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A B S T R A C T   

Discounting is standard in economics to consider time preferences of people and account for future market 
changes. However, so far discounting has mainly been applied to monetary flows and ignored for many 
ecosystem services. In multi-objective optimization, selectively disregarding time preference for some non- 
monetary services create bias. Here we study how discounting a range of ecosystem service indicators in
fluences a public planner’s optimal land allocation. We used a robust multi-objective optimization approach to 
model a mixed forestry-avocado farm portfolio in South Africa. The objectives for optimization were the pro
visioning of various ecosystem services and disservices represented by four indicators: net present value, payback 
period, carbon sequestration, and fertilizer use. To account for time preferences concerning indicator flows, we 
applied specific discount rates to each ecosystem service indicator, depending on its character (non-monetary or 
monetary indicators). We demonstrate that discounting reduces the standard deviations of the discounted sum of 
the indicators, which leads to less diversified land-use portfolios. To account for discount rate uncertainty, we 
introduced three indicator sets simultaneously, each using a different discount rate, which was off setting the 
effect of decreasing diversification.   

1. Introduction 

Discounting is used to express how people value receiving a benefit 
or incurring a cost sooner rather than later (time preference), as well as 
to account for factors like risk and inflation. In forestry, when to apply 
discounting and how to select a discount rate are subjects of long
standing controversy, since small changes in the discount rate can 
strongly impact outcomes over the remarkably long timelines used in 
forest management planning: as Samuelson (1976) notes, “the positive 
interest rate is the enemy of long-lived investment projects” (p. 473). In 
forest economics, discount terms are commonly applied for net benefit 
flows when computing standard financial indicators like the net present 
value (Assmuth et al., 2021; Lessa Derci Augustynczik et al., 2020; 
Müller et al., 2019; Parkatti and Tahvonen, 2020; Radke et al., 2020; 
Tahvonen et al., 2010). In addition to financial indicators, modern forest 
management planning also aims to incorporate a range of non-financial 
objectives, for example the provisioning of non-market ecosystem ser
vices, into decision frameworks. However, the indicators associated 

with these non-financial objectives are rarely discounted unless their 
value can be reliably expressed in monetary terms (Friedrich et al., 
2021; Knoke et al., 2020b; Kolo et al., 2020). Consequently, time pref
erences regarding non-monetary costs and benefits are routinely ignored 
by multi-objective decision support tools (Baumgärtner et al., 2015; 
Drupp, 2018; Gollier, 2010; Traeger, 2011; Weikard and Zhu, 2005). We 
argue that one could nevertheless use the biophysical goods and services 
directly as a measure for the benefits or costs they provide or cause. 
Then the service indicators could serve as the numeraire which con
tributes directly and not via any associated cash flows to the utility 
function of the beneficiaries (Drèze and Stern, 1987). Just a few studies 
already consider time preferences for non-monetary ecosystem service 
indicators (Juutinen et al., 2014; Mazziotta et al., 2016). 

Far from being the exclusive domain of economists, inter-temporal 
trade-offs are fundamental features of decision contexts in environ
mental management and sustainability. Past work on multi-objective 
decision support often takes as a decision variables the economic 
value of ecosystem services. This might be done, for instance, by 
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multiplying units of carbon sequestered by a carbon price (Plantinga and 
Birdsey, 1994; van Kooten et al., 1995), while more recent studies 
extended the scope to include carbon storage in living trees, deadwood, 
and harvested wood products (Assmuth et al., 2021, 2018; Pihlainen 
et al., 2014). However, in the absence of established, well-functioning 
markets for other ecosystem services, valuation can be challenging 
and prices are often difficult to forecast. We were only able to identify a 
handful of examples in the research literature where the future provision 
of biophysical indicators was discounted, with carbon sequestration 
being the most prominent (Johnston and van Kooten, 2015; Juutinen 
et al., 2014; Mazziotta et al., 2016; Timmons et al., 2016; Yousefpour 
et al., 2018). However, these studies do not use discounted biophysical 
indicators as decision variables, rendering optimal solutions sensitive to 
price uncertainty. Here, we describe an alternative approach that uses 
discounted biophysical indicators (e.g. periodic net carbon sequestra
tion) as decision variables to avoid commingling ecological projections 
with economic ones. 

The rationale of discounting carbon is admittedly straightforward: 
nature-based solutions may prematurely release carbon following nat
ural disturbance (risk), and the possible emergence of climate- 
destabilizing feedback loops makes near-term sequestration greatly 
preferable to postponed sequestration (time preference) (Johnston and 
van Kooten, 2015; Schlamadinger and Marland, 1999). While its 
much-discussed commodification and the emergence of offset markets 
(Button, 2008; Dalsgaard, 2013; Gifford, 2020) makes carbon somewhat 
unique, there is no clear reason why discounting other non-market 
ecosystem services flows could not be similarly integrated into 
multi-criteria land-use planning (Cohen et al., 2020), although appro
priate social discount rates may be needed as discussed below (Price, 
1988). In fact, accounting for time preferences for some objectives while 
disregarding it for others may distort the results of multi-objective 
optimization studies by making discounted financial flows appear 
smaller relative to aggregated non-financial ones (Kula and Evans, 
2011). 

For public planners, determining appropriate discount rates for as
sessments involving public goods and common-pool resources is a 
familiar and recurring problem, even when economic values for non- 
market goods and services can be reliably estimated (Price, 1988). In 
selecting a discount rate, public planners must balance present demand 
against the needs of future generations (Addicott et al., 2020). Because 
methods used to derive descriptive discount rates for private goods are 
often not applicable, social discount rates may be used in their place to 
enable cost-benefit analysis for long-term investments designed to 
generate public benefits. The protocol for determining the correct social 
discount rate is debated and likely context dependent (Abelson and 
Dalton, 2018; Drupp et al., 2018). In the forestry context, social discount 
rates are typically lower than private ones, so the use of social discount 
rates can suggest longer rotations or larger investments in forest man
agement (Muñoz Torrecillas and Cruz Rambaud, 2017; Price, 1988). 

Baumgärtner et al. (2015) argue that ecosystem services should be 
discounted at significantly lower rates than consumer goods in a global 
context characterized by growing commodity consumption and 
declining ecosystem services provisioning. Future scarcity of a good or 
service associated with limited possibilities to substitute this service 
influence discount rate settings, especially for ecosystem services 
(Drupp, 2018). Thus, dual discounting offers a possible solution for 
public cost-benefit analysis. Following a Ramsey-like discount rate 
model, a robust definition of socioeconomic contributions to discount 
rate estimates would ideally consider probabilistic developments of 
population, economic growth, and emissions (Rennert et al., 2021). 
Discount rates therefore mimic not just pure time preferences in a 
Ramsey approach, but furthermore anticipate future developments, and 
are thus highly associated with uncertainty. 

Here, we explore how discounting non-financial ecosystem services 
influences a simulated land allocation optimization from a public 
planner’s perspective. We address the aforementioned discount rate 

uncertainty by introducing a set of discount rates considered simulta
neously within our optimization scenarios, taking as our starting point a 
social discount rate typical for South Africa (Addicott et al., 2020). Using 
a multi-objective robust optimization model, we compare two strategies: 
using just a single social discount rate for monetary variables versus 
implementing ecosystem service-specific discount rates. Because dis
counting is closely linked to uncertainty, our approach explicitly ac
counts for uncertainties in future provision of ecosystem services (Knoke 
et al., 2017). Our study analyses the influence of 1) considering decision- 
makers’ time preferences for all ecosystem services consistently and 2) 
using ecosystem service-specific discount rates on land allocation in a 
multi-objective robust model. 

The research questions, guiding our study, are:  

• How does discounting change the evaluation of benefits and costs 
related to ecosystem service indicators?  

• How does discounting of benefits and costs related to ecosystem 
services change the composition of robust multi-objective land-use 
portfolios? 

2. Methods 

Our study simulates land-use management in the province of 
KwaZulu-Natal, South Africa. In recent years, forestry plantations in this 
area have been increasingly converted to agricultural land uses, which 
are seen as more profitable (Hitayezu et al., 2016). Whereas agriculture 
with cash crops promises high monetary returns, forestry provides long- 
lived wood products, which can be of high interest for long-term carbon 
sequestration. Conversely, the greenhouse gas emissions produced by 
Africa’s agriculture are among the fastest growing emissions in the 
world (Tongwane and Moeletsi, 2018). Decision-makers have to face 
trade-offs between financial and non-market indicators to fulfill private 
and public demands on land-use management (Groot et al., 2018), while 
water use policies in South Africa restrict highly productive land-use 
options. Land may provide multiple public goods and services. Howev
er, worldwide large parts of land are privately owned by farmers, en
terprises, or land-use managers whose decisions and motivations shape 
our landscape (Lowder et al., 2016). 

A public planner’s optimization of land-use allocations on farm level 
could include both farmers’ private and social interests (Gosling et al., 
2021; Reith et al., 2020) and consider the growing demand for multi
functional management on scarce land. We therefore set our example of 
a public planner in a country where limited availability of productive 
land generates a high interest in optimized land utilization. By including 
time preferences for ecosystem services, we account for the increasing 
demand for short-term approaches to improve environmental quality, 
measured by indicators for carbon sequestration and use of fertilizers. 
We simulate as baseline investment periods of 46 years for six different 
land-use types consisting of forest stands of pine and eucalyptus (two 
consecutive forest rotations of 23 years each), as well as avocado fruit 
orchards (See Table 3). 

To study the impact of discounting on the performance of ecosystem 
service indicators, we compare discount rates from 0 to 3% (RQ1), 
without distinguishing between specific ecosystem services. To analyze 
how changing discount rates impacts optimal forestry-avocado land-use 
portfolios, we use ecological discount rates ranging from 0 to 3%, with 
each rate being one percentage point lower than the corresponding so
cial discount rates we apply to financial flows (RQ2) (Baumgärtner et al., 
2015; Drupp, 2018). This is an example of dual discounting, an approach 
that has been recommended for public cost-benefit analysis involving 
uncertainties about future prices for environmental services or the 
relative shortages between different goods over time. For goods with 
differing consumption growth and varying elasticity of marginal utility, 
dual discounting accounts for opposite future market conditions 
(Baumgärtner et al., 2015). In the following section, we introduce our 
modelling approach and related input data (Fig. 1). 
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2.1. Discounting of costs and benefits related to ecosystem services 

Our general model is described with formula (1). Analogous to the 
net present value as a sum of cash flows, we calculated the sum of yearly 
ecosystem service flows for each considered land-use type. We dis
counted the yearly costs and benefits of each of the ecosystem services 
depending on their time of occurrence for every land-use type. We used a 
set of varying discount rates, evolving from a country-specific social 
discount rate of 3% as baseline for the socio-economic indicators 
(Addicott et al., 2020). When including both market and non-market 
ecosystem services we used a discount rate specific for ecosystem 
service-related costs and benefits (Baumgärtner et al., 2015; Drupp, 
2018) to directly discount the biophysical indicator units. This “ecolo
gical“discount rate for non-market ecosystem services was set at one 
percentage point below the corresponding social discount rate. We 
summed up the yearly discounted changes of ecosystem service provi
sioning over the entire investment period with formula (1). 

Ei =
∑

t
ei,t ×ωt with ω =

1
(1 + r/100)

(1)  

Ei, Sum of discounted costs and benefits of ecosystem service i;ei,t, Costs 
(=disservices) or benefits (=services) related to ecosystem service i at 
time t [depending on the nature of the service either in monetary or 
biophysical units]; 

r, Ecosystem service specific discount rate r ∈ (0, 1.0, 2.0, … ,10.0%). 

2.2. Robust multi-objective optimization approach 

We combine a robust optimization model and a multi-objective 
approach to simulate optimal land allocations (Knoke et al., 2020c). 
Our model, formulated as a Min-Max problem (Romero, 2001), allocates 
land shares to various land-use types to minimize the non-achievement 
across all four objectives and uncertainty scenarios simultaneously. The 
predefined land-use types are decision alternatives, while the area 
allocated to these land-use types is our decision variable (Knoke et al., 
2020c). The decision variables refer to the proportion (0–100%) of the 
total area allocated to each land use; the sum of all the shares must equal 
100%. Based on the decision-maker’s preferences and level of uncer
tainty tolerance, the model optimizes the land-use type composition to 
offer the best compromise (Gosling et al., 2021). The resulting land-use 
allocation improves achievement levels for all indicators by balancing 
the relevant decision criteria. 

To represent our missing knowledge about future developments, we 
define discrete uncertainty scenarios, based on all systematical combi

nations of the best and worst cases for each indicator and each land-use 
type (Gorissen et al., 2015). These uncertainty scenarios form the sur
face of the uncertainty spaces for each ecosystem service indicator. 
Uncertainty spaces of different size account for different expectations 
about the future; the larger the uncertainty space, the more pessimistic a 
decision-maker is about the future. Therefore, we mimic potential 
variability among decision makers (Knoke et al., 2020c) by choosing 
different uncertainty factors (m ∈ (0,1.0,1.5,…3.5)). The mathematical 
formulation of the uncertainty settings is provided in the appendix. 

Models for land-use decisions mostly assume uncertainty-averse 
decision-makers (Bezabih and Sarr, 2012). However, given the poten
tially diverse circumstances and backgrounds of different decision- 
makers, including several uncertainty profiles for different social 
groups might be useful. For example, women in developing countries, 
who often control food production on small-scale farms, tend to be more 
uncertainty-averse (Hitayezu et al., 2016; Villamor et al., 2014). 
Moreover, farm size is linked to available investment capacity, which 
along with demographic variables like educational attainment, in
fluences the uncertainty preferences of the owners (Hitayezu et al., 
2016; Reyes et al., 2021). By introducing several levels of uncertainty 
aversion, we represent different hypothetical groups of decision makers. 
Smaller uncertainty factors (m = 1) represent decision-makers with low 
uncertainty aversion, while higher values (m = 3) indicate higher un
certainty aversion. For m = 0 we assume uncertainty-neutral deciders as 
the model ignores uncertainty by only using the expected values 
(Gosling et al., 2021). 

We weight all objectives and their related indicators for each dis
count rate equally and incorporate them independently in the model. 
The model selects the theoretically optimal mix of land-use types by 
balancing the achievement of the four objectives when accounting for 
uncertainty (Romero, 2001). For further information about the robust 
optimization approach we refer the reader to the appendix for a formal 
model description and Knoke et al. (2020c). We used R (R Core Team, 
2020) with the package optimLanduse (Husmann et al., 2021) to opti
mize our horticultural and forestry land-use portfolio. 

2.3. Indicator settings and optimization scenarios 

For our first research question we tested discount rates from 0 to 3% 
and conducted a sensitivity analysis to evaluate the robustness of our 
results to basic scenario assumptions. For instance, we assessed whether 
our results would be significantly altered either by extending the plan
ning horizon from 46 to 52 or 64 years. For the forestry options, again 
two consecutive rotations of equal length are studied within the sensi
tivity analysis. Similarly, we evaluated whether changing assumptions 

Fig. 1. Illustration of the simulation concept.  
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about the lifespans of long-lived wood product pools significantly 
impacted our carbon sequestration results by considering product life
spans from 11 to 45 years, and also tested a scenario excluding these 
pools entirely. 

We explore how discounting ecosystem services indicators might 
influence optimal land-use composition through optimization scenarios 
1–4. While the optimization algorithm remains the same, we change the 
chosen social and ecological indicator sets for each scenario. The first 
two scenarios compare the effects of discounting non-market ecosystem 
services, and the last two scenarios consider the role of uncertainty. See 
Table 1 for the optimization scenarios. 

Scenario 1 represents business as usual, where only socio-economic 
indicators are discounted. Scenario 2 discounts all cost and benefit in
dicators. Because the variability of ecosystem service growth rates 
across different service types and countries can be high (Baumgärtner 
et al., 2015), Scenario 3 uses three different discount rates simulta
neously: we apply integer discount rates from 1 to 3% to ecological in
dicators, and from 2 to 4% for socio-economic indicators. Finally, 
Scenario 4 is explanatory and features smaller, because discounted, 
uncertainty spaces, but undiscounted ecological indicators. To illustrate 
the isolated impact of reduced uncertainties on the portfolio, starting 
indicator values are drawn from Scenario 1, but standard deviations are 
based on discounted options. Table A1 in the appendix specifies all in
dicator values for the respective ecosystem services.  

2.4. Choice and estimation of the indicators 

To capture the ecological and socio-economic performance of the six 
land-use types, we used four cost- and benefit- related indicators of 
ecosystem services based on MEA (2005) categories (Table 2). As socio- 
economic indicators, we chose (1) the net present value (NPV) and (2) 
the payback period (PP) to cover profitability and the sometimes 
problematic access to capital (Coomes et al., 2008). These socio- 
economic indicators reflect the market value of the ecosystem services 
of timber and fruit production, which cover financial benefits of the 
provisioning ecosystem services. They measure the financial efficiency 
of providing this service. 

As indicators of ecological benefit and cost, we used (3) carbon 
sequestration (CS) in aboveground biomass and forestry product pools, 
and (4) fertilizer use (FU), respectively. We selected these objectives for 
the public planner’s multiple, sometimes conflicting goals influencing 
land-use decision-making (Groot et al., 2018; Janssen and van Ittersum, 
2007). While the socio-economic criteria reflected the benefits and costs 
measured as cash flows, the ecological indicators represented non- 
monetary benefits and costs. For the two ecological indicators we set 
the atmosphere as the reference frame. For the fertilizer indicator all 
yearly ecosystem service flows were emissions (=environmental costs), 
indicating the ongoing release of nitrogen. For the carbon indicator, we 
distinguished between carbon emissions (=environmental costs) and 
sequestration (=environmental benefits). In non-economic multi- 

objective studies, carbon storage is often measured as the average car
bon stock over a longer interval, while a separate indicator for carbon 
sequestration might be used to capture periodic flows (see e.g. Peura 
et al., 2018). Our carbon storage indicator instead expresses net carbon 
flow (i.e. the sum of all discounted carbon sequestered and emitted) over 
the investment period. Thus, immediate emissions from harvesting are 
partly offset by carbon storage in wood product pools. 

We simulated a baseline project period of 46 years, where the first 
establishment of every land-use type took place in year zero. Our project 
period covers two sequential forest rotations (23 years each) and one 
avocado rotation followed by an orchard clear-cut. Due to the different 
time horizons of avocado and forestry rotations, all indicator calcula
tions referred to the project period and one representative hectare of the 
respective land-use type. We included benefit relevant indicators (NPV, 
CS) where a higher value is better, as well as cost relevant indicators (PP, 
FU) where lower values indicate a better performance. Below, we refer 
to this as the direction of the indicator. 

Our study accounted for uncertainties in the provisioning of 
ecosystem services. Uncertainties included future market prices and 
production risks. Therefore, we used Monte-Carlo simulations for all 
uncertain indicators. The socio-economic indicators NPV and PP were 
subject to uncertain events for all land-use types. Fire risk was only 
considered for forestry options, since the risk of fire to avocado orchards 
is low due to extensive fire breaks and irrigation. Where uncertainty 
modelling was missing, like for the indicator fertilizer use, we assumed a 
volatility of 5% as variation coefficient and used the corresponding 
standard deviation. The financial data available in South African Rand 
(ZAR) (World Bank, 2021). Like other currencies, the South African 
Rand exchange rate is quite volatile in relation to multiple factors. 
Therefore, we accounted for fluctuations in the exchange rate when 
calculating the financial performance of the avocado export products. 
The Monte-Carlo simulations for the avocado therefore included boot
strapping of market price changes for domestic markets, as well as 
fluctuations in overseas costs and exchange rates for export markets 
(Roessiger et al., 2013). 

2.4.1. Indicator 1: Net present value (NPV) 
To calculate the NPV we discounted all cash flows during the in

vestment period using a country-specific social discount rate, we varied 
from 2 to 4% (Addicott et al., 2020) and discrete time. The NPV implies 
that the land-use project considered is either marginal relative to the size 
of the other income sources of the decision maker or that a perfect 
capital market exists (Knoke et al., 2020a). Whereas we considered the 
outgoing cash flows like management costs as constant, incoming cash 
flows due to product sales were subject to fluctuations following Blan
don (2004) and Paul et al. (2017). Company statistics and data from 
Crickmay and Associates (2019) provided timber price series and un
published company statistics avocado prices (Jarisch, 2019). Expert 
opinions and long-term industry averages contributed estimates for the 
yearly harvest of avocado. An assortment allocation of 65% for export 
market, 15% for local market and 20% for further processing (avocado 
oil, guacamole) ranked best to lowest quality of fruits. Finally, common 
harvesting and management costs for all land-use types were based on 
expert interviews (Jarisch, 2019). 

Furthermore, we included uncertainty components for each land-use 
type. We considered fire as the main production risk for the forestry 
plantations and assumed a failure probability of 1% per year. We added 
a 5% premium on harvesting costs and assumed that no pulpwood is 
available for sale after a fire. Due to the thinner bark of eucalyptus, we 
additionally reduced the share of merchantable eucalyptus sawlogs to 
95% after a fire. For the avocado orchards, we included drought, hail, 
frost, extreme weather events, insect damage and sunburn in our un
certainty assessment. Fire breaks protect the horticultural orchards from 
burning. Other than for the forest stands, a failure event in the avocado 
orchards did not destroy the standing trees but reduced the crop yield. 
The calculation mechanism however was the same. With a mean risk 

Table 1 
Optimization scenarios and respectively considered indicators (using multiple 
discount rates means that all indicators are considered by their corresponding 
present values for this set of discount rates simultaneously).  

Optimization 
scenario 

Label Discount rate for 
socio-economic 
indicators 

Discount rate for 
ecological indicators 

Scenario 1 Baseline 3% 0% 
Scenario 2 Consistent 

discounting 
3% 2% 

Scenario 3 Discounting 
range 

2, 3, 4% 1, 2, 3% 

Scenario 4 Reduced 
uncertainty 

3% Non-discounted indicator 
values 0%, but 
discounted uncertainty 
values 3%  
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probability of 20% per year, we considered 80% of the regular yields and 
a changed assortment allocation to 50% export market, 20% local 
market and 30% factory components. For the NPV we assumed “more is 
better” as indicator direction. 

2.4.2. Indicator 2: Payback period (PP) 
As access to money is limited for most persons and companies, the 

time until the invested money is received back is a useful indicator to 
consider economic preferences (Peterson and Fabozzi, 2002). The 
payback period relates to the objective of maintaining timely cash flows 
and accounts for access to money (liquidity). This indicator is important, 
if the investor depends on the project, with only limited financial al
ternatives. In an empirical context where capital market imperfections 
must be considered, the payback period accounts for the often-limited 
access to capital. We calculated the payback period for all our land- 
use types based on a social discount rate ranging from 2 to 4% (Addi
cott et al., 2020). The time until the cumulative discounted net revenues 
cover the up-front costs defines the payback period (Peterson and 
Fabozzi, 2002). We therefore compared initial investment and the risk- 
dependent discounted returns to calculate the year of amortization. 
Based on the Monte-Carlo simulations for the NPV calculation, we 
included risk assessment and price fluctuations within the calculation of 
the payback period. We assumed decision-makers prefer smaller 
payback periods and set the indicator direction accordingly. 

2.4.3. Indicator 3: Carbon sequestration (CS) 
Carbon sequestration as an environmental benefit indicator reflected 

the contribution of the land-use types to climate protection. We set the 
indicator assessment similar to Assmuth et al. (2021) and focused on the 
discounted sum of net yearly changes in carbon sequestration, rather 
than the absolute storage numbers. Unlike Assmuth et al. (2021) we 
discount indicator flows directly, instead of considering monetary 
values of periodic carbon flows for the subsequent optimization. We 
follow the idea of discounting carbon sequestration, but apply the dis
counting principle consistently to all biophysical indicators for envi
ronmental benefits and costs and to both their expected and worst-case 
values. Thus, the influence of discounting under uncertainty is a central 
point in our study, which is rarely addressed in other studies. 

We modelled the sum of age-dependent carbon uptake and emission 
rates based on storage in the aboveground biomass for all land-use types. 
Unlike Assmuth et al. (2021) we excluded deadwood as carbon storage, 
as South African plantation standards neglect deadwood due to the 
increased fire risk associated with a higher fuel load. Instead, for the 
forestry options we added the storage of long-lived products made from 
harvested wood during the investment period. To account for the time- 
dependent occurrence of carbon uptake, we calculated yearly changes in 
the carbon storage pools and summed them over the investment period, 
discounting each to the present moment. We compared discounting re
sults of the physical carbon storage for an ecological discount rate 
ranging from 0 to 3%. 

For the avocado options, we calculated the standing tree biomass at 
the end of the rotation following the equations of Chave et al. (2005) for 
moist forest types. In order to calculate standing biomass and carbon 
sequestered for a representative hectare, we obtained information about 

tree height, diameter, and tree numbers per hectare from expert in
terviews and industry data. We accounted for 50% of the dry wood mass 
as stored carbon fraction (Matthews, 1993). We calculated a carbon 
sequestration rate of 0.37 Mg C ha− 1y− 1. At the end of the avocado 
rotation, all biomass is used as fuel wood or burned on site, leading to a 
total release of all sequestered carbon for both horticultural options. For 
the avocado orchards, no calculation of a standard deviation based on 
Monte-Carlo simulations was possible, as the risk assessment covered 
fruit production only and not the failure of standing trees as above
ground biomass. Therefore, we assumed a volatility of 5% for avocado 
data for carbon sequestration instead. 

For the forestry land-use types, we used growth and grading data 
(Microforest Limited, 2019) in combination with tree component 
biomass factors by Dovey (2009) to calculate the yearly carbon 
sequestration rates. As with the avocado trees, we accounted for 50% of 
the dry wood mass as stored carbon fraction (Matthews, 1993) and 
calculated age-specific carbon sequestration rates for each forest stand. 
Over the project horizon, the mean carbon sequestration rates for the 
forestry plantations ranged from 3.56 Mg C ha− 1y− 1 for P. elliottii to 
5.60 Mg C ha− 1y− 1 for the eucalyptus clone (see Table A2 in the ap
pendix). Furthermore, we calculated carbon stored in wood products 
pools for differing lifespans. For harvesting as well as thinning opera
tions, we calculated product pools for 80% of the saw log assortments. 
No storage, but direct release, was assumed for pulpwood and the 
remaining 20% of saw log grades. Analogous to the economic calcula
tions, we reduced the amount of saw timber available for product pools 
after a fire. The plantation age was set to zero after simulation of a fire 
and the carbon uptake followed the age-dependent sequestration rate. 
The direction set for this indicator favored higher values of carbon 
sequestration, because this mitigated the emissions of greenhouse gases. 

2.4.4. Indicator 4: Fertilizer use (FU) 
Mineral fertilizers are mainly based on nitrogen and entail costs 

related to greenhouse gas emissions, as well as to negative impacts on 
groundwater quality, health and biodiversity (Basosi et al., 2014; Keeler 
et al., 2016; Maghanga et al., 2013; Townsend et al., 2010; Zebarth 
et al., 2009). For mitigating climate change and costs of health, reduced 
fertilizer use is considered favorable, which led to the direction of this 
indicator as “less is better”. 

We calculated the fertilizer use for every land-use type based on data 
from Lewis et al. (2019) and company-specific management recom
mendations. No fertilizer was used in the silvicultural regime for pine 
stands. Both eucalyptus stands were fertilized only at establishment with 
39.8 Kg N ha− 1. Yearly fertilization took place in the avocado orchards 
with 195.0 Kg N ha− 1y− 1 (Lewis et al., 2019). For the indicator, we 
summed up the yearly amount of fertilizer use within an investment 
period. To discount the indicator we used an ecological discount rate 
ranging from 0 to 3%. For the standard deviation, we assumed a fluc
tuation of 5% for all land-use types as uncertainty models were missing. 

2.5. Selected land-use types 

Our study covers six different land-use types, presented in Table 3. 
We simulated the forest stands with the growth and yield modelling tool 

Table 2 
Ecosystem services and their indicators for evaluating the performance of the land-use types.  

Dimension Ecosystem service Indicator Unit Direction Description 

Socio- 
economic 

Economic return from timber and 
fruit 

Net present value 
(NPV) 

US-Dollars per hectare More is 
better 

Sum of all discounted cash flows occurring during the 
investment period 

Socio- 
economic 

Regain of invested money from 
timber and fruit 

Payback period (PP) Years Less is 
better 

Time until the cumulative discounted net revenues 
cover the up-front costs 

Ecological Climate protection Carbon sequestration 
(CS) 

Megagram Carbon per 
hectare 

More is 
better 

Sum of all carbon storage changes during the 
investment period 

Ecological Environment and climate protection Fertilizer use (FU) Kilogram Nitrogen per 
hectare 

Less is 
better 

Sum of all fertilizer output changes during 
investment period  
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of the Microforest plantation management system (Microforest Limited, 
2019). The forest stands were even-aged monocultures of either Pinus 
patula, Pinus elliottii, Eucalyptus grandis or the clone E. grandis x urophylla. 
Based on South African growth data, we modelled pruning and thinning 
over the 23-year rotations for each species (Microforest Limited, 2019). 
Pine and eucalyptus stands produced mainly saw wood, following a 
company-specific silvicultural regime. Pulpwood, poles, mining timber 
and other assortments are by-products sold after thinning or harvesting 
operations. We set site- and age-specific grading tables for all forestry 
stands related to industry norms (Jarisch, 2019).  

As horticultural options, we defined an irrigated and a dryland av
ocado orchard with the common, black-skinned cultivar ‘Hass’. Both 
horticultural options are managed within a 46-year period, while 
starting to produce fruit at the age of two. Besides picking, regular or
chard management like fertilization, phytophthora control, and weed 
control take place every year. As is typical for avocado, we considered 
on and off years of fruit production with yields alternating between 15 
and 18 tons per hectare for mature stands. Dryland management saves 
the costs for establishment and maintenance of irrigation systems but 
obtains lower yields. In our study, we assumed 80% of the regular yield 
for the dryland orchards (Jarisch, 2019). 

The economically optimal rotation for each land-use type depends, 
inter alia, on the discount rate. However, we use pre-defined rotation 
lengths for our land-use type options, which are selected according to 
common South African plantation management practices. 

2.6. Using the Shannon index as diversity measure 

To measure the diversity of the land-use portfolios we calculated 
Shannon’s diversity index (H) (Nagendra, 2002), which measures the 
number of different categories in a dataset and their relative abundance. 
Whereas most studies use Shannon’s H in an ecological context to 
display species richness, we measure the number of different land-use 
types per portfolio composition, following Friedrich et al. (2021) and 
Ochoa et al. (2019). Further examples who study diversification in an 
economic context based on the Shannon index are Adeola and Evans 
(2017) and Pede (2013). The diversity of a landscape composition is 
higher the more land-use types are integrated and the more even their 

distribution. We calculated the dimensionless Shannon index from the 
decimal shares of the land-use types. If all possible land-use types are 
equally incorporated in the portfolio we obtain the maximal possible 
Shannon index. In our case the six options result in a maximal possible 
Shannon index of 1.79. We compare the intensity of land-use type 
diversification for our farm portfolios based on this diversification 
measure. 

3. Results 

3.1. Discounting of ecosystem services 

Discounting the non-market ecological indicators (CS, FU) changed 
their provisioning in two ways. While we observed a consistent decline 
for the standard deviation of both indicators, the development of the 
indicator values itself varied with increasing discount rates (Fig. 2, 
Table A3, Table A4 in the Appendix). 

We present the discounted carbon sequestration in Fig. 2 for our 
baseline and sensitivity analysis. As we defined temporary carbon 
storage as the sum of (discounted) sequestration and release, clearcut
ting avocado orchards at the end of each rotation releases all carbon 
sequestered as aboveground biomass into the atmosphere (since product 
pools do not exist for these wood residues being burnt on site), resetting 
carbon storage to zero in the non-discounted scenario (Table A3). 
However, with increasing discount rates the discounted carbon 
sequestration of the horticultural options increased till a discount- 
dependent peak, beyond which the development leveled off (Fig. 2, 
Table A3). Discounting reduced both the benefit of late carbon storage 
and the cost of end-of-rotation carbon release. The peak indicates the 
discount rate resulting in the greatest discounted carbon benefits. 

In our study forest land-use types provide carbon benefits also when 
assuming a discount rate of zero due to fire risk modelling and product 
pools. If a fire occurs within the investment period, the final harvest is 
postponed beyond our planning horizon, although the effect is marginal 
because forestry carbon flows are dominated by wood product pools. If 
we would have used a longer time horizon, this carbon would still be 
released to the atmosphere sometime under the carbon flow approach. 
As a result, the fire-affected proportion of the 5000 Monte-Carlo simu
lations provide a carbon storage of standing biomass lasting longer than 
the investment period, which leads to carbon benefits even for a 0% 
discount rate. The higher growth rates of eucalyptus species lead to 
higher biomass accumulation, which is reflected in higher carbon 
sequestration rates in comparison to the pine species. 

For studying the impact of product pools, we exemplarily present 
P. patula as land-use option. Adding and increasing the lifetime of 
product pools enhanced the carbon storage (Fig. 2 -Panel B). With 
increasing discount rates, we observed a consistent decline in the carbon 
indicator for forestry scenarios with product pools. Forestry scenarios 
without product pools showed a slight increase till a discount-specific 
peak and then leveled off. Carbon storage for long product lifespans 
was best for a discount rate equal to zero, whereas assuming no product 
pools showed highest benefits for scenario-specific discount rates 
(Table A3). Panel B illustrates the high impact of product pool as
sumptions on the overall indicator performance for forestry options. As 
discount rates shrink, the share of carbon stored in wood product pools 
dominates, making moderately-discounted scenarios especially sensitive 
to product longevity assumptions (Fig. 2). 

Variations of the project horizon are displayed in Fig. 2 –Panel C. 
Enlarging the project period leads to increasing carbon sequestration. 
Avocado cultures with longer rotation times reached the peak of carbon 
sequestration at a lower discount rate. 

Discounting did not affect the fertilizer use indicator for forestry 
options, since fertilizer was either not used or applied only once in the 
year of stand establishment (Table A4). For the avocado options, we 
observed a decline of the ecological costs of fertilization for increasing 
discount rates for all rotation times. 

Table 3 
Characterization of the simulated land-use types (one project period covers two 
consecutive forestry rotations).  

Land-use type Abbreviation Description 

Pinus patula Ppat Monoculture of P. patula with the aim to 
produce saw wood within 23 years of rotation 
time 
Interventions: Pruning (x4), thinning (x1) 

Pinus elliottii Pell Monoculture of P. elliottii with the aim to 
produce saw wood within 23 years of rotation 
time 
Interventions: Pruning (x3), thinning (x1) 

Eucalyptus 
grandis 

Egra Monoculture of E. grandis with the aim to 
produce saw wood within 23 years of rotation 
time 
Interventions: Pruning (x4), thinning (x3) 

E. grandis x 
urophylla 

Egxu Monoculture of E. grandis x urophylla with the 
aim to produce saw wood within 23 years of 
rotation time 
Interventions: Pruning (x4), thinning (x3) 

Persea 
americana 
Cultivar ‘Hass’ 
Irrigated 
orchard 

Avo Irrigated orchard of the avocado cultivar ‘Hass’ 
with the aim to produce fruit. Clearcutting the 
orchard in year 46. 
Yearly picking starts at age 2, stands reach 
maturity at age 7 

P. americana 
Cultivar ‘Hass’ 
Dryland 
orchard 

AvoDry Dryland orchard of the avocado cultivar ‘Hass’ 
with the aim to produce fruit. Clearcutting the 
orchard in year 46. 
Yearly picking starts at age 2, stands reach 
maturity at age 7  
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For all ecological indicators and land-use types, differences between 
scenarios decreased with increasing discount rates (Table A3, Table A4, 
Fig. 2). The longer the investment period (or the greater the discount 
rate), the smaller the impact of late costs or benefits. Indicator provi
sioning between the project period scenarios for the land-use types 
varied the most with smaller discount rates; higher discount rates 

produce smaller standard deviations (Table A3, Table A4, Fig. 2, Fig. 3) 
for all indicators and land-use types. 

3.2. Robust multi-objective optimized land-use portfolios 

To illustrate the impact of discounting ecosystem services on optimal 
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Fig. 2. Ecological indicator: Discounted sum of carbon sequestration in Mg C per hectare (for the forestry options the project period is divided into two consecutive 
rotations with equal length; Irrigated and dryland avocado option show the same indicator performance and are therefore not distinguished). 
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land allocation, we present scenarios 1–4 in Fig. 4. We modelled the 
land-use portfolios for uncertainty factors ranging from 0 to 3.5, rep
resenting increasing uncertainty aversion from left to right within each 
of the four scenarios. 

3.2.1. Baseline scenario 
In the baseline scenario, an uncertainty-tolerant decider (leftmost 

bar) would choose a portfolio consisting of 57% E. grandis and 43% 
irrigated avocado. While the irrigated avocado performed worst for the 
ecological indicators, it showed by far the highest financial return. 

However, yield and exchange rate fluctuations were high, making the 
irrigated avocado a risky land-use option. With increasing uncertainty, 
the model incorporates more land-use types. The high growth rate of 
eucalyptus lead to good financial performance, as well as high carbon 
sequestration. In comparison with the other land-use types, the uncer
tainty profile of both eucalypt species represented moderate risks, which 
explains their inclusion in the optimal land-use portfolios across nearly 
all uncertainty levels. For a moderate level of uncertainty (m = 1.5), the 
farm portfolio consists of four land-use types: namely, the irrigated av
ocado orchard, both eucalyptus species, and Pinus patula. For increasing 
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Fig. 4. Land- use portfolios for the four optimization scenarios, uncertainty aversion increasing from 0 (left) to 3.5 (right) within each scenario.  
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uncertainty, the algorithm adds stepwise Pinus elliottii and the dryland 
avocado option. Both pine species performed well on the ecological 
indicators, but P. elliottii had a very low financial performance. In the 
baseline scenario, a strongly uncertainty-averse decider (rightmost bar) 
would choose a portfolio composed of all six land-use types with a 
relatively balanced composition. The optimal land-use composition for 
achieving the four objectives best highly depends on the decision- 
maker’s attitude toward uncertainty. 

3.2.2. Influence of consistent discounting 
Using ecological and social discount rates consistently for all costs 

and benefits reduced portfolio diversification. As in the baseline sce
nario, the algorithm incorporated more land-use types for higher un
certainty factors, but the maximal number of considered land-use types 
is smaller. For the highest uncertainty factor, the portfolio included just 
four land-use options. Moderate uncertainty aversion led to portfolios 
dominated by avocado and E. grandis with contribution of the eucalyptus 
clone; dryland avocado was included for strong uncertainty aversion. 
The share of avocado (both options combined) grew with increasing 
uncertainty aversion, in contrast to the baseline scenario where the 
combined share of avocado decreased with increasing uncertainty 
aversion. 

3.2.3. Influence of a discounting range 
When accounting for the uncertainty of the discount rate, the effect 

of reduced diversification is moderated or almost offset in comparison to 
Scenario 2. The discounting range portfolio shows only slightly less 
diversified portfolios than the baseline scenario, but higher diversifica
tion than consistent discounting with just one rate. For the highest level 
of uncertainty all six land-use types are included (m = 3.5). Like all 
scenarios, the uncertainty-neutral decider would choose a portfolio 
consisting of E. grandis and irrigated avocado. In comparison to scenario 
2, the number of included land-use types is higher for the discounting 
range for the respective uncertainty aversion and the composition is 
more balanced. While the eucalyptus proportion varied, the avocado 
share was nearly the same between scenarios 2 and 3. For higher un
certainty aversion, the model included P. patula and for highest 

uncertainty aversion even P. elliottii. However, in comparison to the 
baseline scenario, the pine species are missing for low to moderate un
certainty aversion. Again, like Scenario 2, the combined avocado share 
grew with increasing uncertainty aversion for the discounting range 
scenario and the share of avocado without irrigation increased when 
considering high levels of uncertainty. 

3.2.4. Influence of reduced uncertainty 
Considering only discounting-reduced standard deviation, but no 

discounting of the indicator values as such, explains already most of the 
changes in the portfolio composition resulting from discounting. Sce
narios 2 and 4 differ just in the proportional distribution, except for m =

0.5 the incorporated land-use options are the same. In comparison to the 
baseline scenario, the reduced uncertainty of discounted indicator 
values led already to less diversified portfolios. Even for high uncer
tainty aversion, just five land-use types were selected. P. patula was only 
included in portfolios for high uncertainty factors. Reducing the un
certainty of discounted indicators yielded less diversified portfolios. 

3.2.5. Shannon index 
The Shannon indices for all scenarios increased with higher uncer

tainty factors (Fig. 5), indicating higher diversification for increased 
uncertainty aversion. While the baseline scenario showed the highest 
index values among all scenarios, the other scenarios led to less diver
sified portfolios. The consideration of a set of discount rates (scenario 3: 
Discounting range) resulted in Shannon indices slightly higher than 
scenario 2 with consistently discounted indicators. 

4. Discussion 

There is a large, and largely unexamined, discrepancy in how the 
ecosystem services literature treats monetary and non-monetary flows 
that occur in the future: the former are almost always discounted, the 
latter just rarely. This discrepancy impacts the relative weight that these 
types of flows receive in multi-criteria decision settings (Kula and Evans, 
2011). In the case of non-monetary costs and benefits, consistently 
ignoring time preference and risk might produce land-use allocations 

Fig. 5. Shannon Indices for the four optimization scenarios and increasing uncertainty factors.  
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that fall short of the social optimum. 
We present the first analysis of the effect of discounting ecosystem 

services production on multi-objective land-use allocations under un
certainty and describe a method for accounting for uncertainty in the 
discount factor. Our study is based on a virtual farm portfolio concept in 
which shares of future land-use types are allocated within different 
discounting and uncertainty scenarios. In our forestry-avocado example, 
the baseline scenario with only monetary flows discounted produced the 
most diversified and balanced land-use portfolios. Applying ecological 
discount rates shifted the value of both ecological indicators in a di
rection that favored avocado over forestry: it made both the total fer
tilizer use (a cost associated with avocado) and the carbon stored at the 
end of the planning horizon (a benefit associated with forestry) appear 
smaller. Thus, the area share allocated to avocado agriculture increased 
when ecological discount rates were included. 

To center the relationship between discounting and multi-objective 
allocation decisions, we used a simplified bare-land model that ne
glects conversion costs. If establishing an avocado orchard or forest 
plantation required clearing existing bush- or woodland, then that 
would entail an initial, and thus undiscounted, carbon release, which 
could have a large effect on optimization results. In KwaZulu-Natal, 
carbon loss is calculated at a rate of 0.54% per annum, underscoring 
the importance of strategies that retain and enhance landscape carbon 
storage (Turpie et al., 2021). In practice, large scale timber growers 
typically manage age-balanced plantations, where an equilibrium of 
carbon uptake and release is expected over the long term under current 
conditions. 

Assumptions about the size and durability of carbon pools had sub
stantial effects on optimal land-use portfolios, especially when discount 
rates were small. We modelled carbon sequestration in aboveground 
biomass, which we fractionated post-harvest into wood product pools 
with different lifetimes. We only accounted for direct sequestration and 
ignored material substitution effects, so our approach likely un
derestimates the carbon sequestration potential of the forestry options 
(see e.g. Härtl et al., 2017). For orchards, we neglected the carbon effects 
of pruning and the fate of pruned branches (e.g. mulching). Importantly, 
we did not account for fossil fuel emissions from machinery used in 
management or harvesting activities. As we defined our carbon indicator 
as net sum of carbon sequestration and release, without any changes of 
the average carbon stored in situ or in various carbon pools, we need to 
discount carbon flows to show the beneficial effect of “buying time” by 
first sequestering and later releasing the carbon again into the atmo
sphere. For the forest land-uses even non-discounted carbon benefits 
occur due to fire risk and product pools; this carbon would have been 
released to the atmosphere if we would have enlarged the project period 
till the end of the product lifetime. For our optimization scenarios we 
considered only forestry options with moderate product lifetimes, where 
we argue that the added storage due to our fire modelling approach is 
negligible as it’s the minor share. 

Discounting carbon sequestration directly is less common in practice 
than one might expect. Early work discounted the monetary value of 
periodic carbon flows, i.e. the product of sequestration units with a 
carbon price (Plantinga and Birdsey, 1994; van Kooten et al., 1995). 
Although recent studies report values that are equivalent to discounted 
physical carbon flows (Assmuth et al., 2021, 2018; Pihlainen et al., 
2014), these values are not used as decision variables; monetary values 
are used instead for management advice. Our study instead optimizes 
based on directly discounted physical carbon flows, thereby demon
strating a method for integrating time preferences into decision-making 
that avoids strong assumptions about the economic value of ecosystem 
services in the absence of reliable price data (e.g. due to missing or 
volatile markets). Without discounting, the value of forest-based carbon 
sequestration is determined by age-dependent uptake rates (Akao, 
2011), but discounting progressively de-prioritizes long-term storage 
(Yousefpour et al., 2018). In our study, the benefits of binding carbon in 
wood products taper off with higher discount rates. This implies that 

excessive carbon discounting could undercut climate-oriented efforts to 
promote the adoption of long-lived timber products, because these 
product pools often require larger wood dimensions and longer rotation 
periods. Where social discount rates are low, as in Europe, dual dis
counting might not be needed to support postponed-release tactics over 
alternative uses. Increasing carbon discount rates—which might be done 
to address criticisms that forest-based sequestration projects overstate 
their permanence and fail to address the risk of large disturbance- 
induced mortality, for instance (Gren and Aklilu, 2016)—favors 
shorter-term sequestration strategies. 

Our virtual farm portfolio approach engages with uncertainty at two 
levels: discounting and optimization. The optimization model uses 
diversification to hedge against uncertainty (Knoke et al., 2020c; Reith 
et al., 2020; West et al., 2021), whereas discounting is an a priori 
approach that accounts for uncertainty by reducing the future costs and 
benefits our model evaluates. These tools can counterbalance one 
another. Within each scenario, diversification was positively associated 
with increasing uncertainty as the model attempted to hedge against 
high indicator variance. Between scenarios, however, those featuring 
heavy discounting generated less diversified portfolios than those 
featuring light discounting. This is because discounting limits the impact 
of late-occurring uncertain events on present values. As a result, indi
cator variance is constrained, less hedging is required at the optimiza
tion stage, and more area is allocated to the best-performing land uses - 
in this case, avocado orchards. Our study showed that applying discount 
rates to all ecosystem services would tend to reduce the compositional 
diversity of the land portfolios. However, this tendency of homogeni
zation to gain more efficiency did ignore the uncertainty of the discount 
rate itself. It appears to be essential to consider this discount rate un
certainty to obtain balanced results and to apply discounting of all 
ecosystem services with due care. 

Although we do not explicitly weight our objectives, beyond the 
implicit weighting derived from varying discount rates, assigning 
weights in our optimization model is mathematically possible. Including 
indicator weights is unlikely to substantially alter the positive associa
tion between uncertainty and diversification. Robust optimization uses a 
min-max decision rule that allocates area shares to obtain the best result 
from the worst-performing indicator, so that strong performance in one 
dimension cannot compensate for weak performance in another. 
Heavily weighting one objective could allow it to dominate the results 
by favoring the best-performing land-use type, but diversification would 
still increase with increasing uncertainty. Our method is relatively 
robust against implicit weighting effects by different numbers of in
dicators which represent the objectives for land allocation. As the 
maximum distance of an indicator to the best achievable level (ideal 
point) is minimized, the outcome does not depend directly on the 
number of indicators, but on which of the indicator is worst performing. 

For practical purposes, however, how to weight indicators express
ing different kinds of values remains an open question. In economics, 
this issue is typically avoided by commensuration through the money 
metric or by the use of utility, whereby wants and needs are expressed as 
undifferentiated and grossly substitutable magnitudes (Gomez-Bagge
thun and Martin-Lopez, 2015; Kant, 2003; Spash and Hache, 2021). In 
ecosystem services, debates about how best to weight differentiated and 
largely un-substitutable objectives remain unresolved, and range from 
bureaucratic additive metrics like the Environmental Benefit Index of 
the US Conservation Reserve Program (Everard, 2018; USDA, 2021), to 
Pareto frontier methods that attempt to offload the weighting problem 
to stakeholders (Marques et al., 2020), to soliciting weights using 
various expert consultation frameworks (Fanghua and Guanchun, 2010; 
Marto et al., 2018; Vacik et al., 2007). In this study, we consider severe 
uncertainty where decision-makers can identify different scenarios but 
cannot rank the likelihood that they will be preferred by the next gen
eration of decision-makers (Friedrich et al., 2021; Kwakkel et al., n.d.), 
so we omit objective weights. 

Using a money metric may clarify how trade-offs are made between 
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objectives, but the issue of intertemporal trade-offs remains elusive. 
Selecting an appropriate discount rate can be extremely challenging 
even in the familiar context of cash flows, partly because it often re
quires making assumptions about consumption growth. Indeed, it is 
sometimes argued that the most significant source of uncertainty in cost- 
benefit analysis is the discount rate itself (Weitzman, 2001). This chal
lenge is compounded in the case of ecosystem services, where relevant 
considerations expand to encompass other fluctuating and difficult-to- 
predict factors like intergenerational equity, substitutability with con
sumption goods, and the scale of expected erosion of ecosystem services 
(Baumgärtner et al., 2015; Drupp, 2018; Nichols et al., 2011; Zhu et al., 
2019). Ecosystem services production functions are subject not only to 
high standard errors linked to service types and national contexts 
(Baumgärtner et al., 2015), but also to disturbance risk, which in
fluences Ramsey discount rates (Rennert et al., 2021). Finally, discount 
rate selection has important ethical implications that might be over
looked by strictly financial calculations (O’Mahony, 2021; Sjølie et al., 
2013). Unlike a private person preferring a good now rather than later, a 
public planner considering social discounting accounts for intergener
ational welfare (Kumar, 2010). Future research might seek to develop 
alternative approaches for engaging with discount rate uncertainty. For 
the time being, it is advisable to consider a range of possible discount 
rates (Hoel and Sterner, 2007). 

Different discount rates can also be used for different kinds of values. 
Contrary to the standard practice of using a single, fixed discount rate for 
costs and benefits, Medvecky (2012) points out that differential rates 
might be desirable in some cases, such as a uncertainty-averse decision- 
maker who weights future costs more heavily than future benefits. 
Similarly, with decreasing ecosystem service provisioning (IPBES, 2019; 
MEA, 2005), using a special ecological discount rate can help account 
for declining natural capital, even when social discount rates reflect 
expectations of continued economic growth. Kula and Evans (2011) find 
that including an extra ecological discount rate and implementing dual 
discounting could increase the economic viability of investments 
designed to generate environmental benefits. Here, we use the same rate 
for costs and benefits, but different rates for socio-economic and 
ecological indicators. 

Due to the long-term nature of most environmental assessments, the 
use of static discount rates for ecological indicators has become some
what controversial (Gollier, 2010; Groom et al., 2005; Knoke et al., 
2017; Kula and Evans, 2011; O’Mahony, 2021; Rennert et al., 2021; 
Weitzman, 2001). Although we opted for static discount rates, there is a 
growing literature on discount rates that change over time according to 
a schedule as a strategy for balancing uncertainty and sustainability. 
Limited substitutability and increasing uncertainty about growth, risk, 
and market conditions might support the adoption of non-constant 
discount rates (Traeger, 2011; Zhu et al., 2019). For instance, carbon 
sequestration in forests is a product of biophysical processes influenced 
by stochastic environmental conditions and evolving disturbance re
gimes (Seidl et al., 2014), so the permanence in forest carbon seques
tration is highly questionable (Gren and Aklilu, 2016). Reed (1984) 
famously demonstrated that a policy effect related to a fire risk assess
ment is linked to adding a premium to the discount rate that would have 
been used in a risk-free environment. Also Malo et al. (2021) show that 
the optimal forest management strategy is in the same manner influ
enced by a higher discount rate as by accounting for hazard events. 
Following Gollier (2014) a risk premium could therefore even lead to an 
increasing term structure of the discount rate. 

Of course, the more common approach to non-constant discounting 
for long-term assessments is to use declining discount rates, which are 
often observed (Newell and Pizer, 2003) or recommended (Arrow et al., 
2013). However, setting the appropriate term structure under declining 
discount rates may be a challenge (Freeman and Groom, 2016). It also 
greatly complicates the optimization of forest management (Knoke 
et al., 2017). 

For some ecosystem services (e.g. water supply) substitution 

possibilities are limited (Fitter, 2013), leading to higher relative prices 
(Drupp, 2018). For long-term assessments, even a non-constant elastic
ity of substitution between ecosystem services and manufactured goods 
seems plausible due to subsistence requirements as the elasticity varies 
with the availability of the service (Drupp, 2018). Low substitutability 
possibilities and high prices for ecosystem services lead to ecological 
discount rates that are significantly smaller than for manufactured 
goods. The less man-made inventions can substitute for ecosystem ser
vices, the more appropriate a declining discount rate becomes (Zhu 
et al., 2019). It should be noted that while weak sustainability allows 
this kind of substitution, strong sustainability does not, and requires 
financial and ecological consumption to be addressed independently. 

As a final point, standard economic assessments arguably meet their 
limits in decision environments involving irreversible damages to rare 
ecosystems and the loss of the services they provide (Kumar, 2010). 
Discounting alone cannot address, and in some cases may exacerbate, 
unsustainable decision-making. When and how discounting should be 
applied in the ecosystem services context is far from self-evident. 
Further work on this important topic—up to and including vigorous 
debates—should be encouraged. 

5. Conclusions 

Our study presents how robust, multi-objective land-use portfolios 
change when considering time-preferences for ecosystem services in a 
mixed forestry-avocado farm portfolio in South Africa. This was exam
ined by consistently discounting ecosystem service indicators with 
specific discount rates in multi-objective optimization. Our result indi
cate that multi-objective optimization is a valuable tool for public 
planners to fulfill famers’ and policy makers’ interests in modern land 
management. As discounting shifted the ecological indicators of avo
cado orchards in the desirable direction, dual discounting increased the 
shares of avocado farming over the forestry options. Discounting favors 
near-term streams of benefits over postponed returns, which influenced 
the indicators based on the assessment framework as shown in our 
sensitivity analysis. Dual discounting moreover accounts separately for 
time preferences of ecological costs and benefits. Discounting decreased 
the standard deviation of the ecosystem service indicators which led to 
reduced portfolio diversification. Considering time preferences consis
tently led to highly efficient-orientated land-use portfolios. However, for 
ecosystem services with high scarcity and low substitution possibilities, 
low ecological discount rates are recommended which encourages 
portfolio diversification. Cost-benefit analysis of land-use management 
problems could move to a dual focus on both efficiency and sustain
ability when discounting ecosystem service indicators separately with 
adapted rates. However, as discounting focuses on near-term effects, it 
discriminates against late ecosystem services flows. For services like 
nature conservation or water regulation, choosing the right discount 
rate is therefore especially important. Nonetheless declining provision
ing of ecosystem services and questionable substitution possibilities of 
ecosystem services suggest dual discounting when considering ecolog
ical costs and benefits in decision-making. For future studies on land-use 
management declining discount rates or hyperbolic discounting could 
be a promising option to meet sustainability and intergenerational eq
uity in land-use decision-making. To capture ecological and social ef
fects in a more comprehensive approach, life cycle assessments could be 
a valuable tool for future indicator assessments. 
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Appendix A. Appendix 

A.1. Robust multi-objective optimization approach 

Our robust, multi-objective optimization approach seeks to allocate land-use shares in a way that minimizes trade-offs between the ecosystem 
service indicators. We consider our model as robust, because it guarantees satisfactory solutions across a wide range of input data (Ben-Tal et al., 
2009). When setting up the decision environment, the model not only accounts for the predicted performance of each land-use type for achieving each 
ecosystem service indicator, but also potential fluctuations in this performance. The optimization algorithm compares the distance between the in
dicator levels achieved by a given farm portfolio and a reference point under uncertainty. We define discrete uncertainty scenarios u, based on all 
systematical combinations of the best and worst cases for each indicator and each land-use type (Gorissen et al., 2015). This results in 2L scenarios per 
indicator, with L being the number of land-use types considered in the optimization. 

These uncertainty scenarios u, which form the surface of the box-shaped uncertainty spaces, Ui for each indicator i, represent our missing 
knowledge about future developments. Such future developments could include, for example, significant changes in environmental and market 
conditions over time. We limited our consideration of uncertainty to the negative side of the results, because we see risk as an asymmetric phe
nomenon, where positive deviations are opportunities that can be ignored in risk modelling (Račev et al., 2008). The best and worst case values for 
each land-use type form the corner points of the uncertainty space for each indicator. The optimization then considers all corner points simulta
neously. Therefore the optimal land-use portfolio offers a feasible solution for all input values contained within the uncertainty spaces (Knoke et al., 
2020c). 

The most desirable level for each indicator of each single land-use type is set as the reference point in our study (Diaz-Balteiro et al., 2018; Estrella 
et al., 2014). This ideal indicator level cannot be achieved for all ecosystem services and all uncertainty scenarios simultaneously. Instead, the 
optimization algorithm minimizes the maximum distance β between the actual performance level and the reference point across all indicators and 
uncertainty scenarios (Knoke et al., 2020c). The solution forms the best compromise across all uncertainty scenarios by presenting the most desirable 
portfolio composition, where high levels of one indicator do not compensate for low levels of another (Romero, 2001). 

The predicted values ŷi,l for each ecosystem service indicator, i, and land-use type, l, form the starting point for the robust optimization model. To 
account for the indicator fluctuations we compute the uncertainty adjusted values yi,l,u that span from the best- to the worst-case estimate. Depending 
on the direction of the indicator (i.e. whether larger or smaller values are considered more desirable), we subtracted or added multiples m of the 
standard deviation SDi,l to the nominal value to compute a worst-case estimate. 

yi,l,u =

⎧
⎨

⎩

ŷi,l for best case
ŷi,l − m × SDi,l for worst case, if more is considered better
ŷi,l + m × SDi,l for worst case, if less is considered better 

The level of uncertainty is therefore regulated by the factor m, for which we provide examples in the main text. The larger the factor the larger the 
uncertainty space, and hence the more uncertain events are considered in decision-making. 

For each uncertainty scenario the model computes the performance of a hypothetical land-use portfolio for achieving one ecosystem service in
dicator. The hypothetical land-use portfolio contains various shares, al, of each land-use option. We compute the farm-level performance, Yi,u, of this 
portfolio as the sum of the uncertainty adjusted values yi,l,u (i.e. best and worst case estimates) within a given scenario, u, weighted by the area share, 
al, of each land-use in the hypothetical portfolio: 

Yi,u =
∑

l
yi,l,u × al 

As each indicator may be measured in different units, we normalize Yi,u between 0 and 100% to compare performance across different indicators. 
The best performing uncertainty adjusted indicator within each scenario is set as reference point, i.e. as the 100% target level. Reference points are 
computed across all uncertainty levels using m = 3.5, denoted as u (m = 3.5) to guarantee robust results (Gosling et al., 2021). For “more is better” 
indicators (such as NPV, where high values are more desirable) the highest uncertainty adjusted value within an uncertainty scenario serves as the 

reference point, y*
i,u (m=3.5) = max

l

{
yi,l,u (m=3.5)

}
, whereas for “less is better” indicators (such as payback period) it is the lowest indicator value, 

yi,u (m=3.5)* = min
l

{
yi,l,u (m=3.5)

}
. 

The normalized distance Di,u to the 100% level is computed for each uncertainty scenario by dividing the difference between the reference point 
and portfolio performance by the difference between the highest and lowest uncertainty-adjusted values (Δi,u (m=3.5)): 

Di,u =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

y*
i,u (m=3.5) − Yi,u

Δi,u (m=3.5)
× 100 ifmoreisbetter

Yi,u− yi,u (m=3.5)*

Δi,u (m=3.5)
× 100 if lessisbetter 
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Δi,u (m=3.5) = y*
i,u (m=3.5) − yi,u (m=3.5)* 

The variable Di,u measures the shortfall between land-use portfolio performance for a given ecosystem service indicator and the reference point (I.e. 
the best possible or target level). The largest shortfall β, which we describe as underperformance, is defined by the maximum distance Di,u across all 
uncertainty scenarios: 

β = max
i,u

{
Di,u

}

The variable β serves as our objective function, which is minimized by solving the allocation problem with the area shares al allocated to each land- 
use type as decision variables. 

The optimization problem is formulated as minimize β. 
Subject to 

β ≥ Di,u ∀i ∈ I, ∀u ∈ Ui  

∑

l
al = 1  

al ≥ 0 

By minimizing β we seek to obtain the land-use portfolio that minimizes the worst underperformance across all indicators. Our optimization 
problem can be solved exactly by linear programming.  

Table A1 
Non-discounted yearly carbon sequestration changes in Mg C per hectare (for the forestry options emissions in year 22 and 45 vary due to the considered product pools 
after harvesting).  

Year of project period Pinus patula Pinus elliottii Eucalyptus grandis E. grandis x urophylla Persea americana 
Irrigated orchard 

P. americana 
Dryland orchard 

0 0.00 0.00 0.00 0.00 0.37 0.37 
1 0.00 0.00 1.08 1.10 0.37 0.37 
2 0.00 0.00 3.99 4.02 0.37 0.37 
3 0.03 0.00 5.88 5.93 0.37 0.37 
4 1.58 0.30 6.55 6.61 0.37 0.37 
5 4.40 2.86 3.52 3.55 0.37 0.37 
6 6.47 3.10 7.00 7.06 0.37 0.37 
7 6.83 5.93 − 3.61 − 3.59 0.37 0.37 
8 8.10 5.06 6.24 6.29 0.37 0.37 
9 6.69 5.17 6.64 6.70 0.37 0.37 
10 7.76 6.38 6.60 6.65 0.37 0.37 
11 6.59 5.90 6.66 6.72 0.37 0.37 
12 − 0.41 − 0.59 6.73 6.79 0.37 0.37 
13 5.49 5.03 6.67 6.71 0.37 0.37 
14 5.25 4.84 6.80 6.85 0.37 0.37 
15 5.40 4.58 6.53 6.60 0.37 0.37 
16 4.36 4.79 6.50 6.52 0.37 0.37 
17 4.95 4.80 6.32 6.37 0.37 0.37 
18 4.29 5.11 5.97 5.99 0.37 0.37 
19 4.10 4.56 6.10 6.15 0.37 0.37 
20 3.94 4.86 5.83 5.87 0.37 0.37 
21 3.37 4.53 5.38 5.40 0.37 0.37 
22 − 17.77 − 15.81 − 31.13 − 31.32 0.37 0.37 
23 0.00 0.00 0.00 0.00 0.37 0.37 
24 0.00 0.00 1.08 1.10 0.37 0.37 
25 0.00 0.00 3.99 4.02 0.37 0.37 
26 0.03 0.00 5.88 5.93 0.37 0.37 
27 1.58 0.30 6.55 6.61 0.37 0.37 
28 4.40 2.86 3.52 3.55 0.37 0.37 
29 6.47 3.10 7.00 7.06 0.37 0.37 
30 6.83 5.93 − 3.61 − 3.59 0.37 0.37 
31 8.10 5.06 6.24 6.29 0.37 0.37 
32 6.69 5.17 6.64 6.70 0.37 0.37 
33 7.76 6.38 6.60 6.65 0.37 0.37 
34 6.59 5.90 6.66 6.72 0.37 0.37 
35 − 0.41 − 0.59 6.73 6.79 0.37 0.37 
36 5.49 5.03 6.67 6.71 0.37 0.37 
37 5.25 4.84 6.80 6.85 0.37 0.37 
38 5.40 4.58 6.53 6.60 0.37 0.37 
39 4.36 4.79 6.50 6.52 0.37 0.37 
40 4.95 4.80 6.32 6.37 0.37 0.37 
41 4.29 5.11 5.97 5.99 0.37 0.37 
42 4.10 4.56 6.10 6.15 0.37 0.37 
43 3.94 4.86 5.83 5.87 0.37 0.37 
44 3.37 4.53 5.38 5.40 0.37 0.37 
45 − 89.18 − 77.20 − 113.37 − 114.27 − 16.65 − 16.65   
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Table A2 
Input data for optimization: Cost and benefit relevant indicator values and their standard deviation (based on 5000 Monte-Carlo simulations, NPV = net present value, 
PP = payback period, CS = carbon sequestration, FU = fertilizer use, number after indicator states used discount rate in percentage).   

Persea americana 
Cultivar ‘Hass’ 
Irrigated orchard 

P. americana 
Cultivar ‘Hass’ 
Dryland orchard 

Eucalyptus grandis  E. grandis x urophylla Pinus elliottii Pinus patula 

Indicator 
abbreviation 
+ Discount 
rate 

Average Standard 
deviation 

Average Standard 
deviation 

Average Standard 
deviation 

Average Standard 
deviation 

Average Standard 
deviation 

Average Standard 
deviation 

NPV3 [USD/ 
ha] 

52,826.77 12,218.71 28,995.48 9766.98 12,291.04 4004.51 10,186.63 3512.50 2459.99 2104.05 3593.02 2317.79 

PP3 [years] 14.02 3.38 17.73 5.48 11.17 6.90 15.63 8.05 29.82 19.21 25.75 13.89 

CS0 [Mg C 
/ha] 0.00 0.00 0.00 0.00 90.44 25.04 90.95 24.92 64.46 16.05 76.84 17.93 

CS1 [Mg C 
/ha] 2.85 0.14 2.85 0.14 87.12 14.57 87.66 14.46 60.47 9.49 73.30 10.30 

CS2 [Mg C 
/ha] 4.30 0.21 4.30 0.21 81.34 8.36 81.89 8.30 55.24 5.79 67.84 5.89 

CS3 [Mg C 
/ha] 4.94 0.25 4.94 0.25 74.72 5.09 75.25 5.10 49.75 4.04 61.77 3.78 

FU0 [kg N 
/ha] 8970.00 448.50 8970.00 448.50 398.00 19.90 398.00 19.90 0.00 0.00 0.00 0.00 

FU1 [kg N 
/ha] 7233.43 361.67 7233.43 361.67 398.00 19.90 398.00 19.90 0.00 0.00 0.00 0.00 

FU2 [kg N 
/ha] 5945.58 297.28 5945.58 297.28 398.00 19.90 398.00 19.90 0.00 0.00 0.00 0.00 

FU3 [kg N 
/ha] 4976.15 248.81 4976.15 248.81 398.00 19.90 398.00 19.90 0.00 0.00 0.00 0.00   

Table A3 
Discounted sum of carbon sequestration per investment period in Mg C per hectare for selected discount rates (grey shaded cells indicate the basic results with default 
settings). 
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Carbon sequestra�on

discount rate 0.0% 1.0% 2.0% 3.0%

Pinus patula - 46years project 
period; no product pools

Sum of discounted carbon 
sequestra�on Mg C/ha

11.50 18.22 21.71 23.29

±22.05 ±13.18 ±7.80 ±4.67

Pinus patula - 46 years project 
period; product pools las�ng for 
11 years

Sum of discounted carbon 
sequestra�on Mg C/ha

65.23 60.15 55.11 50.34

±19.56 ±13.43 ±9.74 ±7.60

Pinus patula - 46 years project 
period; product pools las�ng for 
28 years

Sum of discounted carbon 
sequestra�on Mg C/ha

76.84 73.30 67.84 61.77

±17.93 ±10.30 ±5.89 ±3.78

Pinus ellio�i - 46 years project 
period; product pools las�ng for 
28 years

Sum of discounted carbon 
sequestra�on Mg C/ha

64.46 60.47 55.24 49.75

±16.05 ±9.49 ±5.79 ±4.04

Eucalyptus grandis - 46 years 
project period; product pools 
las�ng for 28 years

Sum of discounted carbon 
sequestra�on Mg C/ha

90.44 87.12 81.34 74.72

±25.04 ±14.57 ±8.36 ±5.09

Eucalyptus grandis x urophylla -
46 years project period; product 
pools las�ng for 28 years

Sum of discounted carbon 
sequestra�on Mg C/ha

90.95 87.66 81.89 75.25

±24.92 ±14.46 ±8.30 ±5.10

Pinus patula - 46 years project 
period; product pools las�ng for 
>45 years

Sum of discounted carbon 
sequestra�on Mg C/ha

140.23 113.80 93.83 78.53

±8.45 ±6.71 ±5.79 ±5.27

Pinus Patula - 62 years project 
period; no product pools

Sum of discounted carbon 
sequestra�on Mg C/ha

37.62 40.89 40.50 38.54

±44.08 ±25.60 ±15.62 ±10.13

Pinus patula - 54 years project 
period; no product pools

Sum of discounted carbon 
sequestra�on Mg C/ha

28.27 32.12 32.89 32.12

±35.97 ±22.15 ±14.15 ±9.46

Persea americana - 46 years 
project period

Sum of discounted carbon 
sequestra�on Mg C/ha

0.00 2.85 4.30 4.94

±0.00 ±0.14 ±0.21 ±0.25

Persea americana - 54 years 
project period

Sum of discounted carbon 
sequestra�on Mg C/ha

0.00 3.74 5.40 5.95

±0.00 ±0.19 ±0.27 ±0.30

Persea americana - 62 years 
project period

Sum of discounted carbon 
sequestra�on Mg C/ha

0.00 4.70 6.48 6.89

±0.00 ±0.24 ±0.32 ±0.34

Table A4 
Discounted sum of fertilizer use per investment period in kg N per hectare for selected discount rates (grey shaded cells indicate the basic results with default settings). 
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Fer�lizer use 

discount rate 0.00% 1.00% 2.00% 3.00%

Pine species - 46 years 
project period

Sum of discounted fer�lizer 
use kg N/ha

0.00 0.00 0.00 0.00

±0.00 ±0.00 ±0.00 ±0.00

Eucalyptus species - 46 years 
project period

Sum of discounted fer�lizer 
use kg N/ha

398.00 398.00 398.00 398.00

±19.90 ±19.90 ±19.90 ±19.90

Persea americana - 46 years 
project period

Sum of discounted fer�lizer 
use kg N/ha

8970.00 7233.43 5945.58 4976.15

±448.50 ±361.67 ±297.28 ±248.81

Persea americana - 54 years 
project period

Sum of discounted fer�lizer 
use kg N/ha

10530.00 8186.95 6531.53 5338.12

±526.50 ±409.35 ±326.58 ±266.91

Persea americana - 62 years 
project period

Sum of discounted fer�lizer 
use kg N/ha

12090.00 9067.51 7031.64 5623.87

±604.50 ±453.38 ±351.58 ±281.19
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