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Abstract 
Sound coding strategies for cochlear implants (CIs) 
translate the incoming sound signal into parameters for the 
electrical pulse pattern delivered by the implant. Without 
specific noise reduction, the common envelope coding in 
CIs, like in the continuous interleaved sampling strategy 
(CIS), leads to problems with sound localization and 
listening in situations with noise and reverberation. Hence, 
noise reduction and de-reverberation stages clean the 
sound signal prior to pulse processing, together achieving 
good performance in many listening situations. Statistical 
approaches using deep neural networks (DNN) achieve 
impressive results for de-reverberation, noise reduction 
and segregation of sound sources from a background of 
other sources. These networks, like Conv-TasNet, contain 
stages for filtering and amplitude extraction similar to the 
processing in CIs. We investigated if a DNN could be 
trained to replace the complete sound coding strategy of a 
CI. We compare the amplitude stimulation sequences for 
each electrode computed by a new stochastic approach and 
compare them to those of the classic CIS strategy. Results 
show that a DNN is capable of replacing existing CI 
coding strategies like CIS, while having the potential to 
include preprocessing stages for source segregation at no 
extra computational cost.  

Introduction 
Cochlear implants (CI) are the most widespread 
sensorineural prosthesis and are the main solution for 
patients who suffer from profound deafness [1-3]. 
Continuous Interleaved Sampling (CIS) is an envelope-
based coding strategy which is commonly used as CI 
processing algorithm. It maps the amplitude envelope of 
the sound filtered in frequency bands to individual 
envelopes, achieving high levels of speech recognition [4]. 

Machine learning has already been used in the field of 
cochlear implants and has demonstrated its potential in 
signal processing. One approach is using neural networks 
(NN) to optimize the envelope-to-current transfer function, 
i.e. to individually adjust threshold (THR) values and 
compression characteristics [5]. The THR and maximum 
comfortable level (MLC) can also be calculated by a 
neural network approach [6]. Another approach uses NN 
for sound source segregation [7] and for increasing the 
performance of CI users in noisy environments. For 
instance, several studies achieved automatic segregation of 
the speech signals from noise by using neural networks. 
Besides, a different NN greatly improved the signal-to-
noise ratio from compared to the original CI processing 
strategies [8]. 

In this paper, we propose replacing the complete CIS 
strategy algorithm by a DNN, Conv-TasNet [9]. The DNN 
receives a single-channel input audio signal and the target 
is the 16-channel output of the CIS algorithm to be 
delivered by the CI. With this idea, our intention is to go 
one step further on the application of deep learning on 
cochlear implants, which has already shown great results, 
based on the speech segregation and noise suppression 
capabilities of Conv-TasNet [10][11].  

Results show that the DNN is able to replicate the output 
of CIS. It has been capable of bandpass filtering the input 
signal, introducing a logarithmic compression function and 
mapping the signal to the correct current amplitudes within 
a simulated listener’s dynamic range. This opens the door 
to new possibilities. For instance, the NN could be trained 
to support binaural hearing enhancement by the use of 
interaural time differences (ITDs), which it is impossible 
for the traditional CIS algorithm [12], or include 
environmental sounds and noise segregation. 

Methods 
Training material 

The LibriSpeech corpus was used as the training, 
validation and test dataset. LibriSpeech contains up to 
1000 hours of read English speech, sampled at 16 kHz 
[13]. In this study, 15.000 audio files of 3 seconds each 
extracted from the corpus were included in the training, 
which corresponds to 12.5 hours of read speech. Among 
all the files included, there are more than 251 different 
speakers (125 female speakers). 

Groundtruth generation 

The neural network was trained with the simulated output 
of the CIS strategy from the mentioned audio files as 
groundtruth of the model. First, the audio signal is divided 
into 16 frequency channels using a series of bandpass 
filters with logarithmically spaced cut-off frequencies from 
200 to 8000 Hz. The bandpass filters consist of 6th-order 
type-II Chebyshev filters with a stopband attenuation of 30 
dB down. The bandpass-filtered signals are rectified by 
full-wave rectification and low-pass filtered to extract the 
envelope. A type-II Chebyshev filter of 8th-order and 30 
dB stopband attenuation are used, with a cut-off frequency 
of 200 Hz. The last stage is the mapping from the audio 
dynamic range to the CI output dynamic range. A 
logarithmic function, as equation , was used to compress 
an input dynamic range of 45 dB to 10 dB. 
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where xi,c is the envelope at instant i of channel c, yi,c is the 
compressed output of the CIS algorithm at instant i of 
channel c, and Ac and Bc are the individual parameters of 
the equation for each of the channels to obtain the 
mentioned dynamic range, measured in μA. Arbitrary 
values of 100 μA and 316.23 μA for the threshold and 
maximum comfortable levels, respectively, were used.  

Neural Network 

The model is similar to Conv-TasNet [9], with a few 
adjustments on the Neural Network (NN) due to the 
particularities of this study: 

1. A Rectified Linear Unit (ReLU) is inserted at the 
end of the NN to force only-positive values, as it 
happens on CI delivered currents.  

2. The output of the separation block considers only 
the output of the last 1-D Conv Block instead of 
the sum of all the blocks’ output.  

3. The sigmoid function at the end of the separation 
block is removed because the restriction of [0, 1] 
masks no longer exists (i.e., the sum of all 
channels is not the original input audio). 

Conv-TasNet operated in causal mode, as it is expected in 
a CI. Besides, it works sample wise, with no temporal 
downsampling of the input audios. Hence error values are 
computed on a sample-by-sample basis; there is no 
downsampling to the lower per-electrode stimulation rate. 

Training 

The dataset was split into 60% (9.000 sample files, 7.5h of 
audio) for the training partition and 20% (3.000 sample 
file, 2.5 h of audio) each for the validation and test 
partitions. The model was trained using back propagation 
and ADAM optimizer, with a learning rate starting at 
0.005 and being reduced every three consecutive epochs 
with no decrease of the validation loss. The loss function 
was the Mean Squared Error (MSE). The training stopped 
once the validation loss was not reduced for six 
consecutive epochs. 

Results 
The training finished with an MSE of 1.81 μA2 for the 
validation partition. For a channel wise analysis, the RMS 
error was computed as equation (2) for each channel 
independently, only considering values above T-level. 

 

 (2) 

 

The error is lower in the lower frequency channels (i.e., 
the lower frequencies) and increases for higher channels. 
This is expected, as there is less noise-like behaviour at 
lower frequencies and better predictability across time. 
Overall, the error of every channel is very low, with a 
minimum mean error of 0.41 μA for channel 2 and a 
maximum mean error of 1.34 μA for channel 16. The 
mean error across all channels is 0.98 μA. 

Nevertheless, as the causality of the model may affect the 
error of the output compared to the groundtruth, a 
preliminary analysis of the mean absolute error across time 
for the whole test partition was performed. Results are 
shown in Figure 1. 

 

Figure 1: Mean absolute error in μA for each 
timepoint for all the outputs of the test partition. 

Due to the causality of the model, a higher error was 
expected for the initial timepoints of each audio file. 
Specifically, the error should be higher until 120 ms, 
which corresponds to the kernel size of the last 1-D Conv 
Block, as it has a dilation of 27 with sampling frequency of 
16 kHz. However, some channels reach the steady state 
error at an earlier timepoint. The reason why this happens 
is the skip connection (i.e., the bypass summed at the end), 
which enables the NN to set the parameters to 0 in some 
channels and thus ignore long-time dependencies. Even so, 
as the timepoint on when the steady state error is reached 
varies across channels, only timepoints above 150 ms were 
considered in the computation of the RMS error.  

Discussion 
Results show that the neural network is capable of 
performing bandpass filtering for the 16 channels, 
logarithmic compression and envelope amplitude 
prediction for every channel of the CI with a very small 
error. The mean error across all channels is 0.98 μA, 
which is much smaller than the current quantization of CI 
stimulators (5-10 μA). Those preliminary results state that 
the model has some headroom for reducing the algorithm 
complexity or include additional processing states for 
enhancing CI performance in noise. 

 
 (1) 
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Conclusion 
This is the first attempt known by us for replacing the 
whole CI processing algorithm by a neural network. The 
results demonstrate that deep learning has the capability of 
processing audio as the CIS strategy. Besides, the excellent 
performance shown suggests the possibility of reducing 
the algorithm complexity or extending the current training 
to include environmental sounds or noise reduction. 
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