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Abstract

High-dimensional signals with a known structure and specifically their reconstruction
from incomplete measurements in significantly lower dimensions have been the central object
of study in the field of compressed sensing. The most commonly studied example of this is the
sparse recovery problem, in which the signal vectors are sparse, i.e., have a limited number
of non-zero entries, and the measurements in a lower dimension are obtained by applying a
linear transformation. A crucial tool in this field is the restricted isometry property (RIP),
which states that a matrix approximately preserves the norms of all sparse vectors. This
property yields fundamental guarantees for the successful recovery of sparse signals. This
work studies four selected topics from compressed sensing and related fields.

The first part deals with Johnson-Lindenstrauss embeddings, functions that reduce the
dimension of data points while preserving their pairwise distances. An established construc-
tion for such embeddings is based on randomizing matrices that satisfy the RIP. In our work,
we adapt this method to a class of embeddings with a structure that allows a particularly
fast application to data points that are Kronecker products of multiple smaller vectors.

In the second part, we prove results about higher-order random tensors relevant to the
third part and establish more general versions of them.

As the third topic, we investigate to what extent the sparse recovery problem is solvable
with neural networks. We specifically restrict our analysis to networks that are invariant
under positive scaling since we know that the considered problem also has this structure.
In this context, we also study the related question to what extent neural networks can
approximate continuous, positive scale-invariant functions in general.

In the fourth part, we study the RIP of random partial Fourier transforms under a mod-
ified sparsity model that limits the number of non-zero entries in multiple blocks separately
rather than in the entire vector. For this problem, which is motivated by the sparsity struc-
ture of natural images in a wavelet basis, we can improve the required embedding dimension
by logarithmic factors in the sparsity, compared to the best previous result.
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Zusammenfassung

Hochdimensionale Signale mit einer bekannten Struktur sowie deren Rekonstruktion aus
unvollständigen Messungen in wesentlich niedrigeren Dimensionen sind der zentrale For-
schungsgegenstand in der Theorie des Compressed Sensing. Das am meisten untersuchte sol-
che Szenario ist das Rekonstruktionsproblem für dünnbesetzte Vektoren, in dem die Signal-
vektoren höchstens eine vorgegebene Anzahl von null verschiedener Einträge haben können.
Von großer Bedeutung ist in diesem Zusammenhang die als Restricted Isometry Property
(RIP) bekannte Eigenschaft bestimmter Matrizen, die Normen aller dünnbesetzten Vektoren
annähernd zu erhalten. Aus dieser Eingenschaft folgen wichtige Garantien für die erfolgreiche
Rekonstruktion dünnbesetzter Vektoren. Diese Arbeit untersucht vier spezielle Themen aus
dem Compressed Sensing und verwandten Gebieten.

Im ersten Teil untersuchen wir Johnson-Lindenstrauss-Einbettungen. Diese reduzieren
die Dimension eine Menge von Datenpunkten unter Erhaltung der paarweisen Abstände.
Eine verbreitete Methode zur Konstruktion solcher Einbettungen basiert auf einer Randomi-
sierung von Matrizen, welche die RIP erfüllen. In dieser Arbeit entwickeln wir eine Variante
dieses Ansatzes für eine Klasse von Einbettungen, die eine besonders schnelle Transformation
für Vektoren mit Kronecker-Struktur ermöglicht. Dies bedeutet, dass jeder Datenvektor das
Kronecker-Produkt mehrerer kleinerer Vektoren ist.

Im zweiten Teil beweisen wir mehrere Ergebnisse über Zufallstensoren höherer Ordnung.
Spezielle Fälle dieser Ergebnisse werden zur vollständigen Behandlung des Themas aus dem
ersten Teil benötigt.

Als drittes Thema untersuchen wir, inwiefern das Rekonstruktionsproblem für dünn-
besetzte Vektoren mit neuronalen Netzen gelöst werden kann. Dabei beschränken wir uns auf
Lösungen, die invariant gegenüber positiver Skalierung sind, da auch das zu lösende Problem
diese Eigenschaft besitzt. In diesem Zusammenhang untersuchen wir auch, unter welchen
Umständen neuronale Netze im Allgemeinen stetige Funktionen approximieren können, die
invariant unter positiver Skalierung sind.

Im vierten Teil untersuchen wir die RIP von zufälligen partiellen Fouriertransformationen
für eine Klasse dünnbesetzter Vektoren, für die im Gegensatz zur sonst üblichen Definition
die Anzahl der von null verschiedenen Einträge nicht nur für den gesamten Vektor beschränkt
ist, sondern für mehrere Blöcke im Vektor einzeln. Im Vergleich zum besten vorherigen Er-
gebnis verbessern wie die benötigte Einbettungsdimension um logarithmische Faktoren in
der Anzahl der von null verschiedener Einträge.
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Introduction: Compressed Sensing and Content Overview

The field of compressed sensing (also known as compressive sensing) originated in the works
[CRT06; Don06] and has grown into a widely studied theory about the reconstruction of signals
from few measurements. In particular, it is about situations in which structural assumptions on
the signal enable its reconstruction, which would not have been possible with standard linear
algebra. The most prominent example of such a structural assumption is sparsity, which is also
studied in [CRT06]. We assume that there is a signal x ∈ RN that is known to be s-sparse, i.e.,
at most s of its entries are non-zero. Then we observe measurements

y = Ax ∈ Rm (0.1)

for a matrix A ∈ Rm×N , where m≪ N . The question is, under what circumstances the signal x
can be recovered from the measurements y. From a linear algebra perspective, since m < N , the
matrix A has a non-trivial kernel, and therefore there is a whole affine subspace of dimension
≥ N−m of vectors z ∈ RN that all satisfy Az = y = Ax. However, it is possible that within this
subspace of possible solutions, the original signal x is the only vector that is s-sparse. In this
case, x can be uniquely identified as the only s-sparse vector satisfying Ax = y, and therefore,
the sparsity as an additional structural constraint on the signal makes this problem solvable.

Indeed, [CRT06] shows that this sparse recovery problem has a unique solution for a certain
class of matrices A with a number of measurements m ≪ N . With follow-up works on related
topics, this has evolved into a wide theory about reconstructing signals with structural assump-
tions. The most important aspects of compressed sensing can be found in the textbooks [FR13]
and [EK12].

Even though sparsity is not the only possible structural assumption on the signal considered
in the field, it has become one of the most important and widely studied ones. One reason for this
is the typical sparsity of natural images in the wavelet basis [OSL00]. Compressed sensing has
found important applications in various types of image reconstruction, for which [SK18] provides
an overview. This includes magnetic resonance imaging (MRI) [Lus+08] and the single-pixel
camera, which can reconstruct an image using only measurements from one single brightness
sensor, and radar systems [HS09].

One main research topic in compressed sensing is the question of what matrices A in (0.1)
allow a unique recovery of all s-sparse signals x from the measurements Ax. One is interested
in properties of the matrix that can guarantee this unique recovery and what matrices fulfill
them. Specific attention has been given to matrices A that are relevant for certain practical
applications. Moreover, the goal is usually to show the success of sparse recovery for a number
m of rows of A that is as small as possible. As a related question, also lower bounds on m
have been shown that are required for matrices to enable successful sparse recovery with certain
beneficial properties. The most important aspects of these questions that are relevant for this
work are summarized in Section 0.2.

Another important and extensively studied aspect of the theory of compressed sensing is
the question of how the original signal can be computed from the measurements efficiently if
the unique recovery is known to be possible. More details about this topic are discussed in
Section 0.3.

For both of the aforementioned topics, we are interested in stable and robust approaches.
This means that the reconstruction should still work (up to a small error) for small pertur-
bations of the signal (i.e., if the signal is not exactly s-sparse) and small perturbations of the
measurements. So we should be able to approximately recover x that is approximately s-sparse
from

y = Ax+ e (0.2)

where e ∈ Rm is a noise vector with a small norm. Both, conditions on the matrix A and
recovery algorithms have been developed to make this possible.
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Although deterministic constructions also exist, the best known matrices A suitable for
sparse recovery are random constructions. For this reason, high-dimensional probability theory
is closely related to the field of compressed sensing. We discuss more details about this topic in
Section 0.5.

Techniques developed for signal recovery in compressed sensing have also found important
applications in dimension reduction in the form of Johnson-Lindenstrauss embeddings. These
connections are discussed in Section 0.4.

First we summarize some important notation that will be used in all parts of the thesis.
Then in each of the following four Sections 0.2 to 0.5, we give a short introduction to one topic
from compressed sensing and related fields. Each of these topics is related to one of the four
sections in the main part of this thesis. Therefore, we introduce each topic with a subsequent
summary of the corresponding section in the main part.

The sections in the main part do not depend on each other, except for Subsection 2.5, which
technically belongs to the topic of Section 1 but requires tools and notation from Section 2 and
is therefore treated afterwards.

Most concepts used in this thesis can be considered in complex numbers and will be in-
troduced in this introduction accordingly. However, to simplify the presentation, we restrict
our results to real numbers in Sections 1, 2, 3. In Section 4, we explicitly present the results
in complex numbers since the discrete Fourier transform as the main application generally has
complex values.

Most results from this thesis have been submitted for publication elsewhere previously. Sec-
tion 0.7 lists the details of this.

0.1 Notation

Throughout this thesis, we make use of the following notation.

� [N ] = {1, . . . , N} is the set of integers from 1 to N for any N ∈ Z≥0.

� For any finite set S, we denote |S| for the number of its elements.

� For a subset S ⊂M , we denote Sc := M\S for its complement.

� IdN ∈ RN×N is the identity matrix of size N ×N .

� σ1(A) ≥ · · · ≥ σr(A) are the singular values of the matrix A ∈ Cm×N of rank r.

� A† ∈ CN×m is the Moore-Penrose pseudoinverse of A ∈ Cm×N , i.e., if rank(A) = r and
UΣV ∗ is a singular value decomposition with U ∈ Cm×r, Σ ∈ Rr×r, and V ∈ CN×r, then
A† = V Σ†U∗ where Σ†

k,k = 1
Σk,k

for k ∈ [r].

� The support of x ∈ CN is the set of indices with non-zero entries

supp(x) := {k ∈ [N ]
∣∣xk ̸= 0}.

� For x ∈ CN and some set S ⊂ [N ], we define xS ∈ C|S| to be the vector of all entries with
indices in S.

� For p ≥ 1 and a vector x ∈ CN , we define the ℓp norm

∥x∥p :=

(
N∑
k=1

|xk|p
) 1

p
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and the ℓ∞ norm

∥x∥∞ := max
k∈[N ]

|xk|.

� The ℓ0 “norm” of x ∈ CN (which is not an actual norm) is

∥x∥0 := | supp(x)|.

� We call x ∈ CN an s-sparse vector if ∥x∥0 ≤ s. The set of s-sparse vectors is

Σs := {x ∈ CN
∣∣ ∥x∥0 ≤ s}

or the corresponding subset of RN depending on the context.

� For a real number p ≥ 1 and a random variable X with values in C, we define the Lp norm

∥X∥Lp := (E|X|p)
1
p

and the L∞ norm as the minimal K ≥ 0 such that

|X| ≤ K almost surely.

� The unit sphere is

SN−1 := {x ∈ RN
∣∣ ∥x∥2 = 1}

or the corresponding subset of CN depending on the context.

� For a metric space (T, d) (on RN or CN we consider the ∥·∥2 norm unless noted otherwise),
the open ball with radius r ≥ 0 and center x0 ∈ T is

Br(x0) := {x ∈ T
∣∣ d(x, x0) < r}

and the closed ball

B̄r(x0) := {x ∈ T
∣∣ d(x, x0) ≤ r}.

� X ∼ N(µ, σ2) if the random variable X follows a normal distribution with mean µ and
variance σ2.

� g ∼ N(µ,Σ) if the random vector g in RN follows a multivariate normal distribution with
mean µ ∈ RN and covariance matrix Σ ∈ RN×N .

� For functions f, g : S → [0,∞) on some set S, we denote f(x) ≳ g(x) if there is a constant
C > 0 such that f(x) ≥ Cg(x) for all x ∈ S. f(x) ≲ g(x) is defined analogously and we
write f(x) ∼ g(x) if both relations holds.

� 2M refers to the power set of the set M .

� For A ∈ Cm1×n1 and B ∈ Cm2×n2 , the Kronecker product is

A⊗B =

 A1,1B . . . A1,n1B
...

. . .
...

Am1,1B . . . Am1,n1B

 ∈ Cm1m2×n1n2

and the analogous definition holds for vectors.

� For x ∈ R, we denote the floor function ⌊x⌋ := n for the unique n ∈ Z such that n ≤ x <
n+ 1 and the ceiling function ⌈x⌉ := n for the unique n ∈ Z such that n− 1 < x ≤ n.

� We denote log : (0,∞) → R for the natural logarithm (base e) and loga : (0,∞) → R for
the logarithm to base a for any a > 1.
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0.2 The Restricted Isometry Property and Section 4

0.2.1 The Restricted Isometry Property

From (0.1) it is apparent that for any two different s-sparse vectors x(1), x(2) ∈ RN with the
same measurements Ax(1) = Ax(2), it holds that A(x(1) − x(2)) = 0. x(1) − x(2) is a 2s-sparse
vector and it is clear that any 2s-sparse vector can be written in this form. Therefore, the
uniqueness of every s-sparse vector in its measurements under A is equivalent to the property
that Ax ̸= 0 for any 2s-sparse x ∈ RN\{0}, i.e., that ker(A) does not contain any non-zero
2s-sparse vector.

A stronger property that implies this and in addition makes efficient recovery with noise in
the sense of (0.2) possible is given by the following definition.

Definition 0.1 (ℓq-Robust Null Space Property, Definition 4.21 of [FR13]). Let q ≥ 1. A ∈
Cm×N satisfies the ℓq-robust null space property of order s (with respect to the norm ∥ · ∥) with
constants 0 < ρ < 1 and τ > 0 if for all S ⊂ [N ] with at most s elements,

∥vS∥q ≤
ρ

s1−1/q
∥vSc∥1 + τ∥Av∥

holds for all v ∈ CN , where vS ∈ C|S| is the restriction of v to the indices in S and Sc is the
complement of S.

For any parameters 0 < ρ < 1, τ > 0, this implies that Ax ̸= 0 for any 2s-sparse x ∈ C and
therefore that the measurements of any s-sparse vector are unique. Otherwise take a 2s-sparse
x ∈ CN\{0} such that Ax = 0 and define S ⊂ [N ], |S| = s to be the set of indices of the s
entries of x with largest absolute value. Using the Hölder inequality, we obtain

∥vSc∥1 ≤ ∥vS∥1 =
∑
j∈S

|vj | · 1 ≤

∑
j∈S

|vj |q
 1

q

·

∑
j∈S

1

1− 1
q

= ∥vS∥q · s1−1/q

and therefore

ρ

s1−1/q
∥vSc∥1 + τ∥Av∥ =

ρ

s1−1/q
∥vSc∥1 <

∥vSc∥1
s1−1/q

≤ ∥vS∥q,

such that the ℓq-robust null space property cannot hold. Beyond this, this property also ensures
that a stable, robust and algorithmically efficient method for sparse recovery is possible as
explained in the next Section 0.3.

Even though the ℓq-robust null space property is enough to guarantee solutions for the
sparse recovery problem, the stronger restricted isometry property has played a crucial role
in compressed sensing. On the one hand, for many different matrices it can be proven more
conveniently. On the other hand, it also has other applications beyond the sparse recovery
problem such as the Johnson-Lindenstrauss embeddings discussed in Section 0.4. It states that
a matrix A approximately preserves the norms of all s-sparse vectors.

Definition 0.2 (Restricted Isometry Property, Definition 6.1 in [FR13]). For A ∈ Cm×N , the
s-th restricted isometry constant δs = δs(A) is the smallest δ ≥ 0 such that

(1 − δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22 (0.3)

holds for all s-sparse x ∈ CN .
The matrix A satisfies the (s, δ)-restricted isometry property (RIP) if δs ≤ δ.
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So A is said to satisfy the (s, δ)-RIP if (0.3) holds for all s-sparse x ∈ CN . By Theorem 6.13
in [FR13], the (2s, δ)-RIP for δ < 0.62 implies the ℓ2-robust null space property with constants
ρ and τ that only depend on δ.

As mentioned before, the best known constructions for matrices satisfying the RIP are ran-
dom matrices that satisfy the RIP with a probability that is close to 1. Specifically, for any
η ∈ (0, 1), a Gausian matrix, i.e, A ∈ Rm×N with independent, normally distributed entries
Aj,k ∼ N(0, 1

m) satisfies the (s, δ)-RIP with probability 1 − η if m ≥ Cηδ
−2s log(Ns ), where

Cη > 0 is a constant that only depends on η. This is a special case of a result for a class
of matrices whose rows are independent subgaussian random vectors shown in Theorem 9.6 of
[FR13]. Subgaussian random vectors will be discussed in Section 0.5.

On the other hand, with a technique known as Gelfand widths (see Chapter 10 of [FR13]),
lower bounds on m can be shown, proving that for any matrix that has the (2s, δ)-RIP for a
δ < 0.62, the number of rows must be m ≥ cs log( eNs ) for a constant c > 0 (Corollary 10.8 in
[FR13]). In this sense, the number of rows required for the Gaussian matrices to satisfy the RIP
is known to be optimal up to constant factors.

There have also been approaches to construct deterministic matrices that satisfy the RIP, for
example [Ban+13] lists several techniques. However, most approaches such as [DeV07] require
the matrix to have m ≳ s2(logN)α rows for a constant α ≥ 1. Therefore in contrast to the
random matrices above, this scales with s2 instead of s which is far above the known lower
bound for the RIP. The best known result [Bou+11] showed that it is possible with an exponent
smaller than 2 but still requires m ≳ s2−ϵ for a very small constant ϵ > 0.

Between the fully random Gaussian matrices and deterministic ones, structured random
matrices have been analyzed that are constructed from a small number of random parameters,
compared to the Gaussian matrices above in which every single entry is an independent random
variable. One particular example is given by subsampled Fourier matrices whose m rows are
randomly drawn from the discrete Fourier transform F ∈ CN (see Section 0.6 below). Because
of the dependencies between their entries, these subsampled Fourier matrices are more difficult
to analyze. However, as shown in [HR16], they satisfy the (s, δ)-RIP with high probability for
m ≳ δ−2(log(δ−1))2s log(N)(log(s/δ))2. This bound on m has the optimal scaling in s and is only
off the lower bound by logarithmic factors. These matrices are relevant for certain applications
and also provide the advantage that there is a fast algorithm for computing the matrix-vector
product.

0.2.2 Summary of Section 4

We discuss more about this topic of subsampled Fourier matrices in Section 4. There we
consider a version of the RIP for a sparsity model in which not only the total number of non-
zero entries in the vector x is bounded. Instead, the entries of x are divided into r blocks and
within each block k, there is a maximal number sk of non-zero entries. So the regular sparsity
is a special case of this for r = 1. The RIP of subsampled Fourier matrices for this sparsity
model has already been shown in [LA19]. In Section 4 we show an improved variant of their
main result that has a weaker requirement on the number of rows m.

0.3 Approaches for Sparse Recovery and Section 3

0.3.1 Established Approaches for Sparse Recovery

Given a guarantee that the measurements of all s-sparse signals are unique as discussed in the
previous section, a natural question is how the unique signal x can be reconstructed from the
measurements y = Ax algorithmically. Picking the sparsest z such that Az = y, i.e., taking the

10



solution of

min ∥z∥0 s.t. Az = y

would recover x but solving this minimization problem has been shown to be NP-hard in general
[Nat95].

To enable more efficient solutions, the ∥ · ∥0 function has been replaced by the ℓ1 norm.
This is still guaranteed to recover the signal if A satisfies the ℓq-robust null space property
(Definition 0.1). More specifically, in order to also allow for noisy measurements (0.2) for
∥e∥2 ≤ η, the following problem known as quadratically constrained basis pursuit has been
studied (Section 3.1 in [FR13])

min ∥z∥1 s.t. ∥Az − y∥2 ≤ η. (0.4)

An according recovery guarantee is given in the following theorem.

Theorem 0.3 (Theorem 4.22 in [FR13]). Let A ∈ Cm×N fulfill the ℓ2-robust null space property
of order s with constants 0 < ρ < 1 and τ > 0. Any solution x̂ of (0.4) with ∥ · ∥ = ∥ · ∥2,
y = Ax + e for a signal vector x ∈ CN and an error vector ∥e∥2 ≤ η is close to x in the sense
that

∥x− x̂∥p ≤
C

s1−1/p
σs(x)1 +Ds1/p−1/2η

for 1 ≤ p ≤ 2, constants C,D > 0 that only depend on ρ and τ , and

σs(x)1 := inf
x̃∈Σs

∥x− x̃∥1.

An alternative version to (0.4) is the basis pursuit denoising ((3.2) in [FR13])

minλ∥z∥1 + ∥Az − y∥22. (0.5)

As shown in Proposition 3.2 of [FR13], the problems (0.4) and (0.5) are closely related in
the sense that any unique solution of one of them also minimizes the other one for a suitable
parameter.

Unlike for ℓ0 minimization, there are efficient algorithms to solve these minimization prob-
lems. For example, (0.4) for η = 0 in real numbers can be written as a linear program and also
for the general version, known efficient techniques from convex optimization can be used (see
Chapter 15 in [FR13]). Moreover, there is also a variety of algorithms that specifically solve
(0.4) or (0.5) or that iteratively approximate the signal x directly from the measurements with
a matrix that satisfies the ℓq-robust null space property or the RIP. Chapters 3 and 15 of [FR13]
introduce some of them.

0.3.2 Neural Networks and Summary of Section 3

In contrast to these established reconstruction methods in compressed sensing, in Section 3,
we consider neural networks to reconstruct vectors from their measurements. Specifically, feed-
forward neural networks define functions f : Rm → Rn of the type

f(x) = Wd+1σ (Wdσ (. . .W2σ(W1x+ b1) + b2 . . . ) + bd) + bd+1,

where W1 ∈ Rk1×m,W2 ∈ Rk2×k1 , . . . ,Wd+1 ∈ Rn×kd are weight matrices, b1 ∈ Rk1 , . . . , bd ∈
Rkd , bd+1 ∈ Rn are bias vectors, d is the number of hidden layers or depth and σ : R → R is the
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activation function that is applied to vectors component-wise. A very common choice for σ is

the rectified linear unit (ReLU) activation function defined by ReLU(x) =

{
x if x ≥ 0

0 otherwise.
Such networks have empirically been proven to be successful for many applications in image

recovery and processing such as the reconstruction of images from incomplete measurements
[Jin+17] or noise reduction or completion of missing parts in images [XXC12]. On the theoret-
ical side, the established universal approximation theorem can guarantee that any continuous
function on a compact domain can be approximated by a network with only one hidden layer
with an arbitrarily small maximal deviation.

In this work, our goal is to analyze their theoretical performance on the simple model of
sparse recovery. We are interested in a neural network function f with ReLU activation function
corresponding to a measurement matrix A (that satisfies the RIP), such that f(Ax) = x (or
only f(Ax) ≈ x) for all sparse vectors. Moreover, we are also interested in robustness results
like Theorem 0.3 for these methods. Rather than explicit constructions for the networks, we
investigate under what circumstances such networks exist at all and specifically which minimal
depth d they need to have.

We take one more special aspect into account for this. Since we know for any s-sparse signal
x and λ ≥ 0, if y = Ax is the measurement vector produced by x, then λy is produced by
λx. Therefore, we restrict our analysis to neural networks that by design satisfy the condition
f(λy) = λf(y) for λ ≥ 0. We call functions satisfying this positive homogeneous. With such
networks, we can ensure that the reconstruction will eventually work for all s-sparse vectors
and not only those with a bounded norm, like it might be an issue for approaches based on the
usual universal approximation theorem. For the ReLU activation function, we will show the
following contrast under these circumstances. Sparse recovery cannot be performed at all with
one hidden layer but it can be performed with an arbitrarily small error and in a robust way
with two hidden layers.

As we will see, this is closely related to the problem of approximating general continuous
positive homogeneous functions with neural networks. We investigate, under which circum-
stances such functions can be approximated with arbitrary precision. A version of the universal
approximation theorem has already been established for positive homogeneous functions. We
connect to this and show that having two layers is necessary for this and that the ReLU function,
up to some modifications of it, is the only activation function that generate a class of positive
homogeneous networks that can approximate any continuous positive homogeneous function.

We also show that the solutions of optimization problems like (0.4) and (0.5) can be approx-
imated with neural networks.

Furthermore, we show that the sparse recovery problem can be solved exactly (the other
approaches always allow an error even though it can be made arbitrarily small) by a ReLU
network with ⌈log2(s) + 1⌉ layers. For the case s = 1, we also give an explicit construction for
such a network with a relatively small width.

0.4 Johnson-Lindenstrauss Embeddings and Section 1

0.4.1 Johnson-Lindenstrauss Embeddings

Johnson-Lindenstrauss embeddings, first introduced in [JL84], were developed as functions that
map a finite set of vectors from a high-dimensional space into a space of significantly lower
dimension in such a way that that the pairwise distances within this finite set are preserved.
This preserves the structure of the data that can be used for applications like large matrix
multiplication [Sar06], clustering [FB03], and dictionary learning [ST20] whose performance can
be improved due to the reduced dimension.

While in their first occurrence [JL84] they were realized by random rotations (i.e., linear
maps), subsequent works have shown that various other kinds of randomized linear maps can
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be used [Ach01; DG03; AV06]. In this spirit, a Johnson-Lindenstrauss can be defined in the
following way that has been used in Definition 1 of [BK21].

Definition 0.4 (Johnson-Lindenstrauss Embedding). Let A ∈ Rm×N be a random matrix and
p ∈ Z≥1, ϵ, η ∈ (0, 1). We say that A is a (p, ϵ, η)-Johnson Lindenstrauss embedding (JLE) if
for any set E ⊂ RN with |E| = p, with probability ≥ 1 − η, the inequality

(1 − ϵ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + ϵ)∥x∥22 (0.6)

holds for all x ∈ E simultaneously.

For some purposes, also the distributional Johnson-Lindenstrauss property is considered for
random matrices, meaning that P(

∣∣∥Ax∥22 − ∥x∥22
∣∣ > ϵ∥x∥22) ≤ η′ holds for all x ∈ RN . In this

case, by a union bound, the norms of p points are preserved simultaneously with probability
≥ 1 − η if η′ ≤ η

p . More details are described in Definition 1.1 and the following remark.
These embeddings are considered for the case that m ≪ N , i.e., the map significantly

reduces the dimension. In this case, it is clear that the matrix A in the above dimension cannot
be deterministic. Otherwise, we can take a non-zero vector x0 of the kernel into E for which
Ax0 = 0 and therefore (0.6) would be violated. The best constructions allow an embedding
dimension of m ∼ ϵ−2 log(p), which has also been shown to be optimal [LN17].

A connection between Johnson-Lindenstrauss embeddings and compressed sensing is based
on the fact that the inequality required for Johnson-Lindenstrauss embeddings (0.6) and for the
restricted isometry property (0.3) is the same. The difference is that in the former case, it is
required to hold on any finite set of vectors of given size, in the latter case it is required to
hold for the one set of s-sparse vectors (which is infinite). Nevertheless, [Bar+08] established
a relation between the properties showing that a JLE for p ≥ exp(Cs log(N/s)) for a constant
C > 0 satisfies the restricted isometry property with a high probability.

On the other hand, [KW11] establishes a converse of this and shows that also every matrix
satisfying the restricted isometry property can be turned into a Johnson-Lindenstrauss embed-
ding by multiplying all its columns by random signs. In this sense, these concepts are equivalent.

Because of the particular motivation to speed up algorithms by reducing the size of their
input data with Johnson-Lindenstrauss embeddings, fast Johnson-Lindenstrauss embeddings
that can be applied to individual vectors with an efficient algorithm have been studied [AC06;
AL08]. The above connection between Johnson-Lindenstrauss [KW11] provides a new method
to construct fast Johnson-Lindenstrauss embeddings from RIP matrices that are known to have
a fast transform such as subsampled Fourier matrices.

0.4.2 Summary of Section 1

In Section 1 we connect to this and investigate fast Johnson-Lindenstrauss embeddings with
an additional requirement. For certain applications, we are interested in data vectors that are
Kronecker products x = x(1) ⊗ · · · ⊗ x(d) of d vectors. A Kronecker fast Johnson-Lindenstrauss
embedding should offer an efficient algorithm for the matrix-vector product with such vectors.
Especially, the construction discussed there does not require the Kronecker product x to be
computed explicitly as this would be required for standard matrix multiplication. Improving
some other recent works on this field, in Section 1 we generalize the approach from [KW11] to
constructions that can be Kronecker efficient. The proof and result of [KW11] is a special case
of this if the number of factors in the Kronecker product is d = 1.

0.5 High-Dimensional Probability and Section 2

0.5.1 High-Dimensional Probability

As mentioned at the beginning, because of the importance of random matrices in compressed
sensing, it is closely related to a field that is often referred to as high-dimensional probability,
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which deals with random vectors and matrices in usually high-dimensional spaces. Notable works
that cover this topic in depth include the textbook [Ver18], the technical report [Van14], but also
in the compressed sensing literature Chapters 7 and 8 in [FR13] and Chapter 5 in [EK12]. In
this section, we summarize the most important terms that are used in the subsequent sections.

An important concept for data processing with random matrices are subgaussian random
variables. Their characterization is, vaguely speaking, that their fluctuations are at most as big
as the ones of a normally distributed variable. This can be stated precisely in the following four
equivalent ways.

Proposition 0.5 (Proposition 2.5.2 in [Ver18]). Let X be a random variable in R. Then the
following properties are equivalent; the parameters Ki > 0 appearing in these properties differ
from each other by at most an absolute constant factor.

� Tails:

P(|X| ≥ t) ≤ 2 exp(−t2/K2
1 ) for all t ≥ 0.

� Moments:

∥X∥Lp = (E|X|p)1/p ≤ K2
√
p for all p ≥ 1.

� Moment generating function (MGF) of X2:

E exp(λ2X2) ≤ exp(K2
3λ

2) for all |λ| ≤ 1

K3
.

� MGF of X2 bounded at some point:

E exp(X2/K2
4 ) ≤ 2.

Moreover, if E = 0, then the above properties are also equivalent to

� MGF of X:

E exp(λX) ≤ exp(K2
5λ

2) for all λ ∈ R.

We call those variables that satisfy these equivalent condition subgaussian and the corre-
sponding Ki the subgaussian norm. Any of the four conditions can be used to define this term.
We pick the following one.

Definition 0.6 (Definition 2.5.6 in [Ver18]). Let X ∈ R be a random variable. We define the
subgaussian norm

∥X∥ψ2 := inf{K ≥ 0
∣∣E exp(X2/K2) ≤ 2}.

X is called subgaussian if ∥X∥ψ2 <∞.

One can show that this is actually a norm for the subgaussian random variables (see Sec-
tion 2.5.6 in [Ver18]). Analogously, the ∥·∥ψ2 norm can also be defined a complex valued random
variable X ∈ C as the ψ2-norm of |X|.

Example 2.5.8 in [Ver18] lists three examples of subgaussian variables: A Gaussian variable
X ∼ N(0, σ2) has ∥X∥ψ2 ≤ Cσ for a constant C, a Bernoulli variable X ∈ {1,−1} with EX = 0
has ∥X∥ψ2 = 1√

log 2
. If X is bounded almost surely, then ∥X∥ψ2 ≤ C∥X∥L∞ for a constant C.

Similar to the subgaussian variables that arise from a comparison of the tails to a Gaussian
distribution, there are also subexponential variables that arise from a comparison to the tails of
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an exponential distribution and have an analogous characterization to the above proposition (see
Proposition 2.7.1 in [Ver18]) and a subexponential norm ∥X∥ψ1 = inf{K ≥ 0

∣∣E exp(X/K) ≤ 2}.
An example is X2 for X ∼ N(0, 1). More generally, the concept of strong domination discussed
in Section 2.3.1 allows to draw conclusions from the comparison of general tails of random
variables.

One important property of subgaussian random variables is the following relation about the
∥ · ∥ψ2 norm of a sum of independent subgaussian variables.

Proposition 0.7 (Proposition 2.6.1 in [Ver18]). Assume that the random variables X1, . . . , XN

in C are independent, mean zero, and subgaussian. Then the sum
∑N

k=1Xk is also subgaussian
and has the norm ∥∥∥∥∥

N∑
k=1

Xk

∥∥∥∥∥
2

ψ2

≤ C
N∑
k=1

∥Xk∥2ψ2
,

where C is an absolute constant.

The cited Proposition 2.6.1 in [Ver18] only considers the real-valued case but the statement
for complex numbers follows from applying the real-valued version to the real and imaginary
part of the sum.

Besides one-dimensional random variables, the subgaussian property can also be generalized
to random vectors in arbitrary dimension as in the following definition for the real-valued case.

Definition 0.8 (Definition 3.4.1 in [Ver18]). We say that a random vector X ∈ RN is subgaus-
sian if ⟨X,x⟩ is a subgaussian random variable in R for each x ∈ RN and

∥X∥ψ2 := sup
x∈SN−1

∥⟨X,x⟩∥ψ2 .

Moreover, we say that a random vector X ∈ RN is isotropic if EXXT = IdN (Definition
3.2.1 in [Ver18]).

Examples of vectors that are both, subgaussian and isotropic, are a multivariate normally
distributed g ∼ N(0, IdN ) or a Rademacher vector ξ ∈ {±1}N whose entries are independent
variables with P(ξk = −1) = P(ξk = 1) = 1

2 for each k ∈ [N ].
An important application of Rademacher vectors is given with the symmetrization technique

that can be used to turn a sum of mean zero variables into a sum of symmetric random variables.

Lemma 0.9 (Symmetrization, Lemma 6.4.2 in [Ver18]). Let (V, ∥·∥) be a normed space. Assume
that X1, . . . , XN are independent, mean zero random vectors in V . Then

1

2
E

∥∥∥∥∥
N∑
k=1

ξkXk

∥∥∥∥∥ ≤ E

∥∥∥∥∥
N∑
k=1

Xk

∥∥∥∥∥ ≤ 2E

∥∥∥∥∥
N∑
k=1

ξkXk

∥∥∥∥∥ ,
where ξ ∈ {±1}N is a Rademacher vector that is independent of X1, . . . , XN .

This lemma can be used in various scenarios. In this work, it is used at the beginning of the
main proof of Section 4. It also occurs in Section 2 in the generalized form of Lemma 2.15.

Another useful tool from this field is the decoupling technique that can be applied to a double
sum of random variables.

Theorem 0.10 (Decoupling, Theorem 8.11 in [FR13]). Let X1, . . . , Xn be independent, mean
0 random variables, A ∈ RN×N , and F : R → R a convex function. Then

EF

 N∑
j,k=1
j ̸=k

Aj,kXjXk

 ≤ EF

4

N∑
j,k=1

Aj,kXjX̄k

 ,

where (X̄1, . . . , X̄N ) is an independent copy of (X1, . . . , XN ).
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This decoupling technique is a main ingredient for the Hanson-Wright inequality that can
be used to control the tails of a double sum that is also known as chaos. Versions for multiple
different classes of distributions have been shown. The following one concerns subgaussian
variables.

Theorem 0.11 (Hanson-Wright Inequality, Theorem 1.1 from [RV13]). Let A ∈ RN×N . Let
X ∈ RN be a random vector with independent entries such that EX = 0 and ∥X∥ψ2 ≤ K. Then
for every t ≥ 0,

P(|XTAX − EXTAX| > t) ≤ 2 exp

[
−cmin

{
t2

K4∥A∥2F
,

t

K2∥A∥2→2

}]
,

where ∥A∥F is the Frobenius and ∥A∥2→2 the spectral norm of A.

Covering numbers are another concept that is commonly used in the context of high-
dimensional probability.

Definition 0.12 (Covering numbers, Definition 4.2.2 in [Ver18]). Let (T, d) be a metric space.
For u > 0, the covering number N (T, d, u) is the smallest number of closed balls with centers in
T and radii u whose union contains T . If (V, ∥ · ∥) is a normed space, we denote N (V, ∥ · ∥, u)
for the covering number with respect to the metric that is induced by the norm.

Such numbers will be of particular importance for controlling suprema of stochastic processes
on an infinite index set by finite approximations in Section 1. A well-known standard estimate
is the one for the Euclidean unit ball

Lemma 0.13 (Covering numbers of the Euclidean ball, Corollary 4.2.13 in [Ver18]). The follow-
ing inequalities hold for the covering numbers of the Euclidean unit ball B̄1(0) = {x ∈ Rn

∣∣ ∥x∥2 ≤
1} for any u > 0, (

1

u

)n
≤ N (B̄1(0), ∥ · ∥2, u) ≤

(
1 +

2

u

)n
.

0.5.2 Summary of Section 2

The main result of Section 2 is a generalized version of the above Hanson-Wright inequality for
subgaussian variables with a sum that unlike XTAX =

∑N
j,k=1Aj,kXjXk ranges over 2d indices

instead of only two, i.e.,

N∑
i1,...,i2d=1

Ai1,...,id,id+1,...,i2dX
(1)
i1
. . . X

(d)
id
X

(1)
id+1

. . . X
(d)
i2d
.,

where the coefficients Ai1,...,id,id+1,...,i2d depend on index tuples of length 2d and X(1), . . . , X(d)

are vectors with independent subgaussian entries. On this way, we also establish a generalized
version of the decoupling Theorem 0.10.

Instead of the coefficient matrix A, we have a coefficient array whose entries Ai1,...i2d are
indexed by tuples of length 2d. We also develop a special notation to deal with such long index
tuples which is introduced in Section 2.1.4. Even though Section 1 provides a self-contained
proof for a special case of its main result that shows the most important ideas behind the proof,
the general case requires the notation and results of Section 2 and is therefore postponed to
Section 2.5.
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0.6 Some Relevant Orthonormal Bases

Important constructions for matrices with the RIP and also Johnson-Lindenstrauss embeddings
are based on the discrete Fourier transform (DFT). Details about the DFT and related trans-
formations and algorithms can be found in [RKH10]. The normalized DFT is the linear map
described by the normalized DFT or Fourier matrix F ∈ CN×N whose entries are

Fj,k =
1√
N
e−

2πi(j−1)(k−1)
N .

Beside its relevance for practical applications such as MRI ([LDP07]), this matrix has the fol-
lowing interesting mathematical properties.

� F is unitary, i.e., F ∗F = IdN .

� All entries of F have the same value |Fj,k| = 1√
N

.

� There is a fast algorithm, the fast Fourier transform (FFT, [RKH10]) that can compute
the matrix vector product Fx for any vector x ∈ CN in O(N logN) operations.

Moreover, there is another important matrix that satisfies the same properties but only has
real-valued entries. The Hadamard matrix Hn ∈ RN×N for a dimension N = 2n that is a power
of 2, can also be seen as a multidimensional variant of a Fourier transform [Kun79], exists only
for dimensions N that are powers of 2 and is recursively defined as

H0 = (1) Hn+1 =
1√
2

(
Hn Hn

Hn −Hn

)
.

One can also show that this is unitary with entries of absolute value 1√
N

and the fast Walsh-

Hadamard transform (see also [RKH10]) can compute the matrix-vector product in O(N logN)
operations.

In Section 4, such matrices will play an important role for the construction of matrices with
a modified RIP. In Section 1, our main construction of fast Johnson-Lindenstrauss embeddings
will be based on Hadamard matrices.

The Haar wavelets form another class of orthonormal bases that are relevant in this work.
General wavelets are given by different shifts and scales of a base function called mother wavelet.
Using them, general wavelet transforms can be defined, which exist for discrete or continuous
coefficients and for signals on a discrete or a continuous domain. Details about this wide-ranging
topic can be found in the textbook [Dau92]. Its relevance for compressed sensing is constituted by
the typical sparsity of natural images in wavelet coefficient representations discussed in [OSL00],
which concerns the discrete wavelet transformation for discrete signals. Important classes of
wavelet transforms can be shown to define orthonormal bases. The Haar wavelets, as a particular
example for this, exist for a dimension N = 2r that is a power of 2, and are defined, for example,
in Section II of [AHR16], as ϕ0 ∈ RN and ϕj,p ∈ RN for j = 0, . . . , r − 1, p = 0, . . . , 2j − 1 with
entries

ϕ0(t) = 2−r

ϕj,p(t) =


2

j−r
2 for 2r−jp ≤ t < 2r−j(p+ 1

2)

−2
j−r
2 for 2r−j(p+ 1

2) ≤ t < 2r−j(p+ 1)

0 otherwise.

for 1 ≤ t ≤ N . This defines 2r = N vectors that form an orthonormal basis. For ϕj,p, j defines
the scale and p the shift of the wavelet.

Wavelet coefficients of natural images are usually sparse in this basis but there is even an
additional structure. Typically, they are sparser for fine scales (i.e., ϕj,k for large j) than for
coarse ones. This phenomenon, previously discussed in [Adc+17], is a key motivation for the
result shown in Section 4, which particularly considers the case of Haar wavelets.
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0.7 Previous Publications

Some results of this thesis have previously been submitted for publication individually. This
concerns the following submissions.

� “Johnson-Lindenstrauss Embeddings with Kronecker Structure” by authors Stefan Bam-
berger, Felix Krahmer, and Rachel Ward, submitted to SIAM Journal on Matrix Analysis
and Applications, publisher: Society for Industrial and Applied Mathematics
Copyright ©by SIAM. Unauthorized reproduction of this article is prohibited.
A preprint of this work is available at https://arxiv.org/abs/2106.13349, [BKW21a].
The content of this submission mostly agrees with Sections 1.1 to 1.6 and Section 2.5.

� “The Hanson-Wright Inequality for Random Tensors” by authors Stefan Bamberger, Felix
Krahmer, and Rachel Ward, submitted to Sampling Theory, Signal Processing, and Data
Analysis, publisher: Springer Nature Switzerland AG
A preprint of this work is available at https://arxiv.org/abs/2106.13345, [BKW21b].
The content of this submission mostly agrees with Sections 2.1 to 2.4.

The usage in the author’s thesis is permitted by each of the publishers’ agreements.
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1 Johnson-Lindenstrauss Embeddings with Kronecker Structure

This section, along with Section 2.5 and parts of Section 2.1.4, shares major similarities with
the article “Johnson-Lindenstrauss Embeddings with Kronecker Structure” by authors Stefan
Bamberger, Felix Krahmer, and Rachel Ward, that was submitted to SIAM Journal on Matrix
Analysis and Applications. A preprint of this work is available at https://arxiv.org/abs/

2106.13349, [BKW21a].

1.1 Introduction

As discussed in Section 0.4, Johnson-Lindenstrauss embeddings provide a random embedding
of finitely many points into a lower-dimensional vector space while preserving the structure of
these points, i.e. their pairwise Euclidean distances, which has a wide range of applications.

In particular, the technique of sketching – for which [Woo14] provides a detailed overview –
uses dimension reduction transforms such as JL embeddings to reduce the complexity of problems
in numerical linear algebra. For example, instead of solving the classical linear regression problem
minx ∥Ax − b∥22, one can apply a Johnson-Lindenstrauss embedding Φ to b and the columns of
A which leads to a smaller-dimensional problem minx ∥ΦAx − Φb∥22 which can often be solved
more efficiently. The Johnson-Lindenstrauss assumption is a simple sufficient condition under
which the solution of the reduced problem is guaranteed to yield a good approximation to the
original problem [Sar06].

In response to the driving application of improving algorithmic complexity of sketched linear
algebra problems at massive scale, a line of research on fast Johnson-Lindenstrauss embeddings
emerged, concerning the construction and analysis of random matrices Φ with the Johnson-
Lindenstrauss property and which also have structure allowing for fast matrix-vector multipli-
cation This analysis was initiated with the fast JL transform introduced in [AC06], in the form
of a randomly row-subsampled discrete Hadamard matrix with randomized column signs. This
construction was later improved and refined in [Vyb11; AL13], and ultimately sharpened to
the best-known embedding power in [KW11] by establishing a near-equivalence between the
Johnson-Lindenstrauss embedding property and a deterministic restricted isometry property
[KW11]. Recently, this line of work found new energy following the work [BBK18] which pro-
posed the use of a row-subsampled discrete Hadamard matrix with column signs randomized
according to a Kronecker-structured Rademacher vector, and conjectured that such an embed-
ding satisfies the Johnson-Lindenstrauss property. The Kronecker structure allows for even faster
matrix-vector multiplication when applied to data points with Kronecker structure themselves,
as arise naturally when dealing with multidimensional data arrays (see, for example, applica-
tions to kernel methods with polynomial sketching [Ahl+20a], and solving least squares prob-
lems with tensor structure [JKW20; Iwe+21]). Indeed, suppose we want to embed a data point

x = x(1)⊗· · ·⊗x(d) ∈ Rnd
= RN which is a Kronecker product of d data vectors, each of dimen-

sion n. If the embedding matrix Φ ∈ Rm×N itself has Kronecker structure Φ = Φ(1) ⊗ · · · ⊗Φ(d)

where the dimensions of the factors of Φ correspond to the factor dimensions of x, then the
matrix-vector multiplication Φx can be factored as Φx = (Φ(1)x(1)) ⊗ · · · ⊗ (Φ(d)x(d)), and can
be computed factor by factor, without constructing x explicitly. Because the Kronecker product
of discrete Hadamard matrices is itself a discrete Hadamard matrix, embedding matrices in the
form of discrete Hadamard matrices with Kronecker-structured random column signs fall within
this framework, and it is natural to study the embedding power of such transforms.

In this paper, we study Johnson-Lindenstrauss embeddings of the type ΦDξ where Φ sat-
isfies the restricted isometry property and ξ is a Kronecker product of d Rademacher vectors.
Motivated by their relation to tensor subspace embeddings, such embeddings have been ana-
lyzed in a number of works [Ahl+20a; MB20; Iwe+21; JKW20]. In particular Lemma 4.11 of
[Ahl+20a] shows that an embedding dimension of Θ((log p)d+1) is sufficient for embedding p
points simultaneously in the case that Φ is a subsampled Hadamard transform and Theorem
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2.1 of [JKW20] establishes that Θ((log p)2d−1) is sufficient for general Φ. Generalizing an ap-
proach from [KW11] on near-equivalence between the Johnson-Lindenstrauss property and the
restricted isometry property to higher-degree tensor embeddings, we show that in fact an em-
bedding dimension of Θ((log p)d) is both sufficient and necessary up to logarithmic factors in
the dimension.

1.1.1 Background and prior work

Recall the distributional version of the JL Lemma: for any ϵ > 0 and η < 1/2 and positive
integer N , there exists a distribution over Rm×N such that for a fixed unit-length vector x ∈ RN
and for a random matrix Φ drawn from this distribution with m = O(ϵ−2 log(1/η)),

P(
∣∣∥Φx∥22 − 1

∣∣ > ϵ) < η. (1.1)

The dependence m = O(ϵ−2 log(1/η)), as achieved by (properly normalized) random matrices
with independent and identically distributed subgaussian entries [DG03], is tight, as shown
recently in [LN17] improving on a previous (nearly-tight) lower bound [Alo03].

For a given Φ : RN → Rm generated as such, computing the matrix-vector product x→ Φx
has time complexity O(mN). The fast Johnson-Lindenstrauss as introduced in [AC06] and im-
proved in [AL13; KW11], is constructed by randomly flipping the column signs of a random
subset of m rows from the N ×N Discrete Fourier (or Discrete Hadamard) Transform. Exploit-
ing the FFT algorithm, the fast JLT computes a matrix-vector product in time O(N log(N)).
The trade-off for this time savings is that the fast JLT has reduced embedding power m =
O(ϵ−2 log(1/η) log3(N)).

More recently, the Kronecker fast JL transform (KFJLT) was proposed in [BBK18], to further
improve the algorithmic complexity of the fast JL embedding in applications to Kronecker-
structured data.

Such a construction has found applications as a key ingredient of the oblivious sketching
procedure [Ahl+20a], a multiscale construction for dimension reduction applicable for subspace
embeddings and approximate matrix multiplication. A central idea of this construction is the
repeated application of the Kronecker FJLT of order d = 2.

The KFJLT of order d acts on a Kronecker-structured vector x = x(1) ⊗ · · · ⊗ x(d) ∈
Rn1...nd = RN as follows: For fixed diagonal matrices with i.i.d. Rademacher random vari-
ables D(1), . . . , D(d) of dimensions n1, . . . , nd respectively, and for a random subset Ω ⊂ [N ] of
size |Ω| = m:

1. Randomly flip signs of the entries in each vector factor according to x(k) → D(k)x
(k) =: z(k);

2. Compute the DFTs of each factor y(k) = Hnk
z(k), where Hn is the n × n DFT matrix

(normalized to be a unitary transform).

3. Compress y = y(1) ⊗ · · · ⊗ y(d) ∈ CN to yΩ ∈ Cm, where yΩ consists of the entries in y
restricted to the subset S

4. Rescale yΩ by
√
N/m.

The Kronecker JL transform extends to a well-defined linear map for any input x ∈ RN , taking
the form of a matrix which can be expressed as the product of three matrix types:√

N

m
· PΩ ·H ·Dξ ∈ Rm×N (1.2)

where Dξ is the N ×N diagonal matrix with diagonal vector ξ = ξ1⊗ξ2⊗· · ·⊗ξd the Kronecker
product of n1, . . . , nd-dimensional Rademacher vectors, H = Hn1 ⊗ · · · ⊗Hnd

is the Kronecker
product of orthonormal DFTs (or, more generally, of bounded orthogonal matrices, including
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DFTs, Hadamard, etc .... ), and PΩ : RN → Rm denotes the projection matrix onto the
coordinate subset Ω. Our results hold for more general constructions of Kronecker products of
matrix factors satisfying the restricted isometry property, after randomizing their column signs.

In the special case d = 1, the Kronecker FJLT reduces to the standard FJLT as considered in
[KW11]. However, when the input vector has Kronecker structure so that the mapping can be
applied separately to the matrix-vector factors, the complexity of computing a KJLT transform
matrix-vector product improves to O(n1 log(n1) + · · ·+nd log(nd) +md). The price that is paid
is that the embedding power (that is, the minimal scaling of the embedding dimension in m
necessary for the distributional JL (1.1)) is weakened by the reduced randomness in ξ. For a
numerical demonstration of the suboptimal scaling, we refer the reader to [JKW20]. A general
theoretical lower bound was, to our knowledge, not available before this paper; lower bounds
for related but somewhat different constructions were shown in [Ahl+20a].

At the same time, a number of works have investigated sufficient conditions on the embedding
dimension to ensure that the map given by (1.2) satisfies the distributional JL property (1.1).
The papers [Ahl+20a; MB20] show, among other results, that for (1.2) based on the Hadamard
transform, a sufficient condition is given by m = Cd · 1

ϵ2
log(1/η)d+1, up to logarithmic factors

in log(1/η), 1/ϵ, and N . While the analysis in [MB20] is restricted to vectors with a Kronecker
structure, the generalization of [Ahl+20a] applies to arbitrary vectors.

On the other hand, the paper [JKW20] used the near-equivalence between JL embed-
ding and restricted isometry property from [KW11] to provide the sufficient condition m =
Cd

1
ϵ2

(log(1/η))2d−1 for any subsampled bounded orthonormal transform, thus including but not
limited to constructions based on Hadamard transform.

To put these two results into perspective, we remind the reader that the tensor degree d is
typically small – recall that the oblivious sketching procedure of [Ahl+20a] only uses the case
d = 2, where the two conditions basically agree. Hence also for our results, we will pay special
attention to optimizing the dependence for small values of d.

Compared to the corresponding result stated in [Ahl+20a], our main theorem is – like
[JKW20] – not restricted to the specific construction (1.2) but can be applied to arbitrary
ΦDξ ∈ Rm×N where Φ satisfies an RIP of sufficient order. Beside (1.2), a different possi-
ble application of this with a fast transformation of Kronecker structured vectors is given by
ΦDξ ∈ Rm×N where

Φ =
1√
m
PΩ(Av(1) ⊗ · · · ⊗Av(d)) (1.3)

where PΩ and Dξ are like in (1.2), v(1), . . . , v(d) are independent Rademacher vectors and Av(j) ∈
Rnj represents the circular convolution by the vector v(j), i.e., Av(j)z = v(j) ∗ z. For d = 1,
[HPX19] shows this Φ to have the (s, δ)-RIP if m ≳ δ−2 (log(1/δ))2 s (log(s/δ))2 logN , using the
main result of [HR16] and the fact that Av(1) has bounded entries and that 1√

N
Av(1) satisfies

the RIP for s ≲ δ2n/(log n)4.
For arbitrary d, both of the aforementioned two observations about Av(1) can be transferred

from the single factors to the Kronecker product of the Av(j) (losing a factor ≤ 2d in the RIP
constant). In this way, the proof for the RIP can be adapted to the matrix Φ in (1.3).

1.1.2 Contributions of this work

In this work, we improve the existing bounds on the embedding dimension for the general
Kronecker FJLT to m = Cd

1
ϵ2

(log(1/η))d, up to logarithmic factors in log(1/η), 1/ϵ, and in N ,
improving the results in [Ahl+20a] by a factor of log(1/η). In particular, for the case of d = 2
at the core of the oblivious sketching procedure [Ahl+20a], our results improve the scaling of
the embedding dimension in log( 1η ) from cubic to quadratic.

We additionally prove that this embedding result is optimal in the η dependence by providing
a lower bound of m = Θ((log(1/η))d) in Section 1.3. We achieve the optimal bounds by gen-
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eralizing the near-equivalence between the JL property and the restricted isometry property of
[KW11] to higher-order tensors, in a sharper way than what was shown in [JKW20], by carefully
using a higher-dimensional analog of the Hanson-Wright inequality for random tensors.

We state our main results in Section 1.2. In Section 1.3, we provide lower bounds to prove
the optimality of our main results. The proof of the general result introduces an advanced
index notation for higher order tensors. This notation is introduced for the next part of the
thesis in Section 2.1.4. To simplify the presentation, we first prove the special case d = 2 in
Section 1.5. This proof already contains the most important ideas. This makes it easier to follow
the general proof which uses the notation and results from Section 2 and is therefore postponed
to Section 2.5. Then we conclude by discussing the implications of our work in Section 1.6.

1.1.3 Related work

Tensor Johnson-Lindenstrauss constructions have become a recent topic of study, even beyond
the concrete construction of (1.2).

Tensor JL embeddings based on sparse matrix structure have been studied in the context
of vectors with Kronecker structure, based on the count sketch technique [CCF02], which has
been extended to the tensorized version known as tensor sketch in [PP13]. Applications to
problems including subspace embeddings and approximate matrix multiplication are presented in
[ANW14]. However, these methods have a worse dependence on the failure probability compared
to Kronecker FJLT.

The paper [Iwe+21] derived fast tensor embeddings for subspaces. Their embedding consists
of the Kronecker FJLT from [JKW20] and a subsequent vector JL embedding. Thus, with our
work we can improve the intermediate dimension and thus the number of random bits and the
time complexity for the application to low rank tensors (for arbitrary tensors, the time com-
plexity is dominated by the number of entries in the entire tensor). [MB20] uses the Kronecker
FJLT for embeddings of subspaces consisting of low-rank tensors which can also be improved
with the FJLT result of our work. The paper [Sun+21] proposed tensor random projections as
matrices whose rows are i.i.d. Kronecker products of independent Gaussian vectors, and proved
embedding properties for such constructions for Kronecker products of order d = 2. The paper
[Ahl+20a] extended the analysis beyond d = 2, and [CJ20] further refined and extended these
results in the context of sketching constrained least squares problems.

1.1.4 Notation

We make use of the essential notation introduced in the introduction. Especially, we denote
H ∈ RN×N and Hk ∈ R2k×2k for the Hadamard introduced in Section 0.6.

A random vector with independent entries which are ±1 with probability 1
2 each, is called a

Rademacher vector.

1.2 Main Result

Definition 1.1. For ϵ, η > 0, a random matrix A ∈ Rm×N satisfies the (ϵ, η) distributional
Johnson-Lindenstrauss property if for all x ∈ RN with ∥x∥2 = 1,

P
(∣∣∥Ax∥22 − 1

∣∣ > ϵ∥x∥22
)
≤ η.

Remark 1.2. If A ∈ Rm×N has the (ϵ, η̃
p(p−1)) distributional Johnson-Lindenstrauss property,

then for any set E ⊂ RN with |E| = p elements, by a union bound we obtain

P
(
∃x, y ∈ E :

∣∣∥Ax−Ay∥22 − ∥x− y∥22
∣∣ > ϵ∥x− y∥22

)
≤
∑
x,y∈E
x ̸=y

P
(∣∣∣∣∥A x− y

∥x− y∥2
∥22 − 1

∣∣∣∣ > ϵ

)
≤ |E|(|E| − 1) · η̃

p(p− 1)
= η̃.
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So with a probability of at least 1 − η̃, it holds that

∀x, y ∈ E :
∣∣∥Ax−Ay∥22 − ∥x− y∥22

∣∣ ≤ ϵ∥x− y∥22.

Then A preserves all pairwise distances in the set E up to a factor of 1 ± ϵ.

Theorem 1.3. For d ≥ 1, let n1, . . . , nd be dimensions such that N = n1 . . . nd. Let 0 < ϵ, η < 1
and Φ ∈ Rm×N be a matrix satisfying the (4sd, δ)-RIP for s ≥ log 1

η and δ ≤ C(d)ϵ where C(d)
is a constant that only depends on d.

Let ξ(1) ∈ {±1}n1 , . . . , ξ(d) ∈ {±1}nd be independent Rademacher vectors and ξ := ξ(1) ⊗
· · · ⊗ ξ(d) ∈ RN . Define A := ΦDξ ∈ Rm×N where Dξ is a diagonal matrix with the entries of ξ
on its diagonal.

Then A satisfies the (ϵ, η) distributional Johnson-Lindenstrauss property.

Applying the result by Haviv and Regev about the RIP of subsampled bounded orthonormal
matrices [HR16] to the case of a subsampled Kronecker product of d Hadamard matrices, we
obtain the following corollary.

Corollary 1.4. Let n1, . . . , nd, N, ϵ, η, ξ be as in Theorem 1.3, ν ∈ (0, 1), Φ =
√

N
mPΩF ∈ Rm×N

where PΩ ∈ Rm×N represents uniform independent subsampling of rows with replacement and
F ∈ RN×N is a unitary matrix with entries bounded by D√

N
in absolute value.

If N ≥ 1

(ν)C1d log log( 1ν )
and

m ≥ C(d)D2ϵ−2

(
log

1

η

)d(
log

C(d)

ϵ

)2

logN

(
log

C(d) log 1
η

ϵ

)2

,

then with probability ≥ 1− ν (with respect to PΩ), we obtain a matrix Φ such that ΦDξ satisfies
the (ϵ, η) distributional Johnson-Lindenstrauss property (with respect to the probability in ξ).

C1 is an absolute constant and C(d) only depends on d.

Remark 1.5. For norm preservation of p points simultaneously through a union bound, an
(ϵ, cp) distributional Johnson-Lindenstrauss property is required for a constant c ∈ (0, 1). The
RIP is a property that holds uniformly for all sparse vectors such that in Corollary 1.4, no union
bound over the probability in PΩ is required and ν can be chosen to be constant and especially
independent of p.

So even though the lower bound on N in Corollary 1.4 implies logN ≳ log 1
ν in the formula

for the lower bond on m, the dependence of m on p will only be m ≳ (log p)d.

1.3 Lower Bounds

The goal of this section is to show that our results, especially Corollary 1.4 that we obtain for
Hadamard matrices, are optimal with respect to the probability η. To do this, we apply the
Tensor randomized subsampled Hadamard transform to a set of p points. By a union bound
and Corollary 1.4, this randomized transform simultaneously preserves the norms of p vectors
simultaneously with probability 1 − ν if

m ≥ C(d)ϵ−2
(

log
p

ν

)d(
log

C(d)

ϵ

)2

logN

(
log

C(d) log p
ν

ϵ

)2

and

N ≥ 1

νC1d log log
p
ν

.

We will prove that the dependence m ≳ (log p)d on p (neglecting double logarithmic factors) is
optimal.
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Regard the Hadamard transform H = RN×N as the Fourier transform on Fn2 where N = 2n.
That is,

Hjk = (Hn)jk =
1√
N

(−1)⟨j−1,k−1⟩b ,

where ⟨a, b⟩b denotes the inner product of the binary representations of a and b.
Our approach is based on the special behavior of the Hadamard matrix on indicator vectors

of subspaces of Fn2 . This principle has been used before to show lower bounds for the restricted
isometry property of subsampled Hadamard matrices in [Bla+19] and was then adapted to
Johnson-Lindenstrauss embeddings in [BK21].

Denote Gn,r for the set of all r-dimensional subspaces of Fn2 . For any subset M ⊂ Fn2 we
write 1M ∈ RN for the indicator vector of M normalized such that ∥1M∥2 = 1. With this
notation, it holds for any V ∈ Gn,r that (see Lemma II.1 in [Bla+19])

H1V = 1V ⊥

Let PΩ ∈ Rm×N be the matrix representing subsampling m out of N entries independently

and uniformly with replacement and rescaling by
√

N
m .

Let N = N1 · · · · ·Nd, Nj = 2nj for 1 ≤ j ≤ d. Consider the matrix

A = PΩFDξ

where ξ = ξ(1) ⊗ · · · ⊗ ξ(d) is a Kronecker product of d Rademacher vectors, ξ(j) ∈ {±1}Nj and
F ∈ RN×N is a bounded orthonormal matrix.

Let 2 ≤ r ≤ min{n1, . . . , nd} and s = 2r. For each 1 ≤ j ≤ d consider a subspace Vj ∈ Gnj ,r.
By taking F := Hn1 ⊗ · · · ⊗Hnd

and x := 1V1 ⊗ · · · ⊗ 1Vd , we obtain

y = Fx = (Hn11V1) ⊗ · · · ⊗ (Hnd
1Vd) = 1V ⊥

1
⊗ · · · ⊗ 1V ⊥

d
.

The vector y has N1
s · · · · · Nd

s = N
sd

entries of size
√

sd

N . In subsampling with replacement,

each selected entry is
√

sd

N with probability 1
sd

and 0 with probability 1 − 1
sd

. Then

P(PΩy = 0) = (1 − 1

sd
)m ≥ exp(−2m

sd
).

Now consider the set E := {(Dξ̂(1)1V1)⊗ · · · ⊗ (Dξ̂(d)1Vd)|ξ̂(1) ∈ {±1}N1 , . . . , ξ̂(d) ∈ {±1}Nd}.

Corresponding to each factor, there are 2s sign patterns such that p := |E| ≤ 2ds.
With respect to the matrix A = PΩFDξ, we note that for any value of the random vector ξ,

there exists x̂ ∈ E such that Dξx̂ = x. Then Ax̂ = PΩFDξx̂ = PΩy. We obtain Ax̂ = 0 with
probability ≥

exp

(
−2m

sd

)
= exp

(
−2m

(
d log 2

log p

)d)
(1.4)

with respect to the randomness in PΩ.
Altogether, with the probability (1.4),

sup
x∈E

|∥Ax∥2 − 1| ≥ 1,

i.e., the Johnson-Lindenstrauss condition is violated.
To achieve that (1.4) is ≤ ν, we need that m ≥ 1

2(log 1
ν )( log p

d log 2)d.
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1.4 Notation and Required Tools

For the proof of Theorem 1.3 in the case d = 2, we use general order d′ arrays A ∈ R[n]d
′

whose
entries Ai1,...,id′ are indexed by d′ indices i1, . . . , id′ ∈ [n] or a tuple i ∈ [n]d

′
of d′ entries. For

d′ = 1, these are vectors, for d′ = 2, these are matrices. For d′ = 0, the index is just one empty
tuple and thus we can identify the arrays with real numbers. We define the Frobenius norm

∥A∥F =
(∑

i∈[n]d′ A
2
i

) 1
2
. For the d = 2 case we will need arrays of order up to 4.

For indices i ∈ [n]4, for any subset S ⊂ [4], we denote iS for the tuple of entries il for l ∈ S.
In this sense, we use the expression ”’for all iS”‘ in the sense of ”’for all choices of all il, l ∈ S”‘
and write

∑
iS∈[n]|S| and maxiS∈[n]|S| for the sum or maximum ranging over all choices of the il

(l ∈ S) in [n]. For an array A of order |S|, we denote AiS for the entry indexed by the tuple iS .
Using this notation of arrays and indices, we can define the following norms which have been

used to bound Gaussian chaos of arbitrary order in [Lat06]. Let B ∈ R[n]d
′

and denote S(d′, κ) for
the set of all partitions of [d′] into κ nonempty disjoint sets. Then for each (I1, . . . , Iκ) ∈ S(d′, κ),
we define

∥B∥I1,...,Iκ := sup

{ ∑
i∈[n]d′

Biα
(1)
iI1
. . . α

(κ)
iIκ

∣∣∣∣α(1) ∈ R[n]|I1| , . . . ,α(κ) ∈ R[n]|Iκ|
,

∥α(1)∥F = · · · = ∥α(κ)∥F = 1

}
.

The following statement shows that joining some of the partition sets cannot decrease the
corresponding norm.

Lemma 1.6. Let B ∈ R[n]d
′
be an array and I1, . . . , Iκ and Ī1, . . . , Īκ̄ two partitions of [d′] into

non-empty disjoint sets such that every Īj (1 ≤ j ≤ κ̄) is a union of at least one of the sets
I1, . . . , Iκ. Then

∥B∥I1,...,Iκ ≤ ∥B∥Ī1,...,Īκ̄ .

The proof of this is postponed to Subsection 1.5.5.
The following Theorem 1.7 is shown for Gaussian random vectors by Latala in [Lat06]. As

explained in Section 1 of [AW15], Theorem 1.4 in [AW15] generalizes the upper bound of Latala’s
result to subgaussian vectors which is the following statement.

Theorem 1.7. Let n ∈ Nd, B ∈ Rn, p ≥ 2.
Let S(κ, d) denote the set of partitions of [d] into κ nonempty disjoint subsets. Define

mp(B) :=
d∑

κ=1

pκ/2
∑

(I1,...,Iκ)∈S(κ,d)

∥B∥I1,...,Iκ .

Consider random vectors X(1) ∈ Rn1 , . . . , X(d) ∈ Rnd with independent, mean 0, variance 1
entries with subgaussian norm bounded by L ≥ 1. Then∥∥∥∥∥∥

∑
i1∈[n1],...,id∈[nd]

Bi1,...,idX
(1)
i1
. . . X

(d)
id

∥∥∥∥∥∥
Lp

≤ C(d)Ldmp(B),

where C(d) > 0 is a constant that only depends on d.

We also make use of the restricted isometry through the following lemma. Especially, this
lemma will be used in Subsection 1.5.5. For a more general overview of the restricted isometry
property and similar tools, see Chapter 6 in [FR13].
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Lemma 1.8. Let Φ ∈ Rm×N have the (2s, δ)-RIP. Then for any S, T ⊂ [N ] of size |S| = |T | = s,
the submatrix B = (Φ∗Φ − IdN )S,T satisfies ∥B∥2→2 ≤ δ.

Proof. Let x, y ∈ RN such that supp(x) = S, supp(y) = T and ∥x∥2 = ∥y∥2 = 1. Then by the
polarization identity and the RIP

|x∗SByT | = |x∗Φ∗Φy − x∗y|

=
1

4

∣∣∥Φ(x+ y)∥22 − ∥Φ(x− y)∥22 − ∥x+ y∥22 + ∥x− y∥22
∣∣

≤ δ

4

(
∥x+ y∥22 + ∥x− y∥22

)
=
δ

4

(
2∥x∥22 + 2∥y∥22

)
= δ.

1.5 Proof of the Main Theorem for d = 2

In this section, we prove the main Theorem 1.3 for the special case d = 2. Considering this case
will make the presentation of the proof significantly easier compared to the general proof while
the most important ideas are still covered. Furthermore, in this section, compared to the general
proof in Section 2.5, we restrict the dimensions n1, n2 of the Rademacher vectors ξ(1), ξ(2) to be
the same n1 = n2 = n. This assumption does not lead to any essential restrictions in the proof
but further simplifies the notation.

A crucial part of the proof is contained in the Lemmas 1.12 and 1.17 which are shown in the
general form. These two lemmas will also be used in the general proof in Section 2.5.

1.5.1 Overview

This subsection gives a short overview of the proof contained in Subsections 1.5.2 to 1.5.5.
We start by taking an arbitrary signal vector x ∈ Rn2

which we can assume to satisfy
∥x∥2 = 1. Then we arrange the vector x to a matrix x ∈ Rn×n and accordingly the matrix
B := Φ∗Φ − IdN to an array B ∈ Rn×n×n×n of order 4 in such a way that

∥ΦDξ(1)⊗ξ(2)x∥
2
2 − ∥x∥22 =

∑
i∈[n]4

Bi1,...,i4xi1,i2xi3,i4ξ
(1)
i1
ξ
(1)
i3
ξ
(2)
i2
ξ
(2)
i4
.

This expression cannot be controlled by Theorem 1.7 directly since each of the vectors ξ(1), ξ(2)

appears twice in each term of the sum.
However, a decoupling technique which is shown in Subsection 1.5.2 shows that it is enough

to bound the decoupled chaos

∥ΦDξ(1)⊗ξ(2)x∥
2
2 − ∥x∥22 =

∑
i∈[n]4

Bi1,...,i4xi1,i2xi3,i4ξ
(1)
i1
ξ
(3)
i3
ξ
(2)
i2
ξ
(4)
i4

(1.5)

for all x, where ξ(3) and ξ(4) are new independent Rademacher vectors.
This decoupled chaos could be controlled with Theorem 1.7, however, the resulting bound

– which would also hold for Gaussian vectors instead of the Rademacher vectors ξ(j) – is not
strong enough to prove the theorem.

In order to use special properties of Rademacher vectors in (1.5), we first split up x as a sum

x = x(∅) + x({1}) + x({2}) + x({1,2})

of four matrices with disjoint supports. All the entries of x will be distributed to these four
matrices depending on their absolute value. Using the decomposition of x, we can write (1.5)
as the sum over ∑

i∈[n]4
Bi1,...,i4x

(S)
i1,i2

x
(T )
i3,i4

ξ
(1)
i1
ξ
(3)
i3
ξ
(2)
i2
ξ
(4)
i4
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for all S, T ⊂ [2]. For each such expression, now we condition on some of the ξ(l) (l ∈ [4]), bound
their entries by ±1 (which is specific to Rademacher vectors) and then we regard the expression
as a chaos in terms of the other ξ(l) which can then be controlled using Theorem 1.7. Then for all
choices of S, T ⊂ [2], we need to control the coefficient array of the corresponding chaos in terms
of all its ∥ · ∥I1,...,Iκ norms. Before we derive the bounds on these norms in Subsection 1.5.4, we
complete the proof of the main Theorem 1.3 by bounding the Lp norms of ∥ΦDξ(1)⊗ξ(2)x∥22−∥x∥22
and therefore P

(∣∣∣∥ΦDξ(1)⊗ξ(2)x∥22 − ∥x∥22
∣∣∣ > ϵ

)
.

Subsection 1.5.4 is entirely devoted to bounding the ∥ · ∥I1,...,Iκ norms. Afterwards, Sub-
section 1.5.5 shows some lemmas that have been used in the previous parts by generalizing
techniques used in [KW11].

Remark 1.9. In [Ahl+20a], Lemma 4.11 (TensorSRHT) provides a Johnson-Lindenstrauss
result which is similar to our Corollary 1.4 restricted to Hadamard matrices. The proof of this
lemma can be found in the extended version [Ahl+20b]. Their proof uses general moment bounds
for sums of independent mean 0 variables to control the probability in the subsampling PΩ while
conditioning on the random sign vector ξ. In contrast, our approach conditions on the RIP
of PΩH and then shows the Johnson-Lindenstrauss property by controlling the probability in ξ.
This gives an advantage for the case that the Johnson-Lindenstrauss property is shown for p
vectors simultaneously. For our approach, once PΩH has the RIP, this holds for all s-sparse
vectors uniformly. Then we only need to show the Johnson-Lindenstrauss property by a union
bound with respect to the probability in ξ but not with respect to PΩ. The advantage of this is
that in this case the dependence of the embedding dimension in [Ahl+20a] is (log p)d+1 (up to
smaller logarithmic factors) while our result only requires (log p)d which the example in Section
1.3 proves to be optimal.

On the other hand, our approach makes controlling the probability in ξ more intricate. In
[Ahl+20a], Lemma 4.9 provides a result similar to the one by Latala [Lat06] with a better depen-
dence on d but all ∥ · ∥I1,...,Iκ bounded by the Frobenius norm. This suffices to control ξT (DHjx)
sufficiently for arbitrary x ∈ RN where Hj is the j-th row of the Hadamard matrix. The latter
is required in [Ahl+20a]. In our case, we need to control ξTDxΦTΦDxξ for which we make use
of the RIP of Φ and control all the ∥ · ∥I1,...,Iκ norms separately. We will discuss more aspects
of the relation of our work to [Ahl+20a] in Section 1.6.

1.5.2 Decoupling for d = 2

Decoupling is a commonly used technique to relate a chaos of the type
∑n

j,k=1Xj,kξjξk with
the same vector (ξ1, . . . , ξn) occurring twice to a decoupled chaos

∑n
j,k=1Xj,kξjξ

′
k containing an

independent copy ξ′ of ξ. The statement can be found in numerous textbooks such as [FR13].

Theorem 1.10 (Theorem 8.11 in [FR13]). Let ξ1, . . . , ξn be independent, mean 0 random vari-
ables, X ∈ Rn×n, and F : R → R a convex function. Then

EF

 n∑
j,k=1
j ̸=k

Xj,kξjξk

 ≤ EF

4

n∑
j,k=1

Xj,kξj ξ̄k

 ,

where (ξ̄1, . . . , ξ̄n) is an independent copy of (ξ1, . . . , ξn).

Note that by taking F (x) = |x|p for p ≥ 1 and then taking the p-th root, the conclusion can
be written as ∥∥∥∥∥∥∥∥

n∑
j,k=1
j ̸=k

Xj,kξjξk

∥∥∥∥∥∥∥∥
Lp

≤ 4

∥∥∥∥∥∥
n∑

j,k=1

Xj,kξj ξ̄k

∥∥∥∥∥∥
Lp

. (1.6)
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Some higher order versions of this decoupling theorem have been developed [Kwa87; AG93].
In the general d case, ∥ΦDξx∥22−∥x∥22 leads to the particular situation of d independent vectors
ξ(j), each occurring twice for which we will use Theorem 2.5 developed in [BKW21b] for the
general case. To provide a self-contained proof with a simplified notation, we prove the following
special case for d = 2 by repeated application of Theorem 1.10.

Lemma 1.11. Let B ∈ Rn×n×n×n and γ ≥ 0. Let ξ(1), . . . , ξ(4) ∈ {±1}n be independent
Rademacher vectors. Assume that for all x ∈ Rn×n,∥∥∥∥∥∥

∑
i1,...,i4∈[n]

Bi1,...,i4ξ
(1)
i1
ξ
(2)
i2
ξ
(3)
i3
ξ
(4)
i4
xi1,i2xi3,i4

∥∥∥∥∥∥
Lp

≤ γ∥x∥2F .

Then for all x ∈ Rn×n,∥∥∥∥∥∥
∑

i1,...,i4∈[n]

Bi1,...,i4ξ
(1)
i1
ξ
(2)
i2
ξ
(1)
i3
ξ
(2)
i4
xi1,i2xi3,i4

∥∥∥∥∥∥
Lp

≤ 25γ∥x∥2F .

Proof. By repeatedly separating diagonal entries and applying the decoupling Theorem 1.10, we
obtain (in all sums each index ranges over [n])∥∥∥∥∥∥

∑
i2,i4

∑
i1,i3

Bi1,...,i4ξ
(1)
i1
ξ
(1)
i3
xi1,i2xi3,i4

 ξ
(2)
i2
ξ
(2)
i4

∥∥∥∥∥∥
Lp

≤

∥∥∥∥∥∥∥∥
∑
i2,i4
i2 ̸=i4

∑
i1,i3

Bi1,...,i4ξ
(1)
i1
ξ
(1)
i3
xi1,i2xi3,i4

 ξ
(2)
i2
ξ
(2)
i4

∥∥∥∥∥∥∥∥
Lp

+

∥∥∥∥∥∥
∑
i2

∑
i1,i3

Bi1,i2,i3,i2ξ
(1)
i1
ξ
(1)
i3
xi1,i2xi3,i2

∥∥∥∥∥∥
Lp

≤ 4

∥∥∥∥∥∥
∑
i2,i4

∑
i1,i3

Bi1,...,i4ξ
(1)
i1
ξ
(1)
i3
xi1,i2xi3,i4

 ξ
(2)
i2
ξ
(4)
i4

∥∥∥∥∥∥
Lp

+

∥∥∥∥∥∥
∑
i1,i3

(∑
i2

Bi1,i2,i3,i2xi1,i2xi3,i2

)
ξ
(1)
i1
ξ
(1)
i3

∥∥∥∥∥∥
Lp

≤ 4

∥∥∥∥∥∥
∑
i1,i3

∑
i2,i4

Bi1,...,i4ξ
(2)
i2
ξ
(4)
i4
xi1,i2xi3,i4

 ξ
(1)
i1
ξ
(1)
i3

∥∥∥∥∥∥
Lp

+

∥∥∥∥∥∥∥∥
∑
i1,i3
i1 ̸=i3

(∑
i2

Bi1,i2,i3,i2xi1,i2xi3,i2

)
ξ
(1)
i1
ξ
(1)
i3

∥∥∥∥∥∥∥∥
Lp

+

∥∥∥∥∥∥
∑
i1,i2

Bi1,i2,i1,i2xi1,i2xi1,i2

∥∥∥∥∥∥
Lp

≤ 4

∥∥∥∥∥∥∥∥
∑
i1,i3
i1 ̸=i3

∑
i2,i4

Bi1,...,i4ξ
(2)
i2
ξ
(4)
i4
xi1,i2xi3,i4

 ξ
(1)
i1
ξ
(1)
i3

∥∥∥∥∥∥∥∥
Lp

+ 4

∥∥∥∥∥∥
∑
i1

∑
i2,i4

Bi1,i2,i1,i4ξ
(2)
i2
ξ
(4)
i4
xi1,i2xi1,i4

∥∥∥∥∥∥
Lp
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+ 4

∥∥∥∥∥∥
∑
i1,i3

(∑
i2

Bi1,i2,i3,i2xi1,i2xi3,i2

)
ξ
(1)
i1
ξ
(3)
i3

∥∥∥∥∥∥
Lp

+

∥∥∥∥∥∥
∑
i1,i2

Bi1,i2,i1,i2xi1,i2xi1,i2

∥∥∥∥∥∥
Lp

≤ 16

∥∥∥∥∥∥
∑

i1,i2,i3,i4

Bi1,...,i4ξ
(1)
i1
ξ
(2)
i2
ξ
(3)
i3
ξ
(4)
i4
xi1,i2xi3,i4

∥∥∥∥∥∥
Lp

+ 4

∥∥∥∥∥∥
∑
i1,i2,i4

Bi1,i2,i1,i4ξ
(2)
i2
ξ
(4)
i4
xi1,i2xi1,i4

∥∥∥∥∥∥
Lp

+ 4

∥∥∥∥∥∥
∑
i1,i2,i3

Bi1,i2,i3,i2ξ
(1)
i1
ξ
(3)
i3
xi1,i2xi3,i2

∥∥∥∥∥∥
Lp

+

∥∥∥∥∥∥
∑
i1,i2

Bi1,i2,i1,i2xi1,i2xi1,i2

∥∥∥∥∥∥
Lp

. (1.7)

For i′1 ∈ [n], define x(i′1) ∈ Rn×n by

x
(i′1)
i1,i2

=

{
xi1,i2 if i1 = i′1
0 otherwise.

Then all the x(i
′
1) have disjoint supports and

x =
∑
i′1∈[n]

x(i′1).

Then∥∥∥∥∥∥
∑
i1,i2,i4

Bi1,i2,i1,i4ξ
(2)
i2
ξ
(4)
i4
xi1,i2xi1,i4

∥∥∥∥∥∥
Lp

=

∥∥∥∥∥∥
∑
i1,i2,i4

Bi1,i2,i1,i4ξ
(2)
i2
ξ
(4)
i4
x
(i1)
i1,i2

x
(i1)
i1,i4

∥∥∥∥∥∥
Lp

≤
∑
i1

∥∥∥∥∥∥
∑
i2,i4

Bi1,i2,i1,i4ξ
(2)
i2
ξ
(4)
i4
x
(i1)
i1,i2

x
(i1)
i1,i4

∥∥∥∥∥∥
Lp

=
∑
i1

∥∥∥∥∥∥
∑

i′1,i2,i3,i4

Bi′1,i2,i3,i4ξ
(1)
i′1
ξ
(2)
i2
ξ
(3)
i3
ξ
(4)
i4
x
(i1)
i′1,i2

x
(i1)
i3,i4

∥∥∥∥∥∥
Lp

≤
∑
i1

γ∥x(i1)∥2F = γ∥x∥2F .

where in the third step we used that x
(i1)
i′1,i2

x
(i1)
i3,i4

= 0 except for the one term i′1 = i3 = i1 in which

ξ
(1)
i′1
ξ
(3)
i3

= ±1.

In (1.7), the first term on the right hand side can be bounded by 16γ∥x∥2F by assumption,
the above argument shows that the second term is ≤ 4γ∥x∥2F , and the same bound follows for
the third term analogously. For the fourth term we can define arrays x(i′1,i

′
2) ∈ Rn×n for any

i′1, i
′
2 ∈ [n] by

x
(i′1,i

′
2)

i1,i2
=

{
xi1,i2 if i′1 = i1 and i′2 = i2

0 otherwise.

Then we can do an analogous argument and also bound the fourth term by γ∥x∥2F . So altogether
it follows that ∥∥∥∥∥∥

∑
i1,i2,i3,i4∈[n]

Bi1,...,i4ξ
(1)
i1
ξ
(2)
i2
ξ
(1)
i3
ξ
(2)
i4
xi1,i2xi3,i4

∥∥∥∥∥∥
Lp

≤ 25γ.
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1.5.3 Proof of Theorem 1.3 for d = 2

For the d = 2 case, the signal vector x ∈ Rn2
is entry-wise multiplied by the Kronecker product

ξ(1) ⊗ ξ(2) of Rademacher vectors ξ(1), ξ(2) ∈ Rn. The Kronecker product ξ(1) ⊗ ξ(2) ∈ Rn2
is a

rearrangement of the entries of the matrix ξ(1)(ξ(2))∗ ∈ Rn×n. We define I2 : [n] × [n] → [n2]
to be the bijective map that maps pairs of row/column index of ξ(1)(ξ(2))∗ ∈ Rn×n to the
corresponding index of ξ(1) ⊗ ξ(2) ∈ Rn2

, i.e., for all j, k ∈ [n],(
ξ(1)(ξ(2))∗

)
j,k

= ξ
(1)
j ξ

(2)
k =

(
ξ(1) ⊗ ξ(2)

)
I2(j,k)

. (1.8)

Now we rearrange the vector x in the same way to a matrix x ∈ Rn×n. Then the entry-
wise multiplication of ξ(1) ⊗ ξ(2) and x corresponds to entry-wise multiplication of ξ(1)(ξ(2))∗

and x. We consider the matrix B := Φ∗Φ − IdN and rearrange its rows and columns each
in the same way we rearranged x to x to obtain the array B ∈ Rn×n×n×n of order 4 (i.e.,
Bi1,i2,i3,i4 = BI2(i1,i2),I2(i3,i4)). Then

∥ΦDξ(1)⊗ξ(2)x∥
2
2 − ∥x∥22 = x∗Dξ(1)⊗ξ(2)(Φ

∗Φ − IdN )Dξ(1)⊗ξ(2)x

=
∑
i,j∈[n]

Bi,j(ξ
(1) ⊗ ξ(2))i(ξ

(1) ⊗ ξ(2))jxixj

=
∑

i1,...,i4∈[n]

Bi1,...,i4ξ
(1)
i1
ξ
(2)
i2
ξ
(1)
i3
ξ
(2)
i4
xi1,i2xi3,i4 .

Our goal is to bound

∥∥∥∥ΦDξ(1)⊗ξ(2)x∥
2
2 − ∥x∥22

∥∥∥
Lp

=

∥∥∥∥∥∥
∑

i1,...,i4∈[n]

Bi1,...,i4ξ
(1)
i1
ξ
(2)
i2
ξ
(1)
i3
ξ
(2)
i4
xi1,i2xi3,i4

∥∥∥∥∥∥
Lp

for all x ∈ Rn×n. By Lemma 1.11, it is sufficient to bound∥∥∥∥∥∥
∑

i1,...,i4∈[n]

Bi1,...,i4ξ
(1)
i1
ξ
(2)
i2
ξ
(3)
i3
ξ
(4)
i4
xi1,i2xi3,i4

∥∥∥∥∥∥
Lp

for all x ∈ Rn×n and by homogeneity it is enough to do this for all such x satisfying ∥x∥F = 1.
So consider any x ∈ Rn×n with ∥x∥F = 1. We split the matrix x up into the sum

x = x(∅) + x({1}) + x({2}) + x({1,2})

of four matrices with disjoint support where

� x({1,2}) contains the s2 largest entries of x.

� x({2}) contains the largest s of the remaining entries of every row.

� x({1}) contains the largest s of the now remaining entries of every column.

� x(∅) contains all the entries that are still remaining.

In all cases, ”largest“ refers to the corresponding entries with the largest absolute value. We
pick one such choice even if it is not unique.

By the definition these matrices, in every row i1 ∈ [n], the s largest entries of (xi1,i2)i2∈[n]
are not contained in x(∅). This implies that for each i1 ∈ [n] there are at least s indices i2 ∈ [n]

such that |xi1,i2 | ≥ maxi′2∈[n] |x
(∅)
i1,i′2

|. This implies that for each i1 ∈ [n], maxi2∈[n](x
(∅)
i1,i2

)2 ≤
1
s

∑
i2∈[n] x

2
i1,i2

.
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With analogous arguments and ∥x∥F = 1, we can obtain all of the following statements.

max
(i1,i2)∈[n]2

(x
(∅)
i1,i2

)2 ≤ 1

s2

max
(i1,i2)∈[n]2

(x
({1})
i1,i2

)2 ≤ 1

s2

max
(i1,i2)∈[n]2

(x
({2})
i1,i2

)2 ≤ 1

s2

For each i1 ∈ [n], max
i2∈[n]

(x
(∅)
i1,i2

)2 ≤ 1

s

∑
i2∈[n]

x2i1,i2

For each i2 ∈ [n], max
i1∈[n]

(x
(∅)
i1,i2

)2 ≤ 1

s

∑
i1∈[n]

x2i1,i2 . (1.9)

The definitions of the x(S) directly imply that

x
({1,2})
i1,i2

̸= 0 for at most s2 pairs (i1, i2) ∈ [n]2

For every i2 ∈ [n], x
({1})
i1,i2

̸= 0 for at most s indices i1 ∈ [n]

For every i1 ∈ [n], x
({2})
i1,i2

̸= 0 for at most s indices i2 ∈ [n]. (1.10)

We have split up x into x =
∑

S⊂[2] x
(S). Thus we obtain∑

i1,...,i4∈[n]

Bi1,...,i4ξ
(1)
i1
ξ
(2)
i2
ξ
(3)
i3
ξ
(4)
i4
xi1,i2xi3,i4 =

∑
S,T⊂[2]

X(S,T )

where

X(S,T ) :=
∑

i1,...,i4∈[n]

Bi1,...,i4ξ
(1)
i1
ξ
(2)
i2
ξ
(3)
i3
ξ
(4)
i4
x
(S)
i1,i2

x
(T )
i3,i4

=
∑

i1,...,i4∈[n]

Bi1,...,i4x
(S)
i1,i2

x
(T )
i3,i4

4∏
l=1

ξ
(l)
il

=
∑

iUc∈[n]|Uc|

B
(S,T )
iUc

∏
l∈Uc

ξ
(l)
il

where U = S ∪ (T + 2) ⊂ [4] and

B
(S,T )
iUc

=
∑

iU∈[n]|U|

Bi1,...,i4x
(S)
i1,i2

x
(T )
i3,i4

∏
l∈U

ξ
(l)
il

such that B(S,T ) ∈ R[n]|U
c|

.
For example S = {1}, T = {2}, then U = {2, 3} and

X({1},{2}) =
∑

i2,i3∈[n]

B
({1},{2})
i2,i3

ξ
(2)
i2
ξ
(3)
i3
,

where
B

({1},{2})
i2,i3

=
∑

i1,i4∈[n]

Bi1,...,i4x
({1})
i1,i2

x
(2)
i3,i4

ξ
(1)
i1
ξ
(4)
i4
.

The next step is to condition on (ξ(l))l∈U and bound the Lp norm of X(S,T ) only with respect
to (ξ(l))l∈Uc , in such a way that the bound is deterministic. Then the same bound also holds for
the total Lp norm because if E

[
|X(S,T )|p

∣∣ (ξ(l))l∈U] ≤ C for deterministic C, then

E
[
|X(S,T )|p

]
= E

[
E
[
|X(S,T )|p

∣∣ (ξ(l))l∈U]] ≤ E[C] = C.
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In terms of (ξ(l))l∈Uc , X(S,T ) is a chaos of order |U c|. If (S, T ) ̸= ([2], [2]), then U c ̸= ∅ and
by Theorem 1.7, ∥∥∥X(S,T )

∥∥∥
Lp

≤ Cmp(B
(S,T )), (1.11)

where

mp(B
(S,T )) :=

|Uc|∑
κ=1

pκ/2
∑

(I1,...,Iκ)∈S(κ,|Uc|)

∥B(S,T )∥I1,...,Iκ ,

so our goal is to bound ∥B(S,T )∥I1,...,Iκ for all S, T ⊂ [2] and I1, . . . , Iκ ∈ S(κ, 4 − |S| − |T |). We
can bijectively map [4 − |S| − |T |] = [|U c|] to U c such that instead of considering all partitions
I1, . . . , Iκ of [4 − |S| − |T |], we consider the partitions of U c for the norms. This makes the
notation easier such that we can write

∥B(S,T )∥I1,...,Iκ = sup

α(1)∈R[n]|I1| ,...,α(κ)∈R[d]|Iκ|

∥α(1)∥F=···=∥α(κ)∥F=1

∑
iUc∈[n]|Uc|

B
(S,T )
iUc

α
(1)
iI1
. . . α

(κ)
iIκ

= sup

α(1)∈R[n]|I1| ,...,α(κ)∈R[d]|Iκ|

∥α(1)∥F=···=∥α(κ)∥F=1

∑
i∈[n]4

Bi1,...,i4x
(S)
i1,i2

x
(T )
i3,i4

(∏
l∈U

ξ
(l)
il

)
α
(1)
iI1
. . . α

(κ)
iIκ
. (1.12)

We will show

∥B(S,T )∥I1,...,Iκ ≤ C
δ

s
κ
2

, (1.13)

for all S, T ⊂ [2], (S, T ) ̸= ([2], [2]) and all partitions I1, . . . , Iκ of {1, 2, 3, 4}\(S ∪ (T + 2)) where
C > 0 is a constant and δ comes from the RIP assumption of Φ. The case (S, T ) = ([2], [2]) will
be considered separately.

However, we postpone the proof of (1.13) separately to Subsection 1.5.4 and continue to
complete the proof of Theorem 1.3 here under the assumption that it holds for all S, T , (S, T ) ̸=
([2], [2]).

From (1.13) for all S, T , (S, T ) ̸= ([2], [2]), we can conclude using (1.11) that for all such S,
T , ∥∥∥X(S,T )

∥∥∥
Lp

≤ C1

4−|S|−|T |∑
κ=1

pκ/2
δ

sκ/2
,

where C1 > 0 is a constant.
For the remaining case S = T = {1, 2}, we observe that x({1,2}) is s2-sparse and thus

|X([2],[2])| =

∣∣∣∣∣∣
∑

i1,...,i4∈[n]

Bi1,...,i4x
(S)
i1,i2

x
(T )
i3,i4

4∏
l=1

ξ
(l)
il

∣∣∣∣∣∣
=
∣∣∣(vec(x({1,2})) ◦ (ξ(1) ⊗ ξ(2))

)∗
B
(

vec(x({1,2})) ◦ (ξ(1) ⊗ ξ(2))
)∣∣∣

≤ δ∥x({1,2})∥2F ≤ δ

by Lemma 1.8 where ◦ denotes the entry-wise product and vec(x({1,2})) ∈ Rn2
is the vectorized

rearrangement of the matrix x({1,2}) (i.e. vec(x({1,2}))I2(i1,i2) = x
({1,2})
i1,i2

).
We obtain that∥∥∥∥∥∥

∑
i1,...,i4∈[n]

Bi1,...,i4ξ
(1)
i1
ξ
(2)
i2
ξ
(3)
i3
ξ
(4)
i4
xi1,i2xi3,i4

∥∥∥∥∥∥
Lp

≤
∑

S,T⊂[2]

∥X(S,T )∥Lp
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≤ δ +
∑

S,T⊂[2]
(S,T )̸=([2],[2])

∥X(S,T )∥Lp ≤ δ + 42C1

4∑
κ=1

pκ/2
δ

sκ/2
≤ C2δ

4∑
κ=0

(p
s

)κ
2
,

where C2 = 42C1, assuming C2 ≥ 1.
As we have shown using the decoupling Lemma 1.11, the fact that the above inequality holds

for all x ∈ Rn×n with ∥x∥F = 1 is enough to show that for all x ∈ Rn2
, ∥x∥2 = 1,

∥∥∥∥ΦDξ(1)⊗ξ(2)x∥
2
2 − ∥x∥22

∥∥∥
Lp

≤ C3δ
4∑

κ=0

(p
s

)κ
2
,

where C3 = 25C2.
We assume δ ≤ ϵ

5eC3
and obtain for the particular choice p = s ≥ 2,

∥∥∥∥ΦDξ(1)⊗ξ(2)x∥
2
2 − ∥x∥22

∥∥∥
Ls

≤ C3δ
4∑

κ=0

1 = 5C3δ.

With Markov’s inequality, we obtain

P
(∣∣∣∥ΦDξ(1)⊗ξ(2)x∥

2
2 − ∥x∥22

∣∣∣ > ϵ
)
≤


∥∥∥∥ΦDξ(1)⊗ξ(2)x∥22 − ∥x∥22

∥∥∥
Ls

ϵ


s

≤
(

5C3δ

5eC3δ

)s
= e−s.

By assumption, s ≥ log 1
η such that this probability is ≤ η which completes the proof of Theorem

1.3.

1.5.4 Bounding the Tensor Norms

This entire subsection is devoted to the proof of (1.13) for all required cases.
Take sets S, T ⊂ {1, 2}, such that (S, T ) ̸= ({1, 2}, {1, 2}) and any partition I1, . . . , Iκ of

[4]\(S ∪ (T + 2)) into non-empty disjoint sets.
We define Ī ⊂ {1, 2} to be the union of all sets among I1, . . . , Iκ that are contained in {1, 2},

Ī ′ ⊂ {3, 4} the union of all I1, . . . , Iκ that are contained in {3, 4} and ¯̄J ⊂ [4] the union of
all other sets of the partition. Furthermore, define J̄ := ¯̄J ∩ {1, 2} and J̄ ′ = ¯̄J ∩ {3, 4}, such
that S ∪ Ī ∪ J̄ = {1, 2} and (T + 2) ∪ Ī ′ ∪ J̄ ′ = {3, 4}. Then Ī , Ī ′, ¯̄J is again a partition of
[4]\(S ∪ (T + 2)). However, these three sets might not all be non-empty. Since joining some of
the partition sets does not increase the ∥ · ∥I1,...,Iκ norm (Lemma 1.6), we obtain

∥B(S,T )∥I1,...,Iκ ≤ ∥B(S,T )∥Ī,Ī′, ¯̄J ,

where we denote ∥ · ∥Ī,Ī′, ¯̄J for the norm corresponding to the partition obtained by restricting

Ī , Ī ′, ¯̄J to the non-empty sets among them.
So we need to show

∥B(S,T )∥Ī,Ī′, ¯̄J ≤ C
δ

s
κ
2

(1.14)

for a constant C > 0 in all cases. Note however, that this inequality still contains the cardinality
κ of the original partition I1, . . . , Iκ.

In general, we have according to (1.12),

∥B(S,T )∥Ī,Ī′, ¯̄J
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= sup

α(1)∈R[n]|Ī|α(2)∈R[n]|Ī
′|
,

α(3)∈R[n]|
¯̄J|

∥α(1)∥F=∥α(2)∥F
=∥α(3)∥F=1

∑
i∈[n]4

Bi1,...,i4x
(S)
i1,i2

x
(T )
i3,i4

α
(1)
iĪ
α
(2)
iĪ′
α
(3)
i ¯̄J

∏
l∈S∪(T+2)

ξ
(l)
il
. (1.15)

Note that it can happen that, for example, Ī = ∅. In this case we take the supremum over the
array α(1) ∈ R[n]0 of order 0 with Frobenius norm 1. We regard this as a real number with
absolute value 1 which leads to the same effect in the expression as dropping Ī and considering
∥ · ∥Ī′, ¯̄J instead. The same holds if some of Ī ′, ¯̄J are empty. Because of (S, T ) ̸= ([2], [2]), not all
of them can be empty.

For example, if S = {1}, Ī = ∅, ¯̄J = {2, 4}, Ī ′ = {3} and T = ∅, then

∥B(S,T )∥Ī,Ī′, ¯̄J = sup
α(1)∈R,α(2)∈Rn

α(3)∈Rn×n

|α(1)|=∥α(2)∥2
=∥α(3)∥F=1

∑
i∈[n]4

Bi1,...,i4x
({1})
i1,i2

ξ
(1)
i1
α(1)x

(∅)
i3,i4

α
(2)
i3
α
(3)
i2,i4

.

Our goal is to bound the expressions (1.15) in all cases. However, depending on the choices
of S, T, Ī, Ī ′, ¯̄J , this expression has a different shape. Since already in the case d = 2 for
example, there are in total 41 possibilities to choose these sets, we develop a unified approach
to handle all these expressions. For this, we first observe that S, Ī, J̄ , T + 2, Ī ′, J̄ ′ is a partition
of {1, 2, 3, 4} in which some sets are empty and each set has ≤ 2 elements. In this respect,
we split up the entire index tuple (i1, i2, i3, i4) of the sum in (1.15) into the (partly empty)
tuples iJ̄ , iĪ , iS , iJ̄ ′ , iĪ′ , iT+2. These tuples will then be mapped to integers j, k, l, j′, k′, l′,
respectively. Specifically, if J̄ = ∅, then iJ̄ will be empty and thus there is just one possible
value for it and we define j = 1. If |J̄ | = 1, i.e., J̄ = {r} for some r ∈ [4], then iJ̄ = ir and we
define j = ir. If |J̄ | = 2, J̄ = {r1, r2}, r1 < r2, then iJ̄ = (ir1 , ir2) and we map these tuples of
two indices in [n] to one integer in [n2] using the function I2 : [n]2 → [n2] (see the explanation
before (1.8) for the definition of I2). In this way, the set of all j obtained in this way, is always
[n|J̄ |]. We do the same for the other sets besides J̄ to obtain the other indices besides j.

After this rearrangement of the indices, the factor x
(S)
i1,i2

∏
r∈S ξ

(r)
ir

in (1.15) that previously
depended on the indices i1, i2, will now depend on j, k, l (where for d = 2, at least one of the

three indices can only take the value 1). Therefore, we will rearrange these x
(S)
i1,i2

∏
r∈S ξ

(r)
ir

into

an array X ∈ Rn1×n2×n3 whose entries Xi,j,l depend on three indices. In a similar way, we will
rearrange the other factors in (1.15) in terms of the new indices and then obtain the following
arrays.

x
(S)
i1,i2

∏
r∈S

ξ
(r)
ir

→ Xj,k,l x
(T )
i3,i4

∏
r∈T+2

ξ
(r)
ir

→ Yj′,k′,l′

xi1,i2 → X̄j,k,l xi1,i2 → Ȳj′,k′,l′

α
(1)
iĪ

→ αk α
(2)
iĪ′

→ α′
k′

α
(3)
i ¯̄J

→ Γj,j′ . (1.16)

The precise definition of all these objects will be given later. However, this overview is given to
demonstrate that with such a rearrangement of indices and entries, we will be able to rewrite
the sum in (1.15) in the form∑

(j,j′)∈[n1]×[n′
1]

(k,k′)∈[n2]×[n′
2]

(l,l′)∈[n3]×[n′
3]

BI(j,k,l),I′(j′,k′,l′)Xj,k,lαkYj′,k′,l′α
′
k′Γj,j′ ,
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where I, I ′ are certain bijections that map triples (j, k, l) to row or column indices of the matrix
B ∈ Rn2×n2

.
Expressions of this type can then be controlled using a unified approach which is given in

the following lemma. Note that properties (c) to (f) will be consequences of (1.9) and (1.10).

Lemma 1.12. For each r ∈ {1, 2, 3}, let nr, sr, n′r, s′r be positive integers such that

N := n1n2n3 = n′1n
′
2n

′
3, s := s1s2s3 = s′1s

′
2s

′
3.

Let Φ ∈ Rm×N be a matrix that satisfies the (4s, δ)-RIP and B := Φ∗Φ − Idn.
Let X, X̄ ∈ Rn1×n2×n3 be arrays such that:

(a) For each (j, k, l) ∈ [n1] × [n2] × [n3], |Xj,k,l| ≤ |X̄j,k,l|.

(b) ∥X̄∥F = 1.

(c) max
j∈[n1],k∈[n2]

∑
l∈[n3]

X2
j,k,l ≤

1

s1s2
.

(d) max
k∈[n2]

∑
l∈[n3]

X2
j,k,l ≤

1

s2

∑
k∈[n2],l∈[n3]

X̄2
j,k,l for each j ∈ [n1].

(e) max
j∈[n1]

∑
l∈[n3]

X2
j,k,l ≤

1

s1

∑
j∈[n1],l∈[n3]

X̄2
j,k,l for each k ∈ [n2].

(f) For every j ∈ [n1], k ∈ [n2], there are at most s3 indices l ∈ [n3] such that Xj,k,l ̸= 0.

Assume that Y, Ȳ ∈ Rn′
1×n′

2×n′
3 satisfy the analogous conditions with the numbers s1, s2, s3

replaced by s′1, s
′
2, s

′
3.

Let α ∈ Rn2 , α′ ∈ Rn′
2 , Γ ∈ Rn1×n′

1 satisfy ∥α∥2 = ∥α′∥2 = ∥Γ∥F = 1.
Let I : [n1]× [n2]× [n3] → [N ] and I ′ : [n′1]× [n′2]× [n′3] → [N ] be bijections that map tuples

(j, k, l) to row/column indices of the matrix B.
Then ∑

(j,j′)∈[n1]×[n′
1]

(k,k′)∈[n2]×[n′
2]

(l,l′)∈[n3]×[n′
3]

BI(j,k,l),I′(j′,k′,l′)Xj,k,lαkYj′,k′,l′α
′
k′Γj,j′ ≤ 4

δ

(s1s′1)
1
4 (s2s′2)

1
2

. (1.17)

Our next step is to give the precise definition of the aforementioned arrays outlined in (1.16)
and then show that with those, we can rewrite (1.15) in the form of Lemma 1.12 where all the
requirements are fulfilled.

For the precise definition of these new arrays, we first define the dimensions

n1 = n|J̄ |, n2 = n|Ī|, n3 = n|S|

s1 = s|J̄ |, s2 = s|Ī|, s3 = s|S|

n′1 = n|J̄
′|, n′2 = n|Ī

′|, n′3 = n|T |

s′1 = s|J̄
′|, s′2 = s|Ī

′|, s′3 = s|T |.

Then n1n2n3 = n|S∪Ī∪J̄ | = n|{1,2}| = n2 = N and in the same way n′1n
′
2n

′
3 = N and s1s2s3 =

s′1s
′
2s

′
3 = s2. In this respect, our original assumption that Φ ∈ Rm×N has the (4s2, δ)-RIP then

ensures the corresponding requirement of Lemma 1.12.
For the next definition, we use the following special notation: Let i ∈ [n]d and M ⊂ [d]

with |M | ≤ 2. If |M | = 2, i.e. M = {m1,m2} with m1 < m2, then (iM ) = I2(im1 , im2). If
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|M | = 1, i.e. M = {m1}, then (iM ) = im1 and if M = ∅, then always (iM ) = 1. Note that this
(·) operation is a bijection between the tuples in [n]|M | and the integers in [n|M |] (assuming [n]0

contains exactly one empty tuple). With this notation, we define X, X̄ ∈ Rn1×n2×n3 such that
for all i = (i1, i2) ∈ [n]2,

X(iJ̄ ),(iĪ),(iS)
= x

(S)
i1,i2

∏
l∈S

ξ
(l)
il
, X̄(iJ̄ ),(iĪ),(iS)

= xi1,i2 .

This defines all entries of these arrays. Analogously, we define Y, Ȳ ∈ Rn′
1×n′

2×n′
3 such that for

all (i3, i4) ∈ [n]2,

Y(iJ̄′ ),(iĪ′ ),(iT+2) = x
(T )
i3,i4

∏
l∈T+2

ξ
(l)
il
, Ȳ(iJ̄′ ),(iĪ′ ),(iT+2) = xi3,i4 .

Furthermore, α ∈ Rn2 , α′ ∈ Rn′
2 , Γ ∈ Rn1×n′

1 such that for all i ∈ [n]4,

α(iĪ)
= α

(1)
iĪ
, α′

(iĪ′ )
= α

(2)
iĪ′
, Γ(iJ̄ ),(iJ̄′ ) = α

(3)
i ¯̄J
.

Finally, we define the maps I : [n1] × [n2] × [n3] → [N ] and I ′ : [n′1] × [n′2] × [n′3] → [N ] such
that for all i ∈ [n]4,

I((iJ̄), (iĪ), (iS)) = I2(i1, i2), I ′((iJ̄ ′), (iĪ′), (iT+2)) = I2(i3, i4).

Because the (·) operation and I2 are bijective, also I and I ′ are bijections.
Considering that for all i ∈ [n]4, Bi1,...,i4 = BI2(i1,i2),I2(i3,i4), we obtain∑

i∈[n]4
Bi1,...,i4x

(S)
i1,i2

x
(T )
i3,i4

α
(1)
iĪ
α
(2)
iĪ′
α
(3)
i ¯̄J

∏
l∈S∪(T+2)

ξ
(l)
il

=
∑
i∈[n]4

B I((iJ̄ ),(iĪ),(iS)),
I′((iJ̄′ ),(iĪ′ ),(iT+2))

X(iJ̄ ),(iĪ),(iS)
Y(iJ̄′ ),(iĪ′ ),(iT+2)α(iĪ)

α′
(iĪ′ )

Γ(iJ̄ ),(iJ̄′ )

=
∑

(j,j′)∈[n1]×[n′
1]

(k,k′)∈[n2]×[n′
2]

(l,l′)∈[n3]×[n′
3]

BI(j,k,l),I′(j′,k′,l′)Xj,k,lαkYj′,k′,l′α
′
k′Γj,j′ , (1.18)

where in the first step we substituted the definitions of all these arrays and in the second step
we used that summing over all i ∈ [n]4 is the same as summing over all possible values of

((iJ̄), (iĪ), (iS), (iJ̄ ′), (iĪ′), (iT+2)).

Now in order to apply Lemma 1.12 to (1.18), we need to check that all the remaining
assumptions are fulfilled. We start by checking (a) to (f) for X, X̄. (a) follows directly from

the definitions of x and x(S) and the fact that |ξ(l)il | = 1 for all l ∈ [4], il ∈ [n]. Since X̄ is a

rearrangement of the entries of x, ∥X̄∥F = ∥x∥F = 1, implying (b). To show (c), we apply the
inequalities (1.9) depending on S and obtain the following four cases.

� S = ∅: Then

max
j∈[n1],k∈[n2]

∑
l∈[n3]

X2
j,k,l = max

i1,i2∈[n]
(x

(∅)
i1,i2

)2 ≤ 1

s2
=

1

s1s2
.

� S = {1}:

max
j∈[n1],k∈[n2]

∑
l∈[n3]

X2
j,k,l = max

i2∈[n]

∑
i1∈[n]

(x
({1})
i1,i2

ξ
(1)
i1

)2 ≤
∑
i1∈[n]

max
i2∈[n]

(x
({1})
i1,i2

)2

≤ 1

s

∑
i1,i2∈[n]

x2i1,i2 =
1

s1s2
.
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� S = {2}:

max
j∈[n1],k∈[n2]

∑
l∈[n3]

X2
j,k,l = max

i1∈[n]

∑
i2∈[n]

(x
({2})
i1,i2

ξ
(2)
i2

)2 ≤
∑
i2∈[n]

max
i1∈[n]

(x
({2})
i1,i2

)2

≤ 1

s

∑
i1,i2∈[n]

x2i1,i2 =
1

s1s2
.

� S = {1, 2}:

max
j∈[n1],k∈[n2]

∑
l∈[n3]

X2
j,k,l =

∑
i1,i2∈[n]

(x
({1,2})
i1,i2

ξ
(1)
i1
ξ
(2)
i2

)2 = ∥x({1,2})∥2F ≤ 1 =
1

s1s2
.

Condition (d) follows directly if Ī = ∅ since then n2 = s2 = 1 and then

max
k∈[n2]

∑
l∈[n3]

X2
j,k,l ≤

1

s2

∑
k∈[n2],l∈[n3]

X̄2
j,k,l

⇔
∑
l∈[n3]

X2
j,1,l ≤

∑
l∈[n3]

X̄2
j,1,l,

and the latter follows from (a) which we have already shown. If J̄ = ∅, then n1 = s1 = 1 and
(d) is equivalent to

max
j∈[n1],k∈[n2]

∑
l∈[n3]

X2
j,k,l ≤

1

s2

∑
j∈[n1],k∈[n2],l∈[n3]

X̄2
j,k,l

⇔ max
j∈[n1],k∈[n2]

∑
l∈[n3]

X2
j,k,l ≤

1

s2
.

This is (c) which we have already shown. If both Ī and J̄ are ̸= ∅, then there are precisely the
two cases Ī = {1}, J̄ = {2} and Ī = {2}, J̄ = {1}, implying S = ∅. In the first case, (d) is
equivalent to the statement that for all i2 ∈ [n],

max
i1∈[n]

(x
(∅)
i1,i2

)2 ≤ 1

s2

∑
i1,i2∈[n]

x2i1,i2 .

This follows from (1.9). The other case Ī = {2}, J̄ = {1} follows analogously, completing the
proof of (d). The property (e) for a certain choice of S, Ī, J̄ is equivalent to the corresponding
case of (d) where Ī and J̄ are exchanged, so (e) always holds.

For (f), we can see that it trivially holds if S = ∅, i.e., n3 = s3 = 1. For all other choices of
S, it directly follows from (1.10).

Analogously, it also follows that these properties (a) to (f) hold for Y, Ȳ .
By the definitions, also

∥α∥2 = ∥α(1)∥F = ∥α′∥2 = ∥α(2)∥F = ∥Γ∥F = ∥α(3)∥F = 1,

which completes the check of all assumptions.
Thus, we can apply Lemma 1.12 to (1.18) such that we obtain

∥B(S,T )∥I1,...,Iκ ≤ 4
δ

(s1s′1)
1
4 (s2s′2)

1
2

= 4
δ

s
1
4
| ¯̄J |+ 1

2
(|Ī|+|Ī′|)

≤ 4
δ

s
κ
2

,

where in the last step we used that 1
4 |

¯̄J |+ 1
2(|Ī|+ |Ī ′|) ≥ κ

2 . We will show this fact as Lemma 1.17
in Subsection 1.5.5.

This completes the proof of (1.13) for all S, T ⊂ [2] with (S, T ) ̸= ({1, 2}, {1, 2}) and all
partitions with the constant C = 4.
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1.5.5 Proof of the Lemmas

The goal of this subsection is to give all remaining proofs of the lemmas that were given previ-
ously in Section 1.5. First, we give the proof of Lemma 1.6 from Section 1.4. Then the main
part will be about proving Lemma 1.12 which we used in the previous Subsection 1.5.4. On this
way, we will establish the technical auxiliary Lemmas 1.13 and 1.16 and make use of a certain
class of partitions introduced in Definition 1.14.

Proof of Lemma 1.6. It is sufficient to show the case

∥B∥I1,...,Iκ ≤ ∥B∥I1,...,Iκ−2,Iκ−1∪Iκ ,

i.e., we join the last two partition sets. Successively applying this and reordering the partition
sets then yields the result.

To show the aforementioned case, consider any α(1) ∈ R[n]|I1| , . . . ,α(κ) ∈ R[n]|Iκ|
with

∥α(1)∥F = · · · = ∥α(κ)∥F = 1. Denote m := |Iκ−1| and m̄ := |Iκ| and define α̃(κ−1) ∈ R[n]m+m̄

such that for all i ∈ [n]d
′
,

α̃
(κ−1)
iIκ−1∪Iκ

= α
(κ−1)
iIκ−1

· α(κ)
iIκ
.

Then

∥α̃(κ−1)∥2F =
∑

iIκ−1∪Iκ∈[n]m+m̄

(α̃
(κ−1)
iIκ−1∪Iκ

)2 =
∑

iIκ−1
∈[n]m

∑
iIκ∈[n]m̄

(α
(κ−1)
iIκ−1

· α(κ)
iIκ

)2

=
∑

iIκ−1
∈[n]m

(α
(κ−1)
iIκ−1

)2 ·
∑

iIκ∈[n]m̄
(α

(κ)
iIκ

)2 = ∥α(κ−1)∥2F · ∥α(κ)∥2F = 1

and therefore∑
i∈[n]d′

Biα
(1)
iI1
. . . α

(κ)
iIκ

=
∑
i∈[n]d′

Biα
(1)
iI1
. . . α

(κ−2)
iIκ−2

α̃
(κ−1)
iIκ−1∪Iκ

≤ ∥B∥I1,...,Iκ−2,Iκ−1∪Iκ .

Taking the supremum over the α(1), . . . ,α(κ) shows

∥B∥I1,...,Iκ ≤ ∥B∥I1,...,Iκ−2,Iκ−1∪Iκ .

Lemma 1.13. Let n,R, s1, s2 and n′, R′, s′1, s
′
2 be positive integers such that s := s1s2 = s′1s

′
2

and Φ ∈ Rm×N has the (4s, δ)-RIP, B := Φ∗Φ − IdN .
Consider vectors x(j,K), y(j

′,K′) ∈ RN for (j, k) ∈ [n] × [R] and (j′, k′) ∈ [n′] × [R′] such that
all x(j,K) are s2-sparse with disjoint supports and all y(j

′,K′) are s′2-sparse with disjoint supports.
For each K ∈ [R], let bK(1), . . . , bK(R1) be a partition of [n] into sets of size ≤ s1 each.

Analogously, for each K ′ ∈ [R′], let b′K′(1), . . . , b′K′(R′
1) be a partition of [n′] into sets of size

≤ s′2.
Then

∑
(j,j′)∈[n]×[n′]

 ∑
(K,K′)∈[R]×[R′]

(x(j,K))∗By(j
′,K′)

2

≤δ2
 ∑
(J,K,K̄)∈[R1]×[R]2

√ ∑
j∈bK(J)

∥x(j,K)∥22∥x(j,K̄)∥22


·

 ∑
(J ′,K′,K̄′)∈[R′

1]×[R′]2

√ ∑
j′∈bK′ (J ′)

∥y(j′,K′)∥22∥y(j
′,K̄′)∥22

 .
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Proof. We can bound the desired expression by rearranging terms and block-wise summation.

∑
(j,j′)∈[n]×[n′]

 ∑
(K,K′)∈[R]×[R′]

(x(j,K))∗By(j
′,K′)

2

=
∑

(j,j′)∈[n]×[n′]

∑
(K,K̄,K′,K̄′)∈[R]2×[R′]2

(x(j,K))∗By(j
′,K′)(y(j

′,K̄′))∗B∗x(j,K̄)

=
∑

(J,J ′)∈[R1]×[R′
1]

(K,K̄)∈[R]2

(K′,K̄′)∈[R′]2

∑
j∈bK(J)

(x(j,K))∗B

 ∑
j′∈b′

K′ (J
′)

y(j
′,K′)(y(j

′,K̄′))∗

B∗x(j,K̄)

=
∑

(J,J ′)∈[R1]×[R′
1]

(K,K̄)∈[R]2

(K′,K̄′)∈[R′]2

〈 ∑
j∈bK(J)

x(j,K)(x(j,K̄))∗, B

 ∑
j′∈b′

K′ (J
′)

y(j
′,K′)(y(j

′,K̄′))∗

B∗

〉
F

.

In the third step we used that for x, y ∈ RN , A ∈ RN×N , x∗Ay = tr(x∗Ay) = tr(yx∗A) =
⟨xy∗, A⟩F .

Note that every x(j,K) is s2-sparse and |bK(J)| ≤ s1. Thus, the number of nonzero rows and
the number of nonzero columns of the matrix

∑
j∈bK(J) x

(j,K)(x(j,K̄))∗ can be at most s = s1s2

each. The same holds for
∑

j′∈b′
K′ (J

′) y
(j′,K′)(y(j

′,K̄′))∗. So for the above expression, we can

restrict B to a submatrix of 2s rows and 2s columns which has an operator norm ≤ δ by the RIP
assumption (Lemma 1.8). Using that ⟨A,BCB∗⟩F ≤ ∥A∥F ∥BCB∗∥F ≤ ∥A∥F ∥B∥22→2∥C∥F , we
can bound the expression by

δ2
∑

(J,J ′)∈[R1]×[R′
1]

(K,K̄)∈[R]2

(K′,K̄′)∈[R′]2

∥∥∥∥∥∥
∑

j∈bK(J)

x(j,K)(x(j,K̄))∗

∥∥∥∥∥∥
F

∥∥∥∥∥∥
∑

j′∈b′
K′ (J

′)

y(j
′,K′)(y(j

′,K̄′))∗

∥∥∥∥∥∥
F

≤δ2
∑

(J,J ′)∈[R1]×[R′
1]

(K,K̄)∈[R]2

(K′,K̄′)∈[R′]2

√ ∑
j∈bK(J)

∥x(j,K)∥22∥x(j,K̄)∥22
∑

j′∈b′
K′ (J

′)

∥y(j′,K′)∥22∥y(j
′,K̄′)∥22

=δ2

 ∑
J∈[R1]

(K,K̄)∈[R]2

√ ∑
j∈bK(J)

∥x(j,K)∥22∥x(j,K̄)∥22



·

 ∑
J ′∈[R′

1]

(K′,K̄′)∈[R′]2

√ ∑
j′∈b′

K′ (J
′)

∥y(j′,K′)∥22∥y(j
′,K̄′)∥22

 ,
where in the first step we used that the x(j,K)(x(j,K̄))∗ have disjoint supports.

A central argument used for the case d = 1 in the previous paper [KW11] is the strategy to
divide the signal vector x ∈ Rn into blocks of size s by descending absolute value of its entries.
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The following Definition 1.14 and Lemma 1.15 generalize this idea. However, it is not required
to know the proof in [KW11] for the subsequent statements.

We consider an arbitrary finite indexed family (xi)i∈I . For example, this could be a vector
for I = [n] or a matrix for I = [n] × [n]. Now take b(1) to be the set of the s indices i ∈ I with
the largest |xi|, then b(2) the set of the s remaining indices i ∈ I with the largest |xi| and so on.
This leads to the definition of the following partitions.

Definition 1.14. Let I be a finite set, (xi)i∈I an indexed family with values in R, and s a

positive integer. We define P((xi)i∈I , s) = (b(1), . . . , b(R)) for R = ⌈ |I|s ⌉ to be a partition of
I such that |b(1)| = · · · = |b(R − 1)| = s and for all J = 1, . . . , R − 1 and all i1 ∈ b(J),
|xi1 | ≥ maxi2∈b(J+1) |xi2 |. By ordering the values xi by their absolute value, such a partition can
always be constructed.

Then the main use of these partitions can be summarized in the following simple lemma.

Lemma 1.15. Let I be a finite set, (xi)i∈I an indexed family with values in R, (b(1), . . . , b(R)) =
P((xi)i∈I , s). Then

R∑
J=2

max
i∈b(J)

|xi| ≤
1

s

∑
i∈I

|xi|

and hence
R∑
J=1

max
i∈b(J)

|xi| ≤ max
i∈I

|xi| +
1

s

∑
i∈I

|xi|.

Proof. For each J = 2, . . . , R, |b(J − 1)| = s and for each i1 ∈ b(J − 1), |xi1 | ≥ maxi2∈b(J) |xi2 |,
so maxi2∈b(J) |xi2 | ≤

1
s

∑
i1∈b(J−1) |xi| and

R∑
J=2

max
i∈b(J)

|xi| ≤
R∑
J=2

1

s

∑
i∈b(J−1)

|xi| ≤
1

s

∑
i∈I

|xi|.

Then
R∑
J=1

max
i∈b(J)

|xi| = max
i∈b(1)

|xi| +
R∑
J=2

max
i∈b(J)

|xi| ≤ max
i∈I

|xi| +
1

s

∑
i∈I

|xi|.

Using the partitions from Definition 1.14, we can establish the following lemma which will
eventually be used to control the expressions occurring on the right hand side in Lemma 1.13.

Lemma 1.16. Let X, X̄ ∈ Rn1×n2×n3 be arrays that satisfy the conditions (a) to (e) from
Lemma 1.12 and α ∈ Rn2 such that ∥α∥2 = 1.

Consider the partitions

� (b(1), . . . , b(R)) = P


 ∑
j∈[n1],l∈[n3]

X̄2
j,k,l


k∈[n2]

, s2

,

� (bK(1), . . . , bK(R1)) = P


 ∑
k∈b(K),l∈[n3]

(Xj,k,lαk)
2


j∈[n1]

, s1


for each K = 1, . . . , R.
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Then

∑
J∈[R]

K,K̄∈[R1]

√√√√√√√√ ∑
j∈bK(J)

 ∑
k∈b(K)
l∈[n3]

(Xj,k,lαk)2


 ∑
k∈b(K̄)
l∈[n3]

(Xj,k,lαk)2

 ≤ 4
√
s1s2

.

Proof. We use the Hölder inequality (for ℓ∞ and ℓ1 norm) on
∑

j∈bK(J) and then the Cauchy-
Schwarz inequality on

∑
J∈[R] to obtain

∑
J∈[R]

K,K̄∈[R1]

√√√√√√√√ ∑
j∈bK(J)

 ∑
k∈b(K)
l∈[n3]

(Xj,k,lαk)2


 ∑
k∈b(K̄)
l∈[n3]

(Xj,k,lαk)2



≤
∑

J∈[R],K,K̄∈[R1]

√√√√√√√√
 max
j∈bK(J)

∑
k∈b(K)
l∈[n3]

(Xj,k,lαk)2


 ∑
j∈bK(J)

∑
k∈b(K̄)
l∈[n3]

(Xj,k,lαk)2



≤
∑

K,K̄∈[R1]

√√√√√√√√
∑
J∈[R]

max
j∈bK(J)

∑
k∈b(K)
l∈[n3]

(Xj,k,lαk)2


∑
J∈[R]

∑
j∈bK(J)

∑
k∈b(K̄)
l∈[n3]

(Xj,k,lαk)2



=

 ∑
K∈[R1]

√√√√√∑
J∈[R]

max
j∈bK(J)

∑
k∈b(K)
l∈[n3]

(Xj,k,lαk)2


 ∑
K̄∈[R1]

√√√√√ ∑
k∈b(K̄)

∑
j∈[n1]
l∈[n3]

(Xj,k,lαk)2


=: (I) · (II). (1.19)

Now we apply Lemma 1.15 on the partitions bK , then again the Hölder inequality (ℓ∞ and
ℓ1) on

∑
k∈b(K) to obtain,∑
J∈[R]

max
j∈bK(J)

∑
k∈b(K)
l∈[n3]

(Xj,k,lαk)
2

≤ max
j∈[n1]

∑
k∈b(K)
l∈[n3]

(Xj,k,lαk)
2 +

1

s1

∑
k∈b(K)

j∈[n1],l∈[n3]

(Xj,k,lαk)
2

≤ max
k∈b(K)

max
j∈[n1]

∑
l∈[n3]

X2
j,k,l ·

∑
k∈b(K)

α2
k +

1

s1
max
k∈b(K)

∑
j∈[n1],l∈[n3]

X2
j,k,l ·

∑
k∈b(K)

α2
k.

For K = 1, we can use the assumptions of this lemma to bound this by

∥a∥2=1

≤ max
j∈[n1],k∈[n2]

∑
l∈[n3]

X2
j,k,l · 1 +

1

s1
max
k∈[n2]

∑
j∈[n1],l∈[n3]

X2
j,k,l · 1

(c)

≤ 1

s1s2
+

1

s1

∑
j∈[n1]

max
k∈[n2]

∑
l∈[n3]

X2
j,k,l
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(d)

≤ 1

s1s2
+

1

s1s2

∑
j∈[n1],k∈[n2],l∈[n3]

X̄2
j,k,l

(b)

≤ 2

s1s2
.

On the other hand, for K ≥ 2, we use (e) and (a) to obtain the bound

2

s1
max
k∈b(K)

∑
j∈[n1],l∈[n3]

X̄2
j,k,l ·

∑
k∈b(K)

α2
k.

Altogether, we obtain with the above results, the Cauchy-Schwarz inequality for
∑

K∈[R]\{1},
Lemma 1.15 for the partition b and the assumptions of this lemma,

(I) ≤
√

2

s1s2
+

∑
K∈[R]\{1}

√√√√√∑
J∈[R]

max
j∈bK(J)

∑
k∈b(K)
l∈[n3]

(Xj,k,lαk)2

≤
√

2

s1s2
+

∑
K∈[R]\{1}

√√√√√
 2

s1
max
k∈b(K)

∑
j∈[n1],l∈[n3]

X̄2
j,k,l

 ∑
k∈b(K)

α2
k


C.-S.
≤
√

2

s1s2
+

√√√√√ 2

s1

 ∑
K∈[R]\{1}

max
k∈b(K)

∑
j∈[n1],l∈[n3]

X̄2
j,k,l

 ∑
K∈[R]\{1}

∑
k∈b(K)

α2
k


∥α∥2=1

≤
√

2

s1s2
+

√√√√ 2

s1

∑
K∈[R]\{1}

max
k∈b(K)

∑
j∈[n1],l∈[n3]

X̄2
j,k,l

Lem.1.15
≤

√
2

s1s2
+

√√√√ 2

s1s2

∑
j∈[n1],k∈[n2],l∈[n3]

X̄2
j,k,l

(b)
=

2
√

2
√
s1s2

.

Furthermore, for the other factor (II), we use the Hölder inequality for
∑

k∈b(K̄), the Cauchy-
Schwarz inequality for

∑
K̄∈[R1]

, Lemma 1.15 for the partition b and the assumptions of this
lemma to obtain

(II) =
∑

K̄∈[R1]

√√√√√ ∑
k∈b(K̄)

∑
j∈[n1]
l∈[n3]

(Xj,k,lαk)2

Hölder
≤

∑
K̄∈[R1]

√√√√√
 max
k∈b(K̄)

∑
j∈[n1],l∈[n3]

X2
j,k,l

 ∑
k∈b(K̄)

α2
k


C.-S.
≤

√√√√√
 ∑
K̄∈[R1]

max
k∈b(K̄)

∑
j∈[n1],l∈[n3]

X2
j,k,l

 ∑
K̄∈[R1]

∑
k∈b(K̄)

α2
k


∥α∥2=1

=

√ ∑
K̄∈[R1]

max
k∈b(K̄)

∑
j∈[n1],l∈[n3]

X2
j,k,l

(a)

≤
√

max
k∈b(1)

∑
j∈[n1],l∈[n3]

X2
j,k,l +

∑
K̄∈[R1]\{1}

max
k∈b(K̄)

∑
j∈[n1],l∈[n3]

X̄2
j,k,l
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Lem.1.15
≤

√√√√max
k∈[n2]

∑
j∈[n1],l∈[n3]

X2
j,k,l +

1

s2

∑
k∈[n2]

∑
j∈[n1],l∈[n3]

X̄2
j,k,l

≤

√√√√∑
j∈[n1]

max
k∈[n2]

∑
l∈[n3]

X2
j,k,l +

1

s2

∑
k∈[n2]

∑
j∈[n1],l∈[n3]

X̄2
j,k,l

(d),(b)

≤
√

2

s2
.

Substituting the bounds for (I) and (II) into (1.19) yields the claim of the lemma.

Now we have established all required tools and can prove Lemma 1.12.

Proof of Lemma 1.12. We need to show the inequality (1.17). Let β be the left hand side of the
inequality (1.17). Recall that the corresponding expression contains the matrix B, the order
3 arrays X,Y, vectors α, α′, the matrix Γ and bijective functions I, I ′ that map index triples
(corresponding to X,Y) to row/column indices of B.

We apply the Cauchy-Schwarz inequality to the sum
∑

(j,j′)∈[n1]×[n′
1]

and observe that

β2 =


∑

(j,j′)∈[n1]×[n′
1]

(k,k′)∈[n2]×[n′
2]

(l,l′)∈[n3]×[n′
3]

BI(j,k,l),I′(j′,k′,l′)Xj,k,lαkYj′,k′,l′α
′
k′Γj,j′



2

≤
∑

(j,j′)∈[n1]

 ∑
(k,k′)∈[n2]×[n′

2]
(l,l′)∈[n3]×[n′

3]

BI(j,k,l),I′(j′,k′,l′)Xj,k,lαkYj′,k′,l′α
′
k′


2

·
∑

(j,j′)∈[n1]

Γ2
j,j′

=
∑

(j,j′)∈[n1]

 ∑
(k,k′)∈[n2]×[n′

2]
(l,l′)∈[n3]×[n′

3]

BI(j,k,l),I′(j′,k′,l′)Xj,k,lαkYj′,k′,l′α
′
k′


2

Now we choose partitions

(b(1), . . . , b(R)) = P


 ∑
j∈[n1],l∈[n3]

X̄2
j,k,l


k∈[n2]

, s2


and

(b′(1), . . . , b′(R′)) = P


 ∑
j′∈[n′

1],l
′∈[n′

3]

Ȳ 2
j′,k′,l′


k′∈[n′

2]

, s′2

 .

Using those, we can further conclude

β2 ≤

∑
(j,j′)∈[n1]

 ∑
K∈[R],K′∈[R′]

∑
(k,k′)∈b(K)×b′(K′)

(l,l′)∈[n3]×[n′
3]

BI(j,k,l),I′(j′,k′,l′)Xj,k,lαkYj′,k′,l′α
′
k′


2

.
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Now for each j ∈ [n1] and K ∈ [R], we define the vector x(j,K) ∈ RN by

x
(j,K)

I(j̄,k,l) =

{
Xj,k,lαk if j̄ = j and k ∈ b(K)

0 otherwise.

for all (j̄, k, l) ∈ [n1] × [n2] × [n3]. Analogously, we define y(j
′,K′) ∈ RN for j′ ∈ [n′1], K

′ ∈ [R′]
by

y
(j′,K′)
I′(j̄′,k′,l′)

=

{
Yj′,k′,l′α

′
k′ if j̄′ = j′ and k′ ∈ b′(K ′)

0 otherwise.

With these vectors, we obtain

β2 ≤
∑

(j,j′)∈[n1]

 ∑
K∈[R],K′∈[R′]

∑
r,r′∈[N ]

Br,r′x
(j,K)
r y

(j′,K′)
r′

2

=
∑

(j,j′)∈[n1]

 ∑
K∈[R],K′∈[R′]

(x(j,K))∗By(j
′,K′)

2

(1.20)

For every K ∈ [R], |b(K)| ≤ s2 and for every j, k, Xj,k,l is only non-zero for ≤ s3 values of
l. The b(K) are disjoint and consequently, all the vectors x(j,K) are s2s3-sparse with disjoint
supports. Analogously, also the y(j

′,K′) are s′2s
′
3-sparse with disjoint supports. Furthermore, for

each K ∈ [R], K ′ ∈ [R′], we choose the partitions

(bK(1), . . . , bK(R1)) = P


 ∑
k∈b(K),l∈[n3]

(Xj,k,lαk)
2


j∈[n1]

, s1


(b′K′(1), . . . , b′K′(R′

1)) = P


 ∑
k∈b(K),l∈[n3]

(Xj,k,lαk)
2


j∈[n1]

, s1


Then the requirements are fulfilled to bound (1.20) using Lemma 1.13 such that

β2 ≤ δ2

 ∑
(J,K,K̄)∈[R1]×[R]2

√ ∑
j∈bK(J)

∥x(j,K)∥22∥x(j,K̄)∥22


·

 ∑
(J ′,K′,K̄′)∈[R′

1]×[R′]2

√ ∑
j′∈b′

K′ (J
′)

∥y(j′,K′)∥22∥y(j
′,K̄′)∥22


=: δ2 · (I) · (II).

(I) =
∑
J∈[R1]
K,K̄∈[R]

√√√√√ ∑
j∈bK(J)

∑
r∈[N ]

(x
(j,K)
r )2 ·

∑
r∈[N ]

(x
(j,K̄)
r )2



=
∑
J∈[R1]
K,K̄∈[R]

√√√√√√√√ ∑
j∈bK(J)

 ∑
k∈b(K)
l∈[n3]

(Xj,k,lαk)2 ·
∑

k∈b(K̄)
l∈[n3]

(Xj,k,lαk)2
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The requirements (a) to (e) are assumed to hold in this lemma. Also ∥α∥2 = 1 and the choices
of the partitions b and bK also match with Lemma 1.16. So we can use Lemma 1.16 to conclude

(I) ≤ 4
√
s1s2

.

We can perform the same argument with (II) and use Lemma 1.16 to show

(II) ≤ 4√
s′1s

′
2

.

Combining these bounds, we obtain

β2 ≤ 16
δ

(s1s′1)
1
2 s2s′2

.

Besides the previous lemma, also the following Lemma 1.17 is used for the proof in Subsec-
tion 1.5.4. Like the other results in the current subsection, it is not restricted to the special case
d = 2 and will be used in the same form in the general proof in Section 2.5.

Lemma 1.17. Let d ≥ 1 be an integer and I1, . . . , Iκ ⊂ [2d] pairwise disjoint, non-empty sets.
Define

Ī =
⋃

j∈[κ]:Ij⊂[d]

Ij , Ī ′ =
⋃

j∈[κ]:Ij⊂([2d]\[d])

Ij

¯̄J = (I1 ∪ · · · ∪ Iκ)\(Ī ∪ Ī ′),

i.e., Ī is the union of those sets among I1, . . . , Iκ that are contained in [d], Ī ′ the union of the
sets contained in {d+ 1, . . . , 2d} and ¯̄J the union of all the other sets. Then

1

4
| ¯̄J | +

1

2
(|Ī| + |Ī ′|) ≥ κ

2
.

Proof of Lemma 1.17. Define I0 := I1 ∪ · · · ∪ Iκ.
Then | ¯̄J | + |Ī| + |Ī ′| = |I0|. If κ ≤ |I0|

2 ,

1

4
| ¯̄J | +

1

2
(|Ī| + |Ī ′|) ≥ 1

4
(| ¯̄J | + |Ī| + |Ī ′|) =

|I0|
4

≥ κ

2
.

Now assume that κ > |I0|
2 . Let κ′ ≤ κ be the number of indices l ∈ [κ] such that |Il| =

1. All other sets Il must contain at least two elements and the total number of elements is
|I0| =

∑
l∈[κ] |Il| ≥ κ′ + 2(κ − κ′) = 2κ − κ′. This implies that κ′ ≥ 2κ − |I0|. Every one-

element set Il is completely contained in either [d] or [2d]\[d] and thus Il ⊂ Ī or Il ⊂ Ī ′. So
|Ī| + |Ī ′| ≥ κ′ ≥ 2κ− |I0| and we obtain

1

4
| ¯̄J | +

1

2
(|Ī| + |Ī ′|) =

1

4
(| ¯̄J | + |Ī| + |Ī ′|) +

1

4
(|Ī| + |Ī ′|)

≥ 1

4
|I0| +

1

4
· (2κ− |I0|) =

κ

2
.
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1.6 Conclusions and Implications for Oblivious Sketching

Our approach provides a sharp generalization of the near equivalence between Johnson-Linden-
strauss property and restricted isometry property from [KW11]; the special case d = 1 in our
work recovers the result of [KW11]. We prove the Johnson-Lindenstrauss property without any
assumption on the vectors it is applied to, i.e., it is not necessary for them to have Kronecker
structure. As Section 1.3 shows, Corollary 1.4 is optimal with respect to the dependence on the
probability η even for vectors with Kronecker structure, implying that even for this case, the
dependence on the required sparsity level s on η in Theorem 1.3 is optimal.

With this provably optimal η dependence, Corollary 1.4 also provides an improvement com-
pared to Lemma 4.11 in [Ahl+20a]. In that work, the construction PΩHDξ as in Corollary 1.4
is introduced as TensorSRHT and is used as one element of a more extensive fast embedding
for vectors with Kronecker structure which allows for a computational complexity that is only
polynomial in the degree d. This embedding is based on a tree structure. Starting from a vector
x = x(1) ⊗ · · · ⊗ x(d) with Kronecker structure, first a sparse Johnson-Lindenstrauss transform
(OSNAP) is applied to each x(j) from n to m ≥ m1 = Θ(ϵ−2 log 1

η ) dimensions (Lemma 4.8 in

[Ahl+20a]). Subsequently the TensorSRHT is applied to d
2 pairs of these vectors, reducing the

corresponding Kronecker products of two factors separately. In this way, the result is a reduced
Kronecker product of d

2 factors. This reduction is applied successively until only a single factor

remains at the end. In each level, the TensorSRHT acts as an embedding Rm2 → Rm for a
suitable m ≥ m1. As such, the dimension is reduced from md to m after the application of
OSNAP.

Observe that this construction uses the setup of Corollary 1.4 for the case d = 2 and N = m2.
Choose

m :=

Cϵ−2

(
log

1

ϵ

)2(
log

1

η

)2
(

log
log 1

η

ϵ

)3
 .

Then for sufficiently large C, m ≥ m1 such that OSNAP provides a suitable embedding Rm2 →
Rm. Also, as required by the aforementioned construction, after choosing the RIP matrix with
constant success probability, Corollary 1.4 provides an embedding Rm2 → Rm satisfying the
(ϵ, η)-distributional Johnson-Lindenstrauss property since the required embedding dimension is

m′ = C ′ϵ−2

(
log

1

ϵ

)2(
log

1

η

)2 (
log(m2)

)(
log

log 1
η

ϵ

)2

≤ 2C̃ ′(logC)ϵ−2

(
log

1

ϵ

)2(
log

1

η

)2
(

log
log 1

η

ϵ

)3

which is ≤ m for sufficiently large C. So omitting log 1
ϵ and log log 1

η factors, our result requires

an embedding dimension m of Ω

(
ϵ−2

(
log 1

η

)2)
compared to the dimension Ω

(
ϵ−2

(
log 1

η

)3)
in [Ahl+20a]. Thus, our result leads to both an improved embedding power and, consequently,
an improved computational complexity of the tensor computation procedure.

46



2 The Hanson-Wright Inequality for Random Tensors

This section, except for part 2.5, shares major similarities with the article “The Hanson-Wright
Inequality for Random Tensors” by authors Stefan Bamberger, Felix Krahmer, and Rachel Ward,
that was submitted to Sampling Theory, Signal Processing, and Data Analysis. A preprint of
this work is available at https://arxiv.org/abs/2106.13345, [BKW21b].

The corresponding source for part 2.5 is mentioned at the beginning of Section 1.

2.1 Introduction

2.1.1 Background and Studied Objects

Given a matrix A ∈ Rn×n and a random vector X ∈ Rn, the Hanson-Wright inequality provides
a tail bound for the chaos XTAX − EXTAX. In the original work [HW71], X was assumed to
have independent subgaussian entries whose distributions are symmetric about 0.

This result has been improved and adapted to various settings in a number of works. For
example, the version shown in the introduction (Theorem 0.11), which is cited from [RV13],
holds for vectors with general subgaussian entries without the symmetry assumption of the
distribution:

Theorem 2.1 (Theorem 1.1 from [RV13]). Let A ∈ Rn×n. Let X ∈ Rn be a random vector with
independent entries such that EX = 0 and such that X has a subgaussian norm of at most K.
Then for every t ≥ 0,

P(|XTAX − EXTAX| > t) ≤ 2 exp

[
−cmin

{
t2

K4∥A∥2F
,

t

K2∥A∥2→2

}]
where ∥A∥F is the Frobenius and ∥A∥2→2 the spectral norm of A.

Today, the Hanson-Wright inequality is an important probabilistic tool and can be found in
various textbooks covering the basics of signal processing and probability theory, such as [FR13]
and [Ver18]. It has found numerous applications, in particular it has been a key ingredient for
the construction of fast Johnson-Lindenstrauss embeddings [KW11].

For subgaussian X ∈ Rn, linear expressions
∑n

k=1 akXk can be controlled by Hoeffding’s
inequality, while quadratic (order 2) expressions XTAX =

∑n
j,k=1Aj,kXjXk can be controlled

by the Hanson-Wright inequality. Thus, it is natural to wonder to what extent such control
extends to a higher-order subgaussian chaos of the form∑

i1,...,id

Ai1,...,idXi1 . . . Xid . (2.1)

Expressions of this type for subgaussian vectors have been considered in [AW15] where they
are controlled using specific tensor norms of the arrays of all expected partial derivatives of
certain degree with respect to the entries in X.

In contrast, for independent random vectors X(1), . . . , X(d), the decoupled chaos

n∑
i1,i2,...,id=1

Ai1,...,idX
(1)
i1
. . . X

(d)
id
, (2.2)

can be controlled with simpler bounds and has been considered in multiple previous works for
numerous different distributions of the random vectors [Lat06; AL12; KL15].

In the course of adapting fast Johnson-Lindenstrauss embeddings to data with Kronecker
structure as introduced in [BBK18] (see also [Ahl+20a; JKW20]), one encounters expressions
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of the form (X(1) ⊗ · · · ⊗X(d))TA(X(1) ⊗ · · · ⊗X(d)) which are somewhat intermediate between
(2.1) and (2.2), as they can be expanded as

n∑
i1,...,i2d=1

Ai1,...,id,id+1,...,i2dX
(1)
i1
. . . X

(d)
id
X

(1)
id+1

. . . X
(d)
i2d
. (2.3)

Vershynin [Ver20] recently studied embeddings of random tensors which requires controlling

∥B(X(1) ⊗ · · · ⊗X(d))∥2 (2.4)

for a matrix B. This is of the form (2.3) where A is a rearrangement of BTB.
Even though (2.3) can be cast as a specific case of (2.1) for which [AW15] provides optimal

bounds, these bounds are not straightforward to use in this specific situation since they are given
in terms of partial derivatives and not in terms of the coefficients Ai1,...,i2d .

The main results of this paper provide moment estimates for the semi-decoupled chaos
process (2.3) that are easier to use as they are explicitly given in terms of the coefficients Ai1,...,i2d .
Our bounds imply improved estimates for (2.4) and lay the foundations for the order-optimal
analysis of fast Kronecker-structured Johnson-Lindenstrauss embeddings from Section 1 in the
case of arbitrary order d which will be completed at the end of this section. We nevertheless
expect that our results should find broader use beyond these specific applications.

2.1.2 Previous Work

For the case where X(1), . . . , X(d) are independent Gaussian vectors, the concentration of (2.2)
has been studied in [Lat06] which provides upper and lower moment bounds which match up to
a constant factor depending only on the order d. We will obtain our main results for subgaussian
vectors by careful reduction to the Gaussian bounds.

Higher order chaos expressions have also been studied for distributions beyond Gaussian.
Specifically, [Bou+05], Section 9, considers (2.1) for the case of Rademacher vectors. However,
the bounds are more intricate than in [Lat06] and the coefficient array A = (Ai1,...,id)ni1,...,id=1

must satisfy a symmetry condition and be diagonal-free, i.e., Ai1,...,id = 0 if any two of the
indices i1, . . . , id coincide.

Upper and lower bounds on the moments of (2.2) are shown in [AL12] and [KL15] for the
case of symmetric random variables with logarithmically concave and convex tails, meaning
that for a random variable X ∈ R, the function t 7→ − logP(|X| ≥ t) is convex or concave,
respectively. However, for general subgaussian random variables, neither of these has to be the
case. In addition, these works only consider the decoupled chaos (2.2) and provide a decoupling
inequality to control (2.1) for diagonal-free A.

Upper moment bounds for general polynomials of independent subgaussian random variables
are provided in [AW15]. Similar to our work, the authors utilize the decoupling techniques of
[AG93]. Since (2.3) is a polynomial in the entries of X(1), . . . , X(d), it can also be controlled
using the results from [AW15]. Because the aforementioned work also shows that these moment
bounds are tight for the case of Gaussian vectors, one of the main results (Theorem 2.9) of our
work can also be shown using their results. However, their result bounds the corresponding Lp
norms in terms of norms of the array of all d′ ≤ 2d expected partial derivatives, meaning that
significant additional work would be required to relate these derivatives to the expressions in
Theorem 2.9. We believe, that our approach is not much longer but more insightful. In addition,
it provides the decoupling result Theorem 2.11 which will be of independent interest.

More work on related topics include [Mel16; Mel19] where upper and lower bounds for the
case of random variables satisfying the moment condition ∥X∥2p ≤ α∥X∥p are considered for
the case of positive variables of order 2. The recent work [GSS21] provides similar bounds to
[AW15] for distributions of bounded ψα norm for α ∈ (0, 1] (or α ∈ (0, 2] for some fo their
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results), such as subexponential distributions. Like in [AW15], their bounds are given in terms
of partial derivatives, not directly in terms of the coefficients.

The decoupling technique used in many proofs of the standard Hanson-Wright inequality
relates XTAX to XTAX̄ where X̄ is an independent copy of X. This approach was first
introduced in [MT86], already in a general higher-dimensional form. The general idea is to
upper bound convex functions (e.g. moments) of (2.1) by the corresponding expressions of (2.2),
up to a constant. Beside independent, symmetrically distributed entries of the random vectors,
the result also requires the coefficient array to be symmetric and diagonal free.

The subsequent work [Kwa87] has also shown the reverse decoupling bound, up to constant
factors, proving that through (2.2), one can also provide lower bounds on the moments of (2.1)
with the same assumptions on the coefficient array. However, in some applications it can be
interesting to consider non-diagonal-free coefficient arrays. For example, in the scenario of
∥B(X(1) ⊗ · · · ⊗X(d))∥22, the coefficient array BTB cannot be expected to fulfill the diagonal-
free condition in general. The work in [AG93] lifts the restriction of a diagonal-free coefficient
array and bounds the tails of slight modifications of (2.2) and (2.1) by each other up to certain
constants in the case of Gaussian random variables.

The concentration of the norm (2.4) has recently been studied for the subgaussian case in
[Ver20]. It is shown that

P
(∣∣∣∥B(X(1) ⊗ · · · ⊗X(d))∥2 − ∥B∥F

∣∣∣ > t
)
≤ 2 exp

(
− ct2

dnd−1∥B∥22→2

)
(2.5)

for an absolute constant c and for 0 ≤ t ≤ 2n
d
2 ∥B∥2→2. This bound suggests that techniques

like the chaos moment bounds in [Lat06] could be applied to this problem, which is what we do
in this work and leads to Theorem 2.13 below.

2.1.3 Overview of our Contribution

The goal of this work is to provide upper and lower bounds for the moments of the deviation
of (2.3) from its expectation for vectors with independent subgaussian entries (Theorem 2.9
below). Key steps of the proof include a decoupling inequality for expressions of the form (2.3),
Theorem 2.11, and a comparison to Gaussian random vectors. Finally, based on our results for
(2.3), we provide a concentration inequality for (2.4) as stated in Theorem 2.13 which extends
previous results of [Ver20].

Possible applications of such results include recent developments in norm-preserving maps
for vectors with tensor structure in the context of machine learning methods using the kernel
trick [BBK18; Ahl+20a; JKW20].

2.1.4 Notation

Our results on XTAX where X is a Kronecker product of d random vectors will depend crucially
on the structure of the coefficient matrix A rearranged as a higher-order (specifically order 2d)
array. As such, we must establish sophisticated notation for such arrays and their indices.

Consider a vector of dimensions n = (n1, n2, . . . , nd) and a subset I ⊂ [d]. We call a function
i : I → N a partial index of order d on I if for all l ∈ I, il := i(l) ∈ [nl]. Assume there is exactly
one such function if I = ∅. If I = [d], then i is called an index of order d. We denote the set
of all partial indices of order d on I as Jn(I); the set of all indices of order d is denoted by
Jn := Jn([d]). Jn can be identified with [n1] × · · · × [nd].

A function B : Jn → R is called an array of order d. Because of the aforementioned
identification, we also write B ∈ Rn1×···×nd =: Rn. For I ⊂ [d], we define Rn(I) to be the set of
partial arrays B : Jn(I) → R. For I = [d], this is just the aforementioned array definition.
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We denote

∥B∥2 :=

 ∑
i∈Jn(I)

B2
i

 1
2

for the Frobenius norm of the (partial) array where Bi := B(i) are its entries.
For disjoint sets I, J ⊂ [d] and corresponding partial indices i ∈ Jn(I), j ∈ Jn(J), define the

partial index i×̇j ∈ Jn(I ∪ J) by

(i×̇j)l =

{
il if l ∈ I

jl if l ∈ J.
(2.6)

We will often work with arrays of order 2d whose dimensions along the first d axes are the
same as the dimensions along the remaining d ones. We use the notation

n×2 = (n1, . . . , nd, n1, . . . , nd)

for the dimensions of such arrays.
For sets I ⊂ [2d], J ⊂ [d] such that I ∩ (J + d) = ∅ and for corresponding partial indices

i ∈ Jn(I), j ∈ Jn(J), define the partial index i+̇j ∈ Jn×2
(I ∪ (J + d)) by

(i+̇j)l =

{
il if l ∈ I

jl−d if l ∈ J + d.
(2.7)

For i ∈ Jn(I) and J ⊂ I, define iJ ∈ Jn(J) to be the restriction of i to J , i.e., (iJ)l = il for
all l ∈ J .

Remark 2.2. To see how the +̇ and ×̇ operators work, consider the following example for d = 3
and n1 = n2 = n3 = 10. Take the subset {1, 3} ⊂ [3] and partial indices i, j ∈ Jn({1, 3}) such
that i1 = 2, i3 = 4, and j1 = 5, j3 = 8. Then i and j each define indices along the axes 1 and 3
but not along axis 2.

We can join i and j using the +̇ operator to one index i+̇j =: k ∈ Jn×2
({1, 3, 4, 6}). Then

k1 = i1 = 2, k3 = i3 = 4 and the entries of j get shifted by d = 3 such that k4 = j1 = 5,
k6 = j3 = 8.

Now to extend k ∈ Jn×2
({1, 3, 4, 6}) to the remaining axes 2 and 5, we can join it with

another partial index l ∈ Jn×2
({2, 5}) using the ×̇ operator. Assume l2 = 3 and l5 = 7, then we

obtain the total index m := k×̇l ∈ Jn×2
for which

m1 = k1 = 2, m2 = l2 = 3, m3 = k3 = 4, m4 = k4 = 5, m5 = l5 = 7, m6 = k6 = 8,

such that m corresponds to the 6-tuple (2, 3, 4, 5, 7, 8). Note that in contrast to the +̇ operator,
×̇ does not shift the entries of the second index.

The following function establishes a relation between array indices and indices of the rear-
rangement of the array as a vector.

Definition 2.3. For a dimension vector n = (n1, n2, . . . , nd), a subset I = {j1, . . . , j|I|} ⊂ [d]
for j1 < · · · < j|I| and N :=

∏
l∈I nl, define the function In

I : Jn(I) → [N ] by

In
I (j) =

|I|∑
l=1

(ijl − 1)
l−1∏
l′=1

njl′ + 1.

which defines a bijection. Its inverse is called În
I : [N ] → Jn(I). We define In := In

[d].

50



Definition 2.4. For an array a ∈ Rn, the vectorization vec(a) ∈ RN is defined such that for all
j ∈ Jn, (vec(a))In(j) = aj.

Definition 2.5. Let I ⊂ J ⊂ [d]. For a partial index j ∈ Jn(J), define the restriction jI ∈ Jn(I)
such that for all l ∈ I, (jI)l = jl.

As suggested by the explanations above, our convention is to use bold letters for higher order
arrays (e.g., A) while their entries are denoted in non-bold letters (e.g., Ai). For some of our
results, we will convert matrices into higher-order arrays by rearranging their entries. In these
cases, we will denote the matrices in non-bold letters and use the same letter in bold for the
array, e.g., A and A. For the entries, it will be clear from the indices which object is being
referred to. Besides that, we will also always use bold letters for array indices (e.g., i), for
vectors of array dimensions (e.g. n), and for the set Jn.

2.1.5 Previous Relevant Results

Since our result is based on the bounds given by Latala in [Lat06], we also consider the following
norms which are also used in that result. In our notation, the norms of interest are stated as
follows.

Definition 2.6. For n ∈ Nd and an array B ∈ Rn, we define the following norms for any
partition I1, . . . , Iκ of [d].

∥B∥I1,...,Iκ := sup
α(1)∈Rn(I1),...,α(κ)∈Rn(Iκ),

∥α(1)∥2=···=∥α(κ)∥2=1

∑
i∈Jn

Biα
(1)
iI1
. . . α

(κ)
iIκ
.

For example, when d = 2, the array B is a matrix and ∥ · ∥{1,2} coincides with the Frobenius
and ∥ · ∥{1},{2} with the spectral norm. Latala [Lat06] proved the following upper and lower
moment bounds for a decoupled Gaussian chaos of arbitrary order. Even though it is only
shown for p ≥ 2 in [Lat06], it holds for all p ≥ 1 as explained in Remark 2.8 below.

Theorem 2.7 (Theorem 1 in [Lat06]). Let n ∈ Nd, B ∈ Rn, p ≥ 1.
Let S(d, κ) denote the set of partitions of [d] into κ nonempty disjoint subsets. Define

mp(B) :=
d∑

κ=1

pκ/2
∑

(I1,...,Iκ)∈S(d,κ)

∥B∥I1,...,Iκ . (2.8)

Consider independent Gaussian random vectors g(1) ∼ N(0, Idn1), . . . , g(d) ∼ N(0, Idnd
).

Then

1

C(d)
mp(B) ≤

∥∥∥∥∥∥
∑
i∈Jn

Bi

∏
l∈[d]

g
(l)
il

∥∥∥∥∥∥
Lp

≤ C(d)mp(B),

where C(d) > 0 is a constant that only depends on d.

Remark 2.8. Theorem 1 in [Lat06] only shows this statement for p ≥ 2. However, by a small
adjustment, we can see that it also holds for 1 ≤ p ≤ 2 with a possibly different C(d). Let

X :=
∑

i∈Jn Bi
∏
l∈[d] g

(l)
il
. For the upper bound we have for 1 ≤ p ≤ 2,

∥X∥Lp ≤ ∥X∥L2 ≤ C(d)m2(B) ≤ 2
d
2C(d)mp(B).
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For the lower bound, we consider the recent work [ALM21] about a generalized Gaussian
chaos with values in an arbitrary Banach space. Theorem 2.1 in their work states the lower
bound

1

C(d)

∑
J⊂[d]

∑
P∈P(J)

p|P|/2|||B|||P ≤ ∥X∥Lp , (2.9)

for all p ≥ 1, where P(J) is defined as the set of all partitions of J (into non-empty, pairwise
disjoint sets) and |||B|||P , defined in (2.2) of [ALM21], is a non-negative expression that coincides
with our definition of ∥B∥I1,...,Iκ if P = (I1, . . . , Iκ) is a partition of the entire set [d]. Therefore
we can restrict the sum over J in (2.9) to the term J = [d] and obtain

1

C(d)
mp(B) =

1

C(d)

∑
P∈P([d])

p|P|/2|||B|||P ≤ ∥X∥Lp .

2.2 Main Results

The main contribution of our work is the following result which gives a generalization of the
Hanson-Wright inequality (Theorem 2.1) in terms of upper and lower moment bounds. Note
that the operators ×̇ and +̇ are defined in (2.6) and (2.7).

Theorem 2.9. For d ≥ 1, let n = (n1, . . . , nd) be a vector of dimensions, and let N = n1 . . . nd.
Let A ∈ RN×N and X(1) ∈ Rn1 , . . . , X(d) ∈ Rnd be random vectors with independent, mean

0, variance 1 entries with subgaussian norms bounded by L ≥ 1. Define X := X(1) ⊗ · · · ⊗X(d).
There exists a constant C(d), depending only on d, such that for all p ≥ 1,∥∥XTAX − EXTAX

∥∥
Lp

≤ C(d)mp.

The numbers mp are defined as follows. By rearranging its entries, regard A as an array

A ∈ Rn×2
of order 2d such that

XTAX =
∑

i,i′∈Jn

Ai+̇i′

∏
l∈[d]

X
(l)
il
X

(l)
i′l
.

For any I ⊂ [d] and for Ic = [d]\I, define A(I) ∈ Rn×2
(Ic ∪ (Ic + d)) by

A
(I)

i+̇i′
=

∑
k∈Jn(I)

A(i×̇k)+̇(i′×̇k) (2.10)

for all i, i′ ∈ Jn(Ic).
For T ⊂ [2d] and 1 ≤ κ ≤ 2d, denote by S(T, κ) the set of partitions of T into κ sets. Then

for any p ≥ 1, define

mp := L2d
2d∑
κ=1

p
κ
2

∑
I⊂[d]
I ̸=[d]

∑
(I1,...,Iκ)∈S((Ic)∪(Ic+d),κ)

∥A(I)∥I1,...,Iκ .

If in addition, X(1) ∼ N(0, Idn1), . . . , X(d) ∼ N(0, Idnd
) are normally distributed (i.e. L is

constant), and A satisfies the symmetry condition that for all l ∈ [d] and any i, i′ ∈ Jn([d]\{l}),
j, j′ ∈ Jn({l}),

A(i×̇j)+̇(i′×̇j′) = A(i×̇j′)+̇(i′×̇j), (2.11)

then also the lower bound

C̃(d)mp ≤
∥∥XTAX − EXTAX

∥∥
Lp

holds for all p ≥ 1. Here, C̃(d) > 0 only depends on d.

52



Note that these upper bounds can directly be converted to tail bounds in the style of Theo-
rems 2.1 or 2.13 using Lemma 2.22. After introducing the required tools, the proof of Theorem
2.9 will be split up into two parts. We will prove the upper bound in Subsection 2.3.2 and then
the lower bound in Subsection 2.3.3.

Remark 2.10. The symmetry condition required for the lower bound is not satisfied for all
matrices. However, for any matrix A, we can find a matrix Ã satisfying the symmetry condi-
tion and such that XTAX = XT ÃX always holds. To do this, in the array notation we can
define Ã by transposing A along all possible sets of axes and then taking the mean Ãi+̇i′ =
1
2d

∑
I⊂[d]A(iIc ×̇i′I)+̇(iI×̇i′Ic )

for any i, i′ ∈ Jn. This is a generalization of taking Ã = 1
2(A + AT )

for d = 1. Note however, that Ã might have significantly smaller norms than A which is why
the lower moment bounds in Theorem 2.9 might not hold for A directly.

A central part of our argument is the following specialized decoupling result for expressions
as in (2.3) which might be of independent interest.

Theorem 2.11. Let n = (n1, . . . , nd) ∈ Nd, A ∈ Rn×2
, X(1) ∈ Rn1 , . . . , X(d) ∈ Rnd random vec-

tors with independent mean 0, variance 1 entries and X̄(1), . . . , X̄(d) corresponding independent
copies. Then for all p ≥ 1,∥∥∥∥∥∥

∑
i,i′∈Jn

Ai+̇i′

∏
l∈[d]

X
(l)
il
X

(l)
i′l

− E
∑

i,i′∈Jn

Ai+̇i′

∏
l∈[d]

X
(l)
il
X

(l)
i′l

∥∥∥∥∥∥
Lp

≤
∑

I,J⊂[d]:
J⊂I, I\J ̸=[d]

4d−|I|

∥∥∥∥∥∥∥∥∥∥∥
∑

i∈Jn(J)
j∈Jn(I\J)
k,k′∈Jn(Ic)

A (i×̇j×̇k)
+̇(i×̇j×̇k′)

∏
l∈J

[
(X

(l)
il

)2 − 1
] ∏
l∈Ic

X
(l)
kl
X̄

(l)
k′
l

∥∥∥∥∥∥∥∥∥∥∥
Lp

Remark 2.12. Consider the special case in Theorem 2.11 of X(1), . . . , X(d) being Rademacher
vectors, i.e., having independent entries that are ±1 with a probability of 1

2 each. Then any

squared entry is 1 almost surely. This implies that the factor
∏
l∈J

[
(X

(l)
il

)2 − 1
]
is 0 unless

J = ∅. So on the right hand side of the inequality in Theorem 2.11, only the terms with J = ∅
need to be considered.

Theorem 2.9 also leads to the following new tail bound for ∥A(X(1) ⊗ · · · ⊗ X(d))∥2. Note
that it contains the deviation of the non-squared norm. This improves upon the previous result
by Vershynin [Ver20] as described in (2.5), up to the constant C(d). By comparison, our result
provides a strictly stronger bound for matrices with smaller Frobenius norm and holds for all
t ≥ 0.

Theorem 2.13. Let B ∈ Rn0×nd
be a matrix, X(1), . . . , X(d) ∈ Rn independent random vectors

with independent, mean 0, variance 1 entries with subgaussian norm bounded by L ≥ 1, and let
X := X(1)⊗· · ·⊗X(d) ∈ Rnd

. Then for a constant C(d) depending only on d and for any t > 0,

P (|∥BX∥2 − ∥B∥F | > t)

≤


e2 exp

(
−C(d) t2

nd−1∥B∥22→2

)
if t ≤ n

d
2 ∥B∥2→2

e2 exp

(
−C(d)

(
t

∥B∥2→2

) 2
d

)
if t ≥ n

d
2 ∥B∥2→2

e2 exp

(
−C(d) t2

n
d−1
2 ∥B∥2F

)
if n

d−1
4 ∥B∥2→2 ≤ t ≤ n

d−1
4 ∥B∥F .
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Note that the third interval intersects the first two intervals. In any interval of intersection,
both bounds hold. For slightly more complicated but provably optimal moment bounds, we
refer the reader to Corollary 2.32.

Remark 2.14. In addition to extending the previous result in (2.5) from [Ver20] to all t ≥ 0, our
result provides a strict improvement of that result for matrices with stable rank (∥B∥F /∥B∥2→2)

2

in (1, n
d−1
2 ).

As an example, consider a square matrix B ∈ Rnd×nd
of full rank with mildly exponentially

decreasing singular values σj = e−
1
2
n− d

4 (j−1) for 1 ≤ j ≤ nd. Then ∥B∥2→2 = σ1 = 1 and one
can check, using e−x ≥ 1 − x for all x ∈ R and e−x ≤ 1 − x

2 for x ∈ [0, 1], that

∥B∥2F =
1 − e−n

3
4 d

1 − e−n
− d

4

∈
[

1

2
n

d
4 , 2n

d
4

]
So the stable rank is ∈ [12n

d
4 , 2n

d
4 ]. Indeed, for at least the (for large enough n non-empty)

interval n
1
4
d− 1

4 ≤ t ≤ 1
2n

3
8
d− 1

4 , the third line in Theorem 2.13 provides a probability bound

≤ e2 exp
(
−C(d) t2

2n
3
4 d− 1

2

)
while the first line only provides a bound of e2 exp

(
−C(d) t2

nd−1

)
, i.e.,

there is an improvement for d ≥ 3.

2.3 Main Proofs

2.3.1 Preliminaries

The classical symmetrization lemma for normed spaces, cited as Lemma 0.9, can be extended
to increasing convex functions of norms as the following result from [Peñ92] shows.

Lemma 2.15 (Special case of Lemma A1 in [Peñ92]). Let X1, . . . , Xn be independent, mean
0 real-valued random variables and p ≥ 1. Let ξ1, . . . , ξn be independent Rademacher variables
that are independent of X1, . . . , Xn. Then

1

2p
E

∣∣∣∣∣
n∑
k=1

ξkXk

∣∣∣∣∣
p

≤ E

∣∣∣∣∣
n∑
k=1

Xk

∣∣∣∣∣
p

≤ 2pE

∣∣∣∣∣
n∑
k=1

ξkXk

∣∣∣∣∣
p

The decoupling theorem for quadratic forms relates double sums
∑n

j,k=1Aj,kXjXk over ran-

dom variables (Xj)j∈[n] to a “decoupled” expression
∑n

j,k=1Aj,kXjX̄k where the X̄k are inde-
pendent copies of the Xk. Different versions have been used in probability for a long time and
we refer to Section 3.6 in [PG99] for an overview of their history. The following version for
convex functions, from Theorem 8.11 in the textbook [FR13], is an adaption of Proposition 1.9
in [BT87] for norms in Banach spaces.

Theorem 2.16. Let A ∈ Rn×n be a matrix, X ∈ Rn a vector with independent mean 0 entries,
and X̄ and independent copy of X. Let F : R → R be a convex function. Then

EF

 n∑
j,k=1
j ̸=k

AjkXjXk

 ≤ EF

4
n∑

j,k=1

AjkXjX̄k


Also the following elementary result will be used.

Lemma 2.17. Let T be a finite set. Then

∑
S⊂T

(−1)|S| =

{
1 if T = ∅
0 otherwise.
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Proof. By grouping all S ⊂ T of the same size and applying the binomial theorem,

∑
S⊂T

(−1)|S| =

|T |∑
k=0

∑
S⊂T
|S|=k

(−1)|S| =

|T |∑
k=0

(
|T |
k

)
(−1)k · 1|T |−k = (−1 + 1)|T |

=

{
1 if T = ∅
0 otherwise.

Although this is a very elementary statement and consequence of the binomial theorem, we
are not aware of any previous usages of precisely this identity. One somewhat similar tool is
given by Mazur-Orlicz formula ((11) in [MO34]), which has also been used in a problem related
to decoupling inequalities in [PM95]. It is stated as

(−1)k
1∑

ϵ1,...,ϵk=0

(−1)−(ϵ1+···+ϵk)ϵv11 . . . ϵvkk = (1 − 0v1) . . . (1 − 0vk).

With v1 = · · · = vk = 0, this becomes

(−1)k
1∑

ϵ1,...,ϵk=0

(−1)−(ϵ1+···+ϵk) = 0k.

For k = |T | > 0, the {0, 1}-tuples (ϵ1, . . . , ϵk) can be identified with the subsets S ⊂ T such that
|S| = ϵ1 + · · · + ϵk and then this identity implies Lemma 2.17 for T ̸= ∅.

For the norms in Definition 2.6, we need the following property about restricting arrays to
some diagonal entries. This can be obtained directly from a repeated application of Lemma 5.2
in [AW15] (where K = {l, l + d} for each l ∈ I). Here again, we use the notation of ×̇ and +̇
from (2.6) and (2.7).

Lemma 2.18. Let A ∈ Rn×2
, I ⊂ [d] and define A[I] ∈ Rn×2

by

A
[I]

i+̇i′
:=

{
Ai+̇i′ if ∀l ∈ I : il = i′l
0 otherwise.

for all i, i′ ∈ Jn. Then for any partition I1, . . . , Iκ of [2d], we have

∥A[I]∥I1,...,Iκ ≤ ∥A∥I1,...,Iκ .

For comparisons between functions of subgaussian and of Gaussian variables, we will use the
concept of strong domination of random variables. See, e.g., [KW92] for the following definition
and further explanations.

Definition 2.19 (Definition 3.2.1 in [KW92]). Let X,Y ∈ R be random variables and κ, λ > 0.
We say that X is (κ, λ)-strongly dominated by Y (X ≺(κ,λ) Y ) if for every t > 0,

P(|X| > t) ≤ κP(λ|Y | > t).

It can be shown that linear combinations of independent, strongly dominated random vari-
ables are again strongly dominated which in turn implies the following statement about expec-
tations of convex functions of these linear combinations.
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Theorem 2.20 (Corollary 3.2.1 in [KW92]). Let X1, . . . , Xn, Y1, . . . , Yn ∈ R be independent
symmetric random variables and a1, . . . , an ∈ R fixed coefficients such that Xi ≺(κ,λ) Yi. Then
for any nondecreasing φ : R+ → R+,

Eφ

(∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
)

≤ 2⌈κ⌉Eφ

(
⌈κ⌉λ

∣∣∣∣∣
n∑
i=1

aiYi

∣∣∣∣∣
)
.

Statements similar to the following lemma have been used in multiple works to establish
a relation between |∥Ax∥2 − a| and

∣∣∥Ax∥22 − a2
∣∣, for example in the proof of Lemma 5.36 in

[Ver12]. For completeness, we state it as a separate result with its proof here.

Lemma 2.21. For real numbers a, b ≥ 0, b ̸= 0, it holds that

1

3
min

{
|a2 − b2|

b
,
√
|a2 − b2|

}
≤ |a− b| ≤ min

{
|a2 − b2|

b
,
√
|a2 − b2|

}
.

Proof. We obtain

|a− b| =
|a2 − b2|
|a+ b|

≤ |a2 − b2|
b

,

and since a, b ≥ 0, i.e., |a−b| ≤ |a|+ |b| = |a+b|, it follows that |a−b|2 ≤ |a−b||a+b| = |a2−b2|,
proving the second inequality.

For the first inequality, first assume the case a ≤ 2b. Then a+ b ≤ 3b such that

1

3

|a2 − b2|
b

≤ |a2 − b2|
a+ b

= |a− b|.

In the case that a ≥ 2b, i.e., a− b ≥ b ≥ 0, we obtain

1

3

√
|a2 − b2| ≤ 1

3

√
|a+ b||a− b| ≤ 1

3

√
(|a− b| + 2b)|a− b|

≤ 1

3

√
(|a− b| + 2|a− b|)|a− b| =

1√
3
|a− b| ≤ |a− b|.

Relations between moments and tail bounds have also been well-known in the field. For an
overview see, e.g., Chapter 7.3 in [FR13]. In this spirit, we state and prove the following small
tool for the case of mixed tails which we encounter in this work.

Lemma 2.22 (Moments and tail bounds). Let T be a finite set and X an R valued random
variable such that for all p ≥ p0 ≥ 0,

∥X∥Lp ≤
d∑

k=1

min
l∈T

pek,lγk,l

for values γk,l > 0, ek,l > 0.
Then for all t > 0,

P(|X| > t) ≤ ep0 exp

(
− min
k∈[d]

max
l∈T

(
t

edγk,l

) 1
ek,l

)
.

Proof. Fix any u > 0. For any k ∈ [d], define l′(k) := argmaxl∈T

(
u
γk,l

) 1
ek,l , then choose k′ :=

argmink∈[d]

(
u

γk,l′(k)

) 1
ek,l′(k) , and p :=

(
u

γk′,l′(k′)

) 1
ek′,l′(k′) , such that p = mink∈[d] maxl∈T

(
u
γk,l

) 1
ek,l .
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If p < p0, then P(|X| > edu) ≤ 1 = ep0 exp(−p0) ≤ ep0 exp(−p).
If p ≥ p0, then by the choice of p,

∥X∥Lp ≤
d∑

k=1

min
l∈T

pek,lγk,l ≤
d∑

k=1

min
l∈T

[(
u

γk′,l′(k′)

) 1
ek′,l′(k′)

]ek,l
γk,l

≤
d∑

k=1

[(
u

γk′,l′(k′)

) 1
ek′,l′(k′)

]ek,l′(k)
γk,l′(k)

≤
d∑

k=1

[(
u

γk,l′(k)

) 1
ek,l′(k)

]ek,l′(k)
γk,l′(k) ≤

d∑
k=1

u = du.

So by Markov’s inequality,

P(|X| > edu) ≤ P(|X|p > (edu)p) ≤ E|X|p

(edu)p
=

(∥X∥Lp

edu

)p
≤ e−p.

In all cases, we obtain

P(|X| > edu) ≤ ep0e−p = ep0 exp

(
− min
k∈[d]

max
l∈T

(
u

γk,l

) 1
ek,l

)
.

The result follows by taking u := t
ed .

2.3.2 Proof of the Upper Bound

Required tools:

Lemma 2.23. There is an absolute constant C such that the following holds. Let X ∈ Rn be
random with mean 0 and ∥X∥ψ2 ≤ L. Take a Gaussian vector g ∼ N(0, Idn) and a ∈ Rn. Then
for all p ≥ 1,

E

∣∣∣∣∣
n∑
k=1

akXk

∣∣∣∣∣
p

≤ (CL)pE

∣∣∣∣∣
n∑
k=1

akgk

∣∣∣∣∣
p

.

Proof. By the assumption on X,
∑n

k=1 akXk = ⟨a,X⟩ is mean 0 with ∥⟨a,X⟩∥ψ2 ≤ L∥a∥2,
implying that for any p ≥ 1,

E|⟨a,X⟩|p ≤ (C1L∥a∥2)pp
p
2 .

On the other hand, ⟨a, g⟩ ∼ N(0, ∥a∥22), so by the known absolute moments of the normal
distribution and Stirling’s approximation,

E|⟨a, g⟩|p =∥a∥p2 ·
2

p
2

√
π

Γ

(
p+ 1

2

)
≥ ∥a∥p2

2
p
2

√
π

√
2π

(
p+ 1

2

) p
2

exp(−p+ 1

2
)

≥2
p
2 ∥a∥p2

√
2

e

( p
2e

) p
2 ≥

√
2

e

(
1

e

) p
2

∥a∥p2p
p
2 ≥

(
2

e2

) p
2

∥a∥p2p
p
2 ,

implying that E|⟨a,X⟩|p ≤
(
C1e√

2
L
)p

E|⟨a, g⟩|p.

In order to control arbitrary chaoses, we will derive a similar result as Lemma 2.23 for squared
subgaussian and Gaussian variables. To achieve this, we make use of strong domination. The
following theorem states that this can be used to compare squared subgaussian and Gaussian
variables.
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Lemma 2.24. There exist absolute constants κ, λ > 0 such that the following holds. Let X be
a random variable with EX2 = 1 and ∥X∥ψ2 ≤ L, L ≥ 1 and g ∼ N(0, 1). Let ξ, ξ′ ∈ {±1} be
Rademacher variables that are independent of X and g. Then ξ(X2 − 1) ≺(κ,λL2) ξ

′(g2 − 1) in
the sense of Definition 2.19.

Proof. For any t > 0,

P
(
|ξ(X2 − 1)| > t

)
= P

(
X2 − 1 > t

)
+ P

(
−(X2 − 1) > t

)
For a constant c ≥ 1, the first term can be bounded by

P
(
X2 − 1 > t

)
= P

(
|X| >

√
1 + t

)
≤ exp

(
1 − 1 + t

c2L2

)
≤ e · e−

t
c2L2 .

The second term is 0 if t ≥ 1 since −(X2 − 1) ≤ 1. For t ≤ 1, e−
t

c2L2 ≥ e−
1

c2L2 ≥ e−1. Then

it holds that P(−(X2 − 1) > t) ≤ 1 ≤ e · e−
t

c2L2 , and altogether we obtain

P
(
|ξ(X2 − 1)| > t

)
≤ 2e · e−

t
c2L2 .

On the other hand, for any λ > 0,

P
(
λL2|ξ′(g2 − 1)| > t

)
≥ P

(
g2 − 1 >

t

λL2

)
= P

(
|g| >

√
1 +

t

λL2

)

= P

(
|g| ≥

√
1 +

t

λL2

)
.

To bound this, we use the following properties of the normal distribution: (see Proposition
7.5 in [FR13])

P(|g| ≥ u) ≥
√

2

π

1

u

(
1 − 1

u2

)
e−

u2

2 , P(|g| ≥ u) ≥

(
1 −

√
2

π
u

)
e−

u2

2 . (2.12)

For 0 < u ≤ 1
4 , the second inequality in (2.12) yields

P
(
|g| ≥

√
1 + u

)
≥ 1

10
e−

1+u
2 ≥ 1

10
e−

1
2 · e−u ≥ 1

17
e−u.

For u ≥ 1
4 , the first inequality in (2.12) gives P

(
|g| ≥

√
1 + u

)
≥ 1

5

√
2
π

1√
1+u

e−
1+u
2 . Using

that 1√
1+u

≥ e−
1
2
u for all u > 0, we obtain for u ≥ 1

4 ,

P
(
|g| ≥

√
1 + u

)
≥ 1

5

√
2

π
e−

1
2
u exp

(
−1 + u

2

)
=

1

5

√
2

π
exp

(
−1

2
− u

)
≥ 1

11
e−u.

So for any u > 0, P(|g| >
√

1 + u) ≥ 1
17e

−u. By choosing λ = c2 and combining,

P
(
|ξ(X2 − 1)| > t

)
≤ 2e · e−

t
λL2 ≤ 93 · 1

17
e−

t
λL2 ≤ 93P

(
λL2|ξ′(g2 − 1)| > t

)
.

Theorem 2.25. There is an absolute constant C > 0 such that the following holds. Let X ∈ Rn
have independent entries that have mean 0 and variance 1 and are subgaussian with ψ2 norm
≤ L for an L ≥ 1. Take a Gaussian vector g ∼ N(0, Idn) and a ∈ Rn. Then

E

∣∣∣∣∣
n∑
k=1

ak(X
2
k − 1)

∣∣∣∣∣
p

≤ (CL2)pE

∣∣∣∣∣
n∑
k=1

ak(g
2
k − 1)

∣∣∣∣∣
p

.
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Proof. Consider independent Rademacher variables ξ1, . . . , ξn, ξ̄1, . . . , ξ̄n ∈ {±1}n that are also
independent of X and g. By the symmetrization Lemma 2.15, it holds that

E

∣∣∣∣∣
n∑
k=1

ak(X
2
k − 1)

∣∣∣∣∣
p

≤ 2pE

∣∣∣∣∣
n∑
k=1

akξk(X
2
k − 1)

∣∣∣∣∣
p

E

∣∣∣∣∣
n∑
k=1

akξ̄k(g
2
k − 1)

∣∣∣∣∣
p

≤ 2pE

∣∣∣∣∣
n∑
k=1

ak(g
2
k − 1)

∣∣∣∣∣
p

. (2.13)

Using that ξk(X
2 − 1) ≺(κ,λL2) ξ̄k(g

2 − 1) by Lemma 2.24 and that |·|p is a convex nonde-

creasing function R+ → R+, Theorem 2.20 implies that there is a constant C̃ > 0 such that

E

∣∣∣∣∣
n∑
k=1

akξk(X
2
k − 1)

∣∣∣∣∣
p

≤ (C̃L2)pE

∣∣∣∣∣
n∑
k=1

akξ̄k(g
2
k − 1)

∣∣∣∣∣
p

.

The next theorem is an important tool for the proof of our decoupling result (Theorem 2.11).
Its purpose is to rearrange a chaos in such a way that – under some changes – the quadratic factor

that occur (here (X
(l)
il

)2) are replaced by corresponding mean 0 factors of the type
[
(X

(l)
il

)2 − 1
]

that also occur in Theorem 2.11.
Rearranging the terms with this theorem enables an iterative application of the standard

decoupling Theorem 2.16 in the proof of Theorem 2.11. Furthermore, the factors
[
(X

(l)
il

)2 − 1
]

are 0 in the Rademacher case (Remark 2.12). In the general case, after the comparison with
Gaussians, they will be turned into a product of two independent factors with the subsequent
Lemma 2.27 in the proof of Theorem 2.9.

Note that this is a purely arithmetic rearrangement of the chaos. We do not require or take
any randomness of the X(l) into account.

Theorem 2.26. Let n ∈ Nd, A ∈ Rn, X(1) ∈ Rn1 , . . . , X(d) ∈ Rnd, I ⊂ [d]. Then∑
i∈Jn

Ai

∏
l∈[d]

(X
(l)
il

)2 =
∑
I⊂[d]

∑
i∈Jn([d]\I)

A
(I)
i

∏
l∈[d]\I

[
(X

(l)
il

)2 − 1
]

where for any i ∈ Jn([d]\I),

A
(I)
i =

∑
j∈Jn(I)

Ai×̇j.

Proof. Observing that for any I ⊂ [d], i ∈ Jn(I),∏
l∈[d]\I

[
(X

(l)
il

)2 − 1
]

=
∑

I′⊂[d]\I

(−1)|[d]\(I∪I
′)|
∏
l∈I′

(X
(l)
il

)2,

we obtain ∑
I⊂[d]

i∈Jn([d]\I)

A
(I)
i

∏
l∈[d]\I

[
(X

(l)
il

)2 − 1
]

=
∑
I⊂[d]

i∈Jn([d]\I)
j∈Jn(I)

Ai×̇j

∑
I′⊂[d]\I

(−1)|[d]\(I∪I
′)|
∏
l∈I′

(X
(l)
il

)2

59



=
∑
I⊂[d]

I′⊂[d]\I

(−1)|[d]\(I∪I
′)|

∑
i∈Jn([d]\I)
j∈Jn(I)

Ai×̇j

∏
l∈I′

(X
(l)
il

)2

=
∑
I′⊂[d]
I⊂[d]\I′

(−1)|[d]\(I∪I
′)|
∑
i∈Jn

Ai

∏
l∈I′

(X
(l)
il

)2

=
∑
I′⊂[d]

 ∑
I⊂[d]\I′

(−1)|([d]\I
′)\I|

 ·

(∑
i∈Jn

Ai

∏
l∈I′

(X
(l)
il

)2

) .
This implies the claim using Lemma 2.17.

A key to the proof of the upper moment bound in our main result (Theorem 2.9) is the
decoupling technique of Theorem 2.11. With the above auxiliary results, we can give the proof
of it here.

Proof of Theorem 2.11.

b :=
∑

i,i′∈Jn

Ai+̇i′

∏
l∈[d]

X
(l)
il
X

(l)
i′l

=
∑
I⊂[d]

∑
i∈Jn(I)

j,j′∈Jn(Ic)
∀l∈Ic:jl ̸=j′l

A(i×̇j)+̇(i×̇j′)

∏
l∈I

(X
(l)
il

)2
∏
l∈Ic

X
(l)
jl
X

(l)
j′l

since each summand i, i′ is precisely considered in the sum for I = {l ∈ [d] : il = i′l} and no other
I.

Now applying Theorem 2.26 yields

b =
∑
I⊂[d]

∑
i∈Jn(I)

 ∑
j,j′∈Jn(Ic)
∀l∈Ic:jl ̸=j′l

A(i×̇j)+̇(i×̇j′)

∏
l∈Ic

X
(l)
jl
X

(l)
j′l

∏
l∈I

(X
(l)
il

)2

=
∑

I,J⊂[d]:
J⊂I

∑
i∈Jn(J)

k∈Jn(I\J)

 ∑
j,j′∈Jn(Ic)
∀l∈Ic:jl ̸=j′l

A (i×̇j×̇k)
+̇(i×̇j′×̇k)

∏
l∈Ic

X
(l)
jl
X

(l)
j′l

∏
l∈J

[
(X

(l)
il

)2 − 1
]

=
∑

I,J⊂[d]:
J⊂I

∑
i∈Jn(J)

k∈Jn(I\J)
j,j′∈Jn(Ic)
∀l∈Ic:jl ̸=j′l

A (i×̇j×̇k)
+̇(i×̇j′×̇k)

∏
l∈Ic

X
(l)
jl
X

(l)
j′l

∏
l∈J

[
(X

(l)
il

)2 − 1
]

=:
∑

I,J⊂[d]:
J⊂I

SI,J .

Because of

S[d],∅ =
∑
k∈Jn

Ak+̇k = E
∑

i,i′∈Jn

Ai+̇i′

∏
l∈[d]

X
(l)
il
X

(l)
i′l

and the triangle inequality, we obtain

∥b− Eb∥Lp ≤
∑

I,J⊂[d]:
J⊂I,I\J ̸=∅

∥SI,J∥Lp . (2.14)

60



For any fixed l0 ∈ Ic, we obtain that ∥SI,J∥Lp =∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

j̄,̄j′∈Jn({l0})
j̄l0 ̸=j̄′l0


∑

i∈Jn(J)
k∈Jn(I\J)

j,j′∈Jn(Ic\{l0})
∀l∈Ic:jl ̸=j′l

A (i×̇j×̇j̄×̇k)

+̇(i×̇j′×̇j̄′×̇k)

∏
l∈Ic

X
(l)
jl

X
(l)

j′
l

∏
l∈J

[
(X

(l)
il

)2 − 1
]


X
(l0)

j̄l0
X

(l0)

j̄′
l0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
Lp

.

We can apply the decoupling Theorem 2.16 to this for the convex function |·|p and the

expectation conditioned on all variables except X(l0). This leads to ∥SI,J∥Lp ≤

4

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∑

j̄,̄j′∈Jn({l0})


∑

i∈Jn(J)
k∈Jn(I\J)

j,j′∈Jn(Ic\{l0})
∀l∈Ic:jl ̸=j′l

A (i×̇j×̇j̄×̇k)

+̇(i×̇j′×̇j̄′×̇k)

∏
l∈Ic

X
(l)
jl

X
(l)

j′
l

∏
l∈J

[
(X

(l)
il

)2 − 1
]


X
(l0)

j̄l0
X̄

(l0)

j̄′
l0

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
Lp

.

Repeating this procedure iteratively for all other l ∈ Ic, we obtain

∥SI,J∥Lp ≤ 4d−|I|

∥∥∥∥∥∥∥∥∥∥∥
∑

i∈Jn(J)
k∈Jn(I\J)
j,j′∈Jn(Ic)

A(i×̇j×̇k)+̇(i×̇j′×̇k)

∏
l∈Ic

X
(l)
jl
X̄

(l)
j′l

∏
l∈J

[
(X

(l)
il

)2 − 1
]
∥∥∥∥∥∥∥∥∥∥∥
Lp

.

Substituting this into (2.14) completes the proof.

The works in [Kwa87] and [AG93] have investigated polynomials with higher powers of
Gaussian variables. Since in our scenario, we only have two occurrences of every vector, thus
we can repeatedly apply their result for the case of two coinciding indices. Considering that
H2(x) = x2 − 1 is the Hermite polynomial of degree 2 and leading coefficient 1, equation (2.9)
in [AG93] in our setup can be written as follows. Note that as suggested there, the case p ≥ 1
can also be shown using Jensen’s inequality which can be used to show this inequality with
coefficient 2.

Lemma 2.27. Let a ∈ Rn, g, ḡ ∼ N(0, Idn), p ≥ 1. Then∥∥∥∥∥
n∑
k=1

ak(g
2
k − 1)

∥∥∥∥∥
Lp

≤ 2

∥∥∥∥∥
n∑
k=1

akgkḡk

∥∥∥∥∥
Lp

.

Combining the previous lemmas, now we can prove the upper bound in the main Theorem
2.9.

Proof of Theorem 2.9, upper bound:
Step 1: Decoupling
Let α := ∥XTAX − EXTAX∥Lp . By Theorem 2.11, α ≤

∑
J⊂I⊂[d]
I\J ̸=[d]

4d−|I|

∥∥∥∥∥∥∥∥∥∥∥
∑

i∈Jn(J)
k∈Jn(I\J)
j,j′∈Jn(Ic)

A(i×̇j×̇k)+̇(i×̇j′×̇k)

∏
l∈Ic

X
(l)
jl
X̄

(l)
j′l

∏
l∈J

[
(X

(l)
il

)2 − 1
]
∥∥∥∥∥∥∥∥∥∥∥
Lp

. (2.15)
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Step 2: Replacing the subgaussian factors by Gaussians
In (2.15), we can repeatedly apply Lemma 2.23 to replace all the linear subgaussian factors

by Gaussian ones. Afterwards, Theorem 2.25 allows the same for the quadratic terms. Together,
this yields that α ≤

∑
J⊂I⊂[d]
I\≠[d]

(CL)|I
c|+|J |

∥∥∥∥∥∥∥∥∥∥∥
∑

i∈Jn(J)
k∈Jn(I\J)
j,j′∈Jn(Ic)

A (i×̇j×̇k)
+̇(i×̇j′×̇k)

∏
l∈Ic

g
(l)
jl
ḡ
(l)
j′l

∏
l∈J

[
(g

(l)
il

)2 − 1
]
∥∥∥∥∥∥∥∥∥∥∥
Lp

. (2.16)

Step 3: Decoupling of squared Gaussians In an analogous fashion as in step 2, we

can successively replace all the factors
[
(g

(l)
il

)2 − 1
]

in (2.16) by g
(l)
il
ḡ
(l)
il

using Lemma 2.27. This

leads to

α ≤
∑

J⊂I⊂[d]
I\J ̸=[d]

(CL)|I
c|+|J |

∥∥∥∥∥∥∥∥∥∥∥
∑

i∈Jn(J)
k∈Jn(I\J)
j,j′∈Jn(Ic)

A (i×̇j×̇k)
+̇(i×̇j′×̇k)

∏
l∈Ic

g
(l)
jl
ḡ
(l)
j′l

∏
l∈J

g
(l)
il
ḡ
(l)
il

∥∥∥∥∥∥∥∥∥∥∥
Lp

=
∑

J⊂I⊂[d]
I\J ̸=[d]

(CL)|I
c|+|J |

∥∥∥∥∥∥
∑

i,i′∈Jn(Ic∪J)

A
(I,J)

i+̇i′

∏
l∈Ic∪J

g
(l)
jl
ḡ
(l)
j′l

∥∥∥∥∥∥
Lp

.

where for all i, i′ ∈ Jn(J ∪ Ic),

A
(I,J)

i+̇i′
=

{∑
k∈Jn(I\J)A(i×̇k)+̇(i′×̇k) if ∀l ∈ J : il = i′l

0 otherwise.
(2.17)

Step 4: Completing the proof Then Theorem 2.7 yields that∥∥∥∥∥∥
∑

i,i′∈Jn(J∪Ic)

A
(I,J)

i+̇i′

∏
l∈Ic∪J

g
(l)
il
ḡ
(l)
i′l

∥∥∥∥∥∥
Lp

≤ m̃(I,J)
p

where for S((J ∪ Ic)∪ ((J ∪ Ic) + d), κ) being the set of all partitions of (J ∪ Ic)∪ ((J ∪ Ic) + d)
into κ sets,

m̃(I,J)
p :=

d∑
κ=1

pκ/2
∑

(I1,...,Iκ)∈S((J∪Ic)∪((J∪Ic)+d),κ)

∥A(I,J)∥I1,...,Iκ .

By Lemma 2.18, ∥A(I,J)∥I1,...,Iκ ≤ ∥A(I)∥I1,...,Iκ where A(I) = A(I,∅) as given in the statement
of Theorem 2.9. Together with this, the upper bound in Theorem 2.9 follows.

2.3.3 Proof of the Lower Bound

Required tools:
In this section, we will prove the lower bound in Theorem 2.9. Unlike the upper bound,

we will only prove this for the case of Gaussian vectors. Indeed, for arbitrary subgaussian
distributions, the lower bound fails to hold as the following simple example for the case d = 1
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shows: Consider the identity matrix Idn and a Rademacher vector ξ ∈ {±1}n. Then the object
of interest in Theorem 2.9 is ξT Idnξ−E[ξT Idnξ] = 0 even though the moment bounds mp would
be > 0.

We follow the approach of reversing all steps in the proof of the upper bound, without the
Gaussian comparison steps. This is why also the two decoupling steps before and after the
Gaussian comparison can be performed together.

As mentioned before, Gaussian decoupling, with upper as well as lower bounds, has been
studied in [AG93] where central ideas of [Kwa87] have been used. [AG93] provides a decoupling
inequality for Gaussian chaos with an arbitrary number of coinciding indices. Similarly to
Lemma 2.27, we can adapt the result of Equation (2.9) in [AG93] to our situation as follows.

Lemma 2.28. Let A ∈ Rn×n be a symmetric matrix, g, ḡ ∼ N(0, Idn) be independent, and
p ≥ 1. ∥∥∥∥∥∥

∑
j,k∈[n]

Aj,kgj ḡk

∥∥∥∥∥∥
Lp

≤

∥∥∥∥∥∥
∑
j,k∈[n]

Aj,k(gjgk − 1j=k)

∥∥∥∥∥∥
Lp

.

To generalize this to cases of multiple axes, we iteratively apply Lemma 2.28 to obtain the
following corollary.

Corollary 2.29. Let n ∈ Nd, A ∈ Rn×2
such that A satisfies the symmetry condition that for

all l ∈ [d] and any i, i′ ∈ Jn([d]\{l}), j, j′ ∈ Jn({l}),

A(i×̇j)+̇(i′×̇j′) = A(i×̇j′)+̇(i′×̇j) (2.18)

Let g(1), ḡ(1) ∼ N(0, Idn1), . . . , g(d), ḡ(d) ∼ N(0, Idnd
) be independent. Then for any set

I ⊂ [d], p ≥ 1, ∥∥∥∥∥∥∥∥∥
∑

i,i′∈Jn(I)
j∈Jn(Ic)

A(i×̇j)+̇(i′×̇j)

∏
l∈I

g
(l)
il
ḡ
(l)
i′l

∥∥∥∥∥∥∥∥∥
Lp

≤

∥∥∥∥∥∥∥∥∥
∑

i,i′∈Jn(I)
j∈Jn(Ic)

A(i×̇j)+̇(i′×̇j)

∏
l∈I

[
g
(l)
il
g
(l)
i′l

− 1il=i′l

]∥∥∥∥∥∥∥∥∥
Lp

Independently of the Gaussian decoupling approach, the following two lemmas provide a tool
to reverse the application of the rearrangement result Theorem 2.26 in the proof of the upper
bound.

Lemma 2.30. Let A ∈ Rn×2
be an array of order 2d and X(1) ∈ Rn1 , . . . X(d) ∈ Rnd vectors.

Then

∑
I⊂[d]

∑
i,i′∈Jn(I)

∑
j∈Jn(Ic)

A(i×̇j)+̇(i′×̇j)

∏
l∈I

[
X

(l)
il
X

(l)
i′l

− 1il=i′l

]
=
∑

i,i′∈Jn

Ai+̇i′

∏
l∈[d]

X
(l)
il
X

(l)
i′l
.

Proof. Note that ∏
l∈I

[
X

(l)
il
X

(l)
i′l

− 1il=i′l

]
=
∑
J⊂I

(−1il=i′l
)|I\J |

∏
l∈J

X
(l)
il
X

(l)
i′l
.
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Using this, we obtain

α :=
∑
I⊂[d]

∑
i,i′∈Jn(I)

∑
j∈Jn(Ic)

A(i×̇j)+̇(i′×̇j)

∏
l∈I

[
X

(l)
il
X

(l)
i′l

− 1il=i′l

]
=
∑
I⊂[d]

∑
i,i′∈Jn(I)

∑
j∈Jn(Ic)

A(i×̇j)+̇(i′×̇j)

∑
J⊂I

∏
l∈I\J

(−1il=i′l
)
∏
l∈J

X
(l)
il
X

(l)
i′l

Observing that

∏
l∈I\J

(−1il=i′l
) =

{
(−1)|I\J | if ∀j ∈ I\J : il = i′l
0 otherwise,

we can conclude

α =
∑
I⊂[d]

∑
J⊂I

∑
i,i′∈Jn(J)
k∈Jn(I\J)

∑
j∈Jn(Ic)

A(i×̇j×̇k)+̇(i′×̇j×̇k)(−1)|I\J |
∏
l∈J

X
(l)
il
X

(l)
i′l

=
∑
J⊂[d]

∑
I⊃J

(−1)|I\J |
∑

i,i′∈Jn(J)

∑
j∈Jn(Jc)

A(i×̇j)+̇(i′×̇j)

∏
l∈J

X
(l)
il
X

(l)
i′l

Lemma 2.17 yields

∑
I⊃J

(−1)|I\J | =
∑

I′⊂[d]\J

(−1)|I
′| =

{
1 if J = [d]

0 otherwise,

such that

α =
∑

i,i′∈Jn

Ai+̇i′

∏
l∈[d]

X
(l)
il
X

(l)
i′l
.

Lemma 2.31. Let A ∈ Rn×2
be an array of order 2d and X(1) ∈ Rn1 , . . . X(d) ∈ Rnd independent

random vectors with mean 0, variance 1 entries. Then for any subset ∅ ≠ I ⊂ [d], p ≥ 1,

∥∥∥∥∥∥
∑

i,i′∈Jn(I)

∑
j∈Jn(Ic)

A(i×̇j)×̇(i′×̇j)

∏
l∈I

[
X

(l)
il
X

(l)
i′l

− 1il=i′l

]∥∥∥∥∥∥
Lp

≤C(|I|)

∥∥∥∥∥∥
∑

i,i′∈Jn

Ai+̇i′

∏
l∈[d]

X
(l)
il
X

(l)
i′l

− E
∑

i,i′∈Jn

Ai+̇i′

∏
l∈[d]

X
(l)
il
X

(l)
i′l

∥∥∥∥∥∥
Lp

, (2.19)

where C(|I|) is a constant only depending on |I|.

Proof. By the assumptions on the vectors X(l),

E := E
∑

i,i′∈Jn

Ai+̇i′

∏
l∈[d]

X
(l)
il
X

(l)
i′l

=
∑
i∈Jn

Ai+̇i.

Since this is exactly the term for I = ∅ in Lemma 2.30, we obtain for the term on the right
hand side of (2.19),

b :=
∑

i,i′∈Jn

Ai+̇i′

∏
l∈[d]

X
(l)
il
X

(l)
i′l

− E
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=
∑

∅≠J⊂[d]
i,i′∈Jn(J)
j∈Jn(Jc)

A(i×̇j)+̇(i′×̇j)

∏
l∈J

[
X

(l)
il
X

(l)
i′l

− 1il=i′l

]
=:
∑
J⊂[d]
J ̸=∅

SJ .

Using these terms, we need to show that ∥SI∥Lp ≤ C(|I|)∥b∥Lp for all ∅ ≠ I ⊂ [d].
Now we prove this by induction over |I|. First assume I = {l0}. For any J ̸= ∅, I, there

exists an l ∈ J\I and then

E

[∏
l∈J

[
X

(l)
il
X

(l)
i′l

− 1il=i′l

] ∣∣∣∣X(l0)

]
= 0

since there is at least one factor whose conditional expectation is 0.
We conclude

E |SI |p =E

∣∣∣∣∣∣SI + E

 ∑
J⊂[d]:J ̸=∅,I

SJ

∣∣∣∣X(l0)

∣∣∣∣∣∣
p

=E

∣∣∣∣∣∣E
 ∑
J⊂[d]:J ̸=∅

SJ

∣∣∣∣X(l0)

∣∣∣∣∣∣
p

≤ E|b|p,

where we used Jensen’s inequality on the conditional expectation in the last step.
Now assume that we have already shown (2.19) for all ∅ ≠ I ′ ⊂ [d] with |I ′| < |I|.
For all J ⊂ [d] such that J ̸= ∅, I, one of the following holds.

� J\I = ∅, i.e., J ⊂ I: Because J ̸= I, |J | < |I|, so by induction

∥SJ∥Lp ≤ C(|J |)∥b∥Lp . (2.20)

� J\I ̸= ∅. Since there is an l′ ∈ J\I,

E

[∏
l∈J

[
X

(l)
il
X

(l)
i′l

− 1il=i′l

] ∣∣∣∣ (X(l))l∈I

]
= 0. (2.21)

The triangle inequality yields together with (2.20), that ∥SI∥Lp ≤∥∥∥∥∥∥∥∥SI +
∑
J⊂I
J ̸=∅,I

SJ

∥∥∥∥∥∥∥∥
Lp

+
∑
J⊂I
J ̸=∅,I

∥SJ∥Lp ≤

∥∥∥∥∥∥∥∥SI +
∑
J⊂I
J ̸=∅,I

SJ

∥∥∥∥∥∥∥∥
Lp

+

 ∑
J⊂I,J ̸=∅,I

C(|J |)

 ∥b∥Lp .

The first term on the right hand side can be controlled with (2.21) and Jensen’s inequality,

E

∣∣∣∣∣∣SI +
∑

J⊂I:J ̸=∅,I

SJ

∣∣∣∣∣∣
p

=E

∣∣∣∣∣∣SI +
∑

J⊂I:J ̸=∅,I

SJ + E

 ∑
J⊂[d]:J\I ̸=∅

SJ

∣∣∣∣∣ (X(l))l∈I

∣∣∣∣∣∣
p

=E

∣∣∣∣∣∣E
 ∑
J⊂[d]:J ̸=∅

SJ

∣∣∣∣∣ (X(l))l∈I

∣∣∣∣∣∣
p

≤ E|b|p.

So altogether ∥SI∥Lp ≤ C(|I|)∥b∥Lp where C(|I|) :=
∑

J⊂I:J ̸=∅,I C(|J |) + 1 depends only on
|I|.
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Now we introduced all the necessary tools and can prove the lower bound of the main result,
Theorem 2.9.

Proof of Theorem 2.9, lower bound:
For any J ⊂ I ⊂ [d], define the array A(I,J) as in the proof of the upper bound (2.17) and

α(I,J) :=

∥∥∥∥∥∥
∑

i,i′∈Jn(J∪Ic)

A
(I,J)

i+̇i′

∏
l∈Ic∪J

g
(l)
il
ḡ
(l)
i′l

∥∥∥∥∥∥
Lp

(2.22)

Step 1: Adding off-diagonal terms
Define independent Rademacher vectors (ξ(l))l∈J that are also independent of the vectors

g(1), . . . g(d), ḡ(1), . . . , ḡ(d).

Noting that Eξ[ξ
(l)
il
ξ
(l)
i′l

] = 1il=i′l
, we obtain

Eξ


∑

i,i′∈Jn(J)
k∈Jn(I\J)
j,j′∈Jn(Ic)

A(i×̇j×̇k)+̇(i′×̇j′×̇k)

∏
l∈Ic

g
(l)
jl
ḡ
(l)
j′l

∏
l∈J

(ξ
(l)
il
g
(l)
il

)(ξ
(l)
i′l
ḡ
(l)
i′l

)


=

∑
i,i′∈Jn(J∪Ic)

A
(I,J)

i+̇i′

∏
l∈Ic∪J

g
(l)
il
ḡ
(l)
i′l

Substituting into (2.22) and applying Jensen’s inequality and Fubini’s theorem yields

(α(I,J))p

= Eg,ḡ

∣∣∣∣∣∣∣∣∣Eξ

∑
i,i′∈Jn(J)

j,j′∈Jn(Ic)

∑
k∈Jn(I\J)

A(i×̇j×̇k)+̇(i′×̇j′×̇k)

∏
l∈Ic

g
(l)
jl

ḡ
(l)

j′
l

∏
l∈J

(ξ
(l)
il

g
(l)
il

)(ξ
(l)

i′
l
ḡ
(l)

i′
l
)

∣∣∣∣∣∣∣∣∣
p

≤ EξEg,ḡ

∣∣∣∣∣∣∣∣∣
∑

i,i′∈Jn(J)

j,j′∈Jn(Ic)

∑
k∈Jn(I\J)

A(i×̇j×̇k)+̇(i′×̇j′×̇k)

∏
l∈Ic

g
(l)
jl

ḡ
(l)

j′
l

∏
l∈J

(ξ
(l)
il

g
(l)
il

)(ξ
(l)

i′
l
ḡ
(l)

i′
l
)

∣∣∣∣∣∣∣∣∣
p

By the symmetry of the normal distribution, conditioned on (ξ(l))l∈J , (ξ
(l)
il
g
(l)
il
, ξ

(l)
i′l
ḡ
(l)
i′l

) and

(g
(l)
il
, ḡ

(l)
i′l

) have the same distribution. So we can conclude

α(I,J) ≤

∥∥∥∥∥∥
∑

i,i′∈Jn(J∪Ic)

∑
k∈Jn(I\J)

A(i×̇k)+̇(i′×̇k)

∏
l∈J∪Ic

g
(l)
il
ḡ
(l)
i′l

∥∥∥∥∥∥
Lp

.

Step 2: Inverse Gaussian decoupling
For every J ⊂ I ⊂ [d], we obtain then by the symmetry of A and Corollary 2.29,

α(I,J) ≤

∥∥∥∥∥∥
∑

i,i′∈Jn(J∪Ic)

∑
k∈Jn(I\J)

A(i×̇k)+̇(i′×̇k)

∏
l∈J∪Ic

[
g
(l)
il
g
(l)
i′l

− 1il=i′l

]∥∥∥∥∥∥
Lp

.

Step 3: Removing the mean subtractions in every factor
Since I\J ̸= [d], J ∪ Ic ̸= ∅ and Lemma 2.31 provides that α(I,J) ≤

C1(|J ∪ Ic|)

∥∥∥∥∥∥
∑

i,i′∈Jn

Ai+̇i′

∏
l∈[d]

g
(l)
il
g
(l)
i′l

− E
∑

i,i′∈Jn

Ai+̇i′

∏
l∈[d]

g
(l)
il
g
(l)
i′l

∥∥∥∥∥∥
Lp

.
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Adding this up over all J ⊂ I ⊂ [d], I\J ̸= [d] yields∑
J⊂I⊂[d]
I\J ̸=[d]

α(I,J)

≤ C(d)

∥∥∥∥∥∥
∑

i,i′∈Jn

Ai+̇i′

∏
l∈[d]

g
(l)
il
g
(l)
i′l

− E
∑

i,i′∈Jn

Ai+̇i′

∏
l∈[d]

g
(l)
il
g
(l)
i′l

∥∥∥∥∥∥
Lp

(2.23)

where C(d) :=
∑

J⊂I⊂[d]:I\J ̸=[d]C1(|J ∪ Ic|) depends only on d.
Step 4: Completing the proof
Restricting the left hand side in (2.23) to the terms in which J = ∅. The remaining terms

α(I,∅) only contain the arrays A(I,∅) which are equal to the A(I) from the theorem statement.
Subsequently, we can bound the α(I,∅) from below using Theorem 2.7 (similarly to the upper
bound) to obtain the lower bound in Theorem 2.9.

2.3.4 Concentration of ∥BX∥2

In this section, we apply our main results to the concentration of ∥BX∥2 where X = X(1) ⊗
· · ·⊗X(d) is a Kronecker product of independent vectors with subgaussian entries. The following
statement is a direct consequence from Theorem 2.9 and Lemma 2.21.

Corollary 2.32. Let B ∈ Rn0×N be a matrix where N = n1 . . . nd and X := X(1)⊗· · ·⊗X(d) ∈
RN a random vector as in Theorem 2.9.

Let A ∈ Rn×2
be the rearrangement of the matrix A = B∗B as an array with 2d axes. For

any I ⊂ [d], define the array A(I) as in (2.10).
For T ⊂ [2d], 1 ≤ κ ≤ 2d, denote S(T, κ) for the set of partitions of T into κ sets and

Ic = [d]\I. Define for any p ≥ 1 and any κ ∈ [2d],

mp,κ :=
∑
I⊂[d]
I ̸=[d]

∑
(I1,...,Iκ)∈S((Ic)∪(Ic+d),κ)

∥A(I)∥I1,...,Iκ

mp := L2d
2d∑
κ=1

min

{
p

κ
2
mp,κ

∥B∥F
, p

κ
4
√
mp,κ

}
Then there is a constant C(d) > 0, depending only on d, such that for all p ≥ 1,

∥∥BX∥2 − ∥B∥F ∥Lp
≤ C(d)mp.

If in addition, X(1) ∼ N(0, Idn1), . . . , X(d) ∼ N(0, Idnd
) are normally distributed (i.e., L is

constant) and A satisfies the symmetry condition (2.11), then also the lower bound

C̃(d)mp ≤ ∥∥BX∥2 − ∥B∥F ∥Lp

holds for all p ≥ 1. Above, C̃(d) > 0 that depends only on d.

Lemma 2.33. Let B ∈ Rn1×···×nd. Assume that I1, . . . , Iκ is a partition of [d]. Let Īκ∪Īκ+1 = Iκ
be a partition into two subsets. Then

∥B∥I1,...,Iκ−1,Īκ,Īκ+1
≤ ∥B∥I1,...,Iκ

≤

√√√√√min

∏
l∈Īκ

nl,
∏

l∈Īκ+1

nl

∥B∥I1,...,Iκ−1,Īκ,Īκ+1
.
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Proof. Take arrays α(1) ∈ Rn(I1), . . . , α
(κ−1) ∈ Rn(Iκ−1), ᾱ

(κ) ∈ Rn(Īκ), ᾱ(κ+1) ∈ Rn(Īκ+1),

with Frobenius norm 1 each, such that ∥B∥I1,...,Iκ−1,Īκ,Īκ+1
=
∑

i∈Jn Biα
(1)
iI1
. . . α

(κ−1)
iIκ−1

ᾱ
(κ)
iĪκ
ᾱ
(κ+1)
iĪκ+1

.

Now define α(κ) ∈ Rn(Iκ) by α
(κ)
i = ᾱ

(κ)
iĪκ
ᾱ
(κ+1)
iĪκ+1

for every i ∈ Jn(Iκ). Then ∥α(κ)∥2 = 1 and by

the definition of ∥ · ∥I1,...,Iκ as the supremum over α(1), . . . , α(κ), we obtain

∥B∥I1,...,Iκ−1,Īκ,Īκ+1
=
∑
i∈Jn

Biα
(1)
iI1
. . . α

(κ)
iIκ

≤ ∥B∥I1,...,Iκ ,

which proves the first inequality.
To prove the second inequality, take arrays α(1) ∈ Rn(I1), . . . , α

(κ) ∈ Rn(Iκ) such that

∥B∥I1,...,Iκ =
∑
i∈Jn

Biα
(1)
iI1
. . . α

(κ)
iIκ
.

Now define B̃ ∈ Rn(Iκ) such that for all i ∈ Jn(Īκ), j ∈ Jn(Īκ+1),

B̃i×̇j =
∑

k∈Jn([d]\Iκ)

Bi×̇j×̇kα
(1)
kI1

. . . α
(κ−1)
kIκ−1

.

For N1 :=
∏
l∈Īκ nl and N2 :=

∏
l∈Īκ+1

nl, we can interpret B̃ as a matrix B̃ ∈ RN1×N2 with

rows indexed by i ∈ Jn(Īκ) and columns indexed by j ∈ Jn(Īκ+1).
Then

∥B̃∥F = sup
β∈Rn(Iκ),∥β∥2=1

∑
i∈Jn(Iκ)

B̃iβi,

∥B̃∥2→2 = sup
β(1)∈Rn(Īκ),β(2)∈Rn(Īκ+1),

∥β(1)∥2=∥β(2)∥2=1

∑
i∈Jn(Īκ)

j∈Jn(Īκ+1)

B̃i×̇jβ
(1)
i β

(2)
j ,

such that

∥B̃∥F = sup
β∈Rn(Iκ),∥β∥2=1

∑
i∈Jn(Iκ)

∑
k∈Jn([d]\Iκ)

Bi×̇kα
(1)
kI1

. . . α
(κ−1)
kIκ−1

βi

= sup
β∈Rn(Iκ),∥β∥2=1

∑
i∈Jn

Biα
(1)
iI1
. . . α

(κ−1)
iIκ−1

βiIκ ,

where by definition the maximum is attained at β = α(κ), implying

∥B̃∥F = ∥B∥I1,...,Iκ . (2.24)

For the spectral norm, we obtain from the definition of ∥ · ∥I1,...,Iκ−1,Īκ,Īκ+1
,

∥B̃∥2→2

= sup
β(1)∈Rn(Īκ),β(2)∈Rn(Īκ+1),

∥β(1)∥2=∥β(2)∥2=1

∑
i∈Jn(Īκ)

j∈Jn(Īκ+1)

∑
k∈Jn([d]\Iκ)

Bi×̇j×̇kα
(1)
kI1

. . . α
(κ−1)
kIκ−1

β
(1)
i β

(2)
j

= sup
β(1)∈Rn(Īκ),β(2)∈Rn(Īκ+1),

∥β(1)∥2=∥β(2)∥2=1

∑
i∈Jn

Biα
(1)
i . . . α

(κ−1)
iIκ−1

β
(1)
iĪκ
β
(2)
j̄iκ+1

≤ ∥B∥I1,...,Iκ−1,Īκ,Īκ+1
. (2.25)

The second inequality now follows from (2.24), (2.25) and the general property of matrices that

∥B̃∥F ≤
√

rank(B̃)∥B̃∥2→2 ≤
√

min{N1, N2}∥B̃∥2→2.
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Lemma 2.34. Let A ∈ Rn×2
, I ⊂ [d]. Define A(I) as in (2.10).

Let I1, . . . , Iκ be a partition of ([d]\I)∪ (d+([d]\I)). Let Iκ+1, . . . , Iκ+|I| be the sets {j, j+d}
for every j ∈ I. Then I1, . . . , Iκ+|I| is a paritition of [2d] and

∥A(I)∥I1,...,Iκ ≤
√∏

l∈I
nl∥A∥I1,...,Iκ+|I|

Proof. Take α(1) ∈ Rn×2
(I1), . . . , α

(κ) ∈ Rn×2
(Iκ), all having a Frobenius norm of 1, such that

∥A(I)∥I1,...,Iκ =
∑

i∈Jn×2 (Ic∪(Ic+d))

A
(I)
i α

(1)
iI1
. . . α

(κ)
iIκ

=
∑

i∈Jn×2
(Ic∪(Ic+d))

∑
k∈Jn(I)

Ai×̇(k+̇k)α
(1)
iI1
. . . α

(κ)
iIκ

=
∑

i∈Jn×2

Aiα
(1)
iI1
. . . α

(κ)
iIκ
1∀l∈I:il=il+d

. (2.26)

Now define α(κ+1) ∈ Rn×2
({j1, j1 + d}), . . . , α(κ+|I|) ∈ Rn×2

({j|I|, j|I| + d}) (where I =

{j1, . . . , j|I|}) such that for all r ∈ [|I|] and i ∈ Jn×2
({jr, jr + d}),

α
(κ+r)
i =

{
1√
njr

if ijr = ijr+d

0 otherwise.

Then for i ∈ Jn×2
(I ∪ (I + d))

α
(κ+1)
iIκ+1

. . . α
(κ+|I|)
iIκ+|I|

=
1√∏
l∈I nl

1∀l∈I:il=il+d

Substituting this into (2.26) yields

∥A(I)∥I1,...,Iκ =

√∏
l∈I

nl
∑

i∈Jn×2

Aiα
(1)
iI1
. . . α

(κ)
iIκ
α
(κ+1)
iIκ+1

. . . α
(κ+|I|)
iIκ+|I|

≤
√∏

l∈I
nl∥A∥I1,...,Iκ+|I|

Using the aforementioned results, we can give the proof of Theorem 2.13 about ∥B(X(1) ⊗
· · · ⊗ X(d))∥2 in which we find suitable bounds for all the tensor norms of B∗B in terms of
∥B∥2→2 and ∥B∥F .

Proof of Theorem 2.13. Let A := B∗B ∈ Rnd×nd
and A ∈ Rn×2

be the corresponding array of
order 2d obtained by rearranging A for n = (n, . . . , n). Note that here the dimensions along all
axes are equal. For I ⊂ [2d], define A(I) as in Corollary 2.32.

Step 1: Showing the norm inequalities

∥A(I)∥I1,...,Iκ ≤ n
|I|
2 ∥A∥F ∥A(I)∥I1,...,Iκ ≤ nd−

κ
2 ∥A∥2→2. (2.27)

In both cases, we start by extending I1, . . . , Iκ to I1, . . . , Iκ+|I| as in Lemma 2.34, obtaining

∥A(I)∥I1,...,Iκ ≤ n
|I|
2 ∥A∥I1,...,Iκ+|I| (2.28)

69



Then the first inequality of (2.27) follows by repeatedly joining all the sets I1, . . . , Iκ+|I| in the
sense of Lemma 2.33 (first inequality) yielding ∥A∥I1,...,Iκ+|I| ≤ ∥A∥[2d] = ∥A∥F .

For the second inequality in (2.27), we distinguish two cases. First assume that κ ≤ d− |I|.
Then |I| ≤ d−κ. Since A is a matrix in Rnd×nd

, ∥A∥2→2 ≤ n
d
2 ∥A∥F and with the first inequality

in (2.27), we obtain

∥A(I)∥I1,...,Iκ ≤ n
|I|
2 n

d
2 ∥A∥2→2 ≤ n

d−κ
2 n

d
2 ∥A∥2→2 = nd−

κ
2 ∥A∥2→2.

In the other case that κ > d − |I|, denote κ′ for the number of sets among I1, . . . , Iκ that
only contain one element. Since each of the other sets must contain at least two elements, this
leads to the inequality

κ′ + 2(κ− κ′) ≤ |I1 ∪ · · · ∪ Iκ| ⇒ 2κ− κ′ ≤ 2(d− |I|) ⇒ κ′ ≥ 2(κ− d+ |I|).

This implies that among I1, . . . , Iκ, there must be at least κ− d+ |I| sets with exactly one
element that are all contained in [d] or all contained in [2d]\[d]. Without loss of generality, we
can assume that these are I1, . . . , Iκ−d+|I|. Now take the unions Ī1 := I1 ∪ · · · ∪ Iκ−d+|I| and
Ī2 := Iκ−d+|I|+1 ∪ · · · ∪ Iκ+|I|. With (2.28) and the first inequality of Lemma 2.33, we obtain

∥A(I)∥I1,...,Iκ ≤ n
|I|
2 ∥A∥Ī1,Ī2 .

Now split up Ī2 into Ī2,1 := Ī2∩ [d] and Ī2,2 := Ī2∩ ([2d]\[d]). If neither Ī2,1 nor Ī2,2 is empty,
then with the second inequality of Lemma 2.33, we obtain

∥A(I)∥I1,...,Iκ ≤n
|I|
2 n

1
2
min{|Ī2,1|,|Ī2,2|}∥A∥Ī1,Ī2,1,Ī2,2

≤n
|I|
2
+ 1

2
min{|Ī2,1|,|Ī2,2|}∥A∥[d],([2d]\[d]),

where in the last step we used the first inequality in Lemma 2.33 with the fact that Ī1∪Ī2,1∪Ī2,2 =
[2d] and each of these three sets is contained in either [d] or [2d]\[d]. Note that the inequality
between the first and the third term still holds in the case that Ī2,1 or Ī2,2 is empty and thus
Lemma 8.4 cannot be applied in the first step.

Now assume Ī1 ⊂ [d] (otherwise Ī1 ⊂ [2d]\[d] and the proof works analogously). Then
Ī1 ∪ Ī2,1 = [d] and Ī2,1 = [2d]\[d]. So min{|Ī2,1|, |Ī2,2|} = |Ī2,1| = d − |Ī1| = d − (κ − d + |I|) =
2d− κ− |I|. This implies

∥A(I)∥I1,...,Iκ ≤ n
|I|
2
+ 1

2
(2d−κ−|I|)∥A∥[d],([2d]\[d]) = nd−

κ
2 ∥A∥2→2.

This completes the proof of (2.27).
Step 2: Moment and tail bounds
Now, use Corollary 2.32 and its notation of mp,κ and mp. The number of terms in the sum

of the definition of mp,κ only depends on d. This fact together with (2.27) leads to

mp,κ ≤C1(d) max
I⊂[d],I ̸=[d]

n
|I|
2 ∥A∥F = C1(d)n

d−1
2 ∥A∥F ≤ C1(d)n

d−1
2 ∥B∥2∥B∥F .

mp,κ ≤C1(d)nd−
κ
2 ∥A∥2→2 = C1(d)nd−

κ
2 ∥B∥22→2,

where C1(d) is a constant depending only on d. Furthermore, we obtain

mp ≤ C1(d)L2d

·
2d∑
κ=1

min

{
p

κ
2 n

d−1
2 ∥B∥2→2, p

κ
2 nd−

κ
2
∥B∥22→2

∥B∥F
,
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p
κ
4 n

d−1
4

√
∥B∥2→2∥B∥F , p

κ
4 n

d
2
−κ

4 ∥B∥2→2

}
.

Since this is an upper bound on the Lp norm of ∥BX∥2 − ∥B∥F , Lemma 2.22 implies

P (|∥BX∥2 − ∥B∥F | > t) ≤ e2 exp

(
−C2(d) min

κ∈[2d]
βκ

)
where

βκ := max

{(
t

n
d−1
2 ∥B∥2→2

) 2
κ

,

(
t∥B∥F

nd−
κ
2 ∥B∥22→2

) 2
κ

,

(
t

n
d−1
4

√
∥B∥2→2∥B∥F

) 4
κ

,

(
t

n
d
2
−κ

4 ∥B∥2→2

) 4
κ
}
. (2.29)

Now, for each of multiple different ranges of t, we select one of the four terms in (2.29).

Step 3: Bound for t ≤ n
d
2 ∥B∥2→2

For κ = 1, we obtain using the first term in (2.29), β1 ≥
(
t/(n

d−1
2 ∥B∥2→2)

)2
.

For κ ≥ 2, we can use the fourth term in (2.29) to show the same bound because

βκ ≥

(
t

n
d
2
−κ

4 ∥B∥2→2

) 4
κ

= n

(
t

n
d
2 ∥B∥2→2

) 4
κ

≥n

(
t

n
d
2 ∥B∥2→2

)2

=
t2

nd−1∥B∥22→2

.

This implies that

P (|∥BX∥2 − ∥B∥F | > t) ≤ e2 exp

(
−C2(d)

t2

nd−1∥B∥22→2

)
.

Step 5: Bound for t ≥ n
d
2 ∥B∥2→2

For all κ ∈ [2d], using the fourth term in (2.29) yields

βκ ≥

(
t

n
d
2
−κ

4 ∥B∥2→2

) 4
κ

= n

(
t

n
d
2 ∥B∥2→2

) 4
κ

≥n

(
t

n
d
2 ∥B∥2→2

) 4
2d

=

(
t

∥B∥2→2

) 2
d

,

such that

P (|∥BX∥2 − ∥B∥F | > t) ≤ e2 exp

(
−C2(d)

(
t

∥B∥2→2

) 2
d

)
.

Step 6: Bound for n
d−1
4 ∥B∥2→2 ≤ t ≤ n

d−1
4 ∥B∥F

Using the third term in (2.29), we obtain that

βκ ≥

(
t2

n
d−1
2 ∥B∥2→2∥B∥F

) 2
κ

≥

(
tn

d−1
4 ∥B∥2→2

n
d−1
2 ∥B∥2→2∥B∥F

) 2
κ
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=

(
t

n
d−1
4 ∥B∥F

) 2
κ

≥ t2

n
d−1
2 ∥B∥2F

,

implying

P (|∥BX∥2 − ∥B∥F | > t) ≤ e2 exp

(
−C2(d)

t2

n
d−1
2 ∥B∥2F

)
.

2.4 Discussion

In total, for a chaos of the type

n∑
i1,...,i2d=1

Ai1,...,id,id+1,...,i2dX
(1)
i1
. . . X

(d)
id
X

(1)
id+1

. . . X
(d)
i2d
,

we have shown moment bounds that are tight (up to dependence on d) for the Gaussian case.
Along with this, we have also shown a specific decoupling inequality for the above expression
and improved moment and tail bounds for ∥B(X(1) ⊗ · · · ⊗X(d))∥2.

One particular application of this is the arbitrary order case of the Johnson-Lindenstrauss
embeddings studied in Section 1. In Section 2.5, we complete this proof by making use of the
decoupling Theorem 2.11, more specifically the Rademacher case (Remark 2.12) in which the
terms significantly simplify.

2.5 Proof of the General Case of Section 1

2.5.1 Overview

In this Section 2.5, we prove the general version of Theorem 2.9 for arbitrary d ≥ 1. This proof
is a generalization of the one in Section 1.5 and follows an analogous outline.

Presenting the general case for arbitrary order arrays yields some notational difficulties
which is why we present this proof using the special notation for indices and arrays which we
introduced in Section 2.1.4. We will also use the decoupling Theorem 2.11. Using this particular
notation in the subsequent Section 2.5.2, we will adjust Theorem 2.11 to this situation and show
Theorem 2.35 that generalizes Lemma 1.11 that we used for the case d = 2. Then Section 2.5.3
presents the main part of the proof analogously to Section 1.5.3 for the case d = 2. We will
generalize the distribution of the entries x = x(∅) + x({1}) + x({2}) + x({1,2}) from the simplified
case to a general x =

∑
S⊂[d] x

(S) where the sum runs over all subsets S ⊂ [d]. Again, using
a general tensor norm bound ((2.35) which is analogous to (1.13)), we can complete the proof.
In the last Section 2.5.4, we complete the proof by showing the remaining inequality (2.35) for
which we use the same Lemma 1.12 as for the previous simplified case.

2.5.2 Decoupling

In this first step, we establish a generalization of Lemma 1.11 by using the decoupling Theo-
rem 2.11 along with Remark 2.12 and by taking into account that we will consider higher order
chaos expressions for arrays A ∈ Rn×2

such that

Ai+̇i′ = Bi+̇i′xixi′

for all i, i′ ∈ Jn, where B ∈ Rn×2
and x ∈ Rn. Specifically, we need to obtain norm bounds that

hold for one particular choice of B but all x ∈ Rn. This leads to the following statement.
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Theorem 2.35. Let B ∈ Rn×2
and ξ(1) ∈ {±1}n1 , . . . , ξ(d) ∈ {±1}nd be independent Rade-

macher vectors. Define ξ ∈ Rn by

ξi =
d∏
l=1

ξ
(l)
il
.

and let ξ̄ be an independent copy of ξ. Let p ≥ 1.
Assume that for all x ∈ Rn, ∥x∥2 = 1, it holds that∥∥∥∥∥∥

∑
i,i′∈Jn

Bi+̇i′xixi′ξiξ̄i′

∥∥∥∥∥∥
Lp

≤ γp.

Then also for all x ∈ Rn, ∥x∥2 = 1, it holds that∥∥∥∥∥∥
∑

i,i′∈Jn

Bi+̇i′xixi′ξiξi′

∥∥∥∥∥∥
Lp

≤ 5dγp.

Proof. By Theorem Theorem 2.11 and Remark 2.12,∥∥∥∥∥∥
∑

i,i′∈Jn

Bi+̇i′xixi′ξiξi′ − E
∑

i,i′∈Jn

Bi+̇i′xixi′ξiξi′

∥∥∥∥∥∥
Lp

≤
∑
I⊂[d]
I ̸=[d]

4d−|I|∥S̄I∥Lp (2.30)

for
S̄I :=

∑
i∈Jn(I)

∑
j,j′∈Jn(Ic)

B(i×̇j)+̇(i×̇j′)xi×̇jxi×̇j′

∏
l∈Ic

ξ
(l)
jl
ξ̄
(l)
j′l
.

Furthermore, by the definition of Rademacher vectors, for any i, i′ ∈ Jn,

E[ξiξi′ ] =

{
1 if i = i′

0 otherwise,

such that
E
∑

i,i′∈Jn

Bi+̇i′xixi′ξiξi′ =
∑
i∈Jn

Bi+̇ixixi = S̄[d].

So by the triangle inequality and (2.30),∥∥∥∥∥∥
∑

i,i′∈Jn

Bi+̇i′xixi′ξiξi′

∥∥∥∥∥∥
Lp

≤
∑
I⊂[d]

4d−|I|∥S̄I∥Lp . (2.31)

Now fix I ⊂ [d] and for each i ∈ Jn(I), define

x
(i)

i′×̇j
=

{
xi×̇j if i′ = i

0 otherwise.

for i′ ∈ Jn(I), j ∈ Jn(Ic).
This gives us

S̄I =
∑

ī∈Jn(I)

∑
i,i′∈Jn(I)

∑
j,j′∈Jn(Ic)

B(i×̇j)+̇(i×̇j′)x
(̄i)

i×̇j
x
(̄i)

i′×̇j′

∏
l∈Ic

ξ
(l)
jl
ξ̄
(l)
j′l

=
∑

ī∈Jn(I)

∑
i,i′∈Jn

Bi+̇i′x
(̄i)
i x

(̄i)
i′

∏
l∈Ic

ξ
(l)
il
ξ̄
(l)
i′l
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Note that each summand is non-zero only if iI = i′I = ī and in that case

∏
l∈Ic

ξ
(l)
il
ξ̄
(l)
i′l

· 1 =
∏
l∈Ic

ξ
(l)
il
ξ̄
(l)
i′l

·

(∏
l∈I

ξ
(l)

īl
ξ̄
(l)

īl

)2

= ξiξ̄i′ ·
∏
l∈I

ξ
(l)

īl
ξ̄
(l)

īl
.

So this yields

S̄I =
∑

ī∈Jn(I)

(∏
l∈I

ξ
(l)

īl
ξ̄
(l)

īl

) ∑
i,i′∈Jn

Bi+̇i′x
(̄i)
i x

(̄i)
i′ ξiξ̄i′ .

Because all the Rademacher variables are ±1, it holds that
∣∣∣∏l∈I ξ

(l)

īl
ξ̄
(l)

īl

∣∣∣ = 1. Using this

and the triangle inequality, we obtain

∥S̄I∥Lp ≤
∑

ī∈Jn(I)

∥∥∥∥∥∥
∣∣∣∣∣∏
l∈I

ξ
(l)

īl
ξ̄
(l)

īl

∣∣∣∣∣
∣∣∣∣∣∣
∑

i,i′∈Jn

Bi+̇i′x
(̄i)
i x

(̄i)
i′ ξiξi′

∣∣∣∣∣∣
∥∥∥∥∥∥
Lp

=
∑

ī∈Jn(I)

∥∥∥∥∥∥
∑

i,i′∈Jn

Bi+̇i′x
(̄i)
i x

(̄i)
i′ ξiξi′

∥∥∥∥∥∥
Lp

=:
∑

ī∈Jn(I)

∥S̄I,̄i∥Lp .

If ∥x(̄i)∥2 = 0, then ∥S̄I,̄i∥Lp = 0 = ∥x(̄i)∥22 · γp. Otherwise, the array with entries
x
(̄i)
i

∥x(̄i)∥2
has

a ∥ · ∥2 norm of 1 and by the assumption of the theorem

∥S̄I,̄i∥Lp ≤ ∥x(̄i)∥22γp

which then holds in all cases and this implies

∥S̄I∥Lp ≤
∑

ī∈Jn(I)

∥x(̄i)∥22γp = ∥x∥22γp = γp.

Substituting into (2.31) yields∥∥∥∥∥∥
∑

i,i′∈Jn

Bi+̇i′xixi′ξiξi′

∥∥∥∥∥∥
Lp

≤
∑
I⊂[d]

4d−|I|γp =

d∑
k=0

∑
I⊂[d]
|I|=k

4d−kγp.

Noting that there are precisely
(
d
k

)
sets I ⊂ [d] with |I| = k, such that this is

γp

d∑
k=0

(
d

k

)
4d−k · 1k = γp(4 + 1)d = 5dγp,

which is the desired upper bound.

2.5.3 Proof of Theorem 2.9

Since every vector x ∈ RN can be rearranged to an array in Rn, it is sufficient to prove

P
(∣∣∥A vec(x)∥22 − ∥x∥22

∣∣ > ϵ
)
≤ η

for any x ∈ Rn with ∥x∥2 = 1. So take an arbitrary such x.
Splitting up x into x(S):
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For every subset S ⊂ [d], define the set K(S) ⊂ Jn of indices in the following way: For each
j ∈ Jn(Sc), choose s|S| indices i ∈ Jn(S) with the largest |xi×̇j| and K(S) is the set of all i×̇j
obtained in this way.

Now for every index i ∈ Jn, choose S(i) to be a set S ⊂ [d] of largest cardinality such that
i ∈ K(S). Since K(∅) = Jn, such an S always exists.

Then for any set S ⊂ [d], define x(S) ∈ Rn such that for each i ∈ Jn,

x
(S)
i :=

{
xi if S(i) = S

0 otherwise.

Since for every index i ∈ Jn, we chose exactly one S(i),

x =
∑
S⊂[d]

x(S).

A direct consequence from these definitions is the following lemma.

Lemma 2.36. Let S ⊂ [d]. For any index j ∈ Jn(Sc), there can be at most s|S| different indices
i ∈ Jn(S) such that

x
(S)

i×̇j
̸= 0.

Proof. Fix j ∈ Jn(Sc).

If x
(S)

i×̇j
̸= 0 holds for i ∈ Jn(S), then S(i×̇j) = S, implying that i×̇j ∈ K(S). By definition

of K(S) however, this can only be the case for s|S| different indices i ∈ Jn(S).

Lemma 2.37. For any S, T ⊂ [d] with |S| < |T | and any k ∈ Jn(T c),

max
j∈Jn(T )

|x(S)
j×̇k

|2 ≤ 1

s|T |

∑
j∈Jn(T )

|xj×̇k|
2.

Proof. Let S, T ⊂ [d], |S| < |T | and k ∈ Jn(T c). Choose j0 ∈ Jn(T ) such that |x(S)
j0×̇k

| is

maximal.
If |x(S)

j0×̇k
| = 0, then the claim is fulfilled. Otherwise we know that S(j0×̇k) = S. Especially,

this implies that j0×̇k /∈ K(T ) since |T | > |S|. By the definition of K(T ), there is a set
J̄ ⊂ Jn(T ) of s|T | indices such that for all j ∈ J̄,

|xj×̇k| ≥ |xj0×̇k|.

Assuming that |x(S)
j0×̇k

|2 > 1
s|T |

∑
j∈Jn(T ) |xj×̇k|2 implies

∑
j∈Jn(T )

|xj×̇k|
2 ≥

∑
j∈J̄

|xj×̇k|
2 ≥

∑
j∈J̄

|xj0×̇k|
2

=|J̄||xj0×̇k|
2 ≥ s|T ||x(S)

j0×̇k
|2

>s|T |
1

s|T |

∑
j∈Jn(T )

|xj×̇k|
2 =

∑
j∈Jn(T )

|xj×̇k|
2.

This is a contradiction which completes the proof.

Lemma 2.38. Let S, T ⊂ [d] and S ∩ T = ∅. Then for any index k ∈ Jn([d]\(S ∪ T )),

max
j∈Jn(T )

∑
i∈Jn(S)

|x(S)
i×̇j×̇k

|2 ≤ 1

s|T |

∑
j∈Jn(T )

∑
i∈Jn(S)

|xi×̇j×̇k|
2.
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Proof. If T = ∅, then s|T | = 1 and Jn(T ) has exactly one element such that the claim holds

since |x(S)
i×̇j×̇k

| ≤ |xi×̇j×̇k| for any indices i ∈ Jn(S), j ∈ Jn(T ), k ∈ Jn([d]\(S ∪ T )). So we can

assume that T ̸= ∅.
Then we can apply Lemma 2.37 to the sets S and S ∪ T . Since S and T are disjoint and

T ̸= ∅, |S ∪ T | > |S|. The lemma yields that for any k ∈ Jn([d]\(S ∪ T )),

max
j∈Jn(S∪T )

|x(S)
j×̇k

|2 ≤ 1

s|S∪T |

∑
j∈Jn(S∪T )

|xj×̇k|
2.

We can rewrite this as

max
i∈Jn(S)

max
j∈Jn(T )

|x(S)
i×̇j×̇k

|2 ≤ 1

s|S|+|T |

∑
i∈Jn(S)

∑
j∈Jn(T )

|xi×̇j×̇k|
2. (2.32)

By Lemma 2.36, for fixed j ∈ Jn(T ) and k ∈ Jn([d]\(S ∪ T )), there are at most 2|S| indices

i ∈ Jn(S) such that x
(S)

i×̇j×̇k
̸= 0. Thus we obtain

max
j∈Jn(T )

∑
i∈Jn(S)

|x(S)
i×̇j×̇k

|2 ≤ max
j∈Jn(T )

s|S| max
i∈Jn(S)

|x(S)
i×̇j×̇k

|2

Combining this with (2.32) yields

max
j∈Jn(T )

∑
i∈Jn(S)

|x(S)
i×̇j×̇k

|2 ≤ s|S|

s|S|+|T |

∑
i∈Jn(S)

∑
j∈Jn(T )

|xi×̇j×̇k|
2

=
1

s|T |

∑
i∈Jn(S)

∑
j∈Jn(T )

|xi×̇j×̇k|
2.

Let N = n1n2 . . . nd and assume that the matrix Φ ∈ Rm×N has the (4sd, δ)-RIP. We
regard the matrix Φ∗Φ − IdN ∈ RN×N as an array B of order 2d with dimensions n×2 =
(n1, . . . , nd, n1, . . . , nd) such that for all i, i′ ∈ Jn,

Bi+̇i′ =
m∑
k=1

Φk,In(i)Φk,In(i′) − 1i=i′ . (2.33)

Then for any arrays x,y ∈ Rn,

⟨Φ vec(x),Φ vec(y)⟩ − ⟨vec(x), vec(y)⟩ =
∑

i,i′∈Jn

Bi+̇i′xiyi′

Let ξ ∈ Rn be the Rademacher tensor of order d, i.e., for j ∈ Jn,

ξj = ξ
(1)
j1
. . . ξ

(d)
jd

where ξ(1), . . . , ξ(d) are the independent Rademacher vectors from the assumption of Theorem
2.9. Let ξ̄(1), . . . , ξ̄(d) and ξ̄ be corresponding independent copies.

Consider the norm deviation represented by the chaos

X̃ := ⟨A vec(x), A vec(x)⟩ − ⟨vec(x), vec(x)⟩ =
∑

i,i′∈Jn

Bi+̇i′xixi′ξiξi′
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and the corresponding decoupled chaos

X :=
∑

i,i′∈Jn

Bi+̇i′xixi′ξiξ̄i′

Our goal is to bound the moments of |X| which will also lead to bounds on the moments of
|X̃| =

∣∣∥A vec(x)∥22 − ∥x∥22
∣∣ by the application of the decoupling Theorem 2.35. This in turn,

will lead to the proof of Theorem 2.9.
Fix S, T ⊂ [d]. Define the sums

X̃(S,T ) := ⟨A vec(x(S)), A vec(x(T ))⟩ − ⟨vec(x(S)), vec(x(T ))⟩

=
∑

i,i′∈Jn

Bi+̇i′ξiξi′x
(S)
i x

(T )
i′

and their decoupled counterparts

X(S,T ) :=
∑

i,i′∈Jn

Bi+̇i′ξiξ̄i′x
(S)
i x

(T )
i′

such that

X =
∑

S,T⊂[d]

X(S,T ) and X̃ =
∑

S,T⊂[d]

X̃(S,T ).

We obtain

X(S,T ) :=
∑

j∈Jn(Sc),k∈Jn(S)
j′∈Jn(T c),k′∈Jn(T )

B(j×̇k)+̇(j′×̇k′)ξj×̇kξ̄j′×̇k′x
(S)

j×̇k
x
(T )

j′×̇k′

Now for any set Ĩ ⊂ [d], define the array ξ(Ĩ) ∈ Rn(Ĩ) by

ξ
(Ĩ)
j =

∏
l∈Ĩ

ξ
(l)
jl

for any j ∈ Jn(Ĩ) and analogously for ξ̄.
With this, we obtain

X(S,T ) =
∑

j∈Jn(Sc),k∈Jn(S)
j′∈Jn(T c),k′∈Jn(T )

B(j×̇k)+̇(j′×̇k′)ξ
(S)
k ξ

(Sc)
j ξ̄

(T )
k′ ξ̄

(T c)
j′ x

(S)

j×̇k
x
(T )

j′×̇k′ . (2.34)

Note that ξ(S), ξ(S
c), ξ̄(T ), ξ̄(T

c) are independent. Condition on ξ(S) and ξ̄(T ) and treat
(2.34) as a chaos of order 2d−|S|− |T | (depending on ξ(S

c) and ξ̄(T
c)) with corresponding index

array B(S,T ) given by

B
(S,T )

j×̇j′
=

∑
k∈Jn(S),k′∈Jn(T )

B(j×̇k)+̇(j′×̇k′)ξ
(S)
k ξ̄

(T )
k′ x

(S)

j×̇k
x
(T )

j′×̇k′

for j ∈ Jn(Sc), j′ ∈ Jn(T c). If (S, T ) ̸= ([d], [d]), then the chaos order is ≥ 1 and we can apply the
chaos norm bound Theorem 1.7 for which we need to control the tensor norms ∥B(S,T )∥I1,...,Iκ .
Note that any array with varying dimensions along the axes can be extended by 0 entries to an
array with equal dimensions along all axes.

Let 1 ≤ κ ≤ 2d − |S| − |T | and I1, . . . , Iκ be a partition of the set [2d]\(S ∪ (T + d)). Let
α(l) ∈ Rn×2

(Il) and ∥α(l)∥2 = 1 for 1 ≤ l ≤ κ. In this notation, we obtain for the norm,

∥B(S,T )∥I1,...,Iκ = sup
α(1),...,α(κ)

∑
i∈Jn×2 (I1∪···∪Iκ)

B
(S,T )
i α

(1)
iI1
. . . α

(κ)
iIκ
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where the supremum is taken over all possible choices of the aforementioned arrays α(1), . . . ,α(κ).
We will show that for all S, T ⊂ [d], (S, T ) ̸= ([d], [d]) and all partitions I1, . . . , Iκ of [2d]\(S∪

(T + d)) into non-empty disjoint sets,

∥B(S,T )∥I1,...,Iκ ≤ 4
δ

s
κ
2

. (2.35)

The proof of this inequality is postponed to Subsection 2.5.4. At this point we complete the
proof using that (2.35) holds.

With the moment bound (Theorem 1.7), this implies that for (S, T ) ̸= ([d], [d]) and p ≥ 2,

∥X(S,T )∥Lp ≤ C1(d)

2d∑
κ=1

p
κ
2
δ

s
κ
2

with C1(d) depending only on d. For the remaining case (S, T ) = ([d], [d]), observe that according

to Lemma 2.36, there are only sd indices i ∈ Jn such that x
([d])
i ̸= 0, i.e., x([d]) is sd-sparse. We

obtain

X([d],[d]) =
∑

k,k′∈Jn

Bk+̇k′ξkξ̄k′x
([d])
k x

([d])
k′

=
〈

vec(x([d])) ◦ (ξ(1) ⊗ · · · ⊗ ξ(d)), (Φ∗Φ − IdN )(vec(x([d])) ◦ (ξ̄(1) ⊗ · · · ⊗ ξ̄(d)))
〉
,

where ◦ denotes the element-wise product. Since vec(x([d])) is an sd-sparse vector with norm
∥ vec(x([d]))∥2 ≤ 1, we can use Lemma 1.8 with the RIP of Φ to bound

|X([d],[d])| ≤ δ.

So altogether, we obtain for a C2(d) depending only on d,

∥X∥Lp ≤
∑

S,T⊂[d]

∥X(S,T )∥Lp ≤ C2(d)

2d∑
κ=0

p
κ
2
δ

s
κ
2

.

This moment bound holds for all ∥x∥2 = 1 so by Theorem 2.35, we also obtain

∥X̃∥Lp ≤ C3(d)

2d∑
κ=0

p
κ
2
δ

s
κ
2

,

where C3(d) > 0 only depends on d. Using the particular choice p = s ≥ 2, we obtain,

∥X̃∥Ls ≤ C3(d)

2d∑
κ=0

s
κ
2
δ

s
κ
2

= δ(2d+ 1)C3(d).

Finally, applying Markov’s inequality implies for δ ≤ 1
(2d+1)eC3(d)

ϵ,

P
(∣∣∥A vec(x)∥22 − ∥x∥22

∣∣ > ϵ
)

= P (|X| > ϵ) ≤
(
∥X∥Ls

ϵ

)s
≤
(
δ(2d+ 1)C3(d)

ϵ

)s
≤ e−s ≤ η

for s ≥ log 1
η .
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2.5.4 Bounding the Tensor Norms

In this subsection, we complete the proof by showing the remaining inequality (2.35) for all
(S, T ) ̸= ([d], [d]) and partitions I1, . . . , Iκ of [2d]\(S ∪ (T + d)) into non-empty disjoint sets.

The partition sets I1, . . . , Iκ can contain elements of [d] and of [2d]\[d]. Analogously to
Subsection 1.5.4, we separate them by whether they intersect only [d], only [2d]\[d] or both of
them. In this sense, we define

Ī =
⋃

j∈[κ]:Ij⊂[d]

Ij , Ī ′ =
⋃

j∈[κ]:Ij⊂([2d]\[d])

Ij

¯̄J = (I1 ∪ · · · ∪ Iκ)\(Ī ∪ Ī ′), J̄ = ¯̄J ∩ [d], J̄ ′ = ¯̄J ∩ ([2d]\[d]).

Joining partition sets does not increase the corresponding partition norm by Lemma 1.6.
Note that this lemma can also applied to arrays which do not have the same dimension n along
all the axes since any array can be turned into one of those by extending it by zero entries. Thus
we obtain,

∥B(S,T )∥I1,...,Iκ ≤ ∥B(S,T )∥Ī,Ī′, ¯̄J
= sup

α(1),α(2),α(3)

∑
i,i′∈Jn

Bi,i′x
(S)
i x

(T )
i′ ξ

(S)
iS
ξ̄
(T )
i′T
α
(1)

(i+̇i′)Ī
α
(2)

(i+̇i′)Ī′
α
(3)

(i+̇i′) ¯̄J

,

where the supremum is taken over all α(1) ∈ Rn×2
(Ī), α(2) ∈ Rn×2

(Ī ′), α(3) ∈ Rn×2
( ¯̄J) with

∥α(1)∥2 = ∥α(2)∥2 = ∥α(3)∥2 = 1.
J̄ , Ī, S forms a partition of [d] and thus in the above expression for the tensor norm, every

index i ∈ Jn in the sum has a unique decomposition i = j×̇k×̇l where j ∈ Jn(J̄), k ∈ Jn(Ī)
and l ∈ Jn(S). We can do an analogous decomposition of i′ ∈ Jn corresponding to the partition
J̄ ′ − d, Ī ′ − d, T of [d] and then rewrite the sum

∑
i,i′∈Jn as a sum over six partial indices which

leads to ∑
i,i′∈Jn

Bi,i′x
(S)
i x

(T )
i′ ξ

(S)
iS
ξ̄
(T )
i′T
α
(1)

(i+̇i′)Ī
α
(2)

(i+̇i′)Ī′
α
(3)

(i+̇i′) ¯̄J

=
∑

j∈Jn(J̄),j′∈Jn(J̄ ′−d)
k∈Jn(Ī),k′∈Jn(Ī′−d)
l∈Jn(S),l′∈Jn(T )

B(j×̇k×̇l)+̇(j′×̇k′×̇l′)x
(S)

j×̇k×̇l
x
(T )

j′×̇k′×̇l′
ξ
(S)
l ξ̄

(T )
l′ α

(1)
k α

(2)
k′ α

(3)

j+̇j′
(2.36)

In order to apply Lemma 1.12 to this expression, we will perform the following rearrangements:

x
(S)

j×̇k×̇l
ξ
(S)
l → Xj,k,l x

(T )

j′×̇k′×̇l′
ξ
(T )
l′ → Yj′,k′,l′

xj×̇k×̇l → X̄j,k,l xj′×̇k′×̇l′ → Ȳj′,k′,l′

α
(1)
k → αk α

(2)
k′ → α′

k′ α
(3)

j+̇j′
→ Γj,j′ .

For the precise definitions of the above arrays, we first define the dimensions

n̄1 :=
∏
r∈J̄

nr n̄2 :=
∏
r∈Ī

nr n̄3 :=
∏
r∈S

nr

n̄′1 :=
∏

r∈J̄ ′−d

nr n̄′2 :=
∏

r∈Ī′−d

nr n̄′3 :=
∏
r∈T

nr

and

s1 := s|J̄ | s2 := s|Ī| s3 := s|S|
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s′1 := s|J̄
′| s′2 := s|Ī

′| s′3 := s|T |.

Since S, Ī, J̄ and T, Ī ′ − d, J̄ ′ − d are both partitions of [d], we obtain for these dimensions

n̄1n̄2n̄3 = n̄′1n̄
′
2n̄

′
3 =

∏
r∈[d]

nr = N s1s2s3 = s′1s
′
2s

′
3 = sd,

and the matrix Φ ∈ Rm×N satisfies the (4sd, δ)-RIP which complies with the assumption of
Lemma 1.12.

With these dimensions, also |Jn(J̄)| = n̄1 and we can take a bijective IJ̄ : Jn(J̄) → [n̄1] that
maps any array index j ∈ Jn(J̄) to an integer j ∈ [n̄1]. Analogously, we define all the bijective
maps

IJ̄ : Jn(J̄) → [n̄1], IĪ : Jn(Ī) → [n̄2], IS : Jn(S) → [n̄3]

IJ̄ ′ : Jn(J̄ ′ − d) → [n̄′1], IĪ′ : Jn(Ī ′ − d) → [n̄′2], IT : Jn(T ) → [n̄′3]

and then define arrays X, X̄ ∈ Rn̄1×n̄2×n̄3 such that

XIJ̄ (j),IĪ(k),IS(l) = x
(S)

j×̇k×̇l
ξ
(S)
l X̄IJ̄ (j),IĪ(k),IS(l) = xj×̇k×̇l

for all j ∈ Jn(J̄), k ∈ Jn(Ī), l ∈ Jn(S). Analogously, we define Y, Ȳ ∈ Rn̄′
1×n̄′

2×n̄′
3 such that

YIJ̄′ (j′),IĪ′ (k′),IT (l′) = x
(T )

j′×̇k′×̇l′
ξ
(T )
l′ ȲIJ̄′ (j′),IĪ′ (k′),IT (l′) = xj′×̇k′×̇l′

for all j′ ∈ Jn(J̄ ′ − d), k′ ∈ Jn(Ī ′ − d), l′ ∈ Jn(T ).
Furthermore, we define vectors α ∈ Rn̄2 , α′ ∈ Rn̄′

2 and a matrix Γ ∈ Rn̄1×n̄′
1 such that

αIĪ(k) = α
(1)
k αIĪ′ (k′) = α

(2)
k′ ΓIJ̄ (j),IJ̄′ (j′) = α

(3)

j+̇j′
.

We define one more function I : [n̄1] × [n̄2] × [n̄3] → [N ] such that

I(IJ̄(j), IĪ(k), IS(l)) = In(j×̇k×̇l).

for all j ∈ Jn(J̄), k ∈ Jn(Ī), l ∈ Jn(S). Recall that In : Jn → [N ] is the bijection that maps
row/column indices of the matrix Φ∗Φ − IdN to corresponding indices for the rearranged order
d array B (see Definition 2.3 and (2.33)), i.e., for all i, i′ ∈ Jn, Bi+̇i = (Φ∗Φ − IdN )In(i),In(i′).
Since every i ∈ Jn has a unique representation as i = j×̇k×̇l with j ∈ Jn(J̄), k ∈ Jn(Ī),
l ∈ Jn(S) and the functions IJ̄ , IĪ , IS are bijective, also I is bijective. Analogously, we define
I ′ : [n̄′1] × [n̄′2] × [n̄′3] → [N ] such that

I(IJ̄ ′(j′), IĪ′(k′), IT (l′)) = In(j′×̇k′×̇l′).

for all j′ ∈ Jn(J̄ ′ − d), k′ ∈ Jn(Ī − d), l′ ∈ Jn(T ), and also this function is bijective.
Using all the aforementioned definition and the matrix B = Φ∗Φ−IdN , we can rewrite (2.36)

as ∑
j∈Jn(J̄),j′∈Jn(J̄ ′−d)
k∈Jn(Ī),k′∈Jn(Ī′−d)
l∈Jn(S),l′∈Jn(T )

B(j×̇k×̇l)+̇(j′×̇k′×̇l′)x
(S)

j×̇k×̇l
x
(T )

j′×̇k′×̇l′
ξ
(S)
l ξ̄

(T )
l′ α

(1)
k α

(2)
k′ α

(3)

j+̇j′

=
∑

(j,j′)∈[n1]×[n′
1]

(k,k′)∈[n2]×[n′
2]

(l,l′)∈[n3]×[n′
3]

BI(j,k,l),I′(j′,k′,l′)Xj,k,lαkYj′,k′,l′α
′
k′Γj,j′ . (2.37)

Before we can apply Lemma 1.12 to this, we need to check that all the remaining requirements
are fulfilled. We check the following conditions for X, X̄.
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(a) follows directly from the definitions of X and X̄ and the fact that all entries of ξ(S) have
absolute value 1.

(b) By the definition of X̄, ∥X̄∥F = ∥x∥F = 1.

(c) We use Lemma 2.38 for the disjoint sets S and J̄ ∪ Ī which implies

max
j∈[n̄1],k∈[n̄2]

∑
l∈[n̄3]

X2
j,k,l = max

j∈Jn(J),k∈Jn(Ī)

∑
l∈Jn(S)

(x
(S)

j×̇k×̇l
ξ
(S)
l )2

= max
i∈Jn(J̄∪Ī)

∑
l∈Jn(S)

(x
(S)

j×̇k×̇l
)2 ≤ 1

s|J̄∪Ī|

∑
i∈Jn

(xi)
2 =

1

s1s2
.

(d) By Lemma 2.38 for the disjoint set S and Ī, for each j ∈ Jn(J̄),

max
k∈Jn(Ī)

∑
l∈Jn(S)

(x
(S)

j×̇k×̇l
ξ
(S)
l )2 = max

k∈Jn(Ī)

∑
l∈Jn(S)

(x
(S)

j×̇k×̇l
)2

≤ 1

s2

∑
k∈Jn(Ī),l∈Jn(S)

(xj×̇k×̇l)
2.

By the definition of X and X̄, this translates to the condition (d).

(e) Analogous to the previous case (d), the condition follows from applying Lemma 2.38 for
S and J̄ , which shows for all k ∈ Jn(Ī),

max
j∈Jn(J̄)

∑
l∈Jn(S)

(x
(S)

j×̇k×̇l
ξ
(S)
l )2 ≤ 1

s1

∑
j∈Jn(J̄),l∈Jn(S)

(xj×̇k×̇l)
2.

(f) By Lemma 2.36, for any j ∈ Jn(J̄), k ∈ Jn(Ī), there are at most s|S| = s3 different indices

l ∈ Jn(S) such that x
(S)

j×̇k×̇l
̸= 0. By the definition of X, this implies the property (f).

For the arrays Y, Ȳ, the properties (a) to (f) follow analogously. Furthermore, the corresponding
definitions directly yield

∥α∥2 = ∥α(1)∥2 = 1 ∥α′∥2 = ∥α(2)∥2 = 1 ∥Γ∥F = ∥α(3)∥2 = 1.

This completes the proof that all the assumptions of Lemma 1.12 are fulfilled and we can apply
this lemma to bound (2.37) and therefore also (2.36) and ∥B(S,T )∥I1,...,Iκ by

∥B(S,T )∥I1,...,Iκ ≤ 4
δ

(s1s′1)
1
4 (s2s′2)

1
2

= 4
δ

s
1
4
| ¯̄J |+ 1

2
(|Ī|+|Ī′|)

≤ 4
δ

s
κ
2

,

where we used Lemma 1.17 in the last step. This completes the proof of (2.35).
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3 Scale-Invariant Neural Networks for Inverse Problems

3.1 Introduction

In this part of the thesis, we study the performance of neural networks on the sparse recovery
problem as opposed to usual methods that are based on convex optimization. As a related
problem, we also study the approximation of functions that are invariant under positive scaling
with neural networks.

Recently, neural networks often outperform the classical sparsity-based methods for a variety
of signal and image reconstruction problems. Specifically, neural networks achieve state-of-the-
art results in tasks such as denoising [Zha+17] and reconstructing imaget from few and noisy
examples [Zbo+18]. However, contrary to optimization-based methods for which a rich literature
on performance guarantees exists [FR13], many underlying theoretical questions are still open
for neural network-based signal reconstruction,

In this work, we consider the question of whether a sparse signal can be provably recovered
with a neural network. Given measurements y = Ax for a sparse signal x, we study neural
networks f that recover x from a coarse approximation given by AT y, specifically networks that
obey x = f(AT y) or at least ensure that the reconstruction error ∥x− f(AT y)∥ is small.

Note that in the first step, a neural network applies a linear transformation to its input.
Thus, given a neural network f , we can define another network f2 such that f2(y) = f(AT y).
Considering in addition that (A†)TATA = A (with A† being the Moore-Penrose pseudoinverse),
we can see that the problems of finding a neural network f such that f(AT y) is (approximately)
x and finding f2 such that f2(y) is (approximately) x are equivalent. This is why we consider
the latter case in the results of this work.

This work aims to investigate under what circumstances ReLU networks can approximately
solve the sparse recovery problem. In particular, we are interested in the number of layers that
such a network requires.

Moreover, we are interested in solutions that make use of the positive homogeneous structure
of the problem. That is, we want the recovery network function f to satisfy f(λy) = λf(y) for
all λ ≥ 0 because we also know that if x has measurements y = Ax, then the measurements λy
will be obtained from the signal λx. In this way, no prior knowledge of the size of the signal x
or training for different sizes is required. Such a network can recover every s-sparse vector and
therefore works on an unbounded domain. Therefore investigating the number of required layers
goes beyond the usual universal approximation theorem ([Pin99], see Theorem 3.1 below), which
can guarantee arbitrarily precise approximations but only on a compact domain and without
incorporating the positive homogeneous structure of the problem into the network.

Taking knowledge about a function into account for the design of the network to approximate
it is a strategy that can significantly improve reliability and training effort. For this reason,
a large number of works have studied this strategy over a long period of time for different
types of functions [WS96; Dug+09; KSO21; Chi+19]. Specifically, [Tan+20] considers the
aforementioned class of functions satisfying f̃(λy) = λf̃(y) for all λ ∈ [0,∞). We call these
functions positive homogeneous.

Furthermore, positive homogeneity can also have applications for other problems. For ex-
ample in image denoising, rescaling the brightness of a picture might not change the underlying
procedure and if the corresponding network is designed to be positive homogeneous, different
brightness levels do not need to be learned separately.

3.1.1 Contributions of this work

We first show that with one hidden layer, it is not possible to even approximately recover 1-sparse
vectors. Secondly, we show that two hidden layers are sufficient to recover sparse vectors with
arbitrary sparsity levels s and to arbitrary precision. Furthermore, we also show a robustness
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guarantee for these networks establishing that the resulting network reconstruction function can
reconstruct vectors that are only approximately s-sparse and from corrupted measurements.

We show the positive result for two hidden layers for a more general class of inverse problems.
In general, instead of the set of sparse vectors, we can have any subset U ∈ Rn that is positive
homogeneous (i.e., λu ∈ U for any λ ∈ [0,∞) and u ∈ U), and instead of a linear map A we
can have a positive homogeneous function g that satisfies certain requirements. Besides sparse
recovery, using this generalized result we also show that the low-rank matrix recovery and the
phase retrieval problem can be solved using ReLU networks with two hidden layers.

Since for problems like sparse recovery or phase retrieval, there are solution methods based on
optimization problems, we also show a method how these can be translated to a ReLU network
with two hidden layers. The central argument is that there exists a continuous solution function
of the optimization problem. We show this using a generalization of the continuity concept to
functions with multiple values.

Furthermore, we also gain more insights about the general approximation of continuous,
positive homogeneous functions. Specifically, [Tan+20] already shows that with the ReLU ac-
tivation function, the unbiased networks with two hidden layers represent a class of functions
such that (i) all these functions are positive homogeneous and (ii) they can approximate every
continuous positive homogeneous function to arbitrary precision. We complement their result
by showing that (up to certain modifications of itself), the ReLU function is the only activation
function such that the unbiased networks satisfy these two conditions (i) and (ii). We establish
this in a theorem which is similar to the classical universal approximation theorem of neural
networks. Furthermore, using the negative results about sparse recovery, we also prove that this
universal approximation property fails to hold for just one hidden layer such that the assumption
of two hidden layers is actually necessary.

In Section 3.2, we present our main reslts in two parts. One part is about solving inverse
problems and the other one about universal approximation of positive homogeneous functions.
Then Section 3.3 contains the proof of the main result about universal approximation. In Sec-
tion 3.4, we prove the main results regarding inverse problems and show some other applications
of them. Section 3.5 then shows that ReLU networks can be used to solve inverse problems in
the way optimization-based methods do. In Section 3.8, we discuss implications and relations
to other work.

3.1.2 Previous work on universal approximation of NNs

To solve the aforementioned signal recovery problem, we need to compute the function that
maps measurements y = Ax to their original signals x. Compressed sensing guarantees the
well-definedness of this function and the question is if, how, and how well this function can be
approximated by certain classes of neural networks.

The general question of how well certain functions can be approximated has been a central
question in the research of neural networks for a long time. Cybenko [Cyb89] showed that
neural networks with only one hidden layer and any bounded measurable sigmoidal activation
function can approximate any continuous function on the n-dimensional unit cube to arbitrary
precision if the width of the network is sufficiently large. This result has been known as the
universal approximation theorem and has been extended several times. For example, Leshno
et al. [Les+93] generalized it to the case of any non-polynomial activation function. [Pin99]
even proved for a large class of functions that this approximation property is equivalent to the
function being non-polynomial.

Theorem 3.1 (Universal Approximation Theorem, [Pin99]). Let n ≥ 1 be a dimension and
σ : R → R continuous. Then the following are equivalent.

(a) For any compact K ⊂ Rn, any continuous f : K → R and any δ > 0, there exists a
network with one hidden layer and activation function σ, representing f̃ : Rn → R, such
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that for all x ∈ K,
|f̃(x) − f(x)| ≤ δ.

(b) σ is not a polynomial.

As mentioned previously, taking known properties of the approximated functions into ac-
count for the network design has been studied in multiple previous works. To mention some
concrete examples, [Dug+09] considers functions satisfying a certain monotonicity and convexity
condition, [KSO21] considers functions that are invariant under certain permutations of their
input variables, and [Tan+20] considers the positive homogeneous functions.

All these works construct a class of networks and show that, on the one hand, all these
networks represent functions of the particular class, and on the other hand, every function of
the respective class can be approximated by one of these networks. The latter part corresponds
to the implication (b) ⇒ (a) in the universal approximation Theorem 3.1 for the class of general
continuous functions on compact domains.

In particular Tang et al. [Tan+20] show these things for positive homogeneous functions.
In this work, we extend their result to an equivalence statement similar to Theorem 3.1 which
will be Theorem 3.7. We also show that their requirement of having at least two hidden layers
is required.

3.1.3 Previous work on sparse recovery with NNs

A popular approach for sparse recovery of a vector x from a linear measurement y = Ax is the
basis pursuit denoising (0.5). As a convex optimization problem, it can be solved by proximal
methods such ahs the iterative shrinkage thresholding algorithm (ISTA). ISTA is initialized at
some x0 and iterates for ℓ = 1, 2, . . .

xℓ+1 = ηλ/L

(
xℓ − 1

L
AT (Axℓ − y)

)
, (3.1)

where ηz is the soft-thresholding function, i.e., ηz(t) = sign(t)(|t| − z) if |t| ≥ z and ηz = 0
otherwise. A sequence of d iterations can be regarded as a recurrent neural network of depth
d. Based on this, a number of works starting with [GL10] studied unrolled algorithms which
unrolls d ISTA iterations as

xℓ+1 = ηλ/L

(
W ℓ

1x
ℓ +W ℓ

2y
)
. (3.2)

This is a feed-forward neural network of depth d and W ℓ
1 and W ℓ

2 are weight matrices that are
typically learned based on data. In all layers, ηλ/L is used as an activation function. Chen
at al. [Che+18] (Thm. 2) established that there exist choices of weights such that an s-sparse
signal x with entries bounded by |xi| ≤ B, and with s sufficiently small can be approximated as

∥xd − x∥2 ≤ sBe−cd,

where c is a constant depending on the matrix A and mildly on the sparsity s of the signal.
This result requires at least s2 ≤ m, where m is the number of measurements, as it works with
the incoherence of the matrix A, and requires the sparsity to be sufficiently small relative to the
incoherence (see [Che+18, Appendix B, Step 3]. This result establishes that there is a relatively
shallow neural network that can approximate sparse signals well.

So with those approaches, depth d = O(log s) is sufficient to approximate the signal x∗ with
the output of the network. In contrast, the goal of this work is to determine the exact number of
layers that is necessary and sufficient to solve the sparse recovery problem. Furthermore, other
than the aforementioned unrolling approach, which works for signals whose entries are bounded
by B, we consider networks that can solve the sparse recovery problem on the entire (unbounded)
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set of possible signals. We prove that for these requirements and with ReLU activation function,
one hidden layer is not sufficient to solve the problem, but two hidden layers are, even for a
stable solution. However, our results do not yield a construction for these networks and also
don’t specify their width.

3.1.4 Robustness

An important aspect of solutions to the sparse recovery problem is how sensitive they are to
noisy measurements y = Ax + e. For a robust recovery method f : Rm → Rn, we expect
∥f(Ax+ e)−f(Ax)∥2 to be small for small ∥e∥2. With minimization-based methods such as the
quadratically-constrained basis pursuit (3.14), robust recovery has been proven to be successful
(see Theorem 0.3).

For neural networks on inverse problems, the question of robustness is currently studied under
various aspects. In [GMM22], an empirical analysis is conducted suggesting that neural networks
can provide robust solutions to specifically chosen problems similar to sparse recovery and image
reconstruction in a similar or even better way compared to optimization-based methods.

In contrast to this, [Got+20] provides a theoretical analysis of certain situations that neces-
sarily lead to robustness issues for neural networks on inverse problems. Specifically, they show
that in certain situations, neural networks applied to inverse problems necessarily have large
local Lipschitz constants.

We also review our work in the context of the aforementioned results. This provide a possible
interpretation of this seeming contradiction. We show robustness similar to the one for the
minimization problem (0.4) but still the local Lipschitz constants of our solution might be very

large. This is due to possible large gradients ∥f(Ax+e)−f(Ax)∥2
∥e∥2 for very small error levels ∥e∥2.

This is discussed in detail in Section 3.8.

3.1.5 Notation

We consider neural networks with the rectified linear unit activation function ReLU : R → R,
defined by ReLU(x) = max{x, 0}. We also use the shorter notation ϕ := ReLU.

A lot of statements in this work concern feedforward neural networks for which we use the
notation and terminology introduced in Section 0.3.2.

Furthermore, we work with positive homogeneous sets and functions according to the fol-
lowing definition.

Definition 3.2. We define a set U ⊂ Rn to be positive homogeneous if for all λ ∈ [0,∞) and
all x ∈ U , also λx ∈ U .

If U ⊂ Rn is a positive homogeneous set, we define a function f : U → Rm to be positive
homogeneous if for all λ ∈ [0,∞) and all x ∈ U , f(λx) = λf(x).

3.2 Main Results

3.2.1 Inverse Problems

Sparse Recovery:
The main results of this work regarding sparse recovery are the following two Corollaries 3.3

and 3.4 which are consequences of the slightly more general Theorems 3.5 and 3.6 below respec-
tively.

Corollary 3.3 below states that a ReLU network with one hidden layer cannot recover all
sparse vectors from any m ≪ n linear measurements, not even approximately and for 1-sparse
vectors.
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Corollary 3.3 (Impossibility result for one hidden layer). Let A ∈ Rm×n, m ≤ n, and f :
Rm → Rn be a function represented by a ReLU network with one hidden layer. Then, for any
width and any choice of the network parameters,

sup
x∈Σ1\{0}

∥x− f(Ax)∥2
∥x∥2

≥
√

1 − m

n
.

Note that in usual recovery problems, m ≪ n such that the lower bound for the relative
error is close to 1. Thus, the reconstruction function is guaranteed to make a large error for
reconstructing at least one 1-sparse signal.

In strong contrast, Corollary 3.4 states that for a ReLU network with two hidden layers,
recovery of all s-sparse vectors is possible to arbitrary precision and in a stable way for not
exactly sparse signals or corrupted measurements.

Corollary 3.4. Let A ∈ Rm×n be a matrix satisfying the (2s, δ)-RIP for a δ ∈ (0, 1). Then for
each δ′ ∈ (0, 1), there exists a function f̃ : Rm → Rn, represented by an unbiased ReLU network
with two hidden layers such that for all x ∈ Rn, e ∈ Rm,

∥f̃(Ax+ e) − x∥2 ≤ δ′∥x∥2 + Cσs(x)1 +D∥e∥2,

where C = 1 + 21+δ
1−δ , D = 3

1−δ , and

σs(x)1 = inf
x′∈Σs

∥x− x′∥1.

General Form:
For each of the above statements, we actually prove a more general version. The following

theorem is not restricted to sparse recovery but applicable to a wider range of inverse problems
which, as we will show in Section 3.4, also includes low-rank matrix recovery and phase retrieval.

Theorem 3.5. Let U ⊂ Rn be positive homogeneous. Let g : Rn → Rm be a positive homoge-
neous function such that

inf
x(1),x(2)∈U
x(1) ̸=x(2)

∥g(x(1)) − g(x(2))∥2
∥x(1) − x(2)∥2

=: τ > 0 sup
x(1),x(2)∈Rn

x(1) ̸=x(2)

∥g(x(1)) − g(x(2))∥2
∥x(1) − x(2)∥II

=: ρ <∞ (3.3)

where ∥ · ∥II is a norm on Rn with ∥ · ∥2 ≤ ∥ · ∥II .
Let δ ∈ (0, 1). Then there exists a function f̃ : Rm → Rn, represented by a ReLU network

with two hidden layers, such that for all x ∈ Rn, e ∈ Rm,

∥f̃(g(x) + e) − x∥2 ≤ δ∥x∥2 + CdII(x, U) +D∥e∥2,

where C = 1 + 2ρ
τ and D = 3

τ only depend on τ and ρ and

dII(x, U) := inf
x′∈U

∥x− x′∥II .

Furthermore, the following result generalizes Corollary 3.3 to general unions of subspaces
instead of the set of sparse vectors.

Theorem 3.6. Let A ∈ Rm×n, m ≤ n, and f : Rm → Rn be a function represented by a ReLU
network with one hidden layer.

Let x1, . . . , xñ ∈ Rn be vectors with ∥ · ∥2 norm 1 and X := (x1 x2 . . . xñ) ∈ Rn×ñ. Let
U =

⋃ñ
k=1 span(xk). Then

sup
x∈U\{0}

∥f(Ax) − x∥2
∥x∥2

≥

√√√√ 1

ñ

ñ∑
k=m+1

(σk(X))2.
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Note that an essential requirement for the lower bounds, Theorem 3.6 and thus Corollary 3.3,
to hold is that we consider the approximation errors on the entire (unbounded) domain U or
Σ1 respectively. The purpose of this is that we are interested in incorporating the positive
homogenous structure of the problem into the solution. That is, the recovery function f̃ should
by design satisfy f̃(λy) = λf̃(y) for all λ ≥ 0 because we know that the measurements λAx are
produced by the signal λx. If f̃ is positive homogeneous and ∥f̃(Ax)−x∥2 ≤ δ∥x∥2 holds for all
x ∈ B̄r(0) ∩ U for some radius r > 0, then this is also true on the entire positive homogeneous
set U . So Theorem 3.6 and Corollary 3.3 can also be interpreted in the sense that there is
no positive homogeneous network function f̃ that provides a good recovery for all vectors in a
(possibly bounded) neighborhood of 0.

So the key question of this work is when positive homogeneous functions can be approximated
(to arbitrary precision) with positive homogeneous networks. As mentioned above, for this case
it is irrelevant if the domain is only a neighborhood of 0 or the entire space. In the following
subsection, Theorems 3.7 and 3.8 provide the answer that it is possible with any number of
layers d ≥ 2 but not with d = 1. In addition, Theorem 3.7 also classifies the possible activation
functions for this.

3.2.2 Universal Approximation of Positive Homogeneous Functions

We show the following statement about the universal approximation of positive homogeneous
functions. It can be seen as an analogous version of the equivalence in Theorem 3.1 for positive
homogeneous functions. The essential proof step for the direction (b) ⇒ (a) has already been
established by Tang et al. [Tan+20]. We extend this to an equivalence statement, showing
that the activation functions described in (b) are actually the only ones for which the unbiased
networks represent a class of functions which are all positive homogeneous and also powerful
enough to approximate any other continuous positive homogeneous function.

Theorem 3.7. Let σ : R → R be a continuous function and d ≥ 2 an integer. Then the
following two statements are equivalent.

(a) � For every non-empty, closed, positive homogeneous U ⊂ Rn, every continuous, pos-
itive homogeneous function f : U → R, and every δ > 0, there exists a function
f̃ : U → R that can be represented by a neural network with d hidden layers and
activation function σ, such that for all x ∈ U ,

|f̃(x) − f(x)| ≤ δ∥x∥2

and

� every unbiased neural network with d hidden layers and activation function σ repre-
sents a positive homogeneous function.

(b) There are α, β ∈ R, |α| ≠ |β| such that

σ(x) = αReLU(x) + βReLU(−x)

for all x ∈ R.

In case these statements hold, the network representing f̃ in (a) can be chosen to be unbiased.

In addition, we also complement Theorem 3.7 by the following consequence of Corollary 3.3
which proves that Theorem 3.7 fails to hold if we consider networks with only one hidden layer.
Therefore, its assumption d ≥ 2 is actually necessary.
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Theorem 3.8. Let m ≥ 2, n ≥ 1 be integers. There exists a continuous, positive homogeneous
function f : Rm → Rn such that for each f̃ : Rm → Rn that is represented by a ReLU network
with one hidden layer,

sup
x∈Rm\{0}

∥f̃(x) − f(x)∥2
∥x∥2

≥

{√
1 − 2

n if n > 4√
n
8 if n ≤ 4.

In particular, the case n = 1 in Theorem 3.8 shows that contrary to higher depths d ≥ 2,

the first part of (a) does not hold for the ReLU activation function and any δ <
√

1
8 if d = 1.

3.3 Universal Approximation

This section is devoted to the proof of Theorem 3.7. The following lemmma will be used to
establish the implication (a) ⇒ (b).

Lemma 3.9. Let σ : R → R be a continuous function. Let k ∈ Z≥1. Assume that for all γ ∈ Rk,
the function σγ : R → R defined by

σγ(x) = γkσ(γk−1σ(γk−2σ(. . . σ(γ1σ(x)) . . . ))),

with k applications of σ, is positive homogeneous.
Then there exist α, β ∈ R such that for all x ∈ R,

σ(x) = αϕ(x) + βϕ(−x). (3.4)

Proof. If k = 1, then choose γ = 1 ∈ R such that σγ = σ(x). By the positive homogeneity, we
obtain that for x ≥ 0,

σ(x) = σγ(x · 1) = xσ(1) = σ(1)ϕ(x)

and for x ≤ 0,
σ(x) = σγ(|x| · (−1)) = |x|σ(−1) = σ(−1)ϕ(−x),

showing the representation (3.4).
Now we assume that k ≥ 2. First, we take γ = (1, 0, . . . , 0)T . Then for all x ∈ R, σγ(x) =

1 · σ(0 · σ(. . . )) = σ(0). Since σγ is positive homogeneous, σ(0) = σγ(1) = 1
2σγ(2) = 1

2σ(0), so
we know that σ(0) = 0.

If σ(x) = 0 for all x ≥ 0, then the representation (3.4) holds for all x ≥ 0. Otherwise there
exists a y0 > 0 such that σ(y0) ̸= 0. Then we choose γ0 = y0

σ(y0)
∈ R and γ = (γ0, . . . , γ0)

T ∈ Rk.
We define σ̃ : R → R by σ̃(x) = γ0σ(x). Then σγ = σ̃ ◦ · · · ◦ σ̃ with k applications.

By the choice of γ0, σ̃(y0) = y0 such that also σγ(y0) = y0. By the assumption that σγ is
positive homogeneous and the previously shown case k = 1, we obtain that there are η, τ ∈ R
such that for all x ∈ R,

σγ(x) = ηϕ(x) + τϕ(−x) (3.5)

and σγ(y0) = y0 implies that η = 1, i.e., σγ(x) = x for all x ≥ 0.
So we know that σγ is injective on the interval [0,∞) and then the same must hold for σ̃.

As a continuous, R-valued, injective function in the interval [0,∞), σ̃ must be either strictly
increasing or strictly decreasing. We have already shown σ̃(0) = 0 and σ̃(y0) = y0 where y0 > 0,
so it must be strictly increasing. This also implies that σ̃(x) ≥ 0 for all x ≥ 0.

Now assume that σ̃(x) = x does not hold for all x ∈ [0,∞). Then we can find an x0 > 0
such that σ̃(x0) ̸= x0. Starting from this x0, we construct a sequence (xj) in [0,∞) by defining
xj+1 = σ̃(xj) for j = 0, 1, 2, . . . . We observe the following for all j ∈ Z≥0.

� If xj+1 > xj , then by monotonicity also xj+2 = σ̃(xj+1) > σ̃(xj) = xj+1.
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� If xj+1 < xj , then by monotonicity also xj+2 = σ̃(xj+1) < σ̃(xj) = xj+1.

By the choice of x0, we have x1 > x0 or x1 < x0 and thus successively either x0 < x1 < x2 < . . .
or x0 > x1 > x2 > . . . , respectively. In any case, x0 ̸= xk. However, by the definition of the
sequence we obtain xk = σγ(x0) = x0, which is a contradiction. This completes the proof that
σ̃(x) = x, i.e., σ(x) = 1

γ0
x holds for all x ≥ 0.

To complete the proof also for all x ≤ 0, we consider the function σ̄ : R → R, σ̄(x) = −σ(−x).
For this function we obtain that σ̄γ(x) = −σγ(−x). The latter function is then also positive
homogeneous such that by the previous proof there is a β ∈ R such that for all x ≥ 0, σ̄(x) = βx
and thus for all x ≤ 0, σ(x) = −σ̄(−x) = −β(−x) = βx.

The above statement implies the following corollary.

Corollary 3.10. Let σ : R → R be a continuous function and d ∈ Z≥1. If all unbiased
neural networks with d hidden layers and activation function σ represent positive homogeneous
functions, then there are α, β ∈ R such that for all x ∈ R,

σ(x) = αϕ(x) + βϕ(−x).

Proof. All the functions σγ for γ ∈ Rd from Lemma 3.9 are represented by unbiased networks
with d hidden layers with one neuron and weights γj in each of them and activation function
σ.

The next statement will be the core of the proof of (b) ⇒ (a) and has already been shown
in almost the same form in [Tan+20].

Theorem 3.11. Let f : U → R be a positive homogeneous, continuous function on a positive
homogeneous domain U ⊂ Rm and ϵ > 0. Then there exists an unbiased ReLU network with
two hidden layers, representing the function f̃ : U → R, such that for all x ∈ U ,

|f̃(x) − f(x)| ≤ ϵ∥x∥2.

Proof. The previous work [Tan+20] shows a similar statement in its supplement in Theorem
B.2.2. For completeness of the presentation, we repeat their argument here and adapt it to the
situation of Theorem 3.11.

First, we restrict f to the set U ∩ B1 where B1 = {x ∈ Rm
∣∣ ∥x∥1 = 1} is the ℓ1 unit ball.

Since U is assumed to be closed, this domain U ∩ B1 is compact. Therefore, we can apply the
universal approximation theorem (Theorem 3.1) to obtain a network function g̃ : U ∩ B1 → R,
g̃(x) = W2ϕ(W1x + b1) + b2 where W1 ∈ Rk×m, W2 ∈ R1×k, b1 ∈ Rk, b2 ∈ R such that for all
x ∈ U ∩B1,

|g̃(x) − f(x)| ≤ 1√
n
ϵ.

Now we define f̃ : U → R by f̃(0) = 0 and for x ∈ U\{0}

f̃(x) = ∥x∥1g̃(
x

∥x∥1
) = ∥x∥1(W2ϕ(W1

x

∥x∥1
+ b1) + b2) = W2ϕ(W1x+ ∥x∥1b1) + ∥x∥1b2.

Now to show that f̃ can be represented by a ReLU network with two hidden layers, we only
need to represent the ∥ · ∥1 function with one hidden layer which is done by

∥x∥1 = 1T2m ReLU

((
Idm
−Idm

)
x

)
,

where 12m ∈ R2m is the vector whose all entries are 1. Substituting this into the above expression
for f̃ yields

f̃(x) =
(
W2 b2

)
ϕ

[(
W1 + b11

T
m −W1 + b11

T
m

1Tm 1Tm

)
ϕ

((
Idm
−Idm

)
x

)]
,
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such that f̃ can be represented by an unbiased ReLU network with two hidden layers and is
therefore also positive homogeneous.

Furthermore, for all x ∈ U\{0}, x
∥x∥1 ∈ U ∩B1 such that |g̃( x

∥x∥1 ) − f( x
∥x∥1 )| ≤ ϵ√

n
and then

|f̃(x) − f(x)| = ∥x∥1
∣∣∣∣f̃(

x

∥x∥1
) − f(

x

∥x∥1
)

∣∣∣∣ = ∥x∥1
∣∣∣∣g̃(

x

∥x∥1
) − f(

x

∥x∥1
)

∣∣∣∣ ≤ ϵ√
n
∥x∥1 ≤ ϵ∥x∥2.

Now we have established all the requirements to prove the specialized universal approxima-
tion theorem.

Proof of Theorem 3.7. First we show the implication (b) ⇒ (a). So let f : U → R be continuous,
positive homogeneous and δ > 0. By Theorem 3.11, there exists an unbiased ReLU network
with 2 hidden layers, representing f̃ : U → R, such that for all x ∈ U , |f̃(x) − f(x)| ≤ δ∥x∥2.

The one-layer ReLU network function Rn1 → Rn1

x 7→ (Idn1 − Idn1)ϕ

((
Idn1

−Idn1

)
x

)
= ϕ(x) − ϕ(−x) = x,

is the identity. Thus, we can add d− 2 such identity layers to the 2 layer network representing
f̃ without changing the represented function. In this way, f̃ can be represented by an unbiased
ReLU network with d hidden layers.

Since |α| ≠ |β|, we can define γ1 := α
α2−β2 and γ2 := β

α2−β2 such that

γ1σ(x) − γ2σ(−x) =
α

α2 − β2
(αϕ(x) + βϕ(−x)) − β

α2 − β2
(αϕ(−x) + βϕ(x)) = ϕ(x).

Each of the hidden layers in the network for f̃ performs a function fj : Rn1 → Rn3 ,

fj(x) = Aϕ(Bx)

for matrices A ∈ Rn3×n2 , B ∈ Rn2×n1 . Then

(γ1A − γ2A)σ

((
B
−B

)
x

)
= γ1Aσ(Bx) − γ2Aσ(−Bx) = A(γ1σ(Bx) − γ2σ(−Bx))

= Aϕ(Bx) = fj(x)

performs the same operation as one layer with activation function σ. So we can replace all ReLU
layers by suitable layers with activation function σ and eventually obtain an unbiased network
with d hidden layers and activation function σ that represents f̃ .

Now we show the other implication (a) ⇒ (b). The second statement of (a) together with
Corollary 3.10 implies that there are α, β ∈ R such that for all x ∈ R,

σ(x) = αϕ(x) + βϕ(−x).

It remains to show that |α| ≠ |β|. If this is not the case, then α = β or α = −β. In the first case,
α = −β, then σ(x) = α(ϕ(x) − ϕ(−x)) = αx is linear such that also all corresponding network
functions f̃ must be affine linear. For example, the function x 7→ |x| cannot be approximated
by such functions to arbitrary precision even though it is positive homogeneous.

In the other case, σ(x) = α(ϕ(x) + ϕ(−x)) = α|x|. Consider the function f : R → R,
f(x) = σ(ax+ b) for a, b ∈ R. For this function, it holds that

lim
x→∞

f(x)

|x|
= lim

x→−∞

f(x)

|x|
∈ R. (3.6)
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Let f (1) : R → Rk, f (1) : x 7→ σ(W1x + b1) for W1 ∈ Rk1×1, b1 ∈ Rk1 be the first layer of a
network with activation function σ (with domain R1). Then the condition (3.6) holds for each
component of f (1).

Any linear combination of functions that fulfill (3.6) satisfies (3.6) again. In addition, if
f : R → R satisfies (3.6) with limit τ , then for f̄ : R → R, f̄(x) = |f(x) + c|, c ∈ R, it holds that

lim
x→±∞

f̄(x)

|x|
= lim

x→±∞

∣∣∣∣f(x)

|x|
+

c

|x|

∣∣∣∣ = |τ + 0| ∈ R,

such that (3.6) also holds for f̄ . In total, we can successively conclude that for any neural
network with activation function σ, any component of any layer, as a function R → R, satisfies
(3.6). Therefore also all functions f : R → R that are represented by a network with activation
function σ of any depth and width must satisfy (3.6). Clearly, f : R → R, f(x) = x is a positive
homogeneous function that cannot be approximated by these functions.

So in any case that |α| = |β|, this contradicts the first part of (a).

3.4 Inverse Problems

3.4.1 General Statement

Our goal in this part is the proof of the general inverse problem Theorem 3.5. One ingredient
for the proof is Kirszbraun’s theorem which is known in functional analysis and measure theory
and allows us to extend a Lipschitz continuous function from a subset of Rm to the entire space.

Theorem 3.12 (Kirszbraun’s theorem, Theorem 2.10.43 in [Fed96]). Let U ⊂ Rn and f : U →
Rm be a Lipschitz continuous function with Lipschitz constant L. Then there exists an extension
g : Rn → Rm of f with Lipschitz constant L.

Considering positive homogeneous functions however, Kirszbraun’s theorem cannot guaran-
tee that this extension will be positive homogeneous again. However, in the following lemma
we show that we can circumvent this by first extending the function to the entire space, then
restricting it to the unit sphere and then extend it as a positive homogeneous function again.
In this way, the Lipschitz constant will increase by a factor of at most 2.

Lemma 3.13. Let U ⊂ Rn be non-empty, positive homogeneous and f : U → Rm a function
that is positive homogeneous and Lipschitz continuous with constant L.

Then there is an extension f̃ : Rn → Rm of f which is positive homogeneous and Lipschitz
continuous with constant 2L.

Proof. By the positive homogeneity, 0 ∈ U . So we can restrict f to (Sn−1 ∩ U) ∪ {0} where it
is still Lipschitz continuous with constant L. By Theorem 3.12, we can extend this function to
f : Sn−1 ∪ {0} → Rm on the entire set Sn−1 ∪ {0} (by extending to the entire Rm and then
restricting it again) such that it still has Lipschitz constant L.

Now we define f̃ : Rn → Rm by f̃(x) = ∥x∥2f( x
∥x∥2 ) for x ̸= 0 and f̃(0) = f(0) = 0.

Clearly, f̃ is positive homogeneous and an extension of f and we will show that it is Lipschitz
continuous with constant 2L. For this, consider two different points x, y ∈ Rn. We can assume
∥x∥2 ≤ ∥y∥2 and thus y ̸= 0.

Then it holds that

∥x− y∥2 ≥
∥∥∥∥x− ∥x∥2

∥y∥2
y

∥∥∥∥
2

because

∥x− y∥22 ≥
∥∥∥∥x− ∥x∥2

∥y∥2
y

∥∥∥∥2
2
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⇔ ∥x∥22 + ∥y∥22 − 2⟨x, y⟩ ≥ ∥x∥22 + ∥x∥22 − 2
∥x∥2
∥y∥2

⟨x, y⟩

⇔ ∥y∥22 − ∥x∥22 ≥ 2

(
1 − ∥x∥2

∥y∥2

)
⟨x, y⟩

⇐ ∥y∥22 − ∥x∥22 ≥ 2

(
1 − ∥x∥2

∥y∥2

)
∥x∥2∥y∥2

⇔ ∥y∥22 − ∥x∥22 ≥ 2(∥x∥2∥y∥2 − ∥x∥22)
⇔ ∥y∥22 + ∥x∥22 − 2(∥x∥2∥y∥2) ≥ 0

⇔ (∥y∥2 − ∥x∥2)2 ≥ 0,

which is always fulfilled.
If also x ̸= 0, then we can conclude.

∥f̃(x) − f̃(y)∥2
∥x− y∥2

≤
∥f̃(x) − f̃(∥x∥2∥y∥2 y)∥2

∥x− y∥2
+

∥f̃(y) − f̃(∥x∥2∥y∥2 y)∥2
∥x− y∥2

≤
∥f̃(x) − f̃(∥x∥2∥y∥2 y)∥2∥∥∥x− ∥x∥2

∥y∥2 y
∥∥∥
2

+
|∥y∥2 − ∥x∥2| ∥f̃( y

∥y∥2 )∥2
∥x− y∥2

≤
∥f( x

∥x∥2 ) − f( y
∥y∥2 )∥2∥∥∥ x

∥x∥2 − y
∥y∥2

∥∥∥
2

+
∥f( y

∥y∥2 ) − f(0)∥2∥∥∥ y
∥y∥2 − 0

∥∥∥
2

≤ 2L,

and if otherwise x = 0,

∥f̃(x) − f̃(y)∥2
∥x− y∥2

=
∥f(0) − f( y

∥y∥2 )∥2∥∥∥0 − y
∥y∥2

∥∥∥
2

≤ L,

which completes the proof.

Now we can use this lemma in the proof for our generalized main theorem for inverse prob-
lems.

Proof of Theorem 3.5. If there are two x(1), x(2) ∈ U with g(x(1)) = g(x(2)), then by assumption
on g, 0 = ∥g(x(1)) − g(x(2))∥2 ≥ τ∥x(1) − x(2)∥2. Since τ > 0, this implies that x(1) = x(2).
Therefore, g : U → g(U) is bijective and has an inverse function g−1 = f0 : g(U) → U .

We obtain

sup
y(1),y(2)∈g(U)

y(1) ̸=y(2)

∥f0(y(1)) − f0(y
(2))∥2

∥y(1) − y(2)∥2
= sup

x(1),x(2)∈U
x(1) ̸=x(2)

∥x(1) − x(2)∥2
∥g(x(1)) − g(x(2))∥2

=

 inf
x(1),x(2)∈U
x(1) ̸=x(2)

∥g(x(1)) − g(x(2))∥2
∥x(1) − x(2)∥2


−1

=
1

τ

So f0 : g(U) → U is Lipschitz continuous with Lipschitz constant 1
τ . By Lemma 3.13, there

exists a positive homogeneous extension f : Rm → Rn with Lipschitz constant 2
τ .

For any x ∈ Rn, e ∈ Rm and any ϵ > 0, there exists an x′ ∈ U such that ∥x − x′∥II ≤
dII(x, U) + ϵ and then

∥f(g(x) + e) − x∥2 ≤ ∥f(g(x′)) − x′∥2 + ∥f(g(x)) − f(g(x′))∥2
+ ∥f(g(x) + e) − f(g(x))∥2 + ∥x− x′∥2
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≤ 0 +
2

τ
∥g(x) − g(x′)∥2 +

2

τ
∥e∥2 + ∥x− x′∥2

≤ 2ρ

τ
∥x− x′∥II + ∥x− x′∥2 +

2

τ
∥e∥2

≤
(

1 +
2ρ

τ

)
∥x− x′∥II +

2

τ
∥e∥2

≤
(

1 +
2ρ

τ

)
(dII(x, U) + ϵ) +

2

τ
∥e∥2,

where we used that ∥ · ∥2 ≤ ∥ · ∥II . Since this holds for all ϵ > 0, we must have

∥f(g(x) + e) − x∥2 ≤
(

1 +
2ρ

τ

)
dII(x, U) +

2

τ
∥e∥2.

By equivalence of norms, there exists a number M > 0 (that possibly depends on the
dimension n), such that ∥ · ∥II ≤ M∥ · ∥2. f is positive homogeneous and continuous, so
by Theorem 3.7, for each component fj of f , there exists an unbiased ReLU network with 2
hidden layers that approximates fj up to a relative error of 1√

n
min{ 1

τ ,
δ
ρM } > 0. Combining

these into one network, we obtain an unbiased ReLU network with 2 hidden layers representing
f̃ : Rm → Rn such that for all y ∈ Rm,

∥f(y) − f̃(y)∥2 ≤ min

{
1

τ
,
δ

ρM

}
∥y∥2.

Then for all x ∈ Rn, e ∈ Rm,

∥f̃(g(x) + e) − x∥2 ≤ ∥f̃(g(x) + e) − f(g(x) + e)∥2 + ∥f(g(x) + e) − x∥2

≤ min

{
1

τ
,
δ

ρM

}
∥g(x) + e∥2 + ∥f(g(x) + e) − x∥2

≤ δ

ρM
ρ∥x∥II +

1

τ
∥e∥2 + ∥f(g(x) + e) − x∥2

≤ δ∥x∥2 +

(
1 +

2ρ

τ

)
dII(x, U) +

3

τ
∥e∥2,

where we used ∥x∥II ≤M∥x∥2.

3.4.2 Restricted Isometries

The next theorem is an application of the general Theorem 3.5 for the case of a linear measure-
ment function that satisfies a restricted isometry property on the signal set U . This includes
the usual restricted isometry property for sparse vectors but also other generalizations like the
one for low-rank matrices in [CCG15].

Theorem 3.14. Consider norms ∥ · ∥I on Rm and ∥ · ∥II on Rn.
Let U ⊂ Rn be a positive homogeneous subset and A ∈ Rm×n a linear map such that there

are δlb ∈ (0, 1), δub ∈ (0,∞) such that for all x(1), x(2) ∈ U ,

(1 − δlb)∥x(1) − x(2)∥2 ≤ ∥Ax(1) −Ax(2)∥I ≤ (1 + δub)∥x(1) − x(2)∥2. (3.7)

Furthermore, assume that ∥ · ∥I ≤ α∥ · ∥2 on Rm for an α ≥ 1, ∥ · ∥2 ≤ ∥ · ∥II on Rn,
and each x ∈ Rn can be decomposed as x = x(1) + · · · + x(M) where x(1), . . . , x(M) ∈ U and
∥x(1)∥2 + · · · + ∥x(M)∥2 ≤ ∥x∥II .

Then, for any δ′ > 0, there exists an unbiased ReLU network with two hidden layers that
represents a function f̃ : Rm → Rn such that for any x ∈ Rn, e ∈ Rm,

∥f(Ax+ e) − x∥2 ≤ δ′∥x∥2 + CαdII(x, U) +Dα∥e∥2.
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where C = 1 + 21+δub

1−δlb and D = 3
1−δlb and

dII(x, U) := inf
x′∈U

∥x− x′∥II .

Proof. By the assumption on g,

τ := inf
x(1),x(2)∈U
x(1) ̸=x(2)

∥Ax(1) −Ax(2)∥2
∥x(1) − x(2)∥2

≥ 1

α
inf

x(1),x(2)∈U
x(1) ̸=x(2)

∥Ax(1) −Ax(2)∥I
∥x(1) − x(2)∥2

≥ 1

α
(1 − δlb) > 0,

such that the first assumption of Theorem 3.5 is fulfilled.
For any x(1), x(2) ∈ Rn, define z := x(1) − x(2). By assumption, there is a decomposition

z = z(1) + · · · + z(M) such that z(1), . . . , z(M) ∈ U and ∥z(1)∥2 + · · · + ∥z(M)∥2 ≤ ∥z∥II . Then

∥Ax(1) −Ax(2)∥2 = ∥Az∥2 ≤
M∑
j=1

∥Az(j)∥2 ≤ (1 + δub)

M∑
j=1

∥z(j)∥2 ≤ (1 + δub)∥x(1) − x(2)∥II ,

and therefore

ρ := sup
x(1),x(2)∈Rn

x(1) ̸=x(2)

∥Ax(1) −Ax(2)∥2
∥x(1) − x(2)∥II

≤ 1 + δub.

So we can apply Theorem 3.5 and obtain that for any δ′ > 0, there exists a function f̃ :
Rm → Rn such that for any x ∈ Rn and e ∈ Rm,

∥f(Ax+ e) − x∥2 ≤ δ′∥x∥2 +

(
1 +

2ρ

τ

)
dII(x, U) +

3

τ
∥e∥2

≤ δ′∥x∥2 + CαdII(x, U) +Dα∥e∥2

where C = 1 + 21+δub

1−δlb and D = 3
1−δlb .

A first immediate consequence from the above theorem is the main result about sparse
recovery for matrices with the restricted isometry property.

Proof of Corollary 3.4. If A satisfies the (s, δ)-restricted isometry property (for sparse vectors),
then (3.7) is fulfilled for δlb = δub = δ, U = Σs and ∥ · ∥I = ∥ · ∥2. Furthermore, we choose
∥ · ∥II = ∥ · ∥1 such that any x ∈ Rn can be decomposed as x =

∑n
j=1 xjej where the ej ∈ Rn

are the canonical basis vectors. Then clearly, each xjej ∈ U and
∑n

j=1 ∥xjej∥2 =
∑n

j=1 |xj | =
∥x∥1 = ∥x∥II . Then Theorem 3.14 implies Corollary 3.4.

Another application of Theorem 3.14 is low-rank matrix recovery. Besides sparse vectors,
the inequality (3.7) has also been studied for linear operators on low-rank matrices. Using these
results, we can prove the following consequence of Theorem 3.14. It involves the nuclear norm

∥X∥∗ of a matrix which is defined as the sum of its singular values ∥X∥∗ :=
∑rank(X)

k=1 σk(X).

Corollary 3.15. There are universal constants C,D,C3, c3 > 0 such that the following holds.
Let A ∈ Rm×n have i.i.d. subgaussian entries Aj,k satisfying

E[Aj,k] = 0 E[A2
j,k] = 1 E[A4

j,k] > 1.

Define the operator A : Rn×n → Rm such that for all X ∈ Rn×n,

(A(X))j =

n∑
k,l=1

Aj,kAj,lXk,l.
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Let 1 ≤ r ≤ n be an integer and m ≥ c4nr. Then with probability ≥ 1−C3e
−c3m, the following

holds: For any δ′ > 0, there exists function f̃ : Rm → Rn×n, represented by an unbiased ReLU
network with 2 hidden layers, such that for all X ∈ Rn×n and e ∈ Rm,

∥f̃(A(X) + e) −X∥F ≤ δ′∥X∥F + C
√
md∗(X,Ur) +

D√
m
∥e∥2,

where Ur ⊂ Rn×n is the set of rank ≤ r matrices and d∗ denotes the distance in ∥ · ∥∗ (nuclear
norm).

Proof. According to Corollary 1 in [CCG15], with probability ≥ 1 − C3e
−c3m, A satisfies the

RIP for low-rank matrices in the sense that for all X ∈ Rn×n of rank ≤ 2r,

(1 − δlb)∥X∥F ≤ 1

m
∥A(X)∥1 ≤ (1 + δub)∥X∥F

for universal constants δlb ∈ (0, 1) and δub > 0. Therefore, for any X(1), X(2) ∈ Rn×n of rank
≤ r,

(1 − δlb)∥X(1) −X(2)∥F ≤ 1

m
∥A(X(1) −X(2))∥1 ≤ (1 + δub)∥X(1) −X(2)∥F ,

such that (3.7) is fulfilled for the ∥·∥F norm which corresponds to the ∥·∥2 norm of the vectorized
matrices and ∥ · ∥I = ∥ · ∥1 on Rm. Then ∥ · ∥I ≤ α∥ · ∥2 for α =

√
m. Furthermore, define

U ⊂ Rn×n to be the set of rank ≤ r matrices. Then U is positive homogeneous. Define ∥ · ∥II
to be the nuclear norm ∥ · ∥∗. Then any matrix X ∈ Rn×n has a singular value decomposition∑n

j=1 σjujv
∗
j with singular values σ1, . . . , σn and orthonormal u1, . . . , un and v1, . . . , vn in Rn.

Then every σjujv
∗
j is in U and

n∑
j=1

∥σjujv∗j ∥F =
n∑
j=1

σj = ∥X∥∗ = ∥X∥II .

Then by Theorem 3.14, for each δ′ > 0, there exists a
ˆ̃
f : Rm → Rn, represented by a ReLU

network with two hidden layers, such that for all X ∈ Rn×n and e ∈ Rm,

∥ ˆ̃
f(

1

m
A(X) +

e

m
) −X∥F ≤ δ′∥X∥F + C

√
md∗(X,Ur) +D

√
m∥ e

m
∥2

and thus if we define f̃(y) =
ˆ̃
f( 1

my), which can also be represented by a ReLU network with two
hidden layers,

∥f̃(A(X) + e) −X∥F ≤ δ′∥X∥F + C
√
md∗(X,Ur) +

D√
m
∥e∥2

for C = 1 + 21+δub

1−δlb and D = 3
1−δlb .

Remark 3.16. Corollary 3.15 has the error dependence 1√
m
∥e∥2. This is worse or equal to the

dependence 1
m∥e∥1 in Theorem 1 of [CCG15]. This is caused by the upper bound ∥·∥1 ≤

√
m∥·∥2

which is needed because we apply Kirszbraun’s theorem for the ℓ2 norm. This could be improved
if Kirszbraun’s theorem also holds for functions on a domain with the ℓ1 norm. The same holds
for the additional

√
m factor in the dependence on d∗(X,Ur).

Remark 3.17. � In Corollary 3.15, if r = 1, the operator A applied to rank 1 matrices of
the type xx∗ for x ∈ Rn, yields

(A(xx∗))j =

n∑
k,l=1

Aj,kAj,lxkxl =

∣∣∣∣∣
n∑
k=1

Aj,kxk

∣∣∣∣∣
2

= |(Ax)j |2,
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so A(xx∗) = |Ax|2, where |Ax|2 contains the squared absolute values of the entries of
Ax. So the ReLU network function f̃ can (approximately) reconstruct xx∗ (and therefore
indirectly x) from |Ax|2, which is the widely studied phase retrieval problem.

� So Corollary 3.15 enables us to solve the phase retrieval problem in the sense that from
|Ax|2 we can calculate xx∗ using an end-to-end network. One might wonder whether it is
also possible to calculate the vector x from |Ax|2 or |Ax| directly. However, the problem
is that this x is not unique since for any |λ| = 1 (thus λ = ±1 in R), |Ax| = |Aλx|. It
is not even possible to define a continuous function f : Rm → Rn such that for each y,
|Af(y)| = y if A enables a unique solution of the phase retrieval problem up to global phase.
To see this, define g(x) = |Ax| which is continuous. If f is continuous, then also f ◦ g.
Let e1 be the first canonical basis vector. If the phase retrieval problem for A is uniquely
solvable, then we need to have f(g(e1)) = ±e1. Without loss of generality, we can assume
f(g(e1)) = +e1. Now consider f ◦g along the connected line t 7→ (1− t)e1 + te2 (t ∈ [0, 1]).
By the uniqueness of the solution up to global phase, we must have (f ◦g)((1−t)e1+te2) =
±((1 − t)e1 + te2) for each t ∈ [0, 1]. Since we assume that the ±1 sign is +1 for t = 0
and always (1 − t)e1 + te2 ̸= 0, by continuity we know that (f ◦ g)((1 − t)e1 + te2) =
+((1 − t)e1 + te2) for all t ∈ [0, 1]. Especially, (f ◦ g)(e2) = e2. Analogously, new we can
consider f ◦g along the connected line from e2 to −e1 and conclude that (f ◦g)(−e1) = −e1.
However, g(−e1) = |A(−e1)| = g(e1) and therefore also −e1 = (f ◦ g)(−e1) = (f ◦ g)(e1).
This contradicts the previous assumption that (f ◦ g)(e1) = +e1.

3.4.3 Lower Bounds

In this subsection, we prove the lower bounds for sparse recovery (Corollary 3.3, Theorem 3.6)
and subsequently also for universal approximation (Theorem 3.8).

Proof of Theorem 3.6. Let f = W2(W1x + b1) + b2 be the network function with W1 ∈ Rk×m,
W2 ∈ Rm×k, b1 ∈ Rk, b2 ∈ Rn.

We first show that it is sufficient to prove the statement for networks with zero biases (b1 = 0
and b2 = 0), because if we scale the signal x with a sufficiently large constant, the biases become
irrelevant.

To see more formally that that we can set b1 = 0 and b2 = 0, recall that we denote ϕ for the
ReLU function. Note that for any numbers λ, a ∈ R and λ ≥ 0, ϕ(λa) = λϕ(a). Note that by
this observation and the continuity of ϕ and ∥ · ∥2,

sup
x∈U\{0}

∥x− f(Ax)∥2
∥x∥2

= sup
x∈U\{0}

sup
λ>0

∥λx− f(Aλx)∥2
∥λx∥2

= sup
x∈U\{0}

sup
λ>0

∥λx−W2ϕ(W1Aλx+ b1) − b2∥2
∥λx∥2

= sup
x∈U\{0}

sup
λ>0

∥x−W2ϕ(W1Ax+ b1
λ ) − b2

λ ∥2
∥x∥2

≥ sup
x∈U\{0}

lim
λ→∞

∥x−W2ϕ(W1Ax+ b1
λ ) − b2

λ ∥2
∥x∥2

= sup
x∈U\{0}

∥x−W2ϕ(W1Ax)∥2
∥x∥2

.

So it is sufficient to prove the statement for a network f with no biases (i.e., with b1, b2 = 0).
f is defined on Rm and for a matrix M ∈ Rm×m′

we define f(M) ∈ Rn×m′
to be the column-

wise application of f on M . Then for the matrix X ∈ Rn×ñ whose columns are the vectors
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x1, . . . , xñ, we obtain

∥f(AX) −X∥2F =
ñ∑
k=1

∥f(Axk) − xk∥22

as the sum of the squared deviations. Now we find a lower bound for ∥f(AX) −X∥F .
We observe that

f(AX) − f(−AX) = W2ϕ(W1AX) −W2ϕ(−W1AX) = W2 [ϕ(W1AX) − ϕ(−W1AX)] .

For any x ∈ R, ϕ(x) − ϕ(−x) = x such that

f(AX) − f(−AX) = W2W1AX.

Since A ∈ Rm×n, it has rank ≤ m and therefore also f(AX)−f(−AX) has rank ≤ m. Our goal is
to bound ∥f(AX)−X∥F or ∥f(−AX)−(−X)∥F for which we bound ∥f(AX)−f(−AX)−2X∥F .
By the Eckart-Young-Mirsky theorem, the best rank m approximation of 2X in Frobenius norm
can be obtained by truncating its sigular value decomposition after the largest m singular values
and therefore, for any rank ≤ m matrix M ∈ Rn×ñ,

∥M − 2X∥2F ≥
ñ∑

k=m+1

(σk(2X))2.

Note that this even holds if X itself has rank ≤ m, in which case σk(X) = 0 for all m+1 ≤ k ≤ ñ.
Since f(AX) − f(−Ax) has rank ≤ m,

2α := 2

√√√√ ñ∑
k=m+1

(σk(X))2 ≤ ∥f(AX) − f(−AX) − 2X∥F

≤ ∥f(AX) −X∥F + ∥f(−AX) − (−X)∥F ≤ 2 max {∥f(AX) −X∥F , ∥f(−AX) − (−X)∥F } .

So one of these norms on the right hand side is ≥ α. W.l.o.g. we assume that it is the first one.
Then

ñ∑
k=m+1

(σk(X))2 ≤ ∥f(AX) −X∥2F =

ñ∑
k=1

∥f(Axk) − xk∥22 ≤ ñmax
k∈[ñ]

∥f(Axk) − xk∥22.

So we can conclude

sup
x∈U\{0}

∥f(Ax) − x∥2
∥x∥2

≥ max
k∈[ñ]

∥f(Axk) − xk∥2 ≥

√√√√ 1

ñ

ñ∑
k=m+1

(σk(X))2.

Proof of Corollary 3.3. Corollary 3.3 follows from Theorem 3.6 by choosing x1 = e1, . . . , xn =
en. Then X = (x1 . . . xn) = Idn and U = Σ1. The lower bound simplifies to√√√√ 1

n

n∑
k=m+1

(σk(Idn))2 =

√
1

n
(n−m) =

√
1 − m

n
.

Using the lower bound for the specific case of sparse recovery, we can also show a lower
bound for the general approximation of continuous, positive homogeneous functions.
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Proof of Theorem 3.8. Let w1, . . . , wn ∈ R be pairwise distinct. Define the matrix

A :=

 1√
1+w2

1

. . . 1√
1+w2

n
w1√
1+w2

1

. . . wn√
1+w2

n

 ∈ R2×n.

All the columns of A have an ℓ2-norm of 1. Furthermore, if there exists a 2-sparse x ∈ Rn
such that Ax = 0, then there is a 2 × 2-subdeterminant which is 0, i.e., for some k, l ∈ [n],

0 = det

 1√
1+w2

k

1√
1+w2

l
wk√
1+w2

k

wl√
1+w2

l

 =
wl − wk√

1 + w2
k

√
1 + w2

l

and thus wl = wk, contradicting the assumption that the numbers are pairwise distinct.
So Ax ̸= 0 must hold for all 2-sparse x ∈ Rn. Furthermore, A is injective on Σ1. So there

exists an inverse map f : AΣ1 → Σ1. The set Σ1 ∩ Sn−1 is compact and thus there exists

τ := min
x∈Σ2∩Sn−1

∥Ax∥2 = min
x∈Σ2\{0}

∥Ax∥2
∥x∥2

= min
x,y∈Σ1
x̸=y

∥Ax−Ay∥2
∥x− y∥2

and by the previous observation, τ > 0. So for all x, y ∈ Σ1, x ̸= y, ∥x − y∥2 ≤ 1
τ ∥Ax − Ay∥2

such that the inverse map f is Lipschitz continuous with Lipschitz constant 1
τ .

Furthermore, since A as a function is positive homogeneous, also its restricted inversion f
must be positive homogeneous. By Lemma 3.13, there exists a positive homogeneous extension
f : R2 → Rn on the entire space with Lipschitz constant 2

τ .

Now let f̃ : R2 → Rn be any function that can be represented by a ReLU network with one
hidden layer. By Corollary 3.3,

sup
x∈Σ1\{0}

∥x− f̃(Ax)∥2
∥x∥2

≥
√

1 − 2

n
.

Now for each x ∈ Σ1, by the definition of f , f(Ax) = x and since A has normalized columns,
∥Ax∥2 = ∥x∥2. Therefore we can conclude√

1 − 2

n
≤ sup

x∈Σ1\{0}

∥x− f̃(Ax)∥2
∥x∥2

= sup
x∈Σ1\{0}

∥f(Ax) − f̃(Ax)∥2
∥Ax∥2

= sup
y∈AΣ1\{0}

∥f(y) − f̃(y)∥2
∥y∥2

≤ sup
y∈R2\{0}

∥f̃(y) − f(y)∥2
∥y∥2

.

f is positive homogeneous and Lipschitz continuous, thus also continuous. We can expand
f : R2 → Rn to a function f̄ : Rm → Rn by setting f̄(y1, . . . , ym) = f(y1, y2). In this way, f̄ is

still positive homogeneous and continuous. For any ˜̄f : Rm → Rn that is represented by a ReLU

network with one hidden layers, also f̃ : R2 → Rn, f̃(y) = ˜̄f(y1, y2, 0, . . . , 0) can be represented
by a ReLU network with one hidden layer such that

sup
ỹ∈Rm\{0}

∥ ˜̄f(ỹ) − f̄(ỹ)∥2
∥ỹ∥2

≥ sup
y∈R2\{0}

∥ ˜̄f(y1, y2, 0, . . . , 0) − f̄(y1, y2, 0, . . . , 0)∥2
∥y∥2

= sup
y∈R2\{0}

∥f̃(y) − f(y)∥2
∥y∥2

≥
√

1 − 2

n
. (3.8)

Now take an n′ ≤ n and let f̄ : Rm → Rn as above such that (3.8) holds for all ReLU

networks ˜̄f with one hidden layer. For each subset S ⊂ [n] of size |S| = n′, we can define a
function f̄S : Rm → Rn such that for all y ∈ Rm, j ∈ [n],

(f̄S(y))j :=

{
(f̄(y))j if j ∈ S

0 otherwise.
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Now assume that every continuous, positive homogeneous function Rm → Rn′
can be approxi-

mated by a one-layer ReLU network up to relative precision n′( 1
n − 2

n2 ) − ϵ for an ϵ > 0. Then

for each S ⊂ [n], |S| = n′, there exists a ReLU network function ˜̄f(S) : Rm → Rn such that

( ˜̄f(S))j = 0 for j ∈ [n]\S and for all y ∈ Rm,

∥ ˜̄f(S)(y) − f̄S(y)∥22
∥y∥22

≤ n′
(

1

n
− 2

n2

)
− ϵ.

Since every j ∈ [n] is contained in exactly
(
n−1
n′−1

)
subsets S ⊂ [n] of cardinality |S| = n′, for each

y ∈ Rm, j ∈ [n],

f̄j(y) =
1(
n−1
n′−1

) ∑
S⊂[n]

s.t. |S|=n′

(f̄S(y))j .

We define the ReLU network function ˜̄f : Rm → Rn with one hidden layer by

˜̄f(y) =
1(
n−1
n′−1

) ∑
S⊂[n]

s.t. |S|=n′

˜̄f(S)(y).

Then by (3.8), we have

sup
y∈Rm\{0}

∥ ˜̄f(y) − f̄(y)∥22
∥y∥22

≥ 1 − 2

n

On the other hand, for all y ∈ Rm\{0},

∥ ˜̄f(y) − f̄(y)∥2
∥y∥2

=
∑
j∈[n]

| ˜̄fj(y) − f̄j(y)|2

∥y∥2
≤ 1(

n−1
n′−1

) ∑
j∈[n]

∑
S⊂[n]

s.t. |S|=n′

|( ˜̄f(S)(y))j − (f̄S(y))j |2

∥y∥2

≤ 1(
n−1
n′−1

) ∑
S⊂[n]

s.t. |S|=n′

∑
j∈S

|( ˜̄f(S)(y))j − (f̄S(y))j |2

∥y∥2

=
1(
n−1
n′−1

) ∑
S⊂[n]

s.t. |S|=n′

∥ ˜̄f(S)(y) − f̄S(y)∥22
∥y∥2

≤
(
n
n′

)(
n−1
n′−1

) [n′( 1

n
− 2

n2

)
− ϵ

]
=
n

n′

[
n′
(

1

n
− 2

n2

)
− ϵ

]
= 1 − 2

n
− ϵ

n

n′
< 1 − 2

n
.

This is a contradiction. So we can concluded that for n′ ≤ n, there exists a function f : Rm → Rn′

such that for all one-layer ReLU networks f̃ : Rm → Rn′
,

sup
y∈Rm\{0}

∥f̃(y) − f(y)∥22
∥y∥22

≥ n′
(

1

n
− 2

n2

)
.

The second factor
(
1
n − 2

n2

)
becomes maximal for n = 4. For n′ ≤ 4, we choose n = 4 and

otherwise n = n′, which proves the bound from the theorem statement.
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3.5 Networks from Optimization Based Approaches

Other than the neural network approaches of this work, classical compressed sensing studies
optimization based methods to solve this problem, see Chapter 4 in [FR13] for an overview. In
contrast to the previous result in this work, which is independent of this, in this section we solve
the sparse recovery problem by approximating the solution of an optimization problem with a
neural network. In particular, we recall the ℓ1 minimization problem (0.4)

min ∥z∥1 s.t. ∥Az − y∥2 ≤ η, (3.9)

for an η ≥ 0, which can be shown to give a stable reconstruction of sparse x from their mea-
surements y = Ax for suitable measurement matrices A (Theorem 0.3).

To show that (3.9) can be solved using a ReLU network, we need to show that the function
that maps vectors y to the corresponding minimizer in (3.9) is continuous. However, it is not
clear that for each y, (3.9) has a unique solution. In fact, previous works such as [ZYY16] have
shown uniqueness under certain circumstances but this might not be the case in general.

This leads to the concept of multifunctions. Unlike a usual function f : X → Y that maps
each x ∈ X to exactly one f(x) ∈ Y , a multifunction maps each x ∈ X to a subset of Y while
usually the empty set is excluded. Therefore, a multifunction can also be seen as a function
F : X → 2Y \{∅} with values in the power set 2Y of Y . Using this concept, we can always
describe the map from the vector y to the set of minimizers of (3.9) as a multifunction if the
minimization problem is feasible. We will show that this multifunction satisfies a generalization
of continuity and that eventually there is a continuous selection function that maps every y to
an approximation of one of the solutions of (3.9).

There exists an extensive theory about multifunctions and generalizations of well-known
concepts of functions to them. This has been known as set-valued analysis or multivalued
analysis and textbooks such as [AF09] and [HP97] can provide a detailed summary of this.
In the following presentation of the most important concepts, we mostly use the notation and
terminology of [HP97].

Definition 3.18. Let X,Y be sets. A multifunction F : X → 2Y \{∅} is a function that maps
from M to the power set 2Y of Y without the empty set.

One important tool which we need in this section is the generalization of continuity to
multifunctions. The following properties have also been known under the terms ”upper/lower
hemicontinuous“ in the literature.

Definition 3.19 (Definition 2.3 / Remark 2.4 in [HP97]). Let F : X → 2Y \{∅} be a multifunc-
tion between Hausdorff topological spaces X and Y . For x0 ∈ X, we say that

� F is upper semicontinuous at x0 if for all open sets V ⊂ Y with F (x0) ⊂ V , there exists
a neighborhood U of x0 such that for all x ∈ U , F (x) ⊂ V ,

� F is lower semicontinuous at x0 if for all open sets V ⊂ Y with F (x0) ∩ V ̸= ∅, there
exists a neighborhood of x0 such that for all x ∈ U , F (x) ∩ V ̸= ∅,

� F is continuous at x0 if F is upper semicontinuous at x0 and lower semicontinuous at x0.

We say that F is (upper/lower semi-)continuous if it is (upper/lower semi-)continuous at all
points x0 ∈ X.

For single-valued functions, i.e., multifunctions F such that |F (x)| = 1 for all x in the
domain, all these terms coincide to the usual term of continuity of functions. A simple standard
example for a multivalued function that is upper but not lower semicontinuous is given by
F1 : R → 2R\{∅}, F1(x) = {1} if x ̸= 0 and F1(0) = [0, 1]. A lower but not upper semicontinuous
function is given by F2 : R → 2R\{∅}, F2(x) = [0, 1] if x ̸= 0 and F2(0) = {0}. Example 2.8
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in [HP97] gives more details and explanations about this. So in general, none of these two
properties implies the other.

In optimization problems such as (3.9), the feasible region is a multifunction of the param-
eters (here y). Berge’s maximum theorem states that if this feasible region is a continuous
multifunction and the objective function is a continuous function, then the multifunction map-
ping the parameters to the set of optimal solutions is upper semicontinuous.

Theorem 3.20 (Berge’s maximum theorem, Theorem 3.4 in [HP97]). Let u : X × Y → R be
a continuous function and F : Y → 2X\{∅} a continuous multifunction with compact values.
Consider the optimization problem

max
x

u(x, y) s.t. x ∈ F (y).

Let S : Y → 2X\{∅} be the multifunction mapping each y ∈ Y to the optimizers and v : Y → R
be the function mapping each y to the optimal value.

Then S is upper continuous with compact values and v is continuous.

For a multifunction F : X → 2Y \{∅}, a selection is defined as a single-valued function f :
X → Y such that f(x) ∈ F (x) for all x ∈ X. A particular question that has been studied is when
there exists a continuous selection of F . Michael’s selection theorem (Theorem 4.6 in [HP97])
states that lower semicontinuity of F is enough for this. However, the above Theorem 3.20 can
only guarantee upper semicontinuity which is not sufficient for a continuous selection (also see
[HP97]). Nevertheless, upper semicontinuous multifunctions still allow approximate selections
with arbitrarily small perturbations in the argument and in the function value. In the following
theorem, we use the notation F (M) with a multifunction F : X → 2Y and a subset M ⊂ X for
F (M) :=

⋃
x∈M F (x).

Theorem 3.21 (Theorem 4.42 in [HP97]). Let X be a metric space, Y a Banach space, W ⊂ X
open, K ⊂ W compact, F : W̄ → 2Y \{∅} an upper semicontinuous multifunction with convex
values, then for every ϵ > 0, there is an open neighborhood Gϵ of K and a locally Lipschitz
function fϵ : Gϵ → convF (K) with finite dimensional range such that for every x ∈ Gϵ, fϵ(x) ∈
F (K ∩Bϵ(x)) +Bϵ(0).

Now in order to apply the aforementioned results to the particular problem of approximating
the solution of (3.9) with a continuous function, the first step is to show that the feasible region
of the problem is described by a continuous multifunction. We show this for a slight restriction
of the feasible region which is compact but this will not change the eventual minimizer set.

Lemma 3.22. Let A ∈ Rk×n (k ≤ n), B ∈ Rk×m, and η ∈ [0,∞). Let ∥ · ∥ be a norm on Rk
and g : Rm → [1,∞) a continuous function.

Define the multifunctions F1, F2, F : Rm → 2R
n\{∅} by

F1(y) = {x ∈ Rn
∣∣ ∥Ax+By∥ ≤ η},

F2(y) = {x ∈ Rn
∣∣ ∥Pker(A)x∥2 ≤ g(y)},

F (y) = F1(y) ∩ F2(y),

where Pker(A) is the orthogonal projection onto the kernel of A.
Furthermore, assume that

� g(y) ≥ ∥A†By∥2 for all y ∈ Rm

� B(Rm) ⊂ A(Rn)

Then F is well-defined (i.e., F (y) ̸= ∅ for all y ∈ Rm), continuous and has compact values.

101



Proof. The condition that the range of B is contained in the range of A implies that

AA†B = PA(Rn)B = B,

where PA(Rn) is the orthogonal projection onto the range of A.

Furthermore, by the equivalence of all norms on Rk, there exists a constant C > 0 such that
∥z∥2 ≤ C∥z∥ holds for all z ∈ Rk.

Step 1: F is well-defined: Since AA†B = B, for each y ∈ Rm, ∥A(−A†By) + By∥ = 0,
such that −A†By ∈ F1(y) and by assumption ∥−A†By∥2 ≤ g(y) such that also −A†By ∈ F2(y)
and thus F (y) ̸= ∅.

Step 2: F has compact values: For each y, F1(y) and F2(y) are closed such that F (y) is
closed. Furthermore, note that A†A = Pker(A)⊥ . So for any y ∈ Rm, x ∈ F (y), we obtain

∥x∥2 ≤ ∥Pker(A)x∥2 + ∥A†Ax∥2 ≤ g(y) + ∥A†(Ax+By)∥2 + ∥A†By∥2
≤ g(y) + ∥A†∥2→2∥Ax+By∥2 + ∥A†By∥2
≤ g(y) + ∥A†∥2→2Cη + ∥A†By∥2.

The right hand side does not depend on x and therefore, F (y) is also bounded and thus compact.
Step 3: F is lower semicontinuous
Let y0 ∈ Rm and V ⊂ Rn open such that there exists an x0 ∈ F (y0) ∩ V . Since V is open,

there exists a radius ϵ > 0 such that Bϵ(x0) ⊂ V .
Since g is continuous, there is a δ̃ > 0 such that for all y ∈ Bδ̃(y0), |g(y) − g(y0)| < ϵ

4 . Now

choose δ := min{δ̃, ϵ
4∥A†B∥2→2

} > 0 if A†B ̸= 0 and δ = δ̃ otherwise. Let y ∈ Bδ(y0). We define

the number λ ∈ (0, 1] by

λ :=

{
1 if ∥Pker(A)x0∥2 ≤ ϵ

4
ϵ

4∥Pker(A)x0∥2
otherwise,

such that we always have 1 − λ ≥ 0 and λ∥Pker(A)x0∥2 ≤ ϵ
4 . Then we define

x := x0 +A†B(y0 − y) − λPker(A)x0. (3.10)

We observe ∥Ax+By∥ = ∥Ax0 +AA†B(y0 − y)− 0 +By∥ = ∥Ax0 +By∥ ≤ η, so x ∈ F1(y).
Furthermore,

∥Pker(A)x∥2 = ∥(1 − λ)Pker(A)x0∥2

= ∥Pker(A)x0∥2 − λ∥Pker(A)x0∥2

{
= 0 ≤ g(y) if λ = 1

≤ g(y0) − ϵ
4 < g(y) otherwise,

showing that x ∈ F2(y), i.e., x ∈ F (y). We also obtain

∥x− x0∥2 = ∥A†B(y0 − y) − λPker(A)x0∥2 ≤ ∥A†B∥2→2δ + λ∥Pker(A)x0∥2 ≤
ϵ

4
+
ϵ

4
< ϵ.

This implies x ∈ Bϵ(x0) ⊂ V . Therefore, F (y) ∩ V ̸= ∅ for any y ∈ Bδ(y0). This shows that F
is lower semicontinuous.

Step 4: F is upper semicontinuous
Let y0 ∈ Rm and take an open set V ⊂ Rn such that F (y0) ⊂ V .
For points y ∈ Rm, define the distance d(y, F (y0)) = miny′∈F (y0) ∥y − y′∥2. Since F (y0) is

compact, this minimum always exists.
Assume that for each integer k ≥ 1, there is a yk ∈ Rm\V such that d(yk, F (y0)) ≤ 1

k .
Then (yk) forms a sequence in the compact set F (y0) + B̄1(0). Therefore, it has a convergent
subsequence (ykl) with limit ȳ. By continuity, d(ȳ, F (y0)) = 0 such that by compactness ȳ ∈

102



F (y0). On the other hand, Rm\V is closed such that ȳ ∈ Rm\V . This contradicts the assumption
that F (y0) ⊂ V . Therefore, there is a radius ϵ > 0 such that all y ∈ Rm with d(y, F (y0)) < ϵ
belong to V , i.e., F (y0) +Bϵ(0) ⊂ V .

The rest of the argument is similar to the proof of lower semicontinuity. Since g is con-
tinuous, there is a δ̃ > 0 such that for all y ∈ Bδ̃(y0), |g(y) − g(y0)| < ϵ

4 . Now choose

δ := min{δ̃, ϵ
4∥A†B∥2→2

} > 0 if A†B ̸= 0 and δ = δ̃ otherwise. Let y ∈ Bδ(y0) and take any

x ∈ F (y). We define the number λ ∈ (0, 1] by

λ :=

{
1 if ∥Pker(A)x∥2 ≤ ϵ

4
ϵ

4∥Pker(A)x∥2
otherwise,

such that we always have 1 − λ ≥ 0 and λ∥Pker(A)x∥2 ≤ ϵ
4 . Then we define

x̄ := x+A†B(y − y0) − λPker(A)x.

Note that this definition is analogous to (3.10) in the proof of the lower semicontinuity. Therefore,
we can follow the same subsequent steps and prove that x̄ ∈ F (y0) and ∥x̄− x∥2 < ϵ.

This implies x ∈ F (y0) + Bϵ(0) ⊂ V . Since this holds for any x ∈ F (y), F (y) ⊂ V for any
y ∈ Bδ(y0), proving that F is upper semicontinuous.

Now, using the continuity of the feasible region from above, we can use the tools from
multivalued analysis to show that for a certain class of minimization problems, there exists a
continuous function whose values are approximate optimal solutions.

Lemma 3.23. Take Ã ∈ Rk×n, B̃ ∈ Rk×m, η ∈ [0,∞), a norm ∥ · ∥ on Rk, and a continuous
function u : Rn × Rm → R. Consider the optimization problem

min
z∈Rn

u(z, y) s.t. ∥Ãz + B̃y∥ ≤ η, (3.11)

where B̃(Rm) ⊂ Ã(Rn). Furthermore, assume that there exists a continuous function ḡ : Rm → R
and a coefficient α ∈ (0,∞), such that for all y ∈ Rm and feasible z ∈ Rn,

∥z∥2 ≤ αu(z, y) + ḡ(y). (3.12)

Let ∥ · ∥I be a norm on Rm.
For each ϵ > 0 and each compact V ⊂ Rm, there is a function f̃ : V → Rn, represented by a

ReLU network with one hidden layer, such that for all y ∈ V , there is a ỹ ∈ V and a solution
x̃ ∈ Rn of (3.11) for ỹ, such that ∥y − ỹ∥2 < ϵ and ∥f̃(y) − x̃∥I < ϵ.

Proof. First we define the continuous function g(y) := ḡ(y) + αu(−Ã†B̃y, y) and consider the
corresponding multifunction F defined in Lemma 3.22 (with the matrices Ã and B̃). Then every
minimizer of

minu(z, y) s.t. z ∈ F (y) (3.13)

also minimizes (3.11).
Assume that this is not the case and there is a minimizer x̃ of (3.13) that does not minimize

(3.11). Then there is an optimal solution x̂ to (3.11) (because of B̃(Rm) ⊂ Ã(Rn), it is always
feasible) with u(x̂, y) < u(x̃, y). So x̂ cannot be feasible for (3.13), i.e., x̂ /∈ F (y). On the other
hand, −Ã†B̃y is feasible for (3.13). This implies

∥Pker(Ã)x̂∥2 ≤ ∥x̂∥2 ≤ αu(x̂, y) + ḡ(y) ≤ αu(x̃, y) + ḡ(y) ≤ αu(−Ã†B̃y, y) + ḡ(y) = g(y)

and therefore x̂ is also feasible for (3.13), which contradicts the above observation.
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Now by Lemma 3.22, F is continuous with compact values such that by Theorem 3.20, the
solution multifunction of (3.13), S : Rm → 2R

n\{∅} is upper semicontinuous with compact
values and the optimal value function v : Rm → R is continuous.

We apply the approximate selection Theorem 3.21. As a domain, consider the metric space
V endowed with the ∥ · ∥2 norm. Then V is an open and compact subset of itself. The space
Rn endowed with the ∥ · ∥I norm is finite-dimensional and therefore a Banach space. We have
shown that S : Rm → 2R

n\{∅} is upper semicontinuous with convex values and this remains the
case if we restrict S to the metric space V (whose topology is the subspace topology of Rm).
Therefore by Theorem 3.21, for every ϵ > 0, there exists a continuous function f : V → Rn such
that for every y ∈ V , f(y) ∈ S(Bϵ/2(y)) + Bϵ/2(0). This means that there exists ỹ ∈ V and
x̃ ∈ S(ỹ) such that ∥y − ỹ∥2 < ϵ

2 and ∥f(y) − x̃∥I < ϵ
2 .

By the universal approximation theorem for compact sets (Theorem 3.1 for each coordinate
of f), for each ϵ, there exists a ReLU network with one hidden layer that represents f̃ : V → Rn,
such that for all y ∈ V , ∥f̃(y) − f(y)∥I < ϵ

2 . Then for all y ∈ V , there exists a ỹ ∈ V and

x̃ ∈ S(ỹ) such that ∥y − ỹ∥2 < ϵ
2 < ϵ and ∥f̃(y) − x̃∥I ≤ ∥f̃(y) − f(y)∥I + ∥f(y) − x̃∥I < ϵ.

Remark 3.24. Lemma 3.23 can be applied to the following optimization problems that have
been used to solve the sparse recovery problem, i.e., recovering x from y = Ax+e. Some of these
approaches have already been mentioned in Section 0.3. An overview with a detailed explanation
of the following techniques can be found in Section 3.1 in [FR13].

� Quadratically constrained basis pursuit:

min
z∈Rn

∥z∥1 s.t. ∥Az − y∥2 ≤ η (3.14)

for ∥e∥2 ≤ η. Here u(z, y) = ∥z∥1 is continuous, Ã = A, and B̃ = Idm. So Lemma 3.23
can be applied if rank(A) = m. If this is not the case and rank(A) = m′ < m, we can
replace A by PA ∈ Rm′×n where P ∈ Rm′×m is a bijective and orthogonal map from A(Rn)
to Rm′

. Then PA satisfies the same RIP as A.

Note that also the condition (3.12) is fulfilled since for all feasible z, ∥z∥2 ≤ ∥z∥1 =
1 · u(z, y) + 0.

� Basis pursuit denoising:

min
z∈Rn

λ∥z∥1 + ∥Az − y∥22 (3.15)

for a parameter λ > 0. For each feasible z, ∥z∥2 ≤ 1
λu(z, y) such that (3.12) is fulfilled

for α = 1
λ . Again the objective function is continuous and we can apply Lemma 3.23 for

Ã = 0 ∈ R1×n and B̃ = 0 ∈ R1×m.

� LASSO:

min
z∈Rn

∥Az − y∥2 s.t. ∥z∥1 ≤ τ (3.16)

for a parameter τ ≥ 0.(3.12) is fulfilled since for all feasible z, ∥z∥2 ≤ ∥z∥1 ≤ u(z, y)+τ =
u(z, y) + ḡ(y) for the continuous function ḡ(y) = τ . Lemma 3.23 can be applied again for
Ã = Idn and B̃ = 0 ∈ Rn×m.

� Dantzig selector:

min
z∈Rn

∥z∥1 s.t. ∥A∗(Az − y)∥∞ ≤ η (3.17)

for a parameter τ ≥ 0 for ∥A∗e∥∞ ≤ η. Here Ã = A∗A, B̃ = A∗ and therefore Ã(Rn) =
A∗(Rm) = B̃(Rm), so Lemma 3.23 can be applied again. (3.12) is fulfilled for the same
reason as in (3.14).
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Remark 3.25. Lemma 3.23 provides an approximate selection of solutions of the optimization
problem (3.11), i.e., f̃(y) is close to an optimal solution of (3.11) for a parameter that is close
to y. To show this, we used the approximate selection Theorem 3.21.

One might wonder whether there exists a continuous exact selection, i.e., a continuous func-
tion f : Rm → Rn such that for each y ∈ Rm, f(y) is exactly a solution of (3.11) for the
parameter y. Indeed, in the field of multivalued analysis, Michael’s selection theorem (Theo-
rem 4.6 in [HP97]) can guarantee the existence of a continuous selection of a multifunction. It
requires this multifunction (i.e. the multifunction of solutions of (3.11) in our application) to be
lower semicontinuous. However, Berge’s maximum theorem (Theorem 3.20) can only guarantee
upper semicontinuity for the solution function.

Indeed, the following example shows that actually not in all cases in which Lemma 3.23 can be
applied, an exact continuous selection exists. Consider the continuous function u : R2×R2 → R

u(z, y) =

∥∥∥∥(y1 0
0 y2

)
z

∥∥∥∥
1

+ max{2, ∥z∥2}

and the minimization problem

min
z∈R2

u(z, y) s.t. |
(
1 1

)
z −

(
1 0

)
y| ≤ 0, (3.18)

which satisfies the requirements of Lemma 3.23 (including (3.12)).
We are interested in the case y ∈ {1}×(0, 2). The max{2, ∥z∥2} condition is only required to

ensure (3.12) but it will not change the optimal solutions in this case. To see this, consider the
minimization problem without the max{2, ∥z∥2}, i.e., with u(z, y) replaced by ũ(z, y) = u(z, y)−
2 max{2, ∥z∥2} for y ∈ {1} × (0, 2). This becomes

min
z∈R2

|z1| + |y2z2| s.t. z1 + z2 = 1,

which is equivalent to

min
z1∈R

|z1| + |y2(1 − z1)|.

We obtain the following optimal values and sets of all optimal solutions depending on y2:

� y2 ∈ (0, 1): minimum y2 at z1 = 0

� y2 = 1: minimum y2 = 1 at z1 ∈ [0, 1]

� y2 ∈ (1, 2): minimum 1 at z1 = 1.

All the solutions have z1 ∈ [0, 1] and therefore z2 ∈ [0, 1], ∥z∥2 ≤
√

2 < 2. This shows that adding
max{2, ∥z∥2} to the objective function will not change the set of minimizers and the solution
sets from above are also the solution sets of (3.18).

So if there is a continuous function f : R2 → R2, such that for every y ∈ R2, f(y) is an
optimal solution of (3.18), we would need to have

(f(1, y2))1 = 0 for all y2 ∈ (0, 1)

(f(1, y2))1 = 1 for all y2 ∈ (1, 2).

However, in this way f cannot be continuous at the point (1, 1).
Nevertheless, there might still be exact continous selections for some of the most important

applications listed in Remark 3.24. The work in [Bri+18] considers problem (3.15) and shows
that there is an optimal solution that continuously depends on the parameter λ. With similar
techniques, it might also be possible to show that there is an optimal solution that continuously
depends on y. However, the above counterexample shows that this is not always possible in the
generalized setting of Lemma 3.23. Furthermore, since we approximate the solution functions
using the universal approximation theorem with an arbitrary but positive precision δ > 0, having
an exact selection would not lead to any essential improvement anyway.
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The above Lemma 3.23 concerns compact domains (and therefore only one hidden layer).
The following Theorem turns this into a positive homogeneous version that enables results similar
to the previous parts of this work.

Theorem 3.26. Let A ∈ Rm×n, U ⊂ Rn positive homogeneous. Consider matrices Ã ∈ Rk×n,
B̃ ∈ Rk×m with B̃(Rm) ⊂ Ã(Rn), a continuous u : Rn ×Rm → R, η ∈ [0, 1] and a norm ∥ · ∥ on
Rk. We define the minimization problem

min
z∈Rn

u(z, y) s.t. ∥Ãz + B̃y∥ ≤ η. (3.19)

Furthermore, assume that there exists a continuous function ḡ : Rm → R and a coefficient
α ∈ (0,∞), such that for all y ∈ Rm and feasible z ∈ Rn,

∥z∥2 ≤ αu(z, y) + ḡ(y).

Let ∥ · ∥I be a norm on Rn and ∥ · ∥II a norm on Rm.
Assume that for each x ∈ Rn and e ∈ Rm, ∥e∥II ≤ η, any optimal solution x̂ of (3.19) for

y = Ax+ e satisfies

∥x̂− x∥I ≤ v(x, η),

where v : Rn × R → [0,∞) satisfies v(λx, λη) = λv(x, η) for all λ ≥ 0, x ∈ Rn, η ∈ R and
η 7→ v(x, η) is increasing for each x. Assume that this also holds for η = 0.

Then for each δ > 0, there exists a function f̃ : Rm → Rn, represented by a ReLU network
with two hidden layers, such that for all x ∈ Rn, e ∈ Rm, ∥e∥II ≤ η

3∥Ax∥II , y = Ax+ e,

∥f̃(y) − x∥I ≤ δ∥x∥2 + v(x,
4

3
η∥Ax∥II).

Proof. Consider the unit sphere of the ∥ · ∥II norm

SII := {x ∈ Rm
∣∣ ∥x∥II = 1} ⊂ Rm.

SII is a compact set and therefore we can apply Lemma 3.23 to obtain that for each ϵ > 0,
there is a continuous function f : SII → Rn such that for all y ∈ SII , there exists a ỹ ∈ SII and
a solution x̃ ∈ Rn of (3.19) for ỹ such that ∥y − ỹ∥2 < ϵ and ∥f̃(y) − x̃∥I < ϵ.

f is defined on SII such that we can extend it to a positive homogeneous, continuous function
f : Rm → Rn on the entire space. Now take any x ∈ Rn and e ∈ Rm with ∥e∥II ≤ η

3∥Ax∥II .
Let y = Ax+ e. Then

2

3
∥Ax∥II ≤ (1 − η

3
)∥Ax∥II ≤ ∥y∥II ≤ (1 +

η

2
)∥Ax∥II ≤

4

3
∥Ax∥II . (3.20)

Assume y ̸= 0 for now. Define

x̄ =
x

∥y∥II
ē =

e

∥y∥II
ȳ = Ax̄+ ē =

y

∥y∥II
,

such that ȳ = Ax̄+ ē. So ȳ ∈ SII and thus by the previous observation, there is a ȳ′ ∈ SII and
an optimal solution x̄′ ∈ Rn of (3.19) for ȳ′ such that ∥ȳ′ − ȳ∥2 < ϵ and ∥f(ȳ) − x̄′∥I < ϵ.

There is a constant C > 0 such that ∥w∥II ≤ C∥w∥2 for all w ∈ Rm. We can choose ϵ ≤ η
2C .

Define ē′ := ē+ ȳ′ − ȳ. Then ȳ′ = Ax̄+ ē′ and

∥ē′∥II ≤ ∥ē∥II + C∥ȳ′ − ȳ∥2 ≤
∥e∥II
∥y∥II

+ Cϵ ≤
η
3∥Ax∥II
2
3∥Ax∥II

+ Cϵ ≤ η

2
+
η

2
= η.
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So since x̄′ is an optimal solution of (3.19) for ȳ′,

∥x̄′ − x̄∥I ≤ v(x̄, η).

Since ∥f(ȳ) − x̄′∥I < ϵ,

∥f(ȳ) − x̄∥I ≤ ∥f(ȳ) − x̄′∥I + ∥x̄′ − x̄∥I ≤ ϵ+ v(x̄, η).

Now recall that x = ∥y∥II x̄ and we defined f by a positive homogeneous extension such that
in general,

∥f(y) − x∥I = ∥y∥II∥f(ȳ) − x̄∥I ≤ ϵ∥y∥II + v(
x

∥y∥II
, η)∥y∥II = ϵ∥y∥II + v(x, η∥y∥II)

≤ ϵ
4

3
∥Ax∥II + v(x,

4

3
η∥Ax∥II) ≤ ϵ

4

3
C∥A∥2→2∥x∥2 + v(x,

4

3
η∥Ax∥II)

≤ δ

2
∥x∥2 + v(x,

4

3
η∥Ax∥II), (3.21)

where the last step follows by choosing ϵ ≤ 3δ
8C∥A∥2→2

.

It still remains to show (3.21) for the case that y = 0. Then by (3.20), also Ax = 0 and
therefore e = 0. By the assumption of the theorem, in this case z = 0 is feasible and thus
optimal in (3.19) for η = 0 and so

∥x− 0∥I ≤ v(x, η) = v(x, 0).

Since we defined f as a positive homogeneous extension, f(y) = 0 such that ∥f(y)−x∥I = ∥0−x∥I
and (3.21) also holds for y = 0.

Now since f is a continuous, positive homogeneous function, by Theorem 3.7 (applied to
each component, together with equivalence of all norms), for each ϵ′ > 0, there is f̃ : Rm → Rn,
represented by an unbiased ReLU network with two hidden layers, such that for all y ∈ Rm,

∥f̃(y) − f(y)∥I ≤ ϵ′∥y∥II .

Then f̃(0) = 0 = f(0) and for y ̸= 0, by combining everything, we obtain for all ϵ′ > 0,

∥f̃(y) − x∥I ≤ ∥f̃(y) − f(y)∥I + ∥f(y) − x∥I ≤ ϵ′∥y∥II +
δ

2
∥x∥2 + v(x,

4

3
η∥Ax∥II)

≤ 4

3
ϵ′∥Ax∥II +

δ

2
∥x∥2 + v(x,

4

3
η∥Ax∥II) ≤ δ∥x∥2 + v(x,

4

3
η∥Ax∥II)

by choosing ϵ′ ≤ 3δ
8C∥A∥2→2

.

With Theorem 3.26, we can construct a positive homogeneous network to solve an inverse
problem that is known to be solved by a minimization problem. In particular, ℓ1 minimization
has been studied for sparse recovery (see Chapter 4 of [FR13]). Applying Theorem 3.26 to the
quadratically constrained basis pursuit (3.14), we obtain the following corollary.

Corollary 3.27. Let A ∈ Rm×n be a matrix of rank m, satisfying the (2s, δ)-restricted isometry
property for a δ < 0.7 and η ∈ [0, 13 ]. Then for each δ′ > 0, there exists a function f̃ : Rm → Rn,
represented by an unbiased ReLU network with two hidden layers, such that for all x ∈ Rn,
e ∈ Rm with ∥e∥2 ≤ η∥Ax∥2, p ∈ [1, 2],

∥f̃(Ax+ e) − x∥p ≤ δ′∥x∥2 +
C

s1−1/p
σs(x)1 +Ds1/p−1/2η∥Ax∥2,

where σs(x)1 := infx′∈Σs ∥x− x′∥1 and C, D only depend on δ.
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In particular, for p = 1, 2, we obtain

∥f̃(Ax+ e) − x∥1 ≤ δ′∥x∥2 + Cσs(x)1 +D
√
sη∥Ax∥2

∥f̃(Ax+ e) − x∥2 ≤ δ′∥x∥2 +
C√
s
σs(x)1 +Dη∥Ax∥2.

Proof. By Theorem 6.13 in [FR13], A satisfies the ℓ2-robust null space property which in turn
implies by Theorem 4.22 in [FR13] that the solution x̂ of (3.14) always satisfies

∥x̂− x∥p ≤
C

s1−1/p
σs(x)1 +Ds1/p−1/2η

for p ∈ [1, 2].
Then the result follows from Theorem 3.26 with v(x, η) = C

s1−1/pσs(x)1 +Ds1/p−1/2η.

As shown in Proposition 3.2 in [FR13], the basis pursuit denoising (3.15) and LASSO (3.16)
are as powerful as (3.14) since a solution of one of them can be shown to also optimize the other
ones for suitable parameters.

Corollary 3.28. Let A ∈ Rm×n be a matrix of rank m that satisfies the (2s, δ)-restricted
isometry property for a δ < 1

3 and η ∈ [0, 13 ]. Then for each δ′ > 0, there exists a function

f̃ : Rm → Rn, represented by a ReLU network with two hidden layers, such that for all x ∈ Rn,
e ∈ Rm with ∥AT e∥∞ ≤ η∥ATAx∥∞,

∥f̃(Ax+ e) − x∥2 ≤ δ′∥x∥2 +
C√
s
σs(x)1 +Dη∥ATAx∥∞.

Proof. Analogously to Corollary 3.27, this is a consequence of Theorem 3.26, this time applied
to the Dantzig selector (3.17).

As the only essential difference to Corollary 3.27, we need to ensure that y 7→ ∥AT y∥∞ is a
norm on Rm. Clearly it fulfills all properties except the positive definiteness. The latter one is
fulfilled if AT y ̸= 0 for all y ̸= 0 which is equivalent to dim(ker(AT )) = 0. This is fulfilled since
dim(ker(AT )) = dim((A(Rn))⊥) = m− rank(A) = 0.

Remark 3.29. � Compared to the original minimization result, in Corollary 3.27 (and anal-
ogously Corollary 3.28), the upper bound on the error, η

3∥Ax∥2, now depends on ∥Ax∥2.
This arises from making the solution positive homogeneous. However, the term that con-
tributes to the deviation of the result is still equal to the maximal error up to constant
factors.

� The condition rank(A) = m is satisfied for most interesting matrices, for example for
Gaussian ones with probability 1. If it is still not the case, we can replace A by PA for an
orthogonal projection P ∈ Rrank(A)×m without changing its RIP.

� Compared to Corollary 3.4, Corollary 3.27 provides deviation bounds in other norms and
for p = 2 a better dependence on σs(x)1. However, it requires an explicit bound on ∥e∥2
which influences the result while in Corollary 3.4 there is one network that works for all
possible error levels.

� Another approach that allows for robust sparse recovery without a previously known bound
on ∥e∥2 is given in [Woj10] by a basis pursuit (3.14) with η = 0. However, to make this
work, the measurement matrix A must satisfy an additional condition beside the RIP which
is known as the quotient property with respect to a norm ∥ · ∥. Then the reconstruction
error depends on ∥e∥. This additional property holds with respect to the norm ∥ · ∥2 for
example for Gaussian matrices but not for Bernoulli matrices as shown in Section 11.3 in
[FR13].
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3.6 Approximation on Polytopes

In this section, we discuss topics related to the exact representation of the sparse recovery
problem with ReLU networks. Even though for exact measurements, Corollary 3.4 states that
∥f̃(Ax) − x∥2 can be made arbitrarily small, i.e, ≤ δ∥x∥2 for any δ > 0, we cannot conclude an
exact representation from it in the sense that f̃(Ax) = x can be achieved for all signals x.

In the simple case of functions R → R, it can be seen from the properties of the ReLU
function, that the functions that are exactly represented by ReLU networks are the contin-
uous piecewise linear (CPWL) functions. We call f : R → R CPWL if there are finitely
many numbers x1 < x2 < · · · < xn for some n such that f is affine linear on each inter-
val (−∞, x1], [x1, x2], . . . , [xn−1, xn], [xn,∞) (which implies continuity since each of the interval
boundary points are contained in both neighboring intervals).

This observation has been generalized to functions f : Rm → R on a higher-dimensional
domain using higher-dimensional polyhedra. In this section, we introduce the most important
terms related to these polyhedra and establish some tools to make this result applicable to the
sparse recovery problem. In this way, we can prove the following result.

Theorem 3.30. Let A ∈ Rm×n be a matrix such that Ax ̸= 0 for all x ∈ Σ2s\{0}.
Then there exists a function f : Rm → Rn, represented by an unbiased ReLU network with

⌈log2(s) + 1⌉ hidden layers such that for all x ∈ Σs,

f(Ax) = x.

3.6.1 General Terms Related to Polyhedra

The textbook [Zie12] covers various topics related to polyhedra and polytopes. We mostly use
their notation and repeat the most important aspects here.

First, like in Section 0 and 1 of [Zie12], we use the following definitions for a subset X ⊂ Rn.

� The affine hull of X is

aff(X) :=


k∑
j=1

λjxj

∣∣∣∣∣ k ∈ Z≥1, x1, . . . , xk ∈ X, λ1, . . . , λk ∈ R,
k∑
j=1

λj = 1


which is the smallest (by set inclusion) affine subspace of Rn that contains X.

� The convex hull of X is

conv(X) :=


k∑
j=1

λjxj

∣∣∣∣∣ k ∈ Z≥1, x1, . . . , xk ∈ X, λ1, . . . , λk ∈ [0,∞),

k∑
j=1

λj = 1


which is the smallest (by set inclusion) convex subset of Rn that contains X.

� The conic hull of X is

cone(X) :=


k∑
j=1

λjxj

∣∣∣∣∣ k ∈ Z≥1, x1, . . . , xk ∈ X, λ1, . . . , λk ∈ [0,∞)

 .

Furthermore, we also need the following precise definitions of polyhedra and polytopes.

Definition 3.31 (Definition 0.1 in [Zie12]). � A polyhedron P ⊂ Rn is an intersection of
finitely many closed halfspaces, i.e.

P = {x ∈ Rn
∣∣ aTj x ≤ bj for all 1 ≤ j ≤ k}

for some a1, . . . , ak ∈ Rn and b1, . . . , bk ∈ R.
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� An H-polytope P ⊂ Rn is a polyhedron that is bounded in the sense that there is no ray
{x+ λy

∣∣λ ≥ 0} ⊂ P for any x ∈ Rn, y ∈ Rn\{0}.

� A V-polytope P ⊂ Rn is the convex hull of any finite set in Rn.

� The dimension of a polyhedron P is defined as the dimension of its affine hull

dim(P ) := dim(aff(P )).

A fundamental result in the field of polytopes covered in [Zie12] is that the terms H- and
V-polytope are equivalent.

Theorem 3.32 (Theorem 1.1 in [Zie12]). A subset P ⊂ Rn is an H-polytope if and only if it is
a V-polytope.

Therefore, hereafter we can just refer to both concepts as polytopes.

3.6.2 Polyhedra and ReLU networks

After having already explained the idea of continuous piecewise linear functions in one dimension,
with the help of polyhedra we can generalize this to functions on higher-dimensional domains.

Definition 3.33 (Continuous piecewise linear functions Rn → R (CPWL), Definition 3 in
[Aro+18]). f : Rn → R is continuous piecewise linear (CPWL) function if there are finitely
many polyhedra covering Rn such that f is affine linear on each of these polyhedra.

As shown in [He+20], this class is equivalent to the class of functions that can be represented
by ReLU functions. Moreover, the following result also states the number of layers that are
sufficient for the representation.

Theorem 3.34 (Representation of CPWL functions by ReLU networks, [He+20]). Any ReLU
network represents a CPWL function.

On the other hand, any CPWL function Rn → R can be represented by a ReLU network with
≤ ⌈log2(n+ 1)⌉ hidden layers.

In order to apply this theorem directly to the sparse recovery problem, we would need to
show that each function fj : Rm → R that recovers xj from Ax, is CPWL. We know that for
each support S ⊂ [N ], |S| = s, with ΣS := {x ∈ Rn

∣∣ supp(x) ⊂ S}, f is linear on AΣS and
AΣS is a polyhedron. However, these polyhedra do not cover the entire space Rm. [Ovc02]
characterizes CPWL functions as an expression of minima and maxima of affine linear functions
on a convex domain. This could be used to extend a CPWL function from a convex domain to
the entire space. However the set AΣs of images of sparse vectors is not convex and f needs to
be extended to the space between the images of the s-sparse supports in some way.

We pursue the following approach. We establish multiple tools in Section 3.6.3 that can
be used to show that whenever a function is represented by one separate ReLU network on
each polyhedron, then we can join them into one network which we can also ensure to be
unbiased under certain circumstances. For technical reasons, we need the function to be 0 on
the intersections between the polyhedra. In our application, this intersection would consist of
the images AΣs−1 of the (s− 1)-sparse vectors. Therefore in the end, we first start representing
f on Σ1, then in the next step represent the difference between this function and f on Σ2 and
so on until we reach Σs.
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3.6.3 Auxiliary Results

The following lemma states that a function represented by a biased ReLU network on an affine
subspace that does not include 0 can be represented on the same affine subspace by an unbiased
network of the same depth.

Lemma 3.35 (Bias elimination). Let m,n ∈ N with n > m and U ∈ Rn×m have orthonormal
columns, i.e., UTU = Idm. Take v ∈ Rn such that UUT v ̸= v. Consider a function f : Rm → R
represented by f(x) = Wd+1ϕ (. . .W2ϕ(W1x+ b1) + b2 . . . ) + bd+1, i.e., a ReLU network with d
hidden layers and biases. Assume dimensions W1 ∈ Rk1×m,W2 ∈ Rk2×k1 , . . . ,Wd+1 ∈ R1×kd.

Then there exist matrices W̃1 ∈ R(k1+1)×n, W̃2 ∈ R(k2+1)×(k1+1), . . . , W̃d+1 ∈ R1×(kd+1) such

that for f̃(y) := W̃d+1ϕ
(
. . . W̃2ϕ(W̃1y)

)
, we obtain that for all x ∈ Rm, f̃(Ux+v) = f(Ux+v).

Proof of Lemma 3.35. We can extend the orthonormal columns of U to an orthonormal basis
of Rn and define the matrix Ũ ∈ Rn×(n−m) whose columns are precisely the remaining basis
entries. Then by orthogonality, ŨTU = 0.

We define W̃1 :=

(
W1 + b1ṽ

T

ṽT

)
∈ R(k1+1)×n where ṽ := ŨŨT v

∥ŨT v∥22
. Note that by assumption

UUT v ̸= v, so ŨT v ̸= 0. For j = 2, . . . , d, we define W̃j ∈ R(kj+1)×(kj−1+1) by

W̃j :=

(
Wj bj
0 1

)
and finally W̃d+1 = (Wd+1 bd+1) ∈ R1×(kd+1).

Then for any x ∈ Rm,

ṽT (Ux+ v) =
1

∥ŨT v∥22

(
vT Ũ(ŨTU)x+ vT Ũ ŨT v

)
=

(ŨT v)T (ŨT v)

∥ŨT v∥22
= 1

such that

W̃1(Ux+ v) =

(
W1(Ux+ v) + b1ṽ

T (Ux+ v)
ṽT (Ux+ v)

)
=

(
W1(Ux+ v) + b1

1

)
.

Then by induction for all j = 2, . . . , d,

W̃jϕ
(
. . . W̃2ϕ(W̃1(Ux+ v)) . . .

)
=

(
Wjϕ (. . .W2ϕ(W1(Ux+ v) + b1) + b2 . . . ) + bj

1

)
,

and defining

f̃(y) := W̃d+1ϕ
(
. . . W̃2ϕ(W̃1y) . . .

)
,

we obtain that f̃(Ux+ v) = f(Ux+ v) holds for all x ∈ Rm.

Now we establish that for a polyhedron defined by inequalities aTj x ≤ bj , the distance of a

point x from the polyhedron is the maximal ϕ(aTj x− bj) up to a constant where ϕ is the ReLU
function.

Lemma 3.36. Let a1, . . . , ak ∈ Sn−1, b1, . . . , bk ∈ R (k ≥ 1) and define the non-empty polyhe-
dron

P :=
{
x ∈ Rn

∣∣ ∀j ∈ [k] : aTj x ≤ bj
}

Then there is a number C(P ) > 0, depending on the polyhedron, such that for all x ∈ Rn,

max
j∈[k]

ϕ(aTj x− bj) ≤ d(x, P ) ≤ C(P ) max
j∈[k]

ϕ(aTj x− bj),

where
d(x, P ) = inf

y∈P
∥x− y∥2.
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Proof. We can assume that x /∈ P , otherwise the statement follows immediately.
For the first inequality, consider a j0 ∈ [k] such that ϕ(aTj0x−bj0) becomes maximal. Consider

the half-space Hj0 := {x ∈ Rn
∣∣ aTj0x−bj0 ≤ 0}. Then since ∥aj0∥2 = 1, d(x,Hj0) = ϕ(aTj0x−bj0).

Then the first inequality follows from the fact that P ⊂ Hj0 and thus d(x,Hj0) ≤ d(x, P ).
Now we prove the second inequality. Denote A ∈ Rk×n for the matrix with rows aTj (1 ≤

j ≤ k) and b ∈ Rn for the vector with entries bj (1 ≤ j ≤ k).
Fix x ∈ Rn. Define

x̄ := argminy∈P ∥x− y∥2,

which exists since P is closed and is unique since P is convex. Furthermore, define the set

J := {j ∈ [k]
∣∣ aTj x̄ = bj} ⊂ [k]

and the polytope
PJ := {x ∈ Rn

∣∣∀j ∈ J : aTj x ≤ bj}

with the corresponding minimal distance point

x̂ := argminy∈PJ
∥x− y∥2.

Now we show that x̂ = x̄: Assume that x̂ ̸= x̄. Since x̂, x̄ ∈ PJ and since the ℓ2-distance of
a point to a closed convex set has a unique minimizer, ∥x− x̂∥2 < ∥x− x̄∥2.

For any λ ∈ [0, 1], xλ := λx̂ + (1 − λ)x̄ ∈ PJ . By definition of J , the strict inequalities
aTj x̄ < bj are fulfilled for all j ∈ Jc. Note that x̄ = xλ for λ = 0. So by continuity, for a small
enough λ1 ∈ (0, 1), these strict inequalities are still fulfilled for xλ1 . Since in addition xλ1 ∈ PJ ,
this implies that xλ1 ∈ P . However, ∥x−xλ1∥2 ≤ λ∥x− x̂∥2 + (1−λ)∥x− x̄∥2 < ∥x− x̄∥2. This
contradicts the definition of x̄ and thus x̂ = x̄.

We can draw the following conclusions,

x /∈ P ⇒ x ̸= x̄⇒ x /∈ PJ ⇒ J ̸= ∅.

Define J (0) := J and x̄(0) = x̄. We repeat the following steps for l = 0, 1, . . . .

1. It holds that J (l) ̸= ∅, x /∈ PJ(l) , and x̄(l) minimizes ∥x̄(l) − x∥2 in PJ(l) .

2. Let AJ(l) ∈ R|J(l)|×n be the matrix with rows aTj for j ∈ J (l) and correspondingly bJ(l) ∈
R|J(l)|. With the Moore-Penrose pseudoinverse A†

J(l) , y = A†
J(l)v is the minimizer of

∥AJ(l)y − v∥2 with minimal ∥y∥2. So x̄(l) − x = A†
J(l)(bJ(l) −AJ(l)x) since x̄(l) is the mini-

mizer of ∥AJ(l)(x̄(l)−x)− (bJ(l) −AJ(l)x)∥2 = ∥AJ(l) x̄(l)− bJ(l)∥2 (which is 0 iff aTj x̄
(l) = bj

for all j ∈ J (l)) with minimal ∥x̄(l) − x∥2.

3. This implies that

∥x̄(l) − x∥2 ≤ ∥A†
J(l)∥2→2∥AJ(l)x− bJ(l)∥2 ≤

√
k∥A†

J(l)∥2→2∥AJ(l)x− bJ(l)∥∞. (3.22)

4. We pick a jl ∈ J (l) such that |aTjlx − bjl | becomes maximal. Define J̄ (l+1) := J (l)\{jl}
and x̄(l+1) := argminy∈P

J̄(l+1)
∥x− y∥2. In addition, J (l+1) := {j ∈ J̄ (l+1)

∣∣ aTj x̄(l+1) = bj}.

Analogously to the beginning of this proof, then x̄(l+1) = argminy∈P
J(l+1)

∥x− y∥2.

Now we distinguish the following three cases.

(a) aTjlx− bjl ≥ 0.

In this case, the right hand side of (3.22) can be bounded by ϕ(aTjlx− bjl). We stop

the iteration here. (The previously defined J (l+1) is irrelevant in this case).
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(b) aTjlx− bjl < 0 and |aTjlx− bjl | ≤ ∥x̄(l+1) − x∥2.
Then by (3.22), ∥x̄(l) − x∥2 ≤

√
k∥A†

J(l)∥2→2∥x̄(l+1) − x∥2.
Since x /∈ PJ(l) , there exists a j ∈ J (l) such that aTj x− bj > 0. Then this j ̸= jl is also

contained in J̄ (l+1). So x̄(l+1) ̸= x, and thus J (l+1) ̸= ∅ and x /∈ PJ(l+1) . We continue
with the next iteration.

(c) aTjlx− bjl < 0 and |aTjlx− bjl | > ∥x̄(l+1) − x∥2.
Then, using that ∥ajl∥2 = 1, we obtain

aTjl x̄
(l+1) − bjl = aTjlx− bjl + aTjl(x̄

(l+1) − x) ≤ aTjlx− bjl + ∥ajl∥2∥x̄
(l+1) − x∥2

< aTjlx− bjl + |aTjlx− bjl | ≤ 0.

Together with x̄(l+1) ∈ PJ̄(l+1) , this implies that x̄(l+1) ∈ PJ(l) . In addition, since x̄(l)

and x̄(l+1) both are points of minimal distance and PJ(l) ⊂ PJ(l+1) , ∥x̄(l+1) − x∥2 ≤
∥x̄(l) − x∥2.
x̄(l) is the unique minimizer of y 7→ ∥x− y∥2 in PJ(l) , so we obtain that x̄(l+1) = x̄(l).
However, aTjl x̄

(l+1) − bjl < 0 and aTjl x̄
(l) − bjl = 0. So this third case leads to a

contradiction and cannot occur.

In every step l, the iteration either terminates or reduces the size of J (l) by at least 1, while
|J (l)| remains ≥ 1. So it terminates after the iteration with index L ≤ |J (0)| ≤ k and then with

D := max

{
1,

√
k max
J⊂[k],|J |≥1

∥A†
J∥2→2

}
,

we obtain that

d(x, P ) = ∥x̄(0) − x∥2 ≤ DL∥x̄(L) − x∥2 ≤ DLϕ(aTjLx− bjL) ≤ Dk max
j∈[k]

ϕ(aTj x− bj).

In the next step we bound the distance of a point to the intersection P ∩Q of two polyhedra
in terms of the distance to one of them.

Lemma 3.37. Let P = {x ∈ Rn
∣∣∀j ∈ [k] : aTj x ≤ bj} and Q = {x ∈ Rn

∣∣∀j ∈ [k̃] : ãTj x ≤ b̃j}
be non-empty polyhedra in Rn such that P ∩Q ̸= ∅. There is a number c(P,Q) > 0, depending
on the polyhedra, such that for all x ∈ Q,

d(x, P ∩Q) ≤ c(P,Q)d(x, P ).

Proof. Note that P ∩ Q = {y ∈ Rn
∣∣∀j ∈ [k] : aTj y ≤ bj and ∀j ∈ [k̃] : ãTj y ≤ b̃j} such that by

Lemma 3.36, for all x ∈ Rn,

d(x, P ∩Q) ≤ C(P ∩Q) max

{
max
j∈[k]

ϕ(aTj x− bj), max
j∈[k̃]

ϕ(ãTj x− b̃j)

}
.

If x ∈ Q, then ϕ(ãTj − b̃j) = 0 for all j ∈ [k̃] such that then

d(x, P ∩Q) ≤ C(P ∩Q) max
j∈[k]

ϕ(aTj x− bj).

On the other hand, Lemma 3.36 also states that for all x ∈ Rn,

d(x, P ) ≥ max
j∈[k]

ϕ(aTj x− bj).

Together these two inequalities imply that for all x ∈ Q,

d(x, P ∩Q) ≤ C(P ∩Q)d(x, P ).
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The next theorem concerns a collection of polytopes that satisfy certain conditions, including
that 0 is non of their affine hulls. It states that a function that can be represented by a ReLU
network on each of these polytopes and that is 0 on their intersections, can also be represented
by one ReLU network on the entire union of the polytopes. In addition, we can ensure this
network to be positive homogeneous.

Lemma 3.38. Let P be a finite set of non-empty polytopes in Rm such that:

� For all P ∈ P, 0 /∈ aff(P ).

� For any P,Q ∈ P, cone(P ) ∩ cone(Q) = cone(P ∩Q) ∪ {0}.

Take a function f : Rm → R such that:

� For each P ∈ P, there exists a function fP : Rm → R, represented by a (biased) ReLU
network with d hidden layers, such that fP (x) = f(x) for all x ∈ P .

� Let R :=
⋃
P,Q∈P
P ̸=Q

(P ∩Q) be the set of all points in Rm that lie in more than one polytope

in P. Then f(x) = 0 for all x ∈ R.

Then there exists a function f̃ : Rm → R, represented by an unbiased ReLU network with
d+ 1 hidden layers such that f̃(x) = f(x) for all x ∈

⋃
P∈P P .

Proof. Fix one P ∈ P. We will show that there is a function f̃P : Rm → R such that f̃P (x) =
fP (x) for all x ∈ P and that for all other Q ∈ P\{P}, f̃P (x) = 0 holds for all x ∈ Q.

Since 0 /∈ aff(P ), we can use Lemma 3.35 to eliminate the bias in the network of fP without
changing the function on aff(P ) ⊃ P . Thus, we can assume that the network representing fP is
unbiased.

The condition 0 /∈ aff(P ) also implies that dim(aff(P )) ≤ m− 1, such that P is contained in
an affine hyperplane {x ∈ Rm | aTx = b0} for a ∈ Rm with ∥a∥2 = 1 and b0 ∈ R\{0}.

Since P is a convex polygon, there exist A ∈ Rk×m and b ∈ Rk such that the set of solutions
x ∈ Rm to

aTx = b0

Ax ≤ b

(with element-wise ≤ in the second inequality) is precisely P . Since b0 ̸= 0, we can add a
multiple of aTx = b0 to every row in Ax ≤ b such that the right hand side becomes 0. So
without loss of generality we can assume that b = 0 and that P is the set of solutions x to

aTx = b0

Ax ≤ 0.

Then cone(P ) is the same as the polytope defined by the inequalities Ax ≤ 0. We denote
aT1 , . . . , a

T
k for the rows of the matrix A.

We observe the following facts:

� As a ReLU network function, fP is Lipschitz continuous with a Lipschitz constant LP > 0.

� By Lemma 3.36, there exists a constant C(P ) > 0 such that for all x ∈ Rm, d(x, cone(P )) ≤
C(P ) maxj∈[k] ϕ(aTj x).

� fP is represented by an unbiased ReLU network and thus invariant under positive scaling,
i.e., fP (λx) = λfP (x) for all λ ≥ 0 and x ∈ Rm. Thus for each other Q ∈ P\{P}, the
condition fP (x) = 0 does not only hold for all x ∈ P ∩Q, but even for all x ∈ cone(P ∩Q).
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We take D(P ) to be the maximum of all c(cone(P ), cone(Q)) in Lemma 3.38 for Q ∈ P\{P}
such that P ∩Q ̸= ∅. Then for each such cone(Q) and all x ∈ Q,

d(x, cone(P ) ∩ cone(Q)) ≤ D(P )d(x, cone(P )).

Let Q̄ :=
⋃
Q∈P:P∩Q=∅. Since P is finite, Q̄ is compact and disjoint from P . Q̄ is even

disjoint from cone(P ). Otherwise there is a Q ∈ P with P ∩Q = ∅ such that a non-zero vector
(since 0 /∈ Q) is contained in cone(P ) ∩ Q ⊂ cone(P ) ∩ cone(Q) = cone(P ∩ Q) ∪ {0} = {0},
which is a contradiction. Since cone(P ) is convex and closed, for each x ∈ Q̄, we can find a
unique closest point Pcone(P )(x) ∈ cone(P ). Now define gP : Rm → R by

gP (x) =

(
LPD(P ) +

maxy∈Q̄ |fP (Pcone(P )(y))|
miny∈Q̄ ∥y − Pcone(P )(y)∥2

+ LP

)
C(P )

m∑
j=1

ϕ(aTj x). (3.23)

Since Q̄ is compact and disjoint from cone(P ), all the minima and maxima in this expression
exist and the denominator is > 0. Also, gP (x) ≥ 0 for all x ∈ Rm.

The function gP has the following properties.

� For all x ∈ P ,
gP (x) = 0. (3.24)

� For all x ∈ Q for any Q ∈ P\{P},

gP (x) ≥ |fP (x)|. (3.25)

(3.24) follows directly from the fact that Ax ≤ 0 holds for all x ∈ P . To show the second
property (3.25), we distinguish two cases.

� 1st case: P ∩Q ̸= ∅.

Then P ∩Q is a polytope. Let x̄ be the point in cone(P )∩ cone(Q) with minimal distance
to x. Since by assumption cone(P ) ∩ cone(Q) = cone(P ∩ Q) ∪ {0}, by the previous
observation, x̄ satisfies fP (x̄) = 0. Thus we obtain

|fP (x)| ≤ |fP (x̄)| + |fP (x̄) − fP (x)| ≤ 0 + LP ∥x̄− x∥2 = LPd(x, cone(P ) ∩ cone(Q))

≤ LPD(P )d(x, cone(P )) ≤ LPD(P )C(P ) max
j∈[k]

ϕ(aTj x) ≤ gP (x),

such that (3.25) holds.

� 2nd case: P ∩Q = ∅.

Take the point v = Pcone(P )(x) in cone(P ) with minimal distance from x. Then

|fP (x)| ≤ |fP (v)| + |fP (x) − fP (v)| ≤ max
y∈Q̄

|fP (Pcone(P )(y))| + LPd(x, cone(P ))

≤

(
maxy∈Q̄ |fP (Pcone(P )(y))|
miny∈Q̄ ∥y − Pcone(P )(y)∥2

+ LP

)
d(x, cone(P ))

≤

(
maxy∈Q̄ |fP (Pcone(P )(y))|
miny∈Q̄ ∥y − Pcone(P )(y)∥2

+ LP

)
C(P ) max

j∈[k]
ϕ(aTj x)

≤ gP (x),

showing (3.25).
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From the definition (3.23), we can see that gP is represented by an unbiased ReLU network
with one hidden layer (the factors outside of the sum are constant and do not depend on x).
This network can then also be changed to d layers.

Now we define f̃P : Rm → R by

f̃P (x) = ϕ(fP (x) − gP (x)) − ϕ(−fP (x) − gP (x))

for all x ∈ Rm. This can then be represented by a ReLU network with d+ 1 hidden layers.
From the properties (3.24) and (3.25) of gP , we can conclude that for x ∈ P ,

f̃P (x) = ϕ(fP (x) − 0) − ϕ(−fP (x) − 0) = fP (x).

For any other Q ∈ P\{P} and x ∈ Q, because of (3.25), fP (x) − gP (x) ≤ 0 and −fP (x) −
gP (x) ≤ 0 such that f̃P (x) = 0.

Now we can define f̃ : Rm → R by

f̃(x) =
∑
P∈P

f̃P (x).

By the representation of the f̃P , also f̃ can be represented by an unbiased ReLU network with
d + 1 hidden layers. For any x ∈

⋃
P∈P P , consider one P ′ ∈ P such that x ∈ P ′. Then

f̃P ′(x) = f(x) and for any other Q ∈ P\{P ′}, it holds that f̃Q(x) = 0. Note that this is true
even for the case that also x ∈ Q (f is zero on the intersections). So we obtain

f̃(x) = f̃P ′(x) +
∑

Q∈P\{P ′}

f̃Q(x) = f(x).

In the next step we take a certain sequence of sets of polytopes. In our application P(r)

will be the set of polytopes that form the intersection of the images AΣs−r of the (s− r)-sparse
vectors under A with the image of the ℓ1 unit sphere (which itself consists of polytopes) under
A. These sets of polytopes have to fulfill a number of technical conditions, for example that the
intersection of two elements in P(r) is contained in an element of the next set P(r+1). We will
show that they are fulfilled in the subsequent Lemma 3.40.

Then the following Lemma states that any function that can be represented by a separate
ReLU network on each of these polytopes, can also be represented on their entire union with
just one network. We do not require the function to be zero on the intersections anymore.

Lemma 3.39. Let P,P(0),P(1), . . . ,P(R) be finite sets of non-empty polytopes in Rm such that:

(a) P(0) = P and P(R) = ∅.

(b) For all P ∈ P, 0 /∈ aff(P ) and dim(P ) ≤ m′.

(c) For r = 0, . . . , R− 1, for all P,Q ∈ P(r), cone(P ) ∩ cone(Q) = cone(P ∩Q) ∪ {0}.

(d) For r = 0, . . . , R − 1, for all P,Q ∈ P(r) with P ̸= Q and P ∩ Q ̸= ∅, there exists a
Q̃ ∈ P(r+1) such that P ∩Q ⊂ Q̃.

(e) For r = 0, . . . , R− 1, for all P ∈ P(r+1), there is a Q ∈ P(r) such that P ⊂ Q.

Consider a function f :
⋃
P∈P P → R such that for each P ∈ P, there exists a ReLU network

with ≤ ⌈log2(m
′ + 1)⌉ hidden layers, representing fP : Rm → R, such that for all x ∈ P ,

fP (x) = f(x). (3.26)

Then there exists an unbiased ReLU network with ≤ ⌈log2(m
′ + 1) + 1⌉ hidden layers, rep-

resenting f̃ : Rm → R, such that for all x ∈
⋃
P∈P P ,

f̃(x) = f(x).
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Proof. Since P(R) = ∅, for all P,Q ∈ P(R−1) with P ̸= Q, P ∩Q = ∅.
With the polytopes in P(R−1) and the function f , which is also defined on their union, we

observe that the prerequisites of Lemma 3.38 are fulfilled:
The polytopes in P(R−1) are subsets of the ones in P such that also for all P ∈ P(R−1),

0 /∈ aff(P ). The condition cone(P∩Q)∪{0} = cone(P )∩cone(Q) also holds for all P,Q ∈ P(R−1).
For any P ∈ P(R−1), there exists a P ′ ∈ P such that P ⊂ P ′. By assumption, there is an
fP ′ : Rm → R, represented by a ReLU network with ≤ ⌈log2(m

′ + 1)⌉ hidden layers, such that
for all x ∈ P ′, fP ′(x) = f(x). Furthermore, since all intersections of polytopes in P(R−1) are
empty, the condition that f is 0 on the intersections, trivially holds.

So all requirements of Lemma 3.38 are fulfilled and there is a function f̃(R−1), represented by
an unbiased network with ≤ ⌈log2(m

′ + 1) + 1⌉ hidden layers such that for all x ∈
⋃
P∈P(R−1) P ,

f̃(R−1)(x) = f(x).

Now we iteratively apply Lemma 3.38 again for r = R−2, R−3, . . . , 0. We assume that there
is a function f̃(r+1) : Rm → R, represented by an unbiased ReLU network with ≤ ⌈log2(m

′ +
1) + 1⌉ layers, such that for all x ∈

⋃
P∈P(r+1) P ,

f̃(r+1)(x) = f(x). (3.27)

We define g(r) : Rm → R by g(r)(x) = f̃(r+1)(x)−f(x). Now we check the conditions to apply

Lemma 3.38 to represent the function g(r) on the polytopes in P(r). Clearly, the conditions 0 /∈ P

and cone(P ∩Q)∪{0} = cone(P )∩ cone(Q) are again fulfilled for all P,Q ∈ P(r). Now take any
P ∈ P(r). Then there is a P ′ ∈ P such that P ⊂ P ′ and a corresponding fP ′ , represented by a
ReLU network with ≤ ⌈log2(m

′ + 1)⌉ hidden layers, such that for all x ∈ P ′, fP ′(x) = f(x).
Then g(r,P ) := f̃(r+1)− fP ′ can be represented by a ReLU network with ≤ ⌈log2(m

′ + 1) + 1⌉
hidden layers. With m′′ := dim(P ) ≤ m′, there is a bijective affine transformation h : Rm′′ →
aff(P ). Then h−1 : aff(P ) → Rm′′

is also affine linear and g(r,P ) ◦ h : Rm′′ → R can be
represented by a ReLU network. With the classification Theorem 3.34, we can conclude that
g(r,P ) ◦h is a CPWL function on Rm′′

and can therefore also be represented by a ReLU network
with ≤ ⌈log2(m

′ + 1)⌉ layers. g(r,P ) ◦ h ◦ h−1 : aff(P ) → R agrees with g(r,P ) on its domain and
because h ◦ h−1 is an affine transformation, it can also be represented by a ReLU network with
≤ ⌈log2(m

′ + 1)⌉ layers. Let g̃(r,P ) : Rm → R be the function represented by this network (on
the entire space Rm). Then g̃(r,P ) and g(r,P ) agree on P and we have for all x ∈ P ,

g̃(r,P )(x) = f̃(r+1)(x) − f(x) = g(r)(x),

showing the first requirement of Lemma 3.38 on the function g(r).

For the second requirement on g(r), consider x ∈ P ∩ Q where P,Q ∈ P(r), P ̸= Q. Then

there is a P ′ ∈ P(r+1) such that P ∩Q ⊂ P ′. Especially, x is contained in the set
⋃
Q′∈P(r+1) Q′,

for which we have shown g(r)(x) = f̃(r+1)(x) − f(x) = 0.
This completes the check of the prerequisites for Lemma 3.38 such that we can conclude

that there exists g̃(r) : Rm → R, represented by an unbiased ReLU network with ≤ ⌈log2(m
′ +

1) + 1⌉ hidden layers, such that for all x ∈
⋃
P∈P(r) P , g̃(r)(x) = g(r)(x). Defining f̃(r)(x) :=

f̃(r+1)(x) − g̃(r)(x), this function can also be represented by an unbiased ReLU network with
≤ ⌈log2(m

′ + 1) + 1⌉ hidden layers, we obtain that for all x ∈
⋃
P∈P(r) P ,

f̃(r)(x) = f̃(r+1)(x) − g̃(r)(x) = g(r)(x) − g̃(r)(x) + f(x) = f(x),

which matches with with the induction hypothesis (3.27) for the next step.
So by induction, it follows that there is a function f̃ = f̃(0) on Rm → R, represented by a

ReLU network with ≤ ⌈log2(m
′ + 1) + 1⌉ layers, such that for all x ∈

⋃
P∈P P ,

f̃(x) = f(x),
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which completes the proof of the lemma.

In the next step, we show that the conditions on the polytopes of the previous lemma are
fulfilled. The P(r) below consist of the polytopes whose union is the image under A of the
intersection of Σs−r with the ℓ1 unit sphere.

Lemma 3.40. Let a1, . . . , an ∈ Rm such that any M ⊂ {a1, . . . , an} with |M | ≤ 2s is linearly
independent.

For each τ ∈ {0,±1}n, define

Γτ := conv({τjaj
∣∣ 1 ≤ j ≤ n and τj ̸= 0}).

and then
P(r) = {Γτ

∣∣ ∥τ∥0 = s− r}

for 0 ≤ r ≤ s− 1 and P(s) = ∅.
Then P := P(0),P(1), . . . ,P(s) are finite sets of non-empty polytopes satisfying the conditions

(a) to (e) from Lemma 3.39 with m′ = s− 1.

Proof. Clearly, all P(r) are finite. Since every element of every P(r) is a convex hull of finitely
many and more than 0 points, it is a non-empty polytope (Theorem 3.32).

(a) follows directly from the definitions.
Proof of (b): Consider τ ∈ {0,±1}n with ∥τ∥0 ≤ s and τ ̸= 0. If 0 ∈ aff(Γτ ), then

0 ∈ aff({τjaj
∣∣ 1 ≤ j ≤ n and τj ̸= 0}). So for S = {j ∈ [n]

∣∣ τj ̸= 0}, there exist coefficients
(λj)j∈S such that

∑
j∈S λjτjaj = 0 and

∑
j∈S λj = 1. Since |S| ≤ 2s, by assumption the (aj)j∈S

are linearly independent. This implies λj = 0 for all j ∈ S, contradicting the fact that the sum
of the λj is 1.

Moreover, any Γτ is the convex hull of ≤ s points and therefore dim(Γτ ) ≤ s− 1.
Proof of (c): Consider any τ, τ ′ ∈ {0,±1}n with 0 < ∥τ∥0, ∥τ ′∥0 ≤ s. It always holds that

Γτ ∩ Γτ ′ ⊂ cone(Γτ ) ∩ cone(Γτ ′) and thus

cone(Γτ ∩ Γτ ′) ∪ {0} ⊂ cone(Γτ ) ∩ cone(Γτ ′).

On the other hand, consider any x ∈ cone(Γτ ) ∩ cone(Γτ ′). Define S = supp(τ), S′ :=
supp(τ ′) and S̄ := S ∪ S′. By the definition of cone(Γτ ) and cone(Γτ ′) there are coefficients
(µj)j∈S , (µ′j)j∈S′ ≥ 0 such that ∑

j∈S
µjτjaj = x =

∑
j∈S′

µ′jτ
′
jaj .

These are two representations of x as a linear combination of (aj)j∈S̄ which is linearly indepen-
dent since |S̄| ≤ 2s. So the coefficients must be equal and since all µj , µ

′
j are ≥ 0, µj = 0 for

all j /∈ Ŝ where Ŝ = {j ∈ [n]
∣∣ τj = τ ′j ̸= 0}. If µj = 0 for all j ∈ Ŝ, then x = 0 and the other

inclusion follows directly. Otherwise

1∑
l∈Ŝ µl

x =
∑
j∈Ŝ

µj∑
l∈Ŝ µl

τjaj

is a convex combination of (τjaj)j∈Ŝ and thus in Γτ ∩ Γτ ′ such that x ∈ cone(Γτ ∩ Γτ ′).

Proof of (d): Consider any τ, τ ′ ∈ {0,±1}n with ∥τ∥0 = ∥τ ′∥0 = s−r and τ ̸= τ ′, Γτ∩Γτ ′ ̸= ∅.
Note that since this intersection is non-empty, we cannot have r = s − 1. Again, we define
S = supp(τ), S′ = supp(τ ′) and S̄ = S ∪ S′. Any x ∈ Γτ ∩ Γτ ′ can then be represented as a
convex combination ∑

j∈S
λjτjaj = x =

∑
j∈S′

λ′jτ
′
jaj ,
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where λj , λ
′
j ≥ 0 for all j and

∑
j∈S λj =

∑
j∈S′ λ′j = 1. Also here, |S̄| ≤ 2s shows that S̄ is

independent and thus the coefficients must be equal such that λj = 0 and λ′j = 0 whenever j /∈ Ŝ

for Ŝ = {j ∈ [n]
∣∣ τj = τ ′j ̸= 0}. So if we define τ̃ ∈ {0,±1}n such that τ̃j = τj for j ∈ Ŝ and

τ̃j = 0 otherwise, then x ∈ Γτ̃ . Since Ŝ ⊂ S∩S′ and τ ̸= τ ′, we must have ∥τ̃∥0 = |Ŝ| ≤ s−r−1.
Modifying τ̃ to τ̃ ′ ∈ {0,±1}n by changing some of its entries from 0 to 1, we can achieve that
∥τ̃ ′∥0 = s− r − 1 and then Γτ̃ ⊂ Γτ̃ ′ such that x ∈ Γτ̃ ′ and Γτ̃ ′ ∈ P(r+1).

Proof of (e): For any τ ∈ {0,±1}n, ∥τ∥0 = s − r − 1 < n, we can construct τ ′ ∈ {0,±1}n
with ∥τ ′∥0 = s−r by changing one of the entries from 0 to 1. Then Γτ ⊂ Γτ ′ and Γτ ′ ∈ P(r).

3.6.4 Proof of Theorem 3.30

Now we can combine all the previous tools to prove the main result about exact recovery.

Proof of Theorem 3.30. Let a1, . . . , an be the columns of A. Then any subset of {a1, . . . , an} of
size ≤ 2s is linearly independent. Otherwise there would be an x ∈ Σ2s\{0} such that Ax = 0.

For a1, . . . , an and s, by Lemma 3.40, the sets P,P(0), . . . ,P(s) satisfy (a) to (e) from Lemma
3.39 with m′ = s− 1.

The map A is injective on Σs, otherwise there would be x ∈ Σ2s\{0} such that Ax = 0. So
we can define an inverse map f0 : AΣs → Σs. For each τ ∈ {0,±1}n, 1 ≤ ∥τ∥0 ≤ s, A maps the
subspace span({τjej

∣∣ j ∈ [n], τj ̸= 0}) bijectively to the subspace span({τjaj
∣∣ j ∈ [n], τj ̸= 0}).

So the inverse map f0 is again linear on span({τjaj
∣∣ j ∈ [n], τj ̸= 0}) and thus also on the subset

Γτ . So for each P ∈ P(r), r = 0, . . . , s, f0 restricted to P is linear and can thus be represented
exactly by a ReLU network with one hidden layer, i.e., the condition (3.26) holds.

Altogether, we can apply Lemma 3.39 to f0, such that there exists f : Rm → Rn, represented
by an unbiased ReLU network with ⌈log(s) + 1⌉ hidden layers such that for all y ∈

⋃
P∈P P ,

f(y) = f0(y).

Now for all x ∈ Σs\{0}, x
∥x∥1 ∈ conv({sign(xj)ej

∣∣ sign(xj) ̸= 0}), so A x
∥x∥1 ∈ Γsign(x) and

then by the positive homogeneity of f ,

f(Ax) = ∥x∥1f(A
x

∥x∥1
) = ∥x∥1f0(A

x

∥x∥1
) = ∥x∥1 ·

x

∥x∥1
= x,

and f(Ax) = x for x = 0 follows directly by positive homogeneity.

3.7 Construction of Small Networks for s = 1

Although Corollary 3.4 states that we can solve the sparse recovery problem with a network of
small depth, because of using the universal approximation theorem, it does not state anything
about the width of the network. With the following result, we establish a first step towards
investigating the width required for successful sparse recovery. We show that for 1-sparse vectors,
the problem can be solved with a network with two hidden layers of comparably small widths
⌈5 log(n)⌉ and 2n.

Theorem 3.41. Let n > 2 and A ∈ Rm×n, m ≥ 2 such that Ax ̸= 0 for all x ∈ Σ2. Then for
k1 = ⌈5 log(n)⌉, k2 = 2n, there exist matrices W3 ∈ Rn×k2 , W2 ∈ Rk2×k1 , W1 ∈ Rk1×n such that
the neural network function f(y) = W3 ReLU(W2 ReLU(W1y)) satisfies f(Ax) = x for every
x ∈ Σ1.

Proof of Theorem 3.41. Consider the matrix

B = ReLU(W1A
[
Idn −Idn

]
) ∈ Rk1×2n.
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We first show that i) there is a choice of W1 so that no two columns of B are parallel. Next, we
use this fact to show that ii) there is a choice of W2 ∈ R2n×k1 so that ReLU(W2B) ∈ R2n×2n is
invertible. Finally, define W3 =

[
Idn −Idn

]
(ReLU(W2B))−1. It follows that

W3 ReLU(W2 ReLU(W1A
[
Idn −Idn

]
)) = W3 ReLU(W2B) =

[
Idn −Idn

]
,

establishing that for any j ∈ [n],

f(Aej) = W3 ReLU(W2 ReLU(W1(Aej))) = W3 ReLU(W2B)ej = ej ,

and similarly f(A(−ej)) = −ej . Since the ReLU function is positive homogeneous, this implies
that f(λv) = λf(v) holds for every vector v ∈ Rn and thus f(Ax) = x is satisfied for any
1-sparse x ∈ Rn, which concludes the proof. It remains to establish the facts i and ii.

i) There is a choice of the matrix W1 so that no two columns of the matrix B are
parallel: From the assumption that Ax ̸= 0 for all x ∈ Σ2, it follows that there are no two
columns a ̸= b of A such that a and b are parallel, and A does not have a zero-column.

Define W̃1 ∈ Rk1×n to have independent N(0, 1) entries. For J ⊂ {1, . . . , k1}, define RJ ∈
R|J |×k1 to be the restriction operator to the entries in J . For any vectors a, b ∈ Rn such that
a ̸∥ b, consider the probability

pa,b := P
(
∃i, j ∈ [k1] : i ̸= j and R{i,j}W̃1a ∥ R{i,j}W̃1b

)
≤ P

(
∃i, j ∈ [k1] : i ̸= j and det

[
⟨(W̃1)i, a⟩ ⟨(W̃1)i, b⟩
⟨(W̃1)j , a⟩ ⟨(W̃1)j , b⟩

]
= 0

)
≤

∑
i,j∈[k1]
i ̸=j

P
(
⟨(W̃1)i, a⟩⟨(W̃1)j , b⟩ − ⟨(W̃1)i, b⟩⟨(W̃1)j , a⟩ = 0

)

=
∑

i,j∈[k1]
i ̸=j

P
(〈

(W̃1)i, a⟨(W̃1)j , b⟩ − b⟨(W̃1)j , a⟩
〉

= 0
)

=
∑

i,j∈[k1]
i ̸=j

P
(
a⟨(W̃1)j , b⟩ − b⟨(W̃1)j , a⟩ = 0

)
,

where we used that the rows (W̃1)i and (W̃1)j are independent and for any fixed vector v ∈ Rn
and g ∼ N(0, Idn), P(⟨g, v⟩ = 0) = 0 if v ̸= 0. Since a⟨(W̃1)j , b⟩ − b⟨(W̃1)j , a⟩ = 0 can only hold
if a ∥ b, we obtain pa,b = 0.

Let V be the set of columns of the matrix [A,−A]. For any v ∈ V , since v ̸= 0, and any index
j ∈ [k1], (W̃1v)j is a Gaussian variable with mean 0 and positive variance, so P((ϕ(W̃1v))j ̸=
0) = P((W̃1v)j > 0) = 1

2 . Since the entries of W̃1v are independent,

P(∥ϕ(W̃1v)∥0 ≤ 1) = P(∥ϕ(W̃1v)∥0 = 0) + P(∥ϕ(W̃1v)∥0 = 1)

= (1/2)k1 + (1/2)k1n

= 2−k1(n+ 1).

Now we obtain

P(∃v ∈ V : ∥ϕ(W̃1v)∥0 ≤ 1) ≤
∑
v∈V

P(∥ϕ(W̃1v)∥0 ≤ 1)

≤ |V |max
v∈V

P(∥ϕ(W̃1v)∥0 ≤ 1)

≤ 2n(n+ 1)2−k1
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≤ 2n(n+ 1)2−5 logn = 2n(n+ 1)n−5 log 2

≤ 2n(n+ 1)n−3 =
2

n
+

2

n2
< 1

since n ≥ 3.
This implies that P(∀v ∈ V : ∥ϕ(W̃1v)∥0 ≥ 2) > 0, i.e., we can choose one realization W1

of W̃1 such that ∥ϕ(W1v)∥0 ≥ 2 for all columns of [ATA,−ATA] and simultaneously for any
distinct indices i, j ∈ [k1] and any non-parralel a, b ∈ V , R{i,j}W1a ̸∥ R{i,j}W1b.

Now assume that there are two parralel columns of B. Then there are two different a, b ∈ V
such that ϕ(W1a) = λϕ(W1b) for a λ ∈ R. Both ϕ(W1a) and ϕ(W1b) only have non-negative
entries, so λ ≥ 0. Since ∥ϕ(W1a)∥0 ≥ 2, ϕ(W1a) ̸= 0, thus λ > 0. By the choice of W1, we can
also pick two distinct indices i, j ∈ [k1] such that all entries in R{i,j}ϕ(W1b) are > 0 and because
of λ > 0 also the entries of R{i,j}ϕ(W1a) are > 0.

This implies R{i,j}ϕ(W1v) = R{i,j}W1v for v = a, b and thus R{i,j}W1a = λR{i,j}W1b, i.e.,
R{i,j}W1a ∥ R{i,j}W1b. This however, can only happen if a ∥ b, as observed above. By the
definition of V , this is only possible for b = −a. Since ϕ(W1a)j ̸= 0 (i.e. (W1a)j > 0) excludes
ϕ(W1(−a))j ̸= 0, the vectors ϕ(W1a) and ϕ(W1(−a)) have disjoint supports, contradicting the
assumption that they are non-zero and parallel.

So B cannot have any two parralel columns.

ii) There is a choice of W2 ∈ R2n×k1 so that ReLU(W2B) is invertible: Now let g ∼
N(0, Idk1) and define the symmetric matrix M := E[ϕ(BT g)ϕ(BT g)T ] ∈ R2n×2n. We show that
M and later also its random approximation ϕ(W2B)Tϕ(W2B) have rank 2n, which establishes
that the matrix ReLU(W2B) is invertible, as desired. A related scenario has been analyzed in
[Du+19]. The following proof adapts those methods to our setup.

ii)-1: We first show that M has rank 2n. Towards this goal, assume for contradiction that
rank(M) < 2n. Then there exists a vector u ∈ R2n\{0} such that

0 = uTMu = E[uTϕ(BT g)ϕ(BT g)Tu] = E[|ϕ(BT g)Tu|2].

Since |ϕ(BT g)Tu|2 ≥ 0, this implies that ϕ(BT g)Tu = 0 holds almost surely. Since the Lebesgue
measure λ is absolutely continuous with respect to the probability measure of the standard
normal distribution on Rk1 , the equation ϕ(BTx)Tu = 0 has to hold λ-almost everywhere in x
and by continuity this implies ϕ(BTx)Tu = 0 for all x ∈ Rk1 .

Let b1, . . . , b2n be the columns of the matrix B. Also, for j ∈ [2n] let Dj := {x ∈ Rk1 :
⟨x, bj⟩ = 0}. Since there are no parallel columns of B, Dj ̸⊂

⋃
l ̸=j Dl (see [Du+19], Lemma A.1).

We know that
∑2n

j=1 ujϕ(⟨x, bj⟩) = 0 holds for all x ∈ Rk1 . Now fix a particular index j0 ∈ [2n].
Choose x ∈ Dj0\

⋃
j ̸=j0 Dj . For all j ̸= j0, ⟨x, bj⟩ ≠ 0 and by continuity, for a sufficiently small

ϵ > 0, for all j ̸= j0, sign(⟨x ± ϵbj0 , bj⟩) = sign(⟨x, bj⟩). Because of 0 =
∑2n

j=1 ujϕ(⟨x, bj⟩) =∑2n
j=1 ujϕ(⟨x+ ϵbj0 , bj⟩) =

∑2n
j=1 ujϕ(⟨x− ϵbj0 , bj⟩), we have

0 =

2n∑
j=1

uj [ϕ(⟨x+ ϵbj0 , bj⟩) + ϕ(⟨x− ϵbj0 , bj⟩) − 2ϕ(⟨x, bj⟩)] . (3.28)

For each j ∈ [2n], one of the following holds

� j ̸= j0 and ⟨x, bj⟩ > 0: Then by assumption on ϵ, also ⟨x± ϵbj0 , bj⟩ > 0 and then

ϕ(⟨x+ ϵbj0 , bj⟩) + ϕ(⟨x− ϵbj0 , bj⟩) − 2ϕ(⟨x, bj⟩) = ⟨x+ ϵbj0 , bj⟩ + ⟨x− ϵbj0 , bj⟩ − 2⟨x, bj⟩
= 0.
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� j ̸= j0 and ⟨x, bj⟩ < 0: Then by assumption on ϵ, also ⟨x± ϵbj0 , bj⟩ < 0 and then

ϕ(⟨x+ ϵbj0 , bj⟩) + ϕ(⟨x− ϵbj0 , bj⟩) − 2ϕ(⟨x, bj⟩) = 0 + 0 − 0 = 0.

� j = j0: Then ⟨x± ϵbj0 , bj⟩ = ±ϵ∥bj0∥22, i.e.

ϕ(⟨x+ ϵbj0 , bj⟩) + ϕ(⟨x− ϵbj0 , bj⟩) − 2ϕ(⟨x, bj⟩) = ϵ∥bj0∥22 + 0 − 0 = ϵ∥bj0∥22.

Substituting into (3.28) yields 0 = uj0ϵ∥bj0∥22, so uj0 = 0. Since this argument holds for all
j0 ∈ [2n], we obtain u = 0, contradicting the assumption that the expectation matrix M does
not have the maximal rank 2n. So rank(M) = 2n.

ii)-2: Now let W̃2 ∈ Rk′2×k1 be a matrix with independent N(0, 1) entries. Define

X̃ := ϕ(W̃2B)Tϕ(W̃2B)

such that for (j, l) ∈ [2n]2, and (W̃2)r being the r-th row of W̃2,

X̃jl − E[X̃jl] =
∑
r∈[k′2]

[
ϕ((W̃2)rbj)ϕ((W̃2)rbl) −Mjl

]
=:

∑
r∈[k′2]

X̃
(r)
jl .

We show that X̃ has full rank 2n with high probabiliy, and therefore there exists a realization
of weights W2 so that the matrix ϕ(W2B)T has full rank.

For p ≥ 2,

E|X̃(r)
jl |

p = E|ϕ((W̃2)rbj)ϕ((W̃2)rbl) −Mjl|p

≤ 2p
[
E|ϕ((W̃2)rbj)ϕ((W̃2)rbl)|p + E|Mjl|p

]
= 2p

[
E|ϕ((W̃2)rbj)ϕ((W̃2)rbl)|p + [E|ϕ((W̃2)rbj)ϕ((W̃2)rbl)|]p

]
≤ 2p

[
2E|ϕ((W̃2)rbj)ϕ((W̃2)rbl)|p

]
≤ 2p

[
E|ϕ((W̃2)rbj)

2 + ϕ((W̃2)rbl)
2|p
]

≤ 4p
[
E|ϕ((W̃2)rbj)|2p + E|ϕ((W̃2)rbl)|2p

]
Considering that for any a ∈ Rn and g ∼ N(0, Idn),

E|ϕ(⟨g, a⟩)|2p ≤ E|⟨g, a⟩|2p =
(2p)!

2pp!
∥a∥2p2 ≤ 22p(p!)2

2pp!
∥a∥2p2 = 2pp!∥a∥2p2 ,

we obtain
E|X̃(r)

jl |
p ≤ 8pp!(∥bj∥2p2 + ∥bl∥2p2 ) ≤ p!Rp−2σ2/2

for R = 8 maxl∈[2n] ∥bl∥22, σ2 = 256 maxl∈[2n] ∥bl∥42.
Since the X̃

(r)
jl are mean 0, by Bernstein’s inequality ([FR13], Theorem 7.30), we obtain

P
(

1

k′2

∣∣∣X̃jl − E[X̃jl]
∣∣∣ ≥ t

)
≤ 2 exp

(
− (k′2)

2t2/2

k′2σ
2 +Rtk′2

)
= exp

(
− k′2t

2/2

σ2 +Rt

)
Note that for any fixed t > 0, the right hand side converges to 0 if k′2 → ∞.

Let λ0 > 0 be the smallest eigenvalue of M . Choose t := λ0
4n and pick a k′2 such that for all

(j, l) ∈ [2n],

P
(

1

k′2

∣∣∣X̃jl − E[X̃jl]
∣∣∣ ≥ t

)
<

1

8n2
.
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Then

P
(
∃(j, l) ∈ [2n]2 :

1

k′2

∣∣∣X̃jl − E[X̃jl]
∣∣∣ ≥ t

)
< |[2n]|2 × 1

8n2
=

1

2
.

In the event that 1
k′2

∣∣∣X̃jl − E[X̃jl]
∣∣∣ < t, which holds with probability > 1

2 , we have

∥ 1

k′2
X̃ −M∥2 ≤ ∥ 1

k′2
X̃ −M∥2F =

∑
(j,l)∈[2n]2

∣∣∣∣ 1

k′2
X̃jl −Mjl

∣∣∣∣ <
4n2 · t2 = 4n2

(
λ0
4n

)2

=
λ20
4
,

implying that

λmin(
1

k′2
X̃) ≥ λmin(M) − ∥ 1

k′2
X̃ −M∥ ≥ λ0 −

λ0
2

=
λ0
2
> 0.

Then the matrix X̃ ∈ R2n×2n has rank 2n and thus by the definition of X̃, also the matrix
ϕ(W̃2B) ∈ Rk′2×2n.

Since this holds with positive probability, there is a realization W̄2 ∈ Rk′2×k1 of the random
matrix W̃2, such that ϕ(W̄2B) ∈ Rk′2×2n has rank 2n. Then k′2 ≥ 2n and we can select 2n rows
of ϕ(W̄2B) such that the resulting matrix still has rank 2n. We define W2 ∈ R2n×2n by taking
these rows of the matrix W̄2 such that the matrix ϕ(W2B) is an invertible square matrix.

3.8 Discussion

In this work, we have shown that ReLU networks with one hidden layer cannot even solve the
sparse recovery problem for 1-sparse vectors while in contrast with two hidden layers, they are
capable of approximating this problem to an arbitrary precision and for arbitrary sparsity levels.
The latter result can also be generalized to a larger class of inverse problems.

A key assumption for these results is that we look at networks that take the positive homo-
geneous structure of the problem into account. This ensures the reconstruction to work for all
possible signals without any bound on their norm.

This also improved our understanding of how continuous positive homogeneous functions can
be approximated with neural networks in general. We have seen that the ReLU function plays a
unqiue role in their approximation and that the general approximation necessarily requires two
layers.

Despite showing that a good solution for the respective inverse problems is possible with
rather shallow networks, our results of this work do not provide a statement about the width
and efficiency of such networks. The previous Theorem 3.41 accomplishes a first step towards this
but is still limited for the case s = 1. Possibly, future research could use width-limited versions
of the universal approximation theorem to investigate this question. For example, [Tan+20]
shows such a statement for positive homogeneous networks (Theorem 2 in the supplement)
which is based on Theorem 1 in [Lu+17]. However, these results do not specify the depth of the
network. Furthermore, future research could also search for guarantees regarding the training
of the networks to solve inverse problems.

Our main theorems also address the robustness of our solution already mentioned at the
beginning in Section 3.1.4. We can obtain similar guarantees to minimization-based approaches.
This agrees with the empirical observation in [GMM22] that states that neural networks provide
a similar robustness to total variation minimization which is related to ℓ1 minimization for sparse
recovery. Note however, that in our work, we only study the existence of the networks but not
training them.
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The robustness seemingly contradicts the analysis of [Got+20] which analyzes certain sce-
narios in which problems with the robustness of neural network for inverse problems occur. In
particular, they show (Theorem 3.1 in [Got+20]) that instabilities have to occur if one tries to
recover signals whose difference is close to the kernel of the measurement matrix, i.e., x and x′

such that ∥x−x′∥ is large compared to ∥Ax−Ax′∥. Avoiding this situation is referred to as ker-
nel awareness (discussed in Section 4.2 in [Got+20]) which for sparse recovery can be achieved
if ∥x∥2 ≤ γ∥Ax∥2 for a constant γ > 0 and all 2s-sparse vectors. In fact, (3.3) in Theorem 3.5
is exactly such a kernel awareness condition which ensures that the considered problems are
well-behaved in this respect. This condition is ensured by the ℓ2-robust null space property and
therefore also the restricted isometry property which are assumed in many compressed sensing
scenarios.

However, by a theoretical comparison of neural networks to an optimization approach similar
to (3.14) (Theorem 6.3 in [Got+20]), they show that even for a problem related to sparse recovery,
neural networks necessarily have a significantly larger local Lipschitz constant in some cases.

In the proof of Theorem 3.5 of our work, we first considered an extended inversion function
f which we prove to be Lipschitz continuous. Then we approximate f by a ReLU network f̃
such that ∥f̃(y) − f(y)∥2 ≤ δ′∥y∥2. And indeed, even though f is Lipschitz continuous and δ′

can be arbitrarily small, we cannot conclude anything about the local Lipschitz constants of f̃
based on this method. Specifically, in the sparse recovery case, Corollary 3.4 states that for an
exactly sparse signal x with ∥x∥2 = 1,

∥f̃(Ax+ e) − x∥2 ≤ δ′ +D∥e∥2.

Therefore, we obtain gradients

∥f̃(Ax+ e) − f̃(Ax)∥2
∥e∥2

≤ 2δ′

∥e∥2
+D.

For very small ∥e∥2, specifically ∥e∥2 ≲ δ′, this becomes very large and therefore it becomes clear
that our method cannot provide a bound to control the local Lipschitz constant of f̃ . However,
these large gradients only occur for very small ∥e∥2 and if specifically ∥e∥2 ≥ δ′ (recall that δ′

can be chosen arbitrarily small), then the above gradient is bounded by

∥f̃(Ax+ e) − f̃(Ax)∥2
∥e∥2

≤ 2 +D,

i.e., a constant. So to summarize, the networks provided by our method might actually have
very large local Lipschitz constants. However, these are only relevant for very small deviations
and in this way, robust recovery as in Theorem 3.5 is still possible.

The results in Section 3.5 also show that for a large class of minimization problems, neural
networks can achieve the same robustness with respect to perturbations of size ∥e∥2 ≳ δ′ even
though the local Lipschitz constant might be significantly larger. Nevertheless, we can chose the
δ′ arbitrarily close to 0.

With respect to the sparse recovery problem, Corollaries 3.3 and 3.4 show that exactly two
hidden layers are the smallest possible depth for approximate recovery. For exact recovery,
Theorem 3.30 shows that ⌈log(s − 1) + 2⌉ hidden layers are sufficient but it is still an open
question to what extent this is optimal. This is also related to the question whether the network
depth in the CPWL representation Theorem 3.34. As stated in the conclusion section of [He+20],
it is known to be optimal for n = 2, 3 (when ⌈log2(n + 1)⌉ = 2) but also an open problem for
larger n.
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4 Improved Recovery Guarantees for the Sparsity in Levels
Class

4.1 Introduction

Recall from the introduction Section 0.2 that the (s, δ)-restricted isometry property (RIP) of a
matrix A ∈ Cm×N given in Definition 0.2 states that

(1 − δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22

holds for all s-sparse x ∈ CN , and that one of the key insights is that this property guarantees
that there is always a unique solution to the sparse recovery problem, which can be computed
efficiently. Besides this, the construction of Johnson-Lindenstrauss embeddings as discussed in
[KW11] and Section 0.4 provides another application of the RIP in a different context.

As we also discussed in Section 0.2, one particular class of matrices satisfying the RIP are
the Gaussian matrices with embedding dimension m ≳ δ−2s log

(
N
s

)
and it has been shown that

this dependence of m is optimal up to constant factors.
We mentioned in the introduction of this thesis that one of the key motivations to apply

compressed sensing with sparsity as a structural constraint is that natural images are typically
sparse in a wavelet basis, which is discussed in [OSL00].

A more refined view on the coefficient representation of images, as performed in [Adc+17],
shows that the wavelet coefficients are not uniformly distributed across all the scales. Instead
there are typically more non-zero coefficients at the coarser scales of the wavelet basis and
fewer ones at the finer scales. This motivates the definition of the sparsity in levels model. It
partitions the entries of the vectors into r fixed blocks and within each block k ∈ [r], there is
a maximal number sk of possible non-zero entries. For the imaging applications, these blocks
would correspond to the scales of a wavelet basis. This is a generalization of the usual sparsity
model, which is given by the special case r = 1.

Also for this refined model, one can define a restricted isometry property, the restricted
isometry property in levels (RIPL), which is, for example, again fulfilled by Gaussian matrices.

4.1.1 Subsampled Bounded Orthonormal Systems

Even though the theory of the RIP is fully understood for Gaussian matrices, the property has
also been studied extensively for other ones. One particular case is given by matrices whose rows
are randomly selected from the DFT matrix F ∈ CN×N or the Hadamard matrix H defined

in Section 0.6. A partial Fourier matrix
√

N
mPΩF ∈ Cm×N consists of m randomly selected

(usually uniformly and independently) and rescaled rows of F and the same can be done for

H. In general, we can even consider a larger class of randomly subsampled matrices
√

N
mPΩU ,

where U ∈ CN×N is unitary and bounded in the sense that all its entries satisfy |Uj,k| ≤ L√
N

for

a constant L. These are known as bounded orthonormal systems (BOSs). Most previous works
regarding subsampled Fourier matrices also apply to this class.

Subsampled bounded orthonormal systems and specifically subsampled Fourier matrices have
been studied for two main advantages over the subgaussian matrices. First, in most applications
the measurement matrix cannot be chosen arbitrarily but they are determined by the application.
Contrary to subgaussian matrices, measurements that are random Fourier coefficients can be
found in multiple applications of compressed sensing including magnetic resonance imaging
(MRI) [LDP07; Lus+08] or reducing the mutual inference of different radar systems [Che+22].
The second aspect is the computational complexity. For matrices like the ones with independent
subgaussian entries, the best algorithm to compute the matrix-vector product Ax is usually
the standard algorithm, which requires O(mN) operations. As also explained in Section 0.6,
there are fast algorithms to compute the matrix-vector product Fx or Hx in only O(N logN)
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operations such that also PΩFx can be computed in this complexity. This fast matrix-vector
multiplication can improve the performance of sparse recovery algorithms such as CoSaMP
[NT09]. RIP matrices are known to allow for constructions of Johnson-Lindenstrauss embeddings
using [KW11]. In this way, subsampled bounded orthonormal systems can be used to construct
Johnson-Lindenstrauss embeddings with a fast application to individual points. Section 1 of
this work connects to this topic.

Because of the aforementioned applications, it has been an important research question

what number m of rows are sufficient or required for a subsampled BOS
√

N
mPΩU ∈ Cm×N to

have the (s, δ)-RIP with a high probability. In fact, there have been multiple results that have
successively improved each other from 2006 until 2021. First, Candes and Tao [CT06] showed
that for subsampled Fourier matrices, m ≳ Cδs(logN)6 is sufficient for Cδ > 0 depending only
on δ. Rudelson and Vershynin [RV08] improved this to m ≳ δ−2s log(N) log(m)(log s)2, again
for subsampled Fourier matrices. Although these two results are shown for Fourier matrices,
their proofs also work for discrete BOSs. Subsequently, this bound was generalized to general,
not necessarily discrete bounded orthonoral systems in [Rau10]. The bound was improved to
m ≳ δ−2s log(N)(log s)3 by Cheraghchi, Guruswami, and Velingker [CGV13] for the Fourier
case (with a proof that can also be applied to discrete BOSs). Bourgain [Bou14] then showed
that m ≳ Cδs(logN)2 log s is sufficient for Cδ depending on δ (for discrete BOSs). Chkifa et al.
[Chk+18] improved this to m ≳ δ−6s log(N)(log s

δ )2 (for general BOSs). A further improvement
by Haviv and Regev [HR16] proves the RIP for m ≳ δ−2(log 1

δ )2s log(N)(log s
δ )2 (for discrete

BOSs). The latest improvement to m ≳ δ−2s log(N)(log s
δ )2 was achieved by Brugiapaglia et al.

[Bru+21] (for general BOSs).
On the other hand, beyond the known lower bound for RIP matrices in general (m ≳

δ−2s log N
s ), [BLM18] shows that for subsampled Fourier matrices m ≳ Cδs log(eN) rows are

necessary. Furthermore, [Bla+19] shows that for any δ ∈ (0, 1), m ≳ s log(Ns ) log(s) is necessary
for the (s, δ)-RIP of a subsampled Hadamard matrix to hold with high probability. Therefore,
also no RIP result for arbitrary discrete BOSs can work for a smaller m.

Especially the number of required logarithmic factors in N and s (besides the dependence on
δ) in the bound has been subject to extensive study as it has been improved from 6 in [CT06] to
3 in [HR16]. On the other hand, [Bla+19] shows that 2 such logarithmic factors are necessary.
The remaining gap is still an open problem.

4.1.2 Sparsity in Levels and Multilevel Sampling

Measurements of the type PΩUx for sparse s and unitary U generally represent a scenario in
which signals are sparse in one orthonormal basis and randomly sampled in another orthonormal
basis. That is, a signal has a representation V1x for a sparse vector x ∈ CN×N and unitary
V1 ∈ CN×N and samples are taken from V ∗

2 V1x for another unitary V2 ∈ CN×N . Then U := V ∗
2 V1

is unitary and the measurements are PΩUx for sparse x. We call µ := maxj,k∈[N ] |Uj,k|2 the
coherence of the orthonormal bases V1 and V2 or just the coherence of U . The above results
about subsampled BOSs require all entries of U to be small, specifically µ ≤ L2

N for a constant
L. In fact, the RIP can still be guaranteed for m ≳ L2δ−2s · polylog(N) if L is larger. This
dependence of the sampling complexity on the coherence, first for the case of non-uniform
recovery, was first observed in [CR07].

In the case of the Fourier basis as V2 and the canonical basis V1, the smallest possible
coherence µ = 1

N is achieved since all entries of U have absolute value 1√
N

. However, for other

pairs of orthonormal bases such as the Fourier basis and the Haar wavelet basis, situations arise
in which most entries of U are small but few ones are very large. This leads to a large coherence
µ and therefore large requirements on m by the above results. To address this problem, different
techniques have been developed to improve the previous results on bounded orthonormal systems
for this situation. For example [KW13] adjusts the sampling probabilities of the rows of U
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according to the largest entry in the corresponding row. In this way, rows of U that contain
large entries are sampled with a higher probability. Adcock et al. [Adc+17] propose another
modified sampling model in which the rows are divided into a number r of blocks and within each
block, a certain number of entries are sampled, which is a similar strategy and called multilevel
random sampling.

The approach from [Adc+17] in addition also considers the refined signal model of sparsity
in levels as already motivated above. In this sparsity model, not the number of non-zero entries
in an entire vector is bounded, e.g. by s, but the indices [N ] of x are divided into r blocks
and in the k-th block the number of non-zero entries is bounded by sk. This refined model also
allows for entry sizes that vary between different columns as compared to different rows. Since
rearranging the columns of U does not change the property that U is unitary, we can assume
that each of the r blocks consists of consecutive indices. This leads to the following definition
of sparsity in levels. We mostly adapt the notation used in [Adc+17] and [LA19].

Definition 4.1 (Sparsity in levels, Definition 3.3 in [Adc+17], Definition 2.6 in [LA19]). Let
r ∈ Z≥1, M = (M1, . . . ,Mr) with integers 1 ≤ M1 < · · · < Mr = N , s = (s1, . . . , sr), where
sk ≤Mk −Mk−1 for k = 1, . . . , r and M0 = 0.

Moreover, for each k = 1, . . . , r we define the set

Mk := {Mk−1 + 1, . . . ,Mk} ⊂ [N ].

We say that x ∈ CN is (s,M)-sparse if for all k = 1, . . . , r,

| supp(x) ∩Mk| ≤ sk.

We denote Σs,M ⊂ CN for the set of all (s,M)-sparse vectors.
We call M sparsity levels and s local sparsities.
Furthermore, for x ∈ Σs,M, we define

Sk := supp(x) ∩Mk

for k = 1, . . . , r.

So the block distribution of the sparsity in levels model yields a partition of the columns of
U ∈ CN×N into r blocks. Analogously, for the multilevel random subsampling we also partition
the rows of U into r blocks. Then from each of these blocks, a certain number mk of samples
are taken. Furthermore, for the first r0 blocks (where 0 ≤ r0 ≤ r), we simply take all entries.

Definition 4.2 (Multilevel random subsampling, Definition 3.2 in [Adc+17], Definition 2.7 in
[LA19]). Let r ∈ Z≥1, 0 ≤ r0 ≤ r, N = (N1, . . . , Nr) with integers 1 ≤ N1 < · · · < Nr = N ,
m = (m1, . . . ,mr), where mk ≤ Nk −Nk−1 for k = 1, . . . , r and N0 = 0.

Moreover, for each k = 1, . . . , r we define the set

Nk := {Nk−1 + 1, . . . , Nk} ⊂ [N ].

Assume that for each k = 1, . . . , r0, mk = |Nk| and Ωk = Nk. For each k = r0 + 1, . . . , r, let
tk,1, . . . , tk,mk

be random variables that are chosen uniformly and independently with replacement
from the set Nk and Ωk = {tk,1, . . . , tk,mk

} (as a multiset).
Then we call Ω = ΩN,m = Ω1 ∪ · · · ∪ Ωr an (N,m)-multilevel subsampling scheme.

Now that we have divided both, the rows and the columns of U , into blocks, we generalize
the term of coherence of a unitary matrix to the local coherence by considering the largest entry
in each of the resulting submatrices instead of the entire matrix.
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Definition 4.3 (Local coherence in levels, Definition 2.8 in [LA19]). Let N = (N1, . . . , Nr) be
sampling and M = (M1, . . . ,Mr) be sparsity levels. The (l, k)-th local coherence of a unitary
matrix U ∈ CN×N is

µl,k = max{|Uj,j′ |2
∣∣ j ∈ Nl, j

′ ∈ Mk}.

Analogously to the classical RIP, [BH17] introduced a restricted isometry property for the
sparsity in levels model from Definition 4.1.

Definition 4.4 (RIP in levels (RIPL), Definition 3.5 in [BH17], Definition 2.12 in [LA19]). Let
M = (M1, . . . ,Mr) be sparsity levels and s = (s1, . . . , sr) be local sparsities. the s-th restricted
isometry constant in levels (RICL) δs,M of a matrix A ∈ Cm×N is the smallest δ ≥ 0 such that

(1 − δ)∥x∥22 ≤ ∥Ax∥22 ≤ (1 + δ)∥x∥22

holds for all x ∈ Σs,M.
If 0 ≤ δs,M < 1, we say that the matrix A satisfies the restricted isometry property in levels

(RIPL) of order (s,M).

Like the subsampling matrix PΩ for the usual subsampled bounded orthonormal systems, we
define subsampling operations as matrices PΩk

∈ Rmk×N for a multilevel subsampling scheme
as in Definition 4.2 like they are used in [LA19].

Definition 4.5. Let Ω = ΩN,m = Ω1 ∪ · · · ∪ Ωr be an (N,m)-multilevel subsampling scheme
with Ωk = {tk,1, . . . , tk,mk

} for k = 1, . . . , r.
For each k ∈ [r], we define PΩk

∈ Rmk×N such that

(PΩk
)jx = xtk,j

for all j ∈ [mk], x ∈ CN , i.e., PΩk
is a subsampling to the entries in Ωk.

We use the notation

Ñk = {
k−1∑
k′=1

mk′ + 1, . . . ,

k∑
k′=1

mk′} ⊂ [m]

for each k ∈ [r], where m = m1 + · · · +mr.

Using these definitions, [LA19] generalizes the subsampled bounded orthonormal systems
with the following construction

A =


1√
p1
PΩ1U

1√
p2
PΩ2U
...

1√
pr
PΩrU

 ∈ Cm×N , (4.1)

where pl = ml
|Nl| for l = 1, . . . , r and m = m1 + · · · +mr.

4.1.3 Fourier Sampling and Haar Wavelet Sparsity

As the main motivation of the RIPL result, [LA19] considers the above situation of two or-
thonormal bases for the Fourier basis and the discrete Haar wavelet basis. Important properties
of this combination have already been studied in [AHR16].

Recall from Section 0.6 that in [AHR16], the Haar wavelet basis vectors are defined for
N = 2r as ϕ0 ∈ RN and ϕj,p ∈ RN for j = 0, . . . , r − 1, p = 0, . . . , 2j − 1 with entries

ϕ0(t) = 2−r
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ϕj,p(t) =


2

j−r
2 for 2r−jp ≤ t < 2r−j(p+ 1

2)

−2
j−r
2 for 2r−j(p+ 1

2) ≤ t < 2r−j(p+ 1)

0 otherwise.

for 1 ≤ t ≤ N . We put these vectors into a matrix Φ ∈ RN×N in such a way that for M0 = 0 and
Mj = 2j for j = 1, . . . , r, the columns 1 and 2 contain ϕ0 and ϕ0,0 and for each j = 1, . . . , r−1, the
columns Mj + 1, . . . ,Mj+1 contain the ϕj,p for all possible p. This defines the matrix Φ ∈ RN×N

and also the sparsity levels M = (M1, . . . ,Mr).
Section II in [AHR16] also defines a rearrangement F̃ of the rows of the DFT matrix F in

such a way, that there are good bounds on the local coherence of the matrix U = F̃ ∗Φ with
the aforementioned Φ. For this, consider the Fourier vectors fj ∈ CN for j = −N

2 + 1, . . . , N2
(N = 2r is even) with entries

fj(t) =
1√
N
e−

2πijt
N

for 1 ≤ t ≤ N . Then we define N0 = 0, Nk = 2k for k = 1, . . . , r and F̃N×N in such a way that
columns 1 and 2 of F̃ contain f0, f1 and for k = 1, . . . , r − 1, columns Nk + 1, . . . , Nk+1 of F̃
contain the vectors fj for j ∈ {−2k+1, . . . ,−2k−1}∪{2k−1 +1, . . . , 2k}. This defines F̃ ∈ CN×N

and the sampling levels N = (N1, . . . , Nr).
The important result Lemma 1 of [AHR16] states that for the unitary matrix U = F̃ ∗Φ ∈

CN×N , the sparsity levels M and the sampling levels N, the local coherences (Definition 4.3)
satisfy

µl,k ≲ 2−l · 2−|l−k| (4.2)

for all l, k ∈ [r].

4.2 Previous Work

The authors of [LA19] first observe (Footnote 1 in Section 3.2, consequence of Corollary 5.4
in [Dir16]) that an m × N Gaussian random matrix satisfies the RIPL (Definition 4.4) with
probability ≥ 1 − η for

m ≳ δ−2

(
r∑

k=1

sk log

(
e|Mk|
sk

)
+ log(η−1)

)
.

However, the main result of [LA19] is to show the RIPL for subsampled bounded orthonormal
systems with multilevel sampling as in the matrix given in (4.1). This is done in the following
theorem.

Theorem 4.6 (Theorem 3.2 in [LA19]). Let U ∈ CN×N be unitary, r ∈ Z≥1 and 0 < η, δ < 1
and 0 ≤ r0 ≤ r an integer. Let Ω = ΩN,m be an (N,m)-multilevel subsampling scheme, M
sparsity levels and s local sparsities. Suppose that blocks l = 1, . . . , r0 are fully sampled, i.e.,
ml = |Nl| and

ml ≥ Cδ−2|Nl|

(
r∑

k=1

µl,ksk

)(
r log(2m̃) log(2N)(log(2s))2 + log

(
1

η

))
for l = r0 + 1, . . . , r, where m̃ = mr0+1 + · · · + mr and C > 0 is an absolute constant. Then
with probability at least 1 − η, the matrix (4.1) satisfies the RIPL of order (s,M) with constant
δs,M ≤ δ.
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Finally, [LA19] also provides the following corollary for the application to Fourier sampling
and Haar sparsity described in Section 4.1.3. This follows from applying the local coherence
bound (4.2) to Theorem 4.6.

Corollary 4.7 (RIPL for Fourier/Haar system, Corollary 3.4 in [LA19]). Let N = 2r and
U ∈ CN×N and M,N the Fourier/Haar matrix with sparsity and sampling levels defined in
Section 4.1.3. Assume that the first 0 ≤ r0 ≤ r blocks are fully sampled, i.e., ml = |Nl| for
l = 1, . . . , r0 and for the other blocks samples are drawn according to a corresponding multilevel
sampling scheme with

ml ≥ Cδ−2

sl +
r∑

k=r0+1
k ̸=l

2−|l−k|sk

 · (log(2m̃)(log(2N))2(log(2s))2 + log(η−1))

for l = r0 + 1, . . . , r, m̃ = mr0+1 + · · · +mr. If Nr0 ≤ sr0+1 then with probability at least 1 − η,
the matrix (4.1) satisfies the RIPL with constant δs,M ≤ δ where s = (s1, . . . , sr) and sk = |Nk|
for k = 1, . . . , r0.

4.3 Main Result

The goal of our work is to show the following improved version of Theorem 4.6 that has fewer
logarithmic factors in the required number of rows in terms of s.

Theorem 4.8. Let U ∈ CN×N (N ≥ 2) be unitary, r ∈ Z≥1 and 0 < η < 1, 0 < δ < 1
2 and

0 ≤ r0 ≤ r an integer. Let Ω = ΩN,m be an (N,m)-multilevel subsampling scheme, M sparsity
levels and s local sparsities with s ≥ 4. Suppose that blocks l = 1, . . . , r0 are fully sampled, i.e.,
ml = |Nl| and

ml ≥ Cδ−2|Nl|

(
r∑

k=1

µl,ksk

)(
log(N) log(ρ̃) (log(s) log(1/δ) + r) + log

(
1

η

))
(4.3)

for l = r0 + 1, . . . , r, C > 0 is an absolute constant, and

ρ̃ := min

4m̃,
s4

δ

r∑
l=r0+1

|Nl|
r∑

k=1

µl,ksk

 ,

where m̃ = mr0+1 + · · · +mr. Then with probability at least 1 − η, the matrix (4.1) satisfies the
RIPL of order (s,M) with constant δs,M ≤ δ.

So for fixed δ, this is an improvement over Theorem 4.6 by one log s factor and in addition we
have a log(s) + r factor instead of log(s) · r. The latter aspect especially yields an improvement
if the number r of layers scales logarithmically in s or N . This is the case for example in
the important application of the Fourier/Haar basis in Corollary [LA19]. We can improve this
corollary with our Theorem 4.8 and obtain the following result, using the bounds (4.2).

Corollary 4.9. Let N = 2r and U ∈ CN×N and M,N the Fourier/Haar matrix with sparsity
and sampling levels defined in Section 4.1.3. Assume that the first 0 ≤ r0 ≤ r blocks are fully
sampled, i.e., ml = |Nl| for l = 1, . . . , r0 and for the other blocks samples are drawn according
to a corresponding multilevel sampling scheme with

ml ≥ Cδ−2

sl +

r∑
k=r0+1
k ̸=l

2−|l−k|sk

 · (log(4m̃)(log(N))2 log(1/δ) + log(η−1))
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for l = r0 + 1, . . . , r, m̃ = mr0+1 + · · · +mr. If Nr0 ≤ sr0+1 then with probability at least 1 − η,
the matrix (4.1) satisfies the RIPL with constant δs,M ≤ δ where s = (s1, . . . , sr) and sk = |Nk|
for k = 1, . . . , r0.

Now for a fixed δ, this result has 3 logarithmic factors while the original one, Corollary 4.7
has 5.

4.4 Proof of the Main Result

This section is devoted to the proof of Theorem 4.8. The proof is an adaption of the technique
by Adcock and Li in 4.8 with significant changes that involve ideas from other proofs of the RIP
for bounded orthonormal systems, especially [HR16].

Section 4.4.1 introduced important general tools required for the proof, Section 4.4.2 explains
the ideas from previous works on BOSs that are used in the proof, Section 4.4.3 provides an
outline of the proof steps and Section 4.5 contains the proof itself.

4.4.1 Required Tools

Most previous proofs of the RIP for subsampled BOSs rely on established techniques for control-
ling the suprema of stochastic processes. In general, a stochastic process (Xt)t∈T is an indexed
family of random variables over the same probability space. An extensive theory has been
developed to control expressions like

sup
t∈T

Xt

for a real-valued stochastic process. The textbook [Tal14] provides a profound overview of this
theory, of which we introduce the most important required aspects hereafter.

The above supremum is related to the RIPL problem since we can write

δs,M = sup
x∈Σs,M∩SN−1

∣∣∥Ax∥22 − 1
∣∣ (4.4)

as the supremum of a stochastic process indexed by the set Σs,M ∩ SN−1 =: Ds,M.
One particular object of interest is the expectation of such a supremum E supt∈T Xt. Here we

encounter the first problem that for a general (uncountable) index set T , the supremum might
not even be a random variable, i.e., it might not be measurable. Therefore, the definition of this
expectation is modified to

E sup
t∈T

Xt := sup

{
E sup
t∈F

Xt

∣∣F ⊂ T, F finite

}
.

In the case that T is countable however, supt∈T Xt is always measurable and the above definition
is consistent with the expectation of it (see Section 8.6 in [FR13]). For the process (4.4), the
supremum is equal to the supremum over a countable dense subset of Σs,M ∩ SN−1 such that
also here, the supremum δs,M is actually a random variable, such that we can not only consider
its expectation but also define events involving it.

A particular class of processes that have been studied in this theory are the subgaussian
processes. They are defined for an index set T that defines a metric space (T, d) and they
require the condition (1.4) in [Tal14],

∀u > 0 : P(|Xs −Xt| ≥ u) ≤ 2 exp

(
− u2

2d(s, t)2

)
. (4.5)

Examples of processes that satisfy this requirement are given for a set T ⊂ RN by the
Gaussian process

Xt = ⟨g, t⟩ (4.6)

131



where g ∼ N(0, IdN ) follows a multivariate normal distribution and for the Bernoulli process

Xt = ⟨ξ, t⟩ (4.7)

where ξ ∈ {±1}N is a Rademacher vector, i.e. its entries are independent with value ±1
with probability 1

2 each. Both these processes satisfy the above condition with the metric
d(s, t) = ∥s− t∥2. Even though (4.4) is not subgaussian, we will relate it to a Bernoulli process
that satisfies the subgaussian condition.

A central part of the theory about stochastic processes discussed in [Tal14] is the technique
of generic chaining, which is applicable to subgaussian processes. Its key idea is that we approx-
imate the supremum of (Xt) in the entire index set T by the maximum on finite subsets (Tn)n≥0

of T with increasing size. For each n, the probability that the values of (Xt) on the points in
Tn and the points in Tn+1 deviate too much, is controlled using (4.4) and a union bound.

More precisely, we define a sequence (Tn)n≥0 of subsets of T to be an admissible sequence if

� |T0| = 1

� |Tn| ≤ 22
n

and define the γ2 functional

γ2(T, d) := inf
(Tn)n≥0

sup
t∈T

∞∑
n=0

2
n
2 d(t, Tn) (4.8)

where the inf(Tn)n≥0
is taken over all admissible sequence (Tn)n≥0.

Then the main result about generic chaining ((2.32) in [Tal14]) is that there is a universal
constant C > 0 such that for all subgaussian processes that are centered, i.e., EXt = 0 for all
t ∈ T ,

E sup
t∈T

|Xt| ≤ Cγ2(T, d). (4.9)

It has been shown that the generic chaining bound (4.9) is sharp up to constant factors for
Gaussian processes as in (4.6). This is know as the majorizing measure theorem (Theorem 2.4.1
in [Tal14]). However, for Bernoulli processes as in (4.7) it is generally not sharp. As a partic-
ular example, for T = {x ∈ RN

∣∣ ∥x∥1 = 1}, one can show that E supx∈T |⟨g, x⟩| ∼ log(N) is
significantly larger than E supx∈T |⟨ξ, x⟩| = 1. In contrast to Gaussian processes, for Bernoulli
processes also the bound

sup
t∈T

|⟨ξ, t⟩| ≤ sup
t∈T

∥ξ∥∞∥t∥1 = sup
t∈T

∥t∥1 (4.10)

holds, which follows from Hölder’s inequality.
We can combine the generic chaining bound (4.9) and the Bernoulli bound (4.10) in the

sense that we can split up T ⊂ T (1) + T (2) for two subsets T (1), T (2) ⊂ RN and then apply (4.9)
on T (1) and (4.10) on T (2) to obtain

sup
t∈T

|⟨ξ, t⟩| ≤ Cγ2(T
(1), d) + sup

t∈T (2)

∥t∥1, (4.11)

for a constant C > 0 as described in Proposition 5.1.4 in [Tal14]. The sharpness of this bound
up to constant factors has been known as the Bernoulli conjecture, which was proven to be true
in [BL14].

Even though (4.9) provides a bound that is provably sharp in the Gaussian case, it is not
clear how an optimal admissible sequence (Tn)n≥0 in (4.8) can be found. One possible way is
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choosing them as a covering such that supt∈T d(t, Tn) is as small as possible. With this method,
the γ2 functional can be bounded by an integral over covering numbers as in (2.38) in [Tal14],

γ2(T, d) ≲
∫ ∞

0

√
logN (T, d, u)du. (4.12)

However, this bound is possibly not sharp even for Gaussian processes, see Exercise 2.2.15 in
[Tal14].

Finally, we establish the following short lemma that will be used in our proof to connect the
sum over 2

n
2 d(t, Tn) in the γ2 functional and a corresponding sum over 2

n
2 d(tn, tn−1), where the

tn′ ∈ Tn′ usually approximate t.

Lemma 4.10. Let (X, d) be a metric space. For each n ∈ {n1, n1 + 2, . . . , n2}, let Tn ⊂ T and
tn ∈ Tn. Then for t ∈ T ,

n2∑
n=n1

2
n
2 d(t, Tn) ≤ 4

(
2

n2
2 d(t, tn2) +

n2∑
n=n1+1

2
n
2 d(tn, tn−1)

)
.

Proof. First we obtain for each n ∈ {n1, n1 + 2, . . . , n2} by the triangle inequality,

d(t, Tn) ≤ d(t, tn) ≤ d(t, tn2) +

n2∑
n′=n+1

d(tn′ , tn′−1).

Then substituting this on the left hand side leads to

n2∑
n=n1

2
n
2 d(t, Tn) ≤

n2∑
n=n1

2
n
2 d(t, tn2) +

n2∑
n=n1

2
n
2

n2∑
n′=n+1

d(tn′ , tn′−1)

≤ 4 · 2
n2
2 d(t, tn2) +

n2∑
n′=n1

n′−1∑
n=n1

2
n
2 d(tn′ , tn′−1)

≤ 4 · 2
n2
2 d(t, tn2) + 4

n2∑
n′=n1

2
n′
2 d(tn′ , tn′−1),

which shows the claim while we used that

n2∑
n=n1

2
n
2 ≤

n2∑
n=0

(
√

2)n =
(
√

2)n2+1 − 1√
2 − 1

≤
√

2√
2 − 1

2
n2
2 ≤ 4 · 2

n2
2 .

In some cases, instead of constructing an admissible sequence for T directly, it can be easier
to construct a sequence (Tn)n≥0 of sets that satisfy the size condition but are not subsets of T but
some bigger metric space that contains T . The following lemma states that we can still bound
the γ2 functional using such a sequence, only losing a factor of 2, even if T is not necessarily
closed.

Lemma 4.11. Let (T̄ , d) be a metric space and ∅ ≠ T ⊂ T̄ . Assume that (Tn)n≥0 is an
admissible sequence in T̄ , i.e., all Tn ⊂ T̄ , |T0| = 1 and for all n ≥ 1, |Tn| ≤ 22

n
(but not

necessarily Tn ⊂ T ). Then

γ2(T, d) ≤ 2 sup
t∈T

∞∑
n=0

2
n
2 d(t, Tn).
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Proof. We construct an admissible sequence (T ′
n)n≥0 of subsets of T from (Tn)n≥0. For this, fix

ϵ > 0. For each n ≥ 0 and each t0 ∈ Tn, take one t′0 ∈ T such that d(t0, t
′
0) ≤ d(t0, T ) + 2−

3
2
nϵ.

Define T ′
n ⊂ T to be the set of all t′0 obtained in this way. Then |T ′

n| ≤ |Tn| and for each
t ∈ T , there exists a t0 ∈ Tn such that d(t, t0) is minimal, i.e., d(t, t0) = d(t, Tn) and with the
corresponding t′0 defined above

d(t, T ′
n) ≤ d(t, t′0) ≤ d(t, t0) + d(t0, t

′
0) ≤ d(t, Tn) + d(t0, T ) + 2−

3
2
nϵ

≤ d(t, Tn) + d(t0, t) + 2−
3
2
nϵ ≤ 2d(t, Tn) + 2−

3
2
nϵ.

So (T ′
n)n≥0 is an admissible sequence in T and therefore

γ2(T, d) ≤ sup
t∈T

∞∑
n=0

2
n
2 d(t, T ′

n) ≤ 2 sup
t∈T

∞∑
n=0

2
n
2 d(t, Tn) +

∞∑
n=0

2
n
2 · 2−

3
2
nϵ

≤ 2 sup
t∈T

∞∑
n=0

2
n
2 d(t, Tn) + 2ϵ.

Then the claim follows from the fact that this holds for all ϵ > 0.

Like it has been done in [RV08] and [LA19] before, in order to prove the RIPL, we will
first control Eδs,M and subsequently bound the probability that the RICL deviates too much
from it expectation. For the latter part, we will use the following concentration result given as
Theorem 8.42 in [FR13].

Theorem 4.12. Let F be a countable set of functions F : Cn → R. Let Y1, . . . , YM be indepen-
dent random vectors in Cn such that EF (Yl) = 0 and F (Yl) ≤ K almost surely for all l ∈ [M ]
and for all F ∈ F for some constant K > 0. Introduce

Z = sup
F∈F

M∑
l=1

F (Yl).

Let σ2l > 0 such that E[F (Yl)
2] ≤ σ2l for all F ∈ F and l ∈ [M ]. Then, for all t > 0,

P(Z ≥ EZ + t) ≤ exp

(
− t2/2

σ2 + 2KEZ + tK/3

)
where σ2 =

∑M
l=1 σ

2
l .

4.4.2 Previous Proofs

In this section, we review the main ideas of previous proofs for the RIP of bounded orthonormal
systems since our proof in Section 4.5 combines multiples ones of them.

Rudelson and Vershynin [RV08] provide a proof for the RIP of subsampled BOSs that is
also contained as Theorem 12.31 in the textbook [FR13] in a simplified form. Their main task
is bounding the expectation Eδs of the restricted isometry constant and then the concentration
can be concluded with Theorem 4.12.

As the first step, with a suitable application of the symmetrization Lemma 0.9, they can
show that

Eδs = E sup
x∈Σs∩SN−1

∣∣∥Ax∥22 − 1
∣∣ ≤ CE sup

y∈T
|⟨ξ, y⟩|, (4.13)

with a Rademacher vector ξ ∈ {±1}m that is independent of A and the index set T :=
{|Ax|2

∣∣x ∈ Σs ∩ SN−1} that consists of the measurements Ax with entry-wise squared ab-
solute value. So the index set T as well as ξ are random and they are independent. So we
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can condition on T and first control the expectation with respect to ξ. Then the problem boils
down to controlling the expected supremum of a Bernoulli process of the type (4.7), for which
the techniques introduced in Section 4.4.1 are available. As mentioned there, this process is
subgaussian with the metric

d(|Ax|2, |Az|2) =

 m∑
j=1

(|(Ax)j |2 − |(Az)j |2)2
 1

2

,

which for x, z ∈ Σs ∩ SN−1 is bounded in [RV08] by

d(|Ax|2, |Az|2) =

 m∑
j=1

(|(Ax)j | − |(Az)j |)2(|(Ax)j | + |(Az)j |)2
 1

2

≤

 m∑
j=1

2|(A(x− z))j |2(|(Ax)j |2 + |(Az)j |2)

 1
2

≤

2 max
j∈[m]

|(A(x− z))j |2 ·
m∑
j=1

2(|(Ax)j |2 + |(Az)j |2)

 1
2

= 2∥A(x− z)∥∞ ·
√

∥Ax∥22 + ∥Ax∥22
≤ 2

√
2∥A(x− z)∥∞ ·

√
1 + δs. (4.14)

Then [RV08] bounds the process (4.13) using the generic chaining (4.9) in the form of Dudley’s
inequality (4.12). This requires a bound on the covering numbers N (T, d, u). Bound (4.14)
shows that with an additional factor

√
1 + δs in the result, it is enough to bound the covering

numbers N (Σs ∩ SN−1, d̃, u) for the modified metric

d̃(x, z) = ∥A(x− z)∥∞

on Σs ∩ SN−1. Their strategy is to bound these covering numbers in two different ways. There
are

(
N
s

)
possible choices of a support of size s in [N ]. For small distances u, the covering of

Σs ∩ SN−1 is obtained as a union of separate coverings for each possible support.
For larger distances u, a more involved approach known as Maurey’s empirical method is

applied. This method has been used before in [Car85] and pursues the following strategy. Each
real-valued s-sparse vector x ∈ SN−1 has ∥x∥1 ≤

√
s and therefore, we can define a random

variable Z ∈ {0,±
√
se1, . . . ,±

√
seN} where e1, . . . , eN are the canonical basis vectors, such

that Z =
√
s sign(xj)ej with probability

|xj |√
s

for each j ∈ [N ] and Z = 0 with probability

1 − ∥x∥1√
s

. This is a valid probability distribution with EZ = x. Now we define independent

copies of Z1, . . . , ZM of Z and form Z̄ := 1
M

∑M
k=1 Zk. Now for given u, one can use standard

concentration inequalities to show that d̃(Z̄, x) ≤ u with positive probability if M is sufficiently
large. Therefore, the set of all possible values of Z̄ is a covering of (Σs ∩ SN−1, d̃) with distance
u. On the other hand, by the definition of Z̄, its total number of possible different values is
≤ (2N + 1)M . In this way, we can conclude that N (Σs ∩ SN−1, d̃, u) ≤ (2N + 1)M where M
depends on u.

With all of this, [RV08] shows a bound

E

[
sup
y∈T

|⟨ξ, y⟩|
∣∣∣A] ≤ α

√
1 + δs
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and therefore by the law of total probability and Jensen’s inequality

Eδs ≲ E

[
E

[
sup
y∈T

|⟨ξ, y⟩|
∣∣∣A]] ≤ αE

[√
1 + δs

]
≤ α

√
1 + Eδs

for an α that depends on m, N , s. This is an inequality that can be solved for Eδs. Finally,
Theorem 4.12 is applied to control the deviation of δs from its expectation.

The proof by Haviv and Regev [HR16] essentially improves the aforementioned result by
Rudelson and Vershynin by one logarithmic factor in s. They follow an approach that is similar
to generic chaining but not precisely written in the terminology introduced in Section 4.4.1.
However, as shown in the work of Brugiapaglia et al. [Bru+21], their approach can be cast
into the framework of symmetrization and generic chaining established in [RV08]. In this way,
the proof bounds the supremum of the same Bernoulli process. However, some aspects are
performed differently. Firstly, in contrast to [RV08], which only uses the generic chaining bound
(4.9), the approach [HR16; Bru+21] uses the combined bound for Bernoulli processes (4.11),
which is known to be stronger in certain cases. Secondly, they do not use Dudley’s inequality
but instead construct an admissible sequence for the generic chaining bound (4.9), (4.8) directly
whose elements can approximate each |Ax|2. These approximations are also obtained using
Maurey’s empirical method described above. However, in the construction of Tn1+n for some
n1, Maurey’s empirical method is only used to approximate those entries of |Ax|2 of approximate
size ≥ 2−n s

m (all entries of |Ax|2 are ≤ s
m) and the remaining ones are just approximated by 0.

Then also (4.14) is replaced by an improved bound that takes the sizes of the individual entries
into account. After a certain number of steps that are controlled using the generic chaining
method, this produces an approximation w ∈ Rm of |Ax|2 such that

∣∣|(Ax)j |2 − wj
∣∣ ≤ δ|(Ax)j |2

holds for all j except for some of them that are too few or have a too small |(Ax)j |2 to influence
the result significantly. So in the end for the Bernoulli bound (4.11), we obtain an ℓ1 deviation∥∥|Ax|2 − w

∥∥
1
≤

m∑
j=1

δ|(Ax)j |2 = δ∥Ax∥22 ≤ δ
√

1 + δs.

In the end, all the possible values of w are defined to form the T (1) in (4.11) and all possible values
of |Ax|2 − w form T (2). Then (4.11) is used to bound the expected supremum of the Bernoulli
process. The remaining part, including controlling the additional factor

√
1 + δs, solving for Eδs

and the concentration are done in a similar way as in the proof of Rudelson/Vershynin [RV08]
described above.

The work by Adcock and Li [LA19] shows the RIPL instead of the regular RIP. Their proof
is an adaption of [RV08] to sparsity in levels and multilevel random sampling. Therefore, the
overall procedure is similar. They also use Dudley’s inequality and bound covering numbers for
each support separately for small u and use Maurey’s empirical method for larger u. The most
important difference is that in their application of Maurey’s empirical method, they approximate
each sparsity level of x separately, so for each of the r sparsity levels, there is a certain number
M of independent copies of the aforementioned random variable Z such that the total number
of possible values of all of them is (2N + 1)rM . This is where the additional factor r in the final
result of Theorem 4.6 arises.

4.4.3 Proof Outline

Our proof combines ideas from different approaches described in Section 4.4.2 along with some
novel improvements. The procedure can be split into the following steps.

1. Symmetrization and Bernoulli process
This first step is the same as in [LA19; RV08]. With the symmetrization technique
(Lemma 0.9), the expectation is bounded by the expected supremum of a Bernoulli process
over the index set T := {|Ax|2

∣∣x ∈ Ds,M} for Ds,M := Σs,M ∩ SN−1.
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2. Approximations with Maurey’s empirical method
Like the other previously mentioned proofs, we use Maurey’s empirical method to approxi-
mate |Ax|2 with different accuracy levels. Like in [HR16; Bru+21] (and other than [RV08;
LA19]), we do not directly use the resulting approximations for the generic chaining yet
but apply some modifications in step 3 beforehand. For the approximation Z̄n, we show
that

∣∣(AZ̄n)j − (Ax)j
∣∣ is sufficiently small enough for all j ∈ [m] except a limited number.

The set of entries for which the deviation is too large in any of the approximation levels
in the generic chaining will be called J ⊂ [m]. We show that |J | is small and accordingly
bound the influence of these indices in the remaining parts of the proof.

Moreover, we also approximate each sparsity level k ∈ [r] of x separately. However, unlike
in [LA19], we do not choose the number of independent copies for Maurey’s empirical
method equal for all sparsity level but instead let it scale with the ℓ2 norm ∥xSk

∥2 of x in
the corresponding sparsity block. This improves the dependence on r in the final result
(such that we have a factor r + log s instead of r log s).

3. Construction of the admissible sequence for n ≤ n1 + ⌈log2(s)⌉
We will define n1 := n0 + ⌈log2 log2N + log2 log ρ⌉ for a constant integer n0 ≥ 0 to be
specified later. First, for 0 ≤ n ≤ n1 + ⌈log2 r⌉, we define Tn = {0}.

For n1 + ⌈log2 r⌉ ≤ n ≤ n1 + ⌈log2 s⌉, we construct vectors w(n−n1)(x) ∈ Rm, depending
on x ∈ Ds,M that approximate |Ax|2 on each level of the generic chaining. At each level
n, the entries of a certain size are approximated similarly to the proof in [HR16; Bru+21]
described in the previous section. The other entries of w(n−n1)(x) will be set to 0. Larger
entries of |Ax|2 are approximated for smaller n than smaller entries. The set of all these
w(n−n1)(x) across all x ∈ Ds,M will be Tn and satisfy |Tn| ≤ 22

n
.

4. Construction of T (1) and T (2) for (4.11) and ℓ1 bound
The sets T0, . . . , Tn1+⌈log2(s)⌉ from the previous step are used to approximate |Ax|2 ∈ Rm.

We construct T (1) in such a way that for each such |Ax|2, there is a z ∈ T (1) based on the
following idea. If entry j of |Ax|2 is approximated sufficiently well in the last level defined

above, i.e., w(⌈log2(s)⌉) ∈ Tn1+⌈log2(s)⌉, then zj = w
(⌈log2(s)⌉)
j and otherwise zj = |(Ax)j |2. In

the first case, in the subsequent approximations defined in step 6, the entry j will remain

constant as w
(⌈log2(s)⌉)
j and the deviation |zj − |(Ax)j || will be controlled with the ℓ1 part

in (4.11). In the other case, |(Ax)j |2 will be approximated with increasing precision in the
remaining part of the admissible sequence such that the entry j is controlled in the generic
chaining part of (4.11). Then T (2) contains the differences z − |Ax|2 and can be bounded
in ℓ1 norm.

This particular strategy is new and differs from the approaches [HR16; Bru+21]. In their
proof, the generic chaining method described in step 3 is continued until all entries are
approximated sufficiently well for the remaining distance to be bounded in the ℓ1 norm.
In this way, T (1) is the last element of the partial admissible sequence and thus finite.
However, this requires log(L sδ ) steps (for the classical RIP case r = 1, with L being the
constant such that all entries of U are bounded by L√

N
). Our approach only requires log s

steps.

Therefore, our approach yields the slight advantage of having a log s factor in the final
result instead of log(L sδ ).

5. Application of Lemma 4.10 to the first part of the admissible sequence
For the first part of the admissible sequence, we controlled an expression of the type∑

n 2
n
2 d(tn, tn−1). Using Lemma 4.10, we turn this into a bound on

∑
n 2

n
2 d(t, Tn), which

will later be combined with the corresponding sum for the remaining admissible sequence
to bound γ2(T

(1), d).
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6. Construction of the admissible sequence for n > n1 + ⌈log2(s)⌉
We complete the admissible sequence (Tn)n for the remaining larger n by approximating
the vectors x ∈ Ds,M on each single support separately. This has been done in [RV08]
and [LA19]. Note that although [HR16; Bru+21] do not do an equivalent step, this part
is required here because of the difference discussed in step 4.

7. Combination of the bounds to control Eδs,M
We use the combined generic chaining and ℓ1 bound (4.11) to bound Eδs,M in way that is
similar to [Bru+21].

8. Concentration of δs,M
We use Theorem 4.12 to control the deviation of δs,M from its expectation analogously to
[RV08; LA19].

4.5 Proof of Theorem 4.8

Proof. We quickly recall the notation of the matrix and Definitions 4.1 to 4.3.

� The matrix is

A =


1√
p1
PΩ1U

1√
p2
PΩ2U
...

1√
pr
PΩrU

 ∈ Cm×N .

� N1, . . . ,Nr ⊂ [N ] partition of rows of U for multilevel sampling, Nl = {Nl−1 + 1, . . . , Nl}.

� Ñ1, . . . , Ñr ⊂ [m] partition of the rows of A into samples from different blocks. (|Ñl| = ml)

� M1, . . . ,Mr ⊂ [N ] blocks for sparsity

� S1, . . . , Sr ⊂ [N ] supports of xM1 , . . . , xMr , |Sk| ≤ sk (1 ≤ k ≤ r).

� ml = |Nl| for l = 1, . . . , r0

Step 1: Symmetrization and Bernoulli process
This first step follows the same argument as the proof in [LA19]. First we define

Ds,M := Σs,M ∩ SN−1,

such that

δs,M = sup
x∈Ds,M

∣∣∥Ax∥22 − 1
∣∣ = sup

x∈Ds,M

|⟨x, (A∗A− IdN )x⟩| =: |||A∗A− IdN |||s,M,

which is how we define the norm |||·|||s,M on CN×N .

For each j ∈ [m], we define Aj ∈ CN as the adjoint vector of the j-th row of A (such that
A∗
jx = ⟨Aj , x⟩ = (Ax)j for x ∈ C, j ∈ [m]). Define Uj (j ∈ [N ]) analogously for the matrix U .

Then for each 1 ≤ l ≤ r0 (i.e., the blocks of complete sampling),∑
j∈Ñl

EAjA∗
j =

1

pl

∑
j∈Ñl

UjU
∗
j =

∑
j∈Nl

UjU
∗
j .
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For each of the other blocks r0 + 1 ≤ l ≤ r,∑
j∈Ñl

EAjA∗
j =

∑
j∈Ñl

1

|Nl|
∑
j′∈Nl

1

pl
Uj′U

∗
j′ =

ml

|Nl|pl

∑
j′∈Nl

Uj′U
∗
j′ =

∑
j∈Nl

UjU
∗
j .

So altogether ∑
j∈[m]

EAjA∗
j =

∑
j∈[N ]

UjU
∗
j = U∗U = IdN .

Then

Eδs,M = |||A∗A− IdN |||s,M =

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j∈[m]

AjA
∗
j −

∑
j∈[m]

EAjA∗
j

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
s,M

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
r∑
l=1

∑
j∈Ñl

(AjA
∗
j − EAjA∗

j )

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
s,M

=

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

r∑
l=r0+1

∑
j∈Ñl

(AjA
∗
j − EAjA∗

j )

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
s,M

.

Using the symmetrization Lemma 0.9, we obtain

Eδs,M ≤ 2E

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

r∑
l=r0+1

∑
j∈Ñl

ξjAjA
∗
j

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
s,M

(4.15)

where ξj for all j ∈ Ñl, l ∈ {r0 + 1, . . . , r} are independent Rademacher variables that are
independent of A.

Now we condition on the Aj , and first consider the expectation Eξ with respect to the ξj .
By definition of |||·|||s,M,

Eξ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

r∑
l=r0+1

∑
j∈Ñl

ξjAjA
∗
j

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
s,M

= Eξ sup
x∈Ds,M

∣∣∣∣∣∣
r∑

l=r0+1

∑
j∈Ñl

ξj |(Ax)j |2
∣∣∣∣∣∣ .

This is the expected supremum of the Bernoulli process defined by

Xy =
r∑

l=r0+1

∑
j∈Ñl

ξjyj y ∈ T

for the index set

T := {|Ax|2
∣∣x ∈ Ds,M},

where |Ax|2 consists of all squared absolute values of the entries of Ax. As a Bernoulli process
it is subgaussian with the Euclidean metric with respect to the entries indexed by

Ñ :=
r⋃

l=r0+1

Ñl, (4.16)

i.e., d(y, ȳ) =
(∑

j∈Ñ (yj − ȳj)
2
) 1

2
for y, ȳ ∈ T . Note however, that this might not be a metric

on T since two different vectors in T might only differ in entries in [m]\Ñ . But it is a metric
on the projections on Ñ ,

T ′ = {yÑ
∣∣ y ∈ T} ⊂ R|Ñ |.
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To simplify the presentation, we will still consider the index set T and an admissible sequence
on T but implicitly project everything onto the entries Ñ such that d becomes an actual metric
instead of a pseudometric.

Then for any u, v ∈ Ds,M,

d(|Au|2, |Av|2) =

 r∑
l=r0+1

∑
j∈Ñl

(|(Au)j |2 − |(Av)j |2)2
 1

2

.

Step 2: Approximations with Maurey’s empirical method
We need the following definitions for l = 1, 2, . . . , r,

γl :=

r∑
k=1

µl,ksk
pl

γ := max
l∈{r0+1,...,r}

γl

ρ := min

4m̃, 4δ−1rs(⌈log2(s)⌉ + 2) ·
r∑

l=r0+1

mlγl

 ≤ min

4m̃,
s4

δ

r∑
l=r0+1

mlγl

 (4.17)

where m̃ = mr0+1, . . . ,mr.
Choose α1, . . . , αr ∈ {0, 1, 2, . . . , ⌈log2(r)⌉} such that for each k = 1, . . . , r,

2−αk ≥ ∥xSk
∥22 ≥ 2−αk−1 or 2−αk = 2−⌈log2(r)⌉ ≥ ∥xSk

∥22. (4.18)

Define ñ := ⌈log2(r)⌉, for n = ñ + 1, ñ + 2, . . . , ⌈log2(s)⌉ + 2 and Rn,k = ⌈c1 log ρ⌉ · 2n−αk

for an absolute constant c1 > 0 that will be specified later. Since n ≥ ⌈log2(r)⌉ ≥ αk, Rn,k is
always an integer.

We define the independent random variables Z(k) for k ∈ [r] such that for all j ∈ Sk,

Z(k) = 2−
αk
2
√

2sk sign(Re(xj))ej with probaility 2
αk
2
|Re(xj)|√

2sk

Z(k) = 2−
αk
2
√

2sk sign(Im(xj))ej with probaility 2
αk
2
|Im(xj)|√

2sk

and

Z(k) = 0 with probability 1 − 2
αk
2

√
2sk

∑
j∈Sk

(|Re(xj)| + |Im(xj)|).

That this is a valid probability distribution since

2
αk
2

√
2sk

∑
j∈Sk

(|Re(xj)| + |Im(xj)|) ≤
2

αk
2

√
2sk

∑
j∈Sk

√
2|xj | =

2
αk
2

√
sk

∥xSk
∥1 ≤ 2

αk
2 ∥xSk

∥2 ≤ 1

and furthermore we obtain for all j ∈ [N ],

(EZ(k))j =

{
xj if j ∈ Sk

0 otherwise.

There are ⌈log2(r)⌉ + 1 different possible values of αk. Therefore the total number of values
that Z(k) can attain across all x ∈ Ds,M is bounded by

4|Mk|(⌈log2(r)⌉ + 1) + 1 ≤ 4Nr + 1 ≤ 5N2 ≤ N5
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for N ≥ 2.
We define Z

(k)
1 , . . . , Z

(k)
Rn,k

to be independent copies of Z(k) and

Z̄n =
∑
k∈[r]

1

Rn,k

Rn,k∑
q=1

Z(k)
q .

Then

EZ̄n = x.

Z̄n depends on α1, . . . , αr. We take all choices of α1, . . . , αr ∈ {0, 1, . . . , ⌈log2(r)⌉} for which

r∑
k=1

2−αk ≤ 3. (4.19)

We define Vn to be the set of all possible values of Z̄n for all of the above choices of α1, . . . , αr.

For each of these choices of (α1, . . . , αr), each Z
(k)
q in the definition of Z̄n can have at most

N5 different values such that the number of possible values of Z̄n for the choice of (α1, . . . , αr)
is bounded by∏

k∈[r]

(N5)Rn,k = N5
∑

k∈[r]Rn,k = N5
∑

k∈[r](⌈c1 log ρ⌉·2n·2−αk ) ≤ N15⌈c1 log ρ⌉·2n . (4.20)

The number of different choices of α1, . . . , αr is

(⌈log2(r)⌉ + 1)r ≤ rr ≤ N2n .

So in total

|Vn| ≤ N2n ·N15⌈c1 log ρ⌉·2n ≤ N16⌈c1 log ρ⌉·2n . (4.21)

For each l = r0 + 1, . . . , r, i = 1, . . . ,ml,

|(AZ(k)
q )j | ≤ ∥Aj∥∞∥Z(k)

q ∥1 ≤

√
2µl,ksk2−αk

pl
.

So ∥∥∥(AZ(k)
q )j − E(AZ(k)

q )j

∥∥∥
ψ2

≤ c2

√
µl,ksk2−αk

pl

for an absolute constant c2 > 0.
Now we can use Proposition 0.7 about sums of centered subgaussian variables,

∥∥(AZ̄n)j − (Ax)j
∥∥
ψ2

=

∥∥∥∥∥∥
∑
k∈[r]

1

Rn,k

Rn,k∑
q=1

((AZ(k)
q )j − E(AZ(k)

q )j)

∥∥∥∥∥∥
ψ2

≤ c3

√√√√√∑
k∈[r]

1

R2
n,k

Rn,k∑
q=1

µl,ksk2−αk

pl
= c3

√√√√∑
k∈[r]

µl,ksk2−αk

Rn,kpl

≤ c3

√
max

l′∈{r0+1,...,r}

∑
k∈[r]

µl′,ksk
⌈c1 log ρ⌉ · 2npl′
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≤ 2−
n
2

c3√
c1 log ρ

√
max

l′∈{r0+1,...,r}

∑
k∈[r]

µl′,ksk
pl′

= 2−
n
2

c3√
c1 log ρ

√
γ

for an absolute constant c3 > 0, such that

P
(∣∣(AZ̄n)j − (Ax)j

∣∣ > 2−
n
2
√
γ
)
≤ 2 exp

(
−c4c1 log ρ

c23

)
≤ 2

ρ
,

where c4 > 0 is a constant and in the last step, we choose c1 =
c23
c4

.

For each l = r0 + 1, . . . , r, j ∈ Ñl, define the indicator variable χj ∈ {0, 1} such that χj = 1
if ∣∣(AZ̄n)j − (Ax)j

∣∣ > 2−
n
2
√
γ (4.22)

and χj = 0 otherwise.
The above probability bound shows

Eχj ≤
2

ρ
.

For each l = r0 + 1, . . . , r, the sum
∑

j∈Ñl
χj is the number of indices j ∈ Ñl such that (4.22)

holds for j and we know

E
∑
j∈Ñl

χj ≤
2ml

ρ
.

First assume that the second part in the minimum of definition (4.17) is the smaller one, i.e.,
ρ = 4δ−1rs(⌈log2(s)⌉+2) ·

∑r
l=r0+1mlγl. Then we apply a union bound and Markov’s inequality

to show

P

∃l ∈ {r0 + 1, . . . , r} :
∑
j∈Ñl

χj ≥
4rml

ρ

 ≤
r∑

l=r0+1

P

∑
j∈Ñl

χj ≥
4rml

ρ


≤

r∑
l=r0+1

E
∑

j∈Ñl
χj

4rml
ρ

≤
r∑

l=r0+1

1

2r
≤ 1

2
.

So

P

∀l ∈ {r0 + 1, . . . , r} :
∑
j∈Ñl

χj <
4rml

ρ

 ≥ 1

2
> 0

and there is one realization

π̃n(x) (4.23)

of Z̄n such that for each l = r0 + 1, . . . , r, there are at most 4rml
ρ indices j ∈ Ñl such that (4.22)

holds. We define J̃n,l ⊂ Ñl to be the set of indices j ∈ Ñl for which this is the case such that

|J̃n,l| ≤ 4rml
ρ . Furthermore, we define Jl :=

⋃⌈log2(s)⌉+2
n=ñ+1 J̃n,l as the set of indices for which (4.22)

holds for any n. Then |Jl| ≤ 4rml(⌈log2(s)⌉+2)
ρ . We also define

J :=
r⋃

l=r0+1

Jl.
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The bound on |Jl| and the definition of ρ also imply the inequality

r∑
l=r0+1

|Jl|γl ≤
4r(⌈log2(s)⌉ + 2)

ρ

r∑
l=r0+1

mlγl =

∑r
l=r0+1mlγl

δ−1s ·
∑r

l′=r0+1ml′γl′
=
δ

s
. (4.24)

If on the other hand ρ = 4m̃, then the expected number of indices j ∈ Ñ in total (for all l)
for which (4.22) holds, is

E
∑
j∈Ñ

χj ≤
r∑

l=r0+1

2ml

ρ
≤ 1

2
< 1.

Therefore, there is always a realization of Z̄n such that (4.22) does not hold for any j ∈ Ñ and
we define this as π̃n(x) ∈ Vn. Then consistent with the other case, we define Jl = ∅ for all
l ∈ {r0 + 1, . . . , r} and J = ∅ such that (4.24) still holds.

In order to show that π̃n(x) ∈ Vn, we only need to show that the choice of the αk (4.18)
satisfies the requirement (4.19) of the definition of Vn. To to this, note that for each k ∈ [r],
2−αk ≤ 2∥xSk

∥22 or 2−αk ≤ 2− log2(r) = 1
r . So altogether

r∑
k=1

2−αk ≤
r∑

k=1

max{2∥xSk
∥22,

1

r
} ≤ 2

r∑
k=1

∥xSk
∥22 +

r∑
k=1

1

r
= 2∥x∥22 + 1 ≤ 3,

which shows that zn ∈ Vn.
Moreover, for the random variable Z̄n it holds with probability 1 that for all l ∈ {r0+1, . . . , r}

and j ∈ Ñl,

|(AZ̄n)j | ≤
r∑

k=1

∑
k′∈Sk

|Aj,k′ ||(Z̄n)k′ | ≤
r∑

k=1

√
µl,k
pl

∥(Z̄n)Sk
∥1 ≤

r∑
k=1

√
µl,k
pl

1

Rn,k

Rn,k∑
q=1

∥(Z(k)
q )Sk

∥1

≤
r∑

k=1

√
µl,k
pl

2−
αk
2
√

2sk ≤
√

2

√√√√ r∑
k=1

µl,ksk
pl

·

√√√√ r∑
k=1

2−αk ≤
√

6γl

and therefore

|(Aπ̃n(x))j | ≤
√

6γl. (4.25)

Step 3: Construction of the admissible sequence for n ≤ n1 + ⌈log2(s)⌉
In this step we define the first part of the admissible sequence for the index set T .
Note that we always have r ≤ s. For n = ⌈log2(r)⌉ + 1, . . . , ⌈log2(s)⌉, we define sets

In :=
{
j ∈ Ñ

∣∣ |(Aπ̃n+2(x))j | ≥ 2−
n
2
√
γ
}
\

 n−1⋃
n′=⌈log2(r)⌉+1

In′

 . (4.26)

of indices that depend on x where π̃n+2(x) is the one defined in (4.23) and Ñ is defined in (4.16).
The intention of these sets In is that it contains those j ∈ Ñ for which |(Ax)j |2 is approximately
in the range between 2−nγ and 2−n+1γ. In order to limit the number of possible choices for the
set In across all x ∈ Ds,M, we define it based on the approximation |(Aπ̃n+2(x))j | instead of
|(Ax)j |.

Based on the sets In from above, we choose nδ := ⌈log2(
1
δ2

)⌉ = ⌈2 log2(
1
δ )⌉ and define

Ĩ(1)n :=
n⋃

n′=max{1,n−nδ}

In′ Ĩ(2)n :=

n−nδ−1⋃
n′=1

In′ Ĩ(3)n := Ñ \(Ĩ(1)n ∪ Ĩ(2)n ).
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Each index j ∈ Ñ is contained in exactly one of these sets.
Now we define the vectors w(n) = w(n)(x) ∈ Rm such that for n = 0, . . . , ⌈log2(r)⌉,

w(n) = 0

and for n = ⌈log2(r)⌉ + 1, . . . , ⌈log2(s)⌉, j ∈ [m],

w
(n)
j =


|(Aπ̃n+2(x))j |2 if j ∈ Ĩ

(1)
n

|(Aπ̃n′+nδ+2(x))j |2 if j ∈ Ĩ
(2)
n and j ∈ In′

0 if j ∈ Ĩ
(3)
n or j ∈ [m]\Ñ .

(4.27)

We define n1 := n0 + ⌈log2 log2(N) + log2 log(ρ)⌉ for a constant integer n0 ≥ 0 that will be
chosen later. Furthermore, we start defining an admissible sequence by setting

T0 = T1 = T2 = · · · = Tn1 = {0} ⊂ Rm

and for n = 1, . . . , ⌈log2(s)⌉,

Tn1+n = {w(n)(x)
∣∣x ∈ Ds,M}. (4.28)

Note that I⌈log2(r)⌉+1, . . . , In and therefore also w(n) for n ≥ ⌈log2(r)⌉ + 1 are completely
determined by the approximations

π̃⌈log2(r)⌉+3(x) ∈ V⌈log2(r)⌉+3, . . . , π̃n+2(x) ∈ Vn+2.

So we can use the bound (4.21) on the |Vn| to bound the number of possible different values of
w(n)(x) such that for ⌈log2(r)⌉ + 1 ≤ n ≤ ⌈log2(s)⌉,

|Tn1+n| ≤
n+2∏

n′=⌈log2(r)⌉+3

|Vn′ | ≤
n+2∏
n′=0

N16⌈c1 log ρ⌉·2n
′

= N16⌈c1 log ρ⌉·
∑n+2

n′=0
2n

′

≤ N c̃1 log(ρ)·2n

= 2c̃1 log2(N) log(ρ)·2n ≤ 22
n1+n

for a constant c̃1 > 0 and n0 ≥ log2(c̃1). Then

|Tn| ≤ 22
n

(4.29)

holds for all 1 ≤ n ≤ n1 + ⌈log2(s)⌉.
Now we observe that for any l ∈ [r] and j′ ∈ Nl,

|(Ux)j′ | =

∣∣∣∣∣∣
r∑

k=1

∑
k′∈Mk

Uj′,k′xk′

∣∣∣∣∣∣ ≤
r∑

k=1

 max
k′∈Mk

|Uj′,k′ | ·
∑

k′∈Mk

|xk′ |

 ≤
r∑

k=1

(√
µl,k · ∥xSk

∥1
)

≤
r∑

k=1

(√
µl,ksk · ∥xSk

∥2
)
≤

√√√√ r∑
k=1

µl,ksk ·

√√√√ r∑
k=1

∥xSk
∥22 =

√√√√ r∑
k=1

µl,ksk (4.30)

and therefore for any j ∈ Ñl,

|(Ax)j | ≤

√√√√ r∑
k=1

µl,ksk
pl

=
√
γl ≤

√
γ, (4.31)

where the last part only holds for l = r0 + 1, . . . , r.
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For any j ∈ In′\J for n′ ≥ ⌈log2(r)⌉ + 1, we have |(Aπ̃n′+2(x))j | ≥ 2−
n′
2
√
γ and (because of

j /∈ J) |(Aπ̃n′+2(x))j − (Ax)j | ≤ 2−
n′+2

2
√
γ = 1

2 · 2−
n′
2
√
γ. Hence,

|(Ax)j | ≥ |(Aπ̃n′+2(x))j | − |(Aπ̃n′+2(x))j − (Ax)j | ≥
1

2
· 2−

n′
2
√
γ.

If in addition n′ ≥ ⌈log2(r)⌉+2 holds, then we know that j /∈ In′−1 and therefore |(Aπ̃n′+1(x))j | <
2−

n′−1
2

√
γ. Together with |(Aπ̃n′+1(x))j − (Ax)j | ≤ 2−

n′+1
2

√
γ = 1

2 · 2−
n′−1

2
√
γ, this yields

|(Ax)j | ≤ |(Aπ̃n′+1(x))j | + |(Aπ̃n′+1(x))j − (Ax)j | ≤
3

2
· 2−

n′−1
2

√
γ ≤ 5

2
· 2−

n′
2
√
γ.

So we can summarize that for j ∈ In′\J (n′ ≥ ⌈log2(r)⌉ + 1)

1

2
· 2−

n′
2
√
γ ≤ |(Ax)j | ≤

5

2
· 2−

n′
2
√
γ, (4.32)

where the second bound only holds if n′ ≥ ⌈log2(r)⌉ + 2. In addition, for any n ≥ n′,

|(Aπ̃n+2(x))j | ≤ |(Ax)j | + |(Aπ̃n+2(x))j − (Ax)j | ≤ |(Ax)j | +
1

2
· 2−

n
2
√
γ

≤ |(Ax)j | +
1

2
· 2−

n′
2
√
γ ≤ 2 · |(Ax)j |. (4.33)

Now we assume j ∈ In′\J again for ⌈log2(r)⌉ + 1 ≤ n′ ≤ ⌈log2(s)⌉. In the next step, we

bound (w
(n)
j − w

(n−1)
j )2 for all possible cases.

� n ≤ n′ − 1:

(w
(n)
j − w

(n−1)
j )2 = (0 − 0)2 = 0.

� n = n′:

(w
(n)
j − w

(n−1)
j )2 = (|(Aπ̃n+2(x))j |2 − 0)2 = |(Aπ̃n+2(x))j |4

≤ 24|(Ax)j |4 ≤ 100 · 2−nγ|(Ax)j |2

� n′ + 1 ≤ n ≤ n′ + nδ:

(w
(n)
j − w

(n−1)
j )2 =

(
|(Aπ̃n+2(x))j |2 − |(Aπ̃n+1(x))j |2

)2
=
(
(|(Aπ̃n+2(x))j |2 − |(Ax)j |2) + (|(Ax)j |2 − |(Aπ̃n+1(x))j |2)

)2
= 2

(
(|(Aπ̃n+2(x))j |2 − |(Ax)j |2)2 + (|(Ax)j |2 − |(Aπ̃n+1(x))j |2)2

)
We can bound the second factor by(

|(Aπ̃n+1(x))j |2 − |(Ax)j |2
)2

= (|(Aπ̃n+1(x))j | − |(Ax)j |)2(|(Aπ̃n+1(x))j | + |(Ax)j |)2

≤ |(Aπ̃n+1(x))j − (Ax)j |2 · (3|(Ax)j |)2

≤ 9 · (2−
n+1
2
√
γ)2|(Ax)j |2

≤ 9

2
2−nγ|(Ax)j |2.

The same bound also follows for the other term (|(Ax)j |2 − |(Aπ̃n+2(x))j |2)2, such that in
total we obtain

(w
(n)
j − w

(n−1)
j )2 ≤ 18 · 2−nγ|(Ax)j |2
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� n ≥ n′ + nδ + 1:

(w
(n)
j − w

(n−1)
j )2 = (|(Aπ̃n′+nδ+2(x))j |2 − |(Aπ̃n′+nδ+2(x))j |2)2 = 0.

Note that this especially also holds for the case n = n′ + nδ + 1.

So if j /∈ J and j ∈ In′ for some n′ ≤ ⌈log2(s)⌉, then we have shown that for any ⌈log2(r)⌉+
2 ≤ n ≤ ⌈log2(s)⌉,

(w
(n)
j − w

(n−1)
j )2

{
≤ 100 · 2−nγ|(Ax)j |2 if n′ ≤ n ≤ n′ + nδ

= 0 otherwise.

If j /∈ In′ for any n′ ≤ ⌈log2(s)⌉, then (w
(n)
j − w

(n−1)
j )2 = 0 for all n.

All the other indices j ∈ Ñ are in J =
⋃r
l=r0+1 Jl. From inequality (4.25), it follows that

|w(n)
j |, |w(n−1)

j | ≤ 6γl. Therefore we obtain

∑
j∈J

2n(w
(n)
j − w

(n−1)
j )2 =

r∑
l=r0+1

∑
j∈Jl

2n(w
(n)
j − w

(n−1)
j )2 ≤

r∑
l=r0+1

|Jl| · 2n(12γl)
2

≤ 122 · 2n · max
l∈{r0+1,...,r}

γl ·
r∑

l=r0+1

|Jl|γl ≤ 122 · 2nγ · 1

s
,

where we used (4.24) and δ ≤ 1 in the last step.
Towards bounding the contribution of the approximations w(n) in the γ2 functional, we

obtain with the above estimates,

⌈log2(s)⌉∑
n=⌈log2(r)⌉+2

2
n
2 d(w(n), w(n−1)) =

⌈log2(s)⌉∑
n=⌈log2(r)⌉+2

∑
j∈Ñ

2n(w
(n)
j − w

(n−1)
j )2

 1
2

(4.34)

≤
⌈log2(s)⌉∑

n=⌈log2(r)⌉+2

 ⌈log2(s)⌉∑
n′=⌈log2(r)⌉+1

∑
j∈In′\J

2n(w
(n)
j − w

(n−1)
j )2

 1
2

+

⌈log2(s)⌉∑
n=⌈log2(r)⌉+2

∑
j∈J

2n(w
(n)
j − w

(n−1)
j )2

 1
2

≤
⌈log2(s)⌉∑

n=⌈log2(r)⌉+2

 ⌈log2(s)⌉∑
n′=⌈log2(r)⌉+1

∑
j∈In′

100γ|(Ax)j |21n′≤n≤n′+nδ

 1
2

+

⌈log2(s)⌉∑
n=⌈log2(r)⌉+2

12 · 2
n
2

√
γ

s

≤
√

100γ

⌈log2(s)⌉∑
n=⌈log2(r)⌉+2

 ⌈log2(s)⌉∑
n′=⌈log2(r)⌉+1

∥(Ax)In′∥221n′≤n≤n′+nδ

 1
2

+ C̃2
√
γ (4.35)

≤
√

100γ⌈log2(s)⌉

 ⌈log2(s)⌉∑
n′=⌈log2(r)⌉+1

∥(Ax)In′∥22
⌈log2(s)⌉∑

n=⌈log2(r)⌉+2

1n′≤n≤n′+nδ

 1
2

+ C̃2
√
γ (4.36)

≤
√

100γ⌈log2(s)⌉

 ⌈log2(s)⌉∑
n′=⌈log2(r)⌉+1

∥(Ax)In′∥22(nδ + 1)

 1
2

+ C̃2
√
γ

≤
√

100γ⌈log2(s)⌉(nδ + 1)∥Ax∥2 + C̃2
√
γ
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≤ C2

√
γ log2(s) log2(

1

δ
)) ·
(
1 + ∥Ax∥22

)
.

Here C2 > 0 is a constant, 1n′≤n≤n′+nδ
is 1 for n′ ≤ n ≤ n′ + nδ and 0 otherwise, and in the

step leading from (4.35) to (4.36), we applied the Cauchy-Schwarz inequality to the sum over n

in the sense that
∑

n a
1
2
n =

∑
n(a

1
2
n · 1) ≤

√∑
n an ·

√∑
n 1 ≤

√∑
n an ·

√
⌈log2(s)⌉.

Furthermore,

⌈log2(r)⌉∑
n=1

2
n
2 d(w(n), w(n−1)) = 0.

For the one missing term n = ⌈log2(r)⌉ + 1, first assume j ∈ In\J . Then combining (4.25)
and (4.33) yields

2n(w
(n)
j − w

(n−1)
j )2 = 2n(w

(n)
j )2 = 2n|(Aπ̃n+2(x))j |4 ≤ 2n · 6γ|(Ax)j |2 ≤ 100rγ|(Ax)j |2.

On the other hand, if j /∈ J and j /∈ In, then w
(n)
j −w

(n−1)
j = 0. And also for n = ⌈log2(r)⌉+ 1,

we obtain that ∑
j∈J

2n(w
(n)
j − w

(n−1)
j )2 ≤ 16γ,

such that altogether for n = ⌈log2(r)⌉ + 1 and some constant C3 > 0,

2
n
2

 r∑
l=r0+1

∑
j∈Ñl

(w
(n)
j − w

(n−1)
j )2

 1
2

≤ C3

√√√√√γ

1 + r
r∑

l=r0+1

∑
j∈Ñl

|(Ax)j |2

.
So in total for a constant C4 > 0,

⌈log2(s)⌉∑
n=1

2
n
2 d(w(n), w(n−1)) ≤ C4

√
γ log2(s) log2(

1

δ
)) + γ

(
log2(s) log2(

1

δ
)) + r

)
∥Ax∥22 (4.37)

Step 4: Construction of T (1) and T (2) for (4.11) and ℓ1 bound
For each x ∈ Ds,M, define f(x) ∈ Rm such that if j ∈ In′ for an ⌈log2(r)⌉ + 1 ≤ n′ ≤

⌈log2(s)⌉ − nδ (recall that nδ = ⌈log2(
1
δ2

)⌉)

(f(x))j = w
(⌈log2(s)⌉)
j

and otherwise, if there is no such n′,

(f(x))j = |(Ax)j |2.

Then for each j ∈ In′\J (with ⌈log2(r)⌉ + 1 ≤ n′ ≤ ⌈log2(s)⌉ − nδ),∣∣(f(x))j − |(Ax)j |2
∣∣ =

∣∣∣w(⌈log2(s)⌉)
j − |(Ax)j |2

∣∣∣ =
∣∣|(Aπ̃n′+nδ+2(x))j |2 − |(Ax)j |2

∣∣
≤ |(Aπ̃n′+nδ+2(x))j − (Ax)j | (|(Aπ̃n′+nδ+2(x))j | + |(Ax)j |)

≤ 2−
n′+nδ+2

2
√
γ · 3|(Ax)j | ≤

δ

2
· 2−

n′
2
√
γ · 3|(Ax)j |

≤ 3δ|(Ax)j |2,

where we used (4.33) and (4.32).
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Furthermore, by (4.25) and (4.31), we have |(f(x))j | ≤ 6γl and |(Ax)j |2 ≤ γl in any case for
l ∈ {r0 + 1, . . . , r}, j ∈ Ñl, which implies

∑
j∈J

∣∣(f(x))j − |(Ax)j |2
∣∣ =

r∑
l=r0+1

∑
j∈Jl

∣∣(f(x))j − |(Ax)j |2
∣∣ ≤ 7

r∑
l=r0+1

|Jl|γl ≤ 7
δ

s
≤ 7δ,

using (4.24). Then we obtain the ℓ1 norm bound

∥∥|Ax|2 − f(x)
∥∥
1

=

⌈log2(s)⌉−nδ∑
n′=⌈log2(r)⌉+1

∑
j∈In′\J

∣∣(f(x))j − |(Ax)j |2
∣∣+
∑
j∈J

∣∣(f(x))j − |(Ax)j |2
∣∣

≤ δ

3
r∑

l=r0+1

∑
j∈Ñl

|(Ax)j |2 + 7

 ≤ δ
(
3∥Ax∥22 + 7

)
. (4.38)

Define

δ̃ := δ

(
3 sup
x∈Ds,M

∥Ax∥22 + 7

)
. (4.39)

and the sets

T (1) := {f(x)
∣∣x ∈ Ds,M}

T (2) := {y ∈ Rm
∣∣ ∥y∥1 ≤ δ̃}.

Then (4.38) shows that

T = {|Ax|2
∣∣x ∈ Ds,M}

satisfies

T ⊂ T (1) + T (2).

We have already defined Tn for 0 ≤ n ≤ n1 + ⌈log2(s)⌉ and will extend this to an admissible
sequence (Tn)n≥0 to control γ2(T

(1), d), while T (2) is controlled with its ℓ1 norm bound such
that (4.11) can be applied.

Step 5: Application of Lemma 4.10 to the first part of the admissible sequence

If j ∈ In′ for any ⌈log2(r)⌉ + 1 ≤ n′ ≤ ⌈log2(s)⌉ − nδ, then (f(x))j − w
(⌈log2(s)⌉)
j = 0.

If j ∈ In′\J for ⌈log2(s)⌉ − nδ + 1 ≤ n′ ≤ ⌈log2(s)⌉, then∣∣∣(f(x))j − w
(⌈log2(s)⌉)
j

∣∣∣ =
∣∣|(Ax)j |2 − |(Aπ̃⌈log2(s)⌉+2(x))j |2

∣∣
≤
∣∣(Ax)j − (Aπ̃⌈log2(s)⌉+2(x))j

∣∣ (|(Ax)j | + |(Aπ̃⌈log2(s)⌉+2(x))j |
)

≤ 2−
⌈log2(s)⌉+2

2
√
γ · 3|(Ax)j | ≤

3

2

√
γ

s
|(Ax)j |.

If j /∈ In′ for all ⌈log2(r)⌉ + 1 ≤ n′ ≤ ⌈log2(s)⌉ and j /∈ J , then by the definition of the In′ ,

|(Aπ̃⌈log2(s)⌉+2(x))j | < 2−
⌈log2(s)⌉

2
√
γ and then

|(Ax)j | ≤ |(Aπ̃⌈log2(s)⌉+2(x))j | + |(Ax)j − (Aπ̃⌈log2(s)⌉+2(x))j |

≤ 2−
⌈log2(s)⌉

2
√
γ + 2−

⌈log2(s)⌉+2
2

√
γ ≤ 2

√
γ

s
,
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such that ∣∣∣(f(x))j − w
(⌈log2(s)⌉)
j

∣∣∣ = |(f(x))j | = |(Ax)j |2 ≤ 2

√
γ

s
|(Ax)j | .

For the remaining entries j ∈ J ,

∑
j∈J

∣∣∣(f(x))j − w
(⌈log2(s)⌉)
j

∣∣∣2 ≤ r∑
l=r0+1

∑
j∈Jl

∣∣∣(f(x))j − w
(⌈log2(s)⌉)
j

∣∣∣2 ≤ r∑
l=r0+1

|Jl|(12γl)
2

≤ 122γ
∑

l=r0+1

|Jl|γl ≤ 122γ
δ

s
≤ 122

γ

s
.

So in total,

d(f(x), w(⌈log2(s)⌉))2 =
r∑
l=1

∑
j∈Ñl

∣∣∣(f(x))j − w
(⌈log2(s)⌉)
j

∣∣∣2
=
∑
j∈J

∣∣∣(f(x))j − w
(⌈log2(s)⌉)
j

∣∣∣2 +

r∑
l=1

∑
j∈Ñl\J

∣∣∣(f(x))j − w
(⌈log2(s)⌉)
j

∣∣∣2

≤ γ

s

122 + 4
r∑
l=1

∑
j∈Ñl

|(Ax)j |2
 ≤ γ

s

(
122 + 4∥Ax∥22

)
. (4.40)

Recall the definition of the sets Tn for 0 ≤ n ≤ n1 + ⌈log2(s)⌉ given at (4.28) that contain 0
or all the vectors w(n−n1)(x). We always have w(0)(x) = 0. For x ∈ Ds,M, f(x) ∈ T (1) and

0 ∈ T0, . . . , 0 = w(0) ∈ Tn1 , w
(1) ∈ Tn1+1, w

(2) ∈ Tn1+2, . . . , w
(⌈log2(s)⌉) ∈ Tn1+⌈log2(s)⌉,

we can apply Lemma 4.10 to obtain

n1+⌈log2(s)⌉∑
n=0

2
n
2 d(f(x), Tn)

≤ 4

2
n1+⌈log2(s)⌉

2 d(f(x), w(⌈log2(s)⌉)) +

n1∑
n=0

2
n
2 · 0 +

n1+⌈log2(s)⌉∑
n=n1+1

2
n
2 d(w(n−n1), w(n−n1−1))


≤ 4 · 2

n1
2

√
sd(f(x), w(⌈log2(s)⌉)) +

⌈log2(s)⌉∑
n=1

2
n
2 d(w(n), w(n−1))


Using (4.37), 4.40 and the definition of n1, we can conclude further

n1+⌈log2(s)⌉∑
n=0

2
n
2 d(f(x), Tn)

≤ 4 · 2
n1
2

(√
γ
(
122 + 4∥Ax∥22

)
+ C4

√
γ log2(s) log2(

1

δ
) + γ

(
log2(s) log2(

1

δ
) + r

)
∥Ax∥22

)

≤ C5 · 2
n0
2

√
γ log2(N) log(ρ) ·

√
log2(s) log2(

1

δ
) +

(
log2(s) log2(

1

δ
) + r

)
∥Ax∥22 (4.41)

Step 6: Construction of the admissible sequence for n > n1 + ⌈log2(s)⌉
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To complete the remaining part of the admissible sequence (Tn), we follow a similar approach
as in [LA19] for small distances with the difference that instead of using Dudley’s inequality, we
construct the admissible sequence directly.

For any x, y ∈ Ds,M, k ∈ [r], (x− y)Mk
is 2sk-sparse. Therefore for any l ∈ {r0 + 1, . . . , r},

j ∈ Ñl,

|(A(x− y))j | ≤
r∑

k=1

∑
k′∈Mk

|Aj,k′ ||(x− y)k′ | ≤
r∑

k=1

√
µl,k
pl

∥(x− y)Mk
∥1

≤
r∑

k=1

√
2µl,ksk
pl

∥(x− y)Mk
∥2 ≤

√√√√ r∑
k=1

2µl,ksk
pl

·

√√√√ r∑
k=1

∥(x− y)Mk
∥22

≤
√

2γl∥x− y∥2 ≤
√

2γ∥x− y∥2

and then

d(|Ax|2, |Ay|2) =

√∑
j∈Ñ

(|(Ax)j |2 − |(Ay)j |2)2 ≤
√∑
j∈Ñ

|(Ax)j − (Ay)j |2 (|(Ax)j | + |(Ay)j |)2

≤ max
j∈Ñ

|(A(x− y))j | ·
√∑
j∈Ñ

(|(Ax)j | + |(Ay)j |)2

≤
√

2γ∥x− y∥2 · [∥Ax∥2 + ∥Ay∥2] ≤ 2
√

2γ∥x− y∥2 ·
√

max
z∈Ds,M

∥Az∥22

≤ 2
√

2γβ∥x− y∥2 (4.42)

β := max
z∈Ds,M

∥Az∥22.

For each S ⊂ [N ], define the unit ball with support S,

BS := {x ∈ CN
∣∣ ∥x∥2 = 1 and supp(x) ⊂ S}

For |S| = s, BS (in C) is isometric to the ℓ2 unit sphere in R2s and by the standard covering
number estimates (Lemma 0.13),

N (BS , ∥ · ∥2, u) ≤
(

1 +
2

u

)2s

.

Each x ∈ Ds,M is s-sparse and therefore

Ds,M ⊂
⋃

S⊂[N ]
|S|=s

BS .

Since there are
(
N
s

)
choices of S ⊂ [N ], |S| = s, for each u > 0, there exists a set T ′(u) ⊂ CN of

cardinality |T ′(u)| ≤
(
N
s

)
(1 + 2

u)2s such that for each x ∈ Ds,M, there exists a y ∈ T ′(u) with
∥x− y∥2 ≤ u.

For each integer n ≥ n1 + ⌈log2(s)⌉ + 1, define

T̄n := {|Ax|2 ∈ Rm
∣∣x ∈ T ′(2−(n−n0))}.

Then by (4.42) for each y ∈ T , there exists a y′ ∈ T̄n such that d(y, y′) ≤ 2−(n−n0) · 2
√

2γβ.
Furthermore

|T̄n| ≤
(
N

s

)(
1 + 2 · 2n−n0

)2s ≤ (N
s

)(
2n−n0+2

)2s ≤ (N
s

)
· 22s(n−n0+2).
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Now we define the admissible sequence elements Tn for n ≥ n1+⌈log2(s)⌉+1. Take any y ∈ T̄n

and any tuple (w(n′))
⌈log2(s)⌉
n′=⌈log2(r)⌉+1 of the vectors defined in (4.27) along with the corresponding

sets (In′)
⌈log2(s)⌉
n′=⌈log2(r)⌉+1 defined in (4.26). Then we define z ∈ Rm by

zj =

{
w

(⌈log2(s)⌉)
j if j ∈ In′ for ⌈log2(r)⌉ + 1 ≤ n′ ≤ ⌈log2(s)⌉ − nδ

yj otherwise.

Note that this is well defined since the In′ are disjoint.
Define Tn ⊂ Rm to be the set of all z obtained in this way. To bound |Tn|, note that by their

definitions, (w(n′))
⌈log2(s)⌉
n′=⌈log2(r)⌉+1 and (In′)

⌈log2(s)⌉
n′=⌈log2(r)⌉+1 are uniquely determined by

π̃⌈log2(r)⌉+3(x) ∈ V⌈log2(r)⌉+3, . . . , π̃⌈log2(s)⌉+2(x) ∈ V⌈log2(s)⌉+2

from (4.23). Taking into account the bound (4.21) on the |Vn′ | and that there are |T̄n| choices
for y, we can bound the number of possible z by

|Tn| ≤ |T̄n| ·
⌈log2(s)⌉+2∏

n′=⌈log2(r)⌉+3

|Vn′ | ≤
(
N

s

)
· 22s(n−n0+2) ·

⌈log2(s)⌉+2∏
n′=⌈log2(r)⌉+3

N16⌈c1 log ρ⌉·2n
′

≤
(
N

s

)
· 24s(n−n0) ·N16⌈c1 log ρ⌉·

∑⌈log2(s)⌉+2

n′=⌈log2(r)⌉+3
2n

′

≤
(
N

s

)
· 24s(n−n0) ·N c̃2s log(ρ)

for a constant c̃2 > 0 and n ≥ n0 + 2.
So with the standard bound

(
N
s

)
≤
(
eN
s

)s
,

log2 |Tn| ≤ s log2(
eN

s
) + 4s(n− n0) + c̃2s log2(N) log(ρ)

≤ 4s(n− n0) + c̃3s log2(N) log(ρ) (4.43)

for a constant c̃3 > 0.
For n = n0 + ⌈log2 log2(N) + log2 log(ρ)⌉ + ⌈log2(s)⌉, we obtain using that log2(x) ≤ x for

all x > 0,

s(n− n0) = s⌈log2 log2(N) + log2 log(ρ)⌉ + s⌈log2(s)⌉
≤ s ⌈log2(N) log(ρ)⌉ + s⌈log2(N)⌉
≤ 2s ⌈log2(N) log(ρ)⌉ ≤ 2 · 2n−n0 .

Since x 7→ 2x

x is strictly increasing for x ≥ 2, s(n − n0) ≤ 2 · 2n−n0 also holds for any
n ≥ n0 + ⌈log2 log2(N) + log2 log(ρ)⌉ + ⌈log2(s)⌉. Then we obtain with (4.43) for all such n,

log2 |Tn| ≤ 8 · 2n−n0 + c̃3 · 2n−n0 ≤ 2−n0(8 + c̃3) · 2n ≤ 2n

for choosing n0 ≥ log2(8 + c̃3) (recall that n0 can be chosen as a sufficiently large constant). So
for all n ≥ n0 + ⌈log2 log2(N) + log2 log(ρ)⌉ + ⌈log2(s)⌉,

|Tn| ≤ 22
n
.

Again fix an n ≥ n0 + ⌈log2 log2(N) + log2 log(ρ)⌉ + ⌈log2(s)⌉. For each f(x) ∈ T (1) (x ∈
Ds,M), we consider y ∈ T̄n such that d(y, |Ax|2) ≤ 2−(n−n0) · 2

√
2γβ and the vectors (w(n′)(x))n′

defined in (4.27). Associated to this y and these (w(n′))n′ there is one element z ∈ Tn. We
obtain

d(f(x), z)2 =

r∑
l=r0+1

∑
j∈Ñl

((f(x))j − zj)
2
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≤
r∑

l=r0+1

∑
j∈Ñl

(
|(Ax)j |2 − yj

)2
+

⌈log2(s)⌉−nδ∑
n′=⌈log2(r)⌉+1

∑
j∈In′

(w
(⌈log2(s)⌉)
j − w

(⌈log2(s)⌉)
j )2

= d(y, |Ax|2)2 ≤ 2−2(n−n0) · 8γβ.

This yields for a constant C5 > 0,

∞∑
n=n1+⌈log2(s)⌉+1

2
n
2 d(f(x), Tn) ≤

∞∑
n=n1+⌈log2(s)⌉+1

2
n
2 · 2

√
2γβ · 2−(n−n0)

≤ 2 · 2n0
√

2γβ

∞∑
n=0

2−
n
2 ≤ 2n0 · C5

√
γβ. (4.44)

And together with (4.41),

∞∑
n=0

2
n
2 d(f(x), Tn) ≤ C6

√
γ log2(N) · log(ρ)

√
log2(s) log2(

1

δ
) +

(
log2(s) log2(

1

δ
) + r

)
β (4.45)

for a constant C6 > 0 and all x ∈ Ds,M.
Step 7: Combination of the bounds to control Eδs,M
We have shown that the sets Tn for n ≥ 0 satisfy the size condition for an admissible sequence

but they are not necessarily subsets of T (1). However, by Lemma 4.11, this is still sufficient to
prove

γ2(T
(1), d) ≤ 2 sup

x∈Ds,M

∞∑
n=0

2
n
2 d(f(x), Tn)

≤ 2C6

√
γ log2(N) · log(ρ)

√
log2(s) log2(

1

δ
) +

(
log2(s) log2(

1

δ
) + r

)
β

≤ 4C6

√
γ log2(N) · log(ρ)

(
log2(s) log2(

1

δ
) + r

)
β (4.46)

with (4.45) in the second step.
So with the Bernoulli bound (4.11), we can control the expectation of the Bernoulli process

Eξ

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣

r∑
l=r0+1

∑
j∈Ñl

ξjAjA
∗
j

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
s,M

≤ Cγ2(T
(1), d) + sup

y∈T (2)

∥y∥1

≤ Cγ2(T
(1), d) + δ

(
3 sup
x∈Ds,M

∥Ax∥22 + 7

)
≤ Cγ2(T

(1), d) + δ (3δs,M + 10) ,

using (4.39). By forming the expectation on both sides, we obtain with (4.15),

Eδs,M ≤ 2CEγ2(T (1), d) + 2δ(3Eδs,M + 10)

⇒ (1 − 6δ)Eδs,M ≤ 2CEγ2(T (1), d) + 20δ.

If δ ≤ 1
12 , i.e., 1 − 6δ ≥ 1

2 ,

Eδs,M ≤ 4CEγ2(T (1), d) + 40δ. (4.47)
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This implies

(Eδs,M)2 ≤ 2
[
(4CEγ2(T (1), d))2 + (40δ)2

]
.

With (4.46) and β ≤ 1 + δs,M, we obtain that

(Eδs,M)2 ≤ C7

(
γ log2(N) · log(ρ)

(
log2(s) log2(

1

δ
) + r

))
(1 + Eδs,M) + C8δ

for constants C7, C8 > 0.
Defining

E := Eδs,M D :=

√
C7γ log2(N) log(ρ)

(
log2(s) log2(

1

δ
)) + r

)
≥ 0,

the above inequality becomes.

E2 ≤ D2(E + 1) + C8δ,

which implies for E ≥ 0,

Eδs,M = E ≤ D2

2
+

√
D4

4
+D2 + C8δ ≤

D2

2
+
D2

2
+D + C8δ = D2 +D + C8δ.

If for all l ∈ {r0 + 1, . . . , r},

ml ≥ C7δ
−2(Nl −Nl−1)

(
r∑

k=1

µl,ksk

)
log2(N) log(ρ)

(
log2(s) log2(

1

δ
)) + r

)
, (4.48)

then

γ = max
l∈{r0+1,...,r}

r∑
k=1

µl,ksk
ml/(Nl −Nl−1)

≤ δ2
(
C7 log2(N) log(ρ)

(
log2(s) log2(

1

δ
)) + r

))−1

,

(4.49)

so

D ≤ δ

and therefore

Eδs,M ≤ δ + δ2 + C8δ ≤ (C8 + 2)δ.

If (4.48) holds with δ replaced by δ′ = δ
2(C8+2) for a δ ∈ (0, 12 ], then this only increases the

lower bound by at most a constant factor and we obtain

Eδs,M ≤ (C8 + 2)δ′ =
δ

2
.

The condition δ′ ≤ 1
12 required for (4.47) is also fulfilled since we can assume that 2(C8 +2) ≥ 6.

Step 8: Concentration of δs,M
For the remaining part of the proof, we need to control the deviation of δs,M from its

expectation. To do this, we mostly follow the approach from [LA19] and [FR13] with slight
modifications. We include the entire proof for completeness.
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For each l ∈ {r0 + 1, . . . , r}, j ∈ Ñl, define the random vector Yj ∈ CN+1 as

Yj =

(
Aj
l

)
.

Since all the Aj are independent, also all the Yj are independent.
Take a countable dense subset D̃s,M of Ds,M and for each x ∈ D̃s,M define Fx : CN+1 → R

such that for all l ∈ [r] and v ∈ CN+1,

Fx(v) =

{
|⟨v{1,...,N}, x⟩|2 −

∥(Ux)Nl
∥22

ml
if vN+1 = l

0 otherwise.

Then for each l ∈ {r0 + 1, . . . , r}, j ∈ Ñl,

Fx(Yj) = |(Ax)j |2 −
∥(Ux)Nl

∥22
ml

.

Furthermore,

EFx(Yj) =
∑
j′∈Nl

1

|Nl|
· 1

pl
|U∗
j′x|2 −

∥(Ux)Nl
∥22

ml
=

∑
j′∈Nl

|(Ux)j′ |2

ml
− ∥(Ux)Nl

∥22
ml

= 0.

The blocks l = 1, . . . , r0 are fully sampled and therefore

r0∑
l=1

∑
j∈Ñl

[
|(Ax)j |2 −

∥(Ux)Nl
∥22

ml

]
=

r0∑
l=1

∥(Ax)Ñl
∥22 −

r0∑
l=1

∥(Ux)Nl
∥22

=

r0∑
l=1

∥(Ux)Nl
∥22 −

r0∑
l=1

∥(Ux)Nl
∥22 = 0.

such that∑
j∈Ñ

Fx(Yj) =
r∑

l=r0+1

∑
j∈Ñl

[
|(Ax)j |2 −

∥(Ux)Nl
∥22

ml

]
=

r∑
l=1

∑
j∈Ñl

[
|(Ax)j |2 −

∥(Ux)Nl
∥22

ml

]

=
∑
j∈[m]

|(Ax)j |2 −
r∑
l=1

∑
j∈Ñl

∥(Ux)Nl
∥22

ml
= ∥Ax∥22 −

r∑
l=1

∥(Ux)Nl
∥22 = ∥Ax∥22 − 1.

Now we define

δs,M,+ := sup
x∈Ds,M

[
∥Ax∥22 − 1

]
δs,M,− := sup

x∈Ds,M

[
1 − ∥Ax∥22

]
Since D̃s,M is dense in Ds,M and the supremum is taken over a continuous function, supx∈Ds,M

can be replaced by supx∈D̃s,M
and then

sup
F∈F

∑
j∈Ñ

F (Yj) = sup
x∈D̃s,M

∑
j∈Ñ

Fx(Yj) = sup
x∈Ds,M

[
∥Ax∥22 − 1

]
= δs,M,+

and analogously

sup
F∈F

∑
j∈Ñ

−F (Yj) = δs,M,−.
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Then

δs,M = sup
x∈Ds,M

∣∣∥Ax∥22 − 1
∣∣ = max{δs,M,+, δs,M,−}.

In (4.30) and (4.31), we have seen that for all l ∈ {r0 + 1, . . . , r}, j ∈ Nl,

|(Ux)j | ≤

√√√√ r∑
k=1

µl,ksk |(Ax)j | ≤
√
γl,

such that

∥(Ux)Nl
∥22

ml
≤

|Nl|
∑r

k=1 µl,ksk
ml

= γl.

and therefore

|Fx(Yj)| ≤ max
l∈{r0+1,...,r}

(2γl) = 2γ =: K.

We also obtain

E|Fx(Yj)|2 = E|(Ax)j |4 −
2∥(Ux)Nl

∥22
ml

E|(Ax)j |2 +
∥(Ux)Nl

∥42
m2
l

≤ γlE|(Ax)j |2 −
∥(Ux)Nl

∥42
m2
l

≤ γl
ml

∥(Ux)Nl
∥22 =: σ2l

and therefore

σ2 :=
r∑

l=r0+1

∑
j∈Ñl

σ2l =
r∑

l=r0+1

γl∥(Ux)Nl
∥22 ≤ γ

r∑
l=r0+1

∥(Ux)Nl
∥22 ≤ γ.

So we can apply Theorem 4.12 which gives us

P(δs,M,+ > δ) ≤ P(δs,M,+ > Eδs,M +
δ

2
) ≤ P(δs,M,+ > Eδs,M,+ +

δ

2
)

≤ exp

(
− (δ/2)2

σ2 + 2KEδs,M,+ + δ
2 ·K/3

)

≤ exp

(
− (δ/2)2

γ + 2γEδs,M,+ + δ
2 · 2γ/3

)
.

Since Eδs,M,+ ≤ Eδs,M ≤ δ/2 ≤ 1/2, this can be bounded by

exp

(
− δ2

12γ

)
We can perform the same estimate for δs,M,− and conclude

P(δs,M,− > δ) ≤ exp

(
− δ2

12γ

)
With the choice (4.48) of the ml, we can bound γ as in (4.49) such that we can conclude

P(δs,M > δ) ≤ 2 exp

(
− δ2

12γ

)
.
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If for all l ∈ {r0 + 1, . . . , r},

ml ≥ 12δ−2(Nl −Nl−1)

(
r∑

k=1

µl,ksk

)
log

(
2

η

)
,

then γ ≤ δ2 (12 log(2/η))−1 and

P(δs,M > δ) ≤ 2 · η
2

= η, (4.50)

which is what we needed to show.
The prerequisite (4.3) of the theorem ensures that (4.48) (with modified constants due to

changing the δ) and also (4.50) are fulfilled.

4.6 Discussion

We have shown that the proof idea of Haviv and Regev [HR16] can be adapted to the sparsity
in levels and multilevel sampling scenario from [LA19] and therefore obtained an improvement
for this by one log s factor for constant δ.

Furthermore, by adjusting Maurey’s empirical method in the proof to vectors whose sparsity
blocks have different ℓ2 norms, we were also able to improve the dependence of the result on
r in the sense that our result contains a log(s) + r factor instead of log(s) · r. In this way, if
r ≲ log(N), like it is the case for the important Fourier and Haar basis, we still obtain a bound
with three logarithmic factors that is independent of r. The original Fourier/Haar corollary in
[LA19] had five logarithmic factors such that our result even improves this by (log s)2.

Adcock and Li [LA19] conjecture in their work that the factor r in Theorem 4.6 is an artifact
of the proof and that one can prove a corresponding bound without the r dependence. We have
proven this to be true for the case that r ≲ log(N), but it is still open whether it also holds for
larger r.

The r dependence of our results originates from choosing the elements of the admissible
sequence Tn1+1, . . . , Tn1+⌈log2(r)⌉ = {0} in the proof. We needed this because our subsequent
construction of the sets Tn1+n requires n ≥ ⌈log2(r)⌉ for the definition of Rn,k (after equation
(4.18), the number of samples for Maurey’s empirical method in block k) to be integer. We
conjecture that the r dependence can be removed completely by choosing more precise approx-
imations on the part Tn1+1, . . . , Tn1+⌈log2(r)⌉ of the admissible sequence, possibly by applying a
version of Maurey’s empirical method with a suitable probability distribution.

For the classical subsampled Fourier matrix case, which corresponds to r = 1 and µ1,1 = 1
N ,

we obtain that the (s, δ)-RIP holds with high probability

m ≳ δ−2s

(
log

(
1

δ

)
log(N) log

(s
δ

)
log(s)

)
. (4.51)

As explained in step 4 of the proof outline Section 4.4.3, compared to [HR16] and [Bru+21],
we can improve one log s

δ factor (or log(L sδ ) if the entries of U are bounded by |Uj,k| ≤ L√
N

) to

log s. In Theorem 4.8, this means that, unlike it would have been the case for directly adapting
the other methods, the log s factor in the result neither depends on δ nor on the µl,k (like the
log ρ̃ factor does).

An important related open question is how (also for the RIPL, but especially for the classical
RIP) the remaining gap between the known lower bound [Bla+19] with two logarithmic factors
in N and s and the known guarantees with three logarithmic factors in N and s can be closed,
i.e., if the RIP can also be guaranteed with a requirement of the type m ≳ s log(N) log(s) for a
constant δ.

Although our method cannot answer this question, we can gain some further insights by
tracking how the vectors in the counterexample of [Bla+19] are controlled in our proof and
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which step is not optimal. In detail, [Bla+19] is based on the Hadamard transform H ∈ R2n×2n

as the Fourier transform on the group (and vector space) Fn2 , where F2 is the finite field with two
elements. Based on subspaces of this finite vector space, they construct a set of 2c log(N/s) log(s)

vectors x ∈ RN such that xj = 1√
s

for s indices j and xj = 0 for all other j, and such that

(Hx)j =
√

s
N for N

s entries j and (Hx)j = 0 for all other j. For all these vectors we will have
(Ax)j =

√
s
m for approximately m

s indices j ∈ [m] and (Ax)j = 0 for all other j ∈ [m].
Now we consider how these vectors are treated in the proof of Theorem 4.8 for r = 1, r0 = 0,

µ1,1 = 1
N . In this case we can check that γ = s

m in (4.17). Up to small random changes that
do not essentially influence the result, each set In in (4.26) is constructed such that it contains
the indices j ∈ [m] for which (Ax)j ∼ 2−

n
2
√
γ = 2−

n
2
√

s
m . So for the vectors x from the

counterexample described above, we would have (up to minor deviations) that I1 contains all
the non-zero entries of x, i.e., |I1| = m

s and In = ∅ for all larger n.
Now, one can check that the expression controlled in formula (4.34) is later on multiplied

by C
√

log(N) log(ρ) ∼
√

log(N) log(s/δ) and that this is what dominates the bound on Eδs,M.
For the configuration of the sets In described above, we can check that the application of the
Cauchy-Schwarz inequality from (4.35) to (4.36) is not sharp and creates an additional log2(s)
factor that in the end also appears in the final bound (4.51). This Cauchy-Schwarz step would
optimal in the case that ∥(Ax)In∥2 is equal for all 1 ≤ n ≤ ⌈log2(s)⌉. One would need to
investigate to what extent this is possible at all for bounded orthonormal matrices and sparse
vectors, and if and how such vectors and similar ones can be controlled more efficiently in the
generic chaining.
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Notation and Abbreviations

Notation Description Pages
2M power set of a set M 8
A† Moore-Penrose pseudoinverse of A 7
Br(x0) Open ball with radius r and center x0 8
IdN Identity matrix in RN 7
N(µ,Σ) Multivariate normal distribution with mean vector µ and covariance

matrix Σ
8

N(µ, σ2) Normal distribution with mean µ and variance σ2 8
Sc Complement of the set S 7
SN−1 ℓ2 unit sphere in CN (or RN ) 8
[N ] {1, 2, . . . , N} 7
Σs Set of s-sparse vectors in CN (or RN ) 8
B̄r(x0) Closed ball with radius r and center x0 8
γ2(T, d) γ2 functional 132
⌈·⌉ ceiling function 8
≲, ≳, ∼ Bounded from above, below, or both up to constant factor 8
⌊·⌋ floor function 8
N (T, d, u) covering number 16
aff(·) affine hull 109
cone(·) conic hull 109
conv(·) convex hull 109
⊗ Kronecker product 8
ReLU, ϕ rectified linear unit 85
σk(A) k-th singular value of A 7
σs(x)1 inf x̃∈Σs ∥x− x̃∥1 11
supp(x) Support of x 7
∥ · ∥0 ℓ0 “norm” of vectors, number of non-zero entries 8
∥ · ∥p ℓp norm of vectors, 1 ≤ p ≤ ∞ 7
∥ · ∥Lp Lp norm of random variable, 1 ≤ p ≤ ∞s 8
∥ · ∥ψ1 subexponential norm 15
∥ · ∥ψ2 subgaussian norm (of random variable or vector) 14, 15
xS Restriction of x to the indices in S 7
|S| Cardinality of the finite set S 7

BOS bounded orthonormal system 125

CPWL continuous piecewise linear 110

JLE Johnson-Lindenstrauss embedding 13

RIP restricted isometry property 10
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[Bou+05] Stéphane Boucheron et al. “Moment inequalities for functions of independent ran-
dom variables”. In: The Annals of Probability 33.2 (2005), pp. 514–560.

[Bou+11] Jean Bourgain et al. “Explicit constructions of RIP matrices and related problems”.
In: Duke Mathematical Journal 159.1 (2011), pp. 145–185.

[Bou14] Jean Bourgain. “An Improved Estimate in the Restricted Isometry Problem”. In:
Geometric Aspects of Functional Analysis. Springer, 2014, pp. 65–70.

[Bri+18] Björn Bringmann et al. “The homotopy method revisited: Computing solution
paths of ℓ1-regularized problems”. In: Mathematics of Computation 87.313 (2018),
pp. 2343–2364.

[Bru+21] Simone Brugiapaglia et al. “Sparse recovery in bounded Riesz systems with appli-
cations to numerical methods for PDEs”. In: Applied and Computational Harmonic
Analysis 53 (2021), pp. 231–269.

[BT87] Jean Bourgain and Lior Tzafriri. “Invertibility of ‘large’ submatrices with applica-
tions to the geometry of Banach spaces and harmonic analysis”. In: Israel Journal
of Mathematics 57.2 (1987), pp. 137–224.

[Car85] Bernd Carl. “Inequalities of Bernstein-Jackson-type and the degree of compactness
of operators in Banach spaces”. In: Annales de l’institut Fourier. Vol. 35. 3. 1985,
pp. 79–118.

160

https://arxiv.org/abs/2106.13349
https://arxiv.org/abs/2106.13345


[CCF02] Moses Charikar, Kevin Chen, and Martin Farach-Colton. “Finding Frequent Items
in Data Streams”. In: International Colloquium on Automata, Languages, and Pro-
gramming. Springer. 2002, pp. 693–703.

[CCG15] Yuxin Chen, Yuejie Chi, and Andrea J Goldsmith. “Exact and Stable Covariance
Estimation From Quadratic Sampling via Convex Programming”. In: IEEE Trans-
actions on Information Theory 61.7 (2015), pp. 4034–4059.

[CGV13] Mahdi Cheraghchi, Venkatesan Guruswami, and Ameya Velingker. “Restricted Iso-
metry of Fourier Matrices and List Decodability of Random Linear Codes”. In:
SIAM Journal on Computing 42.5 (2013), pp. 1888–1914.

[Che+18] Xiaohan Chen et al. “Theoretical Linear Convergence of Unfolded ISTA and Its
Practical Weights and Thresholds”. In: Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems. NIPS’18. Curran Associates
Inc., 2018, pp. 9079–9089.

[Che+22] Shengyi Chen et al. “Iterative 2D sparse signal reconstruction with masked residual
updates for automotive radar interference mitigation”. In: EURASIP Journal on
Advances in Signal Processing 2022.1 (2022), pp. 1–25.

[Chi+19] Benjamin Chidester et al. “Rotation equivariant and invariant neural networks for
microscopy image analysis”. In: Bioinformatics 35.14 (July 2019), pp. i530–i537.

[Chk+18] Abdellah Chkifa et al. “Polynomial approximation via compressed sensing of high-
dimensional functions on lower sets”. In: Mathematics of Computation 87.311 (2018),
pp. 1415–1450.

[CJ20] Ke Chen and Ruhui Jin. Nearly sharp structured sketching for constrained optimi-
zation. 2020. arXiv: 2010.09791.

[CR07] Emmanuel Candes and Justin Romberg. “Sparsity and incoherence in compressive
sampling”. In: Inverse problems 23.3 (2007), p. 969.

[CRT06] E J. Candès, J. Romberg, and T Tao. “Stable signal recovery from incomplete and
inaccurate measurements”. In: Comm. Pure Appl. Math. 59.8 (2006), pp. 1207–
1223.

[CT06] Emmanuel J. Candes and Terence Tao. “Near-Optimal Signal Recovery From Ran-
dom Projections: Universal Encoding Strategies?” In: IEEE Transactions on Infor-
mation Theory 52.12 (2006), pp. 5406–5425.

[Cyb89] G. Cybenko. “Approximation by Superpositions of a Sigmoidal Function”. In:
Mathematics of Control, Signals, and Systems 2 (1989), pp. 303–314.

[Dau92] Ingrid Daubechies. Ten Lectures on Wavelets. SIAM, 1992.

[DeV07] Ronald A DeVore. “Deterministic constructions of compressed sensing matrices”.
In: Journal of Complexity 23.4-6 (2007), pp. 918–925.

[DG03] Sanjoy Dasgupta and Anupam Gupta. “An elementary proof of a theorem of John-
son and Lindenstrauss”. In: Random Structures and Algorithms 22 (2003), pp. 60–
65.

[Dir16] Sjoerd Dirksen. “Dimensionality Reduction with Subgaussian Matrices: A Unified
Theory”. In: Foundations of Computational Mathematics 16.5 (2016), pp. 1367–
1396.

[Don06] D. L. Donoho. “Compressed sensing”. In: IEEE Transactions on Information The-
ory 52.4 (2006), pp. 1289–1306.

[Du+19] Simon S. Du et al. “Gradient Descent Provably Optimizes Over-parameterized Neu-
ral Networks”. In: 7th International Conference on Learning Representations, ICLR
2019, New Orleans, LA, USA, May 6-9, 2019. 2019.

161

https://arxiv.org/abs/2010.09791


[Dug+09] Charles Dugas et al. “Incorporating Functional Knowledge in Neural Networks.”
In: Journal of Machine Learning Research 10.6 (2009).

[EK12] Yonina C. Eldar and Gitta Kutyniok. Compressed Sensing: Theory and Applica-
tions. Cambridge University Press, 2012.

[FB03] Xiaoli Z Fern and Carla E Brodley. “Random projection for high dimensional data
clustering: A cluster ensemble approach”. In: Proceedings of the 20th International
Conference on Machine Learning (ICML-03). 2003, pp. 186–193.

[Fed96] Herbert Federer. Geometric Measure Theory. Classics in Mathematics. Springer,
Berlin, Heidelberg, 1996. isbn: 978-3-642-62010-2.

[FR13] Simon Foucart and Holger Rauhut. A Mathematical Introduction to Compressive
Sensing. Applied and Numerical Harmonic Analysis. Birkhäuser, 2013. isbn: 978-
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