?%(¢; E¢; S) ~ AdvP%2(¢; E%; S).
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7.5. Conclusion

We considered a seeded modular UHF code for the AWGN wiretap channel. Furthermore,
we introduced three communication scenarios, each reflecting the operational meaning of
different security measures and different assumptions about Eve’s strengths. We showed
some relevant relationships between the advantages of the three scenarios. We introduced
a new strong security metric to compare with the distinguishing security. We derived
the operational meanings of the distinguishing security and the strong security in the
three communication scenarios. We have made a working hypothesis that increasing the
average Hamming distance of a coset pair improves Eve’s performance and thus increases
her advantage. But we could not prove the correlation. Also, we could not find the coset
pairs with maximum average Hamming distance by analyzing the code structure. The
reason the Hamming distances of the codeword pairs are not known in advance is that
they are randomly selected from the coset pairs.

In a finite blocklength regime, security is more quantitative, given by a certain number
of secure bits. It is difficult to classify systems as secure or insecure, and they can be
application specific. Therefore, we derived a security level d in terms of code parameters,
which specifies how many bits are secure. We can use d to estimate the necessary amount
of encoding randomness at given code parameters and channel parameters.For future
work, it would be interesting to extend the modular coding scheme to the fading and
Multiple Input Multiple Output (MIMO) case.
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8. Simulations and Results on the
Seeded Modular Code

8.1. Introduction

We experimentally verify the information-theoretic security of a seeded modular code for
the Additive White Gaussian noise (AWGN) wiretap channel consisting of a security layer,
an error-correction layer and a modulation layer. Depending upon the communication
scenario and the operating SN R of the eavesdropper’s channel (SNRg), we determine
the advantage at Eve under distinguishing security. We use the advantage in terms of the
error probability derived in Section 7.4 to be able to assess the security performance. We
gain helpful insights from the simulation results, e.g., the impact of code parameters and
seed choice on security. For BPSK and QAM, we find that for small blocklengths, the
advantage under the required security metric is close to 0 for suitable code parameters.
We also verify that our simulation results support the theoretical results. In addition,
we compare the achievable secrecy rates with the simulated secrecy rates in terms of the
advantage under a given security metric. Finally, we compare the decoding performance
of the attack strategy proposed in Section 7.4.2 with other attack strategies with lower

computational effort.

8.1.1. Contribution

To the best of our knowledge, we are the first to verify the distinguishing security [13]
of a seeded modular code for the AWGN wiretap channel by simulations. We use the
FEC codes and the modulation schemes proposed by the 3GPP standards [69] and [70],
respectively, which fulfill a desired decoding probability (< 107) at a certain signal-to-
noise ratio SN Rp of Bob’s channel. As the security component, we use the UHF proposed
in [56]. Our simulation results show that for given SN Rg and a suitable, positive d-secure
rate (see Section 8.2), Eve’s advantage under distinguishing security is close to zero, even
for small blocklengths. The security level d specifies the sufficient amount of randomness.
We analyze the advantage at Eve in terms of the security level with different modulation
alphabets. In order to see how the seed choice affects the advantage, we analyze the
correlation between the average Hamming distance of the codeword sets corresponding

to distinct message pairs, and the advantage at Eve under distinguishing security. We
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observe a positive correlation. We observe that the seed set can be divided into two
subsets. In the one subset, all seeds ensure a consistent advantage at Eve. The other
subset consists of dispersing seeds that can affect the code in such a way, so that the
advantage at Eve under distinguishing security can be increased. This means that we
want the probability of occurrence of dispersing seeds to be as small as possible. We find
that the cardinality of the subset of dispersing seeds decreases exponentially with the

length of the random vector.

8.1.2. Related Work

We refer to the related work in Section 7.1.

8.1.3. Outline

Section 8.2 contains the simulations, the simulation results and the insights we gain
through the simulations. Section 8.3 we present other attack strategies and compare
them with the ML test from Section 7.4.2. Section 8.4 concludes the chapter.

8.2. Simulations and Results

In our simulations we vary either k£ or SN Rg, while SN Rp and all other code parameters
are fixed so that P.(£,7¢,¢) < 107 The average transmit power P,, is set to 1 in our
simulations, so that only the noise of the respective channel changes with the SN R. Note
that P,, is different from P used in the asymptotic analysis in Section 7.2.3 for QAM
modulations with R,,,q > 2. It is possible that individual codewords occur which require
P > 1. In addition, we can improve the bound in (7.37) by replacing the capacity of
the Gaussian channel C'g(0%, P) with Cypif, (Puw — @). According to [71], Cunif,(Pay — @)
with i € {T, E} is the capacity for the AWGN channel of 2fmed-QAM in the limit of
asymptotically large code blocklength, where o > 0 is a small constant power margin. In
the case of BPSK and QPSK a = 0, otherwise a = 0.05. Cipif, (Puy) is given in [72] as

R R 2 ’ 72
2%'mod 2%mod  |N;|°—|X} +N;—X]|

1
Cunig,(Pav) 1= Bomoa = 55— > En,[log( ; e ], (8.1)

k=1

where X/ denotes the k-th modulation symbol uniformly distributed over 2ftmed modula-
tion symbols with k € {1,2, ..., 2ftmed} and N; with i € {T, E} denotes the Gaussian noise
of channel i.
From now on we use (7.37) to choose the code parameter, where we replace Cx(0%, P)
by Cunifys (P — @):
d:= %(z — ko — Conipy (Paw — a)) _9. (8.2)
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In the following we will see that not only dps, but even dpg, can be larger than d (see

Remark 7.10). Furthermore, we define the d-secure rate

ko k
Rsec(d) = Z = TReff, (83)
with
AdvP%2 (¢ B4 S) < 274 (8.4)

For a given SN Rg, the code parameters [, £ and ¢ determine d. We use d to ap-
proximate dpg, and dpsla)(S) for specific seed s. In Subsections 8.2.1 and 8.2.2, respec-
tively, we will see why the approximations are admissible. Later we empirically determine
A5
ulation for the corresponding parameters [, k,c and SNRg into (7.54). Then we get
the empirical JDSM)(S) = — 1og(MDS“) (&; E%'s)) and compare it with the theoretical

security level d. Similarly, we estimate Adv”™> (& E°; S) using (7.55), and dpyg,.

(&; E¢; s) by substituting the error probabilities which we obtain from the sim-

For our simulations, we use the Matlab 5G Toolbox. Furthermore, we use the seed and
the UHF given in (7.17) as security component. The implementation of the UHF and its
inverse was done by using cyclotomic polynomials for a faster computation. This restricts

the choice of [ in our simulations because [ + 1 has to be a prime number.

For the error-correction and the modulation layer we use polar codes in the uplink
scenario as proposed in the 5G new radio standard. Authors in [73] give a report to the
channel coding 5G new radio and show complete coding chains for the NR polar codes.
The core components of the FEC encoder are the cyclic-redundancy-check (CRC) of length
nere = 6 or 11 bits, the polar encoding kernel, and the rate matcher. In addition, in the
uplink scenario a segmentation is performed before the CRC encoder. Furthermore, a
parity check encoder is applied before the polar encoding kernel. The rate matcher,
which contains a subblock interleaver is followed by a channel interleaver. All functions
of the coding chain are linear and therefore we let G be the concatenation of the linear
functions. Note that n... is not included in the value | and therefore has no influence on
R.¢s. At Bob, the soft-demodulated channel outputs are transformed into log likelihood
ratios (LLR), which are rate recovered and then decoded with a CRC-aided successive
cancellation list decoder of list size Ly,q = 8. In the modulation layer, the following
modulation schemes are supported: BPSK, 7/2-BPSK, QPSK, 16QAM, 64QAM and
256QAM. The modulation scheme follows a Gray coding.

Eve’s attack strategy is implemented as shown in Section 7.4.2, where we have chosen
n = 1 to optimize Eve’s performance. That is, by n = 1 we maximize (7.52), (7.54),
(7.55). Recall that Eve knows the selected message pair and its distribution, the seed,
the coding scheme, and the channel. The drawback of Eve’s attack strategy is that the
computational cost grows exponentially with [ — k, since the cosets grow exponentially

with [ — k. For example, if we use nodes with 28 cores that have a nominal frequency of
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8. Simulations and Results on the Seeded Modular Code

2.6 GHz and a DDR4 memory of 64 GB per node, the simulations for a single SNR value
require 22 hours for [ — k = 22 and about 91 hours for [ — k = 24. To obtain d > 0, we can

see in (8.2) that for small values of [ — k, the SN Rg has to be chosen small or negative.

8.2.1. Distinguishing Security - Scenario 1, 1a)
Correlation Between the Average Hamming Distance and Eve’s Seeded Advantage

For comparison we consider Eve’s distinguishing performance as a function of SN Rg for
a seed s and message pairs that provide all average Hamming distances between d,,q.($)
and dy,in(s). In the simulations, first the seed s = (a,t) is chosen, then the source needs
to select between two uniformly probable messages mq, mo to be transmitted that provide
Aimaz(8), dmin(s) or any distance in between. Eve receives 2¢ € C° and has to choose
between m; and m,. The message pair and the seed are fixed for 103 iterations. In each
iteration, the source uniformly chooses one of the two messages to be transmitted.

Fig. 8.1 shows the distinguishing error rate of Eve DERg,, (s,m1,ms) and Fig. 8.2
shows Aj(s,my, my) and Ay(s,my,ms). Both figures illustrate two curves of DERg,,,
A1(s,my,mg) or Ao(s,my,my) for each modulation alphabet. The solid curves belong
to a message pair with dp,.(s) = 19 and the dashed curves belong to a message pair
with dynin(s) = 14. The solid curves are always strictly smaller than the dashed curves
for the same modulation scheme. For BPSK and QPSK, DEREM)(S,ml,mg) decreases
monotonously in  dgy(C'(my,s),C'(ma, s)). For higher order modulations,
if dy(C'(myq,s),C"(mg, s)) is not much larger than dy(C’(ms, s), C'(my, s)), the reverse
behavior is possible, i.e., DERg,, (s,m1,ms) > DERp,,, (s, m3, m4). For example, we
have observed that for the 16QQAM case the DERE,, (s, m1, my) with a specific coset pair
having dy (C'(m4, s), C’'(mg, s)) = 14 in Fig. 8.1 is higher than the DERp, (s, m1, m2)
with a specific coset pair having dg (C'(mg, s), C'(my, s)) = 15. However, this phenomenon
gets less frequent as | — k increases, i.e., with increasing coset size. We suspect that this
smoothes out the influence of higher order modulation due to the increasing number of
codewords in the coset pair. Consequently, we can assume that Eve’s advantage, with few
exceptions, correlates positively with the average Hamming distance.

In Fig. 8.2, we can observe that Ai(s,my, my) and Ay(s,mq,mg) are very similar to
each other which implies an optimal choice of 7, since we have a binary hypothesis test

with two uniformly distributed messages and a symmetric channel.

Dispersing vs. Non-Dispersing Seeds

Since we are interested in seeds that maximize the advantage at Eve, we analyze how the
seeds affect the partitioning of the code C,, and the average Hamming distance. For our
analyses of the average Hamming distance, we set ¢t = 0’ in (7.17), because ¢ does not affect

the average Hamming distance. For given code parameters [, k, n, and for all s € §, we de-
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Figure 8.1.: Eve’s distinguishing performance for n = 32,1 = 12,k = 6,n... = 6 and for
a fixed seed. For BPSK we choose SN Rp = 2.5dB, for QPSK SN Rg= 5dB
and for 16QAM SNRp = 10.5dB. The solid curves show the distinguishing
performance at Eve for a coset pair with d,,..(s) = 19 and the dashed curves
show the performance for a coset pair with d,,(s) = 14.
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Figure 8.2.: A\1(s,mq, ma, 1) and Ay(s,mq, ma, 1) for the same parameters as in Fig. 8.1

termine the average Hamming distance of all coset pairs {(C"(m, 5), C'(m;, 8)) }izjef1,.. 2k}

We observed that the seed set can be divided into two subsets. One subset consists of
"non-dispersing” seeds, or s,q € S, = S for short. Non-dispersing seeds provide coset
pairs that have all the same average Hamming distance. In the case where s,4 € S,q is
used, the choice of the message pair and the non-dispersing seed does not affect Eve’s
performance. The other subset consists of "dispersing” seeds, or sq € Sg = S for short,
which partition the code C, in such a way that some coset pairs have a larger average
Hamming distance than that of a non-dispersing seed, thus improving Eve’s performance.
For any fixed seed s,4, the mean value of the average Hamming distances of all possible
coset pairs is 5, whereas for a given s; the mean value may differ slightly from . Note
that the seed chosen for the analyses in Section 8.2.1 necessarily has to be a dispersing
seed, since dpin(Sq) < dimaz(Sq4). The density distribution of the number of message pairs

as a function of dy (C’'(mq,s),C’'(ma, s)) for any s = $,4 € S,q is shown in Fig. 8.3 in the
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left image and for a certain s = s; € Sy with des(sq) = 19 and dyin(sq) = 14 in the right

image.
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Figure 8.3.: Density distribution of the number of message pairs as a function of the
average Hamming distance for a non-dispersing seed on the left and for a
dispersing seed on the right for n = 32,1 = 12,k = 6 and n... = 6.

We want to know the occurrence probability of the dispersing seeds. For this purpose,
we analyze the average Hamming distance of all possible coset pairs for n = 32, [ = 12,
nere = 6 and k = {2,3,4,5,6} for all possible seeds. For each seed we consider a coset pair
with dq.(s). For different values of k, the number of seeds that belongs to the respective
average maximum Hamming distance d,q.(Sq) is listed in Table 8.1 on the left and the
number of seeds that belongs to the average minimum Hamming distance d,,;,,(sq) is listed
in Table 8.1 on the right. We observed that for & = 6, 36.73% of all seeds are dispersing.
If we increase [ — k so that, k = 3, the number of all dispersing seeds decreases to 4.93%.
Altogether, we observed that |S,| diminishes with O(27(=*)).

Table 8.1.: The average Hamming distance of all possible coset pairs for n = 32, [ = 12,
Nee = 6 and k = {2,3,4,5,6} for all possible dispersing seeds.

dmaz(sq) k=2 k=83 k=4 k=5 k=6 dminsq) k=2 k=3 k=4 k=5 k=6
6.5 EP) 182 370 675 1114 5.5 EP) 184 370 675 1114
17 7 18 43 122 296 15 0 18 43 122 296
17.5 0 2 8 19 73 14.5 0 0 8 19 73
18 0 0 0 4 16 14 0 0 0 4 18
18.5 0 0 0 0 3 13.5 0 0 0 0 3
19 0 0 0 0 2 14 0 0 0 0 0
X 89 202 421 820 1504 X 82 202 421 820 1504

It is also interesting to consider the variance of the density distribution of the number
of message pairs as a function of the average Hamming distance for dispersing seeds. For

this we have varied k for fixed [ and observed that the variance decreases as [ — k& increases.

The Effect of Seed Choice on the Advantage

Next, we compare AdvP51(¢; B¢ S) from (7.52) with AdvP510 (&; E¢; s) from (7.54), where
s is either dispersing or non-dispersing.
Since dg(C'(myq, Spa), C'(ma, Spq)) does not change with my, my as long as m; # mo,

we assume by our working hypothesis that the choice of message pair does not influence
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Eve’s advantage and that this advantage is the same for all non-dispersing seeds. In other

words,
AdvP%1 (&; EC; spa) = max 42Pr(A(spg, m1, ma, Z°(mpg, Spa)) = B) — 1.

In contrast, if s4 € Sy is chosen, then dyu:(Sq) > dimar(Sna) = %, where s,4 is arbitrary.

2
Table 8.2 summarizes the performance comparison and Ado” (&; E¢; spq) for different
modulation schemes and security levels d for any non-dispersing seed. In addition, for
different modulation schemes and values of d, Table 8.3 shows Ady"”™ (&; B sq) where
all coset pairs have dy(C’(my,sq), C'(ma, sq)) = 17.5, which was the largest Hamming

distance we have found for the parameters. Again by our working hypothesis,
AdvP*0 (& B 5q) = AdvP* (& B sn4) (85)

for any sq € Sg and s,q € S,q, which is also supported by the comparison of Tables 8.2
and 8.3. Since
1

AdP GBS S) = 5|[ D) AdDPI (& B sua) + %) AduPS (6 B )|,

$nd€Snd 84€S84

together with (8.5) we can infer that there exists an sy € Sy such that for all 5,4 € Spq,
AdvP5o (€ E%; s4) = AdvP®1 (€, B4 S) = AdvP%10 (€, B s,4),

which is supported by Fig. 8.4. Additionally, recall that we observed that |S,| be-
comes very small with increasing [ — k, by which the gap between AdvP”(&; B¢ S) and
AdvP%e (€; E°; s,,4) decreases. Note that since AdvP%1e) (&; B¢ s,4) < AdvP%1(¢; E<;S),
we can assume that d DS1a) (Sna) = d ps,- Furthermore, we can observe in Table 8.2 that the
empirical security level is higher than the theoretical security level, that is, dpsg,,, (Sna) > d.

However, this does not apply to CZDsla>(5d)-

For completeness, we plotted Ad"> (& E% S) in Fig. 8.4 and we see that as expected,
Ady™™ (& ESS) = Adv"”™ (& E% S) (see Remark 7.10). According to Fig. 8.4, we can
assume that CZDSM) (Sna) ~ CZD,Sl ~ CZD52 > d. Since the communication scenarios 1
and 2 are difficult to simulate, especially for bigger parameters for [ and k, we consider

communication scenarios 1a) and 3 in the remaining part.

For QPSK, Fig. 8.5 shows Adv " (&; B¢ s4) and Adv" '

SNRg. Fig. 8.6 shows the performance comparison for different values of [ — k, for the

(&, E°; 5,4) as a function of

same parameters, and the same s,4 and s; as in Table 8.2 and &8.3.
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Figure 8.4.: Adv Adv”™ (& EC sq), Ad Dsl(g ES), A" (& EC; Spa) and
Adv”™ (&, ES) for QPSK, n = 32, | = 12, k = 6 and nge = 6. In

the simulation, dg(C’'(my, sq), C'(Mma, sq)) = 19, which is the worst case.

Table 8.2.: The performance comparison with n = 32, [ = 18, ng. = 6, SNRg = —5dB
for any non-dispersing seed. For BPSK we choose SNRp = 5dB, for QPSK
SNRp = 7.5dB and for 16QAM SNRg = 13dB.

Modulation d Reee(d) 1—k dDS1a)(5nd) AdvD‘sl")(f;EC;snd) DERE]G>(snd,7nl,7n2) M (Spas m1,m2)  Aa(Sna, ma, ma)

BPSK 0.4080 0.0625 16 1.9467 0.2594 0.3702 0.3753 0.3654
QPSK 0.8360 0.3750 12 2.8059 0.1430 0.4285 0.4485 0.4086
QPSK 2.8360 0.1250 16 4.3688 0.0484 0.4758 0.4753 0.4764
16QAM  0.5524  1.2500 8 2.7583 0.1478 0.4265 0.4111 0.4411
16QAM 25524 0.7500 12 6.3688 0.0121 0.4940 0.4951 0.4928

Rate Comparison

In Table 8.4, for non-dispersing seeds and SNRgp = —5dB we compare Rg.(d) given
in (8.3) with secrecy capacity Cy(c%, 0%, P,,) given in (7.10) and two theoretical secrecy
rates R, .(P,, — a), R (P,, — a) with limited modulation alphabet whose secure levels
are for asymptotically perfect security.
The secrecy rates are defined as follows.
R*

sec

(Pav — @) 1= Repy = Cunigp (Pav — @) (8.6)
and
R::C(P - Oé) = Rfo(Q Pe(gu Tc7 C)) - CUNifE (th - Oé), (87)

where R.sy is given in (7.23) and R ,(c, P(§,T¢,()) is the maximum achievable coding
rate for the AWGN channel with 2%me¢-QAM input and average power constraint P,, with
block error probability P.(&,T¢, () and blocklength c. More precisely, R} ;(c, Pe(£,T¢,C))
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Figure 8.5.: Adv " (&; E¢ s4) and Adv (&; E¢ spq) for QPSK and the same pa-
rameters as in Tables 8.2 and 8.3. When s; is used, the largest
di(C'(ma, sq), C'(my, sq)) we could find is 17.5 for | — k = {8,12,14} and
16.5 for [ — k = 16.

Table 8.3.: The performance comparison for n = 32, [ = 18, ne. = 6, SNRg = —5dB and
for a certain dispersing seed. The message pairs correspond to the coset pairs
with dpee(sq) = 17.5. For the case where | — k = 16, dpa.(sq) = 16.5. For
BPSK we choose SNRp = 5dB, for QPSK SNRg = 7.5dB and for 16QAM

SNRy = 13dB.

Modulation d Reec(d) 1—k JDSIQ) (sa) A" (& E° sq) DEREIQ)(sd, mi,ma)  A1(Sq,mi,ma)  Aa(sq,mi, ma)
BPSK 0.4080 0.0625 16 0.7456 0.5964 0.2018 0.2019 0.2018
QPSK 0.8360 0.3750 12 0.5230 0.6959 0.1520 0.1489 0.1551
QPSK 2.8360 0.1250 16 1.2351 0.4248 0.2876 0.2915 0.2837
16QAM 0.5524  1.2500 8 0.7520 0.5938 0.2030 0.2066 0.1996
16QAM 2.5524  0.7500 12 0.8267 0.5638 0.2185 0.2475 0.1886

is given in [71] by

g6 6T, Q) i Cunig (P — ) = | Lo =D gma e 7 0)) 4 oL
(

where )(.) denotes the Gaussian complementary CDF and Uy f(Pyy) is defined as

2fmod 2fmod 1INy 13— 11X]+N; = X{113
2
Uinif(Pay) = 2Rmod Z Var y;, [log( Z e 207 )]
= (8.9)
2Pmod  ||N; 13— 11X+ N; - X[ 113
+ Varx/[E[log( ). e ) XT].
=1

P,, — ) and R** (P,, — «) reveals the difference

SEC( Sec

between R.pp and R, (c, Pe(§,T¢,¢)). By simulations we measure R..(d) with different

Note, that the comparison between R
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Figure 8.6.: Eve’s distinguishing performance in scenario la) with s; where d,;4.(54) =
17.5 on the left and with any s,4 on the right for n = 32,1 = 18,k =
{4,6,10}, nere = 6. For BPSK we choose SNRp = 5dB, for QPSK SNRp=
7.5dB and for 16QAM SNRp = 13dB.

(Pa—at) < R (Poy—

modulation schemes and can observe that as expected Rge.(d) < R? -

a) < Cs(0%,0%, Pay). For BPSK and QPSK, Ry is much smaller than R}, and Ry
approaches R*ff as blocklength increases. We observe that the determination of Rge.(d)
for a chosen security level d by (8.2) is suboptimal. Note that our focus is primarily on
the security aspect and not on the maximum achievable secrecy rates. The DERp, | that

belong to Table 8.4 can be found in Table 8.2.

Table 8.4.: Rate comparison under distinguishing security in communication scenario la)
for s = Suq. Rsee(d) is specified by | = 18, n = 32, ng.. = 6 and SNRg =
—5dB. P,, =1, and for BPSK and QPSK a = 0 and for 16QAM « = 0.95.

BPSK QPSK 16QAM
SNRp 5dB  7.5dB  13dB
C, 1.661 2.331  3.993
R* (P, —a) 0454 1117  2.146

sec

R* (P —a) 0213 0730  1.888

sec

I — k=16

Ryee(d) 0.063 0.125  0.250
l— k=14

Ree(d) 0.250  0.500
I — k=12

Riee(d 0.375  0.750
I—k=38

Riee(d 1.250

8.2.2. Comparison of Scenarios 1a) and 3

We evaluate the seeded advantage at the eavesdropper under DSj3 security. Since we

average over message pairs in contrast to the maximization of scenarios 1 and la), we
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obtain
AdvP% (& B4 S) < AdvP™ (& B S),

so that dpg, = dpg,. Since we do not have to maximize the seeded advantage at Eve over
the message pair, we save the computational complexity of determining the coset pairs
with maximum average Hamming distance. Moreover, we can choose [ and k larger with

the constraint that [ — k& < 22, due to computation time issues as mentioned above.

In the following, the simulations for DSs-security were performed in such a way that
a random seed S and a random message pair (M;,M;) were chosen independently and
fixed for 10% iterations. The simulations were repeated for 10® randomly selected message
pairs and randomly selected seeds. To perform the DERg, (&; E¢ S) calculation for DS;
security, we averaged Ai(s,my, my) and Ay(s,mq, mz) over the number of message pairs
transmitted and the seeds selected, so that we get A(¢; E% S). We can insert A(&; B¢ S)
into (7.55) to obtain A_dvDSS(f; E5S).

For a randomly chosen s,,4 and a certain dispersing seed s4, we compare DERg,(; E¢; S)
with DERpg,, )(5 my, ms) in Fig. 8.7 on the left and Ady” (& E° spq) with
Adp” (&; E¢ s4) and Adv” S(f' E¢;S) in Fig. 8.7 on the right, for QPSK, 16QAM and
64QAM. In Fig. 8.7 we can see in the SN R range from —20 to 5 d B that Adp” (& EC sq)
is larger than Adv™™ (& ESS), whereas
Ad DSS(f E%S) ~ Adv Adv” '(&; E° 8,4), and therefore dDS3 ~ stm)(snd) > d. For ex-
ample for 16QAM and SNRg = —5dB we get

Adv”™) (& B°; 5,9) = 0.0079,
Adv"™' (&, B¢ s4) = 0.4229

and
Adv”™ (&, B4 S) = 0.0065.

It is not surprising that Adv”™ (& E%S) and Ado”>

mean of the average Hamming distance of all coset pairs for each seed is approximately

(&; E°; 8,,4) are similar, since the

5. Thus if an element of S,4 can be identified, communication scenario la) should be
chosen. The advantage of this scenario is that the seed can remain fixed once it has
been identified and thus the complexity of the seeded modular UHF code ca be reduced.
Moreover, AdvP%1) (&; E¢; 8,4) ~ AdvP3(&; E¢; S) means that the performance is close to
that of the DS3 security. Unfortunately, if we have a fading wiretap channel instead of an
AWGN channel, then the set S,,4 for Eve will in general depend on the channel state. Note
that because of AdvP%1 (&; E¢; s,q4) ~ AdvP%3(€; B¢ S), respectively the advantages and

d-secure rates listed in Table 8.2 and 8.4 are similar to Adv (& E¢; S). Furthermore,
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Figure 8.7.: Eve’s distinguishing performance in scenarios la) and 3 for n = 48,1 =
36,k = 17 and ng. = 11. For QPSK we choose SNRp = 10dB, for 16
QAM SNRp = 16dB and for 64 QAM SNRp = 22dB. When s = sg,

dy(C'(my, sq), C'(ma, s4)) = 25.5, which is the largest average Hamming dis-
tance we could find.

according to Fig. 8.4 and Fig. 8.7 we can assume that CZDSS x JDSM)(Snd) ~ CzDsl N

dps, = d.

8.3. Comparison of Different Attack Strategies of the

Eavesdropper
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Figure 8.8.: The distinguishing error rate for different attack strategies for n = 64, [ = 36,

k = 12. We used a non-dispersing seed.

Since the attack strategy proposed in Section 7.4.2 has a high level of complexity,

for code parameters n = 64, | = 36, k = 12 we compare different attack strategies by

simulation, where some of them approximate the maximum likelihood test for linear block

codes and for suitable code parameters. The modulation we choose is QPSK, so that after
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8.3. Comparison of Different Attack Strategies of the Eavesdropper

modulation the channel input consists of ¢ symbols. Fig.8.8 illustrates the distinguishing
performance of the decoding strategies described below. We consider the Soft Guessing
Random Additive Noise Decoder (SGRAND) [71] and the Ordered Statistics Decoder of
order 4 (OSD-4) [75] modified for our purposes. The SGRAND is an ML decoder for
arbitrary additive memoryless channels and tries to identify the noise/error vector that
has corrupted the codeword. The algorithm queries error vectors in a specific order and
iterates until a condition is met, whereas in the OSD-u algorithm all error vectors starting
with Hamming weight 0 up to uw are queried. Only then is a condition checked. Several
works exist that focus particularly on reducing the complexity of the OSD [76], [77], [78].
It was shown in [75] that for binary transmission over an AWGN channel, reprocessing
order equal to [d(C)/4 — 1] achieves practically optimum ML decoding performance for

a block code C' of minimum Hamming distance d(C').

Modified SGRAND: The pseudocode for the modified SGRAND is given in Algorithm 1.
The modified SGRAND differs in that after the possible estimated codeword z™ has been
checked to see if it is an element of the codebook, i.e. H(z")T = 0, where 2™ = ©(z¢) — "
and © is the demodulator, it is additionally checked for another criterion in lines 10-13
and that is whether fs(f(z™)) = my, with b = 1,2. Function f extracts [ information bits
from 2™ to obtain the output vector of the security layer v! at Alice. If v' does not belong
to any of the message pair then the next error vector is queried until the criteria are met or
the maximum number of queries b has been reached. If no admissible 2™ could be found in
b queries then the decoder randomly chooses one of the two messages my, ms. No erasures
are declared in the modified SGRAND as is the case in SGRANDAB [71]. We denote
the distinguishing error rate of the modified SGRAND by DERscranp(S, m1, m2). The
worst case complexity of the modified SGRAND is O(bn?).

Modified OSD: We have used the code for the OSD from [30] and modified it as given in
Algorithm 2. The decoder is adapted for the polar code as proposed for 3GPP standard.
The procedure from line 1 to 12 is the same as in [75], with the exception that h is a
concatenation of two functions. The first function soft demodulates the channel output
observed by Eve 2¢ € C¢ and the second recovers the rate as proposed in the 3GPP
standard. We obtain a vector of reliabilities y™ € R™. In line 13 the OSD-u searches for
the error vector e that affects the positions of the hard-demodulated codeword u% ,, such
that the absolute values of the log-likelihood ratios of r™ at the respective positions are
small in sum (called min_value in the algorithm), and searches for the error vector that

yields the smallest min_value.

Once we have found the error vector, the OSD-u determines the estimated codeword

-1

n . using the inverse permutations A\;'A\; %, ie. 2™ = A\ (A (u”,,,)). The

new

by permuting u

modified algorithm checks in line 16 whether 2™ belongs to one of the messages. Therefore,
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8. Simulations and Results on the Seeded Modular Code

in line 14 we determine the output vector of the security layer v' at Alice, where

10
F = (1 1) (8.10)

and A is known as the bit-reversal matrix. Note that the (I + ner + nye) X n matrix G
is a submatrix of the n x n matrix B, where n.,. is the bit-length of the CRC and n,, is
the bit-length of additional parity check bits which are appended to the information bits
for certain parameters. We obtain G after omitting the rows on the frozen bit-positions
from B. We denote the distinguishing error rate by DERosp_4(s, m1, ms). The decoding
complexity of an order-4 OSD can be as high as O((I + nere + npe)?).

Neural Network Decoder: The third attack strategy we consider is a neural network
(NN) decoder that we implemented with the help of the deep learning Matlab toolbox.
The theory of deep learning is described in [79]. An NN consists of many connected neu-
rons. In such a neuron, all of its weighted inputs are added up, a bias is optionally added,
and the result is propagated through a nonlinear activation function, e.g., a rectified linear

unit (ReLU) as in our case, which is defined as
gReLu(Z) = max {07 Z} . (811)

The NN decoder consists of an input layer, an output layer and so-called hidden layers.
Each layer consists of neurons which are connected to neurons of other layers without
feedback connections. Fach layer ¢ with ¢; inputs and k; outputs performs the mapping
f(i) : R% — Rk with the weights and biases of the neurons as parameters. When 3¢ is

the input of the NN and the output is denoted as m”, then the mapping is defined as

m" = f(y0) = fEVFED 0 (FOy), (8.12)

where O denotes the weights of the NN and L the number of layers. The weights of the NN
which minimize the loss function over the training set can be found by the use of gradient
descent optimization methods and the backpropagation algorithm. When training the
network we use "Adam”, which is a method of stochastic gradient descent optimization
[80]. We design an NN decoder that consists of four hidden fully connected layers of
respectively 64, 128, 128, 64 neurons. Since the task of our network is to distinguish two
messages from each other the input and output layers consist of 2¢c = 64 and two neurons,
respectively. Note that since the input vector is complex valued, we have split the vector
into an imaginary part and a real part, so that each variable corresponds to one feature.

We obtain a total vector length of 2c.

Since the output layer represents which message was sent, that is my or ms, a softmax
function forces the output neurons to be between zero and one. Thus, the output of

the softmax function can be used to represent a probability distribution over 2 different
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Algorithm 1 High-level description of modified SGRAND
INPUT: b, H, z¢, s, t, m1, ms
OUTPUT: mout S {ml, mg}

1.g=0 {g counts queries performed}
2. § = {0"} {8 contains candidate error vectors e}
3: i = (i1, ...,4,) = ordered error indices vector {Based on 2"}

4: while g < b do
5. €" = argmax p(z°/0(z°) — v")

vneS
6: S=38\{e"}
T g=g+1
8. if H(O(z¢) —e") = 0" * then
9: " =0(z°) —e"
10: ot = f(a") {f extracts [ information bits}
11: m = [(s*0") D]y
12: if m € {my, my} then
13: Moyt = M
14: return
15: end if
16: else
17: if ¢* = 0" then
18: gx =0
19: else
20: J* = max{j : e; # 0}
21: end if
22: if j* <n then
23: Gij*+1 =1
24: S=8Su{e"}
25: if j= > 0 then
26: €ij =0
27: S=8Su {6"}
28: end if
29: end if
30:  end if
31: end while
32: Moy = rand(mq, ms) {randomly choose 7y, }
33: return
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Algorithm 2 High-level description of modified OSD-u for polar decoding

INPUT: u, G, B = AF®log("), 26,8, t, my, Mo
OUTPUT: 1,y € {m1, ma}

y" = h(z°)

g" = M(y") with [1] = [ = -+
G =\ (G)

G" = X (G) = Aa(M(Q))

= X (9") with [ri] = |ra| = -+ = [rieng et

A

|G|

A\

and |7”l+nm+npc+1| = |7"l+ncm+npc+2| > =y,
Gsys o (G") {. = rowoperation}
u%;p =HardDecision(r")

min_value = o0

for 1 <i<wudo

10 for 0 <k <& do

. n o (I+neretnpe) (I+neretnpe) (I4+neretnpe)
11: Upew = (uHD ®ek ) ) Gsys Ugp -
(l+ncrc+npc

UHDy - - - ,UHD(l+nch+npc)7 Gk ) € 87:, where €(l+ncrc+n;76) is the error vector

of length (l + Nepe + npc> with wt<€](€l+ncrc+npc)> — 4 and |gz| _ (l"{‘ncric"l‘nPc)}
12: value =)’

@

j:uﬁewj #u%Dj |Tj |

13: if value < min_value then

14: ot =wA\ G (wn,,)BTY {w extracts [ information bits}
15: m=[(s=0") Dt

16: if m € {my, mo} then

17: Moyt = M

18: min_value = value

19: end if

20: end if

21: end for

22: end for
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possible events. If the probability suggests the label, the loss (e.g., the mean squared
error) should be increased only slightly, while large errors should result in a very large

loss.

We have collected 700,000 labeled codewords (data) for training the NN and 150,000
independent labeled data, each for validation and testing. The data were trained at an
SNR of 10dB, which turned out to be a good SNR. Smaller SNRs led to overfitting.
We trained the NN in epochs, where in each epoch the gradient of the loss function is
calculated over the training set. The mini batch size is a term that refers to the number
of training examples utilized in one iteration. The mini batch size is smaller than the

training set and specifies how many iterations complete one epoch.

Since our seeded modular UHF wiretap code consists of a randomized encoder during
training the NN is more difficult to generalize to codewords that it has never seen than
in the case of structured codes [31]. Generalization means that after training an NN, it
is able to find the correct outputs that correspond to new inputs. We have made similar
insights as the authors in the paper [81]. The larger we made the randomness, i.e. the
larger [ — k£ became, the more examples were necessary to train the NN, or they had
to be trained over more epochs. This is due to the fact that the code looses structure
with increasing [ — k. It should be noted that the NN decodes without knowledge of the
SNR. In addition, it learns the channel distribution itself with the help of the labeled
data in comparison to the ML decoder, where the knowledge of the channel distribution
is assumed. Another advantage is that, after training the NN decoder for fixed code
parameters, the decoding effort is small compared to the ML decoder. The distinguishing

error rate of an NN decoder is
DERnnN(s,my,me) = 1 — (accuracy/100), (8.13)

where accuracy := (number of correct predicted messages/total number of messages to
be predicted). The total number of messages to be predicted is equivalent to the dataset

size.

Modified Polar Decoder: Furthermore, we compare the above attack strategies with
the modified CRC-aided successive cancellation list (SCL) decoder. We use the CRC-
aided SCL decoder as proposed by the 3GPP standard. Since Eve has to decide between
a message pair (mq,ms), we have modified the decoder to additionally calculate the
Hamming distance between the decoded message m (which can be any message from the
message space M) and message m; and my, respectively, and output the message that
has a smaller Hamming distance to the original decoded message. If both pairs have the
same Hamming distance, that is dy(m, m;) = dg(m, ms), then the decoder randomly
chooses my or ms. We denote the distinguishing error rate by DE Rsgpp(s, mq, ms) and
report the results with list sizes L = 32 and L = 8192 (see Fig. 8.8).

To evaluate the distinguishing performance of the considered attack strategies for [—k >
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Table 8.5.: Key parameters of Adam

Parameter

miniBatchSize 500
InitialLearnRate 0.002
MaxEpochs 1000

GradientDecayFactor 0.9

24 we have determined an upper bound for the ML test numerically. Given the channel
output z¢, the standard polar decoder (SCL decoder) generates a list set £ with L = |L|
most probable codewords. We reduce the list set to the codewords from coset C’(m;) and
C’(my) and obtain the list set £, = L) C'(my), b = 1,2. For the case where the channel
is AWGN, instead of (7.58) we obtain the following conditional probability densities when

message my, with b e {1,2} was sent
c 1 :
Papprox(2°]5, ) = ] 2 ] [wtailms, s)Ix(¥(0)),), (8.14)

where x(¥(v)); denotes the i-th symbol in the length-c¢ channel input x(¥(v)) € C°.

Since the list set £} U L} is smaller than £, a higher decoding error probability is
expected and as soon as L — 2!, DER,y approaches the DERy; of the ML test
from Section 7.4.2. Therefore, we use this decoder to determine the upper bound of the
DERyp. In addition, an error is declared if £} = £, = . We observed that as the list
size L increases, the upper bound approaches the ML test. It is worth noting that here
the coset pairs are not generated, instead the messages corresponding to the codewords
from the list £ are computed and then the codewords are partitioned into £} and L.
We determine the list size L using a lower bound on the DER,;;,. The calculation of the
lower bound DFE Ry, differs from the calculation of the upper bound in that the set
L is extended by the transmitted codeword z” if it does not already appear in the list.
Thus the decoder makes an error as soon as it finds a codeword that corresponds to the
wrong coset, which leads to a greater probability of the channel output conditioned on
this codeword than conditioned on the actually sent z". With increasing L, the DE Rjop1,
converges to the DE Ry, from below. The complexity of the calculation of the lower and
upper bound is O(Lnlogn), while the complexity of the calculation of the ML test is
O(n20="). In Fig. 8.9 for n = 32,1 = 18, k = 2 and for L = 512, L = 1024, L. = 2048,
DERvr, DER i, and DE Ry, are illustrated. In the SN Ry range of interest to Alice
(that is where DER ~ 0.5) we observe that the larger £ is, the closer DER,;, and
DERoy1 to DERy, are and the more accurately we can estimate DE Ry, In Fig. 8.8,
L = 8192 was used to determine the upper and lower bound for DER;y..

Using the lower bound, for given n, k, SN Rg, we determined the list size L for any

security level d given in (8.2) and the admissible [ — k that provide DER;, ~ 0.5.
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We started with d = 3. If the lower bound does not converge to DER = 0.5 with
increasing list size up to a certain value, [ is increased up to the greatest prime < n,
where [ = prime — 1 and thus d as well. Then L is again increased for the new code
parameters. The process is repeated until a list size with code parameters is chosen so
that the lower bound converges to DER = 0.5, or until [ reaches the closest value prime—1
to n. If no [ could be found with DERy,,1, & 0.5, then the security criteria is not satisfied
for the given n. For complexity reasons we have limited the list size to L = 32768. Some
list sizes and the corresponding code parameters are listed in Table 8.6.

For small blocklengths, we can observe that sy must be high to transmit at a positive
d-secure rate Rg..(d). For fixed SNRg, and with increasing blocklength and fixed rate
Reff, Rsec(d) increases.

Furthermore, we have observed that for given n, SN Rg, and modulation, the decoding
performance of Eve depends only on [ — k£ and not on how large k and [ are in detalil, i.e.
with [ = 100 and k = 20 Eve decodes with the same error as with | = 82 and k = 2.

10° F
1071 ¢
2 - XS:ML
Eﬂj 10—2 S ——xs=uML L=512
O |- xs=loML L=512
- —xs=uML L=1024
10—3 SR xs=loML L=1024
| xs=uML L=2048
|- xs=loML L=2048
4 \ ‘ : : ‘

Figure 8.9.: DER, v, DERioy, and DERyp, for QPSK, n = 32, [ = 18, k = 2 and
L = 512,1024, 2048.

In Fig. 8.8 we can observe that the modified SGRAND and the modified OSD-4 per-
form equally. From 1dB, the modified SGRAND performs worse than the modified polar
decoder with L = 32. The NN decoder performs better below 1.5dB than the modi-
fied SGRAND and Polar decoder with L = 32. Above 1.5dB, however, the NN decoder
performs worse. Unfortunately, compared to our ML test, the modified SGRAND with
b = 107 and the modified OSD-4 perform much worse. In Fig. 8.8, we observe that the
performance of the modified SGRAND and the modified OSD-4 depends on [ — k, where
[ = 36 and k vary. Everywhere where k = 2 is selected is labeled in the legend. It is
evident that for an increasing random vector at the encoder, i.e. with increasing [ — k
where [ is fixed and k decreases, the DER,;;, approaches the DER of the alternative
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Table 8.6.: Code parameters that provide DERg,. ~ 0.5
SNRp [dB] n l—k L d

150 110 8192 10.79
150 124 8192 11.84
512 376 32768 21.60
150 136 16384 11.94
512 418 32768 22.49

W W N N =

decoders. This is because the distinguishing performance of the modified polar decoder
and the modified SGRAND or the modified OSD-4 depends on Rppc = [/n and, respec-
tively, is hardly and little affected by the size k, while the performance of the ML test
with varying k changes drastically as shown in Fig. 8.8. The DERs;cpp approaches the
DERyp, as the list size increases. Our main observation is that the best attack strategy

for Eve is to decode as we do, to obtain the upper bound on the DER,.

8.4. Conclusion

The main objective of this work was to calculate the seeded advantage at the eavesdrop-
per Eve under distinguishing security and strong security for small blocklengths, using
a seeded modular UHF code for an AWGN channel. We measured the seeded advan-
tage as a function of security level d. We used d to estimate the necessary amount of
encoding randomness at given code parameters and channel parameters. We then have
simulated Eve’s advantage in two communication scenarios, each reflecting the operational
meaning of different security measures and different assumptions about Eve’s capability.
With the help of the simulations we have gained important insights. For admissible code
parameters, we have observed that the advantage at Eve is close to zero even for small
blocklengths. We went even deeper by analyzing the impact of seeds on Eve’s distinguish-
ing performance. We observed that for given code parameters, some seeds increase Eve’s
advantage under distinguishing security. We made the important observation that the
selection probability of such seeds decreases exponentially with the length of the random
vector [ — k. This means that a selection criterion can be met by the seed set at the trans-
mitter for a given code to avoid a worst case scenario. There are several reasons why it is
desirable to identify and fix a non-dispersing seed for application in the security layer. We
already mentioned reducing the complexity of the coding scheme. Another advantage of
having a fixed seed is that if the seed were to be chosen anew for every transmission, this
seed would have to be made known to Alice and Bob before every message transmission.
This would cause a dramatic rate loss and should be avoided. Furthermore, for BPSK
and QPSK we could observe in simulations that the average Hamming distance of a coset

pair, corresponding to a certain message pair correlates positively with Eve’s seeded ad-
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vantage when the sample size is large enough. This simulatively confirms our working
hypothesis that increasing the average Hamming distance of a coset pair improves Eve’s
performance and thus increases her advantage. A further problem is the computational
complexity, so that we only were able to simulate the performance of Eve for [ — k < 22,
so that we had to choose small and negative SNRg to achieve acceptable results (e.g.
advantage at Eve ~ 0). For future work, the search for a universal attack strategy for Eve
with similar performance as the ML test but lower complexity is important for further
analysis. Simulations with other FEC codes are of interest as well. We have observed
that the security, e.g., measured in bits, is higher than theoretically estimated. This may
be due to the loose upper bound, so that in future work other upper bounds could be

used.
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9. Experimental Evaluation of a
Modular UHF Code

0.1. Introduction

Physical layer security (PLS) can provide provable information-theoretic security, in con-
trast to public key encryption that relies on the unproven assumption that certain math-
ematical operations, e.g., factorization of large prime numbers, are computationally hard
to invert. Additionally, PLS systems do not require a secret key exchange. Therefore,
we consider a modular UHF scheme, which is given in Chapter 7, for PLS consisting
of three layers; a modulation layer, an error-correction layer and a security layer. Un-
der this approach, an existing forward error-correction (FEC) code is used, preceded by
a pre-processing step responsible for the security. This scheme has the advantage that

well-researched FEC’s can still be used, easing PLS integration in deployed systems.

Contribution

We experimentally evaluate the modular universal hash function (UHF) code that is given
in Chapter 7, where software defined radios (SDR’s) represent Alice, Bob, and Eve. In
order to avoid external radio conditions from affecting our experiments, the SDR’s are
connected via coaxial cables. The wiretap setup is implemented using splitters and com-
biners: Alice’s transmit signal is split in two channels, where two independent Gaussian
noise sources are connected using combiners. Two noise generators with different power
levels are used for this purpose. This realizes the different channel statistics required by
our model. Before the corresponding signals are fed to Bob and Eve, they are attenuated
30 dB to keep a link budget below the saturation level of the analog-to-digital converters
(ADC’s) at the receiving Universal Software Radio Peripherals (USRP), thus avoiding sig-
nal clipping. We use a distinguishing security metric that can be evaluated experimentally
(to asses Eve’s performance) and is independent of the message distribution. In real signal
transmission, we measured the performance of Eve and compared it with the simulation
results. We observed that the experimental results are close to the simulation results.
This means that the synchronization and signal processing algorithms implemented for
our experimental setup do not contribute to the degradation of the communication at the

bit level. To the best of our knowledge, this is the first time that PLS in wiretap channels
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using a modular scheme is evaluated experimentally.

Related Work

In the literature, novel codes that achieve PLS and provide both reliability and security
simultaneously have been investigated. For instance in [59], the secrecy performance
of LDPC codes is studied for a uniform message distribution. Despite their practical
approach, the integration of such codes into existing systems would demand major design
changes. A different approach is presented in [32], where three-layer wiretap codes for the
AWGN wiretap channel are evaluated using a restricted security analysis based on mutual
information that does not allow the eavesdropper to perform arbitrary operations on the

received data. Furthermore, neither [59] nor [82] has been experimentally validated yet.

Outline

In the next section, we briefly reproduce the modular UHF code. In Section 9.3, we give
the security measure and its operational meaning in terms of the error probability to
evaluate the performance of Eve. In Section 9.4, we present the experimental setup of
the communication system at the signal processing level and set the key parameters. In
Section 9.5, we compare the experimental results with the simulation results provided by

Matlab and conclude the paper with Section 9.6.

9.2. The Seeded Modular Code for the Wiretap Channel

We briefly reproduce the seeded modular code from Chapter 7 and sum up some useful

information needed for the experimental setup.

9.2.1. Security Layer

Recall that we use a UHF that was proposed by Hayashi and Matsumoto [56]. We assume
that all participants have knowledge of a seed s = (a,t). The two components of the seed,
a and t, are bit strings of length [, and randomly chosen from {0, 1}'\{0}! and {0, 1},
respectively. Messages come from the set M = {0, 1}*. For a message m and a bit string
re{0,1}7% k < [, we define the mapping f;*: {0, 1} x {0,1}'"* — {0, 1}! according to

[N myr) = a™ « ((mr) @), (9.1)

where m||r denotes the concatenation of the bit strings m and r, a~! is the inverse, = the
multiplication, and @ the addition in the corresponding field Fy:. At the security layer on
Alice’s side, for a given message m € M, we randomly choose a bit string r and compute

v = f;1(m,r). The bit string v is then further processed by the error-correction layer.
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9.2. The Seeded Modular Code for the Wiretap Channel

At the security layer on Bob’s side we have to reverse the action of f;!. To this end,
we use the mapping f,: {0, 1} — {0, 1}*, defined by

fs(0) = [(ax0) @], (9.2)

where [z];, denotes the operation of selecting the first & bits of z. f, is applied on the
output v of the coding layer, which results in 7 = f,(0). If the transmission over the
channel T has been error free, i.e. if = v, then we have m = m because fs(f;*(m,r)) =
m for all s, m, and r.

Although the function f; !, which was given in (9.1), is a function of two arguments -
the message m and a randomly chosen bit string r - it will be convenient to interpret it
as mapping with only one argument m. Recall that the randomized inverse of the UHF
of f71(m) provides a stochastic mapping from messages to the FEC inputs, so that as
the message m is chosen, the encoder chooses uniformly at random a vector v from the

set {v': fs(v") = m}, and encodes it to a codeword z" via the FEC code.

9.2.2. System Integration of the Security Layer

In this section, we describe how the security layer integrates into the communication

system. The used mappings and variables are displayed in Fig. 9.1.

-1
mﬁ,vixnixlciylciyngfﬁﬁ,m
& f | s I

Figure 9.1.: Modular coding scheme from Alice to Bob.

Error-Correction Layer: Alice encodes the output of the security layer v, using some
forward error-correction (FEC) code with encoder-decoder pair (¥, ®) of rate Rpgc = I/n.
Hence, we have 2" = W(v) € {0,1}". For this layer, we use polar codes, which are also
used in the 5G New Radio standard [73]. The core components of the FEC encoder are
the cyclic-redundancy-check (CRC) encoder with CRC lengths of 6 and 11 bits, the polar
encoding kernel, and the rate matcher. At Bob, the soft-demodulated channel outputs are
transformed into log likelihood ratios (LLR), which are rate recovered and then decoded
with a CRC-aided successive cancellation list decoder of list size L = 8. We use the
implementation of the polar encoder and decoder in the 5G Toolbox in Matlab.

Modulation Layer: For modulation, we consider quadrature phase shift keying (QPSK).
We denote the corresponding symbol alphabet by &’ < C. It has size 2fmed  where
Ry04 = 2 denotes the number of bits per symbol. By x we denote the constellation mapper
and by ¢ the constellation demapper. Alice modulates x according to ¢ = y(2™) € X',
where ¢ = n/Ry0q. The modulation scheme follows a Gray encoding. The product of

Rrpc and Ry,0q gives the effective rate Reg = [/c.
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We assume that the channel to Bob and the channel to Eve are both complex additive
white Gaussian noise (AWGN) channels. Since the channel is memoryless, we obtain after
¢ channel uses y© = 2’ + wy and z¢ = 2'° + wg, where 2’ € X’ is the channel input, while
y'© € C° and 2¢ € C° are the channel outputs at Bob and Eve, respectively. wy and wg
are complex circularly-symmetric Gaussian random vectors.

Combining the security layer and the traditional coding layer, we obtain the total
encoding function & = y o W o f;! and the total decoding function ¢, = fs o ® o ¢.
The mapping &: M — X is the stochastic seeded encoder and (;: Y — M the seeded
decoder. We call (§,() = ({&s}ses, {(s}ses) a seeded modular code. Its secrecy rate is
Ruee = £ Rep = k/e.

9.2.3. Decoding at Bob

Bob receives a noisy version y'¢ = T'(2’°) of the channel input 2® = £(m), and his goal is
to decode the message m correctly. To this end, Bob computes m = (,(3¢). Since we use
a polar code for the traditional coding layer, we use, in fact, a soft demodulation at Bob.

The error probability of the seeded modular code (&, () and channel T is given by

Pe(&: ¢, T) = maxmax [Pr (G(T (& (m))) # m)]. (9-3)

seS me

Note that the error probability as defined in (9.3) is a worst case error probability, where
we maximize over all possible messages m € M and seeds s € S. The error depends only

on the FEC code, the modulation mapping and the channel.

9.2.4. Information-Theoretic Security

Eve should learn as little as possible about the message m when observing the output
of the channel E. Traditionally, information-theoretic security is measured in terms of
entropy or mutual information. Since we are interested in experimentally measuring Eve’s
“advantage” of learning the message, we need a metric with an immediate operational

meaning. Thus, we employ the distinguishing security (D.S) metric

AdvP%o (¢S, E) (9.4)

_ 1 max 2Pr[A(s,mi,mo, E({s(mp)))=B] — 1,
S| 5 Amam
which has been introduced in Chapter 7. B is a uniformly distributed random variable
over {1,2} and can be seen as a random challenge bit. In (9.4) we maximize all messages
mq, mo and all adversary strategies A.
The closer AdvP%1) is to zero, the more secure a security system is. For further infor-

mation about security metrics, see Chapter 7 and [13].
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9.3. Performance Evaluation

We take non-dispersing seeds, for which Eve’s performance does not depend on the mes-
sage pair selected for transmission. Non-dispersing seeds provide a stronger level of secu-
rity than the others. We use such seeds in our experiments and denote them by s = (a, t)
in the following.

When evaluating (9.4) for a fixed seed s, we obtain
ijQPr[A(S,ml,mg,E(fs(m@)))zB] — 1. (9.5)

The maximum over mq, mo can be omitted due to the choice of the seed, and thus mq, mo
can be fixed arbitrarily. Alice randomly chooses B € {1,2} and transmits the message
mp. Eve receives E({;(mp)), and, based on that information, has to decide whether m;
or ms was sent. The attack strategy of Eve in the experiments is to use a maximum
likelihood (ML) decoder, which is given in Section 7.4.2.
The distinguishing error probability DERE, i.e., the probability that Eve decides incor-
rectly, is given by
DERE = Pr[mgw. # mz]. (9.6)

Then (9.5) is equal to 1 — 2DERg, and DERg close to 1/2 means “high security”.

Note that Eve has to decide which one out of two given messages was sent. In contrast,
Bob decodes ordinarily without this additional information and tries to determine which
message out of the set of all possible messages M was sent. Hence, the decoding task of
Bob in our setting is more intricate than the decoding task of Eve. Bob’s block error rate
is given by

BLERg = Pr((s(T(&s(m))) # mp).

Performing the maximum likelihood decoding as in (7.58) requires the computation of
all words in the set {v': fs(v') = mp}. The size of this set, and consequently the time
needed to evaluate (7.58) grows exponentially in [ — k. Thus, the ML decoding at Eve is
computationally feasible only up to [ — k < 22.

The pseudo code given in Algorithm 3 summarizes how BLERg and DERg are deter-

mined.

9.4. Experimental Setup

9.4.1. Hardware Setup

The experimental setup consists of three NI USRP-2954R software defined radios (SDRs)
representing Alice, Bob, and Eve. In order to have reproducible conditions, the SDRs are
connected via coaxial cables, as indicated in Fig. 9.2. Alice’s transmit signal is split, and

white Gaussian noise is added from an R&S SMW200A signal generator, which includes
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Algorithm 3 High-level description of the performance evaluation of the seeded modular
coding scheme

INPUT: SNRg, SNREg, ¢, [, k, num_codewords, s, mq, ms

OUTPUT: BLERg, DEREg

1: codeword_errors_Bob := 0;

2: codeword_errors_Eve := 0;

3: for j = 1 to num_codewords do
4:  choose m € {my, my} randomly

5. choose v randomly from f;!(m)

6 = x(T(v))

7. Decoder of Bob:

]: y/c — T(l’lc)

9: = ((y")
10:  if m # m then
11: codeword_errors_Bob := codeword_errors_Bob + 1;
12: end if

13:  Decoder of Eve:
14: 2¢ = E(:z;’c)

>mEve:m1

15:  LLR(2°|s,m1, m2) log(1)
MEve=mM2
16:  if Mmgw. # m then
17: codeword_errors_Eve := codeword_errors_Eve + 1;
18:  end if
19: end for

20: BLERg = codeword _errors_Bob/num_codewords
21: DERE = codeword_errors_Eve/num_codewords

SMW
a
USRP > A USRP
Alice 1T P 30aB | Bob
splitteﬂ combiner  ,itenuator
- A USRP
> -30dB Eve
10 MHz REF combiner  a¢tenyator

Clock & PPS

Figure 9.2.: Hardware setup for the experiments.
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two separate SMW-K62 noise generators. The resulting signals are attenuated by 30dB
and fed into Bob and Eve.

The USRP gains and SMW noise power have been selected after a careful budget link
planning in order to avoid signal clipping and to minimize quantization errors at the
receivers.

All USRPs are synchronized using a clock distribution system CDA-2990. Both clock
and pulse-per-second (PPS) signals are generated by a GPS disciplined clock with an

accuracy of 5 parts per billion.

9.4.2. Communication Scheme

We have deployed a single-carrier transmission communication protocol. Alice sends mes-
sages to Bob in the form of periodic bursts, e.g., 32.768 ms for n = 28, with sampling
rate f. and using the frame structure shown in Fig. 9.3. Since we are concerned with
experimentally demonstrating information-theoretic security, the frame structure and dig-
ital signal-processing (DSP) algorithms have been chosen to minimize DSP-related errors.
For frame synchronization we employ a Barker sequence of length Ny, which is repeated
twice [93]. For phase ambiguity resolution we employ a Gold sequence of length Nyt
[34]. Both of these sequences are used for phase offset estimation. The padding sequence
of length Npadaing separates the noise-free signal on its left from the noisy signal on its
right, as discussed in Section 9.4.4. The SNR is estimated using the second Gold sequence

after countering the channel effects on it. The entire preamble is modulated using BPSK.

Sync | Pilot #1| Padding | Pilot #2 Payload

2 Nsync Npilot Npadding Npilot Ndata

Figure 9.3.: Frame structure of the transmission scheme.

The transmitted payload is Ngata = Niua/ 1082 (Maata) symbols long, where N, is the

length of the bit sequence and Mya, = 2%med is the modulation order used for the payload.

9.4.3. Signal Processing Implementation

The DSP steps performed after encoding the message using the modular scheme are
illustrated in Fig. 9.4. The generated codewords are encapsulated into protocol data units

PDU) by either segmenting the bitstream in chunks of N; . bits or adding padding bits,
d

ata
in case the codeword is smaller than the PDU. In our experiments, the PDU length has
been chosen in order to send one frame per transmission only. The PDU is then converted
into 1/Q symbols using a Gray-encoded constellation mapper. Next, the preamble is
appended, which contains the synchronization, padding, and pilot symbols. Finally, this

stream of 1/Q symbols is pulse-shaped, using a square-root-raised-cosine finite impulse
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response (FIR) filter and upsampled, using a factor F' before being transferred to USRP-
Alice. The SDR transforms the digital baseband signal to the analog domain using a
16-bit digital-to-analog converter (DAC) with a sampling rate of f,, before its RF front-
end upconverts it using carrier frequency f., amplifies it with gain G, and sends it over

the channel.

Payload L Symbol
Encapsulation Mapping

| j
L Append | | Pulse | | DAC | RF

Preamble Shaping Front-End

Source | Encoding —

Figure 9.4.: Transmit signal processing.

At the receiver end, the analog bandpass signal is filtered, amplified using the receiver
gain G, and downconverted to baseband at the RF-frontend before being digitized by a
14-bit analog-to-digital converter (ADC). The carrier phase offset is compensated using
a phase-locked loop (PLL) synchronizer [85, p. 333] before matched filtering (MF) takes
place. The SNR maximization feature of MF is exploited to perform timing recovery via
the output power maximization algorithm [30, p. 261] followed by downsampling. The
start of the frame is then identified using a cross-correlation algorithm, which exploits
the good autocorrelation property of the Barker sequences. Phase ambiguity is finally

resolved by using the known pilots [35, p. 366]. These steps are depicted in Fig. 9.5.

RF | ApC L Phase Offset | | Matched N Timing
Front-End Correction Filtering Sync

l

Frame | | Phase Ambiguity | | SNR

—| Decodin i
Sync Resolution Estimation g | Sink

Figure 9.5.: Receive signal processing.

Real-time operation is realized through time-based synchronization via PPS signals,
a common reference clock, and parallel modular processes with dedicated CPU affini-
ties and hierarchical priorities. Data exchange among threads is managed via signaling
notifications and queuing buffers.

Table 9.1 summarizes key implementation parameters.

9.4.4. Guaranteeing Correct Low SNR Measurements

In order to achieve the SNRs required at Eve while ensuring correct signal processing, the
SMW delays the initiation of the AWGN noise generation until the time interval assigned

for padding symbols is reached. This is selected long enough to account for a 1-2 ms jitter
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Table 9.1.: Key Parameters of the Experimental Setup

Parameter Variable Value
Barker sequence length Ngyne 13 symbols
Pilot sequence length Npilot 128 symbols
Padding sequence length Npadding 256 symbols
PDU length Nioia 512, 2048 bits
Up- / downsampling factor — F 16
Modulation (preamble) M preamble BPSK
Modulation (payload) Mata QPSK
Carrier frequency fe 2.437 GHz
USRP bandwidth B 50kHz

I/Q sampling rate fr 390 625 Sps
USRP transmit, receive gain Gy, G,, 28dB, 18dB
SMW noise bandwidth Bioise 100 kHz

Table 9.2.: Key parameters of the experiments

Parameter  Exp. 1 Exp. 2 Exp. 3 Exp. 4
n 28 28 128 28
l 18 18 72,78,88,96 18
k 4 4 16 4,10,18
CRC length 6 6 11 6

in the SMW’s response time. Such process is repeated periodically for each transmitted

frame, i.e. disabling the SMW shortly after a frame has been received.

0.5. Results

In our first experiment, we use the two messages m; = (0,0,0,0)T and my = (0,0,0,1)T,
as well as the seed s = (a,t) with a = (0,0,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,1)" and ¢
identically zero. This seed has the properties discussed in Section 9.3. Further system
parameters are listed in Table 9.2. During the experiment, the noise power in the channel
to Bob is fixed, and the one in the channel to Eve is changed in 0.25dB steps. For each
setting, we repeat the measurement at least 484 times, corresponding to at least 13,568
codewords. The SNRs at Bob SNRp and Eve SNRg are estimated based on the noisy
pilot signal using a data-aided ML estimator [37].

We measured SNRg = 8.1dB. Having a fixed SNRg, we virtually obtain the same
error rate BLERg = 0.00086 for all measurements from one batch. For Eve, we determine
the distinguishing error rate DERg as well as the BLERg, the block error rate when Eve
applies the same decoder as Bob. Note that the BLERE is not considered to be a security
metric in the strict sense. The values of DERg and BLERg for different SNRg values are
shown in Fig. 9.6. The lower the SNRg, the better the security level of the scheme is,
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10° =
1071
1072 F ==
. ||[—— DERg Exp
107° | pDERy Sim
| —— BLERg Exp
- - - BLERE Sim
—4 | | | J
10 —2 0 2 4 6 8

SNRg in dB

Figure 9.6.: DERE and BLERE as a function of SNRg (n=28; 1=18; k=4).
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Figure 9.7.: Comparison of 3 different seeds (n=28; 1=18; k=4).

as measured by the distinguishing error rate DERg. At an SNRg of —1.9dB we have a
DERE of 0.36. For comparison, at this SNRg, the BLERE is 0.91. If we compare this
SNRE to the SNRg, we observe that there is quite a large difference of 10dB. In our
next experiments we will see that this SNR margin depends on the blocklength and the
difference [ — k. In addition, the simulated values generated with 5,000 codewords are
plotted for comparison. We see that the experimental results (solid curves) are close to
the simulation results (dashed curves).

In our second experiment, we use the same messages m; and ms, and compare three
different seeds s1, s9, s3, each with the properties discussed in Section 9.3. As before, t is
chosen to be identically zero for all three seeds, and a is given by
a; = (0,0,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1, 1)1,
as = (0,0,1,1,1,1,0,1,0,1,1,1,1,1,1,1,1,0)T,
as = (1,0,1,0,1,1,0,1,0,1,1,0,1,1,1,1,0,0)T.

In Fig. 9.7 we see that the distinguishing error rate DERg, and hence the security level,
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Figure 9.8.: Effect of the difference [ —k on the DERg error rate (n=28; 1=18; k=4,10,18).
For k = 18, i.e., | — k = 0, we have a measured DERg of zero, which cannot
be displayed.
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Figure 9.9.: BLERE for larger blocklengths (n=128; 1=78, 88, 96; k=16).

has almost the same behavior for all seeds. Simulations have shown that the set of good
seeds that provide a high security level is rather large. This property is important for
practical implementations.

In our third experiment, we use longer, more realistic blocklengths. In Fig. 9.9 we see
the BLERE for n = 128, k = 16 and [ = 72,78, 88,96. Due to the large difference [ — k, it
is computationally infeasible to determine the DERE in this scenario. As expected from
the asymptotic theory of channel capacity, the transition from the SNRg region with
high BLERg to the region where BLERg decreases is sharper than in Fig. 9.7, where the
blocklength is smaller. Moreover, the decrease is faster in Fig. 9.9.

In our fourth experiment, whose results are displayed in Fig. 9.8, we vary the difference
[ — k by holding [ = 18 fixed and choosing k£ = 4,10,18. For k = 18 we have | — k = 0,

which gives a DERg of zero for all SNRg. It can be clearly seen that increasing [ — k for
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a fixed SNREg leads to a larger DERE, i.e., a higher security level. To put it differently, a
fixed security level can be sustained even for higher SNRg if [ — k is increased. This effect
can also be observed in Fig. 9.9.

In addition, we have taken screenshots of signal measurements for the testbed setup.
The configurations of the individual communication participants as well as the network
configurations can be seen in Fig. 9.10 and 9.11. For n = 32, [ = 18 and k = 4 the
distinguishing performance of Eve and BLE Rp of Bob were recorded when the security
layer is switched on. In the lower right of the figures, DERg is plotted as a function of
time for three different attack strategies, and BLERpg is plotted to the left. The SNR
values at the given time are shown to the left of the BLERp curve. In the legend, the
NN decoder is labeled ”deep learning” and the modified polar decoder with list size L = 8
is labeled ”Polar SCL” (see Section 8.3). The ML test was introduced in Section 7.4.2.
Bob decodes according to the 3GPP standard. In Fig. 9.11 we consider the same scenario
when the security layer is disabled, i.e. the random vector has length [ — k£ = 0. We can
see that in the second image, when the security layer is disabled, Eve can decode messages
over the entire SNR range with DERg ~ 0. Thus, without the security layer and thus
without the randomized encoding, no security can be provided (in our case distinguishing
security), with the exception of the modified polar decoder. We can see that the security
layer has no influence on the modified polar decoder. Therefore, the modified decoder
continues to decode with errors after deactivating the security layer. Thus Eve would not

choose the modified polar decoder as her attack strategy.
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Figure 9.11.: Communication scheme with deactivated security layer for n = 32, [ = 18
and k = 4.

9.6. Conclusion

We experimentally evaluated a seeded modular physical layer security scheme using soft-
ware defined radios. To the best of our knowledge, this is the first time such a demonstra-
tion has been done using real signal transmission. The used blocklengths are rather short,
given that the computational load of Eve’s ML decoder needed to assess the security level
via the D.S metric would otherwise be too big. We observed that the experimental results
are close to the simulation results. A relevant future research direction is to find other

security metrics with an operational meaning that do not require this costly operation.
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