
A Next-Generation Discontinuous Galerkin Fluid Dynamics
Solver with Application to High-Resolution Lung Airflow

Simulations
Martin Kronbichler

kronbichler@lnm.mw.tum.de
Technical University of Munich

Garching, Germany
Uppsala University
Uppsala, Sweden

Niklas Fehn
niklas.fehn@lrz.de

Leibniz Supercomputing Centre
Garching, Germany

Peter Munch
munch@lnm.mw.tum.de

Technical University of Munich
Garching, Germany

Helmholtz-Zentrum hereon GmbH
Geesthacht, Germany

Maximilian Bergbauer
bergbauer@lnm.mw.tum.de

Technical University of Munich
Garching, Germany

Karl-Robert Wichmann
wichmann@lnm.mw.tum.de

Technical University of Munich
Garching, Germany
Ebenbuild GmbH
Garching, Germany

Carolin Geitner
geitner@lnm.mw.tum.de

Technical University of Munich
Garching, Germany

Momme Allalen
momme.allalen@lrz.de

Leibniz Supercomputing Centre
Garching, Germany

Martin Schulz
Wolfgang A. Wall
schulzm@in.tum.de
wall@lnm.mw.tum.de

Technical University of Munich
Garching, Germany

ABSTRACT
We present a novel, highly scalable and optimized solver for turbu-
lent flows based on high-order discontinuous Galerkin discretiza-
tions of the incompressible Navier–Stokes equations aimed to min-
imize time-to-solution. The solver uses explicit-implicit time inte-
gration with variable step size. The central algorithmic component
is the matrix-free evaluation of discretized finite element operators.
The node-level performance is optimized by sum-factorization ker-
nels for tensor-product elements with unique algorithmic choices
that reduce the number of arithmetic operations, improve cache
usage, and vectorize the arithmetic work across elements and
faces. These ingredients are integrated into a framework scal-
able to the massive parallelism of supercomputers by the use of
optimal-complexity linear solvers, such as mixed-precision, hybrid
geometric-polynomial-algebraic multigrid solvers for the pressure
Poisson problem. The application problem under consideration are
fluid dynamical simulations of the human respiratory system under
mechanical ventilation conditions, using unstructured/structured

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SC ’21, November 14–19, 2021, St. Louis, MO, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8442-1/21/11. . . $15.00
https://doi.org/10.1145/3458817.3476171

adaptively refined meshes for geometrically complex domains typi-
cal of biomedical engineering.

CCS CONCEPTS
•Mathematics of computing→Mathematical software per-
formance; Solvers; • Applied computing→ Health informatics.

KEYWORDS
high-order discontinuous Galerkin, matrix-free algorithms, multi-
grid, time-to-solution

ACM Reference Format:
Martin Kronbichler, Niklas Fehn, Peter Munch, Maximilian Bergbauer,
Karl-Robert Wichmann, Carolin Geitner, Momme Allalen, Martin Schulz,
and Wolfgang A. Wall. 2021. A Next-Generation Discontinuous Galerkin
Fluid Dynamics Solver with Application to High-Resolution Lung Airflow
Simulations. In The International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC ’21), November 14–19, 2021, St.
Louis, MO, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.
1145/3458817.3476171

1 OVERVIEW OF THE PROBLEM
The complex structure of a human lung extending across various
scales and its well balanced functioning make the respiratory sys-
tem a fascinating organ of the human body: from the upper, purely
conducting airways, the air passages continuously branch into
deeper regions (see Figure 1) and transition into the respiratory
zone consisting of a spongy arrangement of alveoli, which finally
are involved in the exchange of oxygen. Considering this structural

https://orcid.org/0000-0001-8406-835X
https://doi.org/10.1145/3458817.3476171
https://doi.org/10.1145/3458817.3476171
https://doi.org/10.1145/3458817.3476171
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SC ’21, November 14–19, 2021, St. Louis, MO, USA Kronbichler et al.

Figure 1: Visualization of an airway tree of the first 12 gener-
ations (red) continuously branching into both lungs (grey).
The larger airways and the lungs are segmented frommedical
image data, airways belowCT image resolution are generated
by a morphologically based tree growing algorithm.

delicacy and the direct exposure to the external environment, it is
not surprising that pulmonary diseases are rated among the ma-
jor causes of global morbidity and mortality [26], with increased
attention nowadays due to the ongoing COVID-19 pandemic.

Improved insight into the respiratory system is crucial for devel-
oping new treatments or the personalized application of existing
therapies for a large number of severe diseases, in particular those
requiring mechanical ventilation. Although a life-preserving mea-
sure for some diseases, mechanical ventilation places additional
stress on already damaged lungs, potentially resulting in so-called
ventilator induced lung injury (VILI), and the patient’s chances of
survival drastically decrease with the duration of use [17]. Since
even small alterations in ventilator settings can greatly reduce mor-
tality [10], a better understanding of the lung (patho-)physiology
is crucial.

A reoccurring problem is that the variety of complex and inter-
acting phenomena, like fluid dynamical, tissue mechanical, and gas
transport processes, are difficult to measure in vivo due to both
ethical and technical reasons. The application of computational
models for in silico investigations have great potential to deepen
the general knowledge about fluid dynamics in the lung and to re-
veal certain phenomena which are, so far, inaccessible in vivo or in
vitro. New evidence from simulations offers the chance to improve
general medical treatment and to even individualize therapies by
patient-specific modeling of ventilation, inhalation, or surfactant
therapies.

Today, only very simplified models could realistically be used
bedside in clinical settings. For a new generation of computation-
assisted treatment guaranteeing a high level of safety, advanced
high-fidelity models need to be investigated for a multitude of phe-
nomena and parameters. Engineering practice typically requires
a single simulation model to be realized in a matter of minutes to

hours. However, conducting scale-resolving simulations of turbu-
lent flows in wall-time limits of a few hours is one of the major
challenges in computational fluid dynamics due to the large number
of time steps (typically millions of time steps) required by such com-
plex problems. Even on today’s supercomputers, such simulations
often require wall times of weeks to months. This situation is some-
times denoted as the LES (large-eddy simulation) crisis [47], based
on extrapolations made about 3 decades ago regarding the availabil-
ity of such simulations in the future, and recognizing that this goal
has not been reached today.1 Against this background, the need for
computationally efficient methods minimizing time-to-solution in
the strong-scaling limit is obvious.

The present work aims at realizing resolutions of the tracheo-
bronchial tree that allow to fully resolve the resistance of the con-
ducting airway tree by the 3D simulation model, i.e., the complete
airway tree up to 11 generations of the Weibel model [60], thereby
exceeding the resolution limits of state-of-the-art approaches (Sec-
tion 2.1). For this purpose, we optimized ExaDG [21], a high-per-
formance turbulent flow solver based on high-order discontinuous
Galerkin discretizations of the incompressible Navier–Stokes equa-
tions. The solver is based onmixed explicit-implicit time integration
with variable step sizes, enhanced with several optimizations en-
abling us to tackle its computational complexity. We make the
following contributions:
• We provide a highly scalable simulation code for improv-
ing the predictive simulation capabilities of the human pul-
monary system, which can aid in the treatment of many
diseases, including COVID-19.
• We use unstructured hexahedral coarse meshes with struc-
tured refinement for hybrid patient-specific/idealized lung
models.
• We introduce several algorithmic optimizations, including
matrix-free operator evaluation, which enable us to better
balance computation and memory accesses.
• We discuss a series of architectural optimizations to improve
cache usage and vectorization, allowing us to fully exploit
modern architectures.
• We present a multigrid framework on top of these node-level
improvements to efficiently solve the most challenging part,
the pressure Poisson equation, on large scale HPC systems.
• We demonstrate our work on use cases targeting realistic
mechanical ventilation conditions.

Our experiments on the SuperMUC-NG system at the Leibniz
Supercomputing Centre in Garching, Germany show that run times
around or below 0.1 seconds per time step can be achieved for
geometrically complex large-scale simulations.

2 BACKGROUND AND STATE OF THE ART
2.1 Comp. methods in respiratory mechanics
The complexity of the conducting airway tree of the human lung –
growing exponentially with the number of splits, or generations 𝑔
– requires some form of truncation when approached by computa-
tional techniques. Truncating the airway tree in three-dimensional

1It is important to realize that this problem can not be overcome by the use of a “larger”
supercomputer.

A Next-Generation Discontinuous Galerkin Fluid Dynamics Solver for Lung Flow Simulations SC ’21, November 14–19, 2021, St. Louis, MO, USA

flow simulations mainly has two reasons: (i) limitations in state-
of-the-art imaging technologies (CT and MRI) that do not allow
to resolve the geometry of smaller airways in higher generations
of the human lung; and (ii) limitations regarding computational
fluid dynamics software, including mesh generation tools and the
computational efficiency of flow solvers. Regarding the first aspect,
state-of-the-art image-based models appear to be limited to 6–8
airway generations for adults, see [13, 54], and somewhat lower
values of 3–4 for neonates, see [55]. Regarding the second aspect,
the highest number of terminal (or peripheral) airways resolved
in 3D flow simulations is approximately 70 in [13], approximately
100–130 in [54, 55, 59], 451 in [35] for an ovine lung model, and 720
for the 17-generation Horsfield model studied in [29].2 The present
model resolves 1005 terminal airways for 𝑔 = 11 generations.

Resolving the airway resistance of the tracheobronchial tree
requires a 3D computational lung model to contain at least the
first 10–12 generations, see [15, Figure 3]. Due to resolution lim-
its of medical imaging, the patient-specific geometry of the first
airway generations needs to be combined with morphologically
correct, idealized cylindrical airway geometries for higher genera-
tions, leading to hybrid (patient-specific/idealized) models as used,
e.g., in [55]. A resolution of all conducting airways up to 16–18
generations (according to Weibel’s model [60]) currently appears to
be infeasible. However, some studies aim at overcoming the expo-
nential complexity by resolving only a few branches of the airway
tree up to generation 16-18, while truncating the remaining airways
at a lower generation number [29, 59].

Due to the complex geometry of the airway tree, meshes com-
posed of tetrahedral elements is the de facto standard. Results pub-
lished in the literature have typically been obtained on meshes
composed of not more than one to ten million tetrahedral elements
using low-order finite element approximations, see, e.g., [13, 29, 55].

While simplified computational studies truncate the lung after a
certain number of generations with plain outflow boundary con-
ditions, more sophisticated models [13, 55] use suitable boundary
conditions at the terminal airways modeling the resistance and
compliance of higher airway generations obtained by some physio-
logically realistic volume-filling 1D tree-growing algorithms.

2.2 Incompressible Navier–Stokes equations
The flow of air through the conducting airways of the human lung
can be described by the mathematical model of the incompressible
Navier–Stokes equations

𝜕𝒖

𝜕𝑡
+ ∇ · (𝒖 ⊗ 𝒖) − 𝜈∇2𝒖 + ∇𝑝 = 𝒇 ,

∇ · 𝒖 = 0 ,

solved for velocity 𝒖 and pressure 𝑝 on a domain Ω ⊂ R3 equipped
with suitable initial and boundary conditions. Turbulent flows of
high Reynolds number (Re = 𝑈𝐿/𝜈) involve a wide range of spa-
tial and temporal scales. Hence, an efficient numerical solution
poses special requirements in terms of the resolution capabilities
of discretization methods. Of high relevance is also the transport

2We use the number of terminal airways as a measure of complexity of the compu-
tational lung model instead of the number of resolved generations, since the latter
metric does not characterize complexity well when Weibel [60] and Horsfield [34]
classifications are compared.

of oxygen and carbon dioxide. However, the main challenge lies in
the solution of the incompressible Navier–Stokes equations both in
terms of numerical discretization techniques and parallel scalability.
For this reason, the present work focuses on the incompressible
flow part. Note that developments and performance improvements
enabling scale-resolving flow simulations are also a prerequisite
for accurately predicting the transport of particles (air pollution,
pharmaceuticals) in the respiratory system.

2.3 High-order discontinuous Galerkin methods
Given the O(1) arithmetic intensity of typical CFD programs in
relation to the O(10) Flop-to-Byte ratio of current hardware, mem-
ory bandwidth and network latency emerge as the main hardware
characteristics limiting performance in computational fluid dynam-
ics. One direction towards optimal use of these limited resources
are high-order discretization techniques. Due to their good dis-
persive and diffusive properties, fewer unknowns and fewer time
steps are needed to reach a certain level of accuracy compared to
low-order discretizations. From a computational perspective, the
data streaming character of low-order CFD software is enriched
by additional local computations on cacheable data. Algorithms of
minimal computational complexity are crucial in this context to
maintain an arithmetic cost small enough to stay within the Flops
envelope of the hardware, enabling high-order methods to perform
equally efficient (at best) as finite-difference stencils in terms of the
number of unknowns processed per second.

The present work relies on discontinuous Galerkin (DG) meth-
ods of high (formal) approximation order. DG methods inherit
the geometric flexibility and mathematical foundation of finite
element methods, i.e., the geometry is approximated by a mesh
of (potentially non-conforming) elements of characteristic size ℎ,
Ωℎ =

⋃𝑁
𝑒=1 Ω𝑒 , and the solution is approximated by a polynomial

expansion of degree 𝑘 within the element. The parametric mapping
of a unit element in reference space to a deformed element in physi-
cal space is important not only in terms of geometric flexibility, but
also in resolving the geometry with high-order of accuracy and in
enabling boundary-fitted and boundary-refined meshes particularly
relevant in CFD.

Between the elements of a mesh, the approximate solution ex-
hibits discontinuities. Adapting the concept of numerical fluxes
from finite volume methods is important in order to treat transport-
dominated problems in a stable and accurate manner. These con-
cepts enable theoretically high-order of accuracy, yet preserving the
compactness of the stencil when it comes to evaluating discretized
differential operators by a sweep through all elements of the mesh,
requiring only exchange of data with the nearest neighbors.

This work relies on a DG discretization scheme for the incom-
pressible Navier–Stokes equations developed recently in [25], which
is compactly written as

M
(
𝜕U
𝜕𝑡

)
+ C (U) + V (U) + Apen (U) + G (P) = F ,

D (U) = 0 .

The discrete differential operators act on the solution vectors U =
𝑈𝑖 , 𝑖 = 1, . . . , 𝑁𝑑 (𝑘 + 1)3 and P = 𝑃𝑖 , 𝑖 = 1, . . . , 𝑁𝑘3 containing all
degrees of freedom of the discrete velocity solution of degree 𝑘

SC ’21, November 14–19, 2021, St. Louis, MO, USA Kronbichler et al.

and pressure solution of degree 𝑘 − 1 (inf–sup stability). Section 3.1
details the algorithms used to evaluate discretized PDE operators
such asV (U) by means of matrix-free operator evaluation. This
discretization uses the local Lax–Friedrichs flux for the convective
term C, the interior penalty method for the viscous termV , and
central fluxes for the velocity divergence term D and pressure
gradient term G. The mass operatorM and right-hand side op-
erator F are local to each element and do not involve numerical
fluxes. The additional penalty operator Apen weakly enforces the
divergence-free constraint in a point-wise manner and continuity
of the velocity normal to the interface between elements. This sta-
bilization approach exhibits a close analogy to 𝐻div-conforming
discretizations [20], i.e., it aims to equip simple 𝐿2-conforming fi-
nite element spaces with the robustness of 𝐻div-conforming spaces
and – at the same time – exploit the fast inversion of the mass op-
erator of 𝐿2-conforming DG methods. The discretization approach
described above has been validated in the literature [19, 20, 23, 25].

2.4 Splitting solver for incompressible flows
Our solver makes use of operator-splitting techniques to efficiently
advance the incompressible Navier–Stokes equations in time. This
leads to a sequence of symmetric positive definite sub-problems to
be solved within time step 𝑛 integrating the equations from time 𝑡𝑛
to 𝑡𝑛+1 = 𝑡𝑛 +Δ𝑡𝑛 . We use the high-order dual splitting scheme [36]
of temporal order 𝐽 = 2,

𝛾𝑛0 Û −
𝐽 −1∑
𝑖=0

𝛼𝑛𝑖 U
𝑛−𝑖

Δ𝑡𝑛
=M−1

(
−

𝐽 −1∑︁
𝑖=0

𝛽𝑛𝑖 C
(
U𝑛−𝑖

)
+ F (𝑡𝑛+1)

)
, (1)

L
(
P𝑛+1

)
= − 𝛾𝑛0

Δ𝑡𝑛
D

(
Û
)
, (2)

ˆ̂U = Û − Δ𝑡𝑛
𝛾𝑛0
M−1

(
G

(
P𝑛+1

))
, (3)(

𝛾𝑛0
Δ𝑡𝑛
M +V

) ˆ̂̂
U =

𝛾𝑛0
Δ𝑡𝑛
M

(ˆ̂U
)
, (4)(M +ApenΔ𝑡𝑛

)
U𝑛+1 =M

(ˆ̂̂
U
)
. (5)

The individual steps are the explicit convective step (1), the pressure
step (2), the explicit projection step (3), the viscous step (4), and the
penalty step (5). The imposition of boundary conditions is described
in detail in [19, 23]. The incompressible nature of the equations
is reflected in the Poisson problem (2) for the pressure, i.e., the
pressure adapts instantaneously to changes in boundary conditions.
From a computer science perspective, the pressure Poisson equation
typically necessitates more complex communication patterns with
global communication to reflect this behavior, in contrast with the
nearest neighbor communication involved in explicit steps as well
as simpler conjugate gradient solvers for the viscous and penalty
steps, as discussed in more detail in Section 3.

The explicit formulation of the convective term avoids the solu-
tion of a non-linear algebraic system of equations, at the price of a
restriction of the time step size according to the CFL condition

Δ𝑡 = min
𝑒=1,...,𝑁

CFL
𝑘1.5

ℎ

∥𝒖ℎ ∥

����
𝑒
. (6)

In our code, the ratio ℎ
∥𝒖ℎ ∥ is evaluated locally within each ele-

ment whereas CFL and the polynomial degree 𝑘 are kept constant
throughout the mesh. The time step size is adjusted from one time
step to the next in order to minimize the overall number of time
steps by adapting Δ𝑡 to the instantaneous local velocity fields in
the most critical elements. This condition renders the time step size
a dependent variable, reducing the parameter space {ℎ, 𝑘,Δ𝑡} of
the discretization to the spatial parameters {ℎ, 𝑘}.

3 INNOVATIONS REALIZED
3.1 Matrix-free operator evaluation
One of ourmain contributions is the development of algorithms that
both minimize and balance the number of arithmetic operations
and the memory access, in order to achieve optimal node-level
performance on modern multi-core node architectures, as they are
common on today’s HPC systems with high Flop-to-Byte ratios.

The action of the discretized operators on vectors is implemented
in a matrix-free fashion by mimicking the data-access behavior of
finite difference stencils, generalized to geometrically flexible high-
order discretization techniques. The element and surface integrals
underlying the discontinuous Galerkin discretization are computed
on the fly by Gaussian quadrature exploiting sum factorization
techniques. This concept has originally been established by the
spectral element community with relatively high degrees [16, 52].
Developments in the last decade, e.g., [11, 42, 43], combined with
the more rapid increase of arithmetic performance compared to
memory bandwidth, have established these matrix-free schemes
as the fastest known method to evaluate the operator action for
degrees 𝑘 ≥ 2 [45]. The matrix-free evaluation of, e.g., the sym-
metric interior penalty discretization of the Laplace operator L(P)
on the left-hand side of Equation (2), is performed by a sum of
contributions from all the cells and faces in the mesh,

L(P) =
𝑁cells∑︁
𝑒=1

𝐺T
𝑒 𝐼

T
𝑒 𝐷𝑒 𝐼𝑒𝐺𝑒P +

𝑁faces∑︁
𝑓 =1

𝐺T
𝑓 𝐼

T
𝑓 𝐷 𝑓 𝐼𝑓𝐺 𝑓 P. (7)

In Equation (7), the gather operator 𝐺𝑒 extracts the degrees-of-
freedom local to element 𝑒 from the global vector P and handles pos-
sible hanging-node constraints. Operator 𝐼𝑒 computes the reference-
coordinate gradient ∇̂𝑝ℎ of the interpolated solution associated
with P at all (𝑘 + 1)3 quadrature points of element 𝑒 . The effect
of the element deformation is factored out from the gradient by
the chain rule and contained in the operator 𝐷𝑒 , and similarly for
the metric terms of the test function as well as the quadrature
weight and the determinant of the Jacobian. The gradient of the
test functions and summation over the cell’s quadrature points is
represented by 𝐼T𝑒 , before the local results are scattered into the
result vector by𝐺T

𝑒 . Likewise, the face integrals can be written as a
sequence of a gather operator𝐺 𝑓 (from two neighboring elements),
interpolation of values and reference-coordinate gradients to quad-
rature points (𝐼𝑓), a differential operator𝐷 𝑓 acting independently at
each quadrature point, integration with 𝐼T

𝑓
and a subsequent scatter

operator 𝐺T
𝑓
adding local results into the global vector. Figure 2

visualizes the algorithmic steps of the sum factorization operations
underlying the operators 𝐼𝑒 and 𝐼T𝑒 as well as the operations at
quadrature points 𝐷𝑒 . While the former combine information from

A Next-Generation Discontinuous Galerkin Fluid Dynamics Solver for Lung Flow Simulations SC ’21, November 14–19, 2021, St. Louis, MO, USA

unit gradient 𝐼𝑒 quadrature operation 𝐷𝑒 test by gradient 𝐼T𝑒

Figure 2: Visualization of interpolation, operation at quadra-
ture points, and integration in the matrix-free evaluation (7)
for 𝑑 = 2 and 𝑘 = 3.

all nodal values and quadrature points, the latter processes each
point independently.

The interpolation operators 𝐼𝑒 and 𝐼𝑓 , which couple between all
the unknowns within an element, are the same on each element,
allowing us to keep a single instance of 𝐼𝑒 or 𝐼𝑓 in fast cache or
register memory. Hence, only the solution vectors and the block-
diagonal matrices 𝐷𝑒 and 𝐷 𝑓 , with a block size of 3 × 3 collecting
all components of the derivative in 3D, need to be loaded from
slower main memory. Furthermore, we exploit the tensor-product
structure within 𝐼𝑒 and 𝐼𝑓 in terms of the basis functions and quad-
rature points, in order to hide arithmetic operations behind the
memory transfer. By contrast, non-tensor product elements such as
tetrahedra involve an exceedingly high arithmetic cost [50] with re-
duced performance regarding the application-relevant throughput
metric (Table 1).

Our highly-tuned kernels use Flop-minimizing optimizations
in the sum factorization algorithms, such as change of basis and
even-odd decomposition [43]. These optimizations yield a speedup
of 1.5×–2× compared to previous results such as [38]. Cell and face
integrals are computed alternately, in order to limit the access in
the source vector P to a single access from main memory and serve
the other accesses primarily from caches. The algorithms by [43]
are used through the deal.II finite element library [3, 5], master
branch from August 2021 (commit b865ae5).

3.2 MPI and SIMD parallelization
The matrix-free algorithm (7) is parallelized with pure MPI by par-
titioning the computational domain in the usual finite element
setting [7, 12], running the loops only on the elements and faces
associated with the elements owned by the local MPI process. The
data exchange is between nearest neighbors in the mesh only using
non-blocking communication operations. Communication is effi-
ciently overlapped with computation to minimize communication
overhead.

In addition to the coarse-grained parallelism, the code is tailored
to efficiently use SIMD vectorization across CPU-type architectures
(Intel, AMD or Fujitsu A64FX). It exploits the available parallelism
across cells and faces. However, the use of SIMD is complicated by
differences between architectures, typically requiring significant
porting and tuning efforts, and the limited capabilities of modern
compilers to automatically detect and implement such outer-loop
parallelism. In order to overcome these problems and to enable

performance-portable vectorization, we employ a cross-platform
abstraction via C++ wrapper classes. The design principle is to pro-
vide overloads of the basic arithmetic operations +,-,*,/ as well
as broadcast, gather, scatter or struct-of-array to array-of-struct
conversions with the relevant intrinsics for each platform in a sin-
gle place. This approach, similar to the std::simd class scheduled
for the upcoming C++23 standard [33], allows to transparently
cover many hundreds of use cases with full-width SIMD through-
out a large application code. All other aspects of machine code
generation beyond intrinsics are still handled by an optimizing C++
compiler, which results in excellent performance for this applica-
tion domain [43]. Using this abstraction, the operations shown in
Figure 2 for the summations in Equation (7) are run for 𝑁SIMD items
at once. As an example, on the Intel Skylake architecture with its
AVX-512 instruction set, we can use this mechanism to configure
the execution to use 8 items in double-precision or 16 items in single-
precision, fully exploiting the 512-bit vector registers. Porting to
other architectures can simply be achieved by reconfiguring the
matching class configuration to exploit the matching SIMD width
on the target platform. Apart from array-of-struct to struct-of-array
conversions during the gather and scatter stages, this abstraction
also covers all relevant operations inside cells and ensures that they
are fully vectorized without cross-lane traffic. As a result, more than
97% of the arithmetic work is run in vector registers, independent
of the specific target architecture and compiler.

Cross-element vectorization increases granularity. Hence, there
are now two possible limits to parallel scalability of the matrix-free
operator evaluation: (i) the impact of communication latency to
be overlapped with computations, and (ii) the domain decomposi-
tion granularity by cross-element SIMD, which increases for higher
degrees, see also Fischer et al. [27]. On present hardware, SIMD
granularity affects parallel scalability for 𝑘 ≳ 8 for scalar equations
and 𝑘 ≳ 6 for vector-valued ones. For the range of moderately
high polynomial degrees 𝑘 = 2, . . . , 5 targeted by the present work,
communication latency is the dominating limit. In the following,
we refer to a batch of 8 physical cells as a SIMD cell (based on
double-precision (DP) arithmetic for AVX-512 registers) in order to
characterize the limit of parallel scalability in terms of the number of
SIMD batches of cells per MPI process. Since our mixed-precision
solver uses single-precision (SP) for the multigrid V-cycle (Sec-
tion 3.4), SIMD granularity suggests that 2 DP SIMD batches of
cells, i.e., one SP SIMD batch of cells, are the limit.

3.3 Mesh generation and mapping
Figure 3 visualizes our hybrid patient-specific/idealized lung model
of the conducting airway tree for various numbers of generations.
By the example of 𝑔 = 5, Figure 4 details the mesh-generation pro-
cess to obtain a hex-only mesh, which is created by an application-
specific mesh generator explicitly targeting the efficient 3D rep-
resentation of patient-specific lung airways and minimizing I/O.
The large airways starting at the trachea reaching down to gener-
ation three as well as the contours of the single lung lobes were
directly segmented from CT images based on the voxel gray scale
value in the image. The remainder of the bronchial tree has been
constructed from a recursive tree growing algorithm mimicking
adult morphology [57]. The algorithmic tree growth generates an

SC ’21, November 14–19, 2021, St. Louis, MO, USA Kronbichler et al.

a) b)

c) d)

Figure 3: Visualization of lung model with different number
of generations: a) 𝑔 = 5, b) 𝑔 = 7, c) 𝑔 = 9, and d) 𝑔 = 11
generations.

a) b)

c) d)

Figure 4: Visualization of lung mesh generation algorithm
for 𝑔 = 5 generations: (a) 1D tree, (b) 3D mesh consisting of
square cylinders, (c) local mesh refinements of upper air-
ways, (d) 3D deformed mesh according to mixed patient-
specific/idealized geometry.

anatomically correct centerline starting at the third generation, the
last fully segmentable airway generation. The next generation of
daughter airways recursively bifurcate from their parents into the
respective lung lobes regarding morphological length and diameter
ratios reported for an adult (see [57] and references therein).

Our hex-only patient-specific mesh generator involves four steps:
First, the centerlines of the segmented and of the recursively grown
airways are changed into a single airway tree (see Figure 4 (a)) by
introducing a centerline representation of the top generations, coin-
ciding with the CT scan. Second, we transform centerline elements

into cylinders with square cross section and anatomically correct
dimensions (with 12 elements in the cross section) as well as with
a suitable number of subdivisions in axial direction to ensure a
high mesh quality with good cross-section to length ratios (see Fig-
ure 4 (b)). We merge the surface nodes of the independent cylinder
meshes at special transition sections (see Figure 4 (b)). Third, we
refine larger airways locally (see Figure 4 (c)) in order to balance the
element sizes across the geometry. More importantly, the increased
spatial resolution allows us to capture complex flow patterns char-
acteristic for the upper airways during mechanical ventilation. To
preserve high mesh quality, we use a non-conforming mesh with
hanging nodes based on the forest-of-octree concept of the p4est
library [7, 12]. Our algorithm also supports uniform refinement (of
level 𝑙) in case higher resolution is needed everywhere. In terms of
time step restrictions due to the CFL condition, we expect that low
and intermediate generations are limiting, since the accumulated
cross section area of all airways belonging to a certain genera-
tion increases significantly with the generation number. Fourth,
we deform the top airway generations of the created 3D cylinder
tree according to the CT scan (Figure 4 (d)). We use a ray-tracing
algorithm by [49] to map the geometry onto a STL surface de-
scription directly segmented from CT scans, approximating the
patient-specific geometry of each branch up to the third generation.
Beyond this generation, an idealized cylindrical airway geometry
is realized by a transfinite mapping [30] in radial direction. Note
that the analytical geometry described by these concepts is ap-
proximated by a high-order polynomial description with auxiliary
points in the interior of elements (along edges, surfaces, hexes),
which we compute once during the simulation startup and then
store for fast subsequent access as described by Heltai et al. [32].
The mesh is partitioned as implemented in the deal.II and p4est
libraries [7, 12].

3.4 Scalable multigrid preconditioning
To solve the pressure Poisson equation, we use a hybrid multigrid
solver as preconditioner for an iterative conjugate gradient solver.
In our previous work [22], we have described a robust and efficient
matrix-free multigrid realization for globally refined meshes and
high-order discontinuous Galerkin methods. Algorithm 1 describes
the main ingredients in a multigrid V-cycle, which is called recur-
sively on coarser levels. The key aspect of this hybrid multigrid
solver visualized in Figure 5 is that (i) a transfer to a continuous
(auxiliary) space is performed to minimize iteration counts, and (ii)
subsequent polynomial and geometrical coarsening is exploited to
reduce the size of the coarse-grid problem to a minimum. In this
setup, the two finest levels are the symmetric interior penalty DG
discretization as well as the continuous FE discretization of the same
degree and the same mesh. The throughput of these two ingredients
in terms of memory transfer are the main drivers to the overall
efficiency. The subsequent levels involve lower degrees (where we
use a bisection from one level to the next) and coarser meshes,
therefore contributing primarily to the communication latency and
the strong-scaling properties.

For this work, we have extended the above-described algorithm
to deal with locally refined meshes in a forest-of-octrees descrip-
tion. Specifically, new algorithms for the construction of geometric

A Next-Generation Discontinuous Galerkin Fluid Dynamics Solver for Lung Flow Simulations SC ’21, November 14–19, 2021, St. Louis, MO, USA

Algorithm 1 MultigridVCycle(𝑙 , A (𝑙) , X(𝑙) , B(𝑙))
if 𝑙 = 0 then
X(0) ← Coarse AMG solver (A (0) , B(0))

else
X(𝑙) ← Smooth (𝑙 , A (𝑙) , X(𝑙) , B(𝑙))
B(𝑙−1) ← Restrict (𝑙 , B(𝑙) − A (𝑙)X(𝑙))
X(𝑙−1) ←MultigridVCycle(𝑙 − 1, A (𝑙−1) , 0, B(𝑙−1))
X(𝑙) ← X(𝑙)+Prolongate(𝑙 , X(𝑙−1))
X(𝑙) ← Smooth (𝑙 , A (𝑙) , X(𝑙) , B(𝑙))

end if

auxiliary FE space
coarsening

polynomial
coarsening

geometrical
coarsening

Figure 5: Visualization of transfer operations in our hybrid
multigrid solver for the DG discretization.

levels via a procedure known as global coarsening [9, 56] have been
added to the deal.II finite element library [4]: towards the next
coarser level, each cell is coarsened if possible; the coarse grid is
obtained once none of the remaining cells can be coarsened further.
While this approach potentially involves more work on each level
than local-smoothing algorithms [14], global-coarsening algorithms
promise simpler load-balancing with better parallel efficiency and
fewer iterations. A challenging task is to handle hanging-node con-
straints, which have to be considered during (i) the computation of
the diagonal of the smoother, (ii) the setup of the transfer operators,
and (iii) the application of the operators. However, the first two
aspects are only relevant during the setup due to the static nature
of our mesh. Regarding the third aspect, efficient implementations
for the operator application on locally-refined meshes are available
with at most 10% reduction in throughput due to the resolution of
continuity requirements (continuous finite element levels) [42, 46]
or sub-face interpolation (discontinuous Galerkin levels).

On each level, we implement the discrete operator (termedmatrix-
vector product), level transfer operations, and the smoother evalu-
ations in a matrix-free fashion. In order to use fast matrix-vector
products, we select a Chebyshev smoother with point Jacobi as
preconditioner [2, 44, 45], using a polynomial degree of three with
three matrix-vector products for pre- and postsmoothing. The V-
cycle is run in single precision in order to improve the throughput
of multigrid preconditioning (by doubling the number of cells per
SIMD vector and per Byte of memory transferred from main mem-
ory). According to experiments in [44], this strategy does not affect
multigrid convergence rates significantly. To increase the scala-
bility and to limit the minimal work granularity on the coarser
levels (at least 200 DoF/process), we distribute the coarser levels in
the multigrid hierarchy only across subsets of processes and work
on precomputed communicators similarly to Sundar et al. [56]. For

Table 1: Application-motivated performance metrics.

target metric [unit]
node-level performance throughput [DoF/s]
strong scalability minimal wall-time per time step [s]
lung application minimal wall-time per simulated

breathing cycle [h/cycle],
alternatively: min. wall-time per
liter of tidal volume [h/l]

the coarse-grid problem with several hundred thousands or more
unknowns (depending on the number of lung generations), we use
the algebraic multigrid solver BoomerAMG [18] on a linear contin-
uous finite element space run in DP. All results are based on two
V-cycles with a single sweep of symmetric Gauss–Seidel smoothing
inside BoomerAMG, to comply with the smoother capability on the
finer levels.

In order to inject the patient-specific and cylindrical geometry
to the coarser geometric levels essential for optimal multigrid con-
vergence, we use a consistent interpolation between the geometric
levels in terms of the multigrid transfer operations.

4 EVALUATION SETUP AND METRICS
In order to evaluate our approach, in particular how it addresses
the challenges in computational fluid dynamics discussed above,
we define a set of application-motivated performance metrics sum-
marized in Table 1. The limiting hardware resources of memory
bandwidth and latency are reflected in the metrics of node-level
performance and strong scalability, respectively. The lung appli-
cation of simulating respiratory fluid mechanics defines a thresh-
old regarding the allowable wall-time per breathing cycle. The
challenge is then to maximize the resolution of the discretization
scheme described by {𝑔, ℎ, 𝑘} as a means to achieve optimal accu-
racy while respecting this wall-time limit. In the strong-scaling
limit, the wall-time essentially depends on the overall number of
time steps (min 𝑡wall ∼ 𝑁∆t ∼ 𝑇 /Δ𝑡), which increases for increasing
spatial resolution due to equation (6). It is interesting to realize that
the number of time steps per breathing cycle depends on the tidal
volume 𝑉T rather than the period 𝑇 of one breathing cycle

min 𝑡wall ∼ 𝑁∆t ∼
𝑇

Δ𝑡

(6)∼ 𝑇 𝑈

𝐷
∼ 𝑇

𝐷

𝑉T/𝐷2

𝑇
∼ 𝑉T

𝐷3 , (8)

where the mesh size ℎ in the CFL condition is expressed in terms
of a characteristic airway diameter 𝐷 and the characteristic veloc-
ity 𝑈 in terms of tidal volume 𝑉T, diameter 𝐷 , and period 𝑇 . This
leads to an alternative application-oriented performance metric,
the minimal wall-time per liter of tidal volume. It has the advantage
to allow performance comparisons between lung simulations with
different ventilation strategies such as “normal” ventilation and
high-frequency oscillatory ventilation (HFOV), which are character-
ized by substantially different tidal volumes. We note that floating
point performance and memory bandwidth utilization are identified
as secondary metrics that are not a direct target of our performance
optimizations.

SC ’21, November 14–19, 2021, St. Louis, MO, USA Kronbichler et al.

All experiments were performed on the Intel Skylake architec-
ture of the SuperMUC-NG system,3 consisting of 6480 nodes with
2 × 24 cores of Intel Xeon Platinum 8174, running at 2.3 GHz
for all experiments presented here. Based on a node-level perfor-
mance comparison of the Intel-19.0 compiler and the GNU com-
piler gcc-9.2, the GNU compiler with options -O3 -funroll-loops
-march=skylake-avx512 was selected. The slightly better perfor-
mance is due to beneficial code generation for the SIMD abstraction
described in Section 3.2. For MPI, the Intel implementation, version
2019, was employed. All experiments are based on a series of 20
repetitions, taking the best-performing sample. It has been ensured
that, apart from disturbances of other jobs on the network of the
machine, the deviation of the mean to the minimum is less than a
few percent, which makes the reported performance data realistic.
Dynamic mesh balancing has been used to account for the 0.5–1%
of nodes clocked down due to thermal throttling.

5 PERFORMANCE RESULTS
In this section, we assess the performance for simulations of realistic
scenarios of the human lung and answer research questions of
relevance to the application field. As explained above, the main
challenge is to identify a scalable pressure Poisson solver based on
multigrid, whose performance in turn depends on the throughput
of the smoother and level transfer. Therefore, our analysis starts
with an investigation of the matrix-free operator evaluation and
multigrid smoother, before going on to the pressure Poisson solver
and eventually the full application code.

5.1 Evaluation of matrix-free algorithms
The main benefit of the proposed matrix-free algorithms is their
high computational throughput, measured as the number of un-
knowns (degrees of freedom, DoF) that can be processed on given
computational resources. The left panel of Figure 6 reports the
achieved throughput of a single operator evaluation on a node
of SuperMUC-NG for the DG Laplacian with polynomial degrees
𝑘 = 1, . . . , 6. The throughput is computed from an experiment mea-
suring the run time of 100 matrix-vector products on a mesh of the
lung with 𝑔 = 11 generations and 2m elements for 𝑘 = 1 and 350k
elements for 𝑘 ∈ {2, . . . , 6}, resulting in problem sizes between
10 and 100 MDoF. For degree 𝑘 = 3, we measure a throughput of
1.4 × 109 DoF/s, which is 25× higher than a sparse matrix-vector
product could reach for the same discretization, or 3× higher than
the throughput of a sparse matrix-vector product with linear finite
elements.

In order to represent the application-relevant kernels, the left
panel of Figure 6 also lists the throughput of one iteration in the
Chebyshev smoother in the saturated regime, i.e., the granularity of
one matrix-vector product and the associated vector updates [2, 22].
Due to the use of single precision, the achieved throughput is around
30% higher than the double-precision matrix-vector product alone.
The gap to the theoretical 2× advantage of single precision shows
the cost of vector updates and the high level of optimization in the
matrix-free operator evaluation. Figure 6 (left) also highlights that
both the discontinuous Galerkin operation on the finest multigrid
level 𝐿 as well as the continuous finite element discretization on the
3https://top500.org/system/179566/

1 2 3 4 5 6
0

0.5

1

1.5

2

Polynomial degree 𝑘

Th
ro
ug

hp
ut

bi
lli
on

D
oF
/s
/n
od

e

mat-vec SP smooth DG SP smooth FE

104 105 106 107 108
0

0.5

1

1.5

2

2.5

DoF/node

Th
ro
ug

hp
ut

bi
lli
on

D
oF
/s
/n
od

e

Skylake, 𝑘 = 3 Skylake, 𝑘 = 6
V100, 𝑘 = 3 V100, 𝑘 = 6
A64FX, 𝑘 = 3 A64FX, 𝑘 = 6

Figure 6: Left: Throughput of mat-vec product of the DG
Laplacian on one Skylake node run in double precision (DP)
and of one iteration of the Chebyshev smoother run in single
precision (SP). The smoother is evaluated on the finest level
with a symmetric interior penalty DG discretization and on
the next coarser level with a continuous FE discretization.
Right: Comparison of throughput per CG iteration of the
CEED benchmark BP3 [27] on one Skylake node versus one
V100 GPU on Summit [39] versus one A64FX node.

second-finest level 𝐿 − 1 have been highly optimized with similar
throughput. Since level 𝐿−1 runs with around 2.5× fewer unknowns
for degree 𝑘 = 3 in 3D, the run time in level 𝐿 − 1 is actually more
than 2× lower.

The right panel of Figure 6 lists the throughput of one conju-
gate gradient (CG) iteration for the CEED benchmark problem
BP3 [27] with continuous finite elements of degrees 𝑘 = 3, 6 for the
present implementation based on the deal.II framework on the
Intel Skylake architecture with 2× 24 cores. The result is compared
to state-of-the-art results from CEED in 2020 [39] on one Nvidia
V100 GPU of Summit. Furthermore, the graph presents results of
running our code on one node of the Fujitsu A64FX processor. Note
that the throughput reported by CEED [40, Fig. 18] for a Fugaku
node is slightly lower. Despite the lowest memory bandwidth of
the three architectures (256 GByte/s nominal vs. 900 GByte/s for
the other two architectures), the throughput on Skylake is highly
competitive, a result of additional arithmetic and data access opti-
mizations in our code [6]. More importantly, the SuperMUC-NG
hardware reaches a much higher throughput for problem sizes
of 104–106 than the competing systems (Number 1 and 2 of Top500
list). Even though the numbers are only reported for a single node
here due to the availability of the other results, we can observe in
practice that the faster performance for small sizes also improves
the strong scaling limit for more nodes, a key performance metric
in this work (see Table 1).

Figure 7 shows the achieved arithmetic throughput in the sat-
urated regime (10–100 MDoF/node) for polynomial degrees 𝑘 =
1, . . . , 6 as a function of the arithmetic intensity in a roofline plot [62].
Data is presented both for an idealized memory transfer model as
well as the actually measured transfer from hardware performance

https://top500.org/system/179566/

A Next-Generation Discontinuous Galerkin Fluid Dynamics Solver for Lung Flow Simulations SC ’21, November 14–19, 2021, St. Louis, MO, USA

1
2

1 2 4 8 16

128

256

512

1024

2048

4096

STR
EA
M tria

d m
em
ory

ban
dw
idth

205
GB

/s

arithmetic peak

Flop/byte ratio (arithmetic intensity)

GF
lo
p/
s

modeled memory transfer
real memory transfer

Figure 7: Node-level performance in terms of roofline model
considering the evaluation of the DG Laplacian with poly-
nomial degrees 𝑘 = 1, 2, . . . , 6 on the deformed lung geometry
with 𝑔 = 11 generations. Both the case of an ideal memory
transfer (perfect caching, no transfer between neighboring
MPI processes) and the actually measured memory transfer
are shown.

counters, evaluated using the LIKWID [58] tool. The number of
arithmetic operations follows a slight modification of the data in
Table 4 of [43] due to a different polynomial basis, and is confirmed
to be accurate within a few percent by hardware performance coun-
ters. The roofline results show that the memory bandwidth is the
performance limit in the regime of large problem sizes considered
here. Data points of higher polynomial degrees appear further to
the right in the plot due to a higher arithmetic intensity, but none
of the interesting polynomial degrees is limited by the arithmetic
throughput.

The underlying theoretical memory transfer model assumes a
single transfer of each entry in the solution vectors from RAM
memory, as well as access to the metric terms within 𝐷𝑒 and 𝐷 𝑓
of Equation (7) plus the meta-data of a few integers per element
to store the element-neighbor connectivity in terms of the vector
indices and unknown numbering, following previous analysis [43].
All additional accesses are assumed to be served from fast cache
memory, including the MPI data exchange between neighboring
subdomains. The actual memory transfer is 20–30% higher, as in
fact both the MPI communication and part of the neighbor access
exceed caches for the present problem sizes. In Figure 7, this effect
is visible by a lower arithmetic intensity of the measured memory
transfer for the same GFlop/s value.

In the setting of the CFD simulations with many time steps,
the ability to reach as small run times per time step as possible is
reflected in the ability of strong scaling of the matrix-vector product.
Figure 8 presents the scaling of both a complicated geometry in
terms of the lung airway tree with 11 generations from Figure 3
as well as a simple bifurcation consisting of three cylinders. As
opposed to classical strong scaling plots using the number of MPI
processes on the abscissa, the left panel of the figure plots the run
time over the work to be done per MPI process for four different
work loads, in order to compare the scaling limit versus the work
granularity described in Section 3.2. Passing along a line from right

100 101 102 103

10−4

10−3

10−2

SIMD cells / MPI process

Ti
m
e
m
at
-v
ec

pr
od

uc
t[
s]

10−4 10−3 10−2
0

0.5

1

1.5

Time mat-vec product [s]

Th
ro
ug

hp
ut

bi
lli
on

D
oF
/s
/n
od

e

lung, 22m DoF lung, 180m DoF
bifurcation, 15m DoF bifurcation, 123m DoF

Figure 8: Throughput and latency analysis of matrix-free
evaluation of the DG Laplacian with degree 𝑘 = 3. For each
of the four data sets shown, the number of compute nodes is
increased from right to left, using up to 2048 nodes for the
two bigger cases and 512 nodes for the two smaller cases. The
lung test case uses adaptively refined meshes with hanging
nodes and complicated transitions, whereas the bifurcation
uses a uniformly refined mesh.

to left, the number of MPI processes is increased, which reduces
the work per process and results in a reduction of run time, until
the scaling saturates at slightly below 10−4 seconds.

In the right panel of Figure 8, the computational throughput
of the same experiment is plotted over the resulting run time. A
horizontal line would indicate ideal strong scaling. The actually ob-
served double-bump like shape can be explained as follows. Starting
from small node counts on the right, the throughput initially goes
down as communication between more nodes is involved. As the
parallelism further increases and run times go below 10−3 seconds,
throughput increases due to a cache effect: for small workloads,
the relevant data mostly or entirely fits into the 1 + 1.375MB of
L2+L3 cache of an Intel Xeon core. Eventually, around 10−4 seconds
the communication latency between the compute nodes becomes
dominating. This reduces the throughput below 30% of the satu-
rated throughput. The fact that throughput drops sharply before
the SIMD granularity of one SIMD cell is reached indicates that the
granularity of vectorization discussed in Section 3.2 is not limiting.
The results in Figure 8 are encouraging because the throughput of
matrix-free evaluation on the complicated lung geometry reaches
similar throughput as the matrix-vector product on a volumetric
mesh. Only near the scaling limit and for the smaller case with 22
million DoF, the unstructured coarse mesh and the difficult problem
of partitioning a partly adapted mesh with many trees lead to a
higher communication cost and somewhat lower throughput.

5.2 Evaluation of multigrid performance
In the multigrid solver, the above ingredients are combined on
a sequence of coarser meshes in a multiplicative fashion. Hence,
the scaling is not only determined by the throughput and scaling
limit of the matrix-free evaluation inside the smoother on the fine

SC ’21, November 14–19, 2021, St. Louis, MO, USA Kronbichler et al.

1 4 16 64 256 1024 640010−2

10−1

100

Number of nodes

So
lv
er

tim
e
[s
]

15m DoF
123m DoF
981m DoF
7.9b DoF

Figure 9: Combined strong/weak scaling study of Poisson
solver for a generic bifurcation with refine levels 𝑙 = 3, 4, 5, 6,
polynomial degree 𝑘 = 3, tolerance 10−10 (converges in 9 CG
iterations). Ideal strong scaling is indicated by dashed lines.

mesh assessed before, but also by the raw latency in the work on
the coarser levels. Besides “horizontal” nearest-neighbor commu-
nication in the smoother, the multigrid Algorithm 1 includes also
“vertical” communication between both the geometric and alge-
braic multigrid levels in terms of restriction, the coarse solver (a
serial operation), and the subsequent prolongation, a communica-
tion pattern akin to a tree-based global reduction followed by a
broadcast.

As a first test, we solve the Poisson equation on a volumetric
geometry representing a bifurcation of a single cylinder into two
outlets. The opening degree is 60 degrees, with element shapes of
similar lengths in the radial and axial directions of the cylinders. On
the circumferential surfaces, we set Neumann boundary conditions,
whereas we use Dirichlet conditions on the radial in- and outlets,
mimicking the case of the flow simulations on the lung. The initial
mesh consists of 468 elements and is then uniformly refined. For a
polynomial degree 𝑘 = 3, the problem sizes are between 15 million
and 7.9 billion DoF. Next to cube-liked geometries considered in
[6, 22, 45], this is a best-case scenario for multigrid in terms of com-
plexity as well as communication via the space-filling Morton curve
underlying the domain decomposition via the p4est library [12].
The multigrid V-cycle is run in single precision as a preconditioner
inside a conjugate gradient solver with a termination criterion of
10−10 (a solver tolerance used commonly in multigrid analysis [22]),
measured as the norm of the unpreconditioned residual relative to
the size of the right hand side.4

Figure 9 shows the strong and weak scaling of the solver on up
to 6,400 nodes of SuperMUC-NG. The strong scaling is represented
along each line and almost ideal down to run times of 0.1 seconds.
From one line to the next, the problem size increases by a factor of
eight. To facilitate interpretation also of weak scaling, the dashed
lines indicating ideal strong scaling are a factor of eight apart. It
can be seen that weak scaling is optimal as well, which is the result
4Assuming a constant multigrid convergence rate 𝜌 , iteration counts 𝑛 for different
solver tolerances can simply be scaled according to the number of digits of residual
reduction, 𝑛 = log10 (∥r𝑛 ∥2/∥r0 ∥2)/log10 𝜌 , where ∥r𝑛 ∥2/∥r0 ∥2 = 10−10 in the
present work, with similar effects on the achievable run time.

1 4 16 64 256 1024 640010−2

10−1

100

Number of nodes

So
lv
er

tim
e
[s
]

22m DoF
180m DoF
1.4b DoF
12b DoF

Figure 10: Combined strong/weak scaling study of Poisson
solver for the lung geometry with 𝑔 = 11, refine levels 𝑙 =
0, 1, 2, 3, polynomial degree𝑘 = 3, tolerance 10−10 (converges in
21 CG iterations). Ideal strong scaling is indicated by dashed
lines.

of optimal O(𝑛) complexity of the solver with 9 iterations for all
problem sizes as well as optimal communication.

Next, we perform a similar experiment on the geometry of the
lung, represented by 𝑔 = 11 generations on the mesh from Figure 3-
4 (considering additional global refinements of level 𝑙). Figure 10
reports the strong and weak scaling. In contrast to the bifurcation,
the scaling saturates at a higher wall-time. The smallest case with
22 million DoF cannot scale below 0.1 seconds per solve, whereas
179 million DoF scale only to around 0.15 seconds per solve, with a
loss of efficiency already before. This behavior can be explained by
three main factors:
• The iteration count of the CG solver increases from 9 in the
bifurcation case to 21–22 in the lung case; an effect of the
chosen smoother whose effectivity decreases on the more
strongly deformed elements in the patient-specific part of
the lung, difficult angles in the airway network, as well as
more anisotropy in the axial to radial element lengths.
• The mesh with hanging nodes and complicated bifurcations
leads to a larger proportion of faces with differing orientation
in coordinate systems of the two adjacent elements, which
infers additional costs caused by only partially filled SIMD
lanes for face integrals. This overhead is around 25% of the
work on faces for the case with 180m DoF on 512 nodes (24k
MPI processes). Furthermore, the adaptivity leads to a higher
number of multigrid levels overall and thus a higher propor-
tion of latency-limited operations.
• Due to the complicated coarse mesh, BoomerAMG employed
for the coarse-level solve of the hybrid multigrid scheme
becomes noticeable. It is distributed on 710 MPI processes of
15 nodes in the present experiments, taking around 3.5×10−3

seconds per call (exemplarily measured for the case of 180m
DoF on 1024 nodes). Since BoomerAMG is invoked 21 times
per solve, this already contributes 0.07 seconds of latency.

In terms of the breakdown of the latency accumulated within the
multigrid hierarchy, the multigrid V-cycle of the 180m DoF case on

A Next-Generation Discontinuous Galerkin Fluid Dynamics Solver for Lung Flow Simulations SC ’21, November 14–19, 2021, St. Louis, MO, USA

1024 nodes (49k MPI processes) spends 18% of time on the finest
level, 13% on the next finest level, 26% on all intermediate levels,
and 45% in the AMG coarse solver. For comparison, for the same
size on 64 nodes, the two finest levels contribute with 48% and 22%,
respectively.

Overall, the scaling results and absolute run times are encourag-
ing for the CFD application.

5.3 Application runs
We simulate the flow of air (density 𝜌 = 1.2 kg/m3, kinematic
viscosity 𝜈 = 1.7 · 10−5m2/s) through the conducting airways of a
tracheally intubated patient under realistic conditions ofmechanical
ventilation. We use physiologically sound, pressure-based bound-
ary conditions both at the trachea inlet and the terminal airways:
To mimic the behavior of the mechanical ventilator in our com-
putational lung model, a pressure of PEEP + Δ𝑝 is provided at the
tracheal inlet during inhalation and PEEP during exhalation, with
the positive end-expiratory pressure (PEEP) being 8 cmH2O. The
breathing period is 𝑇 = 3 s with an inhalation-to-exhalation time
ratio of 1 : 2. To mimic the behavior of mechanical ventilation ap-
plied in a clinical setting, we implemented a discrete controller that
dynamically adjusts the pressure Δ𝑝 from one breathing cycle to the
next in order to reach the desired tidal volume of 𝑉T = 500 ml. The
present work simulates only the first breathing cycle. The pressure
drop over the tubus (from the mechanical ventilator to the trachea
of the patient) is regarded according to [31]. The pressure boundary
conditions at the terminal airways are governed by appended linear
single-compartment models according to [8] to consider resistive
and compliant effects of the remaining, non-resolved airways and
tissue components below the outlets. For each of those models, the
resistance of the remaining airway tree (from generation 𝑔 to 25)
is calculated analytically, exploiting the assumption of laminar
Poiseuille flow and using the diameter and length dimensions speci-
fied in [48], and combined with an additional tissue resistance (mod-
elled as 20 % [61] of the total resistance of 0.15 kPa s/l [53]). The
compliance for each outlet is deduced from the overall compliance
𝐶 = 100 ml/cmH2O [53], uniformly distributed over all terminal
airways. We use a polynomial degree of 𝑘 = 3 and a relative solver
tolerances of 10−3 for the application runs. The coarse tolerances
are enabled by extrapolations to start with accurate initial guesses
from previous time steps [24, 41]. As noted above, the achievable
wall time limits are therefore approximately 3× lower than with the
strict 10−10 tolerance of Figure 10. The CFL number is CFL = 0.4.
Further, the multigrid preconditioner described previously is used
for the pressure Poisson equation, and the other sub-steps of the
splitting scheme are efficiently preconditioned by the inverse mass
operator.

Table 2 lists the performance of lung application runs in terms of
the minimal wall-time per time step (averaged over all time steps)
and the wall-time per breathing cycle (or per liter of tidal volume)
vs. the number of resolved generations (see Figure 3 for a visual-
ization). We reach wall-times as low as 0.017 − 0.045 s per time
step for 𝑔 = 3 − 11 generations. A comparison to state-of-the-art
results shown in Table 3 reveals that the present solver is highly
competitive. While the present results approach the strong-scaling
performance shown recently by Krank et al. [41] and Arndt et al. [6]

Table 2: Performance of lung application runs (simulating
the first breathing cycle): The global refinement level is 𝑙 = 0
in all cases and the number of nodes is chosen such that each
simulation runs in the strong-scaling limit (with number of
SIMD cells per core between 2 and 8).

𝑔 #node #cell #DoF 𝑁Δ𝑡 𝑡wall/𝑁Δ𝑡 h/cycle h/l

3 2 2.0e3 4.4e5 1.8e5 0.0174 s 0.9 1.9
5 16 1.8e4 3.6e6 5.2e5 0.0232 s 3.4 7.3
7 32 4.2e4 9.2e6 1.0e6 0.0229 s 6.4 14
9 128 2.1e5 4.5e7 1.6e6 0.0419 s 19 43
11 128 3.5e5 7.7e7 2.0e6 0.0451 s 25 57

Table 3: Minimum wall-time per time step of state-of-the-
art high-order incompressible flow solvers for large-scale
simulations operating in the strong-scaling limit. SB: Sandy
Bridge, Sky: Skylake.

publication supercomputer min. 𝑡wall/𝑁Δ𝑡

[51, Figure 3] Mira (Power BQC) 0.1 s
[39, Table 2] Summit (Nvidia V100) 0.066 − 0.1 s
[40, Tables 3–4] Fugaku (Fujitsu A64FX) 0.1 − 0.2 s
[41, Figure 7] SuperMUC (Intel SB) 0.05 s
[6, Figure 13] SuperMUC-NG (Intel Sky) 0.015 − 0.03 s

for turbulence simulations on a Cartesian geometry with trivial
coarse grid problem, they outperform results published by Offer-
mans et al. [51] and the CEED center [39, 40] for the state-of-the-art
spectral element incompressible flow solver Nek5000/NekRS [28].
The CEED milestone reports [39, 40] specify a minimal wall-time
per time step of approximately 0.1 s on the GPU-based supercom-
puter Summit aswell as the ARM-based supercomputer Fugaku (cur-
rently Number 2 and Number 1 of Top500 list). Note that we achieve
significantly lower wall-times per time step for a highly complex
geometry with adaptively refined meshes, confirming the results
of Figure 6. Towards larger problem sizes, we expect a slow-down
of the strong-scaling limit by a factor of around 2 according to Fig-
ures 9 and 10. Then, our results would still be within the threshold
of 0.1 s, so that we consider the present results substantially ahead
of the current state-of-the-art.5

6 IMPLICATIONS
Our results reveal that different hardware bottlenecks are reached
for different regimes of the incompressible flow solver. The memory
bandwidth limits the problem size in the saturated regime in order to
achieve reasonable wall-times on a per-time-step basis. The latency

5Note that for example the Gordon Bell 2020 finalist paper [37] dealing with incom-
pressible flow solvers using low-order finite elements did not quantify performance in
terms of this scaling limit, which is most important for practical turbulence simula-
tions [47].

SC ’21, November 14–19, 2021, St. Louis, MO, USA Kronbichler et al.

associated to the multigrid communication limits the minimal wall-
time in the strong-scaling limit particularly relevant for unsteady
problems. Among these bottlenecks, the latency-related strong-
scaling limit appears to be most pressing for our lung application
problem, for which millions of time steps need to be performed.
The maximum number of generations and the maximum mesh
resolution is currently limited by this scaling limit when striving
for “overnight” runs.

However, our findings are also encouraging, in reaching or ex-
ceeding the state-of-the-art for complex-geometry cases simulated
with high-order CFD methods in terms of minimizing wall time.
We expect that further tuning of the multigrid coarsening and in-
teraction with the algebraic multigrid coarse solver can deliver
additional improvements near the scaling limit, by limiting the
number of additional levels that add latency as well as by reducing
point-to-point communication by a holistic partitioning approach
of all multigrid levels.

The beneficial behavior demonstrated for a CPU-only super-
computer point to opportunities for future hybrid CPU/GPU sys-
tems: While a GPU provides more compute units and a higher
memory bandwidth for increasing throughput on the finest multi-
grid levels, CPUs with their latency focus are favorable for the
coarser levels. While additional effort would be needed to integrate
GPU capabilities with optimal throughput, e.g. by frameworks like
libCEED [1, 40], and to carefully coordinate between both archi-
tectures, further enhancements for a broader spectrum of problem
sizes can be envisioned in the future.

7 CONCLUSIONS
Pulmonary diseases are rated among the major causes of global
morbidity and mortality [26] and have in recent times even reached
a higher level of urgency due to COVID-19. Computational methods
play a key role in understanding the impact of such diseases as
well as the potential damages that can be caused by treatments
like mechanical ventilation. This creates enormous computational
needs for an already highly compute intensive problem.

In this work we presented extensions to ExaDG [21], a high-
performance turbulent flow solver. In this work, we focus on matrix-
free algorithms enabling a better compute-to-memory-access ra-
tio and introduced an C++ abstraction layer that enabled us to
easily exploit SIMD vectorization in a platform agnostic manner.
We further integrated the work into a highly scalable, MPI-based
framework with efficient neighbor communication and provided
a thorough evaluation on the SuperMUC-NG system, one of the
largest CPU-only platforms listed on the Top500 list. Our exper-
iments demonstrated a run time of around or below 0.1 seconds
per time step for geometrically complex large-scale simulations,
which is a significant step forward compared to the state-of-the-art
and provides the basis for future usage scenarios of personalized
simulations of the human respiratory system.

ACKNOWLEDGMENTS
This work was supported by the German Research Foundation
(DFG) via the project “High-order discontinuous Galerkin for the
exa-scale” (ExaDG) within the priority program 1648 “Software for

Exascale Computing” (SPPEXA, www.sppexa.de). The authors ac-
knowledge the support and hardware access through the Bayerische
Kompetenznetzwerk für Technisch-Wissenschaftliches Hoch- und
Höchstleistungsrechnen (KONWIHR) in the framework of the pro-
ject “Performance tuning of high-order discontinuous Galerkin
solvers for SuperMUC-NG”. The authors gratefully acknowledge
the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu)
for funding this project by providing computing time on the GCS
Supercomputer SuperMUC-NG at Leibniz Supercomputing Centre
(LRZ, www.lrz.de) through project id pr83te. The authors thank
Timo Heister, Laura Prieto Saavedra, and Marc Fehling for fruitful
discussions and their support in the context of global-coarsening
multigrid algorithms.

REFERENCES
[1] A. Abdelfattah, V. Barra, N. Beams, J. Brown, J.-S. Camier, V. Dobrev, Y. Dudouit,

L. Ghaffari, T. Kolev, D. Medina, T. Rathnayake, J. L. Thompson, and S. Tomov.
2020. libCEED user manual. https://doi.org/10.5281/zenodo.4302737

[2] M. Adams, M. Brezina, J. Hu, and R. Tuminaro. 2003. Parallel multigrid smoothing:
polynomial versus Gauss–Seidel. J. Comput. Phys. 188 (2003), 593–610. https:
//doi.org/10.1016/S0021-9991(03)00194-3

[3] D. Arndt, W. Bangerth, B. Blais, T. C. Clevenger, M. Fehling, A. V. Grayver, T.
Heister, L. Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, R. Rastak, I.
Tomas, B. Turcksin, Z. Wang, and D. Wells. 2020. The deal.II library, version 9.2.
J. Numer. Math. 28, 3 (2020), 131–146. https://doi.org/10.1515/jnma-2020-0043

[4] D. Arndt, W. Bangerth, B. Blais, M. Fehling, R. Gassmöller, T. Heister, L. Heltai, U.
Köcher, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, S. Proell, K. Simon, B.
Turcksin, D. Wells, and J. Zhang. 2021. The deal.II library, version 9.3. J. Numer.
Math. 29, 3 (2021). https://doi.org/10.1515/jnma-2021-0081

[5] D. Arndt, W. Bangerth, D. Davydov, T. Heister, L. Heltai, M. Kronbichler, M.
Maier, J.-P. Pelteret, B. Turcksin, and D. Wells. 2021. The deal.II finite element
library: design, features, and insights. Comput. Math. Appl. 81 (2021), 407–422.
https://doi.org/10.1016/j.camwa.2020.02.022

[6] D. Arndt, N. Fehn, G. Kanschat, K. Kormann, M. Kronbichler, P. Munch, W. A.
Wall, and J. Witte. 2020. ExaDG – high-order discontinuous Galerkin for the exa-
scale. In Software for Exascale Computing – SPPEXA 2016–2019 (Lecture Notes in
Computational Science and Engineering 136), H.-J. Bungartz, S. Reiz, B. Uekermann,
P. Neumann, and W. E. Nagel (Eds.). Springer International Publishing, Cham,
189–224. https://doi.org/10.1007/978-3-030-47956-5_8

[7] W. Bangerth, C. Burstedde, T. Heister, and M. Kronbichler. 2011. Algorithms and
data structures for massively parallel generic finite element codes. ACM Trans.
Math. Softw. 38, 2 (2011), 14:1–28. https://doi.org/10.1145/2049673.2049678

[8] J. Bates. 2009. Lung Mechanics: An Inverse Modeling Approach. Cambridge
University Press, Cambridge, UK New York.

[9] R. Becker and M. Braack. 2000. Multigrid techniques for finite elements on
locally refined meshes. Numer. Lin. Algebr. Appl. 7, 6 (2000), 363–379. https:
//doi.org/10.1002/1099-1506(200009)7:6<363::aid-nla202>3.0.co;2-v

[10] R. G. Brower, M. A. Matthay, A. Morris, D. Schoenfeld, B. T. Thompson, A.
Wheeler, H. P. Wiedemann, A. C. Arroliga, C. J. Fisher, J. J. Komara, et al. 2000.
Ventilation with lower tidal volumes as compared with traditional tidal volumes
for acute lung injury and the acute respiratory distress syndrome. New Engl. J.
Med. 342, 18 (2000), 1301–1308.

[11] J. Brown. 2010. Efficient nonlinear solvers for nodal high-order finite elements
in 3D. J. Sci. Comput. 45, 1-3 (2010), 48–63. https://doi.org/10.1007/s10915-010-
9396-8

[12] C. Burstedde, L. C. Wilcox, and O. Ghattas. 2011. p4est: Scalable algorithms for
parallel adaptive mesh refinement on forests of octrees. SIAM J. Sci. Comput. 33,
3 (2011), 1103–1133. https://doi.org/10.1137/10079163

[13] J. Choi, G. Xia, M. H. Tawhai, E. A. Hoffman, and C.-L. Lin. 2010. Numerical
study of high-frequency oscillatory air flow and convective mixing in a CT-based
human airway model. Ann. Biomed. Eng. 38, 12 (2010), 3550–3571.

[14] T. C. Clevenger, T. Heister, G. Kanschat, and M. Kronbichler. 2021. A flexible,
parallel, adaptive geometric multigrid method for FEM. ACM Trans. Math. Softw.
47, 1 (2021), 7:1–27. https://doi.org/10.1145/3425193

[15] J. W. De Backer, W. G. Vos, S. C. Vinchurkar, R. Claes, A. Drollmann, D. Wulfrank,
P. M. Parizel, P. Germonpré, and W. De Backer. 2010. Validation of computational
fluid dynamics in CT-based airway models with SPECT/CT. Radiology 257, 3
(2010), 854–862.

[16] M. O. Deville, P. F. Fischer, and E. H. Mund. 2002. High-order methods for incom-
pressible fluid flow. Vol. 9. Cambridge University Press.

[17] A. Esteban, A. Anzueto, F. Frutos, I. Alía, L. Brochard, T. E. Stewart, S. Benito, S. K.
Epstein, C. Apezteguía, P. Nightingale, et al. 2002. Characteristics and outcomes

www.sppexa.de
www.gauss-centre.eu
www.lrz.de
https://doi.org/10.5281/zenodo.4302737
https://doi.org/10.1016/S0021-9991(03)00194-3
https://doi.org/10.1016/S0021-9991(03)00194-3
https://doi.org/10.1515/jnma-2020-0043
https://doi.org/10.1515/jnma-2021-0081
https://doi.org/10.1016/j.camwa.2020.02.022
https://doi.org/10.1007/978-3-030-47956-5_8
https://doi.org/10.1145/2049673.2049678
https://doi.org/10.1002/1099-1506(200009)7:6<363::aid-nla202>3.0.co;2-v
https://doi.org/10.1002/1099-1506(200009)7:6<363::aid-nla202>3.0.co;2-v
https://doi.org/10.1007/s10915-010-9396-8
https://doi.org/10.1007/s10915-010-9396-8
https://doi.org/10.1137/10079163
https://doi.org/10.1145/3425193

A Next-Generation Discontinuous Galerkin Fluid Dynamics Solver for Lung Flow Simulations SC ’21, November 14–19, 2021, St. Louis, MO, USA

in adult patients receiving mechanical ventilation: a 28-day international study.
JAMA 287, 3 (2002), 345–355.

[18] R. D. Falgout, J. E. Jones, and U. M. Yang. [n.d.]. The design and implementation
of hypre, a library of parallel high performance preconditioners. In Lecture
Notes in Computational Science and Engineering. Springer-Verlag, 267–294. https:
//doi.org/10.1007/3-540-31619-1_8

[19] N. Fehn, J. Heinz, W. A. Wall, and M. Kronbichler. 2021. High-order arbitrary
Lagrangian–Eulerian discontinuous Galerkin methods for the incompressible
Navier–Stokes equations. J. Comput. Phys. 430 (2021), 110040. https://doi.org/10.
1016/j.jcp.2020.110040

[20] N. Fehn, M. Kronbichler, C. Lehrenfeld, G. Lube, and P. W. Schroeder. 2019.
High-order DG solvers for under-resolved turbulent incompressible flows: A
comparison of 𝐿2 and 𝐻 (div) methods. Int. J. Numer. Meth. Fluids 91, 11 (2019),
533–556. https://doi.org/10.1002/fld.4763

[21] N. Fehn, M. Kronbichler, P. Munch, and M. Bergbauer. 2021. ExaDG: High-Order
Discontinuous Galerkin for the Exa-Scale. https://doi.org/10.5281/zenodo.5176507
Code available on https://github.com/exadg/exadg.

[22] N. Fehn, P. Munch, W. A. Wall, and M. Kronbichler. 2020. Hybrid multigrid
methods for high-order discontinuous Galerkin discretizations. J. Comput. Phys.
415 (2020), 109538. https://doi.org/10.1016/j.jcp.2020.109538

[23] N. Fehn, W. A. Wall, and M. Kronbichler. 2017. On the stability of projection
methods for the incompressible Navier–Stokes equations based on high-order
discontinuous Galerkin discretizations. J. Comput. Phys. 351 (2017), 392–421.
https://doi.org/10.1016/j.jcp.2017.09.031

[24] N. Fehn, W. A. Wall, and M. Kronbichler. 2018. Efficiency of high-performance
discontinuous Galerkin spectral element methods for under-resolved turbulent
incompressible flows. Int. J. Numer. Meth. Fluids 88, 1 (2018), 32–54. https:
//doi.org/10.1002/fld.4511

[25] N. Fehn, W. A. Wall, and M. Kronbichler. 2018. Robust and efficient discontinuous
Galerkin methods for under-resolved turbulent incompressible flows. J. Comput.
Phys. 372 (2018), 667–693. https://doi.org/10.1016/j.jcp.2018.06.037

[26] T. Ferkol and D. Schraufnagel. 2014. The global burden of respiratory disease.
Ann. Amer. Thorac. Soc. 11, 3 (2014), 404–406.

[27] P. Fischer, M. Min, T. Rathnayake, S. Dutta, T. Kolev, V. Dobrev, J.-S. Camier,
M. Kronbichler, T. Warburton, K. Świrydowicz, and J. Brown. 2020. Scalability
of high-performance PDE solvers. Int. J. High Perf. Comput. Appl. 34, 5 (2020),
562–586. https://doi.org/10.1177/1094342020915762

[28] P. F. Fischer, S. Kerkemeier, et al. 2020. Nek5000 Web page.
https://nek5000.mcs.anl.gov.

[29] T. Gemci, V. Ponyavin, Y. Chen, H. Chen, and R. Collins. 2008. Computational
model of airflow in upper 17 generations of human respiratory tract. J. Biomech.
41, 9 (2008), 2047–2054.

[30] W. J. Gordon and L. C. Thiel. 1982. Transfinite mappings and their application
to grid generation. Appl. Math. Comput. 10 (1982), 171–233. https://doi.org/10.
1016/0096-3003(82)90191-6

[31] J. Guttmann, L. Eberhard, B. Fabry, W. Bertschmann, and G. Wolff. 1993. Con-
tinuous calculation of intratracheal pressure in tracheally intubated patients.
Anesthesiology 79, 3 (1993), 503–513.

[32] L. Heltai, W. Bangerth, M. Kronbichler, and A. Mola. 2021. Propagating geometry
information to finite element computations. ACM Trans. Math. Softw. 47, 3 (2021),
in press. https://doi.org/10.1145/3468428

[33] J. Hoberock. 2019. Working Draft, C ++ Extensions for Parallelism Version 2.
Technical Report.

[34] K. Horsfield and G. Cumming. 1968. Morphology of the bronchial tree in man.
Journal of Applied Physiology 24, 3 (1968), 373–383.

[35] S. Kabilan, C.-L. Lin, and E. A. Hoffman. 2007. Characteristics of airflow in a
CT-based ovine lung: a numerical study. J. Appl. Physiol. 102, 4 (2007), 1469–1482.

[36] G. E. Karniadakis, M. Israeli, and S. A. Orszag. 1991. High-order splitting methods
for the incompressible Navier–Stokes equations. J. Comput. Phys. 97, 2 (1991),
414–443. https://doi.org/10.1016/0021-9991(91)90007-8

[37] C. Kato, Y. Yamade, K. Nagano, K. Kumahata, K. Minami, and T. Nishikawa. 2020.
Toward realization of numerical towing-tank tests by wall-resolved large eddy
simulation based on 32 billion grid finite-element computation. In 2020 SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis (SC). IEEE Computer Society, 23–35.

[38] D. Kempf, R. Heß, S. Müthing, and P. Bastian. 2021. Automatic code generation
for high-performance discontinuous Galerkin methods on modern architectures.
ACM Trans. Math. Softw. 47, 1 (2021), 6/1–31. https://doi.org/10.1145/3424144

[39] T. Kolev et al. 2020. Support CEED-enabled ECP applications in their preparation for
Aurora/Frontier. Technical Report ECP Milestone CEED-MS35. US Department
of Energy.

[40] T. Kolev et al. 2021. High-order algorithmic developments and optimizations for
large-scale GPU-accelerated simulations. Technical Report ECP Milestone CEED-
MS36. US Department of Energy.

[41] B. Krank, N. Fehn, W. A. Wall, and M. Kronbichler. 2017. A high-order semi-
explicit discontinuous Galerkin solver for 3D incompressible flow with appli-
cation to DNS and LES of turbulent channel flow. J. Comput. Phys. 348 (2017),

634–659. https://doi.org/10.1016/j.jcp.2017.07.039
[42] M. Kronbichler and K. Kormann. 2012. A generic interface for parallel cell-based

finite element operator application. Comput. Fluids 63 (2012), 135–147.
[43] M. Kronbichler and K. Kormann. 2019. Fast matrix-free evaluation of discontin-

uous Galerkin finite element operators. ACM Trans. Math. Softw. 45, 3 (2019),
29:1–40. https://doi.org/10.1145/3325864

[44] M. Kronbichler and K. Ljungkvist. 2019. Multigrid for matrix-free high-order
finite element computations on graphics processors. ACM Trans. Parallel Comput.
6, 1 (2019), 2:1–32. https://doi.org/10.1145/3322813

[45] M. Kronbichler and W. A. Wall. 2018. A performance comparison of continuous
and discontinuous Galerkin methods with fast multigrid solvers. SIAM J. Sci.
Comput. 40, 5 (2018), A3423–A3448. https://doi.org/10.1137/16M110455X

[46] K. Ljungkvist. 2017. Matrix-free Finite-element Computations on Graphics Pro-
cessors with Adaptively Refined Unstructured Meshes. In Proceedings of the 25th
High Performance Computing Symposium (Virginia Beach, Virginia) (HPC ’17).
Society for Computer Simulation International, San Diego, CA, USA, Article 1,
12 pages. http://dl.acm.org/citation.cfm?id=3108096.3108097

[47] R. Löhner. 2019. Towards overcoming the LES crisis. Int. J. Comput. Fluid Dyn.
33, 3 (2019), 87–97. https://doi.org/10.1080/10618562.2019.1612052

[48] M. G. Ménache, W. Hofmann, B. Ashgarian, and F. J. Miller. 2008. Airway
geometry models of children’s lungs for use in dosimetry modeling. Inhalation
toxicology 20, 2 (2008), 101–126.

[49] T. Möller and B. Trumbore. 1997. Fast, minimum storage ray-triangle intersection.
Journal of Graphics Tools 2, 1 (1997), 21–28. https://doi.org/10.1080/10867651.
1997.10487468 arXiv:https://doi.org/10.1080/10867651.1997.10487468

[50] D. Moxey, R. Amici, and M. Kirby. 2020. Efficient matrix-free high-order finite
element evaluation for simplicial elements. SIAM J. Sci. Comput. 42, 3 (2020),
C97–C123. https://doi.org/10.1137/19m1246523

[51] N. Offermans, O. Marin, M. Schanen, J. Gong, P. Fischer, P. Schlatter, A. Obabko,
A. Peplinski, M. Hutchinson, and E. Merzari. 2016. On the strong scaling of
the spectral element solver Nek5000 on petascale systems. In Proceedings of the
Exascale Applications and Software Conference 2016 (Stockholm, Sweden) (EASC
’16). ACM, New York, NY, USA, Article 5, 10 pages. https://doi.org/10.1145/
2938615.2938617

[52] S. A. Orszag. 1980. Spectral methods for problems in complex geometries. J.
Comput. Phys. 37 (1980), 70–92.

[53] H.-C. Pape, A. Kurtz, and S. Silbernagl. 2018. Physiologie. Georg Thieme Verlag,
Stuttgart New York.

[54] S. Qi, B. Zhang, Y. Teng, J. Li, Y. Yue, Y. Kang, and W. Qian. 2017. Transient
dynamics simulation of airflow in a CT-scanned human airway tree: more or
fewer terminal bronchi? Comput. Math. Method Med. 2017 (2017).

[55] C. J. Roth, K. M. Förster, A. Hilgendorff, B. Ertl-Wagner, W. A. Wall, and A. W.
Flemmer. 2018. Gas exchange mechanisms in preterm infants on HFOV–a com-
putational approach. Scientific reports 8, 1 (2018), 1–8.

[56] H. Sundar, G. Biros, C. Burstedde, J. Rudi, O. Ghattas, and G. Stadler. 2012. Par-
allel geometric-algebraic multigrid on unstructured forests of octrees. In SC’12:
Proceedings of the International Conference on High Performance Computing, Net-
working, Storage and Analysis. IEEE, 1–11.

[57] M. Tawhai, A. J. Pullan, and P. Hunter. 2000. Generation of an anatomically
based three-dimensional model of the conducting airways. Annals of biomedical
engineering 28 (08 2000), 793–802. https://doi.org/10.1114/1.1289457

[58] J. Treibig, G. Hager, and G. Wellein. 2010. LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments. In Proceed-
ings of PSTI2010, the First International Workshop on Parallel Software Tools
and Tool Infrastructures. San Diego CA. https://doi.org/10.1109/ICPPW.2010.38
https://github.com/RRZE-HPC/likwid.

[59] D. K. Walters, G. W. Burgreen, D. M. Lavallee, D. S. Thompson, and R. L. Hester.
2011. Efficient, physiologically realistic lung airflow simulations. IEEE T. Biomed.
Eng. 58, 10 (2011), 3016–3019.

[60] E. R. Weibel, A. F. Cournand, and D. W. Richards. 1963. Morphometry of the
human lung. Vol. 1. Springer.

[61] J. B. West and A. M. Luks. 2016. West’s Respiratory Physiology: The Essentials.
Wolters Kluwer, Philadelphia.

[62] S. Williams, A. Waterman, and D. Patterson. 2009. Roofline: An insightful visual
performance model for multicore architectures. Commun. ACM 52, 4 (2009),
65–76. https://doi.org/10.1145/1498765.1498785

https://doi.org/10.1007/3-540-31619-1_8
https://doi.org/10.1007/3-540-31619-1_8
https://doi.org/10.1016/j.jcp.2020.110040
https://doi.org/10.1016/j.jcp.2020.110040
https://doi.org/10.1002/fld.4763
https://doi.org/10.5281/zenodo.5176507
https://github.com/exadg/exadg
https://doi.org/10.1016/j.jcp.2020.109538
https://doi.org/10.1016/j.jcp.2017.09.031
https://doi.org/10.1002/fld.4511
https://doi.org/10.1002/fld.4511
https://doi.org/10.1016/j.jcp.2018.06.037
https://doi.org/10.1177/1094342020915762
https://doi.org/10.1016/0096-3003(82)90191-6
https://doi.org/10.1016/0096-3003(82)90191-6
https://doi.org/10.1145/3468428
https://doi.org/10.1016/0021-9991(91)90007-8
https://doi.org/10.1145/3424144
https://doi.org/10.1016/j.jcp.2017.07.039
https://doi.org/10.1145/3325864
https://doi.org/10.1145/3322813
https://doi.org/10.1137/16M110455X
http://dl.acm.org/citation.cfm?id=3108096.3108097
https://doi.org/10.1080/10618562.2019.1612052
https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.1080/10867651.1997.10487468
https://arxiv.org/abs/https://doi.org/10.1080/10867651.1997.10487468
https://doi.org/10.1137/19m1246523
https://doi.org/10.1145/2938615.2938617
https://doi.org/10.1145/2938615.2938617
https://doi.org/10.1114/1.1289457
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1145/1498765.1498785

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
All experiments were performed on the SuperMUC-NG system
with Intel Skylake architecture on up to 3072 nodes with 2×24
cores of Intel Xeon Platinum 8174, running at a fixed frequency of
2.3 GHz. The GNU compiler gcc-9.2 was used with options "-O3
-funroll-loops -march=skylake-avx512". The Intel MPI implementa-
tion, version 2019, was employed. All experiments are based on a
series of 20 repetitions, taking the best-performing sample. It has
been ensured that, apart from disturbances of other jobs on the
network of the machine, the deviation of the mean to the minimum
is less than a few percent, which makes the reported performance
data realistic.

The code is based on the two artifacts of the Ex-
aDG and deal.II codes listed below. The configuration
for SuperMUC-NG is based on the configuration listed at
https://github.com/exadg/exadg/tree/860623c532bfb0c8a5a454426a3d1fd5a9161075/scripts/supermuc-
ng Besides the main libraries listed below, we also include
hypre-v2.20, petsc-3.14.5, METIS version 5.1.0. The full solver
optimization are contained in the above libraries. The specific lung
test case including the specific configuration of the grid is based
on patient-specific data that cannot be shared at this point. Up to
the final AD/AE deadline in August, we will add a generic test case
with the same performance properties as public-domain input file.
By then, Zenodo links for the artifacts will be created.

Author-Created or Modified Artifacts:

Persistent ID: 10.5281/zenodo.5176507
Artifact name: Fluid dynamics solver ExaDG, providing

the application framework, as well as the
underlying deal.II finite element library with
mathematical basis of experiments

↩→

↩→

↩→

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: SuperMUC-NG, using Intel Xeon Plat-
inum 8174 processors

Operating systems and versions: SUSE Linux Enterprise Server
12 SP3

Compilers and versions: gcc version 9.2 C++ and C compilers

Libraries and versions: Intel MPI 2019

Key algorithms: multigrid; conjugate gradient

	Abstract
	1 Overview of the Problem
	2 Background and State of the Art
	2.1 Comp. methods in respiratory mechanics
	2.2 Incompressible Navier–Stokes equations
	2.3 High-order discontinuous Galerkin methods
	2.4 Splitting solver for incompressible flows

	3 Innovations Realized
	3.1 Matrix-free operator evaluation
	3.2 MPI and SIMD parallelization
	3.3 Mesh generation and mapping
	3.4 Scalable multigrid preconditioning

	4 Evaluation Setup and Metrics
	5 Performance Results
	5.1 Evaluation of matrix-free algorithms
	5.2 Evaluation of multigrid performance
	5.3 Application runs

	6 Implications
	7 Conclusions
	Acknowledgments
	References

