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Abstract 

Bridges require regular inspection and maintenance during their service life, which is costly and 
time-consuming. Digital twins (DT), which incorporate a geometric-semantic model of an existing 
bridge, can support the operation and maintenance process. The process of creating such DT models 
can be based on Point cloud data (PCD), created via photogrammetry or laser scanning. However, 
the semantic segmentation of PCD and parametric modeling is a challenging process, which is 
nonetheless necessary to support DT modeling. This paper aims to propose a segmentation method 
that is the basis for a parametric modeling approach to enable the semi-automatic geometric 
modeling of bridges from PCD. To this end, metaheuristic algorithms, fuzzy C-mean clustering, and 
signal processing algorithms are used. The results of this paper show that the scan to BIM process 
of bridges can be automated to a large extent and provide a model that meets the industry’s 
demand. 
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1 Introduction 

In building information modeling (BIM), a digital 
twin (DT) can be defined as the high-level digital 
replica of an existing asset. This model coherently 
contains the geometric and semantic information 
of buildings, infrastructures, and built 
environments and is updated regularly [1, 2]. It also 
visualizes all the gathered information from the 
construction site and provides an appropriate basis 
for inspection, condition assessment, and 
rehabilitation.  

Bridges, as critical structures, require regular 
inspection during their service life. In current 
practice, these inspections are conducted through 
direct observation at the location of existing 
bridges. However, this process has disadvantages: 
1) some elements of bridges are not easily 
accessible or even observable, 2) the results of 
inspection might be subjective, 3) data 

management after detecting the possible defects is 
not simple, and 4) localizing any defects or 
potential problem areas is not possible. To support 
direct inspection, capturing methods such as laser 
scanning and photogrammetry can be employed. 
Compared with a visual inspection, these methods 
are faster and have higher measurement accuracy 
[3]. The resulting point cloud data (PCD) of these 
scanning methods can be used for creating the 
digital twin models of bridges [4-8]. The DT of a 
bridge visualizes the existing structure’s current 
status and provides a basis for monitoring and 
further analyzing elements based on their current 
conditions. Despite the advantages of digital twins 
and recent scanning methods, digital twinning 
based on PCD is not easy. To create the DT of a 
bridge, the PCD of the corresponding bridge needs 
to be semantically segmented, and the instance 
model is instantiated based on a parametric model. 
Both of these steps are costly, labor-intensive, and 
error-prone.
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Figure 1 Proposed processing workflow  

Hence, authorities do not usually invest in the high 
costs of digital twining and still prefer the 
conventional methods to manage bridges.  

2 Related research 

As there is a large stock of existing bridges in 
industrialized countries, the DT creation process 
needs to be (at least partially) automated to avoid 
overly high effort and costs. Therefore, semantic 
segmentation and parametric modeling should be 
automated as essential steps in digital twinning. 
Recently, there have been some research efforts in 
this regard. 

Lu et al. [9] used a top-down approach for 
detecting elements in the point cloud of RC bridges 
and represented the geometry of the bridge by the 
alpha-concave hull. Lee et al. [10] decomposed the 
point cloud of a bridge deck and extracted the 
value of parameters by detecting planar faces and 
measuring the distance between these planes. Hu 
et al. [11] employed a multi-view convolutional 
neural network (CNN) and a modified version of 
PointNet to extract features from different views of 
a bridge element and its corresponding point cloud 
for semantic segmentation. Qin et al. [12] also 
considered a top-down approach for detecting 
elements in bridges based on the density of points 
and parametrically modeled cylindrical and cuboid 
shapes. Lee et al. [13] employed PointNet and deep 
graph convolutional neural network (DGCNN) to 
extract features of points in the point cloud of 
bridges and used hierarchical KNN for semantic 
segmentation. Yan and Hajjar [14] applied heuristic 

algorithms to segment elements in the point cloud 
of steel bridges based on the connection rules of 
elements in these bridges. Girardet and Boton [15] 
proposed a BIM approach to foster the parametric 
modeling of bridges by visual programming in 
commercial software. Mafipour et al. [16] 
employed a model-based approach to fit the 
typical 2D profile of bridge elements by 
metaheuristic algorithms and estimate the value of 
parameters. 

This paper aims to contribute a novel approach to 
automating the digital twinning process of bridges 
by AI methods, including metaheuristic algorithms, 
density clustering, region growing, signal matching, 
and fuzzy clustering. We investigate bridges in one 
of Germany’s most common categories of highway 
bridges. Methodologies for semantic segmentation 
and parametric modeling are developed. In the first 
part of the paper, the PCD of an existing bridge is 
semantically segmented into different elements by 
proposing a heuristic algorithm. In the next section, 
the values of specific parameters are extracted by 
a metaheuristic algorithm from the segmented 
PCD. To this end, the parametric profile of the 
element is created, and all the human-definable 
constraints are applied. This profile is then 
instantiated as a dummy model with a random 
value of dimensions. Next, based on the PCD, the 
parameter values are adjusted to fit this parametric 
model into the PCD. These elements can finally be 
assembled to create the geometric model required 
for the digital twinning of the bridge. The proposed 
overall processing workflow is depicted in Figure 1.
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 2 top-down segmentation: (a) input PCD; (b) alignment of the bridge; (c) points with normal in 
the z-direction; (d) signal of density; (e) detected clusters; (f) resulting segments 

3 Semantic Segmentation 

Semantic segmentation is the process of labeling 
point cloud data at a point level. Bridge1 from the 
Cambridge data set [9] is used in this paper. 
Different elements can be found in bridges, 
including railings, decks, abutments, and piers. To 
create the parametric model of the elements from 
PCD, the corresponding point cloud of these 
elements should be segmented. The semantic 
segmentation method proposed in this section is 
based on the assumption that 1) the bridge has a 
straight and flat deck and 2) only the point cloud of 
the actual bridge is considered for semantic 
segmentation. Therefore, the points over the 
railing and the sides of the bridge are removed. 
However, noises between the piers and points of 
the ground can be kept in the space of the problem. 

3.1 Orientation of the bridge 

The input point cloud might be noisy and have any 
rotation or translation, see Figure 2(a). As a 
preprocessing step, the point cloud is denoised. For 
this purpose, a clustering algorithm is proposed, 
which can also denoise points. This algorithm is 
based on the connectivity of points and region 
growing (RG) algorithms. It starts from a random 
point and checks the distance of the point to its 
nearest neighbors. kd-tree and KNN algorithms are 

used for finding the nearest neighbors. If the 
distance of the point to its neighbor is lower than a 
threshold (radius), that neighbor is added to the 
cluster, and the region grows. This algorithm can 
result in many clusters that represent points with 
connectivity. Selecting the cluster with the highest 
number of points (density) leads to the denoised 
point cloud of the bridge. 

The bridge is also required to be translated to the 
origin. Additionally, the longitudinal axis of the 
bridge is aligned with the x-axis, while the deck is 
placed at the top region (Figure 2(b)). To this end, 
a conventional method is principal component 
analysis (PCA) [9]. However, PCA is dependent on 
the variance of points and fails in cases that the 
variance in all directions is close. As an alternative, 
an optimization problem is defined, and all the 
conditions mentioned above are defined as penalty 
functions. This optimization minimizes the volume 
of the point cloud’s axis-aligned bounding box 
(AABB). An AABB has its minimal volume only if the 
point cloud within the AABB is aligned with 
coordinate axes [16]. Thus, the rotation angles for 
which the AABB is minimized can form the rotation 
matrix necessary for axis alignment. Also, the 
length of the AABB in the x-direction should have 
the highest value, and the top region of the box (if 
the AABB is divided into four regions) should have 
the highest density (Figure 2(b)).
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(a) (b) (c) 

Figure 3 bottom-up segmentation (RG): (a) sub-structure; (b) resulting segments of RG; (c) remained 
clusters after removing noises based on the AABB of clusters 

   
(a) (b) (c) 

Figure 4 alignment of piers: (a) remaining clusters; (b) target cluster; (c) piers after rotation 

𝑇𝑜 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝑉(𝛼, 𝛽, 𝛾) = 𝑙 × 𝑤 × ℎ 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑒𝑑 𝑡𝑜: 

{
 
 

 
 

−𝜋/2 ≤ 𝛼, 𝛽, 𝛾 ≤ 𝜋/2 
𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑡𝑜𝑝 > 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑏𝑜𝑡𝑡𝑜𝑚,

 𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒 ,

𝑑𝑒𝑛𝑠𝑖𝑡𝑦𝑟𝑖𝑔ℎ𝑡 𝑠𝑖𝑑𝑒
𝑙 > 𝑤, ℎ

 

where l, w, and h are the length, width, and height 
of the AABB. 

Since the rotation angles cannot be seen in the 
objective function, derivative-based algorithms 
cannot solve this problem. Hence, particle swarm 
optimization (PSO) [17] is used as it is a 
metaheuristic and derivative-free algorithm. 

3.2 Railing  

In the point cloud of bridges, density at the location 
of the super-structure is higher. This density is due 
to the deck’s surfaces whose normals are in the z-
direction. The normal of points can be calculated to 
detect these points, and the points whose z-
components are higher are clustered (Figure 2(c)). 
Next, the density of points from the bottom to the 
top of the bridge is calculated, resulting in a density 
signal (Figure 2(d)). The sharp peaks of this signal 
show the locations where the density is higher, i.e., 
the ground and the deck. To detect these peaks, a 
threshold should be set. Considering the mirror of 
the signal around the horizontal axis, the 

distribution can be assumed normal. Therefore, the 
threshold is set to mean plus one standard 
deviation (µ + σ).To detect the ends of any peak, 
the intersection points of the signal with the 
threshold line are computed and extended to the 
basis of the signal. Also, to avoid tiny and 
sequential peaks, the peaks whose ends are close 
to each other are merged. The points over the road 
surface (last cluster) are selected to segment the 
railing. The points belonging to the ground can also 
be detected based on the endpoint of the first 
cluster (Figure 2(e)).  

3.3 Deck 

After extracting the points of railing and ground, 
the points of the deck, abutments, and piers 
remain. Among these elements, the deck is the 
only horizontal element along the x-axis. 
Therefore, projection of all the points on the yz-
plane results in a higher local density for the deck 
points. This local density can be calculated by 
considering a circle around every point after 
projection and counting the number of points 
within the circle. The local density of points is then 
used in a Fuzzy C-means (FCM) clustering algorithm 
with two clusters. Finally, the cluster with a higher 
z component is considered the deck points. Figure 
2(f) shows the resulting segments of the railing, 
deck, sub-structure, and ground.
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Figure 5 detecting piers in larger clusters 

3.4 Piers and abutment 

Piers and abutments are elements that are not 
connected in most cases. Also, piers and abutments 
connect the bottom of the bridge deck to the 
ground. Based on these observations, the 
proposed algorithm in section 3.1 is used for 
clustering the sub-structure points. As mentioned, 
this algorithm results in many clusters in which the 
connectivity of points in a pre-defined radius is 
ensured (Figure 3(b)). To detect the cluster of 
abutments and piers out of all the clusters, the 
height of the AABB of each cluster is compared with 
the height of the sub-structure, and the clusters 
with a close height to the sub-structure are kept 
only (Figure 3(c)). The connectivity algorithm and 
the height of AABB guarantee that the points are 
close to each other and connect the deck to the 
ground. This step can result in the cluster of piers 
and abutments. The two remaining clusters with 
the highest and lowest value of x for their center 
are considered abutments and other clusters as 
piers. However, in some bridges, a part of lateral 
piers and abutments are covered by terrain. Also, 
piers are not perpendicular to the alignment of the 
deck. To segment these piers, the remaining 
clusters are projected on the xy-plane, as shown in 
Figure 4(a). Next, the cluster with minimal AABB is 
selected from the middle clusters, i.e., the cleanest 
pier (Figure 4(b)). By applying PCA to this cluster, all 
the piers can be rotated and placed perpendicular 
to the deck (Figure 4(c)). Note that these piers are 
transformed again to their initial location after 
labeling the points. To detect the piers in the larger 
clusters, the density signal of the target cluster is 
obtained. Then, this signal is matched with the 
signal of other clusters by moving and calculating 

the absolute distance of the signals. As a result, the 
remaining piers in other clusters can be recognized 
from the ground, as shown in Figure 5. Besides, the 
retaining wall of the abutment can be detected in 
the lateral clusters by passing the filters through 
the signal.  

3.5 Pier cap and column 

Columns are vertical elements, while the cap is an 
almost horizontal element. In some bridges, the 
side faces of the cap incline; thus, passing 
horizontal planes might not always work. As an 
alternative, all the points of the pier are projected 
on the xy-plane, and the 2D density of points in a 
circle is calculated. This feature illustrates the 
density difference between column and cap. The 
other feature is the z-coordinate of points. The cap 
is located at a higher level in comparison with 
columns. Finally, the z-component of normal 
vectors is lower at the location of columns. 
Combining these features (2D density and z-
coordinate of points, z-component of normal) leads 
to a feature vector. Based on this feature and using 
a Fuzzy C-means (FCM) clustering algorithm (for 
two clusters), the points of pier cap and column can 
be segmented automatically (Figure 6). 

 
Figure 6 resulting segments from FCM 
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4 Parametric modeling 

A parametric model is a model which is capable of 
being dynamically updated as soon as the 
parameter values (dimensions) are modified. As a 
result, this model should have an exact number of 
parameters and include all the required constraints 
for an accurate adjustment. To this end, the initial 
profile of the element is created based on the type 
of the existing element into the PCD, and all the 
constraints are applied. Next, this profile is 
instantiated with random values in reasonable 
ranges determined by bridge engineering 
knowledge. Finally, the distance of the existing 
points to the edges and vertices of the profile is 
minimized. This optimization process results in a 
profile fitted into the point cloud, representing the 
actual value of parameters. Further explanation 
can be found in our previous work [16]. To extract 

the value of parameters from the bridge’s deck, a 
profile as shown in Figure 7 is considered. All the 
parameters of the profile are encoded in PSO.  

 
Figure 7 profile of the deck and encoded 

parameters in PSO 

The profile is then optimized to be fitted into the 
existing points, see Figure 8. Note that the profile 
is only fitted into the points of the deck, which have 
been semantically segmented in section 3.3. Thus, 
semantic segmentation is necessary for parametric 
modeling.

 

 

 

 

 

 
(a) (b) (c) 

Figure 8 model fitting process: (a) iteration = 1; (b) iteration = 20; (c) iteration = 100 

5 Results 

The density filters were passed in intervals of 5 cm, 
and the sequential peaks with a distance lower 
than 75 cm were merged. The radius of growing in 
the RG algorithm was considered 0.5 m. Figure 9 

shows the results of semantic segmentation for this 
bridge. As can be seen, most of the points have 
been labeled correctly. Comparing the labels with 
the ground truth of the bridge showed that the 
proposed method can achieve an accuracy of 
around 96%. 

 

Figure 9 Resulting point cloud after semantic segmentation 
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(a) (b) (b) 

Figure 10 segmenting the deck into intervals: (a) input deck; (b) passing planes; (c) segmented points 

For parametric modeling of the deck, the points 
were segmented into intervals of 3 m, as shown in 
Figure 10. For every segment, the corresponding 
model of the deck was fitted. For this purpose, PSO 
with 35 particles and 100 iterations was applied. c1, 
c2 coefficients were also set 2, and a damping 
factor of 0.99 was considered. Next, all the 
sequential vertices resulting from the PSO were 
connected. Since these lines might not be 
smoothed, a polynomial was fitted to the vertices, 

and the model’s vertices were modified. Figure 11 
shows the fitted model into the point cloud. As can 
be seen, the model is symmetric and represents a 
highly parameterized model with an exact number 
of parameters that were close to a manually 
modeled deck. The convergence (loss) diagram of 
PSO showed an error of around 5 cm for each 
segment. This shows that the proposed 
methodology can extract the value of parameters 
with an error of approx. 1.67 cm/m.

 
Figure 11 Fitted deck into the point cloud data 

6 Conclusion 

This paper presents a method for semantic 
segmentation and parametric modeling of bridges 
from point clouds. For semantic segmentation, 
metaheuristic algorithms, density clustering, 
region growing, signal matching, and fuzzy 
clustering are employed. For parametric modeling, 
the value of parameters is extracted by fitting the 
model of elements into the point cloud by 
metaheuristic algorithms. This paper shows that 
semantic segmentation and parametric modeling, 
two essential parts for digital twining, can be 
automated to a large extent. The main advantage 

of the presented method over existing ones is that 
a high-quality as-is BIM model is generated with a 
level of abstraction that fulfills the needs of bridge 
management systems. In this paper, the bridges 
with a straight deck have been investigated. 
However, the present methodology can be 
extended to a large variety of bridges with more 
complex geometries. Also, this methodology can 
cover a large category of bridges by highly 
parameterized models for rapid and automated 
digital twinning from PCD. 
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