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Abstract

The mass of the neutrino is an important parameter in astroparticle physics and cosmology.
While neutrino oscillation experiments have proven that neutrinos have mass, they are not
sensitive to its absolute scale. The Karlsruhe Tritium Neutrino (KATRIN) experiment is designed
to measure the effective electron anti-neutrino mass mν with a sensitivity of 200meV at 90%
confidence level (CL) using the kinematics of tritium β-decay. First data used for neutrino mass
analysis was taken in spring 2019, with a second measurement phase following in autumn of
the same year.

This thesis explains a novel approach to infer the neutrino mass confidence interval from the
data based upon full Monte Carlo propagation of uncertainty. We show that our approach
gives consistent results with the well-known nuisance parameter method in all cases currently
used by the KATRIN collaboration.

Applying our Monte Carlo propagation approach to the data of the first two measurement
campaigns, we find a combined best fit value of m2

ν = 0.12+0.32
−0.33 eV

2 including all relevant
statistical and systematic uncertainties. This leads to the first sub-electronvolt laboratory
measurement of the neutrino mass, limiting it to mν < 0.8 eV (90% CL).

In addition, we describe a future proof analysis method by approximating the KATRIN physics
model with a neural network (NN). Our NN model shows no significant bias at the statistical
sensitivity expected for KATRIN and is able to reproduce the results of analysing the first two
measurement phases while reducing the computation time by several orders of magnitude.
This makes it a promising approach to analyse future KATRIN neutrino mass data.
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Kurzfassung

Die Masse des Neutrinos ist ein wichtiger Parameter in der Astroteilchenphysik und Kosmolo-
gie. Neutrinooszillationen zeigen zwar, dass Neutrinos nicht masselos sind, können aber die
absolute Masse nicht messen. Das Karlsruhe Tritium Neutrino (KATRIN) Experiment wurde kon-
struiert, um die effektive Elektron-Antineutrino-Masse mν mit einer Sensitivität von 200meV
bei einem Konfidenzlevel (KL) von 90% zu messen. Dafür werden die kinematischen Eigen-
schaften des β-Zerfalls von Tritium genutzt. Erste Daten für die Neutrinomassen-Analyse
wurden im Frühjahr 2019 erfasst. Im Herbst desselben Jahres fand eine zweite Messphase
statt.

Diese Arbeit erklärt einen neuen Ansatz, um das Neutrinomassen-Konfidenzintervall aus den
Daten zu bestimmen, welcher auf der vollen Monte Carlo Fortpflanzung von Unsicherheiten
basiert. Wir zeigen, dass unser Ansatz konsistente Ergebnisse mit der bekannten nuisance
parameter Methode liefert. Dies gilt für alle Fälle, die aktuell von der KATRIN Kollaboration in
der Analyse verwendet werden.

Wenn wir unseren Monte Carlo basierten Analyse-Ansatz auf die Daten der ersten beiden
Messkampagnen anwenden, ergibt sich einen Bestwert von m2

ν = 0.12+0.32
−0.33 eV

2 unter Berück-
sichtigung aller relevanter statistischer und systematischer Fehler. Daraus resultiert die erste
Labor-basierte Messung der Neutrinomasse unter einem Elektronvolt, mit dem entsprechen-
den Limit von mν < 0.8 eV (90% KL).

Zusätzlich erläutern wir einen zukunftssicheren Analyseansatz, bei dem das KATRIN Physik-
modell mit einem neuronalen Netz (NN) approximiert wird. Unser NN Modell zeigt keinen
signifikanten Bias bei der erwarteten statistischen Sensitivität von KATRIN und kann die Ergeb-
nisse der Analyse der ersten beiden Messkampagnen reproduzieren. Dabei wird die Rechenzeit
um mehrere Größenordnungen reduziert. Dies macht unseren Ansatz vielversprechend für die
Analyse zukünftiger KATRIN Neutrinomassen-Daten.
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Chapter 1

Introduction

The neutrino is the second most abundant elementary particle in our universe after the photon.
As such, it plays an important role in cosmology, especially in the field of structure formation
in the universe. Its peculiar elementary properties also make it an interesting research topic
in particle physics. Thus, the field of neutrino physics is a highly active one in astroparticle
physics, bridging the smallest and the largest scales known.

Wolfgang Pauli first postulated the existence of the neutrino in 1930 to explain the continuous
electron energy spectrum observed in β-decay, in contrast to the sharp peaks seen in α- and
γ-decays. As the postulated particle does not interact electromagnetically or with the strong
nuclear force, the task of discovering experimentally was extremely challenging and could
only be fulfilled more than twenty years later by Cowan and Reines in 1956.

Over the past 60 years, our understanding of the neutrino has improved substantially, and it is
now well embedded in the standard model (SM) of particle physics. We know that it comes in
three flavours, each as a partner to the one of the three charged leptons (electron, muon, tau).
In addition, neutrino oscillations have shown that it is possible for neutrinos to change their
flavour with a probability that depends on their energy and distance travelled. This oscillation
is only possible if each flavour eigenstate is a quantum-mechanical superposition of three
independent mass eigenstates, with a different mass value for each mass eigenstate. Therefore,
we can conclude that at least two neutrino mass eigenstates must be non-zero and thus that
neutrinos are massive particles.

However, while neutrino oscillations are sensitive to the mass difference of the mass eigen-
states and can thus provide a lower bound on neutrino mass, they are not sensitive to the
absolute scale and cannot provide an upper bound. Measuring this absolute mass scale has
been a major effort of the past decades, with three independent approaches leading the way:
Cosmological measurements are sensitive to the sum of the three neutrino masses, for exam-
ple via their impact on structure formation in the universe. Neutrinoless double beta decay
(0νββ) experiments aiming to prove that the neutrino is its own anti-particle, i.e. a Majorana
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Chapter 1 Introduction

particle, can relate the half-life of 0νββ-decay to the neutrino mass value. Finally, it is possible
to infer the neutrino mass directly from the kinematics of β-decay via its shape impact on the
electron energy spectrum at highest energies. Combining the results of the three approaches,
we can safely conclude that the mass scale of the neutrino is at or below the electronvolt scale,
more than five orders of magnitude lighter than the second lightest particle, the electron.

The currently leading experiment to measure mν using the kinematics of β-decay is the
Karlsruhe Tritium Neutrino (KATRIN) experiment built at the Karlsruhe Institute of Technology
(KIT). It is designed to measure the effective electron anti-neutrino mass mν with a sensitivity
of 200meV at 90% CL. To achieve its goal, it combines a highly luminous windowless gaseous
tritium source with the same measurement principle of its predecessors in Mainz and Troitsk:
magnetic adiabatic collimation with an electrostatic filter (MAC-E filter). This setup allows
energy resolutions on the electronvolt-scale when measuring an integral β-spectrum.

Combining the electronvolt-scale resolution with the high statistical power of the KATRIN
experiment, we can see that it requires a very precise model description and data analysis
framework to infermν from the measurement. This includes the description of theβ-decay, the
experimental response as well as any statistical and systematic uncertainties. Implementing
such an analysis framework, applying it to the first two measurement campaigns to infer the
confidence interval of mν , and making it future proof for upcoming neutrino mass campaigns
is the task of this thesis.

This thesis is structured in the following manner: Chapter 2 gives a general introduction to
neutrino physics with a focus on the task of measuring the absolute neutrino mass scale.
Next, chapter 3 explains the KATRIN experiment in detail, derives a model of the expected
count rate and describes the sources of systematic uncertainty. Chapter 4 then focuses on
the analysis strategies applied to infer the neutrino mass from the data. As such, it describes
the general KATRIN likelihood function, methods for data combination, parameter inference,
and uncertainty treatment. In chapter 5 we focus on a novel analysis method developed over
the course of this thesis based upon Monte Carlo propagation of uncertainty, benchmark it
against the nuisance parameter approach, and describe its advantages and disadvantages
compared to other approaches pursued by the KATRIN collaboration. We then make use of
this analysis method in chapter 6 to analyse the first two measurement campaigns, leading
to the first sub-electronvolt direct neutrino mass measurement. Chapter 7 then explains our
novel neural network based analysis approach developed within the frame of this thesis, its
accuracy and computational improvements, and proving that it provides valid approach for
future neutrino mass analysis. Finally, we recapitulate our results in chapter 8.
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Chapter 2

Neutrino physics

Over the past century, understanding the properties of the neutrino has been a major effort in
particle physics. This chapter gives an overview of the history, current standing and remaining
unknowns of neutrino physics.

2.1 Discovery of the neutrino

The history of the neutrino begins with its postulation by Wolfgang Pauli in 1930 [1]. To explain
the continuous energy spectrum of the electron emitted in β-decay, see fig. 2.1, Pauli proposed
an additional electrically neutral, spin-12 particle. This particle is emitted together with the
electron and the decay energy is shared between the two as well as the much heavier daughter
nucleus. This energy sharing in a three body decay solves the mystery of the continuous
electron energy spectrum.

0.0 0.2 0.4 0.6 0.8 1.0
electron energy (arb. units)

0.0

0.5

1.0

1.5

d
/d

E 
(a

rb
. u

ni
ts

)

×10 13

observed
expected

Figure 2.1: Electron energy spectrum of β-decay. The observed continuous spectrum (blue solid line)
is in contradiction to the narrow peak expected from a two body decay (orange dashed line).
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Chapter 2 Neutrino physics

However, already Pauli described that it is challenging, perhaps impossible, to detect such a
particle experimentally. Thus, it should take more than twenty years until the existence of the
neutrino is confirmed by Cowan and Reines in 1956 [2]. In their experiment, they dissolved
approximately 40 kg of cadmium chloride in two large water tanks with a total volume of
roughly 200 l to detect the incoming (electron) anti-neutrino flux from the nearby Savannah
river plant. These incoming anti-neutrinos can react with protons in the water via inverse
β-decay,

ν̄e + p+ → n+ e+, (2.1)

creating a neutron n and a free positron e+. The positron instantly annihilates with an electron
creating two coincident γ-rays. These γ-rays are absorbed by a liquid scintillator whose emitted
light is subsequently detected by photo multiplier tubes (PMTs). The neutron is captured by
the dissolved cadmium several microseconds later, giving off a third detectable γ. This unique
coincidence of the two γ-rays from e+e− annihilation, followed by a single γ from the neutron
capture is the clear signature of incoming ν̄e particles.

Only six years later in 1962 a neutrino flavour corresponding to the muon was discovered
by Lederman, Schwartz, and Steinberger at the Brookhaven National Laboratory [3] proving
the doublet structure of leptons: each charged lepton (e, µ) has a corresponding uncharged
neutrino (νe, νµ). With the discovery of the τ lepton in 1975 [4], it was clear that there should
also be a third neutrino flavour. This third neutrino was experimentally detected in 2000 by
the DONUT collaboration [5].

This discovery completes the leptonic part of the current standard model (SM) of particle
physics: three charged leptons (e, µ and τ ) as well as the corresponding neutrinos (νe, νµ and
ντ ). The charged leptons participate in the electromagnetic and weak interaction, while the
neutrinos only interact weakly. This separates the leptons from the other fermionic spin-12
particles in the SM, the quarks, which also interact via the strong force. The SM is completed
by the force carrier bosons: the gluon (strong interaction), photon (electromagnetism), Z-
and W -boson (weak interaction) as well as the Higgs-boson (Higgs field). A summary of all
standard model particles is shown in fig. 2.2. For a full theoretical description of the SM we
refer to [6].
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Chapter 2 Neutrino physics
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Figure 2.2: Standard model of particle physics [7]. Particles are split into matter fermions (left) and
force carrier bosons (right). The fermions are further split into quarks (top) and leptons (bottom).
This thesis focuses on the uncharged fermions, the neutrinos, namely the investigation of their
absolute mass scale.
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Chapter 2 Neutrino physics

2.2 Neutrino oscillations

While the discovery of the electron neutrino solved the puzzle of the continuous energy spec-
trum of the electrons emitted in β-decay, another question soon arose in the neutrino sector.
The Homestake experiment, designed in the late 1960s to measure the flux of neutrinos com-
ing from nuclear fusion in the sun, detected only one third of the expected flux [8, 9]. This
discrepancy of measurement compared to the theoretical predictions of the standard solar
model (SSM) became known as the solar neutrino problem.

While a common opinion was that the SSM predictions were wrong, another solution involves
the phenomenon of neutrino oscillations first predicted by Pontecorvo in the late 1950s [10].
This phenomenon arises from the mixing of neutrino flavour and neutrino mass eigenstates,
i.e. a neutrino of a specific flavour α (e, µ, τ ) is a quantum-mechanical superposition of mass
eigenstates i (1, 2, 3). The mixing is parametrized by the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix Uαi: νe

νµ
ντ

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

ν1
ν2
ν3

 . (2.2)

While neutrinos interact weakly in their flavour eigenstate να, they propagate space as plane
waves in their mass eigenstates νi. Thus, we can write their time propagation as

|νi(t)⟩ = e−i(Ei·t−p⃗i·x⃗) · |νi(0)⟩ (2.3)

with their energy Ei, the evolved time t, their momentum p⃗i and the position change x⃗. Using
|p⃗i| ≫ mi and t ≈ L, we can rewrite

Ei · t ≈
(
E +

m2
i

2E

)
· L (2.4)

as well as
p⃗i · x⃗ ≈ E · L (2.5)

and thus
|νi(t)⟩ = e−i

m2
i

2
·L
E . (2.6)

The probability of a neutrino created in state α with energy E to be detected in the state β
after travelling the distance L is then given by

Pα→β = |⟨νβ(L)|να⟩|2 . (2.7)

Let us now discuss the reduced case of only two neutrino states for simplicity. In this case, we
can write the mixing matrix U as

U =

(
cos θ sin θ
− sin θ cos θ

)
(2.8)

6



Chapter 2 Neutrino physics

with a single mixing angle θ. Therefore, we have

|να⟩ = cos θ |ν1⟩+ sin θ |ν2⟩ (2.9)
|νβ(L)⟩ = − sin θ |ν1(L)⟩+ cos θ |ν2(L)⟩ , (2.10)

and we can calculate the oscillation probability using eq. (2.7) to be

Pα→β = 2 sin2 θ · sin2
(
∆m2

21L

4E

)
(2.11)

with the squared mass difference ∆m2
21 = m2

2 −m2
1.

This simplified two neutrino approach is often a valid approximation, and already shows us
three important features of the oscillation:

1. The probability is only non-zero if the masses m1 and m2 are different. Thus, at least
one of the two must have non-zero mass in case an oscillation is observed.

2. A non-zero mixing angle θ is needed in addition to the mass difference.

3. The oscillation frequency depends on L
E , i.e. the distance travelled and the neutrino

energy. This property can be used when designing experiments to detect neutrino
oscillations.

When investigating the three neutrino case, more parameters than a single mixing angle θ and
mass splitting ∆m2

21 are required:

• there are three mixing angles θ12, θ23, and θ13,

• two mass splittings ∆m2
21, and ∆m2

31 as well as

• a CP-violating phase δCP.

For a full derivation of the three neutrino case we refer to [11]. However, the important fact
that the oscillation probability is only non-zero if ∆m2

ij = m2
i −m2

j is non-zero still holds.

In 1998 the Super-Kamiokande (Super-K) collaboration was the first to report evidence for the
oscillation of so-called atmospheric neutrinos [12]. These neutrinos are produced in hadronic
showers initiated by the collision of cosmic rays with particles in the atmosphere. Super-K
observed a discrepancy of the incoming flux of muon neutrinos between upcoming νµ which
had travelled through the earth and νµ coming directly from the atmosphere. The measured
flux difference is consistent with two-flavour νµ → ντ oscillation, and therefore the first
evidence for non-zero neutrino mass.

Trying to solve the solar neutrino problem, the Sudbury Neutrino Observatory (SNO) exper-
iment [13] took a closer look at the solar neutrino flux using a 1000 t heavy-water (D2O)

7



Chapter 2 Neutrino physics

Cherenkov [14] detector. The experiment was designed to be able to discriminate the in-
coming electron neutrino flux as well as the total neutrino flux. This was done using the
following interactions

charged current (CC): νe +D → p+ p+ e− (2.12)
neutral current (NC): να +D → p+ n+ να (2.13)

electron elastic scattering (ES): να + e− → να + e− (2.14)

where the CC interaction is only sensitive to the νe flux, while the NC and ES interactions are
sensitive to the total neutrino flux. The CC interaction is only sensitive to electron neutrinos,
as the charged lepton is produced in the process and solar neutrinos have energies below the
mass of the muon and the tau. In their data they observed a deficit in the electron neutrino
flux just like the Homestake experiment, but no deficit in the total neutrino flux. Thus, the
SSM predictions are correct, however the electron neutrinos change flavour on their way to
earth. For completeness, we would like to mention that the flavour change of solar neutrinos
observed by SNO is dominated by the Mikheyev–Smirnov–Wolfenstein (MSW) effect [15, 16]
which modifies the oscillation probability of neutrinos travelling through matter of varying
density.

Over the past years the three mixing angles as well as the absolute value of the mass splittings
have been measured precisely by various experiments. What remains to be determined in the
oscillation space is the sign of ∆m2

31 which defines the mass hierarchy (m3 > m1: normal
ordering, m3 < m1: inverted ordering) as well as whether the CP-violating phase δCP is non-
zero.

2.3 Measurement of the absolute neutrino mass scale

While neutrino oscillations have proven that at least two neutrino mass eigenstates have non-
zero rest mass, they cannot asses the absolute mass scale, but only the squared differences of
the mass eigenstates ∆m2

ij . This chapter briefly describes the various approaches currently
taken to answer this question and discusses their advantages and disadvantages.

2.3.1 Cosmology

In cosmology the evolution of the universe since short after the Big Bang can be modeled by
the Lambda cold dark matter (ΛCDM) model. In ΛCDM, our universe consists of three major
components: dark energy described by the cosmological constant Λ, cold dark matter (CDM),
which is heavily searched for experimentally, and regular matter.

8



Chapter 2 Neutrino physics

As neutrinos are the second most abundant particles in the universe, they play an important
role on cosmological scales. Cosmological measurements are sensitive to the energy density
of neutrinos Ων as well as the number of active flavours. The energy density of neutrinos is
then proportional to the sum of neutrino masses

mΣ =
∑
i

mi. (2.15)

Accurate measurements of the total neutrino mass involve their imprint on the cosmic mi-
crowave background (CMB) as well as on structure formation in the early universe [17]. Due to
their relatively low mass, neutrinos behave as hot dark matter (HDM) and dilute structures
below their free streaming length. If all dark matter was HDM (mΣ is large), one therefore
expects a top-down generation of the universe: galaxy clusters form before galaxies, in contrast
to observation where galaxies are seen to be older than clusters.

The most precise estimations come from combining multiple cosmological measurements and
assuming base ΛCDM, limitingmΣ < 0.12 eV (95% CL) [18]. When extending the ΛCDM model
by five additional parameters, thus significantly increasing the freedom of the cosmological
model, the upper limit loosens to mΣ < 0.515 eV (95% CL) [19].

2.3.2 Neutrinoless double beta-decay

Another measurement sensitive to the absolute neutrino mass is neutrinoless double β- decay
(0νββ). In regular two neutrino double β−-decay (2νββ), a nucleus X decays into a daughter
nucleus Y 2+, two electrons and two electron anti-neutrinos:

X → Y 2+ + 2e− + 2ν̄e. (2.16)

In case the neutrino is its own anti-particle, a so-called Majorana particle, it is possible for the
two neutrinos to cancel one another within the decay process and they do not show up in the
final state:

X → Y 2+ + 2e−. (2.17)

In this case, the two electrons share almost the complete decay energy, with the much heavier
daughter nucleus only receiving a small recoil. This energy peak can be searched for experi-
mentally as signature of 0νββ. In case observed, the decay rate (inverse of the lifetime) Γ0νββ

can be related to the effective Majorana neutrino mass mββ via

Γ0νββ =
1

T0νββ
= G0ν · |M0ν |2 · |mββ |2 (2.18)

with the phase space factor G0ν and the nuclear matrix element M0ν . The effective Majorana
neutrino mass is defined as the coherent sum of the neutrino mass eigenstates i over the PMNS
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Chapter 2 Neutrino physics

matrix elements Uei:

|mββ | =

∣∣∣∣∣
3∑

i=1

U2
ei ·mi

∣∣∣∣∣ . (2.19)

This simple relation between mββ and T0νββ only holds in the standard scenario in which the
decay is mediated by a light Majorana neutrino.

Therefore, if 0νββ is observed:

• the neutrino is a Majorana particle, and

• the absolute neutrino mass scale can be inferred from the measured lifetime. However,
the exact relation depends on the mediator model.

This unique combination of information that can be derived from observing 0νββmakes it a
heavily pursued effort in neutrino physics. Up to date the process has not been measured and
therefore only lower limits on the lifetime (upper limits on mββ) have been set. The leading
limits of the corresponding experiments and their used isotopes are:

• mββ < 0.079 eV to 0.180 eV (90% CL) from the GERDA collaboration [20] using 76Ge.
LEGEND [21] will continue this search, building on the expertise of its predecessors
GERDA as well as the MAJORANA demonstrator [22].

• mββ < 0.075 eV to 0.350 eV (90% credible interval (CI)) from the Cuore collaboration
[23] using 130Te.

• mββ < 0.036 eV to 0.156 eV (90% CL) from the KamLAND-Zen collaboration [24] using
136Xe. This effort will be continued in KamLAND2-Zen [25].

The large interval of each mββ limit comes from uncertainties on the calculation of the nuclear
matrix element and will be discussed further in section 2.3.4.

2.3.3 Electron energy spectrum of beta-decay

The final and most direct option to measure the absolute mass scale of the neutrino we would
like to discuss investigates the electron energy spectrum of β-decay. We already saw in fig. 2.1
that this energy spectrum led to the postulation of the neutrino in the first place. We will now
take a closer look at this process and how to measure the neutrino mass using it.

In a β−-decay a nucleus X decays into a daughter nucleus Y , an electron e− and an electron
anti-neutrino ν̄e:

X → Y + + e− + ν̄e. (2.20)

10



Chapter 2 Neutrino physics

The amount of energy released in the decay Q is shared between the decay products. A low
recoil energy Erec is passed to the much heavier daughter nucleus. In the region of electrons
with highest energy this recoil energy can be considered constant, and the remaining so-called
endpoint energy

E0 = Q− Erec = E + Eν (2.21)
is split between the electron (E) and the neutrino (Eν ). This energy also corresponds to the
maximal energy the electron can receive if the neutrino is massless.

The differential decay rate depending on the electron energy can be written as

dΓ

dE
=
G2

F cos θ
2
C

2π2
· |Mnuc|2 · F (Z ′, E) · p · (E +me) · (E0 − E)·

·
∑
i

|Uei|2 ·
√

(E0 − E)2 −m2
i ·Θ(E0 − E −mi)

(2.22)

with the Fermi constant GF, the Cabibbo angle θC, the nuclear matrix element Mnuc, the Fermi
function F (Z ′, E) which accounts for the electromagnetic interaction of the outgoing electron
with the daughter nucleus, and the Heaviside function Θ which ensures energy conservation
[26]. The Fermi function in its classical form is given by

F (Z ′, E) =
2πη

1− exp (−2πη)
(2.23)

with the atomic charge of the daughter nucleus Z ′ and the Sommerfeldt parameter

η =
αZ ′

β
(2.24)

defined by Z ′, the finestructure constant α and the relativistic β factor. A commonly used
approximation of its fully relativistic form is

F (Z ′, E) ·
(
1.002037− 0.001427

p ·me

E +me

)
(2.25)

using the classical F (Z ′, E) [27].

In principle this decay rate is a superposition of three functions: one for each neutrino mass
eigenstate with mass mi. However, in practice experiments are not sensitive to the mass
splitting, and only measure the effective electron (anti-) neutrino mass,

mν =

(
3∑

i=1

|Uei|2 ·m2
i

) 1
2

, (2.26)

which we denote with mν in this thesis instead of the also often used mβ . This simplifies
eq. (2.22) to

dΓ

dE
=
G2

F cos θ
2
C

2π2
· |Mnuc|2 · F (Z ′, E) · p · (E +me) · (E0 − E)·

·
√
(E0 − E)2 −m2

ν ·Θ(E0 − E −mν).

(2.27)
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Figure 2.3: Electron energy spectrum of tritium β-decay over the full energy range (a) and zoomed
into the endpoint region (b). The neutrino mass manifests itself as a spectral distortion near the
endpoint.

This energy dependence of the differential decay rate is shown over the full energy range in
fig. 2.3a and for different values of mν in the endpoint region in fig. 2.3b. We can identify a
clear shape effect of the neutrino mass in the changing curvature of the spectrum near the
endpoint. This is the signal experiments measuring mν are looking for.

The currently leading experiment in this field is the Karlsruhe Tritium Neutrino (KATRIN)
experiment which is designed to measure mν with a sensitivity of 200meV at 90% CL. We will
discuss KATRIN in detail in chapter 3. An upcoming experiment using the β-spectrum of atomic
tritium is Project 8 [28]. They make use of cyclotron radiation emission spectroscopy (CRES) to
measure the electron energy spectrum and target a sensitivity of 40meV (90% CL). Another
related kinematic approach to infer mν makes use of electron capture instead of β-decay. In
this field, the electron capture in holmium (ECHo) experiment using 163Ho and a calorimetric
energy measurement is leading, targeting a sub-electronvolt sensitivity [29].

2.3.4 Comparison and synergy of different measurements

First and foremost we would like to mention that the three different approaches to assess
the absolute neutrino mass scale measure different parameters (mΣ, mββ , mν ) and rely on
different models and should therefore be seen as complementary. A summary of the param-
eter space for these different neutrino mass observables, along with current and possible
constraints from the corresponding experiments, is shown in fig. 2.4. Here, the blue and orange
regions are the allowed regions from the best-fit values of a global fit to the oscillation data
[30, 31].

Starting with cosmology, we can see that the current measurements are extremely sensitive,
especially when assuming the base ΛCDM model. Here, the result is already close to excluding
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Figure 2.4: Summary of neutrino mass values from the different measurement principles. The orange
and blue regions come from the best-fit values of a global fit to the oscillation data [30, 31]. The
gray-dotted horizontal line is the design sensitivity of the KATRIN experiment which would exclude
the region above. The vertical dashed lines are current upper limits from double beta decay [20, 23,
24] and cosmology [18, 19], each excluding the region to the right of the line.

the inverted ordering, where mΣ ≳ 0.1 eV is implied by the oscillation data. In addition,
cosmological measurements do not rely on the Majorana or Dirac nature of the neutrino.
However, especially at highest sensitivities, the results depend on the underlying cosmological
model (ΛCDM) and parametrization. This reliance on a cosmological model and the interplay
of scales of completely different order of magnitude arguably makes cosmology the most
indirect approach to asses the neutrino mass scale.

Next, we observe that 0νββ is also quite sensitive to the mass scale, with the most stringent
upper limits approaching the exclusion of inverted mass ordering. However, we also see that
the allowed parameter space from oscillation is quite large and it is even possible for mββ to
be zero in the normal ordering due to cancellations by the complex CP- and Majorana-phases.
The measured upper limits in mββ are given as intervals, due to the described uncertainties
on the nuclear matrix element. In addition, by definition, 0νββ relies on the Majorana nature
of the neutrino. Therefore, neutrinoless double β-decay can be seen primarily as a method to
infer the neutrino nature, with mββ as secondary parameter.

Finally, we see that inferring mν from regular β-decay is less sensitive than the other ap-
proaches, with even the design sensitivity of KATRIN not approaching the possibility to dis-
criminate between the mass ordering. However, it can be seen as the most direct method as it
does not require a cosmological model and does not rely on the neutrino nature.
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Chapter 3

The KATRIN experiment

The KATRIN experiment is the currently leading direct neutrino mass measurement using the
kinematics of β-decay. It is designed to measure the effective electron anti-neutrino mass

mν =

(∑
i

|Uei|2 ·m2
i

) 1
2

(3.1)

with a sensitivity of 200meV at 90% CL using the same measurement principle as its prede-
cessors in Mainz [32] and Troitsk [33].

This chapter explains this measurement principle [26] and the experimental setup of KATRIN
[34, 35]. Afterwards, a model for the expected integral β-spectrum is derived [27] and the
various sources of systematic uncertainty are explained.

3.1 Measurement principle: MAC-E filter spectroscopy

The electron energy spectrum depicted in fig. 2.3 shows two of the main properties an experi-
ment measuring the neutrino mass from β-decay must fulfil. Due to the extremely low count
rate in the endpoint region where the effect of nonzero neutrino mass is most visible, a highly
luminous source is required. The emitted high-energy electrons must then be measured with
an energy resolution on the electronvolt-scale to resolve the small neutrino mass imprint.

To this end, the electrons are guided from the source to an electrostatic filter with magnetic
adiabatic collimation (MAC-E filter) as shown in fig. 3.1. In the filter, the electrons run against
an applied retarding voltage U with the corresponding retarding energy qU where q = −1 e
denotes the electric charge of the electron. Only electrons with a kinetic energy parallel to
the electric field lines E∥ larger than qU pass this filter. These electrons are subsequently
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Chapter 3 The KATRIN experiment

guided to the detector and counted. Varying the applied retarding energy results in an integral
measurement of the β-spectrum.

As the retarding energy only filters out electrons depending on E∥, it must be guaranteed
that the total kinetic energy of the electron Ekin = E∥ + E⊥ ≈ E∥. The residual energy
perpendicular to the retarding energy E⊥ defines the energy resolution of the MAC-E filter.

To optimize the energy resolution, a specific magnetic field configuration is required. The
electrons emitted in the source are guided adiabatically, which including relativistic effects
means under conservation of

p2⊥
B

=
E⊥(γ + 1) ·me

B
= const (3.2)

along the beamline with the relativistic gamma factor γ = E+me
me

, the varying magnetic field
B and the momentum (energy) perpendicular to the electrostatic potential p⊥ (E⊥). Defining
the pitch angle θ, we can write E⊥ = E sin2 θ and correspondingly E∥ = E cos2 θ.

One can thus decrease E⊥ by decreasing the magnetic field strength B. The optimal con-
figuration is to have the lowest magnetic field exactly in the plane with maximum retarding
energy qU where the electrons are filtered. This plane is called the analyzing plane with the
corresponding magnetic field Bana. After passing the analyzing plane, electrons are focused
onto the detector with an increased Bdet. Using the conservation condition defined in eq. (3.2),
we can calculate the energy resolution ∆E for a specific electron energy E as

∆E = E · Bana

Bsrc

γ + 1

γana + 1
sin2 θmax (3.3)

with the magnetic field in the source where the electrons are emitted Bsrc and the maximum
acceptance angle θmax.

In principle it is possible to set the maximum magnetic field Bmax in the source where the
electrons are emitted. However, this leads to the acceptance of electrons with all angles,
especially those with very large angles and thus long travelled distances in the source. This is
unfavourable due to increased scattering with the tritium gas in the source. Therefore, the
maximum magnetic field is set after the source and electrons with large angles are reflected
by the magnetic mirror effect. The maximum acceptance angle

θmax = arcsin

√
Bsrc

Bmax
(3.4)

is determined by these magnetic fields. Therefore, the energy resolution of the MAC-E filter is
given by

∆E = E · Bana

Bmax

γ + 1

γana + 1
. (3.5)
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U

Bsrc Bana Bmax Bdet

qU

Figure 3.1: Working principle of a MAC-E filter. Electrons (orange dashed) are guided along the magnetic
field lines and run against the retarding energy qU (green arrows).

KATRIN was designed to achieve an energy resolution of 0.93 eV for electron energies near
the endpoint of tritium E ≈ 18.6 keV [26] with the magnetic field settings Bmax = 6T and
Bana = 3×10−4 T. Electrons up to an angle of θmax ≈ 51◦ are transmitted withBsrc = 3.6T.

An important fact to keep in mind is that the magnetic flux ϕ = B ·A is constant. Therefore,
the spectrometer including the analyzing plane must be much larger than the source. We will
see later, that this fact also lead to different magnetic field settings in the performed KATRIN
measurement campaigns for background mitigation purposes reducing the energy resolution
to about 2.8 eV.

3.2 Experimental setup

As described in the previous section, KATRIN uses the MAC-E filter principle to measure an
integrated tritium spectrum. An overview of the experimental setup is displayed in fig. 3.2.
We will now go over each part of the beamline, starting from the source and working our way
towards the detector system, concluding with various monitoring devices.
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f)
e)

d)c)
b)

a)

Figure 3.2: Beamline of the KATRIN experiment, figure provided by Leonard Köllenberger.
a) rear section
b) windowless gaseous tritium source
c) transport section
d) pre-spectrometer
e) main spectrometer
f) detector system

Windowless gaseous tritium source

Following the principle of the Mainz and Troitsk experiments, KATRIN uses molecular tritium
as β-emitter for its advantageous properties:

• Its endpoint energy of approximately 18.6 eV is the second lowest of all isotopes which
undergo β-decay. This is technically advantageous as it allows operating the MAC-E
filter at lower retarding voltages which are easier to control and stabilize. In addition,
a lower endpoint leads to relatively more counts in the endpoint region in which the
shape distortion induced by the neutrino mass is maximal.

• Molecular tritium T2 can be used in its gaseous state at low temperatures. The gaseous
state avoids complicated solid state effects and low temperatures reduce broadening
via the Doppler effect, leading to an overall reduction of systematic uncertainties.

• The β-decay of tritium is super-allowed, leading to a relatively low half-life of T1/2 =
12.6 years. This allows high rates at low source densities. On top of this, the nuclear
matrix element is energy independent and simple to calculate.

β-decay of molecular tritium is described by

T2 → (HeT)+ + e− + ν̄e. (3.6)

In the KATRIN experiment, molecular tritium gas with a high purity of ϵT > 95% is kept in
a closed loop system [36] and continuously injected into the windowless gaseous tritium
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source (WGTS) [37] via 250 holes at its center. The WGTS itself is a lsrc = 10m long tube
with a diameter of dsrc = 90mm where the injected gas can stream freely to both ends. It is
then pumped away by multiple turbo molecular pumps (TMPs) and re-injected into the loop
system.

The number of gas molecules Nmol in the source is described by the column density ρd which
is the gas density integrated over the source length. Using the definition of the column density,
the total number of gas molecules is given by

Nmol = Asrc · ρd (3.7)

with the source area

Asrc =

(
dsrc

2

)2

π. (3.8)

As the source is almost fully composed of hydrogen isotopologues with two atoms, the number
of atoms Natom = 2 ·Nmol.

Electrons emitted in the source are guided along the beamline using magnetic field lines with
the source magnetic field set to Bsrc. As described in section 3.1, only electrons with starting
angles smaller than θmax reach the detector to avoid long paths in the source and thus large
scattering effects. In addition, the magnetic fields are configured to only map the inner part
of the source tube to the detector and avoid the outermost region to exclude electrons that
scatter on the beam tube. This reduces the source area to Aeff and thus the total number of
atoms within the volume visible to the detector to

Natom,eff = 2 ·Aeff · ρd. (3.9)

When combining this with the solid angle of the acceptance, we can define an efficiency
describing how many of the tritium decays are actually mapped towards the detector:

Aeff
Asrc

· 1− cos θmax

2
(3.10)

which amounts to 15.3% assuming the design magnetic flux of 191 × 10−4Tm−2 and the
design magnetic field Bsrc = 3.6T. Note that this differs slightly from the configuration used
in any neutrino mass campaign.

The number of tritium atoms is then given by multiplying the total number of atoms with the
tritium purity

ϵT = cT2 +
1

2
cHT +

1

2
cDT (3.11)

given by the relative concentrations ci ∈ [0, 1] of the tritium isotopologues T2, HT and DT and
thus reducing the total number of tritium atoms to

NT = 2 ·Asrc · ρd · ϵT (3.12)
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and the effective number mapped to the detector

Neff = 2 ·Aeff · ρd · ϵT. (3.13)

Using the half life of tritium and the number of tritium atoms, we can estimate the total activity
in the source

Γsrc = NT ·
ln 2

T1/2
. (3.14)

Inserting the maximal column density of 5×1021m−2 and a tritium purity of 95%, the maximal
activity is approximately 1011 decays per second.

Transport section

While electrons should be guided towards the spectrometer section, tritium molecules and ions
must be rejected. The transport section fulfils these two tasks with a combination of methods,
always adiabatically guiding the electrons along the magnetic field lines of superconducting
magnets.

First component of the transport section is the differential pumping section (DPS) [38]. The
beam tube is formed in a chicane shape to avoid a direct line of sight from the source to the
spectrometer. Tritium gas is then removed by a set of TMPs reducing the overall flow by at
least seven orders of magnitude. As charged ions follow the magnetic field lines just like
the electrons, another method to reject these is applied: a dedicated set of ring and dipole
electrodes with a positive voltage ranging from 5V to 200V to block the positively charged
ions.

Following the DPS is the cryogenic pumping section (CPS) [39]. Similar to the DPS, it is arranged
in a chicane shape. Instead of using TMPs, it makes use of cryo-sorption of tritium on a
condensed argon frost layer on the gold-plated beam tube wall. This method reduces the
tritium flow by another seven orders of magnitude, leading to an overall rejection factor of
more than 1014.

Spectrometer section

After passing the transport section, the electrons reach the spectrometer section consisting
of the pre- and the main spectrometer. Both follow the MAC-E filter principle described in
section 3.1, but fulfil slightly different tasks.

The smaller pre-spectrometer is typically operated at a retarding voltage of about 300V less
than the main spectrometer. It thus acts as a pre-filter, rejecting the majority of low energy
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electrons not interesting for the energy measurement. This was originally designed to reduce
the overall background rate [34]. However, the field configuration of two MAC-E filters operated
in sequence leads to a Penning trap between the two spectrometers. This Penning trap builds
up an increased amount of stored electrons over time, and can only be cleaned with a set of
so-called Penning wipers installed specifically for this purpose [40]. In practice, this leads to an
additional background component which depends on the time between the operation of the
Penning wipers. For this reason, the pre-spectrometer will no longer be operated in upcoming
neutrino mass measurement campaigns and was turned off starting from the end of the fourth
measurement phase. This background will be discussed in more detail in section 3.4.

Following the pre-spectrometer is the 23m long main spectrometer with a diameter of 10m.
This large size is required to achieve an energy resolution on the electronvolt scale with a
low magnetic field in the analyzing plane, while fully mapping the relatively large source area.
The final energy selection of the electrons is performed here, and all electrons with sufficient
energy to pass the electrostatic filter are then re-accelerated and re-focused towards the end
of the main spectrometer. To this end, an ultra precise high voltage divider with ppm accuracy
and excellent reproducibility on the 10meV scale [41–43] ensures precise energy filtering as
well as easy data combination. The main spectrometer air coil system [44, 45], consisting of
14 low-field correction system (LFCS) and 16 earth magnetic-field correction system (EMCS)
coils, together with the beam line magnets defines the MAC-E filter setup. The flexibility of
individually setting each air coil allows for complex magnetic field setups, such as the shifted
analyzing plane discussed in section 3.5.2.

Detector system

All electrons leaving the main spectrometer undergo an additional post-acceleration of roughly
10 kV before hitting the focal plane detector (FPD) [46]. The FPD is a 148 pixel silicon p-i-n
detector with an energy resolution of approximately 1.4 keV full-width half-maximum (FWHM)
per pixel. This energy resolution is sufficient to perform a region of interest cut, rejecting a
majority of natural backgrounds at lower energies. The pixels are arranged in a dart-board
shape shown in fig. 3.3, each with an area of 44mm2. This pixel arrangement allows taking
radial and azimuthal effects into account in the analysis.

Rear section

The rear section serves two main purposes: house multiple calibration devices and provide a
defined electric potential to the beginning of the tritium source [47].

Enclosing the source at the front of the rear section is the rear wall. Its main purpose is to
provide a well-defined surface towards the source plasma which determines the starting
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Figure 3.3: Pixel arrangement of the focal plane detector.

potential of the β-electrons and will be covered in more detail in section 3.4. The rear wall is a
145mm wide gold-coated stainless steel disk. To manipulate the surface potential and thus
the source plasma, a bias voltage of up to ±500V can be applied, although in practice the
voltage rarely exceeds O(1V).

To measure the gas density in the source and energy loss effects of electrons via scattering,
a monoenergetic electron gun (egun) is housed in the rear section [48, 49]. Monoenergetic
electrons are produced via the inverse photoelectric-effect and accelerated to energies slightly
above those of the β-electrons. These electrons then travel through the full beamline of the
experiment before they reach the detector, allowing a precise measurement of response and
scattering effects described in section 3.3.

Another device located in the rear section is the β-induced X-ray spectrometry (BIXS) activ-
ity monitor [50]. Electrons that hit the rear wall and are absorbed in the gold layer emit
Bremsstrahlung. The emitted X-ray photons are then detected using two off-axis silicon drift
detectors. As the number of X-ray photons is proportional to the number of emitted electrons,
which in turn is proportional to the source activity, it can be monitored at the 0.1% level.

Forward beam monitor

An additional activity monitoring device is the forward beam monitor (FBM) located between
the transport and the spectrometer section [51]. At this point, it measures the incoming flux of
all β-electrons. The FBM is designed to achieve a statistical uncertainty on the β-rate of <0.1%
after 60 s of measurement time with an absolute rate stability of 0.1% on the 24 h scale.

For the first neutrino mass measurement, this task was fulfilled by a 2-pixel silicon p-i-n
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detector with an energy resolution of approximately 2 keV FWHM. After the first neutrino
mass measurement, a new 7-pixel TRISTAN [52] prototype silicon drift detector (SDD) was
installed as FBM improving the energy resolution to <350 eV FWHM [53]. While fulfilling the
design requirements, both devices observe an internal long-term drift leading to a drift of the
measured rate on the percent-level per month.

3.3 Modelling the expected count rate

Next, we derive a model describing the expected electron count rate at the detector as a
function of the retarding potential [27].

3.3.1 Molecular tritium β-spectrum

We start with the electon energy spectrum for an allowed β-decay derived in section 2.3.3
given by eq. (2.27) and shown in fig. 2.3. This formula could be applied directly to the β-decay
of atomic tritium. However, since KATRIN uses tritium in its molecular form, the daughter
molecule (HeT)+ can be in a rotational, vibrational or electronic excited state f . This requires
additional energy which is no longer shared by the emitted electron and neutrino. Introducing
the energy of a particular state Vf , the corresponding probability Pf and ϵf = E0 − E − Vf ,
our differential β-spectrum now reads as

dΓ

dE
=

G2
F cos θ

2
C

2π2
· |Mnuc|2 ·F (Z ′, E) ·p ·(E+me) ·

∑
f

Pf ·ϵf
√
ϵ2f −m2

ν ·Θ(ϵf −mν). (3.15)

This final state distribution (FSD) can be calculated theoretically [54] and is shown in fig. 3.4.
We can see a rather narrow distribution of states centered at 1.75 eV with a width of 0.44 eV,
the so-called electronic ground state, followed by electronically excited states with energies
larger than 19 eV. The total probability to decay into a ground state is Pgs = 57.4%. Figure 3.5
shows the effect of the FSD on the β-spectrum in the endpoint region:

• The spectrum is shifted to the left due to the positive mean energy of the electronic
ground state.

• A lower overall rate is observed due to the 57.4% probability to decay into a ground
state, excited states are only visible much deeper in the spectrum.

The FSD depends on the exact molecular shape, and thus differs for the tritium isotopologues
T2, HT and DT present in the KATRIN source. This can be described by interpreting Pf as the
product of the theory calculation given a single isotopologue and the fraction of the source

22



Chapter 3 The KATRIN experiment

0 10 20 30 40
state energy Vf (eV)

0.000

0.005

0.010

0.015

0.020

0.025

st
at

e 
pr

ob
ab

ilit
y 

P f

electronic ground state
excited states

Figure 3.4: Final state distribution of (HeT)+ with the electronic ground state (blue solid line) and
electronically excited states (orange dashed line).
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Figure 3.5: Tritium β-spectrum without final states (blue solid line) and including the final state distri-
bution of (HeT)+ shown in fig. 3.4 (orange dashed line). An endpoint value of E0 = 18 573.7 eV and
a neutrino mass of mν = 0 eV is assumed.
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molecules made up by the corresponding isotopologue, essentially tripling the total number
of final states in the sum.

In addition to the final state effect, the thermal motion of tritium molecules in the source leads
to a Doppler broadening of the β-spectrum. In the non-relativistic approximation, this can be
described by convolving eq. (3.15) with a normal distribution

g(∆E) =
1√
2πσD

· exp
(
−∆E2

2σ2
D

)
(3.16)

with standard deviation corresponding to the Doppler broadening width

σD =

√
2E kBT

me

mT2

(3.17)

which is defined by the energy of the electron E, the Boltzmann constant kB, the source
temperature T and the mass ratio of electron and the tritium molecule me

mT2
. Inserting typical

values of E = E0 ≈ 18.6 keV and T = 30K (90K) leads to a broadening of σD = 93.5meV
(161.9meV). This changes the differential spectrum to

dΓ

dE
(E) →

∫ +∞

−∞
g(E − ϵ)

dΓ

dE
(ϵ) dϵ. (3.18)

The impact of an (exaggerated) broadening on the β-spectrum in the endpoint region is shown
in fig. 3.6 and compared to the effect of inserting unphysical negative neutrino mass squared
values into the formula describing the differential spectrum. The broadening shifts the spec-
trum to higher energies, and this shape-effect can be described very well by negative m2

ν

values. This observation can be explained by the relation ∆m2
ν = −2σ2 derived for example in

[55] which relates an unnacounted broadening variance σ2 to a negative shift of the neutrino
mass squared value.

In practice, it is often favourable to not describe an additional broadening by a convolution of
the full β-spectrum with the Gaussian kernel, but instead emulate it in the final state distribu-
tion. To this end, every discrete final state with probability Pf and energy Vf is replaced by a
Gaussian of the form

Pf · 1√
2πσbroad

· exp
(
−
(E − Vf )

2

2σ2
broad

)
. (3.19)

For practical reasons, the continuous sum of all Gaussian distributions is then re-binned with
a bin width of 0.1 eV or finer. The effect this has on the FSD is shown in fig. 3.7. Note that this
additional broadening width σbroad must not be limited to the Doppler broadening σD, but can
include other effects that effectively lead to a broadening in the energy scale such as time-wise
changes.

On top of the effects described, there are various theoretical corrections to the β-spectrum
going beyond the basic Fermi theory of β-decay. The only contribution significant and un-
derstood well enough to be included in the current KATRIN analysis are radiative corrections
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Figure 3.6: Impact of a non-zero broadening on the tritium spectrum compared to negative neutrino
mass squared values. The broadenened spectrum (green dotted line) is shifted to the right compared
to the unbroadened one (blue solid line) when both assume m2

ν = 0.0 eV2. Inserting the unphysical
value of m2

ν = −1.0 eV2 into the differential spectrum (orange dashed line) leads to a very similar
shape as the broadening.
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Figure 3.7: Effect of emulating a broadening in the FSD on the electronic ground state. One can see
a widening of the distribution, as well as a slightly reduced number of states due to the binning of
0.1 eV.
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related to electromagnetic effects involving contributions from virtual and real photons. The
multiplicative correction factor G is shown in fig. 3.8.
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Figure 3.8: Impact of radiative corrections on the differential β-spectrum in the endpoint region.

3.3.2 Experimental response function

In addition to theβ-spectrum, we need to take into account the experimental response function
R which describes the probability of an electron with energy E to pass the electrostatic filter
set at the retarding energy qU . In an ideal apparatus, this would be a simple step function

Rideal(E; qU) =

{
0 E < qU

1 E ≥ qU.
(3.20)

However, in a realistic setup, there are various effects that modify this transmission probabil-
ity.

Transmission properties of the MAC-E filter

As described in section 3.1, the retarding voltage set in the analyzing plane is only sensitive
to the kinetic energy of the electron parallel to the electric field lines. Thus, any remaining
transversal energy may lead to the rejection of electrons with a total kinetic energy greater
than qU . We now extend our calculations to derive the transmission condition depending on
the starting angle of the electron, and from this the transmission function of the MAC-E filter.

At any given point z, an electron can only continue moving against the electrostatic potential
if

E∥(z) > 0. (3.21)
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To retrieve the transmission condition at any point in z, we consequently need an expression
for E∥(z). We define the starting potential of the electron as qUsrc, its initial kinetic energy E
with corresponding gamma factor γ and pitch angle θ in the given magnetic field Bsrc. Using
the adiabatic invariant defined in eq. (3.2), we can write

E∥(z) = E − E⊥(z) + qUsrc − qU(z) (3.22)

= E − E sin2 θ
B(z)

Bsrc

γ + 1

γ(z) + 1
+ qUstart − qU(z). (3.23)

Inserting this into eq. (3.21), we retrieve

E − E sin2 θ
B(z)

Bsrc

γ + 1

γ(z) + 1
> qU(z)− qUsrc. (3.24)

In the MAC-E filter, the minimal magnetic fieldBana and maximum retarding energy qU coincide
in the analyzing plane. Any electron passing this plane therefore also passes the electrostatic
filter. We thus have to evaluate eq. (3.24) for the values at the analyzing plane to calculate if
an electron passes the filter. Without loss of generality, we set qUsrc = 0. This leads us to the
transmission function depending on electron energy and starting angle:

T (E, θ; qU) =

{
1 if E − E sin2 θBana

Bsrc
γ+1

γana+1 > qU

0 else
(3.25)

with the gamma factor in the analyzing plane γana = E−qU+me

me
≈ 1.

To calculate the probability of any electron with energyE to overcome qU , we have to integrate
eq. (3.25) over θ given an angular distribution of the electrons emitted in the source. Assuming
an isotropic distribution, our integral reads

T (E; qU) =

∫ θ=θmax

θ=0
T (E, θ; qU) sin θ dθ. (3.26)

=

∫ 1

cos θmax

T (E, cos θ; qU) d cos θ (3.27)

As one always integrates over a constant value (zero or one depending if electrons with this
cos θ pass the filter or not), this essentially simplifies to finding the maximum starting angle
theta that allows passing the filter for a given E:

E

(
1− (1− cos2 θ)

Bana

Bsrc

γ + 1

γana + 1

)
> qU (3.28)

⇔ cos θ >

√
1− E − qU

E

Bsrc

Bana

γana + 1

γ + 1
. (3.29)

Note that for E < qU this condition can never be fulfilled and it is fulfilled for all accepted
angles if E > qU + ∆E with the energy resolution ∆E from eq. (3.5). This leads to the
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transmission function for isotropic electrons being

T (E; qU) =


0 if E < qU

1−
√
1− E−qU

E
Bsrc
Bana

γana+1
γ+1 if qU < E < qU +∆E

1−
√

1− Bsrc
Bmax

if E > qU +∆E.

(3.30)

This representation of the transmission function still includes the effect that not all electrons
can make it passed the filter due to the maximum acceptance angle. Usually, the solid angle is
treated independent of the transmission function, giving us

T (E; qU) =


0 if E < qU

1−
√

1−E−qU
E

Bsrc
Bana

γana+1
γ+1

1−
√

1− Bsrc
Bmax

if qU < E < ∆E

1 if E > qU +∆E.

(3.31)

The resulting transmission function of the MAC-E filter for isotropic electrons is compared to the
ideal step function in fig. 3.9a assuming Bmax = 4.24T, Bsrc = 2.52T, and Bana = 0.63mT
at a retarding energy of qU = 18 545 eV.

At this point it is worth mentioning that in a real apparatus the field settings in the analyzing
plane qU and Bana depend on the radius r and to a lesser extend on the angle ϕ, leading to a
pixel dependence of the transmission function. This is depicted in fig. 3.9b assuming the field
settings for the second neutrino mass campaign. When pixels are not treated independently in
the analysis, these individual functions are averaged leading to an additional broadening of
the effective transmission function.

Synchrotron radiation losses

Another effect we must take into account are energy losses of the electron due to synchrotron
radiation during its path along the beamline. The synchrotron loss of an electron travelling a
distance l at magnetic field B with pitch angle θ is given by

∆Esync = − µ0

3πc

e4

m3
e

·B2 · E · sin2 θ · γ l

v cos θ
(3.32)

with the permeability of free space µ0 and the speed of light c.

In the KATRIN experiment, these losses mainly take place in the transport section with a minor
contribution from the source. To good approximation, we can assume an effective model for
the average synchrotron loss. To this end, we need the average distance an electron travels
in the source which is lsrc

2 ≈ 5m, the length of the transport section ltr ≈ 14m and the
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Figure 3.9: Various transmission functions describing the probability of an electron with kinetic energy
E to pass the retarding energy qU of the electrostatic filter. A clear broadening of the function
compared to an ideal filter can be seen due to the MAC-E filter transmission (a). In a real apparatus,
the retarding energy qU and magnetic field Bana depend on the radius and thus on the pixel number.
This is shown for the settings applied in the second measurement campaign of KATRIN along with
the average transmission over all pixels (b). Synchrotron radiation losses lead to a slight degradation
of the energy resolution (c) while the non-isotropic angular distribution due to scattering changes
the curvature (d).
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Figure 3.10: Synchrotron energy loss of an electron with different starting angles in the source.

corresponding magnetic fields Bsrc and Btr. The synchrotron loss for electrons with different
starting angles in both sections is shown in fig. 3.10. Note that the pitch angle in the transport
section is different from the starting angle due to the varying magnetic field.

To include these effects in our transmission function, we must modify eq. (3.25) to include the
energy loss:

T (E, θ; qU) =

{
1 if E +∆Esync(E, θ)− E sin2 θBana

Bsrc
γ+1

γana+1 > qU

0 else.
(3.33)

Finding the maximum starting angle that allows passing qU for a given E is now no longer
possible analytically and must be performed with a numerical root search. The effect of the
synchrotron losses on the transmission function is shown in fig. 3.9c: a slight degradation of
the energy resolution.

Scattering effects

In addition to the transmission effects, an electron can lose energy by inelastic scattering on
tritium molecules in the source. To accurately describe this effect, we need two components:
the probability of an electron to scatter s-times Ps and a probability density function that
describes the amount of energy lost in this process, the so-called energy loss function fs(ϵ).

The probability of an electron to scatter s times depends on the cross section σinel and the
effective amount of gas it passes through. This amount of gas is described by the column
density ρd, the starting position z and also on the starting angle of the electron as electrons
with larger angles travel longer distances in the source due to their synchrotron motion. We
summarize this in the quantity

λ(z, θ) =
z · ρd
cos θ

(3.34)

30



Chapter 3 The KATRIN experiment

where z will range from 0 to 1 and the electron can thus see from no gas at all (z = 0 if it
was emitted at the very front of the source) up to all of it (z = 1 in case it was emitted at the
very end of the source). As scattering events are independent and we can assume to excellent
approximation that the angle of the electron is unaffected by the scattering [56], the scattering
probability can be described by a Poissonian:

Ps(z, θ) =
(λ(z, θ) · σinel)

s

s!
exp (−λ(z, θ) · σinel) . (3.35)

To calculate the average scattering probability of an electron, we integrate eq. (3.35) over z
and θ, once again assuming an isotropic angular distribution:

Ps =
1

1− cos θmax

∫ θmax

0
sin θ

∫ 1

0
Ps(z, θ) dzdθ. (3.36)

The energy-dependent inelastic scattering cross section is given by

σinel(T ) =
4πa20
T/R

·
[
M2

tot · ln
(
4ctot ·

T

R

)
+ δE

]
(3.37)

with the Bohr radius a0, the non-relativistic kinetic energy of the electron T = 1
2meβ

2 given
the relativistic beta factor β = 1− m2

e
(me+E)2

, the Rydberg energy R, M2
tot = 1.5356 for tritium

[57, 58], and ctot = 1.18 [59]. δE describes the relativistic and 1/E2 correction and can be
calculated as follows:

δE =
γ2tot
T/R

+ δrc, (3.38)

δrc = −M2
tot
[
ln
(
1− β2

)
+ β2

]
(relativistic correction), (3.39)

γ2tot = 2

[
−7

4
+ ln

(
Ei

T

)]
(1/E2 parameter). (3.40)

Figure 3.11 shows this cross section over a large energy range (a) as well as in the energy
interval interesting for KATRIN (b).

The scattering probabilites for electrons with kinetic energy E = 18 575 eV are shown in
fig. 3.12. Clearly, scattering effects increase with increasing gas density. However, unscattered
electrons are still the most abundant for all column densities possible at KATRIN.

Having derived the scattering probabilities, the next step is to define the energy loss function.
Electrons that do not scatter, lose no energy. Their energy loss function is thus a simple Dirac
delta function

f0(ϵ) = δ(ϵ). (3.41)

Higher order scatterings s > 1 can be described by convolving the energy loss function for one
scattering s− 1-times with itself. To retrieve f1(ϵ) dedicated measurements with the electron
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Figure 3.11: Inelastic scattering cross section depending on the electron energy. While it shows a clear
increase to lower energies (a), there is only a small linear change in the energy interval interesting
for KATRIN (b).
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Figure 3.12: Probability of an electron to scatter s times in the source depending on the column density.
As expected, scattering effects increase with increasing number of gas molecules. The gray vertical
dotted lines indicate the column density of the 1st campaign (1.11× 1021 m−2), the 2nd campaign
(4.23× 1021 m−2) and the reference for future campaigns (3.75× 1021 m−2).

32



Chapter 3 The KATRIN experiment

0 20 40 60 80 100 120
energy loss  (eV)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

pr
ob

ab
ilit

y 
de

ns
ity

 (1
/e

V) 1
2
3
4
5

Figure 3.13: Energy loss function for s scatterings describing the probability of an electron losing the
energy ϵ in the s-fold scattering process [49]. Higher orders are retrieved by convolving the function
for a single scattering s− 1-times with itself.

gun were performed fitting the semi-empirical function

f1(ϵ) =


∑3

j=1 aj exp

(
− (ϵ−µj)

2

2σ2
j

)
for ϵ ≤ Ei

f1(Ei)
fBED(Ei)

· fBED(ϵ) for ϵ > Ei,
(3.42)

which is a sum of three Gaussians with amplitude aj , mean µj , and standard deviation σj for
energies below the ionization energy Ei = 15.486 eV [60] of T2 and the binary-encounter-
dipole (BED) function [61] above, to this measurement data [49]. The resulting energy loss
function for electrons scattering on T2 is shown in fig. 3.13.

Combined response function

To calculate the response function R(E; qU) of the experiment, the transmission function
T (E; qU) is convolved with the energy loss function fs(ϵ) for each scattering, weighted by the
scattering probability Ps:

R(E; qU) =

∫ E−qU

0
T (E − ϵ; qU) ·

∞∑
s=0

Ps · fs(ϵ) dϵ. (3.43)

In practice, between five and ten scatterings are considered, depending on the analysis window.
Scattering more often is highly unlikely, less than 5× 10−6 at maximal column density, and
electrons lose too much energy to pass the electrostatic filter for neutrino mass measurement
intervals near the endpoint.

While we mentioned that the angular change of an electron due to scattering is negligible, there
is another related effect that should be taken into account. Electrons with large angles are
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Figure 3.14: Combined response function describing the probability of an electron with energy E to
pass the retarding energy qU . The gray line splits the unscattered electrons (left), where only the
transmission effects of the MAC-E filter are relevant, from the ones that have scattered at least once
(right) and thus also the energy loss function plays a role.

likely to scatter more often. Therefore, on average, these electrons need a larger surplus energy
to pass the electrostatic filter. To include this into the calculation, the scattering probability

Ps(θ) =

∫ 1

0
Ps(z, θ) dz (3.44)

is included when integrating the transmission condition from eq. (3.33) over the pitch angle

Ts(E; qU) =

∫ θmax

θ=0
T (E, θ; qU) sin θPs(θ) dθ, (3.45)

leading to a dependence of the transmission function on the number of scatterings. The impact
this has on the transmission function for different scatterings is displayed in fig. 3.9d. Note
that now both finding the maximum starting angle that allows passing qU for a given E and
the actual integral evaluation are non-trivial and need to resort to numerical evaluations.

Taking this into account, the response function is slightly modified to

R(E; qU) =

∫ E−qU

0

∞∑
s=0

Ps · Ts(E − ϵ; qU) · fs(ϵ) dϵ. (3.46)

It is most important to include this effect for unscattered electrons, since these are by far the
most abundant as will be shown in the next section. The combined response function can be
seen in fig. 3.14.
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Figure 3.15: Integrated tritium spectrum according to eq. (3.47) in regular (a) and logarithmic (b) scale
assuming ρd = 4.2× 1021 m−2. The blue solid line is the total integrated spectrum, while the other
colored dotted lines indicate the contributions of the individual number of scatterings. The sum
is clearly dominated by unscattered electrons (> 99% 20 eV below E0; ≈ 90% 40 eV below E0),
followed by those which scattered once.

3.3.3 Integrated spectrum

To complete our signal model I(qU), the differential tritium β-spectrum is integrated over the
experimental response function:

I(qU) = C ·
∫ +∞

−∞

dΓ

dE
(E) ·R(E; qU) dE (3.47)

with the constant prefactor

C = Neff
1− cos θmax

2
· ϵdetector (3.48)

including the effective number of tritium atoms, c.f. eq. (3.13), the solid angle and a constant
detector efficiency ϵdetector.

This integrated spectrum is shown in fig. 3.15 including the contributions of the individual
number of scatterings.

3.3.4 Total model of the expected counts

In addition to the signal model, we must add a constant background rate rbg to the integrated
spectrum to calculate the expected count rate

r(qU) = I(qU) + rbg. (3.49)

35



Chapter 3 The KATRIN experiment

0

20

40

co
un

t r
at

e 
(c

ps
)

18540 18550 18560 18570 18580 18590
retarding energy (eV)

0.0

2.5

5.0

7.5

10.0

m
ea

su
rin

g 
tim

e 
(m

in
)

0

500

1000

1500

co
un

ts

Figure 3.16: Distribution of counts for a single spectral scan (orange dots) given our model rate calcula-
tion (blue solid line) and the measurement time distribution (gray bars).

Any corrections to this flat background model are considered systematics and will be discussed
in more detail in section 3.4.

During a neutrino mass campaign, the same set of retarding energies {qUi} is scanned repeat-
edly. In each scan, the time ti is spent at the corresponding qUi. Typically between 30 to 40
retarding energies are scanned with a total scan time of two to four hours. How much time is
spent at each qUi is defined by the measuring time distribution (MTD) which is optimized for
maximal neutrino mass sensitivity [62]. Accounting for this, our expected number of counts µi

can be defined as
µi = µ(qUi, ti) = r(qUi) · ti = ri · ti. (3.50)

Figure 3.16 shows an example for the distribution of counts given our model rate and the
measuring time distribution.

3.3.5 Neutrino mass imprint

To conclude this section, we revisit the imprint the neutrino mass leaves and take a closer look
how the neutrino mass signal compares to the endpoint and is affected by the background
rate.

Figure 3.17 displays the total model rate for different values of m2
ν , similar to fig. 2.3b which

displays the impact on the plain differential β-spectrum. Over the full measurement interval
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Figure 3.17: Model count rate for different neutrino mass squared values given a background rate
of rbg = 220mcps. In the full measurement interval (a) the spectra can hardly be distinguished
requiring a zoom into the endpoint region (b).

a neutrino mass squared of 1.0 eV2 is nearly indistinguishable from the reference without
neutrino mass. Zooming into the endpoint region, the difference becomes visible, however it is
not clear how much this is different from a plain shift of the energy scale or endpoint value.

To investigate this, fig. 3.18 shows the relative model rate

r(m2
ν , E0)

r(m2
ν = 0.0 eV2, E0 = 18 573.7 eV)

(3.51)

for different m2
ν and E0 values. Both a positive m2

ν and a lower E0 value lead to relatively less
counts in the signal region. This shows as a dip structure in the relative rate where the dip
related to a positivem2

ν value is sharper than the one of a reducedE0. This allows distinguishing
these two parameters in an analysis, but the clear similarity of the two effects explains the well
known large correlation of m2

ν and E0 for neutrino mass measurements from β-decay [26].

The position of the largest impact, i.e. the minimum in figs. 3.18a and 3.18b, as well as its scale
depends on the background value: In the integrated spectrum, the effect is largest close to the
endpoint, leading to a reduction of the change towards lower retarding energies. However, the
non-zero background rate means that the signal to background ratio worsens towards higher
retarding energies. This worsening of the signal to background ratio leads to a decrease of the
m2

ν impact which at some point overpowers the increase of the effect in the β-spectrum. It can
be shown that the point of maximum impact is approximately where the signal to background
ratio equals one. To display this, fig. 3.19 shows the relative rate

r(m2
ν = 1.0 eV2, rbg)

r(m2
ν = 0.0 eV2, rbg)

(3.52)

for different background rates rbg. From this figure it is clear that lowering the background
rate is of high priority for the KATRIN experiment.
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Figure 3.18: Shape effect of a non-zero neutrino mass squared on the model rate (a) compared to a
lower endpoint value (b).
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Figure 3.19: Shape effect ofm2
ν = 1.0 eV2 on the model rate for different background rates. The orange

dashed line corresponds to the design background, the red dashed line to the background for the
second measurement campaign and the green dotted one to the background rate achieved with an
optimized field setting described in section 3.5.2.
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3.4 Sources of systematic uncertainty

In this section the various sources of systematic uncertainty present in the KATRIN experiment
are described.

Residual tritium on the rear wall

Over time, tritium can accumulate on the rear wall by T2 hitting the rear wall and forming
various tritiated molecules. The tritium in these molecules can later decay, leading to a
superposition of the signal β-spectrum coming from the decay of T2 with the β-spectrum
of tritium on the rear wall [63].

The activity depends on the integrated flux of circulated tritium gas and therefore increases
over time if no measures are taken. Since the total flux was rather low, the residual tritium
was not an issue for the first two neutrino mass campaigns, but must be taken into account
for future analyses. This can be done by measuring the residual β-spectrum with an empty
source and including it in the neutrino mass analysis by adding it to our model rate expectation
defined in eq. (3.49). Typically, the rear wall spectrum resembles the β-spectrum of T2 to good
approximation with a slightly higher endpoint E0,RW. Thus, the systematic uncertainties can
arise from uncertainties on the rear wall activity, the measured E0,RW and the accuracy of the
β-spectrum shape itself.

To lessen the accumulation effect, the rear wall is regularly cleaned using ozone reducing the
activity by >95%.

Gas density in the source

The overall gas density in the source, described by the column density ρd, affects the signal
model in two ways:

• The overall number of tritium molecules is not known exactly. This only changes the
overall normalization of the model rate, and does not impact the shape. Therefore, it
has no impact on the neutrino mass measurement.

• The scattering probabilities described by eq. (3.35) have an uncertainty. This directly
impacts the response function shape and must therefore be taken into account as un-
certainty in any mν analysis.
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Figure 3.20: Uncertainty band of the energy loss function for one to three scatterings (a) and its
propagation into the response (b). The uncertainty is increased by a factor of 100 for better visibility.

Due to its impact on the scattering probabilities, a precise estimate of the absolute value of
ρdσinel, the column density times the inelastic scattering cross section, is required. For a single
campaign, the average ρd value is determined by combining several measurements with the
electron gun with a continous monitoring device. Each egun measurement effectively scans
the shape of the response function, see fig. 3.14, by changing the retarding voltage of the
filter while keeping a fixed egun electron energy E. Fitting this response function gives an
accurate estimate of ρdσinel which is used to anchor the value of any continuous montioring
device. The monitoring device is then used to calculate ρd values for every (sub-) scan during a
measurement campaign and therefore defines the time evolution of ρd from which the average
column density is estimated [64].

Energy loss function

All parameters describing the energy loss function, c.f. eq. (3.42), come with a fit uncertainty
described by their covariance Keloss. This directly propagates into an uncertainty on the
response function shape. This impact of Keloss on the energy loss function as well as the
response function is shown in fig. 3.20. The energy loss function as well as its uncertainty was
measured in situ with a combination of differential and integral egun measurements [49].

Molecular final states

Describing the uncertainty of the theoretical calculation of the molecular final state distribution
is non-trivial as the theory prediction does not come with uncertainties. For the first two
neutrino mass campaigns, a conservative estimate was made.
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To this end, the newer theoretical calculations of Saenz et al. [54] were compared to earlier
ones performed by Fackler et al. [65]. While the ground state variance matches to O(1%),
the excited states show larger discrepancies. This difference is taken as estimate for the FSD
uncertainty [66]. The corresponding procedure should:

• vary the ground state variance by 1%,

• vary the excited states variance by 4%, and

• impact the total ground state probability Pgs by 1%.

This is achieved by fluctuating the probability of each statePf uncorrelated with the neighbour
state with defined standard deviation where the standard deviation depends on whether the
f belongs to the ground state or is an excited state. The defined variance uncertainties are
achieved by fluctuating each ground state probability with an uncertainty of 4% and each
excited state probability with 18% uncertainty. After the bin-to-bin fluctuation, the ground
and excited states are re-normalized to their initial probabilities Pgs and Pes.

The new ground state probability P ′
gs is then drawn randomly according to its uncertainty of

0.01Pgs and all state probabilities are modified accordingly:

Pf → P ′
f =

Pf · P ′
gs

Pgs
if f is a ground state

Pf · Pes+Pgs−P ′
gs

Pes
if f is an excited state.

(3.53)

It can be convenient to define a quantity F , the FSD onset [67], such that:

F := +1 ⇔ P ′
gs = 1 ∧ P ′

es = 0

F := 0 ⇔ P ′
gs = Pgs ∧ P ′

es = Pes

F := −1 ⇔ P ′
gs = 0 ∧ P ′

es = 1.

(3.54)

Using the onset, the probabilities are modified as follows:

P ′
gs(F ) =

(1 + F )Pgs(Pgs + Pes)

(1 + F )Pgs + (1− F )Pes
, (3.55)

P ′
es(F ) =

(1− F )Pes(Pgs + Pes)

(1 + F )Pgs + (1− F )Pes
. (3.56)

This relationship is shown in fig. 3.21. An uncertainty on Pgs of 1% corresponds to an uncer-
tainty on F of σF = 0.012 using Gaussian error propagation.

Figure 3.22 shows the impact of the uncertainty on the final states distribution. Both the
ground state and the excited states uncertainty is dominated by the bin-to-bin fluctuation
which is much more clearly visible in the excited states, where the overall uncertainty is larger
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Figure 3.21: Relationship between the FSD onset F and the ground (blue solid line) and excited states
(orange dashed line) probability Pgs and Pes respectively. The gray dotted line indicates the theory
prediction, and the gray band the uncertainty corresponding to a 1% uncertainty on Pgs.
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Figure 3.22: Uncertainty band of the final states distribution for the full KATRIN energy interval (a)
and a zoom-in to the ground state (b). The total uncertainty is fully dominated by the bin-to-bin
fluctuations designed to impact the ground state and excited states variance of the FSD.
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by design. As the excited states only contribute a minor part to the signal in the KATRIN energy
interval used for the first two measurement campaigns, this is not an issue for the mν analysis.
However, this procedure is known to overestimate the uncertainty of the FSD [68] and it will
therefore be revised for future analyses with higher sensitivity to mν .

Activity fluctuations

Any instability in the gas density, the composition of the tritium isotopologues, the magnetic
fields impacting the acceptance angle or the detector efficiency directly impact the constant
prefactor C of our signal model in eq. (3.47). As both the magnetic fields and the detector are
very stable over time, this effect is dominated by fluctuations of the source activity.

Any change of the source activity between the measurement points i leads to an overdispersion
of the measured counts Ni compared to plain statistical fluctuations. Ideally, one would
measure the relative activity at every point Ai and correct the model per-point accordingly
C → Ai · C = Ci. The uncertainty on the individual Ai can then be included as additional
uncertainty on the measured counts.

There are two methods to calculate Ai:

• Use the product of the activity parameters measured directly: Ai ∝ ρdi · ϵT,i, or

• make use of an activity monitoring device such as the rate of the FBM: Ai ∝ RFBM,i.

Both methods are shown for the first two neutrino mass measurement phases in fig. 3.23a.

However, in practice, the accuracy of the measured Ai is not clear due to the drift of the FBM
and the slow control measurements missing for some points i with short measurement time.
Therefore, to avoid any artificial bias, the model is not corrected and only the uncertainty on
Ai is taken into account.

During a measurement campaign, typically all points at the same set voltage can be combined
(see section 4.2.2 for more details). Therefore, any activity change between scans averages
out exactly during combination and is not of interest for uncertainty propagation. Instead,
only the changes within a single scan are relevant. Figure 3.23b shows the relative activity,
normalizing the mean activity of each scan to 1. Intuitively, the uncertainty of each point i
can be increased by the standard deviation σ of the detrended activity changes as shown in
fig. 3.24. When combining n points, the effect is averaged out, therefore the added uncertainty
on the combined point is the error of the mean

σ√
n
. (3.57)
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Figure 3.23: Relative activity during the first (left of the gray dotted line) and second measurement
campaign using the product of the activity parameters (orange dashed line) and the FBM rate (blue
solid line). For both campaigns a downwards drift of the FBM rate compared to the slow control
measurement is visible. (a) displays the overall changes including long-term effects while (b) removes
any changes from scan to scan and only displays the variation within each scan, therefore showing
relative changes smaller by almost one order of magnitude. The jump in the FBM relative activity
around point 22 500 is related to large noise after a PC reset [69].
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Figure 3.24: Projection of the relative activity without scan wise changes shown in fig. 3.23b using the
slow control values as estimate for the first (blue) and second (orange) campaign.

As the activity can be related to a linear drift, such as over multiple periods during the first
measurement campaign, c.f. fig. 3.23a, correlations between neighboring points can occur.
Therefore, instead of using the plain error of the mean when combining n points, one has
to calculate the covariance over n scans for all points Kactivity

n . It should be noted that this
correlated uncertainty is avoided when including the effect of an activity drift in the model.
The optimal treatment for upcoming measurement phases is currently under discussion.

Source electric potential

The electric starting potential of the emitted β-electrons is defined by the cold magnetized
source plasma [35]. This plasma is created by the large number of free charges. As calculated
using eq. (3.14), there are up to 1011 decays in the source emitting this amount of electrons
and the corresponding (HeT)+ ions. In addition to these primary particles, each electron emits
approximately 50 secondary electrons by inelastic scattering on gas molecules in the source
[70]. This plasma leads to multiple effects that need to be taken into account.

The first effect to consider is any spatial inhomogeneity of the potential. Radial, and in principle
also azimuthal, differences can be included into the model due to the pixel segmentation of
the detector. A difference in the starting potential effectively leads to a different retarding
potential per pixel qUpx. However, as shown in fig. 3.25, a shift in the retarding potential by ∆E
is well approximated by a shift of the endpoint with opposite sign −∆E. Therefore, radial and
azimuthal inhomogeneities of the starting potential can be absorbed by a pixel dependent
endpoint E0,px.

This is not possible though for any longitudinal inhomogeneities [70]. In principle, a distribu-
tion of the starting potential depending on the longitudinal starting position ∆qU(z) could be
taken into account by including it in the model and averaging over all z via integration. How-
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Figure 3.25: Comparison of the integrated β-spectrum once shifted in the retarding energy by 100meV
and once in the endpoint by −100meV. In the absolute overlay (a) no difference is visible. The
relative differences are on the 10−6 level (b).

ever, this is neither convenient from a modelling point of view, nor is it currently possible to
predict or measure ∆qU(z) accurately. Instead, the distribution is modelled via two effective
parameters: a potential broadening with variance σ2

z and a shift of the energy loss function ϵz .
While any distribution different from a Dirac delta function intuitively introduces a broadening,
the ϵz parameter is less obvious. It comes from the fact that electrons starting at the back of
the source have a higher probability to scatter as they travel longer distances through the gas.
This is shown by the distribution of electrons over z for different scatterings in fig. 3.26.

Therefore, if ∆qU(z) is not symmetric but has a gradient over z, electrons which scatter see a
different average starting potential than those that do not. This can be modelled by shifting
the energy loss function f1(ϵ) → f1(ϵ− ϵz) and the effect of this eloss shift parameter on the
response function is displayed in fig. 3.27.

The longitudinal broadening σ2
z can be measured using 83mKr and related to an upper limit on

ϵz via
|ϵz| <

σz

k
(3.58)

where k is an empirical parameter depending on the column density and the measurement
interval as both affect the electron distributions shown in fig. 3.26 [70]. The resulting two-
dimensional probability distribution is shown in fig. 3.28.

In addition to the spatial inhomogeneities, there can be short-term fluctuations of the overall
plasma potential. These can be modelled by including their varianceσ2

short-term as an additional
broadening in the model. In a measurement, this is indistinguishable from σ2

z and one would
simply measure the sum of both broadening variances.

Finally, the source electric potential can drift over longer periods of time. While this is not
an issue when only analyzing single scans, it must be taken into account when combining
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Figure 3.26: Longitudinal distribution of electrons for different scatterings assuming a column density
of 4.2× 1021 m−2. As expected, electrons that travel a longer distance in the source, i.e. those from
the back of the source, scatter more often.
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Figure 3.27: Response function for different energy loss shifts. By definition, the transmission part is
not affected, and only the scattering part is shifted by ϵz
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Figure 3.28: Probability density function of the longitudinal plasma parameters. The broadening
variance σ2

z is sampled from a normal distribution with mean of 1 eV2 and standard deviation
0.2 eV2. For each sampled σ2

z,i, the corresponding ϵz,i is sampled from a uniform distribution with
range

[
−σz,i

k ,+
σz,i
k

]
and k = 1.3.

data from longer time periods such as a full measurement campaign. To asses this effect, the
energy scale of the experiment must be monitored over the campaign. One can then compare
the variance of the measured distribution σ2

measured with the one expected from statistical
fluctuations σ2

stat to retrieve the overdispersion related to the long-term drift

σ2
long-term = σ2

measured − σ2
stat. (3.59)

One straightforward approach to asses the time evolution of the energy scale is to evaluate
the endpoint value for each individual scan within the measurement campaign.

To summarize, the source electric potential can be described by two parameters:

• a total broadening with varianceσ2
src = σ2

z +σ2
short-term+σ2

long-term which can for example
be emulated in the final state distribution,

• and the energy loss shift ϵz describing the longitudinal inhomogeneity modifying the
response function.
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Maximum and source magnetic field

The maximum and source magnetic field affects our model calculation in multiple ways. Firstly,
the solid angle and thus the overall signal amplitude is different. While this normalization
effect does not impact the neutrino mass analysis, the scattering probabilities also differ
due to the angular integration boundary changing. This difference in scattering probabilities
changes the shape of the response function and must be taken into account when propagating
uncertainties.

In addition, both magnetic fields also impact the transmission function already in the isotropic
case as shown in eq. (3.31) leading to another shape effect to consider when propagating
uncertainties. The impact of Bmax and Bsrc on the transmission function is shown in fig. 3.29.
While Bmax directly defines the energy resolution according to eq. (3.5), Bsrc only has a minor
impact on the transmission shape.

Analyzing plane fields

Next we consider the analyzing plane fields, namely the retarding potential qU and the mag-
netic field Bana. Any overall shift of qU can be absorbed by the endpoint E0 as discussed for
the source electric potential and shown in fig. 3.25 and is thus not relevant for uncertainty
propagation. However, there could also be a variation of the retarding potential within a
single pixel with variance σ2

qU . While this effect is negligible for the field setting used for the
first two measurement campaigns, it needs to be considered for sub-sequent measurement
campaigns in the shifted analyzing plane setting discussed in detail in section 3.5.2. In case
the potential broadening needs to be included, it can be treated equivalently to the source
potential broadenings and the variances are simply added.

Like Bmax, the magnetic field in the analzing plane defines the energy resolution of the MAC-E
filter, c.f. eq. (3.5), and therefore directly impacts the shape of the transmission function as
shown in fig. 3.29.

Background overdispersion

To understand any possible background overdispersion, we have to first understand the back-
ground processes at KATRIN [71].

The dominant background component scales with the volume of the flux-tube in the spectrom-
eter. Its characteristics are in good agreement with low energy electrons generated within the
main spectrometer volume. In case these are created within the flux tube after the analyzing
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Figure 3.29: Impact of maximum, source and analyzing plane magnetic field on the transmission
function. If not stated otherwise, the values assumed are Bmax = 4.23T, Bsrc = 2.52T, and
Bana = 0.63mT.

plane, they are accelerated towards the detector and counted, indistinguishable from the
signal electrons. A possible candidate to generate these electrons are highly excited atoms,
called Rydberg atoms [72], generated by sputtering in the main spectrometer surface induced
by the decay-chain of 210Pb in the spectrometer surface. These Rydberg atoms can then re-
lease their electrons with energies typically < 100meV via ionization possibly induced by the
black body radiation of the main spectrometer surface. This process is Poisson distributed
as the sputtering events are independent, the underlying rate is constant over time and each
sputtering event creates at most a single electron that reaches the detector.

Another background comes from the intrinsic background of the FPD, dominated by environ-
mental radiation and thus simply increasing the Poissonian background rate.

The final major background component is related to stored high-energy electrons in the main
spectrometer [73]. Electrons with sufficient transversal energy created within the main spec-
trometer are trapped due to the magnetic bottle created by the MAC-E filter field configuration.
Storage conditions can mainly be broken via multiple scatterings of the electron with the
residual gas in the spectrometer. This is highly unlikely due to the ultra high vacuum con-
ditions, leading to storage times up to several hours. During the storage, the high energy
electron creates secondary electrons by ionization of the residuals gas with each scattering
process. These low-energy electrons are then eventually guided to the detector, analogous
to the Rydberg electrons, if they were created within the flux-tube past the analyzing plane.
As a single primary electron creates multiple secondaries during its storage, this leads to an
elevation of the background during this time, and a time-correlation of this background rate.
Therefore, this process is not Poissonian and leads to an overdispersion compared to the
expected Poisson variance.

To extract the overdispersion, one can measure the background distribution and model it with
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Figure 3.30: Overdispersion of the measured background counts modelled by the convolution of a
Poisson distribution with a Gaussian P ∗G compared to a plain Poissonian P .

a convolution of a Poisson distribution P with a Gaussian distribution G:

(P ∗G)(N, t;λ, σnp) = c

∫ ∞

0

µN exp (−µ)

N !
· 1√

2πσ2
np

· exp

(
−(λ · t− µ)2

2σ2
np

)
dµ (3.60)

with the Poisson rate λ, the Gaussian standard deviation σnp, the measured counts N with
corresponding measurement time t and the factor c ensuring normalization. The parameters
λ and σnp are then extracted from the background data using a distribution fit as visualized in
fig. 3.30. This Gaussian widening must then be taken into account when analyzing neutrino
mass data, effectively leading to an increased statistical uncertainty.

Background retarding energy dependence

While the background rate is assumed to be constant over the retarding energy for the small
measurement interval in neutrino mass campaigns, measurements over an interval spanning
several keV show a clear dependence of rbg(qU) [71]. Therefore, it is difficult to exclude any
dependence also in the small retarding energy interval. To approximate any shape effect in
this small qU interval, one can extend rbg from a constant to a linear function

rbg(qU) = rbg + bqU · (qU − 18575) (3.61)

with the background retarding energy slope parameter bqU .

This slope parameter can be measured with an empty source [74, 75] and then included in the
neutrino mass analysis.

51



Chapter 3 The KATRIN experiment

18540 18550 18560 18570 18580 18590
retarding energy (eV)

1.000

1.005

1.010

1.015

1.020

re
la

tiv
e 

ra
te

m2 = 1.0 eV2

bt = 15 cps / s

Figure 3.31: Effect of the Penning background compared to a shift of m2
ν to more negative values

using the measurement time distribution and model parameters similar to the second measurement
campaign.

Penning induced background

Another background systematic is related to the Penning trap between pre- and main spec-
trometer described in section 3.2. Discharges of this Penning trap create positive ions which
are accelerated into the main spectrometer. These ions then create background electrons via
ionization of residual gas or by creating Rydgerg atoms. The number of background electrons
is proportional to the number of electrons stored in the trap. Electrons in the trap accumulate
approximately linearly over time for short time intervals [40], leading to a linear increase of
the background rate:

rbg(t) = rbg + bt · t (3.62)

with the Penning slope parameter bt. As the trap is emptied when the voltage set point is
changed, the average background rate within a measurement point of duration T is

rbg(T ) =
1

T

∫ T

0
rbg + bt · t dt = rbg +

1

2
bt · T. (3.63)

Therefore, the Penning induced background rate directly follows the measuring time dis-
tribution. Since the MTD is optimized to follow the neutrino mass signal, this background
component can emulate a shift of m2

ν to more negative values as shown in fig. 3.31.

Detector systematics

Final component to discuss are systematics related to the focal plane detector [76, 77]. All
electrons creating an energy deposition that falls within a predefined region of interest (ROI),
14 keV to 32 keV for the first two measurement phases [43, 66], are counted. Therefore, any
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Figure 3.32: Relative detector efficiency depending on the retarding energy set at the main spectrometer
for pixel zero of the second neutrino mass campaign. The effect itself is on the 10−4 scale with
uncertainties at least another order of magnitude smaller.

effect that changes the fraction of electrons within the ROI depending on the voltage set point
directly impacts the spectral shape. There are four known effects of this kind:

• The ROI is not shifted according to the retarding energy. Therefore, the comparably small
change of electron energies with different retarding potential leads to a qU dependent
ROI coverage. This leads to a change of the detector efficiency ϵdetector(qU) smaller than
1% per keV which is modelled by a linear slope.

• Pile-up occurs when multiple electrons hit the detector at the same time and are not
resolved as individual events. Instead of measuring two events with energies E1 and E2,
a single event with energy E1 +E2 is detected. If E1 +E2 exceeds the ROI, neither of
the two electrons is counted. The probability for pile-up to occur depends on the total
rate, and therefore also on the retarding potential.

• In case of back-scattering, an electron that hits the detector is reflected instead of being
absorbed and, if not reflected back by the post acceleration or spectrometer fields,
is subsequently lost to the source. The probability for this to occur depends on the
retarding energy as electrons have a higher probability to escape to the source for lower
qU values.

• Finally, the FPD resolution and gain can drift over time, effectively also leading to a
dependency of the detection efficiency on the voltage set point.

The region of interest coverage as well as pile-up is corrected for using a qU dependent detector
efficiency correction shown in fig. 3.32 while the effect of back-scattering and resolution drifts
is not included in the model. The uncertainties and biases related to these effects are too small
to be of any importance for the first two neutrino mass campaigns and will not be discussed
further over the course of this thesis.

53



Chapter 3 The KATRIN experiment

3.5 Neutrino mass measurement phases

We now briefly describe the KATRIN neutrino mass measurement phases, starting with the
first two campaigns followed by any subsequent ones in an updated field setting.

3.5.1 First two campaigns

The first two KATRIN neutrino mass (KNM) measurements took place in spring and autumn
2019 respectively. This section gives a brief overview of the experimental settings and of the
statistics accumulated with these two campaigns. A detailed analysis of the data will take
place in chapter 6. Table 3.1 gives a brief summary of the quantities discussed in the following
paragraphs.

The first measurement campaign also was the first time the KATRIN system was exposed to
large amounts of tritium. This caused radioactive reactions of tritium with the so far unexposed
inner metal surface of the injection capillary [78], leading to a downward drift of the gas density
in the source and therefore also the total activity. This effect was too large to handle at nominal
gas density, but could be counteracted by repeatedly increasing the injection pressure at
a reduced gas density of about 22.2%, keeping the overall stability within ±2%. Both the
downwards trend and the upward jumps after an increase of the injection pressure are visible
in fig. 3.23a.

Over a time period of roughly one month, a total of more than 300 neutrino mass scans were
taken out of which 274 so-called golden scans were selected for the final analysis. The time
spent in the analysis interval of the neutrino mass, amounts to 521.7 h and a total of 2.0million
electrons were collected in this time with an average background rate of 292mcps.

Before the second measurement campaign, two major efforts were taken to improve the signal
to background ratio. Firstly, the main spectrometer was baked at high temperatures to reduce
the Rydberg background [71, 79]. In addition, the system was flushed continuously with large
amounts of tritium, exposing all components to the radioactive gas, and thus stabilizing the
system [80, 81]. Both measures were successful and the gas density could be increased up
to 84.5% of the maximum with a decreased average background of 220mcps. With these
parameters, a total of 361 golden scans were taken over a period of one and a half months.
This works out to 694.3 h spent in the analysis interval with a total of 4.3million electrons
collected, more than double the number of the first campaign [43].
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Table 3.1: Overview of the first two neutrino mass measurement campaigns.

1st campaign 2nd campaign

date 2019-04-10 to 2019-05-13 2019-09-27 to 2019-11-14
number of golden scans 274 361
time spent in analysis interval 521.7 h 694.3 h
gas density 22.2% 84.5%
background rate 292mcps 220mcps
total electrons in analysis interval 2.0million 4.3million

3.5.2 Sub-sequent measurement phases using the shifted analyzing plane

After the first two measurement campaigns, a short campaign was run to test a new field setting
meant to reduce the overall background rate, the so-called shifted analyzing plane (SAP) [82].
As the dominant background component scales with the volume in the fluxtube after the
analyzing plane, an effective mitigation strategy is to reduce this volume. In the SAP setting, this
is done by shifting the analyzing plane from the center of the main spectrometer downstream
towards the detector as shown in fig. 3.33. Using this technique, the background rate was
decreased by a factor of two. However, the special field setting leads to a larger inhomogeneity
of Bana and qU over the detector as shown in fig. 3.34 compared to the symmetric setting used
for KNM1 and KNM2.

This larger inhomogeneity makes it absolutely necessary to split the model into multiple parts,
one for each patch with similar field values, leading to a more complex analysis. In addition,
the strong potential gradient also introduces the need of an additional broadening σ2

qU .

The field setting, as well as its implications on the data analysis, were first tested during
KNM3a and could be compared directly to the subsequent measurement phase, KNM3b, in the
symmetric setting. As no major issues were discovered, all further measurement campaigns
were taken in the SAP setting. An overview of the settings of all measurement campaigns
completed before 2022 is summarized in table 3.2 and the cumulative number of electrons is
shown in fig. 3.35.

55



Chapter 3 The KATRIN experiment

10 5 0 5 10
z (m)

4

2

0

2

4

r (
m

)

AP SAP
"0.21 mT"
Vdown = 354 m3

"0.63 mT"
Vdown = 160 m3

SAP
Vdown = 56 m3

Figure 3.33: Fluxtube and analyzing plane for different field settings. Both the 0.21mT and the 0.63mT
are in the symmetric setting where the analyzing plane is in the center of the main spectrometer
(gray dashdotted line). The 0.21mT one is the design setting, however the 0.63mT setting was used
for the first two neutrino mass campaigns to already reduce the fluxtube volume for background
mitigation purposes. In the SAP setting, the analyzing plane is shifted towards the detector and
therefore further reduces the volume of the fluxtube after the analyzing plane (green dashdotted
line). Figure adapted from [82].

0 25 50 75 100 125 150
pixel number

1.0

0.5

0.0

0.5

1.0

1.5

qU
px

qU
 (e

V)

symmetric, = 0.04 eV
SAP, = 0.85 eV

(a) retarding potential

0 25 50 75 100 125 150
pixel number

50

25

0

25

50

B a
na

,p
x

B a
na

 (
T)

symmetric, = 0.7 T
SAP, = 44.5 T

(b) magnetic field

Figure 3.34: Retarding potential (a) and magnetic field (b) variation in the analyzing plane for the
symmetric and shifted analyzing plane setting. For both fields the inhomogeneity in the SAP setting
is at least one order of magnitude larger.

56



Chapter 3 The KATRIN experiment

Table 3.2: Overview of field setting and gas density for neutrino mass measurement campaigns com-
pleted before 2022.

campaign field setting gas density

KNM1 symmetric 22.2%
KNM2 symmetric 84.5%
KNM3a shifted analyzing plane 41.3%
KNM3b symmetric 75.1%
KNM4 shifted analyzing plane 75.4%
KNM5 shifted analyzing plane 75.5%
KNM6 shifted analyzing plane 74.1%
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Figure 3.35: Cumulative electrons detected in the analysis interval of the neutrino mass measurement
phases completed before 2022. Campaigns after KNM2 are currently being analyzed (January 2022)
and the analysis interval as well as the scan selection may still change. Figure adapted from Alessan-
dro Schwemmer.
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Analysis strategies

Next, we discuss the general analysis strategies used to infer the neutrino mass value and
uncertainty from the KATRIN neutrino mass scans.

4.1 General KATRIN likelihood

Widely used methods to infer parameter information from measurement data using a model µ
depending on parametersθ make use of the likelihood functionL(µ(θ); data)which describes
how well this set of parameters θ describes the measured data. This section derives the
likelihood function for KATRIN which will subsequently be used to infer information on m2

ν

from the data.

As described in section 3.3.4, KATRIN measures the number of counts Ni at a given retarding
energy qUi with measurement time ti. These counts can be predicted by the modelµi = µ(qUi)
as defined in eq. (3.50). Excluding systematic effects and activity drifts, this count expectation
is constant within each measurement point. In addition, the individual decays are statistically
independent. Therefore, the probability mass function (PMF) describing how probable it is to
measure Ni counts given the expectation µi is the Poisson distribution

P (Ni;µi) =
µNi
i

N !
· exp (−µi) . (4.1)

As the individual measurements at different qUi are independent of one another, the joint
PMF of all points i with voltage set points qU , times t, counts N and corresponding model
predictions µ is the product of the individual Poissonians

Pjoint(N ;µ) =
∏
i

P (Ni;µi) . (4.2)
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This gives us a function that describes the probability to measureN given our model prediction
µ. In practice, the measured counts N are known and are used to infer information on the
model rate µ(θ; qU, t) which depends on the parameter values to be inferred. Therefore, the
relationship in eq. (4.2) is flipped to arrive at the likelihood

L(θ;N , qU , t) =
∏
i

P (Ni;µ(θ; qUi, ti)). (4.3)

As the likelihood is in general not normalized over θ, it cannot be taken as a probability density
function (PDF) as-is, but as a measure of how likely a specific set of parameters θ is compared
to another one.

For a large number of counts, the Poisson distribution can be approximated with a Gaussian

G(Ni;µi) =
1√
2πNi

exp

(
−(Ni − µi)

2

2Ni

)
(4.4)

with mean µi and standard deviation √
µi ≈

√
Ni.

In KATRIN, the parameter of interest to infer from the data is the neutrino mass squared m2
ν .

In addition, the endpoint value, also absorbing any potential offsets, E0, the overall signal
normalization AS and the constant background rate rbg must be inferred directly from the
data. This gives us the basic model used for a likelihood based analysis

µ(θ; qU, t) = AS · C ·
∫ +∞

−∞

dΓ

dE
(E;m2

ν , E0) ·R(E; qU) dE + rbg (4.5)

using the model derived in section 3.3.4 and the parameters θ = {m2
ν , E0, AS, rbg}. At this

point we note that it is convenient to fit m2
ν instead of mν as the likelihood is roughly Gaussian

in m2
ν which allows using certain simplifications as will become clear in section 4.3.

4.2 Data combination

The likelihood derived in eq. (4.3) assumes the measurement of a single spectrum with i points.
In practice, the KATRIN data is segmented both spatially due to the 148 pixels of the FPD and
in time as multiple scans are taken. This section discusses how the data can be combined into
a single likelihood, while ensuring that the model prediction is still sufficiently accurate.

4.2.1 Detector pixels

First, we discuss combining the spectra from the 148 pixels of the FPD. In principle, each
measured spectrum is independent of the other spectra, allowing us to simply extend the
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likelihood product by another dimension

L(θ;N , qU , t) =
∏
px

∏
i

P (Npx,i;µ(θpx; qUpx,i, ti)) (4.6)

where the outer product loops over all pixels and the inner one over all voltage set points.
In general, some parameters, such as the magnetic field in the analyzing plane Bana and the
retarding potential qU depend on the pixel number, and others, like the neutrino mass squared,
are equal for pixels. Therefore, the overall parameters θpx differ for the pixels, and also the
model prediction is calculated for each pixel individually. Consequently, this approach is
referred to as the multi-pixel combination.

While the multi-pixel combination is the most general, it is also the most difficult and compu-
tationally expensive as it has the most data points and model evaluations possible. It is always
favourable to reduce the dimensionality as much as possible, while not significantly harming
the model accuracy. To do so, the data spectra of multiple pixels within a patch are combined
into a single spectrum by adding the counts and averaging the times. The model prediction of
the patch is then given by sum of the individual model predictions

µpatch =
∑

px
µpx. (4.7)

which can also be written as ∑
px

µpx = npx · ⟨µpx⟩ (4.8)

using the average over all pixel models ⟨µpx⟩. An exact calculation of this average is to average
the individual functions. However, if the differences of the individual functions do not deviate
significantly from a linear function, this can be approximated by averaging the parameter
values and only evaluating a single model:

⟨µpx⟩ = ⟨µ(θpx)⟩ ≈ µ(⟨θpx⟩). (4.9)

A hybrid approach where the parameters are averaged for parts of the model, such as the
differential β-spectrum, and the functions for other parts, such as the transmission function,
is often a good compromise.

Using our patch-wise model prediction, our likelihood product is now

L(θ;N , qU , t) =
∏

patch

∏
i

P (Npatch,i;µpatch). (4.10)

In the extreme case where each patch consists of a single pixel, we are back at eq. (4.6). The
other extreme is to group all pixels into a single uniform detector patch. As radial inhomo-
geneities are typically one order of magnitude larger than azimuthal ones, grouping pixels
into rings or ring-like patches is a valid middle ground. Different patch segmentations used in
KATRIN data analysis are visualized in fig. 4.1.
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Figure 4.1: Visualization of various detector patch segmentations.

4.2.2 Scans during a single measurement campaign

During a measurement campaign, the β-spectrum is repeatedly measured by scanning the
same set of voltage points qUi defined by the measuring time distribution as shown in fig. 3.16.
Each scan typically takes between two and four hours, and there are several hundreds of scans
during each campaign as summarized in table 3.1.

In full analogy to the pixel segmentation, we can write the complete likelihood product by
adding another dimension

L(θ;N , qU , t) =
∏
s

∏
i

P (Ns,i;µ(θs; qUs,i, ts,i)) (4.11)

where the outer product now loops over the individual scans s and the inner one over the
individual voltage set points i.

During a single measurement campaign, all slow control parameters such as the gas density
or the magnetic field values, are typically kept constant with excellent stability at or below the
percent level. In addition, the reproducibility of the high voltage set points is excellent at the
parts-per-million level [41, 42, 83]. Therefore, combining the data by summing the counts and
measurement time while averaging the model parameters is an excellent approximation. This
approach to combine all scans into a single spectrum is referred to as stacking in KATRIN.

In case the MTD is changed during a measurement campaign, but all other slow control pa-
rameters remain stable, the individual points qUs,i can no longer be grouped simply by their
index i, but a more involved clustering algorithm is required. While in the regular stacking
case, when the MTD consists of nMTD points, the stacked spectrum also always consists of
nMTD points, the clustering of m MTDs, each with nMTD,m points leads to a combined spectrum
with

max
m

(nMTD,m) ≤ nclustered ≤
∑
m

nMTD,m (4.12)
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points. Note that in this clustering approach still a single averaged model is used, which is only
evaluated for more retarding potentials. Clustering spectra that all follow the same MTD leads
to the same result as the naive stacking.

4.2.3 Measurement campaigns

While the slow control parameters are kept stable during a single measurement campaign,
this must not be true for different campaigns. This can for example be seen in the drastically
different gas density between the 1st and 2nd measurement phase, c.f. table 3.1. Therefore,
clustering or stacking spectra from different periods is not possible in general.

Instead, the individual periods can be clustered (stacked), but the overall likelihood must be
expanded by the period dimension

L(θ;N , qU , t) =
∏

period

∏
i

P (Nperiod,i;µ(θperiod; qUperiod,i, tperiod,i)) (4.13)

where the outer product now loops over all measurement campaigns and the inner one over
the clustered (stacked) points within this campaign. This combination approach is significantly
less harmful than treating each scan independently as indicated in eq. (4.11) since there are
only a few periods, but several hundreds of scans in each period.

4.2.4 Combined likelihood function

Using the methods described in the previous sub-sections, we can now write out a generic
likelihood function to combine KATRIN data:

L(θ;N , qU , t) =
∏

period

∏
patch

∏
i

P (Nperiod,patch,i;µ(θperiod, patch; qUperiod,patch,i, tperiod,i)).

(4.14)

This allows for model parameters to differ between each measurement campaign as well as
each detector patch. Counts are summed over patches and over all scans within a period for
each point i. The measurement time is equal for all detector patches, but summed over the
individual scans within a period. Finally, the retarding energies are averaged within a patch
and clustered within a campaign, where the corresponding set points that fall into the same
cluster are also averaged.

Any extreme case can be seen as a limit of this likelihood function. For example, analyzing a
single scan with a uniform detector simply means that the two outer products only have one
factor. On the other extreme, one could associate each individual scan with its own period and
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each pixel with its own patch. In practice, one will typically group all measurement campaigns
into their own period, and either use a uniform detector or a radial segmentation for the
patches.

4.2.5 Effects of model averaging

To conclude this section, we briefly discuss the effects of averaging on the model and why it is
in general not possible to average over all periods and detector patches.

When averaging the input parameter values, one effectively neglects a broadening effect. If
this broadening is in the retarding energy dimension, it directly translates to a negative m2

ν

bias. In any case, the model is not a direct representation of the data, which leads to worse
− logL values. However, when neither the m2

ν nor the − logL value is significantly biased,
averaging parameter values significantly speeds up the calculation time as the number of
points in the likelihood and the number of model evaluations is reduced.

Averaging the corresponding functions instead of the parameter values includes the broaden-
ing effect into the model. This means in general m2

ν and − logL remain unbiased. But, the
broadening leads to a worse effective (energy) resolution thus slightly worsening the overall
sensitivity. The computational benefit is less compared to directly averaging the parameter
values as the number of model evaluations is not reduced, only the number of points in the
likelihood is.

When constructing the combined likelihood, the general approach is to average as much as
possible without biasing m2

ν and − logL.

4.3 Parameter inference and interval estimation

Having defined the likelihood function, we can now make use of it to estimate which parameters
best describe our data (parameter inference) as well as which set of parameters is allowed
given the measurement (interval estimation).

4.3.1 Method of maximum likelihood

We start with probably the most widely applied method based on the likelihood function:
the method of maximum likelihood. As the likelihood L(θ) is a measure how probable a
given set of parameter values θ is given the measured data, we can find the most likely values
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by maximizing L(θ). This is mathematically equivalent to minimizing − logL(θ) which is
numerically favourable for two reasons: First, the product of many numbers less than one
quickly leads to numerical zero, whereas the sum of multiple numbers of O(1) is numerically
stable. Secondly, without loss of generality, most algorithms are designed for minimization,
not maximization.

At this point it is worth pointing out that minimizing − logL is equivalent to the well known
χ2 minimization in case the PDF of each data point is a Gaussian:

− logL = − log
∏
i

1√
2πNi

exp

(
−(Ni − µi)

2

2Ni

)
(4.15)

= −
∑
i

log
1√
2πNi

exp

(
−(Ni − µi)

2

2Ni

)
(4.16)

∝ −
∑
i

log exp

(
−(Ni − µi)

2

2Ni

)
(4.17)

=
1

2

∑
i

(Ni − µi)
2

Ni
(4.18)

=
1

2
χ2. (4.19)

Knowing the most likely values of θ by minimizing − logL(θ), we can now ask which other
values are generally compatible with the data. In Frequentist probability, this question is
answered by finding the confidence interval of a given parameter θ at a specific confidence
level (CL) α. The confidence interval is designed such that α of the intervals cover the true
value of θ would the measurement be repeated infinitely often. Note that it by design cannot
make any statement on the outcome of a specific measurement, but is only valid in the context
of an ensemble with infinite samples.

With this definition of the confidence interval, we can derive a Monte Carlo method to approxi-
mate the estimation of it. Given our best-estimate of the parameter values and the PDF of each
data point in the spectrum, we can generate N random statistically fluctuated data sets. We
then fit each of these samples and store the best fit values θsample. The distribution of each of
the parameter values describes the statistical uncertainty and we can cut 1− α

2 samples from
the left and right to retrieve the central confidence interval.

While this Monte Carlo method is general and always applicable, it is also computationally
involved as it requires at least several thousands of minimizations. Therefore, one often makes
use of Wilks’ theorem [84] which states that the distribution of the test statistic

−2 log

(
L(H0)

L(H1)

)
= 2 · (logL(H1)− logL(H0)) =: 2∆ logL ≥ 0 (4.20)
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asymptotically approaches the χ2
n distribution with the null and alternative hypothesis H0

and H1 respectively. The number of degrees of freedom n is equal to the difference in dimen-
sionality of the two hypotheses, i.e. the difference in number of free parameters.

One notable example is theχ2
1(x)distribution where the cumulative distribution function (CDF)

includes 1σ of the values for x ≤ 1, 2σ for x ≤ 4 and so forth. In general, to retrieve the
value ∆D that corresponds to a confidence level α, one applies the inverse CDF of the χ2

n

distribution for the corresponding degrees of freedom n to α.

In our case of interval estimation, we identify the null hypothesis with the parameter values
that best describe the data and the alternative hypothesis with another set of values which
we test to see if they fall into our confidence interval. For example, say we have the best fit
values θbest and are interested in the 1σ confidence interval of a specific parameter θ. Applying
Wilks’ theorem, this means that we search for values of θ such that 2∆ logL = 1 Note that
the likelihood must be maximized with respect to the remaining parameters θother for each θ
to account for possible correlations. This means we have transformed the full Monte Carlo
method into a root searching problem of the form

D(θ)−∆D = 2 · (logL(θ,θother,best)− logL(θbest))−∆D
!
= 0 (4.21)

where ∆D = 1 for the 1σ interval. This method of maximizing the likelihood with respect to
the remaining parameters while scanning along the parameter of interest is referred to as the
profile likelihood.

To apply the described methods to KATRIN data, we need to define likelihood, model and the
inferred parameters:

• Our likelihood is defined by eq. (4.14) using the Poisson (if applicable in its Gaussian
approximation) distribution for the measured counts at given retarding energies and
measuring times.

• The model is the integrated β-spectrum combined with a background rate.

• In the simplest case, the only parameters with respect to which we need to minimize
our likelihood, are those which always need to be inferred from the data, i.e. θ =
{m2

ν , E0, AS, rbg}. Typically, m2
ν is the only parameters shared over period and patch,

and E0, AS and rbg are independent for each period and patch, resulting in 1+3 ·npatch ·
nperiod free parameters.

As a first step, we fit our data to retrieve the most likely values of m2
ν , E0, AS and rbg and the

corresponding model prediction as shown in fig. 4.2 together with the normalized residuals 1.
1The normalized residuals are defined as the data value minus the model prediction divided by the error of the

data point. For Gaussian-distributed data this is simply ydata−ymodel
σdata

. In case of Poisson-distributed data, it can

be defined as 2 ·
[
Ndata log

(
Ndata
Nmodel

)
+Nmodel −Ndata

]
.
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Figure 4.2: Best fit using the maximum likelihood method with normalized residuals on a dummy data
set.

Next, we obtain the confidence interval for our parameter(s) of interest, in the KATRIN case
m2

ν , either via the Monte Carlo method or using the profile likelihood as shown in fig. 4.3. In
this case, the 1σ interval is identical, showing good applicatility of Wilk’s theorem. This can be
underpinned by performing a coverage test as shown in fig. 4.4. Here, statistically randomized
data is once fitted with a free m2

ν value, and once with m2
ν fixed to the MC truth of 0 eV2. When

Wilks’ theorem holds, as is the case in this study, the distribution of the ∆2 logL values follows
the χ2

1 distribution.
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Figure 4.3: 1σ confidence interval of the neutrino mass squared for a dummy dataset using the Monte
Carlo method (bottom) and the profile likelihood (top). In this case, the 1σ interval is identical,
showing good applicability of Wilks’ theorem.
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Figure 4.4: Coverage test comparing the ∆2 logL of Monte Carlo samples to the χ2
1 distribution. As

the two match, Wilks’ theorem is fulfilled in this simple case study. The gray dotted line indicates the
critical ∆2 logL value corresponding to the 1σ interval which is compatible with 1 as expected.
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4.3.2 Systematic uncertainties

So far we have only considered the statistical error of the individual data points in our interval
estimation. In addition to statistical uncertainties on the data, there can be systematic uncer-
tainties on the model estimation. These can often be described by additional parameters θsyst
where their best-knowledge value µsyst comes with a non-negligible uncertainty. We can see
that many of the systematic uncertainties in the KATRIN experiment described in section 3.4
are of this form. Typical examples are the column density, the magnetic fields or the source
potential parameters, but also background parameters such as the retarding energy and the
Penning slope. In the most simple and common case, each parameter uncertainty is just a
Gaussian standard deviation σsyst, but in principle any PDF can describe each parameter. We
now explain three different approaches to include this type of systematic uncertainty in a
Frequentist analysis frame.

Nuisance parameters

The most common and classical approach is the so-called nuisance parameter or pull term
method. Here, in addition to the free parameters that must be estimated from the data,
the systematic parameters θsyst are included in the likelihood maximization. To consider
the knowledge of their PDF, the likelihood is multiplied with each PDF. We have therefore
introduced nsyst new parameters in our optimization, but also nsyst points in our likelihood,
one for each PDF. Therefore, the number of degrees of freedom has not changed, but the
additional freedom to modify θsyst can increase the width of our interval estimation for the
parameter(s) of interest.

In addition to increasing the width of the estimated confidence interval, as θsyst are included
in the likelihood it is possible to learn from the data and improve the estimate on θsyst. This
can lead to a change of the best estimate µsyst as well as a narrowing of the width of their
PDF. In case µsyst changes, the best fit value of our parameter(s) of interest will also change
accordingly.

In principle, the nuisance parameter method can be used both with the Monte Carlo approach
for interval estimation as well as the profile likelihood. However, in practice, the profile likeli-
hood is more common. Figure 4.5a compares the profile likelihood m2

ν for the same dummy
dataset as in fig. 4.3 once with statistical uncertainties only, and once including an additional
nuisance parameter. One can nicely see the expected widening from including an additional
systematic uncertainty.
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Figure 4.5: Effect of including an additional model uncertainty in the form of one parameter with a
Gaussian uncertainty. In this simple case the nuisance parameter (a), Monte Carlo (b), and covariance
matrix (c) method give identical results of 0.000± 0.121 eV2 compared to the result with statistical
uncertainties only of 0.000± 0.102 eV2.

Monte Carlo method

Next, we will discuss how to include systematic uncertainties by extending the Monte Carlo
method. As optimizing and utilizing this approach for KATRIN was a major effort over the
course of this thesis, all details are given in chapter 5 and this paragraph only serves as a basic
overview.

In addition to sampling the data points randomly from their PDF, one can also sample the
model parameters θsyst according to their corresponding PDFs that describe their systematic
uncertainty. This additional variation will lead to an overall widening of the distribution of our
fit parameters. However, as all fits are performed on Monte Carlo data, it is not possible to
learn from the data. Thus, the best fit as well as the knowledge on θsyst cannot change.

Therefore, we must modify the method slightly. When updating our model in each iteration, in
addition to fitting the random Monte Carlo spectrum, we also fit the data with our updated
model. This data fit gives us a likelihood value which describes the compatibility of our up-
dated model with the data. To include this information, we weight the distribution of our fit
parameters by this likelihood value. We can also weight our sampling distribution of each
θsyst with this likelihood to gain information on the parameters with systematic uncertainties
from the data. In section 5.2 we will show that this weighting leads to identical results as the
nuisance parameter method.

The effect of introducing an additional systematic uncertainty in the form of a single parameter
on our fit parameter distribution using our dummy data set is shown in fig. 4.5b. As with the
nuisance parameter approach, the overall distribution is widened. The updated best fit value
can be calculated using the weighted median of our m2

ν samples and is also identical to the
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one of the nuisance parameter method.

Covariance matrix

The final method to include systematic uncertainties we want to discuss is the covariance
matrix approach [85]. To be able to apply this method, our data points must follow a Gaussian
PDF thus allowing us to use the χ2 minimization. Defining the residual vector r = N − µ and
the diagonal variance matrix Vstat = diagN , we can re-write our χ2:

χ2 =
∑
i

(Ni − µi)
2

Ni
= r⊺V −1

stat r. (4.22)

Next, we calculate the covariance matrix that describes our systematic uncertainties. For
this, similar to the full Monte Carlo approach described in the previous paragraph, we sample
random values of θsyst according to their PDF. However, instead of performing a full fit with
the updated model, we simply evaluate the prediction for each data point given this model
µsample. After calculating nsamples ≳ 1000 of these npoints model predictions, we end up with a
nsamples × npoints matrix of values. We can now calculate the npoints × npoints covariance matrix
Vsyst along the nsamples dimension which describes the distribution of the model predictions
introduced by the variation of θsyst in their multi-normal approximation.

This covariance matrix can now be included in our representation of the χ2 minimization
shown in eq. (4.22):

χ2 = r⊺ (Vstat + Vsyst)
−1 r. (4.23)

For this approach to be valid:

• Our data points must follow a Gaussian distribution to good approximation, otherwise
the log-likelihood cannot be described by a generalized χ2.

• The calculated model predictions from the variation of θsyst must be well described by
the multi-normal distribution so the calculated covariance matrix accurately describes
the uncertainty. This is typically the case when the sampling distributions are (multi-)
normal and the introduced change of the model prediction is approximately linear at
each point. For relatively small systematic uncertainties this is the case as the model
variation can be described by the first two terms of its Taylor expansion.

Applied to our dummy dataset, the covariance matrix method gives the exact same results as
the nuisance parameter approach as shown in fig. 4.5c.
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4.3.3 Frequentist belt construction

So far, all estimations we have made were done on the fit parameter values θfit. This means,
all confidence intervals we have constructed were constructed under the assumption that
our best fit values θfit are also the true values θtrue. However, the question we are usually
interested in is which true parameter values could have lead to our fit result? not which other
parameter values are compatible with our measurement if our fit result is the truth?

This difference becomes especially clear in case there are physical boundaries on some pa-
rameters. For KATRIN, the parameter of interest m2

ν can by definition only be positive. In our
Frequentist fit however, we allow for negative m2

ν values. Estimating a confidence interval for
the true value of m2

ν can clearly not be done by assuming a negative fit result to be the truth.
Instead, we need to modify our confidence interval construction using the Frequentist belt
construction.

To construct the belt, we follow this procedure:

1. Assume a true value of the parameter of interest, say m2
ν,true = 0.0 eV2.

2. Using this value for the parameter of interest, the PDF of all data points, and the best
knowledge of all other parameters generate an Asimov Monte Carlo spectrum represent-
ing the data.

3. Using this underlying spectrum, calculate the profile likelihood or Monte Carlo samples
of m2

ν,fit using one of the methods in section 4.3.2.

4. Accept a percentage of the m2
ν,fit according to your confidence level α and an ordering

principle that defines how to sort the m2
ν,fit values. This gives a lowest and highest value

for m2
ν,fit given this m2

ν,true. The exact approach differs for each of the belt construction
methods described in the following paragraphs.

5. Repeat steps 1-4 for different values of m2
ν,true.

6. Find which values of m2
ν,true are compatible with your best fit of the data. This is done by

checking for which m2
ν,true our given m2

ν,fit lies within the accepted interval.

A graphical representation of various belt constructions is shown in fig. 4.6. By construction,
all belts have correct coverage, meaning the derived interval in m2

ν,true from the specific m2
ν,fit

will contain the true value in α cases for any m2
ν,true.
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Figure 4.6: Comparison of various belt construction methods on a dummy dataset assuming m2
ν,fit =

0.2 eV2 which leads to an upper limit in all cases. The one-sided Nemyan approach leads to empty
intervals for m2

ν,fit ≲ −0.49 eV2 and by definition cannot lead to a closed interval. The two-sided
Neyman method switches to a closed interval for m2

ν,fit ≳ 0.55 eV2 but can also give an empty
interval for m2

ν,fit ≲ −0.65 eV2. Both the method of Feldman Cousins and Lokhov and Tkachov
switch between limits and closed intervals seamlessly and fully avoid empty intervals.
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Neyman

In the classical Neyman construction [86] the m2
ν,fit values are simply ordered by their value.

One can then pick any fraction α of these values, but the only two options generally used are
the one-sided Neyman construction where the lower (upper)α are accepted and the two-sided
Neyman construction where the central α are accepted. For a typical 90% CL, this means we
reject the upper (lower) 10% for the one-sided approach, and the lower and upper 5% for the
two-sided approach. Note that these values can once again be calculated using the Monte
Carlo method from individual samples or using the cumulative of theχ2

1 distribution and Wilks’
theorem to calculate them from the profile likelihood.

The one-sided and the two-sided Neyman construction are shown in fig. 4.6a and fig. 4.6b
respectively. We can see disadvantages for the two approaches when trying to measure the
neutrino mass squared. Both approaches can lead to empty confidence intervals for sufficiently
negative m2

ν,fit values. This happens in 1 − α of the cases for the one-sided and 1−α
2 of the

cases in the two-sided construction by definition. Quoting an empty interval however is
unsatisfactory, especially after performing a multi-year physics experiment. The one-sided
Neyman method also has the disadvantage of never leading to a closed interval in m2

ν,true, no
matter how large m2

ν,fit.

Feldman-Cousins

To solve these issues, Feldman and Cousins introduced their unified approach which seamlessly
swaps between limits and closed intervals and avoids empty intervals [87]. Instead of ordering
by the plain value of m2

ν,fit, a new test statistic

Λ(m2
ν,fit) =

L(m2
ν,true)

L(m2
ν,fc)

(4.24)

is introduced where m2
ν,fc = max(m2

ν,fit, 0) is the best-fit value bound to the physical region.
In practice, as logL is minimized, it is often favourable to use

log Λ(m2
ν,fit) = logL(m2

ν,true)− logL(m2
ν,fc) (4.25)

instead.

The confidence interval is now chosen such that

1. α of the m2
ν,fit are contained, and

2. Λ(m2
ν,lower) = Λ(m2

ν,upper).

73



Chapter 4 Analysis strategies

As this is significantly more involved than the initial Neyman method, let us walk through the
process for both the Monte Carlo and the profile likelihood method to calculate these intervals
starting with the Monte Carlo approach.

For a given m2
ν,true, many random Monte Carlo spectra are generated. For each spectrum,

we calculate log Λ according to eq. (4.25) by once fitting with m2
ν = m2

ν,true and once with a
free neutrino mass squared to obtain m2

ν,fit. In case the best-fit is negative, we fix m2
ν to zero

and run a third optimization. These two or three minimizations allow us to calculate the test
statistic for the given sample log Λsample. We now order our samples by log Λsample and accept
the fraction α with the lowest log Λ. This is shown assuming a unit Gaussian in fig. 4.7a. The
effect of the introduced test statistic is clearly visible: For positive values of m2

ν,fit, the usual
parabola form of logL is obtained. This flattens to a linear function for negative m2

ν,fit and goes
towards flat zero for m2

ν,true → 0. This is explained by the fact that logL(m2
ν,true) =: logL(0)

as well as logL(m2
ν,fc) =: logL(0) for negative best fit values.

Next, let us investigate how to construct the Feldman Cousins interval from the profile likeli-
hood [88]. For each m2

ν,true we first calculate the profile likelihood on the Asimov spectrum
as usual. In addition, we always need the profile assuming m2

ν,true = 0 which we subtract
from the current likelihood profile for negative m2

ν,fit. The resulting log Λ profiles are shown in
fig. 4.7b once again assuming a unit Gaussian. The lower and upper bounds in m2

ν,fit are now
calculated by performing a root search which ensures log Λlower = logΛupper and finds the
approriate m2

ν,lower,m
2
ν,upper such that

0.5 ·
(

CDFχ2
1
(2 logL(m2

ν,lower)) + CDFχ2
1
(2 logL(m2

ν,upper))
)
= α (4.26)

once again making use of Wilks’ theorem for coverage. Note that in addition to Wilks’ theorem,
we also assume that the likelihood value for m2

ν,1 given Asimov data generated with m2
ν,2 is the

same as the likelihood value for m2
ν,2 given Asimov data generated with m2

ν,1 by making use of
the profile likelihood for a single truth, instead of generating multiple samples and inserting
the truth.

The resulting belt is shown in fig. 4.6c where we can see that empty intervals are avoided and
upper limits naturally turn into closed intervals for large m2

ν,fit.

Lokhov-Tkachov

While the method of Feldman and Cousins solves all needs of a physicist from a statistical
point of view, the feature of improved upper limits for more negative m2

ν,fit values can be
seen critically for direct neutrino mass measurements where neglected systematics often
lead to more negative m2

ν,fit. Therefore, this is avoided in the method of Lokhov and Tkachov
specifically designed for this type of experiment [89].
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Figure 4.7: Test statistic using the Method of Feldman and Cousins as defined in eq. (4.25) for the
unit Gaussian once using Monte Carlo samples (a) and once from the profile likelihood (b). Both
cases show the test statistic for three different true neutrino mass squared values. For the profile
likelihood, the dashed line indicates the unmodified profile likelihood and the solid line the test
statistic retrieved by subtracting the profile likelihood for m2

ν,true = 0.

For all m2
ν,true below the sensitivity of the experiment, a one-sided Neyman construction cut-

ting 1 − α from the right is performed. Above the sensitivity, a regular two-sided Neyman
construction is applied instead. The sensitivity is the m2

ν,true value for which the lower bound
of the two-sided Neyman construction coincides with zero.

In fig. 4.6d we can see the effects of this construction. Negative m2
ν,fit do not improve the

upper limit compared to the sensitivity. The hard switch to a two sided construction above the
sensitivity leads to a kink in the belt at this value. Like the method of Feldman and Cousins,
empty intervals are avoided and closed intervals come naturally for large m2

ν,fit.

4.3.4 Bayesian inference

In contrast to our Frequentist methods described in the previous sections, Bayesian inference
assigns direct probability values to the parameters measured from the specific dataset. To do
so, it makes use of Bayes’ theorem

P (A|B) =
P (B|A)P (A)

P (B)
(4.27)
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to rewrite our likelihood

L(θ) = P (data|θ) = P (θ|data)P (data)
P (θ)

(4.28)

⇒ P (θ|data) =
P (data|θ)P (θ)

P (data)
(4.29)

=
L(θ)P (θ)∫
L(θ)P (θ) dθ

(4.30)

into an expression that defines the probability of our parameter values given the measured
data. As we have discussed the likelihood in detail in the previous parts, we only briefly discuss
the other components of eq. (4.30) now [90].

• P (θ) is the prior distribution that allows incorporating any existing knowledge on θ.
This could for example be any PDF describing systematic uncertainties, but can also be
left uninformative, most commonly by using a constant distribution, the so-called flat
prior.

• P (θ|data) is the posterior distribution, retrieved by updating the existing prior knowl-
edge with the information contained in the likelihood, typically via a Markov Chain Monte
Carlo algorithm. This distribution is the complete result containing all information of
the Bayesian analysis as it is the direct joint PDF of our measured parameters θ. To, for
example, retrieve the result for a single parameter, one would marginalize the posterior
distribution by integrating it over all other parameters. This one dimensional distribution
is then used to construct any credible intervals, some common ones being the central or
one-sided credible interval at a given credibility level (such as 90% or 1σ).

• Finally, the factor
∫
L(θ)P (θ) dθ ensures normalization of our posterior probability

distribution.

In a KATRIN neutrino mass analysis, one would typically use flat priors in E0, AS and rbg and
include any systematic uncertainties on other parameters with the corresponding prior. The
prior to use for the neutrino mass is often a topic for discussion, but the most common options
are flat in m2

ν to directly compare to a Frequentist analysis, or flat positive in m2
ν to ensure only

values in the physical region.

For completeness, we note that Bayesian and Frequentist intervals contain different informa-
tion and cannot be compared directly in general, although they may match for simple cases.
This thesis focuses on a Frequentist analysis, only making brief use of Bayesian inference for a
proof-of-concept in section 7.5.1.
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Figure 4.8: Distribution of −2 logL (a) and p-values (b) assuming an underlying χ2
24 distribution and a

random best fit value (orange dashed line). The fraction of −2 logL values above the data fit value
define the p-value.

4.4 Goodness of fit

Another question typically asked is how well does the model describe the data? This can be
answered by a goodness of fit test statistic. So far, we have only used the likelihood function to
find the set of parameters that best describe the data, assuming an underlying model. However,
this best estimate may still not describe the data at all if our model assumption is wrong.

To get an estimate if this is the case, we once again make use of a Monte Carlo method. As-
suming our model, we generate statistically randomized spectra and fit each of them. For
each sample, we store −2 logLsample. This gives us the expected distribution of −2 logLsample
if our model describes the data, where higher values describe the data worse by definition.
Comparing the value we get from our real data fit with the expected distribution, we can
calculate how probable it is to get a −2 logL value as large as the one of our data fit if our
model would describe the data. This quantity is referred to as the p-value of the fit and it
follows a uniform distribution between zero and one. The absolute −2 logL values and their
relation to the p-value is visualized in fig. 4.8.

For aχ2 minimization,−2 logL =: χ2 follows aχ2
ndof distribution with ndof degrees of freedom

defined as the number of data points minus the number of free parameters. Therefore, instead
of estimating our −2 logL distribution, we can directly make use of χ2

ndof and calculate the
p-value from the cumulative. This calculation can often be used as approximation, even when
the χ2 minimization is not performed directly.
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4.5 Treatment of negative neutrino mass squared values

Any negative value of m2
ν is unphysical. However, in a Frequentist analysis, one typically allows

for negative values of m2
ν,fit and only avoids the unphysical region when constructing the

confidence belt by assuming m2
ν,true ≥ 0 eV2. Negative m2

ν,fit then lead to upper limits on
m2

ν,true or empty intervals, depending on the specifics of each method.

In any case, to allow m2
ν,fit < 0 eV2 in the fit, the part of the phase space factor of eq. (3.15)

including mν √
ϵ2 −m2

ν ·Θ(ϵ−mν) (4.31)

must be adapted. The simplest adaptation is to only set mν = max(0,mν) in the Heaviside
function and otherwise keep the formula as-is. One can observe that this leads to a slightly
asymmetric likelihood, with σlower > σupper for m2

ν ≈ 0 eV2. This means one will always
have to at least calculate the profile likelihood to retrieve the asymmetric errors, and possibly
perform a coverage study to ensure applicability of Wilks’ theorem, but does not introduce
any fundamental statistical issues. This is especially true, as a Frequentist belt construction is
performed in the last step to convert m2

ν,fit to an interval in m2
ν,true.

However, to simplify the analysis, one can opt to modify the phase space for negative m2
ν such

that the likelihood is symmetric around zero by construction. One such extension has been
used to analyse the Mainz experiment [32]. It uses the phase space(

1 +
µ

ϵ
exp

(
−1− ϵ

µ

))√
ϵ2 −m2

ν ·Θ(ϵ+ µ) (4.32)

with µ = −km2
ν where the factor k depends on the specifics such as the statistical sensitivity

of the experiment and must be derived from a Monte Carlo simulation [62].

As the negative m2
ν regime is unphysical in any case, the choice is up to the individual analysis

how to extend the phase space into it, as long as it is use consistently and correct error estima-
tion and coverage is ensured. All results in this thesis use the nearly unmodified phase space
with asymmetric errors in m2

ν .

In a Bayesian analysis, it is straightforward to exclude the unphysical regime by setting a prior
on m2

ν which is zero for m2
ν < 0 eV2.
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Monte Carlo propagation of

uncertainty

The Monte Carlo method to propagate uncertainty briefly described in section 4.3 was devel-
oped in collaboration with Martin Slezák and optimized for the usage in KATRIN in the course of
this thesis. This chapter will give a detailed description of the methods, a validation by means
of comparing to the nuisance parameter approach and a description of how to practically
apply the technique in KATRIN [91, 92].

5.1 Method description

Basic idea of the Monte Carlo propagation of uncertainty is to repeat the full fit procedure, with
different parts randomized in each step. In this sense, it is based on the Frequentist concept of
probability, as it creates thousands of randomized experiments that never took place to derive
confidence intervals for the parameters of interest.

5.1.1 Statistical uncertainty

Propagating statistical uncertainty using Monte Carlo samples is a well known ensemble
method. The general procedure is to generate an Asimov spectrum which represents the data
to our best knowledge. Therefore, it must include the exact values for the retarding energies
and measuring time, but also the best estimate for the model parameters such as the magnetic
fields, the gas density in the source, and the neutrino mass squared.

While the measuring time distribution and the slow control parameters are known or measured
using external calibrations, the fit parameters {m2

ν , E0, AS, rbg} can only be estimated from
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the data. Therefore, the first step is to fit the data with these parameters free (and whatever
segmentation over time and detector is used) and get a best estimate of their central values.
With all model parameters estimated, the Asimov spectrum can be calculated.

This Asimov spectrum is now fluctuated statistically according to the PDF of the data points.
Each randomized spectrum is then fit with the same fit parameters, storing the values of each
sample θsample. The resulting distribution of each parameter is a direct result of the statistical
fluctuation of the data points and thus represents the statistical uncertainty of each parameter.
Once can then derive quantities such as the central 1σ interval and the corresponding σlower /
σupper uncertainties from these distributions.

The best fit does not change from the randomization as no additional information is drawn
from the data compared to the initial fit. The quantity of the resulting distributions that
corresponds to the best fit is the median, which is not affected from statistical fluctuations.
This corresponds to the intuition of half the fluctuations moving the fit parameter upwards
and half of them downwards. Using the mean is not a good estimate, as the lower and upper
distribution width does not necessarily coincide, i.e. σlower ≠ σupper in general. In fact, the
KATRIN likelihood using the differential spectrum as-is for negative m2

ν values shows σlower >
σupper for m2

ν,best = 0 eV2.

Let us summarize the steps again:

1. Fit the data to get an initial estimate on the free parameters.

2. Generate an Asimov spectrum using the best knowledge of the data and the best fit of
the free parameters from 1.

3. Statistically randomize the Asimov spectrum according to the PDF of the data points.

4. Fit the randomized spectrum to get the fit parameter values θsample.

5. Repeat steps 2 to 4 to get the distribution of θsample.

6. Derive confidence intervals from the distribution, the best fit is unaffacted and described
by the median of the distribution.

5.1.2 Systematic uncertainty

Next step is to discuss the Monte Carlo propagation of systematic uncertainties. In this case,
we have an uncertainty on the model parameters themselves, which can be described by some
PDF. Our goal is to propagate the uncertainty of the model parameters into an uncertainty on
our fit parameters via propagation of distributions.
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To this end, we first need an initial estimate of our fit parameters and a corresponding Asimov
spectrum as in the previous case with statistical uncertainty. Now, instead of randomizing the
data points in the Asimov spectrum, we vary the model according to the systematic uncertainty
and fit the unvaried Asimov spectrum. The resulting distribution in our free parameters from
fitting with different models comes from the initial systematic uncertainty on the model itself.
At this point it makes sense to mention that this is equivalent to generating a new Asimov
spectrum with varied model parameters, and fitting it with the inital unvaried model, as long
as the sampling PDF is symmetric.

With this method, the initial systematic uncertainty is propagated to our fit parameters. How-
ever, the data itself also has information on the parameters with systematic uncertainty. To
include this, we fit every model with a given set of values for the systematic parameters to
the data and store the likelihood value Lsample. This likelihood is a measure how well this
specific model describes the data. Therefore, we will weight our fit parameter distribution
with the corresponding likelihood value to include information from the data. In case the
calibration is much more precise than any information in the data, the likelihood values will
be nearly identical and have no impact on the resulting distribution. This is very often the case
for KATRIN.

Putting this together gives us the following prescription to propagate systematic uncertain-
ties:

1. Fit the data to get an initial estimate on the free parameters.

2. Generate an Asimov spectrum using the best knowledge of the data and the best fit of
the free parameters from 1.

3. Randomize the model according to the systematic uncertainties.

4. Fit the Asimov spectrum to get the fit parameter values θsample.

5. Fit the data spectrum to get the likelihood value Lsample.

6. Repeat steps 2 to 5 to get the distribution of θsample and corresponding distribution of
Lsample.

7. Derive confidence intervals from the parameter distribution weighted by the likelihood
value, the best fit is the weighted median of the distribution.
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5.1.3 Total uncertainty

To get the total uncertainty which includes statistical and systematic uncertainties, we only
have to combine the two approaches. In each iteration we both statistically randomize the
Asimov spectrum and change the model according to the systematic uncertainties. This gives
us the total recipe to run the Monte Carlo propagation of uncertainty:

1. Fit the data to get an initial estimate on the free parameters.

2. Generate an Asimov spectrum using the best knowledge of the data and the best fit of
the free parameters from 1.

3. Statistically randomize the Asimov spectrum according to the PDF of the data points.

4. Randomize the model according to the systematic uncertainties.

5. Fit the randomized spectrum to get the fit parameter values θsample.

6. Fit the data spectrum to get the likelihood value Lsample.

7. Repeat steps 2 to 6 to get the distribution of θsample and corresponding distribution of
Lsample.

8. Derive confidence intervals from the parameter distribution weighted by the likelihood
value, the best fit is the weighted median of the distribution.

An example of the three steps applied is shown in fig. 5.1. In this case, the total uncertainty is
clearly dominated by the statistical uncertainty with only a small contribution of systematic
uncertainties.
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Figure 5.1: Example of Monte Carlo propagation of uncertainty on a dummy dataset including only
systematic uncertainties (blue), only statistical uncertainties (orange) and both (green). As expected,
the distribution with the total uncertainty is wider than the two individual ones. In this case, the
total is dominated by statistical uncertainty.

5.2 Comparison with nuisance parameter method

In this section, the Monte Carlo propagation of uncertainty is validated by comparing various
cases to the nuisance parameter method.

First, the case of statistical uncertainty only is investigated. In this case, the Monte Carlo
method is by definition equivalent to the confidence intervals retrieved via profile likelihood
as long as Wilks’ theorem holds or the appropriate ∆2 logL is derived from a coverage study.
In fig. 5.2 the statistical uncertainty using both methods is compared for different measuring
times. As expected, the two match, and Wilks’ theorem is valid for this simplified KATRIN
case.

Next, we include a single systematic uncertainty in the form of one parameter with a Gaussian
uncertainty which is more stringent than the data. This is shown in fig. 5.3a for different
uncertainties on the background retarding energy slope bqU . In fig. 5.3b this is extended
by adding an additional uncertainty on the gas density in the source ρd. For all cases, the
total uncertainty of the nuisance parameter method as well as the Monte Carlo propagation
match.

To check the effect of weighting with the likelihood value, we now increase the Gaussian
uncertainty on bqU until it becomes larger than the uncertainty when estimating the back-
ground energy slope from the data. In this case, we expect the uncertainty on m2

ν to converge
towards the uncertainty as if bqU was included as free parameter in the fit. This is exactly what
is shown in fig. 5.4a: both the nuisance parameter as well as the weighted MC propagation
learn from the data and the uncertainty converges. However, if we neglect the weighting in the
MC propagation, the uncertainty on m2

ν diverges with the included systematic uncertainty.
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Figure 5.2: Statistical uncertainty from the profile likelihood assuming Wilks’ theorem and the Monte
Carlo propagation method for different measuring times. The two match perfectly for this simplified
KATRIN dummy dataset.
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Figure 5.3: Comparison of the total uncertainty on m2
ν using the nuisance parameter and the MC

propagation approach. In both cases, the systematic uncertainty on the background energy slope is
increased from 0.0mcps/keV to 2.0mcps/keV. While this is the only systemtatic parameter with
uncertainty in (a), (b) also includes a 0.5% uncertainty on the gas density in the source. In all cases,
the nuisance parameter and MC propagation give consistent results.
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Figure 5.4: Impact of weighting the MC propagation samples with the likelihood value on the uncertainty
(b) and uncertainty (a). The model value of the qU -slope is centered at 3.0mcps/keV with the MC
truth at 0.0mcps/keV resulting in a biased m2

ν in a fit with statistical uncertainty. The corresponding
points are slightly shifted with respect to one-another for better readability. Without weighting
(green), the best-fit remains biased even if the uncertainty covers the true value. The uncertainty
also keeps increasing, as the samples do not “learn from the data”. With weighting (orange) both the
best-fit and the uncertainty are in good agreement with the nuisance parameter method (blue).

In fig. 5.4b we do something similar, but observe the impact on the best fit value of m2
ν . Here,

we bias the central value of the systematic parameter in our model, in this case again the
background energy slope bqU , to 3.0mcps/keVwhile the Monte Carlo truth is at 0.0mcps/keV.
This biases the central value of m2

ν for constraints on bqU as stringent as the bias. However,
when the constraint become more loose, we expect to be able to recover by learning from the
data and fitting both bqU ≈ 0.0mcps/keV and thus m2

ν ≈ 0.0 eV2. This is exactly what we
observe for the nuisance parameter method and the weighted MC propagation. Once again,
neglecting the weighting and thus the possibility to learn from the data leads to a wrong result,
here a continous bias on m2

ν .

In our final step, we come back to the uncertainty onm2
ν displayed in fig. 5.4a, and take a closer

look by displaying the residual
σmc − σnuisance

∆σmc

(5.1)

where the uncertainty on the estimate from the Monte Carlo propagation ∆σmc comes from the
finite sample size and is calculated using a bootstrapping method [93]. The total uncertainty,
meaning the intrinsic statistical uncertainty of the data set as well as the included systematic
uncertainty from bqU , is shown in fig. 5.5a. The two approaches agree well within the uncer-
tainty of the MC method. However, when comparing only the systematic uncertainty in fig. 5.5b
we can see a small, but statistically very significant, deviation. As the statistical and the total
uncertainty agrees, we blame this on inaccuracies when estimating the systematic uncertainty
of the nuisance parameter approach using

σsyst =
√
σ2

total − σ2
stat (5.2)
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Figure 5.5: 1σ uncertainty on m2
ν when propagating an uncertainty on the background energy slope

using the nuisance parameter (blue) and Monte Carlo propagation (orange) approach.

which only holds for perfectly Gaussian uncertainties. This is not given in the KATRIN case, as
the lower and upper uncertainty on m2

ν differ in general.

To conclude, we have shown that the Monte Carlo propagation of uncertainty leads to con-
sistent results with the nuisance parameter approach both for statistical uncertainty only
and when including additional systematic uncertainties. This holds for various cases, and
weighting the MC samples with the corresponding likelihood also allows learning from the
data exactly as the nuisanance parameter method does.

5.3 Advantages and downsides compared to other uncertainty

treatments

To conclude this chapter on the Monte Carlo propagation of uncertainty, we want to discuss
its advantages and disadvantages compared to the other methods to include systematic
uncertainties described in section 4.3.2, namely the nuisance parameter and covariance matrix
approach.

An advantage of the Monte Carlo method is that it makes very little assumptions and has
very little requirements on the underlying probability distributions. It does not assume Wilks’
theorem as all confidence intervals are constructed directly from the parameter distributions,
not using ∆2 logL = 1. In addition, it does not require the PDF of the data points to follow
a Gaussian, which is required for the covariance matrix. Furthermore, the full PDF of the
systematic uncertainties is propagated and not reduced to its covariance on the data point.
Like for the covariance matrix, any model variation can be propagated without the need to
parametrize it in form of a fit parameter. One example where this is needed is the bin-to-bin
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variation of the molecular final state distribution described in section 3.4.

In the MC propagation approach it is easy to infer the impact of individual systematics, as it
is possible to perform the propagation of systematic uncertainties without also propagating
the statistical uncertatinty. Thus, one does not have to rely on approximations like σ2

syst =

σ2
total − σ2

stat to calculate a breakdown of individual systematic uncertainties.

Another KATRIN specific advantage is that the expensive response function, see section 3.3.2,
can be pre-calculated for every fit. This is possible as any response changing systematic
parameter is only varied once before the fit, but then kept fixed at this specific value during
optimization. This goes hand in hand with the fact that the number of free parameters is kept
minimal, only those that must be estimated from the data are included in the optimization, not
any of the constrained nuisance parameters. These advantages are shared with the covariance
matrix, where the corresponding covariance matrix is calculated once beforehand, and the
systematic parameters are then no longer varied within the final fit.

However, the whole process is still numerically expensive as several thousands, or even hun-
dreds of thousands of fits are performed to achieve good accuracy on the estimated intervals.
This difference is especially large when comparing with the covariance matrix method, as here
only several thousands of spectra are calculated, and then a single fit can be performed. The
nuisance parameter approach also only requires a single fit, however the response function
must be re-calculated during the fit for changing systematic parameters.

In addition to the remaining numerical costs, it is difficult to get a final likelihood value from
the MC propagation. While this is typically not an issue from a goodness of fit point of view, as
the KATRIN analysis is typically dominated by statistical uncertainty, this makes it difficult to
apply the method of Feldman and Cousins without approximation.

These possible downsides were not an issue for the first two measurement campaigns and we
applied the Monte Carlo propagation of uncertainty to analyse these data sets [43, 66, 78].
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First sub-electronvolt direct neutrino

mass measurement

A major milestone of this thesis was the analysis of the first two KATRIN measurement cam-
paigns, leading to the first direct neutrino mass measurement limiting mν to less than one
electronvolt (90% CL) [43]. This chapter describes the datasets, our analysis method to infer
m2

ν and a corresponding confidence interval in mν , and concludes with a critical discussion of
our results.

6.1 Data from the first two measurement campaigns

As described in section 3.5.1, the first two measurement campaigns took place in spring and
autumn 2019 respectively. From an analysis point of view, the main difference between the
two campaigns is the increased gas density (from 22.2% to 84.5%) and thus signal rate as
well as the reduced background (from 292mcps to 220mcps) of the 2nd measurement phase.
These two improvements are nicely visible in the measured spectra shown in fig. 6.1.

Figure 6.2 shows the measuring time distribution for both campaigns. The shift to the right of
the peak, which is always located in the region most sensitive to the neutrino mass, also reflects
the higher signal to background ratio. Another change from KNM1 to KNM2 is the inclusion of a
background point above 18 700 eV. This single point can constrain any background retarding
energy slope well, but poses a risk as it is the only point to do so. Therefore, any fluctuation
of this point will strongly influence the value of the background retarding energy slope. For
each campaign, an interval of roughly 40 eV below the endpoint is included in the analysis,
resulting in 27 and 28 considered points respectively.

For both campaigns a slightly different set of 117 pixels was selected out of the total of 148
possible focal plane detector pixels. The corresponding pixel selection is shown in fig. 6.3.
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Figure 6.1: Data spectrum of the first (blue) and second (orange) measurement campaign. In both
cases, all considered scans and pixels are summed up. The error bars are too small to be visible at
this scale. One can clearly see the improved data quality in the second campaign with a higher signal
rate as well as a lower background.

18500 18550 18600 18650 18700
retarding energy (eV)

0

2

4

6

8

m
ea

su
rin

g 
tim

e 
(%

)

1st campaign
2nd campaign

Figure 6.2: Measuring time distribution for the first two neutrino mass campaigns. The gray dotted line
indicates the nominal analysis interval where all points to the right are included. Any monitoring
points more than 100 eV below the endpoint are excluded for better visualization.
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(b) second campaign

Figure 6.3: Pixel selection for the first (a) and second (b) measurement campaign.

Reasons to reject a pixel include it having a deteriorated energy resolution or being noisy, being
shadowed by the forward beam monitor, and not seeing the full source due to misalignment
[94, 95].

During the second measurement campaign, the effects of the source electric potential are
non-negligible for the first time. This means, the rear wall bias voltage plays an important role
as described in section 3.2. Over the course of this measurement phase, there were hints for
a radial inhomogeneity of the potential, seen in a slight radial dependency of the endpoint.
This was counteracted twice by setting the rear wall voltage to a different value as shown
in fig. 6.4 to compensate for the work function difference of the rear wall and beam tube
surfaces. With both surfaces at the same potential, the electric potential in the source is the
most homogeneous radially and longitudinally. For the first campaign, the bias voltage was
constant over most of the time, with only a short period in the beginning set to a slightly lower
value. The effect of having three distinct rear wall voltages in KNM2 on m2

ν will be discussed in
section 6.7.3.

To conclude this section, we take a look at the stability of the source slow control parameters:
namely the column density and the tritium purity shown in fig. 6.5. The gas density in the
first campaign clearly shows the downward drift caused by radiochemical reacions of tritium
with the injection capillary. The spikes caused by counteracting the drift via increasing the
injection pressure keep the overall spread manageable with a standard deviation of 0.80%.
In the second campaign, the gas density was much more stable with a standard deviation
of 0.13%, despite being almost four times higher, showing that the continous flushing was
successful. During KNM1 there is a slight upwards trend of the overall tritium purity with
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Figure 6.4: Rear wall bias voltage for the first two measurement campaigns.
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Figure 6.5: Evolution of the column density and tritium purity over the first (a) and second (b) neutrino
mass campaign. The downward drift of the gas density counteracted by frequent increases of the
injection pressure during KNM1 is cleary visible, leading to an overall larger spread.

an overall standard deviation of 0.39%. In KNM2, the tritium purity slowly decreases over
the course of the campaign, but is also more stable with a standard deviation of 0.24%. We
will see in the uncertainty breakdown that the activity changes are not of concern for either
campaign.

6.2 Fit parameter stability

Next, we discuss the stability of the fit parameters other than m2
ν , namely the endpoint, the

signal normalization and the background rate. The stability of the endpoint is crucial for
the neutrino mass analysis, as any variation of the energy scale leads to a broadening which
translates to a more negative m2

ν value if unaccounted. Observing the stability of AS is also
useful, as any change hints to incomplete knowledge of the activity parameters such as the
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gas density and the tritium purity. Keeping a constant background rate is not critical for
the m2

ν fit as it completely averages out as a linear parameter, but will be discussed here for
completeness.

First step is to check the time evolution of these parameters. This is done by fitting each scan
independently with statistical uncertainty only and the neutrino mass fixed to zero in the
regular analysis interval. The resulting parameter values over scan are shown in fig. 6.6.

The endpoint (fig. 6.6a) shows no obvious pattern during the first campaign. In the second one,
there are various indications for a drift, especially during the later part of the campaign. In
both measurement phases the endpoint evolution indicates a slight overdispersion of 50meV
and 58meV respectively. This is small compared to the expected sensitivity and was neglected
for KNM1, while it was explicitly taken into account in the analysis of KNM2 as will be discussed
in section 6.4.

During both campaigns the signal normalization is stable over time (fig. 6.6b) and shows no
significant overdispersion compared to the statistical uncertainty. Note that we find a value of
approximately 1.2 which is significantly different from the expectation of 1.0. Main reason for
this is an underestimation of the fluxtube mapped to the detector [96], which only affects the
normalization and does not lead to a shape effect or neutrino mass bias. The background rate
(fig. 6.6c) overfluctuates in both campaigns and shows a clear increase over the course of the
second campaign. One important factor for this increase is that the main spectrometer was
baked out directly before KNM2. The surface conditions on the spectrometer then change over
time, leading to an increased efficiency for creating Rydberg atoms and thus also an increase
of the Rydberg background component.

In addition to the time evolution, we also investigate the radial dependency of these three
fit parameters. This is done by fitting all scans stacked, but each ring-wise detector patch
individually. The resulting parameter values over ring are visualized in fig. 6.7.

While the endpoint over ring (fig. 6.7a) shows no clear pattern in KNM1, it tends to lower values
for the outer rings in KNM2. This is enforced by the fact that the p-value of 58.2% for a constant
E0 is reasonable for the first campaign, but it is on the low end with 3.9% for the second one.
However, in either case the overall E0 variation is small with a standard deviation of 58meV
and 43meV respectively.

The signal normalization is stable over ring for each campaign (fig. 6.7b), underpinned by a
p-value of a constant of 89.8% or 49.2%. The background rate clearly increases to the outer
part of the detector (fig. 6.7c).
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Figure 6.6: Fit parameters over scan for the first (blue) and second (orange) measurement campaign.
The dashed lines indicate the corresponding mean value. Both the meanµand the standard deviation
σ are given in the legend.
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Figure 6.7: Fit parameters over detector ring for the first (blue) and second (orange) measurement
phase. The background rate was normalized with the number of pixels in each ring.

6.3 Data combination and likelihood

For the first measurement phase, we can combine all detector pixels as well as all individual
scans into a single spectrum due to the low statistical power, as well as the low source activity
and thus small effect of the source potential distribution from the plasma. Therefore, we end
up with a single likelihood function with the regular four free parameters {m2

ν , E0, AS, rbg}
for the final neutrino mass fit.

For the second campaign it was decided to include the properties of the source electric po-
tential. This was based on the hypothesis that the higher source activity also increases the
plasma effects on the source potential distribution as discussed previously. To account for
any radial potential distribution, the detector pixels were grouped into rings with individual
endpoints instead of treating them in a uniform manner. Any change of the potential in time
was included as an additional broadening with an uncertainty. Thus, the second campaign is
segmented into twelve parts, namely the twelve detector rings. This leads us to a likelihood
function consisting of twelve patch likelihoods as described in section 4.2.1. The neutrino mass
squared as parameter of interest is shared over all rings, but endpoint, signal normalization,
and background rate are not, giving a total of 1+3 ·12 = 37 free parameters in the likelihood.

Therefore, we have two individual likelihood functions, one with four free parameters for the
1st campaign and one with 37 for the 2nd campaign (not accounting for possible additional
nuisance parameters describing systematic uncertainties).

As both campaigns run at significantly different settings, especially the gas density, the spectra
cannot be stacked or clustered. A full analysis with a combined likelihood and shared neutrino
mass as described in section 4.2.3 is the most general approach. However, as both measure-
ment phases are strongly dominated by their statistical uncertainty, a simplified approach
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where both are analysed individually and the m2
ν results are combined at a later stage is also

viable as we will show later.

6.4 Treatment of systematic uncertainties

We now discuss how systematic uncertainties described in section 3.4 are included for the
neutrino mass analysis of the first two campaigns. We will stick to the same order which
roughly follows the beamline of the KATRIN experiment.

As the experiment had not been exposed to large amounts of tritium, yet, an additional beta
spectrum from implanted tritium on the rear wall does not play an important role in these
measurement phases. It was therefore not included in the neutrino mass analysis.

In both measurement phases, the absolute column density was calibrated using several
egun measurements. For the first campaign, continous monitoring was performed using
the throughput sensor, while the second one made use of a krypton capillary sensor [64,
97]. For the 1st measurement phase, the relative uncertainty amounted to 0.85% leading to
ρd = 1.11± 0.01× 1021m−2. In the 2nd campaign, the higher overall gas density allowed a
more precise estimation, with a relative uncertainty of 0.25% or ρd = 4.23± 0.01× 1021m−2.
As response parameter affecting the scattering probabilites, the uncertainty on the column
density is included using the MC propagation method.

The energy loss function was measured in situ for each campaign. The covarianceKeloss matrix
describing the uncertainty of the nine eloss parameters was used as sampling distribution
for the Monte Carlo propagation of uncertainty. For each campaign, a slightly different mea-
surement of the parameters and thus a slightly different uncertainty matrix was used. Both
pre-date the version published in [49], but are not significantly different at the given sensitivity
on mν of about 1 eV (90% CL).

The uncertainty on the molecular final states was incorporated by fluctuating them bin-to-bin
and sampling the FSD onset parameter as described in section 3.4 using the Monte Carlo
method.

For both measurement phases, the activity measurements are taking from the product of the
activity parameters ρd and ϵT as the FBM showed a significant drift over time. To calculate the
activity for subruns without corresponding slow control measurement, it was linearly interpo-
lated between the previous and next measurement point. From these activity measurements,
the overall activity covariance matrix Kactivity

n can be calculated. This was included directly into
the fit using the covariance matrix approach for the second campaign. In the analysis of the
first campaign, the activity was sampled directly from the underlying data points using the
Monte Carlo propagation method.

95



Chapter 6 First sub-electronvolt direct neutrino mass measurement

As the gas density of KNM1 was relatively low, any plasma inhomogeneities on the source
electric potential only have a minor effect and were not included in the analysis. Any possible
biases due to neglecting this effect will be discussed in section 6.7.1. With the increased
gas density of the second campaign, the plasma effects become relevant. The longitudinal
broadening together with the broadening induced by short-term fluctuations is determined
from multiple Krypton calibration campaigns and then scaled to the KNM2 gas density resulting
in σ2

z + σ2
short-term = 0.0124± 0.0161 eV2. This value also serves as input for the energy loss

shift parameter ϵz via the inequality in eq. (3.58) assuming k = 1.3. The resulting sampling
distribution shown in fig. 3.28 is used as input for the Monte Carlo propagation. In addition,
the long-term broadening was inferred from the time evolution of the endpoint in a fit range
that excludes the neutrino mass measurement interval [98]. This adds another broadening
input of σ2

long-term = 0.0058± 0.0014 eV2 to be sampled independently of the other source
potential parameters.

The uncertainties on the magnetic fields are estimated by comparing simulation to measure-
ments [99–101]. For the 1st campaign, the following values (uncertainties) are used:
Bsrc = 2.52T (2.5%), Bmax = 4.23T (0.2%), Bana = 6.31× 10−4T (1.0%),
while for KNM2 new measurements could improve the estimates to
Bsrc = 2.52T (1.7%), Bmax = 4.24T (0.1%), Bana = 6.31× 10−4T (1.0%).
All magnetic field parameter uncertainties are incorporated with the usual MC propagation
method.

In both campaigns, the background overdispersion was measured directly from the back-
ground data of the neutrino mass scans. This results in a Gaussian standard deviation of
σnp = 10mcps, or an overdispersion of 6%, for KNM1 and a Gaussian standard deviation of
σnp = 12mcps, corresponding an overdispersion of 11%, for KNM2. For the first campaign
this uncertainty was only included in the randomization of the spectra during the Monte Carlo
propagation. For each point, the mean background rate defining the Poissonian PDF is ran-
domized according to the overdispersion, before performing the Poissonian randomization
of the counts. In the second campaign, a Gaussian likelihood was used allowing to directly
increase the statistical uncertainty of each point in the likelihood as defined by σnp.

For these two measurement phases, the background energy dependence was constrained
by a background slope measurement from the first tritium campaign [71]. The central value
was neglected, but the uncertainty used as 1σ uncertainty on bqU giving an input of bqU =
0.00 ± 4.74mcps keV−1 over the full detector. This uncertainty was divided into the corre-
sponding uncertainty of each detector ring for the 2nd campaign. In any case, the background
energy slope parameter is included in the model and the uncertainty propagated using the MC
method.

The Penning induced background was discovered just before the unblinding of KNM2. There-
fore, it was not known and not included during the analysis of the first measurement phase.
However, it was retrospectively measured to be bt = −2.2± 4.3µcps s−1, showing no signifi-
cant value for this campaign, possibly due to the lower gas density. The effect of including
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Table 6.1: Summary of systematic uncertainties and their treatment.

systematic input 1st treatment 1st input 2nd treatment 2nd

rear wall none neglected none neglected
ρd (1021m−2) 1.11± 0.01 MC prop 4.23± 0.01 MC prop
energy loss 9 params MC prop 9 params MC prop
molecular states custom MC prop custom MC prop
activity fluct. data driven MC sampling data driven cov mat
σ2
z + σ2

short-term (eV2) none neglected 0.0124± 0.0161 MC prop
ϵz (eV) none neglected 0.000± 0.061 MC prop
σ2

long-term (eV2) none neglected 0.0058± 0.0014 MC prop
Bsrc (T) 2.520± 0.063 MC prop 2.520± 0.043 MC prop
Bmax (T) 4.230± 0.008 MC prop 4.239± 0.004 MC prop
Bana (10−4T) 6.311± 0.063 MC prop 6.308± 0.063 MC prop
σnp (mcps) 10 MC prop 12 likelihood
bqU (mcps keV−1) 0.00± 4.74 MC prop 0.00± 4.74 MC prop
bt (µcps s−1) −2.2± 4.3 neglected 3± 3 MC prop
detector none neglected none neglected

this value into the analysis will be discussed in section 6.7.1. For the 2nd campaign, the corre-
sponding slope was measured to be bt = 3± 3µcps s−1. Like the background energy slope,
the Penning slope parameter is included in the model and propagated using Monte Carlo
propagation.

Detector related systematics play only a very minor role at the electronvolt scale sensitivity,
and were thus neglected for the analysis of the first two campaigns.

All systematic uncertainties and their treatment are summarized in table 6.1.

6.5 Blinding strategy

Before coming to the neutrino mass analysis, we briefly discuss the blinding strategy pursued
by the KATRIN collaboration, meant to avoid any self-bias by the analysis teams.

In a first step, unfluctuated Monte Carlo copies, so called MC twins, of each neutrino mass scan
are created. The twin contains all information of the real scan, the same slow control values,
retarding energies and measuring time. The endpoint is fixed to a representative value, usually
18 573.7 eV, and AS and rbg are set to represent the true signal and background rates. For
each scan, the neutrino mass is set to m2

ν = 0.0 eV2.
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The complete analysis chain must then be finalized on the Monte Carlo twins. This allows for
two types of sanity check:

1. The analysis must recover the true value of 0.0 eV2, showing that it is unbiased.

2. The overall m2
ν uncertainty, as well as a breakdown showing the impact of the individual

components, is estimated by multiple independent analysis teams on their MC copies.
To be allowed to continue in the unblinding process, each team must implement all
relevant effects and come to consistent results.

After completing the analysis on the Monte Carlo copies, the next step is to analyse the real
data with a blinded model. The model is blinded by changing the width of the ground state of
the molecular final state distribution. As this directly impacts the overall broadening of the
model, it shifts the neutrino mass by ≈ −2(σ2

true − σ2
blind) with the true ground state variance

σ2
true and the unknown variance of the blinded FSDσ2

blind. The value ofσ2
blind is picked randomly

and not shared with the analysis teams. This allows analysing the true data independently
and comparing the best fit as well as uncertainty on m2

ν , without revealing the actual fit result
when using the correct model.

If m2
ν best fit and uncertainty of the different teams match on data with blinded model, the

analysis is performed with the true model, revealing the final results.

6.6 Neutrino mass analysis

In this section we describe our approach to infer the neutrino mass from the data of the first
two measurement campaigns using mainly the Monte Carlo propagation of uncertainty to
include systematic effects. The results have been published in [43, 66, 78].

As a first step, we fit the data including only the uncertainties from Poisson statistics and the
background overdispersion as well as a uniform detector segmentation for comparability.
Figure 6.8 shows the data spectrum, best fit, residuals and measuring time distribution of
this analysis. The higher signal rate and lower background rate of the second campaign is
again clearly visible. The normalized residuals show no clear structure in the signal region in
either case, with a slight hint for a positive background slope in the second campaign that will
be discussed in section 6.7.4. For each campaign, the goodness of fit is excellent with a χ2

(p-value) of 21.7 (54.1%) and 28.4 (24.4%) respectively.

Next, we segment the data of the second campaign into twelve detector rings as planned for
the final neutrino mass analysis, and perform a fit with uncertainties from Poisson statistics
and the background overdispersion. The data spectrum, model and normalized residuals of
this ringwise fit is displayed in fig. 6.9. Not all rings have the same count rate, as the number of
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Figure 6.8: Data spectrum and best fit (top), normalized residuals (center) and measuring time dis-
tribution (bottom) for the first (blue) and second (orange) measurement campaign. Both analyses
include the uncertainty from Poisson statistics and the background overdispersion and make use of
a uniform detector segmentation for visualization and comparability.

pixels in the active pixel selection is not the same for each ring. There is no clear dependency
of the normalized residuals over qU or ring, indicating that our model describes the data. This
is underpinned by the χ2 value of 291.4 at 299 degrees of freedom, resulting in a p-value of
61.3%.
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Figure 6.9: Data spectrum and best fit (top) as well as normalized residuals (bottom) for the second
measurement campaign in the used ringwise segmentation. In the normalized residuals, no structure
is visible over retarding energy or ring, indicating that our model describes the data well. Like fig. 6.8,
this fit includes the uncertainty from Poisson statistics as well as the background overdispersion.

Having shown that our model describes the data, we come to the actual neutrino mass analysis,
which we perform using Monte Carlo propagation of uncertainty. Here, we start with an analysis
using the uncertainty from Poisson statistics only. Therefore, we first fit each campaign to get
the best fit estimate and the corresponding model. Afterwards, we propagate the statistical
uncertainty by fitting randomized spectra according to the Poisson uncertainty and our best
model estimate. The resulting distribution in m2

ν is shown in fig. 6.10a and fig. 6.10b as the
stat. only case. For KNM1, we retrieve m2

ν = −0.96+0.89
−1.05 eV

2, a roughly 1σ fluctuation to the
negative assuming m2

ν = 0 eV2. The second campaign yields m2
ν = 0.27+0.29

−0.29 eV
2, now a 1σ

fluctuation to the positive. We can see that the statistical uncertainty in m2
ν improved by more

than a factor of three going from KNM1 to KNM2.

Next, we also include all systematic uncertainties in the analysis as described in section 6.4.
This gives the total m2

ν distribution in figs. 6.10a and 6.10b. In both cases, the distribution
only widens slightly and the best fit value remains almost unchanged, resulting in m2

ν =
−0.98+0.95

−1.12 eV
2 and m2

ν = 0.26+0.34
−0.34 eV

2. Therefore, the 1st (2nd) campaign stays with an
approximately 1σ negative (positive) m2

ν best fit, showing no significant deviation from 0 eV2.
The m2

ν distribution from each measurement phase is compared directly in fig. 6.10c. This
clearly shows the about three times lower overall uncertainty of KNM2 with a much narrower
distribution. All m2

ν fit results are summarized in table 6.2.

After discussing the one dimensional m2
ν distribution, we take a look at the two dimensional

m2
ν - E0 distribution of each campaign in fig. 6.11. An obvious feature is the large correlation

between m2
ν and E0 of 0.97 and 0.93 for the 1st and 2nd measurement phase respectively. It is

interesting to observe that the one dimensional projections of each parameter show signifi-
cant overlap of the distribution from each campaign, but the two dimensional distribution is
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Figure 6.10: Neutrino mass squared distribution from Monte Carlo propagation of uncertainty for the
first two measurement campaigns. Both campaigns are dominated by statistical uncertainty as seen
in (a) and (b). As expected, the distribution for the second measurement phase is much narrower (c).

Table 6.2: Best fit m2
ν with 1σ uncertainty in eV2 for the first two measurement campaigns, once

including only the uncertainty from Poisson statistics, and once with all considered uncertainties.
For a full summary of all fit parameters we refer to appendix A (tables A.1 to A.4).

campaign Poisson statistics only total uncertainty

KNM1 −0.96+0.89
−1.05 −0.98+0.95

−1.12

KNM2 +0.27+0.29
−0.29 +0.26+0.34

−0.34

clearly split. However, this is not unexpected as the absolute endpoint value depends on the
energy scale of KATRIN, which includes any work function and source potential effects. These
have an overall uncertainty of approximately 500meV [78], and may well be different after a
spectrometer bake out, source warm up, and running at a different gas density. In addition,
KNM2 was analyzed with a new calibration of the high voltage [102] which alone accounts for
a difference of about 140meV in E0.

To understand how the overall uncertainty is composed, especially which systematic uncer-
tainties play the most important role, we now calculate an uncertainty breakdown. This is
done by only activating one specific uncertainty in the Monte Carlo propagation at a time,
and calculating the average 1σ uncertainty in the resulting in m2

ν distribution. In case the
uncertainty is not included via the Monte Carlo method, we fall back to σ2

syst = σ2
tot − σ2

stat.

The resulting uncertainty breakdown is displayed in fig. 6.12. All numbers are also summarized
in appendix A (tables A.5 and A.6). We can see that both campaigns are clearly dominated by the
uncertainty from Poisson statistics, followed by the effect of the background overdispersion.
For KNM1, the first non-statistical effect is the background retarding energy dependence with
an impact of 0.066 eV2, followed by the gas density (0.052 eV2), the magnetic fields (0.048 eV2)
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Figure 6.11: 2-dimensional neutrino mass squared - endpoint distribution from Monte Carlo propaga-
tion of uncertainty for the first (blue) and (second) measurement phase as well as their 1-dimensional
projections.
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Figure 6.12: Uncertainty breakdown for the first (regular fill) and second (hatched) measurement
campaign. Both are dominated by statistical uncertainty, followed by background effects. Other
systematic uncertainties only have a minor impact on the total error budget.
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and the activity fluctuations (0.044 eV2). The other uncertainties only play a minor role with
values < 0.03 eV2. Adding all non-statistical uncertainties (everything except for Poisson
statistics and background overdispersion) in squares gives 0.11 eV2. This only increases the
0.97 eV Poisson uncertainty by less than 1% when adding the two in squares, clearly showing
how statistics dominated the first campaign is.

In KNM2, the dominant non-statistical effects are the two new ones: the Penning background
(0.074 eV2) and the source electric potential (0.066 eV2). These are then followed by the same
effects as in the first campaign, namely the background qU dependence (0.041 eV2) and the
magnetic fields (0.026 eV2). The other effects all contribute less than 0.02 eV2 to the final
budget. Here, adding the non-statistical uncertainties in squares results in a total effect of
0.11 eV2. This increases the Poisson uncertainty by 7.2%. Thus, the second measurement
phase is still clearly dominated by statistical uncertainty, but not as much as KNM1 due to the
improved statistics and new systematic effects considered.

To complete the individual analyses, we construct the confidence belt to retrieve the 90%
CL confidence interval in m2

ν using the method of Lokhov and Tkachov (LT) [89] as baseline
and the one of Feldman and Cousins (FC) [87] for reference. The resulting belts are shown in
fig. 6.13.

We see that for KNM1 the LT method yields the sensitivity limit of m2
ν < 1.28 eV2, as m2

ν,fit is
negative. This results in an upper limit of mν < 1.13 eV (90% CL). Using FC, the upper limit is
much stricter due to the negative m2

ν,fit, yielding m2
ν < 0.61 eV2 and thus mν < 0.78 eV (90%

CL).

For the second measurement campaign, we lie in the regime where LT and FC give the same
upper limit of m2

ν < 0.81 eV2 and therefore mν < 0.90 eV (90% CL). This is therefore the
first sub-electronvolt limit of a direct neutrino mass measurement. Due to the positive best fit
value, the sensitivity limit of KNM2 is slightly more strict than the result derived from the data
(m2

ν < 0.55 eV2,mν < 0.74 eV).

Finally, we complete the neutrino mass analysis of KNM1 and KNM2 by combining the results
from the two campaigns. As we have shown that both are clearly dominated by (uncorrelated)
uncertainties of statistical nature, we perform a simple combination instead of running a com-
bined fit at this stage. This is done by multiplying them2

ν distributions resulting from the Monte
Carlo propagation as shown in fig. 6.14. We then derive the combined result from the product
distribution as usual: the best fit as the median, and the central 1σ interval by integrating
from both sides. This results in a combined fit result of m2

ν = 0.12+0.32
−0.33 eV

2. We translate this
into an upper limit of mν < 0.8 eV (90% CL) using the method of LT and assuming a Gaussian
distribution of m2

ν,fit = m2
ν,true ± 0.32 eV2 This is only a slight improvement compared to the

result of using only KNM2 where the limit was mν < 0.9 eV (90% CL).
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Figure 6.13: Frequentist confidence belt using the methods of Lokhov-Tkachov [89] and Feldman-
Cousins [87] for the first (a) and second (b) measurement campaign. For both KNM1 and KNM2
an upper limit is derived, corresponding to mν < 1.13 eV (90% CL) and mν < 0.90 eV (90% CL)
respectively using the Lokhov-Tkachov construction. As m2

ν,fit is roughly 1σ negative for the 1st

campaign, and 1σ positive for the 2nd one, the limit by Feldman-Cousins for KNM1 is actually more
strict than the one for KNM2, mν < 0.78 eV (90% CL) vs. mν < 0.90 eV (90% CL), despite having a
significantly worse sensitivity.
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Figure 6.14: Combination of the MC propagation results of the first and second campaign. The combined
result (green dotted line) is retrieved by multiplying and normalizing the individual two.
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6.7 Further discussion

We will now discuss the results further, checking if any effect significantly changes our result
for the neutrino mass.

6.7.1 Neglected effects during the first measurement campaign

First, we investigate the impact of including the effects that were neglected during the analysis
of the first measurement campaign as published [66, 78] on the best fit value ofm2

ν . The change
of the sensitivity by including additional systematic uncertainties is negligible at the statistics
of KNM1. Our reference best fit value used for comparison is from the analysis including only
the uncertainty of Poisson statistics yielding m2

ν = −0.96 eV2.

Background overdispersion in likelihood

Here we compare our reference fit to one which includes the background overdispersion in
the likelihood, instead of only using it for sampling later in the MC propagation. We can see
that this updates the best fit to −0.975 eV2 compared to the initial −0.96 eV2 when using only
Poisson statistics in the likelihood.

All following values include the background overdispersion in the likelihood.

Penning background

When including the Penning background as a nuisance parameter with bt = −2.2±4.3µcps s−1,
the best fit shifts to a slightly more negative value of m2

ν = −1.074 eV2. This is expected,
as neglecting a positive bt value would shift m2

ν to a more negative value, so neglecting an
underfluctuation does the opposite.

Scattering transmission

During the initial analysis of the 1st campaign, an isotropic transmission function was used
without accounting for the effect that scattered electrons on average have larger starting
angles, see section 3.3.2. Including this effect, the best fit also shifts slightly to the negative:
m2

ν = −1.047 eV2.
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Table 6.3: Impact of the neglected effects on the best fit of the neutrino mass squared for KNM1. As the
source potential effects are upper bounds [103], they lead to an interval in m2

ν instead of a single
updated value.

effect details m2
ν (eV2)

background overdispersion included in likelihood −0.975
Penning background bt = −2.2± 4.3µcps/s −1.074
scattering transmission included in model −1.047
eloss shift |ϵz| < 66meV [−1.021,−0.937]
source potential broadening σ2

z + σ2
short-term < 0.0055 eV2 [−0.975,−0.963]

all effects combined [−1.20,−1.01]

Source electric potential

Any effects of the source electric potential were not included, as the calibration measurements
at the time were inconclusive and the effect was assumed to be small at the given sensitivity
and low gas density. However, upper limits on the order of magnitude of the plasma effects
have later been derived [103].

These upper bounds can be propagated into an allowed interval of m2
ν . Combining both

the effect of the energy loss shift and the potential broadening, the allowed m2
ν interval is

−1.02 eV2 to −0.92 eV2, a O(5%) effect compared to the statistical uncertainty. The interval
width is largely dominated by the effect of the energy loss shift, which alone accounts for
−1.02 eV2 to −0.94 eV2.

All effects combined

Including all neglected effects except for the source electric potential, we get a best fit value
of m2

ν = −1.15 eV2. When including the bounds of the plasma effect, the allowed interval in
m2

ν is −1.20 eV2 to −1.01 eV2. Therefore, the best fit shifts at most by −0.24 eV2 compared
to our reference of −0.96 eV2, roughly 20% of the statistical uncertainty. All effects and their
impact are summarized in table 6.3.

This interval of best fit values is inserted into our Frequentist confidence belts (90% CL) in
fig. 6.15. The derived upper limit in m2

ν is not affected when using the method of Lokhov
and Tkachov [89], the main KATRIN result, as the sensitivity is quoted for negative m2

ν,fit.
In case of Feldman-Cousins [87], the upper limit becomes more stringent from 0.52 eV2 to
0.56 eV2 compared to the value used for publication of 0.61 eV2. This would translate to
mν < 0.72 eV to 0.75 eV instead of the published mν < 0.8 eV.
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Figure 6.15: Impact of the changed best fit value from neglected effects during the first measurement
campaign on the derived upper limit.

6.7.2 Effect of detector segmentation

For the first campaign, a uniform detector segmentation was used for the analysis, while the
second one made use of ring-wise patches. In this part we discuss how the best fit would change
in case the other option (ring-wise KNM1, uniform KNM2) would have been picked. For the
following discussion we include all neglected effects in the analysis of the first measurement
phase. All results are summarized in table 6.4.

We can see that the uncertainties are (almost) unaffected by the segmentation. The best fit
shifts to more positive values by approximately 10% of the uncertainty when switching from
uniform to ring-wise in KNM1. In contrast, it is moved to a value lower by roughly 10% of the
uncertainty in KNM2. The overall small changes, as well as opposite signs, speak for the fact
that the radial segmentation has no significant impact on the fit in any case. This is expected
from a potential point of view, as the endpoint shown in fig. 6.7a also has no strong radial
dependency in either campaign.

Table 6.4: Neutrino mass squared best fit and uncertainty in eV2 using updated inputs for KNM1
depending on the measurement campaign and detector segmentation.

campaign uniform ring-wise

KNM1 −1.14+0.90
−1.08 −1.02+0.89

−1.06

KNM2 +0.29+0.33
−0.33 +0.26+0.34

−0.34
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6.7.3 Neutrino mass dependencies

This part discusses the dependency of the fitted m2
ν on various segmentations of the data,

looking for any anomalies.

First, we take a look at m2
ν depending on the fit interval in qU by performing a qU scan. The fit

interval is varied by moving the gray dotted line in fig. 6.2 to the left (right) to include more
(less) points. The resulting dependency of m2

ν is shown in fig. 6.16. Model inaccuracies can
lead to a significant variation of m2

ν depending on the fit range, such as a wrong modellation
of the energy loss or the final states distribution. However, judging if our result is significantly
different from a constant is difficult by eye as the points are highly correlated. This comes from
the fact that each point to the left of another has exactly the same points in the m2

ν fit, except
for one additional one.

Therefore, we performed a Monte Carlo simulation with m2
ν = 0.0 eV2 and statistically ran-

domized spectra with the statistics of the corresponding neutrino mass campaign. For each
randomized spectrum, we repeated the qU scan. As a proxy for the deviation from a constant,
we calculate the standard deviation of the m2

ν values. We can then compare the data result to
the ensemble values as shown in fig. 6.17 and calculate the probability for finding a standard
deviation as large as the one in the true data. This leads to a p-value of 15.8% for KNM1 and
87.7% for KNM2. None of them stand out as particularly low, indicating that the qU scan
results are not alarming concerning an invalid model.
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Figure 6.16: Dependency of the neutrino mass squared on the analysis interval. Shown is the best
fit m2

ν depending on the lowest retarding energy in the analysis interval qUmin for the first (a) and
second (b) campaign. For better visibility of the size of the analysis interval, an endpoint value of
E0 = 18 573.7 eV is subtracted from qUmin. The gray dotted line indicates the analysis interval used
in our main analysis.
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Figure 6.17: Ensemble test checking the overdispersion of the qU scan on the first (a) and second
(b) campaign using the total uncertainty. For each statistically randomized spectrum, a qU scan
is performed and the standard deviation of the neutrino mass squared values is calculated. The
resulting distribution of standard deviations is then compared to the one from the qU scan on the
data (dotted line).
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Next, we split our data into four parts: KNM1 and KNM2a-c where KNM2a-c corresponds to
the three different rear wall voltage set points during the second measurement campaign.
The m2

ν evolution is displayed in fig. 6.18, showing no significant deviation from a constant.
Calculating the χ2 value of the weighted mean, using the average of the lower and upper error
for each point, gives χ2 = 2.94 at three degrees of freedom, corresponding to a p-value of
40%. Assuming the null hypothesis of zero neutrino mass, we calculate χ2 = 3.34 at four
degrees of freedom, or a p-value of 50%.
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Figure 6.18: Best fit neutrino mass squared for different periods using a uniform detector segmentation
and updated KNM1 inputs. The second campaign is split into three parts, corresponding to the three
different rear wall voltage set points. The dashed lines indicate the best fit over the whole campaign.

Finally, we also split our data over the detector: once radially into four pseudo rings and once
azimuthally into four slices. The segmentation as well as the resulting m2

ν dependency is
shown in fig. 6.19 and fig. 6.20 respectively.

Neither campaign shows a clear radial dependency of m2
ν , with a slight downward trend for

KNM1 and a slight upward trend for KNM2. Fitting a constant to the m2
ν values gives a χ2

(p-value) of 3.26 (35.4%) and 3.89 (27.4%).

When segmenting into azimuthal slices, there is no significant deviation from a constant for
the second campaign with χ2 = 0.88 and the corresponding p-value of 83.1%. For the first
campaign, the zeroth slice (top right) shows a larger m2

ν value than the three other slices. This
is reflected in a worse χ2 for the fit with a constant of 10.68 yielding a p-value of 1.4%. While
this is not yet critical, it is on the lower end of acceptable values. Calculating the difference in
m2

ν between slice zero and the other three gives ∆m2
ν = 8.0± 2.5 eV, an effect slightly larger

than 3σ. However, there is no physical explanation for such an effect, and it has not been
observed in any of the following neutrino mass campaigns with higher sensitivity.
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Figure 6.19: Best fit neutrino mass squared over the four pseudo rings displayed on the right for the
first two measurement campaigns. Numbering starts in the inner part of the detector. The fit includes
uncertainties from Poisson statistics and the background overdispersion.
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Figure 6.20: Best fit neutrino mass squared over the four azimuthal slices displayed on the right for the
first two measurement campaigns. Numbering starts in the top right and continues in mathemati-
cally positive direction. The fit includes uncertainties from Poisson statistics and the background
overdispersion.

112



Chapter 6 First sub-electronvolt direct neutrino mass measurement

6.7.4 Impact of the background systematic parameters

Finally, we want to discuss the impact of the background systematic parameters, namely the
background retarding energy slope bqU and the Penning slope bt on the fit result. To this end,
we discuss three cases each:

1. The parameter value is fixed to zero.

2. The parameter is included as nuisance parameter in the fit and constrained by a pull-
term.

3. The parameter is completely free in the fit.

For each case, we include all other sytematic uncertainties, and keep a uniform detector
segmentation. The results are visualized in fig. 6.21. Logically, the uncertainty in m2

ν increases
with the increased freedom in the fit in each step. Therefore, we will focus on the development
of the central value in this discussion.

Freeing the background retarding energy slope in KNM1 leads to bqU = −16± 40mcps keV−1,
an insignificant negative value. This shifts the fitted m2

ν to slightly more positive values. In
KNM2 we fit bqU = 25± 12mcps keV−1, a roughly 2σ positive value that reduces the fitted
m2

ν by about 0.2 eV2. This positive slope is mainly driven by the point above 18 700 eV with
large lever-arm and a rate over-fluctuation (see fig. 6.8). At 2σ, this is not yet critical for the
m2

ν result, but this potential issue of depending on a single point for bqU will be avoided by
not having a single point with large lever-arm in future measuring time distributions.

Keeping the Penning slope completely free in the fit is tricky as it is highly correlated with
the neutrino mass squared, and thus blows up the corresponding uncertainty. Nevertheless,
it is interesting to observe how extreme this effect is. For the first campaign, a best fit of
bt = −29± 19µcps s−1 drives the fitted m2

ν down to m2
ν = −1.95+1.21

−1.47 eV
2. The opposite sign

can be observed in the second measurement phase, where bt = 17± 13µcps s−1 moves the
fittedm2

ν up tom2
ν = 0.62+0.46

−0.45 eV
2. For both campaigns, them2

ν value is shifted by roughly 1σ
of the initial uncertainty with constrained bt. This makes it even more clear that the Penning
slope is critical for any future neutrino mass analysis. Therefore, this effect is avoided in
measurement campaigns after KNM4 completely by turning off the pre-spectrometer.

113



Chapter 6 First sub-electronvolt direct neutrino mass measurement

fixed constrained free

2.0

1.5

1.0

0.5

0.0

0.5
m

2  (
eV

2 )

1st

2nd

(a) background qU slope

fixed constrained free

3

2

1

0

1

m
2  (

eV
2 )

1st

2nd

(b) Penning slope

Figure 6.21: Neutrino mass squared fit result depending on the treatment of the background qU
slope (a) and the Penning slope (b) parameter.

6.8 Conclusion

We conclude this chapter by summarizing the main results of the analysis of the first two
measurement campaigns, and highlighting the efforts made over the course of this thesis.

To analyse the first neutrino mass campaign, we introduced a novel approach to include
systematic effects, the full Monte Carlo propagation of uncertainty described in chapter 5,
to the KATRIN collaboration. Along with this, a new code base for data handling, modelling
and analysis building upon the work performed in [104] was developed. This set of tools was
successfully applied to KNM1, leading to a limit of mν < 1.1 eV (90% CL) using the method of
Lokhov and Tkachov [89] and including all relevant systematic uncertainties. Using the MC
propagation method, we performed an uncertainty breakdown to show that this campaign is
fully dominated by statistical uncertainties. Further tests have shown that the neutrino mass
result is not changed significantly by effects identified after publishing our initial results [43,
66, 78].

For the second measurement campaign, running at higher gas density, we split our model
into twelve detector rings, therefore significantly increasing the strain on our analysis tools. In
addition, some new systematic effects were identified or became relevant at the increased
gas density, mainly the source electric potential and the Penning background. With these
new and all other relevant systematic uncertainties, we limit the neutrino mass to less than
0.9 eV (90% CL) using only the data of KNM2. When including the first campaign, this slightly
improves to 0.8 eV (90% CL). This corresponds to the first direct neutrino mass measurement
below 1 eV.
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Chapter 7

Future proof KATRIN analysis using a

neural network

After analyzing the first two measurement campaigns using the Monte Carlo propagation
method, the second major effort of this thesis was to develop a future proof KATRIN analysis
using a neural network based approach. The results were published in EPJ-C [105].

This chapter discusses the need for a new analysis method, explains our neural network based
approach, validates its performance and applies it to various realistic KATRIN scenarios.

7.1 Computational limitations of current analysis methods

First, we discuss why all of the current analysis methods require excessive computational
power and would thus benefit from a fast model calculation.

Likelihood evaluation

The most important point is that the evaluation of the KATRIN likelihood described in section 4.1
in itself is computationally expensive. There are two main reasons for this.

First of all, the model evaluation alone is expensive due to the amount of nested numer-
ical estimations such as integration and root search. The integrated spectrum defined in
eq. (3.47) numerically integrates the differential β-spectrum over the response function. In
the β-spectrum, we sum over hundreds of final states. However, the really expensive part
of the integrand is the response function. In itself, it already consists of the convolution of
the transmission function with the energy loss function for s scatterings, summing over up
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to 10 of these convolutions as shown in eq. (3.46). To calculate the energy loss function for s
scatterings, we need to convolve the initial energy loss function for a single scattering s− 1
times with itself. The transmission function includes an additional integration to include the
effect of scattering on the angular distribution (eq. (3.45)), and a root search to include the
energy loss of electrons via synchrotron radiation (eq. (3.33)). We can easily see how putting
all this together leads to a very expensive model evaluation. While parts can be pre-calculated
and interpolated depending on the analysis, we will see in the following paragraphs that this
is not sufficient without more advanced methods.

In addition to the model being expensive in itself, the likelihood can be split into various parts
depending on the detector and time segmentation of the data analysis as shown in eq. (4.14).
This can lead to several hundred, or even thousands of model evaluations for a single likelihood
call.

This is especially valid for upcoming data analyses. There are already four measurement
phases taken in the shifted analyzing plane setting (KNM3a, KNM4, KNM5 and KNM6) and
three in the symmetric field setting (KNM1, KNM2, KNM3b) as shown in table 3.2. The much
higher statistics will no longer allow the simple combination approach pursued for the first two
campaigns as time correlated systematics become more relevant with the increased statistics.
In addition, the SAP setting does not allow for a uniform detector, but requires the segmenting
into 14 patches. This gives us 14 · 4 + 1 · 3 = 59 segments for the data already taken, with
multiple SAP campaigns still planned for the future. We will show in the following parts that
this already at the edge of feasibility using the regular numerical model.

Nuisance parameter method

In the nuisance parameter method, all parameters with an uncertainty are included in the
minimization, and constrained by their corresponding pull term. This has two important
impacts on the computational requirements. Firstly, the dimensionality of the optimization
problem has increased which leads to more likelihood calls needed in general. On top of this,
no part of the model which depends on the free parameters can be pre-calculated fully. This is
especially true for the expensive response function as it depends for example on the magnetic
fields, gas density and parameters of the energy loss function.

Analyzing a single measurement campaign, the detector segmented into 12 rings or 14 patches,
already requires on the order of 1010 evaluations of the integral spectrum when including the
required estimation of derivatives. Using the regular numerical model, this can take up to one
CPU year with drastic parallelization being difficult due to the serial nature of minimization.

The computational requirements scale at least quadratically with additional measurement
campaigns when performing a combined fit. This is the case as both the number of data points
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and the number of free parameters increase linearly. Therefore, this method is unfeasible for
final KATRIN analysis using the unmodified numerical model.

Monte Carlo propagation method

In the Monte Carlo propagation approach, all parameters with systematic uncertainty are
sampled and kept fixed during the fit. This allows pre-calculating the expensive response
function for each sample, but requires performing thousands of fits. Thus, the overall process
also becomes computationally expensive when each individual fit already requires a lot of
computing time.

We already noticed this being an issue during the analysis of the second measurement cam-
paign. Our final result with all uncertainties included, see section 6.6, included approximately
100 000 samples which took a total of about 50 CPU years. In contrast to the nuisance parame-
ter approach, the MC method is embarrassingly parallel. However, at some point it makes no
sense to try to solve the problem via brute-force.

This can be seen by estimating the required computation time for a final KATRIN analysis with
MC propagation. The scaling of computing time remains quadratic in the number of campaigns,
as our free fit parameters and number of data points still increase linearly. Using 15 campaigns,
and the time for KNM2 as reference for a single campaign, we estimate ≈ 152 · 50 = 11 250
CPU years. Even using a computing cluster with a very generous 1000 nodes and 32 cores each,
this still amounts to a real time of

11 250CPU years
1000 · 32CPUs

≈ 128 d (7.1)

for a single analysis.

Full Bayesian sampling

In a full Bayesian sampling approach, all parameters with an uncertainty are varied in every
step, much like in the nuisance parameter method. Therefore, the response function can also
not be pre-calculated. In general, sampling is more expensive than minimizing, shown by
about 1011 model evaluations for sampling a single measurement campaign segmented into
12 patches, which makes the full Bayesian method infeasible already for the analysis of KNM1
and 2.

Instead, a model variation technique similar to the MC propagation was pursued [43]. Once
again, the parameters with systematic uncertainties are randomized before now running a
full Markov Chain Monte Carlo chain. Finally, the samples from all chains are combined to

117



Chapter 7 Future proof KATRIN analysis using a neural network

incorporate the effect of systematic uncertainty. This approximated hybrid method requires at
least the computing time of the MC propagation, and can therefore also not be scaled as is.

Covariance matrix approach

The covariance matrix approach is in a different situation as the approaches described above.
While it is not limited due to computational reasons, it requires the approximation of a normal
likelihood function instead of a Poissonian likelihood to be valid. This is no longer the case when
the data is strongly segmented, as is the case for 14 detector patches and short measurement
campaigns. Therefore it is not clear whether it is possible to pursue this approach to analyse
the campaigns in the shifted analyzing plane configuration.

7.2 Approximating the KATRIN model with a neural network

As we have seen, all current analysis methods would benefit greatly from a fast calculation of
the full integrated tritium spectrum I(θspec; qU) as described in eq. (3.47). Here θspec denotes
any parameters that impact the integrated spectrum, such asm2

ν andE0, but also the response
parameters like the magnetic fields and the gas density.

One possible solution to this problem is to pre-calculate I for multiple samples of θspec and
to use multi-dimensional interpolation to then retrieve I for arbitrary values of θspec. Unfor-
tunately, the high dimensionality in the spectral parameters of O(10), combined with the
stringent accuracy requirements of KATRIN, makes traditional interpolation algorithms such
as cubic splines or (k-) nearest-neighbor unfeasible.

Our solution to this interpolation problem is to make use of a NN. We now describe the
architecture, sample generation and training of the NN before we proceed with analyzing its
behaviour.

Network structure

We would like our network to predict the integral spectrum within a given range of parameter
values θspec. For this, we must pass θspec as input to the neural network. To allow the NN
to learn correlations and spectral shape effects, we use the full spectrum r(θspec; qU) =
I(θspec; qU) + rbg. This leaves us with one input node for each parameter in θspec and one
output node for each qU -point in our spectrum.
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Figure 7.1: Structure of our neural network. We use a total of four layers: an input layer with one
node for each parameter, two fully-connected hidden layers with 128 nodes (amount reduced for
visualization) and an output layer with one node for each point in the spectrum.

To connect the input and output layer, we insert two fully-connected hidden layers, each with
128 nodes. For these hidden layers, we use the mish activation function,

mish(x) = x · tanh (softplus(x)) (7.2)
softplus(x) = ln (1 + ex) (7.3)

while we use softplus as activation for our output layer. Both activation functions are differen-
tiable, allowing us to use the network model with a gradient-based minimization algorithm.
The softplus function ensures the output of our net is always positive.

The structure of our NN is summarized in fig. 7.1 and the activation functions are displayed in
fig. 7.2.

Sample generation

Before we can train our network, we first need a large set of training data. To this end, we sample
our input parameters θspec using the N -dimensional R2-method [106] as it provides excellent
coverage of the parameter space. For each sample, we first retrieveN pseudo-random numbers
distributed uniformly between zero and one. These samples and their projection are visualized
in fig. 7.3a and fig. 7.3b respectively. We then transform these uniformly distributed numbers
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Figure 7.2: Activation functions of our neural network. Both mish and softplus are continuos and
differentiable. The softplus activation ensures positive output values.
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Figure 7.3: Uniformly distributed samples using the 9-dimensional R2-method [106].

to the required parameter distribution. Usually, samples are generated covering the expected
1, 3 and 5σ range of each parameter using both a normal and a uniform distribution over this
range. The 1σ interval is determined either by the systematic uncertainty for constrained
parameters, or by the statistical sensitivity for the unconstrained ones.

After converting the samples into our parameter space, we can calculate the integrated spec-
trum I for the given parameters θspec. Repeating this process up to a few million times for each
range gives the full dataset we can use for training. Typically, generating the several million
samples required to train our NN takes about one day on a regular computing cluster.

Training

For training, we perform two additional transformations to our sample data. There is no need
for decorrelation as theR2-method provides uncorrelated samples for each dimension, but we
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Figure 7.4: Sample spectra used to train the neural network. The individual spectra differ in the input
parameter values used. While all follow the same shape (a), the shape effect is clearly visible after
dividing by the sample mean (b).

normalize all input parameters to have a mean of zero and a standard deviation of one. As all
tritium spectra follow roughly the same shape, we divide the output rates by the sample mean
at each point in qU . This allows the network to learn the more prominent changes, instead of
having to learn small changes on top of an underlying tritium spectrum as shown in fig. 7.4.
The division by the sample mean is also the reason for adding a constant background rate rbg
to the training samples, as we thus avoid dividing by zero above the endpoint. In addition, the
shape effects resemble the data more closely, where the background rate is also non-zero.

During training, we optimize the weights of the neural network to minimize our loss function

loss(weights) =
〈(

Ci − Cpred,i(weights)
)2〉 (7.4)

with the true rate change of each sample Ci =
ri
⟨ri⟩ and the corresponding prediction of the

neural net Cpred,i. For this optimization problem, a custom interface of scipy’s [107] L-BFGS
[108, 109] minimizer to keras was implemented. As it is not feasible to process the full training
dataset at once, we split it into batches smaller than 1 000 000 spectra. We then train the
network in an iterative approach:

1. Start with a minimizer tolerance of 10−3.

2. Select a random batch of training samples.

3. Perform the weight optimization and store the weights.

4. Decrease the minimizer tolerance and repeat steps 2 and 3 using the stored weights as
starting values.

5. Repeat the process until the loss stabilizes, this typically takes about 40 iterations with a
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Figure 7.5: Loss over training iteration for different network architectures. The loss on the training (blue
solid) and validation (orange dashed) dataset of our reference network follow one-another perfectly,
indicating that there is no overfitting. Another network with a similar number of free weights (green
dotted) converges to the same final loss as our reference. However, oversimplifying the NN (red
dash-dotted) leads to an increase in the achievable loss and thus to a worse performance.

final minimizer tolerance around 10−20.

To check for so-called overfitting, we split our samples into two parts: the actual training
dataset which is used for the optimization procedure (90% of the samples) and a validation
dataset (10%) the net never sees during training. In each iteration, we evaluate our loss
function both on the training and on the validation dataset. If the loss improves on the training
dataset, but stays stagnant or even increases on the validation dataset, one would speak of
overfitting. The evolution of our loss function for different training iterations is shown in fig. 7.5.
First, we can see that both the training and the validation loss of our reference implementation
with two hidden layers, each with 128 nodes, follow one-another perfectly, so there is no
indication of overfitting. Both converge to a loss of approximately 10−10 after 40 iterations. A
network with a slightly different architecture, but a similar number of free weights, converges
to the same loss. However, if the underlying net is too simple, we see a significant increase in
the achievable loss as shown by the NN using one hidden layer with eight nodes. This shows
that the specific architecture we pick does not impact the final result, as long as the freedom
in the NN parametrization is sufficiently large to pick up all features in our training data.

The complete training process is completed within a few hours on a single GPU. An important
point to make is that the sample generation and training only have to be performed once,
and the resulting trained network can then be used for multiple different analyses, such as a
complete uncertainty breakdown, fits with different data segmentation and so forth.

Our next step is to compare the behaviour of the neural net based model with the reference,
ensuring the NN learns the spectral features correctly.
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Figure 7.6: Comparison of the output count rate of the neural net rnet and the reference model rref.
The simple overlay (a) shows a perfect match. Displaying the relative difference (b) indicates a 10−5

effect. Note that the spectra are taken as-is using the same input parameters, no fit is performed.

7.3 General behaviour of our neural network based model

To analyze the general behaviour of our neural network based model, we initially compare
the count rate of the neural net rnet with the output of the reference model rref in fig. 7.6
assuming θspec similar to those in the 2nd measurement phase. A direct overlay of the two
spectra (fig. 7.6a) shows no visible difference. Therefore, we take a closer look in fig. 7.6b by
displaying the relative difference. We can see that the maximum deviation is on the order of
10−5, a small effect compared to relative statistical error

σi
ri

> 10−3 ∀ i (7.5)

of the KNM2 data (stacked, uniform detector).

For the direct comparison, we assumed the best estimate of our parameter values, i.e. the
values at which the sampling distributions of the neural net are centered. We denote this
expected rate with r0 where fig. 7.6b has shown r0,net ≈ r0,ref. Now, we check the accuracy of
our neural network when varying a parameter value to calculate the rate r away from r0. To
do so, we display the relative change r

r0
in fig. 7.7 for both our NN and the reference model.

The relative change is displayed with a varied neutrino mass squared (fig. 7.7a), endpoint
(fig. 7.7b), column density (fig. 7.7c), and eloss shift (fig. 7.7d). In all cases, the points stemming
from our NN calculation lie on the line which denotes the estimate using our reference model.
We can thus conclude that our neural net learns the shape effect of each parameter, and is
able to accurately calculate the model rate in different parts of the sample space.
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Figure 7.7: Impact of changing various parameter values of the integral spectrum. We display the rate
with an updated parameter value divided by the initial rate for the NN (points) compared to the
reference model (solid line). All points lay on the line, showing that the net learns the dependence of
the spectral rate on each parameter.
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7.4 Comparison with existing model on a 1000-day Asimov

spectrum

As our NN is able to learn the model rate and the effect of individual parameters accurately,
the next step is to perform a direct comparison with the existing model on a 1000-day Asimov
spectrum.

To this end, we generate a Monte Carlo dataset with the reference model. For this dataset,
we assume the measurement time distribution and slow control parameter values of KNM2
as well as the fit parameter values summarized in table 7.1. First step of our comparison is
to fit this dataset with our neural network, assuming a uniform detector segmentation and
using only the regular four fit parameters {m2

ν , E0, AS, rbg}, thus neglecting any systematic
uncertainties. This simplification allows us to compare to the reference model in detail, as the
analysis is computationally feasible in both cases.

Figure 7.8a shows the neural net fit as well as the resulting normalized residuals. There is no
structure in the residuals when scaled to the usual 1σ level. When zooming in, we see residuals
on the 0.002σ level, about three orders of magnitude smaller than the statistical uncertainty,
showing our neural network can describe the data perfectly. This perfect description is under-
pinned by the m2

ν bias of less than 10−5 eV2, and exact recovery of all other fit parameters, as
shown in table 7.1.

In addition to the recovery of all central values, we check if the neural network is also able
to estimate the uncertainty correctly. Therefore, we perform a profile likelihood in m2

ν on
the Asimov dataset with the NN and the regular analysis framework. The two are overlaid
in fig. 7.8b. The profile likelihood of the neural net gives m2

ν = 0.0000+0.0402
−0.0415 eV

2, while
the reference is m2

ν = 0.0000+0.0396
−0.0417 eV

2. Thus, the difference in the lower (upper) error is
2×10−4 eV2 (−6×10−4 eV2), less than2%of the statistical uncertainty. We therefore conclude
that the neural network biases neither the central value, nor the 1σ interval significantly at
final KATRIN statistics on an Asimov dataset.

To ensure this statement also holds on statistically randomized data, we perform an ensemble

Table 7.1: Parameter recovery of the Asimov cross-fit. Our neural network recovers all true parameters
with the bias in m2

ν being less than 1× 10−5 eV2.

fit parameter true value recovered value

m2
ν (eV2) 0 −9.8× 10−6

E0 (eV) 18 573.700 18 573.700
AS 1.18 1.18
rbg (mcps) 136 136
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Figure 7.8: Fit of 1000 day Asimov spectrum generated with the reference code using both the reference
and the neural network.
(a) displays the neural net fit (blue solid line) and the Monte Carlo data (black points) on the top. The
two lower plots show the normalized residuals, once in a regular scale where no structure is visible
(middle) and once with a zoom by a factor of 1000.
(b) compares the m2

ν profile likelihood of the neural net (blue solid) to the profile likelihood using
the regular analysis framework (orange dashed). The overlay shows an excellent match, with the 1-σ
uncertainty differing on the 10−4 eV2 level.

test. Accordingly, we randomize the 1000 day Asimov spectrum with its Poisson statistics
to generate 1000 randomized spectra. We then fit each of these spectra with the neural net
and with the reference analysis, storing the best fit value of the neutrino mass squared m2

ν,net
and m2

ν,ref respectively. The resulting distribution of the difference ∆m2
ν = m2

ν,ref −m2
ν,net is

shown in fig. 7.9 as the blue histogram. We use this distribution to infer the bias (median) of
−3.2× 10−4 eV2 and width (central 1σ interval) of 3.8× 10−4 eV2. Both quantities show that
the impact of using our NN is negligible compared to the statistical uncertainty of ≈ 0.04 eV2,
as displayed in fig. 7.9a.

In addition to comparing to the statistical uncertainty, we compare to the intrinsic numerical
noise of the regular analysis framework. Therefore, we also fit the 1000 randomized spectra
with a reduced integration precision of 10−6 compared to the reference of 10−8. This reduced
integration precision is actually the value used so far, also for the analysis of the first two
neutrino mass campaigns. The resulting distribution of the difference is compared to the
impact of the NN based analysis in fig. 7.9b. We can see that the biases (4.2× 10−4 eV2 and
−3.2× 10−4 eV2) are comparably large, but the analysis with reduced integration precision
actually leads to more outliers and thus an increased width compared to the NN (7.6×10−4 eV2

instead of 3.8×10−4 eV2). Our neural net based analysis is thus numerically at least as accurate
as our regular model at current precision.
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Figure 7.9: Ensemble test on 1000 statistically randomized Monte Carlo spectra. Each spectrum is
fit with the regular analysis framework (10−8 integration precision) and the neural network. The
difference of the fitted m2

ν values is then compared with the distribution of m2
ν from the statistical

fluctuation (a) and to the difference of the reference analysis when using 10−6 integration precision
(b), as used for previous analyses.

7.5 Application to realistic KATRIN scenarios

Having shown that the neural network based analysis is sufficiently accurate for final KATRIN,
we next apply it to realistic KATRIN scenarios. Here, we start with a reanalysis of the first two
measurement campaigns reproducing the results in [43, 66, 78]. Next, we go beyond what
was published by further segmenting the data in a combined fit as well as performing a proof
of concept for a full Bayesian analysis. Finally, we prove the feasibility of our approach on a
Monte Carlo dataset representing final KATRIN.

7.5.1 Analysis of the first two measurement campaigns

As a first step of our NN based analysis of the first two measurement campaigns, we reproduce
the published results discussed in detail in chapter 6. For the analysis, we make use of the nui-
sance parameter method to include parametrized systematic uncertainties. The background
overdispersion is included in the likelihood, and uncertainties on molecular final states and
activity fluctuations are included with the covariance matrix method.

Initially, we fit both campaigns with a uniform detector segmentation including uncertainties
from Poisson statistics and the background overdispersion. Note that this analysis includes all
effects neglected during the first campaign as discussed in section 6.7.1. The resulting best fit
model as well as the normalized residuals are displayed in fig. 7.10 for both the neural net and
the reference. We can see that the two fits show the exact same residual structure for each of
the two campaigns, indicating that our NN behaves exactly like the reference model.
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Figure 7.10: Comparison of spectral fit for the first (a) and second (b) measurement phase using the
reference framework (orange dashed) and the neural network (blue solid). The fits include statistical
uncertainty from Poisson statistics and the background overdispersion. The normalized residuals
shown at the bottom of each plot match perfectly for the two analysis methods, indicating that the
neural network behaves exactly like the regular analysis framework.

We then proceed to fit each campaign individually, including all systematic uncertainties,
KNM1 using a uniform detector and KNM2 in the radial segmentation, as performed in our
reference analysis. For the first campaign, we retrieve m2

ν = −1.14+0.90
−1.08 eV

2 and for the
second m2

ν = 0.26+0.32
−0.33 eV

2, in excellent agreement with the results discussed in sections 6.6
and 6.7.1. A comparison with the results published in [43] is displayed in fig. 7.11a. We can see
that the NN results are fully compatible with those published, fluctuating on the same percent
level as the other results with respect to one another.

In addition to the analysis with all uncertainties, we also perform an uncertainty breakdown
of the second campaign with the neural network and compare it to the one presented in
section 6.6. The result is shown in fig. 7.12. We can see that the overall distribution of un-
certainties is well reproduced by the neural network. Small differences are expected due to
the difference in treatment (e.g. the nuisance parameter approach requires subtracting in
squares) and ensemble uncertainty on the results from MC propagation. One bar where the
difference in treatment is especially visible is the background qU dependence: Here the best
fit value changes to a value closer to zero when running the nuisance parameter approach.
This leads to a larger σlower and thus a larger average uncertainty. We do not observe this in
the MC propagation with systematic uncertainties only.

To go beyond our results in chapter 6, we now perform a combined fit of the first two campaigns
using the neural network. As proof of concept, we use three different detector segmentations:
both uniform (uu), KNM1 uniform and KNM2 ring-wise as in the individual analyses (ur) and
both ring-wise (rr). Fitting either of the two campaigns ring-wise in a combined analysis had
not been done before due to the computational requirements, and as it was not necessarily
required. The results are displayed in fig. 7.11b, where we also compare to the published
results. Here, MC propagation (ur) is our result where the m2

ν distributions are combined after
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Figure 7.11: Comparison of the fit results when analysing the first and second neutrino mass campaign
individually (a) and combined (b). The results using the neural net (blue) are consistent with the
ones retrieved using the various published analysis methods [43, 66, 78] on the percent level.
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fitting individually, and nuisance parameters (uu) as well as covariance matrix (uu) are the
results published in [43]. Once again, the results using the neural network are within the usual
spread of different analysis methods on the percent level.

At this point we want to discuss the computing time of the different analyses performed with
the neural network. All times are given as CPU time on a single core and should only serve
as rough reference. Calculating the best fit and uncertainty of a single campaign using the
nuisance parameter method and profile likelihood takes less than one minute (about four
minutes) with a uniform (ring-wise) detector segmentation. For the combined fit, we estimate
two minutes (uu), eight minutes (ur) and 17 minutes (rr) for the various segmentations. This
should be compared with the 50 CPU years of our Monte Carlo propagation based analysis
of KNM2. An improvement over several orders of magnitude for the final fit. The computing
times are summarized in table 7.2. We can also see the re-usability of the neural network start
to come to play. For each of the analyses we used the same two trained networks, one for the
first and one for the second campaign.

To conclude our analysis of the first two campaigns, we provide a proof of concept for a full
Bayesian analysis using the NN. To this end, we include all parameters that were included via
nuisance parameters in the Frequentist analysis, as sampling parameters with the correspond-
ing priors. For the sampling, we make use of the emcee [110] python package which uses a
Markov Chain Monte Carlo (MCMC) ensemble sampler under the hood.

We then sample the likelihood of the first and second campaign individually, as well as the
combined likelihood of the two. In each case, we use a uniform detector segmentation for
simplicity. The resulting posterior using a fully flat prior in m2

ν is shown in fig. 7.13a, while
fig. 7.13b shows the posterior using a flat positive prior on the neutrino mass squared. From
the posterior with m2

ν constrained to the physical region, we derive an upper limit on the
neutrino mass by integrating the posterior to 90% yielding

• m2
ν < 0.80 eV2 (mν < 0.90 eV) for the first campaign,

• m2
ν < 0.76 eV2 (mν < 0.87 eV) for the second campaign,

• m2
ν < 0.56 eV2 (mν < 0.75 eV) for both combined.

These results are once again consistent with the Bayesian analysis using the model variation
technique published in [43, 66]. All our results completed on a single core within a day, and
consisted of 2million, 2.4million and 4.2million samples in the posterior for the first, second
and combined analysis.
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Figure 7.13: Posterior in m2
ν using a Bayesian MCMC for the first campaign (blue), second campaign

(orange) and both combined (green) once with a flat prior in m2
ν (a) as well as limiting the parameter

space to positive m2
ν values (b).

7.5.2 Feasibility study for final KATRIN dataset

Finally, we prove the feasibility of the analysis of final KATRIN results using our neural network.
To do so, we generate an Asimov Monte Carlo dataset segmented similarly to what is expected
from the data taking in the coming years: 15 periods, each in the shifted analyzing plane setting
requiring 14 detector patches.

For each of the 15 periods, we assume a measuring time of 60 d, a true neutrino mass of zero
and a column density of 3.75m−2. To have some model variation over the periods, we slightly
vary the endpoint, normalization and background as displayed in fig. 7.14 with mean values of
18 573.7 eV, 1.17 and 136mcps respectively.

We then fit these 15 periods in a combined fit including all systematic parameters using the
nuisance parameter method. In the fit we then have:

• 1 neutrino mass squared shared over all patches and periods,

• the Penning background, source magnetic field, column density, eloss shift and overall
plasma broadening shared over all patches, but distinct for each period,

• and an endpoint, signal normalization, background rate, background retarding energy
slope, maximum magnetic field and magnetic field in the analyzing plane individual for
each patch and period.

This then amounts to a total of 1 + 15 · 5 + 15 · 14 · 6 = 1336 parameters in the minimization,
and should easily be sufficient for a final KATRIN analysis.
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Figure 7.14: Input parameter values (blue dot) and neural network fit result (orange cross) for each of
the 15 periods in our Asimov Monte Carlo dataset emulating the data segmentation of final KATRIN.
All parameters are recovered perfectly by our neural network.

Table 7.2: Computing times for different analyses using the neural network. This includes the best fit
as well as an asymmetric error scan for the 1σ errors in m2

ν including systematic uncertainties with
the nuisance parameter approach. All computations are run on a single core and should only serve
as rough estimates to prove the feasibility of our approach.

analysis computing time (CPU)

first campaign (uniform) < 1min
second campaign (12-ring) 4min
both combined (uniform - uniform) 2min
both combined (uniform - 12-ring) 8min
both combined (12-ring - 12-ring) 17min
KATRIN final MC (15 x 14-patches) 1 d

The combined fit completes in roughly one day including the interval estimation of the neutrino
mass squared which gives m2

ν = 0.000+0.047
−0.049 eV

2, perfectly recovering the input value of zero
and showing reasonable uncertainties. This perfect parameter recovery is also the case for all
other parameters, as shown in fig. 7.14 for E0, AS and rbg, where we average over the patches
for E0 and AS and sum over patches for rbg.

For this type of analysis, the preparation of all used neural networks, most likely one per period,
would take several weeks at most. This can already be done for each campaign individually,
when it is first analyzed, and then re-used for all subsequent combined analyses.

Together with the excellent parameter recovery and duration of less than one day on a single
CPU, we conclude that a final combined fit with several hundreds of free parameters is both
computationally and numerically feasible with our approach. Thus, this neural network based
method fulfills all requirements needed to analyze the final KATRIN dataset in a simultaneous
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fit.
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Conclusion

In this thesis we presented a novel uncertainty treatment, based upon full Monte Carlo propa-
gation of uncertainty, for KATRIN analyses. We have shown that it gives consistent results with
the well-established nuisance parameter method in all cases relevant for KATRIN. Additionally,
it allows pre-calculating the expensive experimental response function, and is embarrass-
ingly parallel. This makes it a powerful method, especially when combined with a computing
cluster. One unique advantage of the Monte Carlo propagation method is that it allows cal-
culating the impact of systematic uncertainties without including the statistical uncertainty,
thus removing the need to subtract the total and the statistical uncertainty in squares. It also
allows propagating unparameterized uncertainties and does not rely on a Gaussian likelihood
function.

We next apply our developed analysis method and framework to the neutrino mass data
of the first two campaigns, KATRIN neutrino mass (KNM) 1 and KNM2. Including all relevant
systematic uncertainties, we fitm2

ν = −0.98+0.95
−1.12 eV

2 (KNM1) andm2
ν = 0.26+0.34

−0.34 eV
2 (KNM2).

The first result is a roughly 1σ under-fluctuation, the second a 1σ over-fluctuation, when
assuming a neutrino mass of zero. Therefore, we do not observe any evidence for a non-zero
neutrino mass, and derive an upper limit using the method of Lokhov and Tkachov. This
yields mν < 1.1 eV (90% CL) for the first campaign, and mν < 0.9 eV (90% CL) for the
second one. Combining the two results by multiplying the distributions retrieved via Monte
Carlo propagation further improves the limit slightly to mν < 0.8 eV (90% CL). Thus, we
achieve the first sub-electronvolt direct neutrino mass measurement using data of the KATRIN
experiment. The results of this thesis were published in PRL [78], PRD [66] and Nature Physics
[43] representing one of the three official KATRIN analyses.

Investigating the uncertainty breakdown of each campaign shows that both are strongly
dominated by statistical uncertainties, mainly the intrinsic Poisson statistics, followed by the
background over-dispersion effect. In addition, we show that the fitted m2

ν value does not
depend on the analysis interval or detector segmentation of the final fit for either campaign.
Effects initially neglected in the analysis of KNM1 only have a minor impact on the best fit, and
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do not change the limit derived using the method of Lokhov and Tkachov.

While a powerful tool for analysing individual campaigns, we show that our current approach
using Monte Carlo propagation of uncertainty and the regular numerical model quickly runs
into computational limits when performing a combined fit of multiple campaigns. To mitigate
this issue, we developed a novel model approximation based upon a neural network (NN).
This NN is trained to learn the spectral shape in dependence of our model input parameters
such as the neutrino mass squared, the endpoint, or the magnetic fields. We prove that the
NN model is able to learn this dependency and does not show any indication of over-fitting.
When applying the neural network based analysis to a 1000-day Monte Carlo dataset, we
observe a bias smaller than 1× 10−4 eV2 in an Asimov cross-fit and of −3.2× 10−4 eV2 in an
ensemble test. Both are significantly smaller than the expected statistical sensitivity of KATRIN
on the order of 0.02 eV2 to 0.04 eV2, proving that the NN is sufficiently precise to be applied
for KATRIN data analysis.

Next, we used our NN to the re-analyse the data of the first two neutrino mass campaigns and
find results consistent with the conventional analysis frameworks. As proof of concept, we
showed a full Bayesian analysis as well as a combined fit of both periods, each segmented
into twelve detector rings. Finally, we performed a feasibility study on a dataset representing
the data segmentation expected for final KATRIN analysis: 15 independent campaigns, each
split into 14 detector patches due to the shifted analyzing plane configuration. Our NN was
able to fit this dataset in one large combined fit involving 1336 parameters in the minimization.
The best-fit together with an asymmetric error scan converges within a single day on a single
core. Combined with the preparation of the neural networks, taking at most several weeks,
and performable during the analysis of each campaign beforehand, we conclude that this
approach is viable to analyse the final KATRIN dataset, and recommend further usage for the
upcoming neutrino mass analyses. The results of this work were published in EPJ-C [105].
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Appendix A

Summary tables

This appendix chapter contains various summary tables of results which are too long to be
included in the main text.

Table A.1: Best fit for all fit parameters of the first measurement campaign with uncertainty from
Poisson statistics only. The uncertainty has been symmetrized for simplicity.

parameter fit result

rbg 0.2923± 0.0007 cps
E0 18 573.728± 0.058 eV
m2

ν −0.963± 0.971 eV2

AS 1.191± 0.006

Table A.2: Best fit for all fit parameters of the first measurement campaign with total uncertainty. The
uncertainty has been symmetrized for simplicity.

parameter fit result

rbg 0.2923± 0.0007 cps
E0 18 573.727± 0.061 eV
m2

ν −0.978± 1.038 eV2

AS 1.185± 0.038
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Table A.3: Best fit for all fit parameters of the second measurement campaign with uncertainty from
Poisson statistics only. The uncertainty has been symmetrized for simplicity. The number within the
round bracket indicates the ring number for ring-wise parameters.

parameter fit result

m2
ν 0.274± 0.290 eV2

rbg (0) 0.0066± 0.0001 cps
rbg (1) 0.0201± 0.0001 cps
rbg (2) 0.0208± 0.0001 cps
rbg (3) 0.0209± 0.0001 cps
rbg (4) 0.0218± 0.0001 cps
rbg (5) 0.0225± 0.0001 cps
rbg (6) 0.0227± 0.0001 cps
rbg (7) 0.0237± 0.0001 cps
rbg (8) 0.0206± 0.0001 cps
rbg (9) 0.0192± 0.0001 cps
rbg (10) 0.0153± 0.0001 cps
rbg (11) 0.0060± 0.0001 cps
E0 (0) 18 573.766± 0.049 eV
E0 (1) 18 573.769± 0.033 eV
E0 (2) 18 573.708± 0.034 eV
E0 (3) 18 573.730± 0.034 eV
E0 (4) 18 573.699± 0.033 eV
E0 (5) 18 573.653± 0.034 eV
E0 (6) 18 573.667± 0.034 eV
E0 (7) 18 573.656± 0.035 eV
E0 (8) 18 573.655± 0.036 eV
E0 (9) 18 573.665± 0.038 eV
E0 (10) 18 573.647± 0.041 eV
E0 (11) 18 573.722± 0.057 eV
AS (0) 1.122± 0.007
AS (1) 1.120± 0.005
AS (2) 1.126± 0.005
AS (3) 1.125± 0.005
AS (4) 1.131± 0.005
AS (5) 1.132± 0.005
AS (6) 1.129± 0.005
AS (7) 1.132± 0.005
AS (8) 1.131± 0.005
AS (9) 1.133± 0.005
AS (10) 1.130± 0.006
AS (11) 1.114± 0.009
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Table A.4: Best fit for all fit parameters of the second measurement campaign with total uncertainty.
The uncertainty has been symmetrized for simplicity. The number within the round bracket indicates
the ring number for ring-wise parameters.

parameter fit result

m2
ν 0.261± 0.340 eV2

rbg (0) 0.0066± 0.0001 cps
rbg (1) 0.0201± 0.0002 cps
rbg (2) 0.0208± 0.0002 cps
rbg (3) 0.0209± 0.0002 cps
rbg (4) 0.0218± 0.0002 cps
rbg (5) 0.0225± 0.0002 cps
rbg (6) 0.0227± 0.0002 cps
rbg (7) 0.0236± 0.0002 cps
rbg (8) 0.0206± 0.0002 cps
rbg (9) 0.0192± 0.0001 cps
rbg (10) 0.0153± 0.0001 cps
rbg (11) 0.0060± 0.0001 cps
E0 (0) 18 573.764± 0.055 eV
E0 (1) 18 573.765± 0.039 eV
E0 (2) 18 573.702± 0.040 eV
E0 (3) 18 573.730± 0.040 eV
E0 (4) 18 573.696± 0.040 eV
E0 (5) 18 573.654± 0.040 eV
E0 (6) 18 573.666± 0.040 eV
E0 (7) 18 573.661± 0.040 eV
E0 (8) 18 573.656± 0.042 eV
E0 (9) 18 573.664± 0.043 eV
E0 (10) 18 573.652± 0.047 eV
E0 (11) 18 573.715± 0.064 eV
AS (0) 1.123± 0.025
AS (1) 1.121± 0.024
AS (2) 1.128± 0.025
AS (3) 1.126± 0.024
AS (4) 1.132± 0.025
AS (5) 1.133± 0.025
AS (6) 1.130± 0.025
AS (7) 1.132± 0.025
AS (8) 1.132± 0.025
AS (9) 1.134± 0.025
AS (10) 1.131± 0.025
AS (11) 1.116± 0.026
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Table A.5: Uncertainty breakdown for the first neutrino mass campaign.

effect 1σ uncertainty on m2
ν (eV2)

Poisson statistics 0.97
bg overdispersion 0.30

bg qU dependence 0.066
gas density 0.052

magnetic fields 0.049
activity fluctuations 0.044

molecular states 0.020
energy loss 0.0023

Table A.6: Uncertainty breakdown for the second neutrino mass campaign.

effect 1σ uncertainty on m2
ν (eV2)

Poisson statistics 0.29
bg overdispersion 0.11

Penning bg 0.074
source potential 0.066

bg qU dependence 0.041
magnetic fields 0.026

gas density 0.013
molecular states 0.012

energy loss 0.0037
activity fluctuations 0.0032

Table A.7: Uncertainty breakdown for the second neutrino mass campaign using our neural network.

effect 1σ uncertainty on m2
ν (eV2)

Poisson statistics 0.28
bg overdispersion 0.11
source potential 0.072

Penning bg 0.069
bg qU dependence 0.052

magnetic fields 0.026
gas density 0.014

molecular states 0.013
energy loss 0.0037

activity fluctuations 0.0029
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Code repositories

In this appendix we summarize the most important code repositories used and developed
over the course of this thesis in a bullet-point fashion.

Numerical Calculus

Main author: Martin Slezák
Gitlab link: https://nuserv.uni-muenster.de:8443/slezak/NumericalCalculus
Purpose: A collection of algorithms to perform differential and integral calculus as well as
further numerical calculations.
Main language: C++

Fitter

Main author: Martin Slezák
Gitlab link: https://nuserv.uni-muenster.de:8443/slezak/Fitter
Purpose: Interface for fitting models to data by maximum likelihood estimation including
uncertainty estimation. Main language: C++
Note: Builds upon Numerical Calculus.

Fitrium

Main author: Christian Karl
Gitlab link: https://nuserv.uni-muenster.de:8443/karlch/Fitrium
Purpose: Modelling and fitting tools for the KATRIN experiment. Provides the full KATRIN
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model, an interface for data reading and analysis as well as various Monte Carlo tools. Main
language: C++
Note: Builds upon Numerical Calculus and Fitter.

Netrium

Main author: Christian Karl
Gitlab link: https://nuserv.uni-muenster.de:8443/karlch/Netrium
Purpose: Toolkit to analyse KATRIN data using a neural network. Provides the chain to train a
neural network and use it for KATRIN data analysis.
Main language: python

NetriumGensamples

Main author: Christian Karl
Gitlab link: https://nuserv.uni-muenster.de:8443/karlch/netriumgensamples
Purpose: Toolkit to generate samples for Netrium using Fitrium.
Main language: C++

Kasper

Main author: KATRIN Collaboration
Gitlab link: https://nuserv.uni-muenster.de:8443/katrin-git/kasper
Purpose: General KATRIN analysis and simulation package.
Main language: C++
Note: Only used during this thesis to retrieve and read the KATRIN data contained in run
summary files.

RS2HDF5

Main author: Christian Karl
Gitlab link: https://nuserv.uni-muenster.de:8443/karlch/RS2HDF5
Purpose: Converter for KATRIN run summary files in the KATRIN-specific ktf format into the
HDF5 format.
Main language: C++
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Webtrium

Main author: Christian Karl
Gitlab link: https://nuserv.uni-muenster.de:8443/karlch/Webtrium
Purpose: Online analysis tools using Fitrium. Provides near-time fit results during a measure-
ment campaign accessible via webtrium.mpp.mpg.de.
Main language: python
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