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Abstract

This thesis investigates the problem of analyzing digitized threedimensional objects
undergoing non-rigid deformations. The main focus lies on finding semantically
meaningful dense correspondences between two triangle meshes. With these corre-
spondences it is possible to transfer knowledge from one to the other, for instance a
segmentation of a human into bodyparts from a template mesh to a mesh obtained
from a 3D reconstruction pipeline.
We give an extensive introduction on the theory of non-rigid shape analysis, again
with the focus on correspondences. In particular we introduce fundamental concepts
of differential geometry and how to transfer them to shapes discretized as triangle
meshes. We dedicate a compehensive section to make the reader familiar with the
Laplace Beltrami operator (LBO). In a tutorial at SGP in 2014 the Laplace Beltrami
operator was once referred to as the Swiss army knife of geometry processing. From
pointwise feature descriptors that can describe shapes on different levels of locality
over pairwise descriptors up to compressed representations of correspondences be-
tween shapes, a variety of tooling can be derived from the LBO which makes it a
fundamental tool for non-rigid shape analysis as well. We introduce the LBO as a
generalization of the well known Laplace operator on Euclidean domains, discuss
its main properties and show that it’s eigenfunctions can be seen as generalizations
of Fourier basis functions and spherical harmonics. We further provide a detailed
derivation of a discretization of the LBO and discuss possible alternatives. We re-
visit the rigid alignment of pointsets and introduce its non-rigid generalization of
finding non-Euclidean isometries between shapes. Permutation matrices as discrete
representations of bijective mappings are introduced and their practical limitations
(and possible remedies) in the context of optimization problems are being discussed.
Pointwise and pairwise descriptors are introduced, both as general concepts and with
specific examples.
We show how machine learning techniques such as random forests can be utilized to
find optimal pointwise descriptors for a given class of shapes and deformations. We
also show how correspondences can be seen as submanifolds of the so called product
manifold of two shapes and propose an iterative way to find the correspondence
based on kernel density estimation in the product manifold. We finally relate this
approach to solving optimization problems stemming from pairwise descriptors using
the difference of convex functions algorithm and close the loop with the observation
that pairwise descriptors based on the spectrum of the LBO, so called heat kernels,
lead to correspondences with high regularity.





Zusammenfassung

Diese Dissertation untersucht das Problem der automatisierten Analyse von ver-
formbaren dreidimensionalen Objekten. Der Fokus der Arbeit liegt im Finden von
Korrespondenzen zwischen zwei Dreiecksmeshes, einer üblichen digitalen Represen-
tation von dreidimensionalen Objekten. Diese Korrespondenzen können beispiels-
weise genutzt werden um verschiedenste Arten von Informationen von einem Mesh
auf ein anderes zu übertragen. Beispielsweise kann die Segmentierung eines mensch-
lichen Körpers in Körperteile von einem synthetisch generierten Template Mesh auf
einen 3D Scan übertragen werden.

Wir geben einen umfassenden Überblick über die Theorie des Forschungsbereichs
non-rigid shape analysis mit dem Fokus auf dem Korrespondenz-Problem. Grund-
legende Konzepte der Differentialgeometrie und deren diskrete Analoga werden ein-
geführt . Ein umfangreiches Kapitel widmet sich dem Laplace Beltrami Operator
(LBO). Dieser wurde einmal als schweizer Taschenmesser des Geometry Processing
(Erstellung und Bearbeitung von digitalen 3D Objekten) bezeichnet. Auch eine Viel-
zahl von Bausteinen für die Analyse von 3D Objekten (von punktweisen Feature
Deskriptoren über paarweise Deskriptoren bis hin zu kompakten Representationen
von Korrespondenzen) baut auf dem LBO auf. Das macht den LBO auch zu einem
essentiellen Werkzeug für die Analyse von dreidimensionalen Objekten. Wir führen
den LBO als nicht-euklidische Veralgemeinerung des bekannten Laplace Operators
ein, geben einen Überblick über seine wesentlichen Eigenschaften und zeigen, dass
seine Eigenfunktionen als Verallgmeinerungen von Fourierbasen interpretiert wer-
den können. Weiter leiten wir eine diskrete Version des LBO her, die genutzt wer-
den kann um all die oben genannten Bausteine für die Analyse von Dreiecksmeshes
verfügbar zu machen. Nach einer kurzen Einführung des iterative closest point Algo-
rithmus zum Registrieren von riden Objekten mittels euklidischen Transformationen
(Rotation und Translation), führen wir das Finden von nicht-euklischen Isometrien
als Generalisierung für Korrespondenzen zwischen nicht-rigiden Objekten ein. Eine
übliche diskrete Representation von allgemeinen bijektiven Korrespondenzen sind
Permutationsmatritzen. Wir formulieren Korrespondenzprobleme als Optimierungs-
probleme über dem Raum der Permutationsmatritzen und diskutieren praktische
Limitierungen und mögliche Auswege (so genannte Relaxierungen). Punktweise und
paarweise Feature Deskriptoren werden eingeführt, sowohl als allgmeines Konzept
als auch in Form von konkreten Beispielen.

Wir zeigen wir Konzepte aus dem Bereich des maschinellen Lernens, konkret ran-
dom decision forests genutzt werden können um optimale Feature Deskriptoren zu
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finden, wenn ein Datensatz von Objekten gegeben ist, in dem Art und Umfang der
Deformationen kodiert sind. In gewisser Weise orthogonal dazu erläutern wir wie
Korrespondenzen als Untermannigfaltigkeiten der so genannten Produktmannigfal-
tigkeiten von zwei Objekten interpretiert werden können und führen einen iterativen
Algorithmus ein, der aufbauend auf dem Konzept der Kerndichteschätzung, Korre-
sponzen mit hoher Regularität findet. Abschließend setzen wir dieses Verfahren mit
paarweisen Deskriptoren in Zusammenhang und - in gewisser Weise um den Kreis zu
schließen - zeigen, dass paarweise Deskriptoren, die auf dem Spektrum des LBO ba-
sieren (so genannte Heat kernels) zu Korrespondenzen mit hoher Regularität führen.
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Part I

Introduction and Overview





Chapter 1
Introduction

In recent years the ability of creating digital models of real world objects has expe-
rienced a dramatic increase. This is partialy due to a new family of depth sensors
such as the Microsoft Kinect, Asus Xtion and Intel Realsense but also due to im-
provements on the software side including deep learning based approaches for 3D
reconstruction. As a consequence, the creation of 3D scans has reached the con-
sumer market. First smartphones such as the latest iPhone models come with built
in depth sensors. With the increasing amount of 3D content comes the need for an
automatic understanding thereof.

In this thesis we consider isolated 3D objects such as scans of humans. We refer to
these objects as non-rigid shapes to emphasize that we may observe different shapes
that can be seen as non-rigid deformations of each other where the deformation
is not necessarily rigid. Examples include scans of the same subject in different
poses (e.g . standing and running), at different times (possibly years apart), or even
entirely different persons (possibly also in different poses and/or at different times).
We may want to characterize the (dis-)similarity of a pair or a collection of such
shapes or be able to transfer properties such as texture or facial expressions from
one shape to another.

A fundamental requirement to achieve this is to put different shapes into corre-
spondence. A correpondence identifies pairs of regions or points on both shapes
that semantically describe the same thing, e.g . the two nose tips. While for rigid
deformations the correspondence can be described using a small set of parameters,
such a compact representation is not at hand for more general deformations such
as different poses. Even worse: no finite number of parameters can describe all
possible deformations and thus correspondences between continuouos surfaces. The
common approach is to only describe where a finite subset of points sampled from
the source objects’ surface are mapped to on the target objects’ surface This is either
a coordinate in space in vicinity of the target objects’ surface or - in most cases - a
point on the target objects’ surface. The literature distinguishes sparse and dense
correspondences, depending on whether only a sparse set of landmark points (e.g .
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Figure 1.1: Given a pair of non-rigid shapes the task is to find a dense correspondence
between them. Typical visualizations of correspondences transfer colors or texture from
one shape to the other via the given correspondence. The input coloring is often chosen to
assign a unique color to each point, e.g . by translating the xyz coordinates to RBG values
as in the left most visualization. Further insight can be obtained by transferring multiple
colorings, e.g . x-, y- and z coordinates seperately. (Meshes from the FAUST dataset [11])

at joints) are described or the number of point-to-point correspondences is on the
same magnitude as the discrete representation of the shapes. As a matter of fact
not only must the correspondence be described by a finite number of parameters
but also the shapes themselves are only available in a discretized form, for example
as triangle meshes or point clouds. This thesis focuses on dense correspondences
between triangle meshes, many concepts can however be applied to pointclouds as
well.
A valid correspondence should be semantically meaningful. Similar regions, e.g .
faces must be mapped to each other. At the same time it should be regular. It turns
out to be difficult to characterize what exactly we mean by regularity. Semantics
seem almost as hard in many cases. Intuitively the correspondence should be as
bijective and smooth as possible. Each region that is visible on both shapes needs to
be part of the correspondence, closeby points should be mapped to closeby points in
most cases. In practice a tradoff between the requirements must be made. Consider
for example the two shapes in Figure 1.1: the intuitively correct mapping (head to
head, left arm to left arm and so forth) is continuous when considered as a mapping
from the male subject to the female subject (closeby point get mapped to closeby
points). However if we consider the inverse mapping, points that are close by at
the female subject (e.g . finger tips or right foot/left knee) are mapped to far away
points on the male subject. Moreover not every region on the first shape has a
(visible) corresponding region on the second shape (e.g . sole of right female foot).
An additional difficulty arises when one tries to translate the notions of continuity
and smoothness to discreticed shapes and pointwise correspondences. We will adress
these issues in this thesis.

Pointwise descriptors As in other fields of Computer Vision, such as image reg-
istration or optical flow, a crucial ingredient for shape correspondences are pointwise
feature descriptors, also referred to as Euclidean embeddings. These are functions
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Figure 1.2: The descriptors of semantically similar points should be close in the Euclidean
embedding space. On the contrary descriptors of dissimilar points should be distinct.
(Meshes from the FAUST dataset [11])

that assign possibly high-dimensional vectors to the points on the shapes in a way
that the (semanticaly) intuitive notion of similarity of points (e.g . the tips of the
noses on two shapes) is reflected in similar (small distance) descriptors while dis-
similar (e.g . nose and knee) points get assigned discriminative embeddings (see
Figure 1.2). We will discuss popular pointwise descriptors such as the heat kernel
signature (HKS) [52], the wave kernel signature (WKS) [6] and the Signature of
Histograms of OrienTations (SHOT) [53]. In [4] we introduce methods to learn op-
timal pointiwse descriptors. Pointwise descriptors lead to nearest neighbor problems
that are usually tackled using kd trees [7]. Assuming a consistent sampling of both
shapes the discrete correspondence should be bijective, leading to linear assignment
problems (LAPs). We will discuss both, kd trees and LAPs in the following sections.

Product manifolds We model the shapes as 2D manifolds embedded in R3 (the
manifolds describe the boundary of the 3D object). We will recap the theory of
manifolds (also called Differential Geometry) in the following sections. The graph
of a correspondence is itself a manifold, a special case of a subset in the product of
the two shapes, the so called product manifold. The authors of [57] observed that
a regular correspondence has a regular graph and used this to enforce regularity
by working directly in the product manifold. We will discuss pros and cons of this
approach in the following sections. A main drawback lies in the computational
intractability of the resultung integer linear program (ILP) which is NP-hard. In [3]
we introduce an iterative method that circumvents the computational complexity
and yields graphs of increasing regularity (and thus more regular correspondences)
over the iterations.

Pairwise descriptors It turns out that the approach introduced in [3] is closely
related to an instance of a quadratic assignment problem (QAP). We discuss this
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connection and its implications in [2]. Quadratic assignment problems evolve from
pairwise descriptors and are in general infeasible to optimize globally. We will
present different choices of pairwise descriptors and approaches to tackle QAPs via
relaxations in later sections.



Chapter 2
Outline of the Thesis

The present publication-based thesis is divided into three parts. In the following
chapter we provide a summary for each part.

Part I:

Introduction

In this part we introduce mathematical concepts that are relevant in the field if
non-rigid shape analysis.

Shapes: Manifolds and Triangle Meshes

We model non-rigid 3D shapes as two dimensional manifolds embedded in R3. In
this chapter we recap important mathematical concepts about manifolds to make the
reader familiar with concepts such as isometries, curvature and geodesic distances.
We also discuss triangle meshes as discrete approximations of manifolds.

Laplace Beltrami Operator

’Laplace-Beltrami: The Swiss Army Knife of Geometry Processing’ - the title of a
SGP workshop in 2014 (held by Justin Solomon, Keenan Crane and Etienne Vouga)
gives an impression on the importance of the Laplace Beltrami Operator when it
comes to working with geometry. Not only is it a powerful tool for geometry process-
ing but also for analysis of geometry, non-rigid shapes in particular. This chapter
gives an extensive overview about its theory, discretization, and some applications.
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Correspondences between Shapes

In this chapter we formaly introduce the problem we are addressing in this thesis,
namely finding a correspondence between two non-rigid shapes. We extensively dis-
cuss permutations and their connection to correspondences between shapes. Global
optimization over the space of permutations is in general a computationally in-
tractable problem. We discuss popular relaxations such as bistochastic matrices
and functional maps.
We also discuss pointwise and pairwise descriptors and make the reader familiar with
the two requirements of invariance and discriminativity. We further present popular
instances of pointwise descriptors such as the heat kernel signature (HKS) [52], the
wave kernel signature (WKS) [6] and the Signature of Histograms of Orientations
(SHOT) [53] and of pairwise descriptors, namely geodesic distances and heat kernels.
We show how pointwise descriptors can be used to solve the correspondence problem
via nearest neighbor search or linear assignment problems (LAPs) and how pairwise
descriptors lead to quadratic assignment problems (QAPs).
Further the graph of a correspondence is considered and identified as a submanifold
of the so called product manifold.

Part II:

This part includes a selection of peer reviewed research papers that were published
during this thesis:

• Applying Random Forests to the Problem of Dense Non-rigid Shape Corre-
spondence [4]

• Product Manifold Filter: Non-rigid Shape Correspondence via Kernel Density
Estimation in the Product Space [3]

• Efficient Deformable Shape Correspondence via Kernel Matching [2]

Part III:

Concludes the thesis and proposes directions for possible future works.



Chapter 3
Shapes: Manifolds and Triangle
Meshes

The most popular digital representation of 3D objects are triangle meshes. Those
are approximations of the boundary of the object and can be seen as discrete approx-
imations to regular surfaces, i.e. 2D submanifolds embedded in R3. In this chapter
we give all necessary background to both, regular surfaces and triangle meshes. The
following sections are closely linked to the text books [17] and [12] which we also
suggest for further reading.
We start by formalizing the concept of a non-rigid shape. The object of interest in
this thesis are 3D objects, which are ’well behaving’ subsets of R3.

Definition 1 An object of dimension d is an open and bounded subset X Ă Rd

such that its boundary X :“ BX is a submanifold of dimension d´ 1.

We will only be working with the boundaries of objects and use the notation Od
for the space of all boundaries of objects of dimension d. All elements of Od are
compact orientable manifolds without boundary. We will specify what this means
in the following section.

Definition 2 Given an equivalence relation „ on Od, the equivalence class rOs„ of
an element O P Od is its shape.

Typical equivalence relations are

O1 „ O2 :ô
“

DpR, T q P SOpdq ˆ Rd : O2 “ R ¨O1 ` T
‰

(3.1)

O1 „ O2 :ô
“

DpR, T, σq P SOpdq ˆ Rd
ˆ R` : O2 “ σpR ¨O1 ` T

˘

s (3.2)

The first relation defines two objects to have the same shape if they are related via
a rigid motion, i.e. the shape does not change if the object is moved to a different
location. The second relation additionaly allows changes in scale: a big circle and a
small circle both have the shape of a circle.
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φ0 φi

φj

φi ˝ φ
´1
j

Figure 3.1: Most manifolds can not be covered by a single chart. Charts pXi, φiq , pXj , φjq
covering the same subset of a manifold must be compatible, i.e. the concatenation φi ˝
φ´1
j : φjpXi X Xjq Ñ φipXi X Xjq must be a Ck-diffeomorphism

3.1 Manifolds

A tuple pX0, φ0q is called an n-dimensional chart of the topologial space X iff
φ0 : X0 Ñ U0 is a homeomorphism between the open sets X0 Ă X and U0 Ă Rn.

Definition 3 A collection pXi, φiqiPI of charts is called a Ck atlas iff X “ Ť

iPI Xi
and for any two charts φi and φj, the mapping φi ˝ φ

´1
j is a Ck-diffeomorphism

between φjpXi X Xjq and φipXi X Xjq.

Definition 4 A set X with a C8 atlas pXi, φiqiPI is called a (smooth) manifold.

The terms chart and atlas create associations with geography. This is not a coinci-
dence. The surface of the earth can be modelled as a sphere. We will soon see, that
spheres are in fact examples of manifolds.
We like to think of n-dimensional manifolds as extensions of the linear space Rn. In
order to see this we will define the “manifold” Rn.
Let pXiqiPI be a collection of open sets Xi Ă Rn that cover Rn. Possible choices are:

I “Zn Xpi1,...,inq “
 

x P Rn
ˇ

ˇ‖x´ i‖ ă
?
n
(

(3.3)

I “t0u X0 “Rn (3.4)

Given these sets, the charts can be choosen as pXi, idXi
q and for overlapping charts,

we obtain the diffeomorphism

φi ˝ φ
´1
j : Xi X Xj ÑXi X Xj (3.5)

p ÞÑp (3.6)

We are particularly interested in submanifolds, i.e. manifolds that “live” in an Eu-
clidean embedding space.

Definition 5 A subset X Ă Rn is a (smooth) submanifold of dimension m iff for
every point p P X , there exists a chart pV, φq of Rn such that
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• p P V .

• φpX X V q “ Rm X φpV q.

We call n´m the co-dimension of X .

Notice that every submanifold is automatically a manifold. Before introducing two
equivalent definitions of submanifolds we recapitulate the following theorem:

Theorem 1 (Implicit Function Theorem) Given a Ck-mapping F : Rm ˆRn Ñ Rn

and px0, y0q P Rm ˆ Rn such that F px0, y0q “ 0 and B

By
F px0, y0q is invertible.

Then there exist open U Ă Rm, V Ă Rn and φ : U Ñ V such that

• x0 P U , y0 P V and φpx0q “ y0.

• For all x P U we have F px, φpxqq “ 0.

• φ is a Ck-mapping.

• For all x P U we have B

Bx
φpxq “ ´

”

B

By
F px, φpxqq

ı´1
B

Bx
F px, φpxqq.

In other words, the implicitly defined set tpx, yq P Rmˆn|F px, yq “ 0u can (locally)
be interpreted as the graph of the function φ : U Ñ V .
One important example of a submanifold is described by smooth coordinate map-
pings x : U Ñ Rn:

Lemma 1 A subset X Ă Rn together with smooth coordinate mappings pxi, UiqiPI
is a smooth submanifold of dimension m if the following holds:

• All Ui are open subsets of Rm.

• X “ Ť

iPI xipUiq.

• For all u P Ui, xi is smooth and Dxipuq P Rnˆm is of maximal rank m.

Proof. Given p P X , we choose i P I and û P Rm such that p “ xipûq. Since
Dxipûq is of maximal rank, we can find a matrix A0 P Rnˆpn´mq such that A :“
`

Dxipûq A0

˘

P Rnˆn is of maximal rank n, i.e., invertible.
As a result, we can define the smooth function

ψ : Ui ˆ Rn´m
ÑRn

pu1, . . . , um, v1, . . . , vn´mq ÞÑxipuq ` A0 ¨ v,

with Dψpû, 0q “
`

Dxipûq A0

˘

“ A. Using Theorem 1 proves the Lemma for
φ :“ ψ´1.

In practice, it is often difficult to define different charts or coordinate functions.
Instead, we like to define the manifold M by formulating certain constraints, e.g .,

S2 :“ tx P R3
| ‖x‖2

“ 1u. (3.7)
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Lemma 2 Given a function f : Rn Ñ Rk and a regular value c P Rk, i.e.,

x P f´1
pcq ñ rankpDfpxqq “ k. (3.8)

Then, X :“ f´1pcq is a submanifold of co-dimension k.

In the example above, f and c are given by f : Rn Ñ R with fpxq “ ‖x‖2 and c “ 1.

Proof. Let p P X Ă Rn. Since Dfppq is of rank k, we can find k columns of Dfppq
that are linear independent. W.l.o.g. we assume that these k columns are the last k.
Thus, the function f : Rn´kˆRk Ñ Rk satisfies the Implicit Function Theorem with
respect to px0, y0q “ p. The implicit function φ : Rk Ñ Rn´k defines a coordinate
mapping x : Rk Ñ Rn via xpuq :“ pu, φpuqq, which proves the Lemma.

Note that the implicit submanifold can be transformed into an explicit submanifold.
Given a point p P X the created coordinate mapping x satisfies

Dxppq “

˜

id

´

”

Bf
By
ppq

ı´1
Bf
Bx
ppq

¸

. (3.9)

3.1.1 Tangent Space

Smooth submanifolds X of dimension m can locally be approximated with a linear
vector spaces of dimension m:

Definition 6 (Tangent Space) Let X Ă Rn be a submanifold of dimension m ď n
that is given via coordinate functions pxi, UiqiPI . Given i P I such that p “ xipuq,
we define the tangent space TpX of X at the position p as

TpX :“ tDxipuq ¨ v|v P Rm
u r“ impDxipuqqs . (3.10)

The tangent space TpM Ă Rn is a linear subspace and does not depend on the
choice of the coordinate map pxi, Uiq. For implicitly defined manifolds defined via
a smooth function f there is a neat connection between the tangent space and the
differential Df :

Lemma 3 (Tangent Space) Let f : Rn Ñ Rk be a smooth function with regular
value c P Rk and X :“ f´1pcq the manifold with respect to this value. For every
p P X we have

TpX :“ tv P Rn
|Dfppq ¨ v “ 0u

“

“ kerpDfppqq
‰

. (3.11)
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Given a point p P X of a d-dimensional submanifold X Ă Rn, we can represent a
tangent vector v P TpM as a curve c : p´ε, εq Ñ X with cp0q “ p. To see this, let
us look at the manifold from the point of view of a coordinate mapping x : U Ñ X
with 0 P U Ă Rd and xp0q “ p. Since v P TpM “ impDxp0qq, we know that there is
an h P Rd such that Dxp0qrhs “ v. Using

c : p´ε, εq Ñ X cptq “ x pt ¨ hq , (3.12)

we have

Dcp0q “ Dxp0 ¨ hqrhs “ v. (3.13)

Given a point p P X of a d-dimensional submanifold X Ă Rn, we define

CpX :“ tc : p´ε, εq Ñ X |Dε ą 0 : c is smooth and cp0q “ pu. (3.14)

The goal is to define TpX by defining an equivalence relation on CpX :

c1 „ c2 :ô Dc1p0q “ Dc2p0q, (3.15)

It is easy to check that „ is indeed an equivalence relation (i.e. reflexive, symmetric
and transitive). It turns out TpM “ CpM{ „, which provides us with an alternative
definition for the tangent space TpM . The advantage of this rather technical defini-
tion is that for any v P TpX we can choose a curve c P v that passes through p and
vice versa, i.e., any curve c that passes through a point p defines a tangent vector
v :“ rcs.

3.1.2 Functions on Manifolds

φi

f

f ˝ φ´1
i

Figure 3.2: Smooth function on
manifold

Given a manifold X , a function f : X Ñ Rd

is called smooth iff for all charts pXi, φiq, the
function f ˝ φ´1

i : φipXiq Ñ Rd is smooth. The
“smooth functions” f on the “manifold” Rn are
exactly the functions C8pRnq.
Let us recap how the differential of a function
f : Rm Ñ Rn acting on the Euclidean space Rm

is defined. The differential Dfppq : Rm Ñ Rn

at a position p P Rm is uniquely defined as the
linear mapping

fpp` vq “ fppq `Dfppqrvs ` rpvq (3.16)

where limvÑ0
rpvq
‖v‖ “ 0. As a linear mapping, the differential Dfppq has a matrix

representation (using the canonical bases for Rm and Rn) J P Rnˆm, such that
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Dfppqrvs “ J ¨ p. This matrix is called Jacobian (of f at p). Its entries are given
by Ji,j “ Bjf

ippq. Although the Jacobian depends on f and p one usually omits
indicating this dependency with symbols. Equation (3.16) can be interpreted as
following:

• p describes a point in the space on which f is defined,

• v describes the direction in which we change the point p

• Dfppqrvs describes the direction in which f changes if we change the point p
in the direction v.

For vector spaces, there is no distinction between points and directions. For mani-
folds X , points p will be on the manifold and directions on the tangent space TpX .
Given two submanifolds X and Y as well as a function f : X Ñ Y . For p P X and
q “ fppq P Y , the differential Dfppq is the push-forward

Dfppq : TpX ÑTqY (3.17)

rcs ÞÑrf ˝ cs (3.18)

Unlike the Euclidean spaces Rm and Rn for general submanifolds there are no canon-
ical bases of the tangent planes and thus no canonical matrix representation of the
push forward.

3.1.3 First Fundamental Form

Given a coordinate mapping x : U Ñ X Ă Rn, U Ă Rm, we want to measure
some quantities of X directly on U . Important geometric quantities that we like to
measure are

Angles In practice, we are not so much interested in the angle α itself, but rather
in cospαq. In particular, we would like to determine whether two lines that
pass through a point p are orthogonal to one another. In order to measure
cospαq we need something like a scalar product.

Length We want to measure the length of curves on the manifold by computing a
line integral on the domain U .

Area Usually integration is considered in the context of computing the size of cer-
tain areas. It is therefore natural to also transform a surface integral on X
into a surface integral on U .

These problems can be addressed with the so called First Fundamental Form. It is
also called the Riemannian Metric or the metrical tensor.
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Given the coordinate mapping x : U Ñ X Ă Rn, U Ă Rm, the first fundamental
form is defined as

g : U ÑRmˆm u ÞÑDxpuqJDxpuq (3.19)

The matrix gpuq is symmetric and positive-definite, i.e.,

gpuqJ “gpuq xX,Xygpuq :“ xX, gpuq ¨Xy ą0 @X ‰ 0 (3.20)

Therefore, the Riemannian metric can be seen as a continuously changing scalar
product on the domain U which motivates the notation xX, Y ygpuq.
Let us assume the coordinate map x : U Ñ X and the first fundamental form g : U Ñ
Rmˆm. Further, let us assume that two curves γ1,2 : p´ε, εq Ñ U are given in the
parameter domain U that pass through the same point γ1p0q “ u “ γ2p0q.
Now let X :“ γ11p0q P Rd and Y :“ γ12p0q P Rd.
The curves γi define curves ci :“ x ˝ γi on the manifold X and pass through the
point p “ xpuq P X . The curves define tangent vectors in TpX via

vi :“ c1ip0q “ Dxpuq ¨ γ1ip0q P TpX Ă Rm (3.21)

Instead of building the scalar product in the embedding space Rm, we can move the
computation back onto U

xv1, v2y “ xDxpuqX,DxpuqY y “ xX, Y ygpuq (3.22)

In summary, we can measure the cosine of the angle α between c1 “ x ˝ γ1 and
c2 “ x ˝ γ2 in means of X “ γ11p0q and Y “ γ12p0q:

cospαq “
xv1, v2y

‖v1‖ ‖v2‖
“

xX, Y ygpuq
‖X‖gpuq ‖Y ‖gpuq

(3.23)

Thus, we are able to measure cospαq without explicitly looking at the coordinate
map (embedding) x but by just making use of g. We call every quantity that can
be measured in that way as intrinsic. They do not depend on the surrounding
space, but only on measurements “inside” of the manifold. A coordinate mapping
x : U Ñ X is called conformal if every angle measurement in U coincides with the
angle measurement on X . The Riemannian metric g of a conformal coordinate
mapping x : U Ñ X is the identity matrix multiplied with a scalar r : U Ñ R that
depends on the location u P U of the parametrization domain.
In the following we want to revisit the length computation of a curve. To this end,
let x : U Ñ X be a coordinate map, γ : r0; 1s Ñ U a curve in the parametrization
domain U and

c : r0; 1s Ñ X cptq :“ x ˝ γptq (3.24)

the curve on the manifold X whose length we like to measure.
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p

q

Figure 3.3: The
red curve is the
shortest curve
connecting the
points p and q.
Its length is the
geodesic distance
of p and q. (Mesh
from the FAUST
dataset [11])

The length of c can be computed via

lengthpcq “

ˆ 1

0

‖ 9cptq‖ dt “

ˆ 1

0

‖Dxpγptqq ¨ 9γptq‖ dt “

ˆ 1

0

‖ 9γptq‖gpγptqq dt

(3.25)

We can express lengthpcq with γ as long as we take the Rieman-
nian metric g into account. Thus, lengthpcq is an intrisic quantity
of X .
For two points p, q P X their geodesic distance is given by the
length of the shortest curve connecting them (red curve in Fig-
ure 3.3):

dpp, qq “ min
c : r0,1sÑX

tlengthpcq|cr0s “ p , cr1s “ qu (3.26)

For compact manifolds a minimizer always exists (but may not
be unique). The manifolds we are interested in are compact.
Next we want to find an expression for the gradient of a scalar
function f : X Ñ R.

Definition 7 Let f : X Ñ R be a differentiable function. The
gradient ∇fppq at p P X is the unique element of TpX such that

dfppqrvs “ x∇f, py (3.27)

Existence and uniqueness follow from the Riesz representation theorem.

Lemma 4 Let x : U Ñ X be a coordinate map with first fundamental form g : U Ñ
Rmˆm and f̃ “ f ˝ x. Then the coefficients α P Rm (local coordinates) of ∇f “
Dx ¨ α P TpX are given by

α “ g´1
puq∇f̃puq (3.28)

Proof. Let β P Rm be the coefficients of v P TpX . Then

dfppqrvs “ x∇f̃puq, βy “ xα, βygpuq “ x∇f, vy (3.29)

Finally integration of a function f : X Ñ R can be moved to the parameter domain
via ˆ

Xi

fppqdp “

ˆ
Ui

pf ˝ xiqpuq ¨
a

det gpuqdu (3.30)
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where xi : Ui Ñ Xi “ xipUiq Ă X is a coordinate map. While we do not provide a
proof we do want to emphasize that

a

det gpuq is the volume of the (m-dimensional)
parallelepiped spanned by the tangent vectors Dxi, e.g . in two dimensions

a

det gpuq “
a

‖Dx1‖ ‖Dx2‖´ xDx1, Dx2y “ ‖Dx1 ˆDx2‖ (3.31)

Equation (3.30) is a generalization of substitution. Notice that the integral only
depends on values of the function f ˝ xi : Ui Ñ R and the first fundamental form
g : Ui Ñ R. Thus integration of functions is intrinsic as well.
At this point we stop our excursion to the fascinating world of differential geometry
and refer the interested reader to the de facto standard text book [17]. There further
concepts like normals, curvatures, second fundamental forms and Christoffel symbols
are being discussed. Just one last comment: the mean curvature is also an intrinsic
property, i.e. it is invariant under isometries.

3.2 Triangle Meshes

When working with shapes on a digital computer with a finite amount of memory,
shapes have to be represented in a discretized way. The standard representation are
polyhedral meshes, while alternatives (signed distance fields, octrees, tetmeshes)
exist. The most common choice are triangle meshes. Quadriliteral meshes are often
used in disciplines such as architecture, but are not subject of this work. In this
section we introduce traingle meshes and functions that are defined on them. A
triangle mesh X is a pair pV ,Fq with V “ tv1, . . . , v|V|u Ă R3 being the set of
vertices and T “ tt1, . . . , t|T |u, ti P V ˆ V ˆ V being the set of triangles. Notice
that the triangles come with an orientation, i.e. t “ pvi, vj, vkq ‰ pvi, vk, vjq “ t̃. On
the other hand two elements of T that differ only by a cyclic permutation of the
vertices describe the same triangle:

pvi, vj, vkq „ pvj, vk, viq „ pvk, vi, vjq (3.32)

Thus stictly speaking the set of triangles is the space T z „. We will however
still denote it with T and write pvi, vj, vkq instead of rpvi, vj, vkqs„. Following the
righthand rule every triangle t “ pvi, vj, vkq comes with a well defined outward

pointing normal n “
pvj´viqˆpvk´viq

‖pvj´viqˆpvk´viq‖ . The triangles induce a set of (directed) edges

E “ tpvi, vjq|Df P F : f “ pvi, vj, vkqu Ă V ˆ V (up to cyclic shifts).
There are two ways to look at triangle meshes: as approximations of smooth man-
ifolds or as (less smooth) C0 manifolds (coordinate maps are only C0 functions)

themselves. A possible choice of coordinate maps is given by tpUj, xjqu
|T |
j“1 where

each Uj Ă R2 contains the reference triangle Tr spanned by the vertices p0, 0q, p1, 0q
and p0, 1q that is affinely mapped to the triangle tj via xj:

xjpuq|Tr “ v1
j ` u1pv

2
j ´ v

1
j q ` u2pv

3
j ´ v

1
j q (3.33)
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In Computer Graphics this type of mapping is commonly referred to as uv mapping.
Because the mapping (restricted to the Tr) is affine, the differential and consequently
the first fundamental form are constant

Dxj|Tr “

¨

˝v2
j ´ v

1
j v3

j ´ v
1
j

˛

‚ (3.34)

g|Tr “

˜ ∥∥v2
j ´ v

1
j

∥∥2 @

v2
j ´ v

1
j , v

3
j ´ v

1
j

D

@

v2
j ´ v

1
j , v

3
j ´ v

1
j

D
∥∥v3

j ´ v
1
j

∥∥2

¸

(3.35)

The famous Euler formula states an interesting relation between the number of
vertices |V |, edges |E| and triangles |T | in a closed and connected triangle mesh:

|V | ´ |E| ` |T | “ 2p1´ gq (3.36)

where g denotes the genus (intuitively the number of holes) of the surface. For most
practical applications the genus g is small compared to the number of vertices, faces,
and edges. Further

• each triangle is bounded by three edges

• each edge is incident to two triangles.

This leads to the following approximations relating the number of vertices, edges
and triangles:

• The number of triangles is approximately twice the number of faces F « 2V .

• The number of edges is approximately three times the number of vertices
E « 3V .

• The average vertex valence (the number of incident edges) is 6.

3.2.1 Linear (affine) finite elements on triangle meshes

As we discretized two dimensional manifolds by a finite number |V | of vertices and
|T | of triangles we are also only able to store a finite number of values to represent
a function defined on a triangle mesh. Given a function f : X Ñ R defined on a
triangle mesh X , a standard way to discretize it is to only store its values at the
vertices:

`

fpv1q . . . fpvV q
˘J
“
`

f1 . . . f|V |
˘J
“ f P R|V | (3.37)

However many different functions f may have the same discretization.
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Figure 3.4: Sampling of functions

We will henceforth interpret vectors f P RV as samplings of piecewise linear (PL)
functions. The space of PL functions is a vector space. Adding (scaling) the repre-
senting vectors is equivalent to adding or scaling the represented functions. Notice
that PL functions are not (classically) differentiable (at edges and vertices). As a
|V |-dimensional vectorspace we should be able to find |V | basis functions tψ1, . . . ψVu
that span this space. A standard choice are the so called hat functions or nodal basis
functions, defined via

ψipvjq “

#

1 i “ j

0 i ‰ j

and their property of being PL functions (i.e. linear inside each triangle). Sampled
values coincide with coefficients in this basis:

fpxq “

|V |
ÿ

i“1

αiψipxq “

|V |
ÿ

i“1

fpviqψipxq “

|V |
ÿ

i“1

fiψipxq (3.38)

In addition to the easy interpretation of coefficients, these basis functions have the
desirable property of having localized support (area where the function ‰ 0). This
will lead to sparse matrices. They are however lacking an other desirable property:
the nodal basis functions do not form an orthonormal basis :

xψi, ψjyL2pX q “

ˆ
X
ψippqψjppqdp ‰ 0 (3.39)

if vi and vj are connected with an edge. As a consequence the L2-product of two PL
functions f and g is not the same as the (standard) scalarproduct of their coefficients

xf, gyL2pX q ‰ xf ,gy (3.40)
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Instead:

xf, gyL2pX q “

ˆ
X
p

|V |
ÿ

i“1

fiψippqqp

|V |
ÿ

“1

gjψjppqqdp (3.41)

“

|V |
ÿ

i“1

|V |
ÿ

j“1

figj

ˆ
X
ψippqψjppqdp (3.42)

“ xf ,Mgy “: xf ,gyM (3.43)

The matrix M P R|V |ˆ|V | with entries Mij “
´
X ψippqψjppqdp is called mass ma-

trix. We discuss properties and an explicit formula for its entries in the following
subsection.

3.2.2 The mass matrix

The mass matrix is a symmetric positive definite matrix and thus induces an alter-
native inner product on R|V |.
We will now derive explicit expressions for the entries Mij.

We can decompose the integral
´
X ψippqψjppqdp over the mesh X into the sum of

integrals over all triangles:

Mij “

ˆ
X
ψippqψjppqdp (3.44)

“

|T |
ÿ

k“1

ˆ
tk

ψippqψjppqdp. (3.45)

Note that the integral over the triangle tk is zero if neither vertex vi nor vj is a
corner of tk. Thus Mij “ 0 if vi ‰ vj, pvi, vjq R E . This leaves two cases: vi “ vj or
pvi, vjq P E . Let first vi ‰ vj, pvi, vkq P E . There are exactly two triangles having vi
and vj as corners. Let tk “ pvl, vi, vjq be one of them. With the parametrization

xkpuq|Tr “ vl ` u1pvi ´ vlq ` u2pvj ´ vlq (3.46)

it holds that pψi ˝xkqpuq “ u1, pψj ˝xkqpuq “ u2 which together with equations 3.30,
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3.34 gives

ˆ
tk

ψippqψjppqdp “

ˆ
tr

u1u2

b

‖eli‖ ‖elj‖´ xeli, eljydu (3.47)

“ 2|tk|

ˆ 1

0

ˆ 1´u1

0

u1u2du2Du1 (3.48)

“ |tk|

ˆ 1

0

u1p1´ u1q
2du1 (3.49)

“ |tk|

ˆ 1

0

u1 ´ 2u2
1 ` u

3
1du1 (3.50)

“ |tk|

ˆ

1

2
´

2

3
`

1

4

˙

(3.51)

“
1

12
|tk| (3.52)

where eli “ pvi´vlq, elj “ pvj´vlq and |tk| “
1
2

a

‖eli‖ ‖elj‖´ xeli, eljy “ 1
2
‖eli ˆ elj‖

is the area of the triangle tk (c.f . Equation (3.31)). Consequently

Mij “
1

12
p|tk| ` |tk1 |q (3.53)

with tk and tk1 being the two triangles sharing the edge pvi, vjq. An analogous
derivation shows that the diagonal entries Mii are given as the sixth part of the sum
of areas of all triangles having vi as a corner.

Mii “
1

6

ÿ

viPtk

|tk| (3.54)

In particular

• M is a symmetric and sparse matrix with support “on the edges of the mesh”

• all entries of M are positive

• the diagonal entries of M equal the sum of the non-diagonal entries Mii “
ř

j‰i Mij

• M is positive definite.

The mass matrix is often approximated with a diagonal matrix A usually referred
to as the matrix of area elements. Its entries are given by Aii “

ř

j Mij. As the
name suggests the entries have a neat interpretation: For well behaving meshes (no
obtuse triangles) the values coincide with the area of the Voronoi cells around the
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corresponding vertices. In order to integrate a function f given by the coefficients
pf1, . . . , f|V |q one can simply build the weighted sum of those coefficients:

ˆ
X
fppqdp “

ÿ

i

Aiifi (3.55)

“ 1JAf (3.56)

“ 1JMf (3.57)

“

ˆ
X

1 ¨ fppqdp (3.58)

where 1 “
`

1 . . . 1
˘J

is the |V |-dimensional vector with 1’s everywhere. This
approach however fails when integrating function that are not linear inside the tri-
angles such as products of PL functions (which are piecewise quadratic), i.e. for
general f “

ř

i fiψi and g “
ř

i gjψjˆ
X
fppqgppqdp ‰ fJAg “

ÿ

i

figiAii (3.59)

In particular evident is the case of the L2 product of two hat functions which sud-
denly vanishes even when the corresponding vertices are adjacent. A remedy of this
inconsistency is to interpret the coefficients in a different function space: the space
of piecewise constant functions where the basis functions are indicator functions on
the Voronoi cells. The aforementioned inconsistency will be omitted not only when
dealing with products of two functions but also for products of an arbitrary number
of functions since the space of piecewise constant functions with disjoint support
is closed under pointwise multiplication. Yet another inconsistency will arise when
introducing the discrete Laplacian as piecewise constant functions are not (even
weakly) differentiable and the construction of the stiffness matrix (that will be in-
troduced in the next chapter) will thus fail. That being said, we must admit that we
are not aware of any practical implication this inconsistency causes. However, we
prefer to work with the “real” mass matrix instead of the matrix of area elements.



Chapter 4
Laplace Beltrami Operator

This chapter is dedicated to the probably most famous tool used in non-rigid shape
analysis during the last decade. The Laplace Beltrami operator is used for a wide
variety of tasks, such as

• regularization of shapes

• interpolation of shapes

• solving of physics-based PDEs on shapes

• definition of pointwise and pairwise descriptors for non-rigid shapes

• compressed representation of functions on and correspondences between shapes

• efficient derivation of geodesic distances on shapes

We will get back to some of these applications in the following chapters. In this chap-
ter we focus on the mathematical properties and the discretization of the Laplace
Beltrami operater (LBO).

For C2-functions f : Rm Ą U Ñ R the Laplace Beltrami operator is just the well
known Laplace operator

4fpuq “
m
ÿ

i“1

Bf 2

Bx2
i

(4.1)

ñ 4f “ divp∇fq (4.2)

The Laplace Beltrami operator can however be applied to a broader class of functions
(so called weakly differentiable functions) and domains. In fact it acts on functions
f : X Ñ R defined on submanifolds X . We will next introduce the spaces of weakly
differentiable functions, the so called Sobolev spaces which will allow the proper
definition of the Laplacian.
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4.1 Sobolev Spaces

This - admittedly technical - section introduces the notion of weak derivatives and
Sobolev spaces. We follow notation and structure of Chapter 5 in [20]. Let U be
either an open subset of Rm or an open subset of a m-dimensional manifold. We
denote the space of test functions on U by

C80 pUq “ th P C
8
pUq|h has compact support in Uu. (4.3)

For a better intuition we provide an example of a test function on U “ B2p0q “ tu P
R2| ‖u‖ ă 2u:

hpuq “

#

expp´ 1
1´‖u‖2 q ‖u‖ ď 1

0 ‖u‖ ą 1
(4.4)

the support of h is given by supph “ tu P U |hpuq ‰ 0u “ tu| ‖u‖ ă 1u “ tu| ‖u‖ ď
1u which is a compact subset of U .

For more details regarding test functions we refer to standard text books of func-
tional analysis or partial differential equations, such as [20] and will just emphasize
the properties of test functions that are important for the rest of this chapter:

• A test function h is infinitely often continuously differentiable.

• When evaluating h or any of its derivatives at the boundary BU of U , the value
is 0.

• The derivative h1 of a test function h is again a test function.

• Given a test function h P C80 pUq, U Ă Rm and a coordinate map x : U Ñ X
of a submanifold X , the function ψ “ h ˝ x´1 : xpUq Ñ R is a test function on
xpUq (and by setting ψppq “ 0@p R xpUq on X ).

• For a compact manifold X without boundary (BX “ H), every smooth func-
tion is a test function, i.e. C80 pX q “ C8pX q.

Let f : Rm Ą U Ñ R be locally integrable, (i.e.
´
K
|fpuq|du ă 8 for all compact

K Ă U) and consequently
´
U
|fpuqhpuq|du ă 8 for all test functions h. Let further

α “
`

α1 . . . αm
˘

P Nm be a multi-index and

Dα
“
Bα1

Buα1
1

. . .
Bαm

Buαm
m

(4.5)

|α| “
ÿ

i

αi (4.6)
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. If there exists a locally integrable function g with

ˆ
U

fpuqDαhpuqdu “ p´1q|α|
ˆ
U

gpuqhpuqdu @h P C80 pUq (4.7)

we call g the α-th weak partial derivative of f . It is easy to see that for every
C |α|-function weak and classical derivatives coincide. Moreover, weak derivatives
are unique (up to sets of measure 0). As a simple example for a function that is
weakly differentiable but not classically differentiable consider f : pa, bq Ñ R that is
continuous on pa, bq and (classically) differentiable on pa, u0q and on pu0, bq but is
not differentiable at u0 P pa, bq (i.e. limuÒu0 f

1puq ‰ limuÓu0 f
1puq). It holds

ˆ b

a

fpuqh1puqdu “

ˆ u0

a

fpuqh1puqdu`

ˆ b

u0

fpuqh1puqdu (4.8)

“´

ˆ u0

a

f 1puqhpuqdu` rfpu0qhpu0q ´ fpaqhpaqs (4.9)

´

ˆ b

u0

f 1puqhpuqdu` rfpbqhpbq ´ fpu0, hpu0qqs (4.10)

“ ´

ˆ u0

a

f 1puqhpuqdu`´

ˆ b

u0

f 1puqhpuqdu (4.11)

“ ´

ˆ b

a

gpuqhpuqdu (4.12)

Thus the weak derivative coincides with the classical derivative where it exists.
However g is not continuous since limuÒu0 f

1puq ‰ limuÓu0 f
1puq. The value gpu0q

can be chosen arbitrarily (tu0u has measure 0). This example of continuous and
piecewise differentiable functions generalizes to higher dimensions and in particular
applies to the piecewise linear function on triangle meshes that we introduced in the
previous chapter. Following [20] (5.1.1) we define

Definition 8 The Sobolev space W k,ppUq consists of all locally summable function
f : U Ñ R such that for each multi-index α with |α| ď k, Dαf exists (in the weak
sense) and belongs to LppΩq.

Together with the norm

‖f‖Wk,p “

$

&

%

´

ř

|α|ďk

´
U
|Dαfpuq|pdu

¯
1
p

1 ď p ă 8
ř

|α|ďk ess supU |D
αfpuq| p “ 8

(4.13)

We are mainly interested in the (Hilbert-) spaces HkpUq “ W k,2pUq and in particular
H1pUq.



26 Chapter 4. Laplace Beltrami Operator

For manifolds X partial derivatives do not make sense (since there is no canoni-
cal basis of the tangent space TpX ). However we can also define weak directional
derivatives via the equation

ˆ
X
dfppqrvshppqdp “ ´

ˆ
X
fppqdhppqrvsdp (4.14)

which together with dfppqrvs “ x∇f, vy defines weak gradients of functions on man-
ifolds and thus the space H1pX q.
Finally the space

W k,p
0 “ C80

‖¨‖
Wk,p

(4.15)

can be interpreted as the space of all W k,ppUq (and W k,ppX q) functions with
vanishing derivatives (up to k ´ 1) at the boundary of U (in the Lp sense) (and X
respectively).

The relevant function spaces for the rest of this chapter are H1
0 pX q and its dual

space H´1pX q.
For a more precise and detailed introduction to Sobolev spaces we refer to [20].

4.2 The Laplacian acting on H1
0

Definition 9 Let f P H1
0 pX q, X being a m-dimensional manifold (possibly a flat

subset of Rm). The Laplacian of f is the unique element 4f P H´1pX q such that
ˆ
X
4fppqhppqdp “ ´

ˆ
X
x∇f,∇hy dp @h P H1

0X (4.16)

It is equivalent to only “test” with functions g P C80 pX q since every element of H1
0

is the limit of test functions (c.f . Equation (4.15)). We will next derive explicit
representations for C2 functions f on Euclidean spaces and manifolds. Afterwards
we will present some properties of the Laplacian.
Let U Ă Rm, f P C2pUq and h P C80 pUq. Then

ˆ
U

x∇fpuq,∇hpuqy du “
ˆ

ÿ

i

Bfpuq

Bui

Bhpuq

Bui
(4.17)

“ ´

ˆ
ÿ

i

B2f

Bu2
i

hpuqdu (4.18)

ñ 4f “
ÿ

i

B2f

Bu2
i

(4.19)
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Thus the Laplacian as defined in Definition 9 generalizes the well known operator
on C2 functions.
Let next f : X Ñ R be a C2-function defined on a submanifold X . We will derive
an expression for 4f in local coordinates and discover that the Laplacian is an
intrinsic operator. The Laplacian of a C2 function is a continuous function and it
does make sense to ask for the value 4fppq at a point p P X . Let x : U Ñ V Ă X be
a coordinate map with p P V “ xpUq and h P C80 pV q. Further g : U Ñ Rmˆm is the
first fundamentalform with inverse g´1 “ pgijqi,j“1...m and f̃ “ f ˝ x´1, h̃ “ h ˝ x´1.
Making use of Equation (3.28) and Equation (3.30) we getˆ

V

x∇f,∇hydp “
ˆ
U

A

g´1
puq∇f̃puq, g´1

puq∇h̃puq
E

gpuq

a

det gpuqdu (4.20)

“

ˆ
U

A

∇f̃puq, g´1
puq∇h̃puq

E

a

det gpuqdu (4.21)

“

ˆ
U

˜

m
ÿ

i,j“1

Bf̃puq

Bui
gijpuq

Bh̃puq

Buj

¸

a

det gpuqdu (4.22)

“

ˆ
U

˜

m
ÿ

i,j“1

a

det gpuq
Bf̃puq

Bui
gijpuq

Bh̃puq

Buj

¸

du (4.23)

Integration by parts gives:

“ ´

ˆ
U

m
ÿ

i,j“1

B

Buj

˜

a

det gpuq
Bf̃puq

Bui
gijpuq

¸

h̃puqdu (4.24)

“ ´

ˆ
U

1
?

det g

m
ÿ

i,j“1

B

Buj

˜

a

det g
Bf̃

Bui
gij

¸

h̃
a

det gdu (4.25)

Thus (in combination with the Fundamental Lemma of the calculus of variations
4f) has a representation solely in terms of derivatives if f̃ and g:

´
1

a

det gpuq

m
ÿ

i,j“1

B

Buj

˜

a

det gpuq
Bf̃puq

Bui
gijpuq

¸

(4.26)

The Laplacian is therefor an intrinsic operator. Whenever g is the identity matrix
(as for Euclidean spaces) we recover the well known Equation (4.1).

4.3 Properties of the Laplacian

In this section we summarize some properties of the Laplacian that are essential for
the applications (e.g . heat equation or functional maps) presented in the following
chapters.
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4.3.1 Linearity

First notice that due to the linearity of integration and derivatives, also the Laplacian
is a linear operator, i.e.

4pf1 ` αf2q “ 4f1 ` α4f2 (4.27)

for all f1, f2 P H
1
0 , α P R.

4.3.2 Formal self adjointness

Further the Laplacian is formally self-adjoint

x4f, hy “ xf,4hy (4.28)

for every pair of functions f, h where the expression makes sense. Since H1
0 is not a

Hilbert space (in particular self dual) we cannot say that 4 is self adjoint but only
call aboves property formal self adjointness.

4.3.3 Locality

The Laplacian is a local operator, i.e. changing the value fpyq at any point x ‰ y
does not affect the value of 4f . This can be seen by “testing” with a test function
h with y R supph.

4.3.4 Mean Value formula

The value of the Laplacian 4fppq at a point p P X has a neat interpretation: it
measures how much the function value fppq differs from the values in its neighbor-
hood.

4fppq “ lim
rÑ0

 
Brppq

fpqqdq ´ fppq (4.29)

where Brppq “ tq P X |dpp, qq ă ru denotes a geodesic ball with radius r centered at
p and

ffl
Brppq

“ 1
|Brppq|

´
Brppq

is the integral normaliced by the area of the integration

domain. We only provide a proof for Euclidean domains X “ U Ă Rm. The proof
makes use of the first of Greens’ formulas (see e.g . [20] for a proof).

Theorem 2 (Green’s formulas) Let U Ă Rn be a bounded open subset of Rn with
boundary BU P C1. For f, h P C2pŪq

1.
´
U
4fpuqdu “

´
BU

Bfppq
Bν

dp
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2.
´
U
Dfpuq ¨Dhpuqdu “

´
U
fpuq4hpuqdu`

´
BU

Bhppq
Bν

fppqdp

3.
´
U
fpuq4hpuq ´ hpuq4fpuqdu “

´
BU

Bhppq
Bν

fppq ´ Bfppq
Bν

hppqdp

where ν : BU Ñ Rm is the outward pointing normal of U .

Notice that aboves formulas to do not assume f and h to vanish at the boundaries
of U .
Let next Brpxq denote a ball of radius r around x and

V prq “

 
BBrpxq

fppqdp (4.30)

A first order Taylor expansion of V around r “ 0 gives

V prq ´ V p0q «
B

Br

 
BBrpxq

fpqqdq (4.31)

“
B

Br

 
BB1p0q

fpx` rqqdq (4.32)

“

 
BB1p0q

Dfpx` rqq ¨ qdq (4.33)

“

 
BBrppq

Dfpqq ¨
q ´ p

r
dq (4.34)

“

 
BBrppq

Bfpqq

Bν
dq (4.35)

“

 
BBrppq

4fpqqdq (4.36)

So in the limit r Ñ 0 we get limrÑ0

ffl
BBrppq

fpqqdq ´ fppq “ 4fppq. Equation (4.29)

can be obtained from Brppq “
Ť

r1ď0 BBr1ppq.

4.3.5 Maximum principle

A function f P C2pX q on a manifold X (which is open) is called harmonic if4f “ 0.
As a consequence of of the mean value formula f does not provide a maximum in
X . In case f P C2pX q X CpX̄ q:

max
X̄

f “ max
BX

f (4.37)

Due to the linearity of the Laplacian the same holds for minima. If BX “ H each
harmonic function is constant.
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4.3.6 Negative semidefinitness

The Laplacian is a negative semi-definite operator:

x4f, fy “ ´
ˆ
X
x∇f,∇fy dp ď 0 (4.38)

with equality iff f is constant.

4.4 Spectral decomposition of the Laplacian

In this section we consider the equation

4f “ λf (4.39)

in particular for functions defined on manifolds without boundary. We thus avoid
the necessity of boundary conditions.
It can be shown that the Laplacian has a countable number of eigen pairs pλk, φkq:

4φk “ λkφk (4.40)

It is easy to see that all eigenvalues are real and non-positive:

λk xφk, φkyě0 “ x4φk, φky “ ´
ˆ
X
x∇φk,∇φky dp ď 0 (4.41)

One can further show that 0 “ λ0 ą λ1 ě ... Ñ ´8. Let further φk, φl be two
eigenfunctions with distinct eigenvalues λk, λl. Then

λk xφk, φly “ x4φk, φly “ xφk,4φly “ xφk, λlφly “ λl xφk, φly (4.42)

and thus xφk, φly “ 0. With a bit of extra work (dimension of eigenspaces with
repeating eigenvalues) we get the following Lemma:

Lemma 5 Let X be a compact manifold with a single connected component. There
exists a sequence tλkukPN, 0 “ λ0 ą λ1 ě ... Ñ ´8 and orthonormal functions
φk : X Ñ R such that

4φk “ λkφk (4.43)

The eigenfunctions φk of the Laplacian are also called harmonics and can be seen
as generalizations of the Fourier basis functions exppikxq. For functions defined on
the real line, the Laplacian becomes the second derivative and it holds that

B2

Bx2
exppi

?
ωxq “ ´ω exppi

?
ωxq (4.44)
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For compact domains ra, bs Ă R one gets a countable number of eigenfrequencies ω

due to periodic boundary conditions (exppi
?
ωaq

!
“ exppi

?
ωbq). This is the analogon

to the harmonics on compact manifolds.

An alternative way to define the eigenfunctions is as minimizers of the Dirichlet
energy ED:

φk “ arg min
‖φ‖“1

EDpφq “ arg min
‖φ‖“1

ˆ
X
‖∇φ‖2 dp (4.45)

s.t. xφk, φly “ 0 @l ă k (4.46)

The Dirichlet energy of an eigenfunction equals the absolut value of the correspond-
ing eigenvalue.

Figure 4.1: Ambiguity of
eigenfunctions

Notice that the eigendecomposition is not unique. Let λ
be an eigenvalue with corresponding eigenvector φ. Then
also every vector αφ (α ‰ 0) is an eigenvector to λ. Even
by constraining the eigenvectors to have unit length there
is still an ambiguity between the vectors φ and ´φ. The
term sign flip is often used to address this ambiguity. In
case of higher dimensional eigenspaces (repeating eigen-
values) every linear combination of the eigenvectors is
again an eigenvector to the same eigenvalue. Again, con-
straining the eigenvectors to be orthonormal does not
solve this ambiguity: Applying an orthogonal matrix R
that is acting on the eigenspace spanned by the eigenvec-
tors gives an alternative set of eigenvectors that are still
orthonormal. Since the harmonics form an orthonormal
basis every function f P L2pX q can be written in that
basis:

fppq “
8
ÿ

k“0

ckφkppq “
8
ÿ

k“0

xf, φkyφkppq (4.47)

where the coefficients are given by the products xf, φky “´
X fppqφppqdp.

We have seen that the harmonics form an orthonormal basis and are ordered based
on their Dirichlet energy which is a measure of variability. The harmonics and the
spectrum (set of eigenvalues) of the Laplacian have some more interesting properties.
First note that integrating the Laplacian of any function over the manifold gives

ˆ
X
4f “

ˆ
X

14f “ ´
ˆ
X
x∇1,∇fy “ 0 (4.48)
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Figure 4.2: Every function f P L2pX q can be written in the Laplace-Beltrami-Eigen-basis:
fppq “

ř8
k“0 ckφkppq. For compact manifolds the first eigenfunction φ0 corresponding to

the eigenvalue λ0 “ 0 is constant. The eigenfunction φ1 corresponding to the smallest (as
absolute value) eigenvalue is also called Fiedler vector. (Mesh from the TOSCA dataset
[14])

which implies that the mean value of every eigenfunction φk with corresponding
eigenvalue λk ‰ 0 is zero:

ˆ
X
φk “

1

λk

ˆ
X

∆φk “ 0

The eigenfunction φ0 with corresponding eigenvalue λ0 “ 0 is constant, φ0ppq “ c.
Due to the normalization we get

1 “

ˆ
X
φ2

0ppqdp “ c2areapX q ô c “ ˘
1

a

areapX q

Let X̃ “ αX be a scaled version of X and pλ, φq be an eigenpair of the Laplacian
4X on X . Then the pair pλ̃, φ̃q with λ̃ “ 1

α2λ and φ̃pyq “ 1
α
φp y

α
q is an eigenpair of

4X̃ :
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ˆ
X̃
x4φ̃pyq, h̃pyqydy “ ´

ˆ
X
x∇φ̃pyq,∇h̃pyqydy (4.49)

“ ´

ˆ
X
x

1

α2
∇φpxq,∇ 1

α
h̃pαxqyα2dx (4.50)

“
1

α

ˆ
X
x4φpxq, h̃pαxqydx (4.51)

“
λ

α

ˆ
X
xφpxq, h̃pαxqydx (4.52)

“
λ

α

ˆ
X̃
xαφ̃pyq, h̃pyqy

1

α2
dy (4.53)

“ λ̃

ˆ
X̃
xφ̃pyq, h̃pyqydy (4.54)

The function φ̃pyq also has unit norm:

ˆ
X̃

∥∥∥φ̃pyq
∥∥∥

2

dy “

ˆ
X

∥∥∥∥
1

α
φpxq

∥∥∥∥
2
a

det gpxqdx “

ˆ
X

∥∥∥φ̃pxq
∥∥∥

2

dy “ 1 (4.55)

As a consequence of Weyl’s law [55] or more precisely its extension to compact closed
manifolds by Levitan [31] we also get the following asymptotic approximation for
the eigenvalues:

|λj| «
π

areapX qj pj Ñ 8q (4.56)

Finally remember that the Laplacian is an intrinsic operator. As a consequence both
its spectrum an its eigenspaces are consistent across a pair of isometric shapes. We
will elaborate on this in the following chapter.

4.5 Discretizing the Laplacian

We want to define a discrete Laplace operator acting on functions defined on triangle
meshes (c.f . Section 3.2). Let us first review the definition of the Laplacian on a
compact manifold manfold X without boundary:

ˆ
X
4fppqhppqdp “ ´

ˆ
X
x∇f,∇hy dp (4.57)

for all f, h P H1pX q (which equals H1
0 pX q since BX “ H). The approach is based

on the Ritz-Galerkin method [43]: instead of demanding Equation (4.57) for all
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functions of the infinite dimensional space H1pX q we only ask it to hold on a finite
dimensional Ansatz space A (where f is defined) and Test space T (where h is
defined): ˆ

X
4fppqhppqdp “ ´

ˆ
X
x∇f,∇hy dp @f P A, h P T (4.58)

The Ritz-Galerkin method sets A “ T . By increasing the dimensions and under
some additional regularity requirements, one can show that the discrete operator
converges to the smooth Laplacian. We refer to any text book on numerics of PDEs
(finite element methods) for more details on convergence. In the context of triangle
meshes we choose A and T to be the space of piecewise linear functions as defined
in Section 3.2.1. Let now f and h be two piecewise linear functions on a triangle
mesh X given by their coefficients f ,h P R|V |. The discrete Laplacian is an |V |ˆ |V |
matrix L such that Lf “ k P R|V | are the coefficients of the (again piecewise linear)
function k satisfying ˆ

X
kppqhppq “ ´

ˆ
X
x∇f,∇hy dp (4.59)

We have already seen that we can write the left term using the mass matrix M (c.f .
Equation (3.41)): ˆ

X
kppqhppq “ hMk (4.60)

with Mij “
´
X ψippqψjppqdp. It further holds

ˆ
X
x∇k,∇hy dp “ hSf (4.61)

Sij “

ˆ
X
x∇ψi,∇ψjy dp (4.62)

(4.63)

We call the matrix S stiffness matrix. Cobining aboves equations we see

hMk “ ´hSf @h P R|V | (4.64)

ñ k “ ´M´1Sf (4.65)

ñ L “ ´M´1S (4.66)

The stiffness matrix is often referred to as cotangent matrix, the following derivation
shows why. As in Section 3.2.2 we decompose the integral Sij “

´
X x∇ψi,∇ψjy dp

into the sum of integrals over all triangles and see that

Sij “

ˆ
X
x∇ψi,∇ψjy dp “

ˆ
tk

x∇ψi,∇ψjy dp`
ˆ
tk1

x∇ψi,∇ψjy dp (4.67)
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where tk and tk1 are the two triangles sharing the edge pvi, vjq. Let tk “ pvl, vi, vjq
be one of them and the parametrization be as in Equation (3.46) (c.f . Figure 4.3
for notation). Then

ˆ
tk

x∇ψi,∇ψjy dp “
ˆ 1

0

ˆ 1´u1

0

B

g´1

ˆ

1
0

˙

, g´1

ˆ

0
1

˙F

g

a

detpgqdu (4.68)

“
1

2

`

1 0
˘ 1

detpgq

ˆ

‖ejl‖2
´xeil, ejly

´ xeil, ejly ‖eil‖2

˙ˆ

0
1

˙

a

detpgq (4.69)

“ ´
1

2

xeil, ejly
a

detpgq
“ ´

1

2

‖eil‖ ‖ejl‖ cospαiljq

‖eil‖ ‖ejl‖ sinpαiljq
(4.70)

“ ´
1

2
cotpαiljq (4.71)

and consequently

(4.72)

Sij “

$

’

&

’

%

0 vi ‰ vj p̂vi, vjq R E
´1

2
pcotpαiljq ` cotpαil1jqq pvi, vjq P E

´
ř

l‰i Sil vi “ vj

(4.73)

The last equality can be derived analogously but also follows directly from

Sii “ x∇ψi,∇ψiy (4.74)

“

C

∇p1´
ÿ

l‰i

ψlq,∇ψi
G

(4.75)

“ ´
ÿ

l‰i

x∇ψl,∇ψiy “ ´
ÿ

l‰i

Sil (4.76)

Let us enumerate some of the important properties of the stiffness matrix S:

1. The stiffness matrix is sparse, with support on the edges (just as the mass
matrix).

2. The stiffness matrix is symmetric.

3. The stiffness matrix is positive semidefinit with a onedimensional kernel
spanned by the contant vector 1 P R|V |.

We want to address concerns regarding possibly surprising properties of the discrete
Laplacian L

1. The matrix M´1 is dense (support everwhere) and consequently is L
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vi

vj

vl

vl1
αilj

αil1j

vi

vj

vl
αilj

Figure 4.3: Left: The stiffness matrix is a symmetric sparse matrix. Sij “ Sji is non-zero
only if the vertices vi and vj share an edge. In this case the value equals the negative mean
of cotangents of the angles opposing the edge: Sij “ ´

1
2

`

cotpαiljq ` cotpαil1jq
˘

. This is
why the stiffness matrix is commonly referred to as the cotangent matrix. Right: If the
edge is a boundary edge there is only one angle opposing it and the sum reduces to a
single term.

2. L is not symmetric. This even holds when approximating M with a diagonal
matrix (area elements)

The main concern regarding the first property is that the application of the Laplacian
to a function becomes a dense matrix vector product and thus expensive (Op|V |2q).
This would in particular make algorithms slow that have to apply the Laplacian
multiple times (such as power iterations to solve eigenvalue problems). However in
most applications one can just multiply the arising equations with M

Lf “ k ô ´Sf “ Mk (4.77)

and thus transform the dense matrix vector product into two sparse matrix vector
products. In particular we can rewrite the eigenvalue problem as a generalized
eigenvalue problem:

Lφφφ “ λφφφô ´Sφφφ “ λMφφφ (4.78)

for which dedicated solvers exist [30, 51] and are available in computing toolboxes
such as MATLAB and SciPy. The resulting eigenvectors φφφk will not be orthogonal
with respect to the standard inner product. This is a consequence of L not being
symmetric. However the vectors will be orthogonal with respect to the M-inner
product

λk xφφφk,φφφlyM “ xλkMφφφk,φφφly (4.79)

“ x´Sφφφk,φφφly (4.80)

“ xφφφk,´Sφφφly (4.81)

“ λl xφφφk,φφφlyM (4.82)

ñ xφφφk,φφφlyM “ 0. (4.83)
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for λk ‰ λl. (The proof for real and non-positive eigenvalues goes along the same
lines.) This however is exactly what we want as M-orthogonal eigenvectors corre-
spond to orthogonal eigenfunctions φk and φl:

xφφφk,φφφlyM “

ˆ
X
φkppqφlppqdp “ 0 (4.84)

In matrix notation the M-orthogonality reads

ΦTMΦ “ I (4.85)

where Φ stores all eigenfunctions as columns and I P R|V |ˆ|V | is the identity matrix.
Let X̃ be the triangle mesh obtained by scaling X with α. The elements of the mass
matrix M̃ of X̃ are scaled with the factor α2 (since they depend on the area of the
triangles), the elements of the new stiffness matrix S̃ remain the same (since the
angles do not change). Thus for every eigenpair pλk, φkq of the discrete Laplacian
on X there is an eigenpair pλ̃k, φ̃kq on X̃ with

λ̃k “
1

α2
λkφ̃k “

1

α
φk (4.86)

This is consistent with the behaviour of the continuous Laplacian.
Alternative discretizations of the Laplacian can be obtained by using higher or-
der finite element approaches [42], mixed finite element methods or considering the
relation of the Laplacian with the curvature of a surface [35]. The variety of dis-
cretizations is tightly connected to the observation that for general triangle meshes
there is no discrete Laplacian satisfying a set of desireable properties [10, 54]:

NULL 4f “ 0 whenever f is constant

SYM Symmetry: x4f, hy “ xf,4hy whenever f and h are sufficiently smooth and
vanish along the boundary of X .

LOC Local support: for any pair p ‰ q of points, 4fppq is independent of fpqq.
Altering the function value at a distant point will not affect the action of the
Laplacian locally

LIN Linear precision: 4f “ 0 whenever X is part of the Euclidean plane, and
f “ ax` by ` c is a linear function on the plane.

MAX Maximum principle: harmonic functions (those for which 4f “ 0 in the
interior of X ) have no local maxima (or minima) at interior points.

NSD Negative semi-definiteness: the Dirichlet energy, EDpfq “
´
X ‖∇f‖

2 dp, is
non-negative. By our choice of sign for 4, we obtain EDpfq “ ´ x4f, fy ď 0
whenever f is sufficiently smooth and vanishes along the boundary of X .

Our discretization in particular lacks the property LOC (non-zero entries only at
edges) due to the non-diagonal structure of the mass matrix M.
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4.6 The heat equation

Apart from the Helmholtz equation (4.39) the most prominent partial differential
equation is the heat equation. Again, we avoid a discussion regarding boundary
conditions by considering compact manifolds without boundary as the domain. In
this case the heat equation is given by:

Btu “ c4u (4.87)

up0, ¨q “ u0 (4.88)

where u “ upt, xq is a function defined on Rě0ˆX (the first argument is interpreted
as time), c ą 0 is a constant and the Laplacian4 is acting on the latter argument as
described in the previous sections. If the function u0 : X Ñ Rě0 described the initial
distribution of heat on X , upt, ¨q defines the distribution of heat at time t. From
Equation (4.29) we know that the Laplacian 4upt, xq measures the difference of the
average of upt, ¨q in its neighborhood to the value at x P X itself. Thus if4upt, xq ă 0
the temperature at x is higher than the average temperature in its neighborhood
and thus the temperature at this point is decreasing: Btu “ c4u ă 0. We want
to point out that (4.87) is a simplified approximation of the real diffusion process:
Analyzing (4.87) shows that heat diffuses with infinite speed: upt, ¨q ą 0 @t ą 0
which is physically not possible.
We will now derive an explicit expression for the solution of the heat equation
in terms of eigenfunctions and eigenvalues of the Laplacian. Just for the sake of
simplicity we assume c “ 1 but all what follows generalizes to arbitrary values of c
in a straight forward manner. We can write

upx, tq “
ÿ

k

ckptqφkpxq (4.89)

as for each t, the function up¨, tq P L2pX q. The coefficients ck vary with t. Applying
the differential operators Bt and 4 to (4.89) yields

Btupx, tq “ Bt
ÿ

k

ckptqφkpxq (4.90)

“
ÿ

k

c1kptqφkpxq (4.91)

4upx, tq “ 4
ÿ

k

ckptqφkpxq (4.92)

“
ÿ

k

ckptq4φkpxq (4.93)

“
ÿ

k

ckptqλkφkpxq (4.94)
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and consequently by plugging this into (4.87)
ÿ

k

c1kptqφkpxq “
ÿ

k

ckptqλkφkpxq @t P Rě0
@x P X (4.95)

Consequently by comparison of the coefficients:

c1kptq “ λkckptq@t (4.96)

ñ ckptq “ ckp0q exppλktq (4.97)

The initial coefficients ckp0q are given by the initial distribution of heat via

ckp0q “ xu0, φky (4.98)

“

ˆ
X
u0pxqφkpxqdx (4.99)

This follows directly from the orthogonality of the φk’s and the previous formulas:

ˆ
X
u0pxqφkpxqdx “

ˆ
X

˜

ÿ

l

clp0qφlpxq exppλl ¨ 0q

¸

φkpxqdx (4.100)

“
ÿ

l

clp0q

ˆˆ
X
φlpxqφkpxqdx

˙

“ ckp0q (4.101)

4.6.1 Heat kernels

There is yet an other way to express the solution of the heat equation:

upt, xq “

ˆ
X
ktpx, yqu0pyqdy (4.102)

where kt are the so called heat kernels. Intuitively ktpx, yq describes what fraction
of heat is transported from location y P X to x P X at time t. The total amount of
heat at x P X is then given by integrating over all sources y P X weighted by the
initial amount of heat. The heat kernel can also be thought as the solution of the
heat equation with initial distribution u0 “ δy. δy “ δ0p¨´yq is no classical function
but the dirac distribution [16] satisfying

xf, δyy “ fpyq @f P C1
pX q (4.103)

It is easy to see that

ktpx, yq “
ÿ

k

exppλktqφkpxqφkpyq (4.104)

using the formulas from the previous section. We will come back to heat kernels
and their applications as descriptors in Sections 5.3 and 5.4. For more theory and
solid math we refer the reader to [22].





Chapter 5
Correspondences between Shapes

“Shape matching”, “Shape correspondence”, “Registration of shapes” - all these
terms refer to the task of finding a mapping m : X Ñ Y between two non-rigid
shapes. The mapping should map semantically similar regions to each other. In
some scenarios such a mapping does not exist as some regions that are visible on
X are not present on Y . In this chapter we assume consistent visibility, i.e. for
each region on X there exists a corresponding region on Y and vice versa. In other
words the sought mapping m : X Ñ Y is a bijection. Moreover, m and m´1 should
be regular, i.e. map closeby points to closeby points. Formally we want them to
be C1 functions. To summarize, the correpondence m : X Ñ Y should satisfy three
properties:

1. It should be bijective.

2. Both, m and m´1 should be differentiable.

3. m should map semantically meaningful points (e.g . the tips of the noses) onto
each other.

The first two properties can be summarized as m being a diffeomorphism. It turns
out to be difficult to translate the concept of diffeomorphisms to the discrete world
where only a finite amount of numbers are available to represent a correspondence.
We will introduce permutations as discrete counterparts to bijections and present
an approach to discretize the concept of differentiability.
Correspondence problems are most commonly phrased as optimization problems.
The requirement of bijectivity turns out to be a computational bootleneck. We
will present some variants of relaxations as possible way outs. In addition to all
aforementioned difficulties it is not clear, how to formalize the third requirement:
How can we translate “semantically similar” into mathematical terms? This is still
an unanswered question, nowadays commonly approached via supervised (deep)
machine learning methods [18, 32]. In scenarios without access to labeled ground
truth data, a common assumption is that the considered shapes are “near isometric”,
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i.e. m is an almost isometry. Points on X and Y can thus be compared using
descriptors that are invariant under isometries. We will provide details regarding
isometries in the following section and examples for isometry invariant features in
the next chapter.

5.1 Isometries

A common approach for non-rigid shape correspondence is to look for a mapping
that is approximately an isometry:

Definition 10 A bijective mapping m : X Ñ Y between to metric spaces X and Y
is called an isometry if it preserves all pairwise distances:

DX
px1, x2q “ DY

pmpx1q,mpx2qq @x1, x2 P X (5.1)

If such a mapping exists, the spaces X , Y are called isometric.

Articulated bodies (of animals or humans) are often “almost isometric” and one is
thus seeking a mapping m such that

DX
px1, x2q « DY

pmpx1q,mpx2qq (5.2)

.

5.1.1 Iterative Closest Point algorithm for rigid alignment
of point sets

An important example (not directly applicable to non-rigid shapes though) are Eu-
clidean isometries. Consider two subsets X ,Y Ă Rn of a Euclidean space together
with the Euclidean metrics dXpx1, x2q “ ‖x1 ´ x2‖, dY px1, x2q “ ‖y1 ´ y2‖. Each
isometry between X and Y is a rigid motion:

mpxq “ Rx` t R P Opnq, t P Rn (5.3)

Given two sets X “ tx1, . . . , xmX u, Y “ ty1, . . . , ymYu finding the optimal rotation
and translation to align those two is commonly tackled using the iterative closest
point (ICP) algorithm [5, 9]:

• For each point xi find closest point in Y and call it zi

• Find the optimal pair R, t that minimizes
ř

i ‖Rxi ` t´ zi‖
2

• transform X using the obtained R, t

• iterate the process
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Notice that in the ICP algorithm every (transformed) element of X is querying it’s
nearest neighbor in every iteration. A naive implementation of the nearest neighbor
search would thus lead to a complexity of Op#iterˆ mX ˆ mYq. An efficient data
structure for nearest neighbor searches are kd trees [7]. They are binary trees, where
each non-leaf node encodes a hyperplane, dividing the samples from the training set
(the set where we will later query for nearest neighbors, Y above) represented by
that node into two sets of (almost) same size. In Figure 5.1 we depict an example
for a kd tree in two dimensions. kd trees are constructed by

• assigning the set Y to the root node

• recursively

– pick one of the dimensions 1 ď j ď n (in the original paper the space
dimension n was denoted k, thus the name).

– create two child nodes and assign every sample with j-value smaller or
equal to the median (in dimension j) to the left child and the others to
the right child (this guarantees a balanced tree in the end)

• stop the iteration once the number of the assigned samples reaches a certain
threshold (usually 1)

This construction is of complexity OpmY ˆ logmYq and only happens once. In
many cases finding the nearest neighbor of x P X can be performed in OplogmYq
by traversing down the tree, dependent on the values of the jth entry of x in every
node, possibly checking a small set of neighboring branches. In degenerate cases
one may need to backtrack and check many or even all branches of the tree, leading
to OpmYq complexity. This, however, can be neglected in practive such that the
total complexity of querying nearest of all elements of X in Y is considered to be
OpmX ˆ logmYq What does have a major influence of the complexity though is the
space dimension n. As a consequence kd trees are only efficient for m " 2n. While
in classical rigid alignment this should most often be the case (n “ 3) it may not
hold true when aligning point sets in higher dimensional feature spaces.

We will next show that there exists a closed form solution for the optimal rigid
motion aligning two point sets with given correspondences. The following Lemma
will help us finding the optimal rotation.

Lemma 6 Let A P Rnˆn be a symmetric, positive definite matrix. Then

arg max
R̃POpnq

trpR̃JAq “ I (5.4)
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Figure 5.1: Example of a kd Tree in two dimensions. Each node of the tree (right)
represents one hyperplane (left). The colors indicate the splitting dimensions. For a given

query point, e.g .
`

0.2 0.2
˘J

traversing down the tree already gives good candidates for
possible nearest neighbors. There may however be cases where the actual nearest neighbor

is in a very different branch than expected. The query point
`

0.6 0.2
˘J

would land in
the 5th leave while the actual nearest neighbor corresponds to the 4th leave. Backtracking
from one to the other is almost as expensive as doing the naive all-to-all comparison.
However this case happens very seldom and in practice approximate nearest neighbors are
often sufficient.



5.1. Isometries 45

Proof. Let us write A in terms of its positive eigenvalues λi and orthogonal eigen-
vectors φi and see that

trpR̃JAq “ trpR̃J
ÿ

i

λiφiφ
J
i q (5.5)

“
ÿ

i

λi trpR̃
Jφiφ

J
i q (5.6)

“
ÿ

i

λi pR̃φiq
Jφi

l jh n

ď1

(5.7)

ď
ÿ

i

λi “ trpAq (5.8)

In case A is just positive semi definite (does not have full rank), there are equivalent
minimizers (product of eigenvectors corresponding to 0 eigenvalue does not affect
the sum) but the identity is still one of them.

Theorem 3 Let tx1, . . . , xmu Ă Rn and tz1, . . . , zmu Ă Rn be two point sets. Then
a solution of

pR˚, t˚q “ arg min
RPOpnq,tPRn

m
ÿ

i“1

‖Rxi ` t´ zi‖2 (5.9)

is given by

t˚ “ z̄ ´R˚x̄ (5.10)

R˚
“ UVJ (5.11)

where x̄ “ 1
m

ř

xi and z̄ “ 1
m

ř

zi are the respective means of the point sets and
M “ UDVJ is the singular value decomposition of M “

ř

ipzi ´ z̄qpxi ´ x̄q
J. If M

has full rank the solution is unique.

Proof. Let us first assume R˚ to be given and solve for t˚ by only using the orthog-
onality of R˚. We start by adding a zero and introducing t̃ “ R˚Jpz̄ ´ tq:

m
ÿ

i“1

‖R˚xi ` t´ zi‖2
“

m
ÿ

i“1

‖R˚xi ´ z̄ ` t´ zi ` z̄‖2 (5.12)

“

m
ÿ

i“1

∥∥R˚
pxi ´R˚J

pz̄ ´ tqq ´ pzi ´ z̄q
∥∥2

(5.13)

“

m
ÿ

i“1

∥∥R˚
pxi ´ t̃q ´ pzi ´ z̄q

∥∥2
(5.14)

“

m
ÿ

i“1

∥∥xi ´ t̃
∥∥2
´ 2

ÿ

i

pzi ´ z̄q
JR˚

pxi ´ t̃q `
m
ÿ

i“1

‖zi ´ z̄‖2

(5.15)
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We solve for t̃ (and thus for t˚) by taking the gradient with respect to t̃ and setting
it to zero:

0 “ 2
m
ÿ

i“1

pxi ´ t̃q ´ 2
m
ÿ

i“1

R˚J
pzi ´ z̄q (5.16)

“ 2
m
ÿ

i“1

pxi ´ t̃q ´ 2R˚J

m
ÿ

i“1

pzi ´ z̄q (5.17)

“ 2
m
ÿ

i“1

pxi ´ t̃q ´ 2R˚J

˜

m
ÿ

i“1

zi ´mz̄

¸

(5.18)

“ 2
m
ÿ

i“1

pxi ´ t̃q (5.19)

ñ t̃ “
1

m

m
ÿ

i“1

xi ô t˚ “ z̄ ´R˚x̄ (5.20)

For finding the optimal R˚ we rewrite

m
ÿ

i“1

‖Rxi ` t˚ ´ zi‖2
“

m
ÿ

i“1

‖Rpxi ´ x̄q ´ pzi ´ z̄q‖2 (5.21)

“

m
ÿ

i“1

‖xi ´ x̄‖2
`

m
ÿ

i“1

‖zi ´ z̄‖2
´ 2

m
ÿ

i“1

pxi ´ x̄q
JRJ

pzi ´ z̄q

(5.22)

The first two terms are independent of R and we thus are looking for R maximizing
the last sum. Using the cycle property of the trace operator, its linearity, and the
fact that the trace of a scalar is the scalar itself we can write

m
ÿ

i“1

pxi ´ x̄q
JRJ

pzi ´ z̄q “ trp
m
ÿ

i“1

pxi ´ x̄q
JRJ

pzi ´ z̄qq (5.23)

“

m
ÿ

i“1

trppxi ´ x̄q
JRJ

pzi ´ z̄qq (5.24)

“

m
ÿ

i“1

trpRJ
pzi ´ z̄qpxi ´ x̄q

J
q (5.25)

“ trpRJ

m
ÿ

i“1

pzi ´ z̄qpxi ´ x̄q
J
q (5.26)

“ trpRJMq (5.27)

“ trpRJUDVJ
q (5.28)

“ trpVJRJUDq (5.29)
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From Lemma 6 (D is a diagonal matrix with non-negative values) it follows that
VJR˚JU “ I which is equivalent to R˚ “ UVJ if M (and thus D) has full rank.
If M does not have full rank equivalent solutions exist. This could e.g . be the case
if there are only a few known correspondences (m ă n) or the correspondences are
not independent.

We have seen that there are efficient ways to find nearest neighbors in spaces with
moderate dimensions and that given corresponding points the calculation of an
optimal rigid alignment can be done closed form. Thus - given a good intialization -
the ICP algorithm is very efficient in finding rigid isometries. We want to point out
that without either a good initial alignment or correspondences, ICP usually gets
trapped in local optima.

5.1.2 Intrinsic isometries and multidimensional scaling

While being very efficient, the ICP algorithm not only relies on a good initialization
but is also limited to rigid shapes, i.e. Euclidean isometries. When dealing with non-
rigid shapes X and Y the chosen metrics DX and DY are the geodesic distances,
i.e.

dpp, qq “ min
c : r0,1sÑX

tlengthpcq|cr0s “ p , cr1s “ qu (5.30)

In this case the set of isometries can not be described by a low dimensional space
as in the Euclidean setting. All approaches that will be presented in the following
sections (in particular Section 5.3 and Section 5.6) can in one way or an other be
interpreted as mapping the shapes into a Euclidean space and then perform ICP-like
methods there. A noticable exception are approaches based on pairwise descriptors
(Section 5.4) which can be seen as variants of generalized mutlidimensional scaling
[13].
The most straight forward way to turn the non-rigid isometry problem into a Eu-
clidean one is called multidimensional scaling (MDS). The idea is to find a mapping
φX : X Ñ RN (N not necessarily related to dimension of X ) such that all distances
are preserved:

dX pp, qq “ dRN pφppq, φpqqq “ ‖φppq ´ φpqq‖ @p, q P X (5.31)

If such a mapping exists for X there is also a φY : Y Ñ RN preserving all distances
of Y . Thus we can get a correspondence between X and Y by rigidly aligning φX pX q
with φYpYq. However there are two major drawbacks to this approach:

1. The mappings φX , φY will never be unique: concatenating them with any rigid
motion will not change the Euclidean distances. This means that we are not
guaranteed to have a good initial alignment between X and Y in RN even if we
manage to satisfy 5.31 exactly. This however is essential for ICP to converge
to the global optimum.
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A
B

C

D
φpAq φpBq

φpCq

2

1 1

Figure 5.2: There is no isometric embedding φ of the sphere to any Euclidean space.
Consider the points A, B, C and D. φpCq would need to lie on the middle of the line
connecting φpAq and φpBq (since the two smaller edge lengths sum up to the large one).
The same however holds for φpDq, thus φpCq “ φpDq and their distance (1) would not be
preserved.

2. Even with a very large dimension N (which already makes nearest neighbor
search in ICP inefficient) there may not be any mapping satisfying 5.31 (c.f .
Figure 5.2). Thus one can only try to minimize 5.31, very likely resulting in
different/incompatible local minima for X and Y .

We will in the following present ways to make use of the isometry of X and Y in
other ways. Definition 10 is defined in global terms by considering all pairs of points
on X . The following Lemma gives a more local persective on isometries.

Lemma 7 Let m : X Ñ Y be a diffeomorphism and Dm be the corresponding push
forward (c.f . Equation (3.17))

Dmppq : TpX ÑTqY (5.32)

rcs ÞÑrm ˝ cs (5.33)

m is an isometry iff it preserves all angles:

xv, wyTpX “ xDmpv,DmpwyTqY (5.34)

with q “ mppq

Proof. We first show that Equation (5.30) follows from Equation (5.34). From
Equation (5.34) it is easy to see that the length of all curves is preserved under
m. Let c : r0, 1s Ñ X be a curve connecting p P X and q P X . Then the curve
d “ m ˝ c : r0, 1s Ñ Y connects mppq with mpqq and has length

Lpdq “

ˆ 1

0

∥∥∥∥
d

dt
pm ˝ cptqq

∥∥∥∥ dt “
ˆ 1

0

∥∥Dmcptq 9cptqq
∥∥ dt “

ˆ 1

0

‖ 9cptqq‖ dt “ Lpcq (5.35)

This in particular holds for the shortest curve c˚ between p and q and d˚ “ m ˝ c˚.
And if there was a shorter curve d̃ between mppq and mpqq then c̃ “ m´1 ˝ d̃ would
also be shorter than c˚.
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For the other direction we make use of the continuity of the metric tensor.
Let xv, wyTpX ‰ xDmpv,DmpwyTqY for some p P X , let’s say xv, wyTpX ą

xDmpv,DmpwyTqY (otherwise exchange the roles of X and Y). Then there is a

geodesic ball Bεppq “ tp̃ P X |dpp, p̃q ă εu around p where

xv, wyTp̃X ą xDmp̃v,Dmp̃wyTq̃Y @p̃ P Bεppq (5.36)

Let now q P Bεppq, c : r0, 1s Ñ X be the shortest curve connecting p and q. Ad-
ditionaly, let d̃ : r0, 1s Ñ Y be the shortest curve connecting mppq, and let mpqq
and c̃ “ m´1d̃ be the corresponding curve on X . We decompose c̃ “ c1 Y c2 with
c1 “ cXBεppq and c2 “ cXBεppq and d1 “ m ˝ c1, d2 “ m ˝ c2. It follows

Lpd̃q “ Lpd1q ` Lpd2q ě Lpd1q ą Lpc1q ě Lpcq (5.37)

The inequality Lpd1q ą Lpc1q follows from Equation (5.36). The final inequality
follows from the fact that c1 either connects p with q and thus must be at least as
long as the shortest path c, or it leaves Bεppq at least once which requires Lpc1q ě

ε ą Lpcq.

Consequently, isometric shapes come with the same Riemannian metric and thus
all intrinsic properties are invariant under m. Some examples:

1. Mean curvature

κppq “ κpmppqq (5.38)

2. Areas and integrals
ˆ
X0

fppqdp “

ˆ
mpX0q

fpm´1
ppqqdq (5.39)

3. The value of the Laplacian 4X applied to a function f : X Ñ R at p P X
equals the value of the Laplacian 4Y applied to f̃ “ f ˝m´1 at q “ mppq :

4Xfppq “ 4Y f̃pqq, q “ mppq (5.40)

The last property particularly applies to eigenfunctions of the Laplacian:

Lemma 8 Let m : X Ñ Y be an isomorphism and4Xφk “ λkφk. Then the function
φ̃ “ φ ˝m´1 : Y Ñ R is an eigenfunction of 4Y with the same eigenvalue:

4Y φ̃k “ λkφ̃k (5.41)

Moreover
∥∥∥φ̃k
∥∥∥ “ ‖φk‖ “ 1.
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Proof. This is a direct consequence of the first fundamental form g being the identity
for isometries:ˆ

Y
4Φ̃kpyqhpyqdy “ ´

ˆ
Y
x∇Φ̃kpyqq,∇hpyqydy (5.42)

“ ´

ˆ
X
xg´1∇Φkpxq, g

´1∇hpmpxqqy
a

detpgqdx (5.43)

“ ´

ˆ
X
x∇Φkpxq,∇hpmpxqqydx (5.44)

“ λk

ˆ
X

Φkpxqhpmpxqqdx (5.45)

“ λk

ˆ
Y

Φ̃kpyqhpyq
1

a

detpgq
dy (5.46)

“ λk

ˆ
Y

Φ̃kpyqhpyqdy (5.47)

The preservation of the norm can be shown even easier using the same argument.

Consequently, two isometric shapes have an identical spectrum (set of eigenvalues).
The reverse statement however is not true: there exist iso-spectral shapes which
are not isometric [24]. Still, there are approaches to reconstruct shapes from their
spectrum [15] with shape compression as a possible application.
Let us now have a closer look at the eigenfunctions. Let λ be an eigenvalue of 4X
(and thus also of 4Y). If the isometry m is given we can construct a corresponding
eigenfunction of 4Y via f̃ ˝ m´1. However this eigenfunction is not unique (even
after normalization) - any rigid motion of f̃ inside the eigenspace of λ yields an
alternative eigenfunction. For one dimensional eigenspaces, the only rigid motion
is a sign flip f̃ ÞÑ ´f̃ . Thus independent eigendecompositions of 4X and 4Y give
compatible eigenfunctions up to rigid motions, see Figure 5.3 (signflip in second
column).
Notice that many shapes come with at least one intrinsic symmetry s : X Ñ X :

DX
px1, x2q “ DX

pspx1q, spx2qq (5.48)

(e.g . the left-right symmetry of human bodies). As a consequence isometries
m : X Ñ Y are not unique (since m ˝ s is also an isometry).

5.2 Permutation as discrete bijections

In this thesis we focus on “dense vertex-to-vertex” correspondences. This means
that the discrete representation of a matching between two triangle meshes X “

pVX , TX q,Y “ pVY , TYq is given by a mapping p : VX Ñ VY .
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Figure 5.3: The Laplace Beltrami operator is an intrinsic operator and therefore invariant
to isometric deformations. However the eigenfunctions are not uniquely defined (sign flips,
rigid motions in higher dimensional eigenspaces). (Meshes from the TOSCA dataset [14])

A common criticism (e.g . [21]) of this approach is that for general meshes the “cor-
rect” matching of a vertex v P VX may not be a vertex on Y but rather lie in the
interior of a triangle. We argue that

• the error induced by the vertex-to-vertex assumption lies in the same range as
the approximation error of the surfaces themselves

• The two meshes X and Y should be treated symmetrically - a matching from
X to Y should not be structurally different to one in the opposite direction

The last point raises another requirement: As a mapping p assigns each vertex on X
exactly on vertex on Y , it should also do so in the other direction, i.e. p is supposed
to be a bijection between the vertices VX on X and the ones on Y . This of course
requires a consistent sampling of the two meshes, in particular the same number
of vertices. In many applications (such as template registration) this requirement
is not satisfied. In these cases we suggest to create a consistent subsampling of
the vertices on both meshes and then aim for a bijection between those subsets of
vertices. Farthest point sampling (FPS [19]) guarantees a uniform distribution of
the subsampled vertices. In particular for isometric shapes this leads to a consistent
sampling on X and Y . For another introduction to FPS for non-rigid shapes see
Section 3 in [14]. Remeshing is another possibility to obtain the same number of
vertices, however it would change the meshes themselves and in its simple variants
(e.g . edge collapse) cannot guarantee the consistency of the sampling.
For simplicity we henceforth assume a pair of consistently discretized meshes such
that the sought correspondence p : VX Ñ VY is a bijection and denote with n “
|VX | “ |VY | the (consistent) number of vertices. The concepts presented in the
remainder of this chapter however extend to subsampled meshes as well.
A common representation of a bijection p : VX Ñ VY is a permutation matrix. We



52 Chapter 5. Correspondences between Shapes

denote the set of permutation matrices of size n as

Πn “ tP P t0, 1unˆn|P1 “ 1, PJ1 “ 1u (5.49)

and will drop the dependency on n whenever clear from the context. In other words,
in each row and each column of a permutation matrix there is exactly one 1 and
all other entries are 0. We use the following convention to encode the bijection
p : X Ñ Y as the permutation matrix P P Πn:

ppviq “ vj ô Pji “ 1 (5.50)

We want to emphasize that there are equivalent definitions that will lead to different
relaxations later on. For instance permutation matrices can also be described as the
t0, 1u-valued matrices that are orthogonal:

Πn “ tP P t0, 1unˆn|PPJ
“ Iu (5.51)

Finally finding the correct matching is phrased as an optimization problem

arg min
PPΠn

EpPq (5.52)

over the space of permutations. Unfortunatly problems of this type are combinatorial
and in most cases NP-hard. An important exception are linear energies E which
lead to linear assignment problems that can be solved in polynomial time. We will
see that pointwise descriptors lead to linear energies.

5.3 Pointwise descriptors and linear assignment

A pointwise descriptor (or feature) is a mapping f : X Ñ Rk 1 assigning each point
on a shape (or vertex on a mesh) a Euclidean vector that describes the point.
Simple examples are the coordinates, the normal, and the mean curvature of the re-
spective point. A good pointwise descriptor assigns similar (in the Euclidean sense)
values to semantically similar points on different shapes while (semantically) dissim-
ilar points are assigned descriptors with a large Euclidean distance (c.f . Figure 1.2).
We will discuss examples of pointwise feature descriptors at the end of this section
and will for now assume to be given some descriptor. In that case the mapping
p : X Ñ Y should satisfy

fpppxqq « fpxq @x P X (5.53)

1In fact a feature is defined on all shapes, i.e. f :
ŤX Ñ Rk. We choose this (over-) simplified

notation for easier understanding. However we will later on also evaluate f on Y and other shapes.
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In the discrete case where X ,Y are triangle meshes we store per-vertex wise features
in matrices F P R|VX |ˆk, G P R|VY |ˆk. Interpreting (5.53) in the l2 sense and letting
p be a bijection between the respective vertices (thus |VX | “ |VY |) this leads to the
following energy

Eppq “
ÿ

iď|VX |

ÿ

k

pFik ´Gppiqkq
2 (5.54)

(5.55)

Rewriting in terms of the matrix representation P of p:

EpPq “ }PF ´G}2 (5.56)

since from (5.50) it follows

}F ´PJG}2 “
ÿ

i

ÿ

k

`

Fik ´ pP
JGqik

˘2
(5.57)

“
ÿ

i

ÿ

k

˜

Fik ´ p
ÿ

j

PjiGjkq

¸2

(5.58)

“
ÿ

i

ÿ

k

pFik ´Gppiqkq
2 (5.59)

and the orthogonality of P gives

}F ´PJG}2 “ }PpF ´PJGq}2 (5.60)

“ }PF ´G}2 (5.61)

.
Again using the orthogonality we see that minimizing E as in (5.56) is equivalent
to maximizing a linear function:

arg min
P

}PF ´G}2 “ arg min
P

xPF ´G,PF ´Gy (5.62)

“ arg min
P

xPF,PF y ` xG,Gy ´ 2xPF,Gy (5.63)

“ arg min
P

xF, F y ` xG,Gy ´ 2xPF,Gy (5.64)

“ arg max
P

xPF,Gy “ arg max
P

xP, GFJy (5.65)

where xA,By “ trpAJBq denotes the Frobenius inner product. Note that the equiva-
lence only holds for orthogonal P’s, e.g . when optimization is performed of the space
of permutations. In this case Equation (5.65) is an instance of a linear assignment
problem (LAP) for which polynomial time solvers exist [8, 26].
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5.3.1 Examples of pointwise descriptors

In this section we want to briefly introduce a number of important feature descrip-
tors. We will start with what are often called spectral descriptors. They have in
common that they can be written solely in terms of the eigendecomposition of the
Laplacian (cf. Section 4). The fact that they can be expressed that way makes them
isometry invariant whenever they are well defined. Two isometric shapes have the
same Laplacian. Up to the ambiguity of the eigendecomposition they also have the
same set of eigenfunctions and -values. A well defined descriptor must be invariant
to this ambiguity. As an example of a spectral descriptor where the ambiguity is
not tackled consider the Global point signature (GPS) [46], given by:

GPSpxq “
´

φ1pxq?
λ1

φ2pxq?
λ2

. . .
¯

(5.66)

Even when evaluated at the exact same point of the exact same shape, the values
may differ due to sign flips of some of the harmonics coming from two different
eigendecompositions. The GPS is thus not well defined and in particular a bad
choice for a feature descriptor.
As a better example consider the heat kernel signature (HKS) [52]. It is defined in
terms of the heat kernels discussed in Section 4.6.1. The heat kernel signature is a
sampling of the diagonal elements ktpx, xq of the heat kernel at different values of t:

HKSpxq “
`

kt0px, xq kt1px, xq . . . ktlpx, xq
˘

(5.67)

From Equation (4.104) we know that ktpx, xq “
ř

k expp´λktqφ
2
kpxq. It is obvious

that the problem of sign flips is overcome due to the squaring of function values.
Let us now consider the case of higher dimensional eigen spaces. Let λ be an
eigenvalue with d-dimensional eigenspace, λl “ . . . “ λl`d “ λ and tφl, . . . φl`du and
tφ̃l, . . . φ̃l`du be two different orthonormal bases of that eigenspace. Let us fix x P X
and introduce

ψpxq “
`

φl . . . φl`d
˘

(5.68)

ψ̃pxq “
`

φ̃l . . . φ̃l`d
˘

(5.69)

We know that there is an orthogonal matrix R P Rdˆd such that ψpxq “ Rψ̃pxq.
For the affected part of the sum this yields

l`d
ÿ

k“l

exppλktqφ
2
kpxq “ exppλltq

l`d
ÿ

k“l

φ2
kpxq (5.70)

“ exppλltqxψpxq, ψpxqy (5.71)

“ exppλltqxRψpxq,Rψpxqy (5.72)

“

l`d
ÿ

k“l

exppλktqφ̃
2
kpxq (5.73)
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Thus the value ktpx, xq is independent on the chosen eigendecomposition of the
Laplacian. The same reasoning holds for all descriptors of the form

ř

k fpλk; θqφ
2
kpxq

with parametrizable coefficients f (in case of the HKS θ “ t). Before we come to
an other instance, we want to point out the multiscale property of the heat kernel
signature and its possible applications. The diagonal entries of the heat kernel
ktpx, xq describe how much heat remains at location x P X after time t. For small
times the value is mainly determined by the geometry of the local neighborhood of
x:

htpx, xq “
1

4πt
`
spxq

12π
`Optq (5.74)

with spxq being the scalar curvature. The bigger the time the more global informa-
tion is captured. In the extreme case as t Ñ 8 the heat is uniformly distributed
on the shape, ktpx, xq thus converges to the inverse of the surface area which equals
the value of the constant eigenfunction φ0 (Note that exppλ0tq “ 1 @t). This multi
scale property allows to compare shapes that are only locally isometric.
Another descriptor of the form

ř

k fpλk; θqφ
2
kpxq is given by the wave kernel signature

(WKS) [6].

fpλ; θq “ Cθ expp´
plogpλq ´ θq2

2σ2
q (5.75)

with Cθ “
´

ř

k expp´ plogpλkq´θq
2

2σ2 q

¯´1

being a normalization factor. In the original

paper the authors suggest to use a variant of the L1 distance to measure similarity
of descriptors, however most subsequent works use the Euclidean distance. The
functions fpλ; θq can be interpreted as filter responses, see Figure 5.4. In [4] we
suggest to learn the optimal parameters of the WKS from data. The authors of [33]
suggest to learn generic filter responses.
A very popular descriptor both for rigid and non-rigid shape description is the
Unique signatures of histograms for surface and texture description (SHOT) [53].
In a nutshell, SHOT is measuring histograms of surface normals around a given
point. In contrast to all previous discussed desciptors, SHOT is not intrinsic but
can change under isometric (non-rigid) deformations. This however can be seen as
a feature: it can e.g . help to distinguish intrinsic symmetries of shapes. A popular
approach is to combine SHOT with other descriptors such as HKS and WKS.

5.4 Pairwise descriptors and quadratic assigment

Pointwise descriptors are well established in many fields of Computer Vision and are
popular due to the relatively simple optimization problems induced by them (nearest
neighbour search, LAP). However in most scenarios pointwise descriptors are either
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Figure 5.4: We plot the coefficient functions fpλ; θq of spectral descriptors of the form
ř

k fpλk; θqφ
2
kpxq. Different colors indicate different choices of parameters θ. The filter

response of the heat kernel signature (left) act as low pass filters (emphasize always on
eigenfunctions with low frequencies), the ones of the wave kernel signature (right, unnor-
malized) as band pass filters (the emphasis can be guided through choice of θ).

not sufficiently discriminative or invariant with respect to the observed type of de-
formations between shapes. The resulting assignment problems lead to inconsistent
and irregular correspondences, see second column of Figure 5.5. A major reason for
the irregularity, in particular resulting from unconstraint nearest neighbor formula-
tions, is that all descriptors are calculated and treated individually. Constraining
the correspondence to be a one-to-one mapping as in the LAP formulation already
enforces some kind of communication between the points and results in more regular
correspondences, see right column of Figure 5.6. However there is still no guarantee
that close by points on the source shape will be mapped to close by points on the
target shape, i.e. that the discrete mapping follows an intuitive notion of smooth-
ness. Following the idea of mapping close by points on the source shape to close by
points on the target shape leads to the concept of pairwise descriptors.
A pairwise descriptor is a mapping d : X ˆ X Ñ Rk. The literature mainly focuses
on scalar (k “ 1) pairwise descriptors. Probably the most prominent example in the
context of non-rigid shape correspondence is the geodesic distance (c.f . Eq.(3.26)).
In case of isometric shapes (c.f . Definition 10) the sought mapping is an isometry,
i.e. it preserves all geodesic distances. Since the considered shapes are never exactly
isometric we get

DX
ij « DY

ppiqppjq @i, j “ 1 . . . n (5.76)

when storing all pairwise distances in a quadratic n ˆ n matrix with entries DX
ij “
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Figure 5.5: Pointwise descriptors lead to irregular correspondences: The second column
shows the correspondence obtained using state of the art pointwise descriptors (WKS,
SHOT). While mapping many points to the desired location, the correspondence suffers
from a lack of regularity, mainly induced by the intrinsic symmetry of the shapes. Even
if a majority of points on the left arm of the source shape is mapped to the left arm
of the target shape, there is no way to communicate this choice to the few points who
are mapped to the wrong side (right arm). Using pairwise descriptors to regularize the
correspondence allows for more communication between the points and leads to a more
regular correspondence (third column). In this conseptual illustration blue spheres depict
points on the source shape, red spheres points on the target shape, and arrows describe
the correspondence. (Meshes from the FAUST dataset [11])

Figure 5.6: Nearest neighbor vs. LAP: enforcing the mapping to be one-to-one leads to
computationally more heavy optimization problems (LAPs) compared to plain nearest
neighbor problems. Enforcing the bijectivity, however, can fix embeddings that do not
place descriptors optimally.
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Figure 5.7: Geodesic distances are an example of pariwise descriptors. Each pair of points
on the source shape, e.g . the nose and the right ear, gets assigned a scalar value. This
value is approximately preserved under the desired mapping for all possible pairs of points.
(Meshes from the Tosca dataset [14])

DX pxi, xjq (DY is constructed similarly). In this case (and in most others) the
matrices are symmetric, however this is not a necessary condition for a pairwise
descriptor.

A straightforward way to turn Equation (5.76) into an optimization problem is by
interpreting it in the L2 sense:

EpPq “
ÿ

i,j

pDX
ij ´D

Y
ppiqppjqq

2
“
ÿ

i,j

pDX
ij ´ p

ÿ

k

PkiD
Y
kppjqqq

2 (5.77)

“
ÿ

i,j

pDX
ij ´ p

ÿ

k,l

PkiD
Y
klPljqq

2 (5.78)

“
ÿ

i,j

pDX
ij ´ pP

JDYPqijq
2 (5.79)

“
∥∥DX

´PJDYP
∥∥2

(5.80)

We again make use of P’s orthogonality to show that minimizing this energy over
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the space of permutations is equivalent to a quadratic assigment problem (QAP):

arg min
P

∥∥DX
´PJDYP

∥∥2
(5.81)

“ arg min
P

@

DX , DXD
´
@

DX
` pDX

q
J,PJDYP

D

`
@

PJDYP,PJDYP
D

(5.82)

“ arg min
P

@

DX , DXD
´
@

DX
` pDX

q
J,PJDYP

D

`
@

DY , DYD (5.83)

“ arg max
P

@

DX
` pDX

q
J,PJDYP

D

(5.84)

“ arg max
P

tr
`

ppDX
q
J
`DX

qPJDYP
˘

(5.85)

“ arg max
P

tr
`

DXPJDYP
˘

(for symmetric DX ) (5.86)

Unlike linear assignment problems (LAP’s) there are no known polynomial time
algorithms to solve QAPs as they are NP-hard [29]. Thus, unless very small instances
are considered, there we need to relax the problem in order to solve it in practice.
We want to emphasize that while all of the above formulations are equivalent when
evaluated solely on permutation matrices, their behaviour can dramatically differ
when considered as functions of general matrices P. Let us elaborate on this by
introducing yet an other ’equivalent’ formulation:

arg min
P

∥∥PDX
´DYP

∥∥2
(5.87)

is a convex function, independent of the properties of DX and DY (composition of
linear and quadratic) with a unique minimizer over the space of all nˆ n matrices.
The convexity of (5.86) however depends on the eigenvalues of DX and DY .

Notice that there are many different ways to write Equation (5.76) as an optimiza-
tion problem. For instance every function t : R Ñ R (not necessarily monotocally
increasing or injective) gives a related problem tpDX

ij q « tpDY
ppiqppjqq. A popular ex-

ample of such a transformation is tpdq “ expp´ d2

2σ2 q. The choice of t influences the

spectrum of the matrices D̃ “ tpDq and consequently the properties of the result-
ing optimization problem. Equation (5.76) almost never holds with equality. The
(global) optimum and possible local optima vary when choosing different transfor-
mations t.

We also want to emphasize that there are many alternatives to the geodesic distance
and derived quantities. In particular, one could replace the geodesic distance with
the distance in (pointwise) descriptor space: Dij “ ‖fpxiq ´ fpxjq‖ for any given
pointwise descriptor f . In [2] we suggest to align heat kernels : Dij “ ktpxi, xjq (c.f .
Equation (4.104))
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5.5 Relaxations

In the last sections we have seen that shape correspondence problems can be for-
mulated as combinatorial optimization problems where the domain is the set of
permutations. We have pointed out that quadratic assignment problems arising
from pairwise descriptors are in general NP-hard and consequently not solvable in
reasonable time even for moderatly sized problems (meshes with as few as 1000
vertices). Even in the simpler case of linear assignment problems methods such as
the Hungarian algorithm [26] or the auction algortihm [8] need several minutes to
hours of computation time when applied to problems in the magnitude of 103-104.
Let us recap the linear assignment problem arising from pointwise decriptors:

arg max
P

xP,Hy (5.88)

with H “ GFJ. Since we constrain P to be a permutation matrix, its entries are
either 0 or 1 with exactly one non-zero entry per row and column. Thus for each row
i the assignment problem is allowed to pick exactly one entry in order to maximize
the objective. Dropping the bijectivity constraint leads to independent optimization
problems per row:

j˚piq “ arg max
j

Hij (5.89)

In most cases this approach will not result in bijections as the different rows do
not ’communicate’. In particular one obtains inconsistent correspondences when
switching the roles of source and target shape (considering columns instead of rows).
While the described approach can be applied to general linear assignement problems
with payoff matrix H, in our case, we have access to the low rank decomposition
H “ GFJ, F, G P Rnˆk, stemming from the k dimensional feature space. Solving
Equation (5.89) corresponds to finding the nearest neighbor of Fi¨ among all columns
of G:

j˚piq “ arg max
j

Hij “ arg max
j

xFi¨,Gj¨y (5.90)

“ arg min
j
‖Fi¨ ´Gj¨‖ (5.91)

assuming that the columns of G are normalized. Finding the nearest neighbor of a
k dimensional vector out of n canditates with k ! n can efficiently be done using
kd-trees [7]. Finding all nearest neightbors for n points thus has a runtime com-
plexity of Opn logpnqq and can furhter be sped up using parallelization. This is a
major boost compared to Opn3q complexity of the Hungarian algorithm for solv-
ing the linear assignment problem. Consequently this relaxation to a non-bijective
nearest neighbor problem is the most common approach to tackle correspondence
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problems in general. In addition to the computational benefits, the nearest neighbor
problem is generic. It does not constrain source and target shape to be consistently
discretized, e.g . it allows to match a uniformly discretized low resolution template
to a high resolution, irregularly discretized 3d-scan.

For more complicated objectives, e.g . the ones resulting from pairwise descriptors,
the optimization problem is usually simplified by a convex relaxation of the con-
straints. A main reason for the difficulty of combinatorial optimization problems is
that the feasible set of solutions is disconnected and thus gradient based methods are
not applicable. In fact there is no such thing as a gradient of a function defined on
the set of permutation matrices since this set does not have a tangent space (where
a gradient is ought to live). Another desirable property of the domain over which
one is optimizing is convexity. Convexity of the domain allows to apply methods
such as projected gradient descent (projection on non-convex domains is not well
defined). The smallest convex set containing another set is known as its convex hull.
The convex hull of the set of permutation matrices is called the Birkhoff polytope
and consists of the set of bistochastic matrices

Bn “ tB P Rnˆn
` |B1 “ 1, BJ1 “ 1u

“ tB P r0, 1snˆn|B1 “ 1, BJ1 “ 1u (5.92)

i.e. matrices with non-negative entries where each row and each column sums up to
one (obviously the entries are bounded by 1). While optimization over the Birkhoff
polytope is significantly easier than optimizing over the set of permutations it comes
with a price: the optimizer does in general not encode a pointwise correspondence
(as a permutation would do), thus post processing is necessary in case a pointwise
correspondence is sought. One obvious post processing method is to look for the
closest permutation matrix, which again results in a linear assignment problem:

arg max
PPΠn

xP,By (5.93)

or, following what we described before, just pick the maximum entry in each row (if
bijectivity is not critical).

The term relaxation describes the process of weakening some of the constraints
that define the domain of a problem. The resulting (relaxed) problem has a larger
domain in which optimization is easier. Convex relaxations as described above
(domain replaced by a convex superset) are the most popular as they allow to
apply a variety of well established optimization methods based on (possibly weak)
derivatives. However for a given problem there exist many different relaxations, e.g .
derived from different equations defining the original domain.

Let us recap the two definitions for the set of permutation matrices from Equa-
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tion (5.49) and Equation (5.51):

Πn “ tP P t0, 1unˆn|P1 “ 1, PJ1 “ 1u (5.49 revisited)

Πn “ tP P t0, 1unˆn|PPJ
“ Iu (5.51 revisited)

Relaxing the integer constraints in Equation (5.49) to

tB P r0, 1snˆn|B1 “ 1, BJ1 “ 1u (5.92 revisited)

leads to the convex relaxation described above. Relaxing them in Equation (5.51)
makes the new domain the space of orthogonal matrices

On “ tB P Rnˆn
|PPJ

“ Iu. (5.94)

While the space of orthogonal matrices as defined in Equation (5.94) is not convex,
optimization on it is a well understood problem in many disciplines, including but
not limited to Computer Vision. For instance whenever the poses (location and
orientation) of objects or a cameras need to be estimated optimization is performed
over the space of Euclidean transformations En “ On ˆ R3. The main reason why
optimization on On (or En) is feasible (at least local optima can be found efficiently)
is due to pOn, ¨q (with ¨ being the usual matrix product) being a Lie group. A Lie
group pG, ¨q is a group (existence of neutral element, for each element the inverse
element is also element of the group, associativity) that additionally is a smooth
manifold (see Definition 4). Additionaly the group operations (multiplication and
inversion) must be smooth operations. We already know that the manifold prop-
erty allows local parametrizations with parameters from Euclidean spaces (and thus
many tools from optimization on Euclidean spaces can be carried over). The ad-
ditional group property allows to turn the investigation of any element (and its
neighborhood) to the investigation of the identity element and its neighborhood. In
particular all tangent spaces are the same, the so called Lie algebra associated to
the Lie group.
One thing to note though is that On consists of two disconnected components SOn “

tB P On| detpBq “ 1u and OnzSOn “ tB P On| detpBq “ ´1u. In many applications
on is interested in orientation preserving orthogonal matrices with detpBq “ 1.
We have already discussed the probably most popular optimization problem over
the space of orthogonal matrices, namely the orthogonal Procrustes problem

B˚ “ arg min
BPOn

‖BX ´ Y ‖2
F “ arg min

BPOn

k
ÿ

i“1

‖Bxi ´ yi‖2 (5.95)

where one is looking for the orthogonal matrix aligning the two tupels pxiq
k
i“1 Ă Rn

and pyiq
k
i“1 Ă Rn, i.e. bringing xi as close as possible to yi for all i and how to solve

it using the iterative closest point algorithm.
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5.6 Functional maps

Let us have a closer look at the convex relaxation we introduced in the previous
section (Equation (5.92)). A possible interpretation for a matrix B P Bn can be

obtained by multiplying an unit vector ej “
`

0, . . . , 1, . . . , 0
˘J

with it (from the
right). The result is the j-th column of B which is an n-dimensional vector of non-
negative number summing to one. Each of the entries Bij can thus be interpreted
as the probablity that a vertex j from the source shape being mapped to a vertex i
of the target shape. In fact multiplying B with any vector v keeps the sum of its
elements the same

ř

ipBvqi “
ř

i

ř

k Bikvk “
ř

k

ř

i Bikvk “
ř

k vk. Thus B can be
(and often is) interpreted as a discrete coupling as in the Kantorovich formulation
of optimal transport [25]. For a detailed introduction to optimal transport see [41].
For some applications of optimal transport in non-rigid shape analysis and geometry
processing see [28, 50].

At this point we need to point out a major inconsistency in the literature (including
our own publications). In the previous sections we have associated n-dimensional
vectors with functions defined on triangle meshes (with n vertices). The association
was done by interpreting the entries of the vector as coefficients of certain basis
functions, namely hat functions (Equation (3.38)). The optimal transport interpre-
tation of B P Bn however only works if the basis ”functions” are chosen to be dirac
distributions centered at the respective vertices. We want to provide a rectified
version of Equation (5.92) that is more consistent with the notion of hat functions.
Let fpxq “

ř

i fiψipxq be a function on the source mesh X and gpxq “
ř

i giψipxq
be the function on the target mesh Y with coefficient vector g given by g “ Bf .
We want to find constraints on B such that

´
X fpxqdx “

´
Y gpxqdx for all possible

input functions f . We derive

ˆ
X
fpxqdx “

ˆ
X

ÿ

i

fiψipxqdx (5.96)

“
ÿ

i

fi

ˆ
X
ψipxqdx (5.97)

ˆ
Y
gpxqdx “

ˆ
Y

ÿ

j

gjψjpxqdx (5.98)

“

ˆ
Y

ÿ

j

ÿ

i

Bjifiψjpxqdx (5.99)

“
ÿ

i

fi
ÿ

j

Bji

ˆ
Y
ψjpxqdx (5.100)
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and see that the integrals are the same if and only if
ˆ
X
ψipxqdx “

ÿ

j

Bji

ˆ
Y
ψjpxqdx @i (5.101)

ô BJaY
“ aX (5.102)

with aX “ p
´
X ψipxqdxq

n
i“1, aY “ p

´
Y ψipxqdxq

n
i“1 being the vectors of area elements

(area of Voronoi cells around each vertex) on X and N respectively. Since the mass
preservation should hold in both directions we end up with the constraints

BJaY
“ aX (5.103)

BaX
“ aY (5.104)

which are only equivalent to Equation (5.92) when the vertices are uniformly dis-
tributed over the mesh (which is almost never the case). This type of discretization
inconsistency is widely seen in the literature. A thorough analysis of the conse-
quences of this inaccuracy is yet outstanding. Most papers tend to evaluate on
datasets with consistent topology (e.g . fitted templates for the FAUST dataset [11]).
This could hide problems stemming from the discretization issue and possibly even
exploit the consistency (e.g . by implicetely solving a graph isomorphism problem).
We thus encourage every researcher in the field to evaluate their methods on datasets
of independently remeshed shapes.
Let us move the focus from the constraints on the matrix representation of a corre-
spondence back to the fundamental observation that this matrix can be interpreted
as a mapping between function spaces. In [38] the authors have taken this observa-
tion one step further and established the term functional maps that has since become
omnipresent in the literature on non-rigid shape correspondence and analysis. When
researchers speak about functional maps they most often refer to the fact that the
mapping between function spaces has more than one (discrete) representation and
one of those representations is particularly appealing.
First let us note that transfering functions from one shape to the other using matrix-
vector products makes the mapping between the function spaces, encoded by this
matrix, linear (independently of additional constraints such as 5.92 or 5.94). A well
known fact from linear algebra is that linear mappings have different representations
depending on the chosen bases of domain and co-domain. Given a (possibly infinite
but countable) basis tΦX

i ui of functions defined on X and tΦY
i ui for functions on Y

respectively, the matrix representation C of a linear mapping T between the two
function spaces is given by the (unique) coefficients of the images of ΦX

i in the basis
tΦY

i ui:

T pΦX
i q “

ÿ

j

CijΦ
Y
j (5.105)
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In case of infinite dimension of the function spaces (e.g . L2pX q and L2pYq) the
matrix has infinite many rows and columns. If we are interested in the coefficients
of T pfq or an aribtrary function f “

ř

i aiΦ
X
i , we get them by multiplication of the

vector a “
`

a0, . . . , anX´1

˘J
with C:

T pfq “ T p
ÿ

i

aiΦ
X
i q (5.106)

“
ÿ

i

aiT pΦ
X
i q (5.107)

“
ÿ

i

ai
ÿ

j

CijΦ
Y
j (5.108)

“
ÿ

j

ÿ

i

aiCij

l jh n

bj

ΦY
j (5.109)

ñ b “ CJa (5.110)

The representation as bistochastic matrix 5.92 or its rectified version 5.103 corre-
sponds to choosing hat functions (or possibly diracs) as bases for both function
spaces. These representations consequently only make sense in a discrete setup, i.e.
when the considered function spaces are the (finite dimensional) spaces of piecewise
linear functions on two triangle meshes.

A desirable property of the chosen bases is that the possibly high dimensional (for
hat functions the size is |VX | ˆ |VY |) or even infinite matrix representation C can be
well approximated by a finite dimensional submatrix C̃ P RkXˆkY , Cij “ C̃ij@i ă
kX , @j ă kY with kX ! |VX |, kY ! |VY |.

In Section 4 we learned about the eigenfunctions of the Laplace Beltrami operator as
an alternative basis for functions defined on manifolds. We have seen that they come
with a natural order given by the magnitude of the corresponding eigenvalues which
equals their Dirichlet energy, a measure for their variability or frequency. Thus
functions can be well approximated (in the L2 sense) by a linear combination of the
first Laplace Beltrami eigenfunctions. This is exactly the property we were looking
for as it allows to approximate the (full) matrix representation of the functional map
by a relatively small submatrix. The submatrix of course corresponds to a different
functional map than the full matrix. It can be shown that the new functional map
is a low pass approximation of the original correspondence and that the same holds
for the two graphs of the (soft) correspondence in the so called product manifold
[45] [2]. The next section will provide more details about the product manifold.

Another neat property of the Laplace Beltrami eigenfunctions (which we will abbriv-
iate as eigenfunctions in the following) is their ortonormality, i.e. xφY

j , φ
Y
k y “ δjk (for

X accordingly). This leads to the observation that the values Cij equal the inner
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product of the image of the basis function φX
i (under T ) with the basis function φY

j :

xT pφX
i q, φ

Y
j y “ x

ÿ

k

Cikφ
Y
k , φ

Y
j y (5.111)

“
ÿ

k

Cikxφ
Y
k , φ

Y
j y (5.112)

“ Cij (5.113)

It needs to be pointed out that the eigendecompositions of 4X and 4Y are not
unique (signflips, multidimensional eigenspaces). Depending on the particular choice
if eigenfunctions the matrix C varies, however some properties of C are independent
of the particular choice of eigenfunctions.

Lemma 9 Let m : X Ñ Y be an isometry with corresponding functional map T .
Let C be the (any) matrix representation of T obtained by choosing the (one choice
of) Laplace Beltrami eigenfunctions as bases on both shapes. Then

1. If all eigenspaces on X are one-dimensional (i.e. no repeating eigenvalues), C
is a diagonal matrix with values 1 and ´1 on the diagonal.

2. For general eigenspaces C is block diagonal with each block being an orthog-
onal matrix of the size of the corresponding eigenspace.

Proof. First note that4X and4Y have the same spectrum (set of eigenvalues) (c.f .
Lemma 8). Let now pλi, φ

X
i q be an eigenpair of 4X . Again from Lemma 8 we recall

that T pφiq (what we called φ̃X
i ) is an eigenfunction of 4Y with eigenvalue λi. Let

now pλj, φ
Y
j q be an eigenpair of 4Y . If λi ‰ λj the two eigenfunctions T pφX

i q and φY
j

belong to different eigenspaces and consequently (since eigenspaces are orthogonal)
Cij “ xT pφ

X
i q, φ

Y
j y “ 0. In the case of one dimensional eigenspaces this applies to

all non-diagonal entries of C, since i “ j ô λi “ λj. For the diagonal entries we
know that since the eigenspaces are one dimensional there are only two possibilities
to obtain an element with unit norm, thus T pφX

i q “ φY
i or T pφX

i q “ ´φY
i and

consequently Cii “ ˘1.

Let us now consider a nj dimensional eigenspace corresponding to the eigenvalue λj.
To simplify notation we start the indexing of the eigenvectors at 1 and thus have the
two sets of eigenfunctions tφY

1 , . . . , φ
Y
nj
u and tT pφX

1 q, . . . , T pφ
X
nj
qu “ tφ̃Y

1 , . . . , φ̃
Y
nj
u of

4Y . We recall that the eigenspaces are unique up to an orthogonal transformation,
such there is an orthogonal matrix Rj “ prtpqt,pďnj

P Opnjq with

φ̃Y
p pyq “

nj
ÿ

t“1

rtpφ
Y
t pyq @1 ď p ď nj (5.114)
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For the entries Cpq of the nj ˆ nj submatrix of C we thus get

Cpq “

ˆ
Y
φ̃ppyqφqpyqdy (5.115)

“

ˆ
Y

nj
ÿ

t“1

rtpφ
Y
t pyqφqpyqdy (5.116)

“

nj
ÿ

t“1

rtp

ˆ
Y
φY
t pyqφqpyqdy (5.117)

“ rqp (5.118)

As a consequence the full matrix C is orthogonal and its support (non-zero entries)
are concentrated around the diagonal. These properties approximately hold for near
isometries as well. The original paper thus proposes to enforce orthogonality of C in
the optimization, follow up papers (e.g . [44]) further add priors on the non-diagonal
entries.

5.7 The product manifold and the graph of a cor-

respondence

s s q
X Y X ˆ Y

Figure 5.8: The productspace X ˆ Y of two contours X (the horse contour) and Y (the
dog contour) can be conceptually visualized as a two dimensional manifold embedded in
R3. Each horizontal cut through it corresponds to a copy of X , every vertical cut to a
copy of Y. Each point on the product manifold thus corresponds to a pair of points on
the two contours (red circles).

Let X ,Y be manifolds of dimensions mX ď mY respectively. Each mapping m : X Ñ
Y has an associated graph

Γm “ tpx,mpxqq|x P X u Ă X ˆ Y (5.119)
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The space X ˆY is itself a manifold of dimension mX `mY with metric tensor given
by

gXˆY “

ˆ

gX
gY

˙

(5.120)

The graph Γm is an mX -dimensional submanifold of X ˆ Y . Figure 5.8 provides a
conceptual illustration for two 1-dimensional shapes.
There is a close link between the regularity of the matching m and its graph Γm:
The matching is continuous iff its graph does not have jumps, i.e. Γm is a manifold
without boundary, see Figure 5.9 for an illustration. In this thesis we focus on
the matching of three dimensional shapes which are modelled as two dimensional
manifolds. In this setup, the product manifold is four dimensional and the sought
graph is a two dimensional submanifold. The authors of [47] formulate the matching
problem as a constraint optimization problem where the constraints enforce the
regularity of the graph and therefore the regularity of the correspondence:

• The graph should cover both the domain X and the subdomain Y , i.e.
tx|px, yq P Γmu “ X and i.e. ty|px, yq P Γmu “ Y .

• The graph should be closed, i.e. not have a boundary (the authors introduce
a so called boundary operator to formalize this property).

They additionally equip the product space with a (non negative) cost function that
is accumulated over the graph of the correspondence. From the positivity of the
cost function it is intuitivly clear that the graph will avoid unnecessary turns, in
particular each point in X and in Y will be covered exactly once.
The cost of each element px, yq P Γm is basically the difference of local properties
of x P X and y P Y and models how much bending and stretching needs to be
applied to make x and y be similar. The particular choice of the properties is again
based on quantities from differential geometry, we refer to the reader to the orig-
inal paper for details. We want to emphasize though that the formulation of the
problem is basically the one we have seen when introducing pointwise descriptors in
Section 5.3. In particular it leads to a linear costfunction with constraints, similar
to the linear assignment problem in Equation (5.65)2. In fact the first of the two
constraints above can be discretized to the requirement that the discrete represen-
tation of the graph should be a permutation matrix. The second constraint (closed
graph) however makes the resulting integer linear program much more complicated
(in fact it is NP-hard). The underlying mathematical reason for the higher com-
plexity lies in the fact that the constraint matrix is not totally unimodular (as it

2In contrast to all the approaches we have discussed so far the discrete correspondence between
two triangular meshes does not map vertices to vertices but (generalized) triangles to (generalized)
triangles.
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Figure 5.9: The graph of a continuous matching between two contours is a closed curve on
the two dimensional product space. Discontinuities of the correspondence (color coded)
can be identified with discontinuities of its graph. We have ”unfolded” the product space
(which topologically is a torus, see Figure 5.8) for a simpler visualization.

is for LAPs). Totally unimodular constraint matrices lead to significantly easier
optimization problems, see for example [48]. The authors address this problem by
relaxing the integer constraints to stochasticity constraints similar to what we have
seen with the bistochastic matrices (Birkhoff polytope). This leads to a classical
linear program with a unique optimum that can efficiently be calculated. The price,
however, is that the solution is not integral and thus needs post processing to be
converted to a classical correspondence.
For lower dimensional scenarios, where e.g . X is one dimensional, the problem cor-
responds to a shortest path problem which can be solved efficiently. The authors
of [47] and [27] exploit this for finding a correspondence between two planar shapes
(one dimensional contours as in Figure 5.9) and correspondences between one dimen-
sional contours and two dimensional surfaces, respectively. An alternative approach
to relax minimal surface problems with higher dimensions (e.g . four dimensional
product space and two dimensional correspondence graph) to a convex approxima-
tion was introduced in [56]. While the application in the paper is image matching,
the introduced tools and techniques can potentially be used for shape matching as
well.
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In the following, we present the three peer-reviewed publications that form the
cumulative content of this thesis. Following a short summary of the publication,
highlighting my individual contributions we include a copy of the accepted version
of each paper.





Chapter 6
Applying Random Forests to the
Problem of Dense Non-rigid Shape
Correspondence

Obtaining a meaningful correspondence between two shapes requires some kind of
prior on the type of deformation one of the shapes needs to undergo to become the
other one. The de facto standard prior is that this deformation is an (intrinsic)
isometry. This prior motivates the use of isometry invariant descriptors (pointwise
and pairwise) as introduced in the previous chapter. In practice the isometry as-
sumption is never exactly met but as long as the descriptors are stable with respect
to some deviation from isometries, the resulting optimization problems still lead to
satisfactory results. In many scenarios the deformations can however not even be
considered a near-isometric. An obvious example are changes in topology, e.g . a
person in T-pose (sphere topology) and a person with one of the hands touching
parts of the body (torus topology). Unfortunatly the language of differential ge-
ometry does not provide another class of deformations that would on the one hand
cover this type of deformations while on the other hand still leading to meaningful
correspondences.
In this paper we assume the class of deformations to be given in terms of an example
dataset (triangular meshes with correspondences) rather than a rigorous mathemat-
ical property. We pass the responsibility of introducing invariance with respect to
this class of deformations to a machine learning model. This is a common practice
in related discipline such as image classification or image segmentation. We treat
the correspondence problem as a classification problem of the individual vertices to
a label set which corresponds to a reference mesh. During training the structure of
a set of decision trees (a so called random decision forests) is created. At inference
time each vertex is individually routed through all of the trees leading to a proba-
blity distribution on the set of possible labels (vertices on the reference shape). We
further introduce a regularizer based on metric distortion and functional maps.
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Applying Random Forests to the Problem of
Dense Non-Rigid Shape Correspondence

Matthias Vestner, Emanuele Rodolà, Thomas Windheuser, Samuel Rota Bulò, and
Daniel Cremers

Abstract We introduce a novel dense shape matching method for deformable, three-
dimensional shapes. Differently from most existing techniques, our approach is gen-
eral in that it allows the shapes to undergo deformations that are far from being
isometric. We do this in a supervised learning framework which makes use of train-
ing data as represented by a small set of example shapes. From this set, we learn
an implicit representation of a shape descriptor capturing the variability of the de-
formations in the given class. The learning paradigm we choose for this task is a
random forest classifier. With the additional help of a spatial regularizer, the pro-
posed method achieves significant improvements over the baseline approach and
obtains state-of-the-art results while keeping a low computational cost.

1 Introduction

Matching three-dimensional shapes is a pervasive problem in computer vision, com-
puter graphics and several other fields. Nevertheless, while the advances made by
works such as [14, 4, 23, 29, 2, 10] have been dramatic, the problem is far from
being solved.

Many methods in shape matching use a notion of similarity that is defined on a
very general set of possible shapes. Due to the highly ill-posed nature of the shape
matching problem, it is very unlikely that a general method will reliably find good
matchings between arbitrary shapes. In fact, while many matching methods (such
as methods based on metric distortion [22, 4, 20] and eigen-decomposition of the
Laplacian [23, 29, 2]) mostly capture near-isometric deformations, others might
consider too general deformations which are not consistent with the human intu-

Matthias Vestner, Emanuele Rodolà, Thomas Windheuser, Daniel Cremers
Technische Universität München
Samuel Rota Bulò
Fondazione Bruno Kessler, Trento
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ition of correspondence. In applications where the class of encountered shapes is
in-between, adapting the matching methods at hand is often very tedious.

In this paper we try to bridge the gap between general shape matching methods
and application-specific algorithms by taking a learning-by-examples approach.

In our scenario, we assume to have a set of training shapes which are equiva-
lent up to some class of non-isometric deformations. Our goal is to learn from these
examples how to match two shapes falling in the equivalence class represented by
the training set. To this end, we treat the shape matching problem as a classification
problem, where input samples are points on the shape manifold and the output class
is an element of a canonical label set, which might e.g. coincide with the manifold
of one of the shapes in the training set. A first contribution of this paper consists
in a new random forest classifier, which can tackle this unconventional classifica-
tion problem in an efficient and effective way, starting from a general parametrizable
shape descriptor. Our classifier is designed in a way to randomly explore the descrip-
tor’s parametrization space and find the most discriminative features that properly
recover the transformation map characterizing the shape category at hand. In this
work, we consider the wave kernel signature (WKS) [2] as the shape descriptor.
This descriptor is known to be invariant to isometric transformations, but the forest
can effectively exploit it to match shapes that undergo non-rigid and non-isometric
deformations.

In some sense, the output of the random forest can be seen as a new descriptor
by itself that is tuned to the shapes and deformations appearing in the training set.
In this respect, the proposed method is complementary to existing shape descriptors
as it can improve the performance of a given descriptor [11, 12, 32]. Early attempts
to apply machine learning techniques to the problem of non-rigid correspondence
([28], [25]) consider shapes represented by signed distance functions. We follow the
intrinsic view point, considering shapes given by their boundary surface, seen as a
Riemannian manifold.

One of the main benefits of our approach is the fact that the random forest classi-
fier gives for each point on the shape an ordered set of matching candidates, hence
delivering a dense point-to-point matching. Since such a descriptor does not include
any spatial regularity, we propose to use a regularization technique along the lines
of the functional maps framework [16]. We experimentally validate that the pro-
posed learning approach improves the underlying general descriptor significantly,
and it performs better than other state-of-the-art matching algorithms on equivalent
benchmarks.

An earlier version of this work was published in [21].

1.1 Intrinsic point descriptors

We consider 3D shapes that are represented by their boundary surface, a two-
dimensional Riemannian manifold (M,g) without boundary. A point descriptor is
a function φ that assigns to each point on the surface an element of a metric space
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D

M1 M2 MI

Fig. 1 A good point descriptor should at the same time assign similar values to corresponding
points on deformed shapes and dissimilar values to non-corresponding points

D, the descriptor space. A good point descriptor should satisfy two competing prop-
erties (Figure 1):

• deformation-invariance: it should assign similar values to corresponding points
on deformed shapes

• discriminativity: it should well distinguish non-corresponding points

While it is in principle possible to construct a descriptor that is invariant under
an arbitrary large class of deformations (e.g. the constant function), it is evident that
there will always be a tradeoff between deformation-invariance and discriminativity.

The descriptors we consider are based on the spectrum of the Laplace-Beltrami
operator ∆M = −divM(∇M). Being a symmetric operator the spectrum of ∆M con-
sists of real eigenvalues λ1,λ2, . . . and the corresponding eigenfunctions γ1,γ2, . . .
can be chosen to be real valued and orthonormal. Moreover, ∆M is a non-negative
operator with a one-dimensional kernel and a compact pseudo-inverse, so we can
order the eigenvalues 0 = λ1 < λ2 ≤ . . . and assign to each point x ∈ M a vector
p∈R2K , p=(λ1, . . . ,λK ,γ1(x), . . . ,γK(x)). The Laplace Beltrami Operator is purely
intrinsic as it is uniquely determined by the metric tensor g = (gi j)

2
i, j=1 (respectively

its inverse (gi j)2
i, j=1):

∆M =
1√

detg

2

∑
i, j=1

∂
∂xi

(
gi j
√

detg
∂

∂x j

)
. (1)

As a consequence the eigenvalues λk as well as the corresponding eigenspaces
do not change whenever a shape undergoes an isometric deformation. The eigen-
bases however are not uniquely determined, even in the case of one dimensional
eigenspaces the normalized eigenvectors are only unique up to sign. Nevertheless
from the representation p it is possible to construct descriptors that are invariant un-
der isometric deformations. Given a collection (ti)n

i=1 of positive numbers, the Heat
Kernel Signature (HKS)

HKS(p) =

(
∑
k

exp(−λkti)γk(x)2

)n

i=1

∈ Rn (2)
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is a n-dimensional intrinsic point-descriptor [29]. From a physical point of view
each component tells us how much heat u(x, ti) remains at point x after time ti when
the initial distribution of heat is a unit heat source at the very same point:

∆u = ut (3)
u(0, ·) = δx (4)

Since the class of isometric deformations includes reflections, any intrinsic descrip-
tor will assign identical values to a point and its symmetric counterpart, whenever
shapes exhibit bilateral intrinsic symmetries. Using information about the symmetry
[18] or making use of extrinsic information as in [27] would overcome this problem.

From a signal processing viewpoint HKS can be seen as a collection of low-pass
filters and thus it is not appropriate to localize features, see figure 2. Motivated by
this observation Aubry et al. [2] introduced the Wave Kernel Signature (WKS), a
descriptor where the low-pass filters are replaced by band pass filters:

WKS(p) =

(
∑
k

f(ei,σ2
i )
(λk)

2γk(x)2

)n

i=1

∈ Rn (5)

Here the parameters (ei,σ2
i ) correspond to mean and variance of the log-normal

energy distributions

f(e,σ2)(λ ) ∝ exp(− (loge− logλ )2

2σ2 ) (6)

The authors propose fixed values for the parameters (ei,σi) depending on the
truncated spectrum of the Laplace-Beltrami-operator. Moreover they equip the de-
scripor with a metric related to the L1-distance.

In this work the parameters will be learned from training data, a distance func-
tion between vector valued descriptors is unneeded since descriptors are compared
component wise in a hierarchical manner (2.1.1, 2.1.3).

Fig. 2 The weighting functions of the heat kernel signature (left) can be seen as low-pass filters,
the ones of the wave kernel signature (right) in contrary behave like band-pass filters.
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Fig. 3 Finding a correspondence between shapes should be feasible even if they are far from being
isometric.

Both, HKS and WKS, are invariant under isometric deformations. However the
human notion of similarity by far exceeds the class of isometries. Asking for a cor-
respondence between an adult and a child or even an animal like a gorilla is a fea-
sible task for us. Figure (3) shows examples of shapes taken from different datasets
([5],[21],[19],[1]) that could in principle be put into correspondence. By choosing
application dependent parameters one can achieve descriptors that are less sensitive
to the type of deformation one is interested in. In this work we implicitly determine
optimal parameters when the deformation class is represented by a set of training
shapes with known ground truth correspondence.

1.2 Discretized surfaces and operators

In practice the shapes are given as triangular meshes M = (VM,FM). We will hence-
forth identify a shape M by the set of it vertices VM . A one-to-one correspondence
between two shapes can then be represented by a permutation matrix, a fuzzy cor-
respondence, i.e. a function that assigns to each point a probability distribution over
the other shape, respectively as a left-stochastic matrix. Functions defined on a shape
become vectors and linear operators acting on them, e.g. the Laplace-Beltrami oper-
ator can be written as matrices. Inner products between functions are calculated via
an area-weighted inner product between the vectors representing them. We chose
the popular cotangent scheme [15] as the discretization of the Laplacian.

2 Dense Correspondence Using Random-Forests

In this work we treat the shape matching problem as a classification problem, where
input samples are points on the shape and the output class is an element of a canoni-
cal label set, which might e.g. coincide with one of the shapes in the training set (the
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reference shapes). The classifier we choose is a Random forest, designed in a way
to randomly explore the descriptor’s parametrization space and find the most dis-
criminative features that properly recover the transformation map characterizing the
shape category at hand. In this work, we consider the wave kernel signature (WKS)
as the parametrizable point descriptor (weak classifier). In general other choices of
parametrizable descriptors, e.g. HKS, are possible. As mentioned in section 1.1 any
classifier based on isometry-invariant point descriptors can not distinguish a point
from its symmetric counterpart. Thus the fuzzy outcome of the Random forest clas-
sifier has to be regularized in order to get a consistent correspondence.

2.1 Learning and Inference Using Random Forests

Random forests [3] are ensembles of decision trees that have become very popular in
the computer vision community to solve both classification and regression problems
with applications ranging from object detection, tracking and action recognition [9]
to semantic image segmentation and categorization [26], and 3D pose estimation
[30], to name just a few. The forest classifier is particularly appealing because its
trees can be trained efficiently and techniques like bagging and randomized feature
selection allow to limit the correlation among trees and thus ensure good general-
ization. We refer to [7] for a detailed review.

2.1.1 Inference.

In the context of shape matching, a decision tree comprised by the forest routes a
point m of a test shape M from the root of the tree to a leaf node, where a probability
distribution defined on a discrete label set L is assigned to the point. The path from
the root to a leaf node is determined by means of binary decision functions called
split functions located at the internal nodes, which given a shape point return L or
R depending on whether the point should be forwarded to the left or to the right
with respect to the current node. According to this inference procedure, each tree
t ∈ F of a forest F provides a posterior probability P(ℓ|m, t) of label ℓ ∈ L, given
a point m ∈ M in a test shape M.

This probability measure is the one associated with the leaf of tree t ∈F that the
shape point would reach. The prediction of the whole forest F is finally obtained
by averaging the predictions of the single trees:

P(ℓ|m,F ) =
1

|F | ∑
t∈F

P(ℓ|m, t) . (7)

The outcome of the prediction over an entire shape M can be represented as a left-
stochastic matrix XM encoding the probabilistic canonical transformation, where
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Fig. 4 At each inner node
of a decision tree a binary
split function is evaluated.
Depending on the result the
point m is either routed to
the left or to the right. Leafs
of the tree correspond to
probability distributions in the
label space. A random forest
is a collection of mulitple
decision trees.

...

... ...
P(ℓ|m, t) P(ℓ|m, t)

m ∈ M

φ(m)

L R

(XM)i j = P(ℓi|m j,F ) (8)

for each ℓi ∈ L and m j ∈ M. Using Bayes’ theorem we can further construct a fuzzy
correspondence between two previously unseen shapes (i.e. no members of the train-
ing set).

2.1.2 Learning.

During the learning phase, the structure of the trees, the split functions and the leaf
posteriors are determined from a training set. Let {(Ri,Ti)}mi=1 be a set of m ref-
erence shapes Ri each equipped with a canonical transformation, i.e. a bijection
Ti : Ri → L between the vertex set of the reference shape and the label set L. A train-
ing set T for the random forest is given by the union of the graphs of the mappings
Ti, i.e.

T= {(r,Ti(r)) : r ∈ Ri, 1 ≤ i ≤m} . (9)

The learning phase that creates each tree forming the forest consists in a recursive
procedure that starting from the root iteratively splits the actual terminal nodes.
During this process each shape point of the training set is routed through the tree
in a way to partition the whole training set across the terminal nodes. The decision
whether a terminal node has to be further split and how the splitting will take place
is purely local as it involves exclusively the shape points that have reached that node.
A terminal node typically becomes a leaf of the tree if the depth of the node exceeds
a given limit, if the size of the subset of training samples reaching the node is small
enough, or if the entropy of the sample’s label distribution is low enough. If this is
the case, then the leaf node is assigned the label distribution of subset S of training
samples that have reached the leaf, i.e.
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P(ℓ|S) = |{(r, ℓ) ∈ S}|
|S| . (10)

The probability distribution P(·|S) will become the posterior probability during
inference for every shape point reaching the leaf. Consider now the case where the
terminal node is split. In this case, we have to select a proper split function ψ(r) ∈
{L,R} that will route a point r reaching the node to the left or right branch. An
easy and effective strategy for guiding this selection consists in generating a finite
pool Ψ of random split functions and retaining the one maximizing the information
gain with respect to the label space L. The information gain IG(ψ) due to split
function ψ ∈Ψ is given by the difference between the entropy of the node posterior
probability defined as in (10) before and after having performed the split. In detail,
if S⊆ T is the subset of the training set that has reached the node to be split and SL,
SR is the partition of S induced by the split function ψ then IG(ψ) is given by

IG(ψ) = H(P(·|S))−H(P(·|S) |ψ) , (11)

where H(·) denotes the entropy and

H(P(·|S) |ψ) =
|SL|
|S| H

(
P
(
·|SL

))
+

|SR|
|S| H

(
P
(
·|SR

))
. (12)

Intuitively the information gain of a split function is higher, the better it seperates
members belonging to different classes (see figure 5).

Fig. 5 The split function
visualized as a solid line
has the highest information
gain (IG) among the three
candidates.

2.1.3 Choice of Decision Functions

During the build up of the forest the randomized training approach allows us to vary
the parametrization of the shape descriptor for each point of the shape. In fact, we
can in principle let the forest automatically determine the optimal discriminative
features of the chosen descriptor for the matching problem at hand. In this work we
have chosen the Wave Kernel Signature (WKS) but as mentioned above, in principle
any parametrizable feature descriptor (e.g. HKS) can be considered. From a practi-
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Fig. 6 The coordinate functions from a test shape M (standing cat) are transferred to a reference
shape R (walking cat) via the functional map TXM,R induced by the forest prediction. Most of the
ambiguities arise in fx, and are due to the global intrinsic symmetry of the cat. The first column
shows the map fx on the test cat, while the second and third columns are obtained by mapping fx
without and with regularization respectively. The remaining four columns show the mappings of fy
and fz without regularization. The symmetric ambiguities disappear as a result of the regularization
process (columns (a)-(c), matches encoded by color).

cal perspective, it can be shown [2] that the sum in (5) can be restricted to the first
k < ∞ components. We make explicit in (5) the dependency on k by writing:

p(m;e,k) =
k

∑
k=1

f 2
e (νk)φ 2

k (m) . (13)

We are now in the position of generating at each node of a tree during the training
phase a pool of randomized split functions by sampling an energy level ei, a number
of eigenpairs ki and a threshold τi. Accordingly, the split functions will take the
form:

ψi(m) =

{
L if p(m;ei,ki)> τi

R otherwise .
(14)

2.2 Interpretation and regularization of the forests prediction

The simplest way to infer a correspondence from a forest prediction consists in as-
signing each point m ∈ M to the most likely label according to its final distribution,
i.e., the label maximizing P(ℓ|m,F ). If we are also given a reference shape R from
the training set, the maximum a posteriori estimate of ℓ can be transformed into
a point-to-point correspondence from M to R via the known bijection T : R → L.
Figures 6(a)(b) show an example of this approach. The resulting correspondence is
exact for about 50% of the points, whereas it induces a large metric distortion on
the rest of the shape. However, this is not a consequence of the particular criterion
we adopted when applying the prediction. Indeed, the training process can not dis-
tinguish symmetric points and is oblivious to the underlying manifolds as it is only
based on pointwise information: the correspondence estimates are taken indepen-
dently for each point and thus the metric structure of the test shape is not taken into
account during the regression. Nevertheless, as we shall see, the predicted distribu-
tions carry enough information that can be exploited to obtain a consistent matching.
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2.2.1 Functional Maps

Multiplying XM (as defined in (8)) from the left with the permutation matrix asso-
ciated to the known bijection T : L → R between the label space L and a reference
shape R gives raise to another left-stochastic matrix XM,R. As pointed out in [16] this
(fuzzy) correspondence XM,R can be interpreted as a linear map TXM,R : L2(M) →
L2(R). In Figure 6 (first 7 columns) we use such a construction to map the coordi-
nate functions fi : M →R (where i ∈ {x,y,z}) to scalar functions on R. Specifically,
we plot f i and their reconstructions gi = TXM,R f i. Note that the reference shape is
axis-aligned, so that the x coordinates of its points grow from the right side (blue)
to the left side of the model (red).

As in [16] from now on we consider TXM,R in the truncated harmonic bases on the
resprective shapes and by that dramatically reduce the size of the problem. Since
the LB-eigenfunctions are chosen to form orthonormal bases, the norms considered
in the following section are invariant under this basis-transform. For simplicity we
will still denote the associated matrix by XM,R.

2.2.2 Metric distortion using functional maps

The plots we show in Figure 6 tell us that most of the error in the correspondence
arises from the (global) intrinsic symmetries of the shape. As mentioned previously,
this is to be expected since the training process does not exploit any kind of struc-
tural information about the manifolds.

This suggests the possibility to regularize the prediction by introducing metric
constraints on the correspondence. Specifically, we consider an objective of the form

E(X) = c(XM,R,X)+ρ(X) , (15)

where X is a correspondence between shapes M and R. The first term (or cost) en-
sures closeness to the prediction given by the forest, while the second term is a
regularizer giving preference to geometrically consistent solutions.

A functional map is assumed to be geometrically consistent if it approximately
preserves distance maps. Suppose for the moment we are given a sparse collection
of matches O ⊂ M ×R. Then for each (p,q) ∈ O we can define the two distance
maps dp : M → R and dq : R → R as

dp(x) = dM(p,x) , dq(y) = dR(q,y) . (16)

With these definitions, we can express the regularity term ρ(C)

ρ(C) = ∑
(p,q)∈O

ωpq∥XM,Rdp −dq∥2
2 , (17)

with weights ωpq ∈ [0,1].
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In order for the regularization to work as expected, the provided collection of
matches should constrain well the solution, in the sense that it should help to disam-
biguate the intrinsic symmetries of the shape. For example, matches along the tail
of the cat would bring little to no information on what solution to prefer. In practice,
we can seek for a few matches that cover the whole shape and be as accurate as pos-
sible. To this end, we generate evenly distributed samples Vfps ⊂ M on the test shape
via farthest point sampling [13] by using the extrinsic Euclidean metric. Then, we
construct a matching problem restricted to the set of predicted matches

Fig. 7 In the regularization step first a coarse subsampling of the shape is constructed via euclidean
farthest point sampling (dots on the left shape). In the small set of predicted matches O (cross
product of dots on the two shapes) a sparse correspondence is obtained using an l1 constrained
optimazation technique. We expect a consistent correspondence to approximately preserve the dis-
tance maps dp.

O = {(m,r) ∈Vfps ×R |(XM,R)rm > 0} . (18)

In practice this set is expected to be small, since the prediction given by the forest
is very sparse and we select around 50 farthest samples per test shape (≈0.2% of
the total number of points on the adopted datasets). This results in a small matching
problem that we solve via game-theoretic matching [20], a ℓ1-regularized technique
that allows to obtain sparse, yet very accurate solutions in an efficient manner. Once
a sparse set of matches is obtained, we solve (15) as the weighted least-squares
problem

min
X

∥XM,R −X∥2
F + ∑

(p,q)∈O
ωpq∥Xdp −dq∥2

2 , (19)

where ωpq ∈ [0,1] are weights (provided by the game-theoretic matcher) giving a
measure of confidence for each match (p,q)∈ O. Figure 6(c) shows the result of the
regularization performed using 25 sparse matches (indicated by small spheres).

Notice that the distance between functional maps is yet not well understood. The
authors of [6] suggest to replace the Frobenius norm in (19) with a regularized l0

norm of the vector of singular values:

∥A∥ε = ∑
i

σ(A)2
i

σ(A)2
i + ε

(20)
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Assuming the shapes to be (nearly) isometric one can expect the Laplace Bel-
trami operators on the shapes to commute with the functional map, i.e. (in the har-
monic bases):

XΛM = ΛRX (21)

where ΛM and ΛR are the diagonal matrices of the singular values. A measure of
deviation from (21) can be used as an alternative regularity cost.

2.3 Experimental results

In all our experiments we used the WKS as pointwise descriptor for the training
process. As in [16], we limited the size of the bases on the shapes to the first
100 eigenfunctions of the Laplace-Beltrami operator, computed using the cotangent
scheme [15].

2.3.1 Comparison with dense methods

In this set of experiments we compare with the state of the art techniques in (dense)
non-rigid shape matching, namely the functional maps pipeline [16], blended in-
trinsic maps (BIM) [10], and the coarse-to-fine combinatorial approach of [24]. We
perform these comparisons on the TOSCA high-resolution dataset [5]. The dataset
consists of 80 shapes belonging to different classes, with resolutions ranging in 4K-
52K points. Shapes within the same class have the same connectivity and undergo
nearly-isometric deformations. Ground-truth point mapping among shapes from the
same class is available. In particular, given a predicted map f : M → N and the cor-
responding ground-truth g : M → N, we define the error of f as

ε( f ,g) = ∑
m∈M

dN( f (m),g(m)) , (22)

where dN is the geodesic metric on N, normalized by
√

Area(N) to allow inter-class
comparisons. Similarly, we define the average (pointwise) geodesic error as ε( f ,g)

|M| .
Although the methods considered in these experiments do not rely on any prior

learning, the comparison is still meaningful as it gives an indication of the level of
accuracy that our approach can attain in this class of problems. The experiments
were designed on the same benchmark and following a procedure similar to the one
reported in [10, 16]. Specifically, for each model M of a class (e.g., the class of
dogs), we randomly picked other 6 models from the same class (not including M),
and trained a random forest with them (thus, we only considered classes with at
least 6 shapes). Then we predicted a dense correspondence for M according to the
technique described in Section 2.2.
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Fig. 8 Left: Fraction of exact matches predicted by a random forest vs. maximum support size
of the probability distributions on a test shape. The forest was trained with 9 shapes. Middle:
Sensitivity to number of shapes used in the training set. Note how the correspondence predicted
using little training data (top-left model) is only partially regularized. Right: Comparison with the
state-of-the-art methods on nearly-isometric shapes (TOSCA). Symmetric correspondences are
considered correct solutions for all methods.

We show the results of this experiment in Fig. 8 (right). Each curve depicts the
percentage of matches that attain an error below the threshold given on the x-axis.
Our method (red line) detects 90% correct correspondences within a geodesic er-
ror of 0.05. Almost all correct matches are detected within an error of 0.1. This is
compatible with and even improves the results given by the other methods on the
same data. Note that our training process only makes use of pointwise informa-
tion (namely, the WKS); in contrast, the functional maps pipeline (blue line) adopts
several heuristics (WKS preservation constraints in addition to orthogonality of C,
region-wise features, etc.) in order to constrain the solution optimally [16]. Upon
visual inspection, we observed that most of the errors in our method were due to
the poor choice of points made in the regularization step. This is analogous to what
is reported for the BIM method [10]. Typically, we observed that around 20 well-
distributed points are sufficient to obtain accurate results.

2.4 Sensitivity to training parameters

We performed a sensitivity analysis of our method with respect to the parameters
used in the training process, namely the size of the training set and the number
of trees in the forest. In these experiments we employed the cat models from the
TOSCA dataset (28K vertices) with the corresponding ground-truth.

In Fig. 8 (middle) we plot the average geodesic error obtained by a test shape
(depicted along the curve) as we varied the number of shapes in the training set. The
geodesic error of the correspondence stabilizes when at least 6 shapes are used for
training. This means that only 6 samples per label are sufficient in order to determine
an optimal parametrization of the nearly-isometric deformations occurring on the
shape. This result contrasts the common setting in which random forests are trained
with copious amounts of data [30, 8], making the approach rather practical when
only limited training data is available.

Figure 8 (left) shows the change in accuracy as we increase the number of trees in
the forest. Note that increasing the number of trees directly induces a larger support
of the probability distributions over L. In other words, each point of the test shape
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reference match using match using match using point on point matched point matched
shape reg. forest WKS affinity reg. WKS affinity reference shape by forest by WKS affinity

Fig. 9 Comparison between our method and an approach based on WKS affinity using shapes
from the dataset of Vlasic et al. Columns one to four show the predicted and regularized solutions
for both approaches. The last three columns show how the indicator function at one point gets
functionally mapped to a second shape, by using the (non-regularized) X obtained from the forest,
and by XWKS.

receives more candidate matches if the forest is trained with more trees (see Eq. (7)).
The hit ratio in the bar plot is defined as the fraction of exact predictions given
by the forest over the entire test shape. We compare the results with the hit ratio
obtained by looking for k-nearest neighbors in WKS descriptor space, with k equal
to the maximum support size employed by the forest at each level. From this plot
we see that the forest predictions are twice as accurate as WKS predictions for equal
support sizes. In particular, random forest predicts the exact match for almost half
(around 14K points) of the shape when trained with 15 trees.

Finally, in Fig. 9 we show a qualitative comparison between our method and
an approach based on WKS. The rationale of this experiment is to show that the
prediction given by the forest gives better results than what can be obtained without
prior learning within the same pipeline (i.e., prediction followed by regularization).
Specifically, for each point in one shape we construct a probability distribution on
the other shape based on a measure of descriptor affinity in WKS space. We then
estimated a functional map CWKS from the resulting set of constraints, and plotted a
final correspondence before and after regularization.

2.5 Learning non-isometric deformations

In this section we consider a scenario in which the shapes to be matched may un-
dergo more general (i.e., far from isometric) deformations. Examples of such de-
formations include local and global changes in scale, topological changes, resam-
pling, partiality, and so forth. Until now, few methods have attempted to tackle this
class of problems. Most dense approaches [10, 16, 24, 17] are well-defined in the
quasi-isometric and conformal cases only; instances of inter-class matching were
considered in [10], but the success of the method depends on the specific choice
of (usually hand-picked) feature points used in the subsequent optimization. Sparse
methods considering the general setting from a metric perspective [20, 4, 22] at-
tempt to formalize the problem by using the language of quadratic optimization,
leading to difficult and highly non-convex formulations. An exception to the gen-
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eral trend was given in [31], where the matching is formulated as a linear program
in the product space of manifolds. The method allows to obtain dense correspon-
dences for more general deformations, but it assumes consistent topologies and is
computationally expensive (∼2 hours to match around 10K vertices). Another re-
cent approach [11] attempts to model deviation from isometry in the framework of
functional maps, by seeking compatible harmonic bases among two shapes. How-
ever, it relies on a (sparse) set of matches being given as input and it shares with [31]
the high computational cost.

Fig. 10 Example of dense shape matching using random forests under non-isometric deformations.
Shapes in the shaded area are a subset of the training set. The forest is trained with wave kernel
descriptors and consists of 80K training classes with 19 samples per class. Matches are encoded
by color.

As described in Section 2, the forest does not contain any explicit knowledge of
the type of deformations it is asked to parametrize. This means that, in principle,
one could feed the learning process with training data coming from any collection
of shapes, with virtually no restrictions on the transformations that the shapes are al-
lowed to undergo. Clearly, an appropriate choice of the pointwise descriptor should
be made in order for the forest to provide a concise and discriminative model. To
test this scenario, we constructed a synthetic dataset consisting of 8 high-resolution
(80K vertices) models of a kid under different poses (quasi-isometries), and 11 ad-
ditional models of increasingly corpulent variants of the same kid (local scale de-
formations) with a fixed pose (see Fig. 10). The shapes have equal number of points
and point-to-point ground-truth is available. We test the trained random forest with
a plump kid having a previously unseen pose.

Note that the result is reasonably accurate if we keep in mind the noisy set-
ting: the forest was trained with WKS descriptors, which are originally designed for
quasi-isometric deformations, and thus not expected to work well in the more gen-
eral setting [12]. Despite being just a qualitative evaluation, this experiment demon-
strates the generality of our approach. The matching process we described can still
be employed in general non-rigid scenarios if provided with limited, yet sufficiently
discriminative training data.
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3 Conclusions

In this article, we showed how the random forest learning paradigm can be em-
ployed for problems of dense correspondence among deformable 3D shapes. To our
knowledge, this is among the first attempts at introducing a statistical learning view
on this family of problems. The effectiveness of our approach is demonstrated on a
standard benchmark, where we obtain comparable results with respect to the state of
the art, and very low prediction times for shapes with tens of thousands of vertices.
The approach is flexible in that it provides a means to model deformations which
are far from isometric, and it consistently obtains high predictive performance on
all tested scenarios.
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Chapter 7
Product Manifold Filter:
Non-rigid shape correspondence
via kernel density estimation in
the product space

This paper approaches the correspondence problem as an optimization problem over
the graph of the correspondence as introduced in Section ??. As mentioned there,
the regularity of the correspondence it tightly coupled to the regularity of its graph.
We propose an iterative method that increases the regularity of the graph and thus
of the correspondence itself in every iteration. In each iteration the current (graph
of the) correspondence is first blurred and then sharpened again. We show how this
approach is related to a minimal surface problem in the product space. Given very
different types of initial correspondeces such as very sparse correspondences consist-
ing of only two point-to-point corerspondences, noisy dense correspondences or even
fuzzy correspondences (eg. arising from functional maps), we can obtain bijective
dense correspondences of high regularity that are semantically meaningful. Since
the bijectivity comes with a price (one needs to solve linear assignment problems
in each iteration) we also propose a multiscale variant of the algorithm that allows
matching of triangular meshes with a high number of vertices. While not being the
focus of this paper we also show how the method can be used to match shapes of
different dimensions, e.g . a countour (1D manifold) to a 3D shape (2D manifold).
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Abstract

Many algorithms for the computation of correspon-
dences between deformable shapes rely on some variant of
nearest neighbor matching in a descriptor space. Such are,
for example, various point-wise correspondence recovery
algorithms used as a post-processing stage in the functional
correspondence framework. Such frequently used tech-
niques implicitly make restrictive assumptions (e.g., near-
isometry) on the considered shapes and in practice suffer
from lack of accuracy and result in poor surjectivity. We
propose an alternative recovery technique capable of guar-
anteeing a bijective correspondence and producing signifi-
cantly higher accuracy and smoothness. Unlike other meth-
ods our approach does not depend on the assumption that
the analyzed shapes are isometric. We derive the proposed
method from the statistical framework of kernel density es-
timation and demonstrate its performance on several chal-
lenging deformable 3D shape matching datasets.

1. Introduction
Estimating the correspondence between 3D shapes is

among the fundamental problems in computer vision, ge-
ometry processing and graphics with a wide spectrum of
applications ranging from 3D scene understanding to tex-
ture mapping and animation. Of particular interest is the
case in which the objects are allowed to deform non-rigidly.
In this setting, research has mainly focused on minimizing
a measure of distortion between the input shapes, reaching
in recent years very high levels of accuracy [43]. However,
point-wise accuracy often comes under restricting require-
ments (isometry assumption), or at the price of a lack of
useful properties on the computed map, namely bijectivity
(each point on either shape should have exactly one corre-
sponding point on the other) and smoothness (nearby points
should match to nearby points).

Figure 1. Our method can be used to recover a dense, smooth, bi-
jective correspondence between highly non-isometric shapes from
minimal input information. In this example, we initialize our algo-
rithm with just two hand-picked matches (red spheres on tail and
front leg). Correspondence quality is visualized by transferring
colors from horse to elephant via the recovered map.

In this paper, we introduce a novel method to recover
smooth bijective maps between deformable shapes. Con-
trarily to previous approaches, we do not rely on the as-
sumption that the two shapes are isometric. We phrase
our matching problem by using the language of statistical
inference, whereas the input to our algorithm is either 1)
a sparse collection of point-wise matches (as few as two)
which are used as landmark constraints to recover the com-
plete map, or 2) a dense, noisy, possibly non-surjective and
non-smooth map which is converted to a better map with
higher accuracy and the aforementioned properties.

1.1. Related works

A traditional approach to correspondence problems is
finding a point-wise matching between (a subset of) the
points on two or more shapes. Minimum-distortion meth-
ods establish the matching by minimizing some structure
distortion, which can include similarity of local features
[32, 14, 8, 45], geodesic [29, 13, 15] or diffusion distances
[17], or a combination thereof [41].

Typically, the computational complexity of such meth-

1



ods is high, and there have been several attempts to allevi-
ate the computational complexity using hierarchical [37] or
subsampling [40] methods. Several approaches formulate
the correspondence problem as quadratic assignment and
employ different relaxations thereof [42, 24, 34, 2, 15, 19].
Algorithms in this category typically produce guaranteed
bijective correspondences between a sparse set of points, or
a dense correspondence suffering from poor surjectivity.

Embedding methods try to exploit some assumption on
the correspondence (e.g. approximate isometry) in order to
parametrize the correspondence problem with a few degrees
of freedom. Elad and Kimmel [18] used multi-dimensional
scaling to embed the geodesic metric of the matched shapes
into a low-dimensional Euclidean space, where alignment
of the resulting “canonical forms” is then performed by sim-
ple rigid matching (ICP) [16, 10]. The works of [27, 38]
used the eigenfunctions of the Laplace-Beltrami operator
as embedding coordinates and performed matching in the
eigenspace. Lipman et al. [25, 20, 21] used conformal em-
beddings into disks and spheres to parametrize correspon-
dences between homeomorphic surfaces as Möbius trans-
formations. Despite their overall good performance, the
majority of the matching procedures performed in the em-
bedding space often produces noisy correspondences at fine
scales, and suffers from poor surjectivity. More recently,
in [6, 5] the authors obtain a bijective correspondence by
first computing compatible embeddings of the two shapes,
and then aligning the embeddings through the use of sparse
input correspondences. As opposed to point-wise corre-
spondence methods, soft correspondence approaches assign
a point on one shape to more than one point on the other.
Several methods formulated soft correspondence as a mass-
transportation problem [28, 39]. Ovsjanikov et al. [31] in-
troduced the functional correspondence framework, model-
ing the correspondence as a linear operator between spaces
of functions on two shapes, which has an efficient repre-
sentation in the Laplacian eigenbases. This approach was
extended in several follow-up works [33, 22, 3, 35] . A
point-wise map is typically recovered from a low-rank ap-
proximation of the functional correspondence by a match-
ing procedure in the representation basis, which also suf-
fers from poor surjectivity. A third class of matching meth-
ods formulates the correspondence problem as an optimiza-
tion problem in the product space of the considered shapes.
Windheuser et al. [44] seek for a two-dimensional minimal
surface in the four-dimensional product space of the two in-
put surfaces; this was later extended to a 2D-to-3D setting
by Lähner et al. [23]. Making use of the graph structure of
the considered shapes, the discretization leads to an integer
linear program on the product mesh where desirable proper-
ties of the matching such as smoothness and surjectivity be-
come linear constraints. However, the computational com-
plexity is prohibitive even for a modestly-sized problem.

Figure 2. The Product Manifold Filter (PMF) can be applied to
a variety of problems that are aiming for bijective, smooth map-
pings between metric spaces. Here we map a 2D shape (contour)
to a 3D shape. We initialize the PMF with two semantically mean-
ingful matches (black spheres) and obtain a dense semantically
meaningful bijection.

1.2. Main contributions
Many of the works mentioned above provide a match-

ing that is neither bijective nor smooth. In some cases the
matching is only available as a sparse set of points in the
product space of the two shapes. We treat these match-
ings as corrupted versions of the latent correspondence and
propose the Product Manifold Filter (PMF), a framework
that increases the quality of the input mapping. We show
that the considered filter leads to a linear assignment prob-
lem (LAP) guaranteeing bijective correspondence between
the shapes. Despite the common wisdom, we demonstrate
that the problem is efficiently solvable for relatively densely
sampled shapes by means of the well-established auction
algorithm [9] and a simple multi-scale approach. Unlike
many of the previously mentioned techniques that assume
the shapes to be (nearly) isometric, we allow them to un-
dergo more general deformations (Figure 1) or even have
different dimensionality (Figure 2).

Finally, we present a significant amount of empirical ev-
idence that the proposed smoothing procedure consistently
improves the quality of the input correspondence coming
from different algorithms, including point-wise recovery
methods from functional map pipelines. We also show the
performance of PMF as an interpolator of sparse input cor-
respondences.

2. A probabilistic framework
We consider a pair of three-dimensional shapes that are

represented by their boundaries X and Y , two-dimensional
manifolds embedded in R3 and thus equipped with intrin-
sic metrics dX and dY . Our goal is to find a semantically
meaningful correspondence between X and Y . A corre-
spondence is a diffeomorphism π : X → Y , i.e., a smooth
mapping with a smooth inverse. We do not make any other
assumptions such as isometry. The correspondence π can
be represented as a two-dimensional manifold Π in the four-
dimensional product spaceX×Y: a pair (x, y) belongs to Π
iff π(x) = y. We henceforth assume that the true correspon-



dence π between X and Y and the manifold Π representing
it are latent.

Let {(xk, yk)}k∈K ⊂ Π be a possibly sparse sam-
ple of the said manifold. For example, these can be
pairs of corresponding points on X and Y computed us-
ing a feature detector followed by descriptor matching.
In practice, we only have access to a noisy realization
of these points, {(ξk, ηk)}k∈K, which we assume to ad-
mit a separable i.i.d. Gaussian density, f(ξk, ηk) ∝
K(dX (xk, ξk))K(dY(yk, ηk)), where

K(d) = exp

(
− d2

2σ2

)

is an unnormalized Gaussian kernel with the parameter σ2.
Note that the density on the manifolds is expressed in terms
of the intrinsic metrics dX and dY .

Given the set of noisy corresponding points
{(ξk, ηk)}k∈K as the input, our goal is to produce a
faithful estimate of the correspondence π. We propose to
estimate the latent manifold Π via kernel density estimation
in the product space X × Y . To that end, we estimate the
density function using the Parzen sum

f(x, y) ∝
∑

k∈K
K(dX (x, ξk))K(dY(y, ηk)). (1)

For every point x ∈ X , an estimate of π(x) is given by a
point y maximizing f(x, y),

π̂(x) = arg max
y

f(x, y). (2)

One can further impose bijectivity of π̂ : X → Y as a
constraint, obtaining the following estimator of the entire
map

π̂ = arg max
π̂:X 1:1→Y

∫

X
f(x, π̂(x))dx. (3)

The process can be iterated as shown in the one-dimensional
illustration in Figure 3.

Procedures (2) or (3) have an area reduction effect on the
manifold Π producing a more regular version thereof and
thus a more regular correspondence π. We interpret (3) as
a filter of correspondences and will henceforth refer to it a
product manifold filter (PMF). While we defer the rigorous
proof of the area reduction property to the extended version
of the paper, in what follows, we illustrate it by a simple
one-dimensional example.

One dimensional illustration. Let us consider a config-
uration of three points {x−, x, x+} and the corresponding
noisy points {y−, y, y+} on a pair of one-dimensional man-
ifolds X and Y like those depicted in Figure 3. We assume
that the points are directly given in arclength parametriza-
tion, such that dX (x, x±) = |x − x±| = b, dY(y, y−) =

|y− y−| = a, and dY(y, y+) = |y− y+| = a+ δ. For con-
venience, we henceforth denote x = y = 0, x± = ±b,
y− = −a and y+ = a + δ. In this setting, the one-
dimensional manifold Π0 representing the input correspon-
dence in the product space comprises two segments con-
necting (−b,−a), (0, 0), and (b, a + δ), and its length is
given by L(Π0) =

√
b2 + a2 +

√
b2 + (a+ δ)2.

PMF maximizes the density function

h(ŷ) = f(0, ŷ) = K(0)K(ŷ) + (4)
K(b)K(ŷ + a) +K(b)K(ŷ − a− δ)

= K(ŷ) +K(b)(K(ŷ + a) +K(ŷ − a− δ))

over the values ŷ for the point y. First, we observe that since
K(b) > 0, the global maximum of h(ŷ) has to be around
ŷ = 0. For ŷ = 0 and δ = 0, one has

dh

dŷ
= K ′(0) +K(b)(K ′(a) +K ′(−a))

and

d2h

dŷ2
= K ′′(0) +K(b)(K ′′(a) +K ′′(−a))

Since K ′(0) = 0 and K ′(−a) = −K ′(a), the first deriva-
tive vanishes, while the fact thatK ′′(0) < 0 andK ′′(−a) =
K ′′(a) implies that ŷ = 0 is the maximum of h.

Next, we perform perturbation analysis of the above
maximizer by invoking the first-order Taylor expansion of
h around (δ, ŷ) = (0, 0):

∂h

∂ŷ
≈ ∂h

∂ŷ

∣∣∣∣
ŷ=0,δ=0

+ ŷ
∂2h

∂ŷ2

∣∣∣∣
ŷ=0,δ=0

+ δ
∂2h

∂ŷ∂δ

∣∣∣∣
ŷ=0,δ=0

.

Demanding equality to zero yields the maximizer of the per-
turbed problem

ŷ ≈ K(b)K ′′(a)δ

2K(b)K ′′(a) +K ′′(0)
=

δ

2 + K′′(0)
K(b)K′′(a)

= cδ.

For a < σ√
2

the ratio in the denominator is positive and
consequently c ∈ (0, 12 ).

The length of the estimated manifold Π̂ can be obtained
using a series of first-order Taylor approximations,

L(Π̂) =
√
b2 + (a+ cδ)2 +

√
b2 + (a+ δ − cδ)2

≈ L(Π0) +
acδ√
b2 + a2

− (a+ δ)cδ√
b2 + (a+ δ)2

≈ L(Π0)− cb2

(b2 + a2)3/2
δ2 < L(Π0), (5)

which manifests the length reducing effect of the PMF.



Initialization iteration2 iteration 4

Figure 3. Conceptual illustration of our method on one-dimensional manifolds. Shown are iterations of PMF (|K| = 3 sparse matches
as initialization). Top: Kernel density estimation f(x, y) as defined in (1) in the product space of the two shapes X and Y . Dark areas
correspond to higher density. According to (3), consistently maximizing f(x, ·) gives a bijective and smoothed matching (red curve in
product space) which is used to derive the density estimate in the next iteration. Bottom: matching visualized via color transfer. Shapes
are parametrized counter-clockwise with the origin of the product space corresponding to the noses of horse and dog. Note the circular
boundary conditions of the product space.

2.1. Discretization
In what follows, we consider a discretization of problem

(3). We assume the shape X to be discretized at n points
{xi}ni=1 and the pairwise geodesic distances are stored in
the matrix DX ∈ Rn×n. Similarly, the shape Y is dis-
cretized as {yi}ni=1 and its pairwise distance matrix is de-
noted by DY ∈ Rn×n. Given a (possibly sparse) collection
of input correspondences {(ξk, ηk)}mk=1 the unnormalized
kernel density estimation can be written as an n× n matrix

F = KXKT
Y (6)

with the matrices KX ∈ Rn×m and KY ∈ Rn×m given by

(KX )ik = K(dX (xi, ξk)) (7)
(KY)ik = K(dY(yi, ηk)). (8)

The objective in (3) thus becomes

∫

X
f(x, π(x))dx =

∫

X×Y
f(x, y)δπ(x)(y)dydx

≈
n∑

i,j=1

FijPji = 〈P,F〉 (9)

with P ∈ {0, 1}n×n being a permutation matrix repre-
senting a bijection between {xi}ni=1 and {yi}ni=1. At some
points it will be convenient to use the vector representation
p ∈ {1, . . . , n}n of P. Estimating the bijective correspon-
dence as in (3) thus turns out to be a linear assignment prob-
lem (LAP) of the form

P̂ = arg max
P
〈P,F〉 (10)

where the optimization is performed over the space of all
n× n permutation matrices.

2.2. Multiscale

While linear assignment problems like (10) can be
solved in polynomial time, the memory consumption is
quadratic in the vertex set size n. To alleviate this burden,
we propose a multi-scale technique based on the assumption
of local regularity of the manifold Π.

Given two shapes discretized at n points each, we per-
form farthest point sampling to obtain a hierarchy of p mul-
tiscale representations consisting of n1 < n2 < . . . <
np = n points. Each of the samplings comes with a se-
quence of sampling radii, rX1 > rX2 > . . . > rXp and
rY1 > rY2 > . . . > rYp , respectively.

For sufficiently large shapes, the n×n pairwise distance
matrices DX and DY can be no more stored entirely in
memory. We follow [4, 26] and store only the projection of
the latter matrices on the first r eigenfunctions of the Lapla-
cian resulting in an n× r matrix. The original distances are
reconstructed on-demand, with negligible error as shown in
[1, 26].

We recursively apply a variant of the PMF to the sparse
set of input matches obtained by the coarser scale:

Pi+1 = arg max
P∈{0,1}n

2
i+1

〈P,Fi 〉 (11)



Figure 4. Our method finds smooth bijective maps between non-
isometric shapes even when one single match is given as input
(marked as small red spheres). Note that the map remains smooth
even if the initial match is wrong (rightmost column).

where

Fi(s, t) = W(s, t)

ni∑

k=1

KX (s, k)KY(t, pi(k)) . (12)

The weighting matrix W ∈ {0, 1}(n2
i+1×n2

i ) assures that the
image of a point xs being in the vicinity of xik is constrained
to be mapped to a point in the vicinity of p(k) and vice
versa (i.e., the matching and its inverse are supposed to be
smooth):

W(s, t) = (13)



0 if ∃k : DX (s, k) < rXi and DY(t, pi(k)) > 2rYi
0 if ∃k : DY(t, pi(k)) < rYi and DX (s, k) > 2rXi
1 otherwise

This construction leads to a sparse payoff matrix corre-
sponding to a smaller space of feasible permutations, so that
the corresponding LAP can be solved efficiently. Note the
factor 2 in (13). Since we cannot guarantee the Voronoi
cells on the two shapes to have the same number of points
and we want to be able to remove errors from the coarser
scale, we permit moving a point to an adjacent Voronoi cell.

3. Experiments
While our method can be applied to a variety of prob-

lems aiming at bijective and smooth mappings between
metric spaces (see Figure 2 for an extreme case), here we
focus on the recovery of a correspondence between non-
rigid and possibly non-isometric 3D shapes. We show
the performance of our method in two very different sce-
narios, namely refinement of noisy dense correspondence,
and completion of sparse correspondence. We additionally
demonstrate the performance of our multi-scale technique
by recovering bijective correspondences between high res-
olution shapes.

3.1. Recovery from sparse correspondences
In our first set of experiments we consider a scenario in

which the input shapes come with a (possibly very sparse)

collection of initial matches. These, in turn, can be obtained
by a sparse non-rigid matching technique such as [34] or
be hand-picked, depending on the application. In these ex-
periments we compare PMF with the Tutte embedding ap-
proach recently introduced in [5]. Similarly to PMF, this
approach produces guaranteed bijective and smooth maps
starting from a sparse set of point-wise matches; to our
knowledge, this method represents the state-of-the-art for
this class of problems.

The results of this comparison are shown in Figure 5.
The input matches were obtained by mapping farthest point
samples on a reference shape via the ground-truth corre-
spondence to the target shape, and are visualized by trans-
ferring a texture from reference to target via the recovered
dense map. As we can read from the plots, our approach
yields maps of better quality when fewer than ten matches
are provided as the input, and maps of comparable quality
when more matches are available. It is important to note
that while our method still produces meaningful solutions
when just one or two matches are given as the input (see
Figures 1, 4), the approach of [5] has the theoretical mini-
mum of five matches; furthermore, the latter approach gives
different solutions depending on the specific ordering of the
inputs, while our method is invariant to their permutations.
Finally, as we demonstrate in the next section, a key ability
of our method is being able to recover correct maps from
noisy inputs, while the Tutte approach requires exact input.

3.2. Recovery from noisy input

In this set of experiments we assume to be given a low-
rank approximation of the latent correspondence P in terms
of a functional map

C = ΨTPΦ ∈ Rr×r, (14)

where Φ,Ψ ∈ Rn×r are truncated orthonormal bases on
X and Y . We refer the reader to the original paper [31]
for details and allow ourselves to condense its ideas to the
above equation.

While a plurality of methods for finding C have been
proposed in the last years, there currently exist only three
approaches to recover a point-wise correspondence ma-
trix P from it. In [31] the authors proposed to recover a
pointwise correspondence between X and Y by solving the
nearest-neighbor problem (NN)

min
P∈{0,1}n×n

‖CΦT −ΨTP‖2F s.t. PT1 = 1 . (15)

alternated with an orthogonality-enforcing refinement of C
(ICP). A variant is its bijective version (Bij. NN)

min
P∈{0,1}n×n

‖CΦT −ΨTP‖2F s.t. PT1 = 1 , P1 = 1 .

(16)
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Figure 5. Comparison between our method and the method of [5] at increasing number of input matches (reported on top). Both methods
produce smooth, guaranteed bijective solutions; our method requires little computational effort (a few minutes as opposed to ∼1 hour for
[5]), and yields in comparison more accurate solutions when fed with a very sparse input.

The orthogonal refinement of (15) assumes the underly-
ing map to be area-preserving [31], and is therefore bound
to fail in case the two shapes are non-isometric. Rodolà et
al. [36] proposed to consider the non-rigid counterpart for
a given C:

min
P∈[0,1]n×n

DKL(CΦT,ΨTP) + λ‖Ω(CΦT −ΨTP)‖2

s.t. PT1 = 1 . (17)

Here DKL denotes the Kullback-Leibler divergence be-
tween probability distributions, Ω is a low-pass operator
promoting smooth velocity vectors, and λ > 0 controls the
regularity of the assignment. The problem is then solved via
expectation-maximization by the coherent point drift algo-
rithm (CPD) [30].

We construct the low-rank functional map using the
known ground-truth correspondences between the shapes.
Since this is supposed to be the ideal input for all the com-
peting methods, we abandon the refinement step in (15).
Correspondences returned by the other methods are treated
as noisy realizations of the latent bijection and are recovered
via PMF with σ2 set to 2% of the target shape area.

We show quantitative comparisons on 71 pairs from the
SCAPE dataset [7] (near isometric, 1K vertices) and 100
pairs from the FAUST dataset [11] (including inter-class
pairs, 7K vertices). In Figures 11 and 9 we compare the
correspondence accuracy, while in Figure 12 we visualize
how lack of smoothness, bijectivity and accuracy affect tex-
ture transfer.

The accuracy of all input matchings is increased by ap-
plying the product manifold filter. To our knowledge, the
matchings obtained by the PMF are the most accurate ones
that can be recovered from this type of low-rank approx-
imation. While linear assignment problems are known to
be time demanding to solve for larger numbers of variables,
the most dramatic increase of run time occurs when apply-
ing the coherent point drift algorithm (see Table 1).

Figure 6. Result of our method on two cat shapes from TOSCA
[12]. This high resolution shape has 27894 vertices, making it
infeasible to store the entire pairwise distance matrix in memory.
Our multi-scale approach recovered a smooth matching from only
20 sparse correspondences given as the input using five hierarchi-
cal scales as detailed in Section 2.2.

Figure 7. Visualization of the multiscale iterations evaluated in
Fig. 8. From left to right: 1K, 2K, 8K, 28K (all) vertices.

3.3. Recovering high-resolution correspondences
using multiscale

In this set of experiments we demonstrate how the PMF
together with the multiscale method described in 2.2 can re-
cover very accurate matchings on shapes being sampled at
high resolution. Figure 6 shows a dense bijective match-
ing between two shapes sampled at n = 27894 points each.
At each of the six scales ni ∈ {103, 2 × 103, 4 × 103, 8 ×
103, 1.6 × 104, n} the constrained LAP (11) was solved.
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Figure 8. Quantitative analysis of correspondences between the
two cats shown in Figure 6, recoverd using the multiscale ap-
proach. The geodesic errors are measured with respect to the
ground-truth on the finest scale. At coarse scales the minimal ex-
pected geodesic error introduced by any matching is in the order
of the sampling radius. As expected, the accuracy of the matching
increases with each iteration.

n 1000 1000 6890 6890
r 20 50 20 50
Nearest neighbors 0.04 0.06 1.35 2.88
Bijective NN 2.79 2.30 463.66 253.03
CPD 4.79 4.67 1745.06 2085.65
NN + PMF 1.75 1.28 382.86 244.10
Bij. NN + PMF 4.06 3.44 746.00 440.94

Table 1. Average runtimes in seconds. We compare the runtimes
of different correspondence recovery methods. Given the rank k
of a functional map approximating the correspondence between
shapes sampled at n points each, we report the time it takes to
obtain a dense matching. See Figures 11,9 and 12 for evaluations
of accuracy.

Figure 7 shows the sequence of matchings over the scales.
Figure 8 shows the improvement of correspondence accu-
racy at finer scales. By using the weighting functions we
force points to stay close to their nearest neighbor in the
coarser sampling and thus can guarantee to approximately
keep the accuracy from the coarser scale. Solving the con-
strained LAP at the finest resolution took less then 9 min-
utes. Calculating the kernel density matrices (6) for all
scales took less than 40 minutes.

Another test was performed on pairs of shapes from the
FAUST dataset. As Figure 10 shows, the correspondences
obtained using a four-scale scheme are comparable in accu-
racy to the solution of a single-scale scheme. However, the
runtime of the multi-scale approach is significantly lower.
Calculating the kernel density matrices (6) for all scales
took about 4 minutes, while solving the LAPs at all scales
took around 18 seconds.
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Figure 9. Quantitative comparison of methods for pointwise cor-
respondence on the non-isometric FAUST dataset (about 7K ver-
tices).

0 1 2 3 4 5 6

Geodesic error [% of diameter]

0

20

40

60

80

100
%

 o
f v

er
tic

es

One-scale
1K
2K
4K
7K

Figure 10. Error curves for a multiscale experiment on the FAUST
dataset, showing result for intermediate scales. For comparison,
the solution obtained by a single-scale PMF is shown in dashed
black.

4. Discussion and conclusion

We considered the problem of bijective correspondence
recovery by means of filtering a given set of matches com-
ing from any of the existing algorithms (including those
not guaranteeing bijectivity, or producing sparse correspon-
dences). Viewing correspondence computation as a kernel
density estimation problem in the product space, we intro-
duced the product manifold filter that leads to smooth cor-
respondences, with the additional constraint of bijectivity
embodied through an LAP. We believe that statistical tools
that have been heavily used in other domains of science and
engineering might be very useful in shape analysis, and in-
vite the community to further explore this direction. Of
special interest is the possibility to lift the product space
to higher dimensions encoding local similarity of points on
the two shapes, for instance by using descriptors. The way
the kernel density estimator is constructed does not restrict
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Figure 11. Quantitative comparison of methods for pointwise correspondence recovery from a functional map (20 and 50 eigenfunctions).
We matched 70 pairs from the near-isometric SCAPE dataset (1K). Plotted are the histograms of geodesic errors. Filtering the results of
nearest neighbors (left) outperforms the state of the art method (right) while having only a fraction of its runtime (Table 1). Even better
results are achieved under affordable runtimes when initializing the PMF estimator with the result of bijective NN (center).
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×diam

NN NN+PMF CPD CPD+PMF NN NN+PMF CPD CPD+PMF

Figure 12. Qualitative comparison of methods for pointwise correspondence recovery from a functional map. Current methods such as
nearest neighbors (NN) and coherent point drift (CPD) suffer from bad accuracy and lack of surjectivity. Applying the proposed estimation
to either of them gives a guaranteed bijective matching with high accuracy and improved smoothness. Left: We visualize the accuracy
of the methods by transferring texture from the source shape X to the target shape Y . Neither NN nor CPD produce bijective mappings.
The lack of surjectivity is visualized by assigning a fixed color (green) to not-hit points. Right: The geodesic error (distance between
ground-truth and recovered match, relative to the shape diameter) induced by the matching is visualized on the target shape Y .

the samples per shape to be distinct. Together with the use
of weighting factors this alllows to directly work with soft
maps as inputs. Finally, we believe that denoising the cor-
respondence manifold in the product space is a useful per-
spective applicable to different problems in computer vision
where smooth correspondences are desired, such as optical
flow.
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Chapter 8
Efficient Deformable Shape
Correspondence via Kernel
Matching

In this paper we extend the previous one on both theoretical and practical aspects.
We show how the iterative process relates to solving concave quadratic assignment
problems, to an alternating diffusion process and to a low pass filtering of func-
tional maps. In particular the relation to quadratic assignment problems proves
convergence of the iterative method and shows that an energy is decreased in each
iteration. By introducing slack variables we further allow to match shapes with dif-
ferent numbers of vertices, including partial correspondences and correspondences
of shapes with occlusions. We also propose a more elaborate muliscale method to
match meshes of high resolution.
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Michael Bronstein, Ron Kimmel and Daniel Cremers. “Effi-
cient deformable shape correspondence via kernel matching”.
In: International Conference on 3D Vision (3DV), IEEE, 2017.
DOI: 10.1109/3DV.2017.00065

Individual con-
tribution Problem definition significantly contributed

Literature survey significantly contributed
Implementation significantly contributed
Experimental evaluation significantly contributed
Preparation of the manuscript significantly contributed

c©2017 IEEE. Reprinted, with permission, from M. Vestner, Z. Lähner, A. Boyarski, O.
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Figure 1: Qualitative examples on FAUST models (left), SHREC’16 (middle) and SCAPE (right). In the SHREC experiment,
the green parts mark where no correspondence was found. Notice how those areas are close to the parts that are hidden in the
other model. The missing matches (marked in black) in the SCAPE experiment are an artifact due to the multiscale approach.

Abstract

We present a method to match three dimensional shapes
under non-isometric deformations, topology changes and
partiality. We formulate the problem as matching between a
set of pair-wise and point-wise descriptors, imposing a con-
tinuity prior on the mapping, and propose a projected de-
scent optimization procedure inspired by difference of con-
vex functions (DC) programming.

1. Introduction
Finding correspondences between non-rigid shapes is a fun-
damental problem in computer vision, graphics and pattern
recognition, with applications including shape comparison,
texture transfer, and shape interpolation just to name a few.
Given two three-dimensional objects X and Y , modeled as
compact two-dimensional Riemannian manifolds, our task
is to find a meaningful correspondence ϕ : X → Y . While
a rigorous definition of meaningful is challenging, one can
identify some desirable properties of ϕ:

? equal contribution

1. Bijective.
2. Continuous in both directions, in the sense that nearby

points on X should be mapped to nearby points on Y
(and vice versa).

3. Similar points should be put into correspondence.
For the simplicity of the introduction, we assume the two
shapes X and Y to be sampled at n points each, and defer
the case of different number of samples to the algorithmic
part of this paper detailed in Section 3. Assuming a consis-
tent sampling (e.g. via farthest point sampling with a suf-
ficiently large number n of points), the discrete counterpart
to the correspondence ϕ is a mapping π : {x1, . . . xn} →
{y1, . . . yn}, which admits a representation as a permutation
matrix Π ∈ {0, 1}n×n satisfying Π>1 = Π1 = 1 with 1
being a column vector of ones. We henceforth denote the
space of n× n permutation matrices by Pn.
The vast majority of shape matching approaches phrase the
correspondence problem as an energy minimization prob-
lem

Π∗ = arg min
Π∈Pn

E(Π) , (1)

1



where E(Π) is usually a weighed aggregate of two terms

E(Π) = αg(Π) + h(Π) . (2)

The first term g(Π) is a fidelity term trying to align a set
of pointwise descriptors encoding the similarity between
points, while the second term h(Π) is a regularization term
promoting the continuity of the correspondence by aligning
a set of pairwise descriptors encoding global/local relations
between pairs of points. The parameter α governs the trade-
off between the two terms.
While the constraint Π ∈ Pn guarantees bijectivity of the
correspondence, the two terms h and g correspond, respec-
tively, to the second and the third desirable qualities of
a meaningful correspondence, and provide a trade-off be-
tween complexity, fidelity and regularity. We stress in our
work that despite their seemingly unrelated nature, those
properties are in fact tightly connected, i.e., choosing a par-
ticular set of pairwise descriptors might have a profound
effect not only on the regularity of the final solution, but
also on the complexity of the resulting optimization prob-
lem. We will elaborate on these aspects in more detail.

Related work. Finding correspondences between shapes
is a well-studied problem. Traditionally, the solution in-
volves minimization of a distortion criterion which fits into
one of the two categories: pointwise descriptor similarity
[4, 16, 43, 49, 51], and pairwise relations [17, 18, 34, 52]. In
the former case, matches are obtained via nearest neighbor
search or, when injectivity is required, by solving a linear
assignment problem (LAP). Pairwise methods usually come
at a high computational cost, with the most classical formu-
lation taking the form of an NP-hard quadratic assignment
problem (QAP) [37]. Several heuristics have been proposed
to address this issue by using subsampling [50] or coarse-to-
fine techniques [44,54]. Various relaxations have been used
to make the QAP problem tractable [1, 13, 17, 21, 27, 39],
however they result in approximate solutions. In addition,
pairwise geodesics are computationally expensive, and sen-
sitive to noise. In [20] the use of heat kernels was proposed
as a noise-tolerant approximation of matching adjacency
matrices. In [53] dense bijective correspondences were de-
rived from sparse and possibly noisy input using an iterative
filtering scheme, making use of geodesic Gaussian kernels.
A different family of methods look for pointwise matches
in a lower-dimensional “canonical” embedding space. Such
embedding can be carried out by multidimensional scaling
[12, 19] or via the eigenfunctions of the Laplace-Beltrami
operator (LBO) [33, 48]. The correspondence is then cal-
culated in the embedding space using a simple rigid align-
ment technique such as ICP [6]. Functional maps [23, 36]
can be seen as a sophisticated way to initialize ICP when
using this spectral embedding. Other bases can be used
within the functional map framework [24]. In particular,
the eigenspaces arising from the spectral decomposition of

the geodesic distance matrices have been shown to outper-
form the LBO basis for the case of isometric shapes [46].
In [55] the matching problem is phrased as an integer lin-
ear program, enforcing continuity of the correspondence
via a linear constraint. This additional constraint how-
ever makes the problem computationally intractable even
for modestly-sized shapes, requiring the use of relaxation
and post-processing heuristics.
Most recent works attempt to formulate the correspon-
dence problem as a learning problem [42] and design in-
trinsic deep learning architectures on manifolds and point
clouds [9–11, 29, 32, 35]. As of today, these methods hold
the record of performance on deformable correspondence
benchmarks; however, supervised learning requires a sig-
nificant annotated training set that is often hard to obtain.

Contribution. The main contribution of this paper is a sim-
ple method that works out-of-the-box for finding high qual-
ity continuous (regular) correspondence between two not
necessarily isometric shapes. The method can be seen as
an improved version of [53], and is accompanied by theo-
retical insights that shed light on its effectiveness. In par-
ticular, we contrast the method with other shape matching
approaches and elaborate on the computational benefits of
using kernels rather than distances as pairwise descriptors.
The key insight is the realization that high quality regular
correspondence can be obtained from a rough irregular one
by a sequence of smoothing and projection operations. Re-
markably, this process admits an appealing interpretation as
an alternating diffusion process [26]. We report drastic run-
time and scalability improvements compared to [53], and
present an extension to the setting of partial shape corre-
spondence and an effective multi-scale approach.

2. Background

2.1. Pointwise descriptors

Similarity of points is often measured with the help of point-
wise descriptors fX : X → Rq , fY : Y → Rq that are con-
structed in a way such that similar points on the two shapes
are assigned closeby (in the Euclidean sense) descriptors,
while dissimilar points are assigned distant descriptors. In
the discrete case, the descriptors fX , fY can be encoded as
matrices FX ,FY ∈ Rn×q giving rise to the optimization
problem1

arg min
Π∈Pn

‖ΠFX − FY‖2 = argmax
Π∈Pn

〈Π,FYF>X 〉 . (3)

Problem (3) is linear in Π and is therefore one of the rare
examples of combinatorial optimization problems that can
be globally optimized in polynomial time; the best known

1Throughout this paper we use the Frobenius norm ‖A‖ =
√

〈A,A〉,
where 〈A,B〉 = tr(A>B) is the Euclidean inner product.
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complexity O(n2 log n) is achieved by the auction algo-
rithm [5].
Over the last years, intrinsic features have extensively been
used due to their invariance to isometry. However, they
come with two main drawbacks: First, the implicit assump-
tion that the shapes at hand are isometric is not always met
in practice. Today’s best performing approaches partially
tackle this problem using deep learning [9–11,32,35]. Sec-
ondly, many natural shapes come with at least one intrinsic
(e.g., bilateral) symmetry that is impossible to capture by
purely intrinsic features, be these handcrafted or learned.
Correspondences obtained by (3) may suffer from severe
discontinuities due to some points being mapped to the de-
sired destination, and others to the symmetric counterpart.

2.2. Pairwise descriptors

Another family of methods consider pairwise descriptors of
the form dX : X×X → R, dY : Y×Y → R encoded in the
discrete setting as symmetric matrices DX ,DY ∈ Rn×n.
These methods aim at solving optimization problems of the
form

Π∗ = arg min
Π∈Pn

‖ΠDX −DYΠ‖2 (4)

= argmax
Π∈Pn

〈Π,DYΠDX 〉 , (5)

known under the names of graph matching (GM) or
quadratic assignment problem (QAP), and are in general
not solvable in polynomial time. A typical way to circum-
vent the complexity issue is to relax the integer constraint
πij ∈ {0, 1} and optimize the objectives (4)-(5) over the
convex set of bi-stochastic matrices Bn = {P ≥ 0 :
P>1 = P1 = 1}. Note that when viewed as functions over
this convex set, the objectives (4)-(5) are no longer equiv-
alent. In particular, (4) will always be convex, while the
convexity of (5) depends on the eigenvalues of the matrices
DX and DY , as shown in the following lemma.

Lemma 1. Let DX ,DY be symmetric. The function
h(P) = 〈P,DYPDX 〉 over the set of bi-stochastic ma-
trices Bn is (strictly) convex iff all eigenvalues of DX and
DY are (strictly) positive.

Corollary 1. If all eigenvalues of DX and DY are strictly
positive, the optimum of the relaxed problem coincides with
that of the original combinatorial problem:

argmax
P∈Bn

h(P) = argmax
Π∈Pn

h(Π) . (6)

Notice that we can add a linear term (weighted by a scalar
factor α), such as the one in (3), while still keeping this
property: E(P) = α〈P,FYF>X 〉+ 〈P,DYPDX 〉 .
Popular pairwise descriptors include a variety of pairwise
distances [13,15,38] and kernels [31,47,53] tailored for the

1 10 100 1000

0

0.5

eig number

λ

λ(D)

1 1000 2000 3000
0

0.2

0.4

0.6

0.8

1
t = 0.01

t = 0.2

t = 1t = 5

eig number

λ

λ(K)

Figure 2: Spectrum of distance matrix (left) vs. spectrum of
heat-kernel matrix (right) for several values of t ∈ [0.01, 5]
computed on the cat shape from TOSCA.

specific class of deformations. In what follows, we advocate
the superiority of using kernels over distances.

Pairwise distances. A common choice for pairwise de-
scriptors are geodesic distances dX (xi, xj), a choice moti-
vated by the fact that, for isometric shapes, these are pre-
served by the optimal Π. Geodesic distances have ma-
jor drawbacks, both from the modeling and computational
point of view. On the modeling side, they introduce a bias
towards far away points and are sensitive to topological
noise. On the computational side, they are slow to compute
and give rise to highly non-convex (and non-differentiable)
optimization problems. Note that, although one may em-
ploy more robust definitions of distance [15, 17], these do
not solve the optimization issues.

Heat kernels. Heat kernels are fundamental solutions to
the heat diffusion equation on manifold X ,

∂u(t, x)

∂t
= ∆Xu(t, x) , (7)

with the initial condition u(0, x) = u0(x) and additional
boundary conditions if applicable. Here u : [0,∞)× X →
R represents the amount of heat at point x at time t. The
solution is linear in the initial distribution and is given by

u(t, x) =

∫

X
k(t, x, x′)u0(x′)dx′ , (8)

where k : R+×X×X → R is the heat kernel and its values
can be interpreted as the amount of heat transported from x′

to x in time t. In the Euclidean case, the heat kernel is an
isotropic Gaussian kernel with the variance proportional to
the diffusion time t.
For a compact manifold X , the heat kernel can be expressed
as the exponent of the intrinsic self-adjoint negative semi-
definite Laplacian operator ∆X ,

k(t, x, x′) =
∑

i

eλitφi(x)φi(x
′), (9)

3



3400 4344 6890
0

200

400

600

number of vertices

tim
e

in
se

co
nd

s Heat kernels
Gaussian kernels

Figure 3: Runtime comparison of matching shapes with
varying number of vertices using our algorithm with heat
kernels compared to Gaussian kernels [53]. For more info
see supp. material.

where ∆Xφi(x) = λiφi(x) is the eigendecomposition of
the Laplacian with eigenvectors φ1, φ2, . . . and correspond-
ing non-positive eigenvalues 0 = λ1 ≥ λ2 ≥ . . .. The null
eigenvalue is associated with a constant eigenvector.
In the discrete setting, the heat kernel is given by the
positive-definite matrix KX = et∆X = ΦetΛXΦ>. The
constant eigenvector corresponds to the unit eigenvalue,
KX1 = 1.
An issue that is often overlooked is the relation between the
original and relaxed solution of (5), which is tightly con-
nected to the choice of pairwise descriptors. Corollary 1
asserts the sufficient condition under which this relaxation
is exact. Whereas heat kernels, being (strictly) positive def-
inite, satisfy this condition, distance matrices never do. A
distance matrix, having non-negative entries and trace zero,
will always, by the Perron-Frobenius theorem, have one
large positive eigenvalue and several low magnitude neg-
ative eigenvalues2 [8]. This distribution of eigenvalues is
illustrated in Figure 2.

2.3. Bijective maps and functional maps

The requirement of bijectivity is what makes a problem (1)
computationally hard. A variety of relaxation techniques
can be applied to alleviate this complexity. Amongst the
most popular are relaxing the column or row sum con-
straints, relaxing the integer constraints, or restricting the
matrix to a sphere of constant norm [27]. A bijective map-
ping can then be recovered by a post processing step, such
as projection onto the set of permutation matrices

Π∗ = arg min
Π∈Pn

‖Π−P‖2 = argmax
Π∈Pn

〈Π,P〉 . (10)

One popular technique in recent years replaces the combi-
natorially hard point-wise map recovery problem with the
simpler problem of finding a linear map between functions
[36]. A functional map is a map between functional spaces
T : L2(X ) → L2(Y), which can be discretized (under
the previous assumptions of n vertices in each shape) as

2In the Euclidean case, a distance matrix has exactly one positive eigen-
value and all the rest are negative with small magnitude.

an n × n matrix T. Providing a pair of orthonormal bases
Φ = (φ1, . . . ,φn) and Ψ = (ψ1, . . . ,ψn) for L2(X )
and L2(Y), respectively, one can express T = ΨCΦ>,
where C acts as a basis transformation matrix. Two com-
mon choices for basis are the Dirac (or hat) basis, in which
the functional map attains the form of a permutation ma-
trix, and the Laplacian eigenbasis, which is especially suited
when the map is smooth, so it can be approximated us-
ing a truncated basis of k first basis functions correspond-
ing to the lowest frequencies. The computation of the
functional map thus boils down to solving a linear system
CΦ>FX = Ψ>FY . The recovery of the point-wise map
from the functional map can be obtained by ICP-like pro-
cedures [36, 41], with the possible introduction of bijectiv-
ity constraints [53]. The fact that the map is band-limited
is often erroneously referred to as “smoothness” in the lit-
erature; however, the bijective map recovered from such
a band-limited map is not guaranteed to be continuous let
alone smooth (i.e., continuously differentiable).

3. Method
3.1. Optimization

We aim at maximizingE(Π) overPn, which by Corollary 1
is equivalent to the relaxed problem

argmax
P∈Bn

E(P) = argmax
P∈Bn

〈P, αFYF>X + KYPKX 〉
(11)

where FX ,FY are matrices of pointwise descriptors and
KX ,KY are the positive-definite heat kernel matrices on
X and Y , respectively. This maximization problem can be
seen as the minimization of the difference of convex func-
tions:

arg min
P∈Rn×n

B(P)− E(P). (12)

where B is the (convex) indicator function on the set of bis-
tochastic matrices Bn.
A renowned way to optimize this type of energy is the dif-
ference of convex functions (DC) algorithm that starts with
some initial P0 and then iterates the following two steps
until convergence:

• Select Qk ∈ ∂E(Pk).

• Select Pk+1 ∈ ∂B∗(Qk).

Here B∗ denotes the convex conjugate of B and ∂E, ∂B∗

denote the subdifferentials (set of supporting hyperplanes)
of E and B∗, respectively.
For a differentiableE, the step of the DC algorithm assumes
the form

Pk+1 = argmax
P∈Bn

〈P,∇E(Pk)〉 . (13)
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Figure 4: Schematic illustration of the proposed algorithm
for maximizing a convex quadratic objective over a convex
polytope, by successively maximizing a linear sub-estimate
of it. The hot color map encodes the function values. The
jet color map encodes the values of the linear sub-estimate.
The point around which the objective is linearized is de-
picted in red. The global maximum is depicted in blue. The
maximum of the linear sub-estimate is depicted in green.
Notice that the algorithm travels between extreme but not
necessarily adjacent points of the polytope, until it con-
verges to a local maximum.

Moreover, the value of the objective is an increasing se-
quence, E(Pk+1) > E(Pk), and each iterate Pk is a per-
mutation matrix. We provide the proof in the supplementary
material. Figure 4 illustrates this iterative process.
Since Pk is guaranteed to be a permutation matrix, we
henceforth use Πk to denote the iterates. For our choice
of E, the gradient is given by

∇E = αFYF>X + KYΠKX (14)

yielding the step

Πk+1 = argmax
Π∈Bn

〈Π, αFYF>X + KYΠkKX 〉 . (15)

In the experiments presented in this paper, we use the data
fidelity term 〈Π,FYF>X 〉 mainly to initialize the process:

Π0 = argmax
Π∈Bn

〈Π,FYF>X 〉. (16)

3.2. Partial matching using slack variables

In a general setting, we will be dealing with shapes having
different number of vertices. Let us denote by nX the num-
ber of vertices on X and by nY the number of vertices on
Y , and assume w.l.o.g. nX ≥ nY . We aim at optimizing

arg max
Π∈PnY

nX

〈Π, αFYF>X + KYΠKX 〉 (17)

where the space of rectangular permutation matrices PnYnX
is given by PnYnX = {Π ∈ {0, 1}nY×nX : Π1 ≤ 1,Π>1 =
1}. Analogously to the previously discussed case in which
we had nX = nY = n, we iteratively solve

Πk+1 = arg max
Π∈PnY

nX

〈Π, αFYF>X + KYΠkKX 〉 . (18)

In order to solve these optimization problems we pad the
rectangular matrix αFYF>X+KYΠkKX with constant val-
ues c (slack variables) such that it becomes square. After the
correspondence is computed, we discard the ones belonging
to the introduced slack variables. While such a treatment
does not affect the value of the maximum, the constant c
has to be chosen appropriately to avoid ambiguity between
the slacks and the actual vertices on X . A drawback of this
approach is that there are (nX − nY)! solutions achieving
the optimal score, leading to worse runtime in the presence
of many slacks. See Fig.5. for a proof of concept of this
approach.

3.3. Multiscale acceleration

Solving the LAP (18) at each iteration of the DC algorithm
has a super-quadratic complexity. As a consequence, the
proposed method is only directly applicable for small n (up
to 15 × 103 in our experiments). We therefore propose a
multiscale approach that enables us to find correspondences
between larger meshes.
We start by resampling both shapes to a number of vertices
we can handle and solving for a bijection π0 : X0 → Y0.
This set of initial vertices is called seeds. The seeds on X
are clustered into k Voronoi cells and these cells are trans-
fered to Y via π0. More points are added iteratively and as-
signed to the same Voronoi cell as their closest seed. Next,
we solve for πi : Xi → Yi where i refers to the i-th Voronoi
cell. This proceeds until all points are sampled (see Figure 6
for a visualization). To keep the correspondence consistent
at the boundary of the Voronoi cells, we choose 1000 cor-
respondences from π0 and use them to orient each Voronoi
cell correctly over all iterations. Additional details are pro-
vided in the supplementary material.

4. Interpretation
In what follows we provide different, yet complementary
interpretations of the proposed method, shedding light on
its effectiveness.

4.1. Alternating diffusion

To intuitively understand the efficacy of kernel alignment
for the purpose of finding correspondences, consider the k-
th iteration (without data term):

max
Π∈Pn

〈Π,KYΠkKX 〉 . (19)

Let us denote by δj the discrete indicator function of vertex
j on shape X , representing initial heat distribution concen-
trated at vertex j. This heat is propagated via the application
of the heat kernel KX to the rest of the vertices, resulting
in the new heat distribution on X given by kjX = KXδ

j .
This heat distribution, whose spread depends on the time
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Input Iter 1 Iter 2 Iter 3
Figure 5: Our approach can tackle the challenging scenario of partial correspondences. As a proof of concept we initialized
our method with sparse correspondences, indicated by spheres. We simulated noise by mapping a point on the left hand of
the woman to the right foot of the man. At the first iteration all points spread their information, leading to a discontinuity
of the mapping at the hand of the woman. After three iterations the method converged to the correct solution. This example
was generated with Gaussian kernels. The proper choice of boundary conditions when using heat kernels will be discussed
in future work.

(a) (b)

(c) (d)

Figure 6: Conceptual illustration of our multiscale ap-
proach: (a) correspondence at a coarse scale is given; (b)
vertices on the source shape are grouped into sets (left), and
the known correspondence is used to group vertices on the
target shape (right); (c) vertices at a finer scale are added
and (d) included in the group they reside in; finally, a corre-
spondence is calculated for each group separately.

parameter t, is mapped via Πk onto the shape Y , where it
is propagated via the heat kernel KY . The ij-th element of
the matrix KYΠkKX ,

(KYΠkKX )ij = (kiY)>ΠkkjX

=
∑

m

(KY)i,πk(m)(KX )jm, (20)

represents the probability of a point i on Y being in corre-
spondence with the point j on X . This is affected by both

the distance between i and πk(m) on Y for every m on X ,
encoded in the entries of (KY)i,πk(m), and by the distance
between m and j on X , encoded in the entries of (KX )jm.
This process, as illustrated in Figure 7, resembles the al-
ternating diffusion process described in [26]. Its success in
uncovering the latent correspondence is based on the fol-
lowing statistical assumptions on the distribution of corre-
spondences in the initial assignment: we tacitly assume that
a sufficiently large number of (uniformly distributed) points
are initially mapped correctly while the rest are mapped ran-
domly, such that when averaging over their “votes” they do
not bias towards any particular candidate. These concepts
will be presented more rigorously in a longer version of this
paper.
There is an inherent trade-off between the stability of the
process and its accuracy, controlled by the time parame-
ter t. Smaller t enables more accurate correspondence, but
limits the ability of far away points to compensate for lo-
cal inaccuracies in the initial correspondence, while larger t
allows information to propagate from farther away, but in-
troduces ambiguity at the fine scale. Examining the extrem-
ities, when t → 0 each point is discouraged to change its
initial match, while as t→∞ every point becomes a likely
candidate for a match. In practice, we approximately solve
a series of problems parametrized by a decreasing sequence
of t values, as explained in the experimental section.

4.2. Iterated blurring and sharpening

An alternative point of view is to recall that a diffusion pro-
cess corresponds to a smoothing operation, or low-pass fil-
tering in the spectral domain. To that end we view each
iteration (15) as an application of a series of low-pass fil-
ters (smoothing) followed by a projection operation (deblur-
ring/sharpening). To see that, we use the spectral decompo-
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diffusion

1 8 16 20 25 1 8 16 20 25

diffusion

π

Figure 7: Illustration of the alternating diffusion process
initialized with a noisy correspondence that wrongly maps
π(8) = 16 and π(16) = 8 but correctly maps π(x) = x
elsewhere. Top left: Indicator functions on the source
shape, one on a point with a wrong correspondence (red)
and one with a correct correspondence (blue). Top right:
Both indicator functions are diffused. Bottom left: The dif-
fused functions are transported to the target shape via π.
Bottom right: Diffusion on the target shape.

sition of the heat kernels to rewrite the payoff matrix in (15)

KYΠKX = ΨetΛYΨ>ΠΦetΛXΦ>

= ΨetΛYCetΛXΦ>. (21)

where the functional map C is seen as a low-pass approx-
imation of the permutation matrix in the truncated Lapla-
cian eigenbasis, Π ≈ ΨCΦ>. Equation (21) can thus be
interpreted as applying a low-pass filter to the functional
map matrix C. The second step in (15) can be regarded as
a projection of the smoothed correspondence on the set of
permutations (10), producing a point-wise bijection.

4.3. Kernel density estimation in the product space

Similar to the interpretation in [53], our approach can be
seen as estimating the graph Π = {(x, π(x)) : x ∈ X} of
the latent correspondence π : X → Y on the product mani-
foldX×Y . In case of a bijective, continuous π, the graph Π
is a submanifold without a boundary of same dimension as
X (2 in the discussed case). In each iteration of the process
a probability distribution P : X ×Y → [0, 1] is constructed
by placing kernels (geodesic Gaussian kernels in [53], and
heat kernels in our case) on the graph of the previous iterate
and maximizing

π̂ = arg max
π̂:X 1:1→Y

∫

X
P (x, π̂(x))dx (22)

over the set of bijective but not necessarily continuous cor-
respondences.

5. Experiments
We performed an extensive quantitative evaluation of the
proposed method on four different benchmarks. All datasets

include several classes of (nearly) isometric shapes, with the
last one additionally introducing strong topological noise
(i.e., mesh ‘gluing’ in areas of contact). In our experi-
ments we used the SHOT [51] and heat kernel signature
(HKS) [49] descriptors with default parameters. For the
computation of heat kernels we used 500 Laplacian eigen-
functions. We provide comparisons with complete match-
ing pipelines as well as with learning-based approaches,
where we show how using our method as a post-processing
step leads to a significant boost in performance. In addition
Figure 3 provides runtime comparison against [53] which
uses a similar method with geodesic Gaussian kernels.
Code of our method is available at https://github.
com/zorah/KernelMatching.

Error measure. We measure correspondence quality ac-
cording to the Princeton benchmark protocol [22]. As-
sume to be given a match (x, y) ∈ X × Y , whereas the
ground-truth correspondence is (x, y∗). Then, we measure
the geodesic error ε(x) = dY(y, y∗)/diam(Y) normalized
by the geodesic diameter of Y . Ideal correspondence should
produce ε = 0. We plot cumulative curves showing the per-
centage of matches that have error smaller than a variable
threshold.
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Figure 8: Correspondence accuracy on the SCAPE dataset.

Parameters. The optimal choice of parameters does not
only depend on properties of the considered shapes (such as
diameterand density of the sampling) but also on the noise
of the input correspondence. The exact dependencies in par-
ticular on the latter will be investigated in follow up works.

TOSCA. The TOSCA dataset [14] contains 76 shapes di-
vided into 8 classes (humans and animals) of varying reso-
lution (3K to 50K vertices). We match each shape with one
instance of the same class. For shapes having more than
10K vertices we use our multiscale acceleration with an ini-
tial problem size of 10K and a maximum problem size of
3K for all further iterations. The parameters were set to
α = 10−10 and t = [300 100 50 10], with 5 iterations per
diffusion time. Figure 9 shows a quantitative evaluation.
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Figure 9: Correspondence accuracy on the TOSCA dataset.
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Figure 10: Correspondence accuracy on FAUST. Dashed
curves indicate the performance of recent deep learning
methods, solid curves are obtained using our method as
post-processing. Our method based on handcrafted descrip-
tors (SHOT) is denoted as ‘Handcrafted+Ours’.

SCAPE. The SCAPE dataset [3] contains 72 clean shapes
of scanned humans in different poses. For this test we set
α = 10−7, t = [0.1 0.05 0.009 0.001 0.0001], and 5 iter-
ations per diffusion time. We used multiscale acceleration
with initial size equal to 10K vertices, and equal to 1K for
subsequent iterations. Quantitative and qualitative results
are given in Figure 8 and 1 (right) respectively.

FAUST. The FAUST dataset [7] contains 100 human scans
belonging to 10 different individuals; for these tests we used
the template subset of FAUST, consisting of shapes with
around 7K vertices each. This allowed us to run our algo-
rithm without multiscale acceleration. We set α = 10−7

and t = [500 323 209 135 87 36 23 15 10]. Differently
from the previous experiments, here we employ our method
as a refinement step for several deep learning-based meth-
ods, demonstrating significant improvements (up to 50%)
upon the ‘raw’ output of such approaches. The results are
reported in Figure 10. Our results contain a few shapes in
which body parts were swapped, preventing us from reach-
ing 100%. An example is presented in the supp. material.

SHREC’16 Topology. This dataset [25] contains 25 shapes
of the same class with around 12K vertices, undergoing

0 0.05 0.1 0.15 0.2 0.25
0

20

40

60

80

100

Geodesic error

%
C

or
re

sp
on

de
nc

es

EM [45]

GE [25]

RF [42]

FSPM [30]

PFM [40]

Ours

Figure 11: Correspondence accuracy on SHREC’16 Topol-
ogy.

near-isometric deformations in addition to large topolog-
ical shortcuts (see Figure 1 middle). Here we use only
SHOT as a descriptor, since HKS is not robust against
topological changes. We used α = 10−6 and t =
[2.7 2.44 2.1 1.95 1.7], using multiscale with an initial prob-
lem of size 12k and the following problems with maximum
size 1k. Quantitative results are reported in Figure 11.

6. Conclusions
We considered a formulation of the problem of finding
a smooth, possibly partial, correspondence between two
non-isometric shapes as a quadratic assignment problem
matching between point-wise and pair-wise descriptors. We
showed that when choosing the pair-wise descriptors to
be positive-definite kernel matrices (unlike the traditionally
used distance matrices), the NP-hard QAP admits an exact
relaxation over the space of bistochastic matrices, which we
proposed to solve using a projected descent procedure moti-
vated by the DC algorithm. The resulting iterations take the
form of LAPs, which are solved using a multi-scale version
of the auction algorithm. We interpreted the proposed algo-
rithm as an alternating diffusion process, as iterated blurring
and sharpening, and as a kernel density estimation proce-
dure. The algorithm scales very well to even hundreds of
thousands of vertices, and produces surprisingly good re-
sults. Experimental evaluation on various datasets shows
that our method significantly improves the output obtained
by the best existing correspondence methods.
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[39] E. Rodolà, A. M. Bronstein, A. Albarelli, F. Bergamasco,
and A. Torsello. A game-theoretic approach to deformable
shape matching. In Proc. CVPR, 2012. 2
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Supplementary Material

A. Details about the DC algorithm
In Section 3 of the submission we propose to use the DC

algorithm to optimize

arg min
P∈Rn×n

B(P)− E(P). (23)

where B is the convex indicator function of the set of bis-
tochastic matrices Bn and E is strictly convex and differen-
tiable. We will now prove that the two steps

• Select Qk ∈ ∂E(Pk)

• Select Pk+1 ∈ ∂B∗(Qk).

of the DC algorithm are equivalent to

Pk+1 = argmax
P∈Bn

〈P,∇E(Pk)〉 , (24)

that each iterate Pk can be chosen to be a permutation ma-
trix, and that E(Pk) is a strictly increasing.

We assume that the reader is familiar with the concepts
of convex conjugates and sub-gradients and just recall the
following Lemma

Lemma 2. Let X be a Banach space and f : X →
(−∞,∞] with ∂f 6= ∅. Then f∗∗(x) = f(x) and

x∗ ∈ ∂f(x)⇔ x ∈ ∂f∗(x∗) (25)

Moreover for convex functions f , 0 ∈ ∂f(x) is equiva-
lent to

x = argmin
x
f(x) (26)

Let now E be convex differentiable and B the (convex)
indicator function of a convex set C. We will derive equiv-
alent expressions for the two steps in the DC algorithm for
solving (23). Since E is differentiable, its subdifferential at
any point has one element, namely the gradient at that point:

Qk ∈ ∂E(Pk)⇔ Qk = ∇E(Pk) (27)

The second step Pk+1 ∈ ∂B∗(Qk) can be rewritten us-
ing Lemma 2:

Pk+1 ∈ ∂B∗(Qk)⇔ Qk ∈ ∂B(Pk+1)

⇔ 0 ∈ −Qk + ∂B(Pk+1)

⇔ Pk+1 = argmin
P
−〈Qk,P〉+B(x)

⇔ Pk+1 = argmax
P∈C
〈Qk,P〉 (28)

Thus the DC algorithm in this special case reads

Pk+1 = argmax
P∈C
〈P,∇E(Pk)〉 . (29)

In our case the convex set C is the polyhedron Bn of
bistochastic matrices. Since linear functions defined on a
polyhedron attain their extrema at the vertices of the poly-
hedron, we can choose the maximizer to be a permutation
matrix.

Due to the strict convexity of E we further see:

E(Pk+1) > E(Pk) + 〈Pk+1 −Pk,∇E(Pk)〉
≥ E(Pk) + 〈Pk −Pk,∇E(Pk)〉
= E(Pk) (30)

where the strong inequality holds until convergence and the
weak inequality follows directly from (29).

B. Details on multiscale acceleration
The multiscale algorithm begins by solving for an initial

sparse bijection π0 : X0 → Y0 between n0 samples sX , sY
(also called seeds), obtained with farthest point sampling
(Euclidean in our experiments). n0 can either be the max-
imum amount of vertices that can be handled (around 15k
in our experiments) or smaller if runtime is crucial. Then
sX is divided into n0/(k · maxP ) Voronoi cells VX ,0 and
these Voronoi cells are transferred to Y using π0 to create
VY,0. The parameter maxP is the maximum problem size
allowed in later iterations and normally much smaller than
n0. k determines how many new samples are added in each
iteration. A small maxP makes the method faster but less
robust, and a small k slower but more robust. In our ex-

Figure 12: A failure case of our method. Left and right
are switched on the upper body, causing a non-continuous
correspondence. We observed eight such failure cases in the
entire FAUST dataset.
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periments, we always choose maxP = 1500 and k = 3.
At the first iteration (i = 1) and any following iteration i,
ni = k × ni−1 new points are sampled in a farthest point
manner on both shapes to create Xi,Yi. Each new point
is assigned to the same Voronoi cell as its nearest neighbor
in sX , sY resulting in the new cells VX ,i, VY,i. If any cell
has more than maxP vertices, the number of cells is in-
creased until this is not the case anymore. Next we solve
for πi : Xi → Yi by solving for a mapping from the m-th
cell of VX ,i to the m-th of VX ,i using the proposed method
from this paper and combining them into a global permuta-
tion. Notice that the m-th cells of both shapes correspond
to roughly the same areas as long as the previous matching
πi−1 that was used for its construction is reasonable. Never-
theless, the cells could include a different amount of points
due to discretization errors, so we need to apply the partial
matching scheme for each cell and some points may stay
unmatched (in this iteration). All matched points are added
to the sets sX , sY for the next iteration. Again, X is divided
into ni/(k ·maxP ) Voronoi cells and these are transfered
to Y via πi. The Voronoi cells of previous iterations are
discarded to allow exchange of points between cells. This
proceeds until all points have been sampled.

We use Euclidean FPS in all cases and build approximate
Voronoi cells on remeshed versions of the shape to keep the
runtime small. Each πi is solved for by using descriptors
and initial matches from the previous iteration in the same
cell. Additionally, we add 1000 equally distributed matches
from π0 to every problem which aligns the solution along
the boundaries of the cells with each other. Notice that even
if the shapes have the same number of vertices at the begin-
ning due to the sampling and decoupling of each cell not all
vertices might be matched.

If the matched shapes are partial versions of each other,
this information needs to be propagated from the first iter-
ation on since all later cells are solved independently and
can therefore not see partiality. In this case, n0,X , n0,Y can
be chosen dependently on the ratio of areas or number of
vertices between X and Y , either assuming the scale or the
discretization is comparable. Then certain points of the ini-
tial sampling will stay unmatched and be marked forbidden.
They are handled exactly like any other seed but have their
own Voronoi cell and any point that gets a assigned to the
forbidden Voronoi cell is also marked forbidden such that
the information spreads only to the neighborhood.

C. Run time comparison
The run time experiments, were conducted on a Mac-

Book pro with a 2.5 GHz Intel Core i7 processor and 16
GB RAM running Matlab 2016b. The experiments were
conducted using 9 pairs of shapes with a varying number of
vertices from the TOSCA high and low resolution meshes
as well as FAUST registrations set. The complete results

Figure 13: Matching from a horse to an elephant using
SHOT and HKS descriptors. The shapes are sampled in
a way such that a bijective matching is possible.

are presented in Table 1. We ran all our tests using SHOT
descriptors, 10 iterations with α = 1/108, 400 eigenvectors
to construct the heat kernels and a logarithmic scale of time
parameters between 400 and 10.

D. More results, Failure cases
In this section we show additional results for a pair of

dramatically non-isometric shapes (Fig.13), pairs from the
Tosca dataset (Fig.14) and failure cases (Figs.12,15).
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shapes in experiment #vertices runtime with heat kernel in sec runtime with Gaussian kernel in sec
Tosca: cat0 to cat2 3400 29.25 97.77
Tosca: dog0 to dog2 3400 36 98.43
Tosca: centaur0 to centaur1 3400 25.31 98.91
Tosca: wolf0 to wolf1 4344 60.7 192.72
Faust models: 000 to 098 6890 109.477019 639.9
Faust models: 001 to 031 6890 104.68 609.56
Faust models: 002 to 039 6890 104.5 611.24
Faust models: 003 to 021 6890 106.41 614.23
Faust models: 004 to 033 6890 106.28 652.58

Table 1: Runtime comparison of matching between shapes with different number of vertices using heat kernels and Gaussian
kernels.

Figure 14: (left) A matching between two cats from the Tosca dataset. The unmatched points resulting from the multiscale
(black) are very sparse. (right) A failed matching on the centaurs from Tosca. The front legs are swapped but only few points
are unmatched.

Figure 15: (left) Failure case on the SCAPE dataset.The legs are mapped front to back causing a non continuous correspon-
dence on the torso. Large unmatched areas due to the multiscale also appear there. Over the knees unaligned cell boundaries
are visible. (right) Failure case on the SHREC’16 dataset. Many parts are missing or the texture is heavily distorted. These
are really challenging shapes to match because the hands and feet are topologically merged to different parts of the body in
both cases.
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Part III

Conclusion and Outlook





Chapter 9
Summary

In this thesis we provided a comprehensive summary about the theory of non-rigid
shape analysis and correspondence. We covered fundamentals of Differential Geom-
etry and Triangle Meshes in Chapter 3. In Chapter 4 the Laplace Beltrami operator
was introduced in the continuous and the discrete setting. Chapter 5 was about cor-
respondences between manifolds and triangle meshes. Euclidean and non-Euclidean
isometries were discussed and permutation matrices as discrete counterparts to bi-
jections were introduced. We elaborated on pointwise and pairwise descriptors and
how they lead to combinatorial optimization problems, so called linear assignment
problems and quadratic assignment problems. We pointed out the computational
challenges of combinatorial optimization problems and discussed different types of
relaxations, e.g . bistochastic matrices and functional maps. We further showed how
the graph of a correspondence can be seen as a submanifold of the so called product
manifold of two shapes and how this point of view can lead to a different type of
optimization problems relating the regularity of a correspondence to the regularity
of its graph.
In Chapter 6 we introduced a method to match non isometric shapes using a machine
learning approach. We treated the correspondence problem as a classification task
and exploited random decision forests to learn a class of deformations from data
and use this knowledge to match shapes undergoing similar types of deformations.
In Chapter 7 we approached the correspondence problem via kernel density esti-
mation in the product manifold. We showed how an iterative process of alter-
nating blurring and sharpening of the graph of the correspondence leads to cor-
respondences with increasing regularity. With a variety of input correspondences
(sparse/noisy/fuzzy) this method gave high quality correspondences and with a mul-
tiscale approach we were able to apply it to high resolution meshes.
Finally Chapter 8 related the previous approach to quadratic assignment problems
based on heat kernels. A variety of different interpretations of the iterative pro-
cess were presented and theretical gurantees as well as practical extensions were
provided.





Chapter 10
Future Work

In the following we would like to point out possible directions for future research as
well as pointers to recent literature.

Deep learning based approaches While random decision forests was one of
the leading machine learning techniques some years ago, nowadays deep neural net-
works achieve state of the art results in almost every aspect of Computer Vision
and beyond (e.g . natural language processing). It is thus evident that also the field
of 3D shape analysis and correspondence can benefit from deep learning based ap-
proaches. Among the first works that follow that approach are [32] and [36]. Modern
approaches include [23], [18] and [49].

Model based approaches This thesis tackled the shape correspondence problem
in its most generic form: given two arbitrary triangle meshes (possibly with con-
sistent vertex density) the goal was to find a correspondence without any domain
knowledge. However in many scenarios the class of objects of interest are known a
priory. In human body tracking, for instance, it is clear that the considered meshes
are representations of human bodies. Dedicates parametric models such as SMPL
[34] and its extensions [37, 40] can be more suitable in these scenarios. Fitting those
models to a given triangle mesh can be phrased as a comparibly simple optimization
problem over a relatively small set of parameters. In [39] the authors learn para-
metric human body models using deep learning techniques. Similar approaches are
of course possible for classes of objects other than humans.
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[43] W. Ritz. Über eine neue methode zur losung gewisser variationsprobleme
der mathematischen physik. Journal fur Mathematik, 135:s–1, 1909 (cited on
p. 33).
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