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Simulating the brain-body-environment trinity in closed loop is an attractive proposal

to investigate how perception, motor activity and interactions with the environment

shape brain activity, and vice versa. The relevance of this embodied approach, however,

hinges entirely on the modeled complexity of the various simulated phenomena. In this

article, we introduce a software framework that is capable of simulating large-scale,

biologically realistic networks of spiking neurons embodied in a biomechanically accurate

musculoskeletal system that interacts with a physically realistic virtual environment. We

deploy this framework on the high performance computing resources of the EBRAINS

research infrastructure and we investigate the scaling performance by distributing

computation across an increasing number of interconnected compute nodes. Our

architecture is based on requested compute nodes as well as persistent virtual machines;

this provides a high-performance simulation environment that is accessible to multi-

domain users without expert knowledge, with a view to enable users to instantiate

and control simulations at custom scale via a web-based graphical user interface. Our

simulation environment, entirely open source, is based on the Neurorobotics Platform

developed in the context of the Human Brain Project, and the NEST simulator. We

characterize the capabilities of our parallelized architecture for large-scale embodied

brain simulations through two benchmark experiments, by investigating the effects of

scaling compute resources on performance defined in terms of experiment runtime,
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brain instantiation and simulation time. The first benchmark is based on a large-

scale balanced network, while the second one is a multi-region embodied brain

simulation consisting of more than a million neurons and a billion synapses. Both

benchmarks clearly show how scaling compute resources improves the aforementioned

performance metrics in a near-linear fashion. The second benchmark in particular is

indicative of both the potential and limitations of a highly distributed simulation in

terms of a trade-off between computation speed and resource cost. Our simulation

architecture is being prepared to be accessible for everyone as an EBRAINS service,

thereby offering a community-wide tool with a unique workflow that should provide

momentum to the investigation of closed-loop embodiment within the computational

neuroscience community.

Keywords: spiking neural networks, embodiment, Neurorobotics Platform, high performance computing (HPC),

NEST, musculoskeletal modeling, large-scale brain simulation, parallel computing

1. INTRODUCTION

While theories exist that describe how brain architecture and
neuronal activity support human-specific, higher-level cognitive
abilities such as common sense, capacity for generalization and
self-awareness, their experimental validation in vivo is usually
impossible for both technical (e.g., lack of reproducibility,
observability and perturbability) and ethical reasons. As such,
simulating the human brain becomes necessary in order to test
data-driven hypotheses coming from theoretical neuroscience
regarding the structure-function-activity trifecta, and thus
establish the link between these in an ethical, reproducible and
fully observable manner.

In particular, it is only through simulation that the functional

capacity of a given brain model can be consistently evaluated
at multiple scales and under various operating conditions, or

that the individual contribution of its sub-components to the

emergence of advanced cognitive functions can be teased apart.
In short, as Nobel physicist Richard Feynman concluded, “what

I cannot create I do not understand.” Not just any isolated
simulation will do, though. To have any relevance to data

collected from living beings, the simulated brainmust be afforded
with the possibility to interact with a dynamic, physically realistic
and sensory-rich environment. This is what we refer to as
embodiment. Only then can the simulated neuronal activity be
expected to somewhat match, even to a limited extent, that of an
actual brain in natural settings. This aspect is therefore essential
when studying cognitive mechanisms that involve sensorimotor
integration or motor control.

Such an embodied simulation framework must be able to
simulate the brain at scale in order to capture the contributions
of multiple brain regions involved in goal-directed actions,
and to account for the effects of various learning mechanisms,
from single synapses up to network effects of different neural
populations. It requires significant computing capabilities and a
distributed architecture to cope with the highly parallel, resource-
intensive nature of large-scale neuronal network simulations,
as well as features that allow interactive experimentation while
keeping brain and body simulation in sync.

We demonstrate a prototype for a simulation service on
the EBRAINS research infrastructure; this prototype enables
users to run custom embodied large-scale brain simulations
through the Neurorobotics Platform (NRP), the component of
EBRAINS dedicated to closed-loop neuroscience. Implemented
with the NEST simulator for large-scale spiking neural networks,
these brain simulations are run in a distributed manner on a
variable allocation of high-performance computing (HPC) nodes
of the supercomputer Piz Daint. Within this framework, large-
scale biologically plausible neuronal networks with multiple
regions are simulated in NEST and interconnected with a
physics simulation of a musculoskeletal system in Gazebo. A
dedicated graphical user interface in the NRP frontend enables
anyone entitled to adequate compute resources on EBRAINS
to schedule jobs on the Piz Daint supercomputer at the Swiss
National Supercomputing Center (CSCS) and to launch newNRP
instances. This process enables users to run, control and interact
with embodied simulation experiments online as intuitively as is
possible using local installations of the NRP, but backed by the
considerable computing power of Piz Daint.

2. STATE OF THE ART

2.1. Large-Scale Neuronal Simulations on
HPC Infrastructure
Several tools for the simulation of spiking neurons and networks
thereof have been developed. They allow to model a high degree
of biological plausibility but differ in their focus on different
aspects of the biological models or the technology they use.
Highlighting a few, NEURON (Hines and Carnevale, 1997;
Awile et al., 2022) GENESIS (Bower and Beeman, 2007) and
Arbor (Abi Akar et al., 2019) allow the modeling of complex
compartmental neurons and are tailored to the simulation from
the sub-cellular level to networks, while the Open Source Brain
(Gleeson et al., 2019) provides functionalities for visualization
and focuses on user collaboration and accessibility of neuron
models and networks.

Due to the improved availability of compute resources
for neuroscience research through programs like the Human
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Brain Project’s Fenix/ICEI1, or the Neuroscience Gateway2

and advances in simulation technology (e.g., Jordan et al.,
2018; Kumbhar et al., 2019), it became routinely possible for
computational neuroscientists to run large-scale simulations of
spiking neuronal networks with great efficiency. Most modern
neuronal network simulators achieve linear scaling for a large
range of simulations of neuroscientific models and have thus
opened the way to increased model sizes and more complex
learning paradigms.

Meanwhile, a large number of projects are making use of these
technological developments, which also resulted in a number of
large-scale modeling publications (Markram et al., 2015; Senk
et al., 2018; Igarashi et al., 2019; Billeh et al., 2020). Many of
the studies are scaling to considerable portions of the world’s
largest supercomputers and reach far beyond the simple random
balanced network that has been the norm in the field for many
years. By integrating data from multiple neuroanatomical and
electrophysiological sources, they enable the study of biological
phenomena with an unprecedented level of detail. At the same
time, the developers of the simulation tools are facing new
challenges when it comes to coupling simulators amongst each
other to increase the realism of the simulatedmodels and to allow
for an integration of physics simulators in scenarios such as those
described in the present work.

2.2. Simulations of Spiking Neural
Networks Controlling Virtual Embodied
Agents
Previous works involving simulations of spiking neural networks
connected to an embodied agent (either a robot or a
musculoskeletal system) have mostly aimed at understanding
motor control in the brain in relation to sensorimotor
integration. Many of them focused on functional performance
and were often carried out in a robotic context (e.g., Gilra and
Gerstner, 2018; Bahuguna et al., 2019; Angelidis et al., 2021).
Others more specifically investigated the robustness, versatility
and capacity for adaptation of biological motor systems, for
which there is still no satisfactory mechanistic explanatory
framework. As an example, DeWolf et al. (2016) used the Neural
Engineering Framework (NEF; Eliasmith and Anderson, 2004)
to implement a multi-area brain model capable of controlling
a three-link arm which also successfully exhibited adaptation to
changes in arm dynamics and kinematic structure.

Other research efforts found in the literature involving
spiking neural networks controlling a body were about
replicating specific features of biological motor systems, with
a focus usually placed more on simple movement generation
rather than complex, behaviorally-relevant interactions with the
environment (e.g., Allegra Mascaro et al., 2020; Fernándes et al.,
2021; Kalidindi et al., 2021). In order to achieve task completion,
these often involved some network training/optimization
process, be it biologically realistic (e.g., STDP in Fernándes
et al., 2021) or derived from AI approaches (back-propagation
through time in Kalidindi et al., 2021). As for the simulation

1https://fenix-ri.eu/
2https://www.nsgportal.org/

of musculoskeletal systems, it usually attempted to remain as
biologically realistic as possible (e.g., through the use of Hill
muscle models), but the experimental implementation did not
provide straightforward means for reuse and reproducibility
testing. Very few efforts reported in the literature besides the
Neurorobotics Platform (see Section 2.3 below) actually focused
on this aspect, which makes them all the more remarkable
(e.g., Jordan et al., 2019). The latter introduces a toolchain to
connect NEST with OpenAIGym making use of the MUSIC
interface (Djurfeldt et al., 2010; Brocke, 2020). In Bahuguna
et al. (2019), MUSIC is used to connect NEST with Gazebo.
The Neurorobotics Platform connects physics and neural
simulations directly using Nengo (Angelidis et al., 2021) or
NEST (Allegra Mascaro et al., 2020).

The brain-body-environment trinity for different species at
different levels of complexity from single body limbs to full
body simulations has been simulated in multiple frameworks.
The most popular example for invertebrates can be found in
the OpenWorm platform (Szigeti et al., 2014; Sarma et al.,
2018), which is made for the complete simulation of the
Caenorhabditis elegans modeled with both its full body using
fluid-simulation dynamics and the full neural network consisting
of 302 neurons. A whole body simulation model including
environment interaction of a vertebrate is found in Ferrario
et al. (2021) with the simulation of a tadpole and serves as
an experiment platform for research questions ranging from
decision-making to movement generation. While both of the
aforementioned simulation platforms are specialized for the
given species, AnimatLab (Cofer et al., 2010) is a more generic
simulation platform, which allows simulations of a wide range
of vertebrates and invertebrates. Cofer et al. (2010) described a
human arm flexion as an example.

The most complex work connecting a spiking model of the
brain to a body can be found in Yamada et al. (2016). It describes
a system encompassing a musculoskeletal model of human fetus
at 32 weeks of gestation, a brain (2.6 million leaky integrate-
and-fire spiking neurons and 5.3 billion synaptic connections)
and some limited environmental modeling, which was used to
comparatively study touch-driven cortical learning via limited
embodied interactions under intrauterine and extrauterine
environmental conditions.

2.3. Neurorobotics Platform
The HBP Neurorobotics Platform (NRP) is the backbone of
the EBRAINS Closed-Loop Neuroscience service (Knoll et al.,
2016). It provides access to a physically realistic simulated
environment within which users can simulate and use all kinds
of neural models (including spiking neural networks running
on neuromorphic chips) composed into functional architectures,
and connected to physical incarnations (musculoskeletal models
or robotic systems). The simulation of the environment is
carried out in Gazebo, an open-source robotic simulator.
The neural models can be implemented using one of several
frameworks, such as the software simulators NEST (Gewaltig
and Diesmann, 2007) or Nengo (Bekolay et al., 2014), or the
neuromorphic system SpiNNaker (Furber et al., 2014). The
execution of the various simulators involved in a given NRP
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simulation is orchestrated by a dedicated component referred
to as the Closed-Loop Engine (CLE). The connections between
the simulated agents’ bodies and brains are entirely user-
configurable, within the limitations imposed by the application
programming interfaces (APIs) of the various simulators. The
details of the connections are established through a dedicated
framework of so-called Transfer Functions, which are responsible
for the conversion and processing of data in transit for seamless
recurrent communication between simulators. The NRP can be
downloaded and installed locally for maximum experimental
convenience, or accessed online in order to leverage the
EBRAINS HPC infrastructure for large-scale experiments, as in
the present case.

The functional connection of neural models to embodied
agents allows neuroscientists to explore how the brain performs
a number of tasks in closed loop, from lower-level sensorimotor
tasks to higher cognitive functions (e.g., contextual awareness,
decision making, etc.). The NRP thus enables cognitive and
computational neuroscientists to explore the relationships that
exist between the architectural characteristics of neural circuitry
(usually constrained by anatomical and connectome data),
neuronal dynamics (activity at either population or single-cell
level), and their function expressed as the overt behavior of
an embodied agent. Furthermore, in silico simulation provides
a level of control over experimental parameters that enables
studies that would be either technically impossible or ethically
unacceptable. For example, only in simulation one can fully
observe the effect of knocking out a particular ion channel in a
specific neuronal sub-population with perfect efficiency, or carry
out lesioning studies with perfect reproducibility. As such, the
NRP provides a unique enabling platform to probe the functional
consequences of e.g., stroke (Allegra Mascaro et al., 2020) or
pharmacological tampering on the central nervous system. It
is therefore a valuable tool to elucidate outstanding questions
around motor control in both health and disease. However, until
the work reported in the present paper, the NRP was run either
locally or as a cloud service (i.e., on virtual machines). As such,
the size of simulations that could be run on the NRP was limited
by the typical computing resources of standard computers or
virtual machines.

2.4. The Neural Simulation Tool NEST
NEST is a simulator for large networks of spiking neurons
connected by phenomenological synapse models. It supports
hybrid parallel simulations using threading within CPUs and
the message passing interface (MPI) across multiple CPUs and
computing nodes. In previous studies, NEST has shown excellent
scaling over a large number of architectures even on the world’s
largest supercomputers (Kunkel et al., 2014; Jordan et al., 2018).
The details of the parallelization are entirely transparent to the
users, who do not need to handle or care about node placement
onto processes or inter-process communication. Neurons in
NEST can be anything from simple point neuron models like the
integrate-and-fire neuron to complex compartmental neurons, as
long as they can be expressed as a single C++ class. Synapses
can be either static or change their weight over time according

to a plasticity algorithm. Examples of such algorithms are spike-
timing-dependent plasticity (STDP), short-term plasticity (STP),
or third-factor neuromodulated weight dynamics. Many different
neuron and synapse models have been developed over time and
are included in any distribution of the NEST source code.

NEST can be used from Python by means of a module called
PyNEST that wraps the NEST simulation kernel, which itself is
written in C++. Simulation scripts can then use functions like
Create() and Connect() to create neurons and devices for
stimulation and recording, and to connect these elements using
different connection rules, respectively. A web-based graphical
frontend called NEST Desktop simplifies the task of network
creation by offering graphical metaphors and a point-and-click
interface and has been especially useful in classroom scenarios.
To keep the actual simulation of the neuronal network separate
from the graphical frontend, NEST was extended by the NEST
Server, which allows steering NEST via a RESTful API that listens
on a specific TCP/IP port and maps incoming requests of the
form http://localhost:5000/api/Create to calls of the PyNEST API
(the function Create() in the example).

When NEST is run in an MPI-distributed fashion, each
process (or task, in MPI terminology) executes the same
simulation script, but only creates its share of neurons, devices,
and connections. The individual tasks also apply configuration
changes only to local elements of the simulation and record
data only from the entities they are responsible for. This is not
a problem in many simulation experiments, where simulation
scripts are run for the full simulation time and data is analyzed
only after the simulation has finished and data from the
different result files of the different processes has been manually
combined. Due to the distributed nature of data collection in
NEST, NEST Server originally only supported non-distributed
simulation runs. To support the framework described in this
work, NEST Server has now been extended to also support
distributed scenarios by using a master-worker paradigm: The
first MPI process (MPI rank 0, master) is responsible for
both providing the RESTful API to clients, and forwarding all
incoming commands to the workers (i.e., all MPI ranks but 0) and
collecting their result data. In addition, the master process also
participates in the neuronal simulation and thus also serves as a
worker itself. A set of heuristics is used to combine and present
the worker’s response data to an outside caller as a consistent view
that does not differ from one that the caller would see when only
a single MPI process is used.

3. SOFTWARE ARCHITECTURE

The following provides the implementation details of a software
architecture that integrates the Neurorobotics Platform and
NEST Server for embodied simulations, supports browser-
based online control of and interaction with experiments, and
is highly scalable. This setup leverages a cloud computing
infrastructure and HPC computing resources, both provided by
EBRAINS. Despite the complexity of the architecture, automated
deployment and online interactivity are provided through a
dedicated graphical user interface available in the NRP frontend.

Frontiers in Neuroinformatics | www.frontiersin.org 4 May 2022 | Volume 16 | Article 884180

http://localhost:5000/api/Create
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Feldotto et al. Embodied Large-Scale Neural Simulations

3.1. Infrastructure
The software service presented in this article is deployed across
multiple compute systems at the Swiss National Supercomputing
Center3 (CSCS). Therein, persistent virtual machines are used
in order to let users interact with the NRP continuously and
request HPC resources in the form of compute nodes. The overall
architecture is illustrated in Figure 1. The NRP frontend and
a proxy responsible for assigning NRP backends and handling
REST calls are deployed on a virtual machine on the Castor
cluster, while the actual embodied simulations (NRP backend and
NEST brain simulation) are run on requested compute nodes of
Piz Daint. For every NRP job, at least two compute nodes are
requested, the first running the NRP backend, the second and any
additional nodes running NEST Server. As such, the setup is fully
scalable in terms of computing capabilities and is able to support
custom large-scale embodied simulations.

The software interface between NRP frontend on Castor
and NRP backend on Piz Daint compute nodes is instantiated
on demand. We implement a UNICORE4 (Uniform Interface
to Computing Resources) interface in the NRP proxy to
interact with the SLURM workload manager (Yoo et al., 2003).
UNICORE’s REST API is used to request compute jobs, transmit
configuration files and launch the NRP with NEST via startup
scripts. We set up an SSH tunnel between the NRP frontend
virtual machine and the cluster compute node running the NRP
backend to enable bidirectional communication during runtime.

To facilitate fast and automated update cycles in a cloud
infrastructure with our multi-component software architecture,
we integrate all software components in Docker containers, in
particular the NRP frontend, NRP backend and NEST Server.
We use Jenkins with Ansible for Continuous Integration and
Continuous Deployment (CI/CD); installation andDocker image
instantiation on Castor is fully automated; new Piz Daint NRP
backend images can be pushed to the Docker registry and then
pulled to the Piz Daint login nodes using the Sarus container
engine (Benedičič et al., 2019). The main advantage of this
approach is the fast deployment of software improvements and
new releases of the NRP and its components. This ensures
forward compatibility of the platform during the ongoing NRP
development. The architecture also allows multiple versions to
be made available in the Docker registry so that custom software
versions can be instantiated on demand.

3.2. Graphical User Interface
The setup is intended to enable future community access to
an EBRAINS service that lets users experiment with large-
scale embodied simulations without in-depth knowledge of
the required underlying supercomputing infrastructure and
architecture deployment. For this purpose, we implement a
new section in the NRP frontend as shown in Figure 2, which
can be accessed through a web browser. With it, users can
request and launch the NRP on Piz Daint as compute jobs with
customized resources, as well as manage instantiated jobs with
running NRP instances. The job duration, compute node number

3https://www.cscs.ch/
4https://sourceforge.net/projects/unicore/

and memory allocation can be customized depending on the
duration and complexity of the experiments to be simulated.
The frontend section also includes a list of past and running
compute jobs, and lets users abort and inspect these during and
after runtime. After starting the NRP backend distributed on
requested Piz Daint compute nodes, it is accessible and can be
selected just like any other backend running on virtual machines.
Launching an experiment lets users interact with the rendered
virtual environment and control the experiment interfaces and
procedure runtime either graphically or programmatically via
Python scripts in the NRP Virtual Coach. The Virtual Coach
includes a Python REST interface to the NRP so that users can
control simulations and observe its status via callback functions
from a Python script. Additionally, experiment scripts can be
modified programmatically and finally recorded data can be
requested for postprocessing of experimental data.

3.3. NRP-NEST Coupling Architecture
Since the beginning of the development of the NRP, NEST has
been a first-class citizen in the NRP platform. It was initially
integrated through a direct import of the Python module for
NEST into the NRP CLE, which entailed a number of drawbacks
in terms of code maintenance and distribution on multiple
compute nodes of Piz Daint. To overcome the main drawbacks of
the previous coupling, we started from the existing solutions and
devised a new architecture based on the idea of separating NEST
from the NRP by channeling all communication through the
NEST Server and its RESTful API: instead of importing PyNEST
directly, the NRP would only talk to NEST via HTTP requests
and responses. The change to this new architecture constitutes
a minimally invasive change to the NRP itself, as all code can be
encapsulated in a newmodule that implements the NRP interface
specification for integrating brain simulators on the one side, and
a client for the NEST Server on the other. By having NEST run
in its own process space, the issues related to code maintenance
are eliminated, because NEST can run on any suitable Python
version independently, and the version of NEST does not have
to be taken into account by the NRP as long as the RESTful
API of the NEST Server remains unchanged. The requirement
for running distributed simulations of the brain simulation is
naturally fulfilled in the new architecture as long as the MPI-
enabled version of the NEST Server is used. The complete new
coupling architecture is depicted in Figure 3.

Within the new client-server based architecture of the NRP-
NEST coupling, the NEST Client Python module exposes a
number of API functions in the client-side user API ( 3© in
Figure 3) that allow to configure a neuronal network and the
needed devices, run a network simulation for a given amount of
time, and retrieve the recorded data. No actual computation takes
place within the client. Rather, the latter forwards all operations
to the NEST Server, which is based on a master/worker paradigm
in which the master (MPI rank 0) provides a RESTful API to the
NEST client and coordinates the workers by exchanging data and
control commands with them. All MPI ranks (including rank 0)
together execute the neuronal simulation. By virtue of this split
in responsibilities, the actual details of the distribution remain
completely transparent to the NEST Client.
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FIGURE 1 | Software architecture. Persistent virtual machines are interfaced with requested compute resources in order to offer a flexible user interface with HPC

resources. We use UNICORE as an interface to schedule compute jobs, and a SSH tunnel on demand establishes the bidirectional connection between NRP frontend

and backend running on the two distinct computing systems.

FIGURE 2 | Graphical user interface. The large-scale simulation setup on HPC resources can be managed, accessed and controlled via a standard browser. We

implemented a dedicated tab in the Neurorobotics Platform frontend that lets users parametrize supercomputing jobs and manage allocated resources. A new

compute job running the NRP backend instance with distributed NEST can be requested and started with a single click from this frontend.

In terms of deployment, the described separation between
client and server allows execution of the components on different
computing units. In particular, it is now possible to execute
the NRP (including the NEST Client) and the NEST Server

codes on different nodes of a given supercomputer or compute
cluster, or even on completely independent machines. All NEST-
related operations such as loading the network, stepping the
simulation, creating devices and connectivity, aremanaged by the
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FIGURE 3 | NRP-NEST client-server architecture. The NRP (yellow) connects to the NEST Client via its client-side user API for Python 3 . The NEST Client (blue)

provides a channel for talking to the NEST Server (between 1 and 2 ) for simulation control and steering. A high-performance transport layer for data (between 4 and

5 ) is possible, but not yet implemented. The NEST Server (red) encompasses all NEST MPI processes (rank 0 to n), but only rank 0 (Master) offers the RESTful API

visible to the outside world.

NEST Client that provides a set of user-friendly methods for all
relevant operations.

The methods of the client-side API are (roughly speaking)
just wrappers of the corresponding PyNEST functions. An
example of such a method is get_kernel_status(), a
call to which translates to an HTTP request for the URL
host:port/api/GetKernelStatus, where host and port
are the IP address of the machine on which NEST Server
is running and the port it is listening on, respectively.
Such a request results in a call of the PyNEST function
GetKernelStatus() by the NEST Server. The return value
of that function will be included in the response in the form of a
JSON-encoded dictionary.

Below is a non-exhaustive list of the methods provided by
the NEST Client client-side API to control and configure the
simulation of the neuronal network in NEST:

• get_kernel_status(): access to NEST simulation
parameters

• startup(): reset the kernel and set the number of threads
and the simulation resolution

• load_network(): load a network in the form of a
simulation script

• run_simulation(): drive a network simulation for a
given amount of time

• create_device(): create a given number of network
devices of a given type

• connect_device(): connect a device to a neuron using
the provided connection parameters

• set_device_params(): set the given parameters on a
device

• get_population_parameters(): retrieve parameters
from a neuronal population

The second component of the coupling architecture, NEST
Server, can be considered a language-independent interface to
NEST that can be deployed either locally or on a remote machine
as outlined above and in Section 2.4. Prior to any simulation, an
instance of the NEST Server has to be started independently from
the NRP and the NEST client with a degree of MPI parallelization
that is suitable for the neuronal simulation at hand. As of writing,
the NEST Server is fully integrated into the current release of
NEST (Hahne et al., 2021) and can be either used after compiling
the source from scratch, or from the NEST Docker image. All
benchmark simulations presented in Section 6 have been realized
using the containerized version of the NEST Server.
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3.4. HPC Parallelization
Since the inception and widespread use of multi-socket/multi-
core architectures several years ago, it has become more and
more evident that a purely threaded application or one that
purely relies on message passing for distributing the workload
onto multiple processes is not sufficient for achieving optimal
performance. Since then, the use of hybrid parallelization
strategies that use threads within a CPU socket and message
passing via MPI across CPU sockets and compute nodes has
become the de facto standard for neuronal simulators. As this
new paradigm has a high implementation complexity, many of
the modern simulator codes shield the user from the details of the
parallelization and provide suitable abstractions that also allow
scientists not trained in computer science to use large-scale HPC
machines efficiently.

For the NRP-NEST use case, we make use of the UNICORE
REST API for requesting an individual number of compute
nodes and running embodied simulations on compute resources
customized to the user experiment. In contrast to a usual
supercomputing job, in our case, not all compute nodes execute
the same software but in fact run different sub-components of
the overall architecture. After job approval, the execution of
the architecture startup script is initiated via UNICORE, which
launches the NRP backend, SSH tunneling service and NEST
Server with workers on specific compute nodes. The general
allocation layout is such that the user always requests N + 1
compute nodes, with the NRP and its NEST Client as well as
the tunneling services started on the first node, and NEST Server
on the remaining N nodes. This specific allocation of software
components to compute nodes is done via the Slurm Workload
Manager, assigning individual component execution scripts to
the corresponding subsets of the overall allocated compute node
list. Appropriate settings of thread pinning and process affinity
are used to achieve good performance. For the deployment of
NEST on Piz Daint for example, one MPI process is launched
per physical CPU socket and set to use all of the 36 virtual and
real cores by means of one OpenMP thread per core. NEST
itself will then take care of the distribution of neurons and
synapses onto the processes and threads by assigning neurons
to threads in a round-robin fashion and allocating synapses on
the process that is responsible for the post-synaptic neuron.
We run two NEST workers on every individual compute node
automatically (each assigned 36 CPU cores, see Section 5 for
more details) to optimally use allocated compute resources. The
described allocation scheme allows for fully customized scaling of
computing capacity, which is only limited by the physical number
of available nodes in the given HPC system.

4. MODELS AND SETUP

We implemented two different benchmark experiments in the
Neurorobotics Platform to evaluate our software architecture:
the first one is a rather synthetic balanced random network
without any body connection; the second one is based on a
biologically derived multi-region brain model connected to a
virtual musculoskeletal rodent model.

4.1. HPC Benchmark With Balanced
Networks
The random balanced network introduced by Brunel (2000)
has been adopted by the NEST development community as
a benchmark for large-scale simulations of spiking neural
networks on HPC supercomputers (Morrison et al., 2007; Helias
et al., 2012; Kunkel et al., 2014). This benchmark simulates
a network with a large number of spiking neurons split into
excitatory and inhibitory populations and random connectivity.
The excitatory—excitatory synapses exhibit the multiplicative
depression and power law potentiation model of Spike Timing
Dependent Plasticity (STDP) described in the work of Morrison
et al. (2007), while all connections targeting or originating from
inhibitory neurons are static.

The number of neurons in the network corresponds to 11,250
multiplied by a scale parameter. The indegree of each neuron
is fixed to 11,250 synapses regardless of the scale parameter. In
this work, we use a scale factor of 20 yielding a network with
225,000 neurons and roughly 2.5 billion synapses. The network
is simulated with a computational resolution of 0.1 ms for a
duration of 1s. A four-wheeled Husky robot is loaded in a static
virtual room but is left unconnected from the neural network and
merely serves as a base workload for the NRP. In this benchmark
setup, physics are simulated with Gazebo and the ODE engine.

4.2. Embodied Multi-Region Rodent Brain
Experiment
The embodied multi-region rodent brain experiment aims to
examine the dynamic mechanism of the cortico-basal ganglia-
cerebellar-thalamic (CBCT) circuit in motor control through
combined simulation of the brain model and the physical
musculoskeletal model of a mouse. The embodied simulation
includes 1,005,905 spiking neurons with 1,588,469,795 synapses
in NEST. Neuronal output from the brain simulation controls
the physical simulation of a mouse musculoskeletal model with
8 muscles in Gazebo and the Simbody physics engine. The NRP
experiment view lets the user inspect, adapt and interact with the
simulation online, Figure 6 (bottom) shows the 3D rendering of
the moving musculoskeletal body and the brain activity as a spike
raster plot in the NRP frontend.

4.2.1. The Multi-Region Rodent Brain Model
The CBCTmodel is based on the biologically constrained spiking
network models of the cerebral cortex (Ctx), basal ganglia (BG),
cerebellum (CB), and thalamus (TH) (Gutierrez et al., 2020). The
numbers of neurons in the CBCT loop add up to more than 90%
of the number of all neurons in rodents, primates, and humans
(Azevedo et al., 2009; Herculano-Houzel, 2009).

The model consists of a reference cortical patch of 1×1mm2

and connected BG, CB and TH models with proportional
number of neurons. In total, the model incorporates 1,005,905
neurons (Table 1). Simulations of such a large network
combined with the musculoskeletal model requires efficient use
of high-performance computing (HPC), especially for model
optimization by repeated evaluations of the generated dynamics
against experimental data. The NRP infrastructure provides
the framework for managing access and execution by HPC.
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TABLE 1 | Summary statistics of the 1×1mm2 unit of the rodent brain model.

Model #Neurons #Layers #Neuron types

M1 (Ctx) 58,805 5 19

S1 (Ctx) 94,396 7 22

VL (TH) 6,144 2 3

VM (TH) 6,144 2 3

BG 10,976 5 5

CB (M1) 414,720 6 6

CB (S1) 414,720 6 6

Total 1,005,905 33 65

Parrot neurons and neurons instantiated by NRP devices as interface are not included.

Moreover, it allows easy and efficient integration of the brain
model with physical models with realistic behavioral constraints,
which facilitates better validation and improves predictive power
of the simulated models.

The CBCT model of the multi-region rodent brain (Figure 4)
is composed of the following regional models:

Cerebral Cortex: The model incorporates the primary motor
cortex (M1) and the primary somatosensory cortex (S1), based
on previous works of Igarashi et al. (2019), Sun Zhe (2019),
and Sun and Morteza Heidarinejad (2019). A unit model has
the size of 1,000 x 1,000 x 1,400 (height x width x length)
µm3 and contains six 2D sheets for the arrangement of neural
populations in layers 1, 2/3, 4, 5A, 5B, and 6 based on
reported cortical organization and experimental data (Lev and
White, 1997; Weiler et al., 2008). Main neuron types are single
bouquet (SBC) and elongated neurogliaform (ENGC) cells in
layer 1; intratelencephalic (IT), parvalbumin-expressing (PV),
and somatostatin-expressing (SST) neurons at layers 2/3, 5A, 6;
and IT, pyramidal-tract (PT), PV and SST neurons in layer 5B
(Jiang et al., 2013; Shepherd, 2013; Tremblay et al., 2016). The
model also incorporates vasoactive intestinal peptide-expressing
(VIP) neurons in layer 2/3 and connections based on Jiang et al.
(2015). The S1model Sun Zhe (2019) includes additional neurons
in layer (L4).

For each layer (except layer 1), the numbers of excitatory
and inhibitory neurons follow a ratio of 4:1, with a total
number of about 58,000 and 94,000 neurons in 1×1mm2 for
M1 and S1, respectively. The spatial organization is based
on pseudo-randomly generated neuronal positions uniformly
distributed within layer boundaries. Connections are generated
using several 2D Gaussian probability functions describing
distance-based connectivity between excitatory and inhibitory
neurons, including recurrent connections, in different cortical
layers. The relative magnitude of the connections, as well as the
parameters of the Gaussian functions, are taken from reported
laser-scanning photo-stimulation and patch-clamp experimental
recordings (Song et al., 2005; Weiler et al., 2008; Lefort et al.,
2009; Xu and Callaway, 2009; Kätzel et al., 2011; Apicella et al.,
2012; Avermann et al., 2012; Jiang et al., 2013; Pfeffer et al., 2013;
Xue et al., 2014; Lee et al., 2015; Pala and Petersen, 2015). Leaky-
integrate-and-firemodels with conductance-based synapses from
the standard NESTmodel library are used. To achieve resting and

functional states, neurons are stimulated by bias currents drawn
from normal distributions with optimized mean and standard
deviation parameters.

Basal Ganglia: The BG model is a topologically organized
version (Gutierrez et al., unpublished) of previous works from
Liénard and Girard (2014) and Girard et al. (2020). Fixed
parameters were defined based on biological constraints, while
free parameters were optimized against electrophysiological
recordings. The total number of neurons sum up to around
10,000 for rodents following a reference 1×1mm2 cortical surface
(Table 1), with most of them being medium spiny neurons
(MSN). Neurons were spatially and uniformly organized in 2D
space. Main inputs are from cortico-striatal neurons (CSN) and
pyramidal tract neurons (PTN) in the cortex (M1 and S1) and the
centromedian/parafascicular neurons (CMPf) in the thalamus
(TH). The model considers glutamatergic excitatory inputs with
AMPA and NMDA receptors and inhibitory inputs by GABA
receptors. The model uses multi-synapse LIF neuron models
from NEST. Connections follow the same architecture as in
Girard et al. (2020), with specifications based on optimized
bouton counts, and focused or diffused axonal domains.
Simulation tests reproduced the firing rate of previous models in
the resting state.

Cerebellum: The CB model consists of two regions connected
with S1 and M1. Each cerebellar region is a corticonuclear
microcomplex model developed in NEST based on the previous
work of Yamaura et al. (2020). The cerebellum is modeled as
seven stacked layers corresponding to 1×1mm2: upper and lower
molecular layers, Purkinje cells, granular layer, deep cerebellar
nucleus, and Pons (Eccles, 1967). The upper molecular layer was
modeled as a group of four 2D layers of stellate cells, while the
lower one as a single sheet of basket cells. Similarly, the granular
layer was composed of eight sheets of granular cells and one sheet
of Golgi cells. All other nuclei were modeled within single sheets.
Number of neurons (Table 1) for each population were defined
from previous data (Lange, 1975; Ito and Itō, 1984; Harvey
and Napper, 1991; Heckroth, 1994). The cerebellum contains
around 80% of the neurons (around 820,000 neurons) of our
full brain model. Neurons were modeled as conductance-based
leaky integrate-and-fire units, with parameters defined based on
previous studies by Yamaura et al. (2020). Excitatory synapses
were modeled as AMPA or NMDA, and inhibitory as GABA-
A or GABA-B alpha-shaped synapses. Connections were settled
according to known anatomical structures (Eccles, 1967; Apps
and Garwicz, 2005; Barmack and Yakhnitsa, 2008), using 2D
Gaussian functions for defining the spatial scope and connection
probability between neurons. Most internal parameters such as
capacitances, conductances, and synaptic weights were tuned and
tested to reproduce electrophysiological and behavioral results
on optokinetic responses, a cerebellum-dependent eyemovement
task based on the previous work by Yamaura et al. (2020). On
the other hand, firing rates and synaptic weights for neurons
in Pons were adjusted to obtain the mean firing rate of mossy
fibers at 8Hz, which resulted in reproducing plausible resting
activity patterns. At that regime, granular cells revealed different
temporal activity patterns, with random repetition of transitions
between burst and silent states.

Frontiers in Neuroinformatics | www.frontiersin.org 9 May 2022 | Volume 16 | Article 884180

https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroinformatics#articles


Feldotto et al. Embodied Large-Scale Neural Simulations

FIGURE 4 | The cortico-basal ganglia-cerebellar-thalamic (CBCT) model of the rodent brain. The model includes the cortex (S1, M1), the basal ganglia (BG), the

cerebellum (CB), and the thalamus (TH). Within each region, neural populations are topologically organized in 2D-layers of 1×1 mm2, with dots on their surface

indicating the spatial allocation and density for each neuron type. Only main inter-regional connections are displayed for clarity. Layers in green correspond to the

interface between different regions or simulated input, which are implemented using NEST’s parrot neurons that just relay incoming spikes to multiple targets.

Thalamus: The TH model (Igarashi et al., unpublished)
consists of two regions, ventral lateral nucleus and ventral medial
nucleus, connected with M1 and S1, respectively. The individual
thalamic nucleus is composed of excitatory and inhibitory zones
receiving inputs from the cerebellum and basal ganglia. Each
region-zone contains 1024 excitatory thalamocortical cells, 1024
inhibitory interneurons, and 1024 inhibitory thalamic reticular

cells, arranged in a unit size corresponding to 1×1mm2 of the
cerebral cortex. Thalamocortical cells and two types of inhibitory
neurons are mutually connected, with no excitatory recurrent
connections among thalamocortical cells.

Inter-regional connections: Inter-regional connections are set
as topographic connections between two neural sheets. Major
inter-regional pathways include: M1 L5A to BG Striatum, S1
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FIGURE 5 | Resting-state of the CBCT circuit (Gutierrez et al., 2020). Spike rasters (right) and mean firing rate (left) per neuron type (thalamus activity is not displayed).

L5A to BG Striatum, BG GPi/SNr to TH, M1 L5B to CB Pons,
S1 L5B to CB Pons, CB deep cerebellar nucleus to TH, M1 L6
to TH, S1 L6 to TH, TH to L2/3 M1, and TH to L4 S1. A

major challenge when integrating differentmodels is to guarantee
their optimized activities are maintained after combination. For
instance, in the basal ganglia model, inputs from cortical models
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(M1 and S1, layers L5A and L5B) were adjusted to match
the firing activity of PTN (pyramidal track neurons) and CSN
(cortico-striatal neurons) inputs from Poisson spike trains used
on the optimization of the isolated model. NEST’s parrot neurons
(models that just relay incoming spikes to their targets) were used
to gradually replace Poison-based neurons by M1 and S1 based
neurons. Thus, inputs involved in inter-regional connections
were adjusted to those used on individual optimizations, using
or not using parrot neurons on the connections.

4.2.2. Resting-State Activity
In order to reproduce resting-state neural activity that is
simulated in this benchmark experiments, Poisson noise
generators and constant current inputs were optimized
to reproduce the average firing rates of individual neural
populations based on physiological data (Figure 5). In S1, M1,
and TH, neurons showed low-rate and irregular firing. Layers
5 and 6 in S1 generated gamma oscillation of around 40 Hz.
Similarly, M1 bottom layers displayed oscillatory behavior. GPe
and GPi/SNr in BG showed high-rate firing while others were
kept low. In CB, Purkinje cells exhibited regular firing patterns,
whereas granule cells emitted spikes sparsely. We acknowledge
that the spiking activities of few neural populations could be
slightly higher. While this model is a first version of the CBCT
model used for benchmarking of the architecture presented here,
a future release of our model aims to improve firing activities as
well as other metrics.

4.2.3. Embodied Simulation
The multi-region brain model is embodied into a simulated
rodent musculoskeletal model and a virtual environment in the
NRP. We replicate the physical experiment platform introduced
in Mathis et al. (2017) as a simulation model in silico in the
Neurorobotics Platform. In this model, the animal is held in
place, rewarded by a Lickometer, and is able to manipulate a
joystick to which additional forces can be applied via a linear
solenoid magnet. We modeled a rodent housing, Lickometer
and joystick in the Neurorobotics Platform using the Robot
Designer5 plugin for Blender as part of the Neurorobotics
Platform design tools. The joystick was connected to the world
with two revolute joints representing two degrees of freedom.
The mouse manipulated the joystick with its left forelimb, while
a small effort of –0.001 Nm is applied to the joystick joint.

For the musculoskeletal system, we adapted a rodent
simulation model that has been used in a stroke rehabilitation
study in the Neurorobotics Platform recently (Vannucci et al.,
2019; Allegra Mascaro et al., 2020). The skeleton thereof was
modeled according to anatomical data and scans, and is an
early version of the fully parameterized rodent model presented
in Ramalingasetty et al. (2021). We anchored the rodent body
model to the experimental apparatus, leaving only three moving
segments of the left forelimb capable of movement: humerus,
ulna/radius and the foot. Body and humerus were connected via
two revolute joints, humerus and ulna/radius via one revolute
joint and the foot was attached to the joystick via a ball joint

5https://github.com/HBPNeurorobotics/BlenderRobotDesigner

with 3 degrees of freedom. With this configuration, the mouse
was able to move the joystick in the forward/backward and
lateral/medial directions. The skeleton was simulated as a rigid-
body simulation with the Simbody multibody physics engine in
Gazebo. We added 8 muscles to the forelimb joints, 2 for every
rotation axis, with 2–5 muscle pathpoints each. Muscles were
simulated with the OpenSimmuscle implementation (Delp et al.,
2007) and modeled with type “Millard2012EquilibriumMuscle”
as described in Millard et al. (2013). Every muscle was actuated
in normalized range [0,1]. Figure 6 illustrates the overall setup
rendered in the Neurorobotics Platform frontend.

For the benchmark experiments in this study, we set up a
naive representative brain-to-body connection. We connected
one layer, the elongated neuroglia form cells of the motor cortex,
to three muscles of the rodent model. For this we made use
of spike sinks that read out the membrane potential of a leaky
integrate-and-fire neuron with infinite threshold and connected
to all neurons of the given population, and apply it as muscle
activation signal. We also instantiated spike sinks for all layers in
M1 and logged the corresponding voltages in the NRP frontend
console for inspection. Additionally, we created spike sources
consisting of Poisson neurons connected to all neurons of the
given population for three layers of M1 including the elongated
neurogliaform cells.

A base activation was sent to all muscles for the first 5
simulation steps (corresponding to 0.1s of simulation time)
to stabilize the biomechanical model. Additionally, all spike
sources including the source to the elongated neurogliaform
cells of the motor cortex were set with a spike rate of 0 in
every iteration. After 5 simulation steps, the clipped voltage
readout of the elongated neurogliaform cells was applied as
activation value to three muscles continuously (muscle activation
in range [0,1]). Reaching 25 simulations steps (0.5s simulation
time), we feed a rate of 5000.0 into the Poisson generators
representing the spike source of the elongated neurogliaform
cells. As a result, spike activity in this layer rose and the brain
layer readout devices transmitted an increased muscle activation
to the aforementioned three muscles. The overall experimental
procedure resulted in a loose stabilization of the joystick in the
first 25 simulation steps (0.5s of simulation time), followed by a
forward motion of the rodent leg pushing the joystick forward as
a consequence. Starting after 5 simulation steps a status message
was shown in the frontend to indicate the current state of network
input activation repeatedly to the user.

5. BENCHMARK EXPERIMENT
PROCEDURE

We ran the benchmark experiments on the XC40 multicore
compute nodes of Piz Daint6. Each node of this partition is
equipped with two Intel R© Xeon R© E5-2695 v4 18-core CPUs
running at 2.10 GHz (2 x 18 cores, each having 2 virtual cores)
and 120 GB of RAM. All experiments were executed with

6https://www.cscs.ch/computers/piz-daint/
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FIGURE 6 | Embodiment of the multi-region rodent brain. (Top) The multi-region brain model is interconnected with the rodent musculoskeletal simulation via Transfer

Functions. The readout rate of motor cortex populations actuates the rodent muscles moving the joystick forward. (Bottom) The user can interact with the simulation

during runtime via the NRP frontend. Here we show the rendering of the simulated experiment on the left (muscle color coding: red–active, blue–not active) and spike

trains of the motor cortex population on the right.

the Neurorobotics Platform version 3.2 and NEST version 3.0
(Hahne et al., 2021).

We executed one NEST process per CPU using all 36 (virtual)
cores, hence at most two NEST processes per compute node.
Every experiment ran for 1s of simulation time (assigned as a
timeout to every experiment), consisting of 50 CLE step times
of 20ms each (meaning that data between body and brain was
exchanged every 20ms in simulation time). We carried out a
series of benchmark experiments, starting with a single NEST
process and scaling up to 64 processes, doubling the process
number at each run. At the beginning of every benchmark series,

we requested 33 compute nodes (1 NRP node, 32 NEST nodes)
to ensure all runs in the same series that included a variable
number of NEST processes were executed on the exact same
node allocation. Every benchmark series was repeated multiple
times with a new node allocation every time. Hereafter, we report
the first 8 successful repetitions of every benchmark experiment.
For reproducible experiment execution, we instantiated the NRP
NEST setup with scripts directly on a Piz Daint login node.
This experiment procedure allows us to access and collect all
recorded performance data from different sources directly. After
launching the framework, the NRP experiment was controlled
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from the main script via the NRP Virtual Coach. The experiment
procedure is presented in the pseudocode below:

for number of benchmark repetitions do

Salloc - Request Piz Daint job with 33 nodes
NRP - Launch backend container on compute node #1
SSH - Set up SSH tunnel from NRP backend to frontend
for number of NEST tasks n = 2i do

NEST - Launch NEST with n processes on n/2 cluster nodes
Virtual Coach - Import benchmark experiment into NRP storage
Start experiment runtime timer
Virtual Coach - Launch NRP benchmark experiment
Virtual Coach - Start NRP benchmark experiment
while Experiment is running do

Virtual Coach - Wait for experiment to be finished
end while

Stop experiment runtime timer
Virtual Coach - Save CLE profiler performance data
NEST - Save network performance data
Sacct - Save job performance data
Virtual Coach - Delete benchmark experiment from NRP storage

end for

end for

After every experiment we collected performance data from
the NEST Server (neural network creation time, connection
time and duration of last simulation step), the NRP CLE
profiler (brain/robot/transfer function step times) and Slurm
workload manager (memory and energy consumption). The
total experiment runtime was tracked manually as shown in
the pseudocode and the real-time factor was calculated as the
quotient of CLE step simulation time to real time, whereas the
CLE real time was taken to be the mean value of all CLE step
times except the first one (indeed, the first CLE step executes
initialization procedures, hence is significantly larger and does
not reflect the CLE step time of the overall experiment). The
code to run the benchmark and the results presented in this
paper can be found in the GitHub repository https://github.com/
HBPNeurorobotics/nestserver_benchmarks.

6. RESULTS

We first executed and evaluated the HPC Benchmark experiment
based on random networks without brain to body connection,
and afterwards ran the multi-region rodent brain model
with connection to the musculoskeletal rodent model. For a
succeeding comparison between the benchmarks we added a
third configuration that is a subset of the embodied multi-region
rodent brain experiment with only the motor cortex as the
brain model. This configuration shall not represent a biological
simulation, but instead serves purely as a benchmark since a
midsize brain in connection with the musculoskeletal model
provides additional insights for the distribution of computation
required for the simulation of brain and body.

Diagrams showcasing the compute node scaling use
logarithmic scaling on the x-axis. We also present a linear
expectation starting from the first point as the mean of all
first data points without outliers that are not in range mean

±12%. The CLE profiler times represent a random benchmark
repetition (here, the 4th), the y-axis is clipped as the initialization
step takes significantly longer than usual runtime executions.

6.1. HPC Random Balanced Network
Benchmark
The HPC Benchmark showed good repeatability with only
a small variance between the benchmark runs. The runtime
(Figure 7) could be reduced exponentially close to the linear
expectation from about 500 to about 40 s, more than 12 times
faster, when increasing the number of NEST processes from 1
to 64. The real-time factor increased exponentially first, but only
up to about 8 processes; with more than 16 NEST processes a
partial saturation appeared that resulted in an increase of the real-
time factor up to 64 processes, albeit with a smaller slope. Overall
the real-time factor could be increased from around 0.0036 to
0.150, a factor of more than 40. The NEST procedures scaled very
well generally. The time required to build the network in NEST
(i.e., creating and connecting nodes, Figure 8A) scaled nearly
linearly. Simulation time (Figure 8B) scaled supra-linearly, but
reached the same time performance as a linear scaling would
have with 64 processes. Scaling up from 1 to 64 processes, the
network building time could be reduced by a factor of about
61 and the time to simulate a brain step by about 60. The
maximal memory required by a single HPC node (Figure 8C)
could be reduced nearly linearly, from a maximum resident
set size of about 87GB down to approximately 2.5GB. Along
this scaling the amount of consumed energy (Figure 8D) did
not increase linearly, but only by a factor of about 12 from
104kJ up to 1,200kJ. We observed that the three procedures
of brain, robot and Transfer Function execution (Figure 9) all
have an initial simulation step that takes significantly longer
than the usual step time and hence is not considered in our
analysis. In line with expectations, robot and Transfer Function
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FIGURE 7 | HPC Benchmark runtime and real-time factor. The runtime (A) can be reduced by a factor larger than 12 from 500s to about less than 40s by exploiting

64 NEST processes on 32 compute nodes compared to a single process. Simultaneously, the real-time factor (B) improves supra-linearly, but performance increases

less significantly when using more than 32 NEST processes.

execution step time varied over time but were not affected by
the experiment parallelization. We observed a decrease of brain
simulation time with increased numbers of NEST processes,
with a slight overshoot in the first simulation steps and then
stabilization at a mean value. As the robot and transfer function
step times are relatively low in contrast to the brain execution,
the latter one prominently defines the experiment runtime speed.
Overall, the HPC Benchmark scales well, in most aspects nearly
or supra-linearly, the one (beneficial) exception being the less-
than-linear increase of consumed energy.

6.2. Embodied Multi-Region Rodent Brain
The increased network size in the embodied multi-region rodent
brain experiment compared to the balanced network benchmark
(only 0.6 times the number of connections (1,588,456,283 vs.
2,531,475,000), but 4.8 times more network nodes compared to
the balanced network benchmark (1,089,147 vs. 225,001) resulted
in a larger overall experiment runtime as well as individual step
execution times. The total runtime of the experiments showed a
higher variance in repetitions (Figure 10) compared to the HPC
Benchmark, which can be partly attributed to the larger execution
times in general, and shows less than linear duration decrease
but still a big improvement in time. The execution runtime could
be reduced from about 600s down to about 100s, with two runs
decreasing the runtime only down to about 200s during scale-up.
Experiment runs that lasted longer usually took longer runtime
in all node configurations in comparison to mean runtimes.
The real-time factor of the experiment increased however only
slightly and saturated using about 32 NEST processes, with
a small decrease with 64 processes. This real-time factor was
improved from about 0.0069 to 0.0480 (for 32 processes) during
the scale-up, a factor of around 7. NEST procedures scaled
exponentially (Figure 11), the simulation time (Figure 11B)
close to linear, building time (Figure 11A) with a somewhat
flatter decrease. The network building time could be sped up by

a factor of more than 17 and the time for the last simulation step
by a factor of about 30. The required memory did scale close to
linear (factor of 17) to the number of nodes, and the consumed
energy again increased far less than linearly, from about 120 kJ up
to 1,450 kJ, by a factor of about 12 (Figures 11C,D). In contrast
to the HPC Benchmark with balanced networks, execution times
for robot and transfer functions changed over time (Figure 12),
along with the scripted experiment procedure. We could clearly
see an increase of computation time required by the Transfer
Functions when a layer of the motor cortex was addressed with
even a fixed spike rate of 0 after 5 execution steps. Changing the
input rate to a higher value at 25 CLE steps did not have an impact
on the execution time. We observed that the Transfer Function
execution time increased slightly when scaling the experiment up
to 64 NEST processes running on 32 different compute nodes.
However, the execution time of Transfer Functions was still low
compared to the brain execution time.

The robot execution time increased up to about 0.08s,
reaching the highest values at around 25 simulation steps. It
decreased afterwards at about 27 simulation steps and remained
at a relatively low value of around 0.02s until the end of the
benchmark time being 50 simulations steps. Brain step execution
times showed less variability compared to the balanced network
benchmark experiment, and were much higher in general than
robot and Transfer Function execution times. Overall, the
embodied multi-region rodent brain benchmark did not scale
as well as the HPC Benchmark and showed more variability in
terms of execution times. However, regardless of the network size,
nearly all inspected timings still scaled close to linearly in relation
to the number of nodes, which thus can be taken to speed up the
experiment execution and decrease its runtime significantly.

6.3. Comparison
In order to optimize the experiments at scale, it is important
to examine where the largest potential for improvements is,
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FIGURE 8 | HPC Benchmark NEST times and workload manager characteristics. (A) Network building time (i.e., creating and interconnecting nodes) scales nearly

linearly. The time to simulate the last brain step (B) scales even supra-linearly with 2–32 NEST processes. Similarly, the required memory per compute node (C)

reduces close to linear, but the total energy consumed (D) by all tasks is only 12 times more for 64 NEST processes compared to 1 process.

FIGURE 9 | HPC Benchmark CLE profiler times. Robot (B) and transfer function (C) execution times do not change during the scaleup, as they are not parallelized

and just run on the first compute node in the allocation. Both are neglectable compared to the brain step time (A) that runs faster with additional compute nodes. The

first timestep includes additional initialization procedures and hence takes significantly longer than the usual runtime step time, in the diagrams we clip the y-axis for

better visibility of the relevant runtime data.

and what the costs related to scaling up execution will be.
Therefore, we inspected the brain-to-robot compute time ratio

as well as consumed node hours for all executed experiments and
executed a third benchmark run that consisted of the embodied
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FIGURE 10 | Embodied multi-region rodent brain benchmark runtime and realtime factor. Experiment runtime (A) shows a variability in repetitions, but can be

improved exponentially by a factor of about 6 when scaling up to 64 NEST processes. The realtime factor (B) can be improved up to about 0.048, but starts

saturating from 32 NEST processes onwards.

multi-region rodent brain setup, but with only the motor cortex
as an active brain region.

In the NRP, at every CLE simulation step both robot and brain
simulations are executed in parallel, and only after completion
of these steps are Transfer Functions executed to process
information to be communicated between both simulations.
Obviously, when either one of the robot or brain simulation
takes consistently longer to execute than its counterpart, that
component becomes the target for optimizing the overall NRP
simulation. In the top part of Figure 13, the ratio between brain
and body simulation step time is visualized; times are mean
values over all 8 benchmark repetitions. As both simulations are
executed in parallel, the most efficient performance is achieved
with both having the same execution time. For all experiments
reported herein, the brain simulation step took longer than
the robot simulation step. With our distributed architecture the
ratio between the parallelized brain simulation step time and
the (shorter) robot simulation step time improved as the brain
simulation step time was reduced by distribution. This effect was
less significant for small neural networks such as the embodied
rodent brain experiment with a motor cortex only (B), but was
very relevant for the full embodied multi-region rodent brain
experiment (C) and balanced networks benchmark experiments
(A). For both these large neural networks, the ratio between the
two simulation time steps improved with the number of NEST
processes, with the best result obtained for the 64 NEST processes
we tested for these benchmark experiments. In the bottom part
of Figure 13, the required node hours for every benchmark
were calculated as the product of the pure experiment runtime,
including experiment launch and execution but excluding the
overall architecture setup and initialization, and the utilized
number of nodes. As can be seen, the number of required node
hours scaled less than linearly, i.e., exponentially but with small
increments when scaling up the utilized node number. For the
node hours of the HPC Benchmark (D) with balanced networks,

the increase was by a factor of less than 14 from about 0.14
to 0.67/1.87 (best case/worst case), whereas for the embodied
rodent brain experiment with Motor cortex only (E) it was by
a factor of less than 35 from around 0.04 to 0.71/1.39, and
for the full embodied multi-region rodent brain experiment
(F) (which consumes the most resources), the consumption
increased from 0.17 to 1.35/3.75 by a factor of less than 23. We
also observed a higher variability of number of required node
hours with increasing experiment complexity, and the embodied
rodent brain experiment with only motor cortex showing the
steepest increment.

7. CONCLUSION

In this paper, we presented a distributed architecture
for large-scale embodied simulations of spiking neural
networks, together with the results of benchmark
experiments run on our setup. We sought to develop
the software components of a future simulation service
on the EBRAINS research infrastructure, while at the
same time understanding the benefits and drawbacks
of distributing simulations across nodes of the Piz
Daint supercomputer.

For this purpose, we connected the Neurorobotics Platform
for physics simulation via a REST interface to NEST for
simulation of spiking neural networks used as brain models.
We distributed this brain simulation across multiple HPC
compute nodes via MPI parallelization, and thereby sped up
both experiment loading and execution times. The proposed
software architecture can be controlled via a browser-based
graphical user interface integrated into the NRP frontend, and
it extends across both persistent virtual machines and HPC
compute nodes. To facilitate the technical implementation, we
utilized standard tools such as Docker for containerization,
Jenkins for automated deployment, and UNICORE for HPC
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FIGURE 11 | Embodied multi-region rodent brain benchmark NEST times and workload manager characteristics. NEST network building time (A) scales up close to

linearly, NEST simulation time (B) nearly optimally linearly. Building time and simulation time shorten by factors of about 17 and 30, respectively. The required memory

per node (C) for running the experiment scales close to linearly, but the total amount of consumed energy (D) only increases by a factor of about 12.

FIGURE 12 | Embodied multi-region rodent brain benchmark CLE profiler times. Experiment execution has an impact on step times, setting the spike ratio of a motor

cortex layer at step 5, and feeding the brain at 25 steps has a visible effect in Transfer Function (C) and robot (B) execution. Transfer Functions execute slightly slower

with scaling up the experiment, but is still small compared to the large improvement in the brain execution times (A). The first timestep includes additional initialization

procedures and hence takes significantly longer than the usual runtime step time, in the diagrams we clip the y-axis for better visibility of the relevant runtime data.

job handling. This should enable easy transfer of the proposed
architecture to other computing sites, in particular those that
are part of the FENIX research infrastructure and/or EBRAINS.

The presented setup is fully scalable, as the number of compute
nodes involved in the simulation can be user-defined, and as
multiple experiments executed on different job allocations can
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FIGURE 13 | Comparison of benchmark experiments. Brain to Body step time ratio (mean values over all 8 benchmark repetitions) and node hours required to run the

simulation for the HPC Benchmark, embodied rodent brain experiment with Motor cortex only and full embodied multi-region rodent brain experiment. For all

experiments the brain execution takes longer than the robot simulation step (A–C). This imbalance can be improved with our distributed architecture in particular for

large neural networks as with the HPC Benchmark (A) and full embodied multi-region rodent brain experiment (C). The required amount of node hours to run the

experiments does not scale up linearly, it increases exponentially with small slope only. The embodied multi-region rodent brain experiment (F) requires the most node

hours, but the required node hours increase by factors about less than 14, 35 and 23 for the HPC Benchmark (D), embodied rodent brain experiment with only Motor

cortex (E) and full embodied multi-region rodent brain experiment (F), respectively.

be launched simultaneously via the same front-end. Experiments
run interactively, meaning that the user can join the simulations
at any time via the web-based front-end, interact with the virtual
agent and environment, or change the configuration of e.g., brain
parameters, transfer functions and robot control.

We demonstrated the potential of our setup with two
benchmark experiments scaled up from 2 to 33 compute nodes
(1 to 64 NEST processes) using a balanced brain benchmark
simulation and amulti-region embodied rodent brain model. We
were able to speed up the total experiment execution time for
the HPC Benchmark with balanced networks by a factor of up
to 12, and for the RoboBrain experiment by a factor of about
6, thus demonstrating the potential benefits of distributing a
brain simulation over multiple nodes, especially as it gets larger.
Furthermore, the real-time factor could be improved, particularly
for the benchmark based on balanced networks. It saturated with
more than 32 nodes, however, potentially indicating that scaling-
up is not always beneficial in cases where the overhead required
for communication with all compute nodes at every simulation
step becomes significant in relation to the compute load on
each individual node. Nevertheless, the improvements we could
demonstrate with distribution in terms of real-time factor lay the
foundation for large-scale experiments that could otherwise not
be carried out interactively due to their slow execution.

With both benchmark experiments we also demonstrated that
NEST scales linearly, or near-linearly when parallelizing across
1–64 processes in terms of network building and simulation
time. Regarding the cost of distribution for the benchmark
experiments, we found that both energy consumed and compute
node hours required scale sub-linearly and hence provide a
strong argument for distributed simulations. The parallelization
of the brain simulation accounts for better usage of computation
time in our examples, as both brain and robot simulation are
executed in parallel at every simulation step in the NRP, and thus
can be better aligned with each other since the brain simulation
is consistently the limiting factor. This ratio may even improve
for a more complex rodent model physics simulation with more
muscle actuators.

When NEST is run in a stand-alone fashion, it shows excellent
scaling (Kunkel et al., 2014; Jordan et al., 2018) and is even
able to achieve sub-realtime performance for certain models
(Kurth et al., 2022). There are several reasons why the scaling
is not at this level for the use-case presented in this article.
First, due to the synchronization between network and physics
simulation, NEST is executed in steps of 20 ms in the NRP
and such stepped simulations are inherently more expensive due
to the increased function call overhead and the fact that data-
structures have to be paged in and out much more frequently
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rather than operating on them in a more continuous way.
Second, both simulators are executed in parallel, but the data
exchange still needs to be executed sequentially, which adds
to the raw neural network simulation times. Third, we chose
a REST-based communication interface between the NRP and
NEST Server for the first version of the interface presented
here, since it is functionally complete and has successfully been
used in other contexts. This communication via text-based
data representations (JSON over HTTP) is obviously inefficient
compared to lower level protocols such as Google’s Protocol
Buffers7 or Cap’n Proto8. We are aware of this restrictions and
already working on moving to more optimized communication
methods with higher bandwidth and lower latency (e.g., Insite
framework). It is worth noting here, that the current setup will
support any future NEST improvements transparently, as long as
these do not change the NEST Server API.

Overall, we approached saturation when scaling up to
about 64 NEST processes. For the larger embodied multi-
region rodent brain experiment, this saturation was visible
with 32 processes in terms of both runtime and real-time
factors. With both benchmark experiments we demonstrated
that a scale-up to about 8 nodes could bring a significant
performance improvement in terms of initialization and runtime
of experiments, at the cost of only few additional node hours and
concomitant energy consumption. With more compute nodes,
additional improvements were possible, albeit less significantly
and at a slightly higher cost. We proved the repeatability of
our results by executing every benchmark experiment 8 times.
Even though we ran our benchmark experiments with only 1s
simulation time in order to save energy, we think it is safe to
assume that our results will scale, as we showed relatively stable
simulation execution step sizes in the CLE profiler data.

The setup we presented here is intrinsically highly scalable,
insofar as the number of compute nodes can be passed as
a parameter and can be much larger than the 33 compute
nodes used for the presented benchmark experiments. While we
simulated a multi-region brain model consisting of about one
million neurons in these benchmark experiments, a biological
mouse brain is assumed to have around 70 million neurons,
and therefore another scale-up by a factor of 70 would be
needed to simulate such a brain at the naturalistic scale. We are
currently not aware of any embodied brain simulation model
with larger scale that is implemented with the given software
tools and that we could have used for our benchmarks, but such
models are clearly part of future work. While the benchmarks
presented saturate in terms of performance with about 32 or 64
compute nodes, it has been demonstrated that NEST scales well
above that with a larger number of CPU cores (Kunkel et al.,
2014; Kurth et al., 2022). Knowing that there are 1813 available
multicore compute nodes on the Piz Daint supercomputer, we
could approach this simulation scale with our current setup with
just a parameter change—and a good budget. The Piz Daint
supercomputer also provides GPU compute nodes that are well
known for efficient parallel computing. However, Kurth et al.

7https://developers.google.com/protocol-buffers
8https://capnproto.org/

(2022) show that NEST distributed on CPU cores is faster and
more energy efficient than any neuromorphic and GPU based
simulation known to us.

A wide variety of experiments are supported with our setup,
as it easily enables one to add additional muscles for the
rodent model (e.g., a freely running mouse with additional
muscles), use a different musculoskeletal model altogether
(Human, monkey) or use NEST-based spiking neural networks to
control a robotic system. In particular, we posit that integration
of a detailed model of spinal cord circuitry with the whole-
brain model presented herein would be highly relevant in order
to investigate in silico experiments related to motor control,
neurotechnology and neurorehabilitation. The proposed setup is
therefore extremely versatile and can support research efforts in
multiple high-impact fields, such as neuroscience, robotics and
neuromorphic computing.

More generally, the present work lays the foundation to
address the scientific dimension of large-scale brain simulation
in addition to its technical one. The scientific investigation
and validation of the dynamics emerging from the interaction
of several types of neurons is indeed critical, as well as the
optimizations of the high-degree-of-freedom parameter space
of network models. Biological constraints were incorporated
in the different regions of the CBCT model; however, once
interconnected, the model as a whole requires a proper
framework for systematic simulation with additional naturalistic
constraints or boundary conditions, i.e., a body, for relevant
experimentation on cognitive and motor functions. The
reference model size defined herein in relation to the 1× 1mm2

cortical patch provides an initial setup for starting such validation
process. However, the ultimate goal is the simulation of the full-
brain network. Previously, large-scale simulations of the CBCT
model were performed on the decommissioned K computer
(Miyazaki et al., 2012) using NEST 2, reaching a network size
of 7× 7mm2; thus, 51 million neurons, more than a single
hemisphere of the mouse brain (Gutierrez et al., 2020). The
new NEST 3 (de Schepper et al., 2022), NRP, EBRAINS HPC
infrastructure, as well as the Fugaku supercomputer (Sato et al.,
2020), provide a promising new horizon for 1:1 scale simulations.

In summary, we introduced a versatile NRP-based setup
that supports embodied large-scale brain simulations. It can
accommodate spiking neural networks implemented in NEST
and connected to customizable musculoskeletal systems or
robotic agents. We tested it with several models of spiking
neural networks, including a highly complex multi-area brain
model, thus demonstrating the capacity of this setup for in
silico closed-loop neuroscience at scale. Importantly, it leverages
the HPC capabilities of a supercomputer while supporting
online interactivity with the ongoing simulations. With this
setup, we thus lay the foundations toward the democratization
of in silico behavioral experiments with large-scale multi-
area brain models. Indeed, the raison d’être of this work
is to remove some of the main entry barriers that prevent
computational neuroscientists or neuromorphic engineers from
testing the functional capabilities of their models through
embodied simulations, and make it as easy as possible for
them to leverage HPC infrastructures without being a power
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user thereof. In order to achieve this vision, the upcoming
development efforts will focus on integrating the setup fully
into the EBRAINS research infrastructure, especially in terms
of federated user resource management and the creation of a
dedicated service account. With this, it is our hope that this
work will not be yet another attempt at simulating the brain,
but a blueprint that can be reused by many, and an enabling
technology for the concept of embodiment to gain traction in the
neuroscience community.
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