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Abstract
Numerous engineering systems are characterized by nonlinearity and switching phenomena,
which pose great challenges to the analysis and control design. Considering the tremendous
existing approaches and methods in the control community to analyze and control linear
systems, it is natural to propose the concept to model switched systems or approximate
nonlinear systems with a set of linear systems, such that the existing approaches for linear
systems can also be applied to nonlinear and switched systems. Piecewise affine systems, as
a class of representative switched systems, are proposed to realize this concept because of
their universal approximation capability. This thesis focuses on the study of piecewise affine
systems and aims to explore their adaptive control with considerations of three practically
relevant constraints: limited excitations, performance constraints, and sensor constraints.

Under limited excitations, it is challenging to achieve the convergence of the estimated
parameters of the uncertain piecewise affine systems to their real values in the adaptive con-
trol. To tackle this challenge, a concurrent learning-based indirect adaptive control method
is developed, which exploits both the current data and the recorded history data to update
the control gains and estimated parameters. Given a relatively milder excitation condition of
the linear independence of the recorded data is satisfied, the control gains and the estimated
parameters converge to their nominal and real values.

Performance constraints on the system output or state are imposed when the real sys-
tems have operational boundaries or safety specifications. In the presence of performance
constraints, adaptive control approaches are developed for both output tracking and state
tracking tasks, respectively. The use of barrier function concept endows the approaches with
the feature that the tracking errors are confined within a prescribed performance bound. To
enhance the robustness of the proposed approaches against disturbances, we further present
projection-based modifications of the adaptation laws. Furthermore, for both output tracking
and state tracking cases, direct and indirect adaptive controllers are developed, respectively.
The direct adaptive control enjoys simple structure while the indirect adaptive control can
achieve parameter identification in addition to the trajectory tracking task.

For switched systems with sensor constraints, namely, whose states are not available for
feedback measurement, we investigate their adaptive control and adaptive observer, respec-
tively. The common difficulty of these two tasks lies in how to cope with the transient terms
caused after each switch, which depend on the unknown states at switching instants. An
output feedback-based adaptive control is developed for uncertain piecewise affine systems.
It treats the transient terms as disturbances and incorporates projection-based adaptation
laws to guarantee the closed-loop stability. As a result, the proposed adaptive control en-
forces the output of the piecewise affine system to track the output of a linear reference
system with the tracking error being small in the mean square sense. Besides, the conver-
gence analysis of the estimated control parameters is also provided. Moreover, an adaptive
observer is developed for uncertain switched systems. By exploiting the known information
contained in the transient terms as excitation sources, the proposed adaptive observer es-
timates the unknown state and parameters simultaneously with asymptotic convergence of
the estimation errors.
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Zusammenfassung

Zahlreiche technische Systeme sind durch Nichtlinearität und Schaltphänomene gekennze-
ichnet, die eine große Herausforderung für die Analyse und den Entwurf der Regelungen
darstellen. In Anbetracht der umfangreichen bestehenden Ansätze und Methoden zur Anal-
yse und Regelung linearer Systeme ist es naheliegend, das Konzept vorzuschlagen, mit einer
Reihe von linearen Systemen schaltende Systeme zu modellieren oder nichtlineare Systeme
anzunähern, so dass die bestehenden Ansätze für lineare Systeme auch auf nichtlineare und
schaltende Systeme angewendet werden können. Stückweise affine Systeme, als eine Art von
repräsentativen schaltenden Systemen, werden zur Umsetzung dieses Konzepts vorgeschla-
gen aufgrund ihrer universellen Approximationsfähigkeit. Diese Dissertation konzentriert
sich auf die Untersuchung von stückweisen affinen Systemen, mit dem Ziel, ihre adaptive
Regelung unter Berücksichtigung von drei praktisch relevanten Beschränkungen zu unter-
suchen: begrenzte Anregungen, Performancebeschränkungen und Sensorbeschränkungen.

Bei begrenzten Anregungen ist es eine Herausforderung, die Konvergenz der geschätzten
Parameter der stückweise affinen Systeme zu ihren realen Werten in der adaptiven Regelung
zu erreichen. Um diese Herausforderung zu bewältigen, wird eine auf Concurrent Learning
basierende indirekte adaptive Regelungsmethode entwickelt, das sowohl die aktuellen Daten
als auch die aufgenommenen historischen Daten zur Aktualisierung der Regelparameter und
geschätzten Systemparameter nutzt. Bei der Erfüllung einer relativ milderen Anregungs-
bedingung von der linearen Unabhängigkeit der aufgenommenen Daten konvergieren die
Regelparameter und die geschätzten Systemparameter zu ihren nominalen beziehungsweise
realen Werten.

Performancebeschränkungen für den Systemausgang oder -zustand werden auferlegt, wenn
die realen Systeme Betriebsgrenzen oder Sicherheitsspezifikationen haben. Bei Vorhanden-
sein von Performancebeschränkungen werden adaptive Steuerungsansätze sowohl für die
Ausgangsverfolgung als auch für die Zustandsverfolgung entwickelt. Die Verwendung des
Konzepts der Barrierefunktion verleiht den Ansätzen die Eigenschaft, dass die Verfolgungs-
fehler innerhalb einer vorgegebenen Performancegrenze begrenzt werden. Um die Robus-
theit der vorgeschlagenen Ansätze gegenüber Störungen zu verbessern, stellen wir außerdem
projektionsbasierte Modifikationen der Adaptionsgesetze. Außerdem werden jeweils für die
Ausgangsverfolgung und für die Zustandsverfolgung sowohl direkte als auch indirekte adap-
tive Regler entwickelt. Die direkte adaptive Regelung hat eine einfache Struktur, während
die indirekte adaptive Regelung neben der Verfolgung einer Referenztrajektorie auch eine
Parameteridentifikation durchführen kann.

Für schaltende Systeme mit Sensorbeschränkungen, d.h. deren Zustände nicht für eine
Rückkopplungsmessung zur Verfügung stehen, untersuchen wir ihren adaptiven Regelung
und adaptive Beobachter. Die Schwierigkeit dieser beiden Aufgaben liegt in der Behandlung
der Transienten, die nach jedem Schaltvorgang auftreten und von den unbekannten Zustän-
den zu den Schaltzeitpunkten abhängen. Eine auf Ausgangsrückkopplung basierende adap-
tive Regelung für stückweise affine Systeme mit Parameterunsicherheiten wird entwickelt.
Sie behandelt die Transienten als Störungen und beinhaltet projektionsbasierte Adaptionsge-
setze, um die Stabilität des geschlossenen Regelkreises zu gewährleisten. Die vorgeschlagene
adaptive Regelung erzwingt den Ausgang des stückweisen affinen Systems dem Ausgang eines
linearen Referenzsystems zu verfolgen, wobei der Verfolgungsfehler klein im Sinne des mit-
tleren Quadrats ist. Außerdem wird die Konvergenzanalyse der geschätzten Regelparameter
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durchgeführt. Darüber hinaus wird ein adaptiver Beobachter für schaltende Systeme mit Pa-
rameterunsicherheiten entwickelt. Durch Ausnutzung der bekannten Informationen enthal-
ten in den Transienten als Anregungsquellen schätzt der vorgeschlagene adaptive Beobachter
den unbekannten Zustand und die Parameter gleichzeitig mit asymptotischer Konvergenz der
Schätzfehler.
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Notation

Norms and Lp Spaces
|x| Euclidean norm of the vector x ∈ Rn with |x| = (∑n
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Introduction 1

In engineering practice, many systems are characterized by a mixture of continuous dynamics
and discrete modes. The switching among discrete modes governs how the continuous state
of the system evolves. Systems involving these two kinds of dynamics are called switched
systems [92]. Based on how the switching signals are generated, switched systems can be
categorized into two classes: state-dependent switched systems and time-dependent switched
systems. For state-dependent switched systems, the continuous state space is partitioned
into several operating regions by switching surfaces. A continuous differential equation is
assigned to each operating region to describe the local dynamics. Each local dynamics
can be viewed as a subsystem of the switched system. Whenever the state of the system
evolves across the switching surface, the switching of subsystem dynamics, or in other words,
operating modes is triggered. For time-dependent switched systems, the switching signals
are piecewise continuous functions of the time. In most literature, the switching signals of
time-dependent switched systems are treated as exogenous signals.

A representative example of state-dependent switched systems is the class of piecewise
linear (PWL) or piecewise affine (PWA) systems, which exhibit universal approximation
capability to approximate nonlinear systems. A PWL or PWA system can be obtained
by linearizing a nonlinear system at a set of operating points. The state space (in some
cases state-input space) of a PWL/PWA system is partitioned into convex polytopes with
each polytope containing one operating point. In each region, the PWL/PWA system is
governed by an associated linear subsystem dynamics. The hyperplanes, which determine
how the state space is partitioned into polytopes, characterize the switching mechanism of
the PWL/PWA system.

Since proposed by Sontag in the pioneering work [146], PWL/PWA systems have enjoyed
a wide range of engineering applications. In electronic circuits, they have been utilized to
model circuits with switching components such as DC-DC converters [59, 110, 111] as well
as those with nonlinear components such as tunnel diode circuits [130] and chaotic circuits
[36, 182]. Another favorable application field is manufacturing engineering where many
plants are mechanical systems with piecewise linear characteristics such as friction [165],
backlash [171], and saturation [74]. Closely related to these systems in the manufacturing,
many mechanical systems in the transportation are reported to be modelled as PWL/PWA
systems like automotive vehicles with nonlinear tire friction characteristics [21, 24], aerial
vehicles [30], and aircraft wing models with nonlinear aeroelasticity [176]. In robotics, PWA
approximation of contact dynamics around the nominal trajectory facilitates the realization
of complex dexterous manipulation [63] and planar non-prehensile manipulation tasks [66,
67]. Besides, the concept to linearize nonlinear systems at multiple operating points has
been widely adopted in chemical and biological systems including stirred tank reactors [44],
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1 Introduction

hormone therapy for diseases [148], and gene regulatory networks [10]. In addition to all
the above-mentioned physical models, researchers have exploited PWA systems to describe
social phenomena such as opinion dynamics [68, 147].

Early studies of PWA systems begin with their intrinsic properties including stability
analysis [53, 72, 73], controllability and observability [14, 29, 37], well-posedness [70], non-
Zenoness [28] and convergence analysis [124]. Based on the stability analysis of autonomous
PWA systems, the state feedback controllers are developed for the stabilization of nonau-
tonomous PWA systems [64, 129]. For PWA systems, whose states are not available, the
state estimator [75] and observer-based control synthesis are developed to fulfill regulation
tasks [130] and tracking tasks [158, 165], given that the trajectory to be tracked is also
generated by a reference PWA system. In cases where the trajectory is not generated by
a reference PWA system, tracking tasks are also explored with the optimization concept
(minimizing the tracking errors) such as the optimal control [24, 35] and model predictive
control [41]. The synthesis of the aforementioned controllers focuses on the ideal case, which
requires that the system parameters and region partitions are exactly known and the systems
are without disturbances. To enhance the utility of the developed methods, some practical
relevant factors are considered such as actuator and sensor faults [127], noisy measurements
[128], time-delay, data sampling and packet losses over communication networks [109, 132].
Moreover, in the presence of parameter uncertainties or external disturbances, robust opti-
mal control [78] and various control methods with H∞ performance are proposed [40, 52,
54, 189]. Nevertheless, when the uncertainties and disturbances are very large, the robust
controllers may not be able to stabilize the closed-loop systems.

To counter large uncertainties and disturbances, more recent works introduce the adap-
tation mechanism into PWA systems. One aspect is adaptive identification. Due to the
hybrid nature of PWA systems, both the switching hyperplane estimation and the subsys-
tem parameter identification need to be explored. Given offline data of the switched systems,
the simultaneous estimation of switching hyperplanes and subsystem parameters has been
studied in [45, 87, 159], to name a few. A more elaborated introduction can be seen in
[57] and [80, App.B]. Online estimation approaches to estimate the switching hyperplanes
and the subsystem parameters are respectively proposed in [81] and [79] assuming that the
counterpart is known. Recently, online identification approaches are developed in [23, 46,
113] to estimate the switching hyperplanes and subsystem parameters simultaneously.

Another aspect to cope with uncertainties lies in adaptive control. Typically, adaptive
control is divided into two groups: direct adaptive control and indirect adaptive control.
In direct adaptive control, the controller gains are adjusted without identifying the system
parameters while the controller gains of indirect adaptive control are updated based on the
parallelly conducted parameter estimation. The direct model reference adaptive control
(MRAC) approaches of PWL systems for state tracking and output tracking are reported in
[137] and [134], respectively. For PWA systems in control canonical form, a hybrid MRAC
approach based on minimal control synthesis is proposed for the continuous-time case [16]
and discrete-time case [19]. By assuming the existence of a common Lyapunov function,
the stability of the controlled PWA system in control canonical form without sliding mode
is guaranteed. This approach is extended in [18] such that the stability is ensured even
when the closed-loop system exhibits sliding mode. Moreover, the absence of the sliding
mode phenomenon is proved for the MRAC of a special class of PWA system, namely,
continuous bimodal PWA systems [17]. The work in [83] generalizes the MRAC approach
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1.1 Challenges and Research Goals

to multivariable PWA systems. In particular, the indirect MRAC approach, which is rarely
studied for PWA systems before, is also discussed. Given a reference signal, which satisfies
the persistence of excitation (PE) condition, both the tracking task and the estimation of
subsystem parameters of the PWA systems can be achieved. All these referenced MRAC
approaches are applied to PWL and PWA systems with known region partitions (known
switching signals) and unknown subsystem parameters. This is closely related to the MRAC
of switched linear systems with unknown subsystem parameters as their switching signals
are given externally and therefore also known. To enhance the robustness of the adaptive
switched linear systems against disturbances and time-delay, some robust MRAC approaches
have been proposed. These include robust MRAC with dead-zone [161] and leakage [174],
robust H∞ MRAC [166, 169, 170] as well as control approaches with asynchronous switching
between subsystems and controllers [167].

1.1 Challenges and Research Goals

Despite the above-referenced research progress, practical relevant constraints are not taken
into account in the existing adaptive control of PWA systems. As a control system has three
basic elements: the input, the state/output, and the feedback loop, we consider in this thesis
constraints imposed on each element, namely, limited excitations at the input, performance
constraints on the state/output, and sensor constraints on the feedback loop.

Limited Excitations

Most adaptive control tasks primarily aim to track a given state or output trajectory by
updating the controller gains. Although asymptotic tracking can be achieved without the
convergence of parameter estimation errors, studying the parameter convergence (conver-
gence of the controller gains or unknown system parameters to the nominal values) is still a
topic of major interest [150]. On the one hand, parameter convergence improves the transient
behavior of the closed-loop system. It is shown in [39, 118] that large parameter estimation
errors may result in bad transient behavior. On the other hand, parameter convergence facil-
itates the monitoring of the operation conditions of the plants. By observing the estimated
parameters, one can identify hazards such as component aging and actuator failures.

Despite these advantages, achieving parameter convergence in the adaptive systems re-
quires strong conditions. The PE assumption is a common condition for the parameter
convergence. With this assumption, existing results of adaptive estimation and control of
switched systems [83, 137, 173] achieve the parameter convergence. Nevertheless, the PE
condition requires that the input signals should contain different frequencies. This causes
oscillations and vibrations in the real engineering systems, which might be harmful to the
physical plants. This poses the challenge when the system is with limited excitations and
the PE condition is not satisfied. The question we would like to explore is as follows:

Question 1. Can we achieve parameter convergence for adaptive control of uncertain PWA
systems without the PE condition?
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Performance Constraints

Most of the existing adaptive control approaches can ensure asymptotic tracking, namely,
zero steady-state tracking error, whereas the transient behavior of the closed-loop systems
is not guaranteed. Large differences between the true parameters and the initial values of
the estimated ones may lead to aggressive transient behavior. One possible way to improve
the transient behavior is to manually tune the adaptation gains by trial and error. However,
tuning adaptation gains on the real systems with uncertainties is not always feasible for two
reasons. First, a lot of systems in practice have state or output constraints like physical or
operational boundaries, and saturation. Taking the above-mentioned examples of switched
systems for instance, an electrical machine has a maximum allowed rotation speed and its
coils have a maximum allowed current to avoid mechanical injuries and overheating. A
chemical reactor has a nominal volume to avoid the overflowing of the chemicals. Second,
some physical systems may have to interact with the environment, which induces certain
performance and safety constraints such as a collision-free specification for the trajectory
of an autonomous car or a service robot. As the exact system models are not available,
directly tuning adaptation gains on these systems may lead to violation of the performance
constraints, which further causes accidents, personal injuries or financial loss. Recently,
a lot of adaptive control methods satisfying some performance constraints on the output
tracking error have been proposed for non-switched systems [12, 13, 62, 69, 153]. How to
design adaptive controllers for uncertain switched systems and meanwhile satisfy the output
tracking performance constraints is still challenging. In light of this fact, the following
question is to be studied in this thesis:

Question 2. How to design adaptive controllers for uncertain PWA systems satisfying out-
put tracking performance constraints?

In some circumstances, constraints may not only be imposed to the output of a system,
but also the full state vector. This motivates us to further consider the following question:

Question 3. How to design adaptive controllers for uncertain PWA systems satisfying state
tracking performance constraints?

Sensor Constraints

The solution of many practical problems requires precise measurements of system states.
However, in engineering practice, the full state measurement requires the complex placement
of sensors, which is not always feasible because of physical constraints or limited budgets.
Due to such sensor constraints, we consider the situations where only the output signal is
available. Most of the existing adaptive control approaches for switched systems rely on the
full state feedback. In [134, 155, 156], the adaptive control methods for linear time-varying
systems with parameter jumps or PWL systems are proposed based on output feedback,
which guarantees small output tracking errors in the mean square sense. Nevertheless,
they cannot be applied to uncertain PWA systems due to the additional affine terms of
PWA systems when compared with those systems. Therefore, we would like to explore the
following question:

Question 4. How to design adaptive controller for uncertain PWA systems based on output
feedback?
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Figure 1.1: Thesis Outline

In addition to the adaptive control tasks, it is also of interest to explore the state obser-
vation tasks. To recover the state signals from the output signals, the state observers can
be applied. Nevertheless, the design of state observers requires exact knowledge of system
models. For systems with parameter uncertainties, it is a challenge to simultaneously esti-
mate unknown states and system parameters. The adaptive observer is the main method to
solve this problem [20, 71, 86, 108, 181]. Most existing adaptive observers focus on systems
with constant unknown parameters and cannot be applied to switched systems. This gives
rise to the following question:

Question 5. How to design adaptive observers for uncertain switched systems to simulta-
neously estimate the states and parameters?

In summary, the goal of this thesis is to study the adaptive control of uncertain PWA
systems with considerations of limited excitations, performance constraints, and sensor con-
straints.

1.2 Contributions and Thesis Outline
As show in Figure 1.1, we begin with the background information in Chapter 2 to introduce
the switched systems and the current research progress on adaptive control of these systems.
In Chapter 3, the indirect adaptive control for switched systems with parameter convergence
in spite of limited excitations is developed. The challenge of performance constraints is over-
come in Chapter 4 for the output tracking and Chapter 5 for the state tracking. In Chapter 6
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and Chapter A, the adaptive control and observation problems for switched systems subject
to sensor constraints are studied, respectively. The conclusion and possible future work are
given in Chapter 7. The contributions of each chapter are presented as follows.

Chapter 3: To achieve the parameter estimation under limited excitations, a concurrent
learning-based indirect MRAC approach for PWA systems is proposed. The underlying
concept is to exploit the current data and recorded history data concurrently to update
the estimated parameters. The main advantage of this approach is that the classical PE
assumption of the input signal is not required. In contrast, a relatively milder assumption
of the linear independence of the recorded history data suffices for the convergence of the
estimated parameters.

The content of this chapter has been published in [97].

Chapter 4: For uncertain PWA systems with output performance constraints, we develop
the prescribed performance adaptive output tracking control approaches. Both direct and
indirect adaptation approaches are studied. Given a desired output trajectory, both control
approaches ensure the output tracking error to be confined within a performance bound,
which prescribes the steady-state tracking error as well as the transient behavior such as the
decaying rate and the overshoot. Based on the common Lyapunov functions, the stability of
the controlled systems under arbitrary switching is established. Furthermore, the parameter
convergence for both direct and indirect approaches is proved under the PE condition. The
robust modifications of the adaptation laws are proposed for PWA systems with additive
disturbances.

The material presented in this chapter has been published in [100].

Chapter 5: While Chapter 4 studies systems with output constraints, this chapter con-
siders the MRAC for uncertain PWA systems with full state performance constraints. The
proposed direct and indirect approaches ensure the error metric, defined as the weighted Eu-
clidean norm of the state tracking error, to be confined within a user-defined time-varying
performance bound. For the indirect approach, the parameter convergence is achieved under
the PE condition. Moreover, for the uncertain PWA systems subject to unmatched distur-
bances, we propose the corresponding robust modifications of the adaptive controllers to
ensure the robustness of the closed-loop systems.

The contributions of this chapter have been published in [98] and [101].

Chapter 6: Unlike the systems in the previous chapters, where the full state information is
available, this chapter considers PWA systems with sensor constraints and only the output
signal is available for the measurement. A direct MRAC of PWA systems and its parameter
convergence are investigated. Under a slow switching assumption, it is shown that all the
closed-loop signals are bounded and the output tracking error is small in the mean square
sense. Built upon this result, the estimation error of controller parameters is proved to
converge to a residual set if the input signal is sufficiently rich. Finally, the convergence of
the estimated controller parameters to their nominal values can be achieved for a certain
subsystem given that this subsystem is activated for infinitely long time.

The content of this chapter has been published in [99].

Chapter A: In addition to the adaptive control approach with sensor constraints, an adap-
tive observer is proposed for switched systems to estimate the states and parameters simul-
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taneously. By applying the dynamic regression extension and mixing (DREM) technique,
the estimation errors of system states and parameters converge to zero asymptotically. Fur-
thermore, the robustness of the proposed adaptive observer is guaranteed in the presence of
disturbances and noise.

The contribution of this chapter is scheduled to appear in [102].
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Background on Switched Systems and
Adaptive Control 2

In this chapter, some important background knowledge for this thesis will be revisited. We
first introduce two typical switched systems: switched linear systems and piecewise affine
(PWA) systems in Section 2.1. The difference between these systems and their common
features will be discussed. Besides, the common tools for stability analysis of switched
systems will be depicted. Then, based on Section 2.1, we revisit in Section 2.2 the existing
adaptive control approaches for switched linear systems and PWA systems in three aspects:
tracking performance, parameter convergence, and robustness analysis. Finally, Section 2.3
provides a summary of the existing results.

2.1 Introduction to Switched Systems
In general, switched systems can be categorized into two groups: time-dependent switched
systems and state-dependent switched systems. In this section, typical examples of these
two groups will be respectively introduced: switched linear systems and PWA systems.

2.1.1 Switched Linear Systems
Suppose a switched linear system has s ∈ N+ subsystems. Each subsystem can be described
by the following dynamics

ẋ(t) = Aix(t) + Biu(t), i ∈ {1, 2, · · · , s} (2.1)

where x ∈ Rn is the state vector, u ∈ Rp represents the input signal of the system. Let I ≜
{1, 2, · · · , s}. The matrices Ai ∈ Rn×n, Bi ∈ Rn×p, i ∈ I represent the system parameters of
subsystem i. The overall dynamics of the switched linear system can be written as

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t). (2.2)

The switched system (2.2) has s subsystems and Aσ(t) ∈ Rn×n, Bσ(t) ∈ Rn×p denote the
switched system parameters with Aσ(t) ∈ {A1, A2, · · · , As}, Bσ(t) ∈ {B1, B2, · · · , Bs}. The
switching signal σ(t) : [0, ∞) → I is a piecewise constant function. It governs, which
subsystem is activated. Namely, for σ(t) = i, i ∈ I, we have Aσ(t) = Ai, Bσ(t) = Bi and we
say that i-th subsystem is activated at time t.

To characterize the switching instants, let the set of switching time instants represented
by {t1, t2, · · · , tk, · · · } for k ∈ N+ and the initial time instant denoted by t0.

Switched linear systems having exogenous switching signals σ(t) are typical time-dependent
switched systems. If the switching signal σ(t) is generated following a function of the state
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of the switched system, then the switched system is said to be state-dependent. This brings
us to the class of PWA systems.

2.1.2 Piecewise Affine Systems
The class of PWA systems belongs to state-dependent switched systems. A PWA system
can be obtained by linearizing a nonlinear system at multiple operating points. Consider
the nonlinear system

ẋ(t) = g(x(t), u(t)), (2.3)
where x ∈ Rn and u ∈ Rp represent the state and control input of the nonlinear system, g :
Rn+p → Rn denote a smooth nonlinear function. Given a set of operating points (x∗

i , u∗
i ), i ∈

I, the state-input space [xT , uT ]T ∈ Rn+p can be divided into s convex regions {Ωi}s
i=1. The

boundaries of the convex regions can be described by a set of hyperplanes in the state-input
space, which are analytically expressed by a set of inequalities

Ωi =
{ [

x
u

]
∈ Rn+p

∣∣∣∣Hi

x
u
1

 ⪯ 0
}

(2.4)

where a hyperplane is expressed by one row of Hi. The operator ⪯ represents < or ≤ in the
element-wise. Each region contains one operating point. For every time instant t, the vector
[xT (t), uT (t)]T can only belong to one region. The regions have no overlaps, i.e., Ωi ∩ Ωj = ∅
for i ̸= j and i, j ∈ I. The linearization of the nonlinear system around the i-th operating
point is given by

ẋ ≈ g(x∗
i , u∗

i ) + Ai(x − x∗
i ) + Bi(u − u∗

i ), (2.5)
where Ai = ∂g

∂x
|(x∗

i ,u∗
i ) and Bi = ∂g

∂u
|(x∗

i ,u∗
i ). The following PWL system can be obtained

by assuming zero equilibrium operating points g(x∗
i , u∗

i ) = 0 and prior knowledge of the
operating points (x∗

i , u∗
i )

ẋ ≈ Ai∆xi + Bi∆ui (2.6)
with ∆xi = x − x∗

i and ∆ui = u − u∗
i denoting the local state and input vector around the

i-th operating point. The PWA model can be derived by

ẋ ≈ g(x∗
i , u∗

i ) + Ai(x − x∗
i ) + Bi(u − u∗

i )
= Aix + Biu + g(x∗

i , u∗
i ) − Aix

∗
i − Biu

∗
i

= Aix + Biu + fi

(2.7)

with the affine term fi = g(x∗
i , u∗

i ) − Aix
∗
i − Biu

∗
i . Both PWL and PWA systems can

approximate the nonlinear systems given the same operating points and partitioning of the
state-input space. Comparing with PWL systems, PWA systems utilize the global state and
input by introducing the affine term fi. They allow nonzero g(x∗

i , u∗
i ) and do not require

that the operating points are known.
Defining the switching signal σ(t) : [0, ∞) → I, whose value depends on the state and

input vector
σ(t) = i, if [xT (t), uT (t)]T ∈ Ωi, (2.8)

we can write the overall dynamics of the PWL system as

ẋ(t) = Aσ(t)∆x(t) + Bσ(t)∆u(t) (2.9)
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and the one of the PWA system as

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) + fσ(t). (2.10)

Alternatively, the indicator function can be used to describe the switching behavior, which
characterizes in which region the state-input vector locates and is defined as follows

χi(t) =
1, if [xT (t), uT (t)]T ∈ Ωi

0, otherwise.
(2.11)

Since the regions {Ωi}s
i=1 have no overlaps, we have ∑s

i=1 χi = 1 and ∏s
i=1 χi = 0. Note that

the switching signal σ(t) and the indicator function χi(t) have the following relationship

σ(t) = i ⇐⇒ χi = 1, χj = 0, j ̸= i ⇐⇒ [xT (t), uT (t)]T ∈ Ωi. (2.12)

Thus, the PWL system can be written as

ẋ(t) = A(t)∆x(t) + B(t)∆u(t) (2.13)

while the PWA system can be written as

ẋ(t) = A(t)x(t) + B(t)u(t) + f(t) (2.14)

with A(t) = ∑s
i=1 χi(t)Ai, B(t) = ∑s

i=1 χi(t)Bi and f(t) = ∑s
i=1 χi(t)fi.

2.1.3 Stability of Switched Systems
Consider the unforced switched system

ẋ = Aσ(t)x, σ(t) ∈ I, (2.15)

with Ai, i ∈ I being Hurwitz. The following theorem of stability is given.

Theorem 2.1. [92] “If all systems in (2.15) share a radially unbounded common Lyapunov
function, then the switched system (2.15) is globally uniformly asymptotically stable.”

For the system (2.15), a widely used approach to construct a common Lyapunov function
(CLF) is to find some positive definite matrices P , Q such that

AT
i P + PAi = −Q, ∀i ∈ I. (2.16)

Then, a common quadratic Lyapunov function (CQLF) V (x) = xT Px can be constructed.
In general, finding the common P matrix satisfying (2.16) is a difficult task. Necessary and
sufficient conditions for the existence of the common P matrix for some special switched
systems including second order switched systems [143], switched systems consisting of two
stable subsystems [142, 144], and switched systems with a special parameterized family of
matrices [26] are reported. In addition to these theoretical advances, some numerical methods
are proposed such as algorithms based on the gradient iterations [93] and the particle swarm
optimisation [49].
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In case a CLF does not exist or cannot be found, one can use the multiple Lyapunov func-
tion (MLF) Vσ(t), namely, one Lyapunov function for each individual subsystem, to analyze
the stability of the switched systems. In general, the function Vσ(t) will be discontinuous
as Vi(x(tk)) = Vj(x(tk)), i ̸= j does not necessarily hold at the switching instant tk. For
i-th subsystem, Vi, i ∈ I decreases during the active phase of i-th subsystem while Vi may
increase during the inactive phase. A well-known result to analyze the stability of switched
systems using MLF is introduced in [92, Thm.3.1]. It shows that the switched system (2.15)
is globally asymptotically stable if the values of Vi, ∀i ∈ I at each switch-in instant of sub-
system i form a decreasing sequence, namely, Vi(x(tk)) < Vi(x(tq)) for σ(tk) = σ(tq) = i and
tk > tq. Nevertheless, as pointed out in [58], this result is not simple to apply due to the
nonsuccessive nature of the sequence. Therefore, we recall the following stability condition.

Theorem 2.2. [25, 172] “Let (2.15) be a finite family of globally asymptotically stable sys-
tems, and let Vi, i ∈ I be a family of corresponding radially unbounded Lyapunov functions.
Suppose that for every pair of switching instants (tk−1, tk) with σ(tk−1) = j and σ(tk) = i for
i, j ∈ I, i ̸= j, we have

Vj(x(tk−1)) − Vi(x(tk)) < 0. (2.17)

Then, the switched system (2.15) is globally asymptotically stable.”

A common choice of MLF for the autonomous switched system (2.15) is of quadratic form
V = xT Pσ(t)x. Under some dwell time constraints (e.g., see [65]), exponential convergence of
the state can be obtained based on a combination of finite incremental jumps at switching
instants (V (tk) ≤ µV (t−

k ) for µ > 1 and V (t−
k ) ≜ limτ↑tk

V (τ)) and exponential decaying
property (V̇ ≤ −λV for λ > 0) in between switches.

2.2 Adaptive Control of Switched Systems
In general, adaptive control can be divided into two categories: direct adaptive control and
indirect adaptive control. In direct adaptation, the controller gains are adapted directly with
the error information and the estimation of system dynamics is not required. Different from
the direct adaptive control, the controller gains are indirectly updated by using estimated
system parameters in the indirect adaptive case.

Depending on if the system to be controlled is linear or nonlinear, various adaptive con-
trol approaches have been developed. For linear systems, model reference adaptive control
(MRAC) has been extensively studied. The general idea of MRAC is to design an adap-
tive controller such that the closed-loop system behaves as a given reference system. For
nonlinear systems in certain canonical forms, the adaptive backstepping design is a popular
technique primarily for output tracking tasks. Namely, it is utilized such that the output of
the controlled system tracks the desired output trajectory.

As the subsystems of switched linear systems or PWA systems are linear, most of the ex-
isting adaptive control approaches for switched linear systems and PWA systems are based
on MRAC. Similar to the stability analysis of autonomous switched systems shown in Sec-
tion 2.1.3, current results of adaptive control of switched linear systems and PWA systems
are based on either CLFs or MLFs. Although switched linear systems and PWA systems
have different switching mechanisms, it is worth pointing out that most existing adaptive
control of switched linear systems and PWA systems share the same technical route. That is,
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the switching signals are assumed to be known and the reference switched systems are gov-
erned by the same switching signals, regardless of whether the switching is time-dependent
or state-dependent. Then each subsystem is assigned with a local controller, which is up-
dated and utilized when the corresponding subsystem is activated. Therefore, the switching
among different local controllers is also determined by the same switching signals of the
controlled switched systems. This section will revisit the representative results of these ap-
proaches. Furthermore, the results of the parameter convergence and robustness analysis, as
two essential issues in the area of adaptive control, will also be revisited.

2.2.1 Model Reference Adaptive Control
In this section, we first revisit the reference system design and stability analysis of the
reference system. Then, we review the representative results of direct and indirect MRAC
of switched systems based on CQLF, respectively.

Reference Model

The goal of the MRAC is to enforce the trajectory of the controlled system to track the
trajectory generated by a reference model. Consider a PWA reference system

ẋm(t) = Am(t)xm(t) + Bm(t)r(t) + fm(t), (2.18)

where xm ∈ Rn and r ∈ Rp denote the state of the reference system and the reference input.
Am(t) = ∑s

i=1 Amiχi(t), Bm(t) = ∑s
i=1 Bmiχi(t), fm(t) = ∑s

i=1 fmiχi(t) are the parameters
of the reference system.

For simplicity and without loss of generality, we assume that the switching of the reference
system is the same as the one of the controlled PWA system, namely, it shares the common
indicator function with the controlled PWA system. For time-dependent switched systems
like switched linear systems, this assumption can be easily verified as both the switching
signal of the reference switched linear system and the one of the controlled switched linear
system are given externally. For state-dependent switched systems such as PWA systems,
more explanations are needed. One may argue that if the switching of the reference PWA is
governed by the switching signal of the controlled system, which further depends on the state
of the controlled PWA system and cannot be determined in advance, then it is not possible
for the user to design the desired behavior with the reference system. In fact, assuming
the switching of the reference PWA system to be governed by the indicator function of the
controlled PWA is a simplification, which can be generalized to the case, where the switching
of the reference PWA system is governed by its own region partitions and is independent of
the switching of the controlled PWA system. A detailed explanation will be given in Section
5.2.4.

Assume each subsystem of the reference system is stable and thus there exists a symmetric
and positive definite matrix Pi ∈ Rn×n for a given symmetric and positive definite matrix
Qi ∈ Rn×n such that

AT
miPi + PiAmi = −Qi, ∀i ∈ I. (2.19)

The stability of the reference system and thus the boundedness of the reference state xm is
the prerequisite for the stability of the MRAC of the switched systems. According to [65], the
stability of (2.18) can be concluded by proving the exponential stability of its homogeneous
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part ẋm = ∑s
i=1 χiAmixm. For the quadratic Lyapunov function Vi = xT

mPixm for the i-th
homogeneous subsystem, there exist constants αmi, λmi > 0 such that ∥eAmit∥ ≤ amie−λmit.
Therefore, we have the following lemma.

Lemma 2.1. [137] “The reference system ẋ = Am(t)x is exponentially stable with decay
rate σ ∈ (0, 1

2α) if the dwell time TD = mink∈N+{tk − tk−1} satisfies

TD ≥ α

1 − 2σα
ln (1 + µ∆Am), µ = a2

m

λmβ
max
i∈I

∥Pi∥ (2.20)

where ∆Am = maxi,j∈I ∥Ai−Aj∥, α = maxi∈I λmax(Pi), β = mini∈I λmin(Pi), am = maxi∈I ami,
λm = maxi∈I λmi.”

For each subsystem, a set of controller gains is utilized. Let K∗
xi ∈ Rp×n, K∗

ri ∈ Rp×p, K∗
fi ∈

Rp, i ∈ I denote the nominal controller gains for the i-th subsystem of (2.14). The controller
gains and the system parameters switch synchronously. Therefore, the controller takes the
form

u(t) = K∗
xx(t) + K∗

r r(t) + K∗
f , (2.21)

where K∗
x(t) = ∑s

i=1 χi(t)K∗
xi, K∗

r (t) = ∑s
i=1 χi(t)K∗

ri, K∗
f (t) = ∑s

i=1 χi(t)K∗
fi. Taking (2.21)

into (2.14) yields the closed-loop system. To obtain a closed-loop system having the same
behavior as the reference system, an usual assumption is that following matching equations
hold:

Ami = Ai + BiK
∗
xi, Bmi = BiK

∗
ri, fmi = fi + BiK

∗
fi, ∀i ∈ I. (2.22)

As the parameters are unknown, the nominal gains are not available. The adaptive con-
trol design is based on certainty equivalence principle [150], namely, we use the estimated
parameters in the feedback control as if they are the real system parameters in the case of
uncertain or unknown system dynamics. Therefore, the adaptive controller takes the same
structure as in (2.21) but with the estimated parameters

u(t) = Kx(t)x(t) + Kr(t)r(t) + Kf (t), (2.23)

with
Kx(t) =

s∑
i=1

χiKxi(t), Kr(t) =
s∑

i=1
χiKri(t), Kf (t) =

s∑
i=1

χiKfi(t). (2.24)

where Kxi ∈ Rp×n, Kri ∈ Rp×p and Kfi ∈ Rp denote the estimated control gains for i-th
subsystem.

Direct Adaptive Control

Inserting (2.23) into the controlled PWA system (2.14) yields the closed-loop PWA system

ẋ =
s∑

i=1
χi((Ai + BiKxi)x + BiKrir + (BiKfi + fi)). (2.25)

Defining the state tracking error e(t) = x(t) − xm(t) and subtracting (2.18) from (2.25), we
have the error equation

ė = Ame +
s∑

i=1
χiBi(K̃xix + K̃rir + K̃fi), (2.26)
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where K̃xi = Kxi − K∗
xi, K̃ri = Kri − K∗

ri, K̃fi = Kfi − K∗
fi represent the estimation errors of

the controller gains. The adaptation laws of the estimated controller gains are given as

K̇xi = −χiΓxiS
T
i BT

miPiexT , K̇ri = −χiΓriS
T
i BT

miPierT , K̇fi = −χiΓfiS
T
i BT

miPie (2.27)

where Γxi, Γri, Γfi ∈ R+ are positive scaling factors. Si ∈ Rp×p is a matrix such that
there exists a symmetric and positive definite matrix Mi ∈ Rp×p with (K∗

riSi)−1 = Mi.
An usual assumption in multivariable adaptive control [150] is that Si is known. This
indicates the knowledge of control directions. The use of the indicator functions χi(t) in the
adaptation laws (2.27) implies that the controller gains associated with a certain subsystem
are updated only when this subsystem is activated. Their adaptation terminates and their
values stay unchanged during the inactive phase of the corresponding subsystem. Without
loss of generality, let Γxi = Γri = Γfi = 1. By constructing the following CQLF

V = 1
2eT Pe + 1

2

s∑
i=1

(tr(K̃T
xiMiK̃xi) + tr(K̃T

riMiK̃ri) + K̃T
fiMiK̃fi). (2.28)

with Msi = (K∗
riSi)−1 ∈ Rp×p, the stability and tracking performance of the closed-loop

system is summarized in the following theorem.

Theorem 2.3. [83] “Consider the reference system (2.18) for which a CQLF with P = Pi, ∀i
is known. Let the PWA system (2.14) with known regions Ωi be controlled by the state
feedback (2.23) with gains updated according to (2.27). Then, the state of the PWA system
asymptotically tracks the state of the reference system.”

Indirect Adaptive Control

The nominal control gains can be obtained by solving the matching equations (2.22) if all
the subsystem parameters Ai, Bi, fi are known and Bi has full column rank for i ∈ I

K∗
xi = B†

i (Ami − Ai), K∗
ri = B†

i Bmi, K∗
fi = B†

i (fmi − fi) (2.29)

with (·)† denoting the Moore-Penrose pseudoinverse.
The classical indirect adaptive control approach updates the control gains by replacing the

system parameters in (2.29) with the estimated parameters. This, however, may introduce
singularity by calculating B̂†

i (t) as B̂i(t) is time-varying and may have rank deficiency at some
t. To avoid this problem, the approach proposed in [83] applies the dynamic gain adjustment
technique. We review this approach as follows. Define the closed-loop estimation errors as

εAi = Âi + B̂iKxi − Ami, εBi = B̂iKri − Bmi, εfi = f̂i + B̂iKfi − fmi, (2.30)

where Âi, B̂i and f̂i denote the estimated system parameters of i-th mode. Based on the
closed-loop estimation errors, the adaptation of control gains obeys

K̇xi = −ST
i BT

miεAi, K̇ri = −ST
i BT

miεBi, K̇fi = −ST
i BT

miεfi. (2.31)

Let x̂ denote the predicted state and define its dynamics as

˙̂x = Amx̂ +
s∑

i=1
((Âi − Ami)x + B̂iu + f̂i)χi. (2.32)
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2 Background on Switched Systems and Adaptive Control

This together with (2.25) leads to

˙̃x = Amx̃ +
s∑

i=1
(Ãix + B̃iu + f̃i)χi, (2.33)

where x̃ = x̂−x denotes the prediction error of the system state. Ãi = Âi −Ai, B̃i = B̂i −Bi

and f̃i = f̂i − fi are parameter estimation errors. The parameter update laws based on the
closed-loop estimation errors and the state prediction error take the form

˙̂
Ai = −χiPx̃xT − εAi,
˙̂

Bi = −χiPx̃uT − εAiK
T
xi − εBiK

T
ri − εfiK

T
fi,

˙̂
fi = −χiPx̃ − εfi.

(2.34)

Consider the following CQLF

V =1
2 x̃T Px̃ + 1

2

s∑
i=1

(tr(ÃT
i Ãi) + tr(B̃T

i B̃i) + f̃T
i f̃i

+ tr(K̃T
xiMsiK̃xi) + tr(K̃T

riMsiK̃ri) + K̃T
fiMsiK̃fi).

(2.35)

The stability and tracking performance of the closed-loop system is summarized in the
following theorem.

Theorem 2.4. [83] “Consider a reference system (2.18) for which a CQLF with Pi = P , ∀i
is known. Let the PWA system (2.14) with known regions Ωi be controlled by the state
feedback (2.23) with gains updated according to (2.31), which is based on (2.32),(2.34), and
(2.30). Then, the state of the PWA system asymptotically tracks the state of the reference
system.”

Theorem 2.3 and Theorem 2.4 present results based on CQLFs (CLFs in quadratic form),
where the jumps of V at switching instants are avoided. Therefore, establishing V̇ ≤ 0 in
between switches is sufficient for the stability under arbitrary switching. For adaptive control
of switched systems in the absence of CLF, the general idea is to construct MLF. Compared
to CLF, the use of MLF allows more design freedom and flexibility, which leads to broader
applications. In adaptive control of switched systems with MLFs, the worst-case jumps at
switching instants are compensated by the exponential decrease in between switches. As V in
the adaptive control contains not only the tracking error, but also the parameter estimation
errors (in form of V = eT Pie + ∑

i θ̃i
T
θ̃i with θ̃i being parameter estimation errors for i-th

subsystem), establishing the exponential decrease in between switches (V̇ ≤ −λV + d for
λ, d > 0) requires extra conditions. In the sequel, some existing results of MLF-based direct
MRAC of switched systems with PE conditions and robust modifications will be revisited
in Section 2.2.2 and Section 2.2.3, respectively. For indirect MRAC of switched system, the
existing result in the literature must rely on the existence of a CLF, which will also be shown
in Section 2.2.2. In addition to establishing the exponential decrease of V , these conditions
ensure the robustness of the closed-loop systems in the presence of disturbances and the PE
condition will also lead to parameter convergence.
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2.2 Adaptive Control of Switched Systems

2.2.2 Parameter Convergence
First, we revisit some signal properties and a useful lemma, which are essential for the
parameter convergence analysis in the adaptive control.

Definition 2.1 (Persistence of Excitation (PE) [71]). “A piecewise continuous signal vector
z : R+ → Rn is PE with a level of excitation α0 if there exist constants α1, T0 > 0 such that

α1I ≥ 1
T0

∫ t+T0

t
z(τ)zT (τ)dτ ≥ α0I,

for ∀t ≥ 0.”

The idea behind the PE property is that some internal signals should contain rich frequency
components. A closely related property is sufficiently rich property [71, Def. 5.2.1], namely,
a signal u : R+ → R is called sufficiently rich of order 2n, if it contains at least n distinct
frequencies.

Lemma 2.2. [71] “Consider the system described by[
ẋ1
ẋ2

]
=

[
A −F T (t)

P1F (t)P2 0

] [
x1
x2

]
(2.36)

where x1 ∈ Rn1 , x2 ∈ Rrn1 for some integer r, n1 ≥ 1, A, P1, P2 are constant matrices and
F (t) is of the form

F (t) =


z1In1

z2In1
...

zrIn1

 ∈ Rrn1×n1

where zi, i = 1, 2, · · · , r are the elements of vector z ∈ Rr. Suppose that z is PE and there
exists a matrix P0 > 0 such that

Ṗ0 + AT P0 + P0A0 + C0C
T
0 ≤ 0 (2.37)

where
A0 =

[
A −F T (t)

P1F (t)P2 0

]
, CT

0 =
[
In1 , 0

]
.

Then the equilibrium x1e = 0, x2e = 0 of (2.36) is exponentially stable in the large. ”

For the parameter convergence of adaptive identification and control of switched systems,
it is a common approach to first study the parameter convergence of each subsystem during
the active phase and then evaluate the overall convergence for the whole time interval. If
the sufficiently rich input signal causes all the subsystems to be intermittently activated,
then the parameter convergence of all the subsystems can be concluded for some dwell time
constraints [83, 84, 137, 173].

For direct adaptive control, we rewrite the error equation (2.26) as

ė = Amie + ΨT
r ϑ̃i (2.38)
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2 Background on Switched Systems and Adaptive Control

with

ϑ̃i = vec(Bi[K̃xi K̃ri K̃fi]), Ψr =

x
r
1

 ⊗ In, (2.39)

where vec(·) denotes the vectorization of a matrix, ⊗ represents the kronecker product.
Therefore, (2.38) and the adaptation laws (2.27) can be written as the joint dynamics in a
similar form as (2.36) [

ė
˙̃ϑi

]
=

[
Am ΨT

r

−ΨrPi2 0

] [
e

ϑ̃i

]
, (2.40)

where Pi2 = BiM
−1
i BT

i Pi. If the signal vector [xT , rT , 1]T is PE, then one can invoke Lemma
2.2 to prove the exponential decrease of z = [eT , ϑ̃T

i ]T during each active phase of i-th
subsystem. This together with some dwell time constraint would lead to the stability of the
multiple Lyapunov function and the parameter convergence. A formal result is summarized
in the following theorem.
Theorem 2.5. [83] “Consider the reference system (2.18) without CQLF and let the PWA
system (2.14) with known regions Ωi be controlled by the state feedback (2.23) with gains
updated according to (2.27). Let the reference signals in r be sufficiently rich of order n + 1
with distinct frequencies. Furthermore, let the resulting switching signal be sufficiently slow
with dwell time TD and cause repeated activation of all subsystems. If the input matrices Bi

have full column rank, if the system matrices Ami are inertible, and if the pairs (Ami, Bmi)
are controllable, then all errors e, K̃xi, K̃ri, K̃fi asymptotically converge to zero for t → ∞.”

For indirect adaptive control, the prediction error equation (2.33) can be written in a more
compact form

˙̃x = Amix̃ + ΨT
u θ̃i (2.41)

where

θ̃i = vec([Ãi B̃i f̃i]), Ψu =

x
u
1

 ⊗ In. (2.42)

Based on (2.41), we can further write the joint dynamics of x̃ and the estimated parameters
as [ ˙̃x

˙̃θi

]
=

[
Am ΨT

u

−ΨuP 0

] [
x̃

θ̃i

]
+

[
0
εi

]
(2.43)

where εi = −vec([εAi, εAiK
T
xi + εBiK

T
ri + εfiK

T
fi]). The homogeneous part of (2.43) has the

same form as (2.36). Thus, invoking Lemma 2.2 leads to the convergence of x̃ and the
parameter estimation errors.
Theorem 2.6. [83] “Consider the reference system (2.18) for which a CQLF with Pi =
P , ∀i is known. Let the PWA system (2.14) with known regions Ωi be controlled by the
state feedback (2.23) with gains updated according to (2.31), which is based on (2.32),(2.34),
and (2.30). Let the reference signals in r be sufficiently rich of order n + 1 with distinct
frequencies and such that all subsystems are repeatedly activated. If the input matrices Bi

have full column rank, if the system matrices Ami are inertible, and if the pairs (Ami, Bmi)
are controllable, then the state of the PWA system asymptotically tracks the state of the
reference system and the estimated parameters Âi, B̂i, and f̂i as well as the estimated gains
Kxi, Kri and Kfi converge to their nominal values as t → ∞”.
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2.2 Adaptive Control of Switched Systems

Due to the presence of εi in (2.43), V decreases asymptotically and the exponential decrease
of V in between successive switches cannot be established. Therefore, dwell time constraints
cannot be obtained when V exhibits jumps at switching instants. As a result, the reviewed
indirect MRAC of PWA systems in Theorem 2.6, unlike the direct one shown in Theorem
2.5, can only be applied with the existence of CLFs. This restriction will be relaxed later in
Section 5.3 of this thesis.

2.2.3 Robust Modification
In this section, we revisit two robust modifications for the direct MRAC of switched systems:
projection and leakage.

Projection

We revisit the definition of the projection operator. Let θ = [θ1, θ2, · · · , θn]T ∈ Rn denote
the estimation of the nominal parameter θ∗ ∈ Rn. Define a convex hypercube in Rn such
that the evolution of θ should not exceed the bound of this hypercube. Specifically,

Ωθ = {θ ∈ Rn|θmin
j ≤ θj ≤ θmax

j , j = 1, 2, · · · , n}, (2.44)

where (θmin
j , θmax

j ) represent the lower and upper bounds of the j-th component of θ. Besides,
let Ωv = {θ ∈ Rn|θmin

j + v ≤ θj ≤ θmax
j − v, j = 1, 2, · · · , n} be a second hypercube

with a small constant v ∈ R+ such that Ωv ⊂ Ωθ. For the dynamics θ̇ = Pr[y] with
y = [y1, y2, · · · , yn] ∈ Rn we define the projection operator Pr[·] with the following element-
wise operation

Pr[y] =


((θj − θmin

j )/v)yj, if θj < θmin
j + v, yj < 0

((θmax
j − θj)/v)yj, if θj > θmax

j − v, yj > 0
yj, otherwise.

(2.45)

Based on (2.45) we obtain the following property of the projection operator

(θ − θ∗)T (Pr[y] − y) ≤ 0. (2.46)

This inequality can be extended to the matrix case with Θ, Y ∈ Rn×m. Let colj(·) represents
the j-th column of a matrix and Θ̇ = Pr[Y ] = [Pr[col1(Y )], · · · , Pr[colm(Y )]]. For a given
nominal parameter matrix Θ∗ ∈ Rn×m, we have

tr((Θ − Θ∗)T (Pr[Y ] − Y )) ≤ 0. (2.47)

Alternatively, we can formulate the projection operator Pr[y] = y + f , f ∈ Rn with the j-th
element of f , denoted by fj, being defined as follows

fj =


((θj − θmin

j − v)/v)yj, if θj < θmin
j + v, yj < 0

((θmax
j − θj − v)/v)yj, if θj > θmax

j − v, yj > 0
0, otherwise.

(2.48)

The projection operator presented above is widely used in robust adaptive control [6]. The
concept is to construct two hypercubes. The outer one is the hard constraint for θ while the
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2 Background on Switched Systems and Adaptive Control

inner one serves as a soft constraint. The parameter adaptation of θ does not change within
the inner hypercube whereas it terminates when reaching the outer hypercube. The area
between the inner hypercube and the outer one acts as a transition area, which enables a
continuous evolution of θ̇ to 0. Using hypercubes as bounds of the parameters corresponds
to the cases, where the element-wise upper and lower bounds of the parameters are known
prior. It is worth pointing out that the hypercube is not the only way to describe the bounds
of parameters. A more general discussion can be seen in [89, Sec.11.4].

For PWL systems with single-input, namely, p = 1 and Kri is scalar, Sang and Tao [137]
proposed the following projection-based adaptation laws

K̇xi = −χisign[K∗
ri]ΓxixeT PiBmi + χifxi,

K̇ri = −χisign[K∗
ri]ΓrireT PiBmi + χifri,

(2.49)

where fxi, fri are the parameter projection laws (see (2.48)). The term Kf in (2.23) is not
necessary as no affine term needs to be compensated in the PWL system. sign[·] denotes
the sign of a scalar. With am, λm, α, β, µ, ∆Am defined in Lemma 2.1, the stability result is
summarized as follows.

Theorem 2.7. [137] “Consider the closed-loop system consisting of the piecewise linear
system (2.13), the reference model system (2.18) with fm = 0, and the controller (2.23) with
Kf = 0 updated by the adaptive laws (2.49). If

TD = min
k∈N+

{tk − tk−1} ≥ τD = α(1 + κ) ln 1 + µ∆Am , κ > 0, (2.50)

then all the closed-loop signals are bounded, and the tracking error e(t) is small in the sense
that ∫ t+T

t
eT (τ)e(τ)dτ ≤ µ∆Amc0

T

TD

+ c1, t ≥ t0, T > 0 (2.51)

with c1 = (1 + µ∆Am)c0 for some c0 > 0.”

The tracking performance (2.51) is called small in the mean square sense (s.m.s.s). For
switched systems with disturbances, projection-based adaptation laws proposed in [166]
achieve H∞ state tracking of the closed-loop system.

Leakage

Consider the switched linear system in form of

ẋ(t) = Aσ(t)x(t) + Bσ(t)u(t) + d(t), σ(t) ∈ I (2.52)

with d(t) being a bounded disturbance term with the upper bound d̄. For the reference
switched linear system ẋm(t) = Amσ(t)x(t) + Bmσ(t)r(t) satisfying the following inequality

AT
miPi + PiAmi + (1 + κi)Pi ≤ 0, (2.53)

Yuan et al. proposed the following adaptive controller

u(t) = Kxσ(t)(t)x(t) + Krσ(t)(t)r(t) (2.54)
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2.3 Summary

with the dwell time constraint

TD > τD = 1
ξκi

ln µi, ξ ∈ (0, 1), (2.55)

for µi = α
λmin(Pi) and α = maxi∈I λmax(Pi). The adaptation laws based on leakage for the

active phase of i-th subsystem are

K̇xi = −ST
i BT

miPiexT − δiMiKxi, K̇xj = −δjMjKxj,
K̇ri = −ST

i BT
miPierT − δiMiKri, K̇rj = −δjMjKrj. j ̸= i, j ∈ I,

(2.56)

where the leakage rate δi fulfills the constraint

δi − max
i∈I

κiλmax(M−1
i ) ≥ 0 (2.57)

Theorem 2.8. [174] “With the adaptation law (2.56),(2.57) and the switching law with
mode-dependent dwell time (2.55), the globally uniformly ultimately bounded stability of the
unknown switched system (2.52) with controller (2.54) can be guaranteed. In addition, the
tracking error e is bounded as

|e(t)|2 ≤ 1
β2 max

{
c1,

α(c2 + α|d̄|2)
(1 − ξ) maxi∈I κi

}
(2.58)

where c1 and c2 are two positive constants that depend on the initial estimates and on the
actual values of the controller parameters.”

The well-known drawback of the leakage modification is that the adaptation laws tend to
drive the estimated parameters towards zero [71, Sec.8.4.1]. This problem persists in the
above adaptation laws (2.56) for switched systems. Built upon these adaptation laws, the
follow-up work [152] introduces novel adaptation laws, which keep the control gains in the
inactive phase constant. This alleviates the problem of the estimated parameters tending to
zero and improves the transient behavior of the closed-loop system.

In addition to projections and leakages, another common robust modification is the dead-
zone modification [71, Sec.8.4.3]. The underlying concept of dead-zone modification is ter-
minating parameter adaptations for small tracking errors while updating the parameters
for large tracking errors. In [161], a robust adaptive controller for switched linear systems
in canonical form is proposed based on the dead-zone modification, which guarantees the
uniform boundedness of the tracking error and the stability of the closed-loop system.

2.3 Summary
In this chapter, the definitions of switched linear systems and PWA systems as well as
their stability analysis are presented. Besides, representative adaptive control approaches
for switched systems in the literature are revisited, where the switching signals are assumed
to be known while the subsystem parameters are unknown. From these approaches, two
typical paradigms can be summarized (see Table 2.1). The first one relies on CLF, which
ensures the asymptotic stability of the closed-loop system under arbitrary switching. The
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2 Background on Switched Systems and Adaptive Control

method extra conditions convergence reference
non-adaptive CLF - e → 0 [92]
(autonomous) MLF + dwell time - e → 0 [65],[186]

CLF - e → 0 Theorem 2.3
adaptive MLF + dwell time projection s.m.s.s. Theorem 2.7
(direct) MLF + dwell time PE e → 0 [137], Theorem 2.5

MLF + dwell time leakage bounded e Theorem 2.8
adaptive CLF - x̃ → 0 Theorem 2.4
(indirect) MLF + dwell time according to [83] not feasible

Table 2.1: CLF and MLF for non-adaptive and adaptive control of switched systems.

other one exploits MLF. This paradigm allows instantaneous jumps of the Lyapunov function
at switching instants, which should be compensated by its exponential decrease in between
sufficiently slow switches. The exponential decrease can be ensured by either introducing PE
conditions or imposing robust modifications such as leakage and projection, which requires
more prior information. Moreover, the robust modifications can also ensure the robustness
of the closed-loop systems in the presence of disturbances. In the following chapters, these
two paradigms will be adopted in the adaptive control design to solve the questions raised
in Section 1.1.
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Adaptive Control of PWA Systems with
Concurrent Learning 3

As presented in Chapter 2, the existing results of the adaptive control of switched systems
can be categorized into direct adaptive control and indirect adaptive control approaches. In
direct MRAC, the controller gains are updated based on tracking errors without estimating
the system parameters. Considering the case, where the identification of the uncertain system
parameters is a part of the control objective, the indirect MRAC can be applied. In indirect
MRAC, the control gains are updated based on the estimated system parameters. With the
indirect adaptive control approach revisited in Section 2.2.1, the asymptotic convergence of
the tracking error is proved by using a CLF (see Theorem 2.4). Under the PE condition, all
the estimated subsystem parameters are proved to converge to the real values (see Theorem
2.6).

As pointed out in Section 1.1, the PE assumption requires the system input to contain
various frequencies. A common realization of this is to exert sinusoidal waves with differ-
ent frequencies on the system input. Such input signal causes oscillations and vibrations in
the real engineering systems, which might be harmful to the plants. Considering the cir-
cumstance, where the PE condition cannot be satisfied and only limited excitations can be
provided, how to achieve parameter convergence is a challenging task. A recently proposed
approach, concurrent learning [33, 34], exploits the recorded history data of the system and
replaces the restrictive PE condition with some mild assumption on the linear independence
of the recorded data. This technique has been applied to the identification of PWA systems
[46, 82, 84, 85] to achieve parameter convergence without PE conditions. Nevertheless, how
to integrate concurrent learning into the indirect MRAC of PWA systems is still open.

This Chapter enhances the indirect MRAC approach revisited in Section 2.2.1 by inte-
grating the concurrent learning technique to overcome the challenge of limited excitations.
Without requiring the PE condition, the proposed approach guarantees the convergence of
the subsystem parameters to their real values. Besides, the controller gains are converged to
the nominal values. Moreover, the closed-loop system is proved to be stable when the system
enters the sliding mode. Compared to the previous approach, the concurrent learning-based
approach exhibits better tracking performance and guarantees parameter convergence with-
out the PE condition.

The rest of this chapter is structured as follows. Section 3.1 defines the problem to be
solved in this chapter. The concurrent learning-based indirect MRAC is displayed in Section
3.2. The stability proof and convergence analysis are provided in Section 3.3. The proposed
method is validated through a numerical simulation in Section 3.4. The conclusion and
discussion of this chapter are followed in Section 3.5.
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3 Adaptive Control of PWA Systems with Concurrent Learning

3.1 Problem Formulation
In this chapter, we consider the PWA system

ẋ(t) = A(t)x(t) + B(t)u(t) + f(t), (3.1)

with known indicator function χi(t), i ∈ I and unknown parameters A(t) = ∑s
i=1 χi(t)Ai,

B(t) = ∑s
i=1 χi(t)Bi, and f(t) = ∑s

i=1 χi(t)fi for i ∈ I. x ∈ Rn and u ∈ Rp represent the
state and the control input of the PWA system. The reference PWA system is described by

ẋm(t) = Am(t)xm(t) + Bm(t)r(t) + fm(t) (3.2)

with Am = ∑s
i=1 Amiχi, Bm = ∑s

i=1 Bmiχi, fm = ∑s
i=1 fmiχi being known parameters of

the reference system. Let K∗
xi ∈ Rp×n, K∗

ri ∈ Rp×p, K∗
fi ∈ Rp, i ∈ I denote the nominal

controller gains for the i-th subsystem of (3.1). The nominal controller gains and the system
parameters switch synchronously. For the nominal controller

u(t) = K∗
x(t)x(t) + K∗

r (t)r(t) + K∗
f (t), (3.3)

where K∗
x(t) = ∑s

i=1 χi(t)K∗
xi, K∗

r (t) = ∑s
i=1 χi(t)K∗

ri, K∗
f (t) = ∑s

i=1 χi(t)K∗
fi, we assume

that the following matching equations hold

Ami = Ai + BiK
∗
xi, Bmi = BiK

∗
ri, fmi = fi + BiK

∗
fi, i ∈ I. (3.4)

As most existing results presented in Section 2.2, we assume here that the reference system
shares the same indicator functions χi as the controlled PWA system (3.1). Assume each
subsystem of the reference system is stable and thus there exists symmetric and positive
definite matrix P ∈ Rn×n for the given symmetric and positive definite matrix Qi ∈ Rn×n

such that
AT

miP + PAmi = −Qi, i ∈ I. (3.5)

The goal is to design the indirect adaptation laws for the adaptive controller

u(t) = Kx(t)x(t) + Kr(t)r(t) + Kf (t) (3.6)

with
Kx =

s∑
i=1

χiKxi, Kr =
s∑

i=1
χiKri, Kf =

s∑
i=1

χiKfi, (3.7)

where Kxi ∈ Rp×n, Kri ∈ Rp×r and Kfi ∈ Rp denote the control gains for i-th subsystem.
The problem we would like to solve in this chapter is formulated as follows:

Problem 3.1. Given a reference system (3.2) and a PWA system (3.1) with known state
space partitions Ωi (or equivalently, known indicator functions χi(t)) and unknown subsystem
parameters Ai, Bi and fi, design an adaptive control law u(t) such that the state x(t) of
the PWA system (3.1) tracks the state xm(t) of the reference system (3.2) and the system
parameters converge to their real values without the PE condition.
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3.2 Indirect Adaptive Control Design

3.2 Indirect Adaptive Control Design
In this section, we incorporate the concurrent learning technique to solve Problem 3.1. Before
we start, it is necessary to clarify the term “concurrent learning” as the word “learning” may
create a misleading impression of a machine learning process with a nonparametric model
such as Gaussian process. In fact, the problem we are studying is based on a parametric
system model (PWA model), and the term “concurrent learning” means the concurrent use
of current and recorded data for adaptation in the context of model-based adaptive control.

Our proposed concurrent learning-based approach combines the current data and recorded
history data for the estimation of the subsystem parameters

˙̂
Ai = ˙̂

AC
i + ˙̂

AR
i , ˙̂

Bi = ˙̂
BC

i + ˙̂
BR

i , ˙̂
fi = ˙̂

fC
i + ˙̂

fR
i (3.8)

with the superscript ‘C’ representing the parameter adaptation with the current data, while
the superscript ‘R’ means the adaptation with the recorded data.

The parameter update law based on the current data takes the form

˙̂
AC

i = −χiPx̃xT − εAi,
˙̂

BC
i = −χiPx̃uT − εAiK

T
xi − εBiK

T
ri − εfiK

T
fi,

˙̂
fC

i = −χiPx̃ − εfi,

(3.9)

where x̃ = x̂ − x denotes the prediction error of the system state and the predicted state x̂
is generated by the following dynamics

˙̂x = Amx̂ +
s∑

i=1
((Âi − Ami)x + B̂iu + f̂i)χi. (3.10)

εAi, εBi, εfi in (3.9) are closed-loop estimation errors with the same definition as those shown
in Section 2.2.1

εAi = Âi + B̂iKxi − Ami, εBi = B̂iKri − Bmi, εfi = f̂i + B̂iKfi − fmi. (3.11)

Based on the closed-loop estimation errors, the control gains adaptation obeys the following
adaptation laws

K̇xi = −ST
i BT

miεAi, K̇ri = −ST
i BT

miεBi, K̇fi = −ST
i BT

miεfi. (3.12)

Until now, the adaptation laws (3.9), (3.11), and (3.12) are the same as those of the
classical approach revisited in Section 2.2.1. Recall that the idea of concurrent learning is
to use the history data concurrently to update the estimated parameters. Suppose that
xij

, uij
, ẋij

represent the j-th recorded state, input and derivative of state of i-th subsystem
with j ∈ {1, 2, · · · , q}, where q ∈ N+ denotes the number of recorded data and q ≥ n + p + 1
holds. We make the following assumption.

Assumption 3.1. The information of the state derivative ẋ is available and precise such
that the equation ẋij

= Aixij
+ Biuij

+ fi, i ∈ I, j ∈ {1, 2, · · · , q} holds.
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We define εij
as

εij
(t) = Âi(t)xij

+ B̂i(t)uij
+ f̂i(t) − ẋij

(3.13)

and replace ẋij
based on Assumption 3.1 leading to

εij
(t) = (Âi(t) − Ai)xij

+ (B̂i(t) − Bi)uij
+ (f̂i(t) − fi)

= Ãi(t)xij
+ B̃i(t)uij

+ f̃i(t)
(3.14)

with Ãi = Âi − Ai, B̃i = B̂i − Bi and f̃i = f̂i − fi. We propose the following update law
based on the recorded data

˙̂
AR

i = −χiγ
q∑

j=1
εij

xT
ij

, ˙̂
BR

i = −χiγ
q∑

j=1
εij

uT
ij

, ˙̂
fR

i = −χiγ
q∑

j=1
εij

, (3.15)

where γ ∈ R+ is a positive scaling factor.

3.3 Stability and Parameter Convergence

Compared with the previous approach proposed in [83] (and revisited in Section 2.2.1), the
concurrent learning-based method of this chapter supplements the additional adaptation
terms (3.15), which depend on the recorded data. Now we proceed to explore, how the
modified adaptive law affects the control and parameter convergence. The state tracking
and parameter identification performance are summarized in the following theorem.

Theorem 3.1. Consider a reference system (3.2) with CQLF. The PWA system (3.1) with
known region partitions and unknown subsystem parameters is controlled by (3.6) with the
adaptation laws (3.8), (3.11) and (3.12) based on (3.9) and (3.15). Let the recorded data
stacks Zi ∈ R(n+p+1)×q contain n+p+1 linearly independent vectors zij

= [xT
ij

, uT
ij

, 1]T . If the
input matrices Bi have full column rank, the pairs (Ami, Bmi) are controllable, then the state
of the PWA system asymptotically tracks the reference state xm. Furthermore, the estimated
parameters Âi, B̂i, f̂i converge to their true values and the control gains Kxi, Kri, Kfi converge
to the nominal gains as t → ∞.

Proof. Consider the following candidate Lyapunov function

V =1
2 x̃T Px̃ + 1

2

s∑
i=1

(tr(ÃT
i Ãi) + tr(B̃T

i B̃i) + f̃T
i f̃i

+ tr(K̃T
xiMsiK̃xi) + tr(K̃T

riMsiK̃ri) + K̃T
fiMsiK̃fi)

(3.16)
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with Msi = (K∗
riSi)−1 ∈ Rp×p. Taking the time derivative of V yields

V̇ = 1
2(x̃T P ˙̃x + ˙̃xT Px̃)︸ ︷︷ ︸

≜V̇1

+
s∑

i=1
(tr(ÃT

i
˙̃AC
i ) + tr(B̃T

i
˙̃BC

i ) + f̃T
i

˙̃fC
i )︸ ︷︷ ︸

≜V̇2a

+
s∑

i=1
(tr(K̃T

xiMsi
˙̃Kxi) + tr(K̃T

riMsi
˙̃Kri) + K̃T

fiMsi
˙̃Kfi)︸ ︷︷ ︸

≜V̇2b

+
s∑

i=1
(tr(ÃT

i
˙̃AR
i ) + tr(B̃T

i
˙̃BR

i ) + f̃T
i

˙̃fR
i )︸ ︷︷ ︸

≜V̇3

.

(3.17)

Inserting the parameter update law based on current data (3.9), indirect update law of
control gains (3.12) and closed-loop estimation errors (3.11) into V̇1, V̇2a and V̇2b yields

V̇1 + V̇2a + V̇2b = − x̃T (1
2

s∑
i=1

Qmiχi)x̃ −
s∑

i=1
(tr(εT

AiεAi) + tr(εT
BiεBi) + tr(εT

fiεfi)). (3.18)

Detailed derivations of this step can be found in [83]. Substituting the ˙̃AR
i , ˙̃BR

i and ˙̃fR
i in

V̇3 with (3.15) gives

V̇3 = −
s∑

i=1
χiγ(tr(ÃT

i

q∑
j=1

εij
xT

ij
)

︸ ︷︷ ︸
≜V̇3ai

+ tr(B̃T
i

q∑
j=1

εij
uT

ij
)

︸ ︷︷ ︸
≜V̇3bi

+ tr(f̃T
i

q∑
j=1

εij︸ ︷︷ ︸
≜V̇3fi

)).
(3.19)

Inserting (3.14) into V̇3ai yields

V̇3ai = γtr(ÃT
i (Ãi

q∑
j=1

xij
xT

ij
+ B̃i

q∑
j=1

uij
xT

ij
+ f̃i

q∑
j=1

xT
ij

))

= γtr(ÃT
i

[
Ãi B̃i f̃i

] 
∑

j xij
xT

ij∑
j uij

xT
ij∑

j xT
ij


︸ ︷︷ ︸

≜ξ1i

).
(3.20)

Using the property of trace tr(XT Y ) = vec(X)T vec(Y ), (3.20) can be further transformed
as

V̇3ai = γvec(Ãi)T vec(
[
Ãi B̃i f̃i

]
ξ1i). (3.21)

Recalling the compatibility of vectorization with Kronecker product vec(ABC) = (CT ⊗
A)vec(B), it follows

V̇3ai = γvec(Ãi)T vec(In

[
Ãi B̃i f̃i

]
ξ1i)

= γvec(Ãi)T (ξT
1i ⊗ In)vec(

[
Ãi B̃i f̃i

]
).

(3.22)
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Similarly, we can obtain

V̇3bi = γvec(B̃i)T (ξT
2i ⊗ In)vec(

[
Ãi B̃i f̃i

]
) (3.23)

and
V̇3fi = γvec(f̃i)T (ξT

3i ⊗ In)vec(
[
Ãi B̃i f̃i

]
) (3.24)

with

ξ2i =


∑

j xij
uT

ij∑
j uij

uT
ij∑

j uT
ij

 , ξ3i =


∑

j xij∑
j uij∑
j 1

 . (3.25)

Summing up V̇3ai, V̇3bi and V̇3fi yields

V̇3ai + V̇3bi + V̇3fi

=γ[vec(Ãi)T vec(B̃i)T vec(f̃i)T ]

ξT
1i ⊗ In

ξT
2i ⊗ In

ξT
3i ⊗ In

 vec(
[
Ãi B̃i f̃i

]
))

=γvec(
[
Ãi B̃i f̃i

]
)T

ξT
1i ⊗ In

ξT
2i ⊗ In

ξT
3i ⊗ In

 vec(
[
Ãi B̃i f̃i

]
)

(3.26)

Note that ξT
1i ⊗ In

ξT
2i ⊗ In

ξT
3i ⊗ In

 =
∑

j

xij
xT

ij
xij

uT
ij

xij

uij
xT

ij
uij

uT
ij

uij

xT
ij

uT
ij

1

 ⊗ In

= (
∑

j

xij

uij

1

 [
xT

ij
uT

ij
1

]
) ⊗ In.

(3.27)

Therefore, we obtain
V̇3ai + V̇3bi + V̇3fi = γθ̃T

i Ξiθ̃i (3.28)
with

Ξi = (
q∑

j=1

xij

uij

1

 [
xT

ij
uT

ij
1

]
) ⊗ In, θ̃i = vec(

[
Ãi B̃i f̃i

]
). (3.29)

So the derivative of the candidate Lyapunov function becomes

V̇ = − x̃T (1
2

s∑
i=1

Qmiχi)x̃ − γ
s∑

i=1
χiθ̃

T
i Ξiθ̃i −

s∑
i=1

(tr(εT
AiεAi) + tr(εT

BiεBi) + tr(εT
fiεfi)). (3.30)

The linear independence of the n+p+1 vectors zij
implies the full rank of the data stack Zi,

from which it follows that ZiZ
T
i is positive definite. Since the identity matrix In is positive

definite, the Kronecker product Ξi = ZiZ
T
i ⊗ In is also positive definite, which together with

the positive definiteness of Qmi implies the negative semidefiniteness of V̇ .
An essential issue in analyzing the stability of the adaptive control of PWA systems is

that the closed-loop system may enter a sliding mode. Namely, both the vector fields of two
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neighbouring subsystems point towards the switching hyperplane and the trajectory of the
system cannot move across the regions. According to the Filippov concept [18, 56, 83], we
evaluate the convex combinations of the vector fields around the sliding surface. This can
be done by substituting χi ∈ {0, 1} with χ̄i ∈ [0, 1] in the expression of V̇ . Hence, we have

−x̃T (1
2

s∑
i=1

Qmiχ̄i)x̃ ≤ 0 (3.31)

and
−γ

s∑
i=1

χ̄iθ̃
T
i Ξiθ̃i ≤ 0, (3.32)

which leads to the negative semidefiniteness of V̇ even when the system enters sliding mode.
This indicates the boundedness of state prediction error x̃, estimated subsystem parameters
Âi, B̂i, f̂i (and equivalently θ̃i ∈ L∞) and control gains Kxi, Kri, Kfi. This further implies
εAi, εBi, εfi ∈ L∞. Moreover, from V̇ ≤ 0 it follows εAi, εBi, εfi ∈ L2 and θ̃i ∈ L2.

From the boundedness of x̃ and εAi, εBi, εfi ∈ L∞ ∩ L2, it follows x̃, εAi, εBi, εfi → 0 as
t → ∞, x, u ∈ L∞. Therefore, limt→∞(x − xm) = 0. The details of this derivation step is
referred to [83].

Furthermore, the recorded data xij
, uij

∈ L∞ due to the boundedness of x, u. This together
with θ̃i ∈ L∞ results in εij

∈ L∞. Considering (3.15) we have ˙̂
AR

i , ˙̂
BR

i , ˙̂
fR

i ∈ L∞. From (3.9)
we can obtain ˙̂

AC
i , ˙̂

BC
i , ˙̂

fC
i ∈ L∞. Therefore, let θ̂i = vec([Âi B̂i f̂i]) and it yields ˙̂

θi, ˙̃θi ∈ L∞,
which together with θ̃i ∈ L∞ ∩ L2 leads to θ̃i → 0 as t → ∞. Hence, Âi → Ai, B̂i → Bi and
f̂i → fi as t → ∞.

Finally, we study the convergence of the controller gains. Considering the full column
rank assumption of Bi and taking the convergence of Âi, B̂i, f̂i, εAi

, εBi and εfi into (3.11),
we can conclude that Kxi → K∗

xi, Kri → K∗
ri and Kfi → K∗

fi as t → ∞.

Remark 3.1. One condition to guarantee the convergence of the control and subsystem pa-
rameters is the linear independence of the sampled data vectors {zij

}q
j=1. Here we use the

singular value maximizing data recording algorithm proposed in [32] to maximize the sin-
gular value of the data stack Zi and obtain rich information. By doing so the condition of
linear independence can be fulfilled faster.

3.4 Numerical Validation
In this section, the proposed concurrent learning-based indirect MRAC approach is validated
through a numerical example.

We take the mass-spring-damper system from [83] to validate the proposed algorithm. The
system is shown in the Fig. 3.1, where m1 = 5 kg, m2 = 1 kg denote the masses, d = 1 N s/m
is the damping factor, p1, p2 represent the displacement of the two springs, F1, F2 are the
forces operated on the masses, respectively. The left mass is connected with the static wall
by a spring with static spring constant c0 = 1 N/m whereas the two masses are connected
with the right spring, which has a stiffness with a PWA characteristics

Fc(p1, p2) =


10 N/m, if |p2 − p1| ≤ 1 m
1 N/m, if p2 − p1 > 1 m
100 N/m, if p2 − p1 < −1 m

(3.33)
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m1 m2

c0 Fc(p1, p2)

d d

F1

p1

F2

p2

Figure 3.1: The coupled mass-spring-damper system

Defining the state vector x = [p1, ṗ1, p2, ṗ2]T and the input vector u = [F1, F2]T , the system
dynamics can be written as a PWA system in the state space form as (3.1) with

ẋ =


0 1 0 0

− c0+ci

m1
− 2d

m1
ci

m1
d

m1
0 0 0 1
ci

m2
d

m2
− ci

m2
− d

m2


︸ ︷︷ ︸

Ai

x +


0 0
1

m1
0

0 0
0 1

m2


︸ ︷︷ ︸

Bi

u + fi (3.34)

with the affine terms fi, i = {1, 2, 3} being

f1 =


0
0
0
0

 , f2 =


0

c1−c2
m1
0

c2−c1
m2

 , f3 =


0

c3−c1
m1
0

c1−c3
m2

 . (3.35)

The partitions of the regions are given by

Ω1 = {xT ∈ R4|HT
1 [x, 1]T ⪯ 0},

Ω2 = {xT ∈ R4|HT
2 [x, 1]T < 0},

Ω3 = {xT ∈ R4|HT
3 [x, 1]T < 0}.

with the switching hyperplanes

HT
1 =

[
−1 0 1 0 −1
1 0 −1 0 −1

]
,

HT
2 =

[
1 0 −1 0 1

]
,

HT
3 =

[
−1 0 1 0 1

]
.

The reference system is chosen as

ẋm =


0 1 0 0

−25 −10 0 0
0 0 0 1
0 0 −25 −10

 xm +


0 0
25 0
0 0
0 25

 r, (3.36)

which exhibits a decoupling motion of the two masses. The control goal of our approach is
to enforce dynamics of the controlled PWA system to track the trajectory of the reference
system and identify the uncertain subsystem parameters of the controlled PWA system.
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Figure 3.2: State tracking performance of indirect MRAC with and without concurrent learn-
ing

We use the reference signal r = [r1, r2]T , where r1 = 3sin(0.5t) and r2 is a periodic
rectangular wave switching among the values {−2, 0, 2} with time interval T = 30 s. The
scaling factor γ is specified to be 20. The same common P matrix is utilized as in [83].
Besides, the singular value maximizing data recording algorithm is utilized to manage the
data for concurrent learning.

Fig. 3.2 shows the state tracking performance of the indirect MRAC approach with and
without concurrent learning. ‘CL’ in the legends stands for ‘concurrent learning’. The black
dashed lines depict the states of the reference model. The red lines and blue lines show
the states of the controlled PWA system with and without concurrent learning, respectively.
No significant difference between the performance of the two approaches is observed for
the positions (x1 and x3). However, we can see that the red trajectories of the velocity
components (x2 and x4) exhibit fewer peaks compared to the corresponding blue lines. Hence,
using concurrent learning improves the state tracking performance of the controlled system.

In Figure 3.3, the norm of the parameter estimation errors θ̃i by using algorithms with
and without concurrent learning are displayed in red and blue lines, respectively. By using
concurrent learning, |θ̃i| converges to zero for ∀i ∈ {1, 2, 3}. Compared to the concurrent
learning-based approach, the classical approach exhibits unsatisfactory convergence perfor-
mance of the parameter estimation errors.

Fig. 3.4 displays the convergence of the controller gains of subsystem 2 (the controller
gains for other subsystems are similar and thus not shown because of clarity) by applying the
concurrent learning-based indirect MRAC approach. The dashed lines represent the nominal
gains and the solid lines stand for the adaptation gains. The elements in the gain matrices
are distinguished by different colors. We can see that the controller gains converge to their
nominal values, which validates the conclusion of Theorem 3.1.
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Figure 3.3: Parameter convergence of indirect MRAC with and without concurrent learning
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Figure 3.4: Convergence of controller gains with concurrent learning-based indirect MRAC

3.5 Summary
In this chapter, we proposed a concurrent learning-based indirect MRAC approach for un-
certain PWA systems. With the proposed approach, the controlled PWA system tracks the
trajectory of the reference system asymptotically. Based on the CQLF, the closed-loop sys-
tem is stable under arbitrary switching and in sliding mode. Furthermore, if the recorded
data of concurrent learning is linearly independent, the system parameters converge to their
real values and the control gains converge to the nominal gains, which eliminates the need
for the conventional PE condition.

Compared to the classical adaptive control approaches of switched linear systems and
piecewise affine systems, the advantage of our approach is that it enables the identification
of unknown system parameters without disturbing the primary control task due to its PE-
free feature. This advantage is essential in the case where the estimation or monitoring of
system parameters is required in addition to the nominal operation of a plant.
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3.5 Summary

The proposed approach is validated through a numerical simulation example, a coupled
mass-spring-damper system with piecewise linear spring characteristics. The simulation re-
sult validates an improvement in the state tracking and parameter estimation performance
when compared with the classical indirect adaptive controller revisited in Section 2.2.1. Al-
though the numerical example might appear simple, it models a large class of real plants in
the practice such as lateral vehicle dynamics with piecewise linear tire friction characteris-
tics [21, 24], two-inertia motor systems with backlash [171], and aircraft wing models with
nonlinear aeroelasticity [176]. This indicates the applicability of the proposed method in a
wide range of practical domains.

One limitation of the concurrent learning-based approach is that the state derivative is
required to be known. In real applications, the state derivative information can either be
obtained by placing extra sensors or be estimated by differentiating the state vector numeri-
cally at the expense of extra costs or estimation errors. Existing approaches to alleviate the
estimation errors of the state derivatives include the dynamic state-derivative estimator [76],
integral concurrent learning [123], and fixed point smoothing [80, Sec.5.2.1]. In future work,
it is of practical interest to further investigate the assumption of known state derivatives, as
recent results [119, 131] show that the need for the state derivatives can actually be removed
by incorporating filtering techniques. Applying the filtering techniques to our approach to
omit the assumption of known state derivatives deserves further studies.

Another limitation of the approach presented in this chapter is that it requires the existence
of the CLF, which might restrict the design flexibility of the reference system. However, we
will show later in Section 5.3 that such restriction can be lifted by constructing a special type
of MLF, which exploits barrier functions and exhibits only non-increasing jumps at switching
instants. This will inspire further research on the concurrent learning-based indirect MRAC
of PWA without the existence of the CLF, with which one will have more flexibility on the
design of the reference system and therefore, expand the scope of application scenarios.
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Adaptive Control of PWA Systems with
Output Performance Guarantees 4

Most of the MRAC approaches for PWA systems reviewed in Section 2.2 ensure asymptotic
tracking, namely, zero steady-state tracking error. However, the transient behavior of the
closed-loop system is not guaranteed and can only be improved by manually tuning the
adaptation gains or imposing additional PE conditions. As mentioned in Section 1.1, the
analysis and improvement of the transient behavior is an essential issue in adaptive control
[116], because an aggressive transient response may result in saturation, oscillation, or even
damage to the physical plants in real applications. In this chapter, we would like to explore
the adaptive control of PWA systems with the output tracking performance constraints on
the transient behavior and the steady-state tracking error.

Prescribed performance control, proposed in [12, 13], is a popular tool to guarantee the
element-wise performance of adaptive systems. With this approach, the steady-state track-
ing error and the transient response such as the decaying rate as well as the overshoot are
confined within a predefined bound. The core idea is to transform the ratio of the tracking
error and a performance function into an unbounded value, the so-called transformed error.
By designing the controller to ensure the boundedness of the transformed error, the origi-
nal tracking error is guaranteed to stay within the performance bound. This approach has
been incorporated into different areas such as multi-agent systems [38, 55, 106, 139], heli-
copter/satellite attitude control [187, 188], underwater vehicles [50] and robot manipulators
[77]. In addition to these applications, prescribed performance control has also been intro-
duced to the field of switched systems. For switched nonlinear systems in strict-feedback
form, the method proposed in [177] combines the prescribed performance control with dy-
namic surface control. The tracking performance satisfies the prescribed performance with
average dwell time constraints. The approaches reported in [90, 91] can also be applied
to switched nonlinear systems in nonstrict-feedback form. These methods are suitable for
systems with known input matrices and cannot be applied to the PWA systems with un-
known subsystem parameters. Besides, the parameter convergence, which is a topic of major
interest in the area of adaptive control [150], is not considered in these works.

The main contribution of this chapter lies in tackling the direct and indirect adaptive
output tracking control problem of uncertain PWA systems with performance constraints.
Specifically, we cast the dynamics of the transformed error metric into linear form, where the
nonlinearity and switching are captured as its exogenous input. Based on that, we construct
novel common Lyapunov functions, which do not rely on the solution of the conventional
Lyapunov equations shown in Chapter 2, and prove the closed-loop stability under arbitrary
switching. We further prove that the estimated controller and system parameters converge to
their nominal values under PE conditions. Moreover, a robust modification is developed for
the direct adaptation case to ensure the robustness of the closed-loop system in the presence
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of disturbances.
This chapter is structured as follows: in Section 4.1 the problem to be solved in this

chapter is defined. Some preliminaries of the prescribed performance technique is revisited
in Section 4.2. The design of nominal control is introduced in Section 4.3, which is followed
by direct adaptive control in Section 4.4 and indirect adaptive control in Section 4.5. A
robustness modification is presented in Section 4.6. The approaches are validated through
numerical examples in Section 4.7. Finally, the discussion and conclusion of this chapter is
given in Section 4.8.

4.1 Problem Formulation
In this chapter, we consider a special class of multi-input multi-output (MIMO) PWA system
with strict relative degree r ∈ N+ described as follows

x
(r)
1 =aT

1ix + bT
1iu + f1i

...
x(r)

p =aT
pix + bT

piu + fpi, i ∈ I
y =[x1, x2, · · · , xp]T

(4.1)

where
x

(r)
j = drxj

dtr
(4.2)

and x = [x1, · · · , x
(r−1)
1 , · · · , xp, · · · , x(r−1)

p ]T ∈ Rn denotes the overall state vector with
n = pr. u, y ∈ Rp represent the control input and system output, respectively. The output
y and its derivatives up to order r − 1 constitute the state vector x. They are available for
the control design. aji ∈ Rn, bji ∈ Rp, fji ∈ R, j = 1, · · · , p denote the system parameters of
i-th subsystem. We write system (4.1) into compact form and obtain

ẋ = Aix + Biu + fi, i ∈ I
y = Cx,

(4.3)

where Ai ∈ Rn×n, Bi ∈ Rn×p, C ∈ Rp×n and fi ∈ Rn denote the system parameters of i-
th subsystem. aji, bji, fji, j = 1, · · · , p, i ∈ I are contained in Ai, Bi, fi in the corresponding
positions, respectively and thus, Ai, Bi, C, fi are in control canonical form. Since a large class
of physical systems can be modeled [43, 176] and transformed [15] into canonical form, the
control design for PWA systems in canonical form is essential and attracts a lot of interests
such as [16, 18, 19]. In this chapter, we focus on the prescribed performance adaptive control
of MIMO PWA systems in control canonical form.

With the help of the indicator functions χi(t), we can rewrite the PWA system as
ẋ = A(t)x + B(t)u + f(t)
y = Cx,

(4.4)

where A(t) = ∑s
i=1 χiAi, B(t) = ∑s

i=1 χiBi and f(t) = ∑s
i=1 χifi. Since the system has strict

relative degree r, we have
CBi = CAiBi = · · · = CAr−2

i Bi = 0, CAr−1
i Bi ̸= 0

Cfi = CAifi = · · · = CAr−2
i fi = 0, CAr−1

i fi ̸= 0
(4.5)
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for i ∈ I, which leads to
y = Cx

ẏ = CAix

· · ·
y(r) = CAr

i x + CAr−1
i Biu + CAr−1

i fi.

(4.6)

In this chapter, the system input and output have the same dimension p and the system is
a square system. Nevertheless, this will not necessarily restrict our approach, since square
systems cover broad applications [138]. Some non-square systems can also be transformed
into square systems [61, 126].
Remark 4.1. The state x in PWA system (4.1) is continuous, also on the switching hyper-
planes. This leads to the continuity of y, ẏ, · · · , y(r−1) according to the definition of y (see
(4.1)). This in turn, implies CAi = CAj, · · · , CAr−1

i = CAr−1
j for ∀i, j ∈ I. If the PWA

system is not in control canonical form, this property does not hold and the output derivative
may exhibit jump behavior on the switching hyperplanes.

Recall that we would like to study the output tracking of the PWA system (4.3). We
assume that the reference signals yd ∈ Rp and its derivatives ẏd, · · · , y

(r)
d ∈ Rp are bounded

and continuous. To study the output tracking with prescribed performance, we first introduce
the performance function and study its properties in control systems.
Definition 4.1 (Performance function [13]). A smooth positive function ρ : R+ → R+ is
defined as the performance function if it is decreasing and satisfies limt→∞ ρ(t) = ρ∞ > 0.

A commonly used performance function is
ρ(t) = (ρ0 − ρ∞)e−lt + ρ∞ (4.7)

with ρ0, ρ∞, l ∈ R+ and ρ0 > ρ∞. We see that ρ(t) is decreasing with ρ(t = 0) = ρ0 and
ρ(t → ∞) = ρ∞.

Given the reference output yd and a vector performance function ρ(t) ∈ Rp, let e =
[e1, e2, · · · , ep]T ∈ Rp be the output tracking error e = y − yd, ρj(t) be the performance
function of the j-th component of ρ. The control objective that the tracking error is confined
within a prescribed performance bound can be expressed by the following inequalities

−δjρj(t) < ej(t) < ρj(t), if ej(0) > 0,
−ρj(t) < ej(t) < δjρj(t), if ej(0) < 0

(4.8)

for j = 1, · · · , p, for δj ∈ [0, 1] and ∀t > 0. The variable δj is introduced in (4.8) such that the
user could have more flexibility to design the performance bound. We take the case e(0) > 0
for instance. Fig. 4.1 shows the performance bounds and possible error transients with 3
different δ values (we remove the subscript j in the figure for simplicity). The performance
bounds are displayed by red lines and the tracking errors are presented by blue lines. As
illustrated in Fig. 4.1, the overshoot of e can be reduced by choosing smaller δj. If δj is set
to be 0, then the overshoot in the error transient behavior can be completely avoided.
Problem 4.1. Given a PWA system (4.3) with known subsystem partitions Ωi, unknown
subsystem parameters Ai, Bi, fi, design an adaptive control law u(t) to enforce the output
of the system y(t) to track the given reference signal yd(t) with prescribed error perfor-
mance (4.8). Besides, explore the conditions, under which the estimated gains or estimated
parameters converge to their nominal or real values.
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4 Adaptive Control of PWA Systems with Output Performance Guarantees

(a) δ = 1 (b) δ = 0.5

(c) δ = 0.1

Figure 4.1: Graphical representation of performance bounds with different δ values

4.2 Prescribed Performance Technique
The concept of prescribed performance control is to transform the constrained error (4.8)
into an unconstrained one, and thus the classical stability theory can be applied to design
the controller for the unconstrained transformed error. Let σj be the transformed error
and define ej = ρj(t)Gj(σj), where Gj(σj) is a smooth and strictly increasing function of
transformed error σj. Note that inequalities in (4.8) are equivalent to

−δj < Gj(σj) < 1, if ej(0) > 0,
−1 < Gj(σj) < δj, if ej(0) < 0,

(4.9)

so the strictly increasing function Gj(σj) needs to be designed such that (4.9) holds for
σj ∈ (−∞, +∞). We choose the following function as the most references suggested

Gj(σj) = exp(σj) − δjexp(−σj)
exp(σj) + exp(−σj)

, if ej(0) > 0,

Gj(σj) = δjexp(σj) − exp(−σj)
exp(σj) + exp(−σj)

, if ej(0) < 0.
(4.10)

The transformed error σj can thus be solved by

σj =
G−1

j ( ej(t)
ρj(t)) = 1

2 ln δj+Gj

1−Gj
, if ej(0) > 0,

G−1
j ( ej(t)

ρj(t)) = 1
2 ln 1+Gj

δj−Gj
, if ej(0) < 0,

(4.11)

from which we can see, if σj is bounded, then (4.9) holds, which further implies that (4.8)
holds. To relate the transformed error σj with the tracking error ej, we take for instance the
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4.2 Prescribed Performance Technique

time derivative of σj for ej(0) > 0 and it yields

σ̇j = q1
0,jej + q1

1,j ėj (4.12)

with

q1
0,j = − ρ̇j

2ρ2
j

δj + 1
(1 − ej

ρj
)(δj + ej

ρj
)

q1
1,j = 1

2ρj

δj + 1
(1 − ej

ρj
)(δj + ej

ρj
) ,

and similarly, the k-th derivative of σj is

σ
(k)
j =

k−1∑
l=0

qk
l,j(ρj, · · · , ρk−l

j )e(l)
i +

∂G−1
j

∂( ej

ρj
)

1
ρj

e
(k)
j (4.13)

where qk
l,j(ρj, · · · , ρk−l

j ) represents a term depends on ρj, · · · , ρ
(k−l)
j for some given k < r, k ∈

N+ and l = 1, 2, · · · , k − 1. Define the error metric Ej

Ej = σj +
r−1∑
k=1

λkσ
(k)
j , (4.14)

where λk ∈ R+ are parameters to be chosen, σ
(k)
j is the k-th derivative of σj. Ej is utilized

to describe the dynamics of the transformed error system. The derivative of Ej follows

Ėj =
r−1∑
k=0

r−1∑
l=k−1

λlq
l+1
k,j e

(k)
j + λr−1q

r
r,je

(r)
j (4.15)

with λ−1 = q0
0 = 0, λ0 = 1. We can write the vector form

Ė =
r−1∑
k=0

r−1∑
l=k−1

λlR
l+1
k e(k) + λr−1R

r
re

(r) (4.16)

with E = [E1, · · · , Ep]T ∈ Rp and

Rl
k =


ql

k,1 0
. . .

0 ql
k,p

 . (4.17)

Since ρ(t) and yd are known, each component of their derivative up to r-th order can be
calculated. The system state x is assumed to be available and thus y, ẏ, · · · , y(r−1) are also
available. Substituting e(r) in (4.16) with y(r) − y

(r)
d and inserting (4.6) yields

Ė =
r−1∑
k=0

r−1∑
l=k−1

λlR
l+1
k e(k) − λr−1R

r
ry

(r)
d︸ ︷︷ ︸

≜K

+λr−1R
r
rCArx

+ λr−1R
r
rCAr−1Bu + λr−1R

r
rCAr−1f .

(4.18)
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This step associates the system input u with the error metric E. If the control input u
is designed such that E is bounded, then the boundedness of σ

(k)
j are ensured for k =

1, · · · , r − 1, j = 1, · · · , p. This further implies the achievement of prescribed performance
described by the inequalities in (4.8).

For the purpose of clarity, we replace Rr
r with R and λr−1 with λ in the rest of this chapter

and express Ė as

Ė = K + λRCArx + λRCAr−1Bu + λRCAr−1f . (4.19)

4.3 Nominal Control
We start with the nominal control design, where the subsystem parameters and switching
hyperplanes are known exactly.

The following control law, which is suggested by the Lyapunov stability analysis (will be
shown in Theorem 4.1), is proposed

u = K∗
xx + K∗

r ξ + K∗
f , (4.20)

where
ξ = 1

λ
R−1E + 1

λ
R−1K (4.21)

and

K∗
x =

s∑
i=1

χiK
∗
xi = −

s∑
i=1

χi(CΨi)−1CΦi

K∗
r =

s∑
i=1

χiK
∗
ri = −

s∑
i=1

χi(CΨi)−1

K∗
f =

s∑
i=1

χiK
∗
fi = −

s∑
i=1

χi(CΨi)−1CΥi

(4.22)

are nominal controller gains with

Φi = Ar
i , Ψi = Ar−1

i Bi, Υi = Ar−1
i fi. (4.23)

Note that CΨi is assumed to be invertible for i ∈ I. The controller structure (4.20),
the definition of ξ (4.21) as well as the nominal controllers (4.22) are determined by the
Lyapunov-based stability analysis. The performance analysis of the proposed nominal control
law and the closed-loop stability are summarized in the following theorem.

Theorem 4.1. Given the reference signal yd and predefined performance function ρ, let
the PWA system (4.3) with known partition regions Ωi and known subsystem parameters
Ai, Bi, fi be controlled by the feedback controller (4.20). Let ρ be designed such that the
inequality (4.8) holds at initial time instant t = 0. The closed-loop system is stable and the
output tracking error satisfies the prescribed performance (4.8).

Proof. Substituting u in (4.19) with (4.20) and inserting (4.22), we obtain

Ė = K + λRCΦx + λRCΨu + λRCΥ = −E (4.24)
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where Φ = ∑s
i=1 χiΦi, Ψ = ∑s

i=1 χiΨi, Υ = ∑s
i=1 χiΥi. This means that the closed-loop

dynamics of E can be described by the homogeneous system Ė = −E by applying the
nominal controller (4.20). Define the following Lyapunov function

V = 1
2ET E. (4.25)

Taking the derivative along the trajectory (4.19) yields

V̇ = −ET E ≤ 0. (4.26)

From (4.26) it follows E ∈ L∞ and E → 0 as t → ∞. This further implies the boundedness
of σj, σ

(k)
j with σj, σ

(k)
j → 0 as t → ∞, ∀j = 1, · · · , p, which leads to y, y(k) ∈ L∞, k =

1, · · · , r − 1, and thus x ∈ L∞. From the definition of K and (4.21), we also have K ∈ L∞
and ξ ∈ L∞. From (4.11) and the boundedness of σj we can conclude that the tracking error
is within the performance bound, i.e., (4.8) holds.

Remark 4.2. Asymptotic tracking can be achieved under certain conditions. From Theorem
4.1 we have σj → 0. Given certain δj, limt→∞ Gj can be obtained by solving limt→∞ σj = 0
according to (4.11). If δj = 1, then we obtain Gj → 0 for t → ∞. Since Gj = ej

ρj
and ρj ̸= 0,

the j-th component of the tracking error ej → 0 as t → ∞.

Remark 4.3. The controller (4.20) shares the common structure as the controller of MRAC,
i.e., u = K∗

xx + K∗
r r + K∗

f (see (2.21)). The difference is that the reference signal r of the
MRAC is replaced by ξ in this context. Unlike the reference signal r, which is given as an
external signal in MRAC, ξ also contains internal signals. As shown by (4.21), ξ contains the
error metric E and output tracking errors as well as their higher-order derivatives (captured
by K). Therefore, its boundedness needs to be specially checked, as shown in the proof of
Theorem 4.1.

Remark 4.4. According to (4.14) we have that E depends on σj and its derivatives, which
in turn relates to the tracking error e and its derivatives. Since yd and its derivatives as well
as y, ẏ, · · · , y(r−1) are continuous (see Remark 4.1), E is also continuous even on switching
hyperplanes. Therefore, the Lyapunov function (4.25) is shared by all the subsystems and
it decreases independent of which subsystem is activated. This implies that the Lyapunov
function (4.25) is a CLF and the closed-loop stability can be concluded under arbitrary
switching.

The nominal control design provides the basis for the further design and analysis of adap-
tive control. In particular, the controller structure (4.20) as well as the expressions of the
nominal controller gains (4.22) are utilized in adaptive controllers, as will be shown in the
next sections.

4.4 Direct Adaptive Control Design
In this section, we introduce the direct prescribed performance adaptive control for PWA
systems and provide stability analysis as well as parameter convergence analysis.
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4 Adaptive Control of PWA Systems with Output Performance Guarantees

4.4.1 Controller Design
The adaptive control design is based on certainty equivalence principle [150], namely, we use
the estimated parameters in the feedback control as if they are the real system parameters
in the case of uncertain or unknown system dynamics. Therefore, the controller takes the
same structure as in (4.20) but with the estimated parameters

u = Kxx + Krξ + Kf (4.27)

where
Kx =

s∑
i=1

χiKxi, Kr =
s∑

i=1
χiKri, Kf =

s∑
i=1

χiKfi

are estimated controller gains. We propose the following adaptation law to update the
estimated controller gains

K̇xi = χiΓxiS
T
i RT ExT , K̇ri = χiΓriS

T
i RT EξT , K̇fi = χiΓfiS

T
i RT E, (4.28)

where Γxi, Γri, Γfi ∈ R+ are positive scaling factors. Define the estimation errors of the
controller gains as

K̃xi = Kxi − K∗
xi, K̃ri = Kri − K∗

ri, K̃fi = Kfi − K∗
fi. (4.29)

We insert (4.27) in (4.19) and obtain

Ė = K +
s∑

i=1
χi(λRCΦix + λRCΨiu + λRCΥi)

= K +
s∑

i=1
χi(λRCΦix + λRCΨiK

∗
xix

+ λRCΨiK̃xix + λRCΨiK
∗
riξ + λRCΨiK̃riξ

+ λRCΨiK
∗
fi + λRCΨiK̃fi + λRCΥi).

(4.30)

Inserting the nominal controller gains (4.22) yields

Ė = −E + λR
s∑

i=1
χiCΨi(K̃xix + K̃riξ + K̃fi). (4.31)

This equation describes the dynamics of the error metric E when the adaptive controller
(4.27) is utilized. The estimation errors of controller gains K̃x, K̃r, K̃f constitute the external
inputs of the dynamics. The state transition matrix of E is −I and thus is not affected by
switching.

4.4.2 Stability Analysis
We study the stability and the tracking performance of the closed-loop system. The result
is summarized in the following theorem.

Theorem 4.2. Given the reference signal yd(t) and predefined performance function ρ, let
the PWA system (4.3) with known partition regions Ωi and unknown subsystem parameters
be controlled by the feedback controller (4.27) with the update law (4.28). Let ρ be designed
such that the inequality (4.8) holds at initial time instant t = 0. The closed-loop system is
stable and the output tracking error satisfies the prescribed performance (4.8).
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Proof. We define the following Lyapunov function

V =ET E

2λ
+ 1

2

s∑
i=1

(Γ−1
xi tr(K̃T

xiMiK̃xi) + Γ−1
ri tr(K̃T

riMiK̃ri) + Γ−1
fi tr(K̃T

fiMiK̃fi)), (4.32)

where Mi = (K∗
riSi)−1 ∈ Rp×p. Taking the time derivative of V yields

V̇ =ET Ė

λ
+

s∑
i=1

(Γ−1
xi tr(K̃T

xiMi
˙̃Kxi) + Γ−1

ri tr(K̃T
riMi

˙̃Kri) + Γ−1
fi tr(K̃T

fiMi
˙̃Kfi)). (4.33)

We replace Ė in the first part of V̇ with (4.31) and obtain

ET Ė

λ
= −ET E

λ
+ ET RCΨ(K̃xx + K̃rξ + K̃f ), (4.34)

where K̃x = ∑s
i=1 χiK̃xi, K̃r = ∑s

i=1 χiK̃ri, K̃f = ∑s
i=1 χiK̃fi. Now we analyze the second

summand in V . Considering that

MiS
T
i = MiS

T
i (−CΨiK

∗
ri)T = −MiS

T
i K∗T

ri (CΨi)T = −MiM
−1
i (CΨi)T = −(CΨi)T , (4.35)

we have

Γ−1
xi tr(K̃T

xiMi
˙̃Kxi) = χitr(K̃T

xiMiS
T
i RT ExT )

= −χitr(K̃T
xiΨT

i CT RT ExT )
= −χitr(xET RCΨiK̃xi)
= −χitr(ET RCΨiK̃xix).

(4.36)

Because the term ET RCΨiK̃xx is a scalar, its trace is equal to itself. Thus,

Γ−1
xi tr(K̃T

xiMi
˙̃Kxi) = −χiE

T RCΨiK̃xix. (4.37)

Similarly, we obtain

Γ−1
ri tr(K̃T

riMi
˙̃Kri) = −χiE

T RCΨiK̃riξ,

Γ−1
fi tr(K̃T

fiMi
˙̃Kfi) = −χiE

T RCΨiK̃fi.
(4.38)

Inserting (4.34), (4.37) and (4.38) into (4.33) yields

V̇ = − 1
λ

ET E ≤ 0. (4.39)

The negative semidefiniteness of V̇ confirms the stability of the closed-loop adaptive system.
More precisely, E, K̃xi, K̃ri, K̃fi ∈ L∞. Considering E ∈ L∞, (4.11) and (4.14), we have
σ, σ(k), e, e(k) ∈ L∞, which further indicates y, y(k) ∈ L∞, k = 1, · · · , r − 1, and thus x ∈ L∞.

The boundedness of e(k) leads to Rl
k ∈ L∞ with k = 0, 1, · · · , r, l = 1, 2, · · · , r, from

which we can obtain K, ξ ∈ L∞ and hence, K̇xi, K̇ri, K̇fi ∈ L∞. The boundedness of
K̃xi, K̃ri, K̃fi, x, ξ gives u ∈ L∞ and Ė ∈ L∞. (4.39) also implies that E ∈ L2, which
together with E, Ė ∈ L∞ gives limt→∞ E → 0. This together with the boundedness of σj
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implies that the tracking error e is confined within the prescribed performance bound, i.e.,
(4.8) holds.

To analyse the stability in sliding mode, we follow the concept in Chapter 3 and observe
the derivative of V along the sliding mode solutions, which can be achieved by replacing
the indicator function χi ∈ {0, 1} with χ̄i ∈ [0, 1], where ∑s

i=1 χ̄i = 1. Specifically, the
transformed error dynamics (4.31) is convexified as

Ė = −E + λR
s∑

i=1
χ̄iCΨi(K̃xix + K̃riξ + K̃fi). (4.40)

Equation (4.40) holds due to the synchronous switching of the plant and the controller. As
a part of the closed-loop dynamics, the adaptation gains during the sliding motion are

K̇xi = χ̄iΓxiS
T
i RT ExT

K̇ri = χ̄iΓriS
T
i RT EξT

K̇fi = χ̄iΓfiS
T
i RT E.

(4.41)

Inserting (4.40) and (4.41) into V̇ , we still obtain the same expression as in (4.39), which
implies the stability of the controlled system also in sliding mode.

Remark 4.5. Theorem 4.2 shows that the tracking error stays within the prescribed per-
formance bound. Note that E, σ, σ(k) → 0, k = 1, · · · , r − 1 as t → ∞, the time limit
of the tracking error can thus be calculated by solving (4.11). Similar to Remark 4.2, for
δj = 1, j ∈ {1, · · · , p}, we have the solution limt→∞ ej(t) = 0.
Remark 4.6. Benefit from the property that the state transition matrix of E is independent
of the switching (as shown in (4.31)), the Lyapunov function (4.32) is a CLF. It ensures the
closed-loop stability under arbitrary switching. A similar concept to construct the CLF can
be found in the adaptive control for switched systems in Brunovsky form [4], where an error
metric is constructed based on the tracking error and its derivatives (see (11) in [4]). When
comparing to the approach in [4], the distinctive feature of our approach is that the error
metric E is expressed in terms of the transformed error σj and thus the transient behavior
evolves within the prescribed performance bound if E is bounded.
Remark 4.7. The stability analysis of classical MRAC of PWA systems revisited in Section
2.2.1 also relies on the CLF. It requires the existence and the knowledge of a common
Lyapunov matrix P such that the Lyapunov equation AT

miP + PAmi < 0 holds for all
the state matrices Ami of the reference PWA system. Differing from this requirement, the
construction of the CLF in this chapter only requires the continuity of the reference signal
and its derivatives, which is less restrictive. This advantage is obtained at the expense of
confining the applications to the output tracking of PWA systems in control canonical form.
Remark 4.8. Theorem 4.2 shows that the tracking error e satisfies the prescribed performance
condition, i.e., (4.8) holds. If the performance function is chosen as (4.7), the tracking error e
decays exponentially. In the classical direct MRAC of PWA systems, the PE condition of the
reference signals must be introduced to ensure the exponential decaying of tracking errors
in between switches (see Theorem 2 in [137] and Theorem 2 in [83]). Besides, the decaying
rate depends on the excitation level of the reference signals. Expressing it explicitly is not
straightforward (see (26), (27) in [83]). In contrast, the exponential decaying of the tracking
error in our approach does not require PE conditions and the decaying rate can be specified
directly in the performance function (4.7) by choosing the value of l.
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4.4.3 Parameter Convergence
Theorem 4.2 shows the boundedness of the controller gains Kxi, Kri, Kfi. In this section,
we discuss if the adaptive controller gains converge to the nominal gains under the classical
PE conditions. First of all, we explore if the signal vector z = [xT , ξT , 1]T is PE given a
sufficiently rich reference signal yd. This is summarized in the following lemma.

Lemma 4.1. Let the system (4.3) be controlled by the controller (4.27). If the closed-loop
system has E ∈ L∞, E → 0 for t → ∞, if the reference signal yd is sufficiently rich of order
r + 1, and if δj = 1, j = 1, · · · , p, then the vector z = [xT , ξT , 1]T is PE.

Proof. The signal vector z can be written as

z =

x
ξ
1

 =



yd

ẏd
...

y
(r−1)
d

ξ
1


+



e
ė
...

e(r−1)

0
0


=



yd

ẏd
...

y
(r−1)
d

−y
(r)
d

1


︸ ︷︷ ︸

≜ζ

+



e
ė
...

e(r−1)

ν
0


︸ ︷︷ ︸

≜ϵ′

with
ν = 1

λ
R−1E + 1

λ
R−1(

r−1∑
k=0

r−1∑
l=k−1

λlR
l+1
k e(k)). (4.42)

We have E ∈ L∞ and E → 0 for t → ∞. This results in e, e(k) ∈ L∞. From δj = 1, j =
1, · · · , p, it follows e, e(k) → 0, k = 1, · · · , r − 1 as t → ∞, which further leads to ν → 0 as
t → ∞. Therefore, ϵ′ ∈ L∞ and ϵ′ → 0 as t → ∞. In order to obtain the PE property of z,
it suffices to show the PE property of ζ [71, Lemma 4.8.3].

Writing ζ in the frequency domain related to yd yields

ζ(s) =
p∑

j=1



lj
slj
...

−srlj
0


︸ ︷︷ ︸

≜Hj

ydj(s) +



0
0
...
0
1


︸︷︷︸
≜Hf

1(s).
(4.43)

where ydj(s) is the j-th element of the reference signal yd. lj = colj(Ip) ∈ Rp is the j-th
column of the identity matrix Ip ∈ Rp×p. The auto-covariance of ζ is given by

Rζ(0) = 1
2π

∫ ∞

−∞
Hf (−ιω)S1(ω)HT

f (ιω)dω

+ 1
2π

p∑
j=1

∫ ∞

−∞
Hj(−ιω)Syj

(ω)HT
j (ιω)dω,

(4.44)

where ι is the imaginary unit (ι2 = −1), Syj(ω) and S1(ω) are the spectral distribution of
the j-th component of the desired output yd and the constant input 1, respectively. Given
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4 Adaptive Control of PWA Systems with Output Performance Guarantees

that yd is sufficiently rich of order r + 1, each of its element has r + 1 distinct peaks at
ωlj, l = 1, · · · , r + 1. Therefore, we have

Syj
(ω) =

r+1∑
l=1

fyj
(ωlj)δ(ω − ωlj), (4.45)

where fyj
(ωlj) is the l-th peak of ydj in the frequency domain and the constant 1 leads to a

single unit delta function at zero
S1(ω) = δ(ω). (4.46)

Inserting (4.45) and (4.46) into (4.44) yields

Rζ(0) = 1
2π

Hf (−ι0)HT
f (ι0)

+ 1
2π

p∑
j=1

r+1∑
l=1

fyj
(ωlj)Hj(−ιωlj)Hj(ιωlj).

(4.47)

To prove the PE property of ζ, it suffices to prove the positive definiteness of Rζ(0), namely,
the only solution of the equation

X T Rζ(0)X = 0 (4.48)
is X = 0n+p+1 for X ∈ Rn+p+1. Considering that each summand in (4.47) is positive
semidefinite, (4.48) can hold if and only if

HT
f (0)X = 0, HT

j (ιωlj)X = 0, (4.49)

for l = 1, 2, · · · , r + 1 and j = 1, · · · , p.
Suppose X = [Y , Z]T with Y = [Y1, · · · , Yn+p]T ∈ Rn+p and Z ∈ R. HT

f (0)X = 0
indicates Z = 0.

For a certain j ∈ {1, · · · , p}, HT
j (ιωlj)X = 0 with r + 1 distinct frequencies ωlj results in

1 ιω1j · · · (ιω1j)r−1 −(ιω1j)r

1 ιω2j · · · (ιω2j)r−1 −(ιω2j)r

... ... · · · ... ...
1 ιωr+1j · · · (ιωr+1j)r−1 −(ιωr+1j)r


︸ ︷︷ ︸

≜Hj


Yj

Yp+j
...

Yrp+j

 = 0.

Hj has full rank for ωhj ̸= ωlj with h, l ∈ {1, 2, · · · , r + 1}, which leads to

[Yj, Yp+j, · · · , Yrp+j]T = 0r+1, ∀j ∈ {1, · · · , p}. (4.50)

Note that rp = n, we have Y = 0n+p. Therefore, X T Rζ(0)X = 0 holds if and only if X = 0,
so Rζ(0) is positive definite, from which it follows ζ is PE and hence, z is also PE.

For the case, where the adaptive systems have to fulfill the desired tracking task yd, which
does not contain a sufficient amount of frequencies, the sufficiently rich condition can be
fulfilled by superposing some periodic signals with the required amount of frequencies and
small enough amplitudes upon the desired trajectory. By doing so, the sufficiently rich
condition can be fulfilled without significantly disturbing the primary tracking task.
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4.4 Direct Adaptive Control Design

Since a PWA system has multiple subsystems, the controller gains of all the subsystems
need to be estimated. To this end, we require that the reference signal yd to be sufficiently
rich and repeatedly activate all the subsystems as also suggested in other works of adaptive
switched systems [83, 84, 173]. The conclusion is depicted by the following theorem.

Theorem 4.3. Let the PWA system (4.3) with known partition regions Ωi and unknown
subsystem parameters be controlled by the feedback controller (4.27) with the update law
(4.28). Let ρ be designed such that the inequality (4.8) holds at initial time instant t = 0.
Let the reference signals yd be sufficiently rich of order r + 1 and cause repeated activation
of all subsystems. If the matrices CΨi are invertible, and δj = 1 for j = 1, · · · , p, then
K̃xi, K̃ri, K̃fi → 0 for t → ∞.

Proof. According to Theorem 4.2, the closed-loop system is stable under arbitrary switching.
For clarity we first study a single subsystem and suppose the i-th subsystem to be activated
during some time interval, i.e., χi(t) = 1. We rewrite Ė as

Ė = −E + λRCΨi(K̃xix + K̃riξ + K̃fi), (4.51)

which can be further simplified by using Kronecker product

Ė = −E + λRΞT θ̃i (4.52)

with

Ξ =

x
ξ
1

 ⊗ Ip, θ̃i = vec(CΨi[K̃xi K̃ri K̃fi]), (4.53)

where ⊗ denotes the Kronecker product, Ip ∈ Rp×p is an identity matrix, the operator vec(·)
represents the vectorization of a matrix.

Note that

˙̃θi = vec(CΨi[ ˙̃Kxi
˙̃Kri

˙̃Kfi])
= vec(CΨiS

T RT E[xT ξT 1])
= Ξ · vec(CΨiS

T RT E)
= −Ξ · WiR

T E,

(4.54)

where Wi = CΨiM
−1
i (CΨi)T . We write E and θ̃i in a form of a new dynamical system and

obtain [
Ė
˙̃θi

]
=

[
−Ip λRΞT

−ΞWiR
T 0

] [
E

θ̃i

]
. (4.55)

From Theorem 4.2 and δj = 1, j = 1, · · · , p we have ej(t) → 0. This leads to R → R∗ as
t → ∞, where R∗ ∈ Rp×p is some constant diagonal matrix. R∗ can be calculated by going
through the derivation shown in Section 4.2. Let r∗

j denote j-th diagonal element of R∗ and
we have

r∗
j = 1

2ρj(t)
δj + 1

(1 − ej(t)
ρj(t))(δj + ej(t)

ρj(t))

∣∣∣∣∣∣
t→∞

= 1
ρ∞j

(4.56)
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with ρ∞j = ρj(t → ∞) being the predefined static bound of j-th error component. For
R = R∗ we have the dynamical system[

Ė
˙̃θi

]
=

[
−Ip λR∗ΞT

−ΞWiR
∗T 0

] [
E

θ̃i

]
, (4.57)

which has the same structure as the one of Lemma 2.2. Applying this lemma with the
PE property of z (obtained by invoking Lemma 4.1) we have that E → 0 and θ̃i → 0
exponentially for system (4.57), which together with R → R∗ implies that E → 0 and
θ̃i → 0 as t → ∞ for (4.55). Note that the exponential convergence property of [E, θ̃i]
in (4.57) is not retained in (4.55) due to the time varying R. So [E, θ̃i] converges towards
zero asymptotically during the inverval, when i-th subsystem is activated. Since all the
subsystems are activated repeatedly, we have θ̃i → 0, ∀i ∈ I as t → ∞.

The convergence of K̃xi, K̃ri, K̃fi cannot be directly concluded from the convergence of θ̃i.
Further steps of analysis are needed. Note that

θ̃i = vec(CΨi[Kxi − K∗
xi Kri − K∗

ri Kfi − K∗
fi])

= vec([CΨiKxi − CΦi CΨiKri − Ip CΨiKfi − CΥi]),

Since CΨi are invertible, θ̃i → 0 implies Kxi → (CΨi)−1CΦi = K∗
xi, Kri → (CΨi)−1 = K∗

ri,
and Kfi → (CΨi)−1CΥi = K∗

fi. Hence, K̃xi, K̃ri, K̃fi → 0 as t → ∞.

4.5 Indirect Adaptive Control Design
If the estimation of the system parameters is also a part of the control objective, the indirect
adaptation can be applied.

4.5.1 Controller Design
The indirect adaptive control use the same control structure as (4.27). The concept of
indirect adaptation suggests the following update law

Kxi = −(CΨ̂i)−1CΦ̂i, Kri = −(CΨ̂i)−1, Kfi = −(CΨ̂i)−1CΥ̂i (4.58)

where Φ̂i, Ψ̂i, Υ̂i denote the estimated i-th subsystem parameters. The main difficulty by
using this method is the singularity of (CΨ̂i)−1, which is also known as loss of controllability
issue. Since Ψ̂i is updated by some adaptation law, it cannot be ruled out that the smallest
singular value of CΨ̂i may go across zero or become some small value around zero, which
leads to unbounded controller gains.

To solve this singularity problem, we use the dynamic gain adjustment technique revisited
in Section 2.2.1. This concept is originally introduced by [48] and extended to MRAC
of PWA systems in [83]. We extend this method to the context of adaptive control of
PWA systems with prescribed performance. Specifically, the dynamic gain adjustment in
MRAC starts with defining the closed-loop estimation errors, which capture the matching
errors between the reference system and the controlled closed-loop system with estimated
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4.5 Indirect Adaptive Control Design

parameters. Unlike the MRAC, there exists no reference system in our context and thus we
propose the following novel closed-loop estimation errors

εΦi = CΦ̂i + CΨ̂iKxi, εΨi = CΨ̂iKri + Ip, εfi = CΥ̂i + CΨ̂iKfi. (4.59)
These closed-loop estimation errors are obtained by multiplying both sides of (4.58) with
CΨ̂i and taking the difference between the left and right-hand sides. The controller gains
are updated by using the closed-loop estimation errors

K̇xi = χiΓxiS
T
i RT ExT + ΓxiS

T
i εΦi

K̇ri = χiΓriS
T
i RT EξT + ΓriS

T
i εΨi

K̇fi = χiΓfiS
T
i RT E + ΓfiS

T
i εfi

(4.60)

and the estimated system parameters are updated by
Φ̇i = −ΓΦiC

T εΦi

Ψ̇i = −ΓΨi(CT εΦiK
T
xi + CT εΨiK

T
ri + CT εfiK

T
fi)

Υ̇i = −ΓΥiC
T εfi

(4.61)

with ΓΦi, ΓΨi, ΓΥi ∈ R+ being positive scaling factors. The update laws (4.60) and (4.61) are
derived based on the stability analysis. We can see from (4.60) and (4.61) that the inverse
calculation shown in (4.58) is avoided through the utilization of closed-loop estimation errors.

4.5.2 Stability Analysis
The stability of the closed-loop system by using the indirect adaptive laws is summarized in
the following theorem.
Theorem 4.4. Given the reference signal yd and predefined performance function ρ, let the
PWA system (4.3) with known partition regions Ωi and unknown subsystem parameters be
controlled by the feedback controller (4.27) with the update laws (4.59), (4.60) and (4.61). Let
ρ be designed such that the inequality (4.8) holds at initial time instant t = 0. The closed-loop
system is stable and the output tracking error satisfies the prescribed performance (4.8).
Proof. For clarity and without loss of generality, we let the scaling factors in (4.59) and
(4.60) be 1 and propose the Lyapunov function

V =ET E

2λ
+ 1

2

s∑
i=1

(tr(Φ̃T
i Φ̃i) + tr(Ψ̃T

i Ψ̃i) + tr(Υ̃T
i Υ̃i))

+ tr(K̃T
xiMiK̃xi) + tr(K̃T

riMiK̃ri) + tr(K̃T
fiMiK̃fi)).

(4.62)

where
Φ̃i = Φ̂i − Φi, Ψ̃i = Ψ̂i − Ψi, Υ̃i = Υ̂i − Υ. (4.63)

Taking the derivative yields

V̇ = ET Ė

λ︸ ︷︷ ︸
≜V̇1

+
s∑

i=1
(tr(Φ̃T

i
˙̃Φi) + tr(Ψ̃T

i
˙̃Ψi) + tr(Υ̃T

i
˙̃Υi)︸ ︷︷ ︸

≜V̇2i

+ tr(K̃T
xiMi

˙̃Kxi) + tr(K̃T
riMi

˙̃Kri) + tr(K̃T
fiMi

˙̃Kfi)︸ ︷︷ ︸
≜V̇3i

).
(4.64)
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Replacing Ė with (4.31) we have

V̇1 = ET Ė

λ
= −ET E

λ
+ ET RCΨ(K̃xx + K̃rξ + K̃f ). (4.65)

After inserting (4.60) into V̇3i, we observe the first summand in V̇3i

tr(K̃T
xiMi

˙̃Kxi) = tr(K̃T
xiMiS

T
i εΦi) + χitr(K̃T

xiMiS
T
i RT ExT ). (4.66)

We insert (4.35), transform the second summand of (4.66) according to (4.36) and obtain

tr(K̃T
xiMi

˙̃Kxi) = tr(K̃T
xiMiS

T
i εΦi) + χitr(K̃T

xiMiS
T
i RT ExT )

= −tr(K̃T
xiΨT

i CT εΦi) − χiE
T RCΨiK̃xix.

(4.67)

Similarly, the second and third summand in V̇3i can be transformed as

tr(K̃T
riMi

˙̃Kri) = −tr(K̃T
riΨT

i CT εΨi) − χiE
T RCΨiK̃riξ

tr(K̃T
fiMi

˙̃Kfi) = −tr(K̃T
fiΨT

i CT εfi) − χiE
T RCΨiK̃fi,

(4.68)

which gives
s∑

i=1
V̇3i = −

s∑
i=1

(tr(K̃T
xiΨT

i CT εΦi) + tr(K̃T
riΨT

i CT εΨi) + tr(K̃T
fiΨT

i CT εfi))

−
s∑

i=1
(χiE

T RCΨiK̃xix + χiE
T RCΨiK̃riξ + χiE

T RCΨiK̃fi).
(4.69)

Noticing that the second summand in (4.69) can be canceled out with the second term of V̇1
in (4.65), we have

V̇1 +
s∑

i=1
V̇3i = − ET E

λ
−

s∑
i=1

(tr(K̃T
xiΨT

i CT εΦi)

+ tr(K̃T
riΨT

i CT εΨi) + tr(K̃T
fiΨT

i CT εfi)),
(4.70)

which further leads to

V̇ = −ET E

λ
+

s∑
i=1

tr(Φ̃T
i

˙̃Φi − K̃T
xiΨT

i CT εΦi)

+
s∑

i=1
tr(Ψ̃T

i
˙̃Ψi − K̃T

riΨT
i CT εΨi)

+
s∑

i=1
tr(Υ̃T

i
˙̃Υi − K̃T

fiΨT
i CT εfi).

(4.71)

Now we insert (4.61) into the trace operators and simplify the expressions in the trace
operators. We have

Φ̃T
i

˙̃Φi − K̃T
xiΨT

i CT εΦi

= − (Φ̃T
i CT + K̃T

xiΨT
i CT )εΦi

= − (Φ̂T
i CT − ΦT

i CT + KT
xiΨT

i CT − K∗T
xi ΨT

i CT )εΦi

= − (Φ̂T
i CT + KT

xiΨ̂T
i CT − KT

xiΨ̃T
i CT )εΦi

= − (εT
Φi − KT

xiΨ̃T
i CT )εΦi,

(4.72)
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and

Ψ̃T
i

˙̃Ψi − K̃T
riΨT

i CT εΨi = −(Ψ̃T
i CT (εΦiK

T
xi + εfiK

T
fi) + Ψ̃T

i CT εΨiK
T
ri + K̃T

riΨT
i CT εΨi). (4.73)

Note that the second and third terms in (4.73) can be further simplified as

Ψ̃T
i CT εΨiK

T
ri + K̃T

riΨT
i CT εΨi

=Ψ̂T
i CT εΨiK

T
ri − ΨT

i CT εΨiK
T
ri + (KT

ri − K∗T
ri )ΨT

i CT εΨi

=Ψ̂T
i CT εΨiK

T
ri − K∗T

ri ΨT
i CT εΨi

=Ψ̂T
i CT εΨiK

T
ri + εΨi,

(4.74)

which in turn leads to

tr(Ψ̃T
i

˙̃Ψi − K̃T
riΨT

i CT εΨi)
= −tr(Ψ̃T

i CT (εΦiK
T
xi + εfiK

T
fi) + Ψ̂T

i CT εΨiK
T
ri + εΨi)

= −tr(Ψ̃T
i CT (εΦiK

T
xi + εfiK

T
fi) + (KT

riΨ̂T
i CT + Ip)εΨi)

= −tr(Ψ̃T
i CT (εΦiK

T
xi + εfiK

T
fi) + εT

ΨiεΨi).

(4.75)

Similarly, we have

Υ̃T
i

˙̃Υi − K̃T
fiΨT

i CT εfi

= − (Υ̃T
i CT + K̃T

fiΨT
i CT )εfi

= − (Υ̂T
i CT + ΥT

i CT + KT
fiΨT

i CT − K∗T
fi ΨT

i CT )εfi

= − (Υ̂T
i CT + KT

fiΨ̂T
i CT − KT

fiΨ̃T
i CT )εfi

= − (εT
fi − KT

fiΨ̃T
i CT )εfi.

(4.76)

Therefore, we obtain

V̇ = −ET E

λ
−

s∑
i=1

tr(εT
Φi − KT

xiΨ̃T
i CT )εΦi)

−
s∑

i=1
tr(Ψ̃T

i CT (εΦiK
T
xi + εfiK

T
fi) + εT

ΨiεΨi)

−
s∑

i=1
tr((εT

fi − KT
fiΨ̃T

i CT )εfi),

(4.77)

which after further simplification leads to

V̇ = −ET E

λ
−

s∑
i=1

tr(εT
ΦiεΦi + εT

ΨiεΨi + εT
fiεfi) ≤ 0. (4.78)

From the negative semidefiniteness of V̇ it follows that E, Φ̂i, Ψ̂i, Υ̂i, Kxi, Kri, Kfi ∈ L∞,
which together with (4.59) implies εΦi, εΨi, εfi ∈ L∞. Thus, we have Φ̇i, Ψ̇i, Υ̇i ∈ L∞.
Moreover, (4.78) also indicates E, εΦi, εΨi, εfi ∈ L2. Following the same analysis as in the
direct adaptation case, one can conclude that σ, σ(k), e, e(k) ∈ L∞, which further results in
y, y(k) ∈ L∞, k = 1, · · · , r −1, and hence, x, ξ, K ∈ L∞. This in turn, implies K̇xi, K̇ri, K̇fi ∈
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L∞. The boundedness of u, Ė can be concluded from the boundedness of Kxi, Kri, Kfi, x, ξ.
Furthermore, Ė ∈ L∞ as well as E ∈ L∞ ∩L2 results in limt→∞ E → 0 and thus σj, σ

(k)
j → 0

as t → ∞, ∀j = 1, · · · , p, k = 1, · · · , r − 1. Therefore, we conclude that the tracking error e
stays within the performance bound, i.e., inequalities in (4.8) hold.

Observe that the same expression as (4.78) can be obtained by replacing χi with χ̄i in the
transformed error dynamics (4.31) and in adaptation laws (4.60), we thus can conclude the
closed-loop stability when the closed-loop system enters sliding mode.

Remark 4.9. Two other methods used to avoid singularity (or loss of controllability) problem
can be found in [13] and [12], respectively. While calculating the inverse of a matrix FG

using the formula F −1
G = adj(FG)/det(FG), the method in [13] adds a positive desgin number

δD ∈ R+ to the denominator to prevent the division by zero (see (12) in [13]). The method in
[12] replaces the denominator with a positive constant if its norm is smaller than a threshold
(see (12) in [12]). With these two methods, the transformed tracking error and the parameter
estimation error converge only to a bounded set. Differing from these results, one key feature
of our approach is that the convergence of the tracking error ej → 0 is achieved by specifying
δj = 1. Furthermore, the parameter estimation errors, as will be shown later, also converge to
0 under PE conditions. Nevertheless, more prior knowledge (Si matrix and the the structure
of canonical form) is required compared to [12].
Remark 4.10. In the classical indirect MRAC of PWA systems revisited in Section 2.2.1,
the utilization of the dynamic gain adjustment technique has the disadvantage that the
convergence of the tracking error is not exponential. This still persists when the PE condition
of the reference signals is introduced. This issue, however, could be bypassed in our approach
by choosing an exponentially decreasing performance function (such as the performance
function (4.7)).

4.5.3 Parameter Convergence
Theorem 4.4 shows the boundedness of the parameter estimation error Φ̃i, Ψ̃i, Υ̃i. If one of
the control objectives is the estimation of the real system parameters, the PE property of the
reference signal yd should be added to ensure the convergence of the estimated parameters
to their real values. This is summarized as follows.

Theorem 4.5. Let the PWA system (4.3) with known partition regions Ωi and unknown
subsystem parameters be controlled by the feedback controller (4.27) with the update laws
(4.59), (4.60) and (4.61). Let ρ be designed such that the inequality (4.8) holds at initial
time instant t = 0. Let the reference signals in yd be sufficiently rich of order r + 1 and
cause repeated activation of all subsystems. If the matrices CΨi are invertible, and δj = 1
for j = 1, · · · , p, then K̃xi, K̃ri, K̃fi → 0 and Ãi, B̃i, f̃i → 0 as t → ∞.

Proof. Let θ̃i = vec(CΨi[K̃xi K̃ri K̃fi]). From (4.60) we have (for unit scaling factors)

˙̃θi = vec(CΨi[ ˙̃Kxi
˙̃Kri

˙̃Kfi])
= vec(CΨiS

T (RT E[xT ξT 1] + [εΦi εΨi εfi]))
= Ξ · vec(CΨiS

T RT E) + vec(CΨiS
T [εΦi εΨi εfi])

= −ΞWiR
T E + vec(CΨiS

T [εΦi εΨi εfi]).

(4.79)
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4.5 Indirect Adaptive Control Design

Combining it with (4.52), we have the dynamical system with the state [E, θ̃i]T[
Ė
˙̃θi

]
=

[
−Ip λRΞT

−ΞWiR
T 0

] [
E

θ̃i

]
+

[
0
ϵi

]
. (4.80)

with ϵi = vec(CΨiS
T [εΦi εΨi εfi]). Considering (4.59) and the property Φ̇i, Ψ̇i, Υ̇i ∈ L∞ and

K̇xi, K̇ri, K̇fi ∈ L∞, we have ε̇Φi, ε̇Ψi, ε̇fi ∈ L∞, which together with εΦi, εΨi, εfi ∈ L∞ ∩ L2
leads to εΦi, εΨi, εfi → 0 as t → ∞. Therefore, the convergence property can be shown
through the homogeneous part of (4.80).

It has already been shown in Theorem 4.3 that E, θ̃i → 0 asymptotically if ϵi = 0 and
all subsystems are activated repeatedly, from which one can conclude that K̃xi → 0, K̃ri →
0, K̃fi → 0 as t → ∞, namely, the adaptive controller gains converge to the nominal gains
Kxi → K∗

xi, Kri → K∗
ri, Kfi → K∗

fi, ∀i ∈ I as t → ∞. Considering εΨi → 0 and the
expression of εΨi in (4.59), it follows CΨ̂i → −(K∗

ri)−1 = CΨi. Taking this into the expression
of εΦi and εfi in (4.59), we have CΦ̂i → CΦi and CΥ̂i → CΥi as t → ∞.

Note that

CΦ̂i = [â1i, â2i, · · · , âpi]T

CΨ̂i = [b̂1i, b̂2i, · · · , b̂pi]T

CΥ̂i = [f̂1i, f̂2i, · · · , f̂pi]T
(4.81)

where âji, b̂ji, f̂ji represent the estimated values of aji, bji, fji in (4.1) for j = 1, · · · , p, i ∈ I.
The convergence of CΦ̂i, CΨ̂i, CΥ̂i implies âji → aji, b̂ji → bji and f̂ji → fji. Considering
that the system is in control canonical form, it follows from the convergence of âji, b̂ji and
f̂ji that Âi → Ai, B̂i → Bi and f̂i → fi as t → ∞.

The advantage of our indirect adaptive controller over the direct adaptive controller is that
the indirect adaptive controller exhibits the capability to identify the subsystem parameters.
This is, however, achieved at the expense of imposing more complexity into the closed-
loop system. Specifically, the update law of the controller gains of the indirect adaptive
controller (4.60) is obtained by fusing the closed-loop estimation errors to the update law
of the direct adaptive controller (4.28). Meanwhile, the subsystem parameters are updated
through the information of the closed-loop estimation errors and the estimated controller
gains. Therefore, more computational costs must be tolerable when applying the indirect
adaptive controller.
Remark 4.11. (Parameter tuning guidelines) Larger adaptation gains Γxi, Γri, Γfi and ΓΦi,
ΓΨi, ΓΥi speed up the parameter adaptation while too large adaptation gains may lead to
numerical instability and high control effort. λ is the coefficient of σ

(r−1)
j and serves as the

input gain of the dynamics of E (see (4.31)). A larger λ amplifies the sensibility introduced
by the higher order derivative and results in aggressive response of E, whereas a too small λ
leads to “stiff” descent of the Lyapunov function (see (4.39) and (4.78)), which is numerically
difficult to solve.

The concept to convert a constrained error into an unconstrained one to satisfy a prescribed
performance requirement has been studied for hybrid systems and switching systems in [91,
95, 107, 177]. These approaches are based on backstepping design and require either input
gains to be completely known [91, 177] or the control direction as well as lower bounds of

53



4 Adaptive Control of PWA Systems with Output Performance Guarantees

input gains to be known [95, 107]. Compared to these approaches, only the control direction
is assumed to be known in this chapter. Another feature that differentiates our approaches
from these approaches is that the convergence of gain and parameter estimation errors is
achieved under PE conditions.

In prescribed performance control, there also exist approximation-free control methods [11,
163, 188], where no adaptation mechanism is introduced. Such approaches have low con-
troller complexity and computational costs. Compared to these approximation-free methods,
our approaches are based on adaptations and can achieve unknown parameter estimation in
addition to the tracking task. This is especially useful for monitoring systems with parameter
drifts and component aging as well as for joint control and identification tasks.

4.6 Robust Modification
Since the PWA system is utilized to approximate a nonlinear system, there may exist ap-
proximation errors and external disturbances. To achieve the provable robust stability of the
proposed methods for PWA systems with disturbances and approximation errors, the adap-
tation laws need to be modified. Here we demonstrate a projection-based robust modification
for the direct adaptive control. So the original PWA system (4.1) becomes now

x
(r)
1 =aT

1ix + bT
1iu + f1i + d1i(x, t)

...
x(r)

p =aT
pix + bT

piu + fpi + dpi(x, t), i ∈ I
y =[x1, x2, · · · , xp]T

(4.82)

where d1i, · · · , dpi represent bounded continuous error terms (approximation errors or dis-
turbances). The compact form (4.3) becomes now

ẋ = Aix + Biu + fi + di(x, t), i ∈ I
y = Cx,

(4.83)

with di(x, t) ∈ Rn being the vector of the error terms. It contains p nonzero elements. Due
to the structure of control canonical form, there exists wi(x, t) ∈ Rp such that di(x, t) =
Biwi(x, t). We assume that wi, i ∈ I are bounded and satisfy |wi| ≤ w̄, i ∈ I. Therefore,
the transformed error (4.19) becomes

Ė = K + λRCArx + λRCAr−1Bu + λRCAr−1f + λRCAr−1d.
= K + λRCArx + λRCAr−1Bu + λRCAr−1f + λRCAr−1Bw

= K + λRCΦx + λRCΨu + λRCΥ + λRCΨw

(4.84)

for d = ∑s
i=1 χidi, w = ∑s

i=1 χiwi. We add an additional term v = ∑s
i=1 χivi = ∑s

i=1 χiS
T
i RT E

to the controller (4.27) and obtain the updated controller
u = Kxx + Krξ + Kf + v. (4.85)

The following robust adaptation laws are proposed
K̇xi = χiPr[ΓxiS

T
i RT ExT ]

K̇ri = χiPr[ΓriS
T
i RT EξT ]

K̇fi = χiPr[ΓfiS
T
i RT E],

(4.86)
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where Pr[·] denotes the projection operator depicted in Section 2.2.3, it terminates the adap-
tation when a predefined bound of the corresponding estimated gain is reached.

Theorem 4.6. Given the reference signal yd and predefined performance function ρ, let the
PWA system (4.83) with known partition regions Ωi and unknown subsystem parameters be
controlled by the feedback controller (4.85) with the update law (4.86). Let ρ be designed such
that the inequality (4.8) holds at initial time instant t = 0. The closed-loop system is stable
and the output tracking error satisfies the prescribed performance (4.8).

Proof. Based on the controller (4.85) and following the same derivations as (4.30), the error
dynamics of the transformed error E becomes

Ė = −E + λR
s∑

i=1
χi(CΨi(K̃xix + K̃riξ + K̃fi) + CΨiwi + CΨivi). (4.87)

For stability analysis, we use the same Lyapunov function as (4.32). Taking its derivative
and inserting (4.87) and (4.86) yields

V̇ ≤ − 1
λ

ET E + ET R
s∑

i=1
χiCΨiwi + ET R

s∑
i=1

χiCΨivi. (4.88)

Since K∗
ri = −(CΨi)−1 and Mi = (K∗

riSi)−1, we have

CΨi = −SiMi. (4.89)

Inserting (4.89) and vi = ST
i RT E into (4.88) yields

V̇ ≤ − 1
λ

ET E −
s∑

i=1
χiE

T RSiMiwi −
s∑

i=1
χiE

T RSiMiS
T
i RT E (4.90)

Because of the inequality −XT MX − XT MY ≤ 1
4Y T MY for positive definite M , we have

V̇ ≤ − 1
λ

ET E + 1
4

s∑
i=1

χiw
T
i Miwi

≤ − 1
λ

ET E + 1
4maxiλmax(Mi)w̄2,

(4.91)

where λmax(Mi) denotes the maximum eigenvalue of Mi. Let VK = ∑s
i=1(Γ−1

xi tr(K̃T
xiMiK̃xi)+

Γ−1
ri tr(K̃T

riMiK̃ri) + Γ−1
fi tr(K̃T

fiMiK̃fi)), it follows from (4.32) that 2V = 1
λ
ET E + VK . Thus,

(4.91) can be further transformed as

V̇ ≤ − 1
λ

ET E − VK + VK + 1
4maxiλmax(Mi)w̄2

= −2V + VK + 1
4maxiλmax(Mi)w̄2

= −2V + B

(4.92)

with B = VK + 1
4maxiλmax(Mi)w̄2. Due to the use of projection in (4.86), VK is bounded and

B also bounded. Therefore, we can conclude the boundedness of V . Based on the similar
reasoning as in Theorem 4.2, we have E, R ∈ L∞, σ, σ(k), e, e(k) ∈ L∞, y, y(k) ∈ L∞, k =
1, · · · , r − 1, x ∈ L∞ and the prescribed performance constraint (4.8) holds.
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(a) Output y1 (b) Tracking error e1

(c) Output y2 (d) Tracking error e2
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Figure 4.2: Output tracking performance of direct adaptation case.

4.7 Numerical Validation

In this section, the proposed adaptive approaches of PWA systems with prescribed per-
formance are validated through two numerical examples. The mass-spring-damper system
studied in Chapter 3 and the aeroelastic model of aircraft wings.

4.7.1 Mass-Spring-Damper System

In the following simulation, we validate the proposed methods with the mass-spring-damper
system shown in Section 3.4. The region partitions are assumed to be known and the
subsystem parameters are unknown. Both direct and indirect adaptation cases depicted in
Section 4.4 and Section 4.5 are analyzed as follows.
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4.7 Numerical Validation

Direct Adaptation

We start by testing the tracking performance of the direct prescribed performance adaptive
control approach, abbreviated as PPAC. To compare this performance with the one of MRAC
[83], we let the desired trajectory yd be the output of the reference system yd = Wm(s)r,
where Wm(s) = diag{ 1

(0.2s+1)2 , 1
(0.2s+1)2 } denotes the transfer matrix of the reference system

(see Sec.V in [83]), the input signal r is chosen as r = [2sin(0.2t), 2sin(0.5t)]T . We define
the performance bounds by specifying ρ0 = [10, 10]T and ρ∞ = [0.1, 0.1]T with the decaying
rates l = [l1, l2]T = [1, 1]T . The error bounds in (4.8) are chosen to be symmetric by letting
δ1 = δ2 = 1. λ is selected to be 0.04. Besides, we use unit scaling factors for controller gains
adaptation, Γxi = Γri = Γfi = 1, ∀i = 1, 2, 3 and we specify Si = −I2, ∀i = 1, 2, 3.

The output tracking performance of PPAC and MRAC are shown in Figure 4.2. In Figure
4.2a and Figure 4.2c, the red regions represent the prescribed performance bounds of the
output. Blue solid lines indicate the real system output of PPAC and the black dashed lines
depict the desired output. In Figure 4.2b and Figure 4.2d, the tracking errors as well as
the performance bound of errors are displayed in blue lines and red regions, respectively.
Besides, the mode information is given in Figure 4.2e and the CLF in Figure 4.2f. The
Lyapunov function is continuous at each switching instant and strictly decreasing. It can be
seen from the figures that both components of the output tracking error of the controlled
system stay within the prescribed performance bounds. For comparison purpose, the tracking
performance of the MRAC approach is displayed with magenta lines. We observe that
the transients of MRAC converge slower than the one of PPAC and violate the prescribed
performance constraints.
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Figure 4.3: Convergence of estimation errors of controller gains of direct adaptation case.

To validate the convergence of the controller gains under PE conditions, the desired output
signal is chosen as yd = [2sin(0.2t) − 0.2sin(3t), 2sin(0.5t) − 0.2sin(7t)]T . The relative degree
of the system is r = 2. According to Theorem 4.2, yd should be sufficiently rich of order
3 to guarantee the convergence of the controller gains to their nominal values. Since each
component of yd contains 2 distinct frequencies, the sufficiently rich condition is satisfied.
Besides, the chosen desired output signal ensures that all the subsystems are activated
repeatedly. The scaling factors are chosen as Γxi = Γri = Γfi = 5, ∀i = 1, 2, 3 and λ
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4 Adaptive Control of PWA Systems with Output Performance Guarantees

is specified as 0.01. The performance bounds are specified by ρ0 = [10, 10]T and ρ∞ =
[0.15, 0.15]T with the decaying rates l = [l1, l2]T = [0.5, 0.5]T .
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Figure 4.4: Output tracking performance of indirect adaptation case.

Figure 4.3 shows the convergence of the errors between estimated controller gains and
nominal controller gains (the norm operators ∥ · ∥ in the figures of this chapter represent the
Frobenius norms ∥ · ∥F for clarity purpose). We use K̃i on the vertical axis to represent the
set of estimation errors of the controller gains for i-th subsystem, i.e., K̃i = {K̃xi, K̃ri, K̃fi}.
As we can conclude from the figure, the estimated controller gains of all the subsystems
converge to their nominal values. This validates the theoretical results of Theorem 4.3.

Indirect Adaptation

The tracking performance of the indirect adaptation case is tested with the same parameters
as in the direct adaptation case. Figure 4.4a and Figure 4.4c display the desired output in
black dashed lines, the real output of PPAC in blue solid lines as well as the performance
bound of output in red lines. The tracking errors, as well as the performance bound of the
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Figure 4.5: Convergence of estimation errors of controller gains of indirect adaptation case.

Figure 4.6: Convergence of estimated parameters of indirect adaptation case.

errors, are presented in Fig. 4.4b and Fig. 4.4d with blue and red colors, respectively. The
switches are displayed in Fig. 4.4e and the CLF in Fig. 4.4f, which is continuous at each
switching instant and strictly decreasing. As we can see, the output of the controlled system
is enclosed by the performance bound and the prescribed transient performance is satisfied.
In comparison to this, the tracking performance of the MRAC approach, displayed with
magenta lines, violates the prescribed performance constraints.

The convergence of the controller gains and the estimated parameters is tested by applying
the same PE input signal with the same setting of parameters as in the direct case. In
addition, ΓΦi, ΓΨi, ΓΥi = 1, ∀i = 1, 2, 3. As Figure 4.5 shows, the estimation error of the
controller gains K̃xi, K̃ri, K̃fi converge to zero. The parameter estimation of subsystem 2 is
displayed in Figure 4.6. Note that only the to be estimated components rather than all the
components in the parameter matrices are displayed, see (4.81). The dashed lines represent
the real values and the solid lines depict the estimated values. As can be seen from the
figure, the estimated system parameters converge to the real values.
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α

h
β

Figure 4.7: The aeroelastic model of aircraft wings [176].

4.7.2 Aeroelastic Model

In this section, the proposed approaches of Section 4.4 and Section 4.5 are tested with an
engineering application example, the aeroelastic model of aircraft wings [1, 176]. The wing
fluctuation is simplified as the dynamics of an airfoil with linear and torsional spring, which
is illustrated in Fig. 4.7. The airfoil has two degrees of freedom, plunging and pitching.
h denotes the plunging deflection and α represents the pitch angle about the elastic axis.
β = [β1, β2]T serves as the input signal and denotes the left and right flap deflection angles,
which are not distinguished from each other in Fig. 4.7 due to the side view. V denotes
the constant airspeed. Let y = [h, α]T be the system output. The motion of the aeroelastic
model can be described by the equation

Mÿ + Cẏ + Ky + Wq = Bµβ, (4.93)

where M denotes the mass and inertia matrix, Bµ represents the control gain. The structural
damping effect, stiffness, aerodynamic lift and moment effect are included in matrices C and
K. Their values are known and detailed derivations can be seen in [1]. Wq = [0, K̄α]T
constitutes the source of uncertainties with K̄ being the nonlinear torsional stiffness

K̄ = 2.82 − 62.322α + 3709.71α2 − 24195.6α3 + 48756.954α4.

The characteristics of the nonlinear term K̄α in the interval α ∈ [−0.38, 0.38] can be divided
into 4 regions and its piecewise linear approximation in form of āiα + b̄i, i = 1, · · · , 4 is given
in Tab. 4.1. Let the state be x = [h, α, ḣ, α̇]T . The dynamics (4.93) can be approximated
by the PWA system in form of (4.3) with

Ai =


0 0 1 0
0 0 0 1

−293.27 −100.59 + 0.66āi −5.9027 −0.40542
1885.9 743.79 − 19.65āi 34.728 2.4687

 ,

Bi =


0 0
0 0

−7606.8 −7642.6
14250 9021.9

 , fi =


0
0

0.66b̄i

−19.65b̄i

 , i = 1, · · · , 4

(4.94)
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mode 1 2 3 4
āi 10044 5992 2482.1 19.141
b̄i 2732.9 1377.8 422.78 2.8463

Region [-0.38,-0.33] [-0.33,-0.27] [-0.27,-0.17] [-0.17, 0.38]

Table 4.1: Piecewise linear approximation of K̄α
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Figure 4.8: Output tracking performance of direct and indirect adaptation cases.

Now we test the tracking performance of both direct and indirect PPAC approaches on the
nonlinear system (4.93), which is equivalent to the PWA system (4.94) with approximation
errors as external disturbances. Gaussian noise with zero mean and 0.001 variance is added
to the state measurements. We define the performance bounds by specifying ρ0 = [5, π/6]T
and ρ∞ = [0.1, 0.04]T with the decaying rates l = [0.2, 0.2]T . The error bounds are symmetric
with δ1 = δ2 = 1. λ is selected to be 0.01. The adaptation gains are Γxi = Γfi = 1, Γri =
0.001, ∀i = 1, · · · , 4 and we specify the reference signal as yd = [0, −0.4e−0.03tsin(0.5t +
π
2 )]T . The initial state of the system reads x(0) = [1, −0.35, 0, 0]T . The initial guess of the
parameters for each subsystem is specified by letting āi = b̄i = 0 in (4.94). The following Si

matrices are applied

Si =
[

0.7607 0.7643
−1.4250 −0.9022

]
, ∀i = 1, · · · , 4. (4.95)

The output tracking performance of direct and indirect PPAC are shown in Fig. 4.8. In
Fig. 4.8a and Fig. 4.8b, the blue lines and magenta lines depict the output tracking errors
of direct and indirect approaches. The mode switches by using direct and indirect PPAC
are shown in Fig. 4.8c and Fig. 4.8d, respectively. It can be seen from the figures that
the output tracking errors of both direct and indirect approaches stay within the prescribed
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performance bounds. This also suggests some degree of robustness of our approaches against
noise and disturbances.
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Figure 4.9: Convergence of estimated controller gains of indirect adaptation case.

The parameter convergence property is tested on the PWA system (4.94) with indirect
adaptation approach. The reference signal is yd = [0.5sin(0.2t) + 0.05sin(0.9t), 0.2sin(0.5t) +
0.05sin(1.2t)]T without Gaussian noise. The adaptation gains, the performance bound, and
the initial guess of parameters are chosen the same as those of the tracking case. Besides,
we specify λ = 0.04.
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Figure 4.10: Convergence of estimated parameters of indirect adaptation case.

Figure 4.9 shows the convergence of the estimation errors of the controller gains of sub-
system 4. The red line, the green line and the blue line represent the (Frobenius) norms of
the estimation errors K̃x4, K̃r4, K̃f4, respectively. The figure validates the convergence of the
estimated controller gains to the nominal ones.

Similarly, the component-wise convergence of the estimated parameters of subsystem 4 by
using the indirect PPAC approach is shown in Fig. 4.10. As can be seen from the figure, the
estimated system parameters, displayed by solid lines, converge to the real values (dashed
lines).

4.8 Summary
In this chapter, we have investigated the adaptive control approaches for PWA systems
satisfying prescribed output tracking performance constraints in terms of both direct and
indirect adaptations, respectively. For both control approaches, we have shown that the
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output tracking errors stay within the prescribed performance bounds. Based on the novel
CLFs, closed-loop stability is achieved under arbitrary switching. The controller gains and
estimated subsystem parameters are proved to converge to their nominal and real values if
the desired trajectory is PE. Moreover, a robust modification is developed to enhance the
robustness of the closed-loop system against disturbances.

Compared to the classical MRAC of PWA systems reviewed in Chapter 2, our methods
ensure that the transient behavior of the closed-loop systems fulfills prescribed output track-
ing performance constraints and guarantees safety during adaptations. Besides, the existing
prescribed performance control methods proposed for switched systems [91, 177] are based on
completely known input coefficients/matrices while our approaches are eligible for uncertain
PWA systems, whose input matrices are unknown. Furthermore, parameter convergence
is achieved in our approaches, which fills the gap that the existing prescribed performance
control approaches either do not consider parameter convergence [91, 177] or only partially
achieve parameter convergence in the sense that the parameter estimation error converges
to a bounded set[12, 13, 55].

One limitation of the approaches presented in this chapter is that the use of the prescribed
performance technique may result in a large control input. In future work, how to improve
the current approaches for systems having saturation constraints on the input signal is of
practical interest. In our current setting, we treat the entries aji, bji, fji in matrices Ai, Bi, fi

as unknown for the purpose of generality except that some directional information of the
input matrices is known. In practice, the number of unknown parameters can be reduced by
performing offline measurements of some physical quantities. Furthermore, it is mostly also
possible to determine the upper and lower bounds of the unknown parameters. For instance,
in the PWA model of lateral vehicle dynamics [24], which can be well represented by the
numerical example in Sec. 3.4, the vehicle mass and yaw inertia can be determined while the
tire friction coefficients are unknown as they depend on the road conditions. Nevertheless,
reasonable upper and lower bounds can be well determined by testing the interaction of
the tire and different types of roads. With a reduced number of unknown parameters with
certain upper and lower bounds, it would be possible to investigate how the input satura-
tion constraints are related to the bounds of the uncertain parameters, which is of great
significance in the area of prescribed performance for not only PWA systems but also a more
general class of systems.

Another limitation is that the current approaches are only eligible for PWA systems in
canonical form. How to extend these approaches to generalized PWA systems (PWA systems
without structural restrictions) remains to be explored in future work. Methods proposed in
[91, 177] can be applied to switched systems in strict feedback form and non-strict feedback
form. However, as mentioned above, the input coefficients/matrices are assumed to be
completely known and parameter convergence is not achieved. In the direct next step, it is
interesting to study, how to extend our approaches to PWA systems in strict and non-strict
feedback form while retaining our key features that the input matrices do not have to be
completely known and the parameter convergence is guaranteed under the PE condition.
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Adaptive Control of PWA Systems with
State Performance Guarantees 5

In the previous chapter, we explored the adaptive control of PWA systems satisfying output
tracking performance constraints. Considering the cases where not only the output but also
the whole state vector need to satisfy some performance constraints, we would like, in this
chapter, to explore the adaptive control for PWA systems with state tracking performance
guarantees.

As also reviewed in Chapter 4, notable progress has been made in the field of adaptive
control with performance guarantees. These include funnel control [62, 69], barrier Lya-
punov function-based approach [153], and prescribed performance control [12, 13]. All of
these methods are proposed to confine the output tracking error within the predefined con-
straints. Although some recent barrier Lyapunov function-based controllers achieve the full
state constraints [103, 104, 117, 184], they are built upon the backstepping concept, which
requires the controlled system to be in strict feedback form or pure feedback form. Thus,
they cannot be applied to generalized PWA systems. Recently, a set-theoretic MRAC for
linear systems is developed [8]. It uses the barrier Lyapunov function concept to confine
the weighted Euclidean norm of the state tracking error within a predefined bound. The
controller does not rely on the backstepping-type analysis and therefore does not impose re-
strictions on the system structure. This method is extended to the cases with time-varying
performance bounds [6], systems with actuator faults [168], and systems with unstructured
uncertainties [7]. However, extending this method from linear systems to switched systems is
nontrivial and challenging. Specifically, if the barrier Lyapunov function is constructed with
the user-defined performance bound being the barrier, as it is done in the linear system case,
then the discontinuity of the weighted Euclidean norm of the tracking error at switching
instants may cause transgression of the barrier, which makes the barrier Lyapunov function
invalid. Besides, only matched uncertainties (uncertainties, which can be compensated with
an additional input term) are addressed in the work of set-theoretic MRAC approaches.
Since the PWA systems are mostly approximations of nonlinear systems, their approxima-
tion errors are not necessarily matched, let alone other kinds of external disturbances. How
to enhance the robustness against unmatched uncertainties/disturbances when applying the
set-theoretic MRAC to PWA systems is still open.

The main contribution of this chapter is threefold. First, direct and indirect set-theoretic
MRAC approaches for uncertain PWA systems with state tracking performance guarantees
are developed. Second, parameter convergence is achieved for the indirect adaptation case.
Finally, a robust modification of the proposed method is developed for PWA systems sub-
ject to unmatched disturbances. In addition to these achievements, another highlight of
the approaches proposed in this chapter is that the multiple Lyapunov functions are non-
increasing even at switching instants. Therefore, closed-loop stability and asymptotic state
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5 Adaptive Control of PWA Systems with State Performance Guarantees

tracking in the disturbance-free case is achieved for the MLF setting without introducing
extra conditions, while the classical methods (see Table 2.1) require robust modifications
or PE conditions. This enables the application of the proposed methods with fewer prior
knowledge requirements and less excitation. Furthermore, the non-increasing property of the
MLF is especially essential for the indirect adaptive control of PWA systems as it overcomes
the limitation of the classical indirect adaptive control of PWA systems, which requires the
existence of the CLF and cannot be applied to the MLF setting.

This chapter is structured as follows. The problem to be solved in this chapter is formu-
lated in Section 5.1. The direct adaptive control is presented in Section 5.2, in which the
stability analysis is also provided. In Section 5.3 and Section 5.4, two variants of indirect
adaptive control are introduced with the analysis of the stability as well as the parameter
convergence. The robust modification is shown in Section 5.5. Numerical examples are
illustrated in Section 5.6, which is followed by the summary in Section 5.7.

5.1 Problem Formulation
In this chapter, we consider the PWA system

ẋ(t) = A(t)x(t) + B(t)u(t) + f(t) (5.1)

with known indicator functions χi(t), i ∈ I, unknown parameters A(t) = ∑s
i=1 χi(t)Ai,

B(t) = ∑s
i=1 χi(t)Bi, and f(t) = ∑s

i=1 χi(t)fi for i ∈ I. x ∈ Rn and u ∈ Rp represent the
state and the control input of the PWA system. The reference PWA system

ẋm(t) = Am(t)xm(t) + Bm(t)r(t) + fm(t), (5.2)

with Am(t) = ∑s
i=1 χi(t)Ami, Bm(t) = ∑s

i=1 χi(t)Bmi, fm(t) = ∑s
i=1 χi(t)fmi shares the same

indicator functions with the controlled PWA system (5.1). There exist some positive definite
matrices Pi and Qi ∈ Rn×n, i ∈ I such that

AT
miPi + PiAmi = −Qi, i ∈ I. (5.3)

Let the nominal controller be

u(t) = K∗
xx(t) + K∗

r r(t) + K∗
f , (5.4)

where K∗
x(t) = ∑s

i=1 χi(t)K∗
xi, K∗

r (t) = ∑s
i=1 χi(t)K∗

ri, K∗
f (t) = ∑s

i=1 χi(t)K∗
fi with K∗

xi ∈
Rp×n, K∗

ri ∈ Rp×p, K∗
fi ∈ Rp, i ∈ I denoting the nominal controller gains for the i-th sub-

system of (5.1). We make the usual assumption as in Chapter 2 and Chapter 3 that the
following matching equations hold:

Ami = Ai + BiK
∗
xi, Bmi = BiK

∗
ri, fmi = fi + BiK

∗
fi, i ∈ I. (5.5)

The adaptive controller takes the form

u(t) = Kx(t)x(t) + Kr(t)r(t) + Kf (t) (5.6)
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with Kx(t) = ∑s
i=1 χi(t)Kxi(t), Kr(t) = ∑s

i=1 χi(t)Kri(t) and Kf (t) = ∑s
i=1 χi(t)Kfi(t).

Inserting (5.6) into the controlled PWA system (5.1) and defining the state tracking error
e(t) = x(t) − xm(t), we have

ė = Ame +
s∑

i=1
χiBi(K̃xix + K̃rir + K̃fi), (5.7)

where K̃xi = Kxi − K∗
xi, K̃ri = Kri − K∗

ri, K̃fi = Kfi − K∗
fi represent the estimation errors of

the control gains.
In this chapter, we would like to design an adaptive controller for PWA systems such that

the norm of the state tracking error e is enforced within a predefined performance bound
and hence the closed-loop system satisfies performance constraints. The performance bound
can be chosen the same as the one in Chapter 4 (see (4.7))

ρ(t) = (ρ0 − ρ∞)e−l(t−t0) + ρ∞, (5.8)

where ρ0, ρ∞, l ∈ R+ and ρ0 > ρ∞. The performance constraint to be satisfied can be
formulated as

∥e(t)∥P < ρ(t), (5.9)

where ∥e(t)∥P is the weighted Euclidean norm of e(t) with the weighting matrix P , i.e.,
∥e(t)∥P = (eT (t)Pe(t)) 1

2 . The error metric ∥e(t)∥P serves as a performance measure reflecting
the difference between the state of the controlled system and the reference system. P is equal
to Pi if subsystem i is activated, i.e., P = ∑s

i=1 χi(t)Pi, where the weighting matrices Pi

satisfy (5.3). So the error metric ∥e(t)∥P and the system parameters switch synchronously.

Remark 5.1. Some questions may arise regarding (5.9): is it feasible to specify a global
weighting matrix for the error metric instead of the switching one? What if the user would
like to define a performance constraint with an arbitrary weighting matrix, which does
not necessarily satisfy the Lyapunov equation (5.3)? In fact, these requirements can be
transformed into the formulation (5.9). We explain this point in the following.
Suppose that a global performance measure, which should hold for every subsystem, is
desired by the user, i.e., ∥e(t)∥S < ρ∗(t), where S ∈ Rn×n is an arbitrary user-defined
positive definite matrix and ρ∗(t) represents a user-defined performance function in form of
(5.8). Then, we can choose Pi, i ∈ I matrices based on (5.3). We know ∥e∥S ≤ 1

γ
∥e∥P with

γ = mini∈I

√
λmin(Pi)
λmax(S) . To satisfy ∥e(t)∥S < ρ∗(t), it suffices to let ∥e∥P < γρ∗(t) hold, which

is equivalent to (5.9) by letting ρ(t) = γρ∗(t). A graphical illustration of this explanation
can be seen in Fig. 5.1.

The problem to be studied in this chapter is formulated as follows:

Problem 5.1. Given a performance function (5.8), a reference model (5.2) and a PWA
system (5.1) with unknown subsystem parameters Ai, Bi, fi and known regions Ωi (or equiv-
alently, known indicator functions χi(t)), design the adaptive controller u(t) such that the
state x(t) of (5.1) tracks the state xm(t) of (5.2) with the tracking error e(t) satisfying the
performance constraint (5.9). Besides, ensure that the estimated gains or estimated param-
eters converge to their nominal or real values.
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Figure 5.1: Graphical illustration of Remark 5.1
.

5.2 Direct Adaptive Control Design
In this section, we propose the direct adaptive controller to solve the given problem in the
disturbance-free case. First, we introduce the auxiliary performance bound and explain the
solution concept. Then the proposed adaptation laws are presented, which are followed by
the stability analysis of the closed-loop system.

5.2.1 Auxiliary Performance Bound
We define a generalized restricted potential function (barrier Lyapunov function) [6] ϕ :
R+ → R+ on the set Dθ ≜ {e | ∥e∥P ∈ [0, θ)}

ϕ(∥e∥P ) = ∥e∥2
P

θ2(t) − ∥e∥2
P

, ∥e∥P < θ(t). (5.10)

By properly initializing the reference system or designing the performance function, we can
let ∥e(t0)∥P < ρ(t0). The set-theoretic MRAC approach for linear systems [6] suggests
specifying the barrier θ to be ρ(t) and designing the adaptation laws such that ϕ(∥e∥P ) is
bounded ∀t ∈ [t0, ∞), then it would be obtained that ∥e(t)∥P < ρ(t), ∀t ∈ [t0, ∞).

The difficulty in switched systems is that P = ∑s
i=1 χi(t)Pi leads to the jumps of ∥e(t)∥P

at switching instants. Suppose χi(t) = 1 for t ∈ [tk−1, tk) and χj(t) = 1 for t ∈ [tk, tk+1) for
i ̸= j, i, j ∈ I and recall that e(t−

k ) ≜ limτ↑tk
e(τ), we have

∥e(tk)∥2
P = eT (tk)Pje(tk) ≤ λmax(Pj)|e(tk)|2 ≤ λmax(Pj)

λmin(Pi)
∥e(t−

k )∥2
P , (5.11)

which may result in ∥e(tk)∥P > ρ(tk) for λmax(Pj)
λmin(Pi) > 1 and ∥e(t−

k )∥P < ρ(t−
k ), as shown in

Figure 5.2a. This further makes the barrier function ϕ(∥e∥P ) invalid. We call this barrier
transgression problem.

To overcome this problem, our idea is to introduce an auxiliary performance bound, de-
noted by ϵ(t), which decays faster than the user-defined performance bound ρ(t). ϵ(t) is reset
at each switching instant such that ∥e(tk)∥P < ϵ(tk) for k ∈ N+, see Fig. 5.2b. If the adap-
tive controller ensures ∥e∥P < ϵ(t) and if ϵ(t) is designed such that ϵ(t) < ρ(t) for t ∈ [t0, ∞),
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(a) The barrier transgression problem (b) Introducing auxiliary performance bound

Figure 5.2: Graphical illustration of the barrier transgression problem and the concept to
introduce auxiliary performance bound

then the control objective (5.9) is achieved. We propose the auxiliary performance bound
ϵ(t) with the following dynamics

ϵ̇(t) = −hϵ(t) + g, ϵ(t0) ∈ (g

h
, ρ0), ϵ(tk) = G(ϵ(t−

k )), k ∈ N+ (5.12)

where h, g ∈ R+. G : R+ → R+ is a state reset map. It resets the value of ϵ at each switching
instant. Note that ϵ shares the same switching instants with the controlled PWA system
tk, k ∈ N+, i.e., when the switch of the controlled PWA system occurs, ϵ is reset by the state
reset map simultaneously. We specify the state reset map G to be

G(ϵ(t−
k )) = √

µϵ(t−
k ), µ ≜ max

i,j∈I

λmax(Pi)
λmin(Pj)

. (5.13)

with µ > 1. The parameters h, g, µ control the evolution of the auxiliary performance bound
ϵ(t). Specifically, h represents the decreasing rate of ϵ(t). g serves as a input for the dynamics
of ϵ and affects its minimum value. √

µ reflects the increment of ϵ(t) at each switching instant.
As stated before, ϵ(t) should be smaller than ρ(t), ∀t ∈ [t0, ∞). To achieve this, the state
reset of ϵ(t) needs to satisfy some dwell time constraints, i.e., TD = mink∈N+{tk − tk−1} > τD

for some τD ∈ R+. We have the following lemma:

Lemma 5.1. Given the performance function (5.8) and the auxiliary performance bound
(5.12) with the reset map (5.13), if h > l, ρ∞ >

√
µ g

h
and if the dwell time of ϵ(t) satisfies

TD > τD = 1
h − l

ln
√

µρ∞ − g
h

√
µ

ρ∞ − g
h

√
µ

(5.14)

for µ > 1, then the following inequality holds
g

h
≤ ϵ(t) < ρ(t), ∀t ∈ [t0, ∞). (5.15)

Proof. The initial value of ϵ satisfies ϵ(t0) > g
h
, meaning that ϵ decreases exponentially

towards g
h

if no switch occurs. Since √
µ > 1, ϵ increases at each switching time instant and

ϵ(tk) > g
h

for ∀k ∈ N+. If the switch terminates from some time on, then ϵ → g
h

for t → ∞,
otherwise, ϵ > g

h
for t ∈ [t0, ∞). Therefore, we have ϵ(t) ≥ g

h
, ∀t ∈ [t0, ∞).
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Now, we explore the relationship between ϵ(t) and ρ(t). We have for the time interval
[t0, t1)

ϵ(t) = ϵ(t0)e−h(t−t0) + g
∫ t

t0
e−h(t−τ)dτ = (ϵ(t0) − g

h
)e−h(t−t0) + g

h
. (5.16)

Since ϵ(t0) ∈ ( g
h
, ρ0), h > l and ρ∞ >

√
µ g

h
, we have ϵ(t) < ρ(t) for t ∈ [t0, t1). For t = t1 it

gives

ϵ(t1) = √
µϵ(t−

1 ) = √
µ(ϵ(t0) − g

h
)e−h(t1−t0) + √

µ
g

h
. (5.17)

Let ∆t1 ≜ t1 − t0, we have

ρ(t1) − ϵ(t1) =(ρ0 − ρ∞)e−l∆t1 − √
µ(ϵ(t0) − g

h
)e−h∆t1 + (ρ∞ − √

µ
g

h
)

≥(ρ0 − ρ∞)e−l∆t1 − √
µ(ϵ(t0) − g

h
)e−h∆t1 + (ρ∞ − √

µ
g

h
)e−l∆t1

=(ρ0 − √
µ

g

h
)e−l∆t1 − √

µ(ϵ(t0) − g

h
)e−h∆t1

≥(ρ0 − √
µ

g

h
)e−l∆t1 − √

µ(ρ0 − g

h
)e−h∆t1 .

(5.18)

If the inequality
(ρ0 − √

µ
g

h
)e−l∆t1 >

√
µ(ρ0 − g

h
)e−h∆t1 (5.19)

holds, we will immediately have ρ(t1) > ϵ(t1). Since ρ0 > ρ∞ >
√

µ g
h

> g
h
, we have

ρ0 − √
µ g

h
> 0 and √

µ(ρ0 − g
h
) > 0. Therefore, (5.19) is equivalent to

ρ0 − √
µ g

h√
µ(ρ0 − g

h
) > e−(h−l)∆t1 (5.20)

Taking the logarithm of both sides we obtain

∆t1 >
1

h − l
ln

√
µρ0 − g

h

√
µ

ρ0 − g
h

√
µ

. (5.21)

Following the above analysis we can obtain ϵ(t) < ρ(t) for t ∈ [tk−1, tk) and ϵ(tk) < ρ(tk) for
k ∈ N+ if

∆tk >
1

h − l
ln

√
µρ(tk−1) − g

h

√
µ

ρ(tk−1) − g
h

√
µ

= 1
h − l

ln(√µ +
(µ − √

µ) g
h

ρ(tk−1) − g
h

√
µ

). (5.22)

If the dwell time TD is no smaller than the maximal required interval length max{∆tk}, then
ϵ(t) < ρ(t) holds for ∪[tk−1, tk), k ∈ N+. Because ρ(tk−1) ≥ ρ∞ for k ∈ N+, we have

TD ≥ max{∆tk} >
1

h − l
ln

√
µρ∞ − g

h

√
µ

ρ∞ − g
h

√
µ

(5.23)

So we can conclude that if (5.14) holds, then ϵ(t) < ρ(t) for t ∈ [t0, ∞).
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Lemma 5.1 tells the dwell time constraint to be fulfilled. We will further discuss how this
dwell time constraint can be satisfied later in Section 5.2.4. Since ϵ, the reference system
(5.2) and the closed-loop system share the same switching signal, the first question to ask
is, if the reference system is stable with the dwell time constraint (5.14)? This is answered
by the following lemma.

Lemma 5.2. The reference system (5.2) satisfying (5.3) is stable with the dwell time con-
straint (5.14) and h satisfying h < 1

2 mini∈I
λmin(Qi)
λmax(Pi) .

Proof. Consider the Lyapunov function Vm = xT
m(∑s

i=1 χiPi)xm for the homogeneous part
of (5.2). The increment of Vm at each switching instant satisfies Vm(tk) ≤ µVm(t−

k ). In the
interval t ∈ [tk−1, tk), k ∈ N+, we have V̇m ≤ −αmVm with

αm = min
i∈I

λmin(Qi)
λmax(Pi)

. (5.24)

If the switching satisfies tk − tk−1 > ln µ
αm

, ∀k ∈ N+, the homogeneous system ẋm = Amxm

is exponentially stable and the stability of the reference system (5.2) can be concluded for
bounded input r [65, 112]. Since h < 1

2 mini∈I
λmin(Qi)
λmax(Pi) , we have h − l < h < 1

2αm. This
together with µ > 1 leads to

TD > τD >
2

αm

ln
√

µρ∞ − g
h

√
µ

ρ∞ − g
h

√
µ

>
2

αm

ln
√

µ(ρ∞ − g
h
)

ρ∞ − g
h

= ln µ

αm

. (5.25)

So this tells that the reference system is stable and xm ∈ L∞ if the dwell time constraint
(5.14) is satisfied.

5.2.2 Adaptation Laws
Based on the auxiliary performance bound proposed in Section 5.2.1, we define the following
generalized restricted potential function (barrier Lyapunov function) ϕ : R+ → R+

ϕ(∥e∥P ) = ∥e∥2
P

ϵ2(t) − ∥e∥2
P

, ∥e∥P < ϵ(t) (5.26)

with P = ∑s
i=1 χi(t)Pi. Since ∥e∥2

P and ϵ2(t) are piecewise continuous and piecewise differen-
tiable, the partial derivative of ϕ with respect to ∥e∥2

P over the time interval [tk, tk+1), k ∈ N
takes the form

ϕd(∥e∥P ) ≜ ∂ϕ

∂∥e∥2
P

= ϵ2(t)
(ϵ2(t) − ∥e∥2

P )2 > 0. (5.27)

ϕ and ϕd have the property that 2ϕd(∥e∥P )∥e∥2
P − ϕ > 0.

The direct adaptation laws of the estimated controller gains are given as

K̇xi = −χiΓxiϕd(∥e∥P )ST
i BT

miPiexT ,
K̇ri = −χiΓriϕd(∥e∥P )ST

i BT
miPierT ,

K̇fi = −χiΓfiϕd(∥e∥P )ST
i BT

miPie

(5.28)

where Γxi, Γri, Γfi ∈ R+ are positive scaling factors. Si ∈ Rp×p is a matrix such that there
exists a symmetric and positive definite matrix Mi ∈ Rp×p with (K∗

riSi)−1 = Mi. Here we
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make the usual assumption that Si is known. The use of the indicator functions χi(t) in the
adaptation laws (5.28) implies that the controller gains associated with a certain subsystem
are updated only when this subsystem is activated. Their adaptation terminates and their
values stay unchanged during the inactive phase of the corresponding subsystem. Note that
ϕd in (5.28) can also be viewed as an error-dependent gain, whose effect can be weakened
or amplified by tuning the constant gains Γxi, Γri, Γfi. They are chosen by trial and error
in the simulation. If Γxi, Γri, Γfi are too small, the effect of ϕd on the adaptation speeds
K̇xi, K̇ri, K̇fi is weakened. Consequently, ϕ and ϕd may have every small denominators and
become ill-conditioned. If Γxi, Γri, Γfi are too large, the differential equations may become
“stiff” and difficult to solve numerically.

5.2.3 Stability Analysis
The tracking performance and the stability of the closed-loop system are summarized in the
following theorem.

Theorem 5.1. Given the reference PWA system (5.2) satisfying (5.3) and the predefined
performance function (5.8), let the PWA system (5.1) with known regions Ωi, i ∈ I and
unknown subsystem parameters Ai, Bi, fi, i ∈ I be controlled by the feedback controller (5.6)
with the adaptation laws (5.28). Let the initial state of ϵ satisfy ∥e(t0)∥P < ϵ(t0). The
closed-loop system is stable and the state tracking error e(t) fulfills the prescribed performance
constraint (5.9) if the time constant h in (5.12) satisfies

h <
1
2 min

i∈I

λmin(Qi)
λmax(Pi)

(5.29)

and if the switching signal of the controlled PWA system obeys the dwell time constraint in
(5.14).

Proof. Without loss of generality, we let the scaling factors in (5.28) be 1. Consider the
following Lyapunov function

V = ϕ(∥e∥P ) +
s∑

i=1
(tr(K̃T

xiMiK̃xi) + tr(K̃T
riMiK̃ri) + K̃T

fiMiK̃fi)︸ ︷︷ ︸
≜VK

. (5.30)

V is piecewise continuous and piecewise differentiable. In particular, V is continuous and
differentiable in between any two consecutive switching instants [tk−1, tk), k ∈ N+ (including
t0 for the initial instant), while it is non-differentiable and (possibly) discontinuous at each
switching instant tk, k ∈ N+. The mixture of the continuous evolution and the discontinuous
jumps of V constitutes the main challenge of the stability analysis of switched systems.
The overall idea is to prove V̇ ≤ 0 in between switches and evaluate the incremental or
decremental jumps at each switching instant. First of all, we would like to study the evolution
of V in the continuous phase (named phase 1 ), namely, in between two consecutive switches:

phase 1: t ∈ [tk−1, tk), k ∈ N+

V is continuous in the intervals between two successive switches. Without loss of gener-
ality, we suppose that the i-th subsystem is activated for t ∈ [tk−1, tk) and e(tk−1) satisfies
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∥e(tk−1)∥Pi
< ϵ(tk−1). The time-derivative of V in [tk−1, tk) is given by

V̇ = ϕ̇(∥e∥Pi
) + 2

s∑
i=1

(tr(K̃T
xiMi

˙̃Kxi) + tr(K̃T
riMi

˙̃Kri) + K̃T
fiMi

˙̃Kfi). (5.31)

First, we simplify the second term of V̇ . Taking the adaptation laws (5.28) into the first
summand of the second term of V̇ gives

tr(K̃T
xiMi

˙̃Kxi) = −χiϕdtr(K̃T
xiMiS

T
i BT

miPiexT ). (5.32)

Since (K∗
riSi)−1 = Mi and BiK

∗
ri = Bmi, we have MiS

T
i BT

mi = MiS
T
i (BiK

∗
ri)T = MiM

−1
i BT

i =
BT

i , which further gives

tr(K̃T
xiMi

˙̃Kxi) = −χiϕdtr(K̃T
xiB

T
i PiexT ) = −χiϕdtr(xeT PiBiK̃xi)

= −χiϕdtr(eT PiBiK̃xix) = −χiϕdeT PiBiK̃xix.
(5.33)

Doing the same simplification for tr(K̃T
riMi

˙̃Kri) and K̃T
fiMi

˙̃Kfi we have

2
s∑

i=1
(tr(K̃T

xiMi
˙̃Kxi) + tr(K̃T

riMi
˙̃Kri) + K̃T

fiMi
˙̃Kfi) = −2

s∑
i=1

χiϕdeT PiBi(K̃xix + K̃rir + K̃fi).

ϕ̇ can be further simplified as

ϕ̇ = ∂ϕ

∂∥e∥2
Pi

d∥e∥2
Pi

dt
+ ∂ϕ

∂ϵ
ϵ̇ = 2ϕd(∥e∥Pi

)eT Piė + ∂ϕ

∂ϵ
ϵ̇. (5.34)

Substituting ė with (5.7) yields

ϕ̇ = ϕd(eT (AT
mPi + PiAm)e + 2eT Pi

s∑
i=1

χiBi(K̃xix + K̃rir + K̃fi)) + ∂ϕ

∂ϵ
ϵ̇

= −ϕdeT Qie + 2
s∑

i=1
χiϕdeT PiBi(K̃xix + K̃rir + K̃fi) + ∂ϕ

∂ϵ
ϵ̇.

(5.35)

Therefore, V̇ can be simplified as

V̇ = −ϕdeT Qie + ∂ϕ

∂ϵ
ϵ̇ (5.36)

with
∂ϕ

∂ϵ
ϵ̇ =

−2ϵ∥e∥2
Pi

(ϵ2 − ∥e∥2
Pi

)2 ϵ̇ = −2ϕd(∥e∥Pi
)∥e∥2

Pi

ϵ̇

ϵ
≤ 2ϕd(∥e∥Pi

)∥e∥2
Pi

|ϵ̇|
ϵ

. (5.37)

Invoking Lemma 5.1, we have ϵ(t) ≥ g
h
, ∀t ∈ [t0, ∞). Therefore,

|ϵ̇|
ϵ

= hϵ − g

ϵ
= h − g

ϵ
≤ h, (5.38)

which leads to
∂ϕ

∂ϵ
ϵ̇ ≤ 2hϕd(∥e∥Pi

)∥e∥2
Pi

. (5.39)
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Taking this into (5.36) yields

V̇ ≤ −ϕd|e|2λmin(Qi) + 2hϕd|e|2λmax(Pi) = −ϕd|e|2(λmin(Qi) − 2hλmax(Pi)). (5.40)

From the condition (5.29) it follows λmin(Qi) − 2hλmax(Pi) > 0, which together with the
property 2ϕd(∥e∥P )∥e∥2

P − ϕ > 0 gives

V̇ ≤ −λmin(Qi) − 2hλmax(Pi)
2λmax(Pi)

ϕ ≤ 0. (5.41)

The fact V̇ ≤ 0 in intervals [tk−1, tk), k ∈ N+ implies that the Lyapunov function decreases
between two consecutive switches. ϕ and ϕd are bounded in [tk−1, tk). Since ∥e(tk−1)∥Pi

<
ϵ(tk−1), we have ∥e(t)∥Pi

< ϵ(t) for ∀t ∈ [tk−1, tk).
The property V̇ ≤ 0 for each [tk−1, tk) does not imply the global stability of the closed-loop

system over the whole t ∈ [t0, ∞). It is necessary to evaluate the discontinuity of V at each
switching instant (phase 2 ):

phase 2: jump at switch instant tk, k ∈ N+

Now we analyse the behavior of the Lyapunov function at the switching time instants.
Suppose that i-th subsystem is activated in [tk−1, tk) and j-th subsystem is activated in
[tk, tk+1), where i, j ∈ I, i ̸= j. From the adaptation laws of the estimated controller gains
(5.28), we see that the estimated controller gains are continuous, i.e., K̃xi(tk) = K̃xi(t−

k ),
K̃ri(tk) = K̃ri(t−

k ) and K̃fi(tk) = K̃fi(t−
k ) for ∀i ∈ I, from which it follows VK(t−

k ) = VK(tk).
To study the relationship between V (tk) and V (t−

k ), it remains to analyse ϕ(∥e(tk)∥P ) and
ϕ(∥e(t−

k )∥P ). Since e(t) is also continuous, e(tk) = e(t−
k ). This results in

∥e(tk)∥2
P = eT (tk)Pje(tk) ≤ λmax(Pj)|e(tk)|2 ≤ λmax(Pj)

λmin(Pi)
eT (tk)Pie(tk)

= λmax(Pj)
λmin(Pi)

∥e(t−
k )∥2

P ≤ µ∥e(t−
k )∥2

P .
(5.42)

From the analysis of phase 1, we already know that ∥e(t−
k )∥P < ϵ(t−

k ). ϵ is reset at tk and
we have

∥e(tk)∥P ≤ √
µ∥e(t−

k )∥P <
√

µϵ(t−
k ) = ϵ(tk), (5.43)

which makes the potential function ϕ(∥e(tk)∥P ) also valid at tk. Recalling the dynamics of
ϵ (5.12) and the above inequalities (5.42), we have

ϕ(∥e(tk)∥P ) = ∥e(tk)∥2
P

ϵ2(tk) − ∥e(tk)∥2
P

≤ µ∥e(t−
k )∥2

P

ϵ2(tk) − µ∥e(t−
k )∥2

P

= µ∥e(t−
k )∥2

P

µϵ2(t−
k ) − µ∥e(t−

k )∥2
P

= ϕ(∥e(t−
k )∥P ).

(5.44)

Combining the facts ϕ(∥e(tk)∥P ) ≤ ϕ(∥e(t−
k )∥P ) and VK(t−

k ) = VK(tk), we have

V (tk) = ϕ(∥e(tk)∥P ) + VK(tk) ≤ ϕ(∥e(t−
k )∥P ) + VK(t−

k ) = V (t−
k ). (5.45)

Therefore, the Lyapunov function is non-increasing at every switching time instant. This
together with the fact V̇ ≤ 0 in [tk−1, tk) for ∀k ∈ N+ implies that V (t) is non-increasing
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for ∀t ∈ [t0, ∞). The discontinuity of the Lyapunov function does not introduce extra dwell
time constraints.

Combining the analysis of phase 1 and phase 2, we have ϕ, K̃xi, K̃ri, K̃fi ∈ L∞, which
further leads to Kxi, Kri, Kfi ∈ L∞. Besides, ∥e(t)∥P < ϵ(t) < ρ(t) holds for ∀t ∈ [t0, ∞)
and ϕd ∈ L∞.

Invoking Lemma 5.2 we have xm ∈ L∞. This property and ∥e(t)∥P < ϵ(t) < ρ(t) lead to
x ∈ L∞, which together with r, ϕd ∈ L∞ implies K̇xi, K̇ri, K̇fi ∈ L∞.

Theorem 5.1 shows the tracking performance and the stability of the closed-loop system
under the dwell time constraint (5.14). Now we study the case with arbitrary switching.
For the PWA reference systems with common Lyapunov matrix P , i.e., if positive definite
matrices P and Qi, i ∈ I exist such that

AT
miP + PAmi = −Qi, i ∈ I, (5.46)

the error metric ∥e(t)∥P exhibits no jumps at the switching instants. We can construct the
potential function with the user-defined performance function directly

ϕ0(∥e∥P ) = ∥e∥2
P

ρ2(t) − ∥e∥2
P

, ∥e∥P < ρ(t). (5.47)

Corollary 5.1. For the reference PWA system (5.2) with a common Lyapunov matrix P ,
if the adaptation laws

K̇xi = −χiϕd0S
T
i BT

miPexT , K̇ri = −χiϕd0S
T
i BT

miPerT , K̇fi = −χiϕd0S
T
i BT

miPe (5.48)

are used with ϕd0 ≜ ∂ϕ0
∂∥e∥2

P
, and if the decaying rate of ρ satisfies

l <
1
2 min

i∈I

λmin(Qi)
λmax(P ) , (5.49)

the closed-loop system is stable under arbitrary switching and the state tracking error e(t)
satisfies the prescribed performance guarantees (5.9).
Proof. We propose the following CLF

V = ϕ0(∥e∥P ) +
s∑

i=1
(tr(K̃T

xiMiK̃xi) + tr(K̃T
riMiK̃ri) + K̃T

fiMiK̃fi). (5.50)

V is continuous not only within each interval [tk, tk+1), k ∈ N but also at switch instants
tk, k ∈ N+. Taking its time derivative and inserting (5.48) and (5.7), we obtain

V̇ = −ϕd0e
T (

s∑
i=1

χiQi)e + ∂ϕ0

∂ρ
ρ̇. (5.51)

Since ∂ϕ0
∂ρ

ρ̇ ≤ 2ϕd0(∥e∥P )∥e∥2
P

|ρ̇|
ρ

and |ρ̇|
ρ

≤ l, we have

V̇ ≤ −ϕd0|e|2 min
i∈I

λmin(Qi) + 2lϕd0|e|2λmax(P ) ≤ −mini∈I λmin(Qi) − 2lλmax(P )
2λmax(P ) ϕ0 ≤ 0

given that (5.49) holds. V̇ ≤ 0 is negative semidefinite. Therefore, we have ϕ0, K̃xi, K̃ri, K̃fi ∈
L∞ for arbitrary switching. The boundedness of K̃xi, K̃ri, K̃fi implies Kxi, Kri, Kfi ∈ L∞.
Furthermore, ∥e(t)∥P < ρ(t) holds for ∀t ∈ [t0, ∞). This leads to x ∈ L∞ and ϕd0 ∈ L∞,
which together with r ∈ L∞ implies that K̇xi, K̇ri, K̇fi ∈ L∞.
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5 Adaptive Control of PWA Systems with State Performance Guarantees

It is worth comparing the proposed method with other control approaches for switched
systems with performance guarantees. The bang-bang funnel controller [94] enforces the
output tracking error of systems, which can be transformed into Byrnes-Isidori normal form,
within a predefined funnel. The backstepping-based approaches can achieve output tracking
with performance guarantees for systems with special structures (strict-feedback form [22,
177] and non-strict-feedback form [91]). In contrast, our approach achieves performance-
guaranteed full state tracking without special structural requirements provided that the
matching conditions (5.5) hold. Nevertheless, extra efforts are needed in our case for the
design of auxiliary performance bound to bypass the barrier transgression problem. The
fault-tolerant approach [179] solves the barrier transgression problem by modifying the per-
formance function when actuator failure occurs. Compared to this concept, our method
imposes the auxiliary performance bound with certain dwell time constraints such that the
modification of the original performance function ρ(t) is not necessary.
Remark 5.2. The classical MRAC approaches for switched systems [83, 137, 166] (see also
the review in Section 2.2) suggest using eT (∑s

i=1 χiPi)e as the error-related term (the first
summand) of the Lyapunov function V . This leads to potential increases of V at switching
instants. The dwell time constraints are then derived by formulating an inequality in form
of V̇ < −αV + β for some constant α, β > 0 to keep V exponentially decreasing in between
the switches. To achieve this, the projection operator needs to be introduced (see Theorem
2.7 as well as work by Wu and Zhao [166]) or the input signal must be PE (see Theorem
2.5) in the disturbance-free case. One key feature of our approach is that the Lyapunov
function V is non-increasing even at the switching instants and does not impose extra dwell
time constraints. This omits the need for introducing the projection or the PE condition in
the disturbance-free case.
Remark 5.3. The non-increasing property at switching instants of Lyapunov functions is also
achieved in the recently proposed adaptive control approaches for switched systems [173,
175], which employ time-varying gains for adaptation laws. These time-varying gains are
either obtained by interpolating a set of pre-calculated Pi,k matrices satisfying certain linear
matrix inequalities [173] or generated by an auxiliary piecewise continuous dynamical system
[175]. Compared to these approaches, our method can be viewed as an error-dependent
dynamic gain approach (see ϕd in adaptation laws (5.28)) and endows the closed-loop system
with a user-defined performance guarantee.
Remark 5.4. Introducing the auxiliary performance bound ϵ has the advantage that the
barrier transgression problem can be avoided. Nevertheless, this imposes one technical chal-
lenge: how its parameters are related to the dwell time constraint and the system stability.
We resolve this challenge by deriving a novel dwell time constraint in terms of the parame-
ters of ϵ in Lemma 5.1, which differs from the existing dwell time constraints [105, 114] and
proving that the resulted Lyapunov function does not impose extra dwell time constraints.

5.2.4 Independent Switching
So far, the theoretical results are obtained with the assumption that the reference PWA
system (5.2) and the controlled PWA system (5.1) switch synchronously, where the switches
depend on the state of the controlled PWA system. To show how the dwell time constraint
(5.14) can be satisfied, we consider a more general case, where the reference PWA system
switches based on its own state space partitions xm ∈ {Ω∗

i }s∗
i=1. For x ∈ Ωi and xm ∈
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t0

ť1 ť2 ť3

t̂1 t̂2

x ∈ Ω1 x ∈ Ω2 x ∈ Ω1 x ∈ Ω2

xm ∈ Ω∗
2 xm ∈ Ω∗

1

t

switching instants of reference system

switching instants of controlled system

K12 K22 K21 K11 K21 switches of gains

P (t) = P2 P (t) = P1

ϵ(t)

Figure 5.3: Reset of ϵ(t) for independent switching of the reference PWA system and the controlled PWA
system. Switching instants of the reference PWA system and the controlled PWA system are
displayed in red and blue, respectively. The value of P (t) and the reset of ϵ(t) depend on the
switches of the reference PWA system t̂1, t̂2, which can be pre-determined and checked when
designing the reference system and the reference input. The switching of the controlled PWA
system (see e.g. ť2, ť3), which cannot be determined in advance, does not affect the value
of P (t). So even when the controlled PWA system switches within the interval [t̂1, t̂2), the
analysis of the closed-loop stability in this interval can be conducted with a common Lyapunov
function framework based on Corollary 5.1 with ϵ being the jump-free barrier.

Ω∗
j , a set of controllers Kxij, Krij, Kfij is activated for adaptations, whose nominal values

K∗
xij, K∗

rij, K∗
fij satisfy the matching equations for {Ai, Bi, fi} and {Amj, Bmj, fmj}. At the

switching instants {t̂k}k∈N+ of the reference PWA system, i.e., x(t̂−
k ) and x(t̂k) ∈ Ωi, xm(t̂−

k ) ∈
Ωj, xm(t̂k) ∈ Ωl, j ̸= l, we have P (t̂−

k ) = Pj, P (t̂k) = Pl. The reset of ϵ is triggered; At the
switching instants {ťk}k∈N+ of the controlled PWA system, i.e., x(ť−

k ) ∈ Ωi, x(ťk) ∈ Ωl, i ̸=
l, xm(ť−

k ) and xm(ťk) ∈ Ωj, we have a common P (ť−
k ) = P (ťk) = Pj. ϵ is not reset at ťk.

So within each interval [t̂k−1, t̂k), the analysis follows a common Lyapunov setting shown in
Corollary 5.1; Over the whole time interval ∪k[t̂k−1, t̂k), the stability argumentation follows
Theorem 5.1. The above analysis shows that only {t̂k}k∈N+ of the reference system have
to satisfy the dwell time constraint. Since the reference PWA system is designed by the
user, the dwell time constraint can be fulfilled by properly designing the reference input and
the reference PWA system offline and can be checked in advance. Fig. 5.3 also provides a
graphical illustration of the above explanations.

5.3 Indirect Adaptive Control Design: Variant 1
The core idea of the direct MRAC for PWA systems with state tracking performance guar-
antees proposed in the previous section lies in the use of the barrier function (5.26) to replace
the conventional quadratic error term eT (∑s

i=1 χiPi)e (see e.g. the conventional Lyapunov
function (18) in [137]), which may exhibit incremental jump behavior at switching instants.
In this section, we explore the indirect counterpart of this method. A natural idea is to
inherit the barrier function concept to replace the quadratic prediction error term of the
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5 Adaptive Control of PWA Systems with State Performance Guarantees

Lyapunov function of the indirect adaptation case (see (2.35)). As it will show later in this
section, this idea would not guarantee the constraint on the state tracking performance to be
satisfied. Nevertheless, compared with other indirect MRAC approaches ([83, Thm. 3] and
the approach shown in Chapter 3), where the existence of a CLF is required, the approach
presented in this section fills the theoretical gap of the indirect adaptive control of PWA
systems in the MLF setting with provable stability guarantee. Based on the result presented
in this section, we will further present an alternative to fulfill the state tracking performance
constraint in Section 5.4.

5.3.1 Adaptation Laws
Assume that for the reference system (5.2), there exist positive definite matrices Pi, Qi ∈
Rn×n, i ∈ I such that

AT
miPi + PiAmi + 2hPi = −Qi, i ∈ I (5.52)

where the positive constant h ∈ R+ is defined in (5.12). In indirect adaptive control, the
unknown system parameters need to be identified while tackling the tracking task. So recall
that Âi, B̂i, f̂i denote the estimated values of Ai, Bi and fi. The estimated parameters are
updated based on the state information x and the predicted state, denoted by x̂ ∈ Rn, whose
dynamics can be written as

˙̂x = Amx̂ +
s∑

i=1
((Âi − Ami)x + B̂iu + f̂i)χi. (5.53)

Define Ãi = Âi − Ai, B̃i = B̂i − Bi, and f̃i = f̂i − fi to be the parameter estimation errors.
By (5.1) and (5.53) we obtain

˙̃x = Amx̃ +
s∑

i=1
(Ãix + B̃iu + f̃i)χi (5.54)

with x̃ = x̂ − x representing the state prediction error. Equation (5.54) relates x̃ with the
parameter estimation errors Ãi, B̃i, f̃i.

Before we derive the adaptation laws for parameters and control gains, we first define the
prediction error metric

∥x̃∥P = x̃T (
s∑

i=1
χiPi)x̃. (5.55)

∥x̃∥P is piecewise continuous and piecewise differentiable. Moreover, the following property
holds at each switching instant tk

∥x̃(tk)∥2
P ≤ µ∥x̃(t−

k )∥2
P , with µ = max

i,j∈I

λmax(Pj)
λmin(Pi)

. (5.56)

λmax(·) and λmin(·) denotes the maximum and minimum eigenvalue of a symmetric matrix,
respectively. Next, we define the following generalized restricted potential function (barrier
Lyapunov function) ϕ : R+ → R+ on the domain Dϵ(t) = {x̃ | ∥x̃∥P ∈ [0, ϵ(t))}

ϕ(∥x̃∥P ) = ∥x̃∥2
P

ϵ2(t) − ∥x̃∥2
P

, (5.57)

78



5.3 Indirect Adaptive Control Design: Variant 1

where ϵ(t), as the “barrier” of ϕ, is the time-varying piecewise continuous signal we used
for the direct adaptation generated by the dynamics (5.12) with h satisfying (5.52). At
each switching instant tk, ϵ is reset by the reset map ϵ(tk) = √

µϵ(t−
k ). Considering the

jump of ∥x̃∥P at tk shown in (5.56), the reset map of ϵ guarantees ∥x̃(tk)∥P < ϵ(tk) if
∥x̃(t−

k )∥P < ϵ(t−
k ), i.e., the increment of ∥x̃∥P at switching instants will not lead to invalidity

of ϕ(∥x̃∥P ).
In every interval between two successive switching instants [tk, tk+1), k ∈ N+, ϕ is differ-

entiable and its partial derivative with respect to ∥x̃∥2
P is

ϕd(∥x̃∥P ) ≜ ∂ϕ

∂∥x̃∥2
P

= ϵ2(t)
(ϵ2(t) − ∥x̃∥2

P )2 > 0 (5.58)

Furthermore, ϕ and ϕd have the relation that 2ϕd(∥x̃∥P )∥x̃∥2
P − ϕ > 0.

The indirect adaptation laws for estimated system parameters and control gains are again
based on dynamic gain adjustment technique, which has been exploited in Chapter 3 and
Chapter 4. Define the closed-loop estimation errors

εAi = Âi + B̂iKxi − Ami, εBi = B̂iKri − Bmi, εfi = f̂i + B̂iKfi − fmi. (5.59)

The adaptation of control gains is driven by these closed-loop estimation errors

K̇xi = −ST
i BT

miεAi, K̇ri = −ST
i BT

miεBi, K̇fi = −ST
i BT

miεfi, (5.60)

where Si, i ∈ I are known matrices such that K∗
riSi are symmetric and positive definite.

On the other hand, the estimation of system parameters is adjusted based on closed-loop
estimation errors, the state prediction error x̃, the state x, and input u. Specifically,

˙̂
Ai = −χiϕd(∥x̃∥P )Pix̃xT − εAi,
˙̂

Bi = −χiϕd(∥x̃∥P )Pix̃uT − εAiK
T
xi − εBiK

T
ri − εfiK

T
fi,

˙̂
fi = −χiϕd(∥x̃∥P )Pix̃ − εfi.

(5.61)

In (5.61), the partial derivative ϕd(∥x̃∥P ) is used as a time-varying gain of the first summand
of each adaptation law, which differs from the classical adaptation laws (see (2.34)). Such
arrangement as well as the adaptation of control gains (5.60) are suggested by Lyapunov-
based stability analysis, which is shown in the next section.

5.3.2 Stability Analysis
We start by exploring under which condition the auxiliary “barrier” signal ϵ(t) is bounded.
Unlike the fixed dwell time constraint introduced in Lemma 5.1, we explore here an average
dwell time constraint, which is summarized in the following lemma.

Lemma 5.3. Given the piecewise continuous signal ϵ(t) defined in (5.12), if the number
of switches within an interval (τ , t), denoted by N(t, τ), satisfies N(t, τ) ≤ N0 + t−τ

τ ′
D

with
N0 = 2α

lnµ
and τ ′

D = lnµ
2(h−l) for any positive constants α ∈ R+, l ∈ (0, h), then ϵ(t) is bounded.
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Proof. For an arbitrary time interval [t0, t) containing the number of switches N(t, t0) = k,
namely, t0 < t1 < · · · < tk < t, k ∈ N+, we have

ϵ(t) = ϵ(tk)e−h(t−tk) +
∫ t

tk

ge−h(t−τ)dτ

= √
µϵ(t−

k )e−h(t−tk) +
∫ t

tk

ge−h(t−τ)dτ .
(5.62)

Replacing ϵ(t−
k ) in (5.62) with

ϵ(t−
k ) = ϵ(tk−1)e−h(tk−tk−1) +

∫ t−
k

tk−1
ge−h(tk−τ)dτ (5.63)

leads to

ϵ(t) = µ
1
2 ϵ(tk−1)e−h(t−tk−1) + µ

1
2

∫ t−
k

tk−1
ge−h(t−τ)dτ +

∫ t

tk

ge−h(t−τ)dτ .

Recursively doing the same derivation shown above yields

ϵ(t) = µ
k
2 ϵ(t0)e−h(t−t0) + µ

k
2

∫ t−
1

t0
ge−h(t−τ)dτ

+ µ
k−1

2

∫ t−
2

t1
ge−h(t−τ)dτ + · · · + µ

0
2

∫ t

tk

ge−h(t−τ)dτ .

Note that k = N(t, t0), k − 1 = N(t, t1), etc. Therefore,

ϵ(t) = µ
N(t,t0)

2 ϵ(t0)e−h(t−t0) + µ
N(t,t0)

2

∫ t−
1

t0
ge−h(t−τ)dτ

+ µ
N(t,t1)

2

∫ t−
2

t1
ge−h(t−τ)dτ + · · · + µ

N(t,tk)
2

∫ t

tk

ge−h(t−τ)dτ .

Since N(t, τ) = N(t, tj) for τ ∈ [tj , tj+1), the µ
N(t,tj )

2 , j ∈ {0, 1, · · · , k} terms can be put into the
integral operators, which yields

ϵ(t) = µ
N(t,t0)

2 ϵ(t0)e−h(t−t0) +
∫ t−

1

t0
ge−h(t−τ)µ

N(t,τ)
2 dτ

+
∫ t−

2

t1
ge−h(t−τ)µ

N(t,τ)
2 dτ + · · · +

∫ t

tk

ge−h(t−τ)µ
N(t,τ)

2 dτ .

Merging all the integral terms yields

ϵ(t) = ϵ(t0)e−h(t−t0)+ N(t,t0)
2 lnµ + g

∫ t

t0
e−h(t−τ)+ N(t,τ)

2 lnµdτ .

To ensure the boundedness of ϵ(t), it suffices to let −h(t − τ) + N(t,τ)
2 lnµ ≤ α − l(t − τ) for some

positive constants α ∈ R+ and l ∈ (0, h). This further leads to

N(t, τ) ≤ N0 + t − τ

τ ′
D

(5.64)

with N0 ≜ 2α
lnµ and τ ′

D ≜ lnµ
2(h−l) .
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The average dwell time means that the switches do not necessarily fulfill a fixed dwell time
constraint but are constrained in an average sense. Despite having the same form as the one
in [65], (5.64) is derived based on the nonautonomous switched system (5.12), where g acts
as a constant input. For nonautonomous switched systems with L2 input, this derivation can
also be adjusted to the H∞ performance analysis [178, 185]. Furthermore, applying Theorem
2 of [65], the reference model (5.2) is stable and xm is bounded under the constraint (5.64).

Theorem 5.2. Consider the reference system (5.2) satisfying (5.52) and the PWA system
(5.1) with known regions Ωi and unknown subsystem parameters Ai, Bi, fi. Let the PWA
system (5.1) be controlled by the adaptive controller (5.6) with adaptation laws (5.59), (5.60),
and (5.61). If ∥x̃(t0)∥P < ϵ(t0) and the switch of the controlled PWA system satisfies the
dwell time constraint (5.64), then the state tracking error e = x − xm → 0 as t → ∞.

Proof. Consider the following candidate Lyapunov function

V = 1
2ϕ(∥x̃∥P ) + 1

2VK + 1
2Vθ

where

VK ≜
s∑

i=1
(tr(K̃T

xiMsiK̃xi) + tr(K̃T
riMsiK̃ri) + K̃T

fiMsiK̃fi)

Vθ ≜
s∑

i=1
(tr(ÃT

i Ãi) + tr(B̃T
i B̃i) + f̃T

i f̃i).

Similar as the proof of Theorem 5.1, we analyse the closed-loop stability with the following
two phases:

phase 1: t ∈ [tk−1, tk), k ∈ N+

Suppose i-th subsystem is activated in the interval [tk−1, tk) and the time-derivative of V
in this interval is

V̇ =1
2 ϕ̇(∥x̃∥Pi

) +
s∑

i=1
(tr(ÃT

i
˙̃Ai) + tr(B̃T

i
˙̃Bi) + f̃T

i
˙̃fi)

+
s∑

i=1
(tr(K̃T

xiMi
˙̃Kxi) + tr(K̃T

riMi
˙̃Kri) + K̃T

fiMi
˙̃Kfi)︸ ︷︷ ︸

≜vk

Considering (5.61), we expand the second summand of V̇ as
s∑

i=1
(tr(ÃT

i
˙̃Ai) + tr(B̃T

i
˙̃Bi) + f̃T

i
˙̃fi)

= − ϕd(tr(ÃT
i Pix̃xT ) + tr(B̃T

i Pix̃uT ) + f̃T
i Pix̃)

−
s∑

i=1
(tr(ÃT

i εAi + B̃T
i (εAiK

T
xi + εBiK

T
ri + εfiK

T
fi)) + f̃T

i εfi)︸ ︷︷ ︸
≜vε

Inserting (5.60) into vk we obtain

vk − vε = −
s∑

i=1
(tr(εT

AiεAi) + tr(εT
BiεBi) + εT

fiεfi).
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Detailed derivations of this step can be found in [83, Sec. IV]. Thus, we have

V̇ =1
2 ϕ̇(∥x̃∥Pi) − ϕd(tr(ÃT

i Pix̃xT ) + tr(B̃T
i Pix̃uT ) + f̃T

i Pix̃)

−
s∑

i=1
(tr(εT

AiεAi) + tr(εT
BiεBi) + εT

fiεfi).
(5.65)

The time-derivative of ϕ can be further simplified as

ϕ̇ = ∂ϕ

∂∥x̃∥2
Pi

d∥x̃∥2
Pi

dt
+ ∂ϕ

∂ϵ
ϵ̇ = 2ϕdx̃T Pi

˙̃x + ∂ϕ

∂ϵ
ϵ̇ (5.66)

Substituting ˙̃x in (5.66) with (5.54) yields

ϕ̇ = ϕdx̃T (AT
miPi + PiAmi)x̃ + 2ϕdx̃T Pi(Ãix + B̃iu + f̃i) + ∂ϕ

∂ϵ
ϵ̇. (5.67)

Inserting (5.67) into (5.65) we obtain after some cancellations

V̇ = 1
2ϕdx̃T (AT

miPi + PiAmi)x̃ + 1
2

∂ϕ

∂ϵ
ϵ̇ −

s∑
i=1

(tr(εT
AiεAi) + tr(εT

BiεBi) + εT
fiεfi).

We know that

∂ϕ

∂ϵ
ϵ̇ =

−2ϵ∥x̃∥2
Pi

(ϵ2 − ∥x̃∥2
Pi

)2 ϵ̇ = −2ϕd∥x̃∥2
Pi

ϵ̇

ϵ
≤ 2ϕd∥x̃∥2

Pi

|ϵ̇|
ϵ

.

From the dynamics of ϵ (5.12) we have |ϵ̇|/ϵ ≤ h, which gives ∂ϕ
∂ϵ

ϵ̇ ≤ 2hϕd∥x̃∥2
Pi

= ϕdx̃T (2hPi)x̃.
This together with (5.52) leads to

V̇ ≤ −1
2ϕdx̃T Qix̃ −

s∑
i=1

(tr(εT
AiεAi) + tr(εT

BiεBi) + εT
fiεfi).

Therefore, V is non-increasing in between two successive switching instants [tk−1, tk), k ∈ N+.
phase 2: jump at switch instant tk, k ∈ N+

Now we analyse the behavior of V at switching instant tk. Without loss of generality,
we suppose that i-th subsystem is activated in [tk−1, tk) and j-th subsystem is activated in
[tk, tk+1), where i, j ∈ I, i ̸= j. From (5.56) we have

ϕ(∥x̃(tk)∥P ) =
∥x̃(tk)∥2

Pj

ϵ2(tk) − ∥x̃(tk)∥2
Pj

≤
µ∥x̃(t−

k )∥2
Pi

ϵ2(tk) − µ∥x̃(t−
k )∥2

Pi

=
µ∥x̃(t−

k )∥2
Pi

µϵ2(t−
k ) − µ∥x̃(t−

k )∥2
Pi

= ϕ(∥x̃(t−
k )∥P ).

Since VK and Vθ remain unchanged at tk, we have V (tk) ≤ V (t−
k ), k ∈ N+.

According to the above analysis, V̇ is negative semidefinite for t ∈ [t0, ∞). Thus, we have
ϕ ∈ L∞, Kxi, Kri, Kfi ∈ L∞, and Âi, B̂i, f̂i ∈ L∞, which, according to the definition (5.59),
leads to εAi, εBi, εfi ∈ L∞. The boundedness of ϕ implies that ∥x̃(t)∥P < ϵ(t) for ∀t ∈ [t0, ∞).
Since ϵ is bounded, we have x̃ ∈ L∞ and ϕd ∈ L∞. Integrating V̇ over [t0, ∞), we obtain
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∫ ∞
t0

V̇ dt = V (∞) − V (t0) ≤ −
∫ ∞

t0
(1

2ϕdx̃T Qix̃ + ∑s
i=1(tr(εT

AiεAi) + tr(εT
BiεBi) + εT

fiεfi))dt.
Because ϕd, V (∞), and V (t0) are bounded, we conclude x̃, εAi, εBi, εfi ∈ L2. Letting εA =∑s

i=1 χiεAi, εB = ∑s
i=1 χiεBi, εf = ∑s

i=1 χiεfi and inserting (5.6) and (5.59) into (5.53) yields

˙̂x = (Am + εA)x̂ − εAx̃ + (Bm − εB)r + fm − εf .

This equation together with stable Am, r ∈ L∞, x̃ ∈ L∞, εAi, εBi, εfi ∈ L∞ ∩ L2 leads to
x̂, x ∈ L∞. According to (5.6) we have u ∈ L∞. Bounded x, u imply bounded ˙̂

Ai, ˙̂
Bi, ˙̂

fi, ˙̃x
and further ε̇Ai, ε̇Bi, ε̇fi ∈ L∞.

Therefore, x̃, εAi, εBi, εfi → 0 as t → ∞. This together with x̂ → xm leads to e → 0 as
t → ∞.

Remark 5.5. Similar to the discussion in Remark 5.2, the indirect adaptive control approach
of this section achieves asymptotic tracking for switched systems without introducing extra
conditions when compared to the classical MLF-based direct adaptive control approaches
for switched systems (see Theorem 2.5 and Theorem 2.7).
Remark 5.6. The conventional MLF concept introduced in [65, 186] does not work for indirect
adaptive control of PWA systems without the CLF. Due to the presence of εAi, εBi, εfi in V̇ ,
the exponential decaying property of V in between successive switches cannot be established.
No dwell time constraint can be found to compensate the increment of V at switches and
the closed-loop stability cannot be obtained (see [83, Thm. 4]). Therefore, the indirect
adaptive control reviewed in Section 2.2.1 and the approach developed in Chapter 3 require
the existence of CLF (Pi = Pj, ∀i ̸= j) to avoid jumps of V at each tk. In contrast, the
proposed Lyapunov function in this section is non-increasing at each switch instant and
provable closed-loop stability can be established without the CLF.

5.3.3 Parameter Convergence
We explore here the parameter convergence property when applying the proposed approach.

Theorem 5.3. Consider the reference system (5.2) satisfying (5.52) and the PWA system
(5.1) with known regions Ωi and unknown subsystem parameters Ai, Bi, fi. Let the PWA
system (5.1) be controlled by the adaptive controller (5.6) with adaptation laws (5.59), (5.60),
and (5.61). Let ∥x̃(t0)∥P < ϵ(t0) and the switch of the controlled PWA system satisfies the
dwell time constraint (5.64). If the input matrices Bi have full column rank, the pairs
(Ami, Bmi) are controllable, the system matrices Ami are invertible, if the reference input r
is sufficiently rich of order n + 1 such that all subsystems are repeatedly activated, then the
state tracking error e → 0 and the estimated parameters Âi, B̂i, f̂i as well as the estimated
gains Kxi, Kri, Kfi converge to their real or nominal values as t → ∞.

Proof. The stability and the asymptotic convergence of e has been proved in Theorem 5.2.
In this proof, we remove the subscript i and let the following steps refer to the activated
subsystem. Since all subsystems are activated intermittently, the convergence of estimated
parameters of all the subsystems can be concluded.

Define θ̃ = vec([Ã B̃ f̃ ]) and Ψu = [xT , uT , 1]T ⊗ In with In ∈ Rn×n being the identity
matrix. From (5.54) and (5.61), we can write the dynamics of the prediction error x̃ and
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parameter estimation error θ̃ in compact form as[ ˙̃x
˙̃θ

]
=

[
Am ΨT

u

−ϕdΨuP 0

] [
x̃

θ̃

]
+

[
0
ε

]
(5.68)

where ε = −vec([εA, εAKT
x +εBKT

r +εfKT
f , εf ]). Define X ≜ [x̃T , θ̃T ]T , we can rewrite (5.68)

as
Ẋ = ĀX + Lx̃ + d, x̃ = CX (5.69)

where
Ā =

[
Am ΨT

u

−ΨuP 0

]
, L =

[
0

(1 − ϕd)ΨuP

]
CT =

[
In

0

]
,

and d = [0, εT ]T . (5.69) reveals that the dynamics of X can be decomposed into a ho-
mogeneous part ĀX, an output injection part Lx̃ and a disturbance term d. It is proved
in Theorem 5.2 that ε → 0 and x̃ → 0 as t → ∞, so Lx̃ → 0, d → 0. We can focus
on proving the convergence property of the homogeneous part of (5.69): Ẋ = ĀX. Let
P̄ = diag{P , In(n+p+1)}. We construct the Lyapunov function V = XT P̄X, whose derivative
along the solution Ẋ = ĀX is given by

V̇ = XT (ĀT P̄ + P̄ Ā)X = −x̃(Q + 2hP )x̃ ≤ −νx̃T x̃

with ν = λmin(Q + 2hP ) ∈ R+. This further leads to V̇ ≤ −νXT CT CX. Invoking Lemma
2 of [83] and considering the conclusion of Theorem 5.2 that e → 0, we have the signal
vector z = [xT , uT , 1]T is PE if the reference signal r is sufficiently rich. Applying Lemma
2.2 we obtain θ̃ → 0 and therefore, Â → A, B̂ → B, f̂ → f as t → ∞. This together with
εA, εB, εf → 0 and Bi having full column rank gives K̃x, K̃r, K̃f → 0 as t → ∞.
Remark 5.7. The challenge of parameter convergence analysis of the barrier function-based
approach proposed in this section lies in the presence of the time-varying gain ϕd in the
joint dynamics of [x̃, θ̃] in (5.68), where the conventional analysis (see Theorem 2.6) cannot
be applied. To bypass this issue, we transform the joint dynamics of [x̃, θ̃] into an output
injection form (5.69), where ϕd is shifted into the injected output x̃. Since x̃ → 0 is proved
in Theorem 5.2, the effect of ϕd on the parameter convergence decays to zero.

5.4 Indirect Adaptive Control Design: Variant 2
Variant 1 shown in the previous section enables the indirect MRAC for PWA systems in the
MLF setting. However, it can only ensure the performance of the prediction error ∥x̃∥P < ϵ
while it can make no statement about the relationship between the error metric of the
tracking error ∥e∥P and the auxiliary performance bound ϵ. To endow the indirect MRAC
of PWA systems with state tracking performance guarantees, we explore an alternative
approach in this section to satisfy the state tracking performance constraint.

5.4.1 Adaptation Laws
The same as Variant 1, we assume that for the reference system (5.2), there exist a set of
positive definite matrices Pi, Qi ∈ Rn×n, i ∈ I such that

AT
miPi + PiAmi + 2hPi = −Qi, i ∈ I (5.70)
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where the positive constant h ∈ R+ is defined in (5.12). We propose the following adaptation
laws for the controller gains

K̇xi = −χiϕd(∥e∥P )ST
i BT

miPiexT − ST
i BT

miεAi,
K̇ri = −χiϕd(∥e∥P )ST

i BT
miPierT − ST

i BT
miεBi,

K̇fi = −χiϕd(∥e∥P )ST
i BT

miPie − ST
i BT

miεfi.
(5.71)

Note that the time-varying gain ϕd in (5.71) refers to ϕd(∥e∥P ) and should be distinguished
from ϕd(∥x̃∥P ) in (5.61). Recall that εAi, εBi, εfi are closed-loop estimation errors

εAi = Âi + B̂iKxi − Ami, εBi = B̂iKri − Bmi, εfi = f̂i + B̂iKfi − fmi. (5.72)

The adaptation laws for the parameter estimation are

˙̂
Ai = −εAi,
˙̂

Bi = −εAiK
T
xi − εBiK

T
ri − εfiK

T
fi,

˙̂
fi = −εfi.

(5.73)

5.4.2 Stability Analysis
The tracking performance and the stability of the closed-loop system using the indirect
adaptive control are summarized in the following theorem.

Theorem 5.4. Given the reference PWA system (5.2) satisfying (5.70) and the prede-
fined performance function (5.8), let the PWA system (5.1) with known regions Ωi, i ∈ I
and unknown subsystem parameters Ai, Bi, fi, i ∈ I be controlled by the feedback controller
(5.6) with the adaptation laws (5.71), (5.72), and (5.73). Let the initial state of ϵ satisfy
∥e(t0)∥P < ϵ(t0). The closed-loop system is stable and the state tracking error e(t) fulfills
the prescribed performance guarantees (5.9) if the time constant h in (5.12) satisfies (5.70)
and if the switching signal of the controlled PWA system obeys the dwell time constraint in
(5.14).

Proof. Consider the following Lyapunov function

V = 1
2ϕ(∥e∥P ) + 1

2VK + 1
2Vθ. (5.74)

with

VK ≜
s∑

i=1
(tr(K̃T

xiMsiK̃xi) + tr(K̃T
riMsiK̃ri) + K̃T

fiMsiK̃fi)

Vθ ≜
s∑

i=1
(tr(ÃT

i Ãi) + tr(B̃T
i B̃i) + f̃T

i f̃i).

Similar to the proof of Theorem 5.1, the stability analysis can be divided into two phases:
phase 1: t ∈ [tk−1, tk), k ∈ N+
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Suppose that the i-th subsystem is activated for t ∈ [tk−1, tk) and e(tk−1) satisfies the
inequality ∥e(tk−1)∥Pi

< ϵ(tk−1). The time-derivative of V in [tk−1, tk) is given by

V̇ = 1
2 ϕ̇(∥e∥Pi

) +
s∑

i=1
(tr(K̃T

xiMi
˙̃Kxi)+tr(K̃T

riMi
˙̃Kri) + K̃T

fiMi
˙̃Kfi)

+
s∑

i=1
(tr(ÃT

i
˙̃Ai) + tr(B̃T

i
˙̃Bi) + f̃T

i
˙̃fi).

(5.75)

Taking the adaptation laws (5.71) into the second summand of (5.75) gives
s∑

i=1
(tr(K̃T

xiMi
˙̃Kxi) + tr(K̃T

riMi
˙̃Kri) + K̃T

fiMi
˙̃Kfi)

= −
s∑

i=1
χiϕdeT PiBi(K̃xix + K̃rir + K̃fi) +

s∑
i=1

(−tr(K̃T
xiB

T
i εAi) − tr(K̃T

riB
T
i εBi) − K̃T

fiB
T
i εfi)︸ ︷︷ ︸

≜vk

.

(5.76)

Inserting the adaptation laws (5.73) into the third summand of (5.75) yields
s∑

i=1
(tr(ÃT

i
˙̃Ai) + tr(B̃T

i
˙̃Bi) + f̃T

i
˙̃fi)

= −
s∑

i=1
(tr(ÃT

i εAi
+ B̃T

i (εAiK
T
xi + εBiK

T
ri + εfiK

T
fi)) + f̃T

i εfi) ≜ −vε.
(5.77)

Note that
vk − vε = −

s∑
i=1

(tr(εT
AiεAi) + tr(εT

BiεBi) + εT
fiεfi). (5.78)

Detailed derivations of this step can again be found in [83, Sec. IV]. Therefore, (5.75) can
be rewritten as

V̇ = 1
2 ϕ̇(∥e∥Pi

) −
s∑

i=1
χiϕdeT PiBi(K̃xix + K̃rir + K̃fi) + vk − vε

= 1
2 ϕ̇(∥e∥Pi

) −
s∑

i=1
χiϕdeT PiBi(K̃xix + K̃rir + K̃fi) −

s∑
i=1

(tr(εT
AiεAi) + tr(εT

BiεBi) + εT
fiεfi).

Following the same derivation as (5.34) and (5.35), ϕ̇ can be further simplified as

ϕ̇ = −ϕdeT (AT
miPi + PiAmi)e + 2

s∑
i=1

χiϕdeT PiBi(K̃xix + K̃rir + K̃fi) + ∂ϕ

∂ϵ
ϵ̇. (5.79)

Therefore, V̇ can be further simplified as

V̇ = −1
2ϕdeT (AT

miPi + PiAmi)e −
s∑

i=1
(tr(εT

AiεAi) + tr(εT
BiεBi) + εT

fiεfi) + 1
2

∂ϕ

∂ϵ
ϵ̇ (5.80)

Because ∂ϕ
∂ϵ

ϵ̇ ≤ 2hϕd(∥e∥Pi
)∥e∥2

Pi
= ϕd(∥e∥Pi

)eT (2hPi)e (see (5.39)), inserting (5.70) into
(5.80) we have

V̇ ≤ −1
2ϕdeT Qie −

s∑
i=1

(tr(εT
AiεAi) + tr(εT

BiεBi) + εT
fiεfi). (5.81)
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Therefore, V decreases between two consecutive switches. ϕ and ϕd are bounded in [tk−1, tk).
Since ∥e(tk−1)∥Pi

< ϵ(tk−1), we have ∥e(t)∥Pi
< ϵ(t) for ∀t ∈ [tk−1, tk).

phase 2: jump at switch instant tk, k ∈ N+

As the estimated controller gains and estimated parameters are continuous, we have
VK(t−

k ) = VK(tk) and Vθ(t−
k ) = Vθ(tk). Similar as the analysis of phase 2 in Theorem

5.1, we have V (tk) ≤ V (t−
k ).

Therefore, the Lyapunov function is non-increasing at every switching time instant. This
together with the fact V̇ ≤ 0 in [tk−1, tk) for ∀k ∈ N+ implies that V (t) is non-increasing
for ∀t ∈ [t0, ∞). This leads to ϕ, K̃xi, K̃ri, K̃fi ∈ L∞, and Ãi, B̃i, f̃i ∈ L∞, which further
leads to Kxi, Kri, Kfi ∈ L∞, Âi, B̂i, f̂i ∈ L∞ and ė ∈ L∞. Besides, ∥e(t)∥P < ϵ(t) < ρ(t)
holds for ∀t ∈ [t0, ∞). Since ϵ is bounded, e ∈ L∞, ϕd ∈ L∞. Integrating V̇ over [t0, ∞), we
obtain

∫ ∞
t0

V̇ dt = V (∞)−V (t0) ≤ −
∫ ∞

t0
(1

2ϕdeT Qie+∑s
i=1(tr(εT

AiεAi)+tr(εT
BiεBi)+εT

fiεfi))dt.
Because ϕd, V (∞), and V (t0) are bounded, we conclude e, εAi, εBi, εfi ∈ L2. Recall that
xm ∈ L∞. This property and ∥e(t)∥P < ϵ(t) < ρ(t) lead to x ∈ L∞, which together
with r, ϕd ∈ L∞ implies K̇xi, K̇ri, K̇fi ∈ L∞, ˙̂

Ai, ˙̂
Bi, ˙̂

fi ∈ L∞ and u ∈ L∞. This further
leads to ε̇Ai, ε̇Bi, ε̇fi ∈ L∞, which together with e, εAi, εBi, εfi ∈ L∞ ∩ L2 leads to e → 0,
εAi, εBi, εfi → 0 as t → ∞.

5.4.3 Parameter Convergence

The parameter convergence property of Variant 2 is summarized in the following theorem.

Theorem 5.5. Consider the reference system (5.2) satisfying (5.70) and the PWA system
(5.1) with known regions Ωi and unknown subsystem parameters Ai, Bi, fi. Let the PWA
system (5.1) be controlled by the adaptive controller (5.6) with adaptation laws (5.71), (5.72),
and (5.73). Let the initial state of ϵ satisfy ∥e(t0)∥P < ϵ(t0). If the input matrices Bi have full
column rank, the pairs (Ami, Bmi) are controllable, the system matrices Ami are invertible, if
the switch of the controlled PWA system satisfies the dwell time constraint (5.14) and if the
reference input r is sufficiently rich of order n + 1 such that all subsystems are repeatedly
activated, then the state tracking error e → 0 and the estimated parameters Âi, B̂i, f̂i as well
as the estimated gains Kxi, Kri, Kfi converge to their real or nominal values as t → ∞.

Proof. The stability and the asymptotic convergence of e has been proved in Theorem 5.4.
Similar to the proof of Variant 1, we remove the subscript i for clarity purpose and let the
following steps refer to the activated subsystem.

To obtain the joint dynamics of the tracking error e and parameter estimation errors of
controller gains in form of (2.40), we first rewrite the error dynamics (5.7) as

ė = Ame + ΨT
r ϑ̃ (5.82)

with

ϑ̃ = vec(B[K̃x K̃r K̃f ]), Ψr =

x
r
1

 ⊗ In (5.83)
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with In ∈ Rn×n being the identity matrix. Besides, the adaptation law (5.71) leads to

ϑ̇ = vec(B[ ˙̃Kx
˙̃Kr

˙̃Kf ])
= −ϕdΨrBM−1BT Pe − vec(BST BT

m[εA εB εf ]
= −ϕdΨr BM−1BT P︸ ︷︷ ︸

≜Pb

e − vec(BM−1BT [εA εB εf ]︸ ︷︷ ︸
≜εe

)
(5.84)

From (5.82) and (5.84), we obtain the following joint dynamics
[
ė
˙̃ϑ

]
=

[
Am ΨT

r

−ϕdΨrPb 0

] [
e

ϑ̃

]
+

[
0

−εe

]
. (5.85)

Define ze ≜ [eT , ϑ̃T ]T , we can rewrite (5.85) as

że = Ārze + Lre + dr, e = Cze (5.86)

where

Ār =
[

Am ΨT
r

−ΨrPb 0

]
, Lr =

[
0

(1 − ϕd)ΨrPb

]
, CT =

[
In

0

]
,

and dr = [0, εT
e ]T . Similar to the one shown in Variant 1, the joint dynamics of ze (5.86) is

decomposed into a homogeneous part Ārze, an output injection part Lrze and a disturbance
term dr. It is proved in Theorem 5.4 that εe → 0 and e → 0 as t → ∞, so Lrze → 0, dr → 0.
We can focus on proving the convergence property of the homogeneous part of (5.86): że =
Ārze. In fact, że = Ārze is exactly the same as the equation shown in (2.40). According to
Theorem 2.5 we have ϑ̃ → 0. As Bi have full column rank, K̃x, K̃r, K̃f → 0 as t → ∞. This
together with εA, εB, εf → 0 gives Â → A, B̂ → B, f̂ → f as t → ∞.

Two variants of the indirect MRAC for PWA systems are developed in this chapter, both of
them use the intermediate variables, the closed-loop system errors εAi, εBi, εfi, to dynamically
update the subsystem parameters and controller gains. This concept originates from the
so-called combined direct and indirect adaptive control proposed in [47], where both the
prediction error x̃ and the tracking error e are included in the Lyapunov function. One follow-
up version developed in [48] renders the combined approach into the indirect approach by
considering only the prediction error x̃ in the Lyapunov function. This approach constitutes
the basis for the indirect MRAC for PWA systems (see the approach reviewed in Section
2.2.1, [83], our approach proposed in Chapter 3, and Variant 1 of the indirect approach in
Section 5.3). Unlike Variant 1 presented in Section 5.3, Variant 2 is derived based on the error
equation of the tracking error e instead of the prediction error x̃. On the one hand, Variant
2 preserves the advantages of Variant 1 that the MLF setting is allowed and the parameter
convergence can be achieved. On the other hand, Variant 2 ensures the closed-loop system to
satisfy the performance constraint of the state tracking, which is not guaranteed in Variant 1.
Nevertheless, as the auxiliary performance bound ϵ needs to locate within the performance
function ρ, a fixed dwell time constraint (5.14) is required to be satisfied in Variant 2 whereas
a more flexible dwell time constraint, the average dwell time (5.64) is allowed in Variant 1.
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5.5 Robust Modification
In the previous sections, the adaptive control approaches and the stability of the closed-loop
systems are studied in the disturbance-free case. Since the PWA systems are commonly
used as approximations of nonlinear systems, approximation errors exist. Besides, unmodeled
dynamics and external disturbances cannot be neglected in real applications. In this section,
we focus on the robust adaptive control design for PWA systems with approximation errors,
unmodeled dynamics, and external disturbances, i.e., we consider

ẋ(t) = A(t)x(t) + B(t)u(t) + f(t) + d(x, u, t), (5.87)

where d(x, u, t) ∈ Rn can denote the approximation error of the linearization, unmodeled
dynamics or external disturbances. d is continuous and its norm is upper bounded, i.e.,
|d| ≤ d̄, where d̄ is known. We propose the following robust adaptation laws

K̇xi = −χiϕd(∥e∥P )ST
i BT

miPiexT + χiFxi,
K̇ri = −χiϕd(∥e∥P )ST

i BT
miPierT + χiFri,

K̇fi = −χiϕd(∥e∥P )ST
i BT

miPie + χiF0i

(5.88)

where Fxi ∈ Rp×n, Fri ∈ Rp×p, F0i ∈ Rp represent the projection terms to confine the esti-
mated controller gains Kxi, Kri, Kfi within some given bounds. The projection terms have
no effect on the adaptation if Kxi, Kri, Kfi are within their bounds, otherwise, the adapta-
tion terminates (see Section 2.2.3 for detailed explanations). Here we make the assumption
that a known matrix Si ∈ Rp×p as well as an unknown diagonal and positive definite matrix
Mi ∈ Rp×p exist such that (K∗

riSi)−1 = Mi.
Remark 5.8. For the robust adaptive control design, more prior information is required
compared with the disturbance-free case. For our projection-based approach, Mi must be
diagonal and the element-wise bounds of Kxi, Kri, Kfi need to be known (see also work by
Sang and Tao [133]). The leakage-based approach proposed by Yuan (see Theorem 2.8)
requires Mi to be completely known because they are used in the leakage terms. The follow-
up work [152] requires λmax(M−1

i ) to satisfy some constraints associated with the leakage
rates.
Remark 5.9. Regarding the input matrix, there is another popular formulation ẋ = Apx +
BpΛu for linear systems appearing in many works inspired by aerospace applications [6, 7,
88], where Bp is known and Λ is an unknown diagonal matrix with strictly positive diagonal
elements. Such arrangement of the input matrix is equivalent to our formulation. Specifically,
we have B = BmSM (we remove the subscript i) in our notations. The unknown diagonal
matrix Λ with strictly positive diagonal elements corresponds to the diagonal and positive
definite matrix M in our case, while the known control direction Bp corresponds to the
multiplication BmS.

Besides, instead of the Lyapunov equation (5.3), we assume for the reference system (5.2)
that positive definite matrices Pi, Qi, i ∈ I exist such that

AT
miPi + PiAmi + Pi = −Qi, i ∈ I. (5.89)

Before we proceed with the robustness analysis, another property of the potential function
(5.26), which is useful for the analysis in this chapter, is given in the following lemma.
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Lemma 5.4. For a positive constant c ∈ R+ and c < mintϵ
2(t), the function ϕ(∥e∥P ) defined

in (5.26) and its partial derivative ϕd with respect to ∥e∥2
P satisfy

(1) 2ϕd · (∥e∥2
P − c) − ϕ > 0 for ζ < ∥e∥2

P < ϵ2

(2) 2ϕd · (∥e∥2
P − c) − ϕ ≤ 0 for ∥e∥2

P ≤ ζ

with ζ ≜ −ϵ2+
√

ϵ4+8ϵ2c
2 .

Proof. From the definition of ϕ given in (5.26) we have

2ϕd · (∥e∥2
P − c) − ϕ = ∥e∥4

P + ϵ2∥e∥2
P − 2cϵ2

(ϵ2 − ∥e∥2
P )2 . (5.90)

The denominator of (5.90) is positive and the sign of 2ϕd · (∥e∥2
P − c) − ϕ is determined by

the numerator, which can be viewed as a quadratic function f(z) = z2 + ϵ2z − 2cϵ2 with
z = ∥e∥2

P . We have f(z) ≤ 0 for z ∈ [−ϵ2−
√

ϵ4+8ϵ2c
2 , −ϵ2+

√
ϵ4+8ϵ2c
2 ] and f(z) > 0 otherwise.

Since ϕ, ϕd are defined over ∥e∥2
P ∈ [0, ϵ2) and −ϵ2−

√
ϵ4+8ϵ2c
2 < 0, it can be obtained that

2ϕd · (∥e∥2
P − c) − ϕ > 0 for ζ < ∥e∥2

P < ϵ2 and 2ϕd · (∥e∥2
P − c) − ϕ ≤ 0 for ∥e∥2

P ≤ ζ with
ζ = −ϵ2+

√
ϵ4+8ϵ2c
2 .

The control performance and the closed-loop stability by using the robust adaptive con-
troller are summarized in the following theorem.

Theorem 5.6. Given the reference PWA system (5.2) satisfying (5.89) and the predefined
performance function (5.8), let the PWA system (5.1) with known regions Ωi, i ∈ I and
unknown subsystem parameters Ai, Bi, fi, i ∈ I be controlled by the feedback controller (5.6)
with the adaptation laws (5.88). Let the initial state of ϵ satisfy ∥e(t0)∥P < ϵ(t0). The closed-
loop system is stable and the state tracking error e(t) satisfies the prescribed performance
guarantees (5.9) if the time constant h in (5.12) satisfies

h <
1
2 min

i∈I

λmin(Qi)
λmax(Pi)

, max
i∈I

λmax(Pi)d̄√
λmin(Qi) − 2hλmax(Pi)

<
g

h
, (5.91)

and if the switching signal of the controlled PWA system obeys the dwell time constraint in
(5.14).

Proof. We propose the same Lyapunov function as (5.30). The stability analysis can also be
divided into two phases as the one in Theorem 5.1.

phase 1: t ∈ [tk−1, tk), k ∈ N+

Following the same steps from (5.31) to (5.35) as in Theorem 5.1, we have

V̇ = −ϕdeT (AT
miPi + PiAmi)e + ϕd(eT Pid + dT Pie) + ∂ϕ

∂ϵ
ϵ̇

+ 2ϕd(tr(K̃T
xiMiFxi) + tr(K̃T

riMiFri) + K̃T
fiMiF0i)

(5.92)

Since Mi is diagonal, we have

ϕd(tr(K̃T
xiMiFxi) + tr(K̃T

riMiFri) + K̃T
fiMiF0i)

=ϕd(
p∑

j=1

n∑
l=1

m
(j)
i k̃

(jl)
xi f

(jl)
xi +

p∑
j=1

p∑
l=1

m
(j)
i k̃

(jl)
ri f

(jl)
ri +

p∑
j=1

m
(j)
i k̃

(j)
fi f

(j)
0i ) (5.93)
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with K̃xi = [k̃(jl)
xi ], K̃ri = [k̃(jl)

ri ], K̃fi = [k̃(j)
fi ], Fxi = [f (jl)

xi ], Fri = [f (jl)
ri ], and F0i = [f (j)

0i ]. Mi =
diag{m

(1)
i , · · · , m

(p)
i }. It can be verified that k̃

(jl)
xi f

(jl)
xi ≤ 0, k̃

(jl)
ri f

(jl)
ri ≤ 0 and k̃

(jl)
fi f

(jl)
0i ≤ 0,

which together with the fact that m
(j)
i > 0, i ∈ I, j = 1, · · · , p leads to

V̇ ≤ −ϕdeT (AT
miPi + PiAmi)e + ∂ϕ

∂ϵ
ϵ̇ + ϕd(eT Pid + dT Pie). (5.94)

Since Pi is positive definite, it can be written as Pi = HiH
T
i with Hi being a nonsingular

matrix. The inequality (5.94) can be further transformed as

V̇ ≤ −ϕdeT (AT
miPi + PiAmi)e + ∂ϕ

∂ϵ
ϵ̇ + 2ϕdeT HiH

T
i d

≤ −ϕdeT (Qi + Pi)e + ∂ϕ

∂ϵ
ϵ̇ + ϕd(eT HiH

T
i e + dT HiH

T
i d)

= −ϕdeT Qie + ∂ϕ

∂ϵ
ϵ̇ + ϕddT HiH

T
i d

≤ −ϕd|e|2(λmin(Qi) − 2hλmax(Pi)) + ϕddT Pid

≤ −ϕd|e|2κi + ϕdλmax(Pi)d̄2

(5.95)

with κi ≜ λmin(Qi) − 2hλmax(Pi). For Pi, Qi and h satisfying the condition (5.91), we have
κi > 0. Further analysis can be divided into two cases: ∥e∥2

P > ζi and ∥e∥2
P ≤ ζi, where

ζi = −ϵ2 +
√

ϵ4 + 8ϵ2ci

2 , i ∈ I (5.96)

with ci ≜
λ2

max(Pi)
κi

d̄2. From (5.91) we obtain

ϵ(t)2 ≥ g2

h2 > max
i∈I

λ2
max(Pi)d̄2

λmin(Qi) − 2hλmax(Pi)
= max

i∈I
{λ2

max(Pi)
κi

d̄2} ≥ ci, (5.97)

which further leads to
ζi <

−ϵ2 +
√

ϵ4 + 8ϵ2 · ϵ2

2 = ϵ2. (5.98)

Case 1 ∥e∥2
P > ζi: invoking Lemma 5.4, inequality (5.95) can be further derived as

V̇ ≤ − κiϕd

λmax(Pi)
(∥e∥2

P − λ2
max(Pi)

κi

d̄2) < − κi

2λmax(Pi)
ϕ < 0 (5.99)

Case 2 ∥e∥2
P ≤ ζi: defining κ ≜ mini∈I{κi}, α = maxi∈Iλmax(Pi) and considering the

property that 2ϕd(∥e∥P )∥e∥2
P − ϕ > 0, we have

V̇ ≤ − κ

2α
ϕ + ϕdαd̄2 = − κ

2α
(ϕ + VK) + κ

2α
VK + ϕdαd̄2 ≤ − κ

2α
V + κ

2α
VK + ϕdmaxαd̄2

(5.100)

with ϕdmax = max∥e∥2
P ≤ζϕd(∥e∥2

P ) = ϕd(maxt ζ) ∈ L∞ for ζ = ∑s
i=1 χiζi. VK is defined in

(5.30). K̃xi, K̃ri, K̃fi are bounded due to the utilization of the projection, which leads to
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VK ∈ L∞. Suppose V̄K to be the maximum of VK and let the positive number B ∈ R+ be
defined as

B ≜ V̄K + 2ϕdmaxα2d̄2

κ
. (5.101)

For V ≤ B, V may increase. For V > B, we have V̇ < 0 and therefore, V is decreasing.
Combing Case 1 and Case 2, we know that V is bounded for the interval [tk−1, tk).

phase 2: jump at switch instant tk, k ∈ N+

Following the same steps as shown in Theorem 5.1 and we have V (tk) ≤ V (t−
k ).

Based on the analysis of phase 1 and phase 2, we can conclude that

V (t) ≤ max{V (t0), B}, ∀t ∈ [t0, ∞), (5.102)

from which we obtain ϕ, ϕd ∈ L∞. The projection leads to K̃xi, K̃ri, K̃fi ∈ L∞, which further
leads to Kxi, Kri, Kfi ∈ L∞. Besides, ∥e(t)∥P < ϵ(t) < ρ(t) holds for ∀t ∈ [t0, ∞). The
prescribed performance guarantee (5.9) is satisfied.

With similar steps in the proof of Lemma 5.2, one can prove the stability of the reference
system with (5.89), so we have xm ∈ L∞. This leads to x ∈ L∞, which together with
r, ϕd ∈ L∞ implies K̇xi, K̇ri, K̇fi ∈ L∞.

Remark 5.10. The leakage-based robust MRAC approach for switched linear systems re-
viewed in Section 2.2.3 obtains the boundedness of the Lyapunov function V by formulating
the inequality V̇ ≤ −αV + β, where α > 0 and β is a disturbance-related term. This,
however, does not apply to our approach, because the disturbance-related term in our case
has a time-varying coefficient ϕd (see the term ϕdλmax(Pi)d̄2 in (5.95)). The boundedness of
ϕd cannot be concluded without proving the boundedness of V , while the boundedness of
V requires ϕdλmax(Pi)d̄2 to be bounded. This potential circular reasoning constitutes one of
the main technical challenges of the robust modification. Our solution concept is employing
the property of ϕ shown in Lemma 5.4 to discuss the stability in two separate cases. When
∥e(t)∥P ≤ ζ, V may increase with ϕd and V upper bounded. V is strictly decreasing if
∥e(t)∥P > ζ for ζ = ∑s

i=1 χiζi.
Remark 5.11. In work about set-theoretic MRAC by Arabi and Yucelen [6, 7, 8], disturbances
flow into the system through the same input matrix as the control signal. The fault-tolerant
set-theoretic MRAC approach proposed by Xiao and Dong [168] also assumes the actuator
fault and external disturbances to be matched, i.e., they can be compensated by designing
additive terms in the control signal. Compared with these works, a distinctive feature of our
approach is that the disturbance term d is also allowed to be unmatched.
Remark 5.12. According to (5.14), the length of the dwell time is governed by √

µ, the
reset map of the auxiliary performance signal ϵ(t) (see (5.13)). By reducing √

µ, a less
conservative dwell time constraint can be obtained. In the adaptive controllers introduced
in this chapter, the reset map is defined with µ = maxi,j∈I

λmax(Pi)
λmin(Pj) , which indicates the

maximal possible jump of ∥e(t)∥2
P at each switching instant. Since the current activated

subsystem is known (supposed to be p), the maximal jump of ∥e(t)∥2
P at next switching

instant is µp = maxi∈I
λmax(Pi)
λmin(Pp) ≤ µ. For the case where both current subsystem (supposed to

be p) and the next subsystem to be switched on (supposed to be q) are known in advance, the
maximal jump of ∥e(t)∥2

P at this switching instant is µpq = λmax(Pq)
λmin(Pp) ≤ µ. Adopting √

µp or
√

µpq instead of √
µ as the reset map of ϵ yields a less conservative dwell time constraint. The
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m
cx

cy

d

F pγ

Figure 5.4: The mass-spring-damper system

corresponding stability properties of the reference system (5.2) and the closed-loop system
are still retained. Such dwell time constraints are known as mode-dependent dwell time [42]
(when µp is adopted) and mode-mode-dependent dwell time [174] (when µpq is utilized).

5.6 Numerical Validation
In this section, the proposed direct and indirect adaptive controllers will be validated through
numerical examples.

5.6.1 Direct Adaptive Control
In this section, the proposed direct MRAC approach is validated through a numerical ex-
ample modified based on the example of Section 3.4, a mass-spring-damper system, which
is shown in Fig. 5.4. The displacement of the mass is denoted by p and the force op-
erated on the mass is F , respectively. The mass is m = 1 kg and the damping factor is
d = 1 N s/m. The mass is connected to the static wall with the spring cx and the damper
d. For |p| ≤ γ = 1 m, the spring factor cx = 10 N/m. If it is extended beyond γ, i.e.,
p > 1 m, the spring factor cx is reduced to cx = 1 N/m. The spring cy = 90 N/m is a floating
spring with one end connected to the wall. The distance between the mass and the tip of
the spring cy is γ when cx is in its resting position. The system is equivalent to a classical
mass-spring-damper system with the spring exhibiting a PWA stiffness characteristics

Fc(p) =


c1 = 10 N/m, if |p| ≤ 1 m
c2 = 1 N/m, if p > 1 m
c3 = 100 N/m, if p < −1 m

(5.103)

Let the state x = [x1, x2]T = [p, ṗ]T and the input u = F . The system dynamics can be
described by a PWA system in form of

ẋ =
[

0 1
− ci

m
− d

m

]
x +

[
0
1
m

]
u +

[
0
f̄i

]
, i ∈ {1, 2, 3} (5.104)

with f̄1 = 0, f̄2 = (c2 − c1)/m, f̄3 = (c1 − c3)/m. The region partitions are given as

Ω1 = {x ∈ R2||x1| ≤ 1}, Ω2 = {x ∈ R2|x1 > 1}, Ω3 = {x ∈ R2|x1 < −1}.
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The reference system is a PWA system with the following subsystem matrices

Am1 =
[

0 1
−25 −10

]
, Bm1 =

[
0
25

]
, fm1 =

[
0
0

]
, (5.105)

Am2 =
[

0 1
−16 −8

]
, Bm2 =

[
0
16

]
, fm2 =

[
0
5

]
, (5.106)

Am3 =
[

0 1
−49 −14

]
, Bm3 =

[
0
49

]
, fm3 =

[
0

−10

]
. (5.107)

(a) Proposed approach (b) Classical MRAC approach

Figure 5.5: Closed-loop system’s trajectory by applying proposed direct adaptation method
and the classical direct MRAC approach.

Ideal Case:

The adaptive controller in the ideal case with the adaptation laws (5.28) is tested. The Pi

and Qi matrices satisfying (5.3) are chosen as

P1 =
[
140 2
2 5.2

]
, P2 =

[
121.25 3.125
3.125 6.64

]
, P3 =

[
182.857 1.02

1.02 3.644

]
,

Q1 = Q2 = Q3 =
[
100 10
10 100

]
,

which gives √
µ = 7.1. The scaling factors are Γxi, Γri, Γfi = 0.1. The performance function

is designed with ρ0 = 10, ρ∞ = 1.5, l = 0.02. We choose ϵ(t0) = 9, h = 0.12 and g = 0.01 such
that the condition (5.29) and further conditions stated in Lemma 5.1 hold. Let the initial
values of the reference system and the controlled PWA system be [2, 0]T . The initial values of
the estimated controller gains are specified as Kxi(t0) = 0.5K∗

xi, Kri(t0) = 0.5K∗
ri, Kfi(t0) =

0.5K∗
fi, i ∈ {1, 2, 3}. We use the following input signal r

r(t) =


2 + 0.5 sin(0.2πt), for 0 s ≤ t < 25 s
−0.08t + 2.8, for 25 s ≤ t < 50 s
−2 + 0.8 sin(2t − 100 − π)), for 50 s ≤ t < 75 s
0, for t ≥ 75 s

(5.108)
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(a) State tracking error and performance bound
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(b) Lyapunov function V

Figure 5.6: Tracking performance of the direct adaptive controller in ideal case.

The state-space trajectories of the reference system and the closed-loop system in the
time interval [23 s, 52 s] are displayed in Fig. 5.5a with black dashed and red solid lines,
respectively. The light blue, light green, and light yellow regions refer to Ω2, Ω1, and Ω3.
The ellipses centered at the state trajectory of the reference system represent ∥e(t)∥P = ϵ(t)
and indicate the bounds of the state of the closed-loop PWA system. The colors of the
ellipses distinguish ∥e(t)∥P1 , ∥e(t)∥P2 , and ∥e(t)∥P3 . We can observe that the state of the
closed-loop system always stays within the auxiliary performance bound. For comparison,
the state trajectory of the closed-loop system by using the direct MRAC approach [83] is
displayed with blue solid lines in Fig. 5.5b, from which the violation of the performance
bound can be observed.

According to Lemma 5.1, the dwell time of the closed-loop system should satisfy TD > 24 s.
The small window of Figure 5.6a shows the mode information of the closed-loop system.
We can observe that the dwell time constraint is satisfied. In Figure 5.6a, the prescribed
performance bound ρ(t), the auxiliary performance bound ϵ(t) and the weighted norm of
the state tracking error ∥e(t)∥P are displayed with the black dashed line, the blue solid line
and the red solid line, respectively. We can see that ∥e(t)∥P < ϵ(t) < ρ(t). The weighted
norm of the state tracking error ∥e(t)∥P and the auxiliary performance bound ϵ(t) jump at
the switching instants, where the relation ∥e(t)∥P < ϵ(t) is still satisfied. This guarantees
the potential function ϕ(t) to be valid and the control objective (5.9) to be fulfilled.

The Lyapunov function V is displayed in Figure 5.6b. We observe that the Lyapunov
function V is non-increasing, also at the switching instants. This validates the theoretical
statement given in Theorem 5.1.

Robust Case:

Now we test the performance of the robust adaptive controller with the adaptation laws
(5.88). The PWA system is subject to an unmatched disturbance term d = [0.036 cos(0.7t)+
0.072 sin(0.2t) + 0.018 sin(t), 0]T . The Pi, Qi matrices satisfying (5.89) are chosen as

P1 =
[
0.7627 0.0353
0.0353 0.0458

]
, P2 =

[
0.6140 0.0504
0.0504 0.0601

]
, P3 =

[
0.7932 0.0183
0.0183 0.0236

]
,

Q1 = Q2 =
[

1 0.7
0.7 0.8

]
, Q3 =

[
1 0.6

0.6 0.6

]
,

(5.109)
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which gives √
µ = 5.86. The scaling factors are Γxi, Γri, Γfi = 1. The performance function

is designed with ρ0 = 10, ρ∞ = 3.2, l = 0.02. The auxiliary performance signal is designed
with ϵ(t0) = 9, h = 0.08 and g = 0.04 to fulfill the conditions in Lemma 5.1 and Theorem
5.6. The dwell time of the closed-loop system must satisfy TD > 67.7 s. Let the initial values
of the reference system and the controlled PWA system be [0, 0]T . The initial values of
the estimated controller gains are specified as Kxi(t0) = 0.5K∗

xi, Kri(t0) = 0.5K∗
ri, Kfi(t0) =

0.5K∗
fi, i ∈ {1, 2, 3}. The input signal r is

r(t) =


0, for 0 s + KT

2 ≤ t < 70 s + KT
2

2, for 70 s + KT ≤ t < 140 s + KT

−2, for 210 s + KT ≤ t < 280 s + KT

(5.110)

with K ∈ N and T = 280 s.
The small window of Fig. 5.7a shows the switching information of the closed-loop system.

It can be observed that the dwell time constraint TD > 67.7 s is satisfied. In Figure 5.7a,
the black dashed line, the blue solid line, and the red solid line represent the prescribed
performance bound ρ(t), the auxiliary performance bound ϵ(t) and the weighted norm of the
state tracking error ∥e(t)∥P , respectively. It can be seen that ∥e(t)∥P < ϵ(t) < ρ(t) holds.
The element-wise tracking performance of the closed-loop system is displayed in Fig. 5.7c
and Fig. 5.7d, where the black dashed lines represent the reference signals and the red solid
lines represent the state signals. Despite the existence of the disturbance, the closed-loop
state tracks the one of the reference system with the prescribed performance.
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Figure 5.7: Tracking performance of the robust direct adaptive controller with disturbances.

The Lyapunov function V is shown in Fig. 5.7b. According to the proof of Theorem 5.6,
V may increase when ∥e∥P ≤ ζ. In Fig. 5.7b, V is shown in red for ∥e∥P > ζ and in blue for
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5.6 Numerical Validation

∥e∥P ≤ ζ. We observe that V is decreasing for ∥e∥P > ζ whereas it may increase (as shown
in the small window) but remain bounded for ∥e∥P ≤ ζ. This validates the theoretical result
given in Theorem 5.6.

Independent Switching Case:

Now we validate the direct adaptive controller when the controlled PWA system and the
reference PWA system switch independently, depicted in Section 5.2.4. The controlled PWA
system has the same parameters and the same partitions (Ω1 = {xT ∈ R2||x1| ≤ 1}, Ω2 =
{xT ∈ R2|x1 > 1}, Ω3 = {xT ∈ R2|x1 < −1}) as those shown before. Now the reference
PWA system has the subsystem matrices

Am1 =
[

0 1
−25 −10

]
, Bm1 =

[
0
25

]
, fm1 =

[
0
0

]
, (5.111)

Am2 =
[

0 1
−16 −8

]
, Bm2 =

[
0
16

]
, fm2 =

[
0
5

]
. (5.112)

and its own state-space partitions

Ω∗
1 = {xT

m ∈ R2|xm1 < 0}, Ω∗
2 = {xT

m ∈ R2|xm1 ≥ 0}.

It switches independent of the controlled PWA system. The Pi and Qi matrices satisfying
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Figure 5.8: Tracking performance of the independent switching case.

(5.5) are chosen as

P1 =
[
140 2
2 5.2

]
, P2 =

[
121.25 3.125
3.125 6.64

]
, Qi =

[
100 10
10 100

]
for i ∈ {1, 2}, (5.113)
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5 Adaptive Control of PWA Systems with State Performance Guarantees

which leads to √
µ = 5.2. The scaling factors are Γxi, Γri, Γfi = 1. The performance param-

eters ρ0, ρ∞, l and ϵ(t0), h, g are the same as those specified before. The barrier function is
ϕ(∥e∥P ) = ∥e∥2

P

ϵ2(t)−∥e∥2
P

, where ϵ(t), P (t) and the reference PWA system switch synchronously.
The resulted dwell time TD > 19.3 s. Let the initial values of the controlled PWA sys-
tem be [−0.5, 0.5]T . The initial values of the estimated controller gains are specified as
Kxij(t0) = 0.5K∗

xij, Krij(t0) = 0.5K∗
rij, Kfij(t0) = 0.5K∗

fij, i ∈ {1, 2, 3}, j ∈ {1, 2}. The
reference signal is given as r = r̄ + 0.3sin(0.5t + π) with

r̄(t) =


2, for 5 s + KT ≤ t < 17.5 s + KT

−2, for 25 s + KT ≤ t < 50 s + KT

0, otherwise
(5.114)

for K ∈ N and T = 50 s. This reference signal is designed such that it will result in a
switching sequence of the reference PWA system satisfying the dwell time constraint.

From Fig. 5.8a we observe that the tracking performance is as expected that the error
metric ∥e∥P is confined within the performance bound (marked by black dashed line). Fig.
5.8b presents the switching information and how ϵ depends on it. Specifically, ϵ is shown in
blue solid line. The mode information of the reference PWA system is displayed in green solid
line and the mode information of the controlled PWA system is given in magenta dashed
line. The switches of the reference system (the green solid line) can be tested in advance
to determine that the dwell time constraint is satisfied before applying the controller to the
controlled PWA system. The reset (jumps) of ϵ(t) is triggered only when the reference PWA
system changes its mode and is not affected by the switching of the controlled PWA system.

Fig. 5.8c shows that the Lyapunov function V is non-increasing during the whole simulated
time interval. These three figures validate the statements in Section 5.2.4.

5.6.2 Indirect Adaptive Control
Now we validate the two variants of the indirect adaptive control. Both of them will be
applied to the PWA model of the pitch control of a helicopter system [132]. This PWA
model can be written in form of (5.1) with the state x = [x1, x2]T ∈ R2 denoting the vector
of pitch angle and pitch rate. The state space for x1 ∈ [−3π

5 , 3π
5 ] is divided into 3 regions,

Ω1 = {x|− π

5 ≤ x1 ≤ π

5 }, Ω2 = {x|π5 < x1 <
3π

5 }, Ω3 = {x|− 3π

5 < x1 < −π

5 }. (5.115)

The associated system parameters are from [132] and presented as follows.

A1 =
[

0 1
−10.5751 −0.1447

]
, f1 =

[
0

−4.6265

]
,

A2 =
[

0 1
1.9210 −0.1447

]
, f2 =

[
0

12.4780

]
,

A3 =
[

0 1
−8.1786 −0.1447

]
, f3 =

[
0

−3.1208

]
,

and B1 = B2 = B3 = [0, 35.3012]T . The reference PWA model has the same subsystem
parameters as the one shown in (5.105) while its switching follows the same switching signal
as the controlled PWA determined by the region partitions (5.115).
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5.6 Numerical Validation

Variant 1

The auxiliary signal ϵ(t) is generated with h = 0.12, g = 0.01, and ϵ(0) = 9. Numerical
experiments show that larger h and smaller g may improve the tracking and parameter
convergence rate but lead to smaller denominator of ϕd, which may cause ill-conditioned
problems when solving it numerically. Pi and Qi matrices satisfying (5.52) are chosen as

P1 =
[
149.9448 2.7197
2.7197 5.3360

]
, P2 =

[
131.7956 4.1135
4.1135 6.8672

]
,

P3 =
[
192.2987 1.4913
1.4913 3.7098

]
, Q1 = Q2 = Q3 =

[
100 10
10 100

]
.

Therefore, by (5.56), µ = 52.0045 and τ ′
D > 16.5s for l ∈ (0, h) (see (5.64)). Let x(0) =

[0.5, −0.5]T and xm(0) = x̂(0) = [0, 0]T . The initial values of the estimated system param-
eters are specified as 80% of their real values with zero initial gains. Given the reference
input rectangular signal switching among {−1, 0, 1}, the tracking performance is shown in
Fig. 5.9. One can observe that the tracking error e → 0. Besides, each jump of ϵ(t) (marked
by the black dashed line) indicates a switch instant. The overall switch (7 switches within
200s) is slower than τ ′

D and the decrease of ϵ(t) together with the decaying ∥x̃∥P validates
Theorem 5.2.
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Figure 5.9: Tracking performance of the indirect adaptive controller (Variant 1).

To test the parameter convergence property, let the input signal be r = r̄ + 0.4sin(1.2t) +
0.2sin(11t) for r̄ switching among {−1, 0, 1} with a fixed interval 25s. It contains 2 distinct
frequencies and is sufficiently rich of order 4 > n + 1 = 3. r̄(t) is exerted such that the state
of the closed-loop system is driven through all the partitioned regions. The estimation errors
of system parameters are shown in Fig. 5.10a, where the parameters of different subsystems
are distinguished with difference colors. The dashed sections represent the phase where the
corresponding subsystem is inactive and the solid ones displaying the active phase. As we
can see, |θ̃1| and |θ̃3| converge quite close to 0 within 300 s, while |θ̃2| decreases relatively
slower. The Lyapunov function V is displayed in Fig. 5.10b. Different colors indicate which
mode is active. Although no common Lyapunov matrix is applied (because Pi ̸= Pj, i ̸= j), V
is non-increasing at each switching instant and decreasing in between every two consecutive
switches. This indicates the stability of the closed-loop system with the proposed method
and validates the theoretical results.
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5 Adaptive Control of PWA Systems with State Performance Guarantees

(a) Parameter convergence (b) Lyapunov function V

Figure 5.10: Parameter convergence and the Lyapunov function of the indirect adaptive con-
troller (Variant 1).

Variant 2

Now we validate Variant 2 of the indirect MRAC of PWA systems using the same helicopter
system. The initial states of the controlled PWA system and the reference system are x(0) =
[0.5, −0.5]T and xm(0) = [0, 0]T . The initial values of the estimated subsystem parameters
and the controller gains are the same as those in Variant 1. Besides, the configuration of ϵ
as well as the selection of Pi, Qi matrices are identical to those in Variant 1. As we aim to
validate if Variant 2 is able to satisfy the performance constraint, we let the performance
function designed with ρ0 = 10, ρ∞ = 1.5, l = 0.02, which leads to TD > 24 s.
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Figure 5.11: Tracking performance of the indirect adaptive controller (Variant 2).

First, we validate the tracking performance of Variant 2 using a reference input rectangular
signal switching among {−1, 0, 1} with a fixed interval 25s. In Fig. 5.11a, each element of e
is displayed. One can observe that e → 0. Besides, as shown in Fig. 5.11b, the error metric
∥e∥P satisfies ∥e∥P < ϵ < ρ and therefore, the performance constraint (5.9) is fulfilled.

Then, we test the parameter convergence of Variant 2 using the same input signal as the
one in Variant 1: r = r̄ + 0.4sin(1.2t) + 0.2sin(11t) for r̄ switching among {−1, 0, 1} with
a fixed interval 25s. From Fig. 5.12a, we can observe the convergence of |θ̃i|, i ∈ {1, 2, 3}
while |θ̃2|, similar as it is in Variant 1, decreases relatively slower than |θ̃1| and |θ̃3|.

The Lyapunov function V displayed in Fig. 5.12b also validates the theoretical statement
that V is non-increasing at each switching instant and decreasing in between every two
consecutive switches and the closed-loop system is stable.
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Figure 5.12: Parameter convergence and the Lyapunov function of the indirect adaptive con-
troller (Variant 2).

5.7 Summary

In this chapter, we explored the direct and indirect MRAC approach for PWA systems with
time-varying performance guarantees on the state tracking error. The proposed methods
are based on barrier Lyapunov functions. In the direct MRAC design, to solve the barrier
transgression problem caused by the discontinuity of the weighted Euclidean norm of the
state tracking error, we introduce an auxiliary performance bound with a state reset map at
switching instants to construct the barrier Lyapunov function. This auxiliary performance
bound resides within the user-defined performance bound if some dwell time constraints
are satisfied. The Lyapunov function is non-increasing at and in between the switching
instants, which ensures the weighted Euclidean norm of the state tracking error to fulfill
the performance guarantee. To enhance the robustness of the closed-loop system against
unmatched disturbances, the projection-based robust modification of the proposed method
is presented.

The non-increasing property of the Lyapunov function also enables a MLF setting for
the indirect MRAC design for PWA systems. This overcomes the limitation of the classical
indirect MRAC approaches which require the presence of the CLFs. Two variants of indirect
MRAC are developed. Variant 1 allows an average dwell time constraint, which, compared
to the fixed dwell time constraint of the direct MRAC, provides more design freedom. The
drawback of this variant is that no statement can be made for the fulfillment of the perfor-
mance constraints of the state tracking. To endow the indirect MRAC with the performance
guarantees, Variant 2 is proposed, which combines the advantage of performance guarantees
of the direct adaptation approach and the advantage of the parameter estimation of Variant
1 of the indirect adaptation approach.

Compared to the classical MRAC of PWA systems revisited in Chapter 2, one key feature
of the proposed approaches is that the state tracking error satisfies a user-defined perfor-
mance constraint in form of a time-varying performance bound, which prescribes both the
transient and steady-state behaviors. This is essential for the safe operation of systems un-
der uncertainties. Another key feature is that the Lyapunov functions exhibit non-increasing
jumps at switching instants, which enjoys the advantage that, in the disturbance-free cases,
no extra conditions need to be introduced to ensure closed-loop stability in the MLF set-
ting. In contrast, the classical approaches require e.g., projections (see Theorem 2.7) or PE
conditions (see Theorem 2.5) to establish the exponential decrease of the Lyapunov func-
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5 Adaptive Control of PWA Systems with State Performance Guarantees

tion in between switches such that possible increasing jumps at switching instants can be
compensated given that the switches are slow enough.

The proposed approaches are validated through two-dimensional numerical examples for
the purpose of better visualization of the safety constraints on the phase plane. Applications
to PWA systems with higher dimensions are straightforward and thus, as pointed out in
Chapter 3, the numerical examples reveal the applicability to a large class of real plants.

Similar to the output tracking case shown in Chapter 4, one drawback of the approaches
presented in this chapter is that the saturation of the control input signal is not considered.
Extending the current methods to the systems with input saturation would be an interesting
topic for future work. Besides, it is also worth due to practical interest investigating the
reduction of the jumps of the input signal of the PWA systems (or equivalently the output
of the adaptive controllers u) at switching instants and taking into account the actuator
dynamics [5] in future work.
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Adaptive Control of PWA Systems with
Output Feedback 6

In the previous chapters, the adaptive control problems for uncertain PWA systems with
limited excitations and performance constraints are explored. Now we consider the challenge
of sensor constraints, namely, only the output signal is available for the feedback. This chap-
ter deals with sensor constraints by designing adaptive controller based on output feedback
such that the output of the controlled system tracks the trajectory generated by a reference
system.

Adaptive control methods based on output feedback is well-established for linear systems
[71, 115]. Built upon this result, few works [134, 155, 156] develop the adaptive control
methods for linear time-varying systems with parameter jumps or PWL systems based on
output feedback, which guarantees small output tracking errors in the mean square sense.
Nevertheless, these approaches cannot be applied to PWA systems due to the existence of
the unknown affine terms. Moreover, the convergence of the controller parameters remains
unexplored. To fill this gap, we investigate the output feedback MRAC for PWA counterparts
with special focuses on the analysis of controller parameter convergence. It is a challenge to
analyze the effect of the special controller structure for PWA systems on the excitation of the
estimated parameters. Besides, the influence of the tracking error, as well as the switching
behavior on the parameter convergence needs to be evaluated.

In this chapter, we first extend the controller proposed in [134] to the context of PWA
systems and prove that the tracking error is small in the mean square sense under slow
switching. Based on this result, we prove that the controller parameter estimation error
converges to a bounded set given a PE reference signal. We establish the relationship between
the size of the set and the switching frequency. Finally, we show that the convergence of
the controller parameters to the nominal values can be achieved in a special case where the
trajectory is kept staying in one subsystem for infinitely long.

The rest of the chapter is structured as follows. The problem formulation is presented
in section 6.1. In section 6.2, our proposed control law is depicted. The tracking error as
well as parameter convergence are investigated. The approach is validated by a numerical
example presented in section 6.3, which is followed by the conclusion in section 6.4.

6.1 Problem Formulation
In this chapter, we focus on the SISO PWA system with the i-th subsystem described by

ẋ = Aix + Biu + fi, i ∈ I
y = Cx,

(6.1)
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6 Adaptive Control of PWA Systems with Output Feedback

where x ∈ Rn represents the state. y ∈ R and u ∈ R represent the output and the control
input. Ai ∈ Rn×n, Bi, CT

i ∈ Rn×1 and fi ∈ Rn denote the unknown system parameters of
i-th subsystem.

The input-output mapping of the PWA system when system i is activated is given by

y(t) = Gpi(s)[u](t) + Gfi(s)[1](t), (6.2)

where

Gpi(s) = kpi
Zpi(s)
Rpi(s) = C(sI − Ai)−1Bi,

Gfi(s) = kfi
Zfi(s)
Rpi(s) = C(sI − Ai)−1fi.

(6.3)

The notation y(t) = G(s)[u](t) represents the output in time-domain at time t of a system,
which is characterized by transfer function G(s) and input u(t) [149]. Given a reference
system

ym(t) = Wm(s)[r](t), Wm(s) = km
Zm(s)
Rm(s) , (6.4)

where ym is the reference output trajectory, Wm(s) denotes the transfer function of the
reference system and r(t) represents the reference input signal.

The problem we would like to solve is formulated as follows:

Problem 6.1. Given a PWA system (6.1) with known subsystem partition Ωi and unknown
subsystem parameters, design a feedback control law based on output feedback, such that
the plant output y(t) tracks the reference trajectory ym(t).

Assumption 6.1. The assumptions are summarized as follows, which apply to the entire
chapter.

• Zpi(s) is a monic strict Hurwitz polynomial of degree m

• The sign of kpi, i ∈ I is assumed to be known

• Zm(s), Rm(s) are monic strict Hurwitz polynomials

• Zpi(s) and Rpi(s), i ∈ I are coprime

• Zfi(s)/Zpi(s), i ∈ I is proper

• The relative degree of the plant is equal to that of the reference model

• The number of switches within time interval [t, t+T ), which is denoted by N(t+T , t),
satisfies N(t + T , t) ≤ c̄ + µT , ∀t, T ≥ 0 for some positive constants c̄, µ

• Each polyhedral region Ωi only depends on y and u and is assumed to be known

Assuming Zpi(s) and Zm(s) to be strict Hurwitz requires the reference model and each
subsystem of the PWA to be minimum phase. The reference model is also stable since Rm(s)
is assumed to be strict Hurwitz. The term strict Hurwitz polynomial implies that the real
parts of the roots are strictly negative.
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6.2 Controller Design

The assumption on the number of the switches N(t + T , t) over a time interval with the
length of T constraints the average frequency of the switches among subsystems, which is
characterized by µ. A small µ reveals slow switching. Limiting the frequency of switches is
essential to ensure closed-loop stability and is, as also shown in the previous chapters, widely
adopted in the area of adaptive control for switched systems [134, 136, 137].

Definition 6.1 (small in the mean square sense [71]). Let x : [0, ∞) 7→ Rn with x ∈ L2e,
and consider the set

S(µ) =
{
x|

∫ t+T

t
xT (τ)x(τ)dτ ≤ c0µT + c1, ∀t, T ≥ 0

}
for a given positive constant µ, where c0, c1 ≥ 0 are some finite constants, and c0 is indepen-
dent of µ. x is said to be µ-small in the mean square sense, if x ∈ S(µ).

6.2 Controller Design
In this section, the plant parameters are firstly assumed to be known in order to derive the
nominal controller. The nominal controller parameters are determined by solving algebraic
matching equations. Then the adaptive controller is discussed in the case where the plant
parameters are unknown.

6.2.1 Nominal Control Design
Consider the feedback control law for i-th subsystem

u(t) = θ∗
1i

T α(s)
Λ(s) [u](t) + θ∗

2i
T α(s)

Λ(s) [y](t) + θ∗
3iy(t) + c∗

0ir(t) + d∗
0i, (6.5)

where c∗
0i, d∗

0i, θ∗
3i ∈ R, θ∗

1i, θ∗
2i ∈ Rn−1 represent the nominal controller parameters to

be designed, α(s) = [sn−2, sn−3, ..., s, 1]T , Λ(s) is an arbitrary monic Hurwitz polynomial of
degree n−1, which can be designed by the user, e.g., Λ(s) = sn−1 +λn−2s

n−2 + · · ·+λ1s+λ0.
Inserting the control law into (6.2) yields the closed-loop behavior of i-th subsystem

y(t) = Gci(s)[r](t) + Fci(s)[1](t) (6.6)

with
Gci(s) = kpiZpic

∗
0iΛ

Rpi(Λ − θ∗
1i

T α) − kpiZpi(θ∗
2i

T α + θ∗
3iΛ)

(6.7)

representing the transfer function which relates the input and output signals and

Fci(s) = kpiZpiΛd∗
0i + kfiZfi(Λ − θ∗

1i
T α)

Rpi(Λ − θ∗
1i

T α) − kpiZpi(θ∗
2i

T α + θ∗
3iΛ)

(6.8)

denoting the behavior caused by the affine term. The control goal is that the output of the
closed-loop system tracks the output of the reference model. So we let the transfer function
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of the closed-loop system equal to the one of the reference model and use the final value
theorem to enforce the affine term to decay to zero

Gci(s) = km
Zm(s)
Rm(s)

lim
s→0

sFci(s)1
s

= lim
s→0

Fci(s) = 0,
(6.9)

which leads to the matching equations

Rpi(Λ − θ∗
1i

T α) − kpiZpi(θ∗
2i

T α + θ∗
3iΛ) = ZpiΛ0Rm, (6.10a)

kpiZpiΛd∗
0i + kfiZfi(Λ − θ∗

1i
T α)|s→0 = 0. (6.10b)

Here c0i is chosen as c0i = km

kpi
and Λ(s) = Λ0(s)Zm(s). The nominal control parameters are

obtained by solving the algebraic matching equations.
Remark 6.1. Since the relative degree of the plant is equal to that of the reference model
and Zpi(s) and Rpi(s) are coprime, the left and right sides of (6.10a) have the same degree
2n − 1 without cancellation. This ensures the uniqueness of its solution.
Remark 6.2. Note that the final value theorem is utilized to eliminate the biasing effect
of the affine term. The conditions of final value theorem are that the non-zero roots of
the denominator of Fci must have negative real parts and it must not have more than one
zero-pole, which requires that Zpi, Λ0 and Rm are strict Hurwitz polynomials.
Remark 6.3. The second equation of (6.9) can be expanded as

lim
s→0

kpiZm

Rm

(d∗
0i + kfiZfi(Λ − θ∗

1i
T α)

kpiZpiΛ0Zm

) = 0. (6.11)

Since Zfi/Zpi is proper, the second summand in the brackets is also proper. To ensure the ex-
istence of the solution of d∗

0i, it requires that Zm|s→0 ̸= 0, Rm|s→0 ̸= 0 and kpiZpiΛ0Zm|s→0 ̸=
0. These are achieved by applying the assumptions Zpi, Rm, Zm being strict Hurwitz poly-
nomials and designing Λ0 to be strict Hurwitz. Simplifying (6.11) further gives the equation
(6.10b).

6.2.2 Error Model
We rewrite the nominal control law for the PWA system as

u(t) =
s∑

i=1
χiθ

∗
i

T ω(t), (6.12)

where θ∗
i = [θ∗

1i
T , θ∗

2i
T , θ∗

3i, c∗
0i, d∗

0i]T is the control parameter vector and ω = [ω1
T , ω2

T , y, r, 1]T
with

ω1 = α(s)
Λ(s) [u](t), ω2 = α(s)

Λ(s) [y](t). (6.13)

Applying the nominal controller, the closed-loop system can be written in state-space form
ẋc = Acixc + Bcir + fci

y = Ccxc,
(6.14)

where xc = [xT , ωT
1 , ωT

2 ]T , Cc = [C, 0T
2n−2].
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Lemma 6.1. For the closed-loop system (6.14), the equation CcA
−1
ci fci = 0 holds for ∀i ∈ I.

Proof. The effect of the i-th closed-loop affine term can be expressed by Fci(s)1
s

= Cc(sI −
Aci)−1fci

1
s
. Recalling (6.9) yields lims→0 Cc(sI − Aci)−1fci = 0 and it follows CcA

−1
ci fci =

0.

We study the tracking error behavior when the nominal controller is applied. The following
theorem states the smallness property of the tracking error.

Theorem 6.1. Let the PWA system (6.1) with known subsystem partitioning Ωi and known
subsystem parameters be controlled by output feedback nominal controller (6.5). There exists
µ0 ∈ R+ such that ∀µ ∈ (0, µ0), the output tracking error e = y − ym ∈ S(µ). Furthermore,
limt→∞ supτ>t |e(τ)| ≤ cr̄ + d for |r(t)| ≤ r̄ and some constants c, d ∈ R+.

Proof. Let (Cc, Acik
, Bcik

, fcik
) denote the active system over time interval [tk, tk+1), k ∈ Z+,

ik ∈ I. The trajectory of y over time interval [tk, tk+1) is given by

y(t) =
∫ t

tk

CcΦc(t, τ)Bcik
r(τ)dτ + CcΦc(t, tk)xc(tk)

+
∫ t

tk

CcΦc(t, τ)fcik
dτ ,

(6.15)

where Φc(t, τ) denotes the associated closed-loop state transition matrix. The matching
equation (6.9) ensures∫ t

tk

CcΦc(t, τ)Bcik
r(τ)dτ =

∫ t

tk

CmΦm(t, τ)Bmr(τ)dτ , (6.16)

which yields the tracking error at time t ∈ [tk, tk+1)

e(t) =y(t) − ym(t)

=CcΦc(t, tk)xc(tk) − CmΦm(t, tk)xm(tk) +
∫ t

tk

CcΦc(t, τ)fcik
dτ .

(6.17)

The eigenvalues of Aci depend on Λ, Zpi, Rm, so Aci is stable and

ηik
(t) ≜ CT

c Φc(t, tk)xc(tk) − CT
mΦm(t, tk)xm(tk) (6.18)

is exponentially decaying. Furthermore, according to the matching equation (6.10b), we
have that the term

ϱik
(t) ≜

∫ t

tk

CT
c Φc(t, τ)fcik

dτ , (6.19)

which is the deviation caused by the affine term, decays to zero exponentially. The general
expression of the tracking error e over an arbitrary time interval [t, t + T ) is

e(t) = η(t) + ϱ(t) (6.20)

with η(t) = ηik
(t) and ϱ(t) = ϱik

(t) when t ∈ [tk, tk+1). It is proved in [134] that there exists
µ1 > 0 such that ∀µ ∈ [0, µ1), η ∈ S(µ). This indicates that if the switching is sufficiently
slow, the error term η is small in the mean square sense. Following the same concept, there
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6 Adaptive Control of PWA Systems with Output Feedback

exists µ2 > 0, such that ∀µ ∈ [0, µ2), ϱ ∈ S(µ), which together with (6.20) leads to e ∈ S(µ)
for ∀µ ∈ [0, µ0) with µ0 = min{µ1, µ2}.

From (6.18)-(6.20) we have

|e| ≤ |η| + |ϱ| with |η| ≤ |Cc|∥Φc∥ max
k

|xc(tk)| + |Cm|∥Φm∥ max
k

|xm(tk)|

and |ϱ| ≤ maxk

∫ tk+1
tk

|Cc|∥Φc∥|fci|dτ . Based on the slow switching assumption and Theorem
2 in [65], we have ∥Φc(t)∥ ≤ λce−αct for some λc, αc > 0. For the reference system we
have ∥Φm(t)∥ ≤ λme−αmt for some λm, αm > 0. These lead to |xm(t)| ≤ cmr̄ + ϵm and
|xc(t)| ≤ ccr̄ + dc + ϵc for some cm, cc, dc > 0 and exponentially decaying terms ϵm, ϵc, which
in turn gives limt→∞ supτ>t |e(τ)| ≤ cr̄ + d for some c, d > 0.

Theorem 6.1 reveals that the tracking error exists even if the nominal control parameters
are utilized and the matching equations for every subsystem hold. Once the system switches,
the output deviates from the reference one. The deviation decays to zero provided that the
trajectory stays in the subsystem for sufficiently long time (characterized by µ) until the
next switch occurs.

6.2.3 Adaptive Control Design
Now consider the case where the plant parameters are unknown. In this case, the nominal
control parameters cannot be determined by solving matching equations. The estimation of
the controller parameters is utilized to implement the adaptive controller

u(t) =
l∑

i=1
χiθi

T ω(t), (6.21)

where θi = [θ1i
T , θ2i

T , θ3i, c0i, d0i]T denotes the estimated parameter vector for i-th subsystem.
The output of the system can then be expressed by the output of the reference system
perturbed by the error of control parameters θ̃i = θi −θ∗

i and the transient terms η, ϱ caused
by switching

y(t) =Wm[r +
s∑

i=1
χiρ

∗
i θ̃

T
i ω](t) + η(t) + ϱ(t) (6.22a)

=Wm[r](t) +
s∑

i=1
χiρ

∗
i Wm[

s∑
i=1

χiθ̃
T
i ω](t) + η(t) + ϱ(t) (6.22b)

with ρ∗
i = 1/c∗

0i. From (6.22a) to (6.22b), a swapping error term Wm[∑s
i=1 χiρ

∗
i θ̃

T
i ω](t) −∑s

i=1 χiρ
∗
i Wm[∑s

i=1 χiθ̃
T
i ω](t) is neglected without loss of generality as the normalized version

of this error term has the same property as η and ϱ, namely, it is also small in the mean
square sense [134]. Define the estimation error for i-th subsystem as

ϵi(t) = e(t) + ρi(t)ξi(t) (6.23)

where

ξi(t) = θT
i (t)ζ(t) − Wm(s)[θT

i ω](t), (6.24a)
ζ(t) = Wm(s)[ω](t) (6.24b)
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with e(t) = y − ym denoting the tracking error. The following update law is proposed

θ̇i(t) = −χiPr[sign[kpi]Γiϵi(t)ζ(t)
m2(t) ],

ρ̇i(t) = −χiPr[γiϵi(t)ξi(t)
m2(t) ],

(6.25)

where Pr[·] is, as revisited in Section 2.2.3, the projection operator to confine the parameters
within a bounded convex set, which is known as prior information. Γi > 0 and γi > 0 are
adaptation gains, m(t) is a dynamic normalizing signal defined by m2 = 1 + ms with

ṁs(t) = −δ0ms + u2 + y2, ms(0) = 0, (6.26)

where δ0 is a positive constant. The following theorem describes the property of the tracking
error in the adaptive case.

Theorem 6.2. Let the PWA system (6.1) with known subsystem partitioning Ωi and un-
known subsystem parameters be controlled by output feedback controller (6.21) with the adap-
tation law (6.25). There exists µ0 ∈ R+ such that ∀µ ∈ (0, µ0), the output tracking error
e ∈ S(µ).

Proof. From (6.23) and (6.24), it can be derived that

ϵi = ρ∗
i θ̃

T
i ζ + ρ̃iξi + ηi + ϱi (6.27)

with ηi = χiη, ϱi = χiϱ. Consider the Lyapunov function

V (θ̃, ρ̃) =
s∑

i=1
χi(|ρ∗

i |θ̃T
i Γ−1

i θ̃i + γ−1
i ρ̃2

i ). (6.28)

Taking the piecewise derivative of V along the trajectories of (6.25) yields

V̇ = −
s∑

i=1
χi

2ϵi

m2 (ρ∗
i θ̃

T
i ζ + ρ̃iξi). (6.29)

Inserting (6.27) into (6.29) yields

V̇ = −2
s∑

i=1

χiϵ
2
i

m2 + 2
s∑

i=1

χiϵi

m2 (ηi + ϱi). (6.30)

Integrating over an arbitrary interval [t, t+T ), in which multiple switching may occur, yields∫ t+T

t
( ϵ

m
)2dt ≤ (V (t) − V (t + T )) + 1

m2

∫ t+T

t
(η + ϱ)2, (6.31)

with ϵ = ∑s
i=1 χiϵi. Because η

m
+ ϱ

m
∈ S(µ), it follows ϵ

m
∈ S(µ). The rest of the proof can

be divided into several steps as follows:
step 1: Express the input, output signals in terms of θ̃T

ik
ω. Based on (6.22), y over the

time interval [tk, tk+1) is expressed as

y(t) = Wm[r + ρ∗
ik

θ̃T
ik

ω](t) + ηik
(t) + ϱik

(t). (6.32)
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Ignoring the effect of the exponentially decaying terms ηik
, ϱik

, the control signal u can be
expressed by

u(t) = G−1
pik

Wm[r + ρ∗
ik

θ̃T
ik

ω](t) − G−1
pik

[Gfik
[1]](t) (6.33)

G−1
pik

Gfik
and G−1

pik
Wm are stable and proper. Define a fictitious normalizing signal m2

f =
1 + e−δ(t−tk)m2(tk) + ∥u∥2

2δ + ∥y∥2
2δ, it follows from (6.32), (6.33) and Lemma 3.3.2 in [71]

that
m2

f ≤ c + ce−δ(t−tk)m2(tk) + c∥θ̃T
ik

ω∥2
2δ, (6.34)

where ∥ · ∥2δ denotes the L2δ-norm, δ ∈ (0, δ0], c ≥ 0 denotes any finite constant.
step 2: Use the Swapping Lemma to establish the boundedness of ∥θ̃T

ik
ω∥2δ. The following

inequality is obtained by applying Swapping Lemma [71]

∥θ̃T
ik

ω∥2δ ≤ ce−δ(t−tk)m2(tk) + c

α0
(mf + ∥θ̇ik

mf∥2δ)

+ cαn∗

0 (∥ϵik
∥2δ + ∥θ̇ik

mf∥2δ + ∥ηik
∥2δ + ∥ϱik

∥2δ),
(6.35)

for some α0 > 0. Since δ ∈ (0, δ0], we have m ≤ mf , thus

∥θ̃T
ik

ω∥2δ ≤ ce−δ(t−tk)m2(tk) + c

α0
(mf + ∥θ̇ik

mf∥2δ)

+ cαn∗

0 (∥ϵik

m
mf∥2δ + ∥θ̇ik

mf∥2δ + ∥ηik

m
mf∥2δ + ∥ϱik

m
mf∥2δ).

(6.36)

step 3: Prove the boundedness of closed-loop signals. From (6.34) and (6.36) it follows

m2
f ≤ c + ce−δ(t−tk)m2(tk) + cα2n∗

0 ∥g̃ik
mf∥2

2δ (6.37)

for large α0 with g̃2
ik

= ( ϵik

m
)2 + θ̇2

ik
+ (ηik

m
)2 + (ϱik

m
)2. Now consider an arbitrary time interval

[t, t + T ), within which switches occur at time instants t ≤ tk1 , tk2 , · · · , tkN
≤ t + T . The

normalizing signal mf over this interval is then expressed by

m2
f ≤ c + ce−δT m2

q + c
∫ t+T

t
e−δ(t−τ)g̃2(τ)m2

f (τ)dτ , (6.38)

where mq = max{m(tk1), · · · , m(tkN
)} and g̃2 = ( ϵ

m
)2 + ∑s

i=1 χiθ̇
2
i + ( η

m
)2 + ( ϱ

m
)2, g̃ ∈ S(µ).

Applying Bellman-Gronwall Lemma [71] yields

m2
f ≤ ce−δT (1 + m2

q)ec
∫ t+T

t
g̃2(τ)dτ + cδ

∫ t+T

t
e−δ(t−s)ec

∫ t

s
g̃2(τ)dτ ds. (6.39)

To obtain the boundness of mf , cµ < δ should be hold for some positive constant c. This
condition can be achieved by letting µ sufficiently small, which implies slow switching. Since
mf ∈ L∞, following from Lemma 6.8.1 in [71], it can be concluded that u, y, ω, m ∈ L∞.

step 4: Study the property of the tracking error. It follows from (6.24) and the boundedness
of ω that ξi, ζ ∈ L∞. ϵ

m
∈ S(µ) together with m ∈ L∞ yields ϵ ∈ S(µ). From (6.23) we

write the general expression for e

e =
s∑

i=1
χi(ϵi − ρiξi) = ϵ −

s∑
i=1

χiρiξi. (6.40)

With the boundedness of ρi, ξi and ϵ ∈ S(µ) we can conclude that e ∈ S(µ).
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Remark 6.4. Compared with the counterpart for PWL systems [134], the controller (6.21)
introduces a constant term in ω to cancel out the biasing effect caused by the affine term.
Since the affine term can also be viewed as input disturbance [164], non-equilibrium offset
[141], actuator failure [151], and system damage [61], the controller for each subsystem has
the common structure as the output feedback-based controllers proposed in [164, Sec. 4] and
[151, Ch. 4]. Note that these two cases exhibit either no switching or switching only once
and thus the disturbance or the actuator failure compensation error decays to zero as t → ∞.
This further gives asymptotic output tracking. Different from this result, the tracking error e
in the PWA context is small in the mean square sense due to the switch-dependent property
of η as well as ϱ, as discussed in Theorem 6.1.
Remark 6.5. Note that the operator Wm[·](t) in (6.24) reveals the input-output relationship
without specifying the initial conditions (at initial instant t0 and switching instants tk for
k ∈ N+). Depending on how this operator is implemented for the signals ζ and ξi in
practice, the expression of ϵi in (6.27) may vary. Specifically, if ζ and ξi are implemented
with a reset at each switching instant tk, then equation (6.27) remains unchanged. If ζ and
ξi are implemented without the reset at each switching instant tk, then for some interval
t ∈ [tk, tk+1), in which i-th subsystem is activated, (6.24) would become

ξi(t) = θT
i (t)ζ(t) − (Wm(s)[θT

i ω](t) + φξi(t)), (6.41a)
ζ(t) = Wm(s)[ω](t) + φζ(t) (6.41b)

where φζ(t) ∈ R2n+1 and φξi(t) ∈ R for t ∈ [tk, tk+1) represent some transient zero-input
response terms triggered at tk. Therefore, based on (6.41), the error equation (6.27) would
become ϵi = ρ∗

i θ̃
T
i ζ + ρ̃iξi +ηi +ϱi +ρ∗

i θ
∗
i

T φζ −ρ∗
i φξi after some algebraic manipulation. Since

the normalized version of φζ and φξi have the same property as ηi, ϱi (small in the mean
square sense) under slow switching, the above result (Theorem 6.2) and the following analysis
based on the error equation (6.27) can also be applied to the implementation without resets.

6.2.4 Control Parameter Convergence
Now we study the convergence of the control parameters. We extend the analysis method
for linear systems in [71, p. 757] to the PWA systems. In particular, the proposed con-
troller (6.21) contains a constant term, which is reflected in ω or equivalently ζ. The effect
of this controller structure on the PE property of ω, ζ needs to be specifically analyzed.
Furthermore, the tracking error e is small in the mean square sense, whose influence on
the parameter convergence needs to be discussed. In addition, how the switching frequency
affects the parameter convergence remains to be explored. The following theorem shows our
result.
Theorem 6.3. Let the PWA system (6.1) with known subsystem partitioning Ωi and un-
known subsystem parameters be controlled by output feedback controller (6.21) with the adap-
tation law (6.25). If the reference signal r is sufficiently rich of order 2n with distinct fre-
quencies and activates all the subsystems repeatedly, i.e., ∀i ∈ I and ∀ts ∈ R+, there exists
td > ts and δt ∈ R+ such that χi(t) = 1 for t ∈ [td, td + δt) and if the projection in (6.25) is
not activated, then |e| and |θ̃i| converge to a residual set

Sθi
=

{
e ∈ R, θ̃i ∈ R2n+1

∣∣∣|e| + |θ̃i| ≤ c0(ν0 + √
µ)

}
for some positive constants c0, ν0 ∈ R+ and µ ∈ (0, µ0).
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6 Adaptive Control of PWA Systems with Output Feedback

Proof. First, as each subsystem is activated intermittently and θ̂i is frozen when the i-th
subsystem is not activated, we remove the subscript i for simplicity and we show that ζ is
PE.

ζ(t) = Wm(s)


[ω1](t)
[ω2](t)
[y](t)
[r](t)
[1](t)

 = Wm(s)



α(s)
Λ(s) [u](t)
α(s)
Λ(s) [y](t)

[y](t)
[r](t)
[1](t)

 . (6.42)

Inserting (6.2) into (6.42) and substituting u yields

ζ(t) = ζm + ζe, (6.43)

where

ζm =Wm(s)(



α(s)
Λ(s)G

−1
p Wm(s)

α(s)
Λ(s)Wm(s)

Wm(s)
1
0


︸ ︷︷ ︸

≜H(s)

[r](t) +


0
0
0
0
1


︸︷︷︸

≜Hf (s)

[1](t)

︸ ︷︷ ︸
≜z

),

ζe =Wm(s)(



α(s)
Λ(s)G

−1
p

α(s)
Λ(s)
1
0
0


︸ ︷︷ ︸

≜He(s)

[e](t) +



α(s)
Λ(s)G

−1
p Gf

0
0
0
0


︸ ︷︷ ︸

≜Hfe(s)

[1](t)).

(6.44)

To prove the PE property of ζ, we start by showing that z is PE. The auto-covariance of
z is given by

Rz(0) = 1
2π

Hf (0)Hf (0)T︸ ︷︷ ︸
≜Rz1(0)

+ 1
2π

2n∑
l=1

Fr(Ω̄l)H(−ιΩ̄l)H(ιΩ̄l)T

︸ ︷︷ ︸
≜Rz2(0)

, (6.45)

where ι is the imaginary unit (ι2 = −1), Fr(Ω̄l) denotes the spectral peak associated with
frequency Ω̄l, l ∈ {1, · · · , 2n}. Note that the constant input 1 in ω leads to an unit spectral
peak at zero frequency (see Rz1(0)) while the frequencies contained in r build 2n distinct
peaks Fr(Ω̄l) (see Rz2(0)). We rewrite H(s) as

H(s) =
[
H−(s)

0

]
, (6.46)
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with

H−(s) =


α(s)
Λ(s)G

−1
p Wm(s)

α(s)
Λ(s)Wm(s)

Wm(s)
1

 . (6.47)

It is proved in [71] that H−(ιΩ̄1), H−(ιΩ̄2), . . . H−(ιΩ̄2n) are linearly independent.
If Rz(0) is positive definite, then equation

X T Rz(0)X = 0 (6.48)

only has solution X = 02n+1, X ∈ R2n+1. Because Rz1(0) and Rz2(0) are positive semidefinite,
we have

X T Rz1(0)X ≥ 0, X T Rz2(0)X ≥ 0, (6.49)
which together with (6.48) implies that

X T Rz1(0)X = 0, X T Rz2(0)X = 0 (6.50)

only if X = 02n+1. Suppose X = [X T
C , Xd]T with XC ∈ R2n, Xd ∈ R. From X T Rz2(0)X = 0

follows
LT XC = 0 (6.51)

with L = [H−(ιΩ̄1), H−(ιΩ̄2), . . . , H−(ιΩ̄2n)]. Because L has full rank, XC must be 02n.
From X T Rz1(0)X = 0 it follows that Xd must be 0, which implies the positive definiteness
of Rz(0), thus z is PE, which together with ζm = Wm[z](t) yields ζm being PE. Hence, there
exist T0 > 0, α0 > 0 such that

1
T0

∫ t+T0

t
ζm(τ)ζT

m(τ)dτ ≥ α0I, ∀t ≥ 0. (6.52)

Next, we would like to prove that ζ is also PE. Note that

1
n̄T0

∫ t+n̄T0

t
ζ(τ)ζT (τ)dτ

≥ 1
2n̄T0

∫ t+n̄T0

t
ζm(τ)ζT

m(τ)dτ − 1
n̄T0

∫ t+n̄T0

t
ζe(τ)ζT

e (τ)dτ ,
(6.53)

where n̄ is an arbitrary positive integer. Because Gp(s) and Wm(s) have the same relative
degree, Wm(s)He(s) is strictly proper. Gf (s) is also proper, which implies that Wm(s)Hfe(s)
is strictly proper. Because it is established that e ∈ S(µ), we have Wm(s)He(s)[e](t) ∈ S(µ).
Considering Wm(s)Hfe(s)[1](t) ∈ L∞, we have ζe ∈ S(µ), which together with the PE
property of ζm yields

1
n̄T0

∫ t+n̄T0

t
ζ(τ)ζT (τ)dτ ≥ α0

2 I − (K0µ + C0

n̄T0
)I (6.54)

for some C0, K0 ≥ 0. If n̄ is chosen such that C0 < α0
8 n̄T0, then for K0µ < α0

8 , we have

1
n̄T0

∫ t+n̄T0

t
ζ(τ)ζT (τ)dτ ≥ α0

4 I. (6.55)
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So ζ is PE. Based on the obtained PE property of ζ, we continue to explore the convergence
property of θ̃i. Insert (6.27) into (6.25) yields

˙̃θi(t) = −χisign[kpi]Γi(
ρ∗

i ζζT

m2 θ̃i + ρ̃iξiζ

m2 + (ηi + ϱi)ζ
m2 ). (6.56)

Considering that the homogeneous part of (6.56) is exponentially stable due to the PE
property of ζ and ζ

m
∈ L∞, we have

|θ̃i| ≤ β0e−β2(t−tk) + β1

∫ t

tk

e−β2(t−τ)( |ρ̃iξi|
m

+ |ηi| + |ϱi|
m

)dτ

≤ β0e−β2(t−tk) + β̄ + β1

∫ t

tk

e−β2(t−τ)( |ηi| + |ϱi|
m

)dτ ,
(6.57)

where β0, β1, β2 ∈ R+ are some positive constants, β̄ = β1
β2

supt
|ρ̃iξi|

m
. Because ηi, ϱi ∈ S(µ),

we apply [71, Corollary 3.3.3] and have

β1

∫ t

tk

e−β2(t−τ)( |ηi| + |ϱi|
m

)dτ ≤ β
′(

√
C ′ +

√
K ′µ) (6.58)

for some constants C ′, K ′ ∈ R+ with β
′ = 2

√
β2

1
β2

eβ2
1−e−β2 . This implies that θ̃i converges to a

residual set
|θ̃i| ≤ c′(ν + √

µ) + ϵt, (6.59)

where µ ∈ (0, µ0), ν = β̄

β
′ √

K′ +
√

C′

K′ , c′ = β
′√

K ′ and ϵt is an exponentially decaying term.
Invoking Lemma 3.3.2 of [71] we have from e = y − Wm[r] and (6.22) that

|e| ≤ max
i

|ρ∗
i |∥Wm(s)∥2δ∥θ̃T

i ω∥2δ + d̄ (6.60)

with d̄ = supt(|η| + |ϱ|) and ∥Wm(s)∥2δ denoting the δ-shifted H2 norm of Wm(s) for some
δ > 0. Inserting (6.59) into the L2δ-norm ∥θ̃T

i ω∥2δ in (6.60) leads to

|e| ≤ ω̄(c′(ν + √
µ)) + d̄ + ϵ′ (6.61)

for ω̄ = maxi |ρ∗
i |∥Wm(s)∥2δ

supt |ω|√
δ

and ϵ′ being a decaying to zero term. Combining (6.59)
and (6.61) we have that |e| and |θ̃i| converge to the residual set

Sθi
=

{
e ∈ R, θ̃i ∈ R2n+1

∣∣∣|e| + |θ̃i| ≤ c0(ν0 + √
µ)

}
for c0 = c′(1 + ω̄), ν0 = ν + d̄

c0
.

In our proof, we first decompose ζ into ζm and ζe. ζm can be further decomposed into
one component depending on input frequencies and one constant term representing zero
frequency. These constitute the excitation source. ζe contains all the error terms and is
proved to be S(µ). We show that its effect on the excitation can be eliminated by carefully
balancing the switching frequency µ and excitation level α0 of ζm. Finally, we establish
the relationship between the switching frequency µ and the size of the bounded set Sθi

by
expressing |θi| in terms of an inequality of µ.

Theorem 6.3 indicates that the bound of the residual set relates to the switching frequency.
Fast switching results in a large residual set. The convergence to the nominal value is,
however, possible and discussed as follows:
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Corollary 6.1. Let the PWA system (6.1) with known subsystem partitioning Ωi and un-
known subsystem parameters be controlled by output feedback controller (6.21) with the
adaptation law (6.25) without the projection. The reference signal r is sufficiently rich of
order 2n. If for a certain i ∈ I and a certain time instant tµ ≥ 0, we have χi(t) = 1 for
∀t ∈ [tµ, ∞), then e(t) → 0, θ̃i(t) → 0 as t → ∞.

Proof. Since the system output remains in i-th subsystem, we focus on i-th subsystem and
remove the subscript i for simplicity.

Let η = ηc + ηm with ηc = CcΦc(t, tµ)xc(tµ) and ηm = −CmΦm(t, tµ)xm(tµ). ηc and ηm

satisfy

ω̇c = Acωc, ωc(tµ) = xc(tµ)
ηc = Ccωc

(6.62)

and

ω̇m = Amωm, ωm(tµ) = xm(tµ)
ηm = −Cmωm,

(6.63)

respectively. Besides, ϱ satisfies the equation

ω̇δ = Acωδ + Fc, ωδ(tµ) = 0
ϱ = Ccωδ.

(6.64)

Define the Lyapunov-like function

V =|ρ∗|θ̃T Γ−1θ̃ + γ−1ρ̃2 + ωT
c Pcωc + ωT

mPmωm

+ (ωδ − A−1
c Fc)T Pc(ωδ − A−1

c Fc).
(6.65)

Since Am and Ac are stable, there exist positive definite matrices Pc and Pm such that

AT
c Pc + PcAc = −γcI, AT

mPm + PmAm = −γmI (6.66)

for some constants γc, γm > 0 to be chosen. Take the derivative of V and insert (6.27),
(6.62), (6.63), (6.64) and (6.66), we have

V̇ = −2ϵ2

m2 + 2ϵηc

m2 − γc|ωc|2 + 2ϵηm

m2 − γm|ωm|2 + 2ϵϱ

m2 − γc|ωδ|2, (6.67)

where ωδ = ωδ−A−1
c Fc. Substituting ηc, ηm, ϱ with (6.62), (6.63), (6.64) and invoking Lemma

6.1, it follows

V̇ ≤ − 2ϵ2

m2 + 2
m2 |ϵ||Cc||ωc| − γc|ωc|2 + 2

m2 |ϵ||Cm||ωm|

− γm|ωm|2 + 2
m2 |ϵ||Cc||ωδ| − γc|ωδ|2

= − ϵ2

2m2 + ϕ1 + ϕ2 + ϕ3

(6.68)
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where

ϕ1 = ϵ2

2m2 + 2
m2 |ϵ||Cc||ωc| − γc|ωc|2

= − ϵ2 + (ϵ − 4|Cc||ωc|)2

4m2 − |ωc|2(γc − 4|Cc|2

m2 ),
(6.69)

ϕ2 = − ϵ2

2m2 + 2
m2 |ϵ||Cm||ωm| − γm|ωm|2

= − ϵ2 + (ϵ − 4|Cm||ωm|)2

4m2 − |ωm|2(γm − 4|Cm|2

m2 ),
(6.70)

and

ϕ3 = − ϵ2

2m2 + 2
m2 |ϵ||Cc||ωδ| − γc|ωδ|2

= − ϵ2 + (ϵ − 4|Cc||ωδ|)2

4m2 − |ωδ|2(γc − 4|Cc|2

m2 ).
(6.71)

We obtain ϕ1, ϕ2, ϕ3 ≤ 0 by choosing γc ≥ 4|Cc|2 and γm ≥ 4|Cm|2, which indicates V̇ ≤ 0.
It follows that θ̃, ρ̃ ∈ L∞ and ϵ

m
∈ L2. Following the derivation of Theorem 6.2 yields

g̃ ∈ L2 and ω, m, ξ, ζ ∈ L∞, which together with (6.27) and η, ϱ ∈ L2 ∩L∞ gives ϵ ∈ L2 ∩L∞.
From (6.25) we have θ̇ ∈ L2 and thus ξ ∈ L2. It follows from (6.20) and ϵ, ξ ∈ L2, ρ ∈ L∞
that e ∈ L2, which combined with ė ∈ L∞ reveals e(t) → 0 as t → ∞.

Since ζ is PE, the homogeneous part of (6.56) is exponentially stable, which together with
ξ, η, ϱ ∈ L2 implies θ̃(t) → 0 as t → ∞.

As Corollary 6.1 shows, if the output trajectory is kept staying in a certain subsystem,
the periodic deviations caused by switching are avoided and this further results in both the
convergence of the tracking error and control parameter estimation error.

6.3 Numerical Validation
A numerical example taken from [80] is utilized to validate the proposed control algorithm.
The plant parameters of the PWA system are given by

A1 =
[

0 1
−2 −1

]
, A2 =

[
0 1

−2.5 −1

]
, A3 =

[
0 1

−1.5 −1

]
,

f1 =
[

0
0.4

]
, f2 =

[
0

0.2

]
, f3 =

[
0

−0.3

]
,

with the common input matrix B = [0, 1.5]T and the output matrix C = [1, 0]. The sign of
each subsystem is 1 and known as prior. The switching hyperplanes depend on the system
output and are given by

Ω1 = {y ∈ R| − 2 ≤ y ≤ 2},
Ω2 = {y ∈ R|y > 2},
Ω3 = {y ∈ R|y < −2}.
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6.3 Numerical Validation

The reference model is chosen as

Wm = 1
(s + 1)2 (6.72)

The relative degree of the reference system is 2, which is equal to the one of all the subsystems
of the PWA system. Selecting Λ(s) = 1

s+1 and α = 1, the nominal control parameters are
obtained by matching equations (6.9)

θ∗
1 = [−1, 1.33, −0.67, 0.67, −0.53]T ,

θ∗
2 = [−1, 1.67, 1, 0.67, −0.27]T ,

θ∗
3 = [−1, 1, 0.33, 0.67, 0.4]T ,

Given an input signal r = 4sin(0.05t), the output tracking performance of the closed-
loop system by applying the nominal controller is displayed in Fig. 6.1. It shows that the
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Figure 6.1: Output tracking performance with input signal r = 4sin(0.05t), the nominal
controller is applied

output tracking error exists even when the nominal control parameters are employed. When
the system switches, the output of the closed-loop system deviates from the output of the
reference system, as depicted in equation (6.20). This deviation vanishes given a sufficiently
slow switching. The overall output tracking error over the whole time interval is thus small
in the mean square sense.

Given the adaptation gains Γi = γi = 10, the output tracking performance of the adaptive
system is displayed in Fig. 6.2. It can be seen that the desired performance is achieved
by applying adaptive controller. The deviation from the reference output occurs due to the
switches among subsystems. The smallness of the tracking error in the mean square sense
validates the theory derivation. Compared with adaptive controller, the nominal controller
exhibits better transient performance. This motivates us to study the convergence property
of the controller parameters. To validate the control parameter convergence, the input signal
is required to be sufficiently rich of order 4. Define the input signal r = sin(0.9t)+sin(0.1t)+r,
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Figure 6.2: Output tracking performance with input signal r = 4sin(0.05t), the proposed
adaptive controller is applied

with a periodic offset signal

r(t) =


4, 1000 + kT ≤ t < 3000 + kT s
−4, 4000 + kT ≤ t < 6000 + kT s
0, otherwise

(6.73)

where k ∈ N, T = 6000s. r drives the trajectory into all subsystems periodically. In Fig. 6.3,

Figure 6.3: Control parameters converge to a residual set around the nominal values with
slow switching

the dashed lines represent the nominal control parameters and the solid lines the adaptive
control parameters. It reveals that the adaptive control parameters converge to a set around
the nominal values under slow switching. Since the convergence of θ̃i is similar, so only θ̃1 is
displayed for clarity.
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6.4 Summary

To show the parameter convergence stated in Corollary 6.1, the trajectory of the closed-
loop system must be kept within a certain subsystem of the PWA system from a certain
time instant tµ on. Here we remove r from r at tµ = 40000s, which leads to χ1 = 1, χ2 =
χ3 = 0, ∀t ∈ [tµ, ∞), the adaptive control parameters in θ1 converge to the nominal control
values in θ∗

1, as shown in Fig. 6.4. The simulation validates the theory derivation.

Figure 6.4: Control parameters converge to the nominal values for χ1 = 1 after 40000s

6.4 Summary
In this chapter, we have developed the output feedback-based direct MRAC for PWA systems
for output tracking and explored the controller parameter convergence. With the proposed
approach, all the signals in the closed-loop are bounded and the output tracking error is small
in the mean square sense with sufficiently slow switching. If the input signal is sufficiently
rich, the control parameters converge to a residual set around the nominal values for slow
switches.

When comparing with the output feedback-based direct MRAC for PWL counterparts,
one highlight of our approach is that a novel adaptation law is proposed, which introduces
a constant term and compensates the biasing effect of the affine term. Furthermore, we fill
the gap that the controller parameter convergence is not explored for output feedback-based
MRAC of switched systems by establishing the relationship between the switching frequency
and the size of the residual set, to which the controller parameters converge, provided that
the input signal is sufficiently rich.

The effectiveness of the proposed approach is validated through a two-dimensional numeri-
cal example with relative degree 2. As the theoretical analysis shows, the proposed approach
can also be applied to PWA systems with higher dimensions and higher relative degree of
each subsystem, so long as the Assumption 6.1 on the system classes holds.

The proposed approach is limited to be applied to SISO PWA systems with measurable
input and output signals, whose region partitions only depend on the known input and output
signals, in contrast to the more common cases where region partitions depend on the state
vector. Considering this limitation, the following directions for future work are suggested.
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6 Adaptive Control of PWA Systems with Output Feedback

Regarding the extension of the feedback mechanism, it would be interesting to study a more
general case where the partial state feedback [145] instead of the output feedback is available
for the adaptive controller design. Regarding the extension of the switching mechanism, it
would be worth investigating the output feedback-based direct MRAC for PWA systems,
whose region partitions depend on the system state and thus are unknown. Furthermore,
the current approach is based on a slow-switching assumption. It is also an interesting topic
to study how to avoid frequent switching and sliding mode.
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Conclusion and Outlook 7

The motivation of this thesis is to explore the adaptive control for uncertain switched systems
with a particular focus on three aspects of constraints: limited excitations, performance
constraints, and sensor constraints.

7.1 Conclusion
The background knowledge presented in Chapter 2 reveals two common concepts in the
literature to solve the adaptive control problem of switched systems with known switching
signals: CLF-based approaches and MLF-based approaches. This thesis adopts these two
concepts to solve the constrained adaptive control problem of switched systems. As most of
the chapters focus on uncertain PWA systems, whose region partitions are assumed to be
known, the proposed methods are also eligible for time-dependent switched linear systems.

7.1.1 Solution to Limited Excitations
In Chapter 3, an indirect MRAC approach based on concurrent learning is proposed for
uncertain PWA systems. The concept of this approach is that it exploits not only the current
data, but also the recorded history data for the adaptation of the parameter estimation.
Specifically, each subsystem is assigned with a stack for the storage of history data. The
recorded data of a stack is updated and utilized for the parameter adaptation when the
corresponding subsystem is activated. The key advantage of the proposed method is that
the parameter convergence does not require the excitation to fulfill the conventional PE
condition. Instead, a relatively mild excitation condition of the linear independence of the
recorded data suffices to ensure the convergence of the controller gains and system parameter
estimation errors. This provides a solution to achieve parameter convergence in the indirect
MRAC of PWA systems under limited excitations. In light of the limitations of the known
state derivative assumption and the existence of the CLF, we suggest incorporating filtering
techniques to eliminate the assumption of known state derivatives and leveraging the non-
increasing property of barrier function-based MLF introduced in Chapter 5 to relax the
assumption of the existing CLF as future work.

7.1.2 Solution to Performance Constraints
In Chapter 4 and Chapter 5, adaptive control approaches of uncertain PWA systems satis-
fying performance constraints are developed, where Chapter 4 deals with constraints on the
output tracking and Chapter 5 deals with constraints on the state tracking. In addition to
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the performance constraints, both chapters achieve parameter convergence and present mod-
ified adaptation laws to guarantee the robustness of the closed-loop systems in the presence
of disturbances.

In Chapter 4, the adaptive control approaches for uncertain PWA systems in control
canonical form with both direct and indirect adaptation options are developed. The key idea
is to introduce an error transform, which transforms the constrained output tracking error
into an unconstrained one and then design the adaptive controller to ensure the boundedness
of the unconstrained transformed error. Given a desired trajectory, both control approaches
ensure the output tracking error to be confined within a performance bound, which prescribes
the steady-state tracking error as well as the transient behavior such as decaying rate and
overshoot. Based on CLFs, we prove the stability of the closed-loop system under arbitrary
switching. Besides, the parameter convergence for both direct and indirect approaches is
proved under the PE condition. Furthermore, a projection-based robust modification of
the direct adaptation laws is provided, which ensures the closed-loop stability as well as
the fulfillment of the performance constraint when the PWA system is subject to matched
disturbances.

While Chapter 4 deals with performance constraints on the output tracking, Chapter 5
focuses on MRAC for uncertain PWA systems with performance constraints on the state
tracking, which is formulated as an inequality in terms of an error metric, defined as the
weighted Euclidean norm of the state tracking error. The core concept is to construct a
barrier function to confine the error metric to stay within a certain “barrier”. In the absence
of a CLF, this error metric exhibits jumps at the switching instants and may lead to the
barrier transgression problem. To solve this problem, we introduce an auxiliary performance
bound with a state reset map at switching instants to construct the “barrier” of the barrier
function. On the one hand, this auxiliary performance bound resides within the user-defined
performance bound if some dwell time constraints are satisfied. On the other hand, by
resetting the auxiliary performance bound at each switching instant, the error metric with
jumps is guaranteed to be confined within the auxiliary performance bound at switching
instants. We construct MLFs for both direct and indirect adaptation cases, which enjoy
the non-increasing property at as well as in between the switching instants such that the
error metric fulfills the performance constraint. The parameter convergence is proved for the
indirect adaptation case. Moreover, a projection-based robust modification of the proposed
method is developed to enhance the robustness of the closed-loop system against unmatched
disturbances.

In addition to the capability of the performance guarantee, another advantage of the ap-
proaches developed in Chapter 5 is that the constructed MLFs are non-increasing at switching
instants such that extra conditions like projections or PE are not needed to guarantee the
stability in the ideal case. Based on this property, two variants of indirect MRAC approaches
for uncertain PWA systems are developed, which relax the assumption of the existence of a
CLF, which is known as one key limitation of the previous indirect MRAC approaches for
PWA systems.

To better understand the connections and the difference between Chapter 4 and Chapter
5, it is worth discussing the following points. First, both of them follow a barrier function
concept, namely, mapping a constrained error term to an unconstrained term. The perfor-
mance constraints can be fulfilled by ensuring the boundedness of the unconstrained term.
However, the value of the the unconstrained term may become very large if the error ap-
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proaches the boundary of the constraint. This would lead to large control inputs, which is
the common limitation of the approaches in both chapters. Second, approaches of Chapter
4 belong to adaptive control with state feedback for output tracking and those of Chapter
5 belong to adaptive control with state feedback for state tracking. The former can only be
applied to uncertain PWA systems in control canonical form, while the latter ones do not
have structural requirements on the PWA systems. The canonical form in Chapter 4 leads
to the existence of CLFs. Nevertheless, the existence of CLFs in Chapter 5 depends on the
choice of the reference models. Finally, the robust modification in Chapter 4 is limited to
cope with matched disturbances whereas the one in Chapter 5 can also handle unmatched
disturbances.

Considering the common limitation of large control inputs, extending the current ap-
proaches to systems having input saturation constraints will be part of future work. Besides,
it is of practical interest to explore the relationship between the input saturation constraints
and the bounds of the uncertain parameters.

7.1.3 Solution to Sensor Constraints
Chapter 6 and Chapter A cope with the uncertain switched systems with sensor constraints,
namely, whose states are not available. To be specific, Chapter 6 is devoted to the adaptive
control of such systems based on the output feedback while Chapter A focuses on the adaptive
observer (simultaneous estimation of unknown states and parameters). The convergence of
the estimation errors of the control gains is also explored in Chapter 6.

In Chapter 6, the output feedback-based direct MRAC control design of PWA systems
as well as its parameter convergence analysis are investigated. The transients after each
switch, including the mismatch of zero-input responses and the compensation error of the
affine term, are treated as disturbances. Under the slow switching assumption, it is shown
that all the closed-loop signals are bounded and the output tracking error is small in the
mean square sense. Built upon this result, the estimation error of the controller parameters
is proved to converge to a residual set if the input signal is sufficiently rich. The relationship
between the size of this residual set and the switching frequency is established. Moreover, the
convergence of the estimated controller parameters to their nominal values can be achieved
for a certain subsystem given that this subsystem is activated for infinitely long time. The
main limitation is that the proposed approach is only eligible for SISO PWA systems, whose
region partitions only depend on the known input and output signals.

Chapter A presents an adaptive observer for a class of nonlinear systems with switched
unknown parameters, which covers some special classes of PWA systems. The key difficulty
lies in how to deal with the disturbance effect of the intermittently appeared zero-input
responses caused at each switching instant. These responses depend on the unknown SASI
and constitute an additive disturbance to the parameter estimation, which obstructs the
parameter convergence to zero. The solution concept is to treat the zero-input responses as
excitations instead of disturbances. This is realized by first augmenting the system parameter
with the SASI and then developing an estimator for the augmented parameter using the
DREM technique. Thanks to its property of element-wise parameter adaptation, the system
parameter estimation is decoupled from the SASI. As a result, the estimation errors of
system states and parameters converge to zero asymptotically. Furthermore, the robustness
of the proposed adaptive observer is guaranteed in the presence of disturbances and noise
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under a PE condition. The application of our approach is confined to switched systems
whose uncertainties are linearly parameterized. The extension to nonlinearly parameterized
switched systems is suggested as part of future work.

Although the zero-input responses caused at each switching instant constitute the common
difficulty for the adaptive observer design in Chapter A and the adaptive control design in
Chapter 6, the concepts to treat these responses are different. Specifically, in Chapter A,
the known information contained in the zero-input responses are fully exploited to update
the estimated parameters and therefore, these responses can be viewed as excitation sources.
In contrast, the zero-input responses (together with other transients caused by switching)
are treated as disturbance terms in Chapter 6. Such conceptual difference further leads to
the following difference of results: if every subsystem is intermittently activated, then the
estimation errors of the state and the parameters of the adaptive observer in Chapter A
converge to zero asymptotically, while the tracking error and parameter estimation errors of
the adaptive controller in Chapter 6 are only bounded. Nevertheless, if the switch terminates,
then the zero-input response converge to zero. Thereby, the parameter estimation errors of
the adaptive observer in Chapter A remain to be bounded whereas those of the adaptive
control in Chapter 6 converge to zero.

In summary, we have developed adaptive control approaches for uncertain PWA sys-
tems with the focus on dealing with constraints from three perspectives. Specifically, from
the aspect of the input of the control system, the problem of limited excitations at the
input is solved by achieving the convergence of the estimated system parameters in the
indirect MRAC of PWA systems without requiring the PE condition. From the aspect of
the state/output of the control system, direct and indirect adaptive control approaches are
developed for PWA systems to satisfy the output performance constraints and full state
performance constraints, respectively. From the aspect of the feedback loop, a direct MRAC
approach is developed for PWA systems, which only relies on the output feedback. Be-
sides, a novel adaptive observer is proposed for switched systems to estimate the unknown
parameters and states simultaneously.

7.2 Outlook
The adaptive control methods for PWA systems developed in this thesis can be categorized
as model-based control, which enjoys the advantages of provable stability, robustness and
parameter convergence. Meanwhile, the rapid growth in the computing power of the modern
processors in recent years has initiated much effort on developing model-free learning meth-
ods based on big data to solve planning, control and decision making problems of agents with
increasing complexity in highly dynamic and uncertain environments. Despite their ability
to solve control problems with large complexity, the stability and robustness are mostly not
formally ensured. Considering the complementary features of the model-based and model-
free control approaches, it is an exciting topic to investigate how to combine the research
achievements presented in this thesis with the learning methods to solve the current techno-
logical challenges. In light of this, we discuss the following potential research directions for
future work.

Potential to fill the “sim-to-real” gap: the “sim-to-real” gap stems from the area of rein-
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forcement learning (RL). Many existing RL methods train the control policies in the simu-
lation environment. Compared to the training on the real agents, training in the simulation
enjoys the advantages such as reduced time and financial costs as well as less danger. Nev-
ertheless, control policies obtained from simulation-based training may fail when directly
applied to real agents due to uncertainties in the real world. This reveals a “sim-to-real”
gap. MRAC has the potential to fill such gap by training the reference input for a reference
model with RL in the simulation while enforcing the uncertain real plant to track the state
of the reference model [60]. As PWA systems have the universal approximation capability
to model highly nonlinear and hybrid systems, an interesting direction would be training
the reference input for the reference PWA models with RL for complex agents in the sim-
ulation and then applying the MRAC developed in this thesis to the real agents such that
the behavior of the PWA model in the simulation can be transferred to the real system with
identified parameters and safety guarantees. Since the reference PWA model and the real
PWA system are connected by the matching conditions, the core of the successful transfer
lies in the question, how to design or find the reference PWA models to ensure the fulfillment
of matching conditions for complex and large-scale PWA systems?

Avoidance of the sliding mode phenomenon: the PWA systems may enter sliding mode
on the switching hyperplanes, which causes the chattering and may be harmful for the
actuators. It is of practical interest to explore, how to avoid the sliding mode phenomenon
in the adaptive control of uncertain PWA systems. Current research results of PWA systems
to rule out the sliding mode are restricted to simple cases such as bimodal autonomous PWA
systems [140, 154], continuous autonomous PWA systems [27], where the system parameters
and switching hyperplanes are completely known and there is no adaptation mechanism. For
adaptive control of PWA systems developed in this thesis, the stability can be guaranteed
with CLFs (Chapter 3, Chapter 4) if the closed-loop system enters sliding mode. However,
how to enhance these adaptive controllers for PWA systems without the occurrence of sliding
mode is still open.
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tems A

In Chapter 6, the MRAC of PWA systems is explored with sensor constraints. This chapter
continues to cope with sensor constraints and studies the simultaneous state and parameter
estimation of uncertain switched systems.

Over the last decades, a lot of efforts have been devoted to the simultaneous state and
parameter estimation of dynamical systems with adaptive observers. Early results of adap-
tive observer design focus on systems, which can be transformed into canonical form [20, 71,
86, 108]. In [181], a new adaptive observer is proposed for a class of time-varying systems,
which does not require the system to be transformed into canonical form. Extensions of
this adaptive observer to nonlinearly parameterized systems [51], systems nonlinear in the
parameters [157], and stochastic systems [180] are reported. These approaches also enjoy a
wide range of applications, e.g., biodiesel fueled engines [183], lithium-ion batteries [162], and
antilock braking systems [2]. The fundamental idea of most referenced adaptive observers
is to construct a linear regression equation (LRE) by utilizing filtering operations on known
signals depending on the inputs and outputs. The LRE enables the application of various
adaptive parameter estimation approaches to estimate the unknown parameters. Then the
state observation is conducted with the estimated parameters. It is worth pointing out that
the LRE captures the forced response of the filtered system whereas the zero-input response
stemming from the filtering operation is treated as a disturbance and mostly disregarded, as
it is exponentially decaying and does not destroy the convergence of the estimation errors.

Despite the above-mentioned advances, the existing adaptive observers focus on systems
with constant unknown parameters and cannot be applied to systems with switched unknown
parameters. In practice, the operation conditions of most plants, as mentioned in Chapter
1, may change, which cannot be modeled using constant parameters. This motivates us
to explore adaptive observers for systems with switched unknown parameters. The main
challenge in this regard lies in the disturbance effect of zero-input responses caused by the
switching. These responses are products of unknown states at switching instants (SASI)
and the known transient terms. They act as a non-vanishing unknown additive disturbance
term to the LRE and prevent the parameter estimation error from converging to zero. This
problem cannot be solved by using conventional adaptive observers. However, the recently
proposed adaptive observers using dynamic regressor extension and mixing (DREM) [120,
121, 125] provide new inspiration to cope with the zero-input responses. These approaches
treat the initial state as an unknown parameter and transform the state observation problem
into the parameter estimation problem of the initial state. The key feature of these DREM-
based approaches is the ability to ensure the element-wise parameter adaptation, namely,
the adaptation of each element of the estimated parameter is decoupled from each other.
Although methods in [120, 121, 125] are not eligible for switched systems, we are inspired
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by their element-wise adaptation property and develop an adaptive observer for systems
with switched unknown parameters by using DREM, which overcomes the challenge of the
treatment of zero-input responses.

The main contribution of this chapter is that we develop an adaptive observer for a class of
systems with switched unknown parameters. We achieve asymptotic convergence of state and
parameter estimation errors despite the presence of the non-vanishing zero-input responses.
Furthermore, the robustness of the proposed adaptive observer is analyzed for the case with
noise and disturbances. We emphasize the novelty of the technical route through which we
cope with the zero-input responses. Specifically, distinct from the most adaptive observers
for systems with constant unknown parameters [2, 20, 51, 86, 108, 157, 162, 180, 181, 183],
where the zero-input response is viewed as a disturbance and disregarded, we exploit the
known information of the zero-input responses to construct the regressor and augment the
system parameters with SASI (the unknown part of zero-input responses). To decouple
the system parameter estimation and the evolution of SASI, we propose a DREM-based
parameter estimator for the augmented parameter. Thanks to its element-wise adaptation
property, the asymptotic convergence of state and parameter estimation errors is achieved.

The rest of this chapter is structured as follows. The problem formulation is given in
Sec. A.1. The proposed adaptive observer is depicted in Sec. A.2 with the robustness
analysis shown in Sec. A.3. The numerical validation is shown in Sec. A.4. In Sec. A.5, the
conclusion is given and future work is discussed.

A.1 Problem Formulation
In this chapter, we consider the following uncertain nonlinear single-input single-output
(SISO) switched system

ẋ = Ax + Bu + Ψ(y, u)θ∗
σ(t), (A.1a)

y = Cx, (A.1b)
where x ∈ Rn is the state vector, y ∈ R denotes the output signal, and u ∈ R represents the
input signal of the system. A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n are known constant matrices.
The nonlinearity Ψ(y, u) ∈ Rn×m is a known time-varying matrix depending on the output y
and the input u. The switched system (A.1) has s ∈ N+ subsystems and θ∗

σ(t) ∈ Rm denotes
the switched unknown parameter vector with θ∗

σ(t) ∈ {θ∗
1, θ∗

2, · · · , θ∗
s}. The switching signal

σ(t) is known.
The system structure (A.1) stems from the well-known system form with constant un-

known parameters studied in [2, 180, 181] with the difference that system (A.1) depicts
systems with switched unknown parameters. As depicted in Chapter 1, extending estima-
tion and control methods from linear systems to switched systems is of practical interest
as switched systems can model many engineering applications operating in multiple modes
such as mechanical systems with friction [165] and backlash [171].

Although system (A.1) appears to be different from the PWA systems studied in the
previous chapters, it covers some special class of PWA systems. For instance, if a PWA
system is utilized to approximate a Lur’e system (an interconnection between a linear system
and a memoryless nonlinearity) [160], then it can be written in form of (A.1). As we will
show in Section A.4, the Chua’s circuit, a typical PWA system, can be expressed with the
system (A.1).
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The problem to be solved in this chapter is formulated as follows:

Problem A.1. Given a switched system (A.1) with the known switching signal σ(t) and
the unknown subsystem parameters θ∗

i , i ∈ I, design an adaptive observer based on the
input u and the output y to simultaneously estimate the system state x and the subsystem
parameters θ∗

i , i ∈ I with asymptotic convergence of the estimation errors.

For the observer design in this chapter, we make the following assumptions:

Assumption A.1. The state x(t), the output y(t), the input u(t) and the parameters
θ∗

i are bounded. i.e., x(t) ∈ X, y(t) ∈ Y , u(t) ∈ U , ∀t ≥ 0 and θ∗
i ∈ Θi, i ∈ I with

X ∈ Rn, Y ∈ R, U ∈ R, Θi ∈ Rm being compact sets.

Assumption A.1 is a common assumption in adaptive observer design problem [51, 96].

A.2 Adaptive Observer Design
In this section, we introduce the proposed adaptive observer to solve the above-mentioned
problem. We first derive the LRE of (A.1) and redefine the role of the transient zero-input
responses caused by switching by augmenting the unknown parameters with the SASI. Then,
we develop a DREM-based parameter estimator to decouple the parameter estimation from
the SASI. Based on the estimated parameter, we design the state observer and conduct the
robustness analysis.

A.2.1 Derivation of LRE
Let us start by transforming the system (A.1) into a LRE. The goal of this step is to establish
an algebraic relation between the unknown parameters and the known signals. We rewrite
(A.1a) as

ẋ = (A − KC)x + Bu + Ky + Ψ(y, u)θ∗
σ(t) (A.2)

with K ∈ Rn×1 being an output feedback gain such that (A − KC) is Hurwitz. The time
response of x(t) for the interval t ∈ [tk, tk+1), k ∈ N, in which θ∗

σ(t) remains constant, can be
written as

x(t) = Φ(t, tk)x(tk)+
∫ t

tk

Φ(t, τ)(Bu(τ) + Ky(τ))dτ

+
∫ t

tk

Φ(t, τ)Ψθ∗
σ(t)dτ ,

(A.3)

where Φ(t, τ) is the state transition matrix associated with (A−KC). From (A.3) we can see
that three components constitute the solution of x for t ∈ [tk, tk+1), k ∈ N: the zero-input
response associated with the SASI x(tk), the forced response driven by the known signal
Bu + Ky and the forced response driven by the switched uncertain part Ψθ∗

σ. These two
forced responses can also be described by two auxiliary signals xu and xθ generated by the
following dynamics

ẋu = (A − KC)xu + Bu + Ky, xu(tk) = 0, (A.4a)
ẋθ = (A − KC)xθ + Ψθ∗

σ(t), xθ(tk) = 0, k ∈ N (A.4b)
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Therefore, for t ∈ [tk, tk+1), k ∈ N, equation (A.3) becomes

x = Φ(t, tk)x(tk) + xu + xθ. (A.5)

Furthermore, let the signal matrix Υ(t) ∈ Rn×m be generated by the following dynamics

Υ̇ = (A − KC)Υ + Ψ, Υ(tk) = 0, k ∈ N, (A.6)

from which one obtains Υ(t) =
∫ t

tk
Φ(t, τ)Ψdτ , t ∈ [tk, tk+1). This together with the solution

of xθ (the third term in (A.3)) leads to

xθ = Υθ∗
σ(t). (A.7)

The signals xu, xθ, Υ can be respectively viewed as filtered signals of Bu + Ky, Ψθ∗
σ(t), Ψ

with the filter parameter (A − KC). xθ is unknown and to be estimated. xu, Υ are known
and will be used later for the adaptive observer design.
Remark A.1. In the adaptive observer design for non-switching systems [181], it suffices to
specify zero initial states of the auxiliary filtered signal xu, Υ at t0. In contrast, these signals
in our context are reset to zero at each time instant tk (k = 0 for the initial instant and k ∈ N+

for switching instants, see (A.4), (A.6)). Such reset is essential for a clear decomposition of
x into the zero-input response (see Φ(t, tk)x(tk) in (A.5)) and forced responses (see xu, xθ in
(A.5)) for every continuous interval [tk, tk+1), k ∈ N.

Recall that the goal of this section is to establish an algebraic relation between the unknown
parameters and known signals by transforming the system (A.1) into a LRE. To achieve this,
we take (A.7) into (A.5), move the known signal xu to the left side of (A.5), and multiply
both sides with C, which yields for t ∈ [tk, tk+1), k ∈ N the following LRE

z = CΥθ∗
σ(t) + CΦ(t, tk)x(tk). (A.8)

with z = y − Cxu.
Remark A.2. For systems without switching, the LRE would become z = CΥθ∗+CΦ(t, t0)x(t0),
t ∈ [t0, ∞) with θ∗ being the constant unknown parameter. In most of the approaches of
the current line of research [2, 20, 51, 86, 108, 157, 162, 180, 181, 183], only z = CΥθ∗ is
considered and the zero-input response CΦ(t, t0)x(t0) is disregard due to its exponentially
decaying property. The work [9] provides rigorous asymptotic convergence analysis when
CΦ(t, t0)x(t0) is not neglected. As oppose to the decaying property in these papers, the
zero-input responses CΦ(t, tk)x(tk) in our case build a non-vanishing disturbance signal un-
der intermittent switching, as each switch triggers a zero-input response depending on the
SASI x(tk), k ∈ N+. Consequently, the effect of these transients on the parameter estimation
cannot be neglected.

The disturbance effect of CΦ(t, tk)x(tk), k ∈ N is the main obstacle to obtain the asymp-
totic convergence of the estimation errors. Observe that CΦ(t, tk)x(tk) consists of the known
part CΦ(t, tk) and the unknown part x(tk). Our solution concept is to treat the SASI x(tk)
as a part of the unknown parameters and view CΦ(t, tk) as a part of the regressor such that
we can make full use of this known signal for the parameter estimation. Namely, we rewrite
(A.8) as

z = νT θ̄∗(t) (A.9)
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with the augmented parameter and regressor

νT = [CΥ, CΦ(t, tk)] ∈ R1×(m+n),

θ̄∗(t) =
[

θ∗
σ(t)

x∗(t)

]
∈ R(m+n),

(A.10)

where x∗(t) ∈ X ≜ {x(t1), x(t2), · · · x(tk), · · · } and x∗(t) = x(tk) for t ∈ [tk, tk+1), k ∈ N.
Viewing over the whole time interval t ∈ [t0, ∞), x∗(t) is a piecewise constant vector.

The augmented parameter vector θ̄∗(t) in (A.10) is a switched parameter, which remains
constant within each interval [tk, tk+1) for k ∈ N and switches at each tk. It consists of two
parts: the parameters to be estimated θ∗

i , i ∈ I and the state at each switching instant
x∗(t) ∈ X . The cardinality of I is s while the cardinality of X is unknown. Due to
the mismatch of the cardinalities, it is necessary to develop a parameter estimator, which
enables separable adaptations of θ∗

σ(t) and x∗. To realize this, we propose a DREM-based
parameter estimator as it can achieve element-wise adaptation of the parameter.

A.2.2 DREM-based Parameter Estimator
The LRE (A.9) is derived by incorporating the filterd signals xu, Υ with the filter parameter
(A−KC). Based on this derivation, the first step of DREM is to create m+n LRE by using
a set of filters with distinct filter parameters (A − KjC), j ∈ {1, 2, · · · , m + n} instead of
using a single filter with (A − KC). Kj are designed such that (A − KjC) are Hurwitz. So
we repeat the derivation from (A.2) to (A.10) and replace K with Kj, j ∈ {1, 2, · · · , m + n}.
This leads to

zj = νT
j θ̄∗(t) (A.11)

with

zj = y − Cxuj,
νT

j = [CΥj, CΦj(t, tk)],
(A.12)

where

ẋuj = (A − KjC)xuj + Bu + Kjy, xuj(tk) = 0,
Υ̇j = (A − KjC)Υj + Ψ, Υj(tk) = 0, k ∈ N

and Φj(t, τ) denotes the state transition matrix associated with (A − KjC). We rewrite the
m + n LRE in matrix form and obtain

Zf = N T θ̄∗(t) (A.13)

with

Zf =


z1
...

zm+n

 ∈ Rm+n, N T =


νT

1
...

νT
m+n

 ∈ R(m+n)×(m+n). (A.14)

The second step of DREM suggests multiplying the extended regression equation (A.13)
with the adjoint of the extended regressor matrix N T , denoted by adj(N T ). This leads to

adj(N T )Zf = adj(N T )N T θ̄∗(t) = det(N )θ̄∗(t) (A.15)
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with det(·) denoting the determinant of a matrix. Let ∆ = det(N ) ∈ R and Z̄ = adj(N T )Zf ∈
Rm+n. From (A.15) we obtain

Z̄ = ∆θ̄∗(t), (A.16)

As ∆ is a scalar, (A.16) leads to m + n separate scalar regression equations

Z̄ =



Z̄1
...

Z̄m

Z̄m+1
...

Z̄m+n


= ∆



θ∗
1σ(t)
...

θ∗
mσ(t)

x∗
1(t)
...

x∗
n(t)


= ∆θ̄∗(t), (A.17)

where Z̄j is the j-th element of the vector Z̄, θ∗
ji represents the j-th element of θ∗

i , and x∗
j

denotes the j-th element of x∗.
Recall that the indicator function is an alternative way to describe the switching

χi(t) =
1, if σ(t) = i,

0, otherwise.
(A.18)

Let θ̂ji ∈ R be the estimated value of θ∗
ji and let θ̂i = [θ̂1i, · · · , θ̂mi]T . The adaptation of the

estimated parameter follows the adaptation law

˙̂
θji = γiχi∆(Z̄j − ∆θ̂ji) (A.19)

for i ∈ I, j ∈ {1, · · · , m}. γi ∈ R+ is a positive scaling factor. This adaptation law gives the
parameter error equation

˙̃θji = −γiχi∆2θ̃ji (A.20)

for θ̃ji being the j-th element of θ̃i with θ̃i = θ̂i − θ∗
i . The indicator function χi in the

adaptation law (A.19) indicates that the value of θ̂i remains constant when subsystem i is
inactive and θ̂i is adapted during the active phase of subsystem i.

As underscored in the introduction of this chapter, the conceptual highlight of this chapter
is to convert the role of the zero-input responses from disturbances to excitations. To better
understand this concept, we observe from (A.12) and (A.14) that the known part of the zero-
input response CΦj(t, tk) constitutes a part of the regressor matrix N , whose determinant ∆
further drives the adaptation of the parameter estimation errors (see (A.20)). Furthermore,
the element-wise adaptation property of DREM ensures that the evolution of the unknown
part of the zero-input response x(tk) does not affect the adaptation of the estimated system
parameters θ̂i.
Remark A.3. Simulation results in [180, 181] show that adaptive observers proposed for non-
switched systems have the tolerance for rare switches of the parameters at the expense of
transient parameter estimation errors after each switch. Due to these transient parameter
estimation errors, provable asymptotic convergence of parameter and state estimation errors
cannot be established. Moreover, performance degradation may occur when the time between
two successive switches of parameters is not long enough to let the transients converge. One
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feature that distinguishes our method from these methods is that each subsystem has its
own estimated parameter θ̂i, i ∈ I. The estimated parameter θ̂i is only adapted when i-th
subsystem is activated. Otherwise, θ̂i is frozen and is retained as the initial value for the next
active period for i-th subsystem. Therefore, asymptotic convergence of parameter estimation
errors can be achieved without suffering from transient errors after each switch.

A.2.3 Adaptive State Observer
After obtaining the parameter adaptation law (A.19) for the estimated parameters θ̂i, the
adaptive state observer to estimate the state x is given based on θ̂i

˙̂x = Ax̂ + Bu + Ψ(y, u)θ̂σ(t) + K(y − ŷ),
ŷ = Cx̂

(A.21)

where x̂, ŷ denote the estimated state and output, respectively. K ∈ Rn×1 is to be chosen
such that (A − KC) is Hurwitz.

Assumption A.2. The scalar signal χi∆ satisfies χi∆ /∈ L2, ∀i ∈ I.

The performance of the proposed adaptive observer (A.19), (A.21) can be summarized
below.

Theorem A.1. Consider the switched system (A.1) with unknown parameters θ∗
i , i ∈ I

and the adaptive observer (A.21) with the adaptation law (A.19). If Assumption A.1 and
Assumption A.2 hold, then we have the parameter estimation error θ̃i(t) → 0, ∀i ∈ I as
t → ∞ and the state estimation error x̃(t) = x̂(t) − x(t) → 0 as t → ∞.

Proof. From (A.20), we have

θ̃ji(t) = e−γi

∫ t

t0
χi(s)∆2(s)ds

θ̃ji(t0). (A.22)

Since χi∆ /∈ L2, i ∈ I, we have θ̃ji → 0 and therefore, θ̃i → 0 as t → ∞. From (A.1) and
(A.21) we obtain for x̃ = x̂ − x

˙̃x = (A − KC)x̃ + Ψθ̃σ(t). (A.23)

Since θ̃i → 0, ∀i ∈ I for t → ∞ and (A − KC) is Hurwitz, it leads to x̃ → 0 as t → ∞.

Remark A.4. Regarding the zero-input response, the underlying concept of the adaptive
observers for non-switched systems (e.g., see [20, 51, 181]) or adaptive control for switched
systems (see [135] and Chapter 6) is treating the zero-input response as a disturbance,
regardless of whether neglecting it or including it in the stability analysis [9, 135]. Distinct
from this concept, we provide a new perspective that the zero-input responses can be utilized
as excitations to promote the parameter estimation such that asymptotic convergence of state
and parameter estimation errors can be achieved.
Remark A.5. The DREM-based adaptive observers in [120, 125] augment the system param-
eters with the initial state. Then the state estimation is established based on the identified
initial state through an open-loop integration [120] or a non-fragile algebraic equation [125].
As oppose to these approaches, the purpose of augmenting the system parameters with SASI
in this note is to exploit the known information of the zero-input responses in the regressor
whereas the estimation of SASI is not of interest and disregarded.
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Remark A.6. The convergence analysis of the parameter estimation in the previous chapters
requires that each subsystem is activated intermittently [84, 99, 173]. In this chapter, this
condition is implicitly included in the condition χi∆ /∈ L2, ∀i ∈ I (Assumption A.2). Specif-
ically, if there exists subsystem l ∈ I that is not intermittently activated, then there exists
ť ≥ 0 such that σ(t) ̸= l and χl(t) = 0, ∀t ∈ [ť, ∞). This would lead to χl∆ ∈ L2, which
contradicts with the condition χi∆ /∈ L2, ∀i ∈ I. Therefore, Assumption A.2 implies that
every subsystem is activated intermittently.

To frame the current result in the state of the art, it is worth distinguishing our method
from switched adaptive observers in the literature. Switched adaptive observers [2, 3] are
proposed to deal with non-uniformly observable systems (systems in form of (A.1) but with
a time-varying A(t) matrix such that no constant K matrix can be found to let (A(t)−KC)
be Hurwitz). A switching output feedback gain Kσ is designed such that (A(t) − KσC)
is always Hurwitz. The reset adaptive observer [122] utilizes a reset integral term in the
state observer aiming to improve the transient behavior of the adaptive observer. All the
above-mentioned works [2, 3, 122] deal with systems with constant unknwon parameters.
The adaptive observers therein cannot be applied to systems with switched unknown pa-
rameters. A switched adaptive observer for switched nonlinear systems is proposed in [96].
The adaptation law therein still follows the concept of [181], namely, using single parameter
adaptation to estimate parameters with jumps. Therefore, it suffers from the same problem
mentioned in Remark A.3.

One potential drawback of using the DREM-based parameter estimator is the computa-
tional complexity as n + m LREs are involved. In view of this, one question which may arise
is why not use gradient-based adaptation [181] or least square-based adaptation [51], where
only one LRE (e.g., (A.8)) is needed with relatively lower computational costs? We explain
this point as follows.

The reason for using DREM lies in its ability to establish element-wise relationships such
that the adaptation of the parameter θ̂ji is decoupled from the jumps of x∗. In contrast,
neither the gradient method nor the least square-based adaptation can achieve such decou-
pling. We take the gradient method as an example. Specifically, the gradient method would
suggest for the estimated augmented parameter vector (denoted by ˆ̄θi for i-th subsystem) in
(A.9) the following adaptation law

˙̄̂
θi = γiχiν(z − νT ˆ̄θi) = −γiχiννT ˜̄θi. (A.24)

for ˜̄θi = ˆ̄θi − θ̄∗. Together with the excitation condition that χiν is PE, this would lead to
an exponential decrease of the norm | ˜̄θi(t)| in the time interval

| ˜̄θi(t)| ≤ κ′
ie−γiχiκi(t−tik

)| ˜̄θi(tik
)|, t ∈ [tik

, tik+1)

κ, κ′ ∈ R+ are some positive constants, [tik
, tik+1), k ∈ N+ denote time intervals in which i-th

subsystem is active. Note that we cannot expect the state at the switch-out instant of i-th
subsystem x(tik+1) to be equal to the state at the next switch-in instant x(tik+1). Namely,
x∗(tik+1) = x∗(tik+1) does not necessarily hold. This implies a potential instantaneous jump
of θ̄∗ at each tik

. As ˆ̄θi evolves continuously and ˜̄θi = ˆ̄θi − θ̄∗, the jump of θ̄∗ leads to the
jump of ˜̄θi at each tik

. These jumps together with the exponential decrease of | ˜̄θi| in each
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[tik
, tik+1), k ∈ N+ does not lead to the convergence of | ˜̄θi| to 0. In this regard, the jumps

of x∗ is coupled with the parameter vector θ̃i through the norm operator and obstructs the
convergence of θ̃i to 0.

A.3 Robustness Analysis
In this section, we study the robustness of the adaptive observer when applying it to systems
with disturbances and noise. Consider the system

ẋ = Ax + Bu + Ψ(y, u)θ∗
σ(t) + ω, (A.25a)

y = Cx, (A.25b)
ȳ = y + v, (A.25c)

where ω ∈ Rn represents the state disturbance. ȳ denotes the measured output with v ∈ R
being the measurement noise. ω and v are bounded, i.e., |ω| ≤ ω0, |v| ≤ v0 for some constants
ω0, v0 ∈ R+.

With regards to the nonlinear function Ψ(y, u) in (A.25), we make the additional assump-
tion as follows:

Assumption A.3. The function Ψ(y, u) in (A.25) is Lipschitz with respect to y. That is,
there exists positive constant LΨ ∈ R+ such that ∀u ∈ U and y, ȳ ∈ Y we have ∥Ψ(y, u) −
Ψ(ȳ, u)∥ ≤ LΨ|y − ȳ| = LΨ|v| ≤ LΨv0.

To study how ω and v affect the stability, we rederive the error equation (A.20). We start
by rewriting (A.25a) as

ẋ = (A − KjC)x + Bu + Kjy + Ψ(y, u)θ∗
σ(t) + ω (A.26)

for some Kj ∈ Rn×1, j ∈ {1, 2, · · · , m + n} such that (A − KjC) is Hurwitz. The time
response of x(t) for t ∈ [tk, tk+1), k ∈ N can be written as

x(t) =Φj(t, tk)x(tk) +
∫ t

tk

Φj(t, τ)(Bu + Kjy)dτ

+
∫ t

tk

Φj(t, τ)Ψ(y, u)θ∗
σdτ +

∫ t

tk

Φj(t, τ)ωdτ .
(A.27)

We use the measured output ȳ to generate the filtered signals

ẋuj = (A − KjC)xuj + Bu + Kj ȳ, xuj(tk) = 0,
Υ̇j = (A − KjC)Υj + Ψ(ȳ, u), Υj(tk) = 0, k ∈ N

Let zj = ȳ − Cxuj, which gives for t ∈ [tk, tk + 1), k ∈ N

zj = Cx + v − C(
∫ t

tk

Φj(t, τ)(Bu + Kjy + Kjv)dτ). (A.28)

Substituting x with (A.27) yields

zj = CΦj(t, tk)x(tk) + CΥjθ
∗
σ(t) + dj (A.29)
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with the disturbance-related term dj being expressed by

dj =C
∫ t

tk

Φj(t, τ)(Ψ(y, u) − Ψ(ȳ, u))θ∗
σ(t)dτ

+ C
∫ t

tk

Φj(t, τ)ωdτ + v − C
∫ t

tk

Φj(t, τ)Kjvdτ .
(A.30)

With the regressor νT
j = [CΥj, CΦj(t, tk)], equation (A.29) can be written in the linear

regression form
zj = νT

j θ̄∗(t) + dj. (A.31)

Stacking m + n equations yields
Zf = N T θ̄∗(t) + d (A.32)

with d = [d1, d2, · · · , dm+n]T . Multiplying both sides with adj(N T ) leads to

Z̄ = ∆θ̄∗(t) + D̄ (A.33)

with D̄ = adj(N T )d. We apply the same parameter adaptation law as in the ideal case
(A.19) and obtain the element-wise parameter error equation

˙̃θji = −γiχi∆2θ̃ji + γiχi∆D̄j, (A.34)

where i ∈ I, j ∈ {1, 2, · · · , m}, D̄j is the j-th element of D̄. Let D be a vector of the first m
elements of D̄, i.e., D = [D̄1, D̄2, · · · , D̄m]T . We can write (A.34) into the vector form

˙̃θi = −γiχi∆2θ̃i + γiχi∆D. (A.35)

The adaptive observer is constructed based on the measured output ȳ and (A.21) now be-
comes

˙̂x = Ax̂ + Bu + Ψ(ȳ, u)θ̂σ(t) + K(ȳ − ŷ),
ŷ = Cx̂

(A.36)

Assumption A.4. The scalar signal χi∆ is PE, ∀i ∈ I.

The following theorem summaries the robustness of the proposed adaptive observer in the
presence of disturbances and noise.

Theorem A.2. Consider the switched system (A.25) with unknown parameters θ∗
i , i ∈ I

and the adaptive observer (A.36) with the adaptation law (A.19). If Assumption A.1, As-
sumption A.3, and Assumption A.4 hold, then the parameter estimation error θ̃i and the
state estimation error x̃ converge to the residual set

Re = {x̃ ∈ Rn, θ̃i ∈ Rm
∣∣∣|x̃| + |θ̃i| ≤ µ sup

t
|∆D| + c} (A.37)

for some positive constants µ, c ∈ R+.
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Proof. We start the proof by showing that dj, j ∈ {1, 2, · · · , n + m} in (A.30) is bounded for
t ∈ [t0, ∞). As Φj(t, τ) is the state-transition matrix of the Hurwitz matrix (A−KjC), there
exist constants βj, β′

j ∈ R+ such that ∥Φj(t, τ)∥ ≤ β′
je−βj(t−τ). Therefore, for t ∈ [tk, tk+1),

we have from (A.30) the following inequality

|dj| ≤ β′
j|C|

∫ t

tk

e−βj(t−τ)∥Ψ(y, u) − Ψ(ȳ, u)∥|θ∗
σ(t)|dτ

+ β′
j|C|

∫ t

tk

e−βj(t−τ)(|ω| + |Kj||v|)dτ + |v|.

Let Lθ = maxi |θ∗
i | and ∆tk = tk+1 − tk, k ∈ N. Due to Assumption A.3 we obtain for

t ∈ [tk, tk+1), k ∈ N

|dj| ≤ β′
j|C|

∫ t

tk

e−βj(t−τ)(LΨLθv0 + ω0 + |Kj|v0)dτ + v0

≤
β′

j

βj

|C|(LΨLθv0 + ω0 + |Kj|v0)(1 − e−βj∆tk) + v0

<
β′

j

βj

|C|(LΨLθv0 + ω0 + |Kj|v0) + v0,

which together with adj(N T ) ∈ L∞ leads to D, D̄ ∈ L∞.
From (A.35), we have

θ̃i(t) = e−γi

∫ t

t0
χi∆2(s)ds

θ̃i(t0) + γi

∫ t

t0
e−γi

∫ t

τ
χi∆2(s)dsχi∆Ddτ .

Since χi∆ is PE, there exist constants α′
i, αi ∈ R+ such that

|θ̃i(t)| ≤ α′
ie−γiαi(t−t0)|θ̃i(t0)| + α′

iγi

∫ t

t0
e−γiαi(t−t0)|χi∆D|dτ , (A.38)

which further leads to

lim
t→∞

sup
τ≥t

|θ̃i(τ)| ≤ α′
i

αi

sup
t

|χi(t)∆(t)D(t)|. (A.39)

From (A.25) and (A.36) we obtain

˙̃x = (A − KC)x̃ + (Ψ(ȳ, u)θ̂σ(t) − Ψ(y, u)θ∗
σ(t)) − w + Kv,

which can be further rearranged as

˙̃x = (A − KC)x̃ + (Ψ(ȳ, u) − Ψ(y, u))θ̂σ(t) + Ψ(y, u)θ̃σ(t) − w + Kv.

Recalling that (A − KC) is Hurwitz, there exist constants β, β′ ∈ R+ such that

|x̃(t)| ≤β′e−β(t−t0)|x̃(t0)| + β′
∫ t

t0
e−β(t−τ)(LΨv0|θ̂σ(t)|

+ sup
t

∥Ψ(y, u)∥|θ̃σ(t)| + w0 + |K|v0)dτ .
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Since |θ̂σ(t)| ≤ |θ̃σ(t)| + |θ∗
σ(t)| ≤ |θ̃σ(t)| + Lθ, we obtain

|x̃(t)| ≤β′e−β(t−t0)|x̃(t0)| + β′
∫ t

t0
e−β(t−τ)(LΨv0|θ̃σ(t)|

+ LΨLθv0 + sup
t

∥Ψ(y, u)∥|θ̃σ(t)| + w0 + |K|v0)dτ .

This further yields

lim
t→∞

sup
τ≥t

|x̃(τ)| ≤ β′

β
((LΨv0 + sup

t
∥Ψ(y, u)∥)|θ̃σ(t)| + LΨLθv0 + w0 + |K|v0),

which together with (A.39) gives (A.37) with

µ = max
i

α′
i

αi

(1 + β′

β
(LΨv0 + sup

t
∥Ψ(y, u)∥)),

c = β′

β
(LΨLθv0 + w0 + |K|v0).

(A.40)

This completes the proof.

Remark A.7. Compared to the disturbance-free case, Theorem A.2 requires a stronger exci-
tation condition that χi∆ is PE, which is instrumental to ensure the boundedness of x̃ and
θ̃i. In case the PE condition cannot be satisfied in some circumstances, robust modifications
such as projections and leakages revisited in Chapter 2 can be applied to the adaptation law
(A.19). The modified adaptation law together with the boundedness of D in (A.35) would
lead to the boundedness of x̃ and θ̃i (see [71, Ch. 9.2]).
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Figure A.1: Parameter and state estimation using the proposed adaptive observer.
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A.4 Numerical Validation
In this section, the proposed adaptive observer is validated through a numerical example of
the chaotic oscillator, the Chua’s circuit, adjusted from the literature [31, 182]. Its system
equation is given by 

ẋ1 = p0(−x1 + x2 − g(x1))
ẋ2 = x1 − x2 + x3

ẋ3 = −q0x2 − r0x3

(A.41)

where p0 = 10, q0 = 16, r0 = 0.0385 are known parameters. Let x = [x1, x2, x3]T be the
state vector. The system output y = x1 is measurable and x2, x3 are to be estimated. The
function g(x1) is a piecewise linear function

g(x1) =


−0.7143x1 − 0.4286, for x1 ≥ 1
−1.1429x1, for |x1| < 1
−0.7143x1 + 0.4286, for x1 ≤ −1

(A.42)

Therefore, the system (A.41) can be written in form of (A.1) with

A =

−p0 p0 0
1 −1 1
0 −q0 −r0

 , Ψ = −p0

y 1
0 0
0 0

 , (A.43)

B = [0, 0, 0]T and C = [1, 0, 0]. The initial state of the system is x(0) = [2.88, −0.066, −2.12]T .
The nominal parameters to be estimated are

θ∗
1 = [−0.7143, −0.4286]T ,

θ∗
2 = [−1.1429, 0]T ,

θ∗
3 = [−0.7143, 0.4286]T .

(A.44)

The switching signal σ(t) = 1 for x1(t) ∈ Ω1 = {x1| x1 ≥ 1}, σ(t) = 2 for x1(t) ∈ Ω2 =
{x1| |x1| < 1}, and σ(t) = 3 for x1(t) ∈ Ω3 = {x1| x1 ≤ −1}.

Now we evaluate the estimation performance of our proposed adaptive observer in the ideal
case. The filter parameters {Kj}5

j=1 are chosen as K1 = [0, −1, −15]T , K2 = [−2, 2.5, 20]T ,
K3 = [−2, 0.1, 1]T , K4 = [−0.4, −0.4, −8]T , K5 = [−8, 6.5, 18]T and K in the state observer
(A.21) is K = [−2, 2.5, 20]T . The initial value of the observer x̂(0) = [0, 0, 0]T . We specify
the scaling factors γi = 10, i = {1, 2, 3}. The switching signal is show in Fig. A.1a. We
can observe the intermittent switching, namely, every mode is repeatedly activated. Fig.
A.1b shows the evolution of integrals

∫ t
0 χi(s)∆2(s)ds, i ∈ I, from which one can conclude

χi∆ /∈ L2. The norm of the parameter estimation error for each subsystem |θ̃i| is shown in
Fig. A.1c, where dashed sections represent the inactive phase and solid sections represent the
active phase. As it can be seen from Fig. A.1c, the value of |θ̃i| stays unchanged during the
inactive phase whereas it, thanks to the use of DREM, decreases monotonically during the
active phase. Furthermore, The estimated parameters of all subsystems converge to 0. The
element-wise state estimation is shown in Fig. A.1d, Fig. A.1e, and Fig. A.1f, respectively.
The red solid lines display estimated states and the blue dashed lines represent real states.
One can observe that the state estimation errors also converge to 0, this together with the
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parameter convergence validates the theoretical results of Theorem A.1 that the proposed
method is able to eliminate the disturbance effect of the zero-input responses and achieves
asymptotic convergence of state and parameter estimation errors.

Finally, we show the robustness of the proposed adaptive observer in the presence of
disturbances and noise. The filter parameters {Kj}5

j=1, the scaling factors γi, as well as
the initial value of the observer x̂ are specified to be the same as those in the ideal case.
The disturbance term in (A.25a) is ω = [0.05 sin 7t, 0.005 sin 5t, 0.1 sin 13t]. v in (A.25c) is
generated as random numbers with |v| ≤ v0 = 0.1. In the simulation, the true switching
signal σ(t) of the plant is used for the switching of the parameter estimator and the state
observer.
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Figure A.2: Parameter and state estimation using the proposed adaptive observer in the
presence of disturbances and noise.

The parameter estimation errors |θ̃i| and the state estimation error x̃ are shown in Fig.
A.2a and Fig. A.2b, respectively. Despite of the presence of disturbances and noise, both
the parameter estimation errors and the state estimation error converge to bounded sets,
which implies the robustness of the proposed adaptive observer.

A.5 Summary
In this chapter, we studied the simultaneous state and parameter estimation of uncertain
switched systems with sensor constraints. Instrumental for this task is the derivation of a
new LRE, which takes the intermittently appeared zero-input responses into account. We
underscore the novelty that we convert the known information of zero-input responses into
a part of an augmented LRE and propose a DREM-based parameter estimator to decouple
the parameter adaptation from the SASI of these responses. With the proposed adaptive
observer, we managed to eliminate the disturbance effect of the zero-input responses and
achieve asymptotic convergence of state and parameter estimation errors. Moreover, we
have proved the robustness of the proposed method by showing that the state and parameter
estimation errors converge to a bounded set in the presence of disturbances and noise.

The key advantage of using DREM in our adaptive observer is that it enables element-wise
adaptation and thus decouples the adaptation of the system parameters from the jumps of
the SASI. In contrast, classical adaptive observers can only achieve the decrease of the norm
of the parameter estimation error vector. As a result, the jumps of the SASI would obstruct
the convergence of the system parameters via the norm operation. In addition, a byproduct
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advantage of using DREM in our approach is that it does not require the classical persistence
of excitation condition to achieve the parameter convergence in the disturbance-free case.

The theoretical results are validated through a numerical example of Chua’s circuit, a
typical application example in form of A.1 with constant matrices A, B. The proposed
method can be generalized to systems with switched system matrices Aσ(t), Bσ(t) (instead of
the constant ones A, B in (A.1)) by following the same procedure but using switched filter
parameters and a switched observer gain (see [102, Remark 6]).

One limitation of the proposed method is that the switching signal is required to be
known. For PWA systems, whose region partitions depend on the input and output signals
but the output measurement is corrupted with noises, the switching signal will be imprecise
because it is obtained by evaluating in which region the measured output locates. How the
imprecise switching signal affects the convergence property and the robustness of the state
and parameter estimation remains to be explored in future work.

Moreover, the proposed adaptive observer is eligible for SISO linearly parameterized
switched systems. To enlarge the application domain of system classes, future work can
also focus on the extension of the proposed adaptive observer to MIMO and nonlinearly
parameterized switched systems.
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