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Summary
We study how numerical precision affects the high-
order Discontinuous Galerkin method with ADER time 
stepping (ADER-DG) for solving hyperbolic partial 
differential equations.
The effects of precision on both the convergence and 
stability of the algorithm are evaluated.
Mixed and variable precision approaches are tested 
to try to restore high-order convergence and stability.
While numerical precision is critical to convergence, 
lower precisions produce accurate results in stable 
scenarios. In addition, mixed and variable precision 

methods can reduce errors caused by low precision.
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● Reduced precision improves the runtime through higher
effective vectorization, lower bandwidth and better caching

● In ExaHyPE2, reducing the precision of an HHS1 simulation
from fp64 to fp32 reduces the runtime by about 25%

● The required memory for persistent cell-data shrinks from
about 408MB to about 204MB

● About 50% fewer memory-bound pipelines
Fig. 6: DRAM Bandwidth utilization in GB/s of the HHS1 scenario simulated in fp64 and 
fp32-precision in ExaHyPE2, measured using the Intel VTune profiler [Vtu24]
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Variable precision

The term variable precision is used when the
numerical precision differs between areas
of the simulated domain.

Here we run the homogeneous half-space
scenario (HHS1) [Kri09] for elastic-wave
propagation. It consists of a singular point
source in an infinite domain, and is used to 
asses the modeling of a planar free surface.

Using a mesh of 27x27x27 cells the solver 
produces accurate results in fp64, but in
bf16 these contain strong oscillations.

Using two coupled solvers we compute the 
top 4 layers of cells in fp64 and the rest in bf16,
totaling 2916 out of 19683 total cells in fp64.

As seen in Fig. 5, most oscillations disappear.
Therefore variable precision can be used to
exploit low-precision computation when
only certain key areas are of interest. 

Fig. 5: Comparison of the simulated and reference velocity in x-direction for the first receiver of the HHS1 
scenario as computed in fp64-precision, bf16-precision, or using both concurrently. In the latter case the 
uppermost 4 of the total 27 layers of cells where computed in fp64 while the rest were computed in bf16. 

ExaHyPE2 and ADER-DG

ExaHyPE2 is an engine for solving systems of first-order partial differential equations, it
relies on Peano4[Wei19] for the discretization and traversal of dynamically adaptive meshes.

It provides several solvers, such as the ADER-DG method[Dum08], this combines high-order
polynomial representations akin to finite-elements with the cell-locality of finite volume
methods through cell-local discontinuous Galerkin representations.

It comprises two key steps:
● the predictor consists of a cell-local space-time expansion of the solution, which is then 

projected to cell faces. The expansion uses Picard- iterations for nonlinear equations, or
the Euler method for linear equations. This corresponds to a volume integral over a cell.

● the corrector then uses the projected values on the faces to solve a Riemann problem and
integrates the flux computed by this Riemann problem to update the cell-local solutions.
This corresponds to a surface integral over cell boundary.

Alg. 1: The steps of the ADER-DG method

Table 1: Precisions defined by the IEEE 754 standard of Floating-Point Arithmetic[Ieee19]

Lagrange interpolations and rounding errors
 
Lagrange polynomials of
discontinuous functions are
susceptible to the so-called
Runge-phenomenon, which
causes oscillations to appear.

Fig. 4 shows rounding errors
from low precision triggering
these phenomena.

Fig. 4: 5th-Order Lagrange interpolation of Gaussian and sinusoidal functions with support points computed in different precisions. Rounding errors 
from lower numerical precisions lead to Gibbs-oscillation and misaligned projections at the edges of neighboring cells.

Stationary problems

We simulate two stationary, but numerically challenging scenarios.
These help measure whether the algorithm remains stable in
different precisions, and whether unphysical oscillations appear.

● Shallow Water equations: Resting Lake
Constant water height over sinusoidal bathymetry, order 5, 9x9 cells
In all but fp64, errors form along the crest of the sinus, indicating
improper resolution of the geometry.

● Euler equations: Isentropic Vortex [Shu99]
Stationary rotation around center of domain, order 5, 9x9 cells
fp64 and fp32 form almost identical errors around the vortex edges,
indicating slight errors in the geometry.
fp16 and bf16 show large errors over the entire domain, indicating 
failure to resolve the equation irrespective of the geometry

● Results:
Different numerical precisions can result in different initial conditions,
but depending on stability these may not be the main source of errors.

Convergence

We compute three different scenarios with known analytical
solutions for different mesh depths, polynomial orders
and numerical precisions.

This shows how numerical precision affects convergence

● Acoustic equations: Planar Waves
An initial sinusoidal wave traverses the domain without
deformation twice before returning to its initial conditions

fp64 and fp32 converge, though fp32 plateaus earlier.

bf16 causes large errors and does not converge.

fp16 fails but a mixed-precision approach can resolve
the problem, though it also fails to converge. 

● Elastic equations: Planar Waves
Analogous to acoustic scenario, though with additional
terms which make it more numerically complex

Similar results to acoustic, though even more pronounced

● Euler equations: Advection of Smooth Density Bell[Mat20]
An initial smooth Gaussian in the density is transported
through the domain without deformation.

fp64 and fp32 both converge
fp16 produces correct results at low polynomial order
but does not converge

bf16 cannot resolve the scenario.

● Results:
For high-order convergence, numerical precision matters.

In addition, nonlinear equations require higher precision
for stability but benefit less from increasing it.
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Fig 3: Final velocity of the resting lake scenario and L2-error of the 
isentropic vortex problem when computed in different precisions

Mixed precision

Mixed precision is the utilization of different precisions for certain aspects of an algorithm. For ADER-DG we 
isolate four main kernels: the persistent storage, the predictor, the corrector and the Picard-iteration 
method used for the space-time expansion of the solution in nonlinear equations.
Recomputing the presented scenarios using mixed-precision, we find that while the predictor has the highest 
impact on the results, the corrector and storage precisions are critical for the stability of certain equations.

Table 2: Final L2-error integrated over the domain for the three non-static scenarios computed with mixed-precision on a grid of 27x27 cells. One of predictor, corrector, storage or Picard-iterations 
was performed in the specified precision, all others were computed in fp64-precision.

Fig. 1: Integrated L2 errors over the entire domain for three different scenarios 
computed with different polynomial orders, cell sizes and numerical precisions. Note 
that the axes differ and, in the first two scenarios, fp16-results are computed in mixed 
precision using a higher precision for the predictor step.

Table 3: Final L2-error integrated over the domain for both static scenarios on a grid of 27x27 cells. One of predictor, corrector, storage or Picard-iterations was 
computed in the specified precision, all others were performed in fp64-precision.
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