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Abstract

Communication networks have become one of the primary critical players of our society, connect-
ing users to data centers, data centers to users and each other, and more recently, even things to the
Internet. These advancements have brought the connectivity to every corner of our lives, homes,
streets, and even trains and airplanes. This vast and boundless connectivity can bring many on-
line and interactive services to our everyday life, such as (ultra-) high-definition video streaming,
gaming, and data-driven analytics. However, the communication systems were initially designed
for providing simple best-effort connectivity with long-term manual changes, if necessary. How-
ever, this approach does not seem flexible enough for the modern new applications and services,
which now impose additional requirements for the underlying infrastructure, such as strict Quality
of Service (QoS) requirement, and dynamicity of traffic, and high user mobility.

Recently, there was a shift from statically and manually-configured networks towards softwarized
networks. In this context, promising technologies like Software-Defined Networking (SDN) and Net-
work Function Virtualization (NFV) govern the network by providing flexibility, and manageability
while allowing it to cope with the heterogeneity and high variability of today’s applications and
communications. Generally, emerging applications require this existing underlying infrastructure
to provide computational and network resources to more dynamic and heterogeneous services, ap-
plications, and requirements. The resource allocation and management tasks can have significant
effects on the delivered QoS (e.g., end-to-end delay) to the end-users, as well as the related Opera-
tional Expenditures (OPEX) to the network providers (e.g., power consumption). Therefore, in this
thesis, we focus on the design and optimization of such approaches, focusing on cost, end-to-end
delay, and reconfigurability.

The user requests arrive on the fly from a specific node in the network and need to be routed
through the network to reach the required service endpoint. These services are usually deployed
virtually (e.g., as Virtual Machines (VMs)) by geographically-distributed Data Centers (DCs). Some
services even require more complex setups, such as Service Function Chaining (SFC) where the traffic
should pass through a sequence of Virtual Network Functions (VNFs). Thus, to offer QoS-guaranteed
and cost-efficient services, determining the location of VNFs, as well as routing decisions, seem a
challenging problem to address. Therefore, designing, modeling, and optimizing such resource allo-
cation strategies is the focus of this work. In this thesis, we present a cost-efficient and QoS-aware
algorithm, with low computational complexity, that can perform online resource allocation for SFC
requests. Our comprehensive evaluation results confirm the performance of the proposed mecha-
nisms in a realistic online network setup with heterogeneous infrastructure and user requirements.
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Communication networks are becoming more and more dynamic every day. Given the differ-
ent network endpoints (e.g., humans, machines) and the exponential growing variety and use of
services and applications, the networks show more dynamic behaviors. This dynamicity can have
different means and can create challenging problems for the network operators. A form of the dy-
namic behavior of networks can be due to unexpected traffic changes. As a result, the infrastructure
resources can get overloaded, leading to inevitable performance loss for the users, and eventually,
decreasing profits for network providers. Network reconfiguration decisions such as the deployment
of new Lightpaths (LPs) on the network can help to cope with the traffic increases. Another source
of dynamicity can be the mobility of users. In scenarios such as Mobile Edge Computing (MEC),
the services are deployed in the proximity of the users. Hence, the movement of the user can have
an undeniable impact on the received QoS. In practice, when a user moves farther away from the
currently used MEC server, the routing cost can increase, inducing more delay. A network recon-
figuration can be triggered, for instance, migration of the service endpoint to a closer MEC server
towards the movement of the user. This action can lead to improving the QoS of the user. In these
cases, the resource allocation framework’s responsibility is to trigger and perform network reconfig-
uration decisions, accounting for their cost and characteristics in the account. Hence, on top of the
resource allocation approaches, this dissertation aims to design and optimize network reconfigura-
tion algorithms in situations with unexpected traffic changes and user mobility. Existing algorithms
are investigated and evaluated against the newly proposed algorithms. The evaluations in various
scenarios and settings indicate improvements in the runtime, optimality, and completeness compared
to the state-of-the-art algorithms.



Kurzfassung

Kommunikationsnetzwerke sind zu einem der wichtigsten kritischen Akteure unserer Gesellschaft
geworden und verbinden Benutzer mit Rechenzentren, Rechenzentren mit Benutzern und unterein-
ander und in jüngster Zeit sogar Gegenstände mit dem Internet. Diese Fortschritte haben die Kon-
nektivität in jeden Winkel unseres Lebens gebracht, in Häusern, Straßen und sogar in Zügen und
Flugzeugen. Diese riesige und grenzenlose Konnektivität kann viele Online- und interaktive Dienste
in unseren Alltag bringen, wie (Ultra-) High-Definition-Video-Streaming, Spiele und datengesteu-
erte Analysen. Die Kommunikationssysteme waren jedoch ursprünglich so konzipiert, dass sie eine
einfache Best-Effort-Konnektivität mit langfristigen manuellen Änderungen bei Bedarf bieten. Die-
ser Ansatz scheint jedoch nicht flexibel genug für die modernen neuen Anwendungen und Dienste
zu sein, die nun zusätzliche Anforderungen an die zugrunde liegende Infrastruktur stellen, wie z. B.
strenge Dienstgüte-Anforderungen, Dynamik des Datenverkehrs und hohe Mobilität der Benutzer.

In letzter Zeit gab es eine Verschiebung von statisch und manuell konfigurierten Netzwerken
hin zu softwarized networks. In diesem Zusammenhang steuern vielversprechende Technologien wie
Software-Defined Networking (SDN) und Network Function Virtualization (NFV) das Netzwerk, in-
dem sie Flexibilität und Verwaltbarkeit bieten und es ihm ermöglichen, die Heterogenität und hohe
Variabilität heutiger Anwendungen und Kommunikationen zu bewältigen. Im Allgemeinen erfordern
neue Anwendungen diese vorhandene zugrunde liegende Infrastruktur, um Rechen- und Netzwer-
kressourcen für dynamischere und heterogenere Dienste, Anwendungen und Anforderungen bereit-
zustellen. Die Ressourcenzuweisungs- und Verwaltungsaufgaben können erhebliche Auswirkungen
auf die gelieferten Quality of Service (QoS) (z. B. End-to-End-Verzögerung) an die Endbenutzer so-
wie auf die damit verbundenen Operational Expenditures (OPEX) für die Netzwerkanbieter (z. B.
Stromverbrauch) haben. Daher konzentrieren wir uns in dieser Arbeit auf das Design und die Op-
timierung solcher Ansätze und konzentrieren uns dabei auf Kosten, End-to-End-Verzögerung und
Rekonfigurierbarkeit.

Die Benutzeranforderungen kommen spontan von einem bestimmten Knoten im Netzwerk an
und müssen über das Netzwerk geleitet werden, um den erforderlichen Dienstendpunkt zu erreichen.
Diese Dienste werden in der Regel virtuell (z. B. als Virtual Machines (VMs)) von geografisch verteil-
ten Data Centers (DCs) bereitgestellt. Einige Dienste erfordern sogar komplexere Setups, z. B. Service
Function Chaining (SFC), bei denen der Datenverkehr eine Sequenz von Virtual Network Functi-
ons (VNFs) durchlaufen soll. Um QoS-garantierte und kosteneffiziente Dienste anzubieten, scheinen
die Bestimmung des Standorts von VNFs sowie Routing-Entscheidungen ein herausforderndes Pro-
blem zu sein. Daher steht das Entwerfen, Modellieren und Optimieren solcher Ressourcenallokati-
onsstrategien im Mittelpunkt dieser Arbeit. In dieser Arbeit stellen wir einen kosteneffizienten und
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QoS-fähigen Algorithmus mit geringer Rechenkomplexität vor, der die Online-Ressourcenzuweisung
für SFC-Anforderungen durchführen kann. Unsere umfassenden Evaluierungsergebnisse bestätigen
die Leistungsfähigkeit der vorgeschlagenen Mechanismen in einem realistischen Online-Netzwerk-
Setup mit heterogenen Infrastruktur- und Nutzeranforderungen.

Kommunikationsnetze werden von Tag zu Tag dynamischer. Angesichts der unterschiedlichen
Netzwerkendpunkte (z. B. Menschen, Maschinen) und der exponentiell wachsenden Vielfalt und Nut-
zung von Diensten und Anwendungen zeigen die Netzwerke ein dynamischeres Verhalten. Diese Dy-
namik kann unterschiedliche Mittel haben und den Netzbetreibern herausfordernde Probleme berei-
ten. Eine Form des dynamischen Verhaltens von Netzwerken kann auf unerwartete Änderungen des
Datenverkehrs zurückzuführen sein. Infolgedessen können die Infrastrukturressourcen überlastet
werden, was zu unvermeidlichen Leistungseinbußen für die Benutzer und schließlich zu sinkenden
Gewinnen für Netzwerkanbieter führt. Entscheidungen zur Neukonfiguration des Netzwerks, wie z.
B. die Bereitstellung des neuen Lightpaths (LPs) im Netzwerk, können helfen, den Anstieg des Da-
tenverkehrs zu bewältigen. Eine weitere Quelle der Dynamik kann die Mobilität der Nutzer sein. In
Szenarien wie Mobile Edge Computing (MEC) werden die Dienste in der Nähe der Benutzer bereit-
gestellt. Daher kann die Bewegung des Benutzers einen unbestreitbaren Einfluss auf die empfange-
nen QoS haben. In der Praxis, wenn sich ein Benutzer weiter vom derzeit verwendeten MEC-Server
entfernt, können die Routingkosten steigen, was zu mehr Verzögerung führt. Eine Netzwerkneukon-
figuration kann ausgelöst werden, z. B. die Migration des Dienstendpunkts zu einem näheren MEC-
Server in Richtung der Bewegung des Benutzers. Diese Aktion kann dazu führen, dass die QoS des
Benutzers verbessert wird. In diesen Fällen besteht die Verantwortung des Ressourcenzuweisungs-
frameworks darin, Entscheidungen zur Netzwerkneukonfiguration auszulösen und durchzuführen,
wobei deren Kosten und Merkmale im Konto berücksichtigt werden. Zusätzlich zu den Ansätzen
der Ressourcenzuweisung zielt diese Dissertation darauf ab, Netzwerk-Rekonfigurationsalgorithmen
in Situationen mit unerwarteten Verkehrsänderungen und Benutzermobilität zu entwerfen und zu
optimieren. Bestehende Algorithmen werden untersucht und gegen die neu vorgeschlagenen Al-
gorithmen bewertet. Die Auswertungen in verschiedenen Szenarien und Einstellungen zeigen Ver-
besserungen in der Laufzeit, Optimalität und Vollständigkeit im Vergleich zu den State-of-the-Art-
Algorithmen.
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Chapter 1

Introduction

As predicted by Moore’s Law, the number of transistors in a dense integrated circuit doubles every
two years. Today, the number of online electronic devices is growing exponentially, reaching up to
50 Billion in 2050 [222]. In addition, with the recent advances in communication networks such as
the revolution of the Internet, and the fifth/sixth-generation (5G/6G) cellular systems, millions of
users are employing online services in their everyday life. These services, such as high-definition
video streaming, cloud desktops, online gaming, require high computing capabilities and network
bandwidth. To make these services accessible to thousands of users, they are hosted by distributed
Data Centers (DCs) e.g., over a country, continent. Moreover, these services require different Quality
of Service (QoS) parameters, such as end-to-end delay and data rate guarantees. Traditionally, com-
munication networks have been planned and operated manually by human personnel, leading to a
loss of resources and efficiency. However, with the appearance of promising technologies such as
Software-Defined Networking (SDN), Network Function Virtualization (NFV), and Network Virtual-
ization (NV), the task of network management is revolutionized. In particular, these technologies can
assist in the automatic planning, management, and adaptation of the network resources considering
today’s networks’ dynamic and heterogeneous characteristics.

Therefore, an undeniably essential yet challenging task for network providers is to allocate re-
sources to their infrastructure. Network resource allocation can be performed on different parts of
the network, e.g., allocation and scheduling of computational (servers, Virtual Machines (VMs)) and
network (routing and bandwidth) resources to users and services. Adequately performing this task
can be challenging, however crucial since it can have many impacts on the network providers’ effi-
ciency. On the one hand, a resource allocation consequence that can affect the users is the delivered
QoS to the end-user, e.g., in terms of end-to-end delay. If a service endpoint (i.e., VM) is located on
an over-utilized server, the processing time of the service can heavily increase, leading to a higher
response time for the user. Similarly, if the VM is hosted at a DC which is very far from the user,
the high routing delay can also remarkably reduce the delivered QoS to the user. On the other hand,
resource allocation schemes impact also Capital Expenditures (CAPEX) e.g., infrastructure costs, and
Operational Expenditures (OPEX), e.g., power consumption. For instance, a naive resource alloca-
tion scheme can use several powered-on devices while keeping them under-utilized, which can lead
to a significant increase in the power consumption [38]. This is even more important in countries
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with sustainability laws, such as CO2 emission taxes [120]. Therefore, designing, implementing, and
evaluating such resource allocation techniques seems crucial.

The network resources and configurations need to be managed and adapted during the network
runtime. In more detail, the state of the network should be carefully monitored, and when necessary,
the resource allocation decisions should be reconfigured1 accordingly. Further, if possible, the situ-
ation of the future must be foreseen and taken into account. Many situations can lead to network
reconfiguration triggers, such as infrastructure breakdowns, human faults, un-/expected changes in
the network traffic, and/or changing the user’s location (i.e., user mobility). Specifically, in this thesis,
we focus on these two cases:

Traffic Changes As the first case, upon certain un-/expected changes in the network (e.g., increase
of user traffic, or a network failure), the affected parts of the infrastructure (e.g., network links)
should be found, and proper reconfiguration actions should be performed. For instance, in a
flex-grid optical network, in the event that a tenant’s traffic increases, the affected Lightpath
(LP)(s) should be recognized in the network. After that, based on different considerations such
as available spectrum, the impact on the other users, a new LP can be launched to support
the increased traffic. These decisions can be taken on the network controller, and then a new
configuration is forwarded to the network devices

Mobility of Users With the overwhelming increase of the Internet penetration in our lives, it is
now accessible anytime, every city corner, in pockets, and even in transportation systems like
trains and airplanes. Further, in promising modern scenarios such as Mobile Edge Computing
(MEC), the services are deployed nearby of the users to improve the delivered QoS. These
advancements have brought the need for network reconfigurations based on the location of
the users. For instance, if a road-assistant service belonging to a vehicle is hosted by a MEC
server, with the movement of the vehicle, the location of the service might not remain optimal
during the driving time. Therefore, the decision on when and where the service should be
migrated is now a valid and challenging question to address by network operators.

Nevertheless, these reconfigurations do not come at no cost. Each type of reconfiguration has a
cost, e.g., in terms of delay, and resource overheads [216], which needs to be accounted for. Hence,
considering the network-wide parameters such as cost and/or QoS in different scenarios, the resource
allocation, and management systems must offer efficient decision makings regarding the network
reconfigurations during the runtime of the system. Furthermore, in some cases, these decisions can
be calculated and pre-planned. However, in real-time scenarios, these decisions should be made
in real-time. In other words, calculating and determining a set of reconfiguration actions should
be taken fast by the network provider. Otherwise, it can decrease network performance and user
satisfaction and eventually decrease profit.

1The terms reconfigure/reconfiguration are used interchangeably with adapt/adaptation.
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1.1 Research Challenges

In this part, we summarize the main research challenges targeted in Chapters 2 to 5 of this disser-
tation. Modeling, optimizing, and analyzing the network resource allocation algorithms and mech-
anisms comes with various challenges, especially by considering the heterogeneous deployment of
current networks, strict and dynamically changing requirements of services, and mobility of users.
The main goal of this section is to advance the state-of-the-art approaches towards designing and
optimizing fast and efficient network resource allocation and reconfiguration algorithms.
Fast and Efficient Network Resource Allocation.
The first objective of the thesis is to study the network resource allocation problem in a heteroge-
neous network with user requests arriving in an online manner. By employing the SDN and NFV
concepts, it is important to be able to run these networks in a cost-efficient manner. Therefore, the
first question is how to deploy the user requests on the physical network to minimize the network
provider costs. Also, the resources of the network such as servers, network links are limited. Thus,
the designed approach should be able to take these limitations into account. Further, one of the most
important metrics to guarantee is the end-to-end delay of the users. However, it does not seem easy
to perform the placement of service endpoints jointly with the delay-guaranteed routing decisions.
The reason is, the relation of the placement and the routing decisions of the services does not seem
straightforward. Last but not least, the designed solution needs to solve the problem fast. Since the
user requests arrive online with no prior knowledge, the algorithm should allocate the resources to
the user as soon as possible. Considering the above goals and constraints, designing a cost-efficient,
delay-guaranteed, and fast algorithm seems a challenging problem to overcome.
Necessary Network Reconfigurations Due to Traffic Changes.
The volume of the network traffic can be changed over time. Ignoring this can cause the network
to be overloaded, which can lead to significant packet drops and significant degradation of QoS. The
user traffic is routed from source to destination and carry a specific amount of traffic in a network
that works with flex-grid optical networks. Enabled by the novel Bandwidth Variable Transponder
(BVT) technology, each node of the network can set up LPs with different configurations, defined
by data rate, modulation format, etc. The initial challenge is to determine for each user request
how many LPs, with which configuration should be launched, and on which path to support the
requested traffic. Having that in hand, in a multi-period setting, the traffic of a specific user request
increases over time. If the currently deployed LPs cannot support the increased traffic, one or more
reconfiguration decisions must be made. We need to decide about the reconfiguration action(s) and
their order. A challenge is that the state of the network during and after reconfiguration must not
violate the constraints, such as spectrum capacity and Optical Signal to Noise Ratio (OSNR). Further,
it is crucial that the network operates in a resource-efficient manner. Thus, certain objectives such
as minimizing the over-provisioning and/or power consumption should be considered.
Necessary Network Reconfigurations Due to Mobility of Users.
Apart from the traffic changes in the network, in some scenarios, users’ location might change over
time. This mobility can have an impact on the delivered QoS to the end-users. We consider a multi-
period scenario where a set of mobile users requests to access some online services. These services
are deployed on VMs instances, hosted by distributed and capacitated DCs. Also, each of these VMs
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can process only a limited amount of user traffic. The user requests are arriving in the system in an
online manner. For each user request, the first challenge is to determine which VM to connect the
user to. If the specific VM for the corresponding service does not exist or do not have enough available
resources, a DC should be selected to launch a VM. The next challenge is to find a bandwidth- and
delay-constrained routing path from the current location of the user to the selected DC. However, in
future timeslots, the distance from the current location of the user to the selected DC might increase.
It can increase the end-to-end delay, which is not suitable for the user (and hence, the network
provider). In this situation, a VM migration (reconfiguration) can help to move the service instance
closer to the current location of the user. Thus, determining when and from which to which DC to
trigger a VM migration is yet another challenging question. Each of these decisions come with a cost,
i.e., VM deployment (per-VM), routing (per-link), and reconfiguration costs. Thus, jointly answering
the above questions in a cost-efficient manner forms a crucial yet difficult problem to tackle. In a
similar scenario, another way to formulate the problem is to minimize the total delay (routing and
reconfiguration) for all the users over time. In this case, at each timeslot, it is necessary to determine
the user-to-DC assignment, routing, and reconfiguration(s).

1.2 Contributions

This section summarizes the contributions of the dissertation in the research area of network re-
source allocation and reconfiguration. This thesis mainly covers the research in three areas: i) con-
tribution to the power- and QoS-aware Service Function Chaining (SFC) resource allocation, ii) cost
optimization of delay-guaranteed static and mobility-aware service placement and routing, and iii)
modeling and optimization of the end-to-end delay of mobility-aware service assignment and rout-
ing.

The first major contribution of the dissertation is the formulation of the network resource allo-
cation problem in a scenario in which the user requests are arriving online with a specific type of
SFC, bandwidth, and end-to-end delay requirements. The network consists of nodes and links. At
each node, a Physical Machine (PM) node is located, that can host a limited number Virtual Network
Functions (VNFs). A sequence of VNFs forms an SFC. The network nodes themselves are responsible
for forwarding the traffic between the source and destination of the request while passing through an
ordered set of VNFs. The objective is the placement of VNFs on appropriate PMs, finding the delay-
and bandwidth-constrained routing from source and destination while minimizing the cost of the
network provider. Accounting for cost, we focus on the power consumption of the network switches
and PMs. Since the current network switches and PMs are not power-proportional, to minimize the
total power consumption of the network provider, the goal is to minimize the number of powered-
on nodes and to increase the utilization of them. We firstly formulate this problem as an Integer
Linear Program (ILP) optimization to derive the optimal solution. Since the problem is NP-Hard, the
ILP solution does not work for large problem instances. Therefore, we present Holu, a fast and effi-
cient heuristic framework to tackle the problem mentioned above. For a specific user request, Holu
decouples the placement and routing sub-problems and solves them sequentially. In the placement
problem, we employ a ranking system based on the centrality of the nodes in the network to priori-
tize the hosting PMs for the requested VNFs. After that, we find a delay- and bandwidth-constrained
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routing path between the source and destination nodes while passing through the selected PMs from
the placement sub-problem. This ranking mechanism works in a way that in the long-term, the VNFs
are more accessible from all the other network nodes, which can improve the success rate of the sec-
ond sub-problem. Therefore, it is expected that more user requests are admitted to the network,
which can increase the profits of the network provider. Evaluation results show that Holu performs
near-optimal while outperforming the state-of-the-art works in terms of power consumption and
the acceptance rate. Holu does not the dynamicity of the user requests, neither the traffic increase
nor the location of users. In the rest of the thesis, we focus on the operational phase of the network
lifetime, considering the two aforementioned dynamic concepts, which makes the subsequent three
contributions.

The second significant contribution of the thesis focuses on a scenario wherein a network, the
location of users is still static. However, the traffic volume can change over time. Currently, most
front and long-haul networks are working with optical fibers, especially with flex-grid technology.
Thus, we consider a flex-grid optical network, where each node is equipped with a software-tunable
transponder (i.e., BVT). For initial embedding of the user request, we use a LP configuration selec-
tion mechanism and perform the spectrum allocation with the best-fit approach on the k-shortest
paths. However, when the traffic request of a user request increases, our proposed algorithm de-
termines the proper reconfigurations and their order to cope with the increased traffic. To achieve
this goal, it considers three reconfiguration methods: i) upgrading one or more number of currently
deployed LPs, ii) adding one or more new LPs, and iii) rerouting neighboring LPs to free up enough
spectrum for upgrading the LP of the user request in hand. These three reconfiguration methods are
designed to reduce the blocked demands, while meeting particular network constraints such as spec-
trum capacity and OSNR. To make the algorithm cost-efficient, we optimize the proposed methods
by considering two cost functions, resource over-provisioning and power consumption. We for-
mulate different versions of the algorithm with various objective functions. To determine the most
performant approach, we evaluate our algorithm with its different objective functions and compare
it with state-of-the-art algorithms. We show that our algorithm can meet the increased traffic in a
multi-period scenario in a power-efficient manner.

The third contribution of the dissertation addresses the cost-minimized resource allocation and
reconfiguration with mobile users. In this scenario, we formulate the joint placement, assignment,
routing, and reconfiguration decisions over a multi-period system. We firstly formulate this opti-
mization problem as a static case, where the optimal solution is determined for each timeslot. In
this case, it does not consider the previous and future positions of the users in account. In the next
step, we formulate the mobility-aware (i.e., multi-period) optimization model for this problem. This
model takes the future position of the user into account to determine the optimal VM deployments,
routing, and migration decisions. Nevertheless, these optimization formulations work offline, while
the nature of the problem in our hand is online (since the users are arriving during time). However,
these optimization formulations are still relevant to evaluate the proposed heuristic algorithms. To
efficiently solve the problem online, we propose two heuristic algorithms, solving the problem per
timeslot and per user. Extensive simulations show that the heuristic algorithms outperform the base-
line approaches while staying close to the optimal. We also develop a demonstration tool that shows
the problem and solution in different settings, using a Graphical User Interface (GUI).
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The fourth contribution is built on top of the previous one, with some key differences. Firstly,
the VM placement decision is relaxed here; hence, it is assumed that the service is already deployed
on all DCs. In this case, the number of VMs for each service, the up and downscaling decisions can
be delegated to the cloud auto-scaling framework, which is available on modern cloud management
platforms, such as Kubernetes [56]. Secondly, we focus on a different objective function: minimizing
the end-to-end delay for all the users over the time horizon. Therefore, we formulate an optimization
problem to determine the assignment of users to DCs, their bandwidth-constrained routing path, and
the necessary reconfigurations over time. To solve the problem in an online manner, we propose two
approaches. The first one is called Homa, which models the problem as a dynamic bipartite matching
with special properties. To solve this matching problem, we transform each problem instance to
a shortest-path problem, which in exceptional cases, it can even lead to optimal solutions within
seconds. The evaluations show that the proposed approach can stay near-optimal, outperform state-
of-the-art algorithms, and solve the problem in a time-efficient manner. Further, we show that Homa
can balance the decisions that it is making towards achieving a better solution in the long-term. The
second approach is called Figo, which is a method based on Machine Learning (ML), which models
the problem with Deep Reinforcement Learning (DRL). Moreover, considering the future airplane
positions, it overlooks the short-term delay improvements for the long-term ones. After a training
period, the evaluations show that Figo exhibits near-optimal results in different settings.

1.3 Author’s Relevant Publications

A. Varasteh, S. Akhoondian Amiri, and C. Mas-Machuca. “Homa: Online In-Flight Service Provi-
sioning with Dynamic Bipartite Matching.” In: IEEE Transactions on Network and Service Managa-
ment (TNSM). 2022.
A. Varasteh, B. Madiwalar, A. Van Bemten, W. Kellerer, and C. Mas-Machuca. “Holu: Power-Aware
and Delay-Constrained VNF Placement and Chaining.” In: IEEE Transactions on Network and Service
Management (TNSM) (2021).
A. Varasteh, M. De Andrade, C. Mas-Machuca, L. Wosinska, and W. Kellerer. “Power-aware virtual
network function placement and routing using an abstraction technique.” In: IEEE Global Commu-
nications Conference (GLOBECOM). IEEE. 2018.
A. Varasteh, S. Hofmann, N. Deric, M. He, D. Schupke, W. Kellerer, and C. Mas-Machuca. “Mobility-
aware joint service placement and routing in space-air-ground integrated networks.” In: IEEE Inter-
national Conference on Communications (ICC). 2019.
A. Varasteh, H. Soares Frutuoso, M. He, W. Kellerer, and C. Mas-Machuca. “Figo:Mobility-Aware
In-Flight Service Assignment and Reconfiguration with Deep Q-Learning.” In: IEEE Global Commu-
nications Conference (GLOBECOM). 2020.
A. Varasteh, S. K. Patri, A. Autenrieth, and C. Mas-Machuca. “Evaluation of Lightpath Deployment
Strategies in Flexible-Grid Optical Networks.” In: Optical Fiber Communication Conference (OFC).
2021.



1.4. Thesis Outline 7

A. Varasteh, S. K. Patri, A. Autenrieth, and C. Mas-Machuca. “Towards Dynamic Network Recon-
figurations for Flexible Optical Network Planning.” In: 25th International Conference on Optical
Network Design and Modelling (ONDM). 2021.
A. Varasteh, W. Kellerer, and C. Mas-Machuca. “Network in the Air.” In: Proceedings of the 15th
International Conference on emerging Networking EXperiments and Technologies (CoNEXT). 2019.
A. Varasteh, S. Hofmann, N. Deric, A. Blenk, D. Schupke, W. Kellerer, and C. Mas-Machuca. “Toward
optimal mobility-aware VM placement and routing in space-air-ground integrated networks.” In:
IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). 2019.

1.4 Thesis Outline

The outline of this thesis is illustrated in Fig. 1.1, presenting the structure and mapping the main
contributions of the dissertation to the corresponding Chapters.

Chapter 1 presents an introduction to the dissertation topic, the research questions, the chal-
lenges, and the key contributions in the area of network resource allocation and reconfiguration.

Chapter 2 addresses the online resource allocation problem for heterogeneous user requests. The
considered scenario is aiming for deploying a sequence of VNFs (so-called SFC) in a Wide Area Net-
work (WAN) environment, and determine a delay-constrained routing path between the source, SFC,
and the destination nodes. We consider the bandwidth and end-to-end delay requirements of het-
erogeneous services. Further, we minimize total computation and network power consumptions. In
addition to the optimal optimization formulation, a fast and efficient heuristic algorithm is presented
and evaluated in different settings.

Chapter 3 focuses on the problem of network reconfiguration, where the traffic is increased in
flex-grid optical network. A heuristic algorithm determines the necessary reconfiguration actions
to cope with the increased traffic, considering different network reconfiguration methods at each
timeslot.

Chapters 4 and 5 focus on addressing network resource allocation and reconfiguration optimiza-
tion in a multi-period scenario with mobile users. In more detail, they present modeling and opti-
mization of static and mobility-aware resource allocation and reconfiguration algorithms to minimize
total operation costs (i.e., in Chapter 4), and a best-effort delay minimization approach (i.e., in Chap-
ter 5) to solve the problem in an online manner. We propose different fast and efficient heuristic
algorithms to cope with the low-complexity requirement of the solutions. Finally, Chapter 6 con-
cludes this thesis by summarizing the main results and giving a brief outlook for interesting future
work and research directions.
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Chapter 2

Power-Aware and Delay-Guaranteed
Service Function Chaining

2.1 Introduction

In this chapter, we present a study towards power-efficient and delay-guaranteed resource manage-
ment in an Software-Defined Networking (SDN) and Network Function Virtualization (NFV)-enabled
metro/core network. In this scenario, the users required services are deployed on physical resources
using virtualization technologies. However, these resources are usually under-utilized and/or over-
provisioned, resulting in power-inefficient deployments. To improve the power efficiency, the min-
imum number of Physical Machines (PMs) and network equipment should be utilized to deploy the
services, which are not concomitant. Considering the existing PM and switch power consumption
models and their resource constraints, we formulate the power-aware and Quality of Service (QoS)-
guaranteed joint Virtual Network Function (VNF) placement and routing problem as an Integer Lin-
ear Program (ILP). Due to the NP-completeness of the problem, we propose Holu, a fast heuristic
framework that efficiently solves this problem in an online manner. Our simulation results indi-
cate that Holu outperforms the state-of-the-art algorithms in terms of total power consumption and
acceptance rate. This chapter is based on the presented work in [13], and [4].

2.1.1 Software-Defined Networking (SDN)

In legacy networks, the Control Plane (CP) and Data Plane (DP) co-exist on the same forwarding
device (e.g., network switch). In contrast, in SDN, these planes are decoupled [160]. In particular, the
control plane logic of the network (e.g., path calculation) is implemented in a logically-centralized
software controller, i.e., SDN controllers. The SDN controller programs the data plane (i.e., forward-
ing devices) to forward the packets in a specific manner. The comparison of the legacy and SDN
networks is presented in Fig. 2.1.

SDN controllers are a piece of software that can be deployed in commodity servers, typically as
a Virtual Machine (VM) or container. The controllers are written in different languages, e.g., Ryu in
Python [70], and Open Daylight in Java [69]. The forwarding devices handle the incoming packets
according to their forwarding table. This table is configured by the SDN controller, using protocols
like OpenFlow [160], based on a match-action logic. In practice, the incoming packets are matched

9



10 Chapter 2. Power-Aware and Delay-Guaranteed Service Function Chaining

DP DP

DP DP

CP CP

CP CP

(a)

DP DP

DP DP

CP

(b)

Figure 2.1: Comparison of the legacy and SDN networks. (a) Shows the co-existence of CP and DP at the
same device. (b) Represents the SDN architecture where the CP is decoupled from DP and stored on an SDN
controller.

with a rule based on the header data, e.g., destination IP address and TCP port number. After that, the
packet is treated with the corresponding action, e.g., forwarding to a specific port number. SDN uses
this programmability along with a logically centralized view of the network to bring a more flexible,
manageable, and efficient network control. For instance, the traffic can be deployed at runtime based
on the existing flows in the network to have potential cost savings through an optimized network
operation and/or to improve the QoS.

2.1.2 Network Function Virtualization (NFV) and Service Function Chaining
(SFC)

In legacy networks, network functions such as load balancer, proxies, and Intrusion Detection Sys-
tem (IDS) have been deployed in hardware middleboxes. In [190], it is stated that the number of
middleboxes in an enterprise network is comparable to the number of routers. These middleboxes
are usually deployed on vendor-specific and expensive hardware that is configured and maintained
using trained human personel [36]. Therefore, deploying and maintaining these middleboxes come
with a high Capital Expenditures (CAPEX) and Operational Expenditures (OPEX) for the providers.
In addition, it is often impossible to add/remove functionalities to/from these middleboxes, which
can make the flexibility of the networks very costly.

NFV [67], as an emerging and promising technology, can overcome these limitations. In NFV
technology, the packet processing is moved from the hardware middleboxes to software instances.
This software can be implemented in VMs or container technologies and be deployed on Commercial
Off-The-Shelf (COTS) equipment. In this technology, these software middleboxes are referred to as
VNFs. In addition, to provide secure and performant services, network providers often require their
traffic to pass through a specific sequence of VNFs, referred to as an SFC [115, 116].

The NFV architecture consists of several interconnected nodes which consist of network switches
and PMs. The former forwards the traffic through the network, whereas the latter host VNFs. Since
PMs can host several VNFs, it enables the physical consolidation of networks. Upon receiving user
requests with a specific SFC to traverse, network providers have to find the best PMs to configure the
required VNFs while taking the NFV architecture and its available resources into account. Fig. 2.2
shows this architecture with an exemplary deployed SFCs. In this figure, two demands are consid-
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Figure 2.2: An example of two deployed user demands with the same required SFCs in a network.

ered: orange and green. Each of them is characterized by source and destination nodes, data rate,
and a specific SFC. In this example, the source and destination nodes of the orange/green request
are A/D and C/E, respectively. Both demands ask for the same SFC: {Firewall→Load Balancer→IDS}
with a specific data rate requirement. The deployment of VNFs belonging to the requested SFC on
PMs in the network is demonstrated, along with the setup of routing paths to provide users with the
required SFCs. Thus, considering the heterogeneous and complex network and services of today, it
is a challenging problem to determine the required number and placement of VNFs and the routing
paths that optimize network operational costs and utilization. Further, guaranteeing the tight QoS
parameters such as end-to-end delay makes the SFC deployment even more complicated.

2.1.3 Power Consumption and Proportionality

Despite its importance, the power-efficiency of the NFV-enabled networks has been only slightly
considered. Today, around 7-12% of the total electrical power consumption is required for Internet
technologies [23, 72, 129]. Network providers are challenged to increase their connectivity and
services while being sustainable. Bolla et. al. [47] have shown the aggressive increase of power
consumption in the networks operated by the major Telecom operators worldwide (e.g., AT&T,
Verizon). Moreover, the global annual Internet traffic is expected to reach 4.2ZB, in 2022 (with an
increase of almost 400% with respect to 2017 [129]). As a result, more and more operators work on
the reduction of their carbon footprint and greenhouse gas emission by aiming at decreasing their
power consumption [205, 77].

In order to reduce the power consumption, analysis and modeling of the power consumed by
the main NFV components need to be done, particularly PMs and network equipment. According to
Fig. 2.3, three power states can be considered for PMs and switches:

• Standby: the server is in low-power (sleep) mode and consumes a negligible amount of power.

• Idle: the device is powered on; however, its utilization is almost 0% (no traffic load).
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Figure 2.3: Power consumption vs. utilization (power-proportionality) comparison for online PMs and net-
work switches with respect to the theoretical ideal power-proportional case. It is shown that both PMs and
switches are not power-proportional, i.e., they consume a significant amount of power when they are in the
idle state, while in the standby state, they consume a negligible amount of power. Therefore, to increase the
power-efficiency, the number of online components should be reduced (increasing the resource utilization).

• Online: the device is powered on, and its utilization is higher than 0% (processing the traffic
load).

We start with the PM power consumption. It has been shown that PMs can consume almost
50% of their maximum power when they are in the idle state [101, 131, 158]. Also, they consume
a negligible amount of power when are in standby mode [198] (also referred to as the offline state
in some works). Similar to PMs, network resources are usually over-provisioned to support the
maximum traffic. However, their utilization rarely reaches the peak network capacity [118, 154]. It
has been observed that the online network components such as switch chips and fans consume a
significant amount of power even with low workload [118, 156, 219]. Consequently, idle networking
devices are not power-efficient since an idle network switch can consume up to 90% of the peak
power consumption [154].

Accordingly, the relation between power consumption and the device utilization is depicted in
Fig. 2.3 for PMs and switches, assuming a linear power profile [59, 158]. It can be observed that PMs
and network devices are not power-proportional, i.e., they do not consume power proportional to
their utilization, which differs significantly from the ideal power proportionality case [158, 21, 131].
This difference causes a waste of power consumed by under-utilized devices. Thus, minimizing the
number of online PMs and switches can improve the power-proportionality (see Fig. 2.3) and hence,
improve the power-efficiency of the service provider.

2.1.4 Key Contributions

In this chapter, we study and address the Power-aware and QoS-guaranteed joint VNF Placement and
Routing (PQ-VPR) problem. Considering the capacitated network resources, the main goal is to min-
imize the number of online PMs and network switches required to allocate the requested SFCs, while
guaranteeing the end-to-end delay (i.e., sum of propagation and VNF processing delay) requirements.
We first formulate this problem as an ILP based on our previous work [13]. The problem formula-
tion has been improved by also considering the VNF processing time, which dynamically changes
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depending on the traffic. Considering the NP-completeness of the problem, the ILP is not usable
for solving real-world problem sizes. Therefore, we propose Holu, an efficient heuristic that solves
the PQ-VPR problem in an online manner. In more detail, Holu decomposes the PQ-VPR problem
into two sub-problems which are solved in sequence: i) VNF placement, ii) routing. In the first sub-
problem, we rank the PMs in the network according to their centrality and the requested VNF types
in the SFC. Thereafter, we employ a Delay-Constrained Least-Cost (DCLC) shortest-path algorithm
to find the path between the selected VNFs in the previous step using a routing heuristic based on
Lagrange Relaxation based Aggregated Cost (LARAC) [207]. As an essential feature, our routing al-
gorithm is able to efficiently split the end-to-end delay budget between subsequent VNFs in an SFC.
It can significantly increase the acceptance rate of requests, even with stringent end-to-end delay
requirements.

Therefore, the main contributions of this solution can be summarized as:

• Presenting the PQ-VPR problem as an ILP optimization model to i) determine the optimal
number of the VNFs and their mapping to the PMs, ii) allocate user requests to the VNF
instances, iii) find a path to route the traffic through the allocated VNFs to form the SFC, iv)
meet the resource capacities and end-to-end delay constraints including the link propagation
and traffic-aware VNF processing delays, and v) minimize the total power consumption.

• Proposing Holu, an online heuristic framework to tackle the PQ-VPR problem by dividing it
into two sub-problems: VNF placement and routing.

• Implementation and performance evaluation of the proposed heuristic and comparing with the
state-of-the-art Cost-efficient Proactive VNF placement and chaining (CPVNF) and Between-
ness Centrality Shortest-Path (BCSP) algorithms [80, 13] in terms of total power consumption,
acceptance ratio, runtime, etc.

2.1.5 Organization

The rest of this chapter is organized as follows: The related work is reviewed in Subsection 2.2.
Then, we present the system model and problem definition in Section 2.3 followed by the offline
optimization formulation in Section 2.4. Thereafter, in Section 2.5, we introduce the Holu framework.
Finally, we present the performance evaluation of the framework in Section 2.6, and summarize the
chapter in Section 2.7.

2.2 Related Work

Although power-efficient VM placement is a well-studied field in the cloud computing environ-
ment [176, 211], VM placement and VNF placement in NFV/SFC paradigm problems differ in many
ways. The former case is a problem that focuses on placing/packing a set of VMs on different PMs
while the latter considers a specific ordered set of VNFs. In addition, the solution should contain
routing and path allocation through these ordered VNFs, which makes it a fundamentally difficult
problem to solve [184]. Therefore, the VM placement can be considered as a special case of the lat-
ter problem. There has been a large body of papers that have investigated the VNF placement and
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Table 2.1: Comparison of state-of-the-art and the proposed solution, Holu.
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[207] ✓ ✓ ✗ ✗ ✓ ✓ ✓

[13] ✓ ✓ ✓ ✓ ✓ ✓ ✗

[80] ✓ ✓ ✓ ✗ ✓ ✓ ✗

[175] ✓ ✗ ✓ ✗ ✓ ✗ ✗

[225] ✓ ✗ ✓ ✓ ✗ ✓ ✗

[96] ✓ ✓ ✓ ✓ ✗ ✓ ✗

[128] ✓ ✓ ✗ ✓ ✗ ✓ ✗

[85] ✗ ✓ ✓ ✗ ✓ ✓ ✗

[87] ✓ ✗ ✓ ✗ ✗ ✓ ✓

[198] ✓ ✓ ✓ ✗ ✓ ✓ ✓

[197] ✓ ✓ ✓ ✓ ✗ ✗ ✓

[136] ✓ ✓ ✓ ✗ ✓ ✓ ✗

[130] ✓ ✓ ✓ ✗ ✗ ✗ ✗

[104] ✓ ✓ ✗ ✗ ✗ ✓ ✗

[84][186] ✗ ✓ ✗ ✗ ✗ ✗ ✗

[88][193] ✓ ✓ ✓ ✗ ✗ ✓ ✗

[36][144] ✓ ✓ ✓ ✗ ✓ ✗ ✗

Holu ✓ ✓ ✓ ✓ ✓ ✓ ✓

routing problem with different objectives, such as minimizing total deployment cost [68, 187, 203,
201], minimizing total end-to-end delay [108, 231, 75], minimizing network resources [112, 111] and
routing costs [84, 186], maximizing reliability [138, 147, 179, 126].

Let us summarize the most recent and relevant studies addressing the power-aware VNF place-
ment and routing problem [175, 225, 193, 96, 128, 85, 87, 198, 197, 36, 136, 144, 130, 88]. These works
have been grouped into three categories: i) VNF placement: place a set of VNFs in order to meet
an objective, ii) SFC routing: these papers assume the VNFs are already deployed in the network.
Thus, they focus on finding the path for the traffic traversing through these VNFs, and iii) joint VNF
placement and routing: in addition to VNF placement, the traffic path through these VNFs must be
determined.
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2.2.1 Virtual Network Function (VNF) Placement

In the first category, not concerned with the routing decisions, authors in [175, 225, 87] have tackled
the VNF placement problem. In particular, Pham et. al. [175] aimed at deploying VNFs by using as
fewer number of online PMs, such that the communication cost between them is optimized. They
proposed a fast solution by using a sampling-based Markov approximation method combined with
matching theory. Further, Yang et. al. [225] studied VNF chain placement in data centers. They
provided an algorithm to save power in servers and network switches. A step further was taken by
authors in [87], where they have proposed a dynamic server consolidation approach using VM live
migration to achieve power-efficiency by maximizing the number of PMs in the standby state.

2.2.2 Virtual Network Function (VNF) Routing

The second category belongs to the works which tackle the challenges brought by the routing prob-
lem. There are several dimensions to consider in this category. Some references have focused on
the routing problem and considered the power consumption of ternary content-addressable mem-
ory (TCAM) of network switches [135, 125, 71, 212, 64]. However, we consider the network power
consumption based on the online network switches and the number of active ports and their utiliza-
tion.

Assuming that the VNFs are already placed in the network, some works have focused on finding a
path going through the required VNFs (i.e., SFC) considering some constraints, e.g., delay, capacity.
For example, the authors in [85] formulated a problem to allocate and schedule traffic flows with
deadlines to VNFs while minimizing the total PM power consumption. Recently, the graph layering
technique has been proposed as an efficient way to find a path through an already placed set of
VNFs [84, 186, 104, 207]. These papers transform the network into a layered graph based on the
VNF of the SFC. The user traffic can be routed layer by layer from the top to the bottom layer.
For instance, KARIZ, a local search heuristic proposed by [104], finds the path between two layers
by solving the minimum cost flow problem. The objective of KARIZ is to minimize the network
resource costs while disregarding the end-to-end delay constraint. As another work, after the graph
layering transformation, authors in [84] use conventional shortest-path algorithms, e.g., Dijkstra, to
calculate the path between the source and destination nodes. To reduce the computational time when
using a shortest-path algorithm, Sallam et. al. in [186] propose a pruning algorithm to simplify the
constructed layered graph. However, similar to [104] and [84], they did not consider the end-to-end
delay constraint in their problem. Nevertheless, in our previous work [207], we proposed a heuristic
to find a delay-constrained path, passing through a selected set of VNF nodes in a layered graph,
achieving near-optimal performance.

2.2.3 Joint VNF Placement and Routing

Finally, as the third category, some references extend the problem to consider the routing jointly with
the VNF placement decision [193, 96, 128, 198, 197, 36, 136, 144, 130, 88]. In more detail, their main
goal is to place the VNFs on PMs, allocate them to the user requests, and route the traffic through
these VNFs. These decisions can be constrained to capacity and/or delay requirements, optimizing
PM and/or network power consumption. Specifically, the authors in [36] focused on determining the
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required number and placement of VNFs to optimize the network utilization and operational costs
(in terms of PMs power consumption) without violating service level agreements. They presented
an efficient heuristic based on dynamic programming to solve this problem. Furthermore, Jang et.
al. [130] formulated a multi-objective optimization model which maximizes the acceptance ratio and
minimizes the power cost for multiple service chains. After transforming the model into a single-
objective Mixed Integer Linear Program (MILP) problem, they proved that the problem is NP-hard
and proposed an algorithm based on linear relaxation and rounding to approximate the solution of
the MILP in polynomial time. In addition to optimizing the VNF placement and routing, the authors
in [198] presented online algorithms to reconfigure the network based on traffic changes.

However, in these three categories, some missing considerations are addressed in this chapter.
For example, in the first and third categories, the necessity of coordination between VNF placement
and routing decisions is disregarded. Thus, in this section, we tackle the PQ-VPR problem. Moreover,
opposed to this chapter, some approaches do not consider both PM and network power consumption
into account, which can increase the OPEX of service providers. Moreover, unlike some reviewed
related works, we guarantee the end-to-end delay. Also, some works [198, 87, 88] considered VNF
migration and reconfiguration, which we do not focus on it in this chapter. A comparison of different
state-of-the-art solutions to this thesis is summarized in Table 2.1. Further, comprehensive surveys
on VNF chain placement are available for interested readers [44, 121, 145, 65]. In the remaining of
this section, we presentHolu, an online heuristic framework that presents an efficient VNF placement
approach coupled with a fast delay-constrained routing algorithm to solve the PQ-VPR problem.

2.3 System Model and Problem Definition

Before presenting the mathematical modeling part, we note that the used notations and their defini-
tion are presented in Table 2.2.

2.3.1 Network Model

We represent the network as a unidirectional graph 𝐺 = (𝑁, 𝐿), being 𝑁 the set of nodes, and 𝐿 the
set of unidirectional links between pair of nodes. Each physical link (𝑖, 𝑗) ∈ 𝐿 is characterized by
the data rate capacity 𝐵𝑖, 𝑗 and the propagation delay 𝐷𝑖, 𝑗 (based on the distance of nodes 𝑖 and 𝑗 ).
Every node 𝑛 ∈ 𝑁 consists of a switch and a co-located PM (or a cluster of PMs). The switch can
interconnect any input port with any output port as well as forward the connection to the PM when
required. On the other hand, the PM is characterized by a set of resources 𝑢 ∈ 𝑈 , such as CPU, RAM,
and storage. Also, each VNF type 𝑘 ∈ 𝐾 has a resource requirement Δ𝑘,𝑢 , processing delay 𝜑𝑘 , and
processing capacity Φ𝑘 . A deployed instance of VNF 𝑘 can be shared among several user requests as
long as its maximum processing capacity Φ𝑘 is not surpassed. Otherwise, the new instance of VNF 𝑘
should be placed either on an online PM with enough available resources or on a PM which must be
powered on. These three alternatives have a different impact on power consumption, as introduced
in the later sections.
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Table 2.2: Notation definition for the PQ-VPR problem.

Sets and Parameters

𝐺 = (𝑁, 𝐿) Network graph
R Set of requests

𝐺𝑟 = (𝑁𝑟 , 𝐿𝑟 ) Virtual network graph of the request 𝑟
𝐹 Set of VNF types
V𝑠
𝑟 Source node of request 𝑟

V𝑑
𝑟 Destination node of request 𝑟

B𝑟 Data rate of request 𝑟
D𝑟 Maximum delay of request 𝑟
C𝑟 SFC of request 𝑟
𝐵𝑖, 𝑗 Data rate capacity of physical link (𝑖, 𝑗)
𝐷𝑖, 𝑗 Propagation delay of physical link (𝑖, 𝑗)
𝜑𝑘 Processing delay of VNF type 𝑘
Φ𝑘 Processing capacity of VNF type 𝑘
𝑈 Set of VNFs/PMs resource types
Δ𝑘,𝑢 Required resource type 𝑢 ∈ 𝑈 by VNF type 𝑘
𝐶𝑖,𝑢 Maximum capacity of resource type 𝑢 ∈ 𝑈 in PM 𝑖

\𝐶𝑃𝑈𝑖 CPU utilization of PM 𝑖

𝑃𝑖𝑑𝑙𝑒𝑝𝑚 , 𝑃𝑖𝑑𝑙𝑒
𝑠𝑤𝑖𝑡𝑐ℎ

PM and network switch idle power consumption
𝑃𝑚𝑎𝑥𝑝𝑚 Maximum PM power consumption
𝑃𝑝𝑜𝑟𝑡 Network switch port power consumption

𝑃𝑇𝑝𝑚 , 𝑃𝑇𝑛𝑒𝑡 Total PM and network power consumption
Ψ Large positive integer
𝛾
𝑟,𝑘
𝑛 The ranking value of PM 𝑛 with respect to VNF 𝑘 ∈ C𝑟
𝛼
𝑟,𝑘
𝑛 The centrality impact of PM 𝑛 with respect to VNF 𝑘 ∈ C𝑟
𝛽
𝑟,𝑘
𝑛 The power consumption impact of PM 𝑛 with respect to VNF 𝑘 ∈ C𝑟
𝑐𝑖, 𝑗 Routing cost function assigned to link (𝑖, 𝑗)
P𝑖, 𝑗 Routing power impact of using link (𝑖, 𝑗)
Q 𝑗 Betweenness centrality of node 𝑗
S𝑟 Set of candidate PMs for request 𝑟

Decision Variables

𝑥𝑖 ∈ {0, 1} =1, if PM 𝑖 is online
𝑦𝑖 ∈ {0, 1} =1, if switch 𝑖 is online
𝑞𝑖, 𝑗 ∈ {0, 1} =1, if link (𝑖, 𝑗) is online
𝑤
𝑖, 𝑗

ℎ,𝑙,𝑟
∈ {0, 1} =1, if virtual link (ℎ, 𝑙) ∈ 𝐿𝑟 is mapped to (𝑖, 𝑗) ∈ 𝐿

𝑎𝑖,𝑘,𝑟 ∈ {0, 1} =1, if VNF 𝑘 for request 𝑟 is placed in PM 𝑖

𝑛𝑖,𝑘 ∈ N Number of instances of VNF type 𝑘 on PM 𝑖
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2.3.2 User Request Model

We define a user request 𝑟 ∈ R as following 5-tuple:

𝑟 = (V𝑠
𝑟 ,V𝑑

𝑟 ,D𝑟 ,B𝑟 , C𝑟 ) (2.1)

where V𝑠
𝑟 and V𝑑

𝑟 are the source and the destination nodes, D𝑟 is the maximum allowed end-to-end
delay, B𝑟 is the requested data rate, and C𝑟 = {𝑘1, 𝑘2, ..., 𝑘 |𝔠𝑟 |} is the requested SFC, an ordered set of
VNFs that the demand should be routed through.

2.3.3 Service Function Chaining (SFC) Model

An SFC can be modeled as a virtual network represented as a graph𝐺𝑟 = (𝑁𝑟 , 𝐿𝑟 ), where for request
𝑟 , 𝑁𝑟 are the set of virtual nodes which are C𝑟 = {𝑘1, 𝑘2, ..., 𝑘 |𝔠𝑟 |}; and 𝐿𝑟 are the set of links where
the virtual link (𝑖, 𝑖 + 1) interconnects 𝑘𝑖 with 𝑘𝑖+1. In particular, for each request 𝑟 , the virtual nodes
𝑁𝑟 (i.e., the VNFs) and their interconnecting links 𝐿𝑟 should be mapped to the physical network 𝐺 .
Hence, the link (𝑖, 𝑗) ∈ 𝐿𝑟 between two consecutive VNFs must be assigned to a path connecting
physical links in 𝐿. Also, the ingress and egress virtual nodes match the physical source and destina-
tion nodes in the substrate physical network. In this way,𝐺𝑟 has to be mapped over𝐺 such that the
requirements of request 𝑟 are met in terms of delay and capacity while the consumed total power is
minimized.

2.3.4 Network Power Consumption Model

The network power consumption refers to the amount of power consumed for the transmission,
which includes the power consumed by the switches at the network nodes as well as the active
interconnecting links. In particular, when a network switch is powered on, it consumes a base power
𝑃𝑖𝑑𝑙𝑒
𝑠𝑤𝑖𝑡𝑐ℎ

Watts which is independent of the traffic load [50, 155, 219, 59]. Similarly, a network port
consumes 𝑃𝑝𝑜𝑟𝑡 Watts if the port is powered on (otherwise, 0 Watts). Therefore, the power of a
fully-utilized network switch can be computed as [155, 219]:

𝑃𝑠𝑤𝑖𝑡𝑐ℎ =


𝑃𝑖𝑑𝑙𝑒
𝑠𝑤𝑖𝑡𝑐ℎ

+∑
𝑝𝑜𝑟𝑡𝑠 𝑃𝑝𝑜𝑟𝑡 , if it is online

0 , otherwise
(2.2)

2.3.5 PM Power Consumption Model

The most power-consuming factor of a PM is the CPU [93, 62, 63, 43]. Hence, the power consumption
model for the PM is based on its CPU utilization. The power consumption of PM 𝑖 can be calculated
as below [146, 40, 41]:

𝑃𝑝𝑚 =


𝑃𝑖𝑑𝑙𝑒𝑝𝑚 + (𝑃𝑚𝑎𝑥𝑝𝑚 − 𝑃𝑖𝑑𝑙𝑒𝑝𝑚 ) \𝐶𝑃𝑈𝑖 , if it is online
0 , otherwise

(2.3)

where 𝑃𝑖𝑑𝑙𝑒𝑝𝑚 and 𝑃𝑚𝑎𝑥𝑝𝑚 are the consumed power when the CPU utilization is 0% and 100%, respectively.
Also, \𝐶𝑃𝑈𝑖 is the CPU utilization of the 𝑖𝑡ℎ PM.
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2.3.6 Problem Statement

Given a network and a set of user requests: i) determine the optimal number of the VNF instances
to be deployed, ii) Mapping of these VNF instances to the PMs, ii) allocating user requests to the
deployed VNFs, iv) find a path to route the user traffic through the allocated VNFs (i.e., forming the
SFC), v) guarantee the end-to-end delay required by the user requests, which should not exceed the
sum of the network propagation delay and the processing delay of VNFs, vi) meet the PM and net-
work capacity constraints, and finally vii) minimize the total PM and network power consumption.

2.4 Integer Linear Program (ILP) Formulation

In this section, we mathematically formulate the PQ-VPR problem as an offline ILP optimization
model.

2.4.1 Total Power Consumption

As mentioned before, the objective function is to minimize the total power consumption, which is
defined as the sum of the network and PM consumed power. According to the network power con-
sumption model in Eq. 2.2, the total network power consumption denoted by 𝑃𝑇𝑛𝑒𝑡 can be calculated
as:

𝑃𝑇𝑛𝑒𝑡 = 𝑃
𝑖𝑑𝑙𝑒
𝑠𝑤𝑖𝑡𝑐ℎ

∑︁
𝑖∈𝑁

𝑦𝑖 + 2𝑃𝑝𝑜𝑟𝑡
∑︁

(𝑖, 𝑗 ) ∈𝐿
𝑞𝑖, 𝑗 (2.4)

where𝑦𝑖 ∈ {0, 1} is a variable indicating if switch 𝑖 is online. Also, 𝑞𝑖, 𝑗 ∈ {0, 1} is defined as a variable
that is equal to 1 if the physical link between nodes 𝑖 and 𝑗 is online. Note that an active physical
link (𝑖, 𝑗) ∈ 𝐿 (connecting node 𝑖 to 𝑗 ) requires two online ports (one per source/destination node).

Moreover, according to the PM power consumption model Eq. 2.3, the total PM power consump-
tion 𝑃𝑇𝑝𝑚 can be calculated as:

𝑃𝑇𝑝𝑚 =
∑︁
𝑖∈𝑁

𝑥𝑖

(
𝑃𝑖𝑑𝑙𝑒𝑝𝑚 + (𝑃𝑚𝑎𝑥𝑝𝑚 − 𝑃𝑖𝑑𝑙𝑒𝑝𝑚 ) \𝐶𝑃𝑈𝑖

)
(2.5)

where 𝑥𝑖 is a binary variable indicating if the PM 𝑖 is powered on. \𝐶𝑃𝑈𝑖 is the CPU utilization of PM
𝑖 , which is calculated as the ratio between the all required CPU resources by the hosted VNFs and
the available CPU resources on PM 𝑖 , i.e., \𝐶𝑃𝑈𝑖 =

∑
𝑘∈𝐾 Δ𝑘,𝑢/𝐶𝑖,𝑢 for 𝑢 = 𝐶𝑃𝑈 .

In addition, some constraints need to be met by the ILP model. First, the set of resources on a
PM is limited, and therefore, these resources cannot be exceeded by the hosted VNFs, i.e.,:∑︁

𝑘∈𝐾
Δ𝑘,𝑢𝑛𝑖,𝑘 ≤ 𝐶𝑖,𝑢 , ∀𝑖 ∈ 𝑁,∀𝑢 ∈ 𝑈 , (2.6)

where Δ𝑘,𝑢 is the amount of resource type 𝑢 used by the placed VNF 𝑘 , 𝑛𝑖,𝑘 is an integer variable
indicating the number of placed VNFs of type 𝑘 on PM 𝑖 , and 𝐶𝑖,𝑢 represents the maximum capacity
of resource type 𝑢 in PM 𝑖 .
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Secondly, each VNF 𝑘 has a limited processing capacity, which is denoted by Φ𝑘 . Therefore, the
sum of the rates of all requests served by function 𝑘 in the PM 𝑖 must not exceed the processing
capacity of VNF 𝑘 , i.e., ∑︁

𝑟 ∈R
𝑎𝑖,𝑘,𝑟B𝑟 ≤ 𝑛𝑖,𝑘Φ𝑘 , ∀𝑖 ∈ 𝑁,∀𝑘 ∈ 𝐾, (2.7)

where 𝑎𝑖,𝑘,𝑟 ∈ {0, 1} is a variable which equals to 1 if VNF 𝑘 of request 𝑟 is assigned to the PM 𝑖 , and
B𝑟 is the requested data rate of 𝑟 .

The last set of capacity constraints belong to the physical link capacities. The sum of the data
rate required by all requests served by link (𝑖, 𝑗) should not be larger than the capacity of the link
(𝑖, 𝑗): ∑︁

𝑟 ∈R

∑︁
(ℎ,𝑙 ) ∈�̄�𝑟

𝑤
𝑖, 𝑗

ℎ,𝑙,𝑟
B𝑟 ≤ 𝐵𝑖, 𝑗 , ∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝑁, (2.8)

where𝑤 𝑖, 𝑗
ℎ,𝑙,𝑟

∈ {0, 1} is a variable that equals to 1 if the physical link (𝑖, 𝑗) is used by the virtual link
(ℎ, 𝑙) of 𝑟 .

As introduced in Section 2.3.1, the nodes of the virtual network graph𝐺𝑟 = (𝑁𝑟 , 𝐿𝑟 ) demanded by
the request 𝑟 must be embedded in the physical graph𝐺 = (𝑁, 𝐿). Firstly, the source and destination
nodes of𝐺𝑟 must be mapped to the physical source and destination nodes in the𝐺 . Hence, the source
and destination nodes of request 𝑟 should be mapped to the same node on the substrate physical node:

𝑎𝑖,𝑘,𝑟 = 1, if 𝑖 = 𝑓 = V𝑠
𝑟 , ∀𝑟 ∈ R, (2.9)

𝑎𝑖,𝑘,𝑟 = 1, if 𝑖 = 𝑓 = V𝑑
𝑟 , ∀𝑟 ∈ R . (2.10)

Moreover, the VNFs in SFC C𝑟 must be mapped to a node 𝑛 ∈ 𝑁 that actually hosts an instance of
VNF 𝑘,∀𝑘 ∈ C𝑟 :

𝑎𝑖,𝑘,𝑟 ≤ 𝑛𝑖,𝑘 , ∀𝑖 ∈ 𝑁,∀𝑘 ∈ 𝐾,∀𝑟 ∈ R . (2.11)

The flow conservation law is expressed in flow states such that for each network switch 𝑖 ∈ 𝑁 ,
the difference of all outgoing and incoming physical links that are used for the virtual link between
virtual nodes ℎ and 𝑙 , and request 𝑟 must be equal:∑︁

(𝑖, 𝑗 ) ∈𝐿
𝑤
𝑖, 𝑗

ℎ,𝑙,𝑟
−

∑︁
( 𝑗,𝑖 ) ∈𝐿

𝑤
𝑗,𝑖

ℎ,𝑙,𝑟
= 𝑎𝑖,ℎ,𝑟 − 𝑎𝑖,𝑙,𝑟 , ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑁𝑟 , ∀𝑙 ∈ 𝑁𝑟 , ∀𝑟 ∈ R, (2.12)

The total delay of the embedded request 𝑟 is modeled as the sum of the VNF processing time
of each VNF 𝑘 ∈ C𝑟 , denoted by 𝜑𝑘,𝑟 , and the propagation delay 𝐷𝑖, 𝑗 in the physical links. This
summation must be limited to the required end-to-end delay D𝑟 of each request 𝑟 ∈ R, thus:∑︁

𝑖∈𝑁

∑︁
𝑘∈𝐾

𝜑𝑘𝑎𝑖,𝑘,𝑟 +
∑︁

(𝑖, 𝑗 ) ∈𝐿

∑︁
(ℎ,𝑙 ) ∈�̄�𝑟

𝐷𝑖, 𝑗𝑤
𝑖, 𝑗

ℎ,𝑙,𝑟
≤ D𝑟 , ∀𝑟 ∈ R, (2.13)

where 𝜑𝑘,𝑟 denotes the processing delay of the VNF 𝑘 for request 𝑟 , which is considered proportional
to the data rate of request 𝑟 (i.e., 𝜑𝑘,𝑟 = B𝑟/Φ𝑘 ).
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Finally, let us introduce three indicator variables to control the operation status (i.e., online or
standby) of PMs, physical links, and network switches):∑︁

𝑟 ∈R

∑︁
(ℎ,𝑙 ) ∈�̄�𝑟

𝑤
𝑖, 𝑗

ℎ,𝑙,𝑟
≤ 𝑞𝑖, 𝑗Ψ, ∀𝑖 ∈ 𝑁,∀𝑗 ∈ 𝑁, (2.14)∑︁

𝑗∈𝑁
(𝑞𝑖, 𝑗 + 𝑞 𝑗,𝑖) ≤ 𝑦𝑖Ψ, ∀𝑖 ∈ 𝑁, (2.15)∑︁

𝑘∈𝐾
𝑛𝑖,𝑘 ≤ 𝑥𝑖Ψ, ∀𝑖 ∈ 𝑁, (2.16)

where Ψ is a large positive number. Considering the aforementioned definitions and constraints, we
can formulate the ILP optimization model as below:

minimize
(
𝑃𝑇𝑝𝑚 + 𝑃𝑇𝑛𝑒𝑡

)
, (2.17)

s.t. constraints (2.6) − (2.16),
vars: 𝑥𝑖 , 𝑦𝑖 ∈ {0, 1},∀𝑖 ∈ 𝑁,

𝑞𝑖, 𝑗 ∈ {0, 1},∀(𝑖, 𝑗) ∈ 𝐿,
𝑤
𝑖, 𝑗

ℎ,𝑙,𝑟
∈ {0, 1},∀(𝑖, 𝑗) ∈ 𝐿,∀(ℎ, 𝑙) ∈ 𝐿𝑟 ,∀𝑟 ∈ R,

𝑎𝑖,𝑘,𝑟 ∈ {0, 1},∀𝑖 ∈ 𝑁,∀𝑘 ∈ 𝐾,∀𝑟 ∈ R,
𝑛𝑖,𝑘 ≥ 0,∀𝑖 ∈ 𝑁,∀𝑘 ∈ 𝐾.

In this formulation, we jointly map a set of virtual nodes 𝑁𝑟 ,∀𝑟 ∈ R to PMs together with
the mapping of virtual links 𝐿𝑟 ,∀𝑟 ∈ R onto paths in the underlying network 𝐺 connecting the
individual servers. Also, this embedding must meet capacity and path length (i.e., delay) constraints.
This problem can be reduced to the graph embedding problem, which is generally NP-hard and
inapproximable [183, 184]. Thus, the presented ILP model (2.17) does not apply to practical-sized
problems as it cannot be solved in a reasonable period. Therefore, in the following sections, we
propose an online heuristic algorithm to solve the aforementioned problem in polynomial time.

2.5 Holu: The Online Heuristic Framework

In this section, we propose an efficient online heuristic framework named Holu to solve the PQ-VPR
problem with much lower and more manageable complexity. Many of the heuristics presented in
the state-of-the-art divide the problem based on each VNF, they solve the resulting sub-problems
sequentially per VNF [94, 213, 13, 25, 136, 80, 193, 128]. In more details, considering a user request
𝑟 with C𝑟 = {𝑘1, 𝑘2, 𝑘3}, the referred state-of-the-art papers would consider four sub-problems to
determine a solution to the VNF placement and routing problems, one for each VNF and last one for
routing from the last VNF to the destination, without having a fallback mechanism after a decision
for a VNF is made. They sequentially solve these sub-problems, i.e., determining the VNF placement
and the routing first for 𝑘1, then for VNF 𝑘2, and finally VNF 𝑘3 and they build the SFC from the
V𝑠
𝑟 to V𝑑

𝑟 . Considering the previous example, the algorithm tries to place 𝑘3 after placing the 𝑘1,
𝑘2, and find a path from the placed 𝑘2 to the potential 𝑘3 PMs. This might not be feasible anymore,
since the constraint budgets (e.g., delay) might have been already consumed by the previous VNFs
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Figure 2.4: Flowchart of the Holu framework. Given the user request 𝑟 (Eq. 2.1) and the network graph𝐺 , Holu
solves the PQ-VPR problem by collaboratively performing VNF placement (Sub-problem 1) and routing (Sub-
problem 2). In Sub-problem 1, using a node ranking mechanism, the PM exploration matrix is formed. Then,
a set of candidate PMs are picked using a PM selection mechanism. Thereafter, in Sub-problem 2, a routing
algorithm attempts to realize the requested SFC by routing the traffic from the source node to the destination
node through the candidate PMs returned by Sub-problem 1. If the path meets the required delay, the algorithm
accepts the request 𝑟 and registers it in the network. Otherwise, in the next iteration, it attempts to find a new
delay-constrained path using the second candidate PMs set. After a limited number of unsuccessful iterations,
Holu rejects the user request 𝑟 .

𝑘1 and 𝑘2. Therefore, they cannot efficiently distribute the cost/constraint budgets between different
segments (i.e., VNF-VNF) of a SFC (budget-division problem). This can potentially reduce the quality
of found solutions dramatically as well as the acceptance rate. In contrast, Holu employs an end-to-
end decision-making strategy to solve the PQ-VPR problem. This strategy consists of placing all the
VNFs at once and then finding the best route, both considering the power consumption. In this way,
we can solve the budget-division problem which exists in the state-of-the-art sequential solutions.
Moreover, a fallback mechanism improves the quality of the solution in an iterative way.

To do so, we divide the PQ-VPR in two sub-problems, regardless of the length of the requested
SFC: i) Sub-problem 1: VNF placement to minimize 𝑃𝑇𝑝𝑚 , and ii) Sub-problem 2: routing aiming at
minimizing 𝑃𝑇𝑛𝑒𝑡 while meeting the delay constraints. As depicted in the flowchart in Fig. 2.4, having
a request 𝑟 in hand, the VNF placement sub-problem finds a set of PMs to host the VNFs 𝑘 ∈ C𝑟 .
Particularly, Holu uses a ranking mechanism to assign a score to the candidate PMs for hosting the
VNFs requested in the C𝑟 . Thereafter, it builds a matrix (referred as exploration matrix) to represent
the candidate PMs that can host VNFs 𝑘 ∈ C𝑟 and sorts them based on the calculated ranking values.
According to this sorting, a potential VNF placement solution (the PMs to host VNFs 𝑘 ∈ 𝐾 ) is
selected and passed as an input to Sub-problem 2, which attempts to find a routing through these
PMs, considering the delay constraint D𝑟 . To do so, we employ our previous work [207] to find a
delay-constrained path to route the traffic through the candidate PMs in a power-aware manner. If
the routing is not successful (no path is found with respect to delay/capacity constraints), another set
of candidate PMs is selected by Sub-problem 1, and the routing is recomputed. Note that since it is
not straightforward to select a good set of PMs at once (as it would imply solving the whole problem
at once), there is an iteration in order to improve the solution gradually. This loop is repeated either
until a successful routing is found, which leads to accepting the request 𝑟 , or a stopping condition
(e.g., VNF placement returns no result), in which case the request 𝑟 is rejected. An illustrative example
is presented in Fig. 2.5.
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Figure 2.5: A high-level example that illustrates the steps that the𝐻𝑜𝑙𝑢 framework takes to find a solution for
a request 𝑟 . The request 𝑟 is defined with source node V𝑠

𝑟 = 𝑛4, destination node V𝑠
𝑟 = 𝑛6, and the requested

SFC as C𝑟 = {𝑘1, 𝑘2, 𝑘3} (in this example we do not consider/show the data rate B𝑟 ). (a) Physical network graph
𝐺 with |𝑁 |=6 nodes, where the request 𝑟 must be embedded. (b) Considering the graph 𝐺 and the request 𝑟 ,
the PM exploration matrix M𝑟 is formed in this sub-figure. There are |𝑁 |=6 columns and |C𝑟 |=3 rows. Each
row contains the candidate PMs for the respective VNF, sorted by their ranking value 𝛾𝑟,𝑘𝑛 (e.g., considering
the first row, 𝛾𝑟,𝑘1

𝑛1 > 𝛾
𝑟,𝑘1
𝑛5 > 𝛾

𝑟,𝑘1
𝑛2 > ... > 𝛾

𝑟,𝑘1
𝑛6 ). It also shows the first set of candidate PMs that are chosen

to host the VNFs in C𝑟 is S𝑟 = {𝑛1, 𝑛2, 𝑛5}. (c) As determined by the PM exploration matrix, the PMs in the
first column 𝑛1, 𝑛2, 𝑛5 are the candidate PMs to host 𝑘1, 𝑘2, and 𝑘3, respectively. In the first iteration, the delay-
constrained shortest-path algorithm (Sub-problem 2) should find a path meeting all the routing constraints. In
this example, there is not such a path (e.g., the path (𝑛4 −𝑛1 −𝑛2 −𝑛5 −𝑛6) does not meet the delay constraint).
(d) After the unsuccessful path search in the first iteration, the PM selection mechanism selects the next best
PM candidate set from the matrixM𝑟 by replacing 𝑛5 by 𝑛3 for hosting 𝑘3, having S𝑟 = {𝑛1, 𝑛2, 𝑛3}. (e) In the
second iteration, the routing algorithm successfully finds a path (𝑛4−𝑛1−𝑛2−𝑛3−𝑛6) that meets the delay and
capacity requirements. Finally, this path as well as the VNF configuration on PMs 𝑛1, 𝑛2, and 𝑛3 are registered
in the network.

As a result, by identifying the VNF hosting PMs for the SFC (Sub-problem 1) and finding a path
passing through these PMs (Sub-problem 2), we are able to distribute the cost (power) and the delay
budget between different segments of the SFC. In below, the details of these two sub-problems and
their respective solutions are presented.

2.5.1 Sub-problem 1: VNF Placement

As mentioned before, the VNF placement process identifies to map each of VNFs in the requested C𝑟
on a PM in network with the goal of minimizing the first element of the objective function, 𝑃𝑇𝑝𝑚 (see
the ILP model (2.17)). In order to improve power-efficiency, we focus on increasing the reusability
of VNFs by sharing them between more SFCs, thus, increasing their utilization and minimizing the
number of online PMs (i.e., improving power-proportionality, see Fig. 2.3). Therefore, it is critical for
the VNF placement process to identify the PMs that maximize the VNF reusability factor. We achieve
this goal by introducing a PM ranking strategy, as explained below.
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2.5.1.1 PM Ranking Mechanism

Given the request 𝑟 , we determine a set of PMs that are the best candidates for hosting each VNF
𝑘 ∈ C𝑟 . To do so, we employ a mechanism that assigns a ranking value to each PM, according to the
requested SFC C𝑟 . We define the score of PM 𝑛 ∈ 𝑁 to host VNF 𝑘 ∈ C𝑟 as 𝛾𝑟,𝑘𝑛 :

𝛾𝑟,𝑘𝑛 = 𝛼𝑟,𝑘𝑛 + 𝛽𝑟,𝑘𝑛 , 𝑘 ∈ C𝑟 , 𝑛 ∈ 𝑁, (2.18)

In following, we define 𝛼𝑟,𝑘𝑛 and 𝛽𝑟,𝑘𝑛 in detail.
Node Centrality Impact (𝛼𝑟,𝑘𝑛 ): Given a network topology, a wide spectrum of centrality metrics

can be defined in order to find the most critical/important node(s) in a network [49, 182]. Metrics
relying only on the node degree have been shown not to improve the resource reusability as they
incur higher network power consumption or too long delays [182]. Particularly, if the resource is
available in good locations in the network, according to the properties of centrality measures, the
probability of resource reusability in the network is expected to be increased. Hence, in this thesis,
three centrality metrics relying on the length of shortest-paths between all node pairs are used to
determine the value of 𝛼𝑟,𝑘𝑛 : betweenness, closeness, and Katz centrality [49, 182]. Using one of the
three chosen metrics, we calculate the centrality value for all the nodes 𝑛 ∈ 𝑁 and then normalize
the obtained values between 0 and 1 to obtain 𝛼𝑟,𝑘𝑛 ∀𝑛 ∈ 𝑁 .

Power Consumption Impact (𝛽𝑟,𝑘𝑛 ): This metric aims at prioritizing PMs which causes the minimum
increase in the power consumption to process a new user request 𝑟 (either by creating a new VNF
instance or using an existing one). The 𝛽𝑟,𝑘𝑛 can take three different values based on the state of a PM
𝑛 ∈ 𝑁 with respect to VNF 𝑘 ∈ C𝑟 (the power consumption caused by hosting 𝑘 is increasing from
first to the third case):

• 𝛽
𝑟,𝑘
𝑛 = 1: The PM 𝑛 is online and already hosts an instance of VNF 𝑘 with enough available

capacity to process the data rate B𝑟 .

• 𝛽
𝑟,𝑘
𝑛 = 0.1: The PM 𝑛 is online and has sufficient resources to launch a new instance of VNF 𝑘 .

• 𝛽
𝑟,𝑘
𝑛 = 0: The PM 𝑛 is standby and must be turned on to launch a new instance of VNF 𝑘 .

The 𝛽𝑟,𝑘𝑛 values can be tuned by the operator e.g., based on the power-proportionality of PMs and/or
the size (impact) of specific VNF types that is being used.

After determining the values of 𝛼𝑟,𝑘𝑛 and 𝛽𝑟,𝑘𝑛 , upon receiving an user request 𝑟 , for each 𝑘 ∈ C𝑟 ,
the values of 𝛾𝑟,𝑘𝑛 can be computed. Note that the weights of 𝛼𝑟,𝑘𝑛 and 𝛽𝑟,𝑘𝑛 metrics can be changed
according to the operator preferences/priorities.

2.5.1.2 PM Exploration Matrix

As mentioned before, given a request 𝑟 , we would prefer to place the VNF 𝑘 ∈ C𝑟 on a PM with the
highest 𝛾𝑟,𝑘𝑛 value. Here, the challenge is how to select this set of candidate PMs, which is denoted by
S𝑟 , where |S𝑟 | = |C𝑟 |. To do so, we define a PM exploration matrix M𝑟| C𝑟 |× |𝑁 | which represents the
search space of the candidate PMs: each row represents a set of candidate PMs to host a VNF 𝑘 ∈ C𝑟 ,
which are sorted in decreasing order according to their 𝛾𝑟,𝑘𝑛 value. Potentially, since all the PMs in
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the network are candidate nodes, there are 𝑁 columns in the matrixM𝑟 . Fig. 2.5b shows an example
of a PM exploration matrix M𝑟 for a user request 𝑟 . In this exemplary matrix, there are three (i.e.,
|C𝑟 |) rows, one per VNF in C𝑟 , and four (i.e., |𝑁 |) columns.

2.5.1.3 PM Selection Mechanisms

The VNF placement problem consists in selecting one PM from each row in the matrixM𝑟 . Since the
PMs in each row are sorted based on their 𝛾𝑟,𝑘𝑛 value, the first (and the best) choice of PM candidates
is the first PM from each row inM𝑟 . For example, in Fig. 2.5b, the best (first) candidate PMs to host
VNFs {𝑘1, 𝑘2, 𝑘3} are supposed to be 𝑛1, 𝑛2, and 𝑛5, respectively.

Having the set of candidate PMs S𝑟 , a path from V𝑠
𝑟 to V𝑑

𝑟 passing through the sequence of PM
nodes 𝑛 ∈ S𝑟 should be calculated. However, such a path might not be found because of the routing
algorithm’s incompleteness or capacity/delay constraint violations. If this happens, we retry to find
a path for an updated set of candidate PMs. In our approach, we select a PM from the current S𝑟 and
replace it with the next PM with the highest ranking value from the respective row in matrix M𝑟 .
For example, in Fig. 2.5d, after no solution is found for the first candidate PM set 𝑛1, 𝑛2, 𝑛5 (Fig. 2.5b),
the PM 𝑛5 is chosen to be replaced by the next PM 𝑛3 to form the new candidate PM set 𝑛1, 𝑛2, 𝑛3.

The question here is which PM from the current candidate PMs set S𝑟 should be replaced. Since
different candidate PM sets can lead to different solutions with different qualities, it is crucial to
determine how to select the next set of candidate PMs, which is expected to reduce the power
consumption while allowing a path through them guaranteeing the constraints. Having the PM
exploration matrix in hand, we propose two candidate PM selection mechanisms to determine the
next candidate PM set:
i) Highest Node Ranking (HNR):
The first approach uses the𝛾𝑟,𝑘𝑛 metric to select and replace a PM from the candidate PMs setS𝑟 . HNR
selects the candidate PM with the highest 𝛾𝑟,𝑘𝑛 value among the current set of PMs. Then the selected
candidate PM is replaced by the next PM in the corresponding row of M𝑟 . Thereby, this approach
relaxes the power savings to meet the end-to-end delay and, in turn, increases the acceptance ratio.
iii) Least Sub-path Delay (LSD):
The second approach uses the sub-path delay metric to identify and prune a PM from the candidate
PM set. To do so, we first divide the shortest-path from V𝑠

𝑟 to V𝑑
𝑟 through candidate PMs of S𝑟

into |C𝑟 | sub-paths: V𝑠
𝑟 to 𝑘2 (here 𝑘1 is the intermeddiate VNF), 𝑘1 to 𝑘3, and 𝑘 | C𝑟 |−1 to V𝑑

𝑟 . Each
sub-path contains a single PM hosting a VNF as an intermediate PM. Then, for each sub-path, we
calculate the shortest path from the start to the end node of the sub-path with the delay as the cost
function. Afterward, we prune the PM which is an intermediate PM of the sub-path with the largest
sub-path delay from the current PM set. As a result, the candidate PM with a high contribution to
the end-to-end delay of the original path is replaced with the next PM from the respective row in the
matrixM𝑟 . Fig. 2.6 shows an example where a path and its delay from V𝑠

𝑟 to V𝑑
𝑟 through 𝑘1, 𝑘2, and

𝑘3 VNFs is shown.
The heuristic continues to try different candidate PM sets S𝑟 until a solution meeting the delay

and capacity constraints are found, or a stopping condition is reached (see Fig 2.4). This condition
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Sub-path1 =

Sub-path2 =

Sub-path3 =

Figure 2.6: An example for the LSD PM selection method. Considering the failed solution from the example
in Fig. 2.5c, a total |C𝑟 | sub-paths are formed, each corresponding to a VNF 𝑘 ∈ C𝑟 . Moreover, each sub-path
has a certain total delay based on the propagation delay of each of its links. In this example, the delays of
sub-paths 1, 2, and 3 are assumed to be 4, 6, and 8 ms respectively. As the third sub-path (corresponding to
VNF 𝑘3) has the highest delay among the sup-paths, the LSD removes the PM at 𝑛5 hosting 𝑘3, and looks for
another PM, according to the matrixM𝑟 (see Fig. 2.5d).

can be chosen by the operator based on the network size and the service provider’s decision time
constraints.

2.5.2 Sub-problem 2: Routing

In this section, we present the solution to the routing sub-problem which aims at minimizing the
second element of the objective function, 𝑃𝑇𝑛𝑒𝑡 (Eq. 2.17). At this stage, the user request 𝑟 and an
ordered set of candidate PMs S𝑟 are given by Sub-problem 1. The problem now, is to find a path
from source V𝑠

𝑟 to destination V𝑑
𝑟 , that traverses the candidate PMs in S𝑟 , and that satisfies the delay

constraint D𝑟 . Given a cost function that models the power consumption of a path, the problem is
to find a DCLC path from a given source 𝑠𝑟𝑐 to destination 𝑑𝑠𝑡 , which can be modeled as:

𝑧∗(𝑠𝑟𝑐, 𝑑𝑠𝑡) = min
𝔭∈P𝑠𝑟𝑐,𝑑𝑠𝑡

∑︁
(𝑖, 𝑗 ) ∈𝔭

𝑐𝑖, 𝑗 (2.19)

s.t.
∑︁

(𝑖, 𝑗 ) ∈𝔭
𝐷𝑖, 𝑗 ≤ D𝑟

where P𝑠𝑟𝑐,𝑑𝑠𝑡 is the set of paths from node 𝑠𝑟𝑐 to 𝑑𝑠𝑡 , and 𝑐𝑖, 𝑗 and 𝐷𝑖, 𝑗 are the cost (i.e., network
power consumption) and delay functions of link (𝑖, 𝑗) respectively.

In the following, we show how to solve Sub-problem 2 by using the LARAC algorithm [132]
and an extension of it, Lagrange Relaxation based Aggregated Cost with Specific Nodes (LARAC-
SN) [207]. Let us first shortly describe these two algorithms.

2.5.2.1 Lagrange Relaxation based Aggregated Cost (LARAC)

The DCLC problem is NP-hard [103]. Accordingly, numerous heuristics have been proposed to find
close to optimal solutions [110] quickly. The LARAC algorithm finds a DCLC path in a graph by
running several times the Dijkstra shortest-path algorithm. It is commonly considered as one of the
best performing heuristics for the DCLC problem [110, 207]. The algorithm is based on the Lagrange
relaxation, a mathematical optimization technique for solving constrained optimization problems.
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Using the Lagrange relaxation principle, a heuristic solution 𝑧𝑅 (𝑠, 𝑡) to the DCLC problem (Eq. 2.19)
can be found by optimally solving [110]:

𝑧𝑅 (V𝑠
𝑟 ,V𝑑

𝑟 ) = max
_∈R+

(
min

𝔭∈PV𝑠
𝑟 ,V𝑑

𝑟

∑︁
(𝑖, 𝑗 ) ∈𝔭

𝑐𝑖, 𝑗 + _
( ∑︁
(𝑖, 𝑗 ) ∈𝔭

𝐷𝑖, 𝑗 − D𝑟

))
. (2.20)

Solving this maximization problem requires solving several times the inner minimization problem
(called relaxed problem) by varying the _ parameter. Interestingly, for this problem, the relaxed
problem corresponds to a shortest-path problem with a modified cost function 𝑐_ = 𝑐𝑖, 𝑗+_×𝐷𝑖, 𝑗 [132].
As a result, LARAC finds a heuristic solution to the DCLC problem by successively running Dijkstra
with the modified cost function 𝑐_ and by adapting the _ at each iteration to converge to the maximum
of Eq. 2.20.

LARAC starts by finding the least-delay and least-cost paths in the network from a given source
node 𝑠𝑟𝑐 to destination 𝑑𝑠𝑡 . If the least-delay path does not exist, it returns null since there is no path
that meets the delay constraint. If the least-cost path (_ = 0) does not violate the delay constraint,
the path is returned as the solution (which is the optimal solution for sub-problem 2). Otherwise,
if the delay of the least-cost path is higher than D𝑟 , it performs subsequent Dijkstra runs with the
modified cost function 𝑐_ . At each iteration, _ is adapted in order to give more or less importance to
the cost and/or the delay. More details on the rationale behind the convergence strategy are available
in the original reference [132] and the survey [110]. The algorithm is complete, i.e., it always finds a
solution if it exists but is not optimal. However, it was shown that its optimality gap is quite low [110]
while keeping a relatively low runtime. Thus, it becomes a perfect candidate to be used as part of
the solution to Sub-problem 2 that we repeatedly solve to obtain a solution to our original problem.

2.5.2.2 Lagrange Relaxation based Aggregated Cost with Specific Nodes (LARAC-SN)

LARAC-SN builds on top of LARAC to force the traversal of an ordered set of nodes [207]. To do so,
the algorithm adapts the underlying Dijkstra procedure used by LARAC. Instead of running Dijkstra
from the source to the destination node, LARAC-SN splits the Dijkstra run from the source node to
the first VNF, from the second VNF to the next one, and so on until the destination. By doing so,
the algorithm ensures that LARAC only considers paths that traverse the set of candidates PMs and
hence that the final path satisfies this constraint. As we ensure that each segment path returned
by LARAC always traverse the VNFs of C𝑟 (i.e., the PM nodes in S𝑟 ), the path returned by LARAC-
SN will also traverse the VNFs. Splitting the underlying Dijsktra run rather than the LARAC run
removes the need for splitting the delay constraint between the different VNFs. That is automatically
handled by the LARAC procedure by adapting the weights of the aggregated cost function, which
can significantly increase the acceptance rate of the requests. Inheriting the properties of LARAC,
LARAC-SN is complete and close-to-optimal [207].

2.5.2.3 Routing Metrics: Delay, Cost, and Capacity

The first metric is the delay. It is a global constraint metric. The delay of a link corresponds to its
propagation delay (the VNF processing delay can be pre-computed and subtracted from the delay
constraint budget D𝑟 ), thus, its value for a link is static for a given routing request. The second
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metric is the cost which is a global optimization metric. Our cost function essentially considers the
power consumption impact of taking a given path. The cost of a link (𝑖, 𝑗) is defined as

𝑐𝑖, 𝑗 = P̂𝑖, 𝑗 + Q̂ 𝑗 , (2.21)

where the ·̂ notation represents the fact that both values are normalized to a value between 0 and 1.
As it can be seen, 𝑐𝑖, 𝑗 consists of two cost elements. The first one is the impact of power consumption
P̂𝑖, 𝑗 for using a given link (𝑖, 𝑗) and it is computed as

P̂𝑖, 𝑗 = 1
2𝑃

𝑖𝑑𝑙𝑒
𝑠𝑤𝑖𝑡𝑐ℎ

× (2 − 𝑦𝑖 − 𝑦 𝑗 ) + 2𝑃𝑝𝑜𝑟𝑡 × (1 − 𝑞𝑖, 𝑗 ), (2.22)

where𝑦𝑖 and𝑞𝑖, 𝑗 are binary variables reporting whether the switch 𝑖 or link (𝑖, 𝑗) are already powered
on, respectively. In fact, variables 𝑦 and 𝑞 allow penalizing the usage of a switch or link that is not
yet used (i.e., that is in the standby state). The second term forming the 𝑐𝑖, 𝑗 is the centrality metric Q̂ 𝑗

of the destination node 𝑗 of the link. The reason for adding this term is that the power consumption
of links can often be equal, as only six different values are possible (based on the 𝑦 and 𝑞 variables).
As a result, the routing algorithm will often face equal-cost paths. Instead of letting the algorithm
pseudo-randomly choose among these paths, the centrality term acts as a tie-breaker to direct the
algorithm towards more central nodes that tend to be used more often and hence reduce the power
consumption of subsequent requests. We use the betweenness centrality value of the node 𝑗 for the
Q̂ 𝑗 . Computing the value of our cost function 𝑐𝑖, 𝑗 requires knowing all the links previously visited
by the routing algorithm. Indeed, since the state 𝑠 (𝑘,𝑙 ) of a link depends on whether it is used already
(i.e., whether we already visited it), knowing all the previously visited links is necessary to compute
P̂𝑖, 𝑗 and hence 𝑐𝑖, 𝑗 . In [206], it is shown that such a metric as a global optimization metric increases
the optimality gap of an algorithm. However, the algorithm stays complete.

The third and last metric we use is the capacity of links. It is a local constraint metric. A link
can only be used if it still has sufficient capacity to host the new flow. Similar to the cost function,
checking if the new flow can be accommodated by the remaining capacity at a link requires knowing
whether we visited this link already. In traditional routing, it is not the case because we know the
remaining capacity of all links in advance, and we do not route into loops. However, when routing
through a set of VNFs, we can potentially route through loops. Unfortunately, such a metric as a
local constraint metric makes the routing algorithm incomplete [206]. Recovering the completeness
of algorithms in such a situation leads to intractable runtime [206]. In fact, this is one of the reasons
for which we have to iterate back and forth between sub-problems 1 and 2. Indeed, once S𝑟 has been
selected in Sub-problem 1, the algorithm used in Sub-problem 2 cannot guarantee (because it is not
complete) to find a solution for the S𝑟 , even if it exists. As we want to maximize the acceptance of
flow requests, we iterate between the two sub-problems until the routing algorithm finds a solution.
In the evaluation section, we show that the incompleteness of the algorithm is not very high, and
hence solutions can be found in relatively few iterations and hence, short runtime.
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2.6 Performance Evaluation

2.6.1 Simulation Setup

This section provides details about the network topologies and the simulation parameters consid-
ered for the evaluation. The results presented in this section correspond to Nobel-EU [168], and
Internet2 [196]. Each network node is equipped with a switch and a PM for hosting VNFs. The PM
resources are characterized by the number of CPU cores, which has been set to 16. The PM power
consumption is computed in accordance to Eq. 2.3. The idle and maximum power consumption of
the PM is chosen as 𝑃𝑝𝑚

𝑖𝑑𝑙𝑒
=299 Watts and 𝑃𝑝𝑚𝑚𝑎𝑥=521 Watts, respectively [194]. On the other hand, the

network switch power consumption consists of static hardware power and network interface power
(see Eq. 2.2). The static hardware power of the switch 𝑃𝑖𝑑𝑙𝑒

𝑠𝑤𝑖𝑡𝑐ℎ
is set to 315 Watts [210]. The network

interface power consumption of switch port varies based on the data rate configuration, which is
modeled to operate at three different configurations: 100 Mbps, 1 Gbps, or 10 Gbps with 26 Watts,
30 Watts, and 55 Watts of power consumption, respectively [61, 155]. The physical link data rate
capacity is set to a randomly generated value between 6 to 10 Gbps. To generate the user requests,
the source, and destination pairs are generated randomly, such that V𝑠

𝑟 ≠ V𝑑
𝑟 . We have consid-

ered commonly used service types: video streaming, web service, voice-over-IP (VoIP), and online
gaming [128, 13]. The VNFs forming the SFCs have considered with different resource requirements
and processing capacities as listed in Table 2.3 [36, 99]. Thus, as it is presented in Table 2.4, each of
these service types requires a specific SFC, data rate, maximum end-to-end delay, and the share of
the service type in the set of user requests.

Table 2.3: The number of CPU cores and their processing capacity (maximum throughput) of each VNF type.

VNF Type Required CPU Cores (Δ𝑘,𝑐𝑝𝑢 ) Processing Capacity (Φ𝑘 )

Network Address Translation (NAT) 2 500 Mbps
Firewall (FW) 8 400 Mbps

Traffic Monitor (TM) 1 200 Mbps
Video Optimization Controller (VOC) 2 580 Mbps
WAN Optimization Controller (WOC) 2 300 Mbps

Intrusion Detection and Prevention System (IDPS) 8 600 Mbps

Table 2.4: Overview of service types and their SFC set, data rate, end-to-end delay, and share of the total
requests. We have considered request aggregation by considering a range of data rate to mimic the traffic
coming from multiple users at the same time from a single network node.

Type Required SFC (C𝑟 ) Data Rate Requirement (B𝑟 ) Delay Requirement (D𝑟 ) Share

Web NAT-FW-TM-WOC-IDPS U(0.6-1) Mbps 500 ms 18.2%
VoIP NAT-FW-TM-FW-NAT U(0.384-0.64) Mbps 100 ms 11.8%

Streaming NAT-FW-TM-VOC-IDPS U(24-40) Mbps 100 ms 69.9%
Gaming NAT-FW-VOC-WOC-IDPS U(0.24-0.5) Mbps 60 ms 0.1%

To choose the best centrality metric and PM selection mechanism for Holu, we have extensively
evaluated them in terms of power consumption and acceptance rate. Thus, for each node 𝑛 ∈ 𝑁 ,
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we use closeness centrality as the metric for the node centrality impact 𝛼𝑟,𝑘𝑛 and the LSD as the
PM candidate exploration strategy (supportive evaluations are presented in the results section). The
proposed ILP optimization model (2.17) has been implemented using Gurobi solver [113] in Python.
Besides, Holu framework and the state-of-the-art approaches are simulated using Java. The simula-
tions have been performed on a machine equipped with Intel Core i7-6700HQ @2.60 GHz, 16 GB of
RAM, running Ubuntu 18.04.

2.6.2 Algorithms to Compare

We compare the proposed ILP model and the Holu heuristic with two state-of-the-art algorithms: i)
A state-of-the-art approach named CPVNF [80], and ii) The BCSP algorithm, which was presented
in our previous work [13] (referred as the BC-Based algorithm). These two algorithms are briefly
explained below:

2.6.2.1 Cost-efficient Proactive VNF placement and chaining (CPVNF)

The CPVNF algorithm [80] addresses the VNF placement and routing problem with the objective
of minimizing the number of online PMs and communication costs while meeting end-to-end delay
and resource capacities.

CPVNF acts sequentially, solving VNF per VNF. To select high-quality PMs in the network to
host each VNF, it uses a ranking algorithm based on the Google PageRank method. PageRank is a
variant of the Eigen Vector centrality measure [54] that assigns ranks to web pages based on both
the quality and quantity of the web pages linked to it.

In comparison, the authors of CPVNF algorithms assign ranks to PMs based on the remaining
capacity of the PM itself, the aggregated remaining bandwidth of its outgoing links, and the rank
of its directly connected nodes [80]. Additionally, nodes are assigned personalized PageRank to bias
towards PMs with the VNF instance under question.

For every request, the CPVNF algorithm uses the computed rank metric along with a delay
function to select the VNF-hosting PMs. CPVNF uses the k-shortest-path algorithm to compute the
routing at each stage and selects the path with the lowest delay value. If the end-to-end delay is less
than D𝑟 , the user request is accepted in the network. Otherwise, a new set of VNF-hosting PMs is
selected by increasing the importance of aggregate outgoing link bandwidth over the remaining CPU
resource in node rank computation. The search continues until the iteration reaches the predefined
search limit.

2.6.2.2 Betweenness Centrality Shortest-Path (BCSP)

This algorithm represents the BC-based algorithm in our previous work [13]. This algorithm per-
forms the VNF placement and routing sequentially for each VNF in the requested SFC. BCSP works
based on the BC centrality metric for VNF placement and shortest-path for routing. It first calculates
the BC metric for all the nodes in the graph. Then, for each request 𝑟 , it calculates the shortest path
between source V𝑠

𝑟 and destination V𝑑
𝑟 nodes using Dijkstra with delay as the cost function. Then,

the BCSP algorithm tries to place the required VNFs of the C𝑟 on the nodes with higher BC value
on the shortest-path in a greedy manner. According to the BC definition, a higher BC value means a
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Figure 2.7: Comparison of total, network, and PM power consumption per user request for Internet2 topology.

higher number of shortest paths that are passing through a node 𝑛 and hence, a higher probability
of VNF re-usability for future requests, which can lead to power-efficiency.

2.6.3 Simulation Results

This subsection summarizes the results of our extensive performance evaluation. Before presenting
the results, we note that due to the scalability issues, we were able to run the ILP model for up to
25 user requests (more than 48 hours of computation time for a single problem instance with 50
requests).

2.6.3.1 Power Consumption

Let us start comparing the total, PM, and network power consumption per accepted user request for
the optimal case and the three heuristics for a different number of user requests. Fig. 2.7 and 2.8 show
the mean power consumption per accepted request value for Internet2 and Nobel-EU topologies,
respectively. Among all the heuristics, it can be observed that the Holu has the lowest total power
consumption per request values in all the topologies. In more detail, Holu is performing on average
19.3% worst than the optimal solution, and outperforming CPVNF and the BCSP algorithms by 19%
and 24.7%, respectively. However, the network gets saturated for a higher number of requests, and
hence, the gap between the different heuristics decreases.

All the three heuristics utilize centrality measures to determine the PMs to place VNFs. However,
it is evident from the results that the effectiveness of all the centrality measures is not the same.
The performance of the CPVNF algorithm decreases when the network contains densely connected
regions away from the graph center (e.g., more connected at the edges of the network). That is,
unlike the ranking method of Holu, the PMs with higher ranks have more distance from other high-
rank nodes, making it difficult to meet the required SFC delay constraint. For instance, Internet2 is
from this group of graphs, which the power consumption of CPVNF is even worse than the BCSP
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Figure 2.8: Comparison of total, network, and PM power consumption per user request for Nobel-EU topol-
ogy.

algorithm, because BCSP is always using the shortest-path (cost is considered as delay) between
source and destination (see Fig. 2.7).

On the bright side, the Holu algorithm first ranks the PMs by using the centrality and their power
consumption impacts. The closeness centrality value of a node depends on its position in the network
for all other nodes. As a result, Holu can identify the PMs that increased the reusability of resources,
leading to lower power consumption. The average number of online PMs per request have been
summarized in Table 2.5 for 25 user requests. The lower number of online PMs per user request
for Holu compared to the other heuristics reflects the effectiveness of the proposed PM ranking and
selection approach. Concerning BCSP, the disadvantage when solving the VNF placement problem
is that the search space is limited to the nodes along the shortest path between the request’s source
and destination. As a result, the resource reusability decreases, which leads to an increase of online
PMs in both topologies.

Table 2.5: Comparison of the average number of online PMs per request for 25 user requests. Holu utilizes a
fewer number of online PMs to serve the user requests compared to state-of-the-art approaches, thus improv-
ing the power-proportionality of the network.

Topology ILP Holu CPVNF BCSP

Internet2 0.14 0.25 0.38 0.62
Nobel-EU 0.12 0.14 0.19 0.6

2.6.3.2 Acceptance Rate

In our next analysis, we runHolu, CPVNF, and BCSP for up to 500 user requests to compare the accep-
tance rate for the two topologies. As we were able to run the ILP for a maximum of 25 requests, the
feasibility of the problem for the larger inputs is unknown to us and requires further investigations.
Also, we note that the ILP model either accepts all the requests or nothing; therefore, it is omitted
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Figure 2.9: Comparison of the acceptance rate ofHolu and baseline algorithms algorithms for different number
of user requests. This figure shows that on average, Holu achieves 31% and 20% higher acceptance rate for
Internet2, and 16.3% and 14.1% for Nobel-EU topology compared to the CPVNF and BCSP, respectively.

from the plots. As it can be seen in Fig. 2.9, Holu can accept 31% and 20% more requests for Internet2,
and 16.3% and 14.1% for Nobel-EU topology compared to the CPVNF and BCSP, respectively. An
essential parameter in successfully accepting a request is meeting its delay requirement. The results
in Fig. 2.9 indicate that opposed to the other algorithms, by employing LARAC, Holu can divide the
delay budget between the VNFs in the chain. In this way, it can increase its delay-awareness, which
leads to a significant improvement in the acceptance ratio.

The CPVNF algorithm sorts the PMs of the network based on their ranking (i.e., according to the
PageRank metric), ignoring the delay role. Thus, the node with a high ranking may be located far
from the request’s source and/or destination. As a result, the delay requirement of the user request
may not be guaranteed, and hence, the request is rejected. Besides, the BCSP algorithm uses the
BC metric for the PMs along the shortest-path to select the candidate nodes for VNFs. Therefore, a
node with a high BC value may be closer to the user request’s destination node. As a result, the BCSP
algorithm needs to make a loop along the shortest path to realize the SFC. Under such circumstances,
the actual SFC path computed by the BCSP is longer than the shortest path, which can lead to missing
the delay requirement and rejecting the request. Also, we can see that the acceptance rate for BCSP
is higher than CPVNF for the Internet2 topology and almost similar for the Nobel-EU. The Internet2
topology contains high-ranked nodes (according to PageRank metric) far away from each other and
edges with considerable lengths (i.e., higher delay). As a result, the CPVNF algorithm performs
poorly as compared to the BCSP algorithm in meeting the delay requirement, hence reducing the
user request acceptance rate. Therefore, it can be seen that the coordination of an efficient VNF
placement and a power and delay-aware routing can play an essential role in the acceptance rate.
Thereby, Holu can balance the power and delay requirement, achieving a higher acceptance rate.

2.6.3.3 Path Stretch

The path stretch metric represents the end-to-end delay difference between the path computed by
each algorithm and the actual shortest path (based uniquely on delay) between the source and des-
tination request. This metric is important because a lower path stretch can be translated to lower
network resource consumption, i.e., lower OPEX costs. Fig. 2.10 shows the CDF of path stretch val-
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Figure 2.10: Path stretch comparison in case of 25 user requests. It can be seen that by outperforming the
CPVNF and ILP, the average path stretch of Holu stands higher than the BCSP algorithm (which places the
VNFs on the shortest-path). In both topologies, ILP produces the largest path stretch, since it focuses on
maximizing the reusing of resources, which can lead to taking longer paths. Also, due to the properties of
Internet2 topology, the maximum path stretch value is higher for Internet2 compared to Nobel-EU.

ues for ILP, Holu, CPVNF, and BCSP approaches for 25 user requests. We omit to show these results
for other numbers of user requests since their behavior is similar.

It can be seen that in both topologies, the proposed Holu heuristic achieves the minimum-
maximum path stretch compared to all the approaches, followed by CPVNF, BCSP, and the ILP.
The reason is that the delay-aware routing algorithm can efficiently balance the importance of
the power vs. the delay metrics. That is, the ILP shows an extremely high path stretch due to
focusing on power minimization, while Holu causes a sound path stretch while having a lower
power consumption compared to the other heuristics. Also, the plots indicate that the ILP solution
has many instances with high path stretch values. The reason is that the ILP makes the requests
traverse through VNF hosting nodes that are not necessarily close to the source and/or destination
of the request to reduce the total power.

2.6.3.4 Delay Tolerance

This study aims to compare the acceptance rate of Holu, CPVNF, and BCSP algorithms for user
requests with varying delay requirements. The goal is to explore how different algorithms can handle
user requests with tight or loose delay requirements. For this purpose, we simulate different sets of
user requests, ranging from 25 to 500. Each of these user requests is generated with random source
and destination pairs, 4 Mbps data rate, and a specific SFC type (see Table 2.4). Moreover, we select the
delay values of user requests from 80 to 150 ms in steps of 10 ms. The goal is to check which algorithm
is more sensitive to the delay variations in terms of acceptance rate. Fig. 2.11 shows the heatmap of
the acceptance rate for a different number of user requests with varying delay requirements for both
topologies.

These plots exhibit that Holu has a generally higher acceptance rate for all the delay ranges and
the different number of requests. Holu emphasizes the delay parameter during the selection of VNF
hosting nodes and routing process. Thereby, it succeeds in achieving a greater acceptance rate even
under strict delay conditions. The CPVNF has the second-best performance after Holu and BCSP has
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Figure 2.11: Comparison of acceptance rate of Holu, CPVNF, and BCSP algorithms with respect to the number
of user requests and the value of the delay constraint. This figure indicates that compared to others, Holu
accepts more requests, even the ones with tight delay requirements. Also, due to the higher graph connectivity,
more requests can be embedded into the Nobel-EU topology, compared to Internet2.

the worst performance. The reason is CPVNF applies a more sophisticated ranking method and also
explores a more extensive solution space compared to the BCSP approach.

2.6.3.5 Runtime

In this subsection, we compare the runtime of the algorithms. To do this, we record the computation
time of each algorithm at the end of processing every 10% of the user requests. Due to space limita-
tions, we only show the comparison of the runtime of different approaches for 100 user requests. We
note that we omitted the ILP results from the plot because its runtime is in order of hours. Fig. 2.12
shows that Holu can make the admission and solve the PQ-VPR for a given user request in 10 ms for
Nobel-EU, and 15 ms for Internet2 network topology. We note that the implementation of Holu can
be optimized, e.g., by using more efficient data structures to achieve even lower runtime for practical
use-cases. Besides, the results in Fig. 2.12 indicate that the BCSP algorithm is the fastest approach.
The main reason behind it is the lower number of times required to run Dijkstra (only once per
user request compared with several times for the other heuristics). For instance, Holu needs to com-
pute the shortest-path several times iterative for specific requests (depending on the PM selection
mechanism).
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Figure 2.12: The comparison of the runtime efficiency for Holu, CPVNF, and BCSP for processing 100 user
requests.

On the other hand, the CPVNF andHolu approaches require to calculate PM ranking values before
processing a user request resulting in higher runtime. After processing some of the initial 40-50% of
the user requests, the CPVNF algorithm requires more time to process the remaining user requests
compared to the other approaches. It is because it saturates the high-ranked PMs for serving the
initial requests. As a result, it requires more iterations to find the VNF hosting PMs which meets the
delay requirements for remaining user requests. Moreover, unlike our approach, the CPVNF needs
to recompute the node ranks at every iteration, which leads to a higher runtime.

2.7 Summary

In this chapter, we have focused on resource allocation of an NFV/SDN-enabled network, with
the use case of SFC. Motivating by low power-proportionality of both PMs and network switches,
we formulate the PQ-VPR problem. Since the resource is usually under-utilized and/or over-
provisioned, minimizing the number of online devices can improve resource utilization and more
power-proportionality. To achieve this goal, we first proposed an ILP model. Due to its scalability
issues, we presented an online heuristic framework named Holu which tackles the problem by
breaking it into two sub-problems which are solved sequentially: i) VNF placement, and ii) routing.
The VNF placement suggests a set of candidate PMs to host the requested SFC. It uses a PM ranking
mechanism considering the centrality of the PM and the power consumption impact by hosting a
VNF. We show that centrality is an important metric to consider for PM ranking since it can improve
resource utilization and power efficiency in the long term. Also, to find a path traversing through
the set of suggested candidate PMs (returned by the VNF placement sub-problem), we employed a
complete algorithm based on LARAC heuristic to solve a DCLC shortest-path routing problem. We
showed that our algorithm can efficiently split the delay budget between two consecutive VNFs in
an SFC, leading to a high acceptance ratio compared to state-of-the-art algorithms.

Our simulation results indicated that compared to existing approaches, the end-to-end SFC place-
ment, and routing approach, employed by Holu, can determine the VNF to PM mapping. Also, it can
accurately split the delay budget among the routing paths between the consecutive VNFs in the SFC,
improving its power consumption and acceptance rate up to 24.7% and 31%, respectively.
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In contrast to this chapter where the user traffic is static, we consider the case where the traffic
increases dynamically in the next chapter. The goal is to efficiently adapt and reconfigure the network
to cope with the traffic increase.





Chapter 3

Reconfiguration Due to Traffic Changes

3.1 Introduction

In the previous chapter, based on the traffic requests of the users, we discussed the resource man-
agement of a programmable metro/core network, with a focus on delay-guaranteed placement and
routing for Service Function Chaining (SFC) to save power (i.e., Operational Expenditures (OPEX))
and guarantee end-to-end delay. It was assumed that the traffic requests from users were static.
However, according to the acknowledgment of both operators and analysts, the telecommunication
industry is facing a drastic increase in the bandwidth request every year [152, 172]. In this chapter,
by employing the modern dynamicity capabilities of flexible optical networks, e.g., Bandwidth Vari-
able Transponders (BVTs), the network can be reconfigured in order to meet the traffic changes of
the users/services. Thus, it is possible to minimize the resource over-provisioning and reduce the
overall network costs, such as power consumption. The content of this chapter is based on the work
published in [17], and [16].

3.1.1 Fixed-Grid Optical Networks

Due to their high transmission data rate over high distances, optical fibers are deployed in long-
haul communication networks. Within the fiber, the C-band causes the lowest losses of the whole
fiber spectrum; thus, it is being used for traffic transmission over long distances. Dense Wavelength-
Division Multiplexing (DWDM) technology enables the transmission of several optical signal carriers
over a single optical fiber by using different wavelengths. Currently, as a cheap commodity solution,
the DWDM systems divide the C-band into equally-spaced discrete bands (usually by 50 or 100 GHz),
which can deliver up to 100 Gbps of traffic, already standardized by International Telecommunication
Union Telecommunication Standardisation Sector (ITU-T). An optical transponder then sets up an
individual wavelength carrying the user traffic.

However, this approach is inflexible (i.e., called fixed grid optical networks) in two ways. Firstly,
the transponder has a fixed bit rate, e.g., 10 or 40 Gbps. Indeed, in this case, it is possible to change
some of the transponder configurations, such as Forward Error Correction (FEC); however, this does
not change the overall transmission data rate. Although further transponders can be installed to
support additional data rates, this is a very slow process, as new devices need to be installed and
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50 GHz

Figure 3.1: An example of a fixed-grid optical link with equal-sized 50 GHz slots.

provisioned. Additionally, very high bit rate transponders (i.e., 400+ Gbps) need a very broad optical
spectrum; hence, they cannot be fitted into the grid.

Secondly, the spectral width of each wavelength signal is fixed, i.e., it cannot be extended be-
yond the ITU-T-defined width (e.g., 50 GHz). It means that the network is mainly inflexible to sup-
port changes in traffic requests. Therefore, in fixed-grid networks, requests with large bandwidth
requirements are divided up and carried over multiple channels in the grid, leading to inefficient use
of the network capacity and high number of transceivers. Fig. 3.1 shows a fixed-grid network, where
it serves a range of user requests with different data rate requirements (bandwidths). It can be seen
that some of these requests can fully fit between the 50 GHz grid boundaries, whereas others (e.g.,
green and purple requests) are too broad.

3.1.2 Flexible-Grid Optical Networks

In the flexible-grid1 approach, unlike fixed-grid, the optical spectrum can be divided into more arbi-
trarily chunks of spectrum. This approach can be implemented by utilizing two principles: i) small
chunks of bandwidth (e.g., 6.25 or 12.5 GHz), and ii) enabling concatenation of individual chunks
to provide a more significant contiguous portion of the spectrum. Thus, flexible-grid networks are
more manageable, cost-efficient, and dynamic. These networks, hand in hand with software-tunable
transponders, can fulfill the capacity and dynamicity requirements of future long-haul networks by
combining two technologies.

Fig. 3.2 shows the capability of flex-grid to pack the channels to make efficient use of the spec-
trum. In these networks, each node is a Reconfigurable Optical Add-Drop Multiplexer (ROADM)
which can add, drop, or pass through the wavelength, enabling reconfigurable management of Light-
paths (LPs).

1Also called Flex-Grid or Elastic Optical Network (EON).

50 GHz 100 GHz 150 GHz 25 GHz

Figure 3.2: An example of a flex-grid optical spectrum, adaptable to requests width different bandwidth
requirements.
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3.1.3 Bandwidth Variable Transponders (BVTs)

In order to realize Flex-grid networks, by exploiting the capabilities of Software-Defined Networking
(SDN), next-generation optical transponders can allocate channels over a flex-grid network, which
are called BVTs. BVTs can reconfigure their channel configuration, e.g., modulation format, and
data rate, to the actual traffic request by expanding or contracting the bandwidth of an optical LP
(i.e. varying the number of sub-carriers). Also, they can dynamically change the other channel
configuration parameters, such as modulation format and baud rate. Table 3.1 shows some examples
of these different channel configurations with their characteristics.

By using BVTs, buying transponders with different bandwidths can be avoided, which can lead
to huge cost savings [152]. Therefore, simply one transponder can deliver a wide range of bit rates if
required. Moreover, BVTs can trade-off between optical reach and spectrum utilization. For example,
if a request asks for 100 Gbps over 400 km distance, a highly spectrum-efficient modulation format,
e.g., 16 QAM, can be used, which occupies only 25 GHz of bandwidth.

Table 3.1: Channel configuration examples of a software-tunable BVT [173].

Data Rate (Gbps) Modulation Format Bandwidth (GHz) Optical Reach (km) Minimum OSNR (dB)

100 QPSK 50 5000 10.5
250 8 QAM 37.5 2000 19.8
400 32 QAM 62.5 500 24
600 32 QAM 75 150 29

3.1.4 Routing, Configuration, and Spectrum Assignment (RCSA)

A well-known problem in legacy fixed-grid optical networks is the Routing and Wavelength As-
signment (RWA). Typically, the goal of RWA is to maximize the number of optical connections (i.e.,
LPs). In this problem, each connection goes through the same wavelength over the entire path (i.e.,
spectrum contiguity constraint). Unlike RWA that deals with fixed channel sizes, Routing and Spec-
trum Allocation (RSA) has to set up the LPs on a network with variable channel sizes (i.e., flex-grid
networks). Thus, RSA is a more challenging problem to tackle. However, the increased flexibility
introduced by the flex-grid networks and software-tunable BVTs has made the resource allocation
and planning problems more complex to solve. In particular, in flex-grid networks, in addition to the
conventional routing and spectrum allocation decisions (i.e., RSA problem), the configuration of the
BVTs along with the physical layer constraints (e.g., minimum Optical Signal to Noise Ratio (OSNR))
need to be considered. This problem is called RCSA which has three main constraints:

1. The allocated spectral resources must be the same along with the links in the candidate path.

2. These allocated resources should also be contiguous in the spectrum.

3. The physical layer constraints such as minimum OSNR must be considered.

In more detail, a planning algorithm that solves the RCSA problem first finds the path (e.g., Dijk-
stra’s shortest path) for source-destination pairs in the network. After that, for each of these requests,
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it finds the set of channel configurations for BVTs, which can satisfy the physical transmission con-
straints (e.g., minimum OSNR). Then, using spectrum assignment, empty channel slots which can fit
the configurations are found on all links of the chosen path to obtain a central channel frequency.
Finally, the software-tunable BVTs at both the source and destination are tuned to this frequency,
and a LP is established.

The RCSA problem can be used for in-operation network planning. In in-operation planning, the
goal is to optimize the resources for the network operator. The optimization is usually performed
periodically, based on the changes in the network traffic.

3.1.5 Key Contributions

In this chapter, on the given a flex-grid network and a set of traffic requests (matrix), we focus on
solving the RCSA problem in a multi-period in-operation network planning scenario. In particular,
we consider a yearly planning period and focus on answering the following three questions:

1. For each request, how many LPs should be deployed, and on which paths?

2. At each planning period, how to reconfigure the LPs to meet the required requests data rate
(if necessary)?

3. How to answer the above questions with a low over-provisioning and power consumption?

Based on the characteristics of the flex-grid networks, we present three reconfiguration methods
that can be applied to cope with the increased request: upgrading, adding, and/or rerouting LPs. We
present a framework that can determine the reconfiguration actions based on the amount of increased
request traffic. The performance evaluation results indicate that the reconfiguration methods can
achieve a high network throughput compared to the state-of-the-art and cope with the increased
traffic with low over-provisioning and high power efficiency.

3.1.6 Organization

The rest of this chapter is summarized as follows: Section 3.2 presents the related work. The math-
ematical modeling and problem formulation are presented in 3.3. In Section 3.4, we introduce the
RCSA algorithm along with the different network reconfiguration methods. Finally, we present the
evaluation of the RCSA algorithm in Section 3.5, followed by the summary of the chapter in Sec-
tion 3.6.

3.2 Related Work

Prior studies for RCSA algorithms have used Integer Linear Program (ILP) formulations and/or
heuristics to dynamically provision new LPs in a flex-grid optical network. Recently, for a multi-
period planning scenario, Moniz et al. in [164] have proposed two separate ILP formulations for
provisioning 32 and 64 GBaud channels, respectively. For upgrading in-operation LPs to a configu-
ration with a higher data rate, a push-pull technique has been introduced by [74]. In their method,
they have a dynamic reconfiguration to allocate additional frequency slots for the future upgrading
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of the LPs. However, they do not consider rerouting and also the different paths to route the traffic.
Also, they have only tested their approach for LPs with only ten and 100 Gbps of data rates. However,
since many modern software-tunable BVTs can achieve variable symbol rates with the same number
of frequency slots, their approach does not consider these requirements.

Further, Rottondi et al. [185] have provided a comprehensive solution for routing, modulation
format, baud rate, and spectrum assignment using the few-mode transmission in metro-ring net-
works. Although the goal of their study is to compare few-mode fibers with single-mode fibers, they
have shown that they can improve the overall savings on the spectrum usage using an ILP formu-
lation. However, they have not considered higher symbol rates, potentially reducing the cost per
bit even in single-mode fibers. Also, the network architecture in their study was an eight-node ring
network with varying network radius. Therefore, it is not clear how their approach performs on
long-haul optical networks with a high number of nodes and links.

Additionally, Ahmed et. al [24] have presented a novel RCSAs heuristic for LP provisioning.
However, the effect of Nonlinear Interference Noise (NLIN) on LPs is not considered, which may lead
to inaccurate configuration selection. Moreover, the assumption of semi-static traffic profiles with
fixed distribution and a Poisson arrival of traffic requests may not hold when catering to unexpected
traffic growth in the network.

On the other hand, several works have studied energy-efficient RCSA algorithms which try to
minimize the total power consumption of transponders while meeting the simulated traffic requests
[181, 92, 86]. For example, El-Mirghani et al. in [86] have presented a comprehensive power con-
sumption analysis for different optical transponders based on their data rates. However, the assump-
tion of approximately 1 W/Gbps power consumption for 100 Gbps, 400 Gbps, and 1 Tbps transpon-
ders does not hold for software-tunable BVTs [223]. However, in this chapter, we consider a base
and dynamic power consumption for a BVT. In particular, the base power is required for operating
the tunable laser, and the dynamic one is consumed for different data rates [223].

In [173], the authors have introduced a configuration selection algorithm considering NLIN. Also,
an RCSA optimization for a multi-period network planning scenario has been presented in [172]. We
have observed that in this optimization problem, in addition to meeting the increased yearly traffic,
it is essential for network operators to reduce the total number of deployed LPs, which is propor-
tional to the power consumption of the networks and plays a role in making strategic decisions
for effectively planning optical networks [109]. However, deploying a low number of LPs can lead
to under-provisioning in the future, which can lead to the need for more LPs later on. Therefore,
considering the channel configuration of the LPs (data rate) can play a significant role in the effi-
ciency of the RCSA algorithms. In this chapter, we present an algorithm for optimized RCSA using
different objective functions and determine the number of LPs and their channel configurations in
a multi-period in-operation planning scenario. Moreover, we provide an evaluation of the power
consumption of our algorithm with different objective functions.
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3.3 Mathematical Formulation

3.3.1 System Model

We define the network as a graph 𝐺 = (𝑁, 𝐿) with 𝑁 nodes and 𝐿 links. Each node is an optical
ROADM with add/drop capabilities. Also, each link consists of single-mode fiber pairs with hetero-
geneous span lengths [171]. Considering 𝑇 planning periods (years, in our case), the set of requests
per year is defined as R𝑡 , 𝑡 ∈ 𝑇 . We define each yearly request set as 𝑟 ∈ R𝑡 as:

𝑟𝑖, 𝑗,𝑡 = (𝑖𝑟 , 𝑗𝑟 , 𝑏𝑟,𝑡 ), (3.1)

where 𝑖, 𝑗 ∈ 𝑁 are source and destination nodes respectively, and 𝑏𝑟,𝑡 is the requested data rate at
year 𝑡 . The value of 𝑏𝑟,𝑡 is calculated based on 𝑏𝑟,𝑡−1 and the expected yearly increase of Δ𝑟,𝑡 , i.e.,
𝑏𝑟,𝑡 = 𝑏𝑟,𝑡−1 +Δ𝑟,𝑡 . The data rate requested by a request should be fulfilled by deploying one or more
LPs in the network.

The set of deployed LPs for request 𝑟 in year 𝑡 is defined as 𝐿𝑟,𝑡 . Each of these LPs 𝑙𝑐 ∈ 𝐿𝑟,𝑡 is
associated with an LP configuration 𝑐 ∈ 𝐶𝑟 , where𝐶𝑟 is the set of feasible configurations for request
𝑟 . This set of feasible configurations per request is determined based on our previous work [173].
Each configuration 𝑐 is defined as:

𝑐 = (𝑅𝑐 , 𝑄𝑐 , 𝐵𝑐 , 𝑆𝑁𝑅𝑐), (3.2)

Where 𝑅𝑐 is the data rate,𝑄𝑐 is the modulation format, 𝐵𝑐 is the channel bandwidth, and 𝑆𝑁𝑅𝑐 is the
minimum receiver sensitivity OSNR. We note that to calculate the OSNR of each LP, both linear and
non-linear noise are taken into account. The linear noise comes from the in-line amplifiers, while
the NLIN is due to the cross channel interference of adjacent channels. The OSNR is calculated using
a closed form equation of the Enhanced Gaussian Noise (EGN) model, based on [178].

The LPs in the network can be assigned to a path 𝑝 ∈ 𝐾𝑆𝑃𝑟 , where 𝐾𝑆𝑃𝑟 is the set of paths (e.g.,
k-shortest-path) for request 𝑟 .

We consider the power consumption of the network based on the number of deployed LPs (using
transponders) and their configured data rate [223]. When an LP is configured, a static amount of
power 𝑃𝑠 is consumed. Additionally, there is a dynamic power consumption 𝑃𝑑 which depends on
the data rate 𝑅𝑐 for the configuration 𝑐 . Thus, the total power consumption 𝑃𝑇 of the network in
each year is considered as:

𝑃𝑇 =
∑︁
𝑟 ∈R𝑡

∑︁
𝑙𝑐 ∈𝐿𝑟,𝑡

(
𝑃𝑠 + 𝑃𝑑 × 𝑅𝑐

)
,∀𝑡 ∈ 𝑇 . (3.3)

We note that 𝑃𝑠 ≫ 𝑃𝑑 [223]. For clarification purposes, the notations have been summarized in
Table 3.2.

In the following, we explain how we deal with the RCSA problem, using an efficient reconfigu-
ration heuristic with different objectives and configurations.

3.4 The RCSA Algorithm

At the beginning of the planning (i.e., 𝑡 = 0), the LPs, their configurations, and the path to deploy
them are pre-selected by using the approach from our previous work, HeCSON [173]. Using this
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Table 3.2: Notation definition for the RCSA problem.

Notation Definition

𝐺 = (𝑁, 𝐿) The physical network graph with 𝑁 nodes and 𝐿 links.
𝑇 The set of planning years.
R𝑡 The set of requests in year 𝑡 .
𝑟𝑖, 𝑗,𝑡 The request with source/destination node 𝑖/ 𝑗 at year 𝑡 .
𝑏𝑟,𝑡 The requested data rate of request 𝑟 at year 𝑡 .
Δ𝑟,𝑡 The increased data rate for request 𝑟 at year 𝑡 .
𝐿𝑟,𝑡 The set of deployed LPs for request 𝑟 at year 𝑡 .
𝑐 ∈ 𝐶𝑟 The set of LP configurations.
𝑙𝑐 An LP with configuration 𝑐 .
𝑅𝑐 The data rate of LP configuration 𝑐
𝑄𝑐 The modulation format of LP configuration 𝑐
𝐵𝑐 The channel bandwidth of LP configuration 𝑐

𝑆𝑁𝑅𝑐 The minimum receiver OSNR of LP configuration 𝑐
𝐾𝑆𝑃𝑟 The set of k-shortest-paths for request 𝑟
𝛿 The maximum over-provisioning bound

Decision Variables
𝑥𝑐,𝑝 ≥ 0 Number of deployed LPs with configuration 𝑐 on path 𝑝

method, for every source-destination request pair routed on any of the k-shortest paths in the net-
work, HeCSON provides a list of feasible BVT configurations, taking into account the OSNR as well
as the minimum receiver sensitivity OSNR. Thereafter, it uses the first-fit approach to place the LPs
into the spectrum. Also, it ensures that the spectrum contiguity is fulfilled. For clarification, let us
consider the example presented in Fig. 3.3. In this example, a network has six nodes and seven links,
with three requests with the same requirements at the starting year (𝑡 = 0). The spectrum of each
link and the assignment of each request LP is presented on the right side of the figure. The source
and destination nodes for red, green, and blue requests are (A,E), (A,C), and (A,F), respectively. Let
us assume that the determined LP configuration for all the requests is the same, each 1/4-th of the
spectrum space. Since our approach is in request-by-request manner, we assume that we start first
with the red request, followed by green and blue ones. The routing decisions here are also assumed
to be the shortest path. The red request is routed through 𝐴 → 𝐷 → 𝐸 path, with a first-fit channel

D

A B C

E F
A-B

B-C

A-D

D-E

F-C

E-F

E-B

Figure 3.3: An example of a network with three requests (assumed with equal requirements here), and their
placement in the network.



46 Chapter 3. Reconfiguration Due to Traffic Changes

LP Upgrade 
(k-shortest-path)

No

Yes

LP Addition 
(k-shortest-path)

End

Start

Yes

Neighbor
selection/sort

No
Reroute neighbor 
(k-shortest-path)No

Yes

empty list?

Yes
No

Yes

sucessful?LP Upgrade

No

Figure 3.4: The flowchart of the proposed RCSA algorithm. It shows how the network reconfiguration
methods work together to provision for the increased data rate.

allocation over the links 𝐴 − 𝐷 and 𝐷 − 𝐸, as appears in the figure. Similarly, the green and blue
requests are also provisioned in the network. Note that the spectrum contiguity constraint is also
met here. Also, we note that in this network, each request can have many LPs, each deployed on
different paths, and with different configurations.

From the first year onward (𝑡 ≥ 1), having the increased requests traffic in hand, the algorithm is
triggered yearly, in a request-by-request manner. For each request, the algorithm is triggered if the
sum of the data rate of the deployed LP(s) is lower than the total increased traffic:∑︁

𝑙𝑐 ∈𝐿𝑟,𝑡−1

𝑙𝑐 × 𝑅𝑐 ≤ 𝑏𝑟,𝑡 ,∀𝑡 ∈ 𝑇,∀𝑟 ∈ R𝑡 (𝑡 > 0). (3.4)

In this case, to cope with the increased data rate, the proposed RCSA algorithm performs a three-step
approach to cope with this traffic, with low over-provisioning and power-efficient manner. A high
level flowchart of the proposed RCSA algorithm is depicted in Fig. 3.4: In particular, it combines three
reconfiguration methods, to achieve the goal, namely LP Upgrade [173], LP Addition [172], and the
proposed LP Reroute. In below, we explain the algorithm, starting by presenting the reconfiguration
methods in detail.

3.4.1 Reconfiguration Method 1: LP Upgrade

The algorithm first tries to upgrade each LP in 𝐿𝑟,𝑡−1 to a configuration (from the possible configura-
tion set) with a higher data rate [173]. Considering the spectrum occupancy and the OSNR along each
k-shortest-path of 𝑟𝑖, 𝑗,𝑡 (where the LPs could have been deployed), the LP Upgrade method checks if
the deployed LP(s) can be upgraded to a new channel configuration with higher data rate. If possible,
one or more LPs of the current request are upgraded until the increased requested data rate 𝑏𝑟,𝑡 is
met. If neither enough frequency slots are available, nor the required OSNR can be guaranteed, the
algorithm moves to the second reconfiguration method, LP Addition. Consider the example depicted
in Fig. 3.5, which is based on the previous Fig. 3.3. In this example, the traffic of the red and green
requests are increased at the current 𝑡 . To cope with this, the deployed LP of the red request on path
𝐴 − 𝐷 − 𝐸 is upgraded to a configuration with a higher data rate, which consumes two times more
channel space than the previous configuration (see Fig. 3.3). However, upgrading the LP of the green
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Figure 3.5: The LP Upgrade reconfiguration method for an exemplary scenario.

request is not possible in this case since there is no free space in the channel. In this case, the second
reconfiguration method comes handy, which is introduced in the next part.

3.4.2 Reconfiguration Method 2: LP Addition

At this stage, when the current LPs of a request cannot be upgraded (e.g., due to lack of spectrum
availability), the algorithm deploys one or more LPs on one of the available paths from 𝐾𝑆𝑃𝑟 , to
support the increased data rate [172]. Previously, in LP Upgrade example in Fig. 3.5, we showed that
the green request cannot be upgraded due to the insufficient channel space. As it is shown in Fig. 3.6,
a new LP for the green request can be deployed on the same path. Of course, in addition to the data
rate, the OSNR requirements must be met.

To decide the configuration and the path of the new LPs, we formulate this reconfiguration
problem as an ILP optimization model. To develop this method, we use an integer decision variable
𝑥𝑐,𝑝 ≥ 0, where its value determines the number of LPs with configuration 𝑐 which should be
deployed on path 𝑝 .

Further, this ILP model must satisfy a set of constraints, which is described below. Firstly, the
sum of the data rate of the newly deployed LPs must be greater than the amount of request increased
data rate. This can be written as: ∑︁

𝑐∈𝐶𝑟

∑︁
𝑝∈𝐾𝑆𝑃𝑟

𝑥𝑐,𝑝 × 𝑅𝑐 ≥ Δ𝑟,𝑡 . (3.5)

Secondly, the allocated data rate should be bounded by a value of 𝛿 . We use 𝛿 to balance the
over-provisioning and the need for future LP deployments. More specifically, bigger 𝛿 means more
over-provisioning and possibly fewer reconfigurations in the future. This set of constraints can be
formulated as: ∑︁

𝑐∈𝐶𝑟

∑︁
𝑝∈𝐾𝑆𝑃𝑟

𝑥𝑐,𝑝 × 𝑅𝑐 ≤ Δ𝑟,𝑡 + 𝛿. (3.6)

However, due to many possible parameters (e.g., over-provisioning, power-consumption), deter-
mining the objective function for this optimization model does not seem straightforward. Therefore,
we consider four objective functions based on the data rate and the number of deployed LPs in the
network. In the following, we present two single and two multi-objective cases, which we can use
to find a solution for the LP Addition reconfiguration method.
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Figure 3.6: The LP Addition reconfiguration method for an exemplary scenario.

3.4.2.1 Objective 1: Minimize LP (MinLP)

The first objective is to minimize the number of newly deployed LP for the request2. This objective
might be able to reduce the over-provisioning over time. Also, it can help to reduce the power con-
sumption of the network incurred by deploying new LPs. In this case, the optimization formulation
can be presented as:

Minimize
∑︁
𝑐∈𝐶𝑟

∑︁
𝑝∈𝐾𝑆𝑃𝑟

𝑥𝑐,𝑝 , (3.7)

s.t. Constraints (3.5), (3.6),
vars. 𝑥𝑐,𝑝 ≥ 0,∀𝑐 ∈ 𝐶𝑟 ,∀𝑝 ∈ 𝐾𝑆𝑃𝑟 .

3.4.2.2 Objective 2: Maximize Data Rate (MaxDR)

The second model has the objective function of maximizing the configured data rates3. The idea
behind this formulation is to deploy LPs with large enough data rates so that the need of deploying
new LP in subsequent planning years is decreased. This model can be formalized as:

Maximize
∑︁
𝑐∈𝐶𝑟

∑︁
𝑝∈𝐾𝑆𝑃𝑟

(
𝑥𝑐,𝑝 × 𝑅𝑐

)
, (3.8)

s.t. Constraints (3.5), (3.6),
vars. 𝑥𝑐,𝑝 ≥ 0,∀𝑐 ∈ 𝐶𝑟 ,∀𝑝 ∈ 𝐾𝑆𝑃𝑟 .

3.4.2.3 Objective 3: Maximize Data Rate, Minimize LP (MaxDR, MinLP)

This formulation is developed as a multi-objective case with hierarchical objectives, i.e., optimizing
the first objective and then the second while keeping the first one as a constraint. In this case, the
first objective (with higher priority) is to maximize the data rate, while the second one (with lower

2For simplicity, we use the term Min LP to refer to this model.
3For simplicity, we use the term Max DR to refer to this model.
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priority) is to minimize the number of newly deployed LPs4.

Maximize
∑︁
𝑐∈𝐶𝑟

∑︁
𝑝∈𝐾𝑆𝑃𝑟

(
𝑥𝑐,𝑝 × 𝑅𝑐

)
, (3.9)

Minimize
∑︁
𝑐∈𝐶𝑟

∑︁
𝑝∈𝐾𝑆𝑃𝑟

𝑥𝑐,𝑝 ,

s.t. Constraints (3.5), (3.6),
vars. 𝑥𝑐,𝑝 ≥ 0,∀𝑐 ∈ 𝐶𝑟 ,∀𝑝 ∈ 𝐾𝑆𝑃𝑟 .

The goal behind this formulation is to prevent future need for new LPs, while using the minimum
number of LPs in the current year.

3.4.2.4 Objective 4: Minimize LP, Maximize Data Rate (MinLP, MaxDR)

The last formulation is with a multi-objective model, which as the first objective is to deploy a
minimum number of new LPs, and maximize the data rate5. This model can be represented as:

Minimize
∑︁
𝑐∈𝐶𝑟

∑︁
𝑝∈𝐾𝑆𝑃𝑟

𝑥𝑐,𝑝 , (3.10)

Maximize
∑︁
𝑐∈𝐶𝑟

∑︁
𝑝∈𝐾𝑆𝑃𝑟

(
𝑥𝑐,𝑝 × 𝑅𝑐

)
,

s.t. Constraints (3.5), (3.6),
vars. 𝑥𝑐,𝑝 ≥ 0,∀𝑐 ∈ 𝐶𝑟 ,∀𝑝 ∈ 𝐾𝑆𝑃𝑟 .

In Section 3.5, we extensively compare the performance of these four different objective functions.
Having the optimization model, we can determine the required number of new LPs to be de-

ployed, their configurations, and respective paths. Before deploying the LPs, we check if the new
changes in the network are still compliant with the OSNR requirements of the requests. Thus, if
either the OSNR cannot be met, the algorithm considers using the third reconfiguration method, the
LP Reroute.

3.4.3 Reconfiguration Method 3: LP Reroute

In this method, the algorithm tries to cope with the requested data rate by rerouting the neighboring
LPs of the request in hand. Thus, the released spectrum space can be used to upgrade the existing LPs
of the request in hand to a higher data rate (i.e., performing LP Upgrade). The first step is to select the
currently deployed LPs of the request in hand. Generally, the more LPs are rerouted (removed) from
the links with high channel utilization, the more likely it is to release the resources required for LPs of
the request in hand to be upgraded. Thus, for each of these LPs, their neighboring LPs are listed and
decreasingly ordered based on the channel utilization of the links that they are using. After that, we
reroute the neighboring LPs one by one to a k-shortest-path between source and destination of the
request in hand, considering the spectrum occupancy and minimum OSNR requirements. After each

4For simplicity, we use the term Max DR, Min LP to refer to this model.
5For simplicity, we use the term Min LP, Max DR to refer to this model.
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Figure 3.7: The LP Reroute reconfiguration method for an exemplary scenario.

successful reroute, we try to upgrade the LP of request in hand (whose neighbor has been moved)
to a higher data rate. If the upgrade is successful and leads to meeting the requested traffic, the
algorithm allocates the resources to the request in hand and stops. Otherwise, if the rerouting of
all the neighboring LPs cannot satisfy the increased data rate, the request of the request in hand is
blocked. Note that the rerouting method does not have a significant effect on the power consumption
since it only enables the possible upgrade of existing LPs to a higher data rate (i.e., an increase in 𝑃𝑑 ).

A high level example of the LP Reroute method is presented in Fig. 3.7. In Fig. 3.5 and 3.6, we
showed how the LP Upgrade and LP Addition methods are used to cope with the traffic increase of red
and green requests. Having the blue request in hand, the algorithm starts with LP Upgrade. However,
it does not help, because there is no available free spectrum around the blue request in link 𝐴 − 𝐵
(see Fig. 3.6). Also, LP Addition does not work, assuming adding a new LP will violate the OSNR of
some existing LPs. As it is shown in Fig. 3.7, LP Reroute can lead to successfully provisioning the blue
request. To do this, it first reroutes the second LP of the green request (right neighbor of the blue LP
on link 𝐴 − 𝐵) from 𝐴 → 𝐵 → 𝐶 path to 𝐴 → 𝐷 → 𝐸 → 𝐹 → 𝐶 . By doing this, the right side of
the spectrum is empty on all the links of the blue LP, Thus, it is possible to upgrade the blue LP to a
higher data rate. This example shows the benefit of the LP Reroute reconfiguration method.

3.5 Performance Evaluation

In this section, we evaluate the performance of the introduced RCSA algorithm in different settings.
We start by presenting the simulation setup. Thereafter, we discuss the results of the performance
evaluation in different metrics.

3.5.1 Simulation Setup

We evaluate our planning algorithm with different objective functions for𝑇 = 10 years. We consider
two topologies, Nobel-EU (|𝑁 | = 28, |𝐿 | = 41, and |𝐷 | = 378) and Nobel-Germany (|𝑁 | = 17, |𝐿 | = 26,
and |𝐷 | = 136) [168]. Each link consists of a single fiber pair, and the transponders are equipped
to handle 26 different configurations for the C-Band [173]. The data rate request model for the first
year is taken from our previous work [172]. In addition to different numbers of links, nodes, and
requests, the volume of yearly traffic in Nobel-EU is higher than Nobel-Germany, up to 3x [172].

To include the uncertainty of the traffic increase (and generate random traffic requests), we
extend [172] by considering a ±15% of random deviation in traffic request onward from the second
planning year. The paths for routing the requests can be chosen from the set of k-shortest-paths
with 𝑘 = 3. Also, the static and dynamic power consumption values are taken from [223]: 𝑃𝑠 = 120,
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Figure 3.8: Comparison of different objective function of the RCSA algorithm for Nobel-EU topology.

and 𝑃𝑑 = 0.18 Watts per Gbps. Finally, the value of 𝛿 is considered as 150 Gbps. This value is the
minimum possible data rate to be over-provisioned, such that the model can deploy at least one LP
(i.e., to make the ILP formulation feasible to be solved).

The planning tool has been implemented in Java, and the optimization has been solved using
Gurobi [113]. The evaluations have been performed on a machine equipped with Intel Core i7-
6700HQ @2.60 GHz, 16 GB of RAM, running Ubuntu 18.04. Finally, to generate reliable results, each
scenario is run for 100 random traffic request cases.

3.5.2 Simulations Results

In this part, we explain and compare the evaluation results per topology in terms of total throughput,
the total number of deployed LPs, and power efficiency. Afterward, we compare the performance of
the RCSA algorithm for different reconfiguration options.

3.5.2.1 Comparing Objective Functions

Let us start with the achieved network throughput in the Nobel-EU topology. As it can be seen in
Fig. 3.8a, the Max DR approach results in the maximum over-provisioning in the network, while Min
LP, Max DR achieves the minimum. Similar behavior can be seen for the number of deployed LPs in
the network (Fig. 3.8b). The reason for this behavior is Max DR greedily increases the data rate, with
no constraints on the number of deployed LPs. Meanwhile, in Min LP, Max DR, a lower number of
LPs is provisioned with a higher data rate configuration.
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Figure 3.9: The comparison of the length of the requests k-shortest-paths (𝑘 = 3) for Nobel-EU and Nobel-
Germany topologies.

Surprisingly, Fig. 3.8b shows thatMin LP results in deploying more LPs thanMax DR, Min LP. The
main reason is, as shown in Fig. 3.9, the path lengths in the Nobel-EU are up to 3x longer compared
to the Nobel-Germany topology. This can prevent LPs from using high data rate configurations due
to a decrease in the OSNR in longer distances. Applying the same reasoning, Max DR meets the
requested traffic by deploying a much low data rate LPs.

Moreover, by deploying a low number of high data rate LPs, Min LP, Max DR can support the
future requested traffic with a lower number of LPs as compared to the other approaches. Further,
Fig. 3.8c shows that the power consumption of the network follows the same trend as the number of
deployed LPs. It shows that the static power due to the LP deployment is the dominant factor in the
power consumption of the network.
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Figure 3.10: Comparison of different objective function of the RCSA algorithm for Nobel-Germany topology.
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Figure 3.11: Comparison of power-efficiency.

Moving to the Nobel-Germany topology, Fig. 3.10 shows that the behavior of different objective
functions is similar to the Nobel-EU; however, with some differences. These differences are due to the
characteristics of the topologies, specifically in terms of path length (see Fig. 3.9). That is, theMaxDR,
Min LP objective leads to the maximum throughput, while in the Nobel-EU topology, Max DR results
in the maximum. In other words, since the average path length is lower in Nobel-Germany than
Nobel-EU, Max DR can provision more throughput compared to the other three objective functions.
This is because the capability of deploying LPs with a higher data rate is higher in Nobel-Germany.
Another difference is shown in Fig. 3.10a, where it can be observed that Min LP, Max DR over-
provisions the network more than Min LP while deploying less LPs (see Fig. 3.10b). Further, as
opposed to Nobel-EU, the different path length leads to Min LP deploying a lower number of LPs
than Max DR, Min LP.

Finally, we present the results for the power efficiency, which is defined as the consumed power
per Gbps of traffic. Interestingly, by combining the throughput and power consumption, we can
see similar behavior in both topologies in terms of power efficiency (see Fig. 3.11). In particular,
Fig. 3.11 shows that the single-objective approaches perform poorly compared to multi-objective
approaches. For example, it can be seen that during the planning years, deploying with Min LP
becomes insufficient over time, leading to deploying more LPs in later years (i.e., lower power-
efficiency). However, when considering the multi-objective approaches (considering both the static
and dynamic power consumption), the power efficiency significantly improves. That is, the Min LP,
Max DR approach achieves the best power efficiency compared to the other approaches.

3.5.2.2 Comparing Reconfiguration Methods

To evaluate the reconfiguration methods, we consider three approaches which combines different
reconfiguration methods:

1. Approach 1: It includes only the LP Upgrade method [173].

2. Approach 2: It considers the LP Upgrade and LP Addition methods [172].

3. Approach 3: This approach combines the three LP Upgrade, LP Addition, and LP Reroute recon-
figuration methods [17].
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Figure 3.12: Network throughput.

We use these approaches to evaluate the impact of each reconfiguration method on the achieved
performance. Further, we only consider the Nobel-Germany topology and Min LP objective function
for the comparison purposes in this part.

We start by comparing the total provisioned throughput by each approach against the requested
data rate. According to Fig. 3.12, it can be seen that the Approach 1 method cannot cope with the
requested traffic after 2024, leading to network under-provisioning. The reason is that mostly, the
LPs cannot be upgraded to a higher data rate due to violation of minimum OSNR requirement on
longer paths.

Further, Approach 2 increases the throughput of the network as required up to 2028. In this
approach, when the LP data rate cannot be upgraded, the set up of new LPs allows offering the
required traffic. The reason is that in addition to upgrading the LP data rates, the algorithm can add
more LPs if necessary. Also, in Fig. 3.13, it can be seen that LP Addition, can actually lead to having
also more LP upgrades, both resulting in an increase of the total throughput.
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Figure 3.13: Number of reconfigurations.

Nevertheless, this combination fails after 2028, since the channels are greedily occupied, which
prevents adding/upgrading more LPs in the future. Ultimately, by utilizing the Approach 3, it can be
observed that the network throughput is increased up to 33% compared to Approach 2 (52% and 59%
in case of Abilene-USA and Germany50 networks, respectively). In more detail, as Fig. 3.13 shows,
by rerouting a few LPs, more LPs can be upgraded and provisioned, leading to higher throughput.
Interestingly, Fig. 3.14 shows that by benefiting from rerouting, Approach 3 can cope with traffic



3.6. Summary 55

20
20

20
21

20
22

20
23

20
24

20
25

20
26

20
27

20
28

20
29

20
30

simulation years

0
100
200
300
400
500
600
700

nu
m

.L
Ps

Approach 1
Approach 2
Approach 3

Figure 3.14: Number of deployed LPs.

requests by only deploying 3% more LPs compared to Approach 2, while using the same physical
infrastructure. This fact indicates that Approach 2 and 3 result in comparable OPEX. For example,
the number of active transponders that are a power-hungry resource in the network [223] is only
increased by 3% to satisfy the incoming traffic.

Further, Fig. 3.15 shows the reconfigurability of LPs in the network, based on their data rate. It can
be seen that generally, the LP configurations with lower data rates are easier to reconfigure. Although
LP Upgrade seems to be the cheapest reconfiguration method, however, to offer more throughput,
the rerouting method shows promise.
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Figure 3.15: The distribution of number of reconfigurations of all LPs deployed in Nobel-Germany network
based on their data rate.

Finally, we note that the runtime of our heuristic is in order of minutes for a 10-year scenario,
which shows that our heuristic can be utilized in online planning tools.

3.6 Summary

In this chapter, we have studied a scenario where the network reconfiguration is triggered due to
traffic changes in the network. In more detail, we focused on the dynamic network reconfiguration
problem in a multi-period resource planning scenario with a traffic increase. We introduced an RCSA
algorithm to answer these three main questions: when, what to reconfigure, and how to reconfigure
the network to efficiently cope with the increased traffic? To achieve it, we have considered three
types of reconfiguration: upgrading, adding, and/or rerouting the requests. Our proposed RCSA
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algorithm benefits from all the three reconfiguration methods, leading to a performant solution.
We formulated and compared four different variations of our proposed RCSA algorithm, mainly in
terms of network throughput, deployed LPs, and power-efficiency. It has been shown that the multi-
objective approach, Min LP, Max DR, performs the best by achieving the highest power efficiency
while reducing the number of required LPs and lower over-provisioned throughput.

Further, the simulation results indicated that combining the three reconfiguration methods can
significantly increase the network throughput, using almost the same network resources (e.g., num-
ber of deployed LPs). It can lead to substantial cost savings for network providers, deploying their
networks using modern flex-grid networks. Additionally, our results showed that the rerouting
method performs better on LPs with a low data rate. Therefore, it is evident that greedily upgrading
LPs to high data rates can reduce the benefits of this method. Hence, opposed to intuition, the LP
Upgrade method is not as efficient since it can lead to a lower number of rerouting possibilities and
lower overall throughput.

In the next chapter, we study another scenario where users’ mobility triggers network reconfig-
urations instead of traffic changes. Specifically, having a set of mobile users, to keep an acceptable
level of Quality of Service (QoS) (e.g., end-to-end delay), the resource allocation decisions need to
be adapted. However, these resources and reconfigurations are costly. Thus, we will provide cost-
efficient resource allocation and reconfiguration solutions in a scenario with mobile users.



Chapter 4

Reconfiguration Due to Mobility: Cost
Optimization

4.1 Introduction

In the previous chapter, we have introduced a framework to determine the necessary network re-
configurations due to the traffic changes in the network. In addition to traffic changes, the mobility
of users can have an impact on the network performance metrics, such as end-to-end delay. In this
chapter, we study a resource allocation and reconfiguration problem, where the resources should be
allocated to mobile users in a cost-efficient manner. Also, the time and type of necessary network
reconfigurations should be determined in order to guarantee a specific service delay for the mobile
users. This chapter is based on the presented papers in [14, 15, 19].

With the recent advances in networking technologies, such as 5G/6G, the popularity and devel-
opment of dynamic and real-time services such as augmented reality and video games are increas-
ing. The deployment of these services is receiving attention, especially in use cases such as smart
transportation, autonomous driving, and Internet of Things (IoT). Traditionally, these services were
hosted by a centralized Data Centers (DCs), usually as a Virtual Machine (VM). However, with strict
requirements of these services, e.g., end-to-end delay, DCs may not be satisfactory anymore. As a
remedy, an emerging paradigm called Mobile Edge Computing (MEC) has been proposed where the
services are deployed in the proximity of the users. In MEC, instead of a large centralized DC, there
are a number of small DCs which are distributed in the service area, e.g., a city. Then, user services
are deployed on these distributed DCs and can be used in a shared manner between users of the
same area, which can reduce the connection delay between the user and the VM, i.e., end-to-end
delay improvement. However, the capacity of these DCs is relatively limited compared to the cen-
tralized one. As a deployment strategy, one can deploy all service types in all the DCs (assuming the
capacity of DCs are enough). It can make the services accessible to all the users with the minimum
delay. However, it comes at great deployment costs, i.e., licensing costs, power consumption, and
maintenance. Therefore, it is important yet challenging to determine which service VMs should be
deployed on which DCs to optimize the delay and the cost of deployment.

To be able to access the services, users need to use the network links on the route towards the
VM hosted in a DC. There are network access points that can be used by the users to be connected
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to the core network where the DCs are located. Multiple technologies can be used as network access
points. For example, in the case of a MEC solution in a city, the 5G eNodeB towers can be used to
connect to the core network. In addition, with the recent advances in space networking, satellites
are another candidate to be used as access points, which can offer a high link capacity with low
delay [151]. An example is Low-Earth Orbit (LEO) satellites that are being used in many scenarios
such as IoT and Internet of Vehicles (IoV) [180, 151]. Nevertheless, these access points solutions have
different characteristics which need to be considered, such as maximum link capacity, delay, and cost.
For example, satellite networks are usually more expensive, more delay-induced, but they provide
global coverage for users. Therefore, in addition to the VM placement problem, routing decisions
from the users to the VM instances are yet another crucial problem that needs to be addressed.

However, throughout time, the location of users can be changed due to their mobility. Therefore,
the previous VM placement and routing decisions may not be good anymore. For example, in the
case of autonomous driving, the distance of the car with its respective VM can increase over time,
and hence the service delay. To maintain the service requirements (e.g., delay) during the time, the
placement of VM should be changed according to the mobility of users. VMs can be migrated between
DCs using live migration techniques [227, 211], which are widely available in current virtualization
platforms, such as Linux KVM, and Microsoft HyperV. Although VM migration is helpful to improve
the delay between user and service endpoint, it comes at a cost, e.g., extra bandwidth usage and
service downtime. Thus, in use cases with mobile users, in addition to VM placement and routing
problems, the third challenge is to decide when, which, and where to migrate a VM.

4.1.1 Key Contributions

This chapter focuses on a scenario with mobile users demanding some services with different re-
quirements, running in a system modeled over a discrete-time horizon. We provide a generic system
model and problem formulation to answer the following questions:

1. VM placement: Which VM type and how many of them should be hosted by which DC?

2. User assignment: Which user should use which VM at which DC?

3. Routing: Through which network path should the users access the VMs?

4. VM migration: When, which, and where to migrate a VM?

5. Objective: How to jointly answer these questions to have a minimum deployment (i.e., number
of deployed VM instances, and used links) and migration costs while meeting the service
requirements?

To answer these questions, we formulate the above problem with two Integer Linear Program
(ILP) formulations. The first one is based on static settings, where the decision is made at each specific
timeslot. As the second model, we extend the static to the mobility-aware (i.e., dynamic) scenario
where the decisions depend on the mobility of users and previous decisions. After that, we show
that this problem is NP-Complete, and hence large problem instances cannot be solved promptly.
To cope with this limitation, we introduce two heuristic algorithms to solve the problem efficiently.
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Finally, we introduce the scenario in which we evaluate the performance of the proposed models and
algorithms.

4.1.2 Organization

The rest of this chapter is organized as follows: we first present the related work in Section 4.2.
Thereafter, we formulate the problem and the two ILP formulations in Section 4.3. Then, we present
fast and efficient heuristics in Section 4.6, followed by the evaluation of them in Section 4.7. Finally,
before presenting the chapter summary in Section 4.9, we present a Graphical User Interface (GUI)
which clarifies the problem and the solutions with a few graphical examples in Section 4.8.

4.2 Related Work

We see our work partially embedded in area of mobility-aware resource management for use-cases
such as IoV [27, 199, 35, 97, 215, 217] or MEC [153, 102, 200]. On the one hand, in the area of
IoV, authors in [27] present an Software-Defined Networking (SDN)-based platform to guarantee
the delay requirements for 5G-enabled automotive systems. In their approach, while the vehicles are
moving, their connection delay is being continuously monitored. In case of losing certain delay levels,
the VM migration is triggered for delay improvement. However, they have not considered other
Quality of Service (QoS) parameters such as network bandwidth capacity. Moreover, Yao et. al. [226]
assign a VM per vehicle to deliver the required services, such as in-vehicle multimedia entertainment
and vehicular social networking. By minimizing the network costs, they determine the necessity and
the place to migrate the VMs during vehicle movement. However, they do not determine the routing
from vehicles to their respective VM instances. Also, in contrast to us, they solve the problem for
the next timeslot instead of the whole time horizon.

On the other hand, in the MEC area, authors in [199, 97] have proposed an approach to dynam-
ically place network functions on MEC servers available in mobile base stations, according to the
handover probability of users for the next timeslot. They formulate two optimization models with
the objective of minimizing network function migrations and communication cost (i.e., QoS/Quality
of Experience (QoE)) between User Equipments (UEs) and network functions. In another work,
Bahreini et. al. [35] formulate an optimization model to map application graphs to network graphs
according to the user’s location. Their objective is to minimize the total operational cost of running
and migrating applications and communication costs between users and applications. Finally, a dy-
namic service placement approach is proposed by Wang et. al. [217]. They minimize the placement,
routing, and migration costs based on a specific look-ahead window. However, they do not determine
the routing between users and instances. Also, they do not guarantee the end-to-end delay of the
delivered services. A comparison of our approach with others is summarized in Table 4.1. Notably,
shared instance column in Table 4.1 indicates whether a VM is shared among several users at the
same time.

This chapter formulates and evaluates the Joint Service Placement, Assignment, Routing, and
Migration (JSPARM) problem by minimizing the total operational cost of VM deployment, routing,
and migration decisions. Further, it provides a VM migration control to adapt service placement and
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Table 4.1: Comparison of the related work with our approach, all considering the user mobility.

Works Routing Placement VM migration Delay Shared Instance

[97, 226] ✗ ✓ ✓ ✗ ✗

[199, 215, 27] ✗ ✓ ✓ ✓ ✗

[35, 217] ✗ ✓ ✓ ✗ ✗

Our work ✓ ✓ ✓ ✓ ✓

routing according to the mobility of users. Finally, our proposed method guarantees the bandwidth
and the end-to-end delay parameters, required by the users.

4.3 System Model and Problem Formulation

This chapter tackles the problem of JSPARM for mobile users, e.g., cars, airplanes by minimizing the
total operational cost. We formulated the JSPARM problem in two cases:

1. Static Joint Service Placement, Assignment, Routing, and Migration (S-JSPARM): it solves the
JSPARM for a particular timeslot (i.e., based on the position of users, and network status).

2. Mobility-Aware Joint Service Placement, Assignment, Routing, and Migration (MA-JSPARM)
(i.e., dynamic): This approach takes future timeslots into account and hence, the user’s mobility
to solve the JSPARM problem. We also introduce and model a VM migration control approach
to improve the solution in terms of total operational cost.

Before formulating the two JSPARM optimizations, we present the system model, followed by the
problem definition. After that, we present the cost models for this problem, and then we begin with
the formulation of S-JSPARM and MA-JSPARM optimization problems.

4.3.1 System Network

Let us define a finite time horizon comprising𝑇 timeslots, each with a duration of𝜔 (i.e., in minutes).
The system network is defined as a bidirectional connected graph𝐺 = (𝑁, 𝐿), where 𝑁 and 𝐿 are the
network’s set of nodes and links, respectively. In 𝐺 , each link (𝑢, 𝑣) ∈ 𝐿 between nodes 𝑢, 𝑣 ∈ 𝑁 is
characterized by a constant cost value𝐶𝑜𝑠𝑡𝐿𝑢,𝑣 , propagation delay 𝐷𝑢,𝑣 , and capacity 𝐵𝑢,𝑣 . This graph
consists of three segments: users, core network, and access points, which are defined below.

4.3.2 Users

We denote 𝐹 as the set of mobile users considered in the problem. Each user 𝑓 ∈ 𝐹 has a different
mobility path, and thus, it is characterized by the different locations (in terms of Latitude (Lat) and
Longitude (Lon)) and the duration of the activity. We define T𝑓 as the activity duration (number of
timeslots) of user 𝑓 ∈ 𝐹 in the system. Without loss of generality, we assume that users’ location is
known as a priori. This assumption can be realistic in many use cases, such as users, trains, and ships,
that their mobility trajectory is known beforehand. With this assumption, the users locations at any
timeslot are considered as nodes in graph 𝐺 , which are denoted as 𝑁𝐴 where | 𝑁𝐴 |= ∑ |𝐹 |

𝑖=1 | 𝑓𝑖 |.
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4.3.3 Core Network

In our system model, there is a core network with nodes and links, denoted as N𝐶 and L𝐶 , re-
spectively. Each node is a network forwarding device that can be programmed, e.g., using Open-
Flow [160]. Some of the nodes in the core networks are considered to be DCs, which is denoted as
N𝐷𝐶 ⊂ N𝐶 . These DCs can host VM instances that provide services to the users, with a limited
resource capacity of 𝐶𝐷𝐶𝑗 (e.g., in terms of CPU cores). Each VM can provide a specific service type
𝑘 ∈ 𝐾 , with a resource requirement of 𝑆𝑖𝑧𝑒𝑉𝑀

𝑘
(e.g., number of CPU cores). Also, the cost of deploy-

ing an instance of VM with service type 𝑘 is denoted as𝐶𝑜𝑠𝑡𝑉𝑀
𝑘

. This cost can also be dependent on
the flavor of the VM.

4.3.4 Access Points

Mobile users can communicate to the core network (and hence, DCs) through access points. For
example, 4G/5G base stations and satellites are currently the two most popular access point platforms
in many usecases [229, 233]. Different access point mediums can have different costs, capacities, and
propagation delays. Since our model is intended to be generic, we define N𝐴𝑃 as the set of access
point nodes in the network. These access point nodes can be distributed over the network. Each
node in N𝐴𝑃 is connected to the closest core network node N𝐶 . Users can connect to an access point
node (usually to the closest one). The link between user and access point nodes is denoted as L𝐴𝑃 .

Having the users, core network, and access point defined, in summary, considering the network
𝐺 , we have 𝑁 = N𝐶 ∪ N𝐴𝑃 ∪ 𝑁𝐴, and 𝐿 = L𝐶 ∪ L𝐴𝑃 .

4.3.5 User Requests

The service requests triggered by a user is denoted as 𝑟 ∈ R and is characterized by following 4-tuple:

𝑟 = (𝑠𝑟𝑐𝑟 , 𝑘𝑟 ,B𝑟 ,D𝑟 ),

where 𝑠𝑟𝑐𝑟 ∈ 𝑁𝐴 is the user node, 𝑘𝑟 ∈ 𝐾 is the service type, B𝑟 is the required bandwidth, and D𝑟

is the maximum allowed end-to-end delay of the service request 𝑟 . These requests are served by an
instance of the respective service, at a specific DC.

In the following, we present the different cost models that can be considered for this problem.
Note that the key notations and their definition are summarized in Table 4.2.



62 Chapter 4. Reconfiguration Due to Mobility: Cost Optimization

Table 4.2: Notation definition for the JSPARM problem.

Parameter Definition

𝑇 Set of timeslots.
𝐹 Set of (mobile) users.
𝐾 Set of service types.
T𝑓 The activity duration of user 𝑓 ∈ 𝐹 .

𝐺 = (𝑁, 𝐿) Network graph with node and link sets of 𝑁 and 𝐿.
𝐷𝑖, 𝑗 The delay of link (𝑖, 𝑗) ∈ 𝐿.
𝐵𝑖, 𝑗 The capacity of link (𝑖, 𝑗) ∈ 𝐿.

𝐶𝑜𝑠𝑡
𝑖, 𝑗

𝐿
The cost of activating link (𝑖, 𝑗) ∈ 𝐿.

N𝐶 /L𝐶 The set of core network nodes/links.
N𝐴𝑃 /L𝐴𝑃 The set of nodes/links of the access points.

N𝐷𝐶 Set of DC nodes.
𝐶𝐷𝐶𝑗 Capacity of DC node 𝑗 .
𝐶𝑉𝑀 Processing Capacity of VMs.
Δ𝑉𝑀
𝑘

Size of VM type 𝑘 .
R Set of user requests.
R𝑡 Set of user requests at timeslot 𝑡 .
𝑠𝑟𝑐𝑟 Source node (user location) of request 𝑟 .
𝑘𝑟 Service type of request 𝑟 .
B𝑟 Bandwidth requirement of request 𝑟 .
D𝑟 Delay requirement of request 𝑟 .

𝑆𝑖𝑧𝑒𝑉𝑀
𝑘

/𝐶𝑜𝑠𝑡𝑉𝑀
𝑘

The size and cost of a VM instance, providing service type 𝑘 .
𝐶𝑜𝑠𝑡

𝑚𝑖𝑔

𝑘
Cost of migrating the VM with service type 𝑘 .

Ψ+ (𝑖),Ψ− (𝑖) Outgoing and incoming nodes from and to node 𝑖
M Migration cost function

Decision Variables
𝑥𝑟,𝑗 ∈ {0, 1} =1 if user node (service request) 𝑟 is assigned to DC 𝑗 .
𝑥𝑡𝑟, 𝑗 ∈ {0, 1} =1 if user node (service request) 𝑟 is assigned to DC 𝑗 at timeslot 𝑡 .
𝑛 𝑗,𝑘 ≥ 0 Shows the number of deployed VMs of type 𝑘 in DC node 𝑗 .
𝑛𝑡
𝑗,𝑘

≥ 0 Shows the number of deployed VMs of type 𝑘 in DC node 𝑗 at timeslot 𝑡 .

𝑙
𝑟,𝑗
𝑢,𝑣 ∈ {0, 1} =1 if the link (𝑢, 𝑣) is on the path of request 𝑟 traffic to DC 𝑗 .
𝑙
𝑟, 𝑗
𝑢,𝑣,𝑡 ∈ {0, 1} =1 if the link (𝑢, 𝑣) is on the path of request 𝑟 traffic to DC 𝑗 at timeslot 𝑡 .
𝑦𝑢,𝑣 ∈ {0, 1} =1 if link (𝑢, 𝑣) is active.
𝑦𝑡𝑢,𝑣 ∈ {0, 1} =1 if link (𝑢, 𝑣) is active at timeslot 𝑡 .
𝑚𝑡
𝑘
≥ 0 Number of VM migrations for service type 𝑘 at time 𝑡 .
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4.3.6 Cost Models

As we mentioned before, this optimization framework considers three types of cost: The cost of VM
deployment, routing, and VM migration. In below, we explain each cost in detail:

4.3.6.1 VM Deployment Cost

Without loss of generality, two approaches can be introduced to calculate the VM deployment cost:
1. Owning a VM: An option for the service providers is to build their own infrastructure that

can offer services based on deployed VMs. In this case, the costs can be calculated based on compu-
tational and non-computational costs. According to [45], the computational costs include physical
servers (i.e., memory and processor) and physical storage. On the other hand, non-computational
costs consist of the cost of hypervisor licenses, operating system, management software, network
connectivity, and software/hardware maintenance [45].

2. Renting a VM: A more popular option among companies is to rent VMs in distributed public
clouds [230]. It is the method that we use in this chapter. Using this approach, clients (service
providers in our case) can schedule and rent VMs with different processing capacities. For instance,
Amazon EC2 offers widespread VM types with different renting duration, processing capacities, and
prices [29]. In our scenario, we used this approach to model the VM deployment costs, which is
calculated as below:

Total VM Deployment Cost =
∑︁
𝑗∈N𝐷𝐶

∑︁
𝑘∈K

𝑛𝑡
𝑗,𝑘

×𝐶𝑜𝑠𝑡𝑉𝑀
𝑘

(4.1)

where 𝑛𝑡
𝑗,𝑘

is the number of VMs for service type 𝑘 in DC 𝑗 ∈ N𝐷𝐶 . Also, 𝐶𝑜𝑠𝑡𝑉𝑀
𝑘

is the price
associated to deploying one VM instance providing service type 𝑘 .

As it can be seen, we consider VM costs based on the service type only. However, an improvement
to this model can be to consider different flavors for VMs. For instance, the flavor of each VM for
service type 𝑘 can be either small, medium, large, or xlarge. In this case, the VM processing capacity
and price is increasing from small to xlarge flavors. Therefore, by using different flavors, the provided
solution can be more cost-efficient, since the flexibility of solution would be increased.

4.3.6.2 Routing Cost

In our considered network, there are two types of network links: i) core, and ii) access points links.
These links can be leased by the client (i.e., service provider company) in two manners:

1. Pay-Per-Bandwidth Usage: In this case, several number of links can be used, but the only
parameter that contributes to the routing cost is bandwidth utilization. In this case, the routing cost
can be calculated as below:

Total Routing Cost =
∑︁
𝑟 ∈R𝑡

∑︁
(𝑢,𝑣) ∈𝐿

∑︁
𝑗∈N𝐷𝐶

(B𝑟 × 𝑙𝑟, 𝑗𝑢,𝑣,𝑡 )
𝐵𝑢,𝑣

×𝐶𝑜𝑠𝑡𝐿𝑢,𝑣 (4.2)

where total routing cost is calculated as cost (e.g., $) per bandwidth unit, B𝑟 × 𝑙𝑟,𝑗𝑢,𝑣,𝑡 is the amount
of traffic for demand 𝑟 ∈ R𝑡 that is being sent over link (𝑢, 𝑣) at timeslot 𝑡 ∈ 𝑇 . Also, 𝐵𝑢,𝑣 is
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the bandwidth capacity of link (𝑢, 𝑣). This approach is suitable for scenarios where the network
bandwidth is shared between different tenants (e.g., companies). In this way, each tenant can lease
the network and pay the cost based on its usage.

2. Pay-Per-Link: In this approach, the client leases a link, no matter how much bandwidth
would be utilized. Therefore, the focus here would be to reduce the number of used links as much
as possible. In our scenario, we used this approach to model the total routing cost. The total routing
cost by using the pay-per-link approach can be modeled as:

Total Routing Cost =
∑︁
𝑡 ∈𝑇

∑︁
(𝑢,𝑣) ∈𝐿

𝑦𝑡𝑢,𝑣 ×𝐶𝑜𝑠𝑡𝐿𝑢,𝑣, (4.3)

where 𝑦𝑡𝑢,𝑣 is the indicator variable to show if the network link (𝑢, 𝑣) is active (i.e., used) at timeslot
𝑡 ∈ 𝑇 . Also, 𝐶𝑜𝑠𝑡𝐿𝑢,𝑣 is the cost of using/activating the network link (𝑢, 𝑣).

We now introduce the S-JSPARM optimization formulation.

4.4 Static Joint Service Placement, Assignment, Routing, and
Migration (S-JSPARM) Formulation

The static case is defined as follows: given a network𝐺 and a set of mobile users with service requests
of 𝐴, place the required VMs in the DCs and find the route to the users, such that the network and
VM deployment costs are minimized and all the service requirements (bandwidth and maximum
delay) are guaranteed. Inspired by [170], we formulate S-JSPARM by integrating the classical multi-
commodity flow and capacitated facility location-routing problems into an ILP optimization. Since
we focus on the static case, the problem is solved for a single timeslot. Nevertheless, in Section 4.5,
we introduce the multi-period case of the formulation.

4.4.1 Objective Function

The objective of the S-JSPARM optimization model is to minimize the total VM deployment and
routing cost. Based on the models introduced in Section 4.3.6, in this chapter, we use renting a VM
and pay-per-link cost models for calculating the VM and routing costs, respectively. Thus, we can
define the objective function 𝑃 as below.

P =
∑︁
𝑗∈N𝐷𝐶

∑︁
𝑘∈𝐾

𝐶𝑜𝑠𝑡𝑉𝑀
𝑘

𝑛 𝑗,𝑘 +
∑︁

(𝑢,𝑣) ∈𝐿
𝐶𝑜𝑠𝑡𝐿𝑢,𝑣𝑦𝑢,𝑣, (4.4)

where 𝐶𝑜𝑠𝑡𝑉𝑀
𝑘

is the deployment cost of a single VM for service type 𝑘 . 𝐶𝑜𝑠𝑡𝐿𝑢,𝑣 is the cost of using
link (𝑢, 𝑣) ∈ 𝐿. Also, 𝑛 𝑗,𝑘 is an integer decision variable that shows the number of deployed VMs
of service type 𝑘 at DC node 𝑗 . Moreover, 𝑦𝑢,𝑣 is a binary decision variable that indicates if the link
(𝑢, 𝑣) ∈ 𝐿 is active.
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4.4.2 User-to-DC Assignment

Each user request 𝑟 must be assigned to a VM which is already hosted by a DC node. Thus, we have:∑︁
𝑗∈N𝐷𝐶

𝑥𝑟, 𝑗 = 1,∀𝑟 ∈ R, (4.5)

where 𝑥𝑟, 𝑗 is a binary decision variable that is equal to 1, if the user request 𝑟 is assigned to a DC
node 𝑗 . Thus, the above constraints ensure that each service request is assigned to one and only one
DC.

4.4.3 VM Existence

The user request 𝑟 with service type 𝑘𝑟 can be assigned to a DC node 𝑗 , if at least a VM of service
type 𝑘𝑟 is deployed and exists on DC node 𝑗 . We can write this constraint as:

𝑥𝑟, 𝑗 ≤ 𝑛 𝑗,𝑘𝑟 ,∀𝑟 ∈ R,∀𝑗 ∈ N𝐷𝐶 , (4.6)

4.4.4 DC Capacity

The available resources at each DC node are limited to𝐶𝐷𝐶 . Therefore, a limited number of VMs can
be deployed on each DC. This can be formulated as:∑︁

𝑘∈𝐾
Δ𝑉𝑀
𝑘
𝑛 𝑗,𝑘 ≤ 𝐶𝐷𝐶𝑗 ,∀𝑗 ∈ N𝐷𝐶 , (4.7)

where Δ𝑉𝑀
𝑘

denotes the size of a VM of type 𝑘 .

4.4.5 VM Capacity

Similar to DCs, VMs are also resource-constrained. In other words, each VM can serve a limited
amount of users and traffic at the same time. This can be written as:∑︁

𝑟 ∈R
B𝑟𝑥𝑟, 𝑗 ≤ 𝐶𝑉𝑀𝑛 𝑗,𝑘𝑟 ,∀𝑗 ∈ N𝐷𝐶 , (4.8)

where 𝐶𝑉𝑀 is the processing capacity of VM and B𝑟 is the traffic volume of user request 𝑟 .

4.4.6 Network Capacity

The capacity of the network link (𝑢, 𝑣) ∈ 𝐿 is limited to 𝐵𝑢,𝑣 . Therefore, on each link, the sum of user
traffic that is traversed through it should not be more than the capacity of that link. This constraint
is modeled as: ∑︁

𝑟 ∈R

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑟,𝑗
𝑢,𝑣B𝑟 ≤ 𝐵𝑢,𝑣,∀(𝑢, 𝑣) ∈ 𝐿, , (4.9)

where 𝑙𝑟, 𝑗𝑢,𝑣 is a binary decision variable that is equal to 1, if the traffic from user request 𝑟 is routed
using link (𝑢, 𝑣) toward DC node 𝑗 .
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4.4.7 Delay Requirement

The required delay D𝑟 from user request 𝑟 needs to be guaranteed. To achieve this, the sum of the
network links’ propagation delay must be equal to or lower than the required delay D𝑟 by the user.
This can be formulated as: ∑︁

(𝑢,𝑣) ∈𝐿

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑟,𝑗
𝑢,𝑣𝐷𝑢,𝑣 ≤ D𝑟 ,∀𝑟 ∈ R, , (4.10)

where 𝐷𝑢,𝑣 is the propagation delay of link (𝑢, 𝑣).

4.4.8 User Traffic Generation

The traffic needs to be generated from the source node, where the user is. To do this, the traffic needs
to be generated and leave the source node from one of its outgoing links. We can achieve this by:∑︁

𝑣∈Ψ+ (𝑢 )

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑟, 𝑗
𝑠𝑟𝑐𝑟 ,𝑣 = 1,∀𝑟 ∈ R, , (4.11)

where Ψ+(𝑢) is the set of outgoing links from node 𝑢. As it can be seen, for each user request 𝑟 , the
summation of variable 𝑙𝑟,𝑗𝑠𝑟𝑐𝑟 ,𝑣 should be equal to 1, which the source node is 𝑠𝑟𝑐𝑟 .

4.4.9 Flow Conservation Law

After the traffic is generated, it needs to traverse the network towards the assigned DC. Each node
of the network should receive this traffic and forwards it from one of its links, except in the case that
the node is a DC. This is named flow conservation law, which can be presented as below:

∑︁
𝑣∈Ψ+ (𝑢 )

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑟, 𝑗
𝑢,𝑣 −

∑︁
𝑣∈Ψ− (𝑢 )

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑟,𝑗
𝑢,𝑣 =


0 ,∀𝑟 ∈ R,∀𝑢 ∈ {𝑁 \ N𝐷𝐶 }, 𝑢 ≠ 𝑠𝑟𝑐𝑟

𝑥𝑟,𝑢 ,∀𝑟 ∈ R,∀𝑢 ∈ N𝐷𝐶

, (4.12)

where Ψ− (𝑢) is the set of incoming links to node 𝑢.

4.4.10 Routing/Assignment Relation

There is a relation between routing and assignment decisions that must be met. This relation is, the
routing must be performed towards the assigned DC. This relation can be written as:

𝑙
𝑎,𝑗
𝑢,𝑣 ≤ 𝑥𝑟,𝑗 ,∀(𝑢, 𝑣) ∈ 𝐿,∀𝑟 ∈ R,∀𝑗 ∈ N𝐷𝐶 . (4.13)

In other words, the above constraints state that traffic routing must be passed through for the service
requests that are assigned to a DC 𝑗 .

4.4.11 Network Link Status

The final set of constraints are indicators for the status of network links. It is controlled by the
binary variable 𝑦𝑢,𝑣 , which is equal to 1, if at least a user traffic is passing through the link (𝑢, 𝑣) ∈ 𝐿.
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Therefore, we have:

𝑦𝑢,𝑣 ≤
∑︁
𝑟 ∈R

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑟, 𝑗
𝑢,𝑣,∀(𝑢, 𝑣) ∈ 𝐿, (4.14)

𝜌𝑦𝑢,𝑣 ≥
∑︁
𝑟 ∈R

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑟, 𝑗
𝑢,𝑣,∀(𝑢, 𝑣) ∈ 𝐿 (4.15)

where 𝜌 is a large positive number (𝜌 ≫ 0).
Having the objective function and the constraints, we can present the S-JSPARM optimization

formulation as follows:

Minimize P, (4.16)
s.t. constraints (4.5) − (4.15),
vars: 𝑥𝑟, 𝑗 ∈ {0, 1},∀𝑟 ∈ R,∀𝑗 ∈ N𝐷𝐶 ,

𝑛 𝑗,𝑘 ≥ 0,∀𝑗 ∈∈ N𝐷𝐶 ,∀𝑘 ∈ 𝐾,
𝑙
𝑟, 𝑗
𝑢,𝑣 ∈ {0, 1},∀𝑟 ∈ R,∀𝑗 ∈ N𝐷𝐶 ,∀(𝑢, 𝑣) ∈ 𝐿.

In the next section, we extend S-JSPARM, and present the MA-JSPARM optimization model.

4.5 Mobility-Aware Joint Service Placement, Assignment, Routing,
and Migration (MA-JSPARM) Formulation

MA-JSPARM adds a new dimension to S-JSPARM: time. In this case, MA-JSPARM addresses these
questions by minimizing the total operational cost over the whole time horizon. In MA-JSPARM,
in addition to VM deployment and routing costs, there are costs associated to the VM migration
(referred as migration cost 𝐶𝑜𝑠𝑡𝑚𝑖𝑔). Before formulating the MA-JSPARM, we first present the VM
migration cost modeling.

4.5.1 VM Migration Cost

As mentioned before, VMs can be migrated between DCs if necessary. VM migration is not only
a beneficial operation. It can induce several types of overheads and costs to both operators and
clients [227, 211], such as power consumption overheads, performance degradation, and/or increase
of network bandwidth usage [195, 149]. Therefore, VM migration must be carefully planned and
operated. Accordingly, in this work, we model the total VM migration cost as below:

Total VM Migration Cost =
∑︁
𝑡 ∈𝑇

∑︁
𝑘∈𝐾

𝐶𝑜𝑠𝑡
𝑚𝑖𝑔

𝑘
×𝑚𝑡

𝑘
(4.17)

where 𝐶𝑜𝑠𝑡𝑚𝑖𝑔
𝑘

is the cost of migrating a VM for service type 𝑘 . This cost is calculated as M, the
function of VM cost (i.e., proportional to the VM size) and the core ground network link cost:

𝐶𝑜𝑠𝑡
𝑚𝑖𝑔

𝑘
= 𝛿 ×M(𝐶𝑜𝑠𝑡𝐿𝑢,𝑣,𝐶𝑜𝑠𝑡𝑉𝑀𝑘 ), (𝑢, 𝑣) ∈ L𝐶 , 𝑘 ∈ 𝐾, (4.18)
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𝑡 = 𝑡0

𝑡 = 𝑡0 − 1

Datacenter Service type 𝑘 instance
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A B C

New instance

Instance to delete

Service migration

21

2 1 1

𝑘

Figure 4.1: An example of the VM migration computation for three DCs A, B, and C, when two VM migrations,
one service deletion, and one creation is performing.

where 0 ≤ 𝛿 ≤ 1 is the weighting factor used to tune the migration cost. 𝛿 is useful to mimic different
migration cost based on the specific application and network. Nevertheless, more factors such as
server CPU utilization and application sensitivity against migration can be considered to formulate
the migration cost function [221]. We note that presenting an accurate and service-specific migration
cost model is out of scope of the thesis.

Additionally,𝑚𝑡
𝑘

is the number of VM migrations that need to be performed at timeslot 𝑡 ∈ 𝑇 for
service type 𝑘 . In order to compute the number of migrations of service type 𝑘 at the timeslot 𝑡 ∈ 𝑇 ,
we propose Eq. 4.19:

𝑚𝑡
𝑘
=

∑︁
𝑗∈N𝐷𝐶

[𝑛𝑡
𝑗,𝑘

− 𝑛𝑡−1
𝑗,𝑘

]+ − [ ∑︁
𝑗∈N𝐷𝐶

𝑛𝑡
𝑗,𝑘

−
∑︁
𝑗∈N𝐷𝐶

𝑛𝑡−1
𝑗,𝑘

]+
,∀𝑘 ∈ 𝐾,∀𝑡 ∈ 𝑇 +, (4.19)

where [𝑎]+ is defined as𝑚𝑎𝑥{0, 𝑎}. Let us note that𝑚0
𝑘
= 0, since VM migration cannot happen at

𝑡 = 0. Consider the example in Fig. 4.1 with two VM instances 𝐾 = {1, 2} and three DCs 𝐴, 𝐵, and
𝐶 . Suppose at timeslot 𝑡0 − 1, one VM instance of 𝑘 = 1 is required at DC 𝐴, and two VM instances
of 𝑘 = 2 are required at DC 𝐵, and𝐶 . However, at next timeslot (𝑡0), due to the mobility of users and
increase in their distance with the current VM, two VM instances of 𝑘 = 1 are required at B and C,
whereas only one VM instance for 𝑘 = 2 is required at DC𝐴. This new placement of services requires
a VM migration for 𝑘 = 1 from DC A to B, a second VM migration for service 𝑘 = 2 from DC B to
A, and a VM instance creation and deletion at DC C for service types 𝑘 = 2 and 𝑘 = 1, respectively.
Applying Eq. 4.19 to calculate the number of VM migrations for each service type 𝑘 (𝑚𝑘

𝑡 ), we obtain:

(𝑘 = 1) :𝑚𝑡0
1 = [(0 − 1)+ + (1 − 0)+ + (1 − 0)+] − [(2 − 1)+] = 1,

(𝑘 = 2) :𝑚𝑡0
2 = [(1 − 0)+ + (0 − 1)+ + (0 − 1)+] − [(1 − 2)+] = 1.

Thus, the total number of VM migrations for all 𝑘 ∈ 𝐾 is given by𝑚𝑡0
1 +𝑚𝑡0

2 = 2.
Having the VM migration cost modeled, we define R𝑡 as the set of service requests generated

by users at timeslot 𝑡 . We extend the variables defined in S-JSPARM to include a per timeslot index
𝑡 ∈ 𝑇 . Therefore, by using the same definition as in S-JSPARM model, we convert the variables
of S-JSPARM to multi-period variables as 𝑥𝑖, 𝑗 → 𝑥𝑡𝑖, 𝑗 , 𝑙

𝑟,𝑗
𝑢,𝑣 → 𝑙

𝑢,𝑣,𝑡
𝑟, 𝑗

, 𝑛 𝑗,𝑘 → 𝑛𝑡
𝑗,𝑘

, and 𝑦𝑢,𝑣 → 𝑦𝑡𝑢,𝑣 .
Additionally, we define a new variable𝑚𝑡

𝑘
≥ 0 to include the VM migration decisions.𝑚𝑡

𝑘
represents

the number of VM migrations for service type 𝑘 ∈ 𝐾 at the timeslot 𝑡 ∈ 𝑇 .
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Considering the above explanations, we can present the formulation of MA-JSPARM. Once again,
we start by forming the objective function Q. As mentioned before, the objective function of MA-
JSPARM is defined as the sum of VM deployment, routing, and VM migration costs over time horizon
𝑇 . It can be written as:

Q =
∑︁
𝑡 ∈𝑇

∑︁
𝑗∈N𝐷𝐶

∑︁
𝑘∈𝐾

𝐶𝑜𝑠𝑡𝑉𝑀
𝑘

𝑛𝑡
𝑗𝑘
+
∑︁
𝑡 ∈𝑇

∑︁
(𝑢,𝑣) ∈𝐿

𝐶𝑜𝑠𝑡𝐿𝑢,𝑣𝑦
𝑡
𝑢,𝑣 +

∑︁
𝑡 ∈𝑇

∑︁
𝑘∈𝐾

𝐶𝑜𝑠𝑡
𝑚𝑖𝑔

𝑘
𝑚𝑡
𝑘
. (4.20)

Therefore, the MA-JSPARM model can be presented as:

Minimize Q, (4.21)

s.t.
∑︁
𝑗∈N𝐷𝐶

𝑥𝑡𝑟, 𝑗 = 1,∀𝑡 ∈ 𝑇,∀𝑟 ∈ R𝑡 , (4.22)

𝑥𝑡𝑟, 𝑗 ≤ 𝑛𝑡𝑗,𝑘𝑟 ,∀𝑟 ∈ R𝑡 ,∀𝑡 ∈ 𝑇,∀𝑗 ∈ N𝐷𝐶 , (4.23)∑︁
𝑘∈𝐾

Δ𝑉𝑀
𝑘
𝑛𝑡
𝑗,𝑘

≤ 𝐶𝐷𝐶𝑗 ,∀𝑡 ∈ 𝑇,∀𝑗 ∈ N𝐷𝐶 , (4.24)∑︁
𝑟 ∈R𝑡

B𝑟𝑥𝑡𝑟, 𝑗 ≤ 𝐶𝑉𝑀𝑛𝑡𝑗,𝑘𝑟 ,∀𝑡 ∈ 𝑇,∀𝑗 ∈ N𝐷𝐶 , (4.25)∑︁
𝑟 ∈R𝑡

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑟, 𝑗
𝑢,𝑣,𝑡B𝑟 ≤ 𝐵𝑢,𝑣,∀𝑡 ∈ 𝑇,∀(𝑢, 𝑣) ∈ 𝐿, (4.26)∑︁

(𝑢,𝑣) ∈𝐿

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑟, 𝑗
𝑢,𝑣,𝑡𝐷𝑢,𝑣 ≤ D𝑟 ,∀𝑡 ∈ 𝑇,∀𝑟 ∈ R𝑡 , (4.27)∑︁

𝑣∈Ψ+ (𝑢 )

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑟, 𝑗
𝑠𝑟𝑐𝑟 ,𝑣,𝑡

= 1,∀𝑡 ∈ 𝑇,∀𝑟 ∈ R𝑡 , (4.28)∑︁
𝑣∈Ψ+ (𝑢 )

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑟, 𝑗
𝑢,𝑣,𝑡 −

∑︁
𝑣∈Ψ− (𝑢 )

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑟,𝑗
𝑢,𝑣,𝑡 =

0 ,∀𝑡 ∈ 𝑇,∀𝑟 ∈ R𝑡 ,∀𝑢 ∈ {𝑁 \ N𝐷𝐶 }, 𝑢 ≠ 𝑠𝑟𝑐𝑟

𝑥𝑡𝑟,𝑢 ,∀𝑡 ∈ 𝑇,∀𝑟 ∈ R𝑡 ,∀𝑢 ∈ N𝐷𝐶

, (4.29)

𝑦𝑡𝑢,𝑣 ≤
∑︁
𝑟 ∈R𝑡

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑟,𝑗
𝑢,𝑣,𝑡 ,∀𝑡 ∈ 𝑇,∀(𝑢, 𝑣) ∈ 𝐿, (4.30)

𝑙
𝑟, 𝑗
𝑢,𝑣,𝑡 ≤ 𝑥𝑡𝑟, 𝑗 ,∀(𝑢, 𝑣) ∈ 𝐿,∀𝑡 ∈ 𝑇,∀𝑟 ∈ R𝑡 ,∀𝑗 ∈ N𝐷𝐶 , (4.31)

𝜌𝑦𝑡𝑢,𝑣 ≥
∑︁
𝑟 ∈R𝑡

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑟,𝑗
𝑢,𝑣,𝑡 ,∀𝑡 ∈ 𝑇,∀(𝑢, 𝑣) ∈ 𝐿, (4.32)

vars: 𝑥𝑡𝑟, 𝑗 ∈ {0, 1},∀𝑡 ∈ 𝑇,∀𝑟 ∈ R𝑡 ,∀𝑗 ∈ N𝐷𝐶 ,

𝑛𝑡
𝑗,𝑘

≥ 0,∀𝑡 ∈ 𝑇,∀𝑗 ∈∈ N𝐷𝐶 ,∀𝑘 ∈ 𝐾,
𝑙
𝑟, 𝑗
𝑢,𝑣,𝑡 ∈ {0, 1},∀𝑡 ∈ 𝑇,∀𝑟 ∈ R𝑡 ,∀𝑗 ∈ N𝐷𝐶 ,∀(𝑢, 𝑣) ∈ 𝐿.

The constraints of MA-JSPARM model 4.22-4.32 are the extension of the S-JSPARM constraints 4.5-
4.15 by time dimension.

4.5.2 Hardness

The formulated MA-JSPARM is a combination of the Multi-Period Capacitated Facility Location
(MPCFL) and Multi-Commodity Flow (MCF) problems. The Capacitated Facility Location (CFL)
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problem is known to be NP-Hard [73, 122, 165]. Therefore, the MPCFL, with an additional dimension
(i.e., time) is also NP-Hard, since CFL is a special case of it. Additionally, the MCF with deadlines is
proved to be NP-Hard [140]. As a result, the combination of these two problems is even harder to
solve.

4.6 Proposed Cost-Efficient Heuristics

Considering the problem complexity, to be able to solve it for practical-size instances, we introduce
two heuristic solutions, named User-by-User (UbU) and Timeslot-by-Timeslot (TbT). As shown in
Fig. 4.2, in both of these heuristics, we decompose the problem into smaller sub-problems in different
dimensions: one based on the users and the other based on timeslots. Considering their dependen-
cies, we then combine these sub-problems to achieve a solution for the main problem.

t=3t=0 t=1 t=2

User 1

User 2

User 3

U
bU

 A
pproach

TbT Approach

Figure 4.2: An example of UbU and TbT approaches for three mobile users and𝑇 = 4 timeslots (user positions
at the beginning of each 𝑡 ∈ 𝑇 .)

4.6.1 User-by-User (UbU) Algorithm

In short, UbU algorithm solves the problem for each user sequentially over 𝑇 timeslots, taking into
account the VM placement and the routing decisions for the previous users over 𝑇 (see Fig. 4.2).
Moving from 𝑡 to 𝑡 + 1, VM migrations are performed towards meeting delay requirements and/or
total operational cost minimization.

The UbU heuristic consists of two parts: the first part (shown as Alg. 1) selects DC and places
VM only for the first user in the input data set and the second part (shown as Alg. 2) does this for
the remaining users in the input data set.

4.6.1.1 Algorithm 1: First User

This algorithm is depicted in Alg. 1. For the first user, there is no pre-selected DC or placed VM
available, therefore at each timeslot, only two options are possible. The first option is to share the
VM with previous timeslots. In this case, the total cost will be sum of routing and VM deployment
cost. The second to create a new VM at another DC and migrate the VM from the DC from the
previous timeslot to the newly selected DC. In this case, the total cost will include the VM migration
cost as well. 𝑓sm is a binary flag indicating whether the user of the current timeslot cannot re-use the
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Algorithm 1: UbU Algorithm (First User)

Data: topology 𝐺 , service type 𝑘 , timeslot range 𝑇 , migration cost 𝐶𝑚𝑖𝑔
𝑘

Result: VM placement, routing, and migration decisions at each timeslot, total operational
cost

1 for each timeslot 𝑡 ∈ 𝑇 do
2 𝑓sm = 𝐹𝑎𝑙𝑠𝑒;

/* Option 1: share one VM */
3 Get user locations from 𝑖𝑙𝑎𝑠𝑡 to 𝑖;
4 Find the DC (𝑠𝑒𝑙𝑑𝑐 ) with the least total operational cost 𝐶1 to all the locations, and

calculate all latencies 𝐿list;
/* Option 2: migrate VM to a new DC */

5 Get the best DC for the previous timeslots and return total operational cost 𝐶2;
6 Find the best DC for the current timeslot and add the routing cost to 𝐶2;
7 𝐶2 = 𝐶2 +𝐶𝑚𝑖𝑔𝑘

; // Add migration cost
/* Select the option with lower total operational cost */

8 if 𝐶1 < 𝐶2 then
9 for 𝑙 in 𝐿list do
10 if 𝑙 violates service 𝑠 requirement then
11 𝑓sm = 𝑇𝑟𝑢𝑒;
12 Break;

13 else
14 𝑓sm = 𝑇𝑟𝑢𝑒;
15 if 𝑓sm then
16 Add service 𝑠 to a new VM in the new DC;
17 else
18 Share one VM with the previous timeslots;

19 Update link remaining capacity of the topology for future routing decisions;

same DC with previous timeslots (i.e., VM migration). Also, 𝑖𝑙𝑎𝑠𝑡 is the timeslot when the user cannot
share the VM with the previous timeslots. In order to make a decision, we compare the overall costs
induced by the two options. After the decision, the remaining capacity of each DC and each link in
the topology is updated accordingly. Note that the delay constraint is enforced while selecting the
candidate DC nodes.

4.6.1.2 Algorithm 2: Remaining Users

This algorithm is presented in Alg. 2. There are three options at each timeslot for the remaining
users, and we compare the additional costs result by different options. The first option is to check
all instantiated VMs of previous users that are available at the current timeslot and find the one with
the minimum routing cost from the current location of the user. Here, the only incurred cost is the
routing cost. For the second option, we assign the user to the VM (if there is any) which the user
was assigned to it in the last timeslot. The additional cost in this case, is the sum of VM cost and
routing cost. For the last option, we migrate the VM for the current user from the DC it used to be at
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Algorithm 2: UbU Algorithm (Remaining Users)

Data: topology 𝐺 , service type 𝑘 , timeslot range 𝑇 , migration cost 𝐶𝑚𝑖𝑔
𝑘

Result: VM placement, routing, and migration decisions at each timeslot, total operational
cost

/* starting from the second user */
1 for each user 𝑓 ∈ {2..𝐹 } do
2 for each timeslot 𝑡 ∈ 𝑇 do

/* Option 1: share the VM used by previous users */
3 Get all VMs at this timeslot with enough remaining capacity;
4 Find the VM which incurs minimum routing cost;
5 Assign routing cost to 𝐶1;

/* Option 2: use the same VM from the previous timeslots */
6 Find the best DC location with a VM from the previous timeslot;
7 Assign the sum of routing cost and VM cost to 𝐶2;

/* Option 3: migrate the VM to a new DC */
8 Find the best DC location for this timeslot;
9 Assign the sum of routing cost and VM migration cost to 𝐶3;

10 Select the option with the minimum cost from 𝐶1, 𝐶2, or 𝐶3;
11 Add service to the corresponding VM;

12 Update link remaining capacity of the topology for future routing decisions;

the last timeslot to a new DC, which induces additional routing, VM and migration cost. The three
options are compared against each other in terms of the additional cost. Besides all locations of the
fixed entities, e.g., DCs, routers, links, access point; the network input𝐺 contains the user locations
in the timeslot range 𝑇 .

4.6.2 Timeslot-by-Timeslot (TbT) Algorithm

This heuristic solves the problem per timeslot, that is, based on the position of all users at a given
timeslot 𝑡 ∈ 𝑇 . Solving the problem for timeslot 𝑡 , TbT considers the network status (VM-to-DC
mapping, and routing) from timeslot 𝑡 − 1 (see Fig. 4.2). However, unlike UbU, TbT does not change
the decisions that are made for the previous timeslots, since it does not consider the whole time
horizon for the decision making.

At each timeslot, TbT takes a user from the input data, and it finds the DC which has the lowest
routing cost from the user’s location at the respective timeslot. It starts with the routing cost because
usually, this is the dominant share from the total operational cost, compared to VM and migration
costs. Before selecting the DC, it checks the link bandwidth (constraint 4.26), and end-to-end delay
constraints (constraint 4.27). If one of them is not met, it selects the next DC with the lowest routing
cost. Thereafter, it re-uses the existing VM for the requested service type 𝑘 at the DC, if the VM
capacity constraint (constraint 4.25) are not violated. If this VM is not available, it will launch a
new instance of the VM in the respective DC. However, it validates the DC capacity constraint
(constraint 4.24) for possible violations. The algorithm selects the DC based on the total routing
and VM deployment costs. It repeats the same for all the users for the current timeslot and then
moves to the next until the limit of timeslots 𝑇 is reached. Finally, the migration cost is calculated
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Algorithm 3: TbT Algorithm
Data: topology 𝐺 , timeslot range 𝑇
Result: VM placement, routing, and migration decisions at each timeslot, total operational

cost
1 𝐶𝑡𝑜𝑡𝑎𝑙 = 0;
2 for each timeslot 𝑡 ∈ 𝑇 do
3 for each user 𝑓 ∈ 𝐹 do
4 selectedDC = null;
5 𝐶𝑚𝑖𝑛 = 0;
6 for each DC 𝑗 ∈ N𝐷𝐶 do
7 𝐶1 = calculate the routing cost to DC 𝑗 from user’s 𝑓 location at timeslot 𝑡 ;

/* Check the delay requirements */
8 if delay constraint is not met then
9 continue;

10 𝐶2 = calculate the VM deployment cost at DC 𝑗 ;
/* Check the DC and VM capacity constraints */

11 if VM or DC capacity constraints are not met then
12 continue;
13 if 𝐶1 +𝐶2 < 𝐶𝑚𝑖𝑛 then
14 selectedDC = 𝑗 ;
15 else
16 continue;

17 𝐶𝑡𝑜𝑡𝑎𝑙+ = 𝐶𝑚𝑖𝑛 ;
18 Add service to the corresponding VM;
19 Update link remaining capacity of the topology for future routing decisions;

/* Calculate the VM migration cost */
20 𝐶3 = calculate the migration cost based on the model in Eq. 4.19. 𝐶𝑡𝑜𝑡𝑎𝑙+ = 𝐶3

based on the migrations that are decided between the consequent timeslots. Of course, it migrates a
VM if all the user connections are moved at the same time from the respective VM. The description
of the TbT algorithm is summarized in Alg. 3.

4.7 Performance Evaluation

In this section, we firstly introduce the use case scenario and the input parameters. Then, we compare
the performance of S-JSPARM and MA-JSPARM models, in terms of total operational cost, number
of VM migrations, average end-to-end delay, and runtime. After that, we evaluate the performance
of the heuristic algorithms and compare them with the optimal solution (i.e., MA-JSPARM).

4.7.1 Usecase: In-Flight Service Provisioning (SAGIN)

Today, with a significant increase in worldwide user traffic volume, providing in-flight services such
as entertainment to onboard passengers has become an essential goal for airline companies [32]. Re-
cently, there have been advances in providing high-capacity Air-to-Ground (A2G) communications
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Figure 4.3: A high-level view of the Space-Air-Ground Integrated Network (SAGIN).

to airplanes [107, 90]. In particular, LEO satellites can relay the airplane traffic towards a gateway
on the ground with a high link capacity [180]. Also, Direct-Air-to-Ground (DA2G) connections en-
able airplanes to communicate directly to the base stations located on the ground network [83][214].
These developments have made new opportunities for airlines to deploy new online and interactive
services, such as voice/video calls and gaming, to improve passenger experience and grow the rev-
enues [32]. To realize these services, airline companies can move the servers providing the in-user
services from the airplane to the distributed DCs located on the ground. This can also reduce the
weight of the airplane, hence the fuel consumption.

Fig. 4.3 shows a high-level view of a SAGIN. Firstly, it can be seen that some airplanes are flying
over the ground network. In this case, the airplanes are the users, and the ground network is the
core network of our system model. Note that the trajectory of the airplanes is known before the
flight begins, so it can be used for solving the JSPARM problem. Further, it can be seen that two
different A2G alternatives (i.e., access points in our model) exist, which the airplanes can use to
connect to the ground network and then, a particular DC: i) satellites, and ii) DA2G. The satellites
are connected to their gateways, located in the ground network. They can relay the traffic from
the airplane towards the gateway. Geostationary Earth Orbit (GEO) satellites are designed to have
an orbital period equal to the Earth’s rotation period. However, due to the high orbit altitude of
these satellites, their Round Trip Time (RTT) is over 600 ms [180], being too large for some services.
Therefore, in our evaluation, we do not consider GEO satellites. On the other hand, OneWeb, Telesat,
and SpaceX have been developing LEO satellite constellations, which are located at lower altitudes
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Figure 4.4: Two snapshots of a SAGIN, showing two flights, and VM placement, routing, and migration
decisions over time.

(less than 2000 km) [180]. Thus, these satellites can offer network bandwidth with low latency (the
average RTT is 50 ms [14]), which is more preferable in our use case.

The second option to connect an airplane to the ground network is DA2G, which establishes a
direct connection from a flight to a base station on the ground if it is within its range. The connection
to DA2G base stations changes due to the mobility of flights over time. A DA2G link produces around
10 ms of RTT [82].

It is evident that different A2G connection options differ in terms of provided bandwidth, delay,
and cost. Thus, it is crucial to determine the DC to connect to as well as the underlying routing
decisions to provide in-flight services to the airplane with the minimum cost.

Moreover, due to the mobility of airplanes over time, a DC may not remain the efficient one over
time (i.e., the distance of the airplane to DC and hence the routing delay can increase during flight).
Therefore, to maintain a continuous low-delay service delivery to the airplanes, the VM placement
decisions can be adapted over time.

An example of our scenario is presented in Fig. 4.4. This figure shows two flights flying over a
core network, requesting the same service type 𝑘 . In this core network, there are three DCs, three
DA2Gs, and one satellite node that relays the traffic to the ground gateway node. The left sub-figure
shows the network status at 5 PM where both airplanes are connected through the available DA2G
nodes to the central DC node. Within this DC, a single VM is deployed to serve both flights with
minimum cost. After two hours, at 7 PM, the network status reaches the right sub-graph with the
mobility of flights. In this sub-graph, it can be seen that the traffic routings are changed considering
the available A2G connections. Moreover, to keep the delay below the requirement of the services,
a VM migration has been triggered from the middle DC to the right one.

Below, we introduce the input parameters for the simulation scenario, and then we present the
analysis of the results.

4.7.2 Simulation Setup

Our study focuses on a realistic European-based SAGIN. For the ground network topology, we use
the PAN network topology [105]. We set the bandwidth for ground network links to 2 Gbps, and
their delays were determined according to the length of the optical fiber transmissions. Further, the
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Figure 4.5: An example of the modelled European-based SAGIN with three flights.

locations for the DC nodes have been selected based on [76]: Athens (Greece), Helsinki (Finland),
Liverpool (England), Strasbourg (France), Madrid (Spain), and Lviv (Ukraine). The locations of the
DA2G base stations are chosen based on the actual deployment of 295 base stations in Europe [159]
by Deutsche Telekom. Also, the bandwidth and delay of the DA2G access point links are considered
as 75 Mbps and 10 ms [82], respectively.

According to the results presented in [169], it is observed that the number of LEO satellites
moving over Europe is relatively low (5 out of the 72 LEO satellites in the Iridium constellation).
Compared to GEO, utilizing LEO satellites introduces lower RTT, which is more suitable for our
use case. Therefore, we only consider the LEO constellation for the satellite access point option. For
simplification purposes, we apply an abstraction model, where the group of LEO satellites occupying
Europe is represented as a single satellite node. Also, the set of links that connect each user to
LEO node and from LEO to the satellite gateway is considered to have 50 Mbps capacity [202].
Moreover, to avoid unrealistic assumptions, we set the latency of the satellite links to the worst-
case achievable latency of 50 ms, according to LEO latency calculations provided in [161]. Also, a
satellite gateway has been considered in Rome, Italy [202]. The set of considered flights has been
exported from FlightRadar24 live air traffic for 24 hours on 9.11.2017. In our experiments, assuming
𝜔 = 30 minutes, we consider two set of flights with different duration (denoted by 𝜏): i) Short flights
𝐹𝑠 , such that 𝜏𝑠 = 3, ∀𝑓 ∈ 𝐹𝑠 ; and ii) Long flights 𝐹𝑙 , where 𝜏𝑙 = 7, ∀𝐹 ∈ 𝐹𝑙 . Due to the time
complexity issues, the size of each set of flights is considered as 20. Without loss of generality, we
set the visibility distance from each user to the closest DA2G base station as 350 km as the absolute
geometrical maximum [123], although in reality, it can vary based on, e.g., the antenna type and
weather conditions. Fig. 4.5 shows an exemplary graph 𝐺𝑡 with three flights at a specific timeslot.

In order to reduce the time complexity of the optimization, two aggregated service requests per
user per timeslot have been considered. These two service types are defined as:

1. Video streaming with bandwidth and end-to-end delay requirement of 1.5 Mbps [166] and 300
ms [89], respectively.
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Figure 4.6: Number of flights in a DA2G base station coverage range, based on the real data of flights for 24
hours over Europe.

2. Voice-over-IP (VoIP) with 64 Kbps bandwidth and 100 ms [13] of delay requirements.

We assumed the airplane models as Airbus A320 with 150 passengers [26], where 20% of the passen-
gers use the aforementioned network services [28]. We assume these requests are divided between
our two service types equally.

To make the scenario even more realistic, we create a DA2G congestion probability model, which
disables the DA2G link at a specific location, based on our flight data. Fig. 4.6 shows the histogram
summarizing all the flights over Europe in 24 hours. According to our flight data, the DA2G link
capacity, and the services required by a flight, every DA2G base station can serve simultaneously
only around nine flights (see the vertical line in Fig. 4.6). Based on this study, the probability of
DA2G congestion is 19.714%. This information is used to determine the congestion of DA2G base
stations at each timeslot as input to the simulation.

An essential parameter in this study is cost, which has been considered in USD. According to
Amazon Web Services [37], Compute-Optimized instance types is suggested for high performance
purposes, e.g., video streaming. Therefore, we assume all 𝑘 ∈ 𝐾 use the same c4.2xlarge instance
type, which costs $229 per month [29]. On the other hand, the link costs are associated with the
bandwidth required by our services (∼ 20 Mbps), which are 60 and 130 USD for ground and satellite
link use, respectively [52, 127]. Regarding the cost of using a DA2G link, we assumed it to be 83 USD.
For the VM migration cost, we use the model presented in Section 4.5.1. We have modelled the SAGIN
network𝐺 by Python Networkx 2.1. The proposed S-JSPARM and MA-JSPARM optimization models
have been implemented using Gurobi Optimizer 8.0.1 with 5% solution gap for scalability purposes.
Also, the heuristics are developed in a simulation tool based on Python language. The simulations
were executed on a desktop computer, equipped with Intel Core i7-6700 @3.40 GHz CPU, 16 GB of
RAM, running Ubuntu 18.04 x64 OS. Each scenario with random flights from the data set is chosen
and repeated 30 times for statistically reliable results.

4.7.3 Simulation Results

In this part, we first present the comparison of S-JSPARM and MA-JSPARM models in the scenario
above in terms of different costs. After that, we present the analysis of results for comparing the
performance of the MA-JSPARM model, with the UbU, TbT, and the baseline heuristics.
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4.7.3.1 S-JSPARM and MA-JSPARM Comparison

In order to evaluate the impact of different VM migration costs with respect the network and VM
deployment costs, we vary the migration cost value by increasing 𝛿 from 0.1 and 1, with step size
of 0.1. In our first study, we compare the total operational cost (including VM migration, network,
and VM deployment costs) when applying MA-JSPARM and S-JSPARM for the two different types
of users: short flights with 𝜏𝑠 = 3 and long flights with 𝜏𝑙 = 7. Also, the impact of having other users
flying in the same area has been considered by the DA2G link congestion probability.
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Figure 4.7: MA-JSPARM and S-JSPARM comparison: average normalized total operational cost

The total operational cost of the models is compared in Fig. 4.7. It can the observed that the
cost of MA-JSPARM is always lower than S-JSPARM and the difference increases with the increase
of 𝛿 . Also, it can be seen that the cost of flights with longer duration (𝜏𝑙 ) is higher than the short
ones (𝜏𝑠 ) since the number of required resources is higher for the long user. Also, the number of VM
migrations is expected to be higher for the longer flights, which contributes to the total operational
cost. Moreover, it can be seen that the cost difference for the case with long flights is higher than
the short ones (Δ𝜏𝑙 > Δ𝜏𝑠 ). Hence, it can be concluded that the amount of cost savings is higher
when more information about the future is taken into account. It has to be mentioned that in our use
case, the future positions of the flights are known, which makes the problem more straightforward
to solve. In other use cases, such as autonomous vehicles, the vehicle mobility pattern and its future
positions rely on models, which are not easy to determine.
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Figure 4.8: MA-JSPARM and S-JSPARM comparison: average number of VM migrations.
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Figure 4.9: MA-JSPARM and S-JSPARM comparison: average normalized routing cost

Secondly, Fig. 4.8 shows the comparison of the number of VM migrations for MA-JSPARM and S-
JSPARM. It can be observed that the average number of VM migrations in S-JSPARM is significantly
higher than MA-JSPARM. This observation is due to the fact that S-JSPARM does not take the future
flight locations into account. Moreover, it can be seen that the number of VM migrations for the long
flights case 𝜏𝑙 is always higher than 𝜏𝑠 , since the flights are active for a longer period, and hence, the
probability and need for migration raises. The figure also shows that the number of VM migrations
decreases with the increase of 𝛿 value.

However, this can form a trade-off between the routing cost and 𝛿 (or the number of VM mi-
grations). For example, if the value of 𝛿 is large and the flight is moving, in future positions, more
routing cost needs to be paid to reach DC that hosts the particular VM. This trade-off can be seen in
Fig. 4.9. As is reported, for the 𝜏𝑠 and 𝜏𝑙 , MA-JSPARM model avoids VM migrations at 𝛿 = 0.4 and
𝛿 = 0.7, respectively (see Fig. 4.8). Accordingly, as Fig. 4.9 presents, the routing cost in these cases
increases proportionally with 𝛿 . After 𝛿 = 0.4 and 𝛿 = 0.7, the routing cost does not increase and
shows fluctuations, since no VM migration is triggered anymore.

Additionally, Fig. 4.9 shows that S-JSPARM model produces lower routing costs compared to
MA-JSPARM. The reason is S-JSPARM neglects the future positions of the flight and hence, it places
the VM at the closest DC (i.e., low routing cost). We note that MA-JSPARM can control the number
of VM migrations while meeting the end-to-end required delay of each service request.

Besides, the achieved average end-to-end delay of both services for S-JSPARM and MA-JSPARM
is compared in Fig. 4.10. It can be observed that the service requirements are generally met. Also, we
see that the delay is mostly below 50 ms, which means the DA2G is utilized most of the time to route
the services to the selected DC. Moreover, Fig. 4.10 shows that in both 𝜏𝑙 and 𝜏𝑠 cases, S-JSPARM can
achieve lower average end-to-end delay than MA-JSPARM. Again, this is because S-JSPARM does
not consider the future flight positions to solve the problem. In our scenario, there is a local DC
node close to the satellite gateway node in the ground. Consequently, it can be seen that the average
delay for MA-JSPARM(𝜏𝑠 ) is higher than MA-JSPARM(𝜏𝑙 ). It is because the short user 𝜏𝑠 is passing
by fewer DCs during the flight period compared to the longer 𝜏𝑙 one. Therefore, MA-JSPARM(𝜏𝑠 )
would prefer to use the local DC close to the satellite gateway to avoid the routing cost to reach
farther DCs through the DA2G links. Additionally, it can be observed that the maximum achieved
end-to-end delay in MA-JSPARM(𝜏𝑙 ) is higher than MA-JSPARM(𝜏𝑠 ). The reason is that in 𝜏𝑙 case, the
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Figure 4.10: MA-JSPARM and S-JSPARM comparison: average end-to-end service delay.

paths would be longer than 𝜏𝑠 case to improve the cost-efficiency (see Fig. 4.9). Notably, the average
end-to-end delay can be affected significantly by the DA2G link congestion.

Finally, we present the runtime comparison of MA-JSPARM and S-JSPARM in Table 4.3. It can be
seen that the runtime for long flights is higher than for the short ones. Moreover, Table 4.3 indicates
that the time complexity of S-JSPARM is significantly lower than MA-JSPARM, since it does not
consider the future flight positions.

Table 4.3: MA-JSPARM and S-JSPARM comparison: execution time [s].

𝛿 Values 0.1 0.3 0.5 0.7 0.9

MA-JSPARM(𝜏𝑙 ) 1997.45 1936.02 3310.87 2496.06 1697.35
S-JSPARM(𝜏𝑙 ) 108.67 98.61 111.30 101.65 105.58

MA-JSPARM(𝜏𝑠 ) 203.74 259.45 261.15 214.67 238.62
S-JSPARM(𝜏𝑠 ) 52.35 52.32 52.41 53.35 48.51

4.7.3.2 Heuristics Comparison

In this part, we compare the performance of the proposed UbU, TbT, and baseline heuristics with
respect to the optimal MA-JSPARM.

Let us introduce the baseline algorithm first:

4.7.4 Baseline Algorithm

It works based on the UbU, but statically and greedily, without considering the VM placement and
routing from previous users. Its description is presented in Alg. 4. Moreover, it refrains itself from
VM migration and creates a new VM instance when using the existing VM(s) leads to delay violation.

To evaluate the approaches, we only consider the set of long flights, with the size of 5, 10, 20, and
30. Note that due to the scalability issue of MA-JSPARM, we could not run it for larger than 20 flights.
Moreover, the DC locations are set as Madrid, Hamburg, and Budapest. Also, the VM migration costs
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Algorithm 4: Baseline Heuristic

Data: topology 𝐺 , service type 𝑘 , timeslot range 𝑇 , migration cost 𝐶𝑚𝑖𝑔
𝑘

Result: VM placement, routing, and migration decisions at each timeslot, total operational
cost

1 for each timeslot 𝑡 ∈ 𝑇 do
2 Get user location at 𝑡 ;
3 if No VM from the last timeslot available then
4 Find the DC with the least routing cost;
5 Update total operational cost 𝐶total with routing cost and VM cost;
6 else
7 Get routing latency 𝑙 to the previous VM;
8 if 𝑙 violates service 𝑘 requirement then
9 Find the DC with the least routing cost;

10 Update total operational cost 𝐶total with routing cost and 𝐶𝑚𝑖𝑔
𝑘

;
11 else
12 Update total operational cost 𝐶total with routing cost;

are fixed based on the service types, and the services have been randomly assigned to each user for
every 𝑡 ∈ 𝑇 .

The results are summarized in Fig. 4.11. While both UbU and TbT find a solution around 2000x
faster than the MA-JSPARM model, as it is illustrated in Fig. 4.11a, they are able to achieve near-
optimal results. The total operational cost of TbT increases for a higher number of users, more than
the UbU approach. This is mainly due to the VM cost, since TbT does not consider the whole 𝑇 ;
hence, compared to UbU, the possibility of VM sharing among users is lower, leading to deploying
more VMs (Fig. 4.11b). However, since TbT considers all the flights on a single timeslot, the average
routing cost is lower than UbU approach since it does not stretch the routing paths over 𝑇 . The
difference in routing cost increases by increasing the number of flights in the input.

As depicted in Fig. 4.11c, the routing cost of the baseline approach is lower than the UbU and
TbT, because it always tries to place VMs on DCs with the minimum routing delay (which can be
translated to minimum #hops, hence, routing cost). Moreover, refusing to reuse the VMs assigned to
other flights leads to having a higher VM cost for the baseline, increasing the probability of finding
a closer VM (i.e., lower routing cost).

Finally, Fig. 4.11d indicates that the optimal case triggers more VM migrations since it considers
the users during the whole 𝑇 and minimizes the total operational cost. It can be seen that TbT has
lower VM migrations compared to UbU for the lower number of flights. Moreover, it increases with
the number of flights. In fact, UbU improves the VM sharing for the flights, leading to lower VM
migration possibility.
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Figure 4.11: Comparison of the UbU, TbT, MA-JSPARM, and the baseline approaches in terms of average
total, VM deployment, routing, and VM migration costs (normalized).

4.8 Graphical User Interface (GUI)

As an extension, in this section, we present a GUI of our proposed model introduced in this chapter.
This tool provides a simple and clear way to demonstrate the optimal routing, VM placement, and
migration decisions during the flight in a realistic SAGIN for different scenarios. Fig. 4.12 shows a
screenshot of the GUI1 running on an Apache web server, includes three main parts:

4.8.1 GUI Network and Users

The central part depicts a European-based SAGIN map, which contains several components: a Eu-
ropean fixed network interconnecting ground core nodes (Cost266 topology [168]), some of them
containing DCs [76], DA2G nodes distributed over Europe [159], a representative satellite node and
its gateway in Rome, Italy [202]. In this SAGIN, while three airplanes fly over Europe, the optimal
routing, VM placement and migration decisions at each 𝑡 ∈ 𝑇 are depicted on the map.

4.8.2 Scenarios

Three exemplary scenarios are listed The upper left side of Fig. 4.12. These scenarios are different in
three components

1. Number of flights over 𝑇 .

2. Number and location of DCs.

3. Cost values, in particular, VM deployment, and migration costs.

In below, we present the summary of an exemplary output of this GUI.
1Video of the demo: https://www.youtube.com/watch?v=gQPpc1q7OxE

https://www.youtube.com/watch?v=gQPpc1q7OxE
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Figure 4.12: A screenshot of the proposed GUI.

4.8.3 Output

While different airplanes (3 in Fig. 4.12) are flying over the Europe-based SAGIN, the optimal VM
placement, migration, and routing decisions are visualized on the GUI. It can be seen how these
decisions are dynamically updating over time, according to the mobility of airplanes. Further, a
delay monitor is placed on the upper right part of Fig. 4.12. It shows the end-to-end delay for all
the flights. Moreover, the total operational cost achieved by the proposed MA-JSPARM model is
compared to the static case, i.e., S-JSPARM, in the lower chart in Fig. 4.12.

We believe our proposed optimization models and algorithms introduced in this chapter, along
with the GUI tool, can help airline companies to investigate different resource management ap-
proaches. They can evaluate their approaches based on the number and path of the flights they
offer, their budget, and the service types they would like to provide to the passengers.

4.9 Summary

In this chapter, we studied the minimization of the operational costs for the use cases with mobile
users. More specifically, considering different access point mediums, we have focused on minimizing
the cost of resources such as VMs, network links, and also the cost of reconfigurations such as
VM migrations. We have presented a generic system model and formulated two ILPs models for
the JSPARM problem: i) The static case, S-JSPARM, and ii) the mobility-aware/dynamic one, MA-
JSPARM. The former considers one single timeslot, while the latter one considers a set of future user
positions for solving the JSPARM problem and minimizing the total operational costs.

Further, we have used a realistic case study for the flying airplanes for a European-based SA-
GIN, which includes the satellite network, the DA2G network, the ground network, as well as the
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flights and the distributed DC locations. We demonstrated MA-JSPARM is able to utilize DA2G and
satellite connections to satisfy the passenger service requests in a cost-effective manner, compared
to S-JSPARM. In addition, we showed a trade-off between routing and migration costs. Also, we
showed that a VM migration model could avoid unnecessary migrations and improve the long-term
cost-efficiency of MA-JSPARM. Additionally, our evaluation results showed that S-JSPARM achieves
higher delay levels and lower runtime compared to MA-JSPARM.

The main issue with the presented optimization models is their scalability. Due to the NP-
hardness of the problem, S-JSPARM and MA-JSPARM cannot solve the large problem instances in
a tractable time. Therefore, we came up with two heuristic algorithms, which break the problem
into smaller sub-problems. On the one hand, we introduced the UbU algorithm to solve the JSPARM
problem for each user sequentially over the whole time horizon. On the other hand, we presented
the TbT algorithm, which solves the problem at each timeslot (similar to S-JSPARM). The results
indicate that while reducing the runtime from hours to seconds, the heuristics can achieve near-
optimal solutions.

We believe that the models provided in this chapter can help airlines improve the network plan-
ning to support the services of their passengers. Nevertheless, they can tune the inputs of the pro-
posed models (e.g., cost values and service requirements) to fit the models to their particular use
case. Also, this chapter can help them to compare the impact of different service providers (e.g.,
network/satellite providers) on their long-term total operational cost. We note that the proposed re-
source management algorithms can be applied to other scenarios with mobile users, e.g., MEC, IoT,
and IoV (mobility prediction methods might be needed in these cases).

In the next chapter, we focus on delay minimization of users, considering their mobility over
a time horizon. Conceptually, it is similar to this chapter; however, it does not consider the cost
of resources. Instead, it focuses on minimizing the end-to-end delay for real-time and interactive
services to mobile users.



Chapter 5

Reconfiguration Due to Mobility: Delay
Optimization

5.1 Introduction

In the previous chapter, we have focused on minimizing the total deployment cost of a network with
mobile users during an infinite number of timeslots (time horizon). The idea was to provide delay-
guaranteed services to the mobile users while determining the service placement, user assignment,
routing, and reconfigurations with minimum total operational cost. In this chapter, we focus on
the same scenario, but with a different goal. We aim to provide services to mobile users with the
minimum delay in a best-effort manner. This approach is beneficial for dynamic scenarios with
various real-time and interactive services, where guaranteeing a certain delay is not necessary, but
minimizing it is the goal. Further, we consider an online/incremental scenario where the users enter
the network, and the resources are allocated to them on runtime for their whole activity period.
In addition to an online algorithm, we present a second solution based on Machine Learning (ML)
to perform the dynamic resource allocation and reconfiguration for the mobile users in an online
manner. This chapter is based on the works published in [3] and [18].

Operational cost is an undeniably vital metric to consider when designing a communication sys-
tem, which was the previous chapter’s focus. Given a network, a set of mobile users, and their
required services, we needed to make resource allocation decisions. First, the number of Virtual
Machines (VMs) of a specific service type to be deployed on a Data Center (DC), given limited DC
capacity. Second, assignment of users to VMs, subject VM processing limitation. Third, determina-
tion of the routing path from mobile users to the assigned VM considering network capacity. Fourth,
when, from which, and to which DC a VM migration must be scheduled. These four decisions were
made such that the deployment costs were minimized. The deployment costs were calculated as the
sum of the deployed computation resources (i.e., VMs) on distributed DCs, used network links, and
migration cost of the VMs to provide delay-guaranteed services to users. In this section, we focus on
similar scenario and problem, with a few key differences. Firstly, in this chapter, we relax the place-
ment decision in the problem. Thus, we assume that the services are already deployed on all the DC
nodes. In this case, the task of management of the number of deployed VMs can be delegated to auto-
scaling mechanisms in cloud orchestration tools, such as OpenStack [174, 142] or Kubernetes [188].
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The next difference is the objective function, wherein in this chapter, the aim is to minimize the
end-to-end delay between the users and service endpoints (i.e., DCs). The final difference is that the
problem is looked at from an incremental/online point of view. In this problem, the mobile users
are joining the network in time, and the resources are reserved for them based on the designed al-
gorithm. While in the previous chapter, the users were being solved as a batch, specifically by the
Timeslot-by-Timeslot (TbT) algorithm (see section 4.6.2).

5.1.1 Key Contributions

This chapter focuses on best-effort service delay minimization in a scenario with mobile users in
a time-slotted system. Given a network with distributed DCs, a set of users and their future posi-
tions, and the resource limitations, we define the Dynamic Joint Service Assignment, Routing, and
Reconfiguration (D-JSARR) problem, which answers the following questions:

1. Assignment: Which users should be assigned to which DC during their activity period?

2. Routing: How the users should reach the assigned DC?

3. Reconfiguration: When, and from/to which DC a user connection should be reconfigured?

4. Objective: How to jointly solve the above questions to minimize the total routing and recon-
figuration delays for all the users?

To solve the above problem, first, we formulate it as an Integer Linear Program (ILP) optimization
model and prove its NP-hardness. This complexity makes the ILP model not usable in large realistic
scenarios. Therefore, we need to develop some fast and efficient solutions, which can solve the prob-
lem in runtime. Having that in mind, we propose two heuristic solutions. Firstly, we propose Homa,
an efficient online algorithm that addresses the in-user service provisioning problem in polynomial
time. In Homa, we consider a user-by-user approach for solving the problem in online settings. In
particular, given a sequence of graphs as input, we reformulate the problem into a dynamic bipartite
matching problem with special properties and constraints. Having a sequence of bipartite matchings
to be solved, we transform the matching and reconfiguration decisions in an auxiliary graph and use
a shortest-path algorithm (e.g., Dijkstra) to solve the problem in a user-by-user fashion. We also
show that Homa finds the optimal solution in specific scenarios.

Secondly, we propose Figo, which is a framework based on ML that solves the above problem in
a timely fashion. Figo works based on Q-learning method, that after training it with enough data,
can solve the D-JSARR problem in an online manner. Further, we evaluate the performance of Homa
and Figo frameworks using simulations with realistic settings. The simulation results show that
our approaches can significantly reduce the runtime, performs very closely to the optimal solution
obtained from an ILP solver.

5.1.2 Organization

The rest of this chapter is organized as follows. State-of-the-art works are discussed in Section 5.2.
Then, the problem formulation and optimization modeling of the D-JSARR problem are presented
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in Section 5.3 and Section 5.4, respectively. Then, we present the first heuristic framework, Homa,
and its evaluation in Section 5.5 and Section 5.6. As another solution for the D-JSARR problem, in
Section 5.7, we present an ML-based framework, Figo. This framework is evaluated in Section 5.8.
Finally, the chapter is summarized in Section 5.9.

5.2 Related Work

The related work can be discussed in different categories. There are some works that have focused on
the mobility-aware service provisioning in Mobile Edge Computing (MEC) environment [200, 218,
215, 153, 97, 102, 95, 199, 35]. In particular, authors in [97, 199] have studied the dynamical placement
of network functions on MEC servers according to the future handover probability of users. Similarly,
authors in [200] have proposed a VM migration method to deal with user mobility. Further, to be
able to support the delay-sensitive applications, Wang et. al. [218] has focused on minimizing the
service placement, routing, and migration costs proactively, based on a specific look-ahead window.
Also, a closely-related domain to our work is terrestrial networks. [91, 150].

In this area, there are studies that have focused on resource allocation [14, 57, 124, 204, 15, 18],
satellite-based vehicular networks [229], reliability [58], and energy-efficiency [191]. For example,
Varasteh et al. [14, 15] has presented an offline mobility-aware optimization formulation for the
joint service placement, routing, and migration for flying users. Further, in [18], they have extended
their work to use reinforcement learning for decision making. Moreover, authors in [124, 204]
have focused on the onboard access point node communication analysis. In particular, in [124], the
authors have performed a throughput analysis of Direct-Air-to-Ground (DA2G) node communication
during its user. Also, [204] has presented a Quality of Service (QoS)-aware approach to satisfy
the passengers’ traffic flows using different access point node alternatives during the user service
duration.

On the other hand, some works have focused on the resource allocation and management of
MEC environments [53, 141, 143, 148, 177]. In [53], authors have proposed a graph-based algorithm
to determine the number of servers, their size, and the operation area. Considering a maximum
resource capacity for the MEC servers, their goal is to serve the maximum number of users at the
edge area. Similar to them, the authors in [141] have tackled the problem of edge server placement.
They have proposed a multi-objective formulation for balancing the workloads on the MEC servers
and reducing the delay between the clients (industrial control centers in their case) and these servers.

A closer area to our work is where the works have considered the resource allocation reconfig-
uration problem with mobile users [153, 102, 200, 220, 224, 232, 218, 215, 97, 199, 35, 228, 95]. For
instance, authors in [232] have proposed a mobility-aware service placement approach, consider-
ing the mobility of users and their locations, to minimize the service access delay and deployment
costs. Further, some works [97, 199] have studied the dynamical placement of network functions
on distributed MEC servers according to the future handover probability of users. Specifically, [97]
proposes two service migration solution for MEC-based applications: reactive, and proactive. There
are other works with a focus on proactive service provisioning using a look-ahead window and pre-
allocation techniques [177, 218]. Also, authors in [200] have proposed a VM migration method, called
Follow-Me Cloud, to deal with user mobility. In more detail, the aim of them is always to connect the
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mobile users to the optimal gateway, while the service instance (i.e., the VM) follows the users, using
the migration technologies. They have proposed an approach based on the Markov decision process
to determine the appropriate migration decisions. However, they do not consider the network and
servers capacity limits.

In the Internet of Vehicles (IoV) area, similar works exist [27, 226, 228, 34] that provide service
continuity to users (vehicles), considering their mobility. For instance, Zhang et al. in [228] have
focused on the placement of a constant number of edge servers to improve the QoS (i.e., reducing
the average waiting time of services in the IoV), and load balancing. Also, the authors in [27] present
a 5G-enabled framework that migrates the services based on the mobility of the vehicles along the
road. They keep monitoring the delay between the vehicle and the MEC server. In case that the
delay goes higher than a threshold, they migrate the service to another MEC server in the direction
of the vehicle movement. However, these works overlook the end-to-end routing, reconfiguration
overheads, and resource capacities. However, some works [199, 200] assume that the access points
are always available to the users to connect to. Also, some of them overlooked the end-to-end routing
decisions [153, 102, 95, 27], DC capacity [27, 102, 153].

Finally, from an algorithmic viewpoint, this chapter is related to the matching problem in graph
theory. The matching problem has a long history of research, going back to decades ago [42, 30].
Due to the enormous applications of matching in practice [22], there is a huge body of research for
online (bipartite) static matching and its variants [157, 79, 46, 133, 162, 137, 51, 134, 139, 134].

However, due to the dynamic nature of many matching problems in practice, recently, dynamic
matching has been receiving attentions [39, 192, 48, 66, 119]. Despite the similarity in names, our
problem in this paper is different from others. In our problem, there is a sequence of graphs that
change dynamically due to the mobility of users. Therefore, the goal is to maintain a minimum-
weight bipartite matching, considering the mobility of the users.

5.3 Problem Formulation

We present the mathematical formulation of the D-JSARR problem, using the notations summarized
in Table 5.1. Let us start the modeling by defining dynamic graphs. Informally speaking, a dynamic
graph is a graph that changes over time, either nodes and/or links. The formal definition is given by
Definition 1.

Definition 1. A discrete and finite number of timeslots is defined as 𝑇 . We define a dynamic graph as
a sequence of 𝑇 static graphs 𝐺1 = (𝑁1, 𝐿1),𝐺2 = (𝑁2, 𝐿2), ...,𝐺𝑇 = (𝑁𝑇 , 𝐿𝑇 ).

The dynamic graph consists of three components: users, core network, and access points. These
components are introduced and modeled below.

5.3.1 Users

The set of users is defined as 𝐹 = {𝑓1, 𝑓2, ..., 𝑓 |𝐹 |}. At each timeslot, each user 𝑓 has a particular
position over the service area (latitude and longitude), denoted by 𝑝 𝑓 ,𝑡 . Also, each user 𝑓 is active for
duration of T𝑓 timeslots. Each user location 𝑝 𝑓 ,𝑡 is a network node in𝐺𝑡 . Therefore, we define the set
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Table 5.1: Notation definition for the D-JSARR problem.

Parameter Definition

𝑇 Set of timeslots
𝐺𝑡 = (𝑁𝑡 , 𝐿𝑡 ) Dynamic graph at timeslot 𝑡 ∈ 𝑇 , 𝑁 and 𝐿 are the sets of nodes and links

N𝐷𝐶 Set of data center nodes
N𝐹
𝑡 Set of airplane nodes at time 𝑡

𝐶𝐷𝐶𝑗 Capacity of DC 𝑗

N𝐶/L𝐶 Set of core network nodes and links
N𝐴𝑃 /L𝐴𝑃 The set of nodes/links of the access points.

𝐹 Set of mobile users
T𝑓 The duration of user 𝑓 ∈ 𝐹
𝑝 𝑓 ,𝑡 The position of user 𝑓 at timeslot 𝑡
𝑏 𝑓 ,𝑡 The traffic volume of user 𝑓 at timeslot 𝑡
𝐷𝑖, 𝑗 The delay of link (𝑖, 𝑗) ∈ 𝐿
𝐵𝑖, 𝑗 The bandwidth capacity of link (𝑖, 𝑗) ∈ 𝐿
𝑅𝑖, 𝑗 Reconfiguration delay of assigning an airplane from DC node 𝑖 to 𝑗

𝛿+ (𝑖), 𝛿− (𝑖) Outgoing and incoming links from and to node 𝑖
D𝑇
𝑟𝑜𝑢𝑡𝑖𝑛𝑔 Total routing delay

D𝑇
𝑟𝑒𝑐𝑜𝑛𝑓

Total reconfiguration delay

S Matching solution for a dynamic bipartite graph
C(S) Total routing delay of solution S
R(S) Total reconfiguration delay of solution S
𝑑 ( 𝑗) Degree of node 𝑗

Decision Variables
𝑥
𝑝𝑓 ,𝑡

𝑗
∈ {0, 1} =1 if user node 𝑝 𝑓 ,𝑡 is assigned to DC 𝑗 at timeslot 𝑡

𝑙
𝑝𝑓 ,𝑡

𝑢,𝑣,𝑗
∈ {0, 1} =1 if link (𝑢, 𝑣) is used to route user node 𝑝 𝑓 ,𝑡 to DC 𝑗 at timeslot 𝑡

𝑟
𝑝𝑓 ,𝑡

𝑖, 𝑗
∈ {0, 1} =1 if user node 𝑝 𝑓 ,𝑡 is reassigned from DC 𝑖 to 𝑗 at timeslot 𝑡

of user nodes as N𝐹
𝑡 = {𝑝 𝑓 ,𝑡 : 𝑓 ∈ 𝐹, 𝑡 ∈ 𝑇 } and N𝐹

𝑡 ⊂ 𝑁𝑡 . Similar to the previous chapter, a feature of
our problem is the prior knowledge of user positions since, in some use cases like airplanes, trains,
the user path is pre-determined and typically does not change. Moreover, each user generates an
aggregated service traffic with a data rate of 𝑏 𝑓 ,𝑡 (e.g., in Mbps). These services are considered to be
interactive/real-time, such as air-to-ground voice/video calls, gaming, etc., with delay requirements
of around 100 ms [89].

5.3.2 Core Network

We define N𝐶 ⊂ 𝑁𝑡 and L𝐶 ⊂ 𝐿𝑡 as the core network’s set of nodes and links, respectively. The user
services are hosted by DCs located on this network, and defined as N𝐷𝐶 ⊂ N𝐶 . A limited amount of
resources are rented at each DC. Thus, each DC 𝑗 can process a maximum traffic volume of 𝐶𝐷𝐶𝑗 .
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5.3.3 Access Points

We denote the set of access point nodes as N𝐴𝑃 ⊂ 𝑁𝑡 , distributed/located on the service area. These
nodes can directly communicate to the users around them and connect them to the core network.
Usually, these access points can be a mobile base station or even a satellite connection that relays the
traffic to its gateway node on the core network. These access point nodes can be distributed over the
network. Each node in N𝐴𝑃 is connected to the closest core network node N𝐶 . Users can connect
to an access point node (usually to the closest one). The links between users and access point nodes
are denoted as L𝐴𝑃 . Each link in L𝐴𝑃 has its constraints, such as communication range, delay, and
link capacity.

Finally, we associate a constant propagation delay and a bandwidth capacity to each link (𝑢, 𝑣) ∈
𝐿𝑡 , denoted by 𝐷𝑢,𝑣 and 𝐶𝐿𝑢,𝑣 , respectively. The dynamicity of 𝐺𝑡 comes from the mobility of users
and the availability of their access point connections. As shown in Fig. 5.1, the availability of mobile
base stations around the user position can change due to a congestion model [14], hence the available
links of the graph 𝐺𝑡 in a particular timeslot.

In the following, we introduce the formulation of the ILP optimization problem. Then, we prove
its NP-Hardness, and hence, we propose a heuristic framework to solve the problem.

5.4 Integer Linear Program (ILP) Formulation

In this section, we present the offline optimization formulation as an ILP model. Let us start with
two delay functions. We use these functions later to form the objective function of the model.

5.4.1 Routing Delay

The first function is the routing delay. This delay comes from the path that the traffic from a user
takes to reach the assigned DC for receiving its services. Therefore, D𝑇

𝑟𝑜𝑢𝑡𝑖𝑛𝑔 is the defined sum of
the propagation delay of the links that the user traverses to reach the assigned DC in all timeslots:

D𝑇
𝑟𝑜𝑢𝑡𝑖𝑛𝑔 =

∑︁
𝑡 ∈𝑇

∑︁
𝑓 ∈𝐹

∑︁
𝑗∈N𝐷𝐶

∑︁
(𝑢,𝑣) ∈𝐿𝑡

𝑙
𝑝𝑓 ,𝑡

𝑢,𝑣,𝑗
𝐷𝑢,𝑣 (5.1)

where 𝑙𝑝𝑓 ,𝑡
𝑢,𝑣,𝑗

∈ {0, 1} is a decision variable that is equal to 1 if the traffic of user node 𝑝 𝑓 ,𝑡 is routed
towards DC 𝑗 using the link (𝑢, 𝑣) at timeslot 𝑡 .

5.4.2 Reconfiguration Delay

As mentioned before, the users are mobile in our scenario. When they move, their current DC
selection might not remain the best in the future. Therefore, to keep the delay as low as possible, we
need to reconfigure the user from the previous DC to a closer one. With this decision, the user will
have a lower routing delay to the new assigned DC, which improves the QoS. The reassignment1 of
a user connection from a DC to another one is realized by synchronization of the user state and data
migration between two DCs. Due to the traffic overhead and effort, user reconfigurations come with

1In this chapter, reconfiguring/reconfiguration and reassigning/reassignment terms are used interchangeably
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a delay penalty. Therefore, the total reconfiguration delay for all users over the whole time horizon
𝑇 is denoted by D𝑇

𝑟𝑒𝑐𝑜𝑛𝑓
, and can be calculated as follows:

D𝑇
𝑟𝑒𝑐𝑜𝑛𝑓

=
∑︁
𝑡 ∈𝑇

∑︁
𝑓 ∈𝐹

∑︁
(𝑖, 𝑗 ) ∈N𝐷𝐶×N𝐷𝐶

𝑟
𝑝𝑓 ,𝑡

𝑖, 𝑗
𝑅𝑖, 𝑗 (5.2)

where 𝑟𝑝𝑓 ,𝑡
𝑖, 𝑗

∈ {0, 1} is a decision variable that is equal to 1 if the connection of user node 𝑝 𝑓 ,𝑡 is
reassigned from DC node 𝑖 to 𝑗 at timeslot 𝑡 . Also, 𝑅𝑖, 𝑗 represents the delay of reconfiguring a user
connection from DC 𝑖 to 𝑗 .

5.4.3 Constraints

Let us now define the constraints that need to be met by the model. Note that these constraints are
related to the ones presented in previous chapter, Sections 4.4 and 4.5.

5.4.3.1 User-to-DC Assignment

Assuming that flows are not splittable, so each user must be assigned to one and only one DC at each
timeslot 𝑡 : ∑︁

𝑗∈N𝐷𝐶

𝑥
𝑝𝑓 ,𝑡

𝑗
= 1,∀𝑡 ∈ 𝑇,∀𝑓 ∈ 𝐹, (5.3)

where 𝑥𝑝𝑓 ,𝑡
𝑗

∈ {0, 1} is a binary decision variable which is equal to 1, if the user node 𝑝 𝑓 ,𝑡 is assigned
to DC 𝑗 at timeslot 𝑡 .

5.4.3.2 Traffic Generation

The traffic should be generated from the user nodes towards a neighbor node in the graph, i.e., access
point node(s): ∑︁

𝑣∈𝛿+ (𝑝𝑓 ,𝑡 )

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑝𝑓 ,𝑡

𝑝𝑓 ,𝑡 ,𝑣, 𝑗
= 1,∀𝑡 ∈ 𝑇,∀𝑓 ∈ 𝐹 . (5.4)

where 𝑙𝑝𝑓 ,𝑡
𝑝𝑓 ,𝑡 ,𝑣, 𝑗

is a binary decision variable which is equal to 1, if the user position at timeslot 𝑡 (i.e.,
𝑝 𝑓 ,𝑡 ) uses link 𝑝 𝑓 ,𝑡 , 𝑢 to connect to DC 𝑗 . Also, 𝛿+(𝑖)/𝛿− (𝑖) is a function that returns the outgo-
ing/incoming links from/to node 𝑖 .

5.4.3.3 Flow Conservation

These constraints route the traffic flow through the network towards the assigned DC:

∑︁
𝑣∈𝛿+ (𝑢 )

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑝𝑓 ,𝑡

𝑝𝑓 ,𝑡 ,𝑣, 𝑗
−

∑︁
𝑣∈𝛿− (𝑢 )

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑝𝑓 ,𝑡

𝑝𝑓 ,𝑡 ,𝑣, 𝑗
=


0,∀𝑡 ∈ 𝑇,∀𝑓 ∈ 𝐹,∀𝑢 ∈ 𝑁𝑡\N𝐷𝐶 , 𝑢 ≠ 𝑝 𝑓 ,𝑡

𝑥
𝑝𝑓 ,𝑡
𝑢 ,∀𝑡 ∈ 𝑇,∀𝑓 ∈ 𝐹,∀𝑢 ∈ N𝐷𝐶

.

(5.5)

In the above set of constraints, the network node that receives the traffic will forward it out, unless
it is a DC. This is the standard flow conservation rule that we apply in our model.
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5.4.3.4 Routing/Assignment Relation

We need to ensure that the traffic flow of each user node at a particular timeslot is forwarded towards
the assigned DC:

𝑙
𝑝𝑓 ,𝑡

𝑢,𝑣,𝑗
≤ 𝑥𝑝𝑓 ,𝑡

𝑗
,∀(𝑢, 𝑣) ∈ 𝐿𝑡 ,∀𝑡 ∈ 𝑇,∀𝑓 ∈ 𝐹,∀𝑗 ∈ N𝐷𝐶 , (5.6)

In the above constraints, the traffic of the user node 𝑝 𝑓 ,𝑡 can be routed towards DC 𝑗 , if and only if
the user node is assigned to it at timeslot 𝑡 (i.e., 𝑥𝑝𝑓 ,𝑡

𝑗
= 1). Thus, the above constraint can prevent

the traffic from being forwarded to incorrect DC nodes.

5.4.3.5 DC Capacity

As mentioned before, the amount of user traffic that is being processed by each DC is limited. There-
fore, we limit each DC to be able to process a specific amount of traffic:∑︁

𝑓 ∈𝐹
𝑥
𝑝𝑓 ,𝑡

𝑗
𝑏 𝑓 ,𝑡 ≤ 𝐶𝐷𝐶𝑗 ,∀𝑡 ∈ 𝑇,∀𝑗 ∈ N𝐷𝐶 , (5.7)

In above, it is ensured that the sum of the assigned user traffic to each DC stays below the DC capacity
limit 𝐶𝐷𝐶𝑗 .

5.4.3.6 Network Link Capacity

The amount of user traffic volume delivered on a network link is limited to the link’s capacity 𝐵𝑢,𝑣 .
To express this, we define the following set of constraints:∑︁

𝑓 ∈𝐹

∑︁
𝑗∈N𝐷𝐶

𝑙
𝑝𝑓 ,𝑡

𝑢,𝑣,𝑗
𝑏 𝑓 ,𝑡 ≤ 𝐵𝑢,𝑣,∀(𝑢, 𝑣) ∈ 𝐿𝑡 ,∀𝑡 ∈ 𝑇 . (5.8)

5.4.3.7 Reconfigurations

The final set of constraints belong to the reconfigurations that have to be performed:

𝑥
𝑝𝑓 ,𝑡

𝑗
=

∑︁
𝑖∈N𝐷𝐶

𝑟
𝑝𝑓 ,𝑡

𝑖, 𝑗
,∀𝑡 ∈ 𝑇 \{0},∀𝑓 ∈ 𝐹,∀𝑗 ∈ N𝐷𝐶 , (5.9)

𝑥
𝑝𝑓 ,𝑡

𝑗
=

∑︁
𝑖∈N𝐷𝐶

𝑟
𝑝𝑓 ,𝑡+1
𝑗,𝑖

,∀𝑡 ∈ 𝑇 (𝑡 ≠ 𝑇 ),∀𝑓 ∈ 𝐹,∀𝑗 ∈ N𝐷𝐶 . (5.10)

Constraints (5.9) and (5.10) link 𝑥 and 𝑟 variables in a flow conservation way. If 𝑥𝑝𝑓 ,𝑡
𝑗

= 0, the user
node 𝑝 𝑓 ,𝑡 is not assigned to DC 𝑗 at timeslot 𝑡 , meaning no reconfiguration is happened for the user.
𝑥
𝑝𝑓 ,𝑡

𝑗
= 1 implies that a reconfiguration assigns the user node 𝑝 𝑓 ,𝑡 to DC 𝑗 at timeslot 𝑡 and reassigns

it at 𝑡 + 1. This reassignment can be from the DC 𝑗 to 𝑗 , which incurs zero reconfiguration delay:
∀𝑖, 𝑗 ∈ (𝐽 × 𝐽 ), if 𝑖 = 𝑗 , 𝑅𝑖, 𝑗 = 0. We note that reconfiguration is not possible at the first timeslot.
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Finally, the ILP formulation can be presented as follows. The objective function aims at minimiz-
ing the sum of routing and reconfiguration delays for all the users over the whole time horizon 𝑇 .

Minimize
(
D𝑇
𝑟𝑜𝑢𝑡𝑖𝑛𝑔 + D𝑇

𝑟𝑒𝑐𝑜𝑛𝑓

)
, (5.11)

s.t. Constraints (5.3) − (5.10),
vars: 𝑥𝑝𝑓 ,𝑡

𝑗
∈ {0, 1},∀𝑡 ∈ 𝑇,∀𝐹 ∈ 𝐹,∀𝑗 ∈ N𝐷𝐶 ,

𝑙
𝑝𝑓 ,𝑡

𝑝𝑓 ,𝑡 ,𝑣, 𝑗
∈ {0, 1},∀𝑡 ∈ 𝑇,∀𝑓 ∈ 𝐹,∀𝑗 ∈ N𝐷𝐶 ,∀(𝑢, 𝑣) ∈ 𝐿𝑡 ,

𝑟
𝑝𝑓 ,𝑡

𝑖, 𝑗
∈ {0, 1},∀𝑡 ∈ 𝑇,∀𝑓 ∈ 𝐹,∀𝑖, 𝑗 ∈ N𝐷𝐶 .

Theorem 1. The optimization model (5.11) is NP-hard.

Proof. Let us begin by defining the Generalized Assignment Problem (GAP). According to [60, 100],
GAP determines the minimum-cost assignment of 𝑛 jobs to 𝑚 agents, such that considering the
capacity restrictions on the agents, each job is assigned to exactly one agent. Therefore, we are able
to reduce from GAP to an instance of model (5.11) with 𝑇 = 1:

Minimize
∑︁
𝑓 ∈𝐹

∑︁
𝑗∈N𝐷𝐶

𝑐𝑝𝑓 , 𝑗𝑥
𝑝𝑓

𝑗
, (5.12)

s.t.
∑︁
𝑗∈N𝐷𝐶

𝑥
𝑝𝑓

𝑗
= 1,∀𝑓 ∈ 𝐹,∑︁

𝑓 ∈𝐹
𝑥
𝑝𝑓

𝑗
𝑏 𝑓 ≤ 𝐶𝐷𝐶𝑗 ,∀𝑗 ∈ N𝐷𝐶 ,

vars: 𝑥𝑝𝑓
𝑗

∈ {0, 1},∀𝑓 ∈ 𝐹,∀𝑗 ∈ N𝐷𝐶 ,

where 𝑐𝑝𝑓 , 𝑗 is the assignment cost of user node (job) 𝑝 𝑓 to DC (agent) 𝑗 (e.g., the shortest-path delay
value). This transformation can be clearly done in polynomial time. If there exists an algorithm that
solves the model (5.11), it solves the corresponding GAP as well. Given the NP-hardness of GAP [60],
the model (5.11) must be NP-hard too. □

5.5 Homa Heuristic Framework

In this section, we present Homa, our first heuristic solution for the D-JSARR problem. Homa is a
deterministic online approach which solves the D-JSARR problem in polynomial time. The proposed
heuristic is formulated as Dynamic Constrained Minimum-Weight Bipartite Matching (DC-MWBM)
problem, which is explained in the following subsection. In this context, a bipartite matching should
be maintained (considering the reconfiguration cost) for a sequence of graphs that may change over
time dynamically. In the next step, we solve the DC-MWBM in a user-by-user manner where a set of
user requests for the service provisioning during their user time. To solve the problem for a user, we
once again transform the problem into a shortest-path routing problem, where using an auxiliary
graph, the user-to-DC assignments, routing, and reconfiguration decisions are taken. These steps
are explained in the following.
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(a) 𝐺1 (𝑡 = 1) (b) 𝐺2 (𝑡 = 2) (c) 𝐺3 (𝑡 = 3)

Figure 5.1: An example of the problem input as a dynamic graph with two users, two DC nodes, and three
timeslots in a scenario with two exemplary access point types: base stations and satellite. With the change
of user positions during the time, the available connection links might change. For example, user 2 at 𝑡 = 1,
(i.e., node 𝑝2,1) is connected only to the satellite, while at 𝑡 = 2 (i.e., node 𝑝2,2), it gets into a base station range,
thus, both access point options are accessible.

5.5.1 Dynamic Constrained Minimum-Weight Bipartite Matching (DC-MWBM)

Given the sequence of graphs 𝐺𝑡 (see Fig. 5.1), we transform each 𝐺𝑡 to a bipartite graph G𝑡 . We
define bipartite graph G𝑡 = (N𝐹

𝑡 ,N𝐷𝐶 , 𝐿𝑡 ). The set of links is defined as

𝐿𝑡 = {(𝑓 , 𝑗, 𝑛) : 𝑓 ∈ N𝐹
𝑡 , 𝑗 ∈ N𝐷𝐶 , 𝑛 ∈ 𝛿+(𝑝 𝑓 ,𝑡 )}

which shows a matching from user node 𝑝 𝑓 ,𝑡 to DC 𝑗 through available access point node 𝑛. Each
(𝑓 , 𝑗, 𝑛) ∈ 𝐿𝑡 is associated with a weight function 𝑤 (𝑓 , 𝑗, 𝑛) : 𝐿𝑡 → 𝑅+ which is defined as the
routing delay between 𝑓 ∈ N𝐹

𝑡 and 𝑗 ∈ N𝐷𝐶 through the access point node 𝑛 (routing is performed
in 𝐺𝑡 ). Since the position of users changes per timeslot, the link weights from the 𝑤 function also
change, i.e., due to the users’ mobility, the routing delay between the user nodes, and DCs changes.
Considering that, the total number of links for each G𝑡 can be at most 2· | N𝐹

𝑡 | · | N𝐷𝐶 |. For
clarification, Fig. 5.2 shows the bipartite graphs created for the scenario in Fig. 5.1. In this example,
it is assumed that ∀𝑓 ∈ 𝐹,T𝑓 = 𝑇 = 3.

Having the sequence of bipartite graphs G𝑡 , we define the offline DC-MWBM problem. In this
problem, we need to select a set of edges M𝑡 ⊂ 𝐿𝑡 such that each DC node 𝑗 have a node degree
at most equal to its capacity 𝐶𝐷𝐶𝑗 . For simplification purposes, we consider the DC capacity as the
maximum number of users that can use the DC resources at the same time.

𝑑 ( 𝑗) ≤ 𝐶𝐷𝐶𝑗 ,∀𝑗 ∈ N𝐷𝐶 , (5.13)

where 𝑑 ( 𝑗) indicates the node degree of node 𝑗 . Also, since we focus on the best-effort delay min-
imization, we relax the bandwidth constraints for now. However, we later show that in the online
solution, the bandwidth constraint can be addressed by removing the link with not enough capacity
before solving a problem instance.

Remark 1. Considering Hall’s theorem [114], G𝑡 can have a matching with cardinality | N𝐹
𝑡 |. Al-

though | N𝐹
𝑡 |> | N𝐷𝐶 | in G𝑡 ; however, by making 𝐶𝐷𝐶𝑗 copies of nodes 𝑗 ∈ N𝐷𝐶 in G𝑡 , we have

∀𝑈 ⊆ N𝐹
𝑡 , | 𝑈 |≤| 𝛿+(𝑈 ) | (where 𝛿+(𝑈 ) is the set of DC nodes, i.e., copied nodes, that users can

connect to them). This condition is true by having the lower bound value for the DC capacity as
∀𝑗 ∈ N𝐷𝐶 ,𝐶

𝐷𝐶
𝑗 =

⌈
|𝐹 |

|N𝐷𝐶 |
⌉
(and thus a feasible solution).
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(a) G1 (b) G2 (c) G3

Figure 5.2: The sequence of bipartite graphs G𝑡 based on the example in Fig. 5.1. At each timeslot 𝑡 , user
nodes 𝑝 𝑓 ,𝑡 can be matched to a DC node 𝑗 through an access point node if available: satellite (dashed lines)
or DA2G node (solid lines). For example, at the 𝑡 = 1, user 1 has both base station access point node and
satellite connection, whereas user 2 has only access to the satellite. At 𝑡 = 2, both users have access to both
access point nodes, while at 𝑡 = 3, only have satellite connection available. Also, at each timeslot 𝑡 , due to the
mobility of users, the link weight (user-to-DC routing delay) changes dynamically.

Hence, we ensure that all the user nodes in G𝑡 are matched (connected) to a DC node, i.e.,

𝑑 (𝑝 𝑓 ,𝑡 ) = 1,∀𝑝 𝑓 ,𝑡 ∈ N𝐹
𝑡 , 𝑡 ∈ 𝑇 . (5.14)

Having a sequence of dynamic bipartite graphs G𝑡 , the solution of the offline DC-MWBM problem
is a sequence of matchings S = M1,M2, ...,M𝑇 , where M𝑡 is the matching of bipartite graph G𝑡 .
Similar to the objective function in ILP model (5.11), the cost of solution S can be defined as follows:

5.5.1.1 Matching Cost

The total matching cost of a solution S reflects the routing delay value and is the sum of matchings
(selected links in bipartite graphs) in all timeslots:

C(S) =
∑︁
𝑡 ∈𝑇

∑︁
𝑙∈M𝑡

𝑤 (𝑙), (5.15)

where 𝑙 = (𝑓 , 𝑗, 𝑛) in G𝑡 . We remind that C(S) is the sum for the routing delay of all the users to the
matched DC node in all timeslots.

5.5.1.2 Reconfiguration Cost

We define a per-link reconfiguration delay to model the cost of matching changes (i.e., reconfigura-
tion delay). We denote the total reconfiguration cost of solution S as R(S), defined as:

R(S) =
∑︁
𝑡 ∈𝑇 \0

∑︁
(𝑓 , 𝑗 ) ∈M𝑡

∑︁
(𝑓 ′, 𝑗 ′ ) ∈M𝑡−1,(𝑓 =𝑓 ′, 𝑗≠𝑗 ′ )

𝑅 𝑗 ′, 𝑗 , (5.16)

where 𝑅 𝑗 ′, 𝑗 is the reconfiguration delay of reassigning a user connection from DC node 𝑗 ′ to 𝑗 in two
consecutive timeslots. We note that reconfigurations are not possible at first timeslot.

Having the cost functions in hand, our goal is to calculate S for the sequence of M1,M2, ...,M𝑇 ,
minimizing the total matching and reassignment delays:

Minimize
(C(S) + R(S)) . (5.17)

Similar to Theorem 1, the DC-MWBM can be proved to be NP-hard, which is omitted due to the lack
of space.
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5.5.2 Solving DC-MWBM

In this subsection, we develop a deterministic online approach to solve the DC-MWBM problem. At
this stage, a request of service provisioning for a set of users is given as an instance of DC-MWBM.
To solve this matching problem, Homa is designed to work in a user-by-user manner (similar to the
approach presented in Section 4.6.1). Homa uses the user location information (i.e., the user locations
during its active time) to schedule the DC connections and reconfigurations for the whole user period.
Therefore, given a user 𝑓 with duration T𝑓 , we first build an auxiliary graph G𝐴. We then introduce
and solve a shortest-path routing problem in G𝐴, which gives the solution of the online DC-MWBM.
The description of the proposed algorithm is aligned in Alg. 5. The input of the algorithm is a single
user 𝑓 with the activity duration T𝑓 , for which we find the user-to-DC assignment and the necessary
reconfigurations at each timeslot 𝑡 ∈ T𝑓 . Also, to keep track of DC capacities, a dictionary with
key-value pairs

(
𝑗, (𝑡,𝐶𝐷𝐶𝑗 )), 𝑗 ∈ N𝐷𝐶 , 𝑡 ∈ 𝑇 is calculated and given using the network status from

previously served users. In line 1, we initialize the sequence of bipartite graphs G1,G2, ...,GT𝑓 for
the given user 𝑓 . In line 2, we create the auxiliary graph G𝐴 as a multigraph. We create a dictionary
in line 3 to keep the DC nodes with enough capacity at each timeslot (line 5). After that, we start
to build G𝐴. Note that in this example (see Fig. 5.1 and Fig. 5.2), two access points are considered,
base stations and satellites, which can be used to connect the users to the core network. Fig. 5.3
is the follow up for the example in Fig. 5.2 and it shows how Alg. 5 converts DC-MWBM into a
shortest-path problem and solves it.

5.5.2.1 Case 1, 𝑡 = 1, 𝑡 ∈ T𝑓
This is the case for the first timeslot of the user 𝑓 . In this case, we first add the user node 𝑝 𝑓 ,𝑡 to G𝐴
as the first node (line 8). Then, we create a node for each available DC node (line 10), and connect
the user node 𝑝 𝑓 ,𝑡 node at 𝑡 = 1 to it (lines 11-15). These links represent an assignment decision,
for instance link (𝑝 𝑓 ,1, 𝑗1) means user node 𝑓 is assigned to DC 𝑗1 at timeslot 𝑡 = 1. As mentioned
before, each user node can connect to a DC using one of the access point node connections (i.e.,
satellite or base station), which is determined in line 6. Therefore, for each available access point
node (line 11), and add a link for each of them (line 15). For example, in Fig. 5.1a, it can be seen
that at 𝑡 = 1, user 𝑓 = 2 has only satellite connection. Therefore, in Fig. 5.3b at 𝑡 = 1, we connect
the user node 𝑝2,1 to the DC nodes only using the satellite connection (dashed line). We define a
weight for each of these links, which will be used later to calculate the shortest path. These weights
are defined as the delay of the shortest path between the user and DC nodes (in original graph 𝐺𝑡 )
through the corresponding access point node connection. Note that the links with lower than 𝑏 𝑓 ,𝑡
available capacity are removed from the network before calculating the shortest path. Therefore, in
lines 12 and 13, we calculate the shortest-path delay from the user node 𝑝 𝑓 ,𝑡 to the neighbor node 𝑛
(i.e., either satellite or base station access points), and from 𝑛 to the DC node, respectively. We then
sum up these two delay values (line 14) and finally create a link between the user and DC node with
the total delay value as its weight (line 15).
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Algorithm 5: Homa Algorithm
Input : user 𝑓 , T𝑓 , 𝑡 ∈ 𝑇 , dc_capacity_dic
Output: Solution S

1 initialize G𝑡 ,∀𝑡 ∈ T𝑓 ;
2 G𝐴 = new MultiGraph() ;
3 available_dcs = {} ;
4 foreach 𝑡 ∈ T𝑓 do
5 available_dcs[t] = get_available_dcs(dc_capacity_dic[t]);
6 user_access_point_nodes = 𝐺𝑡 .get_node_neighbors(𝑝 𝑓 ,𝑡 );

/* Case 1 */
7 if 𝑡 == 1 then
8 G𝐴.add_node(𝑝 𝑓 ,𝑡 ) ;
9 foreach 𝑗𝑡 ∈ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑑𝑐𝑠 [𝑡] do
10 G𝐴.add_node( 𝑗𝑡 );
11 foreach 𝑛 ∈ 𝑢𝑠𝑒𝑟_𝑎𝑐𝑐𝑒𝑠𝑠_𝑝𝑜𝑖𝑛𝑡_𝑛𝑜𝑑𝑒𝑠 do
12 delay1 = 𝐺𝑡 .dijkstra_path_length(𝑝 𝑓 ,𝑡 , 𝑛) ;
13 delay2 = 𝐺𝑡 .dijkstra_path_length(𝑛, 𝑗𝑡 );
14 sum_delay = delay1 + delay2 ;
15 G𝐴.add_link(𝑝 𝑓 ,𝑡 , 𝑗𝑡 , 𝑠𝑢𝑚_𝑑𝑒𝑙𝑎𝑦);
16 else

/* Case 2 */
17 foreach 𝑗 ′𝑡−1 ∈ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑑𝑐𝑠 [𝑡 − 1] do
18 foreach 𝑗𝑡 ∈ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑑𝑐𝑠 [𝑡] do
19 G𝐴.add_node( 𝑗𝑡 );
20 foreach 𝑛 ∈ 𝑢𝑠𝑒𝑟_𝑎𝑐𝑐𝑒𝑠𝑠_𝑝𝑜𝑖𝑛𝑡_𝑛𝑜𝑑𝑒𝑠 do
21 delay1 = 𝐺𝑡 .dijkstra_path_length(𝑝 𝑓 ,𝑡 , 𝑛);
22 delay2 = 𝐺𝑡 .dijkstra_path_length(𝑛, 𝑗𝑡 );
23 sum_delay = delay1 + delay2;
24 if 𝑗 ′𝑡−1 ≠ 𝑗𝑡 then
25 sum_delay += 𝑅 𝑗 ′

𝑡−1, 𝑗𝑡
;

26 G𝐴.add_link( 𝑗 ′𝑡−1, 𝑗𝑡 , 𝑠𝑢𝑚_𝑑𝑒𝑙𝑎𝑦);
/* Case 3 */

27 G𝐴.add_node(𝑠);
28 foreach 𝑗𝑡 ∈ 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒_𝑑𝑐𝑠 [T𝑓 − 1] do
29 G𝐴.add_link( 𝑗𝑡 , 𝑠 , 0);
30 S = G𝐴.dijkstra_path(𝑝 𝑓 ,0, 𝑠);
31 update_capacity(dc_capacity_dic, S));
32 return S;

5.5.2.2 Case 2, 𝑡 > 1, 𝑡 ∈ T𝑓
In this case, we continue building G𝐴 by connecting DC nodes in two consecutive timeslots. We
create a link between the DC nodes in 𝑡 − 1 and 𝑡,∀1 < 𝑡 ≤ T𝑓 (lines 17-26). The link (𝑖𝑡−1, 𝑗𝑡 )
which connected DCs 𝑖 and 𝑗 in G𝐴, indicates that in two consecutive timeslots 𝑡 − 1 and 𝑡 , the user
nodes 𝑝 𝑓 ,𝑡−1 and 𝑝 𝑓 ,𝑡 are assigned to DC nodes 𝑖 and 𝑗 , respectively. Compared to the first case and
the assignment decisions, the possibility of reconfigurations is enabled here. When 𝑖 ≠ 𝑗 , the link
represents a reconfiguration from DC 𝑖 to 𝑗 at timeslot 𝑡 . We loop through the previous DC nodes
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(a) G𝐴 for the exemplary user 𝑓 = 1.

(b) G𝐴 for the exemplary user 𝑓 = 2.

Figure 5.3: Building the auxiliary graph G𝐴, and solving the DC-MWBM problem for the scenario in Figs. 5.1
and 5.2 in a user-by-user manner. (a) The auxiliary graph G𝐴 and solution for 𝑓 = 1 is built with the possible
assignment and reconfiguration decisions through the user time. It can be seen that at 𝑡 = 3, only satellite
connection is available (dashed line). The calculated shortest-path from 𝑝1

1 to 𝑠 is 𝑝1
1 99K 𝑗1 → 𝑗2 99K 𝑗2 → 𝑠 .

This path means at 𝑡 = 1, the user node 𝑝1
1 is connected to DC 𝑗1 through DA2G (the one in range), at 𝑡 = 2

the user node 𝑝1
2 is connected to 𝑗2 using base station node (one reconfiguration from 𝑗1 to 𝑗2), and at 𝑡 = 3,

the user node 𝑝1
3 continues connecting to DC 𝑗2 through satellite. (b) The calculated shortest-path here is

𝑝2
1 99K 𝑗2 → 𝑗1 99K 𝑗2 → 𝑠 , which uses satellite, base station node, and satellite to connect to DCs 𝑗2, 𝑗1, and 𝑗2

at timeslots 𝑡 = 1, 𝑡 = 2, and 𝑡 = 3, respectively. For this user, two reconfiguration at 𝑡 = 2 and 𝑡 = 3 between
DC 𝑗2 − 𝑗1, and 𝑗1 − 𝑗2 are determined, respectively. We note that the reconfiguration between base station
access point and satellite connection inside the user can be done with an almost instant routing table update
using e.g., OpenFlow [11].

at 𝑡 − 1 (line 17) and also at 𝑡 (line 18). We create a node in G𝐴 for all the available DC nodes 𝑗𝑡
(line 19). Similar to the first case, a maximum of two links can exist between nodes (per access point
node connection type). We calculate the delay of the shortest-path between 𝑝 𝑓 ,𝑡 and DC 𝑡 through
the neighbor node (i.e., access point node connections) 𝑛 in 𝐺𝑡 . In case that two DC nodes at 𝑡 − 1
and 𝑡 are not the same node in 𝐺𝑡 , it indicates a reconfiguration decision. Therefore, we add the
reconfiguration delay between two DC nodes to the link weight (line 25). Finally, in line 26, we add
a link to G𝐴 from node 𝑗𝑡−1 to 𝑗𝑡 with the summed routing delay as the weight.

5.5.2.3 Case 3, Dummy sink

This is the case where we add a dummy sink node 𝑠 to G𝐴 in line 27. Thereafter, we connect the DC
nodes in timeslot 𝑡 = T𝑓 (last user timeslot) to 𝑠 with weight 0 (line 29).
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Having the auxiliary graph G𝐴 built, we can calculate the solution for the user 𝑓 . To do this, we
need to calculate the shortest path from 𝑝 𝑓 ,1 and the dummy sink node 𝑠 nodes using conventional
algorithms, e.g., Dijkstra (line 30). The returned path gives us the assignment, routing, and recon-
figuration decisions with minimum total delay. A comprehensive example is presented in Fig. 5.3.
Finally, the DC and network link capacities are updated in line 31 to be used for future users.

Remark 2. Algorithm 5 can solve the problem for users with any duration. In particular, we only need
to keep track of DC capacities per timeslot. That is, the G𝐴 can be formed for a user with any duration.
Clearly, the number of nodes and links for G𝐴 would depend on the user duration.

Remark 3. For a given user 𝑓 with duration T𝑓 timeslots, graph G𝐴 can have O(T𝑓 · | N𝐷𝐶 |) nodes
and O(T𝑓 · | N𝐷𝐶 |2) links.

Lemma 2. For any given user 𝑓 with duration T𝑓 , Homa is complete2 and optimal.

Proof. For a given user 𝑓 , we build the auxiliary graph G𝐴 with the available DC nodes. Also, we add
all the possible routing options (i.e., access points) with the weight defined as the shortest-path delay
between the user and DC. Also, we consider all possible assignments and reconfiguration decisions
in G𝐴. Therefore, since Dijkstra is complete and optimal [81], for the given user 𝑓 , Homa is also
complete and optimal. □

Theorem 3. For any given set of users 𝐹 , if ∀𝑗 ∈ N𝐷𝐶 ,𝐶
𝐷𝐶
𝑗 ≥| 𝐹 |, Homa is complete and optimal.

Proof. users in 𝐹 depend on each other through the DC capacity. If ∀𝑗 ∈ N𝐷𝐶 ,𝐶
𝐷𝐶
𝑗 ≥| 𝐹 |, it simply

means at each timeslot, a single DC node can host all the users. Thus, the DC capacity constraints
can be relaxed in this case. Therefore, according to the Lemma 2, Homa is complete and optimal for
all the set of user 𝐹 . □

Theorem 4. For any given user 𝑓 , the complexity of Homa for finding the optimal solution is 𝑂 (T𝑓 ·
|𝑁𝑡 |2).

Proof. We calculate the runtime based on the number of times the Dijkstra algorithm needs to be
performed to find the solution for user 𝑓 . The Dijkstra algorithm needs to be executed for each link
in the auxiliary graph G𝐴, except the links for the dummy destination node 𝑠 . Therefore, considering
Remark 3, we need 2 · (T𝑓 − 1)· | N𝐷𝐶 |2 + | N𝐷𝐶 | links (i.e., Dijkstra runs) to build the G𝐴. Each
Dijkstra run is executed for𝐺𝑡 = (𝑁𝑡 , 𝐿𝑡 ), with runtime𝑂 ( | 𝑁𝑡 |2). Since | N𝐷𝐶 |≪| 𝑁𝑡 |, the overall
algorithm runtime for any user 𝑓 can be expressed as 𝑂 (T𝑓 · |𝑁𝑡 |2). We note that in use cases that
the duration of the timeslots is minimal (close to 0), the algorithm complexity is pseudo-polynomial
(based on T𝑓 ). □

5.6 Performance Evaluation

This part presents the performance evaluation of Homa in various scenarios and settings. We first in-
troduce the two baseline algorithms, which are two greedy variations ofHoma. After that, we explain

2An algorithm is complete if it always finds a solution, if one exists. The completeness does not imply optimality.
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the simulation setup and scenarios. Finally, we present the results of the performance evaluation of
Homa against the optimal offline solution (Section 5.4) and the two baseline algorithms.

5.6.1 Algorithms to Compare

For comparison purposes, we develop two variations of Homa as the baseline algorithms. For com-
parison purposes, we re-implemented the algorithm presented in the state-of-the-art work [27]. We
name this algorithm as Threshold-Based Reconfiguration (TBR). Further, we develop two variations
ofHoma (Minimize Delay (MD), and Maintain Connection (MC)) as the baseline algorithms. In below,
we explain these approaches in short.

5.6.1.1 Threshold-Based Reconfiguration (TBR)

The first algorithm to compare with Homa is taken from the state-of-the-art work [27]. In [27], the
authors propose a resource management framework for service placement and migration for the au-
tomotive use-case within the MEC scenario. Similar to us, they have focused on providing low-delay
services to the mobile users (cars in their case) while determining the appropriate MEC server to host
the services and the necessary reconfigurations according to the mobility of the vehicles. In their
approach, they set a threshold for which, if the current routing delay value is higher than a threshold
value, the service is migrated to another MEC server. This MEC server (destination of the migration)
is chosen as the farthest one to lower the number of future migrations. For comparison purposes, we
have chosen two threshold values, 20 and 40 ms. Therefore, we show these two algorithm versions
as TBR-20 and TBR-40, respectively.

However, in contrast to us, the approach presented in [27] lacks considering a few constraints.
Firstly, they do not consider the DC and link capacities into the account. Secondly, they ignore the
service migration (reconfiguration) penalty in their algorithm. Nevertheless, for a fair comparison,
we have added these considerations into the implementation of their algorithm.

5.6.1.2 Minimize Delay (MD)

The next algorithm is a baseline that focuses on minimizing the routing delay between the user
nodes and the assigned DC. MD reconfigures the user connections whenever it leads to a lower
routing delay. At 𝑡 = 1, it chooses the DC with the lowest routing delay to connect the user to it.
For 𝑡 > 1, it reconfigures the user connection to a DC which keeps the routing delay at that specific
timeslot minimized. Regarding the implementation, it is enough to set ∀𝑖, 𝑗 ∈ N𝐷𝐶 , 𝑅𝑖, 𝑗 = 0, i.e.,
reconfiguration becomes a decision with no cost. Thus, in the procedure of building G𝐴, in the case
2 where 𝑡 > 1, we update the weight of link (𝑖, 𝑗), 𝑖, 𝑗 ∈ N𝐷𝐶 with zero reconfiguration cost, i.e.,
changing line 25 to 𝑠𝑢𝑚_𝑑𝑒𝑙𝑎𝑦 += 0 in Algorithm 5.

5.6.1.3 Maintain Connection (MC)

The last baseline algorithm is called MC. As it appears from its name, this algorithm always maintains
its connection to the first selected DC. Developing this algorithm aims to highlight the importance
of providing flexibility in the network (i.e., reconfigurations). At the first timeslot of the flight, MC



5.6. Performance Evaluation 101

connects the user to the DC with minimum routing delay and keeps using it for the rest of the flight
duration. The implementation is done with a slight tweak in Algorithm 5, in the second case 2, where
𝑡 > 1. In particular, while building the G𝐴, in two consecutive timeslots 𝑡 − 1 and 𝑡 , MC adds links
only between DC nodes 𝑖𝑡−1 and 𝑗𝑡 , if 𝑖 = 𝑗, 𝑖, 𝑗 ∈ N𝐷𝐶 . In this way, the reconfiguration of user
connections would not be possible for the Algorithm (since there are no links between different DCs
in G𝐴).

5.6.2 Simulation Setup

In this section, we use the similar usecase from the previous chapter 4.7.1, which is the in-flight
service provisioning in a realistic European-based Space-Air-Ground Integrated Network (SAGIN).
Similarly, two access points are considered for each flight, namely DA2G and satellite. In below, we
introduce the input parameters which are used explicitly in this chapter.

The set of considered flights has been exported from userRadar24 live air traffic for 24 hours on
9.11.2017. In our experiments, we select a set of flights 𝐹 , such that | 𝐹 |= {20, 50, 100, 300, 500}. For
simplification, we assume that all the users are transmitting the same amount of traffic 𝑏 𝑓 ,𝑡 during
all the timeslots. As the ILP model takes hours to solve a problem instance with 100 flights, the
number of timeslots has been limited to eight so that we can have problem instances with a higher
number of flights. Thus, we choose 𝐹 with the same duration, equal to seven timeslots (i.e., 3.5 hours
of flight). Considering the speed of the flight (800-900 Kmph) and the DA2G node connection range,
the duration of each timeslot is considered as 30 minutes. Note that this value can be changed based
on different scenarios. Indeed, the number of timeslots depends on the user speed and the range of
the DA2G node and satellite coverage, which can lead to an even different number of timeslots per
flight. However, to simplify the evaluation scenario, we consider the same number of timeslots and
duration for all the flights.

The simulation settings are based on a realistic European-based user space (see Fig. 4.5). We
use the European Cost266 topology [78] for the ground core network. The delay of links in
L𝐶 is determined according to the length of the optical fiber transmissions. Regarding the DC
nodes, we choose two sets of DC nodes, with 3 and 6 nodes, distributed over Europe: a small set
N𝐷𝐶={Hamburg, Madrid, Budapest}, and a larger set N𝐷𝐶={Strasbourg, Stockholm, Madrid, Athens,
Glasgow, Krakow}. We consider three cases for the DC capacity:

1. Low: ∀𝑗 ∈ N𝐷𝐶 ,𝐶
𝐷𝐶
𝑗 =

⌈
|𝐹 |

|N𝐷𝐶 |
⌉

(note that lower DC capacity makes the problem infeasible,
see Remark 1).

2. High: ∀𝑗 ∈ N𝐷𝐶 ,𝐶
𝐷𝐶
𝑗 =| 𝐹 |

3. Medium: the average of low and high values.

Since the focus of Homa is to provide (best-effort) low-delay in-flight services, we consider ∀𝑓 ∈
𝐹, 𝑡 ∈ T𝑓 , 𝑏 𝑓𝑡 = 1 with a relaxation on the bandwidth constraints for the access point node and
ground network links. There are 295 DA2G node base stations (already deployed in Europe), which
their location (in terms of latitude and longitude) is taken from [98]. The propagation delay from
user to the DA2G node base station is set to 10 ms [82]. Further, we consider the DA2G node
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connectivity range as 150 km [15], although in practice, it can vary based on, e.g., the antenna
employed technology and weather conditions. Without loss of generality, we connect the user nodes
𝑝 𝑓 ,𝑡 to the closest DA2G node base station in range. Further, to make our scenario more realistic, we
consider a DA2G node congestion model from the previous chapter 4.7.1.

Regarding the reconfiguration delay, we use the distance between source and destination DC
nodes:

𝑅𝑖, 𝑗 =


𝑀 ∗ 𝑑𝑖 𝑗𝑘𝑠𝑡𝑟𝑎_𝑝𝑎𝑡ℎ_𝑙𝑒𝑛𝑔𝑡ℎ(𝑖, 𝑗), 𝑖, 𝑗 ∈ N𝐷𝐶 (𝑖 ≠ 𝑗),
0, 𝑖, 𝑗 ∈ N𝐷𝐶 (𝑖 = 𝑗),

𝑀 is a random number between 0 and 2. We note that the modeling of the service migration is out
of the scope of this paper. However, different 𝑅𝑖, 𝑗 models can be plugged into the Homa, depending
on the specific application.

To design different experiments, we use the input parameters and their values in Table 5.2
wherein in each experiment, three parameters are fixed, and the fourth one is varied. We imple-
ment and solve the ILP model using Gurobi [113] optimization solver. Also, Homa, MC, and MD
approaches are implemented in Python. We perform the evaluations for 30 random sets of scenarios
on a machine equipped with Intel Core i7-6700 CPU3.40 GHz, 16 GB RAM, and running Arch Linux
with kernel 5.5.11-arch1-1.

Table 5.2: Input parameters and their values used for the performance evaluation. The default value is in bold
text.

Input parameter Values

Number of flights (| 𝐹 |) 20, 50, 100, 300, 500
Flight duration (T𝑓 ,∀𝑓 ∈ 𝐹 ) 4, 8
Number of DCs (| N𝐷𝐶 |) 3, 6

DCs capacity (𝐶𝐷𝐶𝑗 ,∀𝑗 ∈ N𝐷𝐶 ) Low, Medium, High

5.6.3 Simulation Results

In this part, we present the simulation results for different parameters and experiments.

5.6.3.1 Impact of Number of Flights

In the first experiment, we first consider the default values for the flight duration T𝑓 , number of
DCs | N𝐷𝐶 |, and DC capacity 𝐶𝐷𝐶𝑗 according to Table 5.2. The effect of number of flights on total
delay (i.e., the objective function value), routing delay, and number of reconfigurations can be seen
in Fig. 5.4a-5.4c. In Fig. 5.4a, it can be seen that Homa achieves a near-optimal objective function
value with around 1% of distance from the optimal.

Also, Homa outperforms the baseline and state-of-the-art algorithms for up to 15% on average
regarding the objective function value. The MD algorithm achieves a lower routing delay compared
to Homa (see Fig. 5.4b) since it greedily reconfigures the airplane connection to the closest DC to
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Figure 5.4: Comparison of the simulation results for different number of flights.

minimize the routing delay. However, it requires a significant number of reconfigurations to be able
to minimize the airplane to DC delay (see Fig. 5.4c). Further, MC leads to a larger routing delay
compared to Homa, since it keeps using the first (closest) selected DC for the whole flight period and
does not reconfigure the connection. Therefore, during the flight, when the airplane gets far from
the DC, the routing delay also increases. Also, it can be seen that the TBR-20 and TBR-40 lead to
a higher objective value function. The reason is in TBR, determining the threshold value for trig-
gering the reconfiguration is challenging, especially when the goal is to minimize the overall delay.
Lower threshold values (i.e., TBR-20) can lead to higher total delays and more reconfigurations are
triggered for TBR (see Fig. 5.4c). According to its design, TBR reconfigures the service to the farthest
DC, which increases the routing delay. In addition, since TBR does not take the reconfiguration over-
head into the account, the balance between the routing delay and reconfiguration delay is missed,
hence, leading to sub-optimal decisions. Fig. 5.4c shows the number of per-flight reconfigurations for
the flight duration, in which, the proposed Homa approach can make near-optimal reconfiguration
decisions for the flights. Also, MC does not perform any reconfigurations.

Overall, it is evident that Homa can accurately balance the flight to DC routing delay and recon-
figurations, demonstrating a near-optimal behavior while outperforming the baseline and state-of-
the-art algorithms. We note that the average round-trip delay per flight per timeslot can be driven
from Fig. 5.4a. This value is around 68 ms in the worst case for 500 flights using the proposed HOMA
approach (requirements being around 100 ms [89]), which can support a wide range of interactive
services such as air-to-ground voice calls, video conferencing, and gaming.
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Figure 5.5: Comparison of the simulation results for different number of DCs.

5.6.3.2 Impact of Number of DC Nodes

Fig. 5.5a-5.5c show the evaluation results of the algorithms for varied number of DCs, while keeping
the default values for other parameters. The goal here is to compare the behavior of different ap-
proaches when the number of available DCs changes. This can assist the operators in more accurate
capacity planning.

Regarding the total delay, Fig. 5.5a indicates that a lower number of DCs leads to a higher delay
value. That is because, with a higher number of DCs, flight nodes get in a closer distance to a DC
node on average during the flight. It can also be seen in Fig. 5.5b, where the routing delay is generally
lower in the case with six DC nodes. However, the TBR algorithm does not follow this trend, since by
each reconfiguration, the routing delay increases (the reconfiguration is done towards the farthest
DC).

Also, it can be seen that the difference in the difference of total delay achieved by the algorithms
is generally lower for three DCs compared to six. It is because the role of DC capacity (which is the
main cause of sub-optimality) is more critical with a higher number of DCs (i.e., there is more room
to be sub-optimal).

However, regarding the number of reconfigurations, Fig. 5.5c shows that the case with six DCs
has around 20% more reconfigurations compared to the case with three, since it brings more flex-
ibility (and more opportunities for reconfiguration, especially for the TBR algorithm). Indeed, this
value gets lower with services with higher reconfiguration costs. However, still, the case with three
DC makes more sense since the total delay still leads to reasonable solutions, while the number of
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Figure 5.6: Comparison of the simulation results for different DC capacities.

reconfigurations is kept low. The results show that using Homa can bring the operators substantial
cost savings by renting/building 50% fewer DCs while sacrificing a low portion of solution quality.

5.6.3.3 Impact of DC Capacity

In this analysis, we use the default values for the number of flight, flight duration, and the number of
DC nodes and vary the DC capacity. The goal of this part is to find out what is the impact of different
DC capacities on the performance of the algorithms. Fig. 5.6a shows the comparison of the achieved
total delay by the algorithms for low, medium, and high DC capacities. Since our approach is online
(user-by-user), the DC capacity can play a big role in having the available resources in a good DC
location when needed. It can be seen that the total delay decreases with higher DC capacity.

It can be seen that generally, the behavior of the algorithms is similar for the cases with different
DC capacities. However, the total delay decreases with higher DC capacity. Also, the same trend is
there for the routing delay as in Fig. 5.6b. The reason behind this is there are more DCs available
to serve the flights (i.e., average distance of airplanes and DCs is decreased). Moreover, as proved in
Theorem 3, it is evident that Homa is able to take optimal decisions for DC selection and reconfig-
uration in case of high DC capacity. Finally, Fig. 5.6c shows that the DC capacity does not change
the number of reconfigurations much for the optimal and Homa, i.e., they stay around one reconfig-
uration per flight for all the DC capacities. These evaluations show that it is not necessary to rent
plenty of resources at each DC. In fact, Medium or even low amount of resources could provide a
good solution. It indicates that in contrast to other algorithms, Homa can lead to cost savings for the
operators.
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5.6.3.4 Runtime

The runtime comparison of the optimal offline solution (i.e., ILP), Homa, MD, MC, and TBR algo-
rithms is presented in Table 5.3. Firstly, this table shows that the ILP formulation is significantly
slower than the other heuristics. Also, it can be seen that Homa can solve the problem for 500 flights
in around six seconds per flight. Also, MC has the lowest runtime since it does not consider the
reconfiguration decisions. Thus the number of Dijkstra runs is considerably lower, compared to
the Homa, and MD approaches. Finally, the TBR algorithms are the fastest ones since they are less
sophisticated.

Table 5.3: The comparison of the mean runtime of the different approaches (in seconds) for the default input
parameters.

|𝐹 | = 20 |𝐹 | = 50 |𝐹 | = 100 |𝐹 | = 300 |𝐹 | = 500

ILP 187.1 569.2 12412.4 N/A N/A
Homa 15.3 52.2 166.8 1175.4 3216.5
MD 16.8 44.5 151.9 1014.7 3140.1
MC 4.4 11.2 57.5 123.5 163.6

TBR-20 0.8 3.3 11.2 94.63 278.54
TBR-40 0.5 2.4 8.7 80.8 228.1

5.6.3.5 Discussion

Let us summarize some remarks related to Homa. Firstly, we choose to adopt the discrete-time model
mainly due to its simplicity. Furthermore, this model can be arbitrarily close to the continuous-time
model by making the timeslot duration very small. However, it is not the case for our scenario.
Considering the flight speed and the access point node coverage range, the decision-making can be
done in longer periods (on a scale of a few minutes).

Secondly, we consider the user paths a priori knowledge once planes are ready to take off. In
practice, the paths can be changed in some emergencies (e.g., bad weather conditions). In this case,
Homa can be rerun to adapt the previously-made decisions using the updated network status (e.g.,
network link availability/congestion status) according to the emergency.

Third, we model the Low-Earth Orbit (LEO) satellite constellation with a single representative
node with the worst-case delay value. The integration of the dynamic satellite network considering
the cost/delay of the satellite handover could be added to our approach as follows: the handover
cost between two consecutive timeslots could be added to the cost of satellite connection links (i.e.,
dashed lines in Fig. 5.2).

Finally, we point out that Homa does not guarantee the service-specific delay requirements but
follows a best-effort approach towards delivering low-delay services to the users. Nevertheless, the
routing decision-making part of Homa can be enhanced with deterministic networking theories such
as Network Calculus [208, 12], to provide a delay guarantee for the critical traffic flows (e.g., flight
status).
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5.7 Figo Online Algorithm

In this section, we present Figo, the second approach to solve the D-JSARR problem. Figo utilizes ML
techniques and is deployed on a controller node which can learn the efficient policy to determine the
assignment, routing, and reconfiguration decisions. ML is an application of Artificial Intelligence
(AI) which can improve an algorithm automatically by experiencing and using the data. In other
words, ML algorithms use sample data (i.e., training data) to model and make predictions and deci-
sions on a specific problem, such as Email filtering, pattern recognition, and computer vision [31].
Reinforcement Learning (RL) is currently one of promising branches in ML research. It has shown
extraordinary problem-solving abilities in different fields such as medicine, robotics, and even could
tackle the previously unsolvable games such as Go [167]. RL is based on a trial and error method, in
which an agent interacts with an environment and receives feedback for the performed action. The
ultimate goal is to learn a good policy for sequential decision problems by maximizing a cumulative
reward [167]. The RL agent collects the system state for each episode and calculate the expected
reward at each timeslot. Then, it selects an action according to a predefined strategy, and the system
transfers to a new state in the next timeslot. Similarly, the agent calculates the reward and chooses
new action. We define the state space, action set, and reward function.

5.7.1 State-Space

We define state-space S, containing states 𝑆 (𝑡) for the user 𝑓 at timeslot 𝑡 . Each state consists of
three elements:

S = {𝑆 (𝑡) = (𝑝 𝑓 ,𝑡 , 𝑝 𝑓 ,T𝑓 , 𝑗𝑡 ) | ∀𝑓 ∈ 𝐹,∀𝑗 ∈ N𝐷𝐶 }, (5.18)

where 𝑝 𝑓 ,𝑡 and 𝑝 𝑓 ,T𝑓 correspond to the current and final position of the user 𝑓 , respectively. It conveys
both a sense of mobility and enables the agent to plan for a long-term solution. In order to diminish
our state-space, we divide the network (graph 𝐺) into areas on a 100 × 100 grid, from which the
positions 𝑝 𝑓 ,𝑡 are taken. This enables an improved exploration during the training phase and also an
increase in performance for unknown users. The last component of the state is 𝑗𝑡 ∈ N𝐷𝐶 which is
the current DC that the user is assigned to.

5.7.2 Action Set

The actions are the set of user-to-DC mappings that can change at each timeslot (i.e., reconfiguration
operation). The routing decisions are pre-calculated based on the shortest-path algorithm. Therefore,
we define the action set X as follows:

X = {𝜒 𝑗 | 𝑗 ∈ N𝐷𝐶 }, (5.19)

where 𝜒 𝑗 indicates if a given user is assigned to DC 𝑗 . Note that in Figo, for simplification reasons,
the link capacity constraints (Eq. 5.8) are relaxed.



108 Chapter 5. Reconfiguration Due to Mobility: Delay Optimization

5.7.3 Reward Function

At each timeslot, the agent gets a reward R(𝑆, 𝜒) in a specific state 𝑆 after executing action 𝜒 from
X. We define the reward function R as below:

R(𝑆, 𝜒) = D(𝑆, 𝑗) − D𝑡
𝑟𝑒𝑐𝑜𝑛𝑓

− D𝑡
𝑟𝑜𝑢𝑡𝑖𝑛𝑔,∀𝑗 ∈ 𝐽 ,∀𝑡 ∈ 𝑇, (5.20)

where D(𝑆, 𝑗) is the delay of Dijkstra’s shortest-path from the current user position to the closest DC
𝑗 . Also, D𝑡

𝑟𝑒𝑐𝑜𝑛𝑓
and D𝑡

𝑟𝑜𝑢𝑡𝑖𝑛𝑔 are the reconfiguration and routing delays at the timeslot 𝑡 , respectively.
The comparison with the minimum routing delay for each DC allows all timeslots to have a common
baseline. Also, it prevents large reward variance at each timeslot, thus avoiding an inconsistent
training, which would lead to slow convergence.

5.7.4 The Machine Learning (ML) Framework

Figo uses Q-learning to solve the D-JSARR problem. Q-learning belongs to RL algorithms, in partic-
ular, to off-policy and model-free category. Off-policy RL methods do not actively follow the policies
that they learn. In this case, the agent tries to learn from its actions. Even sometimes, it takes ran-
dom actions (greedy policy) to explore the scenario fully. Model-free algorithms learn the optimal
policy by estimating the optimal Q-values for each state without previous knowledge of the envi-
ronment. Q-value 𝑄 (𝑆, 𝜒) is a metric to evaluate how good action 𝜒 taken at a particular state 𝑆
is. These Q-values are stored in the Q-table. It is in contrast to model-based algorithms that learn
the optimal policy by searching the so-called policy space. Further, in contrast to Model-based ap-
proaches, the model-free Deep Q-Learning (DQN) cannot make predictions for the next state and
will only choose the optimal action for every single state. Notably, a model-based approach would
allow an agent to look and choose an action considering future actions. The downside is that it learns
a model purely from experience, making the model-based approaches very time-consuming, while
model-free methods are more efficient, easier to implement, and tune.

In Q-learning, values are updated according to the greedy policy, where the actions with the
highest Q-value are chosen. These values are updated according to the Bellman Equation. Then, at
a given state, Q-learning chooses an action by looking up the highest value in the table or random
(epsilon-greedy). After each interaction, the reward is measured, and the Q-table is updated. Thus,
the Q-table can be defined and 𝑀 × 𝑁 matrix, with 𝑀 actions and 𝑁 states:

𝑄𝑡+1(𝑆 (𝑡), 𝜒 (𝑡)) = (1 − 𝛼)𝑄𝑡 (𝑆 (𝑡), 𝜒 (𝑡)) + 𝛼 [R(𝑡) + 𝛾 · max
X
𝑄𝑡+1(𝑆 (𝑡 + 1), 𝜒 (𝑡 + 1))], (5.21)

where 𝛼 is the learning rate, and 𝛾 is the discount factor, which allows us to balance the con-
centration on short or long-term rewards. This procedure is not practical to be used in the case of a
large state-space[106]. In particular, it is much more difficult for an agent to visit each state and store
all these Q-values in a large state-space. To tackle this issue, an alternative is DQN, in which a Deep
Neural Network (DNN) is deployed. In particular, it is used to approximate the optimal action-value
function, enabling it to predict the Q-values for each state accurately. As shown in [163], using the
DQN allows learning of good policies within a large and complex state-space usecase. However, a
problem with DQN is that the same value is used to both evaluate and choose the actions performed
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by the RL agent, which may result in over-optimistic results. By separating these values, overesti-
mation can be prevented. Thus, we propose to use Double Deep Q-Learning (DDQN)[209] which
tackles this problem by using two Neural Networks (NNs), one to evaluate the Q-values, while the
other one chooses the action to take. Thus, DDQN would help Figo to produce more robust and
accurate policy learning.

5.7.5 Training

Figo learns by using the continuously received user data in a simulated environment. Long-term and
continuous training enables Figo to improve the returned solutions for unknown scenarios. Further,
we use Prioritized Experience Replay (PER) [189] which stores the previous experiences in replay
buffers, instead of discarding them. Later, we sample from these experiences to train on data that
is not as correlated and correct, therefore avoiding depreciating policies. For efficient training, two
parameters need to be contemplated:

1. Environment: The environment is what our RL agent interacts with during the training. It
provides our agent with the observation and reward of the performed action. The environment
is deterministic as well as fully observable, in which the data for the user location and the DC
assignment are available for the whole time horizon 𝑇 (discrete). We base our environment
structure on the openAI Gym [55]. To further improve performance, in addition to the current
agent state, the routing delay to each DC is added as an input to the RL agent observation. It
helps the agent to be able to distinguish possible good actions.

2. Hyperparameters: The DNN is updated during training by using a batch of randomly picked
data from past observations [189]. We define a decreasing 𝜖 value for the training algorithm
to trade-off the exploration against the exploitation [33]. The last parameter to be considered
is the discount factor 𝛾 , which balances the weight of long and short-term rewards. When
the value of 𝛾 is close to one, it indicates higher importance for long-term rewards. After
performing a grid-search, we conclude to use the training hyperparameters listed in Table 5.4.

Table 5.4: Training hyperparameters.

Parameter Value

Learning rate 𝛼 5 × 10−4

Discount factor 𝛾 0.9
Final exploration factor 𝜖 0.02

Exploration fraction 30%
Batch size 𝑛 32

NN layers (including input and output) 4
Training length 105 timeslots
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5.7.5.1 Neural Network (NN) Structure

We use a NN with two fully-connected hidden layers, using a rectifier linearity activation function.
The input layer is composed of 18 input neurons, the size of our observation. The output layer is fully-
connected and consists of one output neuron for each possible action. Each output neuron displays a
probability value between 0 and 1. The action neuron with the highest value is then chosen for each
timeslot. To optimize the agents NN performance, all the data features are normalized, preventing
the input features from influencing the DNN weights differently.

5.8 Performance Evaluation

In this section, we introduce our simulation scenario and parameters for evaluation. Thereafter, we
compare the proposed Figo framework against the optimal ILP solution.

5.8.1 Simulation Setup

The simulation scenario and input parameters are the same European-based SAGIN which was used
for the previous Chapter 4.7.1. However, we only mention the additional settings that we consider
for the current evaluation. For a detailed evaluation of Figo, we consider two different DA2G node
connectivity ranges Ψ𝐷𝐴2𝐺 as 70 and 150 km. The set of flights has been exported from userRadar24
live air traffic for 24 hours on 9.11.2017. Due to the high computation complexity of the ILP, we
choose a set of only 50 random flights from our flight database. However, Figo can solve the problem
for a higher number of flights. Let us consider the duration of each timeslot as 30 minutes and
flights with two different durations: i) short flights with the duration of 2 hours, i.e., T𝑓 = 4, and ii)
long 4-hour flights i.e., T𝑓 = 8. In our scenario, based on the reconfiguration cost model presented
in Section 5.6.2 we consider two services with low and high reconfiguration delays, ℜ = 5, and
ℜ = 25 ms, respectively.

The ILP model is implemented and solved with Gurobi [113] in Python. Moreover, Figo is imple-
mented with TensorFlow [20] in Python. The training and simulations are performed on a machine
equipped with Intel Core i7-6560U CPU and 8 GB of RAM.

Table 5.5: The considered scenarios with |𝐹 | = 50 with different number of DC nodes |N𝐷𝐶 |, flight duration
T𝑓 , and DA2G node coverage Ψ𝐷𝐴2𝐺 .

Scenario Settings Scenario Settings

ID
( |N𝐷𝐶 |, T𝑓 , Ψ𝐷𝐴2𝐺

)
ID

( |N𝐷𝐶 |, T𝑓 , Ψ𝐷𝐴2𝐺
)

1 (3, 4, 70 km) 2 (3, 4, 150 km)
3 (3, 8, 70 km) 4 (3, 8, 150 km)
5 (6, 4, 70 km) 6 (6, 4, 150 km)
7 (6, 8, 70 km) 8 (6, 8, 150 km)
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5.8.2 Simulation Results

5.8.2.1 Total Delay and Number of Reconfigurations

We start by comparing the performance of Figo with the optimal solution in eight different scenarios
summarized in Table 5.5. We note that each scenario is run 30 times randomly. As depicted in
Fig. 5.7a a higher total delay can be observed for larger reconfiguration delays and an increase of
reconfigurations for the smaller ℜ value. It can be seen that Figo can produce near-optimal results
in all the scenarios. Also, the instances with higher ℜ have a higher objective function on average.
The reason is that for small ℜ, the algorithm has more flexibility in improving the objective function.
This fact can be observed in Fig. 5.7b wherein all scenarios, the number of reconfigurations is lower
in the case of ℜ = 25. −0.05 0.00 0.05
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Figure 5.7: Comparison of the objective function value (sum of routing and reconfiguration delays) and the
number of reconfigurations for Figo and the optimal solution in the eight different scenarios of Table 5.5.

An interesting observation in Fig. 5.7a is when we compare scenarios (𝑖, 𝑗) with different number
of DC nodes (i.e., scenarios (1,5), (2,6), (3,7), and (4,8)). In these scenarios, the total delay value
is generally lower on average for six DCs compared to three. This can give the algorithm more
reconfiguration possibility, as Fig. 5.7b indicates. In particular, in scenarios with |N𝐷𝐶 | = 6, more
reconfigurations are performed, especially when ℜ = 5 due to even higher flexibility. That is why
the improvement is generally lower for ℜ = 25 compared to ℜ = 5. Hence, it can be concluded that if
the reconfiguration delay of the services is low/high, airline companies should go for a higher/lower
number of DCs to achieve the same delay level for their in-flight services.

In addition, Fig. 5.7a shows that the scenarios with higher flight duration (e.g., Scenarios (3, 7)
compared to (1, 5)) lead to obviously higher total delay. Also, higher values of Ψ𝐷𝐴2𝐺 (e.g., Scenarios
(6, 8) compared to (5, 7)) can lead to a lower objective function value, since higher Ψ𝐷𝐴2𝐺 makes the
flights more reachable to DC locations.

In the following, we investigate the impact of changes in the flight duration, the number of DCs,
DA2G coverage, and the number of flights on the optimality gap of Figo with different reconfiguration
ℜ delays.
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5.8.2.2 Impact of Flight Duration

Let us choose some of the challenging scenarios for closer analysis. Fig. 5.8 compares the effect of
flight duration on the optimality gap by considering scenarios 6 and 8 where |N𝐷𝐶 | and Ψ𝐷𝐴2𝐺 are
fixed. It shows that the optimality gap is the lowest for Scenario 8 (T𝑓 = 8) and ℜ = 5, and the same
scenario with ℜ = 25 has the highest gap.
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Figure 5.8: Impact of flight duration on optimality gap of Figo.

The reason is ℜ = 5 brings more reconfiguration options than the ℜ = 25 case. In this case,
the reconfiguration delay is the deal-breaker in the optimality gap instead of the flight duration.
This is an advantage of Figo, which performs with a close distance to optimal, even in more realistic
scenarios where flights have a longer duration.

5.8.2.3 Impact of Number of DC Nodes

Fig. 5.9 compares the optimality gap for scenarios with fixed T𝑓 and Ψ𝐷𝐴2𝐺𝑛𝑜𝑑𝑒 and varying |N𝐷𝐶 |
(i.e., Scenarios 4 and 8 with |N𝐷𝐶 | = 3 and |N𝐷𝐶 | = 6, respectively). We observe that Scenario 4
performs better than 8 when ℜ = 5; however, for ℜ = 25, they almost perform similarly. We know
that Scenario 8 has a larger state-space since it scales exponentially with the number of DCs, making
it harder to achieve a close optimality gap. However, it can achieve a better optimality gap in both
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Figure 5.9: Impact of number of DC nodes on optimality gap of Figo.

ℜ = 5 and ℜ = 25. We can conclude that the number of DCs has more impact on the performance
than the reconfiguration delay.
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5.8.2.4 Impact of DA2G Coverage Range

In this part, we compare the performance of Figo against the optimal solution for different Ψ𝑛𝑜𝑑𝑒
in Fig. 5.10. The results indicate that the smaller DA2G node range (i.e., Scenario 7) diminishes the
number of DA2G node connections. Consideringℜ = 25, this fact leads to even fewer reconfiguration
potentials since the ideal DC assignment would be located near the satellite gateway node.
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Figure 5.10: Impact of DA2G coverage range on optimality gap of Figo.

5.8.2.5 Scalability of Figo

An essential characteristic of Figo is its ability to solve the problem for a large number of users with
an acceptable optimality gap. To show this, we ran scenario 8 for an additional 30 runs, taking 20,
50, and 100 flights into account. According to the results, it is evident that the number of users does
not influence the performance of Figo. In particular, Fig. 5.11 indicates that the optimality gap lies
between 3% and 6% on average for different numbers of users.
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Fig. 4: The impact of |T |, |J |, and ΨDA2G on the achieved optimality gap, showing that Figo achieves around 7% optimality
gap in the worst-case.

higher R have a higher objective function on average. The
reason is that for small R, the algorithm has more flexibility in
improving the objective function. This fact can be observed in
Fig. 3b wherein all scenarios, the number of reconfigurations
is lower in the case of R = 25.

An interesting observation in Fig. 3a is when we compare
scenarios with different |J | (i.e., scenarios (1,5), (2,6), (3,7),
and (4,8)). In these scenarios, the objective function value is
generally lower on average for |J | = 6 compared to |J | = 3.
This can give the algorithm more reconfiguration possibility,
as Fig. 3b indicates. In particular, in scenarios with |J | = 6,
more reconfigurations are performed, especially when R = 5
due to even higher flexibility. That is why the improvement is
generally lower for R = 25 compared to R = 5. Hence, it can
be concluded that if the reconfiguration delay of the services
is low/high, airline companies should go for a higher/lower
number of DCs to achieve the same delay level for their in-
flight services. In addition, Fig. 3a shows that the scenarios
with higher |T | (e.g., Scenarios 3, 7 compared to 1, 5) lead
to obviously higher objective function. Also, higher values of
ΨDA2G (e.g., Scenarios 6, 8 compared to 5, 7) can lead to a
lower objective function value, since higher ΨDA2G makes the
airplane nodes more reachable to the DC locations.

In the following, we investigate the impact of changes in
|T |, |J |, ΨDA2G , and | F | on the optimality gap of Figo with
different reconfiguration R penalties.

2) Impact of |T |: Let us choose some of the challenging
scenarios for a closer analysis. Fig. 4a compares the effect of
|T | on the optimality gap by considering scenarios 6 and 8
where |J | and ΨDA2G are fixed. It shows that the optimality
gap is the lowest for Scenario 8 (|T | = 8) and R = 5, and the
same scenario with R = 25 has the highest gap. The reason
is R = 5 brings more reconfiguration options than the R = 25
case. In this case, the reconfiguration delay is the deal-breaker
in the optimality gap instead of the flight duration. This is an
advantage of Figo, which performs with a close distance to
optimal, even in more realistic scenarios where flights have a
longer duration.

3) Impact of |J |: Fig. 4b compares the optimality gap for
scenarios with fixed |T | and ΨDA2G and varying |J | (i.e.,
Scenarios 4 and 8 with |J | = 3 and |J | = 6, respectively).
We observe that Scenario 4 performs better than 8 when
R = 5; however, for R = 25, they almost perform similarly. We

know that Scenario 8 has a larger state-space, since it scales
exponentially with the number of DCs, making it harder to
achieve a close optimality gap. However, it can achieve a better
optimality gap in both R = 5 and R = 25. We can conclude
that the number of DCs has more impact on the performance
than the reconfiguration delay.

4) Impact of ΨDA2G: In this part, we compare the per-
formance of Figo against the optimal solution for different
ΨDA2G in Fig. 4c. The results indicate that the smaller DA2G
range (i.e., Scenario 7) diminishes the number of DA2G
connections. Considering R = 25, this fact leads to even
less reconfiguration potentials since the ideal DC assignment
would be located near the satellite gateway node.

5) Impact of | F |: A very important characteristic of
Figo is its ability to solve the problem for a large number
of flights with an acceptable optimality gap. To show this we
ran scenario 8 for an additional 30 runs, taking 20, 50, and
100 flights into account. According to the results, it is evident
that the number of flights does not influence the performance
of Figo. In particular, Fig. 5 indicates that the optimality gap
lies between 3% and 6% on average for different numbers of
flights.
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Fig. 5: Optimality gap for different number of flights.

6) Training and Runtime: Training duration is mainly in-
fluenced by two parameters, the sample size and convergence
time. To reach an acceptable level of performance, the agent
needs to go through a very large number of simulation runs.
The sample size affects our algorithm in two ways. Firstly, a
larger sample size means a larger graph to analyze. Since we

Figure 5.11: Optimality gap of Figo for different number of flights.

5.8.2.6 Training and Runtime

Training duration is mainly influenced by two parameters, the sample size and convergence time. To
reach an acceptable level of performance, the agent needs to go through a huge number of simulation
runs. The sample size affects our algorithm in two ways. Firstly, a larger sample size means a larger
graph 𝐺 to analyze. Since we use Dijkstra to calculate the shortest path, a higher number of nodes
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leads to a longer calculation time for each Dijkstra run. Secondly, RL needs a lot of different samples
to learn a generalized behavior. This means that while we would be able to achieve convergence
within seconds and a few hundred iterations with a single flight, we need to perform thousands of
iterations to teach the agent something meaningful. In our case, training phase takes around 90
minutes for |𝐹 | = 100, T𝑓 = 8, and |N𝐷𝐶 | = 6.

After training, Figo is able to solve the problem for scenarios 7 and 8 with |𝐹 | = 100 in 26 seconds
on average. Also, it takes around 18 seconds to solve scenarios 3 and 4 for the same number of flights
(fewer DCs leads to having lower runtime). Finally, we report that in an online manner, given a single
flight, Figo takes around 500 ms to find a solution on average for all the scenarios.

5.9 Summary

This chapter presented a study on best-effort delay minimization in networks with mobile users.
We initiated the study of an online service provisioning problem in the context of emerging dynamic
networks, such as 5G/6G. We presented a formal model together with two efficient online algorithms
to solve it heuristically. The D-JSARR problem is to decide about user-to-DC assignments, routing,
and possible reconfiguration decisions over the activity period, such that the sum of routing and
reconfiguration delays are minimized over the whole time horizon.

We first presented an offline optimization formulation that solves the D-JSARR optimally. After
that, we proved its NP-hardness and the need for fast algorithms for realistic and large problem
instances. As the first solution, we presented Homa heuristic framework. It first converts the D-
JSARR problem, into a special matching problem in context of graph theory, DC-MWBM. Then, using
a transformation to the shortest-path problem, it solves the D-JSARR in a user-by-user approach.
Homa showed a good performance in realistic scenarios, achieving a near-optimal objective function
value while significantly reducing the runtime. Moreover, even in some scenarios, we showed that
Homa could even achieve an optimal solution.

As the second solution, we presented Figo, which is a framework based on Deep Reinforcement
Learning (DRL). We discussed the concept of DRL and its applicability to dynamic problems such as
D-JSARR. Figo takes the user mobility into account, overlooking short-term rewards for the long-
term ones. Further, the evaluations show the applicability of Figo in real-world scenarios while per-
forming the assignment, routing, and reconfiguration decisions in a cost- and time-effective manner
while still keeping a near-optimal solution.
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Conclusion and Future Work

This chapter concludes the dissertation with a summary and discussion of the key findings and the
outlook for future work and open research questions. The main goal of this thesis was to advance
the state-of-the-art approaches for network resource allocation and reconfiguration algorithms. Es-
pecially, the targeted networks were the programmable networks which employs Software-Defined
Networking (SDN) and Network Function Virtualization (NFV) technologies.

6.1 Power-Aware and Delay-Guaranteed Service Function
Chaining

6.1.1 Summary

We started by focusing on online resource allocation of Service Function Chaining (SFC) requests.
The challenges were to determine, i) where to place the Virtual Network Functions (VNFs) of the
SFC, ii) which routing path to use, while guaranteeing the bandwidth and delay requirements, and
different resource capacity constraints. Motivated by the low power-proportionality of both Physical
Machines (PMs) and network switches, we aimed at minimizing the number of online devices that
can lead to improved resource utilization and more power-proportionality. To achieve this goal, we
first propose an Integer Linear Program (ILP) model to be able to determine the optimal solution.
Due to its scalability issues, we presented an online heuristic framework named Holu. Holu tackles
the problem by breaking it into two sub-problems which are solved sequentially: i) VNF placement,
and ii) routing. The VNF placement suggests a set of candidate PMs to host the requested SFC. It
uses a PM ranking mechanism considering the centrality of the PM and the power consumption
impact by hosting a VNF. We show that centrality is an important metric to consider for PM ranking
since it can improve resource utilization and power efficiency in the long term. Also, to find a
path traversing through the set of suggested candidate PMs (returned by the VNF placement sub-
problem), we employed a complete algorithm based on Lagrange Relaxation based Aggregated Cost
(LARAC) heuristic to solve a Delay-Constrained Least-Cost (DCLC) shortest-path routing problem.
We showed that our algorithm could efficiently split the delay budget between two consecutive VNFs
in an SFC, leading to a high acceptance ratio compared to state-of-the-art algorithms.
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6.1.2 Future Work

We believe there are many interesting open challenges to be tackled, especially in improving the
coordination of the VNF placement and routing sub-problems. For example, one can introduce a
distance metric from the source and/or destination to the PM ranking calculation (See Eq. 2.18).
Using that, similar to the A* algorithm [117], this information can be used to prune the candidate
PMs that are far from source and/or destinations. It can improve the completeness of Holu, hence,
its performance, especially in terms of acceptance rate. In addition, PM selection methods can be
improved to generate better candidate PM sets. For example, one can replace multiple PMs based
on more complex PM selection methods at each iteration to improve the search space exploration.
These improvements can also lead to reducing the average number of VNF placement iterations,
thus, reducing the runtime. Finally, a resource (PM and network) consolidation module can be added
to Holu, which can be triggered periodically or in case of resource over/under-load. For example, in
case of resource overload, it can use live Virtual Machine (VM) migration to migrate the workload
away from the hot spots, thus, potentially improving the acceptance rate. Also, in the case of under-
load, it can move the load away from an under-utilized region to further improve the total power
efficiency.

The above problem focused on allocating the resources to the incoming SFC request; however, it
does not consider the dynamicity of the networks. To shed light on this gap, we focused on proposing
resource allocation and reconfiguration algorithms by considering two dynamicity sources: i) the
unexpected traffic changes, ii) the mobility of users.

6.2 Reconfigurations Due to the Traffic Changes

6.2.1 Summary

In this chapter, we studied a scenario where the network reconfiguration is triggered due to traffic
changes in the network. In more detail, we focused on the dynamic network reconfiguration prob-
lem in a multi-period resource planning scenario with an unexpected traffic increase. We introduced
an Routing, Configuration, and Spectrum Assignment (RCSA) algorithm to answer these three main
questions: when, what to reconfigure, and how to reconfigure the network to efficiently cope with
the increased traffic? To achieve it, we have considered three types of reconfiguration: upgrading,
adding, and/or rerouting the demands. Our proposed RCSA algorithm benefits from all the three re-
configuration methods, leading to a performant solution. In this work, we formulated and compared
four different variations of our proposed RCSA algorithm, mainly in terms of network throughput,
deployed Lightpaths (LPs), and power-efficiency. It has been shown that the multi-objective ap-
proach, Min LP, Max DR, performs the best by achieving the highest power efficiency while reducing
the number of required LPs and lower over-provisioned throughput.

Further, the simulation results indicated that combining the three reconfiguration methods can
significantly increase the network throughput, using almost the same network resources (e.g., num-
ber of deployed LPs). As a result, huge cost savings and spectrum efficiencies for network providers
can be achieved. Additionally, our results showed that the rerouting method performs better on LPs
with a low data rate. Therefore, it is evident that greedily upgrading LPs to high data rates can reduce
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the benefits of this method. Hence, opposed to intuition, the LP Upgrade method is not as efficient
since it can lead to a lower number of rerouting possibilities and lower overall throughput.

6.2.2 Future Work

Several interesting future works can be foreseen in this research area. We know that the intro-
duced LP reconfiguration methods are not for free; indeed, they come with a cost. However, the
exact overhead of these methods is not still clearly known. Therefore, using a lab setup with some
commercial hardware equipment, the reconfiguration overhead of these methods can be measured.
Especially, the metrics such as reconfiguration time, performance overheads, and service downtime
can be exciting. These measurement results can be used for forming and studying a trade-off between
reconfiguration cost and the achieved throughput in flexible optical networks.

The currently proposed approach works reactively. As a future research direction, Machine
Learning (ML) techniques can be used to predict the network traffic, optical transmission status,
and based on that, proactively reconfigure the network.

Another possible future direction is the improvement of the noise estimation calculations. There
is a trade-off between the complexity (and hence runtime) and the accuracy of the noise calculation
model, which can be applied to specific problems. Further, the development of automated network
management frameworks with ML approaches can be used for both noise estimation and reconfigu-
ration tasks.

6.3 Reconfigurations Due to the User Mobility: Cost Optimization

6.3.1 Summary

In this chapter, we studied the minimization of operational costs for the use cases with mobile users.
More specifically, considering different access point mediums, we have focused on minimizing the
cost of resources such as VMs, network links, and also the cost of reconfigurations such as VM
migrations. We have presented a generic system model and formulated two ILPs models for the
Joint Service Placement, Assignment, Routing, and Migration (JSPARM) problem: i) The static case,
Static Joint Service Placement, Assignment, Routing, and Migration (S-JSPARM), and ii) the mobility-
aware/dynamic one, Mobility-Aware Joint Service Placement, Assignment, Routing, and Migration
(MA-JSPARM). The former considers one single timeslot, while the latter one considers a set of future
user positions for solving the JSPARM problem and minimizing the total operational costs.

Further, we have used a realistic case study for the flying airplanes for a European-based Space-
Air-Ground Integrated Network (SAGIN), which includes the satellite network, the Direct-Air-to-
Ground (DA2G) network, the ground network, as well as the flights and the distributed Data Center
(DC) locations. We demonstrated MA-JSPARM is able to utilize DA2G and satellite connections to
satisfy the passenger service requests in a cost-effective manner, compared to S-JSPARM. In ad-
dition, we showed a trade-off between routing and migration costs. Also, we showed that a VM
migration model could avoid unnecessary migrations and improve the long-term cost-efficiency of
MA-JSPARM. Additionally, our evaluation results showed that S-JSPARM achieves higher delay lev-
els and lower runtime compared to MA-JSPARM.
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The main issue with the presented optimization models is their scalability. Due to the NP-
hardness of the problem, S-JSPARM and MA-JSPARM cannot solve the large problem instances in a
tractable time. Therefore, we came up with two heuristic algorithms, which break the problem into
smaller sub-problems. On the one hand, we introduced the User-by-User (UbU) algorithm to solve
the JSPARM problem for each user sequentially over the whole time horizon. On the other hand,
we presented the Timeslot-by-Timeslot (TbT) algorithm, which solves the problem at each timeslot
(similar to S-JSPARM). The results indicate that while reducing the runtime from hours to seconds,
the heuristics can achieve near-optimal solutions.

6.3.2 Future Work

The limitation of TbT approach is the consideration of the deployed VM and routing from only
the previous timeslot. On the other hand, UbU is limited to one user at each round of the algorithm.
Therefore, the solution depends on the location of the previous users. Also, a Rolling Horizon method
might be helpful to solve the problem over time horizon𝑇 . Thus, an improvement to TbT (UbU) can
be the consideration of two or even more previous timeslots (users) to reduce the blindness of the
algorithm (using time window to control the size of the sub-problem).

Another improvement could be to combine TbT and UbU. For example, a problem can be solved
sequentially firstly by TbT and then UbU considering the solution of the TbT. In this way, we can
consider both timeslots and the user positions at the same time. Additionally, clustering algorithms
(based on the path and geographical location of users), local search, and randomization algorithms
can help to improve the solution quality.

6.4 Reconfigurations Due to the User Mobility: Delay Optimization

6.4.1 Summary

This chapter presented a study on best-effort delay minimization in networks with mobile users.
We initiated the study of an online service provisioning problem in the context of emerging dynamic
networks, such as 5G/6G. We presented a formal model together with two efficient online algorithms
to solve it heuristically. The Dynamic Joint Service Assignment, Routing, and Reconfiguration (D-
JSARR) problem is to decide about user-to-DC assignments, routing, and possible reconfiguration
decisions over the activity period, such that the sum of routing and reconfiguration delays are min-
imized over the whole time horizon.

We first presented an offline optimization formulation that solves the D-JSARR optimally. After
that, we proved its NP-hardness and the need for fast algorithms for realistic and large problem
instances. As the first solution, we presented Homa heuristic framework. It first converts the D-
JSARR problem, into a special matching problem in context of graph theory, Dynamic Constrained
Minimum-Weight Bipartite Matching (DC-MWBM). Then, using a transformation to the shortest-
path problem, it solves the D-JSARR in a user-by-user approach. Homa showed a good performance
in realistic scenarios, achieving a near-optimal objective function value while significantly reducing
the runtime. Moreover, even in some scenarios, we showed that Homa could even achieve an optimal
solution.
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As the second solution, we presented Figo, which is a framework based on Deep Reinforcement
Learning (DRL). We discussed the concept of DRL and its applicability to dynamic problems such as
D-JSARR. Figo takes the user mobility into account, overlooking short-term rewards for the long-
term ones. Further, the evaluations show the applicability of Figo in real-world scenarios while per-
forming the assignment, routing, and reconfiguration decisions in a cost- and time-effective manner
while still keeping a near-optimal solution.

6.4.2 Future Work

We see our work as a first step and believe it opens several interesting avenues for future research.
In particular, it would be interesting to explore the achievable competitive ratio in deterministic and
randomized online settings and explore how to optimize and re-optimize schedules in scenarios that
feature some uncertainty and in which a bounded number of unexpected events may occur.

Another important, yet challenging research direction could be in direction of implementation
of the dynamic resource management techniques. In particular, developing technologies to support
zero-touch reconfigurations for container/VM migrations, traffic re-routing, and user handover pro-
tocols and mechansism seems a challenging task. Further, the resource management and reconfigu-
ration for use-cases with non-deterministic mobility patterns is another future research direction.
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