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Abstract
The brain’s vascular network supplies oxygen to the brain’s 86 billion neurons.
Therefore, the microvasculature is firmly linked to the neural organization. As
a result, both neurons and brain vessels build a complementary, ultra-complex
network. Simultaneously, studying these networks is vital to understand human
intelligence and brain functionality. The sheer complexity of the vascular network
challenges conventional image processing methods beyond their limit, motivating the
need for a dedicated set of machine learning concepts to extract a comprehensive
hierarchical understanding of the vasculature. In response to this challenge, this
thesis reports my work on the application and development of advanced machine
learning models to understand brain vessel networks. Intriguingly, the neurons
and their functional organization inspired the artificial intelligence methods, which
we use to study their own organization, making the brain and its neurons and
vessels a unique research domain. At the core of my work are three studies that
contribute to the fields of machine learning and vascular biology. 1) In the first study,
we show the first deep-learning-based segmentation of the entire brain vasculature
down to the capillary level, enabling a compact representation, analysis, and new
quantifications of vascular anatomy and collateralization. 2) Given the unsolved
challenges in vessel and curvilinear structure segmentation, we formulate a novel,
topology-preserving loss function with theoretical proofs up to homotopy equivalence,
named clDice. Our experiments show that clDice improves the network structure of
the segmentations and outperforms previous approaches in segmentation accuracy.
3) Converting the whole-brain vasculature segmentations to a graph representation,
we attain an orders of magnitude more compact, expressive representation of the
vasculature. On this graph, we benchmark a diverse set of graph convolutional
networks on the biologically relevant tasks of vessel prediction (link prediction)
and vessel classification (node classification), paving the way towards concerted
advancement of graph learning research and neuroscience. Additionally, the appendix
includes an additional publication on the concept of transfer learning for tubular
structure segmentation beyond vessels and microscopic data. In summary, this thesis’
works contribute theory and experimentation to enhance the segmentation of tubular
and curvilinear structures such as brain vessels and pave a path towards expanding
graph learning research on spatial biological graphs.
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Zusammenfassung

Neue Bildgebungsverfahren in Medizin und Biologie ermöglichen eine Bildgebung
gesamter Organe und Organismen auf Zellebene. Methoden, wie zum Beispiel das “Tis-
sue Clearing” in Kombination mit Fluoreszenzmikroskopie, erlauben es ganze, intakte
Organe in Mikrometerauflösung darzustellen. Die Analyse solcher Datensätze erfordert
die Entwicklung neuer komplexer Ansätze. Im Zuge der “Deep-Learning Revolution”
für Bilddaten der letzten Dekade haben sich auch für medizinische Datensätze auf
maschinellem Lernen basierende Methoden als aktuelles Mittel der Wahl positioniert.
Dieses Promotionsprojekt hat die Zielsetzung spezielle “Learning-basierte” Ansätze
für die Analyse der gesamten Blutgefäße des Hirns zu erforschen. Die Bildgebung der
gesamten Blutgefäße eines (murinen) Hirns ermöglicht eine ganzheitliche Betrachtung
der Einflüsse von neurodegenerativen Erkrankungen auf alle noch so kleine Kapillaren
im Hirn. Das mikrovaskuläre System des Hirns ist aus wissenschaftlicher Sicht be-
sonders interessant, da jedes einzelne Neuron von einer Kapillare mit Sauerstoff und
Nährstoffen versorgt wird. Die Kombination von neuen bildgebenden Verfahren und
der in dieser Arbeit entwickelten Methoden des maschinellen Lernens ermöglichen eine
neue Dimension der rapiden, quantitativen Analyse aller Blutgefäße des Hirns. Bei die-
ser Arbeit handelt es sich um eine publikationsbasierte Dissertation, dementsprechend
gestalten die drei Veröffentlichungen, die ein Peer-Review-Verfahren durchlaufen
haben, den Kern der Arbeit. 1) Im ersten Beitrag wird eine “Deep-Learning-basierte”
Methode, die die erste komplette Blutgefäßsegmentierung des Mäusehirns erreicht
entwickelt. 2) Basierend auf diesen Erfahrungen, entwickeln wir im clDice-Beitrag
die theoretischen Konzepte zur Segmentierung von Blutgefäßstrukturen mithilfe von
digitaler Topologie weiter. 3) In einer weiteren Konferenzpublikation interpretieren
wir die Blutgefäße des Hirns als einen Graphen und wenden Konzepte des maschi-
nellen Lernens auf Graphen an um fehlende Blutgefäßverbindungen anhand der
Graphstruktur zu identifizieren.
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Günnemann for heading the Thesis committee and helping me to get a foot into
graph learning; and to all the other co-authors and research collaborations. Another
significant recognition belongs to my brilliant Master’s and Bachelor’s students, start-
ing with my first ever student Stefan, Nils, Alex, as well as Paul, and Julian, who
are now pursuing their own doctoral studies, and Leon, a true out-of-the-box thinker.
Thank you for your invaluable contributions to our joint research. To all my friends
and teammates in volleyball and football, thank you for taking my mind off work,
your patience when paper deadlines were close, and for all the good times in Munich,
Biederstein, and around the globe. Marta, thank you for the years leading up to and
in this thesis.

Finally, and most importantly, to my family - my parents, Christian and Berta,
who encouraged my ambition, dealt with my character and unconditional support,
my brother Uli for instilling my passion for science and his advice, my sister Eva
for her genuine love, Jenny, my sunshine, you brighten up every day of my life, and
the entire family: Matthias, Lena, Elia, Luca, Hannah and Mara and all the future
additions and generations - this is your work, too.

vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Publication List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Deep Learning for Image Analysis . . . . . . . . . . . . . . . . . . . 7
2.1 History of Convolutional Neural Networks for Segmentation . . . . . 7
2.2 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . 10
2.4 Loss Functions for Segmentation . . . . . . . . . . . . . . . . . . . . . 11

3 Machine Learning on Graphs . . . . . . . . . . . . . . . . . . . . . . 15
3.1 Formalization of Graphs . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Fundamental Graph Learning Tasks . . . . . . . . . . . . . . . . . . . 18
3.3 Graph Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 How Machine Learning can be Applied to Vessel Graphs . . . . . . . 19

4 The Brain Vasculature . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Whole-Brain Vessel Imaging . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Machine Learning on Vascular Structures . . . . . . . . . . . . . . . . 26

vii



Contents

5 Machine Learning Analysis of Whole Mouse Brain Vasculature . 27

6 clDice - a Novel Topology-Preserving Loss Function for Tubular
Structure Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Whole Brain Vessel Graphs: A Dataset and Benchmark for Graph
Learning and Neuroscience (VesselGraph) . . . . . . . . . . . . . . 55

8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Appendices 77

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A Transfer Learning from Synthetic Data Reduces Need for Labels
to Segment Brain Vasculature and Neural Pathways in 3D . . . . 85

B Supplementary Material: Machine Learning Analysis of Whole
Mouse Brain Vasculature . . . . . . . . . . . . . . . . . . . . . . . . 91

C Supplementary Material: clDice - a Novel Topology-Preserving
Loss Function for Tubular Structure Segmentation . . . . . . . . . 127

D Supplementary Material: Whole Brain Vessel Graphs: A Dataset
and Benchmark for Graph Learning and Neuroscience (VesselGraph)135

E Figure Copyrights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

viii



List of Figures

1.1 The three domains of vessel representation. . . . . . . . . . . . . . . . . . 2
1.2 Whole-brain fluorescence microscopic vessel image. . . . . . . . . . . . . 4

2.1 Examples of CNN based segmentation of medical and biological images. . 8
2.2 Pixel-aware segmentation versus network-aware segmentation. . . . . . . 11

3.1 Illustration of the main anatomical and morphological vessel features. . . 15
3.2 Depiction of an exemplary vessel tree with the spatial vessel Graph G(V , E)

with nodes (V) and edges (E). . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Section of a whole-brain fluorescence microscopic vessel image. . . . . . . 21
4.2 Common vessel pathologies . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.3 LSM imaging and deep learning enabled analysis pipeline. . . . . . . . . 26

List of Tables

4.1 Overview table on existing whole-brain vessel datasets. . . . . . . . . . . 25

ix





Publication List

The following three publications constitute the core of my cumulative doctoral thesis.
A * indicates shared first authorship.

[1] J. C. Paetzold, J. McGinnis, S. Shit, I. Ezhov, P. Büschl, C. Prabhakar, A.
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Introduction

In 2012, AlexNet was the first convolutional neural network (CNN) to win the
ImageNet competition, beating the runner up by 10.8 points in top-5 accuracy [1], [2].
This hallmark achievement marked the dawn of the widespread adaption of CNNs for
image analysis. This revolution has been consistent across a vast set of application
domains, with natural image analysis often paving the path for medical imaging and
experimental biological imaging. Applications include fluorescence microscopy, video
analysis, magnetic resonance imaging, and even optoacoustic imaging. At the same
time, novel and improved imaging technologies substantially advanced individual
images’ resolution and information content. For example, clinical magnetic resonance
imaging (MRI) devices can reach an in-plane resolution of sub-one-millimeter [3].
Moreover, in biological research, advanced microscopy techniques enable the imaging
of whole rodents or human organs at a cellular resolution [4]. For example, the
imaging of blood vessels in murine brains [5] and the human kidney [6] or cancer
metastases in the whole mouse body [7] is possible.

Brain Vessels and Three Domains of Representation

In light of both scientific progress in machine learning and biological imaging, this
thesis reports my research efforts on developing advanced machine learning concepts
and theory for the analysis of the brain’s vasculature. The brain’s vasculature is
integral to sustaining the 86 billion neurons of the cerebral biological neuronal network
[8], which essentially defines human intelligence [9]. Both the billions of neurons and
the brain vessels form an ultra-large, spatial, hierarchical, and structured network
that is longer than 600 kilometers [10], see Chapter 4. In order to understand a
network of this magnitude, we introduce three representation domains of the brain
vasculature, see Figure 1.1. First, the image representation, where the invention of
tissue clearing and light-sheet microscopy provided scientists with the method to
image the whole brain vasculature at a micrometer resolution [5], [11]–[13]. While such
images allow a visual interpretation of the smallest capillaries at a whole-brain scale,
a rapid analysis and quantification of these terabyte images are impossible without

1



1. Introduction

Image Graph

b

1mm

Segmentation

Figure 1.1: The three key domains of vessel representation as discussed in this
thesis. A high-resolution image (left) is the base for applying a neural network for
segmentation (centre). Based on this pixelwise segmentation an even more compact
graph representation (right) can be extracted, enabling machine learning on graphs.

the use of massive computational resources. This motivates the need for a binary
representation, a so-called segmentation of the brain vasculature. This segmentation
is a representation that is multiple orders of magnitude more compact while still
existing in the pixel domain. Subsequently, a segmentation can be transformed to a
graph representation to generate an even more abstract and compact representation
of the vascular connectome. Such a whole-brain vascular graph with millions of
nodes and edges constructs a hierarchical description of the anatomy. It can facilitate
research and understanding of a vast set of vascular pathologies. Moreover, graphs
allow the use of an entirely new set of machine learning algorithms on graphs which
can efficiently exploit the structural and functional priors that are present in such
spatial and physical 3D vessel networks [14]–[16].

Contributions

The overarching objective of this thesis is to formulate novel machine learning concepts
to enhance the understanding of the ultra-large cerebrovascular network. The core of
this cumulative thesis constitute three peer-reviewed papers, which can be grouped
into three conceptual blocks.

1. Segmenting the entire murine brain vasculature. This is described in Chapter 5:
Machine Learning Analysis of Whole Mouse Brain Vasculature, Nature Methods,
Volume 17, April 2020.
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2. Advancing CNN based segmentation theory for blood vessels and curvilinear
structures in Chapter 6: clDice - a Novel Topology-Preserving Loss Function
for Tubular Structure Segmentation, CVPR, June 2021

3. Formalizing the brain vasculature as a homogeneous graph and benchmarking
of graph learning methods to understand its structure Chapter 7: Whole Brain
Vessel Graphs: A Dataset and Benchmark for Graph Learning and Neuroscience
(VesselGraph), NeurIPS, December 2021.

In order to understand the structural organization of the brain vasculature, the first
goal of this thesis was to develop a whole-brain vessel segmentation. When considering
the state-of-the-art literature, we identified several deficiencies which translated to
scientific problem statements for the given whole-brain vessel images. Supervised
learning methods rely on expert-annotated image label pairs, which are expensive
to acquire. To circumvent this issue, we develop a transfer learning approach using
synthetic vessel data; see additional publication in Chapter A. Moreover, we find that
purely pixel-based metrics and loss functions are not optimal for the segmentation
of curvilinear and tubular structures such as vessels because their most important
property is the connectedness of the vessels and not the pixel precision of their
diameter, see Figure 2.2. This observation led to the development of clDice, see
Chapter 6, where concepts of computational topology are used to develop a topology
preserving loss function with theoretical guarantees to improve the connectedness in
segmentations of vessels but also other network-like curvilinear structures such as
roads or cell boundaries.

While such a segmentation is substantially more compact than actual images, it is
difficult to interpret and quantify when millions of vessels are present. This motivates
the development of an efficient way to represent vessels as a graph, which represents an
efficient data structure for sparse encodings where bifurcation points represent nodes
and connecting vessels are edges, see Figure 3.1. The third paper VesselGraph, tackles
this idea and achieves a multiple orders of magnitude more compact representation
of the brain vasculature, which preserves the important information such as the
radius and encodes them as features. The extraction of such a vascular graph is
an active research direction that we address using the Voreen software. This graph
representation significantly speeds up quantification and analysis. Furthermore, this
graph representation opens an avenue towards a whole new set of machine learning
algorithms on graphs. For example, link prediction to predict missing vessel segments
in the brain structures.

3



1. Introduction

Figure 1.2: Whole-brain fluorescence microscopic vessel image using the approach
introduced in Todorov & Paetzold et al. [11]; image published as such in Shit &
Paetzold et al. [17].

Organization

Chronologically before the introduction, this publication-based dissertation text starts
with an abstract in the English and German languages. Second, I recognize and
appreciate my collaborators and family in the personal acknowledgment. Next, I
provide a comprehensive list of all the publications written during my time as a
doctoral student. In this chapter, the introduction describes the major contributions
and places them in the broad scientific context. After the introduction, three back-
ground chapters follow, laying the groundwork and defining important terminology
and concepts for my research articles. They are in successive order and link the three
vascular representation domains described in Figure 1.1. First, in Chapter 2 the basis
of Deep Learning for Computer Vision is discussed. Second, key concepts for Machine

4



Learning on Graphs are introduced in Chapter 3. To conclude the general chapters,
the Brain Vasculature is anatomically described and visualized in Chapter 4. This
background chapter describes highly prevalent brain vessel pathologies and introduces
the most important imaging techniques. Next, the three original publications are
presented in separate Chapters 5, 6, and 7. After the original publications, Chapter 8
describes current limitations, proposes future work, and discusses the contributions in
light of the existing literature. Finally, the Appendices contain the bibliography, the
additional publication A, and supplementary material of the original publications.
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Deep Learning for Image Analysis

2.1 History of Convolutional Neural Networks for

Segmentation

Shortly after AlexNet’s win in the ImageNet competition [1], deep CNNs also became
state of the art for pixel classification (or segmentation) in medical imaging [18].
Successively, fully convolutional neural networks (FCN) were introduced, which
implemented multiple successive layers, where pooling operations are replaced by
upsampling [19]. FCNs inspired the U-Net, which combines up and downsampling
with skip connections [20]. To this date, the U-Net and its extensions to 3D [21],
[22] are the most frequently used types of neural networks used in medical image
segmentation. Inspired by these fundamental papers, many research groups, as well as
the industry, employ the concepts of deep CNNs to large 3D images. In this context,
CNNs are almost universally used across different foreground shapes and objects. To
illustrate the vast applications in medical imaging, Figure 2.1 depicts the successful
application of nnU-net to various medical image segmentation challenges [23].

2.2 Neural Networks

Inspired by the function of the brain, computational neural networks are compositions
of computational units, the so-called neurons. In general, neural networks are
organized in layers. If a neural network consists of many successive layers, it is called
a deep neural network. Such deep neural networks often consist of an input layer
that processes the original data, hidden layers, and an output layer that provides the
predictions. Individual neurons f(x) in a neural network can be generalized in the
following manner:

7



2. Deep Learning for Image Analysis

A B 

C D

E F

G H 

Figure 2.1: Successful applications of CNN based segmentation to a wide variety of
medical and biological research datasets. A) Heart, aorta, esophagus, and trachea in
a CT image, B) lung cancer cells in a microscopic image, C) liver, both kidneys and
spleen in a CT image, D) synaptic clefts in electron microscopy, E) various abdominal
organs in CT, F) liver tumors and hepatic vessels, G) ventricles and ventricular
cavities in MR images and H) instances of cell nuclei. Images licensed for use in this
thesis from nn-Unet [23], see Appendix E. The examples are depicted in 2D with the
segmentation projected onto the raw 2D image data (left) and in 3D using volume
rendering (right).
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2.2. Neural Networks

f(x) = ϕ(wTx + β), (2.1)

where w = (w1, w2, ..., wn) represents the weight vector, x represents the input vector
and β represents a bias term. The neuron is activated using an activation function
ϕ(·).

Activation Functions

Generally, an activation function modifies the input vector of a neuron before it
is passed to a subsequent layer. This concept of activation functions is crucial to
modeling ultra-complex non-linear relationships (or functions) in a neural network. A
vast set of activation functions have been used in machine learning research. Typical
properties are that activation functions need to be fully continuously differentiable,
fix the input data to a fixed range, and are non-linear. Frequently used activation
functions are formalized below, where x is the input.

Sigmoid: ϕ(x) =
1

1 + e−x
. (2.2)

The sigmoid function is frequently used because it exhibits a smooth gradient, is
efficient for classifiers, is evidently non-linear and suppresses the output to the range
[0, 1].

ReLU: ϕ(x) =

{
x x > 0
0 x <= 0

}
. (2.3)

The rectified linear unit (ReLU) is one of the most frequently used activation functions
because it is computationally less expensive then sigmoid and tanh. Moreover, its
variant, the so-called LeakyReLU is frequently used, which leaves a constant and
small gradient α instead of 0.

LeakyReLU: ϕ(x) =

{
x x > 0
αx x <= 0

}
. (2.4)

The Tanh function squeezes the range to [−1, 1] making the output centered around
zero. Further, it has been shown that Tanh can exhibit steeper gradients than sigmoid
[24].
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2. Deep Learning for Image Analysis

Tanh: ϕ(x) =
ex − e−x

ex + e−x
. (2.5)

Evidently, a set of random weights in a neural network will not produce a sensible
prediction. Therefore, neural networks have to be trained. In a supervised setting, as
discussed in this thesis, a set of data-label pairs, the so-called training set, is used
for training. Here, the training data is input into the network, which produces a
prediction. This prediction is compared to the label using an objective function, also
known as the loss function or cost function, see Section 2.4. A vital property of
the loss function is that it has to be differentiable because the gradient of the loss
function determines the update of the weights in the neural network.

Backpropagation

While training a neural network, the objective is to iteratively update the network
weights in order to minimize the prediction error. This iterative update of all network
weights is achieved using the concept of backpropagation [25]. In order to determine
the direction of weight adjustment, the gradient of the error (L) of the cost function
is calculated with respect to all weights w = (w1, w2, . . . , wn) as follows:

∇w(L) =

(
∂(L)

∂w1

,
∂(L)

∂w2

...
∂(L)

∂wn

)
. (2.6)

Now, as the number of weights and their gradient is known, the weights can be
iteratively updated following the layer hierarchy of the neural network:

∆w = −γ∇w(L), (2.7)

where γ, the so-called learning rate controls the update step size in each training
iteration. To find the minimum global error, modern deep learning uses the concept
of gradient descent, for which a vast set of variants and optimizations, for example,
stochastic gradient descent and batch gradient descent, exist [26].

2.3 Convolutional Neural Networks

Convolutional neural networks were designed to address the specific challenges and
properties of images [1] and have proven to be highly efficient for most image anal-
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2.4. Loss Functions for Segmentation

ysis tasks such as classification [27] and segmentation [18]. The key concept for
CNNs are convolutional layers where a neuron only receives an input from a subset
of spatially adjacent neurons from the preceding layer, which are processed via a
convolutional kernel. This concept enables to significantly reduce the number of pa-
rameters compared to fully connected layers [28]. Powerful CNN architectures such as
ResNets [29] or U-Nets [20], [21] often combine convolutional layers with pooling and
add up- and downsampling layers as well as fully connected layers to their architecture.

At this point in time, specialized solutions for specific segmentation problems
often differ in regards to specialized pre- and post-processing pipelines, network depth
and in the number of input and output channels. Another important concept is the
use of tailored objective functions, which optimize the segmentation of a specific
foreground object or object size. In the following section, the most frequently used
loss functions and the clDice loss function, which is highly relevant for blood vessel
segmentation, are introduced and formalized.

2.4 Loss Functions for Segmentation

Figure 2.2: Two candidate segmentations in purple and red for the image slice on
the left. Both segmentations reach similar dice scores compared to the ground truth,
showcasing the need for dedicated loss functions. Figure published as such in Shit &
Paetzold et al. [17].

Segmentation of medical images is most often optimized towards the objective
of optimal pixel overlap between a segmentation and a ground truth label. This
objective is relevant for structures of interest such as brain and liver tumors [30],
[31] whole organs [32], [33], vertebrae [34], among others. For such application cases,
the Dice loss function [21] and the cross entropy loss function are most frequently used.
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2. Deep Learning for Image Analysis

Categorical cross entropy (CE) for N number of classes is defined as:

CE = −
N∑
l=1

yl log(pl), (2.8)

where y is the indicator (binary) if the class label l represents the correct classification
for the observation and p is the predicted probability that our observation belongs
to class l. To use CE as a loss function, we need to extend the formalization to the
number of training samples M :

LCE = − 1

M

M∑
i=1

N∑
l=1

yl log(pl). (2.9)

For binary segmentation problems the loss simplifies to the following, which is known
as binary cross entropy loss (BCE):

LBCE = − 1

M

M∑
i=1

−(y log(p) + (1− y) log(1− p)). (2.10)

The Dice loss tackles one of the problems in the cross entropy loss functions, which is
a bias towards the dominating class. In medical image segmentation this dominant
class is often the background. For pixelwise segmentation, the Dice loss is defined as
follows:

LDice = 1− 2
∑N

i=1 pili + ϵ∑N
i=1 p

2
i +

∑N
i=1 l

2
i + ϵ

, (2.11)

where pi is the predicted probability of pixel i, and li is the class label of pixel i for
N number of pixels, with the smoothing term ϵ to avoid division by zero. Moreover,
a weighted sum, mean or the total sum of BCE loss and Dice loss is frequently used
for binary segmentation tasks [35].

For curvilinear structures such as streets in satellite images [36], blood vessels in
medical images [37], or cell boundaries in microscopic images [38] the most critical
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2.4. Loss Functions for Segmentation

characteristic of a good segmentation is the stringent connectedness of the components
and not the absolute pixelwise accuracy of the segmentation, see Figure 2.2. To achieve
this, topology-enforcing and topology-preserving loss functions were introduced for
2D curvilinear [39]–[41], and 3D tubular shapes [17]. One example, the clDice loss
function, which is part of my thesis, is introduced and formalized in Chapter 6.
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Machine Learning on Graphs

Machine learning on graphs, which is often referred to using its umbrella term: geomet-
ric deep learning [16], is a highly relevant task with almost omnipresent applications
in data analysis, for example, shopping recommendations, content recommendations
in social networks, drug design, route predictions for car navigation or biological
network analysis [14]. Because of their universality a large number of research efforts
are directed towards machine learning on graphs [42] such as graph convolutional
networks (GCN) [43], generative modeling on graphs [44] and adversarial attacks on
graph neural networks [45]. A fundamental prerequisite is the efficient encoding of re-
lational data in a graph representation. Fortunately, most datasets can be effortlessly
modeled in a graph of instances (nodes) and connections (edges). Modeling datasets
as graphs is particularly advantageous if the relations between instances are sparse
[14]. As such, graph representations are well-suited to model vascular connections in
an abstract and efficient manner, see Figure 3.1.

Segmentation

Centerline

Bifurcation

Radius

Brain Vessel Network Anatomical Features  of Vessels

Figure 3.1: A whole-brain vessel image and a single vessel depiction, where the
anatomical and morphological features and terminology are depicted [11].
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3. Machine Learning on Graphs

3.1 Formalization of Graphs

A graph G can be formalized as G = (V , E), where V = {v1, v2, ...vn} is its set of
vertices (or nodes) and E = {ei,j} is its set of links (or edges) [46]. Naturally, we
interpret a node as a bifurcation point and an edge as a connecting vessel, see Figure
3.1. The definition of an edge is a connection between two nodes (u, v), where both
nodes are u ∈ V and v ∈ V. If an edge does not have a directional property it is
considered an undirected edge which can be formalized as:

(u, v) ∈ E ↔ (v, u) ∈ E . (3.1)

An adjacency matrix A can be used to describe a full unweighted graph. Often, the
nodes in A are organized in ascending order for both its rows and columns [47]. Using
the adjacency matrix notation, the existence of an edge between node v and node u
is described by:

A[u, v] =

{
w if (v, u) ∈ E
0 otherwise

(3.2)

Where w indicates the weight of an edge, which reduces to w = 1 when no edge
weights are used. This implies that A of an undirected graph is fully symmetric:

A[v, u] = A[u, v]. (3.3)

Throughout this work our (vascular) graphs are interpreted as undirected graphs.
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3.1. Formalization of Graphs

Figure 3.2: Depiction of an exemplary vessel tree with the spatial vessel Graph
G(V , E) with nodes (V) and edges (E). The bifurcation points in the vessel tree
become the nodes (V) and their connecting vessels are the edges (E). Additionally, a
line graph L(G) of the spatial vessel graph G ; where each node (bifurcation point)
becomes an edge; two nodes of L(G) are adjacent if and only if their edges are incident
in G. This figure was first published in Paetzold et al. [15].

Line Graph Representation A line graph L(G) is a different graph based on an
undirected graph G which describes the adjacencies between the edges E of G [48].
An illustration of a base graph and line graph for vessels is depicted in Figure 3.2.
We formally define a line graph as:

L(G) := (V ′, E ′), (3.4)

where the edges of the base graph G become nodes:

V ′ = E , (3.5)

and a new edge E ′ between the new nodes is created if and only if their edges are
incident in E .

E ′ = {{eij, eik} if ∃ (eij, eik) ∈ E}. (3.6)
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3. Machine Learning on Graphs

3.2 Fundamental Graph Learning Tasks

Four main problem statements for machine learning on graphs currently exist. Namely,
link prediction, node property prediction or node classification, edge property predic-
tion or edge classification, and graph level property prediction, also known as graph
classification.

Link Prediction Link prediction in a graph G can be defined in the form of a
classifier Flink. Where the classifier Flink aims to predict a link Ep between two nodes
(u, v). The existence of that link is indicated by 1:

Flink : Ep → {0, 1}. (3.7)

Graph Level Classification The second task graph property prediction, also
known as graph level classification aims at training a classifier Fgraph which is able
to predict a specific property Y out of a set of known class-labels MY for the entire
graph G.

Fgraph : G → Y ∈MY . (3.8)

Edge Classification Edge classification as a task can also be formalized as a
classifier Fedge. Fedge has the the goal of providing a prediction which class label Y
out of a set of known edge-classes CY should be assigned to an edge E :

Fedge : V → Y ∈ CY . (3.9)

Node Classification Node classification with classifier Fnode aims to provide a
prediction which class label Y out of a set of known node-classes NY should be
assigned to a node V :

Fnode : V → Y ∈ NY . (3.10)
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3.3. Graph Neural Networks

3.3 Graph Neural Networks

Considering the success of neural networks in machine learning tasks across many other
data domains such as images (see Section 2.1) and text, the use of neural networks is
natural. A key concept was the invention of Graph Convolutional Networks (GCNs)
[43], which enabled the use of convolutional operators directly on the graphs. Another
key concept was the development of the so-called message passing scheme [49], which
allows the aggregation of the information of neighboring nodes and the successive
application of convolutional layers. Recently, attention concepts have established
themselves as the de-facto gold standard neural networks for some sequence-data tasks
[50]; using similar concepts, Graph Attention Networks (GATs) add self-attention
layers to the GNN [51], and achieve state-of-the-art results on a variety of graph
benchmarks. Extending this concept, gated attention networks introduced the multi-
head-attention concept to graph learning [52]. For more details on current GNNs and
their successful application, please refer to the paper Whole Brain Vessel Graphs: A
Dataset and Benchmark for Graph Learning and Neuroscience (VesselGraph), chapter
7 in this thesis.

3.4 How Machine Learning can be Applied to

Vessel Graphs

In Section 3.2 four fundamental graph machine learning task categories: link prediction,
graph level classification, node classification and edge classification were introduced
and formalized. All of these problem statements have a direct application to vessel
graphs:

1. Link prediction can be interpreted as missing vessel prediction (to improve the
structure) or as anatomical fidelity prediction.

2. Graph level property prediction can be used as a pathology prediction on the
whole vascular network.

3. Edge property prediction can be used as a means for vessel classification, e.g.,
vessel size classification or functional classification.

4. Node property prediction can be used to either classify the bifurcation points
or for vessel classification when the graph is transferred to a line graph repre-
sentation.
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The Brain Vasculature

500 µm

Figure 4.1: Section of a whole-brain fluorescence microscopic vessel image using
the approach introduced in Todorov & Paetzold et al. [11]; hierarchical organization
of large and successively smaller vessels is visible continuously down to the smallest
capillary level.

The mammalian brain’s cerebrovascular system reliably supplies the neurons and
other brain tissue with oxygen, immune cells, and nutrients. Further, it is also respon-
sible for the sensitive heat regulation of the brain. To maintain its functionality, the
brain requires a sensitive balance of all these constituents, the so-called homeostasis.
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4. The Brain Vasculature

To achieve this goal, the brains vasculature forms an ultra-complex, sensitive, and
closed flow network. For example, in a murine brain, the number of vessels and
branching points alone is in the order of multiple millions [5], [11], [12], [53]. In Table
4.1 a comprehensive list of the currently available whole mouse brain vessel datasets
is provided. The table provides basic statistics on nodes and edges, which can be
interpreted as bifurcation points and vessels, extracted by a unified graph extraction
scheme based on the Voreen engine [15], [54]. Ji et al. provide more comparisons
using reported statistics from the original papers [13].

Vascular Pathologies A vast number of severe neuronal and vascular pathologies,
as well as aging, are associated with abnormalities and aberrations to the vessel
network [8], see Figure 4.2. One highly prevalent pathology, cerebral infarction,
commonly known as a stroke, is a very severe condition. For example, a brain
vessel occlusion, which is one type of stroke, blocks the blood flow at a specific
location in the vascular network. Therefore, the oxygen supply of all the neurons
which are supplied by the branching vascular network downstream of the occlusion
is interrupted. This condition leads to so-called brain ischemia. If not treated
rapidly and efficiently, the neurons, glial cells, and blood vessels are irreversibly
damaged, which can lead to disability, a substantially lowered quality of life or death
[58]. In Figure 4.2 such a stroke occlusion, specifically a bilateral common carotid
artery occlusion (BCCAo) is shown [57]. Another common neurovascular pathology,
Alzheimer’s disease, is associated with the successive degeneration of microvessels
and the associated degeneration of their supplied neurons. Alzheimer’s patients often
exhibit tauopathy, which leads to reshaped and reorganized capillaries, impairing
their ability to efficiently supply oxygen [56], see Figure 4.2. Moreover, acute brain
injuries are also associated with vascular degeneration. For example, in Figure 4.2
the severe reduction of capillary vessels after an acute brain injury can be observed
[55]. Notably, at the smallest level of the vasculature, the capillaries are often most
affected by such pathologies, motivating extended research for early diagnosis and
prevention of diverse neurodegenerative diseases.
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Figure 4.2: Common vessel pathologies: Top row, an acute, traumatic brain injury
results in rarefication of the vascular network [55]; middle row, tauopathy [56] and
in the last row, bilateral common carotid artery occlusion [57]; images licensed and
taken from the respective publications, see Appendix E. 23



4. The Brain Vasculature

4.1 Whole-Brain Vessel Imaging

Light Sheet Microscopy Light-sheet microscopy (LSM) is a microscopic imaging
technique where a single plane light-sheet laser images one plane of a 3D sample
after another to generate a 3D image of the whole sample. In order to image whole
specimens or organs such as the brain using LSM, the tissue sample has to be made
transparent or cleared, and the cells of interest have to be marked. In recent years
different protocols have been established to achieve a reliable clearing and staining of
murine and human tissue, for example, 3D imaging of solvent-cleared organs (3DISCO)
[4], CLARITY [59], and iDISCO which employs immunolabeling [60]. Nonetheless,
the clearing protocols and staining techniques have to be tailored to the desired
imaging foreground, often resulting in complicated and specific new experimental
requirements, for example, in single-cell phenotyping [61], neuronal projections in
whole mice [62], cancer metastases [7], or whole human organs [6].

Similar to other organs, brain vessels have been imaged using tissue clearing and
microscopy. In 2018 Di Giovanna et al. combined CLARITY with a vascular staining
approach to image the whole-brain vessels [5]. Next, the VesSAP work, presented as
part of this thesis in Chapter 5 combined 3DISCO clearing and a dual dye staining to
achieve a two-channel imaging of the whole mouse brain vasculature at a resolution
of 1.625 µm × 1.625 µm × 3.0 µm [11]. At a similar time, the Tubemap approach
was also introduced [53] further solidifying tissue clearing and LSM as the state of
the art in whole-brain vessel imaging.
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4.1. Whole-Brain Vessel Imaging

Complete Datasets

Name Number of Nodes Num of Edges Node Degree
BALBc1 [11] 3,538,495 5,345,897 3.02
BALBc2 3,451,306 5,193,775 3.01
BALBc3 2,850,347 4,097,953 2.88
C57BL/6-1 3,820,133 5,614,677 2.94
C57BL/6-2 3,439,962 5,070,439 2.95
C57BL/6-3 3,318,212 4,819,208 2.90
CD1-E-1 3,645,963 5,791,309 3.18
CD1-E-2 1,664,811 2,150,326 2.58
CD1-E-3 2,295,360 3,130,650 2.73
C57BL/6-K18 [13] 4,284,051 6,525,881 3.05
C57BL/6-K19 3,948,612 5,999,958 3.04
C57BL/6-K20 4,165,085 6,317,179 3.03
Synth. Graph [63] 3159 3234 2.05

Table 4.1: Different whole-brain vessel datasets with their total number of edges,
nodes, and average node degree according to the VesselGraph extraction approach.
With a comparison to a synthetic dataset by Schneider et al. [63] which is frequently
used for pre-training of segmentation networks. This table was first published in [15].
Please note that a standard bifurcation node has a degree of 3.

Other Imaging Methods Few performant alternatives to LSM for whole-brain
imaging at micrometer resolution exist. Other methods, such as electron microscopy,
two-photon microscopy, or confocal laser scanning, can provide even higher resolved
images of diverse tissue but struggle with scanning the whole brain and the entire
vasculature [64], [65]. Traditional medical imaging approaches such as magnetic
resonance imaging (MRI), optical coherence tomography (OCT), and (X-ray mi-
crotomography) microCT can image whole brains but largely achieve substantially
lower resolutions [66]–[68]. However, MRI and microCT constitute highly important
research directions because of their potential to enable ultra-high resolution in-vivo
imaging. Recently, Miettinen et al. achieved an 0.65 µm isotropic resolution image of
the whole-brain vasculature using local synchrotron X-ray phase-contrast tomography
[69]. A recent approach by Ji et al. employed serial sectional two-photon imaging
with a resolution of 0.3 µm × 0.3 µm × 1 µm. Their results show a good agreement
with the quantitative vascular features extracted in this thesis work [11], [13].
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4. The Brain Vasculature

Figure 4.3: A typical pipeline for LSM imaging and deep learning enabled analysis.

4.2 Machine Learning on Vascular Structures

Considering the ultra-large size of LSM images in the terabyte range, machine learning
based analysis plays a crucial role in biomarker extraction and quantification of the
samples. In Figure 4.3 a typical workflow for LSM image analysis is depicted:

1. In the first step, the sample is prepared, tissue-cleared, and imaged using LSM.

2. Expert annotation or synthetic data generation techniques are required to
produce high-quality image label pairs.

3. These image label pairs can then be used to develop supervised deep learning
solutions to accomplish human-level analysis and high throughput quantification
of biological samples, for example, vessel segmentation for capillary analysis.
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Synopsis: Tissue clearing methods enable the imaging of biological specimens with-
out sectioning. However, reliable and scalable analysis of large imaging datasets
in three dimensions remains a challenge. Here we developed a deep learning-based
framework to quantify and analyze brain vasculature, named Vessel Segmentation
& Analysis Pipeline (VesSAP). Our pipeline uses a convolutional neural network
(CNN) with a transfer learning approach for segmentation and achieves human-level
accuracy. By using VesSAP, we analyzed the vascular features of whole C57BL/6J,
CD1 and BALB/c mouse brains at the micrometer scale after registering them to
the Allen mouse brain atlas. We report evidence of secondary intracranial collateral
vascularization in CD1 mice and find reduced vascularization of the brainstem in
comparison to the cerebrum. Thus, VesSAP enables unbiased and scalable quantifica-
tions of the angioarchitecture of cleared mouse brains and yields biological insights
into the vascular function of the brain.
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Changes in cerebrovascular structures are key indicators for a 
large number of diseases affecting the brain. Primary angiop-
athies, vascular risk factors (for example, diabetes), traumatic 

brain injury, vascular occlusion and stroke all affect the function of 
the brain’s vascular network1–3. The hallmarks of Alzheimer’s dis-
ease, including tauopathy and amyloidopathy, can also lead to aber-
rant remodeling of blood vessels1,4, allowing capillary rarefaction to 
be used as a marker for vascular damages5. Therefore, quantitative 
analysis of the entire brain vasculature is pivotal to developing a 
better understanding of brain function in physiological and patho-
logical states. However, quantifying micrometer-scale changes in 
the cerebrovascular network of the brain has been difficult for two 
main reasons.

First, labeling and imaging of the complete mouse brain vascu-
lature down to the smallest blood vessels has not yet been achieved. 
Magnetic resonance imaging (MRI), micro-computed tomography 
(micro-CT) and optical coherence tomography do not have suffi-
cient resolution to capture capillaries in bulk tissue6–8. Fluorescent 
microscopy provides higher resolution, but can typically only 
be applied to tissue sections up to 200 μm in thickness9. Recent 
advances in tissue clearing could overcome this problem10, but so 
far there has been no systematic description of all vessels of all sizes 
in an entire brain in three dimensions (3D).

The second challenge relates to the automated analysis of large 
3D imaging datasets with substantial variance in signal intensity 
and signal-to-noise ratio (SNR) at different depths. Simple inten-
sity- and shape-based filtering approaches such as Frangi’s vessel-
ness filters and more advanced image processing methods with 
local spatial adaptation cannot reliably differentiate vessels from 

background in whole-brain scans11,12. Finally, imaging of the com-
plete vascular network of the brain at capillary resolution results 
in datasets of terabyte size. Established image processing methods  
do not scale well to terabyte-sized image volumes, as they do  
not generalize well to large images, and require intensive manual 
fine-tuning13–15.

Here we present VesSAP (Vessel Segmentation & Analysis 
Pipeline), a deep learning-based method for automated analysis of 
the entire mouse brain vasculature, overcoming the above limita-
tions. VesSAP encompasses three major steps: (1) staining, clearing 
and imaging of the mouse brain vasculature down to the capil-
lary level with two different dyes: wheat germ agglutinin (WGA) 
and Evans blue (EB); (2) automatic segmentation and tracing of 
the whole-brain vasculature data via CNNs; and (3) extraction of 
vascular features for hundreds of brain regions after registration of 
the data to the Allen brain atlas (Fig. 1). Our deep learning-based 
approach for network extraction in cleared tissue is robust, despite 
variations in signal intensities and structures, outperforms previ-
ous filter-based methods and reaches the quality of segmentation 
achieved by human annotators. We applied VesSAP to the three 
commonly used mouse strains C57BL/6J, CD1 and BALB/c.

Results
Vascular staining, DISCO clearing and imaging. To reliably stain 
the entire vasculature, we used WGA and EB dyes, which can be 
visualized in different fluorescence channels. We injected EB dye 
into live mice 12 h before WGA perfusion, allowing its long-term 
circulation to mark vessels under physiological conditions16, while 
we perfused mice with WGA during fixation. We then performed 

Machine learning analysis of whole mouse brain 
vasculature
Mihail Ivilinov Todorov1,2,3,10, Johannes Christian Paetzold4,5,6,10, Oliver Schoppe4,5, Giles Tetteh4, 
Suprosanna Shit4,5,6, Velizar Efremov4,7, Katalin Todorov-Völgyi2, Marco Düring2,8, Martin Dichgans2,8,9, 
Marie Piraud4, Bjoern Menze   4,5,6,11 ✉ and Ali Ertürk   1,2,8,11 ✉

Tissue clearing methods enable the imaging of biological specimens without sectioning. However, reliable and scalable analysis 
of large imaging datasets in three dimensions remains a challenge. Here we developed a deep learning-based framework to 
quantify and analyze brain vasculature, named Vessel Segmentation & Analysis Pipeline (VesSAP). Our pipeline uses a con-
volutional neural network (CNN) with a transfer learning approach for segmentation and achieves human-level accuracy. By 
using VesSAP, we analyzed the vascular features of whole C57BL/6J, CD1 and BALB/c mouse brains at the micrometer scale 
after registering them to the Allen mouse brain atlas. We report evidence of secondary intracranial collateral vascularization 
in CD1 mice and find reduced vascularization of the brainstem in comparison to the cerebrum. Thus, VesSAP enables unbiased 
and scalable quantifications of the angioarchitecture of cleared mouse brains and yields biological insights into the vascular 
function of the brain.
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3DISCO clearing17 and light-sheet microscopy imaging of whole 
mouse brains (Fig. 2a–c and Supplementary Figs. 1 and 2). WGA 
highlighted microvessels, and EB predominantly stained major 
blood vessels, such as the middle cerebral artery and the circle of 
Willis (Fig. 2d–i and Supplementary Fig. 3). Merging the signals 
from the two dyes yielded more complete staining of the vasculature 
than relying on individual dyes alone (Fig. 2c,f and Supplementary 
Video 1). Staining with the two dyes was congruent in midsized 
vessels, with signals originating from the vessel wall layer (Fig. 2j–l 
and Supplementary Fig. 3a–c). When using WGA, we reached a 
higher SNR for microvessels than for bigger vessels. With EB, the 
SNR for small capillaries was lower but larger vessels reached a 
high SNR (Supplementary Fig. 4). Integrating the information from 
the two channels allowed acquisition of the entire vasculature and 
resulted in optimized SNR. We also compared the fluorescence sig-
nal quality of the WGA staining (targeting the complete endothe-
lial glycocalyx lining18) to signal for a conventional vessel-specific 
antibody (anti-CD31, targeting endothelial cell–cell adhesion19) and 
found that WGA produced higher SNR for blood vessels in general 
(Supplementary Fig. 5).

Segmentation of volumetric images. To enable extraction of quan-
titative features of the vascular structure, vessels in acquired brain 
scans need to be segmented in 3D. Motivated by deep learning-
based approaches in biomedical image data analysis20–28, we used a 
five-layer CNN (Fig. 3a) to exploit the complementary signals of 
the two dyes to derive complete segmentation of the entire brain 
vasculature.

In the first step, the two input channels (WGA and EB) were 
concatenated. This yielded a matrix in which each voxel was char-
acterized by two features. Then, each convolutional step integrated 
the information from a voxel’s 3D neighborhood. We used full 3D 
convolutions20 without further down- or upsampling and fewer 
trainable parameters than, for example, 3D U-Net and V-Net29,30 
to achieve high inference speeds. After the fourth convolution, the 
information from 50 features per voxel was combined with a con-
volutional layer with a kernel size of one and sigmoidal activation 
to estimate the likelihood that a given voxel represented a vessel. 
Subsequent binarization yielded the final segmentation. In both 
training and testing, the images were processed in subvolumes of 
50 × 100 × 100 pixels.

Deep neural networks often require large amounts of annotated 
data or many iterations of training. Here we circumvented this 
requirement with a transfer learning approach31. In short, we first 
pretrained the network on a large, synthetically generated vessel-
like dataset (Supplementary Fig. 6)32 and then refined it on a small 
number of manually annotated parts of real brain vessel scans. This 
approach reduced the training iterations on manually annotated 
training data.

To assess the quality of the segmentation, we compared the 
VesSAP CNN predictions to manually labeled ground truth and the 
predictions from alternative computational approaches (Table 1). 
We report voxel-wise segmentation metrics, namely, accuracy, F1 
score33, Jaccard coefficient and cl-F1, which weights the centerlines 
and volumes of the vessels (detailed in the Methods). In comparison 
to the ground truth, our network achieved an accuracy of 0.94 ± 0.01 
and an F1 score of 0.84 ± 0.05 (for additional scores, see Table 1; all 
values are given as the mean ± s.d.). As controls, we implemented 
alternative state-of-the-art deep learning and classical methods. 
Our network outperformed classical Frangi filters11 (accuracy, 
0.85 ± 0.03; F1 score, 0.47 ± 0.18), as well as recent methods based 
on local spatial context via Markov random fields13,34 (accuracy, 
0.85 ± 0.03; F1 score, 0.48 ± 0.04). VesSAP achieved similar perfor-
mance in comparison to 3D U-Net and V-Net architectures, which 
require substantially more trainable parameters (3D U-Net: accu-
racy, 0.95 ± 0.01; F1 score, 0.85 ± 0.03; V-Net: accuracy, 0.95 ± 0.02; 
F1 score, 0.86 ± 0.07; no statistical difference in comparison to the 
VesSAP CNN: two-sided t test, all P > 0.3). However, the VesSAP 
CNN substantially outperformed the other architectures in terms of 
speed, being ~20 and ~50 times faster in the feedforward path than 

VesSAP pipeline for quantitative analysis of whole-brain vasculature

1. Clearing & imaging 2. Deep learning 3. Analysis

• Multi-dye
vessel staining

• DISCO
tissue clearing

• 3D light-sheet
microscopy

• Preprocessing

• Deep network
segmentation

• 3D reconstruction
of vasculature

• Feature
quantification

• Anatomical
registration to atlas

• Statistical
evaluation

500 µm50 µm

S

Fig. 1 | Summary of the VesSAP pipeline. The method consists of three 
modular steps: (1) multi-dye vessel staining and DISCO tissue clearing for 
high imaging quality using 3D light-sheet microscopy; (2) deep learning-
based segmentation of blood vessels with 3D reconstruction; and  
(3) anatomical feature extraction and mapping of the entire vasculature to 
the Allen adult mouse brain atlas for statistical analysis.
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Fig. 2 | Enhancement of vascular staining using two complementary dyes.  
a–c, Maximum-intensity projections of automatically reconstructed tiling 
scans of WGA (a) and EB (b) signal in the same sample and the merged 
view (c). d–f, Magnified view of the boxed region in c. g–l, Confocal images 
of WGA- and EB-stained vessels and vascular wall (g–i, maximum-
intensity projections at 112 µm; j–l, single slices of 1 µm corresponding to the 
boxed region in i). The experiment was performed on nine different mice 
with similar results.
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V-Net and 3D U-Net, respectively. This is particularly important for 
our large datasets (hundreds of gigabytes). For example, the VesSAP 
CNN segmented a single brain in 4 h, whereas V-Net and 3D U-Net 
required 3.3 d and 8 d, respectively. The superior speed of the 
VesSAP CNN is due to the substantially fewer trainable parameters 
in its architecture (for example, our implementation of 3D U-Net 
had ~178 million parameters, whereas the VesSAP CNN had ~0.059 

million parameters) (Table 1). Next, we compared the segmenta-
tion accuracy of our network to the accuracy of human annotations.  
A total of four human experts independently annotated two volumes. 
We found that the inter-annotator accuracy and F1 scores of the 
experts were comparable to those from the predicted segmentation 
of our network (human annotators: accuracy, 0.92 ± 0.02; F1 score, 
0.81 ± 0.06; Fig. 3b). Notably, we extrapolate that human annotators 
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Fig. 3 | Deep learning architecture of VesSAP and performance on vessel segmentation. a, The 3D VesSAP network architecture consisting of five 
convolutional layers and sigmoid activation for the last layer, including the kernel size and feature size for the input/output. ReLU, rectified linear units. 
b, Accuracy and F1 score for the inter-annotator experiment (blue) as compared to VesSAP (red). c, 3D rendering of full brain segmentation from a CD1 
mouse. d, 3D rendering of the small volume boxed in c. The experiment was performed on nine different mice with similar results.

Table 1 | Evaluation metrics of the different segmentation approaches for 75 volumes of 100 × 100 × 50 pixels

Segmentation model cl-F1 Accuracy F1 score Jaccard Parameters Speed

VesSAP CNN 0.93 ± 0.02* 0.94 ± 0.01 0.84 ± 0.05 0.84 ± 0.04 0.0587 M* 1.19 s*

VesSAP CNN, trained from 
scratch

0.93 ± 0.02 0.94 ± 0.01 0.85 ± 0.04* 0.85 ± 0.04 0.0587 M* 1.19 s*

VesSAP CNN, synthetic 
training data

0.87 ± 0.02 0.90 ± 0.05 0.72 ± 0.07 0.70 ± 0.05 0.0587 M* 1.19 s*

3D U-Net 0.93 ± 0.02 0.95 ± 0.01* 0.85 ± 0.03* 0.85 ± 0.03 178.4537 M 61.22 s

V-Net 0.94 ± 0.02* 0.95 ± 0.02* 0.86 ± 0.07* 0.86 ± 0.07* 88.8556 M 26.87 s

Frangi vesselness 0.84 ± 0.03 0.85 ± 0.03 0.47 ± 0.19 – – 117.00 s

Markov random field 0.86 ± 0.02 0.85 ± 0.03 0.48 ± 0.04 – – 24.31 s

All values are given as the mean ± s.d. The best performing algorithms are in bold and highlighted with an asterisk; algorithms whose performance did not differ more than 2% from the best performing 
algorithms are in bold. The number of trainable parameters for deep learning architectures is given in millions (M).
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would need more than a year to process a whole brain instead of the 
4 h required by our approach. Moreover, we observed differences in 
the human segmentations due to annotator bias. Thus, the VesSAP 
CNN can segment the complete brain vasculature consistently 
at human-level accuracy with a substantially higher speed than  
currently available methods, enabling high throughput for  
large-scale analysis.

We show an example of the vasculature from a brain segmented 
by VesSAP in 3D (Fig. 3c and Supplementary Videos 2 and 3). 
Zooming in on a smaller patch revealed that the connectivity of the 
vascular network was fully maintained (Fig. 3d and Supplementary 
Video 2). Comparing single slices of the imaging data with the 
predicted segmentation showed that vessels were accurately seg-
mented regardless of absolute illumination or vessel diameter 
(Supplementary Fig. 7).

Feature extraction and atlas registration. Vessel lengths and 
radii and the number of bifurcation points are commonly used to 
describe the angioarchitecture2. Hence, we used our segmentation 
to quantify these features as distinct parameters to characterize the 
mouse brain vasculature (Fig. 4a and Supplementary Video 4). We 
evaluated the local vessel length (length normalized to the size of 
the brain region of interest), local bifurcation density (sum of the 
occurrences normalized to the size of the brain region of inter-
est) and local vessel radius (average radius along the full length) of 
blood vessels in different brain regions.

We report the vascular features in three ways to enable com-
parison with various previous studies that differed in the mea-
sures used (Supplementary Fig. 8). More specifically, first, we 
provide the count of segmented voxels as compared to total voxels  
within a specific brain region (voxel space). Second, we provide the 

measurements by calculating the voxel size of our imaging system 
and accounting for the Euclidean length (microscopic space). Third, 
we corrected the microscopic measurements to account for tissue 
shrinkage caused by the clearing process (anatomical space)35,36 
(Supplementary Tables 2–10). We calculated this shrinkage rate by 
measuring the same mouse brain volume with MRI before clearing.

Here we use the anatomical space to report our specific bio-
logical findings, as it is closest to the physiological state. For the 
average blood vessel length of the whole brain, we found a value of 
545.74 ± 94 mm per mm³ (mean ± s.d.). Because our method quanti-
fies brain regions separately, we could compare our results to the lit-
erature, which mostly reports either quantifications for specific brain 
regions or extrapolations to the whole brain from regional quanti-
fications. For example, a vascular length of 922 ± 176 mm per mm³  
(mean ± s.d.) was previously reported for cortical regions (size of 
508 × 508 × 1,500 µm3)10. We found a similar vessel length for the same 
region in the mouse cortex (C57BL/6J mice: 913 ± 110 mm per mm³),  
substantiating the accuracy of our method. We performed addi-
tional comparisons to other reports (Supplementary Table 11).  
Moreover, we compared the measurements acquired with our 
algorithms to manually labeled ground truth data and found devi-
ations of 8.21% for centerlines, 13.18% for the number of bifurca-
tion points and 16.33% for the average radius. These deviations 
were substantially lower than the average deviation among human  
annotators (Methods).

We quantified and visualized vessel radius along the entire vas-
cular network (Fig. 4b). After extracting vascular features for the 
whole brain with VesSAP, we registered the volume to the Allen 
brain atlas (Supplementary Videos 5 and 6). This allowed us to map 
the segmented vasculature and corresponding features topographi-
cally to distinct anatomical brain regions (Fig. 4c). Each anatomical  
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d

1 mm

Segmentation

Centerline

Bifurcation

Radius

b

MaxMin

Vessel size

1 mm

c
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Fig. 4 | Pipeline showing the feature extraction and registration process. a, Representation of the features extracted from vessels. b, Radius illustration of 
the vasculature in a CD1 mouse brain. c,d, Vascular segmentation results overlaid on the hierarchically (c) and randomly (d) color-coded atlas to reveal all 
annotated regions available, including hemispheric difference (dashed line in d). The experiment was performed on nine different mice with similar results.
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Fig. 5 | Anatomical properties of the neurovasculature in adult mouse brain mapped to the Allen brain atlas clusters. a–c, Representations of the local 
vessel length (a), density of bifurcations (b) and average radius (c) in each of the 71 main anatomical clusters of the Allen brain atlas. Open, black and 
orange circles denote measurements in the CD1, C57BL/6J and BALB/c strains, respectively; each circle represents a single mouse. Data are given as 
the mean ± s.e.m.; n = 3 mice per strain. d, Local distribution of large, intermediate and microvessels in the same anatomical clusters. Abbreviations are 
defined in Supplementary Table 1.
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region could be further divided into subregions, yielding a total 
of 1,238 anatomical structures (619 per hemisphere) for the entire 
mouse brain (Fig. 4d). This allowed analysis of each denoted  
brain region and grouping of regions into clusters such as left versus 
right hemisphere, gray versus white matter, or any hierarchical clus-
ter of the Allen brain atlas ontology. For our subsequent statistical  
feature analysis, we grouped the labeled structures according to  
the 71 main anatomical clusters of the current Allen brain atlas 
ontology. We thus provide the whole mouse brain vascular map 
with extracted vessel lengths, bifurcation points and radii down to 
the capillary level.

VesSAP provides a reference map of the whole brain vasculature 
in mice. By studying whole brain vasculature in the C57BL/6J, CD1 
and BALB/c strains (n = 3 mice for each strain), we found that the 
local vessel length and local bifurcation density differed in the same 

brain over different regions, while they were highly correlated among 
different mice for the same regions (Fig. 5a,b). Furthermore, the 
local bifurcation density was highly correlated with the local vessel 
length in most brain regions (Supplementary Fig. 9), and the aver-
age vessel radius was evenly distributed in different regions of the 
same brain (Fig. 5c). In addition, the extracted features showed no 
statistical difference (by Cohen’s d; Supplementary Table 12) for the 
same anatomical cluster across the strains (Supplementary Fig. 9).  
Finally, microvessels made up the overwhelming majority of the 
total vascular composition in all brain regions (Fig. 5d). We visually 
inspected exemplary brain regions to validate the output of VesSAP. 
Both VesSAP and visual inspection revealed that the gustatory 
areas had a higher vascular length per volume than the anterodor-
sal nucleus (Fig. 6a–c). Visual inspection also suggested that the  
number of capillaries was the primary reason for regional feature 
variations within the same brain.
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Fig. 6 | Exemplary quantitative analysis enabled by VesSAP. a, Respective locations of the anterodorsal nucleus (AD) and gustatory areas (GU) in  
the mouse brain (left) and maximum-intensity projections of representative volumes from segmentation of these areas (600 × 600 × 33 µm3) (right).  
b,c, Quantification of the bifurcation density (b) and local vessel length (c) for the anterodorsal nucleus and gustatory area clusters. CD1 mice are shown 
by open circles, BALB/C mice by orange circles and C57BL/6J mice by black circles. Values are the mean ± s.e.m.; n = 3 mice per strain. d–f, Images of the 
vasculature in representative C57BL/6J (d), CD1 (e) and BALB/c (f) mice, where white arrowheads indicate anastomoses between major arteries. Direct 
vascular connections between the medial cerebral artery, the anterior cerebral artery and the posterior cerebral artery are indicated by red arrowheads. 
The experiment was performed three times with similar results.
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Finally, VesSAP offered insights into the neurovascular structure 
of the different mouse strains in our study. There were direct intra-
cranial vascular anastomoses in the C57BL/6J, CD1 and BALB/c 
strains (white arrowheads in Fig. 6d–f). The anterior cerebral artery, 
middle cerebral artery and posterior cerebral artery were connected 
at the dorsal visual cortex in CD1 mice (red arrowheads in Fig. 6d,e) 
unlike in the BALB/c strain33 (Fig. 6f).

Discussion
VesSAP can generate reference maps of the adult mouse brain vas-
culature, which can potentially be used to model synthetic cerebro-
vascular networks37. In addition to the metrics we obtain to describe 
the vasculature, advanced metrics, for example, Strahler values, 
network connectivity and bifurcation angles, can be extracted by 
using the data generated by VesSAP. Furthermore, the centerlines 
and bifurcation points can be interpreted as the edges and nodes for 
building a full vascular network graph, offering a means for study-
ing local and global properties of the cerebrovascular network in 
the future.

The VesSAP workflow relies on staining of blood vessels by 
two different dyes. WGA binds to the glycocalyx of the endothelial 
lining of blood vessels38 but may miss some segments of large ves-
sels18. EB is a dye with a high affinity for serum albumin35,36,39; thus, 
it remains in the large vessels after a short perfusion protocol. In 
addition, EB labeling is not affected by subsequent DISCO clearing.

Vessels have long and thin tubular shapes. In our images, the 
radii of capillaries (about 3 µm) are in the range of our voxel size. 
Therefore, segmentation that yields the correct diameter down to 
single-pixel resolution poses a challenge, as we observed a 16% 
deviation for the radius. This subpixel deviation did not pose a 
problem for segmenting the whole vasculature network and extract-
ing features because the vascular network can be defined by its cen-
terlines and bifurcations.

The described segmentation concept is based on a transfer learn-
ing approach, where we pretrained the CNN and refined it on a small 
labeled dataset of 11% of the synthetic dataset and only 0.02% of 
one cleared brain. We consider this to be a major advantage in com-
parison to training from scratch. Thus, our CNN might generalize 
well to different types of imaging data (such as micro-CT angiogra-
phy) or other curvilinear structures (for example, neurons), as only 
a small labeled dataset is needed to adjust our pretrained network.

On the basis of our vascular reference map, unknown vascular 
properties can be discovered and biological models can be confirmed. 
VesSAP showed a high number of collaterals in albino CD1 mice. 
Such collaterals between large vessels can substantially alter the out-
come of ischemic stroke lesions: blood-deprived brain regions arising 
from occlusion of a large vessel can be compensated by blood sup-
ply from the collateral extensions of other large vessels33,40. Therefore, 
our VesSAP method can lead to the discovery of previously unknown 
anatomical details that could be functionally relevant.

In conclusion, VesSAP is a scalable, modular and automated 
machine learning-based method to analyze complex imaging data 
from cleared mouse brains. We foresee that our method will accel-
erate the applications of tissue clearing, in particular for studies 
assessing brain vasculature.
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Methods
Tissue preparation. Animal experiments were conducted according to 
institutional guidelines (Klinikum der Universität München/Ludwig Maximilian 
University of Munich), after approval of the ethical review board of the government 
of Upper Bavaria (Regierung von Oberbayern, Munich, Germany), and in 
accordance with European directive 2010/63/EU for animal research. Animals were 
housed under a 12-h light/12-h dark cycle. For this study, we injected 150 μl (2% 
(vol/vol) in saline) EB dye (Sigma-Aldrich, E2129) intraperitoneally into 3-moth-
old male mice from the C57BL/6J, CD1 and BALB/c strains (Charles River, strain 
codes 027, 482 and 028, respectively; n = 3 mice per strain). Twelve hours after 
injection of EB dye, we anesthetized the animals with a combination of midazolam, 
medetomidine and fentanyl (administered intraperitoneally; 1 ml per 100 g body 
weight containing 5 mg, 0.5 mg and 0.05 mg per kg body weight, respectively) and 
opened their chest for transcardial perfusion. Medium with WGA (0.25 mg WGA 
conjugated to Alexa Fluor 594 dye (Thermo Fisher Scientific, W11262) in 150 µl 
PBS, pH 7.2) was supplied by peristaltic pump set to deliver the medium at a rate 
of 8 ml min–1, along with 15 ml of 1× PBS and 15 ml of 4% paraformaldehyde. This 
short perfusion protocol was established on the basis of preliminary experiments, 
where both WGA and EB staining were partially washed out (data not shown), 
with the goal of delivering fixative to brain tissue via the vessels to achieve a 
homogenous preservation effect41.

After perfusion, brains were extracted from the neurocranium while severing 
some of the segments of the circle of Willis, which is an inevitable component 
of most retrieval processes aside from corrosion cast techniques. Next, the 
samples were incubated in 3DISCO clearing solutions as described17. Briefly, we 
immersed them in a gradient of tetrahydrofuran (Sigma-Aldrich, 186562): 50%, 
70%, 80% and 90% (in distilled water) followed by 100%, at 25 °C for 12 h at each 
concentration. At this point, we modified the protocol by incubating the samples 
in tert-butanol for 12 h at 35 °C followed by immersion in dichloromethane 
(Sigma-Aldrich, 270997) for 12 h at room temperature and a final incubation with 
refractive index-matched BABB solution (benzyl alcohol + benzyl benzoate,  
1:2; Sigma-Aldrich, 24122 and W213802), for at least 24 h at room temperature 
until transparency was achieved. Each incubation step was carried out on a 
laboratory shaker.

Imaging of cleared samples with light-sheet microscopy. We used a ×4 objective 
lens (Olympus XLFLUOR 340) equipped with an immersion-corrected dipping 
cap mounted on a LaVision UltraII microscope coupled to a white-light laser 
module (NKT SuperK Extreme EXW-12) for imaging. Images were taken with 
16-bit depth and at a nominal resolution of 1.625 μm per voxel on the x and y axes. 
For ×12 imaging, we used a LaVision objective (×12/0.53 NA MI PLAN with an 
immersion-corrected dipping cap). Brain structures were visualized by Alexa Fluor 
594 (using a 580/25-nm excitation filter and a 625/30-nm emission filter) and EB 
fluorescent dye (using a 640/40-nm excitation filter and a 690/50-nm emission 
filter) in sequential order. We maximized the SNR for each dye independently to 
avoid saturation of differently sized vessels when only a single channel was used. 
We achieved this by independently optimizing the excitation power so that the 
strongest signal in major vessels did not exceed the dynamic range of the camera. 
In the z dimension, we took sectional images in 3-μm steps while using left- and 
right-sided illumination. Our measured resolution was 2.83 µm × 2.83 µm × 4.99 µm 
for x, y and z, respectively (Supplementary Fig. 2). To reduce defocus, which 
derives from the Gaussian shape of the beam, we used 12-step sequential shifting 
of the focal position of the light sheet per plane and side. The thinnest point of the 
light sheet was 5 μm.

Imaging of cleared samples with confocal microscopy. Additionally, the cleared 
specimens were imaged with an inverted laser-scanning confocal microscope 
(Zeiss, LSM 880) for further analysis. Before imaging, samples were mounted by 
placing them onto the glass surface of a 35-mm glass-bottom Petri dish (MatTek, 
P35G-0-14-C) and immersed in BABB. A ×40 oil-immersion objective lens was 
used (Zeiss, ECPlan-NeoFluar ×40/1.30 NA Oil DIC M27, WD = 0.21 mm). Images 
were acquired with the settings for Alexa Fluor 594 (using excitation at 561 nm 
and an emission range of 585–733 nm) and EB fluorescent dye (using excitation at 
633 nm and an emission range of 638–755 nm) in sequential order.

Magnetic resonance imaging. We used a nanoScan PET/MR device (3 Tesla, 
Mediso Medical Imaging Systems) equipped with a head coil for murine heads to 
acquire anatomical scans in the T1 modality.

Reconstruction of the datasets from tiling volumes. We stitched the acquired 
volumes by using TeraStitcher’s automatic global optimization function (v1.10.3). 
We produced volumetric intensity images of the whole brain while considering 
each channel separately. To improve alignment to the Allen brain atlas, we 
downscaled our dataset in the xy plane to achieve pseudouniform voxel spacing 
matching the z plane.

Deep learning network architecture. We relied on a deep 3D CNN for 
segmentation of our blood vessel dataset. The network’s general architecture 
consists of five convolutional layers, four with ReLU (rectified linear units) 

followed by one convolutional layer with sigmoid activation (Fig. 3a). The input 
layer is designed to take n images as input. In the implemented case, the input 
to the first layer of the network comprised n = 2 images of the same brain, which 
had been stained differently (Fig. 3a). To specifically account for the general 
class imbalance (much more tissue background than vessel signal) in our dataset 
and the potential for high false-positive rates associated with this, we chose the 
generalized soft-Dice as the loss function to our network. At all levels, we used full 
3D convolutional kernels (Fig. 3a).

The network’s training is driven by an Adam optimizer with a learning rate 
of 1 × 10–5 and an exponential decay rate of 0.9 for the first moment and 0.99 
for the second moment42. A prediction or segmentation with a trained model 
takes volumetric images of arbitrary size as input and outputs a probabilistic 
segmentation map of identical size. To deal with volumes of arbitrary size and 
extension, we processed them in smaller subvolumes of 100 × 100 × 50 pixels in 
size. The algorithms were implemented by using the Tensorflow framework and 
KERAS43. They were trained and tested on two NVIDIA Quadro P5000 GPUs and 
on machines with 64 GB and 512 GB of RAM.

Transfer learning. Typically, supervised learning tasks in biomedical imaging 
are aggravated by the scarce availability of labeled training data. Our transfer 
learning approach aims to circumvent this problem by pretraining our models 
on synthetically generated data and refining them on a small set of real images44. 
Specifically, our approach pretrains the VesSAP CNN on 3D volumes of vascular 
image data, synthetically generated together with the corresponding training labels 
by using the approach of Schneider and colleagues45. The pretraining is carried out 
on a dataset of 20 volumes of 325 × 304 × 600 pixels in size for 38 epochs. During 
pretraining, we applied a learning rate of 1 × 10–4. Afterward, the pretrained model 
was fine-tuned by retraining on a real microscopic dataset consisting of 11 volumes 
of 500 × 500 × 50 pixels in size. The image volumes were manually annotated by 
commissioned experts, including the expert who previously prepared the samples 
and operated the microscope. The labels were verified and further refined in 
consensus by two additional human raters. The data we used in this fine-tuning 
step amounted to 11% of the volume of the synthetic datasets and only 0.02% 
of the voxel volume of a single whole brain. For the fine-tuning step, we used a 
learning rate of 1 × 10–5. The final model was obtained after training on the real 
dataset for six epochs. This training was substantially shorter than training from 
scratch, where we trained the same VesSAP CNN architecture for 72 epochs until 
we reached the best F1 score on the validation set. The labeled dataset consisted of 
17 volumes of 500 × 500 × 50 pixels from five mouse brains. Three of these brains 
were from the CD1 strain, and two were from the C57BL/6J strain. The volumes 
were chosen from regions throughout the whole brain, to represent the variability 
in the vascular dataset in terms of both vessel shape and illumination. To ensure 
independence, volumes for the training set and test/validation set were chosen 
from independent brains. All datasets included brains from the two strains. Our 
training dataset consisted of 11 volumes, the validation dataset of 3 volumes and 
the test dataset of 3 volumes. We cross-tested on our test and validation datasets 
by rotating these. The volumes were processed during training and inference in 25 
small subvolumes of 100 × 100 × 50 pixels.

We observed an average F1 score of 0.84 ± 0.02 (mean ± s.d.), an average 
accuracy of 0.94 ± 0.01 (mean ± s.d.) and an average Jaccard coefficient of 
0.84 ± 0.04 (mean ± s.d.) on our test datasets (Fig. 3b). We tested the statistical 
significance of differences among the top three learning methods (the VesSAP 
CNN, V-Net and 3D U-Net) by using paired t tests. We found that the differences 
in F1 score were not statistically significant (all P > 0.3, rejecting the hypothesis of 
different distributions).

Because the F1 score, accuracy and Jaccard coefficient are all voxel-wise  
volumetric scores and can fall short in evaluating the connectedness of 
components, we developed the cl-F1 score. cl-F1 is calculated from the intersection 
of centerlines and vessel volumes and not from volumes only, as the traditional 
F1 score is46. To determine this score, we first calculated the intersection of the 
centerline of our prediction with the labeled volume and then calculated the 
intersection of the labeled volume’s centerline with the predicted volume. Next, we 
treated the first intersection as recall, as it is susceptible to false negatives, and the 
second intersection as precision, as it is susceptible to false positives, and input this 
into the traditional F1 score formulation:

F1 ¼ 2 ´
precision ´ recall
precision þ recall

ð1Þ

We report an average cl-F1 score of 0.93 ± 0.02 (mean ± s.d.) on the test set.
All scores are given as mean and s.d. Our model reached the best model 

selection point on the validation dataset after six epochs of training.

Comparison to 3D U-Net and V-Net. To compare our proposed architecture to 
different segmentation architectures, we implemented V-Net and 3D U-Net, both 
of which use more complex CNNs with substantially more trainable parameters, 
which further include down- and upsampling. While our experiments showed 
that 3D U-Net and V-Net reached marginally higher performance scores, the 
differences were not statistically significant (two-sided t test, P > 0.3). The amount 
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of parameters for these tools makes them 51 and 23 times slower than VesSAP 
during the inference stage. For segmentation of one of our large whole-brain 
datasets, this translated to 4 h for VesSAP versus 8 d for 3D U-Net and 3.8 d for 
V-Net. This difference was also prevalent in the number of trainable parameters. 
The VesSAP CNN had 0.058 million parameters, whereas 3D U-Net consisted 
of more than 178 million and V-Net of more than 88 million parameters. 
Furthermore, the light VesSAP CNN already reached human-level performance. 
We therefore consider the problem of vessel segmentation as solved by the VesSAP 
CNN for our data. It should be mentioned that the segmentation network is a 
modular building block of the overall VesSAP pipeline and can be chosen by each 
user according to his or her own preferences and, importantly, according to the 
computational power available.

Preprocessing of segmentation. Preprocessing factors into the overall success of 
the training and segmentation. The intensity distribution among brains and among 
brain regions differs substantially. To account for intensity distributions, two 
preprocessing strategies were applied successively.

1. High-cut filter. In this step, the intensities x above a certain threshold c are 
set to c; c is defined by a global percentile. Next, they were normalized by f(x).

g xð Þ ¼ c; x>c

x; x≤c

�
ð2Þ

2. Normalization of intensities. The original intensities were normalized to a range 
of 0 to 1, where x was the pixel intensity and X was all intensities for the volume.

f xð Þ ¼ x �min Xð Þ
max Xð Þ �min Xð Þ ð3Þ

Inter-annotator experiment for segmentation. To compare VesSAP’s segmentation 
to human-level annotations, we implemented an inter-annotator experiment. 
For this experiment, we determined a gold-standard label (ground truth) for two 
volumes of 500 × 500 × 50 pixels from a commissioned group of three experts, 
including the expert who imaged our data and was therefore most familiar with the 
images. Next, we gave the two volumes to four other experts to label the complete 
vasculature. The experts spent multiple hours labeling each patch in the ImageJ 
and ITK-snap environment and were allowed to use their favored approaches 
to generate what they considered to be the most accurate labeling. Finally, we 
calculated the accuracy and F1 scores for the different annotators, as compared to 
the gold standard, and compared them to the scores for our model (Table 1).

Feature extraction. To quantify the anatomy of the mouse brain vasculature, we 
extracted descriptive features on the basis of our segmentation. First, we calculated 
the features in voxel space. Later, we registered them to the Allen brain atlas.

As features we extracted the centerlines, the bifurcation points and the radii of 
the segmented blood vessels. We consider these features to be independent from 
the elongation of the light-sheet scans and the connectedness of the vessels due to 
staining, imaging and/or segmentation artifacts.

Our centerline extraction was based on a 3D thinning algorithm47. Before 
extracting the centerlines, we applied two cycles of binary erosion and dilation 
to remove false-negative pixels within the volume of segmented vessels, as these 
would induce false centerlines. On the basis of the centerlines, we extracted 
bifurcation points. A bifurcation was the branching point on a centerline where 
a larger vessel split into two or more smaller vessels (Fig. 4a). In a network 
analysis context, bifurcations are meaningful as they represent the nodes of a 
vascular network48. Furthermore, bifurcation points have relevance in a biological 
context. In neurodegenerative diseases, capillaries are known to degenerate49, 
thereby substantially reducing the number of bifurcation points in an affected 
brain region as compared to healthy brain. Next, we implemented an algorithm 
to detect bifurcation points. We achieved this by calculating the surrounding 
pixels for every point on each centerline and determined whether a point was 
a centerline. The radius of a blood vessel is a key feature to describe vascular 
networks. The radius yields information about the flow and hierarchy of the vessel 
network. The proposed algorithm calculates the Euclidean distance transform for 
every segmented pixel v to the closest background pixel bclosest. Next, the distance 
transform matrix is multiplied by the 3D centerline mask, equaling the minimum 
radius of the vessel around the centerline.

d v; bclosestð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

1

vi � bclosest;i
� 2

vuut ð4Þ

Feature quantification. Here we describe in detail how we calculated the features 
between the three different spaces.

Voxel space to microscopic space. To quantify the length of our vessels in SI units 
instead of voxels, we calculated their Euclidean length, which depends on the 
direction of the connection of skeleton pixels (Supplementary Fig. 9). To calculate 

the Euclidean length of our centerlines, we carried out a connected component 
analysis, which transformed each pixel of the skeleton into an element of an 
undirected weighted graph, where zero weight means no connection and non-zero  
weights denote the Euclidean distance between two voxels (considering 26 
connectivity). Thus, we obtained a large and sparse adjacency matrix. An element-
wise summation of such a matrix provides the total Euclidean length of the 
vascular network along the extracted skeleton.

As measuring connected components is computationally very expensive, we 
calculated the Euclidean length of the centerlines for 12 representative volumes of 
500 × 500 × 50 pixels and divided by the number of skeleton pixels. We calculated an 
average Euclidean length εCl of 1.3234 ± 0.0063 voxels (mean ± s.d.) per centerline 
element. This corresponds to a length of 3.9701 ± 0.0188 µm (mean ± s.d.) in cleared 
tissue. Because the s.d. of this measurement was low, at less than 0.5% of the length, 
we applied this correction factor to the whole brain centerline measurements. This 
correction does not apply to the bifurcation points and our radius statistics, as 
bifurcations are independent of length and also radius extraction returns a Euclidean 
distance by default. Depending on the direction of the connection of skeleton pixels, 
the Euclidean length of a skeleton pixel is different (Supplementary Fig. 9).

Microscopic space to anatomical space. To account for tissue shrinkage 
(Supplementary Fig. 9), which is inherent to DISCO clearing, we carried out 
an experiment to measure the degree of shrinkage. Before clearing, we imaged 
the brains of three live BALB/c mice by MRI and calculated each brain’s average 
volume, through precise manual segmentation by an expert. Next, we cleared 
three BALB/c brains, processed them with VesSAP and measured the total brain 
volume with atlas alignment. We report an average volume of 423.84 ± 2.04 mm3 
for the live mice and 255.62 ± 6.57 mm3 for the cleared tissue. This corresponds to 
a total volume shrinkage of 39.69%. We applied this as a correction factor for the 
volumetric information (for example, for brain regions).

Similarly to previous studies, shrinkage was uniform in all three dimensions. 
This is important when considering shrinkage in one dimension, as needed to 
account for the shrinkage in centerlines and radii. The one-dimensional correction 
factor КL then corresponds to the cube root of the volumetric correction factor КV.

Accounting for these factors, we calculated the vessel length per volume (Z) in 
cleared (Zcleared) and real (Zreal) tissue in equation (5), where NV,vox is the number of 
total voxels in the reference volume and NCl,vox is the number of centerline voxels in 
the image volume:

Zcleared ¼ NCl;vox

NV;vox
´ εCl Zreal ¼ NCl;vox

NV;vox
´ εCl ´ κL

κV
ð5Þ

Similarly, we calculated the bifurcation density (B) in cleared and real tissue in 
equation (6), where NBif,vox is the number of bifurcations in the reference volume:

Bcleared ¼ NBif ;vox

NV;vox
Breal ¼ NBif ;vox

NV;vox
´ 1

κV
ð6Þ

Please note that the voxel spacing of 3 µm has to be taken into consideration 
when reporting features in SI units.

Inter-annotator experiment for features. To estimate the error in VesSAP’s feature 
quantification, we extracted the features on a labeled test set of five volumes of 
500 × 500 × 50 pixels. When comparing to the gold-standard label, we calculated 
errors (disagreements) of 8.21% for the centerlines, 13.18% for the number of 
bifurcation points and 16.33% for the average radius. To compare VesSAP’s 
extracted features to human-level annotation, we implemented an inter-annotator 
experiment. For this experiment, we had four annotators label the vessels and radii 
in two volumes of 500 × 500 × 50 pixels by using ImageJ and ITK-snap. Finally, 
we calculated the agreement of the extracted features between all annotators and 
compared to the gold-standard labeling.

We calculated this for each of the volumes and found an average error 
(disagreement) of 34.62% for the radius, 25.20% for the bifurcation count and 
12.55% for the centerline length.

The agreement between the VesSAP output and the gold standard was higher 
than the average agreement between the annotators and the gold standard. This 
difference underlines the quality and reproducibility of VesSAP’s feature extraction.

Registration to the reference atlas. We used the average template, the annotation 
file and the latest ontology file (Ontology ID: 1) of the current Allen mouse 
brain atlas: CCFv3 201710. Then, we scaled the template and the annotation file 
up from 10 to 3 µm3 to match our reconstructed brain scans and multiplied the 
left side of the (still symmetrical) annotation file by −1 so that the labels could 
be later assigned to the corresponding hemispheres. Next, the average template 
and 3D vascular datasets were downsampled to 10% of their original size in each 
dimension to achieve reasonably fast alignment with the elastix toolbox50 (v4.9.0). 
For the sake of the integrity of the extracted features, we aligned the template 
to each of the brain scans individually by using a two-step rigid and deformable 
registration (B-spline; optimizer, AdaptiveStochasticGradientDescent; metric, 
AdvancedMattesMutualInformation; grid spacing in physical units, 90; in the 
VesSAP repository, we host the log and parameter files for each brain scan) and 
applied the transformation parameters to the full-resolution annotation volume 
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(3-μm resolution). Subsequently, we created masks for the anatomical clusters on 
the basis of the current Allen brain atlas ontology.

Statistical analysis of features. Data collection and analysis were not performed 
with blinding to the strains. Data distribution was assumed to be normal, although 
this was not formally tested. All data values of the descriptive statistics are given 
as mean ± s.e.m. unless stated otherwise. Data were analyzed with standardized 
effect size indices (Cohen’s d)51 to investigate differences in vessel length, number 
of bifurcation points and radii between brain areas across the three mouse strains 
(n = 3 mice per strain). Descriptive statistics were evaluated across brain regions in 
the pooled (n = 9) dataset.

Data visualization. All volumetric datasets were rendered with Imaris, Vision4D 
and ITK-snap.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
VesSAP data are publicly hosted at http://DISCOtechnologies.org/VesSAP and 
include original scans and registered atlas data.

Code availability
VesSAP codes are publicly hosted at http://DISCOtechnologies.org/VesSAP and 
include the imaging protocol, trained algorithms, training data and a reference 
set of features describing the vascular network in all brain regions. Additionally, 
the source code is hosted on GitHub (https://github.com/vessap/vessap) and on 
the executable platform Code Ocean (https://doi.org/10.24433/CO.1402016.v1)52. 
Implementation of external libraries is available on request.
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Abstract

Accurate segmentation of tubular, network-like struc-
tures, such as vessels, neurons, or roads, is relevant to
many fields of research. For such structures, the topology
is their most important characteristic; particularly preserv-
ing connectedness: in the case of vascular networks, miss-
ing a connected vessel entirely alters the blood-flow dynam-
ics. We introduce a novel similarity measure termed center-
lineDice (short clDice), which is calculated on the inter-
section of the segmentation masks and their (morpholog-
ical) skeleta. We theoretically prove that clDice guaran-
tees topology preservation up to homotopy equivalence for
binary 2D and 3D segmentation. Extending this, we pro-
pose a computationally efficient, differentiable loss func-
tion (soft-clDice) for training arbitrary neural segmenta-
tion networks. We benchmark the soft-clDice loss on five
public datasets, including vessels, roads and neurons (2D
and 3D). Training on soft-clDice leads to segmentation with
more accurate connectivity information, higher graph simi-
larity, and better volumetric scores.

1. Introduction
Segmentation of tubular and curvilinear structures is an

essential problem in numerous domains, such as clinical
and biological applications (blood vessel and neuron seg-
mentation from microscopic, optoacoustic, or radiology im-
ages), remote sensing applications (road network segmen-
tation from satellite images) and industrial quality control,
etc. In the aforementioned domains, a topologically accu-
rate segmentation is necessary to guarantee error-free down-
stream tasks, such as computational hemodynamics, route
planning, Alzheimer’s disease prediction [18], or stroke
modeling [20]. When optimizing computational algorithms
for segmenting curvilinear structures, the two most com-
monly used categories of quantitative performance mea-
sures for evaluating segmentation accuracy of tubular struc-

*The authors contributed equally to the work

Figure 1. Motivation: The figure shows a 3D rendering of a com-
plex, whole brain vascular dataset [48], where an exemplary 2D
slice of the data is chosen and segmented by two different models,
see purple (middle) and red (right), respectively. The two segmen-
tation results achieve identical quality in terms of the traditional
Dice score. Note that the purple segmentation does not capture the
small vessels while segmenting the large vessel very accurately;
on the other side, the red segmentation captures all vessels in the
image while being less accurate on the radius of the large vessel.
Skeleta are drawn in yellow. From a topology or network perspec-
tive, the red segmentation is evidently preferred.

tures, are 1) overlap based measures such as Dice, preci-
sion, recall, and Jaccard index; and 2) volumetric distance
measures such as the Hausdorff and Mahalanobis distance
[21, 40, 36, 16].

However, in most segmentation problems, where the
object of interest is 1) locally a tubular structure and 2)
globally forms a network, the most important characteris-
tic is the connectivity of the global network topology. Note
that network in this context implies a physically connected
structure, such as a vessel network, a road network, etc.,
which is also the primary structure of interest for the given
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image data. As an example, one can refer to brain vascula-
ture analysis, where a missed vessel segment in the segmen-
tation mask can pathologically be interpreted as a stroke
or may lead to dramatic changes in a global simulation
of blood flow. On the other hand, limited over- or under-
segmentation of vessel radius can be tolerated, because it
does not affect clinical diagnosis.

For evaluating segmentations in such tubular-network
structures, traditional volume-based performance indices
are sub-optimal. For example, Dice and Jaccard rely on
the average voxel-wise hit or miss prediction [46]. In a task
like network-topology extraction, a spatially contiguous se-
quence of correct voxel prediction is more meaningful than
a spurious correct prediction. This ambiguity is relevant for
objects of interest, which are of the same thickness as the
resolution of the signal. For them, it is evident that a single-
voxel shift in the prediction can change the topology of the
whole network. Further, a globally averaged metric does
not equally weight tubular-structures with large, medium,
and small radii (cf. Fig 1). In real vessel datasets, where
vessels of wide radius ranges exist, e.g. 30 µm for arteri-
oles and 5 µm for capillaries [48, 9], training on a globally
averaged loss induces a strong bias towards the volumet-
ric segmentation of large vessels. Both scenarios are pro-
nounced in imaging modalities, such as fluorescence mi-
croscopy [48, 58] and optoacoustics, which focus on map-
ping small capillary structures.

To this end, we are interested in a topology-aware image
segmentation, eventually enabling a correct network extrac-
tion. Therefore, we ask the following research questions:

Q1. What is a good pixelwise measure to benchmark seg-
mentation algorithms for tubular, and related linear
and curvilinear structure segmentation while guaran-
teeing the preservation of the network-topology?

Q2. Can we use this improved measure as a loss function
for neural networks, which is a void in existing litera-
ture?

1.1. Related Literature

Achieving topology preservation can be crucial to ob-
tain meaningful segmentation, particularly for elongated
and connected shapes, e.g. vascular structures or roads.
However, analyzing preservation of topology while simpli-
fying geometries is a difficult analytical and computational
problem [11, 10].

For binary geometries, various algorithms based on thin-
ning and medial surfaces have been proven to be topology-
preserving according to varying definitions of topology
[23, 25, 26, 35]. For non-binary geometries, existing meth-
ods applied topology and connectivity constraints onto vari-
ational and Markov random field-based methods: tree shape
priors for vessel segmentation [44], graph representation

priors to natural images [2], higher-order cliques which con-
nect superpixels [53] and adversarial learning for road seg-
mentation [51], integer programming to general curvilin-
ear structures [49], and proposed a tree-structured convolu-
tional gated recurrent unit [22], morphological optimization
[14], among others [3, 15, 32, 31, 33, 37, 41, 52, 57, 56].
Further, topological priors of containment were applied to
histology scans [5], a 3D CNN with graph refinement was
used to improve airway connectivity [19], and recently,
Mosinska et al. trained networks which perform segmen-
tation and path classification simultaneously [30]. Another
approach enables the predefinition of Betti numbers and en-
forces them on the training[8].

The aforementioned literature has advanced the com-
munities understanding of topology-preservation, but crit-
ically, they do not possess end-to-end loss functions that
optimize topology-preservation. In this context, the litera-
ture remains sparse. Recently, Mosinska et al. suggested
that pixel-wise loss-functions are unsuitable and used se-
lected filter responses from a VGG19 network as an addi-
tional penalty [29]. Nonetheless, their approach does not
prove topology preservation. Importantly, Hu et al. pro-
posed the first continuous-valued loss function based on the
Betti number and persistent homology [17]. However, this
method is based on matching critical points, which, accord-
ing to the authors makes the training very expensive and
error-prone for real image-sized patches [17]. While this is
already limiting for a translation to large real world data set,
we find that none of these approaches have been extended
to three dimensional (3D) data.

1.2. Our Contributions

The objective of this paper is to identify an efficient,
general, and intuitive loss function that enables topology
preservation while segmenting tubular objects. We intro-
duce a novel connectivity-aware similarity measure named
clDice for benchmarking tubular-segmentation algorithms.
Importantly, we provide theoretical guarantees for the topo-
logical correctness of the clDice for binary 2D and 3D seg-
mentation. As a consequence of its formulation based on
morphological skeletons, our measure pronounces the net-
work’s topology instead of equally weighting every voxel.
Using a differentiable soft-skeletonization, we show that the
clDice measure can be used to train neural networks. We
show experimental results for various 2D and 3D network
segmentation tasks to demonstrate the practical applicabil-
ity of our proposed similarity measure and loss function.

2. Let’s Emphasize Connectivity
We propose a novel connectivity-preserving metric to

evaluate tubular and linear structure segmentation based on
intersecting skeletons with masks. We call this metric cen-
terlineDice or clDice.

16561



Figure 2. Schematic overview of our proposed method: Our proposed clDice loss can be applied to any arbitrary segmentation network.
The soft-skeletonization can be easily implemented using pooling functions from any standard deep-learning toolbox.

We consider two binary masks: the ground truth mask
(VL) and the predicted segmentation masks (VP ). First, the
skeletons SP and SL are extracted from VP and VL re-
spectively. Subsequently, we compute the fraction of SP

that lies within VL, which we call Topology Precision or
Tprec(SP , VL), and vice-a-versa we obtain Topology Sen-
sitivity or Tsens(SL, VP ) as defined bellow;

Tprec(SP , VL) =
|SP \ VL|

|SP |
; Tsens(SL, VP ) =

|SL \ VP |
|SL|

(1)

We observe that the measure Tprec(SP , VL) is suscepti-
ble to false positives in the prediction while the measure
Tsens(SL, VP ) is susceptible to false negatives. This ex-
plains our rationale behind referring to the Tprec(SP , VL)
as topology’s precision and to the Tsens(SL, VP ) as its sen-
sitivity. Since we want to maximize both precision and sen-
sitivity (recall), we define clDice to be the harmonic mean
(also known as F1 or Dice) of both the measures:

clDice(VP , VL) = 2⇥ Tprec(SP , VL)⇥ Tsens(SL, VP )

Tprec(SP , VL) + Tsens(SL, VP )
(2)

Note that our clDice formulation is not defined for Tprec =
0 and Tsens = 0, but can easily be extended continuously
with the value 0.

3. Topological Guarantees for clDice
The following section provides general theoretical

guarantees for the preservation of topological properties

achieved by optimizing clDice under mild conditions on the
input. Roughly, these conditions state that the object of in-
terest is embedded in S3 in a non-knotted way, as is typi-
cally the case for blood vessel and road structures.

Specifically, we assume that both ground truth and pre-
diction admit foreground and background skeleta, which
means that both foreground and background are homotopy-
equivalent to topological graphs, which we assume to be
embedded as skeleta. Here, the voxel grid is considered as
a cubical complex, consisting of elementary cubes of di-
mensions 0, 1, 2, and 3. This is a special case of a cell
complex (specifically, a CW complex), which is a space con-
structed inductively, starting with isolated points (0-cells),
and gluing a collection of topological balls of dimension k
(called k-cells) along their boundary spheres to a k � 1-
dimensional complex. The voxel grid, seen as a cell com-
plex in this sense, can be completed to an ambient complex
that is homeomorphic to the 3-sphere S3 by attaching a sin-
gle exterior cell to the boundary. In order to consider fore-
ground and background of a binary image as complemen-
tary subspaces, the foreground is now assumed to be the
union of closed unit cubes in the voxel grid, corresponding
to voxels with value 1; and the background is the comple-
ment in the ambient complex. This convention is commonly
used in digital topology [24, 23]. The assumption on the
background can then be replaced by a convenient equiva-
lent condition, stating that the foreground is also homotopy
equivalent to a subcomplex obtained from the ambient com-
plex by only removing 3-cells and 2-cells. Such a subcom-
plex is then clearly homotopy-equivalent to the complement
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of a 1-complex.
We will now observe that the above assumptions imply

that the foreground and the background are connected and
have a free fundamental group and vanishing higher funda-
mental groups. In particular, the homotopy type is already
determined by the first Betti number 1; moreover, a map in-
ducing an isomorphism in homology is already a homotopy
equivalence. To see this, first note that both foreground and
background are assumed to have the homology of a graph,
in particular, homology is trivial in degree 2. By Alexander
duality [1], then, both foreground and background have triv-
ial reduced cohomology in degree 0, meaning that they are
connected. This implies that both have a free fundamental
group (as any connected graph) and vanishing higher ho-
motopy groups. In particular, since homology in degree 1
is the Abelianization of the fundamental group, these two
groups are isomorphic. This in turn implies that in our set-
ting a map that induces isomorphisms in homology already
induces isomorphisms between all homotopy groups. By
Whitehead’s theorem [54], such a map is then a homotopy
equivalence.

The following theorem shows that under our assump-
tions on the images admitting foreground and background
skeleta, the existence of certain nested inclusions already
implies the homotopy-equivalence of foreground and back-
ground, which we refer to as topology preservation.

Theorem 1. Let LA ✓ A ✓ KA and LB ✓ B ✓ KB

be connected subcomplexes of some cell complex. Assume
that the above inclusions are homotopy equivalences. If the
subcomplexes also are related by inclusions LA ✓ B ✓
KA and LB ✓ A ✓ KB , then these inclusions must be
homotopy equivalences as well. In particular, A and B are
homotopy-equivalent.

Proof. An inclusion of cell complexes map is a homotopy
equivalence if and only if it induces isomorphisms on all
homotopy groups. Since the inclusion LA ✓ B ✓ KA

induces an isomorphism, the inclusion LA ✓ B induces a
left-inverse, and since B ✓ KB induces an isomorphism,
the inclusion LA ✓ KB also induces a left-inverse. At the
same time, since the inclusion LB ✓ A ✓ KB induces an
isomorphism, the inclusion A ✓ KB induces a left-inverse,
and since LA ✓ A induces an isomorphism, the inclusion
LA ✓ KB also induces a right-inverse. Together, this im-
plies that the inclusion LA ✓ KB induces an isomorphism.

Together with the isomorphisms induced by LA ✓ A and
B ✓ KB , we obtain isomorphisms induced by LA ✓ B and
by A ✓ KB , which compose to an isomorphism between
the homotopy groups of A and B.

1Betti numbers: β0 represents the number of distinct connected-
components, β1 represents the number of circular holes, and β2 represents
the number of cavities, for depictions see Supplementary material

Corollary 1.1. Let VL and VP be two binary masks admit-
ting foreground and background skeleta, such that the fore-
ground skeleton of VL is included in the foreground of VP

and vice versa, and similarly for the background. Then the
foregrounds of VL and VP are homotopy equivalent, and the
same is true for their backgrounds.

Note that the inclusion condition in this corollary is sat-
isfied if and only if clDice evaluates to 1 on both foreground
and background of (VL, VP ).

This proof lays the ground for a general interpretation
of clDice as a topology preserving metric. Additionally,
we provide an elaborate explanation of clDice topological
properties, using concepts of applied digital topology in the
theory section of the Supplementary material [24, 23].

4. Training Neural Networks with clDice
In the previous section we provided general theoretic

guarantees how clDice has topology preserving properties.
The following chapter shows how we applied our theory
to efficiently train topology preserving networks using the
clDice formulation. 2

4.1. Soft-clDice using Soft-skeletonization:

Extracting accurate skeletons is essential to our method.
For this task, a multitude of approaches has been proposed.
However, most of them are not fully differentiable and
therefore unsuited to be used in a loss function. Popular
approaches use the Euclidean distance transform or utilize
repeated morphological thinning. Euclidean distance trans-
form has been used on multiple occasions [42, 55], but re-
mains a discrete operation and, to the best of our knowl-
edge, an end-to-end differentiable approximation remains
to be developed, preventing the use in a loss function for
training neural networks. On the contrary, morphological
thinning is a sequence of dilation and erosion operations
[c.f. Fig. 3].

Importantly, thinning using morphological operations
(skeletonization) on curvilinear structures can be topology-
preserving [35]. Min- and max filters are commonly used as
the grey-scale alternative of morphological dilation and ero-
sion. Motivated by this, we propose ‘soft-skeletonization’,
where an iterative min- and max-pooling is applied as a
proxy for morphological erosion and dilation. The Algo-
rithm 1 describes the iterative processes involved in its com-
putation. The hyper-parameter k involved in its computa-
tion represents the iterations and has to be greater than or
equal to the maximum observed radius. In our experiments,
this parameter depends on the dataset. For example, it is
k = 5...25 in our experiments, matching the pixel radius of
the largest observed tubular structures. Choosing a larger
k does not reduce performance but increases computation

2https://github.com/jocpae/clDice
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Figure 3. Based on the initial vessel structure (purple), sequential bagging of skeleton voxels (red) via iterative skeletonization leads to a
complete skeletonization, where d denotes the diameter and k > j > i iterations.

Algorithm 1: soft-skeleton
Input: I, k

I 0  maxpool(minpool(I))
S  ReLU(I � I 0)

for i 0 to k do
I  minpool(I)
I 0  maxpool(minpool(I))
S  S + (1� S) � ReLU(I � I 0)

end
Output: S

Algorithm 2: soft-clDice
Input: VP , VL

SP  soft-skeleton(VP )
SL  soft-skeleton(VL)

Tprec(SP , VL) |SP �VL|+✏
|SP |+✏

Tsens(SL, VP ) |SL�VP |+✏
|SL|+✏

clDice 
2⇥ Tprec(SP ,VL)⇥Tsens(SL,VP )

Tprec(SP ,VL)+Tsens(SL,VP )

Output: clDice

Figure 4. Algorithm 1 calculates the proposed soft-skeleton, here
I is the mask to be soft-skeletonized and k is the number of itera-
tions for skeletonization. Algorithm 2, calculates the soft-clDice
loss, where VP is a real-valued probabilistic prediction from a seg-
mentation network and VL is the true mask. We denote Hadamard
product using �.

time. On the other hand, a too low k leads to incomplete
skeletonization.

In Figure 3, the successive steps of our skeletonization
are intuitively represented. In the early iterations, the struc-
tures with a small radius are skeletonized and preserved un-
til the later iterations when the thicker structures become
skeletonized. This enables the extraction of a parameter-

free, morphologically motivated soft-skeleton. The afore-
mentioned soft-skeletonization enables us to use clDice as a
fully differentiable, real-valued, optimizable measure. The
Algorithm 2 describes its implementation. We refer to this
as the soft-clDice.

For a single connected foreground component and in the
absence of knots, the homotopy type is specified by the
number of linked loops. Hence, if the reference and the pre-
dicted volumes are not homotopy equivalent, they do not
have pairwise linked loops. To include these missing loops
or exclude the extra loops, one has to add or discard de-
formation retracted skeleta of the solid foreground. This
implies adding new correctly predicted voxels. In contrast
to other volumetric losses such as Dice, cross-entropy, etc.,
clDice only considers the deformation-retracted graphs of
the solid foreground structure. Thus, we claim that clDice
requires the least amount of new correctly predicted voxels
to guarantee the homotopy equivalence. Along these lines,
Dice or cross-entropy can only guarantee homotopy equiv-
alence if every single voxel is segmented correctly. On the
other hand, clDice can guarantee homotopy equivalence for
a broader combinations of connected-voxels. Intuitively,
this is a very much desirable property as it makes clDice
robust towards outliers and noisy segmentation labels.

4.2. Cost Function

Since our objective here is to preserve topology while
achieving accurate segmentations, and not to learn skeleta,
we combine our proposed soft-clDice with soft-Dice in the
following manner:

Lc = (1� α)(1� softDice) + α(1� softclDice) (3)

where α 2 [0, 0.5]. In stark contrast to previous works,
where segmentation and centerline prediction has been
learned jointly as multi-task learning [50, 47], we are not
interested in learning the centerline. We are interested in

16564



learning a topology-preserving segmentation. Therefore,
we restrict our experimental choice of alpha to α 2 [0, 0.5].
We test clDice on two state-of-the-art network architec-
tures: i) a 2D and 3D U-Net[38, 6], and ii) a 2D and 3D
fully connected networks (FCN) [47, 13]. As baselines, we
use the same architectures trained using soft-Dice [27, 45].

4.3. Adaption for Highly Imbalanced Data

Our theory (Section 3), describes a two-class problem
where clDice should be computed on both the foreground
and the background channels. In our experiments, we show
that for complex and highly imbalanced dataset it is suffi-
cient to calculate the clDice loss on the underrepresented
foreground class. We attribute this to the distinct properties
of tubularness, sparsity of foreground and the lack of cavi-
ties (Betti number 2) in our data. An intuitive interpretation
how these assumptions are valid in terms of digital topology
can be found in the supplementary material.

5. Experiments
5.1. Datasets

We employ five public datasets for validating clDice and
soft-clDice as a measure and an objective function, respec-
tively. In 2D, we evaluate on the DRIVE retina dataset
[43], the Massachusetts Roads dataset [28] and the CREMI
neuron dataset [12]. In 3D, a synthetic vessel dataset with
an added Gaussian noise term [39] and the Vessap dataset
of multi-channel volumetric scans of brain vessels is used
[48, 34]. For the Vessap dataset we train different mod-
els for one and two input channels. For all of the datasets,
we perform three fold cross-validation and test on held-out,
large, and highly-variant test sets. Details concerning the
experimental setup can be found in the supplementary ma-
terial.

5.2. Evaluation Metrics

We compare the performance of various experimental
setups using three types of metrics: volumetric, topology-
based, and graph-based.

1. Volumetric: We compute volumetric scores such as
Dice coefficient, Accuracy, and the proposed clDice.

2. Topology-based: We calculate the mean of absolute
Betti Errors for the Betti Numbers β0 and β1 and the
mean absolute error of Euler characteristic, χ = V �
E+F , where V,E, and F denotes number of vertices,
edges, and faces.

3. Graph-based: we extract random patch-wise graphs for
the 2D/3D images. We uniformly sample fixed num-
ber of points from the graph and compute the Street-
moverDistance (SMD) [4]. SMD captures a Wasser-
stein distance between two graphs. Additionally we
compute the F1 score of junction-based metric [7].

5.3. Results and Discussion

We trained two segmentation architectures, a U-Net and
an FCN, for the various loss functions in our experimental
setup. As a baseline, we trained the networks using soft-dice
and compared it with the ones trained using the proposed
loss (Eq. 3), by varying α from (0.1 to 0.5).

Quantitative: We observe that including soft-clDice in any
proportion (α > 0) leads to improved topological, volu-
metric and graph similarity for all 2D and 3D datasets, see
Table 1. We conclude that α can be interpreted as a hy-
per parameter which can be tuned per-dataset. Intuitively,
increasing the α improves the clDice measure for most ex-
periments. Most often, clDice is high or highest when the
graph and topology based measures are high or highest, par-
ticularly the β1 Error, Streetmover distance and Opt-J F1
score; quantitatively indicating that topological properties
are indeed represented in the clDice measure.

In spite of not optimizing for a high soft-clDice on
the background class, all of our networks converge to
superior segmentation results. This not only reinforces
our assumptions on dataset-specific necessary conditions
but also validates the practical applicability of our loss.
Our findings hold for the different network architectures,
for 2D or 3D, and for tubular or curvilinear structures,
strongly indicating its generalizability to analogous binary
segmentation tasks.

Observe that CREMI and the synthetic vessel dataset
(see Supplementary material) appear to have the smallest
increase in scores over the baseline. We attribute this to
them being the least complex datasets in the collection, with
CREMI having an almost uniform thickness of radii and
the synthetic data having a high signal-to-noise ratio and
insignificant illumination variation. More importantly, we
observe larger improvements for all measures in case of the
more complex Vessap and Roads data see Figure 5. In direct
comparison to performance measures reported in two recent
publications by Hu et al. and Mosinska et al. [17, 29], we
find that our approach is on par or better in terms of Accu-
racy and Betti Error for the Roads and CREMI dataset. It is
important to note that we used a smaller subset of training
data for the Road dataset compared to both while using the
same test set.

Hu et al. reported a Betti error for the DRIVE data,
which exceeds ours; however, it is important to consider
that their approach explicitly minimizes the mismatch of the
persistence diagram, which has significantly higher com-
putational complexity during training, see the section be-
low. We find that our proposed loss performs superior to
the baseline in almost every scenario. The improvement ap-
pears to be pronounced when evaluating the highly relevant
graph and topology based measures, including the recently
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Table 1. Quantitative experimental results for the Massachusetts road dataset (Roads), the CREMI dataset, the DRIVE retina dataset and
the Vessap dataset (3D). Bold numbers indicate the best performance. The performance according to the clDice measure is highlighted in
rose. For all experiments we observe that using soft-clDice in Lc results in improved scores compared to soft-Dice. This improvement
holds for almost α > 0; α can be interpreted as a dataset specific hyper-parameter.

Dataset Network Loss Dice Accuracy clDice β0 Error β1 Error SMD [4] χerror Opt-J F1 [7]

Roads

FCN soft-dice 64.84 95.16 70.79 1.474 1.408 0.1216 2.634 0.766
Lc,α = 0.1 66.52 95.70 74.80 0.987 1.227 0.1002 2.625 0.768
Lc,α = 0.2 67.42 95.80 76.25 0.920 1.280 0.0954 2.526 0.770
Lc,α = 0.3 65.90 95.35 74.86 0.974 1.197 0.1003 2.448 0.775
Lc,α = 0.4 67.18 95.46 76.92 0.934 1.092 0.0991 2.183 0.803
Lc,α = 0.5 65.77 95.09 75.22 0.947 1.184 0.0991 2.361 0.782

U-NET

soft-dice 76.23 96.75 86.83 0.491 1.256 0.0589 1.120 0.881
Lc,α = 0.1 76.66 96.77 87.35 0.359 0.938 0.0457 0.980 0.878
Lc,α = 0.2 76.25 96.76 87.29 0.312 1.031 0.0415 0.865 0.900
Lc,α = 0.3 74.85 96.57 86.10 0.322 1.062 0.0504 0.827 0.913
Lc,α = 0.4 75.38 96.60 86.16 0.344 1.016 0.0483 0.755 0.916
Lc,α = 0.5 76.45 96.64 88.17 0.375 0.953 0.0527 1.080 0.894

Mosinska et al. [29, 17] - 97.54 - - 2.781 - - -
Hu et al. [17] - 97.28 - - 1.275 - - -

CREMI

U-NET

soft-dice 91.54 97.11 95.86 0.259 0.657 0.0461 1.087 0.904
Lc,α = 0.1 91.76 97.21 96.05 0.222 0.556 0.0395 1.000 0.900
Lc,α = 0.2 91.66 97.15 96.01 0.231 0.630 0.0419 0.991 0.902
Lc,α = 0.3 91.78 97.18 96.21 0.204 0.537 0.0437 0.919 0.913
Lc,α = 0.4 91.56 97.12 96.09 0.250 0.630 0.0444 0.995 0.902
Lc,α = 0.5 91.66 97.16 96.16 0.231 0.620 0.0455 0.991 0.907

Mosinska et al. [29, 17] 82.30 94.67 - - 1.973 - - -
Hu et al. [17] - 94.56 - - 1.113 - - -

DRIVE retina

FCN

soft-Dice 78.23 96.27 78.02 2.187 1.860 0.0429 3.275 0.773
Lc,α = 0.1 78.36 96.25 79.02 2.100 1.610 0.0393 3.203 0.777
Lc,α = 0.2 78.75 96.29 80.22 1.892 1.382 0.0383 2.895 0.793
Lc,α = 0.3 78.29 96.20 80.28 1.888 1.332 0.0318 2.918 0.798
Lc,α = 0.4 78.00 96.11 80.43 2.036 1.602 0.0423 3.141 0.764
Lc,α = 0.5 77.76 96.04 80.95 1.836 1.408 0.0394 2.848 0.794

U-Net soft-Dice 74.25 95.63 75.71 1.745 1.455 0.0649 2.997 0.760
Lc,α = 0.5 75.21 95.82 76.86 1.538 1.389 0.0586 2.737 0.767

Mosinska et al. [29, 17] - 95.43 - - 2.784 - - -
Hu et al. [17] - 95.21 - - 1.076 - - -

Vessap data

FCN, 1 ch soft-dice 85.21 96.03 90.88 3.385 4.458 0.00459 5.850 0.862
Lc,α = 0.5 85.44 95.91 91.32 2.292 3.677 0.00417 5.620 0.864

FCN, 2 ch

soft-dice 85.31 95.82 90.10 2.833 4.771 0.00629 6.080 0.849
Lc,α = 0.1 85.96 95.99 91.02 2.896 4.156 0.00447 5.980 0.860
Lc,α = 0.2 86.45 96.11 91.22 2.656 4.385 0.00466 5.530 0.869
Lc,α = 0.3 85.72 95.93 91.20 2.719 4.469 0.00423 5.470 0.866
Lc,α = 0.4 85.65 95.95 91.65 2.719 4.469 0.00423 5.670 0.869
Lc,α = 0.5 85.28 95.76 91.22 2.615 4.615 0.00433 5.320 0.870

U-Net, 1 ch soft-dice 87.46 96.35 91.18 3.094 5.042 0.00549 5.300 0.863
Lc,α = 0.5 87.82 96.52 93.03 2.656 4.615 0.00533 4.910 0.872

U-Net, 2 ch

soft-dice 87.98 96.56 90.16 2.344 4.323 0.00507 5.550 0.855
Lc,α = 0.1 88.13 96.59 91.12 2.302 4.490 0.00465 5.180 0.872
Lc,α = 0.2 87.96 96.74 92.52 2.208 3.979 0.00342 4.830 0.861
Lc,α = 0.3 87.70 96.71 92.56 2.115 4.521 0.00309 5.260 0.858
Lc,α = 0.4 88.57 96.87 93.25 2.281 4.302 0.00327 5.370 0.868
Lc,α = 0.5 88.14 96.74 92.75 2.135 4.125 0.00328 5.390 0.864

introduced OPT-Junction F1 by Citraro et al. [7]. Our re-
sults are consistent across different network architectures,
indicating that soft-clDice can be deployed to any network
architecture.
Qualitative: In Figure 5, typical results for our datasets
are depicted. Our networks trained on the proposed loss
term recover connections, which were false negatives when
trained with the soft-Dice loss. These missed connections

appear to be particularly frequent in the complex road and
DRIVE dataset. For the CREMI dataset, we observe these
situations less frequently, which is in line with the very high
quantitative scores on the CREMI data. Interestingly, in
the real 3D vessel dataset, the soft-Dice loss oversegments
vessels, leading to false positive connections. This is not
the case when using our proposed loss function, which
we attribute to its topology-preserving nature. Additional
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qualitative results can be inspected in the supplementary.

Computational Efficiency: Naturally, inference times
of CNNs with the same architecture but different train-
ing losses are identical. However, during training, our
soft-skeleton algorithm requires O(kn2) complexity for
an n ⇥ n 2D image where k is the number of iterations.
As a comparison, [17] needs O(c2mlog(m)) (see [15])
complexity to compute the 1d persistent homology where
d is the number of points with zero gradients in the
prediction and m is the number of simplices. Roughly, c is
proportional to n2, and m is of O(n2) for a 2D Euclidean
grid. Thus, the worst complexity of [17] is O(n6log(n)).
Additionally, their approach requires an O(clog(c)) com-
plexity to find an optimal matching of the birth-death pairs.
We note that the total run-time overhead for soft-clDice
compared to soft-Dice is marginal, i.e., for batch-size of 4
and 1024x1024 image resolution, the former takes 1.35s
while the latter takes 1.24s on average (<10% increase) on
an RTX-8000.

Future Work: Although our proposed soft-skeleton ap-
proximation works well in practice, a better differentiable
skeletonization can only improve performance, which we
reserve for future research. Any such skeletonization can
be readily plugged into our approach. Furthermore, theo-
retical and experimental multi-class studies would sensibly
extend our study.

6. Conclusive Remarks
We introduce clDice, a novel topology-preserving

similarity measure for tubular structure segmentation.
Importantly, we present a theoretical guarantee that clDice
enforces topology preservation up to homotopy equiva-
lence. Next, we use a differentiable version of the clDice,
soft-clDice, in a loss function, to train state-of-the-art 2D
and 3D neural networks. We use clDice to benchmark
segmentation quality from a topology-preserving per-
spective along with multiple volumetric, topological, and
graph-based measures. We find that training on soft-clDice
leads to segmentations with more accurate connectivity
information, better graph-similarity, better Euler character-
istics, and improved Dice and Accuracy. Our soft-clDice
is computationally efficient and can be readily deployed
to any other deep learning-based segmentation tasks such
as neuron segmentation in biomedical imaging, crack
detection in industrial quality control, or remote sensing.
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ported by the GCB and Translatum, TU Munich. S.Shit.,
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Nils Börner and Giles Tetteh.

Image Label Soft-Dice Ours

Figure 5. Qualitative results: from top to bottom we show two rows
of results for: the Massachusetts road dataset, the DRIVE retina
dataset, the CREMI neuron data and 2D slices from the 3D Vessap
dataset. From left to right, the real image, the label, the predic-
tion using soft-Dice and the U-Net predictions using Lc(α = 0.5)
are shown, respectively. The images indicate that clDice segments
road, retina vessel connections and neuron connections which the
soft-Dice loss misses, but also does not segment false-positive ves-
sels in 3D. Some, but not all, missed connections are indicated
with solid red arrows, false positives are indicated with red-yellow
arrows. More qualitative results can be found in the Supplemen-
tary material.
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[49] Engin Türetken et al. Reconstructing curvilinear networks
using path classifiers and integer programming. IEEE
TPAMI, 38(12):2515–2530, 2016.

[50] Fatmatülzehra Uslu and Anil Anthony Bharath. A multi-
task network to detect junctions in retinal vasculature. In
MICCAI, pages 92–100. Springer, 2018.

[51] Subeesh Vasu, Mateusz Kozinski, Leonardo Citraro, and
Pascal Fua. Topoal: An adversarial learning approach
for topology-aware road segmentation. arXiv preprint
arXiv:2007.09084, 2020.

[52] Sara Vicente et al. Graph cut based image segmentation with
connectivity priors. In CVPR, pages 1–8. IEEE, 2008.

[53] Jan D Wegner et al. A higher-order CRF model for road net-
work extraction. In CVPR, pages 1698–1705. IEEE, 2013.

[54] John HC Whitehead. Combinatorial homotopy. i. Bulletin of
the American Mathematical Society, 55(3):213–245, 1949.

[55] Mark W Wright et al. Skeletonization using an extended
euclidean distance transform. Image and Vision Computing,
13(5):367–375, 1995.

[56] Aaron Wu, Ziyue Xu, Mingchen Gao, Mario Buty, and
Daniel J Mollura. Deep vessel tracking: A generalized prob-
abilistic approach via deep learning. In 2016 IEEE 13th In-
ternational Symposium on Biomedical Imaging (ISBI), pages
1363–1367. IEEE, 2016.

[57] Yun Zeng et al. Topology cuts: A novel min-cut/max-flow
algorithm for topology preserving segmentation in n–d im-
ages. CVIU, 112(1):81–90, 2008.

[58] Shan Zhao et al. Cellular and molecular probing of intact
human organs. Cell, 2020.

16569





Whole Brain Vessel Graphs: A
Dataset and Benchmark for Graph
Learning and Neuroscience
(VesselGraph)

Johannes Christian Paetzold, Julian McGinnis, Suprosanna Shit, Ivan Ezhov,
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Synopsis: Biological neural networks define the brain function and intelligence
of humans and other mammals, and form ultra-large, spatial, structured graphs.
Their neuronal organization is closely interconnected with the spatial organization
of the brain’s microvasculature, which supplies oxygen to the neurons and builds a
complementary spatial graph. Recently, advances in tissue clearing have enabled
whole brain imaging and segmentation of the entirety of the mouse brain’s vasculature.
Building on these advances, we are presenting an extendable dataset of whole-brain
vessel graphs based on specific imaging protocols. Specifically, we extract vascular
graphs using a refined graph extraction scheme and provide them in an accessible and
adaptable form. We benchmark numerous state-of-the-art graph learning algorithms
on the biologically relevant tasks of vessel prediction and vessel classification using
the introduced vessel graph dataset. Our work paves a path towards advancing
graph learning research into the field of neuroscience. Complementarily, the presented
dataset raises challenging graph learning research questions for the machine learning
community, in terms of incorporating biological priors into learning algorithms, or in
scaling these algorithms to handle sparse, spatial graphs with millions of nodes and
edges.
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Abstract

Biological neural networks define the brain function and intelligence of humans
and other mammals, and form ultra-large, spatial, structured graphs. Their neuronal
organization is closely interconnected with the spatial organization of the brain’s
microvasculature, which supplies oxygen to the neurons and builds a complemen-
tary spatial graph. This vasculature (or the vessel structure) plays an important
role in neuroscience; for example, the organization of (and changes to) vessel
structure can represent early signs of various pathologies, e.g. Alzheimer’s disease
or stroke. Recently, advances in tissue clearing have enabled whole brain imaging
and segmentation of the entirety of the mouse brain’s vasculature. Building on
these advances in imaging, we are presenting an extendable dataset of whole-brain
vessel graphs based on specific imaging protocols. Specifically, we extract vascular
graphs using a refined graph extraction scheme leveraging the volume rendering
engine Voreen and provide them in an accessible and adaptable form through the
OGB and PyTorch Geometric dataloaders. Moreover, we benchmark numerous
state-of-the-art graph learning algorithms on the biologically relevant tasks of
vessel prediction and vessel classification using the introduced vessel graph dataset.
Our work paves a path towards advancing graph learning research into the field
of neuroscience. Complementarily, the presented dataset raises challenging graph
learning research questions for the machine learning community, in terms of incor-
porating biological priors into learning algorithms, or in scaling these algorithms
to handle sparse,spatial graphs with millions of nodes and edges.1

1 Introduction

Human intelligence and brain function are defined by the cerebral biological neuronal network, the
so-called connectome. The entirety of all single neurons forms an ultra-large, spatial, hierarchical
and structured graph. Imaging and reconstructing these whole-brain graphs on a single-neuron
level is one of the key problems in neuroscience. Neuronal organization is closely linked to the
vascular network, as vessels supply the neurons with nutrients (e.g. oxygen). Specifically, the vessel
topology determines the maximum metabolic load and determines neural growth patterns [1]. Vascular
organisation, particularly in regards to vessel sizes and numbers of capillary links, varies substantially
between brain regions, see Supplementary Figure 5 and 6. Moreover, its organization and changes to
its structure are early signs for the development of specific diseases, e.g. Alzheimer’s disease [2, 3]

1All datasets and code are available for download at https://github.com/jocpae/VesselGraph.
Ali Ertük, Stephan Günnemann and Bjoern H. Menze share last authorship.
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Figure 1: Graphical Abstract of VesselGraph.

or even COVID-19 encephalopathy [4]. As an initial step towards understanding the neuronal and
vascular connectome (also known as the angiome [5]), reliable imaging and segmentation methods
are required. To this day, whole-brain imaging and segmentation of all neurons in the brain remains
elusive. On the other hand, advances in tissue clearing and deep learning have enabled imaging and
segmentation of the whole murine brain vasculature down to the microcapillary level [6, 7].

Nonetheless, a binary segmentation of the vasculature is insufficient for a full, abstract description of
the vascular connectome. To enable a comprehensive hierarchical description of the spatial vessel
structure and anatomy, a graph representation of the brain with detailed features is required. This
work provides the first large-scale, reproducible graph dataset thereof.

We believe that such a graph representation can facilitate research and understanding in many fields.
The correction of imperfect vascular imaging and segmentation based on such an enhanced vascular
graph, could one day enable the simulation of blood-flow (hemodynamic modeling), the study of
vessel anatomy, connectivity, collateralization/anastomosis and structural abnormalities. Future
studies using enhanced datasets could find our approach useful to study pathologies associated with
neurovascular disorders, such as stroke and dementia, given that obstacles such as plaques would be
accounted for.

Evidently, the study of such spatial graphs with millions of nodes requires its own set of methods; we
believe that the recent rise of advanced machine learning methods for graphs will provide suitable
approaches to efficiently and accurately permit drawing deep insight from vascular graphs. This, in
turn, will foster the development of methods capable of dealing with massive, but sparsely connected
circular graphs, for inference on these graphs, and inference under structural and functional prior
constraints that are present in such spatial physical 3D networks.

In this work we benchmark two exemplary and biologically relevant tasks using both traditional
approaches and advanced graph learning. First, in order to improve the structure and anatomical
fidelity of the extracted graphs, we benchmark vessel (link) prediction. As a second task, we
benchmark vessel (node) classification into the three main classes (capillaries, arterioles/venules, and
arteries/veins), which represent biologically meaningful classifications by vessel size, and whose
relevance for hemodynamics has been demonstrated in stroke and oxygenation modeling [8].

1.1 Whole brain vascular imaging and segmentation

Novel imaging methods, e.g. tissue-clearing-based methods [9–12], VesSAP [6], Tubemap [7] and
the work by diGiovanna et al. [13] have enabled the imaging of the full vascular structure on a
whole-brain scale [1].

The segmentation of the resulting ultra-large and unbalanced images with thousands of pixels in
each dimension (e.g. 3096× 4719× 1867 pixels [6]) is a challenging computer vision task which is
strongly affected by technical imaging imperfections. The best-performing segmentation approaches
rely on deep learning, e.g. using the U-Net architecture, and are only trained on selected, manually
annotated sub-volumes of the whole brain images [6, 7, 1], leading to further imperfections in the
segmentation masks.
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Figure 2: Left: 3D imaging of the whole mouse brain vasculature [6] and right; the corresponding
rendering of our whole brain spatial vessel graphs; the edges (vessels) are rendered with the average
radius feature.

The process presented in our work commences with segmentations of whole-brain vessel images, for
which we use publicly available data from lightsheet microscopy (VesSAP), two-photon microscopy
and a synthetic blood vessel dataset. For details refer to Appendix B.4. In the future, we will
continuously increase the dataset with whole-brain images and segmentation as they become publicly
available.

1.2 Graph learning

Machine learning on graphs is a highly relevant research field which aims to develop efficient machine
learning algorithms exploiting the unique properties of graphs, such as structure neighborhoods and
the sparse representation of complex systems. Our work concerns a particularly challenging domain
- spatial, structured and ultra large biological graphs. In this paper we utilize and benchmark two
fundamental graph learning tasks: node classification and link prediction to study the biological
properties of the vascular connectome.

A widely recognized concept for node classification is the adaption of deep learning techniques to
graphs via graph convolutional networks (GCN) [14], a concept which was adapted and extended
for many of the algorithms that we implemented, such as such as GNNs, GCNs, and GAEs [15–23].
A key approach for link prediction is a so-called labeling trick [24], which is a concept to generate
sensible training data. The SEAL labeling trick used in our work constructs a subgraph for two
candidate nodes (enclosing subgraph) and aims to learn a functional mapping on the subgraph to
predict link existence [25].

1.3 Our contribution

Our main contributions are:

1. We extract a set of standardized whole-brain vessel graphs based on whole, segmented
murine brain images.

2. We publicly release said dataset in an easily accessible and adaptable format for use in
graph learning benchmarking by implementing the open graph benchmark (OGB) [26] and
PyTorch Geometric data loaders [27].

3. In addition to our standard vessel graph, in which bifurcation points are nodes and vessels
are edges, we propose an alternative representation of the vascular connectome as a line
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graph (where vessels become nodes), enabling the use of a multitude of advanced node
classification algorithms for vessel property prediction.

4. We extensively benchmark graph algorithms for the biologically important tasks of link
prediction and node classification, which can serve as baselines for further research efforts
in graph learning and neuroscience.

The rest of the paper is organized as follows: In Section 2, we describe our refined graph generation
process and provide implementation details for the used voreen framework and compare to other
graph generation methods. We introduce the structure of our 3D brain vessel graph and provide
statistics on the different extracted graphs from different brains in Section 3.1. We describe how we
generated an alternative line graph representation in Section 3.2. In Section 4, we benchmark the
link prediction task and in Section 5, we benchmark the node classification task on a multitude of
baseline algorithms. We conclude with a focused discussion of our contribution and outline future
perspectives and topics related to dataset maintenance.

2 Graph extraction from segmentations

Our graph extraction protocol begins with a given segmented whole-brain vascular dataset. In-
dependent of segmentation method used (deep learning or filter-based), we tested the following
state-of-the-art graph extraction algorithms: 1) the TubeMap method [7] which uses pruning on a 27-
neighborhood skeletonization after a deep learning based tube-filling algorithm, based on a modified
DeepVesselNet architecture [28]; 2) the metric graph reconstruction algorithm by Aanjaneya et al.
[29] which reduces linear connections of a skeleton to form a more compact and topologically correct
graph and 3) the Voreen vessel graph extraction method [30, 31]. We tested the graph extraction
algorithms on different imaging modalities, varying brain areas, and the synthetically generated
vascular trees [32].

Figure 3: Extracted spatial vessel graph on a synthetic vessel volume [32]; the graph is extracted
using the Voreen software [30]; a) the original vascular segmentation rendered in rendered in grey;
b) depiction of the centerlines in red for a zoomed-in section; c) the nodes with a discrete colorbar
encoding their degree; d) depiction of the segmentation with the edges and a continuous colorbar
encoding the radius.

After expert-level evaluation of the extracted graphs in terms of feature quality, graph robustness and
pipeline parameters, and of the algorithms in terms of scalability, runtime and resource constraints, we
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selected Voreen [31] for our graph generation. For details and comparisons we refer to Supplementary
section C.1.

Voreen (Volume Rendering Engine) is a general framework for multi-modal volumetric dataset
visualization and analysis purposes. One key advantage of Voreen compared to other graph generation
algorithms, is that its graph extraction process is deterministic, robust and scalable. It has successfully
been applied to cosmological visualization [33], visualization of large volumetric multi-channel
microscopy data [34], 3D visualization of the lymphatic vasculature [35], 3D histopathology of
lymphatic malformations [36] and velocity mapping of the aortic flow in mice [37].

Our graph extraction follows a four-stage protocol:

1. Skeletonization: The binary segmentation volume is reduced to a skeleton based representa-
tion by applying a standard topological thinning algorithm by Lee et al. [38].

2. Topology Extraction: memory efficient algorithms extract the vessel centerlines [39]. Voreen
allows to store this intermediate representation in a combination with the graph.

3. Voxel-Branch Assignment: Computing of mapping between the so-called protograph (i.e.
the initial graph) and the voxels of the binary segmentation.

4. Feature Extraction: On basis of the protograph and the mapping, several features can be
computed from the foreground segmentation.

Multiple iterations of the four-stage protocol refine and improve the graph quality and prune small,
spurious branches. The key optimization parameter for the graph structure in terms of node rep-
resentation, and node statistics is the bulge size. Expert neuroscientists determined the parameter
(bulge size = 3, a parameter choice in line with previous work [31]) by statistically comparing the
resulting graphs, and visually interpreting the vascular connections in varying brain regions (compare
Supplementary Figure 6). Still, known limitations of topological thinning-based methods for graph
extraction exist [31], motivating our first baseline task, presented in Section 4.

3 3D vessel graph dataset

Complete Datasets
Name Number of Nodes Num of Edges Node Degree
BALBc1 [6] 3,538,495 5,345,897 3.02
BALBc2 3,451,306 5,193,775 3.01
BALBc3 2,850,347 4,097,953 2.88
C57BL/6-1 3,820,133 5,614,677 2.94
C57BL/6-2 3,439,962 5,070,439 2.95
C57BL/6-3 3,318,212 4,819,208 2.90
CD1-E-1 3,645,963 5,791,309 3.18
CD1-E-2 1,664,811 2,150,326 2.58
CD1-E-3 2,295,360 3,130,650 2.73
C57BL/6-K18 [1] 4,284,051 6,525,881 3.05
C57BL/6-K19 3,948,612 5,999,958 3.04
C57BL/6-K20 4,165,085 6,317,179 3.03
Synth. Graph 1 [32] 3159 3234 2.05
Synth. Graph 2 3349 3421 2.04
Synth. Graph 3 3227 3310 2.05
Synth. Graph 4 3178 3251 2.05
Synth. Graph 5 3294 3376 2.05

Table 1: Total number of edges, nodes and average node degree for the different whole brain graphs.

Our 3D vessel dataset features 17 graphs from 2 different imaging modalities as well as 5 sets of
synthetic vascular graphs. We found the smaller synthetic graphs useful for prototyping since they are
smaller in size and cover all three classes of vessels (arteries, arterioles and capillaries). For all real
vessel graphs, the full 3D images and binary segmentations are also publicly available. An overview
of the notation used throughout the following sections alongside typical values can be found in Table
2.
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3.1 Vessel graph G

The output of the Voreen graph extraction pipeline represents our primary unweighted and undirected
graph or “intuitive” vessel graph. Let this graph be denoted as G = (V, E), where V is the set of
nodes and E is the set of all the edges of the graph.

Nodes: From a biological perspective, each node n ∈ V in our graph either represents end points
of the vessel branches or the bifurcation of vessel branches, (see Figure 4). Bifurcation points are
the points where a larger vessel branches into two or more smaller vessels (in case of an artery) or
smaller vessels merge into a large vessel (in case of a vein). The number of vessels branching from
a bifurcation point defines the degree of that particular node. Bifurcation points have node degree
of 3 or higher. In some cases, our graphs also have vessel endpoints, which are encoded as nodes
of degree 1. Further, degree 2 nodes are generated by the graph extraction in cases when vessels
exhibit a large curvature. These nodes are important to preserve the vessel curvature in its graph
representation. For a statistical evaluation of the node degree please see Supplementary Figure 9.

Feature Overview
Name Feature Type Value Description
xn node feature [178, 3096] * x-coordinate
yn node feature [808, 4719] * y-coordinate
zn node feature [0, 1866] * z-coordinate
an node feature {0, 1}71 Allen mouse brain atlas region
µrij edge feature [0.5, 38.65] mean of minimum radii
σrij edge feature [0.0, 12.49] std. of minimum radii
µr̄ij edge feature [0.79, 38.65] mean of average radii
σr̄ij edge feature [0.0, 11.99] std. of minimum radii
µRij edge feature [0.91, 44.12] mean of maximum radii
σRij edge feature [0.0, 23.64] std. of minimum radii
µoij edge feature [0.04, 1.99] mean of roundness
σoij edge feature [0.0, 1.0] std. of roundness
lij edge feature [2, 322.81] vessel length
dij edge feature [1.77, 300.36] shortest distance
ρij edge feature [0.18, 27.43] curvature
αij edge feature [0.29, 1587.49] mean crosssection area
vij edge feature [1.0, 119459] Volume of vessel
nvij edge feature [0.0, 256] ∩ N no. of voxel in vessel
ν1
ij edge feature [1, 14] ∩ N degree of ni of edge eij
ν2
ij edge feature [1, 14] ∩ N degree of nj of edge eij

Table 2: Systematic overview of the notation of the existing node and edge features in our spatial
vessel graphs. All features besides the Allen brain atlas region and the node degree are spatial
and extracted using Voreen, discrete ranges are given for the Balbc1 brain (* subject to imaging
resolution).

Node features: We extract two important features for the nodes of graph G. For each node, the key
features are the physical location in the coordinate space and the anatomical location in reference
to the Allen brain atlas [40]. For the physical location feature, we denote real valued coordinates
[xn, yn, zn] ∈ R3 ∀n ∈ V where [xn, yn, zn] is the location of node n in 3D space. Further, multiple
prior works have shown that regional differences in vessel geometry can be observed in different
brain regions [1, 41, 6]. This motivates us to include anatomical location features for the nodes.
Hence, we register the whole segmentation volume to the Allen brain atlas. Our reference Atlas
uses the ontology the Allen mouse brain atlas (CCFv3 201710). We use the average template.
After appropriate downsampling of the Allen brain atlas and the images, we apply a two-step-rigid
and deformable registration using elastix. Our protocol is thus identical to the Vessap paper[6].
Subsequently, we assign the brain region where a particular node is located in the brain atlas as
anatomical node location feature, see Supplementary Figure 7. Formally, the anatomical location
feature an = c ∀n ∈ V if [xn, yn, zn] ∈ Ac, where Ac is the cth region of the brain atlas. The atlas
includes 71 brain regions which are hierarchically clustered from > 2000 subregions. The anatomical
location feature is embedded as a one-hot encoded vector.
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Figure 4: Depiction of an exemplary vessel tree with the the spatial vessel Graph G(V, E) with nodes
(V) and edges (E); additionally, a line graph L(G) of the spatial vessel graph G ; where each node
(bifurcation point) becomes an edge; two nodes of L(G) are adjacent if and only if their edges are
incident in G.

Edges: Each edge eij ∈ E in our graph represents vessels or vessel segments which connect two
nodes V , see Figure 4. These edges (vessels) determine the structure of the whole brain network
and represent the core aspect of our research questions. The edges exhibit the following rich set of
features, which are extracted based on the shape and topology of the given segmented images.

Edge features: We extract geometric properties for each of the edges. For that, we determine
the maximum diameter inscribed circle, least square reference circle, and minimum circumscribed
circle on the discretized cross-section of a vessel branch and compute their radius as {rkij}, {r̄kij}
and {Rk

ij} where k = 1 : K for K number of cross section of the edge eij , respectively. From this,
we compute the mean and standard deviation of the minimum, average and maximum radius for
each edge eij as follows. Specifically, µr

ij , σ
r
ij denotes the mean and standard deviation of minimum

radius of edge eij . We extend the same notation for mean and standard deviation for {r̄kij} and {Rk
ij}

as µr̄
ij , σ

r̄
ij , µ

R
ij , µ

R
ij respectively. We compute the roundness of each cross section as okij =

rkij
Rk

ij

. We
denote the mean and standard deviation of roundness as µo

ij and σo
ij , respectively. Further, we extract

the vessel length lij , shortest distance between two nodes of an edge dij , curvature ρij =
lij
dij

, mean
cross section are αij . Moreover, we use the degree of the nodes ni and nj for an edge eij as νi and
νj , respectively. The complete set of edge features can be found in Table 2.

3.2 Line vessel graph L(G)

As an alternative representation of whole brain vessel graphs, we convert our vessel graphs G to a
corresponding line-graph representation, L(G)[42]. A line graph (depicted in Figure 4) is a graph
where the edges of the base graph G become nodes and an edge between the new nodes is created
if and only if their edges are incident in E . Edges are the most important aspects in our graph E
because of their one-to-one correspondence to the vessels. Therefore, we wish to apply another set of
graph-learning algorithms, namely node classification algorithms, to study their biological properties
based on the rich set of vessel features. Hence, we construct an alternative representation with the
help of line graph L(G). We formally define L(G) := (V ′, E ′) where V ′ = E and E ′ = {{eij , eik} if
∃ (eij , eik) ∈ E}.

Nodes: Now, the nodes in the line graph V ′ represent vessels or vessel segments, see Figure 4.

Node features: Thus, all edge features of G can now be used as node features for L(G), see Table 2.
One of the key advantages of constructing the line graph is that we can now leverage a large number
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of prior techniques presented in node classification literature such as the use of vessel features in
message passing.

Edges: Edges are defined as pairwise adjacencies of two nodes (vessels) if and only if the corre-
sponding edges in G are connected to a node V . In practice, this means that nodes in G which are of
degree 1 disappear in L(G) and that each node in G with a degree ≥ 2 will create multiple edges in
L(G).

Edge features: The spatial location given as node features in G can now be added as an edge
feature.

4 Benchmarking link prediction

The formal goal of link prediction is to train a classifier F which predicts links in Epred as positive
and negative labels, it can be formalized as follows F : Epred → {0, 1}.
From a biological perspective this task is relevant to correct missing and imperfect vessel graph
connections, because the extracted graph may be over- or under-connected, due to artifacts and
shortcoming of the segmentation and network extraction.

In order to provide initial baselines for vessel (link) prediction, we implemented 10 models. The
following graph learning baselines were trained without edge features: the GCN by Kipf et al. [14], a
GNN using the GraphSAGE operator [17] and the SEAL GNN, a network aiming to learn general
graph structure features from the local subgraph [25]. Furthermore, we trained a multilayer perceptron
(MLP) on full batches based on Node2Vec features [43]. Apart from these, more traditional, heuristic-
based methods were implemented for the task of link prediction, which include the Katz index [44],
Common Neighbour, Page Rank and Adamic Adar [45], a measure which computes the closeness of
nodes. These traditional methods make predictions based on the graph structure itself.

4.1 Dataset curation - SEAL

Link sampling strategy: The curation of a balanced training dataset requires the introduction
of two types of edges. Similar to the SEAL paper [25], we use the notion of positive edges and
negative edges. Generally, positive edges are random samples of existing links and negative edges
are samples of non-existent links between randomly chosen nodes of the dataset (which are included
in the adjacency matrix). For positive edges, we utilize random samples of the existing edges of each
graph. However, since our dataset includes 3D coordinates as the node features, their spatial nature
makes selecting negative samples more challenging. A trivial random selection, which has been used
in other state-of-the-art methods such as SEAL, would lead to biologically implausible edges, e.g. an
edge between two nodes in different brain hemispheres. These can be easily distinguished based on
the coordinates and thus would not provide useful information to the model. As such, models trained
with trivial random sampling struggle with the link prediction task. To address this issue, we restrict
negative edge sampling to a coordinate space which spatially surrounds the source node, and choose
the target node by randomly selecting nodes that are located within the following cubic space around
the source node: δ = li,j + 2σ, where li,j denotes the average vessel length in G. We note that this
link sampling strategy is a first baseline and could be improved upon in future work.

Experiment: For our GCN based architectures we did an extensive grid-search of hyper-parameter
combinations on a subset of the whole brain graph. We subsequently trained on the whole brain
graphs. This intermediate step was necessary because exploring thousands of hyper-parameter
combinations on the whole brain dataset is computationally infeasible. Implementation details and
details on the hyperparameter search are indicated in supplementary Table 5.

For the main experiment we sample all edges from one whole brain graph as positive edges G(V, E)
(BALBc-1, Vessap, see Table 1)and randomly assign these to the training, validation and test set
(80/10/10 split). Moreover, we sample an identical number of negative edges, i.e. non-existent but
theoretically probable links according to the curation criterion described above. Next, we randomly
shuffle all negative edges. Thus, we mitigate any bias in the negative train, validation and test splits
and ensure a region-independent distribution. Subsequently, we randomly assign the negative edges
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to the train, validation and test set (80/10/10 split). This provides us with a balanced datast in regards
to positive and negative edges.

We choose to only use the spatial node features for our experiment: xn, yn, zn. This task is very
hard because the algorithm essentially has to learn the vascular graph hierarchy purely on undirected
relational and spatial information.

Table 3: Results for the link prediction baselines.

Algorithm ROC AUC
validation test

Adamic Adar 48.49 48.49
Common Neighbors 48.50 48.49
Resource Allocation 48.49 48.50
Matrix Factorization 50.07 50.08
MLP 57.98 58.02
GCN GCN 50.69 50.72
GCN GCN + embeddings 51.32 51.13
GCN SAGE + embeddings 52.81 52.88
GCN SAGE 59.37 59.23
SEAL 91.01 90.96

Generally, traditional methods and simple GCN models performed poorly. Among the traditional
methods tested, the MLP performed best. On the other hand, the SEAL implementation reached
a superior performance and a strong inductive bias (ROC AUC > 90%). This improvement is in
line with recent literature [24], which found a considerable performance improvement as a result of
the employed labeling trick. This highlights that complex, dedicated graph-learning concepts need
to be developed to address biologically inspired spatial graph challenges. A detailed experimental
description and interpretation can be found in the Supplementary material, section D.1.

5 Benchmarking vessel attribute classification

Our formal goal of node classification is to train a classifier F which predicts a class label Y out of a
set of possible classes Nn of a node V , it can be formalized as follows F : V → Y ∈ Nn.

Biologically, this task is relevant because the vessel radius is one of the most important parameters
for blood flow; any task associated with flow modelling (such as stroke diagnosis and treatment) is
heavily dependent on the diameter of the affected vessel. For example in stroke, a different treatment
option is chosen based on the size of the vessel in the context of its local network topology. Therefore,
reliably classifying vessel segments into categories such as arteries/veins, arterioles/venules and
capillaries is relevant.

For the secondary task of vessel radius (node) classification we implemented 7 graph and non-graph
learning baselines discussed in the OGB paper [26]. Among them node classification using an
MLP initialized on N2Vec [43], a simple GCN [14], a GNN using the GraphSAGE operator [17],
the GraphSAINT algorithm which includes a mini-batch GCN[16], the Scalable Inception Graph
Neural Networks (SIGN)[18] and the Cluster-GCN algorithm[20]. Furthermore we implemented
SpecMLP-W + C&S and SpecMLP-W + C&S + N2Vec, which use shallow models ignoring graph
structure and standard label propagation techniques from semi-supervised learning methods [22].

Experiment: We split our three classes according to the minimum radius feature µr
ij into classes of

µr
ij < 15µm; 15−40µm and> 40µm. Defined by the anatomy and properties of oxygen distribution

these three classes are highly imbalanced. E.g. for the Vessap datasets the distribution is roughly
95%, 4% and 1%. Similarly to the link prediction task we carried out a grid search for optimal
hyper-parameters, see Supplementary Table 6. We randomly split the nodes into train, validation and
test sets of (80/10/10) of one whole mouse brain (BALBc-1, Vessap, see Table 1). We choose to use
the following node features for our experiment: lij , dij and ρij .

For node classification, we find acceptable to high performance in our baselines by all the methods
we tested. More complex graph models such as GraphSAGE and Cluster-GCN outperform simple
GCNs on average over all metrics. According to the metrics which account for class imbalance i.e.
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Table 4: Results of the implemented node classification baselines. The performance scores are the
weighted F1 score, one versus rest ROC AUC, class balanced accuracy and total accuracy (ACC).

F1 Score ROC AUC Balanced ACC ACC
valid test valid test valid test valid test

GCN 75.74 75.75 67.23 66.46 58.38 56.83 62.94 62.92
GraphSAGE 81.98 81.98 77.35 77.18 71.82 71.33 72.02 71.98
GraphSAINT 77.46 77.40 71.38 70.71 63.74 62.51 64.88 64.84
SIGN 74.46 74.49 67.26 66.04 57.90 55.88 61.25 61.27
Cluster-GCN 86.10 86.06 77.91 77.43 72.23 71.87 77.47 77.41
MLP 76.11 76.11 58.08 57.79 42.36 41.72 63.65 63.61
SpecMLP-W + C&S 84.48 84.55 58.12 58.54 42.20 42.93 75.84 75.91
SpecMLP-W + + N2Vec 80.53 80.63 66.69 66.20 59.04 57.90 69.99 70.10

ROC AUC and balanced ACC, graph neural networks outperform non-graph learning methods, for a
detailed interpretation see Supplementary D.2.

6 Discussion

In this work, we introduce and make publicly available a large dataset of vessel graphs representing
the most comprehensive and highest resolution representation of the whole vascular connectome
to-date. We provide this set of graphs as a new “baseline dataset” for machine learning on graphs and
make it re-usable and easily accessible by leveraging widely employed open standards, such as the
OGB and PyTorch Geometric dataloaders.

To provide an example for the utilization of our dataset and to promote graph machine learning
research in neuroscience, we provide two benchmarks: First, we benchmark vessel (link) prediction
to improve the vascular connectome; second, we implement vessel (node) classification into three
main anatomical categories on the line graph. We thus show that graph learning-based methods
outperform traditional methods for vessel (node) classification. Moreover, we demonstrate that link
prediction based solely on the spatial organization is a difficult task for most algorithms. However,
we provide evidence that the combination of an appropriately chosen, complex GNN model (SEAL)
with a labeling trick can achieve high accuracy on this task, paving the way for dedicated machine
learning research on spatial (biological) graphs as a key to unlocking biological insight.

Dataset bias: While the dataset and the evaluation we provide are thorough, we note the following
bias in our work: Our vascular graphs are constrained by the technical bias and limitations inherent to
experimental imaging, such as artifacts in the clearing protocol and physical limitations concerning
the resolution and isotropy of the microscopy. All specimen imaged in this study are males. Moreover,
even state-of-the-art deep learning methods for segmentation presented in literature are only trained
on incomplete sets of labeled data, leading to a model bias in segmentation. Further problems can
occur from the known limitations of topological thinning-based methods for graph extraction [31].

Limitations: The sum of these effects and bias can impair the usefulness of our dataset for certain,
highly specialised tasks, such as flow simulations using the Navier-Stokes equations, which are
strongly dependent on accurate radius measurements.

Moreover, benchmarking all available features, data and concepts was beyond the scope of our work.
For instance, an extension to heterogeneous graph representations [46, 47], the utilization of more
features, the inclusion of more than one graph or of weighted graphs, where e.g. all edges (vessels)
are weighted depending on an embedding of their radius, may facilitate an improved interpretation. In
summary, we are convinced that both the machine learning concepts and the biological insight arising
from our work can be translated to other tasks, such as graph extraction and refinement on different
vascular or neuronal imaging techniques, artery and vein classification, and even vessel classification
in inherently different medical imaging protocols such as angiography for stroke diagnosis. We are
thus hopeful that our provision of high-quality data and strong baselines will stimulate future research
in this area.
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Concluding Remarks

The brain, its functionality, capacity, and efficiency have for long been regarded a
captivating research direction. The controlled firing of neurons and their precise
interaction with the smallest vessels constitute an ultra-complex system. Historically,
the origins of computational neural networks and machine learning are closely related
to –and inspired by– neuroscience. It, therefore, is no surprise that his work has
also immensely benefited from the cross-pollination between machine learning theory
and vascular neuroscience. As this work is a cumulative thesis, the main Chapters
5 - 7 are self-contained, full research articles including a discussion and concluding
remarks on their content. In consideration of the cumulative nature of this thesis, I
will constrain myself to discussing specific challenges in the context of the literature
and providing a general outlook, subject to my personal opinion, on machine learning
for brain vessel analysis in the future.

Discussion

Chapter 5 - Machine Learning Analysis of Whole Mouse Brain
Vasculature (VesSAP)

VesSAP constitutes an automated, deep-learning-based method to efficiently analyze
tissue-cleared images of the mouse brain vasculature, a modality that has generated
substantial attention in neuroscience and biology [5], [13], [53]. While the method
constitutes the first-ever solution to the problem, its performance is influenced by
various factors inherent to the imaging technology. For example, the anisotropic
resolution of the given images, which is determined by the system’s point spread
function and the precision of the z-step in image acquisition [11]. Further, the
thermal noise of the camera, aberration of the lenses of the microscope, and imperfect
clearing of the tissue samples can frequently lead to minor image artifacts. From a
segmentation perspective, the main limitation concerns the small vessels, which are
sometimes overlooked because traditional loss functions optimize toward the total
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number of correctly classified pixels and do not account for the highly relevant network
structure and topology of vessels. Similar to vessel segmentation, the topology is the
most important property in segmentations of other (biological) structures, such as
neurons or even roads. Inspired by this observation, we developed the clDice-loss for
vessel segmentation to optimize the network output towards a biologically optimal
goal that is beyond pixelwise accuracy.

Chapter 6 - clDice - a Novel Topology-Preserving Loss Function for
Tubular Structure Segmentation

Since the topological correctness of vessel networks is their most important property,
we propose the clDice-Loss which calculates the union of the binary mask and their
skeleta to optimize the network structure preservation in segmentation. Further,
we provide theoretical guarantees for the topology preservation of the clDice loss
function. Moreover, experiments show an improvement in traditional segmentation
metrics and topological scores on a vast set of data, for example, vessels, roads, and
neurons. Importantly, our approach is the first topology-preserving loss function that
efficiently operates in 3D as compared to previous 2D approaches in the literature
[39]–[41]. The theoretical limit is that the proposed soft skeletonization is only an
approximation of the skeleton. Moreover, memory demands increase with every
pooling iteration. Therefore, an optimized skeletonization approach, which is easy to
plug into the existing clDice formulation, would improve performance. The skeleton
of a vessel is a compact representation of the vascular network. Considering this, the
interpretation of vessels as a graph, which is an even more compact representation,
appears instinctive [70], a concept which is studied in the next chapter.

Chapter 7 - Whole Brain Vessel Graphs: A Dataset and Benchmark for
Graph Learning and Neuroscience (VesselGraph)

Representing the whole brain vessels as a spatial graph provides a drastically more
compact representation of the neuronal oxygen supply network that is the brain’s
vasculature. In the VesselGraph paper, such representation is generated for a variety
of publicly available whole-brain vessel representations, such as our VesSAP paper
[11] or the work by Ji et al. [13]. We achieve the graph extraction using a refined
approach based on the Voreen software [54] and make all graphs publicly available as
a baseline dataset in a dedicated Github repository 1. The efficiency and relevance for

1https://github.com/jocpae/VesselGraph
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neuroscience is demonstrated in two benchmark experiments on the dataset. First,
we study how the graph learning task of link prediction can be used to improve
the vascular connectome. Second, we benchmark the classification of vessels into
three hierarchical classes. In the experimentation, we show that standard GCN
approaches outperform traditional non-GCN methods, which indicates the potential
for dedicated research on graph learning concepts for spatial vascular graphs, similar
to the more researched domain of graph learning on molecular graphs [71]. While
our link prediction concept aims to improve the overall graph structure, the inherent
bias and limitations of the individual dataset’s imaging and segmentation techniques
persist, affecting the overall structure of the graph. For a more detailed description
of the limitations, refer to the Discussion Section in Chapter 7.

Additional Comments on the Transfer Learning Publication in Appendix
A - Transfer Learning from Synthetic Data Reduces Need for Labels to
Segment Brain Vasculature and Neural Pathways in 3D

The additional Chapter A on Transfer Learning evaluates how synthetically generated
tubular data can be efficiently used to speed up model convergence and tackle the
labeling bottleneck in biological and medical imaging. The results demonstrate the
efficiency of transfer learning across modalities and even across different anatomical
structures such as vascular data and neural pathways. This chapter can be placed
into the overall context of Transfer Learning for vessel segmentation which is also
used in the VesSAP project. Moreover, the same synthetic data from Schneider et al.
[63] is used to benchmark the clDice performance, see Chapter 6 and is also provided
as a graph in the VesselGraph Chapter 7. Therefore, this work is relevant to the
three main publications of this thesis.

Outlook

This thesis studies brain vessels, three forms of their representation, and how their
properties inspire machine learning research. Chronologically, the work in this
thesis first considers images, then their binary segmentation, and finally studies a
compact, spatial graph representation of the brain vessels. Considering this chronology,
I conclude that future discoveries in neuroscience and advancements in machine
learning will eventuate on the graph representations of the vasculature. The orders
of magnitude sparser representation of relations in a graph enable a more rapid
analysis, straightforward visualization, and faster prototyping of machine learning
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models. Considering the ever-growing memory and computational requirements of
modern computer vision models such as transformers [50], [72], I foresee a requirement
for compact machine learning models to infer knowledge, for example, on graphs.
Ultimately, when used for similar tasks, such models not only enable more rapid
training and inference but eventually reduce power consumption and the carbon
footprint of machine learning models. In the future, dedicated machine learning
concepts inspired by the physiological constraints and physical knowledge of vessels
are likely to advance neuroscience discoveries on vessels and neurons. Similar feats
have already been achieved for molecular graphs [73], [74] and protein prediction
[75], where complex graph learning methods outperform experimental methods [76].
Moreover, I see considerable research potential in joint representations and analysis
of brain vessels, neurons, and other cells, for example, in a heterogeneous graph
representation [77], [78], which promises to enhance the representative power of the
graphs and will thus lead to significant findings. Naturally, an extension not only
to the brain but the whole murine vascular system or the human brain will further
deepen biological understanding. Furthermore, heterogeneous graph embeddings
could be used to combine spatial imaging data with graph representations originating
from RNA sequence analysis in single-cell biology [79], [80], which would pave the
way towards a holistic analysis of whole-body cell information and sub-cellular RNA
or protein information in a single model. Ultimately, I consider a spatial graph
representation of the connectivity of all neurons in the human brain to be a blueprint
for understanding human intelligence. I foresee that once a whole-brain imaging of all
neurons, including all dendrites, axons, and all their connections, is achieved, machine
learning will be the principal technology to extract functional connectivity data from
the neural image information. So far, works on the vascular connectome represent
the first step toward such developments, and the technology developed herein will
guide future studies of the whole cerebral neural network.
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Abstract

Novel microscopic techniques yield high-resolution volumetric scans of complex anatomical
structures such as the blood vasculature or the nervous system. Here, we show how transfer
learning and synthetic data generation can be used to train deep neural networks to segment
these structures successfully in the absence of or with very limited training data.

Keywords: Deep learning, transfer learning, synthetic data, vasculature, neural pathways.

1. Introduction

Recent advances in tissue-clearing (Ertürk et al., 2012; Chung and Deisseroth, 2013) com-
bined with 3D light-sheet microscopy (3D LSM ) overcome previous imaging limitations:
they enable volumetric acquisition at cellular resolution of entire organisms (Cai et al.,
2018; Pan et al., 2019; Stefaniuk et al., 2016; Mano et al., 2018). This yields unprece-
dented insight into the micro-anatomy at the macro-scale, e.g., to study highly connected
structures like the brain vasculature or the peripheral nervous system. Differences in these
structures have been associated with a wide range of disorders (Joutel et al., 2010; Li et al.,
2010). Thus, segmentation and characterization of these anatomical structures is crucial
to study causes and effects of such pathologies. However, manual segmentation of complex
structures is very time-consuming, especially in high-resolution volumetric scans. While
this motivates the need for deep learning it also implies a high cost of labeling. Here, we
substantially reduce the need for manually labeled training data using transfer learning,
an approach gaining attention (Van Opbroek et al., 2015; Khan et al., 2019). In short, we
show that training deep networks on synthetic data is already sufficient to learn the basic
underlying task across different anatomical structures, species, and imaging modalities.

2. Methods

Here, we present results from three widely different applications: human brain vessels
(MRI), mouse brain vessels and the mouse peripheral nervous system (both 3D LSM ).
The same network was trained either on a small labeled set from the respective application

∗ Joint first authors
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(”real data”), on synthetically generated data, or on a combination of both. The synthetic
data used is identical for all three applications. We chose DeepVesselNet as our architec-
ture; the schedule for pre-training on synthetic data and refinement on real data match the
methods of (Tetteh et al., 2018). The methods for generation of synthetic training data is
described in (Schneider et al., 2012). MRI scans from human brain vasculature are taken
from (Tetteh et al., 2018) (voxel size: 300µm x 300µm x 600µm). Volumetric scans of
the brain vasculature (voxel size: (3µm)3) and the peripheral nervous system (voxel size:
(10µm)3) were obtained using DISCO tissue clearing and fluorescent light-sheet microscopy
as described in (Cai et al., 2018). Representative 2D cross-sections of the synthetic data
and segmentations of all three applications are shown in Figure 1.

3. Results

Transfer learning from synthetic data (Table 1, Part 1). For segmenting the human
vasculature from MRI scans, training the net on the synthetic data alone yields very good
results, 81% in F1-score (note: the synthetic data set had been designed for this application).
Training on the real data for this application yields a higher F1-score of 86%. The best
result (87%), however, is achieved by a combination of both: pre-training on synthetic data
and fine-tuning on real data. Interestingly, the network also converges about 50% faster in
this case (data not shown). Motivated by this observation, we repeated this experiment for
3D LSM scans of the mouse brain vasculature. Again, the same pattern can be observed
and the combination of synthetic with real data (F1-score of 76%) outperforms synthetic
data (71%) or real data alone (73%). Taking the approach yet further, we applied the
approach to 3D LSM full body scans of the peripheral nervous system of a mouse. While
training on synthetic data alone was not very successful (16%) as compared to real data
(49%), the gain from combining both was almost completely additive (64%).

Figure 1: A) Synthetic training data was designed to resemble vasculature of human brain
in MRI scans. B-D) Predicted segmentations of 3 different applications: MRI
scans of human brain vasculature (B), 3D LSM of mouse brain vasculature (C),
and peripheral nervous system (D; shown here: innervated muscle fibres)

Transfer learning across domains (Table 1, Part 2). Here, we trained the network
on a combination of synthetic data and the real data from a given application and then
predicted on data from another application. When predicting on human vasculatures from
MRI scans, the refinement step on real data from another application after pre-training on

2
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synthetic data leads to worse results (left column: 43% and 36%) compared to training on
synthetic data alone (81%, see Part 1). However, when training the model on synthetic
data and real data of human vessels in MRI scans (first row of Part 2), the performance
on 3D LSM scans of mouse brain vessels (72%) or the mouse peripheral nervous system
(49%) is about as good as when trained on the respective real data alone. Also, while
the domain transfer from mouse vasculature to mouse nervous system only yields mediocre
results (35%), it works well the other way around: refining a model trained on synthetic
data with real data from the nervous system to segment brain vessels almost works as well
(75%) as if it had been refined on data within the same domain (76%, see Part 1).

Table 1: Quality of predicted segmentations (F1-score) for 3 different applications

4. Discussion

Our results demonstrate how pre-training on synthetically generated data can accelerate
model convergence and boost the overall segmentation performance. For a given desired
performance, this thus means a reduced need for manually labeled training data, which is
very expensive for complex structures in 3D scans. Importantly, a single synthetic data
set that was originally designed to represent human vessels also works well for applications
from different species, anatomical structures, and imaging modalities. This suggests that
the features learned from the synthetic data are of general use for the abstract segmentation
tasks, highlighting the generalizability of the approach. Thus, the expensively labeled data
for a given application does not have to be used to learn a basic task but rather can be
preserved for refining the pre-trained model to the specifics of the application (such as
contrast, noise, background structures). Interestingly, this approach may also be of use in
cases where no training data is available at all. For instance, we could show that a model
trained on synthetic data and real data from another application can match the performance
of a model trained from scratch on real data from the application of interest. Together,
these results highlight the importance of transfer learning towards the goal of resolving a
key bottleneck in adoption of deep learning: the high cost of data annotation.
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Supplementary Figure 1 
Vasculature of a CD1 mouse, stained with WGA and EB.  
 
a, Sagittal maximum intensity projections. b, Coronal maximum intensity projections. c,  Axial maximum projections. d-f, 
Close-ups where capillary level staining is evident. The experiment was performed 9 times with similar results. 



 

Supplementary Figure 2 
Experimental measurement of the point spread function (PSF) of the LaVision light-sheet Ultramicroscope II. 
 
a, Red fluorescent beads (diameter 0.1 µm) were embedded in 1% agarose gel and cleared using 3DISCO. The beads 
were then imaged in BABB medium (RI = 1.56) using 4× objective lens (Olympus XLFLUOR 340), at 580/25 nm excitation 
and with a 625/30 nm emission filter by sampling at 1.625 × 1.625 × 1 µm. b, Full width half maximum (FWHM) measure 
derived from the Gaussian fit to the intensity profile, along the indicated cross-sections in the center of the diffraction 
pattern (a) of an exemplary bead. c, Quantification of the PSF distribution (n = 6) derived from the Gaussian fittings. All 
data values are given as mean ± SEM. 
  



 

Supplementary Figure 3 
 
Validation of complimentary staining of the neurovasculature. 
a,b, Maximum intensity projection of confocal microscopy imaging of WGA and EB signal respectively. c, Merging of the 
two signals. d-h, Maximum intensity projections of the light-sheet microscopy imaging of a representative C57BL/6J 
specimen stained with EB, showing the major vascular segments in different planes. The experiment was performed 3 
times with similar results. 
  



 

Supplementary Figure 4 
 
Raw signal intensity distribution along line profiles across stained vessels for three animals. 
Fluorescence signal profiles for WGA and EB plotted based on vessel size. Data are separated based on WGA and EB 
signal intensity: a) comparable WGA and EB signal intensity, b) Signal intensity is stronger for WGA than for EB, c) Signal 
intensity is stronger for EB than for WGA.  



 

Supplementary Figure 5 
 
Comparison of the signal strength of anti-CD31 and lectin dyes.  
a-b, Axial maximum intensity projection of 150 µm thick tissue, stained as indicated. c, SNR quantifications on the line 
profiles indicated in (a) and (b) with warm and cold colored lines for small and large sized segments, respectively. The red 
arrowheads indicate where the signal of the vasculature gets higher. The experiments were performed on one mouse per 
condition. 
  



 

Supplementary Figure 6 
 
Demonstration of the synthetic data used for VesSAP. 
3D visualization including radius information in pixels (px) for one exemplary volume of synthetic data, which was used for 
pre-training our model in our transfer learning approach.   



 

Supplementary Figure 7 
 
Details of the segmentation quality by VesSAP. 
a,b, Side by side slices of the raw WGA channel image (a) and the segmentation (b). c, 3D rendering of a small brain 
volume. The experiment was performed on 9 different mice with similar results. 



 

Supplementary figure 8 
 
Three spaces of reported features.  
Visualization of the three distinct spaces, in which we report the extracted features. The steps to account for the Euclidean 
length and the tissue shrinkage are visualized with an exemplary calculation of the vessel length of three vessel pixels in a 
2D plane.   
 
  



 

Supplementary Figure 9 
 
Regression analysis of the neurovasculature in mouse strains. 
Scatter plot of the local vessel length against the local bifurcation density (Pearson’s r = 0.9657; p = 1.7 × 10-125). Each 
point represents the mean of three animals per strain. 



  
  

 

Cluster All regions in the cluster Name of cluster 

FRP FRP, FRP1, FRP2/3, FRP5, FRP6a, FRP6b Frontal pole 

MO MO, MO1, MO2/3, MO5, MO6a, MO6b, MOp, MOp1, MOp2/3, 
MOp5, MOp6a, MOp6b, MOs, MOs1, MOs2/3, MOs5, MOs6a, 
MOs6b 

Somatomotor areas 

SS SS, SS1, SS2/3, SS4, SS5, SS6a, SS6b, SSp, SSp1, SSp2/3, 
SSp4, SSp5, SSp6a, SSp6b, SSp-bfd, SSp-bfd1, SSp-bfd2/3, SSp-
bfd4, SSp-bfd5, SSp-bfd6a, SSp-bfd6b, SSp-ll, SSp-ll1, SSp-ll2/3, 
SSp-ll4, SSp-ll5, SSp-ll6a, SSp-ll6b, SSp-m, SSp-m1, SSp-m2/3, 
SSp-m4, SSp-m5, SSp-m6a, SSp-m6b, SSp-n, SSp-n1, SSp-n2/3, 
SSp-n4, SSp-n5, SSp-n6a, SSp-n6b, SSp-tr, SSp-tr1, SSp-tr2/3, 
SSp-tr4, SSp-tr5, SSp-tr6a, SSp-tr6b, SSp-ul, SSp-ul1, SSp-ul2/3, 
SSp-ul4, SSp-ul5, SSp-ul6a, SSp-ul6b, SSp-un, SSp-un1, SSp-
un2/3, SSp-un4, SSp-un5, SSp-un6a, SSp-un6b, SSs, SSs1, 
SSs2/3, SSs4, SSs5, SSs6a, SSs6b, VISrll, VISrll1, VISrll2/3, 
VISrll4, VISrll5, VISrll6a, VISrll6b 

Somatosensory areas 

GU GU, GU1, GU2/3, GU4, GU5, GU6a, GU6b Gustatory areas 

VISC VISC, VISC1, VISC2/3, VISC4, VISC5, VISC6a, VISC6b Visceral area 

AUD AUD, AUDd, AUDd1, AUDd2/3, AUDd4, AUDd5, AUDd6a, AUDd6b, 
AUDp, AUDp1, AUDp2/3, AUDp4, AUDp5, AUDp6a, AUDp6b, 
AUDpo, AUDpo1, AUDpo2/3, AUDpo4, AUDpo5, AUDpo6a, 
AUDpo6b, AUDv, AUDv1, AUDv2/3, AUDv4, AUDv5, AUDv6a, 
AUDv6b, VISlla, VISlla1, VISlla2/3, VISlla4, VISlla5, VISlla6a, 
VISlla6b 

Auditory areas 

VIS VIS, VIS1, VIS2/3, VIS4, VIS5, VIS6a, VIS6b, VISal, VISal1, 
VISal2/3, VISal4, VISal5, VISal6a, VISal6b, VISam, VISam1, 
VISam2/3, VISam4, VISam5, VISam6a, VISam6b, VISl, VISl1, 
VISl2/3, VISl4, VISl5, VISl6a, VISl6b, VISli, VISli1, VISli2/3, VISli4, 
VISli5, VISli6a, VISli6b, VISp, VISp1, VISp2/3, VISp4, VISp5, 
VISp6a, VISp6b, VISpl, VISpl1, VISpl2/3, VISpl4, VISpl5, VISpl6a, 
VISpl6b, VISpm, VISpm1, VISpm2/3, VISpm4, VISpm5, VISpm6a, 
VISpm6b, VISpor, VISpor1, VISpor2/3, VISpor4, VISpor5, VISpor6a, 
VISpor6b 

Visual areas 

ACA ACA, ACA1, ACA2/3, ACA5, ACA6a, ACA6b, ACAd, ACAd1, 
ACAd2/3, ACAd5, ACAd6a, ACAd6b, ACAv, ACAv1, ACAv2/3, 
ACAv5, ACAv6a, ACAv6b 

Anterior cingulate area 

PL PL, PL1, PL2, PL2/3, PL5, PL6a, PL6b Prelimbic area 

ILA ILA, ILA1, ILA2, ILA2/3, ILA5, ILA6a, ILA6b Infralimbic area 

ORB ORB, ORB1, ORB2/3, ORB5, ORB6a, ORB6b, ORBl, ORBl1, 
ORBl2/3, ORBl5, ORBl6a, ORBl6b, ORBm, ORBm1, ORBm2, 
ORBm2/3, ORBm5, ORBm6a, ORBm6b, ORBv, ORBvl, ORBvl1, 
ORBvl2/3, ORBvl5, ORBvl6a, ORBvl6b 

Orbital area 

AI AI, AId, AId1, AId2/3, AId5, AId6a, AId6b, AIp, AIp1, AIp2/3, AIp5, 
AIp6a, AIp6b, AIv, AIv1, AIv2/3, AIv5, AIv6a, AIv6b 

Agranular insular area 

RSP RSP, RSPagl, RSPagl1, RSPagl2/3, RSPagl5, RSPagl6a, 
RSPagl6b, RSPd, RSPd1, RSPd2/3, RSPd4, RSPd5, RSPd6a, 
RSPd6b, RSPv, RSPv1, RSPv2, RSPv2/3, RSPv5, RSPv6a, 
RSPv6b, VISm, VISm1, VISm2/3, VISm4, VISm5, VISm6a, VISm6b, 
VISmma, VISmma1, VISmma2/3, VISmma4, VISmma5, VISmma6a, 
VISmma6b, VISmmp, VISmmp1, VISmmp2/3, VISmmp4, VISmmp5, 
VISmmp6a, VISmmp6b 

Retrosplenial area 

PTL PTLp, PTLp1, PTLp2/3, PTLp4, PTLp5, PTLp6a, PTLp6b, VISa, 
VISa1, VISa2/3, VISa4, VISa5, VISa6a, VISa6b, VISrl, VISrl1, 
VISrl2/3, VISrl4, VISrl5, VISrl6a, VISrl6b 

Posterior parietal 
association areas 



  
  

 

TE TEa, TEa1, TEa2/3, TEa4, TEa5, TEa6a, TEa6b Temporal association 
areas 

PERI PERI, PERI1, PERI2/3, PERI5, PERI6a, PERI6b Perirhinal area 

ECT ECT, ECT1, ECT2/3, ECT5, ECT6a, ECT6b Ectorhinal area 

OLF OLF, MOB, MOBipl, MOBopl Olfactory areas 

AOB AOB, AOBgl, AOBmi Accessory olfactory 
bulb 

AOBgr AOBgr, NLOT, NLOT1, NLOT1-3, NLOT2, NLOT3 AOBgr & NLOT 

AON AON, AON1, AON2, AONd, AONe, AONl, AONm, AONpv Anterior olfactory 
nucleus 

TT TT, TTd, TTd1, TTd1-4, TTd2, TTd3, TTd4, TTv, TTv1, TTv1-3, 
TTv2, TTv3 

Taenia tecta 

DP DP, DP1, DP2, DP2/3, DP5, DP6a Dorsal peduncular 
area 

PIR PIR, PIR1, PIR1-3, PIR2, PIR3 Piriform area 

COA COA, COAa, COAa1, COAa2, COAa3, COAp, COApl, COApl1, 
COApl1-2, COApl1-3, COApl2, COApl3, COApm, COApm1, 
COApm1-2, COApm1-3, COApm2, COApm3 

Cortical amygdalar 
area 

PAA PAA, PAA1, PAA1-3, PAA2, PAA3 Piriform-amygdalar 
area 

TR TR, TR1, TR1-3, TR2, TR3 Postpiriform transition 
area 

CA CA, CA1, CA1slm, CA1so, CA1sr, CA2, CA2slm, CA2so, CA2sr, 
CA3, CA3slm, CA3slu, CA3so, CA3sr, DG, DGcr, DGcr-mo, DGcr-
po, DGcr-sg, DGlb, DGlb-mo, DGlb-po, DGlb-sg, DGmb, DGmb-mo, 
DGmb-po, DGmb-sg, DG-mo, DG-po, DG-sgz, FC, HIP, HPF, IG 

Hippocampal 
formation 

CA1sp CA1sp, CA2sp, CA3sp, DG-sg  

ENT ENT, ENTl, ENTl1, ENTl2, ENTl2/3, ENTl2a, ENTl2b, ENTl3, ENTl4, 
ENTl4/5, ENTl5, ENTl5/6, ENTl6a, ENTl6b, ENTm, ENTm1, 
ENTm2, ENTm2a, ENTm2b, ENTm3, ENTm4, ENTm5, ENTm5/6, 
ENTm6, ENTmv, ENTmv1, ENTmv2, ENTmv3, ENTmv4, 
ENTmv5/6, RHP 

Retrohippocampal 
region 

PAR PAR, PAR1, PAR2, PAR3 Parasubiculum 

POST POST, POST1, POST2, POST3 Postsubiculum 

PRE PRE, PRE1, PRE2, PRE3 Presubiculum 

SUB SUB, SUBd, SUBd-m, SUBd-sr, SUBv, SUBv-m, SUBv-sr Subiculum 

ProS ProS, ProSd, ProSd-m, ProSd-sr, ProSv, ProSv-m, Prosv-sr Prosubiculum 

CLA CLA, CTXsp, 6b Claustrum 

EP EP, EPd, EPv Endopiriform nucleus 

LA LA Lateral amygdalar 
nucleus 

BLA BLA, BLAa, BLAp, BLAv Basolateral amygdalar 
nucleus 

BMA BMA, BMAa, BMAp Basomedial amygdalar 
nucleus 

PA PA Posterior amygdalar 
nucleus 

CP CP, CNU, STR, STRd Caudoputamen 



  
  

 

ACB ACB, FS, isl, islm, LSS, OT, OT1, OT1-3, OT2, OT3, STRv Nucleus accumbens 

LS LS, LSc, LSr, LSv, LSX, SF, SH Lateral septal complex 

AAA AAA, BA, CEA, CEAc, CEAl, CEAm, IA, MEA, MEAad, MEAav, 
MEApd, MEApd-a, MEApd-b, MEApd-c, MEApv, sAMY 

Anterior amygdalar 
area 

GPe GPe, GPi, PAL, PALd Pallidum 

MA MA, PALv, SI Magnocellular nucleus 

MS MS, MSC, NDB, PALm, TRS Medial septal nucleus 

BAC BAC, BST, BSTa, BSTal, BSTam, BSTd, BSTdm, BSTfu, BSTif, 
BSTju, BSTmg, BSTov, BSTp, BSTpr, BSTrh, BSTse, BSTtr, BSTv, 
PALc 

Bed nucleus of the 
anterior commissure 

BS BS, TH Brain stem 

DORsm DORsm, GENd, LGd, LGd-co, LGd-ip, LGd-sh, MG, MGd, MGm, 
MGv, PoT, PP, SPA, SPF, SPFm, SPFp, VAL, VENT, VM, VP, VPL, 
VPLpc, VPM, VPMpc 

Thalamus, sensory-
motor cortex related 

AD AD, AM, AMd, AMv, ATN, AV, CL, CM, DORpm, EPI, Eth, GENv, 
IAD, IAM, IGL, ILM, IMD, IntG, LAT, LD, LGv, LGvl, LGvm, LH, LP, 
MD, MDc, MDl, MDm, MED, MH, MTN, PCN, PF, PIL, PIN, PO, 
POL, PR, PT, PVT, RE, REth, RH, RT, SGN, SMT, SubG, Xi 

Anterodorsal nucleus 

HY HY Hypothalamus 

ARH ARH, ASO, NC, PVa, PVH, PVHam, PVHap, PVHm, PVHmm, 
PVHmpd, PVHp, PVHpm, PVHpml, PVHpmm, PVHpv, PVi, PVZ, 
SO 

Arcuate hypothalamic 
nucleus 

ADP ADP, AHA, AVP, AVPV, DMH, DMHa, DMHp, DMHv, MEPO, MPO, 
OV, PD, PS, PSCH, PVp, PVpo, PVR, SBPV, SCH, SFO, VLPO, 
VMPO 

Anterodorsal preoptic 
nucleus 

AHN AHN, AHNa, AHNc, AHNd, AHNp, LM, MBO, MEZ, MM, MMd, MMl, 
MMm, MMme, MMp, MPN, MPNc, MPNl, MPNm, PH, PMd, PMv, 
PVHd, PVHdp, PVHf, PVHlp, PVHmpv, SUM, SUMl, SUMm, TM, 
TMd, TMv, VMH, VMHa, VMHc, VMHdm, VMHvl 

Anterior hypothalamic 
nucleus 

A13 A13, FF, LHA, LPO, LZ, ME,PeF, PST, PSTN, RCH, STN, TU, ZI  

MB MB Midbrain 

IC IC, ICc, ICd, ICe, MBsen, MEV, NB, PBG, SAG, SCO, SCop, SCs, 
SCsg, SCzo 

Inferior colliculus 

APN APN, AT, CUN, DT, EW, III, INC, InCo, IV, LT, MA3, MBmot, MBsta, 
MPT, MRN, MRNm, MRNmg, MRNp, MT, ND, NOT, NPC, OP, Pa4, 
PAG, PN, PPT, PRC, PRT, RN, RPF, RR, SCdg, SCdw, SCig, SCig-
a, SCig-b, SCig-c, SCiw, SCm, SNl, SNr, Su3, VTA, VTN 

Anterior pretectal 
nucleus 

SNc SNc, CLI, DR, IF, IPA, IPC, IPDL, IPDM, IPI, IPL, IPN, IPR, IPRL, 
PPN, RAmb, RL 

Substantia nigra 

P P, HB Pons 

KF KF, NLL, NLLd, NLLh, NLLv, PB, PBl, PBlc, PBld, PBle, PBls, PBlv, 
PBm, PBme, PBmm, PBmv, POR, P-sen, PSV, SOC, SOCl, SOCm 

Koelliker-Fuse 
subnucleus 

Acs5 Acs5, B, DTN, I5, LTN, P5, PC5, PCG, PDTg, PG, P-mot, PRNc, 
PRNv, SG, SSN, SUT, TRN, V 

Accessory trigeminal 
nucleus 

CS CS, CSl, CSm, LC, LDT, NI, PRNr, P-sat, RPO, SLC, SLD Superior central 
nucleus raphe 

MY MY Medulla 



  
  

 

AP AP, CN, CNlam, CNspg, CU, DCN, DCO, ECU, GR, MY-sen, NTB, 
NTS, NTSce, NTSco, NTSge, NTSl, NTSm, Pa5, SPVC, SPVI, 
SPVO, SPVOcdm, SPVOmdmd, SPVOmdmv, SPVOrdm, SPVOvl, 
VCO, z 

Area postrema 

ACVI ACVI, ACVII, AMB, AMBd, AMBv, DMX, ECO, EV, GRN, ICB, INV, 
IO, IRN, ISN, LAV, LIN, LRN, LRNm, LRNp, MARN, MDRN, 
MDRNd, MDRNv, MV, MY-mot, NIS, NR, PARN, PAS, PGRN, 
PGRNd, PGRNl, PHY, PMR, PPY, PPYd, PPYs, PRP, SPIV, SUV, 
VI, VII, VNC, x, XII, y 

Accessory facial motor 
nucleus 

CB CB, CBX, CBN Cerebellum 

FN FN, IP, DN, VeCB Fastigial nucleus 

oct oct, ab, aco, act, alv, amc, aolt, aot, apd, ar, arb, bct, bic, bsc, cbc, 
cbf, cbp, cbt, cc, ccb, ccg, ccr, ccs, cct, cett, cic, cing, cm, cpd, cpt, 
crt, csc, cst, cstc, cstu, ctb, cte, cuf, cvb, cVIIIn, das, db, dc, dcm, df, 
dhc, dl, dlf, drt, dscp, dtd, dtt, ec, ee, em, eps, epsc, fa, fi, fp, fpr, fr, 
fx, fxpo, fxprg, fxs, grf, gVIIn, hbc, hc, hht, iaf, ias, icp, IIIn, IIn, im, In, 
int, IVd, iVIIn, IVn, IXn, jrb, lab, lfbs, lfbst, ll, lot, lotd, lotg, mcp, mct, 
mfb, mfbc, mfbs, mfbse, mfbsm, mfbsma, mfbst, mfsbshy, ml, mlf, 
moV, mp, mtc, mtg, mtt, mtV, nst, ntt, och, onl, opt, or, pap, pc, per, 
php, phpd, phpl, phpm, phpv, PIS, pm, pmx, poc, ptf, pvbh, pvbt, py, 
pyd, rct, rrt, rst, rstl, rstm, rust, scp, scrt, sct, sctd, sctv, scwm, shp, 
sm, smd, snp, sop, sptV, srp, sst, st, stc, step, stf, stp, sttl, sttv, sup, 
supa, supd, supv, sV, svp, tb, tct, tn, tp, ts, tsp, tspc, tspd, ttp, uf, vc, 
vhc, VIIIn, VIIn, VIn, vlt, Vn, von, vrt, vsp, vtd, vVIIIn, XIIn, XIn, Xn 

fiber tracts 

Supplementary table 1 

List of anatomical clusters and all the brain regions that they represent according to the 
current Allen adult mouse brain atlas ontology.  



  
  

 

Cluster BL6#1 BL6#2 BL6#3 CD1#1 CD1#2 CD1#3 
BALBC 

#1 
BALBC 

#2 
BALBC 

#3 

FRP 0.00490 0.00761 0.00499 0.00196 0.00405 0.00100 0.00261 0.00397 0.00428 

MO 0.00713 0.00838 0.00561 0.00447 0.00743 0.00346 0.00708 0.00689 0.00606 

SS 0.00831 0.00981 0.00791 0.00528 0.00987 0.00607 0.00694 0.00701 0.00589 

GU 0.00782 0.00767 0.00635 0.00599 0.01000 0.00766 0.00572 0.00569 0.00560 

VISC 0.00691 0.00778 0.00625 0.00496 0.00963 0.00619 0.00453 0.00520 0.00527 

AUD 0.00632 0.00924 0.00637 0.00605 0.00776 0.00579 0.00725 0.00791 0.00730 

VIS 0.00632 0.00845 0.00603 0.00399 0.00717 0.00412 0.00659 0.00747 0.00654 

ACA 0.00700 0.00671 0.00534 0.00425 0.00814 0.00471 0.00554 0.00676 0.00533 

PL 0.00727 0.00680 0.00503 0.00383 0.00704 0.00479 0.00528 0.00627 0.00614 

ILA 0.00730 0.00497 0.00342 0.00495 0.00676 0.00600 0.00498 0.00601 0.00531 

ORB 0.00925 0.00756 0.00613 0.00481 0.00823 0.00510 0.00591 0.00700 0.00640 

AI 0.00710 0.00711 0.00546 0.00429 0.00734 0.00496 0.00624 0.00578 0.00578 

RSP 0.00825 0.00794 0.00562 0.00378 0.00841 0.00478 0.00528 0.00744 0.00610 

PTL 0.00401 0.00838 0.00570 0.00419 0.00687 0.00383 0.00658 0.00696 0.00557 

TE 0.00474 0.00777 0.00554 0.00490 0.00758 0.00466 0.00548 0.00686 0.00604 

PERI 0.00428 0.00637 0.00520 0.00296 0.00622 0.00331 0.00441 0.00507 0.00527 

ECT 0.00419 0.00662 0.00514 0.00367 0.00682 0.00371 0.00449 0.00587 0.00562 

OLF 0.00625 0.00360 0.00491 0.00343 0.00838 0.00526 0.00565 0.00595 0.00533 

AOB 0.00745 0.00574 0.00464 0.00356 0.00744 0.00506 0.00551 0.00489 0.00565 

AOBgr 0.00475 0.00345 0.00526 0.00222 0.00523 0.00375 0.00540 0.00551 0.00493 

AON 0.00848 0.00529 0.00510 0.00453 0.00731 0.00493 0.00602 0.00629 0.00584 

TT 0.00648 0.00275 0.00419 0.00350 0.00625 0.00533 0.00553 0.00532 0.00555 

DP 0.00669 0.00395 0.00355 0.00437 0.00644 0.00643 0.00498 0.00596 0.00533 

PIR 0.00690 0.00608 0.00613 0.00364 0.00699 0.00559 0.00653 0.00631 0.00578 

COA 0.00353 0.00346 0.00468 0.00206 0.00494 0.00352 0.00474 0.00454 0.00480 

PAA 0.00353 0.00225 0.00455 0.00183 0.00566 0.00412 0.00449 0.00481 0.00432 

TR 0.00485 0.00493 0.00492 0.00248 0.00578 0.00335 0.00468 0.00477 0.00520 

CA 0.00469 0.00485 0.00448 0.00340 0.00538 0.00376 0.00423 0.00501 0.00433 

CA1sp 0.00447 0.00411 0.00430 0.00302 0.00478 0.00341 0.00352 0.00467 0.00414 

ENT 0.00503 0.00733 0.00488 0.00351 0.00664 0.00354 0.00510 0.00575 0.00506 

PAR 0.00598 0.00644 0.00524 0.00413 0.00857 0.00409 0.00602 0.00817 0.00525 

POST 0.00702 0.00844 0.00744 0.00484 0.00684 0.00475 0.00592 0.00747 0.00539 

PRE 0.00587 0.00785 0.00773 0.00396 0.00873 0.00583 0.00665 0.00783 0.00601 

SUB 0.00646 0.00708 0.00648 0.00470 0.00723 0.00527 0.00569 0.00677 0.00524 

ProS 0.00558 0.00466 0.00363 0.00340 0.00604 0.00264 0.00366 0.00399 0.00341 

CLA 0.00718 0.00599 0.00533 0.00358 0.00615 0.00535 0.00533 0.00559 0.00468 

EP 0.00613 0.00562 0.00495 0.00308 0.00585 0.00442 0.00488 0.00507 0.00478 

LA 0.00423 0.00443 0.00379 0.00313 0.00551 0.00313 0.00395 0.00457 0.00429 

BLA 0.00454 0.00460 0.00465 0.00272 0.00583 0.00391 0.00517 0.00532 0.00501 

BMA 0.00483 0.00471 0.00487 0.00330 0.00561 0.00486 0.00529 0.00528 0.00530 

PA 0.00511 0.00480 0.00510 0.00302 0.00536 0.00416 0.00681 0.00598 0.00547 

CP 0.00634 0.00513 0.00524 0.00358 0.00642 0.00451 0.00400 0.00500 0.00368 



  
  

 

ACB 0.00494 0.00319 0.00465 0.00263 0.00571 0.00375 0.00629 0.00608 0.00494 

LS 0.00435 0.00274 0.00388 0.00313 0.00547 0.00448 0.00279 0.00316 0.00297 

AAA 0.00513 0.00412 0.00453 0.00309 0.00498 0.00504 0.00519 0.00487 0.00501 

GPe 0.00544 0.00394 0.00466 0.00267 0.00544 0.00330 0.00368 0.00434 0.00430 

MA 0.00608 0.00373 0.00473 0.00218 0.00594 0.00421 0.00571 0.00490 0.00394 

MS 0.00655 0.00345 0.00560 0.00267 0.00671 0.00519 0.00530 0.00456 0.00435 

BAC 0.00532 0.00250 0.00377 0.00221 0.00475 0.00348 0.00314 0.00320 0.00273 

BS 0.00479 0.00388 0.00485 0.00352 0.00556 0.00426 0.00452 0.00525 0.00503 

DORsm 0.00503 0.00493 0.00517 0.00426 0.00688 0.00445 0.00564 0.00650 0.00618 

AD 0.00483 0.00361 0.00481 0.00346 0.00635 0.00383 0.00442 0.00489 0.00494 

HY 0.00620 0.00305 0.00465 0.00303 0.00602 0.00521 0.00519 0.00482 0.00470 

ARH 0.00474 0.00167 0.00304 0.00268 0.00528 0.00358 0.00521 0.00465 0.00476 

ADP 0.00623 0.00244 0.00430 0.00279 0.00616 0.00503 0.00559 0.00492 0.00441 

AHN 0.00611 0.00303 0.00442 0.00300 0.00598 0.00487 0.00535 0.00511 0.00483 

A13 0.00605 0.00452 0.00567 0.00391 0.00666 0.00519 0.00561 0.00533 0.00531 

MB 0.00626 0.00540 0.00536 0.00401 0.00708 0.00418 0.00438 0.00575 0.00478 

IC 0.00700 0.00877 0.00746 0.00511 0.00979 0.00472 0.00429 0.00697 0.00549 

APN 0.00714 0.00566 0.00590 0.00465 0.00742 0.00397 0.00400 0.00570 0.00453 

SNc 0.00541 0.00517 0.00500 0.00390 0.00664 0.00326 0.00318 0.00448 0.00347 

P 0.00336 0.00217 0.00328 0.00179 0.00394 0.00227 0.00294 0.00374 0.00400 

KF 0.00345 0.00328 0.00450 0.00192 0.00383 0.00241 0.00382 0.00528 0.00606 

Acs5 0.00433 0.00243 0.00476 0.00257 0.00543 0.00313 0.00379 0.00502 0.00507 

CS 0.00553 0.00381 0.00513 0.00304 0.00658 0.00324 0.00324 0.00417 0.00434 

MY 0.00449 0.00248 0.00328 0.00178 0.00297 0.00214 0.00430 0.00373 0.00346 

AP 0.00520 0.00541 0.00540 0.00304 0.00499 0.00260 0.00583 0.00683 0.00565 

ACVI 0.00681 0.00412 0.00597 0.00303 0.00493 0.00328 0.00641 0.00683 0.00609 

CB 0.00518 0.00414 0.00412 0.00202 0.00375 0.00303 0.00374 0.00493 0.00521 

FN 0.00685 0.00784 0.00858 0.00330 0.00329 0.00554 0.00691 0.00913 0.00892 

oct 0.00457 0.00356 0.00355 0.00243 0.00400 0.00259 0.00343 0.00403 0.00357 

Supplementary table 2 

Quantification of the local vascular length per volume in the C57BL/6J, CD1 and BALB/c 
samples in the voxel-corrected space. Units are in vx/vx3.   



  
  

 

Cluster BL6#1 BL6#2 BL6#3 CD1#1 CD1#2 CD1#3 
BALBC 

#1 
BALBC 

#2 
BALBC 

#3 

FRP 0,00064 0,00096 0,00056 0,00020 0,00053 0,00008 0,00025 0,00041 0,00051 

MO 0,00107 0,00127 0,00066 0,00047 0,00107 0,00036 0,00104 0,00090 0,00075 

SS 0,00138 0,00172 0,00119 0,00060 0,00170 0,00080 0,00094 0,00097 0,00071 

GU 0,00119 0,00112 0,00080 0,00069 0,00178 0,00105 0,00066 0,00072 0,00066 

VISC 0,00104 0,00121 0,00082 0,00055 0,00165 0,00080 0,00041 0,00057 0,00054 

AUD 0,00083 0,00147 0,00080 0,00071 0,00113 0,00074 0,00097 0,00114 0,00095 

VIS 0,00085 0,00131 0,00073 0,00039 0,00102 0,00044 0,00081 0,00105 0,00081 

ACA 0,00100 0,00081 0,00061 0,00044 0,00128 0,00053 0,00063 0,00082 0,00061 

PL 0,00104 0,00080 0,00052 0,00036 0,00097 0,00055 0,00053 0,00075 0,00074 

ILA 0,00102 0,00044 0,00028 0,00049 0,00082 0,00069 0,00041 0,00061 0,00052 

ORB 0,00155 0,00100 0,00073 0,00048 0,00119 0,00058 0,00065 0,00085 0,00078 

AI 0,00104 0,00095 0,00061 0,00042 0,00101 0,00057 0,00075 0,00067 0,00064 

RSP 0,00130 0,00116 0,00068 0,00037 0,00133 0,00055 0,00055 0,00106 0,00075 

PTL 0,00049 0,00130 0,00075 0,00044 0,00093 0,00041 0,00085 0,00093 0,00068 

TE 0,00053 0,00108 0,00061 0,00051 0,00109 0,00050 0,00056 0,00087 0,00067 

PERI 0,00047 0,00078 0,00054 0,00024 0,00080 0,00031 0,00037 0,00053 0,00052 

ECT 0,00042 0,00080 0,00053 0,00032 0,00090 0,00035 0,00039 0,00065 0,00058 

OLF 0,00098 0,00048 0,00065 0,00037 0,00140 0,00067 0,00077 0,00080 0,00071 

AOB 0,00115 0,00082 0,00062 0,00033 0,00115 0,00052 0,00063 0,00056 0,00078 

AOBgr 0,00061 0,00034 0,00060 0,00017 0,00058 0,00038 0,00066 0,00063 0,00055 

AON 0,00135 0,00057 0,00055 0,00045 0,00099 0,00055 0,00074 0,00072 0,00067 

TT 0,00092 0,00025 0,00042 0,00034 0,00081 0,00064 0,00071 0,00062 0,00073 

DP 0,00092 0,00033 0,00029 0,00041 0,00083 0,00077 0,00044 0,00064 0,00056 

PIR 0,00103 0,00078 0,00077 0,00035 0,00098 0,00068 0,00090 0,00080 0,00069 

COA 0,00040 0,00035 0,00045 0,00015 0,00055 0,00035 0,00059 0,00052 0,00051 

PAA 0,00040 0,00024 0,00048 0,00012 0,00063 0,00042 0,00058 0,00057 0,00051 

TR 0,00054 0,00051 0,00049 0,00018 0,00070 0,00030 0,00053 0,00054 0,00054 

CA 0,00056 0,00049 0,00045 0,00030 0,00064 0,00039 0,00040 0,00051 0,00040 

CA1sp 0,00053 0,00038 0,00041 0,00025 0,00052 0,00033 0,00028 0,00043 0,00036 

ENT 0,00063 0,00101 0,00058 0,00034 0,00097 0,00039 0,00055 0,00072 0,00055 

PAR 0,00091 0,00095 0,00071 0,00044 0,00150 0,00053 0,00078 0,00123 0,00061 

POST 0,00097 0,00128 0,00101 0,00050 0,00094 0,00055 0,00072 0,00101 0,00062 

PRE 0,00075 0,00112 0,00106 0,00036 0,00134 0,00071 0,00085 0,00107 0,00067 

SUB 0,00089 0,00093 0,00081 0,00047 0,00106 0,00061 0,00064 0,00083 0,00054 

ProS 0,00078 0,00052 0,00037 0,00036 0,00082 0,00024 0,00036 0,00041 0,00031 

CLA 0,00104 0,00067 0,00056 0,00028 0,00077 0,00059 0,00054 0,00059 0,00044 

EP 0,00082 0,00060 0,00050 0,00024 0,00069 0,00044 0,00047 0,00050 0,00044 

LA 0,00048 0,00037 0,00032 0,00023 0,00063 0,00026 0,00032 0,00043 0,00036 

BLA 0,00053 0,00042 0,00044 0,00020 0,00067 0,00035 0,00052 0,00054 0,00047 

BMA 0,00057 0,00045 0,00050 0,00028 0,00065 0,00052 0,00057 0,00056 0,00054 

PA 0,00063 0,00047 0,00052 0,00024 0,00063 0,00045 0,00093 0,00069 0,00057 

CP 0,00090 0,00053 0,00058 0,00032 0,00081 0,00048 0,00034 0,00050 0,00032 



  
  

 

ACB 0,00062 0,00028 0,00046 0,00021 0,00070 0,00039 0,00083 0,00072 0,00054 

LS 0,00046 0,00018 0,00032 0,00024 0,00065 0,00044 0,00018 0,00022 0,00021 

AAA 0,00069 0,00037 0,00044 0,00026 0,00057 0,00059 0,00058 0,00050 0,00051 

GPe 0,00067 0,00033 0,00045 0,00021 0,00060 0,00029 0,00032 0,00041 0,00040 

MA 0,00083 0,00031 0,00047 0,00016 0,00073 0,00044 0,00067 0,00049 0,00036 

MS 0,00091 0,00028 0,00064 0,00021 0,00098 0,00063 0,00064 0,00045 0,00047 

BAC 0,00065 0,00015 0,00032 0,00016 0,00052 0,00034 0,00024 0,00024 0,00020 

BS 0,00057 0,00035 0,00050 0,00032 0,00067 0,00045 0,00043 0,00057 0,00051 

DORsm 0,00060 0,00049 0,00056 0,00041 0,00089 0,00046 0,00062 0,00079 0,00070 

AD 0,00055 0,00031 0,00048 0,00029 0,00076 0,00036 0,00042 0,00048 0,00048 

HY 0,00083 0,00026 0,00049 0,00026 0,00077 0,00063 0,00056 0,00050 0,00048 

ARH 0,00061 0,00013 0,00028 0,00021 0,00061 0,00037 0,00056 0,00050 0,00049 

ADP 0,00087 0,00019 0,00044 0,00022 0,00083 0,00062 0,00065 0,00051 0,00046 

AHN 0,00082 0,00026 0,00044 0,00024 0,00076 0,00055 0,00058 0,00054 0,00050 

A13 0,00081 0,00047 0,00069 0,00040 0,00092 0,00063 0,00068 0,00064 0,00060 

MB 0,00084 0,00058 0,00057 0,00037 0,00100 0,00044 0,00041 0,00064 0,00049 

IC 0,00102 0,00137 0,00104 0,00053 0,00167 0,00054 0,00041 0,00090 0,00065 

APN 0,00101 0,00060 0,00068 0,00045 0,00107 0,00040 0,00035 0,00062 0,00043 

SNc 0,00068 0,00054 0,00051 0,00035 0,00087 0,00028 0,00025 0,00044 0,00029 

P 0,00039 0,00019 0,00033 0,00014 0,00047 0,00019 0,00028 0,00040 0,00045 

KF 0,00038 0,00033 0,00053 0,00015 0,00042 0,00020 0,00039 0,00062 0,00078 

Acs5 0,00051 0,00018 0,00051 0,00020 0,00063 0,00029 0,00038 0,00052 0,00055 

CS 0,00069 0,00032 0,00053 0,00025 0,00086 0,00026 0,00025 0,00038 0,00042 

MY 0,00062 0,00026 0,00039 0,00016 0,00037 0,00022 0,00055 0,00047 0,00041 

AP 0,00068 0,00064 0,00068 0,00028 0,00069 0,00025 0,00074 0,00095 0,00071 

ACVI 0,00101 0,00037 0,00070 0,00025 0,00057 0,00032 0,00077 0,00091 0,00073 

CB 0,00072 0,00049 0,00053 0,00017 0,00046 0,00032 0,00041 0,00065 0,00071 

FN 0,00097 0,00114 0,00139 0,00029 0,00030 0,00072 0,00101 0,00151 0,00147 

oct 0,00059 0,00037 0,00038 0,00020 0,00046 0,00025 0,00035 0,00043 0,00036 

Supplementary table 3 

Quantification of the number of bifurcation points in the C57BL/6J, CD1 and BALB/c 
samples in the voxel-corrected space, units are in counts/vx3.  



  
  

 

Cluster BL6#1 BL6#2 BL6#3 CD1#1 CD1#2 CD1#3 
BALBC 

#1 
BALBC 

#2 
BALBC 

#3 

FRP 2.06 2.35 2.33 3.53 2.26 2.66 2.44 2.32 2.36 

MO 2.07 2.40 2.29 2.08 2.04 2.19 2.45 2.57 2.51 

SS 2.14 2.47 2.38 2.12 2.17 2.25 2.47 2.59 2.50 

GU 2.21 2.68 2.68 2.14 2.37 2.38 2.82 2.76 2.75 

VISC 2.23 2.66 2.43 2.30 2.33 2.45 2.53 2.57 2.34 

AUD 2.02 2.38 2.27 2.14 1.97 2.14 2.58 2.67 2.50 

VIS 2.07 2.34 2.27 2.08 2.03 2.08 2.48 2.64 2.47 

ACA 2.34 2.35 2.49 2.20 2.32 2.45 3.15 3.46 2.79 

PL 2.17 2.48 2.29 2.14 2.12 2.34 2.66 2.79 2.75 

ILA 2.32 2.43 2.42 2.31 2.15 2.35 2.68 2.91 2.69 

ORB 2.27 2.41 2.34 2.24 2.10 2.18 2.50 2.43 2.64 

AI 2.14 2.52 2.48 2.15 2.15 2.27 2.72 2.73 2.53 

RSP 2.10 2.30 2.30 2.12 2.13 2.23 2.57 2.74 2.78 

PTL 2.04 2.34 2.27 2.03 2.04 2.10 2.53 2.62 2.49 

TE 2.04 2.41 2.27 2.04 1.98 1.99 2.49 2.63 2.42 

PERI 2.13 2.42 2.33 2.02 2.07 2.03 2.54 2.57 2.51 

ECT 2.13 2.38 2.28 2.03 2.02 1.99 2.55 2.65 2.47 

OLF 2.29 2.44 2.47 2.26 2.20 2.48 2.54 2.59 2.52 

AOB 2.15 2.70 2.58 2.16 2.46 2.44 2.64 2.78 2.45 

AOBgr 2.62 2.67 2.81 2.58 2.35 2.93 2.70 2.50 2.47 

AON 2.15 2.28 2.42 2.14 2.20 2.25 2.57 2.63 2.68 

TT 2.86 2.53 2.86 2.54 2.31 2.92 2.91 2.67 2.61 

DP 2.21 2.35 2.48 2.13 2.11 2.54 2.77 2.66 2.74 

PIR 2.18 2.38 2.56 2.14 2.18 2.34 2.73 2.69 2.55 

COA 2.16 2.33 2.49 2.30 2.18 2.29 3.02 2.94 2.64 

PAA 2.22 2.26 2.59 2.43 2.16 2.45 2.92 2.74 2.57 

TR 2.16 2.48 2.46 2.10 2.19 1.99 2.73 3.02 2.54 

CA 2.56 2.49 2.65 2.57 2.24 2.70 3.93 4.14 3.22 

CA1sp 2.34 2.23 2.42 2.12 2.07 2.86 2.60 2.55 2.76 

ENT 2.09 2.41 2.32 2.08 2.25 2.22 2.52 2.70 2.51 

PAR 2.44 2.31 2.33 2.16 2.27 2.54 2.46 2.49 2.42 

POST 2.43 2.61 2.73 2.64 2.31 2.54 2.72 2.55 2.94 

PRE 3.28 2.60 2.53 3.04 2.42 2.90 3.49 2.48 3.60 

SUB 2.34 2.50 2.52 2.34 2.40 2.25 2.51 2.56 2.46 

ProS 2.10 2.35 2.38 2.14 2.10 2.19 2.53 2.66 2.67 

CLA 2.22 2.41 2.62 2.12 2.29 2.33 2.88 2.72 2.54 

EP 2.17 2.42 2.56 2.12 2.20 2.28 2.85 2.78 2.60 

LA 2.08 2.13 2.40 2.10 2.14 2.19 2.96 2.96 2.70 

BLA 2.08 2.25 2.54 2.10 2.19 2.18 2.96 2.96 2.73 

BMA 2.13 2.20 2.55 2.18 2.25 2.38 3.05 2.96 2.87 

PA 2.06 2.24 2.47 2.06 2.08 2.17 2.86 2.87 2.60 

CP 2.30 2.23 2.54 2.26 2.20 2.51 2.63 2.67 2.55 



  
  

 

ACB 2.16 2.05 2.37 2.22 2.06 2.29 2.58 2.51 2.34 

LS 2.05 2.13 2.44 2.15 2.29 2.15 2.34 2.49 2.38 

AAA 2.30 2.27 2.51 2.60 2.31 2.63 3.03 2.75 2.79 

GPe 2.19 2.07 2.46 2.18 2.22 2.43 2.58 2.65 2.52 

MA 2.28 2.10 2.51 2.31 2.12 2.41 2.56 2.47 2.47 

MS 2.30 2.28 2.55 2.52 2.36 2.93 2.43 2.55 2.46 

BAC 2.23 2.53 2.68 2.00 2.39 2.03 2.42 2.59 2.45 

BS 2.12 2.19 2.39 2.15 2.16 2.23 2.57 2.55 2.46 

DORsm 2.14 2.23 2.43 2.14 2.13 2.17 2.63 2.55 2.56 

AD 2.07 2.14 2.31 2.14 2.07 2.22 2.45 2.42 2.38 

HY 2.22 2.11 2.48 2.23 2.23 2.60 2.59 2.66 2.48 

ARH 2.17 2.29 2.50 2.28 2.29 2.88 2.45 2.61 2.29 

ADP 2.52 2.82 2.94 3.21 2.43 3.00 2.56 2.64 2.50 

AHN 2.27 2.23 2.58 2.25 2.20 2.49 2.50 2.60 2.44 

A13 2.26 2.17 2.44 2.32 2.45 2.62 2.70 2.45 2.44 

MB 2.12 2.31 2.56 2.06 2.20 2.17 2.54 2.61 2.52 

IC 2.15 2.24 2.27 2.11 2.34 2.24 2.63 2.73 2.54 

APN 2.14 2.28 2.40 2.03 2.19 2.13 2.48 2.48 2.40 

SNc 2.31 2.53 2.63 2.26 2.22 2.29 2.60 2.75 2.60 

P 2.33 2.31 2.43 2.32 2.24 2.55 2.42 2.61 2.49 

KF 2.18 2.24 2.26 2.43 2.25 2.54 2.52 2.43 2.40 

Acs5 2.19 2.12 2.31 2.31 2.07 2.41 2.46 2.42 2.40 

CS 2.12 2.04 2.27 1.90 2.04 2.10 2.35 2.50 2.44 

MY 2.20 2.16 2.36 2.17 2.28 2.29 2.59 2.74 2.50 

AP 2.05 2.12 2.21 2.08 2.22 1.97 2.37 2.56 2.30 

ACVI 2.30 2.12 2.35 2.27 2.22 2.12 2.50 2.66 2.46 

CB 2.18 2.36 2.67 2.55 2.31 2.40 2.49 2.71 2.56 

FN 2.10 2.15 2.34 2.13 2.02 2.09 2.46 2.38 2.38 

oct 2.31 2.30 2.45 2.27 2.26 2.37 2.59 2.63 2.46 

Supplementary table 4  

Quantification of the radii in the C57BL/6J, CD1 and BALB/c samples in the voxel-corrected 
space, units are in vx. 

  



  
  

 

Cluster BL6#1 BL6#2 BL6#3 CD1#1 CD1#2 CD1#3 
BALBC 

#1 
BALBC 

#2 
BALBC 

#3 

FRP 719.81 1118.68 733.15 287.84 596.06 146.94 383.64 583.69 629.29 

MO 1048.25 1232.20 825.23 656.95 1093.14 508.53 1040.80 1013.67 891.79 

SS 1222.57 1441.97 1162.48 776.57 1451.00 892.96 1021.11 1031.19 866.42 

GU 1149.30 1127.14 933.31 881.49 1470.88 1126.30 841.42 836.62 823.94 

VISC 1016.51 1143.88 919.24 729.46 1415.35 910.67 666.37 765.01 775.18 

AUD 929.26 1358.36 936.36 889.46 1141.52 851.74 1065.89 1163.60 1073.18 

VIS 928.94 1242.70 886.48 586.44 1054.50 606.48 968.61 1097.99 962.29 

ACA 1028.65 986.51 785.10 625.14 1197.54 693.00 814.56 994.05 783.90 

PL 1069.15 1000.28 740.29 563.85 1035.32 703.89 776.62 921.60 902.68 

ILA 1072.84 730.91 502.99 728.36 994.08 882.39 731.92 883.94 780.31 

ORB 1359.66 1111.72 901.02 706.82 1210.53 749.79 869.66 1029.35 940.88 

AI 1044.59 1045.48 802.82 630.52 1079.05 729.32 916.89 850.15 849.33 

RSP 1213.69 1167.69 826.12 556.53 1236.67 703.25 776.24 1093.96 896.48 

PTL 589.85 1232.58 837.70 615.78 1010.92 563.72 967.03 1023.68 818.77 

TE 696.56 1142.78 814.66 720.03 1114.58 685.05 805.32 1008.26 887.77 

PERI 628.88 936.89 764.54 434.56 915.32 486.02 648.91 745.63 774.86 

ECT 615.54 973.08 756.32 539.22 1002.36 544.91 660.33 863.42 826.04 

OLF 918.29 528.93 721.69 503.74 1232.31 773.96 831.16 874.80 784.00 

AOB 1095.15 844.41 682.01 523.93 1094.73 744.21 810.80 719.11 830.29 

AOBgr 698.45 506.86 772.76 326.25 769.50 551.26 793.40 809.63 725.02 

AON 1246.96 777.66 750.09 665.89 1075.61 724.66 885.26 925.20 858.75 

TT 952.74 404.86 616.27 514.86 919.39 783.44 812.56 782.74 815.38 

DP 984.41 580.32 521.76 643.00 946.98 946.02 731.76 875.84 783.36 

PIR 1014.22 893.75 902.01 535.96 1027.76 822.62 960.81 928.15 849.46 

COA 519.31 508.62 688.35 302.72 726.67 517.43 697.20 668.07 705.16 

PAA 519.67 331.52 669.07 268.43 832.27 605.50 660.83 707.58 635.27 

TR 713.29 725.55 722.80 365.16 850.23 492.55 688.54 701.81 765.26 

CA 689.09 712.58 659.15 500.22 790.85 552.59 621.69 736.13 636.36 

CA1sp 657.85 604.65 632.59 443.61 703.31 500.71 517.49 686.62 608.19 

ENT 739.55 1078.29 717.63 516.81 976.19 520.25 749.89 844.99 744.69 

PAR 879.62 946.67 770.00 607.20 1260.23 601.76 885.30 1201.17 772.23 

POST 1032.48 1241.02 1094.03 712.26 1006.41 698.99 870.70 1098.09 791.99 

PRE 863.57 1153.73 1137.18 581.74 1283.05 856.64 978.21 1150.62 883.73 

SUB 949.30 1041.07 953.54 690.63 1063.20 774.25 836.39 996.21 770.36 

ProS 819.91 684.89 534.20 500.48 887.92 388.53 538.65 587.25 501.86 

CLA 1056.38 881.31 783.01 526.75 904.03 786.12 783.96 821.79 687.97 

EP 901.38 825.73 728.23 452.45 859.75 650.63 716.91 745.74 702.97 

LA 622.41 651.07 557.65 460.41 810.48 459.70 580.43 671.64 631.47 

BLA 667.57 675.91 683.98 399.58 857.36 575.35 760.15 782.80 736.35 

BMA 709.76 692.22 715.82 485.51 824.96 714.55 777.27 776.70 779.55 

PA 750.73 706.11 749.80 443.59 788.33 611.11 1001.29 879.84 804.16 

CP 931.54 754.27 769.97 526.23 943.65 663.07 587.46 734.87 541.26 



  
  

 

ACB 726.78 468.84 683.56 386.39 840.11 550.87 924.94 894.13 726.36 

LS 639.18 403.36 569.81 459.94 804.94 658.75 410.96 464.19 436.64 

AAA 754.54 606.42 665.74 453.88 732.46 740.79 762.91 716.18 736.72 

GPe 800.59 579.02 685.23 393.02 800.25 485.55 541.33 638.24 631.98 

MA 894.22 548.66 695.15 319.83 873.57 619.46 839.26 720.59 579.14 

MS 963.30 506.92 823.94 393.19 987.01 762.96 779.51 670.04 639.58 

BAC 782.50 367.08 554.83 325.31 698.31 511.71 461.13 470.45 401.36 

BS 704.80 569.94 713.50 518.26 817.19 626.73 664.73 771.37 739.95 

DORsm 739.20 724.49 759.70 625.93 1010.94 654.18 829.20 955.45 908.10 

AD 710.52 530.64 707.36 509.14 933.33 562.48 650.16 718.36 726.77 

HY 912.22 449.00 684.05 445.60 885.77 766.83 763.63 708.17 691.49 

ARH 697.02 246.12 446.55 394.21 776.16 526.03 765.37 684.29 699.34 

ADP 916.67 358.25 632.37 410.92 905.57 739.81 821.80 723.03 648.11 

AHN 898.72 445.45 650.43 440.86 879.34 716.36 786.07 751.71 710.06 

A13 889.18 664.83 833.02 574.50 980.00 763.20 824.92 783.77 781.41 

MB 920.67 793.93 788.32 590.22 1041.19 615.08 644.43 845.51 702.16 

IC 1029.18 1289.43 1096.39 751.61 1438.99 694.66 630.47 1024.37 806.88 

APN 1049.56 832.80 867.45 683.94 1090.88 584.14 588.78 837.74 666.08 

SNc 795.22 759.98 734.68 573.06 976.72 478.87 468.03 658.41 510.82 

P 493.76 318.81 482.09 263.62 579.83 333.32 431.94 550.02 587.69 

KF 507.24 482.30 661.72 282.48 563.46 354.57 561.88 776.05 891.69 

Acs5 636.43 357.36 700.60 377.53 798.93 459.86 557.17 738.23 745.40 

CS 812.85 560.07 754.40 447.45 967.60 476.53 476.94 612.59 637.48 

MY 660.51 364.51 482.57 261.65 436.11 314.62 632.36 548.89 508.50 

AP 764.94 794.94 793.32 447.33 733.75 381.68 857.35 1004.94 830.18 

ACVI 1001.85 606.15 878.32 445.09 724.62 482.96 942.05 1004.80 894.96 

CB 761.08 609.37 606.03 297.01 551.35 445.34 549.30 724.44 766.69 

FN 1007.05 1152.18 1261.14 485.80 483.46 814.84 1016.73 1343.19 1311.83 

oct 671.42 523.78 522.04 357.37 587.50 381.05 504.58 592.97 525.37 

Supplementary table 5 

Quantification of the local vascular length per volume in the C57BL/6J, CD1 and BALB/c 
samples in the microscopy space. Units are in mm/mm3.   



  
  

 

Cluster BL6#1 BL6#2 BL6#3 CD1#1 CD1#2 CD1#3 
BALBC 

#1 
BALBC 

#2 
BALBC 

#3 

FRP 23524 35671 20593 7322 19611 2991 9357 15228 19019 

MO 39776 46880 24446 17511 39601 13432 38467 33505 27601 

SS 50955 63539 43967 22296 62891 29549 34831 35821 26155 

GU 44052 41461 29646 25455 65769 38823 24384 26636 24383 

VISC 38342 44642 30287 20389 61105 29690 15299 21212 20002 

AUD 30604 54404 29622 26250 41971 27252 35903 42101 35349 

VIS 31402 48335 27079 14373 37617 16370 29846 38792 29951 

ACA 36955 29816 22417 16131 47382 19575 23352 30328 22768 

PL 38603 29477 19432 13501 35750 20427 19472 27722 27366 

ILA 37816 16328 10361 17993 30320 25411 15359 22456 19290 

ORB 57233 37077 27086 17922 44024 21437 23985 31380 28755 

AI 38586 35276 22411 15510 37532 21014 27625 24993 23888 

RSP 48191 42920 25043 13611 49439 20492 20279 39112 27817 

PTL 18202 48296 27920 16219 34279 15116 31532 34435 25245 

TE 19758 40058 22684 18874 40247 18696 20737 32153 24805 

PERI 17292 28715 19853 8909 29664 11527 13559 19521 19375 

ECT 15504 29570 19494 11924 33371 13125 14312 24089 21435 

OLF 36378 17766 23892 13782 51825 24895 28538 29626 26177 

AOB 42498 30535 23087 12246 42653 19413 23379 20805 28818 

AOBgr 22467 12598 22046 6260 21666 14139 24596 23304 20363 

AON 50084 21192 20271 16628 36730 20329 27574 26851 24663 

TT 33906 9083 15401 12692 29852 23552 26186 23141 26906 

DP 34126 12167 10567 15050 30600 28553 16172 23805 20569 

PIR 38037 29002 28671 12779 36128 25360 33170 29812 25456 

COA 14709 13070 16841 5710 20309 13039 21850 19152 18728 

PAA 14677 9006 17760 4614 23225 15644 21464 21229 18715 

TR 20034 18850 17977 6664 26085 11179 19672 19929 20081 

CA 20639 18296 16823 11043 23758 14272 14845 18935 14943 

CA1sp 19524 13929 15313 9210 19295 12350 10362 15826 13496 

ENT 23338 37302 21371 12602 35910 14294 20336 26644 20433 

PAR 33758 35125 26234 16274 55377 19536 28754 45529 22765 

POST 35759 47237 37547 18518 34643 20191 26600 37512 22960 

PRE 27593 41367 39199 13187 49737 26456 31537 39650 24860 

SUB 32851 34550 29948 17240 39242 22657 23730 30609 20162 

ProS 28791 19378 13664 13342 30513 8940 13334 15221 11472 

CLA 38557 24851 20872 10496 28508 21857 19897 21760 16148 

EP 30218 22047 18339 8850 25408 16373 17539 18654 16472 

LA 17633 13708 11816 8513 23186 9707 11928 15858 13448 

BLA 19702 15504 16330 7315 24692 13087 19321 19902 17472 

BMA 21083 16502 18569 10279 24232 19367 20990 20558 20019 

PA 23221 17257 19099 8729 23440 16623 34509 25428 20982 

CP 33159 19558 21393 11784 30174 17953 12657 18690 11997 



  
  

 

ACB 23144 10253 17072 7649 26037 14381 30581 26629 19925 

LS 17041 6650 11918 9003 23904 16428 6785 8262 7815 

AAA 25446 13541 16447 9484 20930 21667 21657 18400 18885 

GPe 24976 12139 16739 7940 22108 10753 11803 15073 14772 

MA 30875 11542 17445 5815 27084 16355 24868 18066 13439 

MS 33886 10198 23886 7692 36461 23346 23606 16646 17413 

BAC 24068 5733 11756 5953 19364 12447 8833 8980 7237 

BS 21273 13001 18448 11699 24688 16487 15851 21019 18710 

DORsm 22144 18236 20772 15104 33095 17050 23086 29349 26033 

AD 20509 11571 17748 10779 28015 13326 15526 17775 17721 

HY 30920 9484 18077 9572 28510 23337 20581 18623 17708 

ARH 22573 4768 10441 7879 22499 13528 20835 18703 18226 

ADP 32210 6960 16226 8228 30795 22818 24216 18872 16923 

AHN 30442 9800 16367 9025 28260 20526 21359 20148 18619 

A13 30072 17325 25442 14771 33976 23269 25072 23658 22269 

MB 31271 21590 21256 13718 37148 16118 15306 23874 17994 

IC 37799 50760 38351 19526 61811 19891 15307 33208 23985 

APN 37315 22166 25184 16654 39738 14876 12846 23064 16041 

SNc 25162 19831 18732 12978 32327 10200 9374 16264 10874 

P 14324 6858 12292 5169 17488 7196 10549 14639 16594 

KF 13943 12055 19606 5494 15559 7478 14543 22827 28922 

Acs5 18747 6484 19025 7513 23303 10724 13977 19301 20227 

CS 25654 11964 19787 9253 31869 9706 9184 14091 15509 

MY 23133 9594 14425 5800 13704 8325 20281 17362 15108 

AP 25007 23692 25283 10523 25399 9100 27271 35320 26199 

ACVI 37345 13709 25953 9118 21117 11687 28554 33776 27172 

CB 26645 18278 19501 6460 17132 12011 15181 23935 26402 

FN 36062 42105 51586 10895 10967 26773 37518 55981 54320 

oct 21725 13587 13891 7346 16906 9292 12936 15907 13310 

Supplementary table 6 

Quantification of the number of bifurcation points in the C57BL/6J, CD1 and BALB/c 
samples in the microscopy space, units are in counts/mm3.  



  
  

 

Cluster BL6#1 BL6#2 BL6#3 CD1#1 CD1#2 CD1#3 
BALBC 

#1 
BALBC 

#2 
BALBC 

#3 

FRP 6.17 7.04 7.00 10.60 6.79 7.98 7.33 6.95 7.09 

MO 6.21 7.21 6.88 6.25 6.11 6.58 7.35 7.71 7.52 

SS 6.43 7.40 7.14 6.37 6.50 6.76 7.40 7.78 7.51 

GU 6.63 8.05 8.03 6.43 7.10 7.15 8.45 8.27 8.26 

VISC 6.68 7.97 7.28 6.89 6.98 7.35 7.60 7.72 7.02 

AUD 6.06 7.13 6.80 6.41 5.90 6.42 7.74 8.00 7.51 

VIS 6.21 7.03 6.80 6.25 6.10 6.25 7.44 7.93 7.42 

ACA 7.01 7.06 7.48 6.59 6.95 7.36 9.44 10.37 8.38 

PL 6.52 7.44 6.87 6.41 6.35 7.01 7.99 8.38 8.24 

ILA 6.95 7.28 7.26 6.93 6.45 7.05 8.05 8.73 8.08 

ORB 6.81 7.24 7.01 6.71 6.31 6.55 7.51 7.30 7.92 

AI 6.42 7.55 7.43 6.44 6.46 6.82 8.15 8.18 7.58 

RSP 6.31 6.90 6.89 6.35 6.40 6.70 7.72 8.21 8.35 

PTL 6.11 7.03 6.81 6.08 6.13 6.29 7.58 7.87 7.47 

TE 6.12 7.24 6.81 6.13 5.94 5.98 7.47 7.90 7.25 

PERI 6.39 7.26 6.99 6.06 6.21 6.08 7.62 7.71 7.52 

ECT 6.38 7.13 6.85 6.10 6.07 5.98 7.64 7.96 7.42 

OLF 6.88 7.31 7.41 6.79 6.60 7.43 7.62 7.76 7.55 

AOB 6.45 8.09 7.74 6.49 7.39 7.31 7.91 8.34 7.34 

AOBgr 7.87 8.01 8.44 7.75 7.05 8.80 8.11 7.49 7.42 

AON 6.46 6.83 7.25 6.43 6.61 6.74 7.71 7.89 8.05 

TT 8.57 7.59 8.58 7.61 6.92 8.76 8.73 8.01 7.83 

DP 6.64 7.04 7.44 6.39 6.33 7.61 8.32 7.98 8.22 

PIR 6.54 7.14 7.67 6.43 6.53 7.03 8.20 8.08 7.66 

COA 6.48 6.99 7.47 6.90 6.53 6.86 9.06 8.81 7.93 

PAA 6.67 6.77 7.76 7.28 6.47 7.36 8.76 8.23 7.72 

TR 6.49 7.43 7.39 6.31 6.57 5.98 8.20 9.07 7.62 

CA 7.68 7.46 7.94 7.71 6.72 8.11 11.78 12.43 9.66 

CA1sp 7.02 6.69 7.25 6.37 6.22 8.57 7.80 7.65 8.29 

ENT 6.26 7.24 6.95 6.24 6.74 6.67 7.55 8.11 7.53 

PAR 7.32 6.92 7.00 6.48 6.81 7.61 7.39 7.46 7.26 

POST 7.29 7.83 8.19 7.91 6.93 7.63 8.17 7.66 8.83 

PRE 9.85 7.81 7.60 9.12 7.27 8.70 10.48 7.45 10.80 

SUB 7.01 7.50 7.57 7.01 7.19 6.76 7.54 7.69 7.37 

ProS 6.31 7.04 7.13 6.41 6.30 6.58 7.58 7.99 8.00 

CLA 6.65 7.22 7.85 6.36 6.88 7.00 8.64 8.15 7.62 

EP 6.50 7.25 7.68 6.37 6.59 6.83 8.54 8.33 7.81 

LA 6.24 6.39 7.19 6.31 6.41 6.57 8.89 8.89 8.11 

BLA 6.25 6.75 7.62 6.31 6.57 6.54 8.89 8.88 8.19 

BMA 6.38 6.61 7.66 6.53 6.74 7.14 9.16 8.87 8.61 

PA 6.18 6.72 7.42 6.18 6.25 6.50 8.57 8.62 7.79 

CP 6.90 6.70 7.62 6.77 6.61 7.54 7.90 8.02 7.66 



  
  

 

ACB 6.48 6.14 7.11 6.65 6.17 6.87 7.74 7.52 7.03 

LS 6.15 6.40 7.33 6.46 6.87 6.44 7.02 7.47 7.14 

AAA 6.89 6.81 7.54 7.79 6.94 7.88 9.10 8.24 8.37 

GPe 6.57 6.21 7.39 6.54 6.66 7.29 7.75 7.95 7.55 

MA 6.83 6.31 7.53 6.93 6.36 7.22 7.68 7.41 7.42 

MS 6.90 6.83 7.66 7.57 7.07 8.80 7.28 7.65 7.38 

BAC 6.69 7.60 8.04 6.00 7.16 6.09 7.27 7.78 7.34 

BS 6.36 6.57 7.16 6.45 6.47 6.69 7.70 7.66 7.37 

DORsm 6.42 6.68 7.30 6.43 6.40 6.52 7.90 7.64 7.67 

AD 6.21 6.41 6.93 6.41 6.21 6.67 7.35 7.26 7.15 

HY 6.65 6.33 7.43 6.70 6.70 7.79 7.77 7.98 7.43 

ARH 6.51 6.88 7.51 6.85 6.87 8.65 7.34 7.82 6.86 

ADP 7.55 8.47 8.82 9.63 7.28 8.99 7.67 7.92 7.49 

AHN 6.81 6.69 7.73 6.74 6.59 7.47 7.49 7.81 7.32 

A13 6.78 6.51 7.31 6.97 7.36 7.86 8.11 7.36 7.31 

MB 6.37 6.92 7.68 6.17 6.60 6.51 7.62 7.82 7.56 

IC 6.45 6.71 6.82 6.32 7.02 6.71 7.90 8.18 7.62 

APN 6.43 6.84 7.20 6.08 6.58 6.39 7.43 7.43 7.19 

SNc 6.92 7.59 7.89 6.78 6.65 6.88 7.79 8.26 7.81 

P 6.99 6.92 7.30 6.96 6.72 7.65 7.27 7.83 7.46 

KF 6.54 6.71 6.77 7.28 6.76 7.61 7.56 7.30 7.19 

Acs5 6.58 6.37 6.94 6.92 6.21 7.24 7.38 7.26 7.21 

CS 6.37 6.11 6.80 5.70 6.13 6.29 7.04 7.51 7.32 

MY 6.59 6.49 7.08 6.52 6.85 6.86 7.76 8.21 7.51 

AP 6.15 6.37 6.62 6.25 6.67 5.90 7.11 7.67 6.89 

ACVI 6.89 6.37 7.05 6.80 6.65 6.36 7.50 7.98 7.38 

CB 6.53 7.09 8.01 7.66 6.94 7.20 7.47 8.13 7.67 

FN 6.30 6.44 7.01 6.40 6.05 6.27 7.37 7.13 7.14 

oct 6.93 6.90 7.36 6.80 6.77 7.12 7.77 7.89 7.37 

Supplementary table 7 

Quantification of the radii in the C57BL/6J, CD1 and BALB/c samples in the microscopy 
space, units are in μm.  



  
  

 

Cluster BL6#1 BL6#2 BL6#3 CD1#1 CD1#2 CD1#3 
BALBC 

#1 
BALBC 

#2 
BALBC 

#3 

FRP 513.82 798.55 523.34 205.47 425.49 104.89 273.85 416.65 449.20 

MO 748.27 879.58 589.07 468.95 780.32 363.00 742.96 723.58 636.58 

SS 872.71 1029.32 829.81 554.34 1035.76 637.42 728.90 736.09 618.47 

GU 820.40 804.59 666.22 629.23 1049.95 803.98 600.63 597.20 588.15 

VISC 725.61 816.54 656.18 520.71 1010.32 650.06 475.67 546.08 553.35 

AUD 663.33 969.64 668.40 634.92 814.85 608.00 760.86 830.61 766.07 

VIS 663.10 887.08 632.79 418.62 752.73 432.92 691.42 783.77 686.91 

ACA 734.28 704.20 560.42 446.24 854.84 494.68 581.45 709.58 559.57 

PL 763.19 714.03 528.44 402.49 739.04 502.46 554.37 657.87 644.36 

ILA 765.83 521.75 359.05 519.92 709.60 629.88 522.47 630.98 557.01 

ORB 970.56 793.58 643.17 504.55 864.11 535.22 620.79 734.78 671.63 

AI 745.66 746.30 573.08 450.08 770.26 520.61 654.50 606.86 606.28 

RSP 866.37 833.53 589.71 397.26 882.77 502.00 554.10 780.90 639.93 

PTL 421.05 879.85 597.98 439.56 721.62 402.40 690.29 730.74 584.46 

TE 497.22 815.75 581.53 513.97 795.62 489.01 574.86 719.72 633.72 

PERI 448.91 668.78 545.75 310.20 653.38 346.93 463.21 532.25 553.12 

ECT 439.39 694.61 539.88 384.91 715.51 388.97 471.36 616.33 589.65 

OLF 655.50 377.57 515.16 359.59 879.66 552.47 593.31 624.46 559.64 

AOB 781.75 602.76 486.84 374.00 781.45 531.24 578.77 513.32 592.68 

AOBgr 498.57 361.81 551.62 232.89 549.29 393.51 566.35 577.94 517.54 

AON 890.12 555.11 535.43 475.33 767.80 517.29 631.93 660.44 613.00 

TT 680.10 289.00 439.91 367.52 656.28 559.24 580.03 558.74 582.04 

DP 702.70 414.25 372.45 458.99 675.98 675.29 522.35 625.20 559.19 

PIR 723.98 637.98 643.88 382.58 733.64 587.21 685.85 662.54 606.37 

COA 370.70 363.07 491.36 216.09 518.72 369.35 497.68 476.89 503.36 

PAA 370.96 236.65 477.60 191.62 594.10 432.22 471.72 505.09 453.47 

TR 509.17 517.92 515.96 260.66 606.92 351.59 491.50 500.97 546.27 

CA 491.89 508.66 470.52 357.07 564.53 394.46 443.78 525.47 454.25 

CA1sp 469.59 431.62 451.56 316.66 502.04 357.42 369.40 490.13 434.14 

ENT 527.91 769.72 512.26 368.92 696.84 371.37 535.30 603.18 531.58 

PAR 627.90 675.76 549.65 433.44 899.59 429.56 631.95 857.43 551.24 

POST 737.01 885.88 780.95 508.43 718.40 498.96 621.53 783.85 565.34 

PRE 616.44 823.57 811.75 415.26 915.88 611.49 698.27 821.34 630.84 

SUB 677.64 743.15 680.67 492.99 758.94 552.69 597.04 711.13 549.90 

ProS 585.27 488.89 381.33 357.25 633.82 277.35 384.50 419.20 358.24 

CLA 754.07 629.10 558.94 376.01 645.32 561.16 559.61 586.62 491.09 

EP 643.43 589.43 519.83 322.98 613.71 464.44 511.75 532.33 501.80 

LA 444.29 464.75 398.06 328.65 578.55 328.14 414.32 479.44 450.76 

BLA 476.53 482.49 488.25 285.23 612.01 410.70 542.62 558.78 525.62 

BMA 506.65 494.13 510.97 346.57 588.88 510.07 554.84 554.43 556.47 

PA 535.89 504.04 535.23 316.64 562.73 436.23 714.75 628.06 574.03 

CP 664.96 538.42 549.63 375.64 673.60 473.32 419.35 524.57 386.37 



  
  

 

ACB 518.80 334.67 487.95 275.81 599.69 393.23 660.25 638.26 518.50 

LS 456.27 287.93 406.75 328.32 574.59 470.23 293.36 331.35 311.69 

AAA 538.61 432.88 475.22 323.99 522.85 528.80 544.59 511.23 525.89 

GPe 571.48 413.32 489.14 280.55 571.24 346.60 386.42 455.60 451.12 

MA 638.32 391.65 496.22 228.30 623.58 442.19 599.09 514.38 413.41 

MS 687.63 361.85 588.15 280.67 704.56 544.62 556.44 478.30 456.55 

BAC 558.57 262.03 396.06 232.21 498.48 365.27 329.17 335.82 286.51 

BS 503.11 406.84 509.32 369.95 583.33 447.38 474.51 550.62 528.20 

DORsm 527.66 517.16 542.30 446.81 721.64 466.98 591.91 682.03 648.23 

AD 507.19 378.78 504.93 363.44 666.24 401.52 464.10 512.79 518.79 

HY 651.17 320.51 488.30 318.08 632.29 547.38 545.10 505.51 493.61 

ARH 497.55 175.69 318.76 281.40 554.05 375.50 546.34 488.47 499.21 

ADP 654.35 255.73 451.40 293.33 646.42 528.10 586.63 516.12 462.64 

AHN 641.53 317.97 464.29 314.70 627.70 511.36 561.12 536.59 506.86 

A13 634.72 474.57 594.64 410.09 699.55 544.80 588.85 559.48 557.79 

MB 657.20 566.73 562.73 421.31 743.23 439.06 460.01 603.55 501.22 

IC 734.66 920.44 782.63 536.52 1027.19 495.87 450.05 731.22 575.98 

APN 749.21 594.48 619.21 488.21 778.70 416.98 420.29 598.00 475.46 

SNc 567.65 542.50 524.44 409.07 697.21 341.83 334.09 469.99 364.64 

P 352.46 227.58 344.13 188.18 413.90 237.93 308.33 392.62 419.51 

KF 362.08 344.28 472.36 201.65 402.21 253.10 401.08 553.97 636.51 

Acs5 454.30 255.09 500.11 269.49 570.30 328.26 397.73 526.97 532.09 

CS 580.24 399.79 538.51 319.40 690.70 340.16 340.45 437.28 455.05 

MY 471.49 260.20 344.47 186.78 311.31 224.59 451.40 391.81 362.98 

AP 546.03 567.45 566.29 319.32 523.77 272.45 612.00 717.35 592.61 

ACVI 715.15 432.69 626.97 317.72 517.25 344.75 672.46 717.26 638.85 

CB 543.28 434.98 432.60 212.02 393.57 317.89 392.11 517.13 547.28 

FN 718.86 822.46 900.24 346.78 345.11 581.66 725.77 958.80 936.42 

oct 479.28 373.89 372.65 255.10 419.38 272.00 360.18 423.28 375.03 

Supplementary table 8 

Quantification of the local vascular length (per volume) in the C57BL/6J, CD1 and BALB/c 
samples in the anatomical space. Units are in mm/mm3.   



  
  

 

Cluster BL6#1 BL6#2 BL6#3 CD1#1 CD1#2 CD1#3 
BALBC 

#1 
BALBC 

#2 
BALBC 

#3 

FRP 14188 21513 12420 4416 11827 1804 5643 9184 11470 

MO 23989 28273 14743 10561 23884 8101 23199 20207 16646 

SS 30731 38321 26517 13447 37930 17821 21007 21604 15774 

GU 26568 25005 17880 15352 39666 23414 14706 16064 14706 

VISC 23124 26924 18266 12296 36853 17906 9227 12793 12063 

AUD 18457 32811 17865 15831 25313 16436 21653 25391 21319 

VIS 18939 29151 16331 8668 22687 9873 18000 23396 18064 

ACA 22288 17982 13520 9729 28576 11806 14084 18291 13732 

PL 23282 17778 11719 8143 21561 12320 11744 16719 16504 

ILA 22807 9847 6249 10852 18286 15325 9263 13544 11634 

ORB 34517 22361 16336 10809 26551 12929 14465 18925 17342 

AI 23271 21275 13516 9354 22635 12673 16661 15073 14407 

RSP 29064 25885 15103 8209 29817 12359 12230 23588 16777 

PTL 10978 29128 16839 9782 20674 9116 19017 20768 15225 

TE 11916 24159 13681 11383 24273 11275 12507 19391 14960 

PERI 10429 17318 11973 5373 17891 6952 8177 11773 11685 

ECT 9350 17833 11757 7191 20126 7916 8632 14528 12927 

OLF 21940 10715 14410 8312 31256 15014 17211 17867 15787 

AOB 25631 18415 13924 7386 25724 11708 14100 12548 17380 

AOBgr 13550 7598 13296 3775 13067 8527 14834 14055 12281 

AON 30206 12781 12226 10028 22152 12261 16630 16194 14875 

TT 20449 5478 9288 7655 18004 14204 15793 13956 16227 

DP 20581 7338 6373 9077 18455 17221 9754 14357 12405 

PIR 22940 17491 17291 7707 21789 15295 20005 17980 15353 

COA 8871 7883 10157 3444 12249 7864 13178 11551 11295 

PAA 8852 5432 10711 2783 14007 9435 12945 12803 11287 

TR 12082 11368 10842 4019 15732 6742 11864 12020 12111 

CA 12447 11034 10146 6660 14329 8608 8953 11420 9012 

CA1sp 11775 8401 9236 5555 11637 7448 6250 9545 8139 

ENT 14075 22497 12889 7601 21657 8621 12264 16069 12323 

PAR 20360 21184 15822 9815 33398 11782 17342 27459 13729 

POST 21566 28489 22645 11168 20893 12177 16043 22624 13847 

PRE 16641 24949 23641 7953 29997 15956 19020 23913 14993 

SUB 19812 20837 18062 10398 23667 13664 14311 18460 12160 

ProS 17364 11687 8241 8047 18403 5392 8042 9180 6919 

CLA 23254 14988 12588 6330 17193 13182 12000 13124 9739 

EP 18225 13296 11060 5338 15324 9875 10578 11250 9934 

LA 10635 8267 7126 5134 13984 5854 7194 9564 8110 

BLA 11882 9351 9849 4412 14892 7893 11652 12003 10537 

BMA 12715 9952 11199 6199 14615 11681 12659 12399 12074 

PA 14005 10408 11519 5265 14137 10026 20813 15336 12654 

CP 19999 11795 12902 7107 18198 10827 7634 11272 7236 



  
  

 

ACB 13958 6184 10296 4613 15703 8673 18443 16060 12017 

LS 10278 4011 7188 5430 14416 9908 4092 4983 4713 

AAA 15347 8166 9919 5720 12623 13067 13062 11097 11389 

GPe 15063 7321 10095 4789 13333 6485 7119 9091 8909 

MA 18621 6961 10521 3507 16335 9864 14998 10896 8105 

MS 20437 6150 14405 4639 21990 14080 14237 10039 10502 

BAC 14516 3457 7090 3590 11678 7507 5327 5416 4365 

BS 12830 7841 11126 7056 14889 9943 9560 12676 11284 

DORsm 13355 10998 12527 9109 19960 10283 13923 17700 15700 

AD 12369 6978 10704 6501 16896 8037 9363 10720 10688 

HY 18648 5720 10902 5773 17194 14075 12413 11232 10680 

ARH 13614 2876 6297 4752 13569 8159 12565 11280 10992 

ADP 19426 4198 9786 4962 18572 13762 14605 11382 10206 

AHN 18360 5911 9871 5443 17044 12379 12882 12151 11229 

A13 18137 10449 15344 8908 20491 14033 15121 14268 13430 

MB 18860 13021 12820 8274 22404 9721 9231 14399 10852 

IC 22796 30614 23129 11776 37278 11996 9232 20028 14466 

APN 22505 13368 15188 10044 23966 8972 7747 13910 9674 

SNc 15175 11960 11297 7827 19497 6152 5654 9809 6558 

P 8639 4136 7413 3118 10547 4340 6362 8829 10008 

KF 8409 7270 11824 3313 9383 4510 8771 13767 17443 

Acs5 11307 3911 11474 4531 14054 6468 8429 11640 12199 

CS 15472 7215 11933 5581 19220 5854 5539 8498 9354 

MY 13952 5786 8700 3498 8265 5021 12231 10471 9112 

AP 15082 14288 15248 6347 15318 5488 16447 21302 15801 

ACVI 22523 8268 15652 5499 12736 7048 17221 20370 16387 

CB 16070 11024 11761 3896 10333 7244 9155 14435 15923 

FN 21749 25394 31112 6571 6614 16147 22627 33762 32761 

oct 13102 8194 8378 4431 10196 5604 7802 9594 8028 

Supplementary table 9 

Quantification of the number of bifurcation points in the C57BL/6J, CD1 and BALB/c 
samples in the anatomical space, units are in counts/mm3. 

  



  
  

 

Cluster BL6#1 BL6#2 BL6#3 CD1#1 CD1#2 CD1#3 
BALBC 

#1 
BALBC 

#2 
BALBC 

#3 

FRP 7.30 8.33 8.28 12.55 8.03 9.44 8.68 8.22 8.39 

MO 7.35 8.54 8.15 7.40 7.23 7.79 8.69 9.13 8.90 

SS 7.61 8.75 8.45 7.54 7.69 8.00 8.76 9.21 8.89 

GU 7.85 9.52 9.50 7.61 8.40 8.46 10.00 9.78 9.77 

VISC 7.90 9.43 8.62 8.15 8.26 8.69 9.00 9.14 8.31 

AUD 7.18 8.44 8.05 7.59 6.99 7.60 9.17 9.47 8.88 

VIS 7.35 8.32 8.04 7.40 7.22 7.39 8.81 9.39 8.78 

ACA 8.29 8.35 8.86 7.79 8.23 8.71 11.18 12.27 9.92 

PL 7.72 8.81 8.13 7.58 7.51 8.30 9.46 9.92 9.75 

ILA 8.22 8.61 8.60 8.21 7.63 8.34 9.53 10.33 9.57 

ORB 8.06 8.57 8.29 7.94 7.46 7.76 8.88 8.64 9.37 

AI 7.60 8.93 8.79 7.63 7.64 8.07 9.64 9.69 8.97 

RSP 7.47 8.17 8.15 7.52 7.57 7.93 9.14 9.72 9.88 

PTL 7.23 8.32 8.06 7.19 7.25 7.45 8.97 9.32 8.84 

TE 7.25 8.57 8.06 7.26 7.03 7.08 8.85 9.36 8.59 

PERI 7.57 8.59 8.28 7.17 7.35 7.20 9.01 9.13 8.90 

ECT 7.55 8.43 8.11 7.22 7.18 7.08 9.05 9.42 8.78 

OLF 8.15 8.65 8.77 8.04 7.81 8.79 9.01 9.19 8.93 

AOB 7.63 9.57 9.16 7.68 8.75 8.66 9.36 9.87 8.69 

AOBgr 9.32 9.48 9.99 9.18 8.35 10.41 9.60 8.87 8.78 

AON 7.64 8.08 8.58 7.61 7.82 7.98 9.13 9.34 9.53 

TT 10.14 8.98 10.15 9.01 8.19 10.37 10.33 9.48 9.26 

DP 7.86 8.33 8.80 7.57 7.49 9.01 9.85 9.44 9.73 

PIR 7.74 8.45 9.08 7.61 7.73 8.32 9.70 9.57 9.07 

COA 7.67 8.28 8.84 8.16 7.72 8.11 10.72 10.43 9.39 

PAA 7.90 8.01 9.19 8.62 7.66 8.71 10.36 9.74 9.14 

TR 7.68 8.79 8.75 7.47 7.77 7.07 9.71 10.74 9.01 

CA 9.09 8.84 9.40 9.13 7.95 9.59 13.94 14.71 11.43 

CA1sp 8.30 7.92 8.59 7.54 7.36 10.15 9.23 9.06 9.81 

ENT 7.41 8.57 8.22 7.39 7.98 7.90 8.94 9.60 8.91 

PAR 8.66 8.20 8.28 7.67 8.06 9.01 8.75 8.84 8.59 

POST 8.63 9.27 9.69 9.36 8.20 9.03 9.67 9.07 10.45 

PRE 11.66 9.24 9.00 10.79 8.61 10.30 12.41 8.82 12.78 

SUB 8.30 8.87 8.97 8.30 8.51 8.00 8.93 9.11 8.72 

ProS 7.47 8.33 8.43 7.59 7.46 7.79 8.97 9.46 9.47 

CLA 7.87 8.54 9.29 7.53 8.14 8.29 10.23 9.65 9.02 

EP 7.69 8.58 9.09 7.54 7.80 8.08 10.11 9.86 9.24 

LA 7.39 7.57 8.51 7.47 7.58 7.78 10.52 10.52 9.60 

BLA 7.40 7.98 9.02 7.47 7.77 7.75 10.52 10.51 9.70 

BMA 7.56 7.83 9.07 7.73 7.97 8.45 10.84 10.50 10.19 

PA 7.32 7.95 8.78 7.31 7.40 7.70 10.14 10.20 9.22 

CP 8.17 7.93 9.02 8.01 7.82 8.92 9.35 9.50 9.06 



  
  

 

ACB 7.68 7.26 8.42 7.88 7.31 8.13 9.16 8.90 8.32 

LS 7.28 7.58 8.67 7.65 8.14 7.62 8.31 8.84 8.45 

AAA 8.16 8.06 8.93 9.23 8.21 9.33 10.77 9.75 9.91 

GPe 7.78 7.35 8.75 7.74 7.88 8.63 9.17 9.41 8.93 

MA 8.08 7.47 8.91 8.21 7.53 8.55 9.09 8.77 8.79 

MS 8.17 8.09 9.07 8.96 8.37 10.42 8.62 9.06 8.74 

BAC 7.92 8.99 9.52 7.11 8.47 7.20 8.61 9.21 8.69 

BS 7.53 7.77 8.47 7.64 7.65 7.92 9.11 9.07 8.73 

DORsm 7.60 7.91 8.64 7.61 7.57 7.72 9.35 9.04 9.08 

AD 7.35 7.58 8.20 7.59 7.35 7.90 8.70 8.59 8.46 

HY 7.88 7.49 8.79 7.93 7.93 9.22 9.20 9.44 8.79 

ARH 7.71 8.14 8.89 8.11 8.13 10.23 8.69 9.25 8.12 

ADP 8.94 10.03 10.44 11.40 8.62 10.64 9.08 9.38 8.87 

AHN 8.06 7.92 9.15 7.98 7.80 8.84 8.86 9.24 8.66 

A13 8.02 7.71 8.65 8.25 8.71 9.31 9.60 8.72 8.66 

MB 7.53 8.19 9.09 7.31 7.81 7.70 9.02 9.26 8.95 

IC 7.63 7.94 8.07 7.48 8.31 7.95 9.35 9.68 9.02 

APN 7.61 8.10 8.53 7.19 7.79 7.56 8.80 8.79 8.51 

SNc 8.19 8.98 9.33 8.03 7.88 8.14 9.21 9.78 9.25 

P 8.28 8.19 8.65 8.24 7.96 9.06 8.61 9.27 8.83 

KF 7.74 7.94 8.02 8.62 8.00 9.01 8.95 8.65 8.51 

Acs5 7.79 7.54 8.22 8.19 7.35 8.57 8.74 8.59 8.53 

CS 7.54 7.23 8.05 6.74 7.25 7.45 8.34 8.89 8.67 

MY 7.80 7.68 8.37 7.72 8.11 8.12 9.19 9.72 8.89 

AP 7.28 7.54 7.83 7.40 7.90 6.98 8.42 9.08 8.16 

ACVI 8.16 7.54 8.34 8.04 7.87 7.53 8.87 9.45 8.73 

CB 7.73 8.40 9.49 9.07 8.21 8.52 8.85 9.62 9.08 

FN 7.46 7.62 8.30 7.57 7.16 7.43 8.72 8.44 8.45 

oct 8.20 8.17 8.71 8.05 8.02 8.42 9.20 9.34 8.73 

Supplementary table 10 

Quantification of the radii in the C57BL/6J, CD1 and BALB/c samples in the anatomical 
space, units are in μm.

 

  



  
  

 

 
Brain 
region 

References Normalized vascular length 
Region-
match  

Quantified 
volume (µm) 

 
 

Reported 
(m/mm

3
) 

Measured by VesSAP 

   

 
 

microscopic 
space (m/mm

3
) 

anatomical 
space (m/mm

3
)   

Cortex Lugo-Hernandez et al.* 0.92 ± 0.17 1.28 ± 0.16 0.91 ± 0.11 yes 508×508×1500 

Cortex Tsai et al. **
,1
 0.88 ± 0.17 0.87 ± 0.13 0.63 ± 0.09 yes 256×1656×700 

Cortex Di Giovanna et al. *** 0.46 - 0.47 0.67 ± 0.03 0.48 ± 0.02 yes 361×361×350 

Cortex Zhang et al. ***
, α

 0.44 ± 0.04 1.47 ± 0.05 1.05 ± 0.04 no 504×504×886 

*: 3DISCO technique, image acquisition in low (3.2x) and in high resolution (12.6x) 

**: sucrose clearing of dissected dorsal cortex pieces 

***: CLARITY technique 

α: This study did not exactly define the quantified cortex regions and did not indicate a 

numerical correction for any potential volume change due to clearing2, which can explain the 

difference compared to our results.   

1 Tsai, P. S. et al. Correlations of neuronal and microvascular densities in murine cortex revealed by 
direct counting and colocalization of nuclei and vessels. Journal of Neuroscience 29, 14553-14570 (2009). 

2 Kim, J. H. et al. Optimizing tissue-clearing conditions based on analysis of the critical factors affecting 
tissue-clearing procedures. Scientific reports 8, 12815 (2018). 

 

Supplementary table 11 

Comparison of VesSAP measurements with those in existing literature. Each 
comparison is calculated from n=3 C57BL/6J animals and two ROIs per animal. Data 
is shown as mean ± SD.  



  
  

 

 

Cluster 
BL6 vs. 

CD1 
BL6 vs. 
BALBC 

CD1 vs. 
BLABC 

BL6 vs. 
CD1 

BL6 vs. 
BALBC 

CD1 vs. 
BLABC 

BL6 vs. 
CD1 

BL6 vs. 
BALBC 

CD1 vs. 
BLABC 

Average: 
Local 
length 

Local 
length 

Local 
length 

Local 
bifurc. 

Local 
bifurc. 

Local 
bifurc. 

Local 
radius 

Local 
radius 

Local 
radius 

FRP 0.41 0.09 -0.38 0.36 0.26 -0.17 0.31 -1.30 -1.49 

MO 0.39 0.07 -0.37 0.35 0.24 -0.16 0.37 -1.31 -1.59 

SS 0.38 0.07 -0.36 0.34 0.24 -0.15 0.36 -1.31 -1.59 

GU 0.38 0.05 -0.38 0.34 0.22 -0.17 0.36 -1.31 -1.58 

VISC 0.40 0.03 -0.41 0.36 0.21 -0.20 0.34 -1.31 -1.56 

AUD 0.41 0.01 -0.45 0.37 0.18 -0.24 0.34 -1.33 -1.57 

VIS 0.41 0.01 -0.45 0.37 0.19 -0.24 0.34 -1.32 -1.56 

ACA 0.40 0.01 -0.44 0.36 0.19 -0.22 0.33 -1.31 -1.54 

PL 0.40 0.00 -0.44 0.36 0.18 -0.23 0.33 -1.30 -1.54 

ILA 0.39 0.00 -0.44 0.36 0.18 -0.23 0.32 -1.29 -1.52 

ORB 0.41 0.00 -0.45 0.37 0.17 -0.25 0.32 -1.27 -1.50 

AI 0.40 -0.02 -0.46 0.36 0.16 -0.25 0.31 -1.27 -1.49 

RSP 0.40 -0.02 -0.46 0.36 0.15 -0.25 0.30 -1.27 -1.47 

PTL 0.39 -0.04 -0.46 0.35 0.13 -0.26 0.29 -1.25 -1.45 

TE 0.39 -0.04 -0.46 0.34 0.14 -0.25 0.29 -1.24 -1.43 

PERI 0.39 -0.03 -0.46 0.35 0.13 -0.25 0.27 -1.23 -1.42 

ECT 0.38 -0.04 -0.46 0.34 0.13 -0.25 0.25 -1.22 -1.40 

OLF 0.38 -0.04 -0.45 0.34 0.12 -0.26 0.24 -1.22 -1.38 

AOB 0.40 -0.03 -0.47 0.36 0.13 -0.27 0.23 -1.22 -1.38 

AOBgr 0.40 -0.04 -0.48 0.36 0.12 -0.28 0.23 -1.23 -1.38 

AON 0.40 -0.03 -0.46 0.35 0.13 -0.26 0.23 -1.27 -1.42 

TT 0.40 -0.03 -0.46 0.35 0.12 -0.26 0.22 -1.25 -1.40 

DP 0.42 -0.02 -0.46 0.36 0.14 -0.26 0.22 -1.29 -1.42 

PIR 0.44 -0.01 -0.48 0.38 0.14 -0.27 0.21 -1.28 -1.40 

COA 0.44 -0.01 -0.48 0.38 0.14 -0.27 0.20 -1.27 -1.38 

PAA 0.44 0.01 -0.47 0.38 0.16 -0.26 0.20 -1.24 -1.35 

TR 0.46 0.03 -0.47 0.39 0.17 -0.25 0.20 -1.23 -1.34 

CA 0.45 0.03 -0.46 0.39 0.18 -0.24 0.18 -1.21 -1.31 

CA1sp 0.45 0.02 -0.46 0.39 0.18 -0.24 0.17 -1.34 -1.43 

ENT 0.45 0.02 -0.46 0.39 0.17 -0.25 0.18 -1.33 -1.44 

PAR 0.44 0.01 -0.46 0.38 0.16 -0.25 0.17 -1.31 -1.42 

POST 0.45 0.02 -0.46 0.40 0.17 -0.26 0.17 -1.32 -1.43 

PRE 0.43 0.00 -0.46 0.37 0.15 -0.26 0.17 -1.35 -1.44 

SUB 0.44 -0.01 -0.47 0.38 0.14 -0.26 0.19 -1.58 -1.65 

ProS 0.43 -0.03 -0.48 0.37 0.12 -0.28 0.17 -1.60 -1.65 

CLA 0.43 -0.05 -0.51 0.37 0.10 -0.30 0.16 -1.58 -1.61 

EP 0.42 -0.07 -0.51 0.36 0.07 -0.31 0.14 -1.58 -1.58 



  
  

 

LA 0.41 -0.09 -0.51 0.35 0.05 -0.31 0.11 -1.57 -1.53 

BLA 0.41 -0.09 -0.52 0.35 0.05 -0.32 0.11 -1.53 -1.48 

BMA 0.41 -0.08 -0.51 0.35 0.06 -0.31 0.09 -1.52 -1.43 

PA 0.41 -0.07 -0.50 0.36 0.07 -0.31 0.09 -1.51 -1.40 

CP 0.40 -0.04 -0.47 0.35 0.10 -0.28 0.06 -1.48 -1.33 

ACB 0.40 -0.08 -0.50 0.34 0.06 -0.31 0.06 -1.46 -1.31 

LS 0.40 -0.04 -0.47 0.35 0.09 -0.28 0.06 -1.45 -1.29 

AAA 0.43 -0.06 -0.52 0.38 0.08 -0.33 0.06 -1.46 -1.28 

GPe 0.44 -0.05 -0.52 0.38 0.09 -0.32 0.09 -1.45 -1.31 

MA 0.43 -0.07 -0.52 0.38 0.07 -0.33 0.10 -1.41 -1.27 

MS 0.42 -0.07 -0.52 0.38 0.07 -0.33 0.10 -1.40 -1.26 

BAC 0.43 -0.09 -0.55 0.40 0.06 -0.36 0.16 -1.42 -1.39 

BS 0.44 -0.12 -0.59 0.41 0.03 -0.40 0.09 -1.51 -1.36 

DORsm 0.45 -0.11 -0.59 0.42 0.04 -0.41 0.08 -1.46 -1.31 

AD 0.47 -0.07 -0.59 0.44 0.07 -0.40 0.05 -1.41 -1.23 

HY 0.49 -0.06 -0.60 0.46 0.08 -0.42 0.05 -1.40 -1.20 

ARH 0.52 -0.05 -0.62 0.49 0.08 -0.44 0.07 -1.35 -1.19 

ADP 0.58 0.01 -0.60 0.52 0.12 -0.43 0.12 -1.38 -1.31 

AHN 0.63 0.04 -0.62 0.57 0.13 -0.45 0.23 -1.82 -1.97 

A13 0.66 0.07 -0.63 0.60 0.15 -0.47 0.22 -1.87 -1.99 

MB 0.70 0.07 -0.66 0.64 0.15 -0.50 0.33 -1.85 -2.19 

IC 0.72 0.04 -0.71 0.66 0.12 -0.55 0.26 -1.87 -2.07 

APN 0.83 -0.07 -0.89 0.79 -0.01 -0.75 0.28 -1.75 -1.98 

SNc 0.89 -0.17 -1.03 0.86 -0.11 -0.90 0.20 -1.74 -1.91 

P 0.94 -0.28 -1.22 0.91 -0.20 -1.07 0.08 -1.98 -1.79 

KF 1.04 -0.26 -1.29 0.99 -0.19 -1.12 0.10 -2.03 -1.89 

Acs5 1.05 -0.19 -1.20 1.01 -0.13 -1.06 0.26 -1.96 -2.14 

CS 1.19 -0.14 -1.24 1.13 -0.11 -1.11 0.34 -1.91 -2.25 

MY 1.34 -0.24 -1.53 1.29 -0.21 -1.41 0.27 -1.86 -2.21 

AP 1.51 -0.25 -1.65 1.40 -0.22 -1.48 0.31 -1.64 -2.03 

ACVI 1.42 -0.18 -1.49 1.37 -0.15 -1.38 0.34 -1.61 -2.08 

CB 1.34 -0.08 -1.26 1.34 -0.09 -1.19 0.30 -1.35 -1.74 

FN 1.31 -0.07 -1.21 1.32 -0.10 -1.18 0.65 -1.74 -2.43 

oct 1.21 0.46 -1.04 1.08 0.68 -0.77 0.73 -2.34 -3.32 

Supplementary table 12 

Statistical estimation of the difference between the local properties of the 
neurovasculature in the C57BL/6J, CD1 and BALB/c samples using Cohen’s d. Each 
comparison is calculated from n=3 animals per strain. 
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1. Theory - clDice in Digital Topology
In addition to our Theorem 1 in the main paper, we are

providing intuitive interpretations of clDice from the digital
topology perspective. Betti numbers describe and quantify
topological differences in algebraic topology. The first three
Betti numbers (β0, β1, and β2) comprehensively capture
the manifolds appearing in 2D and 3D topological space.
Specifically,

• β0 represents the number of connected-components,
• β1 represents the number of circular holes, and
• β2 represents the number of cavities (Only in 3D)

Figure 1. Examples of the topology properties. Left, a hole in 2D,
in the middle a hole in 3D and right a cavity inside a sphere in 3D.

Using the concepts of Betti numbers and digital topology
by Kong et al. [3, 6], we formulate the effect of topological
changes between a true binary mask (VL) and a predicted
binary mask (VP ) in Fig. 2. We will use the following defi-
nition of ghosts and misses, see Figure 2.

1. Ghosts in skeleton: We define ghosts in the predicted
skeleton (SP ) when SP 6⊂ VL. This means the pre-
dicted skeleton is not completely included in the true
mask. In other words, there exist false-positives in the
prediction, which survive after skeletonization.

2. Misses in skeleton: We define misses in the predicted
skeleton (SP ) when SL 6⊂ VP . This means the true
skeleton is not completely included in the predicted
mask. In other words, there are false-negatives in the
prediction, which survive after skeletonization.

The false positives and false negatives are denoted by
VP \VL and VL\VP , respectively, where \ denotes a set dif-
ference operation. The loss function aims to minimize both

*The authors contributed equally to the work

errors. We call an error correction to happen when the value
of a previously false-negative or false-positive voxel flips
to a correct value. Commonly used voxel-wise loss func-
tions, such as Dice-loss, treat every false-positive and false-
negative equally, irrespective of the improvement in regards
to topological differences upon their individual error cor-
rection. Thus, they cannot guarantee homotopy equivalence
until and unless every single voxel is correctly classified. In
stark contrast, we show in the following proposition that
clDice guarantees homotopy equivalence under a minimum
error correction.

Proposition 1. For any topological differences between VP
and VL, achieving optimal clDice to guarantee homotopy
equivalence requires a minimum error correction of VP .

Proof. From Fig 2, any topological differences between
VP and VL will result in ghosts or misses in the foreground
or background skeleton. Therefore, removing ghosts and
misses are sufficient conditions to remove topological dif-
ferences. Without the loss of generalizability, we consider
the case of ghosts and misses separately:

For a ghost g ⊂ SP ,∃ a set of predicted voxels E1 ⊂
{VP \ VL} such that VP \ E1 does not create any misses
and removes g. Without the loss of generalizability, let’s
assume that there is only one ghost g. Now, to remove g,
under a minimum error correction of VP , we have to min-
imize |E1|. Let’s say an optimum solution E1min exists.
By construction, this implies that VP \ E1min removes g.

For a miss m ⊂ V {
P ,∃ a set of predicted voxels E2 ⊂

{VL \ VP } such that VP ∪ E2 does not create any ghosts
and removes m. Without the loss of generalizability, let’s
assume that there is only one miss m. Now, to remove
m, under a minimum error correction of VP , we have to
minimize |E2|. Let’s say an optimum solution E2min

exists. By construction, this implies that VP ∪ E2min

removes m.

Thus, in the absence of any ghosts and misses, from
Lemma 1.1, clDice=1 for both foreground and background.
Finally, Therefore, Theorem 1 (from the main paper) guar-
antees homotopy equivalence.

Lemma 1.1. In the absence of any ghosts and misses
clDice=1.



I. New CC  is created

II. CC are merged

III. A CC is deleted

IV. New hole is created

V. Holes are merged

VI. A hole is deleted

VII. New cavity is created

VIII. Cavities are merged

IX. A Cavity is deleted
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Figure 2. Upper part, left, taxonomy of the iff conditions to preserve topology in 3D using the concept of Betti numbers [3, 4]; interpreted
as the necessary violation of skeleton properties for any possible topological change in the terminology of ghosts and misses (upper part
right) . Lower part, intuitive depictions of ghosts and misses in the prediction; for the skeleton of the foreground (left) and the skeleton of
the background (right).

Proof. The absence of any ghosts SP ∈ VL implies
Tprec = 1; and the absence of any misses SL ∈ VP implies
Tsens = 1. Hence, clDice=1.

1.1. Interpretation of the Adaption to Highly Un-
balanced Data According to Digital Topology:

Considering the adaptions we described in the main
text, the following provides analysis on how these assump-
tions and adaptions are funded in the concept of ghosts
and misses, described in the previous proofs. Importantly,
the described adaptions are not detrimental to the perfor-
mance of clDice for our datasets. We attribute this to the
non-applicability of the necessary conditions specific to the
background (i.e. II, IV, VI, VII, and IX in Figure 1), as
explained below:

• II. → In tubular structures, all foreground objects are

eccentric (or anisotropic). Therefore isotropic skele-
tonization will highly likely produce a ghost in the
foreground.

• IV.→ Creating a hole outside the labeled mask means
adding a ghost in the foreground. Creating a hole in-
side the labeled mask is extremely unlikely because no
such holes exist in our training data.

• VI.→ The deletion of a hole without creating a miss is
extremely unlikely because of the sparsity of the data.

• VII.and IX. (only for 3D) → Creating or removing a
cavity is very unlikely because no cavities exist in our
training data.

2. Additional Qualitative Results



Image Label Soft-Dice Ours

Figure 3. Qualitative results: for the Massachusetts Road dataset and for the DRIVE retina dataset (last row). From left to right, the real image, the label,
the prediction using soft-dice and the predictions using the proposed Lc(α = 0.5), respectively. The first three rows are U-Net results and the fourth row
is an FCN result. This indicates that soft-clDice segments road connections which the soft-dice loss misses. Some, but not all, missed connections are
indicated with solid red arrows, false positives are indicated with red-yellow arrows.



Image Label Soft-Dice Ours

Figure 4. Qualitative results: 2D slices of the 3D vessel dataset for different sized field of views. From left to right, the real image, the label, the
prediction using soft-dice and the U-Net predictions using Lc(α = 0.4), respectively. These images show that soft-clDice helps to better segment the vessel
connections. Importantly the networks trained using soft-dice over-segment the vessel radius and segments incorrect connections. Both of these errors are
not present when we train including soft-clDice in the loss. Some, but not all, false positive connections are indicated with red-yellow arrows.

3. Comparison to Other Literature:

A recent pre-print proposed a region-separation ap-
proach, which aims to tackle the issue by analysing discon-
nected foreground elements [5]. Starting with the predicted
distance map, a network learns to close ambiguous gaps by
referring to a ground truth map which is dilated by a five-
pixel kernel, which is used to cover the ambiguity. How-
ever, this does not generalize to scenarios with a close or

highly varying proximity of the foreground elements (as is
the case for e.g. capillary vessels, synaptic gaps or irregular
road intersections). Any two foreground objects which are
placed at a twice-of-kernel-size distance or closer to each
other will potentially be connected by the trained network.
This is facilitated by the loss function considering the gap
as a foreground due to performing dilation in the training
stage. Generalizing their approach to smaller kernels has
been described as infeasible in their paper [5].



4. Datasets and Training Routine

For the DRIVE vessel segmentation dataset, we perform
three-fold cross-validation with 30 images and deploy the
best performing model on the test set with 10 images. For
the Massachusetts Roads dataset, we choose a subset of 120
images (ignoring imaged without a network of roads) for
three-fold cross-validation and test the models on the 13 of-
ficial test images. For CREMI, we perform three-fold cross-
validation on 324 images and test on 51 images. For the 3D
synthetic dataset. we perform experiments using 15 vol-
umes for training, 2 for validation, and 5 for testing. For the
Vessap dataset, we use 11 volumes for training, 2 for vali-
dation and 4 for testing. In each of these cases, we report
the performance of the model with the highest clDice score
on the validation set.

5. Network Architectures

We use the following notation: In(input channels),
Out(output channels),
B(output channels) present input, output, and bottleneck
information(for U-Net); C(filter size, output channels)
denote a convolutional layer followed by ReLU and batch-
normalization; U(filter size, output channels) denote
a trans-posed convolutional layer followed by ReLU and
batch-normalization; ↓ 2 denotes maxpooling; ⊕ indicates
concatenation of information from an encoder block. We
had to choose a different FCN architecture for the Mas-
sachusetts road dataset because we realize that a larger
model is needed to learn useful features for this complex
task.

5.1. Drive Dataset

5.1.1 FCN :

IN(3 ch) → C(3, 5) → C(5, 10) → C(5, 20) →
C(3, 50)→ C(1, 1)→ Out(1)

5.1.2 Unet :

ConvBlock : CB(3, out size) ≡ C(3, out size) →
C(3, out size)→↓ 2

UpConvBlock: UB(3, out size) ≡ U(3, out size) →
⊕→ C(3, out size)

Encoder : IN(3 ch) → CB(3, 64) → CB(3, 128) →
CB(3, 256)→ CB(3, 512)→ CB(3, 1024)→ B(1024)

Decoder : B(1024) → UB(3, 1024) → UB(3, 512) →
UB(3, 256)→ UB(3, 128)→ UB(3, 64)→ Out(1)

5.2. Road Dataset

5.2.1 FCN :

IN(3 ch) → C(3, 10) → C(5, 20) → C(7, 30) →
C(11, 30) → C(7, 40) → C(5, 50) → C(3, 60) →
C(1, 1)→ Out(1)

5.2.2 Unet :

Same as Drive Dataset, except we used 2x2 up-convolutions
instead of bilinear up-sampling followed by a 2D-
convolution with kernel size 1.

5.3. Cremi Dataset

5.3.1 Unet :

Same as Road Dataset.

5.4. 3D Dataset

5.4.1 3D FCN :

IN(1 or 2 ch) → C(3, 5) → C(5, 10) → C(5, 20) →
C(3, 50)→ C(1, 1)→ Out(1)

5.4.2 3D Unet :

ConvBlock : CB(3, out size) ≡ C(3, out size) →
C(3, out size)→↓ 2

UpConvBlock: UB(3, out size) ≡ U(3, out size) →
⊕→ C(3, out size)

Encoder : IN(1 or 2 ch) → CB(3, 32) → CB(3, 64) →
CB(3, 128)→ CB(5, 256)→ CB(5, 512)→ B(512)

Decoder : B(512) → UB(3, 512) → UB(3, 256) →
UB(3, 128)→ UB(3, 64)→ UB(3, 32)→ Out(1)

Table 1. Total number of parameters for each of the architectures
used in our experiment.

Dataset Network Number of parameters
Drive FCN 15.52K

UNet 28.94M
Road FCN 279.67K
Cremi UNet 31.03M

3D FCN 2ch 58.66K
Unet 2ch 19.21M



6. Soft Skeletonization Algorithm
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Figure 5. Scheme of our proposed differentiable skeletonization.
On the top left the mask input is fed. Next, the input is reatedly
eroded and dilated. The resulting erosions and dilations are com-
pared to the image before dilation. The difference between thise
images is part of the skeleton and will be added iteratively to ob-
tain a full skeletonization. The ReLu operation eliminates pixels
that were generated by the dilation but are not part of the oirginal
or eroded image.

7. Code for the clDice similarity measure and
the soft-clDice loss (PyTorch):

7.1. clDice measure

from sk image . morphology import s k e l e t o n i z e
import numpy as np
def c l s c o r e ( v , s ) :

re turn np . sum ( v* s ) / np . sum ( s )
def c l D i c e ( v p , v l ) :

t p r e c = c l s c o r e ( v p , s k e l e t o n i z e ( v l ) )
t s e n s = c l s c o r e ( v l , s k e l e t o n i z e ( v p ) )
re turn 2* t p r e c * t s e n s / ( t p r e c + t s e n s )

7.2. soft-skeletonization in 2D

import t o r c h . nn . f u n c t i o n a l a s F
def s o f t e r o d e ( img ) :

p1 = −F . max pool2d ( − img , ( 3 , 1 ) , ( 1 , 1 ) , ( 1 , 0 ) )
p2 = −F . max pool2d ( − img , ( 1 , 3 ) , ( 1 , 1 ) , ( 0 , 1 ) )
re turn t o r c h . min ( p1 , p2 )

def s o f t d i l a t e ( img ) :
re turn F . max pool2d ( img , ( 3 , 3 ) , ( 1 , 1 ) , ( 1 , 1 ) )

def s o f t o p e n ( img ) :
re turn s o f t d i l a t e ( s o f t e r o d e ( img ) )

def s o f t s k e l ( img , i t e r ) :
img1 = s o f t o p e n ( img )
s k e l = F . r e l u ( img−img1 )
f o r j in range ( i t e r ) :

img = s o f t e r o d e ( img )
img1 = s o f t o p e n ( img )
d e l t a = F . r e l u ( img−img1 )
s k e l = s k e l + F . r e l u ( d e l t a − s k e l * d e l t a )

re turn s k e l

7.3. soft-skeletonization in 3D

import t o r c h . nn . f u n c t i o n a l a s F

def s o f t e r o d e ( img ) :
p1 = −F . max pool3d ( − img , ( 3 , 1 , 1 ) , ( 1 , 1 , 1 ) , ( 1 , 0 , 0 ) )
p2 = −F . max pool3d ( − img , ( 1 , 3 , 1 ) , ( 1 , 1 , 1 ) , ( 0 , 1 , 0 ) )
p3 = −F . max pool3d ( − img , ( 1 , 1 , 3 ) , ( 1 , 1 , 1 ) , ( 0 , 0 , 1 ) )

re turn t o r c h . min ( t o r c h . min ( p1 , p2 ) , p3 )

def s o f t d i l a t e ( img ) :
re turn F . max pool3d ( img , ( 3 , 3 , 3 ) , ( 1 , 1 , 1 ) , ( 1 , 1 , 1 ) )

def s o f t o p e n ( img ) :
re turn s o f t d i l a t e ( s o f t e r o d e ( img ) )

def s o f t s k e l ( img , i t e r ) :
img1 = s o f t o p e n ( img )
s k e l = F . r e l u ( img−img1 )
f o r j in range ( i t e r ) :

img = s o f t e r o d e ( img )
img1 = s o f t o p e n ( img )
d e l t a = F . r e l u ( img−img1 )
s k e l = s k e l + F . r e l u ( d e l t a − s k e l * d e l t a )

re turn s k e l

8. Evaluation Metrics
As discused in the text, we compare the performance of var-
ious experimental setups using three types of metrics: vol-
umetric, graph-based and topology-based.

8.1. Overlap-based:

Dice coefficient, Accuracy and clDice, we calculate
these scores on the whole 2D/3D volumes. clDice is calcu-
lated using a morphological skeleton (skeletonize3D from
the skimage library).

8.2. Graph-based:

We extract graphs from random patches of 64×64 pixels
in 2D and 48× 48× 48 in 3D images.

For the StreetmoverDistance (SMD) [1] we uniformly
sample a fixed number of points from the graph of the pre-
diction and label, match them and calculate the Wasserstein-
distance between these graphs. For the junction-based met-
ric (Opt-J) we compute the F1 score of junction-based met-
rics, recently proposed by [2]. According to their paper
this metric is advantageous over all previous junction-based
metrics as it can account for nodes with an arbitrary number



of incident edges, making this metric more sensitive to end-
points and missed connections in predicted networks. For
more information please refor to their paper.

8.3. Topology-based:

For topology-based scores we calculate the Betti Errors
for the Betti Numbers β0 and β1. Also, we calculate the
Euler characteristic, χ = V −E+F , whereE is the number
of edges, F is the number of faces and V is the number of
vertices. We report the relative Euler characteristic error
(χratio), as the ratio of the χ of the predicted mask and
that of the ground truth. Note that a χratio closer to one is
preferred. All three topology-based scores are calculated on
random patches of 64 × 64 pixels in 2D and 48 × 48 × 48
in 3D images.

9. Additional Quantitative Results

Table 2. Quantitative experimental results for the 3D synthetic
vessel dataset. Bold numbers indicate the best performance. We
trained baseline models of binary-cross-entropy (BCE), softDice
and mean-squared-error loss (MSE) and combined them with our
soft-clDice and varied the α > 0. For all experiments we observe
that using soft-clDice in Lc results in improved scores compared
to soft-Dice. This improvement holds for almost α > 0. We
observe that soft-clDice can be efficiently combined with all three
frequently used loss functions.

Loss Dice clDice
BCE 99.81 98.24
Lc, α = 0.5 99.76 98.25
Lc, α = 0.4 99.77 98.29
Lc, α = 0.3 99.76 98.20
Lc, α = 0.2 99.78 98.29
Lc, α = 0.1 99.82 98.39
Lc, α = 0.01 99.83 98.46
Lc, α = 0.001 99.85 98.42
soft-Dice 99.74 97.07
Lc, α = 0.5 99.74 97.53
Lc, α = 0.4 99.74 97.07
Lc, α = 0.3 99.80 98.13
Lc, α = 0.2 99.74 97.08
Lc, α = 0.1 99.74 97.08
Lc, α = 0.01 99.74 97.07
Lc, α = 0.001 99.74 97.12
MSE 99.71 97.03
Lc, α = 0.5 99.62 98.22
Lc, α = 0.4 99.65 97.04
Lc, α = 0.3 99.67 98.16
Lc, α = 0.2 99.70 97.10
Lc, α = 0.1 99.74 98.21
Lc, α = 0.01 99.82 98.32
Lc, α = 0.001 99.84 98.37
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A Additional graph visualisations

Arteries

Arterioles

Capillaries

Figure 5: Graphical visualisations of the vessel graph and three different vessel types distinguishable
by diameter.

B Code and dataset documentation

B.1 Hosting, licensing and author statement

All of our codes and baselines are available in a public github repository https://github.com/jocpae/
VesselGraph licensed under an MIT License. All of our data is also freely available and can be downloaded
from a university server following the links in https://github.com/jocpae/VesselGraph#datasets. The
dataset is provided in CSV format. The dataset has the following DOI: 10.5281/zenodo.5301621. All of
our released data is licensed under an Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.
The authors confirm the CC licenses for the included datasets and declare to bear all responsibility in case of
violation of rights. The authors declare no competing financial interests

B.2 Long term maintenance plan

The dataset and code has been permanently archived at Zenodo, guaranteeing long-term availability. We
will update the dataset when novel segmentations of the whole brain vasculature become publicly available.
Contributions will be solicited via GitHub pull request. Regarding maintenance, we will update the code
repository for loading and processing the data; the links to the university server where the data is stored will also
be kept up-to-date.

Additionally, we plan to incorporate our dataset into the Open Graph Benchmark2. Our dataset and dataloader
are already compatible with the OGB data loader and platform. We believe that an integration into the OGB
framework will further facilitate and simplify the usage of our data. We also provide an alternative dataloader
for use with Pytorch Geometric.

B.3 Whole brain vessel imaging and segmentation

As discussed in the introduction, whole brain vascular imaging is an emerging field spanning different imaging
techniques, among the first technologies were tissue clearing-based methods [9–12] which enable the fluores-
cent staining and clearing (that is, a chemical process which renders the organ transparent) of intact, whole

2https://ogb.stanford.edu/
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Figure 6: Local differences in vessel structure can be observed in different brain regions in a dataset
of Todorov and Paetzold et al. [6].

brains with a subsequent imaging of the vessels with a 3D lightsheet microscope. Among the first imaging
protocols were VesSAP [6], Tubemap [7] and the work by diGiovanna et al. [13]. Alternative imaging tech-
niques are microCT[48, 49], magnetic resonance imaging [50] and optical coherence tomography [51], which
however fail to achieve the spatial resolution to reliably image microcapillaries. Recently, a method based
on synchrotron-based phase-contrast tomographic microscopy was developed, achieving an isotropic voxel
size of 0.65 micrometers [52]. Other technologies, such as serial serial two-photon microscopic imaging are
also developing rapidly with similar or even better resolution compared to the tissue clearing methods (e.g.
0.303 × 0.303 × 1.0 resolution [1]), promising a widespread use/adoption of whole brain vascular imaging
approaches in the future.

B.4 Individual datasets, licenses and animal experiments

The nine base datasets from the VesSAP paper [6] are available here: http://discotechnologies.org/
VesSAP/. They are licensed under a Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). The animal
experiments were carried out under approval of the institutional ethics review board of the Government of Upper
Bavaria (Regierung von Oberbayern, Munich, Germany), and in accordance with European directive 2010/63/EU
for animal research, details can be read here https://doi.org/10.1038/s41592-020-0792-1.

The base datasets from Ji et al. [1] are licensed under an open source (BSD 3-Clause) license. They are
available upon email request from the authors, their code is available at https://neurophysics.ucsd.edu/
software.php. The animal experiments followed the Guide for the Care and Use of Laboratory Animals and
have been approved by the Institutional Animal Care and Use Committee, details can be found in the original
paper: https://doi.org/10.1016/j.neuron.2021.02.006

The synthetic data was generated by the authors themselves following the approach by Schneider et al. [32], the
same license applies as for the graph datasets presented here. The synthetic base data can be downloaded here
https://github.com/giesekow/deepvesselnet/wiki/Datasets.
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C Graph documentation

Figure 7: Rendering of the Allen brain atlas feature; on the left side a 2D image slice from the
CD1-E-1 brain is depicted, on the right side a rendering of the Allen brain atlas regions corresponding
to the coordinates of the image. A node n is assigned to a particular atlas region depending on the
xn, yn, zn coordinate of the node n .

C.1 Voreen parameters

In the following Sections, we discuss the details of the Voreen graph extraction pipeline which follows a four
stage protocol introduced in Section 2. To recapitulate, the four stages are:

1. Skeletonization: The binary segmentation volume is reduced to a skeleton based representation by
applying a standard topological thinning algorithm by Lee et al. [38].

2. Topology Extraction: memory efficient algorithms extract the vessel centerlines [39]. Voreen allows to
store this intermediate representation in a combination with the graph.

3. Voxel-Branch Assignment: Computing of mapping between the so-called protograph (i.e. the initial
graph) and the voxels of the binary segmentation.

4. Feature Extraction: On basis of the protograph and the mapping, several features can be computed
from the foreground segmentation.

We chose the Voreen parameters in the following manner:

1. The binarization threshold is selected from the interval [0, 1]. This value is irrelevant for binary
segmentation masks, e.g. VesSAP.

2. Surface smoothing is deactivated.

3. The relative minimal bounding box diagonal is set to 0.05.

4. The total minimal bounding box diagonal is set to 0 mm.

5. The bulge size is set to 3.0, see Figure 9.

Bulge Size As depicted in the figures below, the total number of nodes decreases when increasing the bulge
size parameter. This is expected, as the bulge size describes the relation between parent vessel and branch,
and the relation between vessel bumpiness and parent vessel [31]. The bulge size can be configured between
[0 < x < 10].
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Figure 8: Different Node features of G plotted by the regions of the Allen brain atlas.
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Figure 9: Bulge Size analysis in the Voreen pipeline for a parameter range of 0.5- 8.0.

For bulge _size = 3.0, we obtain a good relationship between capturing the essential vessels, while capturing
the smoothness of the vascular trees. Following the recommendation of _size = 3.0 [31] for healthy vasculature,
we keep _size = 3.0 as a maximum, to provide a reasonable _size = 3.0 value for future data with diseased
animals.

Figure 10: Edge feature correlation plot.

Runtime of graph extraction: The Voreen pipeline used for graph extraction was run on a CPU cluster.
We timed one exemplary graph extraction on this cluster using 8 logical CPUs. For one of our synthetic vessel
datasets (500× 500× 401 pixels), the process described in Section 2 with 3 refinement iterations, resulting in
28538 nodes and 42727 edges required a total runtime of 3 minutes and 57 seconds. Importantly, the extraction
times scale roughly linearly with the number of nodes which are extracted [31].
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C.2 Post processing of graphs

In order to remove evident artifacts from the generated graphs we implemented rule based post processing or
pruning steps.

Feature merging: In a small percentage of the extracted graphs (< 1%), we obtain multiple edges ebij for
b = 1 : B with the same vertices. This can be attributed to imaging artifacts and irregularities in the vessel
staining process. For instance, holes in the segmentation mask, if not properly filled, can result in multiple edges
spanning from the same source node ni to the same target node nj , respectively nj to ni, as the underlying
graph is undirected. As our focus lies on biologically realistic graphs, in particular correct branching structures,
we merge the edge features of two identically labeled edges by obtain approximations. As the greater percentage
of irregularities have been already mitigated in various preprocessing steps, we are confident that approximations
in a small number of edges should not affect the performance and generalization of the deep learning models.
When we merge features we update them according to:

1. Length: lij = 1
B

∑B
b=1 l

b
ij

2. Shortest Distance: dij = mink{dbij}
3. Volume: vij =

∑B
b=1 v

b
ij

4. Number of Voxels: nvij =
∑B
b=1 nv

b
ij

5. Curvature: ρij = 1
B

∑B
b=1 ρ

b
ij

6. Mean Cross Section Area: αij =
∑B
b=1 α

b
ij

As radius features are highly shape-dependent, and highly variable in the vessel itself, we can only approximate
the vessel attributes, as we cannot access the meta-information Voreen utilizes to calculate the minimum, average
and maximum vessel radius and the corresponding standard deviations.

Consequently, we obtain the average radius by summing the average radius of all identically labeled edges. We
calculate the standard deviation by obtaining the median of the mathematical relationship of standard deviation
of average radius to average radius.

1. µrij = µr̄ij = µRij =
∑B
b=1 µ

r̄b
ij

2. σrij = σr̄ij = σRij =
√∑B

b=1(σ
r̄b
ij )

2

We fit a linear function µo = f(µr) = a · µr + b to map the average radius µr to the vessel roundness µo.
Similarly to the radius approximations, we obtain the newly computed roundness standard deviation by obtaining
the median of the mathematical relationship of standard deviation to roundness.

1. µoij = f(µrij)

2. σoij = median

[{
σob
ij

µob
ij

}

b=1:B

]
· µoij

The following properties are computationally updated.

• ν1
ij is updated.

• ν2
ij is updated.

D Baseline experimentation and discussion

D.1 Link prediction

We implemented a set of baselines from the literature. All of these implementations, including documentation
are available in our GitHub repository . The model architecture, learning rate, number of GCN layers, dropout
and batch size are the hyperparameters we optimized for our training and document below. We selected our
models according to the highest ROC AUC score on the validation set.

In order to select the values, we employed Grid Search, please see the tables below. Owing to the huge size
of our dataset, hyperparameter tuning is challenging. To overcome this challenge, we subsample a region of
the mouse brain in order to create a small graph. To ensure we are not introducing any bias, we measured the
KL-Divergence [53] to ensure that our small graph is representative of the whole brain in its distribution of
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Table 5: Details of the hyper-parameters search for Link prediction with the selected parameters for
the final training of each of our baseline models.

Model Parameter Range Selected Parameters Model Select.
Matrix Factorization lr ∈ {1 · 10−3, 1 · 10−4, 1 · 10−5} lr = 1 · 10−5 epochs 3000

num of layers∈ {2, 3, 4} num of layers = 3
hidden channels∈ {32, 64, 128, 256} hidden channels = 64
dropout ∈ {0, 0.2, 0.5} dropout = 0.2

MLP lr ∈ {1 · 10−2, 1 · 10−3, 1 · 10−4, 1 · 10−5} lr = 1 · 10−5 epochs 3000
num of layers∈ {2, 3, 4} num of layers = 4
hidden channels∈ {128, 256, 512} hidden channels = 256
dropout ∈ {0, 0.2, 0.5} dropout = 0.2

GCN [14] lr ∈ {1 · 10−2, 1 · 10−3, 1 · 10−4, 1 · 10−5} lr = 1 · 105 epochs 3000
num of layers∈ {2, 3, 4} num of layers = 2
hidden channels∈ {128, 256, 512} hidden channels = 256
dropout ∈ {0, 0.2, 0.5} dropout = 0.2

GNN + N2Vec Embeddings [43] lr ∈ {1 · 10−2, 1 · 10−3, 1 · 10−4, 1 · 10−5} lr = 1 · 10−5 epochs 3000
num of layers∈ {2, 3, 4} num of layers = 2
hidden channels∈ {128, 256, 512} hidden channels = 256
dropout ∈ {0, 0.2, 0.5} dropout = 0.2

GNN + SAGE [17] lr ∈ {1 · 10−2, 1 · 10−3, 1 · 10−4, 1 · 10−5} lr = 1 · 10−4 epochs 3000
num of layers∈ {2, 3, 4} num of layers = 3
hidden channels∈ {128, 256, 512} hidden channels = 16
dropout ∈ {0, 0.2, 0.5} dropout = 0.5

GNN + SAGE [17] + N2Vec Embeddings [43] lr ∈ {1 · 10−02, 1 · 10−3, 1 · 10−4, 1 · 10−5} lr = 1 · 10−3 epochs 3000
num of layers∈ {2, 3, 4} num of layers = 2
hidden channels∈ {128, 256, 512} hidden channels = 16
dropout ∈ {0, 0.2, 0.5} dropout = 0.5

SEAL [25] lr ∈ {1 · 10−4, 1 · 10−5} lr = 1 · 10−4} epochs 100
num of layers∈ {2, 3, 4} num of layers = 2
hidden channels∈ {32, 64, 128} hidden channels = 32
dropout ∈ {0, 0.2, 0.5} dropout = 0.0
num of hops∈ {1, 2, 3} num of hops = 1
labeling∈ {drnl,de,de+,zo} labeling = drnl
model = DGCNN, GCN model = DGCNN

N2Vec [43] lr ∈ {1 · 10−2, 1 · 10−3, 1 · 10−4, 1 · 10−5, 1 · 10−6} lr = 1 · 10−6 epochs 2
walk length∈ {5, 10, 20} walk length = 5
walks per_node∈ {5, 10, 20} walks_per_node = 10
embedding_dim∈ {16, 32, 64, 128, 256} embedding_dim = 64

vasculature. We selected the best set of hyperparameters on the small graph and used it on the actual graph with
small modifications if needed. We summarize our results in Table 5 and Table 6.

For Matrix Factorization, we tune the number of layers, hidden channels and dropout rate. To estimate the best
hyperparameters, we employed grid search. We observe that the Matrix Factorization method is not sensitive to
the choice of hyper-parameters as long as they are in a reasonable range (learning rate 1e-3 to 1e-5, dropout 0 to
0.5, hidden channels 32 to 256). We obtained the best results for a learning rate of 1e-4 with 3 layers, 64 hidden
channels and a dropout rate of 0.2. When extending to the entire BALBc1 whole mouse brain dataset (5.35
million edges, 3.54 million nodes), we reduced the number of hidden channels to 64 owing to GPU memory
constraints. We experimentally found out that the model with 64 channels was easily able to overfit to the
training data, showing that the model is sufficiently complex.

The MLP model is trained with the Adam optimizer and a learning rate of 1e-4. This combination of hyperparam-
eters provides us the best performance on the validation and test splits. We experimented with fully connected
layers of 128 and 256 features, the latter resulting in better scores. Thus, our final model has 4 layers each with
256 channels.

For the Graph Neural Networks, we use two setups. A GCN setup without embeddings (which we refer to as
GCN in the experiments) and a GCN with embeddings (which we refer to as GCN + Node2Vec Embeddings in
the experiments, Tab. 5). Both models are trained with Adam and 1e-5 and 1e-7 learning rate, respectively.

We discover that GCN+node embeddings do not perform superior to the GCN which is trained only on the node
features. Moreover, in our experiments, we find that the predictions made by the models result in scores close
to chance (approx. 51 for both). The model is overfitting on the training data almost immediately and is not
able to generalize to the unseen data. Reducing the model complexity by reducing the number of layers, hidden
channels and increasing the dropout did not improve performance.

We observe poor generalization and immediate overfitting in all cases. We hypothesize that this behaviour is
caused by the model not being able to distinguish symmetrically placed nodes while making the prediction
(something that the SEAL algorithm achieves using the Labeling trick). Our experiments done using SEAL with
a similar set of hyper-parameters substantiate this hypothesis. Please refer to the section on SEAL for more
details below.

In our experiments, we find that the GraphSAGE models tend to outperform the GCN baseline. The ROC AUC
increases to approximately 60 meaning a performance boost of almost 7% We initialized the nodes with the
Node2Vec embeddings[43] (we refer to this model as GraphSAGE + Node2Vec Embeddings) and findthat the
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inclusion of pretrained Node2Vec embeddings as features leads to deterioration in model performance. We
observed the best model performance with a shallow network (2 hidden layers), a learning rate of 1e− 4 and 0.5
dropout. The hyperparameters were chosen according to the GCN baseline.

When we ran our model on the entire mouse brain graph, we observed behaviour similar to GCN and
GCN+embedding. Although the GraphSAGE performance is slightly superior to the GCN baseline, it is
still dwindling in the region of being random (approx 59%). The GraphSAGE algorithm tends to improve the
update of node features by concatenating the features of the node and its aggregated neighbourhood features. As
such, this may enable the network to assign different weights to the self nodes and its neighbours. However, this
does not allow it to break the symmetry while performing the link prediction task. Indicating that these models
suffer from the same issue in regards to node labeling as was described in the GCN discussion above. Further,
inclusion of Node2Vec features decreases the performance resulting in an 53% ROC AUC value.

Since Node2Vec is an unsupervised process we use the SGD optimizer with negative sampling, to maximize the
log likelihood objective on the random walks in the graph. We perform a hyperparameter search on the learning
rate, walk lengths, walks per node and embedding dimension.

We find the best combination to be a walk length of 5, 10 walks per node and an embedding dimension of 64. In
our experiments with the small sub-graph, we observed that the loss quickly plateaus after 3 epochs. We use the
same hyperparameter combination for the entire mouse brain graph. We observe that the inclusion of Node2Vec
features does not improve performance and in most cases, leads to worse results. Empirically we observe that
the inclusion of Node2Vec features is not useful for the link prediction task and as discussed above, the Labeling
trick constitutes a much more important component.

SEAL: For the SEAL algorithm we implement a similar hyperparameter search. We discover a general
pattern in the selection of different labeling tricks, and find the DE and DRNL to perform best on the training set.

Moreover, we find SEAL to perform very well at different rates. However, we do get a general trend of optimal
performance for a learning rate of 1e− 4 and 2 hops. For the whole brain graph, we find Double-Radius Node
Labeling (DRNL) to better capture the hierarchical structure [25]. Further, a DGCNN outperforms a GCN.
When training on a small region of interest we observe a gradual improvement for up to 50 epochs, for the whole
brain graph we discover that SEAL almost converges the first epochs while inducing significant inductive bias,
making it the superior model for our spatial and hierarchical graph. The training quickly plateaus. In all our
experiments, the SEAL method performs best amongst all the baselines. All performance measures are given in
Table 3 in the main paper.

D.2 Node classification

Similar to the link prediction task, we employ a grid Search for hyperparameters. For each graph neural network,
we explore the number of layers, hidden channels, learning rate and dropout ratio on the smaller sets validation
and test set. For each model, if applicable, we select a set of hyper-parameters specific to the architecture and
thus optimize. We selected our models according to the highest ROC AUC score on the validation set.

The Cluster GCN algorithm provides a memory efficient alternative to other graph learning algorithms and is
specifically designed to handle large-scale graphs efficiently. The number of partitions constitutes the essential
hyper-parameter. We find it to consistently outperform other models, irrespective of its number of partitions.

Further we implement the base GCN by Kipf et.al. and extend it to the GNN GCN and GNN SAGE (SAGE
introduces convolutional operator). For all we vary the number of hidden channels, number of layers and dropout
ratio. In direct comparison, the GNN SAGE outperforms the GNN GCN by high margins (>10%) for the
ROC-AUC metric on the whole brain graph. Similar to the link prediction task, indicating that the base GCN is
not suited for this task.

For the Node2Vec embeddings of the node classification task, we find similar trends for walk length, walks per
node and embedding dimension as in the link prediction task. Please refer to Table 6 for the exact hyper-parameter
selection.

For the MLP we select a comparative number of layers and obtain the best result for a high dropout ratio of 0.4.
We observe that the the model is unable to generalize to unseen data, indicating the absence of an appropriate
inductive bias.

For the MLP-CS, we selected similar values in comparison to the MLP implementation. Incorporating the
Correct&Smooth methodology into the model increases the F1 score but does not improve the metrics which
account for imbalanced datasets.

The SIGN applies subsampling techniques. Similar to the graph neural network baselines, we explore the hidden
channels and number of layers. We obtain the best for a high model complexity with 4 layers and 512 hidden
channels. The model converges very fast with a high learning rate but performs only on par with the base GCN.
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Table 6: Details of the hyper-parameter search for node classification with the final parameters
selected for the our baseline models.

Model Parameter Range Selected Parameters Model Select.
Cluster-GCN lr∈ {2 · 10−5, 1 · 10−4, 1 · 10−3, 3 · 10−3} lr = 3 · 10−3 1500 epochs

number of layers∈ {3, 4, 5} number of layers = 4
hidden channels∈ {128, 256, 512} hidden channels = 128
number of partitions∈ {3, 6, 9} number of partitions = 9
dropout∈ {0.0, 0.2, 0.5} dropout = 0.2

GNN lr∈ {2 · 10−5, 1 · 10−4, 1 · 10−3, 3 · 10−3} lr = 3 · 10−3 1500 epochs
number of layers∈ {3, 4, 5} number of layers = 3
hidden channels∈ {32, 128, 256, 512, 1024} hidden channels = 256
dropout∈ {0.1, 0.4, 0.5} dropout = 0.4

GNN-SAGE lr∈ {2 · 10−5, 1 · 10−4, 1 · 10−3, 3 · 10−3} lr = 3 · 10−3 1500 epochs
number of layers∈ {2, 3, 4} number of layers = 4
hidden channels∈ {32, 128, 256, 512, 1024} hidden channels = 128
dropout∈ {0.0, 0.2, 0.4} dropout = 0.4

Graph-Saint lr∈ {1 · 10−6, 1 · 10−5, 1 · 10−4, 1 · 10−3, 5 · 10−3, 1 · 10−2} lr = 5 · 10−4 1000 epochs
number of layers∈ {2, 3, 4} number of layers = 4
hidden channels∈ {64, 256, 512, 1024} hidden channels = 64
walk length∈ {3, 5, 7} walk length = 7
dropout∈ {0.0, 0.35, 0.5} dropout = 0.35

SIGN lr∈ {1 · 10−5, 1 · 10−4, 1 · 10−3, 5 · 10−3} lr = 1 · 10−3 1000 epochs
number of layers∈ {2, 3, 4} number of layers = 3
hidden channels∈ {32, 64, 128, 256, 512, 1024} hidden channels = 128
dropout∈ {0.0, 0.1, 0.3, 0.5} dropout = 0.1

MLP lr∈ {2 · 10−5, 1 · 10−4, 5 · 10−4, 1 · 10−3, 3 · 10−3, 1 · 10−2} lr = 1 · 10−3 1500 epochs
number of layers∈ {2, 3, 4} number of layers = 3
hidden channels∈ {32, 128, 256, 512} hidden channels = 256
dropout∈ {0.0, 0.3, 0.4} dropout = 0.0

SpecMLP-W + C&S lr∈ {1 · 10−5, 5 · 10−4, 1 · 10−3, 3 · 10−3} lr = 1 · 10−3 1500 epochs
number of layers∈ {3, 4, 5} number of layers = 5
hidden channels∈ {128, 512, 1024} hidden channels = 128
dropout∈ {0.0, 0.5} dropout = 0.5

N2Vec lr∈ {1 · 10−5, 1 · 10−3, 1 · 10−2} lr = 1 · 10−2} 5 epochs
walk length∈ {16, 40} walk length = 40
walks per node∈ {4, 10} walks per node = 10
embedding dim∈ {16, 128} embedding dim = 128
batch size∈ {16, 128} batch size = 128
epochs∈ {1, 5, 32} epochs = 5

SpecMLP-W + C&S + N2Vec lr∈ {1 · 10−5, 5 · 10−4, 1 · 10−3, 3 · 10−3} lr = 1 · 10−3 1500 epochs
number of layers∈ {3, 4, 5} number of layers = 5
hidden channels∈ {128, 512, 1024} hidden channels = 128
dropout∈ {0.0, 0.5} dropout = 0.5

D.3 Graph explainability

We use the concept of the GNNExplainer [54] as an initial graph explainability approach. GNNExplainer aims
to identify a compact subgraph with a small subset of node features which play a crucial role in a given GNN for
node classification.

We decided to run an initial GNNExpainer experiment on a small but representative subgraph of roughly
16000 nodes and 18000 edges. We predict node 2290 with our trained SAGEConv based model for the node
classification task on the Line Graph, see Figure 11. The visualization represents the nodes which our model
considers important for the node prediction of 2290. One can observe, that the model relies heavily on its
immediate neighbourhood (denoted by thick edges). In our plot, we have visualized a 5 hop neighbourhood, for a
SAGEConv GCN with 4 layers. Naturally, the model does not consider any node beyond its 4 hop neighbourhood
in the computational graph.

D.4 Computational resources

All of our neural network trainings were performed on an Nvidia Quadro RTX 8000 GPU with 48GB memory.
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Figure 11: Graph explainability plot based on the GNNExplainer concept [54]. Our considered
node of interest is node 2290. Pink nodes indicate nodes belonging artery/vein class, blue indicated
arterioles/venules and green indicates capillaries. Thick edges represent a strong influence on the
prediction. Please note that the considered graph is a spatial Line Graph.
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E Datasheet for datasets

This description is an additional documentation intended to enhance reproducibility and follows the Datasheets
for Datasets3 working paper developed for the machine learning community.

• For what purpose was the dataset created? To foster research development in machine learning for
graphs, in particular its application to neuroscience - specifically the brain vessel graph composition.

• Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g.,
company, institution, organization)? The dataset was created thorough a collaborative effort by
neuro-scientists and computer-scientists at the Technical University of Munich and the Helmholtz
Zentrum München (under the supervision of Ali Ertuerk, Bjoern Menze and Stephan Günnemann).

• Who funded the creation of the dataset? The creation of the dataset was funded only indirectly
via the salaries of the scientists at the Technical University of Munich and the other corresponding
affiliations of the authors.

E.1 Composition
• What do the instances that comprise the dataset represent? Our dataset represents graph repre-

sentations of the whole brain vasculature. We are providing two alternative representations of the
vascular graph. First, a representation where individual vessels are represented as edges in a Graph;
and second, the corresponding Line graph were vessels are represented as nodes. One can interpret the
graph of a single mouse brain as a single instance. Alternatively one can interpret each vessel (edge)
and bifurcation (node) as a physical instance.

• How many instances are there in total (of each type, if appropriate)? By the instance definition
of whole brain graphs as instances we are providing 17 graphs (with the option to generate the line
graph) from 3 imaging sources as instances. In the future we plan to extend the dataset as soon as
other whole brain vessel segmentations are made publicly available (open source).
By the definition of vessels and bifurcation points we have millions of instances for each. Please see
Table 1 for detailed numbers.

• Does the dataset contain all possible instances or is it a sample of instances from a larger set?
We are providing all available instances.

• What data does each instance consist of? In either case, please provide a description. By definition
1); each instance represents a whole mouse brains’ vascular graph saved in the widely used CSV
format. By definition 2) each node represents a bifurcation point and each edge a vessel.

• Is there a label or target associated with each instance? Yes, in case of the edge and node instances,
the information from the extracted graphs (features) can be used as the instance labels. E.g. in our
node classification benchmark we use the vessel radius binned in three classes as an instance label.

• Is any information missing from individual instances? No, all of the information has been provided.

• Are relationships between individual instances made explicit? In our dataset the instances (brain
graphs) are independent.

• Are there recommended data splits (e.g., training, development/validation, testing)? For the
benchmark we split one whole brain into a train, validation and test set of 80/10/10.

• Are there any errors, sources of noise, or redundancies in the dataset? Our graph extraction is
based on experimental imaging and segmentation techniques. Therefore, errors and uncertainty are
inherent. We discuss these in detail in our Limitations section in the conclusion.

• Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g.,
websites, tweets, other datasets)? The provided dataset is self-contained.

• Does the dataset contain data that might be considered confidential (e.g., data that is protected
by legal privilege or by doctor-patient confidentiality, data that includes the content of individ-
uals’ non-public communications)? No.

• Does the dataset contain data that, if viewed directly, might be offensive, insulting, threatening,
or might otherwise cause anxiety? No.

• Does the dataset relate to people? No.

3https://arxiv.org/abs/1803.09010
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E.2 Collection process
• How was the data associated with each instance acquired? The data was generated from a set of

different publicly available datasets of whole murine brain images and segmentations. The specifics of
the generation of each of these public segmentations are specified in the referenced literature and their
licenses, see B.4.

• What mechanisms or procedures were used to collect the data? We use the Voreen framework
[31, 30] to generate graphs from segmentations. Voreen is a software which runs on a CPU.

• If the dataset is a sample from a larger set, what was the sampling strategy? The dataset is
complete.

• Who was involved in the data collection process (e.g., students, crowdworkers, contractors) and
how were they compensated (e.g., how much were crowdworkers paid)? Only researchers (co-
authors) of the Technical University of Munich and the Helmholtz Zentrum München were involved
in the data collection process.

• Over what timeframe was the data collected? Does this timeframe match the creation timeframe
of the data associated with the instances (e.g., recent crawl of old news articles)? The generation of
the dataset, including dedicated research to gather the base segmentations and to optimize the graph
extraction procedure took roughly one year.

• Were any ethical review processes conducted (e.g., by an institutional review board)? Our work
is purely based on public and open sourced data. However, ethical review processes were carried out
for each of these open sourced base segmentation sets:
The three graphs from Ji et al. [1] are based on animal experiments, they followed the Guide for the
Care and Use of Laboratory Animals and have been approved by the Institutional Animal Care and
Use Committee, for details see https://doi.org/10.1016/j.neuron.2021.02.006.
The animal experiments for the nine datasets from the VesSAP paper [6] were carried out under
approval of the ethical review board of the government of Upper Bavaria (Regierung von Oberbayern,
Munich, Germany), and in accordance with European directive 2010/63/EU for animal research, for
details see https://doi.org/10.1038/s41592-020-0792-1.

• Does the dataset relate to people? No.

E.3 Preprocessing/cleaning/labeling
• Was any preprocessing/cleaning/labeling of the data done ? Yes, this actually constitutes a core

contribution of our work, therefore please refer to Section 2 in the main paper and to Supplementary
section C.

• Was the ’raw’ data saved in addition to the preprocessed/cleaned/labeled data (e.g., to support
unanticipated future uses)? The raw data are the base segmentations. They are publicly available,
the links are provided in Supplementary section B.4.

• Is the software used to preprocess/clean/label the instances available? The Voreen software used
for the graph extraction is publicly available, see our github repo.

E.4 Uses
• Has the dataset been used for any tasks already? In its current size and level of labeling detailiza-

tion, the dataset was not used before (besides for the presented link prediction and node classification
in this work).

• Is there a repository that links to any or all papers or systems that use the dataset? If so, please
provide a link or other access point. Yes, https://github.com/jocpae/VesselGraph.

• What (other) tasks could the dataset be used for? In the main paper we discussed two standard
tasks in machine learning on graphs; we think that our dataset can serve as a starting point for many
interesting research directions in machine learning research and neurovascular research.

• Is there anything about the composition of the dataset or the way it was collected and prepro-
cessed/cleaned/labeled that might impact future uses? No.

• Are there tasks for which the dataset should not be used? No.

E.5 Distribution
• Will the dataset be distributed to third parties outside of the entity (e.g., company, institution,

organization) on behalf of which the dataset was created? Our Dataset is open sourced under a
CC Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) License. Therefore all third parties
can openly access it.
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• How will the dataset will be distributed (e.g., tarball on website, API, GitHub)? Yes, our DOI is
10.5281/zenodo.5301621

• When will the dataset be distributed? The dataset is available from the moment of submission.

• Will the dataset be distributed under a copyright or other intellectual property (IP) license,
and/or under applicable terms of use (ToU)? Our Dataset is open sourced under a CC Attribution-
NonCommercial 4.0 International (CC BY-NC 4.0) License.

• Have any third parties imposed IP-based or other restrictions on the data associated with the
instances? No.

• Do any export controls or other regulatory restrictions apply to the dataset or to individual
instances? No.

E.6 Maintenance
• Who is supporting/hosting/maintaining the dataset? The dataset is initially supported and main-

tained by the lead authors of this paper. The data is initially hosted on a university server and links are
provided in the github repository https://github.com/jocpae/VesselGraph. In the long term
we aim to incorporate our dataset into the open graph benchmark (OGB) initiative4.

• How can the owner/curator/manager of the dataset be contacted (e.g., email address)? Of course
via e-mail: johannes.paetzold@tum.de and via the github repository, see question above.

• Is there an erratum? At this stage no, but we are happy to track them in a dedicated file in our github
repository.

• Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete in-
stances)? Yes, we release the dataset on open platforms on which we plan to continuously update our
dataset. Particularly to add novel whole brain vessel graphs to the dataset.

• If the dataset relates to people, are there applicable limits on the retention of the data associated
with the instances? The dataset does not relate to people.

• Will older versions of the dataset continue to be supported/hosted/maintained? When novel
versions of the dataset will be released we will continue to host and maintain the old versions of the
dataset.

• If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for
them to do so? We encourage other researches to exactly that. Depending on their contribution they
can contribute to our github repository (in case of implementations) or reach out to us via e-mail in
case they want to contribute graphs to the dataset. Our dataset and code are open sourced, see above.

4https://ogb.stanford.edu/
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Figure Copyrights

In the following the licenses for the figures which are not created by myself or are not
part of one of my papers are provided.

Licensed Content Title nnU-Net: a self-configuring method for deep
learning-based biomedical image segmentation

License Number 5293531428666
License date Apr 21, 2022
Licensed Content Publisher Springer Nature
Licensed Content Publication Nature Methods
Licensed Content Author Fabian Isensee et al.
Licensed Content Date Dec 7, 2020
Type of Use Thesis/Dissertation
Requestor type academic/university or research institute
Format print and electronic
Portion Fig. 1

Table E.1: Copyright for Figure 2.1 on Examples of CNN based segmentation of
medical and biological images.
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E. Figure Copyrights

Licensed Content Title Tau induces blood vessel abnormalities
angiogenesis-related gene expression in P301L
transgenic mice and human Alzheimer’s disease

License Open Access under the Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Author Rachel E. Bennett et al.
Publication Date Jan 22, 2018
Publisher PNAS

Licensed Content Title Traumatic brain injury results in
acute rarefication of the vascular network

License Open Access under the
Attribution 4.0 International (CC BY 4.0) License

Author Andre Obenaus et al.
Publication Date Mar 22, 2017
Publisher Springer Nature

Licensed Content Title Chronic Cerebral Hypoperfusion Induced Synaptic
Proteome Changes in the rat Cerebral Cortex

License Number 5306591133461
License date May 12, 2022
Licensed Content Publisher Springer Nature
Licensed Content Publication Molecular Neurobiology
Licensed Content Author Katalin Völgyi et al.
Licensed Content Date Jun 15, 2017
Type of Use Thesis/Dissertation
Requestor type academic/university or research institute
Format print and electronic
Portion Fig. 1

Table E.2: Copyright for Figure 4.2 on common vessel pathologies.
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