
TUM School of Computation, Information and Technology
Technische Universität München

Generative Adversarial Networks for Time Series
Generation and Translation

Hiba Arnout

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology
der Technischen Universität München zur Erlangung des akademischen Grades einer

Doktorin der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende:
Prof. Gudrun J. Klinker, Ph.D.

Prüfende der Dissertation:
1. Hon.-Prof. Dr. Thomas A. Runkler
2. Prof. Dr. Hans-Joachim Bungartz

Die Dissertation wurde am 22.06.2022 bei der Technischen Universität München eingereicht
und durch die TUM School of Computation, Information and Technology am 14.11.2022
angenommen.

ABSTRACT

Motivated by its enormous economic benefits, many attempts have been made to inte-
grate Artificial Intelligence (AI) in almost all industrial domains by automatizing tasks
and developing smart products. However, this revolutionary technology and its speed
of propagation are constrained by major challenges. One main issue is the lack of data
and its poor quality. Moreover, a lot of privacy concerns are arising today regarding
the protection of the data and the AI applications. To tackle these issues, a lot of re-
searchers investigated various techniques to enable an efficient synthesis of new private
and non-private data of high-quality.

In this thesis, we propose new generative approaches for time series data that leverage
a considered dataset by increasing its diversity. We present a novel Generative Ad-
versarial Networks (GAN) framework, Class-specific Recurrent Generative Adversarial
Networks (ClaRe-GAN) that relies on class specific encoders and a class discrimina-
tor to extract the inter- and intra-class properties of a multi-class dataset. Our main
goal is to enable a generation of diverse time series of high-quality by finding the right
trade-off between sample fidelity, i.e., their similarity to the real time series, sample
diversity, i.e., how different, and heterogeneous they are, and preserving the temporal
relationship between the data points. Moreover, we investigate in depth the problem of
mapping time series between different application domains by presenting Disentangled
Representation for Time Series Translation (DR-TiST) a novel algorithm for time se-
ries translation. Thanks to the disentangled representation, each time series is split into
functional behavior highlighting the properties of the time series and a context depicting
the environmental setup and can be easily mapped to other application domains. Finally,
we combine ClaRe-GAN, DR-TiST, and the state-of-the-art time series generation and
translation methods with Differential Privacy (DP), a well-known technique to protect
the privacy of dataset instances, to provide a collection of private time series generation
and translation methods. The frameworks are fitted with a private Discriminator relying
on Differentially Private Stochastic Gradient (DPSGD) and their performances in terms
of finding the right trade-off between data privacy and data utility are assessed.

iii

Abstract

Aware that assessing the quality of generated time series is of paramount importance,
we test the existing GAN metrics for time series on detecting different GAN training
problems. Our main purpose is to pinpoint the advantages and disadvantages of each
metric and to recommend a possible combination of metrics that can be used together.
Furthermore, we present a computational and visual method to accomplish this task.
Particularly, we proposeMean of incoming Variance of outgoing (MiVo) a new evaluation
metric that identifies for each synthetic time series a real one and for each real a synthetic
one. We prove that this metric can detect numerous training problems simultaneously
and use it in two different manners to evaluate the generated as well as the translated
data. Moreover, we introduce a human-centered approach that, using Visual Analytics
(VA) techniques, allows for further investigation and more precise comparison of the
synthetic data to the real ones.
We show that our algorithms ClaRe-GAN and DR-TiST and their DP variants DP-

ClaRe-GAN and DP-DR-TiST outperform the state-of-the-art algorithms for time series
generation and translation by testing them on a set of public datasets and use cases where
the translation topic is relevant. We also prove that MiVo outperforms the existing
metrics in detecting common training problems. To sum up, we present in this work
new approaches for time series generation and translation as well as a methodology to
rigorously assess the quality of the obtained data. Our approaches constitute a significant
improvement in this area and enable practitioners and researchers to deal with the lack
of data problems occurring in many industrial domains by providing new standard or
private data that can be freely shared between different stakeholders.

iv

ZUSAMMENFASSUNG

Aufgrund ihrer enormen wirtschaftlichen Vorteile wurden viele Versuche unternommen,
künstliche Intelligenz (KI) in fast alle industriellen Bereiche zu integrieren, indem Auf-
gaben automatisiert und intelligente Produkte entwickelt wurden. Diese revolutionäre
Technologie und ihre schnelle Verbreitung werden jedoch durch große Herausforderungen
behindert. Ein Hauptproblem ist der Mangel an Daten und deren schlechte Qualität.
Außerdem gibt es heute viele Bedenken hinsichtlich des Schutzes der Daten und der
KI-Anwendungen. Um diese Probleme zu lösen, haben viele Forscher verschiedene Tech-
niken untersucht, die eine effiziente Synthese neuer privater und nicht-privater Daten
von hoher Qualität ermöglichen.

In dieser Arbeit schlagen wir neue generative Ansätze für Zeitreihendaten vor, die
einen betrachteten Datensatz durch Erhöhung seiner Diversität nutzen. Wir präsentieren
ein neuartiges Generative Adversarial Networks (GAN) Framework, Class-specific Re-
current Generative Adversarial Networks (ClaRe-GAN), das sich auf klassenspezifische
Kodierer und einen Klassendiskriminator stützt, um die Inter- und Intraklasseneigen-
schaften eines Mehrklassendatensatzes zu extrahieren. Unser Hauptziel ist es, die Erzeu-
gung vielfältiger Zeitreihen von hoher Qualität zu ermöglichen, indem wir den richtigen
Kompromiss zwischen Sample Fidelity, d.h. ihrer Ähnlichkeit mit den realen Zeitrei-
hen, Sample Diversity, d.h. wie unterschiedlich und heterogen sie sind, und der Er-
haltung der zeitlichen Beziehung zwischen den Datenpunkten finden. Darüber hinaus
untersuchen wir eingehend das Problem der Abbildung von Zeitreihen zwischen ver-
schiedenen Anwendungsdomänen, indem wir mit der ”Disentangled Representation for
Time Series Translation” (DR-TiST) einen neuartigen Algorithmus für die Translation
von Zeitreihen vorstellen. Dank der Disentangled Representation wird jede Zeitreihe in
ein funktionales Verhalten, das die Eigenschaften der Zeitreihe hervorhebt, und einen
Kontext, der die Umgebungsbedingungen darstellt, aufgeteilt und kann leicht auf an-
dere Anwendungsbereiche übertragen werden. Schließlich kombinieren wir ClaRe-GAN,
DR-TiST und die hochmodernen Zeitreihengenerierungs- und -translationsmethoden
mit Differential Privacy (DP), einer bekannten Technik zum Schutz der Privatsphäre

v

Zusammenfassung

von Datensatzinstanzen, um eine Sammlung von privaten Zeitreihengenerierungs- und
-translationsmethoden bereitzustellen. Die Algorithmen werden mit einem privaten
Diskriminator ausgestattet, der auf Differentially Private Stochastic Gradient (DPSGD)
beruht, und ihre Leistungen im Hinblick auf die Suche nach dem richtigen Kompromiss
zwischen Datenschutz und Datennutzen werden bewertet.

Da die Bewertung der Qualität der erzeugten Zeitreihen von größter Bedeutung ist,
testen wir die bestehenden GAN-Metriken für Zeitreihen auf die Erkennung verschiedener
GAN-Trainingsprobleme. Unser Hauptziel ist es, die Vor- und Nachteile der einzelnen
Metriken aufzuzeigen und eine mögliche Kombination von Metriken zu empfehlen, die
zusammen verwendet werden können. Außerdem stellen wir eine rechnerische und vi-
suelle Methode vor, um diese Aufgabe zu erfüllen. Insbesondere schlagen wir Mean of
incoming Variance of outgoing (MiVo) vor, eine neue Bewertungsmetrik, die für jede
synthetische Zeitreihe eine reale und für jede reale eine synthetische identifiziert. Wir
beweisen, dass diese Metrik zahlreiche Trainingsprobleme gleichzeitig erkennen kann,
und verwenden sie auf zwei verschiedene Arten, um sowohl die generierten als auch
die transformierten Daten zu bewerten. Darüber hinaus führen wir einen menschen-
zentrierten Ansatz ein, der mit Hilfe von Visual Analytics (VA)-Techniken eine weitere
Untersuchung und einen genaueren Vergleich der synthetischen Daten mit den realen
Daten ermöglicht.
Wir zeigen, dass unsere Algorithmen ClaRe-GAN und DR-TiST sowie ihre DP-Varianten

DP-ClaRe-GAN und DP-DR-TiST die modernsten Algorithmen für die Erzeugung und
Translation von Zeitreihen übertreffen, indem wir sie an einer Reihe von öffentlichen
Datensätzen und Anwendungsfällen testen, bei denen das Translationsthema relevant
ist. Wir beweisen auch, dass MiVo die bestehenden Metriken bei der Erkennung häufiger
Trainingsprobleme übertrifft. Zusammenfassend stellen wir in dieser Arbeit neue Ansätze
für die Erzeugung und Translation von Zeitreihen sowie eine Methodik zur Bewertung der
Qualität der gewonnenen Daten vor. Unsere Ansätze stellen eine erhebliche Verbesserung
in diesem Bereich dar und ermöglichen es Praktikern und Forschern, das Problem des
Datenmangels, das in vielen industriellen Bereichen auftritt, zu lösen, indem sie neue
Standard- oder private Daten bereitstellen, die von verschiedenen Beteiligten frei geteilt
werden können.

vi

ACKNOWLEDGEMENT

Foremost, I would like to thank Prof. Dr. Thomas A. Runkler for all his efforts and
his support. Thomas listened to me when I needed it and pushed me to my limits. He
really helped me to go further and to improve my skills through exciting and detailed
conversations where I had to deepen my knowledge and investigate my ideas so, I can
meet up the level. It is an honor to write this thesis by his side. Thank you for your
precious advice, and help.
Moreover, I would like to thank my Siemens coworkers and mentors Johanna Bronner

and Johannes Kehrer for their priceless help, their patience, and all the meetings and
discussions, especially at the beginning. We all know that the hardest thing is, to begin
with, the thesis topic. Also, a dedicated thank you goes to all my Siemens colleagues
and especially to Ariane Sutor for giving me the opportunity to do my Ph.D. in the
research group and the freedom to work on my research topics and interesting industrial
projects. I would also like to thank Regine Meunier, Axel Reitinger, and Stefan Hagen
Weber for their guidance, advice, and good vibes.
On another level, a particular thank you to my special aunt Asma and her husband

Zouheir for their infinite support and love. Then comes people, that I would like but
can not thank enough my parents Saloua and Yassine for everything they have done for
me since, well... forever. And certainly, during these hard years of study. Thank you
for believing in me and for supporting me morally and financially. I am also grateful for
Nour, Ghassen and my brother Ali for the support, incentives, and thesis reviews. The
last word of gratitude goes to my fiance Wassim who listened to me and encouraged me
during all these years, particularly in the difficult moments. Thank you for being here.
Last but not least, the most important one, Grandma Bahia to whom I dedicate this

thesis. You left us a few months ago, I wish you were here but I’m sure wherever you
are, you are proud. To you, from all my heart.

vii

CONTENTS

Abstract iii

Zusammenfassung v

Acknowledgement vii

Contents ix

Acronyms xi

1 Introduction 1
1.1 Motivation . 2
1.2 Research Questions and Contributions . 5
1.3 Thesis Outline . 10

2 Preliminaries 13
2.1 Data Generation . 13

2.1.1 Generative Adversarial Networks 13
2.1.2 GAN Variants . 16
2.1.3 GAN Architectures for Time Series Data 16
2.1.4 GAN Metrics for Time Series . 19

2.2 Data Translation . 21
2.2.1 Image-to-Image Translation . 21
2.2.2 Time Series Translation . 22

2.3 Differential Privacy . 22
2.3.1 Definition . 22

ix

CONTENTS

2.3.2 Differentially Private Machine Learning 23

3 Time Series Generation 25
3.1 ClaRe-GAN: new Algorithm for Time Series Generation 26
3.2 DP*: Privacy-preserving Approaches . 29
3.3 Experiments . 30

3.3.1 Datasets Description . 30
3.3.2 Experimental Setup . 31
3.3.3 Results . 32

4 Time Series Translation 41
4.1 DR-TiST: new Algorithm for Time Series Translation 42
4.2 DP*: Privacy-preserving Approaches . 44
4.3 Experiments . 48

4.3.1 Datasets Description . 48
4.3.2 Experimental Setup . 58
4.3.3 Results . 59

5 Time Series Analytics 73
5.1 Metric for Time Series . 74
5.2 Visual Analytics for Time Series . 76

5.2.1 Design of Evaluation Framework 76
5.2.2 Evaluation Framework Description 77
5.2.3 Use Case . 79

5.3 Experiments . 82

6 Conclusions and Future Work 99

Bibliography 105

A Appendix: Additional Figures 115
A.1 Time Series Generation . 115
A.2 Time Series Analytics . 120

List of Figures 129

List of Tables 137

x

ACRONYMS

AI Artificial Intelligence.

C-RNN-GAN Continuous Recurrent Neural Networks Generative
Adversarial Networks.

cGAN Conditional Generative Adversarial Networks.
ClaRe-GAN Class-Specific Recurrent Generative Adversarial Net-

works.
CNN Convolutional Neural Networks.
CycleGAN Cycle-consistent Generative Adversarial Networks.
CycleGAN-VC Cycle-Consistent Generative Adversarial Networks

based Voice Conversion.

DC Direct Current.
DCGAN Deep Convolutional Generative Adversarial Net-

works.
DL Deep Learning.
DP Differential Privacy.
DP-C-RNN-GAN Differentially Private Continuous Recurrent Neural

Networks Generative Adversarial Networks.
DP-ClaRe-GAN Differentially Private Class-specific Recurrent Gener-

ative Adversarial Networks.
DP-CycleGAN-VC Differentially Private Cycle-consistent Adversarial

Networks based Voice Conversion.
DP-DR-TiST Differentially Private Disentangled Representation

for Time Series Translation.

xi

Acronyms

DP-TimeGAN Differentially Private Time-series Generative Adver-
sarial Networks.

DPSGD Differentially Private Stochastic Gradient Descent.
DR-TiST Disentangled Representation for Time Series Trans-

lation.
DRIT Disentangled Representation for Image-to-Image

Translation.
DS Discriminative Score.

FID Frechet Inception Distance.

GAN Generative Adversarial Networks.

InfoGAN Information Maximizing Generative Adversarial Net-
works.

LSTM Long Short-term Memory.

MiVo Mean of incoming Variance of outgoing.
ML Machine Learning.
MMD Maximum Mean Discrepancy.

PCA Principal Components Analysis.
PID Proportional Integral Derivative.
PS Predictive Score.

RCGAN Recurrent Conditional Generative Adversarial Net-
works.

RDP Renyi Differential Privacy.
RGAN Recurrent Generative Adversarial Networks.
RNN Recurrent Neural Networks.

t-SNE T-distributed Stochastic Neighbor Embedding.
TimeGAN Time-series Generative Adversarial Networks.
TRTS Train on Real Test on Synthetic.
TSTR Train on Synthetic Test on Real.

UNIT Unsupervised Image-to-image Translation.

VA Visual Analytics.

WGAN Wasserstein Generative Adversarial Networks.
WGAN-GP Wasserstein Generative Adversarial Networks with

Gradient Penalty.

xii

CHAPTER

1

INTRODUCTION

AI became a powerful means to leverage machines and accomplish tasks automatically
and efficiently by imitating the decision-making process of humans. Therefore, huge
efforts are made to broaden its adoption and develop smart industrial products that
meet the global celerity requirements. This technology is playing a central role for
businesses and organizations to improve their operating systems and their benefits. By
its numerous applications, AI was deeply investigated for different purposes ranging from
predictive maintenance, and various applications in the automotive industry to detecting
rare diseases in healthcare. By way of example, recent ML applications help to increase
customer satisfaction using chatbots or virtual assistants that support customers and
process their requests quickly and efficiently. Despite all the recent improvements, AI
has not yet reached the peak of its impact.

In spite of its fast and continuously growing adoption, the implementation of AI in
real-world situations is still facing key challenges. A major challenge is the lack of data,
i.e., the insufficient amount of available data and its poor quality. To rigorously test the
developed AI methods, we must have high-quality data which faithfully depicts a full
picture of the to-be-automatized situation and its complexity. Industrial partners and
ML experts are struggling to (i) define the characteristics of the dataset that properly
describe their use case and (ii) collect the required amount of data. Another fundamental
issue is the growing privacy concerns. As a matter of fact, external collaborations on
improving and expanding the use of ML, are highly restricted, and sharing data remains
a sensitive subject. Furthermore, the protection of the data and the ML applications,
from cybersecurity attacks, is considered a high priority.

1

1 Introduction

1.1 Motivation

To build widely applicable and trustworthy ML models, a lot of researchers focused on
improving the quality of the dataset that is used in the ML application by generating
more data. As a matter of fact, a sufficient amount of data and a balanced dataset
where each class is equally well represented are essential for a good performance for
any ML model. A newly investigated DL architecture involving two neural networks
a Generator generating from random noise new data and a Discriminator, a binary
classifier, competing against each other called GAN [1] attracted a lot of researchers.
This DL technique is based on a simple and intuitive idea: while D tries to maximize
its log-likelihood to distinguish between the real and the generated data, G aims at
minimizing the log-probability of the generated samples that are recognized as false.

The state-of-the-art GAN models are showing an outstanding performance in gen-
erating diverse high-resolution images such as with BigGAN [2] and StyleGAN [3, 4].
Moreover, the evaluation and the assessment of the quality of the obtained data are
for this type of data straightforward. By way of example, the Inception Score [5, 6]
and FID [7] are commonly used in the evaluation process. These methods rely on a
pretrained model for image classification namely the inception model [8] trained on the
ImageNet dataset with over 15 million labeled high-resolution images and hence can be
easily applied to other image datasets. Unfortunately, such efficient generative models
and evaluation techniques are not available for other types of data such as time series
making these methods not applicable. Indeed, finding a suitable generative model for
time series is challenging and a lot of factors must be considered when designing a good
generation framework for this type of data. One main requirement is that the time
series generation process preserves the temporal relationship between the data points.
Moreover, as for other types of data, an efficient generative model should be able to find
a compromise between sample fidelity, i.e., the similarity of the generated data to the
real ones, and sample diversity, i.e., reproducing the variation of the real data.

Lately, numerous generative models for time series data have been presented. A first
generative model for continuous sequential data was proposed by Mogren [9] namely C-
RNN-GAN consisting of a recurrent Generator and Discriminator. A well-known method
to improve the performance of GAN is to condition GAN on additional information
extracted from the original data [10]. In this context, Esteban et al. proposed a more
efficient model, RCGAN [11], i.e., a recurrent GAN augmented with auxiliary conditional
information. More recently, Yoon et al. introduced TimeGAN which preserves better
the temporal dynamic between the data points and can be used on mixed datasets, i.e.,
a dataset with static and temporal data. In this work, we will prove that these state-
of-the-art frameworks, despite generating realistic time series in simple environments,
fail to produce acceptable results preserving the inter- and intra-class diversity of the
original dataset on multi-class datasets. Driven by the recent success of conditional
GAN [10] and similar to RCGAN, we introduce ClaRe-GAN a generative class sensitive
framework for time series.

Our approach is based on the simple and intuitive idea: to deal with datasets of high-
variability, learning their inter- and intra-class variations is the basis, and hence, our

2

1.1 Motivation

starting point. We assume that time series from various classes within the same dataset
share some common information that should be contained in the generated data. To
extract this information, we use class-specific encoders, one encoder per class, and make
a shared-latent space assumption enforcing the latent vectors to be mapped to a common
latent space. At the same time, a major challenge when using GAN on datasets with
multiple classes is not only to preserve the classes but also the diversity within each
class. To achieve this, we use an extra class discriminator, that is trained by applying
a class adversarial loss to enable an efficient comparison between the latent codes of the
different encoders and a precise extraction of the class-specific attributes. Thanks to
this special setup we ensure that the extracted latent codes are class-specific, and, at the
same time, contain the high-level representations of the original dataset. Moreover, our
framework uses a collection of loss functions borrowed from image-to-image translation
techniques and generative models for images to improve the diversity of the generated
time series. We finally prove that a generator conditioned on these representations
outperforms the existing models by generating time series of much higher quality, i.e.,
diverse samples that preserve the classes of the original dataset and their properties very
well (high-fidelity).
To enhance the diversity of an existing dataset and to explore never seen conditions,

researchers used GAN to tackle another issue namely image-to-image translation. The
task consists in learning a mapping function between two visual domains to map the
elements of an image to another visual context. Such techniques can improve the quality
of a dataset and the robustness of a ML model by testing it in new setups that can be
more complex or more specific. It can enrich the original dataset with new data reflecting
non-realistic and never seen conditions.
The field of image-to-image translation is also experiencing rapid progress. In fact, a

lot of works, that have been proposed, aim to determine a mapping function between
two visual domains. Some of them [12] require paired-data during the training process
to transform a specific image from a source domain to a target domain. Others achieve
image-to-image translation without coupled data. By way of example, CycleGAN [13]
involves two discriminators and two generators to perform image-to-image translation
and relies on a cycle consistency constraint to ensure cyclic reconstruction of the images.
Latest works, such as UNIT [14] propose a more complex structure that involves coupled
GAN. Furthermore, DRIT [15] suggests a new structure that captures the attribute and
content specific features of the image. In this work, we exploit the recent progress in
image-to-image translation to perform time series translation, i.e., to map time series
from one domain to another domain for example to map different machines in different
operating environments.
To this end, we propose DR-TiST [16, 17] that enables an efficient time series trans-

lation. We apply our algorithm to three various use cases where translating time series
can be advantageous and relevant, namely translating ventilation systems, human ac-
tivities, and DC motors. While in the first scenario we transfer the time series behavior
of a ventilation system to the environmental conditions of another one, we try in the
second scenario to transform human sensor measurements to depict specific human ac-
tivities. Finally, in the third scenario, we focus on finding the optimal controller for a

3

1 Introduction

non-accessible DC motor. The performance of DR-TiST is compared to CycleGAN-VC
[18], a special form of an image-to-image translation algorithm used for voice conversion.
We demonstrate that the time series generated by DR-TiST are more realistic than the
ones generated by CycleGAN-VC.

In many situations, such as in medical or industrial domains, the AI deployment is
limited, and its power is still unknown. The extremely restricted amount of available
data and privacy issues [19] bound the collaboration possibilities. For example, it was
proven that launched attacks against ML models may reveal sensitive information about
the training dataset and infer its membership. In these cases, providing private synthetic
data that depict the real data’s behavior and rigorously describe the application domain
can encourage collaborations between data owners and external partners on improving
and expanding the use of AI. Time series generation and translation techniques are key
method to enhance the diversity of the original data by either producing more data
or mapping the original time series from a source to a target domain with never seen
conditions. Combining these methods with privacy will provide an excellent opportunity
to obtain more data and guarantee privacy.
To provide data with high-diversity and privacy guarantees, we extend existing meth-

ods and develop new ones to enable a time series generation and translation with DP.
In general, such approaches will encourage data holders to publish their data and hence
provide interesting complex real-world use cases for the research community. At the
same time, it will permit them to find new collaboration opportunities and work safely
with external partners on improving the use of AI in their application domains. In fact,
the synthetic data still depict the general pattern of the real data and have the same
reactivity to the ML model. However, they do not expose sensitive information con-
tained in the initially recorded time series such as rare diseases, machine parameters,
or times when the machines were on/off. . . In this work, we equip the developed and
existing generation and translation frameworks with a private discriminator relying on
DPSGD to enable a time series generation and transformation with privacy guarantees.
The developed methods are evaluated in terms of privacy and usefulness on different use
cases. We show that data translated and generated with these techniques are private and
still valuable. Our approaches constitute a first step in transforming data with privacy
guarantees.
Evaluating the generative models for time series remains complicated and is performed

in most the cases visually by assessing the quality of the synthetic data. Indeed, this
task imposes new criteria that must be considered such as the temporal relationship
between the data points. To overcome these issues, researchers suggested different com-
patible metrics: Esteban, Hyland, and Rätsch [11] proposed two evaluation metrics while
presenting RCGAN namely TSTR and TRTS that compute the test accuracy of a ML
model trained on a set of synthetic data and tested on a set of real data and vice versa.
Yoon et al. used the PS and the DS to evaluate TimeGAN [20]. In this case, a 2-layer
LSTM is trained to distinguish between the real and synthetic data or to predict the next
timestamp based on the previous part of the time series. Additionally, MMD [21] was
used in the training [22] and the evaluation of GAN to measure the similarity between
the distribution of the real and generated data. In spite of the significant number of these

4

1.2 Research Questions and Contributions

proposed metrics, they have never been systematically compared to each other. This
prevented us from identifying the most accurate method and from pointing out objective
compulsory criteria that represent a reliable metric. Furthermore, it seems difficult to
determine their advantages and disadvantages in terms of efficiency and discriminability
as well as their ability in detecting different problems that may occur during the training
process such as overfitting, mode collapse, or mode dropping.

To tackle these issues, we extensively study these metrics by performing different eval-
uation tests [23]. Furthermore, we propose a new metric, MiVo [24], that doesn’t rely
on a ML model and simultaneously takes into account the temporal characteristics of
this variety of data by performing a bidirectional check starting from real to synthetic
and afterward from synthetic to real. Finally, we will demonstrate that our new metric
outperforms the existing ones in all conducted tests and is more efficient in terms of
memory and time consumption. As the evaluation of the translated time series remains
ambiguous and use case specific, we adapt in this thesis MiVo by applying it in a so-
phisticated manner to enable a comparison between the target time series and the ones
obtained after the translation procedure.

The previously described evaluation metrics give the ML expert a global overview
of the GAN model behavior by computing a score per iteration. This enables a fast
exploration of the different training iterations and a quick selection of the iteration with
the best score and hence the best performance. However, in many situations, it is not
enough to trust the computed score and it remains essential to rigorously investigate
and explore the generated data. By way of example, it might be helpful to compare the
obtained data with the real ones visually by a human judge. At the same time, comparing
an important amount of time series and highlighting their similarities and differences is
a complex task. In this thesis, we present a VA system [25, 26] to guide the ML expert
in this evaluation process for time series data. The developed framework presents a
method that makes the real and generated data easily comparable by combining VA
(Colorfield, TimeHistograms) with algorithmic methods and enables the ML expert to
trust the trained GAN model. The presented approach consists of two views, namely a
GAN Iteration View showing similarity metrics between real and generated data over
the iterations of the generation process and a Detailed Comparative View equipped with
different time series visualizations such as TimeHistograms, to compare the generated
data at different iteration steps. Starting from the GAN Iteration View, the user can
choose suitable iteration steps for detailed inspection.

1.2 Research Questions and Contributions

To sum up, we consider in this thesis the problem of finding novel and efficient algorithms
to achieve time series generation and translation. Particularly, we focus on developing an
efficient generative model for time series stemming from multi-class datasets. Moreover,
we aim at designing a framework that can map time series across different application
domains.

5

1 Introduction

Finding a suitable generative model for time series is a challenging task. In fact, many
aspects must be taken into consideration. The first challenge which is valid for all types
of data is to find the right trade-off between sample diversity and sample fidelity. In
addition to that, it is extremely important that the generated time series preserve the
temporal relation between the data points and the dynamism of the real ones. In spite
of the important number of recently proposed generative models for time series namely
C-RNN-GAN [9], RCGAN [11], and TimeGAN [20], their performance is still limited on
datasets with high-variability such as multi-class datasets. To generate synthetic time
series of high-quality for multi-class datasets, it is essential to capture the class-specific
attributes as well as the class-independent properties:

RQ1G: How can we generate synthetic multi-class time series with the
right trade-off between sample diversity and sample fidelity? To tackle this
research question, we present ClaRe-GAN [A] and hence contribute as follows:

� Present a novel generative class sensitive framework for time series.

� Compare our method to the state-of-the-art generative models and assess the per-
formance of all the models against three criteria namely diversity, fidelity, and
utility of the generated data.

� Test the performance of all models on different publicly available datasets that
vary in the length of the time series, the number of classes, and the amount of
data per class.

A lot of effort was made to develop efficient methods that achieve image-to-image
translation [13, 14, 15, 27], i.e., that map the elements of an image from an initial visual
domain to another visual domain. Such techniques can enhance the diversity of an image
dataset by synthesizing new data describing non-existing situations. Inspired by them,
we consider the problem of developing an efficient algorithm that maps time series from
a source to a target domain:

RQ1T: How can we adapt existing image-to-image translation methods to
translate time series between different application domains? In this context,
we propose in contributions [B, C], DR-TiST, an efficient algorithm for time series
translation:

� Introduce a new method to translate time series from an initial domain A to a
target domain B by adapting an existing image-to-image translation algorithm,
namely DRIT [15], to time series data.

� Test DR-TiST on three use cases where we transfer the behavior of a first machine
to the environmental domain of a second machine, transform sensor measurements
depicting human activities and tune the controller of a non-accessible DC motor.

� Compare the performance of our algorithm to CycleGAN-VC [18] a modified ver-
sion of CycleGAN [13] designed for voice conversion and consequently able to
process sequential data.

6

1.2 Research Questions and Contributions

Moreover, we consider the problem of generating and translating time series while
preserving the privacy of the original dataset. The obtained datasets after the genera-
tion and translation should not reveal some sensitive information contained in the real
dataset. This research problem can be divided into two questions:

� RQ2G: How can we generate synthetic time series with both a low
privacy loss and a high utility across different domains? We tackle this
question by presenting differentially private generative models for time series [D]
as follows:

– Combine the existing time series generation algorithms with DP and propose
DP-ClaRe-GAN, DP-C-RNN-GAN, and DP-TimeGAN.

– Identify the DP generative algorithms that generate time series with low
privacy and a high utility across different domains.

– Test the performance of all models on different publicly datasets.

� RQ2T: How can we translate time series between different application
domains so that the characteristics of the real dataset are not revealed?
We tackle this question by proposing a differentially private version of CycleGAN-
VC and DR-TiST [E] and contributing as follows:

– Combine the existing time series translation algorithms with DP and propose
DP-CycleGAN-VC and DP-DR-TiST.

– Compare the performance of the developed algorithms in terms of utility and
privacy.

– Test the performance of all models on three different use cases where trans-
lating time series is relevant.

Next, we consider the problem of assessing the quality of the generated and translated
time series by easing the comparison between the obtained time series and the target
ones. Our main goal is to support the ML expert to either accept or reject the ML model
by assessing the quality of its output data:

RQ3: How can we compare generated or translated time series with the
real or target ones? To this end, we develop a computational approach, MiVo [F],
and a visual approach [G, H] that contribute as follows:

� Propose a new metric to evaluate GAN models that achieve time series generation
and translation.

� Support GAN expert in the hyper-parameter tuning.

� Propose a VA approach consisting of two views to compare the time series.

� Propose an overview visualization that helps the ML expert to identify interesting
iterations of the GAN generation process.

7

1 Introduction

� Present a comparison interface where the time series are visualized in a compact
manner and ordered using PCA to facilitate comparison by juxtaposition.

� Compare the visual and computational quality assessment methods by highlighting
the advantages of each approach and giving some instructions on how to use each
method.

In the last few years, a lot of metrics were proposed to evaluate the performance of the
generative models for time series data. While Esteban et al. proposed TSTR and TRTS
as they introduced RCGAN [11], the PS and DS scores were defined by Yoon et al. while
presenting TimeGAN [20]. Unfortunately, these metrics have not been compared to each
other, and their efficiency in discriminating between real and synthetic samples and in
detecting common problems that may happen while training GAN models is unclear.
This makes it difficult to determine the most accurate and reliable metric:
RQ4: Which metric allows to detect common GAN training problems?

In this research question, we focus on comparing MiVo to the state-of-the-art metrics
and highlighting the advantages and disadvantages of each metric in terms of detecting
GAN training problems and distinguishing between real and synthetic samples. Our
main purpose is to give ML experts some recommendations on how to use these metrics:

� Review the existing GAN evaluation metrics for time series data.

� Analyze and compare these methods by performing different evaluation tests.

� Identify the most accurate metric and determine the strengths and weaknesses of
each metric.

To conclude, this thesis contributes with new algorithms for time series generation
and translation, by extending the existing and newly presented algorithms to be appli-
cable for private setups and finally by developing a computational and visual method
to ease the comparison between the obtained time series and the desired behavior. Ta-
ble 1.1 summarizes the considered research topics, the underlying contributions, and the
chapters of this thesis that tackle the different research questions.

Own publications

[A] H. Arnout, J. Bronner, and T. Runkler. ClaRe-GAN: Generation of Class-Specific
Time Series. In 2021 IEEE Symposium Series on Computational Intelligence (SSCI),
2021. [28]

[B] H. Arnout, J. Bronner, J. Kehrer, and T. Runkler. DR-TiST: Disentangled Represen-
tation for Time Series Translation Across Application Domains. In 2020 International
Joint Conference on Neural Networks (IJCNN), 2020. [16]

[C] H. Arnout, J. Bronner, J. Kehrer, and T. Runkler. Translation of Time Series Data
from Controlled DC Motors using Disentangled Representation Learning. In 2021
IEEE Symposium Series on Computational Intelligence (SSCI), 2021. [17]

8

1.2 Research Questions and Contributions

Table 1.1: Summary of the main contributions in this thesis, the corresponding research ques-
tions and the chapters of the thesis where each research topic is addressed.

Time Series Generation Time Series Translation

Algorithm

RQ1G: How can we generate
synthetic multi-class time series
with the right trade-off between
sample diversity and sample fi-
delity?

RQ1T: How can we adapt ex-
isting image-to-image transla-
tion methods to translate time
series between different applica-
tion domains?

Method: ClaRe-GAN Method: DR-TiST
Chapter: 3.1 Chapter: 4.1
Reference: [A] Reference: [B, C]

Differentially
Private

RQ2G: How can we generate
synthetic time series with both
a low privacy loss and a high
utility across different domains?

RQ2T: How can we trans-
late time series between differ-
ent application domains so that
the characteristics of the real
dataset are not revealed?

Method:

� DP-ClaRe-GAN

� DP-C-RNN-GAN

� DP-TimeGAN

Method:

� DP-DR-TiST

� DP-CycleGAN-VC

Chapter: 3.2 Chapter: 4.2
Reference: [D] Reference: [E]

Analysis

RQ3: How can we compare generated or translated time series
with the real or target ones?
Method: MiVo, VA framework
Chapter: 5
Reference: [F, G, H]

RQ4: Which metric allows to detect common GAN training
problems?
Chapter: 5
Reference: [F]

9

1 Introduction

[D] H. Arnout, J. Bronner, and T. Runkler. Differentially Private Time Series Genera-
tion. In Computational Intelligence and Machine Learning ESANN 2021 Proceedings,
pp. 617-622, 2021. [29]

[E] H. Arnout, J. Bronner, and T. Runkler. Privacy-Preserving Time Series Translation.
Submitted to Neural Networks, 2022. [30]

[F] H. Arnout, J. Bronner, and T. Runkler. Evaluation of Generative Adversarial Net-
works for Time Series Data. In 2021 International Joint Conference on Neural Net-
works (IJCNN), 2021. [24]

[G] H. Arnout, J. Bronner, J. Kehrer, and T. Runkler. Visual Evaluation of Generative
Adversarial Networks for Time Series Data. In Human-Centered AI: Trustworthiness
of AI Models & Data (HAI) track at AAAI Fall Symposium, 2019. [25]

[H] H. Arnout, J. Bronner, J. Kehrer, and T. Runkler. Evaluierungsrahmen für Zeitrei-
hendaten. European pat. EP3809334A1. Siemens AG. Apr. 21, 2021. [26]

[I] U. Schlegel, H. Arnout, M. El-Assady, D. Oelke, and D. A. Keim. Towards a rig-
orous evaluation of XAI methods on time series. In 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), pp. 4197-4201, 2019. [31]

[J] U. Schlegel, E. Cakmak, H. Arnout, M. El-Assady, D. Oelke, and D. A. Keim.
Towards visual debugging for multi-target time series classification. In Proceedings of
the 25th International Conference on Intelligent User Interfaces, pp. 202-206, 2020.
[32]

1.3 Thesis Outline

The content of this thesis is structured as follows. Chapter 2 introduces the necessary
theoretical background and the methodologies that will be applied and used throughout
the thesis. The core idea of GAN, a well-established method for image synthesis, is
described from an algorithmic point of view. Moreover, common time series generation
and translation techniques for time series such as TimeGAN, C-RNN-GAN, and RC-
GAN are explained in detail. Furthermore, a key method to guarantee privacy while
translating and generating data is presented. In this context, the intuition behind DP
and its theoretical definition is introduced.

In Chapter 3, a novel algorithm, ClaRe-GAN, to synthesize new time series for an ex-
isting dataset of time series stemming from different classes is presented. In this respect,
we discuss the performance of this algorithm in finding the right trade-off between sample
diversity, i.e., how different, and heterogeneous are they among themselves, and sample
fidelity, i.e., their closeness and similarity to the original dataset, and compare it to the
state-of-the-art generative models. Aware that the privacy topic and privacy-preserving
approaches are growing in importance, we combine the state-of-the-art generative model
with DP to ensure a private time series generation.

10

1.3 Thesis Outline

Similarly, in Chapter 4, a new framework, DR-TiST, to map time series between
different application domains is proposed. Its performance is assessed and compared to
CycleGAN-VC, a state-of-the-art translation framework for voice conversion purposes.
To this end, we present three different use cases where the time series translation topic
is important. The privacy topic is also covered in this chapter. We present DP-DR-
TiST and DP-CycleGAN-VC that enable a differentially private time series translation
by combining the DR-TiST and CycleGAN-VC with DP. The performance of the DP
models is assessed in terms of sample utility and sample privacy.
Chapter 5 presents two different analytical approaches, i.e., a visual and a compu-

tational one to assess the quality of time series. Both methods are meant to ease the
comparison between the obtained time series from the ML model after a generation or
translation process and a set of ground truth time series that depict the desired behavior
and the requested output. Our main purpose is to support the ML expert or domain
expert while evaluating a generative model and to help him to find the best performing
ML model.
Finally, Chapter 6 concludes this work by summarizing the main research contributions

that were addressed in this thesis and the obtained results. Furthermore, we highlight
some potential future research directions that can be further investigated.

11

CHAPTER

2

PRELIMINARIES

In this chapter, we extensively review the theoretical background of this thesis and the
methodologies that will be applied throughout this work. Particularly, we focus on
the data generation topic by presenting GAN a newly introduced technique for image
synthesis, and by reviewing the state-of-the-art time series generation algorithms, i.e., C-
RNN-GAN [9], RCGAN [11], and TimeGAN [20] and comparing the complexity of their
architectures. Moreover, we summarize the existing actual metrics meant to evaluate
the performance of these frameworks. After that, we introduce numerous data trans-
formation methods achieving image-to-image translation such as CycleGAN [13], DRIT
[15, 27], and UNIT [14] and time series translation such as CycleGAN-VC. Finally, the
concept of DP and its purpose are rigorously defined. In addition to that, some newly
introduced Differentially Private Machine Learning methods are presented.

2.1 Data Generation

2.1.1 Generative Adversarial Networks

GAN, presented in Algorithm 1, is a well-known technique for image generation in-
troduced by Goodfellow [1] consisting of two neural networks namely a Generator G :
Z → Xg, that starting from random noise z ∈ Z sampled from a distribution pz tries
to generate realistic images, and a Discriminator (D), a binary classifier that learns to
perfectly distinguish between a set of real images X and the images generated by G,
i.e., Xg. At the same time, G is trying to minimize the log-probability of the generated
samples that are recognized as false. Both neural networks are involved in a minimax
game with the aim of learning a distribution pg that approximates pr, the distribution

13

2 Preliminaries

of the real samples. While the D is trained to maximize log (D (x)), G aims to minimize
log (1−D (G (z))). The minimax loss can be expressed as follows:

LGAN (G,D) = Ex∼pr(x) [log (D (x))] + Ez∼pz(z) [log (1−D (G (z)))] , (2.1)

where x ∈ X . The GAN’s structure is illustrated in Fig. 2.1.

Figure 2.1: Presentation of GAN architecture consisting of two neural networks the Generator
and the Discriminator. Starting from noise data are generated by the Generator.
Later, the real and the generated data are compared by the Discriminator. While
the Generator tries to synthesize data that are as realistic as possible, the Discrim-
inator learns to perfectly distinguish between the real and the generated data. The
Generator will over the iterations improve the quality of the data by learning from
the decisions made by the Discriminator.

The global optimality and the convergence of GAN were proven from a theoretical
point of view in [1]. Global optimality means reaching an optimal Discriminator D for
a fixed Generator G. This is achieved when the derivative of D in the minimax loss is
equal to zero:

D∗ (x) =
pr (x)

pr (x) + pg (xg)
, (2.2)

where D∗ (x) denotes the optimal Discriminator. The corresponding minimax loss func-
tion can then be computed as follows:

LGAN (G,D) = Ex∼pr(x)

[
log

pr (x)
1
2 [pr (x) + pg (xg)]

]
+

Exg∼pg(x)

[
log

pg (xg)
1
2 [pr (x) + pg (xg)]

]
− 2 · log (2) .

(2.3)

The Kullback-Leibler (KL) divergence of two different distributions p1 and p2 is defined
as follows:

KL (p1 ∥ p2) = Ex∼p1 log
p1
p2

, (2.4)

14

2.1 Data Generation

Algorithm 1 GAN [1]

for number of training iterations do
for k steps do
Sample minibatch of m noise samples

{
z1, . . . , zm

}
from noise prior pg(z).

Sample minibatch of m noise samples
{
x1, . . . , xm

}
from noise prior pr(x).

Update the disciminator by ascending its stochastic gradient:

▽θd
1

m

m∑
i=1

[
logD

(
x(i)

)
+ log

(
1−D

(
G
(
z(i)

)))]
end for
Sample minibatch of m noise samples

{
z1, . . . , zm

}
from noise prior pg(z).

Update the generator by descending its stochastic gradient:

▽θd
1

m

m∑
i=1

log
(
1−D

(
G
(
z(i)

)))
end for
The gradient-based updates can use any standard gradient-based learning rule.

and the Jensen-Shannon (JS) divergence denotes:

JS (p1 ∥ p2) =
1

2
KL

(
p1 ∥

p1 + p2
2

)
+

1

2
KL

(
p2 ∥

p1 + p2
2

)
. (2.5)

Hence, LGAN (G,D) can be expressed as follows:

LGAN (G,D) = 2 · JS (pr ∥ pg)− 2 · log (2) . (2.6)

The rise of GAN enabled to investigate a new revolutionary technique for data gen-
eration. In addition to data generation, GAN was used for different purposes ranging
from data augmentation [33, 34] to anomaly detection [35]. However, the use of GAN
was also coupled with many challenges and numerous training problems:

� Mode dropping happens when some modes are discarded by GAN and dot not
appear in pg. This results in a discrepancy between pg and pr.

� Mode collapse occurs when the learned distribution pg is an average over the dif-
ferent modes of pr. pg is hence a collapsed version of all modes in pr. This also
results in a discrepancy between pg and pr.

� Overfitting occurs when parts or samples of the training set are ignored by GAN.
We ideally expect from pg to be a uniform distribution over the training samples
and to highlight the characteristics and the properties of the training set.

� Vanishing gradients occurs when the Discriminator is very efficient. In this case,
the Generator will not be able to follow and learn from its feedback.

15

2 Preliminaries

2.1.2 GAN Variants

To deal with the previously described training problems and improve the performance
of GAN, researchers proposed more sophisticated GAN architectures [36]. cGAN [10]
proposes to feed the input of Generator and Discriminator with auxiliary information
c. By way of example, starting from random noise z and a specific label c, an image is
generated by the Generator. The synthetic images G(z | c) are compared to the real im-
ages by the Discriminator. In this case, the Discriminator learns to distinguish between
D(x) and D(G(z | c)). In addition to that, other researchers investigated the possibility
of improving the efficiency of GAN by revisiting the architecture of the Generator and
Discriminator. On the one hand, many works focused on ameliorating the Discriminator
performance by using multiresolution discrimination [37, 38] or multiple Discriminators
[39, 40, 41]. On the other hand, numerous works proposed new Generator architectures
[3, 4] and focused on the form of the input latent space by applying Gaussian Mix-
ture Models [42] or Clustering [43]. Other GAN architectures have later been presented
such as DCGAN [44] consisting of a CNN Generator and a Deconvolutional CNN Dis-
criminator or InfoGAN [45] a special form of cGAN that tries to maximize the mutual
information between conditional information and the generated data.
Besides the work on the GAN’s architecture, many authors focused on improving

the performance of GAN by finding the most appropriate loss function. WGAN [46],
suggested to use the Wasserstein loss instead of the minimax loss presented in Eq. 2.1
to avoid mode collapse and vanishing gradient problems. In this case, the Wasserstein
distance is minimized between the generated and real distributions pg and pr:

W (pg, pr) = infγ∈Π(pg ,pr)E(x,y)∼γ [∥ x− y ∥] , (2.7)

where x and y are two data instances, Π (pg, pr) is the set of all possible joint distributions
between pg and pr and γ (x, y) corresponds to one joint distribution.
Later, an extended version of the Wasserstein loss was presented in WGAN-GP [47]

that imposes a gradient penalty term on the Discriminator:

LWGAN−GP = Exg∼pg [D (xg)]− Ex∼pr [D (x)] + λEx̂∼px̂

[
(∥ ∇x̂D (x̂) ∥2 −1)2

]
, (2.8)

where px̂ is sampled uniformly between points in pr and pg.
Moreover, different forms of regularization have been used to allow for a better con-

vergence [48, 49]. To sum up, a huge effort has been spent in stabilizing the GAN’s
training and improving its performance and led to an impressive improvement in the
quality of the synthesized images by generating images of high-resolution [2, 50].

2.1.3 GAN Architectures for Time Series Data

Let Xts = X1 ∪ X2 ∪ . . . ∪ XN be a set of labeled time series xt=1:T from N ∈ N
different classes following a distribution prt where T ∈ N is the length of the time series.

The subset Sr =
{
xr1,1:T , x

r
2,1:T , . . . , x

r
k,1:T

}
is uniformly sampled from prt. Based on

a set of training samples Str
r =

{
xtr1,1:T , x

tr
2,1:T , . . . , x

tr
k′,1:T

}
and a validation set Sval

r =

16

2.1 Data Generation

{
xval1,1:T , x

val
2,1:T , . . . , x

val
k′′,1:T

}
, GAN aims to learn a distribution pgt that approximates

prt where k, k′, k′′ ∈ N . Sg =
{
xg1,1:T , x

g
2,1:T , . . . , x

g
m,1:T

}
denotes the set of generated

samples drawn from pgt with m ∈ N.

Driven by the success of GAN on image data, researchers tried to investigate this
method for other types of data such as time series. In this context, numerous generative
models have been proposed:

C-RNN-GAN As a first attempt, Mogren proposed C-RNN-GAN [9], depicted in
Fig. 2.2 (a), equipped with a recurrent Generator and Discriminator. C-RNN-GAN relies
on common techniques proposed in [5] to improve the GAN performance. The recurrent
Generator takes as input in each cell a random vector and the output of the previous
cell. A bidirectional recurrent Discriminator is used to enable to learn the context and
the dynamic in both directions. In the original paper, LSTM is used as a recurrent
structure. The proposed framework was tested on classical music.

RCGAN Esteban et al. [11] presented RCGAN (Fig. 2.2 (b)) a conditional recurrent
GAN. In this case, the input of the Generator and Discriminator are conditioned on
auxiliary information c with the aim of improving its performance. This is achieved by
concatenating the input of both neural networks at each timestep with c. This ensures
that the additional information c cannot be discarded or forgotten during the generation
procedure. The authors used LSTM as a recurrent structure for the Generator and
Discriminator.

TimeGAN A more sophisticated architecture was presented by Yoon et al. [20]
in TimeGAN (Fig. 2.2 (c)) consisting of an embedding and recovery function and a
recurrent Generator and Discriminator. The main goal behind TimeGAN was to design
a good generative model that preserves the temporal dynamic for mixed datasets with
temporal and static data. In addition to the Generator and Discriminator, TimeGAN
uses an embedding function e : S×Xts → HS×HX that maps the vector space of statistic
features S and temporal features Xts to the latent spaces HS and HX respectively.
Particularly, an embedding network eS is used to encode the static features and eX is
used to encode the temporal features. In addition to that, a static rS : HS × S and
temporal rX : HX ×Xts recovery functions are used to retrieve the original data and to
enable a generation of new mixed data.

Through these numerous works, attempts were made to obtain generative models for
time series that correctly reproduce the underlying temporal characteristics of a given
training dataset. However, we prove in this work that the performance of these models
is limited on datasets with high-variability for example containing different classes. In
such setups, it is extremely difficult for a generative model to find the right trade-off
between sample fidelity, i.e., their similarity to the real time series, and sample diversity.
Furthermore, it is essential to preserve the original classes and the variation within each
class.

17

2 Preliminaries

Figure 2.2: Comparison of the architecture of the different generative models for time series
data namely TimeGAN, RCGAN and C-RNN-GAN. The used loss functions are
depicted in dark blue. Xs, X

′
s and Xt, X

′
t denote the static and temporal data

respectively.

18

2.1 Data Generation

2.1.4 GAN Metrics for Time Series

For two sets Sr and S′
r randomly sampled from prt so that Sr ∩ S′

r = ∅ and a set Sg

with |Sr|= |S′
r|= k and |Sg|= m, a metric ρ̂ : Sr ×Sg → R meant to evaluate GAN must

fulfill different criteria:

� Discriminability An accurate evaluation metric should be able to distinguish
between real and synthetic samples in order to compare pg and pr. We ideally
expect that the distribution of the generated samples pg reflects the characteristics
of the distribution of the real data pr. If this is not the case, the evaluation
metric should be able to spot the problem by discriminating between the real and
generated samples. As stated in part 2.1.1, two common problems may occur
while training a GAN, that cause a discrepancy between the distributions pr and
pg namely mode dropping and mode collapse. A reliable metric ρ should be able
to detect these phenomena.

� Detect Overfitting As stated in [23], overfitting in GAN occurs when parts of
the training set are ignored during the generation process. In other words, pg
should ideally be a uniform distribution over the training samples and Sg should
represent the properties and the diversity of the training set. A reliable metric
should be able to detect this phenomenon.

� Efficiency An important property that must be considered when evaluating a
metric is its efficiency, i.e., an accurate metric ρ should be efficient in terms of
computation and the number of samples. The sample efficiency denotes the ability
to compute accurate results with a reasonable number of samples. Moreover,
computational efficiency is an important criterion that must be considered when
designing new metrics. In practice, the evaluation metric will be used several
times during the training or test phase in order to evaluate the behavior of the
GAN model.

In the last few years, numerous metrics have been presented to evaluate GAN for time
series data. Esteban et al. proposed in their work [11] two evaluation metrics namely
TSTR and TRTS. Later, two additional metrics are introduced by Yoon, Jarrett, and
van der Schaar [20] namely DS and PS:

� MMD [21] has been widely used to evaluate GAN for different types of data. It
compares the distribution of the real data to the distribution of a set of generated
samples by computing the squared difference between two sets of samples.

� TRTS [20] denotes training a ML classifier on the real data and reporting the test
accuracy when the model is tested on the synthetic ones.

� TSTR [20] denotes training a ML classifier on the synthetic data and reporting
the test accuracy when the model is tested on the real ones.

19

2 Preliminaries

� DS [20] A 2-layer LSTM is trained to discriminate between the real and synthetic
samples. During the training process, each real time series is labeled as real and
each generated time series is labeled as fake. DS denotes the classification error of a
test set consisting of a mix of real and generated samples. This score measures the
similarity between both datasets and hence checks whether the generated samples
are indistinguishable from the real data, i.e., fulfill the fidelity criterion.

� PS [20] In order to assess the usefulness of the generated time series, a 2-layer
LSTM is trained to predict the next coming value for each sequence of the generated
time series. The trained model is later tested on the real time series. PS represents
the mean absolute error between the predicted and the real values.

� Visual Evaluation Yoon et al. [20] applied t-SNE [51] and PCA [52] on the real
and generated time series to enable an efficient comparison of the two distributions
in a 2-dimensional space. These visualizations aim to compare the diversity of the
real and synthetic samples.

The different methods focus on three important criteria when assessing the quality
of the generated data namely diversity, fidelity, and usefulness. Diversity means that
the generated data should reflect the variation present in the real dataset. While fidelity
requires that the generated data must be indistinguishable from the real ones, usefulness
assess the applicability and the utility of the generated data, i.e., the synthetic samples
should be as useful as the real data when performing prediction tasks.

It is to be noted that these were not compared to each other. That’s why it is difficult
to determine the benefits and disadvantages of each approach in detecting the typical
GAN training problems described in section 2.1.1.

To evaluate the robustness of GAN metrics to the criteria presented, Xu et al. [23]
proposed different tests that can be performed and may reveal many characteristics
about a considered GAN metric.

Mixing test The mixing test [23] is a good technique to test the discriminability of
each evaluation metric. It consists in computing the score ρ(Sr, Sg(l)) between Sr and a
mix of real and synthetic samples Sg(l) so that l is the percentage of generated data. At
the beginning of the test, the score ρ(Sr, Sg(l)) is measured on a set of real data. After
that, we progressively augment the ratio l of generated data in Sg(l). The final score is
computed on a set of generated data. We ideally expect that the score of ρ increases as
the ratio of fake data l varies from 0 to 1 and that the best score is achieved on the real
data.

Mode collapse and mode dropping tests As stated in [23], mode collapse and
mode dropping can be artificially simulated by finding c clusters in the whole training set
Str
r with k-means and finally, either substituting each cluster present in S′

r by its center
to simulate mode collapse or randomly removing it to reproduce mode dropping. The
score ρ(Sr, S

′
r) is then calculated depending on the number of collapsed/ dropped clusters

in S′
r. An accurate metric should be sensitive to mode collapse and mode dropping and

hence its value should increase with the number of collapsed/ dropped clusters.

20

2.2 Data Translation

Sample efficiency test The sample efficiency test [23] compares the score ρ(Sr, Sg)
to the score ρ(Sr, S

′
r) for different number of samples n. The sample efficiency denotes

the difference between ρ(Sr, Sg) and ρ(Sr, S
′
r) as the number of samples n increases.

We ideally expect that ρ(Sr, Sg) − ρ(Sr, S
′
r) > 0 for a reasonable number of samples n.

As an additional criterion, we investigate the value of ρ(Sr, S
′
r) for different number of

samples n and assume that this value will show a stable behavior with a specific number
of samples n and converge. This condition should highlight the effect of the number of
samples n on the score ρ.

Overfitting test A possible method to evaluate the robustness of a metric ρ in
detecting overfitting is presented in [23]. Let S′′

r be a mix of samples from Str
r and another

set disjoint from the training and the validation sets. The value ρ(S′′
r , S

val
r)− ρ(S′′

r , S
tr
r)

called the generalization gap denotes the difference between the score computed to a
validation set and the score computed to the training set. We progressively increase the
number of training samples of Str

r present in S′′
r . This should reduce the gap between

both values to show that S′′
r is memorizing more samples from Str

r .

2.2 Data Translation

2.2.1 Image-to-Image Translation

Several works have been presented to perform image-to-image-translation with the pur-
pose of learning the mapping function between two different visual domains. Isola et
al. [53] used in their method, Pix2pix, conditional GAN to translate images to a tar-
get domain. In this case, paired-data are required during the training process. This
technique was later extended by Wang et al. in CycleGAN [13] which relies on a cycle
consistency loss to deal with unpaired images. Liu et al. presented UNIT [14] which are
based on coupled GAN that map to a common latent space used as a cycle-consistency
constraint. Huang et al. introduced a multimodal version of UNIT, MUNIT [54], that
enables a diverse output generation for a source image by decomposing the latent space
into a domain-invariant content space and a style space. In contrast to MUNIT [54],
BicycleGAN [12] requires paired data during the training process. This technique con-
sists of a Conditional Variational AutoEncoder GAN (cVAE-GAN) and a Conditional
Latent Regressor GAN (cLR-GAN) to guarantee a one-to-one mapping between each in-
put image and the corresponding output. DiscoGAN [55] learns to distinguish between
the domain and the style of the image by observing the relationships between various
visual fields. To enable a multimodal image-to-image translation, DRIT [27, 15] tries to
capture the relationship between two different visual domains by dividing each image
into content and attribute. In fact, a disentangled representation is applied to the latent
space representation. The content consists of the common information between both
visual domains whereas the attribute space preserves the domain-specific information.
DRIT [15] involves two content encoders, two attribute encoders, two Generators, two
domain Discriminators, and a content Discriminator. An input image from domain A is
projected by the attribute encoder and by the content encoder into the domain-specific
content space. The content and attribute vectors determined by the encoders are later

21

2 Preliminaries

used by the Generator to translate images in the domain A. A domain Discriminator
learns to distinguish between the real images from domain A and the images generated
by the Generator. Finally, a content Discriminator is involved to differentiate between
the learned content representations of both domains. We refer to [15] for a detailed
description of the algorithm.

2.2.2 Time Series Translation

In contrast to image-to-image translation, the problem of translating time series was not
in-depth investigated. To the best of our knowledge, a unique algorithm was proposed
CycleGAN-VC [18] that achieves voice conversion. CycleGAN-VC consists of a modified
version of CycleGAN that combines gated CNN with an identity-mapping loss to focus
on non-parallel voice conversion. CycleGAN learns a mapping function f between two
visual domains A, and B by means of an adversarial loss and a cycle-consistency loss.
While the adversarial loss compares the data obtained after the conversion with the
target data, the cycle-consistency loss ensures a rigorous reconstruction of the original
data starting from the converted data. With unpaired data, CycleGAN-VC enables an
efficient parallel-data-free voice conversion. It relies on gated CNN and an identity-
mapping loss to preserve the composition between the input and output during the
mapping process in the Generator.

2.3 Differential Privacy

2.3.1 Definition

The notion of DP was rigorously defined by Dwork et al. in their works [56, 57, 58] and
became a well-established method for protecting the privacy of individuals in a dataset.
It protects the privacy of a dataset by minimizing the influence and the effect of each
dataset’s instance. Intuitively, the outcome of an algorithm should be insensitive to a
small perturbation in the dataset and hence more generalizable. In other words, the
result should be independent of the presence or the absence of any individual record.
Let’s consider two neighboring datasets D and D′ and an algorithm M. Two datasets
are assumed to be neighboring if they are identical differing in one single instance.

Definition 1 (DP [56, 57, 58]) According to [57], a randomized algorithm M is (ϵ, δ)-
differentially private if for any subset of outputs S:

P [M(D) ∈ S] ≤ eϵP
[
M(D′) ∈ S

]
+ δ, (2.9)

where ϵ and δ control the privacy, P is the randomness of the noise in the algorithm,
and M(D) and M(D′) are the output of the algorithm M given the dataset D and D′.

It is to be noted that lower ϵ and δ values lead to stricter privacy guarantees.
The post-processing theorem guarantees that any randomized mapping on an (ϵ, δ)-

differentially private algorithm has no effect on its privacy:

22

2.3 Differential Privacy

Theorem 1 (Post-processing [59]) Given a randomized algorithm M : D → R that
is (ϵ, δ)-differentially private and an arbitrary randomized mapping f : R → R′, f ◦M :
D → R′ is (ϵ, δ)-differentially private.

To achieve DP, the Gaussian mechanism [60] is a commonly used method. It consists
in adding Gaussian noise to the output of an algorithm. To estimate the privacy loss for
repeated use of differentially private mechanisms, the notion of privacy accountant has
been proposed [61]. In this context, Moment Accountant (MA) has been extensively used
as it provides a more accurate estimation of privacy loss than the previously proposed
methods [57]. Recently, Mironov et al. [60] proved that RDP accountant outperforms
MA in estimating the privacy loss for a composite mechanism.

2.3.2 Differentially Private Machine Learning

Recently, a lot of works focused on developing privacy-preserving ML methods. As a
first attempt, DPSGD [61] was proposed by Abadi et al. to guarantee privacy for DL
models. Later, numerous differentially private GAN approaches have been proposed.
DPGAN [62] and dp-GAN [63] achieve DP by means of the differentially stochastic
gradient. While DPGAN employs WGAN [46] as an objective function and clips the
model weights, dp-GAN opts for the aka improved WGAN [47] and an explicit clipping
of the gradients. In contrast to these methods, PATE-GAN [64] enables the generation
of data in a privacy-preserving manner by applying the Private Aggregation of Teacher
Ensembles (PATE) to GAN. The authors made a modification to the originally proposed
PATE method by training the teacher Discriminators on disjoint sets of real data. At
the same time, the student Discriminator is trained using the generated data that are
labeled by the teachers, and the Generator loss is computed based on the student Dis-
criminator loss. DP-CGAN [65] addresses another problem namely generating labeled
private synthetic data. This is achieved by applying DPSGD to cGAN [10]. The pro-
posed method relies also on clipping the Discriminator loss of the real and generated
data separately and summing them up together and using the RDP accountant instead
of the MA accountant. Finally, DP-FedAvg-GAN [66] applies DP for generative models
trained with federated learning and proves that these models are efficient in debugging
many image issues. An extensive overview of the existing differentially private GAN
approaches was presented by Fan [67]. These models were designed to generate images
in a privacy-preserving manner. To the best of our knowledge, a unique differentially
private generative model for time series was proposed by Esteban et al. while introducing
RCGAN [11].

23

CHAPTER

3

TIME SERIES GENERATION

In spite of the great success of GAN with images [2, 3, 4], their utility and use on
time series data are still limited. This is mainly due to the fact that designing a good
generation framework for time series is challenging. One key challenge is the temporal
relationship between the data points that must be preserved in the generation process.
Furthermore, as for other types of data, an efficient generative model has to find the
right trade-off between sample fidelity, i.e., the similarity of the generated data to the
real ones, and sample diversity, i.e., reproducing the variation of the real data. This is
particularly challenging for datasets with high-variability such as datasets with multiple
classes, where one or many classes are misrepresented, i.e., in imbalanced setups or when
the difference between the classes is not obvious and outstanding. A possible solution to
this problem would be to train a specific GAN for each class. However, this reduces the
potential to learn characteristics common to all classes from the full training dataset.
For such datasets, it is fundamental to produce samples of high-quality that reflect the
inter- and intra-class variation. This means that all the classes of the real dataset must
be represented in the synthetic samples and that the diversity within each class should
be preserved.

Through numerous works [9, 11, 20], attempts were made to obtain generative models
for time series that correctly reproduce the underlying temporal characteristics of a
given training dataset. However, we prove in this work that the performance of these
models is limited on the datasets with high-variability such as datasets stemming from
different classes. To tackle this issue, we present in this section ClaRe-GAN [28] a novel
generative model for multi-class time series datasets that outperforms the existing ones.
The sophisticated architecture of ClaRe-GAN allows for better learning of the inter-
and intra-class variations, i.e., the class-specific properties and the properties that are

25

3 Time Series Generation

common to the different classes. It consists of a recurrent GAN, a class-specific encoder
for each class, and a class Discriminator allowing for efficient and reliable extraction
of the class properties as well as the general properties of the dataset. This ensures a
generation of new diverse time series of high-quality.

The performance of our model is evaluated against different criteria namely diversity,
fidelity, and usefulness and compared to the state-of-the-art models. In order to enable
a fair comparison, we use the same evaluation metrics as the ones used by Yoon et al.
while introducing TimeGAN [20], i.e., DS and PS. While the DS assesses the fidelity
of the generated time series through a classifier meant to distinguish between the real
and the generated datasets, the PS evaluates the usefulness of the generated data on
prediction tasks. Furthermore, we visualize the real and the synthetic time series in full
and reduced dimensions using PCA [52] and t-SNE [51] analysis such as in [20] to allow
direct comparison and to assess the diversity of the generated time series.

Finally, we cope in this section with the problem of preserving the privacy of the
dataset’s instances during the generation process. As a matter of fact, privacy issues
prevent data owners from improving AI performance as it makes external collaborations
binding. An alternative solution would be to generate new private data that can be
shared without restriction and that don’t contain some sensitive information of the orig-
inal dataset but still have its same utility. To allow data sharing without confidentiality
concerns, we combine the existing GAN models for time series namely TimeGAN [20],
ClaRe-GAN [28], and C-RNN-GAN [9] with DP.

We test our approaches on a collection of datasets from the UEA & UCR Time Series
Classification Repository [68] which vary in time series’ length and number of classes. In
this context, we compare the different generation techniques with- and without privacy
guarantees and evaluate their performances against each other.

In the conducted experiments, we show that ClaRe-GAN is scalable with the length
of the time series and the number of classes and conclude that our framework produces
time series of high-quality. It outperforms the existing state-of-the-art methods visually
and computationally enabling significant progress in the research area of generative
models for time series. Moreover, we prove that DP-ClaRe-GAN, the DP version of
ClaRE-GAN, finds the best trade-off between the privacy of the generated data and
their utility.

3.1 ClaRe-GAN: new Algorithm for Time Series Generation

In cGAN [10], labeled setups were used to condition the input of the generator leading
to a significant improvement in the quality of generated data. In a similar fashion, we
exploit the supervised setup to find a good generative model for time series stemming
from different classes. Our main goal is to learn the inter- and intra-class variations of
the dataset and to exploit this information to improve the quality and the diversity of the
generated time series. ClaRe-GAN, illustrated in Fig. 3.1, is composed of class-specific
encoders, one encoder per class, a class Discriminator, and recurrent Generators and
Discriminators. This structure enables efficient extraction of the class-dependent and

26

3.1 ClaRe-GAN: new Algorithm for Time Series Generation

class-independent attributes. The class-specific encoders are trained in a parallel manner
using the real time series belonging to the different classes and the class Discriminator.
Our model can therefore be used for any number of classes.
For each class n ∈ {1, . . . , N}, we use a GAN consisting of a Generator Gn and a

Discriminator Dn. The Discriminator Dn is a binary classifier that tries to distinguish
between the real time series and the ones synthesized by the Generator Gn. The minimax
game between both components is used, for each class n, as follows:

LGAN (Gn, Dn) = Ex∼pr(x) [log (Dn (x))] + Ez∼pz(z) [log (1−Dn (Gn (z)))] , (3.1)

where z is a noise vector sampled from a distribution pz and x ∈ Xn.
A class-specific encoder En : Xn → C learns a representation for each time series

x ∈ Xn belonging to the same class n by mapping them into a vector of predetermined
length. This class-specific encoder is used to gather class-specific and class-independent
attributes by learning the factor of variation of each real time series:

cnx = En (x) . (3.2)

We assume that all time series are mapped to the same latent space C. This is achieved by
sharing the weights [14] of the last 2 layers of the encoders. This assumption guarantees a
common extraction of the high-level representation of the time series, i.e., we extract the
class-independent properties. At the same time, the class-specific encoders are trained
adversarially by means of an additional class-specific Discriminator. It discriminates
between the representation of the different time series to enable efficient extraction of
the class-specific features. The extracted latent codes are later concatenated with an
input noise vector in a sophisticated manner to generate time series of high-quality.
Furthermore, we make no restriction on the architecture of these encoders in our case
we used CNNs, but architectures such as fully connected layers or RNN can replace
those as well.
Inspired by [27, 15], we impose a class Discriminator DCl

X to discriminate between
the learned class representations of the encoders En allowing a more precise extraction
of the different class features. The class Discriminator is trained by applying a class
adversarial loss to improve the quality of the variation learned by the encoders. For a
dataset with 2 classes, the class adversarial loss can be expressed as follows:

Ladv

(
E1, E2, D

Cl
X

)
= Ex1 [0, 5 · log

(
DCl

X (E1 (x1))
)
+

0, 5 · log
(
1−DCl

X (E1 (x1))
)
]+

Ex2 [0, 5 · log
(
DCl

X (E2 (x2))
)
+

0, 5 · log
(
1−DCl

X (E2 (x2))
)
].

(3.3)

As in [3, 4], our generator Gn : {C,Z} → Xn is equipped with a mapping function
f : Rm → W consisting of 3 fully connected layers. However, our mapping function f is

27

3 Time Series Generation

used on the noise vector z instead of the latent vector cnx, i.e., f (z) = w where the noise
vector z is sampled randomly from a pre-defined distribution. In our case, we used the
Gaussian distribution. The obtained vector w is later concatenated with the latent code
cnx and fed to a RNN. Like all other generative models designed for time series, we opt
for the usage of RNN due to their well-known ability in modeling sequential data. We
used in our case LSTM but we make no restriction on the recurrent architecture.

Our Discriminator Dn : Xn → [0, 1] minimizes the adapted Discriminator loss function
that was originally proposed by Goodfellow when introducing GAN, i.e., Eq. 3.1. We
use multi-scale Discriminators [69, 70] originally designed for images. In this case, many
Discriminators are used and trained with different image resolutions. In our experiment,
we found that this multi-scaling technique, i.e., feeding the same input time series under
different levels of compression to a multitude of Discriminators eases the training process
and improves the quality of the synthesized time series. In addition to the class adver-
sarial loss, we apply further loss functions that facilitate the training and improve the
quality of the generated time series. To improve the diversity of the generated data and

Figure 3.1: Representation of the ClaRe-GAN architecture for a dataset with 2 classes, i.e.,
N = 2. X1 and X2 are time series from two different classes.

28

3.2 DP*: Privacy-preserving Approaches

to prevent mode collapse, we apply the mode seeking regularization term [71] that helps
to capture the different modes present in the real dataset by maximizing the ratio of the
distance between two generated time series Gn (x, z1) and Gn (x, z2) given an input time
series x, and two latent noise vectors z1 and z2,

Lms = max
Gn

(
dx (Gn (z1, x) , Gn (z2, x))

dz (z1, z2)

)
, (3.4)

where d∗ denotes the mean absolute error.
The full objective function of our framework can then be written as:

λGANLGAN (Gn, Dn) + λc
advLadv

(
E1, E2, D

Cl
X

)
+ λmsLms + λc ∥ cnx ∥2, (3.5)

where ∥ cnx ∥2 is a L2 regularization term applied to prevent overfitting and λGAN , λc
adv

and λms are the model parameters. The used loss functions are summarized in Fig. 3.1.
In our experiments, we used λGAN = 1, λc

adv = 1 λc = 0.01 and λms = 1e− 5.

3.2 DP*: Privacy-preserving Approaches

The AI evolution is currently compromised by important constraints such as the lack of
data and the growing privacy matters. As a matter of fact, external collaborations on
improving and expanding the use of AI are highly restricted, and sharing data remains
a sensitive subject. In many medical or industrial domains, the lack of data and privacy
concerns prevent researchers from improving the efficiency of AI. In these cases, publish-
ing synthetic privacy-preserving data that depict the behavior of the original dataset,
could enlarge the scope of AI’s applicability. Thereby, it will also preserve their privacy.

Figure 3.2: Use Case Scenario: Data owners holding sensitive data can use a differentially
private version of GAN to generate new anonymous time series. These data can be
shared with external partners without confidentiality concerns and both parts can
work together safely.

Let’s consider a scenario, illustrated in Fig. 3.2, where data owners want to improve
the performance of AI in a specific use case by collaborating with some external partners.

29

3 Time Series Generation

For example, they want to find a better performing ML model for some medical data or
a model that correctly predicts the state of a machine. In these cases, it will be enough
to give the external partner some synthetic data with the same reactivity to any ML
model. Thus, it will not reveal rare diseases that can be easily detected in the original
dataset or some sensitive information about the machine parameters or its properties
e.g., times when the machines were on/off. . . To this end, the data owner can use a
privacy-preserving version of GAN to generate new anonymous data and can share it
with the external partner who will not have access to the original ones.

One can assume that the samples generated by GAN differ from the original ones
and don’t contain their sensitive information. However, there is no guarantee that the
Generator by repeatedly sampling from pgt will not reproduce the training dataset or
generate time series containing sensitive information. We will extend the existing gen-
erative models for time series to eradicate privacy concerns. Concretely, we will extend
the GAN algorithms for times series namely -TimeGAN [20], ClaRe-GAN [28], and C-
RNN-GAN [9]- with a DP component to pull out the strengtheners and weaknesses of
each method. Our approach relies on changing their Discriminators with a private Dis-
criminator that uses DPSGD [61] and on tracking the spent privacy loss using the RDP
accounting technique. We evaluate the results visually and computationally and assess
the usefulness and the privacy of the data generated by the differentially private models.

We modify the architecture of the previously described generative models, in the fol-
lowing called DP-TimeGAN, DP-C-RNN-GAN and DP-ClaRe-GAN, to generate time
series in a privacy-preserving manner. This is achieved by changing their original Dis-
criminators with a private Discriminator equipped with a DPSGD [61]. Two techniques
are used to achieve privacy namely clipping gradient and adding random noise. During
the training procedure, the per-example gradients of the Discriminator loss are computed
for the real and generated data. Afterward, both values are clipped to the minimum
value between their L2-norm and a clipping value C. The clipped gradients are summed
up and Gaussian noise N(0, σ2C2) is added where σ is noise multiplier. Based on the
post-processing theorem [59], we guarantee that the use of the private Discriminator
in any generative model makes the Generator and all other architecture’s components
(encoders, etc.) private. The spent privacy loss is computed using the RDP accounting
technique [72] as it enables a tighter privacy estimation than the moment accountant
technique and easy computation of the privacy budget curve for a composite mechanism.

3.3 Experiments

3.3.1 Datasets Description

We evaluate the performance of our approaches on a collection of publicly available
datasets from the UEA & UCR Time Series Classification Repository [68, 73] with time
series of different properties namely ItalyPowerDemand, TwoLeadECG [74], Yoga, Dis-
talPhalanxTW [75] and FreezerRegularTrain. The datasets used in our experiments vary
in the length of the real time series ranging from 24 to 425, the number of classes present
in the real dataset ranging from 2 to 6, the number of time series per dataset, the number

30

3.3 Experiments

of time series per class: balanced and imbalanced datasets, and the characteristics of the
times series such as the class properties or the level of noise. Table 3.1 summarizes the
characteristics of the used datasets.

Table 3.1: Summary of the characteristics of the used datasets. The datasets are publicly
available in the UEA & UCR Time Series Classification Repository [68] and differ
in the length of the time series the number of classes and the ratio of data per class.

Dataset Length
Number of Ratio of data

Size
classes available per class

ItalyPowerDemand 24 2 50%-50% 1096

TwoLeadECG 82 2 50%-50% 1192

FreezerRegularTrain 301 2 50%-50% 2878

Yoga 425 2 50%-50% 3300

DistalPhalanxTW 80 6
34,18%-34,18%
-3,48%-5,76%

-16,08%- 6,32 % 539

3.3.2 Experimental Setup

The experiments for the ClaRe-GAN algorithm are conducted on t2.large AWS EC2
instances with 8 GiB of system memory and 2 vCPUs. We compare our method to the
state-of-the-art generative models for time series data namely TimeGAN [20], RCGAN
[11], and C-RNN-GAN [9]. For an equitable comparison between the algorithms, we use
the same type and number of layers for the recurrent Generators and Discriminators:
2-layer LSTM with 100 hidden units. For ClaRe-GAN, after a rigorous investigation and
hyper-parameter tuning, we used 3 scales for the Discriminator, λGAN = 1, λc

adv = 1,
λc = 0.01 and λms = 1e−5.

To enable a fair comparison between the different frameworks, we use as part of our
evaluation the evaluation methods proposed in [20] when introducing TimeGAN. It is
to be noted that TimeGAN was also compared to the previous existing frameworks
namely RCGAN and C-RNN-GAN. We perform a computational and visual evaluation
by computing the PS and DS and by visualizing the synthetic and real samples:

� Visual Evaluation: We use the evaluation techniques presented by Yoon et al. in
[20] and described in section 2.1.4 to compare the distribution of the real and
generated samples. However, we will show in the following that the evaluation of
time series similarity in a reduced dimension space alone is not sufficient to ensure
high-quality time series. To convince the reader about the generated time series,
we opt for an additional visualization method where we plot all the real time series
and the generated time series side-by-side to enable a direct comparison.

31

3 Time Series Generation

� Computational Evaluation: The computational evaluation is achieved by comput-
ing the DS and PS [20] described in section 2.1.4.

Later, we evaluate the performance of the designed differentially private frameworks
visually and computationally. We test the developed differentially private GAN on all
the previously described datasets. Their performances are compared to the existing dif-
ferentially private GAN model for time series data of RCGAN. To guarantee a fair com-
parison between all the frameworks, we use the same architecture for their Generators
and Discriminators a 2-layers LSTM with 100 hidden units and the same number of it-
erations, i.e., 100. In contrast to the differentially private RCGAN and DP-ClaRe-GAN,
the labels are not generated with the data for DP-TimeGAN and DP-C-RNN-GAN. We
label the data generated by these frameworks manually by finding the nearest real time
series. In all the experiments, we use C = 0.3, σ = 0.3 and δ = 10−3. For each dataset,
we compute the spent privacy ϵ and assess the utility of the generated time series. As
performed while introducing differentially private RCGAN, the unique differentially pri-
vate GAN model for time series, we perform the computational evaluation and assess
the utility of the datasets by computing the test accuracy of TSTR and TRTS [11]. In
both cases, the ML model is used to classify the time series of the datasets. For each
framework, we take the iterations with the best performance (best TSTR and TRTS
values). This is achieved by computing the TSTR and TRTS accuracy values for 100
time series generated by each framework. As ML model we use Random Forest [76]. In
this set of generated time series all the classes of the original dataset are represented with
the same number of time series. Our main goal is to find the best performing method,
i.e., the method that finds the right balance between privacy and utility of the generated
time series.

3.3.3 Results

We compare ClaRe-GAN to the state-of-the-art generative models for time series. The
results of the PCA and t-SNE analysis are illustrated in Fig. 3.3 and Fig. 3.4 respec-
tively. We clearly see that C-RNN-GAN shows a limited performance in terms of sample
diversity. A better performance was noticed for RCGAN with the ItalyPowerDemand,
TwoLeadECG, and Yoga datasets. However, the distribution of the samples generated
by RCGAN differs from the distribution of the real samples. Furthermore, the samples
generated by TimeGAN are not as diverse as the real dataset for the TwoLeadECG
dataset and TimeGAN fails in capturing the distribution of the real samples for the
other datasets. The PCA and t-SNE plots show that there is a significant improvement
in the diversity of the samples generated by ClaRe-GAN in comparison with the other
methods. We clearly see that the distribution of the samples generated by ClaRe-GAN
is the closest to the distribution of the real samples and that the performance of ClaRe-
GAN scales well with the number of classes and the ratio of data available per class
(DistalPhalanxTW dataset) and the length of the time series (Yoga and FreezerRegu-
larTrain datasets). ClaRe-GAN was able to capture the distribution of the real data
independently from the dataset and its properties.

32

3.3 Experiments

To allow a direct comparison of the time series, we visualize the real and generated
time series by each model. The results for the DistalPhalanxTW, Yoga, TwoLeadECG,
FreezerRegularTrain, and ItalyPowerDemand datasets are depicted in Fig. 3.5, Fig. 3.6,
Fig. 3.7, Fig. A.1, Fig. A.2, Fig. A.3 and Fig. A.4. We clearly see that visualizing both
datasets in a reduced 2-dimensional space is not enough. In fact, Fig. 3.7 shows that the
time series generated by RCGAN are noisy and the main class properties are ignored
during the generation process. Moreover, according to Fig. 3.3, TimeGAN is showing
a good performance and the difference between the distribution of the generated and
the real samples is not as important as for RCGAN. However, we see in Fig. 3.5 that
the time series generated by TimeGAN don’t reflect the properties of the real dataset
and are smoother than the real ones. In contrast to that, ClaRe-GAN captures properly
the properties of the real dataset and its class characteristics. While the state-of-the-art
methods presented a poor or limited performance, our method was able to learn the
inter- and intra-class variations of the original dataset and to reflect these properties in
the generated dataset.
The fidelity and usefulness of the generated time series are assessed with DS and

PS respectively. The obtained results are summarized in Tables 3.2 and 3.3. They
show that the fidelity and usefulness of the time series synthesized by C-RNN-GAN are
limited, except for the FreezerRegularTrain where the PS was equal to 0.106. It is to
be noted that the time series generated for this dataset are not realistic at all. Better
performance is noticed for RCGAN and TimeGAN. For all the datasets, except for
FreezerRegularTrain, and independently from their characteristics, ClaRe-GAN achieves
the lowest PS and DS which proves that the time series generated by this framework are
of high-fidelity and are as useful as the real time series. For example, a great improvement
was noticed in terms of DS (half of the best DS achieved by the other methods) for the
Yoga dataset. Moreover, for the DistalPhalanxTW dataset, an imbalanced dataset with
6 classes, the ClaRe-GAN’s PS is equal to 0,13. While achieving the best DS for the
FreezerRegularTrain, the PS of ClaRe-GAN is still high compared to the other methods.
In this case, it is important to say that the time series generated by the other methods
are not realistic. It is to be noted that ClaRe-GAN is also the most efficient in terms of
computation.
Last but not least, we evaluate the differentially private generative methods presented

in section 3.2. Fig. 3.8 illustrates the test accuracies values of TRTS and TSTR for
the different datasets and different frameworks. The figures show that the best privacy
values are achieved by C-RNN-GAN. At the same time, its TSTR and TRTS accura-
cies are really low. For all the datasets, ClaRe-GAN presents better privacy and TRTS
TSTR values than the existing DP algorithm of RCGAN. It is to be noted that ClaRe-
GAN and RCGAN generate labeled data. Especially, we noticed a great improvement in
terms of privacy for ItalyPowerDemand TwoLeadECG and DistalPhalanxTW datasets.
TimeGAN is characterized by high TRTS and TSTR values for higher - but still rea-
sonable - privacy values, by way of example 0.8 and 0.74 for TwoLeadECG dataset.
Moreover, it achieves better privacy values for DistalPhalanxTW and ItalyPowerDe-
mand. We have also noticed that the TSTR and TRTS values of RCGAN are around
0.5 which shows a limited utility of the generated data.

33

3 Time Series Generation

Figure 3.3: Comparison of the real (in green) and generated (in orange) data with PCA. Each
row presents the results of a specific dataset (from top to bottom): ItalyPowerDe-
mand, TwoLeadECG, Yoga, DistalPhalanxTW, and FreezerRegularTrain. A good
performing GAN should be able to capture the distribution of the real dataset, i.e.,
we expect a strong similarity between the distribution of the real and the generated
data in this 2-dimensional space.

34

3.3 Experiments

Figure 3.4: Comparison of the real (in green) and generated (in orange) data with t-SNE. Each
row presents the results of a specific dataset (from top to bottom): ItalyPowerDe-
mand, TwoLeadECG, Yoga, DistalPhalanxTW, and FreezerRegularTrain. A good
performing GAN should be able to capture the distribution of the real dataset, i.e.,
we expect a strong similarity between the distribution of the real and the generated
data in this 2-dimensional space.

35

3 Time Series Generation

Figure 3.5: Illustration of the real and generated time series by the different frameworks for
the DistalPhalanxTW dataset with 6 classes. The time series are depicted in black.
An example is highlighted in each subplot in red. ClaRE-GAN was the unique
algorithm that generated time series with a plateau for the last 30 timestamps. This
class, originally appearing in the real data, was ignored by the other frameworks.

Table 3.2: DS computed on the time series generated by the different frameworks (ClaRe-GAN
TimeGAN, RCGAN, and C-RNN-GAN) for the different datasets namely TwoLead-
ECG, Yoga, and DistalPhalanxTW. A lower DS denotes a high-fidelity to the real
datasets.

Dataset ClaRe-GAN TimeGAN RCGAN C-RNN-GAN

ItalyPowerDemand 0.221 0.4911 0.354 0.4997

TwoLeadECG 0.224 0.3985 0.2633 0.4498

Yoga 0.08 0.2 0.17 0.4998

DistalPhalanxTW 0.4273 0.496 0.447 0.4981

FreezerRegularTrain 0.39 0.41 0.47 0.45

36

3.3 Experiments

Table 3.3: PS computed on the time series generated by the different frameworks (ClaRe-GAN
TimeGAN, RCGAN, and C-RNN-GAN) for the different datasets namely TwoLead-
ECG, Yoga and DistalPhalanxTW. A lower PS denotes better usefulness of the
generated time series.

Dataset ClaRe-GAN TimeGAN RCGAN C-RNN-GAN

ItalyPowerDemand 0.1 0.112 0.1 0.304

TwoLeadECG 0.117 0.1246 0.127 0.5965

Yoga 0.156 0.157 0.16 0.5349

DistalPhalanxTW 0.1349 0.1749 0.2164 0.4784

FreezerRegularTrain 0.48 0.448 0.05 0.106

Figure 3.6: Illustration of the classes generated by ClaRe-GAN, the classes of the real dataset,
and the classes generated by RCGAN for the DistalPhalanxTW dataset.

37

3 Time Series Generation

Figure 3.7: Illustration of the real and generated time series by ClaRe-GAN, RCGAN, C-RNN-
GAN, and TimeGAN for the Yoga dataset. The time series are depicted in black.
The red line presents an example time series for each subplot.

Fig. 3.9 illustrates the time series generated for the TwoLeadECG dataset. TimeGAN
and RCGAN generate noisy time series similar to the real dataset. The time series gen-
erated by ClaRe-GAN differ from the real ones and are more private. This corresponds
to the privacy values presented in Fig. 3.8, i.e., for the TwoLeadECG dataset Clare-GAN
ϵ = 147.2 compared to ϵ = 287.57 and ϵ = 442.15 for TimeGAN and RCGAN. C-RNN-
GAN generates noise. This explains why C-RNN-GAN achieves the best ϵ values in
Fig. 3.8.
In this chapter, we considered the problem of generating time series with and without

privacy boundaries. In this context, ClaRe-GAN a novel generative model for time series
datasets stemming from different classes is introduced. After that, the state-of-the-art
generative models are combined with DP to ensure a private time series generation.
In the next chapter, we will focus on another but similar problem namely time series
translation, a method that improves the diversity of a dataset by exploring new and
non-existing conditions.

38

3.3 Experiments

� ��� ��� ��� ��� ��� ��� 	��
��
�$�(��+

���

���

���

��

���

�
��

'$
��

+

� ��� ��� ��� ��� ��� ��� 	��
��
�$�(��+

�)#�������
�&� +�#)�$�!�"�

�#��
�$��,�$���' �$�$��"

�%&� ��� �"*��
��� �������

�����
�����������

����!����

Figure 3.8: Test accuracy values of TSTR and TRTS methods for the differentially private
generative models and the different datasets depicted in the left and right sub-
figure respectively. While a higher accuracy value denotes better usefulness of the
generated data, a lower ϵ value denotesa better privacy.

39

3 Time Series Generation

� �� �� �� �� 	�
� �� ��
��������

��

��

�

�

��
��
��

����

� �� �� �� �� 	�
� �� ��
��������

��

��

��

�

�

����

� �� �� �� �� 	�
� �� ��
��������

��

��

��

�

�

��
��
��

���������

� �� �� �� �� 	�
� �� ��
��������

�	

�

	

��

��
��
��

����������

� �� �� �� �� 	�
� �� ��
��������

���

���

�

�����������

Figure 3.9: Illustration of the real times and the time series generated by the different differen-
tially private models, i.e., DP-TimeGAN, RCGAN, DP-ClaRe-GAN, DP-C-RNN-
GAN for the TwoLeadECG dataset.

40

CHAPTER

4

TIME SERIES TRANSLATION

In the last few years, huge progress has been made to enable image-to-image translation,
i.e., to map the components of images from a source visual domain to a target domain.
In this chapter, we exploit the recent improvements made in this field to tackle another
issue, namely time series translation. Our main purpose is to find suitable techniques to
map time series from one domain to another one e.g., to map different machine behaviors
to different operating environments.

Two rooms are equipped with two different ventilation systems from different manu-
facturers. Each ventilation system starts cooling whenever the room temperature raises
above a temperature threshold tmax and stops when the temperature drops below a min-
imal temperature tmin. The first room is small and consequently cools down and warms
up faster. Hence, the corresponding ventilation system is frequently turned on and off.
The second room is bigger. In this case, the ventilation system needs more time to cool
down and the room’s temperature will not warm up rapidly. The ventilation system
of this room will represent slower on/off cycles. The performance of these ventilation
systems is only comparable if they are running in the same environment and under the
same conditions.

Now assume that we want to use time series data from normal operations to build a
condition monitoring system. A straightforward approach is to build individual moni-
toring systems for each specific machine and environment. However, it is often desirable
to build only one generalized condition monitoring system that can be applied to any
machine in any environment. This approach often leads to better model quality because
the model can be based on larger amounts of data from different machines and different
operating conditions; and it avoids the effort to manage many individualized models
(deployment, maintenance, etc.). However, for building such generalized models, it is

41

4 Time Series Translation

necessary to translate time series data between different machines and different environ-
ments. For this purpose, we propose a new method called DR-TiST [16, 17], a modified
version of DRIT [15], and compare its performance with CycleGAN-VC.

The performance of DR-TiST is tested on different use case scenarios namely translat-
ing ventilation systems, human activities, and DC motors. First, we consider a real-world
use case where we transfer the time series behavior of a ventilation system to the en-
vironmental conditions of a different ventilation system and introduce new evaluation
metrics to evaluate its performance. After that, we focus on transforming sensor data
depicting different human activities. Finally, we consider the problem of translating time
series of one controlled DC motor to imitate time series from another motor. Our main
goal is to test different controllers and find the best performing controller for a motor
operating in the field without knowing its mathematical model. By means of DR-TiST,
we split the time series of each control system into two representation vectors: a first
vector depicting the motor characteristics and its operating mode and a second vector
describing the controller effect. We test our method on a scenario where we simulate the
behavior of two different controlled DC motors. We map the behavior of a controller
of a lab motor to a field motor. For all scenarios, the performance of DR-TiST is com-
pared to CycleGAN-VC [18], a special form of an image-to-image translation algorithm
used for voice conversion presented in section 2. We demonstrate that the time series
generated by DR-TiST are more realistic than the ones generated by CycleGAN-VC.

In spite of the broad adoption of AI, its impact and evolution are still limited due to the
constantly increasing privacy matters. In many domains, such as medical or industrial
domains, the AI’s potential is still restricted due to privacy concerns making for example
external collaborations binding. To allow data sharing without confidentiality concerns,
we extend the existing time series translation methods that map time series from a source
to a target domain with DP. To this end, we propose DP-DR-TiST and DP-CycleGAN-
VC the differentially private versions of DR-TiST and CycleGAN-VC. We assess the
performance of these algorithms against two essential criteria, i.e., privacy and utility.
In this context, we prove that the translated time series are private and useful. The
experiments are conducted on the previously described three translation use cases. The
obtained results show that DP-DR-TiST outperforms DP-CycleGAN-VC in finding the
right trade-off between sample privacy and sample utility.

4.1 DR-TiST: new Algorithm for Time Series Translation

DR-TiST achieves time series translation thanks to the disentangled representation pro-
posed by DRIT. Each time series is divided into a functional behavior highlighting the
properties of the time series and a context describing the environmental setup. For ex-
ample, a time series depicting the behavior of an engine over time can be divided into a
functional behavior depicting its behavior in the on/off states and its operating mode,
i.e., times at which it is off or on. Based on the extracted functional behavior and oper-
ating mode, it is possible to translate the functional behavior of this time series to other
operating modes or to simulate the behavior of other engines in its operating mode.

42

4.1 DR-TiST: new Algorithm for Time Series Translation

Figure 4.1: Illustration of the gated CNN structure. The output of the layer H(X) for an
input X is computed by multiplying element-wise X · V + c and σ (X ·W + b)
where X · V + c and X ·W + b are the resulting vectors of the convolution on the
input X and the sigmoid function is applied on X ·W + b.

For two machines M1 and M2, DR-TiST achieves representation disentanglement
using functional behavior encoders {EF

M1
, EF

M2
} context encoders {EC

M1
, EC

M2
} Gener-

ators {GM1 , GM2} Discriminators {DM1 , DM2} and an adversarial Discriminator Dadv.
Based on weight-sharing and the adversarial Discriminator Dadv, each time series will
be mapped to a common latent space C depicting the functional behaviors and environ-
mental setup spaces AM1 AM2 . Intuitively, we assume that both machines have different
parameters and differ in their environmental setup and hence show different behaviors
but share some common physical properties that must be recognized by the algorithm.

Disentanglement and encoding are achieved based on two main techniques: weight-
sharing and the machine characteristic Discriminator Dadv . To guarantee that EF

M1
and

EF
M2

are mapped to the same latent space, in DR-TiST [16], the weight of the last layers of
both encoders are shared. At the same time, it is essential to properly encode the engine-
specific characteristics of M1 and M2 and hence the encoded machine representations
must be different. This is achieved by means of the additional Discriminator Dadv

which discriminates between the machine representations, while EF
M1

and EF
M2

aim to
learn representations that are hard to discriminate. The adversarial loss can be hence

43

4 Time Series Translation

computed as follows:

Ladv(E
F
M1

, EF
M2

, Dadv) =

EF

[
1

2
log (DF1) +

1

2
log (1−DF1)

]
+ EF

[
1

2
log (DF2) +

1

2
log (1−DF2)

]
, (4.1)

where DF1 = Dadv(E
F
M1

(f1)) and DF2 = Dadv(E
F
M2

(f2)) and f1 and f2 are time series of
M1 and M2 respectively.

The encoders, Generators, and Discriminators of DRIT were originally designed with
a two-dimensional CNN in order to process images. This neural network structure is
not suitable for time series data due to its sequential structure. To adapt DRIT to
time series data we make two major modifications: apply the gated CNN structure and
replace the two-dimensional CNN with the one-dimensional CNN that takes the temporal
relationship between the data points into consideration. Gated temporal convolutions
were originally introduced by Dauphin et al. [77] and achieved state-of-the-art results in
language- and speech modeling. In contrast to recurrent networks where the output of
a layer is computed with the recurrent function hi = v (hi−1, wi−1), gated CNN can be
employed in a parallel manner. This allows for faster computation. Gated CNN utilizes
a Gated Linear Units (GLUs) as an activation function. The output of a layer l + 1,
Hl+1, is computed based on the output of the layer Hl and the model parameters W ,
V , b, and c as follows:

Hl+1 = (Hl ·W + b)⊗ σ (Hl · V + c) , (4.2)

where ⊗ is the element-wise product and σ is the sigmoid function. Fig. 4.1 shows the
gated CNN structure.

The gated structure is tested on the different components of DRIT. Tests show that the
best results are obtained when it is only applied to the Generator. Thus, the proposed
DR-TiST structure applies gated CNN on the residual blocks of the Generator. As the
last modification, we integrated instance normalization [78], a well-known method for
improving the quality of images during the generation process, and replace the decon-
volution blocks used in the Generator with a pixel shuffler [79]. The resulting residual
blocks used in DR-TiST are illustrated in Fig. 4.2 and the full Generator’s architecture
is depicted in Fig. 4.3. The Discriminators and the encoders remain unchanged.

4.2 DP*: Privacy-preserving Approaches

In the last few years, the world was witnessing a rapid evolution in the field of AI
and its application domains ranging from banking to industrial applications. Indeed, a
crucial and urgent need for robust and efficient ML models that are widely applicable,
is observed. The recent success in ML and DL is strongly related to the amount of

44

4.2 DP*: Privacy-preserving Approaches

Figure 4.2: Illustration of the residual block used in the Generator of DR-TiST. Conv denotes
a convolution, instance norm denotes instance normalization and GLU denotes the
activation function.

Figure 4.3: Illustration of the Generator’s architecture used in DR-TiST.

45

4 Time Series Translation

publicly available data e.g., Imagenet, CIFAR. . . At the same time, the growing pri-
vacy considerations are limiting the applicability of ML. This pushed us to investigate
privacy-preserving translation approaches to obtain more data for an existing dataset
and simultaneously guarantee privacy. In the following, we describe two situations from
the healthcare domain (illustrated in Fig. 4.4) and industrial domain (illustrated in
Fig. 4.5) where such methods are of paramount importance.
By way of example, a data owner of individual-level data such as medical data wants to

cooperate with an external partner on developing efficient ML algorithms that efficiently
detect some illnesses. To protect the privacy of the persons that participated in the
study and to generate more data for each class, it is essential to use privacy-preserving
AI techniques. The newly generated data can be safely shared with external partners.
A machine manufacturer owns n machines with different mechanical characteristics

that are placed in different environments and hence presenting different environmental
behaviors. The manufacturer wants to cooperate with external partners on developing
robust AI algorithms that can be applied to the different machines independently from
their operating environments and their mechanical characteristics. To this end, a dataset
depicting the behavior of many machines in different environments is needed and crucial
in assessing the robustness of the developed AI methods. Such a dataset can be obtained
using time series translation techniques. Starting from a collection of data depicting the
behavior of each machine in one environment, it is possible to simulate the behavior of the
different machines in all the operating environments. However, each recorded time series
from the original dataset contains some sensitive information that should not be shared
with the external partners such as how often the machine was turned on and off. Thus,
privacy issues prevent the machine manufacturer from sharing the obtained data. To
deal with this problem, it is essential to encode for each machine its functional behavior
in terms of its mechanical properties and its environmental setup without exposing the
sensitive information of each recorded time series. By way of example, we consider
an algorithm meant to perform the translation between two machines machine 1 and
2. It should learn that machine 1 was frequently turned on/off whereas machine 2 is
characterized by slower on/off cycles without memorizing the exact times at which the
machines were turned on/off in each recorded time series.
In this part, we propose an extended version of the time series translation algorithms

to transform time series between different environments with privacy guarantees. In
general, such approaches will encourage data holder to publish their data and hence
provide interesting complex real-world use cases for the research community. At the
same time, it will permit them to find new collaboration opportunities and work safely
with external partners on improving the use of AI in their application domains. In fact,
the new data still depict the general pattern of the real data and have the same reactivity
to the ML model. However, they do not expose sensitive information contained in the
initially recorded time series such as rare diseases, machine parameters or times when
the machines were on/off. . .
In the following, we call DP-DR-TiST and DP-CycleGAN-VC the extended version of

DR-TiST and CycleGAN-VC that achieve time series translation in a privacy-preserving
manner. The algorithms perform time series translation by learning the functional be-

46

4.2 DP*: Privacy-preserving Approaches

Figure 4.4: Illustration of the private Human Activities Dataset Use Case: A data owner hold-
ing individual-level sensor measurements of human activities can use the privacy
preserving translation techniques proposed in this work, DP-DR-TiST and DP-
CycleGAN-VC, to create a new differentially private dataset where each activity is
mapped to all the persons and anonymized. This generated dataset can be freely
shared and can hence be used for external collaborations.

havior and the operating mode of two machines without violating their privacy. In
general, the data recorded from both machines may contain some sensitive information
related to the machine’s characteristics or to its environment. This information should
not be shared between both domains, i.e., source and target domain, and should not
be considered during the translation task. By way of example, to preserve privacy, it is
essential to learn the general functional behavior of a machine instead of learning the
time series specific features that are related to special and private conditions and that
may be revealed during the recording process.

To guarantee privacy, the architecture of DR-TiST and DP-CycleGAN-VC is modified
and both methods are equipped with a private Discriminator that relies on DPSGD. The
private Discriminator is based on two main techniques: clipping gradient and adding
random noise. During the training, the per-example gradients of the Discriminator
loss is computed for the real and synthetic data separately. The gradients are later
clipped to the minimal value between their L2-norm and a clipping value C and summed
up. Finally, Gaussian noise N(0, σ2C2) is added to the values, where σ is a noise
multiplier. As stated in the post-processing theorem [59], defined in section 2.3, the
private Discriminator makes any generative model, independently from its architecture

47

4 Time Series Translation

Figure 4.5: Illustration of the private Ventilation Systems Dataset Use Case: A Machine man-
ufacturer holding n machines placed in n different environments can use the pri-
vacy preserving translation techniques proposed in this work, DP-DR-TiST and
DP-CycleGAN-VC, to create a new differentially private dataset depicting the be-
havior of each machine in all the environments. This generated dataset can be
freely shared and can hence be used for external collaborations.

complexity, private. To track the privacy loss, we use the RDP accounting technique [72].
This method enables more precise estimation of the privacy loss than MA and guarantees
at the same time an easy calculation of the privacy loss for composite mechanisms.

4.3 Experiments

In the following, we consider three different datasets to test the performance of DR-TiST
and CycleGAN-VC and their DP variants.

4.3.1 Datasets Description

Ventilation Systems Dataset In this use case, we are taking into consideration two ven-
tilation systems, system 1 and system 2, placed in two different rooms which constitute
the environmental setup. The first room, room A, is huge and has a cold environment
contrary to the second one, room B, which is warmer and smaller. The variation of the
temperature is different from one room to another. In fact, due to the size of room A,
its temperature takes time to rise and fall. Hence, its ventilation system will not be

48

4.3 Experiments

frequently switching on and off. This leads to slow on/off cycles, i.e., times at which the
machine switches its operating mode. On the other hand, in room B, the on/off cycles
are changing faster because the temperature rises and falls quickly. Generally, condi-
tion monitoring systems are designed for individual ventilation systems and operating
conditions leading to a very specific solution for exactly one setup. When AI-based con-
dition monitoring systems are designed using only the available data of both machines in
their particular environment, very single models will arise. There is a strong interest to
design condition monitoring systems, that generalize, and hence can be applied to any
machine in any environment. In reality, the amount of data is hard to collect, and it is
only feasible if they are available. We work around this problem by generating a more
heterogeneous training data set, consisting of “mixed” time series data, where system 1
controls room B and system 2 room A, which are non-realistic conditions.
To the best of our knowledge, this is the first study with the goal of aligning time

series. Thus, the evaluation of DR-TiST on a real sensor dataset where the behavior
may be unexpected will be complicated. To be able to exactly evaluate the performance
of DR-TiST, we design a synthetic dataset where the success or failure of translating
the behavior of one system into the operating mode of another system is obvious and
quantifiable. To this end, we simulate the behavior of two different engines of two
different ventilation systems, engine 1 and engine 2. The engines are turned on and off
in different time slots and are operating differently, i.e., engine 1 is frequently turned on
and off while engine 2 shows a more stable behavior.
Following discussions with domain experts, we decided to model the machines’ behav-

ior using the standard exponential behavior. Hence, the machine’s behavior in the on
and off states is computed as follows:

yon(t) = MRS ·
(
1− exp

(
− t− τ1

τ

))
+ n, (4.3)

yoff (t) = exp

(
− t− τ0

τ

)
+ n, (4.4)

where τ and MRS characterize the engines and n ∼ N (0, 0.01) is Gaussian noise.
Engine 1, driving the ventilation system in room A, is running with a low Maximal

Rotational Speed (MRS) equal to 1. Whereas a more efficient engine 2 is placed in
the hotter environment, room B. Its MRS is equal to 1.5. Moreover, we assume that
engine 1 is older and therefore slower in reaching the MRS value or the minimal value
when it is started or stopped. Thus, it has a larger value of τ = 5, compared to the
newer engine 2 with a value of τ = 2. Table 4.1 summarizes the characteristics of engine
1 and 2 used in our experiments. The initially collected data depict the properties of
engine 1 and 2 in the conditions of room A, i.e., slow on/off cycles, and room B, i.e., fast
on/off cycles respectively. We consider the task of generating the functional behavior
of engine 1, characterized by MRS = 1 and τ = 5, in the operating mode of engine 2
characterized by fast on/off cycles and vice versa. Fig. 4.7 illustrates the expected time
series translation scheme and Fig. 4.6 describes the transformation process.
In our experiments, we evaluate the performance of DR-TiST with three different

methods: visual inspection and two additional metrics that rely on ground truth data.

49

4 Time Series Translation

Figure 4.6: Use Case Scenario Ventilation Systems Dataset: given the real-world conditions
we use DR-TiST to translate the behavior of ventilation system 1 to room B and
ventilation system 2 to room A.

Engine 1 Engine 2

MRS[Hz] 1 1.5

τ [min] 5 2

Table 4.1: Characteristics of machine 1 and machine 2 of ventilation system 1 and 2 in the on
and off states.

µ1 µ2

Test 1 20 20

Test 2 30 40

Test 3 35 45

Test 4 40 50

Table 4.2: Mean of the Bernoulli distribution of the on/off times in the different experiments.

50

4.3 Experiments

� Visual inspection: The evaluation of image-to-image translation techniques is still
an open research problem. Current evaluation methods involve humans and rely on
a visual inspection to assess the quality of the generated data [25]. Various works
[53, 80, 81] rely on user studies to evaluate the realism of the generated images.
Inspired by previous works, as an initial check, we perform a visual investigation
to assess how realistic a time series appears to a domain expert, and we visually
inspect the quality of the translated time series. Beyond visual inspection, we
evaluate the performance of DR-TiST with two additional methods that assess the
quality of the generated time series by comparing them to ground truth data.

� Error in on/off time prediction: Our main goal is to simulate the behavior of a first
machine with the on/off times of a second machine, i.e., we want to transfer the
behavior of a machine to the time domain of a second one. During the simulation
of the behavior of each engine, we save its on/off times. This will correspond to the
expected on/off time for the other engine. The expected behavior for each machine
Y is then computed based on its expected on/off times and on the equations 4.3
and 4.4. The Root Mean Square Error (RMSE) between Y and the time series
generated by DR-TiST, namely Ŷ can be calculated as follows:

RMSE =

√√√√ 1

N
·

N∑
i=1

(
Yi − Ŷi

)2
, (4.5)

where N denotes the number of data points per time series.

Moreover, we compute the mean of the point-wise difference between the expected
and obtained time series Y and Ŷ :

D =

∑N
i=1 | Yi − Ŷi |∑N

i=1 | Yi |
. (4.6)

Human Activities Dataset As a second use case, we considered the task of generating
sensor measurements depicting a specific human activity. Based on public motion sensor
data [82] describing different activities, the main goal would be to map measurements
describing a specific activity to another target activity. The data were collected using
a smartphone placed on the waist and from a group of 30 persons such that their ages
were ranging from 19 to 48 years. We focus in our experiments on transforming the
acceleration measurements in the x-direction consisting of time series with 128 data
points. More precisely, we consider the task of transforming three human activities
namely walking, sitting, and laying. We focus on their three possible combinations:

� Test 5: starting from sensor measurements depicting the activity laying we generate
time series depicting the activity walking and vice versa

� Test 6: starting from sensor measurements depicting the activity sitting we gener-
ate time series depicting the activity walking and vice versa.

51

4 Time Series Translation

F
ig
u
re

4
.7
:
T
im

e
series

tran
slatio

n
:
T
h
e
p
ro
p
o
sed

a
lg
o
rith

m
d
iv
id
es

a
g
iven

tim
e
series

in
to

o
p
eratin

g
m
o
d
e
an

d
fu
n
ction

al
b
eh
av
ior.

T
h
is
learn

ed
rep

resen
tatio

n
a
llow

s
to

m
a
p
th
e
fu
n
ctio

n
a
l
b
eh
av

io
r
o
f
en
g
in
e
1
in
to

th
e
op

eratin
g
m
o
d
e
of

en
gin

e
2
an

d
v
ice

versa
an

d
h
en
ce

h
elp

s
to

sim
u
la
te

th
e
b
eh
av
io
r
o
f
d
iff
eren

t
en
g
in
es

in
d
iff
eren

t
en
v
iro

n
m
en
tal

setu
p
s.

52

4.3 Experiments

� Test 7: starting from sensor measurements depicting the activity laying we generate
time series depicting the activity sitting and vice versa.

The performance of DR-TiST and CycleGAN-VC is assessed by comparing the ob-
tained dataset, i.e., after the transformation with time series depicting the target activ-
ity. By way of example, for test 5, we compare the obtained data after transforming
the time series depicting the laying to walking to a bench of time series depicting the
walking activity. This is achieved by computing TRTS and TSTR. For the differentially
private frameworks, we want to ensure that the new generated time series are private
(by computing the privacy spent loss ϵ) and are still useful by comparing the generated
time series to real time series of these classes (by computing TSTR and TRTS).

DC Motors Dataset A system consisting of a DC motor operating in the field, called
field motor from here on, and its corresponding speed controller is given. The charac-
teristics of this motor and hence its mathematical model are unknown. We want to test
other controllers on this motor in order to find a better performing setup. Unfortunately,
performing tests on this motor will be money- and time-consuming and modeling the
motor is not possible as its mathematical model and parameters are unknown. At the
same time, another motor with other characteristics is available in the laboratory (in
the following referred to as the lab motor). Our main purpose is to find the optimal con-
troller for the already operating motor in the field by artificially simulating the impact
of different lab controllers on it.

To this end, we apply DR-TiST on time series recorded from both control systems
(lab and field systems) to simulate a new control system depicting the effect of the
lab controller on the field motor. Our method is equipped with a motor characteristic
encoder, used to encode the properties of the field motor, and a controller effect encoder,
which encodes the controller characteristics. This enables to split the time series of each
control system into motor characteristics and controller effects and to simulate a new
control system where the field motor is controlled by the lab controller.

Our scenario consists of DC motors with two different controllers operating in two
different environments, i.e., field and lab, containing a DC motor and a controller. While
we assume to have full control over the motor in the lab, allowing us to test any controller,
the field motor is not accessible. However, a set of measurements from the field motor
can be used as a basis to learn its characteristics. To do so, we will use the time series
depicting the behavior of both control systems and use DR-TiST [16], presented in
section 4.1, to disentangle the recorded time series into motor behavior and controller
effect. The learned representations are later used to generate sensor measurements of
the field motor when it is controlled by the lab controller: a configuration that was
impossible to test in real life.

Such techniques can be used to easily test the performance of different controllers
on numerous motors with different characteristics, without accessing or modeling the
considered motor. We hence provide the valuable condition in which motor type and
characteristics can be completely unknown.

53

4 Time Series Translation

DC motors are widely applied for different industrial purposes and are used to drive
many devices ranging from automotive to medical machines. This is in particular due
to the fact that the speed of a DC motor is easily controllable [83, 84]. This allows
a high motor performance and usability for a wide range of applications [85, 86, 87].
Recently, numerous approaches focused on combining ML and statistical methods with
Control Theory. By way of example, a Pythagorean fuzzy correlation-based approach has
been proposed in [88] and an event-triggered gradient tracking algorithm for distributed
optimization was presented in [89]. In addition to that, an approach that relies on fuzzy
coefficient of impulsive intensity [90] has been applied to nonlinear impulsive control
system. While some authors focused on the synchronization [91] and stability [92] of
memristive neural networks, others considered a model of hybrid impulsive and switching
Hopfield neural networks [93]. Inspired by them, we apply in this work a method that
was originally designed to translate time series between different application methods to
solve a control problem, i.e., find the optimal controller for a non-accessible motor [17].

Figure 4.8: Control equivalent circuit of an armature controlled DC motor.

Our use case consists of two speed control systems of DC motors. We use a mathe-
matical model of the DC motors [94] to simulate real-world conditions. A DC motor is
a rotary electrical motor that converts direct current electrical energy into mechanical
energy [95]. In our example, we will use separately excited motors. We consider a system
consisting of the electrical equivalent circuit of an armature controlled DC motor and
a rotor. A voltage source V is applied to the motor’s armature inducing a rotational
speed. The described system is depicted in Fig. 4.8.
The motor torque T and the back Electromotive Force (EMF) e can be computed

using:
T = Kti, (4.7)

e = Keθ̇, (4.8)

whereKt is the motor torque constant, i is the armature current, θ̇ is the angular velocity
(rad/s) and Ke is the electromotive force constant. In the rest of the thesis, we assume
that Ke = Kt = K.

54

4.3 Experiments

By applying the Newton’s and Kirchhoff’s Voltage Law (KVL) to the electrical circuit
we get

Jθ̈ + bθ̇ = Ki, (4.9)

V = R · I + L · di
dt

+ e, (4.10)

V −Kθ̇ = R · I + L · di
dt
, (4.11)

where J is rotor inertia (Kg.m2), b is viscous friction constant (0.1 · N.m.s), V is the
armature voltage (V), I is the armature current (A), R is the armature resistance (Ω),
L is the armature inductance in (H).

We now apply the Laplace transform to the derived equations

s (Js+ b) θ (s) = KI (s) , (4.12)

(Ls+R) I (s) = V (s)−Ksθ (s) . (4.13)

We assume that at t = 0, θ̇ = i = 0. The state-space model of the DC motor can be
computed with

d

dt

[
θ̇
i

]
=

− b

J

K

J

−K

L
−R

L

[
θ̇
i

]
+

 0

1

L

V, (4.14)

y =
[
1 0

] [θ̇
i

]
. (4.15)

The transfer function of the DC Motor can be expressed by

P (s) =
θ̇ (s)

V (s)
=

K

(Js+ b) (Ls+R) +K2
. (4.16)

In order to control the speed of this motor, the previously described system is related
to a controller.
As a next step, we consider the problem of controlling the speed of a nonlinear DC

motor [96, 97]. To this end, we consider in addition to the viscous friction, the Coulomb
friction:

Tc = Ca · sgn(θ̇), (4.17)

where Ca denotes the Coulomb friction coefficient. The Coulomb friction is added to
the Eq. 4.12 as follows:

Jθ̈ + bθ̇ + Ca · sgn(θ̇) = Ki. (4.18)

The structure of the speed control system for a DC motor is presented in Fig. 4.9.
Even though we do not know the mathematical model of the field motor and since it

is not accessible due to its current use, we still looking for a good controller. To this
end, we will use another accessible motor in the lab and a recorded dataset from the
field motor.
We consider two speed control systems:

55

4 Time Series Translation

Figure 4.9: Speed control of a DC motor: the controller is used to control the speed of the
DC motor by computing the difference error e between the desired speed r and the
current output y.

� Field system cannot be modified and is equipped with a field motor and controller
where the controller presents a sub-optimal set of parameters

� Lab system is equipped with a lab motor and a modifiable controller enabling us
to run different tests.

Our main goal is to find the optimal controller for the field motor by solely performing
real-world tests on the lab motor. Starting from real-world conditions, i.e., the running
field and lab system, we generate new data where we translate the impact of the lab
controller to the field motor, as illustrated in Fig. 4.10. This is achieved by disentangling
the recorded time series of both systems into motor behavior and controller effect. This
allows us to map the behavior of any motor to any controller and especially to simulate
the behavior of the field motor when it is controlled with the lab controller without
performing real tests on the field motor. We use DR-TiST to disentangle the effects of the
motor behavior and the effects of the controller in the time series. The used architecture,
illustrated in Fig. 4.10, presents two encoders a motor characteristic encoder that learns
the motor behavior and a controller effect encoder that learns the impact of the controller
on the considered system.

The encoded information is later used to generate new time series depicting the be-
havior of the field motor when it is controlled with the lab controller, by combining the
encoding of the field motor behavior with the lab controller effects. Hence, with DR-
TiST, it is possible to map a motor behavior to any controller stemming from another
system. It is then easy to test the reactivity of a motor to different speed controllers
with different characteristics. In order to test and thoroughly evaluate the feasibility
of the previously described scenario, we simulate the behavior of two different speed
control systems depicting real-world conditions in different situations. The DC motors
are simulated based on Eq. 4.14, Eq. 4.16, and Eq. 4.18 for the nonlinear motor, and the
used parameters of the considered lab and field motors are summarized in Table. 4.4.
The lab and field control systems, as illustrated in Fig. 4.9, consist of a controller and a
DC motor. For each system, we simulate 1000 multivariate time series with a duration of
200 seconds consisting of three different signals, namely the output of the system y, the
system state u and the reference signal r. The reference signal r is assumed to change
every 50 seconds from one stable state to another. The levels of the steady states are

56

4.3 Experiments

Table 4.3: Parameters of field and lab controllers.

Test Field controller Lab controller

8 (0.05, 0.01, 0.01);Ca = 0 (0.3522, 0.2317, 0.0798);Ca = 0

9 (0.05, 0.01, 0.01);Ca = 0 (0.2, 0.1, 0.05);Ca = 0

10 (0.05, 0.01, 0.01);Ca = 0.005 (0.3522, 0.2317, 0.0798);Ca = 0.005

11 (0.05, 0.01, 0.01);Ca = 0.005 (0.2, 0.1, 0.05);Ca = 0.005

selected randomly between 1 and 1.5. The error signal is computed as follows e = r− y.

Table 4.4: Physical properties of the field and lab motors.

Field motor Lab motor

J(kg.m2) 0.01 0.015

Tb(N.m.s) 0.00003 0.00003

K 0.023 0.01

R(Ω) 1 1

L(H) 0.5 0.5

We perform four different tests where we change the controller lab properties and
add a nonlinear behavior to the plant by considering the Coulomb friction. In all the
experiments, we use a PID-controller. The transfer function of the PID-controller is
computed as follows:

C(s) = Kp +
Ki

s
+Kds. (4.19)

The field motor is controlled with a same controller with Kp = 0.05, Ki = 0.01 and
Kd = 0.01. While a linear model is used for the DC motor in tests 8 and 9, DC motors of
tests 10 and 11 are characterized by a non-linear behavior. The lab controller parameters
of test 8 were obtained in [98] with the Ziegler-Nichols method and are hence supposed
to be the optimal parameters for the field motor. Table 4.3 summarizes the controller
parameters used in the different tests. To be able to evaluate the time series with DR-
TiST for a specific reference signal, we simulate time series ygt(t), where gt stands for
ground truth, showing the expected behavior, i.e., when the field motor is controlled
with the controller lab and compare it to the output y(t) generated by DR-TiST.

Our goal is to show that we can efficiently translate the behavior of a controlled DC
motor without performing tests on it. To this end, we compare a simulated expected be-
havior with the time series generated with DR-TiST by computing the following metrics
[99, 100]:

57

4 Time Series Translation

� Steady State Error ess, we compute the difference between the reference signal
r and the final achieved value of y(t).

� Rise Time tr, the time it takes for the y(t) to increase from 10% to 90% of its
final value.

� Overshoot can be calculated with the formula: (mval − fval) /fval × 100 where
mval denotes the maximal value and fval denotes the final value.

Using these metrics, it is possible to compare the expected controller effect to the effect
of the controller simulated by DR-TiST in terms of stability and efficiency. In the
evaluation, we compute the mean of tr and ess for 100 times series with a duration of
200 seconds and reference signal changing every 50 seconds and compare those metrics
for our generated and ground truth time series.

Figure 4.10: Use Case Scenario DC motors Dataset: given the real-world conditions we use
DR-TiST to translate the behavior of the field motor and the lab controller. Time
series depicting both control systems, i.e., field and lab systems are used.

4.3.2 Experimental Setup

Given initial data depicting the properties and the operating mode of engine 1 and
engine 2, our main goal is to make sure that DR-TiST is able to generate new data
that depict the behavior of engine 1 with the on/off cycles of engine 2 and vice versa.
To this end, we conduct four different tests where we change the distribution of the
on/off times for each engine. The mean of the Bernoulli distribution is varied for the
different tests. Table 4.2 illustrates the mean of the on/off times for the different tests
where µ1 and µ2 denote the mean of the Bernoulli distribution for the on/off times
of engine 1 and engine 2 respectively. For test 1, the same Bernoulli distribution is
used for engine 1 and engine 2, i.e., µ1 = µ2 = 20. In contrast to test 1, µ1 and µ2

are in the other tests different. The initial data are computed based on the equations

58

4.3 Experiments

4.3 and 4.4, the characteristics of the machines presented in Table 4.1, and the on/off
cycles sampled from the Bernoulli distribution. In the training phase, we use 1000 time
series for each engine with 508 data points. Additionally, in order to assess the impact
of the amount of data on the performance of the framework, we repeat test 2 with a
different number of data points per time series, namely 208 and 416. We evaluate the
performance of DR-TiST by generating 100 time series in the test phase. We expect that
DR-TiST is able to generate new time series of engine 1 in the time domain of engine 2
and vice versa. Finally, we compare the performance of DR-TiST to CycleGAN-VC, a
modified version of CycleGAN designed for voice conversion purposes. As CycleGAN-
VC is computationally expensive, we reduce the length of the data points per time series
to 208 and rerun tests 2 and 3.

For the activity dataset, we compute the TRTS and TSTR accuracies for 50 time
series that are mapped to the corresponding activity. Our main goal is to compare
the obtained time series after the transformation to the target behavior. The TRTS
and TSTR accuracies are reported for different classification methods namely Random
Forest (RF) [76], Decision Trees (DT) [101], Logistic Regression (LR), Support Vector
Machines (SVM) [102] and XGBoost (XGB) [103].

The performance of DP-DR-TiST and DP-CycleGAN-VC is assessed in terms of pri-
vacy and accuracy for the different tests depicting the various use cases. First, the
frameworks are trained to translate 1000 time series of each class to another target
class. During the training, at each iteration, the TSTR and TRTS values are computed
for a bench of randomly selected and translated time series. The model of the iteration
with the best performance (best TSTR and TRTS values) is selected and will be used
in the assessment of privacy and utility. To enable a fair comparison between the frame-
works, the same maximal number of iterations is used namely 100 iterations and we use
C = 0.3, σ = 0.3 and δ = 10−3. For the evaluation, the behavior of 50 time series of
each class is translated to the target class. This means that all the classes of the original
dataset are equally well-represented in the evaluation procedure. Finally, the spent pri-
vacy loss is computed and the accuracies values TRTS and TSTR are calculated for these
translated time series. Our main purpose is to identify the best-performing framework.
In other words, the framework that finds the right balance between privacy and utility
of the translated time series.

4.3.3 Results

Fig. 4.12 and Fig. 4.13 illustrate the time series generated by the DR-TiST for engine
2 and engine 1 of the ventilation systems dataset respectively. We see in Fig. 4.12
the recorded time series of engine 1. The time series produced by DR-TiST have the
functional behavior of engine 2 and the same on/off cycles as the ones of engine 1.
Fig. 4.13 demonstrates the originally recorded time series of engine 2, i.e., with a maximal
value of 1.5, and the corresponding time series generated by the algorithm with the same
on/off times and different functional behavior. For the different examples, we clearly
see that the trained model was able to simulate the behavior of engine 1 with the on/off
times of engine 2 and vice versa. This corresponds to the desired behavior. Since we

59

4 Time Series Translation

want to show that this is not only an exemplary time series, for each test, we compute
our quantifiable metrics on a set of 100 generated time series. Table 4.7 summarizes
the results of RMSE and D values respectively when generating time series of engine 1
and engine 2 in the different experiments. The obtained results demonstrate that test
1 has the lowest RMSE and D values, i.e., Deng1 = 0.0652 and RMSEeng2 = 0.26. It
is to notice that in test 1 µ1 = µ2. In test 2, RMSEeng1 and RMSEeng2 are higher
when DR-TiST is trained with 208 data points instead of 416 data points. Hence, the
amount of data has an impact on the results. Test 3 and test 4 are characterized by
higher RMSE and D values. By way of example, Deng2 is equal to 0.5 and 0.16 for test
3 and test 4 respectively.
Examples of time series generated by CycleGAN-VC and DR-TiST in tests 2 and 3 are

presented in Fig. 4.14 and 4.11 respectively. The point-wise differences between the time
series generated by CycleGAN-VC and the expected time series are higher than the ones
generated with DR-TiST. Moreover, the time series of DR-TiST are more realistic and
fit better to the target time domain than the time series generated by CycleGAN-VC.
Fig. 4.11 shows that for test 3 the time series of CycleGAN-VC present a completely
wrong on/off cycles. Tables 4.5 and 4.6 show the RMSE and D values of DR-TiST
compared to CycleGAN-VC. In tests 2 and 3, DR-TiST outperforms CycleGAN-VC.
The D and RMSE values of DR-TiST are for both experiments lower than the ones
of CycleGAN-VC, i.e., in test 4 D2cyc = 1.77 and D2DR = 0.43. It is to be noted
that DR-TiST is faster and more efficient than CycleGAN-VC in terms of time and
computation.

Engine 2 Generated Engine 1 Generated
D2cyc D2DR D1cyc D2DR

Test 2 0.41 0.36 0.31 0.2

Test 3 1.77 0.43 1.66 0.35

Table 4.5: D values for generating time series of engine 1 and engine 2 by CycleGAN-VC and
DR-TiST for test 2 and 3. Dcyc and DDR denote the values of D for the time series
of CycleGAN-VC and DR-TiST respectively.

Engine 2 Generated Engine 1 Generated
RMSE2cyc RMSE2DR RMSE1cyc RMSE1DR

Test 2 0.565 0.51 0.25 0.18

Test 3 1.37 0.59 0.86 0.28

Table 4.6: RMSE values for generating time series of engine 1 and engine 2 by CycleGAN-
VC and DR-TiST for test 2 and 3. RMSEcyc and RMSEDR denote the values of
RMSE for the time series of CycleGAN-VC and DR-TiST respectively.

For the human activities dataset, the TRTS and TSTR values are computed for the
different datasets and both translation algorithms DR-TiST and CycleGAN-VC. The

60

4.3 Experiments

� �� ��� ��� ��� ���
����������

�

�
��������
	��������	

������

Figure 4.11: Comparison of the time series of engine 2 generated with the operating mode
of engine 1 in test 3 where µ1 = 35 and µ2 = 45. Time series generated by
CycleGAN-VC has a completely different behavior than the expected time series.
The time series produced by DR-TiST are more realistic.

Deng1 Deng2 RMSEeng2 RMSEeng1

Test 1 0.066 0.1693 0.053 0.266

Test 2lg208 0.202 0.36 0.18 0.51

Test 2lg416 0.11 0.21 0.1105 0.347

Test 3 0.309 0.5 0.66 0.26

Test 4 0.13 0.164 0.122 0.29

Table 4.7: Computed D and RMSE values for the different tests of the Ventilation Systems
Dataset. Deng1 and Deng2, RMSEeng2 and RMSEeng1 denote the computed D and
RMSE values during the test phase when generating time of engine 1 and engine 2
respectively.

61

4 Time Series Translation

� ��� ��� ��� ��� 	��
����������

�

�

� ��� ��� ��� ��� 	��
����������

�

�

� ��� ��� ��� ��� 	��
����������

�

�

��������������������������������
�������������������������
�����

Figure 4.12: Examples of time series of engine 2 in operating mode of engine 1 generated in
test 4 where µ1 = 40 and µ2 = 50. DR-TiST was able to map the functional
behavior of engine 2, characterized by a higher amplitude, in the time domain of
engine 1.

obtained results are presented in Table 4.8. We notice that for almost all the tests and
all the classification algorithms, the TRTS and TSTR values of the DR-TiST algorithm
are higher than the ones of the CycleGAN-VC. By way of example, for test 6 the mean
of TRTS and TSTR values for the DR-TiST dataset is equal to 0.8949 and 0.6917
respectively, while it is equal to 0.5646 and 0.5163 for the CycleGAN-VC algorithm.
This shows that the data obtained by DR-TiST fits better to the target data and hence
can better represent the target activity. In general, it is to be noted that the TSTR
values are lower than the TRTS values. We conclude that for this dataset the utility
and hence the quality of the time series generated by DR-TiST is better than the ones
generated by CycleGAN-VC.

For the conducted tests of the DC motors dataset, we visualize the distribution of the
rise times tr, the steady-state errors ess and overshoot values of the ground truth, and
the time series generated by DR-TiST in Fig. 4.15, Fig. 4.16, and Fig. 4.17 respectively.
Moreover, Table. 4.9, Table. 4.10 and Table. 4.11 present the mean of the rise times,
overshoot and steady-state errors of the ground truth and the time series generated by
DR-TiST and CycleGAN-VC. We clearly see that for the linear DC motor, i.e., tests 8
and 9, the distributions of the different metrics of the ground truth and the time series
generated by DR-TiST are similar. These results nicely show that DR-TiST captured
the controller characteristics and that the time series generated by DR-TiST depicts the
same reactivity as the expected behavior in ygt(t). Moreover, the mean of tr, ess, and

62

4.3 Experiments

Human Activities
Test 5 Test 6 Test 7

DR-TiST Cyc-VC DR-TiST Cyc-VC DR-TiST Cyc-VC

RF 0,9949 0.101 1 0.5000 0.8888 0.5000

DT 0.9242 0.0404 0.9797 0.5353 0.6818 0.6363

LR 0.5050 0.2575 0.5050 0.7272 0.3939 0.0252

SVM 1 0.0101 1 0.5000 0.707 0.5000

XGB 0.9899 0.409 0.9899 0.5606 0.8636 0.5000

Mean 0.8828 0.1636 0.8949 0.5646 0.8603 0.4323

(a)

Human Activities
Test 5 Test 6 Test 7

DR-TiST Cyc-VC DR-TiST Cyc-VC DR-TiST Cyc-VC

RF 0.5714 0.0816 0.6224 0.500 0.6632 0.5000

DT 0.6326 0.1428 0.6632 0.5408 0.5714 0.5000

LR 0.5306 0.4081 0.5510 0.5000 0.5918 0.4897

SVM 0.6938 0.3061 0.9897 0.5000 0.6224 0.5000

XGB 0.5612 0.1428 0.6326 0.5408 0.5000 0.5000

Mean 0.5979 0.2162 0.6917 0.5163 0.5897 0.4979

(b)

Table 4.8: Test TRTS (a) and TSTR (b) accuracies values for the Human Activities dataset, i.e.,
test 5, test 6 and test 7 computed with different ML models (RF, DT, LR . . .). The
TRTS values are obtained by training the ML models on real data and testing them
with synthetic data obtained with DR-TiST, and CycleGAN-VC (denoted Cyc-VC).
Meanwhile, the TSTR values are obtained by training the ML models with synthetic
data for obtained with DR-TiST, and CycleGAN-VC, and testing on real data. The
test accuracies correspond to the TRTS/ TSTR values.

63

4 Time Series Translation

� ��� ��� ��� ��� 	��
����������

�

�

� ��� ��� ��� ��� 	��
����������

�

�

� ��� ��� ��� ��� 	��
����������

�

�

��������������������������������
�������������������������
�����

Figure 4.13: Examples of time series of engine 1 in operating mode of engine 2 generated in
test 4 where µ1 = 40 and µ2 = 50. DR-TiST was able to map the functional
behavior of engine 1, characterized by a lower amplitude, in the time domain of
engine 2.

overshoot values for time series generated by DR-TiST are closer to the ground truth
values than the values computed for the time series generated by CycleGAN-VC. This
shows that also for these tests DR-TiST achieved the best results and was able to better
capture and produce the desired reactivity.

Table 4.9: Mean of rise times in the ground truth trgt, and generated time series by DR-TiST
trgen−dr−tist and CycleGAN-VC trgen−cyc.

Test trgt trgen−dr−tist trgen−cyc

8 1.35± 0.5 1.7± 1 2.95± 3.46662

9 1.6± 0.9 2.2± 1.4 8± 13.643

10 3.3± 5 3± 3.8 10.67± 13.85

11 4.35± 7.8 6.2± 11.7 9.03± 15.01146

Fig. 4.18 illustrates the output of a control system generated by DR-TiST and the
expected output for the same noisy reference signal. The figure shows that DR-TiST was
able to depict the right expected reactivity and hence predict the right output signal.

While the characteristics of the form of the signal, can very successfully be predicted
by DR-TiST for tests 8 and 9, our experiments have shown that it is more difficult

64

4.3 Experiments

� �� ��� ��� ��� ���
���

���

���

��� ��������

����	���

�������

� �� ��� ��� ��� ���
���

���

���

���

� �� ��� ��� ��� ���
����������

���

���

���

���

Figure 4.14: Comparison of time series of engine 2 generated with the operating mode of engine
1 in test 2 where µ1 = 30 and µ2 = 40. The time series generated by CycleGAN-
VC and DR-TiST are compared to the expected behavior.

0 1 2 3 4
Rise time values

0

50

100

150

200

250

C
ou

nt

Test 8

1 2 3 4 5 6
Rise time values

0

50

100

150

200

250

Test 9

0 5 10 15 20 25
Rise time values

0

50

100

150

200

250

300

Test 10

0 10 20 30 40 50
Rise time values

0

50

100

150

200

250

Test 11

ground truth
generated

Figure 4.15: Distribution of the rise times for 100 outputs generated with DR-TiST and ex-
pected outputs computed as ground truth.

65

4 Time Series Translation

Table 4.10: Mean of overshoot in the ground truth overshootgt, and generated time series by
DR-TiST overshootgenDR−TiST and and CycleGAN-VC overshootgenCyc.

Test overshootgt overshootgenDR−T iST overshootgenCyc

8 29.2± 24.8 22.75± 24.5 919.8991± 941.06205

9 21.5± 23.6 23± 24.8 58.8971± 54.0861

10 4.6± 3.8 3± 1.7 8.49± 27.73

11 4.6± 3.1 9.4± 11.9 1.087152± 56.303663

0.00 0.02 0.04 0.06 0.08
Steady state errors

0

20

40

60

80

100

120

C
ou

nt

Test 8

0.00 0.01 0.02 0.03 0.04
Steady state errors

0

10

20

30

40

50

60

70

Test 9

0 2 4 6
Steady state errors

0

50

100

150

200

250

300

Test 10

0 10 20 30 40
Steady state errors

0

50

100

150

200

250

300

350

Test 11

ground truth
generated

Figure 4.16: Distribution of the steady state errors for 100 outputs generated with DR-TiST
and expected outputs computed as ground truth.

to correctly predict the right behavior for the nonlinear model used in tests 10 and
11. Unfortunately, in our experiments, we noticed that it is difficult for the algorithm
to predict never seen output levels. We conclude that DR-TiST is really strong in
predicting the dynamic of a controller but cannot perfectly extract the part of the motor
characteristics, that result in different output levels in y(t). It is to be noted that for all
the tests namely the linear and non-linear ones DR-TiST outperformed CycleGAN-VC
in terms of rise times, steady-state errors, and overshoot values.

0 20 40 60 80
Overshoot

0

20

40

60

80

100

C
ou

nt

Test 8

0 20 40 60
Overshoot

0

20

40

60

80

100

Test 9

0 500 1000 1500 2000
Overshoot

0

20

40

60

80

100
Test 10

0 20 40 60
Overshoot

0

10

20

30

40

Test 11

ground truth
generated

Figure 4.17: Distribution of the overshoot values for 100 outputs generated with DR-TiST and
expected outputs computed as ground truth.

66

4.3 Experiments

Table 4.11: Mean of steady state errors in the ground truth essgt and generated time series by
DR-TiST essgenDR−TiST and CycleGAN-VC essgenCyc.

Test essgt essgenDR−T iST essgenCyc

8 0.009± 0.01 0.01± 0.016 0.89683± 0.755372

9 0.01± 0.009 0.01± 0.01 0.65748± 0.44229

10 0.46± 0.57 0.8± 1.6 0.95± 1.6881

11 2.4± 8.1 1.3± 2.3 3.2453± 1.2556908

y(
t)

0 20 40 60 80 100 120 140
t(s)

y g
t(t

)

Figure 4.18: The output of a control system generated by DR-TiST (illustrated in the upper
part) is compared to the expected output behavior (illustrated in the lower part)
obtained by simulating the field motor when it is controlled with the controller lab.
Each expected output ygt(t) and generated output y(t) is obtained for the same
noisy reference signal r. An example of generated and corresponding expected
time series is highlighted in red. The remaining expected and generated outputs
are depicted in gray.

67

4 Time Series Translation

Finally, we compare the performance of DP-DR-TiST and DP-CycleGAN-VC in terms
of privacy and utility of translated time series for the previously described use cases. Ta-
bles 4.13, 4.14, and 4.15 depict the obtained test accuracies for TRTS and TSTR for the
ventilation systems, human activities and DC motors use cases respectively. We clearly
see that the best average TSTR values were achieved by DP-DR-TiST for almost all
the tests. Moreover, for the ventilation systems and human activities use cases, DP-DR-
TiST outperformed DP-CycleGAN-VC in terms of TRTS values. By way of example, for
the ventilation systems and human activities tests, we noticed that the TRTS accuracies
averages of DP-CycleGAN-VC are around 0.5 and that its TSTR accuracies vary be-
tween 0.5 and 0.6754, achieved for test 5. On the other hand, TRTS average accuracies
of DP-DR-TiST vary between 0.6151 and 0.9181 and its TSTR accuracies are between
0.5767 and 0.8938. To conclude, in almost all the cases and independently of the used
ML model, DP-DR-TiST outperformed DP-CycleGAN-VC in terms of utility.
In contrast to the utility, DP-CycleGAN-VC - except for test 3 - outperforms DP-DR-

TiST in terms of privacy. By way of example, DP-CycleGAN-VC achieves a privacy loss
equal to 76.12 and 54.44 in test 2 and test 6 respectively, while DP-DR-TiST privacy
losses are equal to 128.38 and 90.14. The reached privacy losses ϵ are summarized in
Table 4.12.
We conclude that DP-CycleGAN-VC is able to achieve the best privacy values, but

the generated time series are not as useful as expected. Hence, this method generates
private data but degrades drastically the quality of the time series in the translation
process. Meanwhile, DP-DR-TiST finds a better balance between privacy and utility. It
generates private data with a high utility.
We investigated in this chapter new private and non-private approaches to map time

series from a source domain with initial conditions to new and never seen conditions.
Next, we consider the problem of analyzing the generated and translated time series and
comparing them with the target ones.

Use Case Test DP-CycleGAN-VC DP-DR-TiST

Ventilation Systems
Test 2 76.12 128.38
Test 3 86.32 35.32

Human Activities
Test 5 55.72 122.01
Test 6 54.44 90.14

DC Motors
Test 8 30.01 122.01
Test 11 96.52 122.015

Table 4.12: Obtained Privacy loss ϵ for the different use cases for C = 0.3, σ = 0.3 and δ = 10−3.

68

4.3 Experiments

Ventilation Systems
Test 2 Test 3

DR-TiST CycleGAN-VC DR-TiST CycleGAN-VC

RF 0.6212 0.3989 0.6919 0.4393

DT 0.6161 0.4848 0.6919 0.4393

LR 0.6010 0.5000 0.7272 0.5000

SVM 0.6161 0.5 0.6919 0.5000

XGB 0.6212 0.4797 0.6919 0.4797

Mean 0.6151 0.4726 0.6989 0.4716

(a)

Ventilation Systems
Test 2 Test 3

DR-TiST CycleGAN-VC DR-TiST CycleGAN-VC

RF 0.5757 0.5000 0.6919 0.5000

DT 0.7020 0.5000 0.6161 0.5000

LR 0.5858 0.5000 0.6010 0.5000

SVM 0.5000 0.5000 0.5000 0.5000

XGB 0.5202 0.5000 0.6818 0.5303

Mean 0.5767 0.5000 0.5878 0.5060

(b)

Table 4.13: Test TRTS (a) and TSTR (b) accuracies values in test 2 and test 3 computed with
different ML models (RF, DT, LR . . .). The TRTS values are obtained by training
the ML models on real data and testing them with synthetic data obtained with
DP-DR-TiST, denoted DR-TiST, and DP-CycleGAN-VC, denoted CycleGAN-VC.
Meanwhile, the TSTR values are obtained by training the ML models with synthetic
data for obtained with DP-DR-TiST, denoted DR-TiST, and DP-CycleGAN-VC,
denoted CycleGAN-VC, and testing on real data. The test accuracies correspond
to the TRTS/ TSTR values. We use C = 0.3, σ = 0.3 and δ = 10−3.

69

4 Time Series Translation

Human Activities
Test 5 Test 6

DR-TiST CycleGAN-VC DR-TiST CycleGAN-VC

RF 1 0.5000 0.7525 0.5000

DT 0.9646 0.5757 0.8535 0.5050

LR 0.7525 0.6262 0.5353 0.4646

SVM 0.9242 0.5000 0.6565 0.5000

XGB 0.9494 0.5353 0.8383 0.5707

Mean 0.9181 0.5474 0.7272 0.5080

(a)

Human Activities
Test 5 Test 6

DR-TiST CycleGAN-VC DR-TiST CycleGAN-VC

RF 1 0.7653 0.8775 0.6938

DT 0.8571 0.7040 0.8061 0.6836

LR 0.6836 0.6326 0.6938 0.5000

SVM 1 0.5306 0.5000 0.5714

XGB 0.9285 0.7448 0.8265 0.6530

Mean 0.8938 0.6754 0.7296 0.6203

(b)

Table 4.14: Test TRTS (a) and TSTR (b) accuracies values for test 5 and test 6 computed with
different ML models (RF, DT, LR . . .). The TRTS values are obtained by training
the ML models on real data and testing them with synthetic data obtained with
DP-DR-TiST, denoted DR-TiST, and DP-CycleGAN-VC, denoted CycleGAN-VC.
Meanwhile, the TSTR values are obtained by training the ML models with synthetic
data for obtained with DP-DR-TiST, denoted DR-TiST, and DP-CycleGAN-VC,
denoted CycleGAN-VC, and testing on real data. The test accuracies correspond
to the TRTS/ TSTR values. We use C = 0.3, σ = 0.3 and δ = 10−3.

70

4.3 Experiments

DC Motors
Test 8 Test 11

DR-TiST CycleGAN-VC DR-TiST CycleGAN-VC

RF 0.5000 0.6969 0.5606 0.7424

DT 0.48 0.5000 0.5000 0.6060

LR 0.6110 0.808 0.49499 0.4242

SVM 0.5000 0.5000 0.5000 0.4696

XGB 0.5200 0.6666 0.5606 0.8282

Mean 0.5222 0.6343 0.5232 0.6140

(a)

DC Motors
Test 8 Test 11

DR-TiST CycleGAN-VC DR-TiST CycleGAN-VC

RF 0.5510 0.5000 0.9183 0.5000

DT 0.5612 0.5000 0.3469 0.5000

LR 0.5000 0.5000 0.6632 0.5510

SVM 0.5306 0.5000 0.5000 0.5510

XGB 0.6836 0.5000 0.7244 0.3571

Mean 0.5652 0.5142 0.5977 0.4918

(b)

Table 4.15: Test TRTS (a) and TSTR (b) accuracies values for test 8 and test 11 computed with
different ML models (RF, DT, LR . . .). The TRTS values are obtained by training
the ML models on real data and testing them with synthetic data obtained with
DP-DR-TiST, denoted DR-TiST, and DP-CycleGAN-VC, denoted CycleGAN-VC.
Meanwhile, the TSTR values are obtained by training the ML models with synthetic
data for obtained with DP-DR-TiST, denoted DR-TiST, and DP-CycleGAN-VC,
denoted CycleGAN-VC, and testing on real data. The test accuracies correspond
to the TRTS/ TSTR values. We use C = 0.3, σ = 0.3 and δ = 10−3.

71

CHAPTER

5

TIME SERIES ANALYTICS

Time-dependent information arises in many fields ranging from meteorology, and medicine
to stock markets. The analysis of such data is a central goal in VA, statistics, or ML
and many related approaches exist [31, 32, 104, 105]. In particular, for ML methods
a sufficient amount of training data and a balanced dataset where each data class is
equally well represented are crucial for a good performance. In reality, ML experts often
face situations where these criteria are not satisfied. In these cases, generating new data
provides a possible solution.

This has pushed researchers to investigate new methods for data generation. In this
context, GAN [1] are showing an outstanding performance. However, to trust a ML
model e.g., a classifier trained on generated data, it is necessary to assess how realistic
these data are and hence the performance of the generation process. Most efforts and
best results have been shown for image generation, where the quality of the generated
data can be easily assessed with the human eye.

Recently, a lot of effort is made by researchers to discover suitable metrics that eval-
uate the performance of GAN and substitute a human judge. The Discriminator and
Generator losses, for example, cannot be considered as a measure of GAN performance
and this ML approach lacks an objective function that defines an appropriate end of it-
erations with suitable data quality. Various evaluation methods have been described in
[106] such as Parzen window or MMD. As proven in [106], the use of these methods has
various disadvantages. Other methods e.g., inception score is designed only for images
and cannot be easily applied to time series data. This pushed researchers to investigate
new metrics for time series. By way of example, TSTR and TRTS were proposed by
Esteban et al. [11] while introducing RCGAN.

73

5 Time Series Analytics

In spite of their important number, the existing GAN metrics for time series have not
been compared to each other and their advantages and disadvantages remain ambiguous.
In particular, for an ML expert, it is essential to know which metric can detect which
training problem. In this section, we study the state-of-the-art GAN metrics that were
described in section 2.1.4 to determine the strengths and weaknesses of each approach.
Our main purpose is to guide the ML expert by showing which metric can detect a
specific training problem and recommending a possible combination of metrics that can
be used together. This is achieved by performing different tests presented in section 2.1.4.
Moreover, we propose a new metric MiVo and show that it outperforms the existing
ones in detecting many training problems efficiently and simultaneously. Later, MiVo is
applied in a different and sophisticated fashion to support the ML expert in the time
series translation task.

Such metrics can be helpful while training the models. However, to fully trust the
considered GAN model it is essential to visualize the time series. At the same time,
finding common characteristics and differences between real and generated data may
be a complicated and exhaustive task. In fact, comparing generated datasets to real
datasets is challenging, especially for time series data. To deal with this problem, we
propose a visual approach to assess the quality of the generated data and to effectively
compare them to the real ones. The presented framework can be used by a human judge
while training GAN models.

We strongly believe that the computational and visual methods have their own ad-
vantages and disadvantages and allow for a different manner of exploration. While a
metric might be essential to get a quick overview over the whole iterations, the visual
method will allow the ML expert to discover more insights about the data. Our main
goal is to ease the quality assessment task for ML experts by presenting a VA method
that enables a rigorous and detailed investigation and a mathematical metric that keeps
track of the performance of GAN over the iterations in a fast and compact manner. The
best evaluation setup would be to start by using the mathematical metric to select some
interesting iteration candidates. After that, the selected iterations should be further
analyzed with the VA framework.

5.1 Metric for Time Series

To evaluate the performance of a GAN model, it is crucial for an ML expert to have a
trackable metric over the iterations. In spite of the significant number of the recently
proposed metrics 2.1.4, they have not been compared to each other against key criteria
such as efficiency, discriminability, and their ability in detecting common training prob-
lems such as overfitting, mode collapse, or mode dropping. Hence, it is impossible to
identify the most efficient and reliable evaluation metric and to determine the advantages
and disadvantages of each method. To deal with these issues and to rigorously inspect
these metrics, we perform different evaluation tests proposed in 2.1.4. Furthermore, we
propose a new metric, MiVo, that performs a bidirectional check starting from real to
synthetic and afterward from synthetic to real to enable a precise and model-agnostic

74

5.1 Metric for Time Series

evaluation. Finally, we will demonstrate through the conducted tests that our new met-
ric allows for simultaneous detection of numerous training problems and is more efficient
in terms of memory and time consumption.

The matrix D = (dij) with 1 ≤ i ≤ n and 1 ≤ j ≤ m denotes the distances between
the time series of the sets Sr and Sg:

D =

d11 d12 . . . d1n
d21 d22 . . . d2n
...

...
. . .

...
dm1 dm2 . . . dmn

 . (5.1)

We define the vectors D1 of Incoming Nearest Neighbors Distances (INND) and D2

Outgoing Nearest Neighbors Distances (ONND) as follows:

D1 = [min(d11, d12, . . . , d1n),min(d21, d22, . . . ,

d2n), . . . ,min(dm1, dm2, . . . , dmn)],
(5.2)

is the set of minimal distances over the rows of D, i.e., the minimal distances for all
generated time series of Sg. A good GAN model will be able to generate realistic data,
i.e., we ideally expect that each generated time series achieves a low minimal distance
to at least one real time series

and
D2 = [min(d11, d21, . . . , dm1),min(d12, d22, . . . ,

dm2), . . . ,min(d1n, d2n, . . . , dmn)],
(5.3)

is the set of the minimal distances over the columns of D, i.e., the minimal distances for
all real time series of Sr. A good GAN model should generate diverse samples, i.e., for
each real time series we should be able to find a generated partner. Hence, the variance
of D2 should be low.

Training GAN models aim to generate new samples that are realistic and that reflect
the diversity of the original dataset. To this end, a good metric should consider these
criteria and detect common GAN training problems such as mode collapse. We design a
metric, MiVo that focuses on the incoming and outgoing minimal distances and ensures
at the same time that the synthetic time series are realistic (a low mean in Sg) and
diverse (a low variance in Sr). We propose a metric that combines D1 and D2 as follows:

ρ = µ1 + σ2
2, (5.4)

where µ1 denotes the mean of D1 and σ2
2 denotes the variance of D2. There exists a wide

variety of methods to measure the similarity between two time series [107]. To obtain
the distance matrix D, we recommend choosing the distance measure that fits better to
the considered time series and their characteristics. In all the cases, the novelty in MiVo
relies on the bidirectional check performed between the real and generated time series.
In the rest of this work and for sake of simplicity, we use m = n and for our data, we
use the Euclidean Distance (ED) as a distance measure.

75

5 Time Series Analytics

To use MiVo to assess the quality of translated time series, we compute the D between
a set St of translated time series and a set Sgt of time series depicting the target behavior.
The calculation of MiVo based on D remains unchanged.

In this chapter, we will prove that MiVo outperforms the existing GAN metrics de-
scribed in section 2.1.4. In spite of its major advantages and its good performance, in
many situations, it is essential to have a VA system that allows a rigorous investiga-
tion and exploration of the generated data and their comparison to the real data in an
efficient manner.

5.2 Visual Analytics for Time Series

We propose a human-centered VA approach to support a ML or domain expert in the
quality assessment task of generated time series data. The developed framework presents
a method that makes the real and generated data easily comparable by combining VA
(Colorfield, TimeHistograms) with algorithmic methods and enables the ML expert to
trust the trained GAN model. The VA framework consists of two views namely, a GAN
Iteration View and a Detailed Comparative View, that support ML and domain experts
to assess the quality of time series data generated with GAN by providing:

� An overview visualization that helps the analyst identify interesting iterations of
the GAN generation process.

� A comparison interface where the time series are visualized in a compact manner
and ordered using PCA [52] to facilitate comparison by juxtaposition.

5.2.1 Design of Evaluation Framework

In this section, we describe our VA framework, which supports ML experts in generating
time series data based on a given number of real data. For the sake of simplicity, we
consider univariate time series of equal length. In this context, we present a workflow
that can be used to evaluate the performance of GAN and assists the ML expert with the
data generation. This VA framework is the result of an ongoing collaboration between
ML and VA experts. The feedback of practitioners that use GAN to generate time series
helped us in the framework’s design. Our approach addresses some of the main issues
with GAN training that are frequently encountered by ML experts. The VA system
fulfills the following design goals:

Goal 1 Find iterations where appropriate behavior is achieved, i.e., the iterations show-
ing a sufficient quality of the generated data. Check if the number of iterations is
sufficient or if a higher number of iterations is needed.

Goal 2 Compare the performance of different GAN models with different sets of param-
eters and support the ML expert in the decision-making process to either trust or
reject the current GAN model. Hence, the ML expert should be able to identify
which GAN model and subsequently, which set of parameters is better.

76

5.2 Visual Analytics for Time Series

Figure 5.1: A visual evaluation workflow of GAN for time series data: The real and the gener-
ated data are integrated in the VA framework. The ML expert may interact with
the VA framework to get more insight into the data and their properties. After
a rigorous exploration of the data, he or she can decide to terminate the training
process if the desired behavior is achieved. Otherwise, he or she has to run the
GAN model with different parameters.

Goal 3 Present an adequate method to visually evaluate the quality of the generated
data, i.e., detect if the data are noisy or show different behavior compared to the
real time series data. ML experts should be able to decide whether the time series
generated by a GAN algorithm are realistic.

Goal 4 Detect common GAN training problems such as non-convergence or mode col-
lapse. Mode collapse is an important issue that a ML expert may encounter during
training. In this case, the generator collapses to one mode and is not able to pro-
duce diverse samples. Almost all proposed GAN models [1, 44] suffer from this
issue. Our purpose is to offer the user the possibility to easily identify this phe-
nomenon. Once the problem is detected, the ML expert can use existing techniques
[5] to improve the performance of the considered GAN model.

We design our framework based on these criteria. The ML expert starts the process by
generating time series with GAN. The VA framework is then used to check whether the
GAN model and the generated data fulfill the desired requirements. If this is the case, the
ML expert has succeeded to generate realistic data and can stop the generation process.
Otherwise, he or she will have to rerun the GAN model with different parameters and
repeat the investigations in the framework. It should be noted that an online evaluation is
also possible, i.e., the framework can be used during the training process. As the training
process can take up to several days, our approach may help to save valuable time by
making sure during the training that the GAN model is going in the right direction or
restart the training process if unexpected behavior is detected. The proposed workflow
is depicted in Fig. 5.1.

5.2.2 Evaluation Framework Description

Our proposed approach is characterized by two views: a GAN Iteration View that gives
the user a general impression about the behavior of GAN over the iterations of the

77

5 Time Series Analytics

generation process and a Detailed Comparative View equipped with TimeHistograms
[108], Colorfields [109], and line plots to further investigate particular time series selected
by the user. The TimeHistogram displays the time-dependent distribution of all time
series at a certain iteration. At the same time, the Colorfield visualization allows further
investigation and exploration of a multitude of generated time series at a certain iteration
and compares them to the real time series. Moreover, a direct comparison between
specific time series is made possible using the line plots visualization. To get more
insights into the properties of the data, a measure of similarity and a dimensionality
reduction technique are used:

1. Similarity measures such as ED or Dynamic Time Warping (DTW) [110, 111] are
used as the pairwise distance between two time series.

2. PCA [52] is used to arrange similar time series close to each other and facilitate
comparison.

The view consists of two components, namely the incoming and outgoing nearest
neighbor distances (see Fig. 5.2a). The user can choose between ED and DTW as a
distance measure. The evolution of the INND throughout the iterations is shown in
this case. We repeat the same procedure calculating the minima of each real time
series to all generated time series over the iterations. This corresponds to the ONND.
A PCA is applied to the real time series data to transform the data points of each
time series into uncorrelated components. The real data are then sorted based on the
first principal component. To make both the real and generated data comparable, the
same transformation is applied to the generated data. A heatmap visualization is used
to depict the incoming and outgoing minimal distances. The intensity of the color
of each pixel highlights the value of the minimal distance. A dark pixel represents a
high distance value, while a brighter pixel denotes a lower distance value. The nearest
neighbor distances give an overview of the overall performance of GAN over the iterations
and allow for different types of investigations:

� Are the time series becoming more realistic with the iterations, i.e., do the INND/
ONND become smaller?

� Are INND / ONND reaching a stable behavior and indicating nearly constant
values?

� Is the variation in the real data representative for the generated data i.e., are all
types of generated time series equally similar to the real data (INND) and are all
real time series equally well represented by the different generated time series, or
do generated time series correspond to a limited number of real ones (ONND)?

The user can interactively select interesting iterations in the GAN Iteration View and
get more insights about the selected iterations in the other view. This will permit him
to identify the iteration with the best behavior.

This view is equipped with TimeHistograms [108] depicting the distribution of the
real and the generated data, a Colorfield visualization as a compact representation of

78

5.2 Visual Analytics for Time Series

the corresponding time series and a Selected Samples View allowing comparison by
superposition (see Fig. 5.2b). In the Colorfield and TimeHistogram Views, the real
data are shown on the left and selected iterations of the generated data are shown on
the right. This setup enables a comparison by juxtaposition between the real and the
generated data as well as between different iterations of the generation process. The
user can investigate different iterations at the same time. Both real and generated data
are automatically sorted for each iteration step based on the first principal component.
The TimeHistograms enable a time-dependent investigation of the distribution of the
data and a comparison between the distribution of the real and the generated data.
This visualization represents a possibility to check if the model is working properly and
capturing the distribution of the real data. The Colorfield visualization is used to depict
the time series and enables a rigorous exploration of the generated time series and their
properties. Each heatmap represents all the data of a specific iteration where each row
corresponds to a time series. This visualization permits the user to compare a high
number of time series in an efficient manner. Additionally, a rigorous investigation of
some selected time series is made possible with the Selected Samples View equipped
with two visualizations. To give the ML expert more insights into the real data, the first
plot depicts their median med(r) and the amount of data falling in the 68th, 95th, and
99.7th percentile denoted with 68prct, 95prct, and 99prct respectively. The user may
add interesting, real, or generated, time series to the plot to investigate their properties
and compare them by superposition. Each generated and real time series is denoted with
g iter id and r id respectively where iter is the number of the iteration at which the time
series was generated and id is the index of the time series sorted with PCA. The second
plot highlights the absolute value of the element-wise difference between the selected
time series r/g i and the median of the set of real data med(r). This feature provides
additional information about the selected data by directly comparing their behavior to
a reference value, namely the median of the real data. Our main concern is to enable
an exploration of the behavior of the ML model over the iterations and an investigation
of the similarity between the real and the generated data. Hence, the presented human-
centered approach gives the opportunity to build a relationship of trust between the ML
expert and the AI algorithm.

5.2.3 Use Case

To demonstrate the utility of the developed framework, our ML expert tested the pro-
posed method on a GAN model [9] to generate data based on the real TwoLeadECG
dataset [74] presented in section 3.3.1. To reduce the training time, only 30 time points
from the real time series are considered. The ML expert used one class in his experi-
ments. In our case, the performance of GAN is evaluated for two different parameter
configurations, namely model 1 and model 2. The corresponding results are depicted in
Fig. 5.2 and 5.3.

The GAN Iteration View (Figs. 5.2a and 5.3a) depicts the variation of INND and
ONND depending on the iterations. The first iterations are characterized by high INND
and ONND. As the number of iterations increases, an improvement in terms of INND

79

5 Time Series Analytics

Figure 5.2: Results of a first GAN model generating time series. The computed incoming and
outgoing minimal distances namely INND and ONND are integrated in the GAN
Iteration View (a). Selected columns in the GAN Iteration View, denoted with blue
rectangles, are depicted in the Detailed Comparative View (b).

80

5.2 Visual Analytics for Time Series

can be seen. Hence, the generated data are progressively reaching similar values to
the original data and the performance of the ML algorithm is increasing with a grow-
ing number of iterations. However, the ED values corresponding to some iterations in
model 1 sharply increase. Model 2 is showing a more stable behavior. In fact, after
approximately 300 iterations, the INND are almost constant. ONND in Fig. 5.2a show
that the values of the ED at the top and bottom of the view are still high. As the real
time series are sorted with PCA, our expert concludes that the real time series with an
important shift are characterized by a high outgoing minimal distance. Hence, the time
series produced by the first model are similar to a specific type of the real time series
namely the time series that are in the middle. He hypothesizes that this GAN model was
not able to reproduce the shift present in the real data and is collapsing to one mode.
In contrast to model 1, ONND illustrated in Fig. 5.3a depict a low outgoing ED for all
real data. ONND helped the ML expert to verify that the generated data are diverse
and do not correspond to a specific type of time series but to almost all real ones.
Afterward, the ML expert selects some interesting columns in the GAN Iteration View

and continues his investigation in the other view. For both scenarios, the user selected
an iteration at the beginning of the training process, certain columns with low EDs in
the middle, a few columns characterized by high INND and ONND in model 1 and 2 and
some columns showing a stable behavior within the last hundred iterations. Initially,
the time-dependent distribution of the generated data was completely different from the
real data and noise was generated. An improvement in the performance is noticeable
after approximately 200 iterations. In general, the time-dependent distribution and
the quality of the generated data are becoming more realistic over the iterations. An
enhancement in the results is observed between the iterations 382, 614 and 899 for model
1 and the iterations 386 and 669 for model 2. To rigorously inspect the behavior of model
1, the user selected some time series generated at different iterations. In the Selected
Samples View, he noticed that at iteration 764 the generated data present a strange
peak and at iteration 40 noise is generated. Hence, the VA framework helped the ML
expert to detect if the data are noisy or have different behavior from the real data (Goal
3).
To conclude, GAN was not able to generate realistic time series in the first iterations

at all and is learning the properties and features of the real time series over time. How-
ever, the data quality can decrease drastically after one iteration, i.e., iterations 769 and
480 in the first and second scenario respectively. The ML expert confirms that this is
expected behavior with neural networks because their performance is not monotonic.
An inspection of the last hundred iterations allows the ML expert to find an iteration
with the best result (Goal 1). This corresponds to iteration 978 for model 1 and it-
eration 926 for model 2. In both cases, the generated data are smooth and realistic.
However, the TimeHistogram of the data generated with model 1 is still different from
the TimeHistogram of the real data. Moreover, the Colorfield View demonstrates that
the samples are not as diverse as in the real data. A rigorous investigation of these time
series in the Selected Samples View shows that all the generated data are falling in the
68th percentile of the real data and are too close to the median, i.e., their difference
to the median of the real data is low. This confirms the hypothesis of the ML expert

81

5 Time Series Analytics

when he observed the GAN Iteration View. Thus, the user was able to easily detect
the mode collapse phenomenon, one of the hardest training problems for GAN (Goal 4).
In order to avoid this problem, the ML expert used in model 2 a normally distributed
noise instead of the uniformly distributed noise and applied a technique introduced in
[5] namely mini-batch discrimination. In contrast to model 1, we clearly see that model
2 is reproducing the distribution of the real data much better. For further exploration,
the ML expert selected different time series from the Colorfield View and visualize them
in the Selected Samples View. He noticed that model 2 is reproducing the shift present
in the real data. This model is generating time series that are moved to the right and
to the left and are characterized, at some data points, with a high difference from the
median. As the last step, our expert used the Selected Samples View to directly com-
pare the generated and real data. Fig. 5.4 shows a real and a generated time series
selected by the ML expert. We clearly see that the behavior of the generated time series
is similar to the behavior of the real data. Hence, the second GAN model presents a
more realistic behavior and was able at iteration 926 to generate time series that are
rare in the real dataset. The ML expert concludes that model 2 is achieving the desired
behavior. Hence, the proposed framework helped the ML experts to find a trustworthy
GAN model with a set of parameters producing the best results (Goal 2).

Finally, the ML expert said that it was helpful to see the evolution of the behavior
of GAN over the iterations and how the similarity between the real and the generated
data improved with the number of iterations. He was able to assess the quality of the
generated data and find a reliable GAN model achieving trustworthy results.

In this part, we proposed a visual approach to evaluate and optimize GAN models gen-
erating time series data. The proposed method is based on two visualization techniques
namely Colorfield and TimeHistogram as well as a distance measure. The distance mea-
sure is used in a sophisticated manner to compute the incoming and outgoing nearest
neighbor distances. The VA system supports ML experts in the evaluation process. The
utility of the developed framework is demonstrated with a real-world use case where the
ED is used as a distance measure. In this case, a ML expert evaluated the performance
of two different GAN models in generating time series based on existing real ones. He
was able to detect that the first GAN model generates samples that are not diverse.

5.3 Experiments

In this section, we focus on testing the existing GAN evaluation metrics for time se-
ries data namely: MMD, TSTR, TRTS, PS, DS, and MiVo on the datasets described
in section 3.3.1. Our main goal is to evaluate their performance against the different
evaluation criteria described in section 2.1.4. We perform the tests of section 2.1.4 in
order to identify the metric that allows for efficient detection of common GAN training
problems and a robust discriminability between real and synthetic time series. We set
for the test of mixing, mode dropping and collapse, and overfitting, n = 100 and c = 30.
For the efficiency test, the absolute number of samples used for evaluation ranges from
10 to 1000 samples in steps of 50 samples more each step. We repeat each test 10 times

82

5.3 Experiments

Figure 5.3: Results of a second GAN model obtained by tuning the parameters of model 1
depicted in Fig. 5.2. In comparison to model 1, this model is showing a more stable
and smooth behavior in terms of INND and ONND. The Colorfields, depicted in the
Detailed Comparative View (b), indicate that the last iteration is reproducing the
shift present in the real data and its TimeHistogram is similar to the TimeHistogram
of the real data.

83

5 Time Series Analytics

Figure 5.4: Illustration of the Selected Samples View with the median of the real data med(r),
68th, 95th and 99th percentile denoted with 68prct, 95prct and 99prct respectively,
time series g 926 47 generated at iteration 926 by model 2 and a real time series
r 304. The absolute value of the element-wise differences of g 926 47 and r 304
to the median med(r) are denoted in red and blue respectively. The time series
g 926 47 is falling in the 98th percentile of the real data and g 926 47 and r 304
are showing a similar behavior.

84

5.3 Experiments

and compute the mean over the 10 experiments. In all the experiments, Random Forest
[76] is used as the machine learning algorithm for TSTR and TRTS. Since the range of
scores of each metric are very different in scale, we normalize the scores achieved by each
metric between its minimum and maximum to a range between 0 and 1 to make them
directly comparable. TSTR and TRTS compute the test accuracy. To avoid confusion
and to make them comparable to the other metrics, we illustrate in all the figures 1− ρ
for the metrics TSTR and TRTS. All experiments are conducted on the t2.large AWS
EC2 instances with 8 GiB of system memory and 2 vCPUs.

In the next step, we evaluate the results of the same GAN model in two different
manners: computationally using MiVo and visually using the VA framework. Our main
goal is to compare both approaches and to show the advantages and disadvantages of
each method. To this end, the outcome of 1000 iterations is depicted and assessed. For
the different considered datasets, we focus on the output of the RCGAN model.

Finally, the MiVo metric is applied in a special fashion to assess the quality of each
translation use case presented in chapter 4. We compute the MiVo values between the
obtained data after the translation and time series depicting the desired result. A lower
MiVo value highlights a better similarity between the obtained and target time series
and better performance of the translation process.

We perform the tests described in 2.1.4 to assess the existing time series generation
evaluation metrics and to compare them to MiVo.

Mixing A good evaluation metric should be sensitive to the mixing test, i.e., its
curve should steadily increase with the ratio of fake samples. A comparison of the
different metrics is shown in Fig. 5.5 and Fig. A.5. For the different datasets, the score
MiVo increases progressively with the ratio of fake samples in Sg(l) as expected for a
metric sensitive to mixing. While DS shows the expected behavior for all the datasets
except the ItalyPowerDemand, PS achieves good performance on the TwoLeadECG and
FreezerRegularTrain datasets. It is to be noted that MiVo was more sensitive to the
ratio of fake samples and showed a more stable behavior than MMD, whereas TRTS
and TSTR showed the most unstable behaviors indicating little sensitivity to identify
fake samples. To sum up, the best performance is achieved by MiVo closely followed by
MMD.

Mode collapse A good evaluation metric should be sensitive to the mode collapse
test, i.e., its curve should increase with the ratio of collapsed clusters. The results of
the mode collapse test are depicted in Fig. 5.6 and Fig. A.6. PS - except for TwoLead-
ECG and DistalPhalanxTW -, MMD -except for DistalPhalanxTW - and MiVo show
the expected increase of score with the number of collapsed clusters. It is to be note
that MMD barely reacts to the effect of mode collapse before 85% of the modes have col-
lapsed. Large variations are present in DS and TRTS. The TRTS score showed the best
behavior on the FreezerRegularTrain and DistalPhalanxTW datasets was almost con-
stant for the TwoLeadECG dataset and a fluctuating behavior for the Yoga dataset. The
performance of the TSTR shows the expected behavior on the FreezerRegularTrain and
DistalPhalanxTW datasets but a worse behavior on the TwoLeadECG dataset charac-
terized by a low reactivity to a ratio of collapsed clusters higher than 0.7 and an unstable

85

5 Time Series Analytics

behavior on the Yoga dataset. For the mode collapse test, MiVo and PS show the best
performance.

Mode dropping A good evaluation metric should be sensitive to the mode dropping
test, i.e., its curve should increase with the ratio of dropped clusters. The results of the
simulated mode dropping test are depicted in Fig. 5.7 and Fig. A.7. MiVo and DS are the
most sensitive to this phenomenon. However, MiVo showed higher reactivity to the ratio
of dropped clusters, especially for the Yoga and FreezerRegularTrain datasets. MMD -
except for the yoga and DistalPhalanxTW datasets - was nearly insensitive to the ratio
of dropped clusters smaller than 85%. PS, TSTR, and TRTS show noisy behavior. For
this test, MiVo outperforms the remaining methods and shows the best behavior closely
followed by DS.

Overfitting A good evaluation metric should be able to detect overfitting by increas-
ing its score as the overlapping fraction increases. The effect of artificially simulating
overfitting on the different metrics is shown in Fig. 5.8 and Fig. A.8. TRTS, TSTR, and
MiVo were able to efficiently detect the overfitting phenomenon, i.e., they are character-
ized by a growing value for a growing overlapping fraction. On the other side, MMD,
PS, and DS have trouble to detect overfitting. They are showing a noisy and unspecific
behavior. The best performance is achieved by TRTS and TSTR closely followed by
MiVo.

Efficiency The efficiency test is composed of a sample efficiency test and a computa-
tional efficiency test.

Sample Efficiency: With reasonable number of samples, it should be easier for an
evaluation metric ρ to distinguish between Sg and Sr, than between Sr and S′

r. Fig. 5.9
and Fig. A.9 highlight the values ρ(Sr, S

′
r) over the number of samples (the upper plot)

and the difference ρ(Sg, Sr)−ρ(Sr, S
′
r) in the second plot. While MMD, closely followed

by DS and MiVo stabilizes rather quickly to small scores after a small number of samples
is reached, TRTS and TSTR continuously decrease their score when more samples are
provided, showing their dependence on a larger sample set due to the need of training
data. Although the PS scores are almost constant for a sample size higher than 500 for
the TwoLeadECG and FreezerRegularTrain dataset, their values were unstable for the
Yoga dataset. The value ρ(Sg, Sr)− ρ(Sr, S

′
r) is greater than 0 for TSTR, TRTS, MiVo

and DS independently of the number of used samples. At the same time, it is difficult
for PS and MMD to distinguish between ρ(Sg, Sr) and ρ(Sr, S

′
r).

Computational Efficiency: The most computationally efficient methods were MMD
and MiVo as expected since in this case no ML model is trained. PS and DS were the
most inefficient in terms of computation time due to the 2-LSTM layer that needs to be
trained. TRTS and TSTR are characterized by faster computation. It is to be noted
that we used a RF to train TRTS and TSTR. A slower computation is expected if neural
networks are used instead.

The results of the conducted tests are summarized in Table. 5.1:

MMD MMD succeeded in the mixing test. However, it is difficult for MMD to dis-
criminate between real and generated data and between test and training samples
(failure in sample efficiency tests and failure in the overfitting test). Also, the

86

5.3 Experiments

reactivity of MMD to the mode collapse/dropping tests was slow. These results
are related to the nature of MMD. MMD compares the distribution of the real and
generated samples to each other and hence doesn’t consider the properties of the
observed time series.

TSTR & TRTS The conducted tests confirm the assumption made by Esteban, Hyland,
and Rätsch [11] when introducing TSTR and TRTS: TSTR is more efficient than
TRTS, i.e., training a classifier on a set of generated samples and testing it on a set
of real may reveal more information about the generated samples. For example,
a set of generated samples with a collapsed mode can be easily classified by a
ML model trained on the real data. As TSTR and TRTS rely on a ML model,
we expect that the number of samples (efficiency) may play an important role
in the problem detection and that the use of neural networks may improve the
performance of these methods.

PS This metric tries to predict the next coming timestamp for a time series based on the
previous data points and hence focuses on the quality of the generated time series
(success in the mixing test). Unfortunately, this metric fails in detecting mode
dropping or overfitting. It can easily perform forecasting tasks on time series with
dropped modes or on time series that correspond perfectly to specific parts of the
training dataset (overfitting). We strongly recommend using this metric to detect
some undesirable features that may be present in the generated time series such
as noise and to use additionally DS, MiVo or TSTR to detect the common GAN
training problems.

DS The main goal behind DS is to discriminate between a set of real and generated
samples. This explains why DS was successful in discriminating tests such as
mixing and mode dropping. Our tests prove that DS is not successful in the
overfitting test. We hypothesize that DS fails to recognize that some parts of the
training dataset are completely ignored when the generated time series corresponds
perfectly to some parts of the training dataset. A major drawback of DS and PS
is the computational inefficiency as it requires training a 2-layer LSTM.

MiVo The tests show that the bidirectional check proposed in MiVo can reveal a lot
of properties about the generated samples: it can detect if modes are dropped
or averaged if overfitting occurs and can help to discriminate between the real
and the generated samples. It is to be noted that the behavior of MiVo was
monotonic in almost all tests, which shows a high sensitivity to the most commonly
occurring training problems and is computationally very efficient due to the simple
construction of the method.

We have previously proven that MiVo is the most efficient and accurate metric for the
time series generation task. In the following, we apply MiVo to the same five datasets and
evaluate the results over the iterations. Fig. 5.10, 5.11, and 5.12 show the results for the
TwoLeadECG, Yoga, and FreezerRegularTrain respectively. For most of the datasets,
we clearly see that the highest MiVo values were noticed for the first iterations and that

87

5 Time Series Analytics

0.0 0.2 0.4 0.6 0.8 1.0
ratio of fake samples

0.00

0.25

0.50

0.75

1.00

sc
or

e

0.0 0.2 0.4 0.6 0.8 1.0
ratio of fake samples

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0
ratio of fake samples

0.00

0.25

0.50

0.75

1.00
MMD TRTS TSTR PS DS MiVo

Figure 5.5: Results of mixing test ratio l of fake samples in Sg(l) is augmented progressively for
the TwoLeadECG (plot on the left), FreezerRegularTrain (plot in the middle) and
Yoga (plot on the right) datasets. The score of the different metrics is computed.
We expect that the score of each metric increases as the ratio l increases, i.e., a
reliable metric should be able to discriminate between real and generated samples
its best score should be achieved on real samples.

0.0 0.2 0.4 0.6 0.8 1.0
ratio of collapsed clusters

0.00

0.25

0.50

0.75

1.00

sc
or

e

0.0 0.2 0.4 0.6 0.8 1.0
ratio of collapsed clusters

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0
ratio of collapsed clusters

0.00

0.25

0.50

0.75

1.00
MMD TRTS TSTR PS DS MiVo

Figure 5.6: Results of mode collapse test for the TwoLeadECG (plot on the left), FreezerReg-
ularTrain (plot in the middle) and Yoga (plot on the right) datasets: the metric
score is computed depending on the number of collapsed clusters. A good evalu-
ation metric should be able to detect mode collapse, i.e., its score should increase
with the ratio of collapsed clusters.

0.0 0.2 0.4 0.6 0.8
ratio of dropped clusters

0.00

0.25

0.50

0.75

1.00

sc
or

e

0.0 0.2 0.4 0.6 0.8
ratio of dropped clusters

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8
ratio of dropped clusters

0.00

0.25

0.50

0.75

1.00
MMD TRTS TSTR PS DS MiVo

Figure 5.7: Results of mode dropping test for the TwoLeadECG (plot on the left), FreezerReg-
ularTrain (plot in the middle) and Yoga (plot on the right) datasets: the metric
score is computed depending on the number of dropped clusters. A good evaluation
metric should be able to detect mode dropping, i.e., its score should increase with
the ratio of dropped clusters.

88

5.3 Experiments

0.0 0.2 0.4 0.6 0.8 1.0
overlapping fraction

0.00

0.25

0.50

0.75

1.00

ga
p

0.0 0.2 0.4 0.6 0.8 1.0
overlapping fraction

0.00

0.25

0.50

0.75

1.00

0.0 0.2 0.4 0.6 0.8 1.0
overlapping fraction

0.00

0.25

0.50

0.75

1.00
MMD TRTS TSTR PS DS MiVo

Figure 5.8: Results of the overfitting test for the TwoLeadECG (plot on the left), FreezerReg-
ularTrain (plot in the middle) and Yoga (plot on the right) datasets: the metric
score is computed depending on the overlapping fraction between a set S′′

r of real
samples and a set Str

r . An accurate metric should increase its score as more samples
of S′′

r are becoming similar to the training set in order to highlight the overfitting
phenomenon.

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

250 500 750
sample size

2

1

0

1

2

 R
ea

l v
s.

ge
n

- r
ea

l v
s.r

ea
l

0.0

0.2

0.4

0.6

0.8

1.0

250 500 750
sample size

2

1

0

1

2

0.0

0.2

0.4

0.6

0.8

1.0

250 500 750
sample size

2

1

0

1

2

MMD TRTS TSTR PS DS MiVo

Figure 5.9: Results of the efficiency test for the TwoLeadECG (plot on the left), FreezerRegu-
larTrain (plot in the middle) and Yoga (plot on the right) datasets: the values of
ρ(Sr, S

′
r) are computed with different number of samples (upper plot). The second

plot depicts the value of ρ(Sg, Sr) − ρ(S′
r, Sr). This difference should be positive.

For a reasonable number of samples an accurate metric should score ρ(Sg, Sr) higher
than ρ(S′

r, Sr).

89

5 Time Series Analytics

Table 5.1: Comparison of the different GAN metrics

Tests Metrics Figure Expected be-
havior

MMD TRTS TSTR PS DS MiVo

Mixing + - - - - - ++ 5.5 scores increase
with ratio of
fake samples

Mode
Collapse

- - + + - ++ 5.6 scores increase
with ratio of
collapsed clus-
ters

Mode
Dropping

- - - - - - + ++ 5.7 scores increase
with ratio of
dropped clus-
ters

Overfitting - ++ ++ - - ++ 5.8 scores increase
with an increas-
ing overlapping
fraction

Sample
Efficiency

+ + + - + ++ 5.9 scores stable
with reason-
able number
of samples
and ρ(Sg, Sr)
−ρ(S′

r, Sr) posi-
tive

Computa-
tional
Efficiency

++ + + - - + a high computa-
tional efficiency

90

5.3 Experiments

the registered values are getting lower over the iterations. This shows that there is an
improvement in the quality of the generated data over the iterations, i.e., the generated
time series are getting closer to the real ones and for each real one, we can find a similar
generated. It is to be noted that training and stabilizing GAN models can be complicated
and tedious. Moreover, GAN models are known to have a non-monotonic behavior.
Indeed, there is no guarantee that the performance of GAN will be stable over the
iterations and have the expected behavior, i.e., bad performance at the first iterations, a
better one over the iterations, and a stable and best performance for the last iterations.
Hence, in many situations, the training procedure and the performance of the GAN
model may be unstable. In such cases, such as for the Yoga and FreezerRegularTrain,
MiVo can help to identify some iteration candidates with the best performance.

0 200 400 600 800 1000
Iterations

1

2

3

4

5

6

7

8

9

M
iV

o

Figure 5.10: MiVo metric computed for the TwoLeadECG dataset over the training iterations.
A lower MiVo value denotes a better GAN performance.

In the following, we use the VA framework to visually evaluate the quality of the
generated time series for the different datasets. The results of the VA framework are
visualized in Figs. 5.13, 5.14, and 5.15. For the TwoLeadECG, the INND and ONND
are getting lower over the iterations. This shows that each generated time series is
corresponding to at least a real one (high-fidelity) and that for each real time series there
is a similar generated time series (high-diversity). In the Detailed Comparative View,
we notice an evolution in the quality of the generated data after every 200 iterations. By
way of example, the best behavior was noticed at iteration 800 for the TwoLeadECG.
This fits perfectly with the output of the MiVo metric illustrated in Fig. 5.10. For
Yoga and FreezerRegularTrain, the MiVo metric showed an unstable behavior. This was
confirmed in the GAN Iteration View of the VA framework where the INND and ONND
values were unstable. We conclude that during the training the model was diverging at
some iterations. Furthermore, the sudden peaks in the MiVo values of the Yoga dataset

91

5 Time Series Analytics

0 200 400 600 800 1000
Iterations

15

20

25

30

35

40

45

50

M
iV

o

Figure 5.11: MiVo metric computed for the Yoga dataset over the training iterations. A lower
MiVo value denotes a better GAN performance.

0 200 400 600 800 1000
Iterations

25

50

75

100

125

150

175

200

M
iV

o

Figure 5.12: MiVo metric computed for the FreezerRegularTrain dataset over the training it-
erations. A lower MiVo value denotes a better GAN performance.

92

5.3 Experiments

were also noticed in the GAN Iteration View. At the same time, the ONND values
were lower than the INND. It was also interesting to see that even for the iterations
characterized by the lowest MiVo values the generated data differ from the real ones.
The FreezerRegularTrain dataset is characterized by high INND values. In the ONND
View, we see a bright part corresponding to specific time series, i.e., the model is getting
closer to a specific part of the real dataset and ignoring the rest of the data. A further
investigation in the Detailed Comparative View shows outliers in the time series. Hence,
the generated data differ from the real ones. We clearly see that for this dataset it was
difficult for the model to achieve the expected behavior.
To conclude, the MiVo metric is really helpful to get a global overview of the GAN

performance and to select some iterations with reasonable and low MiVo values but as
next step, the selected iterations must be further investigated with the VA framework.
We refer to Appendix A.2 for further figures highlighting the MiVo values and the output
of the VA framework for the ItalyPowerDemand and DistalPhalanxTW.

Figure 5.13: Results of the TwoLeadECG dataset illustrated in the VA framework

After that, we use MiVo in a sophisticated manner to evaluate the translated data and
to find the iteration with the best performance. The obtained MiVo values for test 3, 5
and 8 are depicted in Fig. 5.16, Fig. 5.17, Fig. 5.18, Fig. 5.19, and Fig. 5.20. For test 3
(for both translation directions) and for test 8 (for the target direction), we notice, an
improvement in the computed MiVo values, i.e., the MiVo values are at the beginning
high and are getting lower over the iterations. This proves that DR-TiST is capturing
the characteristics of both classes over the iterations and improving the quality of the

93

5 Time Series Analytics

Figure 5.14: Results of the Yoga dataset illustrated in the VA framework

Figure 5.15: Results of the FreezerRegularTrain dataset illustrated in the VA framework

94

5.3 Experiments

transformed time series so that these are getting closer to the expected behavior. In
contrast to that, for test 5, the MiVo values were noisy and unstable. This proves that
for DR-TiST, it was difficult to correctly map the time series to the target domain.
In such cases, it is important to select iterations with the lowest MiVo values for both
transformation directions and to further investigate the obtained and target time series
visually. The MiVo computation results of the remaining translation tests of chapter 4
are illustrated in Appendix A.2.

0 10 20 30 40 50 60 70 80 90
Iterations

20

40

60

80

100

120

140

M
iV

o

Figure 5.16: MiVo metric computed between target time series depicting the behavior of engine
1 in test 3 and the time series obtained after the translation. A lower MiVo value
denotes a better similarity between the representation of engine 1 obtained after
the transformation and the expected behavior.

In this chapter, we introduced two analytical approaches a computational method,
MiVo, and a visual framework to assess the quality of generated data. By means of nu-
merous tests, we tried to compare the performance of MiVo to the existing GAN metrics
in detecting common training problems. The conducted tests show that TSTR can be
successfully used to detect common GAN training problems such as mode collapse/drop-
ping and overfitting. PS can be considered as a similarity measure between the real and
generated data. However, DS and PS are computationally inefficient. MMD was not
really sensitive to the conducted tests as it doesn’t consider the characteristics of time
series. MiVo showed the best performance in all the conducted tests, except for mode
dropping where DS showed slightly higher reactivity to the number of dropped modes.
Furthermore, a human-centered VA approach is presented to enable in-depth investiga-
tion of the generated data and to guide ML experts to either trust or reject a used GAN
model. MiVo and the VA approach were used to evaluate the time series generation
task computationally and visually with the purpose of highlighting the advantages and
disadvantages of each method. The presented approaches constitute a starting point to

95

5 Time Series Analytics

0 10 20 30 40 50 60 70 80 90
Iterations

10

15

20

25

30

35

40

45

M
iV

o

Figure 5.17: MiVo metric computed between target time series depicting the behavior of engine
2 in test 3 and the time series obtained after the translation. A lower MiVo value
denotes a better similarity between the representation of engine 2 obtained after
the transformation and the expected behavior.

0 50 100 150 200 250 300
Iterations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
iV

o

Figure 5.18: MiVo metric computed between target time series depicting the laying activity
in test 5 and the time series obtained after the translation. A lower MiVo value
denotes a better similarity between the representation of laying obtained after the
transformation and the expected behavior.

96

5.3 Experiments

0 50 100 150 200 250 300
Iterations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
iV

o

Figure 5.19: MiVo metric computed between target time series depicting the walking activity
in test 5 and the time series obtained after the translation. A lower MiVo value
denotes a better similarity between the representation of walking obtained after
the transformation and the expected behavior.

0 20 40 60 80 100
Iterations

2

4

6

8

10

12

14

M
iV

o

Figure 5.20: MiVo metric computed between time series depicting the target behavior for the
DC motor dataset in test 9 and the time series obtained after the translation.
A lower MiVo value denotes a better similarity between the time series obtained
after the transformation and the expected behavior.

97

5 Time Series Analytics

guide a human to decide if data generated by a GAN algorithm can be used to build
reliable and trustworthy AI models. We believe that this topic will gain importance in
the future since more AI algorithms will rely on generated data.

98

CHAPTER

6

CONCLUSIONS AND FUTURE WORK

The major aim of this thesis was to propose new generative approaches to synthesize
more data for an existing dataset or to simulate never seen conditions by mapping time
series between different application domains. To this end, we investigated the efficiency
and the applicability of GAN on time series data. Motivated by its extensive use and
impressive success in numerous computer vision applications, we tried to explore this
technique for this special type of data. First, we considered the problem of generating
new time series for multi-class datasets and defined the requirements and challenges
that are related to this task. Therefore, we presented ClaRe-GAN a sophisticated GAN
architecture that uses special encoders and an additional discriminator to learn both
the inter- and intra-class properties. In the second part of the thesis, we proposed
a novel framework, DR-TiST, for the challenging task of translating time series, i.e.,
mapping time series from a source to a target domain. Its feasibility and efficiency
were investigated for three different use cases where the time series translation topic is
important. Moreover, we focused on enabling a privacy-preserving time series generation
and translation by combining the existing and new approaches with DP. Finally, we
presented two analytical approaches, computational and visual, that ease the comparison
between the obtained time series after the generation or translation and the desired
behavior.

Chapter 2 provided a thorough literature review and introduced the theoretical back-
ground of the thesis. A well-known technique for data generation namely GAN was
rigorously defined and the common training problems were determined. Some state-of-
the-art GAN models and evaluation methods for time series data were presented. In
addition to that, the topic of data translation was deeply investigated by reviewing the
corresponding state-of-the-art image-to-image translation methods. Finally, the main

99

6 Conclusions and Future Work

technique that was used in the thesis to guarantee privacy is analyzed. The core idea of
DP and the intuition behind it are meticulously explained and the existing differentially
private ML approaches are briefly introduced.

Chapter 3 focused on the time series generation topic by tackling two major issues
namely synthesizing time series for an existing dataset in a standard as well as a private
context. First, we proposed a new GAN architecture specially designed to deal with time
series stemming from multi-class datasets. Aware that for datasets with high-variability
the performance of the state-of-the-art models is still limited, we presented ClaRe-GAN
that improved the quality of the generated data drastically. The new generative model
for time series with class information efficiently simulates novel times series by capturing
both the class association and variability of the training dataset. Our approach relied
on class conditional encoders and a class discriminator to extract simultaneously class-
specific and class-independent features. We compared our model to different state-of-
the-art generative models for time series and proved that it extracts effectively the inter-
and intra-class properties leading to a significant improvement in the quality of the
synthesized time series even in challenging setups such as imbalanced datasets.
Finally, we presented methods to generate time series in a private manner by combining

the existing GAN frameworks for time series and ClaRe-GAN with DP. We have shown
that the developed frameworks achieve the desired behavior and that DP-TimeGAN
and DP-ClaRe-GAN outperform the existing differentially private RCGAN in terms
of privacy and usefulness of the generated time series across different domains. Our
experiments also show that DP-C-RNN-GAN achieves the best privacy values. However,
it decreases drastically the quality of the generated data.
In a similar fashion, we considered in Chapter 4 the same issues while translating time

series between different application domains. In this context, we proposed DR-TiST a
new algorithm that accomplishes time series translation by decomposing them into a
functional behavior and an operating mode. The presented framework applies the gated
CNN structure on DRIT an algorithm originally designed for image-to-image translation
purposes. The utility of the proposed method is tested on three use cases: to map time
series that depict the behavior of many machines between different environmental setups,
to generate human activities, and to find an optimal controller for a non-accessible DC
motor. As a first use case, we considered a real-world use case where we transfer the
behavior of a ventilation system operating in a small room with slow on/off cycles to
another environment characterized by faster on/off cycles. The second use case targets
transforming sensor measurements that depict a specific human activity to depict another
target activity. Finally, the last use case investigated the possibility of simulating the
effect of a controller on a DC motor without neither knowing its mathematical model
nor performing real-life tests on this motor. Results show that for the different use cases,
DR-TiST outperforms CycleGAN-VC both in quality of the generated time series as well
as in runtime.
Last but not least, we proposed two methods, DP-CycleGAN-VC and DP-DR-TiST,

to translate time series across different domains with privacy guarantees. We showed
that the proposed methods can be used for the previously described three different use
cases. Our approach relied on DP a well-known method to protect the training dataset

100

against membership attacks. In almost all tests, DP-DR-TiST achieved a high utility
for a reasonable privacy loss while DP-CycleGAN-VC guarantees higher privacy at the
expense of the utility. In the future, we recommend practitioners to use DP-DR-TiST
for translation purposes as it finds the right trade-off between privacy and utility.

Chapter 5 addressed the problem of assessing the quality of the generated and trans-
lated time series by introducing a computational and a visual evaluation method. Our
main purpose was to give ML experts guidance to trust or reject a generative model.
Therefore, we tested the existing GAN metrics and compared them to each other. We
presented a compiled summary of the different existing metrics, their applicability, and
their advantages and disadvantages. In addition to that, a new metric, MiVo, is pro-
posed. The novel method relies on the nearest neighbor distances of real and generated
data and enables to evaluate simultaneously the quality and the diversity of generated
time series by finding a real pair for each generated (quality) and for each real a gener-
ated pair (diversity). We proved in our tests that MiVo enables a simultaneous detection
of many training problems. After that, we applied MiVo in a special manner to compare
the time series obtained after the translation with the desired behavior.

A metric can give the ML expert a global and efficient overview over the iteration. In
spite of that, in many situations, a visual inspection is needed to further investigate the
time series. To this end, we proposed a VA framework that relies on two visualization
techniques Colorfield and TimeHistogram as well as a distance measure to support ML
experts in the evaluation process. In general, we recommend ML expert to start the
evaluation process with a metric or a combination of metrics that may reveal the common
training difficulties and problems in order to select some interesting iterations. As a next
step, the VA framework can be used to investigate the generated time series in-depth
and to compare them to the real ones in an efficient manner.

In spite of the major contributions of the undertaken work, some challenges remained
unsolved. In the following, we highlight some potential future work directions and some
research questions that should be considered in the future to broaden the use of the, in
this thesis, developed generation and translation techniques.

Throughout this thesis we showed that synthesizing time series that fulfill some specific
criteria is a tedious task that must be rigorously investigated. To map time series
between different application domains or produce more data for an existing dataset,
multiple challenges must be addressed. In spite of that, we presented in this work
efficient generation and translation algorithms for time series that are applicable in
standard as well as private setups. We also proved that these algorithms outperform the
state-of-the-art models. Moreover, we enabled a rigorous evaluation of the developed
and existing algorithms using suitable analytical approaches. However, some further
challenges must be addressed in the future to make the synthesis task wider practicable:

� How can we adapt the ClaRe-GAN algorithm to be applicable for datasets stem-
ming from a single class?

� How can we perform a multi-domain time series translation?

101

6 Conclusions and Future Work

� How can we protect the privacy of the original dataset that is used for time series
generation and translation against more serious attacks than membership attacks
such as model inversion and data reconstruction attacks?

� How can we assess the quality of the generated and translated data for multivariate
time series? How can we extend MiVo and the VA approach presented in chapter
5 to be suitable for multivariate time series?

� Which VA approach can enable an efficient evaluation of time series translation
techniques?

We presented ClaRe-GAN which thanks to its special architecture improved the qual-
ity of the generated data drastically. Its outstanding performance is related with the
fact that each class is treated separately by encoding its characteristics. This allows
for efficient extraction of the class-specific as well as class-independent properties. Un-
fortunately, the ClaRe-GAN architecture and precisely the class discriminator are only
applicable for multi-class datasets. In the future, it is crucial to investigate new GAN ar-
chitectures that generate data of high-quality and that are applicable for data stemming
from one class. A possible solution to this problem would be to re-adapt the architecture
of ClaRe-GAN to make it usable for such datasets.
We tackled the problem of mapping time series from a source domain A to a target

domain B by presenting DR-TiST. We used the disentangled representation to split each
time series into a functional behavior highlighting the properties of the time series and
a context describing the environmental setup. Based on the extracted information, it
is possible to map any functional behavior to any other operating mode and simulate
never seen conditions. In practice, it may be desirable to map the time series to a nonex-
istent environmental setup that can be obtained by combining different environmental
setups or to investigate new functional behavior stemming from a collection of existing
functional behaviors. To deal with these issues, multi-domain translation techniques are
of paramount importance. Hence, it is helpful to adapt and extend the architecture of
DR-TiST for multi-domain translation purposes.
All the private approaches that we presented in this work namely DP-C-RNN-GAN,

DP-TimeGAN, DP-ClaRe-GAN, DP-CycleGAN-VC, and DP-DR-TiST rely on DP a
well-known method to protect the training dataset. DP protects the privacy of a dataset
by bounding the impact of each dataset’s instance. This technique can be successfully
used to prevent membership attacks which aim at identifying whether a specific data
point belongs to the training dataset. Unfortunately, this method cannot protect the
privacy of the dataset against more serious attacks such as model inversion attacks or
data reconstruction attacks where there is a risk of retrieving the whole training dataset.
In the future, we intend to consider these privacy issues while generating and translating
time series.
MiVo and the VA framework are two analytical approaches presented in Chapter 5

with the aim of assessing the quality of the generated data. These methods are only
applicable on univariate time series. To enable a rigorous evaluation for multivariate
time series the views of the VA system should be re-adapted and extended to enable a

102

comparison for the different attributes of multivariate time series. Moreover, the MiVo
metric was only designed for univariate time series. It is essential to review this metric
and the computed INND and ONND to make it appropriate for multivariate time series.
In our experiments, we have noticed that the combination of a computational metric,

i.e., MiVo with a visual metric, i.e., our VA Approach enables a rigorous investigation
of the generated time series. By way of example, it was helpful to select some iterations
with MiVo as it provides a fast and global overview over the iterations and to further
investigate them and the corresponding time series with the VA framework. Unfortu-
nately, the views of our VA framework and the concept were uniquely designed to ease
the comparison between real and generated time series. Due to the enormous advantages
of a visual inspection, it is important to design new VA frameworks that consider the
translation task and allow for an efficient and rigorous evaluation of the mapped time
series. It is to be noted that assessing the quality of generated data is less complex than
evaluating the translated time series. In fact, finding the similarities and differences
between the real and the generated data is easier than identifying the properties of the
time series that should be preserved, removed, or added while translating time series
across different application domains.

103

BIBLIOGRAPHY

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. Generative adversarial nets. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages 2672–2680. Curran Associates,
Inc., 2014.

[2] J. Donahue and K. Simonyan. Large scale adversarial representation learning. In
Advances in Neural Information Processing Systems, pages 10542–10552, 2019.

[3] T. Karras, S. Laine, and T. Aila. A style-based generator architecture for gener-
ative adversarial networks. In Proceedings of the IEEE conference on Computer
Vision and Pattern Recognition, pages 4401–4410, 2019.

[4] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing
and improving the image quality of StyleGAN. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 8110–8119, 2020.

[5] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Im-
proved techniques for training GANs. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing
Systems 29, pages 2234–2242. Curran Associates, Inc., 2016.

[6] S. Barratt and R. Sharma. A note on the inception score. arXiv preprint
arXiv:1801.01973, 2018.

[7] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter. GANs
trained by a two time-scale update rule converge to a local nash equilibrium.
Advances in neural information processing systems, 30, 2017.

105

BIBLIOGRAPHY

[8] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2818–2826, 2016.

[9] O. Mogren. C-RNN-GAN: A continuous recurrent neural network with adversarial
training. In Constructive Machine Learning Workshop (CML) at NIPS 2016, 2016.

[10] M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

[11] C. Esteban, S. L. Hyland, and G. Rätsch. Real-valued (medical) time series gen-
eration with recurrent conditional GANs. arXiv preprint arXiv:1706.02633, 2017.

[12] J. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A Efros, O. Wang, and E. Shecht-
man. Multimodal image-to-image translation by enforcing Bi-Cycle consistency.
In Advances in neural information processing systems, pages 465–476, 2017.

[13] J. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation us-
ing cycle-consistent adversarial networks. In Proceedings of the IEEE International
Conference on Computer Vision, pages 2223–2232, 2017.

[14] M. Liu, T. Breuel, and J. Kautz. Unsupervised image-to-image translation net-
works. In Advances in neural information processing systems, pages 700–708, 2017.

[15] H. Lee, H. Tseng, Q. Mao, J. Huang, Y. Lu, M. Singh, and M. Yang. Drit++:
Diverse image-to-image translation via disentangled representations. International
Journal of Computer Vision, 128(10):2402–2417, 2020.

[16] H. Arnout, J. Bronner, J. Kehrer, and T. Runkler. DR-TiST: Disentangled repre-
sentation for time series translation across application domains. In 2020 Interna-
tional Joint Conference on Neural Networks (IJCNN). IEEE, 2020.

[17] H. Arnout, J. Bronner, J. Kehrer, and T. Runkler. Translation of time series data
from controlled dc motors using disentangled representation learning. In 2021
IEEE Symposium Series on Computational Intelligence (SSCI), 2021.

[18] T. Kaneko and H. Kameoka. CycleGAN-VC: Non-parallel voice conversion using
cycle-consistent adversarial networks. In 2018 26th European Signal Processing
Conference (EUSIPCO), pages 2100–2104. IEEE, 2018.

[19] J. Curzon, T. A. Kosa, R. Akalu, and K. El-Khatib. Privacy and artificial intelli-
gence. IEEE Transactions on Artificial Intelligence, 2(2):96–108, 2021.

[20] J. Yoon, D. Jarrett, and M. van der Schaar. Time-series generative adversarial
networks. In Advances in Neural Information Processing Systems, pages 5508–
5518, 2019.

106

BIBLIOGRAPHY

[21] A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola. A kernel method
for the two-sample-problem. Advances in neural information processing systems,
19:513–520, 2006.

[22] Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. In
International Conference on Machine Learning, pages 1718–1727. PMLR, 2015.

[23] Q. Xu, G. Huang, Y. Yuan, C. Guo, Y. Sun, F. Wu, and K. Weinberger. An
empirical study on evaluation metrics of generative adversarial networks. arXiv
preprint arXiv:1806.07755, 2018.

[24] H. Arnout, J. Bronner, and T. Runkler. Evaluation of generative adversarial
networks for time series data. In 2021 International Joint Conference on Neural
Networks (IJCNN). IEEE, 2021.

[25] H. Arnout, J. Kehrer, J. Bronner, and T. Runkler. Visual evaluation of generative
adversarial networks for time series data. In Human-Centered AI: Trustworthiness
of AI Models & Data (HAI) track at AAAI Fall Symposium, 2019.

[26] H. Arnout, J. Bronner, J. Kehrer, and T. Runkler. Evaluierungsrahmen für zeitrei-
hendaten. European pat. EP3809334A1. Siemens AG, April 2021.

[27] H. Lee, H. Tseng, J. Huang, M. Singh, and M. Yang. Diverse image-to-image trans-
lation via disentangled representations. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 35–51, 2018.

[28] H. Arnout, J. Bronner, and T. Runkler. ClaRe-GAN: Generation of class-specific
time series. In 2021 IEEE Symposium Series on Computational Intelligence
(SSCI), 2021.

[29] H. Arnout, J. Bronner, and T. Runkler. Differentially private time series genera-
tion. In Computational Intelligence and Machine Learning ESANN 2021 proceed-
ings, pages 617–622, 2021.

[30] H. Arnout and T. Runkler. Privacy-preserving time series translation. Submitted
to Neural Networks, 2022.

[31] U. Schlegel, H. Arnout, M. El-Assady, D. Oelke, and D. A. Keim. Towards a rig-
orous evaluation of xai methods on time series. In 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW), pages 4197–4201. IEEE,
2019.

[32] U. Schlegel, E. Cakmak, H. Arnout, M. El-Assady, D. Oelke, and D. A. Keim.
Towards visual debugging for multi-target time series classification. In Proceedings
of the 25th International Conference on Intelligent User Interfaces, pages 202–206,
2020.

[33] A. Antoniou, A. Storkey, and H. Edwards. Data augmentation generative adver-
sarial networks. arXiv preprint arXiv:1711.04340, 2017.

107

BIBLIOGRAPHY

[34] F. H. K. S. Tanaka and C. Aranha. Data augmentation using GANs. arXiv preprint
arXiv:1904.09135, 2019.

[35] F. Di Mattia, P. Galeone, M. De Simoni, and E. Ghelfi. A survey on GANs for
anomaly detection. arXiv preprint arXiv:1906.11632, 2019.

[36] A. Jabbar, X. Li, and O. Bourahla. A survey on generative adversarial networks:
Variants, applications, and training. ACM Computing Surveys (CSUR), 54(8):1–
49, 2021.

[37] R. Sharma, S. Barratt, S. Ermon, and V. Pande. Improved training with curricu-
lum GANs. arXiv preprint arXiv:1807.09295, 2018.

[38] T. Wang, M. Liu, J. Zhu, A. Tao, J. Kautz, and B. Catanzaro. High-resolution
image synthesis and semantic manipulation with conditional GANs. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 8798–
8807, 2018.

[39] I. Durugkar, I. Gemp, and S. Mahadevan. Generative multi-adversarial networks.
arXiv preprint arXiv:1611.01673, 2016.

[40] T. Doan, J. Monteiro, I. Albuquerque, B. Mazoure, A. Durand, J. Pineau, and
R. D. Hjelm. On-line adaptative curriculum learning for GANs. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages 3470–3477, 2019.

[41] G. Mordido, H. Yang, and C. Meinel. Dropout-GAN: Learning from a dynamic
ensemble of discriminators. arXiv preprint arXiv:1807.11346, 2018.

[42] M. Ben-Yosef and D. Weinshall. Gaussian mixture generative adversarial networks
for diverse datasets, and the unsupervised clustering of images. arXiv preprint
arXiv:1808.10356, 2018.

[43] A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity
natural image synthesis. arXiv preprint arXiv:1809.11096, 2018.

[44] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with
deep convolutional generative adversarial networks. In International Conference
on Learning Representations (ICLR), 2016.

[45] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. Info-
GAN: Interpretable representation learning by information maximizing generative
adversarial nets. In Proceedings of the 30th International Conference on Neural
Information Processing Systems, pages 2180–2188, 2016.

[46] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial net-
works. In International Conference on Machine Learning, pages 214–223. PMLR,
2017.

108

BIBLIOGRAPHY

[47] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved
training of wasserstein GANs. arXiv preprint arXiv:1704.00028, 2017.

[48] M. Arjovsky and L. Bottou. Towards principled methods for training generative
adversarial networks. arXiv preprint arXiv:1701.04862, 2017.

[49] K. Roth, A. Lucchi, S. Nowozin, and T. Hofmann. Stabilizing training of generative
adversarial networks through regularization. arXiv preprint arXiv:1705.09367,
2017.

[50] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. arXiv preprint arXiv:1710.10196, 2017.

[51] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of
machine learning research, 9(11):2579––2605, 2008.

[52] F. B. Bryant and P. R. Yarnold. Principal-components analysis and exploratory
and confirmatory factor analysis. 1995.

[53] P. Isola, J. Zhu, T. Zhou, and A. A Efros. Image-to-image translation with condi-
tional adversarial networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1125–1134, 2017.

[54] X. Huang, M. Liu, S. Belongie, and J. Kautz. Multimodal unsupervised image-to-
image translation. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 172–189, 2018.

[55] T. Kim, M. Cha, H. Kim, J. K. Lee, and J. Kim. Learning to discover cross-domain
relations with generative adversarial networks. In International Conference on
Machine Learning, pages 1857–1865. PMLR, 2017.

[56] C. Dwork. Differential privacy. In International Colloquium on Automata, Lan-
guages, and Programming, pages 1–12. Springer, 2006.

[57] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, and M. Naor. Our data, our-
selves: Privacy via distributed noise generation. In Annual International Confer-
ence on the Theory and Applications of Cryptographic Techniques, pages 486–503.
Springer, 2006.

[58] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography Conference, pages 265–284.
Springer, 2006.

[59] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy.
Foundations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[60] C. Dwork. Differential privacy: A survey of results. In International Conference
on Theory and Applications of Models of Computation, pages 1–19. Springer, 2008.

109

BIBLIOGRAPHY

[61] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and
L. Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 308–318,
2016.

[62] L. Xie, K. Lin, S. Wang, F. Wang, and J. Zhou. Differentially private generative
adversarial network. arXiv preprint arXiv:1802.06739, 2018.

[63] X. Zhang, S. Ji, and T. Wang. Differentially private releasing via deep generative
model (technical report). arXiv preprint arXiv:1801.01594, 2018.

[64] J. Jordon, J. Yoon, and M. Van Der Schaar. PATE-GAN: Generating synthetic
data with differential privacy guarantees. In International Conference on Learning
Representations, 2018.

[65] R. Torkzadehmahani, P. Kairouz, and B. Paten. DP-CGAN: Differentially private
synthetic data and label generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops, 2019.

[66] S. Augenstein, H B. McMahan, D. Ramage, S. Ramaswamy, P. Kairouz, M. Chen,
R. Mathews, et al. Generative models for effective ML on private, decentralized
datasets. arXiv preprint arXiv:1911.06679, 2019.

[67] L. Fan. A survey of differentially private generative adversarial networks. In The
AAAI Workshop on Privacy-Preserving Artificial Intelligence, 2020.

[68] A. Bagnall, J. Lines, W. Vickers, and E. Keogh. The UEA & UCR time series
classification repository. URL http://www. timeseriesclassification. com, 2018.

[69] T. Wang, M. Liu, J. Zhu, A. Tao, J. Kautz, and B. Catanzaro. High-resolution
image synthesis and semantic manipulation with conditional GANs. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 8798–
8807, 2018.

[70] H. Zhang, T. Xu, H. Li, S. Zhang, X. Wang, X. Huang, and D. N. Metaxas. Stack-
GAN++: Realistic image synthesis with stacked generative adversarial networks.
IEEE transactions on pattern analysis and machine intelligence, 41(8):1947–1962,
2018.

[71] Q. Mao, H. Lee, H. Tseng, S. Ma, and M. Yang. Mode seeking generative ad-
versarial networks for diverse image synthesis. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1429–1437, 2019.

[72] I. Mironov. Rényi differential privacy. In IEEE 30th Computer Security Founda-
tions Symposium (CSF), pages 263–275. IEEE, 2017.

[73] A. Bagnall, J. Linesand, A. Bostrom, J. Large, and E. Keogh. The great time series
classification bake off: a review and experimental evaluation of recent algorithmic
advances. Data mining and knowledge discovery, 31(3):606–660, 2017.

110

BIBLIOGRAPHY

[74] A. L. Goldberger, , L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. Ch. Ivanov, R. G.
Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. Physiobank,
physiotoolkit, and physionet: components of a new research resource for complex
physiologic signals. circulation, 101(23):e215–e220, 2000.

[75] L. M. Davis. Predictive modelling of bone ageing. PhD thesis, University of East
Anglia, 2013.

[76] L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[77] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with gated
convolutional networks. In International conference on machine learning, pages
933–941. PMLR, 2017.

[78] D. Ulyanov, A. Vedaldi, and V. Lempitsky. Instance normalization: The missing
ingredient for fast stylization. arXiv preprint arXiv:1607.08022, 2016.

[79] W. Shi, J. Caballero, F. Huszar, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert,
and Z. Wang. Real-time single image and video super-resolution using an efficient
sub-pixel convolutional neural network. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1874–1883, 2016.

[80] R. Zhang, J. Zhu, P. Isola, X. Geng, A. S Lin, T. Yu, and A. A Efros. Real-
time user-guided image colorization with learned deep priors. arXiv preprint
arXiv:1705.02999, 2017.

[81] R. Zhang, P. Isola, and A. A Efros. Colorful image colorization. In European
conference on computer vision, pages 649–666. Springer, 2016.

[82] K. Aggarwal, S. Joty, L. Fernandez-Luque, and J. Srivastava. Adversarial unsuper-
vised representation learning for activity time-series. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 33, pages 834–841, 2019.

[83] S. Ekinci, D. Izci, and B. Hekimoğlu. PID speed control of DC motor using harris
hawks optimization algorithm. In 2020 International Conference on Electrical,
Communication, and Computer Engineering (ICECCE), pages 1–6. IEEE, 2020.

[84] S. J. Hammoodi, K. S. Flayyih, and A. R. Hamad. Design and implementation
speed control system of DC motor based on PID control and matlab simulink.
International Journal of Power Electronics and Drive Systems, 11(1):127, 2020.

[85] W. P. Aung. Analysis on modeling and simulink of DC motor and its driving
system used for wheeled mobile robot. World Academy of Science, Engineering
and Technology, 32:299–306, 2007.

[86] Y. Ma, Y. Liu, and C. Wang. Design of parameters self-tuning fuzzy PID control for
DC motor. In 2010 The 2nd International Conference on Industrial Mechatronics
and Automation, volume 2, pages 345–348. IEEE, 2010.

111

BIBLIOGRAPHY

[87] T. Sands. Control of DC motors to guide unmanned underwater vehicles. Applied
Sciences, 11(5):2144, 2021.

[88] P. Ejegwa, S. Wen, Y. Feng, W. Zhang, and N. Tang. Novel pythagorean fuzzy
correlation measures via pythagorean fuzzy deviation, variance and covariance with
applications to pattern recognition and career placement. IEEE Transactions on
Fuzzy Systems, 2021.

[89] Y. Feng, W. Zhang, J. Xiong, H. Li, and L. Rutkowski. Event-triggering interaction
scheme for discrete-time decentralized optimization with nonuniform step sizes.
IEEE Transactions on Cybernetics, pages 1–10, 2020.

[90] B. O. Onasanya, S. Wen, Y. Feng, W. Zhang, and J. Xiong. Fuzzy coefficient
of impulsive intensity in a nonlinear impulsive control system. Neural Processing
Letters, pages 1–19, 2021.

[91] Y. Feng, X. Yang, Q. Song, and J. Cao. Synchronization of memristive neural net-
works with mixed delays via quantized intermittent control. Applied Mathematics
and Computation, 339:874–887, 2018.

[92] J. Qi, C. Li, and T. Huang. Stability of inertial BAM neural network with time-
varying delay via impulsive control. Neurocomputing, 161:162–167, 2015.

[93] C. Li, G. Feng, and T. Huang. On hybrid impulsive and switching neural net-
works. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernet-
ics), 38(6):1549–1560, 2008.

[94] R. Kumar and V. Girdhar. High performance fuzzy adaptive control for DC motor.
Global Journal of Research In Engineering, 2013.

[95] A. R. Hambley, N. Kumar, and A. R. Kulkarni. Electrical engineering: principles
and applications. Pearson Prentice Hall Upper Saddle River, NJ, 2008.

[96] T. Kara and I. Eker. Nonlinear modeling and identification of a DC motor for
bidirectional operation with real time experiments. Energy Conversion and Man-
agement, 45(7-8):1087–1106, 2004.

[97] A. Woźniak. A simple model of drive with friction for control system simulation.
In International Conference on Computational Science, pages 897–906. Springer,
2003.

[98] M. M. Sabir and J. A. Khan. Optimal design of PID controller for the speed
control of DC motor by using metaheuristic techniques. Advances in artificial
neural systems, 2014.

[99] P. J. Antsaklis and A. N. Michel. Linear systems. Springer Science & Business
Media, 2006.

112

BIBLIOGRAPHY

[100] G. F. Franklin, J. D. Powell, M. L. Workman, et al. Digital control of dynamic
systems, volume 3. Addison-wesley Reading, MA, 1998.

[101] J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[102] C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–
297, 1995.

[103] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 785–794, 2016.

[104] W. Aigner, S. Miksch, W. Müller, H. Schumann, and C. Tominski. Visual meth-
ods for analyzing time-oriented data. IEEE Transactions on Visualization and
Computer Graphics, 14(1):47–60, Jan 2008.

[105] W. Aigner, S. Miksch, H. Schumann, and C. Tominski. Visualization of Time-
Oriented Data. Springer Publishing Company, Incorporated, 1st edition, 2011.

[106] L. Theis, A. van den Oord, and M. Bethge. A note on the evaluation of gen-
erative models. In International Conference on Learning Representations, page
arXiv:1511.01844, Apr 2016.

[107] J. Serra and J. L. Arcos. An empirical evaluation of similarity measures for time
series classification. Knowledge-Based Systems, 67:305–314, 2014.

[108] R. Kosara, F. Bendix, and H. Hauser. Time Histograms for Large, Time-dependent
Data. In Proceedings of the Sixth Joint Eurographics - IEEE TCVG Conference on
Visualization, VISSYM’04, pages 45–54, Aire-la-Ville, Switzerland, Switzerland,
2004. Eurographics Association.

[109] A. Gogolou, T. Tsandilas, T. Palpanas, and A. Bezerianos. Comparing similarity
perception in time series visualizations. IEEE Transactions on Visualization and
Computer Graphics, 25(1):523–533, Jan 2019.

[110] J. Kruskal and M. Liberman. The symmetric time-warping problem: From con-
tinuous to discrete. Time Warps, String Edits, and Macromolecules: The Theory
and Practice of Sequence Comparison, 01 1983.

[111] S. Salvador and P. Chan. Toward accurate dynamic time warping in linear time
and space. Intelligent Data Analysis, 11(5):561–580, 2007.

113

APPENDIX

A

APPENDIX: ADDITIONAL FIGURES

A.1 Time Series Generation

115

A Appendix: Additional Figures

Figure A.1: Illustration of the real and generated time series by ClaRe-GAN, RCGAN, C-RNN-
GAN and TimeGAN for the TwoLeadECG dataset. The time series are depicted
in black. The red line presents an example time series for each subplot. For the
conditional GANs, ClaRe-GAN and RCGAN, and the real dataset we visualize the
time series of each class separately.

116

A.1 Time Series Generation

Figure A.2: Illustration of the real and generated time series by ClaRe-GAN, RCGAN, C-RNN-
GAN and TimeGAN for the FreezerRegularTrain dataset. The time series are
depicted in black. The red line presents an example time series for each subplot.
For the conditional GANs, ClaRe-GAN and RCGAN, and the real dataset we
visualize the time series of each class separately.

117

A Appendix: Additional Figures

Figure A.3: Illustration of the real and generated time series by ClaRe-GAN, RCGAN, C-
RNN-GAN and TimeGAN for the ItalyPowerDemand dataset. The time series are
depicted in black. The red line presents an example time series for each subplot.
For the conditional GANs, ClaRe-GAN and RCGAN, and the real dataset we
visualize the time series of each class separately.

118

A.1 Time Series Generation

Figure A.4: Illustration of the classes generated by ClaRe-GAN, the classes of the real dataset
and the classes generated by RCGAN for the ItalyPowerDemand dataset.

119

A Appendix: Additional Figures

A.2 Time Series Analytics

0.0 0.2 0.4 0.6 0.8 1.0
ratio of fake samples

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
ratio of fake samples

0.0

0.5

1.0
MMD TRTS TSTR PS DS MiVo

Figure A.5: Results of mixing test ratio l of fake samples in Sg(l) is augmented progressively
for the ItalyPowerDemand (plot on the left) and DistalPhalanxTW (plot on the
right) datasets. The score of the different metrics is computed. We expect that the
score of each metric increases as the ratio l increases, i.e., a reliable metric should
be able to discriminate between real and generated samples its best score should
be achieved on real samples.

0.0 0.2 0.4 0.6 0.8 1.0
ratio of collapsed clusters

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
ratio of collapsed clusters

0.0

0.5

1.0
MMD TRTS TSTR PS DS MiVo

Figure A.6: Results of mode collapse test for the ItalyPowerDemand (plot on the left) and
DistalPhalanxTW (plot on the right) datasets: the metrics score is computed
depending on the number of collapsed clusters. A good evaluation metric should
be able to detect mode collapse, i.e., its score should increase with the ratio of
collapsed clusters.

120

A.2 Time Series Analytics

0.0 0.2 0.4 0.6 0.8
ratio of dropped clusters

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8
ratio of dropped clusters

0.0

0.5

1.0
MMD TRTS TSTR PS DS MiVo

Figure A.7: Results of mode dropping test for the ItalyPowerDemand (plot on the left) and
DistalPhalanxTW (plot on the right) datasets: the metrics score is computed
depending on the number of dropped clusters. A good evaluation metric should
be able to detect mode dropping, i.e., its score should increase with the ratio of
dropped clusters.

0.0 0.2 0.4 0.6 0.8 1.0
overlapping fraction

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
overlapping fraction

0.0

0.5

1.0
MMD TRTS TSTR PS DS MiVo

Figure A.8: Results of the overfitting test for the ItalyPowerDemand (plot on the left) and
DistalPhalanxTW (plot on the right) datasets: the metrics score is computed de-
pending on the overlapping fraction between a set S′′

r of real samples and a set Str
r .

An accurate metric should increase its score as more samples of S′′
r are becoming

similar to the training set in order to highlight the overfitting phenomenon.

121

A Appendix: Additional Figures

0.0

0.2

0.4

0.6

0.8

1.0

sc
or

e

200 400 600 800
sample size

2

1

0

1

2

 R
ea

l v
s.

ge
n

- r
ea

l v
s.r

ea
l

0.0

0.2

0.4

0.6

0.8

1.0

50 100 150 200 250 300
sample size

2

1

0

1

2

MMD TRTS TSTR PS DS MiVo

Figure A.9: Results of the efficiency test for the ItalyPowerDemand (plot on the left) and Dis-
talPhalanxTW (plot on the right) datasets: the values of ρ(Sr, S

′
r) are computed

with different number of samples (upper plot). The second plot depicts the value of
ρ(Sg, Sr)− ρ(S′

r, Sr). This difference should be positive. For a reasonable number
of samples an accurate metric should score ρ(Sg, Sr) higher than ρ(S′

r, Sr).

0 200 400 600 800 1000
Iterations

1

2

3

4

5

6

M
iV

o

Figure A.10: MiVo metric computed for the ItalyPowerDemand dataset over the training iter-
ations. A lower MiVo value denotes a better GAN performance.

122

A.2 Time Series Analytics

0 200 400 600 800 1000
Iterations

1

2

3

4

5

6

7

M
iV

o

Figure A.11: MiVo metric computed for the DistalPhalanxTW dataset over the training iter-
ations. A lower MiVo value denotes a better GAN performance.

Figure A.12: Results of the ItalyPowerDemand dataset illustrated in the VA framework pre-
sented in chapter 5

123

A Appendix: Additional Figures

Figure A.13: Results of the DistalPhalanxTW dataset illustrated in the VA framework pre-
sented in chapter 5

0 10 20 30 40 50 60 70 80 90
Iterations

40

60

80

100

120

M
iV

o

Figure A.14: MiVo metric computed between target time series depicting the behavior of engine
1 in test 2 and the time series obtained after the translation. A lower MiVo value
denotes a better similarity between the representation of engine 1 obtained after
the transformation and the expected behavior.

124

A.2 Time Series Analytics

0 10 20 30 40 50 60 70 80 90
Iterations

15

20

25

30

35

40

45

50

M
iV

o

Figure A.15: MiVo metric computed between target time series depicting the behavior of engine
2 in test 2 and the time series obtained after the translation. A lower MiVo value
denotes a better similarity between the representation of engine 2 obtained after
the transformation and the expected behavior.

0 50 100 150 200 250 300
Iterations

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
iV

o

Figure A.16: MiVo metric computed between target time series depicting the sitting activity
in test 6 and the time series obtained after the translation. A lower MiVo value
denotes a better similarity between the representation of sitting obtained after
the transformation and the expected behavior.

125

A Appendix: Additional Figures

0 50 100 150 200 250 300
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

M
iV

o

Figure A.17: MiVo metric computed between target time series depicting the walking activity
in test 6 and the time series obtained after the translation. A lower MiVo value
denotes a better similarity between the representation of walking obtained after
the transformation and the expected behavior.

0 50 100 150 200 250 300
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
iV

o

Figure A.18: MiVo metric computed between target time series depicting the laying activity
in test 7 and the time series obtained after the translation. A lower MiVo value
denotes a better similarity between the representation of laying obtained after
the transformation and the expected behavior.

126

A.2 Time Series Analytics

0 50 100 150 200 250 300
Iterations

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

M
iV

o

Figure A.19: MiVo metric computed between target time series depicting the sitting activity
in test 7 and the time series obtained after the translation. A lower MiVo value
denotes a better similarity between the representation of sitting obtained after
the transformation and the expected behavior.

0 20 40 60 80 100
Iterations

2

3

4

5

6

7

M
iV

o

Figure A.20: MiVo metric computed between time series depicting the target behavior for the
DC motor dataset in test 8 and the time series obtained after the translation.
A lower MiVo value denotes a better similarity between the time series obtained
after the transformation and the expected behavior.

127

A Appendix: Additional Figures

0 20 40 60 80 100
Iterations

22

24

26

28

30

32

34

36

38

M
iV

o

Figure A.21: MiVo metric computed between time series depicting the target behavior for the
DC motor dataset in test 10 and the time series obtained after the translation.
A lower MiVo value denotes a better similarity between the time series obtained
after the transformation and the expected behavior.

0 20 40 60 80 100
Iterations

40

45

50

55

60

65

70

75

M
iV

o

Figure A.22: MiVo metric computed between time series depicting the target behavior for the
DC motor dataset in test 11 and the time series obtained after the translation.
A lower MiVo value denotes a better similarity between the time series obtained
after the transformation and the expected behavior.

128

LIST OF FIGURES

2.1 Presentation of GAN architecture consisting of two neural networks the
Generator and the Discriminator. Starting from noise data are generated
by the Generator. Later, the real and the generated data are compared by
the Discriminator. While the Generator tries to synthesize data that are
as realistic as possible, the Discriminator learns to perfectly distinguish
between the real and the generated data. The Generator will over the
iterations improve the quality of the data by learning from the decisions
made by the Discriminator. 14

2.2 Comparison of the architecture of the different generative models for time
series data namely TimeGAN, RCGAN and C-RNN-GAN. The used loss
functions are depicted in dark blue. Xs, X

′
s and Xt, X

′
t denote the

static and temporal data respectively. 18

3.1 Representation of the ClaRe-GAN architecture for a dataset with 2 classes,
i.e., N = 2. X1 and X2 are time series from two different classes. 28

3.2 Use Case Scenario: Data owners holding sensitive data can use a differ-
entially private version of GAN to generate new anonymous time series.
These data can be shared with external partners without confidentiality
concerns and both parts can work together safely. 29

129

LIST OF FIGURES

3.3 Comparison of the real (in green) and generated (in orange) data with
PCA. Each row presents the results of a specific dataset (from top to
bottom): ItalyPowerDemand, TwoLeadECG, Yoga, DistalPhalanxTW,
and FreezerRegularTrain. A good performing GAN should be able to
capture the distribution of the real dataset, i.e., we expect a strong simi-
larity between the distribution of the real and the generated data in this
2-dimensional space. 34

3.4 Comparison of the real (in green) and generated (in orange) data with
t-SNE. Each row presents the results of a specific dataset (from top to
bottom): ItalyPowerDemand, TwoLeadECG, Yoga, DistalPhalanxTW,
and FreezerRegularTrain. A good performing GAN should be able to
capture the distribution of the real dataset, i.e., we expect a strong simi-
larity between the distribution of the real and the generated data in this
2-dimensional space. 35

3.5 Illustration of the real and generated time series by the different frame-
works for the DistalPhalanxTW dataset with 6 classes. The time series
are depicted in black. An example is highlighted in each subplot in red.
ClaRE-GAN was the unique algorithm that generated time series with a
plateau for the last 30 timestamps. This class, originally appearing in the
real data, was ignored by the other frameworks. 36

3.6 Illustration of the classes generated by ClaRe-GAN, the classes of the real
dataset, and the classes generated by RCGAN for the DistalPhalanxTW
dataset. 37

3.7 Illustration of the real and generated time series by ClaRe-GAN, RCGAN,
C-RNN-GAN, and TimeGAN for the Yoga dataset. The time series are
depicted in black. The red line presents an example time series for each
subplot. 38

3.8 Test accuracy values of TSTR and TRTS methods for the differentially
private generative models and the different datasets depicted in the left
and right sub-figure respectively. While a higher accuracy value denotes
better usefulness of the generated data, a lower ϵ value denotesa better
privacy. 39

3.9 Illustration of the real times and the time series generated by the different
differentially private models, i.e., DP-TimeGAN, RCGAN, DP-ClaRe-
GAN, DP-C-RNN-GAN for the TwoLeadECG dataset. 40

4.1 Illustration of the gated CNN structure. The output of the layer H(X)
for an input X is computed by multiplying element-wise X · V + c and
σ (X ·W + b) where X · V + c and X ·W + b are the resulting vectors of
the convolution on the input X and the sigmoid function is applied on
X ·W + b. 43

4.2 Illustration of the residual block used in the Generator of DR-TiST. Conv
denotes a convolution, instance norm denotes instance normalization and
GLU denotes the activation function. 45

130

LIST OF FIGURES

4.3 Illustration of the Generator’s architecture used in DR-TiST. 45
4.4 Illustration of the private Human Activities Dataset Use Case: A data

owner holding individual-level sensor measurements of human activities
can use the privacy preserving translation techniques proposed in this
work, DP-DR-TiST and DP-CycleGAN-VC, to create a new differentially
private dataset where each activity is mapped to all the persons and
anonymized. This generated dataset can be freely shared and can hence
be used for external collaborations. 47

4.5 Illustration of the private Ventilation Systems Dataset Use Case: A Ma-
chine manufacturer holding n machines placed in n different environments
can use the privacy preserving translation techniques proposed in this
work, DP-DR-TiST and DP-CycleGAN-VC, to create a new differentially
private dataset depicting the behavior of each machine in all the environ-
ments. This generated dataset can be freely shared and can hence be used
for external collaborations. 48

4.6 Use Case Scenario Ventilation Systems Dataset: given the real-world con-
ditions we use DR-TiST to translate the behavior of ventilation system 1
to room B and ventilation system 2 to room A. 50

4.7 Time series translation: The proposed algorithm divides a given time
series into operating mode and functional behavior. This learned rep-
resentation allows to map the functional behavior of engine 1 into the
operating mode of engine 2 and vice versa and hence helps to simulate
the behavior of different engines in different environmental setups. 52

4.8 Control equivalent circuit of an armature controlled DC motor. 54
4.9 Speed control of a DC motor: the controller is used to control the speed

of the DC motor by computing the difference error e between the desired
speed r and the current output y. 56

4.10 Use Case Scenario DC motors Dataset: given the real-world conditions
we use DR-TiST to translate the behavior of the field motor and the lab
controller. Time series depicting both control systems, i.e., field and lab
systems are used. 58

4.11 Comparison of the time series of engine 2 generated with the operating
mode of engine 1 in test 3 where µ1 = 35 and µ2 = 45. Time series
generated by CycleGAN-VC has a completely different behavior than the
expected time series. The time series produced by DR-TiST are more
realistic. 61

4.12 Examples of time series of engine 2 in operating mode of engine 1 gener-
ated in test 4 where µ1 = 40 and µ2 = 50. DR-TiST was able to map the
functional behavior of engine 2, characterized by a higher amplitude, in
the time domain of engine 1. 62

4.13 Examples of time series of engine 1 in operating mode of engine 2 gen-
erated in test 4 where µ1 = 40 and µ2 = 50. DR-TiST was able to map
the functional behavior of engine 1, characterized by a lower amplitude,
in the time domain of engine 2. 64

131

LIST OF FIGURES

4.14 Comparison of time series of engine 2 generated with the operating mode
of engine 1 in test 2 where µ1 = 30 and µ2 = 40. The time series generated
by CycleGAN-VC and DR-TiST are compared to the expected behavior. . 65

4.15 Distribution of the rise times for 100 outputs generated with DR-TiST
and expected outputs computed as ground truth. 65

4.16 Distribution of the steady state errors for 100 outputs generated with
DR-TiST and expected outputs computed as ground truth. 66

4.17 Distribution of the overshoot values for 100 outputs generated with DR-
TiST and expected outputs computed as ground truth. 66

4.18 The output of a control system generated by DR-TiST (illustrated in the
upper part) is compared to the expected output behavior (illustrated in
the lower part) obtained by simulating the field motor when it is controlled
with the controller lab. Each expected output ygt(t) and generated output
y(t) is obtained for the same noisy reference signal r. An example of
generated and corresponding expected time series is highlighted in red.
The remaining expected and generated outputs are depicted in gray. . . . 67

5.1 A visual evaluation workflow of GAN for time series data: The real and
the generated data are integrated in the VA framework. The ML expert
may interact with the VA framework to get more insight into the data
and their properties. After a rigorous exploration of the data, he or she
can decide to terminate the training process if the desired behavior is
achieved. Otherwise, he or she has to run the GAN model with different
parameters. 77

5.2 Results of a first GAN model generating time series. The computed in-
coming and outgoing minimal distances namely INND and ONND are
integrated in the GAN Iteration View (a). Selected columns in the GAN
Iteration View, denoted with blue rectangles, are depicted in the Detailed
Comparative View (b). 80

5.3 Results of a second GAN model obtained by tuning the parameters of
model 1 depicted in Fig. 5.2. In comparison to model 1, this model is
showing a more stable and smooth behavior in terms of INND and ONND.
The Colorfields, depicted in the Detailed Comparative View (b), indicate
that the last iteration is reproducing the shift present in the real data and
its TimeHistogram is similar to the TimeHistogram of the real data. . . . 83

5.4 Illustration of the Selected Samples View with the median of the real
data med(r), 68th, 95th and 99th percentile denoted with 68prct, 95prct
and 99prct respectively, time series g 926 47 generated at iteration 926 by
model 2 and a real time series r 304. The absolute value of the element-
wise differences of g 926 47 and r 304 to the median med(r) are denoted
in red and blue respectively. The time series g 926 47 is falling in the 98th
percentile of the real data and g 926 47 and r 304 are showing a similar
behavior. 84

132

LIST OF FIGURES

5.5 Results of mixing test ratio l of fake samples in Sg(l) is augmented pro-
gressively for the TwoLeadECG (plot on the left), FreezerRegularTrain
(plot in the middle) and Yoga (plot on the right) datasets. The score of
the different metrics is computed. We expect that the score of each metric
increases as the ratio l increases, i.e., a reliable metric should be able to
discriminate between real and generated samples its best score should be
achieved on real samples. 88

5.6 Results of mode collapse test for the TwoLeadECG (plot on the left),
FreezerRegularTrain (plot in the middle) and Yoga (plot on the right)
datasets: the metric score is computed depending on the number of col-
lapsed clusters. A good evaluation metric should be able to detect mode
collapse, i.e., its score should increase with the ratio of collapsed clusters. 88

5.7 Results of mode dropping test for the TwoLeadECG (plot on the left),
FreezerRegularTrain (plot in the middle) and Yoga (plot on the right)
datasets: the metric score is computed depending on the number of
dropped clusters. A good evaluation metric should be able to detect
mode dropping, i.e., its score should increase with the ratio of dropped
clusters. 88

5.8 Results of the overfitting test for the TwoLeadECG (plot on the left),
FreezerRegularTrain (plot in the middle) and Yoga (plot on the right)
datasets: the metric score is computed depending on the overlapping
fraction between a set S′′

r of real samples and a set Str
r . An accurate metric

should increase its score as more samples of S′′
r are becoming similar to

the training set in order to highlight the overfitting phenomenon. 89

5.9 Results of the efficiency test for the TwoLeadECG (plot on the left),
FreezerRegularTrain (plot in the middle) and Yoga (plot on the right)
datasets: the values of ρ(Sr, S

′
r) are computed with different number of

samples (upper plot). The second plot depicts the value of ρ(Sg, Sr) −
ρ(S′

r, Sr). This difference should be positive. For a reasonable number of
samples an accurate metric should score ρ(Sg, Sr) higher than ρ(S′

r, Sr). . 89

5.10 MiVo metric computed for the TwoLeadECG dataset over the training
iterations. A lower MiVo value denotes a better GAN performance. 91

5.11 MiVo metric computed for the Yoga dataset over the training iterations.
A lower MiVo value denotes a better GAN performance. 92

5.12 MiVo metric computed for the FreezerRegularTrain dataset over the train-
ing iterations. A lower MiVo value denotes a better GAN performance. . . 92

5.13 Results of the TwoLeadECG dataset illustrated in the VA framework . . 93

5.14 Results of the Yoga dataset illustrated in the VA framework 94

5.15 Results of the FreezerRegularTrain dataset illustrated in the VA framework 94

5.16 MiVo metric computed between target time series depicting the behavior
of engine 1 in test 3 and the time series obtained after the translation. A
lower MiVo value denotes a better similarity between the representation
of engine 1 obtained after the transformation and the expected behavior. . 95

133

LIST OF FIGURES

5.17 MiVo metric computed between target time series depicting the behavior
of engine 2 in test 3 and the time series obtained after the translation. A
lower MiVo value denotes a better similarity between the representation
of engine 2 obtained after the transformation and the expected behavior. . 96

5.18 MiVo metric computed between target time series depicting the laying
activity in test 5 and the time series obtained after the translation. A
lower MiVo value denotes a better similarity between the representation
of laying obtained after the transformation and the expected behavior. . . 96

5.19 MiVo metric computed between target time series depicting the walking
activity in test 5 and the time series obtained after the translation. A
lower MiVo value denotes a better similarity between the representation
of walking obtained after the transformation and the expected behavior. . 97

5.20 MiVo metric computed between time series depicting the target behavior
for the DC motor dataset in test 9 and the time series obtained after the
translation. A lower MiVo value denotes a better similarity between the
time series obtained after the transformation and the expected behavior. . 97

A.1 Illustration of the real and generated time series by ClaRe-GAN, RCGAN,
C-RNN-GAN and TimeGAN for the TwoLeadECG dataset. The time
series are depicted in black. The red line presents an example time series
for each subplot. For the conditional GANs, ClaRe-GAN and RCGAN,
and the real dataset we visualize the time series of each class separately. . 116

A.2 Illustration of the real and generated time series by ClaRe-GAN, RC-
GAN, C-RNN-GAN and TimeGAN for the FreezerRegularTrain dataset.
The time series are depicted in black. The red line presents an example
time series for each subplot. For the conditional GANs, ClaRe-GAN and
RCGAN, and the real dataset we visualize the time series of each class
separately. 117

A.3 Illustration of the real and generated time series by ClaRe-GAN, RC-
GAN, C-RNN-GAN and TimeGAN for the ItalyPowerDemand dataset.
The time series are depicted in black. The red line presents an example
time series for each subplot. For the conditional GANs, ClaRe-GAN and
RCGAN, and the real dataset we visualize the time series of each class
separately. 118

A.4 Illustration of the classes generated by ClaRe-GAN, the classes of the real
dataset and the classes generated by RCGAN for the ItalyPowerDemand
dataset. 119

A.5 Results of mixing test ratio l of fake samples in Sg(l) is augmented progres-
sively for the ItalyPowerDemand (plot on the left) and DistalPhalanxTW
(plot on the right) datasets. The score of the different metrics is com-
puted. We expect that the score of each metric increases as the ratio
l increases, i.e., a reliable metric should be able to discriminate between
real and generated samples its best score should be achieved on real samples.120

134

LIST OF FIGURES

A.6 Results of mode collapse test for the ItalyPowerDemand (plot on the left)
and DistalPhalanxTW (plot on the right) datasets: the metrics score is
computed depending on the number of collapsed clusters. A good evalu-
ation metric should be able to detect mode collapse, i.e., its score should
increase with the ratio of collapsed clusters. 120

A.7 Results of mode dropping test for the ItalyPowerDemand (plot on the left)
and DistalPhalanxTW (plot on the right) datasets: the metrics score is
computed depending on the number of dropped clusters. A good evalua-
tion metric should be able to detect mode dropping, i.e., its score should
increase with the ratio of dropped clusters. 121

A.8 Results of the overfitting test for the ItalyPowerDemand (plot on the left)
and DistalPhalanxTW (plot on the right) datasets: the metrics score is
computed depending on the overlapping fraction between a set S′′

r of real
samples and a set Str

r . An accurate metric should increase its score as
more samples of S′′

r are becoming similar to the training set in order to
highlight the overfitting phenomenon. 121

A.9 Results of the efficiency test for the ItalyPowerDemand (plot on the left)
and DistalPhalanxTW (plot on the right) datasets: the values of ρ(Sr, S

′
r)

are computed with different number of samples (upper plot). The second
plot depicts the value of ρ(Sg, Sr) − ρ(S′

r, Sr). This difference should be
positive. For a reasonable number of samples an accurate metric should
score ρ(Sg, Sr) higher than ρ(S′

r, Sr). 122

A.10 MiVo metric computed for the ItalyPowerDemand dataset over the train-
ing iterations. A lower MiVo value denotes a better GAN performance. . . 122

A.11 MiVo metric computed for the DistalPhalanxTW dataset over the training
iterations. A lower MiVo value denotes a better GAN performance. 123

A.12 Results of the ItalyPowerDemand dataset illustrated in the VA framework
presented in chapter 5 . 123

A.13 Results of the DistalPhalanxTW dataset illustrated in the VA framework
presented in chapter 5 . 124

A.14 MiVo metric computed between target time series depicting the behavior
of engine 1 in test 2 and the time series obtained after the translation. A
lower MiVo value denotes a better similarity between the representation
of engine 1 obtained after the transformation and the expected behavior. . 124

A.15 MiVo metric computed between target time series depicting the behavior
of engine 2 in test 2 and the time series obtained after the translation. A
lower MiVo value denotes a better similarity between the representation
of engine 2 obtained after the transformation and the expected behavior. . 125

A.16 MiVo metric computed between target time series depicting the sitting
activity in test 6 and the time series obtained after the translation. A
lower MiVo value denotes a better similarity between the representation
of sitting obtained after the transformation and the expected behavior. . . 125

135

LIST OF FIGURES

A.17 MiVo metric computed between target time series depicting the walking
activity in test 6 and the time series obtained after the translation. A
lower MiVo value denotes a better similarity between the representation
of walking obtained after the transformation and the expected behavior. . 126

A.18 MiVo metric computed between target time series depicting the laying
activity in test 7 and the time series obtained after the translation. A
lower MiVo value denotes a better similarity between the representation
of laying obtained after the transformation and the expected behavior. . . 126

A.19 MiVo metric computed between target time series depicting the sitting
activity in test 7 and the time series obtained after the translation. A
lower MiVo value denotes a better similarity between the representation
of sitting obtained after the transformation and the expected behavior. . . 127

A.20 MiVo metric computed between time series depicting the target behavior
for the DC motor dataset in test 8 and the time series obtained after the
translation. A lower MiVo value denotes a better similarity between the
time series obtained after the transformation and the expected behavior. . 127

A.21 MiVo metric computed between time series depicting the target behavior
for the DC motor dataset in test 10 and the time series obtained after the
translation. A lower MiVo value denotes a better similarity between the
time series obtained after the transformation and the expected behavior. . 128

A.22 MiVo metric computed between time series depicting the target behavior
for the DC motor dataset in test 11 and the time series obtained after the
translation. A lower MiVo value denotes a better similarity between the
time series obtained after the transformation and the expected behavior. . 128

136

LIST OF TABLES

1.1 Summary of the main contributions in this thesis, the corresponding re-
search questions and the chapters of the thesis where each research topic
is addressed. 9

3.1 Summary of the characteristics of the used datasets. The datasets are
publicly available in the UEA & UCR Time Series Classification Reposi-
tory [68] and differ in the length of the time series the number of classes
and the ratio of data per class. 31

3.2 DS computed on the time series generated by the different frameworks
(ClaRe-GAN TimeGAN, RCGAN, and C-RNN-GAN) for the different
datasets namely TwoLeadECG, Yoga, and DistalPhalanxTW. A lower
DS denotes a high-fidelity to the real datasets. 36

3.3 PS computed on the time series generated by the different frameworks
(ClaRe-GAN TimeGAN, RCGAN, and C-RNN-GAN) for the different
datasets namely TwoLeadECG, Yoga and DistalPhalanxTW. A lower PS
denotes better usefulness of the generated time series. 37

4.1 Characteristics of machine 1 and machine 2 of ventilation system 1 and 2
in the on and off states. 50

4.2 Mean of the Bernoulli distribution of the on/off times in the different
experiments. 50

4.3 Parameters of field and lab controllers. 57

4.4 Physical properties of the field and lab motors. 57

137

LIST OF TABLES

4.5 D values for generating time series of engine 1 and engine 2 by CycleGAN-
VC and DR-TiST for test 2 and 3. Dcyc and DDR denote the values of D
for the time series of CycleGAN-VC and DR-TiST respectively. 60

4.6 RMSE values for generating time series of engine 1 and engine 2 by
CycleGAN-VC and DR-TiST for test 2 and 3. RMSEcyc and RMSEDR

denote the values of RMSE for the time series of CycleGAN-VC and
DR-TiST respectively. 60

4.7 Computed D and RMSE values for the different tests of the Ventilation
Systems Dataset. Deng1 and Deng2, RMSEeng2 and RMSEeng1 denote
the computedD and RMSE values during the test phase when generating
time of engine 1 and engine 2 respectively. 61

4.8 Test TRTS (a) and TSTR (b) accuracies values for the Human Activities
dataset, i.e., test 5, test 6 and test 7 computed with different ML models
(RF, DT, LR . . .). The TRTS values are obtained by training the ML
models on real data and testing them with synthetic data obtained with
DR-TiST, and CycleGAN-VC (denoted Cyc-VC). Meanwhile, the TSTR
values are obtained by training the ML models with synthetic data for
obtained with DR-TiST, and CycleGAN-VC, and testing on real data.
The test accuracies correspond to the TRTS/ TSTR values. 63

4.9 Mean of rise times in the ground truth trgt, and generated time series by
DR-TiST trgen−dr−tist and CycleGAN-VC trgen−cyc. 64

4.10 Mean of overshoot in the ground truth overshootgt, and generated time se-
ries by DR-TiST overshootgenDR−T iST and and CycleGAN-VC overshootgenCyc. 66

4.11 Mean of steady state errors in the ground truth essgt and generated time
series by DR-TiST essgenDR−T iST and CycleGAN-VC essgenCyc. 67

4.12 Obtained Privacy loss ϵ for the different use cases for C = 0.3, σ = 0.3
and δ = 10−3. 68

4.13 Test TRTS (a) and TSTR (b) accuracies values in test 2 and test 3 com-
puted with different ML models (RF, DT, LR . . .). The TRTS values
are obtained by training the ML models on real data and testing them
with synthetic data obtained with DP-DR-TiST, denoted DR-TiST, and
DP-CycleGAN-VC, denoted CycleGAN-VC. Meanwhile, the TSTR values
are obtained by training the ML models with synthetic data for obtained
with DP-DR-TiST, denoted DR-TiST, and DP-CycleGAN-VC, denoted
CycleGAN-VC, and testing on real data. The test accuracies correspond
to the TRTS/ TSTR values. We use C = 0.3, σ = 0.3 and δ = 10−3. . . . 69

138

LIST OF TABLES

4.14 Test TRTS (a) and TSTR (b) accuracies values for test 5 and test 6
computed with different ML models (RF, DT, LR . . .). The TRTS values
are obtained by training the ML models on real data and testing them
with synthetic data obtained with DP-DR-TiST, denoted DR-TiST, and
DP-CycleGAN-VC, denoted CycleGAN-VC. Meanwhile, the TSTR values
are obtained by training the ML models with synthetic data for obtained
with DP-DR-TiST, denoted DR-TiST, and DP-CycleGAN-VC, denoted
CycleGAN-VC, and testing on real data. The test accuracies correspond
to the TRTS/ TSTR values. We use C = 0.3, σ = 0.3 and δ = 10−3. . . . 70

4.15 Test TRTS (a) and TSTR (b) accuracies values for test 8 and test 11
computed with different ML models (RF, DT, LR . . .). The TRTS values
are obtained by training the ML models on real data and testing them
with synthetic data obtained with DP-DR-TiST, denoted DR-TiST, and
DP-CycleGAN-VC, denoted CycleGAN-VC. Meanwhile, the TSTR values
are obtained by training the ML models with synthetic data for obtained
with DP-DR-TiST, denoted DR-TiST, and DP-CycleGAN-VC, denoted
CycleGAN-VC, and testing on real data. The test accuracies correspond
to the TRTS/ TSTR values. We use C = 0.3, σ = 0.3 and δ = 10−3. . . . 71

5.1 Comparison of the different GAN metrics 90

139

	Abstract
	Zusammenfassung
	Acknowledgement
	Contents
	Acronyms
	1 Introduction
	1.1 Motivation
	1.2 Research Questions and Contributions
	1.3 Thesis Outline

	2 Preliminaries
	2.1 Data Generation
	2.1.1 Generative Adversarial Networks
	2.1.2 GAN Variants
	2.1.3 GAN Architectures for Time Series Data
	2.1.4 GAN Metrics for Time Series

	2.2 Data Translation
	2.2.1 Image-to-Image Translation
	2.2.2 Time Series Translation

	2.3 Differential Privacy
	2.3.1 Definition
	2.3.2 Differentially Private Machine Learning

	3 Time Series Generation
	3.1 ClaRe-GAN: new Algorithm for Time Series Generation
	3.2 DP*: Privacy-preserving Approaches
	3.3 Experiments
	3.3.1 Datasets Description
	3.3.2 Experimental Setup
	3.3.3 Results

	4 Time Series Translation
	4.1 DR-TiST: new Algorithm for Time Series Translation
	4.2 DP*: Privacy-preserving Approaches
	4.3 Experiments
	4.3.1 Datasets Description
	4.3.2 Experimental Setup
	4.3.3 Results

	5 Time Series Analytics
	5.1 Metric for Time Series
	5.2 Visual Analytics for Time Series
	5.2.1 Design of Evaluation Framework
	5.2.2 Evaluation Framework Description
	5.2.3 Use Case

	5.3 Experiments

	6 Conclusions and Future Work
	Bibliography
	A Appendix: Additional Figures
	A.1 Time Series Generation
	A.2 Time Series Analytics

	List of Figures
	List of Tables

