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Abstract

Due to the continuous rise in the amount of data over the recent years, insurance compa-
nies regularly seek for an improvement in their statistical analysis of the insurance claims
data. Our main goal in this thesis is to investigate D-vine quantile regression, introduced
by Kraus and Czado (2017), as a modelling approach for motor insurance severity rate.
For that purpose we present three additional regression methods; lognormal and gamma
regression which are standard approaches in modelling positive, right-skewed data, and
linear quantile regression which can be easily compared to D-vine regression since both
regression methods predict conditional quantiles.
After laying the necessary fundamentals and the framework of the four regression methods,
we perform an extensive exploratory data analysis for lognormal and gamma regression
on two real-life motor insurance claims data sets. Then, we proceed with model fitting
using the different regression methods. Finally, we evaluate and compare the resulting
models based on several performance measures, some of which are the log likelihood, the
training and test error and the interval score.



Zusammenfassung

Aufgrund des kontinuierlichen Anstiegs der Datenmenge in den letzten Jahren suchen
Versicherungsunternehmen regelmäßig nach einer Verbesserung ihrer statistischen Anal-
yse der Versicherungsschadendaten. Unser Hauptziel in dieser Arbeit ist es, die von Kraus
und Czado (2017) eingeführte D-Vine-Quantilregression als Modellierungsansatz für die
Kfz-Schadensquote zu untersuchen. Zu diesem Zweck stellen wir drei weitere Regression-
smethoden vor: die Lognormal- und die Gamma-Regression, die Standardansätze für die
Modellierung positiver, rechtsschiefer Daten sind, und die lineare Quantilsregression, die
leicht mit der D-Vine-Regression verglichen werden kann, da beide Regressionsmethoden
bedingte Quantile vorhersagen.
Nachdem wir die notwendigen Grundlagen und den Rahmen der vier Regressionsmethoden
festgelegt haben, führen wir eine ausführliche explorative Datenanalyse für Lognormal-
und Gamma-Regression an zwei realen Datensätzen von Kfz-Versicherungsansprüchen
durch. Dann fahren wir mit der Modellanpassung unter Verwendung der verschiedenen
Regressionsmethoden fort. Schließlich bewerten und vergleichen wir die resultierenden
Modelle auf der Grundlage verschiedener Leistungsmaße, darunter die Log-Likelihood,
den Trainings- und Testfehler und den Intervallwert.
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1 Introduction

Modelling insurance claim severity is characterized by a response which is a positive and
right-skewed random variable. One of the common approaches in severity risk modelling
is the lognormal regression model, which is a subclass of the classical linear regression
model. The transformation of the response using the logarithmic function ensures pos-
itive predicted values of the response, while the relationship between the transformed
independent variable and the predictors is linear. The advantages of the linear regression
models are that they are easy to interpret and have low computational cost, which is why
they are applied in almost every discipline.
Another common approach in severity risk modelling is the gamma regression model,
which falls into the class of generalized linear models (GLMs), first introduced by Nelder
and Wedderburn (1972). Compared to linear regression models, this class of models allows
for non-normally distributed responses, while still keeping the linear relationship via the
link function. The gamma regression model relaxes the assumption of constant variance
in the linear regression model. In particular, it allows for increase of the variance of the
response, as the mean of the response increases. Therefore, the gamma regression model
offers more flexibility, while maintaining low computational cost and complexity. How-
ever, both the lognormal and gamma regression are limited to prediction of the mean of
the response. An alternative approach which predicts conditional quantiles and is more
robust against outliers is the quantile regression, first introduced by Koenker and Bassett
(1978).
Linear quantile regression (Koenker and Bassett (1978)) complements linear regression by
providing a more accurate modelling of the relationship between the variables, especially
in the tails. In our case this is particularly useful, since insurance companies are interested
in the extreme claim severity observations in the tails. However, this method can lead to
issues like quantile crossings, transformations, interactions and collinearity. Additionally,
Bernand and Czado (2015) show that the linearity assumption is strong and almost never
fulfilled.
One of the ways to overcome the shortfalls of linear quantile regression is to use vine
copula quantile regression. This method was introduced by Kraus and Czado (2017) and
models multivariate data using bivariate building blocks, a procedure called pair copula
construction (PCC), by sequentially adding variables in the model based on the maximum
conditional log likelihood. The D-vine quantile regression results in a highly flexible model
with easily extractable conditional quantiles. In addition to Kraus and Czado (2017), we
also refer to the work of Tepegjozova, Zhou, Claeskens and Czado (2022) where a fully
nonparametric D-vine quantile regression is discussed. In particular, our main goal in this
thesis is to analyse the performance of this regression approach compared to the lognor-
mal, gamma and linear quantile regression.
The remainder of the thesis is organized as follows. Chapter 2 gives a review of the statis-
tical concepts our analyisis builds on. In Chapter 3, we introduce the third party liability
motor claims data set and the division of this data set to two different data sets, based on
the bonus malus class of the policy holders, and we present the exploratory data analysis
performed on the training data sets which is a necessary preprocessing step for lognormal
and gamma regression. In Chapter 5, we present the fitted regression models on the data
set where the policy holders belong to the best bonus malus class and we compare the
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models using the performance measures presented in Chapter 2. Similarly, we repeat this
procedure more extensively on the second data set in Chapter 5, since the R2

adj of the
lognormal models on this data set was slightly higher than the lognormal models fitted
on the first data set. Chapter 6 concludes.
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2 Theoretical background

In this chapter we will present the necessary theoretical background for the remainder
of this thesis. First, we define some univariate and multivariate distributions. Then, we
discuss four different statistical models that we fit to our data. Finally, we explain the
performance measures used to compare the models.
We denote vectors with bold letters, random variables with capital letters and observed
values with small letters.

2.1 Univariate and multivariate distributions

We present all probability distributions we use in this thesis. We denote by f the prob-
ability density function (pdf) and by R+ the set of all positive real numbers. For this
section we consult Czado and Schmidt (2011), Ahsanullah (2017), Basso, Lachos, Cabral
and Ghosh (2010) and Czado (2019).

Definition 2.1.1 (Uniform Distribution)
Let X ∈ R be a random variable following the uniform distribution. Then the probability
function of X at x is defined as

f(x) :=

{
1

b−a
for a ≤ x ≤ b

0 for a > x or x > b
(2.1.1)

and we write X ∼ U(a, b). If a = 0 and b = 1 i.e. X ∼ U(0, 1), X follows a standard
uniform distribution.

Definition 2.1.2 (Normal Distribution)
Let X ∈ R be a random variable following the normal distribution with mean µ ∈ R and
variance σ2 > 0. Then the probability function of X at x is defined as

f(x) :=
1√
2πσ2

exp
{
− 1

2σ2
(x− µ)2

}
(2.1.2)

and we write X ∼ N (µ, σ2). If µ = 0 and σ2 = 1 i.e. X ∼ N (0, 1), X follows a standard
normal distribution and its probability function is presented by ϕ, whereas its cumulative
distribution function by Φ.

Definition 2.1.3 (Lognormal Distribution)
Let X ∈ R+ be a random variable following the lognormal distribution with location pa-
rameter µ > 0 and scale parameter σ2 > 0. Then the probability function of X at x is
defined as

f(x) :=
1

x
√
2πσ2

exp
{
− 1

2

( ln(x− µ)

σ

)2}
, x > 0 (2.1.3)

and we write X ∼ LN(µ, σ2). If X ∼ N (µ, σ2), then for the random variable Y := eX it
holds that Y ∼ LN(µ, σ2).
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Definition 2.1.4 (Skew-Normal Distribution)
Let X ∈ R be a random variable following the skew-normal distribution with location
parameter µ ∈ R, scale parameter σ2 > 0 and skewness parameter λ ∈ R. Then the
probability function of X at x is defined as

f(x) := 2ϕ(x|µ, σ2)Φ(λ
y − µ

σ
), (2.1.4)

where ϕ(·|µ, σ2) denotes the density of an N (µ, σ2) random variable and Φ denotes the
distribution function of the standard normal distribution, and we write X ∼ SN(µ, σ2, λ).

Definition 2.1.5 (Gamma Distribution)
Let X ∈ R+ be a random variable following the gamma distribution with shape α > 0 and
rate β > 0. Then the probability function of X at x is defined as

f(x) :=
βα

Γ(α)
xα−1e−βx, x > 0 (2.1.5)

and we write X ∼ Gamma(α, β), where Γ is the gamma function defined as

Γ(a) :=

∫ ∞

0

ta−1e−tdt, a > 0. (2.1.6)

Definition 2.1.6 (Chi-squared Distribution)
Let X ∈ R+ be a random variable following the chi-squared distribution with degrees of
freedom n > 0. Then the probability function of X at x is defined as

f(x) :=
1

2n/2Γ(n
2
)
x

n
2
−1e−

x
2 , x > 0 (2.1.7)

and we write X ∼ χ2
n, where Γ is the gamma function defined with Equation (2.1.6).

If X1, . . . , Xn are i.i.d. N (0, 1) random variables, then Yn =
∑n

i=1X
2
i is χ2

n-distributed.

Definition 2.1.7 (t-Distribution)
Let X ∈ R be a random variable following the t-distribution with ν > 0 degrees of freedom.
Then the probability function of X at x is defined as

fν(x) :=
Γ(ν+1

2
)

Γ(ν
2
)Γ(1

2
)
√
ν

(
1 +

x2

ν

)− ν+1
2

(2.1.8)

and we write X ∼ tν, where Γ is the gamma function defined with Equation (2.1.6).
If X ∼ N (0, 1) and Y ∼ χ2

n are independent, then T = X√
Y
n

∼ tn.

If X1, . . . , Xn are i.i.d. N (µ, σ2) random variables, then X̄−µ
S

√
n ∼ tn−1, with

S = 1
n−1

∑n
i=1(Xi − X̄)2 and X̄ = 1

n

∑n
i=1Xi.

Definition 2.1.8 (F-Distribution)
Let X ∈ R+ be a random variable following the F-distribution with degrees of freedom
n,m > 0. Then the probability function of X at x is defined as

f(x) :=
nn/2mm/2

B(n/2,m/2)

x
n
2
−1

(m+ nx)(n+m)/2
, x > 0 (2.1.9)
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and we write X ∼ Fn,m, where B is the beta function defined as

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt, a, b > 0. (2.1.10)

If V ∼ χ2
n and W ∼ χ2

m are independent random variables, then for F := V/n
W/m

it holds
that F ∼ Fn,m.
If Y ∼ tm then X = Y 2 ∼ F1,m.

Definition 2.1.9 (Multivariate Normal Distribution)
A continuous p-dimensional vector XXX = (X1, . . . , Xp)

⊤ is said to have a multivariate
normal distribution if it has probability density function

f(xxx) := (2π)−
p
2 |ΣΣΣ|−

1
2 exp

{
− 1

2
(xxx− µµµ)⊤ΣΣΣ−1(xxx− µµµ)

}
, (2.1.11)

with µµµ ∈ Rp and positive definite (p× p)-matrix ΣΣΣ. We write XXX ∼ Np(µµµ,ΣΣΣ).

Definition 2.1.10 (Multivariate t-Distribution)
A continuous p-dimensional vector XXX = (X1, . . . , Xp)

⊤ is said to have a multivariate
t-distribution with ν degrees of freedom, location parameter µµµ, and (positive definite) dis-
persion matrix ΣΣΣ, if it has probability density function

f(xxx) := |ΣΣΣ|−
1
2 (νπ)−

p
2
Γ((ν + p)/2)

Γ(ν/2)

(
1 +

(xxx− µµµ)⊤ΣΣΣ−1(xxx− µµµ)

ν

)−(ν+p)/2

(2.1.12)

and we write XXX ∼ tν(µµµ,ΣΣΣ).

2.2 Data preprocessing

In this section we describe the transformed response variable used as a response variable
for the lognormal, linear quantile and D-vine quantile regression models, as well as the
split of a data set to a training and a test data set.

Data transformation

Throughout the thesis, we are interested in predicting a response variable using several
predictors. In case of a positive response variable with wide range, an useful transfor-
mation of the response can be the natural logarithm (Fahrmeir, Kneib, Lang and Marx
(2013)). This guarantees that our predicted values will be positive. We denote the natural
logarithm with the abbreviation ln(·). If Y ∈ R+ is the response variable then ln(Y ) will
be the transformed response variable.

Data splitting

As discussed by Hastie, Tibshirani and Friedman (2009), in a data-rich situation the
best approach for model selection and model assessment is to randomly divide the data
set into training and test data sets. The training data set is used to fit the models and
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the test data set is used for assessment of the error of the final chosen model. The test
data set should be brought out only at the end of the analysis, when we perform model
evaluation. It is difficult to give a general rule on how to choose the number of observa-
tions in each of the two parts, as that depends on the data itself as well as on the sample
size. In this thesis, as we have large data sets, we split them to roughly 90% training
sample and 10% test sample. More details are given in Chapter 3.

2.3 Lognormal Regression

Linear regression is one of the most commonly used statistical methods. As a first type
of regression analysis to be studied, it offers a lot of advantages. It can be implemented
easily and the results are straightforwardly interpretable. As a response variable we
use the transformed response variable ln(Y ) defined in the previous section. The use
of transformed response variable implies that the original response variable Y follows a
lognormal distribution. Therefore, this model is called lognormal model. After the fitting,
we can easily bring the predictions on the original scale using the exponential function.
Following Olive (2017) and Fahrmeir, Kneib, Lang and Marx (2013) we provide a basis
for this model.

Definition 2.3.1 (Lognormal Regression Model)
The lognormal regression model is defined as

ln(Yi) = β0 + xi1β1 + · · ·+ xikβk + εi = xxx⊤i βββ + εi (2.3.1)

with strictly positive random variables Yi, i = 1, . . . , n. Here n is the sample size and the
random variable εi is the i

th error term . The error terms are independent and normally
distributed random variables, with E[εi] = 0 and constant variance V ar[εi] = σ2.

In matrix notation, these n equations become

WWW =XXXβββ + εεε, (2.3.2)

whereWWW = (ln(Y1), . . . , ln(Yn))
⊤ is an n× 1 vector of dependent variables, XXX is an n× p

matrix of predictors also called design matrix, βββ is a p× 1 vector of unknown coefficients
and εεε ∼ Nn(000, IIInσ

2) is an n×1 vector of unknown error terms, where IIIn is an n×p square
matrix with ones on the main diagonal and zeros elsewhere, and p = k+ 1. Equivalently,

ln(Y1)
ln(Y2)

...
ln(Yn)

 =


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
. . .

...
1 xn1 xn2 · · · xnk



β0
β1
...
βk

+


ε1
ε2
...
εn

 . (2.3.3)

The p = k + 1 regression parameters are unknown and have to be estimated from n
observations (xxx⊤i , ln(yi)) = (1, xi1, xi2, · · · , xik, ln(yi)), i = 1, · · · , n , where ln(yi) are the
observed values of the random variables ln(Yi).
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Parameter estimation

There are two different methods that can be used for parameter estimation for the linear
regression model: least squares and maximum likelihood estimation. If the assumptions
of independence, homogeneity and normality are fulfilled i.e. εεε ∼ Nn(000, IIInσ

2), these two
estimation techniques yield the same estimate. Here we present the maximum likelihood
(ML) estimation (Fahrmeir, Kneib, Lang and Marx (2013)).
Assuming normally distributed error terms we haveWWW ∼ Nn(XXXβββ,IIInσ

2), which yields the
likelihood

L(βββ, σ2|www) = 1

(2πσ2)n/2
exp(− 1

2σ2
(www −XXXβββ)⊤(www −XXXβββ)), (2.3.4)

where www = (ln(y1), . . . , ln(yn))
⊤. The log likelihood is thus given by

l(βββ, σ2|www) = −n
2
ln(2π)− n

2
ln(σ2)− 1

2σ2
(www −XXXβββ)⊤(www −XXXβββ). (2.3.5)

When maximizing the log likelihood with respect to βββ, we can ignore the first two terms in
Equation (2.3.5), because they are independent of βββ. Maximizing− 1

2σ2 (www−XXXβββ)⊤(www−XXXβββ)
is equivalent to minimizing (www −XXXβββ)⊤(www −XXXβββ), which results in the equations

βββ⊤(www −XXXβββ) = 000. (2.3.6)

If XXX⊤XXX is nonsingular, then the unique solution is given by

β̂ββ = (XXX⊤XXX)−1XXX⊤www, (2.3.7)

from which we immediately have

β̂ββ ∼ Nn(βββ, σ
2(XXX⊤XXX)−1). (2.3.8)

The vector of fitted values is ŵww = (l̂n(y1), . . . , l̂n(yn))
⊤ = XXXβ̂ββ = XXX(XXX⊤XXX)−1XXX⊤www,

where the n × n matrix HHH := XXX(XXX⊤XXX)−1XXX⊤ is also called hat matrix. Therefore, ŴWW =

(l̂n(Y1), . . . , l̂n(Yn))
⊤ = HHHWWW ∼ Nn(XXXβββ, σ

2H). Differentiation of the log likelihood with
respect to σ2 and setting to zero, yields

σ̂2 =
1

n

n∑
i=1

(ln(yi)− l̂n(yi))
2. (2.3.9)

However, from Equation (2.3.9) an unbiased estimator of σ2 can be derived:

s2 =
1

n− p

n∑
i=1

(ln(Yi)− l̂n(Yi))
2 =

n

n− p
σ̂2. (2.3.10)

Under the normality assumption, it follows that

(n− p)s2

σ2
=

∑n
i=1(ln(Yi)− l̂n(Yi))

2

σ2
∼ χ2

n−p. (2.3.11)
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Hypothesis testing

To check whether a particular covariate has a significant influence on the model, we use
hypothesis testing. In particular, we present our problem as

H0 : βj = 0 and H1 : βj ̸= 0.

Under the assumption that H0 is true, from Equations (2.3.8), (2.3.11) and the Definition
of t-distribution we obtain the test statistic (Fahrmeir, Kneib, Lang and Marx (2013))

Tj =
β̂j√

s2(XXX⊤XXX)−1
jj

H0∼ tn−p, (2.3.12)

where (XXX⊤XXX)−1
jj is the jth diagonal element of (XXX⊤XXX)−1. We define the statistical hy-

pothesis test as follows.

Definition 2.3.2 (Test of significance (t-test))
Suppose we have a regression model as defined in Definition (2.3.1) and let tj be the
observed value of Tj. Then, testing the significance of one particular coefficient can be
done as follows

Reject H0 : βj = 0 vs H1 : βj ̸= 0 at level α ⇔ |tj| > tn−p,1−α
2
,

where tn−p,1−α
2
is the (1− α

2
)-quantile of the t-distribution with n− p degrees of freedom.

Additionally, we are interested in testing the significance of multiple covariates simultane-
ously, or comparing two different models. In particular, we have the following hypothesis
testing

H0 : βββ2 = 000 and H1 : βββ2 ̸= 000

where βββ2 is a vector of length p2 of the coefficients whose significance we want to test. We
can write the design matrix asXXX = (XXX1,XXX2) whereXXX1 is an n×(p−p2) matrix andXXX2 is
a n×p2 matrix. Therefore, we introduce the reduced modelWWWR :=XXX1βββ1+εεε, where βββ1 is
the vector of the parameters who are not components of βββ2. Let HHHR :=XXX1(XXX

⊤
1XXX1)

−1XXX⊤
1

be the hat matrix of the reduced model and we define the random vector of fitted values
of the reduced model as ŴWWR = (l̂n(Y1)R, . . . , l̂n(Yn)R)

⊤ =HHHRWWWR. For the purpose of this
hypothesis testing we define the test statistic (Fahrmeir, Kneib, Lang and Marx (2013))

F =
n− p

p2

∑n
i=1(ln(Yi)− l̂n(Yi)R)

2 −
∑n

i=1(ln(Yi)− l̂n(Yi))
2∑n

i=1(ln(Yi)− l̂n(Yi))2

H0∼ Fp2,n−p. (2.3.13)

For more details about the derivation of this test statistic, one can look in Section 3.3 in
Fahrmeir (2013).

Definition 2.3.3 (F-test)
Suppose we have a full lognormal regression model as defined in Definition (2.3.1), and
reduced lognormal regression model as defined above. Let F (www) be the observed value of the
test statistic F. Then, testing the significance of the coeficients βββ2 can be done as follows
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H0 : βββ2 = 000 vs H1 : βββ2 ̸= 000 at level α ⇔ F (www) > Fp2,n−p,1−α,

where Fp2,n−p,1−α is the (1−α)-quantile of the F-distribution with p2 and n− p degrees of
freedom.

Consequently, using the F-test we can compare the two models, the full one and reduced
one. When the null hypothesis is rejected, we can say that at least one of the covariates
which are not included in the reduced model is significant.

Handling of covariates

Before we proceed with model diagnostics and evaluation, we want to give a deeper ex-
planation on how we handle different types of covariates, using Section 3.3 of Olive (2017)
and Section 3.1 of Fahrmeir, Kneib, Lang and Marx (2013). In general, we differentiate
between two different types of covariates, quantitative and qualitative. Let a qualitative
also called categorical covariate has c different categories a1, . . . , ac. Then this factor is
incorporated into the regression model by using c-1 indicator variables

xj =

{
1, if the observation is in category aj

0, if the observation is not in category aj

for j = 1, . . . , c− 1, where one of the levels aj is ommited.
On the other hand, if the quantitative also called continuous covariate shows nonlinear
relationship with the response variable, we can either transform it or do polynomial re-
gression. Common transformation functions are f(x) = ln(x), f(x) =

√
x in case of a

positive covariate, as well as f(x) = 1
x
. A good indicator of a proper transformation for a

continuous covariate is when the scatterplot of the transformed covariate against the re-
sponse shows linear relationship. If the nonlinear relationship of the continuous covariate
x and the response variable looks polynomial, then we fit polynomial regression i.e. we
include the covariates x, x2, . . . , xl in the model instead of x, where l is the degree of the
polynomial we choose. In this thesis, we use orthogonal polynomials, since the fitting of
these polynomials has proven more stable numerically.
Apart from the quantitative and qualitative covariates which are also called main effects,
we also define interactions. An interaction between covariates exists if the effect of a
covariate on the response depends on the value of other covariate. In the following we
present the modelling of interaction in three different cases:

• Let x and z be two categorical variables with c and m categories respectively. Let us
choose the last category as the reference category for both x and z and we denote
the respective dummy variables as xj, j = 1, . . . , c − 1 and zk, k = 1, . . . ,m − 1.
For modelling the interaction effect we have to consider all possible combinations
of the values of x and z (with the exception of the reference categories), specifically
x1z1, . . . , x1zm−1, x2z1, . . . , xc−1zm−1.

• Let x be continuous and z be categorical variable, with m categories. As before, we
choose the last category of z as reference category and denote the dummy variables
zk, k = 1, . . . ,m− 1. In this case, for modelling the interaction effect of x and z, we
need to include xz1, . . . , xzm−1 in our model.
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• Let x and z be continuous variables. For modelling the interaction effect of x and
z, we need to include xz in our model.

Important remark is that when the lognormal regression model contains a covariate with
power l, then all lower degrees of the covariate should be included in the model. Addition-
ally, when the lognormal regression model contains interactions, then all corresponding
main effects should be in the model as well.

Model selection criteria

When fitting a lognormal regression model we can have a lot of variables to choose from.
What we want is our chosen model to contain all influential covariates, but to discard
all insignificant variables. In this section, we define our model selection criteria used in
the thesis, some of which are more rigid towards the complexity of the model. All of
the defined criteria can be found in Fahrmeir, Kneib, Lang and Marx (2013). First, we
introduce the coefficient of determination R2.

Definition 2.3.4 (Coefficient of determination)
Let us have a regression model as defined in Definition 2.3.1. Then the coefficient of
determination R2 is defined as

R2 :=

∑n
i=1(l̂n(yi)− w̄)2∑n
i=1(ln(yi)− w̄)2

, (2.3.14)

where ln(yi), i = 1, . . . , n are the observed values of the random variables ln(Yi), i =

1, . . . , n respectively, l̂n(yi), i = 1, . . . , n are the fitted values and w̄ = 1
n

∑n
i=1 ln(yi). It

holds that 0 ≤ R2 ≤ 1.

R2 is usually used as a goodness of fit measure. We can interpret it the following way:
the closer R2 is to 1, the fit to the data is better. What R2 tells us, is what proportion of
the variability of the data is explained by our model. However, the R2 is not appropriate
for model comparison, since the coefficient of determination will always increase with the
addition of a new covariate into the model. The adjusted coefficient of determination is
an alternative criterion, which accounts for the number of parameters in the model.

Definition 2.3.5 (Adjusted coefficient of determination)
Let us have a regression model as defined in Definition 2.3.1. Then the adjusted coefficient
of determination R2

adj is defined as

R2
adj := 1− n− 1

n− p
(1−R2). (2.3.15)

In the following we introduce two additional model selection criteria, which are widely
used for model choice within the scope of likelihood based inference.

Definition 2.3.6 (Akaike Information Criterion)
We define the Akaike information criterion AIC as

AIC := −2l(β̂ββ, σ̂σσ2|www) + 2q, (2.3.16)
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where l(β̂ββ, σ̂σσ2|www) is the maximum value of the log likelihood, since the estimated parameters
are inserted and q is the number of parameters in the model. For the lognormal model
q = p+ 1.

Definition 2.3.7 (Bayesian Information Criterion)
We define the Bayesian information criterion BIC as

BIC := −2l(β̂ββ, σ̂σσ2|www) + ln(n)q, (2.3.17)

where l(β̂ββ, σ̂σσ2|www) is the maximum value of the log likelihood, since the estimated parameters
are inserted and q is the number of parameters in the model. For the lognormal model
q = p+ 1.

For both these criteria, AIC and BIC, smaller value indicates a better model fit. The
main difference between them is that BIC penalizes the complex models much more
than AIC. Addittionally, for variable subset selection we use backward elimination. This
procedure starts with the full model containing all potential covariates. Subsequently, in
every iteration, the covariate which provides the greatest reduction of the model choice
criteria (AIC or BIC) is eliminated from the model. The algorithm stops when no further
reduction is possible.

Model diagnostics and evaluation

Once we have our chosen model, we can use several graphical tools for assessment of the
assumptions of the lognormal regression model. For that purpose, using Fahrmeir, Kneib,
Lang and Marx (2013) we introduce the following definitions.

Definition 2.3.8 (Raw residuals)

Let ln(yi), i = 1, . . . , n be the observed values and l̂n(yi), i = 1, . . . , n be the fitted values
of ln(Yi), i = 1, . . . , n respectively. Then, the raw residuals are defined as

ri := ln(yi)− l̂n(yi), i = 1, . . . , n. (2.3.18)

Definition 2.3.9 (Internally studentized residuals)
We define internally studentized residuals as

si :=
ri

s
√
1− hii

, i = 1, . . . , n, (2.3.19)

where ri is given in Equation (2.3.18), s in Equation (2.3.10) and hii is the ith diagonal
element of the hat matrix HHH =XXX(XXX⊤XXX)−1XXX⊤.

To check the model assumptions we can plot the internally studentized residuals si, i =
1, . . . , n against the observation number. This plot should show random fluctuation
around the zero with constant variance, since under the model assumptions these residuls
are N (0, 1) distributed. Additionally, we can check the distributional assumptions using
Q-Q plot, where the empirical quantiles are compared to the quantiles of the theoretical
distribution. If the data follows the distribution, the points should closely follow the 45◦

bisecting line.
Now we define leverage and Cook’s distance which are helpful for detecting outliers and
influential observations.
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Definition 2.3.10 (Leverage)
The ith leverage

hii :=HHH ii (2.3.20)

is the ith diagonal element of the hat matrix HHH.

It is shown that one can use hii >
2p
n
, i = 1, . . . , n as a benchmark for high leverage points.

We introduce the Cook’s distance as defined in Olive (2017), p.131.

Definition 2.3.11 (Cook’s Distance)
We define Cook’s distance as

Di :=
s2i
p

hii
1− hii

, i = 1, . . . , n, (2.3.21)

where si are defined with Equation (2.3.19) and hii with Equation (2.3.20).

Observations with Cook’s distance larger than 1 should be studied and if necessary, re-
moved.

2.4 Gamma regression

After introducing lognormal regression, we present another useful regression for modelling
strongly positive response. Namely, the Gamma regression model falls into a group of
models called generalized linear models (GLMs) (first introduced by Nelder and Wedder-
burn (1972)), which are regression models for non-normal response variables with certain
common properties. This class of models is extensively studied in McCullagh and Nelder
(1989).

Gamma regression model as a GLM

Definition 2.4.1 (Components of a generalized linear model)

1. Random Component: Responses Yi, i = 1, . . . , n are independent with probability
density function or probability mass fuction from the exponential family with pa-
rameter θ and ϕ > 0 given by

f(y|θ, ϕ) = exp
{θy − b(θ)

a(ϕ)
+ c(y, ϕ)

}
, (2.4.1)

where ϕ is a dispersion parameter, θ is called canonical parameter and the functions
b(·), a(·) and c(·, ·) are known.

2. Systematic Component: The quantity

η(βββ) := xxx⊤i βββ = β0 + β1xi1 + . . .+ βkxik (2.4.2)

is called the linear predictor and βββ = (β0, . . . , βk)
⊤ are p unknown regression param-

eters.
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3. Parametric Link Component: The link function

g(µi) = η(βββ) = xxx⊤i βββ (2.4.3)

defines the relationship between the linear predictor ηi and the mean µi of Yi.

Many known distributions are members of exponential family class, one of which is the
gamma distribution. For the moments of a random variable Y with exponential family
distribution, it holds that

E(Y ) = b′(θ)

V ar(Y ) = b′′(θ)a(ϕ),
(2.4.4)

where the functions b(·), a(·) are defined in Definition 2.4.1. To show that the gamma
distribution indeed belongs to the exponential family class, let us have a random variable
Y ∼ Gamma(ν, ν/µ), whose density is defined with Equation (2.1.5).

Then θ = − 1
µ
, b(θ) = − ln(−θ), ϕ = 1

ν
, a(ϕ) = ϕ and c(y, ϕ) = 1−ϕ

ϕ
ln(y)− ln(ϕ)

ϕ
−ln

(
Γ( 1

ϕ
)
)
.

Using the Equations (2.4.4) we derive

E(Y ) = b′(θ) = −1

θ
= µ, V ar(Y ) = b′′(θ)a(ϕ) =

1

θ2
1

ν
=
µ2

ν
.

For more details regarding this derivation, one can look at De Jong and Heller (2008).
As a link function in gamma regression, we use the log link function i.e. g(µ) = ln(µ).
Therefore, for exploratory data analysis in gamma regression we plot xij versus ln(yi) for
i = 1, . . . , n. If the resulting plot looks linear for all j = 1, . . . , k, then the link function
is appropriate. We handle covariates the same way as in lognormal regression.

Parameter estimation

Given n observations of n independent random variables Yi ∼ Gamma(ν, ν/µi) and a
n× p matrix of predictors XXX = (xij)i=1,...,n,j=1,...,p, we define the likelihood with

L(yyy|θθθ, ϕ) =
n∏

i=1

fi(yi|θi, ϕ), (2.4.5)

where the functions fi, i = 1, . . . , n are defined with Equation (2.4.1). Therefore, the log
likelihood is defined with

l(µµµ, ϕ|yyy) =
n∑

i=1

ln fi(yi|θi, ϕ), (2.4.6)

where µµµ = (µ1, . . . , µn)
⊤. The maximum likelihood estimator β̂ββ maximizes the log likeli-

hood. The maximum-likelihood equations for βj, j = 1, . . . , p are given by

n∑
i=1

wi(yi − µi)
dηi
dµi

xij = 0, j = 1, . . . , p, (2.4.7)

where wi =
[
Vi(

dηi
dµi

)2
]−1

with Vi = b′′(θi) for i = 1, . . . , n. For more details one can

refer to McCullagh and Nelder (1989). However, an important realization is that when
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a(ϕ) = ϕ, the dispersion parameter disappears, as is the case in the gamma regression
model. Fisher’s scoring method uses the gradient vector ∂l

∂βββ
= uuu, where l denotes the log

likelihood, and minus the expected value of the Hessian matrix

− E
( ∂2l

∂βr∂βs

)
r,s∈{1,...,p}

= AAA. (2.4.8)

Now given the current estimate bbb of βββ, the new estimate bbb⋆ = bbb + δbbb of βββ satisfies the
equation

AbAbAb⋆ = AbAbAb+ uuu (2.4.9)

Since (AbAbAb)j =
∑n

i=1wi(bbb)xijηi, we obtain that the new estimate bbb⋆ satisfies

(AbAbAb⋆)j =
n∑

i=1

wi(bbb)xij{ηi + (yi − µi)
dηi
dµi

}, (2.4.10)

where wi(bbb), i = 1, . . . , n are defined as in Equation (2.4.7). These equations have the form
of linear weighted least-squares equations with weightWWW (bbb) = diag(w1(bbb), . . . , wn(bbb)) and
dependent variable zzz(bbb) = (z1(bbb), . . . , zn(bbb))

⊤ where

zi(bbb) = ηi + (yi − µi)
dηi
dµi

. (2.4.11)

According to the stopping criterion, the algorithm typically converges close to a maximum
after a number of iterative steps.
After we obtain the maximum likelihood estimator β̂ββ of βββ, we can estimate the dispersion
parameter ϕ using moments, as suggested by McCullagh and Nelder (1989). Namely,
from V ar(Yi) = ϕb′′(θi) and denoting by v(µi) = b′′(θi) the so-called variance function, as
well as using the implicit dependence of b′′(θi) on µi since b

′(θi) = µi for i = 1, . . . , n we
can derive a consistent estimator for the dispersion parameter in gamma regression by

ϕ̂ =
1

n− p

n∑
i=1

(Yi − µ̂i)
2

v(µ̂i)
=

1

n− p

n∑
i=1

(Yi − µ̂i

µ̂i

)2

, (2.4.12)

where µ̂i = g−1(xxx⊤i β̂ββ), i = 1, . . . , n.

Measuring the goodness of fit

The main goodness of fit we will be concerned with is that formed from the logarithm
of a ratio of likelihoods, called the deviance. For the theory in this section we consult
McCullagh and Nelder (1989). Given n observations we can fit a model to them containing
up to n parameters. The full model has n parameters, one per observation, thus the µi, i =
1, . . . , n derived from it match the data exactly. Although this model is uninformative
since it only repeats the data, it gives us a baseline for a goodness of a fit measure for a
model with p parameters. Let l(µ̂µµ, ϕ;yyy) be the log likelihood maximized over βββ with length
p for a fixed value of the dispersion parameter ϕ. The maximum log likelihood achievable
in a full model with n parameters is l(yyy, ϕ;yyy). Then we define the scaled deviance as

D(µ̂µµ,yyy;ϕ) := −2
[
l(µ̂µµ, ϕ;yyy)− l(yyy, ϕ;yyy)

]
(2.4.13)
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and the deviance as
D(µ̂µµ,yyy) := ϕD(µ̂µµ,yyy;ϕ). (2.4.14)

In particular, the deviance of a gamma regression model is given by

D(µ̂µµ,yyy) = −2
n∑

i=1

[
ln
( yi
µ̂i

)
− yi − µ̂i

µ̂i

]
. (2.4.15)

Criteria for model selection

Following De Jong and Heller (2008), we define two criteria for model selection for gener-
alized linear model. To assess a model fit, we can use the residual deviance test. We can
use the deviance statistic to test the null hypothesis H0 that the model assumptions of
the specified generalized linear model are satisfied, i.e. ηi = xxx⊤i β̂i = g(µi), i = 1, . . . , n for
a specified link function g. The alternative hypothesis is that the specified GLM is not a
good fit for the data. The asymptotic distribution of the deviance is

D(µ̂µµ,YYY )

ϕ

D→ χ2
n−p as n→ ∞ (2.4.16)

when YYY = (Y1, . . . , Yn)
⊤ follows the generalized linear model with deviance D(µ̂µµ,YYY ) and

dispersion parameter ϕ. Then we obtain

Reject H0 at level α ⇔ D(µ̂µµ,YYY )

ϕ̂
> χ2

n−p,1−α

where ϕ̂ is an estimate of ϕ and χ2
n−p,1−α is the (1 − α)-quantile of χ2 distribution with

n− p degrees of freedom.
To compare two nested models i.e. to test the hypothesis H0 : βββ2 = 000 against H1 : βββ2 ̸= 000
where βββ2 is a subvector of βββ we can use the partial deviance test. This corresponds to
comparing two models, namely, the reduced one defined by βββ2 = 000 and the full model.
We will use the subscripts F and R to denote the estimates of the full and reduced model
respectively. Then we obtain

Reject H0 at level α ⇔ D(µ̂µµR,yyy)−D(µ̂µµF ,yyy)

ϕ̂F
> χ2

p2,1−α

where p2 is the length of βββ2 and χ2
p2,1−α is the (1− α)-quantile of χ2 distribution with p2

degrees of freedom.
Additionally, as a model criteria we can use AIC and BIC defined with Equations (2.3.16)
and (2.3.17) where we can plug in the maximized log likelihood of the gamma regression
model and q = p+ 1.

2.5 Copulas

In this section we introduce copulas, a popular model class for analysing multivariate data
(Czado (2019)). Their popularity rose due to the separation of margins and dependence by
copula approach, tail asymmetries and separate multivariate component modelling. We
want to characterize the dependence between random variables with common marginal
distribution given by the uniform distribution. Thus, copulas are useful tool to separate
the dependence between the components from the marginal distributions. Referring to
Czado (2019), we build a foundation for the theory of copulas.
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Concept of Copulas

Definition 2.5.1 (Probability integral transform (PIT))
If X ∼ F is a continuous random variable and x is an observed value of X, then the
transformation u := F (x) is called the probability integral transform (PIT) at x.

Moreover, if X ∼ F then U := F (X) is uniformly distributed, since

P (U ≤ u) = P (F (X) ≤ u) = P (X ≤ F−1(u)) = F (F−1(u)) = u

holds for every u ∈ [0, 1]. Therefore, we can apply the PIT on our vector of interest
XXX = (X1, · · · , Xd)

⊤ and obtain uniformly distributed data UUU = (U1, . . . , Ud)
⊤, where

Ui = Fi(Xi) for i = 1, ..., d. (2.5.1)

UUU = (U1, · · · , Ud)
⊤ is called u-scale or copula scale data.

Definition 2.5.2 (Copula)
A d-dimensional copula C is a multivariate distribution function on the d-dimensional
hypercube [0, 1]d with uniformly distributed marginals.

Definition 2.5.3 (Copula density)
The corresponding copula density for an absolutely continuous copula is denoted by c and
can be obtained by partial differentiation, i.e.

c(u1, . . . , ud) :=
∂d

∂u1 . . . ∂ud
C(u1, . . . , ud) (2.5.2)

for all uuu in [0, 1]d.

One of the fundamental theorems is proven by Sklar (1959). It allows representation of
multivariate distributions in terms of their marginal distributions and a corresponding
copula.

Theorem 2.5.1 (Sklar’s Theorem)
Let XXX be a d-dimensional random vector with joint distribution function F and marginal
distribution functions Fi, i = 1, . . . , d, then the joint distribution function can be expressed
as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)), (2.5.3)

with associated density or probability mass function

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) . . . fd(xd) (2.5.4)

for some d-dimensional copula C with copula density c. For absolutely continuous distri-
butions, the copula C is unique.
The inverse also holds: the copula corresponding to a multivariate distribution function
F with marginal distribution functions Fi, i = 1, . . . , d can be expressed as

C(u1, . . . , ud) = F (F−1
1 (u1), . . . , F

−1
d (ud)) (2.5.5)

and its copula density or probability mass function is determined by

c(u1, . . . , ud) =
f(F−1

1 (u1), . . . , F
−1
d (ud))

f1(F
−1
1 (u1)) . . . fd(F

−1
d (ud))

. (2.5.6)
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Proof. The proof can be found in the book by Nelsen (2006) in Section 2.3.

Lemma 2.5.1 (Conditional densities and distribution functions of bivariate distributions
in terms of their copula)
The conditional density and distribution function can be rewritten as

f1|2(x1|x2) = c12(F1(x1), F2(x2))f2(x2) (2.5.7)

F1|2(x1|x2) =
∂

∂u2
C12(F1(x1), u2)|u2=F2(x2)

=:
∂

∂F2(x2)
C12(F1(x1), F2(x2)).

(2.5.8)

Proof. The proof can be found in the book by Czado (2019) on page 20.

Remark 2.5.1 Lemma 2.5.1 can also be applied to the bivariate copula distribution C12.
In particular, it follows that

C1|2(u1|u2) =
∂

∂u2
C12(u1, u2), ∀u1 ∈ [0, 1]. (2.5.9)

The relationship between F1|2 and C1|2 using Lemma 2.5.1 is therefore given by

F1|2(x1|x2) =
∂

∂u2
C12(F1(x1), u2)|u2=F2(x2) = C1|2(F1(x1)|F2(x2)). (2.5.10)

Applying (2.5.10) yields a relationship among the inverse function of the conditional dis-
tribution functions:

F−1
1|2 (u1|x2) = F−1

1 (C−1
1|2(u1|F2(x2)). (2.5.11)

The conditional distribution function C1|2 associated with a copula is denoted as an h-
function.

Definition 2.5.4 (h-functions of bivariate copulas)
The h functions corresponding to a bivariate copula C12 are defined for all (u1, u2) ∈ [0, 1]2

as

h1|2(u1|u2) :=
∂

∂u2
C12(u1, u2) (2.5.12)

h2|1(u2|u1) :=
∂

∂u1
C12(u1, u2). (2.5.13)

Dependence measures

To capture dependence between two random variables we introduce the measure Kendall’s
tau and the notion of tail dependence (Czado (2019)). The advantage of the Kendall’s tau
measure is that it is rank-based and therefore invariant with monotone transformations of
the marginals. Additionally, it can be expressed solely in terms of the associated copula,
so its value does not depend on the marginal distributions.
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Definition 2.5.5 (Kendall’s tau)
The Kendall’s τ between the continuous random variables X1 and X2 is defined as

τ(X1, X2) = P ((X11 −X21)(X12 −X22) > 0)−P ((X11 −X21)(X12 −X22) < 0), (2.5.14)

where (X11, X12) and (X21, X22) are independent and identically distributed copies of
(X1, X2).

For the estimation of Kendall’s τ we define concordance and discordance.

Definition 2.5.6 (Concordant discordant, and extra pairs)
The pair (xxxi,xxxj) where xxxi = (xi1, xi2) and xxxj = (xj1, xj2) is called

• concordant if the ordering in xxx1 := (xi1, xj1) is the same as in xxx2 := (xi2, xj2) i.e.,
xi1 < xj1 and xi2 < xj2 holds or xi1 > xj1 and xi2 > xj2 holds,

• discordant if the ordering in x1 is opposite to the ordering of x2, i.e. xi1 < xj1 and
xi2 > xj2 holds or xi1 > xj1 and xi2 < xj2 holds,

• extra x1 pair if xi1 = xj1 holds,

• extra x2 pair if xi2 = xj2 holds.

Definition 2.5.7 (Estimate of Kendall’s τ)
Let Nc be the number of the concordant pairs, Nd be the number of the discordant pairs,
N1 be the number of extra x1 pairs, and N1 be the number of extra x2 pairs of random
sample xi1, xi2, i = 1, . . . , n from the joint distribution of (X1, X2). Then an estimate of
Kendall’s τ is given by

τ̂ ⋆n :=
Nc −Nd√

Nc +Nd +N1 ×
√
Nc +Nd +N2

. (2.5.15)

Theorem 2.5.2 (Kendall’s τ expressed in terms of the copula)
Let X1 and X2 be two continuous random variables, then Kendall’s τ can be expressed as

τ = 4

∫
[0,1]2

C(u1, u2)dC(u1, u2)− 1. (2.5.16)

Proof. The proof can be found in the book by Czado (2019) on page 32.
Finally, we define tail dependence coefficients, which are helpful for analysis of joint
extreme events.

Definition 2.5.8 (Upper and lower tail dependence coefficients)
The upper tail dependence coefficient of a bivariate distribution with copula C is defined
as

λupper = lim
t→1−

P (X2 > F−1
2 (t)|X1 > F−1

1 (t))

= lim
t→1−

1− 2t+ C(t, t)

1− t
,

(2.5.17)

while the lower tail dependence coefficient is

λlower = lim
t→0+

P (X2 ≤ F−1
2 (t)|X1 ≤ F−1

1 (t))

= lim
t→0+

C(t, t)

t
.

(2.5.18)
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Bivariate copulas

After defining copulas, we introduce different construction approaches of bivariate copulas.
First we define parametric copulas using Czado (2019) and Joe (2014). One way of
constructing parametric copulas is applying the elliptical distributions to each margin,
which yields the class of elliptical copulas (Czado (2019)). Another class of parametric
copulas is Archimedian copulas (Czado (2019)), which is obtained with help of generator
functions. Additionally, we define the BB copulas (Joe (2014)), which depend on two
parameters.

Example 2.5.1 (Elliptical copulas)

• Bivariate Gaussian copula
We denote by Φ(·) the distribution function of a univariate standard normal distri-
bution with mean 0 and variance 1, and by Φ2(·, ·; ρ) the distribution function of a
bivariate standard normal distribution with zero means, unit variances and correla-
tion ρ. By applying Equation (2.5.5), the inverse statement of Sklar’s Theorem, we
obtain the bivariate Gaussian copula:

C(u1, u2; ρ) = Φ2(Φ
−1(u1),Φ

−1(u2); ρ). (2.5.19)

• Bivariate Student t copula
We denote by Tυ(·) the distribution function of a univariate Student’s t distribution
with mean 0 and υ > 0 degrees of freedom, and by T2,υ(·, ·; ρ) the distribution function
of a bivariate Student’s t distribution with zero means, υ > 0 degrees of freedom and
correlation ρ. Again, by applying Equation (2.5.5), the inverse statement of Sklar’s
Theorem, we obtain the bivariate Student t copula:

C(u1, u2; υ, ρ) = T2,υ(T
−1
υ (u1), T

−1
υ (u2); ρ). (2.5.20)

Example 2.5.2 (Bivariate Archimedean copulas with a single parameter)

• Clayton copula
C(u1, u2) = (u−δ

1 + u−δ
2 − 1)−

1
δ , (2.5.21)

where 0 < δ < ∞ control the degree of dependence. Full dependence is obtained
when δ → ∞. Independence corresponds to δ → 0.

• Gumbel copula

C(u1, u2) = exp[−{(− lnu1)
δ + (− lnu2)

δ}
1
δ ], (2.5.22)

where δ ≥ 1 is the parameter of dependence. For δ → ∞ we have full dependence,
while δ = 1 corresponds to independence.

• Frank copula

C(u1, u2) = −1

δ
ln

(
1

1− e−δ
[(1− e−δ)− (1− e−δu1)(1− e−δu2)]

)
, (2.5.23)

where the parameter δ ∈ [−∞,∞] \ {0}. When δ → 0+ we obtain the independence
copula.
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• Joe copula

C(u1, u2) = 1−
(
(1− u1)

δ + (1− u2)
δ − (1− u1)

δ(1− u2)
δ
) 1

δ
, (2.5.24)

where δ ≥ 1. The independence copula corresponds to δ = 1.

Example 2.5.3 (Independence copula)
From the definitions of different Archemedean bivariate copulas, we obtain the indepen-
dence copula:

C(u1, u2) = u1u2. (2.5.25)

Example 2.5.4 (Bivariate BB copulas)

• BB1 copula

C(u, v; θ, δ) =
{
1 + [(u−θ − 1)δ + (v−θ − 1)δ]

1
δ

}− 1
θ , (2.5.26)

where θ > 0 and δ ≥ 1. For θ → 0+ and δ → 1+ the independence copula arises.

• BB6 copula

C(u, v; θ, δ) = 1−
(
1− exp

{
− [(− ln(1− ūθ))δ + (− ln(1− v̄θ))δ]

1
δ

}) 1
θ
, (2.5.27)

where ū = 1− u, v̄ = 1− v, θ ≥ 1 and δ ≥ 1.

• BB7 copula

C(u, v; θ, δ) = 1−
(
1− [(1− (1− u)θ)−δ + (1− (1− v)θ)−δ − 1]−

1
δ

) 1
θ
, (2.5.28)

where θ ≥ 1 and δ > 0. The independence copula corresponds to θ = 1 and δ = 0.

• BB8 copula

C(u, v; θ, δ) = δ−1
(
1− {1− η−1[1− (1− δu)θ][1− (1− δv)θ]}

1
θ

)
, (2.5.29)

where η = 1− (1− δ)θ, θ ≥ 1 and 0 < δ ≤ 1.

Example 2.5.5 (Rotated copulas)
In order to extend the range of dependence, using Czado (2019) we introduce clockwise
rotations of the copula density c(·, ·) by

• 90◦ : c90(u1, u2) := c(1− u1, u2),

• 180◦ : c180(u1, u2) := c(1− u1, 1− u2), and

• 270◦ : c270(u1, u2) := c(u1, 1− u2).

Next, we introduce a nonparametric construction approach of bivariate copulas (Nagler
(2014)).
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Example 2.5.6 (Local likelihood transformation estimator)
Let Ui, Vi, i = 1, . . . , n be pseudo data. We define WWW i = (Ui, Vi) and △kn(x, y) as the
euclidean distance between (x, y) and its knth closest observation amongst all(
Φ−1(WWW i)

)
i=1,...,n

:=
(
Φ−1(Ui),Φ

−1(Vi)
)
i=1,...,n

. For all (u, v) ∈ [0, 1]2, the local likelihood

transformation estimator of a copula density c(u, v) with nearest-neighbor factor △kn and
bandwidth matrix B is given by

ĉ(TLL)(u, v) =
exp

{
â1
(
Φ−1(u),Φ−1(v)

)}
ϕ(Φ−1(u))ϕ(Φ−1(v))

, (2.5.30)

where â1
(
Φ−1(u),Φ−1(v)

)
can be found via

âaa(x, y) =

argmax
aaa∈R6

{ n∑
i=1

K△kn (x,y)B

(
(x, y)− Φ−1(WWW i)

)
Paaa,2

(
(x, y)− Φ−1(WWW i)

)
− n

∫
R2

K△kn (x,y)B

(
(x, y)− Φ−1(zzz)

)
exp

{
Paaa,2

(
(x, y)− Φ−1(zzz)

)}
dzzz

} (2.5.31)

with

Paaa(x,y),2(x
′, y′) =a1(x, y) + a2(x, y)(x− x′) + a3(y − y′)

+ a4(x− x′)2 + a5(x− x′)(y − y′) + a6(y − y′)2
(2.5.32)

and KB(xxx) := K
((
B−1(xxx)

)
1

)
K
((
B−1(xxx)

)
2

)
, where K is called kernel function and it

denotes some symmetric probability density.

The most commonly used kernel function is the density of the standard normal distribu-
tion, which is called Gaussian kernel. For more details we refer to Nagler (2014).

Exploratory Visualization

Copula visualisation is useful for analysing the bivarate parametric copulas we introduced
so far. One useful tool is a scatterplot. However, as the support of the copula is the unit
square, the copula densities for the different classes discussed before are not easy to
interpret. Solution to this problem is normalized bivariate copula contour plot (Czado
(2019)), which is the contour plot of a bivariate density obtained from a copula density
transformed to achieve standard normal margins. We look at the transformed density

g(z1, z2) = c(Φ(z1),Φ(z2))ϕ(z1)ϕ(z2) (2.5.33)

of (Z1, Z2), where Zi := Φ−1(Ui) = Φ−1(Fi(Xi)) for i = 1, 2. Here, Φ(·) and ϕ(·) are the
distribution and density function of a N (0, 1) variable.

Bivariate parametric copula estimation

Now we proceed with estimation of bivariate parametric copulas and their parameter.
Let us have bivariate pseudo-copula data uuu = {(ui1, ui2), i = 1, . . . , n}, which we will
use for estimation of the copula parameter of the bivariate copula family. For parameter
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estimation in bivariate copula models we define the maximum likelihood method (Czado
(2019)).

Then the (pseudo) maximum likelihood estimator θ̂θθML maximizes the likelihood, which
is given by

ℓ(θθθ;uuu) :=
n∏

i=1

c(ui1, ui2;θθθ), (2.5.34)

where c(·, ·;θθθ) is the respective copula density of a chosen bivariate copula family.

2.6 Linear quantile regression

Before introducing D-vine regression model, we would like to define a simpler quantile
regression model, based on the work of Koenker (2005). The linear quantile regression
model was first introduced by Koenker and Bassett (1978) as an extention of the ordinary
least square regression method, as a class of more flexible statistical models which provide
more complete picture of the stochastic relationships among the random variables. As
a regression method which is more robust against outliers of the response variable, it is
nowadays widely used in almost every discipline.
For the definition of quantile regression, we first introduce the concept of quantiles. Given
an univariate ramdon variable X, characterized by its distribution function

F (x) = P (X ≤ x),

we define the αth quantile of X as the ”inverse” function of F,

F−1(α) = inf{x : F (x) ≥ α} := qα(x), 0 < α < 1. (2.6.1)

Namely, quantiles arise from a simple optimization problem that is fundamental to quan-
tile regression. Assume we want to solve a simple decision theoretic problem: a point
estimate for a random variable X with a distribution function F . We define the loss
function as a piecewise linear function,

ρα(x) = x(α− I(x < 0)), α ∈ (0, 1) (2.6.2)

where I(·) denotes the indicator function. Our aim is to find x̂ which minimizes the
expected loss function

argmin
x̂

E[ρα(X − x̂)], (2.6.3)

which can be written down as

E[ρα(X − x̂)] = (α− 1)

∫ x̂

−∞
(x− x̂)dF (x) + α

∫ ∞

x̂

(x− x̂)dF (x). (2.6.4)

By differentiating Equation (2.6.4) with respect to x̂ we obtain

0 = (1− α)

∫ x̂

−∞
dF (x)− α

∫ ∞

x̂

dF (x) = F (x̂)− α. (2.6.5)

F is monotone function, therefore any element of {x : F (x) = α} minimizes the expected
loss function. If the solution is unique, then x̂ = F−1(α), otherwise we obtain an interval
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of αth quantiles, from which the smallest element is chosen, which leads to the definition
of our target function qα(x) = inf{x : F (x) ≥ α}.
For the purpose of quantile regression we first introduce the conditional distribution func-
tion, as defined by Bernand and Czado (2015).

Definition 2.6.1 (Conditional distribution function for a continuous random variable)
Given a continuous response variable Y and predictor variables X1, . . . , Xk, the conditional
quantile function for α ∈ (0, 1) is defined as

qα(x1, . . . , xk) : = F−1
Y |X1,...,Xk

(α|X1 = x1, . . . , Xk = xk)

= inf{y ∈ R|FY |X1,...,Xk
(y) ≥ α}.

(2.6.6)

Now we proceed with definition of the first quantile regression model introduced in
Koenker and Bassett (1978), where the conditional quantiles depend linearly on the pre-
dictors.

Definition 2.6.2 (Linear quantile regression model)
Let Y be a continuous response variable depending on set of predictors X1, . . . , Xk, k ≥ 1.
For every α the conditional quantiles of Y given X1 = x1, . . . , Xk = xk are given as

QY |X1,...,Xk
(α|x1, . . . , xk) := β0(α) +

k∑
j=1

βj(α)xj. (2.6.7)

As proposed in Koenker and Bassett (1978), given n observations of the response variable

Y and the predictors X1, . . . , Xk, we estimate the coefficients β̂ββ(α) = (β̂0(α), β̂1(α), . . . ,
β̂k(α)) ∈ Rk+1 by solving the minimization problem

min
βββ(α)∈Rk+1

n∑
i=1

ρα(yi − xxx⊤i βββ(α)) (2.6.8)

where ρα is the loss function defined with Equation (2.6.2) and xxx⊤i = (1, xi1, . . . , xik) is the
ith observation of the predictors X1, . . . , Xk, including the intercept. This optimization
problem might be solved by a linear programming technique such as the simplex method,
and its solution can be found in Section 6.2 of Koenker (2005).
Linear quantile regression has however few drawbacks. One of them, as pointed out by
Koenker (2005), is quantile crossing, where the regression lines of different quantiles lev-
els may cross due to different slopes. This may be problematic when we use predicted
quantiles as upper and lower bounds of prediction intervals. Namely, for central 90% pre-
diction interval we can use the predicted conditional 0.05- and 0.95-quantiles. If these two
quantiles cross, i.e. q̂0.05 > q̂0.95, we do not obtain reasonable prediction interval. Another
drawback, which is pointed out by Czado and Bernard (2015), is that the assumption of
linearity of the conditional quantiles is strong and almost never fulfilled. Additionally,
this regression method is prone to typical issues like multicollinearity, necessary variable
transformations and interactions. D-vine quantile regression takes care of these issues and
allows for more flexible models, as presented in the following section.
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2.7 D-vine quantile regression

In this section we want to introduce a method of modelling n-dimensional data using
only bivariate building blocks (Kraus and Czado (2017)). Such a tool is called pair copula
construction (PCC), which allows us to decompose multidimensional density to a bivariate
copulas and conditional distribution functions. D-vine copulas allow for representation
of the data through a graph theoretical model given by a sequence of trees. Moreover,
D-vine quantile regression overcomes issues like collinearity, need for transformation and
interaction of variables (Kraus and Czado (2017)).

Illustration of PCC in three dimensions

Before defining regular vines and D-vine based quantile regression, we want to present
an example of pair copula construction of three-dimensional joint density (Czado (2019)).
Let X1,X2 and X3 be random variables. Using recursion we can rewrite their joint density
as

f123(x1, x2, x3) = f3|12(x3|x1, x2)f2|1(x2|x1)f1(x1). (2.7.1)

Now we continue with decomposing each part separately. For f3|12(x3|x1, x2) we consider
the bivariate conditional density f13|2(x1, x3|x2), which by Equation (2.5.4) in Sklar’s
Theorem can be written as:

f13|2(x1, x3|x2) = c13;2(F1|2(x1|x2), F3|2(x3|x2);x2)f1|2(x1|x2)f3|2(x3|x2), (2.7.2)

where c13;2(·, ·;x2) denotes the copula density associated with the conditional distribution
of (X1, X3) given X2 = x2. Now, applying Lemma 2.5.1 to Equation (2.7.2) we get:

f3|12(x3|x1, x2) =
f123(x1, x2, x3)

f12(x1, x2)
=
f13|2(x1, x3|x2)f2(x2)
f1|2(x1|x2)f2(x2)

=
c13;2(F1|2(x1|x2), F3|2(x3|x2);x2)f1|2(x1|x2)f3|2(x3|x2)

f1|2(x1|x2)
= c13;2(F1|2(x1|x2), F3|2(x3|x2);x2)f3|2(x3|x2)
= c13;2(F1|2(x1|x2), F3|2(x3|x2);x2)c23(F2(x2), F3(x3))f3(x3)

(2.7.3)

Again, directly applying Lemma 2.5.1 to f2|1(x2|x1) we can rewrite Equation (2.7.1) in a
form of pair copula decomposition:

f123(x1, x2, x3) = c13;2(F1|2(x1|x2), F3|2(x3|x2);x2)c23(F2(x2), F3(x3))

× c12(F1(x1), F2(x2))f3(x3)f2(x2)f1(x1).
(2.7.4)

Important note is that this decomposition is not unique, since

f123(x1, x2, x3) = f2|13(x2|x1, x3)f1|3(x1|x3)f3(x3)
= c12;3(F1|3(x1|x3), F2|3(x2|x3);x3)c13(F1(x1), F3(x3))

× c23(F2(x2), F3(x3))f1(x1)f2(x2)f3(x3)

(2.7.5)

and

f123(x1, x2, x3) = f1|23(x1|x2, x3)f3|2(x3|x2)f2(x2)
= c23;1(F2|1(x2|x1), F3|1(x3|x1);x1)c13(F1(x1), F3(x3))

× c12(F1(x1), F2(x2))f1(x1)f2(x2)f3(x3).

(2.7.6)
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In Equation (2.7.4) the copula density c13;2(·, ·;x2) depends on the value x2. It is common
one to make the assumption that this dependence can be ignored. In such a case we talk
about making the simplifying assumption (Czado (2019)). In this thesis, we assume that
the simplifying assumption holds. In three dimensions, this means that for any x2 ∈ R,

c13;2(u1u2;x2) = c13;2(u1u2), for u1, u2 ∈ [0, 1] (2.7.7)

holds. However, we are often interested in considering the dependence structure charac-
terized by the copula on its own. Therefore, a three-dimensional parametric copula family
with parameter vector θθθ = (θ12, θ23, θ13;2) can be defined as

c123(u1, u2, u3;θθθ) := c13;2(C1|2(u1|u2), C3|2(u3|u2); θ13;2)c23(u2, u3; θ23)
× c12(u1, u2; θ12),

(2.7.8)

where C1|2(·|u2) and C3|2(·|u2) are the conditional distribution functions of U1 given U2 =
u2 and U3 given U2 = u2 respectively, as Equation (2.5.9) shows.
Using the density expression from Sklar’s Theorem (Theorem 2.5.1) gives the copula
density of (U1, U3) given U2 = u2:

c13;2(u1u3;u2) =
c123(C

−1
1|2(u1|u2), u2, C

−1
3|2(u3|u2))

c12(C
−1
1|2(u1|u2), u2)c23(u2, C

−1
3|2(u3|u2))

, (2.7.9)

where the inverse conditional distribution functions as shown with Equation (2.5.11) are
given by

C−1
1|2(u1|u2) = F−1

1 (F−1
1|2 (u1|x2)) (2.7.10)

C−1
3|2(u3|u2) = F−1

3 (F−1
3|2 (u3|x2)) (2.7.11)

and u2 = F2(x2).

Discrete PCCs

We also define PCCs for discrete ordinal margins Y1, . . . , Ym, as introduced in Panagiotelis,
Czado and Joe (2012). Similarly to Equation (2.7.1), we can decompose the probability
mass function as

P (Y1 = y1, . . . , Ym = ym) = P (Y1 = y1|Y2 = y2, . . . , Ym = ym)

× P (Y2 = y2|Y3 = y3, . . . , Ym = ym) . . . P (Ym = ym).
(2.7.12)

The terms on the right-hand side of Equation (2.7.12) have the form P (Yj = yj|VVV = vvv),
where yj is a scalar element of yyy and vvv is a subset of yyy which does not contain yj. We
choose a single element of VVV , Vh, and let VVV \h be its complement. Then

P (Yj = yj|VVV = vvv) =
P (Yj = yj, Vh = vh|VVV \h = vvv\h)

P (Vh = vh|VVV \h = vvv\h)
(2.7.13)

=

∑
ij=0,1

∑
ih=0,1(−1)ij+ihP (Yj ≤ yj − ij, Vh ≤ vh − ih|VVV \h = vvv\h)

P (Vh = vh|VVV \h = vvv\h)

=

∑
ij=0,1

∑
ih=0,1(−1)ij+ihCYj ,Vh|VVV \h

(
FYj |VVV \h(yj − ij|vvv\h), FVh|VVV \h(vh − ih|vvv\h)

)
P (Vh = vh|VVV \h = vvv\h)

,
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where FA|B(a|b) is notation for the distribution function P (A ≤ a|B = b). Equation
(2.7.13) can be recursively applied to Equation (2.7.12) which results in decomposition
of the multivariate probability mass function into bivariate copula building blocks. The
arguments of the copula functions in Equation (2.7.13) have the form

FYj |Vh,VVV \h(yj|vh, vvv\h) =
CYj ,Vh|VVV \h

(
FYj |VVV \h(yj|vvv\h), FVh|VVV \h(vh|vvv\h)

)
P (Vh = vh|VVV \h = vvv\h)

−
CYj ,Vh|VVV \h

(
FYj |VVV \h(yj|vvv\h), FVh|VVV \h(vh − 1|vvv\h)

)
P (Vh = vh|VVV \h = vvv\h)

.

(2.7.14)

Now we want to investigate Sklar’s theorem in a discrete case. For VVV \h = vvv\h, Sklar’s
theorem defines a unique copula with a domain given by the Cartesian product of the
ranges of the cdf’s of Yj|VVV \h = vvv\h and the range of the cdf’s of Vh|VVV \h = vvv\h. Given that
a copula denoted by CYj ,Vh|VVV \h exists over all possible values of VVV \h = vvv\h, it holds that
the copula will be unique over the union of these domains. Let a(1) < a(2) < . . . < a(κ1)

be the unique points corresponding to the ranges of FYj |VVV \h in increasing order, and let
b(1) < b(2) < . . . < b(κ2) be the ranges of FVh|VVV \h . Let a(0) = b(0) = 0 and a(κ1+1) =
b(κ2+1) = 1. We denote ayj |vvv\h := P (Yj ≤ yj|VVV \h = vvv\h), bvh|vvv\h := P (Vh ≤ vh|VVV \h = vvv\h)
and pyj ,vh|vvv\h := P (Yj ≤ yj, Vh ≤ vh|VVV \h = vvv\h). Then the constraints

CYj ,Vh|VVV \h(ayj |vvv\h , bvh|vvv\h) = pyj ,vh|vvv\h , (2.7.15)

CYj ,Vh|VVV \h(ayj |vvv\h , 1) = ayj |vvv\h , CYj ,Vh|VVV \h(1, bvh|vvv\h) = bvh|vvv\h , (2.7.16)

must be satisfied for all yj, vh and vvv\h, which leads to 3κ constraints, where κ is the
product of the cardinalities of the sets of possible values for Yj, Vh and VVV \h. Therefore, a
bivariate copula C = CYj ,Vh|VVV \h , constant over vvv\h exists if a solution to these constraints
exists, such that all (κ1 + 1)(κ2 + 1) unknowns Rjk := C(a(j), b(k)) + C(a(j−1), b(k)) −
C(a(j), b(k−1)) + C(a(j−1), b(k−1)) are nonnegative.
More details regarding discrete PCCs can be found in Panagiotelis, Czado and Joe (2012).

D-vine copulas

The theory for D-vine copulas can be found in Chapters 4 and 5 in Czado (2019). Before
defining D-vine tree sequence, we first present a necessary background from graph theory.

Definition 2.7.1 (Graph, node, edge, degree, path, connected graph, cycle)

• A graph is a pair G = (N,E) of sets such that E ⊆ {{x, y} : x, y ∈ N}.

• The elements of E are called edges of the graph G, whereas the elements of N are
called nodes.

• The number of neighbours of a node υ ∈ N is the degree of υ denoted by d(υ).

• A path is a graph P = (N,E) with node set N = {υ0, υ1, . . . , υk} and edges E =
{{υ0, υ1}, {υ1, υ2}, . . . , {υk−1, υk}}.
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• A graph G is called connected if any two of its nodes are linked by a path in G.

• A cycle is a path with υ0 = υk.

We define the term tree through the following theorem:

Theorem 2.7.1 (Characterization of trees)
The following statements are equivalent for a graph T = (N,E):

1. T is a tree.

2. Any two nodes of T are connected by a unique path in T.

3. T is minimally connected, i.e. T is connected but T − e is disconnected for every
edge e ∈ E.

4. T is maximally acyclic i.e. T contains no cycle but T + {x, y} does for any two
nodes x, y ∈ N that are not connected by an edge in T.

Now, we can finally define regular (R-) vine tree sequence.

Definition 2.7.2 (Regular (R-) vine tree sequence)
The set of trees V = (T1, . . . , Td−1) is a regular vine tree sequence on d elements if

1. Each tree Tj = (Nj, Ej) is connected.

2. T1 is a tree with node set N1 = {1, . . . , d} and edge set E1.

3. For j ≤ 2, Tj is a tree with node set Nj = Ej−1 and edge set Ej.

4. For j = 2, . . . , d− 1 and {a, b} ∈ Ej it must hold that |a ∩ b| = 1.

Remark 2.7.1 (Proximity condition) The property 4. is called proximity condition. It
ensures that if there is an edge e connecting a and b in tree Tj, j ≤ 2, then a and b (which
are edges in Tj−1) must share a common node in Tj−1.

Definition 2.7.3 (Complete union and conditioned sets)
For any edge e ∈ Ei we define the set called complete union:

Ae := {j ∈ N1|∃e1 ∈ E1, . . . , ei−1 ∈ Ei−1 such that j ∈ e1 ∈ . . . ei−1 ∈ e}. (2.7.17)

The conditioning set De of an edge e = {a, b} is defined by

De := Aa ∩ Ab (2.7.18)

and the conditioned sets Ce,a and Ce,b are given by

Ce,a := Aa \De

Ce,b := Ab \De

Ce := Ce,a ∪ Ce,b.
(2.7.19)

We often abbreviate each edge e = (Ce,a, Ce,b;De) in the vine tree sequence by

e = (ea, eb;De). (2.7.20)
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In the following part we add stochastic component to the regular (R-) vine tree sequence.

Definition 2.7.4 (Regular vine distribution)
The joint distribution F for the d dimensional random vector XXX = (X1, . . . , Xd) has a
regular vine distribution if we can specify a triplet (F ,V ,B) such that:

1. Marginal distributions: F = (F1, . . . , Fd) is a vector of continuous invertible
marginal distribution functions, representing the marginal distribution functions of
the random variable Xi, i=1, . . . , d.

2. Regular vine tree sequence: V is an R-vine tree sequence on d elements.

3. Bivariate copulas: The set B = {Ce|e ∈ Ei; i = 1, . . . , d − 1}, where Ce is a
symmetric bivariate copula with density. Here Ei is the edge set of tree Ti in the
R-vine tree sequence V.

4. Relationship between R-vine tree sequence V and the set B of bivariate
copulas: For each e ∈ Ei, i=1,. . . , d-1, e = {a, b}, Ce is the copula associated
with the conditional distribution of XCe,a and XCe,b

given XXXDe = xxxDe. Further
Ce(·, ·) does not depend on the specific value of xxxDe, which is also called simplifying
assumption.

Definition 2.7.5 (Pair copula and copula density associated with edge e)
We will denote the copula Ce corresponding to the edge e by CCe,aCe,b;De and the corre-
sponding density by cCe,aCe,b;De respectively. This copula is also called a pair copula.

In this thesis we will focus on D-vine tree sequence, which we define next.

Definition 2.7.6 (D-vine tree sequence)
A regular vine tree sequence V = (T1, . . . , Td−1) is called D-vine tree sequence if for each
node n ∈ Ni we have |{e ∈ Ei|n ∈ e}| ≤ 2.

Remark 2.7.2 For a D-vine tree sequence the proximity condition of Definition 2.7.2
induces that once tree T1 is fixed all other trees T2 to Td are determined.

Given a set of random variables (X1, . . . , Xd), distinct indices i,j and D := {i1, . . . , ik}
with i < j and i1 < . . . < ik in the following theorem we use the abbreviation

ci,j;D := ci,j;D(Fi|D(xi|xxxD), Fj|D(xj|xxxD);xxxD). (2.7.21)

Theorem 2.7.2 (Drawable vine (D-vine) density)
The joint density f1,...,d of continuously distributed random vector XXX = (X1, . . . , Xd) can
be decomposed as

f1,...,d(x1, . . . , xd) =

[ d−1∏
j=1

d−j∏
i=1

ci,(i+j);(i+1)...(i+j−1)

]
·
[ d∏

k=1

fk(xk)

]
, (2.7.22)

where we used the abbreviation from Equation (2.7.21). The distribution associated with
this density decomposition is called drawable vine (D-vine).
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The distribution associated with the density decomposition (2.7.22), if the marginals are
uniformly distributed, is called D-vine copula.

Definition 2.7.7 (Simplifying assumption for D-vines)
If it holds that

ci,j;D(Fi|D(xi|xxxD), Fj|D(xj|xxxD);xxxD) = ci,j;D(Fi|D(xi|xxxD), Fj|D(xj|xxxD)) (2.7.23)

for all xxxD, then the corresponding D-vine distribution is called simpified.

Next we present an Example of simplified five dimensional D-vine density given by Kraus
and Czado (2017).

T1 1 2 3 4 5
1,2 2,3 3,4 4,5

T2 1,2 2,3 3,4 4,5
1,3;2 2,4;3 3,5;4

T3 1,3;2 2,4;3 3,5;4
1,4;2,3 2,5;3,4

T4 1,4;2,3 2,5;3,4
1,5;2,3,4

Figure 1: D-vine tree sequence in five dimensions.

Example 2.7.1 (Simplified five dimensional D-vine density)
As illustrated in Figure 1 and stated in Theorem 2.7.2, for d=5 the simplified D-vine
density has the following form

f12345(x1, x2, x3, x4, x5) = c12(F1(x1), F2(x2))c23(F2(x2), F3(x3))c34(F3(x3), F4(x4))

× c45(F4(x4), F5(x5))c13;2(F1|2(x1|x2), F3|2(x3|x2))
× c24;3(F2|3(x2|x3), F4|3(x4|x3))c35;4(F3|4(x3|x4), F5|4(x5|x4))
× c14;23(F1|23(x1|x2, x3), F4|23(x4|x2, x3))
× c25;34(F2|34(x2|x3, x4), F5|34(x5|x3, x4))

× c15;234(F1|234(x1|x2, x3, x4), F5|234(x5|x2, x3, x4))[
5∏

i=1

fi(xi)].

As presented in Kraus and Czado (2017), the conditional distributions Fi|D(xi|xxxD) ap-
pearing in the PCC can be evaluated using only pair-copulas specified for D-vine from
lower trees by applying the following recursion. Let l ∈ D and D−l := D \ {l}, then

Fi|D(xi|xxxD) = hi|l;D−l
(Fi|D−l

(xi|xxxD−l
)|Fl|D−l

(xl|xxxD−l
)), (2.7.24)

where for i, j /∈ D, i < j, hi|j;D(u|v) = ∂Cij;D(u, v)/∂v = Ci|j;D(u|v) and analogously
hj|i;D(u|v) = ∂Cij;D(u, v)/∂u = Cj|i;D(u|v) are the h-functions associated with the pair-
copula Cij;D.
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Using this formula on the first argument of c14;23 from Tree 3 in Example 2.7.1, we can
evaluate F1|23(x1|x2, x3) using the h-functions associated with C13;2, C12 and C23 from the
first two trees:

F1|23(x1|x2, x3) = h1|3;2(F1|2(x1|x2)|F3|2(x3|x2))
= h1|3;2(h1|2(F1(x1)|F2(x2))|h3|2(F3(x3)|F2(x2))).

D-vine based quantile regression

D-vine quantile regression was first introduced by Kraus and Czado (2017). In this section
we follow their work. The focus of interest is modelling the response variable Y given the
outcome of some predictor variables X1, . . . , Xd, d ≥ 1, where Y ∼ FY and Xj ∼ Fj, j =
1, . . . , d. Therefore, we want to predict the α ∈ (0, 1) quantile of the response variable Y
givenXXX, which can be achieved by a joint modelling of (Y,XXX)⊤ and using the conditional
quantile function

qα(x1, . . . , xd) := F−1
Y |X1,...,Xd

(α|x1, . . . , xd). (2.7.25)

As shown by Kraus and Czado (2017), we can estimate the conditional distribution

FY |X1,...,Xd
(y|x1, . . . , xd) = P (Y ≤ y|X1 ≤ x1, . . . , Xd ≤ xd)

using D-vine copulas. First we transform all the variables to the u-scale using the proba-
bility integral transforms V := FY (Y ) and Uj := Fj(Xj), with corresponding PIT values
v := FY (y) and uj := Fj(xj). It follows that

FY |X1,...,Xd
(y|x1, . . . , xd) = P (Y ≤ y|X1 = x1, . . . , Xd = xd)

= P (FY (y) ≤ v|F1(x1) = u1, . . . Fd(xd) = ud)

= CV |U1,...,Ud
(v|u1, . . . , ud).

(2.7.26)

Therefore,
F−1
Y |X1,...,Xd

(α|x1, . . . , xd) = F−1
Y (C−1

V |U1,...,Ud
(α|u1, . . . , ud)). (2.7.27)

Under the assumption that the margins FY , Fj, for j = 1, . . . , d are known, we can
obtain an estimate of the conditional quantile function F−1

Y |X1,...,Xd
by only estimating

the conditional distribution function CV |U1,...,Ud
. We denote the estimated inverses of

the marginal distributions by F̂−1
Y , F̂−1

j , j = 1, . . . , d and of the conditional distribution

function by ĈV |U1,...,Ud
such that

q̂α(x1, . . . , xd) := F̂−1
Y (Ĉ−1

V |U1,...,Ud
(α|û1, . . . , ûd)), (2.7.28)

where ûj = F̂j(xj) for j = 1, . . . , d. Let CV,U1,...,Ud
be the (d+1)-dimensional copula asso-

ciated with the joint distribution of (Y,XXX)⊤. The problem of estimating this multivariate
copula can be solved in sequential way using D-vine pair copula constructions. Therefore,
we fit a D-vine copula to (V, U1, . . . , Ud)

⊤, with V as the first node in the first tree and
order V −Ul1 − . . .−Uld where (l1, . . . , ld)

⊤ is an arbitrary permutation of (1, . . . , d)⊤. To
obtain the conditional distribution function CV |U1,...,Ud

from the copula CV,U1,...,Ud
we will

use Equation (2.7.24) to express the conditional distribution function in terms of nested h-
functions and consequently, C−1

V |U1,...,Ud
(α|u1, . . . , ud) in terms of inverse h-functions (Kraus

and Czado (2017)).
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Example 2.7.2 (Expressing CV |U1,...,Ud
using h-functions and C−1

V |U1,...,Ud
using inverse h-

functions in four dimensions)
Given a D-vine with order V −U1−U2−U3, using the Equation (2.7.24) we can recursively
express the conditional distribution of V given (U1, U2, U3)

⊤ as

CV |U1,U2,U3(v|u1, u2, u3) = hV |U3;U1,U2(CV |U1,U2(v|u1, u2)|CU3|U1,U2(u3|u1, u2))
= hV |U3;U1,U2(hV |U2;U1(CV |U1(v|u1)|CU2|U1(u2|u1))|hU3|U1;U2(CU3|U2(u3|u2)|CU1|U2(u1|u2)))
= hV |U3;U1,U2(hV |U2;U1(hV |U1(v|u1)|hU2|U1(u2|u1))|hU3|U1;U2(hU3|U2(u3|u2)|hU1|U2(u1|u2))).

Inversion yields

C−1
V |U1,U2,U3

(α|u1, u2, u3) =

h−1
V |U1

[
h−1
V |U2;U1

{
h−1
V |U3;U1,U2

(
α|hU3|U1;U2(hU3|U2(u3|u2)|hU1|U2(u1|u2))

)∣∣∣hU2|U1(u2|u1)
}∣∣∣u1].

This example can be easily expanded to higher dimensions. Now we proceed with the
estimation process of qα(xxx), which is a two step estimation procedure. In the first
step we estimate the marginal distribution functions FY , Fj, j = 1, . . . , d and in the
second step we estimate the D-vine that specifies the pair copulas needed to evaluate
Ĉ−1

V |U1,...,Ud
(α|û1, . . . , ûd).

Let yyy := (y(i))i=1,...,n,XXX := (x
(i)
j )j=1,...,d,i=1,...,n be n independent and identically distributed

observations of the random vector (Y,X1, . . . , Xd)
⊤. In the following two sections we in-

troduce the steps of the estimation procedure.

Estimation of the marginals

There are two ways we can fit the marginal distributions, either parametrically or non-
parametrically. As a parametric approach we use finite mixture of distributions, which are
beneficial for multimodal data. We use their estimation implemented in the R package
mixsmsn (Prates, Lachos and Cabral (2013)). Let X be a continuous random variable
which has (skewed) density function with more than one mode. We approximate its
density using the density of a finite mixture of distributions, which has the form

g(x|ΨΨΨ) :=

g∑
i=1

pifi(x|ψψψi), (2.7.29)

where pi ≥ 0, i = 1, . . . , g with
∑g

i=1 pi = 1 are called mixing weights, the density fi(·|ψψψi)
is the ith component of the mixture, which is indexed by the (possibly multivariate)
parameter ψψψi, i = 1, . . . , g and ΨΨΨ = ((p1, . . . , pg)

⊤,ψψψ⊤
1 , . . . ,ψψψ

⊤
i )

⊤. Furthermore, we assume
that the components of the mixture belong to the class of the scale mixtures of the
skew-normal distributions (SMSN), which is a rich class of flexible distributions.
However,the components of the mixtures that we use are either normal or skew-normal
distributions, which are accommodated by the SMSN family of distributions, as shown
below the following definition (Prates, Lachos and Cabral (2013)).
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Definition 2.7.8 (Univariate SMSN distribution family)
The distribution of a random variable Y belongs to the univariate SMSN family when
Y = µ + U−1/2Z, where µ ∈ R is a location parameter, Z ∼ SN(0, σ2, λ) is a skew-
normal random variable and U is a positive random variable, independent of Z, with
distribution function H(·|υυυ). The parameters σ2 > 0 and λ ∈ R are called scale and shape
parameters respectively, and H(·|υυυ) is known as the mixing scale distribution, indexed by
(possibly multivariate) parameter υυυ. The density of Y at y has the form

SMSN(y|µ, σ2, λ,υυυ) = 2

∫ ∞

0

ϕ(y|µ, u−1σ2)Φ(u
1
2λσ−1(y − µ))dH(u|υυυ). (2.7.30)

When U = 1 and λ = 0 we obtain

SMSN(y|µ, σ2) = ϕ(y|µ, σ2),

which is the univariate normal distribution. Similarly when U = 1,

SMSN(y|µ, σ2, λ) = 2ϕ(y|µ, σ2)Φ(λσ−1(y − µ))

the distribution of Y results in univariate skew-normal distribution. The estimation pro-
cedure is maximum likelihood via an EM-type algorithm, which is explained in detail
in Basso, Lachos, Cabral and Ghosh (2010) and Cabral, Lachos and Prates (2012). We
choose appropriate mixture of distributions for each marginal using the AIC and BIC
criteria. In the final step we integrate the fitted density functions ĝY (·; Ψ̂ΨΨY ), ĝj(·; Ψ̂ΨΨj), j =

1, . . . , d to obtain the cumulative distribution functions of the marginals, F̂Y (·; Ψ̂ΨΨY ) and

F̂j(·; Ψ̂ΨΨj), j = 1, . . . , d. We use these to transform the observed data to pseudo copula

data v̂(i) := F̂Y (y
(i); Ψ̂ΨΨY ) and û

(i)
j := F̂j(x

(i)
j ; Ψ̂ΨΨj), j = 1, . . . , d, i = 1, . . . , n.

Modelling the marginals as well as the copula parametrically might result is biased and in-
consistent parametric estimator if one of the parametric models is misspecified. Therefore,
we introduce the kernel smoothing estimator as a nonparametric approach for estimation
of marginals (Geenens (2014)). Given a sample (x(i))i=1,...,n we define the kernel smoothing
estimator as

F̂ (x) =
1

nh

n∑
i=1

K

(
x− x(i)

h

)
, x ∈ R, (2.7.31)

where K(x) :=
∫ x

−∞ k(t)dt with k(·) being a symmetric probability density function and
h > 0 a bandwidth parameter. This estimator is implemented in the R package kde1d

(Nagler and Vatter 2022). Hence, we obtain F̂Y and F̂j as estimates for the marginal
distibution functions. We use these to transform the observed data to pseudo copula data
v̂(i) := F̂Y (y

(i)) and û
(i)
j := F̂j(x

(i)
j ), j = 1, . . . , d, i = 1, . . . , n.

Estimation of the D-vine

The pseudo copula data (v̂vv, ÛUU), where v̂vv := (v̂(i))i=1,...,n, ÛUU := ((ûuu(1))⊤, . . . , (ûuu(n))⊤)⊤ =

(û
(i)
j )j=1,...,d,i=1,...,n obtained by either of the two approaches presented in the previous

section is an approximately i.i.d. sample from the PIT random vector (V, U1, . . . , Ud)
⊤

and is used by Kraus and Czado (2017) to estimate the D-vine copula. For the estimation
of the D-vine with order V −Ul1 − . . .−Uld , the ordering lll = (l1, . . . , ld)

⊤ can be generally
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V Ul1
. . . Ulk−1 Uj

V Ul1
. . . Ulk−2

Ulk−1
Ulk−1

Ulk

...
...

V Ulk−1
|Ul1 . . . Ulk−2

Ul1Uj|Ul2 . . . Ulk−1

V Uj|Ul1Ul2 . . . Ulk−1

Figure 2: Extending the current D-vine (black) by adding Uj in the k-th step of the algorithm.
The gray pair-copulas need to be estimated.

chosen arbitrary. However, we want to choose an ordering such that the model has the
highest explanatory power. One option is to compare all d! possible orderings, but this
is infeasible solution. Therefore, Kraus and Czado (2017) introduce an algorithm which
sequentially adds the most influential covariates. In each step, we add the covariate to the
model that improves the model’s fit the most. As a goodness of fit measure we define the
conditional log likelihood (cll) of an estimated D-vine copula with ordering lll, estimated

parametric pair-copula families F̂FF and corresponding copula parameters θ̂θθ given pseudo
data (v̂vv, ÛUU) as

cll(lll, F̂FF , θ̂θθ, ÛUU) :=
n∑

i=1

ln cV |U

(
v̂(i)|ûuu(i); lll, F̂FF , θ̂θθ

)
. (2.7.32)

The conditional copula density cV |U can be expressed by the product of all pair copulas
of the D-vine that contain V :

cV |U

(
v̂(i)|ûuu(i); lll, F̂FF , θ̂θθ

)
= cV Ul1

(v̂(i), û
(i)
l1
; F̂V Ul1

, θ̂V Ul1
)×

d∏
j=2

cV Ulj
;Ul1

...Ulj−1

(
ĈV |Ul1

...Ulj−1
(v̂(i)|û(i)l1

. . . û
(i)
lj−1

),ĈUlj
|Ul1

...Ulj−1
(û

(i)
lj
|û(i)l1

. . . û
(i)
lj−1

);

F̂V Ulj
;Ul1

...Ulj−1
, θ̂V Ulj

;Ul1
...Ulj−1

)
,

where F̂I and θ̂I denote the estimated family and parameter(s) of the pair copula cI .
The algorithm which we introduce sequentially constructs a D-vine while maximising the
model’s conditional log likelihood in each step. At the beginning of the kth step of the
algorithm, the current D-vine contains k-1 predictors. As illustrated in Figure 2, for each
of the remaining variables Uj that have not been chosen yet, we fit the pair copulas needed
for extension of the D-vine with order V − Ul1 − . . . − Ulk−1

− Uj (see the gray circles)
and compute the resulting model’s conditional log likelihood. Eventually, the model is
updated by adding the variable corresponding to the highest cll, concluding step k. This
way, the covariates are sequentially added based on their power to predict the response.
If none of the remaining covariates is able to increase the model’s cll in the kth step, the
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algorithm stops and returns the model containing the k-1 covariates chosen so far. This
algorithm is called an automated forward selection procedure.
The conditional log likelihood given by Equation (2.7.32) can be easily generalized for
nonparametric bivariate copulas too, as shown by Tepegjozova, Zhou, Claeskens and
Czado (2022).

For comparison of nested parametric models and deciding whether a predictor significantly
improves a model if added to it, we use the following statistical test (Tepegjozova (2019)):

Definition 2.7.9 (Conditional likelihood ratio test)
Let C1 be a D-vine with order V −U1− . . .−Up and C2 a D-vine with order V −U1− . . .−
Up−1. Additionally, we assume that we are given n observations on each of the considered
variables, i.e. vvv,uuuj, j = 1, . . . , p. We define the conditional likelihood ratio test between
the vine copula models C1 and C2 as the test which rejects the null hypothesis

H0 : Adding Up to the model C2 does not improve the fit

at level α ∈ (0, 1), if

cll(C1, vvv, (uuu1, . . . ,uuup))− cll(C2, vvv, (uuu1, . . . ,uuup−1)) > χ2
1−α,|θ̂θθ1|−|θ̂θθ2|

, (2.7.33)

where θ̂θθ1 and θ̂θθ2 denote the parameters in the D-vines C1 and C2 respectively, and χ2
1−α,|θ̂θθ1|−|θ̂θθ2|

denotes the (1-α)-quantile of a χ2-distribution with |θ̂θθ1| − |θ̂θθ2| degrees of freedom.

Derivation of the log likelihood

In order to compare the fitted D-vine model with order V − Ul1 − . . . − Uld with the
other regression models, we need to derive the log likelihood of the model, with Y as a
response variable and Xl1 , . . . , Xld as covariates included in the model. In particular, we
want to derive the conditional density fY |l1,...,ld of Y |Xl1 , . . . , Xld . Under the simplifying
assumption,

fY |l1,...,ld(y|xl1 , . . . , xld) =
fY,l1,...,ld(y, xl1 , . . . , xld)

fl1,...,ld(xl1 , . . . , xld)

=
fY ld|l1,...,ld−1

(y, xld |xl1 , . . . , xld−1
)fl1,...,ld−1

(xl1 , . . . , xld−1
)

fld|l1,...,ld−1
(xld |xl1 , . . . , xld−1

)fl1,...,ld−1
(xl1 , . . . , xld−1

)

= cY ld;l1,...,ld−1
(FY |l1,...,ld−1

(y|xl1 , . . . , xld−1
), Fld|l1,...,ld−1

(xld |xl1 , . . . , xld−1
))

× fY |l1,...,ld−1
(y|xl1 , . . . , xld−1

).

Now we can apply the same steps to fY |l1,...,ld−1
.We repeat this until we obtain construction

of all bivariate copulas that contain Y:

fY |l1,...,ld(y|xl1 , . . . , xld) = fY (y)cY l1(FY (y), Fl1(xl1))

d∏
j=2

cY lj ;l1...lj−1

(
FY |l1...lj−1

(y|xl1 . . . xlj−1
), Flj |l1...lj−1

(xlj |xl1 . . . xlj−1
)
)
.

(2.7.34)
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Therefore given the observed data (yyy,XXX ), the pseudo copula data (v̂vv, ÛUU), the pair copula

families F̂FF and the corresponding copula parameters θ̂θθ, the likelihood of the model is

L(yyy|lll, F̂FF , θ̂θθ) =
n∏

i=1

f̂Y |l1,...,ld(y
(i)|x(i)l1

, . . . , x
(i)
ld
)

=
n∏

i=1

f̂Y (y
(i))

n∏
i=1

cV |U

(
v̂(i)|ûuu(i); lll, F̂FF , θ̂θθ

)
,

(2.7.35)

where cV |U is the conditional copula density from Equation (2.7.32) and f̂Y is the fitted
density function to the response variable Y . The log likelihood of the model is given by

l(lll, F̂FF , θ̂θθ, ÛUU) =
n∑

i=1

ln f̂Y (y
(i)) + cll(lll, F̂FF , θ̂θθ, ÛUU), (2.7.36)

where cll(lll, F̂FF , θ̂θθ, ÛUU) is defined with Equation (2.7.32). In case of nonaprametric D-vine
regression model we follow the same steps, where we just discard the copula parameters
θ̂θθ.
Similar as before, using this log likelihood we can compute the AIC and BIC for the
model using the Equations (2.3.16) and (2.3.17), where as number of parameters we take
the parameters (degrees of freedom) used to fit the D-vine, and in case of parametric
estimation of marginals also the number of parameters used for their estimation.

2.8 Comparison of different regression models

After we fit different regression models to the training data sets, we want to compare them.
For comparison we use the log likelihood, AIC, BIC, training and test error, as well as
interval score, all of which are calculated on the original Y scale. The log likelihood,
AIC, BIC and training error are calculated on the training data set with ntr number of
observations, whereas the test error and the interval score on the test data set which
contains ntest number of observations.
For the purpose of defining log likelihood on original Y scale for the models which use the
transformed variable ln(Y ) as a response variable, we denote the transformed response
variable as Ỹ = ln(Y ). Having the density fỸ of Ỹ , we obtain the density fY of Y =
g(Ỹ ) = exp(Ỹ ) (Lefebvre (2006)) using the formula

fY (y) = fỸ (g
−1(y))

∣∣∣∣dg−1(y)

dy

∣∣∣∣. (2.8.1)

Without loss of generality, let us denote the estimated density of Ỹ by fỸ (·|φ̂φφ), where φ̂φφ
is the vector of the estimated parameters in the respective regression model. Given ntr

observations ỹi, i = 1, . . . , ntr of Ỹ and ntr observations yi, i = 1, . . . , ntr of Y , such that
ỹi = ln(yi), i = 1, . . . , ntr we derive the likelihood on Y scale

L(yyy, φ̂φφ) =
ntr∏
i=1

fY (yyy|φ̂φφ) =
ntr∏
i=1

fỸ (ln(yi)|φ̂φφ)
1

yi
= L(ỹyy, φ̂φφ)

ntr∏
i=1

1

yi
, (2.8.2)
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where L(ỹyy, φ̂φφ) is the likelihood of the respective model. From this it follows that the log
likelihood on Y scale is

l(yyy, φ̂φφ) = l(ỹyy, φ̂φφ)−
ntr∑
i=1

ln(yi), (2.8.3)

where l(ỹyy, φ̂φφ) is the log likelihood of the respective model. Additionally, we give a general
definition of the criteria AIC and BIC defined with Equations (2.3.16) and (2.3.17). For
a given model M, we define the Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC) (Fahrmeir, Kneib, Lang and Marx (2013)) on the original Y scale
as

AICM := −2l(ỹyy, φ̂φφ) + 2q (2.8.4)

BICM := −2l(ỹyy, φ̂φφ) + ln(ntr)q, (2.8.5)

where l(ỹyy, φ̂φφ) is the maximized log likelihood of the respective model M and q is the
number of parameters in the model. The number of parameters used for AIC and BIC for
the lognormal and gamma regression model is p+1, where p is the length of the vector
of estimated parameters β̂ββ; for the linear quantile regression model with conditional α
quantiles is the length of the vector of the estimated parameters β̂ββ(α); for the D-vine
regression model we take the number of parameters used to estimate the marginals and
the bivariate copulas in the model. The models with larger log likelihood and smaller
AIC and BIC are better.
Further, we define the training and test error of a model M (Hastie, Tibshirani and
Friedman (2009)) on the original Y scale as

errMtr :=
1

ntr

ntr∑
i=1

(
yi,tr − ŷMi,tr

)2

(2.8.6)

errMtest :=
1

ntest

ntest∑
i=1

(
yi,test − ŷMi,test

)2

, (2.8.7)

where ntr and ntest are the number of observations of the training and test data sets and
yi,tr, yi,test are observations of the original response variable in the training and test data
set respectively. The values ŷMi,tr, i = 1, . . . , ntr and ŷMi,test, i = 1, . . . , ntest we define for
each model M separately as:

• Lognormal regression model : Let β̂ββ be the vector of estimated parameters in the
model and xxx⊤i,tr,xxx

⊤
i,test be the vector of the ith observation of the predictors present

in the model including the intercept, in the training and test data set respectively.
Then

ŷMi,tr = exp
(
xxx⊤i,trβ̂ββ

)
, i = 1, . . . , ntr and ŷ

M
i,test = exp

(
xxx⊤i,testβ̂ββ

)
, i = 1, . . . , ntest.

• Gamma regression model : Let β̂ββ be the vector of estimated parameters in the model
and xxx⊤i,tr,xxx

⊤
i,test be the vector of the ith observation of the predictors present in the

model including the intercept, in the training and test data set respectively. Then

ŷMi,tr = µ̂i,tr = exp
(
xxx⊤i,trβ̂ββ

)
, i = 1, . . . , ntr and

ŷMi,test = µ̂i,test = exp
(
xxx⊤i,testβ̂ββ

)
, i = 1, . . . , ntest.
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• Linear quantile regression model with original response Y : Let β̂ββ(0.5) be the vector
of estimated parameters in the model, where α = 0.5, and xxx⊤i,tr,xxx

⊤
i,test be the vector

of the ith observation of the predictors present in the model including the intercept,
in the training and test data set respectively. Then

ŷMi,tr = q̂0.5(xxxi,tr) = xxx⊤i,trβ̂ββ(0.5), i = 1, . . . , ntr and

ŷMi,test = q̂0.5(xxxi,test) = xxx⊤i,testβ̂ββ(0.5), i = 1, . . . , ntest.

• Linear quantile regression model with transformed response ln(Y ): Let β̂ββ(0.5) be the
vector of estimated parameters in the model, where α = 0.5, and xxx⊤i,tr,xxx

⊤
i,test be the

vector of the ith observation of the predictors present in the model including the
intercept, in the training and test data set respectively. Then

ŷMi,tr = exp
(
q̂0.5(xxxi,tr)

)
= exp

(
xxx⊤i,trβ̂ββ(0.5)

)
, i = 1, . . . , ntr and

ŷMi,test = exp
(
q̂0.5(xxxi,test)

)
= exp

(
xxx⊤i,testβ̂ββ(0.5)

)
, i = 1, . . . , ntest.

• D-vine quantile regression model with original response Y : Let xxx⊤i,tr,xxx
⊤
i,test be the

vector of the ith observation of the predictors present in the model, in the training
and test data set respectively. Then

ŷMi,tr = q̂0.5(xxxi,tr), i = 1, . . . , ntr and ŷ
M
i,test = q̂0.5(xxxi,test), i = 1, . . . , ntest.

• D-vine quantile regression model with transformed response ln(Y ): Let xxx⊤i,tr,xxx
⊤
i,test

be the vector of the ith observation of the predictors present in the model, in the
training and test data set respectively. Then

ŷMi,tr = exp
(
q̂0.5(xxxi,tr)

)
, i = 1, . . . , ntr and ŷ

M
i,test = exp

(
q̂0.5(xxxi,test)

)
, i = 1, . . . , ntest.

Typically, the training error is an overly optimistic estimate of the overall error, since the
same data is used to fit the model and assess this error. Therefore, we favour the com-
parison of the test errors more. Models with smaller training and test errors are better.
Additionally, we compute the interval score for a (1− α)100% prediction interval, intro-
duced by Gneiting and Raftery (2007), on original scale Y on the test data set. This
measure rewards the model for narrow prediction intervals and it incurs penalty, the size
of which depends on α, if an observation misses the interval. Therefore, smaller interval
scores are better.
First we need to define the (1−α)100% central prediction interval of the original response
Y for each regression model. For the gamma regression models we use the prediction in-
terval derived by Wasef Hattab (2016). For the models that use the transformed response
ln(Y ), we use the exponential function to transform the prediction interval on the original
scale. This transformation of the prediction intervals is allowed because the exponential
function is strictly increasing.

• Lognormal regression model : Let β̂ββ be the vector of estimated parameters in the
model. The prediction interval for a future observation ln(y0) of the lognormal
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model at location xxx0 with level 1−α is given by (Fahrmeir, Kneib, Lang and Marx
(2013))[

xxx⊤0 β̂ββ − tn−p,1−α
2
s
√
1 + xxx⊤0 (XXX

⊤XXX)−1xxx0,xxx
⊤
0 β̂ββ + tn−p,1−α

2
s
√
1 + xxx⊤0 (XXX

⊤XXX)−1xxx0

]
,

where tn−p,1−α
2
is the (1 − α

2
) quantile of the t-distribution with n − p degrees of

freedom, XXX is the hat matrix, s is the unbiased estimator of σ2 defined with Equation
(2.3.10), n is the number of observations in the training data set i.e. n = ntr and p is

the length of the vector of estimated parameters β̂ββ. Using the exponential function,
the prediction interval for a future observation y0 at location xxx0 with level 1− α is
given by[

exp
(
xxx⊤0 β̂ββ − tn−p,1−α

2
s
√

1 + xxx⊤0 (XXX
⊤XXX)−1xxx0

)
,

exp
(
xxx⊤0 β̂ββ + tn−p,1−α

2
s
√
1 + xxx⊤0 (XXX

⊤XXX)−1xxx0

)]
.

(2.8.8)

• Gamma regression model : We derive the prediction interval for a new observation y0
following Wasef Hattab (2016). For a future observation y0 at location xxx0, under the
model’s assumptions, it holds that Y0 ∼ Gamma(ν, ν/ exp(xxx⊤0 βββ)) and that Y0 is in-
dependent of YYY . The MLE estimator of βββ for a gamma regression with log link func-
tion, β̂ββ, follows a normal distribution asymptotically, i.e. β̂ββ

a∼ Np(βββ, (XXX
⊤XXX)−1/ν).

Using that for X ∼ Gamma(α, β), it holds cX ∼ Gamma(α, β/c) for a constant
c > 0, and that χ2

n random variable isGamma(n
2
, 1
2
) distributed (Czado and Schmidt

(2011)), we obtain that 2νY0/ exp(xxx
⊤
0 βββ) ∼ χ2

2ν .
Next, we define the delta method (Jiang (2010), Example 4.4), which allows for
derivation of the asymptotic distribution of a nonlinear transformation of param-

eters whose asymptotic distribution is known. Let an(ξξξn − ccc)
d−→ VVV as n → ∞,

where an is a sequence of positive constants such that an → ∞ as n→ ∞, ξξξn is a se-
quence of s-dimensional random vectors, ccc is a constant s-dimensional vector and VVV
is an s-dimensional random vector. If g(xxx) : Rs → R is a continuously differentiable
function it holds that

an

(
g(ξξξn)− g(ccc)

)
d−→

[
∂g

∂xxx
(ccc)

]⊤

VVV as n→ ∞, (2.8.9)

where ∂g
∂xxx
(ccc) =

(
∂g
∂x1

(ccc), . . . , ∂g
∂xs

(ccc)
)⊤

.

Using β̂ββ
a∼ Np(βββ, (XXX

⊤XXX)−1/ν) and the delta method (Equation (2.8.9)), we obtain

Ŷ0 = exp(xxx⊤0 β̂ββ)
a∼ N (exp(xxx⊤0 βββ), exp(2xxx

⊤
0 βββ)xxx

⊤
0 (XXX

⊤XXX)−1xxx0/ν), from which it can be
derived that Ŷ0/ exp(xxx

⊤
0 βββ)

a∼ N (1,xxx⊤0 (XXX
⊤XXX)−1xxx0/ν). If we take into account the

uncertainty from estimating ν, and the asymptotic independence of ν̂ and β̂ββ, we can
estimate the distribution of Ŷ0/ exp(xxx

⊤
0 βββ) by tn−p

√
xxx⊤0 (XXX

⊤XXX)−1xxx0/ν̂+1, where n is
the number of observations in the training data set i.e. n = ntr and p is the length
of the vector of estimated parameters β̂ββ in the model. We define

G :=
χ2
2ν

tn−p

√
xxx⊤
0 (XXX⊤XXX)−1xxx0

ν̂
+ 1
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where the random variables in the nominator and denominator are independent.
Consequently,

P (G(α/2) ≤
2νY0

exp(xxx⊤0 βββ)
÷ Ŷ0

exp(xxx⊤0 βββ)
≤ G(1−α/2)) = P (

Gα/2Ŷ0
2ν

≤ Y0 ≤
G1−α/2Ŷ0

2ν
),

where Y0 and Ŷ0 are independent random variables and G(α/2) and G(1−α/2) are
the α/2 and 1 − α/2 quantiles of the G distribution. Therefore, the asymptotic
(1− α)100% prediction interval for y0 is given by[Ĝ(α/2) exp(xxx

⊤
0 β̂ββ)

2ν̂
,
Ĝ(1−α/2) exp(xxx

⊤
0 β̂ββ)

2ν̂

]
, (2.8.10)

where Ĝ is G with ν̂ replacing ν. In this thesis we find Ĝ(α/2) and Ĝ(1−α/2) using
100 000 simulations of the χ2

2ν̂ and tn−p distribution.
For the application of this method of deriving a prediction interval for a new observa-
tion for gamma model with log link function, an important discussion is the estima-
tion of ν. In the framework of the gamma model in this thesis, we defined that ϕ = 1

ν

and the estimator of ϕ using the moments is given by ν̂−1 = ϕ̂ = 1
n−p

∑n
i=1

(
Yi−µ̂i

µ̂i

)2

.

Another estimator of ϕ is using the deviance,

ν̂−1 = ϕ̂ =
D(µ̂µµ,yyy)

n− p
. (2.8.11)

Wasef Hattab (2016) discusses that both these estimators are apppropriate choices
for estimation of ν, however in this thesis for the derivation of the prediction intervals
we use the estimator given by Equation (2.8.11), which is also the choice in the case
studies in the paper.

• Linear quantile regression model with original response Y : Let β̂ββ(α
2
), β̂ββ(1− α

2
) be the

vector of estimated parameters in the linear quantile regression models with α
2
and

1− α
2
conditional quantiles respectively. Then the (1− α)100% prediction interval

for a future observation y0 at location xxx0 is given by[
q̂α

2
(xxx0), q̂1−α

2
(xxx0)

]
, (2.8.12)

where q̂α
2
(xxx0) = xxx⊤0 β̂ββ(

α
2
) and q̂1−α

2
(xxx0) = xxx⊤0 β̂ββ(1 − α

2
). When calculating prediction

intervals using linear quantile regression models, one needs to be cautious about
quantile crossing which leads to unreasonable prediction intervals. In this thesis
however, we do not face quantile crossing in the prediction intervals calculation.

• Linear quantile regression model with transformed response ln(Y ): Let β̂ββ(α
2
), β̂ββ(1−α

2
)

be the vector of estimated parameters in the linear quantile regression models with
α
2
and 1 − α

2
conditional quantiles respectively. Then the (1 − α)100% prediction

interval for a future observation y0 at location xxx0 is given by[
exp

(
q̂α

2
(xxx0)

)
, exp

(
q̂1−α

2
(xxx0)

)]
, (2.8.13)

where q̂α
2
(xxx0) = xxx⊤0 β̂ββ(

α
2
) and q̂1−α

2
(xxx0) = xxx⊤0 β̂ββ(1− α

2
). Again, we do not face quantile

crossings, which guarantees reasonable prediction intervals.
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• D-vine quantile regression model with original response Y : The (1−α)100% predic-
tion interval for a future observation y0 at location xxx0 is given by[

q̂α
2
(xxx0), q̂1−α

2
(xxx0)

]
. (2.8.14)

• D-vine quantile regression model with transformed response ln(Y ): The (1−α)100%
prediction interval for a future observation y0 at location xxx0 is given by[

exp
(
q̂α

2
(xxx0)

)
, exp

(
q̂1−α

2
(xxx0)

)]
. (2.8.15)

Finally, let l̂Mi,test and ûMi,test be the lower and upper limits of the prediction interval by
model M for the ith observation in the test data set. We define the interval score for the
(1− α)100% prediction interval as (Gneiting and Raftery 2007))

ÎSα =
1

ntest

ntest∑
i=1

[(
ûMi,test − l̂Mi,test

)
+

2

α

(
l̂Mi,test − yi,test

)
I
{
yi,test < l̂Mi,test

}
+

2

α

(
yi,test − ûMi,test

)
I
{
yi,test > ûMi,test}

]
,

(2.8.16)

where yi,test, i = 1, . . . , ntest are the observations of the original response in the test data
set and I{·} denotes the indicator function, which has value 1 when the condition in the
brackets is satisfied and value 0 otherwise.
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3 Data sets

After explaining some estimation methods and discussing statistical models in Section
2, we now apply them to a real-world data sets. In particular, we are interested in the
performance of the different models in modelling severity in motor insurance. For that
purpose we consider a data used for the 2017 pricing game of the French Institute of
Actuaries organized on November 16, 2017. The two data sets can be found in the R
package CASdatasets.

3.1 Introduction to data sets

The data set pg17trainpol contains 100 000 policies for private motor insurance and
pg17trainclaim contains 14 243 third party liability claims related to those 100.000 poli-
cies, which occurred in a span of one year. The data set of 100 000 policies contains all
the relevant collected information for the insured object and the policy holder of each
policy, whereas the data set of the claims contains only the individual claim amount and
the corresponding policy number.
We are interested in modelling the total claim amount occurred per insurance policy,
which is why we merge the two data sets, we aggregate the claim amount per policy and
we consider only the policies which notified a claim during this one year. We also add
an additional column with the number of claims per policy. However, knowing only the
total claim amount per policy is not sufficient because it depends on the policy’s coverage,
also called exposure. Since this information is not provided in our data, as coverage we
take the vehicle’s value, which is the replacement value of the vehicle in Euros without
inflation (so it is stable from a year to another). Finally, we can define our response
variable standardized claims as

Y :=
total claim amount

number of claims× vehicle value
. (3.1.1)

Before we aggregate the claim amount, we remove the observations that have a nega-
tive claim amount, which appear when the driver’s liability is not engaged so there’s a
legal recourse. For the lognormal models we use ln(standardized claims) as a response
variable, for the gamma regression models we use standardized claims, and for the linear
quantile and D-vine quantile regression models we use both the transformed response
ln(standardized claims) and the original response standardized claims as a response vari-
able.
We present the continuous variables of the data in Table 1 and the discrete variables
are summarized in Table 2. Before these summaries we removed the observations with
a license age bigger than 90 (of either driver) and observations with a vehicle weight
0. They are unrealistic and we can’t be sure why such observations are present, there-
fore we remove them. This data cleaning results in a data set with 10599 observations.
Additionally, we introduce the additional covariate

difference in duration := policy duration-policy situation duration, (3.1.2)

as we want to investigate whether the period duration before the current policy conditions
affects our response significantly.
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Continuous Variable Name Measurement unit Range Description
Response

standr claims standardized claims - [0.0008,16.6426]
Standardized claims as described

with Equation (3.1.1).
ln standr claims ln(standardized claims) - [-7.092,2.812] Logarithm of the standardized claims variable.
Covariates

pol bonus bonus malus class - [0.5, 1.56]

French bonus malus system. The coefficient
starts at 1 and every year without a claim it

decreases by 5% until it reaches a minimum of 0.5.
When a claim occurs, it increases by 25%,

with maximum of 3.5.

pol duration policy duration Years [1,37]
Represents how old the policy is, accounted from

the beginning of the current year.

pol sit duration policy situation duration Years [1,20]
The policy current endorsement duration and

can differ from policy duration, because of change
of coverage,vehicle, drivers etc.

pol diff duration difference in duration Years [0,33]
The difference between policy duration

and policy situation duration.

drv age1 driver 1 age Years [19,103]
Age of driver 1 counted from the beginning

of the considered year.

drv age2 driver 2 age Years [19,92]
Age of driver 2 counted from the beginning

of the considered year. In policies with no driver 2,
the value is 0.

drv age lic1 driver 1 license age Years [1,72]
Age of the driving licence of driver 1. It is counted

from the beginning of the current year.

drv age lic2 driver 2 license age Years [1,71]
Age of driving license of driver 2. In policies with

no driver 2, the value is 0.

vh age vehicle age Years [1,51]
The difference between the year of release of

the vehicle and the current year.

vh cyl engine cylinder displacement ml [425,5666]
Engine cylinder displacement of the vehicle.

Higher values correspond to more powerful vehicle.
vh din motor power Watts [20,507] Motor power of the vehicle.

vh sale begin vehicle sale begin Years [1,54]
Years from the beginning of the current year

to the beginning of marketing years of the vehicle.

vh sale end vehicle sale end Years [1,46]
Years from the beginning of the current year
to the end of marketing years of the vehicle.

vh speed vehicle speed km/h [88,285]
The vehicle maximum speed, as stated by the

manifacturer.
vh weight vehicle weight kg [560,3200] Weight of the vehicle.

Table 1: Description of the continuous variables in the data set.

In Table 2 we can observe the discrete covariates with their corresponding levels and
the number of observations per category. As the level ”AllTrips” of the covariate policy
usage has only 20 observations and the level ”Hybrid” of the covariate type of fuel has 15
observations, we remove them from the data set. The resulting data set contains 10 564
observations. We define an additional covariate claim indicator

claim indicator :=

{
One, number of claims = 1

MoreThanOne, number of claims > 1
, (3.1.3)

with which we want to differentiate between single and multiple claims in a policy and
investigate its effect on the response.
The covariate vehicle carmaker has 50 levels, so in the next step we want to reduce
the number of factors in this covariate. Let xxx = (xxx⊤1 , . . . ,xxx

⊤
50)

⊤ be the vector of vehicle
carmaker sorted per factor levels, and xxxi, i = 1, . . . , 50 have corresponding length ni, i =
1, . . . , 50, and let yyy = (yyy⊤1 , . . . , yyy

⊤
50)

⊤ denote their corresponding values of standardized
claims. Then for each level we define the mean standardized claims per vehicle carmaker
as

ȳi =
1

ni

ni∑
j=1

yij, i = 1, . . . , 50, (3.1.4)

where yij is the jth observation in yyyi.
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Discrete Covariates Name Number of levels
Levels and corresponding
number of observations

Description

pol coverage policy coverage 4

Mini 190 The coverage category of the policy. ”Mini” policies cover
only Third Party Liability claims, whereas ”Maxi” policies

covers all claims, including Damage, Theft,
Windshield Breaking, Assistance etc.

Median 1 663
Median 2 1388
Maxi 8358

pol pay freq
premium payment
frequency

4

Monthly 3434
The price of the insurance coverage can be paid

annually, biannually, quarterly or monthly.
Quarterly 303
Biannual 3041
Yearly 3821

pol payd policy per day 2
Yes 327 A dummy which indicates whether our client

has subscribed a mileage-based policy or not.No 10272

pol usage policy usage 4

AllTrips 20 It describes what usage the driver makes from his
vehicle most of time. ”Retired” stands for retired people

(who usually drive less often) and ”All Trips”
is similar to Professional (includes pro tours).

Professional 809
Retired 2665

WorkPrivate 7105

drv drv2 driver 2 2
Yes 3763 A dummy indicating if there is a secondary

driver in the policy.No 6836

drv sex1 driver 1 gender 2
F 4414 Gender of driver 1. ”F” stands for female and ”M”

for male.M 6185

drv sex2 driver 2 gender 3
6836 Gender of driver 2. ”” denotes the observations

where driver 2 is not present, ”F” denotes females
and ”M” denotes males.

F 2338
M 1425

vh fuel type of fuel 3
Diesel 6681

Fuel type of the vehicle.Gasoline 3903
Hybrid 15

vh make vehicle carmaker 50
RENAULT 2685

The vehicle carmaker. We present here only the three
major brands Renault, Peugeot and Citroen.

PEUGEOT 2054
CITROEN 1607

vh type vehicle type 2
Commercial 532 The vehicle type. There are more ”Commercial” types

for ”Professional” policy usage than for ”WorkPrivate”.Tourism 10067

claim ind claim indicator 2
MoreThanOne 1028 A dummy variable which differs between only

one claim and multiple claims in the policy.One 9571

Table 2: Description of the discrete covariates in the data set.

Finally, based on the quantiles of ȳi, i = 1, . . . , 50 we create new covariate class carmaker
as

class carmaker :=


Class1, ȳi ∈ [0.01, 0.05]

Class2, ȳi = 0.06

Class3, ȳi ∈ [0.07, 0.09]

. (3.1.5)

This is summarized in Tables 3 and 4. The disadvantage of merging levels of a covariate
is that we lose information from the data. Additionally, another disadvantage of this way
of merging is that we include information from another column from the data set as a
criterion of merging. However, this results in effective merging since now it is more likely
that this covariate is significant. In our modelling, we consider only class carmaker and
discard vehicle carmaker.
Additionally, we created the covariate gender which combines the covariates driver 1
gender and driver 2 gender the following way:

gender :=



F, only driver 1 is present and is a female

M, only driver 1 is present and is a male

FF, both drivers are female

MF, driver 1 is a male, driver 2 is a female

FM, driver 1 is a female, driver 2 is a male

MM, both drivers are male

(3.1.6)

and its summary can be seen in Table 4. For modelling we discard the covariates driver
1 gender and driver 2 gender and use only gender.
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i Vehicle carmaker level xxxi ni ȳi i Vehicle carmaker level xxxi ni ȳi
1 EBRO 1 0.01 26 SUBARU 7 0.05
2 IVECO 1 0.01 27 VOLKSWAGEN 653 0.05
3 PORSCHE 6 0.01 28 BMW 189 0.06
4 BUICK 1 0.02 29 CITROEN 1601 0.06
5 DAIMLER 1 0.02 30 DAIHATSU 8 0.06
6 JAGUAR 9 0.02 31 DODGE 5 0.06
7 LEXUS 1 0.02 32 FORD 449 0.06
8 PONTIAC 1 0.02 33 HYUNDAI 77 0.06
9 AUDI 202 0.03 34 LANCIA 17 0.06
10 CHRYSLER 29 0.03 35 MINI 46 0.06
11 LADA VAZ 3 0.03 36 NISSAN 210 0.06
12 LAND ROVER 31 0.03 37 OPEL 378 0.06
13 MITSUBISHI 35 0.03 38 PEUGEOT 2052 0.06
14 SAAB 13 0.03 39 TOYOTA 351 0.06
15 SSANGYONG 5 0.03 40 DAEWOO 10 0.07
16 VOLVO 67 0.03 41 FIAT 262 0.07
17 JEEP 23 0.04 42 HONDA 69 0.07
18 MERCEDES BENZ 375 0.04 43 KIA 55 0.07
19 MG 3 0.04 44 MAZDA 62 0.07
20 SMART 15 0.04 45 RENAULT 2681 0.07
21 ALFA ROMEO 49 0.05 46 ROVER 19 0.07
22 ISUZU 2 0.05 47 ARO 1 0.08
23 SANTANA 8 0.05 48 SUZUKI 99 0.08
24 SEAT 128 0.05 49 CHEVROLET 31 0.09
25 SKODA 48 0.05 50 DACIA 175 0.09

Table 3: Levels of vehicle carmaker sorted by the values of mean standardized claims. The
horizontal lines indicate the different levels of class carmaker.

Discrete Covariates Name Number of levels
Levels and corresponding
number of observations

Description

class make class carmaker 3
Class1 1717

Vehicle carmaker merged based on
the values of mean standardized claims.

Class2 5383
Class3 3464

gender gender 6

F 2909

Driver 1 gender and driver 2 gender
combined in a covariate.

M 267
FF 1225
MF 3905
FM 2065
MM 193

Table 4: Description of the discrete covariates class carmaker and gender.

Now we want to separate the data set into training and test data set. We will fit our
models on the training data set and then evaluate and compare them on the test data set.
We split them randomly, such that the training data set would contain 9564 observations,
whereas the test data set 1000 observations. An important realisation is that out of 10564
observations, 7950 are in the best bonus malus class 0.5. Intuitively, we would expect that
the ”good” drivers which are in the best bonus malus class show different behaviour than
the other drivers. For that reason we additionally separate the training and test data set
to data sets where the value of bonus malus class is 0.5 and data sets where the bonus
malus class is different than 0.5.
For D-vine quantile regression we consider the some of the continuous covariates as ordinal
(for eg. policy situation duration), because they have a small number of unique values
(more details in Sections 4 and 5). To make the data consistent, we remove one observation
of the Bad Driver test data set, which had a value of policy situation duration which was
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not present in the Bad Driver training data set. Finally, we summarize our final data sets
in Table 5.

Data set Name Number of obsevations Number of variables Description
Good Driver Data

data1 training data set 7214 26
The training data set of observations
where the bonus malus class=0.5.

test data1 test data set 736 26
The test data set of observations
where the bonus malus class=0.5.

Bad Driver Data

data2 training data set 2350 27
The training data set of observations
where the bonus malus class ̸=0.5.

test data2 test data set 263 27
The test data set of observations
where the bonus malus class ̸=0.5.

Table 5: Final data sets we use in this thesis. In the number of variables we include the
response variables standardized claims and ln(standardized claims).The number of variables for
Bad Driver Data is bigger because there we can consider bonus malus class as a covariate.

In Section 3.2 and 3.3 we present exploratory data analysis for Good and Bad Driver Data
respectively, which we perform on the training data sets. We only present the covariates
that show influence on the response variable.

3.2 Exploratory data analysis for Lognormal and Gamma re-
gression on Good Driver Data

For lognormal and gamma regression we need to analyse the relationship between the
response ln(standardized claims) and the covariates on the Good Driver training data
set. In gamma regression, our response variable is standardized claims, but since we use
the log link function, we want the relationship between ln(standardized claims) and the
covariates to be linear. Therefore, the exploratory data analysis for gamma and lognormal
regression coincides. We begin with the main effects.

Main effects

Continuous covariates

Scatterplots between the continuous covariates and the response ln(standardized claims)
are presented and the relationship between the variables is analysed. Since in some of the
plots the relationship is nonlinear, which can be seen by adding a smoother line to the
plot, we transform the covariates with appropriate functions. In that case, we fit a linear
model using only the transformed covariate with ln(standardized claims) as a response
variable, and add its fitted values to the scatterplot, in order to compare them with the
smoother line from the raw data. If the smoother line and the fitted linear model line are
almost identical, we know that our transformation is adequate. The influential continu-
ous covariates on ln(standardized claims) in the Good Driver training data set with their
respective transformations are shown in Table 6.
Additonally, we present their scatterplots against the response ln(standardized claims) in
Figure 3. All scatterplots are manually trimmed at the ends for better visualisation. The
number of observations omitted per covariate scatterplot is shown in Table 6. For driver
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2 age the number of ommited observations is so high because the value of driver 2 age is
0 in the observations where driver 2 is not present. However, as they are zeros, they do
not influence the response and the relationship between driver 2 age and ln(standardized
claims), therefore we remove them from the plot.

Continuous variables Transformations
Number of ommited observations
in the scatterplots in Figure 3

pol sit duration - 20
drv age1 poly(drv age1,2) 19
drv age2 poly(drv age2,2) 4.509
drv age lic1 - 25
drv age lic2 poly(drv age lic2,2) 18
vh cyl log(vh cyl) 18
vh din poly(vh din,5) 18
vh speed - 14
vh weight poly(vh weight,3) 25

Table 6: Influential continuous covariates on ln(standardized claims) in the Good Driver training
data set, where poly(·, n) is the orthogonal polynomial function of nth degree and log(·) is the
natural logarithm function. For some covariates no transformation was needed.

An important caution before we start modelling is to avoid multicollinearity, which is
a phenomenon in which one covariate can be linearly predicted from other covariate(s)
and is usually indicated by a high correlation between these two covariates, as it leads to
unstability of the models to small changes of the data. For that purpose we investigate
Kendall’s taus (defined by Definition 2.5.5) between these continuous covariates in Table 7.
We use Kendall’s tau as a correlation measure, because it does not depend on the marginal
distributions of the covariates, therefore is a more robust measure of correlation. We can
spot that some of the Kendall’s taus are high, which may lead to multicollinearity in our
models. We solve this by not includuing the covariates drv_age_lic1 and drv_age_lic2,
since the models with drv_age1 and drv_age2 showed the most parsimonious fit. We
include both covariates vh_din and vh_speed to our models in the beginning, however the
reduced models, which showed a more parsimonious fit, do not include both covariates.

pol sit
duration

drv
age1

drv
age2

drv age
lic1

drv age
lic2

vh
cyl

vh
din

vh
speed

vh
weight

pol sit
duration

1.00

drv age1 0.11 1.00
drv age2 -0.05 0.01 1.00
drv age

lic1
0.09 0.80 0.02 1.00

drv age
lic2

-0.05 -0.01 0.96 0.01 1.00

vh cyl -0.02 -0.07 0.03 -0.03 0.03 1.00
vh din -0.09 -0.06 0.06 -0.02 0.06 0.57 1.00

vh speed -0.06 -0.03 0.06 -0.01 0.06 0.42 0.72 1.00
vh weight -0.09 -0.08 0.05 -0.03 0.05 0.59 0.61 0.41 1.00

Table 7: Kendall’s tau correlations for the influential continuous covariates in Good Driver
training data set. The high Kendall’s taus are marked with gray.
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Figure 3: Trimmed scatterplots of the influential continuous variables against the response
variable ln(standardized claims) in Good Driver training data set.



48 3 DATA SETS

Discrete covariates

The influential covariates on the response ln(standardized claims) are shown in Table
8. Their respective boxplots against the response ln(standardized claims), as well as the
density plots of ln(standardized claims) for different levels of the covariates are presented
in Figure 4. As it can be seen in Figure 4, the influence of the levels ”Maxi”, ”Median1”
and ”Median2” on the covariate policy coverage on the response is similar (the medians
of ln(standardized claims) on these levels are similar), which is why we transform it into
a new covariate policy coverage where we merge these levels into one level ”NoMini”.
Similarly, for the covariate class carmaker we merge ”Class2” and ”Class3” into one level
”Class2&3”. From this point on, when we mention the covariates policy coverage and class
carmaker of the Good Driver training data set, we refer to these transformed covariates.
Respectively, we will use these transformed covariates in our models.

Figure 4: Boxplots and density plots of the response variable ln(standardized claims) for different
levels of the discrete influential covariates from Table 8.
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Discrete covariates Transformed covariate
Name of the

transformed covariate
Levels and corresponding number of

observations of the (transformed) covariate
Description of the transformed

covariate

pol coverage pol coverage2 policy coverage
Mini 109 We merge the levels ”Median1”, ”Median2”

and ”Maxi” in one level ”No Mini”.NoMini 7105

class make class make2 class carmaker
Class1 1131 We merge the levels ”Class2” and ”Class3”

in one level ”Class2&3”.Class2&3 6083

vh fuel - -
Diesel 4523

-
Gasoline 2691

vh type - -
Commercial 400

-
Tourism 6814

claim ind - -
MoreThanOne 685

-
One 6529

Table 8: Influential discrete covariates on ln(standardized claims). For class carmaker and policy
coverage we introduce new versions which are created by merging some of their levels in one, as
described in the Description column.

Interactions

We only analyse interaction terms between the covariates which are included as main
effects. For the continuous covariates in polynomial form, we can include an interaction
term with them with any degree of polynomial which is smaller or equal than the degree
of the main effect. All the interactions that we consider in our models are summarized in
Table 9.

Continuous vs Continuous

drv age1:poly(drv age2, 2)
drv age1:vh speed
drv age1:poly(vh weight,3)
drv age2:poly(vh weight,2)
log(vh cyl):vh speed
poly(vh din,3):vh speed
poly(vh din,5):poly(vh weight,3)
vh speed:poly(vh weight,3)

Continuous vs Categorical
drv age1:pol coverage2
drv age1:claim ind
poly(drv age2, 2):pol coverage2

Categorical vs Categorical pol coverage2:claim ind

Table 9: Interactions for Good Driver Data.

The surface plots of the interactions of continuous vs continuous variables are presented
on original scale, without their orthogonal polynomial transformations. We can spot an
interaction term due to the nonlinearity of the surfaces. The resulting plots are presented
in Figure 5.



50 3 DATA SETS

Figure 5: Plots of interaction terms between continuous covariates on original scale in Good
Driver training data set, which are summarized in Table 9.
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For interactions between continuous and categorical covariates, we tried to transform the
continuous covariate such that the different levels of interaction look linear, but for some
cases none of the transformations helped (for eg. the interaction of driver 1 age and policy
coverage). Therefore, we leave them on original scale. The interaction plot of driver 2 age
and policy coverage, which includes orthogonal polynomial of second degree of driver 2 age,
is plotted such that we show how different levels of policy coverage affect the polynomial
fit of driver 2 age and the response ln(standardized claims). The interaction plots of
continuous vs categorical and categorical vs categorical variables are presented in Figure
6, whereas in Table 10 we can see number of observations per level of the interaction
between policy coverage and claim indicator. There are only 3 observations for the levels
Mini and MoreThanOne, which needs to be taken into account when interpreting the
boxplots and the estimated parameters in our models.

claim indicator
One MoreThanOne

policy coverage
Mini 106 3

NoMini 6423 682

Table 10: Number of observations per level of interaction for policy coverage and claim indicator.

Figure 6: Plots of interaction terms for continuous vs categorical and categorical vs categorical
covariates in Good Driver training data set, which are summarized in Table 9.
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3.3 Exploratory data analysis for Lognormal and Gamma re-
gression on Bad Driver Data

Similarly as for Good Driver Data, we are interested in the relationship between the
response ln(standardized claims) and the covariates on Bad Driver training data set. In
particular, we are interested that this relationship in linear. We begin with the main
effects and then follow with interactions.

Main effects

Continuous covariates

We look at the scatterplots of the continuous covariates against the response ln(standardized
claims). Some nonlinearity can be spotted, which is why we transform certain covariates
using polynomials, as these transformations showed a most parsimonious fit. To the scat-
terplots we add a smoother line as a reference for comparison with our fitted linear model
to the (transformed) covariates and the response ln(standardized claims). The influential
covariates and their respective transformations can be seen in Table 11.

Continuous variables Transformations
Number of ommited observations
in the scatterplots in Figure 7

pol bonus - 10
pol duration - 2
pol sit duration - 3
drv age1 poly(drv age1,4) 9
drv age2 poly(drv age2,3) 1698
drv age lic1 poly(drv age lic1,3) 4
drv age lic2 poly(drv age lic2,4) 7
vh cyl poly(vh cyl,2) 6
vh din poly(vh din, 3) 4
vh speed poly(vh speed, 2) 3
vh weight poly(vh weight,5) 9

Table 11: Influential continuous covariates on ln(standardized claims) in Bad Driver training data
set, where poly(·, n) is the orthogonal polynomial function of nth degree. For some covariates
no transformation was needed.

We present their scatterplots against the response ln(standardized claims) in Figure 7. All
scatterplots are manually trimmed at the ends for better visualisation and the number
of observations omitted per covariate scatterplot is shown in Table 6. For driver 2 age
the number of ommited observations is so high because the value of driver 2 age is 0 in
the observations where driver 2 is not present. However, as they are zeros, they do not
influence the relationship between driver 2 age and ln(standardized claims), therefore we
remove them from the plot.
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Figure 7: Trimmed scatterplots of the influential continuous variables against the response
variable ln(standardized claims) in Bad Driver training data set.
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In this training data set, multicollinearity can be spotted too. The Kendall’t taus of the
continuous covariates are presented in Table 12. The highest Kendall’s tau is between
driver 2 age and driver 2 license age, which is why we avoid using both covariates at the
same time in a model. Additionally, driver 1 age and driver 1 license age, as well as motor
power and vehicle speed have also high Kendall’s tau values. Therefore, we do not include
the covariates drv_age1 and drv_age_lic2 for the lognormal regression model, whereas for
gamma regression we omit the covariates drv_age_lic1 and drv_age_lic2. Additionally,
the reduced models of both regression methods, which showed most parsimonious fits,
contain vh_din but do not include vh_speed.

pol
bonus

pol
duration

pol sit
duration

drv
age1

drv
age2

drv age
lic1

drv age
lic2

vh
cyl

vh
din

vh
speed

vh
weight

pol
bonus

1.00

pol
duration

-0.20 1.00

pol sit
duration

-0.07 0.27 1.00

drv
age1

-0.20 0.31 0.16 1.00

drv
age2

-0.15 0.03 -0.04 0.09 1.00

drv age
lic1

-0.24 0.32 0.15 0.82 0.11 1.00

drv age
lic2

-0.15 0.03 -0.04 0.08 0.97 0.11 1.00

vh cyl -0.07 -0.01 -0.03 0.01 0.09 0.04 0.09 1.00
vh din -0.08 -0.01 -0.08 0.03 0.10 0.07 0.10 0.57 1.00

vh speed -0.05 -0.03 -0.07 -0.01 0.07 0.01 0.07 0.45 0.74 1.00
vh weight -0.08 0.01 -0.06 0.06 0.12 0.09 0.13 0.59 0.62 0.43 1.00

Table 12: Kendall’s tau correlations for the influential continuous covariates in Bad Driver
training data set. The high Kendall’s taus are marked with gray.

Discrete covariates

The influential discrete covariates on the response ln(standardized claims) are shown in
Table 13. Their respective boxplots against the response ln(standardized claims), as well
as the density plots of ln(standardized claims) for different levels of the covariates are
presented in Figure 8. As for Good Driver training data set, the influence of the levels
”Maxi”, ”Median1” and ”Median2” of the covariate policy coverage on the response is sim-
ilar (the medians of ln(standardized claims) on these levels are similar), which is why we
transform it into a new covariate policy coverage where we merge these levels into one level
”NoMini”. Similarly, for the covariate class carmaker we merge ”Class2” and ”Class3”
into one level ”Class2&3”, for policy usage we merge ”Professional” and ”WorkPrivate”
to ”NoRetired”, and for gender we merge ”F” and ”FF” to ”FemalesOnly” and ”FM”,
”M”, ”MF”, ”MM” to ”AllOther”. From this point on, when we mention the covariates
policy coverage, class carmaker, policy usage and gender of the Bad Driver training data
set, we refer to these transformed covariates. Respectively, we will use these transformed
covariates in our models.
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Figure 8: Boxplots and density plots of the response variable ln(standardized claims) for different
levels of the discrete influential covariates from Table 13.
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Discrete covariates Transformed covariate
Name of the

transformed covariate
Levels and corresponding number of

observations of the (transformed) covariate
Description of the transformed

covariate

pol coverage pol coverage2 policy coverage
Mini 65 We merge the levels ”Median1”, ”Median2”

and ”Maxi” in one level ”NoMini”.NoMini 2285

pol usage pol usage2 policy usage
Retired 274 We merge the levels ”Professional” and

”WorkPrivate” in one level ”NoRetired”.NoRetired 2076

class make class make2 class carmaker
Class1 408 We merge the levels ”Class2” and ”Class3”

in one level ”Class2&3”.Class2&3 1942

gender gender2 gender
FemalesOnly 829 We merge ”F” and ”FF” to ”FemalesOnly”

and all other levels into ”AllOther”AllOther 1521

vh fuel - -
Diesel 1522

-
Gasoline 828

claim ind - -
One 2106

-
MoreThanOne 244

Table 13: Influential discrete covariates on ln(standardized claims). For policy coverage, policy
usage, class carmaker and gender we introduce new versions, which are created by merging some
of their levels in one, as described in the Description column.

Interactions

We only analyse interaction terms between the covariates which are included as main
effects. For continuous covariates in polynomial form, we can include an interaction term
with them with any degree of polynomial which is smaller or equal than the degree of the
main effect. Additionally, in the models for Bad Driver training data set we don’t consider
any categorical vs categorical variable interaction since there seems to be no interaction
between the influential categorical covariates. All the interactions that we consider in our
models are summarized in Table 14.

Continuous vs Continuous

pol bonus:poly(drv age1,4)
pol bonus:drv age lic1
pol bonus:vh cyl
pol bonus:poly(vh din,3)
pol bonus:poly(vh weight,2)
poly(drv age1,4):vh cyl
poly(drv age1,4):poly(vh weight,2)
drv age lic1:vh cyl
drv age lic1:poly(vh din,3)
drv age lic1:poly(vh weight,5)
vh cyl:vh din
vh cyl:poly(vh weight,2)
vh din:poly(vh weight,2)

Continuous vs Categorical

pol bonus:pol coverage2
pol bonus:class make2
drv age lic1:pol coverage2
vh din:vh fuel

Table 14: Interactions for Bad Driver Data.

The surface plots of the interactions of continuous vs continuous variables are presented
on original scale, without their orthogonal polynomial transformations. We can spot an
interaction term due to the nonlinearity of the surfaces. The resulting plots are presented
in Figure 9 and Figure 10.
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Figure 9: Plots of interaction terms between continuous covariates on original scale in Bad
Driver training data set, which are summarized in Table 14.
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Figure 10: Plots of interaction terms between continuous covariates on original scale in Bad
Driver training data set, which are summarized in Table 14.
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Figure 11: Plots of interaction terms for continuous vs categorical covariates in Bad Driver
training data set, which are summarized in Table 14.

The interaction plot of a continuous vs categorical covariate,is plotted such that we show
how different levels of the categorical covariate affect the smoother line of the continuous
covariate with respect to the response ln(standardized claims). We tried to transform the
continuous covariate such that the different levels of interaction look linear, but for some
cases none of the transformations helped (for eg. the interaction of driver 1 license age
and policy coverage). Therefore, we leave them on original scale. The interaction plots of
continuous vs categorical variables are presented in Figure 11.
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4 Modelling on Good Driver Data

In this section we present the lognormal, gamma, linear quantile and D-vine quantile
regression results for the Good Driver Data. After the exploratory data analysis in Sec-
tion 3.2, we can proceed with fitting of lognormal and gamma regression with log link
function. We fit D-vine regression using both the original response standardized claims
and the transformed response ln(standardized claims), with nonparametric marginals and
nonparametric bivariate copulas. Consequently, we fit two linear quantile regression mod-
els using the same covariates which were selected in the D-vine regression models. At the
end of the section we compare all four model approaches.

4.1 Lognormal regression model

Due to the high correlation of drv_age_lic1 and drv_age_lic2 with drv_age1 and drv_age2

respectively, we don’t include drv_age_lic1 and drv_age_lic2 in our lognormal models.
This decision was based on fitting different models by removing one of the covariates who
is highly correlated to another one. Therefore, the main effects lognormal model which
includes the covariates presented in Section 3.2 is:

LogLM1_main<-lm(ln_standr_claims~pol_sit_duration+poly(drv_age1,2)+

poly(drv_age2,2)+log(vh_cyl)+poly(vh_din,5)+vh_speed+

poly(vh_weight,3)+pol_coverage2+

vh_fuel+claim_ind+class_make2+vh_type, data=data1)

R2 = 9.31%, R2
adj = 9.06% Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.08 0.88 0.09 0.93

pol sit duration 0.00 0.01 0.51 0.61
poly(drv age1, 2)1 5.71 1.23 4.66 0.00
poly(drv age1, 2)2 3.80 1.10 3.47 0.00
poly(drv age2, 2)1 -0.77 1.09 -0.70 0.48
poly(drv age2, 2)2 -1.00 1.19 -0.84 0.40

log(vh cyl) -0.37 0.10 -3.50 0.00
poly(vh din, 5)1 -5.90 3.87 -1.53 0.13
poly(vh din, 5)2 0.14 1.42 0.10 0.92
poly(vh din, 5)3 -0.82 1.22 -0.67 0.50
poly(vh din, 5)4 -0.57 1.16 -0.49 0.62
poly(vh din, 5)5 3.58 1.10 3.25 0.00

vh speed -0.00 0.00 -1.17 0.24
poly(vh weight, 3)1 -7.03 2.39 -2.94 0.00
poly(vh weight, 3)2 2.77 1.41 1.96 0.05
poly(vh weight, 3)3 1.82 1.29 1.41 0.16

pol coverage2NoMini -0.54 0.11 -5.08 0.00
vh fuelGasoline 0.17 0.04 4.55 0.00
claim indOne -0.16 0.04 -3.68 0.00

class make2Class2&3 0.10 0.04 2.75 0.01
vh typeTourism 0.01 0.06 0.19 0.85

Table 15: Maximum likelihood estimates, estimated standard errors, t-values and corresponding
p-values, as well as R2 and R2

adj for the model LogLM1_main.
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As already discussed, in the case when a high degree term of a polynomial shows signif-
icance but lower degree terms are not significant, we keep all lower degree terms of the
polynomial in the model too, which is the case of the covariate vh_din. The advantage of
using orthogonal polynomials in our models is that the significance of the parameters of
a polynomial can be interpreted as significance of each term isolated from the influence
of all lower terms of the polynomial. The overall fit of this model is not very good, since
the R2

adj value is less than 10%. Additionally, we can see that some of the main effects
are not significant, which is why we reduce the covariates of the model using the step

function with BIC criterion. The backward model however does not include the covariate
class_make2, which shows significance in LogLM1_main, therefore we manually add it to
the model. The resulting model is:

step(LogLM1_main,direction="backward",data=data1,k=ln(nrow(data1)))

LogLM1_main_red<-lm(ln_standr_claims ~ poly(drv_age1, 2)+

log(vh_cyl)+vh_speed+poly(vh_weight,3)+

pol_coverage2+vh_fuel+claim_ind+class_make2,

data = data1)

R2 = 9.11%, R2
adj = 8.97% Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.72 0.68 1.06 0.29

poly(drv age1, 2)1 5.50 1.10 5.00 0.00
poly(drv age1, 2)2 3.91 1.09 3.60 0.00

log(vh cyl) -0.40 0.09 -4.25 0.00
vh speed -0.00 0.00 -4.69 0.00

poly(vh weight, 3)1 -9.71 1.76 -5.52 0.00
poly(vh weight, 3)2 2.94 1.25 2.36 0.02
poly(vh weight, 3)3 2.87 1.09 2.63 0.01

pol coverage2No Mini -0.54 0.11 -5.11 0.00
vh fuelGasoline 0.15 0.03 4.27 0.00
claim indOne -0.16 0.04 -3.69 0.00

class make2Class2&3 0.10 0.04 2.70 0.01

Table 16: Maximum likelihood estimates, estimated standard errors, t-values and corresponding
p-values, as well as R2 and R2

adj for the model LogLM1_main_red.

R2
adj is almost the same in model LogLM1_main_red compared to model LogLM1_main, but all

of the covariates in the model LogLM1_main_red are significant. Therefore, LogLM1_main_red
shows much more parsimonious fit. Now we try to improve the model LogLM1_main_red
by allowing interaction effects to enter the model:

LogLM1_inter<-lm(ln_standr_claims~poly(drv_age1, 2)+log(vh_cyl) +

vh_speed + poly(vh_weight, 3)+pol_coverage2+vh_fuel+

claim_ind+class_make2+drv_age1:vh_speed+

drv_age1:poly(vh_weight,3)+log(vh_cyl):vh_speed+

vh_speed:poly(vh_weight,3)+drv_age1:pol_coverage2+

drv_age1:claim_ind+pol_coverage2:claim_ind, data=data1)
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R2 = 9.27%, R2
adj = 9.00% Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.40 4.05 0.59 0.55

poly(drv age1, 2)1 -21.28 15.01 -1.42 0.16
poly(drv age1, 2)2 3.70 1.11 3.32 0.00

log(vh cyl) -0.66 0.54 -1.21 0.23
vh speed -0.02 0.02 -0.74 0.46

poly(vh weight, 3)1 21.07 16.08 1.31 0.19
poly(vh weight, 3)2 -25.36 10.68 -2.37 0.02
poly(vh weight, 3)3 -1.36 9.41 -0.14 0.89

pol coverage2No Mini -1.07 0.74 -1.46 0.15
vh fuelGasoline 0.13 0.04 3.68 0.00
claim indOne -0.06 0.66 -0.09 0.93

class make2Class2&3 0.10 0.04 2.54 0.01
vh speed:drv age1 0.00 0.00 1.38 0.17

poly(vh weight, 3)1:drv age1 -0.09 0.10 -0.89 0.37
poly(vh weight, 3)2:drv age1 0.17 0.10 1.63 0.10
poly(vh weight, 3)3:drv age1 0.04 0.09 0.39 0.70

log(vh cyl):vh speed 0.00 0.00 0.43 0.67
vh speed:poly(vh weight, 3)1 -0.15 0.09 -1.72 0.08
vh speed:poly(vh weight, 3)2 0.12 0.05 2.21 0.03
vh speed:poly(vh weight, 3)3 0.00 0.05 0.10 0.92

pol coverage2No Mini:drv age1 0.01 0.01 1.25 0.21
claim indOne:drv age1 -0.00 0.00 -0.22 0.83

pol coverage2No Mini:claim indOne -0.06 0.64 -0.09 0.93

Table 17: Maximum likelihood estimates, estimated standard errors, t-values and corresponding
p-values, as well as R2 and R2

adj for the model LogLM1_inter.

The fit of the model LogLM1_inter is not much better than LogLM1_main_red, because
the R2

adj is almost the same and a lot of the covariates are insignificant. Using again the
backward selection on the model LogLM1_inter with the help of the step function and
BIC criterion

step(LogLM1_inter,direction="backward",data=data1,

scope=list(upper= LogLM1_inter, lower= LogLM1_main_red),

k=ln(nrow(data1)))

we get the main effects model LogLM1_main_red. Therefore, none of the interaction effects
were kept by using the backward selection. In order to statistically test the importance
of the interactions we need to perform an F-test for the models LogLM1_main_red and
LogLM1_inter. This is done using the anova function in R. The resulting p-value is not
smaller than 0.05, which tells us that none of the interaction effects can be considered as
statistically significant at 0.05 level:

anova(LogLM1_main_red,LogLM1_inter)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 7202 8432
2 7191 8418 11 14.36 1.12 0.34

Table 18: F-test for the interaction effects in model LogLM1_inter.
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However, if we manually try to remove the insignificant interactions on 0.1 level and leave
the significant ones in the model, we end up with the reduced interaction effects model
which adds only one interaction effect:

LogLM1_inter_red<-lm(ln_standr_claims~poly(drv_age1, 2) + log(vh_cyl) +

vh_speed + poly(vh_weight, 3) + pol_coverage2 + vh_fuel +

claim_ind+vh_speed:poly(vh_weight,2), data=data1)

R2 = 9.18%, R2
adj = 9.03% Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.78 0.68 1.15 0.25

poly(drv age1, 2)1 5.57 1.10 5.07 0.00
poly(drv age1, 2)2 3.83 1.09 3.52 0.00

log(vh cyl) -0.44 0.09 -4.66 0.00
vh speed -0.00 0.00 -2.37 0.02

poly(vh weight, 2)1 17.53 8.94 1.96 0.05
poly(vh weight, 2)2 -16.31 8.05 -2.03 0.04

pol coverage2No Mini -0.56 0.11 -5.25 0.00
vh fuelGasoline 0.13 0.03 3.70 0.00
claim indOne -0.16 0.04 -3.65 0.00

class make2Class2&3 0.10 0.04 2.56 0.01
vh speed:poly(vh weight, 2)1 -0.16 0.05 -3.13 0.00
vh speed:poly(vh weight, 2)2 0.12 0.05 2.53 0.01

Table 19: Maximum likelihood estimates, estimated standard errors, t-values and corresponding
p-values, as well as R2 and R2

adj for the model LogLM1_inter_red.

We can remove all these interactions, because performing an F-test for the removed co-
variates using the ANOVA table results in p-value of 0.75, which means that there is
no statistical evidence that either one of them is significant. If we compare the model
LogLM1_inter_red to LogLM1_main_red, we can spot that the R2

adj of LogLM1_inter_red
is slightly bigger and the interaction term is significant. We can test the significance
of this term using the F-test again, which confirms that the interaction parameters are
significant:

anova(LogLM1_main_red,LogLM1_inter_red)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 7202 8432
2 7201 8426 1 6.43 5.49 0.02

Table 20: F-test for the interaction term in model LogLM1_inter_red.

Finally, in our later model and methods comparison, for Good Driver Data we will consider
the lognormal models LogLM1_main_red and LogLM1_inter_red as best lognormal models.
We can see that the model LogLM1_inter_red has slightly better R2

adj value, however since
they do not differentiate much, we would like to know the performace of both models.
For model diagnostics however, we focus only on LogLM1_inter_red.
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The plot of the internally studentized residuals of LogLM1_inter_red is given in Figure
12. If the model assumptions are satisfied, these residuals are approximately N (0, 1)-
distributed, therefore almost all of the observations should lie on the interval [-3,3]. As
observed, they randomly fluctuate around zero and only 8 observations are outside of the
interval [-3,3]. Therefore, there is no statistical evidence against the model assumptions.
The blue line at 0 is the smoother line of the residuals, whereas the red line around the
0 is the vertical line y = 0. The red dashed lines denote the values y = −3 and y = 3.

Figure 12: Internally studentized residuals of the model LogLM1_inter_red.

Additionally, in Figure 13 we observe the Q-Q plot of the internally studentized residuals,
where the values follow the 45◦ line. We can spot that the distribution shows right
skewness and heavier right tail than the normal distribution, but only for few observations.

Figure 13: Q-Q plot of the internally studentized residuals of the model LogLM1_inter_red.

The model has 408 high leverage points, but since these show only x-outliers we don’t
consider them as influential observations. What is important that none of the Cook’s
Distance values is bigger than 1, so there are no influential points that need to be studied
or removed. Finally, we can conclude that there is no evidence against the lognormal
regression assumptions.
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4.2 Gamma regression model

Similarly as for the lognormal regression models, we don’t consider the covariates drv_age_
lic1 and drv_age_lic2 due to their high correlation with drv_age1 and drv_age2 respec-
tively. This decision was based on fitting different models by removing one of the co-
variates who is highly correlated to another one. The main effects gamma model which
includes the covariates presented in Section 3.2 is:

GamReg1_main<-glm(standr_claims ~ pol_sit_duration+poly(drv_age1,2)+

poly(drv_age2,2)+log(vh_cyl)+poly(vh_din,5)+

poly(vh_speed,5)+poly(vh_weight,3)+pol_coverage2+

vh_fuel+claim_ind+class_make2+vh_type, data=data1,

family=Gamma(link="log"))

ϕ = 6.07 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.80 2.00 0.40 0.69

pol sit duration 0.02 0.02 1.14 0.26
poly(drv age1, 2)1 5.66 2.79 2.03 0.04
poly(drv age1, 2)2 0.28 2.49 0.11 0.91
poly(drv age2, 2)1 2.81 2.49 1.13 0.26
poly(drv age2, 2)2 -4.63 2.72 -1.70 0.09

log(vh cyl) -0.51 0.24 -2.15 0.03
poly(vh din, 5)1 -6.38 8.81 -0.72 0.47
poly(vh din, 5)2 -1.28 3.24 -0.40 0.69
poly(vh din, 5)3 0.02 2.79 0.01 0.99
poly(vh din, 5)4 0.75 2.64 0.29 0.77
poly(vh din, 5)5 1.97 2.50 0.79 0.43

vh speed 0.00 0.00 0.15 0.88
poly(vh weight, 3)1 -10.76 5.45 -1.97 0.05
poly(vh weight, 3)2 6.11 3.22 1.90 0.06
poly(vh weight, 3)3 -1.06 2.95 -0.36 0.72

pol coverage2NoMini -0.28 0.24 -1.16 0.25
vh fuelGasoline 0.10 0.08 1.18 0.24
claim indOne 0.09 0.10 0.90 0.37

class make2Class2&3 0.11 0.09 1.27 0.21
vh typeTourism 0.03 0.14 0.20 0.84

Table 21: Maximum likelihood estimates , estimated standard errors, Wald ratios and corre-
sponding p-values for the model GamReg1_main.

The estimate for vh_speed is shown as 0.00 due to the rounding to two decimals. The
model’s residual deviance is 8313.4 on 7193 degrees of freedom. If we try to remove the
insignificant covariates using the step function with BIC criterion, we obtain again a
model in which a lot of covariates are not significant. Therefore, we present a reduced
main effects model where we manually removed the insignificant covariates from the model
GamReg1_main:

GamReg1_main_red<-glm(standr_claims ~ drv_age1+poly(drv_age2,2)+

log(vh_cyl)+poly(vh_weight,2), data=data1,

family=Gamma(link="log"))
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ϕ = 6.25 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.04 1.43 1.43 0.15
drv age1 0.01 0.00 2.51 0.01

poly(drv age2, 2)1 2.63 2.51 1.05 0.29
poly(drv age2, 2)2 -4.95 2.75 -1.80 0.07

log(vh cyl) -0.71 0.19 -3.72 0.00
poly(vh weight, 2)1 -14.42 3.92 -3.68 0.00
poly(vh weight, 2)2 7.51 2.61 2.87 0.00

Table 22: Maximum likelihood estimates , estimated standard errors, Wald ratios and corre-
sponding p-values for the model GamReg1_main_red.

The model GamReg1_main_red has residual deviance 8373.2 on 7207 degrees of freedom
and the significance of the covariates is much better. If we perform partial deviance test
for the removed covariates from GamReg1_main, we obtain the p-value 0.77, which indi-
cates that the null hypothesis cannot be rejected i.e. we can proceed with the reduced
main effects model GamReg1_main_red. Finally, performing a residual deviance test on the
model GamReg1_main_red results in p-value 1, therefore the model shows no lack of fit.
In the next step we want to improve the fit using interaction effects. We include the inter-
action drv_age1:poly(vh_weight,3) as drv_age1:poly(vh_weight,2) because the polyno-
mial of vh_weight in the main effects is of second degree.

GamReg1_inter<-glm(standr_claims ~ drv_age1+poly(drv_age2,2)+

log(vh_cyl)+poly(vh_weight,2)+drv_age1:poly(drv_age2,2)+

drv_age1:poly(vh_weight,2)+drv_age2:poly(vh_weight,2),

data=data1, family=Gamma(link="log"))

ϕ = 5.30 Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.98 1.32 1.50 0.13
drv age1 0.01 0.00 2.82 0.00

poly(drv age2, 2)1 -10.32 15.66 -0.66 0.51
poly(drv age2, 2)2 10.26 11.76 0.87 0.38

log(vh cyl) -0.71 0.18 -4.02 0.00
poly(vh weight, 2)1 -6.51 11.48 -0.57 0.57
poly(vh weight, 2)2 -7.50 12.03 -0.62 0.53

drv age1:poly(drv age2, 2)1 0.25 0.25 0.99 0.32
drv age1:poly(drv age2, 2)2 -0.28 0.18 -1.52 0.13
drv age1:poly(vh weight, 2)1 -0.12 0.19 -0.61 0.54
drv age1:poly(vh weight, 2)2 0.23 0.20 1.18 0.24
poly(vh weight, 2)1:drv age2 -0.05 0.10 -0.52 0.61
poly(vh weight, 2)2:drv age2 0.05 0.09 0.55 0.58

Table 23: Maximum likelihood estimates , estimated standard errors, Wald ratios and corre-
sponding p-values for the model GamReg1_inter.

The summary output of the model is given by Table 23. The residual deviance is 8338.0 on
7201 degrees of freedom. Many of covariates are insignificant, so we would like to reduce
this model as well. If we perform backward stepwise selection of the model using BIC
criterion with GamReg1_main_red as a lower limit, we get the model GamReg1_main_red. If
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we perform partial deviance test for the interaction terms in GamReg1_inter, we obtain
a p-value of 0.36, hence the interactions do not show statistical significance at a 0.05 level.
By removing the interactions drv_age1:poly(vh_weight,2) and drv_age2:poly(vh_weight,

2) from the model GamReg1_inter we obtain the reduced model

GamReg1_inter_red<-glm(standr_claims ~ drv_age1+poly(drv_age2,2)+

log(vh_cyl)+poly(vh_weight,2)+drv_age1:poly(drv_age2, 2),

data=data1, family=Gamma(link="log"))

ϕ = 5.49 Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.02 1.34 1.51 0.13
drv age1 0.01 0.00 2.92 0.00

poly(drv age2, 2)1 -11.92 15.85 -0.75 0.45
poly(drv age2, 2)2 9.66 11.92 0.81 0.42

log(vh cyl) -0.72 0.18 -4.00 0.00
poly(vh weight, 2)1 -14.06 3.67 -3.83 0.00
poly(vh weight, 2)2 7.32 2.45 2.99 0.00

drv age1:poly(drv age2, 2)1 0.27 0.25 1.07 0.29
drv age1:poly(drv age2, 2)2 -0.28 0.19 -1.49 0.14

Table 24: Maximum likelihood estimates , estimated standard errors, Wald ratios and corre-
sponding p-values for the model GamReg1_inter_red.

whose residual deviance is 8352.2 on 7205 degrees of freedom. The interaction effect
in this model shows significance on 0.15 level, which is not particularly strong. Partial
deviance test for the removed terms from the model GamReg1_inter results in p-value of
0.61, therefore we can proceed with the reduced model GamReg1_inter_red. Performing a
residual deviance test for this interaction with the help of the model GamReg1_main_red,
we obtain a p-value of 0.15, which indicates that we cannot reject the null hypothesis on
0.05 level, however the p-value is also not particularly large so we would like to investigate
the performance of this model as well on the test data set. The residual deviance test
for GamReg1_inter_red results in a p-value of 1, therefore the model shows no lack of fit.
Finally, as gamma regression models for Good Driver Data we focus on GamReg1_main_red

and GamReg1_inter_red.

4.3 D-vine quantile regression model

We fit two D-vine regression models using the response variable on original scale stan-
dardized claims and the transformed response variable ln(standardized claims). For Good
Driver Data we have fully nonparametric approach i.e. we estimate the marginals using
kernel smoothing estimator which in implemented in the R package kde1d (Nagler and
Vatter (2022)) and then fit a D-vine regression model using nonparametric bivariate cop-
ulas. This nonparametric estimator is implemented in the R package vinereg (Nagler
(2022)), which we use to fit these D-vine regression models, however before we fit the
models we look at the histograms of the marginals of the copula data, which we obtain
using the R package kde1d (Nagler and Vatter (2022)).
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In our D-vine models we consider all the covariates, except drv_age2 and drv_age_lic2,
since they contain a lot of zeros for the observations where driver 2 is not present. First we
present the empirical normalized contour plots of our continuous variables in Figure 14,
which are obtained by transforming the original data to copula data scale using marginal
empirical distributions.

Figure 14: Good Driver training data set. Lower: empirical normalized contour plots for the
pair copulas, diagonal: histogram of the margins, upper: pairs plots of copula data and their
Kendall’s taus.

We can see that the empirical copula data histograms do not look uniform for pol_duration,
pol_sit_duration, vh_age, vh_sale_begin and vh_sale_end. Additionally, the pair copu-
las where one of the margins is pol_sit_duration look strange, which is another indication
that we may need to transform this covariate to ordinal. Eventually we expect that some
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of the pair copulas that have high Kendall’s tau will be included in our models. Once we
have our D-vine regression models, we can compare the fitted normalized contour plots
with the empirical ones, However, before we transform any of the marginals to ordinal
variables and fit the models, we estimate the marginals nonparametrically, using the R
function kde1d, which can be found in the R package with the same name (Nagler and
Vatter (2022)). The estimated densities of the marginals and their respective histograms
are presented in Figure 15.

Figure 15: Histograms of the continuous marginals in Good Driver training data set. The red
line denotes their kde1d estimators.
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Using these kde1d estimators, we transform the data to copula data and we present the
histograms of the marginals in Figure 16. The histograms of policy situation duration and
vehicle sale end look particularly nonuniform, which is why we transform these covariates
to ordinal: sitdur_ordinal and saleend_ordinal. The have respectively 20 and 33 levels.

Figure 16: Histograms of the continuous marginals of the copula scale data in Good Driver
training data set.

The histograms of the copula data marginals difference in duration, vehicle age, engine
cylinder displacement, motor power, vehicle sale begin and standardized claims also do
not look so uniform, however, we continue to work with them in our models.
An important preliminary step is transforming all of the discrete covariates in the Good
Driver training data set to ordinal covariates. Their levels were sorted in increasing or-
der based on their influence on the response. After we analysed our data and did the
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necessary transformations of some of the covariates to ordinal type, we can proceed with
modelling.
We present the model DVReg1_nonpar_orig which models the response variable on origi-
nal scale standardized claims, and the model DVReg1_nonpar_ln which predicts the trans-
formed response variable ln(standardized claims). The advantage of using the transformed
response as our response variable is that it guarantees positive value of the variable stan-
dardized claims, which we can obtain using the exponential function. The order of the
variables in these models is presented in Table 25 and the fitted normalized contour plots
in Figure 17 and Figure 18, respectively.

Order DVReg1 nonpar orig DVReg1 nonpar ln
1 standr claims ln standr claims
2 vh cyl vh weight
3 pol payd vh cyl
4 pol usage drv age1
5 vh fuel vh sale begin
6 claim ind claim ind
7 pol coverage vh din
8 class make2 pol duration
9 saleend ordinal vh fuel
10 vh din pol coverage
11 drv age1 saleend ordinal
12 drv drv2
13 gender
14 vh age
15 vh speed
16 drv age lic1
17 pol diff duration
18 pol pay freq
19 sitdur ordinal
20 vh sale begin
21 pol duration

Table 25: Order of variables in the D-vine regression models DVReg1_nonpar_orig and
DVReg1_nonpar_ln.

From Table 25 we can see that the model DVReg1_nonpar_orig contains much more co-
variates than the model with transformed response, DVReg1_nonpar_ln. Additionally, in
the model DVReg1_nonpar_orig almost all of the ordinal covariates are present (except
for vh_type) and they are influential, since they are included early in the model. On the
other hand, in DVReg1_nonpar_ln the highly influential covariates are of continuous type
and most of the convariates in the model are continuous. All of the covariates that are
present in the model DVReg1_nonpar_ln are also present in DVReg1_nonpar_orig, except
for the most influential covariate, vh_weight.
In Figure 17 we can see that few of the fitted pair copulas in DVReg1_nonpar_orig indicate
high Kendall’s tau values. There are pair copulas that look particularly nonparamet-
ric, for example the pair copula with marginals (drv_drv2, gender). We are interested
in comparing the fitted pair copulas in the first tree of the D-vine regression model
DVReg1_nonpar_orig with continuous marginals, which are presented in the last row of
Figure 17, with their respective empirical normalized contour plots in Figure 14. The
normalized contour plots of the pair copulas with marginals (saleend_ordinal, vh_din)
and (sitdur_ordinal, vh_sale_begin) look particularly different from their respective em-
pirical normalized contour plots. In these cases, the nonparametric fitted copulas do not
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catch all of the patterns in the data. Additionally, the normalized contour plots of the pair
copulas with marginals (standr_claims, vh_cyl) and (vh_age, vh_speed) look different for
higher contour levels than their empirical plots. All other fitted pair copulas in the first
tree with continuous marginals look similar to their respective empirical pair copulas in
Figure 14.

Figure 17: Normalized fitted contour plots for the nonparametric pair copulas of the
D-vine regression model DVReg1_nonpar_orig, where the variables of the model are
presented by X1=standr claims, X2=vh cyl, X3=pol payd, X4=pol usage, X5=vh fuel,
X6=claim ind, X7=pol coverage, X8=class make2, X9=saleend ordinal, X10=vh din,
X11=drv age1, X12=drv drv2, X13=gender, X14=vh age, X15=vh speed, X16=drv age lic1,
X17=pol diff duration, X18=pol pay freq, X19=sitdur ordinal, X20=vh sale begin and
X21=pol duration as their order in Table 25.
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Figure 18: Normalized fitted contour plots for the nonparametric pair copulas of the D-
vine regression model DVReg1_nonpar_ln, where the variables of the model are presented
by X1=ln standr claims, X2=vh weight, X3=vh cyl, X4=drv age1, X5=vh sale begin,
X6=claim ind, X7=vh din, X8=pol duration, X9=vh fuel, X10=pol coverage and
X11=saleend ordinal, as their order in Table 25.

Compared to DVReg1_nonpar_orig, the model DVReg1_nonpar_ln is less complex. In Figure
14 we can see that the empirical normalized contour plots of the pair copulas of standard-
ized claims and the covariates look identical with the empirical normalized contour plots
of the pair copulas of ln(standardized claims) and the covariates. Surprisingly however, we
obtain much different D-vine regression model DVReg1_nonpar_ln using the transformed
response variable than the model with the response on original scale DVReg1_nonpar_orig.
Again, we are interested in the fitted normalized contour plots of the pair copulas in the
first tree of the model DVReg1_nonpar_ln with continuous marginals, which are visualised
in the last row of Figure 18, as we want to compare them with their respective empirical
normalized contour plots in Figure 14. In this model, all of the normalized contour plots
of the fitted nonaprametric pair copulas look similar to the normalized contour plots of
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their respective empirical pair copulas. Additionally, we can see that early in the model
two highly dependent variables were included in the model, vh_weight and vh_cyl. In the
next section we introduce the linear quantile regression models, which contain the same
variables as the D-vine regression models, and we compare all four regression approaches
on the Good Driver Data.

4.4 Comparison of the models

Before we proceed with comparison of the regression models, we fit linear quantile regres-
sion models LQReg1_orig and LQReg1_ln using the same variables which are present in the
models DVReg1_nonpar_orig and DVReg1_nonpar_ln respectively, such that instead of the
ordinal covariates sitdur_ordinal and saleend_ordinal we use the continuous covariates
pol_sit_duration and vh_sale_end. As a result, the model LQReg1_orig uses the response
on the original scale standardized claims, whereas the model LQReg1_ln uses the response
on ln scale, ln(standardized claims). However, in the model LQReg1_orig, we discard the
covariates gender and pol_duration, which are present in DVReg1_nonpar_orig, in order to
avoid singular design matrix. The decision was based on fitting a linear regression model
using the variables from the model DVReg1_nonpar_orig, which in its summary presented
NA outputs for these variables.
The main obstacle in the comparison of all resulting models is that lognormal and gamma
regression models predict the conditional mean of the response, whereas quantile regres-
sion predicts the conditional meadian of the response for a quantile level 0.5. We compare
the models based on log likelihood, AIC ,BIC, training error, test error and interval score
values on the scale of standardized claims. The transformation of these measures on orig-
inal scale was studied in Section 2.8. The models with larger log likelihood and smaller
AIC, BIC, training error, test error and interval score values are considered to be better.
The log likelihood, AIC, BIC and the training error are calculated on the same data set
we use to fit the models, which is the Good Driver training data set. The test error
and the interval score are calculated on a new data set, which is the test data set of
the Good Driver Data. To make these measures comparable for all models, we calculate
them on the standardized claims scale, using the exponential function for the models with
ln(standardized claims) as a response variable. Models with smaller training and test
error are considered to be better, since that indicates more parsimonious fit of the model.
The training errors by themselves are not as informative, because smaller training error
of a model also indicates overfitting. The test errors are of special interest, because they
indicate the performance of the model on a new data set.
Additionally, we calculate the interval score values for 95% prediction interval and for
90% prediction interval. The results are presented in Table 26, where the best values per
performance measure are identified in gray.
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df LogLik AIC BIC
Training

error
Test
error

Interval
score α = 0.05

Interval
score α = 0.1

LogLM1 main red 13 14203.96 -28381.91 -28292.42 0.054444 0.004635 0.00834 0.01302
LogLM1 inter red 14 14206.71 -28385.41 -28289.04 0.054448 0.004640 0.00826 0.01294
GamReg1 main red 8 13556.03 -27096.05 -27040.98 0.053512 0.004288 0.00804 0.01300
GamReg1 inter red 10 13566.68 -27113.37 -27044.53 0.053445 0.004294 0.00805 0.01296
DVReg1 nonpar orig 2486 13609.09 -22246.16 -5133.01 0.053883 0.004270 0.00890 0.01312
DVReg1 nonpar ln 941 14793.27 -27702.92 -21219.72 0.054206 0.004468 0.00811 0.01245
LQReg1 orig 24 10575.79 -21103.58 -20938.37 0.054400 0.004582 0.00744 0.01217
LQReg1 ln 13 13907.66 -27789.31 -27699.82 0.054361 0.004534 0.00752 0.01215

Table 26: Comparison of different regression models on Good Driver Data based on log likeli-
hood, AIC, BIC, training error, test error and interval score values on the original standardized
claims scale. The best values per column are identified in gray.

For the nonparametric D-vine regression models, as a penalty for complexity in comput-
ing AIC and BIC criterion we take the degrees of freedom of all the pair copulas in the
model. From Table 26, we can see that the complexity of the D-vine regression mod-
els is much bigger than the other regression models, based on the degrees of freedom.
However, the model DVReg1_nonpar_orig has significantly more degrees of freedom than
DVReg1_nonpar_ln, while all perfomance measure values of DVReg1_nonpar_orig are worse
except for the training and test errors.
Based on the log likelihood, the D-vine regression model with transformed response vari-
able ln(standardized claims) shows best performance. Based on the AIC and BIC criterion
however, the lognormal models show the best performance. According to training and
test error values, the gamma regression models GamReg1_main_red and GamReg1_inter_red

and the D-vine regression model DVReg1_nonpar_orig have the lowest errors on the train-
ing and test data set of the Good Driver Data. The performance of the models on the
test data set is particularly important, because that way we can measure the predictive
accuracy of the model on a new data set. For that purpose we can look at the interval
score values, where the linear quantile regression models have the lowest values.
What we can also notice from the performance measures is that the D-vine regression
model and the linear quantile regression model with the transformed response have bet-
ter values for most performance measures than the models with the original response
variable. The linear quantile regression models have better interval score values than
their respective D-vine regression models, however their log likelihood, training and test
error values are worse than the D-vine regression models. In particular, even though the
number of degrees of freedom of DVReg1_nonpar_orig is much larger than the number of
degrees of freedom of LQReg1_nonpar_ln, the AIC value of DVReg1_nonpar_orig is better
than the AIC value of LQReg1_nonpar_orig.
The gamma regression models have worse log likelihood, AIC and BIC values than lognor-
mal regression models, but their training and test error values are better. Additionally,
the interaction terms in both gamma and lognormal regression models do not improve
the main effects models significantly.
Finally, we take the models LogLM1_inter_red, GamReg1_inter_red, DVReg1_nonpar_ln and
LQReg1_ln as most parsimonious per regression method. First, we present the covariates
of these four models in Table 28.
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LogLM1 inter red GamReg1 inter red DVReg1 nonpar ln
poly(drv age1,2) drv age1 vh weight

log(vh cyl) poly(drv age2,2) vh cyl
vh speed log(vh cyl) drv age1

poly(vh weight, 2) poly(vh weight, 2) vh sale begin
pol coverage2 drv age1:poly(drv age2, 2) claim ind

vh fuel vh din
claim ind pol duration

class make2 vh fuel
vh speed:poly(vh weight,2) pol coverage

saleend ordinal

Table 27: Covariates included in each of the models LogLM1_inter_red, GamReg1_inter_red
and DVReg1_nonpar_ln. The model LQReg1_ln has the same covariates as DVReg1_nonpar_ln,
but instead of saleend_ordinal we use vh_sale_end.

Only three covariates are present in all four models, drv_age1, vh_cyl and vh_weight.

Figure 19: Histograms of the fitted values of standardized claims of the models
LogLM1_inter_red, GamReg1_inter_red, DVReg1_nonpar_ln and LQReg1_ln on the Good
Driver training data set.

In Figure 19 we present the histograms of fitted values on original scale of the models
LogLM1_inter_red, GamReg1_inter_red, DVReg1_nonpar_ln and LQReg1_ln on the Good
Driver training data set and the histogram of the original data of the variable standard-
ized claims. By fitted values of the models DVReg1_nonpar_ln and LQReg1_ln, we mean the
0.5 conditional quantiles of the response on the original standardized claims scale. All of
the histograms indicate that the variables included in the models can not predict the re-
sponse standardized claims well. The histograms of LogLM1_inter_red, DVReg1_nonpar_ln
and LQReg1_ln are similar and these models predict well the small values of standardized
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claims, however, they underestimate the tail. The model GamReg1_inter_red predicts
better the larger values of the response, but it overestimates the small values. The range
of the fitted values of the model GamReg1_inter_red is larger, which is not the case with
the other three models who have much smaller range of the fitted values.
We are more interested in the histograms of the predicted values of standardized claims
on the Good Driver test data set, which are presented in Figure 20. The histograms look
similar to the histograms on the training data set. In this case however, the D-vine regres-
sion model DVReg1_nonpar_ln predicts the tail better than the models LogLM1_inter_red
and LQReg1_ln. The model GamReg1_inter_red predicts well the big values of standardized
claims, but overestimates the small values.

Figure 20: Histograms of the predicted values of standardized claims of the models
LogLM1_inter_red, GamReg1_inter_red, DVReg1_nonpar_ln and LQReg1_ln on the Good
Driver test data set.

Additionally, we present the 90% prediction intervals of the models in Figure 21. We
can see that most of the original values of standardized claims belong to the prediction
intervals of the models, except the big values of standardized claims at the right end of the
plots. The model LQReg1_inter_red has most narrow prediction interval, although, this
model has lowest interval score for the 90% prediction interval. Overall, the prediction
intervals of the four regression models look similarly.
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Figure 21: 90% prediction intervals of standardized claims on the Good Driver test data set for
the models LogLM1_inter_red, GamReg1_inter_red, DVReg1_nonpar_ln and LQReg1_ln. The
black line denotes the original values of standardized claims, the blue line denotes the smoothed
line of the predicted values and the red area denotes the prediction interval, where the red lines
are the smoothed limits of the prediction interval. The observations are sorted in increasing
order based on the original values of standardized claims.

In Figure 22 we present the plots of the predicted values of the models on original scale
against the values of standardized claims, which we plot using the Good Driver test data
set. Again, as predicted values of the quantile regression models we use the 0.5 conditional
quantiles. If the fit of the model is good, we expect the values to be randomly scattered
around the 45◦ line. As shown in Figure 22, that is hardly the case and again the
models LogLM1_main_red, DVReg1_nonpar_ln and LQReg1_ln underestimate the big values
of the response variable, whereas the model GamReg1_inter_red better estimates the bigger
values of the response, but underestimates the small values.

Figure 22: Plots of the fitted values on original scale against the original values of standardized
claims on the Good Driver test data set for the models LogLM1_inter_red, GamReg1_inter_red,
DVReg1_nonpar_ln and LQReg1_ln. The blue line denotes the 45◦ line.



4.4 Comparison of the models 79

Finally, since the models DVReg1_nonpar_ln and LQReg1_ln have similar performance mea-
sures values and show similar behaviour, we would like to investigate the marginal effects
of the continuous covariates on the predicted quantiles of the models. The marginal effect
of a continuous covariate is presented by a plot of the continuous covariate xi against the
fitted conditional quantiles q̂iα, i = 1, . . . , ntr, where all other covariates are set to their
observed value. The marginal effect plots of the models for three different quantile levels
0.1, 0.5 and 0.9. are presented in Figure 23.

Figure 23: Marginal effect plots for the continuous covariates on the predicted quantiles on
Good Driver training data set for three different quantile levels. Left :DVReg1_nonpar_ln,
right :LQReg1_ln.

The marginal effect plots for the two quantile regression models look similar where there
is sufficient data. For the both models we can spot nonlinearity in the plots for the covari-
ates vh_sale_end (respectively saleend_ordinal), vh_cyl, vh_sale_begin and vh_weight.
However, the marginal effect plots of the model DVReg1_nonpar_ln indicate stronger non-
linearity than the marginal effect plots of the model DVReg1_nonpar_ln.
Considering the advantages of using D-vine quantile regression over lognormal, gamma
and linear quantile regression, some of which are model flexibility, avoiding issues like
multicollinearity, need for transformations and interactions, we can say that on the Good
Driver Data set, this D-vine quantile regression model seems to be beneficial. One of
the disadvantages of the model is its complexity, which is large due its nonparametric
marginal and pair copula esimates. For Bad Driver Data Set however, we will also fit a
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parametric D-vine regression model, therefore we will obtain a model whose complexity
is more easily comparable with lognormal, gamma and linear regression models.
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5 Modelling on Bad Driver Data

After fitting and comparing different regression models on Good Driver Data, we repeat
this procedure on Bad Driver Data, where the observations do not belong to the best
bonus malus class 0.5. Again, in the lognormal and gamma regression models we allow for
interactions, and we fit nonparametric D-vine regression models using both the response
variable standardized claims and the transformed response ln(standardized claims) as a
dependent variable. In this case however, the lognormal models on Bad Driver Data have
higher R2

adj than the lognormal models fitted on Good Driver Data, therefore we also
fit parametric D-vine regression models using finite mixture of skew-normal and normal
distributions as marginal estimates and parametric pair copulas. Additinally, we fit two
linear quantile regression models, one predicting the original response and one predicting
the transformed response, which contain the same variables as the best D-vine regression
models with these respective response variables. Finally, we compare the fitted models
using the log likelihood, AIC, BIC, train error, test error and interval score as performance
measures.

R2 = 12.15%, R2
adj = 11.12% Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.34 0.23 -14.52 0.00
pol bonus 0.23 0.18 1.31 0.19

pol duration 0.00 0.00 0.34 0.73
pol sit duration 0.02 0.02 1.04 0.30

poly(drv age2, 3)1 -1.09 1.18 -0.92 0.36
poly(drv age2, 3)2 -0.11 1.18 -0.09 0.93
poly(drv age2, 3)3 0.33 1.09 0.30 0.76

poly(drv age lic1, 3)1 5.12 1.65 3.10 0.00
poly(drv age lic1, 3)2 1.38 1.30 1.06 0.29
poly(drv age lic1, 3)3 -3.92 1.14 -3.43 0.00

poly(vh cyl, 2)1 -6.61 2.14 -3.08 0.00
poly(vh cyl, 2)2 3.44 1.93 1.78 0.08
poly(vh din, 3)1 -1.02 4.04 -0.25 0.80
poly(vh din, 3)2 -2.68 1.99 -1.35 0.18
poly(vh din, 3)3 -2.82 1.65 -1.71 0.09

poly(vh speed, 2)1 -0.53 2.97 -0.18 0.86
poly(vh speed, 2)2 -1.60 1.70 -0.94 0.35
poly(vh weight, 5)1 -4.89 2.39 -2.04 0.04
poly(vh weight, 5)2 1.26 1.46 0.86 0.39
poly(vh weight, 5)3 0.99 1.24 0.79 0.43
poly(vh weight, 5)4 -3.38 1.19 -2.84 0.00
poly(vh weight, 5)5 1.74 1.11 1.56 0.12

pol coverage2NoMini -0.42 0.14 -3.05 0.00
pol usage2NoRetired 0.02 0.10 0.17 0.86

vh fuelGasoline 0.17 0.07 2.48 0.01
claim indOne -0.13 0.07 -1.77 0.08

class make2Class2&3 0.14 0.06 2.25 0.02
gender2AllOther 0.03 0.05 0.51 0.61

Table 28: Maximum likelihood estimates, estimated standard errors, t-values and corresponding
p-values, as well as R2 and R2

adj for model LogLM2_main.
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5.1 Lognormal regression model

In Section 3.3 we showed that the Kendall’s taus of drv_age1 and drv_age_lic1, and
of drv_age2 and drv_age_lic2 are close to 1, so in order to avoid multicollinearity, we
include only drv_age2 and drv_age_lic1 in our models, since the combination of these
covariates in the model showed most parsimonious fit. The main effects lognormal model
which includes the covariates presented in Section 3.3 is:

LogLM2_main<-lm(ln_standr_claims~pol_bonus+pol_duration+pol_sit_duration+

poly(drv_age2,3)+poly(drv_age_lic1,3)+poly(vh_cyl,2)+

poly(vh_din,3)+poly(vh_speed,2)+poly(vh_weight,5)+

pol_coverage2+pol_usage2+vh_fuel+claim_ind+

class_make2+gender2, data=data2)

and its summary is presented in Table 28. We can notice that the R2
adj is small, only

11.12%, and some of the covariates are insignificant, especially the higher terms of some
of the polynomials. Since backward elimination of covariates using the BIC criterion elim-
inates a lot of significant covariates, we remove the covariates from the model manually.
Namely, we remove pol_duration, pol_sit_duration, poly(drv_age2,3), poly(vh_speed,2),
pol_usage2, gender2 and we lower the degree of polynomial of vh_din. The resulting model
is:

LogLM2_main_red<-lm(ln_standr_claims~pol_bonus+poly(drv_age_lic1,3)+

poly(vh_cyl,2)+poly(vh_din,2)+poly(vh_weight,5)+

pol_coverage2+vh_fuel+claim_ind+class_make2, data=data2)

R2 = 11.94%, R2
adj = 11.30% Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.28 0.21 -15.70 0.00
pol bonus 0.25 0.18 1.43 0.15

poly(drv age lic1, 3)1 5.28 1.13 4.67 0.00
poly(drv age lic1, 3)2 1.24 1.15 1.08 0.28
poly(drv age lic1, 3)3 -3.80 1.12 -3.39 0.00

poly(vh cyl, 2)1 -6.06 2.10 -2.89 0.00
poly(vh cyl, 2)2 3.75 1.89 1.99 0.05
poly(vh din, 2)1 -1.62 2.13 -0.76 0.45
poly(vh din, 2)2 -3.82 1.71 -2.23 0.03

poly(vh weight, 5)1 -5.72 2.06 -2.77 0.01
poly(vh weight, 5)2 2.06 1.36 1.52 0.13
poly(vh weight, 5)3 0.36 1.12 0.32 0.75
poly(vh weight, 5)4 -3.63 1.11 -3.26 0.00
poly(vh weight, 5)5 2.02 1.09 1.86 0.06

pol coverage2NoMini -0.42 0.14 -3.04 0.00
vh fuelGasoline 0.16 0.07 2.45 0.01
claim indOne -0.13 0.07 -1.79 0.07

class make2Class2&3 0.14 0.06 2.28 0.02

Table 29: Maximum likelihood estimates, estimated standard errors, t-values and corresponding
p-values, as well as R2 and R2

adj for model LogLM2_main_red.
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and its output is presented in Table 29. In the model LogLM2_main_red all of the covariates
are significant and on 0.1 level the R2

adj is slightly improved, except for the covariate
pol_bonus, whose p-value is 0.15 so it is debatable whether we should keep it in the
model, however, we decide to keep it because this variable appears in a lot of interaction
terms presented in Section 3.3. If we perform an F-test for the removed covariates, we
obtain a p-value of 0.85, which indicates that none of the removed terms is statistically
significant. The R2

adj of the reduced model LogLM2_main_red is still small, so in the next
step we will try to improve it by allowing for interaction effects in the model. To the
model LogLM2_main_red we add all of the possible interactions between the covariates,
which defines the model LogLM2_inter, whose output is presented in Table 30.

R2 = 12.75%, R2
adj = 11.24% Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.04 1.01 -3.01 0.00
pol bonus 1.32 1.71 0.77 0.44

poly(drv age lic1, 3)1 2.76 13.94 0.20 0.84
poly(drv age lic1, 3)2 1.62 1.27 1.28 0.20
poly(drv age lic1, 3)3 -4.24 1.23 -3.43 0.00

poly(vh cyl, 2)1 5.65 14.40 0.39 0.69
poly(vh cyl, 2)2 2.84 4.58 0.62 0.54
poly(vh din, 2)1 -15.97 18.53 -0.86 0.39
poly(vh din, 2)2 20.22 14.53 1.39 0.16

poly(vh weight, 5)1 -1.13 16.64 -0.07 0.95
poly(vh weight, 5)2 -6.86 11.05 -0.62 0.53
poly(vh weight, 5)3 0.19 4.71 0.04 0.97
poly(vh weight, 5)4 -10.17 3.20 -3.18 0.00
poly(vh weight, 5)5 1.16 2.78 0.42 0.68

pol coverage2NoMini -0.84 0.81 -1.04 0.30
vh fuelGasoline 0.22 0.20 1.12 0.26
claim indOne -0.13 0.07 -1.84 0.07

class make2Class2&3 0.57 0.28 2.03 0.04
pol bonus:drv age lic1 0.01 0.01 0.47 0.64

pol bonus:vh cyl -0.00 0.00 -0.87 0.38
pol bonus:poly(vh din, 2)1 27.80 15.65 1.78 0.08
pol bonus:poly(vh din, 2)2 -20.66 18.21 -1.13 0.26

pol bonus:poly(vh weight, 2)1 -15.39 13.61 -1.13 0.26
pol bonus:poly(vh weight, 2)2 10.28 9.99 1.03 0.30

drv age lic1:vh cyl -0.00 0.00 -0.50 0.62
poly(vh din, 2)1:drv age lic1 0.02 0.17 0.11 0.91
poly(vh din, 2)2:drv age lic1 -0.27 0.20 -1.34 0.18

poly(vh weight, 5)1:drv age lic1 -0.07 0.17 -0.43 0.67
poly(vh weight, 5)2:drv age lic1 0.26 0.18 1.45 0.15
poly(vh weight, 5)3:drv age lic1 0.08 0.20 0.38 0.71
poly(vh weight, 5)4:drv age lic1 0.27 0.15 1.78 0.07
poly(vh weight, 5)5:drv age lic1 0.04 0.13 0.35 0.73

vh cyl:vh din -0.00 0.00 -0.27 0.79
vh cyl:poly(vh weight, 2)1 0.01 0.01 0.72 0.47
vh cyl:poly(vh weight, 2)2 0.00 0.00 0.02 0.99
poly(vh weight, 2)1:vh din -0.00 0.08 -0.04 0.97
poly(vh weight, 2)2:vh din -0.05 0.06 -0.82 0.41

pol bonus:pol coverage2NoMini 0.39 0.93 0.42 0.68
pol bonus:class make2Class2&3 -0.63 0.40 -1.57 0.12

pol coverage2NoMini:drv age lic1 0.01 0.01 0.49 0.63
vh fuelGasoline:vh din -0.00 0.00 -0.32 0.75

Table 30: Maximum likelihood estimates, estimated standard errors, t-values and corresponding
p-values, as well as R2 and R2

adj for model LogLM2_inter.
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Compared to LogLM2_main_red, the model LogLM2_inter has smaller R2
adj and rarely which

of the parameters shows significance on a 0.1 level. If we perform an backward elimination
of covariates on the model LogLM2_inter using the step function and BIC criterion, with
the model LogLM2_main_red as a lower boundary model,

step(LogLM2_inter,direction="backward",data=data2,

scope=list(upper= LogLM2_inter, lower= LogLM2_main_red),

k=ln(nrow(data2)))

we obtain the main effect model LogLM2_main_red, which means that using this elimination
criterion, all of the interaction terms were eliminated. If we perform an F-test for the
interaction terms in the model LogLM2_inter, we obtain a p-value of 0.55, meaining that
none of the interaction terms are significant. This result may be due to the same few
covariates being present in the interaction terms in the model, which is why also the main
effect terms lost their significance. That is why in the next step we try to reduce the
model LogLM2_inter by manually removing the insignificant terms, in order to obtain a
reduced model which also contains significant interaction terms. The resulting model is:

LogLM2_inter_red<-lm(ln_standr_claims ~ pol_bonus+poly(drv_age_lic1,3)+

poly(vh_cyl,2)+poly(vh_din,2)+poly(vh_weight,5)+pol_coverage2+

vh_fuel+claim_ind+class_make2+drv_age_lic1:poly(vh_weight,4)+

pol_bonus:class_make2,data=data2)

R2 = 12.37%, R2
adj = 11.55% Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.61 0.30 -12.22 0.00
pol bonus 0.76 0.36 2.14 0.03

poly(drv age lic1, 3)1 5.21 1.14 4.57 0.00
poly(drv age lic1, 3)2 1.48 1.16 1.28 0.20
poly(drv age lic1, 3)3 -3.90 1.14 -3.43 0.00

poly(vh cyl, 2)1 -6.11 2.10 -2.91 0.00
poly(vh cyl, 2)2 3.75 1.92 1.95 0.05
poly(vh din, 2)1 -1.55 2.14 -0.73 0.47
poly(vh din, 2)2 -3.52 1.71 -2.06 0.04

poly(vh weight, 5)1 -4.07 3.01 -1.35 0.18
poly(vh weight, 5)2 -1.26 3.19 -0.39 0.69
poly(vh weight, 5)3 -1.91 3.00 -0.64 0.52
poly(vh weight, 5)4 -8.86 2.40 -3.69 0.00
poly(vh weight, 5)5 2.70 1.34 2.01 0.04

pol coverage2NoMini -0.43 0.14 -3.14 0.00
vh fuelGasoline 0.17 0.07 2.58 0.01
claim indOne -0.13 0.07 -1.80 0.07

class make2Class2&3 0.56 0.27 2.08 0.04
drv age lic1:poly(vh weight, 4)1 -0.05 0.09 -0.58 0.56
drv age lic1:poly(vh weight, 4)2 0.19 0.13 1.44 0.15
drv age lic1:poly(vh weight, 4)3 0.11 0.14 0.83 0.41
drv age lic1:poly(vh weight, 4)4 0.27 0.11 2.48 0.01
pol bonus:class make2Class2&3 -0.62 0.39 -1.61 0.11

Table 31: Maximum likelihood estimates, estimated standard errors, t-values and corresponding
p-values, as well as R2 and R2

adj for model LogLM2_inter_red.
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and its output is presented in Table 31. In this model pol_bonus is significant variable
and we also keep the interaction pol_bonus:class_make2, even though it is significant on
a 0.11 level. This interaction terms seems to increase the significance of the main effect
term pol_bonus. Additionally, the value of R2

adj has increased to 11.55%. If we perform
an F-test for the removed interaction terms from LogLM2_inter,

anova(LogLM2_inter_red, LogLM2_inter)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 2327 2606
2 2309 2595 18 11.18 0.55 0.93

Table 32: F-test for the interaction effects removed from the model LogLM2_inter.

we obtain a p-value of 0.93, meaning that we can indeed remove them. Additinally,
performing an F-test for the interaction terms in the model LogLM2_inter_red results in
p-value of 0.04, which means that on a 0.05 level at least one of the interaction param-
eters in the model is significant. Now we proceed with model diagnostics for the model
LogLM2_inter_red, since this model has highest R2

adj while maintaining the significance
of the terms in the model. In the comparison of the different modelling methods on Bad
Driver Data however, we consider both LogLM2_main_red and LogLM2_inter_red.
First, we plot the internally studentized residuals of LogLM2_inter_red against the obser-
vation number in Figure 24. We expect most of the residuals to be randomly distributed
around the zero within the interval [-3,3]. As observed in Figure 24, the residuals show
random fluctuation around the 0, with only 3 observations being outside of the interval
[-3,3]. The blue line on the plot at 0 denotes the smoother line of the residuals, the red
line around 0 denotes the line y = 0 and the red dashed lines denote y = −3 and y = 3.

Figure 24: Internally studentized residuals of the model LogLM2_inter_red.

Second, in Figure 25 we observe the Q-Q plot of the internally studentized residuals,
where the values follow the 45◦ line. This means that we do not have an indication that
model the assumptions are not satisfied. We can spot that the left tail shows non-normal
properties, but only for few observations.
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Figure 25: Q-Q plot of the internally studentized residuals of the model LogLM2_inter_red.

Third, the model has 168 high leverage points, but since these indicate only x-outliers
we don’t consider them as influential observations. None of the Cook’s Distance values
is bigger than 1, therefore there are no observations that need to be further studied or
removed. Finally, we can conclude that given these results, we did not find any evedence
against the model assumptions.

5.2 Gamma regression model

In the gamma regression models, we don’t include drv_age_lic1 and drv_age_lic2 to
avoid multicollinearity, because elimination of these two covariates showed most parsi-
monious fit. The main effects gamma model which includes the covariates presented in
Section 3.3 is:

GamReg2_main<-glm(standr_claims ~ pol_bonus+pol_duration+

pol_sit_duration+poly(drv_age1,4)+poly(drv_age2,3)+

poly(vh_cyl,2)+poly(vh_din, 3)+poly(vh_speed, 2)+

poly(vh_weight,5)+pol_coverage2+pol_usage2+vh_fuel+

claim_ind+class_make2+gender2, data=data2,

family=Gamma(link="log"))

whose output is presented in Table 33. We can observe that many of the main effects are
not significant. The model’s residual deviance is 2529.1 on 2321 degrees of freedom. If we
use the step function to remove insignificant covariates, we end up with a model with only
two covariates, which is less than the significant covariates in the model GamReg2_main.
Therefore, removing insignificant covariates manually results in the reduced model:

GamReg2_main_red<-glm(standr_claims ~ pol_bonus+poly(drv_age1,4)+

vh_cyl+poly(vh_din, 3)+vh_weight+vh_fuel+

class_make2, data=data2,family=Gamma(link="log"))
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ϕ = 1.96 Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.24 0.31 -10.31 0.00
pol bonus 0.44 0.23 1.91 0.06

pol duration -0.00 0.01 -0.01 0.99
pol sit duration 0.01 0.02 0.24 0.81

poly(drv age1, 4)1 3.32 2.42 1.37 0.17
poly(drv age1, 4)2 -0.96 1.84 -0.52 0.60
poly(drv age1, 4)3 -0.83 1.48 -0.56 0.58
poly(drv age1, 4)4 3.45 1.52 2.28 0.02
poly(drv age2, 3)1 -1.62 1.55 -1.04 0.30
poly(drv age2, 3)2 -0.96 1.55 -0.62 0.54
poly(drv age2, 3)3 0.71 1.45 0.49 0.63

poly(vh cyl, 2)1 -5.50 2.82 -1.95 0.05
poly(vh cyl, 2)2 2.47 2.55 0.97 0.33
poly(vh din, 3)1 -1.43 5.32 -0.27 0.79
poly(vh din, 3)2 -2.71 2.63 -1.03 0.30
poly(vh din, 3)3 -2.63 2.18 -1.21 0.23

poly(vh speed, 2)1 -1.10 3.92 -0.28 0.78
poly(vh speed, 2)2 -1.16 2.25 -0.52 0.61
poly(vh weight, 5)1 -5.91 3.16 -1.87 0.06
poly(vh weight, 5)2 0.88 1.93 0.46 0.65
poly(vh weight, 5)3 0.41 1.64 0.25 0.80
poly(vh weight, 5)4 -1.38 1.57 -0.88 0.38
poly(vh weight, 5)5 0.22 1.47 0.15 0.88

pol coverage2NoMini -0.13 0.18 -0.70 0.48
pol usage2NoRetired -0.07 0.16 -0.46 0.64

vh fuelGasoline 0.16 0.09 1.83 0.07
claim indOne 0.06 0.10 0.59 0.55

class make2Class2&3 0.11 0.08 1.32 0.19
gender2AllOther 0.02 0.07 0.28 0.78

Table 33: Maximum likelihood estimates , estimated standard errors, Wald ratios and corre-
sponding p-values for GamReg2_main.

ϕ = 1.94 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.63 0.34 -7.81 0.00
pol bonus 0.47 0.22 2.10 0.04

poly(drv age1, 4)1 3.56 1.46 2.44 0.01
poly(drv age1, 4)2 -0.30 1.47 -0.20 0.84
poly(drv age1, 4)3 -0.91 1.45 -0.63 0.53
poly(drv age1, 4)4 3.18 1.42 2.24 0.02

vh cyl -0.00 0.00 -1.64 0.10
poly(vh din, 3)1 -4.08 2.58 -1.58 0.11
poly(vh din, 3)2 -0.22 1.46 -0.15 0.88
poly(vh din, 3)3 -2.49 1.43 -1.75 0.08

vh weight -0.00 0.00 -1.83 0.07
vh fuelGasoline 0.22 0.08 2.79 0.01

class make2Class2&3 0.13 0.08 1.56 0.12

Table 34: Maximum likelihood estimates , estimated standard errors, Wald ratios and corre-
sponding p-values for GamReg2_main_red.

which has a residual deviance 2541.8 on 2337 degrees of freedom. In this model, the
significance of the covariates is much better. We keep the covariate class_make2 in the
model because it will allow us more interactions later. Performing a partial deviance test
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for the removed main effects terms from the model GamReg2_main, we obtain a p-value
0.98, which means that we can proceed with the reduced model. The residual deviance
test on the model GamReg2_main_red results in p-value 1, therefore the model shows no
lack of fit. Next we want to improve this model by allowing for interaction terms. For that
purpose we fit the model GamReg2_inter. In this model however, the main effect term of
vh_weight is takes as a polynomial of second degree, since a lot of interaction terms with
vh_weight have this transformed form. The output of the model is presented in Table 35.

ϕ = 1.68 Estimate Std. Error t value Pr(>|t|)
(Intercept) -3.84 1.15 -3.34 0.00
pol bonus 1.95 1.66 1.17 0.24

poly(drv age1, 4)1 -2.92 12.51 -0.23 0.82
poly(drv age1, 4)2 17.69 12.48 1.42 0.16
poly(drv age1, 4)3 -1.28 12.49 -0.10 0.92
poly(drv age1, 4)4 10.41 11.13 0.93 0.35

vh cyl 0.00 0.00 0.12 0.90
poly(vh din, 3)1 -29.64 20.97 -1.41 0.16
poly(vh din, 3)2 9.64 36.45 0.26 0.79
poly(vh din, 3)3 -1.75 22.05 -0.08 0.94

poly(vh weight, 2)1 12.24 17.41 0.70 0.48
poly(vh weight, 2)2 -14.62 11.30 -1.29 0.20

vh fuelGasoline 0.14 0.24 0.58 0.56
class make2Class2&3 0.53 0.34 1.53 0.13

pol bonus:poly(drv age1, 4)1 7.31 11.48 0.64 0.52
pol bonus:poly(drv age1, 4)2 -21.07 12.50 -1.69 0.09
pol bonus:poly(drv age1, 4)3 -10.58 12.64 -0.84 0.40
pol bonus:poly(drv age1, 4)4 6.56 11.03 0.59 0.55

pol bonus:vh cyl -0.00 0.00 -0.70 0.48
pol bonus:poly(vh din, 3)1 39.92 27.30 1.46 0.14
pol bonus:poly(vh din, 3)2 -18.83 65.66 -0.29 0.77
pol bonus:poly(vh din, 3)3 -3.15 40.89 -0.08 0.94

pol bonus:poly(vh weight, 2)1 -41.32 17.02 -2.43 0.02
pol bonus:poly(vh weight, 2)2 11.33 12.75 0.89 0.37

poly(drv age1, 4)1:vh cyl 0.00 0.01 0.06 0.95
poly(drv age1, 4)2:vh cyl -0.00 0.01 -0.36 0.72
poly(drv age1, 4)3:vh cyl 0.00 0.01 0.58 0.56
poly(drv age1, 4)4:vh cyl -0.01 0.01 -1.19 0.23

poly(drv age1, 4)1:poly(vh weight, 2)1 -50.13 134.18 -0.37 0.71
poly(drv age1, 4)2:poly(vh weight, 2)1 67.84 150.92 0.45 0.65
poly(drv age1, 4)3:poly(vh weight, 2)1 -108.87 127.79 -0.85 0.39
poly(drv age1, 4)4:poly(vh weight, 2)1 123.05 135.15 0.91 0.36
poly(drv age1, 4)1:poly(vh weight, 2)2 193.88 99.61 1.95 0.05
poly(drv age1, 4)2:poly(vh weight, 2)2 -276.67 131.66 -2.10 0.04
poly(drv age1, 4)3:poly(vh weight, 2)2 67.62 104.34 0.65 0.52
poly(drv age1, 4)4:poly(vh weight, 2)2 59.61 115.31 0.52 0.61

vh cyl:vh din 0.00 0.00 0.03 0.98
vh cyl:poly(vh weight, 2)1 0.01 0.01 1.16 0.25
vh cyl:poly(vh weight, 2)2 0.00 0.00 0.64 0.52
poly(vh weight, 2)1:vh din -0.06 0.10 -0.60 0.55
poly(vh weight, 2)2:vh din -0.02 0.08 -0.20 0.84

pol bonus:class make2Class2&3 -0.60 0.50 -1.22 0.22
vh fuelGasoline:vh din 0.00 0.00 0.06 0.95

Table 35: Maximum likelihood estimates , estimated standard errors, Wald ratios and corre-
sponding p-values for GamReg2_inter.

The model GamReg2_inter has residual deviance of 2478.9 on 2307 degrees of freedom
and contains a lot of insignificant terms. If we perform a backward elimination using
the BIC criterion, with the main effects model GamReg2_main_red as a lower limit, all
of the interaction terms are removed. Therefore, we manually remove step by step the
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insignificant terms, starting with the ones who have the biggest p-value. This way we
obtain the reduced interaction model GamReg2_inter_red,

GamReg2_inter_red<-glm(standr_claims ~ pol_bonus+poly(drv_age1,4)+

vh_cyl+poly(vh_din,3)+poly(vh_weight,2)+vh_fuel+

class_make2+pol_bonus:poly(drv_age1,2)+

pol_bonus:vh_din+pol_bonus:vh_weight+

poly(drv_age1,2):poly(vh_weight,2)+vh_cyl:vh_weight,

data=data2,family=Gamma(link="log"))

ϕ = 1.70 Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.86 0.28 -10.09 0.00
pol bonus 1.68 0.93 1.80 0.07

poly(drv age1, 4)1 -4.56 7.59 -0.60 0.55
poly(drv age1, 4)2 17.73 8.11 2.19 0.03
poly(drv age1, 4)3 -3.35 1.64 -2.05 0.04
poly(drv age1, 4)4 5.23 1.51 3.47 0.00

vh cyl -0.00 0.00 -2.22 0.03
poly(vh din, 3)1 -24.19 10.25 -2.36 0.02
poly(vh din, 3)2 -2.65 2.04 -1.30 0.19
poly(vh din, 3)3 -2.24 1.42 -1.58 0.11

poly(vh weight, 2)1 4.88 12.02 0.41 0.68
poly(vh weight, 2)2 -2.32 2.20 -1.05 0.29

vh fuelGasoline 0.17 0.08 2.07 0.04
class make2Class2&3 0.12 0.08 1.57 0.12

pol bonus:poly(drv age1, 2)1 9.81 10.84 0.90 0.37
pol bonus:poly(drv age1, 2)2 -24.09 11.24 -2.14 0.03

pol bonus:vh din 0.02 0.01 2.01 0.05
pol bonus:vh weight -0.00 0.00 -2.43 0.02

poly(vh weight, 2)1:poly(drv age1, 2)1 -43.04 71.34 -0.60 0.55
poly(vh weight, 2)2:poly(drv age1, 2)1 143.22 71.38 2.01 0.04
poly(vh weight, 2)1:poly(drv age1, 2)2 2.21 83.88 0.03 0.98
poly(vh weight, 2)2:poly(drv age1, 2)2 -296.70 95.66 -3.10 0.00

vh cyl:vh weight 0.00 0.00 1.72 0.09

Table 36: Maximum likelihood estimates , estimated standard errors, Wald ratios and corre-
sponding p-values for GamReg2_inter_red.

which has residual deviance of 2496.6 on 2327 degrees of freedom. Although the main effect
term class_make2 has p-value of 0.12, we keep it in the model because it improves the sig-
nificance of other effects. If we perform a partial deviance test for the removed terms from
model GamReg2_inter we obtain a p-value of 0.96, therefore we can proceed with the re-
duced model GamReg2_inter_red. Additionally, performing a partial deviance test for the
interaction terms in the model GamReg2_inter_red which were added to GamReg2_main_red

gives p-value of 0.003, so we prefer the model GamReg2_inter_red over GamReg2_main_red.
The residual deviance test for GamReg2_inter_red results in p-value 1, so the model does
not show a lack of fit. In the comparison of the models, we focus on GamReg2_main_red

and GamReg2_inter_red as best gamma regression models on the Good Driver training
data set.
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5.3 D-vine quantile regression model

For Bad Driver Data, apart from nonparametric estimations of the marginals, we also
estimate the marginals parametrically using finite mixture of distributions. Depending
on our marginal estimation approach, we fit the pair copulas of the models parametri-
cally or nonparametrically, which results in fully parametric and nonparametric D-vine
quantile regression models. We rely on the all covariates presented in Section 3, including
pol_bonus, where we omit the covariates drv_age2 and drv_age_lic2 because they contain
a lot of zeros for the observations where driver 2 is not present in the policy. First we
present the empirical normalized contour plots of the continuous variables in Figure 26,
which are obtained by transforming the original data to copula data scale using marginal
empirical distributions.

Figure 26: Bad Driver training data set. Lower: empirical normalized contour plots for the
pair copulas, diagonal: histogram of the margins, upper: pairs plots of copula data and their
Kendall’s taus.
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The empirical copula data histograms of pol_duration, pol_sit_duration, pol_diff_

duration and vh_sale_end do not look uniform. Some of the pair copulas where one of the
marginals is pol_duration, pol_sit_duration or pol_diff_duration look strange, which
indicate that we may need to transform these covariates to ordinal covariates. We can
spot high Kendall’s taus up to 0.86 and we expect that some of the pair copulas with high
Kendall’s tau will be included in our models. The pair copulas of our response variables,
standr_claims and ln_standr_claims, and the continuous covariates, are identical with
same Kendall’s tau values respectively. Therefore, assuming that our data in on the copula
data scale, we would expect to obtain the same order of covariates in the D-vine regression
models, regardless whether our response is standr_claims or ln_standr_claims. We will
use the empirical contour plots in Figure 26 to compare them with the normalized contour
plots of the fitted pair copulas in our D-vine regression models with respective marginals.
In the next two sections we present the nonparametric and parametric D-vine regression
models fitted on the Bad Driver training data set, whose order of variables in given in Table
37. Since the function vinereg (Nagler (2022)) in R allows only for ordinal covariates, we
transform the discrete covariates to ordinal before we fit the models and their levels are
sorted based on their influence on the response.

Order DVReg2 nonpar orig DVReg2 nonpar ln DVReg2 par orig DVReg2 par ln
1 standr claims ln standr claims standr claims ln standr claims
2 vh cyl vh weight vh cyl vh cyl
3 pol usage2 drv age lic1 drv age1 drv age1
4 gender2 vh cyl vh weight vh weight
5 pol coverage2 vh speed pol bonus pol bonus
6 claim ind vh sale end vh age vh age
7 drv age1 claim ind vh sale end vh sale end
8 vh sale end pol coverage2
9 vh fuel vh fuel
10 vh weight
11 pol payd

Table 37: Order of variables in the D-vine regression models DVReg2_nonpar_orig,
DVReg2_nonpar_ln, DVReg2_par_orig and DVReg2_par_ln.

Nonparametric D-vine quantile regression

Before we fit nonparametric D-vine regression models, we want to investigate the non-
parametric estimation of the continuous marginals, in particular, to see whether some of
them need to be transformed to ordinal covariates (in case the histograms of the pseudo
data marginals do not look uniform), and to transform the discrete covariates to ordinal.
First, we estimate the continuous variables nonparametrically using the kernel smooth-
ing estimator implemented in the R function kde1d, in the R package kde1d (Nagler and
Vatter (2022)). Although this function is implemented in the R function vinereg (Nagler
(2022)), which we use to fit a D-vine regression models, in the preliminary step we want
to see how the histograms of the continuous marginals of our copula data look like. For
that purpose, first in Figure 27 we present the histograms of the continuous marginals
and their respective nonparametrically estimated densities.
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Figure 27: Histograms of the continuous marginals in Bad Driver training data set. The red
line denotes their kde1d estimators.

The kde1d estimators can’t fully capture the multimodality of engine cylinder displace-
ment, motor power, vehicle weight and it underestimates the modes of bonus malus class,
policy duration, difference in duration, vehicle age, standardized claims. In Figure 28 we
present the histograms of marginals on copula data scale, which were obtained using the
nonparametric estimators from Figure 27. The histograms of policy duration, policy situ-
ation duration and difference in duration look particularly nonuniform, which is why we
transform them to ordinal covariates dur_ordinal, sitdur_ordinal and diffdur_ordinal.
They have 33, 12 and 32 levels respectively. Additionally, the histograms of vehicle age,
engine cylinder displacement, motor power, vehicle sale begin, vehicle sale end and stan-
dardized claims do not look so uniform, however, we continue to work with them in our
nonparametric D-vine regression models.



5.3 D-vine quantile regression model 93

Figure 28: Histograms of the continuous marginals of the copula scale data in Bad Driver
training data set, which were transformed on copula scale using their respective estimators from
Figure 27.

Finally, as a last preliminary step we transform the discrete covariates in the Bad Driver
Data to ordinal, and their levels are sorted based on their influence on the response
variable. Currently it is possible to consider ordinal covariates for D-vine regression with
the function vinereg in R only if we estimate the marginals nonparametrically using the
kde1d estimator (which is implemented in the vinereg function in R (Nagler (2022)).
This is not be possible if the continuous marginals are estimated differently, which is our
case for the parametric D-vine regression models in the next section. Therefore, we only
consider the discrete covariates from the Bad Driver Data in our nonparametric D-vine
regression models.
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We present the nonparametric model DVReg2_nonpar_orig, which predicts the response
variable on original scale standardized claims, and the nonparametric model DVReg2_nonpar
_ln, which predicts the transformed response variable ln(standardized claims). The order
of the variables in the models is presented in Table 38 and the normalized contour plots
of the fitted pair copulas of the models in Figure 29 and Figure 30, respectively.

Order DVReg2 nonpar orig DVReg2 nonpar ln
1 standr claims ln standr claims
2 vh cyl vh weight
3 pol usage2 drv age lic1
4 gender2 vh cyl
5 pol coverage2 vh speed
6 claim ind vh sale end
7 drv age1 claim ind
8 vh sale end pol coverage2
9 vh fuel vh fuel
10 vh weight
11 pol payd

Table 38: Order of variables in the D-vine regression models DVReg2_nonpar_orig and
DVReg2_nonpar_ln.

In the model DVReg2_nonpar_orig, more than the half of the covariates are ordinal, and
they are included early in the model, which differs from the model DVReg2_nonpar_ln
where the most influential covariates are continuous. All of the discrete covariates present
in the model DVReg2_nonpar_ln are included in the model DVReg2_nonpar_orig too, and
their common continuous covariates are vh_weight, vh_cyl and vh_sale_end.

Based on Figure 29, few of the pair copulas in the model DVReg2_nonpar_orig look partic-
ularly nonparametric; one example is the pair copula (pol_usage2, pol_coverage2;gender)
in the second tree of the D-vine. Additionally, we can notice that not many normalized
contour plots in the model indicate high Kendall’s taus, at least not in the first tree, which
is given by the last row of Figure 29. As expected, the first covariate in the model is the
covariate vh_cyl, which indicated highest dependence with the response standr_claims

(in absolute terms) in Figure 26. We are interested in comparing the fitted pair copulas
with continuous marginals in the first tree of the model, (standr_claims, vh_cyl) and
(drv_age1, vh_sale_end), with their respective empirical pair copulas from Figure 26.
The fitted pair copulas look similar to their empirical pair copulas, with only the fitted
normalized contour plot of (standr_claims, vh_cyl) looking different than the empirical
one for higher contour levels.



5.3 D-vine quantile regression model 95

Figure 29: Normalized fitted contour plots for the pair copulas of the D-vine regression model
DVReg2_nonpar_orig, where the variables of the model are presented by X1=standr claims,
X2=vh cyl, X3=pol usage2, X4=gender2, X5=pol coverage2, X6=claim ind, X7=drv age1,
X8=vh sale end, X9=vh fuel, X10=vh weight and X11=pol payd, depending on their order
in Table 38.

In Figure 30 we can see the normalized contour plots of the fitted pair copulas in the model
DVReg2_nonpar_ln, which predicts the transformed response ln(standardized claims). The
advantage of using the transformed response variable over the original one is that it
guarantees positive values of the fitted values for standardized claims, which we can ob-
tain from the fitted values of the model using the exponential function. Compared to
the pair copulas of the model DVReg2_nonpar_orig, only one of the fitted pair copulas
of DVReg2_nonpar_ln looks strongly nonparametric, the copula of the pair (vh_speed,
vh_sale_end). By comparing the normalized fitted contour plots of the pair copulas with
continuous marginals in the first tree of the model with their respective empirical contour
plots, we can see that the fitted normalized contour plot of the pairs look similar to their
empirical normalized contour plots, except for the pair (vh_speed, vh_sale_end).
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Figure 30: Normalized fitted contour plots for the pair copulas of the D-vine regression
model DVReg2_nonpar_ln, where the variables of the model are given by X1=ln standr claims,
X2=vh weight, X3=drv age lic1, X4=vh cyl, X5=vh speed, X6=vh sale end, X7=claim ind,
X6=pol coverage2 and X7=vh fuel, depending on their order in Table 38.
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Parametric D-vine quantile regression

As previously discussed, the R function vinereg (Nagler (2022)) does not allow for ordinal
covariates when the data is on pseudo data scale. Therefore, in this section we only anal-
yse the continuous marginals of the data, where we discard the covariates pol_duration,
pol_sit_duration and pol_diff_duration, since they were transformed to ordinal covari-
ates in the nonparametric case. As a parametric estimation approach for the continuous
marginals we use finite distribution mixture of either normal or skew-normal distributions,
which is implemented in the R package mixsmsn (Prates, Lachos and Cabral (2013)). This
approach is beneficial when the data is skewed and multimodal. The choice of distribution
in the mixture and the number of modes is based on the smallest BIC value of several
marginal estimations. The resulting estimators of each continuous marginal with their
respective parameters are presented in Table 39 and visualized in Figure 31.

Variable
Distribution of the

mixture’s components
Number of
components

Parameters
Component i

1 2 3 4 5 6

pol bonus Skew-normal 6

µi 0.507 0.775 0.587 0.925 1.074 0.673
σ2
i 0.001 0.006 0.001 0.003 0.027 0.004
λi 22.016 0.943 0.734 0.581 4.411 0.982
pi 0.239 0.145 0.315 0.091 0.011 0.198

drv age1 Skew-normal 2

µi 52.055 25.984
σ2
i 229.189 140.109
λi 0.910 2.529
pi 0.336 0.664

drv age lic1 Skew-normal 2

µi 6.825 28.303
σ2
i 97.320 204.527
λi 2.049 1.242
pi 0.683 0.317

vh age Skew-normal 2

µi 0.945 6.148
σ2
i 20.170 43.318
λi 8.852 4.376
pi 0.63 0.37

vh cyl Skew-normal 4

µi 1238.917 1397.853 1858.883 1909.683
σ2
i 26338.147 18465.116 15180.417 706867.914
λi -3.612 1.216 1.566 4.383
pi 0.147 0.429 0.345 0.079

vh din Skew-normal 3

µi 70.500 124.118 81.660
σ2
i 58.665 5356.762 990.761
λi -1.040 3.054 1.425
pi 0.250 0.057 0.693

vh sale begin Skew-normal 4

µi 9.697 4.383 13.631 2.352
σ2
i 6.852 8.700 52.037 0.702
λi 1.312 1.502 3.509 -0.245
pi 0.334 0.480 0.093 0.093

vh sale end Skew-normal 4

µi 9.332 11.483 0.863 4.944
σ2
i 5.529 30.884 1.943 3.511
λi 0.963 2.667 27.200 1.087
pi 0.176 0.086 0.328 0.410

vh speed Normal 3
µi 183.348 160.923 186.761
σ2
i 122.340 65.253 594.618
pi 0.370 0.328 0.302

vh weight Normal 3
µi 960.569 1618.37 1271.034
σ2
i 11883.951 157207.96 31408.245
pi 0.296 0.094 0.610

standr claims Skew-normal 3

µi 0.150 0.003 0.048
σ2
i 0.019 0.0007 0.004
λi 4.730 17.361 3.361
pi 0.056 0.683 0.261

ln standr claims Normal 3
µi -3.673 -2.522 -5.039
σ2
i 0.189 0.533 0.284
pi 0.363 0.432 0.205

Table 39: Finite mixture estimators for the continuous marginals in Bad Driver training data
set and their respective parameters.
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Figure 31: Histograms of the continuous marginals in Bad Driver training data set. The red
line denotes their parametric estimators from Table 39.

Using these estimators, we transform the data to copula scale data and the histograms of
its marginals are presented in Figure 32. We expect them to look uniformly distributed,
which in the case of bonus malus class, vehicle age, engine cylinder displacement, motor
power, vehicle sale begin and vehicle sale end do not look so uniform, however these
pseudo data histograms look much better than the pseudo data histograms obtained by
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the nonparametric kde1d estimators which are presented in Figure 27.

Figure 32: Histograms of the continuous marginals of the copula scale data in Bad Driver
training data set obtained from their parametric estimators in Table 39,

Now we present the parametric models DVReg2_par_orig and DVReg2_par_ln fitted on the
pseudo data from Figure 32, with response variables standr_claims and ln_standr_claims

respectively, and parametric bivariate copulas. The models have the same covariates with
the same order, presented in Table 40.
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Order Variable
2 vh cyl
3 drv age1
4 vh weight
5 pol bonus
6 vh age
7 vh sale end

Table 40: Order of variables in the D-vine regression model DVReg2_par_orig, where the first
variable is standr claims, and the D-vine regression model DVReg2_par_ln where the first vari-
able is ln standr claims.

Tree Edge Conditioned Conditioning Var types Family Rotation Parameters Df Tau LogLik
1 1 1,2; c,c gaussian 0 -0.27 1 -0.17 91.07
1 2 2,3; c,c bb8 90 1.07,0.97 2 -0.03 5.12
1 3 3,4; c,c clayton 0 0.13 1 0.06 15.97
1 4 4,5; c,c bb8 90 1.49,0.74 2 -0.09 23.03
1 5 5,6; c,c bb8 0 1.07,0.92 2 0.02 2.14
1 6 6,7; c,c bb8 0 6.92,0.95 2 0.73 2214.03
2 1 1,3; 2 c,c frank 0 0.55 1 0.06 10.20
2 2 2,4; 3 c,c t 0 0.78, 13.68 2 0.57 1109.18
2 3 3,5; 4 c,c bb8 90 1.54,0.97 2 -0.20 164.30
2 4 4,6; 5 c,c bb8 90 1.28,1.00 2 -0.13 81.23
2 5 5,7; 6 c,c indep 0 0 0 0
3 1 1,4; 2,3 c,c gaussian 0 -0.09 1 -0.06 9.82
3 2 2,5; 3,4 c,c gaussian 0 -0.04 1 -0.03 2.16
3 3 3,6; 4,5 c,c bb8 270 1.14, 0.80 2 -0.03 3.35
3 4 4,7; 5,6 c,c bb7 270 1.04,0.05 2 -0.04 9.49
4 1 1,5; 2,3,4 c,c clayton 180 0.05 1 0.02 3.49
4 2 2,6; 3,4,5 c,c bb8 0 4.68,0.56 2 0.33 305.39
4 3 3,7; 4,5,6 c,c joe 0 1.03 1 0.02 3.37
5 1 1,6; 2,3,4,5 c,c frank 0 -0.29 1 -0.03 2.88
5 2 2,7; 3,4,5,6 c,c gumbel 90 1.02 1 -0.02 9.33
6 1 1,7; 2,3,4,5,6 c,c gaussian 0 0.05 1 0.03 4.25

Table 41: Fitted pair copulas of the D-vine regression model DVReg2_par_orig with their family
parameters, Kendall’s τ and log likelihood.

Tree Edge Conditioned Conditioning Var types Family Rotation Parameters Df Tau LogLik
1 1 1,2; c,c gaussian 0 -0.28 1 -0.18 96.12
1 2 2,3; c,c bb8 90 1.07,0.97 2 -0.03 5.12
1 3 3,4; c,c clayton 0 0.13 1 0.06 15.97
1 4 4,5; c,c bb8 90 1.49,0.74 2 -0.09 23.03
1 5 5,6; c,c bb8 0 1.07,0.92 2 0.02 2.14
1 6 6,7; c,c bb8 0 6.92,0.95 2 0.73 2214.03
2 1 1,3; 2 c,c frank 0 0.57 1 0.06 10.70
2 2 2,4; 3 c,c t 0 0.78, 13.68 2 0.57 1109.18
2 3 3,5; 4 c,c bb8 90 1.54,0.97 2 -0.20 164.30
2 4 4,6; 5 c,c bb8 90 1.28,1.00 2 -0.13 81.23
2 5 5,7; 6 c,c indep 0 0 0 0
3 1 1,4; 2,3 c,c gaussian 0 -0.09 1 -0.06 10.23
3 2 2,5; 3,4 c,c gaussian 0 -0.04 1 -0.03 2.16
3 3 3,6; 4,5 c,c bb8 270 1.14, 0.80 2 -0.03 3.35
3 4 4,7; 5,6 c,c bb7 270 1.04,0.05 2 -0.04 9.49
4 1 1,5; 2,3,4 c,c clayton 180 0.05 1 0.02 2.90
4 2 2,6; 3,4,5 c,c bb8 0 4.68,0.56 2 0.33 305.39
4 3 3,7; 4,5,6 c,c joe 0 1.03 1 0.02 3.37
5 1 1,6; 2,3,4,5 c,c frank 0 -0.30 1 -0.03 2.91
5 2 2,7; 3,4,5,6 c,c gumbel 90 1.02 1 -0.02 9.33
6 1 1,7; 2,3,4,5,6 c,c gaussian 0 0.06 1 0.04 4.35

Table 42: Fitted pair copulas of the D-vine regression model DVReg2_par_ln with their family
parameters, Kendall’s τ and log likelihood. The values that differ from the fitted pair copulas
of the model DVReg2_par_orig are identified in gray.
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In Table 41 and 42, we present the fitted pair copulas of the models DVReg2_par_orig and
DVReg2_par_ln. The fitted pair copula families in both models are the same, with only few
values that slightly differ (identified in gray in Table 42). The normalized contour plots of
both models are the same and are presented in Figure 33. The pairs (vh_age, vh_sale_end)
and (vh_cyl, vh_weight;drv_age1) have high Kendall’s tau values. By comparing the fitted
normalized contour plots of the pairs in the first tree of the D-vine regression models with
their respective empirical contour plots, we can see that the fitted normalized contour plot
of the pair (standr_claims, vh_cyl) (respectively the pair (ln_standr_claims, vh_cyl))
does not look like the empirical contour plot for the high contour levels. Additionally, the
normalized fitted contour plot of the pair (vh_age, vh_sale_end) does not fully explain
the structure of the empirical normalized contour plot, since the empirical contour plot
shows nonparametric properties. The other fitted pair copulas in the first tree however,
are very similar to their respective empirical pair copulas.

Figure 33: Normalized fitted contour plots for the pair copulas of the D-vine regression
models DVReg2_par_orig and DVReg2_par_ln, where the variable X1 is standr claims and
ln standr claims respectively, and the variables X2=vh cyl, X3=drv age1, X4=vh weight,
X5=pol bonus, X6=vh age, X7=vh sale end are ordered as in Table 40.

In the next step, which is comparison of the different regression models fitted on Bad
Driver training data set, we consider all four D-vine regression models, DVReg2_nonpar_orig,
DVReg2_nonpar_ln, DVReg2_par_orig and DVReg2_par_ln. In particular, we would like to
know whether the parametric or nonparametric D-vine regression models perform bet-
ter and whether the choice of the response variable makes a difference in the models’
explanatory power, which we can investigate by comparing the models DVReg2_par_orig

and DVReg2_par_ln.
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5.4 Comparison of the models

In this section we proceed with the comparison of the performance of the different re-
gression models on Bad Driver Data. In particular, we are interested whether the fitted
D-vine regression models perform better in severity modelling than the commonly used
lognormal and gamma regression models, as well as linear quantile regression models.
We fit linear quantile regression models using both the original response and the trans-
formed response variable, which have the same covariates as the best D-vine regression
model with the respective response variable. More precisely, based on Table 43, the
D-vine model DVReg2_nonpar_orig shows better values than DVReg_par_orig for the log
likelihood, the training and test error, and the interval score for the 90% prediction in-
terval. Similarly, the model DVReg2_nonpar_ln has better values than DVReg2_par_ln for
all performance measures, except for the measures which use penalty for complexity i.e.
AIC and BIC. Therefore we fit a linear quantile regression model LQR2_orig using the
original response variable standaridzed claims and the covariates included in the model
DVReg2_nonpar_orig, and the linear quantile regression model LQR2_ln using the origi-
nal response variable ln(standaridzed claims) and the covariates included in the model
DVReg2_nonpar_ln.
As performance measures for the different regression methods we use the log likelihood,
AIC, BIC, training and test error and interval scores on level α = 0.05 and α = 0.1, all
of which are calculated on the original scale standardized claims. These measures were
extensively studied in Section 2.8 for every regression model separately. The log likeli-
hood, AIC, BIC and the training error are calculated on the Bad Driver training data
set, whereas the test error and the interval scores on the Bad Driver test data set. For
the calculation of AIC and BIC for the lognormal, gamma and linear quantile regression
models as number of parameters we use the number of estimated parameters in the model.
For the nonparametric D-vine regression model, as number of parameters we use the sum
of the degrees of freedom of each pair copula in the model, whereas for the parametric
D-vine regression model we sum the number of parameters used to estimate the marginals
included in the model and the number of parameters used to fit the bivariate copulas of
the model. The models with smaller AIC and BIC values, as well as larger log likelihood
values are considered to show a better performance on the data set.

df LogLik AIC BIC
Training

error
Test
error

Interval
score α = 0.05

Interval
score α = 0.1

LogLM2 main red 19 4661.44 -9284.88 -9175.40 0.010709 0.007603 0.00966 0.01655
LogLM2 inter red 24 4667.29 -9286.58 -9148.29 0.010693 0.007610 0.00970 0.01668
GamReg2 main red 14 4491.27 -8954.55 -8873.88 0.009995 0.006723 0.01080 0.01721
GamReg2 inter red 24 4515.82 -8983.64 -8845.35 0.009865 0.006821 0.01486 0.01964
DVReg2 nonpar orig 444 4514.92 -8142.65 -5586.56 0.010327 0.007074 0.01022 0.01597
DVReg2 nonpar ln 406 4884.49 -8957.32 -6618.87 0.010529 0.007423 0.00994 0.01560
DVReg2 par orig 123 4322.59 -8399.17 -7690.42 0.010707 0.007573 0.00997 0.01629
DVReg2 par ln 120 4685.94 -9131.88 -8440.42 0.010678 0.007550 0.01008 0.01628
LQReg2 orig 11 3562.30 -7102.61 -7039.23 0.010747 0.007513 0.00979 0.01588
LQReg2 ln 9 4535.58 -9053.16 -9001.30 0.010776 0.007618 0.01004 0.01613

Table 43: Comparison of different regression models on Bad Driver Data based on log likelihood,
AIC, BIC, training error, test error and interval score values. The best values per column are
identified in gray.
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For the calculation of training and test error of the D-vine and linear quantile regression
models, as fitted values we use the conditional 0.5 quantiles. Additionally, for the calcu-
lation of the interval score values for the lognormal and gamma regression, as upper and
lower limits of the interval we use the upper and lower limits of the respective prediction
interval, whose formula can be found in Section 2.8. For the linear quantile regression
models, when computing the interval scores, no quantile crossing was present, therefore
we can use the formula for the interval score given in Section 2.8.
Based on Table 43, we can see that the D-vine quantile regression model DVReg2_nonpar_ln
shows best performance according to log likelihood and interval score values on level
α = 0.05. However, the nonparametric D-vine regression models do not lag much behind
gamma regression models when it comes to training and test errors, too. Both the para-
metric and nonparametric D-vine regression models perform better when the transformed
response is used. This can be especially noticed by comparing the models DVReg2_par_orig
and DVReg2_par_ln, which have the same order of covariates, just different response vari-
ables. The model DVReg2_par_ln performs better in every performance measure, except
for interval score on α = 0.05 level. Additionally, the linear quantile regression models
perform worse than their respective D-vine regression models, DVReg2_nonpar_orig and
DVReg2_nonpar_ln, according to most performance measures. When it comes to the BIC
values all D-vine regression models are lagging behind (especially the nonparametric ones
due to their high complexity).
The gamma regression models show worse performance than the lognormal regression
models in every performance measure, except in the training and testing error. Addi-
tionally, we can see that the interaction terms do not improve much the lognormal and
gamma regression models with main effects.
Finally, in the following analysis we consider the models LogLM2_main_red, GamReg2_main
_red, DVReg2_nonpar_orig and the respective linear quantile regression model LQReg2_orig,
as well as DVReg2_nonpar_ln and the respective linear quantile regression model LQReg2_ln.
Although the linear quantile regression models do not have better performance values than
their respective D-vine regression models, we consider them in our analysis as they con-
tain the same covariates as the D-vine models, therefore we can easily compare them and
analyze the different behaviour of D-vine quantile regression and linear quantile regression
on Bad Driver Data.

LogLM2 main red GamReg2 main red DVReg2 nonpar orig DVReg2 nonpar ln
pol bonus pol bonus vh cyl vh weight

poly(drv age lic1,3) poly(drv age1,4) pol usage2 drv age lic1
poly(vh cyl,2) vh cyl gender2 vh cyl
poly(vh din,2) poly(vh din,3) pol coverage2 vh speed

poly(vh weight, 5) vh weight claim ind vh sale end
pol coverage2 vh fuel drv age1 claim ind

vh fuel class make2 vh sale end pol coverage2
claim ind vh fuel vh fuel

class make2 vh weight
pol payd

Table 44: Covariates included in each of the models LogLM2_main_red, GamReg2_main_red,
DVReg2_nonpar_orig and DVReg2_nonpar_ln. The model LQReg2_orig has the same co-
variates as DVReg2_nonpar_orig and the model LQReg2_ln has the same covariates as
DVReg2_nonpar_ln.
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Based on Table 44, the continuous covariates vh_cyl and vh_weight and the discrete co-
variate vh_fuel, are included in all six models. In Figure 34 we present the histograms
of the fitted values on original standardized claims scale on Bad Driver training data set
for the models LogLM2_main_red, GamReg2_main_red, DVReg2_nonpar_orig, LQReg2_orig,
DVReg2_nonpar_ln and LQReg2_ln. The gamma regression model predicts better the tail,
but it overestimates the small values of standardized claims. The other models underes-
timate the tails, but predict well the small values of standardized claims. Additionally,
the gamma regression model has larger range of the fitted values of standardized claims
compared to the other models. However, all of the histograms indicate that the models
cannot predict the response standardized claims very precisely, given our data.

Figure 34: Histograms of the fitted values of standardized claims of the mod-
els LogLM2_main_red, GamReg2_main_red, DVReg2_nonpar_orig, LQReg2_orig,
DVReg2_nonpar_ln and LQReg2_ln on the Bad Driver training data set.
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Similarly, we present the histograms of the predicted values on the Bad Driver test data set
in Figure 35. Whe testing the models on new data we can see that they perform similarly
as on the training data set. In particular, the model GamReg2_main_red predicts the tails
the best, but severely overestimates the small values of the response. In comparison, the
model DVReg2_nonpar_ln predicts well part of the tail, while predicting the small values as
precisely as all other models (except for the GamReg2_main_red). Once again, given these
histograms we can see that the prediction power of the models is not very satisfactory,
especially not for the big values of standardized claims.

Figure 35: Histograms of the predicted values of standardized claims of the mod-
els LogLM2_main_red, GamReg2_main_red, DVReg2_nonpar_orig, LQReg2_orig,
DVReg2_nonpar_ln and LQReg2_ln on the Bad Driver test data set.
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Now we would like to investigate the models’ prediction intervals on the Bad Driver test
data set. In Figure 36 we present the 90% prediction intervals of the observations in the
test data set for each of these six models.

Figure 36: 90% prediction intervals of standardized claims on the Bad Driver test data set
for the models LogLM2_main_red, GamReg2_main_red, DVReg2_nonpar_orig, LQReg2_orig,
DVReg2_nonpar_ln and LQReg2_ln. The black line denotes the original values of standard-
ized claims, the blue line denotes the smoothed line of the predicted values and the red area
denotes the prediction interval, where the red lines are the smoothed limits of the prediction
interval. The observations are sorted in increasing order based on the original values of stan-
dardized claims.

The observations in Figure 36 are ordered based on their original values of the response
standardized claims, which on the plots are presented with the black line. The blue line
denotes the predicted values of the respective observations and the red lines denote the
lower and upper limit of the prediction interval. Most of the original values of standardized
claims belong in the 90% prediction intervals of the models, where the exception are the
values of standardized claims larger than 0.2. The prediction intervals of all six models
look similar, where only the prediction interval of the model DVReg2_nonpar_orig looks
narrower than the others. The predicted values of standardized claims in the gamma
model GamReg2_main_red are larger than the other five models. This results in the
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same conclusions we got from Figure 35, which are that the models LogLM2_main_red,
DVReg2_par_orig, LQReg2_orig, DVReg2_nonpar_ln and LQReg2_ln underestimate the big-
ger values of standardized claims, whereas the gamma regression model overestimates the
smaller values of standardized claims.

Figure 37: Plots of the fitted values on original standardized claims scale against the original
values of standardized claims on the Bad Driver test data set for the models LogLM2_main_red,
GamReg2_main_red, DVReg2_nonpar_orig, LQReg2_orig, DVReg2_nonpar_ln and LQReg2_ln.
The blue line denotes the 45◦ line.

To confirm the statement of underestimation of standardized claims in all models except
the gamma regression model, in Figure 37 we can see the plots of the predicted values of
standardized claims against the original values on the test data set. Intuitevely, we would
expect the black points on the plot to be scattered around the blue 45◦ line, which is not
the case for any of the models. For the gamma regression model, the bigger values of stan-
dardized claims are predicted better than the other five models and the predicted values
have larger range. For the other models, the range of the predicted values of standardized
claims is much smaller than the range of the original data and they heavily underestimate
the big values of standardized claims.
Finally, as the models DVReg2_ nonpar_orig and LQReg2_orig, as well as the models
DVReg2_nonpar_ln and LQReg2_ln have the same covariates, we would like to investigate
the marginal effects of the continuous covariates in the models on the predicted quantiles
on the Bad Driver training data set. The marginal effect of a continuous covariate is
presented by a plot of the continuous covariate xi against the fitted conditional quantiles
q̂iα, i = 1, . . . , ntr, where all other covariates are set to their observed value. The marginal
effect plots of the models for three different quantile levels 0.1, 0.5 and 0.9. are presented
in Figures 38 and 39.
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Figure 38: Marginal effect plots for the continuous covariates on the predicted quantiles on Bad
Driver training data set for three different quantile levels. Left :DVReg2_nonpar_orig, right :
LQReg2_orig.

Figure 39: Marginal effect plots for the continuous covariates on the pre-
dicted quantiles on Bad Driver training data set for three different quantile lev-
els.Left :DVReg2_nonpar_ln,right :LQReg2_ln.

In Figure 38, on the marginal effect plots of vh_cyl and vh_weight of the model LQReg2_
orig we can spot quantile crossing, which cannot appear in a D-vine regression model. We
can also notice that some of the predicted quantiles in the LQReg2_orig model have nega-
tive values, which is a disadvantage of using the response variable on original scale. The
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effects of the continuous covariates in the model LQReg2_orig however are much more lin-
ear than the effects of the continuous covariates in the model DVReg2_par_orig, with only
the covariate vh_cyl indicating strong nonlinearity. Similarly, the marginal effect plots
of the model LQReg2_ln in Figure 38 look more linear than the model DVReg2_nonpar_ln,
however, most of the continuous covariates in these two models indicate nonlinear effects.
In this case no quantile crossing is present on the plots. This nonlinearity in the marginal
effect plots of the D-vine regression models may be one the reasons why D-vine regression
models perform better than the linear quantile regression models.
Finally, we can conclude that although the D-vine regression models are more complex
than the lognormal, gamma and linear quantile regression models, they give satisfac-
tory results as a modelling method in predicting standardized claims in Bad Driver Data
compared to the other regression methods.
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6 Conclusion

This thesis is concerned with four different statistical methods for modelling third party
liability motor insurance claims. The lognormal and gamma regression are standard ap-
proach in modelling claims severity. We also studied two quantile regression methods, the
linear quantile regression and D-vine quantile regression, which are more robust methods
for outliers and provide an opportunity to investigate the tails.
On both Good and Bad Driver Data, D-vine quantile regression results in highest log
likelihood among all four regression methods. However, when it comes to AIC and BIC
criteria, this regression method lags behind, due to its higher complexity compared to
the other regression methods. The fitted D-vine quantile regression models also show low
training error, test error and interval scores in comparison to the lognormal, gamma and
linear quantile regression models.
Compared to the lognormal regression models, gamma regression models have better val-
ues only for the training and test errors. The advantage of the gamma models is that the
range of predicted values of the original response is larger, indicating that they predict
the larger values of the response better, compared to the other models which were con-
centrated more in a smaller window of predicted values of the response.
In both data sets, linear quantile regression models perform worse in almost every perfor-
mance measure than their respective D-vine quantile regression models. That being said,
D-vine quantile regression shows larger predictive power than linear quantile regression
on the given data sets.
The parametric D-vine regression is easier to interpret and less complex than the non-
parametric D-vine regression. However, the parametric D-vine regression is less flexible
in capturing nonparametric bivariate copula structures and requires more work in the
preprocessing step of the estimation of the marginals. It also does not allow for ordinal
covariates in the model, compared to the nonparametric D-vine regression. In this thesis,
the nonparametric D-vine quantile regression model performs better than the parametric
one for Bad Driver Data. An important finding is that for both D-vine quantile regres-
sion and linear quantile regression, the models which use the transformed response as
a response variable show better performance measures than the models which use the
response on original scale.
Before we conclude the work of this thesis, it is important to keep in mind that our fitted
models did not show big predictive power for standardized claims, given the data sets.
This can directly be seen by the R2

adj values for the lognormal models on the both Good
and Bad Driver Data, which are smaller than 15%. Having that said, we cannot make
any strong conclusions about D-vine regression performance compared to the other meth-
ods. However, considering the fact that D-vine regression requires less data analysis prior
modelling and automatically includes only the important covariates in the model, we can
say that this regression method may be beneficial for further application in insurance risk
modelling. In particular, it provides a good overview of dependence structures between
the important covariates and the response, and yields an opportunity to investigate the
tails of the response.
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