
Technische Universität München
TUM School of Computation, Information and Technology

Deep Learning for Volume Visualization

Sebastian Klaus Weiß

Vollständiger Abdruck der von der TUM School of Computation, Information and Technology

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. rer. nat. Matthias Niessner

Prüfer der Dissertation: 1. Prof. Dr. rer. nat. Rüdiger Westermann

2. Prof. Dr. rer. nat. Dr. techn. h. c. Dr.-Ing. E. h. Thomas Ertl,

Universität Stuttgart

Die Dissertation wurde am 20.05.2022 bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am 19.09.2022 angenommen.

For peace

Abstract

Visualizing volumetric data is required when inspecting CT and MRI scans in medical imaging, aerody-

namic and fluid mechanical simulations, or reconstructions of extraterrestrial events in astrophysics.

Applications in these areas produce datasets that exceed thousands of discretization units per spatial

axis (voxels) and hundreds of time steps. At those dataset sizes, the time to process or visualize the

dataset, i.e. rendering it into a human-understandable image, becomes increasingly expensive. For

example, the performance of volume rendering using ray marching, without additional optimizations,

scales linearly with the number of pixels on the screen and the number of voxels to traverse. Therefore,

optimized rendering strategies for interactive explorations have to be developed. Besides rendering

existing datasets, the equally important inverse problem includes the reconstruction of the 3D volume

from images, e.g. tomographic reconstruction, or finding camera positions that allow for the optimal

inspection of features in the dataset. Those inverse problems require a differentiable rendering routine

that can deal with the large dataset sizes mentioned above.

In this dissertation, we first explore acceleration techniques for volume rendering using deep neural

networks. We show that the rendering performance of volume visualization can be improved by first

rendering a low-resolution image of the dataset, followed by a neural network that upscales this

image to a high-resolution version. The neural network can accurately reconstruct the appearance

of the high-resolution volume rendering from the low-resolution image using a fully-convolutional

network architecture. Temporal stability is achieved via a loss function measuring the difference to

the previous prediction, warped by the optical flow, during training. Additionally, ambient occlusion

can be estimated during upscaling to improve depth perception. Our method leads to a significant

speedup compared to baseline rendering, especially if ambient occlusion is included.

We next investigate whether a network can learn to reduce the sample count even further by sampling

the volume only in those regions that carry the most information. A first neural network is tasked

to select pixels in the image where the volume is sampled. A second network then reconstructs the

final image from those sparse samples. Both networks are trained end-to-end so that samples are

v

ABSTRACT

placed where the reconstruction requires the information most. This way, an accurate reconstruction

is achieved with only 5%-10% of the pixels on the screen actually rendered.

To make a step from networks acting on images to networks on 3D scene properties, the rendering

process itself has to be made differentiable. Previous methods for differentiation include the so-

called Forward Differentiation and Adjoint Differentiation. In Forward Differentiation, on one hand,

the computation cost scales linearly with the number of parameters to differentiate. Therefore,

this approach is unsuitable for tasks that include many degrees of freedom, e.g. volume density

reconstruction. Adjoint Differentiation, on the other hand, allows to easily differentiate multiple

parameters at once but requires intermediate memory for every basic rendering operation. This

approach, therefore, does not scale well with larger datasets, where more voxels per pixel have to be

traversed. We show that this restriction can be lifted by analytically inverting parts of the rendering

equation. This leads to an algorithm in constant memory, i.e. independent of the number of operations

per pixel. We demonstrate possible applications for volume reconstruction and transfer function

reconstruction from images, as well as best viewpoint selection. In ongoing projects, we apply this

inversion technique to train scene representation networks ± a compact grid-free representation of

volumes ± directly from observed images.

All approaches mentioned above use ray marching to render images of volumes. Ray Marching,

however, can lead to rendering artifacts due to possibly unbounded errors in the numerical quadrature

of the underlying integrals. Prior work on volume rendering with a controlled error bound apply

a transfer function mapping prior to interpolation (pre-shading). This limits the possible level of

detail to the grid resolution. We extend upon that and show, that error bounds can also be given

when a piecewise-polynomial transfer function mapping is included in post-shaded volume rendering.

This allows for renderings with higher-frequency features as well as the inclusion of, e.g., lighting

and shading. Potential applications include situations, where an upper limit on the rendering error

is required, as well as situations with very narrow and sharp features that would lead to rendering

artifacts due to discretization errors in ray marching.

vi

Zusammenfassung

Visualisierungen volumetrischer Daten werden bei der Inspektion von CT und MRI-Scans, in der

Strömungslehre bei Fluidsimulationen, oder bei der Rekonstruktion extraterrestrischer Ereignisse

in der Astronomie verwendet. Anwendungen in diesen Bereichen liefern Datensätze, die tausende

Diskretisierungseinheiten pro Raumachse (Voxel) und hunderte Zeitschritte umspannen. Bei diesen

Gröûenordnungen werden Operationen auf den Datensätzen, wie zum Beispiel die Visualisierung

als menschenverständliche Bilder, zunehmend teuer. Beispielsweise skaliert die Berechnungszeit von

Volume Rendering mittels Ray Marching, ohne zusätzliche Optimierungen, linear in der Anzahl der

Pixel des Bildschirms und der Anzahl der zu traversierenden Voxel. Für interaktive Anwendungen

müssen deshalb Optimierungsstrategien entwickelt werden. Neben dem Rendering existierender

Datensätze ist das inverse Problem gleich bedeutsam. Inverse Probleme beinhalten die Rekonstruktion

von 3D-Volumen aus Bildern, zum Beispiel tomographische Rekonstruktionen, oder das Optimieren

von Kameraparametern für eine ideale Perspektive zur Betrachtung der Merkmale im Datensatz. Diese

inversen Probleme benötigen eine differenzierbare Rendering-Routine, die mit den oben beschriebenen

groûen Datenmengen umgehen kann.

In dieser Dissertation erforschen wir Beschleunigungstechniken für Volumenrendering mittels Deep

Neural Networks. Wir zeigen, dass die Renderzeiten von Volumenvisualisierungen verbessert werden

können, indem zunächst ein niedrig aufgelöstes Bild des Datensatzes gerendert wird, welches dann

von einem neuronalen Netz in eine hochaufgelöste Version übersetzt wird. Das neuronale Netz kann

das Erscheinungsbild der hochaufgelösten Visualisierung von dem niedrig aufgelösten Bild mittels

einer fully-convolutional Netzwerkarchitektur akkurat rekonstruieren. Zeitliche Stabilität wird dabei

durch eine Kostenfunktion erreicht, die den Unterschied zum vorherigen Bild, unter Beachtung des

optischen Flusses, vergleicht. Zusätzlich kann Ambient Occlusion bei der Hochskalierung durch das

Netzwerk mitgeschätzt werden, um den Tiefeneindruck zu verbessern. Unsere Methode führt zu einer

signifikanten Beschleunigung des Rendering, insbesondere, wenn Ambient Occlusion eingebunden

wird.

vii

ZUSAMMENFASSUNG

Als nächstes analysieren wir, ob ein Netzwerk die Anzahl an Stichproben in das Volumen weiter

reduzieren kann, indem die Proben nur in Regionen genommen werden, die die meiste Information

tragen. Ein erstes Netzwerk selektiert dazu die Pixel im Bild, an dem das Volumen abgetastet werden

soll. Ein zweites Netzwerk rekonstruiert dann das finale Bild aus diesen dünn besetzten Stichproben.

Beide Netzwerke werden Ende-zu-Ende trainiert, damit die Stichproben an den Stellen gesetzt werden,

die für die Rekonstruktion die meiste Information tragen. Mit der Auswahl von nur 5%-10% aller Pixel

im Bild wird mit diesem Ansatz bereits eine akkurate Rekonstruktion erreicht.

Um den Schritt von Netzwerken, die auf 2D-Bildern agieren, zu Netzen auf Eigenschaften im 3D-

Raum zu tätigen, muss der Darstellungsprozess selbst differenzierbar sein. Frühere Arbeiten für die

automatische Berechnung von Ableitungen nutzen die Methoden der Forward Differentiation oder

die Adjoint Differentation. Bei der Forward Differentiation skaliert die Berechnungszeit linear mit der

Anzahl der abzuleitenden Parameter. Damit ist diese Methode ungeeignet für Anwendungen mit vielen

Freiheitsgraden, wie zum Beispiel die Volumenrekonstruktion. Im Gegensatz dazu erlaubt die Adjoint

Differentiation die Ableitung beliebig vieler Parameter auf einmal, jedoch wird zusätzlicher temporärer

Speicher bei jeder primitiven Operation benötigt. Dies führt zu Skalierungsproblemen bei groûen

Datensätzen mit Tausenden zu traversierenden Voxeln. Wir zeigen, dass diese Speicherlimitierung

aufgehoben werden kann, indem ein Teil der Strahltransportgleichung analytisch invertiert wird.

Das führt zu einem Algorithmus mit einem Speicherverbrauch, der unabhängig in der Anzahl an

Operationen pro Pixel ist. Wir demonstrieren als mögliche Anwendungsgebiete die Rekonstruktion

von Dichtevolumen und Transferfunktionen aus Bildern sowie optimale Blickpunktselektierung. In

laufenden Projekten verwenden wir diese Invertierungstechnik zum Trainieren von Scene Representa-

tion Networks, einer kompakten, gitterlosen Repräsentation von 3D-Volumen, aus Bildern.

Alle zuvor genannten Ansätze nutzen Ray Marching zur Berechnung der Bilder. Ray Marching kann

allerdings zu Artefakten in den Bildern führen, da die benutze Quadraturmethode der zugrundeliegen-

den Integrale beliebig groûe Fehler aufweisen kann. Frühere Arbeiten zu Fehlerabschätzungen im

Volume Rendering wenden die Transferfunktion typischerweise vor der Interpolation an (pre-shading).

Dadurch wird der mögliche Detailgrad durch die Gitterauflösung begrenzt. Wir erweitern frühere

Arbeiten und zeigen, dass Fehlerabschätzungen auch berechnet werden können, wenn eine stückweise-

polynomielle Transferfunktionen nach der Interpolation (post-shading) angewendet werden. Dies

ermöglicht Renderings mit höher aufgelösten Merkmalen und mit lokaler Lichtberechnung. Mögliche

Anwendungen umfassen Situationen, in denen eine obere Grenze für den möglichen Fehler benötigt

wird, oder Transferfunktionen mit sehr schmalen, scharfen Spitzen, die zu groûen Fehlern bei der

Diskretisierung in traditionellem Ray Marching führen.

viii

Acknowledgments

First and foremost, I would like to thank Prof. Dr. Rüdiger Westermann for his supervision and support

during my Ph.D. time. I remember uncountable discussions about current research topics, completely

different topics and ideas, and just fun remarks about everything. He challenged me to reflect on my

own thoughts and broadened the scope of my knowledge. He provided me with guidance when I was

stuck, but never restricted me in the research topics I pursued.

I sincerely thank my co-authors, Mengyu Chu, Daniel Cremers, Florian Bayer, Justus Thies, Mustafa

IËsık, Nils Thuerey, Philipp Hermüller, and Robert Maier for their timely and valuable contributions,

even during the last minutes before a deadline. Without them, the papers included in this thesis would

not be possible.

Christian Reinbold was the best office mate and friend I could hope for. Over the last years, he always

had an open ear for me if I got stuck with a research question. So many ideas were generated and

blockages were resolved just by quickly chatting with each other. Besides common research interests,

we shared a passion for music. Many a conversation drifted towards discussing recent concerts that

we attended or even played ourselves, or new music that we explored. I will miss all the fun we had,

inside the office as well as outside in our leisure time.

I also thank Susanne Weitz for helping me with all matters of organization, may it be contracts,

business trip applications, or even help with the accounting of new purchases for the university big

band I play with. Sebastian Wohner, our system administrator, was always ready to help me with

any matters of software, website management, or the installation of a new hard disk if I ran out of

available disk space. I also never forget all the jokes about our shared first name and initials.

My colleges Fatemeh, Mengyu, Behdad, Kevin, Ludwic, Björn, Christoph, Christian, Junpeng, Philipp,

Marie-Lena, Michael, Alexander, Lukas, and Patrick made the time here at the chair unforgettable. I

especially want to thank Junpeng for providing me with various green and black teas.

Lastly, my friends and family always provided me with support throughout my time as a Ph.D. and

gave me stability, and sometimes necessary distractions during troublesome times. Thank you.

ix

Contents

Abstract v

Zusammenfassung vii

Acknowledgments ix

1 Introduction 1

1.1 Contribution . 4

1.2 Outline . 6

1.3 List of Publications . 7

2 Related Work 9

2.1 Non-network-based Acceleration Strategies for Volume Rendering 9

2.2 Image and Video Super-Resolution . 12

2.3 Deep Learning in Volume Visualization . 14

2.4 Differentiable Rendering . 16

2.5 Controlled-Precision Volume Rendering . 20

3 Fundamentals and Methods 23

3.1 Volume Visualization . 23

3.1.1 Isosurface Rendering . 24

3.1.2 Direct Volume Rendering . 26

3.1.3 Controlled-Precision Volume Rendering . 30

3.2 Automatic Differentiation . 33

3.2.1 Forward Differentiation . 34

3.2.2 Adjoint Differentiation . 37

3.3 Neural Networks . 40

3.3.1 Fully-connected Neural Networks . 42

3.3.2 Convolutional Neural Networks . 44

3.3.3 Isosurface Super-Resolution . 47

xi

CONTENTS

3.3.4 Adaptive Sampling . 48

4 Paper A: Volumetric Isosurface Rendering with Deep Learning-Based Super-Resolution 53

5 Paper B: Learning Adaptive Sampling and Reconstruction for Volume Visualization 55

6 Paper C: Analytic Ray Splitting for Controlled Precision DVR 57

7 Paper D: Differentiable Direct Volume Rendering 59

8 Final Discussion 61

8.1 Future Work . 61

8.2 Conclusion . 63

Bibliography 67

Accepted and camera ready version of Paper A 95

Accepted and camera ready version of Paper B 111

Accepted and camera ready version of Paper C 131

Accepted and camera ready version of Paper D 137

xii

1
Introduction

The topic of Volume Visualization coarsely includes methods to generate 2D images from 3D volumes.

These 3D volumes arise in various fields, making volume visualization an umbrella term for various

methods with interdisciplinary applications. In medical imaging, 3D volumes are obtained from,

e.g., CT or MRI scans. Experts are interested in locating anomalies for diagnosing or for planning

operations. The former requires a rendering system that allows for an interactive and accurate

exploration of the dataset. The latter requires a simulation of the three-dimensional material. In fluid

mechanics, the behavior of gasses or liquids like air or water are simulated to investigate the heat

distribution or turbulence patterns. Examples include the visualization of the turbulence at airplane

wings to optimize the lift and drag or the circulation rolls that occur when hot and cool liquids are

mixed [Fra+19]. Such simulations can produce terrabytes of data. For example, the Channel Flow

simulation [DMG20] reaches a resolutions of 2048× 512× 1536 discretization units (voxels) in the

three spatial dimensions and is simulated for 4000 steps in time. It requires 23.4TB of uncompressed

storage. For those terra-scale datasets, both the storage and the rendering become challenging and

require fast algorithms.

To display the 3D volumes, the two most common algorithms are isosurface rendering and direct

volume rendering. In isosurface rendering, a single surface is visualized that depicts the locations,

where a scalar value like the density takes on a fixed, user-defined value. Rendering methods include

raytracing of this surface [Lev88; Lev90a] or discretizations into triangle meshes [LC87], detailed in

Sec. 3.1.1. In direct volume rendering, each position in space is mapped to a semi-transparent particle

that absorbs a fraction of the light passing through that location and emits light on its own [Max95].

This mapping from the value stored in the volume (typically called the density) to absorption (scalar)

and emission (red-green-blue) is described by the so-called transfer function (TF). The result can then

be compared to a colored, self-emitting cloud. There are two possibilities on how this mapping is

applied. First, in pre-classification, the TF mapping is applied on the vertices of the grid that store the

1

1 INTRODUCTION

values, giving rise to a color volume that is then interpolated. This, however, limits the features that

are introduced by the TF to the grid resolution. Second, the TF is applied after the density values are

interpolated. This allows the TF to introduce much finer details not limited to the grid resolution. The

mathematical details are presented in Sec. 3.1.2.

Direct volume rendering is usually computed via raytracing [Max95]. In the real world, photons

are emitted by a light source and sent into the scene. These photons then interact with the objects in

the scene and are either absorbed, reflected or refracted, until they reach the eye where the receptors

perceive the photons and send the information further to the brain. In raytracing, this process is

inverted. Starting from a virtual camera center, rays are sent into the scene through the pixels of the

screen. Each ray then interacts with the objects until they reach a light source. In other words, in

raytracing, the path of photons is traced in reverse direction. In DVR, this process is simplified by

discarding scattering events. Only rays leaving the camera in a straight line are considered. This is

called the emission-absorption model [Max95]. Still, this algorithm is computationally intense, leading

to the development of numerous acceleration schemes, see Sec. 2.1.

In recent years, artificial neural networks have seen great advances and are now applied in all

kinds of applications. These include, for example, image classification and segmentation to aid in

autonomous driving [JZA18; Gho+19], attention networks for natural language translation and un-

derstanding [Vas+17; Dev+18], autoencoders for data compression [The+17; Che+18], recurrent

networks to predict future events in weather forecasts [Rei+19] and stock prices [KT90; Sil+17], or de-

noising [Cha+17] and style transfer networks [RAHK22] to enhance the realism of computer-generated

images in games and movies. We want to especially highlight super-resolution networks [Don+16;

SSH17]: Given a low-resolution input image, networks are tasked to predict the high-resolution version.

In supervised training, the networks are trained on given pairs of low-resolution and high-resolution

images. Once trained, the networks can estimate the high-resolution images from novel images,

never observed during training. It can be argued from a signal theoretical point of view, that new,

semantically plausible features that go beyond of what classical linear or cubic filters can achieve, are

impossible. However, once certain assumptions about the domain are made, i.e., what data to expect,

neural networks have proven to be efficient in encoding this prior knowledge in their predictions. For

example, if the input data is guaranteed to consist of low-resolution photographs of human faces,

which, for humans, look like a random collection of a few pixels, neural networks can successfully

predict high-resolution images of faces that plausibly explain the low-resolution versions [Hsu+19;

Jia+21]. Similar results have been found for super-resolution of text for optical character recognition

(OCR) applications [LJ18; XYL20].

Since those networks seem to detect common structures in the data and utilize those during the

prediction, it is natural to ask, whether networks can be applied for scientific volume visualizations as

well. If the data stems from CT scans of the human head, the networks can assume, that they will

2

only see CT scans of the human head [You+19]. If the data stems from weather forecasts, certain

patterns are prone to repeat themselves and can be exploited by super-resolution networks [Höh+20].

Combining this observation with the fact presented above, that volume visualization is expensive, can

neural networks aid in improving the performance of a visualization pipeline by rendering only a

low-resolution image and perform super-resolution to reconstruct the high-resolution image?

The super-resolution networks mentioned above take a low-resolution image on a regular grid, the

pixel raster, as input. This equates to a sparse sampling of the high resolution image in regular intervals,

i.e., only at every 4th pixel in every dimensions, and to reconstructing the dense high-resolution image

using a neural network. The underlying assumption behind such methods is thus, that every pixel is

equally important. But does this hold true? Are there better ways to select the pixels, i.e. the samples,

especially adaptively to the data? For classification tasks, humans on one hand tend to identify the

object correctly if just the silhouette or edges are given, whereas traditionally trained networks fail in

those cases. Networks, on the other hand, can predict objects more accurately than humans, if just

textures are given without shape cues [Gei+19]. This leads to the implication, that neural networks

require different inputs to what humans require and expect. Translated to the selection of input

pixels for super-resolution, many heuristics have been proposed that adaptively place more samples in

more important regions based on human-designed criteria [Tur+19]. These methods assume specific

interpolation and reconstruction schemes and do not consider, that, if applied together with networks,

different inputs might be more suitable. This leads to the following question: Is it possible to learn,

what samples in the input actually carry the most information for a reconstruction network? Can a

second neural network learn to predict, where the reconstruction needs samples without having access

to all samples?

The downside of neural networks, however, is their inherent errors. The networks are trained to

match the distribution of the training dataset. In theory, there always exist neural networks that can

approximate a continuous function to an arbitrarily chosen error, called the universal approximation the-

orem [HSW89; Cyb89]. While it is possible to give a constructive proof of the above theorem [CCL92],

for practical applications where the size of the network is limited, the networks remains an approxima-

tion of the data only. Furthermore, no upper bounds on the errors of the prediction can be computed

in most cases. Mathematically proving robustness properties of networks or possible prediction errors

remains a challenging topic [YR19]. For the case of image classification, adversarial examples are an

extreme case of those unbounded prediction errors. Here, small perturbations to the input images

that are not noticeable to a human, are constructed in such a way, that the network misclassifies the

input with a high certainty [Sze+14; Ily+19; Liu+19a]. Making networks robust against such attacks

is a challenging task [WK18]. Therefore, what are applications of neural networks, where errors are

acceptable and can be tolerated?

3

1 INTRODUCTION

Errors in the resulting rendered images do not only stem from networks. The rendering process

itself introduces approximation errors. While analytical solutions for isosurface rendering can be

given [LC96; Par+98; Neu+02; Mar+04], for direct volume rendering in the general case, i.e. a grid

with an arbitrary interpolation function and an arbitrary TF, no analytical solutions exist [Max95]. For

special cases like pre-classification (see Sec. 3.1.2), quadrature schemes with a controlled error bound

were presented by Novins and Arvo [NA92]. This leads to the question, is it possible to derive error

bounds and a high-precision quadrature scheme for the post-classification case?

As the last challenge, we investigate differentiable volume rendering. So far, only the image

formation process was investigated. This means, the volume data, the camera parameters and the

transfer function is given and only the resulting image has to be generated. However, when some of

those parameters are unknown, they have to be reconstructed from images. This includes optimizations

such as best-viewpoint-selection or tomographic reconstruction, where the volume is reconstructed

from X-ray images or other detection systems. Efficient optimizers like Adam [KB15] are gradient-based

optimization schemes, i.e., they require the gradients of the image with respect to the parameter

to optimize. Differentiable rendering frameworks like Mitsuba 2 [ND+19; ND+20] allow for the

computation of such derivatives, but are memory and/or computational intensive. How can direct

volume rendering be differentiated in a memory and computational efficient way?

1.1 Contribution

In collaboration with other researchers, several contributions are presented in this thesis that address the

research questions mentioned above. We show [Wei+21], that super-resolution networks can improve

the rendering performance of large datasets for isosurfaces. To compensate for prediction errors, the

networks are embedded in an interactive exploration framework with foveated rendering [Gue+12].

In foveated rendering, the area around the focus region of the eye (the fovea) is rendered with high

resolution and the resolution falls off towards the periphery. Here, the focus region is rendered

accurately and the network predictions are used in the periphery. As an extension of the previous work,

we present an adaptive sampling pipeline that features an importance network tasked with estimating

the sample locations with the most information for the following reconstruction step [Wei+20]. The

two approaches above both apply networks on images of isosurface or direct volume renderings.

Hence, they incorporate errors from the neural network, as well as from the renderer itself. To provide

a baseline where errors in the rendering are minimized or at least known to not exceed certain

error bounds, we present controlled-precision direct volume rendering for a larger class of TFs than

previously possible [WW21]. To go beyond images and infer features of the underlying 3D data, a

differentiable rendering pipeline is needed. We present two algorithms [WW22], how direct volume

rendering can be differentiated with bounded memory to allow for an arbitrary number of steps per

4

1.1 CONTRIBUTION

ray and select the best-performing algorithm per use case. The following list summarizes the concrete

contributions of this thesis:

• Direct volume rendering typically relies on numerical quadrature to estimate the volume render-

ing integral as analytical solutions are not possible in the general case. There exist analytical

solutions if the data is not given on a hexahedral grid (a voxel grid), but instead on a tetrahedral

grid. In tetrahedra, barycentric interpolation leads to a linear function of the density. This allows

for an analytical solution of the volume rendering integral [WM92], exploited, e.g. for transfer

functions (TFs) based on sums-of-gaussians [Kni+03] or for pre-integrated TFs [EKE01]. We

present a quadrature scheme [WW21] that, for a specific class of TFs, specifically piecewise

polynomial TFs, allows controllable error bounds also for the post-classification case where the

TF is applied after tri-linearly interpolating the density values. First, we apply accurate isosurface

intersection tests [LC96; Par+98; Neu+02; Mar+04] on the control points of the piecewise

polynomial TF, combined with a voxel traversal [AW87; JTC14]. This leads to a segmentation

of the ray with a polynomial function of the density, absorption, and color per segment. Then,

we apply the quadrature scheme by Novins and Arvo [NA92], originally introduced for pre-

classification, to solve the volume rendering integral to high precision. This allows to use TFs

with very sharp and narrow peaks and greatly reduces the errors in those cases if compared to

traditional quadrature schemes using a constant step size.

• We present a super-resolution method for isosurface renderings that takes low-resolution render-

ings of the object and estimates high-resolution images with 4× the number of pixels per dimen-

sion [Wei+21]. The architecture is based on the EnhanceNet architecture by Sajjadi et al. [SSH17].

The original architecture works on RGB-images. We show that a better quality of the predicted

high-resolution isosurface renderings is achieved by upscaling the normal map instead of the

color images. This additionally decouples the shading from the network and allows to change

the color of the surface or the light position afterward. Furthermore, the network is tasked

with predicting global illumination in the form of ambient occlusion (AO). AO approximates the

shadowing in cavities as less reflected light reaches those cavities. Including AO greatly enhances

the depth perception of the object. While fast approximations of AO in screen-space exist [Mit07;

SA07; BS08], computing the true shadowing value requires tracing many secondary rays in 3D

which is costly. We show that the super-resolution network can jointly learn to estimate AO

together with the high-resolution representation of the object, and include an application in the

context of foveated rendering [Gue+12].

• In the method presented above, every pixel was treated equally important. It can be interpreted

as a sub-sampling, where only every 4 ∗ 4= 16th pixel is rendered, arranged in a regular grid,

and the network fills in the missing values (the reconstruction). We hypothesize, that there

5

1 INTRODUCTION

exists a better placement of those rendered pixels that supplements the reconstruction network

with the information needed. We show, that a neural network can be trained to automatically

distinguish important and redundant areas for a second reconstruction network [Wei+20]. This

first network called the importance network is not trained directly, i.e., by explicitly enforcing

important regions, instead it is trained indirectly through the second reconstruction network.

To enable this indirect training, we propose a differentiable sampling stage that allows the

propagation of derivatives from the reconstruction network to the importance network. The

proposed method allows to render images with a user-defined budget of rays to render and

outperforms fixed super-resolution methods as above in terms of quality for the same number of

samples.

• The two methods presented above utilize networks that act on images. To infer information

about the underlying 3D structures themselves from images, a differentiable rendering algorithm

is needed. While such algorithms exist, they are either memory-limited [ND+19] or only support

derivatives for a subset of the parameters, e.g., the volume densities [van+15; Aar+16] or

material properties [ND+20]. Mitsuba 2 [ND+19], for example, uses automatic differentiation

using Adjoint Differentiation to compute the gradients and requires storing every intermediate

result along the ray. We show that for the case of direct volume rendering, storing intermediate

values can be avoided [WW22]. The main observation is, that the blending step that takes

the previous blended color and the current contribution and computes the updated color, can

be inverted. By recomputing the current contribution, the previously blended color can be

recomputed and does not have to be stored. This allows computing derivatives for renderings

with an arbitrary number of steps along the ray with a constant memory cost. We demonstrate

the capabilities of the differentiable rendering pipeline for camera location, transfer function,

and volume density optimizations. In unpublished work [WHW21], this technique is also applied

to train networks representing the 3D volume from images. We further show, that for scenarios

with a low number of parameters, e.g. the optimization of the camera extrinsics, a different

differentiation scheme, so-called Forward Differentiation, can compute the derivatives faster

than Adjoint Differentiation.

1.2 Outline

The following sections of this thesis are structured as follows. In Chapter 2, related work regarding the

research areas related to the contributions of this thesis is discussed. This includes traditional, non-

network-based acceleration structures, an overview over recent advances in super-resolution networks,

the application of networks to volume visualization, differentiable rendering, and controlled-precision

rendering. The fundamentals and the core ideas of the contributions of this thesis are presented in

6

1.3 LIST OF PUBLICATIONS

Chapter 3. The published papers that are part of this thesis are summarized starting in Chapter 4,

together with the contributions of the individual authors. Future work and a general summary are

provided in Chapter 8. The published papers associated with this thesis are appended at the end of

this document.

1.3 List of Publications

The methods described in this thesis have been originally proposed and published in the following

peer-reviewed journal articles and conference proceedings:

• Sebastian Weiss, Mengyu Chu, Nils Thuerey, and Rüdiger Westermann.

ªVolumetric Isosurface Rendering with Deep Learning-Based Super-Resolutionº.

In: IEEE Transactions on Visualization and Computer Graphics, Volume 27, Issue 6, June 2021,

pp. 3064 ± 3078.

doi:10.1109/TVCG.2019.2956697

• Sebastian Weiss, Mustafa IËsık, Justus Thies, and Rüdiger Westermann.

ªLearning Adaptive Sampling and Reconstruction for Volume Visualizationº.

In: IEEE Transactions on Visualization and Computer Graphics, November 2020, early access.

doi:10.1109/TVCG.2020.3039340

• Sebastian Weiss and Rüdiger Westermann.

ªDifferentiable Direct Volume Renderingº.

In: IEEE Transactions on Visualization and Computer Graphics, Volume 28, Issue 1, January 2022,

pp. 562 ± 572.

doi:10.1109/TVCG.2021.3114769

The following publication has been described in this thesis but is not relevant for examination:

• Sebastian Weiss and Rüdiger Westermann.

ªAnalytic Ray Splitting for Controlled Precision DVRº.

In: EuroVis 2021 - Short Papers, The Eurographics Association, 2021. Short Paper

doi:10.2312/evs.20211051

Further publications that are not part of this thesis include:

• Sebastian Weiss, Jun Han, Chaoli Wang, and Rüdiger Westermann.

ªDeep Learning-Based Upscaling for In Situ Volume Visualizationº.

7

https://dx.doi.org/10.1109/TVCG.2019.2956697
https://dx.doi.org/10.1109/TVCG.2020.3039340
https://dx.doi.org/10.1109/TVCG.2021.3114769
https://dx.doi.org/10.2312/evs.20211051

1 INTRODUCTION

In: Hank Childs, Janine C. Bennett, and Christoph Garth (eds), In Situ Visualization for Compu-

tational Science, 2022, pp. 331 ± 352.

doi:10.1007/978-3-030-81627-8_15

• Sebastian Weiss, Philipp Hermüller, and Rüdiger Westermann.

ªFast Neural Representations for Direct Volume Renderingº.

ArXiv-preprint 2021, not peer-reviewed.

doi:10.48550/arXiv.2112.01579

• Sebastian Weiss, Robert Maier, Daniel Cremers, Rüdiger Westermann, and Nils Thuerey.

ªCorrespondence-Free Material Reconstruction using Sparse Surface Constraintsº.

In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

2020, pp. 4686 ± 4695.

doi:10.1109/CVPR42600.2020.00474

• Sebastian Weiss, Florian Bayer, Rüdiger Westermann.

ªTriplanar Displacement Mapping for Terrain Renderingº.

In: Eurographics 2020 - Short Papers, The Eurographics Association, 2020.

doi:10.2312/egs.20201016

• Alex Frasson, Martin Ender, Sebastian Weiss, Mathias Kanzler, Amrish Pandey, Joerg Schumacher,

Rüdiger Westermann.

ªVisual Exploration of Circulation Rolls in Convective Heat Flowsº.

In: IEEE Pacific Visualization Symposium (PacificVis), 2019.

doi:10.1109/PacificVis.2019.00031

8

https://dx.doi.org/10.1007/978-3-030-81627-8_15
https://dx.doi.org/10.48550/arXiv.2112.01579
https://dx.doi.org/10.1109/CVPR42600.2020.00474
https://dx.doi.org/10.2312/egs.20201016
https://dx.doi.org/10.1109/PacificVis.2019.00031

2
Related Work

In this chapter, we discuss prior work in volume visualization and related topics. The ideas presented

here form the basis of the contributions of this thesis. We start with a discussion of traditional, non-

network-based acceleration strategies for rendering volumetric data in Sec. 2.1. These are orthogonal

methods that are further enhanced by network-based acceleration strategies, see Paper A and Paper B.

The foundations of the methods used in these two publications are image and video super-resolution

approaches that are discussed in Sec. 2.2. Further and concurrent work in applying neural networks

in volume visualizations are summarized in Sec. 2.3. All these methods above have the potential to

introduce errors in the image. To analyze, how a baseline with a low error can be achieved, controlled-

precision volume rendering is discussed in Sec. 2.5, later applied in Paper C. To investigate features in

the data itself from image observations, see Paper D, a differentiable rendering pipeline is needed.

Related work in that regard are summarized in Sec. 2.4.

2.1 Non-network-based Acceleration Strategies for Volume Rendering

Volume rendering has seen a first use in 1983 in medical imaging where the 3D structures of CT or MRI

scans are visualized [UH83; Rey+85]. Since then, there has been a stride for even larger datasets with

more fine details while improving the rendering performance to allow for interactive visualizations. In

this section, we explore acceleration techniques for volume rendering that make use of ªtraditionalº

algorithms and datastructures without neural networks. Neural networks as presented in Sec. 2.3

often built upon those optimizations and provide additional, orthogonal improvements.

Acceleration of Isosurface Rendering As briefly mentioned in Chapter 1, one way to render

isosurfaces is by walking along the ray shot from the camera through each pixel [Lev88; Lev90a].

Typical datasets exhibit large empty regions that do not need to be traversed. This naturally leads to

9

2 RELATED WORK

employing tree data structures [SW88]. In such data structures, the leaves partition the available space

and parent nodes contain aggregate statistics of the child nodes. A specific case is the octree, where

each node has exactly 8 children that partition the area of the parent node in a regular 2× 2× 2 grid.

If the isosurface is fixed, each voxel can be classified as either ªemptyº or ªnot emptyº. Levoy [Lev90a]

shows how to build a static octree that encodes this binary classification. During rendering, instead of

traversing the volume using a constant step size, the nodes in the octree are queried and the node

and its children are only recursively traversed if they contain at least one voxel classified as ªnot

emptyº. Further research in that direction includes the works by Knoll et al. [Kno+06; KWH09]

on efficient memory layouts of the octree and traversal algorithms. Independent of isosurfaces or

volume visualization, such sparse tree structures have seen great success in rendering general voxelized

geometry [LK10; KSA13; Dad+16; CBE20] or accelerating intersection tests for raytracing of opaque

scenes [Gun+07; Hap+11] and is now even implemented in hardware since the NVIDIA Turing

architecture [NVI18].

If the isovalue is fixed, the volume can also be transferred into a signed distance field (SDF)

representation [CS94; JS01]. The SDF stores at every location the Euclidean distance to the nearest

surface, with a sign specifying if the position is inside (negative) or outside (positive) of the object.

Regardless of the ray direction, the SDF value at the current location represents a lower bound on the

step size where it is guaranteed, that no intersections are missed. This idea of an adaptive step size

is formalized in the sphere tracing algorithm, introduced by Hart et al. [HSK89; Har96]. Due to the

cost of constructing the SDF, this method has not seen much attention compared to other acceleration

structures, e.g. the tree structure described above. However, SDFs have resurfaced in recent years for

volumetric reconstruction tasks in computer vision [New+11; Iza+11; Per+15], based on ideas dating

back to the work by Curless and Levoy [CL96].

Acceleration of Direct Volume Rendering For direct volume rendering (DVR), the ray does not

terminate at the first intersection with an opaque surface, but instead accumulates emission terms

along the whole ray. While the acceleration technique presented by Levoy can still be used for DVR,

once a node is classified as ªnon emptyº, no further distinction is made. The region covered by that

node might be homogeneous and a coarse step size suffices, or it is inhomogeneous and a fine step size

is needed. Danskin and Hanrahan [DH92] realize this idea by the introduction of a min-max tree that

stores the minimal and maximal density in that region. Danskin and Hanrahan only support volumes

without a transfer function (TF) mapping. One of the first methods to incorporate TFs is presented by

Meiûner et al. [Mei+01]. Here, when the TF is changed, a coarse grid ± instead of a hierarchical tree ±

is recomputed with a classification if the area spanned by each coarse cell contains a non-transparent

voxel. This coarse grid is then traversed to skip over empty regions. Sobierajski and Kaufman [SK94]

approach accelerating the rendering by defining primitive bounding objects that restrict ray-traversals

10

2.1 NON-NETWORK-BASED ACCELERATION STRATEGIES FOR VOLUME RENDERING

to a smaller area containing the volume. A similar method using intersection tests against bounding

objects is employed by Wan et al. [WKB99].

With the introduction of programmable graphics hardware (GPUs), significant performance im-

provements have been achieved by approaches which exploit high memory bandwidth and texture

mapping hardware on GPUs for sampling and interpolation in 3D scalar fields [KW03; Had+05].

Despite the massively parallel architecture of GPUs, some CPU-based raytracers could still outperform

GPU implementations [Kno+11]. For isosurface ray-casting, frame to frame depth buffer coherence on

the GPU was employed to speed up first-hit determination [Kle+05; Bra+09].

As GPUs are mostly targeted to the efficient rasterization of triangles, several works have employed

hybrid schemes between rasterization and raytracing. For isosurfaces, Reichl et al. [Rei+12] dynamically

switch from rasterization to raytracing in areas where large overdraw in triangle rasterization would

lead to degraded performance. More recently, Hadwiger et al. [Had+18] introduce SparseLeap, a

method employing pyramidal occupancy histograms to generate geometric structures representing

non-empty regions. These are rasterized into per-pixel fragment lists to obtain tight segments along the

ray that contain the volume. Only these segments are then traversed in a second raytracing step. With

the introduction of the NVIDIA’s Turing architecture [NVI18], ray traversal through bounding volume

hierarchies (BVH) is supported directly in hardware, as mentioned above. This is exploited in several

recent works, e.g., by Ganter and Manzke [GM19], Morrical et al. [Mor+19], or Wald et al. [WZM21].

For a comparison of several bounding volume hierarchies for ray tracing, we refer to the summary

article by Meister et al. [Mei+21].

Reducing the number of rays All above methods optimize the performance per ray. The computation

cost of the rendering still scales linearly with the number of pixels on the screen. Therefore, it is desired

to reduce the number of rays and render the image at a lower image resolution. The goal is now to

assign an importance value to each pixel so that rendering time is only spent in areas that carry the most

information. Early works start with a low-resolution image and render more pixels in areas with the

largest variance [PS89; Lev90b; RFS03]. For example, Kratz et al. [Kra+11] render two images at two

different, coarse resolutions, and refine in areas with large differences between those images. Further

works include perceptual models [BM98; Mys98; RPG99], image difference operations [LDC06], or

entropy-based measures [Xu+05]. A special case is foveated rendering, where the properties of the

human eye are exploited [Gue+12]: Humans have densely packed photoreceptors only in a small area,

a circle of 5° around the gaze regions. Outside of this small area, the observable spatial resolution

quickly falls off. This is exploited in several recent works to reduce the image resolution in the off-focus

regions, including Tursun et al. [Tur+19] to incorporate luminance information, Bruder et al. [Bru+19]

for an efficient sampling and interpolation scheme, Kim et al. [Kim+19] in an application with a

head-mounted display and eye tracking, or Frieû et al. [Fri+20] to utilize different quality settings

11

2 RELATED WORK

for a H.264 encoder in different regions. Recent works by Kaplanyan et al. [Kap+19] also utilize

neural networks for foveated rendering. First, a sparse sampling of the input is performed, where

more samples are rendered in the fovea and less samples in the periphery. Then, a neural network

interpolates these samples and estimates missing details. In this work, the sampling pattern moves

with the gaze position of the eye, but is otherwise fixed. We show, how a neural network can predict

the sampling pattern to adapt to the data [Wei+20]. Further works on deep learning in visualization

are summarized in Sec. 2.3. Instead of reducing the number of pixels to render, orthogonal approaches

reduce the number of samples along the view rays by adaptively choosing the step size [NA92; DH92;

Lin+13; CCF15].

Out-of-core rendering If the dataset is too large to fit into the available video memory for GPU

raytracers, out-of-core strategies have to be employed. In these strategies, the data is split into chunks

and then sent to the GPU for rendering chunk-by-chunk, often combined with fast compression

schemes [GMIG08; Tre+12; FSK13; MAG19; DMG20]. For a thorough overview of GPU approaches

for large-scale volume rendering, let us refer to the report by Beyer et al. [BHP15].

2.2 Image and Video Super-Resolution

Before we discuss how neural networks can improve or augment the volume visualization techniques

described in the previous section, we first introduce image and video super-resolution methods as they

form the basis of many network architectures used later on.

Image Super-Resolution The task of image super-resolution is posed as following: given a low-

resolution image, the neural network then predicts the high-resolution image matching the low-

resolution version. The networks are trained using pairs of low-resolution images and known high-

resolution images as ground truth. For a detailed introduction to the mathematical methods for

super-resolution networks, we refer to Sec. 3.3.2. The first work that applies neural networks with a

quality surpassing traditional techniques in terms of peak signal-to-noise ratio (PSNR) is presented by

Dong et al. [Don+16]. From there on, deeper networks are introduced [KKLML16] or Laplacian pyra-

mids utilized to learn features over multiple scales [Lai+17]. In the other direction, Shi et al. [Shi+16]

propose a sub-pixel convolutional operation in combination with a smaller network to target real-

time super-resolution. Further advances include architectures like the ResNet [He+16; Led+17] and

DenseNet [Hua+17; Ton+17]. To train the network to predict high-frequent features that cannot be de-

scribed by traditional image metrics like the PSNR or the structural similarity index (SSIM) [Wan+04],

advanced loss functions were developed.

12

2.2 IMAGE AND VIDEO SUPER-RESOLUTION

Perceptual losses [Zha+18] send the images to pre-trained networks ± networks typically trained

for image classification tasks ± and compare activations in the inner layers of those networks. The

intuition behind those perceptual losses is the observation, that those pre-trained networks for image

classification encode semantic information otherwise not captured in simple vector norms like the

mean square error. Those features are also called the content representation [GEB16]. Training new

networks with those perceptual losses forces the network to match semantic features instead of simply

matching the ground truth pixel-by-pixel. One of the first works to apply such perceptual losses is the

work by Johnson et al. [JAFF16] or the EnhanceNet architecture by Sajjadi et al. [SSH17].

A step further, in adversarial training (GANs) [Goo+14; ACB17; Gul+17], such a second network

is not pre-trained and then fixed, but rather trained jointly with the super-resolution network (the

generator). The second network, called the discriminator, is trained to distinguish ªtrueº examples from

the training set from ªfakeº examples from the generator. The generator network is then tasked with

ªtrickingº the discriminator network. Both networks are trained at the same time in a ping-pong fashion.

One of the first architecture to employ adversarial training in image super-resolution called SRGAN is

presented by Ledig et al. [Led+17]. Later works include, e.g., ESRGAN [Wan+18] and SRFeat [Par+18]

and have shown an even further increase in image quality. For a further discussion of super-resolution

networks for images, we refer to the surveys by Yang et al. [Yan+19b] and Wang et al. [WCH21].

Video Super-Resolution To extend image super-resolution to videos, the algorithms have to deal

with the additional time dimension. Since super-resolution networks are tasked with estimating high-

frequency details, a fundamentally ill-posed problem, video super-resolution methods are tasked with

ensuring temporal coherence and consistent predictions. Works in this regard can be differentiated

whether they use previous low-resolution frames as input [Kap+16; Tao+17; Liu+17; Jo+18] or

previous high-resolution estimates [SVB18]. The critical component of video super-resolution is motion

compensation and estimation. Most methods first employ a special motion-estimation network [Lia+15;

Xie+18; SVB18; Chu+20] that warps the previous input images based on the optical flow. To improve

the quality of the warping, Tao et al. [Tao+17] propose a sub-pixel warping layer. Jo et al. [Jo+18]

avoid explicit warping of the previous frame and instead use 3D convolutions directly in the spatial-

temporal domain. Li et al. [Li+19] later improved such spatial-temporal convolution blocks especially

regarding the video quality and computational cost. To deal with large motions over longer time series,

Isobe et al. [Iso+20] present a hierarchical approach by fusing sequences of different frame rates.

With regards to loss functions, Chu et al. [Chu+20] employ adversarial training with a discriminator

that receives temporal sequences. This combines the advantages of GAN training to produce high

spatial detail while retaining temporal coherence. For a further discussion and comparison of recent

developments, we refer to the survey by Liu et al.[Liu+22]. Such video super-resolution methods are

the basis for our proposed super-resolution method for isosurfaces [Wei+21].

13

2 RELATED WORK

A related task is video frame interpolation. Given two frames at time t1 and time t2, estimate

the frame at an intermediate time t1 < t < t2. Niklaus et al. [NML17a; NML17b; NL18] and

Wu et al. [WSK18] combine optical flow estimations and neural networks to reconstruct intermediate

timesteps. Meyer et al. [Mey+18] utilize phase-based motion estimation to better handle large motion.

Ideas from those works are then later reused for temporal interpolation of 3D volumetric data, see

Sec. 2.3. More recent works apply frame interpolation to speed-up Monte Carlo renderings and utilize

auxiliary features like normal maps obtained during rendering [Bri+21].

2.3 Deep Learning in Volume Visualization

With the success of deep learning in various application areas, most noticeably image super-resolution as

summarized in Sec. 2.2, neural networks have seen more and more applications in volume visualizations.

In this section we give a selection of neural network approaches focussed on volume visualization.

For an extended summary of recent advances in deep learning for scientific visualizations including

applications in a broader scope, e.g. fluid simulations or particle tracing, we refer to the review article

by Wang and Han [WH22].

Super-resolution in space and time For 2D images, You et al. [You+19] apply super-resolution (SR)

networks with GAN training on slices of CT scans. As there are dozens of SR architectures proposed

in the last years, Höhlein [Höh+20] compare multiple architectures for the task of 2D upsampling

of wind fields using a qualitative and quantitative study. Those ideas on using 2D SR-networks for

visualization are also utilized by the proposed work on image super-resolution for isosurfaces with

a focus on temporal stability and global illumination prediction (Paper A, [Wei+21]), or using an

adaptive selection and sampling of the pixels for reconstruction (Paper B, [Wei+20]).

The early work by Zhou et al. [Zho+17] utilizes three layers of 3D convolutions to upscale a 3D

volume directly with a Euclidean Loss against ground truth high-resolution volumes. In parallel,

Xie et al. [Xie+18] (tempoGAN) show how to perform temporally stable super-resolution for 3D

fluid flow via a spatial and a temporal discriminator during GAN-training. Those ideas are improved

upon with the SSR-TVD architecture [HW22] for spatial super-resolution of scalar fields and with

SSR-VFD [Guo+20] for vector fields. Similar to SSR-VFD, Sahoo and Berger [SB21] perform super-

resolution for vector fields, but include streamline integration in the loss function to compensate for

accumulated prediction errors over longer time sequences. Han and Wang [HW20] introduce TSR-TVD,

an architecture for temporal interpolation of 3D volumes using a recurrent generative network (RGN).

The RGN is trained to predict a fixed number of in-between timesteps. To combine both ideas, joint

spatial and temporal super-resolution methods were proposed by Han et al. [Han+22] (STNet) for

scalar fields and by An et al. [An+21] (STSRNet) for vector fields.

14

2.3 DEEP LEARNING IN VOLUME VISUALIZATION

Feature Prediction and Reconstruction Since networks inherently produce lossy approximations

of the data, Tkachev et al. [TFE19] embrace this fact and use the difference between the ground

truth volume and network predictions as a measure for regions of interest. Those regions are then

highlighted for further inspection by experts. Porter et al. [Por+19] employ an autoencoder architecture

± a network that takes the full-resolution volume, compacts it into a low-dimensional latent-space, and

reconstructs the volume from that latent-space ± to extract representative time steps from time-series

data. Latent-space representations of each time step are projected into a two-dimensional space using

t-SNE [MH08] and then selected based on different selection and distance criteria. Berger et al. [BLL19]

use GANs to model the whole rendering pipeline from camera and transfer function settings to the final

image via a neural network. Since the network implicitly encodes the relationship between the TF and

the image, it allows to analyze the sensitivity of how changes in the TF influence the resulting image.

Similarly, He et al. [He+19] train a network on the relationship between the parameters of simulation

in an ensemble and the visualization. This allows the exploration of new simulation parameters by

directly predicting the expected rendered image for that set of parameters. To analyze the relationship

between parameters of multi-variable dataset, Han et al. [Han+21] propose a variable-to-variable

translation scheme. First, the different variables in the multi-variable volume are clustered based on

their similarity in a learned feature space. Then, a neural network translates from one variable to

another variable in the same cluster.

Specialized for flow visualization, Han et al. [Han+19] show how to reconstruct a 3D flow field

from streamlines using deep learning, later improved by Gu et al. [Gu+21] for time-dependent flow

fields. First, a low-resolution vector field is initialized that matches the given streamlines. This field is

then upscaled using a 3D convolutional neural network to obtain the final high-resolution flow field.

For selecting representative flow lines, Han et al. [HTW20] discretize each flow lines into a binary

volume, compute a latent-space representation of that volume using an autoencoder network and use

the resulting latent vector as a selection and clustering feature.

Volumetric Compression Recently, neural networks have also been applied to volumetric compres-

sion tasks and can exceed traditional compression schemes [BRLP19; DC16; Zha+20] in terms of the

achieved compression rate for a given quality. Wurster et al. [Wur+21] apply 3D super-resolution

networks for compression. The original dataset is iteratively downsampled in an octree-like subdivision

as far as possible so that the reconstruction using the network still satisfies a given error bound.

Lu et al. [Lu+21] utilize scene representation networks, fully-connected networks that learn a direct

mapping from a position in space to the scalar value to encode. They achieve high compression rates

and allow for random access into the compressed representation. In unpublished work, we show how

to accelerate the training and rendering performance of this method with the introduction of a learned

latent grid and fast CUDA inference [WHW21].

15

2 RELATED WORK

2.4 Differentiable Rendering

To infer features about the data from images or reconstruct certain properties, the rendering process

itself needs to be differentiable. Differentiability allows to optimize the parameters using gradient-

based optimizers. In this section we summarize early works and recent developments in differentiable

rendering and parameter optimizations.

Differentiability of Opaque Scenes Before differentiable Monte Carlo path tracers were computa-

tionally feasible and allow for optimizations ªin-the-wildº, i.e. from real images, early works make use

of special measuring tools. For example, Seitz et al. [SMK05] show, that it is possible to decompose

the reflections in a scene in images representing the illumination after a single bounce, two bounces,

three bounces, and so on. This decomposition is made possible by sending a single laser beam into

the scene, moving it across the object, and recording the resulting illumination. This idea was later

improved by Nayar et al. [Nay+06] using a moving checkerboard pattern instead of a single laser beam.

These ideas of deriving information about the scene are then later heavily used in the reconstruction

of participating media, see below.

Early works for scenes comprised of opaque objects assume local illumination and smooth shading,

i.e. no support for shadows or other global effects. This includes the OpenDR-framework [LB14],

smoothing approximations using Gaussian filters [Rho+15], smooth interpolations during the backward

pass [KUH18], or using a smooth z-buffer [Pet+19]. Similarly, Liu et al. [Liu+19b] use a smooth

probability function modeling the probability of a pixel seeing a specific triangle. This method was

later efficiently implemented in PyTorch3D [Joh+20]. One of the earliest work to explicitly model the

discrete discontinuities at the visibility boundaries was presented by [Li+18] using edge sampling. To

avoid self-intersections of the optimized meshes, Nicolet et al. [NJJ21] introduce a preconditioner into

the gradient descent that favors smooth intermediate results. For an extended summary of the works

on differentiable rendering, we refer to the survey by Kato et al. [Kat+20].

A completely different approach to achieve a differentiable renderer is using so-called neural render-

ing. Here, the whole rendering pipeline, from the input objects to the final image, is approximated by

a neural network. As an example, Nguyen-Phuoc et al. [NP+18] propose ªRenderNetº, a combination

of convolutional and fully-connected networks that replaces the mesh rasterizer. By approximating the

rasterizer using differentiable networks, the rendering process becomes implicitly differentiable. The

works by Berger et al. [BLL19] and He et al. [He+19], described in Sec. 2.3, follow the same idea,

targeted for volume visualization, but specialize to a specific scene. For a comparison and summary

of various approaches in neural rendering, we refer to the review article by Tewari et al. [Tew+20].

Recently, the term ªneural renderingº is used in a broader sense to also incorporate methods for scene

representation for novel view synthesis [TZN19; SZW19; Mil+20] or scene relighting [Bi+20; Sri+21;

16

2.4 DIFFERENTIABLE RENDERING

Rai+22], that do not specifically target the differentiability of the input object for reconstruction tasks.

For a summary of neural rendering in this wider scope, we refer to Tewari et al. [Tew+22].

Differentiability of Participating Media For reconstructions of participating media, i.e. volumetric

objects like clouds with complex scattering patterns, several reconstruction methods were proposed

for controlled laboratory environments. The most prominent parameters of such participating media

are the phase function, specifying in which direction a photon is most likely to be scattered, and

the absorption and scattering coefficients, specifying the amount of absorption and scattering in

the media. Hawkins et al. [HED05] show how a time-varying smoke plume can be measured by

sweeping a laser beam across the volume and interpreting the resulting images as slices of densities.

This reconstruction method assumes that extinction and multiple-scattering effects can be neglected.

Similarly, Narasimhan et al. [Nar+06] dilute fluid samples of milk, wine, or other fluids until the medium

is thin enough to neglect multiple scatterings. The authors use a direct search method, i.e. without

gradients, to optimize the absorption and scattering coefficients, as well as the parameter of the Henyey-

Greenstein phase function [HG41]. To support multiple scattering events, Mukaigawa et al. [MYR10]

perform a decomposition into a light field for the direct illumination, one light field after the first bounce,

another after the second bounce, and so on. This decomposition is made possible by illuminating the

scene using a high-frequency checkerboard pattern [Nay+06]. To keep the computation tractable, they

assume a thin volume and approximate it as a 2D object. One of the first methods that fully supports

3D objects and arbitrary phase functions is presented by Gkiolekas et al. [Gki+13]. The optimization

includes the phase function, scattering and absorption coefficients, but is limited to homogeneous

media and relies again on a setup including calibrated lasers.

A special case of volume reconstruction is tomographic reconstruction in medical imaging. X-rays are

barely scattered in human bodies and therefore, reconstruction methods can assume a pure absorption

model. In this case, the problem becomes a linear problem and specialized algorithms can efficiently

reconstruct the volume. Those include algebraic reconstruction methods [GBH70; GB08], filtered

backprojection methods [BMB97; MO74; MKH18], or using the Fourier slice theorem [Dev85; Wal00].

The Fourier slice theorem allows for a faster reconstruction, but limits the reconstruction to orthographic

projections. For a detailed introduction, we refer to the book by Herman [Her09]. We want to also

highlight here the ASTRA-toolbox by van Arle et al. [van+15; Aar+16], an easy-to-use algebraic

reconstruction toolkit based on an algebraic method called the simultaneous iterative reconstruction

technique (SIRT) [GB08]. If other wavelengths are used, scattering events gain influence again, opening

up the field of Diffuse Optical Tomography. One example application is tissue reconstruction using

near-infrared light for breast cancer detection [HSM00]. We refer to the articles by Boas et al. [Boa+01]

and Gibson et al. [GHA05] for an introduction and a summary of this topic.

17

2 RELATED WORK

The ideas of tomographic reconstruction were then later translated to the field of computer vision

and simulations, e.g. by Ihrke and Magnor [IM04] on reconstructions of flames. This method was then

later accelerated and extended for the reconstruction of smoke plumes [Gre+12; Oka+15]. Recently,

Eckert et al. [EHT18; EUT19] show how to couple volume reconstructions with a fluid simulation

to reconstruct a time-dependent density and velocity field from a single or a few video streams of a

real-world smoke plume.

General-Purpose Differentiable Rendering Algorithms To the best of our knowledge, one of

the first works that support differentiable rendering with any kinds of media ± opaque or trans-

parent ±, various materials, textures, and cameras in a unified framework is Mitsuba 2 by Nimier-

David et al. [ND+19]. The authors utilize Adjoint Differentiation, see Sec. 3.2.2 to propagate gradients

through the various modules of the renderer. This allows to compute gradients for any number of

parameters, but involves a high memory cost, limiting the number of rays that can be traced simulta-

neously. In a follow-up work, Nimier-David et al. [ND+20] address this issue in the method called

radiative backpropagation. This method allows for optimization in constant memory, but increases

the computation time to being quadratically in the number of scattering events. We present in Pa-

per D [WW22] a different method to reduce the memory requirements, that also exhibits constant

memory requirements, but only a linear computation time in the number of events. The idea is to

invert parts of the rendering algorithm to reconstruct intermediate variables that, thus, do not need to

be stored anymore. This method, however, is specialized to direct volume rendering without multiple

scattering.

Based on Mitsuba 2, several works have further progressed the performance of the differentiable

renderer or included more advanced rendering effects. A similar method to reduce the computation

cost as in Weiss and Westermann [WW22] by analytically inverting parts of the rendering process is

presented by Vicini et al. [VSJ21] for path tracing. Nimier-David et al. [ND+21] extend Mitsuba 2

with a texture-space optimization scheme to untangle lighting information from material properties

for scene editing and relighting, and later with a differentiable ratio tracking to reduce noise and bias

in the derivatives of volumetric densities [ND+22].

Parameter Optimization in Volume Visualization For volume visualization, more specifically

direct volume rendering, several other methods were proposed that allow for the optimization of

specific parameters. One application is the selection of an optimal camera position and orientation

to best show the features of the object. The critical part is the definition of what constitutes a ªgoodº

viewpoint. One method to measure the quality of a viewpoint is using image entropy as shown

by Vázquez et al. [Váz+01]. This idea was later applied to volume visualization by Bordoloi and

Shen [BS05] and Ji and Shen [JS06]. In the latter work, the authors also show how to extent the idea

18

2.4 DIFFERENTIABLE RENDERING

to time-varying views where a smooth camera path should be generated. Vázquez et al. [VMN08]

generate a camera path visiting all interesting viewpoints for a static model. Further work by Müh-

ler et al. [Müh+07] include additional terms in the image quality metric to consider different important

objects in a segmented model. Similarly, Tao et al. [Tao+09] define two entropy measures for the

overall shape and detailed features to allow for greater control by the user. For a more theoretical

overview of entropy and information theory in visualization, we refer to Chen and Jänicke [CJ10].

Instead of using entropy measures, other works have considered importance measures of specific

features like isosurfaces [Tak+05] or feature clustering approaches [ZAM11]. Tao et al. [Tao+16]

use a voting system where images of volumes from published articles were collected and used as a

representation of what constitutes a ªgoodº viewpoint. Then, using a set of feature descriptors, these

reference images cast votes to their most similar images in a set of sampled viewpoints and the view

with the most votes is selected. Recently, convolutional neural networks have been used to train such

feature descriptors in a data-driven way [ST19; Yan+19a].

In the methods listed above, the best viewpoint was selected by sampling many views around the

object, e.g. via the Fibonacci sphere algorithm [Mar+13], and then select the best view based on the

defined image measure. As an acceleration, Zhang and Wang [ZW10] use the shuffled frog leaping

algorithm to converge to a local optimum more quickly. We show in Paper D, how a differentiable

renderer allows gradient-based optimization for a fast convergence against a locally optimal viewpoint.

A second application of parameter optimization for volume visualization is the estimation and

automatic selection of ªmeaningfulº transfer functions (TFs). Selecting a TF is a difficult task, as the

usefulness of the features that are shown or hidden by the TF highly depend on the expectations

of the user. For an overview on different options on how to define TFs, we refer to the report by

Ljung et al. [Lju+16]. Instead of fully automating the process, many works aid the user in defining

TFs. For example, Kniss et al. [KKH01; KKH05] provide interaction widgets to aid in TF design.

Haidacher et al. [Hai+10] extract statistics of local neighborhoods around each voxel and provide tools

to design TFs in this statistical function space. For a semi-automatic process, Correa and Ma [CM10]

describe visibility-driven TFs. Here, the user specifies a target visibility for certain features and

an optimization routine than adapts the TF so that this target visibility is reached. To aid in this

optimization, a histogram of the density values weighted by the visibility of each contributing voxel is

computed to identify occlusion patterns. This process is extended by Ruiz et al. [Rui+11] to generate

TFs in a fully automatic process. The authors present analytic approximations of the derivatives of

the visibility histograms that allows a gradient-based optimization of the transfer function. Recently,

Berger et al. [BLL19] have replaced the entire rendering pipeline by a neural network. This especially

enables differentiability of the image with respect to the transfer functions, which is exploited by the

authors to explore the TF space or analyze the sensitivity of the image when changing the TF.

19

2 RELATED WORK

2.5 Controlled-Precision Volume Rendering

The optical model behind direct volume rendering is the so-called emission-absorption model [DCH88;

Lev88; Max95], see also Sec. 3.1.2. In the general case, this model can only be solved via quadrature,

leading to approximation errors [WM92]. In early works, Novins and Arvo [NA92] have presented

quadrature methods with a fixed error bound for the special case of pre-classification, i.e. when an

emission-absorption field is given. For post-classification, Novins et al. [NAS92] propose a recursive

refinement procedure using interval arithmetic, where segments of the ray with the highest estimated

error are selected and refined. In this way, large uniform segments can be skipped, however, it

requires an estimation of the minimum and maximum intensity and transparency per segment. This

renders the approach unsuitable for the use of high-frequent TFs, as the intervals stored per cell

become a very crude approximation once optical properties are mapped via high-frequency TFs.

Similarly, Campagnolo et al. [CCF15] propose an iterative, adaptive Simpson quadrature scheme to

evaluate the volume rendering integral up to a certain accuracy. However, to avoid arbitrarily many

subdivisions when sharp peaks in the TF occur, an upper bound on the number of subdivisions needs

to be considered. Etiene et al. [Eti+13] conduct a study on the interaction between the step size in

the numerical integration and the quality of the resulting image. They propose a verification scheme

by refining the screen resolution, voxel resolution or integration step size, and comparing the results

from the refinement with the original images.

Under the assumption that the density function along the ray varies piecewise linearly, further

controlled-precision algorithms are possible. Piecewise linear density profiles are, e.g., given on

tetrahedral grids, but not on regular hexahedral (voxel) grids. On hexahedral grids, the density profile

along a ray is given as a piecewise cubic function instead. The early work by Williams and Max [WM92]

shows that in the case of a piecewise linear density profile with the additional assumption of a linear

TF, analytic solutions are available. Kniss et al. [Kni+03] extend this idea to TFs defined as a sum of

Gaussian functions and also extend it to multi-dimensional TFs. Pre-integrated TFs [RKE00; EKE01]

pre-compute a 2D matrix with the solutions of the emission-absorption model if starting at density d1

and ending at density d2 with a fixed step size. To compute this matrix, quadrature is needed again.

But since this computation is independent of the rendering process, a slow, but high-quality quadrature

scheme can be used. Pre-integration is exact under the assumption of piecewise linear densities as

well. On hexahedral grids, this method again introduces approximation errors. We show in Paper

C [WW21], see Sec. 3.1.3, how controlled-precision rendering under weaker assumptions ± trilinear

interpolation on hexahedral grids and a piecewise polynomial function ± can be achieved.

In a different direction, Lindholm et al. [Lin+13] split the view ray not in constant steps in world

space, but rather at control points of the (piecewise linear) TF. This is performed by rendering semi-

transparent isosurfaces at densities given by the TF control points using rasterization. To control the

20

2.5 CONTROLLED-PRECISION VOLUME RENDERING

accuracy of this method, additional isosurfaces are introduced between the control points of the TF,

i.e. the TF is subdivided. With this method, sharp spikes in the TF are captured, but for smooth TFs,

a large number of isosurfaces are needed for convergence. Furthermore, additional approximation

errors are introduced when rendering the isosurface via Marching Cubes [LC87; TPG99]. Marching

cubes discretizes the piecewise cubic isosurface into piecewise linear, i.e. flat, triangles.

21

3
Fundamentals and Methods

The publications contributing to this thesis build upon several prior concepts. In this chapter, we

introduce the theoretical background of the methods used, applications, and extensions thereof, as

well as the core ideas of the methods proposed in this thesis. We start with the techniques for volume

visualization in Sec. 3.1 concluded with the core idea on how to achieve volume rendering with a

controlled precision in Sec. 3.1.3. The concepts of automatic differentiation and the application to

differentiable volume rendering are introduced in Sec. 3.2. Neural networks, both fully-connected

networks and convolutional networks, are summarized in Sec. 3.3, leading to the proposed super-

resolution methods for accelerating volume rendering.

3.1 Volume Visualization

The task of volume visualization is to convert a three-dimensional volume into one or more two-

dimensional images that are easier for the human user to interpret. Typically, this first involves a data

filtering stage, where a user interactively specifies the features to display. This is then followed by a

projection stage where the filtered volume is rendered onto a 2D image.

Let V : Ω→ R be the scalar volume that should be visualized. This function maps from positions

in Ω ⊂ R3 to density values that are typically normalized in the range [0,1]. In our publications we

assume V to be given on a regular hexahedral grid with the data stored at the vertices Vi, j,k. Eight

vertices define the corners of a cell or voxel, and trilinear interpolation Vi jk(α,β ,γ) is used within,

defined in (3.1) and visualized in Fig. 3.2.

23

3 FUNDAMENTALS AND METHODS

(a) Isosurface Rendering: A single surface is rendered

and shaded using a Lambertian model.

(b) Direct volume rendering: Each density value is

mapped to a color and absorption and accumulated for

each pixel.

Figure 3.1: Rendering of the same dataset, the Ejecta simulation, using (a) isosurface rendering and (b) using

direct volume rendering.

Vi jk(α,β ,γ) =

(1−α)(1− β)(1− γ) Vi jk+

(1−α)(1− β)γ Vi, j,k+1+

(1−α)β(1− γ) Vi, j+1,k+
...

αβγ Vi+1, j+1,k+1

(3.1)

V (α,β ,γ)

α

β

γ

Figure 3.2: Trilinear interpolation within a voxel.

The values α,β ,γ ∈ [0,1] specify the fractional position within the current cell. Such voxel

representations were described as early as 1983 for the purpose of medical imaging [UH83; Rey+85].

Besides trilinear interpolation, higher-order filters are also commonly used. We refer to Marschner and

Lobb [ML94] for an evaluation of interpolation methods. The two main approaches to visualize such

density grids are isosurface rendering (Sec. 3.1.1, Fig. 3.1a) and direct volume rendering (Sec. 3.1.2,

Fig. 3.1b). The former displays a single feature or surface, the latter displays a volumetric impression.

3.1.1 Isosurface Rendering

Let ρ be a user-specified density value. This value defines the surface

Sρ := {x ∈ Ω : V (x) = ρ} (3.2)

that should be visualized in Isosurface Rendering. There exist two classes of algorithms to display this

surface Sρ, rasterization-based and raytracing-based algorithms.

24

3.1 VOLUME VISUALIZATION

a) b) c)

Figure 3.3: An isosurface stored on a grid, shown here as a 2D slice in blue, is rendered using three different

algorithms. a) Marching cubes, b) Raytracing with a constant step size, c) voxel traversal with analytic

intersection tests.

The first rasterization method is Marching Cubes [LC87], see Fig. 3.3a. Here, the surface is discretized

into triangles and then rendered using the traditional rasterization pipeline on the graphics card. The

triangle discretization follows the following procedure:

1. Classify each of the eight vertices of the current cell as either inside (Vi jk ≥ ρ) or outside

(Vi jk < ρ) and build an eight-bit index from that.

2. Using a table lookup, determine the list of edges, out of the 12 possible edges, that hold an

intersection.

3. For each such edge, compute the position of the surface-edge intersection.

4. Assemble the triangles into a triangle soup and render them using the standard rasterization

pipeline.

This whole process discretizes the ± in the case of trilinear interpolation ± cubic surface per cell into

piecewise linear surfaces. This leads to an over- and underestimation of the surface as can be seen

in Fig. 3.3a. The Marching Cubes algorithm suffers also from the so-called ambiguity problem. For

certain cell configurations, there are multiple ways how the vertices at the cell edges are connected

into triangles and an incorrect choice leads to gaps between neighboring cells. One way to resolve this

issue is to use the Asymptotic Decider [NH91] which requires extra conditionals, but leads to watertight

meshes. Alternative, Marching Tetrahedra [TPG99] resolves the issue by subdividing the cell into

several tetrahedras in which the surface can be discretized into triangles without ambiguities.

For raytracing-based methods, a ray

s(t) = x0 + tω (3.3)

with start position x0 and direction ω is shot from the camera through a pixel of the screen into the

scene [App68]. Then, the intersection of the ray with the isosurface Sρ is computed and returned. The

simplest method (Fig. 3.3b) is to walk along the ray with a fixed ∆t step by step, evaluate the density

25

3 FUNDAMENTALS AND METHODS

at step i, V (x0 + i∆tω), and terminate once the interpolated density exceeds the threshold ρ [Lev88;

Lev90a; Tie+90; Wei+21]. This method is simple to implement and fast to render due to the hardware

support for trilinear interpolation but can produce incorrect results. In Fig. 3.3b, the intersection at

the black ray is detected too late as the ray has already entered the object when the next sample is

evaluated. Furthermore, intersections can be missed if the ray skims a corner of the object (purple ray

in Fig. 3.3b). The former error can be lessened by using binary search to refine the intersection.

To guarantee, that no intersections are missed, the trilinear interpolation scheme within a cell has

to be utilized explicitly, see Fig. 3.3c. First, instead of performing fixed stepping, we walk through

the volume using a voxel traversal algorithm [AW87; JTC14]. This leads to an ordered sequence of

visited voxels with their entry and exit time t. Then, inserting the ray equation (3.3) into the trilinear

interpolation (3.1) per visited voxel gives rise to a cubic equation in t,

Vi jk(s(t)) = v0 + v1 t + v2 t2 + v3 t3 = ρ, (3.4)

that can be solved analytically [LC96; Par+98; Neu+02; Mar+04]. Due to the analytical computation

of the ray-isosurface intersection, no intersection can be missed.

3.1.2 Direct Volume Rendering

For direct volume rendering (DVR), we follow the low-albedo emission-absorption model as presented

by Max [Max95]. Let τ : [0, 1]→ R+
0

be the absorption due to a given density, and C : [0, 1]→ R+
0

the

assigned color, both specified via a transfer function. By convention, the self-emission is then given

by g(d) = C(d)τ(d) with the the density d ∈ [0,1] obtained by interpolating the volume V . This

coupling of the emission to the absorption has the intuition that in regions with more material, i.e.

more absorption, the emission scales accordingly. The transfer function is a user-defined mapping

that allows to interactively select and highlight different features of a dataset. An example of such a

mapping is shown in Fig. 3.4.

The transparency of the line segment from t = a to b is defined as

T (a, b) = exp

�

−

∫ b

a

τ(V (s(t)))dt

�

. (3.5)

The transparency is 1 if the medium between a and b does not absorb any light and approaches zero

for complete absorption. Then, the light intensity reaching the eye is

L(a, b) =

∫ b

a

g(V (s(t)))T (a, t)dt, (3.6)

26

3.1 VOLUME VISUALIZATION

Figure 3.4: A user-defined transfer function (bottom row) maps from the density on the x-axis to color and

absorption on the y-axis. This way, different features of the Thorax dataset can be highlighted.

a) b) c) d)

Figure 3.5: Demonstration of pre-classification vs. post-classification. a) A volume is given by the densities on

the vertices together with an interpolation function. b) This TF should now be applied. c) In pre-classification,

the TF is applied to the densities at the vertices and the resulting colors are interpolated. This leads to a smooth

color distribution with the frequency of the features limited by the grid resolution. d) In post-classification, the

TF mapping is applied after the density interpolation, leading to much finer details.

were g(d) = C(d)τ(d). Usually, the emission is not given as a single scalar intensity, but as an RGB

tuple. In this case, (3.6) is evaluated component-wise for the red, green, and blue channels.

Note that in the above equations, the volume is interpolated first and the densities are mapped

to absorption and color via the transfer function after the interpolation. This is called post-

classification [EKE01] and allows the introduction of features with a finer resolution than the grid

using the TF. The alternative is pre-classification, where the TF is applied before the interpolation

directly on the vertices of the grid. A demonstration of of the differences between pre-classification

and post-classification is shown in Fig. 3.5. Albeit post-classification is the ªcorrectº way to apply the

TF [EKE01], pre-classification has found applications, e.g., in quadrature schemes with a controlled

error bound, see Sec. 3.1.3.

The general volume integrals, (3.5) and (3.6), do not have a simple closed form for arbitrary functions

τ and g. Therefore, quadrature methods are employed, where the domain [a, b] is subdivided into

smaller parts and integrated separately [Max95]. For N subdivisions of [a, b], the boundaries are

denoted by a = t0 < t1 < ...< tN = b.

27

3 FUNDAMENTALS AND METHODS

Transparency First, the transparency integral for T (a, b), see (3.5), can be split into smaller parts

as following:

T (a, b) = exp

�

−

∫ b

a

τ(V (s(t)))dt

�

= exp

�

−

N−1∑

i=0

∫ t i+1

t i

τ(V (s(t)))dt

�

=

N−1∏

i=0

exp

�

−

∫ t i+1

t i

τ(V (s(t)))dt

�

︸ ︷︷ ︸

=T (t i ,t i+1)=:Ti

.

(3.7)

Hence, the final transparency is given by T =
∏N−1

i=0 Ti where 1 indicates fully transparent, 0 fully

opaque. Alternatively, one is usually more interested in the opacity α with 1 being fully opaque and 0

being fully transparent. The relationship between α and T follows

α := 1− T⇔ T = 1−α. (3.8)

Substituting (3.8) into (3.7) gives rise to

1−α=

N−1∏

i=0

(1−αi) with αi = 1− Ti

⇔ α= 1−

N−1∏

i=0

(1−αi).

(3.9)

Let α(k) := 1−
∏k−1

i=0 (1−αi) be the evaluation of (3.9) up to k terms. By induction we have:

k = 0 : α(0) = 0

k→ k+ 1 : α(k+1) = α(k) + (1−α(k))αk.
(3.10)

This leads to the well-known front-to-back algorithm:

Algorithm 1 Front-to-back algorithm for absorption

1: α= 0

2: for i = 0, ..., N − 1 do

3: evaluate αi = 1− Ti

4: α= α+ (1−α)αi

5: optional early-out if α gets close to 1

6: end for

28

3.1 VOLUME VISUALIZATION

The important aspect in this algorithm is to compute αi. In the simplest form, the following

approximation schemes, summarized by Max [Max95], are used:

αi = 1− exp

�

−

∫ t i+1

t i

τ(V (s(t)))dt

�

≈ 1− exp(−τ(V (s(t i)))(t i+1 − t i
︸ ︷︷ ︸

=:∆t i

)) by approximating the left factor

≈ 1−max(0, 1−∆t i τ(V (s(t i)))) by Taylor expansion

=min(1, ∆t i τ(V (s(t i)))) .

(3.11)

In special cases, e.g. hexahedral grids with tri-linear interpolation, analytical solutions for the trans-

parency are possible, as exploited in our work, see Paper C.

Emission Next, we analyze the emission term L, based on the emission coefficients g(d) = C(d)τ(d),

again subdivided over intervals t0, ..., tN .

L(a, b) =

∫ b

a

g(V (s(t)))T (a, t)dt

=

N−1∑

i=0

∫ t i+1

t i

g(V (s(t)))T (a, t)dt

=

N−1∑

i=0

T (a, t i)

∫ t i+1

t i

g(V (s(t)))T (t i , t)dt

︸ ︷︷ ︸

=:Li

.

(3.12)

Hence the final emission is given by L =
∑N−1

i=0 T (a, t i)Li where T (a, t i) =
∏i−1

j=0 T j , see (3.7). Using

(3.9), we arrive at

L =

N−1∑

i=0

(1−α(i))Li (3.13)

which gives rise to the following extension of Algorithm 1, now incorporating emission, shown in

Algorithm 2.

Note that the emission here is presented as a scalar quantity, but the computations can be easily

extended to vector quantities, e.g. RGB-colors or spectra. Again, the crucial part of this algorithm is

29

3 FUNDAMENTALS AND METHODS

Algorithm 2 Front-to-back algorithm for absorption and emission

1: α= 0, L = 0

2: for i = 0, ..., N − 1 do

3: evaluate αi = 1− Ti and Li

4: L = L + (1−α)Li

5: α= α+ (1−α)αi

6: optional early-out if α gets close to 1

7: end for

the computation of Li , we will again present the simple approximation, commonly used in rendering

here [Max95]:

Li =

∫ t i+1

t i

g(V (s(t)))T (t i , t)dt

≈ (g(V (s(t i))) T (t i , t i)
︸ ︷︷ ︸

=0

)(t i+1 − t i
︸ ︷︷ ︸

=:∆t i

) by approximating the left factor

= g(V (s(t i)))∆t i

(3.14)

3.1.3 Controlled-Precision Volume Rendering

As stated above, for the general absorption-emission integral (3.12), no analytical solutions are known.

This is mostly due to the trilinear interpolation, which gives rise to a piecewise cubic function of the

density along the ray. Albeit analytical solutions exist for special cases.

If instead of a hexahedral grid made out of cubical voxels, a tetrahedral grid is used, the volume inter-

polation within a tetrahedral cell leads to a linear function of the density [EKE01; RKE00]. For this case,

methods that assume a piecewise linear function of the density, are exact. This includes pre-integrated

transfer functions by Engel et al. [EKE01] and Gaussian transfer functions by Kniss et al. [Kni+03].

For trilinear interpolation, quadrature schemes are needed. Besides the simple approximation

in (3.14), Novins and Arvo [NA92] and de Boer et al. [Boe+97] introduce higher-order quadrature

schemes that allow to control the maximal allowed error. These works, however, assume a pre-classified

volume. That is, the transfer function is applied before the interpolation, giving rise to an absorption-

emission volume that is then interpolated. Recall in Sec. 3.1.2, volume rendering was introduced

using post-classification. The transfer function τ(d), Le(d) is applied after the trilinear interpolation

V (x). This allows for more high-frequent transfer functions, as the frequency of the color variations

due to the TF are not limited to the spatial resolution of the grid.

We propose (Paper C, [WW21]) how to extend the ideas by Novins and Arvo [NA92] to the post-

classification case for trilinearly interpolated grids, i.e., the density along the ray per voxel cell V (s(t))

is a cubic function. We assume, that the transfer function τ(d), C(d) is given as a piecewise polynomial

30

3.1 VOLUME VISUALIZATION

1 23 4 5 6 7 8910

1

2
3

4
5

6

t

d(t)(a)

0 1

2

3
4

5

6 7
d

τ(d)(b)

123 4 5 6 7 8910

t

τ(d(t))(c)

Figure 3.6: (a) Tracing a ray s(t) through a tri-linearly interpolated voxel V (x) gives rise to cubic polynomial of

the density V (s(t)). (b) We assume, that the transfer function τ(d), Le(d) is given as a piecewise polynomial

function in the density. Here we use a piecewise linear function. (c) Then, applying the transfer function to

the density field in a post-classification setting gives rise to a piecewise cubic function of the absorption and

emission τ(V (s(t))), Le(V (s(t))).

function of degree k. Then the central observation is, that the application of the transfer function to

the trilinear interpolation τ(V (s(t))), C(V (s(t))) is a piecewise polynomial function of degree k+ 2.

This case is visualized in Fig. 3.6: applying a piecewise linear TF (Fig. 3.6b) to the cubic function of

the density (Fig. 3.6a) gives rise to a piecewise cubic function (Fig. 3.6c).

To construct the resulting piecewise polynomial function, we can look at the problem in the following

way: The control points di of the TF defining the polynomial segments, numbered 0 to 7 in Fig. 3.6b,

represent isovalues in the volume. This leads to the following algorithm for controlled-precision

volume rendering, slightly simplified:

1. Walk through the volume voxel-by-voxel using a voxel traversal algorithm [AW87; Hoe16]. This

gives an ordered sequence of visited voxels per ray and the respective entry and exit times

tin, tout.

2. Per voxel, construct the cubic polynomial of the density values, see (3.4), using the algorithm by

Parker et al. [Par+98]

V (s(t)) = v0 + v1 t + v2 t2 + v3 t3. (3.15)

3. Solve for all intersections with the isosurfaces of the TF control points di , up to three isosurface

intersections per control point can exist. There exist closed-form solutions for the roots of a

cubic equation. Examples include Cardano’s formula [Sch13; LC96] and Viète’s formula [Nic06].

We found, however, that the iterative algorithm by Marmitt et al. [Mar+04] produces faster and

more accurate intersections. The result is a sequence of segments along the ray, see Fig. 3.6a

with N = 10,

tin < t1 < ...< tN < tout. (3.16)

31

3 FUNDAMENTALS AND METHODS

4. Per segment, the TF is polynomial, or in the example of Fig. 3.6b linear, i.e. τ(d) = τ0 +τ1d.

Then we can express the absorption and color of a ray segment t i , t i+1 as a cubic polynomial,

Fig. 3.6c,

τ(V (s(t))) = Åτ0 + Åτ1 t + Åτ2 t2 + Åτ3 t3

C(V (s(t))) = ÅC0 + ÅC1 t + ÅC2 t2 + ÅC3 t3
. (3.17)

5. Now we follow the method Novins and Arvo [NA92], applied per such segment above instead of

per voxel. The integral of the transparency T (t i , t i+1) can be solved analytically

T (t i , t i+1) = exp

�

−

∫ t i+1

t i

τ(V (s(t)))dt

�

= exp

�

−

∫ t i+1

t i

Åτ0 + Åτ1 t + Åτ2 t2 + Åτ3 t3dt

�

= exp

−
�

T0 + T1 t + T2 t2 + T3 t3 + T4 t4
�t i+1

t i
︸ ︷︷ ︸

=:Tti
(t i+1)

. (3.18)

For the emission on the given segment, g(t) = C(V (s(t)))τ(V (s(t))) is a polynomial of degree

six, obtained by polynomial multiplication of the expressions in (3.17). Then the integral of the

emission takes on the following form,

L(t i , t i+1) =

∫ t i+1

t i

C(V (s(t)))τ(V (s(t)))T (t i , t i+1)dt

=

∫ t i+1

t i

g(t)exp(Tt i
(t))dt

. (3.19)

Integrals of the form polynomial-exponential-polynomial have no analytical solutions. Hence,

we apply the quadrature schemes (Trapezoid rule and Simpson’s rule) presented by Novins and

Arvo [NA92] to evaluate the integral up to a user-defined error.

The proposed method allows to perform direct volume rendering to a higher precision. This is

especially noticeable for datasets with a sharp transfer function. An example can be seen in Fig. 3.7

for the ªTubeº dataset [WW21], a volume given by the function

v(x , y, z) = 10(0.1−
Æ

y2 + z2(0.9− 0.5cos(7x))3). (3.20)

In Fig. 3.7a, the dataset was rendered with ray marching using a constant step size as introduced in

Sec. 3.1.2. Quadrature errors due to a too coarse step size are noticeable in the form of ªringsº. The

32

3.2 AUTOMATIC DIFFERENTIATION

a) b)

Figure 3.7: Renderings of the ªTubeº dataset with a TF exhibiting narrow peaks. (a) Ray marching with a

constant step size as presented in Sec. 3.1.2 gives rise to quadrature errors in the form of ringing artifacts. (b)

The controlled-precision rendering method presented in Sec. 3.1.3 can resolve the image without noticeable

quadrature errors.

controlled-precision rendering method as presented above can successfully resolve the high-frequent

peaks of the TF and can render the image without noticeable errors (Fig. 3.7b). In Paper C [WW21],

we further show how to extend this approach to scale-invariant direct volume rendering as proposed

by Kraus [Kra05].

3.2 Automatic Differentiation

For training neural networks (Sec. 3.3, Paper A and Paper B) or solving inverse problems, algorithms

have to be made differentiable. An example of an inverse problem is the reconstruction of the volume

density V from images through the rendering process (Sec. 3.1.2), part of Paper D. While it is possible

to manually determine the expression of the derivative, often it is faster and less error-prone to

automatically evaluate the derivatives. This is the task of Automatic Differentiation (AD). For an

extended mathematical introduction of AD, we refer to the book by Griewank and Walther [GW08].

Here we follow the more practical-oriented description by Bartholomew-Biggs et al. [BB+00].

Assume that a program is represented as a Wengert list [Wen64], which can be seen as the sequential

trace of primitive operations. A Wengert list with P inputs, O outputs and N operations has the form

given in Algorithm 3. All states, inputs, outputs and intermediate results, are stored in the state

variables x i. The N primitive operations can take all P inputs and all previously computed states as

argument and produce a new scalar state. The last O states are returned as output. For simplicity,

the functions operate on scalar values, but the description below can be easily extended to vector

33

3 FUNDAMENTALS AND METHODS

Algorithm 3 Wengert list representation of an arbitrary program with P inputs, O outputs and N

operations.

Input x1, x2, ..., xP

for i from 1 to N do

x i+P := fi(x1, ..., xP+i−1)

end for

Output yi = xP+N−O+i , i = 1, ...,O

a b c

f1

d
f2

y

a) Regular Evaluation

∂ y

∂ a

ã = 1 b̃ = 0 c̃ = 0

f̃1

d̃ =
∂ f1(a,b)

∂ a ã

f̃2

ỹ =
∂ f2(d,c)
∂ d d̃

b) Forward Differentiation

OR

â =
∂ f1(a,b)

∂ a

T
d̂ b̂ ĉ

f̂1

d̂ =
∂ f2(d,c)
∂ d

T
ŷ

f̂2

ŷ = 1

c) Adjoint Differentiation

Figure 3.8: Visualization of the evaluation of the function y = f2(f1(a, b), c) for demonstrating automatic

differentiation. a) The regular evaluation, (b) forward differentiation, and (c) adjoint differentiation for
∂ y

∂ a .

quantities. Now the goal of automatic differentiation is to evaluate the derivatives ∂ y j/∂ x i using the

chain rule. An example of a simple program consisting of two operations and three inputs is shown in

Fig. 3.8.

3.2.1 Forward Differentiation

In Forward Differentiation [Nei10; BB+00], the derivatives are propagated alongside the regular

program evaluation (Fig. 3.8b). Without loss of generality, assume that derivatives with respect to

only a single input xk shall be computed. Let the forward variables be defined as

x̃ i =
∂ x i

∂ xk

, initialized at the inputs as:

x̃ i =
∂ x i

∂ xk

:=

1, i = k

0,otherwise
, i ∈ {1, ..., P}.

(3.21)

34

3.2 AUTOMATIC DIFFERENTIATION

In other words, the forward variables carry the derivative of the current state with respect to the input

to derive for. Then, the derivatives are propagated through the Wengert list by replacing each fi by

the respective forward function f̃i:

x̃ i = f̃i(x̃1, ..., x̃ i−1) :=
∂ fi

∂ x1

x̃1 + ...+
∂ fi

∂ x i−1

x̃ i−1. (3.22)

The forward variables for the output then contain the final derivatives. Using Forward Differentiation,

the derivatives are propagated jointly with the regular program evaluation. This can be realized, e.g.,

using operator overloading as demonstrated in Paper D [WW22] and shown below. The advantage

of Forward Differentiation is its relative simplicity of implementation. The disadvantage, however,

is, that the computations scale linearly with the number of inputs to differentiate, as the procedure

above has to be repeated for every input. Therefore, this approach is best used in situations with large

number of operations N , many outputs O, but only a few inputs P.

We now summarize, how Forward Differentiation can be implemented using operator overloading

in simplified C++. We demonstrate this for the example of front-to-back blending with a grayscale

color instead of a full RGB-color for simplicity. Here, the accumulated opacity acc_opacity and

color acc_color up to the current sample are blended with the current contribution curr_opacity,

curr_color and give rise to the new opacity and color new_opacity, new_color.

blend(float acc_opacity, float acc_color, float curr_opacity, float curr_color) {

float new_color = acc_color + (1-acc_opacity)*curr_color;

float new_opacity = acc_opacity + (1-acc_opacity)*curr_opacity;

return new_opacity, new_color;

}

To propagate gradients through the function, we first define the custom datatype that will hold the

derivatives.

template<typename T, int p>

struct fvar

{

T value;

T derivatives[p];

};

Here, the template parameter T holds the underlying datatype, e.g. float. The number of derivatives

that are propagated at the same time is specified via p. For constant values, the derivatives are

initialized with zeros. For a parameter that shall be differentiated, the entry of derivatives at the

corresponding index is set to one, see also (3.21).

35

3 FUNDAMENTALS AND METHODS

To realize the forward functions (3.22) we provide operator overloadings for all common arithmetic

operations. For example, addition and multiplication are implemented as following:

template<typename T, int p>

fvar<T, p> operator+(fvar<T, p> a, fvar<T, p> b)

{

fvar<T, P> c; //to store c = a+b and derivatives

c.value = a.value + b.value;

for (int i=0; i<p; ++i) { //partial derivatives

c.derivative[i] = a.derivative[i] + b.derivative[i];

}

return c;

}

template<typename T, int p>

fvar<T, p> operator*(fvar<T, p> a, fvar<T, p> b)

{

fvar<T, P> c; //to store c = a*b and derivatives

c.value = a.value * b.value;

for (int i=0; i<p; ++i) { //partial derivatives

c.derivative[i] = a.value*b.derivative[i]

+ b.value*a.derivative[i];

}

return c;

}

To support operations like (1-acc_opacity), where one of the arguments is a single scalar and not

an instance of fvar, we additionally provide operator overloadings with the first or second argument

being a regular scalar value:

template<typename T, int p>

fvar<T, p> operator+(T a, fvar<T, p> b) {...}

template<typename T, int p>

fvar<T, p> operator+(fvar<T, p> a, T b) {...}

Finally, we modify each function in the rendering code to accept any datatype as input

template<typename T1, typename T2, typename T3, typename T4>

auto blend(T1 acc_opacity, T2 acc_color, T3 curr_opacity, T4 curr_color) {

auto new_color = acc_color + (1-acc_opacity)*curr_color;

auto new_opacity = acc_opacity + (1-acc_opacity)*curr_opacity;

36

3.2 AUTOMATIC DIFFERENTIATION

return new_opacity, new_color;

}

This allows to use the same function for a regular program evaluation without gradients (T1,T2,T3,T4

are of type float), or with gradient propagation (one of the T’s is of type fvar). The compiler can

automatically deduce the correct datatypes of the intermediate variables and return value with the

special type auto and uses the correct operator overloading.

3.2.2 Adjoint Differentiation

Using Adjoint Differentiation, the chain rule is evaluated in reverse order, see Fig. 3.8c for an exam-

ple. Due to concurrent developments, this method is known under many different names: Adjoint

Differentiation, the Adjoint Method or Reverse Accumulation in control theory [Dre62; McN+04], or

Backpropagation in the context of neural networks [RHW85; RHW86].

Let us assume that the program in Algorithm 3 only produces a single scalar output y := xP+N+O

(O = 1). This is the usual case for optimization if a multi-dimensional function should be maximized

or minimized with respect to a specific cost function or distance metric. Let the adjoint variables be

defined as

x̂ i =
∂ y

∂ x i

, initialized as:

x̂ i =

1, i = P + N +O (the output)

0, otherwise
.

(3.23)

In other words, the adjoint variables carry the derivative of the output with respect to the current

state variable. Therefore, the target derivatives ∂ y/∂ x i are stored in the adjoint variables of the

inputs. This leads to a reverse evaluation, where sequence of functions in Algorithm 3 is executed

from i = N to i = 1. Each function fi is replaced by the respective adjoint function that accumulates

the derivatives for the inputs to that function,

x̂ j +=

�
∂ fi

∂ x j

�T

x̂ i , j = 1, ..., i − 1. (3.24)

The derivatives stored in the adjoint variable of the output of fi are thus propagated to the adjoint

variables of the inputs. Transposing the partial derivative is important if dealing with vector-valued

arguments instead of scalar values. The Adjoint method leads to two implications: First, for non-linear

functions fi , the partial derivative is not constant. Therefore, the input states for each function fi have

to be stored for the adjoint evaluation in (3.24). This leads to memory requirements that scale with the

number of operations, a typical concern when training deep neural networks. Second, derivatives with

respect to the inputs are only computed if they are actually needed in the current function fi , i.e. the

37

3 FUNDAMENTALS AND METHODS

Algorithm 4 Front-to-back algorithm for ab-

sorption, revisited

1: α(0) = 0

2: for i = 0, 1, ..., N − 1 do

3: evaluate αi

4: store αi ,α
(i)

5: α(i+1) = α(i) + (1−α(i))αi

6: end for

7: store α(N),αGT

8: e = (α(N) −αGT)
2

Algorithm 5 Adjoint code for the front-to-back

algorithm to compute the α̂i ’s

1: ê = 1 initialize adjoint variable

2: fetch α(N), αGT from storage

3: α̂N = 2(α(N) −αGT)ê

4: for i = N − 1, ..., 1, 0 do

5: fetch αi ,α
(i) from storage

6: α̂i = (1−α
(i))α̂(i+1)

7: α̂(i) = (1−αi)α̂
(i+1)

8: end for

respective partial derivative is non-zero. This is beneficial as in typical scenarios, the input parameters

are only needed at a few operations in the algorithm. For example, network weights of neural networks

are only required in the evaluation of their respective layer. For volume reconstructions, the volume

density of a specific point (the input to optimize) is only needed when a ray hits that location.

Due to its scalability to many input parameters, the Adjoint method is the most common choice for

automatic differentiation if more than a few parameters should be optimized at once. It is implemented

in popular deep learning frameworks like PyTorch [Pas+19], TensorFlow [Aba+16], or in differentiable

renderers like Mitsuba 2 [ND+19]. Operator overloading to propagate the gradients as used in Forward

Differentiation, see Sec. 3.2.1 is not easily possible with the Adjoint method due to the inversion of

the computation order. The deep learning frameworks and Mitsuba 2 instead build a computation

graph, see Fig. 3.8. If a function is computed, a descriptor of that function together with the inputs

is stored as a node in the graph. After the main program has been evaluated and gradients should

now be computed, this graph is queried and the operations are repeated in reverse order. During this

reverse evaluation, the adjoint function for each node in the graph is executed.

As a concrete example, we demonstrate how the Adjoint method would be applied to front-to-back

blending for the absorption, see Algorithm 1 in Sec. 3.1.2. Assume that we have some target absorption

αGT that should be achieved. Differences in the current absorption α to the target are penalized by the

squared error. To optimize the sampled absorptions αi along the ray, see (3.11), we want to compute

derivatives α̂i of those samples. Concrete optimization strategies are later introduced in the section on

neural networks (Sec. 3.3). The revisited algorithm for front-to-back blending is shown in Algorithm 4.

The resulting Adjoint code if the derivatives are computed manually is shown in Algorithm 5. Note

that we introduced here the superscript α(i) to keep track of the modified state of the accumulated

absorption. In Algorithm 1, the accumulated absorption was simply denoted α and overwritten in

every loop iteration.

38

3.2 AUTOMATIC DIFFERENTIATION

In the computation graph, when line 5 in Algorithm 4 is executed, the inputs α(i),αi are stored, as

well as a description of how the Adjoint code looks like. During the reverse evaluation, these inputs

have to be loaded from storage (line 5) in Algorithm 5 and then the gradients are propagated (line 6-7

in Algorithm 5). This means, without further optimizations, for every operation, all inputs have to be

stored. This severely limits, how large the computation graph can become, i.e. how many steps along

the ray can be used.

To overcome the memory limitation mentioned above, checkpointing strategies [BB+00; GW00;

Che+16] were developed where parts of the computation sequence are repeated. For the special case

of differentiating the direct volume rendering integral (see Sec. 3.1.2), we show in Paper D [WW22],

summarized below, how an analytic inversion of specific operations allow reducing the memory

requirements to a constant, i.e. independent of the number of steps along the ray. A similar method

was concurrently developed by Vicini et al. [VSJ21] for path tracing with multiple scattering events.

For the case of direct volume rendering, the critical operation is the front-to-back blending step.

Now we use the full version including color, instead of the reduced version including only absorption

as shown in Algorithm 4 and Algorithm 5. In front-to-back blending, the current accumulated opacity

and color α(i), C (i) are combined with the opacity and color α, C of the current sample to obtained the

newly blended opacity and color α(i+1), C (i+1).

C (i+1) = C (i) + (1−α(i))C

α(i+1) = α(i) + (1−α(i))α.
(3.25)

The adjoint code is given as

α̂= (1−α(i))α̂(i+1), Ĉ = (C −α(i))Ĉ (i+1),

α̂(i) = (1−α)α̂(i+1) − C · Ĉ (i+1),

Ĉ (i) = Ĉ (i+1).

(3.26)

If no optimizations would be applied, all inputs α(i), C (i),α, C would need to be stored. We show,

that this storage can be avoided. During the evaluation of the Adjoint code, the current sample α, C

is recomputed. This is an efficient operation as it only involves sampling the volume density and

applying the transfer function. Then, the blending step (3.25) can be inverted,

α(i) =
α−α(i+1)

α− 1

C (i) = C (i+1) − (1−α(i))C .

(3.27)

39

3 FUNDAMENTALS AND METHODS

This allows for the reconstruction of the current accumulated opacity and color at every sample. Only

the last color and opacity (α(N) in Algorithm 4) still needs to be stored. All other accumulated colors

can be recovered by repeatedly applying (3.27).

In total, this inversion method allows to compute derivatives of the volume rendering algorithm

with arbitrarily many samples along the ray. The memory requirement is constant in the number

of samples. In Paper D [WW22], both the Forward Differentiation and Adjoint Differentation are

implemented to provide gradients for the camera parameters, step size of ray marching, the transfer

function parameters and the volume densities. Based on how many parameters are needed, the more

efficient algorithm is selected. For example, for optimizing only the orientation of the camera, Forward

Differentiation is faster. For recovering the volume densities from images, where thousands of voxels

need to be optimized, Adjoint Differentation is used.

We further compare in Paper D the reconstruction quality of different optimization algorithms

for tomographic reconstruction. Here, an absorption-only volume is reconstructed from images.

This allows us to compare against specialized methods from medical imaging, implemented in the

ASTRA toolbox [van+15; Aar+16]. As a second baseline, the differentiable Monte Carlo path tracer

Mitsuba 2 [ND+19] by Nimier-David et al., is used. We show, that all three methods lead to similar

results, except for a smoke plume dataset with a high absorption, where Mitsuba 2 fails to converge. Our

proposed method outperforms both baseline methods in terms of the PSNR. Regarding performance,

the specialized method for absorption-only reconstructed implemented in ASTRA achieves a volume

reconstruction withing a minute. Our proposed method requires around 12 minutes and Mitsuba 2

runs multiple hours until convergence. The measurements were taken on a system running Windows

10 and CUDA 11.1 with an Intel Xeon 8x@3.60Ghz CPU, 64GB RAM, and an NVIDIA RTX 2070 GPU.

3.3 Neural Networks

After establishing how arbitrary functions with many inputs can be differentiated and thus optimized in

Sec. 3.2, we now summarize the techniques of deep neural networks. These networks were employed

in Paper A and Paper B to accelerate the rendering process. For a detailed introduction to neural

networks, we refer to the book by Goodfellow et al. [GBC16] and introduce here only the most

important concepts.

In the simplest form, neural networks are functions fΘ : Rn → Rm that approximate an arbitrary

target function fgt : Ω ⊂ Rn→ Rm with n input dimensions and m output dimensions by optimizing

the parameters Θ ∈ Rk. Ω denotes the space of valid inputs for the specific problem and can be any

40

3.3 NEURAL NETWORKS

subset of Rn. To goal of training neural networks is finding the k parameters that lead to the best

match between fΘ and fgt. For this purpose, let

{x i , yi}, i = 1, ..., N with x i ∈ Ω, yi = fgt(x i) (3.28)

be N pairs of function inputs and expected, known outputs. This set is called the training set in

supervised training. Then we can write the training process as the minimization problem

Θ = argmin
Θ

¨

1

N

N∑

i=1

L(fΘ(x i), yi)

«

. (3.29)

The function L : Rm × Rm → R is called the loss function and measures the distance between the

network prediction and the target value. After training, the hope is that the network learned a compact

representation of the ± possibly complex ± target function fgt in the latent space of k parameters

and that the network produces sensible outputs for new x ∈ Ω not from the training set. The latter

describes the generalization ability of neural networks to perform inference on novel data.

The simplest choices for the loss function include the mean squared error (MSE) LMSE(x , y) =

||x − y ||22 or the mean absolute error (MAE, also called L1-loss) LMAE(x , y) = ||x − y ||1. Apart from

those two loss functions, many further loss functions have been developed for specialized applications.

This includes a smoothed version of the L1-loss [Gir15] as a variation of the L1-loss to increase training

stability, or the cross entropy often used in classification tasks [RFB15]. If the output space represents

images, see Sec. 3.3.2, special loss functions tailored for images can be used, e.g. the structure similarity

index measure (SSIM) [Wan+04] or the learned perceptual image patch similarity (LPIPS) [Zha+18].

To train the networks, gradient-based approaches are typically employed. Using backpropagation

(the Adjoint method), see Sec. 3.2.2, the gradients Θ̂ := ∂L/∂Θ are computed. Then, gradient descent

Θi+1 = Θi −αΘ̂i (3.30)

with a step size or learning rate of α is employed to incrementally approach a local optimum. Note the

abuse of notation: α denotes now the learning rate following the notation by Kingma and Ba [KB15],

not the opacity as used in Sec. 3.1.2. In practical applications, derivatives for the whole training set

cannot be computed at once due to memory limitations. Therefore, batches of the training data are

processed one after another, leading to stochastic gradient descent (SGD). To improve the stability of

the optimization process, more advanced optimization routines were developed, including SGD with

momentum [Sut+13], Adam [KB15], Adagrad [DHS11], Adadelta [Zei12], or approximations of the

second derivative (L-BFGS [NW99; Byr+16]).

41

3 FUNDAMENTALS AND METHODS

x1

x2

x3

x4

x5

x6

∑

∑

∑

∑

+ b1

+ b2

+ b3

+ b4

a(·)

a(·)

a(·)

a(·)

y1

y2

y3

y4

Figure 3.9: Visualization of a mulitlayer perceptron with nin = 6 input and nout = 4 output features as a network

of neurons.

3.3.1 Fully-connected Neural Networks

Fully-connected neural networks, sometimes called feedforward networks or multilayer perceptrons

(MLPs) [GBC16], are one of the oldest and simplest form of neural networks. Here, the network is

assembled out of a sequential sequence of layers fi of the following form:

fi(x) := ai

�

W T
i x + bi

�

, (3.31)

where Wi ∈ R
nin×nout is the weight matrix, bi ∈ R

nout is the bias vector and ai : Rnout → Rnout is the

activation function that is typically applied element-wise. Then the final network is a concatenation of

K individual layers, fΘ := fK ◦ ... ◦ f2 ◦ f1 and the weight matrices and bias vectors are collected in the

parameters Θ = {W1, b1, ..., WK , bK}. Note that for the layers to fit together, nout of layer i must match

nin of layer i + 1. Otherwise, the layer sizes nin, nout, as well as the number of layers K , are discrete

hyperparameters that have to be tweaked manually to achieve the desired performance in terms of

evaluation speed and approximation quality. For an introduction to how hyperparameter tuning can

be automated, we refer to Feurer and Hutter [FH19].

An MLP can be interpreted as a set of ªneuronsº, where each neuron of the current layer computes

a weighted sum of the activation of all neurons from the previous layer. This is then followed by

adding a bias value and applying the non-linear activation function per neuron. A visualization of this

interpretation can be found in Fig. 3.9.

42

3.3 NEURAL NETWORKS

A central design decision when developing MLPs is the choice of the activation function a(·). The

three basic activation functions used most early are the Sigmoid (σ), hyperbolic tangent (tanh) and

rectifier linear unit (ReLU) [Jar+09; NH10], defined as

aσ(x) = sig(x) :=
1

1+ exp(−x)
, atanh(x) := tanh(x) , aReLU(x) :=max{0, x}. (3.32)

Goodfellow et al. [GBC16] recommend using a ReLU activation function as the default choice. Over

the years, many variations of the ReLU-activation functions have been proposed [CUH16; How+17;

Xu+15; He+15; Kla+17]. A concrete example is LeakyReLU proposed by Maas et al. [MHN+13]. It is

defined as aleaky(x) :=max{0, x}+ s min{0, x} and replaces the hard zero in the negative regions by a

flatter slope with angle s = 0.01. The authors show that this variation of ReLU helps in training the

networks as zero gradients in regions of negative values are avoided.

In recent years, Scene Representation Networks (SRNs) emerged as an application of fully-connected

networks. These are networks that map from a position in R3 with an optional direction to density

or color. SRNs provide an implicit, compact representation of a 3D object and replace the volume

V stored on a grid from Sec. 3.1. They are trained either from the 3D objects themselves [Mes+19;

Mar+21; Tak+21; DNJ20; LJM21; Cha+20; Lu+21] or from 2D images for the task of volume

reconstruction or novel-view synthesis [SZW19; Mil+20; Tan+20; Bar+21; Gar+21; Pum+21]. Later

works improved the performance by replacing parts of the method by grids [Hed+21; Yu+21],

estimating the depth of the hit [Nef+21], pre-integrating ray segments [LMW21], or caching of

already-evaluated samples [Gar+21]. Further applications of SRNs include neural encodings of

bidirectional reflectance distribution functions (BRDFs) [Szt+21], bidirectional texture functions

(BTFs) [Rai+20] or volumetric texture patches (NeRF-Tex) [Baa+21].

Lu et al. [Lu+21] show, that SRNs can successfully compress 3D volumes, see Fig. 3.10b. The

SRNs are trained on samples of (position, density) and encode the density volume in the weights

of the network. The compression rate and quality is controlled by the size of the network. In

unpublished work [WHW21], we show that the training time can be improved by up to 9× and

the rendering performance by over 100× with the following two changes. First, the majority of the

trainable parameters are moved to a coarse latent grid. This grid is trained jointly with the network.

Interpolated latent vectors are then passed on to a much smaller network, we use only 4 layers with 32

channels, and converted to density output. With this, much fewer operations are needed to evaluate

a position in space and thus speedups the training and inference. The quality of the compression

is further no longer controlled by the size of the network, but instead by the size of this latent grid.

Second, a further speedup in the inference is achieved by using a custom CUDA kernel for the network

evaluation. In traditional deep learning frameworks like PyTorch [Pas+19] or TensorFlow [Aba+16],

every network layer first reads the inputs from global memory, processes the values, and writes the

43

3 FUNDAMENTALS AND METHODS

(a) Volume rendering with density val-

ues sampled from a grid and then trans-

formed by the transfer function.
(b) Volume rendering with density val-

ues fetched directly from a network that

encodes all information in the network

weights.

(c) Volume rendering with a learned

coarse latent grid. The interpolated la-

tent vectors are sent to a smaller net-

work and converted to density samples.

Figure 3.10: Volume rendering with scene representation networks (SRN). In traditional volume rendering

(a), the volume densities are fetched from a fine grid. (b) Lu et al. [Lu+21] show that high compression rates

with good quality can be achieved by encoding the whole volume in the network weights of an SRN. (c) We

show that the training and rendering performance can be significantly improved by transferring the majority of

the parameters to a learnable, coarse latent grid and interpreting those values with a smaller network. Images

inspired by Fig. 2 of Weiss et al. [WHW21].

results back to memory. Especially for small networks, this introduces a large memory overhead. We

show, how this memory overhead can be avoided by keeping the intermediate states between network

layers in fast local memory. Concurrent work by Müller et al. [MÈ+21; MÈ+22] propose a similar custom

inference for the tasks of novel view synthesis and radiance caching, among others. The authors report

similar performance improvements.

3.3.2 Convolutional Neural Networks

The predecessor of convolutional neural networks was introduced by Kunihiko Fukushima [Fuk80] in

1980, called the ªNeocognitronº. The main motivation is to design a neural network that mimics the

visual cortex: the ability to recognize patterns unaffected by a shift in position. The neurons, called

ªcellsº by Fukushima, are aligned on a 2D grid the inputs of those neurons all follow the same spatial

pattern. Between different cells, only the positions are shifted, see Fig. 3.11. Further early works

include Le Cun et al. [LeC+89; LC+89], that extend upon the work above for the task of handwritten

digit recognition, and Weng et al. [WAH93] that introduce max pooling.

44

3.3 NEURAL NETWORKS

Figure 3.11: Early convolutional neural networks: Neural network where the input neurons follow the same

spatial pattern. Image inspired by Fukushima [Fuk80].

Let I be a two-dimensional input image of size H ×W and S the two-dimensional output image. Let

K be the two-dimensional filter kernel with M × N entries. Then the output S is computed using the

cross-correlation defined as [GBC16]

S(i, j) = (K ∗ I)(i, j) =
∑

m

∑

n

I(i +m, j + n)K(m, n). (3.33)

Typical deep learning frameworks like PyTorch [Pas+19] or TensorFlow [Aba+16] implement the

aforementioned cross-correlation operation instead of the convolution operation for its more natural

interpretation. The cross-correlation is identical to a convolution if the kernel K is flipped. Common

kernel sizes are 3×3, 5×5 or 7×7, [LC+89; WAH93], but larger kernels have been used. For example,

Krizhevsky et al. [KSH12] use a kernel of size 11× 11 in the first layer of their network architecture.

In typical applications, the input does not contain a single channel, but rather L channels, i.e.

I ∈ RH×W×L, a three-dimensional tensor. Similarly, the output image S contains O channels, i.e.

O ∈ RH×W×O. Then, the filter kernel combines all input channels and output channels, K ∈ RM×N×L×O,

a four-dimensional tensor. The updated cross-correlation is defined as

S(i, j, o) = (K ∗ I)(i, j, o) =
∑

m

∑

n

∑

l

I(i +m, j + n, l)K(m, n, l, o). (3.34)

One application area of convolutional neural networks are image classification tasks [Jar+09; KSH12;

RFB15; Lee+09]. Large standarized datasets like the ImageNet database [Rus+15] allow to train

large network architectures and also allow for reproducible results and comparisons between different

architectures. To reduce images with a size of, e.g., 224× 224= 50, 176 pixels down to 1000 classes

in the ImageNet database, the resolution of the images have to be reduced. One way to reduce the

45

3 FUNDAMENTALS AND METHODS

I LR
C

o
n

v,
6
4

R
e
L
U

C
o
n

v,
6
4

R
e
L
U

C
o
n

v,
6
4

+ · · ·

10 residual blocks

2
x

U
p
sa

m
p
li

n
g

C
o
n

v,
6
4

R
e
L
U

2
x

U
p
sa

m
p
li

n
g

C
o
n

v,
6
4

R
e
L
U

C
o
n

v,
6
4

R
e
L
U

C
o
n

v,
3 +

4
x

B
ic

u
b
ic

U
p
sa

m
p
li

n
g

I est

Figure 3.12: 4× super-resolution of three-channel RGB-images using the EnhanceNet architecture by Saj-

jadi et al. [SSH17]. First, a convolutional layer pre-processes the color inputs and produces an image with 64

channels. Then, ten so-called residual blocks with two convolutional layers each that learn changes to their

inputs are used. To upscale the image, two 2× nearest-neighbor upsampling layers are used, followed by another

convolutional layers. The whole network learns the residual between a bicubic interpolation of the input and

the ground truth. All convolutional layers use 3× 3 kernels. Image inspired by Fig. 4 of Weiss et al. [Wei+21].

image resolution is using pooling operations. More specifically, max pooling [WAH93] takes blocks of

size h, w and replaces them with the maximal value of that block,

S(i, j) = max
i′=0,...,h−1

max
j′=0,...,w−1

I(hi + i′, wj + j′). (3.35)

This effectively reduces the size of a input image from resolution hH, wW to the output resolution

H, W . Another method to reduce the resolution is the use of strided convolutions [GBC16],

S(i, j, o) = c(K , I , s)i jo =
∑

m

∑

n

∑

l

I(is+m, js+ n, l)K(m, n, l, o), (3.36)

where the stride s defines how many pixels are skipped in the input image between the pixels of the

output image. As an example, Krizhevsky et al. [KSH12] use both max pooling and strided convolutions

in their architecture. For an extended description of the arithmetic behind the various convolution

operations, how to handle the border, and visual explanations, we refer to the article by Dumoulin

and Visin [DV16].

Another application area is image super-resolution. Here, the task is to recover a high-resolution

image from a low-resolution image. One concrete example is the EnhanceNet architecture by Saj-

jadi et al. [SSH17], sketched in Fig. 3.12. The EnhanceNet is designed to perform a 4× super-resolution

by learning the difference between a bicubic upsampling of the input image and a target ground-truth

image. For a discussion of other architectures, we refer to Sec. 2.2.

46

3.3 NEURAL NETWORKS

3.3.3 Isosurface Super-Resolution

We employ the EnhanceNet architecture for image super-resolution in Paper A [Wei+21] to upsample

isosurface renderings at low screen resolutions. By rendering only a low-resolution version of the object

and recovering the high-resolution image using a network, the rendering process can be accelerated.

We show, that it is beneficial for the reconstruction quality to upsample the normal map with supervised

losses on the normal map, instead of performing super-resolution on the shaded RGB color image.

Only during inference, a screen-space shading is applied to compute the color image from the normal

map. This way, the network is decoupled from lighting and shading, i.e. different settings for the

strength of specular reflections, and can focus better on reconstructing the geometry. To help the

network perform the inference, the depth map and a binary mask stating whether the ray under the

current pixel hit the object are passed to the network as further input features.

Additionally, we show, that the super-resolution network can learn to produce an ambient occlusion

(AO) map as an additional output jointly to the other features. This AO map is trained in a supervised

fashion given a ground truth AO map, as done with the normal map as well. Ambient occlusion

describes the shadowing in cavities as an approximation of global illumination. This helps the user to

interpret the 3D structure. The whole pipeline including AO estimation is visualized in Fig. 3.13. In

a related work, Engel and Ropinski [ER21] use 3D convolutions to predict a volumetric AO volume

from the density volume and transfer function that is then directly used in the raytracing process.

They especially demonstrate and compare various strategies how the TF can be incorporated into the

network.

Since the network is tasked to ªhallucinateº new features in the high-resolution images, temporal

coherence becomes a problem. Without a form of temporal coherence, the predictions are unstable and

lead to distracting flickering artifacts during interactive explorations, e.g., when the camera is changed.

To compensate that, we apply the frame-recurrent video super-resolution architecture (FRVSR) by

Sajjadi et al. [SVB18]. Here, the prediction of the previous frame is warped by the optical flow and

added as an extra input to the network. A temporal loss during training then ensures, that the network

generates features that are consistent with the previous frame. The optical flow describes the motion of

the observed objects from one image to another. It can be computed as a side-product of the isosurface

renderer. Let p = (i, j) be the current pixel coordinates and x ∈ R3 be the point in 3D where the

isosurface intersection at that pixel was detected. Let C (t) be the camera transformation for the current

frame, i.e, p = C (t)(x). During rendering of the current frame, the previous camera matrix C (t−1) is

known. Then the optical flow is given by

∆p = C (t)(x)− C (t−1)(x). (3.37)

47

3 FUNDAMENTALS AND METHODS

a)

b)

c)

d)

e)

N S

Figure 3.13: Visualization of the isosurface super-resolution pipeline [Wei+21] for inference during rendering.

(a) A low-resolution normal map is rendered. The super-resolution network N then predicts the (b) high-

resolution normal map and (c) high-resolution ambient occlusion (AO) estimation. A screen space shading

step S then computes the final color, either (d) without AO or (e) with AO, here exaggerated for demonstration

purpose. Additional depth maps and masks as network input and output are omitted for clarity of visualization.

Cloud dataset courtesy of Kallweit et al. [Kal+17].

The optical flow is then used to align the previous frame with the current frame. This method allows

to effectively reduce the temporal flickering during camera motion. A limitation, however, is, that

only camera movements are detected and handled by the optical flow. Changes to the object itself,

i.e. changing the isovalue, are not detected. To support changes to the object as well, the optical

flow would have to be estimated from the images directly, i.e. via optimization [DN11] or neural

networks [Dos+15; Ilg+17] in future work.

3.3.4 Adaptive Sampling

In the above super-resolution approach [Wei+21], the image was upsampled with a factor of 4×. This

can be interpreted as a regular sampling where only every 4th pixel in every dimension is rendered. This

implicitly assumes, however, that every pixel is equally important. We propose in Paper B [Wei+20]

an adaptive sampling that achieves better quality with the same number of rendered pixels by placing

those samples in more important regions. This sampling is performed data-driven, i.e. learned to be

optimal for a given set of training data and a trainable reconstruction.

The stages of the proposed pipeline are shown in Fig. 3.14 through the inputs and outputs of

each stage. First, a low-resolution image L with, e.g., an 8th of the resolution is rendered. This

low-resolution input informs a first neural network called the importance network of where features

48

3.3 NEURAL NETWORKS

L I S O′ O T

network sampling pull-push network loss

Figure 3.14: Illustration of the adaptive sampling pipeline [Wei+20]. Starting with a low-resolution image L,

an importance network estimates the importance map I . A differentiable sampler then renders rays at sparse

locations S. A first interpolation using the pull-push algorithm [Kra09] O′ prepares the image for refinement

performed by a reconstruction network that predicts the final output O. A supervised loss compares this

prediction to the target image T .

might be located. We use a variation of the EnhanceNet (see Fig. 3.12) with only five residual blocks

and an extra upsampling layer at the end to reach the 8× upsampling for this task. The output of this

stage is an importance map I containing the non-negative importance value per pixel. It is visualized

in Fig. 3.14 via a colormap for better visibility. A differentiable sampling stage, detailed below, then

renders the desired number of samples using raytracing, resulting in the sparsely filled image S. To

reconstruct the final image, a reconstruction network, an EnhanceNet without the final upsampling

layers, is used. We found, that using a baseline inpainting step that already provides a good estimate

of the interpolated image from the samples improves the reconstruction O′. A differentiable version of

the pull-push algorithm [Kra09] is used for this purpose. The reconstruction network then only has to

learn how to improve and sharpen the image, resulting in the output O. The whole pipeline is trained

end-to-end using a supervised loss on the final reconstructed image against a target image T . The

importance network is never explicitly told where to place the samples, it is trained using gradients

propagated through the reconstruction network and the sampling stage.

One of the core contributions of this work is the definition of a differentiable sampling stage. In

related work that performs adaptive sampling for Monte Carlo rendering, the task is the specify

between one to many samples per pixel [KKR18; Has+20]. For direct volume rendering, however,

each pixel is already noise-free as global illumination effects are ignored. Therefore, the task is to

sample between zero to one sample per pixel, i.e. a sparse sampling of the entire image.

Let I ∈ RH×W be the importance map estimated by the importance network with mean µI . First,

the importance map is normalized to a certain user-defined mean µ and a small minimal value l. By

controlling the target mean, the user can define how many pixels to sample. If, for example, 5% of

rays should be sampled, µ is set to 0.05. The minimal value serves as a lower bound to sample at least

49

3 FUNDAMENTALS AND METHODS

a)
I ′

×T

b)
I ′

×T

Figure 3.15: Visualization of the smooth approximation to make sampling differentiable. a) During inference,

the selection of the pixel can be interpreted as a step function multiplied on the target image T . b) For training,

this step function is approximated with a sigmoid function of various steepness.

a few pixels in otherwise empty regions. This helps later with the reconstruction. The new importance

map is then defined as

I ′ :=min

§

1, l + I
µ− l

µI + ε

ª

, (3.38)

with a small ε > 0 to avoid division by zero in case of an empty image. Next, let P ∈ [0,1]H×W be a

sampling pattern that provides a pseudo-random number per pixel. We found that a low-discrepancy

sampler like Plastic sampling [Rob20] performs better than uniform sampling. During inference, a

pixel i, j is sampled and rendered if I ′i j > Pi j , resulting in the sparsely sampled image S. This rejection

sampling, however, is not differentiable. Therefore, it cannot be used to propagate gradients to the

importance network. For training, two changes are applied.

First, the rejection sampling is replaced by a step function multiplied by the target high-resolution

image T ,

Si j := ✶I ′
i j
−Pi j

Ti j , (3.39)

illustrated in Fig. 3.15a. The target image T is required for the supervised loss on the output and

therefore already available. This way, the renderer does not need to be included in the training

routine, increasing the training performance. Second, to make (3.39) differentiable for training, it is

approximated by a smooth sigmoid function, see (3.32),

Si j := sig
�

α(I ′i j − Pi j)
�

Ti j (3.40)

The hyperparameter α, visualized in Fig. 3.15b, influences the steepness of the sigmoid approximation.

We found a value of α = 50 to be optimal [Wei+20]. A smaller value leads to decreased inference

performance, as the discrepancy between the sigmoid approximation and the hard rejection sampling

during testing increases. For larger values of α, the training becomes unstable due to vanishing

gradients. With this pipeline, a neural network can learn to place samples in the locations required for

a good reconstruction.

50

3.3 NEURAL NETWORKS

The proposed adaptive sampling pipeline is trained on only a few datasets, a few timesteps of

the Ejecta supernova simulation, see Fig. 3.1 for an example rendering. Regardless, the networks

generalize well to novel, unseen datasets. Unlike in the work on isosurface super-resolution (see

Sec. 3.3.3), we demonstrate, that the adaptive sampling pipeline can also be applied for direct volume

renderings [Wei+20]. In this case, the reconstruction network directly predicts the color output,

instead of the normal map combined with a screen-space shading as in the case of isosurfaces. To

handle the different color schemes introduced when the user designs a custom transfer function,

random transfer functions are generated and used during training.

51

4
Paper A: Volumetric Isosurface Rendering with Deep

Learning-Based Super-Resolution1

Abstract Rendering an accurate image of an isosurface in a volumetric field typically requires large

numbers of data samples. Reducing this number lies at the core of research in volume rendering.

With the advent of deep learning networks, a number of architectures have been proposed recently to

infer missing samples in multidimensional fields, for applications such as image super-resolution. In

this article, we investigate the use of such architectures for learning the upscaling of a low resolution

sampling of an isosurface to a higher resolution, with reconstruction of spatial detail and shading. We

introduce a fully convolutional neural network, to learn a latent representation generating smooth,

edge-aware depth and normal fields as well as ambient occlusions from a low resolution depth and

normal field. By adding a frame-to-frame motion loss into the learning stage, upscaling can consider

temporal variations and achieves improved frame-to-frame coherence. We assess the quality of inferred

results and compare it to bi-linear and cubic upscaling. We do this for isosurfaces which were never

seen during training, and investigate the improvements when the network can train on the same or

similar isosurfaces. We discuss remote visualization and foveated rendering as potential applications.

Contribution The method development and implementation was done by the first author. Parts

of the neural network architecture were developed and provided by Mengyu Chu. Discussions with

Rüdiger Westermann, Nils Thuerey, and Mengyu Chu led to the final paper.

1©2019 IEEE. Reprint. Used in this thesis with permission from Mengyu Chu, Nils Thuerey, and Rüdiger Westermann.

IEEE Transactions on Visualization and Computer Graphics, Volume 27, Issue 6, June 2021, pp. 3064 ± 3078

53

5
Paper B: Learning Adaptive Sampling and Reconstruction for

Volume Visualization1

Abstract A central challenge in data visualization is to understand which data samples are required

to generate an image of a data set in which the relevant information is encoded. In this work, we make

a first step towards answering the question of whether an artificial neural network can predict where

to sample the data with higher or lower density, by learning of correspondences between the data, the

sampling patterns and the generated images. We introduce a novel neural rendering pipeline, which is

trained end-to-end to generate a sparse adaptive sampling structure from a given low-resolution input

image, and reconstructs a high-resolution image from the sparse set of samples. For the first time, to

the best of our knowledge, we demonstrate that the selection of structures that are relevant for the

final visual representation can be jointly learned together with the reconstruction of this representation

from these structures. Therefore, we introduce differentiable sampling and reconstruction stages,

which can leverage back-propagation based on supervised losses solely on the final image. We shed

light on the adaptive sampling patterns generated by the network pipeline and analyze its use for

volume visualization including isosurface and direct volume rendering.

Contribution The method development and implementation was done by the first author. Automatic

generation of transfer functions for training was developed by Mustafa IËsık. Discussions with Rüdiger

Westermann and Justus Thies led to the final paper.

1©2020 IEEE. Reprint. Used in this thesis with permission from Mustafa IËsık, Justus Thies, and Rüdiger Westermann.

IEEE Transactions on Visualization and Computer Graphics, early access

55

6
Paper C: Analytic Ray Splitting for Controlled Precision DVR1

Abstract For direct volume rendering of post-classified data, we propose an algorithm that analyti-

cally splits a ray through a cubical cell at the control points of a piecewise-polynomial transfer function.

This splitting generates segments over which the variation of the optical properties is described by

piecewise cubic functions. This allows using numerical quadrature rules with controlled precision to

obtain an approximation with prescribed error bounds. The proposed splitting scheme can be used to

find all piecewise linear or monotonic segments along a ray, and it can thus be used to improve the

accuracy of direct volume rendering, scale-invariant volume rendering, and multi-isosurface rendering.

Contribution The method development and implementation was done by the first author. Discussions

with Rüdiger Westermann led to the final paper.

1©2021 EG. Reprint. Used in this thesis with permission from Rüdiger Westermann. EuroVis 2021 - Short Papers, The

Eurographics Association

57

7
Paper D: Differentiable Direct Volume Rendering1

Abstract We present a differentiable volume rendering solution that provides differentiability of all

continuous parameters of the volume rendering process. This differentiable renderer is used to steer

the parameters towards a setting with an optimal solution of a problem-specific objective function.

We have tailored the approach to volume rendering by enforcing a constant memory footprint via

analytic inversion of the blending functions. This makes it independent of the number of sampling

steps through the volume and facilitates the consideration of small-scale changes. The approach forms

the basis for automatic optimizations regarding external parameters of the rendering process and

the volumetric density field itself. We demonstrate its use for automatic viewpoint selection using

differentiable entropy as objective, and for optimizing a transfer function from rendered images of

a given volume. Optimization of per-voxel densities is addressed in two different ways: First, we

mimic inverse tomography and optimize a 3D density field from images using an absorption model.

This simplification enables comparisons with algebraic reconstruction techniques and state-of-the-art

differentiable path tracers. Second, we introduce a novel approach for tomographic reconstruction

from images using an emission-absorption model with post-shading via an arbitrary transfer function.

Contribution The method development and implementation was done by the first author. Discussions

with Rüdiger Westermann led to the final paper.

1©2021 IEEE. Reprint. Used in this thesis with permission from Rüdiger Westermann. IEEE Transactions on Visualization

and Computer Graphics, Volume 28, Issue 1, January 2022, pp. 562 ± 572

59

8
Final Discussion

In this thesis, we have proposed methods to integrate neural networks into the visualization pipeline,

to use controlled-precision numerical schemes for direct volume rendering, and to make volume

rendering itself differentiable. This allows accelerating the rendering during interactive exploration

tasks, reducing rendering artifacts, and inferring features of the underlying data ± camera parameters,

transfer functions, and volume densities ± from images.

8.1 Future Work

In Paper A [Wei+21] and Paper B [Wei+20], we have shown, how neural networks can perform fixed

or adaptive super-resolution to improve the rendering performance. These networks, however, worked

sorely on images. The rays that are rendered all use the same step size and, unless auxiliary acceleration

structures as presented in Sec. 2.1 are used, traverse a lot of empty or uniform areas. Therefore, in

future research, extending the adaptivity in image-space to an adaptivity along the sampled ray could

be investigated. Mildenhall et al. [Mil+20] trained a scene representation network (SRN) evaluated

with a coarse step size that predicts a piecewise constant PDF of the absorption along the ray. This PDF

is then used to sample the locations for the evaluation of the final ªfineº network that predicts the colors.

This first ªcoarseº network, however, was trained together with the ªfineº SRN to represent a specific

scene and, thus, does not generalize to novel scenes. Furthermore, the volume data is typically given in

a visualization application and sampling such a volume is comparably cheap. Designing a network that

is fast enough to compare to classical volume sampling when evaluated at every sample location, is

challenging. Instead, one could approach this challenge in the following way: In the proposed adaptive

sampling pipeline [Wei+20], the first importance network does not only predict where to sample,

but also ± with the help of additional auxiliary features from the low-resolution rendering ± what

the expected distribution of samples along the ray looks like. During the high-resolution rendering,

61

8 FINAL DISCUSSION

the step size is then dynamically adjusted based on the predicted analytical distribution, coarser in

uniform areas and finer in highly detailed areas. How to model such a distribution and how to train

the network is still an open question.

In a similar context, but a different research question is the acceleration of the controlled-precision

quadrature scheme presented in Paper C [WW21]. This method involves voxel traversal, isosurface

intersections, polynomial multiplication, and numerical quadrature, and is computationally intensive.

Improving the performance of this method, therefore, is desired. One possibility would be to investigate

a hybrid method. For smooth, uniform regions, constant stepping already provides good solutions. For

highly detailed areas with sharp peaks in the TF, a small step size would be needed to still achieve

good quality with constant stepping. In these regions, a hybrid algorithm could switch to the proposed

controlled-precision quadrature scheme. As a further step, a combination with a network that predicts

the step size or a sample distribution, see above, could be used to split the rays into segments processed

by constant stepping and by controlled-precision quadrature in advance.

Back to network-based super-resolution methods, those methods are tasked with hallucinating new

features. This is inherently unstable over time. In a first work [Wei+21] we have shown how to reduce

inconsistencies over short time spans by passing the previous prediction as input to the network. This

effectively reduces high-frequent flickering, but low-frequency inconsistencies over time remain. In

the future, reducing also these errors over longer time sequences is desirable. This could be solved,

e.g., by incorporating a history of multiple frames from time sequences at different frame rates into

the prediction [Iso+20].

For differentiable volume rendering (Paper D [WW22]), we have shown several synthetic examples on

optimization tasks (camera) and reconstruction tasks (TF and volume). As a first concrete application,

the proposed differentiable renderer was applied to train scene representation networks (SRNs)

from images [WHW21]. One open question remains, how to automatically generate and sample

transfer functions that carry semantically meaningful information. We have yet to see a metric, ideally

differentiable, that measures if an image generated by a specific transfer function is ªmeaningfulº.

The difficulty lies in the definition of a ªmeaningfulº visualization, as this highly depends on the use

case and target audience. Hence, most works on TF generation use a semi-automatic process to aid

an expert in designing TFs [CM10; Rui+11]. As a possible approach to this problem, databases of

visualizations generated by experts were used to measure the quality of a viewpoint and to sample

good camera positions [Tao+16; ST19; Yan+19a] using feature matching and voting systems. In

future work, we want to investigate whether such matching and voting systems, or other approaches

like style-transfer [GEB16; JAFF16] as image losses, can be used to optimize semantically plausible

TFs through the proposed differentiable rendering system.

62

8.2 CONCLUSION

8.2 Conclusion

We started this thesis with the task of accelerating volume visualizations. In a first work [Wei+21] we

proposed to use a neural network developed for image and video super-resolution [SSH17; SVB18] to

upsample images of isosurfaces rendered to a low-resolution screen. This allows reducing the number

of rays that have to be rendered and improves the rendering performance on large datasets when

ray traversal becomes expensive. While the original network is applied to RGB-images, we found

that the performance of the network is improved, if depth and normal maps are used instead. The

final color is calculated in a screen-space shading step, which also has the benefit of decoupling light

information from the network. To incorporate temporal consistency, we applied the technique by

Sajjadi et al. [SVB18]. Here, the prediction of the previous frame is warped by the optical flow and

passed additional input to the network. A temporal loss during training then forces the network to

predict features that are consistent with the previous predictions. As a further improvement, the super-

resolution network learns to predict the influence of ambient occlusion per pixel which is then applied

to the image in the shading step. Ambient occlusion greatly improves the depth perception of the image.

To compensate for possible reconstruction errors introduced by the network, we presented foveated

rendering [Gue+12] as one possible application. During foveated rendering, the high-resolution image

is rendered in the focus region where errors introduced by the network would be noticeable the most.

In the periphery, a low-resolution image is rendered to save computation time and then upsampled by

the network to hide the transition between low- and high-resolution areas.

The above method assumed that all pixels are equally important to motivate a fixed super-resolution

method of, e.g., 4×. To improve the quality while keeping the number of sampled pixels constant, we

next proposed an adaptive sampling pipeline [Wei+20]. Given a very low-resolution rendering as

context, a first neural network estimates an importance map where important features are located.

This importance map is then used to sample a user-defined number of pixels and compute the pixel

values using raytracing. An inpainting step and a second neural network then reconstruct the final

output. This whole pipeline is trained end-to-end with supervised losses only on the output image.

In other words, the first importance network is never explicitly told where to place the samples, it

is trained sorely on gradients from the reconstruction step. To the best of our knowledge, this is

the first method that showed how to train an importance estimator purely based on what a second,

learned reconstruction step requires for a sparse reconstruction. This indicates, that a neural network

is capable of distinguishing important from unimportant regions. We have shown the application of

the presented method for isosurface renderings and direct volume renderings. Trained only on a few

datasets, the networks generalize well to unseen datasets and ± in the case of DVR ± to novel transfer

functions. For large screen sizes and volume sizes, the presented pipeline outperforms a baseline

rendering where all pixels are rendered.

63

8 FINAL DISCUSSION

The network-based super-resolution and reconstruction approaches can only provide an approx-

imation and are prone to errors. The rendering itself, however, is also prone to numerical errors,

especially when using direct volume rendering. The direct volume rendering integral cannot be solved

analytically for the general case. Previous analytical or controlled-precision numerical schemes only

exist for special cases [NA92; Boe+97; EKE01; Kni+03]. In the general case, raymarching with a

constant step size is used, comparable to a quadrature via the rectangular rule. If the step size is

chosen too large, artifacts in form of ªringingº (compare Fig. 3.7a) occur. Choosing the step size

arbitrarily small is no alternative, because the computational cost scales linearly with the number of

samples along the ray, i.e., inversely with the step size. We showed, that for a larger class of DVR

scenarios, namely tri-linearly interpolated hexahedral grids with a piecewise cubic transfer function,

controlled-precision solutions are available that guarantee that no features of the data highlighted by

the TF are missed [WW21]. For this purpose, we observed that the control points of the piecewise

TF define isosurfaces of the volume. With the numerical scheme by Marmitt et al. [Mar+04], those

isosurfaces can be extracted exactly and the ray segmented along voxel boundaries and isosurfaces of

the TF control points. For each such segment, the density interpolation, as well as the absorption and

color defined by the TF are polynomial functions. This allowed us to evaluate the absorption integral

analytically and the emission integral numerically with a controlled error bound based on the methods

presented by Novins and Arvo [NA92]. We showed that the presented method can accurately render

volume visualizations with high-frequent TFs and outperforms raymarching with a small constant step

size in terms of speed and quality in those cases.

Finally, we presented, how to make the rendering process itself differentiable [WW22]. We discussed

two techniques of automatic differentiation, Forward and Adjoint Differentiation, their strengths and

weaknesses, and how they can be applied in the context of volume rendering. In Forward Differentiation,

derivatives are propagated jointly to the regular program execution. This is implemented via operator

overloading. This differentiation method scales linearly with the number of parameters to optimize

for and is thus most effective if only a few parameters like the camera position are optimized. In

Adjoint Differentiation, the derivatives are propagated in reverse order. This allows to compute

derivatives for many parameters at once and is optimal for many-parameter optimizations like TF or

volume density reconstruction. Adjoint Differentiation, however, requires storing the intermediate

results for the gradient computations. To remedy this memory cost, we observed, that by analytically

inverting specific operations in the direct volume rendering algorithm, namely the blending step,

these intermediate results can be reconstructed and do not need to be stored. This way, gradients

can be computed using Adjoint Differentiation with arbitrarily many operations, i.e., arbitrarily many

steps along the ray. A similar idea of analytic inversion for differentiation was developed concurrently

by Vicini et al. [VSJ21] for Monte-Carlo path tracing with multiple scattering events. We presented

examples for optimizing the camera location based on entropy measures, reconstructing the transfer

64

8.2 CONCLUSION

function from images and a known volume, and tomographic reconstruction of an absorption-only

volume from images. We showed, that for camera optimization, Forward Differentiation performs best,

and if more parameters are optimized like in TF optimization, Adjoint Differentiation outperforms

Forward Differentiation. For the case of tomographic reconstruction of a volume rendered only with

absorption, we conducted comparisons against specialized algebraic methods that support only this

specific optimization [van+15; Aar+16] and against Mitsuba 2 [ND+19] for a general differentiable

path tracer. We show, that our method achieves the best peak signal-to-noise ratio (PSNR) on the three

tested datasets and is faster than Mitsuba 2 by one to two orders of magnitude.

65

Bibliography

[Aar+16] W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt, A. Dabravolski, J. D.

Beenhouwer, K. J. Batenburg, and J. Sijbers. ªFast and flexible X-ray tomography using

the ASTRA toolboxº. In: Opt. Express 24.22 (2016), pp. 25129±25147. DOI: 10.1364/

OE.24.025129.

[Aba+16] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, et al. ªTensorflow: A system for large-scale machine learningº. In:

12th USENIX symposium on operating systems design and implementation (OSDI). 2016,

pp. 265±283.

[ACB17] M. Arjovsky, S. Chintala, and L. Bottou. ªWasserstein generative adversarial networksº.

In: International Conference on Machine Learning. 2017, pp. 214±223.

[An+21] Y. An, H.-W. Shen, G. Shan, G. Li, and J. Liu. ªSTSRNet: Deep Joint Space-Time Super-

Resolution for Vector Field Visualizationº. In: IEEE Computer Graphics and Applications

41.6 (2021), pp. 122±132. DOI: 10.1109/MCG.2021.3097555.

[App68] A. Appel. ªSome Techniques for Shading Machine Renderings of Solidsº. In: Proceedings

of the AFIPS spring joint computer conference. AFIPS ’68 (Spring). ACM, 1968, pp. 37±45.

DOI: 10.1145/1468075.1468082.

[AW87] J. Amanatides and A. Woo. ªA fast voxel traversal algorithm for ray tracingº. In: Euro-

graphics. Vol. 87. 3. 1987, pp. 3±10.

[Baa+21] H. Baatz, J. Granskog, M. Papas, F. Rousselle, and J. Novák. ªNeRF-Tex: Neural Reflectance

Field Texturesº. In: Computer Graphics Forum. Wiley Online Library. 2021. DOI: 10.1111/

cgf.14449.

67

https://doi.org/10.1364/OE.24.025129
https://doi.org/10.1364/OE.24.025129
https://doi.org/10.1109/MCG.2021.3097555
https://doi.org/10.1145/1468075.1468082
https://doi.org/10.1111/cgf.14449
https://doi.org/10.1111/cgf.14449

BIBLIOGRAPHY

[Bar+21] J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P. Srinivasan.

ªMip-NeRF: A Multiscale Representation for Anti-Aliasing Neural Radiance Fieldsº. In:

(2021), pp. 5855±5864.

[BB+00] M. Bartholomew-Biggs, S. Brown, B. Christianson, and L. Dixon. ªAutomatic differen-

tiation of algorithmsº. In: Journal of Computational and Applied Mathematics 124.1-2

(2000), pp. 171±190. DOI: 10.1016/S0377-0427(00)00422-2.

[BHP15] J. Beyer, M. Hadwiger, and H. Pfister. ªState-of-the-Art in GPU-Based Large-Scale Volume

Visualizationº. In: Computer Graphics Forum 34.8 (2015), pp. 13±37. DOI: 10.1111/

cgf.12605.

[Bi+20] S. Bi, Z. Xu, P. Srinivasan, B. Mildenhall, K. Sunkavalli, M. Hašan, Y. Hold-Geoffroy, D.

Kriegman, and R. Ramamoorthi. ªNeural Reflectance Fields for Appearance Acquisitionº.

In: (2020). DOI: 10.48550/ARXIV.2008.03824.

[BLL19] M. Berger, J. Li, and J. A. Levine. ªA Generative Model for Volume Renderingº. In: IEEE

Transactions on Visualization and Computer Graphics 25.4 (2019), pp. 1636±1650. DOI:

10.1109/TVCG.2018.2816059.

[BM98] M. R. Bolin and G. W. Meyer. ªA Perceptually Based Adaptive Sampling Algorithmº.

In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive

Techniques. SIGGRAPH ’98. New York, NY, USA: ACM, 1998, pp. 299±309. DOI: 10.

1145/280814.280924.

[BMB97] A. Brandt, J. Mann, and M. Brodski. ªAn O(N2 log N)Multilevel Backprojection Methodº.

In: Gauss Center Report WI/GC 6 (1997).

[Boa+01] D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Gaudette, and

Q. Zhang. ªImaging the body with diffuse optical tomographyº. In: IEEE signal processing

magazine 18.6 (2001), pp. 57±75.

[Boe+97] M. W. de Boer, A. Gröpl, J. Hesser, and R. Männer. ªReducing artifacts in volume

rendering by higher order integrationº. In: 8th Annual IEEE Conference on Visualization;

Late Breaking Hot Topics (1997), pp. 1±4.

[Bra+09] C. Braley, R. Hagan, Y. Cao, and D. Gračanin. ªGPU Accelerated Isosurface Volume Ren-

dering Using Depth-Based Coherenceº. In: ACM SIGGRAPH ASIA 2009 Posters. SIGGRAPH

ASIA ’09. Yokohama, Japan: ACM, 2009. DOI: 10.1145/1666778.1666820.

[Bri+21] K. M. Briedis, A. Djelouah, M. Meyer, I. McGonigal, M. Gross, and C. Schroers. ªNeural

frame interpolation for rendered contentº. In: ACM Transactions on Graphics (TOG) 40.6

(2021), pp. 1±13.

68

https://doi.org/10.1016/S0377-0427(00)00422-2
https://doi.org/10.1111/cgf.12605
https://doi.org/10.1111/cgf.12605
https://doi.org/10.48550/ARXIV.2008.03824
https://doi.org/10.1109/TVCG.2018.2816059
https://doi.org/10.1145/280814.280924
https://doi.org/10.1145/280814.280924
https://doi.org/10.1145/1666778.1666820

BIBLIOGRAPHY

[BRLP19] R. Ballester-Ripoll, P. Lindstrom, and R. Pajarola. ªTTHRESH: Tensor compression for mul-

tidimensional visual dataº. In: IEEE transactions on visualization and computer graphics

26.9 (2019), pp. 2891±2903.

[Bru+19] V. Bruder, C. Schulz, R. Bauer, S. Frey, D. Weiskopf, and T. Ertl. ªVoronoi-Based Foveated

Volume Renderingº. In: Computer graphics forum. Wiley Online Library. The Eurographics

Association, 2019.

[BS05] U. Bordoloi and H.-W. Shen. ªView selection for volume renderingº. In: IEEE Visualization

(VIS). 2005, pp. 487±494. DOI: 10.1109/VISUAL.2005.1532833.

[BS08] L. Bavoil and M. Sainz. Screen space ambient occlusion. https://developer.download.

nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAO/doc/ScreenSpaceAO.

pdf. Accessed: 2022-05-11. 2008.

[Byr+16] R. H. Byrd, S. L. Hansen, J. Nocedal, and Y. Singer. ªA stochastic quasi-Newton method

for large-scale optimizationº. In: SIAM Journal on Optimization 26.2 (2016), pp. 1008±

1031.

[CBE20] V. Careil, M. Billeter, and E. Eisemann. ªInteractively modifying compressed sparse voxel

representationsº. In: Computer Graphics Forum. Vol. 39. 2. Wiley Online Library. 2020,

pp. 111±119.

[CCF15] L. Q. Campagnolo, W. Celes, and L. H. de Figueiredo. ªAccurate volume rendering based

on adaptive numerical integrationº. In: 2015 28th SIBGRAPI Conference on Graphics,

Patterns and Images. IEEE. 2015, pp. 17±24.

[CCL92] T. Chen, H. Chen, and R.-w. Liu. ªA constructive proof and an extension of Cybenko’s

approximation theoremº. In: Computing science and statistics. Springer, 1992, pp. 163±

168.

[Cha+17] C. R. A. Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn, D. Nowrouzezahrai,

and T. Aila. ªInteractive reconstruction of Monte Carlo image sequences using a recurrent

denoising autoencoderº. In: ACM Transactions on Graphics (TOG) 36.4 (2017), pp. 1±12.

[Cha+20] R. Chabra, J. E. Lenssen, E. Ilg, T. Schmidt, J. Straub, S. Lovegrove, and R. Newcombe.

ªDeep local shapes: Learning local sdf priors for detailed 3d reconstructionº. In: European

Conference on Computer Vision. Springer. 2020, pp. 608±625.

[Che+16] T. Chen, B. Xu, C. Zhang, and C. Guestrin. ªTraining Deep Nets with Sublinear Memory

Costº. In: arXiv preprint (2016). DOI: 10.48550/ARXIV.1604.06174.

[Che+18] Z. Cheng, H. Sun, M. Takeuchi, and J. Katto. ªDeep Convolutional AutoEncoder-based

Lossy Image Compressionº. In: 2018 Picture Coding Symposium (PCS). 2018, pp. 253±

257. DOI: 10.1109/PCS.2018.8456308.

69

https://doi.org/10.1109/VISUAL.2005.1532833
https://developer.download.nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAO/doc/ScreenSpaceAO.pdf
https://developer.download.nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAO/doc/ScreenSpaceAO.pdf
https://developer.download.nvidia.com/SDK/10.5/direct3d/Source/ScreenSpaceAO/doc/ScreenSpaceAO.pdf
https://doi.org/10.48550/ARXIV.1604.06174
https://doi.org/10.1109/PCS.2018.8456308

BIBLIOGRAPHY

[Chu+20] M. Chu, Y. Xie, J. Mayer, L. Leal-Taixé, and N. Thuerey. ªLearning Temporal Coherence

via Self-Supervision for GAN-Based Video Generationº. In: ACM Transactions on Graphics

39.4 (2020). DOI: 10.1145/3386569.3392457.

[CJ10] M. Chen and H. Jäenicke. ªAn information-theoretic framework for visualizationº. In:

IEEE Transactions on Visualization and Computer Graphics 16.6 (2010), pp. 1206±1215.

[CL96] B. Curless and M. Levoy. ªA volumetric method for building complex models from

range imagesº. In: Proceedings of the 23rd annual conference on Computer graphics and

interactive techniques. 1996, pp. 303±312.

[CM10] C. D. Correa and K.-L. Ma. ªVisibility histograms and visibility-driven transfer functionsº.

In: IEEE Transactions on Visualization and Computer Graphics 17.2 (2010), pp. 192±204.

[CS94] D. Cohen and Z. Sheffer. ªProximity clouds ± an acceleration technique for 3D grid

traversalº. In: The Visual Computer 11.1 (1994), pp. 27±38.

[CUH16] D.-A. Clevert, T. Unterthiner, and S. Hochreiter. ªFast and accurate deep network learn-

ing by exponential linear units (elus)º. In: 4th International Conference on Learning

Representations (ICLR). 2016. DOI: 10.48550/arXiv.1511.07289.

[Cyb89] G. Cybenko. ªApproximation by superpositions of a sigmoidal functionº. In: Mathematics

of control, signals and systems 2.4 (1989), pp. 303±314.

[Dad+16] B. Dado, T. R. Kol, P. Bauszat, J.-M. Thiery, and E. Eisemann. ªGeometry and attribute

compression for voxel scenesº. In: Computer Graphics Forum. Vol. 35. 2. Wiley Online

Library. 2016, pp. 397±407.

[DC16] S. Di and F. Cappello. ªFast error-bounded lossy HPC data compression with SZº. In:

2016 IEEE international parallel and distributed processing symposium (IPDPS). IEEE.

2016, pp. 730±739.

[DCH88] R. A. Drebin, L. Carpenter, and P. Hanrahan. ªVolume renderingº. In: ACM Siggraph

Computer Graphics 22.4 (1988), pp. 65±74.

[Dev+18] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. ªBert: Pre-training of deep bidirectional

transformers for language understandingº. In: arXiv preprint (2018). DOI: 10.48550/

ARXIV.1810.04805.

[Dev85] A. J. Devaney. ªGeneralized projection-slice theorem for fan beam diffraction tomog-

raphyº. In: Ultrasonic Imaging 7.3 (1985), pp. 264±275. DOI: https://doi.org/10.

1016/0161-7346(85)90006-9.

70

https://doi.org/10.1145/3386569.3392457
https://doi.org/10.48550/arXiv.1511.07289
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/https://doi.org/10.1016/0161-7346(85)90006-9
https://doi.org/https://doi.org/10.1016/0161-7346(85)90006-9

BIBLIOGRAPHY

[DH92] J. Danskin and P. Hanrahan. ªFast Algorithms for Volume Ray Tracingº. In: Proceedings

of the 1992 Workshop on Volume Visualization. VVS ’92. Boston, Massachusetts, USA:

ACM, 1992, pp. 91±98. DOI: 10.1145/147130.147155.

[DHS11] J. Duchi, E. Hazan, and Y. Singer. ªAdaptive subgradient methods for online learning

and stochastic optimization.º In: Journal of machine learning research 12.7 (2011).

[DMG20] J. Díaz, F. Marton, and E. Gobbetti. ªInteractive spatio-temporal exploration of massive

time-varying rectilinear scalar volumes based on a variable bit-rate sparse representation

over learned dictionariesº. In: Computers & Graphics 88 (2020), pp. 45±56.

[DN11] M. Drulea and S. Nedevschi. ªTotal variation regularization of local-global optical flowº.

In: 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC).

IEEE. 2011, pp. 318±323.

[DNJ20] T. Davies, D. Nowrouzezahrai, and A. Jacobson. ªOn the effectiveness of weight-encoded

neural implicit 3D shapesº. In: arXiv preprint (2020). DOI: 10.48550/arXiv.2009.

09808.

[Don+16] C. Dong, C. C. Loy, K. He, and X. Tang. ªImage super-resolution using deep convolutional

networksº. In: IEEE transactions on pattern analysis and machine intelligence 38.2 (2016),

pp. 295±307.

[Dos+15] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. Van Der Smagt, D.

Cremers, and T. Brox. ªFlowNet: Learning optical flow with convolutional networksº. In:

Proceedings of the IEEE international conference on computer vision. 2015, pp. 2758±2766.

[Dre62] S. Dreyfus. ªThe numerical solution of variational problemsº. In: Journal of Mathematical

Analysis and Applications 5.1 (1962), pp. 30±45. DOI: https://doi.org/10.1016/

0022-247X(62)90004-5.

[DV16] V. Dumoulin and F. Visin. ªA guide to convolution arithmetic for deep learningº. In: ArXiv

preprint (2016). DOI: 10.48550/arXiv.1603.07285.

[EHT18] M.-L. Eckert, W. Heidrich, and N. Thuerey. ªCoupled Fluid Density and Motion from Single

Viewsº. In: Computer Graphics Forum 37.8 (2018), pp. 47±58. DOI: 10.1111/cgf.13511.

[EKE01] K. Engel, M. Kraus, and T. Ertl. ªHigh-Quality Pre-Integrated Volume Rendering Using

Hardware-Accelerated Pixel Shadingº. In: Proceedings of the ACM SIGGRAPH / EURO-

GRAPHICS Workshop on Graphics Hardware. HWWS ’01. Los Angeles, California, USA,

2001, pp. 9±16. DOI: 10.1145/383507.383515.

[ER21] D. Engel and T. Ropinski. ªDeep Volumetric Ambient Occlusionº. In: IEEE Transactions

on Visualization and Computer Graphics 27.2 (2021), pp. 1268±1278. DOI: 10.1109/

TVCG.2020.3030344.

71

https://doi.org/10.1145/147130.147155
https://doi.org/10.48550/arXiv.2009.09808
https://doi.org/10.48550/arXiv.2009.09808
https://doi.org/https://doi.org/10.1016/0022-247X(62)90004-5
https://doi.org/https://doi.org/10.1016/0022-247X(62)90004-5
https://doi.org/10.48550/arXiv.1603.07285
https://doi.org/10.1111/cgf.13511
https://doi.org/10.1145/383507.383515
https://doi.org/10.1109/TVCG.2020.3030344
https://doi.org/10.1109/TVCG.2020.3030344

BIBLIOGRAPHY

[Eti+13] T. Etiene, D. Jönsson, T. Ropinski, C. Scheidegger, J. L. Comba, L. G. Nonato, R. M.

Kirby, A. Ynnerman, and C. T. Silva. ªVerifying volume rendering using discretization

error analysisº. In: IEEE transactions on visualization and computer graphics 20.1 (2013),

pp. 140±154.

[EUT19] M.-L. Eckert, K. Um, and N. Thuerey. ªScalarFlow: A Large-Scale Volumetric Data Set of

Real-World Scalar Transport Flows for Computer Animation and Machine Learningº. In:

ACM Transactions on Graphics 38.6 (2019). DOI: 10.1145/3355089.3356545.

[FH19] M. Feurer and F. Hutter. ªHyperparameter optimizationº. In: Automated machine learning.

Ed. by F. Hutter, L. Kotthoff, and J. Vanschoren. Springer, 2019, pp. 3±33.

[Fra+19] A. Frasson, M. Ender, S. Weiss, M. Kanzler, A. Pandey, J. Schumacher, and R. Westermann.

ªVisual Exploration of Circulation Rolls in Convective Heat Flowsº. In: 2019 IEEE Pacific

Visualization Symposium (PacificVis). 2019, pp. 202±211. DOI: 10.1109/PacificVis.

2019.00031.

[Fri+20] F. Frieû, M. Braun, V. Bruder, S. Frey, G. Reina, and T. Ertl. ªFoveated Encoding for Large

High-Resolution Displaysº. In: IEEE Transactions on Visualization and Computer Graphics

(2020), pp. 1±10. DOI: 10.1109/TVCG.2020.3030445.

[FSK13] T. Fogal, A. Schiewe, and J. Kruger. ªAn Analysis of Scalable GPU-Based Ray-Guided Vol-

ume Renderingº. In: 2013 IEEE Symposium on Large-Scale Data Analysis and Visualization

(LDAV). Vol. 2013. Oct. 2013, pp. 43±51. DOI: 10.1109/LDAV.2013.6675157.

[Fuk80] K. Fukushima. ªNeocognitron: A self-organizing neural network model for a mechanism

of pattern recognition unaffected by shift in positionº. In: Biological Cybernetics 36.4

(1980), pp. 193±202. DOI: 10.1007/BF00344251.

[Gar+21] S. J. Garbin, M. Kowalski, M. Johnson, J. Shotton, and J. Valentin. ªFastNeRF: High-

Fidelity Neural Rendering at 200FPSº. In: (2021), pp. 14346±14355.

[GB08] J. Gregor and T. Benson. ªComputational Analysis and Improvement of SIRTº. In: IEEE

Transactions on Medical Imaging 27.7 (2008), pp. 918±924. DOI: 10.1109/TMI.2008.

923696.

[GBC16] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.

org. MIT Press, 2016.

[GBH70] R. Gordon, R. Bender, and G. T. Herman. ªAlgebraic Reconstruction Techniques (ART) for

three-dimensional electron microscopy and X-ray photographyº. In: Journal of Theoretical

Biology 29.3 (1970), pp. 471±481. DOI: https://doi.org/10.1016/0022-5193(70)

90109-8.

72

https://doi.org/10.1145/3355089.3356545
https://doi.org/10.1109/PacificVis.2019.00031
https://doi.org/10.1109/PacificVis.2019.00031
https://doi.org/10.1109/TVCG.2020.3030445
https://doi.org/10.1109/LDAV.2013.6675157
https://doi.org/10.1007/BF00344251
https://doi.org/10.1109/TMI.2008.923696
https://doi.org/10.1109/TMI.2008.923696
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1016/0022-5193(70)90109-8
https://doi.org/https://doi.org/10.1016/0022-5193(70)90109-8

BIBLIOGRAPHY

[GEB16] L. A. Gatys, A. S. Ecker, and M. Bethge. ªImage style transfer using convolutional

neural networksº. In: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 2016, pp. 2414±2423.

[Gei+19] R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel.

ªImageNet-trained CNNs are biased towards texture; increasing shape bias improves

accuracy and robustness.º In: International Conference on Learning Representations. 2019.

[GHA05] A. P. Gibson, J. C. Hebden, and S. R. Arridge. ªRecent advances in diffuse optical imagingº.

In: Physics in medicine & biology 50.4 (2005), R1.

[Gho+19] S. Ghosh, A. Pal, S. Jaiswal, K. Santosh, N. Das, and M. Nasipuri. ªSegFast-V2: Semantic

image segmentation with less parameters in deep learning for autonomous drivingº. In:

International Journal of Machine Learning and Cybernetics 10.11 (2019), pp. 3145±3154.

[Gir15] R. Girshick. ªFast R-CNNº. In: Proceedings of the IEEE international conference on computer

vision. 2015, pp. 1440±1448.

[Gki+13] I. Gkioulekas, S. Zhao, K. Bala, T. Zickler, and A. Levin. ªInverse Volume Rendering with

Material Dictionariesº. In: ACM Transactions on Graphics 32.6 (2013). DOI: 10.1145/

2508363.2508377.

[GM19] D. Ganter and M. Manzke. ªAn Analysis of Region Clustered BVH Volume Rendering on

GPUº. In: Computer Graphics Forum. Vol. 38. 8. Wiley Online Library. 2019, pp. 13±21.

[GMIG08] E. Gobbetti, F. Marton, and J. A. Iglesias Guitián. ªA single-pass GPU ray casting frame-

work for interactive out-of-core rendering of massive volumetric datasetsº. In: The Visual

Computer 24.7 (2008), pp. 797±806. DOI: 10.1007/s00371-008-0261-9.

[Goo+14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,

and Y. Bengio. ªGenerative adversarial netsº. In: Advances in neural information processing

systems. 2014, pp. 2672±2680.

[Gre+12] J. Gregson, M. Krimerman, M. B. Hullin, and W. Heidrich. ªStochastic tomography and

its applications in 3D imaging of mixing fluidsº. In: ACM Transactions on Graphics (TOG)

31.4 (2012), pp. 1±10.

[Gu+21] P. Gu, J. Han, D. Z. Chen, and C. Wang. ªReconstructing Unsteady Flow Data From

Representative Streamlines via Diffusion and Deep-Learning-Based Denoisingº. In: IEEE

Computer Graphics and Applications 41.6 (2021), pp. 111±121. DOI: 10.1109/MCG.2021.

3089627.

[Gue+12] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder. ªFoveated 3D graphicsº. In:

ACM Transactions on Graphics (TOG) 31.6 (2012), p. 164.

73

https://doi.org/10.1145/2508363.2508377
https://doi.org/10.1145/2508363.2508377
https://doi.org/10.1007/s00371-008-0261-9
https://doi.org/10.1109/MCG.2021.3089627
https://doi.org/10.1109/MCG.2021.3089627

BIBLIOGRAPHY

[Gul+17] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. ªImproved Training

of Wasserstein GANsº. In: Advances in Neural Information Processing Systems. 2017,

pp. 5767±5777.

[Gun+07] J. Gunther, S. Popov, H.-P. Seidel, and P. Slusallek. ªRealtime ray tracing on GPU with

BVH-based packet traversalº. In: 2007 IEEE Symposium on Interactive Ray Tracing. IEEE.

2007, pp. 113±118.

[Guo+20] L. Guo, S. Ye, J. Han, H. Zheng, H. Gao, D. Z. Chen, J.-X. Wang, and C. Wang. ªSSR-

VFD: Spatial Super-Resolution for Vector Field Data Analysis and Visualizationº. In:

2020 IEEE Pacific Visualization Symposium (PacificVis). 2020, pp. 71±80. DOI: 10.1109/

PacificVis48177.2020.8737.

[GW00] A. Griewank and A. Walther. ªAlgorithm 799: revolve: an implementation of check-

pointing for the reverse or adjoint mode of computational differentiationº. In: ACM

Transactions on Mathematical Software (TOMS) 26.1 (2000), pp. 19±45.

[GW08] A. Griewank and A. Walther. Evaluating derivatives: principles and techniques of algorith-

mic differentiation. SIAM, 2008.

[Had+05] M. Hadwiger, C. Sigg, H. Scharsach, K. Bühler, and M. H. Gross. ªReal-Time Ray-Casting

and Advanced Shading of Discrete Isosurfacesº. In: Comput. Graph. Forum 24 (2005),

pp. 303±312.

[Had+18] M. Hadwiger, A. K. Al-Awami, J. Beyer, M. Agus, and H. Pfister. ªSparseLeap: Efficient

Empty Space Skipping for Large-Scale Volume Renderingº. In: IEEE Transactions on

Visualization and Computer Graphics 24.1 (2018), pp. 974±983. DOI: 10.1109/TVCG.

2017.2744238.

[Hai+10] M. Haidacher, D. Patel, S. Bruckner, A. Kanitsar, and M. E. Gröller. ªVolume visualiza-

tion based on statistical transfer-function spacesº. In: 2010 IEEE Pacific Visualization

Symposium (PacificVis). IEEE. 2010, pp. 17±24.

[Han+19] J. Han, J. Tao, H. Zheng, H. Guo, D. Z. Chen, and C. Wang. ªFlow field reduction via

reconstructing vector data from 3-d streamlines using deep learningº. In: IEEE computer

graphics and applications 39.4 (2019), pp. 54±67.

[Han+21] J. Han, H. Zheng, Y. Xing, D. Z. Chen, and C. Wang. ªV2V: A Deep Learning Approach to

Variable-to-Variable Selection and Translation for Multivariate Time-Varying Dataº. In:

IEEE Transactions on Visualization and Computer Graphics 27.2 (2021), pp. 1290±1300.

DOI: 10.1109/TVCG.2020.3030346.

74

https://doi.org/10.1109/PacificVis48177.2020.8737
https://doi.org/10.1109/PacificVis48177.2020.8737
https://doi.org/10.1109/TVCG.2017.2744238
https://doi.org/10.1109/TVCG.2017.2744238
https://doi.org/10.1109/TVCG.2020.3030346

BIBLIOGRAPHY

[Han+22] J. Han, H. Zheng, D. Z. Chen, and C. Wang. ªSTNet: An End-to-End Generative Framework

for Synthesizing Spatiotemporal Super-Resolution Volumesº. In: IEEE Transactions on

Visualization and Computer Graphics 28.1 (2022), pp. 270±280. DOI: 10.1109/TVCG.

2021.3114815.

[Hap+11] M. Hapala, T. Davidovič, I. Wald, V. Havran, and P. Slusallek. ªEfficient stack-less BVH

traversal for ray tracingº. In: Proceedings of the 27th Spring Conference on Computer

Graphics. 2011, pp. 7±12.

[Har96] J. C. Hart. ªSphere tracing: A geometric method for the antialiased ray tracing of implicit

surfacesº. In: The Visual Computer 12.10 (1996), pp. 527±545.

[Has+20] J. Hasselgren, J. Munkberg, M. Salvi, A. Patney, and A. Lefohn. ªNeural temporal adaptive

sampling and denoisingº. In: Computer Graphics Forum. Vol. 39. 2. Wiley Online Library.

2020, pp. 147±155.

[He+15] K. He, X. Zhang, S. Ren, and J. Sun. ªDelving deep into rectifiers: Surpassing human-

level performance on imagenet classificationº. In: Proceedings of the IEEE international

conference on computer vision. 2015, pp. 1026±1034.

[He+16] K. He, X. Zhang, S. Ren, and J. Sun. ªDeep residual learning for image recognitionº. In:

Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR).

2016, pp. 770±778.

[He+19] W. He, J. Wang, H. Guo, K.-C. Wang, H.-W. Shen, M. Raj, Y. S. Nashed, and T. Peterka. ªIn-

SituNet: Deep image synthesis for parameter space exploration of ensemble simulationsº.

In: IEEE transactions on visualization and computer graphics 26.1 (2019), pp. 23±33.

[HED05] T. Hawkins, P. Einarsson, and P. Debevec. ªAcquisition of time-varying participating

mediaº. In: ACM Transactions on Graphics (ToG) 24.3 (2005), pp. 812±815.

[Hed+21] P. Hedman, P. P. Srinivasan, B. Mildenhall, J. T. Barron, and P. Debevec. ªBaking neural

radiance fields for real-time view synthesisº. In: Proceedings of the IEEE/CVF International

Conference on Computer Vision. 2021, pp. 5875±5884.

[Her09] G. T. Herman. Fundamentals of computerized tomography: image reconstruction from

projections. Springer Science & Business Media, 2009.

[HG41] L. G. Henyey and J. L. Greenstein. ªDiffuse radiation in the galaxyº. In: The Astrophysical

Journal 93 (1941), pp. 70±83.

[Hoe16] R. K. Hoetzlein. ªGVDB: Raytracing Sparse Voxel Database Structures on the GPUº.

In: Eurographics/ ACM SIGGRAPH Symposium on High Performance Graphics. Ed. by

U. Assarsson and W. Hunt. The Eurographics Association, 2016. DOI: 10.2312/hpg.

20161197.

75

https://doi.org/10.1109/TVCG.2021.3114815
https://doi.org/10.1109/TVCG.2021.3114815
https://doi.org/10.2312/hpg.20161197
https://doi.org/10.2312/hpg.20161197

BIBLIOGRAPHY

[Höh+20] K. Höhlein, M. Kern, T. Hewson, and R. Westermann. ªA comparative study of convolu-

tional neural network models for wind field downscalingº. In: Meteorological Applications

27.6 (2020), e1961.

[How+17] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,

and H. Adam. ªMobileNets: Efficient convolutional neural networks for mobile vision

applicationsº. In: arXiv preprint (2017). DOI: 10.48550/arXiv.1704.04861.

[HSK89] J. C. Hart, D. J. Sandin, and L. H. Kauffman. ªRay tracing deterministic 3-D fractalsº. In:

Proceedings of the 16th annual conference on Computer graphics and interactive techniques.

1989, pp. 289±296.

[HSM00] D. J. Hawrysz and E. M. Sevick-Muraca. ªDevelopments toward diagnostic breast cancer

imaging using near-infrared optical measurements and fluorescent contrast agents1º. In:

Neoplasia 2.5 (2000), pp. 388±417.

[Hsu+19] C.-C. Hsu, C.-W. Lin, W.-T. Su, and G. Cheung. ªSiGAN: Siamese generative adversarial

network for identity-preserving face hallucinationº. In: IEEE Transactions on Image

Processing 28.12 (2019), pp. 6225±6236. DOI: 10.1109/TIP.2019.2924554.

[HSW89] K. Hornik, M. Stinchcombe, and H. White. ªMultilayer feedforward networks are univer-

sal approximatorsº. In: Neural networks 2.5 (1989), pp. 359±366.

[HTW20] J. Han, J. Tao, and C. Wang. ªFlowNet: A Deep Learning Framework for Clustering and

Selection of Streamlines and Stream Surfacesº. In: IEEE Transactions on Visualization and

Computer Graphics 26.4 (2020), pp. 1732±1744. DOI: 10.1109/TVCG.2018.2880207.

[Hua+17] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. ªDensely connected convo-

lutional networksº. In: Proceedings of the IEEE conference on computer vision and pattern

recognition (CVPR). 2017, pp. 4700±4708.

[HW20] J. Han and C. Wang. ªTSR-TVD: Temporal Super-Resolution for Time-Varying Data

Analysis and Visualizationº. In: IEEE Transactions on Visualization and Computer Graphics

26.1 (2020), pp. 205±215. DOI: 10.1109/TVCG.2019.2934255.

[HW22] J. Han and C. Wang. ªSSR-TVD: Spatial Super-Resolution for Time-Varying Data Analysis

and Visualizationº. In: IEEE Transactions on Visualization and Computer Graphics 28.6

(2022), pp. 2445±2456. DOI: 10.1109/TVCG.2020.3032123.

[Ilg+17] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox. ªFlowNet 2.0: Evolution

of optical flow estimation with deep networksº. In: Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 2017, pp. 2462±2470.

76

https://doi.org/10.48550/arXiv.1704.04861
https://doi.org/10.1109/TIP.2019.2924554
https://doi.org/10.1109/TVCG.2018.2880207
https://doi.org/10.1109/TVCG.2019.2934255
https://doi.org/10.1109/TVCG.2020.3032123

BIBLIOGRAPHY

[Ily+19] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and A. Madry. ªAdversarial

examples are not bugs, they are featuresº. In: Advances in neural information processing

systems 32 (2019).

[IM04] I. Ihrke and M. Magnor. ªImage-based tomographic reconstruction of flamesº. In: Pro-

ceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation.

2004, pp. 365±373.

[Iso+20] T. Isobe, S. Li, X. Jia, S. Yuan, G. Slabaugh, C. Xu, Y.-L. Li, S. Wang, and Q. Tian.

ªVideo super-resolution with temporal group attentionº. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2020, pp. 8008±8017.

[Iza+11] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges,

D. Freeman, A. Davison, et al. ªKinectFusion: real-time 3d reconstruction and interaction

using a moving depth cameraº. In: Proceedings of the 24th annual ACM symposium on

User interface software and technology. 2011, pp. 559±568.

[JAFF16] J. Johnson, A. Alahi, and L. Fei-Fei. ªPerceptual losses for real-time style transfer and

super-resolutionº. In: European conference on computer vision. Springer. 2016, pp. 694±

711.

[Jar+09] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. ªWhat is the best multi-stage

architecture for object recognition?º In: 2009 IEEE 12th international conference on

computer vision. IEEE. 2009, pp. 2146±2153.

[Jia+21] J. Jiang, C. Wang, X. Liu, and J. Ma. ªDeep Learning-Based Face Super-Resolution: A

Surveyº. In: ACM Comput. Surv. 55.1 (2021). DOI: 10.1145/3485132.

[Jo+18] Y. Jo, S. W. Oh, J. Kang, and S. J. Kim. ªDeep Video Super-Resolution Network Using

Dynamic Upsampling Filters Without Explicit Motion Compensationº. In: Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018, pp. 3224±

3232.

[Joh+20] J. Johnson, N. Ravi, J. Reizenstein, D. Novotny, S. Tulsiani, C. Lassner, and S. Branson.

ªAccelerating 3D Deep Learning with PyTorch3Dº. In: SA ’20 (2020). DOI: 10.1145/

3415263.3419160.

[JS01] M. W. Jones and R. Satherley. ªUsing distance fields for object representation and

renderingº. In: Proc. 19th Ann. Conf. of Eurographics (UK Chapter). London. 2001,

pp. 37±44.

[JS06] G. Ji and H.-W. Shen. ªDynamic view selection for time-varying volumesº. In: IEEE

Transactions on Visualization and Computer Graphics 12.5 (2006), pp. 1109±1116.

77

https://doi.org/10.1145/3485132
https://doi.org/10.1145/3415263.3419160
https://doi.org/10.1145/3415263.3419160

BIBLIOGRAPHY

[JTC14] P. Józsa, M. J. Tóth, and B. Csébfalvi. ªAnalytic Isosurface Rendering and Maximum

Intensity Projection on the GPUº. In: International Conference in Central Europe on

Computer Graphics, Visualization and Computer Vision (WSCG). Václav Skala-UNION

Agency, 2014.

[JZA18] N. Jmour, S. Zayen, and A. Abdelkrim. ªConvolutional neural networks for image classi-

ficationº. In: 2018 International Conference on Advanced Systems and Electric Technologies

(IC_ASET). 2018, pp. 397±402. DOI: 10.1109/ASET.2018.8379889.

[Kal+17] S. Kallweit, T. Müller, B. McWilliams, M. Gross, and J. Novák. ªDeep Scattering: Rendering

Atmospheric Clouds with Radiance-Predicting Neural Networksº. In: ACM Transactions

on Graphics (Proceedings of SIGGRAPH Asia) 36.6 (Nov. 2017). DOI: 10.1145/3130800.

3130880.

[Kap+16] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos. ªVideo super-resolution with convo-

lutional neural networksº. In: IEEE Transactions on Computational Imaging 2.2 (2016),

pp. 109±122.

[Kap+19] A. S. Kaplanyan, A. Sochenov, T. Leimkühler, M. Okunev, T. Goodall, and G. Rufo.

ªDeepFovea: neural reconstruction for foveated rendering and video compression using

learned statistics of natural videosº. In: ACM Transactions on Graphics (TOG) 38.6 (2019),

pp. 1±13.

[Kat+20] H. Kato, D. Beker, M. Morariu, T. Ando, T. Matsuoka, W. Kehl, and A. Gaidon. ªDiffer-

entiable rendering: A surveyº. In: arXiv preprint (2020). DOI: 10.48550/arXiv.2006.

12057.

[KB15] D. P. Kingma and J. Ba. ªAdam: A method for stochastic optimizationº. In: 3rd Inter-

national Conference for Learning Representations (ICLR). 2015. DOI: 10.48550/arXiv.

1412.6980.

[Kim+19] J. Kim, Y. Jeong, M. Stengel, K. AkËsit, R. Albert, B. Boudaoud, T. Greer, J. Kim, W. Lopes,

Z. Majercik, et al. ªFoveated AR: dynamically-foveated augmented reality displayº. In:

ACM Transactions on Graphics (TOG) 38.4 (2019), pp. 1±15.

[KKH01] J. Kniss, G. Kindlmann, and C. Hansen. ªInteractive volume rendering using multi-

dimensional transfer functions and direct manipulation widgetsº. In: Proceedings Visual-

ization, 2001. VIS’01. IEEE. 2001, pp. 255±562.

[KKH05] J. Kniss, G. Kindlmann, and C. D. Hansen. ªFunctions for Volume Renderingº. In: Visual-

ization handbook (2005), p. 189.

78

https://doi.org/10.1109/ASET.2018.8379889
https://doi.org/10.1145/3130800.3130880
https://doi.org/10.1145/3130800.3130880
https://doi.org/10.48550/arXiv.2006.12057
https://doi.org/10.48550/arXiv.2006.12057
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980

BIBLIOGRAPHY

[KKLML16] J. Kim, J. Kwon Lee, and K. Mu Lee. ªAccurate image super-resolution using very deep

convolutional networksº. In: Proceedings of the IEEE conference on computer vision and

pattern recognition (CVPR). 2016, pp. 1646±1654.

[KKR18] A. Kuznetsov, N. K. Kalantari, and R. Ramamoorthi. ªDeep adaptive sampling for low

sample count renderingº. In: Computer Graphics Forum. Vol. 37. 4. Wiley Online Library.

2018, pp. 35±44.

[Kla+17] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter. ªSelf-normalizing neural

networksº. In: Advances in neural information processing systems 30 (2017).

[Kle+05] T. Klein, M. Strengert, S. Stegmaier, and T. Ertl. ªExploiting Frame-to-Frame Coherence

for Accelerating High-Quality Volume Raycasting on Graphics Hardwareº. In: Proceedings

of IEEE Visualization. IEEE, 2005, pp. 223±230.

[Kni+03] J. Kniss, M. Ikits, A. Lefohn, C. Hansen, E. Praun, et al. ªGaussian transfer functions for

multi-field volume visualizationº. In: IEEE Visualization (VIS). IEEE. 2003, pp. 497±504.

[Kno+06] A. Knoll, I. Wald, S. Parker, and C. Hansen. ªInteractive isosurface ray tracing of large

octree volumesº. In: 2006 IEEE Symposium on Interactive Ray Tracing. IEEE. 2006,

pp. 115±124.

[Kno+11] A. Knoll, S. Thelen, I. Wald, C. D. Hansen, H. Hagen, and M. E. Papka. ªFull-resolution

interactive CPU volume rendering with coherent BVH traversalº. In: 2011 IEEE Pacific

Visualization Symposium. IEEE. 2011, pp. 3±10.

[Kra05] M. Kraus. ªScale-invariant volume renderingº. In: IEEE Visualization (VIS). IEEE. 2005,

pp. 295±302.

[Kra09] M. Kraus. ªThe pull-push algorithm revisitedº. In: Proceedings of the Fourth International

Conference on Computer Graphics Theory and Applications (GRAPP). 2009, pp. 179±184.

DOI: 10.5220/0001772601790184.

[Kra+11] A. Kratz, J. Reininghaus, M. Hadwiger, and I. Hotz. Adaptive Screen-Space Sampling for

Volume Ray-Casting. eng. Tech. rep. 11-04. URN: urn:nbn:de:0297-zib-12446. Takustr. 7,

14195 Berlin: ZIB, 2011.

[KSA13] V. Kämpe, E. Sintorn, and U. Assarsson. ªHigh resolution sparse voxel dagsº. In: ACM

Transactions on Graphics (TOG) 32.4 (2013), pp. 1±13.

[KSH12] A. Krizhevsky, I. Sutskever, and G. E. Hinton. ªImageNet Classification with Deep Convo-

lutional Neural Networksº. In: Advances in Neural Information Processing Systems. Ed. by

F. Pereira, C. Burges, L. Bottou, and K. Weinberger. Vol. 25. Curran Associates, Inc., 2012.

79

https://doi.org/10.5220/0001772601790184
https://nbn-resolving.org/urn:nbn:de:0297-zib-12446

BIBLIOGRAPHY

[KT90] K. Kamijo and T. Tanigawa. ªStock price pattern recognition-a recurrent neural network

approachº. In: 1990 IJCNN International Joint Conference on Neural Networks. Vol. 1.

1990, pp. 215±221. DOI: 10.1109/IJCNN.1990.137572.

[KUH18] H. Kato, Y. Ushiku, and T. Harada. ªNeural 3d mesh rendererº. In: Proceedings of the IEEE

conference on computer vision and pattern recognition (CVPR). 2018, pp. 3907±3916.

[KW03] J. Krüger and R. Westermann. ªAcceleration techniques for GPU-based volume renderingº.

In: IEEE Visualization (VIS). 2003, pp. 287±292. DOI: 10.1109/VIS.2003.10001.

[KWH09] A. M. Knoll, I. Wald, and C. D. Hansen. ªCoherent multiresolution isosurface ray tracingº.

In: The Visual Computer 25.3 (2009), pp. 209±225.

[Lai+17] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang. ªDeep laplacian pyramid networks for

fast and accurate superresolutionº. In: Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). Vol. 2. 2017, p. 5.

[LB14] M. M. Loper and M. J. Black. ªOpenDR: An approximate differentiable rendererº. In:

European Conference on Computer Vision. Springer. 2014, pp. 154±169.

[LC87] W. E. Lorensen and H. E. Cline. ªMarching cubes: A high resolution 3D surface construc-

tion algorithmº. In: ACM siggraph computer graphics 21.4 (1987), pp. 163±169.

[LC+89] Y. Le Cun, L. Jackel, B. Boser, J. Denker, H. Graf, I. Guyon, D. Henderson, R. Howard,

and W. Hubbard. ªHandwritten digit recognition: applications of neural network chips

and automatic learningº. In: IEEE Communications Magazine 27.11 (1989), pp. 41±46.

DOI: 10.1109/35.41400.

[LC96] C.-C. Lin and Y.-T. Ching. ªAn efficient volume-rendering algorithm with an analytic

approachº. In: The Visual Computer 12.10 (1996), pp. 515±526.

[LDC06] P. Longhurst, K. Debattista, and A. Chalmers. ªA GPU Based Saliency Map for High-Fidelity

Selective Renderingº. In: Proceedings of the 4th International Conference on Computer

Graphics, Virtual Reality, Visualisation and Interaction in Africa. AFRIGRAPH ’06. Cape

Town, South Africa: ACM, 2006, pp. 21±29. DOI: 10.1145/1108590.1108595.

[LeC+89] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.

Jackel. ªBackpropagation applied to handwritten zip code recognitionº. In: Neural com-

putation 1.4 (1989), pp. 541±551.

[Led+17] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken, A. Tejani,

J. Totz, Z. Wang, et al. ªPhoto-realistic single image super-resolution using a generative

adversarial networkº. In: Proceedings of the IEEE conference on computer vision and pattern

recognition (CVPR). 2017, pp. 4681±4690.

80

https://doi.org/10.1109/IJCNN.1990.137572
https://doi.org/10.1109/VIS.2003.10001
https://doi.org/10.1109/35.41400
https://doi.org/10.1145/1108590.1108595

BIBLIOGRAPHY

[Lee+09] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. ªConvolutional deep belief networks for

scalable unsupervised learning of hierarchical representationsº. In: Proceedings of the

26th annual international conference on machine learning. 2009, pp. 609±616.

[Lev88] M. Levoy. ªDisplay of surfaces from volume dataº. In: IEEE Computer graphics and

Applications 8.3 (1988), pp. 29±37.

[Lev90a] M. Levoy. ªEfficient ray tracing of volume dataº. In: ACM Transactions on Graphics (TOG)

9.3 (1990), pp. 245±261.

[Lev90b] M. Levoy. ªVolume rendering by adaptive refinementº. In: The Visual Computer 6.1

(1990), pp. 2±7.

[Li+18] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen. ªDifferentiable monte carlo ray tracing

through edge samplingº. In: ACM Transactions on Graphics (TOG) 37.6 (2018), pp. 1±11.

[Li+19] S. Li, F. He, B. Du, L. Zhang, Y. Xu, and D. Tao. ªFast spatio-temporal residual network for

video super-resolutionº. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). 2019, pp. 10522±10531.

[Lia+15] R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia. ªVideo super-resolution via deep draft-ensemble

learningº. In: Proceedings of the IEEE International Conference on Computer Vision. 2015,

pp. 531±539.

[Lin+13] S. Lindholm, D. Jönsson, H. Knusson, and A. Ynnerman. ªTowards data centric sampling

for volume renderingº. In: Proceedings of SIGRAD 2013; Visual Computing. 94. 2013,

pp. 55±60.

[Liu+17] D. Liu, Z. Wang, Y. Fan, X. Liu, Z. Wang, S. Chang, and T. Huang. ªRobust video super-

resolution with learned temporal dynamicsº. In: Computer Vision (ICCV), 2017 IEEE

International Conference on. IEEE. 2017, pp. 2526±2534.

[Liu+19a] H.-T. D. Liu, M. Tao, C.-L. Li, D. Nowrouzezahrai, and A. Jacobson. ªBeyond Pixel

Norm-Balls: Parametric Adversaries using an Analytically Differentiable Rendererº. In:

International Conference on Learning Representations. 2019.

[Liu+19b] S. Liu, T. Li, W. Chen, and H. Li. ªSoft rasterizer: A differentiable renderer for image-based

3d reasoningº. In: Proceedings of the IEEE/CVF International Conference on Computer

Vision. 2019, pp. 7708±7717.

[Liu+22] H. Liu, Z. Ruan, P. Zhao, C. Dong, F. Shang, Y. Liu, L. Yang, and R. Timofte. ªVideo super-

resolution based on deep learning: a comprehensive surveyº. In: Artificial Intelligence

Review (2022), pp. 1±55.

81

BIBLIOGRAPHY

[LJ18] A. Lat and C. Jawahar. ªEnhancing OCR accuracy with super resolutionº. In: 2018 24th

International Conference on Pattern Recognition (ICPR). IEEE. 2018, pp. 3162±3167.

[LJM21] J. Lei, K. Jia, and Y. Ma. ªLearning and Meshing from Deep Implicit Surface Networks

Using an Efficient Implementation of Analytic Marchingº. In: IEEE Transactions on Pattern

Analysis and Machine Intelligence (2021), pp. 1±1. DOI: 10.1109/TPAMI.2021.3135007.

[Lju+16] P. Ljung, J. Krüger, E. Groller, M. Hadwiger, C. D. Hansen, and A. Ynnerman. ªState of

the art in transfer functions for direct volume renderingº. In: Computer Graphics Forum.

Vol. 35. 3. Wiley Online Library. 2016, pp. 669±691.

[LK10] S. Laine and T. Karras. ªEfficient sparse voxel octreesº. In: IEEE Transactions on Visual-

ization and Computer Graphics 17.8 (2010), pp. 1048±1059.

[LMW21] D. B. Lindell, J. N. Martel, and G. Wetzstein. ªAutoInt: Automatic integration for fast

neural volume renderingº. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). 2021, pp. 14556±14565.

[Lu+21] Y. Lu, K. Jiang, J. A. Levine, and M. Berger. ªCompressive Neural Representations of

Volumetric Scalar Fieldsº. In: Computer Graphics Forum (2021).

[MÈ+21] T. Müller, F. Rousselle, J. Novák, and A. Keller. ªReal-time Neural Radiance Caching for

Path Tracingº. In: ACM Transactions on Graphics 40.4 (Aug. 2021), 36:1±36:16. DOI:

10.1145/3450626.3459812.

[MÈ+22] T. Müller, A. Evans, C. Schied, and A. Keller. ªInstant Neural Graphics Primitives with a

Multiresolution Hash Encodingº. In: ACM Transactions on Graphics 41.4 (July 2022),

102:1±102:15. DOI: 10.1145/3528223.3530127.

[MAG19] F. Marton, M. Agus, and E. Gobbetti. ªA framework for GPU-accelerated exploration

of massive time-varying rectilinear scalar volumesº. In: Computer Graphics Forum 38.3

(2019), pp. 53±66. DOI: 10.1111/cgf.13671.

[Mar+04] G. Marmitt, A. Kleer, I. Wald, H. Friedrich, and P. Slusallek. ªFast and Accurate Ray-Voxel

Intersection Techniques for Iso-Surface Ray Tracing.º In: International Symposium on

Vision, Modeling, and Visualization (VMV). Vol. 4. 2004, pp. 429±435.

[Mar+13] R. Marques, C. Bouville, M. Ribardière, L. P. Santos, and K. Bouatouch. ªSpherical

Fibonacci Point Sets for Illumination Integralsº. In: Computer Graphics Forum 32.8

(2013), pp. 134±143. DOI: https://doi.org/10.1111/cgf.12190.

[Mar+21] J. N. P. Martel, D. B. Lindell, C. Z. Lin, E. R. Chan, M. Monteiro, and G. Wetzstein. ªAcorn:

adaptive coordinate networks for neural scene representationº. In: ACM Transactions on

Graphics (TOG) 40.4 (2021), pp. 1±13.

82

https://doi.org/10.1109/TPAMI.2021.3135007
https://doi.org/10.1145/3450626.3459812
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1111/cgf.13671
https://doi.org/https://doi.org/10.1111/cgf.12190

BIBLIOGRAPHY

[Max95] N. Max. ªOptical models for direct volume renderingº. In: IEEE Transactions on Visual-

ization and Computer Graphics (TVCG) 1.2 (1995), pp. 99±108.

[McN+04] A. McNamara, A. Treuille, Z. PopoviÂc, and J. Stam. ªFluid Control Using the Adjoint

Methodº. In: ACM Transactions on Graphics 23.3 (Aug. 2004), pp. 449±456. DOI: 10.

1145/1015706.1015744.

[Mei+01] M. Meiûner, M. Doggett, J. Hirche, and U. Kanus. ªEfficient space leaping for ray casting

architecturesº. In: Volume Graphics 2001. Springer. 2001, pp. 149±161.

[Mei+21] D. Meister, S. Ogaki, C. Benthin, M. J. Doyle, M. Guthe, and J. Bittner. ªA survey on

bounding volume hierarchies for ray tracingº. In: Computer Graphics Forum. Vol. 40. 2.

Wiley Online Library. 2021, pp. 683±712.

[Mes+19] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. ªOccupancy net-

works: Learning 3d reconstruction in function spaceº. In: Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR). 2019, pp. 4460±4470.

[Mey+18] S. Meyer, A. Djelouah, B. McWilliams, A. Sorkine-Hornung, M. Gross, and C. Schroers.

ªPhasenet for video frame interpolationº. In: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR). 2018, pp. 498±507.

[MH08] L. Van der Maaten and G. Hinton. ªVisualizing data using t-SNE.º In: Journal of machine

learning research 9.11 (2008).

[MHN+13] A. L. Maas, A. Y. Hannun, A. Y. Ng, et al. ªRectifier nonlinearities improve neural network

acoustic modelsº. In: Proc. icml. Vol. 30. 1. Citeseer. 2013, p. 3.

[Mil+20] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. ªNeRF:

Representing Scenes as Neural Radiance Fields for View Synthesisº. In: Computer Vision

± ECCV 2020. 2020, pp. 405±421. DOI: 10.1007/978-3-030-58452-8_24.

[Mit07] M. Mittring. ªFinding next gen: Cryengine 2º. In: ACM SIGGRAPH 2007 courses (2007),

pp. 97±121.

[MKH18] E. Miqueles, N. Koshev, and E. S. Helou. ªA Backprojection Slice Theorem for Tomo-

graphic Reconstructionº. In: IEEE Transactions on Image Processing 27.2 (2018), pp. 894±

906. DOI: 10.1109/TIP.2017.2766785.

[ML94] S. R. Marschner and R. J. Lobb. ªAn evaluation of reconstruction filters for volume

renderingº. In: Proceedings Visualization’94. IEEE. 1994, pp. 100±107.

[MO74] R. Mersereau and A. Oppenheim. ªDigital reconstruction of multidimensional signals

from their projectionsº. In: Proceedings of the IEEE 62.10 (1974), pp. 1319±1338. DOI:

10.1109/PROC.1974.9625.

83

https://doi.org/10.1145/1015706.1015744
https://doi.org/10.1145/1015706.1015744
https://doi.org/10.1007/978-3-030-58452-8_24
https://doi.org/10.1109/TIP.2017.2766785
https://doi.org/10.1109/PROC.1974.9625

BIBLIOGRAPHY

[Mor+19] N. Morrical, W. Usher, I. Wald, and V. Pascucci. ªEfficient space skipping and adaptive

sampling of unstructured volumes using hardware accelerated ray tracingº. In: 2019

IEEE Visualization Conference (VIS). IEEE. 2019, pp. 256±260.

[Müh+07] K. Mühler, M. Neugebauer, C. Tietjen, and B. Preim. ªViewpoint selection for intervention

planning.º In: EuroVis. 2007, pp. 267±274.

[MYR10] Y. Mukaigawa, Y. Yagi, and R. Raskar. ªAnalysis of light transport in scattering mediaº.

In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR). IEEE. 2010, pp. 153±160.

[Mys98] K. Myszkowski. ªThe Visible Differences Predictor: applications to global illumination

problemsº. In: Rendering Techniques ’98. Ed. by G. Drettakis and N. Max. Vienna: Springer

Vienna, 1998, pp. 223±236.

[NA92] K. Novins and J. Arvo. ªControlled precision volume integrationº. In: Proceedings of

the 1992 workshop on Volume visualization. 1992, pp. 83±89. DOI: 10.1145/147130.

147154.

[Nar+06] S. G. Narasimhan, M. Gupta, C. Donner, R. Ramamoorthi, S. K. Nayar, and H. W. Jensen.

ªAcquiring Scattering Properties of Participating Media by Dilutionº. In: ACM SIGGRAPH

2006 Papers. SIGGRAPH ’06. Boston, Massachusetts: ACM, 2006, pp. 1003±1012. DOI:

10.1145/1179352.1141986.

[NAS92] K. L. Novins, J. Arvo, and D. Salesin. Adaptive error bracketing for controlled-precision

volume rendering. Tech. rep. Cornell University, 1992.

[Nay+06] S. K. Nayar, G. Krishnan, M. D. Grossberg, and R. Raskar. ªFast Separation of Direct and

Global Components of a Scene Using High Frequency Illuminationº. In: ACM SIGGRAPH

2006 Papers. SIGGRAPH ’06. Boston, Massachusetts: ACM, 2006, pp. 935±944. DOI:

10.1145/1179352.1141977.

[ND+19] M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob. ªMitsuba 2: A Retargetable Forward

and Inverse Rendererº. In: ACM Transactions on Graphics 38.6 (Nov. 2019). DOI: 10.

1145/3355089.3356498.

[ND+20] M. Nimier-David, S. Speierer, B. Ruiz, and W. Jakob. ªRadiative Backpropagation: An

Adjoint Method for Lightning-Fast Differentiable Renderingº. In: ACM Transactions

on Graphics (Proceedings of SIGGRAPH) 39.4 (July 2020). DOI: 10.1145/3386569.

3392406.

84

https://doi.org/10.1145/147130.147154
https://doi.org/10.1145/147130.147154
https://doi.org/10.1145/1179352.1141986
https://doi.org/10.1145/1179352.1141977
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3355089.3356498
https://doi.org/10.1145/3386569.3392406
https://doi.org/10.1145/3386569.3392406

BIBLIOGRAPHY

[ND+21] M. Nimier-David, Z. Dong, W. Jakob, and A. Kaplanyan. ªMaterial and Lighting Recon-

struction for Complex Indoor Scenes with Texture-space Differentiable Renderingº. In:

Eurographics Symposium on Rendering - DL-only Track. The Eurographics Association,

2021. DOI: 10.2312/sr.20211292.

[ND+22] M. Nimier-David, T. Müller, A. Keller, and W. Jakob. ªUnbiased Inverse Volume Rendering

with Differential Trackersº. In: ACM Transactions on Graphics 41.4 (July 2022), 44:1±

44:20. DOI: 10.1145/3528223.3530073.

[Nef+21] T. Neff, P. Stadlbauer, M. Parger, A. Kurz, J. H. Mueller, C. R. A. Chaitanya, A. Kaplanyan,

and M. Steinberger. ªDONeRF: Towards Real-Time Rendering of Compact Neural Ra-

diance Fields using Depth Oracle Networksº. In: Computer Graphics Forum. Vol. 40. 4.

Wiley Online Library. 2021, pp. 45±59.

[Nei10] R. D. Neidinger. ªIntroduction to automatic differentiation and MATLAB object-oriented

programmingº. In: SIAM review 52.3 (2010), pp. 545±563.

[Neu+02] A. Neubauer, L. Mroz, H. Hauser, and R. Wegenkittl. ªCell-Based First-Hit Ray Casting.º

In: VisSym. 2002, pp. 77±86.

[New+11] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison, P. Kohi, J.

Shotton, S. Hodges, and A. Fitzgibbon. ªKinectFusion: Real-time dense surface mapping

and trackingº. In: 2011 10th IEEE International Symposium on Mixed and Augmented

Reality. 2011, pp. 127±136. DOI: 10.1109/ISMAR.2011.6092378.

[NH10] V. Nair and G. E. Hinton. ªRectified linear units improve restricted boltzmann machinesº.

In: International Conference on Machine Learning (ICML). 2010.

[NH91] G. M. Nielson and B. Hamann. ªThe Asymptotic Decider: Resolving the Ambiguity in

Marching Cubesº. In: Proceedings of the 2nd Conference on Visualization ’91. VIS ’91. San

Diego, California: IEEE Computer Society Press, 1991, pp. 83±91.

[Nic06] R. W. D. Nickalls. ªViète, Descartes and the cubic equationº. In: The Mathematical Gazette

90.518 (2006), pp. 203±208. DOI: 10.1017/S0025557200179598.

[NJJ21] B. Nicolet, A. Jacobson, and W. Jakob. ªLarge Steps in Inverse Rendering of Geometryº.

In: ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia) 40.6 (Dec. 2021). DOI:

10.1145/3478513.3480501.

[NL18] S. Niklaus and F. Liu. ªContext-aware synthesis for video frame interpolationº. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2018,

pp. 1701±1710.

85

https://doi.org/10.2312/sr.20211292
https://doi.org/10.1145/3528223.3530073
https://doi.org/10.1109/ISMAR.2011.6092378
https://doi.org/10.1017/S0025557200179598
https://doi.org/10.1145/3478513.3480501

BIBLIOGRAPHY

[NML17a] S. Niklaus, L. Mai, and F. Liu. ªVideo frame interpolation via adaptive convolutionº. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2017, pp. 670±679.

[NML17b] S. Niklaus, L. Mai, and F. Liu. ªVideo frame interpolation via adaptive separable convo-

lutionº. In: Proceedings of the IEEE International Conference on Computer Vision. 2017,

pp. 261±270.

[NP+18] T. H. Nguyen-Phuoc, C. Li, S. Balaban, and Y. Yang. ªRendernet: A deep convolutional

network for differentiable rendering from 3d shapesº. In: Advances in Neural Information

Processing Systems. 2018, pp. 7891±7901.

[NVI18] NVIDIA. NVIDIA Turing GPU Architecture. https://images.nvidia.com/aem-dam/en-

zz/Solutions/design-visualization/technologies/turing-architecture/

NVIDIA-Turing-Architecture-Whitepaper.pdf. Accessed: 2022-05-11. 2018.

[NW99] J. Nocedal and S. J. Wright. Numerical optimization. Springer, 1999.

[Oka+15] M. Okabe, Y. Dobashi, K. Anjyo, and R. Onai. ªFluid volume modeling from sparse

multi-view images by appearance transferº. In: ACM Transactions on Graphics (TOG)

34.4 (2015), pp. 1±10.

[Par+18] S.-J. Park, H. Son, S. Cho, K.-S. Hong, and S. Lee. ªSRFeat: Single image super-resolution

with feature discriminationº. In: Proceedings of the European conference on computer

vision (ECCV). 2018, pp. 439±455.

[Par+98] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. ªInteractive ray tracing for

isosurface renderingº. In: Proceedings Visualization’98 (Cat. No. 98CB36276). IEEE. 1998,

pp. 233±238.

[Pas+19] A. Paszke et al. ªPyTorch: An Imperative Style, High-Performance Deep Learning Libraryº.

In: Advances in Neural Information Processing Systems (NEURIPS). Curran Associates,

Inc., 2019, pp. 8024±8035.

[Per+15] S. Perera, N. Barnes, X. He, S. Izadi, P. Kohli, and B. Glocker. ªMotion Segmentation of

Truncated Signed Distance Function Based Volumetric Surfacesº. In: 2015 IEEE Winter

Conference on Applications of Computer Vision. 2015, pp. 1046±1053. DOI: 10.1109/

WACV.2015.144.

[Pet+19] F. Petersen, A. H. Bermano, O. Deussen, and D. Cohen-Or. ªPix2vex: Image-to-geometry

reconstruction using a smooth differentiable rendererº. In: arXiv preprint (2019). DOI:

10.48550/arXiv.1903.11149.

86

https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://doi.org/10.1109/WACV.2015.144
https://doi.org/10.1109/WACV.2015.144
https://doi.org/10.48550/arXiv.1903.11149

BIBLIOGRAPHY

[Por+19] W. P. Porter, Y. Xing, B. R. von Ohlen, J. Han, and C. Wang. ªA Deep Learning Approach to

Selecting Representative Time Steps for Time-Varying Multivariate Dataº. In: 2019 IEEE

Visualization Conference (VIS). 2019, pp. 1±5. DOI: 10.1109/VISUAL.2019.8933759.

[PS89] J. Painter and K. Sloan. ªAntialiased ray tracing by adaptive progressive refinementº. In:

Proceedings of the 16th annual conference on Computer graphics and interactive techniques.

1989, pp. 281±288.

[Pum+21] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer. ªD-NeRF: Neural radiance

fields for dynamic scenesº. In: Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR). 2021, pp. 10318±10327.

[RAHK22] S. R. Richter, H. A. Al Haija, and V. Koltun. ªEnhancing photorealism enhancementº. In:

IEEE Transactions on Pattern Analysis and Machine Intelligence (2022).

[Rai+20] G. Rainer, A. Ghosh, W. Jakob, and T. Weyrich. ªUnified neural encoding of BTFsº. In:

Computer Graphics Forum. Vol. 39. 2. Wiley Online Library. 2020, pp. 167±178.

[Rai+22] G. Rainer, A. Bousseau, T. Ritschel, and G. Drettakis. ªNeural Precomputed Radiance

Transferº. In: Computer Graphics Forum. 2022.

[Rei+12] F. Reichl, M. G. Chajdas, K. Bürger, and R. Westermann. ªHybrid Sample-based Surface

Renderingº. In: Vision, Modeling and Visualization. The Eurographics Association, 2012.

DOI: 10.2312/PE/VMV/VMV12/047-054.

[Rei+19] M. Reichstein, G. Camps-Valls, B. Stevens, M. Jung, J. Denzler, N. Carvalhais, et al. ªDeep

learning and process understanding for data-driven Earth system scienceº. In: Nature

566.7743 (2019), pp. 195±204.

[Rey+85] R. Reynolds, G. T.Herman, J. Udupa, and L. Che. ªSurface Shading in the Cuberille

Environmentº. In: IEEE Computer Graphics and Applications 5.12 (1985), pp. 33±43. DOI:

10.1109/MCG.1985.276275.

[RFB15] O. Ronneberger, P. Fischer, and T. Brox. ªU-net: Convolutional networks for biomedical

image segmentationº. In: International Conference on Medical image computing and

computer-assisted intervention. Springer. 2015, pp. 234±241.

[RFS03] J. Rigau, M. Feixas, and M. Sbert. ªRefinement criteria based on f-divergencesº. In:

Rendering Techniques. 2003, pp. 260±269.

[Rho+15] H. Rhodin, N. Robertini, C. Richardt, H.-P. Seidel, and C. Theobalt. ªA versatile scene

model with differentiable visibility applied to generative pose estimationº. In: Proceedings

of the IEEE International Conference on Computer Vision. 2015, pp. 765±773.

87

https://doi.org/10.1109/VISUAL.2019.8933759
https://doi.org/10.2312/PE/VMV/VMV12/047-054
https://doi.org/10.1109/MCG.1985.276275

BIBLIOGRAPHY

[RHW85] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning internal representations

by error propagation. Tech. rep. California Univ San Diego La Jolla Inst for Cognitive

Science, 1985.

[RHW86] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. ªLearning representations by back-

propagating errorsº. In: nature 323.6088 (1986), pp. 533±536.

[RKE00] S. Rottger, M. Kraus, and T. Ertl. ªHardware-accelerated volume and isosurface ren-

dering based on cell-projectionº. In: Proceedings Visualization 2000. VIS 2000 (Cat.

No.00CH37145). 2000, pp. 109±116. DOI: 10.1109/VISUAL.2000.885683.

[Rob20] M. Roberts. The Unreasonable Effectiveness of Quasirandom Sequences. http : / /

extremelearning . com . au / unreasonable - effectiveness - of - quasirandom -

sequences/. Accessed: 2022-05-14. 2020.

[RPG99] M. Ramasubramanian, S. N. Pattanaik, and D. P. Greenberg. ªA Perceptually Based

Physical Error Metric for Realistic Image Synthesisº. In: Proceedings of the 26th Annual

Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’99. ACM, 1999,

pp. 73±82. DOI: 10.1145/311535.311543.

[Rui+11] M. Ruiz, A. Bardera, I. Boada, and I. Viola. ªAutomatic transfer functions based on

informational divergenceº. In: IEEE Transactions on Visualization and Computer Graphics

17.12 (2011), pp. 1932±1941.

[Rus+15] O. Russakovsky et al. ªImageNet Large Scale Visual Recognition Challengeº. In: Inter-

national Journal of Computer Vision (IJCV) 115.3 (2015), pp. 211±252. DOI: 10.1007/

s11263-015-0816-y.

[SA07] P. Shanmugam and O. Arikan. ªHardware accelerated ambient occlusion techniques on

GPUsº. In: Proceedings of the 2007 symposium on Interactive 3D graphics and games. 2007,

pp. 73±80.

[SB21] S. Sahoo and M. Berger. ªIntegration-Aware Vector Field Super Resolutionº. In: Euro-

Vis 2021 - Short Papers. Ed. by M. Agus, C. Garth, and A. Kerren. The Eurographics

Association, 2021. DOI: 10.2312/evs.20211054.

[Sch13] J. Schwarze. ªCubic and Quartic Rootsº. In: Graphics gems. Ed. by A. S. Glassner. Elsevier,

2013. Chap. VIII.1, pp. 404±407.

[Shi+16] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and Z.

Wang. ªReal-time single image and video super-resolution using an efficient sub-pixel

convolutional neural networkº. In: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 2016, pp. 1874±1883.

88

https://doi.org/10.1109/VISUAL.2000.885683
http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
https://doi.org/10.1145/311535.311543
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.2312/evs.20211054

BIBLIOGRAPHY

[Sil+17] I. N. da Silva, D. Hernane Spatti, R. Andrade Flauzino, L. H. B. Liboni, and S. F. dos

Reis Alves. ªForecast of Stock Market Trends Using Recurrent Networksº. In: Artificial

Neural Networks : A Practical Course. Cham: Springer International Publishing, 2017,

pp. 221±227. DOI: 10.1007/978-3-319-43162-8_13.

[SK94] L. M. Sobierajski and A. E. Kaufman. ªVolumetric Ray Tracingº. In: Proceedings of the

1994 Symposium on Volume Visualization. VVS ’94. Tysons Corner, Virginia, USA: ACM,

1994, pp. 11±18. DOI: 10.1145/197938.197949.

[SMK05] S. M. Seitz, Y. Matsushita, and K. N. Kutulakos. ªA theory of inverse light transportº. In:

Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1. Vol. 2. IEEE.

2005, pp. 1440±1447.

[Sri+21] P. P. Srinivasan, B. Deng, X. Zhang, M. Tancik, B. Mildenhall, and J. T. Barron. ªNeRV:

Neural reflectance and visibility fields for relighting and view synthesisº. In: Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021,

pp. 7495±7504.

[SSH17] M. S. Sajjadi, B. Scholkopf, and M. Hirsch. ªEnhanceNet: Single image super-resolution

through automated texture synthesisº. In: Proceedings of the IEEE international conference

on computer vision. 2017, pp. 4491±4500.

[ST19] N. Shi and Y. Tao. ªCNNs based viewpoint estimation for volume visualizationº. In: ACM

Transactions on Intelligent Systems and Technology (TIST) 10.3 (2019), pp. 1±22.

[Sut+13] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. ªOn the importance of initialization and

momentum in deep learningº. In: International conference on machine learning. PMLR.

2013, pp. 1139±1147.

[SVB18] M. S. Sajjadi, R. Vemulapalli, and M. Brown. ªFrame-recurrent video super-resolutionº.

In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

2018, pp. 6626±6634.

[SW88] H. Samet and R. E. Webber. ªHierarchical data structures and algorithms for computer

graphics. I. Fundamentalsº. In: IEEE Computer Graphics and applications 8.3 (1988),

pp. 48±68.

[Sze+14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fergus.

ªIntriguing properties of neural networksº. In: International Conference on Learning

Representations (ICLR). 2014.

[Szt+21] A. Sztrajman, G. Rainer, T. Ritschel, and T. Weyrich. ªNeural BRDF Representation and

Importance Samplingº. In: Computer Graphics Forum. Vol. 40. 6. Wiley Online Library.

2021, pp. 332±346.

89

https://doi.org/10.1007/978-3-319-43162-8_13
https://doi.org/10.1145/197938.197949

BIBLIOGRAPHY

[SZW19] V. Sitzmann, M. Zollhöfer, and G. Wetzstein. ªScene representation networks: Continuous

3D-structure-aware neural scene representationsº. In: Advances in Neural Information

Processing Systems. 2019, pp. 1119±1130.

[Tak+05] S. Takahashi, I. Fujishiro, Y. Takeshima, and T. Nishita. ªA feature-driven approach to

locating optimal viewpoints for volume visualizationº. In: IEEE Visualization (VIS). IEEE.

2005, pp. 495±502.

[Tak+21] T. Takikawa, J. Litalien, K. Yin, K. Kreis, C. Loop, D. Nowrouzezahrai, A. Jacobson, M.

McGuire, and S. Fidler. ªNeural geometric level of detail: Real-time rendering with

implicit 3D shapesº. In: Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR). 2021, pp. 11358±11367.

[Tan+20] M. Tancik, P. Srinivasan, B. Mildenhall, S. Fridovich-Keil, N. Raghavan, U. Singhal,

R. Ramamoorthi, J. Barron, and R. Ng. ªFourier Features Let Networks Learn High

Frequency Functions in Low Dimensional Domainsº. In: Advances in Neural Information

Processing Systems 33 (2020), pp. 7537±7547.

[Tao+09] Y. Tao, H. Lin, H. Bao, F. Dong, and G. Clapworthy. ªStructure-aware viewpoint selection

for volume visualizationº. In: 2009 IEEE Pacific Visualization Symposium. IEEE. 2009,

pp. 193±200.

[Tao+16] Y. Tao, Q. Wang, W. Chen, Y. Wu, and H. Lin. ªSimilarity voting based viewpoint selection

for volumesº. In: Computer graphics forum. Vol. 35. 3. Wiley Online Library. 2016,

pp. 391±400.

[Tao+17] X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia. ªDetail-Revealing Deep Video Super-

Resolutionº. In: The IEEE International Conference on Computer Vision (ICCV). 2017.

[Tew+20] A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi, K. Sunkavalli, R. Martin-Brualla, T.

Simon, J. Saragih, M. Nieûner, et al. ªState of the art on neural renderingº. In: Computer

Graphics Forum. Vol. 39. 2. Wiley Online Library. 2020, pp. 701±727.

[Tew+22] A. Tewari et al. ªAdvances in Neural Renderingº. In: Computer Graphics Forum (2022).

DOI: 10.1111/cgf.14507.

[TFE19] G. Tkachev, S. Frey, and T. Ertl. ªLocal prediction models for spatiotemporal volume

visualizationº. In: IEEE Transactions on Visualization and Computer Graphics 27.7 (2019),

pp. 3091±3108.

[The+17] L. Theis, W. Shi, A. Cunningham, and F. Huszár. ªLossy Image Compression with Com-

pressive Autoencodersº. In: 5th International Conference on Learning Representations

(ICLR). 2017. DOI: 10.48550/ARXIV.1703.00395.

90

https://doi.org/10.1111/cgf.14507
https://doi.org/10.48550/ARXIV.1703.00395

BIBLIOGRAPHY

[Tie+90] U. Tiede, K. Hoehne, M. Bomans, A. Pommert, M. Riemer, and G. Wiebecke. ªInvestigation

of medical 3D-rendering algorithmsº. In: IEEE Computer Graphics and Applications 10.2

(1990), pp. 41±53. DOI: 10.1109/38.50672.

[Ton+17] T. Tong, G. Li, X. Liu, and Q. Gao. ªImage super-resolution using dense skip connectionsº.

In: Proceedings of the IEEE International Conference on Computer Vision. 2017, pp. 4799±

4807.

[TPG99] G. M. Treece, R. W. Prager, and A. H. Gee. ªRegularised marching tetrahedra: improved

iso-surface extractionº. In: Computers & Graphics 23.4 (1999), pp. 583±598.

[Tre+12] M. Treib, K. Bürger, F. Reichl, C. Meneveau, A. Szalay, and R. Westermann. ªTurbulence

Visualization at the Terascale on Desktop PCsº. In: IEEE Transactions on Visualization

and Computer Graphics 18.12 (2012), pp. 2169±2177. DOI: 10.1109/TVCG.2012.274.

[Tur+19] O. T. Tursun, E. Arabadzhiyska-Koleva, M. Wernikowski, R. Mantiuk, H.-P. Seidel, K.

Myszkowski, and P. Didyk. ªLuminance-Contrast-Aware Foveated Renderingº. In: ACM

Transactions on Graphics 38.4 (July 2019). DOI: 10.1145/3306346.3322985.

[TZN19] J. Thies, M. Zollhöfer, and M. Nieûner. ªDeferred neural rendering: Image synthesis

using neural texturesº. In: ACM Transactions on Graphics (TOG) 38.4 (2019), pp. 1±12.

[UH83] J. Udupa and G. Herman. ªDisplay of 3-D Digital Images: Computational Foundations

and Medical Applicationsº. In: IEEE Computer Graphics and Applications 3.05 (1983),

pp. 39±46. DOI: 10.1109/MCG.1983.263213.

[van+15] W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals, K. J. Batenburg,

and J. Sijbers. ªThe ASTRA Toolbox: A platform for advanced algorithm development in

electron tomographyº. In: Ultramicroscopy 157 (2015), pp. 35±47. DOI: https://doi.

org/10.1016/j.ultramic.2015.05.002.

[Vas+17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and

I. Polosukhin. ªAttention is all you needº. In: Advances in neural information processing

systems 30 (2017).

[Váz+01] P.-P. Vázquez, M. Feixas, M. Sbert, and W. Heidrich. ªViewpoint selection using viewpoint

entropy.º In: VMV. Vol. 1. Citeseer. 2001, pp. 273±280.

[VMN08] P.-P. Vázquez, E. Monclús, and I. Navazo. ªRepresentative views and paths for volume

modelsº. In: International Symposium on Smart Graphics. Springer. 2008, pp. 106±117.

[VSJ21] D. Vicini, S. Speierer, and W. Jakob. ªPath replay backpropagation: differentiating light

paths using constant memory and linear timeº. In: ACM Transactions on Graphics (TOG)

40.4 (2021), pp. 1±14.

91

https://doi.org/10.1109/38.50672
https://doi.org/10.1109/TVCG.2012.274
https://doi.org/10.1145/3306346.3322985
https://doi.org/10.1109/MCG.1983.263213
https://doi.org/https://doi.org/10.1016/j.ultramic.2015.05.002
https://doi.org/https://doi.org/10.1016/j.ultramic.2015.05.002

BIBLIOGRAPHY

[WAH93] J. Weng, N. Ahuja, and T. Huang. ªLearning recognition and segmentation of 3-D objects

from 2-D imagesº. In: 1993 (4th) International Conference on Computer Vision. 1993,

pp. 121±128. DOI: 10.1109/ICCV.1993.378228.

[Wal00] J. Walden. ªAnalysis of the direct Fourier method for computer tomographyº. In: IEEE

transactions on Medical Imaging 19.3 (2000), pp. 211±222.

[Wan+04] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. ªImage quality assessment: from

error visibility to structural similarityº. In: IEEE transactions on image processing 13.4

(2004), pp. 600±612.

[Wan+18] X. Wang, K. Yu, S. Wu, J. Gu, Y. Liu, C. Dong, Y. Qiao, and C. Change Loy. ªESRGAN:

Enhanced super-resolution generative adversarial networksº. In: Proceedings of the

European conference on computer vision (ECCV) workshops. 2018, pp. 0±0.

[WCH21] Z. Wang, J. Chen, and S. C. H. Hoi. ªDeep Learning for Image Super-Resolution: A

Surveyº. In: IEEE Transactions on Pattern Analysis and Machine Intelligence 43.10 (2021),

pp. 3365±3387. DOI: 10.1109/TPAMI.2020.2982166.

[Wei+20] S. Weiss, M. IËsık, J. Thies, and R. Westermann. ªLearning Adaptive Sampling and Recon-

struction for Volume Visualizationº. In: IEEE Transactions on Visualization and Computer

Graphics (2020), pp. 1±1. DOI: 10.1109/TVCG.2020.3039340.

[Wei+21] S. Weiss, M. Chu, N. Thuerey, and R. Westermann. ªVolumetric Isosurface Rendering

with Deep Learning-Based Super-Resolutionº. In: IEEE Transactions on Visualization and

Computer Graphics 27.6 (2021), pp. 3064±3078. DOI: 10.1109/TVCG.2019.2956697.

[Wen64] R. E. Wengert. ªA simple automatic derivative evaluation programº. In: Communications

of the ACM 7.8 (1964), pp. 463±464.

[WH22] C. Wang and J. Han. ªDL4SciVis: A State-of-the-Art Survey on Deep Learning for Scientific

Visualizationº. In: IEEE Transactions on Visualization and Computer Graphics (2022),

pp. 1±1. DOI: 10.1109/TVCG.2022.3167896.

[WHW21] S. Weiss, P. Hermüller, and R. Westermann. ªFast Neural Representations for Direct

Volume Renderingº. In: arXiv preprint (2021). DOI: 10.48550/arXiv.2112.01579.

[WK18] E. Wong and Z. Kolter. ªProvable defenses against adversarial examples via the convex

outer adversarial polytopeº. In: International Conference on Machine Learning. PMLR.

2018, pp. 5286±5295.

[WKB99] M. Wan, A. Kaufman, and S. Bryson. ªHigh performance presence-accelerated ray castingº.

In: Proceedings of the conference on Visualization ’99. 1999, pp. 379±386.

92

https://doi.org/10.1109/ICCV.1993.378228
https://doi.org/10.1109/TPAMI.2020.2982166
https://doi.org/10.1109/TVCG.2020.3039340
https://doi.org/10.1109/TVCG.2019.2956697
https://doi.org/10.1109/TVCG.2022.3167896
https://doi.org/10.48550/arXiv.2112.01579

BIBLIOGRAPHY

[WM92] P. L. Williams and N. Max. ªA volume density optical modelº. In: Proceedings of the 1992

workshop on Volume visualization. 1992, pp. 61±68.

[WSK18] C.-Y. Wu, N. Singhal, and P. Krahenbuhl. ªVideo compression through image interpo-

lationº. In: Proceedings of the European conference on computer vision (ECCV). 2018,

pp. 416±431.

[Wur+21] S. W. Wurster, H.-W. Shen, H. Guo, T. Peterka, M. Raj, and J. Xu. ªDeep Hierarchical

Super-Resolution for Scientific Data Reduction and Visualizationº. In: arXiv preprint

(2021). DOI: 10.48550/arXiv.2107.00462.

[WW21] S. Weiss and R. Westermann. ªAnalytic Ray Splitting for Controlled Precision DVRº. In:

EuroVis 2021 - Short Papers. Ed. by M. Agus, C. Garth, and A. Kerren. The Eurographics

Association, 2021. DOI: 10.2312/evs.20211051.

[WW22] S. Weiss and R. Westermann. ªDifferentiable Direct Volume Renderingº. In: IEEE Transac-

tions on Visualization and Computer Graphics 28.1 (2022), pp. 562±572. DOI: 10.1109/

TVCG.2021.3114769.

[WZM21] I. Wald, S. Zellmann, and N. Morrical. ªFaster RTX-Accelerated Empty Space Skipping

using Triangulated Active Region Boundary Geometryº. In: Eurographics Symposium on

Parallel Graphics and Visualization. 2021.

[Xie+18] Y. Xie, E. Franz, M. Chu, and N. Thuerey. ªtempoGAN: A Temporally Coherent, Volumetric

GAN for Super-resolution Fluid Flowº. In: ACM Transactions on Graphics 37.4 (2018).

[Xu+05] Q. Xu, S. Bao, R. Zhang, R. Hu, and M. Sbert. ªAdaptive sampling for Monte Carlo global

illumination using Tsallis entropyº. In: International Conference on Computational and

Information Science. Springer. 2005, pp. 989±994.

[Xu+15] B. Xu, N. Wang, T. Chen, and M. Li. ªEmpirical evaluation of rectified activations in

convolutional networkº. In: arXiv preprint (2015). DOI: 10.48550/arXiv.1505.00853.

[XYL20] M.-C. Xu, F. Yin, and C.-L. Liu. ªSRR-GAN: Super-Resolution based Recognition with

GAN for Low-Resolved Text Imagesº. In: 2020 17th International Conference on Frontiers

in Handwriting Recognition (ICFHR). 2020, pp. 1±6. DOI: 10.1109/ICFHR2020.2020.

00012.

[Yan+19a] C. Yang, Y. Li, C. Liu, and X. Yuan. ªDeep learning-based viewpoint recommendation in

volume visualizationº. In: Journal of Visualization 22.5 (2019), pp. 991±1003.

[Yan+19b] W. Yang, X. Zhang, Y. Tian, W. Wang, J.-H. Xue, and Q. Liao. ªDeep learning for single

image super-resolution: A brief reviewº. In: IEEE Transactions on Multimedia 21.12

(2019), pp. 3106±3121.

93

https://doi.org/10.48550/arXiv.2107.00462
https://doi.org/10.2312/evs.20211051
https://doi.org/10.1109/TVCG.2021.3114769
https://doi.org/10.1109/TVCG.2021.3114769
https://doi.org/10.48550/arXiv.1505.00853
https://doi.org/10.1109/ICFHR2020.2020.00012
https://doi.org/10.1109/ICFHR2020.2020.00012

BIBLIOGRAPHY

[You+19] C. You, G. Li, Y. Zhang, X. Zhang, H. Shan, M. Li, S. Ju, Z. Zhao, Z. Zhang, W. Cong,

et al. ªCT super-resolution GAN constrained by the identical, residual, and cycle learning

ensemble (GAN-CIRCLE)º. In: IEEE transactions on medical imaging 39.1 (2019), pp. 188±

203.

[YR19] Y. Yang and M. Rinard. ªCorrectness verification of neural networksº. In: arXiv preprint

(2019). DOI: 10.48550/arXiv.1906.01030.

[Yu+21] A. Yu, S. Fridovich-Keil, M. Tancik, Q. Chen, B. Recht, and A. Kanazawa. ªPlenoxels:

Radiance Fields without Neural Networksº. In: arXiv preprint arXiv:2112.05131 (2021).

[ZAM11] Z. Zheng, N. Ahmed, and K. Mueller. ªiView: A feature clustering framework for sug-

gesting informative views in volume visualizationº. In: IEEE transactions on visualization

and computer graphics 17.12 (2011), pp. 1959±1968.

[Zei12] M. D. Zeiler. ªAdadelta: an adaptive learning rate methodº. In: arXiv preprint (2012).

DOI: 10.48550/arXiv.1212.5701.

[Zha+18] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. ªThe Unreasonable Effective-

ness of Deep Features as a Perceptual Metricº. In: CVPR. 2018.

[Zha+20] K. Zhao, S. Di, X. Liang, S. Li, D. Tao, Z. Chen, and F. Cappello. ªSignificantly Improving

Lossy Compression for HPC Datasets with Second-Order Prediction and Parameter

Optimizationº. In: Proceedings of the 29th International Symposium on High-Performance

Parallel and Distributed Computing. HPDC ’20. Stockholm, Sweden: ACM, 2020, pp. 89±

100.

[Zho+17] Z. Zhou, Y. Hou, Q. Wang, G. Chen, J. Lu, Y. Tao, and H. Lin. ªVolume Upscaling with

Convolutional Neural Networksº. In: Proceedings of the Computer Graphics International

Conference. CGI ’17. Yokohama, Japan: ACM, 2017, 38:1±38:6. DOI: 10.1145/3095140.

3095178.

[ZW10] Y. Zhang and B. Wang. ªOptimal viewpoint selection for volume rendering based on

shuffled frog leaping algorithmº. In: 2010 IEEE International Conference on Progress in

Informatics and Computing. Vol. 2. IEEE. 2010, pp. 706±709.

94

https://doi.org/10.48550/arXiv.1906.01030
https://doi.org/10.48550/arXiv.1212.5701
https://doi.org/10.1145/3095140.3095178
https://doi.org/10.1145/3095140.3095178

1

Volumetric Isosurface Rendering
with Deep Learning-Based Super-Resolution

Sebastian Weiss∗ , Mengyu Chu², Nils Thuerey³ and RÈudiger Westermann§

Technical University of Munich.

Email: ∗sebastian13.weiss@tum.de, ²mengyu.chu@tum.de, ³nils.thuerey@tum.de, §westermann@tum.de

(a) (b) (c)

Fig. 1: Our super-resolution network can upscale (a) an input sampling of isosurface depths and normals at low resolution (i.e.,

320x240), to (b) a high resolution depth and normal map (i.e., 1280x960) with ambient occlusion. For ease of interpretation,

only the shaded output is shown. (c) The ground truth is rendered at 1280x960. Samples are from a 10243 grid, ground truth

renders at 0.16 and 18.6 secs w/ and w/o ambient occlusion, super-resolution takes 0.07 sec.

AbstractÐRendering an accurate image of an isosurface in a volumetric field typically requires large numbers of data samples. Reducing

this number lies at the core of research in volume rendering. With the advent of deep learning networks, a number of architectures

have been proposed recently to infer missing samples in multi-dimensional fields, for applications such as image super-resolution. In

this paper, we investigate the use of such architectures for learning the upscaling of a low resolution sampling of an isosurface to a

higher resolution, with reconstruction of spatial detail and shading. We introduce a fully convolutional neural network, to learn a latent

representation generating smooth, edge-aware depth and normal fields as well as ambient occlusions from a low resolution depth and

normal field. By adding a frame-to-frame motion loss into the learning stage, upscaling can consider temporal variations and achieves

improved frame-to-frame coherence. We assess the quality of inferred results and compare it to bi-linear and -cubic upscaling. We do this

for isosurfaces which were never seen during training, and investigate the improvements when the network can train on the same or

similar isosurfaces. We discuss remote visualization and foveated rendering as potential applications.

Index TermsÐMachine Learning ; Extraction of Surfaces (Isosurfaces, Material Boundaries) ; Volume Rendering.

✦

1 INTRODUCTION

MUCH of the research in isosurface volume ray-casting

has been devoted to the development of efficient search

structures, i.e., data structures that can reduce the number of data

samples required to determine where a view ray intersects the

surface. Despite their high degree of sophistication, for large

volumes with heterogeneous composition the traversal of these

data structures becomes increasingly costly. Since the workload of

ray-casting is linear in the number of pixels, frame rates can drop

significantly when isosurfaces in large volumes are rendered on

high resolution display systems.

This effect is intensified if global illumination effects are

considered. An important global illumination effects for isosurfaces

is ambient occlusion (AO). AO estimates for every surface point

the attenuation of ambient light from the surrounding, and uses this

information to enhance cavities and locations closely surrounded

by other surface parts. AO is simulated by testing along many

secondary rays per surface point whether the isosurface is hit,

requiring so many data samples, in general, that interactive frame

rates cannot be maintained.

In this work, we investigate the potential of convolutional neural

networks to further reduce the number of samples in isosurface

ray-casting, for both the reconstruction of the surfaces’ geometry

and ambient occlusions on it. This strategy works in tandem with

an acceleration structure to even more aggressively reduce the

number of samples. First, we shed light on the question whether an

accurate high resolution image of the surfaceÐa super-resolution

imageÐcan be inferred from only the surface points at a far lower

image resolution. Second, we aim at investigating whether ambient

occlusions can be inferred from the surface geometry without the

need to explicitly compute occlusions on that geometry.

From a signal theoretical point of view, it can be argued that new

structuresÐbeyond what can be predicted from multiple frames of

low resolution inputs by classical up-scaling filters like bi-linear

or -cubic interpolationÐcannot be inferred without any further

assumptions about their occurrence. Recent works in deep learning

have demonstrated that such assumptions can be learned by an

artificial neural network. Learning-based image and video super-

resolution have achieved remarkable results, by training networks

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

2

(a) (b) (c) (d)

Fig. 2: Super-resolution on depth and normal maps with screen-space shading (a,c) leads to superior reconstruction quality compared

to super-resolution on color images (b,d). These images exhibit color bleeding and shifts, while our screen-space shading approach

successfully prevents these artifacts. (b) was converted to gray-scale to emphasize geometric differences.

using corresponding pairs of low- and high resolution color images

[1], [2]. Learned assumptions can then be transferred to a new low

resolution input, to generate a high resolution variant that adheres

to the structures seen at training time.

Similar observations have been reported in current works

in visualization, which demonstrate the use of neural-network-

based inference of data samples for volume upscaling and in-situ

visualization, as well as parameter-space exploration. Networks

are used to infer high resolution scalar fields and missing time-

steps between 3D simulation results [3], [4], and they learn

the dependencies between simulation results and the simulation

parameters to infer the results for new parameter settings [5]. These

works demonstrate that a network can learn to infer new data from

given samples, by learning either some type of interpolation, or

the local effects of parameter value modifications constraint by the

global data distribution.

1.1 Contribution

We present an artificial neural network that learns to upscale a

sampled representation of geometric properties of an isosurface

at low resolution to a higher resolution. We introduce a fully

convolutional neural network, using the FRVSR-Net [6] as a basis,

to learn a latent representation that generates a smooth, edge-aware

depth and normal field, as well as ambient occlusions, from a

low resolution depth and normal field. To support user navigation,

we integrate a loss function into the training pass that penalizes

frame-to-frame inconsistencies and achieves improved temporal

coherence in the reconstruction step.

Even though similar in spirit to classical super-resolution

techniques, we strive for a conceptually different approach in this

work: Instead of using color images and down-scaled ground truth

images for training, we aim at incorporating 3D scene information

in the form of per-frame depth and normal fields into the training

and reconstruction process. It is our goal to let the network learn

the relations between the isosurface geometry sampled at a low

and a high resolution, and to infer on the relations between the

geometry and shading.

We use the neural network to infer images of isosurfaces with

four times the resolution of the input images. Figure 1 demonstrates

the result of the upscaling process. Since the network is designed to

learn high resolution ambient occlusions from low resolution depth

and normal images, computations of ambient occlusions at runtime

are entirely avoided. Thus, compared to volumetric ray-casting at

full resolution, the number of samples from the volumetric field

can be reduced drastically.

To analyse the pixel-wise reconstruction error of the network,

we compare reconstructed images to ground truth renderings

and reconstructions using bi-linear and bi-cubic upscaling. These

comparison are performed using the peak signal-to-noise ratio

(PSNR) between ground truth and reconstructed results, as well as

the structure-similarity metric (SSIM) [7] that gives more weight

to the perceived quality of the results. We demonstrate very good

reconstruction quality even for isosurfaces that were never shown

to the network during training, and that the network’s accuracy can

be even improved by retraining on isosurfaces of shapes similar to

the ones used in the inference step.

Our specific contributions are:

• We show that it is beneficial to train the network based

on depth and normal images instead of color. Our results

indicate that this training process results in an improved

learning of geometric surface properties, as illustrated in

Figure 2.

• Instead of letting the network learn to infer AO in the high

resolution output from AO in the low resolution inputs,

our networks only receive low resolution depth and normal

maps as input. Thus, AO does not need to be simulated

at the samples of the low resolution input, which would

significantly increase the rendering time.

• To let the network learn to maintain frame-to-frame

coherence, we additionally add a motion loss for the

generated image content. In this way, the network achieves

improved reconstruction quality and becomes well suited

for interactive exploration tasks.

• We perform a quality evaluation to shed light on the recon-

struction accuracy of learning-based isosurface reconstruc-

tion. This evaluation shows the strengths and weaknesses of

this type of reconstruction, and helps to better understand

its specific properties and possible application scenarios.

For a number of isosurfaces with vastly different geomet-

ric properties, we demonstrate the potential of learning-based

upscaling. Furthermore, we discuss several use cases where

isosurface inference can significantly improve and accelerate

existing approaches, e.g., during interactive navigation in remote

visualization environments, in focus+context visualization, and in

foveated rendering.

2 RELATED WORK

Our approach works in combination with established acceleration

techniques for volumetric ray-casting of isosurfaces, and builds

upon recent developments in image and video super-resolution

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

3

via artificial neural networks to further reduce the number of data

access operations.

Volumetric Ray-Casting of Isosurfaces: Over the last

decades, considerable effort has been put into the development

of acceleration techniques for isosurface ray-casting in 3D scalar

fields. Direct volume ray-casting of isosurfaces was proposed by

Levoy [8]. Classical fixed-step ray-casting traverses the volume

along a ray using equidistant steps in the order of the voxel size.

Acceleration structures for isosurface ray-casting encode larger

areas were the surface cannot occur, and ray-casting uses this

information to skip these areas with few steps. One of the most

often used acceleration structure is the min-max pyramid [9], a

tree data structure that stores at every interior node the interval of

data values in the corresponding part of the volume. Pyramidal data

structures are at the core of most volumetric ray-casting techniques

to effectively reduce the number of data samples that need to be

accessed during ray traversal.

For selected isosurfaces, bounding cells or simple geometries

were introduced to restrict ray-traversal to a surface’s interior [10],

[11]. Adaptive step-size control according to pre-computed distance

information aimed at accelerating first-hit determination [12].

Recently, SparseLeap [13] introduced pyramidal occupancy his-

tograms to generate geometric structures representing non-empty

regions. They are then rasterized into per-pixel fragment lists to

obtain those segments that need to be traversed.

Significant performance improvements have been achieved by

approaches which exploit high memory bandwidth and texture

mapping hardware on GPUs for sampling and interpolation in 3D

scalar fields [14], [15]. For isosurface ray-casting, frame to frame

depth buffer coherence on the GPU was employed to speed up

first-hit determination [16], [17]. A number of approaches have

shown the efficiency of GPU volume ray-casting when paired

with compact isosurface representations, brick-based or octree

subdivision, and out-of-core strategies for handling data sets too

large to be stored on the GPU [18], [19], [20], [21]. For a thorough

overview of GPU approaches for large-scale volume rendering, let

us refer to the report by Beyer et al. [22].

Related to isosurface rendering is the simulation of realistic

surface shading effects. AO estimates for every surface point the

integral of the visibility function over the hemisphere [23]. AO

can greatly improve isosurface visualization, by enhancing the

perception of small surface details. A number of approximations

for AO simulation in volumetric data sets have been proposed, for

instance, local and moment-based approximations of occluding

voxels [24], [25] or pre-computed visibility information [26]. The

survey by Ropinski et al. [27] provides a thorough overview of the

use of global illumination in volume visualization. Even though

very efficient screen-space approximations of AO exist [28], [29],

we decided to consider ray-traced AO in object-space to achieve

high quality.

Deep Learning of Super-Resolution and Shading: For

super-resolution of natural images, deep learning based methods

have progressed rapidly since the very first method [1] surpassed

traditional techniques in terms of peak signal-to-noise ratio (PSNR).

Regarding network architectures, Kim et al. introduced a very

deep network [30], Lai et al. designed the Laplacian pyramid

network [31], and advanced network structures have been applied,

such as the ResNet [32], [33] and DenseNet [34], [35] architectures.

Regarding loss formulations, realistic high-frequency detail is

significantly improved by using adversarial and perceptual losses

based on pretrained networks [33], [36]. Compared to single-

image methods, video super-resolution tasks introduce the time

dimensions, and as such require temporal coherence and consistent

image content across multiple frames. While many methods use

multiple low resolution frames [37], [38], [39], the FRVSR-

Net [6] reuses the previously generated high resolution image

to achieve better temporal coherence. By using a spatio-temporal

discriminator, the TecoGAN [40] network produced results with

spatial detail without sacrificing temporal coherence. Overall,

motion compensation represents a critical component when taking

into account multiple input frames. Methods either use explicit

motion estimation and rely on its accuracy [6], [40], [41], [42],

or spend extra efforts implicitly such as detail fusion [37] and

dynamic upsampling [39]. In our setting, we can instead leverage

the computation of reliable screen-space motions via raytracing.

In a different scenario, neural networks were trained to infer

images from a noisy input generated via path-tracing with low

number of paths, of the same resolution as the target, but with

significantly reduced variance in the color samples [43], [44].

Deep shading [45] utilized a neural network to infer shading from

rendered images, targeting attributes like position, normals, and

reflections for color images of the same resolution. None of these

techniques used neural networks for upscaling as we do, yet they

are related in that they use additional parameter buffers to improve

reconstruction quality of global illumination.

Deep Learning of Volumetric Fields: For volume visual-

ization, Zhou et al. [3] presented a learning-based approach for

volume upscaling which better preserves structural details and

volume quality than linear upscaling. Berger et al. [46] proposed a

deep image synthesis approach to assist transfer function design

using generative adversarial networks (GANs). Recently, the use

of convolutional neural networks for temporal upscaling has been

introduced [4]. The authors demonstrate the application of learning-

based reconstruction for in-situ visualization, by letting a network

learn to infer the time evolution of a physical field in-between a pair

of simulated time steps. In another work it has been demonstrated

that a neural network can learn the relationships between simulation

parameters and the simulation results [5]. By using training samples

consisting of parameter sets and corresponding results, the network

can infer the parameter dependencies and use the build latent

representation to generate results for new input values.

3 ISOSURFACE LEARNING

Our method consists of a pre-process in which an artifical neural

network is trained, and the upscaling process which receives a new

low resolution isosurface image and uses the trained network to

perform the upscaling of this image. Our network is designed to

perform 4× upscaling, i.e. from input images of size H ×W to

output images of size 4H×4W . Note, however, that other upscaling

factors can be realized by straight forward adaptations and network

re-training.

The network is trained on unshaded surface points. It receives

the low resolution input image in the form of a depth and normal

map for a selected view, as well as corresponding high resolution

maps with an additional AO map that is generated for that view.

A low- and high resolution binary mask indicate those pixels

where the surface is hit. Once a new low resolution input image

is upscaled, i.e., high resolution depth, normal and AO maps are

reconstructed, screen-space shading is computed and added to AO

in a post-process to generate the final color.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

4

FLR
t ILR

t
Up-

scaling

Warp Flatten

Shading

SRNetOest
t−1 Oest

t

Cest
t

Õest
t−1

O f

FLR
t :

NLR
t :

DLR
t :

Nest
t :

Dest
t :

AOest
t :

Cest
t :

Fig. 3: Overview of network-based learning of isosurface image upscaling. Blue: low resolution inputs, green: high resolution outputs,

yellow: fixed processing steps, red: trained network. From left to right: The current optical flow FLR
t is used to warp the output of the

previous time step Oest
t−1. The current low resolution input ILR

t and the warped previous output is given as input to the network. The

network produces the output Oest
t including estimated high resolution mask (Mest

t , not shown in the figure), normal (Nest
t), depth (Dest

t),

and AO (AOest
t) maps . Deferred shading is used to generate the final color (Cest

t).

The network, given many low- and high resolution pairs of input

maps for different isosurfaces and views, internally builds a so-

called latent representation that aims at mapping the low resolution

inputs to their high resolution counterparts. A loss function is used

to penalize differences between the high resolution learned and

ground-truth variants. We investigate different networks, trained

with collections of randomly sampled views from a small number

of exemplary datasets. Images of isosurfaces at full resolution

are used as ground-truth training data. We analyze the upscaling

quality of these networks on new views for the training data, as

well as views of isosurfaces in datasets the networks have never

seen during training.

3.1 Input Data

Both the low- and high resolution input maps are generated

via volumetric ray-casting. AO in the high resolution image is

simulated by spawning 512 additional secondary rays per surface

point, and testing each of them for an intersection with the surface.

Since we aim at supporting temporally coherent super-resolution,

all images have a time subscript t, starting with t = 1 at the first

frame.

The following low resolution input maps of size H ×W are

used in the training step:

• MLR
t ∈ [−1,+1]H×W : The binary input mask that specifies

for every pixel whether the isosurface is hit (mask=1) or

not (mask=-1). Internally, the network learns continuous

values, and uses these values to smoothly blend the final

color over the background.

• NLR
t ∈ [−1,+1]3×H×W : The normal map with the normal

vectors in screen-space.

• DLR
t ∈ [0,1]H×W : The depth map, in which 0 indicates that

no hit was determined.

The low resolution input to the network is then given by ILR
t :=

{MLR
t ,NLR

t ,DLR
t } ∈ R

5×H×W . We subsequently call this the low

resolution input image.

In addition, the following map is generated during ray-casting:

• FLR
t ∈ [−1,+1]2×H×W : A map of 2D displacement vectors,

indicating the screen-space flow from the previous view to

the current view.

The screen-space flow is used to align the previous high resolution

maps with the current low resolution input maps. Under the

assumption of temporal coherence, the network can then minimize

for the deviation of the currently inferred high resolution map

from the temporally extrapolated previous one in the training

process. To compute the screen-space flow, assume that in the

low resolution view the current ray hits the isosurface at world

position xt . Since during rendering the current and previous model-

view-projection matrices are known, the current and previous

screen-space coordinates of the point xt , i.e., x′t and x′t−1, can be

computed. The flow is then computed as ft := x′t − x′t−1, indicating

how to displace the previous mask, depth and normal maps at time

t −1 to align them with the frame at time t. Since the described

method provides the displacement vectors only at locations in

the low resolution input image where the isosurface is hit in the

current frame, we use a Navier-Stokes-based image inpainting [47]

via OpenCV [48] to obtain a dense displacement field FLR
t . The

inpainting algorithm fills the empty regions in such a way that the

resulting flow is as incompressible as possible.

For aligning the previous maps, the current flow field is first

upscaled via bi-linear interpolation to the high resolution. In a

semi-Lagrangian fashion, we generate new high resolution maps

where every pixel in the upscaled maps retrieves the value in the

corresponding high resolution map from the previous frame, by

using the inverse flow vector to determine the target location.

The high resolution input data, which is used as ground

truth in the training process, is comprised of the same maps as

the low resolution input, plus an AO map AOGT
t ∈ [0,1]4H×4W .

Here, values of one or zero indicate no or full occlusion,

respectively. Thus, the ground truth image can be written as

OGT
t := {MGT

t ,NGT
t ,DGT

t ,AOGT
t } ∈ R

6×4H×4W . Once the network

is trained with ILR
t and OGT

t , it can infer a new high resolution

output image Oest
t := {Mest

t ,Nest
t ,Dest

t ,AOest
t } ∈ R

6×4H×4W from a

given low resolution image and the high resolution output of the

previous frame.

3.2 Super-Resolution Surface Inference

Once the network has been trained, new low resolution input images

are given to the network to infer the corresponding high resolution

output images. For the inference step, we build upon the frame-

recurrent neural network architecture proposed by Sajjadi et al.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

5

[6]. At the current timestep t, the network is given the input ILR
t

and the previous high resolution prediction Oest
t−1, warped using the

image-space flow, for temporal coherence. It produces the current

prediction Oest
t , and after a post-processing step also the final color

Cest
t ∈ [0,1]3×4H×4W .

Figure 3 shows all data that are used and inferred by the

network, together with the different processing stages an inference

step is comprised of. These processing stages are:

1. Upscaling and Warping: After upscaling the screen-space

flow FLR
t , it is used as described to warp all previous estimated

maps Oest
t−1, leading to Õest

t−1 ∈ R
6×4H×4H .

2. Flattening: Next, the warped previous maps Õest
t−1 are

flattened into the low resolution by applying a space-to-depth

transformation [6]

Ss : R6×4H×4W → R
426×H×W . (1)

I.e., every 4× 4 block of the high resolution image is mapped

to a single pixel in the low resolution image. The channels of

these 4× 4 = 16 pixels are concatenated, resulting in a new low

resolution image O f with 16-times the number of channels.

3. Super-Resolution: The super-resolution network then

receives the current low resolution input ILR
t (5 channels) and the

flattened, warped prediction from the previous frame O f (i.e., 16 ·6
channels). The network then estimates the six channels of the

output Oest
t , the high resolution mask, normal, depth, and AO maps.

4. Shading: To generate a color image, screen-space Phong

shading with AO is applied as a post-processing step, i.e.,

Crgb = Phong(ca,cd ,cs,cm,N
est
t)∗AOest

t , (2)

with the ambient color ca, diffuse color cd , specular color cs and

material color cm as parameters.

The network also produces a high resolution mask Mest
t as

output. While the input mask MLR
t is comprised only of values -1

(outside) and +1 (inside), Mest
t can take on any value. Hence, Mest

t

is clamped first to [−1,+1] and then rescaled to [0,1], leading to

M′
t
est. This map shows a smooth fall-off of values across edges and

and allows the network to smooth out edges via

Cest
t = lerp(cbg,Crgb,M

′
t
est), (3)

with cbg being the background color.

3.3 Loss Functions

In the following, we describe the loss functions we have used during

training to calculate the model error in the optimization process.

Via the loss functions, the importance of certain featuresÐand

thus the fidelity by which they can be inferredÐcan be controlled.

The single loss functions we use are common in artificial neural

networks, yet in our case they are applied separately to different

channels of the inferred and ground truth images. The total loss

function used for training the network is a weighted sum of the loss

functions below. In section 5, we analyze the effects of different

loss functions on the reconstruction quality.

1. Spatial loss: As a baseline, we employ losses with regular

vector norms, i.e. L1 or L2, on the different outputs of the network.

Let X be either the mask M, the normal map N, the depth map D,

the AO map AO or the shaded output C. Then the L1 and L2 losses

are given by:

LX ,L1
= ||Xest

t −XGT
t ||1, LX ,L2

= ||Xest
t −XGT

t ||22.

2. Perceptual loss: Perceptual losses, as proposed by

Gatys et al. [49], Dosovitskiy and Brox [50], and Johnson et al.

[51] have been widely adopted to guide learning tasks towards

detailed outputs instead of smoothed mean values. The idea is

that two images are similar if they have similar activations in

the latent space of a pre-trained network. Let φ be the function

that extracts the layer activations when feeding the image into the

feature network. Then the distance is computed by

LX ,P = ||φ(Xest
t)−φ(XGT

t)||22. (4)

As feature network φ , the pretrained VGG-19 network [52] is

used. We used all convolution layers in all spatial dimensions

as features, with weights scaled so that each layer has the same

average activation when evaluated over all input images.

Since the VGG network was trained to recognize objects in

color images in the space [0,1]3, the shaded output C can be directly

used. This perceptual loss on the color space can be backpropagated

to the network outputs, i.e. normals and ambient occlusions, with

the help of the differentiable Phong shading. This shading is part

of the loss function, and is implemented such that gradients can

flow from the loss evaluation into the weight update of the neural

network during training. Hence, with our architecture the network

receives a gradient so that it can learn how the output, e.g., the

generated normals, should be modified such that the shaded color

matches the look of the target image. When applying the perceptual

loss on other entries, the input has to be transformed first. The

normal map is rescaled from scale [−1,+1]3 to [0,1]3, and depth

and masking maps are converted to grayscale RGB images. We did

not use additional texture or style loss terms [36], [49], since these

introduce artificial details and roughness in the image which is not

desired in smooth isosurface renderings.

3. Temporal loss: All previous loss functions worked only

on the current image. To strengthen the temporal coherence and

reduce flickering, we employ a temporal L2 loss [53]. We penalize

differences between the current high resolution image Oest
t and the

previous, warped high resolution image Õest
t−1 with

LX ,temp = ||Xest
t − X̃est

t−1||
2
2, (5)

where X can be M, N, D, AO or C.

In the literature, more sophisticated approaches to improve the

temporal coherence are available, e.g. using temporal discriminators

[40]. These architectures give impressive result, but are quite hard

to train. We found that already with the proposed simple temporal

loss, good temporal coherence can be achieved in our current

application. We refer the readers to the accompanying video for a

sequence of a reconstruction over time.

4. Loss masking: During screen-space shading in the post-

process (see section 3.2), the output color is modulated with the

mask indicating hits with surface points. Pixels where the mask

is -1 are set to the background color. Hence, the normal and AO

values produced by the network in these areas are irrelevant for the

final color.

To reflect this in the loss function, loss terms that do not act

on the mask (i.e. normals, ambient occlusions, colors) are itself

modulated with the mask so that areas that are masked out don’t

contribute to the loss. We found this to be a crucial step that

simplifies the network’s task: In empty regions, the ground truth

images are filled with default values in the non-mask channels,

while with loss masking, the network does not have to match these

values.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

6

MLR
t

NLR
t

DLR
t

ILR
t

5 channels

O f
96

channels
C

o
n
v,

6
4

R
eL

U

C
o

n
v,

6
4

R
eL

U

C
o

n
v,

6
4

+ · · ·

10 residual blocks

2
x

U
p

sa
m

p
li

n
g

C
o

n
v,

6
4

R
eL

U

2
x

U
p

sa
m

p
li

n
g

C
o

n
v,

6
4

R
eL

U

C
o

n
v,

6
4

R
eL

U

C
o

n
v,

6 +

4
x

U
p

sa
m

p
li

n
g

Mest
t

Nest
t

Dest
t

AOest
t

Oest
t

6 channels

Fig. 4: Network architecture for the SRNet. Within the network, ⊕ indicates component-wise addition of the residual. All convolutions

use 3x3 kernels with stride 1. Bilinear interpolation was used for the upsampling layers.

5. Adversarial Training: Lastly, we also employed an

adversarial loss as inspired by Chu et al. [40]. In adversarial

training, a discriminator network is trained parallel to the super-

resolution network generator. The discriminator receives ground

truth images and predicted images, and is trained to classify

whether the input was ground truth or not. This discriminator

is then used in the loss function of the generator network (see, e.g.,

Goodfellow et al. [54] for further details).

In our scenario, for evaluating the predicted images the

discriminator is provided with

• the high resolution output Oest
t , and optionally the color

Cest
t ,

• the input image ILR
t as a conditional input to learn and

penalize the mismatching between input and output,

• the previous frames ILR
t−1,O

est
t−1, and optionally Cest

t−1 to learn

to penalize for temporal coherence.

To evaluate the discriminator score of the ground truth images, the

predicted images Oest are replaced by OGT.

As a loss function of the discriminator, we use the binary cross

entropy loss. More concretely, let z be the input over all timesteps

and G(z) the generated results, i.e. the application of the super-

resolution prediction on all timesteps. Let D(x) be the discriminator

that takes the high resolution outputs as input and produces a single

scalar score. Then the discriminator is trained to distinguish fake

from real structures by minimizing

LGAN,D =− log(D(x))− log(1−D(G(z))). (6)

The generator is trained to minimize

LGAN,G =− log(D(G(z))) (7)

4 LEARNING METHODOLOGY

In this chapter, we provide a detailed description of the used

network architecture, as well as the training and inference steps.

We also shed light on the dependency of the reconstruction quality

on the used loss functions.

4.1 Network Architecture

The network architecture is a fully convolutional frame-recurrent

neural network (FRVSR-Net) consisting of a series of residual

blocks [6]. An illustration of the network’s building blocks and its

topology is given in Figure 4. he modifications we have performed

are with respect to the number of input and output channels, the

other parts of the network are kept unchanged. The generator

network starts with one convolutional layer to reduce the 101 input

channels (5 from ILR
t , 6∗42 from O f) into 64 channels. Next, 10

residual blocks are used, each of which contains 2 convolutional

layers. These are followed by two upscaling blocks (2× bilinear

upscaling, a convolution and a ReLU) arriving at a 4× resolution,

still with 64 channels. In a final step, two convolutions process

these channels to reduce the latent feature space to the desired 6

output channels. All layers use 3x3 kernels with stride 1.

The network is a residual network, i.e. it learns changes to

the input. As shown in previous work [32], this improves the

network’s capability to generalize to new data, as it can focus on

generating the residual content. Hence, the 5 channels of the input

are bi-linearly upsampled and added to the first five channels of the

output, producing Mest
t ,Nest

t and Dest
t . The only exception is AOest

t ,

which is inferred from scratch, as there is no low resolution input

AO map.

4.2 Training Data

The training and validation data consists of images of isosurfaces

from different timesteps and multi-resolution versions of the Ejecta

dataset. This dataset stems from a particle-based simulation of a

supernova that was resampled to a grid with resolutions from 2563

to 10243. We choose this test suite because it contains isosurfaces

showing many different geometric structures, ranging from very

small details to rather smooth low-frequency parts. Of these, we

rendered 500 sequences, each consisting of 10 frames. For each

sequence, two views are selected at random and used as start

view and end view of a smooth camera path. Eight additional

in-between views are then computed along the path, and used to

render corresponding frames at a low image resolution of 1282,

see Figure 5 for examples. 5000 sub-regions with a spatial size

of 322 (for the low image resolution) and a temporal length of 10

are randomly cropped from the initial sequences, and are split into

training (80%) and validation (20%) data. By rejection sampling

we ensure that in each sub-region at least 50% of the pixels show a

surface hit. The smaller spatial size is needed to fit multiple inputs

at once into the memory during training and benefit from batch

processing in the optimizer. The number of timesteps is kept the

same. On a single Nvidia GeForce GTX 1080 Ti, the networks

are trained for 100 to 500 epochs with training times from 3 to 18

hours, depending on the used cost function.

At this point, it is worth noting that the low resolution

input images are directly generated by the raycaster. This is

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

7

Fig. 5: Example images that are used to train our networks.

substantially different from common practice in image and video

super-resolution [36], [40], where the inputs are low-pass filtered

and downscaled versions of the original high resolution images.

Thus, in our case the input images contain a huge amount of

aliasing due to sub-sampling of the volumetric field, which poses a

challenging task for the network.

The ground truth AO at a surface point is computed by sampling

random directions on the hemisphere and testing for intersections

between rays along these directions and the isosurface. This gives

a much higher visual quality than screen-space AO, which tests

samples against surface points based on screen-space depth.

To infer the current frame, the network takes the previous

high resolution prediction Oest
t−1 as input. Since the previous frame

is not available in the first frame of a sequence, we evaluated

different options to initialize the first previous high resolution input:

Zeroing all entries, default setting to mask=0, normal=[0,0,1],
AO=1, and an upscaled version of the current input. Since we did

not experience any noticeable difference between the three variants,

we used the first and most simple option to train the network.

4.3 Loss Function Characteristics

The losses for training different super-resolution networks are

obtained by using different weighted combinations of the individual

losses described in subsection 3.3. Table 1 shows the specific weight

combinations that are used for the networks we have analysed in

our work.

For the networks trained with the losses in Table 1, Figure 6

shows a visual comparison of the surface structures (without AO)

they infer from a given low resolution input image. In a number

of tests we have confirmed the representativeness of these results,

regardless of the type of isosurface and variations in the loss

function weights. In subsection 5.2, we provide a quantitative

evaluation that supports these findings.

All networks make use of a temporal loss LX ,temp to reduce

flickering between successive frames. Due to the warping of the

previous image, however, the use of a temporal loss can introduce

smoothing. By changing the weighting between the temporal loss

and the other losses, more focus can be put on either sharp details

or improved temporal coherence.

As a baseline for comparison, we use a network that performs

super-resolution on the low resolution color images, only including

Phong shading but no AO. This networkÐªShadedºÐreceives an

RGB color image and a mask, and outputs the upscaled versions.

In particular, this is different from our proposed upscaling process,

where the inputs to the network comprise geometry, i.e., a depth

and a normal field, and the final shading is performed in a deferred

pass on the inferred high resolution normal field. Our experiments

Network Losses

Shaded LGAN,G +0.5LC,P +50LC,temp

network acts on shaded colors
L1-color LM,L1

+LAO,L1
+10LC,L1

+0.1LC,temp

L1-geometry LM,L1
+LAO,L1

+10LN,L1
+100LD,L1

+0.1LC,temp

Perceptual LM,L1
+ LAO,L1

+ LN,L1
+ LD,L1

+ 0.1LC,temp +
5LN,P +LAO,P

GAN LM,L1
+ LAO,L1

+ LN,L1
+ LD,L1

+ 0.1LC,temp +
LGAN,G

TABLE 1: Networks and their specific loss function configurations.

have shown that the network ªShadedº infers the best results if it

utilizes a combination of perceptual and adversarial loss. The exact

loss function configuration is given in Table 1.

Figure 6, however shows that the ªShadedº network produces

color distortions and over-blurring (see also Figure 2). The visual

quality of this network falls consistently below the quality of the

networks trained on geometry. This result supports our strategy to

let the network learn upscaling the depth and normal fields, and

shade the image in a deferred pass. The following networks all

follow this strategy.

The second network we evaluate is ªL1-colorº, which is trained

with L1 loss on colors. It acts on depths and normals, yet it lets the

loss function consider the colors after deferred shading. Apparently,

this deteriorates the quality of the inferred output and produces

rather washed out results.

The networks ªL1-geometryº, ªPerceptual’ and ªGANº also

train on depths and normals, yet they work with the mask, depth,

normal and AO maps in the loss function. Thus, all three networks

are capable of focusing more on the geometric properties of

isosurfaces rather than their appearance. This is confirmed by

our results, which show that these networks can infer far more

details from the low resolution inputs.

(a) (b) (c)

(d) (e) (f)

Fig. 6: Visual comparison of networks with different loss function

configurations: (a) Shaded, (b) L1-color, (c) L1-geometry (our final

model), (d) Perceptual, (e) GAN, (f) ground truth

The network ªL1-Geometryº trains only with L1-losses on

all input channels, i.e., mask, depth, normal, and AO. Adding

a perceptual loss on the normal and AO fields, i.e., network

ªPerceptualº, doesn’t lead to any visual differences (Figure 6).

We attribute this to the fact that the VGG-19 network was trained

on color images and does not explicitly consider the relationships

between geometric variationsÐgiven by the depth and normal

fieldsÐand the shaded output. We also noticed that the training

time increases about a factor of six when using the VGG-19

network. Even though this drawback can probably be weakened

by using fewer layers of the VGG-19 network, we still expect a

significant performance loss if quality is maintained.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

8

With network ªGANº, we evaluate the influence of an adversar-

ial loss on reconstruction fidelity. In our experiments, however, the

ºGANº network produces more high-frequent details that actually

decrease the quality of the reconstruction, and it significantly

increases both training time and memory requirements by the

discriminator. As a consequence, we decided to focus on directly

supervised networks instead of GAN variants in this work.

In summary, of all tested networks the ªL1-geometryº network

with minor objective on temporal coherence shows superior

performance, both in terms of training time and reconstruction

quality. This network does only see shaded colors in the temporal

coherence loss during the training process, and is thus forced to

focus primarily on the reconstruction of geometry.

5 EVALUATION

We compare the ªL1-geometryº network with bi-linear and bi-cubic

filtering as baseline methods on unseen test data. To validate how

good the trained networks generalize to new isosurfaces, we let the

network also upscale low resolution isosurface images of volumes

which were never shown during training (see Figure 7): A CT scan

of a human skull with a resolution of 2563, a CT scan of a human

thorax at 2563, and a numerical simulation of a Richtmyer-Meshkov

instability at 10243.

5.1 Qualitative Evaluation

To analyse the visual quality of network-based upsampling, we

used the ªL1-geometryº network to upsample images of isosurfaces

in the Ejecta dataset from perspectives that were never seen during

training (see Figure 1 and Figure 7). The results indicate that

the network can effectively infer the surface structures from the

structures it has learned during training. In particular, compared to

bi-linear and bi-cubic upsampling the network infers meaningful

details in line with the geometric surface properties.

To demonstrate the reconstruction quality even for isosurfaces

in datasets that were never seen by the network during training,

we compare the results of bi-linear and network-based upscaling

to the ground truth images using the datasets introduced before.

The accompanying video shows the results when the network

considers frame-to-frame coherence during animations. For the

human skull, which exhibits smooth surfaces similar to Ejecta, the

inference results are very close to the ground truth. A similar result

is obtained when upscaling images of isosurfaces in the Richtmyer-

Meshkov dataset. Despite the many fine-grained geometric details,

the network can reconstruct the isosurface in a fairly accurate way.

The network, however, faces difficulties when applied to images

of an isosurface exhibiting geometric details at a higher frequency

than it was trained on, as for example in the Thorax dataset. In this

case, the network cannot reconstruct all fine-scale details accurately

and rather blurs out the missing surface structures.

5.2 Quantitative Evaluation

To quantify the error that is introduced by learning-based isosurface

reconstruction, all datasets are rendered 500 times from different

views, and for each upscaled image the PSNR and SSIM are

computed between the high resolution ground truth rendering and

the reconstruction. The results, in the form of the medians, the

n% quantiles, and the range of outliers, are shown in Figure 8 and

Figure 9.

The PSNR is computed as

PSNR(Oest
t ,OGT

t) =−10log10(||O
est
t −OGT

t ||22), (8)

where Oest
t and OGT

t are the reconstructed and ground truth images,

respectively. The SSIM is defined as

SSIM(Oest
t ,OGT

t) =
(2µestµGT + c1)(2σest,GT + c2)

(µ2
est +µ2

GT + c1)(σ2
est +σ2

GT + c2)
, (9)

where µest and µGT are the average values of Oest
t and OGT

t , σ2
est

and σ2
GT are the variances of Oest

t and OGT
t , σest,GT is the covariance

between Oest
t and OGT

t , and c1 and c2 are two small constants to

avoid division by zero.

The first quantitative evaluation sheds light on the reconstruc-

tion quality of the networks that were trained using different loss

functions. Figure 8 confirms the strength of the ªL1-geometryº

network compared to the alternative variants presented in sub-

section 4.3. These results back up our decision to chose the ªL1-

geometryº network as our preferred model, and to use it in the

following quantitative analysis of the reconstruction quality.

In Figure 9, we analyze the reconstruction quality for both

the normal and depth field, and further asses how well local

illumination values and AO values can be inferred from the normal

fields. Note here that AO values are not available at the low

resolution input samples, because their simulation would be far

too costly to maintain interactive frame rates. Thus, bi-linear and

bi-cubic upscaling cannot generate high resolution AO. Therefore,

the error measures were applied on the shaded color output, once

without AO and including measures for bi-linear and bi-cubic, and

once with AO and excluding bi-linear and bi-cubic upscaling. As

can be seen, the PSNR and SSIM always slightly decrease when

AO is added. This, however, is not particularly surprising, since

one more quantity is inferred by the network that could introduce

some error.

It can be seen that the ªL1-geometryº network always achieves

better results than the other alternatives, even for isosurfaces of

volumes that were not seen during training. This indicates the

principal capability of neural networks to generalize to new data.

Since the PSNR cannot capture the ªsharpnessº of the image very

well [7], the differences are rather moderate when using the PSNR

as quality metric. However, the differences become significant

when using SSIM as quality metric. This is further confirmed by

the images in subsection 5.1, which also show far better perceptual

quality of network-based reconstruction compared to bi-linear and

bi-cubic upscaling.

As described in subsection 4.2, the ªL1-geometryº network is

trained solely on Ejecta (see Figure 5). This dataset does not contain

the specific structures and rather smooth AO distribution observed

in the Cloud dataset, a dataset of 12 clouds by Kallweit et al. [55].

An example of a volume typical for this dataset can be seen in

Figure 10. We therefore re-trained the network for 600 epochs

on images of isosurfaces in the Cloud dataset. The statistics in

Figure 9 indicate that the re-trained network performs substantially

better on the Cloud dataset, both in terms of PSNR and SSIM. This

is also confirmed by Figure 10, which shows the inference results

of the ªL1-geometryº network, once trained on Ejecta and once on

Cloud. The comparison to the ground truth image indicates strong

improvement of the reconstruction accuracy when specializing the

network on a specific dataset.

The evaluation so far shows that network-based upscaling

outperforms bi-linear and bi-cubic upscaling, yet it does not provide

information about the number of erroneously inferred pixels and

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

9

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

Fig. 7: Comparison of upscaling quality: (a) input, (b) bi-linear, (c) our network, (d) ground truth on the Skull, Thorax, Richtmyer-

Meshkov and Ejecta dataset (top to bottom).

25 50 75 100 125 150

GAN

Perceptual loss

L1-geometry (Ours)

L1-color

Shaded

GAN

Perceptual loss

L1-geometry (Ours)

L1-color

Shaded

57.8167

61.7412

63.2695

58.3297

56.6772
PSNR

0.7 0.8 0.9 1.0

0.9416

0.9699

0.9708

0.9361

0.8114
SSIM

Statistics on the color output (no AO)

Fig. 8: Reconstruction quality of networks trained on the Cloud

dataset using different loss functions. The orange line shows the

median and the box outlines the 25% and 75% quantile.

their deviation from the ground truth. To investigate this aspect,

we further analyze how many ªgood pixelsº and ªbad pixelsº exist

using the Regression Error Characteristic (REC) curves [56]. Given

a certain error tolerance, REC curves show the percentage of pixels

that are accurate according to the ground truth, i.e. REC(τ) =
P(|xest − xGT| ≤ τ). It is widely used as a better performance

description of a predictive model comparing to error statistics like

PSNR, because the performance is illustrated across the range of

errors. In our cases, we evaluate the REC curves on the normal,

depth, AO and the gray-scale pixel intensity after shading without

AO for our model in together with bi-linear and bi-cubic upscaling

in Figure 11(a). First and foremost, the measurements indicate

that erroneously inferred pixels cannot be avoided by any of the

methods. The pixel-wise difference images in Figure 11(b) and

(c) indicate that these errors are predominantly introduced along

the silhouettes and cavities, where sometimes the network cannot

accurately extrapolate the sharp transitions. Second, it is shown

that network-based inference can reduce the number of pixels

with a certain deviation significantly. With the Ejecta dataset as

example, bi-linear upscaling generates an image in which 16% of

the pixels have an absolute error to the ground truth intensity value

larger than 0.1, with a maximal error of 1 between completely

dark and completely bright. When using network-based upscaling,

this number is reduced to 12.4%. Similar results hold for all other

test datasets, demonstrating the superior quality of network-based

upscaling.

5.3 Timings

To evaluate the performance of isosurface super-resolution, we

compare it to volumetric ray-casting on the GPU using an empty-

space acceleration structure. Rendering times for the shown

isosurfaces in the four test datasets are given in Table 2, for a

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

10

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Cl
ou

ds

57.1133

57.9791

43.8587

52.2123
normal

150.2499

165.8695

64.6673

71.9377
depth

52.7574

63.9146

AO

72.4287

73.481

62.6014

68.7088
color (no AO)

67.0572

70.6565

color (with AO)

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ej
ec

ta

42.6414

33.4849

39.7373

105.4935

62.6975

63.7845

48.3238 53.9927

46.8274

50.8499

53.1151

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

RM

20.5663

17.0926

19.5998

81.561

43.6069

45.4729

26.3522 35.4553

32.0149

33.757

34.6845

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Th
or

ax

23.5955

20.4111

22.6351

88.3306

47.8777

48.6854

33.42 42.0121

39.2135

41.0351

42.2427

0 25 50 75 100 125 150

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Sk
ul

l

29.0374

24.2633

27.1735

100 200 300 400

66.7865

36.8621

38.2682

25 50 75 100 125 150 175

30.7809

50 100 150 200

36.152

32.8608

34.5028

50 100 150

34.765

PSNR

(a)

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Ours

Ours (trained on Clouds)

bicubic

bilinear

Cl
ou

ds

0.9729

0.9757

0.8998

0.9568
normal

0.9999

0.9999

0.9748

0.9875
depth

0.749

0.8667

AO

0.9798

0.9824

0.9339

0.9653
color (no AO)

0.9554

0.9733

color (with AO)

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ej
ec

ta

0.9686

0.8938

0.9468

0.9999

0.9934

0.9934

0.9332 0.9771

0.9326

0.9616

0.9671

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

RM

0.8249

0.7178

0.7835

0.9969

0.9687

0.977

0.7267 0.8861

0.828

0.8608

0.8553

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Th
or

ax

0.8015

0.6782

0.7441

0.9971

0.94

0.9611

0.7009 0.8641

0.8088

0.8525

0.8228

0.4 0.6 0.8 1.0

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Ours

bicubic

bilinear

Sk
ul

l

0.954

0.8925

0.9373

0.4 0.6 0.8 1.0

0.9998

0.9941

0.9952

0.4 0.6 0.8 1.0

0.9

0.4 0.6 0.8 1.0

0.9725

0.9412

0.9606

0.4 0.6 0.8 1.0

0.961

SSIM

(b)

Fig. 9: (a) PSNR and (b) SSIM on the training and test examples for different upscaling approaches. Box plots show medians, quantiles

and outliers. Since bi-linear and bi-cubic upsampling cannot infer AO, error measures are not available for these fields.

viewport size of 1920x1080. Each dataset was rendered from

a number of different views along a pre-recorded path, so that

the dataset covers the entire viewport. The isosurface renderer is

implemented with Nvidia’s GVDB library [57], an optimized GPU

raytracer written in CUDA. The super-resolution network uses

Pytorch. The timings were performed on a workstation running

Windows 10, equipped with an Intel Xeon W-2123, 3.60Ghz, 8

logical cores, 64GB RAM, and a Nvidia RTX Titan GPU.

The table shows the time to render the ground truth image at full

resolution with AO, the rendering times for the low resolution input

without AO, and the time to perform super-resolution upscaling of

the input using the ªL1-geometryº network. As the computation

times for all three different quantities do not differ significantly

from frame to frame, the average time is reported. The time to warp

the previous image, perform screen-space shading, and IO between

the renderer and the network are not included. For rendering the

ground truth AO, 128 samples were taken. This gives reasonable

results, but noise is still visible.

As one can see from Table 2, the time to simulate AO increases

the computational cost significantly. Because the Ejecta dataset

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

11

(a) Network trained on w/o Clouds. (b) Ground truth rendering of Cloud. (c) Network re-trained only on Clouds.

Fig. 10: (a) Our network trained on the Ejecta dataset cannot faithfully reproduce the smooth geometry and silhouettes in the Cloud

dataset, as shown in the ground truth rendering (b). It tends to ªovershootº the AO values and produces artefacts at the boundaries. (c) By

re-training the network on images of isosurfaces in the Cloud dataset, the reconstruction quality is improved.

40.00%

60.00%

80.00%

100.00%

C
lo

u
d
s

normal depth AO color (no AO)

40.00%

60.00%

80.00%

100.00%

E
je

c
ta

0.01 0.1 1.0

40.00%

60.00%

80.00%

100.00%

R
M

0.01 0.1 1.0 0.01 0.1 1.0 0.01 0.1 1.0

(a)

(b) (c)

Fig. 11: (a) REC curves, the cumulative accuracy over the error

tolerance on L1-distance |xest − xGT|. A higher value is better. The

spatial distribution of the pixel-wise error for the (b) normal and

(c) depth map.

contains less empty blocks that can be skipped during rendering

than the Richtmyer-Meshkov dataset, the computation time for the

first hit (high resolution image without AO) is twice as high as

that for the Richtmyer-Meshkov dataset. As expected, the time to

evaluate the super-resolution network stays constant for all four

datasets, as it only depends on the viewport size.

As an example, the total time to render the input and 4 times

upscale images of isosurfaces in the Richtmyer-Meshkov dataset is

0.014s+0.072s = 0.086s. Hence, the network approximately takes

the same time it takes to render the full resolution without AO

(0.088s), but in this time also produces a smooth AO map. More

prominently, for the Ejecta dataset, a high resolution rendering

without AO takes 0.163s, approximately 50% longer than rendering

the low resolution version and upscaling it, which requires 0.103s

in total. The latter version also provides AO ªfor freeº. Once AO

Dataset High-res
(no AO)

High-res
(with AO)

Low-res Super-res

Skull 2563 0.057 4.2 0.0077 0.071

Thorax 2563 0.069 9.1 0.010 0.071

R.-M. 10243 0.088 14.5 0.014 0.072

Ejecta 10243 0.163 18.6 0.031 0.072

TABLE 2: Timings in seconds for rendering an isosurface in

FullHD (1920x1080) resolution, averaged over 10 frames.

is included in the high resolution rendering, the rendering time

increases to 18.6s, hence the super-resolution outperforms the high

resolution renderer by two orders of magnitudes.

6 DISCUSSION

Our results demonstrate that deep learning-based inference has po-

tential for upscaling tasks beyond classical image-based approaches.

The trained network seems to infer well the geometric properties

of isosurfaces in volumetric scalar fields. We believe this result is

of theoretical interest on its own, and at the same time opens up

new perspectives in a number of practical use cases. Even though

it is not possible, in general, to predict the error that is introduced

by the network, we believe there are two classes of applications

were learning-based isosurface inference is eligible: Into the first

class fall applications were a high resolution surface does not

exist, for instance, because due to time and memory constraints

only a low resolution volumetric field can be acquired. In such

scenarios, learning-based inference might be able to predict where

certain features can occur and, thus, can guide refined simulations

or measurements. Regarding this use case, it will be important to

investigate whether artificial neural networks can infer from a given

high resolution image of an isosurface in a low resolution volume

the isosurface rendering from the corresponding high resolution

volume.

Into the second class fall applications were the user is willing

to make tradeoffs in fidelity and speed, i.e., were reconstruction

quality can be sacrificed for speed, at least temporarily or locally.

In the following, we shed light on two such applications and

demonstrate the practical usefulness of isosurface inference.

6.1 Use Cases

One application is the utilization of isosurface inference to support

an interactive exploration of high resolution volume datasets. When

the high resolution dataset cannot be rendered at interactive rates,

it is common practice in many visualization tools to render a low

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

12

Fig. 12: Level of detail rendering for interactive exploration. Left: Rendering of isosurfaces in the original datasets at full image resolution.

Middle: Rendering the isosurfaces in the original datasets at 1/4 the image resolution and upscaling to full image resolution. Right:

Rendering the isosurfaces in the low-pass filtered and down-sampled datasets with half the resolution in each dimension at full image

resolution.

resolution version at full image resolution during interaction, and

to switch back to the high resolution dataset once the camera stands

still. This enables an interactive exploration, yet provides views in

which many details are lost and even the topology of the isosurface

can be corrupted due to the downsampling process that is used to

generate the low resolution version (see 3rd column in Figure 12).

In contrast, upscaling a low resolution image of the high resolution

dataset (2nd column in Figure 12) generates a far more detailed

view and preserves topology to a large extend. Notably, upscaling

the low resolution image of the high resolution isosurface requires

roughly the same time as rendering the low resolution isosurface at

full image resolution.

The same principle can be applied in remote visualization,

where in practice the bandwidth of the communication channel

across which rendered images are transmitted often limits the

streaming performance. Thus, the degree of interactivity often

falls below what a user expects. To weaken this limitation, during

interaction low resolution images of the dataset can be streamed to

the client-side and upscaled using trained networks.

As a second use case we have integrated isosurface inference

into foveated rendering. In foveated rendering, a focus region in

the image is given by the falloff of acuity in the visual periphery.

Since fine details can only be sensed within a small portion (5°) of

the visual field, with increasing angular distance from the central

region of visual stimulus, the number of samples can be reduced

accordingly. This is exploited in foveated rendering to reduce the

number of samples rendered in the peripheral region, by either

upscaling low resolution renderings [58] or interpolating between

a sparse set of initial samples in this region [59].

To use network-based inference in foveated rendering, we

utilize renderings at different image resolution. While the image

is rendered at full resolution in the region of highest acuity, it is

rendered at 1/4 this resolution in the exterior (taking over the full

resolution samples in the focus region) and upscaled by the super-

resolution network. The two images are then smoothly blended

together. As shown in Figure 13a,b, the difference between the

full resolution rendering in the focus regions and the upscaled

low resolution version is almost indistinguishable, yet a significant

lower number of samples is required to generate the final image.

This number can be further reduced by generating and blending

multiple images at ever lower resolution, i.e., by rendering images

using 1/2 and 1/4 the full resolution and using networks to upscale

to the full resolution.

In foveated rendering, the reconstruction error that may be

introduced by the network is fully acceptable, since it only occurs

in the region outside the users central region of visual stimulus.

Yet as we have shown in this work, learning-based upscaling

can far better maintain geometric and topological features than

other techniques like bi-linear upscaling. Thus, transitions between

multiple resolutions are far less pronounced and can be removed

more effectively.

6.2 Conclusion and Future Work

We have introduced and analyzed a deep learning technique for iso-

surface super-resolution with AO. The proposed recurrent network

architecture with temporally coherent adversarial training makes

it possible to infer highly detailed images from low resolution

input renderings. The network reconstructs high resolution images

of isosurfaces including ambient occlusions at a performance

that is significantly faster than that of an optimized ray-caster

at full resolution. We have published the source code for training

and inference as well as the trained networks and datasets on

https://github.com/shamanDevel/IsosurfaceSuperresolution.

The quality of upscaling seems to indicate that not a specific

isosurface is learned, but rather that the network is able to

generalize, i.e., to infer the geometric properties of isosurfaces in

volumetric scalar fields. Yet especially when the network’s learned

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

13

(a) (b) (c) (d)

Fig. 13: Foveated rendering. Rendering of the original datasets in (a) and (c). (b) In the region of highest acuity (indicated by the red

circle in the inlay), the isosurface is sampled at full resolution and smoothly blended with an upscaled image at 1/4 the resolution. (d)

Same as (b), but region of highest acuity is decreased and blended with upscaled images at 1/2 (green area) and 1/4 (exterior) the

resolution. In (b) and (d), respectively, 16% and 11% of the samples in (a) and (c) are used.

representation is not sufficient due to limited training sample

variation, network-based reconstruction can lead to distortions

in the inferred structures. We have demonstrated that this can

be counteracted by specializing the network on certain types of

isosurfaces, such as they occur in certain types of simulated or

measured physical fields. The quality of the reconstruction can be

substantially improved if the network is given the chance to see the

type of isosurface it is used to infer. Nevertheless, it is arguable that

network-based inference should be used carefully in applications

were highest accuracy is required, e.g., in medical imaging.

On the other hand, we have shown applications where a

reconstruction error is tolerable, e.g., during interactive navigation

in large datasets and in foveated rendering. In such applications,

network-based inference provides a very effective means to balance

between reconstruction quality and performance.

The proposed method only represents a first step towards

learning-based data inference, and we see numerous promising

and interesting avenues for future research. Among others, it will

be important to analyze how sparse the input data can be so that a

network can still infer on the geometry of the underlying structures.

Furthermore, we will shed light on the inference of additional

rendering effects such as soft shadows. Finally, we will investigate

the extension of our approach to support transparency and multiple-

scattering effects, by going beyond image-based inference and

integrating volumetric representations in the training and inference

steps.

ACKNOWLEDGMENTS

This work is supported by the ERC Starting Grant realFlow (StG-

2015-637014).

REFERENCES

[1] C. Dong, C. C. Loy, K. He, and X. Tang, ªImage super-resolution using
deep convolutional networks,º IEEE transactions on pattern analysis and

machine intelligence, vol. 38, no. 2, pp. 295±307, 2016.
[2] A. Kappeler, S. Yoo, Q. Dai, and A. K. Katsaggelos, ªVideo super-

resolution with convolutional neural networks,º IEEE Transactions on

Computational Imaging, vol. 2, no. 2, pp. 109±122, 2016.
[3] Z. Zhou, Y. Hou, Q. Wang, G. Chen, J. Lu, Y. Tao, and H. Lin,

ªVolume upscaling with convolutional neural networks,º in Proceedings

of the Computer Graphics International Conference, ser. CGI ’17.
New York, NY, USA: ACM, 2017, pp. 38:1±38:6. [Online]. Available:
http://doi.acm.org/10.1145/3095140.3095178

[4] J. Han and C. Wang, ªTsr-tvd: Temporal super-resolution for time-varying
data analysis and visualization,º IEEE Transactions on Visualization and

Computer Graphics (to appear), 2019.

[5] W. He, J. Wang, H. Guo, K.-C. Wang, H.-W. Shen, M. Raj, Y. S. G. Nashed,
and T. Peterka, ªInsitunet: Deep image synthesis for parameter space
exploration of ensemble simulations,º IEEE Transactions on Visualization

and Computer Graphics (to appear), 2019.

[6] M. S. Sajjadi, R. Vemulapalli, and M. Brown, ªFrame-recurrent video
super-resolution,º in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 6626±6634.

[7] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli et al., ªImage
quality assessment: from error visibility to structural similarity,º IEEE

transactions on image processing, vol. 13, no. 4, pp. 600±612, 2004.

[8] M. Levoy, ªDisplay of surfaces from volume data,º IEEE Comput.

Graph. Appl., vol. 8, no. 3, pp. 29±37, May 1988. [Online]. Available:
https://doi.org/10.1109/38.511

[9] J. Danskin and P. Hanrahan, ªFast algorithms for volume ray tracing,º in
Proceedings of the 1992 Workshop on Volume Visualization, ser. VVS
’92. New York, NY, USA: ACM, 1992, pp. 91±98. [Online]. Available:
http://doi.acm.org/10.1145/147130.147155

[10] L. M. Sobierajski and A. E. Kaufman, ªVolumetric ray tracing,º in
Proceedings of the 1994 Symposium on Volume Visualization, ser. VVS
’94. New York, NY, USA: ACM, 1994, pp. 11±18. [Online]. Available:
http://doi.acm.org/10.1145/197938.197949

[11] M. Wan, A. Kaufman, and S. Bryson, ªHigh performance presence-
accelerated ray casting,º in Proceedings of the conference on Visualization

’99, 1999, pp. 379±386.

[12] M. Sramek, ªFast surface rendering from raster data by voxel traversal
using chessboard distance,º in Proceedings Visualization ’94, Oct 1994,
pp. 188±195.

[13] M. Hadwiger, A. K. Al-Awami, J. Beyer, M. Agus, and H. Pfister,
ªSparseleap: Efficient empty space skipping for large-scale volume
rendering,º IEEE Transactions on Visualization and Computer Graphics,
vol. 24, no. 1, pp. 974±983, Jan 2018.

[14] J. Kruger and R. Westermann, ªAcceleration techniques for gpu-
based volume rendering,º in Proceedings of the 14th IEEE

Visualization 2003 (VIS’03), ser. VIS ’03. Washington, DC,
USA: IEEE Computer Society, 2003, pp. 38±. [Online]. Available:
https://doi.org/10.1109/VIS.2003.10001

[15] M. Hadwiger, C. Sigg, H. Scharsach, K. BÈuhler, and M. H. Gross, ªReal-
time ray-casting and advanced shading of discrete isosurfaces,º Comput.

Graph. Forum, vol. 24, pp. 303±312, 2005.

[16] T. Klein, M. Strengert, S. Stegmaier, and T. Ertl, ªExploiting frame-
to-frame coherence for accelerating high-quality volume raycasting on
graphics hardware,º in IN: PROCEEDINGS OF IEEE VISUALIZATION

’05. IEEE, 2005, pp. 223±230.

[17] C. Braley, R. Hagan, Y. Cao, and D. Gračanin, ªGpu accelerated isosurface
volume rendering using depth-based coherence,º in ACM SIGGRAPH

ASIA 2009 Posters, 2009, pp. 42:1±42:1.

[18] E. Gobbetti, F. Marton, and J. A. Iglesias GuitiÂan, ªA single-pass gpu
ray casting framework for interactive out-of-core rendering of massive
volumetric datasets,º The Visual Computer, vol. 24, no. 7, pp. 797±806,
Jul 2008. [Online]. Available: https://doi.org/10.1007/s00371-008-0261-9

[19] M. Treib, K. BÈurger, F. Reichl, C. Meneveau, A. Szalay, and R. Wester-
mann, ªTurbulence visualization at the terascale on desktop pcs,º IEEE

Transactions on Visualization and Computer Graphics, vol. 18, no. 12, pp.
2169±2177, Dec 2012.

[20] F. Reichl, M. G. Chajdas, K. BÈurger, and R. Westermann, ªHybrid
Sample-based Surface Rendering,º in Vision, Modeling and Visualization,

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

14

M. Goesele, T. Grosch, H. Theisel, K. Toennies, and B. Preim, Eds. The
Eurographics Association, 2012.

[21] T. Fogal, A. Schiewe, and J. Kruger, ªAn analysis of scalable gpu-based
ray-guided volume rendering,º in 2013 IEEE Symposium on Large-Scale

Data Analysis and Visualization (LDAV), vol. 2013, 10 2013, pp. 43±51.

[22] J. Beyer, M. Hadwiger, and H. Pfister, ªState-of-the-art in
gpu-based large-scale volume visualization,º Computer Graphics

Forum, vol. 34, no. 8, pp. 13±37, 2015. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.12605

[23] S. Zhukov, A. Iones, and G. Kronin, ªAn ambient light illumination model,º
in Rendering Techniques ’98, G. Drettakis and N. Max, Eds. Vienna:
Springer Vienna, 1998, pp. 45±55.

[24] E. Penner and R. Mitchell, ªIsosurface ambient occlusion and
soft shadows with filterable occlusion maps,º in Proceedings of

the Fifth Eurographics / IEEE VGTC Conference on Point-Based

Graphics, ser. SPBG’08. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2008, pp. 57±64. [Online]. Available:
http://dx.doi.org/10.2312/VG/VG-PBG08/057-064

[25] F. Hernell, P. Ljung, and A. Ynnerman, ªEfficient ambient and
emissive tissue illumination using local occlusion in multiresolution
volume rendering,º in Proceedings of the Sixth Eurographics / Ieee

VGTC Conference on Volume Graphics, ser. VG’07. Aire-la-Ville,
Switzerland, Switzerland: Eurographics Association, 2007, pp. 1±8.
[Online]. Available: http://dx.doi.org/10.2312/VG/VG07/001-008

[26] T. Ropinski, J. Meyer-Spradow, S. Diepenbrock, J. Mensmann,
and K. Hinrichs, ªInteractive volume rendering with dynamic
ambient occlusion and color bleeding,º Computer Graphics Forum,
vol. 27, no. 2, pp. 567±576, 2008. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1111/j.1467-8659.2008.01154.x

[27] D. JÈonsson, E. SundÂen, A. Ynnerman, and T. Ropinski, ªA survey of
volumetric illumination techniques for interactive volume rendering,º
Comput. Graph. Forum, vol. 33, pp. 27±51, 2014.

[28] M. Mittring, ªFinding next gen: Cryengine 2,º in ACM SIGGRAPH 2007

Courses, ser. SIGGRAPH ’07. New York, NY, USA: ACM, 2007, pp.
97±121. [Online]. Available: http://doi.acm.org/10.1145/1281500.1281671

[29] L. Bavoil, M. Sainz, and R. Dimitrov, ªImage-space horizon-based
ambient occlusion,º in ACM SIGGRAPH 2008 Talks, ser. SIGGRAPH ’08.
New York, NY, USA: ACM, 2008, pp. 22:1±22:1. [Online]. Available:
http://doi.acm.org/10.1145/1401032.1401061

[30] J. Kim, J. Kwon Lee, and K. Mu Lee, ªAccurate image super-resolution
using very deep convolutional networks,º in Proceedings of the IEEE

conference on computer vision and pattern recognition, 2016, pp. 1646±
1654.

[31] W.-S. Lai, J.-B. Huang, N. Ahuja, and M.-H. Yang, ªDeep laplacian
pyramid networks for fast and accurate superresolution,º in IEEE

Conference on Computer Vision and Pattern Recognition, vol. 2, 2017,
p. 5.

[32] K. He, X. Zhang, S. Ren, and J. Sun, ªDeep residual learning for image
recognition,º in Proceedings of the IEEE conference on computer vision

and pattern recognition, 2016, pp. 770±778.

[33] C. Ledig, L. Theis, F. HuszÂar, J. Caballero, A. Cunningham, A. Acosta,
A. Aitken, A. Tejani, J. Totz, Z. Wang et al., ªPhoto-realistic single image
super-resolution using a generative adversarial network,º in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 4681±4690.

[34] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, ªDensely
connected convolutional networks,º in Proceedings of the IEEE conference

on computer vision and pattern recognition, 2017, pp. 4700±4708.

[35] T. Tong, G. Li, X. Liu, and Q. Gao, ªImage super-resolution using dense
skip connections,º in Proceedings of the IEEE International Conference

on Computer Vision, 2017, pp. 4799±4807.

[36] M. S. Sajjadi, B. Scholkopf, and M. Hirsch, ªEnhancenet: Single image
super-resolution through automated texture synthesis,º in Proceedings

of the IEEE International Conference on Computer Vision, 2017, pp.
4491±4500.

[37] X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia, ªDetail-revealing deep video
super-resolution,º in The IEEE International Conference on Computer

Vision (ICCV), Oct 2017.

[38] D. Liu, Z. Wang, Y. Fan, X. Liu, Z. Wang, S. Chang, and T. Huang,
ªRobust video super-resolution with learned temporal dynamics,º in
Computer Vision (ICCV), 2017 IEEE International Conference on. IEEE,
2017, pp. 2526±2534.

[39] Y. Jo, S. W. Oh, J. Kang, and S. J. Kim, ªDeep video super-resolution
network using dynamic upsampling filters without explicit motion
compensation,º in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2018, pp. 3224±3232.

[40] M. Chu, Y. Xie, L. Leal-TaixÂe, and N. Thuerey, ªTemporally coherent gans
for video super-resolution (tecogan),º arXiv preprint arXiv:1811.09393,
2018.

[41] R. Liao, X. Tao, R. Li, Z. Ma, and J. Jia, ªVideo super-resolution via
deep draft-ensemble learning,º in Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 531±539.
[42] Y. Xie, E. Franz, M. Chu, and N. Thuerey, ªtempoGAN: A temporally

coherent, volumetric GAN for super-resolution fluid flow,º ACM Trans.

Graph., vol. 37, no. 4, 2018.
[43] C. R. Alla Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi, A. Lefohn,

D. Nowrouzezahrai, and T. Aila, ªInteractive reconstruction of monte
carlo image sequences using a recurrent denoising autoencoder,º ACM

Transactions on Graphics, vol. 36, pp. 1±12, 07 2017.
[44] M. Mara, M. McGuire, B. Bitterli, and W. Jarosz, ªAn efficient denoising

algorithm for global illumination,º in Proceedings of High Performance

Graphics. New York, NY, USA: ACM, jul 2017.
[45] O. Nalbach, E. Arabadzhiyska, D. Mehta, H.-P. Seidel, and T. Ritschel,

ªDeep shading: Convolutional neural networks for screen space shading,º
Comput. Graph. Forum, vol. 36, no. 4, pp. 65±78, Jul. 2017. [Online].
Available: https://doi.org/10.1111/cgf.13225

[46] M. Berger, J. Li, and J. A. Levine, ªA generative model for volume
rendering,º IEEE Transactions on Visualization and Computer Graphics,
vol. 25, pp. 1636±1650, 2017.

[47] M. Bertalmio, A. L. Bertozzi, and G. Sapiro, ªNavier-stokes, fluid
dynamics, and image and video inpainting,º in Proceedings of the 2001

IEEE Computer Society Conference on Computer Vision and Pattern

Recognition. CVPR 2001, vol. 1. IEEE, 2001, pp. I±I.
[48] G. Bradski, ªThe OpenCV Library,º Dr. Dobb’s Journal of Software Tools,

2000.
[49] L. A. Gatys, A. S. Ecker, and M. Bethge, ªImage style transfer using

convolutional neural networks,º in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, 2016, pp. 2414±2423.
[50] A. Dosovitskiy and T. Brox, ªGenerating images with perceptual similarity

metrics based on deep networks,º in Advances in neural information

processing systems, 2016, pp. 658±666.
[51] J. Johnson, A. Alahi, and L. Fei-Fei, ªPerceptual losses for real-time style

transfer and super-resolution,º in European conference on computer vision.
Springer, 2016, pp. 694±711.

[52] K. Simonyan and A. Zisserman, ªVery deep convolutional networks for
large-scale image recognition,º arXiv preprint arXiv:1409.1556, 2014.

[53] D. Chen, J. Liao, L. Yuan, N. Yu, and G. Hua, ªCoherent online video
style transfer,º in Proceedings of the IEEE International Conference on

Computer Vision, 2017, pp. 1105±1114.
[54] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, ªGenerative adversarial nets,º in
Advances in neural information processing systems, 2014, pp. 2672±2680.

[55] S. Kallweit, T. MÈuller, B. McWilliams, M. Gross, and J. NovÂak,
ªDeep scattering: Rendering atmospheric clouds with radiance-
predicting neural networks,º ACM Trans. Graph. (Proc. of

Siggraph Asia), vol. 36, no. 6, Nov. 2017. [Online]. Available:
http://doi.acm.org/10.1145/3130800.3130880

[56] J. Bi and K. P. Bennett, ªRegression error characteristic curves,º in ICML,
2003.

[57] R. K. Hoetzlein, ªGVDB: Raytracing Sparse Voxel Database Structures
on the GPU,º in Eurographics/ ACM SIGGRAPH Symposium on High Per-

formance Graphics, U. Assarsson and W. Hunt, Eds. The Eurographics
Association, 2016.

[58] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder, ªFoveated 3d
graphics,º ACM Transactions on Graphics (TOG), vol. 31, no. 6, p. 164,
2012.

[59] M. Stengel, S. Grogorick, M. Eisemann, and M. A. Magnor, ªAdaptive
image-space sampling for gaze-contingent real-time rendering,º Comput.

Graph. Forum, vol. 35, pp. 129±139, 2016.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

15

Sebastian Weiss received the M.Sc. degree
from the Technical University of Munich in 2018.
Currently, he is a doctoral student of computer
science, Technical University of Munich. His re-
search interests include volume visualization,
deep learning and high performance GPU pro-
gramming.

Mengyu Chu received the M.Eng. degree from
Zhejiang University, China in 2014. Currently, she
is a doctoral student of computer science, Tech-
nical University of Munich. Her research interests
include fluid simulations and deep learning.

Nils Thuerey is an Associate-Professor at the
Technical University of Munich (TUM). He works
in the field of computer graphics, where a central
theme of his research are physics simulations
and deep learning algorithms. He received a tech-
Oscar from the AMPAS in 2013 for his research
on controllable smoke effects. He worked for
three years as a post-doc at ETH Zurich and
as R&D lead at ScanlineVFX, before starting at
TUM in October 2013.

R Èudiger Westermann studied computer science
at the Technical University Darmstadt and re-
ceived his Ph.D. in computer science from the
University of Dortmund, both in Germany. In 2002,
he was appointed the chair of Computer Graphics
and Visualization at TUM. His research interests
include scalable data visualization and simulation
algorithms, GPU computing, real-time rendering
of large data, and uncertainty visualization.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2019.2956697

Copyright (c) 2019 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2019.2956697

1

Learning Adaptive Sampling and Reconstruction
for Volume Visualization

Sebastian Weiss , Mustafa IsËık , Justus Thies , and RÈudiger Westermann

AbstractÐA central challenge in data visualization is to understand which data samples are required to generate an image of a data set

in which the relevant information is encoded. In this work, we make a first step towards answering the question of whether an artificial

neural network can predict where to sample the data with higher or lower density, by learning of correspondences between the data, the

sampling patterns and the generated images. We introduce a novel neural rendering pipeline, which is trained end-to-end to generate a

sparse adaptive sampling structure from a given low-resolution input image, and reconstructs a high-resolution image from the sparse set

of samples. For the first time, to the best of our knowledge, we demonstrate that the selection of structures that are relevant for the final

visual representation can be jointly learned together with the reconstruction of this representation from these structures. Therefore, we

introduce differentiable sampling and reconstruction stages, which can leverage back-propagation based on supervised losses solely on

the final image. We shed light on the adaptive sampling patterns generated by the network pipeline and analyze its use for volume

visualization including isosurface and direct volume rendering.

Index TermsÐVolume visualization, adaptive sampling, deep learning.

✦

1 INTRODUCTION

WHICH are the data samples that are needed to generate an

image of a data set that conveys the relevant information

encoded in this data? This question is fundamental to data

visualization since it asks for the importance of data samples

from a perceptual point of view, rather than a signal processing

standpoint that argues in terms of numerical accuracy.

Recent works in visualization have shown that artificial neural

networks can perform an accurate reconstruction from a reduced set

of data samples, by learning the relationships between a sparse, yet

regular input sampling and the high-resolution output. Learned

representations are then applied in the reconstruction process

to infer missing data samples. This type of reconstruction has

been performed in the visualization image domain to infer high-

resolution images from given low-resolution images of isosurfaces

[60], in the spatial domain to infer a higher resolution version of a

3D data set from a low-resolution version [64], and in the temporal

domain to infer a temporally dense volume sequence from a sparse

temporal sequence [21].

Others have proposed neural networks that are trained end-

to-end to learn directly the visual data representations instead of

the data itself. Berger et al. [3] propose a deep image synthesis

approach to assist transfer function design, by letting an artificial

neural network synthesize new volume-rendered images from

only a selected viewpoint and a transfer function. He et al. [23]

demonstrate that artificial neural networks can even be used to

bridge the data entirely, by learning the relationships between

the input parameters of a simulation and visualizations of the

simulation results. Both approaches do not make any explicit

assumptions about the relevance of certain structures in the

data, yet the learned relationships between parameters and visual

representations are considered in the image generation process.

• All authors are with Technical University of Munich, Germany.

E-mail: {sebastian13.weiss,m.isik, justus.thies, westermann}@tum.de.

1.1 Contribution

Our goal is to make a further step towards learning visual

representations of volumetric data sets, i.e. images of a volume

when displayed in some form, by investigating whether a neural

network can a) learn the relevance of structures for generating

such representations, b) use this knowledge to adaptively sample a

visual representation of a volumetric object, and c) reconstruct an

accurate image from the sparse set of samples. Notably, even we

can demonstrate for large volumes and image sizes that adaptive

sampling can save rendering time, performance improvement is not

our main objective. It is even fair to say that an optimized GPU

volume ray-caster can hardly be beaten performance-wise. Our

main objective is to gain an improved understanding of the learning

skills of neural networks for generating visual representations in

an unsupervised manner, by letting networks learn the relevance

of certain structures for generating such representations. It can

eventually become possible to generate data representations that

compactly encode relevant structures in a way that can be used by

a neural network to visualize the data. Such insights can further

facilitate the use of transfer learning to construct synthetic data sets

that contain the structures that are important for successful learning

tasks on real data. For viewpoint selection, a network might learn

to recommend views showing many important structures, and for

training this information can be used to acquire more data from

similar views.

To address our objectives, we introduce a novel network

pipeline that is trained end-to-end to learn the relevance of

certain structures in the data for generating a visual representation

(Figure 1). This pipeline is comprised of two consecutive internal

network stages: An importance network and a reconstruction

network. Both networks work in tandem, in that the first learns

to place samples along relevant structures by using the second

network to give feedback on how well a visual representation

of the data can be reconstructed from the sparse sampling. Our

approach differs from previous adaptive sampling approaches in

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

2

a) b) c) d) e)

Fig. 1: An importance network, together with a differentiable sampler and a reconstruction network, takes a low resolution visualization (a) and infers
an importance map (b) from it. From this map, an adaptive sampling pattern with adjustable number of samples (5% for iso, top; 10% for dvr, bottom)
is derived, and a volume ray-caster samples the data according to these samples (c). The reconstruction network completes the visual representation
from the sparse set of samples (d). The ground truth visualizations are shown in (e). The proposed network pipeline works on images of iso-surfaces
(top) and direct volume renderings (bottom).

volume visualization [37, 31, 2] in that it does not rely on any

specific saliency model to determine the image regions that need

to be refined. In contrast, we propose a network-based processing

pipeline that simultaneously learns where to sample and how to

accurately reconstruct an image from the sparse samples, solely

using losses on the reconstructed images.

For learning an importance map from a low-resolution visu-

alization and reconstructing an image from a sparse set of pixel

values, we use two modified versions of an EnhanceNet [53]. To

enable network-based learning using gradient descent, two novel

processing stages are introduced:

• A differentiable sampling stage that models the relationship

between sample positions and visual representation.

• A differentiable image reconstruction stage using the pull-

push algorithm [15, 32] to model the relationship between

a sparse set of image samples and the reconstructed image.

In several experiments, we demonstrate that the importance

network effectively selects structures that are relevant to the final

visual representation. We focus on adaptive sampling in image-

space, i.e., using surface samples and samples resulting from direct

volume rendering. As a future direction of research, we outline

adaptive sampling in object space, i.e., using data samples along

view-rays. Our experiments include qualitative and quantitative

evaluations, which indicate good reconstruction accuracy even

from a few samples. The source code of our processing pipeline

is available at https://github.com/shamanDevel/AdaptiveSampling,

including some of the data sets that have been used for training

and validation.

2 RELATED WORK

In the following, we review previous works that share similarities

with our approach from the fields of adaptive sampling for rendering

as well as neural network-based image and volume reconstruction.

Adaptive Sampling for Rendering Adaptive rendering has a

long tradition in computer graphics, to reduce the number of rays

to trace against the scene and perform rasterization at lower image

resolution. At the core of such approaches is the computation of

importance values to steer the adaptive refinement, for instance,

based on perceptual models [5, 42, 48], image saliency models

using pixel variance [44, 49], image difference operations [40], or

entropy-based measures [61], to name just a few. In the context of

foveated rendering [16], where usually a static adaptive sampling

pattern is used that moves with the users’ gaze, a luminance-

contrast-aware criterion was introduced to enable feature-aware

adaptivity [58]. The importance map generation process is often

started from an image preview that is calculated using a low

resolution render pass or a high-resolution estimate that can be

created in a significantly faster way than the final image.

For volume rendering, several approaches have investigated

adaptive sampling in object space, to reduce the number of samples

along the view rays [43, 9, 38, 6]. Adaptive image-space refinement

has been proposed by Levoy [37], by using the color variances

between pixels at low image resolution to decide whether to

refine the image resolution locally. Kratz et al. [31] propose to

use the difference image between two coarser resolution images,

and locally refine where high differences are observed. Belayev

et al. [2] render low-resolution images of isosurfaces and refine

depending on how many pixels surrounding a pixel in the low-

resolution view fulfill certain requirements. Frey et al. [13] use a

fixed random sampling structure that is applied in a hierarchical

manner to progressively refine the image.

The major differences between these approaches and our

proposed sampling pipeline are as follows: Firstly, the pipeline

learns to adapt the sampling in an unsupervised manner. A specific

feature descriptor that steers the placement of samples is not

used, and importance values are learned solely using losses on

the reconstructed image. Secondly, the number of samples can

be prescribed, which is not easily possible with existing schemes

due to their pixel-iterative nature. Thirdly, the pipeline learns

simultaneously the adaptive sampling and the image reconstruction

from the sparse set of samples. In all previous schemes, the final

interpolation step is decoupled from the sampling process.

Deep Learning for Upscaling and Denoising In recent years,

deep learning approaches have been used successfully for single-

image and video super-resolution tasks [11, 54, 55, 56, 52, 7],

i.e., the upscaling of images and videos from a lower to some

higher resolution. Many previous works let the networks learn to

optimize for losses between the inferred and ground-truth images

based on direct vector norms [29, 27]. GANs were introduced to

prevent the undesirable smoothing of direct loss formulations [53,

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

3

36], and instead use a second network that discriminates real

from generated samples and guides the generator. Convolutional

architectures [11] with residual blocks [22] are popular generator

architectures that offer training stability as well as high-quality

inference. Losses based on the feature-space differences of image

classification networks, e.g., a pre-trained VGG network [26], have

shown to mimic well the human’s capability to assess the perceptual

similarity between two images.

The approach closest to ours is by Kuznetsov et al. [34] for

learning adaptivity in Monte-Carlo path-tracing and denoising

of the final image. A first network learns to adapt the number of

additional paths from an initial image at the target resolution, which

is generated via one path per pixel. A second denoising network

learns to model the relationship between an image with increased

variance in the color samples to the ground truth rendering [47, 41].

Conceptually, our approach differs in that it works on a low-

resolution input map and then learns to freely position the sample

locations in image space, i.e. it learns to place zero or one

sample per pixel. This requires a completely different differentiable

sampling stage, as well as a differentiable image reconstruction

stage that can work on a sparse set of samples. Furthermore,

Kuznetsov et al. use finite differences between images of different

sample counts for gradient estimation. Incurring noise is reduced

by averaging multiple samples with different sample counts, which

is not possible in our approach where at most one sample per pixel

is taken. Instead, we propose a sigmoid approximation that can be

differentiated analytically.

In visualization, Zhou et al. [64] presented a CNN-based

solution that upscales a volumetric data set using three hidden

layers designed for feature extraction, non-linear mapping, and

reconstruction, respectively. Han et al. [20] introduced a two-stage

approach for vector field reconstruction via deep learning, by

refining a low-resolution vector field from a set of streamlines.

Berger et al. [3] proposed a deep image synthesis approach to

assist transfer function design using GANs, by letting a network

synthesis new volume-rendered images from only a selected

viewpoint and a transfer function. The use of neural network-based

inference of data samples in the context of in situ visualization

was demonstrated by Han and Wang [21], where a network

learns to infer missing time steps between 3D simulation results.

He et al. [23] use neural networks for parameter-space exploration,

by training a network to learn the dependencies between visual

mappings of simulation results and the input parameters of the

simulation. Guo et al. [17] designed a deep learning framework

that produces coherent spatial super-resolution of 3D vector field

data. Weiss et al. [60] extent image upscaling to geometry images

of isosurfaces including depth and normal information. Instead

of data upscaling, Tkachev et al. [57] predict a next time-step

of a simulation and identify regions of interest by high variance

between the network prediction and the ground truth. Common to

all these approaches is the use of a regular sampling structure that

does not consider the importance of samples in the inference step.

3 LEARNING TO SAMPLE

In the following, we discuss how the importance network makes

use of both the adaptive sampling stage and the reconstruction

network to learn where to place samples with higher density. The

importance network (Subsection 3.1) receives an image of the data

set at low resolution. This image L is of shape C× f H× fW , where

W and H denote the screen resolution, and f the downsampling

factor. This factor is set to 1/8 in all of our experiments. Each

image pixel is comprised of C channels, such as color, depth, and

normal, representing what is seen through that pixel. The network

is trained to learn an importance function NI that generates a

gray-scale importance map I ∈ [0,∞)H×W in which low and high

values, respectively, indicate where less or more samples are taken.

The sampler S (Subsection 3.2) takes the importance map and

places a given number of samples, e.g., 5% of the pixel, in the

full resolution image S ∈ R
C×H×W according to the importance

information. Only at these samples, the object is rendered. The

reconstruction network learns a function NR (Subsection 3.3)

that reconstructs the final output O ∈ R
C×H×W from the sparse

set of samples. We make the sampler differentiable w.r.t. sample

positions to allow gradient flow from the reconstruction network

(Subsection 3.3) to the importance network, so that the reconstruc-

tion network is trained simultaneously and propagates the loss

information to the sampling stage. Since the entire pipeline is

trained end-to-end using a loss on the reconstructed and ground

truth images, the importance network and the pair of sampler

and reconstruction network work together in an effort to learn

the placement of samples so that high reconstruction quality is

achieved.

In principle, one can refrain from using a separate importance

map, by realizing the sampler as a network that directly learns the

adaptive sampling. In this case, however, modeling the positional

information in a network requires to represent positions explicitly,

either in a graph structure or a linear field, so that less efficient graph

networks or fully-connected networks need to be used. Furthermore,

the sampler has to be re-trained whenever a different number

of samples is used. Our approach enables the use of efficient

convolutional networks, and to change the number of samples at

testing time.

An overview of the processing pipeline is shown in Figure 2. It

works with images comprised of an arbitrary number C of channels.

In the first part of this work, the pipeline is introduced for isosurface

rendering with C = 5, i.e., a binary mask (1: hit, 0: no hit), a normal

vector, and a depth value. The application to direct volume rendered

images is discussed in Section 6.

Weiss et al. [60] enforce frame-to-frame coherence during

animations by including a temporal loss in the training step. This

loss considers the difference between the previous frame ± warped

by the frame-to-frame optical flow ± to the current frame. In the

accompanying video, this approach is used for both the importance

and reconstruction network. In the following discussion, however,

temporal connections are omitted and the focus is solely on single

image reconstruction for clarity.

3.1 Importance Network

The importance network I ←NI(L) determines the distribution

of the samples that are required by the reconstruction network

to generate the visual output according to some loss function.

Deeming every pixel equally important, i.e.,

NI,constant(L)i j = 1, (1)

leads to a uniform distribution of the samples [64, 21, 60].

Alternatively, and in the spirit of classical edge detection filters, the

screen space gradients of the individual channels can be used, i.e.,

NI,gradient(L)i j = ∑
c

wc||∇Li j,c||
2
2, (2)

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

4

Low-res image

L ∈ R
C× f H× fW

NI

Importance-

Network

Importance map

I ∈ [0,∞)H×W

S

Sampling,

Rendering

Sampling Pattern

P ∈ R
H×W

Samples

S ∈ R
C×H×W

NR

Reconstruction-

Network

Output

O ∈ R
C×H×W

Target

T ∈ R
C×H×W

L

Loss Function

R

data connection

gradient propagation

Fig. 2: Overview of network-based adaptive sampling. From a low-resolution image L, the importance network infers the importance map I. The
sampler S uses this map together with a sampling pattern P to adaptively place samples in the high-resolution image S. Ray-casting the object at
these samples generates a sparse image. The reconstruction network recovers the dense output O.

where ∇Li j,c is the screen space gradient of channel c at location

i j. The contributions of the individual channels are weighted by

w ∈ R
C. Other known importance measures consider screen space

curvature via the variation of surface normals [46], or color contrast

via the variation of luminance [58].

Alternatively, we introduce a fully convolutional neural network

NI,net (Subsection 4.2) that predicts a high-resolution greyscale

importance map I from a low-resolution rendering L. Notably, this

network is not trained w.r.t. specific characteristics that are derived

from the image like gradients or luminance information, since this

requires to heuristically decide on the importance of pixels. Instead,

it is trained end-to-end with losses only on the reconstructed color

information, by gradient descend all along the processing pipeline.

In Section 5, network-based inference of the importance map is

compared to alternative approaches, showing superior prediction

of regions that are important for the final image.

3.2 Differentiable Sampling

Given the target number of samples in the final image, e.g. µ = 5%

of all pixels, the sampler uses the importance map I to determine

where to place these samples. To generate the given number of

samples, two main classes of algorithms are commonly used in

rendering:

• Stippling starts with a given number of points at random

locations and iteratively optimize these locations so that the

point density matches the density of the importance map

[10, 18].

• Importance sampling treats the importance map as a density

function and place samples via rejection sampling or the

inverse cumulative distribution function [35, 1].

These algorithms, however, are not easily differentiable w.r.t.

changes in the importance map, since they use discrete optimiza-

tions or random processes, and often are too slow for real-time

applications. To make the sampling process differentiable and fast,

we propose a sampling strategy that computes for every pixel

independently the chance of being sampled. This is achieved by a

smooth approximation of rejection sampling, which is differentiable

and allows for gradient propagation through the network pipeline.

Since every pixel can be processed independently, this scheme can

effectively leverage parallel execution on the GPU. On the other

hand, it does not allow for an exact match of the prescribed number

of samples, yet produces a number of samples that slightly varies

around the target number.

In a first step, the importance map I is normalized to have a

prescribed mean µ and minimal value l ≤ µ . Let µI be the mean

of I over all pixels, then the image

I′i j := min

{

1, l + Ii j

µ− l

µI + ε

}

(3)

has the desired properties. A small constant ε = 10−7 is used to

avoid division by zero. The minimal value l is required to maintain

a lower bound on the sample distribution in empty areas, which is

important to allow for an accurate reconstruction in such areas. We

use l = 0.002 in all of our experiments. Clamping to a maximal

value of 1 is required by the following sampling step, which is

realized as an independent Bernoulli process via rejection sampling,

i.e., a sample at location i j is taken if the probability I′i j is larger

than a uniform random value x ∈ [0,1].
To make the sampling deterministic and parallelizable on the

GPU, a sampling pattern P ∈ [0,1]H×W ± uniformly distributed in

[0,1] ± is first generated by using a permutation of the numbers
1

HW
{0, ...,HW − 1}. We analyze four different strategies for

generating the permutations: Random sampling, regular sampling,

Halton sampling [19], and plastic sampling [50]. Plastic sampling

has been selected since it produced slightly superior results in all

of our experiments. Section B provides a detailed evaluation of the

different strategies.

Ray-casting is then used to compute what is seen through the

pixels at the determined sample locations. This information is

stored in the high-resolution image S ∈ R
C×H×W . Since during

training the same view is rendered many times using different

sampling patterns, pre-computed high-resolution target images

T ∈ R
C×H×W are provided with the low-resolution inputs. Then,

the sampling process simply becomes a selection of pixels from T :

Si j = ✶I′i j−Pi j
Ti j, (4)

where ✶x is 1 if x > 0 else 0. Since the sampling function in

Equation 4 is a step function with zero gradients almost everywhere,

it is not differentiable w.r.t. the importance map I, from which

I′ is derived. Correspondingly, gradients in the loss function

w.r.t. the weights and biases of the importance network will also

be zero. Therefore, Equation 4 is approximated with a smooth

sigmoid function to make it differentiable, so that gradients of the

loss function can be back-propagated through all network stages

to change the importance map accordingly. Then, the sampling

function becomes

Si j = sig
(

α(I′i j−Pi j)
)

Ti j, sig(x) :=
1

1+ e−x
, (5)

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

5

where α > 0 determines the steepness of the function. The

differentiable approximation is used only in the training phase,

while in the validation phase the ray-caster renders the discrete

samples obtained via rejection sampling. For α → ∞, Equation 5

converges to Equation 4. A large value of α leads to samples that

are either very close to 0 or 1, but leads to exploding gradients in

the backward pass. A low value leads to samples that smoothly

cover the entire interval between 0 and 1. In this case, however,

the mismatch between the ªfractionalº samples that are used only

during training and the discrete ªbinaryº samples that are used

for testing and validation leads to a significant reduction of the

reconstruction quality. In our experiments, a value of around α = 50

always leads to the best results. Going beyond 50 quickly introduces

floating-point precision issues and exploding gradients thereof. An

evaluation of the dependency between the value of α and the

reconstruction quality is provided in Subsection 5.2.

3.3 Differentiable Reconstruction

Given the sparse set of samples S, the reconstruction function

NR needs to estimate the undefined pixel values to produce the

dense high-resolution output image O ∈ R
C×H×W . By using a

differentiable reconstruction function, gradients of the loss function

on the reconstructed images and the ground truth image can be

back-propagated through the sampling stage to the importance

map.

In principle, there are different possibilities to fulfill the

requirement of differentiability: Firstly, a neural inpainting network

can be trained on sparse inputs and the ground truth outputs to

learn the reconstruction. However, as we have verified in a number

of experiments, network-based inpainting [25, 39, 62] at a sparsity

level as used in our application leads to low reconstruction quality

(see Figure 6b). The highly varying sample density with gaps

between valid pixel values of up to 20 pixels poses a challenging

problem for known network architectures. Furthermore, since

during training the sampling mask in our proposed pipeline is

not binary but contains continuous values, techniques like Partial

Convolutions [39] are not applicable.

Secondly, classical non-network-based inpainting methods

can be employed, for instance, PDE-based methods solving a

constrained Laplace problem [4, 14], or patch-based methods

using non-local cost functions involving correspondence functions

[24, 12, 8]. These methods, however, are not easily differentiable

w.r.t. the sampling mask. For example, PDE-based methods use the

samples as Dirichlet boundaries and, to the best of our knowledge,

there is no meaningful interpretation of a ªfractionalº Dirichlet

boundary. Patch-based methods, on the other hand, use a discrete

search over the image space to find a correspondence function,

which makes the derivation of continuous gradients impossible.

Therefore, we introduce a novel reconstruction approach that

combines a differentiable inpainting method with a residual neural

network that learns to improve the inpainting result. In particular,

we propose a variation of the pull-push algorithm [15, 32], which

is differentiable with respect to the sampling mask and can cope

with a mask that comprises fractional values.

The pull-push algorithm builds upon the idea of mipmap

hierarchies. Firstly, the sparsely sampled high-resolution image and

the mask are recursively filtered and downsampled by a factor of

2. The pixel values are averaged using the fractional values in the

sampling mask as weights (average pooling), and max-pooling is

used to combine the values in the mask. This has the effect of filling

level 0

level 1

level 2

level 3

Fig. 3: Pull-push-based inpainting using a mipmap hierarchy of image
samples and masks. The image is downsampled until all pixels are filled,
and then upsampled by combining interpolated values from lower levels
with the pixels at the current level. Masks are propagated through the
hierarchy to obtain proper interpolation weights.

the undefined pixels with values that are averaged from a gradually

increasing surrounding. Upon reaching a termination criterion,

either a maximal number of steps or complete restoration of the

undefined pixels, the images are bilinearly upscaled again. During

upscaling, the pixel values from the coarse levels are weighted by

the values in the mask at this level, and they are then blended with

the value at the fine level based on the sampling values at that

level. This allows to smoothly transition from filled pixels at the

fine level that are kept in the output towards interpolated values

for lower values in the sampling mask. A schematic illustration

of the process is shown in Figure 3. Since the algorithm makes

use exclusively of continuous pooling and interpolation operations,

it is fully differentiable with respect to changes in the pixel data

and the sampling mask. The forward code and a manually derived

backward code are given in Section D. The algorithm has been

implemented via custom CUDA operations in PyTorch [45].

After inpainting the sparse samples via the pull-push algorithm,

a fully convolutional network is used to improve the reconstruction

by modeling the relationship between the inpainting result and

the ground truth. The network sharpens the results and resolves

blurred silhouettes created by the inpainting algorithm. We use

the EnhanceNet [53] as base architecture for this learning task,

which is discussed in detail in Subsection 4.2. In particular, we

use the EnhanceNet as a residual network that starts with the

inpainting result and learns to infer the changes to the reconstructed

samples. A quantitative comparison of different learning approaches

is provided in Subsection 5.2.

4 TRAINING METHODOLOGY

In this chapter, we provide a detailed discussion of the used network

architectures, as well as the training and inference steps. We also

shed light on the dependency of the reconstruction quality on the

used loss functions.

4.1 Training Data

As training and validation input, 5000 images of randomly selected

isosurfaces in the Ejecta data set, a particle-based supernova

simulation, were generated via GPU ray-casting at a screen

resolution of 5122. Each time step was resampled to Cartesian

grids with a resolution of 2563 and 5123. The surfaces were

rendered from random camera positions, at a varying distance

to the object and always facing the object center. Renderings are

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

6

L

C
o
n
v,

6
4
,

R
eL

U

C
o
n
v,

6
4
,

R
eL

U

C
o
n
v,

6
4

+ · · ·

5 residual blocks

2
x

U
p
sa

m
p
li

n
g

C
o
n
v,

6
4
,

R
eL

U

2
x

U
p
sa

m
p
li

n
g

C
o
n
v,

6
4
,

R
eL

U

C
o
n
v,

6
4
,

R
eL

U

C
o
n
v,

1
B

as
el

in
e

+

2
x

U
p
sa

m
p
li

n
g

S
o
ft

p
lu

s

I

(a) Importance Network NI

S

In
p

ai
n

ti
n

g

C
o

n
v,

6
4

,
R

eL
U

C
o

n
v,

6
4

,
R

eL
U

C
o

n
v,

6
4

+ · · ·

10 residual blocks

C
o

n
v,

6
4

,
R

eL
U

C
o

n
v,

C

+ O

global residual?

(b) Reconstruction Network NR (EnhanceNet)

Fig. 4: Network architectures used in the proposed pipeline: To estimate the importance map, we use a smaller version of the EnhanceNet [53] with a
4x-upsampling factor, a residual connection with screen space gradient magnitude as a baseline, and a 2x-upsampling network as a post-process.
For the reconstruction network, we experimented with the option of passing the raw samples or interpolated samples as input and using a global
residual connection or not. As network architecture, an EnhanceNet with 10 residual blocks is used.

taken from different time steps and resolution levels to let the

pipeline learn features at different granularity [60]. The renderer

provides the normals at the surface points, which are used in a

post-process to compute colors via the Phong illumination model.

From this image set, about 20.000 random crops of size 2562

and showing the isosurface in at least 50% of the pixels were

taken, and split between training (80%) and validation (20%). For

training, the mean importance value was set to µ = 0.1, i.e., 10%

of the samples (see Equation 3). This does not prohibit using fewer

samples for validation and testing, yet we found it beneficial to

allow the network to use more samples during training. We used the

Adam [30] optimizer with a learning rate of 10−4. The networks

were trained on a single GeForce GTX 1080 for 300 to 500 epochs

in around 5-6 days.

4.2 Network Architectures

The proposed sampling pipeline comprises two trainable blocks:

The importance network NI and the reconstruction network NR.

Both networks use 3x3 convolutions with zero-padding and a stride

of one. The importance network is a variant of EnhanceNet [53],

yet with only 5 residual blocks (Figure 4a). Instead of directly

estimating the importance map, the network takes as input an

importance map that is computed using screen space gradient

magnitudes (Subsection 3.1), and learns to improve this map using

a residual connection. We refer to Subsection 5.2 for a quantitative

comparison of the network results w/ and w/o an initial gradient-

based importance estimate.

The importance network performs 4x-upscaling of a low-

resolution input image with 1/4 the resolution of the final image.

Thus, generating the input image requires to sample 1/42 = 6.25%

of the pixels in the target image, which already exceeds a prescribed

limit of, e.g., 5% of the pixels. Therefore, an image with 1/8 the

final resolution is used as input, and the network performs 4x-

upscaling to an intermediate image with 1/2 the final resolution,

followed by an additional 2x-upscaling of the inferred importance

map. This allows to more aggressively reduce the number of

initially required samples, i.e., only 1/82 ≈ 1.56% of the pixels in

the final importance map need to be rendered.

The reconstruction network NR estimates the mask, normal, and

depth values at all pixels, thereby also changing the initial values

that were drawn in the rendering process. A modified EnhanceNet

(Figure 4b) shows superior reconstruction results compared to

alternative architectures such as the U-Net [51]. Let us refer to

Section A for a more detailed analysis of both architectures. Both

networks are provided in the code repository accompanying this

paper.

Our experiments (Subsection 5.2) show improved reconstruc-

tion quality if inpainting is performed first and the result is then

passed to a network that uses a residual connection to learn the

differences between this result and the ground truth. In addition

to the inpainted input samples, we pass the sample mask to the

network as a per-sample measure of certainty. Since the network

produces output values in R, both the mask and depth values are

clamped to [0,1], and the normals are scaled to unit length before

shading is applied.

4.3 Loss Functions

We employ regular vector norms between the network prediction O

and the target image T as primary loss functions on the individual

output channels. Since the L2 norm tends to smooth out the resulting

images, we make use of the L1 norm in this work. With the channels

of the output image, i.e., the mask M, the normal map N, and the

depth D, given as subscript, the L1 loss of a selected channel X is

L1,X = ||TX −OX ||1. (6)

We do not employ additional perceptual losses, which were shown

less effective for isosurface upsampling tasks [60].

The mask channel has a special meaning as it indicates whether

or not a ray hits the isosurface. It is used in the final output to

perform a hard selection between the reconstructed color values

and the background. To make the mask differentiable, however, its

values must be continuous, leading to a smooth blend rather than

a binary decision. While this is acceptable along the silhouettes,

in the interior it would noticeably distort the reconstruction. In

principle, via a sigmoidal mapping it can be enforced that the

mask values spread continuously between 0 and 1, yet we observed

undesirable blurring when using this approach. To produce sharp

masks that are either close to zero or one, we therefore constrain

the reconstruction via two losses that are added to the regular L1

loss on the mask. The first loss is a binary cross entropy (BCE) loss

that ºpullsª the values closer to either zero or one than a normal L1

loss:

Lbce =−
1

WH
∑
i j

(TM,i j log(OM,i j)+(1−TM,i j) log(1−OM,i j)) .

(7)

The BCE loss, however, requires that the output mask lies within

[0,1] and thus the mask is clamped beforehand. This leads to zero

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

7

gradients once the mask reaches values outside of [0,1]. Therefore,

we add the loss

Lbounds =
1

WH
∑
i j

(

max(0,(2OM,i j−1)2−1)
)

, (8)

which pushes values outside [0,1] back into [0,1] and leaves values

within [0,1] unchanged.

An additional loss term is required to account for the normal-

ization step in Equation 3. The output of the importance map

is normalized to limit the number of available samples. Hence,

scaling the network output does not influence the values after

normalization. Therefore, during training, the output values may

increase or decrease in an unbounded manner. To prevent this, a

prior on the importance map is used to enforce that the mean is

equal to one before the normalization step:

LI,prior =

(

1−
1

WH
∑
i j

Ii j

)2

. (9)

The final loss function is a weighted sum of the individual loss

terms over all channels, i.e., with X ∈ {M,N,D} it becomes

L = ∑
X

λXL1,X +λbceLbce +λboundsLbounds +ρLI,prior. (10)

Loss weights around λM = 5,λbce = 5,λbounds = 0.01,λN =
50,λD = 5, and ρ = 0.1 lead to equally good reconstruction

quality, while deviations from these values quickly worsen the

reconstruction quality significantly.

5 RESULTS AND EVALUATION

In the following, we evaluate the proposed network pipeline. First,

we introduce the quality metrics that are used to compare the

results. We then analyze how our design decisions influence the

reconstruction quality on the validation data (Subsection 5.2). These

statistics help to identify the network configurations with the best

predictive skills. Next, the proposed network pipeline is compared

to a fixed super-resolution network (Subsection 5.3). Finally, we

shed light on the generalizability of the network pipeline to new

views of Ejecta and data sets that were never seen during training

(Subsection 5.4).

5.1 Quality Metrics

The quality of network-based reconstruction is assessed using three

different image quality metrics commonly used in image processing.

These metrics compare the output O of the network pipeline with a

ground truth rendering T at the target resolution.

The peak signal-to-noise ratio (PSNR) is based on the L2 loss

and is defined as

PSNR(O,T) =−10log10(||O−T ||22), (11)

where O and T are the network output and target image, respec-

tively.

The Structural Similarity Index (SSIM) [59] extends on the

idea of per-pixel losses by measuring the perceived quality using

the mean and variance of contiguous pixel blocks in the images. It

is defined as

SSIM(O,T) =
(2µOµT + c1)(2σO,T + c2)

(µ2
O +µ2

T + c1)(σ2
O +σ2

T + c2)
, (12)

0 50 100 150 200 250 300
Epoch

0.00

0.02

0.04

0.06

To
ta

l l
os

s

Training - 1 normal
α= 10
α= 20
α= 50

0 50 100 150 200 250 300
Epoch

0.04

0.05

0.06

0.07

0.08

0.09

0.10

To
ta

l l
os

s

Validation - 1 normal
α= 10
α= 20
α= 50

0 50 100 150 200 250 300
Epoch

0.05

0.10

0.15

0.20

To
ta

l l
os

s

Training - LPIPS color
α= 10
α= 20
α= 50

0 50 100 150 200 250 300
Epoch

0.15

0.20

0.25

0.30

To
ta

l l
os

s

Validation - LPIPS color
α= 10
α= 20
α= 50

Fig. 5: Influence of the sharpness parameter α on the training process. A
lower value leads to a lower cost during training, but increases the cost
in the validation phase where a perfect step function is used.

where µO and µT are the average values of O and T , σ2
O and σ2

T

are the variances of O and T , σO,T is the covariance between O

and T , and c1 and c2 are small constants to avoid division by zero.

We also use the network-based Learned Perceptual Image Patch

Similarity (LPIPS) metric [63] that predicts human perception of

relative image similarities. LPIPS builds upon a network that is pre-

trained on an image classification taskÐusing the AlexNet [33]Ð

and computes a weighted average of the activations at hidden layers

for a given output and target image. Note that a lower LPIPS score

is better, whereas PSNR and SSIM indicate higher quality by a

higher score. Therefore, 1−LPIPS is shown in our statistics for

better comparison.

5.2 Validation of Design Decisions

Unless otherwise mentioned, all statistics presented in this section

were computed on a validation data set using 2000 novel views

of Ejecta at the resolution of 5122. The importance map was

normalized to have a minimal value l = 0.002 and a mean value

µ = 0.05. ºplasticª sampling was used in the sampling stage.

Steepness of the Sampling Function The parameter α in

Equation 5 determines the steepness of the sampling function. A

perfect step function, as used for testing, is obtained for α → ∞.

Figure 5 compares the total loss on the training and validation

data over the course of the optimization for different values of

α . A lower value of α leads to a lower cost on the training

data, because smoother variations in the fractional samples can be

used for reconstruction. However, this behaviour is reversed during

validation, because the perfect step function corresponds to a lesser

and lesser extent with an increasingly smooth sampling function.

Higher values of α , on the other hand, lead to better generalization,

yet beyond 100 we observed instabilities in the training as well as

numerical precision issues. Therefore, we decided to use α = 50

in all of our experiments.

Residual Connections for Reconstruction In principle, there

are different options to reconstruct a dense image from the

sparse set of samples, including sole inpainting via the pull-push

algorithm as well as inpainting in combination with network-based

reconstruction w/ or w/o residual connections. In Figure 6, the

reconstruction quality of all options is compared, using screen space

gradient magnitudes as measure for generating the importance map.

As can be seen, the pull-push algorithm already provides a

good initial guess on the reconstructed image, and reconstruction

quality reduces significantly when it is not used. On the other hand,

the network-based approach fails to reliably fill the empty pixels,

which is probably due to the vastly different distances between the

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

8

a) b) c) d)

100

200

300

Ej
ec

ta

76 70 75 84
PSNR color

a) b) c) d)
0.00

0.25

0.50

0.75

1.00 0.938 0.195 0.900 0.963
SSIM mask

a) b) c) d)

0.863 0.739 0.887 0.939
SSIM normal

a) b) c) d)

0.883 0.442 0.906 0.936
SSIM color

a) b) c) d)

0.898 0.303 0.907 0.955
1 - LPIPS color

a) b) c) d) e)

Fig. 6: Comparison of different reconstruction methods: (a) Only pull-
push-based inpainting. (b) Only network-based reconstruction without
residual. (c) Pull-push plus reconstruction network w/o residual. (d) Pull-
push inpainting plus reconstruction network with residual. (e) Ground
truth. An importance map from screen space gradient magnitudes is
used in all examples, with µ = 5% of samples.

a) b) c) d)

100

200

300

Ej
ec

ta

74 84 85 86
PSNR color

a) b) c) d)
0.7

0.8

0.9

1.0 0.938 0.963 0.961 0.966
SSIM mask

a) b) c) d)

0.871 0.939 0.943 0.942
SSIM normal

a) b) c) d)

0.910 0.936 0.927 0.956
SSIM color

a) b) c) d)

0.925 0.955 0.945 0.957
1 - LPIPS color

a) b) c) d)

Fig. 7: Reconstruction quality using different importance maps. Bottom
left: Low-resolution input. (a) Constant map, (b) based on gradient
magnitudes, (c) only network-based learning, (d) network-based learning
with residual on gradient magnitudes. µ = 5% of samples were used. Top:
Quality metrics for options (a) to (d).

sparse samples. When using the pull-push algorithm in combination

with network-based reconstruction, but with disabled residual

connections, no benefit over sole pull-push-based inpainting is

gained. The best result is achieved with both pull-push-based

inpainting and residual network connections. This is in line with

the findings of Kim et al. [28], that the quality of network-based

reconstruction improves if the network needs to learn only the

changes to the baseline method.

Residual Connections for Importance Mapping On the

validation data, we then analyze the reconstruction quality using

different approaches for generating the importance map, i.e.,

constant importance, importance derived from screen space gradient

magnitudes, as well as network-based importance with or without

learning a residual to screen space gradient magnitudes. Figure 7

shows the results using the quality metrics described above.

As expected, screen space gradient magnitudes already hint

at some important regions that should be sampled with higher

density, significantly outperforming a constant importance map. For

reconstructing the mask and normal channels, gradient magnitudes

and network-based importance learning differ only marginally

w.r.t. reconstruction quality. The importance network puts more

emphasis on the object silhouettes and leads to an improved

reconstruction of the normals over gradient magnitudes. On the

other hand, it is important to note that the network learns the

importance of features for an accurate screen space reconstruction

without any prior information (Figure 7c). The best results are

achieved by combining network-based importance learning and

screen space gradient magnitudes via a residual network connection,

demonstrating the feasibility of learning features that are important

for an accurate reconstruction.

10% 100%

100

40
50
60
70
8090

200

Ej
ec

ta

PSNR color

10% 100%

1.00

0.60

0.70

0.80

0.90

SSIM mask

10% 100%

SSIM normal

10% 100%

SSIM color

10% 100%

1 - LPIPS color

constant + network network + network SR-Net

Fig. 8: Median reconstruction quality and 25% / 75% quantiles shown as
confidence bands for increasing number of samples. Orange: Network-
based pipeline using a constant importance map. Green: Network-based
pipeline with the network-based importance map. The red dot represents
the 4x-upsampling network from Weiss et al. [60].

5.3 Convergence and Regular Sampling

We further analyze the convergence of the proposed sampling

pipeline with an increasing number of samples. The network is

trained with 10% of the samples, but during inference the available

number of samples is varied. The results in Figure 8 indicate, that

with an increasing number of samples the SSIM and LPIPS scores

converge against their optima. Even though this seems logical at

first, since the reconstruction network modifies the given samples, it

could, in principle, converge against some other solution. Notably,

already after taking 20% to 30% of samples, the reconstruction is

very close to the target.

We also compare the quality of adaptive sampling to fixed

regular sampling using a 4x-upsampling network [60]. The 4x-

upsampling network uses a regular sampling structure comprised

of 1/42 = 6.25% of the pixels in the high-resolution image,

corresponding to a constant importance map with 6.25% of the

samples when adaptive sampling is used. Figure 8 shows that the

4x-upsampling network (red) performs equally good as the adaptive

pipeline using a constant importance map (orange). However,

when the samples are placed adaptively according to the inferred

importance map (green), the reconstruction quality is significantly

increased at the same number of samples.

5.4 Generalizability

The importance and reconstruction networks are trained solely on

Ejecta. To test how well the networks generalize, they are applied

to several data sets that were never seen during training. We use

a Richtmyer-Meshkov (RM) simulation at 1024×1024×960, CT

scans of a human skull (Skull) at 2563, an aneurism (Aneurism)

at 2563, a bug (Bug) at 4162×247, and a human body (Thorax)

at 2562× 942, as well as a jet stream simulation (Jet) at 2563.

Quantitative statistics for RM, Skull and novel views of Ejecta

are given in Figure 9. Reconstructed images as well as SSIM and

LPIPS statistics for all data sets are shown in Figure 10.

Ej. RM Skull
0

100

200

300
PSNR color

Ej. RM Skull
0.8

0.9

1.0
SSIM mask

Ej. RM Skull
0.25

0.50

0.75

1.00
SSIM normal

Ej. RM Skull
0.90

0.95

1.00
SSIM depth

Ej. RM Skull

0.6

0.8

1.0
SSIM color

Ej. RM Skull

0.6

0.8

1.0
1-LPIPS color

Fig. 9: Quality statistics for novel views of Ejecta and new data sets
RM and Skull (see Figure 10). Baseline method (blue) refers to gradient
magnitude-based importance mapping and pull-push-based inpainting.
Results of the proposed network pipeline are shown in red.

The pipeline generalizes well to new data sets and views, and it

performs better than the baseline method using gradient magnitude-

based importance mapping and pull-push-based inpainting. In

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

9

particular, the network pipeline produces a tighter spread of the

quantitative measures in general, indicating less significant outliers

in the reconstructed values. The network shows lower scores only

for the depth maps reconstructed from sparse samples of RM and

Skull. We attribute this to different zoom levels in the renderings

and the training images, yet these inaccuracies do not affect the

quality of the reconstructed color images. For reconstruction, we

also analyzed the quality of other inpainting algorithms such as

PDE-based methods. Notably, these methods are not differentiable

and, thus, cannot be used for end-to-end training in combination

with the importance network, yet they can be used for sole sparse

image reconstruction. A comparison to the pull-push algorithm,

however, does not show any perceivable differences. The results

further indicate that the network pipeline can reconstruct images at

high fidelity from only 5% of the samples that are used to render

the data sets at full pixel resolution. In particular sharp edges are

well preserved, since the network has learned to increase the sample

density along them.

6 APPLICATION TO DVR

The proposed network pipeline can be applied to images that are

rendered via Direct Volume Rendering (DVR), i.e., volume ray-

casting using an emission-absorption model along the rays of sight.

In contrast to isosurface ray-casting, not only one single ray-surface

intersection point is rendered, but the colors of many sample points

along the rays are blended using α-compositing to account for

volumetric attenuation.

6.1 Training and Validation

The importance and reconstruction networks receive RGBα images

as input, and the network pipeline outputs the reconstructed high-

resolution RGBα images. Interestingly, we observed a noticeable

increase in quality when the gradients at the sample points along the

view rays are used by the importance and reconstruction network.

The normalized gradients in [−1,1]3 along a single ray are treated

as emission and blended according to the volume rendering integral,

just as blending the RGB colors. The resulting gradient map is then

used as an additional input channel. Since the average gradients

indicate, to a certain extent, whether two rays step through vastly

different or similar regions, the gradient map serves as an additional

coherence indicator. When only a single isosurface is rendered, the

resulting values converge against the values in the normal map.

For training and validation, random transfer functions (TFs)

are generated and used to render Ejecta, with L1 losses on color

and alpha in combination with an LPIPS-based perceptual loss

(Section C). Since the low-resolution input to the importance

network is also generated with a TF, the network can learn to

select features specific to that TF, even though this was never

seen during training. It is important to note that the reconstruction

quality strongly depends on the use of TFs that include a broad

range of different colors in the training step. For instance, if the

training data only contains desaturated colors, strongly saturated

colors during testing cannot be reconstructed.

6.2 DVR Results

For novel views of Ejecta and the data sets introduced in Sub-

section 5.4, Figure 11 shows a qualitative analysis of the results

of importance sampling and reconstruction using DVR as well

as SSIM and LPIPS statistics. None of these data sets was used

TABLE 1: Timings (in milliseconds) of network-based volume rendering
(averaged over 100 different views at 10242 target resolution) for data
sets shown in Figure 10 and Figure 11. Timings are for rendering the low-
resolution input image (1282) and the sparse set of samples (5% and 10%
of the target resolution for isosurface rendering and DVR respectively),
generating the importance map and sampling pattern, reconstructing the
image, and GPU ray-casting at the target resolution.

Test case Rendering Importance Reconstruction Total GT

IS
O

Ejecta 5123 24.3 7.4 92.1 123.9 105.8

RM 10243 34.3 5.8 92.0 132.1 89.4

Skull 2563 6.1 5.9 93.7 105.6 27.3

D
V

R

Ejecta 5123 46.5 5.8 92.2 144.5 224.8

RM 10243 51.7 5.8 91.8 149.3 158.3

Thorax 5123 15.9 5.9 92.9 114.7 63.7

in the training and validation phases, and the results have been

generated using TFs that were never seen during training. The

results indicate that the network pipeline generalizes well to new

volumes and TFs, yet the reconstruction quality is affected by the

occurring color variations. Especially for Thorax and Aneurism,

where the TFs introduce rather small-scale color variations in

some areas, in these areas the network places the samples rather

uniformly and, thus, cannot accurately reconstruct the rendered

structure. Overall, it can be seen that the reconstruction problem is

significantly more challenging when using DVR samples instead

of isosurface samples. When rendering isosurfaces, the shading in

the interior of the rendered structures is rather smooth, enabling

the network to focus on the silhouettes and internal edges. In DVR,

on the other hand, the network needs to learn both the shape and

the color texture stemming from the application of a TF.

7 PERFORMANCE ANALYSIS

Even though performance improvements are not our main objective,

it is interesting to see whether network-based adaptive sampling

and image reconstruction can be faster than full-resolution GPU ray-

casting, due to the reduced number of samples that need to be taken.

The following performance tests were carried out on a workstation

running Windows 10 with an Intel Xeon E5-1630 @3.70GHz CPU,

32GB RAM, and an NVidia Titan RTX. All timings are averages

over 100 frames with random camera positions, with the screen

resolution set to 10242. The ray-caster uses a constant step size of

0.25 voxels and tricubic interpolation.

For some of the data sets shown in Figure 10 and Figure 11,

Table 1 lists the times that are required by the pipeline stages and

full-resolution volume ray-casting. Only for the larger data sets and

DVR can the network pipeline achieve a slightly better performance

than the ray-caster. Especially the reconstruction network consumes

a significant portion of the overall time, sometimes even more

than it requires to render at full resolution. This is because the

reconstruction network requires a large amount of data access

and arithmetic operations on the GPU, independent of the volume

resolution.

On the one hand, the performance of the reconstruction network

scales linearly with the number of pixels, and hence quadratically

with the screen resolution. Volume rendering, on the other hand,

scales quadratically with the screen resolution but also linear in the

volume resolution. The sampling stage, even though it also scales

in the volume resolution, performs a significantly smaller number

of sampling operations than the full-resolution ray-caster. Thus,

its overall contribution is negligible, so that performance benefits

can be expected with increasing image and volume size. This is

demonstrated in Table 2, where versions of RM and Ejecta at 20483

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

10

TABLE 2: Performance scaling w.r.t. image and volume size. Each entry
shows the total time of the network pipeline (low-resolution rendering,
importance network, sparse sampling, reconstruction network) and the
time required by the volume ray-caster at full resolution. All timings
are in milliseconds. The cells are colored with a diverging color map,
encoding the performance differences from red (superior performance of
ray-casting) to blue (superior performance of the network pipeline).

Screen resolution
256 512 1024 2048

IS
O

E
je

ct
a

V
o
lu

m
e

re
so

lu
ti

o
n

256 24/11 45/20 115/75 398/294
512 31/16 55/31 124/106 405/400
1024 45/47 73/104 141/221 445/655
2048 85/278 132/806 238/1358 724/2324

R
M

256 24/4 41/11 111/42 393/173
512 31/6 51/15 116/58 397/236
1024 45/15 71/31 132/89 411/366
2048 87/122 124/249 211/453 646/802

D
V

R

E
je

ct
a

256 46/17 64/46 131/162 413/574
512 59/36 75/73 144/225 447/785
1024 86/151 103/262 180/433 594/1274
2048 160/575 186/1692 333/2771 1319/4292

R
M

256 32/8 49/21 117/71 398/280
512 41/11 58/27 125/96 404/363
1024 60/29 81/58 149/158 450/549
2048 115/203 143/410 248/656 830/1304

are rendered at different resolution levels and large images sizes.

Note that in these experiments an Nvidia Titan RTX graphics card

with 24GB of memory was used to keep all data in memory.

It can be seen that for large image sizesÐwhere the GPU is

fully utilized by the networkÐand volume sizes larger than 10243,

the network pipeline outperforms the GPU ray-caster. Even though

a ray-caster using advanced acceleration schemes can achieve

improved performance, we are confident that in these scenarios

faster deep-learning hardware and performance-optimized network

architectures will let the performance differences grow due to better

scalability of the network pipeline.

8 CONCLUSION AND FUTURE WORK

In this paper we have introduced and analyzed a network pipeline

that learns adaptive screen space sampling and reconstruction for

3D visualization, with the focus on volume rendering applications.

For the first time, to our best knowledge, a fully differentiable

adaptive sampling pipeline comprised of an importance network,

a sampling stage, and a reconstruction network is proposed. Our

experiments have shown, that the pipeline learns to determine the

locations that are important for an accurate image reconstruction,

and achieves high reconstruction quality for a sparse set of samples.

We are particular intrigued about the quality of the results

compared to sampling methods that consider explicitly certain

feature descriptors. Even without such supervision, the network

pipeline can improve on the reconstruction quality, using solely

image-based quality losses. We believe that especially for data

visualization there is value in the observation that artificial neural

networks can learn the relevance of structures for generating visual

representations. For sole rendering tasks, on the other hand, superior

performance compared to classical volume ray-casting can only be

achieved for large image and volume sizes.

The application to DVR opens the interesting question of

whether the proposed network pipeline can be used beyond

adaptive sampling in screen space, and learn where to sample

in object space so that the relevant information is conveyed visually.

Conceptually this requires end-to-end learning of a mapping from

a low-resolution object space representation to a high-resolution

visual representation. The ultimate goal is to let the network learn

to convert a low-resolution input volume to a compact yet feature-

preserving latent-space representation from which a highly accurate

view can be inferred.

In particular, we envision a neural volume rendering pipeline,

where during training a neural scene representation is built and

trained end-to-end with a renderer that learns sampling and color

mapping simultaneously. In the future, we will analyze whether a

network can learn a suitable color mapping for a given volumetric

field. We also see challenging research problems in the area of

transfer learning, to infer the most important samples for training,

and to generate synthetic volumetric fields to enable training in

domains where training data is rare.

REFERENCES

[1] T. Bashford-Rogers, K. Debattista, and A. Chalmers. Impor-

tance driven environment map sampling. IEEE transactions

on visualization and computer graphics, 20, 11 2013. doi: 10.

1109/TVCG.2013.258

[2] S. Belyaev, P. Smirnov, V. Shubnikov, and N. Smirnova.

Adaptive algorithm for accelerating direct isosurface rendering

on gpu. Journal of Electronic Science and Technology, 16:222±

231, 01 2018. doi: 10.11989/JEST.1674-862X.71013102

[3] M. Berger, J. Li, and J. A. Levine. A generative model for

volume rendering. IEEE Transactions on Visualization and

Computer Graphics, 25(4):1636±1650, April 2019. doi: 10

.1109/TVCG.2018.2816059

[4] M. Bertalmio, A. L. Bertozzi, and G. Sapiro. Navier-stokes,

fluid dynamics, and image and video inpainting. In Proceedings

of the 2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition. CVPR 2001, vol. 1, pp. I±I,

Dec 2001. doi: 10.1109/CVPR.2001.990497

[5] M. R. Bolin and G. W. Meyer. A perceptually based adaptive

sampling algorithm. In Proceedings of the 25th Annual

Conference on Computer Graphics and Interactive Techniques,

SIGGRAPH ’98, p. 299±309. Association for Computing

Machinery, New York, NY, USA, 1998. doi: 10.1145/280814.

280924

[6] L. Campagnolo, W. Celes, and L. Figueiredo. Accurate volume

rendering based on adaptive numerical integration. pp. 17±24,

08 2015. doi: 10.1109/SIBGRAPI.2015.27

[7] M. Chu, Y. Xie, L. Leal-TaixÂe, and N. Thuerey. Tem-

porally coherent gans for video super-resolution (tecogan).

arXiv:1811.09393, 2018.

[8] A. Criminisi, P. Perez, and K. Toyama. Region filling and

object removal by exemplar-based image inpainting. IEEE

Transactions on Image Processing, 13(9):1200±1212, Sep.

2004. doi: 10.1109/TIP.2004.833105

[9] J. Danskin and P. Hanrahan. Fast algorithms for volume ray

tracing. In Proceedings of the 1992 Workshop on Volume

Visualization, VVS ’92, p. 91±98. Association for Computing

Machinery, New York, NY, USA, 1992. doi: 10.1145/147130.

147155

[10] O. Deussen, M. Spicker, and Q. Zheng. Weighted Linde-

Buzo-Gray stippling. ACM Trans. Graph., 36(6), Nov. 2017.

doi: 10.1145/3130800.3130819

[11] C. Dong, C. C. Loy, K. He, and X. Tang. Learning a deep

convolutional network for image super-resolution. In European

conference on computer vision, pp. 184±199. Springer, 2014.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

11

SSIM=0.941, LPIPS=0.046

SSIM=0.808, LPIPS=0.143

SSIM=0.976, LPIPS=0.025

SSIM=0.974, LPIPS=0.034

SSIM=0.996, LPIPS=0.008

SSIM=0.947, LPIPS=0.050

SSIM=0.995, LPIPS=0.010

Fig. 10: Visual comparison of adaptive sampling of isosurfaces. From left to right: The importance map and, the sparse set of samples, the inpainted
samples, the network output, the ground truth (normals and colors using reconstructed normals). From top to bottom: Novel views of Ejecta, RM,
Skull, Aneurism, Bug, Human, Jet. Networks were trained only on Ejecta. The number of samples is µ = 5% of the pixels in the output image.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

12

SSIM=0.935, LPIPS=0.058

SSIM=0.882, LPIPS=0.107

SSIM=0.819, LPIPS=0.145

SSIM=0.930, LPIPS=0.051

SSIM=0.989, LPIPS=0.007

SSIM=0.953, LPIPS=0.045

SSIM=0.992, LPIPS=0.008

Fig. 11: Visual comparison of adaptive sampling for DVR. Each row shows ± from left to right ± the importance map, the sparse set of samples, the
network output, the ground truth. From top to bottom: Novel views of Ejecta, RM, Thorax, Aneurism, Bug, Human, Jet. Networks were trained only on
Ejecta. The number of samples is µ = 10% of the pixels in the output image.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

13

[12] A. A. Efros and T. K. Leung. Texture synthesis by non-

parametric sampling. In Proceedings of the Seventh IEEE

International Conference on Computer Vision, vol. 2, pp. 1033±

1038 vol.2, Sep. 1999. doi: 10.1109/ICCV.1999.790383

[13] S. Frey, F. Sadlo, K. Ma, and T. Ertl. Interactive progressive

visualization with space-time error control. IEEE Transactions

on Visualization and Computer Graphics, 20(12):2397±2406,

2014.

[14] P. Getreuer. Total variation inpainting using Split Bregman.

Image Processing On Line, 2:147±157, 2012. doi: 10.5201/ipol.

2012.g-tvi

[15] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.

The lumigraph. In Proceedings of the 23rd annual conference

on Computer graphics and interactive techniques, pp. 43±54,

1996.

[16] B. Guenter, M. Finch, S. Drucker, D. Tan, and J. Snyder.

Foveated 3d graphics. ACM Transactions on Graphics (TOG),

31(6):1±10, 2012.

[17] L. Guo, S. Ye, J. Han, H. Zheng, H. Gao, D. Chen, J.-X.

Wang, and C. Wang. Spatial super-resolution for vector field

data analysis and visualization. In Proceedings of IEEE Pacific

Visualization Symposium, 2020.

[18] J. GÈortler, M. Spicker, C. Schulz, D. Weiskopf, and

O. Deussen. Stippling of 2d scalar fields. IEEE Transactions

on Visualization and Computer Graphics, 25(6):2193±2204,

June 2019. doi: 10.1109/TVCG.2019.2903945

[19] J. H. Halton. Algorithm 247: Radical-inverse quasi-random

point sequence. Commun. ACM, 7(12):701±702, Dec. 1964.

doi: 10.1145/355588.365104

[20] J. Han, J. Tao, H. Zheng, H. Guo, D. Z. Chen, and C. Wang.

Flow field reduction via reconstructing vector data from 3-d

streamlines using deep learning. IEEE computer graphics and

applications, 39(4):54±67, 2019.

[21] J. Han and C. Wang. TSR-TVD: Temporal super-resolution

for time-varying data analysis and visualization. IEEE Transac-

tions on Visualization and Computer Graphics, 26(1):205±215,

2019.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 770±778,

2016.

[23] W. He, J. Wang, H. Guo, K. Wang, H. Shen, M. Raj, Y. S. G.

Nashed, and T. Peterka. InSituNet: Deep image synthesis

for parameter space exploration of ensemble simulations.

IEEE Transactions on Visualization and Computer Graphics,

26(1):23±33, Jan 2020. doi: 10.1109/TVCG.2019.2934312

[24] H. Igehy and L. Pereira. Image replacement through texture

synthesis. In Proceedings of International Conference on

Image Processing, vol. 3, pp. 186±189 vol.3, Oct 1997. doi: 10.

1109/ICIP.1997.632049

[25] S. Iizuka, E. Simo-Serra, and H. Ishikawa. Globally and

locally consistent image completion. ACM Transactions on

Graphics (ToG), 36(4):1±14, 2017.

[26] J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for

real-time style transfer and super-resolution. In European

conference on computer vision, pp. 694±711. Springer, 2016.

[27] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image

super-resolution using very deep convolutional networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pp. 1646±1654, 2016.

[28] J. Kim, J. Kwon Lee, and K. Mu Lee. Accurate image super-

resolution using very deep convolutional networks. In The

IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), June 2016.

[29] J. Kim, J. Kwon Lee, and K. Mu Lee. Deeply-recursive

convolutional network for image super-resolution. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pp. 1637±1645, 2016.

[30] D. P. Kingma and J. Ba. Adam: A method for stochastic

optimization. arXiv:1412.6980, 2014.

[31] A. Kratz, J. Reininghaus, M. Hadwiger, and I. Hotz. Adaptive

screen-space sampling for volume ray-casting. ZIB-Report,

2011.

[32] M. Kraus. The pull-push algorithm revisited. Proceedings

GRAPP, 2:3, 2009.

[33] A. Krizhevsky. One weird trick for parallelizing convolutional

neural networks. arXiv:1404.5997, 2014.

[34] A. Kuznetsov, N. K. Kalantari, and R. Ramamoorthi. Deep

adaptive sampling for low sample count rendering. In

Computer Graphics Forum, vol. 37, pp. 35±44. Wiley Online

Library, 2018.

[35] J. Lawrence, S. Rusinkiewicz, and R. Ramamoorthi. Adap-

tive numerical cumulative distribution functions for efficient

importance sampling. In Rendering Techniques, pp. 11±20,

2005.

[36] C. Ledig, L. Theis, F. HuszÂar, J. Caballero, A. Cunningham,

A. Acosta, A. Aitken, A. Tejani, J. Totz, Z. Wang, et al.

Photo-realistic single image super-resolution using a generative

adversarial network. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 4681±4690,

2017.

[37] M. Levoy. Volume rendering by adaptive refinement. The

Visual Computer, 6(1):2±7, 1990.

[38] S. Lindholm, D. JÈonsson, H. Knutsson, and A. Ynnerman.

Towards data centric sampling for volume rendering. In

SIGRAD, 2013.

[39] G. Liu, F. A. Reda, K. J. Shih, T.-C. Wang, A. Tao, and

B. Catanzaro. Image inpainting for irregular holes using partial

convolutions. In The European Conference on Computer Vision

(ECCV), September 2018.

[40] P. Longhurst, K. Debattista, and A. Chalmers. A GPU

based saliency map for high-fidelity selective rendering. In

Proceedings of the 4th International Conference on Computer

Graphics, Virtual Reality, Visualisation and Interaction in

Africa, AFRIGRAPH ’06, p. 21±29. Association for Computing

Machinery, New York, NY, USA, 2006. doi: 10.1145/1108590.

1108595

[41] M. Mara, M. McGuire, B. Bitterli, and W. Jarosz. An efficient

denoising algorithm for global illumination. In Proceedings of

High Performance Graphics. ACM, New York, NY, USA, jul

2017. doi: 10.1145/3105762.3105774

[42] K. Myszkowski. The visible differences predictor: appli-

cations to global illumination problems. In G. Drettakis and

N. Max, eds., Rendering Techniques ’98, pp. 223±236. Springer

Vienna, Vienna, 1998.

[43] K. Novins and J. Arvo. Controlled precision volume

integration. In Proceedings of the 1992 Workshop on Volume

Visualization, VVS ’92, p. 83±89. Association for Computing

Machinery, New York, NY, USA, 1992. doi: 10.1145/147130.

147154

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

14

[44] J. Painter and K. Sloan. Antialiased ray tracing by adaptive

progressive refinement. In Proceedings of the 16th annual

conference on Computer graphics and interactive techniques,

pp. 281±288, 1989.

[45] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury,

G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,

A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,

A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and

S. Chintala. PyTorch: An imperative style, high-performance

deep learning library. In H. Wallach, H. Larochelle, A. Beygelz-

imer, F. d'AlchÂe-Buc, E. Fox, and R. Garnett, eds., Advances

in Neural Information Processing Systems 32, pp. 8024±8035.

Curran Associates, Inc., 2019.

[46] M. Prantl, L. VÂasa, and I. KolingerovÂa. Fast screen space

curvature estimation on gpu. In VISIGRAPP (1: GRAPP), pp.

151±160, 2016.

[47] C. R. Alla Chaitanya, A. S. Kaplanyan, C. Schied, M. Salvi,

A. Lefohn, D. Nowrouzezahrai, and T. Aila. Interactive recon-

struction of monte carlo image sequences using a recurrent

denoising autoencoder. ACM Transactions on Graphics, 36:1±

12, 07 2017. doi: 10.1145/3072959.3073601

[48] M. Ramasubramanian, S. N. Pattanaik, and D. P. Greenberg.

A perceptually based physical error metric for realistic image

synthesis. In Proceedings of the 26th Annual Conference on

Computer Graphics and Interactive Techniques, SIGGRAPH

’99, p. 73±82. ACM Press/Addison-Wesley Publishing Co.,

USA, 1999. doi: 10.1145/311535.311543

[49] J. Rigau, M. Feixas, and M. Sbert. Refinement criteria based

on f-divergences. In Rendering Techniques, pp. 260±269, 2003.

[50] M. Roberts. The unreasonable effectiveness of

quasirandom sequences. http://extremelearning.com.au/

unreasonable-effectiveness-of-quasirandom-sequences/, 2020.

Accessed: 2020-02-14.

[51] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional

networks for biomedical image segmentation. In N. Navab,

J. Hornegger, W. M. Wells, and A. F. Frangi, eds., Medical Im-

age Computing and Computer-Assisted Intervention ± MICCAI

2015, pp. 234±241. Springer International Publishing, Cham,

2015.

[52] M. S. Sajjadi, R. Vemulapalli, and M. Brown. Frame-recurrent

video super-resolution. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pp. 6626±6634,

2018.

[53] M. S. M. Sajjadi, B. Scholkopf, and M. Hirsch. EnhanceNet:

Single image super-resolution through automated texture

synthesis. In The IEEE International Conference on Computer

Vision (ICCV), Oct 2017.

[54] W. Shi, J. Caballero, F. HuszÂar, J. Totz, A. P. Aitken,

R. Bishop, D. Rueckert, and Z. Wang. Real-time single

image and video super-resolution using an efficient sub-pixel

convolutional neural network. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp.

1874±1883, 2016.

[55] Y. Tai, J. Yang, and X. Liu. Image super-resolution via

deep recursive residual network. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pp.

3147±3155, 2017.

[56] X. Tao, H. Gao, R. Liao, J. Wang, and J. Jia. Detail-revealing

deep video super-resolution. In Proceedings of the IEEE

International Conference on Computer Vision, pp. 4472±4480,

2017.

[57] G. Tkachev, S. Frey, and T. Ertl. Local prediction models for

spatiotemporal volume visualization. IEEE Transactions on

Visualization and Computer Graphics, pp. 1±1, 2019. doi: 10.

1109/TVCG.2019.2961893

[58] O. T. Tursun, E. Arabadzhiyska-Koleva, M. Wernikowski,

R. Mantiuk, H.-P. Seidel, K. Myszkowski, and P. Didyk.

Luminance-contrast-aware foveated rendering. ACM Trans.

Graph., 38(4), July 2019. doi: 10.1145/3306346.3322985

[59] Z. Wang, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, et al.

Image quality assessment: from error visibility to structural

similarity. IEEE transactions on image processing, 13(4):600±

612, 2004.

[60] S. Weiss, M. Chu, N. Thuerey, and R. Westermann. Volu-

metric isosurface rendering with deep learning-based super-

resolution. IEEE Transactions on Visualization and Computer

Graphics, pp. 1±1, 2019. doi: 10.1109/TVCG.2019.2956697

[61] Q. Xu, S. Bao, R. Zhang, R. Hu, and M. Sbert. Adaptive

sampling for monte carlo global illumination using tsallis

entropy. In International Conference on Computational and

Information Science, pp. 989±994. Springer, 2005.

[62] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang. Free-

form image inpainting with gated convolution. In Proceedings

of the IEEE International Conference on Computer Vision, pp.

4471±4480, 2019.

[63] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.

The unreasonable effectiveness of deep features as a perceptual

metric. In CVPR, 2018.

[64] Z. Zhou, Y. Hou, Q. Wang, G. Chen, J. Lu, Y. Tao, and H. Lin.

Volume upscaling with convolutional neural networks. In Pro-

ceedings of the Computer Graphics International Conference,

pp. 1±6, 2017.

Sebastian Weiss received the M.Sc. degree
from the Technical University of Munich in 2018.
Currently, he is a doctoral student of computer
science, Technical University of Munich. His re-
search interests include volume visualization,
deep learning and high performance GPU pro-
gramming.

Mustafa IsË ık received his B.Sc. degree in Com-
puter Engineering from Middle East Technical
University, Turkey. Currently, he is pursuing an
M.Sc. in Computer Science at Technical Univer-
sity of Munich, Germany. His research interests
include realistic image synthesis, deep learning
and image denoising.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

15

Justus Thies is a Postdoctoral Researcher in
the Visual Computing Group at the Technical
University of Munich (TUM). He received his
PhD from the University of Erlangen-Nuremberg
in 2017 for his research on marker-less motion
capturing of facial performances and its applica-
tions. More recently, he focuses on neural image
synthesis techniques that allow for video editing
and creation.

R Èudiger Westermann studied computer science
at the Technical University Darmstadt and re-
ceived his Ph.D. in computer science from the
University of Dortmund, both in Germany. In 2002,
he was appointed the chair of Computer Graphics
and Visualization at TUM. His research interests
include scalable data visualization and simulation
algorithms, GPU computing, real-time rendering
of large data, and uncertainty visualization.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

16

APPENDIX A

COMPARISON WITH THE U-NET FOR RECONSTRUC-

TION

For reconstruction, we also tested different variants (by varying

the number of levels and channels at each level) of the U-Net

architecture [7]. As one can see in Figure 13, in our application the

EnhanceNet vastly outperforms all considered U-Net variants.

S

In
p
ai

n
ti

n
g

64

128

256

512

1024

C
o
n
v,

C

+ O

global residual?

X
Conv, X channels; ReLU

max pool 2x2

bilinear upsampling

Fig. 12: Reconstruction network based on the U-Net architecture. See
4b for the EnhanceNet architecture we use in our experiments.

a) b) c) d)

100

200

300

Ej
ec

ta

77 75 77 85
PSNR color

a) b) c) d)

0.6

0.8

1.0 0.964 0.960 0.968 0.961
SSIM mask

a) b) c) d)

0.870 0.862 0.874 0.943
SSIM normal

a) b) c) d)

0.910 0.883 0.915 0.927
SSIM color

a) b) c) d)

0.898 0.896 0.904 0.945
1 - LPIPS color

Fig. 13: Comparison of the U-Net and EnhanceNet for sparse image
reconstruction: U-Net 4-4 (a), U-Net 5-3 (b), U-Net 5-4 (c), EnhanceNet
(d). a-b indicates a levels and 2b+i channels in level i (zero-based). The
importance network is trained together with the reconstruction network.

APPENDIX B

COMPARISON OF DIFFERENT SAMPLING PATTERN

For deterministic and parallelizable sampling on the GPU, we use

a pre-computed sampling pattern in combination with rejection

sampling (Subsection 3.2). The sampling pattern P ∈ [0,1]H×W

contains permutations of uniformly distributed numbers in [0,1],
1

HW
{0, ...,HW −1}. Here we analyze the four different strategies

employed for generating the permutations (Figure 14, top): Random

sampling, regular sampling, Halton sampling [2], and plastic

sampling [6].

Random sampling generates a random permutation of the

numbers in P. Regular sampling arranges the pixels in a quad-

tree and enumerates them using breath-first traversal to generate

the sampling pattern. Random and regular sampling introduce,

respectively, largely varying sample densities and a strong bias

of the sample distribution towards the top of the image. Both

Halton and plastic sampling are deterministic and produce quasi-

random sequences with a fairly uniform distribution. As revealed

by the quantitative analysis in Figure 15, even though all sampling

strategies allow reconstructing the final image at high accuracy,

slight differences are noticeable. Halton and plastic sampling lead

to superior quality, in particular w.r.t. the variance of the quality

metrics. Plastic sampling, designed as a low-discrepancy sampling

sequence, shows the lowest variance and slightly higher scores

than Halton sampling. We, therefore, use plastic sampling in our

implementation.

Fig. 14: Comparison of random sampling, regular sampling, Halton
sampling and plastic sampling (left to right). Top: The sampling se-
quences. Bottom: The sequences applied to render a sphere with
constant importance of µ = 0.1 (shown are color coded normals at
rendered fragments).

a) b) c) d)

100

200

300

Ej
ec

ta

83 85 85 86
PSNR color

a) b) c) d)
0.7

0.8

0.9

1.0 0.960 0.964 0.964 0.966
SSIM mask

a) b) c) d)

0.925 0.937 0.939 0.942
SSIM normal

a) b) c) d)

0.945 0.953 0.954 0.956
SSIM color

a) b) c) d)

0.944 0.950 0.955 0.957
1 - LPIPS color

Fig. 15: Reconstruction quality using (a) uniform random, (b) regular, (c)
Halton (c), and (c) plastic sampling with µ = 5% of samples.

APPENDIX C

APPLICATION TO DVR

In this section, we provide additional details on how the proposed

adaptive sampling pipeline is applied to DVR images, as mentioned

in Section 6. First, we present the changes to the pipeline in terms

of input and output channels and the used loss function. Second, we

describe how to generate the training data including the sampling

of transfer functions.

Input Channels and Loss Function: First, the input channels

to the network pipeline are reinterpreted. For isosurfaces, a mask,

normals, and depth were passed to the network as input (5 channels

per pixel), now color images from the DVR images, together with

alpha, depth, and normal maps are used as input (8 channels per

pixel). The network also only reconstructs color images in RGBα
space.

For DVR, depth and normal maps are computed by treating

the screen space depth and normal at each sample in object space

as a regular color and blended as such with the opacity given by

the transfer function (TF). The result is a single depth and normal

value per ray which can be interpreted as a weighted average of

the depth and normal of all samples along the ray. We found that

adding depth and normals as input channels improves the quality

of the reconstruction as it provides additional locally consistent

information about the curvature of the object.

Second, the loss functions on the individual channels as used

for isosurfaces are replaced by losses only on the RGBα-color. We

apply L1 losses on the color and alpha and an additional LPIPS

metric [10] as a perceptual loss, weighted equally:

Ldvr = L1,rgba +LLPIPS,rgb. (13)

We found that adding a perceptual loss is critical in reconstructing

fine details and sharp silhouettes. The networks operate in RGB

space, other colorspaces like HSV, XYZ, or CIELAB did not

improve the result. Furthermore, the training data is augmented by

randomly shuffling the RGB channels. This helps the network to

not overfit for a specific color.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

17

Data Set Generation: For training and validation, random

transfer functions (TFs) are generated (see below) and Ejecta was

used as data set. The test images in the result section use user-

generated TFs. Note that since the low-resolution input for the

importance network is also generated with a TF, the network can

learn to select features specific to that TF, even though it was never

seen during training.

To generate meaningful TFs, first, a density histogram is

computed and then a Gaussian Mixture Model (GMM) is used

to cluster densities in an unsupervised manner. GMMs have been

previously used to cluster two-dimensional feature points [9], e.g.,

density and gradient magnitude. Our approach follows the same

idea to cluster one-dimensional feature points, i.e., density values.

The GMM represents each cluster as a 1D Gaussian function with

a certain mean, i.e., the cluster center, and standard deviation, i.e.,

the cluster spread. To determine the number of components of

the GMM, several GMMs with different numbers of components

are build and the one with the lowest Bayesian information

criterion (BIC) [8] value is selected. BIC penalizes the number of

components and prevents overfitting using many components.

After computing the GMM, the number of peaks of the TF is

sampled uniformly between 3 and 5. The represented density for

each peak is sampled from the computed GMM. Next, a width

in density space is sampled uniformly from [0.005,0.03] and the

opacity at that peak from [0.1,1.0]. As colormaps, predefined col-

ormaps from SciVisColor1 are randomly sampled. The generation

process is visualized in Figure 16.

0.350 0.375 0.400 0.425 0.450
Density

0.00

0.01

0.02

0.03

0.04

Fr
eq

ue
nc

y

Fitted GMM
Histogram

0.350 0.375 0.400 0.425 0.450
Density

0.0

0.5

1.0

Op
ac

ity

0.350 0.375 0.400 0.425 0.450
Density

0.350 0.375 0.400 0.425 0.450
Density

Fig. 16: First row: Histogram of the density values of the Ejecta data set
and matched GMM. Second row: three sampled transfer functions with
opacity and color. Third row: Renderings from the training data set with
those transfer functions.

We note that it is important for the quality of the reconstruction

that the color transfer functions in the training data include a broad

range of colors. For example, if the training data only contains

desaturated colors, strongly saturated colors during testing cannot

be reconstructed.

APPENDIX D

PULL-PUSH ALGORITHM

As a baseline method to interpolate the sparse samples, we apply a

variation of the push-pull algorithm [1, 3], see Alg. 1 for the pseudo

1. https://sciviscolor.org/home/colormaps

code. The algorithm builds upon the idea of mip-map levels: first,

the image is downscaled using bilinear interpolation with weights

based on the mask. Then, the image is upscaled again and blended

with the values at the finer levels with the mask values at the finer

levels. We refer to Subsection 3.3 for more details in the context

of the adaptive sampling pipeline. The pull-push algorithm can be

directly extended to fractional masks as shown in Alg. 1. During

the upsampling stage, the mask is not treated binary, i.e. either

take the original pixel at the fine level or use the interpolated value

from the coarse level, but fractional with a linear interpolation

between the original value and the interpolated value. Furthermore,

the algorithm consists only of linear pooling and interpolation

layers which are easy to differentiate with respect to the input mask.

We refer to Subsection E.3 for an outline on how to derive the

backward pass.

Algorithm 1 Pseudocode of the pull-push algorithm for power-of-

two input images (a version handling non-power-of-two inputs and

the adjoint code for computing the derivative with respect to the

mask and data are provided in the source code).

1: function INPAINTING(maskIn : HxW, dataIn : HxWxC)
2: if H≤ 1 or W≤ 1 or all pixels are filled then
3: return maskIn, dataIn ▷ end of recursion
4: end if

weighted area downsampling:
5: maskLow, dataLow = zeros of shape H

2
xW

2
, H

2
xW

2
xC

6: for i, j ∈ {0, ..., H
2
−1}×{0, ..., W

2
−1} do

7: Nmax,Navg,d = 0C

8: for a,b ∈ {2i,2i+1}×{2 j,2 j+1} do ▷ loop over
neighbors in the fine grid

9: Nmax = max{Nmax,maskIn[a,b]}
10: Navg += maskIn[a,b]
11: d += maskIn[a,b] ·dataIn[a,b, :]
12: end for
13: if Navg > 0 then
14: maskLow[i, j] = Nmax

15: dataLow[i, j, :] = d/Navg

16: end if
17: end for

recursion:
18: maskLow, dataLow = INPAINTING(maskLow, dataLow)

weighted bilinear upsampling:
19: maskOut, dataOut = zeros of shape HxW , HxWxC
20: for a,b ∈ {0, ...,H−1}×{0, ...,W −1} do
21: N,W = 0,d = 0C

22: â = a÷2, b̂ = b÷2 ▷ Integer-division (round down),
indices on the coarse grid

23: a′,b′ =−1 if a,b is even else +1
24: N =

{

(â, b̂, 9
16
),(â+a′, b̂, 3

16
),(â, b̂+b′, 3

16
),(â+a′, b̂+b′, 1

16
)
}

25: for (i, j,w) ∈ N∩ image do▷ loop over neighbors if within
bounds

26: N += w maskLow[i, j]
27: d += w maskLow[i, j] ·dataLow[i, j, :]
28: W += w
29: end for
30: maskOut[a,b] = maskIn[i, j],dataOut[a,b, :] =

maskIn[i, j] ·dataIn[i, j, :]
31: if N > 0 then▷ blend interpolated values with original data
32: maskOut[a,b] += (1−maskIn[i, j]) N/W
33: dataOut[a,b, :] += (1−maskIn[i, j]) d/N
34: end if
35: end for
36: return maskOut, dataOut
37: end function

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

18

APPENDIX E

DIFFERENTIATION OF THE SAMPLING AND RECON-

STRUCTION STAGES

The adjoint code for the gradient propagation in the backward pass

is automatically generated by PyTorch for the networks, the loss

functions, and the sampling function Equation 5. For the pull-push

algorithm (Alg. 1), the adjoint code was manually derived and

implemented as a custom operation. In this section, we provide the

fundamentals of the adjoint method to manually derive the adjoint

code and show how it can be applied to the sampling function and

the pull-push algorithm.

E.1 Fundamentals of the Adjoint Method

The adjoint method has a long history in Optimal Control Theory,

we refer the interested reader to the book by Lions [4] for a

complete mathematical introduction. Here, we briefly sketch the

fundamentals following the notation by McNamara et al. [5].

By ignoring applications to linear systems and differential

equations and focussing on chained functions instead, the adjoint

method simplifies to an application of the chain rule. Let the

algorithm be defined as a concatenation of functions fi with

parameters wi starting from an input value x0,

x1 = f1(x0,w1)

x2 = f2(x1,w2)

...

xn = fn(xn−1,wn)

s = J(xn,wJ).

(14)

The result s has to be a scalar value, this is crucial for the application

of the adjoint method in this simple form. In the context of neural

networks, x0 would be the input image, f1 to fn the network layers

with weights wi and feature vectors xi, J would be the loss function

with target image wJ and s the scalar score.

During training, we are interested in the derivatives ∂J
∂wi

to

update the weights or in e.g. ∂J
∂x0

to update the initial image in

a feature-visualization context. First, given the ± possibly vector

valued ± variables xi and wi, let the adjoint variables x̂i and ŵi

be defined as the gradient of s with respect to xi and wi, x̂i :=
∇xi

s, ŵi := ∇wi
s as column vectors. Next, we drop the index i, as

we require it to index the elements in the input and output vectors,

and look at a single function f ∈ R
N ×R

W → R
M with inputs

x ∈ R
N ,w ∈ R

W and output y ∈ R
M . The adjoint variables are then

computed using

x̂ = JT
f ,x(x,w)ŷ , ŵ = JT

f ,w(x,w)ŷ. (15)

Here, the Jacobian matrix with respect to the different inputs is

used, defined as

(

J f ,x

)

i j
:=

∂ fi

∂x j

,
(

J f ,w

)

i j
:=

∂ fi

∂w j

. (16)

As one can see, given the adjoint variable of the output ŷ,

the adjoint method propagates these gradients back through the

derivatives of f to the adjoint variables of the inputs x̂ and ŵ. In

the context of the chained function Equation 14, this implies that,

starting with gradients on the output x̂n from the loss function,

gradients are first propagated to x̂n−1, ŵn via J fi , then to x̂n−2, ŵn−1,

and so on until x̂0, ŵ1 is reached.

To provide custom differentiable operations, two functions have

to be provided: first, the forward code y← f (x,w) with input x and

parameter w, and second, the backward code to compute x̂ and ŵ

from ŷ, possibly using x,w from the forward pass again to compute

the Jacobian.

E.2 Backward Pass of the Sampling Function

Using the theory above, we now present the adjoint code for

the differentiable sampling from Subsection 3.2. This serves

to highlight what is differentiated and how the gradients are

propagated. Note that these functions are implemented based

on PyTorch functions, PyTorch can automatically compute the

derivatives.

The differentiable sampling stage takes the importance map

I as input and produces the image of sparse samples S. In the

framework of Equation 14, this can be seen as block of functions

that is cut out in the middle. As parameters, the target mean µ and

lower bound l, the sampling steepness α , the sample pattern P and

the target image T are used. Note that no optimization with respect

to these parameters is performed, their respective adjoint variables

are unused. To recapitulate, the sampling is performed using the

following steps:

µI =
1

WH
∑
i j

Ii j , I(1) = I (17a)

I′i j = min

{

1, l + I
(1)
i j

µ− l

µI + ε

}

(17b)

Si j = sig(α(I′i j−Pi j))Ti j with sig(x) =
1

1+ e−x
. (17c)

Note that the second and third function act on each pixel i j of

the images independently. Therefore, we use them as per-element

functions to simplify the notation of the derivatives. Using the

matrix notation from Equation 15, this would imply a diagonal

Jacobian. Furthermore, Ti j and Si j return the vector of channels

at the specified location. In order to stay within the presented

framework of the adjoint method, if variables are used by a function

and later again by another function, these variables are passed

through as additional outputs (I(1) = I).

For the backward pass, we are given the gradients of the output

Ŝ from the backward pass of the reconstruction. This equates to

x̂n in Equation 14. Then the gradients are propagated through the

sampling algorithm in reverse order:

T̂i j = sig(α(I′i j−Pi j))Ŝi j

P̂i j =−(αTi j sig′
(

α(I′i j−Pi j)
)T

Ŝi j

Î′i j = (αTi j sig′
(

α(I′i j−Pi j)
)T

Ŝi j

with sig′(x) =
d

dx
sig(x) = sig(x)sig(−x)

(18a)

Î
(1)
i j =

{

µ−l
µI+ε Î′i j , I′i j < 1

0 , I′i j ≥ 1

µ̂l = ∑
i j

I
(1)
i j (l−µ)

(µl+ε)2 Î′i j , I′i j < 1

0 , I′i j ≥ 1

derivatives for µ, l,ε are omitted

(18b)

Îi j = Î
(1)
i j +

1

WH
µ̂l (18c)

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

19

E.3 Backward Pass of the Pull-Push Algorithm

As one can see in the previous section, deriving the adjoint code is

done mechanically by deriving each line of code with respect to

the inputs. This, however, produces a vastly longer code, therefore,

we only outline the steps to derive the adjoint code of the pull-push

algorithm Alg. 1. The full source code is available in the online

repository.

The algorithm is a recursive algorithm with three stages: the

downsampling to the coarse level, the recursive call, and the

upsampling and interpolation with the fine level. During the

backward pass, the order is reversed. First, the adjoint of the

upsampling and interpolation at the finest level. Then the adjoint

of the recursive call, which itself is the adjoint of upsampling,

recursion, and downsampling. And lastly the adjoint of the

downsampling.

REFERENCES

[1] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.

The lumigraph. In Proceedings of the 23rd annual conference

on Computer graphics and interactive techniques, pp. 43±54,

1996.

[2] J. H. Halton. Algorithm 247: Radical-inverse quasi-random

point sequence. Commun. ACM, 7(12):701±702, Dec. 1964.

doi: 10.1145/355588.365104

[3] M. Kraus. The pull-push algorithm revisited. Proceedings

GRAPP, 2:3, 2009.

[4] J. L. Lions. Optimal control of systems governed by partial

differential equations. Springer, 1971.

[5] A. McNamara, A. Treuille, Z. PopoviÂc, and J. Stam. Fluid

control using the adjoint method. ACM Transactions On

Graphics (TOG), 23(3):449±456, 2004.

[6] M. Roberts. The unreasonable effectiveness of

quasirandom sequences. http://extremelearning.com.au/

unreasonable-effectiveness-of-quasirandom-sequences/, 2020.

Accessed: 2020-02-14.

[7] O. Ronneberger, P. Fischer, and T. Brox. U-Net: Convolutional

networks for biomedical image segmentation. In N. Navab,

J. Hornegger, W. M. Wells, and A. F. Frangi, eds., Medical

Image Computing and Computer-Assisted Intervention ± MIC-

CAI 2015, pp. 234±241. Springer International Publishing,

Cham, 2015.

[8] G. Schwarz et al. Estimating the dimension of a model. The

annals of statistics, 6(2):461±464, 1978.

[9] Y. Wang, W. Chen, J. Zhang, T. Dong, G.-Y. Shan, and

X. Chi. Efficient volume exploration using the gaussian

mixture model. Visualization and Computer Graphics, IEEE

Transactions on, 17:1560 ± 1573, 12 2011. doi: 10.1109/TVCG.

2011.97

[10] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang.

The unreasonable effectiveness of deep features as a percep-

tual metric. In CVPR, 2018.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2020.3039340

Copyright (c) 2020 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2020.3039340

EUROVIS 2021/ M. Agus, C. Garth, and A. Kerren Short Paper

Analytic Ray Splitting for Controlled Precision DVR

Sebastian Weiss and Rüdiger Westermann

Technical University of Munich, Germany

GT

Constant

Ours

Constant step size: 6760ms Constant step size: 9060ms Constant step size: 54600ms

Ours: 772ms Ours: 534ms Ours: 249ms

Figure 1: DVR via post-classification. Using a constant step size (i.e., 0.2 voxels) leads to sampling artifacts for high-frequency transfer

functions. Analytic ray splitting (Ours) produces an image indistinguishable from the ground truth (GT) rendering, i.e., on an 8 bit color

display the results are the same, and renders at less time than constant stepping.

Abstract

For direct volume rendering of post-classified data, we propose an algorithm that analytically splits a ray through a cubical cell

at the control points of a piecewise-polynomial transfer function. This splitting generates segments over which the variation of

the optical properties is described by piecewise cubic functions. This allows using numerical quadrature rules with controlled

precision to obtain an approximation with prescribed error bounds. The proposed splitting scheme can be used to find all

piecewise linear or monotonic segments along a ray, and it can thus be used to improve the accuracy of direct volume rendering,

scale-invariant volume rendering, and multi-isosurface rendering.

CCS Concepts

• Computing methodologies → Volumetric models; Parallel algorithms; • Mathematics of computing → Quadrature;

1. Introduction

In direct volume rendering (DVR), the perceived lightness is

determined by considering an optical model, e.g., an emission-

absorption model [DCH88, Lev88, Max95], and computing a nu-

merical approximation of the resulting low-albedo volume ren-

dering integral along the rays of sight [WM92]. In previous

works, error bounds for the used numerical integration rules

have been investigated [NA92, WM92, dBGHM97, CCdF15].

Etiene et al. [EJR+13] study the relationships between integration

step size and accuracy of the results, and they propose a framework

to assess the convergence of DVR algorithms with respect to step

size, pixel size, and grid resolution.

Novins and Arvo [NA92] assume that both an emission and ab-

sorption field is given, i.e., the initial data values are pre-classified

via transfer functions (TFs). When using trilinear interpolation

in the cubical cells of a voxel grid, in each cell the profile of

the interpolated quantities along a ray become cubic polynomi-

als [PSL+98]. For these polynomials, error bounds for the nu-

merical integration have been derived. For isosurface raycasting,

Parker et al. [PSL+98], Neubauer et al. [NMHW02], and Marmit

et al. [MKW+04] propose exact cell-wise ray splitting schemes

based on the zero crossings of the trilinear interpolant. These meth-

ods provide algebraic solutions for ray-isosurface intersections in

the trilinear interpolant.

When post-classification is used, i.e., the initial data values are

first interpolated and then mapped to emission and absorption

via a TF, the error bounds derived by Novins and Arvo break

down. For post-classification and a linear variation of the opti-

cal properties within each cell, Williams and Max show that the

integral can be computed algebraically [WM92]. Pre-integration

[RKE00, EKE01] builds upon the assumption that the data values

between adjacent sample points along a ray vary linearly. Then,

integrals—including post-classification—can be pre-computed and

used depending solely on the values at the sample points. Kniss

© 2021 The Author(s)

Eurographics Proceedings © 2021 The Eurographics Association.

DOI: 10.2312/evs.20211051
https://diglib.eg.orghttps://www.eg.org

Appeared in EuroVis 2021 - Short Papers (Open Access).

©2021 The Author(s), The Eurographics Association.

This record was published online in this final form at https://diglib.eg.org/handle/10.2312/evs20211051. DOI: http://dx.doi.org/10.2312/evs.20211051

Copyright (c) 2021 The Eurographics Association. Personal use is permitted. For any other purposes, permission must be obtained from the Eurographics Association by emailing publishing@eg.org.

https://diglib.eg.org/handle/10.2312/evs20211051
http://dx.doi.org/10.2312/evs.20211051

S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR

et al. [KIL+03] extend on this finding by demonstrating that un-

der the same assumption of piecewise linearity, multi-dimensional

Gaussian TFs can be algebraically integrated. Scale-invariant vol-

ume rendering by Kraus [Kra05] addresses ray splitting in data

space. The volume rendering integral is split into segments of equal

length over which a piecewise monotonic change of the data values

is assumed.

In the common case where piecewise linear 1D TFs are applied

to the trilinearly interpolated data values, a ray is split into multiple

piecewise cubic segments (see Figure 2). Then, piecewise linearity

or monotony between adjacent sample points can only be justified

for very small step sizes. In general, false classifications can occur

and segments might even be missed entirely if the step size does

not adapt to the segment boundaries.

0 1 2 3 4 567 89

0

1

2

3

4
5

t

d(t)

(a)
0 1

2

3

4

5 6

d

τ(d)

(b) 1 2 3 4 567 89

t

τ(d(t))

(c)

Figure 2: (a) In a cell with trilinear interpolation, the data values

along a ray s(t) are described by a cubic polynomial. (b) A piece-

wise linear TF. (c) Applying the TF from (b) to the data values in

(a) results in a piecewise cubic function. Dashed lines indicate the

data values where the TF control points (blue) are hit.

Contribution We propose an algorithm for adaptive step size

control in DVR of post-classified data on a voxel grid. For post-

classification, we consider piecewise linear TFs (Figure 2b). For

cubical cells with trilinear interpolation, this splits a ray into multi-

ple piecewise cubic segments. By determining these segments ana-

lytically, adaptive step size control is achieved. In particular, we

• build upon the algorithm by Marmitt et al. to split a ray through

a voxel grid at all control points of a piecewise defined TF (sub-

section 2.1),

• apply controlled-precision numerical integration of post-

classified data to solve the volume rendering integral on a per-

segment basis (subsection 2.2),

• demonstrate the use of the proposed algorithm to split a ray

into piecewise monotonic segments that are required by scale-

invariant DVR (subsection 2.3).

All operations involved in analytic ray splitting have been im-

plemented on the GPU to provide interactive frame rates even for

large data sets. We have made our implementations available on

GitHub†, so that all findings can be reproduced. A video showing

the method and results in animation is available on YouTube‡.

2. Solving the Volume Rendering Integral

We assume a low-albedo emission-absorption model for volume

rendering [Max95]. Let τ : [0,1] → R
+
0 be the absorption due

†
https://github.com/shamanDevel/Ray-Splitting-for-DVR

‡
https://youtu.be/bOLqIJd6dsw

to a given density v along a ray s(t) – d(t) = v(s(t)) –, and

C : [0,1] → R
+
0 the assigned color, both specified via a TF. With

g(v) = τ(v)C(v) being the self-emission, the light intensity reach-

ing the eye along the ray segment from t = a to b is computed as

L(a,b) =
∫ b

a
g(v(s(t)))exp

(

−

∫ t

a
τ(v(s(u)))du

)

dt. (1)

We assume that the data values are given at the vertices of a

voxel grid v. Within a cell, the data values are trilinearly interpo-

lated, so that the data profile v(s(t)) along a ray through a cell is a

cubic polynomial [PSL+98]. As a consequence, there are between

zero and three locations along a ray in a single cell where a se-

lected data value θ can be hit. These locations are given by the

roots of v(s(t))−θ = 0 ∈ [tin, tout]. Marmitt et al. [MKW+04] and

Neubauer et al. [NMHW02] have proposed numerical schemes to

extract these roots. To avoid catastrophic cancellation when isolat-

ing the extrema of the cubic polynomial via the roots of its deriva-

tive, we use a numerically stable formulation [PTVF88, p. 184].

For cell-by-cell ray marching, we use the voxel traversal algo-

rithm by Józsa et al. [JTC14], a stable reformulation of the algo-

rithm by Amanatides et al. [AW+87, Hoe16]. Both the accumula-

tion of numerical errors and errors due to rounding are reduced, so

that even for large data sets the ray traversal routine does not intro-

duce any perceivable errors. The algorithm provides the sequence

of visited cells in front-to-back order, as well as the per-cell entry

and exit points [tin, tout]. Note that this algorithm reports multiple

roots either as no intersection or two separate intersections with

two single roots, eliminating special handling of this case.

2.1. Transfer Function-Based Ray Splitting

In contrast to previous works, our proposed ray splitting scheme

needs to consider the mapping of data values via a TF. We as-

sume that the TF is given as a function satisfying two constraints:

First, it is defined piecewise, i.e., specified by a finite number of

control points with closed-form interpolation in between. This al-

lows splitting the ray in data space at the control points so that

no peaks are missed. Second, the absorption between two control

points τ(v(s(u))) has to be analytically integrable. This is required

to evaluate the inner integral in Equation 1 analytically and, thus,

reduce the nested volume rendering integral to a single integral.

The latter constraint holds, e.g., for all cell-wise polynomial inter-

polations. Specifically, we assume piecewise linear TFs as shown

in Figure 2b. Absorption and emission values are given at a dis-

crete set of N data values 0 = d1 < d2 < ... < dN = 1. We call these

the TF control points. Each control point i stores the absorption

τi and color Ci, with linear interpolation in between. If absorption

and color are given as separate piecewise linear functions, they are

combined into a single piecewise function in a pre-processing step.

Given the TF, all points where the ray takes on the values of

the TF control points need to be found.We subsequently call these

points, solutions of the cubic polynomial d(t)− di, the split points

along a ray. For example, Figure 2 illustrates a situation where con-

trol point 1 has three intersections at t1, t4, t5, and control point 3

has one intersection at t7. Thus, multiple segments can occur within

a single cell, and these segments need to be sorted efficiently. Note

© 2021 The Author(s)

Eurographics Proceedings © 2021 The Eurographics Association.

32

Appeared in EuroVis 2021 - Short Papers (Open Access).

©2021 The Author(s), The Eurographics Association.

This record was published online in this final form at https://diglib.eg.org/handle/10.2312/evs20211051. DOI: http://dx.doi.org/10.2312/evs.20211051

Copyright (c) 2021 The Eurographics Association. Personal use is permitted. For any other purposes, permission must be obtained from the Eurographics Association by emailing publishing@eg.org.

https://diglib.eg.org/handle/10.2312/evs20211051
http://dx.doi.org/10.2312/evs.20211051

S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR

that depending on the data values at the cell vertices and the number

and width of the selected TF, up to 3N intersections can occur.

Furthermore, ambiguous cases regarding the occurrence of inter-

sections need to be resolved. Such cases occur if no other intersec-

tion is in between two intersections for the same control point. Fig-

ure 3 illustrates all possible cases regarding the order in which these

intersections can occur. Cases IIIa and IIIb are ambiguous since just

from the data values at two consecutive intersections along a ray the

order cannot be established. Such a case occurs in Figure 2a, where

control point 2 has intersections at t2 and immediately again at

t3. To modulate the density polynomial with the transfer function,

however, it is important to know if the segment from t2 to t3 visits

the TF segment 2 – 3 (case IIIa) or 1 – 2 (case IIIb).

I II IIIa IIIb

Figure 3: Four cases of consecutive isosurface intersections.

Sorting all computed split points along a ray can be realized in

O(N′ logN′) operations using standard sorting algorithms, where

N′ is the number of control points falling into the data range cov-

ered by the current cell. Ambiguous cases can be decided, in prin-

ciple, by evaluating the polynomial in the middle of the interval

between two consecutive split points, and testing whether the value

is greater or smaller than the data value at the first point. This ap-

proach, however, requires an additional evaluation of the polyno-

mial and should be avoided. The following adaptive ray splitting

algorithm can iterate over the split points in O(N′) operations, and

handles the ambiguous cases directly without extra evaluations.

First, the data value at the cell entry point (t0) is evaluated. Then,

the TF segment (di,di+1) that contains this density value is found

via binary search. In the example in Figure 2, this is the segment
0 – 1 . Now due to continuity, the next split point can only be at the

data values corresponding to these two control points. W.l.o.g. let

the next split point at t1 be at the data value of control point 1 , the

case for the lower control point di follows similarly by symmetry

considerations. Since this data value is approached from a lower

data value, the next intersection at t2 can only be at the same data

value at control point 1 again or at the next larger data values at

control point 2 . The latter situation is shown in the example. Simi-

larly, for t3 the data values at control points 2 and 3 are tested, but

now the data value at 2 is visited again. This indicates case IIIa and

the search direction is changed. The next split can now only occur

according to the data value at 1 (case II) or 2 (case IIIb), as we ap-

proach them from a larger data value. This process is repeated until

all split points are processed and the ray exits the cell at texit. For

each ray segment that is computed, the volume rendering integral

is solved via quadrature, and the resulting color values are blended

in front-to-back order.

2.2. Controlled Precision DVR

Novins and Arvo [NA92] propose various quadrature schemes for

a single cell and a single linear transfer function. For a piecewise

a) b)

Figure 4: a) Scale-invariant DVR with a step size of 0.1 voxels suf-

fers from artifacts due to under-sampling and erroneously assumed

per-segment monotony. b) Analytic ray splitting finds the exact lo-

cations of piecewise monotonic segments along the rays.

TF, however, their method, cannot be directly applied to the entire

cell. Instead, using our proposed ray splitting algorithm, smaller

segments within a cell bounded by the control points of the TF

are extracted. For each such segment, we apply the algorithm by

Novins and Arvo to evaluate the integral per segment and accu-

mulate the results over the segments and cells. In the benchmarks,

we use Simpson quadrature with a fixed number of 10 quadrature

points to reduce branch divergence in CUDA. Using more quadra-

ture points does not improve the results.

2.3. Scale-Invariant DVR

Kraus [Kra05] introduced a model for scale-invariant volume ren-

dering, in which the volume rendering integral in physical space

is replaced by the scale-invariant integral in data space. This can

be seen as the limit case where infinitely many semi-transparent

isosurfaces are blended (Figure 4). This model builds upon the as-

sumption that the density field is piecewise monotonic within the

interval [a,b] in data space, an assumption that is only fulfilled at

small step sizes.

In our framework, scale-invariant DVR including an adaptive

step size that splits the data into piecewise monotonic segments

can be easily realized. To enforce monotony over each integration

interval, additional split points need to be included at the extrema

of the density profiles along the ray segments. In the root finding

method by Marmitt et al., these split points are computed in-turn

to split a ray segment into sub-segments in which only zero or one

root of the polynomial is located.

3. Evaluation on Synthetic Datasets

We compare the quality and performance of adaptive ray-splitting

to DVR via ray-casting with constant step size and pre-integrated

DVR [RKE00, EKE01] with a 32 bit floating point table of size

5122. The Marschner Lobb dataset [ML94] on a 1283 voxel grid is

rendered to a 5122 viewport. Two triangular TFs with three peaks

of width 0.05 and 0.002, respectively, are used to analyze the sen-

sitivity of the DVR variants to the characteristics of the mapping

function. To generate ground truth images, we use constant step-

ping with a step size of 0.0001 voxels using double-precision floats.

To obtain insights as to where approximation errors occur, the

Marschner Lobb is rendered using different DVR algorithms (see

Figure 5). At a peak width of 0.05, the transitions between the fea-

tures in the image are smooth, yet constant stepping already shows

© 2021 The Author(s)

Eurographics Proceedings © 2021 The Eurographics Association.

33

Appeared in EuroVis 2021 - Short Papers (Open Access).

©2021 The Author(s), The Eurographics Association.

This record was published online in this final form at https://diglib.eg.org/handle/10.2312/evs20211051. DOI: http://dx.doi.org/10.2312/evs.20211051

Copyright (c) 2021 The Eurographics Association. Personal use is permitted. For any other purposes, permission must be obtained from the Eurographics Association by emailing publishing@eg.org.

https://diglib.eg.org/handle/10.2312/evs20211051
http://dx.doi.org/10.2312/evs.20211051

S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR

a) b) c) d) e) f)

P
e
a
k

w
id

th

0
.0

5
0

0.0

0.1

0.2
0.3
0.4
0.5

0
.0

0
2

Figure 5: Comparison of different DVR algorithms. (a) Ground

truth, (b,c) and (d,e) constant stepping and pre-integration, respec-

tively, with a step size of 0.1 (b,d) and 0.01 (c,e) voxel, (f) adaptive

step size with Simpson quadrature. The first and third row show the

rendering, the second and forth row the per-pixel L2-norm of the

color difference to the baseline, scaled using a power norm of x0.3.

10−6 10−4 10−2 100

Allowed absolute error

0%

10%
20%
40%
60%
80%
90%

100%

Pe
rc

en
ta

ge
 o

f p
ix

el
s f

ul
lfu

llin
g

th
e

bo
un

d

Peak Width: 0.050000

10−6 10−4 10−2 100

Allowed absolute error

0%

10%
20%
40%
60%
80%
90%

100%
Peak Width: 0.002000

Algorithm

102

tim
e

(m
s)

14.7

111.7

28.1

148.8

48.3

Timings (ms)

stepping 0.1
stepping 0.01
preintegrate 2D 0.1
preintegrate 2D 0.01
Simpson-10 (ours)

Figure 6: Accuracy statistics and timings for the Marschner Lobb.

noticeable pixel errors over the whole image. Analytic ray splitting

with Simpson quadrature produces significantly lower numerical

errors below the perceivable tolerance. When narrowing the peaks

to 0.002, the errors introduced by constant stepping become unac-

ceptably high. Constant stepping with a step size of 0.1 fails to re-

solve the thin structures, which can be improved to some degree by

decreasing the step size to 0.01. Pre-integration quality is affected

by sampling artifacts, discretization errors in the pre-integration

table, and interpolation accuracy in the GPU texture units. Adap-

tive ray splitting generates results that are visually indistinguishable

from the ground truth rendering, and it seems en par with constant

stepping with a step size of 0.01 voxel. However, Figure 6 shows

so-called regression error characteristic (REC) curves, which indi-

cate the percentage of pixels within a certain allowed error. It can

be seen that ray splitting achieves higher accuracy than all alterna-

tives. Table 1 shows the error metrics for the images in Figure 1.

All DVR algorithms have been implemented in CUDA, and per-

formance measures were taken on a NVidia RTX 2070 GPU. Tim-

Dataset Thorax Human Carp

Simpson e 4.69e-5 1.13e-4 6.60e-4
Simpson t 7.72e2 5.34e2 2.49e2

Stepping s 2.14e-3 1.56e-2 4.93e-4
Stepping e 3.24e-4 7.47e-4 6.08e-4
Stepping t 6.76e3 9.06e3 5.46e4

Table 1: Error and timing statistics for the data sets in Figure 1. s,

e and t, respectively, indicate step size in constant stepping, mean

square pixel error compared to the baseline rendering, and render-

ing time in milliseconds.

ings are averaged over 10 different frames of resolution 5122, by

moving the camera randomly around the datasets. No acceleration

structure is used. The timings in Figure 6 show the linear perfor-

mance scale of constant stepping approach in the step size. Adap-

tive ray splitting lies between constant stepping with a step size of

0.1 and 0.01. Profiling shows that by far the most time is spent in the

solve step—to accurately determine the points along the ray where

the data values selected by the TF control points are taken—and the

procedure that builds the piecewise polynomials.

4. Real-World Datasets

We further evaluate the quality and performance of the DVR algo-

rithms on three CT scans (Figure 1): A human thorax at a size of

5122
×286, a full scan of the human body at a size of 5122

×1884,

and a carp at size 5123, rendered at resolution 1920× 1080. We

compare the ray-splitting algorithm with Simpson quadrature to ray

tracing with a constant step size and measure the mean absolute er-

ror to the baseline and the execution time. For constant stepping,

the step size is halved until the rendering has converged, i.e. the

output does not change within an error of 1/256 per pixel anymore.

Table 1 reports the final step size, timings and error to the baseline.

As one can see, adaptive ray splitting is 1-2 magnitudes faster at a

lower or similar error than converged constant stepping.

5. Conclusion

We have presented an algorithm that analytically splits rays through

a post-classified emission-absorption volume at the data values

given by the control points of a piecewise linear transfer function.

This allows for solving analytically the absorption integral and nu-

merically the emission integral up to a user-defined precision. Our

evaluations have shown that the performance of analytic ray split-

ting can be even higher than that of constant stepping when trian-

gular TFs with rather narrow peaks are used. We consider the pro-

posed renderer as baseline for comparative purposes as well as a

framework to integrate alternative rendering options such as scale-

invariant DVR and multi-isosurface rendering.

In the future, we will in particular investigate the use of analytic

ray splitting for differentiable volume rendering including post-

classification. Ultimately, we plan to develop algorithms for con-

verting physical fields in situ into a compact latent code that can

be interpreted by a renderer to produce a meaningful visual repre-

sentation. This requires differentiable renderers that can compute

per-pixel derivatives with respect to the post-classification process.

© 2021 The Author(s)

Eurographics Proceedings © 2021 The Eurographics Association.

34

Appeared in EuroVis 2021 - Short Papers (Open Access).

©2021 The Author(s), The Eurographics Association.

This record was published online in this final form at https://diglib.eg.org/handle/10.2312/evs20211051. DOI: http://dx.doi.org/10.2312/evs.20211051

Copyright (c) 2021 The Eurographics Association. Personal use is permitted. For any other purposes, permission must be obtained from the Eurographics Association by emailing publishing@eg.org.

https://diglib.eg.org/handle/10.2312/evs20211051
http://dx.doi.org/10.2312/evs.20211051

S. Weiss & R. Westermann / Analytic Ray Splitting for Controlled Precision DVR

References

[AW+87] J. Amanatides, A. Woo, et al. A fast voxel traversal algorithm
for ray tracing. In Eurographics, volume 87, pages 3–10, 1987.

[CCdF15] L. Q. Campagnolo, W. Celes, and L. H. de Figueiredo. Accu-
rate volume rendering based on adaptive numerical integration. In 2015

28th SIBGRAPI Conference on Graphics, Patterns and Images, pages
17–24. IEEE, 2015.

[dBGHM97] M. W. de Boer, A. Gröpl, J. Hesser, and R. Männer. Re-
ducing artifacts in volume rendering by higher order integration. IEEE

Visualization’97 Late Breaking Hot Topics, pages 1–4, 1997.

[DCH88] R. A. Drebin, L. Carpenter, and P. Hanrahan. Volume rendering.
ACM Siggraph Computer Graphics, 22(4):65–74, 1988.

[EJR+13] T. Etiene, D. Jönsson, T. Ropinski, C. Scheidegger, J. L.
Comba, L. G. Nonato, R. M. Kirby, A. Ynnerman, and C. T. Silva. Ver-
ifying volume rendering using discretization error analysis. IEEE trans-

actions on visualization and computer graphics, 20(1):140–154, 2013.

[EKE01] K. Engel, M. Kraus, and T. Ertl. High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading. In Proceed-

ings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics

Hardware, HWWS ’01, page 9–16, New York, NY, USA, 2001. Associ-
ation for Computing Machinery. doi:10.1145/383507.383515.

[Hoe16] R. K. Hoetzlein. GVDB: Raytracing Sparse Voxel Database
Structures on the GPU. In U. Assarsson and W. Hunt, editors, Euro-

graphics/ ACM SIGGRAPH Symposium on High Performance Graphics.
The Eurographics Association, 2016. doi:10.2312/hpg.20161197.

[JTC14] P. Józsa, M. J. Tóth, and B. Csébfalvi. Analytic isosurface ren-
dering and maximum intensity projection on the gpu. In International

Conference in Central Europe on Computer Graphics, Visualization and

Computer Vision (WSCG). Václav Skala-UNION Agency, 2014.

[KIL+03] J. Kniss, M. Ikits, A. Lefohn, C. Hansen, E. Praun, et al. Gaus-
sian transfer functions for multi-field volume visualization. In IEEE Vi-

sualization, 2003. VIS 2003., pages 497–504. IEEE, 2003.

[Kra05] M. Kraus. Scale-invariant volume rendering. In VIS 05. IEEE

Visualization, 2005., pages 295–302. IEEE, 2005.

[Lev88] M. Levoy. Display of surfaces from volume data. IEEE Com-

puter graphics and Applications, 8(3):29–37, 1988.

[Max95] N. Max. Optical models for direct volume rendering. IEEE

Transactions on Visualization and Computer Graphics, 1(2):99–108,
1995.

[MKW+04] G. Marmitt, A. Kleer, I. Wald, H. Friedrich, and P. Slusallek.
Fast and accurate ray-voxel intersection techniques for iso-surface ray
tracing. In VMV, volume 4, pages 429–435, 2004.

[ML94] S. R. Marschner and R. J. Lobb. An evaluation of reconstruc-
tion filters for volume rendering. In Proceedings Visualization’94, pages
100–107. IEEE, 1994.

[NA92] K. Novins and J. Arvo. Controlled precision volume integration.
In Proceedings of the 1992 workshop on Volume visualization, pages 83–
89, 1992.

[NMHW02] A. Neubauer, L. Mroz, H. Hauser, and R. Wegenkittl. Cell-
based first-hit ray casting. In VisSym, pages 77–86, 2002.

[PSL+98] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan. In-
teractive ray tracing for isosurface rendering. In Proceedings Visualiza-

tion’98 (Cat. No. 98CB36276), pages 233–238. IEEE, 1998.

[PTVF88] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
nery. Numerical recipes in c, 1988.

[RKE00] S. Rottger, M. Kraus, and T. Ertl. Hardware-accelerated volume
and isosurface rendering based on cell-projection. In Proceedings Visu-

alization 2000. VIS 2000 (Cat. No.00CH37145), pages 109–116, 2000.
doi:10.1109/VISUAL.2000.885683.

[WM92] P. L. Williams and N. Max. A volume density optical model. In
Proceedings of the 1992 workshop on Volume visualization, pages 61–
68, 1992.

© 2021 The Author(s)

Eurographics Proceedings © 2021 The Eurographics Association.

35

Appeared in EuroVis 2021 - Short Papers (Open Access).

©2021 The Author(s), The Eurographics Association.

This record was published online in this final form at https://diglib.eg.org/handle/10.2312/evs20211051. DOI: http://dx.doi.org/10.2312/evs.20211051

Copyright (c) 2021 The Eurographics Association. Personal use is permitted. For any other purposes, permission must be obtained from the Eurographics Association by emailing publishing@eg.org.

https://diglib.eg.org/handle/10.2312/evs20211051
http://dx.doi.org/10.2312/evs.20211051

Differentiable Direct Volume Rendering

Sebastian Weiss * and Rüdiger Westermann †

Technical University of Munich

∂

∂

a)

∂

∂

initial reconstruction referenceb)

∂

∂

c)

∂

∂

d)

Fig. 1. A fully differentiable direct volume renderer is used for a) viewpoint optimization, b) transfer function optimization, and
optimization of voxel properties using c) an absorption-only model and d) an emission-absorption model with rgbα transfer functions.
a), c) and d) show intermediate results of the optimization process until convergence.

Abstract— We present a differentiable volume rendering solution that provides differentiability of all continuous parameters of the
volume rendering process. This differentiable renderer is used to steer the parameters towards a setting with an optimal solution of a
problem-specific objective function. We have tailored the approach to volume rendering by enforcing a constant memory footprint
via analytic inversion of the blending functions. This makes it independent of the number of sampling steps through the volume and
facilitates the consideration of small-scale changes. The approach forms the basis for automatic optimizations regarding external
parameters of the rendering process and the volumetric density field itself. We demonstrate its use for automatic viewpoint selection
using differentiable entropy as objective, and for optimizing a transfer function from rendered images of a given volume. Optimization
of per-voxel densities is addressed in two different ways: First, we mimic inverse tomography and optimize a 3D density field from
images using an absorption model. This simplification enables comparisons with algebraic reconstruction techniques and state-of-
the-art differentiable path tracers. Second, we introduce a novel approach for tomographic reconstruction from images using an
emission-absorption model with post-shading via an arbitrary transfer function.

Index Terms—Differentiable rendering, Direct Volume Rendering, Automatic Differentiation

1 INTRODUCTION

Differentiable direct volume rendering (DiffDVR) can serve as a basis
for a multitude of automatic optimizations regarding external parame-
ters of the rendering process such as the camera, the transfer function
(TF), and the integration stepsize, as well as the volumetric scalar field
itself. DiffDVR computes derivatives of the rendered pixel values with
respect to these parameters and uses these derivatives to steer the pa-
rameters towards an optimal solution of a problem-specific objective
(or loss) function. DiffDVR is in particular required when using neural
network-based learning tasks, where derivatives need to be propagated
seamlessly through the network for training end-to-end regarding the
loss function.

While a number of approaches have been proposed for differen-
tiable surface rendering [20], approaches focusing on differentiable

*e-mail: sebastian13.weiss@tum.de
†e-mail: westermann@tum.de

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication

xx xxx. 201x; date of current version xx xxx. 201x. For information on

obtaining reprints of this article, please send e-mail to: reprints@ieee.org.

Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

rendering in the context of volume visualization are rare. For surface
rendering, one objective is on the optimization of scene parameters
like material properties, lighting conditions, or even geometric shape,
to achieve matchings of synthetic and real images in computer vision
tasks. Others have used implicit surface representations encoded via
volumetric signed distance functions to derive analytic gradients for
image-based shape reconstruction tasks [25, 35, 44]. These approaches
assume opaque surfaces so that in each optimization iteration the gradi-
ent descent is with respect to the encoding of a single fragment per pixel.
This is different from direct volume rendering applications, where the
optimization needs to consider the contributions of many samples to a
pixel color. This requires considering a large number of partial deriva-
tives of pixel colors with respect to parameter or material changes, and
to propagate them back into the volumetric field.

The differentiable rendering framework Mitsuba 2 [37] also pro-
vides a solution for direct volume rendering through Monte Carlo path
tracing. However, Mitsuba directly applies so-called reverse-mode
differentiation, which requires all intermediate derivatives to be saved
for backpropagation. Thus, the memory required in direct volume
rendering applications quickly exceeds the available system memory.
This limits the approach to small volumetric grids and a small number
of volume interactions that cannot faithfully optimize for small-scale

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2021.3114769

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2021.3114769

structures. A follow-up work [36] addresses this issue but limits the
differentiability to volume densities and colors.

1.1 Contribution

This work presents a general solution for DiffDVR: differentiable Di-
rect Volume Rendering using the emission-absorption model without
multiple scattering. This requires analyzing approaches for automatic
differentiation (AD) with respect to the specific requirements in di-
rect volume rendering (DVR). So-called forward-mode approaches are
efficient if the number of parameters is low, yet they become com-
putationally too expensive with an increasing number of parameters,
i.e., when optimizing for per-voxel densities in a volumetric field. The
so-called reverse mode or adjoint mode records the operations and inter-
mediate results in a graph structure. This structure is then traversed in
reverse order during the backward pass that propagates the changes to
the sample locations. However, this requires storing O(kn) intermediate
results, where n is the number of pixels and k the number of sample
locations, and reversing the order of operations.

We show that a-priori knowledge about the operations performed
in DVR can be exploited to avoid recording the operations in reverse-
mode AD. We propose a custom computation kernel that inverts the
order of operations in turn and derives the gradients used by AD. We
further present a method for recomputing intermediate results via an
analytic inversion of the light accumulation along the view rays. By
this, intermediate results do not need to be recorded and the memory
consumption of reverse-mode AD becomes proportional to O(n).

As our second contribution, we discuss a number of use cases in
which AD is applied in volume rendering applications (Fig. 1). These
use cases demonstrate the automatic optimization of external param-
eters of the rendering process, i.e., the camera and the TF. Here the
3D density field is not changed, but the optimization searches for the
external parameters that—when used to render this field—yield an opti-
mal solution of a problem-specific loss function. In addition, we cover
problems where the optimization is with respect to the densities. I.e.,
the field values are optimized so that an image-based loss function—
after rendering the optimized field—yields an optimal solution. We
consider inverse tomography by restricting the rendering process to an
absorption-only model without a TF and optimize the densities using
given images of the field. For this case, we compare our method against
algebraic reconstruction techniques [49, 50] and Mitsuba 2 [36, 37].
Beyond that, and for the first time to our best knowledge, we show how
to incorporate TFs and an emission-absorption model into tomographic
reconstruction and deal with the resulting non-convex optimization
problem.

DiffDVR is written in C++ and CUDA, and it provides seamless
interoperability with PyTorch for a simple embedding into existing
training environments with complex, potentially network-based loss
functions. The code is made publicly available under a BSD license1.

2 RELATED WORK

Differentiable Rendering A number of differentiable renderers
have been introduced for estimating scene parameters or even geometry
from reference images, for example, under the assumption of local
illumination and smooth shading variations [21,26,41,42], or via edge
sampling to cope with discontinuities at visibility boundaries [24].
Scattering parameters of homogeneous volumes have been estimated
from observed scattering pattern [12]. Recently, Nimier-David et al.
proposed Mitsuba 2 [37], a fully-differentiable physically-based Monte-
Carlo renderer. Mitsuba 2 also handles volumetric objects, yet it re-
quires storing intermediate results during the ray sampling process at
each sampling point. This quickly exceeds the available memory and
makes the approach unfeasible for direct volume rendering applications.
Later, the authors have shown how to avoid storing the intermediate re-
sults [36], by restricting the parameters that can be derived to, e.g., only
shading and emission. However, these methods are tailored for path
tracing with multiple scattering and rely on Monte-Carlo integration
with delta tracking. This makes them prone to noise and leads to long

1https://github.com/shamanDevel/DiffDVR

computation times compared to classical DVR methods without scat-
tering. Our method, in contrast, does not require storing intermediate
results and can, thus, use large volumes with arbitrary many sampling
steps without resorting to a restricted parameter set. Furthermore, it
does not impose restrictions on the parameters of the volume rendering
process that can be differentiated.

Parameter Optimization for Volume Visualization An interest-
ing problem in volume visualization is the automatic optimization of
visualization parameters like the viewpoint, the TF, or the sampling
stepsize that is required to convey the relevant information in the most
efficient way. This requires at first hand an image-based loss function
that can be used to steer the optimizer toward an optimal parameter
setting. To measure a viewpoint’s quality from a rendered image,
loss functions based on image entropy [7, 19, 46, 51] or image similar-
ity [47, 57] have been used. For volume visualization, the relationships
between image entropy and voxel significance [5] as well as importance
measures of specific features like isosurfaces [45] have been considered.
None of these methods, however, considers the rendering process in
the optimization process. Instead, views are first generated from many
viewpoints, e.g., by sampling via the Fibonacci sphere algorithm [28],
and then the best view regarding the used loss function is determined.
We envision that by considering the volume rendering process in the
optimization, more accurate and faster reconstructions can be achieved.

Another challenging problem is the automatic selection of a “mean-
ingful” TF for a given dataset, as the features to be displayed depend
highly on the user expectation. Early works attempted to find a good
TF using clusters in histograms of statistical image properties [15] or
fitting visibility histograms [8]. Others have focused on guiding an
explorative user interaction [27, 59], also by using neural networks [3].
For optimizing a TF based on information measures, Ruiz et al. [43]
proposed to bin voxels of similar density and match their visibility dis-
tribution from multiple viewpoints with a target distribution defined by
local volume features. For optimization, the authors employ a gradient-
based method where the visibility derivatives for each density bin are
approximated via local linearization.

Concerning the performance of direct volume rendering, it is crucial
to determine the minimum number of data samples that are required to
accurately represent the volume. In prior works, strategies for optimal
sampling in screen-space have been proposed, for instance, based
on perceptual models [4], image saliency maps [39], entropy-based
measures [56], temporal history [29], or using neural networks [53, 54].
Other approaches adaptively change the sampling stepsize along the
view rays to reduce the number of samples in regions that do not
contribute much to the image [6, 9, 23, 32]. DiffDVR’s capability to
compute gradients with respect to the stepsize gives rise to a gradient-
based adaptation using image-based loss functions instead of gradient-
free optimizations or heuristics.

Neural Rendering As an alternative to classical rendering tech-
niques that are adapted to make them differentiable, several works have
proposed to replace the whole rendering process with a neural network.
For a general overview of neural rendering approaches let us refer to the
recent summary article by Tewari et al. [48]. For example, RenderNet
proposed by Nguyen-Phuoc et al. [34] replaces the mesh rasterizer
with a combination of convolutional and fully connected networks. In
visualization, the works by Berger et al. [3] and He et al. [16] fall into
the same line of research. The former trained a network on rendered
images and parameters of the rendering process, and use the network
to predict new renderings by using only the camera and TF parameters.
The latter let a network learn the relationships between the input pa-
rameters of a simulation and the rendered output, and then used this
network to skip the rendering process and create images just from given
input parameters.

3 BACKGROUND

In the following, we review the fundamentals underlying DVR using
an optical emission-absorption model [30]. Then we briefly summarise
the foundation of Automatic Differentiation (AD), a method to system-
atically compute derivatives for arbitrary code [2].

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2021.3114769

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2021.3114769

3.1 Direct Volume Rendering Integral

Let V :R3 → [0,1] be the scalar volume of densities and let r :R+ →R
3

be an arc-length parameterized ray through the volume. Let τ : [0,1]→
R
+
0 be the absorption and C : [0,1]→ R

+
0 the self-emission due to a

given density. Then, the light intensity reaching the eye is given by

L(a,b) =
∫ b

a
g(V (r(t)))e−

∫ t
a τ(V (r(u)))dudt, (1)

were the exponential term is the transparency of the line segment from
t = a, the eye, to b, the far plane, and g(v) = τ(v)C(v) is the emission.
The transparency is one if the medium between a and b does not absorb
any light and approaches zero for complete absorption.

We assume that the density volume is given at the vertices vi of
a rectangular grid, and the density values are obtained via trilinear
interpolation. The functions τ and C define the mapping from density
to absorption and emission. We assume that both functions are dis-
cretized into R regularly spaced control points with linear interpolation
in between. This is realized on the GPU as a 1D texture map T with
hardware-supported linear interpolation.

For arbitrary mappings of the density to absorption and emission, the
volume rendering integral in Equation 1 cannot be solved analytically.
Instead, it is approximated by discretizing the ray into N segments
over which the absorption αi and emission Li are assumed constant.
We make use of the Beer-Lambert model αi = 1 − exp(−∆tτ(di)),
where di is the sampled volume density, to approximate a segment’s
transparency. This leads to a Riemann sum which can be computed in
front-to-back order using iterative application of alpha-blending, i.e.,
L = L+(1−α)Li, and α = α +(1−α)αi.

3.2 Automatic Differentiation

The evaluation of any program for a fixed input can be expressed as a
computation graph, a directed acyclic graph where the nodes are the
operations and the edges the intermediate values. Such a computation
graph can be reformulated as a linear sequence of operations, also
called a Wengert list [2, 55],

xxx0 = const

xxx1 = f1(xxx0,www1)

xxx2 = f2(xxx1,www2)
. . .

xxxout = fk(xxxk−1,wwwk)

(2)

where the wwwi’s ∈ R
p are the external parameters of the operations of

size p and the xxxi’s ∈ R
n refer to the state of intermediate results after

the i-th operation of size n. The output xxxout ∈R
m has size m. Note here

that in DiffDVR, n and k are usually large, i.e., n is in the order of the
number of pixels and k in the order of the number of sampling points
along the view rays. The output xxxout is a scalar (m = 1), computed,
for example, as the average per-pixel loss over the image. The goal is

then to compute the derivatives dxxxout

dwwwi
. The basic idea is to split these

derivatives into simpler terms for each operation using the chain rule.
For example, assuming univariate functions and w1 the only parameter
of interest, the chain rule yields

x3 = f3(f2(f1(w1))) ⇒ x′3 = f ′3(f2(f1(x))) f ′2(f1(x)) f ′1(x). (3)

There are two fundamentally different approaches to automatically
evaluate the chain rule, which depend on the order of evaluations. If the
product in the above example is evaluated left-to-right, the derivatives
are propagated from bottom to top in Equation 2. This gives rise to the
adjoint- or backward-mode differentiation (see Sect. 4.3). If the product
is evaluated right-to-left, the derivatives “ripple downward” from top to
bottom in Equation 2. This corresponds to the so-called forward-mode
differentiation (see Sect. 4.2).

4 AD FOR DIRECT VOLUME RENDERING

Now we introduce the principal procedure when using AD for DiffDVR
and hint at the task-dependent differences when applied for viewpoint

optimization (Sect. 5.1), TF reconstruction (Sect. 5.2) and volume
reconstruction (Sect. 5.3 and Sect. 5.4). We further discuss computa-
tional aspects and memory requirements of AD in volume rendering
applications and introduce the specific modifications to make DiffDVR
feasible.

4.1 The Direct Volume Rendering Algorithm

In direct volume rendering, the pixel color represents the accumulated
attenuated emissions at the sampling points along the view rays. In the
model of the Wengert list (see Equation 2), a function fi is computed
for each sample. Hence, the number of operations k is proportional to
the overall number of samples along the rays. The intermediate results
xxxi are rgbα images of the rendered object up to the i-th sample, i.e., xxxi

is of size n = W ∗H ∗ 4, where W and H, respectively, are the width
and height of the screen. The last operation fk in the optimization
process is the evaluation of a scalar-valued loss function. Thus, the size
of the output variable is m = 1. The parameters wwwi depend on the use
case. For instance, in viewpoint optimization, the optimization is for
the longitude and latitude of the camera position, i.e., p = 2. When
reconstructing a TF, the optimization is for the R rgbα entries of the
TF, i.e., p = 4R.

The DVR algorithm with interpolation, TF mapping, and front-to-
back blending is shown in Algorithm 1. For clarity, the variables in the
algorithm are named by their function, instead of using wwwi and xxxi as in
the Wengert list (Equation 2). In the Wengert list model, the step size
∆t, the camera intrinsics cam, the TF T , and the volume density V are
the parameters wwwi. The other intermediate variables are represented by
the states xxxi. Each function operates on a single ray but is executed in
parallel over all pixels.

Algorithm 1 Direct Volume Rendering Algorithm

Parameters: stepsize ∆t, camera cam, TF T , volume V
Input: uv the pixel positions where to shoot the rays

1: colori = 0 ⊲ initial foreground color
2: xo,ω = fcamera(uv,cam) ⊲ start xo and direction ω for all rays
3: for i = 0, ...,N −1 do
4: xi = xo + i∆tω ⊲ current position along the ray
5: di = finterpolate(xi,V) ⊲ Trilinear interpolation
6: ci = fTF(di,T) ⊲ TF evaluation
7: colori+1 = fblend(colori,ci) ⊲ blending of the sample
8: end for
9: xxxout = floss(colorN) ⊲ Loss function on the output rgbα image

When Algorithm 1 is executed, the operations form the computa-
tional graph. AD considers this graph to compute the derivatives of xxxout

with respect to the parameters ∆t,cam,T, and V , so that the changes
that should be applied to the parameters to optimize the loss func-
tion can be computed automatically. Our implementation allows for
computing derivatives with respect to all parameters, yet due to space
limitations, we restrict the discussion to the computation of derivatives
of xxxout with respect to the camera cam, the TF T and the volume densi-
ties V . In the following, we discuss the concrete implementations of
forward and adjoint differentiation to compute these derivatives.

4.2 Forward Differentiation

On the elementary level, the functions in Algorithm 1 can be expressed
as a sequence of scalar arithmetic operations like c = f (a,b) = a∗b.
In forward-mode differentiation [2, 33], every variable is replaced by
the associated forward variable

ã =

〈

a,
da

dw

〉

, b̃ =

〈

b,
db

dw

〉

, (4)

i.e., tuples of the original value and the derivative with respect to the
parameter w that is optimized. Each function c = f (a,b) is replaced by
the respective forward function

c̃ = f̃ (ã, b̃) =

〈

f (a,b),
∂ f

∂a

da

dw
+

∂ f

∂b

db

dw

〉

. (5)

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2021.3114769

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2021.3114769

Constant variables are initialized with zero, x̃const = 〈xconst,0〉, and
parameters for which to trace the derivatives are initialized with one,
w̃ = 〈w,1〉. If derivatives for multiple parameters should be computed,
the tuple of forward variables is extended.

Forward differentiation uses a custom templated datatype for the
forward variable and operator overloading. Each variable is wrapped in
an instance of this datatype, called fvar, which stores the derivatives
with respect to up to p parameters along with their current values.

template<typename T, int p>

struct fvar

{

T value;

T derivatives[p];

};

Next, operator overloads are provided for all common arithmetic opera-
tions and their gradients. For example, multiplication is implemented
similar to:

template<typename T, int p>

fvar<T, p> operator*(fvar<T, p> a, fvar<T, p> b)

{

fvar<T, P> c; //to store c = a*b and derivatives

c.value = a.value * b.value;

for (int i=0; i<p; ++i) { //partial derivatives

c.derivative[i] = a.value*b.derivative[i]

+ b.value*a.derivative[i];

}

return c;

}

The user has to write the functions in such a way that arbitrary input
types are possible, i.e., regular floats or instances of fvar, via C++
templates. All intermediate variables are declared with type auto.
This allows the compiler to use normal arithmetic if no gradients are
propagated, but when forward variables with gradients are passed as
input, the corresponding operator overloads are chosen.

As an example (see Fig. 2 for a schematics), let us assume that
derivatives should be computed with respect to a single entry in a 1D
texture-based TF, e.g., the red channel of the first texel T0,red. When

loading the TF from memory, T0,red is replaced by T̃0,red = 〈T0,red,1〉,
i.e., it is wrapped in an instance of fvar with the derivative for that
parameter set to 1. Algorithm 1 executes in the normal way until
T0,red is encountered in the code for the TF lookup. Now, the operator
overloading mechanism selects the forward function instead of the
normal non-differentiated function. The result is not a regular color ci,
but the forward variable of the color c̃i. All following functions (i.e.,
the blend and loss function) continue to propagate the derivatives. In
contrast, if derivatives should be computed with respect to the camera,
already the first operation requires tracing the derivatives with fvar.

It is worth noting that in the above example only the derivative of one
single texel in the TF is computed. This process needs to be repeated
for each texel, respectively each color component of each texel, by
extending the array fvar::derivatives to store the required number
of p parameters. Notably, for input data that is high dimensional,
like TFs or a 3D volumetric field, forward differentiation becomes
unfeasible. For viewpoint selection, on the other hand, where only two
parameters are optimized, forward differentiation can be performed
efficiently.

The computational complexity of the forward method scales linearly
with the number of parameters p, as they have to be propagated through
every operation. However, as every forward variable directly stores
the derivative of that variable w.r.t. the parameters, gradients for an
arbitrary number of outputs m can be directly realized. Furthermore,
the memory requirement is proportional to O(np), as only the current
state needs to be stored.

4.3 Adjoint Differentiation

Adjoint differentiation [31], also called the adjoint method, backward
or reverse mode differentiation, or backpropagation, evaluates the chain

𝑑1

Blend

Interpolation:

Transfer

Function:

Blending: Blend Loss Σ ∈ ℝ

Ray

(𝑥, 𝑦, 𝑧) (𝑥, 𝑦, 𝑧)

𝑑1

𝜕Loss𝜕Blend 𝜕𝑇𝐹𝑐𝑜𝑙𝑜𝑟2 𝜕𝑇𝐹Σ

𝜕𝑇𝐹𝑇𝐹 = 1

𝜕Blend 𝜕𝑇𝐹𝑐𝑜𝑙𝑜𝑟1
𝜕𝑇𝐹𝑐1

.𝜕
𝜕𝑇𝐹𝑇𝐹 = 1

.𝜕𝑐1𝑐𝑜𝑙𝑜𝑟0 𝑐𝑜𝑙𝑜𝑟1
𝑐2 𝑐𝑜𝑙𝑜𝑟2𝜕𝑇𝐹𝑐2

Fig. 2. Schematic representation of the forward method for TF reconstruc-
tion. Gradients are stored in the forward variables (blue), and parameter
values are propagated simultaneously.

rule in the inverse order than forward differentiation. For each variable
xxxi, the associated adjoint variable

x̂xxi =
∂xout

∂xxxi
, ŵwwi =

∂xout

∂wwwi
, (6)

stores the derivative of the final output with respect to the current
variable. Tracing the derivatives starts by setting x̂out = 1. Then, the
adjoint variables are tracked backward through the algorithm, called
the backward pass. This is equivalent to evaluating the chain rule
Equation 3 from left to right, instead of right to left as in the forward
method. Let c = f (a,b) be again our model function, then the adjoint

variables â, b̂ are computed from ĉ as

â =

(

∂ f

∂a

)T

ĉ, b̂ =

(

∂ f

∂b

)T

ĉ. (7)

This process is repeated from the last operation to the first operation,
giving rise to the adjoint code. At the end, one arrives again at the

derivatives with respect to the parameters ŵww = ∂xout

∂www
. If a parameter

is used multiple times, either along the ray or over multiple rays, the
adjoint variables are summed up. The reverted evaluation of the DVR
algorithm with the gradient propagation from Equation 7 is sketched in
Algorithm 2. A schematic visualization is shown in Fig. 3.

Because the adjoint method requires reversing the order of operation,
simple operator overloading as in the forward method is no longer
applicable. Common implementations of the adjoint method like Ten-
sorFlow [1] or PyTorch [40] record the operations in a computation
graph, which is then traversed backward in the backward pass. As
it is too costly to record every single arithmetic operation, high-level

.

𝑑1

Blend

Interpolation:

Transfer

Function:

Blend Loss Σ ∈ ℝ

Ray

(𝑥, 𝑦, 𝑧) (𝑥, 𝑦, 𝑧)

𝑑2

𝜕ΣΣ = 1𝜕Loss𝜕Blend 𝜕𝑐𝑜𝑙𝑜𝑟2Σ
𝜕𝑐2Σ

𝜕
𝜕𝑑2Σ

𝜕

.

𝜕Blend 𝜕𝑐𝑜𝑙𝑜𝑟1Σ
𝜕𝑐1Σ

𝜕
𝜕𝑑1Σ

𝜕

Adjoint

+

+ 𝜕TFΣ

𝜕VolumeΣ

𝑐1 𝑐𝑜𝑙𝑜𝑟1
𝑐2 𝑐𝑜𝑙𝑜𝑟2Blending:𝑐𝑜𝑙𝑜𝑟0

Fig. 3. Schematic representation of the adjoint method for density and TF
reconstruction. Gradients in the adjoint variables (red) are propagated
backward through the algorithm. A circled + indicates the summation of
the gradients over all steps and rays.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2021.3114769

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2021.3114769

Algorithm 2 Adjoint Code of the DVR Algorithm. Each line corre-
sponds to a line in Algorithm 1 in reverse order.

Parameters: stepsize ∆t, camera cam, TF T , volume V
Input: the adjoint of the output x̂xxout

all intermediate adjoint variables are initialized with 0

1: ˆcolorN += ∂ floss(colorN)
T x̂xxout

2: for i = N −1, ...,0 do
3: ˆcolori, ĉi += ∂ fblend(colori,ci)

T ˆcolorN

4: d̂i, T̂ += ∂ fTF(di,T)
T ĉi

5: x̂i,V̂ += ∂ finterpolate(xi,V)T d̂i

6: x̂o += x̂i , ∆̂t += iωT x̂i , ω̂ += i∆tx̂i

7: end for
8: ˆcam += ∂ fcamera(uv,cam)T [xo;ω]

9: ˆcolor0 is ignored

Output: ∆̂t, ˆcam, T̂ ,V̂

functions like the evaluation of a single layer in neural networks are
treated as atomic, and only these are recorded. Within such a high-level
function, the order of operations is known and the adjoint code using
Equation 7 is manually derived and implemented. We follow the same
idea and treat the rendering algorithm as one unit and manually derive
the adjoint code.

4.4 The Inversion Trick

One of the major limitations of the adjoint method is its memory
consumption because the input values for the gradient computations
need to be stored. For example, the blending operation (line 7 in
Algorithm 1) is defined as follows: Let α,C be the opacity and rgb-
emission at the current sample, i.e., the components of ci, and let

α(i),C(i) be the accumulated opacity and emission up to the current
sample, i.e., the components of colori in Algorithm 1. Then, the next
opacity and emission is given by front-to-back blending

C(i+1) =C(i)+(1−α(i))C

α(i+1) = α(i)+(1−α(i))α.
(8)

In the following adjoint code with α̂(i+1),Ĉ(i+1) as input it can be seen
that the derivatives again require the input values.

α̂ = (1−α(i))α̂(i+1), Ĉ = (C−α(i))Ĉ(i+1),

α̂(i) = (1−α)α̂(i+1)−C ·Ĉ(i+1),

Ĉ(i) = Ĉ(i+1).

(9)

Therefore, the algorithm is first executed in its non-adjoint form, and
the intermediate colors are stored with the computation graph. This is
called the forward pass. During the backward pass, when the order of
operations is reversed and the derivatives are propagated (the adjoint
code), the intermediate values are reused. In DVR, intermediate values
need to be stored at every step through the volume. Thus, the memory
requirement scales linearly with the number of steps and quickly ex-
ceeds the available memory. To overcome this limitation, we propose a
method that avoids storing the intermediate colors after each step and,
thus, has a constant memory requirement.

We exploit that the blending step is invertible (see Fig. 4): If

α(i+1),C(i+1) are given and the current sample is recomputed to obtain

α and C, α(i),C(i) can be reconstructed as

α(i) =
α −α(i+1)

α −1

C(i) =C(i+1)− (1−α(i))C.

(10)

With Equation 10 and α < 1, the adjoint pass can be computed with
constant memory by re-evaluating the current sample ci and recon-
structing colori instead of storing the intermediate results. Thus, only

𝜕Blend𝜕𝑐𝑜𝑙𝑜𝑟0Σ
𝑐1𝑐𝑜𝑙𝑜𝑟0

𝜕𝑐𝑜𝑙𝑜𝑟1Σ𝜕𝑐1Σ
(store) (recompute)

(a) No Inversion

𝜕Blend𝜕𝑐𝑜𝑙𝑜𝑟0Σ
𝑐1 𝑐𝑜𝑙𝑜𝑟1

𝜕𝑐𝑜𝑙𝑜𝑟1Σ𝜕𝑐1Σ

(recompute)

Blend-1𝑐𝑜𝑙𝑜𝑟0

(b) With Inversion

Fig. 4. (a) To compute the current contribution ci, intermediate accumu-
lated colors colori need to be stored for every step along the ray. (b) The
inversion trick enables to reconstruct colori from colori+1. Thus, only the
final color used in the loss function needs to be stored.

the output color used in the loss function needs to be stored, while all
intermediate values are recomputed on-the-fly. Note that α = 1 is not
possible in practice, since it requires the absorption stored in the TF to
be at infinity.

In the implementation, and indicated by the circled + in Fig. 3, the
adjoint variables for the parameters are first accumulated per ray into
local registers (camera, stepsize, volume densities) or shared memory
(TF). Then, the variables are accumulated over all rays using global
atomic functions. This happens once all rays have been traversed (cam-
era, stepsize, transfer function) or on exit of the current cell (volume
densities).

Because the adjoint variables carry only the derivatives of the out-
put, but not of the parameters, the computational complexity is largely
constant in the number of parameters. For example, in TF optimiza-
tion (Sect. 5.2) only the derivative of the currently accessed texel is
computed when accessed in the adjoint code of TF sampling. This is
significantly different from the forward method, where the derivatives
of all TF entries need to be propagated in every step. On the other
hand, the adjoint method considers only a single scalar output in each
backward pass, requiring multiple passes to support multi-component
outputs. This analysis and the following example applications show that
the forward method is preferable when optimizing for a low number of
parameters like the camera position, while for applications such as TF
optimization, which require the optimization of many parameters, the
adjoint method has clear performance advantages.

DiffDVR is implemented as a custom CUDA operation in Py-
Torch [40]. The various components of the DVR algorithm, like the
parameter to differentiate or the type of TF, are selected via C++ tem-
plate parameters. This eliminates runtime conditionals in the com-
putation kernel. To avoid pre-compiling all possible combinations,
the requested configuration is compiled on demand via CUDA’s JIT-
compiler NVRTC [38] and cached between runs. This differs from,
e.g., the Enoki library [18] used by the Mitsuba renderer [37], which
directly generates Parallel Thread Code (PTX) for translation into GPU
binary code.

5 APPLICATIONS

In the following, we apply both AD modes for best viewpoint selec-
tion, TF reconstruction, and volume reconstruction. The results are
analyzed both qualitatively and quantitatively. Timings are performed
on a system running Windows 10 and CUDA 11.1 with an Intel Xeon
8x@3.60Ghz CPU, 64GB RAM, and an NVIDIA RTX 2070.

5.1 Best Viewpoint Selection

We assume that the camera is placed on a sphere enclosing the volume
and faces toward the object center. The camera is parameterized by
longitude and latitude. AD is used to optimize the camera parameters
to determine the viewpoint that maximized the selected cost function.
As cost function, we adopt the differentiable opacity entropy proposed
by Ji et al. [19].

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2021.3114769

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2021.3114769

1 0 1

1.0

0.5

0.0

0.5

1.0

North

1 0 1

1.0

0.5

0.0

0.5

1.0

South

1.64

1.66

1.68

1.70

1.72

(a)
0 5 10 15 20

1.66
1.67
1.68
1.69
1.70
1.71
1.72

Best run, loss: 1.720

(b)

Forward pass Backward pass
0

5

10

15

20

Ti
m

e
(m

s)

21.18

0.16

9.63

21.77

9.46
14.65

Memory
0.0

2.5

5.0

7.5

10.0

12.5

M
B

6.0
8.5

13.5

forward-immediate forward-delayed adjoint

(c)

Fig. 5. Best viewpoint selection using maximization of visual entropy. The tooth dataset (Fig. 1a) is rendered from different viewpoints on a
surrounding sphere. (a) Color coding of loss values for viewpoints on the northern and southern hemispheres, with isocontours (black lines) of the
loss and local gradients with respect to the longitude and latitude of the camera position at uniformly sampled positions (black dots with arrows).
Eight optimization runs (colored paths on the surface) are started at uniformly seeded positions and optimized in parallel. (b) The runs converge to
three clusters of local minima. The cluster with the highest entropy (1.72) coincides with the best value from 256 sampled entropies. For the best run,
the start view, as well as some intermediate views and the final result, are shown in Fig. 1a. (c) Timings and memory consumption show that forward
differences approximately double the runtime, but are faster and require less memory than the adjoint method.

o p t i m i z a t i o n p a t h s i n i t i a l fi n a l s a m p l e d l o s s e s

J
et

1 0 1

1.0

0.5

0.0

0.5

1.0

North

1 0 1

1.0

0.5

0.0

0.5

1.0

South

0.85

0.86

0.87

0.88

0.89

Optimization Sampling

0.86

0.87

0.88

0.89

0.90 0.89894 0.89868

C
60

m
ol
ec
u
le

1 0 1

1.0

0.5

0.0

0.5

1.0

North

1 0 1

1.0

0.5

0.0

0.5

1.0

South

0.956

0.957

0.958

0.959

0.960

Optimization Sampling
0.956

0.957

0.958

0.959

0.960

0.96053 0.96051

S
m
ok
e
p
lu
m
e

0.5 0.0 0.5
0.75

0.50

0.25

0.00

0.25

0.50

0.75
North

0.5 0.0 0.5
0.75

0.50

0.25

0.00

0.25

0.50

0.75
South

0.84

0.85

0.86

0.87

0.88

0.89

Optimization Sampling

0.84

0.86

0.88

0.90 0.89711 0.89693

(a) (b) (c)

Fig. 6. Best viewpoint selection using maximization of visual entropy for datasets jetstream (2563), potential field of a C60 molecule (1283), and smoke
plume (1783). Comparison of DiffDVR with eight initializations against random uniform sampling over the sphere of 256 views. (a) Optimization paths
over the sphere. (b) Initial view, selected view of DiffDVR, best sampled view. (c) Visual entropy of optimization results (colored points corresponding
to (a)) vs. sampled images. Violin plot shows the distribution of loss values when sampling the sphere uniformly. Visual entropy of the best viewport
is shown above each plot.

Let C ∈ R
H×W×4 be the output image. We employ array notation,

i.e., C[x,y,c] indicates color channel c (red, green, blue, alpha) at pixel

x,y. The entropy of a vector xxx ∈ R
N is defined as

H(xxx) =
1

log2 N

N

∑
i=1

pi log2 pi , pi =
xxxi

∑
N
j=1 xxx j

. (11)

Then the opacity entropy is defined as OE(C) = H(C[:, :,3]), where
C[:, :,3] indicates the linearization of the alpha channel, and the color
information is unused.

In a first experiment, the best viewpoint is computed for a CT scan
of a human tooth of resolution 256×256×161. Eight optimizations
are started in parallel with initial views from viewpoints at a longitude
of {45◦,135◦,225◦,315◦} and a latitude of ±45◦. In all cases, 20 iter-
ations using gradient descent are performed. The viewpoints selected
by the optimizer are shown as paths over the sphere in Fig. 5a. The
values of the cost function over the course of optimization are given
in Fig. 5b. It can be seen that the eight optimization runs converge to
three distinct local minima. The best run converges to approximately
the same entropy as obtained when the best view from 256 uniformly

sampled views over the enclosing sphere is taken. Fig. 1a shows in-
termediate views and the view from the optimized viewpoint. Further
results on other datasets, i.e, a jetstream simulation (2563), the potential
field of a C60 molecule (1283), and a smoke plume (1783), confirm the
dependency of the optimization process on the initial view (see Fig. 6).

Both the adjoint and the forward method compute exactly the same
gradients, except for rounding errors. As seen in Fig. 5c, a single for-
ward/backward pass in the adjoint method requires about 9.5ms/14.6ms,
respectively, giving a total of 24.1ms. For the forward method, we
compare two alternatives. First, forward-immediate directly evaluates
the forward variables during the forward pass in PyTorch and stores
these variables for reuse in the backward pass. In forward-delayed, the
evaluation of gradients is delayed until the backward pass, requiring to
re-trace the volume. With 21.3ms, forward-immediate is slightly faster
than the adjoint method, while forward-delayed is around 30% slower
due to the re-trace operation.

5.2 Transfer Function Reconstruction

Our second use case is TF reconstruction. Reference images of a
volume are first rendered from multiple views using a target TF. Given

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2021.3114769

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2021.3114769

r e f e r e n c e 0 . 0 0 0 0 . 4 0 0 5 . 0 0 0

0.0
00

0.0
01

0.0
02

0.0
05

0.0
10

0.0
15

0.0
20

0.0
30

0.0
40

0.0
50

0.1
00

0.2
00

0.3
00

0.4
00

0.5
00

1.0
00

2.0
00

3.0
00

4.0
00

5.0
00

smoothing prior

32

34

36

38

PS
NR

0.94

0.96

0.98

SS
IM

50

100

1/
LP

IP
S

Fig. 7. Effect of the smoothing prior (Equation 12). A small value of
λ leads to “jagged” TFs which can accurately predict small details like
the teeth in blue but introduce low frequency color shifts resulting in low
PSNR and SSIM [52]. A large smoothing prior smooths out small details.

the same volume and an arbitrary initial TF, AD is then used to optimize
the TF so that the rendered images match the references. The target TF
comprises of 256 rgbα entries, the target TF with R entries is initialized
with random Gaussian noise. The density volume is rendered to a 5122

viewport from eight camera positions that are uniformly distributed
around the volume (the view direction always pointing toward the
volume’s center).

Let T ∈ R
R,4 be the TF with R entries containing the rgb color and

absorption, and let xxxi be the N rendered image of resolution W ×H,
yyyi are the reference images. In our case, N = 8,W = H = 512 and R
varies. We employ an L1 loss on the images and a smoothing prior
Lprior on the TF, i.e.,

Ltotal = L1(xxx)+λLprior(T),

L1(xxx) =
1

NWH
∑
i,x,y

|xxxixy − yyyixy|

Lprior(T) =
1

4(R−1)

4

∑
c=1

R−1

∑
r=1

(Tc,r+1 −Tc,r)
2.

(12)

The Adam optimizer [22] is used with a learning rate of 0.8 for 200
epochs. The use of λ to control the strength of the smoothing prior
is demonstrated in Fig. 7 for a human head CT scan as test dataset
using R = 64. If λ is too small, the reconstructed TF contains high
frequencies and introduces subtle color shifts over the whole image. If
the smoothing prior is too large, small details are lost. We found that
a value of λ around 0.4 leads to the best results, visually and using
the Learned Perceptual Image Patch Similarity metric (LPIPS) [58],
and is thus used in our experiments. We chose the LPIPS metric as
we found that it can accurately distinguish the perceptually best results
when the peak-signal-to-noise ratio (PSNR) and the structural similarity
index (SSIM) [52] result in similar scores. The initialization of the
reconstruction and the final result for a human head dataset are shown
in Fig. 1b.

Next, we analyze the impact of the TF resolution R on reconstruc-
tion quality and performance (see Fig. 8). For TF reconstruction, the
backward AD mode significantly outperforms the forward mode. Be-
cause of the large number of parameters, especially when increasing
the resolution of the TF, the derivatives of many parameters have to
be traced in every operation when using the forward AD mode. Fur-
thermore, the forward variables may no longer fit into registers and
overflow into global memory. This introduces a large memory overhead
that leads to a performance decrease that is even worse than the ex-
pected linear decrease. A naı̈ve implementation of the adjoint method
that directly accumulates the gradients for the TF in global memory
using atomics is over 100× slower than the non-adjoint forward pass
(adjoint-immediate). This is because of the large number of memory
accesses and write conflicts. Therefore, we employ delayed accumula-
tion (adjoint-delayed). The gradients for the TF are first accumulated

4 8 16 32 64
Resolution

10 2

10 1

100

101

Ti
m

e
(s

)

4 8 16 32 64
Resolution

0.0

0.1

0.2

0.3

0.4

LP
IP

S

forward pass only
forward-immediate

adjoint-immediate
adjoint-delayed

Fig. 8. Timings and loss function values for different AD modes and
resolutions of the reconstructed TF. Timings are with respect to a single
epoch.

initial final reference difference (10x)

T
h
o
ra

x
P

lu
m

e

Fig. 9. TF reconstruction using a CT scan of a human thorax
(PSNR=42.6dB) and a smoke plume (PSNR=47.8dB, SSIM=0.999). The
used hyperparameters are the same as for the skull dataset. From left
to right: Start configurations for the optimizer, optimized results, ground
truths, pixel differences (scaled by a factor of 10 for better perception)
between ground truths and optimized results.

in shared memory. Then, after all threads have finished their assigned
rays, the gradients are reduced in parallel and then accumulated into
global memory using atomics. As seen in Fig. 8, this is the fastest of the
presented methods. The whole optimization for 200 epochs requires
around 5 minutes including I/O. However, as only 48kB of shared mem-
ory are freely available per multiprocessor, the maximal resolution of
the TF is 96 texels. If a higher resolution is required, adjoint-immediate
must be employed. At smaller values of R the reconstruction quality is
decreased (see Fig. 8). We found that a resolution of R = 64 leads to the
best compromise between reconstruction performance and computation
time.

To evaluate the capabilities of TF reconstruction to generalize to
new datasets with the same hyperparameters as described above, we
run the optimization on two new datasets, a CT scan of a human thorax
and a smoke plume, both of resolution 2563. As one can see in Fig. 9,
the renderings with the reconstructed TF closely match the reference,
demonstrating stability of the optimization for other datasets.

We envision that TF optimization with respect to losses in screen
space can be used to generate “good” TFs for a dataset for which no TF
is available. While a lot of research has been conducted on measuring
the image quality for viewpoint selection, quality metrics specialized
for TFs are still an open question to the best of our knowledge. In future
work, a first approach would be to take renderings of other datasets with
a TF designed by experts and transform the “style” of that rendering to
a new dataset via the style loss by Gatys et al. [11].

5.3 Density Reconstruction

In the following, we shed light on the use of DiffDVR for reconstructing
a 3D density field from images of this field. For pure absorption models,
the problem reduces to a linear optimization problem. This allows for
comparisons with specialized methods, such as filtered backpropaga-
tion or algebraic reconstruction [10, 13, 17]. We compare DiffDVR to
the CUDA implementation of the SIRT algebraic reconstruction algo-

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2021.3114769

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2021.3114769

S l i c e R e n d e r i n g
R e f e r e n c e o u r s A S T R A M i t s u b a R e f e r e n c e o u r s A S T R A M i t s u b a

S
k
u
ll

d i ff e r e n c e (5 x): d i ff e r e n c e (2 0 x):

P S N R : 36.23dB P S N R : 3 5 . 0 0 d B P S N R : 3 3 . 2 2 d B P S N R : 48.44dB P S N R : 4 0 . 3 5 d B P S N R : 4 4 . 3 5 d B
S S I M : 0.9925 S S I M : 0 . 8 4 0 1 S S I M : 0 . 9 8 8 5

P
lu
m
e

d i ff e r e n c e (5 x): d i ff e r e n c e (2 0 x):

P S N R : 49.70dB P S N R : 3 4 . 4 0 d B P S N R : 2 8 . 3 0 d B P S N R : 64.82dB P S N R : 3 8 . 2 8 d B P S N R : 2 9 . 3 5 d B
S S I M : 0.9996 S S I M : 0 . 6 1 3 5 S S I M : 0 . 9 8 1 3

T
h
or
ax

d i ff e r e n c e (5 x): d i ff e r e n c e (2 0 x):

P S N R : 39.79dB P S N R : 3 5 . 2 8 d B P S N R : 3 9 . 3 2 d B P S N R : 51.24dB P S N R : 3 6 . 4 8 d B P S N R : 5 0 . 3 6 d B
S S I M : 0 . 9 9 2 1 S S I M : 0 . 7 5 9 9 S S I M : 0.9942

Fig. 10. Density reconstruction using an optical absorption-only model. Comparison between DiffDVR, algebraic reconstruction provided by the
ASTRA-toolbox [49, 50] and Mitsuba’s differentiable path tracer [36]. For each algorithm, a single slice through the center of the reconstructed
volume and a volume rendering of this volume are shown, including per-pixel differences to the reference images. PSNR values in column “slice”
are computed over the whole volume, in column “rendering” they are with respect to the rendered images. Timings are given in Sect. 5.3. In the
difference images, blue and red indicate under- and over-estimation, respectively.

rithm [14] provided by the ASTRA-toolbox [49, 50]. Furthermore, we
compare the results to those computed by Mitsuba 2 [36, 37], a general
differentiable path tracer. Density reconstruction uses 64 uniformly
sampled views on a surrounding sphere. Each image is rendered at
a resolution of 5122. The reconstructed volume has a resolution of
2563. ASTRA and Mitsuba are used with their default optimization
settings. DiffDVR performs a stepsize of 0.2 voxels during reconstruc-
tion. The Adam optimizer with a batch size of 8 images and a learning
rate of 0.3 is used. To speed up convergence, we start with a volume
of resolution 323 and double the resolution in each dimension after 10
iterations. At the highest resolution, the optimization is performed for
50 iterations. The same Ltotal loss function as for TF reconstruction
(see Equation 12) is used, except that the smoothing prior is computed
on the reconstructed volume densities in 3D, with λ = 0.5.

Three experiments with datasets exhibiting different characteristics
are carried out. The results are shown in Fig. 10. As one can see,
DiffDVR consistently outperforms algebraic reconstruction via ASTRA
and density reconstruction via the Mitsuba framework. In particular,
Mitsuba suffers from noise in the volume due to the use of stochastic
path tracing. Only for the rendering of the thorax dataset, Mitsuba
shows a slightly better SSIM score than DiffDVR. For the plume dataset,
intermediate results of the optimization process until convergence are
shown in Fig. 1c.

Note that all compared algorithms serve different purposes. Alge-
braic reconstruction methods (ASTRA) are specialized for absorption-
only optical models and support only such models. Mitsuba is tai-
lored to Monte Carlo path tracing with volumetric scattering, an inher-

ently computational expensive task. DifffDVR is specialized for direct
volume rendering with an emission-absorption model and a TF, yet
emissions and a TF were disabled in the current experiments. These
differences clearly reflect in the reconstruction times. For instance,
for reconstructing the human skull dataset, ASTRA requires only 53
seconds, DiffDVR requires around 12 minutes, and Mitsuba runs for
multiple hours.

5.4 Color Reconstruction

Next, we consider an optical emission-absorption model with a TF that
maps densities to colors and opacities, as it is commonly used in DVR.
To the best of our knowledge, we are the first to support such a model
in tomographic reconstruction.

For TFs that are not a monotonic ramp, as in the absorption-only
case, density optimization becomes a non-convex problem. Therefore,
the optimization can be guided into local minima by a poor initialization.
We illustrate this problem in a simple 1D example. A single unknown
density value d1 of a 1D “voxel” – a line segment with two values
d0 =−1 and d1 at the end points and linear interpolation in between –
should be optimized. A single Gaussian function with zero mean and
variance 0.5 is used as TF, and the ground truth value for d1 is −1.
For varying d1, Fig. 12 shows the L2-loss between the color obtained
from d1 and the ground truth, and the corresponding gradients. As
can be seen, for initial values of d1 > 0.4 the gradient points away
from the true solution. Thus, the optimization “gets stuck” at the other
side of the Gaussian, never reaching the target density of −1. This
issue worsens in 2D and 3D, as the optimizer needs to reconstruct a
globally consistent density field considering many local constraints.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2021.3114769

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2021.3114769

T o o t h T h o r a x
a) reference b) direct optim. c) color optim. d) density optim. a) reference b) direct optim. c) color optim. d) density optim.

R
en
d
er
in
g

P S N R : 3 . 0 9 9 d B P S N R : 3 1 . 1 5 8 d B P S N R : 3 1 . 0 9 0 d B P S N R : 2 2 . 9 7 0 d B P S N R : 2 4 . 0 9 2 d B P S N R : 2 4 . 0 5 3 d B
S S I M : 0 . 2 4 0 3 4 S S I M : 0 . 9 7 2 7 0 S S I M : 0 . 9 3 9 5 4 S S I M : 0 . 7 2 2 9 9 S S I M : 0 . 8 3 8 8 3 S S I M : 0 . 7 6 0 0 7

S
li
ce

Fig. 11. Density optimization for a volume colored via a non-monotonic rgbα-TF using an emission-absorption model. (a) Rendering of the reference
volume of a human tooth and a human thorax. (b) Local minimum of the loss function. (c) Pre-shaded color volume as initialization. (d) Final result of
the density volume optimization with TF mapping. The second row shows slices through the volumes. Note the colored slice through the pre-shaded
color volume in (c).

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0d1 :
0.0

0.2

0.4

Co
st

0.25

0.00

0.25

0.50

Gr
ad

ie
nt

Fig. 12. 1D example for a density optimization with a Gaussian TF with
the optimum at a density of −1.0. For a value > 0.4, the gradient faces
away from the optimum.

This failure case is also shown in Fig. 11b, where the tooth dataset
cannot be reconstructed faithfully due to the initialization with a poorly
matching initial field.

To overcome this shortcoming, it is crucial to start the optimization
with an initial guess that is not “too far” from the ground truth in the
high-dimensional parameter space. We account for this by proposing
the following optimization pipeline: First, a pre-shaded color volume
of resolution 2563 (Fig. 11c) is reconstructed from images using the
same multi-resolution optimization as in the case of an absorption-only
model. The color volume stores the rgb-emission and scalar absorption
per voxel, instead of a scalar density value that is mapped to color via a
TF. By using this color volume, trapping into local minima with non-
monotonic TFs can be avoid. Intermediate results of the optimization
process until convergence are shown in Fig. 1d for the tooth dataset.
Then, density values that match the reconstructed colors after applying
the TF are estimated. For each voxel, 256 random values are sampled,
converted to color via the TF, and the best match is chosen. To avoid
inconsistencies between neighboring voxels, an additional loss term
penalises differences to neighbors. Let (τT ,CT) be the target color
from the color volume and d the sampled density with mapped color
τ(d),C(d), then the cost function is

C (d) = ||CT −C(d)||22 +α log(1+ |τT − τ(d)|)+β ∑
i∈N

(d −di)
2.

(13)
Here, α and β are weights, and N loops over the 6-neighborhood of
the current voxel. The logarithm accounts for the vastly different scales
of the absorption, similar to an inverse of the transparency integral
Equation 1. In the example, we set α = 1/max(τT) to normalize for
the maximal absorption in the color volume, and β = 1. This process
is repeated until the changes between subsequent iterations fall below
a certain threshold, or a prescribed number of iterations have been
performed.

Finally, the estimated density volume is used as initialization for the
optimization of the density volume from the rendered images (Fig. 11d).
We employ the same loss Ltotal as before with a smoothing prior of
λ = 20. The total runtime for a 2563 volume is roughly 50 minutes.
Even though the proposed initialization overcomes to a certain extent
the problem of non-convexity and yields reasonable results, Fig. 11
indicates that some fine details are lost and spurious noise remains.
We attribute this to remaining ambiguities in the sampling of densities
from colors that still lead to suboptimal minima in the reconstruction.
This also shows in the slice view of Fig. 11d, especially for the thorax
dataset. Here, some areas that are fully transparent due to the TF are
arbitrarily mapped to a density value of zero, while the reference has a
density around 0.5 – between the peaks of the TF – in these areas.

6 CONCLUSION

In this work, we have introduced a framework for differentiable direct
volume rendering (DiffDVR), and we have demonstrated its use in
a number of different tasks related to data visualization. We have
shown that differentiability of the direct volume rendering process with
respect to the viewpoint position, the TF, and the volume densities is
feasible, and can be performed at reasonable memory requirements and
surprisingly good performance.

Our results indicate the potential of the proposed framework to
automatically determine optimal parameter combinations regarding
different loss functions. This makes DiffDVR in particular interesting
in combination with neural networks. Such networks might be used as
loss functions – providing blackboxes, which steer DiffDVR to an opti-
mal output for training purposes, e.g., to synthesize volume-rendered
imagery for transfer learning tasks. Furthermore, derivatives with re-
spect to the volume from rendered images promise the application to
scene representation networks trained in screen space instead of from
points in object space. We see this as one of the most interesting future
works, spawning future research towards the development of techniques
that can convert large data to a compact representation -– a code -– that
can be permanently stored and accessed by a network-based visualiza-
tion. Besides neural networks, we imagine possible applications in the
development of lossy compression algorithms, e.g. via wavelets, where
the compression rate is not determined by losses in world space, but
by the quality of rendered images. The question we will address in
the future is how to generate such (visualization-)task-dependent codes
that can be intertwined with differentiable renderers.

ACKNOWLEDGMENTS

The authors wish to thank Jakob Wenzel and Merlin Nimier-David for
their help and valuable suggestions on the Mitsuba 2 framework.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2021.3114769

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2021.3114769

REFERENCES

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,

S. Ghemawat, G. Irving, M. Isard, et al. Tensorflow: A system for large-

scale machine learning. In 12th {USENIX} symposium on operating

systems design and implementation ({OSDI} 16), pp. 265–283, 2016.

[2] M. Bartholomew-Biggs, S. Brown, B. Christianson, and L. Dixon. Auto-

matic differentiation of algorithms. Journal of Computational and Applied

Mathematics, 124(1):171–190, 2000. Numerical Analysis 2000. Vol. IV:

Optimization and Nonlinear Equations. doi: 10.1016/S0377-0427(00)

00422-2

[3] M. Berger, J. Li, and J. A. Levine. A generative model for volume

rendering. IEEE transactions on visualization and computer graphics,

25(4):1636–1650, 2018.

[4] M. R. Bolin and G. W. Meyer. A perceptually based adaptive sampling

algorithm. In Proceedings of the 25th Annual Conference on Computer

Graphics and Interactive Techniques, SIGGRAPH ’98, p. 299–309. As-

sociation for Computing Machinery, New York, NY, USA, 1998. doi: 10.

1145/280814.280924

[5] U. D. Bordoloi and H.-W. Shen. View selection for volume rendering. In

VIS 05. IEEE Visualization, 2005., pp. 487–494. IEEE, 2005.

[6] L. Q. Campagnolo, W. Celes, and L. H. de Figueiredo. Accurate volume

rendering based on adaptive numerical integration. In 2015 28th SIB-

GRAPI Conference on Graphics, Patterns and Images, pp. 17–24. IEEE,

2015.

[7] M. Chen and H. Jäenicke. An information-theoretic framework for visu-

alization. IEEE Transactions on Visualization and Computer Graphics,

16(6):1206–1215, 2010.

[8] C. D. Correa and K.-L. Ma. Visibility histograms and visibility-driven

transfer functions. IEEE Transactions on Visualization and Computer

Graphics, 17(2):192–204, 2010.

[9] J. Danskin and P. Hanrahan. Fast algorithms for volume ray tracing. In

Proceedings of the 1992 Workshop on Volume Visualization, VVS ’92, p.

91–98. Association for Computing Machinery, New York, NY, USA, 1992.

doi: 10.1145/147130.147155

[10] D. Dudgeon, R. Mersereau, and R. Merser. Multidimensional digital signal

processing. prentice hall. Englewood Cliffs, NJ, 19842, 1984.

[11] L. A. Gatys, A. S. Ecker, and M. Bethge. Image style transfer using

convolutional neural networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 2414–2423, 2016.

[12] I. Gkioulekas, S. Zhao, K. Bala, T. Zickler, and A. Levin. Inverse volume

rendering with material dictionaries. ACM Transactions on Graphics

(TOG), 32(6):1–13, 2013.

[13] R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction

techniques (art) for three-dimensional electron microscopy and x-ray pho-

tography. Journal of Theoretical Biology, 29(3):471–481, 1970. doi: 10.

1016/0022-5193(70)90109-8

[14] J. Gregor and T. Benson. Computational analysis and improvement of sirt.

IEEE Transactions on Medical Imaging, 27(7):918–924, 2008. doi: 10.

1109/TMI.2008.923696

[15] M. Haidacher, D. Patel, S. Bruckner, A. Kanitsar, and M. E. Gröller.

Volume visualization based on statistical transfer-function spaces. In

2010 IEEE Pacific Visualization Symposium (PacificVis), pp. 17–24. IEEE,

2010.

[16] W. He, J. Wang, H. Guo, K.-C. Wang, H.-W. Shen, M. Raj, Y. S. Nashed,

and T. Peterka. Insitunet: Deep image synthesis for parameter space

exploration of ensemble simulations. IEEE transactions on visualization

and computer graphics, 26(1):23–33, 2019.

[17] G. T. Herman. Fundamentals of computerized tomography: image recon-

struction from projections. Springer Science & Business Media, 2009.

[18] W. Jakob. Enoki: structured vectorization and differentiation

on modern processor architectures, 2019. https://github.com/

mitsuba-renderer/enoki.

[19] G. Ji and H.-W. Shen. Dynamic view selection for time-varying volumes.

IEEE Transactions on Visualization and Computer Graphics, 12(5):1109–

1116, 2006.

[20] H. Kato, D. Beker, M. Morariu, T. Ando, T. Matsuoka, W. Kehl,

and A. Gaidon. Differentiable rendering: A survey. arXiv preprint

arXiv:2006.12057, 2020.

[21] H. Kato, Y. Ushiku, and T. Harada. Neural 3d mesh renderer. In Proceed-

ings of the IEEE conference on computer vision and pattern recognition,

pp. 3907–3916, 2018.

[22] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[23] A. Kratz, J. Reininghaus, M. Hadwiger, and I. Hotz. Adaptive screen-space

sampling for volume ray-casting. ZIB-Report, 2011.

[24] T.-M. Li, M. Aittala, F. Durand, and J. Lehtinen. Differentiable monte

carlo ray tracing through edge sampling. ACM Transactions on Graphics

(TOG), 37(6):1–11, 2018.

[25] S. Liu, S. Saito, W. Chen, and H. Li. Learning to infer implicit surfaces

without 3d supervision. NeurIPS, 2019.

[26] M. M. Loper and M. J. Black. Opendr: An approximate differentiable

renderer. In European Conference on Computer Vision, pp. 154–169.

Springer, 2014.

[27] R. Maciejewski, Y. Jang, I. Woo, H. Jänicke, K. P. Gaither, and D. S.

Ebert. Abstracting attribute space for transfer function exploration and

design. IEEE Transactions on Visualization and Computer Graphics,

19(1):94–107, 2012.

[28] R. Marques, C. Bouville, M. Ribardière, L. P. Santos, and K. Bouatouch.

Spherical fibonacci point sets for illumination integrals. Computer Graph-

ics Forum, 32(8):134–143, 2013. doi: 10.1111/cgf.12190

[29] J. Martschinke, S. Hartnagel, B. Keinert, K. Engel, and M. Stamminger.

Adaptive temporal sampling for volumetric path tracing of medical data.

Computer Graphics Forum, 38(4):67–76, 2019. doi: 10.1111/cgf.13771

[30] N. Max. Optical models for direct volume rendering. IEEE Transactions

on Visualization and Computer Graphics, 1(2):99–108, 1995.

[31] A. McNamara, A. Treuille, Z. Popović, and J. Stam. Fluid control using

the adjoint method. ACM Trans. Graph., 23(3):449–456, Aug. 2004. doi:

10.1145/1015706.1015744

[32] N. Morrical, W. Usher, I. Wald, and V. Pascucci. Efficient space skipping

and adaptive sampling of unstructured volumes using hardware accelerated

ray tracing. In 2019 IEEE Visualization Conference (VIS), pp. 256–260,

2019. doi: 10.1109/VISUAL.2019.8933539

[33] R. D. Neidinger. Introduction to automatic differentiation and matlab

object-oriented programming. SIAM review, 52(3):545–563, 2010.

[34] T. Nguyen-Phuoc, C. Li, S. Balaban, and Y.-L. Yang. Rendernet: A deep

convolutional network for differentiable rendering from 3d shapes. arXiv

preprint arXiv:1806.06575, 2018.

[35] M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. Differentiable

volumetric rendering: Learning implicit 3d representations without 3d

supervision. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2020.

[36] M. Nimier-David, S. Speierer, B. Ruiz, and W. Jakob. Radiative back-

propagation: An adjoint method for lightning-fast differentiable rendering.

Transactions on Graphics (Proceedings of SIGGRAPH), 39(4), July 2020.

doi: 10.1145/3386569.3392406

[37] M. Nimier-David, D. Vicini, T. Zeltner, and W. Jakob. Mitsuba 2: A

retargetable forward and inverse renderer. ACM Trans. Graph., 38(6), Nov.

2019. doi: 10.1145/3355089.3356498

[38] NVidia. Cuda nvrtc, 2021. https://docs.nvidia.com/cuda/nvrtc/

index.html.

[39] J. Painter and K. Sloan. Antialiased ray tracing by adaptive progressive

refinement. In Proceedings of the 16th annual conference on Computer

graphics and interactive techniques, pp. 281–288, 1989.

[40] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-

Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai,

and S. Chintala. Pytorch: An imperative style, high-performance deep

learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-

Buc, E. Fox, and R. Garnett, eds., Advances in Neural Information Pro-

cessing Systems 32, pp. 8024–8035. Curran Associates, Inc., 2019.

[41] F. Petersen, A. H. Bermano, O. Deussen, and D. Cohen-Or. Pix2vex:

Image-to-geometry reconstruction using a smooth differentiable renderer.

arXiv preprint arXiv:1903.11149, 2019.

[42] H. Rhodin, N. Robertini, C. Richardt, H.-P. Seidel, and C. Theobalt. A

versatile scene model with differentiable visibility applied to generative

pose estimation. In Proceedings of the IEEE International Conference on

Computer Vision, pp. 765–773, 2015.

[43] M. Ruiz, A. Bardera, I. Boada, and I. Viola. Automatic transfer functions

based on informational divergence. IEEE Transactions on Visualization

and Computer Graphics, 17(12):1932–1941, 2011.

[44] V. Sitzmann, M. Zollhöfer, and G. Wetzstein. Scene representation

networks: Continuous 3d-structure-aware neural scene representations.

NeurIPS, 2019.

[45] S. Takahashi, I. Fujishiro, Y. Takeshima, and T. Nishita. A feature-driven

approach to locating optimal viewpoints for volume visualization. In VIS

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2021.3114769

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2021.3114769

05. IEEE Visualization, 2005., pp. 495–502. IEEE, 2005.

[46] Y. Tao, H. Lin, H. Bao, F. Dong, and G. Clapworthy. Structure-aware

viewpoint selection for volume visualization. In 2009 IEEE Pacific Visual-

ization Symposium, pp. 193–200. IEEE, 2009.

[47] Y. Tao, Q. Wang, W. Chen, Y. Wu, and H. Lin. Similarity voting based

viewpoint selection for volumes. In Computer graphics forum, vol. 35, pp.

391–400. Wiley Online Library, 2016.

[48] A. Tewari, O. Fried, J. Thies, V. Sitzmann, S. Lombardi, K. Sunkavalli,

R. Martin-Brualla, T. Simon, J. Saragih, M. Nießner, et al. State of the art

on neural rendering. In Computer Graphics Forum, vol. 39, pp. 701–727.

Wiley Online Library, 2020.

[49] W. van Aarle, W. J. Palenstijn, J. Cant, E. Janssens, F. Bleichrodt,

A. Dabravolski, J. D. Beenhouwer, K. J. Batenburg, and J. Sijbers. Fast

and flexible x-ray tomography using the astra toolbox. Opt. Express,

24(22):25129–25147, Oct 2016. doi: 10.1364/OE.24.025129

[50] W. van Aarle, W. J. Palenstijn, J. De Beenhouwer, T. Altantzis, S. Bals,

K. J. Batenburg, and J. Sijbers. The astra toolbox: A platform for advanced

algorithm development in electron tomography. Ultramicroscopy, 157:35–

47, 2015. doi: 10.1016/j.ultramic.2015.05.002

[51] P.-P. Vázquez, E. Monclús, and I. Navazo. Representative views and paths

for volume models. In International Symposium on Smart Graphics, pp.

106–117. Springer, 2008.

[52] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. Image quality

assessment: from error visibility to structural similarity. IEEE transactions

on image processing, 13(4):600–612, 2004.

[53] S. Weiss, M. Chu, N. Thuerey, and R. Westermann. Volumetric isosurface

rendering with deep learning-based super-resolution. IEEE Transactions

on Visualization and Computer Graphics, pp. 1–1, 2019. doi: 10.1109/

TVCG.2019.2956697

[54] S. Weiss, M. Işık, J. Thies, and R. Westermann. Learning adaptive sam-

pling and reconstruction for volume visualization. IEEE Transactions on

Visualization and Computer Graphics, pp. 1–1, 2020. doi: 10.1109/TVCG

.2020.3039340

[55] R. E. Wengert. A simple automatic derivative evaluation program. Com-

munications of the ACM, 7(8):463–464, 1964.

[56] Q. Xu, S. Bao, R. Zhang, R. Hu, and M. Sbert. Adaptive sampling for

monte carlo global illumination using tsallis entropy. In International

Conference on Computational and Information Science, pp. 989–994.

Springer, 2005.

[57] C. Yang, Y. Li, C. Liu, and X. Yuan. Deep learning-based viewpoint rec-

ommendation in volume visualization. Journal of Visualization, 22(5):991–

1003, 2019.

[58] R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unrea-

sonable effectiveness of deep features as a perceptual metric. In CVPR,

2018.

[59] L. Zhou and C. Hansen. Transfer function design based on user selected

samples for intuitive multivariate volume exploration. In 2013 IEEE

Pacific Visualization Symposium (PacificVis), pp. 73–80. IEEE, 2013.

This is the author’s version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at http://dx.doi.org/10.1109/TVCG.2021.3114769

Copyright (c) 2021 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://dx.doi.org/10.1109/TVCG.2021.3114769

	Abstract
	Zusammenfassung
	Acknowledgments
	Introduction
	Contribution
	Outline
	List of Publications

	Related Work
	Non-network-based Acceleration Strategies for Volume Rendering
	Image and Video Super-Resolution
	Deep Learning in Volume Visualization
	Differentiable Rendering
	Controlled-Precision Volume Rendering

	Fundamentals and Methods
	Volume Visualization
	Isosurface Rendering
	Direct Volume Rendering
	Controlled-Precision Volume Rendering

	Automatic Differentiation
	Forward Differentiation
	Adjoint Differentiation

	Neural Networks
	Fully-connected Neural Networks
	Convolutional Neural Networks
	Isosurface Super-Resolution
	Adaptive Sampling

	Paper A: Volumetric Isosurface Rendering with Deep Learning-Based Super-Resolution
	Paper B: Learning Adaptive Sampling and Reconstruction for Volume Visualization
	Paper C: Analytic Ray Splitting for Controlled Precision DVR
	Paper D: Differentiable Direct Volume Rendering
	Final Discussion
	Future Work
	Conclusion

	Bibliography
	Accepted and camera ready version of Paper A
	Accepted and camera ready version of Paper B
	Accepted and camera ready version of Paper C
	Accepted and camera ready version of Paper D

