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Summary
Background Response to immunotherapy in gastric cancer is associated with microsatellite instability (or mismatch 
repair deficiency) and Epstein-Barr virus (EBV) positivity. We therefore aimed to develop and validate deep learning-
based classifiers to detect microsatellite instability and EBV status from routine histology slides.

Methods In this retrospective, multicentre study, we collected tissue samples from ten cohorts of patients with gastric 
cancer from seven countries (South Korea, Switzerland, Japan, Italy, Germany, the UK and the USA). We trained a 
deep learning-based classifier to detect microsatellite instability and EBV positivity from digitised, haematoxylin and 
eosin stained resection slides without annotating tumour containing regions. The performance of the classifier was 
assessed by within-cohort cross-validation in all ten cohorts and by external validation, for which we split the cohorts 
into a five-cohort training dataset and a five-cohort test dataset. We measured the area under the receiver operating 
curve (AUROC) for detection of microsatellite instability and EBV status. Microsatellite instability and EBV status 
were determined to be detectable if the lower bound of the 95% CI for the AUROC was above 0·5.

Findings Across the ten cohorts, our analysis included 2823 patients with known microsatellite instability status and 
2685 patients with known EBV status. In the within-cohort cross-validation, the deep learning-based classifier could 
detect microsatellite instability status in nine of ten cohorts, with AUROCs ranging from 0·597 (95% CI 0·522–0·737) 
to 0·836 (0·795–0·880) and EBV status in five of eight cohorts, with AUROCs ranging from 0·819 (0·752–0·841) to 
0·897 (0·513–0·966). Training a classifier on the pooled training dataset and testing it on the five remaining cohorts 
resulted in high classification performance with AUROCs ranging from 0·723 (95% CI 0·676–0·794) to 0·863 
(0·747–0·969) for detection of microsatellite instability and from 0·672 (0·403–0·989) to 0·859 (0·823–0·919) for 
detection of EBV status.

Interpretation Classifiers became increasingly robust when trained on pooled cohorts. After prospective validation, 
this deep learning-based tissue classification system could be used as an inexpensive predictive biomarker for 
immunotherapy in gastric cancer.

Funding German Cancer Aid and German Federal Ministry of Health.

Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license.

Introduction
Gastric cancer is among the most common and lethal 
cancer types worldwide.1,2 Although the development of 
new treatment strategies had stalled for decades, the 
field was reinvigorated by the emergence of immuno­
therapy in the past decade.1 Among all genetic 
subclasses of gastric cancer, tumours with microsatellite 
instability (or mis match repair deficiency) are asso­
ciated with an improved response to immu notherapy. 
Correspondingly, immune checkpoint inhibitors are 
approved by the US Food and Drug Administration 
for metastatic gastric cancers with microsatellite 
instability.3 Additionally, micro satellite instability is a 
prognostic biomarker associated with an improved 

long­term prognosis.4,5 Another driving mechanism for 
approximately 5% of gastric cancers is Epstein­Barr 
virus (EBV); these cancers are character ised by a 
vigorous immune response6 and potential susceptibility 
to immunotherapy.3 Conversely, EBV­negative gastric 
cancers and those with micro satellite stability have 
shown favourable outcomes after adjuvant chemo­
therapy.7 Micro satellite instability and EBV positivity 
are almost mutually exclusive, making these bio­
markers complementary predictors for response to 
immunotherapy.8 Microsatellite instability is routinely 
assessed via PCR or immuno histochemistry.9 For EBV, 
the gold standard test is in­situ hybridisation to detect 
EBV­encoded RNA transcripts.10 However, these tests 
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are not ubiquitously done even in health­care systems 
with plentiful resources.

The number of molecular tests required could be 
reduced by detection of genetic abnormalities directly 
from routine histology.11 Deep learning, an artificial 
intelligence (AI) technology, is ideal for extracting 
subtle information from complex data.12 Several studies 
have shown that deep learning algorithms can detect 
the presence of molecular alterations from routine 
histological data.13–15 In particular, deep learning can 
be used to detect microsatellite instability in 
colorectal,11,15–19 endometrial,11,20 and gastric cancer.11,21,22 To 
our knowledge, deep learning­based detection of EBV in 
gastric cancer has not been investigated to date. Clinical 
adoption of deep learning­based classification requires 
evidence from multicentre studies and large­scale 
evaluation, but no such studies have been done for any 
molecular biomarker in gastric cancer. To address this 
unmet need, we collected data from ten gastric cancer 
cohorts from several countries, and developed and 
assessed deep learning­based classifiers to detect 
microsatellite instability and EBV status directly from 
haematoxylin and eosin­stained histological slides.

Methods
Study design and patient cohorts
In this retrospective, multicentre cohort study, we 
collected digitised histological slides from formalin­
fixed paraffin­embedded gastric cancer resection samples 
with matched microsatellite instability and EBV status 
from ten cohorts of patients with gastric cancer. Samples 
from the ten cohorts were as follows: samples from the 
pathology archives of Inselspital, University of Bern 
(Bern, Switzerland—ie, the BERN cohort);23 samples 
from the CLASSIC trial from participating study centres 
in South Korea (ie, the CLASSIC cohort);24 samples 
from the Medical Research Council Adjuvant Gastric 
Infusional Chemotherapy (MAGIC) trial from par­
ticipating study centres in the UK (ie, the MAGIC 
cohort);25 samples from the Leeds Teaching Hospitals 
National Health Service Trust (Leeds, UK—ie, the LEEDS 
cohort); samples from the Kanagawa Cancer Center 
Hospital (Yokohama, Japan—ie, the KCCH cohort);26 
samples from the pathology archive at the University 
Hospital Augsburg (Augsburg, Germany—ie, the 
AUGSB cohort); samples from the University of Siena 
(Siena, Italy—ie, the ITALIAN cohort);27 samples from 
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Research in context

Evidence before this study
Gastric cancer is one of the most lethal types of cancer across all 
countries and ethnicities. The Cancer Genome Atlas (TCGA) 
project divided gastric cancer into four molecular subtypes, 
one of which is microsatellite instable and one of which is 
Epstein-Barr virus (EBV) positive gastric cancer. Deep learning, 
a method within artificial intelligence (AI), has successfully 
detected molecular alterations directly from histopathology 
slides in previous studies. We searched PubMed, MEDLINE, 
Google Scholar, and conference abstracts from IEEE Symposia 
on Jan 13–17, 2020, for literature published since database 
inception, with no language restrictions, on deep learning-
based molecular detection in gastric cancer using the keywords 
“digital pathology”, “deep learning”, and “histopathology” in 
combination with “EBV”, “Epstein Barr virus”, “prediction”, 
“detection” or “molecular detection”, “microsatellite instability”, 
“gastric cancer”, and “gastric adenocarcinoma”. Although some 
publications reported tumour detection in gastric cancer and one 
publication reported the detection of microsatellite instability or 
EBV status in the TCGA cohort, we did not identify any large scale 
validation studies describing deep learning-based detection of 
microsatellite instability and EBV status in gastric cancer. 
We repeated our literature search on July 2, 2021, and found one 
additional publication reporting the detection of microsatellite 
instability from routine histology using deep learning, but large 
scale systematic validation studies are still unavailable. 

Added value of this study
We assembled a multi-institutional dataset comprising more 
than 2500 patients with gastric cancer from ten clinical cohorts 

from several countries worldwide. We show that deep learning-
based prediction of microsatellite instability and EBV status 
from haematoxylin and eosin-stained histopathological 
samples is feasible. We compared the performance of our deep 
learning-based classifiers on various sample types including 
whole-slide images, full tumour annotations, virtual biopsies, 
and tissue microarrays and found that manual tumour 
annotations are not needed for deep learning-based detection 
of microsatellite instability and EBV status. Additionally, 
we found that classifier performance increased substantially 
with pooling of cohorts and is largely independent of 
clinicopathological characteristics. 

Implications of all the available evidence
In the future, AI could be used to screen patients with gastric 
cancer for the presence of clinically relevant genetic alterations. 
This process could reduce the number of molecular tests 
required and enable universal screening potentially even in 
low-resource health-care systems. If deep learning systems 
were used to identify molecular alterations globally, 
pathologists and clinicians could make faster clinical decisions 
and offer therapeutic approaches tailored to the molecular 
profile of the individual patient. Furthermore, the deep 
learning pipeline presented in this study can be applied to 
other disease contexts, parameters, or populations of interest. 
Our strategies to improve detection accuracy in previously 
problematic cohorts could also inform study conceptualisation 
approaches for other researchers.
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the pathology archive at University of Cologne (Cologne, 
Germany—ie, the KOELN cohort);28 samples from the 
Institute of Pathology at the Technical University Munich 
(Munich, Germany—ie, the TUM cohort);4 and samples 
(diagnostic slides) originate from the The Cancer 
Genome Atlas (TCGA) project and are derived from the 
National Institute of Health Genomic Data Commons 
portal (the TCGA cohort).8,29

This study was done in accordance with the Declaration 
of Helsinki and complies with the STARD reporting 
guidelines (appendix pp 2–4).30 This study was approved 
by the ethics board at RWTH Aachen University Hospital 
and the collection of patient samples in each cohort was 
approved by the ethics board at each institution.

Deep learning
We processed whole­slide images (appendix p 11) from 
patients with known microsatellite instability status and 
patients with known EBV status from multiple countries, 
using one slide per patient. In the ITALIAN cohort, 
which consisted only of tissue microarrays, all available 
core samples per patient were used. We then trained and 
assessed deep neural networks as follows.

First, we separately trained and validated deep learning­
based detectors for microsatellite instability and EBV 
status within each cohort in a three­fold cross­validated 
design, splitting each cohort into three datasets and 
rotating to use every dataset for validation once. The 
resulting prediction scores were used for a subgroup 
analysis to assess performance using the following 
clinicopathological strata: sex, Laurén subtype of gastric 
cancer (intestinal, non­intestinal or diffuse, mixed), Union 
for International Cancer Control (UICC) stage (stage I, II, 
III and IV), and grade of differentiation (1, 2, or 3–4).

Second, we externally validated our classification 
approach. We created a pooled training dataset from the 
five largest cohorts: BERN, CLASSIC, MAGIC, LEEDS, 
and TCGA. We started by training and assessing a deep 
learning­based classifier within this training dataset 
using within­cohort three­fold cross­validation, yielding 
one cross­cohort prediction area under the receiver 
operator curve (AUROC). A new classifier was then 
trained on the pooled training dataset and separately 
validated on each of the remaining cohorts (KCCH, 
AUGSB, ITALIAN, KOELN, and TUM). KOELN was 
excluded from validation of the EBV detection classifier 
because only two patients in this cohort were EBV 
positive.

Third, we did a three­way classification. Exploiting the 
almost perfect exclusiveness of microsatellite instability 
and EBV positivity, a three­way classifier was trained to 
distinguish between EBV­positive, microsatellite instable, 
and double­negative tumours (ie, negative for both EBV 
and microsatellite instability), and was assessed in a 
within­cohort cross­validation design. The MAGIC and 
KOELN cohorts, where EBV status was not available in a 
sufficiently large number of patients, and three patients 

with overlapping positive microsatellite instability and 
EBV status (two from the CLASSIC cohort and one from 
the LEEDS cohort) were excluded.

Fourth, we compared our baseline approach (ie, no 
annotations) with manual tumour­only annotations and 
virtual biopsy annotations. Tumours were annotated by a 
trained observer (HSM) and reviewed by pathologists 
(LRH, HIG, NTG) as previously described.16,31 For virtual 
biopsy annotations, we created a 2 mm wide annotation 
of the tumour and adjacent healthy tissue facing the 
gastric luminal surface, simulating the tissue of an 
endoscopic biopsy sample.32 We deployed the classifier 
from our external validation step on tumour­only and 
virtual biopsy annotations for all eligible cohorts (TUM, 
KCCH, and AUGSB) to compare classifier performance 
in specified regions instead of using a whole­slide 
image. These three cohorts were used to directly compare 
our baseline external validation approach with the 
performance of tumour­only and virtual biopsy regions. 
Our other two validation cohorts were excluded from this 
experiment because of the low number of EBV positive 
cases (KOELN) or availability of tissue microarray cores 
only (ITALIAN).

Finally, we analysed classifier performance stratified 
by tumour­to­total tissue ratio of each slide. Based on 
tumour annotations, patients were stratified by the ratio 
between tumour area and total tissue area into low 
(0–0·33), medium (0·34–0·66), or high (>0·66).

Image processing and statistical analysis
Histological slides were selected and digitised at each 
institution using Aperio (Leica Biosystems, Wetzlar, 
Germany), Hamamatsu (Hamamatsu Photonics, 
Hamamatsu­city, Japan), Ventana (Roche, Basel, 
Switzerland), or 3D Histech (3DHISTECH, Budapest, 
Hungary) digital slide scanners. All samples were surgical 
resections except for those from the ITALIAN cohort, 
which consisted of tissue microarrays. All data were 
preprocessed according to a prespecified protocol.31 
Briefly, whole­slide images were tessellated into square 
image patches (tiles) with an edge length of 256 µm 
equivalent to 512 × 512 pixels, corresponding to a 
magnification of 0·5 µm per pixel, removing tissue­less 
background by discarding tiles with a median brightness 
above 220/255 (dimensionless factor) with QuPath 
(version 0.1.2).33 All tiles were colour­normalised using 
the Macenko method.34 All experiments were done on 
servers with NVIDIA (Santa Clara, CA, USA) RTX Titan 
or RTX 6000 graphics processing units using Matlab 
R2020a (Mathworks, Natick, MA, USA). Before training, 
tiles were randomly under­sampled to achieve class 
balance between microsatellite stability and instability or 
between EBV positivity and negativity—ie, if the less 
abundant class had N tiles, only N tiles were randomly 
chosen from the more abundant class. This approach 
balanced the training dataset without affecting the 
number of patients.14 The maximum number of tiles per 

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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BERN 
(N=418)

CLASSIC 
(N=612) 

MAGIC 
(N=263)

LEEDS 
(N=903) 

TCGA 
(N=443) 

Pooled 
cohort 
(N=2639)*

KCCH 
(N=252) 

AUGSB 
(N=181) 

ITALIAN 
(N=398) 

KOELN 
(N=372) 

TUM 
(N=286) 

Country of origin Switzerland South Korea UK UK USA ·· Japan Germany Italy Germany Germany

Patients included in 
this study

296 612 253 319 334 NA 252 181 366 84† 286

Microsatellite 
instability

42 (14%) 32 (5%) 17 (7%) 33 (10%) 58 (17%) 182 (7%) 22 (9%) 16 (9%) 68 (19%) 4 (5%)† 34 (12%)

Microsatellite 
stability

252 (85%) 535 (87%) 236 (93%) 282 (88%) 275 (82%) 1580 (60%) 213 (85%) 165 (91%) 218 (60%) 80 (95%)† 241 (84%)

EBV positive 8 (3%) 41 (7%) NA 14 (4%) 27 (8%) 90 (3%) 11 (4%) 3 (2%) 7 (2%) 2 (2%)† 8 (3%)

EBV negative 288 (97%) 559 (91%) NA 299 (94%) 306 (92%) 1452 (55%) 223 (88%) 178 (98%) 357 (98%) 87 (103%)† 267 (93%)

Sample type Whole slide Whole slide Whole slide Whole slide Whole slide NA Whole slide Whole slide Tissue 
microarray

Whole slide Whole slide

Age, years 68·9 
(61·0–78·3)

57·0 (NA) 62·0 
(55·0–69·0)

68·1 
(61·6–76·1)

66·1 
(58·6–73·5)

NA 63·0 
(55·8–71·0)

68·2 
(61·0–77·0)

68·9 
(63·0–77·0)

66·0 (NA) 68·3 (NA)

Sex

Male 190 (64%) 421 (69%) 189 (75%) 209 (66%) 226 (68%) NA 177 (70%) 126 (70%) 221 (60%) 55 (65%) 189 (66%)

Female 104 (35%) 179 (29%) 55 (22%) 108 (34%) 107 (32%) NA 75 (30%) 55 (30%) 144 (40%) 29 (35%) 97 (34%)

Unknown or 
other

2 (1%) 12 (2%) 9 (3%) 2 (1%) 1 (<1%) NA 0 0 1 (<1%) 0 0

Preoperative treatment status

Pretreated 0 0 117 (46%) 0 0 123 (5%) 0 49 (27%) 0 NA 0

Not pretreated 418 (100%) 612 (100%) 136 (54%) 319 (100%) 334 (100%) 2516 (95%) 252 (100%) 132 (73%) 366 (100%) NA 286 (100%)

Laurén histological subtype

Intestinal 166 (56%) 219 (36%) 199 (79%) 206 (65%) 153 (46%) 1332 (50%) 111 (44%) 105 (58%) 221 (60%) NA 153 (53%)‡

Diffuse 74 (25%) 312 (51%) 45 (18%) 77 (24%) 61 (18%) 772 (29%) 132 (52%) 42 (23%) 89 (24%) NA NA‡

Mixed or other 54 (18%) 69 (11%) 7 (3%) 35 (11%) 119 (36%) 258 (10%) NA 34 (19%) 38 (10%) NA 133 (47%)‡

Unknown 2 (1%) 12 (2%) 2 (1%) 1 (<1%) 1 (<1%) 227 (9%) 9 (4%) 0 18 (5%) NA 0

UICC disease stage

Stage I 58 (20%) 1 (<1%) NA 30 (9%) 41 (12%) NA 0 32 (18%) 54 (15%) NA 57 (20%)

Stage II 66 (22%) 207 (34%) NA 93 (29%) 104 (31%) NA 97 (38%) 53 (29%) 77 (21%) NA 76 (27%)

Stage III 166 (56%) 392 (64%) NA 190 (60%) 151 (45%) NA 141 (56%) 72 (40%) 154 (42%) NA 134 (47%)

Stage IV 1 (<1%) 0 NA 4 (1%) 35 (10%) NA 14 (6%) 20 (11%) 79 (22%) NA 19 (7%)

Unknown 5 (2%) 12 (2%) NA 2 (1%) 3 (1%) NA 0 4 (2%) 2 (1%) NA 0

Grade of differentiation

Grade 1 18 (6%) NA NA 17 (5%) NA NA NA 9 (5%) 14 (4%) NA 79 (28%)§ 

Grade 2 76 (26%) NA NA 103 (32%) NA NA NA 62 (34%) 114 (31%) NA ··§

Grade 3–4 200 (68%) NA NA 196 (61%) NA NA NA 90 (50%) 200 (55%) NA 206 (72%)

Unknown 2 (1%) NA NA 3 (1%) NA NA NA 20 (11%) 38 (10%) NA 1 (<1%)

Ground truth method

Microsatellite 
instability or 
mismatch repair 
deficient status

Immunohisto– 
chemistry

PCR PCR Immunohisto–
chemistry

Genetic test NA Immunohisto– 
chemistry

Immunohisto– 
chemistry

PCR Immunohisto– 
chemistry and 
PCR

PCR

EBV status EBER ISH EBER ISH NA EBER ISH Genetic test NA EBER ISH EBER ISH EBER ISH EBER ISH EBER ISH

Digital slide 
scanner

3D Histech Leica Aperio Leica Aperio Leica Aperio Leica Aperio NA Leica Aperio Roche Ventana Leica Aperio Hamamatsu Leica Aperio

Data are n (%) or  median (IQR), unless otherwise stated..  AUGSB=samples from University Hospital Augsberg, Germany. BERN=samples from University of Bern, Switzerland. CLASSIC=samples from the CLASSIC 
trial in South Korea. EBER=Epstein-Barr virus encoded small RNAs. EBV=Epstein-Barr virus. ISH=in-situ hybridisation. ITALIAN=samples from University of Siena, Italy. KCCH=samples from Kanagawa Cancer Center 
Hospital, Japan. KOELN=samples from University of Cologne, Germany. LEEDS=samples from Leeds Teaching Hospitals NHS Trust, UK. MAGIC=samples from the MAGIC trial in the UK. NA=not available. 
TCGA=samples from The Cancer Genome Atlas. TUM=samples from Technical University Munich, Germany. UICC=Union for International Cancer Control. *Pooled cohort comprises BERN, CLASSIC, MAGIC, 
LEEDS, and TCGA cohorts. †In the KOLEN cohort, EBV status was available for 89 patients but because only two were EBV positive we did not use data from this cohort for EBV status detection; therefore, the total 
number of patients included in this study from the KOLEN cohort was 84 (ie, those with microsatellite instability information available). ‡Participants were divided into intestinal and non-intestinal in this cohort. 
§Grade 1 and 2 are pooled as “non-high grade” in this cohort.

Table 1: Clinicopathological characteristics of the cohorts
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patient was limited to 2000. We used a shufflenet model 
with an input size of 512 × 512 × 3 pixels, which was 
pretrained on ImageNet35 and retrained on each training 
dataset via transfer learning. The penultimate layer was 
replaced by a fully convolutional layer and the output 
layer was replaced with one neuron per output class. 
Training hyper parameters are listed in the appendix (p 5). 
For deployment, a categorical prediction was generated 
for each tile (tile­level hard prediction). For a given 
patient, the fraction of all tiles predicted to be of the target 
(microsatellite instability or EBV positive) was used as a 
patient­level prediction score, which can be converted to 
a patient­level hard prediction at different operating 
thresholds in a receiver operating curve (ROC) analysis.

For within­cohort experiments, stratified patient­level 
three­fold cross­validation was used. No data from the 
same patient were ever present in the training dataset 
and in the test dataset in any experiment. We report 
all results as patient­level AUROCs, with pointwise 
95% CIs calculated in a ten­fold bootstrapping experi­
ment. A classification was regarded as successful if 
the lower bound of the 95% CI was above 0·5. Within­
cohort cross­validation and external validation were 
repeated with 1000­fold bootstrapping. The influence 
of the number of folds in the cross­validation was 
systematically assessed for this experiment in the 
BERN cohort. The BERN cohort was chosen for this 
analysis because it was representative of all the cohorts 
with respect to cohort characteristics. For subgroup­
dependent ROC analyses, all patient­level predictions in 
a particular subgroup (eg, only female patients) were 
used. Subgroup analyses were only done in cohorts with 
sufficient patient­level data for the particular subgroups. 
We assessed statistical significance using a two­tailed 
unpaired Student’s t test on the patient­level scores 
with p values of less than 0·05 indicating statistical 
significance.

All image processing steps were predefined and were 
not tuned specifically to the datasets in this study. All 
procedures followed an established protocol used in 
previous studies.14,16

Role of the funding source
The funders of the study had no role in the study 
design, data collection, data analysis, data interpretation, 
or writing of the report.

Results
Across the ten cohorts, our analysis included 
2823 patients with known microsatellite instability 
status and 2685 patients with known EBV status. Study 
profiles for all cohorts are shown in the appendix (p 10). 
Clinical and demographic characteristics of patients in 
each cohort are shown in table 1. Across all cohorts, the 
majority of patients were male and were diagnosed 
with UICC stage II or III (locally advanced resectable 
disease). Patients in the KCCH and CLASSIC cohorts 
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originated from Asia, the rest of the patients were 
from Europe or the USA. Most tumours were poorly 
differentiated. Mutation frequency, presurgical or 
postsurgical pre treatment, microsatellite instability 
detection method, and slide scanner manufacturer 
varied between cohorts.

Using within­cohort cross­validation in each of the 
ten cohorts, we found that microsatellite instability was 
detectable in nine of ten cohorts, with the lower bound of 

the 95% CI for the AUROC of the deep learning­based 
classifier above 0·5 (table 2). Among these nine cohorts, 
the AUROC ranged from 0·597 (95% CI 0·522–0·737) in 
the MAGIC cohort to 0·836 (0·795–0·880) in the TCGA 
cohort. In the KCCH cohort, microsatellite instability 
status was not detectable (AUROC 0·540 [0·477–0·592]; 
table 2). Data were available for detection of EBV status 
for all cohorts except MAGIC and KOELN. EBV status 
was detectable in five of these cohorts, with AUROC 

Figure 1: Subgroup-dependent performance of deep learning-based classifiers for detection of microsatellite instability and EBV
Subgroup-dependent AUROCs for detection of microsatellite instability (A) and EBV (B). AUGSB=samples from University Hospital Augsberg, Germany. AUROC=area 
under the receiver operator curve. BERN=samples from University of Bern, Switzerland. CLASSIC=samples from the CLASSIC trial in South Korea. EBV=Epstein-Barr 
virus. ITALIAN=samples from University of Siena, Italy. KCCH=samples from Kanagawa Cancer Center Hospital, Japan. KOELN=samples from University of Cologne, 
Germany. LEEDS=samples from Leeds Teaching Hospitals NHS Trust, UK. MAGIC=samples from the MAGIC trial in the UK. NA=not available. TCGA=samples from 
The Cancer Genome Atlas. TUM=samples from Technical University Munich, Germany. UICC=Union for International Cancer Control. 

UICC stage Laurén histological subtype Grade of tumour differentiation Sex 
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A

0·74 
(0·44– 
0·86) 

0·86 
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0·64 
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0·99) 

0·37
(NA–NA)  

0·74 
(0·59– 
0·87) 

0·90 
(0·87– 
0·96) 

0·46
(NA–NA)  

0·62 
(0·38– 
0·80) 

0·86 
(0·75– 
0·92) 

0·94 
(0·85–
0·99)

0·63 
(0·44– 
0·86) 

BERN 
0·64 

(0·48– 
0·77) 

0·76 
(0·63– 
0·86) 

0·83 
(0·76– 
0·90) 

0·71 
(0·65– 
0·80) 

0·95 
(0·94–
0·97) 

0·85 
(0·50– 
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0·56 
(0·53– 
0·78) 

0·69 
(0·61– 
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0·84 
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0·82 
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0·67 
(0·53– 
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1·00 
(1·00– 
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KCCH 
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(NA–NA)  
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(0·46– 
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1·00) 

0·57 
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0·43 
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0·53 
(0·43– 
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0·68 
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0·76) 

0·70 
(0·66– 
0·76) 
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(0·53– 
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(0·60– 
0·91) 

0·79 
(0·70– 
0·89) 

0·70 
(0·51–
0·76) 
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0·87) 
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0·98) 

0·82 
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(0·00– 
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0·75) 

0·96 
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values ranging from 0·819 (0·752–0·841) in the TCGA 
cohort to 0·897 (0·513–0·966) in the TUM cohort 
(table 2). All possible sensitivity­specificity pairs for each 
cohort are visualised in the respective ROC curves in the 
appendix (p 12). Patient­level prediction scores differed 
signifi cantly between patients with true microsatellite 
instability and microsatellite stability in seven of ten 
cohorts and between patients with true EBV positive and 
EBV negative status in six of eight cohorts (table 2). 
Variation of the number of bootstrapping experiments 
and the number of cross­validation folds did not affect 
the accuracy of detection (appendix pp 6–7).

For detection of micro satellite instability and EBV 
status, the performance of the classifier was usually lower 
in patients with UICC stage IV tumours than in other 
patients (figure 1). The performance of detection of 
microsatellite instability tended to be better among 
female than male patients (in five of six cohorts), whereas 
no consistent trend in performance by patient sex was 
observed for EBV detection. For EBV prediction, slightly 
higher AUROCs were achieved in diffuse­type than in 
intestinal­type gastric cancer, except for in the BERN and 
TUM cohorts (figure 1B). Although variations were 
observed from the general trends in subgroups with 
fewer than 50 patients, differences between cohorts were 
more pronounced than differences between subgroups 
(figure 1).

Re­training the microsatellite instability classifier on 
the combined training cohort using within­cohort 
three­fold cross­validation gave an AUROC of 0·761 
(95% CI 0·707–0·792; table 2). When we re­trained the 
classifier on all patients in this training cohort 
and externally validated the classifier on each of 
the remain ing five validation cohorts separately, 
microsatellite instability status was detectable from 
histology in all five cohorts, with AUROCs ranging from 
0·723 (95% CI 0·676–0·794) for the KCCH cohort (for 
which microsatellite instability was undetectable via the 
previous within­cohort approach) to 0·863 (0·747–0·969) 
for the KOELN cohort (table 2). For EBV detection, a 

within­cohort experiment of the pooled training set gave 
an AUROC of 0·810 (0·767–0·840; table 2). Separate 
testing of the EBV classifier on each of the remaining 

Whole tissue

Tumour only

Virtual biopsy

A
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Whole slide
Tumour only
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Whole slide
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Whole slide
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TUM
Whole slide
Tumour only
Virtual biopsy
KCCH
Whole slide
Tumour only
Virtual biopsy
AUGSB
Whole slide
Tumour only
Virtual biopsy

0·676 (0·497–0· 737) 
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Figure 2: Effects of region-specific analysis and tumour-to-tissue ratio on 
classifier performance

(A) Example tissue section, whole tumour annotation, and luminal surface 
annotation (ie, a virtual biopsy). (B) Microsatellite instability and EBV prediction 

scores for whole-slide images, tumour only, and virtual biopsy samples in the 
TUM, KCCH, and AUGSB cohorts. Prediction performance of the model for 

microsatellite instability (C) and EBV status (D) according to tumour-to-tissue 
ratio. Patients were stratified by the ratio between tumour-contianing area and 
total tissue area as follows: low was a tumour-to-tissue ratio of 0–0·33, medium 
was a ratio of 0·34–0·66, and high was a ratio of 0·66–1. AUROC=area under the 

receiver operating curve. AUGSB=samples from University Hospital Augsberg, 
Germany. BERN=samples from University of Bern, Switzerland. 

CLASSIC=samples from the CLASSIC trial in South Korea. EBV=Epstein-Barr virus. 
ITALIAN=samples from University of Siena, Italy. KCCH=samples from Kanagawa 

Cancer Center Hospital, Japan. LEEDS=samples from Leeds Teaching Hospitals 
NHS Trust, UK. MAGIC=samples from the MAGIC trial in the UK. TCGA=samples 

from The Cancer Genome Atlas. TUM=samples from Technical University 
Munich, Germany.
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four eligible cohorts yielded AUROCs between 0·672 
(0·403–0·989) for the AUGSB cohort and 0·859 
(0·823–0·919) for the ITALIAN cohort (table 2). The 
ITALIAN cohort consisted of tissue microarray samples 
containing a relatively small amount of tissue. EBV 
detection was unsuccessful in this cohort in the 
within­cohort experiment, with an AUROC of 0·552 
(0·350–0·782; table 2); however, our external validation 
experiment resulted in an increase in the performance 
of EBV detection to an AUROC of 0·859 (0·823–0·919; 
table 2). Thus, EBV status was detectable in three of 
four validation cohorts (KCCH, ITALIAN, and TUM). 
For all cohorts, training on a pooled training dataset 
boosted performance of the classifier for detection of 
microsatellite instability and EBV status. AUROCs 
for external validation and corresponding highest 
predictive tiles are visualised in the appendix (p 13).

Training of a deep learning­based classifier to 
distinguish between patients with positive EBV status, 
those with microsatellite instability, and those with 
negative EBV and microsatellite instability status 
(double­negative gastric cancer) in a single classification 
step using within­cohort cross­validation was feasible in 
four of eight cohorts (CLASSIC, LEEDS, TCGA, and 
TUM) with lower 95% CI bounds that were higher 
than 0·5. Classification AUROCs in these four cohorts 
ranged from 0·694 (0·587–0·805) for the TUM cohort to 
0·823 (0·767–0·850) for the LEEDS cohort across all 
classes (although both of these quoted AUROCs occurred 
for EBV detection; appendix p 8). In the CLASSIC cohort 
(the largest cohort), data were available for 36 patients 
with EBV­positive cancers, 30 patients with microsatellite 
instability, and 495 patients with double­negative cancers. 
In this cohort, positive EBV status was detected with an 
AUROC of 0·768 (0·750–0·801), microsatellite instability 
was detected with an AUROC of 0·795 (0·725–0·825), 
and double­negative status was detected with an 
AUROC of 0·819 (0·765–0·847). For the other cohorts 
(BERN, KCCH, AUGSB, and ITALIAN), the lower 
bound of the 95% CI was lower than 0·5 in at least one 
of the three classes. AUROCs for three­way classification 
are visualised in the appendix (p 14).

Among the KCCH, TUM, and AUGSB cohorts, the 
whole­slide image­based approach was marginally out­
performed by the tumour­only approach for detection 
of microsatellite instability (figure 2; appendix p 9). 
For EBV detection, the tumour only­based approach 
had higher detection performance than the whole slide­
based approach in the AUGSB cohort. EBV was not 
detectable via the whole­slide approach (AUROC 0·672 
[95% CI 0·403–0·989]) because the lower 95% CI 
bound was below 0·5; however, the AUROC was 
increased to 0·718 (0·663–0·983) via the tumour­only 
approach, rendering EBV status detectable (figure 2B; 
appendix p 9). Prediction of microsatellite instability 
from virtual biopsies was less accurate than from 
whole­slide images but feasible in all three cohorts 

whereas EBV detection from virtual biopsies was only 
successful in the KCCH cohort (figure 2; appendix p 9).

No consistent trend in AUROCs was observed across 
the three strata of tumour­to­tissue ratios (high, medium, 
and low; figure 2C, D).

To identify specific predictive features from tiles with 
the highest prediction scores, we used the BERN cohort 
as an example because of its high performance for 
detection of microsatellite instability. The most highly 
predictive tiles for microsatellite instability contained 
tumour epithelium and lymphoid aggregates, whereas 
the highest scoring tiles for microsatellite stability 
contained both tumour and non­tumour tissue 
(appendix pp 13, 15). Among the highest predictive tiles 
for microsatellite instability, we identified tiles with 
activated lymphoid follicles. For EBV status, the most 
highly predictive tiles for EBV positivity contained 
mostly tumour tissue, whereas the tiles that were most 
highly predictive for EBV negativity contained both 
tumour and non­tumour tissue (appendix pp 13, 15). 
In whole­slide prediction heatmaps, highly predictive 
regions were mostly located in the tumour area 
(appendix p 13).

Discussion
We assessed the performance of a deep learning­based 
classifier for the detection of microsatellite instability 
and EBV status in gastric cancer. While within­cohort 
cross­validation experiments resulted in pronounced 
performance differences between cohorts, external 
validation of a classifier that has been trained on a mixed 
training dataset significantly increased overall detection 
performance for both microsatellite instability and 
EBV status. Neither the investigated subgroups nor 
prespecified tumour­to­tissue ratios were sig nificantly 
related with the detection performance of microsatellite 
instability or EBV status. Compared with non­annotated 
whole­slide images, detection of microsatellite instability 
or EBV status from annotated tumour regions did 
not improve classifier accuracy, whereas detection of 
microsatellite instability or EBV status from virtual 
biopsies resulted in reduced detection performance.

Deep learning has transformed digital pathology, 
enabling detection and subtyping of tumours.13–15 In 
gastric cancer, previous deep learning­based studies on 
molecular detection were limited to small datasets.11,21,22 
However, adoption of deep learning­based biomarkers 
in clinical practice requires large­scale multicentre 
validation,36 which is especially relevant in the context 
of biases in AI systems.37 In our multicentre analysis 
across multiple countries, we found that pooling 
cohorts can improve performance, suggesting that a 
large and diverse dataset is important. Previously, a 
microsatellite instability classifier trained on the TCGA 
cohort, in which approximately 20% of patients are 
Asian, and tested on the KCCH cohort, in which 
100% of patients are Asian, gave an AUROC of 0·69 
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(95% CI 0·52–0·82).11 When we trained our classifier 
on TCGA and four other cohorts with varying countries 
of origin, including another Asian cohort, prediction 
of microsatellite instability in the KCCH cohort yielded 
an AUROC of 0·723 (95% CI 0·676–0·794). More 
generally, we found that use of a classifier that was 
trained on a large multinational dataset outperformed 
classifiers trained in a within­cohort setup. We conclude 
that diverse training cohorts are necessary to obtain 
consistently high validation performance in gastric 
cancer.

Additionally, we analysed classification accuracy in 
clinical and pathological subgroups across our cohorts. 
None of the subgroups performed consistently better or 
worse than the overall cohort. Our finding that tumour 
annotations were not necessary to train a robust classifier 
and that robust classifiers can be trained even if all tiles 
from the whole­slide image are used raises questions 
about the relevance of extra tumoural features such as 
peri­tumoural inflammatory cells or features in the 
adjacent non­neoplastic tissue for deep learning­based 
molecular detection. Generally, tumours with micro­
satellite instability or positive EBV status are known to 
influence the presence of immune cells in peritumoural 
and intratumoural tissue.38 Correspondingly, among the 
highest predictive tiles for microsatellite instability in the 
BERN cohort, we identified an activated lymphoid follicle 
in a tile highly predictive for microsatellite instability. We 
can infer that the presence of extratumoral tissue does 
not compromise the performance of digital detection 
of microsatellite instability or EBV, but its relevance—
specifically the relevance of peritumoral lymphocytes—to 
the prediction needs to be further analysed.

Our study has several limitations. The relatively low 
absolute number of patients who were positive for 
features of interest proved to be a challenge for building 
a robust classifier in within­cohort experiments. Cohort­
specific properties could add to this observation. For 
example, most of the digitised slides for the KCCH 
cohort had pen marks circling the tumour area. We 
expect these to have negatively affected our within­
cohort accuracy. In the MAGIC cohort, almost 50% of 
the patients included had been pretreated with chemo­
therapy, which might have changed tumour morphology, 
negatively affecting the performance of the classifier. 
Finally, the AUGSB and ITALIAN cohorts both had a 
relatively low number of EBV positive tumours. Only 
three (2%) of 181 patients in the AUGSB cohort, and 
seven (2%) of 364 patients in the ITALIAN cohort were 
EBV positive. However, we found a solution for these 
problems: low classifier performance in the within­
cohort experiments was overcome by training the 
classifier on a large multicentre cohort. A structural 
limitation to our analysis is the fact that the ground 
truth methods for microsatellite instability were 
developed in colorectal cancer, which could explain why 
microsatellite instability can be predicted in colorectal 

cancer with an even higher performance than we found 
here for gastric cancer.16 Our study shows that the 
applicability of a deep learning classifier can be 
increased by training on large and diverse cohorts. Still, 
gastric cancer seems to be an exceptionally difficult 
target for deep learning analysis and other issues still 
need to be addressed, such as the effect of pretreatment 
or ethnicity on performance.

For clinical adoption of deep learning, three steps 
are needed: proof of concept, large­scale validation, 
and regulatory approval.36 To our knowledge, this is 
the first large­scale validation study of any molecular 
deep learning­based biomarker in gastric cancer. 
Technical refinements with new architectures and 
training on even larger datasets could conceivably 
increase performance. Ultimately, deep learning­based 
analysis of haematoxylin and eosin­stained tissue 
genotyping could be used as a definitive test in gastric 
cancer because even imperfect predictors are useful 
as a pre­screening tool. By choosing a high­sensitivity 
operating point of moderate specificity, our test could 
pre­select patients for subsequent molecular testing.11 
Pathology workflows across the world are predominantly 
based on glass slides. However, similar to the develop­
ments in radiology two decades ago, the digitisation of 
pathology is expected to happen within the foreseeable 
future.36,39 Digital algorithms such as ours could 
potentially be added to such digital workflows, providing 
a fast and low­cost decision aid.
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