
TUM School of Computation, Information and Technology
Technische Universität München

On the Convergence of Structure and Geometry
in Graph Neural Networks

Johannes Gasteiger

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology der
Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz:
Prof. Angela Dai, Ph.D.

Prüfende der Dissertation:
1. Prof. Dr. Stephan Günnemann
2. Prof. Michael Bronstein, Ph.D.

Die Dissertation wurde am 12.07.2022 bei der Technischen Universität München eingereicht und
durch die TUM School of Computation, Information and Technology am 01.01.2023 angenommen.

Abstract

Graphs play a central role in the mathematical description of the world. They are used to
study interactions between users in social networks, make recommendations via co-purchase
networks, or to analyze molecules through their bond structure. Graph neural networks (GNNs)
have recently enabled great advances in how to leverage graph structure to generate accurate
predictions. However, regular GNNs ignore the fact that the observed graph is often embedded
in an underlying geometrical space. This thesis aims at alleviating this limitation by proposing
and analyzing methods that go beyond structure and incorporate geometric information such
as distances and directions. We first focus on molecules as examples of graphs embedded in
three-dimensional Euclidean space. We propose models that incorporate directional information
in GNNs via the molecule’s internal coordinates, and investigate how to do so in a provably
complete fashion. Additionally, we explore how to substitute the molecule’s geometry with
synthetic coordinates in cases where the true geometry is not available. For general graphs,
we propose a geometrically-based preprocessing method and a massively scalable GNN based
on graph diffusion and node distances. Finally, we propose a scalable method for learning
graph distances based on node distances and optimal transport. Our results demonstrate the
improvements achievable when thinking about graphs not only in terms of structure, but also in
terms of geometry. This enables models that are more accurate and robust, generalize better,
and scale to larger graphs.

iii

Zusammenfassung

Graphen spielen eine zentrale Rolle in der mathematischen Beschreibung der Natur. Sie werden
verwendet, um die Interaktionen zwischen Benutzern in sozialen Netzwerken zu untersuchen,
um Empfehlungen in einem Verkaufsnetzwerk zu erstellen oder um Moleküle anhand ihrer
Bindungsstruktur zu analysieren. Graph-neuronale Netze (GNNs) haben in letzter Zeit große
Fortschritte darin ermöglicht, Graphen für maschinelle Vorhersagen zu nutzen. Jedoch ignorieren
reguläre GNNs, dass der sichtbare Graph oft in einen zugrundeliegenden geometrischen Raum
eingebettet ist. Diese Dissertation erweitert deshalb GNNs durch Methoden, die strukturelle
Informationen mit geometrischen Informationen wie Distanzen und Richtungen verbinden.
Hierfür werden zuerst Modelle für Moleküle untersucht, da sie Beispiele von im dreidimension-
alen euklidischen Raum eingebetteten Graphen darstellen. Es werden Modelle präsentiert, die
Richtungsinformationen in GNNs mittels der internen Koordinaten des Moleküls integrieren.
Dabei wird untersucht, wie Richtungsinformationen vollständig einbezogen werden können. Als
Nächstes werden Methoden entwickelt, um geometrische Informationen mit synthetischen Ko-
ordinaten zu ersetzen. Anschließend wird die Diskussion hin zu allgemeinen Graphen erweitert.
Es werden eine Vorverarbeitungsmethode für Graphen und ein skalierbares GNN präsentiert, die
auf Diffusion und graph-basierten Knotendistanzen basieren. Schließlich wird eine skalierbare
Methode zum Lernen von Distanzen zwischen Graphen vorgestellt, die auf Knotendistanzen
und einer Näherung des Transportproblems beruht. Die Ergebnisse in dieser Arbeit zeigen,
wie eine gleichzeitige Behandlung von Graphen als strukturelle und geometrische Objekte zu
signifikanten Verbesserungen führen kann. Dies ermöglicht Modelle, die präziser und robuster
sind, besser generalisieren und zu großen Graphen skalieren.

v

Acknowledgments

First, I would like to thank my supervisor, Prof. Stephan Günnemann. Thank you for your
support, guidance, advice, and mentorship throughout the last years. You have given me all the
opportunities I could wish for, while providing me with full research freedom and expecting
little in return. I have been extremely lucky to be part of your group.

The DAML group in general has been the greatest highlight of my PhD. It is such an amazing
collection of talented and hard-working people. Thank you Aleksandar Bojchevski for your
outstanding mentorship, collaborations, and feedback. Thank you Marten Lienen for your
swift help and collaborations, and Oleksandr Shchur, Daniel Zügner, Nicholas Gao, and Simon
Geisler for your thoughtful feedback and our insightful and delightful discussions. It has been a
joy to work with all of you.

Another great experience was my collaboration with Johannes Margraf and Sina Stocker.
Thank you for your insights, summaries and pointers on literature, great discussions, and patient
explanations. I would also like to thank Abhishek Das, C. Lawrence Zitnick, Anne Mottram,
and Victor Bapst for inviting me to intern at Facebook AI Research and DeepMind. Thank you
for giving me such a warm welcome and patiently explaining the details of catalysis and binding.
Our collaborations allowed me to expand my horizon far beyond my regular research topics.

I am deeply grateful for all the bright students I had the pleasure of advising and collaborating
with: Stefan Weißenberger, Janek Groß, Florian Becker, Jan Schuchardt, Chandan Yeshwanth,
Chendi Qian, Arthur Kosmala, Shankari Giri, Johannes Pitz, Andrej Uhliarik, Tobias Bernecker,
and Stefano Rando. You have contributed immensely to this research and motivated me to
constantly keep pushing. Advising always goes both ways.

I would like to thank Prof. Daan Frenkel and my mother, Prof. Barbara Gasteiger for your
advice and mentorship. Successfully navigating the academic landscape would have been
impossible without your help.

I want to thank all of my family and friends for supporting me through all of my ups and
downs, and for providing many good times. Thank you, Anna, Daniel, Barbara, Mathias, Albert,
Luke, Fabian, Miloš, Marlies, Lisa, Amir, Janine, Lena, Lilly, Aleks, Oleks, and Daniel.

Finally, I want to thank my wife, Christine Gasteiger, for everything: Your unwavering
support despite eternal chains of deadlines, your interest in my obscure research topics, your
intelligent, invaluable input and advice, your great humor, and your endless love. My life would
be lonely and dull without you. Thank you.

vii

Contents

Abstract iii

Zusammenfassung v

Acknowledgments vii

I Introduction 1

1 Introduction 3
1.1 Machine learning on graphs . 3

1.1.1 Learning tasks on graphs . 4
1.1.2 Machine learning for molecules . 4
1.1.3 Graph neural networks . 4

1.2 Structure and geometry . 5
1.3 Contributions and outline . 6
1.4 Publications . 7

2 Background 9
2.1 Graphs . 9
2.2 Graph neural networks . 9
2.3 Personalized PageRank . 10
2.4 Group theory . 11
2.5 The SO(3) group . 13

II Molecular Systems 17

3 Directional Message Passing for Molecular Graphs 19
3.1 Introduction . 19
3.2 Related work . 20
3.3 Requirements for molecular predictions . 21
3.4 Directional message passing . 22
3.5 Physically based representations . 23
3.6 Directional Message Passing Neural Network (DimeNet) 25
3.7 Experiments . 27
3.8 Conclusion . 29
3.9 Retrospective . 29

ix

Contents

4 Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium
Molecules 31
4.1 Introduction . 31
4.2 DimeNet++ . 32
4.3 COLL Dataset . 33
4.4 Uncertainty Quantification . 34
4.5 Experiments . 34
4.6 Retrospective . 36

5 GemNet: Universal Directional Graph Neural Networks for Molecules 37
5.1 Introduction . 37
5.2 Related work . 38
5.3 Universality of spherical representations . 39
5.4 From spherical representations to directional message passing 42
5.5 Geometric message passing . 43
5.6 GemNet: Geometric message passing neural network 44
5.7 Experiments . 47
5.8 Conclusion . 49
5.9 Retrospective . 49

6 Directional Message Passing on Molecular Graphs via Synthetic Coordinates 51
6.1 Introduction . 51
6.2 Directional message passing . 52
6.3 Molecular configurations . 53
6.4 Synthetic coordinates . 55
6.5 Related work . 57
6.6 Experiments . 58

6.6.1 Experimental setup . 58
6.6.2 Model hyperparameters . 59
6.6.3 Results . 59

6.7 Limitations and societal impact . 62
6.8 Conclusion . 62
6.9 Retrospective . 62

III General Graphs 65

7 Diffusion Improves Graph Learning 67
7.1 Introduction . 67
7.2 Generalized graph diffusion . 68
7.3 Graph diffusion convolution . 69
7.4 Spectral analysis of GDC . 70
7.5 Related work . 73
7.6 Experimental results . 74

x

Contents

7.7 Conclusion . 78
7.8 Retrospective . 78

8 Scaling Graph Neural Networks with Approximate PageRank 81
8.1 Introduction . 81
8.2 Background . 82

8.2.1 GNNs and message passing . 82
8.2.2 Personalized PageRank and localization 83
8.2.3 Related work . 84

8.3 The PPRGo model . 85
8.3.1 Effective neighborhood, α and k . 86

8.4 Scalability . 87
8.4.1 Node classification in the real world 87
8.4.2 Distributed training . 87
8.4.3 Efficient inference . 88

8.5 Experiments . 89
8.5.1 Large-scale datasets . 89
8.5.2 Scalability vs. accuracy trade-off . 90
8.5.3 Distributed training . 91
8.5.4 Runtime and memory on a single machine 93
8.5.5 Efficient inference . 94

8.6 Conclusion . 95
8.7 Ethical considerations . 95
8.8 Retrospective . 96

9 Scalable Optimal Transport for Graph Distances, Embedding Alignment, and
More 99
9.1 Introduction . 99
9.2 Entropy-regularized optimal transport . 100
9.3 Sparse Sinkhorn . 101
9.4 Locally corrected Nyström and LCN-Sinkhorn 102
9.5 Theoretical analysis . 103
9.6 Graph transport network . 105
9.7 Related work . 107
9.8 Experiments . 108
9.9 Conclusion . 112
9.10 Retrospective . 112

IV Conclusion 113

10 Conclusion 115
10.1 Summary . 115
10.2 Retrospective . 115

xi

Contents

10.3 Broader impact . 116
10.4 Open questions . 117

Bibliography 119

Appendices 145

A Directional Message Passing for Molecular Graphs 147
A.1 Indistinguishable molecules . 147
A.2 Experimental setup . 147
A.3 Summary statistics . 148
A.4 DimeNet filters . 148
A.5 Multi-target results . 148

B GemNet: Universal Directional Graph Neural Networks for Molecules 151
B.1 Proof of Theorem 5.2 . 151
B.2 Proof of Theorem 5.3 . 152
B.3 Proof of Lemma 5.1 . 154
B.4 Efficient message passing . 155
B.5 Variance after message passing . 155
B.6 GemNet architecture . 157
B.7 Training and hyperparameters . 157
B.8 Additional experimental results . 159
B.9 Computation time . 162

C Directional Message Passing on Molecular Graphs via Synthetic Coordinates 163
C.1 Choosing hyperparameters . 163

D Diffusion Improves Graph Learning 165
D.1 Graph diffusion as a polynomial filter . 165
D.2 Experiments . 166

D.2.1 Datasets . 167
D.2.2 Results . 167
D.2.3 Hyperparameters . 171

E Scaling Graph Neural Networks with Approximate PageRank 179
E.1 Appendix . 179

E.1.1 Parallel Efficiency . 179
E.1.2 MAG-Scholar Graph Construction . 179
E.1.3 Experimental Details . 180
E.1.4 Further Implementational Details . 180
E.1.5 Applicability and Limitations . 180

xii

Contents

F Scalable Optimal Transport in High Dimensions for Graph Distances, Embed-
ding Alignment, and More 181
F.1 Complexity analysis . 181
F.2 Limitations . 181
F.3 Proof of Theorem 9.1 . 182
F.4 Proof of Theorem 9.2 . 184
F.5 Notes on Theorem 9.3 . 188
F.6 Notes on Theorem 9.4 . 188
F.7 Proof of Prop. 9.1 . 189
F.8 Choosing LSH neighbors and Nyström landmarks 190
F.9 Implementational details . 191
F.10 Graph dataset generation and experimental details 191
F.11 Runtimes . 194
F.12 Distance approximation . 194

xiii

Part I

Introduction

1

1 Introduction

How to describe nature?

This is a central question in every field of science, and every field has found different answers
for it. Physics, chemistry, biology, psychology, and social science all work on different levels of
abstraction and focus on different aspects of nature. These viewpoints lead to fundamentally
different descriptions, which affect our perspective on many important problems. For example,
consider a small ligand molecule binding to a large protein. A physicist would consider the
fundamental interactions and describe it through its many-electron wave function. A biochemist
would instead rely on common patterns like ionic interactions, hydrogen bonds, and van der
Waals interactions. The physicist’s approach would in principle give an accurate answer, but is
intractable in practice. The chemist’s approach provides useful insights, but is too imprecise for
many important tasks.

Machine learning (ML) scientists have to choose a specific description to use as model input.
They are thus often confronted with a dilemma: Which level of abstraction is the right one for
a given task? Abstractions usually allow well-generalizing and fast models, while low-level
details generally provide more expressive power and accuracy. This is quite reminiscent of the
classical bias-variance trade off. However, we often do not have to choose one over the other.
Instead, we can leverage the inductive bias ingrained in high-level abstractions and enhance
them with low-level information. In this thesis, we explore one particular variant of this theme:
Combining structure with geometry. High-level abstractions often use discrete structures such as
graphs. These graphs are typically approximations or instantiations of an underlying geometrical
space. This space might be explicit, such as the 3D geometry of a molecular graph, or implicit,
such as the space giving rise to the discrete connections in a social network. This thesis explores
both explicit and implicit cases and proposes methods of capturing geometric information to
augment graph-based models.

1.1 Machine learning on graphs

Graphs are ubiquitous in the real world and its mathematical description. They are used to
analyze interactions between users in social networks, make recommendations via co-purchase
networks, or to optimize traffic in road networks. In the scientific domain, they are used
to describe molecules with bond graphs or in computational meshes used for simulations.
Extending machine learning to graphs is thus a natural step for improving predictions in these
domains, and has gained considerable attention in recent years.

3

1 Introduction

1.1.1 Learning tasks on graphs

In this thesis we will primarily be concerned with discriminative learning tasks on graphs. These
tasks can generally be categorized along three axes: The objects of interest, the output type,
and whether the data is labeled. Typical objects of interest in a graph are its nodes, its edges
(links), paths of multiple edges, and the overall graph. The output type is a discrete class for
classification and a continuous value for regression. We can also output a selection of objects or
predict their existence, which can be viewed as special cases of binary classification. Finally,
we can have access to only unlabeled data (unsupervised), predominantly unlabeled data with a
small amount of labeled data (semi-supervised), or purely labeled data (supervised). Examples
of resulting tasks are unsupervised node representation learning (Perozzi et al., 2014; Velickovic
et al., 2019), semi-supervised node classification (Hamilton et al., 2017; Kipf & Welling, 2017;
Yang et al., 2016), link prediction (Grover & Leskovec, 2016), graph classification (Duvenaud
et al., 2015; Niepert et al., 2016; Xu et al., 2019b), and graph regression (Gilmer et al., 2017;
Schütt et al., 2017). We might also be concerned with properties of multiple graphs and tasks
such as graph distance learning (Riba et al., 2018). Most real-world tasks on graphs are examples
of these task categories. Predicting the topic of a post using associated users and comments is an
instance of (semi-supervised) node classification, creating friendship suggestions and product
recommendations are link prediction tasks, predicting the forces acting on atoms is an example
of node regression, and predicting whether a molecule is toxic is a graph classification task.

This thesis is primarily concerned with node classification and (multi-)graph regression
tasks. We primarily investigate supervised and semi-supervised learning, but also look into
unsupervised learning in Chapters 7 and 9.

1.1.2 Machine learning for molecules

Recent advances in machine learning for molecules has demonstrated its immense potential for
solving some of the fundamental problems in pharmacology, chemistry, and material science
(Chanussot et al., 2021; Gainza et al., 2020; Jumper et al., 2021; Qiao et al., 2020). Learning
on molecules can be framed as a graph learning problem by modeling the atoms as nodes and
either the bonds as edges or by constructing a radius graph, i.e. connecting all atoms within a
certain cutoff distance.

This thesis primarily focuses on two tasks in this domain: (i) Predicting quantum-mechanical
properties of molecules, and (ii) predicting the energy and forces acting on the atoms in a system.
The input data consists of a set of atoms, their atomic numbers, and either (a) the 3D positions
of all atoms or (b) the graph of interatomic bonds. The output target is (i) a scalar value per
molecule and (ii) one scalar for the overall energy and one 3D vector for each atom. Each of
these settings poses its own challenges that lead to distinct models. However, all of them have
one aspect in common: Molecules are objects in 3D Euclidean space. All methods presented in
this work leverage this fact in one way or another.

1.1.3 Graph neural networks

Graph neural networks (GNNs) have recently shown great promise for learning on graphs. Many
of the best current models for the above tasks are based on GNNs (Hu et al., 2020). GNNs start

4

1.2 Structure and geometry

by separately embedding each node in the graph. They then use the graph to iteratively update
these embeddings. Modern GNNs typically do this by passing messages along the graph’s edges.
Every node aggregates the messages of its neighbors and transforms them with a learnable
function, resulting in an updated set of node embeddings. GNNs perform multiple of these
message passing steps, using a different function with separate parameters in each step. After
message passing, we use the GNN’s node embeddings to predict one value per node, or pool
all node embeddings together for a global graph prediction. This model structure effectively
aligns the computations in GNNs with the underlying data and interaction mechanism, which
can greatly improve their performance and generalization (Xu et al., 2020). GNNs are thus very
effective at leveraging the graph structure. However, message passing is effectively limited to
direct neighbors and cannot incorporate advanced geometric information such as directionality.
The methods presented in this thesis aim at alleviating these restrictions.

Another important limitation of GNNs is their limited scalability to large graphs. Training
regular models on massive datasets of independently and identically distributed (IID) data is
comparatively straightforward. We randomly split up the dataset and execute the model on
one part at a time, using stochastic gradient descent (SGD). Unfortunately, this is not possible
for graphs since they are interconnected, making GNN predictions interdependent. This thesis
proposes methods of leveraging node distances to enable GNN training and inference on massive
graphs with billions of edges.

1.2 Structure and geometry

The overarching idea of this thesis is extending GNNs to leverage the geometry behind an
observed graph structure. In this context, we refer to geometry purely in the sense of distances
and directions. This information can either come from graph-based node distances or from a
known geometrical space. The intuition behind using geometry is that the observed structure is
often an approximation of an underlying geometrical space. For example, on a social network
you might be connected both with a fleeting acquaintance and with your best friend. While
both of these are discrete edges, one underlying connection is much stronger than the other.
The graph could reflect this distinction with a weight for every friendship connection, which
would be akin to a geometric distance. But even then it might still be missing connections with
many of your friends. The social network remains a discrete, noisy snapshot of the underlying
“friendship space”.

This interpretation becomes more tangible for explicit geometric spaces, such as the 3D
Euclidean space of molecules. Molecules are often described with a graph consisting of atoms
(nodes) and bonds (edges). However, this graph-based description is merely a conceptual
approximation of the interactions arising from the many-electron wave function. A more
accurate description of the molecule are the 3D positions of the molecule’s nuclei. These
positions even provide a complete description of the molecule, which allows computing the
molecule’s energy, forces, and other quantum-mechanical properties. Still, the molecular graph
provides a valuable inductive bias that can help model generalization. Uniting the graph structure
with the underlying geometry can thus provide substantial benefits.

5

1 Introduction

A central aspect of leveraging geometric information are the object’s underlying symmetries
or equivariances. GNNs are already built to respect the permutation equivariance of graphs:
Resorting nodes reorders the output in the same way. This property is necessary since the
order of nodes in a computational structure is arbitrary. Similarly, a molecule can be arbitrarily
translated and rotated in space. Vectorial properties then rotate with the molecule, while scalar
properties do not change. Methods for molecules should thus observe translational and rotational
equivariance or invariance. Similar properties are relevant for many representations. Building
these symmetries into the model substantially reduces the solution space and thus simplifies the
task. This thesis thus contains multiple discussions on symmetries and how to properly handle
them in each case.

1.3 Contributions and outline

The main research question of this thesis is how to leverage geometric information in GNNs in
simple, easy-to-implement ways that respect the underlying invariances. We propose multiple
methods that improve the accuracy and scalability of GNNs on various supervised tasks. The
first main part of the thesis in focused on molecules. The second main part then extends our
scope to general graphs.

In particular, we first present the required background and theoretical foundations in Chapter 2.
In Chapter 3 we then explore how to leverage directional information in molecules while
respecting the underlying symmetries. We primarily focus on incorporating and representing
angular information via the DimeNet model. In Chapter 4 we then analyze weaknesses of this
model and propose several architectural improvements that substantially improve its runtime
while simultaneously improving accuracy.

We become more ambitious in Chapter 5 and ask how to not only incorporate angular
information, but the complete geometric information — and do so in a way that allows proving
a universal approximation theorem. The resulting theory suggests to additionally incorporate
dihedral angles. We combine this with multiple other improvements to propose the GemNet
model.

In Chapter 6 we then consider the case where we do not have any information about the
molecule’s 3D structure. We propose to substitute this information with synthetic coordinates
based on molecular distance bounds and graph-based distances. These coordinates improve
GNN performance across multiple datasets and even perform better than conventional conformer
search.

Next, we widen our scope and consider general graphs. Chapter 7 proposes graph diffusion
convolution (GDC), a method for preprocessing any given graph using a graph-based diffu-
sion process. GDC essentially substitutes the original, discrete graph with a geometry-based
representation. This improves performance across a wide range of models and tasks.

In Chapter 8 we change our focus from improving accuracy to improving scalability. We
propose PPRGo, a massively scalable GNN based on a local approximation of personalized
PageRank (PPR).

Finally, in Chapter 9 we move from deterministically computed to learned node and embed-
ding distances. We learn these distances by training an embedding space based on entropy-

6

1.4 Publications

Table 1.1: Publication that each thesis chapter is based on. The project pages can be found at
https://www.daml.in.tum.de/[project].

Ch. Reference Title Project page

3 Gasteiger et al. (2020b) Directional Message Passing for Molecular Graphs /dimenet
4 Gasteiger et al. (2020a) Fast and Uncertainty-Aware Directional Message /dimenet

Passing for Non-Equilibrium Molecules
5 Gasteiger et al. (2021a) GemNet: Universal Directional Graph Neural /gemnet

Networks for Molecules
6 Gasteiger et al. (2021c) Directional Message Passing on Molecular Graphs /synthetic-

via Synthetic Coordinates coordinates
7 Gasteiger et al. (2019b) Diffusion Improves Graph Learning /gdc
8 Bojchevski et al. (2020b) Scaling Graph Neural Networks with Approximate PageRank /pprgo
9 Gasteiger et al. (2021b) Scalable Optimal Transport in High Dimensions for Graph /lcn

Distances, Embedding Alignment, and More

regularized optimal transport. For this purpose we propose two approximation methods for
optimal transport and use them as part of the graph transport network (GTN).

Each main chapter contains a retrospective section. These sections contain additional consid-
erations, point out aspects that are noteworthy in hindsight, discuss limitations and highlight
relevant follow-up research. In Chapter 10 we conclude the thesis, provide high-level research
remarks, and discuss open research questions.

1.4 Publications

The main chapters of this thesis are based on separately published work. Table 1.1 lists these
publications and where they were published. It also provides links to project pages containing
supplementary material such as source code, datasets, posters, and presentations.

The following constitutes a full chronological list of publications the author was involved in
during the PhD project. Note that the two first authors of Bojchevski et al. (2020b) (Item 6) and
Stocker et al. (2022) (Item 13) have contributed equally.

1. Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then
Propagate: Graph Neural Networks Meet Personalized PageRank. In ICLR, 2019

2. Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion Improves
Graph Learning. In NeurIPS, 2019

3. Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Martin Blais, Amol Kapoor,
Michal Lukasik, and Stephan Günnemann. Is PageRank All You Need for Scalable Graph
Neural Networks? In International Workshop on Mining and Learning with Graphs
(MLG), 2019

4. Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional Message Passing
for Molecular Graphs. In ICLR, 2020

7

https://www.daml.in.tum.de/dimenet
https://www.daml.in.tum.de/dimenet
https://www.daml.in.tum.de/gemnet
https://www.daml.in.tum.de/synthetic-coordinates
https://www.daml.in.tum.de/synthetic-coordinates
https://www.daml.in.tum.de/gdc
https://www.daml.in.tum.de/pprgo
https://www.daml.in.tum.de/lcn

1 Introduction

5. Aleksandar Bojchevski, Johannes Gasteiger, and Stephan Günnemann. Efficient Robust-
ness Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing for Graphs,
Images and More. In ICML, 2020

6. Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin Blais,
Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. Scaling Graph Neural
Networks with Approximate PageRank. In KDD, 2020

7. Johannes Gasteiger, Shankari Giri, Johannes T. Margraf, and Stephan Günnemann. Fast
and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules. In
Machine Learning for Molecules Workshop, NeurIPS, 2020

8. Jan Schuchardt, Aleksandar Bojchevski, Johannes Gasteiger, and Stephan Günnemann.
Collective Robustness Certificates: Exploiting Interdependence in Graph Neural Networks.
In ICLR, 2021

9. Johannes Gasteiger, Marten Lienen, and Stephan Günnemann. Scalable Optimal Transport
in High Dimensions for Graph Distances, Embedding Alignment, and More. In ICML,
2021

10. Johannes Gasteiger, Florian Becker, and Stephan Günnemann. GemNet: Universal
Directional Graph Neural Networks for Molecules. In NeurIPS, 2021

11. Johannes Gasteiger, Chandan Yeshwanth, and Stephan Günnemann. Directional Message
Passing on Molecular Graphs via Synthetic Coordinates. In NeurIPS, 2021

12. Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan Günnemann, Zachary
Ulissi, C. Lawrence Zitnick, and Abhishek Das. How Do Graph Networks Generalize to
Large and Diverse Molecular Systems? arXiv, 2204.02782, 2022

13. Sina Stocker, Johannes Gasteiger, Florian Becker, Stephan Günnemann, and Johannes T.
Margraf. How Robust are Modern Graph Neural Network Potentials in Long and Hot
Molecular Dynamics Simulations? ChemRxiv, 2022

8

2 Background

In this chapter we provide an overview of the notation and key theoretical concepts of this
thesis. We take a broad perspective here, and complement this with concise, focused background
information in each main chapter. We introduce our notation for describing graphs, general
GNNs, the message passing framework, personalized PageRank, and some basics of group
theory and the SO(3) group.

2.1 Graphs

We denote a graph as the tuple G = (V, E) with the node set V and the edge set E . N = |V| is
the number of nodes and E = |E| the number of edges. A ∈ RN×N

+ is the weighted adjacency
matrix, with Aij > 0 if there is an edge between nodes i and j and otherwise Aij = 0. Most
tasks use an unweighted adjacency matrix, which is a special case with Aunweighted ∈ {0, 1}N×N .
We denote the out-degree of node i as deg(i) =

∑
k Aik and the diagonal matrix of node out-

degrees as D, with Dij = deg(i)δij . We primarily consider graphs with node features, which
are denoted as X ∈ RN×F with F being the number of features per node. In some cases we
additionally use edge features Xe ∈ RE×Fe .

We only consider homogeneous graphs in this thesis, i.e. graphs consisting of a single type of
node and edge. For molecules we use the atoms as nodes and either use the bonds as edges or
construct a radius graph by connecting all atoms within a given cutoff, e.g. 5 Å. Most graphs we
use for node classification are homophilic, i.e. similar nodes are connected. Note that molecular
graphs do not have this property – they are neither homophilic nor heterophilic.

2.2 Graph neural networks

In their most general sense graph neural networks (GNNs) are any neural network that works on
graphs. The first GNNs similar to the modern variant were proposed by Baskin et al. (1997);
Sperduti & Starita (1997). GNNs can generally be divided into recurrent GNNs (Scarselli et al.,
2009) and convolutional GNNs (Bruna et al., 2013). Most GNNs fall into the latter category,
which can be divided further into spectral GNNs based on the eigendecomposition of the graph
Laplacian (Bruna et al., 2013; Defferrard et al., 2016) and spatial GNNs directly based on the
graph (Gilmer et al., 2017; Kipf & Welling, 2017; Li et al., 2016; Niepert et al., 2016; Pham
et al., 2017). Note that this distinction is often unclear due to the tight connection of spectral
and spatial graph properties and approximations, as discussed in Chapter 7.

Most models in this thesis are based on an extended framework of message passing neural
networks (MPNNs) (Gilmer et al., 2017). Extended MPNNs embed each node separately as
hi ∈ RH and each edge as e(ij) ∈ RHe . At the start, these embeddings contain the node and

9

2 Background

edge features, i.e. h(0)
i = xi and e

(0)
(ij) = xe,(ij). Note that the edge embeddings e(ij) are

optional and often not used. The MPNN then passes messages between neighboring nodes to
update these embeddings layer by layer. These updates can be expressed as follows:

h
(l+1)
i = fupdate(h

(l)
i ,Agg

j∈Ni

[fmsg(h
(l)
i ,h

(l)
j , e

(l)
(ij))]), (2.1)

e
(l+1)
(ij) = fedge(h

(l+1)
i ,h

(l+1)
j , e

(l)
(ij)). (2.2)

The node and edge update functions fnode and fedge and the message function fmsg can be
any learnable function, from simple linear layers to arbitrarily complex neural networks. The
permutation-invariant aggregation Agg over the neighborhood Ni is usually summation, but
mean, min, standard deviation, and other alternatives have also been explored (Corso et al.,
2020; Geisler et al., 2020). The neighborhood Ni are typically the neighbors in the graph G
(Kipf & Welling, 2017), but can be generalized to consider larger or even global neighborhoods
(Chapter 7, Alon & Yahav (2021)), or feature similarity (Deng et al., 2020). Note that node
features play a central role in MPNNs since they define the starting point of the iterative update
process. It is possible to construct GNNs for graphs without node features, but these applications
are not their forte.

2.3 Personalized PageRank

Multiple methods proposed in this thesis are based on graph-based measures of distance.
Probably the most popular such measure, and the primary one used in this thesis, is personalized
PageRank (PPR) (Page et al., 1998). The process of obtaining the PPR score of node j with
respect to node i can be illustrated as follows. We start a random walk at node i and take a step
along any edge with probability proportional to that edge weight. At each step we teleport back
to the original root node i with probability α ∈ (0, 1]. If we perform this process for infinitely
many steps, we obtain the limit distribution. This distribution is the PPR score. This score was
independently proposed in multiple contexts, so it has also known as random walks with restart
(RWR) and propagation with return probability.

Actually performing these random walks is often the fastest and most scalable method of
computing PPR. Mathematically, we can concisely write down the resulting PPR matrix as

Πppr = α(IN − (1− α)D−1A)−1, (2.3)

with the unit matrix IN . The matrix element Πppr
ij contains the PPR score of node j with respect

to the root node i. Note that this inverse always exists (Gasteiger et al., 2019a).
One notable property is that Πppr

ij = deg(j)
deg(i)Π

ppr
ji . We can thus calculate a symmetric version

of PPR via Πsppr = D1/2ΠpprD−1/2. Similar to the adjacency matrix in regular GNNs (Kipf
& Welling, 2017), symmetrizing the PPR matrix often improves the accuracy of GNNs and
other graph-based models (see Chapter 7). And the above relationship allows us to use fast
approximate PPR algorithms for computing Πsppr. Furthermore, Πsppr is a positive definite
kernel, which allows us to use kernel-based algorithms or construct a metric using its reproducing
kernel Hilbert space (see Chapter 6).

10

2.4 Group theory

2.4 Group theory

A central consideration when using geometry for machine learning are the symmetries underly-
ing each geometrical space. These symmetries can be described by an algebraic structure known
as a group. A group is a set G equipped with an operation ·, which combines two elements of
the set to produce a third. This operation satisfies four central properties:

1. Closure: ∀g, h ∈ G : g · h ∈ G

2. Identity: ∃e ∈ G ∀g ∈ G : e · g = g · e = g

3. Inverse: ∀g ∈ G ∃g−1 ∈ G : g−1g = g−1 = e

4. Associativity: ∀g, h, i ∈ G : (a · h) · i = g · (b · i)

Many important data transformations can be described via groups, such as permutation, trans-
lation, rotation, or reflection. The rotation group elements are specific rotations, e.g. by 90°,
270°, or 58.3°. The group operation allows us to combine multiple elements into one. For
transformations such as the above examples it is typically defined as the composition. For
example, the composition of two 90° rotations results in one 180° rotation.

Group action. Group elements describe transformations that act on our data. They do so via
group actions. A group action is a mapping (g, a) 7→ g.a = a′ of the group element g and the
data point a that transforms a into a′. For example, if g is a rotation by 90° and a is an image,
then a′ would be the same image rotated by 90°. Note that the group action must be compatible
with the group operation, i.e. g.(h.a) = (g · h).a.

Representation. The most common way in which a group acts on the data vector space V is
via linear group actions, also known as group representations. For a finite-dimensional space
V = Rd, the group representation assigns an invertible matrix ρ(g) to each group element. The
representation then acts on the data point a ∈ V via ρ(g)a = a′. Representations must still be
compatible with the group action, i.e. ρ(g)ρ(h) = ρ(g · h). A special case of representation
are irreducible representations or irreps. These representations are indecomposable, i.e. they
cannot be decomposed into a direct sum of representations.

Equivariance and invariance. An important property of a model fθ is how its output
transforms when the input is transformed by a group. The two most important properties fθ can
have are that the transformation stays the same for the output (equivariance) or that it has no
effect (invariance). A function fθ : X → Y is said to be equivariant to the group G if for the
representations ρX , ρY and all g ∈ G:

fθ(ρX (g)x) = ρY(g)fθ(x). (2.4)

The function fθ : X → Y is called invariant to the group G if for the representations ρX and all
g ∈ G

fθ(ρX (g)x) = fθ(x). (2.5)

Note that invariance is a special case of equivariance, where the group representation in the
output space is the identity matrix.

11

2 Background

Group convolution. The convolution of two functions f and h on a group G is

(f ⋆ h)(u) =

∫

G
f(uv−1)h(v) dµ(v), (2.6)

with the Haar measure µ. Just like regular convolution becomes a multiplication in Fourier space
for functions in 1D space, convolution on other groups becomes a product in their generalized
Fourier space. If f̂ and ĥ are Fourier transformed functions of f and h, then the Fourier
transform of their convolution is given by

f̂ ⋆ h = f̂ · ĥ†. (2.7)

Importantly, Kondor & Trivedi (2018) have shown that all group-equivariant neural network
layers must implement group convolutions. Fourier-transformed functions such as the spherical
harmonics expansion thus allow us to implement these layers in an efficient way. For an extended
introduction to group theory in the context of machine learning see Bronstein et al. (2021). We
will next describe a few groups that are especially relevant for this thesis.

Symmetric group. The symmetric group Sn is the group of all permutations on the set
1, . . . , n. This is the most important groups for GNNs, since nodes in a graph can be permuted
arbitrarily. Node predictions should then be permuted accordingly. GNNs should thus be
equivariant to the symmetric group. The symmetric group is a large group with n! elements.
Equivariant and invariant models such as GNNs are thus very limited. The linear layers for these
two cases only have dimension 15 and 2, respectively (Maron et al., 2019b). However, recent
research suggests that the equivariance constraint might be too restrictive (de Haan et al., 2020).

Euclidean group. For 3D Euclidean space we are primarily interested in transformations
that preserve the distances between any pair of points, also known as rigid transformations. The
Euclidean group E(3) contains exactly these rigid transformations. Its elements g = (x,R)
consist of a translation vector x ∈ R3 and an orthogonal matrix R ∈ O(3). Group elements act
on points in Euclidean space via g.a = Ra+ x. These actions are composed of translations,
rotations, and reflections. The Euclidean group is thus a semi-direct product E(3) = T3 ⋊O(3)
of the translational group T3 and the orthogonal group O(3). The translational group can be
described via translation vectors x ∈ R3 and the orthogonal group via orthogonal matrices
R ∈ O(3), which describe rotations and reflections. These matrices have a determinant of either
+1 or -1. Matrices with determinant -1 describe a rotation and a reflection, while those with
determinant +1 only describe a rotation. We can create a subgroup containing only rotations
by restricting the determinant to 1, resulting in the special orthogonal group SO(3). Using
this group we can define the special Euclidean group SE(3) = T3 ⋊ SO(3) of translations
and rotations. The transformations in this group are the rigid transformations that preserve
handedness. These are also known as proper rigid transformations or rototranslations.

Constructing a model that is invariant to translations is rather straightforward to implement. If
we only consider relative distances and vectors we have already achieved this goal. The group of
reflections only has two elements (identity and reflection), which are easy to treat exhaustively.
The most interesting part of the special Euclidean group is thus the SO(3) group, which we will
describe in more detail next.

12

2.5 The SO(3) group

2.5 The SO(3) group

The 3D rotation group SO(3) is central to many considerations of geometry in 3D Euclidean
space. Rotations can be represented as linear transformations on R3. For an orthonormal basis
they can be described as the orthogonal R3×3 matrices with determinant 1 – hence the name
“special orthogonal group”.

Irreducible representations of SO(3). The SO(3) group can act on various different objects
in 3D Euclidean space, from vectors to matrices to arbitrary rank-L tensors. To introduce the
irreducible representation of SO(3), let us first consider the common example of a matrix, i.e.
a rank-2 tensor (Weiler et al., 2018). The matrix A transforms under rotation r ∈ SO(3) as
A 7→ R(r)AR(r)T , where R is the rotation matrix associated with r. However, this is not in
line with the group actions described in Sec. 2.4. To change this, we flatten the matrix into a
vector vec(A) and obtain the representation of r via the Kronecker product ρ(r) = R(r)⊗R(r).
In this form the matrix transforms as vec(A) 7→ ρ(r) vec(A). Since the matrix R(r) has 9
elements ρ(r) = R(r)⊗R(r) is a 9-dimensional representation of SO(3), even though ρ(r)
has 81 elements.

We can further decompose this representation by considering how different parts of A
transform. The symmetric and anti-symmetric parts of A transform independently, which splits
the 3× 3 matrix into 6- and 3-dimensional subspaces. The symmetric 6-dimensional part can
be further broken down by extracting its trace, since matrices A = aI3 and traceless symmetric
matrices also transform independently. Overall, we can thus decompose the matrix into parts of
dimension 1 (trace), 3 (anti-symmetric part), and 5 (traceless symmetric part). Accordingly, we
can also decompose the representation ρ(r) into representations of dimension 1, 3, and 5 as

ρ(r) = Q−1

(
L⊕

l=0

D(l)(r)

)
Q, (2.8)

where
⊕

denotes creating a block-diagonal matrix with blocks D(l)(r), the matrix Q changes
the basis, and L = 2 is the tensor rank. Since the individual blocks D(l)(r) cannot be
decomposed, this is an irreducible representation of SO(3).

This construction can be extended to any rank l, with each component being of dimension
2l + 1. These irreducible representations D(l)(r) acting on the 2l + 1 dimensional subspaces
are known as the Wigner D-matrices of order l. The functions defining the elements D(l)

mn of
the 2l + 1× 2l + 1 Wigner D-matrices D(l) are known as Wigner D-functions. Note that these
matrices have (2l + 1)2 elements, but only These act individually on 2l + 1 dimensional vector
spaces Vl, which are known as type-l steerable vector spaces (Brandstetter et al., 2022). Upon
rotation, each of these vector spaces transforms independently as

v(l) 7→ D(l)(r)v(l), (2.9)

with the type-l steerable vector v(l) ∈ Vl. For example, type-0 vectors are scalars that are
invariant to rotations and type-1 vectors are vectors v ∈ R3 that transform equivariantly with
the matrix representation of rotations R(r). In this context, steerability refers to the ability of a
function or vector to be transformed to any other orientation via linear transformations. This

13

2 Background

term stems from steerable functions used in computer vision (Freeman & Adelson, 1991). The
connection between steerable functions and steerable vectors is based on the fact that these
vectors can be viewed as the basis coefficients of spherical functions expanded in the spherical
harmonic basis, which we will expand on next.

Spherical functions and harmonics. A Fourier transform (FT) allows us to transform
functions in one dimension from real space to the Fourier space. For periodic signals on a
circle S1 this is based on the Fourier series of the harmonic circular functions, sine and cosine.
We can generalize this transformation to functions on higher-order spheres Sn. This results
in a generalized Fourier transform (GFT) based on spherical harmonics. Spherical harmonics
form a complete orthonormal basis on this space. Each function on the sphere can thus be
written as a sum of spherical harmonics. In our context, we are interested in functions on the
three-dimensional sphere S2 → R. We can express any function f : S2 → R on the 3D sphere
as

f(r̂) =
∞∑

l=0

l∑

m=−l

v(l)m Y (l)
m (r̂), (2.10)

with the vector v ∈ V0 × V1 × . . . , the spherical harmonics Y
(l)
m , and the direction r̂. This

decomposition is known as the spherical harmonics expansion and the above equation is the
inverse spherical generalized Fourier transform. We can obtain the coefficients v

(l)
m via the

generalized Fourier transform

v(l)m =

∫

S2

f(r̂)Y (l)
m (r̂) dr̂. (2.11)

Importantly, the spherical harmonics are the basis functions of the vector space V of irreducible
representations of SO(3) described above. The obtained coefficients v(l)m thus transform exactly
as Eq. (2.9). The steerable vectors v(l) are thus associated with steerable functions on S2. The
connection between the two is given via the spherical harmonics. Note that we can similarly
define a Fourier transform on the SO(3) group by using the Wigner D-matrices. This transform
results in steerable coefficient matrices f

(l)
mn that are associated with steerable functions on

SO(3).
Spherical harmonics and Wigner D-functions. Spherical harmonics are intrinsically

connected to the SO(3) group and Wigner D-functions. They can even be directly constructed
from Wigner D-functions. To do so, consider the parametrization of rotations via the Euler
angles α, β, and γ. Functions on the sphere only depend on a longitudinal and a latitudinal
angle, and are thus invariant to the third angle γ. This subspace of SO(3) that is invariant to the
rotation γ is also defined by the n = 0 column of the Wigner D-functions. Up to a normalization
factor, these components thus define the spherical harmonics

Y (l)
m =

1√
2l + 1

D
(l)
m0(r), (2.12)

with the rotation r. The spherical harmonics thus form the subspace of SO(3) restricted to the S2

sphere. This connection directly shows that spherical harmonics are equivariantly transformed

14

2.5 The SO(3) group

by the Wigner D-matrices of the same degree. Note that both Wigner D-matrices and spherical
harmonics are complex-valued. We can construct real-valued spherical harmonics Ylm from
their complex variants Y (l)

m . However, the real variants are missing many of the useful algebraic
properties of their complex counterparts.

Clebsch-Gordan coefficients. Many models that use SO(3) steerable vectors also make use
of tensor products, since they allow the interaction between different steerable vectors. The
tensor product of two vectors v1 ∈ Vl1 , v2 ∈ Vl2 is defined by their outer product, i.e.

v1 ⊗ v2 = v1v
T
2 , (2.13)

which is a matrix in Vl1 × Vl2 . We can flatten this result to obtain a new vector vec(v1 ⊗ v2).
However, this large vector is no longer irreducible and cannot be steered using single Wigner
D-matrices.

The Clebsch-Gordan coefficients allow us to transform this vector back into the vector space
associated with irreducible representations. The components of this new vector are given by

ṽ(l)
m =

∑

l1

∑

l2

l1∑

m1=−l1

l2∑

m2=−l2

C
(l,m)
(l1,m1),(l2,m2)

v
(l1)
1,m1

v
(l2)
2,m2

, (2.14)

where C
(l,m)
(l1,m1),(l2,m2)

are the Clebsch-Gordan coefficients. Note that this is essentially a basis
transformation. The associated function on the SO(3) group is the same in both cases.

15

Part II

Molecular Systems

17

3 Directional Message Passing for Molecular
Graphs

3.1 Introduction

In the last years scientists have started leveraging machine learning to reduce the computation
time required for predicting molecular properties from a matter of hours and days to mere
milliseconds. With the advent of graph neural networks (GNNs) this approach has recently
experienced a small revolution, since they do not require any form of manual feature engineering
and significantly outperform previous models (Gilmer et al., 2017; Schütt et al., 2017). GNNs
model the complex interactions between atoms by embedding each atom in a high-dimensional
space and updating these embeddings by passing messages between atoms. By predicting the
potential energy these models effectively learn an empirical potential function. Classically, these
functions have been modeled as the sum of four parts (Leach, 2001):

E = Ebonds + Eangle + Etorsion + Enon-bonded, (3.1)

where Ebonds models the dependency on bond lengths, Eangle on the angles between bonds,
Etorsion on bond rotations, i.e. the dihedral angle between two planes defined by pairs of bonds,
and Enon-bonded models interactions between unconnected atoms, e.g. via electrostatic or van
der Waals interactions. The update messages in GNNs, however, only depend on the previous
atom embeddings and the pairwise distances between atoms – not on directional information
such as bond angles and rotations. Thus, GNNs lack the second and third terms of this equation
and can only model them via complex higher-order interactions of messages. Extending GNNs
to model them directly is not straightforward since GNNs solely rely on pairwise distances,
which ensures their invariance to translation, rotation, and inversion of the molecule. These are
important physical requirements.

In this chapter, we propose to resolve this restriction by using embeddings associated with
the directions to neighboring atoms, i.e. by embedding atoms as a set of messages. These
directional message embeddings are equivariant with respect to the above transformations
since the directions move with the molecule. Hence, they preserve the relative directional
information between neighboring atoms. We propose to let message embeddings interact based
on the distance between atoms and the angle between directions. Both distances and angles are
invariant to translation, rotation, and inversion of the molecule, as required. Additionally, we
show that the distance and angle can be jointly represented in a principled and effective manner
by using spherical Bessel functions and spherical harmonics. We leverage these innovations to
construct the directional message passing neural network (DimeNet). DimeNet can learn both
molecular properties and atomic forces. It is twice continuously differentiable and solely based
on the atom types and coordinates, which are essential properties for performing molecular

19

3 Directional Message Passing for Molecular Graphs

dynamics simulations. DimeNet outperforms previous GNNs on average by 76 % on MD17 and
by 31 % on QM9. This chapter’s main contributions are:

• Directional message passing, which allows GNNs to incorporate directional information
by connecting recent advances in the fields of equivariance and graph neural networks as
well as ideas from belief propagation and empirical potential functions such as Eq. (3.1).

• Theoretically principled orthogonal basis representations based on spherical Bessel func-
tions and spherical harmonics. Bessel functions achieve better performance than Gaussian
radial basis functions while reducing the radial basis dimensionality by 4x or more.

• The Directional Message Passing Neural Network (DimeNet): A novel GNN that lever-
ages these innovations to set the new state of the art for molecular predictions and is
suitable both for predicting molecular properties and for molecular dynamics simulations.

3.2 Related work

ML for molecules. The classical way of using machine learning for predicting molecular
properties is combining an expressive, hand-crafted representation of the atomic neighborhood
(Bartók et al., 2013) with Gaussian processes (Bartók et al., 2010, 2017; Chmiela et al., 2017)
or neural networks (Behler & Parrinello, 2007). Recently, these methods have largely been
superseded by graph neural networks, which do not require any hand-crafted features but learn
representations solely based on the atom types and coordinates molecules (Duvenaud et al., 2015;
Gilmer et al., 2017; Hy et al., 2018; Schütt et al., 2017; Unke & Meuwly, 2019). Our proposed
message embeddings can also be interpreted as directed edge embeddings or embeddings on
the line graph (Chen et al., 2019b). (Undirected) edge embeddings have already been used
in previous GNNs for molecules (Chen et al., 2019a; Jørgensen et al., 2018). However, these
GNNs use both node and edge embeddings and do not leverage any directional information.

Graph neural networks. GNNs were first proposed in the 90s (Baskin et al., 1997; Sperduti
& Starita, 1997) and 00s (Gori et al., 2005; Scarselli et al., 2009). General GNNs have been
largely inspired by their application to molecular graphs and have started to achieve breakthrough
performance in various tasks at around the same time the molecular variants did (Gasteiger
et al., 2019a; Kipf & Welling, 2017; Zambaldi et al., 2019). Some recent progress has been
focused on GNNs that are more powerful than the 1-Weisfeiler-Lehman test of isomorphism
(Maron et al., 2019a; Morris et al., 2019). However, for molecular predictions these models are
significantly outperformed by GNNs focused on molecules (see Sec. 3.7). Some recent GNNs
have incorporated directional information by considering the change in local coordinate systems
per atom (Ingraham et al., 2019). However, this approach breaks permutation invariance and is
therefore only applicable to chain-like molecules (e.g. proteins).

Equivariant neural networks. Group equivariance as a principle of modern machine learning
was first proposed by Cohen & Welling (2016). Following work has generalized this principle
to spheres (Cohen et al., 2018), molecules (Thomas et al., 2018), volumetric data (Weiler et al.,
2018), and general manifolds (Cohen et al., 2019a). Equivariance with respect to continuous
rotations has been achieved so far by switching back and forth between Fourier and coordinate
space in each layer (Cohen et al., 2018) or by using a fully Fourier space model (Anderson
et al., 2019; Kondor et al., 2018). The former introduces major computational overhead and

20

3.3 Requirements for molecular predictions

the latter imposes significant constraints on model construction, such as the inability of using
non-linearities. Our proposed solution does not suffer from either of those limitations.

3.3 Requirements for molecular predictions

In recent years machine learning has been used to predict a wide variety of molecular properties,
both low-level quantum mechanical properties such as potential energy, energy of the highest
occupied molecular orbital (HOMO), and the dipole moment and high-level properties such as
toxicity, permeability, and adverse drug reactions (Wu et al., 2018). In this chapter we will focus
on scalar regression targets, i.e. targets t ∈ R. A molecule is uniquely defined by the atomic
numbers z = {z1, . . . , zN} and positions X = {x1, . . . ,xN}. Some models additionally use
auxiliary information Θ such as bond types or electronegativity of the atoms. We do not include
auxiliary features since they are hand-engineered and non-essential. In summary, we define an
ML model for molecular prediction with parameters θ via fθ : {X, z} → R.

Symmetries and invariances. All molecular predictions must obey some basic laws of
physics, either explicitly or implicitly. One important example of such are the fundamental
symmetries of physics and their associated invariances. In principle, these invariances can be
learned by any neural network via corresponding weight matrix symmetries (Ravanbakhsh et al.,
2017). However, not explicitly incorporating them into the model introduces duplicate weights
and increases training time and complexity. The most essential symmetries are translational and
rotational invariance (follows from homogeneity and isotropy), permutation invariance (follows
from the indistinguishability of particles), and symmetry under parity, i.e. under sign flips of
single spatial coordinates.

Molecular dynamics. Additional requirements arise when the model should be suitable for
molecular dynamics (MD) simulations and predict the forces Fi acting on each atom. The force
field is a conservative vector field since it must satisfy conservation of energy (the necessity
of which follows from homogeneity of time (Noether, 1918)). The easiest way of defining a
conservative vector field is via the gradient of a potential function. We can leverage this fact by
predicting a potential instead of the forces and then obtaining the forces via backpropagation to
the atom coordinates, i.e. Fi(X, z) = − ∂

∂xi
fθ(X, z). We can even directly incorporate the

forces in the training loss and directly train a model for MD simulations (Pukrittayakamee et al.,
2009):

LMD(X, z) =
∣∣fθ(X, z)− t̂(X, z)

∣∣+ ρ

3N

N∑

i=1

3∑

α=1

∣∣∣∣−
∂fθ(X, z)

∂xiα
− F̂iα(X, z)

∣∣∣∣ , (3.2)

where the target t̂ = Ê is the ground-truth energy (usually available as well), F̂ are the ground-
truth forces, and the hyperparameter ρ sets the forces’ loss weight. For stable simulations
Fi must be continuously differentiable and the model fθ itself therefore twice continuously
differentiable. We hence cannot use discontinuous transformations such as ReLU non-linearities.
Furthermore, since the atom positions X can change arbitrarily we cannot use pre-computed
auxiliary information Θ such as bond types.

21

3 Directional Message Passing for Molecular Graphs

3.4 Directional message passing

Graph neural networks. Graph neural networks treat the molecule as a graph, in which the
nodes are atoms and edges are defined either via a predefined molecular graph or simply by
connecting atoms that lie within a cutoff distance c. Each edge is associated with a pairwise
distance between atoms dij = ∥xi − xj∥2. GNNs implement all of the above physical invari-
ances by construction since they only use pairwise distances and not the full atom coordinates.
However, note that a predefined molecular graph or a step function-like cutoff cannot be used
for MD simulations since this would introduce discontinuities in the energy landscape. GNNs
represent each atom i via an atom embedding hi ∈ RH . The atom embeddings are updated in
each layer by passing messages along the molecular edges. Messages are usually transformed
based on an edge embedding e(ij) ∈ RHe and summed over the atom’s neighbors Ni, i.e. the
embeddings are updated in layer l via

h
(l+1)
i = fupdate(h

(l)
i ,
∑

j∈Ni

fint(h
(l)
j , e

(l)
(ij))), (3.3)

with the update function fupdate and the interaction function fint, which are both commonly
implemented using neural networks. The edge embeddings e(l)(ij) usually only depend on the
interatomic distances, but can also incorporate additional bond information (Gilmer et al., 2017)
or be recursively updated in each layer using the neighboring atom embeddings (Jørgensen et al.,
2018).

Directionality. In principle, the pairwise distance matrix contains the full geometrical
information of the molecule. However, GNNs do not use the full distance matrix since this would
mean passing messages globally between all pairs of atoms, which increases computational
complexity and can lead to overfitting. Instead, they usually use a cutoff distance c, which
means they cannot distinguish between certain molecules (Xu et al., 2019b). E.g. at a cutoff
of roughly 2 Å a regular GNN would not be able to distinguish between a hexagonal (e.g.
Cyclohexane) and two triangular molecules (e.g. Cyclopropane) with the same bond lengths
since the neighborhoods of each atom are exactly the same for both (see Appendix, Fig. A.1).
This problem can be solved by modeling the directions to neighboring atoms instead of just their
distances. A principled way of doing so while staying invariant to a transformation group G
(such as described in Sec. 3.3) is via group-equivariance (Cohen & Welling, 2016). A function
f : X → Y is defined as being equivariant if f(φX

g (x)) = φY
g (f(x)), with the group action in

the input and output space φX
g and φY

g . However, equivariant CNNs only achieve equivariance
with respect to a discrete set of rotations (Cohen & Welling, 2016). For a precise prediction
of molecular properties we need continuous equivariance with respect to rotations, i.e. to the
SO(3) group.

Directional embeddings. We solve this problem by noting that an atom by itself is rotationally
invariant. This invariance is only broken by neighboring atoms that interact with it, i.e. those
inside the cutoff c. Since each neighbor breaks up to one rotational invariance they also introduce
additional degrees of freedom, which we need to represent in our model. We can do so by
generating a separate embedding mji for each atom i and neighbor j by applying the same
learned filter in the direction of each neighboring atom (in contrast to equivariant CNNs, which

22

3.5 Physically based representations

apply filters in fixed, global directions). These directional embeddings are equivariant with
respect to global rotations since the associated directions rotate with the molecule and hence
conserve the relative directional information between neighbors.

Representation via joint 2D basis. We use the directional information associated with each
embedding by leveraging the angle α(kj,ji) = ∠xkxjxi when aggregating the neighboring
embeddings mkj of mji. We combine the angle with the interatomic distance dkj associated
with the incoming message mkj and jointly represent both in a

(kj,ji)
CBF ∈ RNCABF·NCRBF using a

2D representation based on spherical Bessel functions and spherical harmonics, as explained in
Sec. 3.5. We empirically found that this basis representation provides a better inductive bias
than the raw angle alone. Note that by only using interatomic distances and angles our model
becomes invariant to rotations.

mji

mk1j

mk2j

mk3j
j

i

k1

k2

k3

Figure 3.1: Aggregation
scheme for message em-
beddings.

Message embeddings. The directional embedding mji associ-
ated with the atom pair ji can be thought of as a message being
sent from atom j to atom i. Hence, in analogy to belief propagation,
we embed each atom i using a set of incoming messages mji, i.e.
hi =

∑
j∈Ni

mji, and update the message mji based on the incoming
messages mkj (Yedidia et al., 2003). Hence, as illustrated in Fig. 3.1,
we define the update function and aggregation scheme for message
embeddings as

m
(l+1)
ji = fupdate(m

(l)
ji ,

∑

k∈Nj\{i}
fint(m

(l)
kj , e

(ji)
RBF,a

(kj,ji)
CBF)), (3.4)

where e
(ji)
RBF denotes the radial basis function representation of the interatomic distance dji,

which will be discussed in Sec. 3.5. We found this aggregation scheme to not only have a nice
analogy to belief propagation, but also to empirically perform better than alternatives. Note
that since fint now incorporates the angle between atom pairs, or bonds, we have enabled our
model to directly learn the angular potential Eangle, the second term in Eq. (3.1). Moreover, the
message embeddings are essentially embeddings of atom pairs, as used by the provably more
powerful GNNs based on higher-order Weisfeiler-Lehman tests of isomorphism. Our model can
therefore provably distinguish molecules that a regular GNN cannot (e.g. the previous example
of a hexagonal and two triangular molecules) (Morris et al., 2019).

3.5 Physically based representations

Representing distances and angles. For the interaction function fint in Eq. (3.4) we use a joint
representation a

(kj,ji)
CBF of the angles α(kj,ji) between message embeddings and the interatomic

distances dkj = ∥xk−xj∥2, as well as a representation e
(ji)
RBF of the distances dji. Earlier works

have used a set of Gaussian radial basis functions to represent interatomic distances, with tightly
spaced means that are distributed e.g. uniformly (Schütt et al., 2017) or exponentially (Unke &
Meuwly, 2019). Similar in spirit to the functional bases used by steerable CNNs (Cheng et al.,
2019; Cohen & Welling, 2017) we propose to use an orthogonal basis instead, which reduces
redundancy and thus improves parameter efficiency. Furthermore, a basis chosen according to

23

3 Directional Message Passing for Molecular Graphs

the properties of the modeled system can even provide a helpful inductive bias. We therefore
derive a proper basis representation for quantum systems next.

From Schrödinger to Fourier-Bessel. To construct a basis representation in a principled
manner we first consider the space of possible solutions. Our model aims at approximating
results of density functional theory (DFT) calculations, i.e. results given by an electron density
⟨Ψ(d)|Ψ(d)⟩, with the electron wave function Ψ(d) and d = xk − xj . The solution space

of Ψ(d) is defined by the time-independent Schrödinger equation
(
− ℏ2

2m∇2 + V (d)
)
Ψ(d) =

EΨ(d), with constant mass m and energy E. We do not know the potential V (d) and so choose
it in an uninformative way by simply setting it to 0 inside the cutoff distance c (up to which we
pass messages between atoms) and to ∞ outside. Hence, we arrive at the Helmholtz equation
(∇2+k2)Ψ(d) = 0, with the wave number k =

√
2mE
ℏ and the boundary condition Ψ(c) = 0 at

the cutoff c. Separation of variables in polar coordinates (d, α, φ) yields the solution (Griffiths
& Schroeter, 2018)

Ψ(d, α, φ) =
∞∑

l=0

l∑

m=−l

(almjl(kd) + blmyl(kd))Y
(l)
m (α,φ), (3.5)

l

n

Figure 3.2: 2D spherical Fourier-
Bessel basis ãCBF,ln(d, α).

0.0 0.5 1.0
d/c

0

10

20

ẽ
R

B
F
(d
/c
)

Figure 3.3: Radial Bessel basis for
NRBF = 5.

with the spherical Bessel functions of the first and second kind
jl and yl and the spherical harmonics Y

(l)
m . As common in

physics we only use the regular solutions, i.e. those that do
not approach −∞ at the origin, and hence set blm = 0. Re-
call that our first goal is to construct a joint 2D basis for
dkj and α(kj,ji), i.e. a function that depends on d and a
single angle α. To achieve this we set m = 0 and obtain
ΨCBF(d, α) =

∑
l aljl(kd)Y

(l)
0 (α). The boundary conditions

are satisfied by setting k = zln
c , where zln is the n-th root of

the l-order Bessel function, which are precomputed numeri-
cally. Normalizing ΨCBF inside the cutoff distance c yields
the 2D spherical Fourier-Bessel basis ã(kj,ji)

CBF ∈ RNCABF·NCRBF ,
which is illustrated in Fig. 3.2 and defined by

ãCBF,ln(d, α) =

√
2

c3j2l+1(zln)
jl(

zln
c
d)Y

(l)
0 (α), (3.6)

with l ∈ [0 . . NCABF − 1] and n ∈ [1 . . NCRBF]. Our second
goal is constructing a radial basis for dji, i.e. a function that
solely depends on d and not on the angles α and φ. We achieve
this by setting l = m = 0 and obtain ΨRBF(d) = aj0(

z0,n
c d),

with roots at z0,n = nπ. Normalizing this function on [0, c]
and using j0(d) = sin(d)/d gives the radial basis ẽRBF ∈
RNRBF , as shown in Fig. 3.3 and defined by

ẽRBF,n(d) =

√
2

c

sin(nπc d)

d
, (3.7)

24

3.6 Directional Message Passing Neural Network (DimeNet)

with n ∈ [1 . . NRBF]. Both of these bases are purely real-valued and orthogonal in the domain of
interest. They furthermore enable us to bound the highest-frequency components by ωα ≤ NCABF

2π ,
ωdkj ≤ NCRBF

c , and ωdji ≤ NRBF
c . This restriction is an effective way of regularizing the model

and ensures that predictions are stable to small perturbations. We found NCRBF = 6 and
NRBF = 16 radial basis functions to be more than sufficient. Note that NRBF is 4x lower than
PhysNet’s 64 (Unke & Meuwly, 2019) and 20x lower than SchNet’s 300 radial basis functions
(Schütt et al., 2017).

Continuous cutoff. ã
(kj,ji)
CBF and ẽRBF(d) are not twice continuously differentiable due to

the step function cutoff at c. To alleviate this problem we introduce an envelope function u(d)
that has a root of multiplicity 3 at d = c, causing the final functions aRBF(d) = u(d)ãRBF(d)
and eRBF(d) = u(d)ẽRBF(d) and their first and second derivatives to go to 0 at the cutoff. We
achieve this with the polynomial

u(d) = 1− (p+ 1)(p+ 2)

2
dp + p(p+ 2)dp+1 − p(p+ 1)

2
dp+2, (3.8)

where p ∈ N0. We did not find the model to be sensitive to different choices of envelope
functions and choose p = 6. Note that using an envelope function causes the bases to lose their
orthonormality, which we did not find to be a problem in practice. We furthermore fine-tune
the Bessel wave numbers kn = nπ

c used in ẽRBF ∈ RNRBF via backpropagation after initializing
them to these values, which we found to give a small boost in prediction accuracy.

3.6 Directional Message Passing Neural Network (DimeNet)

The Directional Message Passing Neural Network’s (DimeNet) design is based on a streamlined
version of the PhysNet architecture (Unke & Meuwly, 2019), in which we have integrated
directional message passing and spherical Fourier-Bessel representations. DimeNet generates
predictions that are invariant to atom permutations and translation, rotation and inversion of
the molecule. DimeNet is suitable both for the prediction of various molecular properties
and for molecular dynamics (MD) simulations. It is twice continuously differentiable and
able to learn and predict atomic forces via backpropagation, as described in Sec. 3.3. The
predicted forces fulfill energy conservation by construction and are equivariant with respect to
permutation and rotation. Model differentiability in combination with basis representations that
have bounded maximum frequencies furthermore guarantees smooth predictions that are stable
to small deformations. Fig. 3.4 gives an overview of the architecture.

Embedding block. Atomic numbers are represented by learnable, randomly initialized atom
type embeddings h(0)

i ∈ RF that are shared across molecules. The first layer generates message
embeddings from these and the distance between atoms via

m
(1)
ji = σ([h

(0)
j ∥h(0)

i ∥e(ji)RBF]W + b), (3.9)

where ∥ denotes concatenation and the weight matrix W and bias b are learnable.
Interaction block. The embedding block is followed by multiple stacked interaction blocks.

This block implements fint and fupdate of Eq. (3.4) as shown in Fig. 3.4. Note that the 2D

25

3 Directional Message Passing for Molecular Graphs

Model:

Embedding: Interaction: Output:

Residual:

dji

e
(ji)
RBF

CBF

dkj α(kj,ji)

a
(kj,ji)
CBF

z

Embedding

Interaction

Interaction

Interaction

Interaction

Interaction

Interaction

∑ t

e
(ji)
RBF zj , zi

W□ Embedding

h
(0)
j h

(0)
i

∥

σ(W□+b)

Output
t
(1)
im

(1)
ji

Directional
message passing

e
(ji)
RBF a

(kj,ji)
CBF

m
(l−1)
kj

k ∈ Nj\{i}

m
(l−1)
ji

σ(W□+b)σ(W□+b)

⊙W□

□T W□W□
∑

k
+

Residual

σ(W□+b)

+

Residual

Residual

Output
t
(l)
im

(l)
ji

e
(ji)
RBF m

(l)
ji

j ∈ Ni

W□

⊙
∑

j

σ(W□+b)

σ(W□+b)

σ(W□+b)

W□

t
(l)
i

mji

σ(W□+b)

σ(W□+b)

+

RBF

Figure 3.4: The DimeNet architecture. □ denotes the layer’s input and ∥ denotes concatenation. The
distances dji are represented using spherical Bessel functions and the distances dkj and angles α(kj,ji) are
jointly represented using a 2D spherical Fourier-Bessel basis. An embedding block generates the initial
message embeddings mji. These embeddings are updated in multiple interaction blocks via directional
message passing, which uses the neighboring messages mkj , k ∈ Nj \ {i}, the 2D representations
a
(kj,ji)
CBF , and the distance representations e(ji)RBF. Each block passes the resulting embeddings to an output

block, which transforms them using the radial basis e(ji)RBF and sums them up per atom. Finally, the outputs
of all layers are summed up to generate the prediction.

representation a
(kj,ji)
CBF is first transformed into an Nbilinear-dimensional representation via a

linear layer. The main purpose of this is to make the dimensionality of a(kj,ji)
CBF independent of

the subsequent bilinear layer, which uses a comparatively large Nbilinear × F × F -dimensional
weight tensor. We have also experimented with using a bilinear layer for the radial basis
representation, but found that the element-wise multiplication e

(ji)
RBFW ⊙mkj performs better,

which suggests that the 2D representations require more complex transformations than radial
information alone. The interaction block transforms each message embedding mji using
multiple residual blocks, which are inspired by ResNet (He et al., 2016) and consist of two
stacked dense layers and a skip connection.

Output block. The message embeddings after each block (including the embedding block) are
passed to an output block. The output block transforms each message embedding mji using the
radial basis e(ji)RBF, which ensures continuous differentiability and slightly improves performance.
Afterwards the incoming messages are summed up per atom i to obtain hi =

∑
j mji, which

is then transformed using multiple dense layers to generate the atom-wise output t(l)i . These
outputs are then summed up to obtain the final prediction t =

∑
i

∑
l t

(l)
i .

Continuous differentiability. Multiple model choices were necessary to achieve twice
continuous model differentiability. First, DimeNet uses the self-gated Swish activation function
σ(x) = x · sigmoid(x) (Ramachandran et al., 2018) instead of a regular ReLU activation
function. Second, we multiply the radial basis functions ẽRBF(d) with an envelope function

26

3.7 Experiments

Table 3.1: MAE on QM9. DimeNet sets the state of the art on 11 targets, outperforming the second-best
model on average by 31 % (mean std. MAE).

Target Unit PPGN SchNet PhysNet MEGNet-s Cormorant DimeNet
µ D 0.047 0.033 0.0529 0.05 0.13 0.0286
α a3

0 0.131 0.235 0.0615 0.081 0.092 0.0469
ϵHOMO meV 40.3 41 32.9 43 36 27.8
ϵLUMO meV 32.7 34 24.7 44 36 19.7
∆ϵ meV 60.0 63 42.5 66 60 34.8〈
R2
〉

a2
0 0.592 0.073 0.765 0.302 0.673 0.331

ZPVE meV 3.12 1.7 1.39 1.43 1.98 1.29
U0 meV 36.8 14 8.15 12 28 8.02
U meV 36.8 19 8.34 13 - 7.89
H meV 36.3 14 8.42 12 - 8.11
G meV 36.4 14 9.40 12 - 8.98
cv

cal
mol K 0.055 0.033 0.0280 0.029 0.031 0.0249

std. MAE % 1.84 1.76 1.37 1.80 2.14 1.05
logMAE - −4.64 −5.17 −5.35 −5.17 −4.75 −5.57

u(d) that has a root of multiplicity 3 at the cutoff c. Finally, DimeNet does not use any auxiliary
data but relies on atom types and positions alone.

3.7 Experiments

Models. For hyperparameter choices and training setup see App. A.2. We use 6 state-of-the-art
models for comparison: SchNet (Schütt et al., 2017), PhysNet (results based on the reference
implementation) (Unke & Meuwly, 2019), provably powerful graph networks (PPGN, results
provided by the original authors) (Maron et al., 2019a), MEGNet-simple (without auxiliary
information) (Chen et al., 2019a), Cormorant (Anderson et al., 2019), and symmetrized gradient-
domain machine learning (sGDML) (Chmiela et al., 2018). Note that sGDML cannot be used
for QM9 since it can only be trained on a single molecule.

QM9. We test DimeNet’s performance for predicting molecular properties using the common
QM9 benchmark (Ramakrishnan et al., 2014). It consists of roughly 130 000 molecules in
equilibrium with up to 9 heavy C, O, N, and F atoms. We use 110 000 molecules in the training,
10 000 in the validation and 10 831 in the test set. We only use the atomization energy for U0,
U , H , and G, i.e. subtract the atomic reference energies, which are constant per atom type, and
perform the training using eV. In Table 3.1 we report the mean absolute error (MAE) of each
target and the overall mean standardized MAE (std. MAE) and mean standardized logMAE (for
details see App. A.3). We predict ∆ϵ simply by taking ϵLUMO − ϵHOMO, since it is calculated
in exactly this way by DFT calculations. We train a separate model for each target, which
significantly improves results compared to training a single shared model for all targets (see
App. A.5). DimeNet sets the new state of the art on 11 out of 12 targets and decreases mean std.
MAE by 31 % and mean logMAE by 0.22 compared to the second-best model.

27

3 Directional Message Passing for Molecular Graphs

Table 3.2: MAE on MD17 using 1000 training samples
(energies in kcal

mol , forces in kcal
mol Å

). DimeNet outper-
forms SchNet by a large margin and performs roughly
on par with sGDML.

sGDML SchNet DimeNet

Aspirin Energy 0.19 0.37 0.204
Forces 0.68 1.35 0.499

Benzene Energy 0.10 0.08 0.078
Forces 0.06 0.31 0.187

Ethanol Energy 0.07 0.08 0.064
Forces 0.33 0.39 0.230

Malonaldehyde Energy 0.10 0.13 0.104
Forces 0.41 0.66 0.383

Naphthalene Energy 0.12 0.16 0.122
Forces 0.11 0.58 0.215

Salicylic acid Energy 0.12 0.20 0.134
Forces 0.28 0.85 0.374

Toluene Energy 0.10 0.12 0.102
Forces 0.14 0.57 0.216

Uracil Energy 0.11 0.14 0.115
Forces 0.24 0.56 0.301

std. MAE (%) Energy 2.53 3.32 2.49
Forces 1.01 2.38 1.10

Figure 3.5: Examples of DimeNet filters.
They exhibit a clear 2D structure. For details
see App. A.4.

Table 3.3: Ablation studies using multi-task
learning on QM9. All of our contributions
have a significant impact on performance.

Variation MAE
MAE DimeNet ∆logMAE

Gaussian RBF 110 % 0.10
NSHBF = 1 126 % 0.11
Node embeddings 168 % 0.45

MD17. We use MD17 (Chmiela et al., 2017) to test model performance in molecular dynamics
simulations. The goal of this benchmark is predicting both the energy and atomic forces of eight
small organic molecules, given the atom coordinates of the thermalized (i.e. non-equilibrium,
slightly moving) system. The ground truth data is computed via molecular dynamics simulations
using DFT. A separate model is trained for each molecule, with the goal of providing highly
accurate individual predictions. This dataset is commonly used with 50 000 training and 10 000
validation and test samples. We found that DimeNet can match state-of-the-art performance in
this setup. E.g. for Benzene, depending on the force weight ρ, DimeNet achieves 0.035 kcal/mol
MAE for the energy or 0.07 kcal/mol and 0.17 kcal/(mol Å) for energy and forces, matching the
results reported by Anderson et al. (2019) and Unke & Meuwly (2019). However, this accuracy
is two orders of magnitude below the DFT calculation’s accuracy (approx. 2.3 kcal/mol for
energy (Faber et al., 2017)), so any remaining difference to real-world data is almost exclusively
due to errors in the DFT simulation. Truly reaching better accuracy can therefore only be
achieved with more precise ground-truth data, which requires far more expensive methods (e.g.
CCSD(T)) and thus ML models that are more sample-efficient (Chmiela et al., 2018). We
therefore instead test our model on the harder task of using only 1000 training samples. As
shown in Table 3.2 DimeNet outperforms SchNet by a large margin and performs roughly on
par with sGDML. However, sGDML uses hand-engineered descriptors that provide a strong
advantage for small datasets, can only be trained on a single molecule (a fixed set of atoms),
and does not scale well with the number of atoms or training samples.

28

3.8 Conclusion

Ablation studies. To test whether directional message passing and the Fourier-Bessel basis
are the actual reason for DimeNet’s improved performance, we ablate them individually and
compare the mean standardized MAE and logMAE for multi-task learning on QM9. Table 3.3
shows that both of our contributions have a significant impact on the model’s performance.
Using 64 Gaussian RBFs instead of 16 and 6 Bessel basis functions to represent dji and dkj
increases the error by 10 %, which shows that this basis does not only reduce the number of
parameters but additionally provides a helpful inductive bias. DimeNet’s error increases by
around 26 % when we ignore the angles between messages by setting NCABF = 1, showing that
directly incorporating directional information does indeed improve performance. Using node
embeddings instead of message embeddings (and hence also ignoring directional information)
has the largest impact and increases MAE by 68 %, at which point DimeNet performs worse
than SchNet. Furthermore, Fig. 3.5 shows that the filters exhibit a structurally meaningful
dependence on both the distance and angle. For example, some of these filters are clearly being
activated by benzene rings (120° angle, 1.39 Å distance). This further demonstrates that the
model learns to leverage directional information.

3.8 Conclusion

In this chapter we have introduced directional message passing, a more powerful and expressive
interaction scheme for molecular predictions. Directional message passing enables graph
neural networks to leverage directional information in addition to the interatomic distances
that are used by normal GNNs. We have shown that interatomic distances can be represented
in a principled and effective manner using spherical Bessel functions. We have furthermore
shown that this representation can be extended to directional information by leveraging 2D
spherical Fourier-Bessel basis functions. We have leveraged these innovations to construct
DimeNet, a GNN suitable both for predicting molecular properties and for use in molecular
dynamics simulations. We have demonstrated DimeNet’s performance on QM9 and MD17 and
shown that our contributions are the essential ingredients that enable DimeNet’s state-of-the-art
performance. DimeNet directly models the first two terms in Eq. (3.1), which are known as the
important “hard” degrees of freedom in molecules (Leach, 2001). Future work should aim at
also incorporating the third and fourth terms of this equation. This could improve predictions
even further and enable the application to molecules much larger than those used in common
benchmarks like QM9.

3.9 Retrospective

Two major approaches for handling rotational equivariance have emerged in recent years. One
is the method of embedding edges as in DimeNet, the other uses steerable embeddings of the
SO(3) group. In general, the DimeNet approach is more intuitive and easier to implement
and work with than steerable embeddings. This allows more modeling freedom and faster
development. Accordingly, multiple subsequent papers have proposed improvements to this
model, such as Liu et al. (2022); Zhang et al. (2020). Similar edge-based approaches to
equivariance have also been proposed in multiple later works, most famously in AlphaFold 2

29

3 Directional Message Passing for Molecular Graphs

(Jumper et al., 2021). Interestingly, recent work even proposed combining edge-based models
with steerable embeddings (Musaelian et al., 2022). The benefit of this combination can likely be
attributed to the improved inductive bias of embedding edges, since edges effectively represent
the interactions between atoms. These interactions are what ultimately define the molecular
properties.

Subsequent work also looked into the universality aspects of DimeNet and showed that using
edges and angles still cannot distinguish between all graphs, even if this approach is more
powerful than regular GNNs (Garg et al., 2020).

Models based on steerable embeddings have made considerable progress since DimeNet’s
publication as well (Batzner et al., 2022). One large enabler of this progress are libraries that
handle all the difficult bits of SO(3) representations, such as the e3nn library (Geiger et al.,
2021). Another major bottleneck of steerable models is runtime since the required generalized
Fourier transforms are not well supported by deep learning-frameworks. Custom GPU kernels
would likely lead to substantial improvements in this area.

DimeNet-like approaches have similar limitations in terms of runtime. Passing messages
between edge embeddings leads to a substantial increase in computational cost since there are
typically 10-30 times more edges than atoms in a molecular system. Subsequent works have
tackled this by using directional node embeddings (Schütt et al., 2021) or only embedding
a limited set of edges (Zhang et al., 2020). Since runtime is indeed a major limitation of
DimeNet, we will explore some approaches of accelerating the model and expanding its scope
of applications in the next chapter.

30

4 Fast and Uncertainty-Aware Directional
Message Passing for Non-Equilibrium
Molecules

4.1 Introduction

Modern machine learning models for molecular property prediction typically focus on molecules
in equilibrium (e.g. QM9 (Ramakrishnan et al., 2014)) or close to the equilibrium (e.g. MD17
(Chmiela et al., 2017), ANI-1 (Smith et al., 2017), QM7-X (Hoja et al., 2020)). This precludes
their application to the dynamics during chemical reactions, which involve transition states far
away from the equilibrium. Making reliable predictions for these states requires models that
are able to cover a much broader range of chemical and configurational space, i.e. including
open-shell electronic structures, stretched bonds and distorted angles. In this chapter we aim at
making progress on this problem from three directions.

First, we propose a model that is fast, accurate, and generalizes well both to different
configurations and different molecules. This model predicts both the molecule’s energy and the
forces acting on each atom, since the latter are crucial for the molecule’s dynamic behavior. To
this end, we start from the Directional Message Passing Neural Network (DimeNet) proposed in
Chapter 3, which fulfills all of these properties except one: It is comparatively slow to compute.
We perform a thorough model analysis to fix this and propose the DimeNet++ model, which
achieves an 8x runtime improvement while also improving predictions by 10 % on average and
by 20 % for energies.

Second, we develop a new dataset that contains highly reactive non-equilibrium systems.
The new COLL dataset contains 140 000 configurations of pairs of molecules reacting at high
kinetic energies. It only consists of small molecules but covers the space of reactions much
better and includes a significantly wider range of energies and forces than previous benchmarks,
as shown in Fig. 4.4.

Third, due to the vast number of possible non-equilibrium configurations it is crucial that
we are able to detect when we move out of the region covered by the training data and react
appropriately (e.g. via active learning). To achieve this we investigate ensembling (Hansen &
Salamon, 1990) and mean-variance estimation (Nix & Weigend, 1994). We conclude that both
are insufficient, due to their overhead and inability of reliably predicting the energy and force
uncertainties.

31

4 Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules

Model:

Embedding: Interaction: Output:

Residual:

dji

e
(ji)
RBF

CBF

dkj α(kj,ji)

a
(kj,ji)
CBF

z

Embedding

Interaction

Interaction

Interaction

Interaction

∑ t

e
(ji)
RBF zj , zi

W□ Embedding

h
(0)
j h

(0)
i

∥

σ(W□+b)

Output
t
(1)
im

(1)
ji

Directional
message passing

e
(ji)
RBF a

(kj,ji)
CBF

m
(l−1)
kj

k ∈ Nj\{i}

m
(l−1)
ji

σ(W□+b) σ(W□+b)

⊙

W□
W□

σ(W↓□)

⊙

W□
W□

∑
k

σ(W↑□)

+

Residual

σ(W□+b)

+

Residual

Residual

Output
t
(l)
im

(l)
ji

e
(ji)
RBF m

(l)
ji

j ∈ Ni

W□

⊙
∑

j

W↑□

σ(W□+b)

σ(W□+b)

σ(W□+b)

W□

t
(l)
i

mji

σ(W□+b)

σ(W□+b)

+

RBF

Figure 4.1: DimeNet++ architecture. □ denotes the layer’s input and ∥ denotes concatenation. Changes
to regular DimeNet are highlighted in red.

4.2 DimeNet++

DimeNet improves upon regular GNNs in two ways. Normal GNNs represent each atom i
separately via its embedding hi and update these in each layer l via message passing. DimeNet
instead embeds and updates the messages between atoms mji, which enables it to consider
directional information (via bond angles α(kj,ji)) as well as interatomic distances dji. DimeNet
furthermore embeds distances and angles jointly using a spherical 2D Fourier-Bessel basis,
resulting in the update

m
(l+1)
ji = fupdate(m

(l)
ji ,

∑

k∈Nj\{i}
fint(m

(l)
kj , e

(ji)
RBF,a

(kj,ji)
SBF)), (4.1)

e
(ji)
RBF a

(kj,ji)
CBF

m
(l−1)
kj

k ∈ Nj\{i}

σ(W□+b)

⊙W□

□T W□W□
∑

k

Figure 4.2: DimeNet’s orig-
inal “directional message
passing” block.

where fupdate denotes the update function, fint the interaction func-
tion, e(ji)RBF the radial basis function (RBF) representation of dji
and a

(kj,ji)
SBF the spherical basis function (SBF) representation of

dkj and α(kj,ji). In this chapter we do not touch on either of those
contributions and instead focus on the model architecture. The
updated DimeNet++ architecture is illustrated in Fig. 4.1.

Combinatorial representation explosion. DimeNet embeds
every message, i.e. every interacting pair, separately and thus uses
many times as many embeddings as a regular GNN. This combi-
natorial explosion becomes even worse in the interaction block,
where we need to embed every triplet to represent bond angles. On
the QM9 dataset (with 5 Å cutoff) we found that DimeNet uses
around 15x as many message embeddings as there are atoms and
again around 15x as many triplet representations. Operations in the “directional message passing”

32

4.3 COLL Dataset

Figure 4.3: Example configurations from the COLL dataset.
COLL covers a much broader range of configurational space,
including stretched bonds and distorted angles.

−4 −2 0

Atomization energy / eV

D
en

si
ty QM9

COLL

Figure 4.4: Distribution of atomiza-
tion energy per atom. COLL covers
a much wider range.

block are thus 15x more expensive than elsewhere in the model, while those in the output block
(which uses atom embeddings) are 15x cheaper.

Fast interactions. We therefore first focus on the expensive “directional message passing”
block. It is DimeNet’s centerpiece, modelling the interaction between embeddings mkj and basis
representations e(ji)RBF and a

(kj,ji)
SBF . As such, it requires an adequately expressive transformation.

The original DimeNet accomplishes this with a bilinear layer, as shown in Fig. 4.2. Unfortunately,
this layer is very expensive, which is exacerbated by being used in the model’s most costly
component. We alleviate this by replacing it with a simple Hadamard product and compensate for
the loss in expressiveness by adding multilayer perceptrons (MLPs) for the basis representations.
This recovers the original accuracy at a fraction of the computational cost (see Sec. 4.5).

Embedding hierarchy. We can directly leverage the fact that certain parts of the model use
a higher number of embeddings by reducing the embedding size in these parts via down- and
up-projection layers W↓ and W↑. This both accelerates the model and removes information
bottlenecks, since we no longer aggregate information to a smaller number of equally sized
embeddings.

Other improvements. We furthermore found that using 4 layers performs en par with the
original 6 for U0. Moreover, larger batch sizes significantly slowed down convergence, and
mixed precision caused the model’s precision to break down completely. Considering that
DimeNet’s relative error is below float16’s machine precision (5 · 10−4), the latter might be
expected.

4.3 COLL Dataset

The COLL dataset consists of configurations taken from molecular dynamics simulations of
molecular collisions. To this end, collision simulations were performed with the cost-effective
semi-empirical GFN2-xTB method (Bannwarth et al., 2019). Subsequently, energies and forces
for 140 000 random snapshots taken from these trajectories were recomputed with density
functional theory (DFT). These calculations were performed with the revPBE functional and
def2-TZVP basis, including D3 dispersion corrections (Zhang & Yang, 1998).

Exemplary structures from the COLL set are shown in Fig. 4.3. Unlike established molecular
benchmark sets (e.g. QM9), which consist of equilibrium or near-equilibrium configurations, the
structures in COLL can be highly distorted. In particular, stretched bonds and angles, as well

33

4 Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules

as open-shell electronic structures are prevalent. All calculations are preformed with broken
spin-symmetry.

Overall, the configurations in COLL represent a challenge for electronic structure calculations,
since such systems may display multiple self-consistent field (SCF) solutions. This can pose
a significant problem for ML-based models, as the corresponding reference potential energy
surfaces can be discontinuous. To avoid this issue, multiple calculations from randomized
initial wavefunctions were conducted, and the lowest energy solution selected. Furthermore,
Fermi-smearing with an electronic temperature of 5000 K was applied, which is helpful both
for SCF convergence and the approximate description of static correlation effects (Grimme &
Hansen, 2015).

4.4 Uncertainty Quantification

The vast number of non-equilibrium states reachable in high-energy molecular dynamics sim-
ulations (such as reactions) means that systems will often move outside the space covered by
our training set. We therefore need a reliable way of detecting a degradation in predictive
performance. Most uncertainty quantification (UQ) methods are focused on providing an uncer-
tainty estimate for the direct prediction (Hirschfeld et al., 2020; Musil et al., 2019). However,
out-of-equilibrium dynamics require uncertainty estimates for both the energy E and the force
F = −∂E

∂x . Many non-differentiable methods (e.g. combining GNNs with a random forest) are
therefore not applicable. Ensembling is a notable exception but introduces a large computational
overhead since we need to calculate predictions using multiple separate models.

Even if the method is differentiable it might only provide a mean and standard deviation, i.e.
µE and σE (e.g. mean-variance estimation (MVE)). This allows us to obtain the force prediction
via

µF =

〈
−∂E

∂x

〉
= − ∂

∂x
⟨E⟩ = − ∂

∂x
µE . (4.2)

However, performing the same operation on σE does not yield the analogous result:

∂

∂x
σ2
E =

∂

∂x

(〈
E2
〉
− ⟨E⟩2

)

= −2

(〈
−E

∂

∂x
E

〉
− ⟨E⟩

〈
− ∂

∂x
E

〉)
= −2Cov(E,F).

(4.3)

There is thus no general way of estimating σF for these kinds of models. Instead, we have to
rely on σE as the uncertainty measure and hope that it correlates with the force error.

4.5 Experiments

DimeNet++ In Table 4.1 we evaluate each of the proposed DimeNet improvements separately
on the U0 validation set of QM9 (Ramakrishnan et al., 2014). We see that each change either
reduces the runtime or improves the error. Exchanging the bilinear layer for a Hadamard
product has by far the largest impact, single-handedly decreasing the runtime by a factor

34

4.5 Experiments

Table 4.1: U0 validation MAE on the QM9 dataset after each DimeNet++ improvement.

Model Time per epoch / min Val MAE U0 / meV
DimeNet 35.4 8.27
& Hadamard product 6.6 9.45
& 2-layer MLP for RBF and SBF 7.1 8.42
& reduced to 4 layers 4.7 8.54
& triplet embedding size to 64 4.2 7.60
& output (atom) embedding size to 256 4.3 7.05

Table 4.2: MAE on the QM9 dataset. DimeNet++ performs best on average and for most properties
individually, despite being 8x faster than DimeNet.

Target Unit SchNet MGCN DeepMoleNet DimeNet DimeNet++

µ D 0.0330 0.0560 0.0253 0.0286 0.0297
α a3

0 0.235 0.0300 0.0681 0.0469 0.0435
ϵHOMO meV 41.0 42.1 23.9 27.8 24.6
ϵLUMO meV 34.0 57.4 22.7 19.7 19.5
∆ϵ meV 63.0 64.2 33.2 34.8 32.6〈
R2
〉

a2
0 0.073 0.110 0.680 0.331 0.331

ZPVE meV 1.70 1.12 1.90 1.29 1.21
U0 meV 14.0 12.9 7.70 8.02 6.32
U meV 19.0 14.4 7.80 7.89 6.28
H meV 14.0 14.6 7.80 8.11 6.53
G meV 14.0 16.2 8.60 8.98 7.56
cv

cal
mol K 0.0330 0.0380 0.0290 0.0249 0.0230

std. MAE % 1.76 1.86 1.03 1.05 0.98
logMAE - −5.17 −5.26 −5.46 −5.57 −5.67

of 5. Interestingly, decreasing the embedding size both accelerates the model and improves
the accuracy. This is either due to the additional down- and up-projection layers improving
expressiveness or to the smaller embedding size improving generalization.

We evaluate the final DimeNet++ model on all QM9 targets and compare it to the state-of-
the-art models SchNet (Schütt et al., 2017), MGCN (Lu et al., 2019), and DeepMoleNet (Liu
et al., 2020). Table 4.2 shows that DimeNet++ performs better for most targets and best overall,
in addition to being 8x faster than DimeNet. OrbNet (Qiao et al., 2020) performs better on U0,
but has not published results for the other properties. Note that the DFT-based representations
introduced by DeepMoleNet and OrbNet can also be incorporated into DimeNet++.

COLL dataset. Table 4.3 shows that DimeNet++ is only 17 % slower than SchNet (reference
implementation), while reducing the error by 76 % on average. As expected, the COLL dataset
is significantly more challenging than QM9. Both SchNet and DimeNet++ exhibit an MAE that
is around 10x higher than on QM9.

Uncertainty quantification. Ensembling and MVE both struggle with estimating the energy
uncertainty, as shown for DimeNet++ in Table 4.3. The force error is very well estimated by
the ensemble, but not by the energy uncertainty – especially for MVE. The energy uncertainty

35

4 Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules

Table 4.3: Performance on the COLL dataset. MAE is given in eV and eV/Å. ρ denotes the correlation
coefficient and ∆ the absolute error. DimeNet++ performs significantly better than SchNet. MVE is
much faster than ensembling but unable to estimate the force error.

Time per epoch MAEE MAEF ρ(∆E , σE) ρ(∆F , σF) ρ(∆F , σE)
SchNet 8.9 min 0.198 0.172 - - -
DimeNet++ 10.4 min 0.047 0.040 - - -
Ensemble (DimeNet++) 31.2 min 0.050 0.038 0.42 0.85 0.64
MVE (DimeNet++) 13.6 min 0.033 0.041 0.16 - 0.05

is thus not as good a proxy for the force error as one might expect. While the ensemble does
perform decently, its computational overhead is still considerable. Reliable and fast uncertainty
estimates thus remain an important direction for future work.

4.6 Retrospective

The improvements proposed in DimeNet++ are substantial, but they do not solve the fundamen-
tal increase of computational requirements caused by embedding edges instead of atoms. In
unpublished work we have looked into shifting more computation to atom-based embeddings
instead. However, we found that doing so consistently impairs accuracy. It thus seems like edge
embeddings are necessary for achieving DimeNet’s accuracy, as suggested in Chapter 3 and the
ablations in Table 3.3.

Still, the substantial gains in runtime have enabled many downstream tasks, such as computa-
tional catalysis (Chanussot et al., 2021) and molecular dynamics (Thaler & Zavadlav, 2021).
The original DimeNet requires too much memory and is too expensive for the large systems
considered for these tasks.

The problem of uncertainty quantification for molecules and in particular molecular dynamics
still remains a very interesting topic without a proper solution. The methods used in this chapter
are quite basic, but no advanced approaches have presented consistent advantages over e.g.
ensembling. For a more thorough investigation on this topic see e.g. Hirschfeld et al. (2020);
Tran et al. (2020).

Unfortunately, the COLL dataset has not gained much traction in the community yet. However,
it still presents an interesting and difficult challenge. It contains a large explored region of
configurational space and is still inexpensive to train on due to its small system sizes. In the next
chapter we investigate how to improve performance on this dataset by thoroughly considering
how to use directional and geometric information.

36

5 GemNet: Universal Directional Graph
Neural Networks for Molecules

5.1 Introduction

Graph neural networks (GNNs) still exhibit severe theoretical and practical limitations. Regular
GNNs are only as powerful as the 1-Weisfeiler Lehman test of isomorphism and thus cannot
distinguish between certain molecules (Morris et al., 2019; Xu et al., 2019b). Moreover, they
require a large number of training samples to achieve good accuracy.

In this chapter we first resolve the questionable expressiveness of GNNs by proving sufficient
conditions for universality in the case of invariance to translations and rotations and equivariance
to permutations; and then extending this result to rotationally equivariant predictions. Simply
using the full geometric information (e.g. all pairwise atomic distances) in a layer does not
ensure universal approximation. For example, if our model uses a rotationally invariant layer
we lose the relative information between components. Such a model thus cannot distinguish
between features that are rotated differently. This issue is commonly known as the “Picasso
problem”: An image model with rotationally invariant layers cannot detect whether a person’s
eyes are rotated correctly. Instead, we need a model that preserves relative rotational information
and is only invariant to global rotations. To prove universality in the rotationally invariant case
we extend a recent universality result based on point cloud models that use representations
of the rotation group SO(3) (Dym & Maron, 2021). We prove that spherical representations
are actually sufficient; full SO(3) representations are not necessary. We then generalize this
to rotationally equivariant predictions by leveraging a recent result on extending invariant to
equivariant predictions (Villar et al., 2021). We then discretize spherical representations by
selecting points on the sphere based on the directions to neighboring atoms. We can connect
this model to GNNs by interpreting these directions as directed edge embeddings. For example,
the embedding direction of atom a would be defined by atom c, resulting in the edge embedding
eca. Updating the spherical representation of atom a based on atom b then corresponds to
two-hop message passing between the edges eca and edb via eba, with atoms c and d defining
the embedding directions. This message passing formalism naturally allows us to obtain the
molecule’s full geometrical information (distances, angles, and dihedral angles), and the direct
correspondence proves the model’s universality.

We call this edge-based two-hop message passing scheme geometric message passing, and
propose multiple structural enhancements to improve the practical performance of this formalism.
Based on these changes we develop the highly accurate and sample-efficient geometric message
passing neural network (GemNet). We furthermore show that stabilizing the variance of
GemNet’s activations with predetermined scaling factors yields significant improvements over
regular normalization layers.

37

5 GemNet: Universal Directional Graph Neural Networks for Molecules

We investigate the proposed improvements in a range of ablation studies, and show that each
of them significantly reduces the model error. These changes introduce little to no computational
overhead over two-hop message passing. Altogether, GemNet outperforms previous models for
force predictions on COLL by 34 %, on MD17 by 41 %, and on OC20 by 20 % on average. We
observe the largest improvements for the most challenging molecules, which exhibit dynamic,
non-planar geometries. In summary, our contributions are:

• Showing the universality of spherical representations and two-hop message passing with
directed edge embeddings for rotationally equivariant predictions.

• Geometric message passing: Symmetric message passing enhanced by geometric infor-
mation.

• Incorporating all proposed improvements in the Geometric Message Passing Neural
Network (GemNet), which significantly outperforms previous methods for molecular
dynamics prediction.

5.2 Related work

Machine learning potentials. Research on predicting a molecule’s energy and forces (so-called
machine learning potentials) started with hand-fitted analytical functions and then gradually
moved towards fully learned models. Arguably, classical force fields are their very first instances.
They use analytical functions with coefficients that were hand-tuned based on experimental data.
A popular example for these is the Merck Molecular Force Field (MMFF94) (Halgren, 1996).
The next wave of methods used kernel ridge regression based on fixed, hand-crafted molecular
representations (Bartók et al., 2010; Chmiela et al., 2017; Faber et al., 2018). Finally, modern
research mostly focusses on fully end-to-end learnable models based on GNNs (Gilmer et al.,
2017; Schütt et al., 2017). These models can also be combined with molecular features from
quantum mechanical calculations to improve performance (Qiao et al., 2020). We consider this
combination as orthogonal research.

Directional GNNs. We can also achieve equivariance and invariance to rotations without
relying on group representations. Directional GNNs achieve this by representing directional
information explicitly (Schütt et al., 2021) or in the form of angles (see Chapter 3) and dihedral
angles (Flam-Shepherd et al., 2021; Liu et al., 2022). Our work is focused on this class of
models, proving their universality and proposing an improved variant, GemNet.

Expressiveness of GNNs. A large part of GNN research has been focused on their (limited)
expressiveness. Morris et al. (2019); Xu et al. (2019b) first proved that they are only as expressive
as the Weisfeiler-Lehman test of isomorphism and Garg et al. (2020) showed the limitations
of basic directional message passing. Kondor et al. (2019); Maron et al. (2019c); Morris et al.
(2019, 2020) then investigated higher-order representations to circumvent this issue. Finally,
Azizian & Lelarge (2020); Maron et al. (2019a) showed that so-called folklore GNNs are the
most expressive GNNs for a given tensor order.

Equivariant neural networks. Equivariance and invariance have recently emerged as one
of the foundational principles of modern neural networks (Cohen & Welling, 2016; Cohen
et al., 2019b). This is especially relevant for models in physics, for which we often know the
symmetries a priori. Equivariant models for the SO(3) group were first investigated in the

38

5.3 Universality of spherical representations

context of spherical convolutions by Cohen et al. (2018); Esteves et al. (2018); Kondor et al.
(2018). These methods leverage group representations to achieve full equivariance. They were
then transferred to the context of 3D point clouds and molecules by Anderson et al. (2019);
Thomas et al. (2018); Weiler et al. (2018), and further developed by Batzner et al. (2022);
Finzi et al. (2020); Fuchs et al. (2020). Importantly, Yarotsky (2021) proved the universality
of 2D convolutional networks, and Bogatskiy et al. (2020) extended this result to general
groups. Maron et al. (2020) proved universality for models invariant to Sn and equivariant to an
additional symmetry. Dym & Maron (2021) combined these results to prove universality for the
joined group of translations, rotations, and permutations. Apart from reflections this is the exact
group relevant for general molecules.

5.3 Universality of spherical representations

GNNs for molecules typically incorporate directional information in one of two ways: Via
SO(3) representations (Anderson et al., 2019; Thomas et al., 2018) or by using directions in
real space (Chapter 3, Schütt et al. (2021)). Directions in real space are associated with the
three-dimensional S2 sphere, while the SO(3) group is double covered by the four-dimensional
S3 sphere. Directional representations thus use one degree of freedom less than SO(3) repre-
sentations, making them significantly cheaper. And, as we will prove in this section, directional
representations actually provide the same expressivity as SO(3) representations for predictions
in R3. We achieve this by showing that the SO(3)-based tensor field network (TFN) (Thomas
et al., 2018) variant used by Dym & Maron (2021) is equivalent to a similar model based on
spherical representations, in the case of rotationally invariant predictions. We then generalize
a recent result by Villar et al. (2021), which lets us extend our theorem to the rotationally
equivariant case. Afterwards, we relate this universality to directional GNNs by interpreting
them as a discretization of spherical representations.

Preliminaries. We consider a point cloud with n points (atoms), each associated with a
position and a set of rotationally invariant features (e.g. atom types), defined as X ∈ R3×n and
Hin ∈ Rh×n. In this section we define model classes by sets of functions F . As a first step, we
are interested in proving that the set F defining our model is equal to the full set of functions
G′ that are invariant to the group of translations T3 and rotations SO(3), and equivariant to
the group of permutations Sn. We denote the codomain of functions in G′ as Wn

T , where WT
is some representation of SO(3). We denote a vector’s norm by x = ∥x∥2, its direction by
x̂ = x/x, and the relative position by xba = xb − xa. Proofs are deferred to the appendix. For
an introduction to the SO(3) group see Sec. 2.5.

Tensor field network. In order to show the equivalence of the TFN to spherical representa-
tions, we first need to define this model. Following Dym & Maron (2021), we split the model
into two parts: Embedding functions Ffeat that lifts the input into an equivariant representation,
and pooling functions Fpool that aggregate the results of multiple embedding functions on each

39

5 GemNet: Universal Directional Graph Neural Networks for Molecules

point and computes the model output. The overall model is then defined as the set of functions

FTFN
K(D),D = {f | f(X,Hin) =

K∑

k=1

f
(k)∗
pool (f

(k)
feat(X,Hin)),

f
(k)
pool ∈ FTFN

pool (D), f
(k)
feat ∈ FTFN

feat (D)},
(5.1)

where D ∈ N denotes the function’s maximum polynomial degree, K(D) ∈ N is chosen
such that Theorem 5.1 is fulfilled (Dym & Maron (2021) only prove the existence of this
function), and f∗ denotes elementwise application of f on all points. We then define the
set FTFN

pool as all rotationally equivariant linear functions on the SO(3) group, i.e. all SO(3)
convolutions (Kostelec & Rockmore, 2008). Note that these are more expressive than the self-
interaction layers used originally (Thomas et al., 2018). The embedding functions FTFN

feat (D) =
{π2 ◦ f (2D) ◦ · · · ◦ f (1) | f (i) ∈ FTFN

prod } consist of an auxiliary function π2(X,H) = H and a
series of tensor product functions (called convolution by Dym & Maron (2021)) FTFN

prod = {f |
f(X,H) = (X, H̃TFN(X,H))}. The intermediate representations are H ∈ Wn

feat, where
Wfeat is a representation of SO(3) indexed by the degree l and the order m. For Hin we have
l=m=0. The main update is defined by

H̃TFN(lo)
amo

(X,H) = θH(lo)
amo

+
∑

lf ,mf

∑

li,mi

C
(lo,mo)
(lf ,mf),(li,mi)

∑

b∈Na

F
(lf)
TFN,mf

(xb − xa)H
(li)
bmi

,

(5.2)

where θ is a (learned) scalar and Na are the neighbors of point a. The Clebsch-Gordan
coefficients C

(lo,mo)
(lf ,mf),(li,mi)

arise from decomposing the tensor product of two input SO(3)

representations (the filter and input representations) into a sum of output representations. Their
exact values are not relevant for this discussion. We index the output with degree lo and order mo,
the learned filter with lf and mf , and the input with li and mi. F

(l)
TFN,m(x) = R(l)(x)Ylm(x̂)

is a rotationally equivariant filter, with a (learned) radial part R, which is any polynomial of
degree ≤ D, and the real spherical harmonics Ylm with degree l and order m. The spherical
harmonics are the basis for the Fourier transformation of functions on the sphere, analogously
to sine waves for functions on R. We can prove universality for TFNs by using the universality
of polynomial regression and showing that TFNs can fit any polynomial (see Dym & Maron
(2021) for details), resulting in:

Theorem 5.1 (Dym & Maron (2021)). Consider the set of functions G mapping R3×n+h×n →
Wn

T that are equivariant to rotations and permutations and invariant to translations. For all
n ∈ N,

1. For D ∈ N0, every polynomial p ∈ G of degree D is in FTFN
K(D),D.

2. Every continuous function f ∈ G can be approximated uniformly on compact sets by
functions in

⋃
D∈N0

FTFN
K(D),D.

Spherical networks. Instead of intermediate SO(3) representations we now switch to
spherical representations, which are functions on the sphere H : S2 → R. We define the set of

40

5.3 Universality of spherical representations

functions F sphere
K(D),D analogously to FTFN

K(D),D. However, for F sphere
feat (D) we use

H̃sphere
a (X,H)(r̂) = θHa(r̂) +

∑

b∈Na

Fsphere(xb − xa, r̂)Hb(r̂), (5.3)

with the filter function Fsphere(x, r̂) =
∑

l,mR(l)(x)ℜ[Y (l)∗
m (x̂)Y

(l)
m (r̂)], using the real part ℜ

of the complex spherical harmonics Y (l)
m . The set of pooling functions for invariant predictions

is

F sphere
pool = {f | f(H) = θpool

∫

S2

H(r̂) dr̂}, (5.4)

with the learnable parameter θpool. We obtain the universality theorem by showing the equiva-
lence between this model and TFN for rotationally invariant functions. The proof is based on
the connection between spherical harmonics and the Clebsch-Gordan coefficients (Sakurai &
Tuan, 1993, 3.7.72) (see App. B.1).

Theorem 5.2. Consider the set of functions G′ mapping R3×n+h×n → Wn
T that are equivariant

to permutations and invariant to translations and rotations. For all n ∈ N,
1. For D ∈ N0, every polynomial p ∈ G′ of degree D is in F sphere

K(D),D.
2. Every continuous function f ∈ G′ can be approximated uniformly on compact sets by

functions in
⋃

D∈N0
F sphere
K(D),D.

Next, we extend Theorem 5.2 to rotationally equivariant functions. We do this by generalizing
a recent result by Villar et al. (2021) to obtain (see App. B.2):

Theorem 5.3. Let h : Rd×n+h×n → Rd×n be any function that is equivariant to permutations
and rotations and invariant to translations. For all a ∈ [1, n], let the set of relative vectors
{xca | c ∈ [1, n]} not span a (d − 1)-dimensional space. Then there are n − 1 functions
f (c) : Rd×n+h×n → Rn such that

ha(X,H) =
n∑

c=1
c̸=a

f (c)
a (X,H)xca, (5.5)

where f (c) is equivariant to permutations, but invariant to rotations and translations.

This theorem lets us extend a rotationally invariant model to an equivariant one, while
providing universality guarantees. Together, Theorem 5.2 and Theorem 5.3 (with d = 3) thus
show that we can approximate any rotationally equivariant function using only representations on
the S2 sphere. We thus do not need SO(3) representations, spin-weighted spherical harmonics
(Esteves et al., 2020), triplet embeddings, or complex-valued functions. This result puts theory
back in line with practice, where the best results are currently achieved without relying on these
more expensive representations (Schütt et al., 2021).

41

5 GemNet: Universal Directional Graph Neural Networks for Molecules

5.4 From spherical representations to directional message passing

Directional representations. To use spherical representations in a model we first need to
find a tractable description. Instead of using spherical harmonics, we propose to sample the
representations in specific directions r̂i. If we look at recent models, we see that they implicitly
use the directions to each atom’s neighbors for this purpose, i.e. they embed the edges in the
molecule’s graph. These directions define an equivariant mesh that circumvents the aliasing
effects that would arise from fixed grids (Kondor et al., 2018). Schütt et al. (2021) flexibly
define the directional mesh in each layer by aggregating directions, while DimeNet and other
models use a fixed mesh for each atom. We can refine this mesh of directions e.g. by using more
neighbors or by interpolating between directions. The approximation error of this directional
mesh is related to the spherical harmonic expansion via the mesh norm and the separating
distance between directions (Jetter et al., 1999; Keiner et al., 2007). Note that depending on the
discretization scheme the resulting mesh might not provide a universal approximation guarantee.

Eq. (5.3) only defines the relationship for a fixed direction, while models commonly use
different directional meshes for the input and output. We model the relationship between
different directions using a convolution with a learned filter F2, which can only improve
expressiveness. Note that the input function is only defined for specific directions r̂i. To
simplify the resulting equations we express this using Dirac deltas. Since the input and output
are spherical functions, the used filter F2 has to be zonal, i.e. it has to be isotropic and depend
on only one angle (Esteves et al., 2018). This can be expressed as (Driscoll & Healy, 1994)

H̃dir
a (X,H)(r̂o) =

= θHa(r̂o) +

∫

SO(3)

∑

b∈Na

Fsphere(xba,Rn̂)
∑

i∈Rb

Hbiδ(Rn̂− r̂i)F2(R
−1r̂o) dR

= θHa(r̂o) +
∑

b∈Na

∑

i∈Rb

Fsphere(xba, r̂i)HbiF2(∡r̂or̂i),

(5.6)

where Rb denotes the directional mesh of atom b with mesh directions denoted by r̂i, and r̂o
specifies the output direction. The integral vanishes due to the Dirac delta δ.

General filters. To see the relationship to GNNs we furthermore need to generalize the filter
Fsphere(xba, r̂i). This filter only depends on the angle ∡r̂ix̂ba since it is rotationally invariant:

Lemma 5.1. Fsphere(Rx,Rr̂) = Fsphere(x, r̂) for any rotation matrix R.

We can therefore substitute Fsphere with a general learnable filter F1 that is parametrized by
this relative angle. Since Fsphere arises as a special case we do not lose expressivity. We thus
obtain

H̃gem
a (X,H)(r̂o) = θHa(r̂o) +

∑

b∈Na

∑

i∈Rb

F1(xba,∡r̂ix̂ba)F2(∡r̂or̂i)Hbi. (5.7)

We have now arrived at a message passing scheme that has universal approximation guarantees
and is only based on relative directional information. To see the connection to GNNs we
interpret these discretized spherical representations as edge embeddings pointing towards r̂o and

42

5.5 Geometric message passing

r̂i. Eq. (5.7) then corresponds to two-hop message passing between the edge embeddings of r̂o
and r̂i via the edge x̂ba. Interestingly, the central learnable part of Eq. (5.7) is the product of the
filters F1(xba,∡r̂ix̂ba) and F2(∡r̂or̂i) with the input representation, which is strikingly similar
to the Hadamard product used in modern GNNs (Chapter 4, Schütt et al. (2017)) – except that
these only use one-hop message passing.

5.5 Geometric message passing

φcab φabd

mca mdb

(rotate)

θcabd

a b

c d

a,b

c d

Figure 5.1: Angles used in geo-
metric message passing. The di-
hedral angle θcabd becomes vis-
ible when rotating the molecule
so that atoms a and b lie on top
of each other (right).

Geometric representation. We now develop a specific two-hop
message passing scheme based on Eq. (5.7). We use embed-
dings based on interatomic directions, and embed all atom pairs
with distance xca ≤ cemb. r̂o and r̂i are thus instantiated as the
interatomic directions x̂ca and x̂db. We denote directional em-
beddings as mca = Ha(x̂ca). Message passing is thus based
on quadruplets of atoms – two atoms are interacting (a and
b) and two atoms define the directions (c and d). We denote
the angle between directions by φabd = ∡x̂abx̂db. To improve
empirical performance we additionally use the dihedral angle
θcabd = ∡x̂cax̂db ⊥ x̂ba and substitute ∡r̂or̂i = ∡x̂cax̂db with
φcab. Fig. 5.1 illustrates the three angles φcab, φabd, and θcabd
we use for updating the embedding mca based on mdb. To ensure that all angles are well-defined
we exclude overlapping atom quadruplets, i.e. a ̸=b ̸=c ̸=d. We represent the relative directional
information using spherical Fourier-Bessel bases with polynomial radial envelopes to ensure
smoothly differentiable predictions, as proposed in Chapter 3. We split the basis into three parts
to incorporate all available geometric information. Before the envelope, these are:

ẽRBF,n(xdb) =

√
2

cemb

sin(nπ
cemb

xdb)

xdb
, (5.8)

ẽCBF,ln(xba, φabd) =

√
2

c3intj
2
l+1(zln)

jl(
zln
cint

xba)Yl0(φabd), (5.9)

ẽSBF,lmn(xca, φcab, θcabd) =

√
2

c3embj
2
l+1(zln)

jl(
zln
cemb

xca)Ylm(φcab, θcabd), (5.10)

with the interaction cutoff cint, the spherical Bessel functions jl, and the n-th root of the l-order
Bessel function zln. Note that DimeNet only used the first two parts eRBF and eCBF. These
representations are then transformed using two linear layers to obtain the filter F . In order to
maintain a smoothly differentiable cutoff we cannot use a bias in this transformation. Altogether,
the core geometric message passing scheme is

m̃ca =
∑

b∈N int
a \{c},

d∈N emb
b \{a,c}

(
(WSBF1eSBF(xca, φcab, θcabd))

TW((WCBF2WCBF1eCBF(xba, φabd))

⊙ (WRBF2WRBF1eRBF(xdb))⊙mdb)
)
,

(5.11)

43

5 GemNet: Universal Directional Graph Neural Networks for Molecules

where W denotes a weight matrix, W denotes a weight tensor. The first weight matrix of
each representation part has a small output dimension. This causes a bottleneck that improves
generalization.

Symmetric message passing. Whenever we have a directional embedding mca, we also
have the opposing embedding mac, since both are based on the same cutoff cemb. Whether we
associate the embedding mca or mac with atom a is arbitrary. A more principled approach is to
jointly interpret both embeddings as a representation of the atom pair a and c. In this view, an
update to mca should also influence mac. This would normally require executing the above
message passing scheme twice, once for updating mca based on mdb, and once for updating
mac based on mdb. We propose to circumvent this double execution by calculating the update
(Eq. (5.11)) only once and then using it for both mca and mac. To preserve the distinction
between the two directions and ensure that mca ̸= mac, we transform the two updates using two
separate learnable weight matrices. One single message passing update thus carries information
for both embeddings, which is then dissected by the two weight matrices. In practice, this only
requires a simple re-indexing operation that maps the edge ca to ac.

Efficient bilinear layer. The whole message passing scheme, i.e. basis transformation,
neighbor aggregation, and bilinear layer, only use linear functions. We can therefore freely
optimize the order of summation without changing the result, as proposed by Wu et al. (2019b)
(see App. B.4 for details). Doing so can provide a faster and more memory-efficient model,
reducing memory usage by 50 % even for Hadamard products. Moreover, since everything
is based on efficient matrix products, this allows us to use the bilinear layer at practically no
additional cost compared to a Hadamard product. Note that this requires using padded matrices
instead of the usual gather-scatter operations to prevent excessively large intermediate results.

5.6 GemNet: Geometric message passing neural network

GemNet. The geometric message passing neural network (GemNet) is a significantly re-
fined architecture based on DimeNet++. GemNet predicts the molecular energy E and forces
F ∈ R3×n based on the atomic positions X ∈ R3×n and the atomic numbers z ∈ Nn. The
architecture is illustrated in Fig. 5.2. A comprehensive version with low-level layers and hy-
perparameters is described in App. B.6. GemNet was developed on the COLL dataset, but
generalizes to other datasets such as MD17 without architectural changes. Every change we
propose either improves model performance or reduces model complexity. For example, Gem-
Net uses no biases since we found them to be irrelevant or even detrimental to accuracy. We
show the impact of the most relevant changes via ablation studies in Sec. 5.7.

Interactions. GemNet incorporates three forms of interactions. The first is geometric
message passing, as described in Sec. 5.5. The second is a one-hop form of geometric message
passing. This interaction uses a single cutoff c = cemb and passes messages only between
directional embeddings pointing towards the same atom, similarly to DimeNet. This provides
both angle-based pair interactions and atom self-interactions, thanks to the symmetric message
passing scheme described in Sec. 5.5. The third interaction is a pure atom self-interaction based
on atom embeddings. We first aggregate the directional embeddings of one atom to obtain an

44

5.6 GemNet: Geometric message passing neural network

Model: Interaction: Message passing: Q/T-MP:

A
to

m
se

lf
-i

nt
er

ac
tio

n

xca

e
(ca)
RBF

CBF

xca φcab

e
(cab)
CBF

SBF

xca φcab

θcabd

e
(cabd)
SBF

z

Embedding

∑ t

Interaction

Interaction

Interaction

Interaction

m
(l−1)
ca h

(l−1)
a

MP

Residual

Atom emb

+

∥

σ(W□)

Residual

+

Atom emb

W□

eCBF

eSBF

eRBF

ha

hc

m
(l)
ca

t
(l)
a

h
(l)
a

m
(l−1)
ca

eRBF

eCBF

eSBF

σ(W□)

T-MP

Q-MP

+

Residual

+

m
(l)
ca

W□
W□

σ(W□)

m
(l−1)
db/ba

⊙

e
(db)
(ba)

RBF

σ(W↓□)
W□
W□

⊙

e
(abd)
(cab)

CBF

□T W□W□
e
(cabd)
SBF

∑
d,b

σ(W↑□)σ(W↑□)

mca

+ca → ac
mac

mca

128

128

32/64

32/64

128128

RBF

Figure 5.2: The GemNet architecture (comprehensive version in App. B.6). □ denotes the layer’s input,
∥ concatenation, and σ a non-linearity. Directional embeddings mca are updated using three forms of
interaction: Two-hop geometric message passing (Q-MP), one-hop geometric message passing (T-MP),
and atom self-interactions. Differences between Q-MP and T-MP are denoted by colors and dashed lines.

atom embedding. We then use this atom embedding to update all directional embeddings. We
found all three interaction forms to be beneficial, and show this in our ablation studies.

Stabilizing activation variance. The variance of activations in a model is usually stabilized
using normalization methods, which has various positive effects on training (De & Smith, 2020;
Luo et al., 2019; Santurkar et al., 2018). However, they also have multiple undesirable side
effects, especially in the context of molecular regression. Batch normalization introduces corre-
lations between separate molecules and atoms. Layer normalization forces all activation scales
to be constant, while atomic interactions actually cover a large range of scales – directly bonding
atoms have a substantially stronger interaction than atoms at a long range. To circumvent these
issues, we stabilize GemNet’s variance by introducing constant scaling factors, as suggested
by Brock et al. (2021a). We found that the activation variance is primarily impacted by four
components: Skip connections, non-linearities, message aggregation, and Hadamard/bilinear
layers. The two summands in a skip connection y = x+ f(x) have no covariance at initializa-
tion due to random weight matrices. We can thus remove its impact by scaling the output by
1/

√
2. We remove the non-linearity’s impact by scaling its output with a gain of γ = 1/0.6

for SiLU, similarly to (Klambauer et al., 2017). Note that we do not center SiLU’s output
but instead choose a slightly lower γ to account for mean shift. Additionally, we standardize
the weight matrices to have exactly zero mean and 1/fan-in variance. The sum aggregation
and Hadamard/bilinear layers have a more complex impact on the variance, which we cannot

45

5 GemNet: Universal Directional Graph Neural Networks for Molecules

determine a priori (see App. B.5 for details). We therefore estimate the variance after these
layers based on random batches of data. We then rescale their output accordingly to obtain
roughly the variance of the layer input at initialization. These simple empirical scaling factors
are sufficient to keep the activation variance roughly constant (see Fig. B.1). We found that other
measures such as adaptive gradient clipping (Brock et al., 2021b), scaled weight standardization
(Brock et al., 2021a), or weighting the residual block with zero at initialization (De & Smith,
2020) are not beneficial for model accuracy.

GemNet-Q and GemNet-T. Geometric message passing is comparatively expensive since it
is based on quadruplets of atoms. Its runtime thus scales with O(nkintk

2
emb), where kint is the

number of interacting neighbors, and kemb is the number of embedded directions. For this reason
we investigate two message passing models in our experiments – one with two-hop geometric
message passing (GemNet-Q) and one using only the two cheaper forms of interaction (GemNet-
T). Their complexities are O(nkintk

2
emb) and O(nk2emb), respectively. Note that GemNet-T is

thus a direct ablation of the two-hop message passing scheme implied by our theoretical results.

Direct force predictions. GemNet predicts forces by calculating Fa = −∂E/∂xa via back-
propagation. This form of calculation guarantees a conservative force field, which is important
for the stability of simulations. However, by using Eq. (5.5) we can also directly predict forces
and other vector quantities. This essentially means predicting a magnitude for each directional
embedding and then summing up over the vectors defined by this magnitude and the embed-
ding’s associated direction, similarly to Park et al. (2021). We denote this variant as GemNet-dQ
and GemNet-dT. Interestingly, GemNet is thus able to generate rotationally equivariant predic-
tions despite only using invariant representations. Direct predictions substantially accelerate
the model, especially for training. For most datasets, the resulting accuracy is on par with
most previous models, but significantly worse than GemNet’s accuracy via backpropagation.
However, this is not true for OC20, where we found GemNet-dT to converge faster and perform
on par with GemNet-T.

Limitations. GemNet is focused on one specific, important task: Predictions for molecular
simulations. We do not make any statements regarding its performance beyond this scope. The
GemNet architecture might seem more complex than some previous models, due to its larger
variety of interactions and blocks. However, its number of parameters and training or inference
time is actually on par with previous models. Two-hop message passing introduces significant
computational overhead. We mitigate this effect with a down-projection layer and additionally
introduce the ablated GemNet-T model. This model performs surprisingly well on MD17,
but not on COLL. This suggests that one-hop message passing is expressive enough for some
practical use cases, but two-hop message passing gives an advantage for the more challenging
task of fitting multiple molecules at once.

Societal impacts. Accelerating molecular simulations can have positive effects in a wide
range of applications in physics and chemistry. At the same time, however, this can be used for
malicious purposes such as developing chemical agents or weapons. To the best of our knowl-
edge, this work does not promote these use cases more than regular chemistry research does.
To somewhat mitigate negative effects we will publish our source code under the Hippocratic
license (Ehmke, 2020).

46

5.7 Experiments

Table 5.1: MAE on COLL, in meV/Å
and meV. GemNet is 34 % more accu-
rate for forces. The higher energy error
is due to its lower loss weight.

Forces Energy
SchNet 172 198
DimeNet++ 40 47
GemNet-Q 26.4 53
GemNet-T 31.6 60
GemNet-dQ 38.1 60
GemNet-dT 43.1 55

Table 5.2: Force MAE for MD17@CCSD in meV/Å. GemNet
outperforms previous methods by 44 % on average.

sGDML NequIP GemNet-Q GemNet-T
Aspirin 33.0 14.7 10.4 10.3
Benzene 1.7 0.8 0.7 0.7
Ethanol 15.2 9.4 3.1 3.1
Malonaldehyde 16.0 16.0 6.0 5.9
Toluene 9.1 4.4 2.5 2.7

Table 5.3: Force MAE for MD17 in meV/Å. GemNet outperforms all previous methods by a wide
margin, on average by 41 %.

Kernel methods GNNs GemNet
sGDML FCHL19 DimeNet SphereNet NequIP PaiNN GemNet-Q GemNet-T

Aspirin 29.5 20.7 21.6 18.6 15.1 14.7 9.4 9.5
Benzene(Chmiela et al., 2017) - - 8.1 7.7 8.1 - 6.3 6.3
Benzene(Chmiela et al., 2018) 2.6 - - - 2.3 - 1.5 1.4
Ethanol 14.3 5.9 10.0 9.0 9.0 9.7 3.8 3.7
Malonaldehyde 17.8 10.6 16.6 14.7 14.6 14.9 6.9 6.7
Naphthalene 4.8 6.5 9.3 7.7 4.2 3.3 2.2 2.4
Salicylic acid 12.1 9.6 16.2 15.6 10.3 8.5 5.4 5.5
Toluene 6.1 8.8 9.4 6.7 4.4 4.1 2.6 2.6
Uracil 10.4 4.6 13.1 11.6 7.5 6.0 4.5 4.2

5.7 Experiments

Experimental setup. We evaluate our model on four molecular dynamics datasets. COLL
consists of configurations taken from molecular collisions of different small organic molecules.
MD17 (Chmiela et al., 2017) consists of configurations of multiple separate, thermalized
molecules, considering only one molecule at a time. MD17@CCSD (Chmiela et al., 2018)
uses the same setup, but calculates the forces using the more accurate and expensive CCSD
or CCSD(T) method. The open catalyst (OC20) dataset (Chanussot et al., 2021, CC-BY 4.0)
consists of energy relaxation trajectories of solid catalysts with adsorbate molecules. This
dataset is split into three tasks: (1) Structure to energy and forces (S2EF), which is the same
task as used by the COLL and MD17 datasets, (2) initial structure to relaxed structure (IS2RS),
where an energy optimization is carried out based on the model’s predictions and we measure
how close the final structure is to the true relaxed structure (average distance within threshold,
ADwT) and whether the final forces are close to zero (average forces below threshold, AFbT),
and (3) initial structure to relaxed energy (IS2RE), where we predict the energy of the relaxed
structure, based on an energy optimization starting at the initial structure. All presented OC20
models are trained on the S2EF data. Following the setup of Batzner et al. (2022), we use
1000 training and validation configurations for MD17, and 950 training and 50 validation

47

5 GemNet: Universal Directional Graph Neural Networks for Molecules

Table 5.4: Results for the three tasks of the open catalyst dataset (OC20), averaged across its four test
sets. GemNet outperforms all previous methods in all measures, on average by 20 %.
*DimeNet++-large uses separate models for energy and force prediction for IS2RE.

S2EF IS2RS IS2RE
Energy MAE Force MAE Force cos AFbT ADwT Energy MAE

meV ↓ meV/Å ↓ ↑ % ↑ % ↑ meV ↓
ForceNet-large - 31.2 0.520 12.7 49.6 -
DimeNet++-large* - 31.3 0.544 21.8 51.7 559.1
SpinConv 336.3 29.7 0.539 16.7 53.6 434.3
GemNet-dT 292.4 24.2 0.616 27.6 58.7 399.7

configurations for MD17@CCSD. We focus on force predictions and use a high force loss
weight since they determine the accuracy of molecular simulations. We measure the mean
absolute error (MAE), averaged over all samples, atoms, and components. We compare with the
results reported by several state-of-the-art models: sGDML (Chmiela et al., 2018), FCHL19
(Christensen et al., 2020), SchNet (Schütt et al., 2017), DimeNet, DimeNet++, SphereNet (Liu
et al., 2022), NequIP (Batzner et al., 2022), PaiNN (Schütt et al., 2021), ForceNet (Hu et al.,
2021), and SpinConv (Shuaibi et al., 2021). For further details see App. B.7.

Results. Tables 5.1 to 5.4 show that GemNet-T and GemNet-Q consistently perform best
on all molecular dynamics datasets investigated – and by a large margin. This is true both in
comparison to previous GNNs and for kernel methods – despite the latter typically being more
sample efficient. The improvements are largest for chain-like molecules, such as ethanol and
malonaldehyde. These molecules are the most challenging since they exhibit a wide range of
movement. GemNet even performs better than some previous models that were trained with
50x more training samples. For example, it performs better than SchNet with 50 000 training
samples on six out of eight MD17 molecules (see Table B.3). Interestingly, the two-hop message
passing scheme implied by our theoretical results (GemNet-Q) yields significant improvements
on COLL, but performs approximately on par with the ablated GemNet-T on MD17. To
investigate this disagreement we trained GemNet on a combined dataset of all MD17 molecules.
Table B.6 shows that GemNet-Q again performs better than GemNet-T in this setting. These
results suggest that regular MD17 is too simple to show the benefits of two-hop message passing.
It seems to be particularly important in more difficult settings that cover a large variety of
configurations and molecules.

Computational aspects. GemNet-Q is roughly two times slower than GemNet-T (see
Table B.9). Thanks to the efficient aggregation, GemNet with bilinear layers is as fast as with
regular Hadamard products. Efficient aggregation also reduces the memory usage for regular
Hadamard products by around 50 % (from 4.1GB to 2.2GB for a batch of 32 Toluene molecules).
Note that GemNet has not been optimized for runtime and can likely be accelerated substantially.
GemNet-Q uses 2.2M and GemNet-T 1.9M parameters, which is comparable to previous models
such as DimeNet++, which uses 1.9M parameters. See App. B.9 for further details.

Direct force prediction. Directly predicting the forces accelerates training by four times
on average and inference by 1.6 times on average in our experiments (see Table B.9), while
reducing memory consumption by roughly a factor of two. While using direct predictions

48

5.8 Conclusion

instead of backpropagation increases the MAE by 44 % on COLL and by 48 % on MD17 (see
Tables 5.1 and B.2), they actually perform better on the S2EF task on OC20. This is likely
due to OC20 being orders of magnitude larger than COLL and MD17. Whether to use direct
predictions thus depends on the dataset and the application’s computational requirements.

Table 5.5: Ablation studies on COLL. Force MAE
in meV/Å after 500 000 training steps. All proposed
components yield significant improvements.

Model Forces
without symmetric message passing 28.5
Hadamard product instead of bilinear layer 29.3
without atom embedding updates 28.3
without one-hop message passing 31.3
without two-hop message passing 32.4
without scaling factors 29.1
use layer norm instead (without centering) 33.3
with bias 27.2
GemNet-Q 27.0

Ablation studies. We investigate the
proposed architectural improvements on
COLL in Table 5.5. The proposed sym-
metric message passing scheme yields sig-
nificant accuracy improvements, as does us-
ing a bilinear layers instead of a Hadamard
product. We also see that removing any
of the three interaction forms described in
Sec. 5.6 increases the error, showing that
this combination is indeed beneficial. The
proposed scaling factors also yield decent
improvements, while regular layer normal-
ization actually increases the error. Two-
hop message passing yields the largest sin-
gle improvement. Table B.8 shows that our
architectural improvements yield similar benefits for DimeNet++. Overall, the error improve-
ments are quite evenly distributed. This suggests that GemNet’s improved performance is not
due to one single change, but rather due to the full range of improvements proposed in this
chapter.

5.8 Conclusion

We proved the universality for GNNs using spherical embeddings and showed how to motivate
directional embeddings from this. We proposed geometric message passing based on these
insights, and improved this scheme with symmetric message passing and efficient bilinear
layers. We incorporated these improvements in the GemNet architecture, which substantially
improves the error on various molecular dynamics datasets. We showed that all of the proposed
enhancements yield significant performance improvements. Most of our proposed improvements
are of independent interest for other molecular GNNs.

5.9 Retrospective

Both our and previous proofs of universality require infinite cutoffs. How to relax this require-
ment and construct sufficient geometric conditions for universality is still an open research
question. As a case in point, we know that the discretization process in Sec. 5.4 can cause Gem-
Net to be incomplete at finite cutoff. To see this, consider the two molecules in Fig. 5.3. None
of the direct or dihedral angles in the two molecules are different, so our model is insensitive to
this change. The reason for this is that the dihedral angle in the center is ill-defined. Note that
this degenerate structure is clearly a corner case. We can resolve it by increasing the cutoff of

49

5 GemNet: Universal Directional Graph Neural Networks for Molecules

the graph. However, it still remains unclear how to define the exact conditions that exclude all
of these degenerate structures.

Figure 5.3: Example of two
graphs that are indistinguishable
by GemNet due to an ill-defined
dihedral angle.

The opposite question is also still largely unanswered: While
we know counterexamples that disprove the universality of
some simpler GNNs at finite cutoff, we do not know whether
there are counterexamples without a cutoff. Pozdnyakov &
Ceriotti (2022) have recently provided a first answer to this via
a counterexample that proves the incompleteness of distance-
based GNNs without requiring a cutoff. Finding geometric
conditions for this would answer both questions at once.

The quadruplet-based message passing in GemNet is com-
putationally very expensive, as shown in Table B.9. However, in subsequent work we found
that we can substantially reduce the number of neighbors considered for quadruplets with little
impact on accuracy (Gasteiger et al., 2022). We did this by using a nearest neighbor graph
instead of a radius graph and restricting the quadruplet to eight neighbors. Doing so reduces the
overhead from the original 100 % to 300 % to 30 %.

GemNet provides substantial improvements across very different molecular datasets. How-
ever, in more recent work we found that model changes can in fact have very different and
uncorrelated impacts on performance between datasets such as MD17, COLL, and OC20
(Gasteiger et al., 2022). Future work in GNNs for molecular dynamics should thus perform tests
within the desired application area instead of relying on supposedly general benchmarks.

In other subsequent work we investigated the performance of GemNet when driving real
molecular dynamics simulations (Stocker et al., 2022). We found very good performance
overall when training on a sufficiently large dataset, even for very high temperatures and out-
of-distribution molecules. The error on the validation set also suggested good performance
when using very few training samples. However, in this low-data case the performance did
not generalize to real simulations. One should thus be careful when moving models from
benchmarks into practise.

The models we have proposed up to this point have been focused on use cases where we
know the full molecular geometry. Next, we will remove this information and try to substitute it
with synthetic coordinates.

50

6 Directional Message Passing on Molecular
Graphs via Synthetic Coordinates

6.1 Introduction

Atom positions are central to many of the chemical tasks tackled by GNNs. Unfortunately, this
information is often not available. Many tasks in chemistry instead use a more coarse-grained
representation: The molecular graph of bonds. This representation makes many predictive tasks
substantially harder, and GNNs have performed significantly better when they have access to
the exact molecular configuration (Gilmer et al., 2017). Missing atom positions furthermore
preclude the use of many advanced GNNs that were developed with coordinates in mind.

In this chapter we aim to fill in this information with well-defined coordinates constructed
purely from the molecular graph. Regular approximation methods for generating atom positions
often do not benefit model performance, due to the fundamental ambiguity of molecular
configurations. The energy landscape of molecules can have multiple local minima, and a
molecule can be in any of multiple different minima, known as conformers. In this chapter,
we propose to circumvent this problem by incorporating the conformational ambiguity via
empirical distance bounds. Instead of yielding a potentially wrong configuration, these bounds
only estimate the range of viable molecular geometries. They are thus valid regardless of which
state the molecule was in when generating the data.

A molecular configuration is fully specified by the pairwise distances between all atoms, due
to rotational, translational, and reflectional invariance. We can thus obtain a molecular geometry
from any method that provides pairwise distances between atoms. Since directional message
passing does not require the full molecular geometry, these distances do not need to correspond
to an actual three-dimensional configuration. We leverage this generality and propose purely
graph-based distances calculated from a symmetric variant of personalized PageRank (PPR)
as a second set of coordinates. This distance performs surprisingly well, despite incorporating
no chemical knowledge. Both the distance bounds and the symmetric PPR distance require no
hand-tuning and can be calculated efficiently, even for large molecules.

We leverage these two variants of synthetic coordinates to transform regular GNNs into
directional message passing, as illustrated in Fig. 6.1. We first calculate the synthetic, pairwise
distances for the given molecular graph. Based on these, we calculate the edge distances and
angles between edges. Finally, we compute the molecule’s line graph. Executing a GNN
on the line graph improves its expressivity (Garg et al., 2020) and allows us to incorporate
angular information. We use the original node and edge attributes together with the distances as
node attributes, and the obtained angles as edge attributes. The GNN is then executed on this
featurized line graph instead of the original graph. Our experiments show this transformation
can significantly improve the performance of the underlying GNN, across multiple models

51

6 Directional Message Passing on Molecular Graphs via Synthetic Coordinates

Molecular graph
Pairwise distances

Distances and angles

Featurized line graph

GNN Directional MPNN

Figure 6.1: Illustration of transforming a regular molecular graph (ethanol) to a line graph with synthetic
coordinates. We first calculate all (bounds of) pairwise distances using our synthetic coordinates. We
then calculate the (bounds of) distances and angles for the molecular graph. Finally, we convert the
molecular graph to its line graph and embed the distances and angles as features. This process allows us
to convert a regular GNN to a directional MPNN, which improves its accuracy and allows to incorporate
angular information.

and datasets. Incorporating synthetic coordinates reduces the error of a normal GNN by 55 %,
putting it on par with the current state of the art. Our enhanced version of the SMP model
(Vignac et al., 2020) improves upon the current state of the art on ZINC by 21 %, and DimeNet++

with synthetic coordinates outcompetes previous methods on coordinate-free QM9 by 20 %. In
summary, our core contributions are:

• Well-defined synthetic coordinates based on node distances and simple molecular bounds,
which significantly improve the performance of GNNs for molecules.

• A general scheme of converting a normal GNN into a directional MPNN, which can
improve performance and allows incorporating both distance and angular information.

6.2 Directional message passing

Graph neural networks. To use GNNs for molecules we represent them as graphs G = (V, E),
where the atoms define the node set V and the interactions the edge set E . These interactions
are usually the bonds of the molecular graph, but they can also be all atoms pairs within a
given cutoff of e.g. 5 Å. In this chapter we focus on an extension of message passing neural
networks (MPNNs) (Gilmer et al., 2017). MPNNs embed each atom i separately as hi ∈ RH ,
and can additionally use interaction embeddings e(ij) ∈ RHe . These embeddings are updated in
each layer using messages passed between neighboring nodes, starting with the atom features
h
(0)
i = x

(V)
i (e.g. its type) and the interaction features e(0)(ij) = x

(E)
(ij) (e.g. the bond type or a

distance representation). Extended MPNNs can be expressed via the following two equations:

h
(l+1)
i = fupdate(h

(l)
i ,Agg

j∈Ni

[fmsg(h
(l)
i ,h

(l)
j , e

(l)
(ij))]), (6.1)

e
(l+1)
(ij) = fedge(h

(l+1)
i ,h

(l+1)
j , e

(l)
(ij)). (6.2)

52

6.3 Molecular configurations

The atom and interaction update functions fnode and fedge and the message function fmsg are
learnable functions, such as simple linear layers or arbitrarily complex neural networks. The
aggregation Agg over the atom’s neighbors Ni is usually a simple summation.

Line graph. The directed line graph L(G) = (VL, EL) expresses the adjacencies between
the directed edges in G. Its nodes are the directed edges of the original graph VL = {(i, j) |
i ∈ V, j ∈ Ni}. For undirected graphs like molecular graphs, every undirected edge {i, j}
is split into two directed edges (i, j) and (j, i). Two nodes in L(G) are connected if the
corresponding edges in G share a node, i.e. EL = {((i, j), (j, k)) | (i, j), (j, k) ∈ VL}. We
obtain node features for the line graph by embedding the original node and edge features as
x
(VL)
(ij) = femb(x

(V)
i ,x

(V)
j ,x

(E)
(ij)). The line graph can furthermore incorporate additional features

for atom triplets as edge features x(EL)
(ijk), such as the angle between bonds or interactions.

Directional message passing. Directional MPNNs improve upon regular MPNNs in two
ways. First, they embed the directed messages instead of the nodes in the graph, essentially
operating on the directed line graph. Models using only this first step are also known as directed
MPNNs or line graph neural networks (Chen et al., 2019b; Dai et al., 2016; Yang et al., 2019).
Directed MPNNs are strictly more expressive than regular MPNNs (Morris et al., 2020). We
can transform any MPNN to a directed MPNN simply by executing it on the directed line graph
instead of the original graph.
Second, for graphs with nodes that are embedded in an inner product space (such as molecules
in 3D space) the directed edges correspond to directions in that space, via x(VL)

(ij) = x
(V)
i − x

(V)
j .

Directional MPNNs leverage this connection to better represent the molecular configuration,
usually by using the angles in x

(EL)
(ijk) (see Chapter 3). To fully leverage both aspects of directional

MPNNs we therefore need some form of coordinates.
Expressivity of GNNs. A central limitation of GNNs is their inability of distinguishing

between certain non-isomorphic graphs. For example, GNNs are not able to distinguish between
a hexagon and two triangles if all nodes and edges have the same features. More specifically,
Morris et al. (2019); Xu et al. (2019b) have shown that GNNs are only as powerful as the
1-Weisfeiler-Lehman (WL) test of isomorphism. While it is still possible to construct indis-
tinguishable examples for directional MPNNs, this is significantly more difficult (Garg et al.,
2020). Dym & Maron (2021) have shown that MPNNs using SO(3) group representations and
atom positions are even universal, i.e. able to approximate any continuous function to arbitrary
precision. This demonstrates that coordinates can alleviate and even solve this central limitation
of GNNs.

6.3 Molecular configurations

To prevent any pitfalls when constructing synthetic coordinates for GNNs based on chemical
knowledge we first need to consider the properties of atomic positions in a molecule and how
they are obtained. At first glance these positions might seem like an obvious and straightforward
property. However, molecular configurations are actually ambiguous and difficult to obtain, even
for small molecules. This misconception has even led some works to suggest semi-supervised
learning methods leveraging positions, effectively treating them as abundant input features

53

6 Directional Message Passing on Molecular Graphs via Synthetic Coordinates

(Hao et al., 2020). To clarify this issue we will next describe the complexity behind molecular
configurations and how to approximate them efficiently.

Finding molecular configurations. The atoms of a molecule can in principle be at any
arbitrary position. However, most of these configurations will lead to an extremely high energy
and are thus very unlikely to be observed in nature. A molecular configuration thus usually
refers to the atom positions at or close to equilibrium, i.e. at the molecule’s energy minimum. To
find these positions we have to search the molecule’s energy landscape and solve a non-convex
optimization problem. This is in fact a bilevel optimization problem, where the atom positions
are optimized in the outer and the electron wavefunctions in the inner task. These wave functions
can then be ignored in the outer task; they only influence the energy and the forces Fi = − ∂E

∂xi

acting on each atomic nucleus. We can then use these forces for gradient-based optimization,
and avoid saddle points by using quasi-Newton methods.

Difficulties. The above optimization process is very expensive due to the quantum mechanical
(QM) computations required for optimizing the electron wavefunction at each gradient step.
It is orders of magnitude more expensive than calculating the energy of a given molecular
configuration, since we need to calculate the energy’s gradient for each optimization step.
Furthermore, the optimization will only converge to a local, and not the global minimum. And in
fact, the global minimum is not the only state of interest — any reasonably low local minimum
of the energy landscape is a valid configuration, known as a conformer. A molecule thus does
not have a unique configuration; it can be in any of these states. Their statistical distribution
and the interaction between them is central for many molecular properties. This ambiguity of
atom positions poses a fundamental limit on how precise molecular predictions can be without
knowing the exact (ensemble of) configurations. For example, without knowing the molecule’s
conformer we can not reasonably predict its energy at a precision below roughly 60 meV
(Grimme, 2019) — except for small, rigid molecules that do not have multiple conformers (e.g.
benzene).

Approximating energies and forces. The most prominent way of accelerating the process
of finding a valid molecular configuration is by approximating its most expensive part: The
quantum mechanical optimization of the electron wavefunction. There is a large hierarchy of
methods with various runtime versus accuracy trade-offs (Folmsbee & Hutchison, 2021). The
cheapest class of methods are force fields. They allow running molecular dynamics simulations
with millions of atoms, and can estimate the equilibrium structure of a small molecule in less than
one second. Force fields approximate the quantum-mechanical interactions via a closed-form,
differentiable function that only depends on the atom positions. One common example is the
Merck Molecular Force Field (MMFF94) (Halgren, 1996). MMFF94 calculates the molecular
energy based on interatomic distances, angles, dihedral angles, and long-range interaction terms.
Each term is approximated using an analytic equation with empirically chosen coefficients that
depend on the involved atom types. Forces are obtained via the analytical gradients Fi = − ∂E

∂xi
,

and conformers via gradient-based optimization. Generating configurations with force fields is
fast enough to even generate a large ensemble of conformers. However, the resulting conformers
are highly biased and require corrections based on expensive QM-based methods for reasonably
approximating the molecule’s true distribution (Ebejer et al., 2012; Kanal et al., 2018).

Directly predicting the configuration. There are multiple methods that circumvent the
optimization process to quickly generate low-energy conformers for a given molecular graph.

54

6.4 Synthetic coordinates

Distance geometry methods generate conformers using an experimental database of ideal bond
lengths, bond angles, and torsional angles (Havel, 2002). The ETKDG method combines this
with empirical torsional angle preferences (Riniker & Landrum, 2015). Multiple machine
learning methods for generating conformers have also recently been proposed (Lemm et al.,
2021; Weinreich et al., 2021).

Restrictions for ML. All of the above methods yield reasonable molecular configurations.
However, they often require many initializations and a considerable amount of hand-tuning to
yield a good result for every molecule in a dataset. Furthermore, the obtained conformer might
not even be the correct one for the data of interest. The data could have been generated by
a different conformer or by a statistical ensemble of multiple conformers. The configuration
of a wrong conformer can cause our model to overfit to the false training data and cause bad
generalization (see Sec. 6.6). To solve this issue we could try to generate an ensemble of
conformers and embed their distribution. However, cheap generation methods yield strongly
biased ensembles and would thus require expensive post-processing, defeating the purpose of
fast and scalable machine learning (ML) methods (Ebejer et al., 2012; Kanal et al., 2018). We
propose to instead solve this issue by using less precise synthetic coordinates that are easier and
cheaper to obtain.

6.4 Synthetic coordinates

Molecular distance bounds. To circumvent the issues associated with conformational ambigu-
ity, we propose to use pairwise distance bounds instead of simple coordinates, i.e. minimum
and maximum distances d(min) and d(max) for every pair of atoms. These bounds only provide
the chemical information we are certain of, without being falsely accurate. Specifically, we
use the distance bounds provided by RDKit (RDKit, 2021). These bounds provide different
estimates depending on how the atoms are bonded in the molecular graph. The edges in the
molecular graph correspond to directly bonding atoms, whose bounds are calculated as the
equilibrium distance (as parametrized in the universal force field (UFF) (Rappe et al., 1992))
plus or minus a tolerance of 0.01 Å. The angles between triplets of atoms are estimated based
on bond hybridization and whether an atom is part of a ring. The distance bounds between
two-hop neighbors are then calculated based on this angle, the bond length, and a tolerance of
0.04 Å, or 0.08 Å for atoms larger than aluminium. Pairwise distances between higher-order
neighbors are not relevant for our method, since we only use the distances and angles of the
molecular graph. The distance bounds are then refined using the triangle inequality. Note that
these bounds depend almost exclusively on the directly involved atoms. They thus only provide
local structural information.

Based on these distance bounds we calculate three different angles for directional MPNNs:
The maximally and minimally realizable angles, and the center angle. We obtain them using
standard trigonometry, via

α
(a)
ijk = arccos

(
d2(b),ij + d2(b),jk − d2(a),ik

2d(b),ijd(b),jk

)
, (6.3)

55

6 Directional Message Passing on Molecular Graphs via Synthetic Coordinates

where (a) = (max) and (b) = (min) for the maximally realizable angle, (a) = (min) and
(b) = (max) for the minimally realizable angle, and (a) = (b) = (center) for the center angle,
with the center distance d(center) = (d(min) + d(max))/2. These distance and angle bounds hold
for all reasonable molecular structures and thus provide valuable, general information for our
model. Their calculation requires no hand-tuning, takes only a few milliseconds, and worked
out-of-the-box for every molecule we investigated.

Graph-based distances. Directional MPNNs only use the distances of interactions and the
angles between interactions; they do not require a full three-dimensional geometry. We leverage
this generality to propose a second distance based on a common graph-based proximity measure:
Personalized PageRank (PPR) (Page et al., 1998), also known as random walks with restart.
PPR measures how close two atoms in the molecular graph are by calculating the probability
that a random walker starting at atom i ends up at atom j. At each step, the random walker
jumps to any neighbor of the current atom with equal probability, and teleports back to the
original atom i with probability α. To satisfy the symmetry property of a metric we use a variant
of PPR that uses the symmetrically normalized transition matrix, i.e.

Πsppr = α(IN − (1− α)D−1/2AD−1/2)−1, (6.4)

with the teleport probability α ∈ (0, 1], the adjacency matrix A, and the diagonal degree matrix
Dij =

∑
k Aikδij . We found that this method works well even without considering any bond

type information in A. We convert Πsppr to a distance via

dsppr,ij =
√
Π

sppr
ii +Π

sppr
jj − 2Π

sppr
ij . (6.5)

Figure 6.2: dsppr distance
between direct neighbors on
ethanol.

Note that Πsppr defines a positive definite kernel, and this is
the induced distance in its reproducing kernel Hilbert space.
It therefore satisfies all properties of a metric, i.e. identity of
indiscernibles, symmetry, and the triangle inequality (Berg
et al., 1984, Chapter 3, §3). However, dsppr,ij is a general
metric and does not yield atom positions in 3D. This is a purely
graph-based measure that does not incorporate any chemical
knowledge. It reflects how central an atom is in the molecular
graph, and how important another atom is to this one, based on
the overall network of bonds. It thus only helps the GNN better
reflect and process the molecular graph structure. Fig. 6.2
shows an example of dsppr on ethanol. Since the law of cosines holds for any inner product
space we can calculate the angles for directional message passing via

αijk = arccos

(
d2ij + d2jk − d2ik

2dijdjk

)
. (6.6)

Note that the bounds- and graph-based distances encode orthogonal information. The former
is solely based on the global molecular graph structure, while the latter provides purely local
chemical knowledge. Instead of just choosing one or the other we can therefore combine both
to obtain the benefits of both.

56

6.5 Related work

Representing distances and angles. The additional structural information can directly be
incorporated into existing models as edge features. For this purpose, we propose to first represent
the distances using NRBF Gaussian radial basis functions (RBF), i.e.

hRBF,n(dij) = exp−1/2(dij−cn)2/σ2
, (6.7)

where the Gaussian centers cn are set uniformly between 0 and the overall maximum distance,
n ∈ [0, NRBF], and σ = c1 − c0 is set as the distance between two neighboring centers. The
angles are similarly represented using NABF cosine angular basis functions (ABF), i.e.

hABF,n(αijk) = cos(nαijk), (6.8)

with n ∈ [0, NABF]. We then transform these features using two linear layers. The first layer
is global and uses a small output dimension to force the model to learn a well-generalizing
intermediate representation. The second layer is specific to each GNN layer, enabling more
flexibility. Overall, we obtain the distance-based edge features eij and angle-based triplet
features aijk in layer l via

e
(l)
ij = W

(l)
RBF2WRBF1(hRBF(dij)∥x(E)

ij), (6.9)

a
(l)
ijk = W

(l)
ABF2WABF1hABF(αijk), (6.10)

where W (l)
RBF2 and W

(l)
ABF2 are layer-wise learned weight matrices, WRBF1 and WABF1 are global

learned weight matrices, ∥ denotes concatenation, and x
(E)
ij are bond (edge) features. We can

furthermore combine multiple synthetic coordinates by concatenating their representations hRBF
and hABF. Note that for DimeNet++ we use the original basis transformation instead of the one
described here.

6.5 Related work

Graph neural networks. Baskin et al. (1997); Sperduti & Starita (1997) proposed the first
models resembling modern GNNs. Gori et al. (2005); Scarselli et al. (2009) were the first
to use the name GNN, but these models are quite different to current GNNs, as described in
Sec. 6.2. GNNs became widely adopted after their potential in a wide range of graph-related
tasks was shown by Bruna et al. (2013); Defferrard et al. (2016); Gasteiger et al. (2019a); Kipf
& Welling (2017); Veličković et al. (2018). Notably, Beaini et al. (2021) use the Laplacian
eigenvectors of a graph to enable anisotropic aggregation in MPNNs. This approach is related to
our synthetic coordinates. However, it is not rotationally invariant w.r.t. the directions induced
by the eigenvectors, and unsuited for enabling existing directional MPNNs.

GNNs for molecules. Molecules have always played a central role in the development of
GNNs, both for the very first GNNs (Baskin et al., 1997) and during the modern era of GNNs
(Duvenaud et al., 2015; Gilmer et al., 2017). GNNs have been particularly successful when
leveraging coordinates (Schütt et al., 2017; Unke & Meuwly, 2019), but many variants only rely
on the molecular graph (Fey et al., 2020).

57

6 Directional Message Passing on Molecular Graphs via Synthetic Coordinates

Directionality in GNNs. Incorporating directionality in molecular MPNNs is currently a
very active and successful area of research. These methods can roughly be divided into two
classes: Models based on SO(3) group representations (Anderson et al., 2019; Thomas et al.,
2018), and models incorporating directional information directly (see Chapter 3). Multiple
promising models have recently been proposed for both classes (Batzner et al., 2022; Fuchs
et al., 2020; Liu et al., 2022; Satorras et al., 2021; Schütt et al., 2021). While we focus on
directional message passing in this chapter, all of these methods can benefit from synthetic
coordinates.

Molecular representations. Molecular fingerprints are a useful tool for comparing molecules,
e.g. for machine learning. Popular examples include extended connectivity fingerprints (ECFP),
also known as Morgan or circular fingerprints (Rogers & Hahn, 2010), MACCS keys (Durant
et al., 2002), MHFP (Probst & Reymond, 2018), the subgraph-based RDKit fingerprint (RDKit,
2021), and the SELFIES string representation (Krenn et al., 2020). These can be viewed as
an alternative or supplement to synthetic coordinates. However, unlike synthetic coordinates
they do not leverage the peculiarities of directional MPNNs, and can usually only be used with
regressors that are not graph-based. Another class of molecular representations aims at better
encoding the geometry of a molecule (Faber et al., 2017). Examples include FCHL (Christensen
et al., 2020; Faber et al., 2018), smooth overlap of atomic positions (SOAP) (Bartók et al., 2013),
and atomic spectrum of London and ATM potential (aSLATM) (Huang & von Lilienfeld, 2020).
OrbNet is an example of a GNN that enhances its input with such a representation (Qiao et al.,
2020). Obviously, none of these can be used without access to the molecular configuration.

6.6 Experiments

6.6.1 Experimental setup

We use three common benchmarks to evaluate the proposed synthetic coordinates: Coordinate-
free QM9 (Ramakrishnan et al., 2014, CC0 license), ZINC (Irwin et al., 2012), and ogbg-molhiv
(Hu et al., 2020, MIT license). QM9 contains various quantum mechanical properties of
equilibrium conformers of small molecules with up to nine heavy atoms. To exclude effects
from regular chemical information we use all available edge (bond types) and node features
(acceptor/donor, aromaticity, hybridization). However, unlike previous work we do not use the
Mulliken partial charges. These are computed by quantum mechanical calculations that use
the molecule’s configuration. They thus lead to information leakage and defeat the purpose
of QM9’s regression task. We use the same data split as Brockschmidt (2020) for QM9, i.e.
10 000 molecules for the validation and test sets, and the remaining ∼110 000 molecules for
training. Note that the properties in QM9 fundamentally depend on the molecular configuration.
The predictions in coordinate-free QM9 should thus be viewed as estimates for the equilibrium
configurations. There are fundamental limits to the accuracy achievable in this setup, as
discussed in Sec. 6.3. The goal in ZINC is to predict the penalized logP (also called “constrained
solubility” in some works), given by y = logP−SAS− cycles (Jin et al., 2018), where
logP is the water-octanol partition coefficient, SAS is the synthetic accessibility score (Ertl
& Schuffenhauer, 2009), and cycles denotes the number of cycles with more than six atoms.
Penalized logP is a score commonly used for training molecular generation models (Kusner

58

6.6 Experiments

et al., 2017). We use 10 000 training, 1000 validation, and 1000 test molecules, as established
by Dwivedi et al. (2020) and provided by PyTorch Geometric (Fey & Lenssen, 2019). For
ogbg-molhiv we need to predict whether a molecule inhibits HIV virus replication. It contains
41 127 graphs, out of which 80 % are training samples, and 10 % each are validation and test
samples, as provided by the official data splits. We report the mean and standard deviation
across five runs for ZINC and ogbg-molhiv. Due to computational constraints we only report
single results on QM9. The experiments were run on GPUs using an internal cluster equipped
mainly with NVIDIA GeForce GTX 1080Ti.

We aim to answer two questions with our experiments: 1. Do synthetic coordinates improve
the performance of existing GNNs? 2. Does transforming existing GNNs to directional MPNNs
improve accuracy? To answer these questions we investigate three GNNs: DeeperGCN (Li et al.,
2020, MIT license), structural message passing (SMP) (Vignac et al., 2020, MIT license), and
DimeNet++. We show step-by-step how the changes affect the resulting error of each model.
For easier comparison we also provide published results of other state-of-the-art GNNs: Gated
GCN, MPNN-JT (Fey et al., 2020), GIN (Fey et al., 2020; Xu et al., 2019b), PNA (Corso et al.,
2020), DGN (Beaini et al., 2021), SMP (Vignac et al., 2020), GNN-FiLM (Brockschmidt, 2020),
and GNN-FiLM+FA (Alon & Yahav, 2021).

6.6.2 Model hyperparameters

To prevent overfitting we use the SMP and DimeNet++ models and hyperparameters largely
as-is, without any further optimization. Similarly, we chose the DeeperGCN variant and
hyperparameters based on the ogbg-molhiv dataset, and did not further tune on ZINC. More
specifically, we use the DeeperGCN (Li et al., 2020) with 12 ResGCN+ blocks, mean aggregation
in the graph convolution, and average pooling to obtain the graph embedding. For SMP (Vignac
et al., 2020) we use 12 layers, 8 towers, an internal representation of size 32 and no residual
connections. For both DeeperGCN and SMP we use an embedding size of 256, and distance
and angle bases of size 16 and 18, respectively, with a bottleneck dimension of 4 between the
global basis embedding and the local embedding in each layer. We train all models on ZINC
with the same training hyperparameters as SMP, particularly the same learning rate schedule
with a patience of 100 and minimum learning rate of 1 × 10−5.

For DimeNet++ we use a cutoff of 2.5 Å, radial and spherical bases of size 12, embedding
size 128, output embedding size 256, basis embedding size 8 and 4 blocks. We use the same
optimization parameters - learning rate 0.001, 3000 warmup steps and a decay rate of 0.01.

6.6.3 Results

Transforming existing GNNs. Table 6.1 shows that DeeperGCN’s errors improve for each step
of the transformation: Adding distance information, switching to the line graph, and adding
angles. Interestingly, the PPR distance reduces the error more than molecular distance bounds
do. This suggests that this structural information is more relevant for the GNN than the rough
bounds. SMP benefits less from using the line graph and angles. This is likely due to SMP
already encoding structural information as part of its architecture. Using both the PPR distance
and molecular distance bounds improves the performance further for both models. Table 6.3

59

6 Directional Message Passing on Molecular Graphs via Synthetic Coordinates

Table 6.1: Ablation study for transforming DeeperGCN and SMP
to directional MPNNs (MAE on ZINC). Every step improves
the error of DeeperGCN, resulting in a 55 % improvement. The
combined bounds+PPR encoding performs best. *Replicated using
the reference implementation.

SMP DeeperGCN
Basic 0.159 ± 0.028* 0.317 ± 0.021

+distance
Bounds 0.124 ± 0.002 0.264 ± 0.003
PPR 0.151 ± 0.008 0.227 ± 0.006
Bounds+PPR 0.121 ± 0.006 0.228 ± 0.005

+distance Bounds 0.112 ± 0.004 0.212 ± 0.008
& line graph PPR 0.150 ± 0.003 0.194 ± 0.009

+distance, Bounds 0.113 ± 0.003 0.180 ± 0.007
line graph PPR 0.153 ± 0.005 0.158 ± 0.005
& angle Bounds+PPR 0.109 ± 0.004 0.142 ± 0.006

Table 6.2: MAE on ZINC. SMP
with synthetic coordinates outcom-
petes previous models by 21 %,
without any hyperparameter tun-
ing.

Model MAE
Gated GCN 0.282
GIN 0.252
PNA 0.188
DGN 0.168
MPNN-JT 0.151
SMP 0.138
DeeperGCN-SC 0.142 ± 0.006
SMP-SC 0.109 ± 0.004

Table 6.3: Comparison of different distance generation methods for DeeperGCN on ZINC (MAE). Our
simpler, faster, and more principled methods (bounds, PPR) perform better than more sophisticated
conformer generation methods.

MMFF94 ETKDG Bounds PPR Bounds+PPR
Distance 0.324 ± 0.012 0.329 ± 0.022 0.264 ± 0.003 0.227 ± 0.006 0.228 ± 0.005
Distance & line graph 0.232 ± 0.008 0.234 ± 0.007 0.212 ± 0.008 0.194 ± 0.009 0.178 ± 0.009
Distance, line graph & angle 0.236 ± 0.011 0.274 ± 0.012 0.180 ± 0.007 0.158 ± 0.005 0.142 ± 0.006

shows that using more expensive methods of generating conformers yields a higher error than
our simple and fast methods. As discussed in Sec. 6.3, this can be attributed to the ambiguities
of different molecular conformers. DeeperGCN with synthetic coordinates performs similarly
well to the best models proposed previously, while the enhanced SMP sets a new state of the art
on this dataset, as shown in Table 6.2.

Enhancing DimeNet++. DimeNet was originally developed for molecular dynamics and
other use cases that provide the true atom positions, such as the full QM9 dataset. Despite this,
we can still use it as-is without available positional information by setting the used distance and
angle embeddings to constants. DimeNet++ still performs surprisingly well in this form, as
shown in Table 6.4. However, its performance increases significantly if we provide it with the
proposed synthetic coordinates. Notably, the PPR distance again causes a larger improvement
than the molecular distance bounds. Combining both distances still performs best, though.
Table 6.5 furthermore shows that DimeNet++ sets the state of the art for coordinate-less QM9
on eight out of twelve targets — without any further hyperparameter optimization. Interestingly,
the achieved energy error lies significantly below the limit of 60 meV we mentioned in Sec. 6.3.
This is likely due to two reasons. First, QM9 only contains small molecules, many of which are
very rigid. These molecules do not have multiple conformers and their energy will thus be more
deterministic. Second, QM9’s data was generated by initializing each molecule’s position with

60

6.6 Experiments

Table 6.4: MAE on coordinate-
free QM9 (meV) for
DimeNet++ with synthetic
coordinates. Both synthetic
distances and angles yield
significant improvements,
together reducing the error by
24 % on average.

ϵHOMO U0

No dist/angle 74.1 41.9
No angle 63.5 32.1(bounds+PPR)
distance & angle:
Bounds 63.6 29.4
PPR 63.0 29.5
Bounds+PPR 61.7 28.7

Table 6.5: MAE on coordinate-free QM9. DimeNet++ with synthetic
coordinates outperforms previous models by 20 %, without any hyper-
parameter tuning. *Uses Mulliken partial charges.

Unit GNN-FiLM* GNN-FiLM+FA* DimeNet++-SC
µ D 0.238 0.226 0.303
α a3

0 0.375 0.193 0.171
ϵHOMO meV 52.5 47.7 61.7
ϵLUMO meV 55.9 52 54.3
∆ϵ meV 84.3 77 86.2〈
R2
〉

a2
0 18.7 14.3 12.7

ZPVE meV 13.2 5.62 2.98
U0 meV 233 68.8 28.7
U meV 256 75.2 29.6
H meV 240 83 29.6
G meV 222 76.1 28.2
cv

cal
mol K 0.173 0.082 0.076

a fast force field method. This can bias the final conformer towards a deterministic state, which
might be learnable by a GNN.

Table 6.6: Ablation of DeeperGCN on QM9 U0 (MAE,
meV) and ogbg-molhiv (ROC-AUC). Using the line
graph does not always provide benefits. However, syn-
thetic coordinates help even in these cases.

QM9, U0 ogbg-molhiv
Basic 106 0.728 ± 0.008

+distance
Bounds 114 0.724 ± 0.014
PPR 88 0.734 ± 0.014
Bounds+PPR 100 0.733 ± 0.024

+distance Bounds 233 0.705 ± 0.011
& line graph PPR 204 0.697 ± 0.009

+distance, Bounds 205 0.703 ± 0.021
line graph PPR 164 0.700 ± 0.014
& angle Bounds+PPR 186 0.767 ± 0.016

Synthetic coordinates without direc-
tional message passing. In some cases
we found that using synthetic coordinates
yields performance improvements while
transforming the model to a directional
MPNN does not. Table 6.6 demonstrates
this using DeeperGCN on QM9 and ogbg-
molhiv. Using the line graph significantly
impairs performance on both datasets.
Whether directional MPNNs provide a ben-
efit thus seems to depend on both the under-
lying model and the dataset. This is likely
due to the directional MPNN’s different
training dynamics, which require further
architectural and hyperparameter changes.
Moreover, directional MPNNs are likely
more prone to overfitting due to their bet-
ter expressivity. This affects ogbg-molhiv in particular, since it uses a scaffold split for the
test set. However, the additional information provided by synthetic coordinates still yields
improvements in both cases.

61

6 Directional Message Passing on Molecular Graphs via Synthetic Coordinates

6.7 Limitations and societal impact

Limitations. Converting a GNN to a directional MPNN incurs significant computational
overhead, since the line graph is usually substantially larger than the molecular graph. However,
just incorporating the information provided by graph distances or molecular distance bounds
without transforming to directional message passing can also provide benefits, with almost no
computational overhead. We furthermore found that transforming a GNN to a directional MPNN
does not yield improvements in many cases, while synthetic coordinates still do (see Sec. 6.6
for details). There are likely also cases where synthetic coordinates lead to overfitting and do
not improve accuracy. Directional MPNNs appear to be most successful when the molecular
configuration is directly relevant.

Societal impact. Improving the predictions of molecular models can positively affect various
applications in chemistry, biology, and medicine. Our research is general and not focused on
a field where malicious use should be expected. However, similar to most methodological
research, our improvements can be misused to accelerate the development of chemical agents
and biological weapons. We do not think that this potential for harm goes beyond regular
research in theoretical chemistry and related fields. Still, to slightly reduce these negative effects
our code will be published under the Hippocratic license (Ehmke, 2020).

6.8 Conclusion

We proposed two methods for providing synthetic coordinates: Molecular distance bounds
based on the interacting atom types, and graph-based distances based on personalized PageRank
scores. Both of these methods provide well-defined pairwise distances, which can then be used
to calculate distances for edge features in the molecular graph, and angles for edge features in
its line graph. These synthetic coordinates improve GNN performance for various models and
datasets, and allow transforming a regular GNN into a directional MPNN. This transformation
leads to substantial improvements, resulting in state-of-the-art accuracies on multiple datasets.

6.9 Retrospective

The chapter presents cheap and simple approaches for obtaining conformers that are surprisingly
effective. These are simple-to-use methods that can be quickly applied for different tasks.
However, our experiments are somewhat limited in scope and we also showed negative results
on some models and datasets.

There is much potential for future improvements in this area since conformers play a central
question in many applications of molecular systems, especially in biochemistry. Our comparison
to explicit conformers (Table 6.3) demonstrates that properly capturing the width and uncertainty
of the conformer distribution can provide significant advantages. Future approaches might thus
aim at sampling and representing the full ensemble of conformers to generate ensemble-based
predictions.

In principle, directional aggregation might also provide benefits for general graphs beyond
molecules. We ran extensive experiments on node-based tasks and general datasets such as

62

6.9 Retrospective

Cora and ogbn-arxiv. Unfortunately, we found no improvements. This is likely because these
node-based tasks generally favor small, strongly regularized models, whereas the molecular
datasets in this chapter benefit from large and powerful models. Synthetic coordinates thus seem
the most useful when we can expect benefits from more powerful models.

Still, there are geometry-based methods that do work on general graph datasets. In the next
part we will focus on these general methods, starting with a method for transforming graphs
based on node distances.

63

Part III

General Graphs

65

7 Diffusion Improves Graph Learning

7.1 Introduction

When people started using graphs for evaluating chess tournaments in the middle of the 19th
century they only considered each player’s direct opponents, i.e. their first-hop neighbors. Only
later was the analysis extended to recursively consider higher-order relationships via A2, A3, etc.
and finally generalized to consider all exponents at once, using the adjacency matrix’s dominant
eigenvector (Landau, 1895; Vigna, 2016). The field of Graph Neural Networks (GNNs) is
currently in a similar state. Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017),
also referred to as Message Passing Neural Networks (MPNNs) (Gilmer et al., 2017) are the
prevalent approach in this field but they only pass messages between neighboring nodes in
each layer. MPNNs do leverage higher-order neighborhoods in deeper layers, but limiting each
layer’s messages to one-hop neighbors seems arbitrary. Edges in real graphs are often noisy or
defined using an arbitrary threshold (Tang et al., 2018), so we can clearly improve upon this
approach.

Since MPNNs only use the immediate neighborhood information, they are often referred
to as spatial methods. On the other hand, spectral-based models do not just rely on first-hop
neighbors and capture more complex graph properties (Defferrard et al., 2016). However, while
being theoretically more elegant, these methods are routinely outperformed by MPNNs on
graph-related tasks (Kipf & Welling, 2017; Veličković et al., 2018; Xu et al., 2019b) and do
not generalize to previously unseen graphs. This shows that message passing is a powerful
framework worth extending upon. To reconcile these two separate approaches and combine
their strengths we propose a novel technique of performing message passing inspired by
spectral methods: Graph diffusion convolution (GDC). Instead of aggregating information only
from the first-hop neighbors, GDC aggregates information from a larger neighborhood. This
neighborhood is constructed via a new graph generated by sparsifying a generalized form of
graph diffusion. We show how graph diffusion is expressed as an equivalent polynomial filter
and how GDC is closely related to spectral-based models while addressing their shortcomings.
GDC is spatially localized, scalable, can be combined with message passing, and generalizes
to unseen graphs. Furthermore, since GDC generates a new sparse graph it is not limited to
MPNNs and can trivially be combined with any existing graph-based model or algorithm in a
plug-and-play manner, i.e. without requiring changing the model or affecting its computational
complexity. We show that GDC consistently improves performance across a wide range of
models on both supervised and unsupervised tasks and various homophilic datasets. In summary,
this chapter’s core contributions are:

• Proposing graph diffusion convolution (GDC), a more powerful and general, yet spatially
localized alternative to message passing that uses a sparsified generalized form of graph

67

7 Diffusion Improves Graph Learning

diffusion. GDC is not limited to GNNs and can be combined with any graph-based model
or algorithm.

• Analyzing the spectral properties of GDC and graph diffusion. We show how graph
diffusion is expressed as an equivalent polynomial filter and analyze GDC’s effect on the
graph spectrum.

• Comparing and evaluating several specific variants of GDC and demonstrating its wide
applicability to supervised and unsupervised learning on graphs.

7.2 Generalized graph diffusion

We consider an undirected graph G = (V, E) with node set V and edge set E . We denote with
N = |V| the number of nodes and A ∈ RN×N the adjacency matrix. We define generalized
graph diffusion via the diffusion matrix

S =

∞∑

k=0

θkT
k, (7.1)

with the weighting coefficients θk, and the generalized transition matrix T . The choice of θk
and T k must at least ensure that Eq. (7.1) converges. In this chapter we will consider somewhat
stricter conditions and require that

∑∞
k=0 θk = 1, θk ∈ [0, 1], and that the eigenvalues of T

are bounded by λi ∈ [0, 1], which together are sufficient to guarantee convergence. Note that
regular graph diffusion commonly requires T to be column- or row-stochastic.

Transition matrix. Examples for T in an undirected graph include the random walk transition
matrix Trw = AD−1 and the symmetric transition matrix Tsym = D−1/2AD−1/2, where
the degree matrix D is the diagonal matrix of node degrees, i.e. Dii =

∑N
j=1Aij . Note

that in our definition Trw is column-stochastic. We furthermore adjust the random walk by
adding (weighted) self-loops to the original adjacency matrix, i.e. use T̃sym = (wloopIN +
D)−1/2(wloopIN + A)(wloopIN + D)−1/2, with the self-loop weight wloop ∈ R+. This
is equivalent to performing a lazy random walk with a probability of staying at node i of
pstay,i = wloop/Di.

Special cases. Two popular examples of graph diffusion are personalized PageRank (PPR)
(Page et al., 1998) and the heat kernel (Kondor & Lafferty, 2002). PPR corresponds to choosing
T = Trw and θPPR

k = α(1 − α)k, with teleport probability α ∈ (0, 1) (Chung, 2007). The
heat kernel uses T = Trw and θHK

k = e−t tk

k! , with the diffusion time t (Chung, 2007). Another
special case of generalized graph diffusion is the approximated graph convolution introduced by
Kipf & Welling (2017), which translates to θ1 = 1 and θk = 0 for k ̸= 1 and uses T = T̃sym
with wloop = 1.

Weighting coefficients. We compute the series defined by Eq. (7.1) either in closed-form, if
possible, or by restricting the sum to a finite number K. Both the coefficients defined by PPR
and the heat kernel give a closed-form solution for this series that we found to perform well for
the tasks considered. Note that we are not restricted to using Trw and can use any generalized
transition matrix along with the coefficients θPPR

k or θHK
k and the series still converges. We

can furthermore choose θk by repurposing the graph-specific coefficients obtained by methods

68

7.3 Graph diffusion convolution

..
.

..
.

..
.

Graph diffusion Density defines edges Sparsify edges
New graph

Figure 7.1: Illustration of graph diffusion convolution (GDC). We transform a graph A via graph
diffusion and sparsification into a new graph S̃ and run the given model on this graph instead.

that optimize coefficients analogous to θk as part of their training process. We investigated
this approach using label propagation (Berberidis et al., 2019; Chen et al., 2013) and node
embedding models (Abu-El-Haija et al., 2018b). However, we found that the simple coefficients
defined by PPR or the heat kernel perform better than those learned by these models (see Fig. 7.7
in Sec. 7.6).

7.3 Graph diffusion convolution

Essentially, graph diffusion convolution (GDC) exchanges the normal adjacency matrix A with
a sparsified version S̃ of the generalized graph diffusion matrix S, as illustrated by Fig. 7.1. This
matrix defines a weighted and directed graph, and the model we aim to augment is applied to this
graph instead. We found that the calculated edge weights are beneficial for the tasks considered.
However, we even found that GDC works when ignoring the weights after sparsification. This
enables us to use GDC with models that only support unweighted edges such as the degree-
corrected stochastic block model (DCSBM). If required, we make the graph undirected by using
(S̃ + S̃T)/2, e.g. for spectral clustering. With these adjustments GDC is applicable to any
graph-based model or algorithm.

Intuition. The general intuition behind GDC is that graph diffusion smooths out the neigh-
borhood over the graph, acting as a kind of denoising filter similar to Gaussian filters on images.
This helps with graph learning since both features and edges in real graphs are often noisy.
Previous works also highlighted the effectiveness of graph denoising. Berberidis & Giannakis
(2018) showed that PPR is able to reconstruct the underlying probability matrix of a sampled
stochastic block model (SBM) graph. Kloumann et al. (2017) and Ragain (2017) showed that
PPR is optimal in recovering the SBM and DCSBM clusters in the space of landing probabilities
under the mean field assumption. Li et al. (2019a) generalized this result by analyzing the
convergence of landing probabilities to their mean field values. These results confirm the
intuition that graph diffusion-based smoothing indeed recovers meaningful neighborhoods from
noisy graphs.

69

7 Diffusion Improves Graph Learning

Sparsification. Most graph diffusions result in a dense matrix S. This happens even if we
do not sum to k = ∞ in Eq. (7.1) due to the “four/six degrees of separation” in real-world
graphs (Backstrom et al., 2012). However, the values in S represent the influence between
all pairs of nodes, which typically are highly localized (Nassar et al., 2015). This is a major
advantage over spectral-based models since the spectral domain does not provide any notion of
locality. Spatial localization allows us to simply truncate small values of S and recover sparsity,
resulting in the matrix S̃. In this chapter we consider two options for sparsification: 1. top-k:
Use the k entries with the highest mass per column, 2. Threshold ϵ: Set entries below ϵ to zero.
Sparsification would still require calculating a dense matrix S during preprocessing. However,
many popular graph diffusions can be approximated efficiently and accurately in linear time and
space. Most importantly, there are fast approximations for both PPR (Andersen et al., 2006; Wei
et al., 2018) and the heat kernel (Kloster & Gleich, 2014), with which GDC achieves a linear
runtime O(N). Furthermore, top-k truncation generates a regular graph, which is amenable to
batching methods and solves problems related to widely varying node degrees (Decelle et al.,
2011). Empirically, we even found that sparsification slightly improves prediction accuracy (see
Fig. 7.5 in Sec. 7.6). After sparsification we calculate the (symmetric or random walk) transition
matrix on the resulting graph via T S̃

sym = D
−1/2

S̃
S̃D

−1/2

S̃
.

Limitations. GDC is based on the assumption of homophily, i.e. “birds of a feather flock
together” (McPherson et al., 2001). Many methods share this assumption and most common
datasets adhere to this principle. However, this is an often overlooked limitation and it seems
non-straightforward to overcome. One way of extending GDC to heterophily, i.e. “opposites
attract”, might be negative edge weights (Derr et al., 2018; Ma et al., 2016). Furthermore, we
suspect that GDC does not perform well in settings with more complex edges (e.g. knowledge
graphs) or graph reconstruction tasks such as link prediction. Preliminary experiments showed
that GDC indeed does not improve link prediction performance.

7.4 Spectral analysis of GDC

Even though GDC is a spatial-based method it can also be interpreted as a graph convolution
and analyzed in the graph spectral domain. In this section we show how generalized graph
diffusion is expressed as an equivalent polynomial filter and vice versa. Additionally, we
perform a spectral analysis of GDC, which highlights the tight connection between GDC and
spectral-based models.

Spectral graph theory. To employ the tools of spectral theory to graphs we exchange the
regular Laplace operator with either the unnormalized Laplacian Lun = D−A, the random-walk
normalized Lrw = IN −Trw, or the symmetric normalized graph Laplacian Lsym = IN −Tsym
(von Luxburg, 2007). The Laplacian’s eigendecomposition is L = UΛUT , where both U and
Λ are real-valued. The graph Fourier transform of a vector x is then defined via x̂ = UTx and
its inverse as x = Ux̂. Using this we define a graph convolution on G as x∗G y = U((UTx)⊙
(UTy)), where ⊙ denotes the Hadamard product. Hence, a filter gξ with parameters ξ acts on x

as gξ(L)x = UĜξ(Λ)UTx, where Ĝξ(Λ) = diag(ĝξ,1(Λ), . . . , ĝξ,N (Λ)). A common choice
for gξ in the literature is a polynomial filter of order J , since it is localized and has a limited

70

7.4 Spectral analysis of GDC

number of parameters (Defferrard et al., 2016; Hammond et al., 2011):

gξ(L) =

J∑

j=0

ξjL
j = U

J∑

j=0

ξjΛ
j

UT . (7.2)

Graph diffusion as a polynomial filter. Comparing Eq. (7.1) with Eq. (7.2) shows the close
relationship between polynomial filters and generalized graph diffusion since we only need to
exchange L by T to go from one to the other. To make this relationship more specific and find
a direct correspondence between GDC with θk and a polynomial filter with parameters ξj we
need to find parameters that solve

J∑

j=0

ξjL
j !
=

K∑

k=0

θkT
k. (7.3)

To find these parameters we choose the Laplacian corresponding to L = In − T , resulting in
(see App. D.1)

ξj =
K∑

k=j

(
k

j

)
(−1)jθk, θk =

J∑

j=k

(
j

k

)
(−1)kξj , (7.4)

which shows the direct correspondence between graph diffusion and spectral methods. Note that
we need to set J = K. Solving Eq. (7.4) for the coefficients corresponding to the heat kernel
θHK
k and PPR θPPR

k leads to

ξHK
j =

(−t)j

j!
, ξPPR

j =

(
1− 1

α

)j

, (7.5)

showing how the heat kernel and PPR are expressed as polynomial filters. Note that PPR’s
corresponding polynomial filter converges only if α > 0.5. This is caused by changing the order
of summation when deriving ξPPR

j , which results in an alternating series. However, if the series
does converge it gives the exact same transformation as the equivalent graph diffusion.

Spectral properties of GDC. We will now extend the discussion to all parts of GDC and
analyze how they transform the graph Laplacian’s eigenvalues. GDC consists of four steps:
1. Calculate the transition matrix T , 2. take the sum in Eq. (7.1) to obtain S, 3. sparsify the
resulting matrix by truncating small values, resulting in S̃, and 4. calculate the transition matrix
TS̃ .

1. Transition matrix. Calculating the transition matrix T only changes which Laplacian
matrix we use for analyzing the graph’s spectrum, i.e. we use Lsym or Lrw instead of Lun.
Adding self-loops to obtain T̃ does not preserve the eigenvectors and its effect therefore cannot
be calculated precisely. Wu et al. (2019a) empirically found that adding self-loops shrinks the
graph’s eigenvalues.

2. Sum over T k. Summation does not affect the eigenvectors of the original matrix, since
T kvi = λiT

k−1vi = λk
i vi, for the eigenvector vi of T with associated eigenvalue λi. This also

71

7 Diffusion Improves Graph Learning

0.0 0.5 1.0 1.5 2.0
λA

0

5

10

15

20

λ
S
/λ

A

PPR (α)
0.05
0.15

Heat (t)
3
5

(a) Graph diffusion as a filter, PPR
with α and heat kernel with t. Both
act as low-pass filters.

0 1000 2000
Index

0.0

0.5

1.0

λ

λ

λ; ϵ = 10−3

∆λ; ϵ = 10−3

∆λ; ϵ = 10−4

(b) Sparsification with threshold ϵ of
PPR (α = 0.1) on CORA. Eigenval-
ues are almost unchanged.

0.0 0.5 1.0
λS̃

0.00

0.25

0.50

0.75

1.00

λ
T

S̃
/λ

S̃

ϵ = 10−3

ϵ = 10−4

(c) Transition matrix on CORA’s spar-
sified graph S̃. This acts as a weak
high-pass filter.

Figure 7.2: Influence of different parts of GDC on the Laplacian’s eigenvalues λ.

shows that the eigenvalues are transformed as

λ̃i =
∞∑

k=0

θkλ
k
i . (7.6)

Since the eigenvalues of T are bounded by 1 we can use the geometric series to derive a
closed-form expression for PPR, i.e. λ̃i = α

∑∞
k=0(1 − α)kλk

i = α
1−(1−α)λi

. For the heat

kernel we use the exponential series, resulting in λ̃i = e−t
∑∞

k=0
tk

k!λ
k
i = et(λi−1). How this

transformation affects the corresponding Laplacian’s eigenvalues is illustrated in Fig. 7.2a. Both
PPR and the heat kernel act as low-pass filters. Low eigenvalues corresponding to large-scale
structure in the graph (e.g. clusters (Ng et al., 2002)) are amplified, while high eigenvalues
corresponding to fine details but also noise are suppressed.

3. Sparsification. Sparsification changes both the eigenvalues and the eigenvectors, which
means that there is no direct correspondence between the eigenvalues of S and S̃ and we cannot
analyze its effect analytically. However, we can use eigenvalue perturbation theory (Stewart &
Sun (1990), Corollary 4.13) to derive the upper bound

√√√√
N∑

i=1

(λ̃i − λi)2 ≤ ||E||F ≤ N ||E||max ≤ Nϵ, (7.7)

with the perturbation matrix E = S̃ − S and the threshold ϵ. This bound significantly
overestimates the perturbation since PPR and the heat kernel both exhibit strong localization on
real-world graphs and hence the change in eigenvalues empirically does not scale with N (or,
rather,

√
N). By ordering the eigenvalues we see that, empirically, the typical thresholds for

sparsification have almost no effect on the eigenvalues, as shown in Fig. 7.2b and in the close-up
in Fig. D.1 in App. D.2.2. We find that the small changes caused by sparsification mostly affect
the highest and lowest eigenvalues. The former correspond to very large clusters and long-range
interactions, which are undesired for local graph smoothing. The latter correspond to spurious

72

7.5 Related work

oscillations, which are not helpful for graph learning either and most likely affected because of
the abrupt cutoff at ϵ.

4. Transition matrix on S̃. As a final step we calculate the transition matrix on the resulting
graph S̃. This step does not just change which Laplacian we consider since we have already
switched to using the transition matrix in step 1. It furthermore does not preserve the eigenvectors
and is thus again best investigated empirically by ordering the eigenvalues. Fig. 7.2c shows
that, empirically, this step slightly dampens low eigenvalues. This may seem counterproductive.
However, the main purpose of using the transition matrix is ensuring that sparsification does
not cause nodes to be treated differently by losing a different number of adjacent edges. The
filtering is only a side-effect.

Limitations of spectral-based models. While there are tight connections between GDC
and spectral-based models, GDC is actually spatial-based and therefore does not share their
limitations. Similar to polynomial filters, GDC does not compute an expensive eigenvalue
decomposition, preserves locality on the graph and is not limited to a single graph after training,
i.e. typically the same coefficients θk can be used across graphs. The choice of coefficients θk
depends on the type of graph at hand and does not change significantly between similar graphs.
Moreover, the hyperparameters α of PPR and t of the heat kernel usually fall within a narrow
range that is rather insensitive to both the graph and model (see Fig. 7.8 in Sec. 7.6).

7.5 Related work

Graph diffusion and random walks have been extensively studied in classical graph learning
(Chen et al., 2013; Chung, 2007; Kondor & Lafferty, 2002; Lafon & Lee, 2006), especially for
clustering (Kloster & Gleich, 2014), semi-supervised classification (Buchnik & Cohen, 2018;
Fouss et al., 2012), and recommendation systems (Ma et al., 2016). For an overview of existing
methods see Masuda et al. (2017) and Fouss et al. (2012).

The first models similar in structure to current Graph Neural Networks (GNNs) were proposed
by Sperduti & Starita (1997) and Baskin et al. (1997), and the name GNN first appeared in (Gori
et al., 2005; Scarselli et al., 2009). However, they only became widely adopted in recent years,
when they started to outperform classical models in many graph-related tasks (Duvenaud et al.,
2015; Gasteiger et al., 2019a; Li et al., 2018c; Ying et al., 2018). In general, GNNs are classified
into spectral-based models (Bruna et al., 2013; Defferrard et al., 2016; Henaff et al., 2015; Kipf
& Welling, 2017; Li et al., 2018b), which are based on the eigendecomposition of the graph
Laplacian, and spatial-based methods (Gilmer et al., 2017; Hamilton et al., 2017; Li et al., 2016;
Monti et al., 2017; Niepert et al., 2016; Pham et al., 2017; Veličković et al., 2018), which use the
graph directly and form new representations by aggregating the representations of a node and its
neighbors. However, this distinction is often rather blurry and many models can not be clearly
attributed to one type or the other. Deep learning also inspired a variety of unsupervised node
embedding methods. Most models use random walks to learn node embeddings in a similar
fashion as word2vec (Mikolov et al., 2013) (Grover & Leskovec, 2016; Perozzi et al., 2014)
and have been shown to implicitly perform a matrix factorization (Qiu et al., 2018). Other
unsupervised models learn Gaussian distributions instead of vectors (Bojchevski & Günnemann,

73

7 Diffusion Improves Graph Learning

2018), use an auto-encoder (Kipf & Welling, 2016), or train an encoder by maximizing the
mutual information between local and global embeddings (Velickovic et al., 2019).

There have been some isolated efforts of using extended neighborhoods for aggregation in
GNNs and graph diffusion for node embeddings. PPNP (Gasteiger et al., 2019a) propagates
the node predictions generated by a neural network using personalized PageRank, DCNN
(Atwood & Towsley, 2016) extends node features by concatenating features aggregated using
the transition matrices of k-hop random walks, GraphHeat (Xu et al., 2019a) uses the heat kernel
and PAN (Ma et al., 2019) the transition matrix of maximal entropy random walks to aggregate
over nodes in each layer, PinSage (Ying et al., 2018) uses random walks for neighborhood
aggregation, and MixHop (Abu-El-Haija et al., 2019) concatenates embeddings aggregated
using the transition matrices of k-hop random walks before each layer. VERSE (Tsitsulin
et al., 2018) learns node embeddings by minimizing KL-divergence from the PPR matrix to
a low-rank approximation. Attention walk (Abu-El-Haija et al., 2018b) uses a similar loss
to jointly optimize the node embeddings and diffusion coefficients θk. None of these works
considered sparsification, generalized graph diffusion, spectral properties, or using preprocessing
to generalize across models.

7.6 Experimental results

Experimental setup. We take extensive measures to prevent any kind of bias in our results. We
optimize the hyperparameters of all models on all datasets with both the unmodified graph and
all GDC variants separately using a combination of grid and random search on the validation
set. Each result is averaged across 100 data splits and random initializations for supervised tasks
and 20 random initializations for unsupervised tasks, as suggested by Gasteiger et al. (2019a)
and Shchur et al. (2018). We report performance on a test set that was used exactly once. We
report all results as averages with 95 % confidence intervals calculated via bootstrapping.

We use the symmetric transition matrix with self-loops T̃sym = (IN+D)−1/2(IN+A)(IN+

D)−1/2 for GDC and the column-stochastic transition matrix T S̃
rw = S̃D−1

S̃
on S̃. We present

two simple and effective choices for the coefficients θk: The heat kernel and PPR. The diffusion
matrix S is sparsified using either an ϵ-threshold or top-k.

Datasets and models. We evaluate GDC on six datasets: The citation graphs CITESEER

(Sen et al., 2008), CORA (McCallum et al., 2000), and PUBMED (Namata et al., 2012), the
co-author graph COAUTHOR CS (Shchur et al., 2018), and the co-purchase graphs AMAZON

COMPUTERS and AMAZON PHOTO (McAuley et al., 2015; Shchur et al., 2018). We only use
their largest connected components. We show how GDC impacts the performance of 9 models:
Graph Convolutional Network (GCN) (Kipf & Welling, 2017), Graph Attention Network (GAT)
(Veličković et al., 2018), jumping knowledge network (JK) (Xu et al., 2018), Graph Isomorphism
Network (GIN) (Xu et al., 2019b), and ARMA (Bianchi et al., 2019) are supervised models.
The degree-corrected stochastic block model (DCSBM) (Karrer & Newman, 2011), spectral
clustering (using Lsym) (Ng et al., 2002), DeepWalk (Perozzi et al., 2014), and Deep Graph
Infomax (DGI) (Velickovic et al., 2019) are unsupervised models. Note that DGI uses node
features while other unsupervised models do not. We use k-means clustering to generate clusters
from node embeddings. Dataset statistics and hyperparameters are reported in App. D.2.

74

7.6 Experimental results

GCN GAT JK GIN ARMA
72

75

78

81

84

A
cc

ur
ac

y
(%

)
CORA

None
Heat
PPR

GCN GAT JK GIN ARMA
60

63

66

69

72

75 CITESEER

GCN GAT JK GIN ARMA

72

76

80
PUBMED

GCN GAT JK GIN ARMA

90

92

A
cc

ur
ac

y
(%

)

oom

COAUTHOR CS

GCN GAT JK GIN ARMA
40

60

80

AMZ COMP

GCN GAT JK GIN ARMA

60

75

90
AMZ PHOTO

Figure 7.3: Node classification accuracy of GNNs with and without GDC. GDC consistently improves
accuracy across models and datasets. It is able to fix models whose accuracy otherwise breaks down.

Semi-supervised node classification. In this task the goal is to label nodes based on the
graph, node features X ∈ RN×F and a subset of labeled nodes y. The main goal of GDC
is improving the performance of MPNN models. Fig. 7.3 shows that GDC consistently and
significantly improves the accuracy of a wide variety of state-of-the-art models across multiple
diverse datasets. Note how GDC is able to fix the performance of GNNs that otherwise break
down on some datasets (e.g. GAT). We also surpass or match the previous state of the art on all
datasets investigated (see App. D.2.2).

Clustering. We highlight GDC’s ability to be combined with any graph-based model by
reporting the performance of a diverse set of models that use a wide range of paradigms. Fig. 7.4
shows the unsupervised accuracy obtained by matching clusters to ground-truth classes using
the Hungarian algorithm. Accuracy consistently and significantly improves for all models and
datasets. Note that spectral clustering uses the graph’s eigenvectors, which are not affected by
the diffusion step itself. Still, its performance improves by up to 30 percentage points. Results
in tabular form are presented in App. D.2.2.

In this chapter we concentrate on node-level prediction tasks in a transductive setting. How-
ever, GDC can just as easily be applied to inductive problems or different tasks like graph
classification. In our experiments we found promising, yet not as consistent results for graph
classification (e.g. 2.5 percentage points with GCN on the DD dataset (Dobson & Doig, 2003)).
We found no improvement for the inductive setting on PPI (Menche et al., 2015), which is
rather unsurprising since the underlying data used for graph construction already includes graph
diffusion-like mechanisms (e.g. regulatory interactions, protein complexes, and metabolic
enzyme-coupled interactions). We furthermore conducted experiments to answer five important
questions:

Does GDC increase graph density? When sparsifying the generalized graph diffusion matrix
S we are free to choose the resulting level of sparsity in S̃. Fig. 7.5 indicates that, surprisingly,
GDC requires roughly the same average degree to surpass the performance of the original graph

75

7 Diffusion Improves Graph Learning

DCSBM Spectral DeepWalk DGI

30

45

60

A
cc

ur
ac

y
(%

)
CORA

None
Heat
PPR

DCSBM Spectral DeepWalk DGI

30

45

60

CITESEER

DCSBM Spectral DeepWalk DGI

40

50

60

70
PUBMED

DCSBM Spectral DeepWalk DGI

30

45

60

A
cc

ur
ac

y
(%

)

COAUTHOR CS

DCSBM Spectral DeepWalk DGI

30

45

60
AMZ COMP

DCSBM Spectral DeepWalk DGI

30

45

60

75

AMZ PHOTO

Figure 7.4: Clustering accuracy with and without GDC. GDC consistently improves the accuracy across
a diverse set of models and datasets.

100 101 102 103

Average degree

70

80

A
cc

ur
ac

y
(%

)

CORA
CITESEER
AMZ COMP

Figure 7.5: GCN+GDC accuracy
(using PPR and top-k). Lines indi-
cate original accuracy and degree.
GDC surpasses original accuracy
at around the same degree inde-
pendent of dataset. Sparsification
often improves accuracy.

0 1 2 3 4
Self-loop weight

−2

−1

0

∆
A

cc
ur

ac
y

(%
)

CORA
CITESEER
AMZ COMP

Tsym
Trw

Figure 7.6: Difference in
GCN+GDC accuracy (using PPR
and top-k, percentage points)
compared to the symmetric Tsym
without self-loops. Trw performs
worse and self-loops have no
significant effect.

G
C

N JK

A
R

M
A

70

80

A
cc

ur
ac

y
(%

) CORA

PPR AdaDIF

G
C

N JK

A
R

M
A

CITESEER

G
C

N JK

A
R

M
A

AMZ
COMP

Figure 7.7: Accuracy of GDC
with coefficients θk defined by
PPR and learned by AdaDIF. Sim-
ple PPR coefficients consistently
perform better than those ob-
tained by AdaDIF, even with opti-
mized regularization.

76

7.6 Experimental results

0.01 0.05 0.4
α

80

85

A
cc

ur
ac

y
(%

) CORA

GCN
JK
ARMA

0.01 0.05 0.4
α

74

76

PPR
CITESEER

0.01 0.05 0.4
α

82

85

AMZ COMP

0.5 1 2 5 20
t

75

80

85
CORA

0.5 1 2 5 20
t

72

75

Heat
CITESEER

0.5 1 2 5 20
t

70

80

AMZ COMP

Figure 7.8: Accuracy achieved by using GDC with varying hyperparameters of PPR (α) and the heat
kernel (t). Optimal values fall within a narrow range that is consistent across datasets and models.

independent of the dataset and its average degree (ϵ-threshold in App. D.2.2, Fig. D.2). This
suggests that the sparsification hyperparameter can be obtained from a fixed average degree.
Note that CORA and CITESEER are both small graphs with low average degree. Graphs become
denser with size (Leskovec et al., 2005) and in practice we expect GDC to typically reduce the
average degree at constant accuracy. Fig. 7.5 furthermore shows that there is an optimal degree
of sparsity above which the accuracy decreases. This indicates that sparsification is not only
computationally beneficial but also improves prediction performance.

How to choose the transition matrix T ? We found Tsym to perform best across datasets.
More specifically, Fig. 7.6 shows that the symmetric version on average outperforms the random
walk transition matrix Trw. This figure also shows that GCN accuracy is largely insensitive to
self-loops when using Tsym – all changes lie within the estimated uncertainty. However, we did
find that other models, e.g. GAT, perform better with self-loops (not shown).

How to choose the coefficients θk? We found the coefficients defined by PPR and the heat
kernel to be effective choices for θk. Fig. 7.8 shows that their optimal hyperparameters typically
fall within a narrow range of α ∈ [0.05, 0.2] and t ∈ [1, 10]. We also tried obtaining θk from
models that learn analogous coefficients (Abu-El-Haija et al., 2018b; Berberidis et al., 2019;
Chen et al., 2013). However, we found that θk obtained by these models tend to converge
to a minimal neighborhood, i.e. they converge to θ0 ≈ 1 or θ1 ≈ 1 and all other θk ≈ 0.

5 10 20 30 40 60
Labels per class

75

80

85

A
cc

ur
ac

y
(%

)

None
Heat
PPR

GCN
JK
ARMA

Figure 7.9: Accuracy on Cora with
different label rates. Improvement
from GDC increases for sparser la-
bel rates.

This is caused by their training losses almost always decreas-
ing when the considered neighborhood shrinks. We were able
to control this overfitting to some degree using strong reg-
ularization (specifically, we found L2 regularization on the
difference of neighboring coefficients θk+1 − θk to perform
best). However, this requires hand-tuning the regularization
for every dataset, which defeats the purpose of learning the
coefficients from the graph. Moreover, we found that even
with hand-tuned regularization the coefficients defined by
PPR and the heat kernel perform better than trained θk, as
shown in Fig. 7.7.

How does the label rate affect GDC? When varying the
label rate from 5 up to 60 labels per class we found that
the improvement achieved by GDC increases the sparser the
labels are. Still, GDC improves performance even for 60

77

7 Diffusion Improves Graph Learning

1 2 3 4 ≥5

Hops

0

2

4

∆
A

cc
ur

ac
y

(%
)

n̄
=

2
5
4

n̄
=

6
1
0

n̄
=

3
3
3

n̄
=

1
1
5

n̄
=

4
7
.8

CORA
Heat
PPR

1 2 3 4 5 ≥6

Hops

0

1

2

n̄
=

2
3
2

n̄
=

4
7
5

n̄
=

3
4
5

n̄
=

1
7
4

n̄
=

8
2
.8

n̄
=

7
2
.3

CITESEER

1 2 3 4 5 ≥6

Hops

0

1

n̄
=

1
7
.6

n̄
=

1
8
7

n̄
=

5
0
0

n̄
=

5
2
9

n̄
=

1
5
2

n̄
=

5
4
.7

PUBMED

1 2 3 4 ≥5

Hops

0

1

n̄
=

5
5
7

n̄
=

2
1
2
1

n̄
=

1
6
0
2

n̄
=

3
4
9

n̄
=

7
1
.2

COAUTHOR CS

1 2 ≥3

Hops

0
1
2

n̄
=

3
2
1

n̄
=

8
7
7

n̄
=

1
0
2

AMZ COMP

1 2 3 ≥4

Hops

0

1

2

n̄
=

4
8
8

n̄
=

7
6
9

n̄
=

7
1
.6

n̄
=

1
1
.1

AMZ PHOTO

Figure 7.10: Improvement (percentage points) in GCN accuracy by adding GDC depending on distance
(number of hops) from the training set. Nodes further away tend to benefit more from GDC.

labels per class, i.e. 17 % label rate (see Fig. 7.9). This trend is most likely due to larger
neighborhood leveraged by GDC.

Which nodes benefit from GDC? Our experiments showed no correlation of improvement
with most common node properties, except for the distance from the training set. Nodes further
away from the training set tend to benefit more from GDC, as demonstrated by Fig. 7.10.
Besides smoothing out the neighborhood, GDC also has the effect of increasing the model’s
range, since it is no longer restricted to only using first-hop neighbors. Hence, nodes further
away from the training set influence the training and later benefit from the improved model
weights.

7.7 Conclusion

We propose graph diffusion convolution (GDC), a method based on sparsified generalized graph
diffusion. GDC is a more powerful, yet spatially localized extension of message passing in
GNNs, but able to enhance any graph-based model. We show the tight connection between
GDC and spectral-based models and analyzed GDC’s spectral properties. GDC shares many
of the strengths of spectral methods and none of their weaknesses. We conduct extensive and
rigorous experiments that show that GDC consistently improves the accuracy of a wide range
of models on both supervised and unsupervised tasks across various homophilic datasets and
requires very little hyperparameter tuning. There are many extensions and applications of GDC
that remain to be explored. We expect many graph-based models and tasks to benefit from
GDC, e.g. graph classification and regression. Promising extensions include other diffusion
coefficients θk such as those given by the methods presented in Fouss et al. (2012) and more
advanced random walks and operators that are not defined by powers of a transition matrix.

7.8 Retrospective

The idea of using diffusion-like mechanisms to improve the performance of graph-based models
has been used extensively in recent models, to improve their performance (Chen et al., 2020)
and especially as a method of data augmentation and self-supervised learning (Hassani &
Khasahmadi, 2020).

78

7.8 Retrospective

Multiple subsequent works have aimed at improving GDC-style graph rewiring methods.
One particularly interesting approach is based on thinking about GDC in terms of the graph’s
underlying geometry. Recent work has leveraged this point of view via Ricci curvature (Topping
et al., 2022) and non-Euclidean diffusion PDEs (Chamberlain et al., 2021).

There have also been multiple efforts of extending GDC by learning diffusion coefficients
and adapt them to each node individually (Spinelli et al., 2021). In our own research, we found
that this approach can indeed work if it is combined with appropriate regularization factors
(Weißenberger, 2019). However, the improvement is only minor, so it does not seem worth the
added complication. We also explored more advanced diffusion and local clustering methods,
but found no substantial improvement either (Uhliarik, 2020). It thus seems best to stick with
the basic diffusion schemes discussed in this chapter.

We can furthermore leverage graph diffusion schemes like personalized PageRank to select
relevant neighborhoods for GNN predictions. This allows us to create highly scalable models,
which we will explore in the next chapter.

79

8 Scaling Graph Neural Networks with
Approximate PageRank

8.1 Introduction

The success of GNNs on academic datasets has generated significant interest in scaling these
methods to larger graphs for use in real-world problems (Chen et al., 2018a,b; Chiang et al.,
2019; Gao et al., 2018; Hamilton et al., 2017; Huang et al., 2018; Sato et al., 2022; Ying et al.,
2018). Unfortunately, there are few large graph baseline datasets available. Apart from a handful
of exceptions (Chiang et al., 2019; Ying et al., 2018), the scalability of most GNN methods has
been demonstrated on graphs with fewer than 250 000 nodes. Moreover, the majority of existing
work focuses on improving scalability on a single machine. Many interesting network mining
problems involve graphs with billions of nodes and edges that require distributed computation
across many machines. As a result, we believe most of the current literature does not accurately
reflect the major challenges of large-scale GNN computing.

The main scalability bottleneck of most GNNs stems from the recursive message-passing
procedure that propagates information through the graph. Computing the hidden representation
for a given node requires joining information from its neighbors, and the neighbors in turn have
to consider their own neighbors, and so on. This process leads to an expensive neighborhood
expansion, growing exponentially with each additional layer.

In many proposed GNN pipelines, the exponential growth of neighborhood size corresponds
to an exponential IO overhead. A common strategy for scaling GNNs is to sample the graph
structure during training, e.g. sample a fixed number of nodes from the k-hop neighborhood
of a given node to generate its prediction (Hamilton et al., 2017; Ying et al., 2018). The key
differences between many scalable techniques lies in the design of the sampling scheme. For
example, Chen et al. (2018b) directly sample the receptive field for each layer using importance
sampling, while Chen et al. (2018a) use the historical activations of the nodes as a control variate.
Huang et al. (2018) propose an adaptive sampling strategy with a trainable sampler per layer,
and Chiang et al. (2019) sample a block of nodes corresponding to a dense subgraph identified
by the clustering algorithm METIS (Karypis & Kumar, 1998). Because these approaches still
rely on a multi-hop message passing procedure, there is an extremely steep trade-off between
runtime and accuracy. Unfortunately, sampling does not directly reduce the number of nodes
that need to be retrieved for many of the proposed methods, e.g. since we have first have to
compute the importance scores (Chen et al., 2018b).

Recent work shows that personalized PageRank (Jeh & Widom, 2003) can be used to directly
incorporate multi-hop neighborhood information of a node without explicit message-passing
(Gasteiger et al., 2019a). Intuitively, propagation based on personalized PageRank corresponds to
infinitely many neighborhood aggregation layers where the node influence decays exponentially

81

8 Scaling Graph Neural Networks with Approximate PageRank

with each layer. However, as proposed, Gasteiger et al. (2019a)’s approach does not easily scale
to large graphs since it performs an expensive variant of power iteration during training.

In this chapter, we present PPRGo, a GNN model that scales to large graphs in both single
and multi-machine (distributed) environments by using an adapted propagation scheme based on
approximate personalized PageRank. Our approach removes the need for performing expensive
power iteration during each training step by utilizing the (strong) localization properties (Gleich
et al., 2015; Nassar et al., 2015) of personalized PageRank vectors for real-world graphs. These
vectors can be readily approximated with sparse vectors and efficiently pre-computed in a
distributed manner (Andersen et al., 2006). Using the sparse pre-computed approximations we
can maintain the influence of relevant nodes located multiple hops away without prohibitive
message-passing or power iteration costs. We make the following contributions:

• We introduce the PPRGo model based on approximate personalized PageRank. On a
graph of over 12 million nodes, PPRGo runs in under 2 minutes on a single machine,
including pre-processing, training and inference time.

• We show that PPRGo scales better than message-passing GNNs, especially with dis-
tributed training in a real-world setting.

• We introduce the MAG-Scholar dataset (12.4M nodes, 173M edges, 2.8M node features),
a version of the Microsoft Academic Graph that we augment with "ground-truth" node
labels. The dataset is orders of magnitude larger than many commonly used benchmark
graphs.

• Most previous work exclusively focuses on training time. We also show a significantly
reduced inference time and furthermore propose sparse inference to achieve an additional
2x speed-up.

8.2 Background

8.2.1 GNNs and message passing

Many proposed GNN models can be analyzed using the message-passing framework proposed by
Gilmer et al. (2017) or other similar frameworks (Battaglia et al., 2018; Chami et al., 2020; Wu
et al., 2021). Typically, the computation is carried out in two phases: (i) messages are propagated
along the neighbors; and (ii) the messages are aggregated to obtain the updated representations.
At each layer, transformation of the input (e.g. linear projection plus a non-linearity) is coupled
with aggregation/propagation among the neighbors (e.g. averaging). Increasing the number of
layers is desirable since: (i) it allows the model to incorporate information from more distant
neighbors; and (ii) it enables hierarchical feature extraction and thus the learning of richer node
representations.

However, this has both computational and modelling consequences. First, the recursive
neighborhood expansion at each layer implies an exponential increase in the overall number of
nodes we need to aggregate to produce the output at the final layer which is computationally
prohibitive for large graphs.1 Second, it has been shown (Li et al., 2018a; Xu et al., 2018) that

1For large graphs on distributed storage, just gathering the required neighborhood data requires many expensive
remote procedure calls that greatly increase run time.

82

8.2 Background

naively stacking multiple layers may suffer from over-smoothing that can reduce predictive
performance.

To tackle both of these challenges Gasteiger et al. (2019a) suggest decoupling the feature
transformation from the propagation. In their PPNP model, predictions are first generated
(e.g. with a neural network) for each node utilizing only that node’s own features, and then
propagated using an adaptation of personalized PageRank. Specifically, PPNP is defined as:

Z = softmax
(
ΠspprH

)
, Hi,: = fθ(xi) (8.1)

where Πsppr = α(In − (1− α)Ã)−1 is a symmetric propagation matrix, Ã = D−1/2AD−1/2

is the normalized adjacency matrix with added self-loops, α is a teleport (restart) probability,
H is a matrix where each row is a vector representation for a specific node, and Z is a matrix
where each row is a prediction vector for each node, after propagation. The local per-node
representations Hi,: are generated by a neural network fθ that processes the features xi of every
node i independently. The responsibility for learning good representations is delegated to fθ,
while Πsppr ensures that the representations are smoothly changing w.r.t. the graph.

Because directly calculating the dense propagation matrix Πsppr in Eq. (8.1) is inefficient,
the authors propose a variant of power iteration to compute the final predictions instead. Unfor-
tunately, even a moderate number of power iteration evaluations (e.g. Gasteiger et al. (2019a)
used K = 10 to achieve a good approximation) is prohibitively expensive for large graphs since
they need to be computed during each gradient-update step. Moreover, despite the fact that Ã is
sparse, graphs beyond a certain size cannot be stored in memory.

8.2.2 Personalized PageRank and localization

Since it is more amenable to efficient approximation we analyze the personalized PageRank
matrix Πppr = α(In − (1− α)D−1A)−1. Each row π(i) := Π

ppr
i,: is equal to the personalized

(seeded) PageRank vector of node i. PageRank and its many variants (Jeh & Widom, 2003;
Page et al., 1998; Wang et al., 2005) have been extensively studied in the literature. Here we are
interested in efficient and scalable algorithms for computing (an approximation) of personalized
PageRank. Luckily, given the broad applicability of PageRank, many such algorithms have been
developed (Andersen et al., 2006, 2007; Fogaras & Rácz, 2004; Fujiwara et al., 2013; Gleich
et al., 2015; Lofgren et al., 2016; Wang et al., 2016, 2017; Wei et al., 2018).

Random walk sampling (Fogaras & Rácz, 2004) is one such approximation technique. While
simple to implement, in order to guarantee at most ϵ absolute error with probability of 1− 1/n
we need O(logn

ϵ2
) random walks. Forward search (Andersen et al., 2006; Gleich et al., 2015) and

backward search (Andersen et al., 2007) can be viewed as deterministic variants of the random
walk sampling method. Given a starting configuration, the PageRank scores are updated by
traversing the out-links (respect., in-links) of the nodes.

For this chapter we adapt the approach by Andersen et al. (2006) since it offers a good balance
of scalability, approximation guarantees, and ease of distributed implementation. They show
that π(i) can be weakly approximated with a low number of non-zero entries using a scalable
algorithm that applies a series of push operations which can be executed in a distributed manner.

When the graph is strongly connected π(i) is non-zero for all nodes. Nevertheless, we can
obtain a good approximation by truncating small elements to zero since most of the probability

83

8 Scaling Graph Neural Networks with Approximate PageRank

mass in the personalized PageRank vectors π(i) is localized on a small number of nodes
(Andersen et al., 2006; Gleich et al., 2015; Nassar et al., 2015). Thus, we can approximate π(i)
with a sparse vector and in turn approximate Πppr with a sparse matrix.

Once we obtain an approximation Π(ϵ) of Πppr we can either use it directly to propagate
information, or we can renormalize it via D1/2Π(ϵ)D−1/2 to obtain an approximation of the
matrix Πsppr.

8.2.3 Related work

Scalability. GNNs were first proposed in Gori et al. (2005) and in Scarselli et al. (2009) and
have since emerged as a powerful approach for solving many network mining tasks (Abu-El-
Haija et al., 2018a, 2019; Bruna et al., 2013; Defferrard et al., 2016; Gilmer et al., 2017; Kipf &
Welling, 2017; Scarselli et al., 2009; Veličković et al., 2018). Most GNNs do not scale to large
graphs since they typically need to perform a recursive neighborhood expansion to compute
the hidden representations of a given node. While several approaches have been proposed to
improve the efficiency of graph neural networks (Chen et al., 2018a,b; Chiang et al., 2019; Gao
et al., 2018; Hamilton et al., 2017; Huang et al., 2018; Sato et al., 2022; Wu et al., 2019a; Ying
et al., 2018), the scalability of GNNs to massive (web-scale) graphs is still under-studied. As
we discussed in Sec. 8.1 the most prevalent approach to scalability is to sample a subset of the
graph, e.g. based on different importance scores for the nodes (Chiang et al., 2019; Gao et al.,
2018; Hamilton et al., 2017; Sato et al., 2022; Ying et al., 2018).2 Beyond sampling, Gao et al.
(2018) collect the representations from a node’s neighborhood into a matrix, sort independently
along each column/feature, and use the k largest entries as input to a 1-dimensional CNN. These
techniques all focus on single-machine environments with limited (GPU) memory.

Buchnik & Cohen (2018) propose feature propagation which can be viewed as a simplified
linearized GNN. They perform graph-based smoothing as a preprocessing step (before learning)
to obtain diffused node features which are then used to train a logistic regression classifier to
predict the node labels. Wu et al. (2019a) propose an equivalent simple graph convolution (SGC)
model and diffuse the features by multiplication with the k-th power of the normalized adjacency
matrix. However, node features are often high dimensional, which can make the preprocessing
step computationally expensive. More importantly, while node features are typically sparse,
the obtained diffused features become denser, which significantly reduces the efficiency of
the subsequent learning step. Both of these approaches are a special case of the PPNP model
(Gasteiger et al., 2019a) which experimentally shows higher classification performance (Fey &
Lenssen, 2019; Gasteiger et al., 2019a).

Approximating PageRank. Recent approaches combine basic techniques to create algo-
rithms with enhanced guarantees (Lofgren et al., 2016; Wang et al., 2016, 2017). For example
Wei et al. (2018) propose the TopPPR algorithm combining the strengths of random walks and
forward/backward search simultaneously. They can compute the top k entries of a personalized
PageRank vector up to a given precision using a filter-and-refine paradigm. Another family of
approaches (Fujiwara et al., 2013) are based on the idea of maintaining upper and lower bounds

2The importance sampling score by Ying et al. (2018) can be seen as an approximation of the non-personalized
PageRank. However, the number of random walks required to achieve a good approximation is relatively high
(Fogaras & Rácz, 2004), making it a suboptimal choice.

84

8.3 The PPRGo model

1

2

4

5

3
6

97

8

𝜋𝜖 2 :
𝜋𝜖 7 :

top k 𝑓𝜃

𝑥𝑖:

𝐻𝑖:

𝑧7: = ∗ ∗∗ ++

Distributed Computation:

PageRank Pipeline Training

Figure 8.1: An illustration of PPRGo. For each node i we pre-compute an approximation of its
personalized PageRank vector π(ϵ)(i). The approximation is computed efficiently and in parallel using a
distributed batch data processing pipeline. The final prediction zi is then generated as a weighted average
of the local (per-node) representations Hj,: = fθ(xj) for the top k nodes ordered by largest personalized
PageRank score π(i)j . To train the model fθ(·) that maps node attributes xi to local representations
Hi, we only need the personalized PageRank vectors of the training nodes and attributes of the their
respective top k neighbors. The model is trained in a distributed manner on multiple batches of data in
parallel.

on the PageRank scores which are then used for early termination with certain guarantees. For
our purpose the basic techniques are sufficient.

8.3 The PPRGo model

The design of our model is motivated by: (i) the insights from Sec. 8.2.1, namely that we can
decouple the feature transformation from the information propagation, and (ii) the insights from
Sec. 8.2.2, namely that we can approximate Πppr with a sparse matrix. Analogous to Eq. (8.1)
we define the final predictions of our model (see Fig. 8.1):

Z = softmax
(
Π(ϵ)H

)
, Hi,: = fθ(xi) (8.2)

where Π(ϵ) is a sparse approximation of Πppr. To obtain each row of Π(ϵ) we adapt the push-
flow algorithm described in Andersen et al. (2006). We additionally truncate Π(ϵ) to contain
only the top k largest entries for each row. That is, for each node i we only consider the set of
nodes with top k largest scores according to π(i). Combined, the predictions for a given node i

85

8 Scaling Graph Neural Networks with Approximate PageRank

are:

zi = softmax
(∑

j∈N k(i)

π(ϵ)(i)jHj

)
(8.3)

where N k(i) enumerates the indices of the top k largest non-zero entries in π(ϵ)(i). Eq. (8.3)
highlights that we only have to consider a small number of other nodes to compute the final
prediction for a given node. Furthermore, this definition allows us to explicitly trade-off
scalability and performance by increasing/decreasing the number of neighbors k we take into
account. We can achieve a similar trade-off by changing the threshold ϵ which effectively
controls the norm of the residual. We show the pseudo-code for computing π(ϵ) in Alg. 1. For
further details see App. E.1.4.

Algorithm 1 Approximate personalized PageRank (G,α, t, ϵ) (Andersen et al., 2006)

Inputs: Graph G, teleport prob. α, target node t, max. residual ϵ
1: Initialize the (sparse) estimate-vector π(ϵ) = 0 and the (sparse) residual-vector r = α · et

(i.e. et = 1, ej = 0, j ̸= t)
2: while ∃j s.t. rj > α · ϵ · dj do # dj is the out-degree

3: π
(ϵ)
j += rj

4: rj = 0
5: m = (1− α) · rj/dj

6: for i ∈ N out
G (j) do # j’s outgoing neighbors

7: ri += m
8: end for
9: end while

10: return π(ϵ)

In contrast to the PPNP model, a big advantage of PPRGo is that we can pre-compute the
sparse matrix Π(ϵ) before we start training. Pre-computation allows PPRGo to calculate the
training and inference predictions in O(k) time, where k ≪ N , and N is number of nodes.
Better still, for training we only require the rows of Π(ϵ) corresponding to the training nodes
and the representations fθ(xi) of their top-k neighbors. Furthermore, our model lends itself
nicely to batched computation. For example, for a batch of nodes of size b we have to load in
memory the features of at most b · k nodes. In practice, this number is smaller than b · k since
the nodes that appear in N k(i) often overlap for the different nodes in the batch. We discuss the
applicability and limitations of PPRGo in App. E.1.5.

8.3.1 Effective neighborhood, α and k

From the definition of personalized PageRank we can conclude that the hyper-parameter α
controls the amount of information we are incorporating from the neighborhood of a node.
Namely, for values of α close to 1 the random walks return (teleport) to the node i more often
and we are therefore placing more importance on the immediate neighborhood of the node.
As the value of α decreases to 0 we instead give more and more importance to the extended

86

8.4 Scalability

(multi-hop) neighborhood of the node. Intuitively, the importance of the k-hop neighborhood is
proportional to (1−α)k. Note that the importance that each node assigns to itself (i.e. the value
of π(i)i) is typically higher than the importance it assigns to the rest of the nodes. In conjunction
with α, we can modify the number of k largest entries we consider to increase or decrease the
size of the effective neighborhood. This stands in stark contrast to message-passing frameworks,
where incorporating information from the extended neighborhood requires additional layers,
thereby significantly increasing the computational complexity.

8.4 Scalability

Here we discuss the properties of PPRGo which make it suitable for large-scale classification
problems occurring in industry.

8.4.1 Node classification in the real world

The web is an incredibly rich data source and many different large graphs (potentially with
hundreds of billions of nodes and edges) can be derived from it. Many web graphs have
interesting node classification problems that can be addressed via semi-supervised learning.
Their applications occur across all media types and power many different Google products
(Kannan et al., 2016; Perozzi et al., 2016; Ravi, 2016). In web-scale datasets, the node sets are
large, the graphs commonly have power-law degrees, the datasets change frequently, and labels
can quickly become stale. Therefore, having a model that trains as fast as possible is desirable
to reduce the latency. Arguably even more important is having a model for which inference is as
fast as possible, since inference is typically performed much more frequently than training in
real-world settings. A low enough inference time may even open the door to using the model
for online tasks, an impactful domain of problems where these models have limited penetration.
Our proposed model, PPRGo, ameliorates many of the difficulties associated with scaling these
learning systems. We have successfully tested it on internal graphs with billions of nodes and
edges.

8.4.2 Distributed training

In contrast to most previously proposed methods (Hamilton et al., 2017; Wu et al., 2019a;
Ying et al., 2018) we utilize distributed computing techniques which significantly reduce the
overall runtime of our method. Our model is trained in two stages. First, we pre-compute
the approximated personalized PageRank vectors using the distributed version of Alg. 1 (see
App. E.1.4). Second, we train the model parameters with stochastic gradient descent. Both
stages are implemented in a distributed fashion.

For the first stage we use an efficient batch data processing pipeline (Chambers et al., 2010)
similar to MapReduce. Since we can compute the PageRank vectors for every node in parallel
our implementation easily scales to graphs with billions of nodes. Moreover, we can a priori
determine the number of iterations we need for achieving a desired approximation accuracy
(Andersen et al., 2006; Gleich et al., 2015) which in turn means we can reliably estimate the
runtime beforehand.

87

8 Scaling Graph Neural Networks with Approximate PageRank

We implement PPRGo in TensorFlow and optimize the parameters with asynchronous dis-
tributed stochastic gradient descent. We store the model parameters on a parameter server (or
several parameter servers depending on the model size) and multiple workers process the data
in parallel. We use asynchronous training to avoid the communication overhead between many
workers. Each worker fetches the most up-to-date parameters and computes the gradients for a
mini-batch of data independently of the other workers.

8.4.3 Efficient inference

As discussed in Sec. 8.3 we only need to compute the approximate personalized PageRank
vectors for the nodes in the training/validation set in order to train the model. In the semi-
supervised classification setting these typically comprise only a small subset of all nodes (a few
100s or 1000s). However, during inference we still need to compute the PPR vector for every
test node (see Eq. (8.3)). Specifically, to predict the class label for m < n test nodes we have
to compute Z = softmax

(
ΠH

)
where Π is a m× n matrix such that each row contains the

personalized PageRank vector for a given test node, and H is a n× c matrix of logits. Even
though the computation of each of these m PPR vectors can be trivially parallelized, when m is
extremely large the overall runtime can still be considerable. However, during inference we only
use the PPR vectors a single time. In this case it is more efficient to circumvent this calculation
and fall back to power iteration, i.e.

Q(0) = H, Q(p+1) = (1− α)D−1AQ(p) + αH. (8.4)

We furthermore found that, as opposed to training, during inference only very few (i.e. 1-3)
steps of power iteration are necessary until accuracy improvements level off (see Sec. 8.5.5).
Hence we only need very few sparse matrix-matrix multiplications for inference, which can be
implemented very efficiently.

Since this truncated power iteration is very fast to compute, the neural network fθ quickly
becomes the limiting factor for inference time, especially if it is computationally expensive (e.g.
a deep ResNet architecture (He et al., 2016) or recurrent neural network (RNN)). With PPRGo,
we can leverage the graph’s homophily to reduce the number of nodes that need to be analyzed.
Since nearby nodes are likely to be similar we only need to calculate predictions H for a small,
randomly chosen fraction of nodes. Setting the remaining entries to zero we can smooth out
these sparse labels over the rest via Eq. (8.4).

In the very sparse case, using homophily to limit the number of needed predictions can be
viewed as a label propagation problem with labels given by logits H . In the context of label
propagation, the power iteration in Eq. (8.4) is a common algorithm known as "label propagation
with return probability". This algorithm is known to perform well; we find that we can almost
match the performance of full prediction with only a small fraction (e.g. 10 % or 1 %) of logits
(see Sec. 8.5.5). Overall, this approach allows us to reduce the runtime even below a model that
ignores the graph and instead considers each node independently, without sacrificing accuracy.

88

8.5 Experiments

8.5 Experiments

Setup. We focus on semi-supervised node classification on attributed graphs and demonstrate
the strengths and scalability of PPRGo in both distributed and single-machine environments.
To best align with real use cases we only use 20 · number of classes uniformly sampled (non-
stratified) training nodes. We fix the value of the teleport parameter to a common α = 0.25 for
all experiments except the unusually dense Reddit dataset, where α = 0.5. For details regarding
training, hyperparameters, and metrics see App. E.1.3 in the appendix. We answer the following
research questions:

• What kind of trade-offs between scalability and accuracy can we achieve with PPRGo?
(Sec. 8.5.2)

• How effectively can we leverage distributed training? (Sec. 8.5.3)
• How much resources (memory, compute) does PPRGo need compared to other scalable

GNNs? (Sec. 8.5.4)
• How efficient is the proposed sparse inference scheme? (Sec. 8.5.5)

8.5.1 Large-scale datasets

The majority of previous approaches are evaluated on a small set of publicly available benchmark
datasets (Abu-El-Haija et al., 2019; Chen et al., 2018a,b; Gao et al., 2018; Hamilton et al., 2017;
Huang et al., 2018; Sato et al., 2022; Wu et al., 2019a). The size of these datasets is relatively
small, with the Reddit graph (233K nodes, 11.6M edges, 602 node features) (Hamilton et al.,
2017) typically being the largest graph used for evaluation.3 Chiang et al. (2019) recently
introduced the Amazon2M graph (2.5M nodes, 61M edges, 100 node features) which is large in
terms of number of nodes, but tiny in terms of node feature size.4

MAG-Scholar. To facilitate the development of scalable GNNs we create a new benchmark
dataset based on the Microsoft Academic Graph (MAG) (Sinha et al., 2015). Nodes represent
papers, edges denote citations, and node features correspond to a bag-of-words representation
of paper abstracts. We augmented the graph with "ground-truth" node labels corresponding to
the papers’ field of study.

We extract the node labels semi-automatically by mapping the publishing venues (conferences
and journals) to a field of study using metadata on the top venues from Google Scholar. We create
two sets of labels for the same graph. Coarse-grained labels correspond to the following 8 coarse-
grained fields of study: biology, engineering, humanities, medicine, physics, sociology, business,
and other. We refer to this graph as MAG-Scholar-C. Fine-grained labels correspond to 253
fine-grained fields of study such as: architecture, epidemiology, geology, ethics, anthropology,
linguistics, etc. The fine-grained labels make the classification problem more difficult. We refer
to this graph as MAG-Scholar-F.

3The Twitter geo-location datasets used in previous work (Wu et al., 2019a) have limited usefulness for evaluating
GNNs since they have no meaningful graph structure, e.g. 70% of the nodes in the Twitter-World dataset only
have a self-loop and no other edges.

4While larger benchmark graphs can be found in the literature, they either do not have node features or they do not
have "ground-truth" node labels.

89

8 Scaling Graph Neural Networks with Approximate PageRank

2 4 8 16 32 64 128 256
top-k neighbors

10−4

10−3

10−2

10−1

ϵ

61.3 63.5 64.0 66.6 69.3 69.5 70.6 69.8

61.4 63.2 65.5 66.0 66.7 66.9 66.9 66.9

61.2 61.7 63.4 63.4 63.4 63.4 63.4 63.4

59.6 59.2 59.2 59.2 59.2 59.2 59.2 59.2

(a) Sparsely labeled setting (160 nodes, 0.0015 %).

2 4 8 16 32 64 128 256
top-k neighbors

10−4

10−3

10−2

10−1

ϵ

86.3 86.5 86.8 87.1 87.2 87.2 87.2 87.2

86.3 86.5 86.7 86.7 86.7 86.7 86.7 86.7

86.2 86.3 86.3 86.3 86.3 86.3 86.3 86.3

86.1 86.1 86.1 86.1 86.1 86.1 86.1 86.1

(b) Setting with a large number of labeled nodes (105415
nodes, 1 %).

Figure 8.2: Mean accuracy (%) over 5 runs on MAG-Scholar-C as we vary the number of neighbors and
the approx. parameter ϵ.

The resulting MAG-Scholar graph is a few orders of magnitude larger then the commonly
used benchmark graphs (12.4M nodes, 173M edges, 2.8M node features). The graphs and the
code to generate them will be made publicly available. See App. E.1.2 for a detailed description
of the graph construction and node labelling process.

8.5.2 Scalability vs. accuracy trade-off

The approximation parameter ϵ and the number of top-k nodes are important hyper-parameters
that modulate scalability and accuracy (see Eq. (8.3)). We note that α and k play similar roles,
so we choose to analyze k for a fixed α. To examine their effect on the performance of PPRGo
we train our model on the MAG-Scholar-C graph for different values of k and ϵ. We repeat the
experiment five times and report the mean performance. We investigate two cases: a sparsely
labeled scenario similar to industry settings (160 nodes), and an "academic" setting with many
more labeled nodes (105415 nodes).

As expected, we can see in Fig. 8.2 that the performance consistently increases if we either
use a more accurate approximation of the PageRank vectors (smaller ϵ) or a larger number of
top-k neighbors. This also shows that we can smoothly trade-off performance for scalability
since models with higher value of k and lower value of ϵ are computationally more expensive.
For example, in the academic setting (Fig. 8.2b) a model with ϵ = 0.1, k = 2 had an overall
(preprocessing + training + inference) runtime of 6 minutes, while a model with ϵ = 0.001, k =
256 had an overall runtime of 12 minutes. Since many nodes are labeled (1 %) the difference
between the highest accuracy (top right corner) and lowest accuracy (bottom left corner) is
under 2 % and the model is not sensitive to the hyperparameters. In the sparsely labeled setting
(Fig. 8.2a) the choice of hyperparameters is more important and depends on the desired trade-off
level (slowest overall runtime was <2 minutes).

Interestingly, we can see on Fig. 8.2 that for any value of ϵ the performance starts to plateau
at around top-k = 32. The reason for this behavior becomes more clear by examining Fig. 8.3.

90

8.5 Experiments

1 4 16 64 256 1024 4096
Number of neighbors k

0.3

0.4

0.5

0.6

Su
m

of
to

p-
k

sc
or

es

ϵ
10

−2

10
−3

10
−4

10
−5

Figure 8.3: For each node in MAG-Scholar-C we calculate the sum of the top-k largest scores in π(ϵ)(i)
and we plot the average across all nodes for different values of ϵ. The dashed line indicates k = n, i.e. the
entire sum of π(ϵ)(i) averaged across nodes. The 95% confidence intervals around the mean (estimated
with bootstrapping) are too small to be visible.

Table 8.1: Breakdown of the runtime, memory, and predictive performance on a single machine for
different models on the Reddit dataset. We use 820 (20 · #classes) nodes for training. We see that PPRGo
has a total runtime of less than 20 s and is two orders of magnitude faster than SGC and Cluster-GCN.
PPRGo also requires less memory overall.

Runtime (s) Memory (GB) Accuracy (%)
Preprocessing Training Inference Total RAM GPU

Per Epoch Overall Forward Propagation Overall
Cluster-GCN 1175 ± 25 4.77 ± 0.12 953 ± 24 - - 186 ± 21 2310 ± 40 20.97 ± 0.15 0.071 ± 0.006 17.1 ± 0.8
SGC 313 ± 9 0.0026 ± 0.0002 0.53 ± 0.03 - - 7470 ± 150 7780 ± 150 10.12 ± 0.03 0.027 12.1 ± 0.1
PPRGo (1 PI step) 2.26 ± 0.04 0.0233 ± 0.0005 4.67 ± 0.10 0.341 ± 0.009 5.85 ± 0.03 6.19 ± 0.04 13.10 ± 0.07 5.560 ± 0.019 0.073 26.5 ± 1.9
PPRGo (2 PI steps) 2.22 ± 0.12 0.021 ± 0.003 4.1 ± 0.7 0.43 ± 0.08 10.1 ± 1.4 10.5 ± 1.5 16.8 ± 1.7 5.42 ± 0.18 0.073 26.6 ± 1.8

Here, for each node i we calculate the sum of the top-k largest scores in π(ϵ)(i) and we plot
the average across all nodes. We see that by looking at a very few nodes – e.g. 32 out of 12.4
million – we are able to capture the majority of the PageRank scores on average (recall that∑

j π
(ϵ)(i)j ≤ 1). Therefore, the curves in both Fig. 8.2 and Fig. 8.3 plateau around the same

value of k. These figures validate our approach of approximating the dense (but localized)
personalized PageRank vectors with their respective sparse top-k versions.

8.5.3 Distributed training

In this section we aim to compare the performance of one-hop propagation using personalized
PageRank and traditional multi-hop message passing propagation in a real distributed envi-
ronment at Google. To make sure that the differences we observe are only due to the used
model and not other factors, we implement simple 2-hop and 3-hop GNN models (Kipf &
Welling, 2017), which are also trained in a distributed manner using the same infrastructure as
PPRGo. Specifically, we make sure that both the multi-hop models and PPRGo consider the
same number of neighbors, e.g. if PPRGo uses k = 64 then the 2-hop model uses information
from 8× 8 = 64 nodes from its first and second hop respectively. To select these neighborhoods
we use a weighted sampling scheme similar to previous work (Ying et al., 2018). Additionally,

91

8 Scaling Graph Neural Networks with Approximate PageRank

100 101 102

Number of workers

100

101
R

el
at

iv
e

Sp
ee

d
Method
PPRGo
GNN 2-hop
FastGCN

Figure 8.4: Relative speed in terms of number
of gradient-update steps per second on the MAG-
Scholar-F graph compared to the baseline method
(GNN 2-hop, single worker). Both axes are on
a log scale. PPRGo is consistently the fastest
method and can best utilize additional workers.

0 20 40 60

Number of neighbors k

100

101

102

R
el

at
iv

e
Sp

ee
d

Model
PPRGo
GNN 2-hop
GNN 3-hop

Figure 8.5: Relative speed comparison (num. gra-
dient updates per second) between PPRGo and
multi-hop models for different values of k on
MAG-Scholar-F. Distributed training.

we implement a distributed version of FastGCN (Chen et al., 2018b) to evaluate the effect of
different sampling schemes.

Our first observation is that there is no significant difference in terms of predictive performance
between the different models (around 61% accuracy). However, there is a significant difference
in terms of runtime. On Fig. 8.4 we show the speedup in terms of number of gradient-update
steps per second on the MAG-Scholar-F graph as we increase the number of worker machines
used for distributed training. Specifically, we show the relative speedup compared to the baseline
method – 2-hop GCN on a single worker. We see that PPRGo is considerably faster than the
baseline (note that both axes are on a log-scale). PPRGo also requires fewer steps in total to
converge. Moreover, the speedup gap between the 2 hop model and PPRGo increases with the
number of workers. Crucially, since we have to fetch all neighbors to calculate their importance
scores and since the runtime in the distributed setting is dominated by IO we see that FastGCN
does not offer any significant scalability advantage over the baseline GNN 2-hop model. In
App. E.1.1 we additionally analyze parallel efficiency, i.e. how well the different models utilize
the additional workers.

PPRGo is able to process all top-k neighbors at once, compared to the multi-hop models
which have to recursively update the hidden representations. Therefore, while increasing the
number of top-k neighbors makes all model computationally more expensive, we expect the
runtime of PPRGo to increase the least. To validate this claim, we analyze the relative speed
(number of gradient updates per second) compared to the slowest method at different values of
k. The results in Fig. 8.5 exactly match our intuition, and indeed the curve of PPRGo has the
smallest slope as we increase k, while the relative speed of the 2- and 3-hop GNNs deteriorate
faster. FastGCN again matches GNN 2-hop, like it does in Fig. 8.4 (not shown here).

92

8.5 Experiments

Table 8.2: Single machine runtime (s), memory (GB), and accuracy (%) for different models and datasets
using 20 · #classes training nodes. PPRGo shows comparable accuracy and scales much better to large
datasets than its competitors.

Cora-Full PubMed Reddit MAG-Scholar-C
Time Mem. Acc. Time Mem. Acc. Time Mem. Acc. Time Mem. Acc.

Cluster-GCN 84 ± 4 2.435 ± 0.018 58.0 ± 0.7 54.3 ± 2.7 1.90 ± 0.03 74.7 ± 3.0 2310 ± 50 21.04 ± 0.15 17.1 ± 0.8 >24h - -
SGC 92 ± 3 3.95 ± 0.03 58.0 ± 0.8 5.3 ± 0.3 2.172 ± 0.004 75.7 ± 2.3 7780 ± 140 10.15 ± 0.03 12.1 ± 0.1 >24h - -
APPNP 10.7 ± 0.5 2.150 ± 0.019 62.8 ± 1.1 6.5 ± 0.4 1.977 ± 0.004 76.9 ± 2.6 - OOM - - OOM -
PPRGo (ϵ = 10−4, k = 32) 25 ± 3 1.73 ± 0.03 61.0 ± 0.7 3.8 ± 0.9 1.626 ± 0.025 75.2 ± 3.3 16.8 ± 1.7 5.49 ± 0.18 26.6 ± 1.8 98.6 ± 1.7 24.51 ± 0.04 69.3 ± 3.1
PPRGo (ϵ = 10−2, k = 32) 6.6 ± 0.5 1.644 ± 0.013 58.1 ± 0.6 2.9 ± 0.5 1.623 ± 0.017 73.7 ± 3.9 16.3 ± 1.7 5.61 ± 0.06 26.2 ± 1.8 89 ± 5 24.49 ± 0.05 63.4 ± 2.9

8.5.4 Runtime and memory on a single machine

Setup. To highlight the benefits of PPRGo we compare the runtime, memory, and predictive
performance with SGC (Wu et al., 2019a) and Cluster-GCN (Chiang et al., 2019), two strong
baselines that represent the current state-of-the-art scalable GNNs. Since SGC and Cluster-GCN
report significant speedup over FastGCN (Chen et al., 2018b) and VRGCN (Chen et al., 2018a)
we omit these models from our comparison.

We run the experiments on Nvidia 1080Ti GPUs and on Intel CPUs (5 cores), using CUDA
and TensorFlow. We run each experiment on five different random splits and report mean values
and standard deviation. For SGC we use the second power of the graph Laplacian as suggested
by the authors (i.e. we effectively have a 2-hop model). For PPRGo we set ϵ = 10−4 and
k = 32 following the discussion in Sec. 8.5.2. We compute the overall runtime including the
preprocessing time, the time to train the models, and the time to perform inference for all test
nodes. This is in contrast to previous work which rarely report preprocessing time and almost
never report inference time. For training, we report both the overall training time, as well as the
time per epoch.
Preprocessing time. For each model, during preprocessing we perform the computation only
for the training nodes. For SGC, the preprocessing step involves computing the diffused features
using the second power of the graph Laplacian. We significantly optimized preprocessing for
Cluster-GCN, resulting in node cluster computation with METIS (Karypis & Kumar, 1998)
becoming its main bottleneck. For PPRGo, the preprocessing step involves computing the
approximate personalized PageRank vectors using Alg. 1 and selecting the top k neighbors.
Inference time. For SGC, during inference we have to compute the diffused features for the test
nodes (again using the second power of the graph Laplacian). Following the implementation
by the original authors of Cluster-GCN, we do not cluster the test nodes, but rather perform
"standard" message-passing inference on the full graph. For PPRGo, as discussed in Sec. 8.4.3,
we run power iteration rather than computing the approximate PPR vectors for the test nodes.
Two iteration steps were already sufficient to obtain good accuracy. We analyze the inference
step in more detail in Sec. 8.5.5.

The results when training a model on the Reddit dataset (233K nodes, 11.6M edges, 602
node features) are summarized in Table 8.1. Both SGC and Cluster-GCN are several orders
of magnitude slower than PPRGo. Interestingly, SGC is significantly slower w.r.t. inference
time (since we have to compute the diffused features for all test nodes) while Cluster-GCN is
significantly slower w.r.t. preprocessing and training time. The overall runtime of Cluster-GCN

93

8 Scaling Graph Neural Networks with Approximate PageRank

(2310 s) and SGC (7470 s) is in stark contrast to our proposed approach: under 20 s. Moreover,
we see that the amount of memory used by PPRGo is 4 times smaller compared to Cluster-GCN
and 2 times smaller compared to SGC. Given that Cluster-GCN and SGC achieve significantly
worse accuracy, the benefits of our proposed approach in terms of scalability are apparent.

We extend the above analysis to several other datasets. We chose two comparatively small
academic graphs that are commonly used as benchmark datasets – Cora-Full (Bojchevski &
Günnemann, 2018) (18.7K nodes, 62.4K edges, 8.7K node features) and PubMed (Yang &
Leskovec, 2015) (19.7K nodes, 44.3K edges, 0.5K node features) – as well as our newly
introduced MAG-Scholar-C dataset (10.5M nodes, 133M edges, 2.8M node features). In
addition to the two scalable baselines, we also evaluate how PPRGo compares to the APPNP
model (Gasteiger et al., 2019a) which we build upon. The results are summarized in Table 8.2.
We can see that the performance of most models is comparable in terms of accuracy. In most
cases our proposed model PPRGo has the smallest overall runtime and it always uses the least
amount of memory. PPRGo’s comparatively long runtime on Cora-Full can be explained by its
training set size: The training set is so large that PPRGo accesses more neighbors per batch than
there are nodes in this graph, not leveraging the duplicate information. This can only happen
with small graphs, for which runtime is not an issue. We see that the APPNP model runs out of
memory for even the moderately sized Reddit graph, highlighting the necessity of our approach.

More importantly, on the largest graph MAG-Scholar-C, we successfully trained PPRGo from
scratch and obtained the predictions for all test nodes in under 2 minutes, while Cluster-GCN
and SGC were not able to finish in over 24 hours, with Cluster-GCN still stuck in preprocessing.

8.5.5 Efficient inference

Inference time is crucial for real-world applications since a machine learning model needs to be
trained only once, while inference is run continuously when the model is put into production.
We found that PPRGo can achieve an accuracy of 68.7 % with a single power iteration step,
i.e. without even calculating the PPR vectors. At this point, the neural network fθ and not the
propagation becomes the limiting factor. However, as described in Sec. 8.4.3, we can reduce
the neural network cost by only computing logits for a small, random subset of nodes. Fig. 8.6
shows that the accuracy only reduces by around 0.6 percentage points when reducing the number
of inferred nodes by a factor of 10. We can therefore trade in a small amount of accuracy to
significantly reduce inference time, in this case by 50 %. With this approximation, PPRGo has
a shorter inference time than the forward pass of a simple neural network executed on each
node independently. Furthermore, note that we use a rather simple feed-forward neural network
in our experiments. This reduction will become even more dramatic in cases that leverage
more computationally expensive neural networks for fθ. Fig. 8.7 shows that when reducing the
fraction of inferred nodes, the corresponding accuracy drops off earlier if we perform fewer
power iteration steps p. Therefore, we need to increase the number of power iteration steps
when we calculate fewer logits. This furthermore shows that subsampling logits would not be
possible with methods that use locally sampled subgraphs (e.g. FastGCN). Note that we do not
use this additional improvement in Table 8.1 and Table 8.2.

94

8.6 Conclusion

10−3 10−2 10−1 100

Fraction of local logits

0

20

40

60

In
fe

re
nc

e
tim

e
(s

)

Propagation Forward
65

66

67

68

69

70

A
cc

ur
ac

y
(%

)
Figure 8.6: Accuracy and corresponding infer-
ence time (NN inference (dark blue) + propagation
(light blue)) on MAG-Scholar-C w.r.t. the fraction
of nodes for which local logits H are inferred by
the NN. PPRGo performs very well even if the NN
is evaluated on very few nodes. We need more
power iteration steps p if we do fewer forward
passes (see Fig. 8.7), increasing the propagation
time. Note the logarithmic scale.

10−4 10−3 10−2 10−1 100

Fraction of local logits

60

62

64

66

68

70

A
cc

ur
ac

y
(%

)

p=1
p=2
p=3
p=4

p=5
p=6
p=7
p=8

Figure 8.7: Accuracy on MAG-Scholar-C w.r.t.
the fraction of nodes for which local logits H are
inferred and number of power iteration steps p.
The fewer logits we calculate, the more power iter-
ation steps we need for stabilizing the prediction.
Note the logarithmic scale.

8.6 Conclusion

We propose a GNN for semi-supervised node classification that scales easily to graphs with
millions of nodes. In comparison to previous work our model does not rely on expensive
message-passing, making it well suited for use in large-scale distributed environments. We
can trade scalability and performance via a few intuitive hyperparameters. To stimulate the
development of scalable GNNs we present MAG-Scholar – a new large-scale graph (12.4M
nodes, 173M edges, and 2.8M node features) with coarse/fine-grained "ground-truth" node labels.
On this web-scale dataset PPRGo achieves high performance in under 2 minutes (preprocessing
+ training + inference time) on a single machine. Beyond the single machine scenario, we
demonstrate the scalability of PPRGo in a distributed setting and show that it is more efficient
compared to multi-hop models.

8.7 Ethical considerations

Scalable graph-based methods can enable the fast analysis of huge datasets with billions of
nodes. While this has many positive use cases, it also has obvious negative repercussions. It
can enable mass surveillance and the real-time analysis of whole populations and their social
networks. This can potentially be used to detect emerging resistance networks in totalitarian
regimes, thus suppressing chances for positive change. Voting behavior is another typical
application of network analysis: Voters of the same party are likely to be connected to one
another. Scalable GNNs can thus influence voting outcomes if they are leveraged for targeted
advertising.

95

8 Scaling Graph Neural Networks with Approximate PageRank

The ability of analyzing whole populations can also have negative personal effects in fully
democratic countries. If companies determine credit ratings or college admission based on
connected personal data, a person will be even more determined by their environment than
they already are. Companies might even leverage the obscurity of complex GNNs to escape
accountability: It might be easy to reveal the societal effects of your housing district, but
unraveling the combined effects of your social networks and digitally connected behavior seems
almost impossible. Scalable GNNs might thus make it even more difficult for individuals to
escape the attractive forces of the status quo.

8.8 Retrospective

PPRGo’s training time depends solely on training set size – it is independent of the total graph
size. PPRGo is thus best suited for semi-supervised classification tasks, which use a very small
number of training nodes. This setup is typical for hand-labeled tasks, since hand-labeling is a
very expensive procedure. Obtaining a larger training sets usually requires labels that emerge
naturally, such as the scientific field of a paper or the votes of a YouTube video. This chapter
primarily focusses on semi-supervised training, but both setups are relevant in practice.

PPRGo essentially leverages the locality of GNNs and thus removes long-range interactions.
Is this an issue? Many models in deep learning have dozens or even hundreds of layers (He et al.,
2016). However, modern GNNs typically only have a few layers. Intuitively, this might seem
like a strong limitation, and is often attributed to oversmoothing (Li et al., 2018a). However,
GNNs that overcome oversmoothing still only rely on a close neighborhood (Gasteiger et al.,
2019a; Xu et al., 2018). This holds for models focusing on heterophilic graphs as well (Zhu
et al., 2021b). Even structural (role-based) embeddings are based on a measure of proximity
(Zhu et al., 2021a). The pervasiveness of locality is most likely due to the message passing
dynamics in GNNs. The dynamics are very different due to the permutation invariance required
in aggregation. The regular GNN aggregation mechanism means that nodes at a far distance are
aggregated across multiple layers, and can thus no longer be represented individually (Alon &
Yahav, 2021). Only very few models are capable of preserving messages over long distances
(Alon & Yahav, 2021; Beaini et al., 2021), and none have demonstrated benefits for large
networks. On the contrary, simple label propagation and diffusion methods can substantially
improve the accuracy of GNNs on large graphs (Chapter 7, Huang et al. (2021)). Overall, current
evidence strongly suggests that in most datasets the close neighborhood is disproportionately
more important for GNN predictions than distant neighbors. While the role of long-range
interactions in GNNs still remains an open topic of research, focusing on local neighborhoods
thus does not appear to be a limitation for most GNNs. This is also evidenced by many previous
scalability methods relying on locality as well (Chiang et al., 2019; Zeng et al., 2020).

Training GNNs on large graphs has attracted significantly more interest since this chapter was
published. This is most likely due to the large datasets contained in the open graph benchmark
(OGB) (Hu et al., 2020). This benchmark provides great advantages over the overfitted and
split-sensitive classical datasets Cora, Citeseer, and PubMed (Shchur et al., 2018). This interest
still seems small compared to the large practical impact, though. Scaling GNNs is critical for
practical applications, both during training and inference. Especially inference seems neglected

96

8.8 Retrospective

by the GNN research community. This might be due to researchers not being confronted with
the practical implications of scaling up their models, the associated large computational cost, or
the potential repercussions of scaling up models (see Sec. 8.7).

In the next chapter we will explore scalability in a very different area: Optimal transport.
However, our discussion will again be centered around distances and will finally lead to a model
leveraging graph neural networks.

97

9 Scalable Optimal Transport in High
Dimensions for Graph Distances, Embedding
Alignment, and More

9.1 Introduction

Measuring the distance between two distributions or sets of objects is a central problem in
machine learning. One common method of solving this is optimal transport (OT). OT is
concerned with the problem of finding the transport plan for moving a source distribution (e.g. a
pile of earth) to a sink distribution (e.g. a construction pit) with the cheapest cost w.r.t. some
pointwise cost function (e.g. the Euclidean distance). The advantages of this method have been
shown numerous times, e.g. in generative modelling (Arjovsky et al., 2017; Bousquet et al.,
2017; Genevay et al., 2018), loss functions (Frogner et al., 2015), set matching (Wang et al.,
2019), or domain adaptation (Courty et al., 2017). Motivated by this, many different methods
for accelerating OT have been proposed in recent years (Backurs et al., 2020; Indyk & Thaper,
2003; Papadakis et al., 2014). However, most of these approaches are specialized methods
that do not generalize to modern deep learning models, which rely on dynamically changing
high-dimensional embeddings.

In this chapter we first make OT computation for high-dimensional point sets more scalable
by introducing two fast and accurate approximations of entropy-regularized optimal transport:
Sparse Sinkhorn and LCN-Sinkhorn. The latter approximation relies on our novel locally
corrected Nyström (LCN) method. Both of these methods are based on the distinction between
points at short versus long distances. Sparse Sinkhorn uses a sparse cost matrix to leverage the
fact that in entropy-regularized OT (also known as the Sinkhorn distance) (Cuturi, 2013) often
only each point’s nearest neighbors influence the result. LCN-Sinkhorn extends this approach
by leveraging LCN, a general similarity matrix approximation that fuses local (sparse) and
global (low-rank) approximations, allowing us to simultaneously capture interactions between
both close and far points. LCN-Sinkhorn thus fuses sparse Sinkhorn and Nyström-Sinkhorn
(Altschuler et al., 2019). Both sparse Sinkhorn and LCN-Sinkhorn run in log-linear time.

We theoretically analyze these approximations and show that sparse corrections can lead
to significant improvements over the Nyström approximation. We furthermore validate these
approximations by showing that they are able to reproduce both the Sinkhorn distance and
transport plan significantly better than previous methods across a wide range of regularization
parameters and computational budgets (as e.g. demonstrated in Fig. 9.1).

We then employ these Sinkhorn approximations end-to-end in tasks of learning and aligning
embedding spaces. First, we incorporate them into Wasserstein Procrustes for word embedding
alignment (Grave et al., 2019). Without any further model changes LCN-Sinkhorn improves

99

9 Scalable Optimal Transport for Graph Distances, Embedding Alignment, and More

0 1P̄ij

0

1

P̄
M

S
ij

Multiscale OT

0 1P̄ij

0

1

P̄
N
y
s,
ij

Diag
on

al

(pe
rfe

ct
co

rre
lat

ion
)

Nyström

0 1P̄ij

0

1

P̄
sp ij

Sparse Sinkhorn

0 1P̄ij

0

1

P̄
L
C
N
,i
j

LCN-Sinkhorn

Figure 9.1: The proposed methods (sparse and LCN-Sinkhorn) show a clear correlation with the full
Sinkhorn transport plan, as opposed to previous methods. Entries of approximations (y-axis) and full
Sinkhorn (x-axis) for pre-aligned word embeddings (EN-DE). Color denotes density.

upon the original method’s accuracy by 3.1 percentage points using a third of the training time.
Second, we propose the graph transport network (GTN), which combines graph neural networks
(GNNs) with optimal transport for graph distance regression. GTN uses OT to break the task
of learning graph distances down to learning node embeddings. We further improve the use
of OT in this context by proposing learnable unbalanced OT and multi-head OT. GTN with
LCN-Sinkhorn is the first model that both overcomes the bottleneck of using a single embedding
per graph and scales log-linearly in the number of nodes. Our implementation is available
online.1 In summary, this chapter’s main contributions are:

• Locally Corrected Nyström (LCN), a flexible log-linear time approximation for similar-
ity matrices, merging local (sparse) and global (low-rank) approximations.

• Entropy-regularized optimal transport (a.k.a. Sinkhorn distance) with log-linear runtime
via sparse Sinkhorn and LCN-Sinkhorn. These are the first log-linear approximations
that are stable enough to substitute full entropy-regularized OT in models using high-
dimensional spaces.

• The graph transport network (GTN), a Siamese GNN using multi-head unbalanced
LCN-Sinkhorn. GTN both sets the state of the art on graph distance regression and still
scales log-linearly in the number of nodes.

9.2 Entropy-regularized optimal transport

This chapter focuses on optimal transport between two discrete sets of points. We use entropy
regularization, which enables fast computation and often performs better than regular OT (Cuturi,
2013). Formally, given two categorical distributions modelled via the vectors p ∈ Rn and

1https://www.daml.in.tum.de/lcn

100

https://www.daml.in.tum.de/lcn

9.3 Sparse Sinkhorn

q ∈ Rm supported on two sets of points Xp = {xp1, . . . ,xpn} and Xq = {xq1, . . . ,xqm} in
Rd and the cost function c : Rd × Rd → R (e.g. the L2 distance) giving rise to the cost matrix
Cij = c(xpi,xqi) we aim to find the Sinkhorn distance dλc and the associated optimal transport
plan P̄ (Cuturi, 2013)

P̄ = argmin
P

⟨P ,C⟩F − λH(P),

dλc = ⟨P ,C⟩F − λH(P),

s.t. P1m = p, P T1n = q,

(9.1)

with the Frobenius inner product ⟨., .⟩F and the entropy H(P) = −∑n
i=1

∑m
j=1Pij logPij .

Note that dλc includes the entropy and can thus be negative, while Cuturi (2013) originally used
d
1/λ
Cuturi,c = ⟨P̄ ,C⟩F. This optimization problem can be solved by finding the vectors s̄ and t̄

that normalize the columns and rows of the matrix P̄ = diag(s̄)K diag(t̄) with the similarity

matrix Kij = e−
Cij
λ , so that P̄1m = p and P̄ T1n = q. We can achieve this via the Sinkhorn

algorithm, which initializes the normalization vectors as s(1) = 1n and t(1) = 1m and updates
them alternatingly via (Sinkhorn & Knopp, 1967)

s(i) = p⊘ (Kt(i−1)), t(i) = q ⊘ (KTs(i)) (9.2)

until convergence, where ⊘ denotes elementwise division.

9.3 Sparse Sinkhorn

The Sinkhorn algorithm’ computational cost is quadratic in time O(nm). This is substantially
better than non-regularized EMD algorithms, which run in O(n2m log n log(nmax(C))) (Tar-
jan, 1997). However, a quadratic runtime is still prohibitively expensive for large n and m. We
overcome this by observing that the matrix K, and hence also P̄ , is negligibly small everywhere
except at each point’s closest neighbors because of the exponential used in K’s computation.
We propose to leverage this by approximating C via the sparse matrix Csp, where

C
sp
ij =

{
Cij if xpi and xqj are “near”,
∞ otherwise.

(9.3)

Ksp and P̄ sp follow from the definitions of K and P̄ . Finding “near” neighbors can be
approximately solved via locality-sensitive hashing (LSH) on Xp ∪Xq.

Locality-sensitive hashing. LSH tries to filter “near” from “far” data points by putting them
into different hash buckets. Points closer than a certain distance r1 are put into the same bucket
with probability at least p1, while those beyond some distance r2 = c · r1 with c > 1 are put
into the same bucket with probability at most p2 ≪ p1. There is a plethora of LSH methods for
different metric spaces and their associated cost (similarity/distance) functions (Shrivastava & Li,
2014; Wang et al., 2014), and we can use any of them. In this work we focus on cross-polytope
LSH (Andoni et al., 2015) and k-means LSH (Paulevé et al., 2010) (see App. F.8). We can
control the (average) number of neighbors via the number of hash buckets. This allows sparse

101

9 Scalable Optimal Transport for Graph Distances, Embedding Alignment, and More

Sinkhorn with LSH to scale log-linearly with the number of points, i.e. O(n log n) for n ≈ m
(see App. F.1 and App. F.11). Unfortunately, Sinkhorn with LSH can fail when e.g. the cost is
evenly distributed or the matrix Ksp does not have support (see App. F.2). However, we can
alleviate these limitations by fusing Ksp with the Nyström method.

9.4 Locally corrected Nyström and LCN-Sinkhorn

Nyström method. The Nyström method is a popular way of approximating similarity matri-
ces that provides performance guarantees for many important tasks (Musco & Musco, 2017;
Williams & Seeger, 2001). It approximates a positive semi-definite (PSD) similarity matrix K
via its low-rank decomposition KNys = UA−1V . Since the optimal decomposition via SVD is
too expensive to compute, Nyström instead chooses a set of l landmarks L = {xl1, . . . ,xll}
and obtains the matrices via Uij = k(xpi,xlj), Aij = k(xli,xlj), and Vij = k(xli,xqj),

where k(x1,x2) is an arbitrary PSD kernel, e.g. k(x1,x2) = e−
c(x1,x2)

λ for Sinkhorn. Common
methods of choosing landmarks from Xp ∪ Xq are uniform and ridge leverage score (RLS)
sampling. We instead focus on k-means Nyström and sampling via k-means++, which we found
to be significantly faster than recursive RLS sampling (Zhang et al., 2008) and perform better
than both uniform and RLS sampling (see App. F.8).

Sparse vs. Nyström. Exponential kernels like the one used for K (e.g. the Gaussian
kernel) typically correspond to a reproducing kernel Hilbert space that is infinitely dimensional.
The resulting Gram matrix K thus usually has full rank. A low-rank approximation like the
Nyström method can therefore only account for its global structure and not the local structure
around each point x. As such, it is ill-suited for any moderately low entropy regularization
parameter, where the transport matrix P̄ resembles a permutation matrix. Sparse Sinkhorn, on
the other hand, cannot account for global structure and instead approximates all non-selected
distances as infinity. It will hence fail if more than a handful of neighbors are required per point.
These approximations are thus opposites of each other, and as such not competing but rather
complementary approaches.

Locally corrected Nyström. Since the entries in our sparse approximation are exact, we
can directly fuse it with the Nyström approximation. For the indices of all non-zero values in
the sparse approximation Ksp we calculate the corresponding entries in the Nyström approx-
imation, obtaining the sparse matrix K

sp
Nys. To obtain the locally corrected Nyström (LCN)

approximation2 we subtract these entries from KNys and replace them with their exact values,
i.e.

KLCN = KNys −K
sp
Nys +Ksp = KNys +K

sp
∆ . (9.4)

LCN-Sinkhorn. To obtain the approximate transport plan P̄LCN we run the Sinkhorn algorithm
with KLCN instead of K. However, we never fully instantiate KLCN. Instead, we directly use the
decomposition and calculate the matrix-vector product in Eq. (9.2) as KLCNt = U(A−1V t) +
K

sp
∆t, similarly to Altschuler et al. (2019). As a result we obtain the decomposed approximate

2LCN has an unrelated namesake on integrals, which uses high-order term to correct quadrature methods around
singularities (Canino et al., 1998).

102

9.5 Theoretical analysis

OT plan P̄LCN = P̄Nys + P̄
sp
∆ = P̄U P̄W + P̄ sp − P̄

sp
Nys and the approximate distance (using

Lemma A from Altschuler et al. (2019))

dλLCN,c = λ(sT P̄U P̄W1m + 1Tn P̄U P̄W t

+ sT P̄
sp
∆ 1m + 1Tn P̄

sp
∆ t).

(9.5)

This approximation scales log-linearly with dataset size (see App. F.1 and App. F.11 for details).
It allows us to smoothly move from Nyström-Sinkhorn to sparse Sinkhorn by varying the
number of landmarks and neighbors. We can thus freely choose the optimal “operating point”
based on the underlying problem and regularization parameter. We discuss the limitations of
LCN-Sinkhorn in App. F.2.

9.5 Theoretical analysis

Approximation error. The main question we aim to answer in our theoretical analysis is what
improvements to expect from adding sparse corrections to Nyström Sinkhorn. To do so, we first
analyze approximations of K in a uniform and a clustered data model. In these we use Nyström
and LSH schemes that largely resemble k-means, as used in most of our experiments. Relevant
proofs and notes for this section can be found in App. F.3 to F.7.

Theorem 9.1. Let Xp and Xq have n samples that are uniformly distributed on a d-dimensional
closed, locally Euclidean manifold. Let Cij = ∥xpi − xqj∥2 and Kij = e−Cij/λ. Let the
landmarks be arranged a priori, with a minimum distance 2R between each other. Then the
expected error of the Nyström approximation KNys between a point xpi and its kth-nearest
neighbor xqik is

E[Ki,ik −KNys,i,ik] = E[e−δk/λ]− E[KNys,i,ik], (9.6)

with δk denoting the kth-nearest neighbor distance. With Γ(., .) denoting the upper incomplete
Gamma function the second term is bounded by

E[KNys,i,ik] ≤
d(Γ(d)− Γ(d, 2R/λ))

(2R/λ)d
+O(e−2R/λ). (9.7)

Eq. (9.6) is therefore dominated by E[e−δk/λ] if δk ≪ R, which is a reasonable assumption
given that R only decreases slowly with the number of landmarks l since R ≥ ((d/2)!l)1/d 1

2
√
π

(Cohn, 2017). In this case the approximation’s largest error is the one associated with the
point’s nearest neighbor. LCN uses the exact result for these nearest neighbors and therefore
removes the largest errors, providing significant benefits even for uniform data. For example,
just removing the first neighbor’s error we obtain a 68 % decrease in the dominant first term
(d=32, λ=0.05, n=1000). This is even more pronounced in clustered data.

Theorem 9.2. Let Xp, Xq ⊆ Rd be inside c (shared) clusters. Let r be the maximum L2 distance
of a point to its cluster center and D the minimum distance between different cluster centers,
with r ≪ D. Let Cij = ∥xpi − xqj∥2 and Kij = e−Cij/λ. Let each LSH bucket used for

103

9 Scalable Optimal Transport for Graph Distances, Embedding Alignment, and More

the sparse approximation Ksp cover at least one cluster. Let KNys and KLCN both use one
landmark at each cluster center. Then the maximum possible error is

max
xpi,xqj

Kij −KNys,i,j =

1− e−2r/λ −O(e−2(D−r)/λ),
(9.8)

max
xpi,xqj

Kij −K
sp
ij = e−(D−2r)/λ, (9.9)

max
xpi,xqj

Kij −KLCN,i,j =

e−(D−2r)/λ(1− e−2r/λ(2− e−2r/λ)

+O(e−2D/λ)).

(9.10)

This shows that the error in KNys is close to 1 for any reasonably large r
λ (which is the

maximum error possible). The errors in Ksp and KLCN on the other hand are vanishingly small
in this case, since r ≪ D.
The reduced maximum error directly translates to an improved Sinkhorn approximation. We can
show this by adapting the Sinkhorn approximation error bounds due to Altschuler et al. (2019).

Definition 9.1. A generalized diagonal is the set of elements Miσ(i) ∀i ∈ {1, . . . , n} with
matrix M ∈ Rn×n and permutation σ. A non-negative matrix has support if it has a strictly
positive generalized diagonal. It has total support if M ̸= 0 and all non-zero elements lie on a
strictly positive generalized diagonal.

Theorem 9.3. Let Xp, Xq ⊆ Rd have n samples. Denote ρ as the maximum distance be-
tween two samples. Let K̃ be a non-negative matrix with support, which approximates the
similarity matrix K with Kij = e−∥xpi−xqj∥2/λ and maxi,j |K̃ij − Kij | ≤ ε′

2 e
−ρ/λ, where

ε′ = min(1, ε
50(ρ+λ log λn

ε
)
). When performing the Sinkhorn algorithm until ∥P̃1N − p∥1 +

∥P̃ T1N−q∥1 ≤ ε′/2, the resulting approximate transport plan P̃ and distance d̃λc are bounded
by

|dλc − d̃λc̃ | ≤ ε, DKL(P̄ ∥P̃) ≤ ε/λ. (9.11)

Convergence rate. We next show that sparse and LCN-Sinkhorn converge as fast as regular
Sinkhorn by adapting the convergence bound by Dvurechensky et al. (2018) to account for
sparsity.

Theorem 9.4. Given a non-negative matrix K̃ ∈ Rn×n with support and p ∈ Rn, q ∈ Rn. The
Sinkhorn algorithm gives a transport plan satisfying ∥P̃1N − p∥1 + ∥P̃ T1N − q∥1 ≤ ε in
iterations

k ≤ 2 +
−4 ln(mini,j{K̃ij |K̃ij > 0}mini,j{pi, qj})

ε
. (9.12)

Backpropagation. Efficient gradient computation is almost as important for modern deep
learning models as the algorithm itself. These models usually aim at learning the embeddings in

104

9.6 Graph transport network

Xp and Xq and therefore need gradients w.r.t. the cost matrix C. We can estimate these either
via automatic differentiation of the unrolled Sinkhorn iterations or via the analytic solution that
assumes exact convergence. Depending on the problem at hand, either the automatic or the
analytic estimator will lead to faster overall convergence (Ablin et al., 2020). LCN-Sinkhorn
works flawlessly with automatic backpropagation since it only relies on basic linear algebra
(except for choosing Nyström landmarks and LSH neighbors, for which we use a simple straight-
through estimator (Bengio et al., 2013)). To enable fast analytic backpropagation we provide
analytic gradients in Prop. 9.1. Note that both backpropagation methods have runtime linear in
the number of points n and m.

Proposition 9.1. In entropy-regularized OT and LCN-Sinkhorn the derivatives of the distances
dλc and dλLCN,c (Eqs. (9.1) and (9.5)) and the optimal transport plan P̄ ∈ Rn×m w.r.t. the
(decomposed) cost matrix C ∈ Rn×m with total support are

∂dλc
∂C

= P̄ , (9.13)

∂dλLCN,c

∂U
= −λs̄(Wt̄)T ,

∂dλLCN,c

∂W
= −λ(s̄TU)T t̄T ,

∂dλLCN,c

∂ logKsp = −λP̄ sp,
∂dλLCN,c

∂ logK
sp
Nys

= −λP̄
sp
Nys.

(9.14)

This allows backpropagation in time O((n+m)l2).

9.6 Graph transport network

Graph distance learning. Predicting similarities or distances between graph-structured objects
is useful across a wide range of applications. It can be used to predict the reaction rate between
molecules (Houston et al., 2019), or search for similar images (Johnson et al., 2015), similar
molecules for drug discovery (Birchall et al., 2006), or similar code for vulnerability detection
(Li et al., 2019b). We propose the graph transport network (GTN) to evaluate approximate
Sinkhorn on a full deep learning model and advance the state of the art on this task.

Graph transport network. GTN uses a Siamese graph neural network (GNN) to embed two
graphs independently as sets of node embeddings. These sets are then matched using multi-
head unbalanced OT. Node embeddings represent the nodes’ local environments, so similar
neighborhoods will be close in embedding space and matched accordingly. Since Sinkhorn is
symmetric and permutation invariant, any identical pair of graphs will thus by construction have
a predicted distance of 0 (ignoring the entropy offset).
More precisely, given an undirected graph G = (V, E), with node set V and edge set E , node
attributes xi ∈ RHx and (optional) edge attributes ei,j ∈ RHe , with i, j ∈ V , we update the
node embeddings in each GNN layer via

h
(l)
self,i = σ(W

(l)
nodeh

(l−1)
i + b(l)), (9.15)

h
(l)
i = h

(l)
self,i +

∑

j∈Ni

η
(l)
i,jh

(l)
self,jWedgeei,j , (9.16)

105

9 Scalable Optimal Transport for Graph Distances, Embedding Alignment, and More

with Ni denoting the neighborhood of node i, h(0)
i = xi, h

(l)
i ∈ RHN for l ≥ 1, the bilinear

layer Wedge ∈ RHN×HN×He , and the degree normalization η
(1)
i,j = 1 and η

(l)
i,j = 1/

√
degi degj

for l > 1. This choice of ηi,j allows our model to handle highly skewed degree distributions
while still being able to represent node degrees. We found the choice of non-linearity σ not to
be critical and chose a LeakyReLU. We do not use the bilinear layer Wedgeei,j if there are no
edge attributes. We aggregate each layer’s node embeddings to obtain the overall embedding of
node i

hGNN
i = [h

(1)
self,i ∥h

(1)
i ∥h(2)

i ∥ . . . ∥h(L)
i]. (9.17)

We then compute the embeddings for matching via hfinal
i = MLP(hGNN

i). Having obtained
the embedding sets Hfinal

1 and Hfinal
2 of both graphs we use the L2 distance as a cost function

for the Sinkhorn distance. Finally, we calculate the prediction from the Sinkhorn distance via
d = dλcwout + bout, with learnable wout and bout. GTN is trained end-to-end via backpropagation.
For small graphs we use the full Sinkhorn distance and scale to large graphs with LCN-Sinkhorn.
GTN is more expressive than models that aggegrate node embeddings to a single fixed-size
embedding but still scales log-linearly in the number of nodes, as opposed to previous approaches
which scale quadratically.

Learnable unbalanced OT. Since GTN regularly encounters graphs with disagreeing num-
bers of nodes it needs to be able to handle cases where ∥p∥1 ̸= ∥q∥1 or where not all nodes in
one graph have a corresponding node in the other, i.e. P1m < p or P T1n < q. Unbalanced
OT allows handling both of these cases (Peyré & Cuturi, 2019), usually by swapping the strict
balancing requirements with a uniform divergence loss term on p and q (Chizat et al., 2018;
Frogner et al., 2015). However, this uniformly penalizes deviations from balanced OT and
therefore cannot adaptively ignore parts of the distribution. We propose to improve on this by
swapping the cost matrix C with the bipartite matching (BP) matrix (Riesen & Bunke, 2009)

CBP =

[
C C(p,ε)

C(ε,q) C(ε,ε)

]
, C

(p,ε)
ij =

{
ci,ε i = j

∞ i ̸= j
,

C
(ε,q)
ij =

{
cε,j i = j

∞ i ̸= j
, C

(ε,ε)
ij = 0,

(9.18)

and obtain the deletion cost ci,ε and cε,j from the input sets Xp and Xq. Using the BP matrix
only adds minor computational overhead since we just need to save the diagonals cp,ε and cε,q
of Cp,ε and Cε,q. We can then use CBP in the Sinkhorn algorithm (Eq. (9.2)) via

KBPt =

[
Kt̂+ cp,ε ⊙ ť

cε,q ⊙ t̂+ 1Tn ť

]
, KT

BPs =

[
KT ŝ+ cε,q ⊙ š
cp,ε ⊙ ŝ+ 1Tmš

]
, (9.19)

where t̂ denotes the upper and ť the lower part of the vector t. To calculate dλc we can decompose
the transport plan PBP in the same way as CBP, with a single scalar for Pε,ε. For GTN we
obtain the deletion cost via ci,ε = ∥α⊙ xpi∥2, with a learnable vector α ∈ Rd.

Multi-head OT. Inspired by attention models (Vaswani et al., 2017) and multiscale kernels
(Bermanis et al., 2013) we further improve GTN by using multiple OT heads. Using K heads

106

9.7 Related work

means that we calculate K separate sets of embeddings representing the same pair of objects
by using separate linear layers, i.e. hfinal

k,i = W (k)hGNN
i for head k. We then calculate OT in

parallel for these sets using a series of regularization parameters λk = 2k−K/2λ. This yields a
set of distances dλ

c ∈ RK . We obtain the final prediction via d = MLP(dλ
c). Both learnable

unbalanced OT and multi-head OT might be of independent interest.

9.7 Related work

Hierarchical kernel approximation. These methods usually hierarchically decompose the
kernel matrix into separate blocks and use low-rank or core-diagonal approximations for each
block (Ding et al., 2017; Si et al., 2017). This idea is similar in spirit to LCN, but LCN boils it
down to its essence by using one purely global part and a fine-grained LSH method to obtain
one exact and purely local part.

Log-linear optimal transport. For an overview of optimal transport and its foundations
see Peyré & Cuturi (2019). On low-dimensional grids and surfaces OT can be solved using
dynamical OT (Papadakis et al., 2014; Solomon et al., 2014), convolutions (Solomon et al.,
2015), or embedding/hashing schemes (Andoni et al., 2008; Indyk & Thaper, 2003). In higher di-
mensions we can use tree-based algorithms (Backurs et al., 2020) or hashing schemes (Charikar,
2002), which are however limited to a previously fixed set of points Xp, Xq, on which only the
distributions p and q change. Another approach are sliced Wasserstein distances (Rabin et al.,
2011). However, they do not provide a transport plan, require the L2 distance as a cost function,
and are either unstable in convergence or prohibitively expensive for high dimensions (O(nd3))
(Meng et al., 2019). For high-dimensional sets that change dynamically (e.g. during training)
one method of achieving log-linear runtime is a multiscale approximation of entropy-regularized
OT (Gerber & Maggioni, 2017; Schmitzer, 2019). Tenetov et al. (2018) recently proposed
using a low-rank approximation of the Sinkhorn similarity matrix obtained via a semi-discrete
approximation of the Euclidean distance. Altschuler et al. (2019) improved upon this approach
by using the Nyström method for the approximation. However, these approaches still struggle
with high-dimensional real-world problems, as we will show in Sec. 9.8.

Accelerating Sinkhorn. Another line of work has been pursuing accelerating entropy-
regularized OT without changing its computational complexity w.r.t. the number of points.
Original Sinkhorn requires O(1/ε2) iterations, but Dvurechensky et al. (2018) and Jambu-
lapati et al. (2019) recently proposed algorithms that reduce the computational complexity
to O(min(n9/4/ε, n2/ε2)) and O(n2/ε), respectively. Mensch & Peyré (2020) proposed an
online Sinkhorn algorithm to significantly reduce its memory cost. Alaya et al. (2019) proposed
reducing the size of the Sinkhorn problem by screening out neglectable components, which
allows for approximation guarantees. Genevay et al. (2016) proposed using a stochastic opti-
mization scheme instead of Sinkhorn iterations. Essid & Solomon (2018) and Blondel et al.
(2018) proposed alternative regularizations to obtain OT problems with similar runtimes as the
Sinkhorn algorithm. This work is largely orthogonal to ours.

Embedding alignment. For an overview of cross-lingual word embedding models see Ruder
et al. (2019). Unsupervised word embedding alignment was proposed by Conneau et al. (2018),

107

9 Scalable Optimal Transport for Graph Distances, Embedding Alignment, and More

Table 9.1: Mean and standard deviation of relative Sinkhorn distance error, IoU of top 0.1 % and
correlation coefficient (PCC) of OT plan entries across 5 runs. Sparse Sinkhorn and LCN-Sinkhorn
achieve the best approximation in all 3 measures.

EN-DE EN-ES 3D point cloud Uniform in d-ball (d=16)
Rel. err. dλc PCC IoU Rel. err. dλc PCC IoU Rel. err. dλc PCC IoU Rel. err. dλc PCC IoU

Factored OT 0.318 0.044 0.019 0.332 0.037 0.026 6.309 0.352 0.004 1.796 0.096 0.029
±0.001 ±0.001 ±0.002 ±0.001 ±0.002 ±0.005 ±0.004 ±0.001 ±0.001 ±0.001 ±0.001 ±0.000

Multiscale OT 0.634 0.308 0.123 0.645 0.321 0.125 0.24 0.427 0.172 0.03 0.091 0.021
±0.011 ±0.014 ±0.005 ±0.014 ±0.006 ±0.012 ±0.07 ±0.008 ±0.011 ±0.02 ±0.005 ±0.001

Nyström Skh. 1.183 0.077 0.045 1.175 0.068 0.048 1.89 0.559 0.126 1.837 0.073 0.018
±0.005 ±0.001 ±0.005 ±0.018 ±0.001 ±0.006 ±0.07 ±0.009 ±0.014 ±0.006 ±0.000 ±0.000

Sparse Skh. 0.233 0.552 0.102 0.217 0.623 0.102 0.593 0.44 0.187 0.241 0.341 0.090
±0.002 ±0.004 ±0.001 ±0.001 ±0.004 ±0.001 ±0.015 ±0.03 ±0.014 ±0.002 ±0.004 ±0.001

LCN-Sinkhorn 0.406 0.673 0.197 0.368 0.736 0.201 1.91 0.564 0.195 0.435 0.328 0.079
±0.015 ±0.012 ±0.007 ±0.012 ±0.003 ±0.003 ±0.28 ±0.008 ±0.013 ±0.009 ±0.006 ±0.001

with subsequent advances by Alvarez-Melis & Jaakkola (2018); Grave et al. (2019); Joulin et al.
(2018).

Graph matching and distance learning. Graph neural networks (GNNs) have recently been
successful on a wide variety of graph-based tasks (Gasteiger et al., 2019a; Kipf & Welling, 2017;
Zambaldi et al., 2019). GNN-based approaches for graph matching and graph distance learning
either rely on a single fixed-dimensional graph embedding (Bai et al., 2019; Li et al., 2019b),
or only use attention or some other strongly simplified variant of optimal transport (Bai et al.,
2019; Li et al., 2019b; Riba et al., 2018). Others break permutation invariance and are thus
ill-suited for this task (Bai et al., 2018; Ktena et al., 2017). So far only approaches using a single
graph embedding allow faster than quadratic scaling in the number of nodes. Compared to the
Sinkhorn-based image model proposed by Wang et al. (2019) GTN uses no CNN or cross-graph
attention, but an enhanced GNN and embedding aggregation scheme. OT has recently been
proposed for graph kernels (Maretic et al., 2019; Vayer et al., 2019), which can (to some extent)
be used for graph matching, but not for distance learning.

9.8 Experiments

Approximating Sinkhorn. We start by directly investigating different Sinkhorn approximations.
To do so we compute entropy-regularized OT on (i) pairs of 104 word embeddings from Conneau
et al. (2018), which we preprocess with Wasserstein Procrustes alignment in order to obtain both
close and distant neighbors, (ii) the armadillo and dragon point clouds from the Stanford 3D
Scanning Repository (Stanford, 2014) (with 104 randomly subsampled points), and (iii) pairs
of 104 data points that are uniformly distributed in the d-ball (d = 16). We let every method
use the same total number of 40 average neighbors and landmarks (LCN uses 20 each) and set
λ = 0.05 (as e.g. in Grave et al. (2019)). Besides the Sinkhorn distance we measure transport
plan approximation quality by (a) calculating the Pearson correlation coefficient (PCC) between
all entries in the approximated plan and the true P̄ and (b) comparing the sets of 0.1 % largest
entries in the approximated and true P̄ using the Jaccard similarity (intersection over union,

108

9.8 Experiments

0 100 200

Runtime (ms)

0.0

0.2

0.4

0.6

0.8

1.0

PC
C

0 100 200

Neighbors + landmarks

0.0

0.2

0.4

0.6

0.8

1.0

PC
C

10−3 10−2 10−1 100

λ

0.0

0.2

0.4

0.6

0.8

1.0

PC
C

Fact. OT
Multsc. OT
Nys. Skh.

Sp. Skh.
LCN-Skh.

Figure 9.2: OT plan approximation quality for EN-DE, via PCC. Left: Sparse Sinkhorn offers the best
tradeoff with runtime, with LCN-Sinkhorn closely behind. Center: LCN-Sinkhorn achieves the best
approximation for low and sparse Sinkhorn for high numbers of neighbors/landmarks. Right: Sparse
Sinkhorn performs best for low, LCN-Sinkhorn for moderate and factored OT for very high entropy
regularization λ. The arrow indicates factored OT results far outside the range.

IoU). Note that usually the OT plan is more important than the distance, since it determines the
training gradient and tasks like embedding alignment are exclusively based on the OT plan. In
all figures the error bars denote standard deviation across 5 runs, which is often too small to be
visible.

Table 9.1 shows that for word embeddings both sparse Sinkhorn, LCN-Sinkhorn and factored
OT (Forrow et al., 2019) obtain distances that are significantly closer to the true dλc than
Multiscale OT and Nyström-Sinkhorn. Furthermore, the transport plan computed by sparse
Sinkhorn and LCN-Sinkhorn show both a PCC and IoU that are around twice as high as
Multiscale OT, while Nyström-Sinkhorn and factored OT exhibit almost no correlation. LCN-
Sinkhorn performs especially well in this regard. This is also evident in Fig. 9.1, which
shows how the 104 × 104 approximated OT plan entries compared to the true Sinkhorn values.
Multiscale OT shows the best distance approximation on 3D point clouds and random high-
dimensional data. However, sparse Sinkhorn and LCN-Sinkhorn remain the best OT plan
approximations, especially in high dimensions.

Fig. 9.2 shows that sparse Sinkhorn offers the best trade-off between runtime and OT plan
quality. Factored OT exhibits a runtime 2 to 10 times longer than the competition due to its
iterative refinement scheme. LCN-Sinkhorn performs best for use cases with constrained mem-
ory (few neighbors/landmarks). The number of neighbors and landmarks directly determines
memory usage and is linearly proportional to the runtime (see App. F.11). Fig. 9.2 furthermore
shows that sparse Sinkhorn performs best for low regularizations, where LCN-Sinkhorn fails due
to the Nyström part going out of bounds. Nyström Sinkhorn performs best at high values and
LCN-Sinkhorn always performs better than both (as long as it can be calculated). Interestingly,
all approximations except factored OT seem to fail at high λ. We defer analogously discussing
the distance approximation to App. F.12. All approximations scale linearly both in the number
of neighbors/landmarks and dataset size, as shown in App. F.11. Overall, we see that sparse
Sinkhorn and LCN-Sinkhorn yield significant improvements over previous approximations.
However, do these improvements also translate to better performance on downstream tasks?

109

9 Scalable Optimal Transport for Graph Distances, Embedding Alignment, and More

Table 9.2: Accuracy and standard deviation across 5 runs for unsupervised word embedding alignment
with Wasserstein Procrustes. LCN-Sinkhorn improves upon the original by 3.1 pp. before and 2.0 pp.
after iterative CSLS refinement. *Migrated and re-run on GPU via PyTorch

Time (s) EN-ES ES-EN EN-FR FR-EN EN-DE DE-EN EN-RU RU-EN Avg.
Original* 268 79.2 ± 0.2 78.8 ± 2.8 81.0 ± 0.3 79.4 ± 0.9 71.7 ± 0.2 65.7 ± 3.4 36.3 ± 1.1 51.1 ± 1.1 67.9
Full Sinkhorn 402 81.1 82.0 81.2 81.3 74.1 70.7 37.3 53.5 70.1
Multiscale OT 88.2 24 ± 31 74.7 ± 3.3 27 ± 32 6.3 ± 4.4 36 ± 10 47 ± 21 0.0 0.2 ± 0.1 26.8
Nyström Skh. 102 64.4 ± 1.0 59.3 ± 1.2 64.1 ± 1.6 56.8 ± 4.0 54.1 ± 0.6 47.1 ± 3.5 14.1 ± 1.2 22.5 ± 2.4 47.8
Sparse Skh. 49.2 80.2 ± 0.2 81.7 ± 0.4 80.9 ± 0.3 80.1 ± 0.2 72.1 ± 0.6 65.1 ± 1.7 35.5 ± 0.6 51.5 ± 0.4 68.4
LCN-Sinkhorn 86.8 81.8 ± 0.2 81.3 ± 1.8 82.0 ± 0.4 82.1 ± 0.3 73.6 ± 0.2 71.3 ± 0.9 41.0 ± 0.8 55.1 ± 1.4 71.0
Original* + ref. 268+81 83.0 ± 0.3 82.0 ± 2.5 83.8 ± 0.1 83.0 ± 0.4 77.3 ± 0.3 69.7 ± 4.3 46.2 ± 1.0 54.0 ± 1.1 72.4
LCN-Skh. + ref. 86.8+81 83.5 ± 0.2 83.1 ± 1.3 83.8 ± 0.2 83.6 ± 0.1 77.2 ± 0.3 72.8 ± 0.7 51.8 ± 2.6 59.2 ± 1.9 74.4

Embedding alignment. Embedding alignment is the task of finding the orthogonal matrix
R ∈ Rd×d that best aligns the vectors from two different embedding spaces, which is e.g. useful
for unsupervised word translation. We use the experimental setup established by Conneau et al.
(2018) by migrating Grave et al. (2019)’s implementation to PyTorch. The only change we
make is using the full set of 20 000 word embeddings and training for 300 steps, while reducing
the learning rate by half every 100 steps. We do not change any other hyperparameters and do
not use unbalanced OT. After training we match pairs via cross-domain similarity local scaling
(CSLS) (Conneau et al., 2018). We use 10 Sinkhorn iterations, 40 neighbors on average for
sparse Sinkhorn, and 20 neighbors and landmarks for LCN-Sinkhorn (for details see App. F.8).
We allow both multiscale OT and Nyström Sinkhorn to use as many landmarks and neighbors
as can fit into GPU memory and finetune both methods.

Table 9.2 shows that using full Sinkhorn yields a significant improvement in accuracy on this
task compared to the original approach of performing Sinkhorn on randomly sampled subsets of
embeddings (Grave et al., 2019). LCN-Sinkhorn even outperforms the full version in most cases,
which is likely due to regularization effects from the approximation. It also runs 4.6x faster
than full Sinkhorn and 3.1x faster than the original scheme, while using 88 % and 44 % less
memory, respectively. Sparse Sinkhorn runs 1.8x faster than LCN-Sinkhorn but cannot match
its accuracy. LCN-Sinkhorn still outcompetes the original method after refining the embeddings
with iterative local CSLS (Conneau et al., 2018). Both multiscale OT and Nyström Sinkhorn
fail at this task, despite their larger computational budget. This shows that the improvements
achieved by sparse Sinkhorn and LCN-Sinkhorn have an even larger impact in practice.

Graph distance regression. The graph edit distance (GED) is useful for various tasks
such as image retrieval (Xiao et al., 2008) or fingerprint matching (Neuhaus & Bunke, 2004),
but its computation is NP-hard (Lin, 1994). For large graphs we therefore need an effective
approximation. We use the Linux dataset by Bai et al. (2019) and generate 2 new datasets by
computing the exact GED using the method by Lerouge et al. (2017) on small graphs (≤ 30
nodes) from the AIDS dataset (Riesen & Bunke, 2008) and a set of preferential attachment
graphs. We compare GTN to 3 state-of-the-art baselines: SiameseMPNN (Riba et al., 2018),
SimGNN (Bai et al., 2019), and the Graph Matching Network (GMN) (Li et al., 2019b). We
tune the hyperparameters of all baselines and GTN via grid search. For more details see App. F.8
to F.10.

110

9.8 Experiments

Table 9.3: RMSE for GED regression across 3 runs and the targets’ standard deviation σ. GTN
outperforms previous models by 48 %.

Linux AIDS30 Pref. att.
σ 0.184 16.2 48.3
SiamMPNN 0.090 ± 0.007 13.8 ± 0.3 12.1 ± 0.6
SimGNN 0.039 4.5 ± 0.3 8.3 ± 1.4
GMN 0.015 10.3 ± 0.6 7.8 ± 0.3
GTN, 1 head 0.022 ± 0.001 3.7 ± 0.1 4.5 ± 0.3
8 OT heads 0.012 ± 0.001 3.2 ± 0.1 3.5 ± 0.2
Unbalanced OT 0.033 ± 0.002 15.7 ± 0.5 9.7 ± 0.9
Balanced OT 0.034 ± 0.001 15.3 ± 0.1 27.4 ± 0.9

Table 9.4: RMSE for graph distance regression across 3 runs and the targets’ standard deviation σ. Using
LCN-Sinkhorn with GTN increases the error by only 10 % and allows log-linear scaling.

GED PM [10−2]
AIDS30 Pref. att. Pref. att. 200

σ 16.2 48.3 10.2
Full Sinkhorn 3.7 ± 0.1 4.5 ± 0.3 1.27 ± 0.06
Nyström Skh. 3.6 ± 0.3 6.2 ± 0.6 2.43 ± 0.07
Multiscale OT 11.2 ± 0.3 27.4 ± 5.4 6.71 ± 0.44
Sparse Skh. 44 ± 30 40.7 ± 8.1 7.57 ± 1.09
LCN-Skh. 4.0 ± 0.1 5.1 ± 0.4 1.41 ± 0.15

We first test GTN and the proposed OT enhancements. Table 9.3 shows that GTN improves
upon other models by 20 % with a single head and by 48 % with 8 OT heads. Its performance
breaks down with regular unbalanced (using KL-divergence loss for the marginals) and balanced
OT, showing the importance of learnable unbalanced OT.

Having established GTN as a state-of-the-art model we next ask whether we can sustain its
performance when using approximate OT. For this we additionally generate a set of larger graphs
with around 200 nodes and use the Pyramid matching (PM) kernel (Nikolentzos et al., 2017) as
the prediction target, since these graphs are too large to compute the GED. See App. F.10 for
hyperparameter details. Table 9.4 shows that both sparse Sinkhorn and the multiscale method
using 4 (expected) neighbors fail at this task, demonstrating that the low-rank approximation
in LCN has a crucial stabilizing effect during training. Nyström Sinkhorn with 4 landmarks
performs surprisingly well on the AIDS30 dataset, suggesting an overall low-rank structure
with Nyström acting as regularization. However, it does not perform as well on the other two
datasets. Using LCN-Sinkhorn with 2 neighbors and landmarks works well on all three datasets,
with an RMSE increased by only 10 % compared to full GTN. App. F.11 furthermore shows
that GTN with LCN-Sinkhorn indeed scales linearly in the number of nodes across multiple
orders of magnitude. This model thus enables graph matching and distance learning on graphs
that are considered large even for simple node-level tasks (20 000 nodes).

111

9 Scalable Optimal Transport for Graph Distances, Embedding Alignment, and More

9.9 Conclusion

Locality-sensitive hashing (LSH) and the novel locally corrected Nyström (LCN) method enable
fast and accurate approximations of entropy-regularized OT with log-linear runtime: Sparse
Sinkhorn and LCN-Sinkhorn. The graph transport network (GTN) is one example for such a
model, which can be substantially improved with learnable unbalanced OT and multi-head OT.
It sets the new state of the art for graph distance learning while still scaling log-linearly with
graph size. These contributions enable new applications and models that are both faster and
more accurate, since they can sidestep workarounds such as pooling.

9.10 Retrospective

We should note that this chapter contains contributions to three separate fields of machine learn-
ing: Kernel approximation, optimal transport, and machine learning on graphs. LCN is a method
for approximating kernel matrices. Sparse Sinkhorn and LCN-Sinkhorn are approximations
of entropy-regularized optimal transport, and learnable unbalanced OT and multi-head OT are
methods that improve optimal transport in deep learning-models. Finally, GTN merges GNNs
and OT in order to accurately and efficiently learn graph distances. This multi-faceted nature
makes fully describing the contributions of this chapter rather challenging.

There are still ample opportunities for research in all of these directions, especially in
approximating and accelerating OT, leveraging OT in deep learning-models, and graph distance
regression. The hierarchical long- and short-range approach used in LCN also has potential for
many other use cases, as recently demonstrated for attention (Chen et al., 2021).

Beyond the limitations described in App. F.2, we should also note that approximations like
sparse Sinkhorn and LCN-Sinkhorn can introduce substantial overhead. This overhead makes
them ill-suited for small sets of embeddings such as those in Table 9.3.

Furthermore, the GTN experiments presented in this chapter are solely based on synthetic
data generated via the graph edit distance (GED). Learning the GED is itself a difficult problem,
since its calculation is NP-hard. However, our main motivation of learning graph distances came
from reaction rates between molecules and similarity search. We thus leave testing GTN on
real-world applications for future work.

Finally, the Sinkhorn algorithm used in this chapter is rather basic. There are multiple
improvements that would further improve its convergence and stability, such as ε-scaling
(Schmitzer, 2016) or the methods mentioned in Sec. 9.7. Still, these methods would only
improve the accuracy and speed in embedding alignment and GTN.

112

Part IV

Conclusion

113

10 Conclusion

10.1 Summary

In this thesis we explored ways of simultaneously leveraging structural and geometric informa-
tion. We primarily focused on graph neural networks (GNNs), which are naturally based on
graph structure. Graphs provide useful high-level information, but are often only an incomplete
representation of an underlying geometric space. In this thesis we proposed methods of using
this geometric space.

To do so, we started with a use case where the underlying geometric space is explicit:
Molecules. Molecules are accurately represented by a 3D point cloud of their atom nuclei, but
can be approximated as graphs. We first focused on the case where we know this underlying
3D information and investigated ways of better leveraging this information in GNNs. We did
so by incorporating the relative directional information contained in the inter-edge angles in
the DimeNet and DimeNet++ models. We then investigated what a complete representation of
geometric information would look like. This lead to a two-hop message passing scheme based
on edge embeddings and dihedral angles in the GemNet model.

We next made the molecule’s geometric information implicit and investigated ways of substi-
tuting it with synthetic coordinates. We found two fast and effective methods of substituting this
information, one based on distance bounds between atom nuclei and one based on a symmetrized
personalized PageRank of the molecular graph.

Next, we moved to the harder case of general graphs, where there is no clear underlying
geometric space. Still, with graph diffusion convolution (GDC) we showed that we can use
notions of geometry to substitute the graph and improve the performance of graph-based models.
We then explored how to use graph-based distances to improve the scalability of GNNs via the
PPRGo model.

Finally, we looked into directly learning distances between embeddings, nodes, and graphs.
We did so by leveraging optimal transport, which lead to the question of making optimal
transport scalable enough to work with large numbers of embeddings. We tackled this problem
with the locally-corrected Nyström (LCN) method and then incorporated this in the graph
transport network (GTN), which learns distances between graphs via distances between nodes.

10.2 Retrospective

On a high level, the methods and models proposed and analyzed in this thesis demonstrate the
advantages provided by geometric information such as distances and directions. However, there
are also multiple lessons beyond geometry.

115

10 Conclusion

In Chapter 3 we used a well-known force field approximation from chemistry to obtain
intuition about where and how to improve our models. This approach seems quite general:
There are many tried-and-tested approximations in science that can provide such inductive
biases for machine learning models. Structuring models after these high-level approximations
seems like a good approach to obtain models that generalize well. However, these models should
still have full expressivity to deviate from their initialization and learn all of the problem’s
intricacies. We saw an example of this in Chapter 5, where we gained substantial improvements
by incorporating the full geometric information into our model.

In Chapters 6 and 7 we then saw that reflecting the uncertainty and smoothing out stochasticity
of our input can substantially improve our predictions. We saw this when comparing synthetic
coordinates based on molecular distance bounds with full conformer search, where the latter
performed significantly worse. Graph diffusion convolution is also an example of this, since it
smooths out the input and thus reduces the effect of the noisy discrete process that defines the
graph’s edges.

We then investigated scalability aspects in Chapter 8 and saw that the local nature of GNNs
is not just a curse, but also a blessing. Most of the literature is primarily concerned with the
reasons and negative repercussions of locality, such as oversmoothing and oversquashing. We
instead leveraged this locality by selecting a set of relevant nodes for each prediction. This
provides very efficient and massively scalable methods for GNN training and inference. For an
extended discussion on locality and long-range interactions in GNNs, see Sec. 8.8. Furthermore,
locality is not limited to GNNs. In Chapter 9 we followed a similar idea by leveraging the
locality of optimal transport to develop a massively scalable approximation.

This thesis is guided by theoretical insights, but the results are focused on empirical evidence.
Theoretical work is very valuable, since it provides insights that support and guide research and
development. However, machine learning is a supporting science and the impact on downstream
applications is what ultimately matters. Unfortunately, measuring this impact with the required
empirical rigor is often neglected, due to the associated cost, difficulty, and disappointment
from negative results. For this thesis we thus make a substantial effort to select suitable
benchmarks, fully respect the train/validation/test split, compare with appropriate and properly
tuned baselines, measure a sufficient sample size of results, and provide measures of variance or
uncertainty.

10.3 Broader impact

This thesis is primarily concerned with increasing the capabilities for machine learning models
by improving their accuracy, efficiency, and scalability. These are central model properties that
the majority of the research community is focused on. However, recent results and considerations
on the fairness of ML models, accountability, and transparency (Buolamwini & Gebru, 2018;
Weidinger et al., 2021) show that there are other major properties that research should focus on.
Today’s systems already cause harm due to a lack on these fronts. And future systems will cause
increasing harm if we continue to increase the capabilities of systems without equal advances in
fairness, interpretability, steerability, and governance. Machine learning for molecular systems
is not directly affected by these issues, but research on scalability certainly is (see Sec. 8.7).

116

10.4 Open questions

Furthermore, considering the limited resources of research labs it seems reasonable that future
work should focus more on making progress on these important complementary fronts.

10.4 Open questions

This thesis focuses on basic geometric properties such as distances and directions to enhance
GNNs. These tools are not quite sufficient to fully describe the geometry underlying a graph.
Doing so would require exploring questions such as heterophily (when edges connect disparate
nodes) and geometric curvature, e.g. hyperbolic spaces or Ricci curvature (Nickel & Kiela, 2017;
Topping et al., 2022). The impact of simple tools such as distances and directions suggests an
even greater impact possible with advanced tools and future research on geometry in GNNs.

Another interesting research direction would be exploring classical scientific models, ap-
proximations, and structures, similar in spirit to the force fields that motivate Chapter 3. These
approximations are based on decades of experience and research in the respective scientific
areas. Aligning the structure of machine learning models with this domain knowledge can
potentially provide very valuable inductive biases and improve predictions and generalization.
Possible candidates include semi-empirical methods (Bannwarth et al., 2019), density functional
theory (DFT) (Jensen, 2010), and finite element methods (Lienen & Günnemann, 2022).

In Chapters 2, 3 and 5 we have discussed some central symmetries that underlie all molecules,
such as permutation, translation, and rotation. These symmetries can be formally described
and treated, and properly incorporating them provides substantial benefits. However, they only
represent a small fraction of all symmetries underlying the data manifold. There is a multitude
of symmetries that cannot be expressed as easily, such as the invariance of image classification to
lighting or optical distortions. Trying to efficiently learn and incorporate these invariances into
models is a very interesting research direction. However, this is arguably one of the central prob-
lems of machine learning, so solving it seems extraordinarily difficult (Vapnik & Izmailov, 2019).

Another promising research direction are investigations in epistemic and aleatoric uncer-
tainty. Considering the extremely accurate predictions of modern models such as GemNet (see
Chapter 5), the next frontier is translating this success to a larger region of chemical space.
Doing so needs appropriate training data, which needs to be collected efficiently due to the
high associated computational cost. Measures of epistemic uncertainty can enable an active and
efficient exploration of the data space to optimally boost model performance. Furthermore, in
Chapter 6 we saw that reflecting the (aleatoric) uncertainty of input data can lead to significant
model improvements, and Chapter 4 demonstrated the benefit of incorporating uncertainty in
model outputs. Good uncertainty estimates furthermore give more confidence in the model’s
predictions since we know if and when it fails. Both epistemic and aleatoric uncertainty thus
seem like important pieces for improving molecular models further.

117

Bibliography

Pierre Ablin, Gabriel Peyré, and Thomas Moreau. Super-efficiency of automatic differentiation
for functions defined as a minimum. In ICML, 2020.

Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. N-GCN: Multi-scale
Graph Convolution for Semi-supervised Node Classification. In International Workshop on
Mining and Learning with Graphs (MLG), KDD, 2018.

Sami Abu-El-Haija, Bryan Perozzi, Rami Al-Rfou, and Alex Alemi. Watch Your Step: Learning
Node Embeddings via Graph Attention. In NeurIPS, 2018.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman,
Hrayr Harutyunyan, Greg Ver Steeg, and Aram Galstyan. MixHop: Higher-Order Graph
Convolutional Architectures via Sparsified Neighborhood Mixing. In ICML, 2019.

Mokhtar Z. Alaya, Maxime Berar, Gilles Gasso, and Alain Rakotomamonjy. Screening Sinkhorn
Algorithm for Regularized Optimal Transport. In NeurIPS, 2019.

Uri Alon and Eran Yahav. On the Bottleneck of Graph Neural Networks and its Practical
Implications. In ICLR, 2021.

Jason Altschuler, Francis Bach, Alessandro Rudi, and Jonathan Niles-Weed. Massively scalable
Sinkhorn distances via the Nyström method. In NeurIPS, 2019.

David Alvarez-Melis and Tommi S. Jaakkola. Gromov-Wasserstein Alignment of Word Embed-
ding Spaces. In EMNLP, 2018.

R. Andersen, F. Chung, and K. Lang. Local Graph Partitioning using PageRank Vectors. In
FOCS, 2006.

Reid Andersen, Christian Borgs, Jennifer Chayes, John Hopcraft, Vahab S. Mirrokni, and Shang-
Hua Teng. Local Computation of PageRank Contributions. In Workshop on Algorithms and
Models for the Web-Graph, 2007.

Brandon M. Anderson, Truong-Son Hy, and Risi Kondor. Cormorant: Covariant Molecular
Neural Networks. In NeurIPS, 2019.

Alexandr Andoni, Piotr Indyk, and Robert Krauthgamer. Earth mover distance over high-
dimensional spaces. In ACM-SIAM symposium on Discrete algorithms (SODA), 2008.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven, Ilya P. Razenshteyn, and Ludwig Schmidt.
Practical and Optimal LSH for Angular Distance. In NeurIPS, 2015.

119

Bibliography

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein Generative Adversarial
Networks. In ICML, 2017.

James Atwood and Don Towsley. Diffusion-Convolutional Neural Networks. In NeurIPS, 2016.

Waiss Azizian and Marc Lelarge. Expressive Power of Invariant and Equivariant Graph Neural
Networks. In ICLR, 2020.

Lars Backstrom, Paolo Boldi, Marco Rosa, Johan Ugander, and Sebastiano Vigna. Four degrees
of separation. In ACM Web Science Conference, 2012.

Arturs Backurs, Yihe Dong, Piotr Indyk, Ilya Razenshteyn, and Tal Wagner. Scalable Nearest
Neighbor Search for Optimal Transport. In ICML, 2020.

Yunsheng Bai, Hao Ding, Yizhou Sun, and Wei Wang. Convolutional Set Matching for Graph
Similarity. In Relational Representation Learning Workshop, NeurIPS, 2018.

Yunsheng Bai, Hao Ding, Song Bian, Ting Chen, Yizhou Sun, and Wei Wang. SimGNN: A
Neural Network Approach to Fast Graph Similarity Computation. In WSDM, 2019.

Christoph Bannwarth, Sebastian Ehlert, and Stefan Grimme. GFN2-xTB—An Accurate and
Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Mul-
tipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory
Comput., 15(3):1652–1671, 2019.

Albert P. Bartók, Mike C. Payne, Risi Kondor, and Gábor Csányi. Gaussian Approximation
Potentials: The Accuracy of Quantum Mechanics, without the Electrons. Physical Review
Letters, 104(13):136403, 2010.

Albert P. Bartók, Risi Kondor, and Gábor Csányi. On representing chemical environments.
Physical Review B, 87(18):184115, 2013.

Albert P. Bartók, Sandip De, Carl Poelking, Noam Bernstein, James R. Kermode, Gábor Csányi,
and Michele Ceriotti. Machine learning unifies the modeling of materials and molecules.
Science Advances, 3(12):e1701816, 2017.

Igor I. Baskin, Vladimir A. Palyulin, and Nikolai S. Zefirov. A Neural Device for Searching
Direct Correlations between Structures and Properties of Chemical Compounds. Journal of
Chemical Information and Computer Sciences, 37(4):715–721, 1997.

Peter W. Battaglia, Jessica B. Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius
Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan
Faulkner, Caglar Gulcehre, Francis Song, Andrew Ballard, Justin Gilmer, George Dahl,
Ashish Vaswani, Kelsey Allen, Charles Nash, Victoria Langston, Chris Dyer, Nicolas Heess,
Daan Wierstra, Pushmeet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu.
Relational inductive biases, deep learning, and graph networks. arXiv, 1806.01261, 2018.

120

Bibliography

Simon Batzner, Albert Musaelian, Lixin Sun, Mario Geiger, Jonathan P. Mailoa, Mordechai
Kornbluth, Nicola Molinari, Tess E. Smidt, and Boris Kozinsky. E(3)-equivariant graph neural
networks for data-efficient and accurate interatomic potentials. Nature Communications, 13
(1):2453, 2022.

Dominique Beaini, Saro Passaro, Vincent Létourneau, William L. Hamilton, Gabriele Corso,
and Pietro Liò. Directional Graph Networks. In ICML, 2021.

Jörg Behler and Michele Parrinello. Generalized Neural-Network Representation of High-
Dimensional Potential-Energy Surfaces. Physical Review Letters, 98(14):146401, 2007.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Propagating Gradients
Through Stochastic Neurons for Conditional Computation. arXiv, 1308.3432, 2013.

Dimitris Berberidis and Georgios B. Giannakis. Node Embedding with Adaptive Similarities
for Scalable Learning over Graphs. arXiv, 1811.10797, 2018.

Dimitris Berberidis, Athanasios N. Nikolakopoulos, and Georgios B. Giannakis. Adaptive
diffusions for scalable learning over graphs. IEEE Transactions on Signal Processing, 67(5):
1307–1321, 2019.

Christian Berg, Jens Peter Reus Christensen, and Paul Ressel. Harmonic Analysis on Semigroups.
Number 100 in Graduate Texts in Mathematics. 1984.

Amit Bermanis, Amir Averbuch, and Ronald R. Coifman. Multiscale data sampling and function
extension. Applied and Computational Harmonic Analysis, 34(1):15–29, 2013.

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph Neural
Networks with convolutional ARMA filters. arXiv, 1901.01343, 2019.

Kristian Birchall, Valerie J. Gillet, Gavin Harper, and Stephen D. Pickett. Training Similarity
Measures for Specific Activities: Application to Reduced Graphs. Journal of Chemical
Information and Modeling, 46(2):577–586, 2006.

Mathieu Blondel, Vivien Seguy, and Antoine Rolet. Smooth and Sparse Optimal Transport. In
AISTATS, 2018.

Alexander Bogatskiy, Brandon Anderson, Jan Offermann, Marwah Roussi, David Miller, and
Risi Kondor. Lorentz Group Equivariant Neural Network for Particle Physics. In ICML,
2020.

Aleksandar Bojchevski and Stephan Günnemann. Deep Gaussian Embedding of Graphs:
Unsupervised Inductive Learning via Ranking. In ICLR, 2018.

Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Martin Blais, Amol Kapoor, Michal
Lukasik, and Stephan Günnemann. Is PageRank All You Need for Scalable Graph Neural
Networks? In International Workshop on Mining and Learning with Graphs (MLG), 2019.

121

Bibliography

Aleksandar Bojchevski, Johannes Gasteiger, and Stephan Günnemann. Efficient Robustness
Certificates for Discrete Data: Sparsity-Aware Randomized Smoothing for Graphs, Images
and More. In ICML, 2020.

Aleksandar Bojchevski, Johannes Gasteiger, Bryan Perozzi, Amol Kapoor, Martin Blais,
Benedek Rózemberczki, Michal Lukasik, and Stephan Günnemann. Scaling Graph Neural
Networks with Approximate PageRank. In KDD, 2020.

Paolo Boldi, Violetta Lonati, Massimo Santini, and Sebastiano Vigna. Graph fibrations, graph
isomorphism, and PageRank. RAIRO Theor. Informatics Appl., 40(2):227–253, 2006.

Olivier Bousquet, Sylvain Gelly, Ilya Tolstikhin, Carl-Johann Simon-Gabriel, and Bernhard
Schoelkopf. From optimal transport to generative modeling: the VEGAN cookbook. arXiv,
1705.07642, 2017.

Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J. Bekkers, and Max Welling.
Geometric and Physical Quantities Improve E(3) Equivariant Message Passing. In ICLR,
2022.

Andrew Brock, Soham De, and Samuel L. Smith. Characterizing signal propagation to close the
performance gap in unnormalized ResNets. In ICLR, 2021.

Andrew Brock, Soham De, Samuel L. Smith, and Karen Simonyan. High-Performance Large-
Scale Image Recognition Without Normalization. arXiv, 2102.06171, 2021b.

Marc Brockschmidt. GNN-FiLM: Graph Neural Networks with Feature-wise Linear Modulation.
In ICML, 2020.

Michael M. Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric Deep
Learning: Grids, Groups, Graphs, Geodesics, and Gauges. 2021.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral Networks and Locally
Connected Networks on Graphs. arXiv, 1312.6203, 2013.

Eliav Buchnik and Edith Cohen. Bootstrapped Graph Diffusions: Exposing the Power of
Nonlinearity. Proceedings of the ACM on Measurement and Analysis of Computing Systems
(POMACS), 2(1):1–19, 2018.

Joy Buolamwini and Timnit Gebru. Gender Shades: Intersectional Accuracy Disparities in
Commercial Gender Classification. In FAccT, 2018.

Lawrence F. Canino, John J. Ottusch, Mark A. Stalzer, John L. Visher, and Stephen M. Wandzura.
Numerical Solution of the Helmholtz Equation in 2D and 3D Using a High-Order Nyström
Discretization. Journal of Computational Physics, 146(2):627–663, 1998.

Benjamin Chamberlain, James Rowbottom, Davide Eynard, Francesco Di Giovanni, Xiaowen
Dong, and Michael Bronstein. Beltrami Flow and Neural Diffusion on Graphs. In NeurIPS,
2021.

122

Bibliography

Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R. Henry, Robert
Bradshaw, and Nathan Weizenbaum. FlumeJava: easy, efficient data-parallel pipelines. ACM
SIGPLAN Notices, 45(6):363–375, 2010.

Ines Chami, Sami Abu-El-Haija, Bryan Perozzi, Christopher Ré, and Kevin Murphy. Machine
Learning on Graphs: A Model and Comprehensive Taxonomy. arXiv, 2005.03675, 2020.

Lowik Chanussot, Abhishek Das, Siddharth Goyal, Thibaut Lavril, Muhammed Shuaibi, Mor-
gane Riviere, Kevin Tran, Javier Heras-Domingo, Caleb Ho, Weihua Hu, Aini Palizhati,
Anuroop Sriram, Brandon Wood, Junwoong Yoon, Devi Parikh, C. Lawrence Zitnick, and
Zachary Ulissi. Open Catalyst 2020 (OC20) Dataset and Community Challenges. ACS
Catalysis, 11(10):6059–6072, 2021.

Moses Charikar. Similarity estimation techniques from rounding algorithms. In ACM symposium
on Theory of computing (STOC), 2002.

Beidi Chen, Tri Dao, Eric Winsor, Zhao Song, Atri Rudra, and Christopher Ré. Scatterbrain:
Unifying Sparse and Low-rank Attention. In NeurIPS, 2021.

Chi Chen, Weike Ye, Yunxing Zuo, Chen Zheng, and Shyue Ping Ong. Graph Networks as a
Universal Machine Learning Framework for Molecules and Crystals. Chemistry of Materials,
31(9):3564–3572, 2019a.

Jianfei Chen, Jun Zhu, and Le Song. Stochastic Training of Graph Convolutional Networks
with Variance Reduction. In ICML, 2018.

Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast Learning with Graph Convolutional
Networks via Importance Sampling. In ICLR, 2018.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and Deep Graph
Convolutional Networks. In ICML, 2020.

Siheng Chen, Aliaksei Sandryhaila, Jose M. F. Moura, and Jelena Kovacevic. Adaptive graph
filtering: Multiresolution classification on graphs. In IEEE Global Conference on Signal and
Information Processing (GlobalSIP), 2013.

Zhengdao Chen, Lisha Li, and Joan Bruna. Supervised Community Detection with Line Graph
Neural Networks. In ICLR, 2019.

Xiuyuan Cheng, Qiang Qiu, A. Robert Calderbank, and Guillermo Sapiro. RotDCF: De-
composition of Convolutional Filters for Rotation-Equivariant Deep Networks. In ICLR,
2019.

Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh. Cluster-GCN:
An Efficient Algorithm for Training Deep and Large Graph Convolutional Networks. In KDD,
2019.

123

Bibliography

Lénaïc Chizat, Gabriel Peyré, Bernhard Schmitzer, and François-Xavier Vialard. Scaling
algorithms for unbalanced optimal transport problems. Mathematics of Computation, 87
(314):2563–2609, 2018.

Stefan Chmiela, Alexandre Tkatchenko, Huziel E. Sauceda, Igor Poltavsky, Kristof T. Schütt,
and Klaus-Robert Müller. Machine learning of accurate energy-conserving molecular force
fields. Science Advances, 3(5):e1603015, 2017.

Stefan Chmiela, Huziel E. Sauceda, Klaus-Robert Müller, and Alexandre Tkatchenko. To-
wards exact molecular dynamics simulations with machine-learned force fields. Nature
Communications, 9(1):1–10, 2018.

Anders S. Christensen and O. Anatole von Lilienfeld. On the role of gradients for machine
learning of molecular energies and forces. Machine Learning: Science and Technology, 1(4):
045018, 2020.

Anders S. Christensen, Lars A. Bratholm, Felix A. Faber, and O. Anatole von Lilienfeld. FCHL
revisited: Faster and more accurate quantum machine learning. The Journal of Chemical
Physics, 152(4):044107, 2020.

F. Chung. The heat kernel as the pagerank of a graph. Proceedings of the National Academy of
Sciences, 104(50):19735–19740, 2007.

Taco Cohen and Max Welling. Group Equivariant Convolutional Networks. In ICML, 2016.

Taco Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge Equivariant
Convolutional Networks and the Icosahedral CNN. In ICML, 2019.

Taco S. Cohen and Max Welling. Steerable CNNs. In ICLR, 2017.

Taco S. Cohen, Mario Geiger, Jonas Köhler, and Max Welling. Spherical CNNs. In ICLR, 2018.

Taco S Cohen, Mario Geiger, and Maurice Weiler. A General Theory of Equivariant CNNs on
Homogeneous Spaces. In NeurIPS, 2019.

Henry Cohn. A Conceptual Breakthrough in Sphere Packing. Notices of the American Mathe-
matical Society, 64(02):102–115, 2017.

Alexis Conneau, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and Hervé Jégou.
Word translation without parallel data. In ICLR, 2018.

Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. Principal
Neighbourhood Aggregation for Graph Nets. In NeurIPS, 2020.

Nicolas Courty, Rémi Flamary, Amaury Habrard, and Alain Rakotomamonjy. Joint distribution
optimal transportation for domain adaptation. In NeurIPS, 2017.

Marco Cuturi. Sinkhorn Distances: Lightspeed Computation of Optimal Transport. In NeurIPS,
2013.

124

Bibliography

Hanjun Dai, Bo Dai, and Le Song. Discriminative Embeddings of Latent Variable Models for
Structured Data. In ICML, 2016.

Soham De and Sam Smith. Batch Normalization Biases Residual Blocks Towards the Identity
Function in Deep Networks. In NeurIPS, 2020.

Pim de Haan, Taco S Cohen, and Max Welling. Natural Graph Networks. In NeurIPS, 2020.

Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Inference and
phase transitions in the detection of modules in sparse networks. Physical Review Letters,
107(6):065701, 2011.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional Neural Networks
on Graphs with Fast Localized Spectral Filtering. In NeurIPS, 2016.

Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, and Zhuo Feng. GraphZoom: A
Multi-level Spectral Approach for Accurate and Scalable Graph Embedding. In ICLR, 2020.

Tyler Derr, Yao Ma, and Jiliang Tang. Signed Graph Convolutional Networks. In ICDM, 2018.

Yi Ding, Risi Kondor, and Jonathan Eskreis-Winkler. Multiresolution Kernel Approximation
for Gaussian Process Regression. In NeurIPS, 2017.

Paul D. Dobson and Andrew J. Doig. Distinguishing enzyme structures from non-enzymes
without alignments. Journal of Molecular Biology, 330(4):771–783, 2003.

J. R. Driscoll and D. M. Healy. Computing Fourier Transforms and Convolutions on the
2-Sphere. Advances in Applied Mathematics, 15(2):202–250, 1994.

Joseph L. Durant, Burton A. Leland, Douglas R. Henry, and James G. Nourse. Reoptimization
of MDL Keys for Use in Drug Discovery. Journal of Chemical Information and Computer
Sciences, 42(6):1273–1280, 2002.

David K. Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli,
Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional Networks on Graphs
for Learning Molecular Fingerprints. In NeurIPS, 2015.

Pavel E. Dvurechensky, Alexander Gasnikov, and Alexey Kroshnin. Computational Optimal
Transport: Complexity by Accelerated Gradient Descent Is Better Than by Sinkhorn’s
Algorithm. In ICML, 2018.

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking Graph Neural Networks. arXiv, 2003.00982, 2020.

Nadav Dym and Haggai Maron. On the Universality of Rotation Equivariant Point Cloud
Networks. In ICLR, 2021.

Jean-Paul Ebejer, Garrett M. Morris, and Charlotte M. Deane. Freely Available Conformer
Generation Methods: How Good Are They? Journal of Chemical Information and Modeling,
52(5):1146–1158, 2012.

125

Bibliography

Coraline Ada Ehmke. The Hippocratic License 2.1: An Ethical License for Open Source., 2020.
URL https://firstdonoharm.dev.

Stefan Elfwing, Eiji Uchibe, and Kenji Doya. Sigmoid-weighted linear units for neural network
function approximation in reinforcement learning. Neural Networks, 107:3–11, 2018.

Peter Ertl and Ansgar Schuffenhauer. Estimation of synthetic accessibility score of drug-
like molecules based on molecular complexity and fragment contributions. Journal of
Cheminformatics, 1(1):8, 2009.

Montacer Essid and Justin Solomon. Quadratically Regularized Optimal Transport on Graphs.
SIAM Journal on Scientific Computing, 40(4):A1961–A1986, 2018.

Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia, and Kostas Daniilidis. Learning
SO(3) Equivariant Representations with Spherical CNNs. In ECCV, 2018.

Carlos Esteves, Ameesh Makadia, and Kostas Daniilidis. Spin-Weighted Spherical CNNs. In
NeurIPS, 2020.

Felix A. Faber, Luke Hutchison, Bing Huang, Justin Gilmer, Samuel S. Schoenholz, George E.
Dahl, Oriol Vinyals, Steven Kearnes, Patrick F. Riley, and O. Anatole von Lilienfeld. Predic-
tion Errors of Molecular Machine Learning Models Lower than Hybrid DFT Error. Journal
of Chemical Theory and Computation, 13(11):5255–5264, 2017.

Felix A. Faber, Anders S. Christensen, Bing Huang, and O. Anatole von Lilienfeld. Alchemical
and structural distribution based representation for universal quantum machine learning. The
Journal of Chemical Physics, 148(24):241717, 2018.

Matthias Fey and Jan E. Lenssen. Fast Graph Representation Learning with PyTorch Geometric.
In Workshop on Representation Learning on Graphs and Manifolds, ICLR, 2019.

Matthias Fey, Jan-Gin Yuen, and Frank Weichert. Hierarchical Inter-Message Passing for
Learning on Molecular Graphs. In Workshop on Graph Representation Learning and Beyond,
ICML, 2020.

Marc Finzi, Samuel Stanton, Pavel Izmailov, and Andrew Gordon Wilson. Generalizing
Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous
Data. In ICML, 2020.

Daniel Flam-Shepherd, Tony C. Wu, Pascal Friederich, and Alan Aspuru-Guzik. Neural Message
Passing on High Order Paths. Machine Learning: Science and Technology, 2021.

Dániel Fogaras and Balázs Rácz. Towards Scaling Fully Personalized PageRank. In Workshop
on Algorithms and Models for the Web-Graph, 2004.

Dakota Folmsbee and Geoffrey Hutchison. Assessing conformer energies using electronic
structure and machine learning methods. International Journal of Quantum Chemistry, 121
(1):e26381, 2021.

126

https://firstdonoharm.dev

Bibliography

Aden Forrow, Jan-Christian Hütter, Mor Nitzan, Philippe Rigollet, Geoffrey Schiebinger, and
Jonathan Weed. Statistical Optimal Transport via Factored Couplings. In AISTATS, 2019.

François Fouss, Kevin Francoisse, Luh Yen, Alain Pirotte, and Marco Saerens. An experimental
investigation of kernels on graphs for collaborative recommendation and semisupervised
classification. Neural Networks, 31:53–72, 2012.

William T Freeman and Edward H Adelson. The Design and Use of Steerable Filters. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 13(9):891–906, 1991.

Charlie Frogner, Chiyuan Zhang, Hossein Mobahi, Mauricio Araya-Polo, and Tomaso A. Poggio.
Learning with a Wasserstein Loss. In NeurIPS, 2015.

Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max Welling. SE(3)-Transformers: 3D
Roto-Translation Equivariant Attention Networks. In NeurIPS, 2020.

Yasuhiro Fujiwara, Makoto Nakatsuji, Hiroaki Shiokawa, Takeshi Mishima, and Makoto
Onizuka. Fast and Exact Top-k Algorithm for PageRank. In AAAI, 2013.

P. Gainza, F. Sverrisson, F. Monti, E. Rodolà, D. Boscaini, M. M. Bronstein, and B. E. Correia.
Deciphering interaction fingerprints from protein molecular surfaces using geometric deep
learning. Nature Methods, 17(2):184–192, 2020.

Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-Scale Learnable Graph Convolu-
tional Networks. In KDD, 2018.

Vikas Garg, Stefanie Jegelka, and Tommi Jaakkola. Generalization and Representational Limits
of Graph Neural Networks. In ICML, 2020.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then Propagate:
Graph Neural Networks Meet Personalized PageRank. In ICLR, 2019.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion Improves Graph
Learning. In NeurIPS, 2019.

Johannes Gasteiger, Shankari Giri, Johannes T. Margraf, and Stephan Günnemann. Fast and
Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules. In Machine
Learning for Molecules Workshop, NeurIPS, 2020.

Johannes Gasteiger, Janek Groß, and Stephan Günnemann. Directional Message Passing for
Molecular Graphs. In ICLR, 2020.

Johannes Gasteiger, Florian Becker, and Stephan Günnemann. GemNet: Universal Directional
Graph Neural Networks for Molecules. In NeurIPS, 2021.

Johannes Gasteiger, Marten Lienen, and Stephan Günnemann. Scalable Optimal Transport in
High Dimensions for Graph Distances, Embedding Alignment, and More. In ICML, 2021.

Johannes Gasteiger, Chandan Yeshwanth, and Stephan Günnemann. Directional Message
Passing on Molecular Graphs via Synthetic Coordinates. In NeurIPS, 2021.

127

Bibliography

Johannes Gasteiger, Muhammed Shuaibi, Anuroop Sriram, Stephan Günnemann, Zachary Ulissi,
C. Lawrence Zitnick, and Abhishek Das. How Do Graph Networks Generalize to Large and
Diverse Molecular Systems? arXiv, 2204.02782, 2022.

Mario Geiger, Tess Smidt, Alby M, Benjamin Kurt Miller, Wouter Boomsma, Bradley Dice,
Kostiantyn Lapchevskyi, Maurice Weiler, Michał Tyszkiewicz, Simon Batzner, Jes Frellsen,
Nuri Jung, Sophia Sanborn, Josh Rackers, and Michael Bailey. e3nn, 2021. URL https:
//doi.org/10.5281/zenodo.4745784.

Simon Geisler, Daniel Zügner, and Stephan Günnemann. Reliable Graph Neural Networks via
Robust Aggregation. In NeurIPS, 2020.

Aude Genevay, Marco Cuturi, Gabriel Peyré, and Francis R. Bach. Stochastic Optimization for
Large-scale Optimal Transport. In NeurIPS, 2016.

Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning Generative Models with Sinkhorn
Divergences. In AISTATS, 2018.

Samuel Gerber and Mauro Maggioni. Multiscale Strategies for Computing Optimal Transport.
J. Mach. Learn. Res., 18:72:1–72:32, 2017.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl.
Neural Message Passing for Quantum Chemistry. In ICML, 2017.

David F. Gleich, Kyle Kloster, and Huda Nassar. Localization in Seeded PageRank. arXiv,
1509.00016, 2015.

M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In IEEE
International Joint Conference on Neural Networks, 2005.

Edouard Grave, Armand Joulin, and Quentin Berthet. Unsupervised Alignment of Embeddings
with Wasserstein Procrustes. In AISTATS, 2019.

David J. Griffiths and Darrell F. Schroeter. Introduction to Quantum Mechanics. 3 edition, 2018.

Stefan Grimme. Exploration of Chemical Compound, Conformer, and Reaction Space with
Meta-Dynamics Simulations Based on Tight-Binding Quantum Chemical Calculations. Jour-
nal of Chemical Theory and Computation, 15(5):2847–2862, 2019.

Stefan Grimme and Andreas Hansen. A Practicable Real-Space Measure and Visualization of
Static Electron-Correlation Effects. Angew. Chemie - Int. Ed., 54(42):12308–12313, 2015.

Aditya Grover and Jure Leskovec. node2vec: Scalable Feature Learning for Networks. In KDD,
2016.

Thomas A. Halgren. Merck molecular force field. I. Basis, form, scope, parameterization, and
performance of MMFF94. Journal of Computational Chemistry, 17(5-6):490–519, 1996.

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive Representation Learning on
Large Graphs. In NeurIPS, 2017.

128

https://doi.org/10.5281/zenodo.4745784
https://doi.org/10.5281/zenodo.4745784

Bibliography

David K. Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on graphs via
spectral graph theory. Applied and Computational Harmonic Analysis, 30(2):129–150, 2011.

L.K. Hansen and P. Salamon. Neural network ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(10):993–1001, 1990.

Zhongkai Hao, Chengqiang Lu, Zhenya Huang, Hao Wang, Zheyuan Hu, Qi Liu, Enhong Chen,
and Cheekong Lee. ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction. In KDD, 2020.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive Multi-View Representation Learning
on Graphs. In ICML, 2020.

Timothy F. Havel. Distance Geometry: Theory, Algorithms, and Chemical Applications. In
Encyclopedia of Computational Chemistry. 2002.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In CVPR, 2016.

Mikael Henaff, Joan Bruna, and Yann LeCun. Deep Convolutional Networks on Graph-
Structured Data. arXiv, 1506.05163, 2015.

Lior Hirschfeld, Kyle Swanson, Kevin Yang, Regina Barzilay, and Connor W. Coley. Uncer-
tainty Quantification Using Neural Networks for Molecular Property Prediction. Journal of
Chemical Information and Modeling, 60(8):3770–3780, 2020.

Johannes Hoja, Leonardo Medrano Sandonas, Brian G. Ernst, Alvaro Vazquez-Mayagoitia,
Robert A. DiStasio Jr., and Alexandre Tkatchenko. QM7-X: A comprehensive dataset of
quantum-mechanical properties spanning the chemical space of small organic molecules.
arXiv, 2006.15139, 2020.

Paul L. Houston, Apurba Nandi, and Joel M. Bowman. A Machine Learning Approach for
Prediction of Rate Constants. The Journal of Physical Chemistry Letters, 10(17):5250–5258,
2019.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open Graph Benchmark: Datasets for Machine Learning on
Graphs. In NeurIPS, 2020.

Weihua Hu, Muhammed Shuaibi, Abhishek Das, Siddharth Goyal, Anuroop Sriram, Jure
Leskovec, Devi Parikh, and C. Lawrence Zitnick. ForceNet: A Graph Neural Network for
Large-Scale Quantum Calculations. arXiv, 2103.01436, 2021.

Bing Huang and O. Anatole von Lilienfeld. Quantum machine learning using atom-in-molecule-
based fragments selected on the fly. Nature Chemistry, 12(10):945–951, 2020.

Qian Huang, Horace He, Abhay Singh, Ser-Nam Lim, and Austin Benson. Combining Label
Propagation and Simple Models out-performs Graph Neural Networks. In ICLR, 2021.

129

Bibliography

Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. Adaptive Sampling Towards Fast
Graph Representation Learning. In NeurIPS, 2018.

Truong Son Hy, Shubhendu Trivedi, Horace Pan, Brandon M. Anderson, and Risi Kondor.
Predicting molecular properties with covariant compositional networks. The Journal of
Chemical Physics, 148(24):241745, 2018.

Piotr Indyk and Nitin Thaper. Fast image retrieval via embeddings. In International Workshop
on Statistical and Computational Theories of Vision, ICCV, 2003.

John Ingraham, Vikas K. Garg, Regina Barzilay, and Tommi S. Jaakkola. Generative Models for
Graph-Based Protein Design. In Workshop on Deep Generative Models for Highly Structured
Data, ICLR, 2019.

John J. Irwin, Teague Sterling, Michael M. Mysinger, Erin S. Bolstad, and Ryan G. Coleman.
ZINC: A Free Tool to Discover Chemistry for Biology. Journal of Chemical Information and
Modeling, 52(7):1757–1768, 2012.

Arun Jambulapati, Aaron Sidford, and Kevin Tian. A Direct $\tilde{O}(1/epsilon)$ Iteration
Parallel Algorithm for Optimal Transport. In NeurIPS, 2019.

Glen Jeh and Jennifer Widom. Scaling personalized web search. In WWW, 2003.

Jan H. Jensen. Molecular Modeling Basics. Illustrated edition edition, 2010.

Kurt Jetter, Joachim Stöckler, and Joseph Ward. Error estimates for scattered data interpolation
on spheres. Mathematics of Computation, 68(226):733–747, 1999.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junction Tree Variational Autoencoder for
Molecular Graph Generation. In ICML, 2018.

Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David A. Shamma, Michael S.
Bernstein, and Fei-Fei Li. Image retrieval using scene graphs. In CVPR, 2015.

Eric Jones, Travis Oliphant, Pearu Peterson, and others. SciPy: Open source scientific tools for
Python. 2001.

Armand Joulin, Piotr Bojanowski, Tomas Mikolov, Hervé Jégou, and Edouard Grave. Loss in
Translation: Learning Bilingual Word Mapping with a Retrieval Criterion. In EMNLP, 2018.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex
Bridgland, Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino
Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen,
David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska,
Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior,
Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure
prediction with AlphaFold. Nature, 596(7873):583–589, 2021.

130

Bibliography

Peter Bjørn Jørgensen, Karsten Wedel Jacobsen, and Mikkel N. Schmidt. Neural Message
Passing with Edge Updates for Predicting Properties of Molecules and Materials. arXiv,
1806.03146, 2018.

Ilana Y. Kanal, John A. Keith, and Geoffrey R. Hutchison. A sobering assessment of small-
molecule force field methods for low energy conformer predictions. International Journal of
Quantum Chemistry, 118(5):e25512, 2018.

Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kaufmann, Andrew Tomkins, Balint Miklos,
Greg Corrado, Laszlo Lukacs, Marina Ganea, Peter Young, and Vivek Ramavajjala. Smart
Reply: Automated Response Suggestion for Email. In KDD, 2016.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in
networks. Physical review E, 83(1):016107, 2011.

George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme for Partitioning
Irregular Graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

Jens Keiner, Stefan Kunis, and Daniel Potts. Efficient Reconstruction of Functions on the Sphere
from Scattered Data. Journal of Fourier Analysis and Applications, 13(4):435–458, 2007.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. In ICLR,
2015.

Thomas N. Kipf and Max Welling. Variational Graph Auto-Encoders. In Workshop on Bayesian
Deep Learning, NeurIPS, 2016.

Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. In ICLR, 2017.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In NeurIPS, 2017.

Kyle Kloster and David F Gleich. Heat kernel based community detection. In KDD, 2014.

Isabel M. Kloumann, Johan Ugander, and Jon Kleinberg. Block models and personalized
PageRank. Proceedings of the National Academy of Sciences, 114(1):33–38, 2017.

Risi Kondor and Shubhendu Trivedi. On the Generalization of Equivariance and Convolution in
Neural Networks to the Action of Compact Groups. In ICML, 2018.

Risi Kondor, Zhen Lin, and Shubhendu Trivedi. Clebsch-Gordan Nets: a Fully Fourier Space
Spherical Convolutional Neural Network. In NeurIPS, 2018.

Risi Kondor, Truong Son Hy, Horace Pan, Brandon M. Anderson, and Shubhendu Trivedi.
Covariant Compositional Networks For Learning Graphs. In International Workshop on
Mining and Learning with Graphs (MLG), KDD, 2019.

Risi Imre Kondor and John Lafferty. Diffusion kernels on graphs and other discrete structures.
In ICML, 2002.

131

Bibliography

Peter J. Kostelec and Daniel N. Rockmore. FFTs on the Rotation Group. Journal of Fourier
Analysis and Applications, 14(2):145–179, 2008.

Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, and Alan Aspuru-Guzik.
Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation.
Machine Learning: Science and Technology, 1(4):045024, 2020.

Sofia Ira Ktena, Sarah Parisot, Enzo Ferrante, Martin Rajchl, Matthew Lee, Ben Glocker,
and Daniel Rueckert. Distance Metric Learning Using Graph Convolutional Networks:
Application to Functional Brain Networks. In MICCAI, 2017.

Matt J. Kusner, Brooks Paige, and José Miguel Hernández-Lobato. Grammar Variational
Autoencoder. In ICML, 2017.

Stéphane Lafon and Ann B. Lee. Diffusion Maps and Coarse-Graining: A Unified Framework
for Dimensionality Reduction, Graph Partitioning, and Data Set Parameterization. IEEE
Trans. Pattern Anal. Mach. Intell., 28(9):1393–1403, 2006.

Edmund Landau. Zur relativen Wertbemessung der Turnierresultate. Deutsches Wochenschach,
11:366–369, 1895.

Andrew Leach. Molecular Modelling: Principles and Applications. 2. edition edition, 2001.

Dominik Lemm, Guido Falk von Rudorff, and O. Anatole von Lilienfeld. Machine learning
based energy-free structure predictions of molecules, transition states, and solids. Nature
Communications, 12(1):4468, 2021.

Julien Lerouge, Zeina Abu-Aisheh, Romain Raveaux, Pierre Héroux, and Sébastien Adam. New
binary linear programming formulation to compute the graph edit distance. Pattern Recognit.,
72:254–265, 2017.

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over Time: Densification Laws,
Shrinking Diameters and Possible Explanations. In KDD, 2005.

Guohao Li, Chenxin Xiong, Ali Thabet, and Bernard Ghanem. DeeperGCN: All You Need to
Train Deeper GCNs. arXiv, 2006.07739, 2020.

Pan Li, I. (Eli) Chien, and Olgica Milenkovic. Optimizing Generalized PageRank Methods for
Seed-Expansion Community Detection. In NeurIPS, 2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper Insights Into Graph Convolutional
Networks for Semi-Supervised Learning. In AAAI, 2018.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive Graph Convolutional
Neural Networks. In AAAI, 2018.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion Convolutional Recurrent Neural
Network: Data-Driven Traffic Forecasting. In ICLR, 2018.

132

Bibliography

Yujia Li, Daniel Tarlow, Marc Brockschmidt, and Richard S. Zemel. Gated Graph Sequence
Neural Networks. In ICLR, 2016.

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, and Pushmeet Kohli. Graph Matching
Networks for Learning the Similarity of Graph Structured Objects. In ICML, 2019.

Marten Lienen and Stephan Günnemann. Learning the Dynamics of Physical Systems from
Sparse Observations with Finite Element Networks. In ICLR, 2022.

Chih-Long Lin. Hardness of Approximating Graph Transformation Problem. In ISAAC, 1994.

Yi Liu, Limei Wang, Meng Liu, Yuchao Lin, Xuan Zhang, Bora Oztekin, and Shuiwang Ji.
Spherical Message Passing for 3D Molecular Graphs. In ICLR, 2022.

Ziteng Liu, Liqiang Lin, Qingqing Jia, Zheng Cheng, Yanyan Jiang, Yanwen Guo, and Jing
Ma. Transferable Multi-level Attention Neural Network for Accurate Prediction of Quantum
Chemistry Properties via Multi-task Learning. ChemRxiv, 12588170.v1, 2020.

Peter Lofgren, Siddhartha Banerjee, and Ashish Goel. Personalized PageRank Estimation and
Search: A Bidirectional Approach. In WSDM, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization. In ICLR, 2018.

Chengqiang Lu, Qi Liu, Chao Wang, Zhenya Huang, Peize Lin, and Lixin He. Molecular
Property Prediction: A Multilevel Quantum Interactions Modeling Perspective. In AAAI,
2019.

Ping Luo, Xinjiang Wang, Wenqi Shao, and Zhanglin Peng. Towards Understanding Regular-
ization in Batch Normalization. In ICLR, 2019.

Jeremy Ma, Weiyu Huang, Santiago Segarra, and Alejandro Ribeiro. Diffusion filtering of graph
signals and its use in recommendation systems. In ICASSP, 2016.

Zheng Ma, Ming Li, and Yuguang Wang. PAN: Path Integral Based Convolution for Deep
Graph Neural Networks. In Workshop on Learning and Reasoning with Graph-Structured
Representations, ICML, 2019.

Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal Frossard. GOT:
An Optimal Transport framework for Graph comparison. In NeurIPS, 2019.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably Powerful
Graph Networks. In NeurIPS, 2019.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and Equivariant
Graph Networks. In ICLR, 2019.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the Universality of Invariant
Networks. In ICML, 2019.

133

Bibliography

Haggai Maron, Or Litany, Gal Chechik, and Ethan Fetaya. On Learning Sets of Symmetric
Elements. In ICML, 2020.

Naoki Masuda, Mason A Porter, and Renaud Lambiotte. Random walks and diffusion on
networks. Physics reports, 716:1–58, 2017.

Julian J. McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hengel. Image-Based
Recommendations on Styles and Substitutes. In SIGIR, 2015.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating
the construction of internet portals with machine learning. Information Retrieval, 3(2):
127–163, 2000.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in
social networks. Annual review of sociology, 27(1):415–444, 2001.

Jörg Menche, Amitabh Sharma, Maksim Kitsak, Susan Ghiassian, Marc Vidal, Joseph Loscalzo,
and Albert-László Barabási. Uncovering disease-disease relationships through the incomplete
human interactome. Science, 347(6224):1257601, 2015.

Cheng Meng, Yuan Ke, Jingyi Zhang, Mengrui Zhang, Wenxuan Zhong, and Ping Ma. Large-
scale optimal transport map estimation using projection pursuit. In NeurIPS, 2019.

Arthur Mensch and Gabriel Peyré. Online Sinkhorn: Optimal Transport distances from sample
streams. In NeurIPS, 2020.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Distributed
Representations of Words and Phrases and their Compositionality. In NeurIPS, 2013.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and
Michael M. Bronstein. Geometric Deep Learning on Graphs and Manifolds Using Mixture
Model CNNs. In CVPR, 2017.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen,
Gaurav Rattan, and Martin Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph
Neural Networks. In AAAI, 2019.

Christopher Morris, Gaurav Rattan, and Petra Mutzel. Weisfeiler and Leman go sparse: Towards
scalable higher-order graph embeddings. In NeurIPS, 2020.

Albert Musaelian, Simon Batzner, Anders Johansson, Lixin Sun, Cameron J. Owen, Mordechai
Kornbluth, and Boris Kozinsky. Learning Local Equivariant Representations for Large-Scale
Atomistic Dynamics. arXiv, 2204.05249, 2022.

Cameron Musco and Christopher Musco. Recursive Sampling for the Nystrom Method. In
NeurIPS, 2017.

Félix Musil, Michael J. Willatt, Mikhail A. Langovoy, and Michele Ceriotti. Fast and Accurate
Uncertainty Estimation in Chemical Machine Learning. Journal of Chemical Theory and
Computation, 15(2):906–915, 2019.

134

Bibliography

Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven Active Surveying for
Collective Classification. In International Workshop on Mining and Learning with Graphs
(MLG), KDD, 2012.

Huda Nassar, Kyle Kloster, and David F. Gleich. Strong Localization in Personalized PageRank
Vectors. In International Workshop on Algorithms and Models for the Web Graph (WAW),
2015.

Michel Neuhaus and Horst Bunke. An Error-Tolerant Approximate Matching Algorithm for
Attributed Planar Graphs and Its Application to Fingerprint Classification. In Structural,
Syntactic, and Statistical Pattern Recognition, 2004.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On Spectral Clustering: Analysis and an
algorithm. In NeurIPS, 2002.

Maximillian Nickel and Douwe Kiela. Poincaré Embeddings for Learning Hierarchical Repre-
sentations. In NeurIPS, 2017.

Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning Convolutional Neural
Networks for Graphs. In ICML, 2016.

Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. Matching Node
Embeddings for Graph Similarity. In AAAI, 2017.

David Nistér and Henrik Stewénius. Scalable Recognition with a Vocabulary Tree. In CVPR,
2006.

D.A. Nix and A.S. Weigend. Estimating the mean and variance of the target probability
distribution. In ICNN, 1994.

Emmy Noether. Invariante Variationsprobleme. Nachrichten von der Gesellschaft der Wis-
senschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918:235–257, 1918.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bringing order to the web. Report, Stanford InfoLab, 1998.

Nicolas Papadakis, Gabriel Peyré, and Édouard Oudet. Optimal Transport with Proximal
Splitting. SIAM J. Imaging Sciences, 7(1):212–238, 2014.

Cheol Woo Park, Mordechai Kornbluth, Jonathan Vandermause, Chris Wolverton, Boris Kozin-
sky, and Jonathan P. Mailoa. Accurate and scalable graph neural network force field and
molecular dynamics with direct force architecture. npj Computational Materials, 7(1):1–9,
2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style,
High-Performance Deep Learning Library. In NeurIPS, 2019.

135

Bibliography

Loïc Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive hashing: A comparison of
hash function types and querying mechanisms. Pattern Recognit. Lett., 31(11):1348–1358,
2010.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake
Vanderplas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and
Édouard Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning
Research, 12:2825–2830, 2011.

Tiago P. Peixoto. The graph-tool python library. figshare, 2014.

Allon G Percus and Olivier C Martin. Scaling Universalities ofkth-Nearest Neighbor Distances
on Closed Manifolds. Advances in Applied Mathematics, 21(3):424–436, 1998.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. DeepWalk: online learning of social
representations. In KDD, 2014.

Bryan Perozzi, Michael Schueppert, Jack Saalweachter, and Mayur Thakur. When Recommen-
dation Goes Wrong: Anomalous Link Discovery in Recommendation Networks. In KDD,
2016.

Gabriel Peyré and Marco Cuturi. Computational Optimal Transport. Foundations and Trends in
Machine Learning, 11(5-6):355–607, 2019.

Trang Pham, Truyen Tran, Dinh Q. Phung, and Svetha Venkatesh. Column Networks for
Collective Classification. In AAAI, 2017.

Sergey N. Pozdnyakov and Michele Ceriotti. Incompleteness of graph convolutional neural
networks for points clouds in three dimensions. arXiv, 2201.07136, 2022.

Daniel Probst and Jean-Louis Reymond. A probabilistic molecular fingerprint for big data
settings. Journal of Cheminformatics, 10(1):66, 2018.

A. Pukrittayakamee, M. Malshe, M. Hagan, L. M. Raff, R. Narulkar, S. Bukkapatnum, and
R. Komanduri. Simultaneous fitting of a potential-energy surface and its corresponding force
fields using feedforward neural networks. The Journal of Chemical Physics, 130(13):134101,
2009.

Zhuoran Qiao, Matthew Welborn, Animashree Anandkumar, Frederick R. Manby, and Thomas F.
Miller. OrbNet: Deep learning for quantum chemistry using symmetry-adapted atomic-orbital
features. The Journal of Chemical Physics, 153(12):124111, 2020.

Zhuoran Qiao, Anders S. Christensen, Matthew Welborn, Frederick R. Manby, Anima Anand-
kumar, and Thomas F. Miller III. UNiTE: Unitary N-body Tensor Equivariant Network with
Applications to Quantum Chemistry. arXiv, 2105.14655, 2021.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. Network Embedding
as Matrix Factorization: Unifying DeepWalk, LINE, PTE, and node2vec. In WSDM, 2018.

136

Bibliography

Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein Barycenter and Its
Application to Texture Mixing. In Scale Space and Variational Methods in Computer Vision
(SSVM), 2011.

Stephen Ragain. Community Detection via Discriminant functions for Random Walks in the
degree-corrected Stochastic Block Model. Report, Stanford University, 2017.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Searching for Activation Functions. In
ICLR-W, 2018.

Raghunathan Ramakrishnan, Pavlo O. Dral, Matthias Rupp, and O. Anatole von Lilienfeld.
Quantum chemistry structures and properties of 134 kilo molecules. Scientific Data, 1(1):
1–7, 2014.

A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff. UFF, a full periodic
table force field for molecular mechanics and molecular dynamics simulations. Journal of
the American Chemical Society, 114(25):10024–10035, 1992.

Siamak Ravanbakhsh, Jeff G. Schneider, and Barnabás Póczos. Equivariance Through Parameter-
Sharing. In ICML, 2017.

Sujith Ravi. Graph-powered machine learning at google. Google AI Blog, 2016.

RDKit. RDKit: Open-Source Cheminformatics Software, 2021. URL https://rdkit.
org/.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the Convergence of Adam and Beyond.
In ICLR, 2018.

Pau Riba, Andreas Fischer, Josep Lladós, and Alicia Fornés. Learning Graph Distances with
Message Passing Neural Networks. In ICPR, 2018.

Kaspar Riesen and Horst Bunke. IAM Graph Database Repository for Graph Based Pat-
tern Recognition and Machine Learning. In Structural, Syntactic, and Statistical Pattern
Recognition, 2008.

Kaspar Riesen and Horst Bunke. Approximate graph edit distance computation by means of
bipartite graph matching. Image Vis. Comput., 27(7):950–959, 2009.

Sereina Riniker and Gregory A. Landrum. Better Informed Distance Geometry: Using What We
Know To Improve Conformation Generation. Journal of Chemical Information and Modeling,
55(12):2562–2574, 2015.

David Rogers and Mathew Hahn. Extended-Connectivity Fingerprints. Journal of Chemical
Information and Modeling, 50(5):742–754, 2010.

Sebastian Ruder, Ivan Vulic, and Anders Søgaard. A Survey of Cross-lingual Word Embedding
Models. J. Artif. Intell. Res., 65:569–631, 2019.

137

https://rdkit.org/
https://rdkit.org/

Bibliography

J. J. Sakurai and San Fu Tuan. Modern Quantum Mechanics. Revised, subsequent edition
edition, 1993.

Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Mądry. How does batch
normalization help optimization? In NeurIPS, 2018.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Constant Time Graph Neural Networks.
ACM Transactions on Knowledge Discovery from Data, 16(5):92:1–92:31, 2022.

Victor Garcia Satorras, Emiel Hoogeboom, and Max Welling. E(n) Equivariant Graph Neural
Networks. In ICML, 2021.

F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini. The Graph Neural
Network Model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009.

Bernhard Schmitzer. A Sparse Multiscale Algorithm for Dense Optimal Transport. Journal of
Mathematical Imaging and Vision, 56(2):238–259, 2016.

Bernhard Schmitzer. Stabilized Sparse Scaling Algorithms for Entropy Regularized Transport
Problems. SIAM Journal on Scientific Computing, 41(3):A1443–A1481, 2019.

Jan Schuchardt, Aleksandar Bojchevski, Johannes Gasteiger, and Stephan Günnemann. Col-
lective Robustness Certificates: Exploiting Interdependence in Graph Neural Networks. In
ICLR, 2021.

Kristof Schütt, Pieter-Jan Kindermans, Huziel Enoc Sauceda Felix, Stefan Chmiela, Alexandre
Tkatchenko, and Klaus-Robert Müller. SchNet: A continuous-filter convolutional neural
network for modeling quantum interactions. In NeurIPS, 2017.

Kristof T. Schütt, Oliver T. Unke, and Michael Gastegger. Equivariant message passing for the
prediction of tensorial properties and molecular spectra. In ICML, 2021.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-
Rad. Collective Classification in Network Data. AI Magazine, 29(3):93–106, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann.
Pitfalls of Graph Neural Network Evaluation. In Workshop on Relational Representation
Learning, NeurIPS, 2018.

Anshumali Shrivastava and Ping Li. Asymmetric LSH (ALSH) for Sublinear Time Maximum
Inner Product Search (MIPS). In NeurIPS, 2014.

Muhammed Shuaibi, Adeesh Kolluru, Abhishek Das, Aditya Grover, Anuroop Sriram, Zachary
Ulissi, and C. Lawrence Zitnick. Rotation Invariant Graph Neural Networks using Spin
Convolutions. arXiv, 2106.09575, 2021.

Si Si, Cho-Jui Hsieh, and Inderjit S. Dhillon. Memory Efficient Kernel Approximation. Journal
of Machine Learning Research, 18(20):1–32, 2017.

138

Bibliography

Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-June (Paul) Hsu, and
Kuansan Wang. An Overview of Microsoft Academic Service (MAS) and Applications. In
WWW, 2015.

Richard Sinkhorn and Paul Knopp. Concerning nonnegative matrices and doubly stochastic
matrices. Pacific Journal of Mathematics, 21(2):343–348, 1967.

J.S. Smith, O. Isayev, and A.E. Roitberg. ANI-1: an extensible neural network potential with
DFT accuracy at force field computational cost. Chemical Science, 8(4):3192–3203, 2017.

Justin Solomon, Raif M. Rustamov, Leonidas J. Guibas, and Adrian Butscher. Earth mover’s
distances on discrete surfaces. ACM Trans. Graph., 33(4):67:1–67:12, 2014.

Justin Solomon, Fernando de Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy
Nguyen, Tao Du, and Leonidas J. Guibas. Convolutional wasserstein distances: efficient
optimal transportation on geometric domains. ACM Trans. Graph., 34(4):66:1–66:11, 2015.

A. Sperduti and A. Starita. Supervised neural networks for the classification of structures. IEEE
Transactions on Neural Networks, 8(3):714–735, 1997.

Indro Spinelli, Simone Scardapane, and Aurelio Uncini. Adaptive Propagation Graph Convo-
lutional Network. IEEE Transactions on Neural Networks and Learning Systems, 32(10):
4755–4760, 2021.

Computer Graphics Laboratory Stanford. The Stanford 3D Scanning Repository, 2014. URL
http://graphics.stanford.edu/data/3Dscanrep/.

Gilbert Wright Stewart and Ji-guang Sun. Matrix Perturbation Theory. Computer Science and
Scientific Computing. 1990.

Sina Stocker, Johannes Gasteiger, Florian Becker, Stephan Günnemann, and Johannes T. Mar-
graf. How Robust are Modern Graph Neural Network Potentials in Long and Hot Molecular
Dynamics Simulations? ChemRxiv, 2022.

Yu-Hang Tang, Dongkun Zhang, and George Em Karniadakis. An atomistic fingerprint algorithm
for learning ab initio molecular force fields. The Journal of Chemical Physics, 148(3):034101,
2018.

Robert E. Tarjan. Dynamic trees as search trees via euler tours, applied to the network simplex
algorithm. Mathematical Programming, 78(2):169–177, 1997.

Evgeny Tenetov, Gershon Wolansky, and Ron Kimmel. Fast Entropic Regularized Optimal
Transport Using Semidiscrete Cost Approximation. SIAM J. Sci. Comput., 40(5):A3400–
A3422, 2018.

Stephan Thaler and Julija Zavadlav. Learning neural network potentials from experimental data
via Differentiable Trajectory Reweighting. Nature Communications, 12(1):6884, 2021.

139

http://graphics.stanford.edu/data/3Dscanrep/

Bibliography

Nathaniel Thomas, Tess Smidt, Steven M. Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and
Patrick Riley. Tensor Field Networks: Rotation- and Translation-Equivariant Neural Networks
for 3D Point Clouds. arXiv, 1802.08219, 2018.

Jake Topping, Francesco Di Giovanni, Benjamin Paul Chamberlain, Xiaowen Dong, and
Michael M. Bronstein. Understanding over-squashing and bottlenecks on graphs via curvature.
In ICLR, 2022.

Kevin Tran, Willie Neiswanger, Junwoong Yoon, Qingyang Zhang, Eric Xing, and Zachary W.
Ulissi. Methods for comparing uncertainty quantifications for material property predictions.
Machine Learning: Science and Technology, 1(2):025006, 2020.

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, and Emmanuel Müller. VERSE: Versatile
Graph Embeddings from Similarity Measures. In WWW, 2018.

Andrej Uhliarik. Diffusion on Semi-Supervised Node Classification. Guided research project
report, Technische Universität München, 2020.

Oliver T. Unke and Markus Meuwly. PhysNet: A Neural Network for Predicting Energies,
Forces, Dipole Moments, and Partial Charges. Journal of Chemical Theory and Computation,
15(6):3678–3693, 2019.

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The NumPy array: a structure for
efficient numerical computation. Computing in Science & Engineering, 13(2):22, 2011.

Vladimir Vapnik and Rauf Izmailov. Rethinking statistical learning theory: learning using
statistical invariants. Machine Learning, 108(3):381–423, 2019.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In NeurIPS, 2017.

Titouan Vayer, Nicolas Courty, Romain Tavenard, Laetitia Chapel, and Rémi Flamary. Optimal
Transport for structured data with application on graphs. In ICML, 2019.

Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R. Devon
Hjelm. Deep Graph Infomax. In ICLR, 2019.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph Attention Networks. In ICLR, 2018.

Sebastiano Vigna. Spectral ranking. Network Science, CoRR (updated, 0912.0238v15), 4(4):
433–445, 2016.

Clement Vignac, Andreas Loukas, and Pascal Frossard. Building powerful and equivariant
graph neural networks with structural message-passing. In NeurIPS, 2020.

Soledad Villar, David W. Hogg, Kate Storey-Fisher, Weichi Yao, and Ben Blum-Smith. Scalars
are universal: Equivariant machine learning, structured like classical physics. In NeurIPS,
2021.

140

Bibliography

Ulrike von Luxburg. A tutorial on spectral clustering. Statistics and Computing, 17(4):395–416,
2007.

Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for Similarity Search:
A Survey. arXiv, 1408.2927, 2014.

Runzhong Wang, Junchi Yan, and Xiaokang Yang. Learning Combinatorial Embedding Net-
works for Deep Graph Matching. In ICCV, 2019.

Sibo Wang, Youze Tang, Xiaokui Xiao, Yin Yang, and Zengxiang Li. HubPPR: effective
indexing for approximate personalized pagerank. In VLDB, 2016.

Sibo Wang, Renchi Yang, Xiaokui Xiao, Zhewei Wei, and Yin Yang. FORA: Simple and
Effective Approximate Single-Source Personalized PageRank. In KDD, 2017.

Xuanhui Wang, Azadeh Shakery, and Tao Tao. Dirichlet PageRank. In SIGIR, 2005.

Zhewei Wei, Xiaodong He, Xiaokui Xiao, Sibo Wang, Shuo Shang, and Ji-Rong Wen. TopPPR:
Top-k Personalized PageRank Queries with Precision Guarantees on Large Graphs. In
SIGMOD, 2018.

Laura Weidinger, John Mellor, Maribeth Rauh, Conor Griffin, Jonathan Uesato, Po-Sen Huang,
Myra Cheng, Mia Glaese, Borja Balle, Atoosa Kasirzadeh, Zac Kenton, Sasha Brown,
Will Hawkins, Tom Stepleton, Courtney Biles, Abeba Birhane, Julia Haas, Laura Rimell,
Lisa Anne Hendricks, William Isaac, Sean Legassick, Geoffrey Irving, and Iason Gabriel.
Ethical and social risks of harm from Language Models. arXiv, 2112.04359, 2021.

Maurice Weiler, Mario Geiger, Max Welling, Wouter Boomsma, and Taco Cohen. 3D Steerable
CNNs: Learning Rotationally Equivariant Features in Volumetric Data. In NeurIPS, 2018.

Jan Weinreich, Nicholas J. Browning, and O. Anatole von Lilienfeld. Machine learning of free
energies in chemical compound space using ensemble representations: Reaching experimental
uncertainty for solvation. The Journal of Chemical Physics, 154(13):134113, 2021.

Stefan Weißenberger. Generalized Diffusion for Learning on Graphs. Bachelor’s thesis,
Technische Universität München, 2019.

Christopher K. I. Williams and Matthias Seeger. Using the Nyström Method to Speed Up Kernel
Machines. In NeurIPS, 2001.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr., Christopher Fifty, Tao Yu, and Kilian Q.
Weinberger. Simplifying Graph Convolutional Networks. In ICML, 2019.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv: Deep Convolutional Networks on 3D
Point Clouds. In CVPR, 2019.

Zhenqin Wu, Bharath Ramsundar, Evan N. Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh
S. Pappu, Karl Leswing, and Vijay Pande. MoleculeNet: a benchmark for molecular machine
learning. Chemical Science, 9(2):513–530, 2018.

141

Bibliography

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S. Yu. A
Comprehensive Survey on Graph Neural Networks. IEEE Transactions on Neural Networks
and Learning Systems, 32(1):4–24, 2021.

Bing Xiao, Xinbo Gao, Dacheng Tao, and Xuelong Li. HMM-based graph edit distance for
image indexing. Int. J. Imaging Systems and Technology, 18(2-3):209–218, 2008.

Bingbing Xu, Huawei Shen, Qi Cao, Yunqi Qiu, and Xueqi Cheng. Graph Wavelet Neural
Network. In ICLR, 2019.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and
Stefanie Jegelka. Representation Learning on Graphs with Jumping Knowledge Networks.
In ICML, 2018.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful are Graph Neural
Networks? In ICLR, 2019.

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. What Can Neural Networks Reason About? In ICLR, 2020.

Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based on
ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015.

Kevin Yang, Kyle Swanson, Wengong Jin, Connor Coley, Philipp Eiden, Hua Gao, Angel
Guzman-Perez, Timothy Hopper, Brian Kelley, Miriam Mathea, Andrew Palmer, Volker
Settels, Tommi Jaakkola, Klavs Jensen, and Regina Barzilay. Analyzing Learned Molecular
Representations for Property Prediction. Journal of Chemical Information and Modeling, 59
(8):3370–3388, 2019.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting Semi-Supervised
Learning with Graph Embeddings. In ICML, 2016.

Dmitry Yarotsky. Universal Approximations of Invariant Maps by Neural Networks. Construc-
tive Approximation, 2021.

Jonathan S Yedidia, William T Freeman, and Yair Weiss. Understanding belief propagation and
its generalizations. In Exploring artificial intelligence in the new millennium, volume 8, pp.
236–239. 2003.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph Convolutional Neural Networks for Web-Scale Recommender Systems. In
KDD, 2018.

Vinícius Flores Zambaldi, David Raposo, Adam Santoro, Victor Bapst, Yujia Li, Igor
Babuschkin, Karl Tuyls, David P. Reichert, Timothy P. Lillicrap, Edward Lockhart, Mur-
ray Shanahan, Victoria Langston, Razvan Pascanu, Matthew Botvinick, Oriol Vinyals, and
Peter W. Battaglia. Deep reinforcement learning with relational inductive biases. In ICLR,
2019.

142

Bibliography

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
GraphSAINT: Graph Sampling Based Inductive Learning Method. In ICLR, 2020.

Kai Zhang, Ivor W. Tsang, and James T. Kwok. Improved Nyström low-rank approximation
and error analysis. In ICML, 2008.

Shuo Zhang, Yang Liu, and Lei Xie. Molecular Mechanics-Driven Graph Neural Network with
Multiplex Graph for Molecular Structures. In Machine Learning for Molecules Workshop,
NeurIPS, 2020.

Yingkai Zhang and Weitao Yang. Comment on “generalized gradient approximation made
simple”. Phys. Rev. Lett., 80(4):890, 1998.

Jing Zhu, Xingyu Lu, Mark Heimann, and Danai Koutra. Node Proximity is All You Need: A
Unified Framework for Proximity-Preserving and Structural Node and Graph Embedding. In
SIAM International Conference on Data Mining (SDM), 2021.

Jiong Zhu, Ryan A. Rossi, Anup Rao, Tung Mai, Nedim Lipka, Nesreen K. Ahmed, and Danai
Koutra. Graph Neural Networks with Heterophily. In AAAI, 2021.

Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling with Large Corpora.
In LREC 2010 Workshop on New Challenges for NLP Frameworks, 2010.

143

Appendices

145

A Directional Message Passing for Molecular
Graphs

A.1 Indistinguishable molecules

Figure A.1: A standard non-directional GNN cannot distinguish between a hexagonal (left) and two
triangular molecules (right) with the same bond lengths, since the neighborhood of each atom is exactly
the same. An example of this would be Cyclohexane and two Cyclopropane molecules with slightly
stretched bonds, when the GNN either uses the molecular graph or a cutoff distance of c ≤ 2.5 Å.
Directional message passing solves this problem by considering the direction of each bond.

A.2 Experimental setup

The model architecture and hyperparameters were optimized using the QM9 validation set. We
use 6 stacked interaction blocks and embeddings of size F = 128 throughout the model. For
the basis functions we choose NSHBF = 7 and NSRBF = NRBF = 6. For the weight tensor in the
interaction block we use Nbilinear = 8. We did not find the model to be very sensitive to these
values as long as they were large enough (i.e. at least 4).

We found the cutoff c = 5 Å and the learning rate 1 × 10−3 to be rather important hyperpa-
rameters. We optimized the model using AMSGrad (Reddi et al., 2018) with 32 molecules per
mini-batch. We use a linear learning rate warm-up over 3000 steps and an exponential decay
with ratio 0.1 every 2 000 000 steps. The model weights for validation and test were obtained
using an exponential moving average (EMA) with decay rate 0.999. For MD17 we use the loss
function from Eq. (3.2) with force weight ρ = 100, like previous models Schütt et al. (2017).
Note that ρ presents a trade-off between energy and force accuracy. It should be chosen rather
high since the forces determine the dynamics of the chemical system (Unke & Meuwly, 2019).
We use early stopping on the validation loss. On QM9 we train for at most 3 000 000 and on
MD17 for at most 100 000 steps.

147

A Directional Message Passing for Molecular Graphs

A.3 Summary statistics

We summarize the results across different targets using the mean standardized MAE

std. MAE =
1

M

M∑

m=1

(
1

N

N∑

i=1

|f (m)
θ (Xi, zi)− t̂

(m)
i |

σm

)
, (A.1)

and the mean standardized logMAE

logMAE =
1

M

M∑

m=1

log

(
1

N

N∑

i=1

|f (m)
θ (Xi, zi)− t̂

(m)
i |

σm

)
, (A.2)

with target index m, number of targets M = 12, dataset size N , ground truth values t̂(m), model
f
(m)
θ , inputs Xi and zi, and standard deviation σm of t̂(m). Std. MAE reflects the average

error compared to the standard deviation of each target. Since this error is dominated by a few
difficult targets (e.g. ϵHOMO) we also report logMAE, which reflects every relative improvement
equally but is sensitive to outliers, such as SchNet’s result on

〈
R2
〉
.

A.4 DimeNet filters

To illustrate the filters learned by DimeNet we separate the spatial dependency in the interaction
function fint via

fint(m, dji, dkj , α(kj,ji)) =
∑

n

[σ(Wm+ b)]n ffilter1,n(dji)ffilter2,n(dkj , α(kj,ji)). (A.3)

The filters ffilter1,n : R+ → R and ffilter2,n : R+ × [0, 2π] → RF are given by

ffilter1,n(d) = (WRBFeRBF(d))n, (A.4)

ffilter2,n(d, α) = (WSBFaSBF(d, α))
TWn, (A.5)

where WRBF, WSBF, and W are learned weight matrices/tensors, eRBF(d) is the radial basis
representation, and aSBF(d, α) is the 2D spherical Fourier-Bessel representation. Fig. 3.5 shows
how the first 15 elements of ffilter2,n(d, α) vary with d and α when choosing the tensor slice
n = 1 (with α = 0 at the top of the figure).

A.5 Multi-target results

148

A.5 Multi-target results

Table A.1: MAE on QM9 with multi-target learning. Single-target learning significantly improves
performance on all targets. Using a separate output block per target slightly reduces this difference with
little impact on training time.

Target Unit Multi-target Sep. output blocks Single-target
µ D 0.0775 0.0815 0.0286
α a3

0 0.0649 0.0616 0.0469
ϵHOMO meV 45.1 45.5 27.8
ϵLUMO meV 41.1 33.9 19.7
∆ϵ meV 59.2 63.6 34.8〈
R2
〉

a2
0 0.345 0.348 0.331

ZPVE meV 2.87 1.44 1.29
U0 meV 12.9 10.6 8.02
U meV 13.0 10.5 7.89
H meV 13.0 10.4 8.11
G meV 13.8 10.8 8.98
cv

cal
mol K 0.0309 0.0283 0.0249

std. MAE % 1.92 1.90 1.05
logMAE - −5.07 −5.21 −5.57

149

B GemNet: Universal Directional Graph
Neural Networks for Molecules

B.1 Proof of Theorem 5.2

We prove the universal approximation theorem by showing the equivalence of TFN and our
model. Complex spherical harmonics are related to Clebsch-Gordan coefficients via (Sakurai &
Tuan, 1993, 3.7.72)

Y (li)
mi

(r̂)Y
(lf)
mf (r̂) =

∑

lo,mo

√
(2li + 1)(2lf + 1)

4π(2lo + 1)
C

(lo,0)
(lf ,0),(li,0)

C
(lo,mo)
(lf ,mf),(li,mi)

Y (lo)
mo

(r̂). (B.1)

We now use the fact that multiplying a learnable function with a unitary matrix or a scalar does
not change the resulting function space. We can therefore adapt Eq. (5.2) by substituting

C
(lo,mo)
(lf ,mf),(li,mi)

7→C(lf ,mf , li,mi, lo,mo) =

=

√
(2li + 1)(2lf + 1)

4π(2lo + 1)
C

(lo,0)
(lf ,0),(li,0)

C
(lo,mo)
(lf ,mf),(li,mi)

(B.2)

without impacting model expressivity. Since real spherical harmonics and complex (conjugate)
spherical harmonics cover the same function space, we can furthermore substitute the filter with
F

′(l)
m (x) = R(l)(x)Y

(l)∗
m (x̂). Using the spherical harmonics expansion we therefore obtain

H̃ ′
a(X,H ′)(r̂) =

∑

lo,mo

H̃ ′(lo)
amo

(X,H ′)Y (lo)
mo

(r̂)

=
∑

lo,mo

θH ′(lo)

amo
+
∑

lf ,mf

∑

li,mi

C(lf ,mf , li,mi, lo,mo)
∑

b∈Na

F
′(lf)
mf (xba)H

′(li)
bmi

Y (lo)

mo
(r̂)

= θH ′
a(r̂) +

∑

lf ,mf

∑

li,mi

∑

b∈Na

F
′(lf)
mf (xba)Y

(lf)
mf (r̂)H

′(li)
bmi

Y (li)
mi

(r̂)

= θH ′
a(r̂) +

∑

b∈Na

∑

lf ,mf

F
′(lf)
mf (xba)Y

(lf)
mf (r̂)

∑

li,mi

H
′(li)
bmi

Y (li)
mi

(r̂)

= θH ′
a(r̂) +

∑

b∈Na

F ′(xba, r̂)H
′
b(r̂).

(B.3)

151

B GemNet: Universal Directional Graph Neural Networks for Molecules

These functions rely on complex-valued representations, while the output and SO(3) repre-
sentations are real-valued. However, we can restrict the representations to real values without
changing the resulting function space. To see this, we look at the result’s real component

ℜ[H̃ ′
a(X,H ′)(r̂)] = θℜ[H ′

a(r̂)] +
∑

b∈Na

ℜ[F ′(xba, r̂)H
′
b(r̂)]

= θℜ[H ′
a(r̂)] +∑

b∈Na

(ℜ[F ′(xba, r̂)]ℜ[H ′
b(r̂)]−ℑ[F ′(xba, r̂)]ℑ[H ′

b(r̂)]).

(B.4)

The function space covered by ℜ[F ′(x, r̂)], and thus ℜ[H ′(r̂)], is the same as ℑ[F ′(x, r̂)],
and thus ℑ[H ′(r̂)]. We can therefore simply remove the imaginary part without changing the
resulting function space, obtaining

H̃sphere
a (X,H)(r̂) = θHa(r̂) +

∑

b∈Na

ℜ[F ′(xba, r̂)]Hb(r̂)

= θHa(r̂) +
∑

b∈Na

Fsphere(xba, r̂)Hb(r̂).
(B.5)

F sphere
feat (D) thus spans the exact same space of embedding functions as FTFN

feat (D), despite only
using real functions on the S2 sphere. However, we cannot span the full space of rotationally
equivariant linear pooling functions, since equivariant linear functions on the S2 sphere are
limited to convolutions with zonal filters (Esteves et al., 2018). Fortunately, scalar pooling
functions are limited to linear functions of the constant l = 0 part. This is equivalent to
integrating over the real-space spherical representation, as done in F sphere

pool .

B.2 Proof of Theorem 5.3

To prove this theorem we first introduce a proposition by Villar et al. (2021).

Proposition B.1 (Villar et al. (2021)). If h is an SO(d)-equivariant function Rd×n → Rd of n
vector inputs x1,x2, . . . ,xn, then there are n SO(d)-invariant functions fc : Rd×n → R such
that

h(x1,x2, . . . ,xn) =
n∑

c=1

f (c)(x1,x2, . . . ,xn)xc, (B.6)

except when x1,x2, . . . ,xn span a (d− 1)-dimensional space. In that case, there exist O(d)-
invariant functions fc : Rd×n → R such that

h(x1,x2, . . . ,xn) =

n∑

c=1

f (c)(x1,x2, . . . ,xn)xc +
∑

S∈([n]
d−1)

f (S)(x1,x2, . . . ,xn)xS , (B.7)

where [n] := {1, . . . , n},
([n]
d−1

)
is the set of all (d− 1)-subsets of [n], and xS is the generalized

cross product of vectors xi with i ∈ S (taken in ascending order).

152

B.2 Proof of Theorem 5.3

To extend Prop. B.1 to our case, we need to restrict the functions to being translation-invariant
and permutation-equivariant. We will only concern ourselves with the case where the vectors do
not span a (d− 1)-dimensional space. We start by considering translation-invariant functions,
following the proof idea of Villar et al. (2021, Lemma 7).

Lemma B.1. Let h be a translation-invariant and SO(d)-equivariant function Rd×n → Rd

of n vector inputs x1,x2, . . . ,xn. Let x2 − x1, . . . ,xn − x1 not span a (d− 1)-dimensional
space. Then there are n− 1 translation- and SO(d)-invariant functions fc : Rd×n → R such
that

h(x1,x2, . . . ,xn) =
n∑

c=2

f (c)(x1,x2, . . . ,xn)(xc − x1). (B.8)

Proof. Consider the SO(d)-equivariant function h̃ : Rd×(n−1) → Rd with

h(x1,x2, . . . ,xn) = h(0,x2 − x1, . . . ,xn − x1) = h̃(x2 − x1, . . . ,xn − x1). (B.9)

Due to Prop. B.1 we have

h̃(x2 − x1, . . . ,xn − x1) =
n∑

c=2

f̃ (c)(x2 − x1, . . . ,xn − x1)(xc − x1), (B.10)

with the SO(d)-equivariant function f̃ (c). If we now substitute f̃ (c) with the SO(d)-equivariant
and translation-invariant function f (c), i.e.

f̃ (c)(x2 − x1, . . . ,xn − x1) = f (c)(0,x2 − x1, . . . ,xn − x1) = f (c)(x1,x2, . . . ,xn),
(B.11)

we obtain

h(x1,x2, . . . ,xn) =
n∑

c=2

f (c)(x1,x2, . . . ,xn)(xc − x1). (B.12)

Next, we extend this result to permutation-equivariant functions.

Lemma B.2. Let h be a translation-invariant, and permutation and SO(d)-equivariant function
Rd×n → Rd×n of n vector inputs x1,x2, . . . ,xn. Let x2 − x1, . . . ,xn − x1 not span a
(d − 1)-dimensional space. Then there are n − 1 translation- and SO(d)-invariant, and
permutation-equivariant functions fc : Rd×n → Rn such that

h(x1,x2, . . . ,xn) =
n∑

c=2

f (c)(x1,x2, . . . ,xn)(xc − x1). (B.13)

153

B GemNet: Universal Directional Graph Neural Networks for Molecules

Proof. Permutation equivariance implies that for all s and t (w.l.o.g. s < t)

hs(. . . ,xs, . . . ,xt, . . .) = ht(. . . ,xt, . . . ,xs, . . .). (B.14)

Due to Lemma B.1 we have

hs(. . . ,xs, . . . ,xt, . . .) =
n∑

c=2

f (c)
s (. . . ,xs, . . . ,xt, . . .)(xc − x1), (B.15)

= ht(. . . ,xt, . . . ,xs, . . .) =

n∑

c=2

f
(c)
t (. . . ,xt, . . . ,xs, . . .)(xc − x1), (B.16)

with n − 1 SO(d)- and translation-invariant functions f (c) : Rd×n → Rn. We can solve this
equation by choosing

f (c)
s (. . . ,xs, . . . ,xt, . . .) = f

(c)
t (. . . ,xt, . . . ,xs, . . .), (B.17)

i.e. permutation-equivariant functions f (c).
Finally, to bring Lemma B.2 to the form presented in the theorem, we first observe that adding

scalar inputs H does not affect the proofs in this section. Second, we observe that subtracting
by x1 in Eq. (B.9) is arbitrary. To bring this more in line with GNNs we can instead subtract the
input of each ha by xa. This yields

ha(X,H) =
n∑

c=1
c ̸=a

f (c)
a (X,H)(xc − xa). (B.18)

B.3 Proof of Lemma 5.1

Using the fact that the Wigner D-matrix is unitary, we obtain for any rotation matrix R:

Fsphere(Rx,Rr̂) =
∑

l,m

R(l)(x)ℜ[Y (l)∗
m (Rx̂)Y (l)

m (Rr̂)]

=
∑

l,m,m′,m′′
R(l)(x)ℜ[Y (l)∗

m′ (x̂)D
(l)∗
m,m′(R)D

(l)
m,m′′(R)Y

(l)
m′′(r̂)]

=
∑

l,m′,m′′
R(l)(x)ℜ[Y (l)∗

m′ (x̂)δm′,m′′Y
(l)
m′′(r̂)]

=
∑

l,m′
R(l)(x)ℜ[Y (l)∗

m′ (x̂)Y
(l)
m′ (r̂)] = Fsphere(x, r̂).

(B.19)

154

B.4 Efficient message passing

B.4 Efficient message passing

For clarity we demonstrate how to optimize the summation order using the simpler one-hop
message passing. For a regular Hadamard product we reorder the sums as

m(ca)i =
∑

b∈Na\{c}

(
W (2)W (1)eCBF(xca, φbac)

)
i
m(ba)i

=
∑

b∈Na\{c}

(∑

j

∑

l

∑

n

W
(2)
ij W

(1)
j(ln)e

rad
CBF(xca)lne

SH
CBF(φbac)l

)
m(ba)i

=
∑

j

W
(2)
ij

∑

l

(∑

n

W
(1)
j(ln)e

rad
CBF(xca)ln

)(∑

b∈Na\{c}
eSH

CBF(φbac)lm(ba)i

)
.

(B.20)

For a bilinear layer we use

m(ca)i =
∑

b∈Na\{c}

((
W (1)eCBF(xca, φbac)

)T
W(2)m(ba)

)
i

=
∑

b∈Na\{c}

∑

i′

∑

j

(∑

l

∑

n

W
(1)
j(ln)e

rad
CBF(xca)lne

SH
CBF(φbac)l

)
W(2)

iji′m(ba)i′

=
∑

j

∑

i′
W(2)

iji′
∑

l

(∑

n

W
(1)
j(ln)e

rad
CBF(xca)ln

)(∑

b∈Na\{c}
eSH

CBF(φbac)lm(ba)i′

)
.

(B.21)

Note that since W (1) is shared across layers we only need to calculate the sum over n once.

B.5 Variance after message passing

The layer-wise variance after sum aggregation is

Vari

[∑

b∈Na

m(ba)i

]
=
∑

b∈Na

Vari[m(ba)i] +
∑

b∈Na

∑

c∈Na\{b}
Covi[m(ba)i,m(ca)i]. (B.22)

This variance depends on the number of neighbors in Na. However, we consistently found that
rescaling the output depending on Na has negative effects on the accuracy. The likely reason
for this is that atomic interactions scale roughly linearly with neighborhood size. Moreover, the
covariance in Eq. (B.22) is not zero since all messages mba are transformed using the same
weight matrices. We therefore best estimate this variance empirically.

For a Hadamard product-based message passing filter (and analogously for a bilinear layer)
we have

Vari[Fimi] = Covi[F
2
i ,m

2
i] + (Vari[Fi] + Ei[Fi]

2)(Vari[mi] + Ei[mi]
2)

− (Covi[Fi,mi] + Ei[Fi]Ei[mi])
2.

(B.23)

The main problem with this covariance is the non-zero quadratic covariance Covi[F
2
i ,m

2
i]. We

again estimate this variance empirically based on a data sample.

155

B GemNet: Universal Directional Graph Neural Networks for Molecules

D
en

se
..

H
ad

am
ar

d

D
en

se
..

H
ad

am
ar

d

B
ili

ne
ar

+S
um

D
en

se
..

M
er

ge
..

R
es

id
ua

lB
lo

ck

Sk
ip

R
es

id
ua

lB
lo

ck

C
on

ca
t+

D
en

se

R
es

id
ua

lB
lo

ck

Sk
ip

10−5

10−3

10−1

101

103

105

M
ea

n
V

ar
(L

ay
er

(x
))

Block:
1
2
3
4

D
en

se
..

H
ad

am
ar

d

D
en

se
..

H
ad

am
ar

d

B
ili

ne
ar

+S
um

D
en

se
..

M
er

ge
..

R
es

id
ua

lB
lo

ck

Sk
ip

R
es

id
ua

lB
lo

ck

C
on

ca
t+

D
en

se

R
es

id
ua

lB
lo

ck

Sk
ip

10−5

10−3

10−1

101

103

105

M
ea

n
V

ar
(L

ay
er

(x
))

Block:
1
2
3
4

Figure B.1: Layer-wise activation variance. GemNet’s variance varies strongly between layers and
increases significantly after each block without scaling factors (top). Introducing scaling factors success-
fully stabilizes the variance (bottom).

156

B.6 GemNet architecture

B.6 GemNet architecture

We use 4 stacked interaction blocks and an embedding size of 128 throughout the model. For
the basis functions we choose NSHBF = NCHBF = 7 and NSRBF = NCRBF = NRBF = 6.
For the weight tensor of the bilinear layer in the interaction block we use Nbilinear,SBF = 32
and Nbilinear,CBF = 64. We found that sharing the first weight matrix in Eq. (5.11), the down-
projection, resulted in the same validation loss but reduced the training time by up to 15 %. The
down-projection size was chosen as 16 for the radial and circular basis and 32 for the spherical
basis.

Model: Embedding:Interaction: Message passing: Q/T-MP:

Residual:

Atom emb.:
A

to
m

se
lf

-i
nt

er
ac

tio
n

xca

e
(ca)
RBF

CBF

xca φcab

e
(cab)
CBF

SBF

xca φcab

θcabd

e
(cabd)
SBF

z

Embedding

∑ t

Interaction

Interaction

Interaction

Interaction

e
(ca)
RBF zc, za

Embedding

h
(1)
c h

(1)
a

∥

σ(W□)

Atom emb

W□
t
(1)
a

m
(1)
ca h

(1)
a

m
(l−1)
ca h

(l−1)
a

MP

Residual

Atom emb

+

∥

σ(W□)

Residual

+

Atom emb

W□

eCBF

eSBF

eRBF

ha

hc

m
(l)
ca

t
(l)
a

h
(l)
a

m
(l−1)
ca

eRBF

eCBF

eSBF

σ(W□)

T-MP

Q-MP

+

Residual

+

m
(l)
ca

W□
W□

σ(W□)

m
(l−1)
db/ba

⊙

e
(db)
(ba)

RBF

σ(W↓□)
W□
W□

⊙

e
(abd)
(cab)

CBF

□T W□W□
e
(cabd)
SBF

∑
d,b

σ(W↑□)σ(W↑□)

mca

+ca → ac
mac

mca

128

128

32/64

32/64

128128

e
(ca)
RBF mca

c ∈ Na

W□
W□

⊙
∑

a

σ(W□)

Residual

Residual

h
(l)
a

σ(W□)

σ(W□)

+

RBF

Figure B.2: The full GemNet architecture. □ denotes the layer’s input, ∥ concatenation, σ a non-linearity
(we use SiLU in this chapter (Elfwing et al., 2018)), and orange a layer with weights shared across
interaction blocks. Differences between two-hop message passing (Q-MP) and one-hop message passing
(T-MP) are denoted by dashed lines. Numbers next to connecting lines denote embedding sizes.

B.7 Training and hyperparameters

We subtract the mean energy from each molecule in MD17 to obtain a training target similar to
atomization energy. We train on eV for energies and eV/Å for forces. As a training objective
we use the weighted loss function

LMD(X, z) = (1− ρ)
∣∣fθ(X, z)− t̂(X, z)

∣∣

+
ρ

N

N∑

i=1

√√√√
3∑

α=1

(
−∂fθ(X, z)

∂xiα
− F̂iα(X, z)

)2

,
(B.24)

with force weighting factor ρ = 0.999. We found the selection of the batch size to be of great
influence on the model’s performance for the MD17(@CCSD) dataset. Changing the batch size
from 32 to 1 resulted in an approx. 25 % lower validation MAE. The learning rate of 1× 10−3

157

B GemNet: Universal Directional Graph Neural Networks for Molecules

Table B.1: Model and training hyperparameters.

Hyperparameters
Interaction cutoff cint 10 Å
Embedding cutoff cemb 5 Å
Learning rate 1 × 10−3

EMA decay 0.999
Weight decay 2 × 10−6

Decay epochs 1200
Decay rate 0.01
Decay factor on plateau 0.5
Gradient clipping threshold 10.0
Envelope exponent 5
Force weighting factor ρ 0.999

MD17 MD17@CCSD(T) Coll
Train set size 1000 950 120 000
Val. set size 1000 50 10 000
Max epochs 2000 2000 400
Evaluation interval (epochs) 10 10 2
Decay on plateau patience (epochs) 50 50 10
Decay on plateau cooldown (epochs) 50 50 10
Warm-up epochs 10 10 1
Batch size 1 1 32

and the selection of the embedding cutoff cemb = 5 Å and interaction cutoff cint = 10 Å
are rather important hyperparameters as well, see Table B.7. We optimized the model using
AMSGrad (Reddi et al., 2018) with weight decay (Loshchilov & Hutter, 2018) in combination
with a linear learning rate warm-up, exponential decay and decay on plateau. However, we
did not apply the weight decay for the initial atom embeddings, biases and frequencies (used
in the radial basis). Without weight decay the force MAE was around 3 % higher on COLL
(not on OC20). Gradient clipping and early stopping on the validation loss were used as well.
In addition, we divided the gradients of weights that are shared across multiple blocks by the
number of blocks the weights are shared for, which resulted in a small gain in accuracy. The
model weights for validation and test were obtained using an exponential moving average
(EMA) with decay rate 0.999. The used hyperparameters can be found in Table B.1. The
combined model on revised MD17 was trained with a batch size of 10.

We used a slightly adapted model for the OC20 dataset. It uses 128 Gaussian radial basis
functions instead of spherical Bessel functions, which do not depend on the degree l of the
spherical harmonic. We furthermore used only three interaction blocks, an atom and edge
embedding size of 512, an embedding cutoff of 6 Å, a learning rate of 5 × 10−4, no weight
decay, only learning rate decay on plateau with a patience of 15 000 steps and a factor of 0.8
(no warm-up or exponential decay), and a batch size of 2048.

158

B.8 Additional experimental results

B.8 Additional experimental results

Table B.2: MAE for direct force predictions on MD17 in meV/Å. The increased speed of direct force
predictions comes at a significant cost of accuracy. Note that the direct models are still more accurate
than many previous models.

GemNet-Q GemNet-T GemNet-dQ GemNet-dT
Aspirin 9.4 9.5 17.8 18.0
Benzene(Chmiela et al., 2017) 6.3 6.3 8.5 8.0
Benzene(Chmiela et al., 2018) 1.5 1.4 2.5 2.3
Ethanol 3.8 3.7 6.4 6.8
Malonaldehyde 6.9 6.7 11.5 12.5
Naphthalene 2.2 2.4 5.2 5.9
Salicylic acid 5.4 5.5 12.9 13.2
Toluene 2.6 2.6 6.1 5.7
Uracil 4.5 4.2 11.7 10.9

Table B.3: Force MAE for MD17 in meV/Å. GemNet using 1000 training samples compared to SchNet
using 50 000 samples. GemNet outperforms SchNet on six out of eight molecules – despite using 50x
fewer samples.

SchNet 50k GemNet-Q GemNet-T
Aspirin 14.3 9.4 9.5
Benzene(Chmiela et al., 2017) 7.4 6.3 6.3
Benzene(Chmiela et al., 2018) - 1.5 1.4
Ethanol 2.2 3.8 3.7
Malonaldehyde 3.5 6.9 6.7
Naphthalene 4.8 2.2 2.4
Salicylic acid 8.2 5.4 5.5
Toluene 3.9 2.6 2.6
Uracil 4.8 4.5 4.2

159

B GemNet: Universal Directional Graph Neural Networks for Molecules

Table B.4: Force MAE of different models (number of parameters in parentheses) for the MD17 dataset
in meV/Å. GemNet performs worse with an embedding size of 64, but still substantially better than
previous models with more parameters.

PaiNN (600k) DimeNet (1.9M) GemNet-T 64 (490k) GemNet-T (1.9M)
Aspirin 14.7 21.6 11.2 9.5
Benzene(Chmiela et al., 2017) - 8.1 - 6.3
Benzene(Chmiela et al., 2018) - - 1.1 1.4
Ethanol 9.7 10.0 5.1 3.7
Malonaldehyde 14.9 16.6 7.8 6.7
Naphthalene 3.3 9.3 3.3 2.4
Salicylic acid 8.5 16.2 6.9 5.5
Toluene 4.1 9.4 3.3 2.6
Uracil 6.0 13.1 5.3 4.2

Table B.5: Force MAE for the revised MD17 dataset (Christensen & Lilienfeld, 2020) in meV/Å. On
average, GemNet outperforms FCHL19 by 52 % and even UNiTE by 5 %, which is a ∆-ML approach
based on quantum mechanical features (Qiao et al., 2021).

FCHL19 UNiTE GemNet-Q GemNet-T
Aspirin 20.9 7.8 9.7 9.5
Benzene 2.6 0.7 0.7 0.5
Ethanol 6.2 4.2 3.6 3.6
Malonaldehyde 10.3 7.1 6.7 6.6
Naphthalene 6.5 2.4 1.9 2.1
Salicylic acid 9.5 4.1 5.3 5.5
Toluene 8.8 2.9 2.3 2.2
Uracil 4.2 3.8 4.1 3.8

Table B.6: Force MAE of GemNet on the revised MD17 dataset (Christensen & Lilienfeld, 2020) in
meV/Å when using individual models for each molecule (“Individual”) versus a single model for all
molecules (“Combined”). The combined setting is harder to learn, leading to a higher error in most cases.
GemNet-Q performs better than GemNet-T in this setting.

GemNet-Q GemNet-T
Individual Combined Individual Combined

Aspirin 9.7 10.0 9.5 9.9
Benzene 0.7 0.5 0.5 0.6
Ethanol 3.6 4.4 3.6 4.9
Malonaldehyde 6.7 7.7 6.6 8.3
Naphthalene 1.9 1.9 2.1 2.2
Salicylic acid 5.3 4.6 5.5 5.0
Toluene 2.3 2.2 2.2 2.5
Uracil 4.1 4.1 3.8 4.3

160

B.8 Additional experimental results

Table B.7: Impact of the cutoff on force MAE on
COLL. Results reported in meV/Å after 500 000
training steps. Increasing the interaction cutoff to
10 Å slightly reduces the error. Decreasing the em-
bedding cutoff to 3 Å significantly increases the
error.

cemb/Å cint/Å MAE
5 10 27.0
5 5 28.2
3 10 33.4
3 5 35.3

Table B.8: Effect of adding our independent im-
provements to DimeNet++ on force MAE for
COLL in meV/Å. In this experiment we increased
the basis embedding size of DimeNet++ from 8 to
16 to eliminate this bottleneck. All improvements
have a significant effect.

Model Forces
DimeNet++ 41.1
with symmetric message passing 37.5
with bilinear layer 38.6
with scaling factors 40.0

161

B GemNet: Universal Directional Graph Neural Networks for Molecules

B.9 Computation time

Table B.9: Runtime per batch of Toluene molecules on an Nvidia GeForce GTX 1080Ti in seconds.
GemNet-T is comparably fast to previous methods. Note that NequIP requires roughly 10x more training
epochs than GemNet for convergence (Batzner et al., 2022). Using direct force predictions and only one-
hop message passing significantly accelerates training and inference (GemNet-dT). Efficient aggregation
allows for the usage of a bilinear layer instead of a Hadamard product at no additional cost (GemNet-Q
vs. Hadamard-Eff) and enables training with higher batch sizes (Hadamard-Eff vs. Hadamard-NonEff).
Note that our implementation does not focus on runtime and can likely be significantly optimized.

batch size 32 batch size 4
Training Inference Training Inference

DimeNet++ 0.357 0.065 0.283 0.031
NequIP (l=1) 0.066 0.042 0.070 0.044
NequIP (l=3, reflections) 0.336 0.206 0.327 0.197
GemNet-Q 1.067 0.376 0.628 0.099
GemNet-T 0.397 0.088 0.299 0.038
GemNet-dQ 0.369 0.264 0.106 0.052
GemNet-dT 0.134 0.067 0.065 0.020
Hadamard-Eff 1.077 0.392 0.632 0.103
Hadamard-NonEff OOM 0.378 0.633 0.103

The models were trained primarily using Nvidia GeForce GTX 1080Ti GPUs. For MD17 and
MD17@CCSD training the direct force prediction variants took less than two days, GemNet-Q
and GemNet-T took around 6 days per molecule but with very little progress after the 100 hour
mark. However, thanks to the memory efficient implementation and the low batch size used,
several models were trained in parallel on a single GPU. On the COLL dataset training the
direct force prediction variants took around 24 hours each. GemNet-T trained for 60 hours,
while GemNet-Q took 6 days. However, after 60 hours GemNet-Q is already within 5 % of its
final validation error and outperforms GemNet-T by a large margin. Note that the training time
reduces dramatically when using a larger batch size, at the cost of a slightly higher MAE on
MD17.

162

C Directional Message Passing on Molecular
Graphs via Synthetic Coordinates

C.1 Choosing hyperparameters

Table C.1: ROC-AUC on
ogbg-molhiv for various
numbers of DeeperGCN
layers. We use 12 layers.

Layers AUC-ROC
7 0.754 ± 0.028

12 0.756 ± 0.026
15 0.742 ± 0.028

Table C.2: ROC-AUC on
ogbg-molhiv for various hid-
den layer sizes in DeeperGCN.
We choose the largest, i.e. 256.

Hidden size AUC-ROC
64 0.764 ± 0.009

128 0.760 ± 0.026
256 0.756 ± 0.026

Table C.3: Different methods of em-
bedding the angle for chemical dis-
tance bounds (ROC-AUC on ogbg-molhiv).
Jointly using all 3 proposed components
(Min+Max+Center) works best.

Angle mode MAE
Min 0.754 ± 0.048
Max 0.754 ± 0.013
Center 0.744 ± 0.012
Min+Max 0.745 ± 0.018
Center+Min+Max 0.756 ± 0.026

Table C.4: ROC-AUC on ogbg-molhiv.
Different parameter sharing variants
for the two layers used for embedding
the distance and angle. Sharing the
parameters of the first layer globally
and using separate parameters per mes-
sage passing step for the second layer
(“Mixed”) performs slightly better.

Embedding method MAE
Local 0.754 ± 0.010
Global 0.753 ± 0.025
Mixed 0.756 ± 0.026

Table C.5: Different bottleneck and basis sizes for embedding
the distance and angle (ROC-AUC on ogbg-molhiv). We choose
a 4-dimensional bottleneck, a 16-dimensional distance and a
18-dimensional angle embedding. Note that the latter numbers
are the sum of all components, i.e. we use 8 dimensions for the
minimum and 8 for the maximum distance.

Basis size
Bottleneck Distance Angle MAE

2
4 6 0.762 ± 0.021
8 9 0.766 ± 0.019

16 18 0.751 ± 0.031

4
4 6 0.743 ± 0.016
8 9 0.756 ± 0.026

16 18 0.767 ± 0.016

8
4 6 0.741 ± 0.024
8 9 0.771 ± 0.015

16 18 0.743 ± 0.012

In this section we highlight the best results as well as the chosen hyperparameters and model
variants via bold font. We tune DeeperGCN on ogbg-molhiv to prevent selection bias and

163

C Directional Message Passing on Molecular Graphs via Synthetic Coordinates

overfitting. Tables C.1 and C.2 show its performance for various choices of depth and width.
Many of these results are not statistically significant. We chose a depth of 12 layers and a hidden
size of 256.

Table C.3 compares the three ways of representing the angle bounds described in Sec. 6.4.
We see that simply using all three of them performs the best. Note that we keep the total basis
size constant, i.e. we either use one 18-dimensional, two 9-dimensional, or three 6-dimensional
angle bases.

We embed the information provided by synthetic coordinates using two linear layers with
a small “bottleneck” layer in between and without non-linearities. Table C.4 compares using
separate local layers per message passing step against using a single global layer, i.e. sharing
these parameters. Mixing these two variants by using one global and one local layer performs
best. Table C.5 furthermore compares different bottleneck and basis sizes for representing
the distances and angles. A 4- or even 2-dimensional bottleneck performs best — which is
surprisingly small compared to the used hidden size of 256. The basis size on the other hand is
similar to the size used e.g. by DimeNet.

164

D Diffusion Improves Graph Learning

D.1 Graph diffusion as a polynomial filter

We want to find a direct correspondence between graph diffusion with θk and a polynomial filter
with parameters ξj , i.e.

J∑

j=0

ξjL
j !
=

K∑

k=0

θkT
k. (D.1)

To do so, we first expand T = IN −L and use the binomial equation, i.e.

K∑

k=0

θkT
k =

K∑

k=0

θk(IN −L)k =

=

K∑

k=0

θk

k∑

j=0

(
k

j

)
(−1)jIk−j

N Lj =

=
K∑

k=0

k∑

j=0

(
k

j

)
θk(−1)jLj =

=
∑

j,k∈[0,K]
j≤k

(
k

j

)
θk(−1)jLj =

=
K∑

j=0

K∑

k=j

(
k

j

)
θk(−1)j

︸ ︷︷ ︸
ξj

Lj ,

(D.2)

where we recognize the coefficients ξj and see that we need to set J = K. Note that we
reordered the summation indices by recognizing the triangular sum, i.e. the sum over index
pairs (j, k) with j ≤ k. The equation for conversion in the opposite direction is obtained in
the same way since L = IN − T . To obtain a more convenient form for K → ∞ we shift the
summation index using m = k − j, i.e.

ξj =

K∑

k=j

(
k

j

)
(−1)jθk =

K−j∑

m=0

(
m+ j

j

)
(−1)jθm+j . (D.3)

165

D Diffusion Improves Graph Learning

To find corresponding coefficients for the heat kernel, we let K → ∞, set θk = e−t tk

k! , and use
the exponential series to obtain

ξHK
j =

∞∑

m=0

(
m+ j

j

)
(−1)je−t tm+j

(m+ j)!
=

=
∞∑

m=0

(m+ j)!

m!j!
(−1)je−t tm+j

(m+ j)!
=

= e−t (−t)j

j!

∞∑

m=0

tm

m!
=

(−t)j

j!
e−tet =

(−t)j

j!
.

(D.4)

To obtain the coefficients for PPR, we let K → ∞, set θk = α(1 − α)k, and recognize the
series expansion 1

(1−x)j+1 =
∑∞

m=0

(
m+j
m

)
xm, resulting in

ξPPR
j =

∞∑

m=0

(
m+ j

j

)
(−1)jα(1− α)m+j =

= α(−1)j(1− α)j
∞∑

m=0

(
m+ j

m

)
(1− α)m =

= α(α− 1)j
1

αj+1
=

(
1− 1

α

)j

.

(D.5)

D.2 Experiments

For optimizing the hyperparameters for node classification the data is split into a development
and a test set. The development set contains 1500 nodes for all datasets but for COAUTHOR CS,
where it contains 5000 nodes. All remaining nodes are part of the test set and only used once
for testing. The development set is split into a training set containing 20 nodes per class and a
validation set with the remaining nodes. For every run the accuracy is determined using 100
different random splits of the development set using fixed seeds. Different seeds are used for
validation and test splits. Early stopping patience is set to 100 epochs with a maximum limit of
10000 epochs, which is never reached. The patience is reset after an increase in accuracy on the
validation set. For the test runs we select the hyperparameter configurations that showed the
highest average accuracy on the validation splits.

We use the same development set for optimizing the hyperparameters for clustering. The test
set is only once for generating test results. Clustering results are averaged over 20 randomly
initialized runs.

Confidence intervals are calculated by bootstrapping the accuracy results from 100 or 20 runs,
respectively, with 1000 samples. All implementations for node classification as well as DGI are
based on PyTorch (Paszke et al., 2019) and PyTorch Geometric (Fey & Lenssen, 2019). The re-
maining experiments are based on NumPy (Van Der Walt et al., 2011), SciPy (Jones et al., 2001),
graph-tool (Peixoto, 2014), and gensim (Řehůřek & Sojka, 2010). For k-means clustering we use
the implementation by scikit-learn (Pedregosa et al., 2011). All datasets are included in PyTorch

166

D.2 Experiments

Geometric, available at https://github.com/rusty1s/pytorch_geometric. Ex-
periments using PyTorch are run on Nvidia GPUs using CUDA and the remaining experiments
are run on Intel CPUs.

For all experiments the largest connected component of the graph is selected. Dropout
probability is set to p = 0.5 for all experiments and performed after every application of the
activation function. PPR preprocessing is done with α ∈ [0.05, 0.30], heat kernel preprocessing
with t ∈ [1, 10]. For top-k matrix sparsification k is set to either 64 or 128 and for ϵ-thresholding
ϵ is chosen from [0.00001, 0.01]. We do not choose ϵ directly but rather calculate which ϵ
corresponds to a chosen average degree. For node classification we use the Adam optimizer with
a learning rate of 0.01. The hidden dimension of GNNs is kept fixed at 64 with the exception of
ARMA, where the dimensionality of a single stack is chosen from 16 or 32. For ARMA, up
to three stacks and two layers are tested. GCN and GAT are run with up to 4 layers, JK and
GIN with up to six layers. L2-regularization is performed on the parameters of the first layer of
every model with λL1 ∈ [0.001, 10]. Unsupervised models use a node embedding dimension
of 128. DGI uses the Adam optimizer with a learning rate of 0.001. For a full list of final
hyperparameters per model, diffusion, and dataset see App. D.2.3.

D.2.1 Datasets

Table D.1: Dataset statistics.

Dataset Type Classes Features Nodes Edges Label rate
CORA Citation 7 1433 2485 5069 0.056
CITESEER Citation 6 3703 2120 3679 0.057
PUBMED Citation 3 500 19 717 44 324 0.003
COAUTHOR CS Co-author 15 6805 18 333 81 894 0.016
AMZ COMP Co-purchase 10 767 13 381 245 778 0.015
AMZ PHOTOS Co-purchase 8 745 7487 119 043 0.021

D.2.2 Results

To support our claim of achieving state-of-the-art node classification performance we also
include results (and hyperparameters) of APPNP, which has been shown to be the current state
of the art for semi-supervised node classification and uses graph diffusion internally (Fey &
Lenssen, 2019; Gasteiger et al., 2019a).

167

https://github.com/rusty1s/pytorch_geometric

D Diffusion Improves Graph Learning

Table D.2: Average accuracy (%) on CORA with bootstrap-estimated 95% confidence levels.

Model No diffusion Heat PPR AdaDIF

GCN 81.71 ± 0.26 83.48 ± 0.22 83.58 ± 0.23 82.93 ± 0.23
GAT 80.10 ± 0.34 81.54 ± 0.25 81.60 ± 0.25 81.32 ± 0.22
JK 82.14 ± 0.24 83.69 ± 0.29 83.78 ± 0.22 83.43 ± 0.21
GIN 73.96 ± 0.46 76.54 ± 0.63 78.74 ± 0.44 75.94 ± 0.45
ARMA 81.62 ± 0.24 83.32 ± 0.22 83.81 ± 0.21 83.24 ± 0.22
APPNP 83.83 ± 0.23 - - -

DCSBM 59.75 ± 1.59 64.63 ± 2.60 68.52 ± 1.47 -
Spectral 29.29 ± 1.03 35.16 ± 2.96 34.03 ± 2.01 -
DeepWalk 68.67 ± 1.01 68.76 ± 0.67 69.42 ± 0.07 -
DGI 54.29 ± 1.21 67.71 ± 1.69 69.61 ± 1.73 -

Table D.3: Average accuracy (%) on CITESEER with bootstrap-estimated 95% confidence levels.

Model No diffusion Heat PPR AdaDIF

GCN 72.02 ± 0.31 73.22 ± 0.27 73.35 ± 0.27 71.58 ± 0.31
GAT 69.52 ± 0.32 70.25 ± 0.34 68.50 ± 0.21 68.68 ± 0.22
JK 70.34 ± 0.38 72.38 ± 0.27 72.24 ± 0.31 71.11 ± 0.33
GIN 61.09 ± 0.58 62.82 ± 0.50 64.07 ± 0.48 61.46 ± 0.51
ARMA 70.84 ± 0.32 71.90 ± 0.33 72.28 ± 0.29 71.45 ± 0.31
APPNP 72.76 ± 0.25 - - -

DCSBM 46.70 ± 2.18 56.81 ± 1.21 57.14 ± 1.40 -
Spectral 27.02 ± 0.57 29.61 ± 1.29 29.26 ± 1.46 -
DeepWalk 55.33 ± 1.05 66.05 ± 0.56 65.81 ± 0.16 -
DGI 54.62 ± 2.28 71.58 ± 0.94 72.42 ± 0.39 -

Table D.4: Average accuracy (%) on PUBMED with bootstrap-estimated 95% confidence levels.

Model No diffusion Heat PPR AdaDIF

GCN 78.23 ± 0.40 79.62 ± 0.36 78.72 ± 0.37 77.46 ± 0.36
GAT 76.32 ± 0.47 77.78 ± 0.34 76.66 ± 0.32 75.98 ± 0.33
JK 78.47 ± 0.36 79.95 ± 0.28 79.22 ± 0.32 78.01 ± 0.41
GIN 72.38 ± 0.63 74.16 ± 0.62 73.62 ± 0.63 68.14 ± 0.80
ARMA 77.14 ± 0.36 79.64 ± 0.35 78.85 ± 0.36 77.32 ± 0.37
APPNP 79.78 ± 0.33 - - -

DCSBM 46.64 ± 1.85 67.38 ± 1.45 64.51 ± 1.75 -
Spectral 37.97 ± 0.02 49.28 ± 3.08 48.05 ± 2.69 -
DeepWalk 70.77 ± 0.14 71.36 ± 0.14 69.96 ± 0.12 -
DGI 49.96 ± 2.21 65.94 ± 0.23 66.52 ± 0.35 -

168

D.2 Experiments

Table D.5: Average accuracy (%) on COAUTHOR CS with bootstrap-estimated 95% confidence levels.

Model No diffusion Heat PPR AdaDIF

GCN 91.83 ± 0.08 92.79 ± 0.07 93.01 ± 0.07 92.28 ± 0.06
GAT 90.89 ± 0.13 89.82 ± 0.10 91.33 ± 0.07 88.29 ± 0.06
JK 91.11 ± 0.09 92.40 ± 0.08 92.41 ± 0.07 91.68 ± 0.08
ARMA 91.32 ± 0.08 92.32 ± 0.09 92.63 ± 0.08 91.03 ± 0.09
APPNP 92.08 ± 0.07 - - -

DCSBM 57.70 ± 1.52 63.70 ± 0.93 61.71 ± 1.15 -
Spectral 24.74 ± 2.28 50.47 ± 3.20 55.27 ± 3.00 -
DeepWalk 61.26 ± 0.91 63.77 ± 1.28 65.29 ± 1.40 -
DGI 57.52 ± 2.63 62.84 ± 1.84 63.79 ± 1.89 -

Table D.6: Average accuracy (%) on AMZ COMP with bootstrap-estimated 95% confidence levels.

Model No diffusion Heat PPR AdaDIF

GCN 84.75 ± 0.23 86.77 ± 0.21 86.04 ± 0.24 85.73 ± 0.23
GAT 45.37 ± 4.20 86.68 ± 0.26 85.37 ± 0.33 86.55 ± 0.26
JK 83.33 ± 0.27 86.51 ± 0.26 85.66 ± 0.30 84.40 ± 0.32
GIN 55.44 ± 0.83 81.11 ± 0.62 75.08 ± 1.20 56.52 ± 1.65
ARMA 84.36 ± 0.26 86.09 ± 0.27 84.92 ± 0.26 84.92 ± 0.29
APPNP 81.72 ± 0.25 - - -

DCSBM 44.61 ± 0.77 55.80 ± 1.29 57.92 ± 2.25 -
Spectral 40.39 ± 1.11 50.89 ± 3.05 52.62 ± 2.14 -
DeepWalk 55.61 ± 0.25 56.29 ± 0.50 55.05 ± 0.98 -
DGI 30.84 ± 1.96 37.27 ± 1.21 36.81 ± 1.12 -

Table D.7: Average accuracy (%) on AMZ PHOTO with bootstrap-estimated 95% confidence levels.

Model No diffusion Heat PPR AdaDIF

GCN 92.08 ± 0.20 92.82 ± 0.23 92.20 ± 0.22 92.37 ± 0.22
GAT 53.40 ± 5.49 91.86 ± 0.20 90.89 ± 0.27 91.65 ± 0.20
JK 91.07 ± 0.26 92.93 ± 0.21 92.37 ± 0.22 92.34 ± 0.22
GIN 68.34 ± 1.16 87.24 ± 0.65 83.41 ± 0.82 75.37 ± 0.86
ARMA 91.41 ± 0.22 92.05 ± 0.24 91.09 ± 0.24 90.38 ± 0.28
APPNP 91.42 ± 0.26 - - -

DCSBM 66.30 ± 1.70 67.13 ± 2.49 64.28 ± 1.81 -
Spectral 28.15 ± 0.81 49.86 ± 2.06 53.65 ± 3.22 -
DeepWalk 78.82 ± 0.85 79.26 ± 0.09 78.73 ± 0.10 -
DGI 40.09 ± 2.14 49.02 ± 1.78 51.34 ± 1.96 -

169

D Diffusion Improves Graph Learning

0 1000 2000
Index

0.00

0.02

0.04

0.06

∆
λ

ϵ = 10−3

ϵ = 10−4

Figure D.1: Close-up of difference caused by sparsification (Fig. 7.2b). Primarily the lowest and highest
eigenvalues of the Laplacian are affected.

100 101 102 103

Average degree

70

80

A
cc

ur
ac

y
(%

)

CORA
CITESEER
AMZ COMP

Figure D.2: GCN+GDC accuracy (using PPR and sparsification by threshold ϵ). Lines indicate original
accuracy and degree. GDC surpasses the original accuracy at around the same degree independent of
dataset. Sparsification can improve accuracy.

170

D.2 Experiments

D.2.3 Hyperparameters

Table D.8: Hyperparameters for GCN obtained by grid and random search.

Diffusion Dataset name α t k ϵ λL2

Learning
rate Dropout

Hidden
dimension

Hidden
depth

-

CORA

- - - -

0.06

0.01 0.5 64 1

CITESEER 10.0
PUBMED 0.03
COAUTHOR CS 0.06
AMZ COMP 0.03
AMZ PHOTO 0.03

Heat

CORA

-

5 - 0.0001 0.09

0.01 0.5 64

1
CITESEER 4 - 0.0009 10.0 1
PUBMED 3 - 0.0001 0.04 1
COAUTHOR CS 1 64 - 0.08 1
AMZ COMP 5 - 0.0010 0.07 1
AMZ PHOTO 3 - 0.0001 0.08 2

PPR

CORA 0.05

-

128

-

0.10

0.01 0.5 64 1

CITESEER 0.10 0.0009 10.0
PUBMED 0.10 64 0.06
COAUTHOR CS 0.10 64 0.03
AMZ COMP 0.10 64 0.04
AMZ PHOTO 0.15 64 0.03

AdaDIF

CORA

- -

128

-

0.08

0.01 0.5 64

1
CITESEER 128 0.08 1
PUBMED 128 0.01 2
COAUTHOR CS 64 0.03 1
AMZ COMP 64 0.02 1
AMZ PHOTO 64 0.02 1

171

D Diffusion Improves Graph Learning

Table D.9: Hyperparameters for GAT obtained by grid and random search.

Diffusion Dataset name α t k ϵ λL2

Learning
rate Dropout

Hidden
dimension

Hidden
depth

-

CORA

- - - -

0.06

0.01 0.5 64

1
CITESEER 0.06 1
PUBMED 0.03 2
COAUTHOR CS 0.00 2
AMZ COMP 0.09 1
AMZ PHOTO 0.08 1

Heat

CORA

- 1 -

0.0010 0.04

0.01 0.5 64

1
CITESEER 0.0010 0.08 1
PUBMED 0.0005 0.02 2
COAUTHOR CS 0.0005 0.03 1
AMZ COMP 0.0005 0.01 1
AMZ PHOTO 0.0005 0.01 1

PPR

CORA

0.10 - -

0.0050 0.08

0.01 0.5 64

1
CITESEER 0.0005 0.10 1
PUBMED 0.0005 0.00 2
COAUTHOR CS 0.0005 0.00 1
AMZ COMP 0.0005 0.03 1
AMZ PHOTO 0.0005 0.07 2

AdaDIF

CORA

- -

- 0.0010 0.04

0.01 0.5 64

1
CITESEER - 0.0005 0.04 1
PUBMED 128 - 0.01 2
COAUTHOR CS 64 - 0.02 1
AMZ COMP 64 - 0.02 1
AMZ PHOTO 64 - 0.02 1

172

D.2 Experiments

Table D.10: Hyperparameters for JK obtained by grid and random search.

Diffusion Dataset name α t k ϵ λL2

Learning
rate Dropout Aggregation

Hidden
dimension

Hidden
depth

-

CORA

- - - -

0.04

0.01 0.5 Concatenation 64

3
CITESEER 1.00 4
PUBMED 0.05 2
COAUTHOR CS 0.02 2
AMZ COMP 0.03 2
AMZ PHOTO 0.03 2

Heat

CORA

-

5 - 0.0001 0.09

0.01 0.5 Concatenation 64 2

CITESEER 4 - 0.0009 1.00
PUBMED 3 - 0.0001 0.09
COAUTHOR CS 1 64 - 0.03
AMZ COMP 5 - 0.0010 0.07
AMZ PHOTO 3 - 0.0005 0.07

PPR

CORA 0.05

-

128

-

0.10

0.01 0.5 Concatenation 64 2

CITESEER 0.2 0.0009 1.00
PUBMED 0.10 64 0.02
COAUTHOR CS 0.10 64 0.03
AMZ COMP 0.10 64 0.04
AMZ PHOTO 0.15 64 0.03

AdaDIF

CORA

- -

128

-

0.05

0.01 0.5 Concatenation 64

2
CITESEER 128 0.08 2
PUBMED 128 0.01 3
COAUTHOR CS 64 0.02 2
AMZ COMP 64 0.03 2
AMZ PHOTO 64 0.02 2

173

D Diffusion Improves Graph Learning

Table D.11: Hyperparameters for GIN obtained by grid and random search.

Diffusion Dataset name α t k ϵ λL2

Learning
rate Dropout Aggregation

Hidden
dimension

Hidden
depth

-

CORA

- - - -

0.09

0.01 0.5 Sum 64

4
CITESEER 0.10 4
PUBMED 0.08 4
AMZ COMP 0.01 5
AMZ PHOTO 0.01 4

Heat

CORA

-

3 - 0.0001 0.07

0.01 0.5 Sum 64

5
CITESEER 8 - 0.0009 0.01 4
PUBMED 3 - 0.0010 0.02 5
AMZ COMP 3 64 - 0.00 4
AMZ PHOTO 3 64 - 0.00 4

PPR

CORA 0.05

-

128

-

0.01

0.01 0.5 Sum 64

4
CITESEER 0.05 0.0009 0.01 4
PUBMED 0.10 64 0.01 5
AMZ COMP 0.10 64 0.04 4
AMZ PHOTO 0.10 64 0.04 4

AdaDIF

CORA

- -

128

-

0.02

0.01 0.5 Sum 64

3
CITESEER 128 0.05 4
PUBMED 64 0.03 5
AMZ COMP 64 0.02 4
AMZ PHOTO 64 0.02 4

174

D.2 Experiments

Table D.12: Hyperparameters for ARMA obtained by grid and random search.

Diffusion Dataset name α t k ϵ λL2

Learning
rate Dropout

ARMA
layers

ARMA
stacks

Hidden
dimension

Hidden
depth

-

CORA

- - - -

0.04

0.01 0.5 1

3

16 1

CITESEER 0.08 3
PUBMED 0.00 2
COAUTHOR CS 0.02 2
AMZ COMP 0.01 3
AMZ PHOTO 0.01 3

Heat

CORA

-

5 64 - 0.08

0.01 0.5 1

2

16 1

CITESEER 5 64 - 0.08 3
PUBMED 3 - 0.0001 0.00 2
COAUTHOR CS 1 64 - 0.01 3
AMZ COMP 5 64 - 0.04 3
AMZ PHOTO 3 64 - 0.04 2

PPR

CORA 0.10

-

128

-

0.05

0.01 0.5 1

3 16

1

CITESEER 0.15 128 0.08 3 16
PUBMED 0.10 64 0.01 3 16
COAUTHOR CS 0.10 64 0.01 2 16
AMZ COMP 0.10 128 0.06 2 32
AMZ PHOTO 0.15 128 0.06 2 32

AdaDIF

CORA

- -

128

-

0.05

0.01 0.5 1

2

16 1

CITESEER 128 0.09 3
PUBMED 64 0.01 2
COAUTHOR CS 64 0.03 2
AMZ COMP 64 0.01 3
AMZ PHOTO 64 0.01 2

Table D.13: Hyperparameters for APPNP obtained by grid and random search.

Dataset name α k λL2

Learning
rate Dropout

Hidden
dimension

Hidden
depth

CORA 0.10

10

0.09

0.01 0.5 64 1

CITESEER 0.10 1.00
PUBMED 0.10 0.02
COAUTHOR CS 0.15 0.01
AMZ COMP 0.10 0.06
AMZ PHOTO 0.10 0.05

175

D Diffusion Improves Graph Learning

Table D.14: Hyperparameters for DCSBM obtained by grid and random search.

Diffusion Dataset name α t k ϵ Number of blocks

-

CORA

- - - -

7
CITESEER 6
PUBMED 3
COAUTHOR CS 15
AMZ COMP 10
AMZ PHOTO 8

Heat

CORA

-

5 - 0.0010 7
CITESEER 1 64 - 6
PUBMED 3 64 - 3
COAUTHOR CS 5 - 0.0010 15
AMZ COMP 3 - 0.0010 10
AMZ PHOTO 3 - 0.0010 8

PPR

CORA 0.05

-

- 0.0010 7
CITESEER 0.05 64 - 6
PUBMED 0.10 - 0.0010 3
COAUTHOR CS 0.05 64 - 15
AMZ COMP 0.05 - 0.0010 10
AMZ PHOTO 0.10 64 - 8

Table D.15: Hyperparameters for spectral clustering obtained by grid and random search.

Diffusion Dataset name α t k ϵ
Embedding
dimension

-

CORA

- - - - 128

CITESEER
PUBMED
COAUTHOR CS
AMZ COMP
AMZ PHOTO

Heat

CORA

-

5 - 0.0010

128

CITESEER 5 - 0.0010
PUBMED 5 64 -
COAUTHOR CS 5 - 0.0010
AMZ COMP 1 64 -
AMZ PHOTO 5 64 -

PPR

CORA 0.10

-

- 0.0010

128

CITESEER 0.05 - 0.0010
PUBMED 0.15 - 0.0010
COAUTHOR CS 0.05 64 -
AMZ COMP 0.05 64 -
AMZ PHOTO 0.15 64 -

176

D.2 Experiments

Table D.16: Hyperparameters for DeepWalk obtained by grid and random search.

Diffusion Dataset name α t k ϵ Walks per node
Embedding
dimension

Walk
length

-

CORA

- - - - 10 128 64

CITESEER
PUBMED
COAUTHOR CS
AMZ COMP
AMZ PHOTO

Heat

CORA

-

5 - 0.0010

10 128 64

CITESEER 1 64 -
PUBMED 1 - 0.0010
COAUTHOR CS 5 - 0.0010
AMZ COMP 3 - 0.0010
AMZ PHOTO 3 - 0.0010

PPR

CORA 0.05

-

- 0.0010

10 128 64

CITESEER 0.05 - 0.0010
PUBMED 0.15 64 -
COAUTHOR CS 0.10 64 -
AMZ COMP 0.05 - 0.0010
AMZ PHOTO 0.15 - 0.0010

Table D.17: Hyperparameters for DGI obtained by grid and random search.

Diffusion Dataset name α t k ϵ
Learning

rate Encoder
Embedding
dimension

-

CORA

- - - - 0.001 GCN 128

CITESEER
PUBMED
COAUTHOR CS
AMZ COMP
AMZ PHOTO

Heat

CORA

-

1 - 0.0001

0.001 GCN 128

CITESEER 5 - 0.0001
PUBMED 5 64 -
COAUTHOR CS 5 64 -
AMZ COMP 1 - 0.0001
AMZ PHOTO 1 - 0.0001

PPR

CORA 0.15

- -

0.0001

0.001 GCN 128

CITESEER 0.10 0.0001
PUBMED 0.15 0.0010
COAUTHOR CS 0.15 0.0010
AMZ COMP 0.30 0.0010
AMZ PHOTO 0.30 0.0010

177

E Scaling Graph Neural Networks with
Approximate PageRank

E.1 Appendix

E.1.1 Parallel Efficiency

0 100 200

Number of workers

0.00

0.25

0.50

0.75

1.00

E
ffi

ci
en

cy

Method
PPRGo
GNN 2-hop
FastGCN

Figure E.1: Parallel efficiency w.r.t. the number of distributed workers on MAG-Scholar-F for different
models.

To further investigate the performance of different models in the distributed training setting
we also evaluate parallel efficiency. Intuitively, this efficiency measures how well we can utilize
additional workers. Let mt be the number of steps per second using t workers, then the parallel
efficiency of a model is defined as mt

m1·t . In Fig. E.1 we see that PPRGo achieves the best parallel
efficiency.

E.1.2 MAG-Scholar Graph Construction

First, we obtain the "raw" data from the Microsoft Academic Graph (MAG) (Sinha et al., 2015)
repository, specifically we downloaded a snapshot of the data on 01.25.2019. We construct a
graph where each node is a paper and the edges indicate citations/references between the papers.
The node features are a bag-of-words representation of the paper’s abstract. We preprocess the
feature matrix by keeping only those words that appear in at least 5 abstracts. We preprocess the
graph by keeping only the nodes that belong to the largest connected component. The resulting
MAG-Scholar-F graph has 12.40393 million nodes, 2.78424 million features, and 173.050172
million edges. The MAG-Scholar-C graph has 10.54156 million nodes, 2.78424 million features,
and 132.817644 million edges. To obtain the fields of study for each paper, we first create
a mapping between a venue (i.e. conference or journal) and its respective field of study.

179

E Scaling Graph Neural Networks with Approximate PageRank

Specifically, we consider the top-20 venues in each field of study according to Google Scholar1.
We manually match the same venues that have different tittles (e.g. because of abbreviations) in
the MAG data compared to the Google Scholar data. These venues are categorized in 8 different
coarse-grained categories (e.g. engeneering2) and 253 different fine-grained categories (e.g.
biophysics3) and we use them to define coarse/fine-grained "ground-truth" labels for the nodes.

E.1.3 Experimental Details

We keep all PPRGo hyperparameters constant across all datasets, except the value of the teleport
parameter α = 0.25, which we set to α = 0.5 for reddit. The feed-forward neural network has
two layers, i.e. a single hidden layer of size 32. We use a dropout of 0.1 and set the weight
decay to 10−4. We train for 200 epochs using a learning rate of 0.005 and the Adam optimizer
(Kingma & Ba, 2015) with a batch size of 512. To achieve a consistent setup across all models
and datasets we always use the same number of epochs, use no early stopping and only evaluate
validation accuracy after training. For the validation set we randomly sample 10 times the
number of training nodes.

We standardize the graphs as a preprocessing step, i.e. we choose only the subset of nodes
belonging to the largest connected component and make the graph undirected and unweighted.
We do not include dataset loading time in the overall runtime since it is the same for all models.

E.1.4 Further Implementational Details

The pseudo code in Alg. 1 shows how we compute the approximate personalized PageRank
based on (Andersen et al., 2006). For single-machine experiments we implement the algorithm
as described in Python using Numba for acceleration (not parallelized). In the distributed setting
instead of carrying out push-flow iterations until convergence, we perform a fixed number of
iterations (i.e. we replace the while with a for loop), and drop nodes whose residual score is
below a specified threshold in each iteration. Additionally, we truncate nodes with a very large
degree (≥ 10000) by randomly sampling their neighbors. The above modifications proved to be
just as effective as Andersen et al. (2006)’s method while being significantly faster in terms of
runtime.

E.1.5 Applicability and Limitations

When using PPRGo for your own purposes you should first be aware that this model assumes a
homophilic graph, which is mostly, but not always the case. Furthermore, it cannot perform
arbitrary message passing schemes like GNNs do, since we essentially compress the message
passing into a single step. It therefore has less theoretical expressiveness than GNNs (Boldi
et al., 2006; Xu et al., 2019b), even if it practically shows the same or better accuracy. However,
note that PPRGo allows arbitrary realizations of fθ and can therefore be used with more complex
data and models such as images and CNNs, audio and LSTMs, or text and Transformers.

1https://scholar.google.com/citations?view_op=top_venues&hl=en
2https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng
3https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=phy_
biophysics

180

https://scholar.google.com/citations?view_op=top_venues&hl=en
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=eng
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=phy_biophysics
https://scholar.google.com/citations?view_op=top_venues&hl=en&vq=phy_biophysics

F Scalable Optimal Transport in High
Dimensions for Graph Distances,
Embedding Alignment, and More

F.1 Complexity analysis

Sparse Sinkhorn. A common way of achieving a high p1 and low p2 in LSH is via the
AND-OR construction. In this scheme we calculate B · r hash functions, divided into B
sets (hash bands) of r hash functions each. A pair of points is considered as neighbors if
any hash band matches completely. Calculating the hash buckets for all points with b hash
buckets per function scales as O((n + m)dBbr) for the hash functions we consider. As
expected, for the tasks and hash functions we investigated we obtain approximately m/br

and n/br neighbors, with br hash buckets per band. Using this we can fix the number of
neighbors to a small, constant β in expectation with br = min(n,m)/β. We thus obtain a
sparse cost matrix Csp with O(max(n,m)β) non-infinite values and can calculate s and t in

linear time O(Nsink max(n,m)β), where Nsink ≤ 2 +
−4 ln(mini,j{K̃ij |K̃ij>0}mini,j{pi,qj})

ε (see
Theorem 9.4) denotes the number of Sinkhorn iterations. Calculating the hash buckets with
r = logmin(n,m)−log β

log b takes O((n+m)dBb(logmin(n,m)− log β)/ log b). Since B, b, and β
are small, we obtain roughly log-linear scaling with the number of points overall, i.e. O(n log n)
for n ≈ m.

LCN-Sinkhorn. Both choosing landmarks via k-means++ sampling and via k-means with a
fixed number of iterations have the same runtime complexity of O((n+m)ld). Precomputing
W can be done in time O(nl2 + l3). The low-rank part of updating the vectors s and t can be
computed in O(nl + l2 + lm), with l chosen constant, i.e. independently of n and m. Since
sparse Sinkhorn with LSH has a log-linear runtime we again obtain log-linear overall runtime
for LCN-Sinkhorn.

F.2 Limitations

Sparse Sinkhorn. Using a sparse approximation for K works well in the common case when
the regularization parameter λ is low and the cost function varies enough between data pairs,
such that the transport plan P resembles a sparse matrix. However, it can fail if the cost between
pairs is very similar or the regularization is very high, if the dataset contains many hubs, i.e.
points with a large number of neighbors, or if the distributions p or q are spread very unevenly.
Furthermore, sparse Sinkhorn can be too unstable to train a model from scratch, since randomly
initialized embeddings often have no close neighbors (see Sec. 9.8). Note also that LSH requires

181

F Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

the cost function to be associated with a metric space, while regular Sinkhorn can be used with
arbitrary costs.

Note that we are only interested in an approximate solution with finite error ε. We therefore
do not need the kernel matrix to be fully indecomposable or have total support, which would
be necessary and sufficient for a unique (up to a scalar factor) and exact solution, respectively
(Sinkhorn & Knopp, 1967). However, the sparse approximation is not guaranteed to have
support (Def. 9.1), which is necessary and sufficient for the Sinkhorn algorithm to converge. The
approximated matrix is actually very likely not to have support if we use one LSH bucket per
sample. This is due to the non-quadratic block structure resulting from every point only having
non-zero entries for points in the other data set that fall in the same bucket. We can alleviate
this problem by using unbalanced OT, as proposed in Sec. 9.6, or (empirically) the AND-OR
construction. We can also simply choose to ignore this as long as we limit the maximum number
of Sinkhorn iterations. On the 3D point cloud and random data experiments we indeed ignored
this issue and actually observed good performance. Experiments with other LSH schemes and
the AND-OR construction showed no performance improvement despite the associated cost
matrices having support. Not having support therefore seems not to be an issue in practice, at
least for the data we investigated.

LCN-Sinkhorn. The LCN approximation is guaranteed to have support due to the Nyström
part. Other weak spots of sparse Sinkhorn, such as very similar cost between pairs, high
regularization, or data containing many hubs, are also usually handled well by the Nyström
part of LCN. Highly concentrated distributions p and q can still have adverse effects on LCN-
Sinkhorn. We can compensate for these by sampling landmarks or neighbors proportional to
each point’s probability mass.

The Nyström part of LCN also has its limits, though. If the regularization parameter is low
or the cost function varies greatly, we observed stability issues (over- and underflows) of the
Nyström approximation because of the inverse A−1, which cannot be calculated in log-space.
The Nyström approximation furthermore is not guaranteed to be non-negative, which can lead
to catastrophic failures if the matrix product in Eq. (9.2) becomes negative. In these extreme
cases we also observed catastrophic elimination with the correction K

sp
∆ . Since a low entropy

regularization essentially means that optimal transport is very local, we recommend using
sparse Sinkhorn in these scenarios. This again demonstrates the complementarity of the sparse
approximation and Nyström: In cases where one fails we can often resort to the other.

F.3 Proof of Theorem 9.1

By linearity of expectation we obtain

E[Ki,ik −KNys,i,ik] = E[Ki,ik]− E[KNys,i,ik]

= E[e−δk/λ]− E[KNys,i,ik]
(F.1)

with the distance to the kth-nearest neighbor δk. Note that without loss of generality we can
assume unit manifold volume and obtain the integral resulting from the first expectation as

182

F.3 Proof of Theorem 9.1

(ignoring boundary effects that are exponentially small in n, see Percus & Martin (1998))

E[e−δk/λ] ≈ n!

(n− k)!(k − 1)!

∫ ((d/2)!)1/d√
π

0
e−r/λVd(r)

k−1(1− Vd(r))
n−k ∂Vd(r)

∂r
dr, (F.2)

with the volume of the d-ball

Vd(r) =
πd/2rd

(d/2)!
. (F.3)

Since this integral does not have an analytical solution we can either calculate it numerically or
lower bound it using Jensen’s inequality (again ignoring exponentially small boundary effects)

E[e−δk/λ] ≥ e−E[δk]/λ ≈ exp

(
−((d/2)!)1/d√

πλ

(k − 1 + 1/d)!

(k − 1)!

n!

(n+ 1/d)!

)
. (F.4)

To upper bound the second expectation E[KNys,i,ik] we now denote the distance between two
points by ria = ∥xpi − xa∥2, the kernel by kia = e−ria/λ and the inter-landmark kernel matrix
by KL. We first consider

p(xj | xj is kth-nearest neighbor) =

=

∫
p(δk = rij | xi,xj)p(xi)p(xj) dxi

=

∫
p(δk = rij | rij)p(rij | xj) drij p(xj)

=

∫
p(δk = rij | rij)p(rij) drij p(xj)

=

∫
p(δk = rij) drij p(xj)

= p(xj) = p(xi),

(F.5)

where the third step is due to the uniform distribution. Since landmarks are more than 2R apart
we can approximate

K−1
L = (Il + 1l×lO(e−2R/λ))−1 = In − 1l×lO(e−2R/λ), (F.6)

where 1l×l denotes the constant 1 matrix, with the number of landmarks l. We can now use
(1) the fact that landmarks are arranged a priori, (2) Hölder’s inequality, (3) Eq. (F.5), and (4)

183

F Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

Eq. (F.6) to obtain

E[KNys,i,ik] = E

[
l∑

a=1

l∑

b=1

kia(K
−1
L)abkikb

]

(1)
=

l∑

a=1

l∑

b=1

(K−1
L)abE[kiakikb]

(2)

≤
l∑

a=1

l∑

b=1

(K−1
L)abE[k2ia]1/2E[k2ikb]

1/2

(3)
=

l∑

a=1

l∑

b=1

(K−1
L)abE[k2ia]1/2E[k2ib]1/2

(4)
=

l∑

a=1

E[k2ia]−O(e−2R/λ).

(F.7)

Since landmarks are more than 2R apart we have VM ≥ lVd(R), where VM denotes the volume
of the manifold. Assuming Euclideanness in Vd(R) we can thus use the fact that data points are
uniformly distributed to obtain

E[k2ia] = E[e−2ria/λ]

=
1

VM

∫
e−2r/λ∂Vd(r)

∂r
dr

≤ 1

lVd(R)

∫
e−2r/λ∂Vd(r)

∂r
dr

=
1

lVd(R)

∫ R

0
e−2r/λ∂Vd(r)

∂r
dr +O(e−2R/λ)

=
d

lRd

∫ R

0
e−2r/λrd−1 dr +O(e−2R/λ)

=
d (Γ(d)− Γ(d, 2R/λ))

l(2R/λ)d
+O(e−2R/λ)

(F.8)

and finally

E[KNys,i,ik] ≤
l∑

a=1

E[k2ia]−O(e−2R/λ)

≤ d (Γ(d)− Γ(d, 2R/λ))

(2R/λ)d
+O(e−2R/λ).

(F.9)

F.4 Proof of Theorem 9.2

We first prove two lemmas that will be useful later on.

184

F.4 Proof of Theorem 9.2

Lemma F.1. Let K̃ be the Nyström approximation of the similarity matrix Kij = e−∥xi−xj∥2/λ,
with all Nyström landmarks being at least D apart and data samples being no more than r
away from its closest landmark. Then

K̃ij = K̃2L
ij +O(e−2max(D−r,D/2)/λ), (F.10)

where K̃2L denotes the Nyström approximation using only the two landmarks closest to the
points xi and xj .

Proof. We denote the landmarks closest to the two points i and j with the indices a and b, or
jointly with A, and all other landmarks with C. We furthermore denote the kernel between the
point i and the point a as kia = e−∥xa−xj∥2/λ and the vector of kernels between a set of points
A and a point i as kAi.

We can split up A−1 used in the Nyström approximation

K̃ = UA−1V , (F.11)

where Acd = kcd, Uic = kic, and Vdj = kdj , into relevant blocks via

A−1 =

(
A2L B
BT Aother

)−1

=

(
A−1

2L +A−1
2L B(A/A2L)

−1BTA−1
2L −A−1

2L B(A/A2L)
−1

−(A/A2L)
−1BTA−1

2L (A/A2L)
−1

)
,

(F.12)

where A/A2L = Aother −BTA−1
2L B denotes the Schur complement. We can thus write the

entries of the Nyström approximation as

K̃ij = kT
AiA

−1
2L kAj

+ kT
AiA

−1
2L B(A/A2L)

−1BTA−1
2L kAj

− kT
AiA

−1
2L B(A/A2L)

−1kCj

− kT
Ci(A/A2L)

−1BTA−1
2L kAj

+ kT
Ci(A/A2L)

−1kCj

= K̃2L
ij + (kT

Ci − kT
AiA

−1
2L B)

(Aother −BTA−1
2L B)−1

(kCj −BTA−1
2L kAj).

(F.13)

Interestingly, the difference to K̃2L
ij is again a Nyström approximation where each factor is the

difference between the correct kernel (e.g. kCj) and the previous Nyström approximation of this
kernel (e.g. BTA−1

2L kAj).

185

F Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

We next bound the inverse, starting with

BTA−1
2L B =

(
kCa kCb

) 1

1− k2ab

(
1 −kab

−kab 1

)(
kT
Ca

kT
Cb

)

=
1

1− k2ab

(
kCak

T
Ca − kabkCak

T
Cb − kabkCbk

T
Ca + kCbk

T
Cb
)

= 1l−2×l−2(1 +O(e−2D/λ)) · 4O(e−2D/λ)

= 1l−2×l−2O(e−2D/λ),

(F.14)

where 1l−2×l−2 denotes the constant 1 matrix, with the number of landmarks l. The last steps
use the fact that landmarks are more than D apart and 0 ≤ k ≤ 1 for all k. For this reason we
also have Aother = Il−2 + 1l−2×l−2O(e−D/λ) and can thus use the Neumann series to obtain

(Aother −BTA−1
2L B)−1 = (Il−2 + 1l−2×l−2O(e−D/λ))−1

= Il−2 − 1l−2×l−2O(e−D/λ).
(F.15)

We can analogously bound the other terms in Eq. (F.13) to obtain

K̃ij = K̃2L
ij + (kT

Ci − 11×l−2O(e−D/λ))

(Il−2 − 1l−2×l−2O(e−D/λ))

(kCj − 1l−2×1O(e−D/λ))

(1)
= K̃2L

ij + kT
CikCj +O(e−(D+max(D−r,D/2))/λ)

= K̃2L
ij +

∑

1≤k≤l
k ̸=a,b

e−(∥xi−xk∥2+∥xk−xj∥2)/λ

+O(e−(D+max(D−r,D/2))/λ)

(2)

≤ K̃2L
ij + de−2max(D−r,D/2)/λ

+O(e−max(2(D−r),(1+
√
3)D/2)/λ)

= K̃2L
ij +O(e−2max(D−r,D/2)/λ),

(F.16)

where d denotes the dimension of x. Step (1) follows from the fact that any points’ second
closest landmarks must be at least max(D − r,D/2) away (since landmarks are at least D
apart). This furthermore means that any point can have at most d second closest landmarks at
this distance, which we used in step (2).

Lemma F.2. Let K̃ be the Nyström approximation of the similarity matrix Kij = e−∥xi−xj∥2/λ.
Let xi and xj be data points with equal L2 distance ri and rj to all l landmarks, which have
the same distance ∆ > 0 to each other. Then

K̃ij =
le−(ri+rj)/λ

1 + (l − 1)e−∆/λ
(F.17)

186

F.4 Proof of Theorem 9.2

Proof. The inter-landmark distance matrix is

A = e−∆/λ1l×l + (1− e−∆/λ)Il, (F.18)

where 1l×l denotes the constant 1 matrix. Using the identity

(b1n×n + (a− b)In)
−1 =

−b

(a− b)(a+ (n− 1)b)
1n×n +

1

a− b
In (F.19)

we can compute

K̃ij = Ui,:A
−1V:,j

=
(
e−ri/λ e−ri/λ · · ·

)
(

−e−∆/λ

(1− e−∆/λ)(1 + (l − 1)e−∆/λ)
1l×l +

1

1− e−∆/λ
Il

)

e−rj/λ

e−rj/λ

...

=
e−(ri+rj)/λ

1− e−∆/λ

(
−l2e−∆/λ

1 + (l − 1)e−∆/λ
+ l

)
=

e−(ri+rj)/λ

1− e−∆/λ

l − le−∆/λ

1 + (l − 1)e−∆/λ

=
le−(ri+rj)/λ

1 + (l − 1)e−∆/λ
.

(F.20)

Moving on to the theorem, first note that it analyzes the maximum error realizable under
the given constraints, not an expected error. Ksp is correct for all pairs inside a cluster and
0 otherwise. We therefore obtain the maximum error by considering the closest possible pair
between clusters. By definition, this pair has distance D − 2r and thus

max
xpi,xqj

K −Ksp = e−(D−2r)/λ (F.21)

LCN is also correct for all pairs inside a cluster, so we again consider the closest possible pair
xi, xj between clusters. We furthermore use Lemma F.1 to only consider the landmarks of the
two concerned clusters, adding an error of O(e−2(D−r)/λ), since r ≪ D. Hence,

K2L
LCN,ij =

(
e−r/λ e−(D−r)/λ

)(1 e−D/λ

e−D/λ 1

)−1(
e−(D−r)/λ

e−r/λ

)

=
1

1− e−2D/λ

(
e−r/λ e−(D−r)/λ

)(1 −e−D/λ

−e−D/λ 1

)(
e−(D−r)/λ

e−r/λ

)

=
1

1− e−2D/λ

(
e−r/λ e−(D−r)/λ

)(e−(D−r)/λ − e−(D+r)/λ)

e−r/λ − e−(2D−r)/λ

)

=
1

1− e−2D/λ
(e−D/λ − e−(D+2r)/λ + e−D/λ − e−(3D−2r)/λ)

=
e−D/λ

1− e−2D/λ
(2− e−2r/λ − e−(2D−2r)/λ)

= e−D/λ(2− e−2r/λ)−O(e−2(D−r)/λ)

(F.22)

187

F Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

and thus

max
xpi,xqj

K −KLCN = e−(D−2r)/λ(1− e−2r/λ(2− e−2r/λ)

+O(e−2D/λ)).
(F.23)

For pure Nyström we need to consider the distances inside a cluster. In the worst case two
points overlap, i.e. Kij = 1, and lie at the boundary of the cluster. Since r ≪ D we again
use Lemma F.1 to only consider the landmark in the concerned cluster, adding an error of
O(e−2(D−r)/λ).

KNys,ij = e−2r/λ +O(e−2(D−r)/λ) (F.24)

Note that when ignoring the effect from other clusters we can generalize the Nyström error to
l ≤ d landmarks per cluster. In this case, because of symmetry we can optimize the worst-case
distance from all cluster landmarks by putting them on an (l−1)-simplex centered on the cluster
center. Since there are at most d landmarks in each cluster there is always one direction in which
the worst-case points are r away from all landmarks. The circumradius of an (l − 1)-simplex

with side length ∆ is
√

l−1
2l ∆. Thus, the maximum distance to all landmarks is

√
r2 + l−1

2l ∆
2.

Using Lemma F.2 we therefore obtain the Nyström approximation

Kmulti
Nys,ij =

le
−2

√
r2+ l−1

2l
∆2/λ

1 + (l − 1)e−∆/λ
+O(e−2(D−r)/λ) (F.25)

F.5 Notes on Theorem 9.3

Lemmas C-F and and thus Theorem 1 by Altschuler et al. (2019) are also valid for Q outside
the simplex so long as ∥Q∥1 =

∑
i,j |Qij | = n and it only has non-negative entries. Any

P̃ returned by Sinkhorn fulfills these conditions if the kernel matrix is non-negative and has
support. Therefore the rounding procedure given by their Algorithm 4 is not necessary for this
result.

Furthermore, to be more consistent with Theorems 9.1 and 9.2 we use the L2 distance instead
of L2

2 in this theorem, which only changes the dependence on ρ.

F.6 Notes on Theorem 9.4

To adapt Theorem 1 by Dvurechensky et al. (2018) to sparse matrices (i.e. matrices with some
Kij = 0) we need to redefine

ν := min
i,j

{Kij |Kij > 0}, (F.26)

i.e. take the minimum only w.r.t. non-zero elements in their Lemma 1. We furthermore need
to consider sums exclusively over these non-zero elements instead of the full 1 vector in their
Lemma 1.

188

F.7 Proof of Prop. 9.1

The Sinkhorn algorithm converges since the matrix has support (Sinkhorn & Knopp, 1967).
However, the point it converges to might not exist because we only require support, not total
support. Therefore, we need to consider slightly perturbed optimal vectors for the proof, i.e.
define a negligibly small ε̃ ≪ ε, ε′ for which |B(u∗, v∗)1 − r| ≤ ε̃, |B(u∗, v∗)T1 − c| ≤ ε̃.
Support furthermore guarantees that no row or column is completely zero, thus preventing any
unconstrained uk or vk, and any non-converging row or column sum of B(uk, vk). With these
changes in place all proofs work the same as in the dense case.

F.7 Proof of Prop. 9.1

Theorem F.1 (Danskin’s theorem). Consider a continuous function ϕ : Rk × Z → R, with
the compact set Z ⊂ Rj . If ϕ(x, z) is convex in x for every z ∈ Z and ϕ(x, z) has a unique
maximizer z̄, the derivative of

f(x) = max
z∈Z

ϕ(x, z) (F.27)

is given by the derivative at the maximizer, i.e.

∂f

∂x
=

∂ϕ(x, z̄)

∂x
. (F.28)

We start by deriving the derivatives of the distances. To show that the Sinkhorn distance
fulfills the conditions for Danskin’s theorem we first identify x = C, z = P , and ϕ(C,P) =
−⟨P ,C⟩F + λH(P). We next observe that the restrictions P1m = p and P T1n = q define a
compact, convex set for P . Furthermore, ϕ is a continuous function and linear in C, i.e. both
convex and concave for any finite P . Finally, ϕ(C,P) is concave in P since ⟨P ,C⟩F is linear
and λH(P) is concave. Therefore the maximizer P̄ is unique and Danskin’s theorem applies to
the Sinkhorn distance. Using

∂CNys,ij

∂Ukl
=

∂

∂Ukl

(
−λ log(

∑

a

UiaWaj)

)

= −λδik
Wlj∑

aUiaWaj
= −λδik

Wlj

KNys,ij
,

(F.29)

∂CNys,ij

∂Wkl
=

∂

∂Wkl

(
−λ log(

∑

a

UiaWaj)

)

= −λδjl
Uik∑

aUiaWaj
= −λδjl

Uik

KNys,ij
,

(F.30)

P̄Nys,ij

KNys,ij
=

∑
b P̄U,ibP̄W,bj∑
aUiaWaj

=
s̄it̄j

∑
bUibWbj∑

aUiaWaj

= s̄it̄j

∑
bUibWbj∑
aUiaWaj

= s̄it̄j

(F.31)

189

F Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

and the chain rule we can calculate the derivative w.r.t. the cost matrix as

∂dλc
∂C

= − ∂

∂C

(
−⟨P̄ ,C⟩F + λH(P̄)

)
= P̄ , (F.32)

∂dλLCN,c

∂Ukl
=
∑

i,j

∂CNys,ij

∂Ukl

∂dλLCN,c

∂CNys,ij
= −λ

∑

i,j

δikWlj
P̄Nys,ij

KNys,ij

= −λ
∑

i,j

δikWlj s̄it̄j = −λs̄k
∑

j

Wlj t̄j

=
(
−λs̄(Wt̄)T

)
kl
,

(F.33)

∂dλLCN,c

∂Wkl
=
∑

i,j

∂CNys,ij

∂Wkl

∂dλLCN,c

∂CNys,ij
= −λ

∑

i,j

δjlUik
P̄Nys,ij

KNys,ij

= −λ
∑

i,j

δjlUiks̄it̄j = −λ

(∑

i

s̄iUik

)
t̄l

=
(
−λ(s̄TU)T t̄T

)
kl
,

(F.34)

and
∂dλLCN,c

∂ logKsp and
∂dλLCN,c

∂ logK
sp
Nys

follow directly from ∂dλc
∂C . We can then backpropagate in time

O((n+m)l2) by computing the matrix-vector multiplications in the right order.

F.8 Choosing LSH neighbors and Nyström landmarks

We focus on two LSH methods for obtaining near neighbors. Cross-polytope LSH (Andoni
et al., 2015) uses a random projection matrix R ∈ Rd×b/2 with the number of hash buckets b,
and then decides on the hash bucket via h(x) = argmax([xTR ∥ −xTR]), where ∥ denotes
concatenation. k-means LSH computes k-means and uses the clusters as hash buckets.

We further improve the sampling probabilities of cross-polytope LSH via the AND-OR
construction. In this scheme we calculate B · r hash functions, divided into B sets (hash
bands) of r hash functions each. A pair of points is considered as neighbors if any hash band
matches completely. k-means LSH does not work well with the AND-OR construction since its
samples are highly correlated. For large datasets we use hierarchical k-means instead (Nistér &
Stewénius, 2006; Paulevé et al., 2010).

The 3D point clouds, uniform data and the graph transport network (GTN) use the L2 distance
between embeddings as a cost function. For these we use (hierarchical) k-means LSH and
k-means Nyström in both sparse Sinkhorn and LCN-Sinkhorn.

Word embedding similarities are measured via a dot product. In this case we use cross-
polytope LSH for sparse Sinkhorn in this case. For LCN-Sinkhorn we found that using k-means
LSH works better with Nyström using k-means++ sampling than cross-polytope LSH. This
is most likely due to a better alignment between LSH samples and Nyström. We convert the

190

F.9 Implementational details

Table F.1: Graph dataset statistics.

Distance (test set) Graphs Avg. nodes Avg. edges Node Edge
Graph type Distance Mean Std. dev. train/val/test per graph per graph types types

AIDS30 Molecules GED 50.5 16.2 144/48/48 20.6 44.6 53 4
Linux Program dependence GED 0.567 0.181 600/200/200 7.6 6.9 7 -
Pref. att. Initial attractiveness GED 106.7 48.3 144/48/48 20.6 75.4 6 4
Pref. att. 200 Initial attractiveness PM 0.400 0.102 144/48/48 199.3 938.8 6 -
Pref. att. 2k Initial attractiveness PM 0.359 0.163 144/48/48 2045.6 11330 6 -
Pref. att. 20k Initial attractiveness PM 0.363 0.151 144/48/48 20441 90412 6 -

cosine similarity to a distance via dcos =

√
1− xT

p xq

∥xp∥2∥xq∥2 (Berg et al., 1984) to use k-means

with dot product similarity. Note that this is actually based on cosine similarity, not the dot
product. Due to the balanced nature of OT we found this more sensible than maximum inner
product search (MIPS). For both experiments we also experimented with uniform and recursive
RLS sampling but found that the above mentioned methods work better.

F.9 Implementational details

Our implementation runs in batches on a GPU via PyTorch (Paszke et al., 2019) and PyTorch
Scatter (Fey & Lenssen, 2019). To avoid over- and underflows we use log-stabilization through-
out, i.e. we save all values in log-space and compute all matrix-vector products and additions
via the log-sum-exp trick log

∑
i e

xi = maxj xj + log(
∑

i e
xi−maxj xj). Since the matrix A is

small we compute its inverse using double precision to improve stability. Surprisingly, we did
not observe any benefit from using the Cholesky decomposition or not calculating A−1 and
instead solving the equation B = AX for X . We furthermore precompute W = A−1V to
avoid unnecessary operations.

We use 3 layers and an embedding size HN = 32 for GTN. The MLPs use a single hidden
layer, biases and LeakyReLU non-linearities. The single-head MLP uses an output size of
HN, match = HN and a hidden embedding size of 4HN, i.e. the same as the concatenated node
embedding, and the multi-head MLP uses a hidden embedding size of HN. To stabilize initial
training we scale the node embeddings by d̄

n̄
√

HN, match
directly before calculating OT. d̄ denotes

the average graph distance in the training set, n̄ the average number of nodes per graph, and
HN, match the matching embedding size, i.e. 32 for single-head and 128 for multi-head OT.

For the graph datasets, the 3D point clouds and random data we use the L2 distance for the
cost function. For word embedding alignment we use the dot product, since this best resembles
their generation procedure.

F.10 Graph dataset generation and experimental details

The dataset statistics are summarized in Table F.1. Each dataset contains the distances between
all graph pairs in each split, i.e. 10 296 and 1128 distances for preferential attachment. The

191

F Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

Table F.2: Hyperparameters for the Linux dataset.

lr batchsize layers emb. size L2 reg. λbase

SiamMPNN 1 × 10−4 256 3 32 5 × 10−4 -
GMN 1 × 10−4 20 3 64 0 -
GTN, 1 head 0.01 1000 3 32 1 × 10−6 1.0
8 OT heads 0.01 1000 3 32 1 × 10−6 1.0
Balanced OT 0.01 1000 3 32 1 × 10−6 2.0

Table F.3: Hyperparameters for the AIDS dataset.

lr batchsize layers emb. size L2 reg. λbase

SiamMPNN 1 × 10−4 256 3 32 5 × 10−4 -
SimGNN 1 × 10−3 1 3 32 0.01 -
GMN 1 × 10−2 128 3 32 0 -
GTN, 1 head 0.01 100 3 32 5 × 10−3 0.1
8 OT heads 0.01 100 3 32 5 × 10−3 0.075
Balanced OT 0.01 100 3 32 5 × 10−3 0.1
Nyström 0.015 100 3 32 5 × 10−3 0.2
Multiscale 0.015 100 3 32 5 × 10−3 0.2
Sparse OT 0.015 100 3 32 5 × 10−3 0.2
LCN-OT 0.015 100 3 32 5 × 10−3 0.2

Table F.4: Hyperparameters for the preferential attachment GED dataset.

lr batchsize layers emb. size L2 reg. λbase

SiamMPNN 1 × 10−4 256 3 64 1 × 10−3 -
SimGNN 1 × 10−3 4 3 32 0 -
GMN 1 × 10−4 20 3 64 0 -
GTN, 1 head 0.01 100 3 32 5 × 10−4 0.2
8 OT heads 0.01 100 3 32 5 × 10−3 0.075
Balanced OT 0.01 100 3 32 5 × 10−4 0.2
Nyström 0.02 100 3 32 5 × 10−5 0.2
Multiscale 0.02 100 3 32 5 × 10−5 0.2
Sparse OT 0.02 100 3 32 5 × 10−5 0.2
LCN-OT 0.02 100 3 32 5 × 10−5 0.2

192

F.10 Graph dataset generation and experimental details

AIDS dataset was generated by randomly sampling graphs with at most 30 nodes from the
original AIDS dataset (Riesen & Bunke, 2008). Since not all node types are present in the
training set and our choice of GED is permutation-invariant w.r.t. types, we permuted the
node types so that there are no previously unseen types in the validation and test sets. For the
preferential attachment datasets we first generated 12, 4, and 4 undirected “seed” graphs (for
train, val, and test) via the initial attractiveness model with randomly chosen parameters: 1 to
5 initial nodes, initial attractiveness of 0 to 4 and 1/2n̄ and 3/2n̄ total nodes, where n̄ is the
average number of nodes (20, 200, 2000, and 20 000). We then randomly label every node (and
edge) in these graphs uniformly. To obtain the remaining graphs we edit the “seed” graphs
between n̄/40 and n̄/20 times by randomly adding, type editing, or removing nodes and edges.
Editing nodes and edges is 4x and adding/deleting edges 3x as likely as adding/deleting nodes.
Most of these numbers were chosen arbitrarily, aiming to achieve a somewhat reasonable dataset
and process. We found that the process of first generating seed graphs and subsequently editing
these is crucial for obtaining meaningfully structured data to learn from. For the GED we choose
an edit cost of 1 for changing a node or edge type and 2 for adding or deleting a node or an edge.

We represent node and edge types as one-hot vectors. We train all models except SiamMPNN
(which uses SGD) and GTN on Linux with the Adam optimizer and mean squared error (MSE)
loss for up to 300 epochs and reduce the learning rate by a factor of 10 every 100 steps. On
Linux we train for up to 1000 epochs and reduce the learning rate by a factor of 2 every 100
steps. We use the parameters from the best epoch based on the validation set. We choose
hyperparameters for all models using multiple steps of grid search on the validation set, see
Tables F.2 to F.4 for the final values. We use the originally published result of SimGNN on
Linux and thus don’t provide its hyperparameters. GTN uses 500 Sinkhorn iterations. We obtain
the final entropy regularization parameter from λbase via λ = λbase

d̄
n̄

1
logn , where d̄ denotes the

average graph distance and n̄ the average number of nodes per graph in the training set. The
factor d̄/n̄ serves to estimate the embedding distance scale and 1/ log n counteracts the entropy
scaling with n log n. Note that the entropy regularization parameter was small, but always far
from 0, which shows that entropy regularization actually has a positive effect on learning. On
the pref. att. 200 dataset we use no L2 regularization, λbase = 0.5, and a batch size of 200. For
pref. att. 2k we use λbase = 2 and a batch size of 20 for full Sinkhorn and 100 for LCN-Sinkhorn.
For pref. att. 20k we use λbase = 50 and a batch size of 4. λbase scales with graph size due to
normalization of the PM kernel.

For LCN-Sinkhorn we use roughly 10 neighbors for LSH (20 k-means clusters) and 10
k-means landmarks for Nyström on pref. att. 200. We double these numbers for pure Nyström
Sinkhorn, sparse Sinkhorn, and multiscale OT. For pref. att. 2k we use around 15 neighbors
(10·20 hierarchical clusters) and 15 landmarks and for pref. att. 20k we use roughly 30 neighbors
(10 · 10 · 10 hierarchical clusters) and 20 landmarks. The number of neighbors for the 20k
dataset is higher and strongly varies per iteration due to the unbalanced nature of hierarchical
k-means. This increase in neighbors and landmarks and PyTorch’s missing support for ragged
tensors largely explains LCN-Sinkhorn’s deviation from perfectly linear runtime scaling.

We perform all runtime measurements on a compute node using one Nvidia GeForce GTX
1080 Ti, two Intel Xeon E5-2630 v4, and 256GB RAM.

193

F Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

Table F.5: Runtimes (ms) of Sinkhorn approximations for EN-DE embeddings at different dataset sizes.
Full Sinkhorn scales quadratically, while all approximations scale at most linearly with the size. Sparse
approximations are 2-4x faster than low-rank approximations, and factored OT is multiple times slower
due to its iterative refinement scheme. Note that similarity matrix computation time (K) primarily
depends on the LSH/Nyström method, not the OT approximation.

N = 10000 N = 20000 N = 50000
K OT K OT K OT

Full Sinkhorn 8 2950 29 11 760 OOM OOM
Factored OT 29 809 32 1016 55 3673
Multiscale OT 90 48 193 61 521 126
Nyström Skh. 29 135 41 281 79 683
Sparse Skh. 42 46 84 68 220 137
LCN-Sinkhorn 101 116 242 205 642 624

F.11 Runtimes

Table F.5 compares the runtime of the full Sinkhorn distance with different approximation
methods using 40 neighbors/landmarks. We separate the computation of approximate K from
the optimal transport computation (Sinkhorn iterations), since the former primarily depends
on the LSH and Nyström methods we choose. We observe a 2-4x speed difference between
sparse (multiscale OT and sparse Sinkhorn) and low-rank approximations (Nyström Sinkhorn
and LCN-Sinkhorn), while factored OT is multiple times slower due to its iterative refinement
scheme. In Fig. F.1 we observe that this runtime gap stays constant independent of the number
of neighbors/landmarks, i.e. the relative difference decreases as we increase the number of
neighbors/landmarks. This gap could either be due to details in low-level CUDA implementa-
tions and hardware or the fact that low-rank approximations require 2x as many multiplications
for the same number of neighbors/landmarks. In either case, both Table F.5 and Fig. F.1 show
that the runtimes of all approximations scale linearly both in the dataset size and the number of
neighbors and landmarks, while full Sinkhorn scales quadratically.

We furthermore investigate whether GTN with approximate Sinkhorn indeed scales log-
linearly with the graph size by generating preferential attachment graphs with 200, 2000, and
20 000 nodes (±50 %). We use the Pyramid matching (PM) kernel (Nikolentzos et al., 2017)
as prediction target. Fig. F.2 shows that the runtime of LCN-Sinkhorn scales almost linearly
(dashed line) and regular full Sinkhorn quadratically (dash-dotted line) with the number of
nodes, despite both achieving similar accuracy and LCN using slightly more neighbors and
landmarks on larger graphs to sustain good accuracy. Full Sinkhorn went out of memory for the
largest graphs.

F.12 Distance approximation

Fig. F.3 shows that for the chosen λ = 0.05 sparse Sinkhorn offers the best trade-off between
computational budget and distance approximation, with LCN-Sinkhorn and multiscale OT
coming in second. Factored OT is again multiple times slower than the other methods. Note

194

F.12 Distance approximation

0 100 200

Neighbors + landmarks

0

100

200

300

R
un

tim
e

(m
s)

Multsc. OT
Nys. Skh.
Sparse Skh.
LCN-Skh.

Figure F.1: Runtime scales linearly with the
number of neighbors/landmarks for all relevant
Sinkhorn approximation methods.

100 1000 10000
Avg. graph size

10

100

1000

10000

Ti
m

e
pe

re
po

ch
(s

)

Full
LCN

Figure F.2: Log-log runtime per epoch for GTN
with full Sinkhorn and LCN-Sinkhorn. LCN-
Sinkhorn scales almost linearly with graph size
while sustaining similar accuracy.

0 100 200

Runtime (ms)

−5.0

−2.5

0.0

2.5

d
λ c
/1
0
3

0 100 200

Neighbors + landmarks

−5

0

5

d
λ c
/1
0
3

Fact. OT
Multsc. OT
Nys. Skh.
Sparse Skh.
LCN-Skh.

10−3 10−2 10−1 100

λ

0.0

0.5

1.0

1.5

2.0

R
el

.e
rr

.d
λ c

Figure F.3: Sinkhorn distance approximation for different runtimes and computational budgets (both
varied via the number of neighbors/landmarks), and entropy regularization parameters λ. The dashed line
denotes the true Sinkhorn distance. The arrow indicates factored OT results far outside the depicted range.
Left: Sparse Sinkhorn consistently performs best across all runtimes. Center: Sparse Sinkhorn mostly
performs best, with LCN-Sinkhorn coming in second, and factored OT being seemingly independent
from the number of neighbors. Right: Sparse Sinkhorn performs best for low λ, LCN-Sinkhorn for
moderate and high λ and factored OT for very high λ.

195

F Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More

that dλc can be negative due to the entropy offset. This picture changes as we increase the
regularization. For higher regularizations LCN-Sinkhorn is the most precise at constant compu-
tational budget (number of neighbors/landmarks). Note that the crossover points in this figure
roughly coincide with those in Fig. 9.2. Keep in mind that usually the OT plan is more important
than the raw distance approximation, since it determines the training gradient and tasks like
embedding alignment don’t use the distance at all. This becomes evident in the fact that sparse
Sinkhorn achieves a better distance approximation than LCN-Sinkhorn but performs worse in
both downstream tasks investigated in Sec. 9.8.

196

	Abstract
	Zusammenfassung
	Acknowledgments
	I Introduction
	1 Introduction
	1.1 Machine learning on graphs
	1.1.1 Learning tasks on graphs
	1.1.2 Machine learning for molecules
	1.1.3 Graph neural networks

	1.2 Structure and geometry
	1.3 Contributions and outline
	1.4 Publications

	2 Background
	2.1 Graphs
	2.2 Graph neural networks
	2.3 Personalized PageRank
	2.4 Group theory
	2.5 The `3́9`42`"̇613A``45`47`"603ASO(3) group

	II Molecular Systems
	3 Directional Message Passing for Molecular Graphs
	3.1 Introduction
	3.2 Related work
	3.3 Requirements for molecular predictions
	3.4 Directional message passing
	3.5 Physically based representations
	3.6 Directional Message Passing Neural Network (DimeNet)
	3.7 Experiments
	3.8 Conclusion
	3.9 Retrospective

	4 Fast and Uncertainty-Aware Directional Message Passing for Non-Equilibrium Molecules
	4.1 Introduction
	4.2 DimeNet++
	4.3 COLL Dataset
	4.4 Uncertainty Quantification
	4.5 Experiments
	4.6 Retrospective

	5 GemNet: Universal Directional Graph Neural Networks for Molecules
	5.1 Introduction
	5.2 Related work
	5.3 Universality of spherical representations
	5.4 From spherical representations to directional message passing
	5.5 Geometric message passing
	5.6 GemNet: Geometric message passing neural network
	5.7 Experiments
	5.8 Conclusion
	5.9 Retrospective

	6 Directional Message Passing on Molecular Graphs via Synthetic Coordinates
	6.1 Introduction
	6.2 Directional message passing
	6.3 Molecular configurations
	6.4 Synthetic coordinates
	6.5 Related work
	6.6 Experiments
	6.6.1 Experimental setup
	6.6.2 Model hyperparameters
	6.6.3 Results

	6.7 Limitations and societal impact
	6.8 Conclusion
	6.9 Retrospective

	III General Graphs
	7 Diffusion Improves Graph Learning
	7.1 Introduction
	7.2 Generalized graph diffusion
	7.3 Graph diffusion convolution
	7.4 Spectral analysis of GDC
	7.5 Related work
	7.6 Experimental results
	7.7 Conclusion
	7.8 Retrospective

	8 Scaling Graph Neural Networks with Approximate PageRank
	8.1 Introduction
	8.2 Background
	8.2.1 GNNs and message passing
	8.2.2 Personalized PageRank and localization
	8.2.3 Related work

	8.3 The PPRGo model
	8.3.1 Effective neighborhood, and k

	8.4 Scalability
	8.4.1 Node classification in the real world
	8.4.2 Distributed training
	8.4.3 Efficient inference

	8.5 Experiments
	8.5.1 Large-scale datasets
	8.5.2 Scalability vs. accuracy trade-off
	8.5.3 Distributed training
	8.5.4 Runtime and memory on a single machine
	8.5.5 Efficient inference

	8.6 Conclusion
	8.7 Ethical considerations
	8.8 Retrospective

	9 Scalable Optimal Transport for Graph Distances, Embedding Alignment, and More
	9.1 Introduction
	9.2 Entropy-regularized optimal transport
	9.3 Sparse Sinkhorn
	9.4 Locally corrected Nyström and LCN-Sinkhorn
	9.5 Theoretical analysis
	9.6 Graph transport network
	9.7 Related work
	9.8 Experiments
	9.9 Conclusion
	9.10 Retrospective

	IV Conclusion
	10 Conclusion
	10.1 Summary
	10.2 Retrospective
	10.3 Broader impact
	10.4 Open questions

	Bibliography

	Appendices
	A Directional Message Passing for Molecular Graphs
	A.1 Indistinguishable molecules
	A.2 Experimental setup
	A.3 Summary statistics
	A.4 DimeNet filters
	A.5 Multi-target results

	B GemNet: Universal Directional Graph Neural Networks for Molecules
	B.1 Proof of th:univsphere
	B.2 Proof of th:univvec
	B.3 Proof of lem:filterinv
	B.4 Efficient message passing
	B.5 Variance after message passing
	B.6 GemNet architecture
	B.7 Training and hyperparameters
	B.8 Additional experimental results
	B.9 Computation time

	C Directional Message Passing on Molecular Graphs via Synthetic Coordinates
	C.1 Choosing hyperparameters

	D Diffusion Improves Graph Learning
	D.1 Graph diffusion as a polynomial filter
	D.2 Experiments
	D.2.1 Datasets
	D.2.2 Results
	D.2.3 Hyperparameters

	E Scaling Graph Neural Networks with Approximate PageRank
	E.1 Appendix
	E.1.1 Parallel Efficiency
	E.1.2 MAG-Scholar Graph Construction
	E.1.3 Experimental Details
	E.1.4 Further Implementational Details
	E.1.5 Applicability and Limitations

	F Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and More
	F.1 Complexity analysis
	F.2 Limitations
	F.3 Proof of th:uniformerror
	F.4 Proof of th:clustererror
	F.5 Notes on th:sinkhornerror
	F.6 Notes on th:convergence
	F.7 Proof of prop:derivatives
	F.8 Choosing LSH neighbors and Nyström landmarks
	F.9 Implementational details
	F.10 Graph dataset generation and experimental details
	F.11 Runtimes
	F.12 Distance approximation

