
TECHNISCHE UNIVERSITÄT MÜNCHEN
TUM School of Computation, Information and

Technology

Machine Intuition in Mobile Network Automation

Márton Kajó

Vollständiger Abdruck der von der TUM School of Computation, Information and
Technology der Technischen Universität München zur Erlangung des akademischen
Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitz: Prof. Debarghya Ghoshdastidar, Ph. D.
Prüfer*innen der Dissertation: 1. Prof. Dr.-Ing. Georg Carle

2. Prof. Dr. Rolf Stadler
KTH Royal Institute of Technology, Stockholm,
Sweden

Die Dissertation wurde am 23.05.2022 bei der Technischen Universität München eingereicht
und durch die TUM School of Computation, Information and Technology am 03.11.2022
angenommen.

Abstract:

The mobile networks of the future promise the widespread availability of reliable, low-
latency and high-bandwidth communication, which can only be achieved through cognitive
automation. Cognitive Autonomous Networks (CANs) aim to use highly intelligent deep
learning algorithms as the core of cognitive functions, capable of processing a wide scope
of information, and use it to adapt the network to changing context.

Deep learning algorithms are the state-of-the-art modeling tools, capable of automating
some of the most complex cognitive processes of human reasoning. However, deep learning
is mostly advanced in other fields, with a focus on supervised learning, which is of limited
use in mobile networks on account of a lack of easily accessible labeled data. CANs require
algorithms that are capable of learning in an unsupervised manner, inferring insight from
data without the help of extensive human supervision. These tasks necessitate intuitive
decision making with strong cognitive capabilities, involving the extraction of hidden,
latent information from the data, the set of capabilities which can be termed as machine
intuition.

This thesis discusses such machine intuition algorithms, and their application to cognitive
network automation use cases. Machine intuition is divided into four processes: facilita-
tion of communication through exemplification, augmented labeling through associative
modeling, preemptive radio control through prediction, and increased robustness against
corrupted inputs through machine confidence. The core of the thesis is split into four parts
corresponding to the four processes, with each presenting one or more deep-learning-based
implementations, and related evaluations on a cognitive network automation use case.
Based on these evaluations, conclusions about each intuitive process is given, assessing
its feasibility of implementation with deep learning algorithms, its practicality in mobile
networks, and its applicability to cognitive network automation.

The thesis is concluded in a general assessment of machine intuition as a whole, discussing
the perceived cognitive power the algorithms realizing these processes, highlighting the
advantages and shortcomings of unsupervised learning in the mobile network automa-
tion setting, and predicting short- and long-term future of machine intuition. As closing
remarks, I reiterate the caveats of using deep learning models in mobile networks, and ar-
gue for dedicated deep learning research and better scientific practices in mobile network
automation.

Kurzfassung:

Die Mobilfunknetze der Zukunft versprechen die verbreitete Verfügbarkeit einer zuverläs-
sigen Kommunikation mit niedriger Latenz und hoher Bandbreite, die nur durch kognitive
Automatisierung erreicht werden kann. Cognitive Autonomous Networks (CANs) zie-
len darauf ab, hochintelligente Deep-Learning-Algorithmen als Grundlage der kognitiven
Funktionen zu verwenden, die ein breites Spektrum an Informationen verarbeiten und das
Netz an den sich ändernden Kontext anpassen können.

Deep-Learning-Algorithmen sind führende Modellierungswerkzeuge, die in der Lage sind
einige der komplexesten kognitiven Prozesse des menschlichen Denkens zu automatisieren.
Deep Learning wird jedoch überwiegend in anderen technologischen Bereichen weiteren-
twickelt, wobei dort der Schwerpunkt auf überwachtem Lernen liegt, das aufgrund des
Mangels an zugänglichen, vorklassifizierten Daten in mobilen Netzen nur von begrenztem
Nutzen ist. CANs erfordern Algorithmen, die auf unüberwachte Weise lernen und aus
Daten Erkenntnisse ziehen können, ohne dass umfangreiche menschliche Überwachung er-
forderlich ist. Diese Aufgaben erfordern eine intuitive Entscheidungsfindung mit starken
kognitiven Fähigkeiten, die die Extraktion von latenten Informationen aus den Daten ein-
schließt, und als maschinelle Intuition bezeichnet werden kann.

In dieser Dissertation werden solche Algorithmen der maschinellen Intuition, und ihre An-
wendung im Kontext von Anwendungsfälle der kognitiven Netzwerkautomatisierung disku-
tiert. Maschinelle Intuition wird in vier Prozesse unterteilt: Erleichterung der Kommu-
nikation durch Exemplifizierung, erweiterte Datenetikettierung durch assoziative Model-
lierung, präventive Funksteuerung durch Vorhersagemechanismen und erhöhte Robustheit
gegenüber verfälschten Daten durch maschinelles Vertrauen. Logisch ist die Dissertation
in vier Teile gegliedert, die den vier Prozessen entsprechen. In jedem Teil werden eine oder
mehrere Deep-Learning-basierte Implementierungen und damit verbundene Evaluierungen
für einen Anwendungsfall der kognitiven Netzwerkautomatisierung vorgestellt. Auf der
Grundlage dieser Evaluierungen werden Schlussfolgerungen zu jedem intuitiven Prozess
gezogen, wobei die Machbarkeit der Implementierung mit Deep-Learning-Algorithmen,
die Praktikabilität in mobilen Netzwerken und die Anwendbarkeit für die kognitive Net-
zwerkautomatisierung bewertet werden.

Die Arbeit schließt mit einer allgemeinen Bewertung der maschinellen Intuition als Ganzes,
wobei die wahrgenommene kognitive Leistung der Algorithmen, die diese Prozesse re-
alisieren, erörtert wird, die Vorteile und Mängel des unüberwachten Lernens im Rah-
men der Automatisierung von Mobilfunknetzen hervorgehoben werden und die kurz- und
langfristige Zukunft der maschinellen Intuition diskutiert wird. Abschließend weise ich
noch einmal auf die Vorbehalte bei der Verwendung von Deep-Learning-Modellen in mo-
bilen Netzwerken hin und argumentiere für eine gezielte Deep-Learning-Forschung und
bessere wissenschaftliche Praktiken bei der Automatisierung mobiler Netzwerke.

Acknowledgments:

This thesis would have not been possible without the support I received from many indi-
viduals.

First and foremost, I would like to thank Prof. Dr.-Ing. Georg Carle for giving me the
opportunity to join the Chair of Network Architectures and Services and for supervising
the dissertation. Similarly, I am most thankful to Dr.-Ing. Henning Sanneck for getting
me in contact with Prof. Carle, and for setting up and maintaining the framework which
financed my position at the chair.

I am forever grateful to my parents Krisztina and Gábor. Without their unquestioning
and unwavering support to pursue my goals, I could not be who I am and where I am
today.

Throughout my research, I have received invaluable guidance – about science, life, and
everything in-between – from my friend, mentor and colleague Stephen Mwanje. My band
of brothers at the chair, fellow Ph. D. students Richard and Filip, have been the greatest
allies a man can wish for. My friends and colleagues at Nokia, chief among them Christian
and Christoph, have provided a helping hand and a listening ear to ease my troubles too
many times to count. Thank you all for your friendship and support, you have made this
journey truly worth undertaking!

I am grateful to Afsaneh Gharouni for providing companionship and ease of mind in the
hardest of times.

I would also like to thank my students who helped me and contributed to my research,
especially my friend and co-author Janik Schnellbach.

Finally, I would like to thank Prof. Dr. Rofl Stadler for being my second assessor, and
Prof. Debarghya Ghoshdastidar for chairing the examination committee.

München, 26.05.2023

Márton Kajó

Contents

Contents . i

1 Introduction .1

1.1 Cognitive Autonomy . 2

1.1.1 Cognitive Autonomous Networks . 2

1.1.2 The Cognitive Capabilities of Deep Learning . 3

1.1.3 Gaps in Cognitive Network Automation Research 6

1.2 Machine Intuition for Cognitive Network Automation . 7

1.3 Research Objectives and Thesis Outline . 7

1.3.1 Research Objectives. .7

1.3.2 Thesis Outline . 9

1.3.3 Publications in the Context of this Thesis . 11

2 Deep Learning with Neural Nets . 15

2.1 Basic Neural Nets . 16

2.1.1 Fully-connected Layers .16

2.1.2 Generic Function Approximation with Step Nonlinearity 17

2.1.3 Logistic Nonlinearities, Regression and Classification 19

2.2 Neural Net Training . 20

2.2.1 Gradient Descent and Backpropagation . 20

2.2.2 Stochasticity, Computational Requirements . 24

2.2.3 Starting and Stopping, Under- and Overfitting . 26

2.3 Deep Neural Nets . 28

2.3.1 Unstable Gradients in Deep Neural Nets . 28

2.3.2 Stabilizing Gradients. .29

2.3.3 Recurrent Nets . 31

2.3.4 Convolutional Nets . 33

2.3.5 Autoencoders . 35

2.3.6 Generative Adversarial Nets . 36

2.3.7 Hierarchical Features Learned in Deep Neural Nets37

2.4 Deep Learning in Mobile Networks . 38

2.4.1 State-of-the-art . 38

2.4.2 Drivers, Enablers and Constraints of DL . 43

ii CONTENTS

I Exemplification

3 Quantization for Network State Modeling . 47

3.1 Concept: Diagnosis Knowledge Sharing for Self-Healing 49

3.1.1 Automating Diagnosis in Self-Healing . 49

3.1.2 Knowledge Sharing using Quantization .50

3.1.3 Towards Equal-Volume Quantization . 51

3.2 Density-Invariant Quantization with Bounding Volumes 53

3.2.1 Quantization in High-Dimensional Spaces . 53

3.2.2 Uses of Equal-Volume Quantization in Mobile Networks 54

3.2.3 Expectation-Maximization and k -Means . 56

3.2.4 Bounding Sphere Quantization . 57

3.2.5 Bounding Box Quantization. .59

3.2.6 Similar Problems and Algorithms . 62

3.2.7 Experimental Results . 63

3.2.8 Conclusion and Critique . 64

3.3 Neural-Net-Based Quantization . 65

3.3.1 Algorithms Designed for Massive Parallelization65

3.3.2 Implementation Overview . 66

3.3.3 Distance Calculation Layer . 66

3.3.4 Distance Selection Layer . 67

3.3.5 Cross-Batch Accumulation . 67

3.3.6 Related Work and Evaluation . 69

3.3.7 Conclusion. .70

3.4 On Massively Parallel Algorithms in Mobile Networks . 71

4 Environment Modeling and Abstraction of Network States . 73

4.1 Concept: EMA in Cognitive Autonomous Networks . 74

4.1.1 Elements of Cognitive Autonomous Networks . 74

4.1.2 Environment Modeling and Abstraction Engine 75

4.1.3 Related Work . 77

4.2 EMA using Bounding Sphere Quantization . 78

4.2.1 Simulation Environment and Data . 78

4.2.2 Feature Extraction using an Autoencoder . 79

4.2.3 Quantization with BSQ and k-Means . 80

4.2.4 State Mapping . 82

4.2.5 Conclusion and Critique . 85

CONTENTS iii

4.3 Towards Deep Clustering in EMA. .85

4.3.1 Deep Clustering with ACAI. 85

4.3.2 Differences in Simulation Environment, Data and Net Topology . . . 86

4.3.3 Evaluation . 88

4.3.4 Conclusion. .90

5 Summary of Research on Exemplification . 91

5.1 Assessment of Feasibility (A1.1). .92

5.2 Assessment of Practicality (A1.2) . 93

5.3 Assessment of Applicability (A1.3) . 93

II Association

6 Network State Modeling using Sparse Clustering Autoencoders97

6.1 Deep Clustering with Sparse Clustering Autoencoders . 98

6.1.1 State Transition Graphs, Sparsity of Activations 98

6.1.2 Sparse Clustering Autoencoders . 100

6.1.3 From Sparseness to Convex Combinations . 100

6.1.4 Anchoring Module - Sparseness Loss Calculation 102

6.1.5 Guidance Module . 104

6.1.6 Training . 105

6.1.7 Related Work in Mobile Network Automation.106

6.1.8 Related Work and Comparison in Deep Clustering 107

6.1.9 Example Use of SCA: Cell Anomaly Detection 109

6.1.10 Conclusion and Critique . 112

6.2 On Human Bias in DL Algorithms, Explainability . 112

7 Deep Clustering of Mobile Network Data .117

7.1 Decorrelating Adversarial Nets for Clustering Mobile Network Data 118

7.1.1 Clustering in Mobile Network Automation . 118

7.1.2 State-of-the-Art in Deep Clustering . 119

7.1.3 An Argument for Generative Clustering. .122

7.1.4 Decorrelating Adversarial Net . 122

7.1.5 RIM Initialization and DEC Clustering . 124

7.1.6 Evaluation Methodology . 127

7.1.7 Evaluation on Image Data . 129

7.1.8 Evaluation on Mobile Network Data . 130

7.1.9 Short Ablation Study . 133

7.1.10 Conclusion . 135

iv CONTENTS

8 Summary of Research on Association . 137

8.1 Assessment of Feasibility (A2.1) . 139

8.2 Assessment of Practicality (A2.2) . 140

8.3 Assessment of Applicability (A2.3) . 140

III Prediction

9 Signal-quality-based Radio Environment Prediction . 145

9.1 Machine-Learning-Based Predictive Handover . 146

9.1.1 Minimizing Interruption . 146

9.1.2 Related Work. .147

9.1.3 Training the Predictor . 148

9.1.4 Filtering Classification Decisions using a Dynamic Threshold 149

9.1.5 Evaluation Environment and Scenario . 150

9.1.6 Evaluation Results. .152

9.1.7 Conclusion and Critique . 152

10 Mobility-based Radio Environment Prediction. .155

10.1 Mobility and QoS Prediction for Dynamic Coverage Optimization.156

10.1.1 The Hamburg Smart Seaport Testbed . 156

10.1.2 Mobility and QoS Prediction . 156

10.1.3 A Digital Twin for QoS Prediction. .158

10.1.4 Results . 159

10.1.5 Conclusion . 160

10.2 On Data Privacy . 160

11 Summary of Research on Prediction. .163

11.1 Assessment of Feasibility (A3.1) . 164

11.2 Assessment of Practicality (A3.2) . 164

11.3 Assessment of Applicability (A3.3). .165

IV Confidence

12 Communication and Utilization of Confidence Values . 169

12.1 Robust Deep Learning against Corrupted Data in CAN 170

12.1.1 Problem Statement . 170

12.1.2 CF-chains in Mobile Networks . 171

12.1.3 State-of-the-Art in DL-based Imputation . 172

12.1.4 Integrated Imputation . 173

12.1.5 Evaluation Metrics . 174

CONTENTS v

12.1.6 Simulation Scenario . 175

12.1.7 Evaluated Imputation Methods . 176

12.1.8 Training for Different Missing Rates and Types 177

12.1.9 Evaluation Results . 179

12.1.10 Conclusion and Outlook . 181

12.2 On Standardized DL in Mobile Networks . 182

13 Summary of Research on Confidence . 185

13.1 Assessment of Feasibility (A4.1) . 186

13.2 Assessment of Practicality (A4.2) . 186

13.3 Assessment of Applicability (A4.3). .187

V Conclusion

14 Conclusion and Outlook . 191

14.1 Machine Intuition . 192

14.1.1 Increasing Cognitive Power for CAN (A5.1) . 192

14.1.2 Benefits and Shortcomings of Unsupervised DL (A5.2) 192

14.1.3 Short- and Long-Term Adoption, Following Trends (A5.3) 194

14.2 Outlook of DL in Mobile Networks . 195

14.2.1 On the Caveats of DL . 195

14.2.2 On DL Research. .196

Literature . 199

Acronyms . 211

Index . 217

List of Figures . 219

List of Tables . 223

1

1. Introduction

The mobile network has become an integral part of our everyday life. Internet access on
the go serves us in a different way every minute; we use it to find someone, to translate
foreign languages, to make ourselves or others laugh, to share memories, to reconnect to
old friends or to create new ones. We use the mobile network to connect with each other.

The human need to stay connected everywhere is seemingly endless, increasing the con-
sumer use of mobile data year-by-year with a steady rate. This constantly increasing
demand spurred the innovations in the 5th Generation Mobile Network (5G) towards the
use of capacity-increasing technologies on the radio link. Most notable are the utilization
of millimeter-wave carrier frequencies and spatial densification of the radio network using
beamforming, massive Multiple-Input Multiple-Output (MIMO) and micro- or pico-cells,
achieving high peak data rates dubbed as extreme Mobile BroadBand (eMBB). These are
the technological advancements that impact most of the consumers in 5G. However, 5G
also pays attention to aspects of the network other than pure capacity; strict require-
ments towards high reliability, low latency or low battery consumption are also supported,
allowing for uses of the network outside of the consumer sector (Fig. 1.1).

5G

Ultra Reliable Low

Latency

Communication

extreme Mobile

BroadBand

High num. of devices

Low energy

High reliability

Low latency

High data rates

Internet of

Things

Figure 1.1: Use cases with extreme requirements supported by 5G.

A clear focus of 5G is the industrial applicability of mobile communication in use cases such
as industrial sensor networks supported by low-energy Internet of Things (IoT) features, or

Version: 2023/05/26 – 14:32:46

2 1. Introduction

the remote control of machines in smart factories supported by Ultra-Reliable Low-Latency
Commmunication (URLLC) [1]. For now, these envisioned uses are still somewhat limited
in their overall effect on the global mobile communication scene: industrial applications
are mostly meant for isolated campus networks, and do not involve the generic consumer.
Moving beyond 5G, this constraint is lifting, with the use cases of the future requiring
the widespread availability of reliable, low-latency and high-bandwidth communication.
If future mobile networks can achieve these requirements, life-changing improvements are
possible in the commercial domains such as [2]:

� Mobility: Vehicles would be able to communicate with each other or the infras-
tructure, allowing for vastly improved traffic flow, remote control or on-demand
autonomous driving without expensive equipment in the vehicles.

� Healthcare: Connectivity-enabled devices and sensors would allow for the remote
monitoring of patients, while Artificial Intelligence (AI)-based automated diagnosis
will provide precise, real-time recommendations and warnings, improving survivabil-
ity for many of the modern age’s most deadly illnesses.

� Retail: The use of network-connected drones, as well as cashierless stores would allow
for the time-efficient and personalized distribution of wares to the customers, while
also simplifying and automating inventory management and warehouse operations.

By achieving these goals, the mobile network of the future could become even more deeply
ingrained in our lives, with key moments not only supported by-, but depending on its
functions. However, in order to support this vision, the mobile network of the future
needs to be dependable. To be able to live up to these expectations, mobile networks not
only need to support the connectivity requirements, but also need to be adaptive, robust,
scalable and efficient. Furthermore, to be economically viable as a world-wide deployment,
they also need to be cost-effective. Thus, the challenge is to create, setup, and maintain
such a powerful network, which seems impossible without the use of automation that is
close to- or even beyond human intelligence: cognitive autonomy.

1.1 Cognitive Autonomy

1.1.1 Cognitive Autonomous Networks

There are key technological advancements that form the basis of the services in 5G and
beyond: beamforming, massive MIMO and millimeter-wave carrier frequencies in the radio
access network, Network Function Virtualization (NFV) and Software-Defined Network-
ing (SDN) in the core, with network slicing managing and distributing resources. These
technologies enable a network-scape that is vastly different from the traditional mobile
network, with greatly increased density, heterogeneity, and elasticity. These aspects all
contribute to a complex network scenario, which demands more than what the currently
established network automation techniques are capable of. In such complex networks,
both the volume and variety of information that needs to be taken into account rules out
traditional, hard-coded implementations. The possible contexts and environmental effects
are too many, creating a vast state-space, which can no longer be effectively anticipated
at design time. Furthermore, the effects that the different network elements have on each
other also comes into play, where the interconnected nature of the network functions easily
create conflicts.

A modern solution to overcome the problem of enormous design-time complexity are learn-
ing algorithms, commonly referred to as Machine Learning (ML). In ML algorithms, the

1.1. COGNITIVE AUTONOMY 3

learning process creates a model using training data, by autonomously deducting rules
which achieve the desired functionality. The use of ML algorithms as a basis for network
automation functionality enables 2 major features:

a) Autonomous deduction: The description of the desired functionality is not done
through explicit rules, but implicitly through supplying the learning algorithm with
training data, which shows examples of correct functioning. This learning approach
frees the designer of the function from having to create overtly complex rules, and
allows for the design to focus more on describing the wanted behavior in a more
efficient way. The designer’s goal in this case becomes the extraction or generation
of good quality training data for the algorithms, and the definition of fitting measures
of goodness with which the ML algorithms can be trained.

b) Continuous learning: A natural step forward when using ML algorithms is the notion
of continuous learning. As the algorithms are already capable of deducting their
own rules when training, this learning can be utilized during the operational phase
to periodically or continuously update the model formed by the algorithm, making
it able to adapt and optimize for changing environments. The task of the designer
is to create methods that can extract good-quality training data on-the-fly while
the algorithm is operational, as well as to create rules that govern the continuous
training in order to balance adaptation against retainment of previously acquired
knowledge.

The Cognitive Autonomous Network (CAN) concept envisions just such a mobile network
[3]. In CAN, cognitive entities, such as network management functions (Cognitive Func-
tions (CFs)) take into account the context of their functioning in their recommendations or
decisions. A cognitive entity is defined to be “capable of perceiving a signal and process it
into a data element, over which the entity reasons to select an action. It conceptualizes and
contextualizes the data element and, logically or arithmetically [...] selects the appropriate
action” [3]. To be able to contextualize, the CFs must process large amounts of varied data,
collected from many different parts and layers of the network. This increased receptive
field is meant to enable a more insightful automation, one based on the comprehension of
the interconnected dependencies/correlations in the network. However, cognition in CAN
also refers to a high cognitive power, where CFs are capable of automating tasks that
require intelligence akin to human reasoning. Both the large receptive field and the high
cognitive power mandates the use of ML algorithms with a very strong modeling capa-
bility, which is only possible with the most complex, cutting-edge ML algorithms today,
most commonly known as deep learning.

1.1.2 The Cognitive Capabilities of Deep Learning

Deep Learning (DL) is a subset of machine learning, most commonly defined as ML algo-
rithms which utilize Deep Neural Nets (DNNs) as their model (DL is introduced in detail
in Cha. 2). Neural networks became the prime machine learning tool because of their
capability to effectively select and utilize only the most important features from multi-
dimensional input spaces containing low-level, raw features. Deep neural networks are
capable of learning consecutively more abstract, higher-level latent representations from
these low-level features during their training. The deeper the neural network, the stronger
this abstraction can become, so much so that deep learning algorithms can effectively learn
to do some of the same tasks that the human sensory system and brain can, in a single
model, working on raw data.

Deep learning algorithms are considered to be the most powerful machine learning tools
to date. In some fields, such as Natural Language Processing (NLP) or computer vision,

4 1. Introduction

deep learning algorithms allow for previously impossible tasks, such as precise machine
translation of text, or self-driving cars. Deep learning algorithms are in fact so powerful
in select applications, that they resemble human intelligence, and are often (confusingly)
referred to as AI. While my personal opinion is that current deep learning still has a long
way to go before it can be called AI, it is nevertheless important to see where exactly deep
learning lies in cognitive power on the way to true AI.

For this, first we need to establish the distinction between the different ML paradigms.
There are two major ML paradigms: supervised learning and unsupervised learning. There
exist various understandings and definitions of where the division lies between the two
paradigms, but for the purpose of this discussion, I think it is best approached from the
perspective of required human input:

� Supervised learning: In this paradigm, the machine learning algorithm is trained on
labeled training data. The labels are obtained through a laborious data preparation
process before training, such as: manual labeling, directed feedback or measurement
collection, or the setup of extensive simulated environments. The labels are categori-
cal or continuous values, and are attached to the training observations. The required
output of the machine learning algorithm is the correct label for each input obser-
vation. The loss used for training the machine learning algorithm utilizes the labels
as ground truth, and measures the difference between the output and the ground
truth labels to steer the machine learning algorithm towards formulating the correct
model.

� Unsupervised learning: In this paradigms, the machine learning algorithm is trained
on unlabeled training data. Human labor is kept at a minimum in the data prepa-
ration process, generally requiring lightweight, easy-to-automate preparation before
training, such as: data cleaning, feature- or temporal/spatial aggregation, or data
segmentation. Human input is mostly relevant during design time, where the imple-
mentation of the additional constraints can embed some bias into the models formed
by these algorithms. The required output of the machine learning algorithm is either
the reconstruction or prediction of the input data itself, or some structure/logic that
is found within the data. Unsupervised learning does not define the task explicitly in
a way supervised learning does, instead defining it implicitly through additional con-
straints on the model, which the machine learning algorithm has to take into account
during training. These additional constraints are often implemented as additional
losses.

To correctly judge the cognitive capabilities of supervised and unsupervised deep learning
algorithms, we can turn to a well known categorization of human cognitive processes:
Bloom’s taxonomy. Proposed by the educational psychologist Benjamin Bloom at the
University of Chicago in 1956, the taxonomy is still widely used and updated [4]. Bloom’s
taxonomy organizes the different cognitive skills that students have to utilize during their
studies, also referred to as learning objectives (Fig. 1.2). Simpler cognitive skills reside
on the bottom of the taxonomy, while complex cognitive skills, which require high levels
of intelligence and creativity, are towards the top. Similarly, the learning objectives these
skills solve also go from concrete to abstract. We can look at the extremes to get a good
grasp of the range of skills and estimate the requirements towards AI. On the bottom,
remembering is a very straight-forward task, one which was implemented long ago using
memory in computers. At the top, creation, the unconstrained generation of things has
so far been barely attempted with computers, where traditional software is usually only
capable of handling situations which the programmer already thought of at design time, the

1.1. COGNITIVE AUTONOMY 5

Analyzing

Evaluating

Applying

Understanding

Remembering

Creating

Concrete

Abstract

Simple

Complex

Supervised

deep learning

Recall specific facts

Grasp meaning of

instructional materials

Use information in new

(but similar) situation

Take apart the known

and identify relationships

Examine information and

make a judgement

Use information to

create something new

Unsupervised

deep learning

Figure 1.2: Supervised and unsupervised DL positioned in Bloom’s taxonomy of cognitive
learning processes.

very antithesis of creativity. ML algorithms are a step in this direction, as they somewhat
break this hard-codedness through their automatic model formulation.

Deep learning algorithms are a popular solution to tasks where the goal is to mimic human
cognition in ordinary, everyday tasks. Computer vision problems such as object recogni-
tion, or image segmentation is something we do every minute, a large portion of our brains
constantly dedicated to these tasks. NLP problems, such as translating from one language
to another is also a common task, one that some people use to communicate every day.
These are problems where we humans have a very deep, intuitive understanding of the un-
derlying logic, and even though we cannot effectively put the solutions of these problems
into a set of simple rules, at least we can provide ample examples of solutions (labels),
sufficiently covering all possibilities. Because these problems are solved everyday by all of
us, researchers have access to large amounts of labeled training data through data mining
labels on social media sites, or crowd-sourcing the labeling process. Thus, these tasks are
best solved through supervised learning, and so, most of the currently popular deep learn-
ing algorithms undertake this learning paradigm. Considering all this, I would position
most current deep learning algorithms at the level of “applying” in Bloom’s taxonomy:
current DL is very capable of remembering, understanding and applying complex rules
that are derived from labeled examples generated by humans.

Unfortunately, mobile networks do not have such label generation options. As network
management tasks require expert knowledge, only a handful of people are capable of under-
taking them. Furthermore, the tasks themselves are so complex that the required amount
of labeled training data – which would cover all possibilities – is probably magnitudes
larger than in the previously described everyday tasks. Requiring the handful of experts
to manually generate that many examples for supervised learning is not feasible. Thus,
for cognitive network automation, unsupervised deep learning algorithms are of greater
importance. Cognitive autonomous networks need DL algorithms which can develop an
understanding without explicit definition: analyzing situations, or behavior by dissecting
data and identifying relationships. This requires a higher level of cognition than what su-
pervised DL algorithms realize: analysis of information without specific patterns to detect
is a more complex, and less concrete task than application of learned rules. In my opinion,
such algorithms represent a higher level of cognitive power than supervised learning algo-
rithms, occupying the “analyzing” slot on Bloom’s taxonomy. I believe these algorithms
represents progress towards true AI, and are the future of DL in the context of cognitive
autonomous networks.

6 1. Introduction

I would like to mention a third machine learning paradigm here: reinforcement learning. In
reinforcement learning, the model learns by experimentation, through taking actions on an
environment in order to maximize an often delayed reward. However, for mobile network
automation, learning by experimentation is a complicated topic, because experimentation
on large-scale, active network deployments is not feasible due to the many users depending
on the mobile network’s function. Furthermore, because of the large evaluation windows
and slow reaction of the network to changes, such experimentation would possibly take a
long time to converge. Therefore, in the mobile network context, reinforcement learning
has to depend on simulated environments, which for network automation means complex
digital twins that simulate many aspects of the network at the same time. Such detailed
simulators were not available to us at the start of my research, and the topic itself is so
vast, that it deserves its own dedicated researchers and multiple years of research. Thus,
this thesis focuses on algorithms that are unsupervised, but not on reinforcement learning,
which is out of the scope of my research.

1.1.3 Gaps in Cognitive Network Automation Research

In my experience, much of the state-of-the-art research in mobile network automation
focuses on realizing use cases with already available DL algorithms. These algorithms are
applied with little modification – as a black box – without tailoring or fine-tuning the
algorithms to the specific use case. An in-depth overview of the uses of DL in mobile
networks is given in Sec. 2.4.1.

DL is mostly advanced in other fields, such as computer vision and NLP. Because the
contexts and goals in these settings are very different from mobile network automation, the
lack of dedicated research in our field can have long-term effects. As DL algorithms become
more and more performant, they also become ever more specific to the contexts they were
developed for, which causes the performance in other applications to degrade. I believe
that this specialization causes cutting-edge DL algorithms to achieve lower performance in
network automation tasks today, and will render them completely inapplicable in the long-
term. An early sign of this trend is the already mentioned focus on supervised learning
algorithms, which are of limited use in mobile network automation.

Because of the lack of easily accessible labeling processes or labeled datasets, network
automation aims to utilize semi- or unsupervised learning algorithms to be able to effec-
tively learn from mobile network data. These algorithms should be capable of autonomous
analysis of data, without manually labeled datasets, or other types of extensive human su-
pervision. However, unsupervised DL algorithms are not prevalent, because the fields that
progress DL the most can utilize supervised learning algorithms better. Even if unsuper-
vised DL algorithms are developed, these will not necessarily be applicable to mobile net-
works, as unsupervised learning algorithms are especially prone to embed context-specific
bias during design, in the form of additional constraints.

Lastly, the lack of dedicated DL research in mobile network automation could potentially
result in unrealized use cases, for which there are no available DL algorithms. I believe a
side effect of dedicated research would be the invention of new DL algorithms, which solve
mobile-network-specific problems that do not exist in other fields.

These observations motivated me to research unsupervised deep learning algorithms. My
goal was to develop these algorithms specifically for mobile network automation, in order
not to retain bias inherited from other technological fields, and to potentially enable new
use cases that currently have no DL-based solution. I have coined these algorithms as
machine intuition.

1.2. MACHINE INTUITION FOR COGNITIVE NETWORK AUTOMATION 7

1.2 Machine Intuition for Cognitive Network Automation

Human intuition is defined as “the power or faculty of attaining direct knowledge or cog-
nition without evident rational thought and inference” [5]. This definition does not mean
intuition is insight gained without logic, from thin air: intuitive thinking certainly should
infer knowledge from information using some form of reasoning. However, the reasoning
might be quite abstract, as the derivation of the correct answer or structure from the data
requires deep insight into latent features, which are hidden at first glance. While such
cognition might seem to an outside observer as irrational, it should be possible to ground
the insight in logical explanation, given that a wide enough scope of information is taken
into account.

To be considered as “intuition”, a cognitive process must a) implement an unsupervised
learning task, and b) require a deep insight into the data to uncover latent information.
In order to further clarify intuition, I identified intuitive processes, which require the ex-
traction of deep insight, achieved without external guidance, such as labeled observations.
These intuitive processes are often used in conjunction with each other in problem-solving
or communication. I have investigated 4 such intuitive processes, which have potentially
useful applications in mobile network automation:

a) Exemplification is the definition of a vocabulary of descriptive example observations,
and the use of these examples to represent multiple observations, in order to effec-
tively convey information in a dense, but easily understandable format.

b) Association refers to the extraction of important latent features in order to find
meaningful similarities among the examples in the data, through which individual
observations can be assigned to- and processed as discrete groups.

c) Prediction is the intelligent, long-term forecasting of future behavior of an entity,
based strongly on contextual information such as historical data from the entity
and/or similar entities, as well as information from the entity’s surroundings.

d) Confidence refers to the treatment of incoming data and/or inferred information
with uncertainty, and the communication of these doubts, in order to mitigate or
completely stop the propagation of false information in automated processes.

Machine intuition algorithms are DL algorithms that realize the above cognitive processes.
These algorithms are envisioned to be capable of in-depth analysis of varied, large-volume
mobile network data through unsupervised learning. Lacking the need of extensive human
supervision, machine intuition algorithms enable a network automation that is robust
and adaptive, even when facing previously unforeseen situations. By implementing these
intuitive processes using DL techniques, I also hoped to advance network automation to
a higher level of cognition, where functions take into account a large scope for decisions,
taking a step towards realizing the vision of CANs.

1.3 Research Objectives and Thesis Outline

1.3.1 Research Objectives

The overarching research objective is to evaluate the concept of machine intuition applied
for cognitive network automation tasks. To achieve this objective, the thesis explores the
previously described 4 machine intuition processes, by discussing a) implementations as
DL algorithms; b) the evaluation of these implementations with mobile network data; and
c) possible applications in cognitive network automation tasks. My goal was to assesses 3
aspects of each machine intuition process:

8 1. Introduction

1. Feasibility: The first objective is establishing weather it is feasible to realize the
machine intuition process with current DL techniques. The answer might not be a
simple yes or no: often, tasks can be solved using algorithms, but only with a certain
accuracy, or only in specific circumstances. If so, the question is how precisely the
process can be realized, and whether that precision is sufficient for the effective use
in network automation.

2. Practicality: The second objective is the assessment of the practicality of deploy-
ing such algorithms in a mobile network. As deep learning is a resource intensive
undertaking, even if it is feasible, it might not be practical to use the algorithms,
because the costs outweigh the benefits it provides to the network, and ultimately,
to the users. Costs can include the need- and thus the overhead of communication
of data, processing power, storage, or even the loss of privacy of the user. A major
concern that can render an algorithm’s use impractical is the training or inference
time the algorithm needs, which usually scales with various parameters, such as in-
put features, sequence lengths or number of network elements present in the data.
While most of the algorithms discussed can be sped up with additional processing
power, reaching a usable speed can render an algorithm impractical because of the
extreme processing requirements.

3. Applicability: The third objective is exploring which network automation tasks can
be helped by the successful implementation of the machine intuition process. This
assessment is often dependent on the feasibility and the practicality of the process;
while some automation tasks can still leverage somewhat inaccurate or slow algo-
rithms to their benefit, others have strict timing or precision requirements. A further
question is whether the realization of the intuitive process allows for new use cases.

Finally, I also intend to give a generic assessment on machine intuition as a whole, trying
to answer whether unsupervised DL is truly a tool to advance network automation, and
whether it will enable more cognition for future mobile networks. With all this, the
following are my research objectives, also summarized in Tab. 1.1.

A1: Assessment of Exemplification

Exemplification is discussed in the context of the automatic definition of network states.
The network states are meant to be used as a“vocabulary”, upon which communication can
be based between cognitive functions in a CAN. Exemplification should be realized by deep
quantization algorithms, where a DNN preprocesses data to extract the most descriptive
features, which are then used by quantization algorithms to define the quantized states.

A2: Assessment of Association

Association is examined in the context of cell and user clustering. Such clusters could be
useful in classification-like tasks where labeled data is not available, such as user Quality
of Experience (QoE) prediction, or in anomaly detection, detecting malfunctioning cells
or malicious mobile users. Associative models should be realized by deep clustering al-
gorithms, where a DNN is tightly integrated with a clustering mechanism, enforcing the
extraction of latent features with which groups become distinguishable in the data.

A3: Assessment of Prediction

Prediction is evaluated in the context of user-specific dynamic radio control. By predicting
the radio environment or user mobility in the long-term, preventative actions can be taken
to avoid service outages – such as triggering a handover – increasing the reliability of
the radio communication. Prediction should be implemented using sequence-processing-
capable DNNs, where the temporal relationships in the data are taken into account in the
models, either by specific filters, or through a memory present in the DNN.

1.3. RESEARCH OBJECTIVES AND THESIS OUTLINE 9

A4: Assessment of Confidence

Confidence is discussed in the context of increasing robustness against erroneous data in
CANs, by communicating confidence values between CFs. Confidence values attached to
data could allow DNN-based CFs to learn to correct or disregard corrupted or malicious
inputs, thereby increasing their dependability, and thus trust towards CANs. The pro-
cessing of confidence values should be integrated into the DNNs the CFs are based on, so
that the DL algorithms inherently learn to model tasks in a redundant way, and learn to
use alternative inputs when others become corrupted.

A5: Assessment of Machine Intuition

The final research objective is to give an overall assessment on the concept of machine
intuition. This assessment is meant as a summary, where common aspects of machine
intuition algorithms are discussed, in order to highlight the possibilities and potential
caveats when using it in cognitive network automation.

Assessment 1: Exemplification Part I

A1.1: Feasibility of exemplification algorithms

A1.2: Practicality of exemplification algorithms

A1.3: Applicability of exemplification algorithms in CANs

Assessment 2: Association Part II

A2.1: Feasibility of associative modeling

A2.2: Practicality of associative modeling

A2.3: Applicability of associative modeling in CANs

Assessment 3: Prediction Part III

A3.1: Feasibility of sequence prediction

A3.2: Practicality of sequence prediction

A3.3: Applicability of sequence prediction in CANs

Assessment 4: Confidence Part IV

A4.1: Feasibility of machine confidence

A4.2: Practicality of machine confidence

A4.3: Applicability of machine confidence in CANs

Assessment 5: Machine Intuition Part V

A5.1: Increasing cognitive power for CAN

A5.2: Benefits/shortcomings of unsupervised DL

A5.3: Short- and long-term adoption, following trends

Table 1.1: Research goals in the context of thesis.

1.3.2 Thesis Outline

In order to be able to present a cohesive discussion, first an overview of deep learning is
given in Cha. 2. This background on DL might be helpful for readers who are networking
experts, but not necessarily experts in DL techniques. At the end of this background
chapter, a short high-level summary on the use of unsupervised DL in mobile network

10 1. Introduction

automation is given. This related work section further emphasizes the observations made
in Sec. 1.1.3. The current chapter on problem statement and research objectives, and
the DL background chapter together make up the (unnumbered) introductory part of the
thesis.

The rest of the thesis is organized into 4 main parts, each corresponding to one of the
4 main research objectives described previously (also highlighted in Tab. 1.1). Part I
discusses exemplification, Part II focuses on associative modeling, Part III discusses se-
quence prediction, and Part IV evaluates the concept of machine confidence. In these
parts, each chapter discusses a research topic relevant for the machine intuition process,
including the findings from one or more publications. The chapters are organized around
singular topics and a main publication, with some chapters also discussing additional, sup-
plementary publications. My contribution to each publication is detailed in the respective
chapter introductions. The research objectives are summarized at the end of each part
in a concluding chapter, highlighted with the “Summary” keyword in their title. Addi-
tionally, some sections discuss concepts taken from inventions/patent applications, which
are highlighted with the “Concept” keyword in their title. While these concepts have no
real scientific merit by themselves, they are sometimes important for the understanding of
the bigger context of the research. Part V concludes the thesis, corresponding to the fifth
research objective. As closing notes, I also discuss my experiences with DL research in
mobile networks, as well as the current direction of patents and standardization regarding
this topic.

This thesis discusses two types of networks: mobile networks and neural networks. In order
to avoid confusion, mobile networks will be always referred to as “networks”, while neural
networks will be referred to with the shortened form, as “nets”. The mobile networking
field is plagued with an overuse of abbreviations. In an effort to combat this phenomenon,
I provide a list of acronyms. Furthermore, some expressions might be unfamiliar to the
reader. These expressions are highlighted with a bold lettering, and are collected in an
index for easy lookup.

1.3. RESEARCH OBJECTIVES AND THESIS OUTLINE 11

1.3.3 Publications in the Context of this Thesis

This thesis is based on the following peer-reviewed publications:

Equal-volume Quantization of Mobile Network Data using Bounding Spheres and
Boxes
Márton Kajó, Benedek Schultz, Janne Ali-Tolppa, Georg Carle
NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium,
pp. 1-9. IEEE, 2018.

Environment Modeling and Abstraction of Network States for Cognitive Functions
Stephen S. Mwanje, Márton Kajó, Sayantini Majumdar, Georg Carle
NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium,
pp. 1-8. IEEE, 2020.

Deep Clustering of Mobile Network Data with Sparse Autoencoders
Márton Kajó, Benedek Schultz, Georg Carle
NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium,
pp. 1-6. IEEE, 2020.

Mobility and QoS Prediction for Dynamic Coverage Optimization
Janne Ali-Tolppa, Márton Kajó
NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium,
pp. 1-2. IEEE, 2020.

Modeling and Abstraction of Network and Environment States Using Deep Learning
Stephen S. Mwanje, Márton Kajó, Janne Ali-Tolppa
IEEE Network 34, no. 6 (2020), pp. 8-13.

Neural Network-based Quantization for Network Automation
Márton Kajó, Stephen S. Mwanje, Benedek Schultz, Georg Carle
arXiv preprint arXiv:2103.04764 (2021).

Machine-Learning-Based Predictive Handover
Ahmed Masri, Teemu Veijalainen, Henrik Martikainen, Stephen S. Mwanje, Janne
Ali-Tolppa, Márton Kajó
IM 2021-2021 IFIP/IEEE International Symposium on Integrated Network Man-
agement, pp. 1-2. IEEE, 2021.

Clustering Mobile Network Data with Decorrelating Adversarial Nets
Márton Kajó, Janik Schnellbach, Stephen S. Mwanje, Georg Carle
NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium,
pp. 1-9. IEEE, 2022.

12 1. Introduction

Robust Deep Learning against Corrupted Data in Cognitive Autonomous Networks
Márton Kajó, Janik Schnellbach, Stephen S. Mwanje, Georg Carle
NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium,
pp. 1-7. IEEE, 2022.

Additionally, the following CAN book chapters (which I am a co-author of) are also men-
tioned [3]:

Classic Artificial Intelligence: Tools for Autonomous Reasoning
Stephen S. Mwanje, Márton Kajó, Benedek Schultz, Kimmo Hatonen, Ilaria Malan-
chini
Towards Cognitive Autonomous Networks: Network Management Automation for
5G and Beyond (2020): 173-201.

Machine Learning: Tools for End-to-End Cognition
Stephen S. Mwanje, Márton Kajó, Benedek Schultz
Towards Cognitive Autonomous Networks: Network Management Automation for
5G and Beyond (2020): 203-254.

Cognitive Autonomy for Network Self-Healing
Janne Ali-Tolppa, Márton Kajó, Borislava Gajic, Ilaria Malanchini, Benedek
Schultz, Qi Liao
Towards Cognitive Autonomous Networks: Network Management Automation for
5G and Beyond (2020): 345-384.

Finally, this thesis also contains mentions of the following patent applications:

Diagnosis Knowledge Sharing for Self-healing
Benedek Schultz, Janne Ali-Tolppa, Márton Kajó
WO, PCT application no.: PCT/EP2018/079735, filed Oktober 2018

Environment Modeling and Abstraction of Network States for Cognitive Functions
Benedek Schultz, Márton Kajó, Stephen S. Mwanje
WO, PCT application no.: PCT/EP2018/069638, filed July 2018

Method and Apparatus for Automatic Network State Modeling in Mobile Networks
using Deep Clustering Autoencoders
Benedek Schultz, Márton Kajó, Stephen S. Mwanje
Finnish application no.: 20206162, filed November 2020

Latent Variable Decorrelation for Deep Clustering in Mobile Networks
Janne Ali-Tolppa, Márton Kajó, Stephen S. Mwanje
WO, PCT application no.: PCT/EP2020/072019, filed August 2020

1.3. RESEARCH OBJECTIVES AND THESIS OUTLINE 13

Path-Aware Cognitive Handover Optimization (PACHO)
Janne Ali-Tolppa, Márton Kajó, Stephen S. Mwanje
WO, PCT application no.: PCT/EP2021/072325, filed August 2021

Accounting for Erroneous Data in Learning and Inference of Cognitive Functions
through Confidence Indicators
Anubhab Banerjee, Márton Kajó, Stephen S. Mwanje
WO, PCT application no.: PCT/EP2021/067609, filed June 2021

14 1. Introduction

15

2. Deep Learning with Neural Nets

The nature of the research presented in this thesis is inter-disciplinary: machine intuition
applied to cognitive network automation requires expertise in both deep learning, as well
as in mobile networks. I have conducted my research at the Chair of Network Architectures
and Services at the Technical University of Munich, and at Nokia (Bell-Labs). Thus, my
research environment mostly consisted of networking experts, rather than data scientists
or deep learning specialists. Understandably, my colleagues or my audience was often
not versed in the specific deep learning algorithm at hand. Similarly, I also don’t expect
extensive deep learning experience from you, dear Reader of this thesis.

I believe in the future this expectation will change, as deep learning will become an essential
tool that is used in all technological fields. Future networking experts will have to utilize
deep learning algorithms in their everyday work, similarly to the way we now use different
programming languages, software or computational hardware like PCs or tablets regularly.
For now, this chapter serves as an intensive course on deep learning components and
techniques for networking experts who might have heard of some concepts, but never had
to use or experiment with these algorithms in a hands-on fashion.

This chapter summarizes DL in a similar way to the following chapter in the CAN book,
which I co-authored:

Machine Learning: Tools for End-to-End Cognition
Stephen S. Mwanje, Márton Kajó, Benedek Schultz
Towards Cognitive Autonomous Networks: Network Management Automation for
5G and Beyond (2020): 203-254.

My contribution to the above book chapter was the authoring of the sections on deep
learning, as well as general supervision, correction and editing of the whole chapter. The
discussion in this thesis takes elements from the book, but expands on them with a more in-
depth explanation of low-level concepts regarding neural nets, as well as high-level aspects
of deep learning, altogether providing a more well-rounded introduction. This chapter
also includes an overview of the use of DL in mobile networks, as a way of providing a
background on the state-of-the-art, but also to reinforce my previous statements on the
problem of insufficient DL research in our domain.

Naturally, the information regarding deep neural nets is available in other publications
in more detail. For an excellent in-depth read, I recommend [6]. Please note, that any

Version: 2023/05/26 – 14:32:46

16 2. Deep Learning with Neural Nets

statement in this chapter that would otherwise require a reference, is taken from this
recommended book.

2.1 Basic Neural Nets

2.1.1 Fully-connected Layers

Neural nets are directed computational graphs: edges transmit and scale values, while
nodes accumulate and transform values through various functions. The basic building
block of a neural net is a neuron. Much like a human neuron, it incorporates a node
(nucleus) and several connected edges (synapses), which transmit incoming values towards
the node (Fig. 2.1). While transmitting values, the edges scale (weigh) the values according
to learned parameters (weights). The accumulation is done through the summation of the
incoming scaled values and an additive bias term, which is also learned. With all this
combined, a neuron realizes the following simple function:

y =

ni∑
j=1

xjwj + b, (2.1)

where xj denotes incoming values, wj scaling weights, b the added bias and y the output
of the neuron.

∑

𝑥1𝑤1

𝑥2𝑤2

𝑥𝑛𝑖𝑤𝑛𝑖

𝑏

𝑦

… +

Figure 2.1: The basic building block of a neural net: a neuron.

Although neural nets allow for irregular graph topologies (and are in fact sometimes used
this way), they are almost always used in a more structured topology. Most neural nets are
feedforward: neurons are organized into layers, so that connections run between neurons in
neighboring layers, but not between neurons in the same layer. Furthermore, connections
always run from the “earlier” layer (the layer closer to the input) towards the “later” layer
(the layer closer to the output of the net). One exception to this rule are recurrent nets:
although mostly made up of feedforward subnets, there are recurrent connections, which
feed backward into earlier parts of the net. Recurrent nets will be discussed later in more
detail (Sec. 2.3.3), but for now, we can concentrate on feedforward nets. Feedforward nets
are often described as having an “input” and an “output” layer – which act as interfaces
to the outside of the neural net – as well as a various amount of hidden internal layers
in-between.

If we lay out the previously described neurons “side-by-side” to build a layer, and connect
every neuron in the current layer to every neuron in the previous layer, we get what is called
a Fully-Connected (FC) layer. FC layers are the earliest commonly used neural net building
blocks, and can still be found in almost every state-of-the-art net topology. A notable
exception to this are convolutional nets made up entirely of convolutional layers. However,
convolutional layers can be derived from FC layers, as we will see in Sec. 2.3.4. An example
of a fully-connected layer can be seen in Fig. 2.2. Because of the fully-connected subgraph
between the two layers, the weighted transmission through the connecting edges can be
written in a simplified form, as a matrix-multiplication between the input vector of the

2.1. BASIC NEURAL NETS 17

+

𝑏1

+

𝑏2

+

𝑏3

+

∑

∑

∑

∑

𝑏4

𝑦1

𝑦2

𝑦3

𝑦4

𝑥1

𝑥2

𝑥3

𝑤11

𝑤12

𝑤13

𝑤14

𝑤21 𝑤22

𝑤23

𝑤24
𝑤34

𝑤33

𝑤32𝑤31

Input 𝑥
(vector)

Weight 𝑊
(matrix)

Bias 𝑏
(vector)

Output 𝑦
(vector)

∙ + =

E
a

rl
ie

r
la

y
e

r

L
a

te
r

la
y
e

r

Figure 2.2: An example of a fully-connected layer.

layer and its weight matrix. Furthermore, the additive bias can also be calculated as a
vector addition, arriving at the vectorized form of a FC layer:

y(1×no) = x(1×ni)W(ni×no) + b(1×no), (2.2)

where ni represents the number of features in the input, no the number of neurons in
the current layer, y(1×no) denotes the no-width horizontal output vector, x(1×ni) denotes
the ni-width horizontal input vector, W(ni×no) the ni × no sized weight matrix, b(1×no)

the no-width horizontal bias vector. This vectorized calculation is also exemplified on
the bottom of Fig. 2.2. At this point, I would urge the Reader to stop thinking about
neural nets as computational graphs. What is realized in neural nets are essentially a
sequence of matrix multiplications, element-wise additions and element-wise functional
transformations. I think it is better to imagine each neural net as a sequence of linear-
algebraic or even geometrical functions, a mental image that I will extensively use in
explanations throughout this dissertation.

In this currently discussed state, FC layers are quite limited in their modeling capability.
The geometric function that is realized through a FC layer is an affine mapping: a com-
position of a linear mapping (projection by multiplication through W) and a translation
of the input vector (addition of b). For our discussion, an important property of affine
maps is that a chain of multiple affine maps can always be simplified into a single affine
map [7]. Thus, even if the net consists of multiple FC layers, the realizable function can
be still collapsed into a singular FC layer. This effectively limits the modeling capability
of a neural net purely made of FCs layers to linear regression. Correspondingly, FC layers
are also often called linear layers because of this. To escape this limitation, a critical
component needs to be introduced to the net: nonlinearities.

2.1.2 Generic Function Approximation with Step Nonlinearity

Early researchers envisioned neural nets as programmable logical circuits [8]. To implement
logic, in this early iteration neurons were meant to resemble logical AND or NAND gates,
the idea being that NAND gates are universal for computation, and that any logic circuit

18 2. Deep Learning with Neural Nets

y =

{
0 if

∑m
j=1 xjwj < b,

1 if
∑m

j=1 xjwj > b,
(2.3)

-6 6-4 -2 0 2 4

0.5

1

Figure 2.3: The gate-like effect of the step nonlinearity.

can be built using them. In order to realize this, the hard step-function was used to limit
the output of a neuron to the binary 0 or 1. In this setup, the neuron-gate flips depending
on the weighted sum of the inputs, with the bias acting as the decision threshold for the
flip (Fig. 2.3). The step function can be seen as the first nonlinearity that was utilized
in neural nets. A FC neuron combined with the step nonlinearity in early neural nets
was called a perceptron, and neural nets built using these were called as Multi-Layer
Perceptrons (MLPs), a term still in use to refer to neural nets using FC layers. I would
like to note here that the literature often refers to this combination of a FC layer and a
nonlinearity together as a “layer”, and discusses the combined aspects as a singular entity.
This logic is further supported by the fact that FC layers are almost always followed by
nonlinearities, thus discussing them as one element made practical sense. However, in my
opinion, it is much more flexible to refer to nonlinearities as their own layers, and I will
use this nomenclature hereafter.

The addition of even this basic nonlinearity elevates the modeling capability of a neural
net to one of a generic function approximator: a model that is capable of approximating
any continuous mathematical function, to a certain accuracy. To illustrate this property,
we can use a simple neural net comprised of a FC layer of m neurons, followed by the
step-function nonlinearity, and ending in a FC layer of a single neuron. This simple neural
net is capable of approximating any desired f(x) = y through a series of steps: each
neuron in the first FC layer acts as the before mentioned gate, creating a step at learned
biases bj (Fig. 2.4). The weights of the second FC layer set the sizes of the steps. Already
an interesting observation here is that for pure regression tasks (i.e.: approximating a
continuous mathematical function), it is not beneficial to have a nonlinearity after the last
FC layer, rather, nonlinearities are only present after internal (hidden) layers.

𝑥

FC Step

FC

𝑦

𝑥

𝑦

𝑏1

𝑏2

𝑏3

Figure 2.4: Illustration of the generic function approximator capability of FC layers com-
bined with a step nonlinearity.

A series of these steps can approximate a function to a certain degree, limited by the
number of steps available. In order to be able to achieve a better approximation, the
first FC layer would need to be wider, i.e.: contain more neurons. It is easy to see that
theoretically, an infinitely wide first FC layer could perfectly approximate any function,
even if the input or output is not 1-dimensional [9]. However, the topic of this dissertation
is not wide learning, but deep learning. Deep refers to the depth of the neural nets, i.e.:
how many layers make up the net. The more layers a net contains, the deeper it is. But if

2.1. BASIC NEURAL NETS 19

any function can be theoretically approximated by a wide-enough single-hidden-layer net,
why would we need to stack multiple layers on top of each other?

We can imagine a single layer as a model capable of formulating rules, or learning filters
upon which its specific neurons are triggered. If the output of a previous layer is processed
by a subsequent layer, the net essentially formulates rules upon rules, e.g.: models a set
of hierarchical rules [9]. A wide net is capable of learning many simple rules in parallel,
whereas a deep net is capable of learning complex hierarchical rules. Hierarchical rules
are closer to how human reasoning works, and thus are more fitting to the real-world
cognitive tasks neural nets are utilized for. A good example of this is human vision: our
brain detects atomic geometrical forms first (edges), which are then combined into more
complex shapes, which are then further related to each other to detect complete objects in
our vision. The learned rules are often referred to as filters or features. The hierarchical
features learned by deep neural nets will be further explored in Sec. 2.3.7. Furthermore,
although many processing tasks could be approximated by single wide layers, they can
often be realized by fewer components – parameters in this case – if they are organized
into multiple layers. Thus, the effective modeling power of deeper nets is relatively larger
than their wide counterparts, using the same amount of parameters.

2.1.3 Logistic Nonlinearities, Regression and Classification

As early neural nets utilizing perceptron-neurons were either not learning machines (using
preset weights), or trained through global optimization (such as genetic algorithms), the
non-continuous nature of the step function wasn’t a problem. However, as soon as neural
nets were being trained through means of derivative optimization, a continuous activation
function was needed. The earliest approach was to use a nonlinear continuous function
that is quite similar to the step function. The group of functions used for this purpose
are the sigmoid functions, the most prominent being the logistic function (which is often
called the sigmoid function), and its shifted and scaled variant to the [−1, 1] interval, the
tangent-hyperbolic function.

σ(x) =
1

1 + e−xk
(2.4)

-6 6-4 -2 0 2 4

0.5

1

𝑘 = 1
𝑘 = 2
𝑘 = 4

Figure 2.5: Sigmoid (logistic) nonlinearities.

The logistic sigmoid nonlinearity can be seen in Fig. 2.5. The logistic growth rate k
changes the shape of the function, which looks more and more similar to a step function as
k increases. It is easy to imagine that using a high k value is preferable to reproduce the
hard-decision-like behavior of the step function, and retain a close similarity to perceptrons.
However, a high k value is not necessary to emulate a steeper decision boundary: as
the sigmoid is preceded by a FC layer, it is enough to learn high weights on the inputs
to achieve a quick flip around the bias. Thus, although k makes it easier to see why
sigmoid nonlinearities succeeded the step function, the k parameter can be left out from
the implementation without any downsides. Leaving out k from the calculation also speeds
up processing by skipping one extra multiplication.

We have already talked about regression as a task in the generic function approximation
context. Literature on deep learning often organizes neural nets into different categories
based on the tasks they undertake: regression, classification, transcription, structuring,

20 2. Deep Learning with Neural Nets

translation, synthesis, imputation, denoising, etc.. In my opinion, this categorization
is a little meaningless: neural nets are function approximators, and in every task what
they truly realize is regression. The overall task mostly changes the way the output is
interpreted, but not the actual goal of regressing a desired (continuous) function. Often,
the task-specific output interpretation is not even used for training, only in inference as a
post-processing step.

With that said, if possible, it certainly helps if a specific output-processing step can be
implemented as a hard-coded function, instead of the neural net having to learn to output
data in a specific way. The most important instance of this is classification: in this task,
the neural net has to specify which of k categories the input observations belong to. In
order to do so, the output of the net has to resemble class-association probabilities: a
k-long vector of values restricted to the [0, 1] interval, where 0 represents no chance of the
input belonging to the class, while 1 represents a guarantee that the input belongs to that
class. Furthermore, the class-association vector values also have to sum to 1 to resemble a
probability distribution. To learn to output a vector that follows these restrictions is quite
complicated in itself, not to mention actually guessing the correct class for every input. In
order to relieve the neural net from learning how to output class-association probabilities,
usually a specific nonlinearity is used: the softmax function. The softmax nonlinearity
can be seen in Fig. 2.6. Contrary to what we observed previously about nonlinearities
only placed after hidden layers, the softmax nonlinearity is always placed as the last layer,
and could be seen as a post-processing function. Through the division by the sum of the
individual vector values, the softmax function ensures both that the output values fall
within the [0, 1] interval and that they sum to 1. Furthermore, an interesting aspect of
the softmax is that it has intra-layer dependency: the values in the same layer influence
each other, if one value becomes larger, this will make all other values in the same output
vector become smaller.

fSM (xj) =
exj∑k
y=1 e

xy
(2.5) 0.5

1

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6

Figure 2.6: Softmax nonlinearity.

2.2 Neural Net Training

2.2.1 Gradient Descent and Backpropagation

The previous section discussed matrix multiplication and addition-based FC layers, and
element-wise sigmoid and softmax nonlinearities. These building blocks allow for the
construction of “basic” neural nets, which made up the state-of-the-art for a long time,
before the deep learning boom. These neural nets are often called Fully-connected Neural
Nets (FNNs), MLPs or incorrectly as the umbrella term Artificial Neural Net (ANN). One
crucial part of neural nets was only mentioned so far: learning. Neural nets are powerful
because they are learning machines, and can extract rules and features from example
observations. As we will see here, machine learning and neural nets are a perfect match:
the simple atomic operations and the sequential nature of the nets allow for the efficient
calculation of gradients, making gradient-based optimization the most prominent training
method of neural nets and the enabler of today’s deep learning.

2.2. NEURAL NET TRAINING 21

Modern neural nets learn through gradient descent. In this mathematical optimization
paradigm, the task is to minimize a function f(x) by changing its input x. As I argued
before, neural nets are function approximators, and because of this, naturally their own
processing can also be seen as a function. Neural nets realize the function y = fn(x, θ),
where x refers to the input, θ represents all the learnable parameters in the net, and y is
the output. In supervised learning tasks, the goal is to minimize the difference between
the actual output and a target output. In unsupervised learning, this goal is usually a
little more complicated, either having additional constraints on the output or not having
a target output at all. For the illustration of gradient descent in this section, I will stick
to discussing the simpler supervised learning task.

In order to realize the minimization of the difference between actual and target output
through gradient descent, a singular value is needed to represent this difference, called loss
(l). To arrive at the loss value, neural nets require a loss function (fl(y,y

′)), which is
used to calculate this difference between the actual (y) and the target (y′) output. Loss
functions are also commonly referred to as objective functions, cost functions or error
functions, but I will try to use the term loss function consistently in this dissertation. For
the most part, loss functions measure the difference between the actual and target output
of the net. Gradient descent training is usually highly sensitive to the type of loss function
used, thus it is critical to choose the correct loss function for the given task. The two most
commonly used loss functions are:

� Mean Squared Error (MSE) is usually utilized for regression tasks. The MSE loss
measures the squared Euclidean distance between vectors y(1×d) and y′(1×d) contain-
ing d dimensions:

lMSE =
1

d

d∑
j=1

(y′j − yj)
2 (2.6)

� Negative Log-Likelihood (NLL) is usually utilized for classification tasks. NLL esti-
mates the likelihood of two vectors y(1×d) and y′(1×d) containing a probability distri-
bution for d classes:

lNLL = −
d∑

j=1

y′j ln yj (2.7)

While MSE is capable of measuring the distance between any two vectors, NLL is only
well-suited for values limited to the [0, 1] range. Furthermore, NLL usually uses hard
targets, where the y′ vectors have only a single value which is 1, while the rest is 0. These
vectors are often called one-hot vectors: the position of the 1 in the vector encodes the
correct class label/index. One-hot encoded y′ vectors also simplify the lNLL calculation,
as only one of the components will be non-zero. Because the NLL is used in classification
tasks, it is almost always preceded by a softmax nonlinearity. Fortunately, there is a great
synergy between the softmax nonlinearity and the NLL loss, and produce a very simple
gradient formula when used together.

Using the loss functions, we can write the gradient descent optimization goal for neural
nets as:

l = fl(fn(x, θ),y
′), (2.8)

l∗ = arg min
θ

fl(fn(x, θ),y
′), (2.9)

where l∗ refers to the minimal loss value measured on y = fn(x, θ) and y′, achieved by
optimizing the learnable net parameters θ.

22 2. Deep Learning with Neural Nets

Possible θ
configuration space

θ1θ2

Loss surface

Current loss

Direction of

steepest descent

Gradient𝑙

Current θ
configuration

Figure 2.7: Illustration of gradient descent.

Gradient descent is best imagined as a search for the lowest point, where the loss values
at different θ configurations create a topological “surface” (as illustrated in Fig. 2.7). The
possible θ configurations can also be seen as a space, where a single point sets all neural
net parameters to a certain value. The goal is then to move in the θ space to a position,
which corresponds to the lowest point on the loss surface. Because neural nets realize
complex nonlinear functions and work on datasets which produce complex (non-convex)
loss surfaces, generally finding the point in the θ space which minimizes the loss cannot be
solved in a closed form or by exhaustive search. Instead, gradient descent is an iterative
and locally greedy search algorithm:

� Iterative: At every iteration, the loss is recalculated using training examples x and
the corresponding output targets y′, and the θ parameters are changed to lower the
loss. The change in θ is restricted to be small, because it is generally unknown what
the loss is going to be at the next iteration point (before actually calculating it), it
is only assumed that small changes in θ result in small and predictable changes in l.
This creates a tradeoff between training accuracy and speed: larger steps at every
iteration might lower the overall number of required iterations, speeding up training,
at the expense of worse precision in the θ point placement, and the higher potential
of the training getting lost far from the global optimum.

� Greedy: Gradient descent is greedy, because at every iteration, θ is changed in a
way which has the most impact (largest decrease) in the loss value locally. Because
of this local greediness, there is no guarantee that gradient descent finds a global
optimum, as it is possible that the optimization gets stuck in saddle points or local
minima on the loss surface.

I will discuss optimization schemes which mitigate many of the downsides stemming from
the above two aspects in Sec. 2.3.2. For now, the biggest question is how to determine the
locally best direction in θ which most effectively lowers the loss: the direction of steepest
descent. Because θ usually contains more than one parameter (i.e.: it is a vector), Eq. 2.8
is a function with multiple inputs. If we want to know how the loss l changes with regards
to a single θi parameter, we can calculate the partial derivative of the loss value:

δl

δθi
=

δfl(fn(x, θ), y
′)

δθi
. (2.10)

2.2. NEURAL NET TRAINING 23

Calculating all the partial derivatives of the θ vector and organizing these also into a vector
gives us the gradient:

∇θl = (
δl

δθ1
,
δl

δθ2
, ...,

δl

δθi
). (2.11)

The gradient can be seen as a vector pointing in the direction of steepest ascent in the θ
space. It is logical that the steepest descent is in the exact opposite direction. In order to
descend on the loss surface in the steepest direction, we can update the θ parameters in
the following way (← refers to assignment):

θ ← θ − ϵ∇θl, (2.12)

where ϵ is a small, positive scalar known as the learning rate, which is meant to restrict
the updates to small changes, as previously mentioned.

Applying the rule in Eq. 2.12 repeatedly will descend on the loss surfaces until reaching
a minimum point, but to do this the gradient has to be also repeatedly calculated for
multiple training points. This process could be quite computationally intensive, so for the
effective training of neural nets, a simple and computationally inexpensive procedure is
needed; fortunately, this is where the synergy between neural nets and gradient descent
comes into play, because neural nets have a very effective way of calculating the gradient
with regards to the loss. Every neural net layer can be seen as a function applied on
the previous layer’s output. As an example, let us discuss a neural net containing 2 layers
realizing the 2 functions y1 = f1(θ1, x) and y2 = f2(θ2, y1), and a loss function l = fl(y

′, y2).
The sequential nature of layers allows us to define the complete processing of this net as
a chain (a composite) of functions:

l = fl(y
′, f2(θ2, f1(θ1, x))). (2.13)

According to the chain rule, composite function derivatives can be calculated as:

δ

δx
z(y(x)) =

δz

δy

δy

δx
. (2.14)

Using the chain rule, we can compute the partial derivative of the loss with regards to the
parameters in the first layer as:

δl

δθ1
=

δfl(y
′, y2)

δy2

δf2(θ2, y1)

δy1

δf1(θ1, x)

δθ1
. (2.15)

Equation 2.15 highlights an important aspect: in order to obtain partial derivatives, we
can compute the derivatives of layers using only their own inputs and outputs. This
suggests an implementation where layer outputs can be sequentially calculated once and
stored (forward propagation), so that when calculating the partial derivatives backward
in the sequence, these intermediate outputs can be reused without additional computa-
tion (backward propagation). This idea is the core of backpropagation: the technique
with which neural nets compute the partial derivatives of the loss with regards to every
trainable parameter in the net. The name stems from the sequential forward- and back-
ward calculations: the loss is effectively “backpropagated” through the net. The partial
derivatives form the gradient, which is then used in the gradient descent optimization to
update the trainable parameters of the net. To calculate the gradient, it is enough to have
the derivatives of each layer defined in order to be able to implement the backpropaga-
tion algorithm. FC layers have derivatives which can be calculated through simple matrix
multiplication, while all other nonlinearities or losses have simple, predefined derivatives,
also often calculated using stored intermediate outputs. The complete gradient descent
algorithm can be seen on Alg. 2.1.

24 2. Deep Learning with Neural Nets

Algorithm 2.1: A single iteration of gradient descent in a simple neural net. The (·)
operator refers to matrix-multiplication, while the (◦) refers to element-wise multipli-
cation (Hadamard product).

Required: Neural net of l layers: FC layers and fsigm() sigmoid nonlinearities
Required: fl() loss function
Required: Learnable parameters: Wi, i ∈ {1, ..., l} weight matrices and

bi, i ∈ {1, ..., l} bias vectors
Required: Training dataset: x input vector and y′ target output vector
Required: Learning rate ϵ

Propagate Forward
Calculate and store intermediate layer outputs:

1 y0 = x;
2 for i = 1, 2, ..., l − 1, l do
3 if FC layer then
4 yi ← yi−1 ·Wi + bi;
5 else if Sigmoid nonlin. then
6 yi ← fsigm(yi−1);

7 end
8 y = yl;

Calculate Loss
9 l = fl(y

′,y);
Propagate Backward

Propagate the gradient to the output layer (behind the loss):
10 g← ∇yl = ∇yfl(y

′,y);
11 for i = l, l − 1, ..., 2, 1 do
12 if Sigmoid nonlin. then

Propagate the gradient behind the nonlinearity:
13 g← ∇yi−1 l = g ◦ f ′

sigm(yi−1);

14 else if FC layer then
Calculate the gradient on weights and biases:

15 ∇bi l← g;
16 ∇Wi l← g · yT

i−1;
Propagate the gradient to the previous layer:

17 g← ∇yi−1 l = g ·WT
i ;

18 end

Update Parameters
19 for i = 1, 2, ..., l − 1, l do
20 if FC layer then
21 bi ← bi − ϵ∇bi l;
22 Wi ←Wi − ϵ∇Wi l;

23 end

2.2.2 Stochasticity, Computational Requirements

I have only discussed both forward- and backpropagation in the context of singular vectors
as inputs. Gradient descent training is more effective if the gradient calculation utilizes
multiple training examples at every iteration. Using the average of the loss and gradient
from multiple training examples reduces variance, and creates a more even loss surface,
upon which a faster, more robust convergence can be achieved. This effect is so important,
that the original gradient descent formulation actually used all available training examples

2.2. NEURAL NET TRAINING 25

at each iteration to calculate the gradient. However, this approach is infeasible using large
datasets, which are one of the most important enablers of modern deep learning. To
balance these effects, modern neural net training uses a version of gradient descent called
Stochastic Gradient Descent (SGD).

θ1

θ2

𝑙4
𝑙3

𝑙2
𝑙1

(a) High ϵ and nb: quick, smooth but
imprecise convergence.

θ1

θ2

𝑙4
𝑙3

𝑙2
𝑙1

(b) Low ϵ and nb: slow, erratic but
more precise convergence.

Figure 2.8: The difference in convergence between high and low learning rate (ϵ) and batch
size (nb).

In SGD, a batch of input points – a subset of the whole training set – is processed at each
iteration. Stochasticity here refers to the way the batch is assembled: the training points
are randomly chosen from the training set, but don’t repeat until all training points have
been used once. The batch size is a user-set parameter. A complete round of iterations
where every training point was used once is called an epoch. Most often the duration of
training is given in epochs, but sometimes literature also uses the term “iterations”, which
refers to the number of batches propagated in the training. Because of the smoothing
and robustness increasing effect, larger batch sizes allow for higher learning rates to still
converge, but this setup will not converge quite as precisely to the minimum as smaller
batches (Fig. 2.8). Smaller batch sizes speed up the computation for a single iteration,
but require a smaller learning rate to effectively average out the high variance in the
descent over multiple iterations. The smaller learning rate also allows for a more precise
convergence at the end of the training. Naturally, the best of both worlds is to use a large
batch size and a low learning rate, however, this can slow down training heavily, requiring
a large number of epochs to reach convergence. To summarize, the number of epochs,
the learning rate, and the batch size all influence SGD training in a significant way, and
require careful balancing for a robust, but speedy convergence.

Fortunately, users do not have to manually implement any of the above calculations or even
the SGD training iterations: modern deep learning frameworks automate differentiation
and training procedures with simple function calls. Deep learning frameworks, such as
PyTorch1 or TensorFlow2, abstract away most of the complex math, so that new or even
long-time users might never have to understand the inner workings of neural net training.
What users do have to understand, however, are the processing and memory requirements
presented by SGD and the different metaparameters. To realize batched processing, the

1https://pytorch.org/
2https://www.tensorflow.org/

https://pytorch.org/
https://www.tensorflow.org/

26 2. Deep Learning with Neural Nets

singular input and output vectors for a FC layer in Eq. 2.2 can be changed to nb-tall
matrices, resulting in:

y(nb×no) = x(nb×ni)W(ni×no) + b(1×no), (2.16)

where nb refers to the batch size, the number of training observations used in this iteration.
The bias vector b(1×n) is reused in the addition operation for every row of the output
matrix, a technique often referred to as broadcasting.

While this change does not affect the number of parameters that need to be stored, it is
clear that both the matrix-multiplication and the addition operations will see an increase
in required computations, scaling linearly with nb. This is also true for the mostly element-
wise operations, such as nonlinearities. Furthermore – as we have seen in Alg. 2.1 – the
effective implementation of backpropagation requires the storage of intermediate outputs.
These matrices are quite significant in size, making up the bulk of a neural net’s memory
footprint during training. As all the intermediate output sizes scale linearly with nb, this
effectively makes the overall memory requirement of a neural net’s training scale linearly
with nb. In larger nets, or in hardware with limited memory capacity, this scaling often
forces the user to utilize smaller batch sizes than optimal. This is undesired, because apart
from the above mentioned effects on convergence, very small batches can also interfere with
some layer’s correct functioning, such as batchnorm (Sec. 2.3.2).

2.2.3 Starting and Stopping, Under- and Overfitting

As SGD is an iterative optimization, it is sensitive to both starting and stopping condi-
tions. The starting condition is realized by the initialization of the net’s parameters. Net
parameters are initialized semi-randomly: the weights are taken from a Gaussian distribu-
tion, while the biases are usually initialized to 0, or very small numbers. It is important
that weights are not initialized to exactly 0: as can be seen from Alg. 2.1, a weight of
0 also blocks the gradient from backpropagating, thereby impeding not only the weight’s
own training, but every other parameter’s training behind it. In a less obvious way, too
small or too large weights are also detrimental to convergence, thus, further refinement is
beneficial in the initialization. We will discuss this topic further in Sec. 2.3.2, but for now,
it is enough to have this simple random initialization scheme in mind.

To be able to tell when a training has converged and when to stop, it is important to discuss
the concept of under- and overfitting. As stated before, neural nets approximate a function.
On one hand this function can be approximated “lazily”, by not following its curves quite
precisely, or in more mathematical terms, the function can be approximated with a less
complex function. If this is the case, yet the neural net could theoretically be able to do
better, we talk about underfitting, which occurs mostly because the training stopped too
early, or a regularization scheme was used too heavily. On the other hand, the function to
be approximated is only defined in discrete places, where training observations exist. This
leaves the net free to interpolate between the defined points in many ways, possibly using
quite complex functions. If the approximating function is a lot more complex than the
theoretically “correct” function, we talk about overfitting, which occurs mostly because
the net has an overabundance of modeling capacity compared to what the task requires,
and the training was not stopped in time. An illustration of under- and overfitting can be
seen in Fig. 2.9.

Underfitting can be seen as over-generalization: the net is discarding significant variance
between the training points, which should be contained within the model. Similarly, over-
fitting is under-generalization: the net is learning insignificant variance, in extreme cases
formulating rules for individual observations, and losing generalization power in the pro-
cess. Neural nets usually learn to approximate a function by moving from an underfitting

2.2. NEURAL NET TRAINING 27

𝑥

𝑦

(a) Underfitting.

𝑥

𝑦

(b) Correct fitting.

𝑥

𝑦

(c) Overfitting.

Figure 2.9: Too simplistic, correct and overcomplex function approximations by a neural
net.

model towards an overfitting model during their training. The obvious solution is then to
measure how well a net generalizes with its learned rules, and stop the training when the
generalization is at maximum. The idea behind measuring generalization power is that
the net cannot overfit observations which it has never encountered during its training.
Furthermore, if a net overfits the training observations and loses generalization power, the
learned model will fit these unseen observations quite badly. To this end, generalization
is measured on a test or evaluation dataset, which contains observations that are not in-
cluded in the training set and thus are not used for optimization. Generalization is usually
measured with the same loss function that the training uses, creating the separate training
loss and test loss.

An illustration of how the training and test loss typically develops during a neural net’s
training can be seen in Fig. 2.10. Usually, at the start of the training, both training and
test losses decrease, as the net is formulating a more and more complex, but still general
model. Usually, after a while the test loss starts to deviate from the training loss, as
non-generic parts of the model start to develop. However, in these regions, the test loss is
usually still decreasing, albeit more and more slowly. This continues until a point where
the test loss starts to increase again, while the training loss keeps decreasing. The point
where the test loss starts to increase is the theoretically best point to stop the training,
however, in reality this point is not so straight forward to guess, because usually both
losses show a large amount of variance stemming from the stochastic nature of SGD.

𝐸𝑝𝑜𝑐ℎ𝑠

𝑙

𝑙𝑡𝑒𝑠𝑡

𝑙𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

Optimum point to

stop the training

OverfittingUnderfitting

Figure 2.10: Typical training and test loss curves during neural net training.

Another natural way of combating overfitting is to increase the amount and quality of
the training data. By populating all parts of the function-space equally and densely, the
“gaps” between training points decrease, thereby reducing the freedom of the neural net
to interpolate between training points with overtly complex functions. In another light,
because the modeling capacity of the neural net stays the same, increasing the amount of

28 2. Deep Learning with Neural Nets

training points reduces the possibility of the net learning individual observations, because
there are simply too many to learn. This highlights the importance of sufficient training
data collection, but unfortunately it is not always possible to collect or generate more data
if the already acquired set seems insufficient for correct training. However, reversing the
above logic, another way to avoid overfitting is to reduce the complexity of the neural
net, which will in turn increase the “relative” size of the training dataset compared to the
modeling capability of the net. This can be achieved by pruning the neural net: reducing
the number and/or size of the layers. It is important to be careful when pruning nets,
because although this method is very effective in combating overfitting, it is easy to overtly
reduce the modeling capacity and thus weaken the potential for a higher accuracy.

I refer to the previously mentioned methods of early training stopping, large training
datasets and limited net complexity as implicit regularization methods. I had the most
success using these when fine-tuning neural nets. On the other hand, there also exist
explicit regularization methods, in the form of additional constraints the neural net has to
adhere to during training. I will only mention the most prominent method here: weight
decay. In this regularization scheme, the learned weights and biases are reduced (decayed)
in every iteration by a user-set multiplicative factor which is less than 1. This decay has
the effect that the net cannot learn overtly large weights which create steep function forms,
thus smoothing the approximating function and reducing its complexity. In my experience,
weight decay is tricky to tune, and more often than not hurts both training and test loss,
especially when used with adaptive learning rate optimization schemes (Sec. 2.3.2).

2.3 Deep Neural Nets

2.3.1 Unstable Gradients in Deep Neural Nets

Using the previously described FC layers followed by sigmoid nonlinearities, we could
build a “traditional” neural net that is a few layers deep and optimize it with SGD. For a
long time, these shallow neural nets were competitive, but not necessarily better in many
tasks than other machine learning algorithms, such as nearest neighbor classifiers, decision
trees/forests or Support Vector Machines (SVMs). Although it was recognized early that
deeper neural nets would probably be able to learn more complex rules and thus perform
better, training any net deeper than a few hidden layers was simply not working. Counter-
intuitively, increasing the number of hidden layers would often be detrimental to the final
accuracy achieved by the net.

The lower accuracy stems from early layers learning slow, thus effectively blocking infor-
mation from propagating forward to later layers, which in turn slows down the learning of
the whole net. The more layers these nets have, the more pronounced this effect can be,
even going as far as completely preventing the neural net from learning. The explanation
of this phenomenon is quite straight forward if we look at how the gradients, specifically
their amplitude develops layer-by-layer. What can be seen in Fig. 2.11 is that the gradi-
ents progressively become smaller as they reach the earlier layers of the net. This effect is
called the vanishing gradients problem, and it is caused by a variety of factors in the net.

The biggest factor in vanishing gradients are sigmoid nonlinearities. The sigmoid and its
related functions have an optimal zone around 0, where they behave similar to a linear
function, and propagate gradients quite well. However, even in this zone the derivative
is less than 0.25, thus every sigmoid nonlinearity reduces the gradients to at least 1/4
(Fig. 2.12). Outside of this optimal zone, closer to saturation, the derivative of the sigmoid
vanishes, thus any gradient propagated backwards through it also tends toward 0, blocking
elements behind from learning. While this saturation might make sense if the previous
layers “train into it” to form learned rules, there is actually no guarantee that the net

2.3. DEEP NEURAL NETS 29

Figure 2.11: Histogram of gradients in the first epoch of training in a traditional neural
net [10].

activations don’t end up in saturated regions right at initialization. In fact, the more
sigmoid layers are present in the net, the larger the chance that the activations will fall on
saturated regions somewhere, thus blocking the previous elements from learning.

-6 6-4 -2 0 2 4

1

0.5

𝜎(𝑥)

𝜎′ 𝑥 = 𝜎(𝑥)(1 − 𝜎(𝑥))

Optimal

zone

Figure 2.12: The optimal zone and the derivative of the sigmoid nonlinearity.

To counteract this, one could try to center the activations at initialization, so that most
sigmoid nonlinearities receive inputs around 0, by initializing FC layer weights to small
numbers. However, as shown in Alg. 2.1, backpropagating gradients through an FC layer
means multiplying the gradient by the transpose of the weight matrix. If the weights
are small numbers, this multiplication will severely reduce the gradients, possibly much
more so than the sigmoid nonlinearity could. On one hand, this highlights the fact that
depending on the weight initialization, FC layers can also be a contributing factor in
the vanishing gradients problem. On the other hand, it seems it would be possible to
counteract the gradient-reducing effects of the sigmoid nonlinearities by “restoring” the
gradients with larger weights in FC layers. However, large initial weights can quickly lead
to the opposite of the vanishing gradients problem: exploding gradients. If FC weights
are big enough to have a gradient-increasing effect, backpropagating gradients through
multiple such FC layers can create exponentially large gradients in early layers. This can
lead to these layers not being able to learn, thus once again blocking information from
reaching later layers and hurting or completely stopping the learning in the whole net.

2.3.2 Stabilizing Gradients

From the previous discussion, we can conclude that gradients are inherently unstable.
The key to training deep neural nets is then to stabilize gradients, so that earlier layers
are also able to learn and thus propagate valuable learned features to later layers. This
stabilization is not achieved through a single trick, rather, the constant mitigation of
vanishing and exploding gradients, which incorporates many elements in the net. As one

30 2. Deep Learning with Neural Nets

of the biggest factors in vanishing gradients are the sigmoid nonlinearities, we can start
by stabilizing the gradient using a better nonlinearity.

A key aspect of the sigmoid nonlinearity is its bounded output. This boundedness ulti-
mately forces the function to saturate, and the derivative to vanish, causing propagated
gradients to also reduce or completely vanish. However, there is no clear reason why
nonlinearities need to be bounded in either direction. Rectified Linear Unit (ReLU) non-
linearities do not adhere to this criteria, by realizing a simple function which is the identity
on positive inputs, and a small multiplier on negative inputs, i.e.:

fReLU (xj) =

{
xj if xj > 0

αxj if xj < 0
, (2.17)

-6 6-4 -2 0 2 4

1

𝑅𝑒𝐿𝑈

𝑙𝑒𝑎𝑘𝑦 − 𝑅𝑒𝐿𝑈

0

Figure 2.13: ReLU and leaky-ReLU nonlinearities.

where α is a small number, representing the “leakyness” (slope) of the negative part of the
function.

ReLU has a very simple derivative:

δ

δxj
fReLU (xj) =

{
1 if xj > 0

α if xj < 0
. (2.18)

The derivative of 1 on the positive parts does not scale the backpropagated gradients,
which helps greatly in stabilization. ReLU was defined originally as α = 0, but it was
soon realized that the 0 derivative can often cause neurons or whole parts of the net to
get “stuck” right after initialization. Leaky-ReLU solves this by giving a slight slope to
the negative parts, thus allowing for training even if the activations happen to fall to the
negative range at initialization, allowing for the net to train “out” of a bad initialization.

As discussed, the second most important factor in the unstableness of gradients are FC
layer weights. It is impossible to avoid any gradient degradation throughout the whole
training, because the nets learn and formulate rules by changing these weights. However,
at least the initialization can be done so that gradients are stable in the first few iterations.
Most advanced initialization schemes assume a distribution of activations on the FC layer
inputs, and aim to initialize weights so that this distribution is retained after the following
nonlinearity, as input for the next FC layer. Naturally, this makes the initialization schemes
specific to the nonlinearity used. By keeping the distribution of the activations the same
throughout the net, statistically speaking the combined FC and nonlinearity layer pairs
don’t scale the activations, thus also keeping the gradients stable (Fig. 2.14). The weight
initialization is usually done in the previously described manner, by randomly generating
weights from a Gaussian distribution, however, advanced schemes scale the generated
weights to a certain variance as a second step. The most famous such scheme is the
Xavier initialization [10], which is defined for tangent-hyperbolic nonlinearities. For ReLU
nonlinearities, the He initialization can be used [11].

Advanced optimization schemes also play an important role in facilitating the training of
deep neural nets. All of these optimization schemes are still SGD- and backpropagation-
based, but do not simply update the weights with a preset learning rate, rather, additional
factors play a role. The first major advancement in optimization schemes was the addition
of momentum. Momentum implements a physical analogy in the weight updates, where

2.3. DEEP NEURAL NETS 31

Figure 2.14: Histogram of stabilized gradients using the Xavier initialization [10].

the previous weight updates are taken into account in the current update using an expo-
nential decay. This is similar to the Newtonian dynamics of a ball rolling down a hill (the
loss surface) and not stopping when encountering bumps or saddle points due to inertia.
Momentum can smoothen and speed up SGD training, as well as mitigate the vanishing
gradients problem by accumulating small gradients into the inertia, thus allowing for effec-
tive training even if the gradients are close to vanishing. However, the biggest mitigation
for vanishing or even exploding gradients are adaptive learning rate optimization schemes.
Adaptive learning-rate optimization algorithms effectively mitigate a lot of the downsides
of SGD stemming from its iterative and greedy nature (as outlined in Sec. 2.2.1). In these,
each parameter is updated using an individual learning rate, which is automatically set
in order to normalize the first and/or second order moments of the weights. The most
recent such advanced optimization scheme – and the one I had the most success with –
is Adaptive Moment Estimation (Adam) [12]. Adam combines momentum with adaptive
learning rates, by scaling individual learning rates with their first and second order mo-
ments. Adam is capable of robustly training deep neural nets where any other optimization
scheme fails.

Lastly, the batchnorm layer is often used to explicitly normalize activations and thus
gradients in the net [13]. As the name implies, batchnorm layers normalize – scale and
center – activations per batch, but often also contain trainable parameters with which the
net can learn to “undo” this normalization to a degree:

y =
x− Eni(x)√
V arni(x)

γ + β (2.19)

where Eni(x) refers to the per-dimension batch-wise mean of the input batch x(nb×ni),
V arni(x to the per-dimension variance of the same, γ to a learnable scaling and β to
a learnable offset parameter. Although excellent for normalizing activations, batchnorm
layers also add a certain amount of random variance into the system, because of the
stochasticity contained in each batch. The added variance increases inversely to the batch
size, so it is not recommended to use batchnorm layers with extremely small batches, as
this could disturb the neural net training. Batchnorm layers can also function differently
during inference, when the batch-wise mean and variance is not calculated, rather, stored
values are used which were learned during training.

With all these elements combined, it is now quite possible to train very deep neural nets,
which contain FC layers numbering in the hundreds. However, nowadays most deep neural
nets are not made up of FC layers, rather, specialized layers are used in order to realize
specific tasks, such as sequence processing or image recognition.

2.3.3 Recurrent Nets

Recurrent Neural Nets (RNNs) extend on the traditional neural net concept by incorpo-
rating the temporal context of the information – such as in written text or in a time-series

32 2. Deep Learning with Neural Nets

– by processing it in a sequential order, one observation at a time. RNNs are made up of
recurrent layers (also called recurrent cells). These layers utilize a hidden state ht, which
is also the output of the recurrent layer, that feeds back to the input at every step of
the sequence, retaining a memory of all previous states (Fig. 2.15a). The hidden state ht
includes all atomic states from every neuron, and is also fed back to every one of them, so
that each neuron gains access to all neuron’s hidden states in the same cell. This hidden
state can be described by the equation:

ht = fnonlin(xtW + ht−1U) (2.20)

where ht is the hidden state at step t, xt is the input vector, and W and U are fully-
connected weight matrices. At every step, the recurrent cell not only receives the input
of the current step (xt), but concatenated to it is also the previous output (hidden state).
This creates a feedback loop, enabling the net to make decisions based not only on the
current input, but also on past states.

RNNs typically have a relatively low number of cells, compared to the number of layers
in other modern deep neural nets. However, RNNs should still be categorized as deep
nets; when processing the sequence, a single recurrent layer can be imagined as a repeated
sequence of layers, each processing as input the corresponding historical timestep and
feeding its output into the next layer. The depth of recurrent nets comes from the fact
that this “unrolled” net can be very large, depending on the length of the input sequence.
Due to this, in most cases it is wise to limit the number of the actual recurrent layers in
a neural net, since the sequential nature of the net already introduces vast complexity.
Furthermore, when backpropagating, the derivatives should theoretically be unrolled in
time all the way to the first input, however, this would cause an intractable memory
footprint for these algorithms. To overcome this, RNNs use a truncated backpropagation
implementation, which only unrolls gradients until the last k user-defined steps.

Tanh
or σ

ℎ𝑡

ℎ𝑡−1

+
𝑥𝑡

𝑈, 𝑊

ℎ𝑡

(a) Simple RNN cell

σ
σ σ

× +

× tanh

×
ℎ𝑡

ℎ𝑡 𝐶𝑡𝐶𝑡−1

ℎ𝑡−1

𝑓𝑡
𝑖𝑡

ሚ𝐶𝑡
𝑜𝑡

+
𝑥𝑡

tanh

Forget gate

Input

gate

Output

gate

𝑈𝑓 ,𝑊𝑓
𝑈𝑖 ,𝑊𝑖 𝑈𝑔,𝑊𝑔 𝑈𝑜,𝑊𝑜

(b) LSTM cell

Figure 2.15: Recurrent cells.

In this simple form, RNNs are notoriously prone to vanishing or exploding gradients.
Because of their recursive nature, the activations pass through the same weights multiple
times, which also means the gradients also have to be backpropagated through the same
weights multiple times. If the weights amplify or dampen the gradients even just a little,
this repeated backpropagation can quickly lead to exploding or vanishing gradients. A
successful architecture that overcomes these unstable gradients is the Long Short-Term
Memory (LSTM) cell [14]. LSTM cells deal with vanishing gradients by introducing an
internal memory (Ct), that is not the same as the cell’s output. This internal memory is
governed by a complex layout of input-, output- and forget-gates in the cell (Fig. 2.15b).
The forget-gate keeps or clears the internal state based on the input and the previous
hidden state. The input-gate regulates how much of the new input is added to the internal

2.3. DEEP NEURAL NETS 33

state, while the output is a version of the new internal state filtered by the output-gate.
Intuitively, the LSTM’s various gates regulate how much the RNN takes the past and
new information into account, only considering the most useful inputs instead of using
all the past timesteps with decreasing weight as it is in simple RNNs. This also helps
to overcome the unstable gradient problem; the LSTM cell is able to compensate for
exploding or vanishing gradients through these gates by avoiding the propagation of the
same gradient multiple times through the same weights, even between timesteps in the
same input sequence.

Today’s RNNs target variable-length sequence processing tasks, mainly in the field of NLP.
Natural languages are composed of a hierarchical structure of sentences, expressions, words
and finally letters or sounds. This multi-level representation can be learned using RNNs,
by stacking multiple LSTM layers, similar to the way other deep neural nets build up
their hierarchical feature representations; earlier layers learn lower level features (in this
case words), while later layers learn high level representations (sentences). LSTM layers
are especially powerful for NLP tasks, because in languages the dependencies in time can
vary greatly: for example, some conjugations only depend on the immediate word they
are appended to, while other conjugations can depend on words which are whole sentences
away. However, as the premier sequence-processing deep nets, LSTMs are also often used
for much simpler, fixed-length sequences with a less hierarchical structure, mostly only
because of their fame. The question remains then if recurrent nets are truly the best tool
for processing such sequences.

2.3.4 Convolutional Nets

Convolutional Neural Nets (CNNs) extend on the traditional neural net concept by incor-
porating the spatial context of the information, such as in images or heatmaps, by paying
attention not only to the value of the features, but also to the value of neighboring features
and their relative position [15]. CNNs are made up of convolutional layers, which realize
the mathematical operation of convolution between the input tensors (n-dimensional ma-
trices) and learned filters. Convolution is originally defined as a mathematical operation
on two functions, which computes the amount of overlap of one function as it is shifted
over the other. In 1-dimension, convolution may be visualized as sliding one function,
f (filter), on top of another, g (input), while, at each shift, point-wise multiplying the
functions and adding the products as illustrated in Fig. 2.16.

𝑔 𝑔 𝑔 𝑔 𝑔

𝑓 𝑓 𝑓 𝑓 𝑓

∑(𝑓 ∗ 𝑔) ∑(𝑓 ∗ 𝑔) ∑(𝑓 ∗ 𝑔) ∑(𝑓 ∗ 𝑔) ∑(𝑓 ∗ 𝑔)

Figure 2.16: Convolution of two functions.

The convolution operation can be trivially extended to multiple dimensions, where the
input, the filter and the output tensor of the operation will always be the same dimen-

34 2. Deep Learning with Neural Nets

sionality in the convolution dimensions. Most often, CNNs are used for image-like data,
thus, the convolution is 2-dimensional. In these cases, the input and the output is a 3-
dimensional tensor where the first 2 dimensions (x and y, or width and height) correspond
to the plane of the original image and define the location of activations for the same filter
output, while the 3rd dimensions (z, or depth) incorporates the outputs of different filters.
The z dimensions are also often referred to as channels, such as the red, green and blue
channels in color images.

Convolutional layers are made up of small filters (such as a 3× 3× z grids), each reacting
when detecting a unique structure. This detection is done through the usual matrix
multiplication also used in fully connected layers; the filters are learned weights, which are
multiplied by a part of the input tensor and then summed to form a single output value.
The filters scan the output of the previous layer in the x and y dimensions step-by-step,
and produce an output tensor, which contains the localized activations of the filter for each
scanned position. The filters’ receptive area usually extends through the whole depth (z)
of the previous output tensor.

𝑥

Padding

F
lit

e
r

1

F
lit

e
r

3

F
lit

e
r

2

F
lit

e
r

4

Output of:

𝑦

𝑧

𝑊
𝑓
𝑖𝑙
𝑡𝑒
𝑟
1

Figure 2.17: Illustration of a 2-dimensional convolutional layer, its input and output ten-
sors.

The size of the output of these layers is governed by multiple parameters: the actual filter
size, the number of filters, the stride (the step size of the scan) and the amount of padding
on the sides of the previous output. The example in Fig. 2.17 illustrates a convolution on
a 3 × 3 × 4 tensor with a padding of 1, using 4 different 3 × 3 × 4 filters with a stride of
1. Often, convolutional layers pad the input tensor, in order to retain the same output
tensor shape as the input. There are various padding strategies, the most often used are
0-padding and mirror padding.

The convolutional filters are receptive to spatial structures, realizing a sensitiveness to
position in their inputs, and encode the position of the sensed features in their output.
CNNs often utilize pooling layers, which undertake the conceptually opposing task; their
job is to mitigate the strong sensitiveness of the convolutional layers with regards to exact
position or orientation. They do this with a scanning compression method similar to the
filters in the convolution layer, but only propagating the largest (max-pooling) or the
average (average-pooling) activation value from a small area of the input, thereby also
scaling down (compressing) the propagated tensors in the convolution dimension. The
compression areas are restricted to a depth of 1, and are usually small, 2×2 or 3×3 in the
x-y plane. The stride of the scan can be either set to create overlapping or non-overlapping
scans, however, usually non-overlapping pooling is used. An example of max-pooling is
illustrated in Fig. 2.18 with a 2× 2 compression area and no overlap.

Pooling enforces sparsity in the inner representation of the net, acting as a regularizer,
and compressing information. Overall, this regularization manifests as an insensitivity

2.3. DEEP NEURAL NETS 35

𝑥

𝑦

𝑧

1

1

1

1 1 1 1

1

1

1

1 1 1 1

1

1

1

1 1 1 1

1 0 4 2

4 7 1 3

3 9 5 0

1 2 1 0

1

1 1

1

1 1

1

1 1

7 4

9 5

Figure 2.18: Illustration of a 2-dimensional max-pooling layer, its input and output tensors.

to the exact orientation, skew or position of the objects in the input image, which is a
sought-after property for robust and precise recognition. Max pooling also combats the
vanishing gradient problem by only routing the gradient to the most activated position in
the previous layer. This avoids splitting the gradient into multiple parts, which in turn
avoids the repeated gradient division present in fully connected layers.

It is important to note that the convolution operation could also be realized with a simple
fully connected layer. In fact, convolutional layers can be viewed as fully connected layers
that have connections which are turned off, and others that share weights across the layer,
as depicted in Fig. 2.19. This view highlights the original aim of the convolutional layer;
to reduce the number of weights in the net by leaving out often unused parts, so that
deeper, more complex nets could be fit into state-of-the-art hardware. Convolutional and
pooling layers are often used for image processing, but are not solely useful for those tasks.
1-dimensional convolutions can also be useful for fixed-length sequence processing, while 3-
dimensional convolutions could be capable of processing heatmaps, such as coverage maps
with the temporal context also taken into account.

𝑤1
𝑤2
𝑤3

Unused

connections

𝑤1
𝑤2
𝑤3

Shared

weights

(the filter)

F
la

tt
e
n

e
d
 i
n
p
u
t
te

n
s
o
r

F
la

tt
e
n

e
d
 o

u
tp

u
t

te
n
s
o
r

Figure 2.19: Derivation of the convolutional layer from the FC layer, through unused
connections and shared weights.

2.3.5 Autoencoders

Autoencoders (AEs) are a set of neural net architectures, used to form an abstract latent
representation of the data through unsupervised learning. Autoencoders are made up
of an encoder and a decoder subnet, which are usually mirror-equivalents of each other.
The role of the encoder subnet is to learn to “encode” information about the training
observations into a constrained space, while the decoder has to learn to reconstruct the
original observations using this information. Traditional autoencoders compress data, all
the while minimizing the loss of relevant information, making use of the fewer but more
abstract internal features formed in the middle layers. The measure of goodness for an
autoencoder is how well it can restore the original data from its internal representation,
which is usually calculated as the MSE between the input and the output of the net. The

36 2. Deep Learning with Neural Nets

goal of compression is immediately visible in the topology of an autoencoder; the nets
narrow up to the middle layers, then widen again to regain the same width as the input
layer (Fig. 2.20). This topology forces the net to form higher abstractions in the middle
layers, causing irrelevant or redundant information not to be propagated.

Encoder Decoder

O
ri
g

in
a

l

o
b

s
e

rv
a

ti
o

n
s

R
e

c
o

n
s
tr

u
c
te

d

o
b

s
e

rv
a

ti
o

n
s

Many

dimensions

Few

dimensions

Many

dimensions

Figure 2.20: Traditional autoencoder architecture.

A specific type of autoencoder we often utilized often in our research is the convolutional
autoencoder. In this, instead of the usual FC layers, the encoder employs convolutional
and pooling layers, however, to retain symmetry, the decoder has to utilize special deconvo-
lutional and unpooling layers. Deconvolutional layers realize a mirrored convolution: the
filters expand singular input values into larger tensors in the output. Similarly, unpooling
layers also reverse the pooling operation by scaling up the inputs. The inverse operation
of average pooling is simply upscaling, where the same input value is repeated over the
whole output area. However, the inverse operation of max-pooling is not that straight
forward: in this case, the output area is filled by 0s in all except one position, where the
input value is placed. In order to know which position this value has to be placed, the
maximum location indices have to be saved in the symmetrical max-pooling layer in the
encoder, and communicated to the max-unpooling layer in the decoder.

Autoencoders are the earliest deep neural net architectures, preceding the technological
and algorithmic advancements that allowed for the training and use of modern deep neu-
ral nets. The reason why autoencoders were still possible to train - avoiding vanishing
gradients and not requiring enormous computational power - is because of the greedy,
layer-by-layer training method they implemented. These stacked autoencoders start with
only the outer layers present, and add layers by pairs to the middle of the autoencoder,
only after the previous net has reached convergence. This method limits the calcula-
tions to a few layers at any time, allowing for deep nets to be trained on less capable
hardware. At the end of the training, the weights could be fine-tuned with end-to-end
backpropagation; at this point vanishing gradients do not pose a big threat to the net.
Nowadays this training method has fallen out of favor, as gradient stabilization methods
and hardware-accelerated computations made the training of deeper autoencoders in an
end-to-end fashion possible from the start.

2.3.6 Generative Adversarial Nets

Generative Adversarial Nets (GANs) are a neural net architecture and training paradigm,
which is focused on the generation of entirely synthetic, albeit believable data points [16].
In their simplest form, GANs are made up of a generator and a discriminator subnet.
GANs use an adversarial training method in which, during training, the two subnets are
assigned opposing tasks: the generator has to learn to generate synthetic observations from
points sampled randomly from a user-defined distribution, which are indistinguishable
from real observations, while the discriminator has to try to distinguish the synthetic
observations from real observations (Fig. 2.21).

2.3. DEEP NEURAL NETS 37

Discrimi-

nator

Generator

Real

observations

Random

distr.

Real

Synthetic

Figure 2.21: Generative adversarial net architecture and training.

This objective can be seen as an adversarial zero-sum game that the two subnets are play-
ing. Naturally, because of the adversarial nature, the training of these nets is quite chaotic,
so often there are external regularizing factors in-place which guide the nets towards their
correct objective. The end goal of the game is for the generator to “win”, by learning
to generate convincing observations that are indistinguishable from real observations by
the discriminator. After training, the discriminator can be discarded, and the generator
used to generate synthetic observations by supplying it with random inputs taken from the
user-defined distribution. In reality, the adversarial training realized by the discriminator
actually forces the generator to learn to output the same distribution as is present in the
training data. This matching of distributions is useful for other simpler tasks too, such as
enforcing a distribution in the middle of an autoencoder.

2.3.7 Hierarchical Features Learned in Deep Neural Nets

The quick spread of use and acknowledgment of deep learning cannot be tied to a single
invention, but rather to multiple smaller factors that together enabled the training and use
of deep neural nets, what is today referred to as deep learning. Correspondingly, there is
a lot of misuse of the term, stemming from misconceptions about what does and does not
constitute as deep learning. However, there is no breaking point, no set number of hidden
layers above which one can call a net deep. As such, instead of defining deep learning
by the applied number of hidden layers, it is necessary to find a definition that is also
applicable outside the realm of neural nets, and instead focuses on what is achieved by
deep learning. The first DNNs performed better than their non-deep predecessors because
they could learn complex, hierarchical rules or features present in the training data. This
deep understanding is what defines whether a system achieves deep learning.

This section is meant as a practical summary of the many elements of deep learning
discussed so far, and as an illustration of the hierarchical features learned by DNNs.
For this, we can look at the famous VGG16 neural net topology [17], which achieved
top results in the IMAGENET Large-Scale Visual Recognition Challenge (ILSVRC) in
20143. ILSVRC is an image recognition challenge, where the submitted machine learning
algorithms have to correctly identify the class of the image out of a 1000 categories, which
include photographs of objects and different kinds of animals. It was at ILSVRC where
the first deep neural nets were introduced, and winning the challenge it still held as one
of the biggest achievements one can make in the DL field. VGG16 is a truly deep neural
net, employing 16 convolutional and FC layers, followed by batchnorm layers and ReLU
nonlinearities, max-pooling layers, and a softmax nonlinearity at the output. The topology
can be seen in Fig. 2.22, which depicts the output tensor shapes of the layers in the net.

To gain better insight into how DNNs learn, techniques were developed which visualize
the features learned by the different neurons in the net. The visualizations I show can
be achieved with the very same tools that are used to train the net4: here, instead of

3http://www.image-net.org/challenges/LSVRC/2014/results
4https://distill.pub/2017/feature-visualization/

http://www.image-net.org/challenges/LSVRC/2014/results
https://distill.pub/2017/feature-visualization/

38 2. Deep Learning with Neural Nets

224x224x3

112x112x8

224x224x64

56x56x256
28x28x512

14x14x512

7x7x512

1x1x4096

1x1x1000

Conv. + BN. + ReLU

Max-pool.

FC + BN. + ReLU

Softmax

Feature vis.

Figure 2.22: Topology of the VGG16 net.

the net parameters, gradient descent is used to optimize the input image itself, in order
to best trigger a specific neuron. The process requires a skew of regularization methods
to produce nice looking images, such as step-by-step upscaling of the image, as well as
constant random transformations such as small rotations and translations, in order to
avoid very noisy images and to aid in the formulation of larger features. Tuning these to
produce nice images is an art in itself. I generated such visualizations from different layers
of the pretrained VGG16 net. The hierarchical features learned by the net are quite nicely
illustrated (Fig. 2.23): neurons in earlier layers are triggered by simpler shapes, such as
edges or textures, while later layers are triggered by more complex structures. Finally,
visualizations from the very last layer create images of the different object categories the
net was trained to recognize, which contain, in a dream-like collage, all the most important
aspects of the object category in question (Fig. 2.24). I think these images are best kept
in mind when discussing deep learning, as one should always be critical in any given task
whether such hierarchical features can be learned from the data, and thus whether using
deep learning is warranted.

2.4 Deep Learning in Mobile Networks

2.4.1 State-of-the-art

Using the so far collected understanding of how deep learning and deep neural nets work
and how they should be used, we can now take a critical look at how deep learning is
utilized in mobile networks. 5G is the first mobile network generation that is meant to
depend on advanced ML techniques. In 5G, deep learning is regarded as both the solution
to overcome the exponentially increasing complexity, and the enabler for many of the use
cases previously thought to be impossible. 5G is already under development for some
years now, so naturally, quite a volume of literature is available on deep learning in 5G
networks. The different areas where DL could be utilized are well summarized [18], also
depicted in Fig. 2.25, and advanced use cases are detailed in [3]. Some areas fall outside
the boundaries of network automation: these are either low-level, real-time tasks (such
as signal processing), or application-level tasks (such as application-level data analysis, or
deep-learning-based applications).

2.4. DEEP LEARNING IN MOBILE NETWORKS 39

(a) Layer 11: textures.

(b) Layer 21: patterns.

(c) Layer 31: parts.

(d) Layer 41: structures.

Figure 2.23: Feature visualizations from VGG16 layers.

The categories that fit the scope of (cognitive) network automation are:

� Learning Driven Network-Level Mobile Data Analysis: Use cases here include traf-
fic classification or QoE from related, easily measurable Quality of Service (QoS)
Key Performance Indicators (KPIs). Another example is cell anomaly detection;
detection of hardware or software faults, or misconfigurations using KPIs describing
per-cell behavior. Yet another use case in this category is the long-term prediction
of traffic or user growth, aiding network planning by predicting long-term demand.

� Deep Learning Driven User Localization: These use case cover the precise estimation
of the user position using various localization techniques, to support location-based
functionality, such as Minimization of Drive Tests (MDT) or mobility analysis.

� Deep Learning Driven Mobility Analysis: These use cases use the prediction of
individual, or large crowd movement through wireless networks, for load balancing
or predictive handover triggers in availability-critical services, such as URLLC.

� Deep Learning Driven Network Control: Use cases here include dynamic resource
allocation tasks, such as Radio Resource Control (RRC), routing or scheduling. An

40 2. Deep Learning with Neural Nets

(a) Scorpion (b) Tarantula (c) Centipede

(d) Seaslug (e) Crab (f) Stork

(g) Unicycle (h) Violin (i) Wallclock

Figure 2.24: Visualization of classes learned by VGG16.

example of a resource allocation task is predictive network slicing, allocating multiple
types of resources to services or users in the network.

� Deep Learning Driven Network Security: Use cases such as the detection of traffic
anomalies, which can signal man-in-the-middle attacks, botnets or other security
risks in the network.

These categories all could utilize DL in order to make decisions or to extract insight from
a large variety and volume of data. However, not all of these possible DL landing zones are
actually considered, or do not utilize DL to its fullest capabilities, as we will see shortly.

Different ML techniques are often (incorrectly) referred to under the umbrella term AI in
mobile networks literature. The list of ML algorithms that span the AI“spectrum” is quite
wide: complexity can range from simple statistical algorithms, such as linear regression,
all the way to deep reinforcement learning algorithms using Deep Q-Networks (DQNs).
This “overselling” is a constant problem in mobile network literature, which makes it hard

2.4. DEEP LEARNING IN MOBILE NETWORKS 41

Figure 2.25: Overview of topics in network automation utilizing deep learning [18].

to judge the actual capabilities of the utilized ML algorithms at first glance, especially in
surveys exploring the use of AI in mobile networks. Most surveys recognize at least the 3
main ML principles, and refer to the following ML algorithms in each principle [19, 20, 21]:

a) Supervised learning: Supervised learning is the most commonly discussed ML prin-
ciple in surveys, and also contains the most complex learning algorithms. ML al-
gorithms that are utilized here include Logistic Regression (LR), SVMs, Hidden
Markov Models (HMMs), decision trees, and neural nets (the depth of which will
be discussed shortly). Supervised learning is thought to be useful in tasks in all
levels of the network, from root-cause analysis in network management all the way
to channel estimation close to the physical layer. This category usually also includes
prediction tasks, which I don’t consider as supervised-learning-based on the lack of
human input needed for training data preparation (Sec. 1.1.2).

b) Unsupervised learning: Unsupervised learning is the least discussed principle in
literature. The algorithms utilized here are often quite simple statistical methods,
such as Principal Component Analysis (PCA), k -Means, Gaussian Mixture Models
(GMMs), hierarchical and spectral clustering. More complex, but not deep learning
capable algorithms include single class SVMs and Self-Organizing Maps (SOMs).
Deep learning capable neural nets, such as LSTMs are only discussed in the context
of prediction, with the caveat of a strongly restricted model complexity because of the
need for a short inference time in low-level tasks. Typically, unsupervised learning
in higher-level (management) tasks are considered only to support the generation
of labeled training datasets for later supervised learning algorithms, which actually
implement the management functionality [19].

42 2. Deep Learning with Neural Nets

c) Reinforcement learning: Reinforcement learning is an often discussed tool in the
context of optimization tasks, such as resource allocation or self-configuration, or
even in high-level management or network planning tasks. The reinforcement learn-
ing principle by nature requires quite complex algorithms, which range from the
more traditional Q-learning to recent DQNs, often utilizing deep neural nets such as
LSTMs.

The above referenced surveys discuss a quite broad range of algorithms with varying com-
plexity, and in my opinion provide an unfocused view of what constitutes today as deep
learning in mobile networks. In order to get a representative, unbiased view of what is
currently discussed as deep learning in 5G, I conducted my own survey by searching for
papers which include the “5G” and “deep learning” keywords on IEEEXplore5. The below
papers were gathered by sorting the results from the query by the decreasing number of
citations. I manually selected papers which are a) on the topic of mobile network operation
on all levels (but not applications in mobile networks which use DL) and b) reasonably
recent. I found that most of the papers can be organized into 3 use case groups:

a) Short-timeframe radio interface control: These tasks involve the reconfiguration of
the radio interface such as MIMO control or beam selection [22, 23], RRC [24, 25],
the prediction of channel quality [26] or even the task of channel decoding itself [27].
These tasks require frequent inference cycles, often close to per Transmission Time
Interval (TTI) (10s of milliseconds), while in even more extreme cases, such as chan-
nel decoding, latency budgets for inference are as small as only a few microseconds
[28]. A further constraint is the limited computational capacity available in mobile
devices, as well as the need to conserve battery life with lightweight algorithms. All
these constraints limit the allowed complexity of the DL algorithms used close to
the physical layer, which for neural nets means the limitation of layer widths and
the number of layers in order to reduce the number of weights/parameters in the net
[29]. Most of them use shallow FC or convolutional nets, or simple LSTMs, which
limits the “deep” learning capacity of these nets by reducing the number of hierar-
chical features to be possibly learned. The majority of these works use some form
of supervised learning, such as classification, or regression to a predefined function
found by convex optimization or exhaustive search.

b) High-level resource allocation: A large portion of these works involve the resource al-
location in cloud environments, such as intelligently caching or offloading applications
in Mobile Edge Computing (MEC) [30, 31], or resource allocation in cloud-Radio
Access Network (RAN) [32]. These tasks are frequently solved with reinforcement
learning, often utilizing DQNs to learn and optimize a resource allocation strategy
in a simulated environment. Other, even more complex vertical resource allocation
tasks involve network slicing, where both physical and virtual resources are allocated
end-to-end in the network for user types or applications [33, 34, 35]. Network slicing
papers often use classification as an ML principle, as well as reinforcement learning,
in both of which the nets used can be quite deep and thus realize deep learning.

c) Traffic anomaly detection: This area is involved in the detection of anomalous traffic
patterns in the network, which could stem from malicious attacks such as botnets [36],
intrusions over radio [37], or software or hardware failures [38]. Although anomaly
detection could be undertaken with unsupervised algorithms, by modeling normal
behavior and detecting patterns that fall outside of this model, most of the current
works use supervised learning algorithms. With supervised learning and the correct

5https://ieeexplore.ieee.org/

https://ieeexplore.ieee.org/

2.4. DEEP LEARNING IN MOBILE NETWORKS 43

dataset, generally, a higher precision can be achieved with much simpler models,
which is also represented in the quite shallow FC nets used by these works. Unfor-
tunately, this also limits the capability of these nets to learn hierarchical features,
thus not really realizing deep learning.

Many of the listed works utilize shallow, simple neural nets, which would not be necessarily
considered as deep-learning-capable. This is especially true in low-level tasks close to
the physical layer, where inference execution time is limited. High-level, large-scale or
management-oriented tasks don’t suffer from these timing constraints, thus the possibility
to employ DL is greater here. However, often in these tasks the amount of data needed to
truly utilize the capabilities of DL is overwhelming, and is not yet supported or produced
by current mobile networks, thus researchers tend to fall back to simpler ML models.
Workarounds to this problem exist, such as the utilization of complex digital twins to
produce training data for these high-level tasks [39], but this usually requires extraordinary
effort for many tasks and is simply not available for most researchers.

My takeaway is that deep learning is too often used only as a buzzword in 5G-related
papers: while I don’t doubt the possible benefits of using DL for the above tasks, I question
whether the employed ML algorithms are truly capable of deep learning. Furthermore, in
places where complex unsupervised DL algorithms could provide the benefit of robustness
or adaptability, instead simpler, supervised algorithms are used to achieve a small accuracy
gain of a few percentage points. I think investigating unsupervised deep learning in many
of these tasks could be worthwhile and provide a benefit over current solutions, or allow
for new use cases.

2.4.2 Drivers, Enablers and Constraints of DL

The capability of deep neural nets comes at cost: with great cognitive power come great
computational requirements. For deep neural nets, the drivers and constraints are inter-
twined, creating a complex landscape through which one must navigate when aiming to
develop these algorithms.

Computational power

As the basic steps to train neural nets through backpropagation and gradient descent are
very atomic algebraic tasks, there is little room to algorithmically optimize these calcula-
tions. However, as these tasks are highly parallelizable, there are significant opportunities
to speed up the computation through implementations using hardware capable of massively
parallel computations. This has created a two-step cycle of progression for DNNs:

a) Neural nets are improved, allowing for deeper, more complex topologies to be trained
but with major increases in computational requirements.

b) Hardware capabilities and storage capacity is improved, allowing for the complex
DNNs to be trained and tested in humanly acceptable timeframes, e.g., purpose-
built hardware and new implementations emerge to further speed up computations.

Nowadays, all but the simplest neural nets require dedicated hardware – usually in the form
of Graphics Processing Units (GPUs) – to train and infer within a reasonable time. These
GPUs are slowly becoming more and more widespread both in end-user devices (mobile
phones), and in the network itself (edge clouds). However, running the inference on either
side is problematic: mobile phones have a limited battery life, and should conserve it by
minimizing DL computation. This can be achieved by offloading computation to the edge
cloud, but in this, case the amount of data communicated can be overwhelming, or security
and privacy concerns can emerge if the user’s data is sensitive.

44 2. Deep Learning with Neural Nets

Timing constraints

Current improvements sometimes achieve only a few 1/10 of a percent increase in accuracy
at the cost of a 10-fold increase in training and inference time. However, these seemingly
small increments in accuracy amount to a large forward-step in cognitional power need,
which in turn means a significant increase in processing time. Deep neural nets can have
two types of constraints for processing time:

a) A hard time-limit at inference, so that the net is able to process the constant stream
of information at the rate it is arriving, such as the case with object recognition in
video processing.

b) A softer time-limit at training, so that the neural net can be trained in a reasonable
timeframe.

The time it takes to develop a concept into prototype – mainly influenced by the models’
training time – is critical in deep learning research. Although most common architectures
nowadays can be trained on desktop computers, the need for speed and simplicity implies
that buying expensive, specialized hardware dedicated to deep learning is not a waste.
This is the reason why the leading institutions in the field utilize huge supercomputers;
being able to validate a concept quickly without spending much effort on optimization is
invaluable in the deep learning race.

Quantity of data

The companies most invested in deep learning are those that handle large amounts of data,
usually in the form of images, videos, or text, where the automation of tasks previously
solved by humans would mean a huge decrease in cost and a large increase in capacity.
This large amount of information, however, is not only a burden; the quantity and quality
of available data is what enables the training of the learning machines more than any hard-
ware or algorithmic improvement could. Within this lies a big problem for DL in mobile
networks: mobile network vendors – the ones potentially developing the DL algorithms –
are cut off from the source of the data, the large-scale mobile network deployments, as
these are owned and run by network operators. Sharing data from network operators re-
quires agreements on both sides, good cooperation and a lot of effort in order to maintain
anonymity for the users, or avoid leaking sensitive information about the operator itself.
This effort is seldom profitable for the operator, thus, they are usually reluctant to share
data, leaving the vendors without access to the fundamental enabler of DL.

The consideration of these aspects of DL is crucial when developing algorithms. Many
good ideas on paper turn out to be problematic in one of the above topics, when a real
deployment is considered in a mobile network. This is the reason why my research objec-
tives include such considerations, and why these topics are going to be further discussed
throughout this thesis.

45

Part I

Exemplification

Version: 2023/05/26 – 14:32:46

47

3. Quantization for Network State Modeling

When communicating with others, we often use the description of a single entity to describe
the characteristics of a whole group. Using examples in this form is a very effective way
of conveying information; the listener intuitively understands that the highlighted aspects
are what distinguish the given group from the rest, while also keeping in mind that there
are likely entities in the group with slightly differing attributes compared to the example
given. Using examples are most important when describing a large amount of entities,
in which case multiple examples are usually given to cover the whole range of attributes.
However, selecting which examples to use in order to maximize their descriptiveness can
be quite a challenge.

Quantization realizes this task as a ML algorithm, in which a large number of observations
with a continuous distribution (the dataset) are mapped to a small set of discrete ob-
servations (the examples/prototypes/centroids). Quantization algorithms split the input
space into a finite number of partitions, and use a single observation from within each
partition as an exemplary representation of all the observations in that partition. Just as
in human communication, exemplification through quantization also serves the purpose
of effective communication for machines, by maximizing the amount of useful information
communicated with a minimum amount of data. Quantization algorithms are primarily
used in signal processing, where their task is to remove minute variance from the data,
and compress the information into the smallest possible encoding, which can then, e.g., be
transmitted over radio, or effectively stored on a hard drive.

Quantization is not to be confused with clustering; while in clustering, the goal is to
find originally present groups in the data, quantization only aims to partition the data
into possibly arbitrary parts, in order to effectively compress information. Quanta do not
necessarily adhere/align to clusters in the data, because in most use cases, the quantization
will use far more quanta than the number of groups present. However, as we will see later,
good quantization algorithms do have to take into consideration clusters in the data, thus
blurring the division between clustering and quantization algorithms.

Communication through examples is also useful in network automation, where the quanta
can be seen as network states, which describe the settings, current performance, and/or
context of single or multiple entities in the network, such as base-stations, gateways, cells,
or even users. Network states are meant to form the basis of communication – a vocabulary
– between cognitive functions in the mobile network, upon which control decisions or
reconfiguration requests can be based. Because the mobile network is understood to be

Version: 2023/05/26 – 14:32:46

48 3. Quantization for Network State Modeling

a dynamically changing context, it is important to have the network states automatically
defined, so that in case of a context change, they can be quickly redefined without human
supervision, making the management system adaptive to change.

Sec. 3.1 introduces the concept of knowledge sharing for self-healing – which uses quanti-
zation and some form of network states – through the following patent application:

Diagnosis Knowledge Sharing for Self-healing
Benedek Schultz, Janne Ali-Tolppa, Márton Kajó
WO, PCT application no.: PCT/EP2018/079735, filed Oktober 2018

Sec. 3.2 of this chapter is based on the work published in the following paper:

Equal-volume Quantization of Mobile Network Data using Bounding Spheres and
Boxes
Márton Kajó, Benedek Schultz, Janne Ali-Tolppa, Georg Carle
NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium,
pp. 1-9. IEEE, 2018.

My contributions to the above paper was the design, implementation and evaluation of the
algorithm, as well as the co-authoring of the paper. The discussion in this thesis expands
on the paper, by placing it into the larger concept of knowledge sharing in self-healing, as
well as the proposal of an alternative, neural-net-based implementation, published in the
following report (Sec. 3.3):

Neural Network-based Quantization for Network Automation
Márton Kajó, Stephen S. Mwanje, Benedek Schultz, Georg Carle
arXiv preprint arXiv:2103.04764 (2021).

My contribution to this technical report was the design, implementation and evaluation of
the algorithm, as well as the authoring of the document itself. While containing important
details for our future work, we deemed the content of this report to be too technical for a
mobile-networks-oriented audience (please see Sec. 14.2.2 for further notes on this), thus,
instead of publishing it as a scientific paper, the report was made freely available on arXiv.

The overall discussion is concluded with some remarks on the complexities of implement-
ing algorithms for massive parallelization, and integrating them into DL frameworks or
algorithmic pipelines, a topic which came up often in our research.

Some of the findings from this work as are also echoed in the following publications (both
of which I also co-authored, but no additional text is used from them in this dissertation):

Self-healing and Resilience in Future 5G Cognitive Autonomous Networks
Janne Ali-Tolppa, Szilárd Kocsis, Benedek Schultz, Levente Bodrog, Márton Kajó
2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K), pp. 1-8. IEEE,
2018.

Cognitive Autonomy for Network Self-Healing
Janne Ali-Tolppa, Márton Kajó Georg, Borislava Gajic, Ilaria Malanchini, Benedek
Schultz, Qi Liao
Towards Cognitive Autonomous Networks: Network Management Automation for
5G and Beyond (2020): 345-384.

3.1. CONCEPT: DIAGNOSIS KNOWLEDGE SHARING FOR SELF-HEALING 49

3.1 Concept: Diagnosis Knowledge Sharing for Self-Healing

3.1.1 Automating Diagnosis in Self-Healing

Network assurance relies largely on monitoring the alarms generated by network elements,
or by monitoring their performance directly. Alarms are triggered through the process of
Fault Management (FM), where individual network elements monitor preset thresholds,
and generate alarm messages if a threshold is overstepped. The diagnosis of discovered
anomalies often relies solely on human inference. Given the complexity and growth of
mobile networks, such processes do not scale, and will become infeasible in the near future.
Consequently, there is a need for augmented processes in relation to networks for diagnosing
network anomalies. In this context, augmented refers to processes where human inference
is supplemented by ML, in order to reduce labor and speed up processing, hopefully
ultimately leading to full automation. At the time of this work, we had solutions for
automated anomaly detection, but not for augmented or automated diagnosis.

One of the main focuses of Self-Organizing Networks (SON) is self-healing, where the goal
is to automatically detect and correct faults in the network. The self-healing process can
be split up into 3 steps: the detection, diagnosis, and correction of faults. The deployment
of corrective actions is a quite complicated topic, and has been researched extensively
[40, 41], thus it will not be discussed here, instead, this work focuses on the preceding
step, the diagnosis of anomalies, for which the detection process has to be introduced.

The detection of anomalies can be automated in a conceptually straightforward way [42],
by comparing the current performance to an established profile that describes the normal
behavior of the network. These profiles are likely formed by ML algorithms, such as neural
nets. The profiles are created from Performance Management (PM) measurements of a
set period, and can be updated either periodically or continuously to combat profile aging,
thus creating resilience against false detections stemming from slow, trend-like changes
in network behavior. The profiling and detection are done based on a set of selected
features, e.g. PM KPIs, the composition of which depends on the types of problems that
are to be detected. Such a detection method can be done on the network management
level, where a wider overview of the network is available, and detected anomaly events
can be correlated over the whole network. While FM alarms cover many of the recognized
network faults, ML-based anomaly detection methods can profile and learn the normal
behavior for each context, e.g. for each network function, and possibly detect previously
unseen deviations from it. Such a function enables a more sensitive detection system,
which works by correlating information from multiple layers or elements in the network.
This makes the system able to recognize issues where no explicit alarm is generated, or
detect anomalies before an alarm is raised and a severe problem occurs.

An anomaly detection function defines distinct anomaly events both temporally and spa-
tially, by specifying the timeframe and the affected network elements of the anomaly. Using
a larger scope of collected PM measurements during the anomaly event, anomaly patterns
are formed which describe the characteristics of the anomaly. The anomaly pattern can
consist of a vector of the normalized anomaly levels of each KPI in a cell or multiple cells,
or the raw KPI values during the anomaly. Often these values are aggregated over time in
the anomaly pattern. After an anomaly is detected and an anomaly pattern is established,
a diagnosis component analyses the anomaly pattern and tries to determine its root cause.

Like other semi-automated implementations of self-healing topics, diagnosis rules are of-
ten defined a-priori by an expert. This static rule-based diagnosis knowledge base goes
against our goals of a fully-automated self-healing system. An alternative, which allows
a more dynamic, automated collection and maintenance of the diagnosis knowledge base
is to use Case-Based Reasoning (CBR), where the diagnosis of an anomaly event is done

50 3. Quantization for Network State Modeling

Figure 3.1: An example of an anomaly pattern (red) compared against the best match
(blue) in the diagnosis knowledge base, depicted on a radar-chart.

by automated generalization and extrapolation from previous, similar examples of anoma-
lies. However, for CBR-type diagnosis to work, preferably a large database of previously
diagnosed anomalies would need to be maintained.

Automated diagnosis is a complicated task, largely due to the less-constrained problem
formulation, accentuated by the distributed and heterogeneous nature of mobile networks.
As diverse as fault states can be, they occur only in very rare cases, which makes it near
impossible to collect statistically meaningful data for each case. The lack of a statistically
relevant amount of samples makes the reliable root-cause analysis extremely difficult, es-
pecially so when utilizing DL, which mainly relies on plentiful training observations for a
correct model formulation (see Sec. 2.2.3). Thus, it is of utmost importance that diagno-
sis information is collected and reused from every possible source, by sharing it between
different contexts, such as different network deployments or timeframes, software versions,
or other discontinuities that could otherwise invalidate the already learned models.

The manual collection and maintenance of such a shared diagnosis knowledge base would
be tedious and expensive at best. Therefore, automated knowledge sharing of insights
is required to achieve a maintainable diagnosis system for self-healing. This would be
especially important in cases, where new network functions are introduced in the network,
or even completely new networks are deployed. Such cases where models are learned in one
task and context, and are applied to another task or context, is called transfer learning.
Typically, transfer learning is hard to achieve, and is currently one of the leading topics of
research in machine learning.

3.1.2 Knowledge Sharing using Quantization

The goal of a diagnosis knowledge sharing process between autonomous and cognitive
diagnosis functions in different contexts (e.g. in different network instances), is to be able
to share insights in a way well-suited for CBR-type diagnosis functions, and incrementally
improve the diagnosis capabilities of each other. The scenario we discuss here is one where
multiple Local Diagnosis Agents (LDAs) are connected to a single Central Diagnosis Agent
(CDA) (Fig. 3.2). The LDAs manage local, context-specific diagnosis knowledge bases,
which contain previously diagnosed anomaly patterns with their diagnosis attached as a
label. The central CDA’s goal is to collect, harmonize and retain a large base of diagnoses
which contains the most prevalent anomaly patterns from all previously seen contexts.

Both the local and central knowledge bases are updated either by a human expert, or
a CBR-type automated diagnosis function in case a new anomaly pattern is introduced.

3.1. CONCEPT: DIAGNOSIS KNOWLEDGE SHARING FOR SELF-HEALING 51

CBR Diagnosis
Function

Diagnosis
Knowledge Sharing

Agent

Central Diagnosis
Knowledgebase

Central Diagnosis Agent (CDA)

Local Diagnosis
Knowledgebase

CBR Diagnosis
Function

Diagnosis
Knowledge Sharing

Agent

Local Diagnosis Agent (LDA)

Knowledge Sharing interface

Expert

Expert

Figure 3.2: CBR diagnosis process with knowledge sharing.

However, in order to realize knowledge sharing, the LDAs and the CDA are connected
through a knowledge sharing interface. The communication on this knowledge sharing
interface is imagined through the use of some form of vector quantization.

The information communicated between the agents can be seen as a request for help in
refining/extending their respective models. The information going in both directions is
made up of labeled quanta, and optionally a collection of specific anomaly instances for
which the respective agent decided that they do not fit its subjective model well. Most
quantization algorithms expect their input as a set of points, with a usual option of defining
a starting position for the quantum centroid. However, here the quantization algorithms
need to be able to run on an input comprised of a mix of clusters and outlying points. This
functionality can be synthesized if individual points are sampled from a local database to
recreate the distribution of points contained in the given clusters. If individual points
were also communicated, these can be mixed to the synthesized points. Using this semi-
synthetic set, the quantization algorithm can start from the locally saved previous state,
and run until convergence. An example of the whole procedure can be seen in Fig. 3.3. The
(re-)sampling procedure allows the CDA to maintain a diagnosis database of a constant
size, rather than continuously collecting information.

The quantization serves two purposes: firstly, it is a fine enough discretization of the
anomaly pattern space, with which the different anomaly’s root causes can be described
by attaching a single diagnosis/root cause to each of the quanta. Secondly, the quanta also
serve to describe the anomaly event distribution in the anomaly pattern space, from which
the original statistical distribution can be reconstructed/resampled with enough precision.
In the bigger picture, the described method transfers knowledge or new information from
a source model to a target. This is true regardless of the source being the LDA and the
target being the CDA, or vice-versa.

3.1.3 Towards Equal-Volume Quantization

The diagnosis knowledge sharing concept was the first occurrence in our work, where some
form of quantization was meant to be used as a basis for communication between cognitive

52 3. Quantization for Network State Modeling

KPI 1

KPI 2

Outlying
individual

anomaly event

Input
quantum A,

population: 5

Input quantum B,
population: 3

Input
quantum C,

population: 4

(a) Input information

KPI 1

KPI 2

(b) Sampling and mixing

KPI 1

KPI 2

Local
quantum A

Local
quantum B

Local
quantum D

(c) Local model starting position

KPI 1

KPI 2

Split local
quantum

during fitting

(d) fitting

Figure 3.3: Quantization procedure incorporating local starting positions and mixed input
information.

functions. Several aspects in it influenced the design of the bounding volume quantization
algorithms, which are the topic of the next section (Sec. 3.2):

� Equal volumes: The roughly equal volumes of the quanta are needed to be able to
establish a uniform “resolution”, with which the labeling process operates. While
providing a very simple goodness-of-fit metric (maximum quantization error), this
also helps in the easy definition of cluster merging and splitting criteria based on
relative distance between points and quantum centroids, or between two quantum
centroids.

� Continuous learning: The knowledge sharing concept is built around a quantization,
where the fitting procedure can be continued at any time, even if the training points
are completely replaced. The Expectation-Maximization (EM) iterative optimiza-
tion framework makes this inherently possible, by simply continuing the iterations
whenever further fitting is required.

� Mixed inputs: The quantization algorithm was meant to be capable of fitting a mixed
set of predefined quanta and individual observations without the proposed resampling
mechanism. Although we did not propose this modification neither in the paper, nor
in the invention, such a functionality was planned in case the knowledge sharing
concept was to be further pursued.

The diagnosis knowledge sharing concept was, in my opinion, quite far in the development
process, close to being evaluated on data from a real mobile network deployment. Unfor-
tunately, this data would have originated from an operator, with which Nokia ultimately
could not agree on data-sharing conditions. Given this larger dataset, the work detailed

3.2. DENSITY-INVARIANT QUANTIZATION WITH BOUNDING VOLUMES 53

in the next section would have also contained the evaluation results from the knowledge
sharing scenario. Ultimately, lacking this dataset meant that we had to use a simpler,
smaller dataset, which lead to us using use cases such as visualization or anomaly detec-
tion. In the end, we were never able to source large-scale network data of the type needed
for this evaluation, thus the diagnosis knowledge sharing concept is only discussed in the
respective patent.

3.2 Density-Invariant Quantization with Bounding Volumes

3.2.1 Quantization in High-Dimensional Spaces

Most often, quantization is used to refer to basic numerical processes, such as rounding
to the nearest integer. While technically a correct interpretation, rounding and other
per-dimension quantization methods are not feasible if the input data is high-dimensional.
To illustrate this lack of scaling with the dimensionality, let us imagine a simple unit
rectangle, populated by a number of points, representing the observations in our training
dataset. The simplest quantization in this rectangle is to split every dimension into 2
partitions, arriving at 4 bins into which the datapoints can fall. By increasing the number
of dimensions to 3, the same scheme gives us 8 bins, and so on. The equation (Eq. 3.1)
that governs the number of bins can be seen in Fig. 3.4, where nbins refers to the number
of attained bins, p is the number of partitions per-dimension, and d is the number of
dimensions.

nbins = pd, (3.1)
𝑦

𝑥

𝑧

𝑦

𝑥𝑥

Figure 3.4: Illustration of the curse of dimensionality in per-dimension quantization.

Increasing the dimensions further can quickly lead to a number of bins which is greater
than the number of datapoints. This situation defeats the purpose of quantization; it is
likely that some bins will be left unpopulated or contain only a few datapoints, while a
few bins will contain the majority the datapoints. This situations means the quantization
does not compress information effectively, or at all. It is easy to see that the exponential
scaling of the number of bins with the number of dimensions can overcome any reasonably-
sized dataset with even the lowest number of bins per dimension, thus, such quantization
methods do not work with high-dimensional input data. This effect is just one aspect of
the curse of dimensionality – the behavior of high-dimensional spaces – which will come
up often in this thesis [43].

Mobile network data exhibits the above described problem; in Operation Support Sys-
tems (OSSs), thousands of KPIs are collected on a minutely basis, where KPIs function
as separate dimensions, making up a high-dimensional space in which observations exist
as individual datapoints. To achieve a sensible quantization in such spaces, instead of
per-dimension quantization, vector quantization algorithms are used. These algorithms
define a number of quanta in a way which is independent of the number of dimensions,
freeing the quantization from the curse of dimensionality at least a little. Furthermore,
the quanta “stick” to populated areas of space, so that every quanta is almost guaranteed
to be populated (as long as nquanta ≤ ndatapoints).

In the following, multi-dimensional observations making up a dataset will are referred to
as either datapoints, or just simply points. A set of points belonging to the same partition

54 3. Quantization for Network State Modeling

are referred to as a quantum. A quantum centroid is a single point – a prototype –
that represents (the most important characteristics of) the whole quantum. The quantum
centroid is neither necessarily the geometric center of the set of points, nor one of the points.
The distance between a quantum centroid and an observation assigned to that quantum is
the quantization error of that observation. The distance measure is the Euclidean distance
(or squared distance, the L2 metric) if not stated otherwise. If an area of the input space
is sparsely populated (i.e.: contains few or no datapoints), it simply referred to as sparse,
or dense if the contrary is true.

Vector quantization algorithms were originally conceived for the purpose of data compres-
sion. By replacing each observation with its closest quantum centroid, stored or transmit-
ted information can be greatly compressed at the cost of losing the information contained
within the quantization error vector. In the following, a (non-exhaustive) list of currently
popular algorithms, and a brief description of their optimization targets is presented:

� k -Means: More precisely Lloyd’s algorithm [44] was originally conceived as a signal
quantization method. The k -Means algorithm partitions the data into k quanta so
that the sum of quantization errors on all observations is minimal. This results in an
accurate quantization of dense areas but a less precise quantization of sparse areas,
for which a fewer number of quanta is assigned.

� Self-Organizing Maps, Neural Gases: These algorithms follow the competitive learn-
ing paradigm, in which each quantum is competing with the others for a “right to
respond to a given subset of inputs” [45]. In this approach, areas that are sparsely
populated present a smaller reward and draw fewer quanta, resulting in similar be-
havior to k -Means.

� Sparse Autoencoders: Autoencoders show similar behavior to quantization methods
if activation sparsity is enforced in the encoding; nodes in the hidden layers are
assigned to (distinct) parts of the input space [46]. Activation sparsity refers to a
different concept as previously introduced, and is discussed in more detail later in
Sec. 6.1.1. Since autoencoders optimize data compression by minimizing the loss of
overall information, this also translates to having fewer nodes assigned to sparsely
populated areas in the input space, resulting in greater compression and greater
quantization error in those areas.

Although the optimization targets of the approaches presented above are different, they
result in similar behavior: sparse areas of the input space are mapped with less precision,
quanta assigned to these have a greater maximum quantization error.

In many applications, sparse areas of the data are just as important – or even more
important – as dense areas. In these cases, the representation of densely and sparsely
populated areas with at least the same precision is desired. Thus, instead of minimizing
the sum of quantization errors, we propose that it is better to strive for the minimization
of the maximum quantization error in these cases. Tightly fitting a bounding shape, such
as a sphere, to wrap the points in a quantum allows us to define an assigned volume of the
quantum. The bounding shape’s exact position and size is only governed by the points
farthest from the quantum center; in this regard, the points with the largest quantization
error are effectively setting the assigned volume of the quantum they are in. Equal and
minimal maximum quantization error between quanta can be achieved by the equalization
of this assigned volume, which is the main idea presented in this section.

3.2.2 Uses of Equal-Volume Quantization in Mobile Networks

Mobile network PM data often contains a wide variety of information acquired from dif-
ferent parts and layers of the network. With time-wise aggregation, PM data is usually

3.2. DENSITY-INVARIANT QUANTIZATION WITH BOUNDING VOLUMES 55

made up of vectors of KPIs for each granularity period, with each KPI representing the
performance of one characteristic of the network. These KPIs, often collected in hundreds
for each granularity period, can be viewed as features or dimensions, with the PM vec-
tors selecting single points in a multi-dimensional space. Even after utilizing dimension
reduction techniques such as PCA on this data, the user is probably left with more than
a handful of dimensions. Traditional tools, such as bar charts or 2D/3D scatter plots, can
not efficiently visualize this information, and obfuscate underlying structure in the data.
Quantization algorithms are often used in these cases for simplification (such as in [47, 48]),
with the resulting quanta viewed as usual types of observations. The quanta then can be
visualized effectively with bar charts, radar charts or heatmaps, by representing the whole
area covered by a quantum with its centroid. An example of this can be seen in Fig. 3.5,
where 6 KPIs from mobile network PM data were quantized with a SOM consisting of 12
units.

SOM

KPI2

K
P

I 1

K
PI3K

PI
4

KPI5

Dense
quantum

Sparse
quantum

Observations from
opposite sides of
the quantum

Figure 3.5: Cylindrical, hexagonal-grid SOM fitted on PM data, the best-matching units
(quantum centroids) plotted as radar charts.

A reasonable human expectation is that the plotted quanta are equal in some sense, which
in the above example is neither true for span (volume), nor for number of points assigned.
Figure 3.5 highlights observations on opposite ends of both a densely and a sparsely pop-
ulated quantum, to illustrate the different spans covered by these. The difference is not
intuitive, and could be overlooked by less experienced users. It is also worth noting that
a lot of the quanta are close together (for example the middle row in Fig. 3.5), and in the
case of this dataset, close to lower values. An example of this behavior can also be seen in
Fig. 3.6 in the next section. Processing such data with traditional quantization techniques
can create “bland” quanta that concentrate on these less interesting but densely populated
areas, hiding a lot of the variety in the data. Equal-volume quantization could be of use
here to create quanta with roughly even spans, which lends to easier understanding, and
does not concentrate on densely populated areas.

Another use case where equal-volume quantization could be useful are tasks focused on
processing anomalous observations, such as in [49]. In mobile network management –
especially in SON – anomaly detection and diagnosis is a major research area, part of

56 3. Quantization for Network State Modeling

a larger-scale automation scheme called self-sealing. As self-healing requires human-like
reasoning, machine learning is applied here to make autonomous functions smarter. In
anomaly diagnosis use cases, the emphasis is on separating and categorizing anomalous
observations, which are by definition rare occurrences. This means that anomalous obser-
vations usually inhibit sparsely populated areas in the input space. Applying conventional
quantization techniques in these cases can remove too much information from anomalous
observations, making separation or categorization of anomalies impossible.

Cell throughput DL

C
el

l t
hp

. U
L

Density

D
en

si
ty

Anomalous points
in the same quantum

Figure 3.6: 2 dimensions of PM data quantized with the k -Means algorithm, showing
obfuscated anomalous points.

Figure 3.6 shows an example of this problem on 2 KPIs taken from mobile network PM
data. The marginal densities show that most of the observations lie close to the origin
(0 in all dimensions). Observations that lie further away from the origin are assigned to
wider-spanning quanta, which makes it hard to differentiate between them, even if there
are large actual distances between the points. Equal-volume quantization would process
both sparse and dense areas with the same maximum error, thereby not allowing such
great distances to be covered by a single quantum.

3.2.3 Expectation-Maximization and k -Means

The key idea presented here is a quantization technique that tries to realize equal-volume
quanta, thereby minimizing the maximum quantization error. Since volume is measured
by fitting a bounding shape around the points assigned to a quantum, the minimization of
the maximum quantization error heavily depends on the type of the fitted bounding shape.
This work discusses quantization algorithms that utilize two types of bounding shapes: the
sphere in case of Bounding Sphere Quantization (BSQ), and the axis-aligned box in case of
Bounding Box Quantization (BBQ). Both algorithms are similar in algorithmic structure
to Lloyd’s k -Means algorithm.

The global (across all quanta) optimization target of k -Means is to partition a point set into
k quanta, so that the overall sum of all quantization errors is minimized. This also means
that locally (in each quantum) centroids need to be in a position where the sum of distances
between the centroid and all assigned observations is minimized. The global optimization
problem is NP-hard for all but the simplest of cases [50], and as such exhaustive search
makes little sense in real-life applications. The k -Means algorithm solves this problem with
the EM algorithmic structure [51], realizing an iterative optimization, where the following
two steps are alternated:

1. Expectation (assignment): In this step all observations are assigned to one of the
quanta, by choosing the closest lying quantum centroid, also called 1-Nearest Neigh-
bor (1-NN) classification. The distance is measured with the Euclidean distance.

3.2. DENSITY-INVARIANT QUANTIZATION WITH BOUNDING VOLUMES 57

2. Maximization (update): In this step the quantum centroids are moved to new lo-
cations, to better model the assigned points in step 1. In k -Means, the centroids
are moved to the mean of the assigned points, which ensures the smallest sum of
quantization errors for that quantum, and takes care of the local optimization target.

EM realizes an iterative optimization, which by its nature can only find local optimum
solutions, and may continue for many iterations before converging. However, in prac-
tice k -Means shows the following qualities that make it one of the most widely applied
quantization algorithms:

� The runtime of the algorithm is usually short even for large number of points, quanta
or dimensions.

� It uses the Euclidean distance which is intuitive and easy to visualize.

� The solutions are close to optimal in most cases.

The short perceived runtime is a result of the relatively simple computations required
by the algorithm, which, combined with the Euclidean distance, also makes it easy to
understand. Although the EM structure realizes greedy optimization, it generally gives
good overall results with a fast convergence [52]. In order to retain these qualities, BSQ
and BBQ keeps the main aspects and the overall structure of k -Means.

3.2.4 Bounding Sphere Quantization

The optimization target of BSQ is to have minimal maximum quantization error both
within each quantum (local optimization target), and overall in the quantization (global
optimization target). The local target means for each quantum to have the farthest lying
points equidistant from the quantum center, i.e. on a surface of a hypersphere whose
center is the quantum centroid. There is exactly one such hypersphere with the smallest
achievable radius for any set of points, which is called the minimal bounding sphere (or
smallest enclosing ball) [53].

BSQ differs from k -Means in the maximization step, where instead of relocating the quan-
tum centroid to the mean of the assigned points, a minimal bounding sphere is fitted to
the points, and the quantum centroid is moved to the center of the sphere. An example
of this is shown in Fig. 3.7.

1stiteration

2nditeration

Figure 3.7: The maximization step of the BSQ algorithm.

The global optimization target is reached through the interplay between the 1-NN classi-
fication in the expectation step, and the centering of the quantum centroids in the maxi-
mization step. 1-NN assigns points to the closest centroid, which places the dividing line

58 3. Quantization for Network State Modeling

for assignment exactly halfway between centroids. By moving the quantum centroid to the
center of the partition, the distance between neighboring quantum centroids tends to even
out, producing quanta with equal radii. This tendency can also be observed in Fig. 3.7.
Since radius is the only parameter that defines the volume of a sphere, this also translates
to producing equal-volume quanta.

We would like to emphasize the importance of data preprocessing – in particular the nor-
malization/standardization of dimensions – as is usual for most machine learning methods.
BSQ considers each dimension on the same scale; dimensions that cover a greater span
will contribute more to the quantization. For BSQ to consider all dimensions with the
same importance, dimensions need to be transformed to the same scale, or alternatively,
importance can be set by the specific scaling of the dimensions.

Stemming from the local nature of the EM optimization, it is very important to initialize
the algorithms correctly to be able to find solutions close to the global optimum and not
get stuck in local optima. For the k -Means algorithm, initialization is a well-researched
subject with plenty of different approaches [54]. The simplest way of initializing k -Means
is to randomly pick k points from the point set as starting centroids. This makes sense for
k -Means as the the end goal is to have more quanta in denser areas. By randomly picking,
it is more likely to pick from densely populated parts of the input space, thereby already
approximating a good end result.

In BSQ’s case this is somewhat counter-productive, as random sampling produces starting
quanta with uneven volumes. Picking actual points from the data as starting centroids does
have a big benefit however: all quanta have at least one point assigned at all times. Since
quanta naturally “stick” to points throughout the iterations, this means that a quantum
can never lose all its assigned points, and the outcome of the quantization will always
contain the preset k number of quanta. If not actual points are picked, a misaligned
initialization can produce a starting set where one or more of the quanta get “pushed out”
of the populated areas of the input space, and lose all assigned points. A good candidate for
BSQ’s initialization is the greedy Farthest-First Traversal algorithm, that will be explained
in more detail in Section 3.2.6.

BSQ has a clear stopping criterion; convergence is achieved when the assignment of points
does not change for two consecutive iterations. As mentioned previously, k -Means solves an
NP-hard problem with the EM algorithmic structure. Although the usual runtime is short,
k -Means has a superpolynomial upper bound to the number of possible iterations in the
worst case [55]. The same applies to BSQ, but in this case complexity is further worsened
by the maximization step; a minimal bounding sphere has to be fit on each quanta in each
iteration separately. The algorithm of our choice for fitting the spheres is Fischer’s exact
solver [56], which is capable of finding the exact minimal bounding sphere of a large set of
points in a basically arbitrary number of dimensions. Furthermore, Fischer’s algorithm is
also capable of fitting both spheres and points [57] (points are in this sense spheres with
0 radius), an important property in the context of diagnosis knowledge sharing. However,
along with these good properties comes one drawback: Fischer’s algorithm also realizes
an iterative search, and unfortunately has no polynomial upper bound for the number of
possible iteration steps. The two nested searches can in theory produce very long runtimes.

As with all algorithms, runtime governs the usefulness of BSQ, and can severely limit the
possible use cases it can be applied to, so it is in our best interest to speed it up as much
as possible. The three main parameters that set the overall complexity of the task are
the number of points (n), the number of dimensions (d) and the number of quanta (q).
The n and d parameters represent the size of the input dataset, and in our experience can
reach large values depending on the data source. The q parameter represents the desired
output, the simplified dataset, and so is not governed by the size of the input data, but

3.2. DENSITY-INVARIANT QUANTIZATION WITH BOUNDING VOLUMES 59

rather by the use case itself. In the evaluated cases in this work, the number of quanta
never exceeded more than a few hundred, thus our implementation BSQ usually spent the
majority (more than 60%) of time in the maximization step. Taking this into account,
and in order not to break the EM structure and the resemblance to k -Means, the primary
place where BSQ could be sped up is at the fitting of minimal bounding spheres.

There are many alternatives to Fischer’s algorithm to fit minimal bounding spheres, of
which a nice summary can be found in [58]. In the following is list of algorithms that were
considered, and the reason they were ultimately discarded as a replacement:

� Solvers based on linear programming and designed for computational geometry in
3D, such as Megiddo’s [59] or Welzl’s [60] algorithm, become inefficient already for
moderately high dimensions, such as d > 30 [56].

� Gärtner and Schönherr’s [61] solver based on quadratic programming is polynomial
in d, but requires arbitrary-precision algebra that limits its use to d < 300 [56],
which, although a relatively high number, would possibly exclude BSQ from some
of the use cases we considered.

� Zhou’s algorithm [62] is designed for very large values of d, with the assumption
that there are generally fewer points than dimensions, which is not applicable for
our purposes.

� Kumar’s approximating algorithm [63] based on core-sets is outperformed by Fis-
cher’s algorithm with the latter also providing exact solutions [56]. Furthermore,
there exists a random sampling in the implementation of the algorithm which could
also interfere with the stopping criterion, as it would make it hard to determine
whether a change in assignment was made because of legitimate move of the cen-
troids, or because of the dynamic error of this algorithm.

Relaxing the criteria of exact bounding sphere computation and allowing some error in
the maximization step opens up more possible ways forward. Ritter’s algorithm [64], a
popular approximation used for computational geometry, usually fits bounding spheres
5 − 20% larger than the smallest possible. Different from Kumar’s approximation, here
the error is static, so the outcome of subsequent runs on the same set of points does not
change. The algorithm is very fast, but still realizes a few iterations of search. Because its
complexity scales linearly with both d and n, it would be a good choice for speeding up
BSQ, even with the considerable approximation error.

Another possibility is to use a simpler shape as bounding volume. The simplest bounding
shape to compute is the axis-aligned bounding box, which is the topic of the next section.

3.2.5 Bounding Box Quantization

BBQ approximates the results of BSQ by fitting axis-aligned bounding boxes on quanta
instead of spheres. This can be done in a single pass on the whole dataset, by finding the
maximum and minimum values of each dimension for each quanta. The quantum centroids
are then moved to the center points of the bounding boxes in the maximization step. As
such, the computational complexity of the maximization step is linearly dependent on both
n and d, bringing the overall computational complexity of BBQ back in line with that of
k -Means.

Bounding boxes are theoretically bad approximations of bounding spheres. This is not
apparent at first glance, as the Euclidean distance between the center points of the minimal
bounding sphere and the minimal bounding box – from now on referred to as approximation

60 3. Quantization for Network State Modeling

error – fitted on the same group of points is comparatively low in 2 and 3 dimensions,
even in the worst cases. However, this theoretical threshold can be increased beyond any
limit by adding enough dimensions, even if the error is measured relative to the bounding
sphere radius (R). Constructing point sets that create the largest approximation error
(worst-sets) is possible for any d following the logic in Fig. 3.8. It is interesting to note
that in 5 dimensions or more, the center of the bounding box can actually be outside of
the bounding sphere. The equation for the theoretical maximum approximation error is
as follows:

|eapproxmax
| =

√
1

4
(d− 1)R. (3.2)

d = 2d = 1 d = 3

Center of
sphere and

box

eapprox

eapprox

These
points
define the
sphere in
any
dimensions

Add a new
point on the
sphere and
in the new
dimension

Figure 3.8: Construction of worst-sets for maximum approximation error.

Fortunately, in practice, bounding boxes are not as bad approximators as the theoreti-
cal limits show. While the maximum possible error increases in higher dimensions, the
probability of a worst (or close to worst) set occurring decreases rapidly. This makes the
expected approximation error in practice much smaller than the theoretical maximum.
Measurements run for a single group of points for a wide range of n and d can be seen in
Fig. 3.9. For each combination of n and d, 10000 random set of points were generated using
a normal distribution with 0 mean and a variance of 1, independently for each dimension.
After this, both a minimal bounding sphere and a minimal bounding box were fitted on
each set, and the distance of the centroids measured. The experiment was also undertaken
for data with a uniform distribution, but do not show these here as they produced almost
identical results.

n = 100

2 4 16 256 1024

n = 1000

2 4 16 256 1024

0.25

0

0.5

0.75 n = 10

min

max

m
ea

n

2 4 16 256 10242 4 16 256 1024

Number of dimensions (d)

A
pp

ro
xi

m
at

io
n

er
ro

r
[R

]

Figure 3.9: Distribution of approximation error (measured in the fitted minimal bounding
sphere radius, R, fitted on n randomly sampled points from a Gaussian).

The decreased probability of worst-sets occurring seemed to counteract the larger possible
error, so that the average approximation error never exceeded 0.33R, and the maximum
0.55R in any of the generated sets. Increasing either d or n always seemed to lower the
expected error, so that high d but low n values (sparse sets) also did not produce larger
approximation errors. Interestingly, by increasing d, the minimum error also increased,

3.2. DENSITY-INVARIANT QUANTIZATION WITH BOUNDING VOLUMES 61

creating very narrow windows for expected error in high d. Based on this, boxes appear
to be are good approximators for bounding spheres if the data behaves nicely, i.e., has a
continuous distribution that does not generate groups resembling worst sets. Such badly
behaving data could be where all dimensions can only take a few fixed values, such as
integer-rounded KPIs in small ranges (only a few tens).

Minimal bounding boxes actually minimize the maximum dimension-wise distance between
the points in the quantum and the centroid, essentially realizing the same functioning as
minimal bounding spheres, but with the L∞ distance metric. This view explains why
running BBQ with the original 1-NN assignment step utilizing the Euclidean distance
causes the algorithm to not converge in higher dimensions. By using two different distance
metrics, the assignment and update steps do not optimize for the same target, and move
the quantization in different directions. This dissonance can be alleviated by changing the
distance metric to the L∞ in the 1-NN classification. In this case, points are assigned to
the quantum centroid from which the largest dimension-wise distance is minimal. This
modification essentially makes BBQ the equivalent of BSQ in a space where distance is
measured with the L∞ metric. An example outcome of BSQ and BBQ starting from the
same positions on 2-dimensional artificial data can be seen in Fig. 3.10.

(a) BSQ (b) BBQ

Figure 3.10: The result of BSQ and BBQ on 2 dimensions of artificial data.

Much like the approximation error, the difference between the L2 and L∞ distance for
two points can be arbitrarily large given enough dimensions. Since the goal was to use
BBQ as a fast approximation of BSQ, especially in higher dimensions, this difference could
pose a problem to the usefulness of the algorithm. Table 3.1 shows the results of running
both BSQ and BBQ on the same datasets. The data points were generated the same
way as for Fig. 3.8, creating d dimensional normal distributions with n number of points.
The algorithms were run multiple times for each parameter set, with the training points
regenerated, and both algorithms starting from the same initial positions, with a target
of k = 10 quanta. The results show well-contained approximation errors that are in-line
with the measurements in Fig. 3.9, and small differences in maximum quantization errors.
BBQ was considerably faster than BSQ in most cases, especially for higher d and n. As
expected, BBQ’s runtime scales roughly linearly with both d and n, while the fitting
of minimal bounding spheres in BSQ makes the runtime scale superlinearly with both
parameters. Based on this, BBQ seems to be a good alternative to BBQ in cases where
runtime is critical, or where there is limited computational power available.

62 3. Quantization for Network State Modeling

Runtime [seconds] Iterations Max. quant. err. Appr. err. [R]
d n BSQ BBQ BSQ BBQ BSQ BBQ Avg. Max.

16 103 0.07 0.08 8.9 9.4 4.978 6.142 0.4792 0.6256
16 104 0.23 0.16 10.0 11.2 5.594 7.157 0.4056 0.5504
16 105 2.36 1.26 11.0 13.2 6.031 7.902 0.3874 0.5020
256 103 0.84 0.15 10.5 9.2 17.036 19.005 0.4342 0.5798
256 104 9.24 1.65 12.9 14.3 17.629 20.079 0.4031 0.4357
256 105 131.58 17.36 12.4 16.2 18.111 21.262 0.4482 0.4832
1024 103 9.97 0.34 8.6 7.1 32.814 35.402 0.3889 0.5479
1024 104 125.62 5.76 17.9 13.6 33.476 36.551 0.3515 0.3744
1024 105 1252.80 75.86 16.5 17.9 34.033 38.012 0.3976 0.4146

Table 3.1: BSQ and BBQ statistics.

In this work, for k -Means, BSQ and the BBQ algorithms, we used our own implementations
based on the R1 programming language. For the 1-NN classification in the expectation
step, we used the nn2() function implemented in the RANN 2 package. Fischer’s algorithm
for fitting minimal bounding spheres in BSQ’s maximization step was implemented in the
excellent miniball3 library.

3.2.6 Similar Problems and Algorithms

The problem addressed in this work is the k-center or minimax facility location problem,
where to goal is to place k centroids onto a group of points, in a way that achieves the
lowest maximum distance to the points closest to them. This problem is of course not
limited to mobile networks, in fact it has been researched quite extensively since its first
formulation for 2 dimensions more than a century ago [65]. On one hand, there exist a few
algorithms that solve the same problem, although not in the same way as our algorithm.
On the other hand, there also exist algorithms that work very similarly to BSQ and BBQ,
and solve similar, but not identical problems. This section assesses such algorithms and
problems, in an attempt to clear possible confusion stemming from these similarities.

Given n observations, the k -Means algorithm aims to find k quantum centroids, for which
the sum of quantization error for all observations is minimal. Two related problems to this
are the k -Medoids and k -Medians formulations. Compared to k -Means, k -Medoids chooses
actual points from the data as quantum centroids. The most well known and widely used
realization of k -Medoids is the Partitioning Around Medoids (PAM) algorithm [66]. It
can utilize arbitrary distance/dissimilarity metrics, originally designed to be used with L1

metric.

The k -Medians formulation is a variation of k -Means, where the quantum centroids are
calculated as the median of the dimensions instead of the mean. Medians are generally
regarded as more statistically stable than means, which is why the k -Medians algorithm
is often recommended as an alternative to k -Means. Medians cause the algorithm to find
quanta that are the most compact, since they minimize the sum of distances instead of the
sum of squared distances, essentially using the L1 distance instead of L2. The k -Medoids
and k -Medians formulations realize close to the same behavior as k -Means, thus, they are
not a solution for the k-center problem, and not a replacement for BSQ or BBQ.

A simple and widely used algorithm to approximate the k -center problem is the Farthest-
First Traversal algorithm [65]. It works by always appending to a centroid set the farthest

1https://www.r-project.org/
2https://cran.r-project.org/web/packages/RANN
3https://github.com/hbf/miniball

3.2. DENSITY-INVARIANT QUANTIZATION WITH BOUNDING VOLUMES 63

point from the centroid set, until k quantum centroids are found. Although it is an approx-
imating algorithm, it has polynomial runtime, and the approximation error can be quite
large, at worst finding quanta with twice the minimal achievable radius. The algorithm
is much greedier compared to BSQ/BBQ, creating quantizations that do not follow the
shape or structure of the data well, however, it could be utilized as a preprocessing step
to create the initial quantum set for our algorithms.

A current approach to the k -center problem is to use core-sets to extract a small set of
points from the whole set, with which to approximate a good solution [67]. This approach
is based on the same idea as [63]. The authors present a (1+ ε)-approximation algorithm,
with a running time that has a linear dependency on the number of points, but exponential
dependency on both 1/ϵ (i.e. the accuracy of the method) and the number of centers. This
algorithm lacks the advantages of the EM framework, but has the added benefit that it has
been extended to deal with noise points, to which the k -center problem is very sensitive.

3.2.7 Experimental Results

Equal-volume quantization is designed on a compromise, where lower maximum error is
traded for a higher overall quantization error. Except for edge-cases such as fully uni-
form distributions, BSQ and BBQ will usually produce a sub-optimal quantization when
measured with one of the previously mentioned (Sec. 3.2.1) algorithms’ optimization mea-
sures, and vice versa. An example of this can be seen in Fig. 3.11, which shows results for
both k -Means and BSQ run on the same dataset. BSQ successfully created quanta with
lower maximum quantization error, whereas k -Means excelled in reaching its own global
target, creating a quantization with lower overall error. The charts showing the respective
optimization targets are framed for both algorithms. As the average quantization error
is always lower for k -Means than for BSQ, this also entails that the sum of errors is also
lower.

Cell throughput DL

C
el

l t
hr

ou
gh

pu
t U

L

Quanta

N
um

. o
f

po
in

ts

Quanta

M
ax

. q
ua

nt
. e

rr
or

Quanta

A
vg

. q
ua

nt
. e

rr
or

(a) k -Means

Quanta

N
um

. o
f

po
in

ts

Quanta

M
ax

. q
ua

nt
. e

rr
or

Quanta

A
vg

. q
ua

nt
. e

rr
or

Cell throughput DL

C
el

l t
hr

ou
gh

pu
t U

L

(b) BSQ

Figure 3.11: Comparison of k -Means and BSQ on 2 dimensions of PM data.

We do not claim bounding volume quantization to be generally better compared to these
algorithms, only in specific use cases, such as visualization for data exploration. This use
case was chosen to be shown here, because it is generic and can be illustrated well. In
the following test, BSQ and k -Means was run on the same dataset consisting of 17 KPIs,
containing roughly 3 months of measurements from more than 2000 cells from a real mobile
network The dataset was made up of4 KPIs groups:

� Demand: Number of users, connection attempts/releases

64 3. Quantization for Network State Modeling

� Data: Data volume, layer throughput, round-trip-times

� Radio: RSRP/Q, CQI, PRB utilization

� Voice: Voice data volume, number of QCI 1 users

(a) k -Means (b) BSQ

Figure 3.12: Comparison of k -Means and BSQ on high-dimensional PM data

Figure 3.12 shows the results of fitting 9 quanta with both algorithms on the dataset, with
the quantum centroids plotted as radar charts. The minimum and maximum values for
each KPI are plotted as a paler band, while the maximum quantization error is represented
by the semi-circle on the inside. The numbers in the middle of the charts show the
amount of measurements assigned to each quanta. As argued before, k -Means by nature
produces quanta that have largely varying assigned volumes, which is unintuitive for data
exploration purposes. BSQ creates much more evenly-sized (and indeed smaller in volume)
quanta which lend better to human expectations.

The k -Means algorithm also produces very generic, “uninteresting” quanta, which do not
properly explore the state space. In the example in Fig. 3.12, k -Means hides a lot of
variety by focusing on the very dense parts of the input space, which do not hold that
much diversity. An example can be seen on quanta 4, 5, 7 and 8: the per KPI quantum
center values are very close in each quanta, for the human eye there is not much difference
between them.

3.2.8 Conclusion and Critique

In the conclusion of the original paper for this work, it is noted that BSQ lacks in one
aspect compared to k -Means; BSQ is prone to disregard class boundaries (groups present
in the dataset), even if they are well separable, on account of its distribution-free nature.
k -Means, on the other hand, finds separated clusters more reliably. It became clear that
this aspect is very important in quantization algorithms, even if the goal is not necessarily
the correct identification of groups in the data. Ultimately, this led us down on a path
which culminated in clustering algorithm researching, as discussed later (Part II).

SOMs are often used for visualization because of their inherent ability to map any higher
dimensional space to 2D, stemming from the 2D structure of nodes that retains neigh-
bor relations throughout the algorithms iterations. However, the distances between the
nodes can vary arbitrarily, so these neighbor relations might actually mislead the user in-
stead of helping in understanding. A possible future research direction could have been to

3.3. NEURAL-NET-BASED QUANTIZATION 65

implement similar neighbor recognition functionality as a post-processing step after quan-
tization. An early prototype of this can be seen in Fig. 3.13, where quantum centroids
connected by a black line are identified as neighbors. BSQ would have improved upon
SOMs by keeping the distances between nodes similar, thus being producing a intuitive
mapping. Ultimately, our research moved in the direction of DL, where encoding nets
project the data into a low-dimensional space as a preprocessing step for quantization
algorithms. At the time, our belief was that for visualization, the preprocessing can be
effectively used to project the data directly into 2D, alleviating the projection problem
that SOM attempts to solve.

Figure 3.13: Early prototype of a BSQ quantization post-processed to form a neighbor-
relation graph.

BSQ and BBQ can be categorized as more traditional, statistical ML algorithms, far from
the complex DL algorithms that will be introduced later in this thesis. Nevertheless, these
simple, lightweight algorithms are often used in combination with DL, where DL is used
to simplify and project the data into an encoding space, which is then easily processed by
these statistical algorithms, especially k -Means. Unfortunately, there is a certain aspect
of BSQ which does not synergize well with such hybrid DL and statistical ML setups;
stemming from its double optimization loops, BSQ is quite computationally taxing to
train. Often, these setups require the simple ML algorithm to be run quite frequently,
sometimes even multiple times for a single iteration of the DL training (epoch). For BSQ
to be usable in such a setting, it has to be lightweight, with good scaling for both number
of input points and number of quanta. While we tried to address this issue in this work by
proposing the simplified BBQ alternative, we did not find it sufficiently accurate in later
trials. However, we were able to achieve a significant speedup by implementing BSQ with
massive parallelization in mind, the topic of the next section.

3.3 Neural-Net-Based Quantization

3.3.1 Algorithms Designed for Massive Parallelization

Algorithms developed before the deep learning boom were almost explicitly implemented to
be run on Central Processing Units (CPUs), considering only a handful of execution threads
(4-8), and presuming that the operative memory, however quick, was still somewhat slow to
access compared to compute operations. This motivated researchers to apply preprocessing
techniques, such as speeding up searches in data structures (an example of which are k-
dimensional-trees for nearest neighbor search [68]). However, these preprocessing stages

66 3. Quantization for Network State Modeling

often break parallelization. One approach is to duplicate the preprocessed structures for
each thread of execution, which can lead to large memory utilization and a large overhead
at the start of the algorithm. The other approach is to share the preprocessed structures
between threads, which often breaks concurrency, as the threads have to wait on each
other. At the time these issues were not in the spotlight, because hardware was generally
not capable of significant parallelization.

The introduction of dedicated massively parallel hardware accelerators – GPUs – and Ap-
plication Programming Interfaces (APIs) allowing the use of these accelerators for generic
computation – General-Purpose Computing on Graphics Processing Units (GPGPU) –
changed this paradigm. GPUs have thousands of computational cores and can effectively
realize hundreds of parallel threads of execution, as well as having a relatively large amount
of memory which is quick to access (much faster than operative memory). All of these
features are there to facilitate massive parallelism: the calculation of thousands of si-
multaneous simple mathematical operations on data structures which are shared between
execution threads, thus not needing a large amount of memory space. GPUs are designed
for tensor (n-dimensional matrix) operations, such as calculating projections for raster-
ization. These operations mostly fall under linear algebraic or element-wise operations,
such as addition or multiplication, min/max searches or simply indexing. If an algorithm
is defined using only these simple operations, deep learning frameworks can automate the
parallelization and data transfer in order to fully utilize a GPU’s processing power. Often,
running an algorithmically unoptimized algorithm in such a massively parallel environment
can still result in a speedup compared to optimized, but only somewhat parallel execution
on CPUs.

Neural nets inherently use such simple algebraic operations, thus making them a perfect
fit for GPU-based hardware acceleration. However, other types of algorithms can also take
advantage of this acceleration, if they can be broken down into these simple operations.
This section describes such an implementation of k -Means and BSQ using GPU-accelerated
operations, organized into two main components, which act as layers in a neural net.

3.3.2 Implementation Overview

The biggest change in moving the k -Means and BSQ algorithms to a neural-net-based
logic is the switch from the EM optimization framework to stochastic gradient descent.
For SGD to work, the distance calculations need to produce a single loss value, that is
to be backpropagated to update the quantum centroids. Selecting which of the distances
between quantum centroids and training points contribute to the loss value differentiates
between k -Means and BSQ. Both the distance calculation and the distance selection can be
realized as neural net layers. Additionally, the stochastic nature of batching breaks BSQ,
so a cross-batch accumulation is required. This accumulation, however, can also benefit
k -Means. An overview of the whole process can be seen in Fig. 3.14, whose individual
steps are discussed in the following sections.

3.3.3 Distance Calculation Layer

The core of k -Means-like quantization is a calculation of distance, measured between train-
ing points and quantum centroids. For this work, we consider p-norms only, as these cover
the most commonly used distances, such as the L2 (Euclidean distance, or 2-norm), upon
which both k -Means and BSQ is built. PyTorch and TensorFlow includes ready imple-
mentations of calculating p-norms of vectors organized into tensors (multi-dimensional ma-
trices), but complete functions to calculate set-to-set distances between two set of points
were missing from both libraries at the time. To overcome this, broadcasting, a technique
that is available in both libraries can be used, which enables the calculation of all set-to-set
distances without the need to manually duplicate data in memory.

3.3. NEURAL-NET-BASED QUANTIZATION 67

Distance

calculation

Distance

selection

Q

Cross-batch

accumulation

DB

Layer 1 Layer 2
Tensor

Dm

T

Σ

𝑙Trainable tensor
Loss

M

Input

Figure 3.14: Overview of the processing steps for k -Means and BSQ implemented as a
neural-net.

Let B (batch) be a tensor of shape (n rows, d columns) containing training points, where
n is the size of the current batch, and d is the number of dimensions. Let Q be a tensor of
shape (k, d) containing k quantum centroids. In this case, B can be recast to shape (n, d, 1)
resulting in tensor B′, and QT (the transpose of Q) can be recast to shape (1, d, k) resulting
in tensor QT ′

without any memory copies created. The tensor dimensions of size 1 can then
be reused (broadcasted) without copy in the element-wise subtraction B′−QT ′

= D′. The
resulting tensor D′ with shape (n, d, k) contains all pairwise difference vectors between B
and Q. Finally, the pairwise distances between B and Q can be calculated by computing
the p-norm of D′ in the direction of the middle tensor dimension of size (d), reducing D′

into D with shape (n, k). The operation can be seen in Fig. 3.15.

d

n Q
(quanta)

d

k

k

d

B’B’B’B’

d

n

d

1

QT’

D’

d

n

T()

n

1

D
p-norm

reshapereshape

subtract =

B
(batch) QT

Figure 3.15: Distance calculation steps.

3.3.4 Distance Selection Layer

For both algorithms, only the distances to the closest quantum centroid should contribute
to the final loss value. This translates into the need of selecting the smallest distance for
each training point, which is a row-wise minimum search in tensorD. However, cross-batch
accumulation needs to retain information about which distance belongs to which quantum,
so instead of selecting the smallest values, it is better to mask all other unimportant
distance values by multiplying them with 0. To do this, the masking tensor M of shape
(n, k) is created, which contains 1-s at places where D contains row-wise minima, and 0-s
everywhere else. Element-wise multiplying D ∗M = Dm results in the masked distance
tensor Dm with shape (n, k). The operation can be seen in Fig. 3.16.

3.3.5 Cross-Batch Accumulation

To be clear, the step of cross-batch accumulation is not necessary for k -Means. Because a
large-enough random sample from a set of points retains the distribution of the original set
with a high confidence, the stochastic samples contained within the batches likely have the
same mean as the whole set of training points (weak law of large numbers [69]). Because of

68 3. Quantization for Network State Modeling

k

n 3.5 1.7 2.0
0.3 1.0 3.1
1.2 2.5 4.0
2.8 2.1 0.1

D (distances)

k

n 0 1.0 0
1.0 0 0
1.0 0 0
0 0 1.0

M (mask)

k

n 0 1.7 0
0.3 0 0
1.2 0 0
0 0 0.1

Dm

multiply =

Figure 3.16: Distance selection through masking.

this, for k -Means it is enough to calculate the mean of the Dm tensor and backpropagate
this value as the final loss in every iteration. However, this is not true for BSQ. Finding
the farthest point in each batch for each quanta, and trying to minimize those distances
will not result in a similar behavior as finding the farthest points in the whole training
set. To overcome this, the optimization targets are accumulated across batches, and the
quantum centroids are only updated after a certain number of batches were processed.
The number of batches to be processed before each update is the user-set parameter r. In
case of r = nbatches, there is no accumulation (updates happen at every batch), whereas
for r = 1, updates only happen after all batches were accumulated (once every epoch).
Early in the quantization training, the rough estimate gained by true SGD (large r value)
is good enough for both algorithms, as the quantum fits are anyway not optimized yet. By
the end of the training, where precise fitting is needed, r = 1, so that updates happen on
fully accumulated results, basically turning the optimization into (non-stochastic, regular)
Gradient Descent.

To realize accumulation, when not updating, a target tensor T (target) of shape (k, d), and
a corresponding weight tensor W of shape (k) is maintained. During the update, tensor
T is forward propagated as input through the layers, and the resulting masked distance
tensor Dm is summed to create a final loss value l. This l is then backpropagated through
the distance selection and masking layers to update the quantum centroids.

For k -Means, T holds the running average of assigned training points for each quanta
since the last update, while W holds the number of training points that contributed to
the running average. When forward propagating, in order to find which training points
are assigned to which quanta, the mask M from the distance selection layer can be used.
For each column (quanta) in M , the position where a rows contains the value 1, the value
from the corresponding position in B is used to calculate a batch and quantum-wide mean
T ′ (k, d). The number of points that make up each mean can be computed by summing
each column in M , and is stored in a temporary tensor W ′ (k). Each row in tensor T is
then updated according to:

T [i] =
W [i] ∗ T [i] +W ′[i] ∗ T ′[i]

W [i] +W ′[i]
, (3.3)

where [i] refers to the corresponding subset along the first tensor dimension, i.e. row or
single value. W is updated according to W = W +W ′.

For BSQ, T holds the so far found farthest training point for each quanta, where asW holds
the distance of said point to the corresponding quantum, while T ′ and W ′ are equivalent
tensors for the current batch. Both can be generated by selecting the row from B where
(for each column) the value in Dm was the largest; the rows from B make up T ′, while
the largest values from Dm make up W ′. Now, the row T [i] is overwritten with T ′[i], if
W ′[i] > W [i]. Similarly, W [i] is also overwritten with W ′[i] in this case. The process of
accumulation for both k -Means and BSQ can be seen in Fig. 3.17. The values of tensor W
are set to 0 after each update for both algorithms, to restart the accumulation of targets
in T .

3.3. NEURAL-NET-BASED QUANTIZATION 69

d

k

T
0.2
0.8

0.3
1.1

0.7
0.5

16
24

W

k

T’

0.3
0.8

1.5
0.5

0.5
0.3

4
8
W’

1

k

T

.22
.8

.54

.95
.66
.45

20
32

W

accumulate

(a) k -Means

d

k

T
0.2
0.8

0.3
1.1

0.7
0.5

.55

.94

W

k

T’

0.3
0.8

1.5
0.5

0.5
0.3

.78

.83
W’

1

k

T

0.3
0.8

1.5
1.1

0.5
0.5

.78

.94

W

accumulate

(b) BSQ

Figure 3.17: k -Means and BSQ accumulation examples.

Both the accumulation and the use of SGD are critical components for the correct func-
tioning of BSQ. Accumulation makes it possible to find the true training-set-wide farthest
points, while SGD replaces the fitting of minimal bounding spheres present in the original
BSQ. As an illustration of how this works; when quantum centroids end up in the middle
between two farthest points, SGD moves the quantum centroid towards one of the farthest
points in one iteration, and towards the other in the next, approximating the move towards
the center of the minimal bounding sphere. Usually, by the end of the training, the learning
rate is low, so the noise caused by this jitter is barely noticeable in the quantization.

3.3.6 Related Work and Evaluation

Large amount of research has been done with the aim of speeding up the original k -Means
algorithm. Among many ideas, the two most frequently utilized are the use of indexing
schemes (such as kd-trees) to speed up search for the closest quanta [70], and the use
of the triangle inequality to avoid the calculation of distances whenever possible [71, 72].
Although algorithmically faster, these ideas are complicated to realize in the massively
parallel processing environment of a GPU. A GPU can potentially run parallel thread
executions numbering in the ten thousands, for which the duplication of indexing structures
(such as kd-trees) would be infeasible. The use of triangle inequality is not as simple to
dismiss, and there have been successful implementations of this scheme that utilize a GPU
[73]. However, the logic is very complex, and the speedup is heavily dependent on data
ordering/structure.

BSQ is not a well-known algorithm, and as such, has not seen research regarding speedup
yet. However, the core of the originally proposed BSQ, the fitting of the minimal bounding
sphere is a well-researched subject. Fischer’s algorithm [56] is the so far found quickest
method, but due to many aspects, it is hard to implement it to run on a GPU.

Our k -Means and BSQ implementation was written in the Python language, utilizing
the PyTorch library for GPU acceleration. For reference, we chose a readily available
k -Means implementation that fits into this software environment from the SciPy4 library
(scipy.cluster.vq.kmeans2), which utilizes multi-threaded CPU execution, but no GPU
acceleration. The evaluation was run on a system with an AMD Ryzen Threadripper
1920X 12-core CPU with 64 GB of memory, and an Nvidia GeForce 1080 Ti GPU with 12
GB of memory.

Overall, training the k -Means and BSQ algorithms are not computationally heavy tasks
(compared to for example training a state-of-the-art DNN), so moving batches of data
to and from the GPU can create a significant overhead on smaller datasets. Conversely,

4https://www.scipy.org/

70 3. Quantization for Network State Modeling

k n d BSQb k -Meansb BSQ k -Means SciPy

32

103
10 16.29 16.12 0.14 0.15 0.02
102 16.53 16.58 0.11 0.11 0.05
103 16.93 17.18 0.41 0.46 0.49

104
10 19.76 19.93 0.25 0.16 0.15
102 20.11 20.34 0.48 0.45 0.56
103 22.79 23.45 3.06 3.81 5.04

105
10 43.85 46.34 1.33 0.64 1.42
102 45.87 48.79 3.74 3.77 5.77

(1)

103 69.97 75.22 − − 49.54 (3)

512

103
10 16.96 17.35 0.22 0.19 0.18
102 17.29 17.39 0.63 0.74 0.44
103 21.67 22.88 5.18 6.44 3.29 (2)

104
10 18.92 19.60 1.01 1.04 2.02
102 24.26 25.08 − − 4.42 (4)
103 70.19 82.23 − − 29.26

105
10 42.39 44.93 − − 16.87
102 83.01 99.08 − − 40.05
103 546.09 669.21 − − 296.92

(3)

Table 3.2: k -Means and BSQ runtime statistics in seconds.

large datasets usually do not fit into the limited memory of a GPU, and the user is forced
to keep the dataset in CPU memory and process it batch-by-batch on the GPU. In this
evaluation, both batched and non-batched versions of the algorithms were measured, with
the batched versions denoted as BSQb and k -Meansb. The results can be seen on Tab. 3.2,
where k denotes the number of quanta fitted, and n the number of training points. The
training points were randomly generated from a d-dimensional normal distribution with 0
mean and 1 standard deviation. Each algorithm was run for a 100 epochs.

Generally, the non-batched versions of k -Means and BSQ are quite competitive with the
SciPy implementation, even winning in cases of low k but high n or d values (highlighted
as 1). The SciPy implementation probably incorporates some form of speedup scheme
(such as kd-trees, but there is no reference in the documentation), as its runtime does not
scale linearly with k, and so it wins out for large values of k (2). Dashes denote data sizes
where the data and the net together no longer fit into the GPU memory, and as such,
non-batched versions of our algorithms were no longer feasible to run.

Batched versions use a batch size of 512. With this batch size, small datasets incurred
such a heavy overhead that BSQb and k -Meansb could run several magnitudes slower than
the SciPy or their non-batched counterparts. However, at the point where using the non-
batched versions becomes infeasible, the batched versions are only 2x−3x slower than the
SciPy implementation (3), except in the single worst case of (4).

3.3.7 Conclusion

This section proposed a neural-net-like implementation of the k -Means and our BSQ al-
gorithms. While not achieving particularly groundbreaking speedup for k -Means, the
implementation did show some improvement with realistic parameters, where these algo-
rithms are probably used. However, the main goal of this research, the runtime of BSQ
is greatly improved: while it is a little hard to compare, as the original implementations
were measured for different number of iterations (Tab. 3.1), the neural-net-based imple-
mentations (Tab. 3.2) show a huge improvement. Furthermore, undertaking the research
detailed in this section gave me valuable insight into the benefits and downsides of using

3.4. ON MASSIVELY PARALLEL ALGORITHMS IN MOBILE NETWORKS 71

massively parallel algorithms, which I think is applicable to all DL algorithms in similar
settings. Thus, in the next section, I would like to conclude some general remarks about
important aspects of the use of massively parallel algorithms.

3.4 On Massively Parallel Algorithms in Mobile Networks

The utility of every algorithm is tied to ease of use, a large part of which is simply
runtime. Algorithms which take a long time to train are slower to iterate upon, or do
not get the necessary training time to fully converge, and thus, never reach their full
potential. This is especially true for simple ML algorithms – such as k -Means and BSQ
– which are often utilized as part of a larger algorithm, such as a DNN. The neural-net-
based implementations of k -Means and BSQ highlighted the importance of designing for
scalability and integration into larger DL environments.

In the batched case, the runtime of BSQ contains a considerable amount of overhead from
data transfers, as each batch of data has to be moved from the CPU memory to the GPU
memory. Because the batch size limits the amount of calculations that are required at
any given time (and because the calculations themselves are pretty simple), the overhead
from data transfer can make up the majority of the runtime in some cases. However, as
we will see later, we often used quantization algorithms as part of a DNN training, where
for every SGD iteration of the DNN, the quantization algorithm is also trained (usually
until it converges). Such a scenario is depicted in Fig. 3.18, where k -Means is trained on
the encoded, latent representation in an autoencoder, together (in parallel) with the whole
autoencoder. In this case, as the data already has to be transferred to the GPU for the
encoding process, using a CPU-based implementation actually means needing an additional
data transfer between GPU and CPU, whereas if a GPU-based implementation is used,
this transfer can be spared. In these scenarios, even if the GPU-based implementation
is not as optimized as the CPU-based, the reduction in overhead could mean quite the
speedup between the implementations.

Encoder Decoder

Quant.k-Means

Data
Latent

repres.
Rec.

data

C
P

U
 →

 G
P

U

GPU → CPU

Figure 3.18: Data transfers in parallel training of a DNN and k -Means.

In the above scenario, there are additional factors which could further worsen the ratio
between useful computation time and overhead. Both k -Means and BSQ can be initialized
with previously found quantum centroids, and the training can be continued where it left
off in the previous epoch. As the autoencoders are trained with SGD, early in the training
the encoded observation likely change a lot between each epoch, thus the quantization
algorithms – even if initialized with the centroids found in the previous epoch – will need
quite a number of iterations before they converge again. However, in the later parts of
the autoencoder training, the encoding will not change that much between epochs. In this
case, if initialized with the previously found centroids, the quantization algorithms likely
only need a few iterations before converging again, which means the overhead from data
transfer for a CPU-based implementation is even larger. Furthermore, implementations

72 3. Quantization for Network State Modeling

which utilize some form of data-ordering scheme for speedup (such as kd-tree in case of
the SciPy k -Means implementation) will have to recreate these constructs in every epoch.
If the number of needed iterations is likely low, the creation time of these constructs can
overtake the runtime of the algorithm and further contribute to the overhead compared
to non-ordered (GPU-based) implementations. In summary, a major factor in runtime is
how well the algorithm integrates into the larger algorithmic environment.

All-in-all, I can safely say that designing, implementing and deploying massively parallel
algorithms is not without hassle, especially if runtime is critical. Even in non-runtime-
critical applications, the utility of the algorithm can still be diminished if the algorithm
is too processing heavy, or takes an excessively long time to run. Above all, massively
parallel algorithms require the specialized hardware – such as GPUs – to speed up pro-
cessing as much as possible. In case of large ML models – such as DNNs – this speedup
could mean the difference between a useful and a completely useless algorithm. However,
in environments such as mobile networks, which already existed for a long time without
utilizing these algorithms, the integration of new hardware or software resources is compli-
cated, and requires a cooperation between different organizations: vendors, operators and
standardization bodies. Naturally, this slows down the implementation of such support,
without which it is hard to tell the true costs of using massively parallel DL.

73

4. Environment Modeling and Abstraction of
Network States

CANs promise to overcome the shortcomings of SON implementations, i.e., the limited
flexibility and adaptability to changing environments, by applying cognition. In CAN, in-
telligent network automation functions – called CFs – apply machine learning techniques
to learn context-specific behavioral policies with which to automate network operations.
For proper operation, the CAN system needs to learn the environment in which the func-
tions are operating and to abstract the environment and performance observations into
network states, which the CFs can use to communicate and respond to.

As discussed previously, quantization algorithms are primarily designed for this exact
purpose: the automatic partitioning of a state-space into a finite number of discrete states,
and the selection of a representative observation for each state. These states can then be
used as a vocabulary for cognitive functions in the mobile network, upon which decisions
or requests can be based. However, the problem in this scenario is a bit more complicated,
since the CAN concept presumes a large amount of varied information communicated this
way, in order to facilitate the consideration of a larger context in the decision making. On
one hand, this poses a challenge to the quantization algorithms, which would need to work
in an extremely high-dimensional space if applied as-is on the network data. Unfortunately,
even though the previously described quantization algorithms try to avoid the curse of
dimensionality by forming quanta that is independent of the number of dimensions, they
all would eventually run into problems stemming from dimensionality. On the other hand,
it is quite likely that some of the information is redundant and could be abstracted away
into a more dense, simplified description. Thus, the goal here is to both encode the original
network state-space into an abstracted state-space, and define discrete (abstract) network
states within it. This chapter discusses the design, implementation and evaluation of an
Environment Modeling and Abstraction (EMA) engine that could be tasked to define these
abstract network states in a consistent way across multiple CFs.

Sec. 4.1 introduces the EMA concept in detail by taking elements from the following patent
application:

Environment Modeling and Abstraction of Network States for Cognitive Functions
Benedek Schultz, Márton Kajó, Stephen S. Mwanje
WO, PCT application no.: PCT/EP2018/069638, filed July 2018

Version: 2023/05/26 – 14:32:46

74 4. Environment Modeling and Abstraction of Network States

Sec. 4.2 discusses the implementation and evaluation of an EMA module by detailing the
work published in the following paper:

Environment modeling and abstraction of network states for cognitive functions
Stephen S. Mwanje, Márton Kajó, Sayantini Majumdar, Georg Carle
NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium,
pp. 1-8. IEEE, 2020.

My contributions to the above paper was the design of the EMA module and its relevant
algorithms, the design of the evaluation, the supervision of the implementation and the
evaluation, as well as the co-authoring of the paper. The discussion in this thesis expands
on the paper by connecting it to my previous works (Cha. 3), which give more detail for
the specific clustering algorithms used, as well as connecting it to subsequent research
published in the following paper:

Modeling and Abstraction of Network and Environment States Using Deep Learning
Stephen S. Mwanje, Márton Kajó, Janne Ali-Tolppa
IEEE Network 34, no. 6 (2020): 8-13.

Sec. 4.3 details the work published in the above paper, where my contribution was the
reimplementation of all evaluated algorithms, the evaluation and the co-authoring of the
paper.

4.1 Concept: EMA in Cognitive Autonomous Networks

4.1.1 Elements of Cognitive Autonomous Networks

The concept of applying cognition to Network Management (NM) has been advanced in
several publications, including [74, 75], which propose to replace the hard-coded logic in
SON functions with highly intelligent, adaptive CFs. The CFs should be capable of learn-
ing optimal behavior based on their actions and the observed impact on the network,
network environment and other CFs, by processing various data, such as configuration,
performance, failure, or user/service-related indicators. If these CFs are in place, the
evolved system would result in what has been labeled in our nomenclature as a CAN.
In effect, CAN extends SON to: 1) be able to infer higher level network and environ-
ment states from a multitude of data sources instead of the current low-level basic states
recovered from KPIs values, and 2) allow for adaptive selection and changes of network
configuration parameters depending on previous actions and operator goals.

The CAN framework proposed in [76] highlights where and how cognition should be in-
troduced into the NM system. The framework, shown in Fig. 4.1, proposes five major
components. A Network Objectives Manager (NOM) translates the operator objectives
into a set of more concrete KPI targets for the other CAN subsystems. Each CF then
tries to optimize the network configuration to achieve the defined KPI targets or its own
subset thereof. Since there are typically many independent CF instances acting in a CAN,
a component called the Coordination Entity (CE) is required to coordinate their actions
and to prevent any possible conflicts. To achieve this, the CE may need to know the depen-
dencies between the CF instances and their actions, which may be partially learned. The
actions selected to be implemented are then deployed by the Configuration Management
Entity (CME), which may be combined with the CE. The CME takes care of scheduling
the deployment of the actions and verifying that they are successfully taken. Each CF
responds to specific states in the network that may be different among the CFs, e.g. a

4.1. CONCEPT: EMA IN COGNITIVE AUTONOMOUS NETWORKS 75

Operator

Goals
Network

DataNetwork

Objectives

Manager

Environment

Modeling &

Abstraction

Cognitive

Functions

Configuration

Management

Coordination

Static nature:

• Locality

• BTS location

• Spectrum ...

Dynamic nature:

• User count

• Handovers

• Applications …

Network Environment

K
P

Is

States

Figure 4.1: The components of a Cognitive Autonomous Network.

handover optimization CF responds to mobility profiles in the cells, while a congestion
management CF may consider the load in different cells and/or network slices. Moreover,
the states may need to be communicated among entities, e.g. between the CFs and the
control or coordination modules. So, an EMA engine is required to model and abstract
the network environment into discrete states, which are consistent across the components.
This way the components are able to communicate to each other with reference to the
same state space.

4.1.2 Environment Modeling and Abstraction Engine

A common understanding of the network states is critical to efficient operation of cognitive
functions. To illustrate this, consider two CFs, CFA and CFB, e.g. interference manage-
ment and coverage optimization. These cognitive functions need to exchange information
about their observations to improve their learning, as they are affecting shared network
parameters, and have overlapping goals. CFA takes an action at three time points t1, t2
and t3 for which CFB notices different effects: t1 and t3 are unacceptable, t2 is good. CFB

wishes to inform CFA about its perception of the actions. Without a common understand-
ing of the network states, CFB must enumerate all its observations as tuples of times and
measurements, which might or might not be understandable by CFA. However, knowing
that at t1 and t3, the network state was the same and knowing the label simplifies the
exchange. This way, CFB can simply encode that “in state S1, action a always leads to
unacceptable outcomes”, simplifying communication and removing complexity from both
CFs.

The network and its environment presents an Observable Network State (ONS), which
is encoded into an n-dimensional vector of data on observed environmental conditions,
configurations and the subsequently measured KPIs. The EMA engine must take such
observable network state vectors and abstract them into outputs called Discrete Abstract
State (DAS), to which the CFs respond. Specifically, the EMA defines abstract states built
from combinations of quantitative KPIs, abstract (semantic) state labels and operational
contexts, such as the current configurations of the network or its elements. These states are
discretized to simplify the communication between the various modules in the CAN. The

76 4. Environment Modeling and Abstraction of Network States

abstract labeling of network states must be done in a consistent way across multiple CFs in
a CAN, to ensure that the modules reference the same abstract states when communicating
to each other, e.g., for the Coordination Engine to inform the CFs about the effects of
their actions to one another. As such, the EMA generates a Discrete Abstract state vector
S of dimension m, representing the (quasi-orthogonal) features of interest for the active
CFs, e.g., the optimization of cell load, energy consumption, etc.

The proposed implementation of the EMA can be seen in Fig. 4.2. The EMA has 2
modules: the Environment Modeling Module (EMM), and the State Abstraction Module
(SAM). The goal of the EMM is to split the n-dimensional continuous input space into
k discrete volumes (quanta), which can be assigned with different labels in the SAM. To
realize this, during training, the EMM creates an EMA-Internal State-Space (EISS) of k
EMA-Internal States (EISs) as the complete, but simplified view of the network environ-
ment. Objectivity means that the EISS can not incorporate possibly biased information
during training, such as expert knowledge from the operator or requirements from CFs,
i.e; the EISS has to be formed purely on ONSs, in an unsupervised manner. Objectivity
is needed in order to minimize the need for relearning the EISS in case of changes in the
active CFs or the requirements thereof. Moreover, the EISS must have a good resolution
to ensure support for different levels of granularity at abstraction. These requirements
make environment modeling a quantization task. Since it can be expected that some of
the input dimensions contain noise or redundant information, it is beneficial to precede
the quantization step with a feature extractor, which removes these interfering parts of
the data. Because both feature extraction and quantization only aims to model structure
that is already present in the data (no additional expert knowledge or context need to be
added), both functions are trained through unsupervised means. The quantized nature
of the state-space makes it easy to append this contextual information later, which is the
task of the SAM.

CF1

CF2

⋮

𝑥1
𝑥2
𝑥3
⋮
𝑥𝑛

𝑂𝑁𝑆

Mapping

State

Abstraction

Feature

extraction
Quantization

Environment

Modeling

𝑦1
𝑦2
𝑦3
⋮
𝑦𝑑

𝑌
𝑞1
𝑞2
𝑞3
⋮
𝑞𝑘

𝐸𝐼𝑆
𝑠1
𝑠2
𝑠3
⋮
𝑠𝑚

𝐷𝐴𝑆

(a) Concept

Encoder Decoder

Autoencoder

k-Means

EISS

Coloration

𝑠1 (Feature1): mobility

Low

Medium

High

𝑠2 (Feature2): load

Low

Med-low

Med-high

High
DASS

𝑂
𝑁
𝑆

𝑌

(b) Implementation

Figure 4.2: The components and input-output vectors of the EMA engine.

4.1. CONCEPT: EMA IN COGNITIVE AUTONOMOUS NETWORKS 77

Given the appropriate modeling, the SAM appends contextual information to the quanta
to create the Discrete Abstract State-Space (DASS) of flexible mappings which can be
modified during run-time. This bridges the gap between the objective EISS and the
subjective DASS, whose states are specific to the active CFs. For each output feature,
possibly corresponding to a specific CF, the state abstraction stores a labeling (coloration)
of the size-k internal states resulting in at most k individual values for each of them output
dimensions. The coloration contains expert knowledge or context information required for
the CFs, implying that state mapping: 1) is trained in a supervised or semi-supervised
manner, owing to the need for feedback about the utility of the learned labels for the CFs;
and 2) is reconfigurable since the CFs’ requirements or settings are likely to change.

It is critical to align the quantization to the actual contextual groups (classes) present in
the ONSs (such as measurements from cells with similar parameter settings), in order for
the coloration in the SAM to be able to map the subjective discrete abstract states to the
objective ONSs with high precision. If not, the formed quanta may contain a mixture of
network states, and labeling such quanta becomes meaningless. This was the basis of our
evaluation of the EMA concept, which is detailed in the following.

4.1.3 Related Work

The modeling of a system’s states is of great interest in studies on complex systems.
System-state modeling has been studied in generic autonomous systems, such as in [77],
and in cyber-security systems, e.g., to characterize the behavior of attack systems, such as
in [78, 79]. The most widely studied systems-states are in robotic control systems where
a controller may wish to identify the different states of the underlying system and how
to respond to such states [80, 81]. The typical challenge here is to derive a closed form
description of the different features of the robotic system, e.g. to characterize the angular
position, angular velocity and armature current in the case of motion control of an electric
motor [82].

There has, however, been little work on modeling states in communication networks. Typi-
cally, theoretical system models are developed to study the behavior of the wireless network
in particular conditions, the most widely documented models being in wireless sensor net-
works [83, 84]. However, these do not model the different states in which the system may
be or their interaction with the environment or control conditions. This is also the case
for communication network management automation.

The concept of network states and their inference in self-organizing networks for enabling
5G have been treated in [85]. Similar to our work, the authors propose a framework re-
sponsible for selecting a set of metrics to characterize the network states, reducing the
dimensionality of the data using PCA and applying a semi-supervised classification algo-
rithm, suited to deal with unambiguous knowledge about the classes. Although this paper
adopts a similar algorithmic framework in the sequence of dimension reduction and clus-
tering using semi-supervised Fuzzy C-Means, it is solely applied to the anomaly detection
use case.

The authors in [86] also propose an improved anomaly detection framework by dynami-
cally learning mobile network cell states using the Merge Growing Neural Gas (MGNG)
algorithm. The baseline is set to be the KPIs of individual cells fed to the MGNG algo-
rithm, in order to determine shared or common behavior of the cells, an approach which
the data processing steps in our study follow.

78 4. Environment Modeling and Abstraction of Network States

LTE Macro

Setting M1 M2 M3 M4 M5 M6 M7 M8

RSRP offset [dB] 2.0 3.0 3.0 2.0 2.0 3.0 3.0 2.0

TTT [s] 0.512 0.512 0.512 0.512 0.64 0.64 0.64 0.64

TXP [dBm] 46 46 40 40 46 46 40 40

LTE micro WiFi

Setting m1 m2 W1 W2

RSRP offset [dB] 2.0 2.0 - -

TTT [s] 0.512 0.64 0.512 0.64

TXP [dBm] 20 20 20 20

Table 4.1: Cell parameter combinations in the simulation.

4.2 EMA using Bounding Sphere Quantization

4.2.1 Simulation Environment and Data

In order to numerically evaluate the proposed EMA concept, a dataset from a controlled
network and environment is needed, one that contains known classes (groups) that are
discoverable by the environment modeling system. To generate such a dataset, a realistic
system-level simulator was used, in order to be able to model a complex network scenario.
The classes for the evaluation were formed by cells sharing similar parameter setting com-
binations. Although this is not entirely realistic, as cell parameter settings would be known
to the operator in a real network deployment, it helps us evaluate the EMA concept; the
parameters are meant to mimic different user behaviors and environmental conditions that
might affect the network and are outside of the operators control.

To model a realistic heterogeneous network, the simulation scenario contained a number
of 3-sector Long-Term Evolution (LTE) macro (2 GHz), omnidiricetional LTE micro (2.6
GHz), and WiFi (2.4 GHz) cells. Three parameters were iterated to form 12 setting groups
(classes) as shown in Tab. 4.1, these were the Reference Signal Received Power (RSRP)
offset, Time-To-Trigger (TTT) and Transmission Power (TXP). The simulator used the
WINNER+ propagation model [87] for coverage, interference and fading calculations. It
evaluates vehicular and pedestrian users both moving along randomized routes on prere-
corded paths in a digital recreation of the city of Helsinki, all the while simulating different
activities, such as File Transfer Protocol (FTP) downloads, video and Voice over IP (VoIP)
calls.

The output of the simulator is made up of measurements at the cell transceiver level.
Generally, three categories of output measurements were observed, an overview of which
can be found in Tab. 4.2 with examples. These measurements were used in subsequent
data preprocessing steps to bring the raw simulation data into a form intelligible to ma-
chine learning algorithms (specifically neural nets). The data pertaining to a single cell
was enriched by appending the aggregated properties (KPIs) of its neighbors, essentially
considering shared characteristics of the cells in the network. The simulator worked with
a simulation step of 0.1 ms, outputting these measurements too frequently for network
management use. To rectify this, all measurements were aggregated in time to 15 second
intervals. Finally, the resulting dataset was normalized per feature across all timestamps
and cells. The end result of the preprocessing is a clean, standardized dataset consisting
of two kinds of information: identifiers in integer form, and KPIs in floating point values.
The dataset, which serves as input to the EMA, did not include network configuration

4.2. EMA USING BOUNDING SPHERE QUANTIZATION 79

Type Description Example

Cell counters Local events or those in
neighbor cells

Radio Link Failures (RLFs), Han-
dovers (HOs)

Shared counters Events for specific cell
pairs

RLFs due to late HO from cell 1 to
2

KPIs KPIs aggregated to every
simulation step

Total number of active User Equip-
ments (UEs), cell load

Table 4.2: Categories of cell events and measurements (KPIs) collected from the simula-
tion.

details in any quantity (which would directly correspond to the classes). With all this, the
final dataset contained 34 features altogether.

4.2.2 Feature Extraction using an Autoencoder

The EMA input is made up of many features (dimensions), each of which embodies an
aspect of the network environment. In our case, this input was made up of the previ-
ously mentioned 34 features. Since it is highly challenging to process or visualize such
high-dimensional datasets [88], feature extraction is often used to try to find a better rep-
resentation to which later machine learning algorithms can be applied effectively. Specifi-
cally, in our setting, distance-based quantization is susceptible of breaking down in high-
dimensional spaces, which warrants the use of feature extraction.

The task of the feature extraction module is to compress the input to a lower-dimensional
representation, while also possibly removing redundant information and noise. The number
of extracted features (d) is usually significantly smaller than the number of input features
(d << n), but using more dimensions (d >> n) with sparsity enforced could also be a
viable alternative. The reduction of features or the enforcement of sparsity usually means
a tradeoff between the level of compression and loss of valuable information. It is up to
the designer to figure out a good tradeoff, which can be specific to the dataset used, or to
the later processing steps.

In this work, an FC autoencoder neural net (Sec. 2.3.5) was used as the feature extractor.
Autoencoders excel in generalizing underlying logic and structure in the data. The more
compression is enforced, the more the autoencoder is forced to extract generalization,
removing noise and redundancies in the process. However, as compression is increased,
more and more nuance is lost in the reconstructed data. The level of compression is set by
the number of neurons in the middle layers (encoding size), as such, different compression
levels equate to different topologies. Figure 4.3) shows the reconstruction loss measured on
a few autoencoder topologies, with the encoding size highlighted. The used autoencoders
also utilized a single hidden layer in both the encoder and the decoder, the size of which
were set to the average of the number of original and compressed dimensions (n and d),
so that the progression of compression and decompression in the net is roughly linear. In
the end, an encoding size of 10 was chosen, a topology that is a good tradeoff between
compression and loss of information for this scenario, equating roughly to a 3x compression
factor.

Figure 4.4 shows a scatter plot of the encoded observations with the chosen autoencoder
topology, using the first 2 dimensions in the 10-dimensional encoded space. The activations
are colored according to the parameter combination of the origin cell. Even though the
2-dimensional scatter plot is incapable of capturing the complexity of the 10-dimensional
space, clustering/grouping of the colors is observable even in this basic visualization. As

80 4. Environment Modeling and Abstraction of Network States

Training

Validation

0.2

0.1

0.0
Epoch0 20 40

Lo
ss

10 30

Enc. Dec.

25
20
15
10
5

Encoding size

Figure 4.3: Training and validation loss development during training for different encoding
sizes.

one example – according to Tab. 4.1 – WiFi (and micro) cells could be easily distinguished
from the macro cells in terms of transmit power. Although transmit power settings were
not communicated to the autoencoder, the difference in behavior still makes these cells
stand apart from the other measurements. This distinction is also captured in the encoding,
as the WiFi observations are mostly clustered along the top and left part of the plot, as
highlighted by the two respectively colored curves.

WiFi1

micro1

Macro1

Macro3

Macro4

Macro2

WiFi2

micro2

Macro5

Macro7

Macro8

Macro6

Figure 4.4: Scatterplot of encoded measurements taken from cells with the 12 parameter
classes, projected to 2D using PCA.

4.2.3 Quantization with BSQ and k-Means

In this work, two unsupervised clustering algorithms were chosen to be evaluated for
the quantization task: our BSQ and the traditional Lloyd’s k -Means algorithm. Instead
of using existing packages, both algorithms used the neural-net-style reimplementations
as discussed in Sec. 3.3. These implementations synergize well with the autoencoder,
so that the whole processing pipeline of the EMA can use the same tools and utilize
hardware acceleration. Figure 4.5 depicts the results of running the two algorithms on
the autoencoder activations from Sec. 4.2.2, by plotting the first 2 dimensions from the
10-dimensional space. Although these plots lose information that is contained in the
remaining eight dimensions when projected to 2D, they provide a general idea of how the

4.2. EMA USING BOUNDING SPHERE QUANTIZATION 81

clustering behaves in higher dimensions. It is visible that with k-Means, quanta are more
concentrated around the denser regions of the dataset, while they are more spread out
when using BSQ.

The two algorithms differ in their end goal when fitting the quantization. Quantization
being an unsupervised learning problem, it is hard to deduct which algorithm is “better”
without use case specific supervised metrics. This evaluation will be shown in the next
section (Sec. 4.2.4). However, it is still beneficial to look at unsupervised metrics to get
a better understanding how the two algorithms behave. We considered two evaluation
metrics, which cover the respective global optimization goals of the two algorithms:

� Average distances are computed by taking the mean of the nonzero masked distances
first within each cluster (i.e. along each column), and then for the resulting one-
dimensional tensor over all.

� Maximum distances are computed by taking the maximum of the nonzero masked
distances in each quanta, and afterwards averaging them across quanta.

Quantum centroids

Training points
(color ~ density)

(a) k -Means

Quantum centroids

Training points
(color ~ density)

(b) BSQ

Figure 4.5: Scatterplot of k -Means and BSQ quantization on the simulator dataset for
k = 120.

The number of fitted quanta (the value k) is a user-defined parameter for both algorithms.
In other clustering tasks, where the goal is to find a logical grouping in the data (logical
to a human user), there are theoretically correct k value(s) for each task. In these cases,
finding the correct k value is crucial to achieving good results, even more so, if the user has
a very strong (biased) expectations of how the formed clusters should look. Fortunately,
this is not the case for the quantization in the EMA, because the goal is not to find a
logical – according to a human supervisor – grouping of the observations. In our case, it is
sufficient to quantize the input space with a “fine enough” resolution so that the mapping
stage can work with reasonable precision. This criterium does not really pose a hard
upper-limit to the number of quanta that can be used. The number of possible quanta can
be softly limited by:

� The number of available training points, so that each quantum stays reasonably
populated (Sec. 2.2.3). This restriction coincides with the avoidance of overfitting,
because underpopulated quanta can easily overfit the data, so that the quantization
loses generalization power.

82 4. Environment Modeling and Abstraction of Network States

� The available computational resources, such as memory. More quanta used in the
computation requires more memory, as well as more computational power, or takes
longer to compute.

Performance for both algorithms was evaluated for k = 12, 18, 24, ..., 120. For each value
of k, both algorithms were run 100 times starting from random initial quantum locations,
and the previously explained two evaluation metrics were measured (both metrics for both
algorithms). The results can be seen in Fig. 4.6, where shaded regions depict the ±1
standard deviation, solid lines depict the mean.

k-means

BSQ

0.01

0.02

0

Dist.

20 60 100 k40 80

0.005

0.015

(a) Average distances

k-means

BSQ

0.4

0.8

0

Dist.

20 60 100 k40 80

0.2

0.6

1.0

(b) Maximum distances

Figure 4.6: Average and maximum distances measured for multiple k values for k -Means
and BSQ.

As expected, increasing k achieves a smooth reduction of the average distance for both
algorithms, with BSQ constantly having 60% larger averages, and both having minimal
variance. On the other side, BSQ achieves 30% smaller average maximum distance at larger
values of k, and almost 50% smaller average maximum at small values of k. Generally, the
maximum distances for both algorithms show a large variance across all values of k.

4.2.4 State Mapping

Mapping of states, the third component of the EMA, enables translation from the objective
but abstract internal states to CF-specific subjective external states. State mapping is
essential to convert the output of the quantization, which is the internal state-space model,
to well-defined labels, which are understandable by both the human operator and the
CFs in the CAN subsequent stages. State-mapping is envisioned as a simple labeling
task, where a specific “coloration” (labeling) of the internal state-space is stored for each
dimension/aspect of the output external states. Each “color” (label) represents a different
level of the quantized output dimension.

Ideally, the entirely unsupervised feature reduction and quantization steps produce quanta
that are well-aligned to any sensible labeling of the dataset if it is to be done by the human
operator. “Well-aligned”, in this case, implies that each cluster contains mostly observa-
tions of a single class/label. In practice, this is not necessarily true due to the unsupervised
nature of the feature reduction and quantization algorithms, which can produce results
that are unfitting to the biased supervised labels produced by the system designer. In
this study, the class labels are the different settings for the simulated cells. As mentioned
before, there are only soft upper limits to the number of quanta that can be used in the
internal state-space model. This is important, because it is assumed that by increasing k,

4.2. EMA USING BOUNDING SPHERE QUANTIZATION 83

the internal states become more and more aligned to any outside labeling, following a sen-
sible curve. However, this is not necessarily true, depending generally on the distribution
of the different classes, but also specifically on the feature reduction and the fitted states.
This section tries to answer the question as to whether or not the assumption is correct
that increasing k leads to better alignment of the quanta.

State mapping is implemented by assigning the label of the class with the majority popu-
lation to each internal state. If the above assumption is true, by increasing the resolution
of the internal state-space (increasing k), this alignment should constantly improve until
reaching an acceptable level. To evaluate the alignment quality, we defined state purity
(P), an external metric of quantum alignment, measuring the percentage of the majority
class (largest population) against the total population within an internal state, i.e.:

P =
∑
i

maxj rij∑
j rij

/k, (4.1)

where rij is the number of points of class j in state i, and k is the number of internal
states. For 100% purity, each state would contain observations from only one class.

Between the two extremes of k, it is not clear how purity changes. On one end, using
a single state for the whole dataset would yield a purity that is inherent in the class
populations in the data. On the other end, using a state for every single observation
would produce a purity value of a 100%. However, between these two values, if the change
is not gradual, state mapping would be hard to use, as a well-functioning k would be hard
to find, or computationally infeasible to use.

k-means

BSQ

20 60 100 k

0.45

0.55

0.35

Pur.

8040

0.4

0.5

Figure 4.7: k -Means and BSQ overall purity for different quantum numbers.

Figure 4.7 shows how the overall purity changes depending on k, with shaded regions de-
picting the ±1 standard deviation, solid lines depicting the mean. For both algorithms, the
average overall purity values steadily increase with increasing k, indicating that quantiza-
tion resolution is well correlated to mapping accuracy. Although starting at a lower value,
BSQ also seems to have a steeper slope in the lower ranges of k compared to k -Means.
The two averages cross over at k = 24, after which point BSQ has a constant lead up to
k = 100, where this lead starts to diminish. The variance seems to keep constant for all
the different k values.

Figure 4.8 provides a more insightful look into the distribution of state purity values
for both algorithms, for 4 different k values. In the plots, the horizontal axis gives the
percentage of purity. We see that for low values of k (blue curve, k = 12), k -Means has
very strong peak densities of purity around 0.25 and 0.55, whereas BSQ does not have

84 4. Environment Modeling and Abstraction of Network States

such defined peaks. At a high value of k (red curve, k = 120), both distributions are very
similar, however, k -Means seems to have more states which are close to a 100% purity.
These differences in the distributions reflect the ones that we have already seen for the
average state purity previously.

k = 12

k = 120
k = 66
k = 30

0 Pur.0.4 0.8

D
en

si
ty

0.2 0.6

(a) k -Means

k = 12

k = 120
k = 66
k = 30

0 Pur.0.4 0.8

D
en

si
ty

0.2 0.6

(b) BSQ

Figure 4.8: State purity distribution for k = 12, 30, 66, 120 quanta.

Figure 4.9 shows the share average and variance for each class separately for 4 different
values of k. The horizontal axis gives the class labels, while the vertical axis shows the
normalized number of clusters with majority for the specific class, so that 1.0 equals to
having 1/12th of the clusters as majority. Each observation for a specific value of k and
class has been plotted on the horizontal axis with a small offset. The main takeaway here is
that as k increases, the normalized average share for each class tends towards 1.0, meaning
that the majority class labels are more and more evenly distributed between the clusters,
with no class having a tendency to not be assigned to any of the clusters (to be “left out”
of the mapping). This is warranted, as originally the class labels occupy a roughly even
amount of observations in the dataset.

k = 12

k = 120
k = 66
k = 30

Class1 2 3 4 5 6 7 8 9

0

1

0.5

1.5

2

S
ha

re

(a) k -Means

k = 12

k = 120
k = 66
k = 30

Class1 2 3 4 5 6 7 8 9

0

1

0.5

1.5

2

S
ha

re

(b) BSQ

Figure 4.9: Share of clusters for each class for k = 12, 30, 66, 120 quanta.

In general, the original assumption of being able to find a good enough mapping accuracy
to any sensible labeling of the state-space seems warranted. With a larger number of k,
the simple mapping process of assigning the label of the majority population to the cluster
can give an acceptable level of cluster purity. When the value of k is constrained, BSQ

4.3. TOWARDS DEEP CLUSTERING IN EMA 85

is recommended, otherwise k -Means seems to be the better choice. While this concludes
this evaluation, we suspected that even better results could be achieved with regards to
cluster purity, if state-of-the-art deep clustering is used for the formulation of the EISS,
which is the topic of the next section.

4.2.5 Conclusion and Critique

While achieving acceptable results, we were not quite satisfied with the precision of our
quantization, thus, we wanted to further refine our method. It became clear during the
evaluation that network states are often not immediately distinguishable in the data,
even through the feature extraction done by the AE. To rectify this, we thought of using
an added constraint from a then newly published paper, which was meant to help the
AE in learning an encoding in which groups in the data are separated better. In the
work described in the next section, we revisit the EMA engine, and apply a modern deep
clustering method to the problem, as well as reevaluating the original EMA proposal using
deeper, more complex neural nets and a larger simulated dataset.

4.3 Towards Deep Clustering in EMA

4.3.1 Deep Clustering with ACAI

Deep autoencoders are able to encode observations into a structured view, where neighbor-
ing observations share complex correlation structures. Unfortunately, often these struc-
tured encodings do not lend well to the simple spherical quanta formed by k -Means or
BSQ. It would be possible to use more complex statistical quantization (clustering) meth-
ods – such as GMMs – to move away from spherical clusters in order to better fit the
encoded observations, as these usually provide better accuracy than k -Means. However,
these complex quantization methods are often intractable to calculate in many-dimensional
spaces or with a large number of classes. For example, k -Means in a 10-dimensional space
(D = 10) with 10 quanta (k = 10) uses D ∗ k = 100 parameters. A GMM in the same
setting uses ((D ∗D−D)/2+2D)∗k = 650 parameters with full covariance matrices. One
can see that the number of parameters can quickly go out of hand by increasing D or k. A
better approach is to encourage a k -Means-friendly encoding structure in the autoencoder
through an additional component or loss. This is the approach that a large portion of the
deep clustering neural nets have taken recently.

From a very high level, many deep clustering methods can be seen as a simpler statistical
quantization algorithm – such as k -Means – and a feature-extraction preprocessing step
fused together. This fusion is usually helped by additional constraints during training, to
make the two methods work well together. Depth comes from the complex neural nets
that are used for feature extraction. The feature-extraction method used in this work is
the autoencoder as described in the previous section. However, to encourage a k -Means-
friendly encoding, an advanced version of the autoencoder setup was evaluated, called
Adversarially Constrained Autoencoder Interpolation (ACAI) from Google Brain [89]. In
ACAI, a discriminator subnet is attached to a deep autoencoder (Fig. 4.10), whose task
is to encourage linear transitions in the latent space, which makes the encoding k -Means-
friendly. To achieve this, the autoencoder decodes artificial observations generated from
linear mixtures of pairs of encoded observations with a randomly chosen mixing coeffi-
cient α, which the discriminator has to guess from the decoded (reconstructed) artificial
observation.

The autoencoder and the discriminator are adversaries, with the autoencoder working
against the discriminator by trying to make the mixing coefficient hard to guess, in ad-
dition to trying to minimize the traditional autoencoder reconstruction loss. Together,

86 4. Environment Modeling and Abstraction of Network States

Encoder Decoder

Quant.k-Means

Latent

repres.
Discrim.

Interp.

Linea-

rization

Reconstruction

Autoencoder

Data

𝛼

Figure 4.10: Linearization of the latent space in ACAI through the GAN training structure.

the autoencoder and the discriminator form a GAN training structure (Sec. 2.3.6). Intu-
itively, if the encoding space does not contain linear transitions, the artificial observations
are easy to distinguish from actual observations, which makes it easy for the discriminator
to guess the mixing coefficient with simple rules and high precision. To counteract this,
the autoencoder can try to make the artificial observations “look like” actual observations.
Because artificial observations are generated with a random mixing coefficient, this means
that anywhere in the encoded manifold, points have to decode into believable observa-
tions. Theoretically, both the reconstruction and mixing losses can be minimized by the
autoencoder, as these are not conflicting goals. However, the extent largely depends on
the capabilities of the encoder, decoder and discriminator subnets. In the case of neural
nets, modeling capability is mostly set by net topology, and in our case, the subnets are
deep, containing many layers, and thus are very capable. As advised by the original paper,
the discriminator has the same layer topology as the encoder, the only difference being
an extra averaging layer at the end to arrive at a single value as the output α, while the
decoder is roughly a mirror equivalent of the encoder.

After ACAI is trained, all but the encoder subnet can be discarded, and the encoder used
to translate the observable network state into a clustering-friendly space. Although any
clustering method could be used, the most obvious choice (and the one the ACAI paper
originally uses) is the k -Means algorithm. One major difference between the original
intended use for k -Means in ACAI and our use case is that what we are doing is not
strictly clustering. In the ACAI paper, the number of quanta (the parameter k) is set
to be equal to the number of suspected groups in the data. On one hand, this a-priori
requirement is always questionable, as in realistic settings usually it is unknown how many
groups are present in the dataset, and clustering is used in an exploratory fashion. On the
other hand, the envisioned EISS representation does not require that a network state is
only contained in a single quantum. Once again, this allows us to set k to an arbitrary, large
enough number, with only soft constraints; k should be larger or equal than the number
of network states present in the data, but small enough so that all quanta (internal states)
are reasonably populated from the training dataset.

4.3.2 Differences in Simulation Environment, Data and Net Topology

This work revisits the same concepts that have been discussed in Sec. 4.2, and will be
referred to as “previous” evaluation. The overall method of evaluation is the same: the
task of the EMA engine is to extract descriptive features, and form quanta for the EISS
which also align to existing groups in the measurements. The biggest differences between
the previous evaluation and the one shown here are the inclusion of the ACAI algorithm,

4.3. TOWARDS DEEP CLUSTERING IN EMA 87

LTE Macro

Setting M1 M2 M3 M4 M5 M6 M7 M8

RSRP offset [dB] 1.0 3.0 3.0 1.0 1.0 3.0 3.0 1.0

TTT [s] 0.512 0.512 0.512 0.512 1.02 1.02 1.02 1.02

TXP [dBm] 46 46 40 40 46 46 40 40

LTE micro WiFi

Setting m1 m2 W1 W2

RSRP offset [dB] 1.0 3.0 1.0 1.0

TTT [s] 0.512 1.02 - -

TXP [dBm] 20 20 20 24

Table 4.3: Cell parameter combinations in the renewed simulations

and the exclusion of BSQ. BSQ was chosen not to be evaluated again, because it seemed
to only provide marginal improvements over k -Means in the EMA context. The exclusion
of BSQ sped up the evaluation process, as well as spared us from having to explain how it
functions in the already limited space these results were published in.

Similarly to our previous evaluation, a dataset from a controlled network and environ-
ment was needed, one that contained known classes (groups) that are discoverable by the
environment modeling system. To generate such a dataset, the same network-level sim-
ulator was used in a similar scenario as described before. The classes for the evaluation
were formed by cells sharing similar parameter setting combinations. Although this is
not realistic as cell parameter settings would be known to the operator in a real network
deployment, it helps us evaluate the EMA concept; the parameters are meant to mimic
different user behaviors and environmental conditions that might affect the network and
are outside of the operators control. The simulation scenario contained a number of 3-
sector LTE macro (2 GHz), omnidiricetional LTE micro (2.6 GHz), and WiFi (2.4 GHz)
cells. Three parameters were iterated to form 12 setting groups as shown in Tab. 4.3,
these were the RSRP offset, TTT and TXP. Compared to the previous scenario, notable
differences here were changes made to RSRP and TTT values, which made the setting
classes a little more distinguishable. The WiFi network using the TTT parameter was not
really realistic, which was changed in this evaluation to the RSRP offset.

The output of the simulator was made up of 17 transceiver-level measurements (KPIs) for
each cell. The number of KPIs is lower than in our previous evaluation, as we have forgone
the feature-engineering of aggregated KPIs relating to cell-neighbor behavior. Here, only
measurements about a single cell were contained in an observation. The reported KPIs
pertain to radio condition, cell load and handover behavior, with some KPIs representing
the number of times a specific action occurred (such as a late handover), while others
average a measured value (such as RSRP) over the reported time period. The frame
length of the simulation was again 0.1 ms, but the KPIs were aggregated to a much larger
granularity period of 5 simulated minutes compared to the previous 15 second periods. To
counteract this larger aggregation window, the simulation ran for a much longer time than
in the previous evaluation, resulting in 72 thousand records collected over roughly one and
a half weeks of simulated network operation.

The modeling capability of the EMA engine largely depends on the complexity of the
encoder, decoder and discriminator subnets. In the case of neural nets, modeling capability
is mostly set by net topology, and in our case, the subnets are deep, containing many layers,
and thus are very capable. As advised by the original ACAI paper, the discriminator used

88 4. Environment Modeling and Abstraction of Network States

the same layer topology as the encoder, the only difference being an extra averaging layer
at the end to arrive at a single value as the output α, while the decoder is roughly a mirror
equivalent of the encoder. The topologies of the subnets can be seen in Fig. 4.11. These
neural nets were much deeper compared to their counterparts in our previous experiment,
which can also explain some of the improvement seen in the state purity achieved in the
evaluation. The topology is also different in its overall shape: where in the previous
evaluation, the autoencoders were constricting information flow by continuously reducing
the number of neurons towards the middle of the AE, here the number of neurons actually
increases towards the middle, all up until the very middle layers, which abruptly reduce
the number of dimensions to a very low value. This shape had a very good effect on the
reconstruction accuracy, and allowed the AE to more consistently map similar observations
close together in the latent (encoding) space. First used here, this general shape for an
AE is reused in many of our experiments, as we will see in later chapters.

Fully

connected ReLU

Batch norm.

1
6
𝑥
2
5
6

2
5
6

2
5
6
𝑥
1
2
8

1
2
8

1
2
8

1
2
8
𝑥
1
2
8

1
2
8

1
2
8
𝑥
6
4

6
4

6
4
𝑥
6
4

6
4

6
4
𝑥
3
2

3
2

3
2

3
2
𝑥
3
2

3
2

3
2
𝑥
1
7

Decoder

1
7
𝑥
3
2

3
2

3
2
𝑥
3
2

3
2

3
2
𝑥
6
4

6
4

6
4
𝑥
6
4

6
4

6
4

6
4
𝑥
1
2
8

1
2
8

1
2
8
𝑥
1
2
8

1
2
8

1
2
8
𝑥
2
5
6

2
5
6

2
5
6

2
5
6
𝑥
1
6

1
6
𝑥
1

*

Encoder / Discriminator*

𝑂
𝑁
𝑆

𝑌

Figure 4.11: Neural net topologies of the subnets used.

4.3.3 Evaluation

In this evaluation, k -Means quantizations are fit: 1) on the raw data without feature
extraction, 2) on the features extracted using a traditional autoencoder (with the same
topology as shown in Fig. 4.11), and 3) on the features extracted using ACAI. As k -Means
is sensitive to initialization and is initialized randomly, we repeat the quantization for
every k value 30 times. This is also represented in the results in Fig. 4.12, where instead
of singular purity values, distributions are shown.

Figure 4.12 shows how state purity changes by increasing k. Subfigure 4.12a, highlights
the purity values across all k values for the 3 clustering methods. Solid lines depict the
average, while bands run from the minimum to the maximum values. Although none of
the methods produce particularly good purity at lower k values, at high values of k ACAI
reaches almost 0.8 purity, with the traditional autoencoder trailing behind at around
0.73. This gain might not seem much, but in terms of erroneously clustered points, the
difference between an autoencoder and the ACAI is a 24% reduction. Native k -Means
without feature extraction levels out at around 0.6 purity, and starts to not scale well
above k = 48. Subfigures 4.12b - 4.12e provide a better look into the distribution of purity
at k values 12, 36, 72 and 120 respectively. It is interesting to note that ACAI seems to
have more high-purity clusters all through the k range than the other methods.

Figure 4.13 shows, for each class, the normalized number of clusters that have that class as
majority. Here, 1.0 share means the class occupies 1/12 of the clusters as majority. Dots
represent the average, lines run from the minimum to the maximum values, and colors
correspond to the different k values. Generally, all class-shares seem to converge towards
1.0 as k increases. This is important, as no class is “dissolved” among the others, and so
each will get its own fair share of clusters with a sufficiently large k. This is most true for
ACAI, which seems to best converge towards 1.0 share.

4.3. TOWARDS DEEP CLUSTERING IN EMA 89

0.8

0.7

0.6

0.4

0.3

0.5

12 36 60 84 108
P

u
ri
ty

𝑘

k-Means

AE + k-Means

ACAI + k-Means

(a) Purity overview.

0 0.25 0.5 0.75

D
e
n
s
it
y

Purity

1

𝑘 = 12

(b) Distr. at k = 12.

0 0.25 0.5 0.75

D
e
n
s
it
y

Purity

1

𝑘 = 36

(c) Distr. at k = 36.

0 0.25 0.5 0.75

D
e
n
s
it
y

Purity

1

𝑘 = 72

(d) Distr. at k = 72.

0 0.25 0.5 0.75

D
e
n
s
it
y

Purity

1

𝑘 = 120

(e) Distr. at k = 120.

Figure 4.12: State purity at different k values.

3

2

0

1

S
h
a
re

Setting
0.5

2.5

1.5

M6M1 M2 M3 M4 M5 M7 M8 m1 m2 W1 W2

𝑘 = 12 36 72 120 k-Means

(a) k -Means

3

2

0

1

S
h
a
re

Setting
0.5

2.5

1.5

M6M1 M2 M3 M4 M5 M7 M8 m1 m2 W1 W2

AE + k-Means

(b) AE + k -Means

3

2

0

1

S
h
a
re

Setting
0.5

2.5

1.5

M6M1 M2 M3 M4 M5 M7 M8 m1 m2 W1 W2

ACAI + k-Means

(c) ACAI + k -Means

Figure 4.13: Class majority shares for the different feature extraction methods.

90 4. Environment Modeling and Abstraction of Network States

All-in-all, deep clustering using a combination of the ACAI and the k -Means algorithms
is able to distinguish underlying (hidden) groups in the dataset. The quantization for the
EISS produced results with high accuracy at the k value of 120, which is still well within
computational feasibility. While the differences in simulation, data and net topologies
makes these results incomparable to our previous results, it is evident that the concept of
environment modeling seems feasible, and the ACAI algorithm is a strong candidate for
the modeling of network and environment states.

4.3.4 Conclusion

This chapter discussed a candidate design (called EMA) for modeling of objective network
states (EIS), and the abstraction of subjective discrete states (DAS) from the objective
network states. The network states mapped in the EISS can be used as a basis for com-
munication between CFs and other components in the CAN. The fine quantization in the
EISS allows for a simple mapping procedure where individual actions, or CF-specific states
can be assigned to whole EIS states, simplifying a lot of potential modeling complexity
in the CFs, and hopefully keeping them lightweight. However, it became clear that the
quantization cannot be simply done without regard to present contextual (hidden/latent)
groups in the data, as these can invalidate the abstraction/mapping procedure. If the EIS
states incorporate multiple contextual groups into a single state, logically, the mapping
will be incapable to assign accurate actions or meaning to these states.

In order to see how big of a problem this is, and how well the alignment of EIS states
to contextual groups improve by increasing the number of EIS states, we have evaluated
the EMA concept on simulated datasets. Our evaluation showed that – using various
feature extraction methods – the quantization that forms the EIS states can be aligned to
a very high accuracy to contextual states. The best performing method in this regards was
the ACAI algorithm, which tries to integrate the feature extraction into the quantization
process by influencing the way the extracted features are formed. So far, the feature
extraction step was seen as a separate preprocessing step which helps the quantization to
combat noise, as well as the curse of dimensionality. However, it is clear that the feature
extraction steps plays a crucial role in the correct understanding/modeling of the network
behavior, thus should handled as a single processing step, together with the quantization.
In fact, the feature extraction and quantization algorithms should be tailored to work with
each other, paving the way towards deep clustering, which is the focus of the next part of
this thesis.

91

5. Summary of Research on Exemplification

This part of the thesis has discussed the machine intuition process of exemplification: the
act of defining a vocabulary of descriptive example observations, and using these examples
to represent multiple observations, in order to effectively convey information in a dense,
but easily understandable format. Quantization algorithms realize this process in the ML
format, by partitioning training data points into a finite number of partitions (quanta)
around centroid points, which act as the representative example, the prototype of each
quantum. These centroid-based quantization algorithms have 2 important characteristics
that make them fight the curse of dimensionality: 1) the quanta formed are independent
from the number of dimensions in the input data, and 2) the quanta “stick” to the areas
of the input space which are populated, thus not wasting modeling capacity on possibly
never used combination of values. The mitigation of the curse of dimensionality is quite
important in the mobile network management setting, as large-scale mobile network data
is quite varied, potentially containing hundreds or even thousands of KPIs as separate
dimensions, many of which should be taken into account in decisions in accordance to the
CAN concept of cognitive functions.

The most known example of centroid-based quantization is the k -Means algorithm. This
algorithm uses the EM iterative optimization method, where the centroids are moved to
mean of the quanta in each iteration. This makes k -Means quite sensitive to the distri-
bution/density of the data points: many smaller quanta gather around densely populated
parts of the input space, while sparsely populated parts are only covered by a few large
quanta. This results in a large variance in the maximum distance between centroids and
data points – which is also the error in the representation of individual observations by the
prototype – what we refer to as quantization error. The large variance is not beneficial for
tasks where the quantization is used in a “mapping” quality, such as data exploration, or
anomaly detection, as it can be misleading for the user, or hide anomalous points. Our con-
tribution to quantization is the BSQ algorithm, which changes this behavior, by modifying
how the centroids are updated each iteration, resulting in a quantization that strives for
equal maximum quantization error – equal volume – between quanta. The distribution-free
nature of BSQ lends itself well to mapping tasks in mobile networks. BSQ was evaluated
on real mobile network data, and has proved to realize the equal volume quantization well.

In the exemplification capacity, BSQ was proposed to be used as a means of knowledge
sharing between CFs. In this concept, the expert knowledge (labeling) was to be commu-
nicated and refined between CFs deployed in somewhat different contexts, or ones that

Version: 2023/05/26 – 14:32:46

92 5. Summary of Research on Exemplification

experience different effects on/in the network. Such a knowledge sharing method is im-
portant in anomaly detection scenarios, where observations of anomalies are few and far
between, and every effort needs to be taken to build a larger database, which can then be
used for the training of automated anomaly detection systems.

A downside of our BSQ implementation was the relatively long training time compared to
k -Means. While the problem BSQ solves is inherently a more complex one, thus imposing
a higher algorithmic complexity and worse scaling than k -Means on any possible imple-
mentation, we tried to mitigate this problem in two ways. First, an alternative of BSQ
was proposed, called BBQ, which uses a simpler calculation for the update of the centroids
in each iteration, in order to approximate the behavior of BSQ with much less calcula-
tion. We have shown that this approximation, although potentially infinitely bad with
enough dimensions, actually converges to an acceptably low approximation error on real-
life datasets. Secondly, we have proposed an implementation of BSQ, which replaces the
EM optimization with a neural-network-style SGD, which lowers the algorithmic complex-
ity, as well as allowing for the use of dedicated hardware accelerators for further speedup.
The evaluation using mobile network data showed that the theoretical speedup is also
present in practice, and makes BSQ in some cases as fast as the k -Means algorithm. An
(intended) side-effect of this implementation is that BSQ also integrates better into neural
nets, which how it is mostly used in the rest of our work.

While the centroid-based quantization methods effectively avoid the curse of dimensionality
up to a few tens of dimensions, they cannot work with the hundreds or thousands of
dimensions of data the CAN concept would utilize them for. To rectify this, in the EMA
module of the CAN architecture, a feature extraction step precedes the quantization, which
is there to map the many-dimensional input into a fewer-dimensional latent space, while
also removing redundancy and noise from the data. This feature extraction is proposed
to be realized by an autoencoder neural net. We have evaluated the EMA concept on
simulated network data, where the information contained aggregated KPIs from cells in the
network. In our evaluation, we have shown that the feature extraction and the quantization
can be done effectively, so that the ground truth – in this case groups in the data – is
captured correctly, without quanta containing too many points from different groups. The
conclusion of our research was that the feature extraction has to be done explicitly so that
it forms a latent representation which is well-aligned for the subsequent quantization step.
The best performing algorithm in this regard was ACAI, which achieves this alignment by
imposing additional constraints on the latent space while the autoencoder is trained. This
approach is prevalent in deep clustering methods, which are the focus of the next part of
this thesis.

5.1 Assessment of Feasibility (A1.1)

Exemplification can be realized effectively with centroid-based quantization algorithms.
The centroids act as the examples/prototypes, which contain the values that describe the
average of each quanta. Centroid-based quantization algorithms use measures of distance
in their training and inference, both to position the centroids as well as to partition space.
The most often used distance is the L2 or Euclidean distance, probably because of its
intuitive nature to us humans, however, it might not be applicable to all use cases. The
“meaning” of the quantization changes greatly with different distance measures: a dis-
tance measure must be selected which best represents the difference between data points
according to the use case. Furthermore, distances are greatly affected by the scaling of
dimensions, thus, care must be taken when normalizing the data, as the different scaling
of input features can emphasize/suppress the representation of individual features in the
quantization.

5.2. ASSESSMENT OF PRACTICALITY (A1.2) 93

The distance between the centroids and the data points – the quantization error – also
serves as a measure of the error in the representation when using the centroids as pro-
totypes. All of these algorithms require the meta-parameter k – the number of quanta
– which has to be set by the user. The quantization error monotonously decreases with
increasing k, which is fortunate, as the goal is usually to arrive at a“fine-enough”quantiza-
tion that achieves a quantization error below a certain threshold. This means that k only
has an effective lower bound for most uses, which can be greatly overestimated without
hurting performance, thus making the “guessing” of the correct k forgiving for most of the
tasks.

5.2 Assessment of Practicality (A1.2)

Centroid-based quantization algorithms are quite light-weight: while the training (such as
in the case of BSQ) can take a few minutes, this is orders of magnitudes faster than some
of the DL methods we will be discussing later in the thesis. Inference is very fast thanks to
the simple nearest-neighbor partitioning logic most of the algorithms utilize. In terms of
data need, quantization algorithms are quite simple models (once again compared to DL
methods), thus do not require an exorbitant amount of data to avoid overfitting. These
qualities make them easily applicable in network automation tasks.

While the algorithms’ training and inference time scales with the number of quanta used
in the quantization, this scaling is at most linear. The algorithms also scale with the di-
mensionality of the data. This can be problematic, as it not only slows down training and
inference, but can also break the intended functioning of the distance measures (curse of di-
mensionality). To avoid this, the quantization can be preceded by a feature extraction step
which maps the data to a lower-dimensional latent space. A more computation-heavy DL-
based feature extraction used as preprocessing can compromise this practicality. However,
although the feature extraction might be influenced to better align to the quantization,
the two algorithms do not need to be trained together. Thus, if possible, the (re-)training
of the feature extraction model can be skipped or a global model used, and only the quan-
tization can be (re-)run on context-specific or newly collected datasets, in order to increase
accuracy or to avoid model aging in local, changing contexts.

5.3 Assessment of Applicability (A1.3)

Exemplification helps many problems by simplifying the models required, which is achieved
through the discretized representation of the data. Where without exemplification, a com-
plex problem might require a system which reacts to infinitely many possible combination
of inputs, a discretized formulation requires the solution for maybe a handful of discrete
cases, with the tradeoff of accuracy lost in the quantization process. If the problem itself
allows for such a loss of accuracy, discretization can offer a number of benefits. Discretized
functions avoid a lot of modeling complexity, because they can be realized as a simple
mapping between inputs and outputs, such as a lookup-table. Discretized communication,
the focus of this discussion, also aims to avoid the communication of a lot of informa-
tion if both sides are capable of encoding and decoding messages through a “vocabulary”.
This is especially important in mobile networks, where the network automation overhead
should be kept minimal in order to not consume the limited resources of the network.
Furthermore, humans naturally work well with examples. In many cases, even the de-
sign of systems and algorithms is helped a lot by exemplification, as it is much easier for
the designer to conceptualize or visualize the behavior of in discretized fashion, such as a
network state model.

Exemplification through quantization can be used in “manual”mobile network automation
tasks, such as data exploration. In these tasks, the goal is to describe the space the data

94 5. Summary of Research on Exemplification

occupies without necessarily paying much attention to the distribution of the data. In these
cases, our proposed BSQ algorithm works quite well, behaving more intuitively than its k -
Means counterpart. However, our main goal with the utilization of quantization algorithms
was to facilitate effective communication between cognitive functions. These tasks – such
as knowledge sharing or the EMA concept – is not simply helped by, but enabled by
quantization. In these tasks, the goal of the quantization is the minimization of the
(average) quantization error, and thus the minimization of the error in the representation
by the prototypes, which can be achieved through following the data distribution. Thus,
in these tasks, the original k -Means algorithm has a good reason to perform better than
BSQ, if other external factors, such as the feature selection preprocessing step works as
intended.

95

Part II

Association

Version: 2023/05/26 – 14:32:46

97

6. Network State Modeling using Sparse
Clustering Autoencoders

Unsupervised learning can be utilized as an exploratory tool for data mining, as an initial
approach in case of new contexts and unknown datasets, such as when developing an
applications that uses deep learning algorithms. Associating observations with each other,
i.e. the discovery of existing groups in the data based on meaningful similarity, is one of
the most powerful tools for such uses. Association can be undertaken through the ML task
of clustering, the most often utilized subcategory of unsupervised learning. Clustering can
be a very complex task, as it relies heavily on the understanding of the latent behavior,
the underlying causes in the data.

Clusters are often subjective, because the ground truth is up to interpretation, however
contradictory this might sound: where one might see a feature which clearly separates
two groups with barely any points in-between, another could say that there are enough
transitional observations so that the two groups cannot be separated. Furthermore, taking
only a few features into account might separate the observations into a few clusters, while
including more features could split the data into more clusters. It is up to the individual
to define what “meaningful” is in a certain setting.

While the above is mostly true for clustering natural behavior, such as the behavior of
humans, clustering in artificial systems can be a little more well-defined. In artificial
systems – such as mobile networks – the use of clustering is usually tied to a problem
or a task to solve, which can immediately designate the features that are meaningful for
the clustering. Furthermore, artificial systems often have state-like logic, forming clusters
in the behavior which are objectively true, and not up to interpretation. Naturally, these
clearly defined groups are often tied to-, or influenced by less clearly defined behavior, such
as human interaction with the system. In any case, the true cause of behavior is often
hidden, and can only be extracted through the understanding of the latent logic in the
data. Thus, in our nomenclature, clustering is more than just simple grouping; clustering
requires understanding of the underlying logic in the data, so that clusters may be formed
not on superficial, surface-level features, but deep and meaningful connections between
the observations. This need for a better understanding of the data leads to the idea of
realizing clustering using deep learning.

Clustering shares mechanical similarities to quantization; both tasks define groups based
on training observations. Where we distinguish the two is in the end goal; quantization

Version: 2023/05/26 – 14:32:46

98 6. Network State Modeling using Sparse Clustering Autoencoders

aims to split the training data – thus the input space – into many small quanta, without
necessarily assigning existing groups or other ground truth to a single quantum. Oppo-
site to this, clustering aims to find existing groups in the data, in a one-to-one mapping
between ground truth classes and formed clusters. Because of the probably much more
complex definitions (shapes) of clusters, generally clustering also does not aim to represent
groups with singular observations (prototypes), unlike quantization. However, the distinc-
tion between quantization and clustering is not always so simple: as we have seen briefly
in the end of the previous chapter, often the best approach to quantization is to recognize
the existing groups in the data, thus employing some clustering techniques in the feature
selection/quantization process. This chapter discusses an algorithm that is also somewhat
in-between quantization and clustering, but approaches the problem from the other direc-
tion, by “over”-partitioning space into many micro-clusters, and later connecting these to
from actual clusters in the data.

The core of the chapter is contained in Sec. 6.1, which details the work published in the
following paper:

Deep Clustering of Mobile Network Data with Sparse Autoencoders
Márton Kajó, Benedek Schultz, Georg Carle
NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium,
pp. 1-6. IEEE, 2020.

My contributions to the above paper was the design, implementation and evaluation of
the algorithm, as well as the co-authoring of the paper. The discussion in this thesis
expands on the paper, by adding further detail to some elements, as well as detailing the
shortcomings of the algorithm in Sec. 6.2. The algorithm discussed in this chapter is also
contained in the following patent application:

Method and Apparatus for Automatic Network State Modeling in Mobile Networks
using Deep Clustering Autoencoders
Benedek Schultz, Márton Kajó, Stephen S. Mwanje
Finnish application no.: 20206162, filed November 2020

The discussion is concluded with some remarks on design-time bias in algorithm design,
and the caveats when designing DL algorithms for explainability.

6.1 Deep Clustering with Sparse Clustering Autoencoders

6.1.1 State Transition Graphs, Sparsity of Activations

We have discussed network states previously in the context of facilitating communication
between CFs. Network states describe the settings, performance, and/or context of sin-
gle or multiple entities in the network, such as base-stations, gateways, cells, or users.
Naturally, the network is not expected to always stay in the same state, rather, to often
transition from one state to another. In this model, network elements exist in a shared
state-space, where they are modeled as either being in a state, or moving from one state
to another. Thus, the possible state-space can be envisioned as a network state transi-
tion graph, where states are nodes, and transitions are connections running between these
nodes. An illustration of a network state transition graph can be seen in Fig. 6.1. The
graph allows for an easy overview of network behavior, as well as enabling simple graph-
based solutions to a handful of use cases; anomaly detection, network state prediction,
transfer learning of network state models, etc.

6.1. DEEP CLUSTERING WITH SPARSE CLUSTERING AUTOENCODERS 99

Clustering is realized in the state transition graphs if we examine the population of transi-
tions between the networks states. On one hand, populated transitions – transitions which
often see observations in-between two states – signify a not so clear distinction between the
states, which means that the states likely belong to the same ground truth group. On the
other hand, unpopulated transitions show a clear division between two states, signifying
separate ground truth groups. Populated and unpopulated transitions show up in a state
transition graph as edges containing many or few observations. By only considering edges
in the graph above a certain transitional population threshold, the state transition graph
falls apart into disconnected subgraphs. The disconnected subgraphs form the clusters,
where all network states are reachable from one another are considered as being in the
same network state cluster.

Network State

Populated transition

Unpopulated transition

Subgraph / State Cluster

Figure 6.1: Illustration of a network state transition graph.

The state transition graph concept is limited to linear transitions by design, where the
network elements can only occupy transitional positions between 2 states, i.e.: every ob-
servation is described either as a single state, or a mixture of 2 states (as opposed to
mixtures of 3 or more states). This design decision was made for two reasons: 1) linear
transitions are intuitive for us humans, because in a sense they represents movement from
point A to point B, and 2) they allow the model to be utilized as a graph. While the
formulation of the states (nodes) in the graph could be done with previously described
quantization methods, the correct mapping of transitional observations to graph edges is
not a trivial task. For the formulation of the state transition graph, we have chosen to use
an autoencoder. For the correct mapping of the transitional states, soft constraints need
to be enforced during the autoencoder training, which move the encoded points onto lines
between the defined graph nodes. As the encoding is already restricted by this constraint,
it is beneficial to also fix the graph nodes to certain points in the encoding space, which
results in a simple geometrical shape and an easier calculation of the constraint.

By fixing the graph nodes in place, and moving encoded observations close to these points,
or onto the lines connecting them, we enforce activation sparsity in the autoencoder, which
refers to the situation where only a few neuron outputs (activations) are non-zero for every
observation in a neural net layer. Activation sparsity is not to be confused with sparsity
in space, referencing parts of the input space which contain few observations (are sparsely
populated). Because the formulation of the state transition graphs is done through this
enforcement of activation sparsity, our algorithm is called Sparse Clustering Autoencoder
(SCA).

100 6. Network State Modeling using Sparse Clustering Autoencoders

6.1.2 Sparse Clustering Autoencoders

The clustering method proposed here is based on an autoencoder, as introduced in Sec. 2.3.5.
In their original form, autoencoders are trained to perfectly reconstruct of observations
without any additional labeled information. Perfect reconstruction is not trivial, as the
autoencoder is forced by its own topology to encode the observations into a lower dimen-
sional space, and has to reconstruct (decode) them from this simplified representation.
During training, the autoencoder tries to minimize a reconstruction loss, measured in the
data-space between the original and the reconstructed observations.

Our additions to the autoencoder are two modules:

� The anchoring module, which calculates an additional sparseness loss term on the
encoded representation during training, so that the autoencoder is forced to learn a
clustered representation;

� The guidance module, which constrains activations to a specific range, and helps in
balancing cluster populations.

The anchoring module only plays a role during training, by indirectly affecting the encoded
activations through the sparseness loss. Contrarily, the guidance module is present in the
net both during training and inference, and directly modifies activations. The building
blocks of the proposed neural net can be seen in Fig. 6.2.

Guidance

Module

Anchoring

Module

Encoder Decoder

Sparseness loss

Reconstruction

loss

encodings

Figure 6.2: The modules in the sparse clustering autoencoder.

Two autoencoder types are used in this work: a convolutional autoencoder, which contains
convolutional and fully-connected layers, and a deep MLP, which contains only fully-
connected layers. The topologies of these will be discussed in more detail in later sections.
The proposed clustering modules work with any common layer type.

In the following, an encoded representation of an observation is referred to as an encoded
vectorQ = {q1, q2, . . . , qD}, or simply as an encoding. An encoding is made up of individual
numerical values qi, i ∈ [1, D], also called activations. Both the original observations
and the encodings are vectors, which can also be thought of as single points in many-
dimensional spaces. This is important, as most of the discussion is approached from a
geometrical perspective.

6.1.3 From Sparseness to Convex Combinations

Generally, activation sparseness in a neural net means that in any activation vector (prop-
agated tensor), only a limited number of activations take non-zero values. Sparseness
can be desirable for regularization, or for lowering memory consumption and speeding up
processing with the use of sparse matrix encoding and calculations. Usually, sparseness
is enforced by masking, i.e.: non-desired activations are multiplied by 0, “turning off”

6.1. DEEP CLUSTERING WITH SPARSE CLUSTERING AUTOENCODERS 101

the activation and any backpropagation of gradients through the neuron. Deciding which
activations to mask is net- and use-case-specific.

One such specific use of activation sparseness is described in k-Sparse Autoencoders [46].
In the paper, the authors show that by only allowing the k largest activations in each
encoding to propagate further (k-sparseness), the autoencoder assigns expansive features
(i.e. encompassing many aspects, a larger part of an observation) to individual activations.
This effect is increased as k is decreased. Naturally, we concluded that by only allowing the
single largest activation to propagate (1-sparseness), each activation would represent most
expansive feature possible, i.e. an entire observation. While early experimentation has
shown that this is true, unfortunately this does not result in a clustering (logical grouping
of observations), as allowing for a single activation to propagate still leaves a wide range of
possible values for that activation, each of which can represent wildly different observations.

Preferably, to achieve clustering, we would like to collect encodings around certain points
in the encoded space, which, in the case of 1-sparseness, means that we want to fix which
value the single active neuron can take. The simplest choice for that value is 1, which
means that any observation is encoded into a 1-hot vector, i.e: a vector that is filled
with 0s, except for a single position that contains a 1. This can be seen as clustering or
quantization, where the position of the 1 activation defines which group the observation
is assigned to. The number of possible clusters in this case is limited by the number of
neurons in the middle layer of the autoencoder, i.e: the dimensionality of the encoding
space, D.

Spareness has to be gradually introduced during training, in order not to excessively dis-
turb the formed encoding structure, to give time for the net to align to the new sparseness
criteria [46]. This means that there needs to be a continuous transition defined from no
sparseness (D-sparseness) to 1-sparseness, which needs to also translate into a continuous
translation from no clustering to full clustering. For this reason, net is enforced to repre-
sent encodings as convex combinations of the clusters, reminiscent of class probabilities.
Mechanically, this baseline criteria means that:

� Activations are limited to the range of [0, 1]

� Activations in an encoding vector sum to 1

x

y

z

Subspace 𝜃:

𝑥 + 𝑦 + 𝑧 = 1

Unit-cube:

𝑥, 𝑦, 𝑧 ∈ [0, 1]

Convex hull: simplex

Base-point

Figure 6.3: The simplex of convex combinations.

On top of these baseline criteria, we define the value s, representing sparseness. Let Cnz(Q)
be the number of elements of vector Q that are non zero. Then, s is defined as follows:

s = Cnz(Q)− 1

The reason why we represent sparseness differently to conventional formulation is the
following: the transition from no sparseness to full sparseness can be seen as a gradual

102 6. Network State Modeling using Sparse Clustering Autoencoders

limitation of the dimensionality of the space the encodings can use. Our definition of
the sparseness value s is equal to this dimensionality. The baseline criteria of convex
combinations already means that the encoded points are confined to a regular simplex
(Fig. 6.3), the vertices of which are at the unit vectors along each dimension. We will refer
to the unit vector positions as base points in the future. The simplex in a D-dimensional
space is a convex hull in a D − 1-dimensional affine subspace Θ.

The baseline restriction is also represented in s, since points within the simplex already
adhere to the sparseness s = D − 1. Lower s values limit activations to sub-hulls of
the simplex. As an example, in 4 dimensions, the simplex is a 3-dimensional regular
tetrahedron, with an s-value of 3. Lowering this s to 2, 1, and then finally 0, the activations
are respectively restricted to the faces, edges, and vertices of the tetrahedron. The lowest
sparseness value achievable is always 0, at which point the encodings are forced into the
base points (restricted to 1-hot vectors), essentially realizing clustering/quantization. An
illustration of this gradual limitation of freedom can be seen in Fig. 6.4. All through the
process, the activations retain their convex combination-like qualities.

Whole

tetrahedron

x

y

z

v

Faces

x

y

z

v

Vertices

x

y

z

v

Edges

x

y

z

v

𝑠 = 3 𝑠 = 0𝑠 = 2 𝑠 = 1

Figure 6.4: Gradual limitation of freedom.

6.1.4 Anchoring Module - Sparseness Loss Calculation

As mentioned before, sparsity in neural nets is usually enforced by the masking of values,
through multiplication by 0. In many cases, this operation can mean a quite radical
transformation of the activations, and as such it can easily degrade, or even destroy the
learned encoding, as well as slow down training by suppressing gradient propagation in
the net. In order to avoid this degradation, our method realizes a softer, more forgiving
enforcement, by introducing a sparseness loss on the embedding. The sparseness loss
is calculated as a distance between the original encodings and their anchors, the closest
possible points to each encoding within the restricted space set by the value s.

Generally, most neural nets are trained by backpropagation: a batch of observations is
forward propagated, a single loss value is calculated on the results, which is then back-
propagated to compute the gradients necessary to change the net weights. There are
examples of neural nets, which are influenced by multiple losses (for example, using L1

or L2 regularization could constitute as such), but usually these affect the whole net, i.e.
all layers of the net contribute to all losses. It is much rarer to have a loss only affecting
a subset of weights. SCA utilizes two losses: a reconstruction loss and a sparseness loss.
The reconstruction loss is generic to autoencoders, usually a mean-squared-error loss, that
affects the whole net. Contrary to this, the sparseness loss only affects the encoding part
of the net and the guidance module.

Let us call the set of base-points, the non-negative points a unit distance from the origin
on the axes B = {b1, b2, . . . , bD}, where bi is a 1-hot vector with the 1-value in position i.
For a given sparseness parameter s ∈ [D−1, 0], the D dimensional encoded representation
Q ∈ RD should lie on one of the the s-dimensional convex (sub-)hulls, which are defined

6.1. DEEP CLUSTERING WITH SPARSE CLUSTERING AUTOENCODERS 103

x

y

z

𝑥 > 𝑦 > 𝑧

(a) Sorting activations

x

y

z
𝑡 = −1 0 0

𝑏𝑡2: −1 1 0

𝑏𝑡3 : −1 0 1

𝑏𝑡1 : 0 0 0

𝑏𝑡2 = 𝑎1
′

𝑏𝑡3 −
𝑎1
′

2
= 𝑎2

′

𝒜𝐷−1
′ :

−1.0 −0.5
1.0 −0.5
0 1.0 𝑎1

𝑎2

𝑎3

𝒜𝐷 =
−0.707 −0.408 0.577
0.707 −0.408 0.577
0 0.816 0.577

𝑎1 𝑎2 𝑎3

(b) Generation of the new basis A

x

y

z

𝑄𝑠𝑡𝑏 = 𝑞𝑎1𝑎1 + 𝑞𝑎2𝑎2 + 𝑞𝑎3𝑎3

෨𝑄𝑠𝑡𝑏 = 𝑄𝑠𝑡𝑏 ∗ 𝜇 1 = 𝑞𝑎1𝑎1

𝜇 1 = 1 0 0

(c) Projection by masking

Figure 6.5: The core steps in the generation of anchor point Q̃.

by any of the subsets from B with cardinality s. To create the sparsity loss acting on
the encoded representation Q, an anchor point Q̃ is calculated for every encoding, which
is the projection of the encoding onto the closest sub-hull to Q. The projection is an
orthogonal projection. The anchor describes the position where the encoded point should
be according to the current sparseness level. The sparseness loss is then calculated as:

lsparse = dist(Q, Q̃), (6.1)

where dist is the Euclidean or L2 distance.

Unfortunately, calculating the projection is a non-trivial task, because for s < D there are
multiple sub-hulls of the simplex, from which the closest one for each encoding needs to be
found. In theory, this means that

(
D
s

)
number of projections need to be computed, which

is computationally intractable (for example, for D = 16 clusters with a sparseness of s = 4
means 1820 different projections). In order to escape this complexity, the activations are
sorted in a descending order, and the following operations work in this sorted space. From
a geometric view, sorting rotates and mirrors all parts of the simplex into a single section
(illustrated in Fig. 6.5a), where only a single projection suffices to virtually implement all
the the projections needed for an s value.

By using a translation of −b1, the previously affine subspace Θ becomes a real subspace of
RD (the vector subspace associated to the affine subspace). Within this translated space,
the task now is to calculate the anchor projection onto the s dimensional subspace defined
by the point set B̃s = {0, b2−b1, . . . , bs−b1}. To effectively calculate anchors of encodings
for every level of sparseness s, we change the basis of the encodings, by creating an new
orthonormal basis A = {a1, a2, . . . , aD}, so that every subspace defined by the sub-basis
As = {a1, a2, . . . , as} is parallel to the affine subspace Θ. The calculation of the new
basis can be simply done by using Gramm-Schmidt orgthogonalization on the points of
B. This yields AD−1 = {a1, a2, . . . , aD−1}, with an additional base aD calculated as an
orthonormal vector to AD−1, so that A = AD becomes a fully-ranked orthonormal basis
(Fig. 6.5b). To summarize the preparatory phase:

104 6. Network State Modeling using Sparse Clustering Autoencoders

1. Let B = {b1, b2, . . . , bD}, where bi is a 1-hot vector with the 1-value in position i.
Translate B by −b1 and drop the first dimension, so B̃ = {b2−b1, b3−b1, . . . , bD−b1}.

2. Orthogonalize B̃ using the Gramm-Schmidt method, resulting in AD−1.

3. Append the vector aD = { 1√
D
, 1√

D
, . . . , 1√

D
} to AD−1, which is unit length and or-

thogonal to all elements ofAD−1, resulting inA = AD. This makesA an orthonormal
base of RD. This is our new base.

4. Store A and t as the new base change parameters.

The sorting and translation has to be done on the encodings which are to be projected.
After the translation, the base change is applied to A. In this modified basis the projection
to the s-sparse subspace can be done by masking the last D−s bases. This is done similar
to regular sparseness enforcement, by multiplying the activations with the mask µ(s) =
(1, . . . , 1, 1, 0, . . . , 0), in which the first s elements are 1, and the rest 0 (Fig. 6.5c). Since
the base change needs to be precomputed only once before training, this procedure enables
us to efficiently project for different s values, without the need for lengthy recomputations.
So far, the sparseness computation is as follows:

Algorithm 6.1: The long form of the sparseness loss calculation

Required: Orthonormal basis A and translation vector t
Required: Masking vector µ(s) set by sparseness value s
Required: Activation vector Q

1 Sort activations: Qs = sort(Q);
2 Translate: Qst = Qs − t;
3 Change to the new basis: Qstb = QstAT ;

4 Project by masking: Q̃stb = Qstb ∗ µ(s);
5 Rebase to original base: Q̃st = Q̃stbA;
6 Retranslate: Q̃s = Q̃st + t;

7 Unsort activations: Q̃ = unsort(Q̃s);

8 Compute loss: lsparse = dist(Q, Q̃);

Fortunately, if the user has no need of the actual anchor points (for visualization, or de-
bugging), steps 5-7 can be omitted, almost halving the required computations. This is
because, although a general basis change can be non-distance-preserving, the change be-
tween two orthonormal bases is an isometry, and as such preserves distances. This is also
true for translation. Coordinate sorting would not be distance preserving between encod-
ings, but it is distance preserving between every encoding and its corresponding anchor.
This means that the distance between the original encoding and its projection remains the
same through the whole process. This allows us to calculate the loss immediately after
step 5 as a function of Qstb and Q̃stb. Additionally, for further speedup, the masking oper-
ation can be done to the basis A itself instead of the encodings, which avoids a significant
amount of computation. The shortened procedure is shown on Alg. 6.2.

6.1.5 Guidance Module

The anchoring module provides the sparseness loss, but does not directly interact with
the encodings. Contrarily, the guidance module, which is located in the middle of the
autoencoder and precedes the anchoring module, does directly change the activations. One
of the tasks of this module is to limit the encoding activations to the range of [0, 1], by using

6.1. DEEP CLUSTERING WITH SPARSE CLUSTERING AUTOENCODERS 105

Algorithm 6.2: The shortened form of the sparseness loss calculation

Required: Orthonormal basis A and translation vector t
Required: Masking vector µ(s) set by sparseness value s
Required: Activation vector Q

1 Sort activations: Qs = sort(Q);
2 Translate: Qst = Qs − t;

3 Mask basis: Ã = A ∗ µ(s);
4 Change to the new basis: Q̃stb = QstÃT ;

5 Compute loss: lsparse = dist(Qstb, Q̃stb);

a sigmoid nonlinearity, fulfilling one of the baseline requirements for convex combinations.
The sigmoid nonlinearity ensures that the encodings fall within the unit hypercube in RD,
turning the linear projection onto the affine subspace Θ into a projection onto the simplex.

Many clustering algorithms have explicit mechanisms, often an additional loss, that tries
to even out cluster populations. Without any additional mechanisms, our method runs
into the problem of not properly exploring the encoding space at the beginning of the
training. This leads to a reduced performance due to the encoding not utilizing all the
available clusters for representation. Instead of an additional loss, we use a weight-shared
batch-normalization layer before the sigmoid nonlinearity. Internally this layer centers the
activations around 0, by implementing:

ybn =
x−mean(x)

std(x)
∗ pscale + poffset. (6.2)

In Eq. 6.2, x denotes the input, while pscale and poffset are learnable parameters of the
batch normalization layer. The original idea behind batch-normalization is that at the start
of the training, the normalization centers the activations, while the learnable parameters
are initialized as neutral values, pscale = 1 and poffset = 0, not affecting the activations.
The centering helps in the early training by easing discovery of the activation space, while
later in the training, the net is able to counteract possibly unwanted normalization by
separately changing the learnable parameters for any feature. In our case, to aid the even
distribution of encodings all through the training, the learnable parameters are shared
across features. This retains the centering effect of the batch normalization layer, but
gives the net enough flexibility to adhere to the required sparseness.

6.1.6 Training

Weight decay, or L2 regularization is a common technique to reduce the propensity of
overfitting in neural nets. Originally formulated as an additional loss, the common simple
weight decay implementation works by decaying weights by a small amount before every
update. The regularization effect can be very important in the case of SCAs, in order
to achieve a sensible clustering. Weight decay constrains the complexity of the encoding
and decoding functions, so that small changes in the original data-space cannot result
in arbitrarily large changes in the encoding space. The effect is that the net is forced
to place similar observations in close proximity in the encoding space, which results in
homogeneous, meaningful clusters.

Generally, weight decay is used on all weights of the net, except the shared pscale = 1
and poffset parameters in the guidance module. After a warm-up period, the power of the
weight decay is gradually increased during training. The sparseness value s is similarly

106 6. Network State Modeling using Sparse Clustering Autoencoders

handled, decreasing its value from D − 1 to the goal (which is usually between 0 and 1),
to ease the transition from a regular representation to a clustering. Figure 6.6 shows a
typical training, highlighting the different phases and how the reconstruction loss and the
sparseness loss develops, as well as how the weight decay and sparseness parameters are
set.

0[Epochs]

Exploration

50 100 150 400 500

Clustering Refinement

Rec. loss

𝑠: 9

𝑤. 𝑑. : 10−6

Sparse. loss

10−4

1

Figure 6.6: Parameters and phases during a typical SCA training.

In the exploration phase the sparseness parameter is held at the initial D− 1 value, which
only limits the activations onto the simplex. This leaves a large amount of freedom for
the autoencoder to explore the encoding space and establish a mapping that can later be
focused onto the simplex. In the clustering phase, the s parameter is gradually decreased
to encourage the grouping of encodings. The refinement phase then allows the net to
smooth out imperfections that might have arisen during the clustering phase.

During the development of SCA, we often used scatter-plots of the encoded activations,
to make sure the net behaves correctly. We found the best way to plot encodings is to
project them into a 2-dimensional space so that the base points are arranged on a circle,
going around clockwise. Of course, the projection can be misleading, as one has to keep in
mind that all base points are equidistant from each other in the encoding space, however,
the plots give a good impression of how the encoding develops as sparseness is increased.
Some of these plots can be seen in Fig. 6.7, taken from different epochs during the training
depicted in Fig. 6.6.

6.1.7 Related Work in Mobile Network Automation

Clustering can be a useful tool for network management use cases where autonomous
agency is required, because the conditions with which the system will be working are
unknown at the design time. One group of such use cases fall under the Self-healing
aspect of SON [90]. Self-healing is envisioned as one of the final stages towards complete
autonomy, where SONs are be able to detect, diagnose, and recover from previously known
and even unknown failures in the network. The first step of this process is the detection
of anomalous behavior:

� Static anomalous cell behavior can be caused by erroneous Configuration Manage-
ment (CM) settings, especially so when the settings are autonomously changed by
multiple SON functions. In [91], the Hierarchical Dirichlet Process (HDP) clustering
is used to detect CM changes that cause a degradation, and to possibly roll back
these changes.

� Dynamic anomalies in cell behavior can be caused by strange user behavior, software
bugs, or hardware failure. In [92], such anomalies are detected with the help of the
MGNG clustering algorithm. A later improvement to this clustering method, called
Fixed-Resolution Growing Neural Gas (FRGNG) is proposed in [93].

6.1. DEEP CLUSTERING WITH SPARSE CLUSTERING AUTOENCODERS 107

b1
b2

b3

HighDensity: Low

(a) Epoch 50 (b) Epoch 200

(c) Epoch 350 (d) Epoch 500

Figure 6.7: Projected scatter plots of the encodings during SCA training.

� A specific use case for anomaly detection in mobile networks is detection of sleeping
cells. In [94], the k -Means algorithm is used in an encoded space formed by diffusion
maps on simulated radio measurements, in order to detect degraded or sleeping cells.

While some of the clustering methods above are very complex, none of them are deep
learning-based. The mentioned use cases rely on precise models for sensing specific network
states. Simple models generated by statistical methods are prone to underfitting. Deep-
learning-based clustering could be a better fit for these systems, by allowing for a modeling
that focuses on deeper underlying logic in the data, and is in turn not prone to sensitivity
issues.

6.1.8 Related Work and Comparison in Deep Clustering

Deep clustering algorithms utilize deep neural nets, such as deep AEs (MLP and CNN),
Variational Autoencoders (VAEs), Deep Belief Nets (DBNs) or GANs. The structure of

108 6. Network State Modeling using Sparse Clustering Autoencoders

some of these algorithms is similar to SCA, where the goal of the net is to best reconstruct
the original observations, but with an additional criteria present during training. As
such, most of these net topologies are autoencoder-like, forcing a simplification and a
reconstruction in the model. A good overview of the recent deep clustering algorithms can
be found in [95].

What distinguishes SCA from other deep clustering algorithms is the way clustering is
achieved. In other algorithms – such as Deep Embedded Clustering (DEC) – the encoded
activations are not forced to be sparse representation, rather, cluster centroids are esti-
mated by parameters or an additional statistical clustering algorithm, such as k -Means. To
influence a “confident” clustering in these algorithms, the additional clustering loss moves
the activations to their closest centroids, while also possibly moving the centroids away
from each other, in order to minimize within-cluster scattering, but maximize between-
cluster distinction.

The algorithms are evaluated on datasets where class associations are known. The clus-
tering algorithms’ task is to form clusters of observations that match the original classes
closely (obviously, without the knowledge of these class associations). The most com-
mon datasets are images, as these contain strong underlying logic in the observations that
are hard to extract with non-deep learning methods. The dataset of choice in many of
the papers is the MNIST dataset, a collection of 60 thousand handwritten digits scanned
from US postal codes, stored as 28-by-28 pixel grayscale images. In this case, the cluster-
ing algorithm’s task is to automatically associate each image to one of 10 clusters, each
representing one of the digits.

Batchnorm ReLU Sigmoid (De)Conv. F. conn.(Un)Pool.

2
8
𝑥
2
8
𝑥
3
2

2
8
𝑥
2
8
𝑥
3
2

2
𝑥
2
,𝑠
2

1
4
𝑥
1
4
𝑥
6
4

1
4
𝑥
1
4
𝑥
6
4

2
𝑥
2
,𝑠
2

7
𝑥
7
𝑥
1
2
8

7
𝑥
7
𝑥
1
2
8

4
𝑥
4
𝑥
2
5
6

4
𝑥
4
𝑥
2
5
6

2
0
4
8
𝑥
2
5
6

2
5
6

2
5
6

2
5
6
𝑥
1
0

1
0
*

1
0

Guidance

Anchoring

2
5
6
𝑥
2
0
4
8

2
0
4
8

2
0
4
8

1
0
𝑥
2
5
6

2
5
6

2
5
6

7
𝑥
7
𝑥
1
2
8

7
𝑥
7
𝑥
1
2
8

1
4
𝑥
1
4
𝑥
6
4

1
4
𝑥
1
4
𝑥
6
4

2
𝑥
2
,𝑠
2

2
𝑥
2
,𝑠
2

2
8
𝑥
2
8
𝑥
1

2
8
𝑥
2
8
𝑥
1

Figure 6.8: The convolutional autoencoder net topology used for deep clustering of the
MNIST dataset.

Performance is measured against the original class associations, with metrics that are
invariant to cluster association permutations. One such metric is Normalized Mutual
Information (NMI), which takes the value 0 in case of no correlation between cluster and
class associations, and 1 if there is a perfect match between the two. Following is a table
from [95] (Tab. 6.1), that compares the performance of our algorithm with recent deep
clustering algorithms, measured as the NMI on the MNIST dataset.

The performance of our algorithm is highlighted with blue. For reference, the performance
of the regular k -Means algorithm is also included, as a representative of traditional algo-
rithms. To achieve this clustering task, here a deep autoencoding CNN was used with
sparseness loss injected at the middle of the net, as illustrated by the topology in Fig. 6.8.
Although other algorithms did perform better, we see our method as competitive. At the
time, we did not consider this performance to be the absolute best achievable, as there
remain certain quirks, as well as a very irregular performance between trainings, which
we hoped to eliminate in the future. The performance of the SCA algorithm in clustering
tasks will be discussed further in Sec. 6.2.

6.1. DEEP CLUSTERING WITH SPARSE CLUSTERING AUTOENCODERS 109

Method Architecture Clustering alg. NMI

k -Means - - 0.481

DEC [96] MLP Net est. params. 0.800

DCN [97] MLP Net est. params. 0.810

SCA CNN - 0.839

UMMC [98] DBN k -Means 0.864

CCNN [99] CNN k -Means 0.876

JULE [100] CNN Agglomerative clust. 0.915

DEPICT [101] CNN Net est. params. 0.916

DBC [102] CNN k -Means 0.917

TAX [95] CNN Net est. params. 0.923

Table 6.1: Deep clustering algorithm performance comparison on MNIST.

6.1.9 Example Use of SCA: Cell Anomaly Detection

This section is meant as a demonstration of the ease of understanding gained by working
with meaningful clusters on multi-dimensional network management data. The example
given here shows how to explore network data using SCA to get a general overview of the
network, and look for anomalous/misconfigured cells. With the use of the state transition
graph, 3 types of anomalous behavior can be defined (Fig. 6.9):

1. Anomalous states are labeled states (already present in the training dataset) that
are known to represent something abnormal.

2. Static anomalies are measurements that fall outside of the populated parts in the
model.

3. Dynamic anomalies are (sequences of) state transitions that are not seen in normal
operation.

Low load
Medium load

High load

Sleeping cellPacket drops

Static anomaly

Dynamic anomaly

Anomalous state

Figure 6.9: Anomalous behavior types in the network state transition graph.

This evaluation focuses on anomalous states. To show an example of anomalous cell state
detection, we have trained an SCA on PM data captured from a real mobile network. The
dataset contains roughly 3 months worth of hourly measurements from more than 2000
cells, consisting of 17 KPIs, which can be grouped into 5 categories based on meaning, as
shown on Tab. 6.2.

The neural net used for this clustering was a deep MLP autoencoder consisting of fully-
connected layers, batch normalization layers and Leaky ReLU nonlinearities [103], the

110 6. Network State Modeling using Sparse Clustering Autoencoders

Users Number of users, connection attempts/releases

Volume / throughput Data volume, PRB utilization, layer throughput

Latency Latency on radio

Radio conditions RSRP/Q, CQI

Voice Voice data volume, number of QCI 1 users

Table 6.2: KPI groups collected.

1
0
2
4
𝑥
1
6

1
6
*

1
6

Guid.

Anchoring
1
7
𝑥
6
4

6
4

6
4

6
4
𝑥
2
5
6

2
5
6

2
5
6

2
5
6
𝑥
1
0
2
4

1
0
2
4

1
0
2
4

1
6
𝑥
1
0
2
4

1
0
2
4

1
0
2
4

1
0
2
4
𝑥
2
5
6

2
5
6

2
5
6

2
5
6
𝑥
6
4

6
4

6
4

6
4
𝑥
1
7

Figure 6.10: The MLP autoencoder network topology used on network data.

topology of which can be seen in Fig. 6.10. The encoder and the decoder were mirrored
equivalents, both consisting of 4 layers.

We chose to use 16 clusters for this demonstration, as too many would be hard to visualize.
The choice is a little arbitrary, as in a typical scenario the user has no notion of how
many real classes to expect in the data, a downside shared by many other clustering
algorithms. Generally, the with more clusters used, cluster homogeneity increases, making
the right choice for the number of clusters dependent on a tradeoff between homogeneity
and complexity of the outcome.

The sparsity parameter s was continuously lowered from 15 to 0.5 during training, not
0.0. This creates an encoding, that somewhat allows for binary combination of two net-
work states, which helps in the identification of used transitions between the states. The
final projection of the encoded activations can be seen in Fig. 6.11, together with the
corresponding network state graph.

Network load: Low High

5

9

13

b1 b2

b3

Figure 6.11: Network data encoded by SCA as activations (left), and the equivalent net-
work state transition graph (right).

6.1. DEEP CLUSTERING WITH SPARSE CLUSTERING AUTOENCODERS 111

Each observation was hard-assigned to the state with the largest activation in its encoding.
The connections in the network state graph were established by looking at the network
state transition sequences in the data: a connection is drawn between two states, if the
number of transitions between the two clusters is above a certain threshold. There is a clear
distinction in the number of transitions between often used and seldom used transitions,
with often used transitions numbering in the 100 thousands range, while seldom used ones
only represented in the hundreds. We chose the cutoff threshold to be 1000 transitions, with
which the network state graph visually matches the scatter plot of the encoded activations.

The prototypes (or centroids) of the states are obtained by decoding the 1-hot encoding
vectors in the encoding space back to the original KPI-space. By looking at what these
prototypes represent in the original KPI-space (in the form of bar-charts), we were quickly
able to deduce that most of the states correspond to different levels of network load, but
represent mostly normal operation. In Fig. 6.11, the states are colored from white to dark
gray depending on the network load. However, states 11 and 16 stood out, showing strange
behavior (highlighted as dark blue and red respectively). The KPI-space prototypes of
these states can be seen in Fig. 6.12. All KPIs are shown as individually normalized
features, with their mean being at 0 and standard variation at 1, thus, the vertical axis
holds values in standard deviation.

0.0

-2.0

2.0

4.0
Users Vol./Thp.

R
a
d
io

V
o

ic
e

L
a
te

n
c
y

DL thp.DL users

[SD]

(a) State 11

Users Vol./Thp.

R
a
d
io

V
o

ic
e

L
a
te

n
c
y

0.0

-2.0

2.0

4.0

UL latency
PUSCH

SINR

[SD]

(b) State 16

Figure 6.12: Anomalous network state prototypes.

State 11 shows extremely high user numbers and throughput in the downlink, one which is
not represented in any other state. State 16, on the other hand, shows a situation with low
cell load, but unreasonably high uplink latency, and abysmal uplink radio conditions. It is
interesting to note, that state 11 only has transitions from and to high load states, while
state 16 only low load states, which is also represented in Fig. 6.12. Another important
aspect to note is that out of all states, state 11 and 16 have the largest amount of self-
transitions, meaning that these states were usually not temporary, rather, cells spent
longer, continuous timeframes therein.

Fig. 6.13 shows 3 days of two cells with a high amount of time spent in state 11 and 16
respectively. Although a large portion of the time is spent therein, state 11 turns out to be
a somewhat temporary state, as cell A1 regularly leaves it. Contrarily, state 16 seems to
be more permanent, as cell A2 was continuously int that state for almost 2 days. This can
be verified also in Fig. 6.14, where the cells are shown on the map and colored according
to their state. During peak hours (3:00 PM), state 11 is represented in many of the cells
belonging to densely populated, urban areas, however, all cells leave this state in the off
hours (3:00 AM). On the other hand, some cells in rural areas seem to be stuck in state
16 for long periods of time.

112 6. Network State Modeling using Sparse Clustering Autoencoders

7.0

-1.0

15.0

[SD] Day 1 Day 3Day 2

DL users DL thp.

(a) State 11

2.0

-4.0

8.0

[SD] Day 1 Day 3Day 2

UL latency PUSCH SINR

(b) State 16

Figure 6.13: Anomalous network state sequences.

Overall, we conclude that state 11, although showing an extremely high load, does not
represent a fault in itself. However, the cells that spend long, continuous timeframes in
16, should be checked for possible misconfiguration, or a potential Coverage and Capacity
Optimization (CCO) issue.

6.1.10 Conclusion and Critique

This chapter discussed a deep-neural-net-based clustering algorithm, that is meant to
translate network data into a network state transition graph. A proposed implementation
was explained from a geometrical perspective, and evaluated both quantitatively using a
common dataset, and qualitatively using data from a real mobile network. Moving for-
ward, our goal was to improve the algorithm, and publish a paper including a thorough
quantitative evaluation in common clustering scenarios with common datasets. However,
this goal was ultimately never reached, as we realized there were fatal flaws in the algo-
rithm, which impacted its performance in a clustering setting. These flaws – the mistakes
we made during design – are not specific to SCA, and we encountered them later in our
research, pointing to a more general problem in DL algorithm design. I think general a
conclusion can be made using our SCA design process as an example, thus the next section
is dedicated to this discussion.

6.2 On Human Bias in DL Algorithms, Explainability

SCA is DNN-based clustering algorithm, meant to be especially fit to translate network
data into an easily understandable model, which we call a network state transition graph.
While this intuitiveness was the main goal when developing the algorithm, we also wanted
to realize some algorithmic aspects on a more mechanical level:

a) Many deep clustering methods use secondary, statistical clustering algorithms (such
as k -Means) to define clusters in their latent space, which introduce more parameters
for the user to set, and in turn more possibilities where bias or misconfiguration can
compromise the results. SCA was designed to remove this additional clustering step,
by forcing the autoencoder to move the clusters into predefined locations in the latent
space. The idea behind this design decision was that, as the autoencoders usually
have plenty of modeling power to encode into latent spaces even with constraints,
there should be no need to add further complexity with a secondary clustering step.
Thus, instead of a secondary clustering step defining the clusters, the (micro-)clusters
in SCA are immediately defined around predefined points in the latent space. At the

6.2. ON HUMAN BIAS IN DL ALGORITHMS, EXPLAINABILITY 113

(a) 3:00 PM

(b) 3:00 AM

Figure 6.14: Maps of cell states at two different times in the day.

time of this research, SCA’s approach to deep clustering was not prevalent, and only
recently have we encountered publications that undertake something similar, albeit
through a quite different implementation.

b) SCA utilizes the latent observations – mapped to predefined base-points – as the only
source of input to the decoder. We theorized that this way, the decoding has the
greatest regularization effect on the latent space, and will not allow for misaligned
mappings where multiple ground truth classes are positioned around a single base-
point, and thus, are assigned to a single cluster.

Originally, the goal was to fine-tune SCA for it to be competitive with the then state-
of-the-art clustering algorithms. However, we were never able to achieve the required
performance consistently. SCA, while sometimes producing excellent results, often created
misaligned encodings where observations from different ground truth classes were mapped
to the same base-point. In these cases, no amount of training iterations helped to move
the encodings into a better mapping. The truth is that the final accuracy of the clustering
greatly depends on the initial weights and biases in the SCA neural net, which are selected
randomly. A rare, lucky initialization quickly converges to good accuracy, while a much
more likely unlucky initialization creates a wrong initial encoding, which is then further
reinforced/locked down through the sparseness enforcement, from which state the model
cannot be moved again.

The problem can be illustrated from a geometrical perspective, by imagining the initial
encoding layout of the ground truth classes as a structure of balls enclosed into the confined
wireframe of the simplex (Fig. 6.15). A lucky initialization would have the ball-structure
oriented in such a way that each ball is quite close to a vertex of the simplex, and conversely,
an unlucky initialization would have balls on edges or faces of the simplex, in-between

114 6. Network State Modeling using Sparse Clustering Autoencoders

Rotation

Center

Figure 6.15: Illustration of the rotation of the latent representation required to best fit
the simplex.

vertices. In case of an unlucky initialization, the sparseness loss often rips classes apart,
forcing parts of a class to end up around different base points. In this unlucky case,
the SCA should be able to rotate the encoded ball structure into a position where the
balls align well with the vertices. However, rotations are complex operations in anything
more than a few dimensions, and neural nets can not effectively realize them using the
common FC and nonlinearity layers, or their derivatives. In fact, neural nets which are
capable of undertaking rotations, or are resistant to the rotation of input data (mostly
2-dimensional images in computer vision) are far from being available, and are actively
researched [104, 105].

Rotating the simplex to best align with the data is also not practical, because it would
break the simplicity of the calculations in the anchoring module, as well as the simple
operations in the guidance module. Further worsening the problem is the tied scaling
of dimensions with k: the number of base-points used must be equal to the number of
dimensions in the latent space in SCA. Unfortunately, the number of parameters (the
degrees of freedom) which govern rotations increase quadratically with D, rapidly making
lucky initializations unlikely as D increases. Because of this, if the user wants to use
more micro-clusters, the dimensionality of the latent space increases, which in turn further
decreases the chance of a good initialization.

I credit this behavior to the two design choices listed above: the enforcement of an inter-
nal representation/interface in a model, and the restriction of information to propagate
only through this interface between parts of the model (in this case, the encoder and the
decoder). While the representation is meant to be intuitive to us humans, it is not nec-
essarily useful in a DL model. In fact, many of the problems that are best solved today
with DL – such as computer vision or NLP – were hard to solve with hand-engineered
features and functions, especially because human understanding and representation does
not translate well to learnable models in these tasks. Big breakthroughs were achieved
when DL models started to learn how to process raw data into the required output in an
end-to-end fashion, instead of the then usual predefined features processed step-by-step
through a chain of hard-coded or simple learned functions. Obviously, we have committed
the same mistake in some sense with SCA, by defining a strict internal representation that
was meant to be explainable. Since undertaking this work, I believe that it is best to use
DL in an end-to-end fashion, feeding raw or barely processed information and implement-
ing the solution in a single model. This approach minimizes human bias during design
time, and allows for the DL algorithm to learn internal representations that best suit the
given model, even if these are not understandable by humans.

In the case of deep clustering algorithms, the obvious solution to the above problem is
to detach the cluster definitions from the internal representation, arriving at the common

6.2. ON HUMAN BIAS IN DL ALGORITHMS, EXPLAINABILITY 115

structure of most deep clustering methods, which utilizes a secondary clustering algorithm
to define clusters in the encoding space. Another approach to lessen the impact of a
restricted internal representation is to allow some information to pass unaffected, and only
use parts of the encoding space for the given task, such as clustering. Both of these ideas
are incorporated in the deep clustering algorithm which is discussed in the next chapter.

Barring major modifications, specifically for SCA, a solution to the initialization problem
could be to pretrain the model with clusters defined in another algorithm, so that clusters
are immediately mapped close to the base-points before sparsity is enforced. We did
not evaluate this idea, because initializing a clustering algorithm with another clustering
algorithm kind of defeats the purpose of having the second algorithm, however, if the goal
is to create precise state-transition graphs, this could be a solution. As to which clustering
algorithm to use to find the initial clusters, I can recommend the algorithm introduced
in the next chapter, which provides excellent results on mobile network data due to its
unbiased nature.

In the end, deep learning models contain complex logic, which is hard to explain. On one
hand, attempts at forcing a DL model to have a simple, explainable representation could
very well end up lowering its modeling power, or even completely destroying its capacity to
model a certain problem. On the other hand, DL algorithms are often not considered for
critical tasks, because their internal logic is opaque, and we don’t trust them. My hope is
that in the future, with the advancement of postprocessing-based explanation techniques
– such as the “dreams” shown in Sec. 2.3.7 – we will not need to design DL algorithms for
explainability, never compromising their complexity and thus, modeling capacity.

116 6. Network State Modeling using Sparse Clustering Autoencoders

117

7. Deep Clustering of Mobile Network Data

In the process of trying to improve our SCA algorithm (as detailed in the previous chapter),
we evaluated quite a few clustering algorithms – originally designed for image processing
– on data from a simulated mobile network. It became clear during these evaluations that
clustering algorithms often do not perform as well on mobile data as they do on their
originally intended data type. The suspected causes were twofold: first, a large portion
of the logged KPIs in the simulated dataset contained clustering-irrelevant features, and
second, the data does not behave as images, so many of the preconceptions which apply to
that domain do not apply to ours. Although we were unable to improve SCA, we suspected
that not only is it possible to achieve similar performance in our domain as other clustering
algorithms achieve in image processing, but that there is room for improvement beyond
the current state-of-the-art performance if a clustering algorithm is developed specifically
for mobile network data.

Armed with the lessons learned from our SCA development, we set out to create a deep
clustering algorithm. The three main design goals with this algorithm were:

� A mechanism that tries to separate clustering-relevant features from clustering-
irrelevant features, in order to be robust against noisy or irrelevant information,
which is common in mobile networks data.

� An unbiased nature, i.e.: mechanics and constraints which are not specific to any
domain, making the algorithm applicable to many tasks in mobile network automa-
tion.

� A secondary clustering step, which is completely detached from the regularization
(such as the autoencoder reconstruction), at least in the early training.

To this end, we devised Decorrelating Adversarial Net for Clustering-friendly Encoding
(DANCE), intended to be a reliable deep clustering method which performs well when ap-
plied to network automation use cases. DANCE uses a reconstructive clustering approach,
separating clustering-relevant from clustering-irrelevant features in a latent representation.

This chapter details the work published in the following paper:

Decorrelating Adversarial Nets for Clustering Mobile Network Data
Márton Kajó, Janik Schnellbach, Stephen S. Mwanje, Georg Carle
arXiv preprint arXiv:2103.08348 (2021).

Version: 2023/05/26 – 14:32:46

118 7. Deep Clustering of Mobile Network Data

My contributions to the above paper was the design, implementation and evaluation of the
algorithm, as well as the co-authoring of the paper. The discussion in this thesis expands
on the paper, by adding further details to the explanation of the inner-workings of the
algorithm, as well as some competing state-of-the-art clustering algorithms, and a more
detailed evaluation than what was included in the paper. The algorithm discussed in this
chapter is also contained in the following patent application:

Latent Variable Decorrelation for Deep Clustering in Mobile Networks
Janne Ali-Tolppa, Márton Kajó, Stephen S. Mwanje
WO, PCT application no.: PCT/EP2020/072019, filed August 2020

7.1 Decorrelating Adversarial Nets for Clustering Mobile Network
Data

7.1.1 Clustering in Mobile Network Automation

The majority of deep learning research targets supervised learning, such as classification,
where the deep learning algorithms learn to output the ground truth that is explicitly
defined in the training data in the form of labels or values, usually collected through
crowdsourcing or data mining. However, these label generation processes are not available
for mobile network automation, as network management tasks require expert knowledge,
thus only a handful of people are capable of undertaking them. Requiring these experts to
manually generate examples to be able to train deep learning algorithms in a supervised
way is not feasible. Deep clustering can alleviate this problem, by providing a precise,
predefined grouping of the mobile network data, which the expert can label with little
effort. This labeled dataset is then useful as-is in some tasks, or can be used for training
supervised methods. However, the clustering process is only useful if it can precisely find
the ground truth classes in the data, and define clusters which correspond to them.

Network

Type 1

Type 2

Type 3

Clustering

Provisioning

QoS

Anomaly d.

Uses

Figure 7.1: Illustration of network automation use cases involving user behavior clustering.

Clustering is already used in a variety of network and service management use cases, where
deep clustering could improve current functionality. Some examples of these are:

� Slice provisioning (instantiation) may utilize usage types defined through clustering,
in order to select appropriate templates for the slices based on predicted requirements
[106].

� QoE estimation tries to map explicitly measurable KPIs, such as network delay, jitter
or throughput to user satisfaction levels [107]. Here, clustering may be utilized to
establish user archetypes.

� Network anomaly detection may utilize generative clustering to map normal usage
patterns, and detect outliers which point to anomalous events in the network [108].

These tasks all involve clustering of the behavior of users, applications or services, by
finding implicit patterns in the collected data (Fig. 7.1). Feature engineering and manual

7.1. DECORRELATING ADVERSARIAL NETS FOR CLUSTERING MOBILE
NETWORK DATA 119

definition of clustering rules is quite hopeless, as the collected information that could be
useful for these tasks usually does not contain the necessary information explicitly. Well-
intended targeted data collection – such as deep packet inspection (snooping) – is also
increasingly difficult, as more and more of the communication is encrypted or governed
by privacy laws (and rightly so). Thus, deep clustering algorithms that simultaneously
extract implicit patterns and form groups using these patterns are the perfect match for
these tasks.

Deep clustering has seen a surge in attention recently, with huge performance improve-
ments being published every few months. Some algorithms are now quite close to su-
pervised classification performance, a feat that was unimaginable even a few years ago.
However, as shown later, applying these cutting-edge algorithms to mobile network data
is not straight-forward. Most deep clustering algorithms are developed for image datasets,
and are able to achieve great performance because of inherent assumptions and optimiza-
tion that are specific to image data. These biases often don’t translate well to mobile
networks, where the performance of the algorithms degrades, in some cases significantly.
This work elaborates on the challenges faced in applying these new algorithms in network
automation, and how they can be overcome.

7.1.2 State-of-the-Art in Deep Clustering

For the purpose of this discussion, we can split deep clustering methods into two categories:
generative and discriminative. Generative methods try to describe the data in a clustering-
friendly representation. While learning, this representation is used both to define clusters,
as well as to be able (re)construct data points into the original data space. Discriminative
methods immediately try to divide the data into groups, without learning to recreate or
generate data points in the process.

Reconstructive methods, a subset of generative methods, learn to encode data into a
simplified latent representation, from which the original data points can be decoded (re-
constructed) effectively. For this purpose, most of the reconstructive clustering methods
utilize autoencoder neural nets, made up of an encoder and a decoder sub-net (Fig. 7.2a).
By learning to distill information into a constrained latent space, autoencoders compress
and reduce noise, formulating a high-level latent representation of the data, which con-
tains only the most descriptive, meaningful features. Reconstructive clustering methods
use these latent features on the assumption that these are also the best descriptors of
clusters in the data.

Enc. Dec.

Clust.k-Means

R
e
c
.

d
a
ta

D
a
ta

L
a
te

n
t

re
p
re

s
.

(a) Reconstructive

Enc.

D
a
ta

Clust.

(b) Discriminative

Figure 7.2: The basic architecture of the two main deep clustering approaches.

One of the first examples of reconstructive deep clustering algorithms is DEC [96]. In
DEC, a stacked autoencoder is pretrained, after which cluster centroids in the latent
space are jointly optimized with the encoder, in order to best fit the encoded points to a
predefined distribution around the centroids. This optimization causes the encoded points
to tightly group around the cluster centroids, which has the effect of refining the clusters
and increasing the nearest-neighbor assignment’s accuracy. This algorithm is introduced

120 7. Deep Clustering of Mobile Network Data

in more detail in Sec. 7.1.5, as our proposed method is partly inspired by it. Other
similar methods, where the encoding is jointly optimized with the internal clustering are
Variational Deep Embedding (VaDE) [109] and DEeP embedded regularIzed ClusTering
(DEPICT) [101].

ACAI [89] represents a different reconstructive approach, where the clustering does not
influence the encoding. Instead, a separate mechanism is used to optimize the encoded
representation for the later clustering step. ACAI adopts an adversarial net commonly
found in GANs [16], to create believable data points when interpolating between encoded
points in the latent space. Although not specifically meant for clustering, this regulariza-
tion through believable interpolation leads to a clustering-friendly latent representation,
where traditional clustering algorithms – such as k -Means – perform particularly well.

Purely generative methods are not as prevalent as reconstructive methods. One genera-
tive example is Latent Space Clustering in Generative Adversarial Networks (ClusterGAN)
[110], where a GAN generator is used to synthesize believable data points from a mixture
of categorical and continuous latent points. Apart from the usual GAN setup of the gener-
ator (decoder) and adversarial nets, ClusterGAN also implements an encoder, effectively
realizing an inside-out autoencoder. Because purely generative methods seldom exist,
reconstructive methods are sometimes referred to as generative in the following.

Reconstructive methods assume that latent features learned through reconstruction are
useful for clustering. Unfortunately this assumption does not hold for data in which
clustering-irrelevant information (e.g.: small details, or information from other entities)
outweighs clustering-relevant information. The best example of this can be seen in pho-
tographic datasets, where generative clustering algorithms often produce an effect labeled
the blue sky problem; planes, birds and other flying objects are all assigned to the same
category, because the largest area of the image is taken up not by the object itself, but by
the sky in the background. For the reconstruction of these images, the autoencoder pays
more attention to correctly encode the sky, while losing sight of the clustering-relevant
information about the objects in the latent representation.

In another light, learning to decode (reconstruct) data serves as a regularizer in the formu-
lation of the high-level latent representation. Discriminative methods do away with this
generative regularization, and replace it with their own specific regularization terms. This
approach can have two benefits: the high-level representation can disregard information
which is only useful for reconstruction, and the method can output cluster assignments
directly, without the need for an additional step. Because of these advantages, discrimi-
native clustering methods generally achieve higher accuracy while being more consistent
on image datasets compared to their generative counterparts. The change in approach is
also visible in the neural net topologies of these methods, usually consisting of a single
sub-net, which effectively only implements the encoder half of an autoencoder (Fig. 7.2b).

Information Maximizing Self-Augmented Training (IMSAT) [111] was one of the first dis-
criminative deep clustering methods to be published. IMSAT builds on Regularized Infor-
mation Maximization (RIM) [112], a (shallow) discriminative clustering approach which
uses mutual information as a metric to develop cluster boundaries. In IMSAT, the added
Self-Augmented Training (SAT) procedure regularizes the encoding developed by RIM,
so that the method can utilize deeper neural nets as encoder, without easily falling for
degenerate models, thus arriving at better clustering accuracy on complex datasets. In a
sense, SAT replaces the generative regularization. Another early discriminative method is
Deep Adaptive image Clustering (DAC) [113].

The recently published Deep image Clustering with Category-Style representation (DCCS)
[114] method is especially interesting to our discussion. In DCCS, the latent space is split

7.1. DECORRELATING ADVERSARIAL NETS FOR CLUSTERING MOBILE
NETWORK DATA 121

MNIST CIFAR-10

Alg. Year ACC NMI ACC NMI

DEC [96] 2016 0.843 0.772∗ 0.301∗ 0.257∗

VaDE [109] 2016 0.945 0.876∗ − −
DEPICT [101] 2017 0.965 0.917 − −
ACAI [89] 2019 0.962 − − −
ClusterGAN [110] 2018 0.950 0.890 − −
IMSAT [111] 2017 0.984 0.956∗ 0.456 −
DAC [113] 2017 0.978 0.935 0.522 0.396

DCCS [114] 2020 0.989 0.970 0.656 0.569

ADC [115] 2019 0.987 − 0.293 −
IIC [116] 2019 0.984 0.978∗ 0.576 0.513∗

JULE [100] 2016 0.964 0.913 0.272∗ 0.192∗

Table 7.1: Published performance of the state-of-the-art algorithms on the MNIST and
CIFAR-10 datasets. Values marked with * are taken from [114]. All other values stem
from the respective publications.

into two feature groups, which the authors call category and style features. While all
the latent features are used for information maximization, only the category features are
used for clustering, which allows the method to further disregard irrelevant information,
achieving even purer clusters and thus higher clustering accuracy. The regularization in
DCCS is done through a combination of adversarial nets and data augmentation in the
form of randomized image transformations, such as cropping, aspect-ratio changes, hue and
brightness changes, and the occasional horizontal flipping of the image. Other noteworthy
discriminative deep clustering methods which use adversarial nets or data augmentation
as regularization are Associative Deep Clustering (ADC) [115] and Invariant Information
Clustering (IIC) [116].

Lastly, an often cited deep clustering method that does not fit into our categorization is
Joint Unsupervised LEarning (JULE) [100]. JULE is an agglomerative clustering algo-
rithm, which creates clusters by merging individual observations, then smaller clusters,
into ever bigger clusters. It is fundamentally different in its approach to the previously
discussed methods here, which all at some point divide spaces or observations into clusters.

Most of the above mentioned methods are developed for-, and evaluated on image datasets.
Commonly used image datasets for the evaluation of these algorithms are the MNIST1

dataset containing 28× 28 pixel greyscale images of handwritten digits, or the CIFAR-102

dataset containing 32× 32 pixel color photos of 10 object categories (airplanes, cars, etc.).
The clustering methods are trained in an unsupervised manner, without the input of the
category labels, but are evaluated using the labels as ground truth. Their performance
is measured using permutation-invariant external metrics, such as clustering ACCuracy
(ACC), NMI or the Adjusted Rand Index (ARI), which quantify the similarity between
the true category labels and the learned cluster assignments. Table 7.1 shows the published
performance of the above discussed algorithms on the aforementioned image datasets. For
the photographic CIFAR-10 dataset, many generative methods have no published results,

1http://yann.lecun.com/exdb/mnist/
2https://www.cs.toronto.edu/˜kriz/cifar.html

http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html

122 7. Deep Clustering of Mobile Network Data

and the ones that do, show worse performance than their discriminative peers, stemming
from the previously discussed blue sky problem.

7.1.3 An Argument for Generative Clustering

Applying discriminative algorithms developed for image datasets to non-image datasets
is not straight-forward. The specific regularization methods used by the discriminative
approaches work well on image datasets, because biologically we humans have a great
intuitive understanding of how vision and images behave, thus the authors were able to
define meaningful augmentations of the data, which the methods then take into account
in their model. The same can usually not be said about data from mobile networks: for
example, image augmentations such as rotation or hue changes either don’t make sense,
or it is questionable if such variations are truly present in the data.

In contrast, reconstructive methods don’t suffer from such applicability problems; recon-
struction always makes sense regardless of the data domain. However, as mentioned in the
previous section, reconstructive methods are prone to experiencing the blue sky problem.
As blue-sky-like irrelevant data is also prevalent in mobile networks, some form of miti-
gation is needed. Furthermore, reconstructive algorithms often show a large variance in
performance, which can be attributed to the inconsistency of the internal clustering step.
The internal, “traditional” clustering algorithms – such as k -Means or Gaussian mixtures
[117] – are sensitive to initialization, and often get stuck in local minima when starting
from an unfortunate position.

We set out to create a reconstructive clustering method, which tries to improve on the
above areas, in order to be consistent and easily applicable to data from mobile networks.
The main aspects of our proposed method are:

� Easy application on mobile network data stemming from the reconstructive nature.

� Mitigation of the detrimental effects of irrelevant information perturbing the clus-
tering.

� A good initialization for the internal clustering step.

7.1.4 Decorrelating Adversarial Net

Phase 3:

DEC-training

Phase 2:

RIM-init.

Phase 1 + 3:

DAN (pre-)training

Data
Encoder Decoder

RIM net

(𝐼)

Decorr.

(𝐷)

Rec. data

𝑍𝑟

Centr. (𝑐𝑖)

𝑍𝑐

Nearest n.
Cluster assign.

(𝑎𝑖𝑗)

𝑝𝑔

DEC loss (ℒ 𝑑𝑒𝑐
𝑄

)

RIM loss (ℒ 𝑟𝑖𝑚
𝐼)

Rec. loss (ℒ 𝑟𝑒𝑐
𝑄𝑄′

)

Cor. loss (ℒ 𝑐𝑜𝑟
𝐷)

Cor. loss (ℒ 𝑐𝑜𝑟
𝑄

)

Concatenation

Deconcatenation / split

Tensor propagation

Tensor propagation w/o gradient

Figure 7.3: Overview of the components, training phases and losses in DANCE.

7.1. DECORRELATING ADVERSARIAL NETS FOR CLUSTERING MOBILE
NETWORK DATA 123

Our proposal is called DANCE, whose components and losses are illustrated in Fig. 7.3.
This section details the core of our proposed approach, the Decorrelating Adversarial Net
(DAN).

DANCE is based on an autoencoder neural net, made up of an encoder Q and a decoder Q′.
Q realizes the non-linear mapping Q(θq, x) : X → Z, where θq are learnable parameters,
and Z is the encoded, latent feature space with a (much) lower dimensionality than the
input (data) feature space X. Q′(θq′ , z) : Z → X approximates the inverse of Q, trying to
reconstruct the original observations from Z. Both θq and θq′ parameters are optimized
through stochastic gradient descent, with the objective of minimizing the common MSE
reconstruction loss.

The core idea in DAN is the split of the Z feature space. In order to reduce unnecessary
reconstructive information used for clustering, the features in Z are split into two sets:
features Zc that contain the clustering-relevant information, and features Zr that are purely
reconstructive. We defined the following rules to distinguish the two sets:

� As features in Zr contain no clustering-relevant information, these must not be cor-
related to Zc.

� As features in Zr contain only generic information which is applicable to all clusters,
or include reconstruction-specific information about smaller, finer details in the data,
Zr is likely to have a simple, noise-like distribution, such as a Gaussian distribution.

To separate Zr from Zc, the above description is posed as an adversarial game. Let pg refer
to points sampled randomly from a Gaussian distribution with the same dimensionality
as Zr, 0 mean and variance σ. To create non-correlated reference points with the desired
distribution, Zr in the original encoded features Z = Zc ⊕ Zr are replaced by pg, arriving
at Z ′ = Zc ⊕ pg (⊕ denotes concatenation). An adversarial net D (decorrelator) has the
task to detect if a point comes from Z or Z ′, by formulating rules that either consider the
difference in distribution between Zr and pg, or detect correlation between Zr and Zc. The
encoder Q has to generate a latent encoding Z which is impossible to differentiate from
Z ′, thus mimicking the distribution of pg with Zr and breaking any correlation between
Zc and Zr.

D(θd, z) : Z → d : [0, 1] outputs a singular scalar which represents the estimated proba-
bility that z came from Z rather than Z ′. To optimize the decorrelator and the encoder
parameters for the adversarial game, stochastic gradient descent is used. The respective
losses, which realize the minimization of the Jensen–Shannon divergence as proposed in
the original GAN paper [16] are the following:

LQcor = −
1

n

n∑
i=1

log(di), (7.1)

LDcor = −
1

n

n∑
i=1

log(d′i) + log(1− di), (7.2)

where di and d′i refer to decorrelator guesses on points coming from Z and Z ′, and n refers
to the number of data points in a batch.

The above described neural net setup is very similar to Wasserstein Autoencoders [118].
As such, in theory the decorrelation does not interfere with the original autoencoding
task, and any desired loss function could work well to calculate the reconstruction loss. To

124 7. Deep Clustering of Mobile Network Data

balance the losses that affect the encoder, coefficient βcor can be introduced, so that the
final encoder loss is:

LQ = LQQ′
rec + βcorLQcor (7.3)

A major problem with the decorrelator in this format is the continuous disturbance of the
features in Zc during training. As the correlation between Zc and Zr can be broken in both
feature sets, LQcor generates gradients which try to move the points around in a chaotic
manner in Zc. Since the adversarial game does not define any target distribution for Zc,
this disturbance does not vanish, and is constantly present during training, in the worst
cases causing Zc to collapse into a single point. An obvious choice would be to impose a
prior distribution on Zc, the same way as the prior on Zr, similarly how to some extent
DCCS does. However, concluding from the experience gained in the SCA work, priors on
Zc don’t work well in the autoencoder setting. Instead to stop the disturbance from the
adversarial game in Zc, the backpropagation of the gradient from LQcor is stopped through
Zc, so that the adversarial game does not affect those features. This effect can be achieved
in most deep learning frameworks with a simple detach() or stop gradient() call. This
gradient stop still allows the Zc features to be used by D for the detection of correlation
with Zr, but the gradients only affect Zr, leaving Zc undisturbed by the decorrelation.

In theory, the DANCE setup could lead to an encoding where both clustering and re-
constructive information is communicated only through Zc, and Zr does not carry any
information at all, only capturing random noise in order to adhere to the pg prior. In
our experience this is never the case, as the autoencoder always tries to utilize all la-
tent features. However, possibly for this reason, or because of saturation problems in D,
DANCE seems to work best if both Zc and Zr are of low dimensionality. In Fig. 7.4, a
typical DANCE encoding of the MNIST dataset can be seen, where both Zc and Zr are
2-dimensional.

The above detailed decorrelation does not guarantee that all clustering-relevant informa-
tion ends up in Zc, nor that all clustering-irrelevant information is removed from Zc. In
reality, DANCE reduces variance in Zc, and allows for a more coherent mapping, where
similar data points are close together, which is beneficial for a subsequent application of
traditional clustering algorithms.

7.1.5 RIM Initialization and DEC Clustering

The internal clustering step in DANCE is done with the mechanism from DEC. In its
original form, DEC uses the k -Means algorithm to find initial positions for the cluster
centroids. We found this initialization to be quite unreliable, because k -Means is biased
towards convex, even-sized clusters by design, which is often not how the encoded clusters
behave in DANCE. Instead, DANCE uses the discriminative RIM [112] algorithm to find
a good initial clustering, which is then subsequently refined by DEC.

In RIM, a simple feed-forward neural net is used to find clusters, by looking for cluster
boundaries that are in sparsely populated regions of the input data space. To achieve this,
RIM minimizes the conditional entropy, balanced by the maximization of the entropy of
the label distribution, which helps to form clusters with even populations. In effect, this
optimization task maximizes the empirical estimate of the mutual information between
data point and their assignment. Let I(θi, zc) : Zc → P denote the RIM net, where θi are
learnable parameters. I directly outputs cluster assignment probabilities for each input
point. To train the RIM net, the following loss terms are minimized through stochastic
gradient descent:

LIcond.ent = −
1

n

n∑
i=1

k∑
j=1

pijlog(pij), (7.4)

7.1. DECORRELATING ADVERSARIAL NETS FOR CLUSTERING MOBILE
NETWORK DATA 125

Sparse Dense

(a) Zr density

Label 0 Label 9

(b) Zr ground truth

Sparse Dense

(c) Zc density

Label 0 Label 9

(d) Zc ground truth

Figure 7.4: A typical DANCE encoding of the MNIST dataset at the end of the DAN
pretraining. The top two figures depict how well Zr follows the pg Gaussian prior, as well
as being completely decorrelated to Zc. The bottom two figures show the irregular, but
well separated encoding in Zc.

LIlab.ent =
k∑

j=1

(
1

n

n∑
i=1

pij)× log(
1

n

n∑
i=1

pij), (7.5)

LIrim = LIcond.ent + µLIlab.ent + λR(θi), (7.6)

where pij refers to the cluster assignments output by I(θi, zc), k refers to the number of
clusters, µ is a balancing coefficient between the two entropy terms, and λ is a balancing
coefficient for the regularization term R(θi). For the R(θi) regularization term the L2

norm of the parameters θi is used, also commonly referred to as weight decay.

We found that the achieved conditional entropy at the end of the RIM training is also a
somewhat good indicator of the objective goodness of the clustering, removing the need
to guess which initialization was the best (as mentioned in Sec. 7.1.3). To exploit this

126 7. Deep Clustering of Mobile Network Data

feature, I is retrained multiple times for a fixed number of epochs, and select the training
with the lowest LICent at the end. The averages of the clusters in Zc found by this I are
then used as centroids to start the DEC refinement. Figure 7.5a shows the clusters and
the subsequent cluster centroids defined by RIM on the DANCE encoded MNIST dataset.

Clust. 0 Clust. 9

(a) RIM initialization

Clust. 0 Clust. 9

(b) DEC refinement

Figure 7.5: RIM initialization and DEC refinement on the encoded Zc (MNIST). The
white dots represent the cluster averages (centroids), the coloration shows the cluster
assignments.

DEC uses the initialized cluster centroids to influence the latent space in Zc, by moving
the encoded points closer to their assigned centroids, while simultaneously moving the cen-
troids to best fit their assigned points [96]. To do this, DEC uses Student’s t-distribution to
define a soft-assignment between encoded points and cluster centroids. The encoded points
and the centroids are then jointly moved to best fit a target distribution by minimizing
the Kullback-Leibler divergence. Because of the soft assignment, the DEC optimization
has a more pronounced effect on the encoded points closest to the centroids compared to
more remote points, and vice versa; the centroids are moved to best fit the closest encoded
points. The DEC loss is defined as:

qij = −
(1 + ∥zci − cj∥2/α)−

α+1
2∑k

j′=1(1 + ∥zci − c′j∥2/α)
−α+1

2

, (7.7)

pij = −
q2ij/

∑n
i=1 qij∑k

j′=1(q
2
ij′/

∑n
i=1 qij′)

, (7.8)

LQdec =
n∑

i=1

k∑
j=1

pijlog
pij
qij

, (7.9)

where cj refers to cluster centroids, α is the degrees of freedom of the Student’s t-
distribution, qij is the soft assignment of the encoded points, and pij is the auxiliary
distribution. During the DEC clustering phase, the encoder loss expands to:

LQ = LQQ′
rec + βcorLQcor + βdecLQdec, (7.10)

where βdec is an additional coefficient balancing the DEC loss with the others.

7.1. DECORRELATING ADVERSARIAL NETS FOR CLUSTERING MOBILE
NETWORK DATA 127

The DEC loss tightly groups the encoded points around the centroids (Fig. 7.5b), which
further refines the latent space by forcing the autoencoder to make “decisions” about
where encoded points end up. This tight grouping also compensates for the limitation of
nearest-neighbor clustering, because the tight groups can be efficiently separated by linear
boundaries (Voronoi tessellation). Without this grouping, straight cluster boundaries often
don’t align with the correct distribution-boundaries, making nearest-neighbor clustering
algorithms, especially k -Means, ineffective in these cases.

The complete DANCE algorithm is shown on Alg. 7.1. The three main phases: DAN
pretraining, RIM initialization and DEC refinement can also be seen as overhauled versions
of the original DEC training steps, but we hope the reader agrees that the changes are
significant enough to warrant a different algorithm name. Although other works often
refer to multi-phase methods in a negative light, we have found that the isolated phases
are easier to debug or parameterize, not having to completely restart training if something
is not perfect, which also helped during the evaluation of the algorithm.

7.1.6 Evaluation Methodology

Our ultimate goal was to evaluate DANCE on a mobile network dataset, but in order to
be able to compare the performance to other state-of-the-art methods with this dataset,
we needed to have working implementations of the other algorithms. As it would be an
enormous undertaking to try to reimplement and evaluate every method listed in Sec. 7.1.2,
we have selected four methods to compare against, based on their performance, age, and
their connection to our algorithm:

� DEC is an obvious choice for an older generative algorithm, as DANCE shares its
internal clustering and the overall structure. In both methods, the internal clustering
influences the encoding.

� ACAI is a state-of-the-art generative clustering algorithm, which, contrary DEC and
DANCE, develops the encoding independent from the internal clustering.

� IMSAT is one of the first discriminative algorithms, working without manual data
augmentation for the regularization. IMSAT builds on RIM, which we also utilize in
DANCE.

� DCCS is our choice of a state-of-the-art discriminative algorithm. In contrast to
IMSAT, DCCS does use explicit data augmentation as regularization, and shares
the core idea of separating clustering-relevant from clustering-irrelevant features with
DANCE.

Altogether, an even split of generative and discriminative deep clustering algorithms were
chosen, as well as an even split between earlier and recent publications. This aspect is
important, because we suspected that older algorithms are by no means necessarily worse
than newer publications on mobile network data, contrary to what the trend might show
on image datasets.

Another beneficial effect of having to reimplement contending methods is that we can
control for neural net complexity in the evaluation. Even in the few years since the first
publication of these methods, the emergence of dedicated hardware accelerators, easy-to-
use deep learning frameworks, and new type of components and training methods increased
the possibility of training deep neural nets tremendously. While newer publications use
residual nets tens or even hundreds of layers deep, some older algorithms were evaluated
using only a few simple fully-connected layers. We suspected that the topological differ-
ences account for a large portion of the performance differences, and we were interested

128 7. Deep Clustering of Mobile Network Data

Algorithm 7.1: The DANCE algorithm.

Input: Dataset X = {xi}Ni=1, initial parameters θq, θq′ , θd, θi of encoder Q, decoder
Q′, decorrelator D and RIM initializer I, nr. of dimensions nZc ,
hyper-parameters σ, α, µ, coefficients βcor, βdec.

1 Procedure autoencode()

2 Compute z = Q(θq, x), x
′ = Q′(θq′ , z) and using

3 these LQQ′
rec (Eq. ??);

4 Generate z′ = zc ⊕ pg(σ);
5 Compute d = D(θd, z), d

′ = D(θd, z
′) and using

6 these LQcor (Eq. 7.1) and LDcor (Eq. 7.2);

7 DAN pretraining
8 for epre iterations do
9 autoencode();
10 Update θd by minimizing LDcor;
11 Update θq, θq′ by minimizing

12 LQ = LQQ′
rec + βcorLQcor (Eq. 7.3);

13 end

14 RIM initialization
15 Deconcatenate zc = Q(θq, x)⊖ (nZc);
16 for nrim tries do
17 for erim iterations do
18 Compute p = I(θi, zc) and using
19 it LIrim (Eq. 7.6);
20 Update θi by minimizing LIrim;

21 end
22 Compute z = I(θi, zc) and using it LICent (Eq. 7.4);
23 Store θibest = θi if LICent is the lowest so far;

24 end
25 Compute aij = argmax(I(θibest , zc)) assignments;
26 for j = 1...k do
27 cj =

∑n
i=1 zci(aij == j)/

∑n
i=1(aij == j);

28 end

29 DEC refinement
30 for edec iterations do
31 autoencode();

32 Compute LQdec (Eq. 7.9) using zc, c;
33 Update θd by minimizing LDcor;
34 Update θq, θq′ , µ by minimizing

35 LQ = LQQ′
rec + βcorLQcor + βdecLQdec

36 end

37 Compute ai = argmin((cj − zci)
2) final assignments;

in understanding how the algorithms differ in performance when using the same neural
net components and sizes. Thus, in the following evaluation, all methods use the same
convolutional encoder, convolutional decoder and fully-connected adversarial nets (per
dataset).

All methods were trained multiple times (8) for each dataset, to be able to present worst,
average and peak performance metrics. Of course, not having invented and exhaustively
fine-tuned these methods, we likely can not utilize them to their utmost potential, and

7.1. DECORRELATING ADVERSARIAL NETS FOR CLUSTERING MOBILE
NETWORK DATA 129

probably left a few percentage points of accuracy on the table. On the other hand, the
usability and applicability of an algorithm is just as important as peak performance. These
facts should be kept in mind while reading the following sections.

7.1.7 Evaluation on Image Data

To give a performance comparison in a common setting, and to establish that our imple-
mentations are working correctly, the methods were first evaluated on the MNIST image
dataset. This enables the comparison of DANCE to other state-of-the-art algorithms’
performance as originally published. Furthermore, this evaluation allows to see if older
algorithms show improved performance over their published results when using our deeper
convolutional nets. The performance of the compared methods can be seen in Tab. 7.2.
The (external) metrics utilized throughout this evaluation are:

� ACC, which measures the ratio between number of points correctly assigned against
the number of all datapoints in the dataset. As the mapping between labels and
clusters is ambiguous, we used the Hungarian method [119] to determine the best
mapping/permutation, thus making the metric permutation-invariant.

� NMI, which measures the mutual information between labels and cluster assign-
ments. NMI is normalized so that 0 means no mutual information, while 1 is the
maximal mutual information achievable.

ACC NMI

Alg. avg (±std) min - max avg (±std)
DEC 0.9385 (±0.045) 0.8882 - 0.9898 0.9313 (±0.031)
ACAI 0.9525 (±0.040) 0.8482 - 0.9774 0.9171 (±0.020)
IMSAT 0.9866 (±0.004) 0.9776 - 0.9904 0.9629 (±0.006)
DCCS 0.9490 (±0.043) 0.8760 - 0.9829 0.9338 (±0.028)
DANCE 0.9625 (±0.016) 0.9368 - 0.9806 0.9249 (±0.019)

Table 7.2: Performance of the evaluated algorithms on the MNIST dataset.

The two generative algorithms, DEC and ACAI exhibit large standard deviation in accu-
racy and mutual information, which can be attributed to the inconsistency of the tradi-
tional clustering algorithms in this setting; k -Means cannot reliably find the true clusters
in the encoding, and often converges to local minima, arriving at sub-optimal fits.

Apart from this, DEC performed quite a lot better than the originally published results
(shown in Tab. 7.1) using our deeper encoder and decoder. It is especially important to
note the impressive maximum accuracy, which is by far the best out of any reconstructive
algorithm. Also quite interesting is the relatively high NMI achieved compared to the
ACC, which represents a high mutual information content between ground truth labels
and cluster assignments. This phenomenon occurs when wrongly clustered observations
have a systematic error. In the MNIST dataset, an example of such a systematic error
would be that the cluster containing all 9s also includes a few 7s, but not any other
numbers.

The ACAI results are a little worse than the originally published results in Tab. 7.1.
This is not a mistake or misconfiguration on our part; in the original paper the authors
themselves admit to selecting the best k -Means clustering based on external metrics (using
the ground truth), reasoning that the ACAI algorithm was anyway not originally intended

130 7. Deep Clustering of Mobile Network Data

for clustering, and that the shown results are only there to signify the potential of such an
approach [89]. In order to provide a fair and unsupervised comparison of the algorithms,
we selected the best out of repeated k -Means fits using an internal metric (not utilizing
the ground truth) in our evaluation, hence the worse results.

IMSAT performed phenomenally, even improving on the already excellent originally pub-
lished results and coming close to the published performance of DCCS. Of note is the very
low deviation, and high minimum values, which is a nice guarantee for the user that even
in the worst case the clustering is almost the best it can be. This trust would be very
important for unsupervised algorithms, as the user has no way of confirming the quality
of the clustering in a real-life scenario.

DCCS, on the other hand, proved quite sensitive to the net topology, and performed worse
than the published performance in Tab. 7.1. We were definitely able to reproduce the
originally published results using the proposed net, but switching to our more complex
topology caused DCCS to learn sub-optimal fits, where often one or more of the clusters
were left unused (unpopulated). We tried rectifying this through changing the balance of
the prior loss, as well as adding batch-normalization layers to Zc, but to no avail. It seems
to us that the net complexity plays a major role for DCCS in inherently regularizing the
model, and more complex nets are not regularized sufficiently with only the additional
mechanism in DCCS. This is very counter-intuitive, as all the other algorithms benefited
from the increased modeling capability of the more complex neural net used.

Our DANCE algorithm performed as expected; excellent for a generative clustering method,
yet not in the range of most discriminative methods’ capabilities. Compared to the pub-
lished values shown in Tab. 7.1, DANCE is among the best performing generative ap-
proaches on the MNIST dataset. The quite high minimum accuracy metric is particularly
impressive, which again could play a major role in establishing trust towards the algo-
rithm. It seems most of the loss in accuracy stems from malformed latent representations,
where parts of a class ends up separated, far away from most of the points in the same
class. This effect could be possibly mitigated by utilizing more dimensions for Zc, but
in our experience the gain in consistency is counteracted by the loss in performance both
from the decorrelation and from the RIM initialization, negating any benefit.

Lastly, our goal with this evaluation was to tune most of the hyper-parameters of the
algorithms, and apart from the net topologies, reuse these settings in the mobile data
evaluation. However, the difference between the two domains caused the hyper-parameters
to be very sub-optimal for the network dataset, so in the end we allowed the tuning of
some parameters based on internal metrics, such as balancing losses, or adjusting learning
rates. These changes could be reasonably made without the knowledge of the ground truth,
in order to stay within the bounds of a realistic clustering scenario. Furthermore, every
algorithm has seen increased training iterations to compensate for the smaller dataset,
resulting in less updates per epoch.

7.1.8 Evaluation on Mobile Network Data

The evaluation on mobile network data represents the target clustering scenario for our
algorithm, which also tests the other algorithms’ flexibility towards different application
domains. The evaluation poses a similar task to the common problem in the use cases
introduced in Sec. 7.1.1: the clustering of behavioral patterns. In our evaluation, each
clustering algorithm were to assign mobile users to groups using information that implicitly
describes their behavior, in this case based on how they use the network, and what they
use it for.

In order to generate data where the ground truth is known, a mobile network simulator was
used, which enabled the use of the usual external metrics in the evaluation. The simulation

7.1. DECORRELATING ADVERSARIAL NETS FOR CLUSTERING MOBILE
NETWORK DATA 131

Label Traffic Speed [km/h] Movement

0 Stationary 1 FTP 0 -

1 Stationary 2 VoIP 0 -

2 Stationary 3 HTTP 0 -

3 Pedestrian 1 FTP 8 random

4 Pedestrian 2 VoIP 8 random

5 Pedestrian 3 HTTP 8 random

6 Vehicular 1 VoIP 10 - 100 streets

7 Vehicular 2 HTTP 10 - 100 streets

Table 7.3: User groups in the mobile network dataset.

scenario was set in the city of Helsinki, where mobile users moved around and used the
multi-layer heterogeneous network to communicate (Fig. 7.6). The network comprised
of multiple macro, micro and WiFi cells (access points), and covered most of the city.
The users were allocated into 8 user groups, which were differentiated based on the user’s
mobility patterns (stationary, pedestrian, vehicular) and their network usage type (talking
using VoIP, web-browsing using HyperText Transfer Protocol (HTTP) and transferring
files using FTP). The definitions of the user groups can be seen in Tab. 7.3.

Cell tower Vehicular userPedestrian user Stationary user

Figure 7.6: Excerpt from the Helsinki simulation scenario.

The collected data contained:

� Application level KPIs such as downlink and uplink throughput.

� Radio quality indicators, such as Channel Quality Indicator (CQI), Signal-to-Noise
Ratio (SNR), scheduling delay and RSRP.

� RRC state indicators, such as connected, Radio Link Failure (RLF) and idle states.

132 7. Deep Clustering of Mobile Network Data

A total of 17 KPIs were collected every 5 seconds for every user. The simulation contained
400 users, an even distribution of 50 users from each of the 8 user groups. Each user was
observed for 10 consecutive sequences, with a sequence consisting of 256 time steps, in total
corresponding to about 3.5 hours of simulation time. The collected data was organized
into an array with the shape of 4000× 256× 17, which is functionally the same as 256× 1
pixel images containing 17 channels (instead of the usual 3: red, green and blue). The
clustering algorithms processed this data using 1-dimensional convolutional encoders (and
decoders). The resulting performances can be seen on Tab. 7.4.

ACC NMI

Alg. avg (±std) min - max avg (±std)
DEC 0.7409 (±0.021) 0.7033 - 0.7595 0.8365 (±0.010)
ACAI 0.7629 (±0.040) 0.7155 - 0.8345 0.8438 (±0.017)
IMSAT 0.4775 (±0.072) 0.3748 - 0.5715 0.5307 (±0.049)
DCCS 0.8416 (±0.055) 0.7540 - 0.9083 0.8333 (±0.043)
DANCE 0.8923 (±0.041) 0.8125 - 0.9305 0.8826 (±0.035)

Table 7.4: Performance of the evaluated algorithms on the mobile network dataset.

DEC and ACAI, the two generative algorithms show low average and peak performance,
even in the lucky training cases with good k -Means fits. This can be attributed to the
large amount of clustering-irrelevant information in the latent representation. The clus-
ters formed by k -Means and the DEC mechanism ultimately incorporate this irrelevant
information, which, in many instances, causes the encoded points to end up in the wrong
cluster. On the other hand, the regularization through reconstruction seems to function
well, as the deviation in accuracy for these algorithms is comparatively lower than the
others.

IMSAT was not successful on the mobile network dataset, producing abysmal results.
Originally, IMSAT was chosen because contrary to being a discriminative algorithm, it
did not utilize any domain-specific regularization methods such as image-transformations,
rather, the regularization was done through the SAT mechanism. SAT disturbs the data
on-the-fly during training, in a seemingly domain-agnostic manner, however, in order to
calibrate the disturbance imposed by SAT, IMSAT uses a precalculated value ϵ for every
datapoint. For the MNIST dataset, these ϵ values are the Euclidean distances between
datapoints and their 10th closest neighbors (calculated in the original data-space, each pixel
is a separate dimension). The same calibration value calculated on the mobile network
dataset does not seem to work well, for the reason being that the Euclidean distance
is simply not that meaningful for our dataset as it is for MNIST, or images in general.
The large variance in the position of important patterns in the sequences, caused by the
arbitrary sequence framing, creates a large distance between even the same patterns shifted
in time. We have tried to tune which neighbor to use for the ϵ calculation, but have seen no
significant improvement. The bad performance could also be an indication of a mismatch
in data complexity and the used neural net topologies, although the other algorithms are
proof that the nets were at least capable of producing good results, if not optimal.

DCCS was the second most accurate algorithm on the mobile network dataset. DCCS
uses randomized data augmentation to separate “categorical” features from “style” fea-
tures. These data augmentations are commonly used image transformations for the MNIST
dataset: zooming, aspect ratio changes, brightness, hue and saturation changes. Zooming
was quite straight-forward to implement for the mobile network dataset, and one could
argue that such variation is probably present in the data: zooming in the temporal dimen-

7.1. DECORRELATING ADVERSARIAL NETS FOR CLUSTERING MOBILE
NETWORK DATA 133

sion is the equivalent of processes taking longer or shorter times, which manifests as the
expansion or contraction of the generated patterns in the data. Aspect ratio changes do not
apply to the mobile network dataset, as it behaves as an“image”which is a single pixel tall.
We replaced value variations (brightness, hue and saturation changes) with a randomized
offset and scaling on individual channels, tuning the parameters on the MNIST dataset to
produce visibly similar images to the originally proposed image transformations. It seems
that these augmentations were adequate for the mobile network dataset, as DCCS proved
to be quite accurate in its clustering. A fine-tuned net topology, as well as better tuned
augmentations could further improve the performance of DCCS, however, specifically this
type of tuning is not possible if the user has only an unlabeled dataset available, the main
premise of unsupervised learning.

DANCE performed the best on the mobile network dataset, reaching the highest average,
maximum, and most importantly the highest minimum accuracy. Our algorithm did not
require hyper-parameter changes apart from changing βcor; because of a higher reconstruc-
tion loss on the mobile network dataset, this balancing coefficient had to be increased in
order for the decorrelator to have an effect on the encoding. This tuning can be done
without any labeled data, solely by making sure that the decorrelator adversary converges
close to 50% accuracy (random guessing) when choosing between Z and Z ′ at the end
of the training. A scatter-plot of the encoded datapoints and clustering can be seen in
Fig. 7.7. In order to further explore how this performance is achieved in DANCE, an
ablation study was performed.

7.1.9 Short Ablation Study

It is important to see how much each of the DANCE components contribute to the overall
performance, which also helps in understanding the synergies between them. The following
ablation study examines every combination of the 3 components evaluated on the mobile
network dataset: the DAN, the RIM initialization and the DEC cluster refinement. With-
out the DAN, the autoencoder and the internal clustering steps worked in a single latent
space, which was set to have the combined dimensionality of Zc and Zr, resulting in 4
dimensions. In the absence of RIM, k -Means was used to find the initial cluster centroids
for DEC. If DEC was not used either, only k -Means determined the final clustering. The
results from the ablation study can be seen on Tab. 7.5.

ACC

DAN RIM DEC avg (±std) min - max

0.7135 (±0.0290) 0.6518 - 0.7515
√

0.7295 (±0.0477) 0.6375 - 0.7775
√

0.7475 (±0.0391) 0.6720 - 0.7985
√ √

0.7598 (±0.0400) 0.6845 - 0.8010
√

0.7645 (±0.0665) 0.7010 - 0.9270
√ √

0.8648 (±0.0396) 0.7850 - 0.9120
√ √

0.7823 (±0.0615) 0.7145 - 0.9255
√ √ √

0.8923 (±0.0410) 0.8125 - 0.9305

Table 7.5: The effect of the different DANCE components on performance measured on
the mobile dataset.

Without any of the 3 components, the algorithm is simply k -Means run on an autoencoder-
formed latent encoding. This setup is often used as a baseline for deep clustering, with

134 7. Deep Clustering of Mobile Network Data

Label 0 Label 7

(a) Zr ground truth

Label 0 Label 7

(b) Zc ground truth

Sparse Dense

(c) Zc density

Clust. 0 Clust. 7

(d) RIM initialization

Figure 7.7: A typical DANCE encoding of the mobile network dataset. The top two figures
depict how well Zr follows the uncorrelated pg prior, as well as how well the ground truth
classes separate in Zc. The bottom two figures show the density of the encoded, points,
and how well RIM was able to find/determine the initial cluster centroids.

the premise that the algorithm should greatly improve upon these results. Using RIM
instead of the k -Means clustering does not bring tangible benefits, probably because the
irrelevant information in the latent encoding hides the otherwise sparsely populated cluster
boundaries RIM is looking for. Using DEC with a k -Means initialization is basically the
originally proposed DEC algorithm (highlighted with light blue), however, the results are
a little worse than in the previous evaluation (Tab. 7.4), because in this case DEC is
operating with a lower dimensional latent space. Adding RIM as an initialization for DEC
once again does not improve performance meaningfully, for the same reason RIM was not
greatly beneficial by itself.

Using DAN and clustering with k -Means only in Zc already improves the average accuracy
as much as the other two components combined, but more importantly improves peak

7.1. DECORRELATING ADVERSARIAL NETS FOR CLUSTERING MOBILE
NETWORK DATA 135

accuracy by a great margin. This is because the decorrelated encoding in Zc maps clusters
in a compact manner, without many datapoints mixed into wrong clusters. k -Means,
though unreliably, sometimes fits these clusters well, resulting in high peak accuracy. Using
RIM instead of k -Means for clustering greatly improves minimum and average accuracy,
because RIM is able to find the sparse cluster boundaries in Zc, which stand out without
most of the clustering-irrelevant information. Not using RIM but using DEC once again
loses these benefits, only retaining the high peak accuracy achieved through the DAN
decorrelation. Finally, with all components combined, we arrive at the complete DANCE
algorithm (highlighted with dark blue), where DEC is able to exert its full benefits on the
clustering, improving worse and average accuracy by quite a significant margin without
losing its capability to maximize peak accuracy.

7.1.10 Conclusion

This chapter discussed state-of-the-art deep clustering algorithms, splitting them into two
groups: generative and discriminative methods. Although discriminative methods seem
to be the peak performers in image clustering, their highly tuned nature and assumptions
about the data make them hard to apply to mobile network data. Reasoning that gener-
ative algorithms seem to be more domain-agnostic, we have proposed our own generative
deep clustering algorithm, DANCE, with the core idea of isolating clustering-relevant fea-
tures in the latent space. DANCE and other state-of-the-art algorithms’ performance was
evaluated on an image- and a mobile network dataset, while also providing an ablation
study to highlight the significance of the different components of our algorithm. DANCE
achieved good performance on the image dataset, and excellent performance on the mobile
network dataset, surpassing its competitors by a sizable margin.

In real-world applications, clustering algorithms require a great deal of expertise to use. In
the hands of a less experienced user, or somebody who does not have the resources, time, or
a labeled dataset to fine-tune these algorithms for the specific use case, simplicity, usability
and reliability play a far bigger role than peak performance in the overall usefulness of the
algorithm.

As a closing remark, I would like to highlight the shared idea between DCCS and our
DANCE algorithm; the concept of separating latent features into clustering-relevant and
clustering-irrelevant sets. Although both implementations show various advantages and
disadvantages in different data domains, at the least we can say that the concept itself is
very promising, and could be an interesting topic for future research.

136 7. Deep Clustering of Mobile Network Data

137

8. Summary of Research on Association

This part of the thesis discussed the machine intuition process of association: the act of
extracting important latent features from the data, in order to find meaningful similari-
ties, through which individual observations can be assigned to- and processed as discrete
groups. Among ML algorithms, simpler statistical clustering algorithms approach this task
in multiple ways. Centroid-based clustering (quantization) algorithms – such as k -Means
or GMM – assume the final distribution of the data is made up of multiple Gaussians, and
try to fit these iteratively through expectation-maximization. Density-based clustering
algorithms – such as Density-Based Spatial Clustering of Applications with Noise (DB-
SCAN) or Ordering Points To Identify the Clustering Structure (OPTICS) [120, 121] –
traverse the data from one individual observation to the next, defining clusters as a group
where the observations are reachable from each other, according to a certain distance
threshold. Hierarchical Agglomerative Clustering (HAC) merges individual observations,
and later smaller clusters, into ever bigger clusters, finally arriving at a single cluster that
encompasses the whole dataset. The hierarchy is represented as a tree (dendogram), where
the clusters are defined by a user-set threshold of maximum distance, which splits the tree
at a certain height.

Figure 8.1: A dendogram of larger cities in Australia formed by HAC.

As all of the above mentioned clustering algorithms depend on some sort of distance met-
ric, they all suffer from the curse of dimensionality when employed on data that contains
many features. In this case, the curse of dimensionality manifests as the breakdown of
distance metrics in high-dimensional space: in many dimensions, datapoints are likely to
be close to the “corners” of the imaginary hypercube that encompasses them, virtually

Version: 2023/05/26 – 14:32:46

138 8. Summary of Research on Association

limiting the possible distances between datapoints to (a handful of) discrete values, which
makes distance metrics less and less useful for defining clusters. These algorithms are also
sensitive to the quality of input features. Features which contain irrelevant, or noisy data
can obfuscate meaningful distance between the datapoints where without them, clusters
could have been differentiated. Redundant features only add to the number of dimensions
without adding useful information, once again worsening the effect of the curse of dimen-
sionality. Deep clustering algorithms overcome these limitations by encoding the data
into a lower-dimensional space, extracting the latent features that govern the data and
are meaningful for clustering. Furthermore, using additional constraints, deep clustering
algorithms can also create a “clustering-friendly” encoding, in which similar observations
are close to each other, while dissimilar observations are far apart, so that distance-based
clustering algorithms work well with these representations. Indeed, this is the approach of
many of the state-of-the-art deep clustering algorithms, which employ a deep neural net
to form the latent encoding, and a secondary, statistical clustering step, which uses the
encoded datapoints to from clusters.

The first clustering algorithm discussed in this part, SCA, is different to this common
two-step approach. SCA does not have a separate encoding and clustering step, instead,
the encoding is constrained to map the datapoints to a specific structure (a simplex) in
the latent space, which can be easily equated to a fully-connected graph. Because of
the ample modeling capacity in deep neural nets, we reasoned that the encoding should
be able to map datapoints in a clustering-friendly way even with this added constraint.
Furthermore, the constraint used on the latent representation allows for datapoints to fall
between the graph nodes (the simplex vertices). These in-between datapoints can be used
to select which graph nodes have connecting edges (simplex edges), and which do not,
according to a user-set edge-population value. Through the connecting edges, SCA has an
almost agglomerative approach to clustering, where clusters are formed by graph nodes
that are reachable from each other. This approach alleviates a common downside of many
clustering algorithms: having to define the number of clusters (k) before the algorithm is
run.

An important side-effect of the graph-like representation is the explainability of the model.
During the design, we specifically wanted to create an algorithm that represents mobile
network data as a “state transition graph”: a quantized model, where the network or
individual elements are either in a state, or are transitioning between two states. The
states were meant to be granular enough so that they can be represented by a single
prototype observation, which is the core idea of quantization. We argued that such a
representation is easy to understand for us humans, as our thinking naturally tends towards
such models, and is also present in other commonly used ML models, such as Markov
chains. Furthermore, we believed this explainability would carry over to other ML tasks
that are undertaken using the state transition graph representation.

SCA was evaluated on the task of cell anomaly detection, where, with the help of the
state transition graph, it is possible to define 3 explainable cell anomaly types: anoma-
lous states, static, and dynamic anomalies. Our evaluation focused on the detection of
anomalous states, however, as we unfortunately lacked a dataset that contains labeled cell
anomalies, we were unable to provide a quantitative evaluation, and had to resort to a
more qualitative demonstration of the benefits of using SCA. In order to try to provide a
quantitative comparison to other clustering algorithms, we evaluated SCA on a common
image dataset. Unfortunately, we were unable to achieve consistently good results, as the
sparsity constraint would often force points from two or more classes into the same quan-
tum. These impure quanta drastically limit the clustering accuracy, even if not all quanta
are mixed. In the end, it seems our hypothesis was incorrect, as the added constraint of
the simplex often overtly disturbs the encoder, which in turn does not produce a coherent

8.1. ASSESSMENT OF FEASIBILITY (A2.1) 139

latent encoding, mixing datapoints from different clusters together only to adhere to the
constraint. Overall, the problem with SCA is rooted in the common fallacy of extensive
human bias during the design of the algorithm. By wanting to have an explainable model,
we have enforced an internal representation/interface on the algorithm that is not useful
for machine learning.

While trying to improve our SCA algorithm, we evaluated a handful of image clustering
algorithms on mobile network data. These algorithms often didn’t perform as well on
mobile data as they did on their originally intended data type, which we suspected was
caused by two aspects of our datasets: first, a large portion of the logged KPIs in our
datasets contained clustering-irrelevant features, and second, the data did not behave as
images, so many of the preconceptions which apply to that domain did not apply to
ours. This motivated us to try to develop a clustering algorithm, which has a reliable
performance on mobile network data that is on par with state-of-the-art image clustering
performance. Learning from the mistakes in SCA’s design, we developed a deep clustering
algorithm called DANCE. Instead of the single-step design of SCA, DANCE is a multi-
step clustering algorithm, utilizing a simpler secondary clustering algorithm for the initial
formulation of the clusters. Furthermore, while DANCE also poses restrictions on the
internal representation to make it clustering-friendly, this restriction is more forgiving,
allowing for other, non-clustering-friendly information to also propagate in the model. This
is the main feature of DANCE, where the clustering-relevant features are isolated from the
clustering-irrelevant ones, which is achieved through the decorrelation of latent features
separated into two groups. Through this mechanism, DANCE is able to reduce and refine
the feature-set used for the later clustering steps, achieving reliably good performance that
surpasses other state-of-the-art algorithm’s performance by a sizable margin on mobile
network data.

8.1 Assessment of Feasibility (A2.1)

Associative modeling can potentially be realized to a high precision with deep clustering
using neural nets. The neural nets preprocess the data before the cluster formulation,
by extracting relevant features and reducing the dimensionality of the data, as well as
encoding it in a clustering-friendly way, allowing simpler clustering algorithms to find
latent classes which are not explicitly defined in the data. Usually, the task of clustering
in general and the deep neural nets used specifically means a sizable dataset is required
for good precision.

Clustering algorithms, among other similarities, often share the need of a predefined num-
ber of clusters k with quantization algorithms. However, in the clustering case, the k
parameter is not so forgiving: an incorrect setting of k means either some clusters have
to include more than one ground truth class, or a single class has to be divided between
multiple clusters, making an accurate clustering impossible from the start. Clustering
in general requires a lot of domain specific knowledge from the user, in order to set the
parameters of the algorithms correctly, most prominently required in the tuning of the
parameters that govern the additional restrictions for the encoding. Insufficient domain
knowledge can lead to incorrect bias in these parameters, which has a strong impact on the
precision of these algorithms. Furthermore, clustering algorithms also require a great deal
of DL expertise of the user, such as when defining the neural net topologies or balancing
the losses during training. A lack of this expertise can also easily lead to lowered precision,
because of under- or overtraining, or improperly balanced losses. Finally, design-time bias
can be present in the algorithms that makes them inapplicable to the mobile networks
domain, as we have seen with some image clustering algorithms.

140 8. Summary of Research on Association

8.2 Assessment of Practicality (A2.2)

Feature extraction done by an encoding step can greatly reduce the number of dimensions
the secondary clustering algorithms have to work with, thereby lessening the scaling of
runtime/computational requirements with the data dimensions, as well as making them
robust against the curse of dimensionality. However, as the encoding is mostly done with
deep neural nets, the encoding step itself is usually quite computationally heavy. For
inference – when the deep clustering algorithm is only used for assigning new observa-
tions to previously established clusters – DL-based clustering algorithms are relatively
quick. However, if clustering is used as a “whole” (i.e.: discovering new clusters), training
DL-based clustering algorithms can take an exorbitant amount of time, which impacts
their usefulness. Accompanying these large computational requirements are large mem-
ory consumption and data volume need, which in turn translates to a significant cost in
storage and possibly data transfer. These requirements basically exclude deep clustering
to be used on constrained devices with limited storage, memory, computational or power
capacity, such as mobile devices.

On the one hand, for now, there are not many applications where these algorithms are
meant to be repeatedly retrained. One such example is cell anomaly detection, where the
models are usually meant to be periodically retrained in order to allow them to follow slow
changing contexts. In most other cases, the clustering algorithms are meant to be trained
offline and only once, which generally can take a long time without impact. On the other
hand, a shorter training duration and lighter requirements could open up use cases in the
future that are currently not considered, because of the extensive resource needs of these
algorithms.

8.3 Assessment of Applicability (A2.3)

The use of clustering makes sense for problems where there are certainly different types
(classes) in the data, such as user behavior/usage-related modeling, or discrete (state-)
logic in the network, such as network slicing. In data that does not have latent classes,
deep clustering will not do more than what simpler quantization algorithms already do:
splitting up a continuous range of variation into arbitrary discrete clusters. However, that
does not diminish their utility over simpler quantization algorithms: we have seen how
important it is for quantization algorithms to align quanta with class boundaries, if such
classes are indeed present in the data. Clustering techniques are “backwards” applicable to
these problems, where a clustering friendly encoding can help the quantization algorithm
in the aligned definition of the quanta.

Deep clustering training requires a lot of context-specific bias – as we have seen when
using algorithms on mobile network data meant for image-recognition – which might mean
that even if the algorithm is applicable to one mobile network context, it might not be
portable between different contexts, such as different locations, vendors, operators, or
different generations. Thus, deep clustering algorithms are very context-specific (i.e.: not
reusable), and probably need to be trained and fine-tuned not only for use cases, but for
individual uses.

The above restrictions limit the applicability of deep clustering in mobile networks, and
make their use questionable even in the few use cases which do have inherent classes and
allow for context-specific deployments. The strong need for human supervision in these al-
gorithms counteracts our original goal with the use of unsupervised learning: the reduction
of human labor. In my opinion, even if a problem does warrant the use of deep cluster-
ing, most of the time it is better solved by supervised classification algorithms instead.

8.3. ASSESSMENT OF APPLICABILITY (A2.3) 141

Classification generally has higher precision than clustering if applied on the same prob-
lem, usually with a much simpler model (shallower neural net), speeding up training and
inference, as well as greatly reducing memory and power consumption, possibly allowing
for the use of deep classification even on mobile devices. Since clustering algorithms also
seem to require context-specific tuning, the need for a labeled dataset does not necessarily
mean a larger need for human labor compared to clustering algorithms, more of a shift in
what type of labor the expert has to do.

However, all is not lost for deep clustering algorithms. Because of the complexity of
mobile network data, the use of deep clustering algorithms is often warranted for the
purpose of reducing the amount of observations that need to be manually labeled for
supervised classification algorithms. In this role, clustering algorithms are a supporting
tool in the hands of the mobile networks expert: by initially labeling a few key observations
manually, the expert can tune the clustering parameters to best align the clusters with
the initial labels. After this, by labeling whole clusters, the clustering algorithm can be
used to produce labeled observations for the training of a classification algorithm. In this
workflow, deep clustering is both a data-exploratory and a data-preprocessing tool, helping
in the development and deployment of simpler, lightweight classification models.

142 8. Summary of Research on Association

143

Part III

Prediction

Version: 2023/05/26 – 14:32:46

145

9. Signal-quality-based Radio Environment
Prediction

Prediction is an often pursued task, because it allows for preparation to upcoming events:
weather forecasts allow us to put on the appropriate clothing in the morning, financial
forecasts let us invest into the next big stock while it is still cheap, earthquake predictions
allows us to move out of harms way in time, etc. However, the prediction of events is also
complicated, because most of the contexts where it is beneficial to use prediction are also
the ones where it is almost impossible to account for all controlling factors, and thus to
precisely predict future behavior. A famous quote – likely originating from Niels Bohr – is
fitting here: “Predictions are hard, especially about the future”. A somewhat philosophical
question is whether a completely known and enclosed system’s behavior could be predicted,
as there always seem to be some small variations which we are not able to describe in a
systematic way, which could affect even high-level, abstract systems in an unforeseen way.
Working years on prediction tasks, it seems to me – and I imagine to many others with
similar tasks – that randomness is ingrained into the universe, and there is no way around
it.

All is not lost, however, as predictions often don’t have to be extremely precise to be
useful. Furthermore, the farther a prediction is in the future, the less precision is required
for usefulness. It is important to note: whether or not a prediction is long-term depends
on the rate of change in the system that is modeled, and not on the absolute time forward
the prediction targets. Long-term can mean a few seconds if the changes are very abrupt
(such as radio conditions), and conversely, short-term can mean years if the changes are
very gradual (such as population density changes). Prediction on a long timeframe (years)
could be used well in network planning, by using population growth and map data to select
locations for new cells [122]. Prediction of medium timeframe changes (hours/minutes)
could be used for many orchestration functions, by predicting traffic to maximize the
utilization of slices [123], predictively migrating containers/Virtual Machines (VMs) to
follow users [124], or predictively allocating users to balance load between cells [125]. In
the following work, we discuss predictive handovers, which utilize very short timeframe
(seconds) predictions. However, because the strength of radio signals can change abruptly
(in a few milliseconds), I still consider handover prediction a long-term prediction task.

Handovers of users between cells are one of the main causes for possible service degra-
dation/interruption, and as such a primary target where cognitive automation could be
beneficial. In the context of handovers, the basis for better automation is the exact de-

Version: 2023/05/26 – 14:32:46

146 9. Signal-quality-based Radio Environment Prediction

termination – and in our case prediction – of points where handovers should be triggered
(both in time and space). With a precise knowledge of these handover points, handovers
can be optimized to simultaneously minimize the number of handovers (and subsequently
ping pong handovers) that are triggered, as well as the radio link failures (too early and
late handovers) that may result from improper handover settings. The minimization of
service interruption caused by handovers is critical for URLLC, a standout feature of 5G.

This chapter details the work published in the following paper:

Machine-Learning-Based Predictive Handover
Ahmed Masri, Teemu Veijalainen, Henrik Martikainen, Stephen S. Mwanje, Janne
Ali-Tolppa, Márton Kajó
IM 2021-2021 IFIP/IEEE International Symposium on Integrated Network Man-
agement, pp. 1-2. IEEE, 2021.

I contributed to the above research as a DL expert, consulting with my colleagues about
implementation details and how to best train the deep neural net used for prediction. I
also a co-authored and extensively edited the paper, as well as prepared and presented the
results at the conference. The discussion in this thesis expands on the paper, by providing
further details to the inner-workings of the algorithm, as well as showing extended results
that were not included in the paper.

9.1 Machine-Learning-Based Predictive Handover

9.1.1 Minimizing Interruption

A major goal for 5G networks is to provide URLLC [126], which could be used, for example,
in reliable factory automation, remote control, smart grids, self-driving cars and any critical
tasks that rely on close-to-real-time communication. One aspect of the URLLC feature is
high availability, i.e.: minimization of the times when the communication is interrupted.
Handovers are a major cause of interruptions in mobile communications, so for URLLC
services it is critical that these are minimized. Thus, URLLC communication requires a
very low Mobility Interruption Time (MIT), defined by the 3rd Generation Partnership
Project (3GPP) standard as the time during which a user terminal cannot exchange user
plane packets as it is handed over from one cell or base station to another [127].

For a handover event, the MIT (TMIT) consists of two parts as given by Eq. 9.1:

TMIT = (1− PHOF) ∗ THIT + PHOF ∗ THOF , (9.1)

where THIT is the interruption time during a successful HandOver (HO) and the THOF is
the interruption time in case of a HandOver Failure (HOF) or a RLF. A HOF occurs, if
a UE is handed over too early or to a wrong target cell, and a RLF occurs when a HO
is triggered too late or not at all, leading to a lengthy recovery procedure to reconnect to
the network [126]. The value PHOF is the probability of either a HOF or a RLF occurring
during a HO. The total accumulative MIT experienced by a UE is the product of TMIT

and the number of HOs.

The total TMIT can be reduced by reducing the PHOF or the number of unnecessary
HOs, especially the ping pongs. In LTE networks, the typical THIT is reported to be
about 50ms [128, 129], while the THOF ranges from a few hundred milliseconds to several
seconds. As the THOF has higher impact on the total TMIT than THIT , it follows that
reducing the PHOF will contribute more to reducing the TMIT . Because the most common
cause of a failed handover is a late handover, the usual way of reducing the PHOF is to

9.1. MACHINE-LEARNING-BASED PREDICTIVE HANDOVER 147

increase the likeliness of handovers, while keeping in mind that increasing the likeliness of
handovers could cause many unnecessarily ping-pongs that may accumulate and increase
TMIT just the same. Thus, in classical HO mechanisms, the reduction of the total TMIT

is a balancing game between the number of handovers and handover failures.

Time

S
IN

R

Serving Cell 1 Cell 2

CIO

TTT
Delay

Break

Completed HO

HO

decision

(a) Reactive HO

Time

S
IN

R

Serving Cell 1 Serving Cell 2

Delay
Break

Completed HO

Input frame

HO

decision

(b) Predictive HO

Figure 9.1: Reactive and predictive handover mechanisms.

Figure 9.1a shows the current reactive HO mechanisms. Existing adaptive Mobility Ro-
bustness Optimization (MRO) solutions (both rule-based automation functions and learning-
based functions) select/balance the best handover settings for a given pair of cells, i.e. they
optimize the Cell Individual Offset (CIO) and TTT settings for a pair of cells. The CIO
parameter (e.g. 1− 3 dB) acts as a hysteresis value on the received signal quality, delay-
ing handovers until the best cell’s signal is CIO amounts better than the current serving
cell. The TTT parameter (0− 5000 ms) delays HO execution, so that the effect of erratic
changes is suppressed. Both of these parameters are meant to combat sporadic HOs and
ping-pongs, but they can also be the cause of RLFs if the induced delay is long compared
to the rate of change in the radio environment, such as for fast moving cars. Furthermore,
because a common setting is used over the entire boundary, there may still be areas of
poor performance even with optimal parameter values, since the radio conditions are far
from uniform across the whole cell border. The cell-pair-wise settings are also incapable of
accounting for nuances, such as differences in user speed, trajectory across the cell border
and temporal changes in the radio propagation environment.

Theoretically – using perfectly predicted radio conditions – the balancing game can be
escaped, and the PHOF reduced to 0 while also minimizing the number of handovers
(Fig. 9.1b). In traditional HOs implementations, measurements are only logged for specific
events, such as logging when two or more handovers happen in a preset timeframe (ping
pong HO). This work studies the possibility of using ML to learn the mobility policy
based on a constant stream of UE measurements and predefined performance objectives.
This allows the mobility to be dynamically optimized for each UE and situation while
considering the predicted radio conditions. To evaluate this concept, we developed a
predictive classifier, which takes UE measurements and determines the optimal point in
time and the target cell for a HO, in order to minimize the total MIT. The concept was
evaluated using simulations in a challenging industrial 5G network setup.

9.1.2 Related Work

Several publications have applied ML approaches to optimize the performance of HOs
without changing the reactive HO regime. Most of these works use reinforcement learning
techniques, in which a model is trained online by interacting with environment, without

148 9. Signal-quality-based Radio Environment Prediction

the need for prepared training data. For example, authors in [130] applied a reinforcement
learning algorithm called ϵ-greedy Q-learning to learning the optimal HO policy, which
maximizes the future throughput expected under the locations and velocities of pedestri-
ans. Their work depends on slow moving users and a human tracking module, e.g. an
RGB-D camera, which makes their reinforcement learning model customized for such non-
common scenario. However, reinforcement learning techniques have one main drawback,
i.e. that the learn-by-experience approach requires a trial and error period, which cannot
be tolerated by most real-life environments [131]. For this reason, in this work we focus on
unsupervised ML, in which training data is collected and an offline model trained, after
which an online prediction using the trained model can be executed.

Authors in [132] proposed an approach toward improving the conditional HO technique, by
predicting the target cells to be prepared for a possible upcoming HO. Their results show
a promising improvement towards reducing the MIT. However, the approach was tested
with HO triggering still using the legacy LTE HO methods, in a simplistic environment
that is not representative of typical 5G URLLC conditions.

Authors in [133] proposed to assist HOs in mmWave vehicular networks, by using historical
HO data and a simple ML algorithm to determine the internal relationship between a ve-
hicles’ status information when requesting HOs and the final HO decisions. However, their
proposal optimized for vehicular networks in a specific scenario, and cannot be generalized
for other challenging 5G scenarios.

The work in [134] focuses on multi-user, multi-step trajectory prediction using the LSTM
supervised ML technique. Predicting the user’s future location provides important infor-
mation towards reducing THOF . However, their achieved user location prediction, in the
order of dozens of seconds to a few minutes, is too long for industrial environments, e.g. to
predict the quick jumps between cells within the few hundreds of milliseconds when user
is moving between machines with heavy shadowing effects.

9.1.3 Training the Predictor

Labels

Training Frames

Training Inference

LSTM
Classif.
Model

Input Frame

Predicted
Prob. of

Target
Cells

Figure 9.2: Predictive handover overview.

The aim of predictive HO is to improve mobility performance over state-of-the-art meth-
ods (including MRO), by learning and optimizing the triggering of HOs for a particular
environment. As shown in Fig. 9.2, the model is meant to take as input UE Signal-to-
Interference-plus-Noise Ratio (SINR) measurements from K specific cells. Theoretically,
the model can implicitly finger-print the SINR signals – such as triangulate position –
and learn to predict the probability that a given cell will have the best SINR by a future
time instance J , thus, this fingerprint becomes specific to the geographical area. A HO
to a cell C is recommended if cell C is not the serving cell and has the highest predicted
probability. This formulation is a K-class classification problem, which we implemented
using an LSTM neural net.

9.1. MACHINE-LEARNING-BASED PREDICTIVE HANDOVER 149

A key question in classification is how the labels are obtained. In our approach, the
labels are estimated offline, from recorded SINR measurements. Each cell is assumed to
generate interference for the target candidate cell and the corresponding SINR is mapped
to a capacity estimate, similar to Shannon’s capacity equation, so that the cell with the
highest expected capacity over the samples from t+ i to t+M is chosen as the best. SINR
is used to evaluate the spectral efficiency of each cell at a given point in time, where the
spectral efficiency is integrated over the labeling window. Additional penalties are defined
for handovers, such as UEs receiving zero capacity during the interruption, which ensures
to only trigger the necessary HOs and subsequently limit the ping-pongs. Weights are used
to balance the trade-off between spectral efficiency and outage from handovers or failures.

Time

S
IN

R

Labeling frameInput frame

𝑡 − 𝑁 𝑡 + 𝑖𝑡 𝑡 + 𝑗 𝑡 + 𝑀

sweep

Figure 9.3: Labeling of the training frames for the LSTM predictor.

At time t, the input for the model is N previous measurements from the K cells, which we
call the input frame. The label for this input is calculated using the M samples after the
input frame, which make up the labeling frame. The goodness of a HO is estimated for
each point i within the M samples by using samples from i to i+M (Fig. 9.3). Connection
to the serving cell is assumed until t+i, after which we evaluate – using the remainingM−i
samples – what would happen if HO is triggered at i towards each candidate cell L. Since
any point i within the M samples could be the optimal HO point, the HO candidate points
i are swept inside the labeling frame until J samples (J < M) to determine the best among
them. Starting with the assumption that point t (i = 0) is the best HO point and towards
the serving cell (i.e., no HO is necessary), each of the subsequent points are evaluated for
each of the candidate target cells, to determine if they provide better connectivity for the
user. If the newly evaluated point is found to be better than the current best HO point,
the new point is marked as the current best HO point. The evaluation of HO candidates
continues until i reaches J , at which point the best target and time point are chosen as
HO label for the input at time t. If no cell is found to be better than the serving cell, we
repeat the process by incrementing t by one step. Otherwise, the process continues at the
obtained HO point with the new serving cell.

9.1.4 Filtering Classification Decisions using a Dynamic Threshold

During the online operational phase, classification inference in cell A is performed at each
time step but HO is only triggered – say to cell B – when the output of the classifier
changes between time steps, in this case from cell-A to cell-B. As in any classification
task, precision and recall, and their translated costs are important performance metrics.
The cost of a false negative – a handover not triggered in time – is a RLF, from which the
recovery can take 10× or 100× longer than the interruption caused by a HO. However, the
cost of false positives – wrong timing of the HO and/or HO to the wrong cell – can also
be many times that of a successful HO. An unnecessary HO may generate e.g. an RLF if
HO is triggered towards a weak cell, or ping-pong if HO is triggered towards sub-optimal
cell, after which the user is handed back to the optimal cell.

150 9. Signal-quality-based Radio Environment Prediction

The typical way of controlling for erratic inference is to add a threshold to the output –
after the softmax layer – acting as a confidence minimum, which the classifier has to reach
before a handover is triggered. We have devised a method, called Dynamic Confidence
Threshold (DCT), which can dynamically adjust this threshold during runtime to balance
between false positive and false negative HO triggers. The DCT adjustment algorithm
can be seen on Alg. 9.1, where RSSINRserv is an n-steps history of the serving cell’s
measured RSRP-based SINR (RSSINR), and Pmax is the ML model’s max prediction
output probability of target different than serving cell. EMA() is the exponential moving
average function, RSSINRserv(end) is the instantaneous value of the current time step of
the serving cell’s measured RSSINR, Qout is a threshold below which the user is unable to
communicate and DCTmax and DCTmin are the max and min values of DCT, respectively.
Refmax and Refmin are maximum and minimum SINR budgets (∆2), outside of which
DCT is again restricted to its max and min values. Finally, Sup and Sdown are the DCT
increment up and decrement down step sizes, respectively. The goal of DCT is to filter
out many of the inaccuracies and noise of the classifier. The necessity of using DCT will
become apparent shortly, in the next section.

Algorithm 9.1: The DCT algorithm.

Input: RSSINRserv and Pmax, parameters Sup and Sdown

Output: Decision: HO (target cell ID) or No-HO
1 ∆1 = EMA(SINRserv)−Qout;
2 ∆2 = SINRserv(end)−Qout;
3 if ∆2 > Refmax then
4 DCT = DCTmax;
5 else if ∆2 < Refmin then
6 DCT = DCTmin;
7 else
8 if ∆2 > ∆1 then

9 DCT =

{
DCT + Sup if DCT + Sup ≤ DCTmax

DCTmax otherwise
;

10 else

11 DCT =

{
DCT − Sdown if DCT − Sdown ≥ DCTmin

DCTmin otherwise
;

12 end

13 end
14 if Pmax ≥ DCT then
15 Trigger HO toward predicted target with Pmax;
16 else
17 No-HO;
18 end

9.1.5 Evaluation Environment and Scenario

Our goal was to evaluate the performance of the predictive HO model both with and
without the classification threshold (DCT) and to compare that performance to the legacy
solutions: the baseline with A3 triggering and when applying MRO. Our study focused
on URLLC services, requiring that an industrial environment is considered, which we
simulated using a proprietary network simulator. The network and its processes were
simulated by a MATLAB-based simulator, in which a detailed 5G-like radio environment
simulating a factory scenario is implemented. The ML algorithm was implemented in
Python.

9.1. MACHINE-LEARNING-BASED PREDICTIVE HANDOVER 151

12

3 4

5

67

-20

-10

0

10

20

30

40

50

60

70

80

S
N

R
 (

d
B

)

Base Station

Figure 9.4: SINR map of the factory environment.

The simulation considered a radio network in a factory having M micro cells with an
inter-site distance of 50 m and N mobile users. The factory covered 22500 m2 with
surrounding walls limiting the users’ mobility to the factory dimensions, as shown in
Fig. 9.4. For simplicity, the walls had no reflection effects on signaling, but emulated the
internal factory structure, an environment with obstacles and heavy clutter, with path-loss
given by Eq. 9.2:

PL = PL0 + 10n× log10(
d

d0
) + S, (9.2)

where PL0 = 80.84 dBm is the free space path loss at reference distance d0 = 15 m.
The path loss exponent n = 1.69 and the shadowing S is a Gaussian-distributed random
variable with zero mean and standard deviation, σ = 6.62 dB. The shadowing correlation
and correlation distances were set to 0.5 m and 5 m respectively.

The operating frequency was set to 2.4 GHz, and the cells’ transmission power was set
to 30 dBm for the whole transmission bandwidth of 100 MHz. Worth noting from the
factory’s SINR distribution in Fig. 9.4 is that the scenario was not limited by noise, as we
targeted an interference limited system. For the RSSINR, the RSRP values were assumed
to be representative on the full bandwidth and correspondingly could be used to calculate
full interference. For each user u ∈ U in cell k ∈ K, the received RSRP from cell q, given
as RSRP(u, q|k), was used to calculate the RSSINR(u, q|k) in the following way:

RSSINR(u, q|k) =
RSRP(u, q|k)∑K
l ̸=q RSRP(u, l|k)

, ∀ q inK (9.3)

For traffic, a full buffer traffic model was used, i.e., users always have data to transmit as
long they are in connected state. The users moved in straight lines (starting in a random
direction), and bounced off walls.

Whenever a HO was triggered, it was followed by a prediction break period of 5 time steps
(equivalent to 50 ms), within which the HO was assumed to be executed and the model
was allowed time to prepare for the new cell. Correspondingly, no new predictions were
undertaken in this timeframe. Other details on the simulation scenario are summarized
by Tab. 9.1.

152 9. Signal-quality-based Radio Environment Prediction

Parameter Value Parameter Value

A3 TTT [ms] 200 Qout [db] −8
L3 filtering time constant [ms] 50 THIT [ms] 50

Default A3 offset [db] 3 THOF [ms] 600

Simulation time [s] 100 Training data frame size 7x100

UE speed [km/h] 12 Training data size [frames] 4.4x106

Measurement sampling period [ms] 10 Trained model accuracy 98%

Table 9.1: Radio, ML and simulation parameters for the evaluation of the predictive
handover concept.

9.1.6 Evaluation Results

The evaluation assessed the performance of our ML-based predictive HO against the base-
line with A3 event HO triggering and a finely tuned and converged MRO [135], comparing
the number of handovers triggered, and the subsequent total outage achieved by the algo-
rithms algorithms. The total outage is derived as the product of count for the specific HO
event and the respective TMIT .

Figure 9.5 shows an illustrative example of predictive HO with and without the classifi-
cation threshold in response to changes in the signal of the serving cell. Initially, cell 4
is the serving cell but, as seen in Fig. 9.5a, both cells 4 and 5 have almost equal SINR
values, indicating that the user may be moving along the cell border. In Fig. 9.5b, we
see that the predictive HO solution becomes indecisive about the optimal cell and triggers
multiple HOs between the two cells. Applying the classification threshold (DCT) with a
higher threshold value, as shown in Fig. 9.5c, guides the model to only trigger HO when
another cell is predicted to be better than the serving cell with a significant confidence.
This reduces the number of unnecessary HOs, so that all the ping-pongs between cells 4
and 5 are eliminated.

Figure 9.6 presents the statistical comparison between the ML and non-ML-based solu-
tions. Based on the total outage, we observe that the predictive HO with DCT outperforms
all other techniques, including the finely tuned and converged MRO. Figure 9.6a shows
a big reduction in outage, which is a result of a significant reduction in the number of
RLFs (leading to reduced THOF), from 8 RLF/min in the baseline and 2 RLF/min for the
MRO algorithm to less than 0.5 RLF/min when using the ML-based predicted HO. For
the default ML-based predictive algorithm, the reduction in RLF-triggered outage comes
with increased outage due to unnecessary HOs, which the DCT resolves by reducing the
per-minute number of HOs triggered (Fig. 9.6b).

9.1.7 Conclusion and Critique

This chapter investigated an ML-based HO method, which utilizes deep learning to pre-
dictively trigger handovers, in order to minimize service interruption time. The predictive
handover method has been evaluated in a complex industrial environment, where it showed
a reduction in the number of radio link failures and total outage from UE mobility com-
pared to traditional HO triggering as well as the finely-tuned MRO. While the evaluation
results show a very promising performance increase, I think there are a few aspects of the
algorithm that could be criticized, and should be improved before it is viable for a real
deployment.

The first of these aspects is the algorithm’s heavy dependence on DCT, without which
the performance is sub-par compared to the traditional, non-DL-based MRO optimization

9.1. MACHINE-LEARNING-BASED PREDICTIVE HANDOVER 153

(a) Measured RSSINR

(b) Without DCT

(c) With DCT

Figure 9.5: Example of predictive handover for a user moving along the edge of cells 4
and 5, with and without DCT.

(Fig. 9.6). To me, this, and the erratic behavior depicted in Fig. 9.5b when not employing
DCT signals that the prediction is not as dependable as it perhaps should be. I suspect
that DCT could have been omitted with a better predictor, as it stands in this evaluation,
DCT is a necessary “crutch” for an improperly working predictor. It would have been
interesting to see just how much performance DCT adds to the system if the prediction
is better, however, this evaluation is not so straight-forward, because the output of the
predictor is a categorical cell-probability. With a continuous (regression) prediction task,
the prediction could be linearly mixed with the true future, thus evaluating DCT’s value

154 9. Signal-quality-based Radio Environment Prediction

Baseline MRO ML-DCTML-pred.

Case

0

0.02

0.04

0.06

0.08

0.1

O
ut

ag
e

All outages
Outages due successful HO
Outage due to RLF/HOF

(a) Outages

Baseline MRO ML-pred.

Case

0

20

40

60

80

H
O

 /
U

E
 m

in

HO
PP

ML-DCT

(b) Handovers

Figure 9.6: Comparisons between baseline, MRO and ML-DCT handover statistics.

without actually having to implement a perfect predictor. This also leads to the next
problematic aspect.

The second aspect is the categorical prediction that is required form the predictor, where
seemingly tiny changes in the input RSSINR values warrant sudden, complete changes
in the output. In my experience, such tasks are not well-fitting for neural nets, because
even though neural nets employ many layers with plenty of nonlinearities to be able to
approximate such functions, they still behave similarly to signal amplifiers: if neural nets
learn to approximate steep changes in the output for certain small input changes, they will
also map similarly large output changes to other small input changes, where they are not
necessarily needed. In this analogue, the neural net learns to model an amplifier with a
high rate of amplification. This also explains the erratic predictor output, and the need for
DCT. Overall, I think a differently formulated prediction task would fit neural nets better,
where small changes in the input correspond to similarly small changes in the output.

The third problematic aspect is the required inputs for the predictor: the RSRP measure-
ments are required from all cells at all times for each user. This is not a realistic scenario,
because users often don’t “see” all cells, i.e.: some cells’ signals are such a low power that
they vanish in the interference or background noise. This problem becomes more severe
the larger the scenario is, or the more cells it includes. Thus, either a model needs to be
developed which can handle missing inputs – which is generally a problem for neural nets,
a topic which is the focus of Part IV – or different measurements should be used, which are
always accessible. Furthermore, the noisy nature of radio measurements – such as RSRP
– also contribute to the erratic predictions, where other inputs with less variance could
prove to be smoother, and thus easier to predict.

All of these aspects were taken into account when we researched mobility-based radio
prediction, the topic of the next chapter.

155

10. Mobility-based Radio Environment
Prediction

Many natural and human phenomena can affect the radio environment: the movement of
a tree’s leaves in the wind, the rain getting stronger, a passing car or somebody opening
a window on the building across the street. These environmental changes alter signal
propagation paths, either resulting in constructive or destructive interference, or simply
attenuating the signal. The seemingly random effect of these changes in the radio channel
is collectively called fading. Because the unpredictable, constantly changing nature of fad-
ing, it is usually modeled as a random process in the attenuation or phase characteristics
of the channel. Such behavior is nigh impossible to predict with current technology, be-
cause models cannot take into account all the minute factors that contribute to the radio
environment.

Underneath fading is a parameter that governs the radio channel in a more predictable
way: the location of the user(s). If fading is not taken into account, or removed through
averaging (in time), the radio environment is more or less static for every point in space.
Thus, if the movement (mobility), and so the future location of the user can be predicted
accurately, this prediction can then theoretically be mapped to a radio environment pre-
diction with a high accuracy. This split of user mobility prediction and the mapping of
location to radio quality is also beneficial for the predictor. From a purely DL perspec-
tive, user location is effectively a “latent” feature behind the radio quality changes, which,
when communicated explicitly, removes the need of extracting this latent feature from the
roughly related SINR measurements, making the job of the predictor that much easier.

The task of predicting user mobility fits DL perfectly: human movement is very logical,
governed by the starting point and destination, the available paths, traffic rules, and last
but not least, other people. By learning patterns and extracting these underlying motives,
DL models could be able to predict user mobility far ahead into the future with high
accuracy. This is the idea we pursued: a split radio quality prediction, where first the
long-term movement of the users is predicted, which is then translated into a long-term
QoS prediction. The long-term prediction leaves enough time for lengthy preparation, such
as the reconfiguration of the beams in a cell, in order to avoid service outages for select
users. We call this concept dynamic coverage optimization.

This chapter details the work published in the following (demo) paper:

Version: 2023/05/26 – 14:32:46

156 10. Mobility-based Radio Environment Prediction

Mobility and QoS Prediction for Dynamic Coverage Optimization
Janne Ali-Tolppa, Márton Kajó
NOMS 2020-2020 IEEE/IFIP Network Operations and Management Symposium,
pp. 1-2. IEEE, 2020.

My contributions to the above paper was the design and implementation of the machine
learning components in the proof of concept, as well as the co-authoring of the paper.
The discussion here is considerably extended, by providing more detail than what was
possible to fit into the demo paper’s limited space. The discussion is further extended by
connecting it the following patent application, which we developed using the experience
gained in this research to propose a similar, mobility-based QoS prediction framework for
predictive handovers:

Path-Aware Cognitive Handover Optimization (PACHO)
Janne Ali-Tolppa, Márton Kajó, Stephen S. Mwanje
WO, PCT application no.: PCT/EP2021/072325, filed August 2021

This patent application also tries to address many problems that the previously introduced
machine-learning-based predictive handover concept had (Sec. 9.1.7). Finally, the discus-
sion is concluded by some remarks on the importance of data privacy, and the need for
trust in DL algorithms.

10.1 Mobility and QoS Prediction for Dynamic Coverage Optimiza-

tion

10.1.1 The Hamburg Smart Seaport Testbed

The Hamburg Smart Seaport 5G testbed has been created as a part of the 5G Mobile
Network Architecture (5G MoNArch)1 project, with the goal of demonstrating dynamic
network slicing for industrial and consumer applications. The testbed consisted of one
site (Base Transceiver Station (BTS)), with two cells that covered the entire harbor. Fig-
ure 10.1 shows the position of the site, and a sample of the measurement points, which are
color/coded according to the serving cell (red or purple/blue hue) and the RSRP recorded.

We used this testbed to collect BTS-wide KPIs and UE measurements from up to three
ships, such as RSRP and latency, as well as the ship’s position reported by the Global
Positioning System (GPS). The data collection took place over a time of 6 months in 5
second granularity, with all in all around 3 million records collected. Certain parts of the
testbed showed low signal strengths, especially for the ships that were moving around the
whole harbor area. This was caused partly by the shadowing of the high river bank and
tall buildings, and partly simply by the long distances from the BTS. An example of such
a shadowing effect from the collected UE measurements is shown in Fig. 10.2: as the ship
enters a shadowed area, the RSRP droped abruptly and latency increased. In the shown
example, the shadowing leads to an RLF. Our goal was to mitigate such shadowing, by
reconfiguring the beams dynamically to focus on the shadowed areas when a tracked barge
was close to entering these areas.

10.1.2 Mobility and QoS Prediction

Our initial approach studied whether it is possible to use purely analytics and ML to
predict the above shown service degradations. To this end, two ML models were created

1https://5g-monarch.eu/smart-sea-port-use-case/

https://5g-monarch.eu/smart-sea-port-use-case/

10.1. MOBILITY AND QOS PREDICTION FOR DYNAMIC COVERAGE
OPTIMIZATION 157

Cell2

Cell1

-120 -60[dBm]

Shadowing

Heinrich Hertz tower

Figure 10.1: Site and collected data from the Smart Seaport 5G testbed.

RSRP of USRP1 [dBm] Ping [ms]

Figure 10.2: Shadowing effect experienced by one of the barges.

based on the UE measurements: a deep CNN to predict the movement of the barges
(Fig. 10.3a), and a shallow MLP as a radio propagation map (Fig. 10.3b), to map the
predicted locations to radio QoS.

Input sequence
Ground truth
Prediction

(a) Mobility prediction

RSRP, serv. cell1
RSRP, serv. cell2

(b) Radio propagation map

Figure 10.3: Mobility prediction and radio propagation models trained on the testbed
data.

The deep CNN-based mobility prediction worked excellently. The input to the mobility
predictor was made up of 32-long sequences of latitude and longitude coordinates. In
order to help with the incorporation of inertia-like behavior into the model, we found

158 10. Mobility-based Radio Environment Prediction

that it is helpful to extend the input features by also supplying the model with both a
per-sequence normalized version of the coordinates, as well as version which contained
the differences between individual steps in the sequence. With these added features, the
mobility predictor was able to predict barge movement quite precisely up to 8 steps ahead,
which corresponds to 40 seconds into the future.

Global-mean

Sequence-mean

Differential

C
N

N
1

GPS location (t-3)

GPS location (t-2)

GPS location (t-1)

GPS location (t)

C
N

N
2

C
N

N
3

Channels

Global-mean

Sequence-mean

Differential

GPS location (t +1)

GPS location (t +2)

GPS location (t +3)

Global-mean

Figure 10.4: The feature engineered inputs the the mobility-predicting CNN.

Unfortunately, the shallow MLP did not function acceptably as a radio propagation map.
Our reasoning behind using a shallow neural net was to have an inherent regularization
and not to overfit the extremely noisy RSRP measurements. Deeper neural nets tended to
learn these noisy observations, forgoing generalization, even if we employed some external
regularization scheme, such as weight-decay. However, the simple model was not able to
properly estimate the radio condition changes with a fine enough granularity. Ultimately, it
was impossible to find a good trade-off between overfitting and a too simplistic model. We
concluded, that for a high-granularity model to be trained, we would have had to collect
a lot more data (several magnitudes), which covers basically all the water surface in the
harbor. However, such data collection, on top of taking a very long time, also requires
directed measurement campaigns, as it would have involved areas of the waterways which
are not necessarily used during regular operation. This is a general problem for many
ML-based radio quality models, because they require good quality data, which is only
possible to acquire with costly drive-tests. However, there is a modern solution to this
problem: digital twins, simulated environments updated in real-time to mirror real-world
environments.

10.1.3 A Digital Twin for QoS Prediction

To achieve an accurate mapping between QoS and barge locations, we created a digital
twin using our proprietary network simulator, focusing on the harbor area. The geometric
data for the buildings and other occluders – such as cranes – were supplied to us by
the government of the city of Hamburg. After some tuning of the radio propagation
parameters and material properties in the simulator, we were able to align the simulation
to the recorded measurements from the real testbed, and also reproduce the detected
coverage issues. Additionally, the simulator was extended to simulate beam forming: in
our simulation, each cell was further split into 4 beams, each of which could be separately
controlled by tilting the beam up or down, and setting the transmission power. This
allowed us to show how the QoS predictions, combined with beamforming, could be utilized
in closed-loop network automation function to preemptively react to QoS degradations.
The concept was made into a demonstrator, which we named Predictive Location-Aware
Network Automation for Radio (PLANAR).

The architecture of PLANAR is shown in Fig. 10.5. The Mobility Pattern Prediction
(MPP) module uses the deep CNN to predict barge movement. Using the MPP’s output

10.1. MOBILITY AND QOS PREDICTION FOR DYNAMIC COVERAGE
OPTIMIZATION 159

AI module

MPP

Settings

Pred.

QoS

Pred.

locations

AI module

Network

Simulator

Actors

CCO

BA

Deployment

Mobile Network

Data Collector

Env. Info.Digital TwinMeasurements Loc. Traces Training

PLANAR

Figure 10.5: The components of PLANAR.

as an input to the digital twin, accurate predictions about the barges’ QoS can be made 40
seconds into the future. The predictions are utilized by optimization actors, which create
recommendations for beam reconfiguration. In our demonstration, the selected actors are
the CCO, adjusting cell transmission power, and the Beam Adaptation (BA) function,
optimizing beam tilt. The 40 second prediction window allows for repeated adjustments:
the newly set beam configuration is simulated in the digital twin, and if the RLF is still
present, another round of adjustments can be made. PLANAR implements the ML pipeline
concept, as described in [136]. A video of the demonstrator in action is available online on
YouTube2.

10.1.4 Results

Out of a total 65206 sequences, PLANAR was able to predict 97.6% that ended in either
an RLF or below −120dB RSRP. We encountered altogether 96 false positives (0.14% of
total observations, and 20% of true drops. There were 12 false negatives (0.02% of total
observations, and 2.5% of true drops). In our case, false positives are not dangerous, since
the corrective actions are not very intrusive. Also, many of the false positives were very
close to our (arbitrary) threshold. The false negatives are potentially disruptive, but these
were very few.

An excerpt from the demonstrator shows how the CCO and the BA functions can prevent
predicted degradations (Fig. 10.6). The dark blue line is the RSRP measured by a ship
and the light blue line is the predicted value. At point 62 a RLF is predicted. The
CCO preemptively adjusts the cell transmission power, and the BA function configures
the beamforming, so that when the ship is entering the shadowed area, a beam is already
pointed there. If necessary, the BA function will also split a beam to be able to optimally
serve the whole covered area. With these actions, the ship experiences no degradation
at all. Once the ships leave the shadowed area, the compensation is gradually configured
back to the baseline to save resources and to reduce the compromises the compensating
reconfigurations have on other UEs and slices.

A further consideration is the robustness of the ML models against changes in the environ-
ment, including those based on the insights coming from the model itself. The advantage

2https://www.youtube.com/watch?v=nMdBbLv2G98

https://www.youtube.com/watch?v=nMdBbLv2G98

160 10. Mobility-based Radio Environment Prediction

R
S

R
P

[D
B

]

-100

-120

-140

-160

T
h

ro
u

g
h

p
u
t

[k
b
it
s
/s

e
c
]

150

100

50

0
Time

Measurement

Prediction

(40 sec. ahead)

Predictied RLF40 s

Corrective action deployed

Figure 10.6: Example of a beam reconfiguration in PLANAR avoiding a RLF.

of separately predicting the future location and the expected QoS using two independent
models, is that the reconfigurations only affect the radio propagation model, but not the
MPP. Furthermore, utilizing a digital twin for the radio propagation modeling makes the
model capable of accurately following such reconfigurations. We believe this demonstrates
the advantages of a digital twin in operational network optimization. Of course, using a
digital twin is not without its hurdles: digital twins require extensive information about
the simulated scenario (building models), human labor for setup, live data collected from
the users and other elements of the network, and considerable computational power to
run the simulation in real-time. These requirements make digital twins situational, only
applicable to limited use cases and scenarios. However, if all requirements are present,
digital twins can be used to considerably improve the robustness and adaptability of a
network.

10.1.5 Conclusion

As we have seen in the previous chapter (Cha. 9), signal-quality-based prediction can
be quite unreliable (noisy), and requires strict post-processing to render the predictions
usable. I suspect one cause of the high variance is the categorical output required from
the predictor, however, there is another underlying issue that further adds to the problem.
Signal quality is suspect to rapid, seemingly random changes due to fading, without which
it is mostly governed by user location. However, if location is only present in the data
as a latent feature, “hidden” behind noisy signal quality measurements, it can be hard to
extract for DL algorithms, thus, the true cause of the changes is never modeled properly.

Location-based prediction solves this problem by explicitly using location as the input
to the prediction model. Furthermore, detaching location prediction from radio quality
mapping allows for different regularization on the two models, so that the high variance in
the radio map can be suppressed without affecting the prediction performance. PLANAR
improves this concept further, by using a digital twin as a radio map, as well as a sand-
boxing environment, in which beam reconfigurations can be tested before being deployed
to the real network. However, for all this to work, the precise location of each user has to
be collected in real-time, which raises concerns for the users’ privacy.

10.2 On Data Privacy

While the location-based prediction in PLANAR solves the issue of high variance seen
with signal-quality-based radio environment prediction, it introduces another one. The
measurement and reporting of signal quality is an integral part of the radio communica-
tion in mobile networks, used for the channel equalization in older generations, Orthog-
onal Frequency-Division Multiplexing (OFDM) and MIMO in newer ones, as well as for

10.2. ON DATA PRIVACY 161

scheduling. Thus, a model using signal quality as input for predictions requires basically
no extensions on currently available signaling in the network. Furthermore, because sig-
nal quality is an essential part of radio communication, users of mobile phones inherently
“opt-in”, allowing the network to collect this information about them.

The most common method of user localization is GPS, but 5G also supports diverse user
localization methods based on signal quality measurements, with more methods planned
for later releases/generations. Generally, signal-quality-based triangulation exhibits the
same problem as signal-quality-based prediction: the location estimations are usually quite
noisy, thus relatively unprecise – precision ranges from tens of meters to a few meters –
making them generally on par or worse than commercial GPS accuracy. For industrial
applications, some methods’ precision can be improved down to a few centimeters with
strategically placed access points. The collection of the user’s location is of high interest:
within the mobile network, user location can be used for network planning, MDT, or
predictive reconfiguration as in PLANAR, while applications using the mobile network –
such as food delivery apps or taxi services – can use it to find the user. But herein lies
the problem: user location is a very sensitive information, which can be used for malicious
intent in many ways if it falls into the wrong hands. Because of this, user location reporting
is a highly controlled feature, where users have to strictly opt-in for it to work.

PLANAR and similar smart radio concepts are planned for industrial customers and
smaller campus networks, where functionality depends on URLLC. In these scenarios,
user localization is a non-issue, as the users also inherently opt-in to reporting their loca-
tions. Everyday mobile phone users usually do not need or expect high reliability from
the mobile network, thus, for them location-based features are only interesting on the
application-level. However, there is a growing number of potential applications which
would use the commercial networks, but require URLLC: remote controlled, or self-driving
vehicles (cars or drones), used for personal transport or deliveries. In these use cases, high
reliability is a necessity for some of features, such as collision avoidance, platooning or
remote control, which is believed to be only feasible with adaptive smart radio solutions,
such as PLANAR. However, the collection of user location might cause the same problems
in these scenarios as for mobile phone users, for example: travelers in self-driving taxis
could be tracked, or delivery drones transporting valuable packages could be intercepted.

We have devised a location-based predictive handover mechanism, called Path-Aware Cog-
nitive Handover Optimization (PACHO), which tries to solve this problem. The key idea
in PACHO is that the predictive model is run on the UE itself. This way, the user loca-
tion does not have to be communicated over the network, saving signaling overhead, and
also avoiding privacy issues. The complete life cycle of a PACHO model can be seen in
Fig. 10.7. In the case of PACHO, instead of the location of the user, derived information
is communicated over the network, which is not privacy sensitive. An early idea was for
the PACHO model to directly output handover triggers, similarly to the output in the pre-
dictive handover concept (Cha. 9), however, this approach is problematic for two reasons.
First, in mobile networks, UEs generally do not make control decisions, only report mea-
surements, and the network is the one scheduling, triggering handovers, assigning cloud
resources, etc. A PACHO model directly triggering handovers would have broken this rule.
Second, we suspect the categorical outputs required for direct handover triggers do not
function great with DL models, causing noisy, high variance outputs, as shown previously
(Cha. 9). Instead, in the final PACHO concept, the model recommends CIO and TTT
values to the network, which influence handover decisions in a more semi-indirect manner.
This approach has multiple advantages: the model outputs can be easily sanitized by re-
stricting the values to an acceptable range, the network can overrule the recommendations,
and the whole system can fall back to legacy CIO and TTT optimization schemes if the
UE dos not support this feature.

162 10. Mobility-based Radio Environment Prediction

Edge Cloud

RAN UE

GPS

GPS

location

RSRP +

SINR

Model

CIO

TTT

3) CIO, TTT

inference

1) Model

update

2) Model

download

Figure 10.7: The PACHO model life cycle.

Some problems still remain with PACHO. Naturally, training or refreshing the model
should still be done in the network using collected user locations, which might require
some form of “benefit” for the user as an opt-in incentive. For increased privacy, we have
devised a randomized data collection method, where location information is anonymized,
encrypted and collected with a random delay, to hide the user’s identity as best as pos-
sible. The reporting also consumes excess power from the device, which limits battery
life. Another consideration is the power consumption when inferring with these models:
most modern mobile CPUs include some form of hardware acceleration for DNNs, making
the calculations a little more power efficient. However, DNN inference still requires an
excess of power, which often limits the mobile devices’ uptime to a handful of minutes
before needing a recharge, thus also limiting the usability of the feature. In order to save
battery life, for both reporting and inference we have devised a dynamically changing re-
porting/updating frequency mechanism, with which users far from cell edges only report or
infer infrequently, while users close to cell edges more frequently. If we can overcome these
obstacles, PACHO could be theoretically deployed for any consumer, even in a large-scale
commercial mobile network, making the widespread use of URLLC feasible. Unfortunately,
the PACHO concept has not been scientifically evaluated yet, although we plan to start
experimentation in the near future.

Deep learning often requires data that is invasive: facial recognition requires photos of
people, speech recognition requires audio recordings, and mobility prediction requires user
location to be collected. I believe that for the widespread acceptance of DL and the
removal of skepticism developed around it, it is of utmost importance that the privacy of
the users is respected. Any mechanism that collects sensitive information should make
all reasonable effort at hiding the identity of the person(s), and should explicitly ask the
user’s permission if sensitive data is collected. Only if we don not have to worry about our
privacy is when DL can truly improve our lives.

163

11. Summary of Research on Prediction

This part of the thesis has discussed the machine intuition process of prediction: act
of intelligent, long-term forecasting of future behavior of an entity, based strongly on
contextual information such as historical data from the entity and similar entities, as well
as information from the entity’s surroundings. Our focus is on long-term prediction, where
the predicted timeframe is considerably longer than the rate of change in the system, so
the prediction entails a handful of “steps” into the future. Prediction can be undertaken by
neural nets, which take as input a time-series of features, containing measurements from a
certain point in the past up to the immediate present. The output of the neural net is one
or more future timesteps, not necessarily containing the same features as the input. The
predictor can be trained on datasets recorded in the past, where the “future” observations
are already known.

Both works presented here focused on the long-term prediction of the radio quality for
individual users, with which preemptive radio reconfigurations can be undertaken, in order
to increase reliability and reduce service interruption time. First, we have applied long-
term prediction to preemptively trigger handovers, with the goal of reducing RLFs and
ping-pong handovers stemming from too early or too late handovers. The predictor in
this work was an LSTM neural net, outputting discrete probabilities, predicting which
serving cell is the best for the user. While the predictor worked reasonably well, the
output was quite noisy. To suppress superfluous handovers triggered by this noise, we
used an automatically adjusted threshold as the minimum probability which was allowed
to trigger handovers. The threshold adjustment algorithm is called DCT. With DCT in
place, the predictive handover mechanism produced a significant decrease in number of
falsely triggered handovers, improving on the reliability considerably.

Radio quality is subject to rapid changes – a phenomenon called fading – caused by minute
movements of objects along the radio propagation paths and other environmental factors,
resulting in seemingly random variance in the attenuation and phase characteristics of
the radio channel. Behind this variance induced by fading, the radio quality is mostly
governed by the user’s location. While fading is unpredictable, the movement of users
– human behavior – is often quite predictable, especially as pedestrians and vehicles are
constrained to move on roads and sidewalks, with strict rules governing their movement.
In our second work, we have tried to exploit this, by creating a radio QoS predictor split
into two components: 1) an MPP module, predicting user mobility, and 2) a digital twin,
mapping radio QoS to user location. In this work, the MPP was implemented as a 1D
CNN, which proved to be effective in predicting user movement even in the long-term (40

Version: 2023/05/26 – 14:32:46

164 11. Summary of Research on Prediction

seconds into the future). The digital twin modeled the harbor of the city of Hamburg,
where the movement of barges was predicted, and using this prediction, radio beams were
dynamically adapted to avoid RLFs in low signal quality areas. The concept was made
into a demonstrator, which we call PLANAR. PLANAR was able to avoid most of the
RLFs in the harbor, showing that such a smart radio system is able to significantly increase
the reliability of mobile networks. Lastly, I discussed a detail of location-based prediction
– privacy – which applies to other DL-based network automation, and could pose as a
roadblocks before such technology can be widely adopted. To provide a solution for the
specific case of user mobility prediction, we have introduced the PACHO concept, which
moves the model inference into the UE, thus preserving user privacy.

11.1 Assessment of Feasibility (A3.1)

Prediction can be realized with DNN architectures that are capable of modeling temporal
relations in the data: LSTMs or CNNs. LSTMs are an obvious choice for this task, as they
were originally conceived for NLP tasks such as translation, processing a sequence of words
or letters, and outputting another sequence. As the name implies, a key feature in LSTMs
is the long- and short-term memory: LSTMs are capable of recalling inputs long past in the
sequence, theoretically having no limit on how far back this memorization can go. However,
I question whether there is a need for such long-term memory for mobile networks. While
long-term recall is important for languages, because a word many sentences before could
decide what word to use in the current sentence, similar cause and effect connections
seldom exist in mobile networks. Especially in the radio quality prediction use cases we
have discussed, the predicted values will generally not depend on values measured minutes
ago, be it the radio quality, the then current serving cell, or the user’s location. In my
experience, LSTMs take longer to train, require careful tuning, and underperform their
simpler, non-recurrent counterpart: 1-dimensional CNNs. 1D CNNs can process sequences
by convolving in the time dimension. This allows them to detect similar patterns across
the whole sequence, thus be insensitive to exact temporal locations – as an FC net would
be – and to only pay attention to the relative locations of important patterns. If the input
sequence contains timesteps far-enough into the past, CNNs outperform LSTMs in the
prediction tasks we have undertaken, while also taking a shorter time to train, and are not
as sensitive to hyperparameters.

11.2 Assessment of Practicality (A3.2)

Contrary to previously discussed quantization and clustering techniques, prediction models
are exclusively trained offline, thus, training speed is not a concern in this evaluation.
Generally, DNNs are practical for inference in network automation tasks, however, care
must be taken to assure that the inference can run at a frequency that is required for the
specific task. Factors such as communication delay, preprocessing or data migration to
the hardware accelerator (GPU) can add up to an overhead which multiplies the overall
inference time of a pure DNN forward pass. Our work involved predictions every few
seconds: on this granularity, larger DNNs can still generate predictions at a sufficient rate
if there is adequate hardware acceleration. I think a few seconds is generally the lowest
frequency for which DL-based predictions are still practical. In the case of even more
frequent inference – such as radio or cloud resource scheduling tasks – the use of DL-based
prediction becomes impractical, while less frequent, large-timescale problems on an hourly
granularity and up – such as usage prediction for network planning – can generally be run
without any concern for inference time.

User QoS prediction models can be run for multiple users at a time (batched processing), so
the increase in users processed does not necessarily equate to a linear increase in inference

11.3. ASSESSMENT OF APPLICABILITY (A3.3) 165

time. This makes these algorithms scale well with the number of users served, not requiring
exorbitant processing power for a large amount of users. However, it is possible that a
model which is capable of processing a few users at a time falls below the required inference
frequency if the user numbers multiply, in which case a second instance of the same model
– run on a different hardware resource – must be used. While DL-based prediction models
do not require excessive hardware resources, DNN inference is generally costly, so features
that require prediction – such as URLLC – will probably only be available to select users,
and not to the everyday consumer.

11.3 Assessment of Applicability (A3.3)

Long-term prediction is possible for problems, where the scope of the input data can en-
compass most of the important (latent) variables, which govern the behavior of predicted
entity in question. QoS prediction almost does not qualify for this: fading can unpre-
dictably change QoS to an extent that invalidates any prediction. Fortunately, modern
OFDM and MIMO technologies can effectively combat fading, thus validate the use of
predictive models in this setting. As we have seen, user mobility – the other main cause
of QoS changes – is predictable, and can be extended with complex modeling of the radio
environment, such as digital twins, to predict QoS quite precisely.

Long-term predictions allow for reconfigurations which take time, such as handover prepa-
ration, or allow for the testing of dynamic changes before they are deployed into the real
network. For the latter case, digital twins serve an irreplaceable role: they function as a
sandbox, where multiple parameter iterations can be tried, and provide up-to-date pre-
dictions even in the case of a reconfiguration being planned, but not yet deployed into
the network. These predictive techniques make the network robust, adaptive and reliable,
upon which future use cases can be built, realizing the promise of a DL-based cognitive
network automation.

166 11. Summary of Research on Prediction

167

Part IV

Confidence

Version: 2023/05/26 – 14:32:46

169

12. Communication and Utilization of
Confidence Values

Mobile networks are trusted more and more with handling communication that is critical
for us: we wait for a call from a loved one to know they arrived safely, we navigate the
world without a map using our phones, and we feel assured that if needed, we can call the
emergency number at any time. But as we trust the mobile network more, so it becomes
a potential weak point or a target for an attack, and by extension, we become more
vulnerable. Thus, mobile networks have to be prepared for internal failure or malicious
influence to truly measure up to the trust we give to them.

Just as intelligent people take new information with a pinch of salt, intelligent systems
could also process their inputs with a little suspicion. Furthermore, when having doubts,
people intuitively highlight these doubts when conveying the information further, in a
semi-conscious attempt to potentially stop the spread of misinformation. Something simi-
lar could be important for cognitive network automation, which aims to utilize DNN-based
cognitive functions for various tasks. DNNs are known to be susceptible to data corrup-
tion, which can greatly influence, or even completely break their inference with only slight
modifications to the input values [137]. The problem is quite similar to people communicat-
ing, as cognitive network automation also imagines CFs conveying processed information
between each other.

In this chapter, I discuss a potential solution to the above problem, which mimics human
interaction: the communication of confidence values between CFs. Confidence values
are the numerical representation of how reliable each value/observation is in a dataset.
Figure 12.1 illustrates this concept. By generating and communicating confidence values
between CFs, the goal is to reduce or even completely eliminate the impact of corrupted
data, making the mobile network more robust against failures or malicious attacks.

This chapter details the work published in the following paper:

Robust Deep Learning against Corrupted Data in Cognitive Autonomous Networks
Márton Kajó, Janik Schnellbach, Stephen S. Mwanje, Georg Carle
NOMS 2022-2022 IEEE/IFIP Network Operations and Management Symposium,
pp. 1-6. IEEE, 2022.

My contributions to the above paper was the partial design, implementation and evaluation
of the algorithms, as well as the co-authoring of the paper. The discussion in this thesis

Version: 2023/05/26 – 14:32:46

170 12. Communication and Utilization of Confidence Values

CF1 CF2

Data

Conf.
Conf.

Time UE_ID THRP RSRP

16:30 001 70 Mbit/s -40 dBm

16:31 001 65 Mbit/s -38 dBm

16:32 001 10 Mbit/s -60 dBm

Dataset

Time UE_ID THRP_CV RSRP_CV

16:30 001 0.95 0.85

16:31 001 0.97 0.90

16:32 001 0.65 0.40

Confidence Values

Figure 12.1: Illustration of confidence values communicated between CFs.

expands on the paper, by adding further detail to some elements, as well as framing the
work in the complete confidence value discussion. The confidence value concept discussed
in this chapter is also contained in the following patent application:

Accounting for Erroneous Data in Learning and Inference of Cognitive Functions
through Confidence Indicators
Anubhab Banerjee, Márton Kajó, Stephen S. Mwanje
WO, PCT application no.: PCT/EP2021/067609, filed June 2021

The discussion is concluded by some remarks on standardization efforts for DL in mobile
networks, and how these efforts – though well meaning – could slow down the development
of new uses cases of DL.

12.1 Robust Deep Learning against Corrupted Data in CAN

12.1.1 Problem Statement

In the CAN concept, CFs implement network automation functionality, likely based on
deep neural nets. These CFs either process data which stems directly from the network
in the form of measurements, or use preprocessed data from other CFs as their input.
Interdependent CFs create CF-chains (Fig. 12.2), where subsequent CFs digest the same
batch of data in order to realize a complete network automation function. An example
of this would be an analytics function, which creates insight that is then used by an
optimization function to derive actions.

Network

CF1 CF2

Data

Erroneous

decision

Corrupted

value

Multiple corrupted

values

Proc. data

Figure 12.2: Illustration of the propagation of corrupted information in a CF-chain.

Any complex system – such as a network – is bound to produce erroneous measurements, or
even completely fail to report from time to time. Mobile networks are prone to generating
corrupted data, on account of erroneous measurements (e.g. false RSRP reading), the
failed delivery of measurements (e.g. packet loss due to congestion), KPI computation
error (e.g. division by zero), etc. Unfortunately, as most DL models are based on DNNs,

12.1. ROBUST DEEP LEARNING AGAINST CORRUPTED DATA IN CAN 171

CF-chains might not be robust against such data corruption. DNNs are usually trained on
complete datasets, and don’t have any indication on how dependable each observation is,
apart from how useful it is in generating the required output. Because of this, DNNs often
learn to only utilize the few most useful inputs in their models during training, which makes
them likely to fail if one or multiple of those values becomes corrupted during inference.
This situation is further worsened in CF-chains, where a single corrupted input can cause
a CF to produce multiple corrupted outputs, with each step of the chain multiplying the
effect (Fig. 12.2). If critical network management decisions are based on such corrupted
data, the CAN system could easily misconfigure the network, leading to low service quality
or even outage in the worst cases. However, if the communicated data includes confidence
indicators that highlight the corrupted values, the CFs can learn to disregard these, and
use other features if available, or fall back to some simpler logic. The communication of
confidence values could hinder or stop the propagation of corrupted data, thus making the
network robust against this threat.

This work focuses on the simplest setting in which confidence values can be utilized: the
values are either completely correct (1.0 confidence), or are completely corrupted (0.0 con-
fidence). For now, it is of no concern how these confidence values can be generated. It is
assumed that data corruption is unintended, and the network element that produces cor-
rupted outputs also highlights these by outputting correct confidence values. The question
is whether it is even possible for DNN-based CF to utilize confidence values effectively,
and restore data using them. This is a well known scenario in ML, called “imputation”:
the act of restoring known-to-be corrupted or missing values in a dataset.

The complete code-base and the dataset used in our evaluation is available on GitHub1.

12.1.2 CF-chains in Mobile Networks

Because of their complex requirements, many automated network management/orchestra-
tion functions are being or are likely to be implemented using DL. Network slicing manage-
ment is one such application area, where the goal is to accurately predict and provision the
resource requirements of different services, without over- or under-provisioning. DL mod-
els can accurately predict these requirements by correlating indirect indicators and past
patterns in similar services [138, 139]. Load balancing is an area where DL-based functions
excel, because of their capability to estimate close-to-optimal association between users
and cells for a large number of users, allowing for real-time inference [140, 141]. Handover
optimization is a renewed focus of research, because of the extremely low service interrup-
tion times required for URLLC use cases. Predictive handover optimization can achieve
these low interruption times, for which DL models can be used [142, 143]. While not
referred to as CFs explicitly, these management functions fulfill all the requirements to be
called “cognitive”: having strong modeling capabilities and considering a large volume of
varied inputs in their learning and subsequent decision-making.

Chaining such DL-based CFs is already considered in network automation standards. The
two most important examples of them are:

� The real-time RAN Intelligent Controller (RIC) in the ORAN2 specifications is an
analytics module, which collects performance measurements from the RAN and pro-
cesses them by CFs called xApps. The processed information is then communicated
to local automation and radio resource management CFs in the RAN to drive actions
on the cells [144].

1https://github.com/nokia/integratedimputation.git
2https://www.o-ran.org/

https://github.com/nokia/integratedimputation.git
https://www.o-ran.org/

172 12. Communication and Utilization of Confidence Values

� The Network Data Analytics Function (NWDAF) in the 3GPP3 specifications is an
analytics module, which can provide extracted features and predictions to subsequent
CFs [145].

Both the real-time RIC and the NWDAF are preprocessing/analytics CFs, which provide
digested data to subsequent network management functions. Both of these modules are
based on ML algorithms, more than likely some form of DNN, in order to be able to
achieve sufficient modeling capability and to be able to process large amounts of data. If
the subsequent CFs are also DL-based, the above two proposals realize the exact CF-chains
where data corruption can have severe effects.

Apart from the standards discussions, scientific publications regarding CF-chains, and the
robustness thereof against corrupted data are scarce. Our colleagues works investigate
how such DNN-based CFs interact with each other, but these evaluations do not cover
scenarios where the inputs or outputs of the CFs contain corrupted information [146, 147].
On one hand, it remains to be seen how well data corruption can be detected if it is not
directly signaled by the data source. On the other hand, it is also a question how well CFs
can utilize this information if available, a topic which is the focus of this chapter.

12.1.3 State-of-the-Art in DL-based Imputation

DNNs are often hard to categorize, because their topology, the training methods, and other
hyper-parameters vary with each application. Fortunately, two larger architectures have
crystallized along which DL-based imputation methods can be grouped: AEs and GANs.

AEs are mainly used in unsupervised learning, their usual goal being feature extraction.
During training, AEs learn to encode the data into a latent representation, as well as to re-
construct (decode) the original datapoints from this internal representation. For this, AEs
use 2 sub-nets with mirrored topologies: the encoder Q, and the decoder Q′. The latent
representation is constrained by the topology of the AE; traditional AEs have “narrow”
layers towards the middle, compressing data by using only a few features for the latent
representation. This constraint forces the learned features to encompass high-level aspects
of the data in order to retain as much information as possible, thus encouraging good gen-
eralization. The learned latent representation is often suitable for subsequent processing
steps, such as classification or clustering. In this case, the reconstructed datapoints (and
the decoder) are only important for training.

Denoising Autoencoders (DAEs) represent a special type of AE architecture [148]. By
adding noise to the training data, DAEs become more robust against corrupted inputs
and learn to represent the data internally in a redundant manner. DAEs are used for their
capacity to restore corrupted or missing inputs, thus being a prime tool for imputation.
Multiple Imputation using Denoising Autoencoders (MIDA) implements such a DAE, using
a net topology which the authors refer to as an overcomplete AE [149]. Contrary to
traditional AEs, the AE in MIDA “widens” towards the middle, encoding information
with more features than the original data. To facilitate training for imputation, MIDA
is trained with randomly missing values (values replaced by 0). Additionally in MIDA,
a “mask” tensor also accompanies the input, which explicitly signals where the data is
missing in the input tensor with 0s (the rest of the mask contains 1s). MIDA gradually
learns to replace the missing datapoints by minimizing a reconstruction loss measured
between its imputed output and the original, fully present datapoints (Fig. 12.3). In the
DAE case, correspondingly, the whole AE is used in inference.

To contrast with DAEs, one can also consider VAEs, another subgroup of AEs. Instead of
data corruption on the input side, VAEs manipulate the latent representation: using an

3https://www.3gpp.org/

https://www.3gpp.org/

12.1. ROBUST DEEP LEARNING AGAINST CORRUPTED DATA IN CAN 173

Mis. data

0.4 0 1.2

0 3.2 23

-1.2 0 0

Mask

1 0 1

0 1 1

1 1 0

0.4 -0.6 1.2

1 3.2 23

-1.2 0 1.7

GAIN

MIDA

Encoder

(𝑄)

Discriminator

guess

Decoder

(𝑄′)

Discriminator

(𝐷)

Reconstruction

loss

Data

Figure 12.3: The MIDA and GAIN architectures.

additional regularization term, the latent datapoints are forced to fit a predefined distri-
bution, such as a Gaussian. Regularization is often performed using the Kullback-Leibler
divergence, which is optimized between the encoded distribution and the predefined Gaus-
sian [150]. Common imputation frameworks that rely on VAEs are Variational Autoen-
coder with Arbitrary Conditioning (VAEAC) [151] and Missing data Importance-Weighted
Autoencoder (MIWAE) [152].

Generative adversarial nets are also used for unsupervised learning, most often to synthe-
size believable, but not real samples (such as pictures of human faces) [16]. GANs are
comprised of two sub-nets, a generator G and a discriminator D. In the original GAN
formulation, G generates samples using random noise as input, while D evaluates these
samples randomly mixed with original datapoints and tries to guess which one is real and
which one is fake. The goal of the generator during training is to learn to synthesize sam-
ples that are indistinguishable from real datapoints by the discriminator. The interaction
of G and D is an adversarial zero-sum game. During inference, only the generator is used,
while the discriminator is usually discarded after training.

Generative Adversarial Imputation Nets (GAINs) utilize the generative capabilities of
GANs for data imputation [153]. The generator in GAIN is an AE, which, similarly to
MIDA, has the task of imputing missing datapoints with believable values. The discrimi-
nator has the task of distinguishing imputed datapoints from real, fully present datapoints,
thus forcing G to perform imputations that are as realistic as possible and difficult for D to
detect. While the original GAIN proposal implements many tricks besides the mask tensor
to make the adversarial training work, in our case we could simplify it to a setup that is
basically an extension of MIDA. Here, the discriminator acts as an additional critic besides
the reconstruction loss, to further refine the quality of the imputed points (Fig. 12.3). An-
other GAN-based method is GAN for Missing data (MisGAN) [154]. The MisGAN setup
is substantially more complex than GAIN and includes two separate generators that first
learn to produce complete data and masks. Since MisGAN has a major focus on images,
while our focus is on application to CF-chains, we rather focused on GAIN in our research.

12.1.4 Integrated Imputation

The imputation algorithms introduced in the previous section were mostly evaluated in
scenarios – such as image or video reconstruction – where the imputed data is consumed
by the end-user. For these tasks, the goal is to achieve imputation which is pleasing
to the human eye. This can cause problems if the same algorithms are used in network
management automation tasks, where the imputed data is likely consumed by another CF,
because aesthetic qualities do not necessarily translate to restored information content.
Fine details such as high-frequency patterns, or larger features such as slight shifts in
the average of values might not be striking to the human observer, but could be of high
importance in ML tasks, such as classification.

174 12. Communication and Utilization of Confidence Values

Imputation Proc.

data
ML task

Control

decision

Control

decision

Integrated imputation

Data+mask

Data+mask

Figure 12.4: Imputation integrated with an ML task, using DNNs.

DL-based imputation methods can learn how to replace missing values based on correla-
tion with present values, or previously encountered patterns in sequential data. Often,
these rules are not immediately apparent, rather, only visible in latent features, which the
imputation method has to extract from the data during training. DNNs are the cutting-
edge tools for extracting such latent features, being capable of forming an unprecedented
“understanding” of the internal behavior of the data they are trained on. This is also the
reason why DNNs excel in other ML tasks and are likely to be used for many CFs in
network management automation.

If a DNN-based imputation module precedes a DNN-based CF, both neural nets are trained
on data from the same source, and likely have to learn the same latent features for their
functioning. This begs the question whether a standalone imputation module is even
necessary. Thus, we propose to integrate the imputation into the DNN undertaking the ML
task in such scenarios, by preparing it to accept missing-mask tensors accompanying its
inputs, as well as feeding it with randomly missing input values during training (Fig. 12.4).

Apart from sparing the modeling of the same latent behavior twice – both during training
and inference – this integration has other beneficial effects:

� The DNN can tie the imputation to the actual ML task, thereby only learning to
“reconstruct” the necessary task-relevant features, and disregarding task-irrelevant
ones (as opposed to learning to reconstruct all features with equal importance in a
standalone imputation module).

� Training with incomplete data has a regularization effect on the model, forcing it to
learn generic rules which apply to other datasets from the same source and avoid
overtraining. This effect is beneficial in cases where the training dataset is of a
relatively smaller size, an often encountered problem when applying ML.

12.1.5 Evaluation Metrics

Our goal was to evaluate imputation in two ways: first, quantifying the overall reconstruc-
tion precision of the algorithms, and second, assessing the imputations utility as part of a
CF-chain in the context of network automation. As the target ML application of this chain,
we chose a classification scenario where the task was to assign different mobile network
users to previously learned groups based on their individual behavior. Similar classifica-
tion models would be implemented, for example, in network functions undertaking QoE
estimation for users [155], resource estimation for network slicing [156], or intrusion detec-
tion [157]. For the evaluation of the classification, a classifier trained on the fully-present
dataset is used, which is then fed by the imputed data from the various algorithms during
evaluation.

In order to evaluate our proposal of a CF with integrated imputation, we also evaluate
a classifier, which is trained on missing data accompanied by a corresponding mask, and

12.1. ROBUST DEEP LEARNING AGAINST CORRUPTED DATA IN CAN 175

is directly fed by non-imputed data during evaluation. This classifier is referred to as
Integrated Classification with Imputation (ICI).

To compare the algorithms in the above two capacities, the following two metrics are used:

� MSE reflects the similarity between the original data without missing values (Y) and
the imputed data (Ŷ), indicating the overall precision of reconstruction. The MSE
is measured on the output of the imputation methods. MSE is not a good indicator
of information content, because the quadratic nature allows the oversight of small
features, instead emphasizing larger errors in the reconstruction, which can lead to
the loss of information that is critical for the clustering task. Nonetheless, MSE is
an important and intuitive measure of precision, utilized by most of the DL-based
imputation methods for training.

� ACC indicates the proportion of correctly classified observations against the total
number of observations in a dataset:

ACC =
1

n

n∑
i

(Ci == Ĉi), (12.1)

where n refers to the number of observations in the dataset, == is the boolean test
of equality which produces 1 if the two values are the same and 0 otherwise, Ci is
the true label of the observations and Ĉi is the predicted label (the output of the
classifier).

12.1.6 Simulation Scenario

Omni micro

3-sect. macro

Figure 12.5: Cell layout in the Helsinki simulation scenario.

In order to be able to evaluate the imputation algorithms for both reconstruction precision,
and their utility in an ML task, a mobile network simulator was used to generate data.
The network simulator allowed us to set up known user classes in the data – from here on
referred to as “ground truth”– against which the classification ACC can be measured. The
simulation scenario was set in the city of Helsinki, where mobile users moved around and

176 12. Communication and Utilization of Confidence Values

Label Traffic Speed [km/h] Occupied area

0 Stationary 1 FTP 0 Inner & outer

1 Stationary 2 VoIP 0 Inner & outer

2 Stationary 3 HTTP 0 Inner & outer

3 Pedestrian 1 FTP 4 - 10 Inner circle

4 Pedestrian 2 VoIP 4 - 10 Inner circle

5 Pedestrian 3 HTTP 4 - 10 Inner circle

6 Vehicular 1 FTP 10 - 100 Outer ring

7 Vehicular 2 VoIP 10 - 100 Outer ring

Table 12.1: User groups in the simulation scenario.

used the network to communicate. The network is comprised of an outer ring of macro-
and an inner circle of microcells, covering a densely populated area of the city harbor
(Fig. 12.5).

The users were differentiated based on their mobility (stationary, pedestrian, vehicular),
and their network usage type (talking using VoIP, web-browsing using HTTP and trans-
ferring files using FTP). The 8 user groups – which constitute the ground truth labels –
were made up of stationary and pedestrian users who used all 3 traffic types, and vehicu-
lar users who used either VoIP or FTP (Tab. 12.1). The simulation contained 400 users,
an even distribution of 50 users from each of the 8 user groups. The whole dataset was
split into 5 folds for cross-validation: in every fold, 10 users of each group were selected
randomly to make up the validation dataset, while the rest of the users’ data was used for
training the models. Through the 5 folds, each user was guaranteed to be in the validation
group once.

The user classification is based on indirect measurements, which can realistically be col-
lected by the mobile network without running into privacy issues. The collected data
contained:

� Throughput in bits/sec for downlink and uplink.

� RSRP in dBm for the serving cell for downlink and uplink.

� The number of allocated Physical Resource Blocks (PRBs) for the user.

� Indicator flags for the different RRC states, such as connected, RLF, handover sig-
naling, idle etc. ...

A total of 11 values were collected every 5 seconds for every user. The simulation ran for
2560 time steps, which corresponds to about 3.5 hours of simulated time in total. For each
user, the 2560-long overall sequence was then split into 256-long sequences with an overlap
of 128 steps, which resulted in a final training dataset shape of 5760 × 256 × 11, and a
validation dataset shape of 1440 × 256 × 11 in each fold. The algorithms were trained 5
times, once for each of the 5 folds of data. The results shown below are averaged across
these trainings, to reduce the variance in the metrics.

12.1.7 Evaluated Imputation Methods

We chose two DL-based imputation methods to evaluate in this work, one for each ar-
chitecture: MIDA to represent AE-based methods, and GAIN to represent GAN-based

12.1. ROBUST DEEP LEARNING AGAINST CORRUPTED DATA IN CAN 177

methods. Both algorithms can be seen as the purest, natural forms of their respective
architectures, where other methods such as MisGAN and MIWAE are more complex, and
in our experience harder to use. Another consideration in this choice was the logical transi-
tion between the methods: as previously stated, GAIN can also be seen as the GAN-style
extension of MIDA, utilizing an additional discriminator net during training to further
tune the imputation (Fig. 12.3). This logic leads to an important aspect of our evaluation:
we reuse neural net topologies between methods, in order to remove performance difference
stemming from simply more or less powerful nets.

Unlike the more traditional datasets originally used in the evaluation of both algorithms,
our dataset has an additional time dimension. Because of this extra dimension, it is gen-
erally not advantageous to process our data by a fully-connected net that was used by the
authors of other works. Therefore, we have adapted the topologies of MIDA and GAIN to
CNNs, which are more suited to process fixed-length time-series data. The AE topology is
the same between MIDA and GAIN, both made up of an encoder which uses 1-dimensional
deconvolutional and upsampling layers, and a decoder using 1-dimensional convolutional
and average-pooling layers, with a few batch-normalization layers in-between. The GAIN
discriminator is a smaller, simpler version of the AE using less of the same layers, while
the classifier net is made up of 1-dimensional convolutional and max-pooling layers, with
a batch-normalization layer after each convolutional layer. All neural nets use leaky ReLU
nonlinearities.

While our MIDA implementation stays true to the original proposal, we had to modify
GAIN in order to make it work acceptably for our scenario. The original work proposes a
“hint” mechanism, with which the discriminator in GAIN can be more precise in its task
of identifying imputed values. However, in our scenario, the discriminator turned out to
be extremely precise as is, overtraining so easily that we had to forgo the hint mechanism
altogether. Unfortunately, this still didn’t solve the overtraining issue completely. To
try to further combat the overtraining of the discriminator, we also implemented GAIN
using a Wasserstein discriminator proposed in Wasserstein GANs (WGANs) [158]. Wasser-
stein discriminators are immune to overtraining and saturation problems, and provide a
smoother gradient than traditional GAN discriminators, thereby improving the stability
of adversarial learning. This setup is referred to as Wasserstein-GAIN (WGAIN).

Apart from the DL-based methods, more “traditional”, non-DL-based imputation methods
are also evaluated: mean imputation, k-Nearest Neighbors (k-NN), Multiple Imputation by
Chained Equations (MICE) and MissForest. These methods are included to give a frame
of reference for our evaluation, and to potentially show the increase in performance that
can be expected when using DL-based methods. Mean imputation is a good baseline upon
which all of the algorithms should only improve, where the missing values are replaced by
the mean of the present values. k-NN is an instance-based imputation method [159]. MICE
is an often cited imputation method, which uses repeated linear regression to refine the
imputation [160]. The MissForest algorithm is a random-forest-based imputation method,
capable of handling non-linear correlations and high-dimensional data [161]. All of these
methods had ready implementations in our language of choice, Python4.

12.1.8 Training for Different Missing Rates and Types

It is logical to assume that the number of missing values in the dataset governs how
well the data can be reconstructed, as well as how precisely the classification task can

4https://www.python.org/

https://www.python.org/

178 12. Communication and Utilization of Confidence Values

be undertaken. To this extent, we define rmis (missing rate), the ratio of the number of
missing values compared to the number of all values in the dataset:

rmis =
1

nd

n∑
i

d∑
j

(Xij == ∅), (12.2)

where d refers to the number of values/features in an observation, n to the number of
observations in the dataset, == to the boolean test of equality and ∅ to not present
values.

During inference, large missing rates cause worse reconstruction precision and classification
accuracy, because more of the data is missing, breaking correlations and patterns upon
which these tasks can be based. This negative scaling effect is most visible with traditional
imputation methods. DL-based methods, on the other hand, are trained with a dataset
that contains missing values at some preset rmis, and function best when faced with the
same specific missing rate at inference. To explore this effect, we have trained the ICI
with different fixed rmis, and evaluated all models on the range of rmis ∈ [0, 0.875]. The
resulting ACCs can be seen in Fig. 12.6.

fixed rmis 0.00
fixed rmis 0.25
fixed rmis 0.50
fixed rmis 0.75
var. rmis 0 - 0.875

Figure 12.6: ACC of the ICI trained for various missing rates.

The ICI trained with rmis = 0 shows a harsh degradation in ACC when it encounters even
the smallest amount of missing values. This is due to it never learning to use alternate fea-
tures, basing its function only on the most descriptive input features, which, when missing,
break the classification. The other models trained with rmis > 0 are immediately more
resistant to missing values; even the model trained with rmis = 0.25 can handle missing
rates up to 0.5 reasonably well. In fact, the rmis = 0.25 model achieves slightly better
performance at rmis = 0 than the model trained for this specific scenario; as mentioned
previously, integrated imputation has a regularization effect which avoids overtraining,
making the model learn rules which are better at generalization.

ICIs trained for higher missing rates show degraded performance with low missing rates.
We believe this is a specific problem of DNNs; the neurons expect a certain average level
of activation. If the incoming values are significantly above (as is the case of low rmis)
or below this expected average, the neurons produce weird outputs, at least in the early
layers. A very similar phenomenon was described with the famous dropout regularizer,
where the solution was to scale activations during inference according to the dropout
ratio used during training [162]. We have tried such scaling on the inputs, but it did
not substantially improve our results. Theoretically, one could train and save multiple
imputation models to match the incoming data’s missing rate, but we prefer to avoid this,
trying to keep storage and memory usage at a reasonable level. Instead, we also trained
a classifier, where the training observations had a random rmis picked from the range

12.1. ROBUST DEEP LEARNING AGAINST CORRUPTED DATA IN CAN 179

[0.0, 0.875] with a uniform probability. This varying rmis model seems to perform close to
perfectly on the whole range, thus, the performance of such varying rmis training will be
shown only when discussing parametric (DNN-based) models.

A further question is the type of missingness: so far we have discussed and shown completely
random missingness, where individual values are missing from the data. However, this type
of missingness is rather rare in reality: most often, larger sequences of the data are missing,
involving all values (i.e.: a sequence of observations is not reported). To evaluate such a
scenario, performance results are also shown where starting from random positions, 8-long
sequences of all values are missing (the number of missing sequences governed by the rmis).
This is referred to as sequential missingness.

12.1.9 Evaluation Results

Figure 12.7a shows the achieved MSE with standalone imputation methods for completely
random missingness. At low missing rates, traditional methods are quite competitive with
DL-based parametric methods, but this changes as the rmis is increased, failing to reach
even the mean imputation’s performance at really high missing rates. We believe this is
due to overfitting the sparse present data. The single exception to this is k-NN, which,
stemming from the averaging in its functioning, converges to the global mean at large
missing rates. Out of the DL-based methods MIDA is the best, with relatively low MSE
even at extreme missing rates, thanks to its training being purely dedicated to minimizing
MSE in its reconstruction. Overall, the DL-based methods achieve quite similar MSE
across the whole rmis range.

(a) MSE

(b) ACC

Figure 12.7: Imputation performance with completely random missingness.

Figure 12.7b shows the achieved ACC on the imputed data for completely random miss-
ingness. For the classifier, we used the models trained for rmis = 0. Out of the traditional

180 12. Communication and Utilization of Confidence Values

methods, MICE and MissForest are noteworthy, which both surpass the parametric meth-
ods at various rmis values, illustrating how low MSE does not necessarily translate to
restored information. Unfortunately, all DL-based methods performed quite similarly and
worse than MissForest and MICE across the whole rmis. While WGAIN did not achieve the
best MSE, it seems that the Wasserstein discriminator improves the restored information
content, achieving the best performance out of the DL-based imputation methods.

The ICI’s performance also included in the graph with yellow. The integrated classifier
performs better at every missing rate above 0.0. Furthermore, at moderate to high missing
rates, it surpasses the standalone imputation methods by a significant margin. At higher
missing rates, the imputation methods are likely not able to use correlation in their recon-
struction, in which case the classifier is better off disregarding the missing values through
the information provided in the mask. We will see this effect further emphasized in the
sequential missingness case.

Figure 12.8a shows the achieved MSE with standalone imputation methods for sequential
missingness. Correlation-based imputation, which works well in the completely random
case – as seen in Fig. 12.7a – is seemingly not possible here. Both traditional and DL-based
methods heavily depend on correlation, as none of the methods are capable of achieving a
significantly lower MSE than mean imputation. To impute missing sequences, DL-based
methods could learn recurring patterns in the data, with which the missing sequences
could be imputed. However, it seems either such patterns do not exist in our dataset, or
the methods were incapable of learning them, as their imputation is only ever marginally
better than that of traditional methods, or mean imputation.

(a) MSE

(b) ACC

Figure 12.8: Imputation performance with sequential missingness.

Figure 12.8b shows the achieved ACC on the imputed data for sequential missingness.
Unfortunately, both traditional and DL-based imputation methods’ performance barely

12.1. ROBUST DEEP LEARNING AGAINST CORRUPTED DATA IN CAN 181

exceeds the mean imputation’s performance. It seems that the standalone imputation
methods can not restore information in the missing sequences. Because the standalone
classifier ’pays attention’ to the whole sequence, the badly reconstructed values – which
mostly take the value of the average of the sequences – rather confuse the classifier, instead
of helping in the classification process.

Unsurprisingly, the ICI’s ACC surpasses any standalone imputation method’s performance
on the whole rmis range. Furthermore, the ACC only significantly starts to degrade at
very high missing rates (rmis >= 0.75). This is because the classifier trained with missing
sequences (and the corresponding mask) learns to only pay attention to parts of the data
that are present, in which simple rules can easily identify the right class (type of user in
this case).

12.1.10 Conclusion and Outlook

This chapter investigated the utility of confidence values, by focusing on how unintended
(non-adversarial) data corruption can be handled in DL-based network functions, or chains
thereof. To this extent, the state-of-the-art in DL-based network functions, the standards
which define some form of network function chains, and the latest DL-based imputation
methods were introduced. An imputation method was proposed (ICI), that is integrated
into the network function. Standalone methods and ICI were evaluated in a mobile network
context, with the use of a simulated mobile network dataset and a user classification task.

I would like to highlight that the ICI trained with sequential missingness also surpasses
the performance of any other classifier on non-missing data (Fig. 12.6). This is caused by
the aforementioned regularizing effect of training on missing data; the missing sequences
encourage better generalization during training, through which the ICI achieves better
performance than its peers even in case when there are no missing points in the input.

To summarize, our evaluations show that integrating the imputation into the DNN that
implements the network function is beneficial in multiple aspects:

� the network function can show significantly increased performance compared to stan-
dalone imputation, retaining its functionality even at large amounts of missing or
corrupted data,

� the processing of missing or corrupted inputs does not require an additional process-
ing step, and

� the network function can show increased performance even with complete inputs.

While our results are promising, one question that came up during our research is how
to implement (integrated) imputation into existing architectures. This discussion does
not only affect imputation, rather, it is part of the larger question on how to incorporate
different DL tasks into (currently) standardized architectures. This topic is covered in the
next section.

This work has been preliminary research, as a starting point for the larger topic of confi-
dence value use and communication in CANs. While the results give me confidence that
there is value in the further research of this topic, unfortunately, my time was limited and
I could personally not see this topic through. Furthermore, it is now clear to me that the
topic is larger than what I originally estimated, and could serve as a worthwhile research
objective for the next prominent researcher. Thus, I don’t consider this research topic as
concluded, and I hope to be able to continue it in collaboration with others, hopefully
someone who is also in pursuit of an academic degree.

182 12. Communication and Utilization of Confidence Values

12.2 On Standardized DL in Mobile Networks

The biggest strength of DNNs – as shown in Sec. 2.3.7 – is their capability to extract
abstract representations from low-level features through the construction of hierarchical
rules. These abstract representations – communicated between the neural net’s layers
– are not preprogrammed, rather, learned during training. The importance of learned
internal representations is very well illustrated, if we take a look at how image recognition
techniques developed over the years. While researchers realized quite early that vision is
based on hierarchical rules, pre-DL methods relied on preprogrammed logical steps and
interfaces to detect features at various levels of abstraction. One illustrative example
of these is the Histogram of Oriented Gradients (HOG) algorithm, which finds edges by
calculating gradients between pixels in an image [163]. The edges found in HOG are
compiled into a histogram of directions and magnitudes, which is then matched to other
histograms with a SVM classifier. The individual steps of a HOG process can be seen in
Fig. 12.9.

Input Preproc.
Grad.

calc.

Hist.

calc.

HOG

vector
SVM Result

Grad. direc.

G
ra

d
.
m

a
g
n

it
u
d

e

Figure 12.9: Illustration of HOG processing steps implementing face-detection5.

The step-by-step processing lends itself to an easier understanding, because the data com-
municated between the steps has a logical, human understandable meaning. However,
while relatively useful, these step-by-step methods severely underperform DNNs. In the
2012 ILSVRC6 – the breakthrough introduction of DNNs to image recognition – the second
best, “traditional” Fisher-vector-based image recognition algorithm achieved 26% average
error rate, while the first iteration of deep convolutional nets, AlexNet, achieved 16%.
AlexNet did away with individual processing steps, instead realizing a classifier as mono-
lithic CNN, which processes raw images and outputs classes in a single step. Even today’s
cutting-edge neural nets cannot improve upon this formula, undertaking complex data
processing and control functionality – such as driving a car – in a single, end-to-end model
(Fig. 12.10). Imagine, dear Reader, if the ILSVRC challenge required entries to work on
the precalculated gradients by HOG, instead of raw images. Would AlexNet have be-
come the landmark it is today, or would another team, in another, less restrictive image
recognition challenge, be recognized as the first to introduce DNNs?

The power of AlexNet came from the freedom to learn descriptive internal representations
during training, without human-defined interfaces in the whole end-to-end task. Unfor-
tunately, such freedom is hard to realize in mobile networks right now: standards neatly
organize functions into compartmentalized modules, each with its own, predefined goal
and interface, splitting end-to-end tasks into steps. This approach has its historical roots:
in older generations, much of the functionality was implemented through dedicated hard-
ware, thus, early mobile networks were indeed made up of individual boxes. Unfortunately,

5https://iq.opengenus.org/object-detection-with-histogram-of-oriented-gradients-hog/
6https://image-net.org/challenges/LSVRC/2012/index
7https://www.youtube.com/watch?v=IlliqYiRhMU

https://iq.opengenus.org/object-detection-with-histogram-of-oriented-gradients-hog/
https://image-net.org/challenges/LSVRC/2012/index
https://www.youtube.com/watch?v=IlliqYiRhMU

12.2. ON STANDARDIZED DL IN MOBILE NETWORKS 183

Figure 12.10: Excerpt of a presentation on liquid neural nets driving cars7.

this mindset of compartmentalization carried over to the current day, where DL tasks are
being integrated into the mobile network as separate, human-defined processing steps.

In Fig. 12.11, an illustration of the standardized NWDAF architecture is shown. In this
framework, the Analytics Logical Function (AnLF) realizes generic DL tasks – such as
prediction – for some predefined use cases. Analytics consumers can subscribe to the
processed information – called “insights”, which either contain processed data or discrete
events – and act on them by changing network parameters using simple, predefined rules.
While trying to stay flexible, this and similar standards usually fall prey to trying to
define in what format data can be communicated between steps, as well as trying to set
the purpose of each processing step. In my opinion, such a standardized architecture
limits the usefulness of DL in mobile networks, by hard-coding processes and interfaces,
preventing the implementation of new functionality based on DL that does not fit the
predefined functions. This effectively locks DL into already standardized functionality.

Data

Sources
NWDAF (AnLF)

Analytics logical function)Analytics

consumer

[Actor]

1
Data

collection

(Model)

inference

NWDAF (MTLF)

Model training logical function

Model providerAnalytic Req/Sub

Analytic Resp/

Notify

2

ML Model

trained

subscription

Data

collection

Model

training
3

Data

Collection

3

Figure 12.11: The NWDAF architecture.

To provide an example, we can try to situate integrated imputation into the NWDAF
framework. Integrated imputation could be included into the AnLF, a simple solution
from an architectural point of view. In this case, however, the model training procedure
has to be modified to include the randomized dropout. Another option is to have an
integrated imputation model in the analytics consumer, with the NWDAF solely acting as
a data-collector/aggregator system. However, in this case, the complete training, model
management and inference capability of the NWDAF is wasted, circumvented by placing

184 12. Communication and Utilization of Confidence Values

this functionality outside of it. All-in-all, I am of the opinion that standardizing DL
processes hinders more than it helps, and I hope future mobile architectures will change
to harmoniously integrate DL in a less predefined fashion.

185

13. Summary of Research on Confidence

This part of the thesis has discussed the machine intuition process of confidence: the act of
suspicious processing of incoming data or uncertainty in the inferred information, and the
communication of these doubts, in order to mitigate or completely stop the propagation of
false information in automated processes. The communication and processing of confidence
values is a larger concept, requiring the generation of confidence values at data sources,
or the inference of confidence values at intermediate steps, as well as the use of confidence
values in DL model inference (Fig. 13.1). For all this, DNNs have to be extended to be
able to digest and produce confidence values, which requires changes to the topology of
the nets, as well as special techniques during training. Furthermore, instead of the simple
binary values we have investigated, the concept could be extended to a continuous range of
confidence values, which requires the definition of what these fractional confidence values
mean, and how to generate data that corresponds to them.

Network CF2

CF3

a) Conf. value generation

at data source

Data

CF1

Data + Conf.

Data + Conf.

b) Conf. value

inference

c) Conf. value

generation at the CF

Figure 13.1: Confidence value sources in CAN.

Our preliminary study focused on the use of confidence values in a simple scenario: the
confidence values were attached to the inputs, either showing completely correct (1.0 con-
fidence), or completely corrupted (0.0 confidence) data values. This scenario is called
imputation, the replacement of missing values in datasets. To evaluate how well imputa-
tion works with DNN-based FCs in a mobile network automation scenario, we considered
two setups: 1) various DNN-based and statistical imputation methods, which acted as a
“standalone” preprocessing module for a later ML task, and 2) an “integrated” imputation

Version: 2023/05/26 – 14:32:46

186 13. Summary of Research on Confidence

solution, where the imputation was fused into the DNN undertaking the ML task. Our
results show that the integrated method outperforms standalone imputation, as well as
requiring less computational resources and even providing benefits for regular operation
without missing data. I think these results are a promising sign for the overall confi-
dence value concept. Naturally, I don’t consider the research on this topic concluded, and
there are plans to continue development towards a full machine-confidence-enabled CAN,
however, it is possible to draw some conclusions even with this limited research.

13.1 Assessment of Feasibility (A4.1)

As shown previously, the utilization of confidence values in DNNs is possible. Neural
nets model correlation between features or patterns in time, and if redundant information
is present, can use these connections in the data to restore information and thus, keep
their inference precision up even in case some of the inputs are corrupted. The question
is how much redundant information there is typically in mobile network data. While
this is of course entirely dependent on the specific use case, in my experience redundant
information is quite abundant in mobile networks data, either in KPIs that relate to the
same underlying condition (radio quality, overall demand in the cell), or entities which
interact/interfere with each other, thus information about other entities is represented in
their logged data.

The larger confidence value concept would require DNNs to generate confidence values
accompanying their output. This is a much more complicated task than utilizing confidence
values on the input, and it is unclear whether the output capability depends on available
confidence values on the input. Fortunately, the topic of explainable AI is an active field
of research nowadays, which, among others, includes techniques aimed at measuring the
confidence of DNN outputs. These techniques could be utilized to produce confidence
values, or they could be helpful in developing a DNN which outputs confidence values
itself. I think inferring confidence values is feasible, but we will have to research this topic
further to be able to say for sure.

13.2 Assessment of Practicality (A4.2)

As we have seen, the processing overhead of confidence values might be negligible, if the
generation can also be integrated into the DNNs similarly to the utilization. However, the
communication of confidence values will always entail a large amount of added information:
in the simplest and worst case, every data value is accompanied by a confidence value,
doubling the communication load for the CFs. Selective confidence values could lighten this
load, by either only supporting confidence values to some features in the dataset, or only for
larger data-elements, such as having a single confidence values for a complete observation,
or multiple observations, such as a 10 second interval in a time-series. However, these lower
resolution confidence indication schemes might lose a lot of the benefits of the individual
confidence values we experimented with. Thus, it is quite probable that only critical CFs
will use machine confidence, while other, less important functionality will be kept less
robust for the sake of conserving network resources.

Fallback systems might require the careful tuning of the parameters which govern when
the system should fall back, or alert the operators to malfunction. Otherwise, training
for the generation of confidence values might also require fine-tuned parameters. However,
apart from these possibilities, it seems to me that machine confidence is quite user-friendly
and does not necessitate much parameter tuning.

13.3. ASSESSMENT OF APPLICABILITY (A4.3) 187

13.3 Assessment of Applicability (A4.3)

Increased robustness is desired in every aspect of the mobile network, thus, machine con-
fidence is widely applicable to almost all functionality in network automation. Even in
use cases where DNNs are guaranteed to not process corrupted information, the output
of confidence values could still be beneficial: for example, in a predictive handover sys-
tem, confidence values below a threshold could suppress the triggering of handovers, thus
reducing the number of too early or ping-pong handovers. Confidence values are also an
excellent way of gaining insight into the inner-logic of DL models – the focus of explainable
AI – which is a hot topic of research nowadays. Generally, confidence values can be seen
as DL models capable of showing doubt: a very human trait, which could go a long way
in building trust towards DL in the users.

188 13. Summary of Research on Confidence

189

Part V

Conclusion

Version: 2023/05/26 – 14:32:46

191

14. Conclusion and Outlook

Future CANs will require algorithms capable of automating even the most complex cog-
nitive processes of human reasoning. State-of-the-art DL algorithms have the potential
to realize this automation, however, these algorithms are mostly developed for other ap-
plication domains. Cognitive network automation requires models that are capable of
learning in an unsupervised manner, inferring insight from data without the help of ex-
tensive human supervision, such as manually labeled observations. These tasks generally
necessitate strong cognitive capabilities to be able to extract latent information from the
data, essentially a sort of intuition realized in algorithmic form. The focus of this thesis
are such machine intuition algorithms: unsupervised DL algorithms, applied to mobile
network automation use cases.

I have identified four machine intuition processes: exemplification, association, prediction
and machine confidence. The thesis’ organization followed these processes, with a major
part dedicated to each. Each intuitive process was discussed by introducing one or more
publications to which I contributed in a significant capacity. The publications examine
cognitive network automation use cases, and detail DL algorithms which can be used to
realize them. The DL algorithms are based on known methods, but required modifications
and/or extensions to adopt them to the specific network automation use case:

� Exemplification was discussed in the context of facilitating communication between
CFs in a CAN. Exemplification was implemented by using a combination of AEs and
quantization algorithms, in order to define network states as a common “language”,
which can be referenced by CFs in their communication.

� Association was discussed in the context of cell and user clustering, with which
anomaly detection or other classification-like tasks can be undertaken without the
need for labeled data. For this, deep AEs were used with special criteria to shape
the encoding into a clustering-friendly representation.

� Prediction was discussed in the context of increasing the reliability of the radio
communication, where prediction can be used to preemptively trigger handovers or
change beam configurations to maintain a good QoS for the user. The prediction
of QoS was realized using sequence-processing capable DNNs: an LSTM for direct
prediction, and a 1D CNN to predict user mobility, working together with a digital
twin.

Version: 2023/05/26 – 14:32:46

192 14. Conclusion and Outlook

� Confidence was discussed in the context of increasing DNN-based CF robustness
against corrupted input information. In this research, we used 1D CNNs extended
with a special input and training procedure, both to separately impute data and to
integrate the imputation into an CF undertaking user classification.

Every part of the thesis was concluded in a summary, which assessed the feasibility, practi-
cality and applicability of each machine learning process in a network automation setting.
Furthermore, every part contained a discussion which relates to the larger topic of the use
of DL in mobile networks: the need for specialized hardware for efficient massive paral-
lelization, the pitfalls in designing understandable DL algorithms, the potentially negative
role standardization plays for DL adoption in mobile networks, and the importance of
preserving user privacy when using DL models. In this concluding chapter, I would like
to give a final, overall assessment on machine intuition, as well as further remarks on the
use of DL in mobile networks, and my outlook on the future for these techniques.

14.1 Machine Intuition

14.1.1 Increasing Cognitive Power for CAN (A5.1)

In the introduction of this thesis, I have argued that unsupervised learning is a conceptually
harder task than supervised learning, thus, if achieved, would mean an increase in cognitive
capabilities, perhaps a step towards true AI. Unsupervised learning requires not only the
application of learned rules – which is realized in supervised learning – but the analysis of
data and the identification of relationships within it, without an explicit task as guidance.
While I still believe this to be true, I think the progress towards true AI is not a huge one:
as my experience shows, unsupervised algorithms require too much tuning of additional
criteria to fit models according to human expectation. These parameters have to be set
manually by experts, contrary to a system that I would consider as being capable of
autonomous analysis, which would not require any such external input. The need for
precise parameter settings also undermines the dependability of the analysis provided by
these algorithms: if it is possible to radically change the outcome by changing parameters,
then the given analysis is never the “absolute” truth, which diminishes the trustworthiness
of the results. We have seen this aspect in many places: having to guess the number of
quanta in k -Means, setting the balancing coefficient for RIM, or the need for DCT in QoS
prediction. Thus, while I think unsupervised DL algorithms do represent an increased
cognitive power over supervised algorithms, the currently realized unsupervised training
methods also make the results questionable, detracting from algorithms’ overall perceived
cognitive capabilities.

14.1.2 Benefits and Shortcomings of Unsupervised DL (A5.2)

Machine intuition algorithms are trained in an unsupervised manner, negating the need
for labeled training data. This is an immense benefit, as efficient large-scale labeling pro-
cesses – such as crowdsourced label collection – are not feasible in the network automation
domain, on account of the small number of potential participants (operators) relative to
the large amount of data needed. Not requiring labels means that the training dataset for
machine intuition algorithms can be prepared with simple preprocessing steps, allowing for
the complete automation of the training process. In theory, this enables machine intuition
algorithms to be easily deployed in a large number of instances, to be deployed in differ-
ent contexts, or to be repeatedly retrained to follow changing contexts in an automated
way. This automated training allows individual model instances to be trained for smaller
contexts, such as a single cell, which in turn allows for context-specific modeling, such

14.1. MACHINE INTUITION 193

as trajectory-based optimal handover prediction, enabling much of the context-sensitivity
promised in CAN.

Unfortunately, I don’t think unsupervised DL algorithms – mostly quantization and clus-
tering algorithms, but to a smaller extent all unsupervised DL algorithms undertaking
feature extraction – can really be trained in this automated manner. While unsupervised
algorithms save the effort of label generation, they require greater human supervision
during training, as they are more sensitive to parameter tuning than their supervised
counterparts. Because the labels strictly define the modeling task, supervised algorithms
allow more room for error in parameters, such as weight-decay, and meta-parameters, such
as the neural net topology. The modeling task implicitly defined with additional criteria in
unsupervised learning allows for a large range of “good”answers depending on the parame-
ters. Thus, unsupervised algorithms depend on the fine-tuned settings of these parameters
for the specific task, because the parameters govern the “definition” of the modeling task.
We have seen examples of this during the DANCE evaluation on the MNIST dataset,
where the DCCS algorithm achieved worse results with our deep CNN than the originally
published performance with a shallower, simpler net.

The same evaluation also highlights another aspect of unsupervised algorithms: while
they are not trained using context-specific labels, context-specific bias can be inherently
embedded in the meta-parameters and training methods. We have seen this when evalu-
ating deep clustering algorithms on mobile network data, which were originally designed
to work on images. Some algorithms – which had very generic constraints on the internal
representation – functioned similarly with both datasets, while others with image-specific
constraints or regularization methods completely failed on the mobile network dataset.
While not at this magnitude, I expect similar problems to also occur when using the same
algorithm in two different contexts within mobile networks, such as a beam optimization
algorithm designed for an urban environment and used in a rural setting. Of course, the
same is definitely true for supervised algorithms, so this aspect cannot be really seen as
a shortcoming of unsupervised algorithms. Furthermore, when tuned correctly, unsuper-
vised algorithms are less prone to overfitting than supervised algorithms – generalizing
better – possibly allowing for use in different contexts after all, even without retraining.
However, care must be taken when deploying into different contexts, which means a human
supervisor has to be present, removing one advantage of unsupervised algorithms.

Unsupervised DL algorithms are also more sensitive to the number and usefulness of the
input features than their supervised brethren. Once again, because of the explicitly de-
fined task, supervised algorithms can select only the useful features for their model during
training, and disregard other, less useful inputs. Because of the implicit task descrip-
tion, unsupervised algorithms cannot do this selection, thus, every input is considered
in the model. Useless features in the input can disturb the model, while features with
large amplitudes can overshadow others, becoming the controlling feature the model pays
attention to. I have encountered examples of such behavior in network state modeling,
with the amplitude governing the number of quanta that is arranged along certain feature
dimensions, and in our QoS prediction work, where possibly relevant inputs – such as
RSRP – illogically had a negative effect on the final prediction accuracy. Unlike images or
written text, mobile network data is heterogeneous, with features having vastly different
meanings, thus, feature selection and normalization is critical. For these tasks, there is
no single solution which applies to every dataset and use case, thus, data cleaning and
normalization is something that also requires expert supervision.

All-in-all, unsupervised algorithms also require plenty of expert supervision during design
and deployment, the same as their supervised brethren. While this takes away some
usability, unsupervised algorithms still retain a large advantage over supervised algorithms:

194 14. Conclusion and Outlook

the lack of need for labeled training data, which, in many cases, is simply not available in
mobile networks.

14.1.3 Short- and Long-Term Adoption, Following Trends (A5.3)

The adoption of DL is slow in mobile network automation. I believe there are a few
underlying reasons for this: 1) the established structure of mobile network development,
with lengthy processes for standardization required for interoperability between vendors,
2) the unsupported hardware requirements for DL and 3) the small immediate benefits
against the unclear, but expected to be high costs of large-scale DL deployment. These
problems hinder the adoption of DL in large-scale, commercial mobile networks, however,
smaller, private campus networks – found in factories, storehouses or larger industrial
sites, such as ports – do not suffer from any of these restrictions. Campus networks are
usually supported by a single vendor, thus are free from the burdens of standardized
interoperability with other vendor’s products. Outfitting these small networks with DL
support can be done simply, with a single server serving as hardware accelerator for the
whole network. Furthermore, the requirements or the cost/benefit ratio does not play a
role in the question whether DL should be used in these settings, as cost is usually not
a concern. Currently, these small networks are used as a testbed for new technologies.
Campus networks are especially good for trying out CAN concepts, because industrial use
cases require many of the benefits CANs promise, such as high reliability, adaptability and
efficiency. In the short-term, I believe machine intuition techniques and CAN concepts will
be deployed in these private campus networks, and will mostly serve industrial applications.

In the commercial domain, many applications already use DL on the mobile phone: face
recognition in photo galleries, dynamic overlays in video-chatting apps, or voice command
recognition in virtual assistants. These applications could or already do offload their
processing from the mobile phone to the network to save battery or processing power.
Commercial mobile networks are planned to support DL-enabled applications with re-
sources that are distributed in the network to save on communication load and latency.
However, if DL is already supported for applications, there is no reason why network au-
tomation functions could not utilize this support, diminishing the cost of the large-scale
deployment of DL-based network automation, and making the benefits more substantial. I
think simply available resources will create a trend leading to the general adoption of DL-
based network automation functionality, but whether this adoption will include machine
intuition techniques is not clear.

Supervised DL algorithms are not discussed much in the mobile network automation con-
text nowadays. I believe this is the effect of the lack of labeled datasets, which are seldom
generated and never shared in the mobile networking community. This lack of labeled
datasets shifted the focus towards unsupervised and reinforcement learning algorithms,
a trend which I think might change in the future if good simulators or digital twins are
developed for mobile networking scenarios. On one hand, simulators could shift the focus
back towards supervised learning techniques, as they allow for targeted data generation
where the data has inherently attached labels, similar to how we generated data for dif-
ferent user groups for the clustering and imputation evaluation. On the other hand, if
simulators are fast and lightweight enough, targeted data generation might not even be
needed, as reinforcement learning algorithms could use them as a sandbox to efficiently
learn to control the network by trial and error. I hope that in any case, generally applica-
ble machine intuition concepts such as confidence or prediction will continue to be used,
and hopefully help network automation algorithms climb the cognitive pyramid towards
true AI.

14.2. OUTLOOK OF DL IN MOBILE NETWORKS 195

14.2 Outlook of DL in Mobile Networks

14.2.1 On the Caveats of DL

Within every major part in this thesis, I dedicated one section to a caveat, a problematic
aspect in the use of DL, distinguished in the section title with the “On” keyword. I would
like to reiterate on these caveats, to summarize the most important problems that arise in
the process of adopting DL algorithms in mobile network automation.

In Sec. 3.4, connected to the neural-net-like implementation of the k -Means and BSQ
algorithms, I have touched on the hardware acceleration needs of DNN-like massively
parallel algorithms. In my experience, without specific hardware accelerators – GPUs –
DNNs take an extensively long time to train, making them a hassle to use. While future
mobile networks plan to support DL, more often than not this support is envisioned using
regular servers without hardware acceleration. The problem is that while the “traditional”
consolidation techniques – virtualization or containers – function well for generic server
tasks in cloud-like resource pools, it is quite complicated to integrate hardware accelerators
into them. On top of this, accelerators would need to be newly bought, adding a large
entry cost to using DL, where as CPU-based DL support can be realized by repurposing
existing cloud infrastructure, solely through software updates. These setups pass for now
because there are not many DL-based applications or network automation functions that
utilize these resources, but it is not scalable for the widespread use of DL. Hopefully,
maturing drivers and software will make the integration of hardware accelerators easier,
which will spur the deployment of proper DL support in the future.

In Sec. 6.2, I discussed the potential negative effects of designing DL models for explain-
ability. The example was our SCA algorithm (Cha. 6), which did not work well on complex
clustering tasks, because of a restrictive internal representation. The internal representa-
tion was forced to be similar to a fully connected graph in an effort to make the model
explainable. Since conducting that research, I am an advocate for having end-to-end DL
models, with as little human bias involved as possible, such as constrained representa-
tions. However, the lack of trust towards DL algorithms is a major roadblock in the way
of widespread adoption, which could probably be helped by having explainable models.
I believe the solution is to develop explanation techniques which do not require the sim-
plification or restriction models. Instead, good explainability techniques would work as a
post-processing steps, querying the model in a targeted way, or generating data with the
model that can be used as explanation for its decisions.

A different source of the same problem was highlighted in Sec. 12.2, in which I discussed
the potentially detrimental effects of standardized DL frameworks, connected to our in-
tegrated imputation algorithm. These standards can have the same effect as designing
for explainability: restricting models by splitting up functionality into compartmental-
ized blocks and strictly defining interfaces between them. Once again, these actions can
constrain (what should have been) internal representations in the end-to-end model, ef-
fectively restricting model complexity. I believe standards should not try to define DL
frameworks to this extent, rather, support DL through standardized data collection from-,
and actuation interfaces to the network.

A keen reader might notice a discrepancy in this argument, as this very thesis discusses
a task where a split DL process worked better than an end-to-end one. In Cha. 9 and
Cha. 10, I compared a direct radio QoS prediction with an indirect one, where the end-
to-end task was split into a user mobility prediction and a location-to-QoS mapping step.
We found that the split prediction worked more reliably, while also allowing for additional
features, such as the evaluation of not yet deployed changes through a digital twin. How
can this be, if DL are supposed to work best if employed in an end-to-end fashion? The

196 14. Conclusion and Outlook

answer is, of course, that the end-to-end rule is not absolute: some modeling tasks can
naturally be split into multiple steps, and function better so. In the QoS prediction
case, the radio quality is inherently controlled by the user’s location. By separating the
prediction from the radio map, the two models could be more focused and be regularized
better, arriving at a more precise prediction overall. My argumentation is not against
step-by-step processing as a whole, rather, doing so even when the original task does not
warrant it. Furthermore, in this case, mapping the radio environment through a digital
twin allowed for the “generation” of data which was not present in the original dataset,
further helping regularization.

Finally, in Sec.10.2, connected to user location prediction, I have talked about the issue of
maintaining data privacy in the collection of training and inference data for DL models.
DL often runs into this problem, because for its most effective use, DL requires in-depth
information about the entities it models, which information is often private in the case us
humans are the entities to be modeled. In fact, most of the mystery behind clever DL
applications can be attributed to invasive data collection practices: clever recommenda-
tions about where to eat next, or automatically generated responses to emails are not the
“magical” reasoning of an all-knowing AI, rather, the results of monitoring and scanning
millions of user’s movements, habits and emails, often without their knowledge. Recent
laws (e.g. in the European Union) have tried to control when and which type of data
can be collected from users, in my opinion with little success; the data-trading industry
is booming, with the main income of technology giants being the monitoring and selling
of user information to any buyer ready to pay the price. I believe mobile networks can
do better, by standardizing and strictly enforcing anonymized data collection practices,
clearly and simply asking the users’ permission, and even refraining from sensitive data
collection wherever it is not necessary. I hope mobile phones will not become inherent
monitoring devices, because while user’s can decide not to use certain browsers or social
media sites, slowly but surely it becomes impossible to not use our mobile phones.

14.2.2 On DL Research

During the start of my thesis work, while DL was an often mentioned topic, I felt that
in-depth DL research was not discussed in mobile networking circles. As I have shown
in Sec. 2.4.1, most of the research labeled as DL utilized simpler ML algorithms, and
even if a DNN was used, the research usually never involved any special modifications
or extensions, the algorithms were used as a “black box”. This led to a lack of a deeper
discussion about DL in mobile networks research, where most papers would only focus on
results, (marginal) gains achieved by using a DL algorithm in place of already existing
solutions. This attitude became a problem for my research, as my papers contained more
in-depth explanations of algorithms, and were often deemed “too technical” for mobile
networking conferences or journals. Fortunately, the situation seems to be changing, as
vendors now started to seriously pick up on DL research, and with this, DL experts are
entering the mobile networking field who are interested in the inner workings of algorithms.
However, even if researchers are interested in DL algorithms now, the problem remains
that only few research papers are published which are supported by reproducible results.

In my experience, the publishing of reproducible research is specifically impeded by the
unwillingness to share datasets. In other fields – such as image recognition – this would
not be a problem, because there are publicly available datasets, which can be used for the
evaluation of the algorithms, but DL in mobile networks is different in this regard. On
one hand, it is impossible to gather and compile such a dataset from public sources, as all
mobile networks are owned and run by operators, which are, as businesses, unwilling to give
out potentially damaging data for virtually no gain. On the other hand, smaller networks
or artificial “testbeds” generally do not produce data that contains the same complexity

14.2. OUTLOOK OF DL IN MOBILE NETWORKS 197

as a large-scale mobile networks, which makes them unfit for use in DL research. This is a
problem, because independent research entities, such as universities – the source of many
of the largest innovations in technology – cannot effectively participate in DL research for
mobile networks, as they are starved for real data.

To get access to real network data, the best approach for independent researchers is to
participate in joint projects with vendors and operators, which unfortunately causes them
to get caught up in the monetary side of research, and potentially prohibit them from
publishing reproducible results. Even network vendors – the developers of mobile networks
– often have a hard time gathering real network data, because it is owned by the operators.
This problem is specific to our field, as other main contributors to DL – such as developers
of social media sites – don’t have the split between vendors and operators, and owning
and operating their own product allows them to collect data which can then be used for
research. The situation might change in the future, as I see a growing realization of a need
for better simulators, which could theoretically be used to generate plentiful realistic data.
This might also ease the sharing of datasets for companies, as artificially generated data
usually does not contain information that could be detrimental to them. However, good
simulators still need data to verify correct functioning, and to align the results with real
world measurements, something that is especially true for the currently trending digital
twin concepts. All-in-all, DL research requires the cooperation of multiple entities, which
is always complicated in a corporate environment.

Network operators and vendors are businesses, therefore it is somewhat understandable
that they do not want to give away potentially profitable technological advancements in
the form of openly accessible papers. However, I think this attitude is unhealthy for the
whole industry in the long-term, and needs to change if the current mobile networking
companies don’t want to be swallowed up by more open and innovative technology giants.
Reproducible research allows for constructive criticism, and prevents false claims to be
perpetuated, thus being beneficial to the field overall. I believe that for a continuous
growth in the mobile networking business, a good research community and good practices
have to be established, in order to create a real competition that is based on facts, and
spur technological innovation that allows these companies to stay ahead. In this regard,
I am very proud that we managed to publish fully working code and a dataset with our
integrated imputation research in the end, which I think is a good sign that at least Nokia
is on the right track towards a more healthy research attitude.

For a while, I feared that DL is just another hyped buzzword in mobile networks, soon
to be forgotten and replaced by other supposed technological revelations. At the start of
my research work, there existed a large gap between the conceived power and the actual
capabilities of DL: concepts contained a lot of wishful thinking, stemming from the lack
of understanding and experience with DL, or any ML algorithms in general. However, it
seems DL survived the “hype cycle”, with companies understanding the real capabilities
of- and need for DL, and investing more and more into research. By now, I am confident
to predict that DL is here to stay, and if it is ever replaced by a new technology, it will be
something that is even more complex, and requires even more resources and research. After
all, DL is just a stepping stone for machine learning, on the long way towards realizing
true AI.

LITERATURE 199

Literature

[1] Rachid El Hattachi and Javan Erfanian. 5G white paper. Technical report, 02 2015.

[2] Ferry Grijpink, Eric Kutcher, Alexandre Ménard, Sree Ramaswamy, Davide Schi-
avotto, James Manyika, Michael Chui, Rob Hamill, and Emir Okan. Connected
world: An evolution in connectivity beyond the 5G revolution. Technical report, 02
2020.

[3] S. S. Mwanje and Christian Mannweiler. Towards Cognitive Autonomous Networks:
Network Management Automation for 5G and Beyond. Wiley, 2020.

[4] Nancy E. Adams. Bloom’s taxonomy of cognitive learning objectives. Journal of
Medical Library Association, 103:152–153, 2015.

[5] Merriam-Webster. Intuition. In Merriam-Webster.com dictionary. URL: https:
//www.merriam-webster.com/dictionary/intuition.

[6] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. The MIT
Press, 2016.

[7] Sheldon Jay Axler. Linear Algebra Done Right. Springer, 1997.

[8] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural net-
work model for a mechanism of visual pattern recognition. In Competition and
cooperation in neural nets, pages 267–285. Springer, 1982.

[9] Michael A. Nielsen. Neural networks and deep learning. Determination Press, 2018.
URL: http://neuralnetworksanddeeplearning.com/.

[10] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep
feedforward neural networks. In Proceedings of the Thirteenth International Con-
ference on Artificial Intelligence and Statistics, volume 9 of Proceedings of Machine
Learning Research, pages 249–256, 2010.

[11] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification. In 2015 IEEE International Conference
on Computer Vision (ICCV), pages 1026–1034, 2015.

[12] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,
2017. arXiv:1412.6980.

[13] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Proceedings of the 32nd International
Conference on Machine Learning - Volume 37, page 448–456, 2015.

[14] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-
put., 9(8):1735–1780, 1997.

Version: 2023/05/26 – 14:32:46

https://www.merriam-webster.com/dictionary/intuition
https://www.merriam-webster.com/dictionary/intuition
http://neuralnetworksanddeeplearning.com/
http://arxiv.org/abs/1412.6980

200 LITERATURE

[15] Yann LeCun and Yoshua Bengio. Convolutional networks for images, speech, and
time series. In The Handbook of Brain Theory and Neural Networks, page 255–258.
MIT Press, Cambridge, MA, USA, 1998.

[16] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In
Proceedings of the 27th International Conference on Neural Information Processing
Systems - Volume 2, page 2672–2680. MIT Press, 2014.

[17] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition, 2015. arXiv:1409.1556.

[18] C. Zhang, P. Patras, and H. Haddadi. Deep learning in mobile and wireless network-
ing: A survey. IEEE Communications Surveys Tutorials, 21(3):2224–2287, 2019.

[19] Xiaohu You, Chuan Zhang, Xiaosi Tan, Shi Jin, and Hequan Wu. Ai for 5g: research
directions and paradigms. Science China Information Sciences, 62(2):1–13, 2019.

[20] Manuel Eugenio Morocho Cayamcela and Wansu Lim. Artificial intelligence in 5g
technology: A survey. In 2018 International Conference on Information and Com-
munication Technology Convergence (ICTC), pages 860–865, 2018.

[21] Rongpeng Li, Zhifeng Zhao, Xuan Zhou, Guoru Ding, Yan Chen, Zhongyao Wang,
and Honggang Zhang. Intelligent 5g: When cellular networks meet artificial intelli-
gence. IEEE Wireless communications, 24(5):175–183, 2017.

[22] Min Soo Sim, Yeon-Geun Lim, Sang Hyun Park, Linglong Dai, and Chan-Byoung
Chae. Deep learning-based mmwave beam selection for 5g nr/6g with sub-6 ghz
channel information: Algorithms and prototype validation. IEEE Access, 8:51634–
51646, 2020.

[23] Kwihoon Kim, Joohyung Lee, and Junkyun Choi. Deep learning based pilot alloca-
tion scheme (dl-pas) for 5g massive mimo system. IEEE Communications Letters,
22(4):828–831, 2018.

[24] Yibo Zhou, Zubair Md Fadlullah, Bomin Mao, and Nei Kato. A deep-learning-based
radio resource assignment technique for 5g ultra dense networks. IEEE Network,
32(6):28–34, 2018.

[25] Rui Dong, Changyang She, Wibowo Hardjawana, Yonghui Li, and Branka Vucetic.
Deep learning for radio resource allocation with diverse quality-of-service require-
ments in 5g. IEEE Transactions on Wireless Communications, 2020.

[26] Changqing Luo, Jinlong Ji, Qianlong Wang, Xuhui Chen, and Pan Li. Channel state
information prediction for 5g wireless communications: A deep learning approach.
IEEE Transactions on Network Science and Engineering, 7(1):227–236, 2018.

[27] Wei Lyu, Zhaoyang Zhang, Chunxu Jiao, Kangjian Qin, and Huazi Zhang. Perfor-
mance evaluation of channel decoding with deep neural networks. In 2018 IEEE
International Conference on Communications (ICC), pages 1–6. IEEE, 2018.

[28] Francesco Restuccia and Tommaso Melodia. Deep learning at the physical layer:
System challenges and applications to 5g and beyond. IEEE Communications Mag-
azine, 58(10):58–64, 2020.

http://arxiv.org/abs/1409.1556

LITERATURE 201

[29] Hongji Huang, Song Guo, Guan Gui, Zhen Yang, Jianhua Zhang, Hikmet Sari, and
Fumiyuki Adachi. Deep learning for physical-layer 5g wireless techniques: Oppor-
tunities, challenges and solutions. IEEE Wireless Communications, 27(1):214–222,
2019.

[30] Samrat Nath and Jingxian Wu. Deep reinforcement learning for dynamic compu-
tation offloading and resource allocation in cache-assisted mobile edge computing
systems. Intelligent and Converged Networks, 1(2):181–198, 2020.

[31] Bin Cao, Long Zhang, Yun Li, Daquan Feng, and Wei Cao. Intelligent offloading
in multi-access edge computing: A state-of-the-art review and framework. IEEE
Communications Magazine, 57(3):56–62, 2019.

[32] Zhiyuan Xu, Yanzhi Wang, Jian Tang, Jing Wang, and Mustafa Cenk Gursoy. A
deep reinforcement learning based framework for power-efficient resource allocation
in cloud rans. In 2017 IEEE International Conference on Communications (ICC),
pages 1–6. IEEE, 2017.

[33] Dario Bega, Marco Gramaglia, Marco Fiore, Albert Banchs, and Xavier Costa-Perez.
Deepcog: Cognitive network management in sliced 5g networks with deep learning.
In IEEE INFOCOM 2019-IEEE Conference on Computer Communications, pages
280–288. IEEE, 2019.

[34] Rongpeng Li, Zhifeng Zhao, Qi Sun, I Chih-Lin, Chenyang Yang, Xianfu Chen,
Minjian Zhao, and Honggang Zhang. Deep reinforcement learning for resource man-
agement in network slicing. IEEE Access, 6:74429–74441, 2018.

[35] Anurag Thantharate, Rahul Paropkari, Vijay Walunj, and Cory Beard. Deepslice:
A deep learning approach towards an efficient and reliable network slicing in 5g
networks. In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics & Mobile
Communication Conference (UEMCON), pages 0762–0767. IEEE, 2019.

[36] Lorenzo Fernández Maimó, Ángel Luis Perales Gómez, Félix J Garćıa Clemente,
Manuel Gil Pérez, and Gregorio Mart́ınez Pérez. A self-adaptive deep learning-based
system for anomaly detection in 5g networks. IEEE Access, 6:7700–7712, 2018.

[37] Shahadate Rezvy, Yuan Luo, Miltos Petridis, Aboubaker Lasebae, and Tahmina
Zebin. An efficient deep learning model for intrusion classification and prediction in
5g and iot networks. In 2019 53rd Annual Conference on Information Sciences and
Systems (CISS), pages 1–6. IEEE, 2019.

[38] Bilal Hussain, Qinghe Du, and Pinyi Ren. Deep learning-based big data-assisted
anomaly detection in cellular networks. In 2018 IEEE Global Communications Con-
ference (GLOBECOM), pages 1–6. IEEE, 2018.

[39] Rui Dong, Changyang She, Wibowo Hardjawana, Yonghui Li, and Branka Vucetic.
Deep learning for hybrid 5g services in mobile edge computing systems: Learn from
a digital twin. IEEE Transactions on Wireless Communications, 18(10):4692–4707,
2019.

[40] Tsvetko Tsvetkov, Szabolcs Novaczki, Henning Sanneck, and Georg Carle. A post-
action verification approach for automatic configuration parameter changes in self-
organizing networks. In International Conference on Mobile Networks and Manage-
ment, pages 135–148. Springer, 2014.

202 LITERATURE

[41] Christoph Frenzel, Tsvetko Tsvetkov, Henning Sanneck, Bernhard Bauer, and Georg
Carle. Detection and resolution of ineffective function behavior in self-organizing
networks. In Proceeding of IEEE International Symposium on a World of Wireless,
Mobile and Multimedia Networks 2014, pages 1–3. IEEE, 2014.

[42] Levente Bodrog, Márton Kajó, Szilárd Kocsis, and Benedek Schultz. A robust al-
gorithm for anomaly detection in mobile networks. In 2016 IEEE 27th Annual
International Symposium on Personal, Indoor, and Mobile Radio Communications
(PIMRC), pages 1–6. IEEE, 2016.

[43] Michel Verleysen and Damien François. The curse of dimensionality in data mining
and time series prediction. In International work-conference on artificial neural
networks, pages 758–770. Springer, 2005.

[44] S. Lloyd. Least squares quantization in pcm. IEEE Transactions on Information
Theory, 28:129–137, 1982.

[45] David E. Rumelhart and James L. McClelland. Feature discovery by competitive
learning. In Parallel Distributed Processing: Explorations in the Microstructure of
Cognition: Foundations, pages 151–193. MIT Press, 1 edition, 1987.

[46] Alireza Makhzani and Brendan J. Frey. k-sparse autoencoders. CoRR,
abs/1312.5663, 2013.

[47] J. Laiho, K. Raivio, P. Lehtimaki, Kimmo Hätönen, and O. Simula. Advanced
analysis methods for 3g cellular networks. IEEE Transactions on Wireless Commu-
nications, 4(3):930–942, 2005.

[48] Pekka Kumpulainen and Kimmo Hätönen. Characterizing mobile network daily
traffic patterns by 1-dimensional som and clustering. In Engineering Applications
of Neural Networks: 13th International Conference, pages 325–333. Springer Berlin
Heidelberg, 2012.

[49] Pekka Kumpulainen and Kimmo Hätönen. Local anomaly detection for mobile net-
work monitoring. In Information Sciences, volume 178, pages 3840–3859, 10 2008.

[50] M. Inaba, N. Katoh, and H. Imai. Applications of weighted voronoi diagrams and
randomization to variance-based k-clustering: (extended abstract). In Proceedings of
the Tenth Annual Symposium on Computational Geometry, SCG ’94, pages 332–339,
1994.

[51] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the Royal Statistical Society, Series B, 39:1–38,
1977.

[52] R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of lloyd-
type methods for the k-means problem. In 2006 47th Annual IEEE Symposium on
Foundations of Computer Science (FOCS’06), pages 165–176, 2006.

[53] D. Jack Elzinga and Donald W. Hearn. The minimum covering sphere problem.
Management Science, 19(1):96–104, September 1972.

[54] M Emre Celebi, Hassan A Kingravi, and Patricio A Vela. A comparative study of
efficient initialization methods for the k-means clustering algorithm. Expert systems
with applications, 40(1):200–210, 2013.

LITERATURE 203

[55] David Arthur and Sergei Vassilvitskii. How slow is the k-means method? In Pro-
ceedings of the Twenty-second Annual Symposium on Computational Geometry, SCG
’06, pages 144–153, 2006.

[56] Kaspar Fischer, Bernd Gärtner, and Martin Kutz. Fast smallest-enclosing-ball com-
putation in high dimensions. In Algorithms - ESA 2003: 11th Annual European
Symposium, Budapest, Hungary, September 16-19, 2003. Proceedings, pages 630–
641. Springer Berlin Heidelberg, 2003.

[57] Kaspar Fischer. Smallest enclosing balls of balls. PhD thesis, ETH Zürich, 2005.

[58] Frank Nielsen and Richard Nock. Approximating smallest enclosing balls with ap-
plication to machine learning. International Journal of Computational Geometry &
Applications, 19:389–414, 10 2009.

[59] N. Megiddo. Linear-time algorithms for linear programming in r3 and related prob-
lems. In 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982),
pages 329–338, 1982.

[60] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In New Results and New
Trends in Computer Science: Graz, Austria, June 20–21, 1991 Proceedings, pages
359–370. Springer Berlin Heidelberg, 1991.

[61] Bernd Gärtner and Sven Schönherr. An efficient, exact, and generic quadratic pro-
gramming solver for geometric optimization. In Proceedings of the Sixteenth Annual
Symposium on Computational Geometry, SCG ’00, pages 110–118. ACM, 2000.

[62] Guanglu Zhou, Kim-Chuan Tohemail, and Jie Sun. Efficient algorithms for the small-
est enclosing ball problem. Computational Optimization and Applications, 30(2):147–
160, 2005.

[63] Piyush Kumar, Joseph S. B. Mitchell, E. Alper Yildirim, and E. Alper Yıldırım.
Computing core-sets and approximate smallest enclosing hyperspheres in high di-
mensions. In ALENEX, Lecture Notes Comput. Sci., pages 45–55, 2003.

[64] Jack Ritter. An efficient bounding sphere. In Graphics Gems, pages 301–303. Aca-
demic Press Professional, Inc., 1990.

[65] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance.
Theoretical Computer Science, 38:293–306, 1985.

[66] Rousseeuw Kaufman. Finding Groups in Data: An Introduction to Cluster Analysis.
John Wiley and Sons, New York, NY, 1990.

[67] Mihai Bādoiu, Sariel Har-Peled, and Piotr Indyk. Approximate clustering via core-
sets. In Proceedings of the thiry-fourth annual ACM symposium on Theory of com-
puting, pages 250–257. ACM, 2002.

[68] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality. In Proceedings of the Thirtieth Annual ACM Sympo-
sium on Theory of Computing, STOC ’98, page 604–613. Association for Computing
Machinery, 1998.

[69] William Feller. An Introduction to Probability Theory and Its Applications, volume 1,
chapter 10, pages 228–247. Wiley, 1968.

204 LITERATURE

[70] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y.
Wu. An efficient k-means clustering algorithm: analysis and implementation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24(7):881–892, 2002.

[71] Greg Hamerly. Making k-means even faster. In Proceedings of the 2010 SIAM
International Conference on Data Mining, pages 130–140, 2010.

[72] Charles Elkan. Using the triangle inequality to accelerate k-means. In Proceedings
of the Twentieth International Conference on International Conference on Machine
Learning, ICML’03, pages 147–153. AAAI Press, 2003.

[73] J. Wu and B. Hong. An efficient k-means algorithm on cuda. In 2011 IEEE In-
ternational Symposium on Parallel and Distributed Processing Workshops and Phd
Forum, pages 1740–1749, 2011.

[74] Stephen Mwanje, Christoph Schmelz, and Andreas Mitschele-Thiel. Cognitive cel-
lular networks: A q-learning framework for self-organizing networks. IEEE Trans-
actions on Network and Service Management, 13(Issue 1):85 – 98, January 2016.

[75] Stephen Mwanje, Guillaume Decarreau, Christian Mannweiler, Muhammad Naseer-
ul-Islam, and Lars Christoph Schmelz. Network management automation in 5g:
Challenges and opportunities. In Proceedings of the 27th International Symposium
on Personal, Indoor and Mobile Radio Communications (PIMRC), pages 1 – 6, 2016.

[76] Stephen S Mwanje and Christian Mannweiler. Towards cognitive autonomous net-
works in 5g. In 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU
K), pages 1–8. IEEE, 2018.

[77] Clive George Downes. An investigation into hazard-centric analysis of complex au-
tonomous systems. PhD thesis, Loughborough University, 2013.

[78] Ali Zeinal Hamadani and Hadi Akbarzade Khorshidi. System reliability optimization
using time value of money. The International Journal of Advanced Manufacturing
Technology, 66(1):97–106, 2013.

[79] Sharif Hassan and Ratan Guha. Modelling of the state of systems with defensive
deception. In 2016 International Conference on Computational Science and Com-
putational Intelligence (CSCI), pages 1031–1036. IEEE, 2016.

[80] Bill Triggs. Model-based sonar localisation for mobile robots. Robotics and Au-
tonomous Systems, 12(3-4):173–186, 1994.

[81] Bernhard Mahler and Jan Haase. Mathematical model and control strategy of a
two-wheeled self-balancing robot. In IECON 2013-39th Annual Conference of the
IEEE Industrial Electronics Society, pages 4198–4203. IEEE, 2013.

[82] Somsubhra Ghosh, Ranjit Kumar Barai, Samar Bhattarcharya, Prarthana Bhat-
tacharyya, Shubhobrata Rudra, Arka Dutta, and Rownick Pyne. An fpga based
implementation of a flexible digital pid controller for a motion control system. In
2013 International Conference on Computer Communication and Informatics, pages
1–6. IEEE, 2013.

[83] Bhaskar Krishnamachari, Deborah Estrin, and Stephen Wicker. Modelling data-
centric routing in wireless sensor networks. In IEEE infocom, volume 2, pages 39–44.
Citeseer, 2002.

LITERATURE 205

[84] Ansgar Fehnker, Lodewijk Van Hoesel, and Angelika Mader. Modelling and verifica-
tion of the lmac protocol for wireless sensor networks. In International Conference
on Integrated Formal Methods, pages 253–272. Springer, 2007.

[85] Qi Liao and Slawomir Stanczak. Network state awareness and proactive anomaly
detection in self-organizing networks. In 2015 IEEE Globecom Workshops (GC Wk-
shps), pages 1–6. IEEE, 2015.

[86] Borislava Gajic, Szabolcs Nováczki, and Stephen Mwanje. An improved anomaly
detection in mobile networks by using incremental time-aware clustering. In 2015
IFIP/IEEE International Symposium on Integrated Network Management (IM),
pages 1286–1291. IEEE, 2015.

[87] J Meinilä, P Kyösti, L Hentilä, T Jämsä, EK Essi Suikkanen, and M Narandzic.
Wireless world initiative new radio winner+, d5. 3: Winner+ final channel models.
CELTIC Telecommunication Soultions, Tech. Rep, 2010.

[88] Lei Chen. Curse of dimensionality. In Encyclopedia of Database Systems, pages
545–546. Springer US, Boston, MA, 2009.

[89] David Berthelot, Colin Raffel, Aurko Roy, and Ian Goodfellow. Understanding and
improving interpolation in autoencoders via an adversarial regularizer. In Interna-
tional Conference on Learning Representations, 2019.

[90] Hämäläinenand Seppo, Sanneck, Henning, and Sartoriand Cinzia. LTE Self-
organising Networks (SON): Network management automation for operational ef-
ficiency. John Wiley & Sons, 2012.

[91] Gabriela F Ciocarlie, Christopher Connolly, Chih-Chieh Cheng, Ulf Lindqvist, Sz-
abolcs Nováczki, Henning Sanneck, and Muhammad Naseer-ul Islam. Anomaly de-
tection and diagnosis for automatic radio network verification. In International
Conference on Mobile Networks and Management, pages 163–176. Springer, 2014.

[92] Borislava Gajic, Szabolcs Nováczki, and Stephen Mwanje. An improved anomaly
detection in mobile networks by using incremental time-aware clustering. In 2015
IFIP/IEEE International Symposium on Integrated Network Management (IM),
pages 1286–1291. IEEE, 2015.

[93] Szabolcs Nováczki and Borislava Gajic. Fixed-resolution growing neural gas for
clustering the mobile networks data. In International Conference on Engineering
Applications of Neural Networks, pages 181–191. Springer, 2015.

[94] Fedor Chernogorov, Jussi Turkka, Tapani Ristaniemi, and Amir Averbuch. Detection
of sleeping cells in lte networks using diffusion maps. In 2011 IEEE 73rd Vehicular
Technology Conference (VTC Spring), pages 1–5. IEEE, 2011.

[95] Elie Aljalbout, Vladimir Golkov, Yawar Siddiqui, Maximilian Strobel, and Daniel
Cremers. Clustering with deep learning: Taxonomy and new methods. arXiv preprint
arXiv:1801.07648, 2018.

[96] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for
clustering analysis. In Proceedings of The 33rd International Conference on Machine
Learning, pages 478–487, 2016.

[97] Bo Yang, Xiao Fu, Nicholas D Sidiropoulos, and Mingyi Hong. Towards k-means-
friendly spaces: Simultaneous deep learning and clustering. In Proceedings of the
34th International Conference on Machine Learning-Volume 70, pages 3861–3870.
JMLR. org, 2017.

206 LITERATURE

[98] Dongdong Chen, Jiancheng Lv, and Yi Zhang. Unsupervised multi-manifold clus-
tering by learning deep representation. In Workshops at the Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[99] Chih-Chung Hsu and Chia-Wen Lin. Cnn-based joint clustering and representation
learning with feature drift compensation for large-scale image data. IEEE Transac-
tions on Multimedia, 20(2):421–429, 2017.

[100] J. Yang, D. Parikh, and D. Batra. Joint unsupervised learning of deep representations
and image clusters. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5147–5156, 2016.

[101] Kamran Ghasedi Dizaji, Amirhossein Herandi, Cheng Deng, Weidong Cai, and Heng
Huang. Deep clustering via joint convolutional autoencoder embedding and relative
entropy minimization. In Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), pages 5736–5745, 2017.

[102] Fengfu Li, Hong Qiao, and Bo Zhang. Discriminatively boosted image clustering
with fully convolutional auto-encoders. Pattern Recognition, 83:161–173, 2018.

[103] Andrew LMaas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve
neural network acoustic models. In Proc. icml, volume 30, page 3, 2013.

[104] Ruoqiao Jiang and Shaohui Mei. Polar coordinate convolutional neural network:
From rotation-invariance to translation-invariance. In 2019 IEEE International Con-
ference on Image Processing (ICIP), pages 355–359, 2019.

[105] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between
capsules. In Advances in Neural Information Processing Systems, volume 30, 2017.

[106] Sushil Kumar Singh, Mikail Mohammed Salim, Jeonghun Cha, Yi Pan, and
Jong Hyuk Park. Machine learning-based network sub-slicing framework in a sus-
tainable 5g environment. Sustainability, 12:6250, 2020.

[107] Maŕıa Algar, Isaac Diego, Alberto Fernández-Isabel, Miguel-Angel Monjas, Felipe
Ortega, Javier Moguerza, and Hektor Jacynycz. A quality of experience manage-
ment framework for mobile users. Wireless Communications and Mobile Computing,
2019:1–11, 2019.

[108] Riyaz Ahamed Ariyaluran Habeeb, Fariza Nasaruddin, Abdullah Gani, Mo-
hamed Ahzam Amanullah, Ibrahim Hashem, Ejaz Ahmed, and Muhammad Imran.
Clustering-based real-time anomaly detection—a breakthrough in big data technolo-
gies. Transactions on Emerging Telecommunications Technologies, page e3647, 2019.

[109] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and Hanning Zhou. Vari-
ational deep embedding: An unsupervised and generative approach to clustering. In
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelli-
gence, IJCAI-17, pages 1965–1972, 2017.

[110] Sudipto Mukherjee, Himanshu Asnani, Eugene Lin, and Sreeram Kannan. Cluster-
gan: Latent space clustering in generative adversarial networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages 4610–4617, 2019.

[111] Weihua Hu, Takeru Miyato, Seiya Tokui, Eiichi Matsumoto, and Masashi Sugiyama.
Learning discrete representations via information maximizing self-augmented train-
ing. In Proceedings of the 34th International Conference on Machine Learning, pages
1558–1567, 2017.

LITERATURE 207

[112] Andreas Krause, Pietro Perona, and Ryan Gomes. Discriminative clustering by
regularized information maximization. In Advances in Neural Information Processing
Systems, pages 775–783, 2010.

[113] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan. Deep adaptive image clustering.
In 2017 IEEE International Conference on Computer Vision (ICCV), pages 5880–
5888, 2017.

[114] Junjie Zhao, Donghuan Lu, Kai Ma, Yu Zhang, and Yefeng Zheng. Deep image
clustering with category-style representation. In Computer Vision – ECCV 2020,
pages 54–70, 2020.

[115] Philip Haeusser, Johannes Plapp, Vladimir Golkov, Elie Aljalbout, and Daniel Cre-
mers. Associative deep clustering: Training a classification network with no labels.
In German Conference on Pattern Recognition, pages 18–32, 2019.

[116] X. Ji, A. Vedaldi, and J. Henriques. Invariant information clustering for unsupervised
image classification and segmentation. In 2019 IEEE/CVF International Conference
on Computer Vision (ICCV), pages 9864–9873, 2019.

[117] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[118] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. Wasser-
stein auto-encoders. arXiv preprint arXiv:1711.01558, 2017.

[119] H. W. Kuhn and Bryn Yaw. The hungarian method for the assignment problem.
Naval Res. Logist. Quart, pages 83–97, 1955.

[120] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based
algorithm for discovering clusters in large spatial databases with noise. In Proceedings
of the Second International Conference on Knowledge Discovery and Data Mining,
page 226–231, 1996.

[121] Mihael Ankerst, Markus M Breunig, Hans-Peter Kriegel, and Jörg Sander. Optics:
Ordering points to identify the clustering structure. ACM Sigmod record, 28(2):49–
60, 1999.

[122] Seif Eddine Hammami, Hossam Afifi, Michel Marot, and Vincent Gauthier. Network
planning tool based on network classification and load prediction. In 2016 IEEE
Wireless Communications and Networking Conference, pages 1–6, 2016.

[123] Vincenzo Sciancalepore, Konstantinos Samdanis, Xavier Costa-Perez, Dario Bega,
Marco Gramaglia, and Albert Banchs. Mobile traffic forecasting for maximizing 5g
network slicing resource utilization. In IEEE INFOCOM 2017 - IEEE Conference
on Computer Communications, pages 1–9, 2017.

[124] Jan Plachy, Zdenek Becvar, and Emilio Calvanese Strinati. Dynamic resource allo-
cation exploiting mobility prediction in mobile edge computing. In 2016 IEEE 27th
Annual International Symposium on Personal, Indoor, and Mobile Radio Commu-
nications (PIMRC), pages 1–6, 2016.

[125] Chin Tsai and Melody Moh. Load balancing in 5g cloud radio access networks
supporting iot communications for smart communities. In 2017 IEEE International
Symposium on Signal Processing and Information Technology (ISSPIT), pages 259–
264, 2017.

[126] H. Park, Y. Lee, T. Kim, B. Kim, and J. Lee. Handover mechanism in nr for
ultra-reliable low-latency communications. IEEE Network, 32(2):41–47, 2018.

208 LITERATURE

[127] 3GPP TR 38.913. Study on scenarios and requirements for next generation access
technologies. Tech. Rep. v14.3.0. Release 14, 2017.

[128] 3GPP TR 36.881. Evolved universal terrestrial radio access (e-utra); study on latency
reduction techniques for lte (release 14). 2016.

[129] 3GPP TS 36.300. Evolved universal terrestrial radio access (e-utra) and evolved uni-
versal terrestrial radio access network (e-utran); overall description; stage 2 (release
14). 2017.

[130] Y. Koda, K. Yamamoto, T. Nishio, and M. Morikura. Reinforcement learning based
predictive handover for pedestrian-aware mmwave networks. In IEEE INFOCOM
2018 - IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 692–697, 2018.

[131] A. Nandy and M. Biswas. Reinforcement learning basics. In Reinforcement Learning.
Springer, 2018.

[132] C. Lee, H. Cho, S. Song, and J. Chung. Prediction-based conditional handover
for 5g mm-wave networks: A deep-learning approach. IEEE Vehicular Technology
Magazine, 15(1):54–62, 2020.

[133] L. Yan, H. Ding, L. Zhang, J. Liu, X. Fang, Y. Fang, M. Xiao, and X. Huang.
Machine learning-based handovers for sub-6 ghz and mmwave integrated vehicular
networks. IEEE Transactions on Wireless Communications, 18(10):4873–4885, 2019.

[134] C. Wang, L. Ma, R. Li, T. S. Durrani, and H. Zhang. Exploring trajectory prediction
through machine learning methods. IEEE Access, 7:101441–101452, 2019.

[135] I. Viering, B. Wegmann, A. Lobinger, A. Awada, and H. Martikainen. Mobility
robustness optimization beyond doppler effect and wss assumption. In 2011 8th
International Symposium on Wireless Communication Systems, pages 186–191, 2011.

[136] Unified architecture for machine learning in 5g and future networks. Technical spec-
ification, ITU-T Focus Group on Machine Learning for Future Networks including
5G, 2019.

[137] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan,
Ian Goodfellow, and Rob Fergus. Intriguing properties of neural networks. arXiv
preprint arXiv:1312.6199, 2013.

[138] Dario Bega, Marco Gramaglia, Marco Fiore, Albert Banchs, and Xavier Costa-Perez.
Deepcog: Cognitive network management in sliced 5g networks with deep learning.
In IEEE INFOCOM 2019 - IEEE Conference on Computer Communications, pages
280–288, 2019.

[139] Anurag Thantharate, Rahul Paropkari, Vijay Walunj, and Cory Beard. Deepslice:
A deep learning approach towards an efficient and reliable network slicing in 5g
networks. In 2019 IEEE 10th Annual Ubiquitous Computing, Electronics Mobile
Communication Conference (UEMCON), pages 0762–0767, 2019.

[140] Alessio Zappone, Luca Sanguinetti, and Merouane Debbah. User association and
load balancing for massive mimo through deep learning. In 2018 52nd Asilomar
Conference on Signals, Systems, and Computers, pages 1262–1266, 2018.

[141] Yue Xu, Wenjun Xu, Zhi Wang, Jiaru Lin, and Shuguang Cui. Load balancing for
ultradense networks: A deep reinforcement learning-based approach. IEEE Internet
of Things Journal, 6(6):9399–9412, 2019.

LITERATURE 209

[142] Ahmed Masri, Teemu Veijalainen, Henrik Martikainen, Stephen Mwanje, Janne Ali-
Tolppa, and Márton Kajó. Machine-learning-based predictive handover. In 2021
IFIP/IEEE International Symposium on Integrated Network Management (IM),
pages 648–652, 2021.

[143] Bohdan Shubyn, Nazarii Lutsiv, Oleh Syrotynskyi, and Roman Kolodii. Deep learn-
ing based adaptive handover optimization for ultra-dense 5g mobile networks. In
2020 IEEE 15th International Conference on Advanced Trends in Radioelectronics,
Telecommunications and Computer Engineering (TCSET), pages 869–872, 2020.

[144] O-RAN Alliance. O-ran architecture description. Technical report, ORAN, 03 2021.

[145] 3GPP; Technical Specification Group Services and System Aspects. TS 23.288;
architecture enhancements for 5g system (5gs) to support network data analytics
services (release 17). Technical report, 3GPP, 06 2021.

[146] Anubhab Banerjee, Stephen S Mwanje, and Georg Carle. On the implementation of
cognitive autonomous networks. Internet Technology Letters, page e317, 2021.

[147] Anubhab Banerjee, Stephen S Mwanje, and Georg Carle. Optimal configuration
determination in cognitive autonomous networks. In 2021 IFIP/IEEE International
Symposium on Integrated Network Management (IM), pages 494–500, 2021.

[148] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Ex-
tracting and composing robust features with denoising autoencoders. In Proceedings
of the 25th international conference on Machine learning, pages 1096–1103, 2008.

[149] Lovedeep Gondara and Ke Wang. Mida: Multiple imputation using denoising au-
toencoders. In Pacific-Asia conference on knowledge discovery and data mining,
pages 260–272, 2018.

[150] Diederik Kingma and Max Welling. Auto-encoding variational bayes. ICLR, 12
2013.

[151] O Ivanov, M Figurnov, and D Vetrov. Variational autoencoder with arbitrary condi-
tioning. In 7th International Conference on Learning Representations, ICLR 2019,
2019.

[152] Pierre-Alexandre Mattei and Jes Frellsen. Miwae: Deep generative modelling and
imputation of incomplete data sets. In International Conference on Machine Learn-
ing, pages 4413–4423, 2019.

[153] Jinsung Yoon, James Jordon, and Mihaela Schaar. Gain: Missing data imputation
using generative adversarial nets. In International Conference on Machine Learning,
pages 5689–5698, 2018.

[154] Steven Cheng-Xian Li, Bo Jiang, and Benjamin Marlin. Misgan: Learning from
incomplete data with generative adversarial networks. In International Conference
on Learning Representations, 2018.

[155] Susanna Schwarzmann, Clarissa Cassales Marquezan, Riccardo Trivisonno, Shinichi
Nakajima, and Thomas Zinner. Accuracy vs. cost trade-off for machine learning
based qoe estimation in 5g networks. In ICC 2020 - 2020 IEEE International Con-
ference on Communications (ICC), pages 1–6, 2020.

[156] Luong-Vy Le, Bao-Shuh Paul Lin, Li-Ping Tung, and Do Sinh. Sdn/nfv, machine
learning, and big data driven network slicing for 5g. In 2018 IEEE 5G World Forum
(5GWF), pages 20–25, 2018.

210 LITERATURE

[157] Shahadate Rezvy, Yuan Luo, Miltos Petridis, Aboubaker Lasebae, and Tahmina
Zebin. An efficient deep learning model for intrusion classification and prediction in
5g and iot networks. In 2019 53rd Annual Conference on Information Sciences and
Systems (CISS), pages 1–6, 2019.

[158] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative ad-
versarial networks. In International conference on machine learning, pages 214–223,
2017.

[159] Gustavo E. A. P. A. Batista and M. C. Monard. A study of k-nearest neighbour as
an imputation method. In HIS, 2002.

[160] Stef Van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation
by chained equations in r. Journal of statistical software, 45(1):1–67, 2011.

[161] Daniel J Stekhoven and Peter Bühlmann. Missforest—non-parametric missing value
imputation for mixed-type data. Bioinformatics, 28(1):112–118, 2012.

[162] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from overfitting.
J. Mach. Learn. Res., 15(1):1929–1958, 2014.

[163] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In
2005 IEEE Computer Society Conference on Computer Vision and Pattern Recog-
nition (CVPR’05), volume 1, pages 886–893, 2005.

Acronyms 211

Acronyms

1-NN 1-Nearest Neighbor.

3GPP 3rd Generation Partnership Project.

5G 5th Generation Mobile Network.

5G MoNArch 5G Mobile Network Architecture.

ACAI Adversarially Constrained Autoencoder Interpolation.

ACC clustering ACCuracy.

Adam Adaptive Moment Estimation.

ADC Associative Deep Clustering.

AE Autoencoder.

AI Artificial Intelligence.

AnLF Analytics Logical Function.

ANN Artificial Neural Net.

API Application Programming Interface.

ARI Adjusted Rand Index.

BA Beam Adaptation.

BBQ Bounding Box Quantization.

BSQ Bounding Sphere Quantization.

BTS Base Transceiver Station.

CAN Cognitive Autonomous Network.

CBR Case-Based Reasoning.

CCO Coverage and Capacity Optimization.

CDA Central Diagnosis Agent.

CE Coordination Entity.

CF Cognitive Function.

CIO Cell Individual Offset.

Version: 2023/05/26 – 14:32:46

212 Acronyms

ClusterGAN Latent Space Clustering in Generative Adversarial Networks.

CM Configuration Management.

CME Configuration Management Entity.

CNN Convolutional Neural Net.

CPU Central Processing Unit.

CQI Channel Quality Indicator.

DAC Deep Adaptive image Clustering.

DAE Denoising Autoencoder.

DAN Decorrelating Adversarial Net.

DANCE Decorrelating Adversarial Net for Clustering-friendly Encoding.

DAS Discrete Abstract State.

DASS Discrete Abstract State-Space.

DBN Deep Belief Net.

DBSCAN Density-Based Spatial Clustering of Applications with Noise.

DCCS Deep image Clustering with Category-Style representation.

DCT Dynamic Confidence Threshold.

DEC Deep Embedded Clustering.

DEPICT DEeP embedded regularIzed ClusTering.

DL Deep Learning.

DNN Deep Neural Net.

DQN Deep Q-Network.

EIS EMA-Internal State.

EISS EMA-Internal State-Space.

EM Expectation-Maximization.

EMA Environment Modeling and Abstraction.

eMBB extreme Mobile BroadBand.

EMM Environment Modeling Module.

FC Fully-Connected.

FM Fault Management.

FNN Fully-connected Neural Net.

FRGNG Fixed-Resolution Growing Neural Gas.

FTP File Transfer Protocol.

Acronyms 213

GAIN Generative Adversarial Imputation Net.

GAN Generative Adversarial Net.

GMM Gaussian Mixture Model.

GPGPU General-Purpose Computing on Graphics Processing Units.

GPS Global Positioning System.

GPU Graphics Processing Unit.

HAC Hierarchical Agglomerative Clustering.

HDP Hierarchical Dirichlet Process.

HMM Hidden Markov Model.

HO HandOver.

HOF HandOver Failure.

HOG Histogram of Oriented Gradients.

HTTP HyperText Transfer Protocol.

ICI Integrated Classification with Imputation.

IIC Invariant Information Clustering.

ILSVRC IMAGENET Large-Scale Visual Recognition Challenge.

IMSAT Information Maximizing Self-Augmented Training.

IoT Internet of Things.

JULE Joint Unsupervised LEarning.

k-NN k-Nearest Neighbors.

KPI Key Performance Indicator.

LDA Local Diagnosis Agent.

LR Logistic Regression.

LSTM Long Short-Term Memory.

LTE Long-Term Evolution.

MDT Minimization of Drive Tests.

MEC Mobile Edge Computing.

MGNG Merge Growing Neural Gas.

MICE Multiple Imputation by Chained Equations.

MIDA Multiple Imputation using Denoising Autoencoders.

MIMO Multiple-Input Multiple-Output.

MisGAN GAN for Missing data.

214 Acronyms

MIT Mobility Interruption Time.

MIWAE Missing data Importance-Weighted Autoencoder.

ML Machine Learning.

MLP Multi-Layer Perceptron.

MPP Mobility Pattern Prediction.

MRO Mobility Robustness Optimization.

MSE Mean Squared Error.

NFV Network Function Virtualization.

NLL Negative Log-Likelihood.

NLP Natural Language Processing.

NM Network Management.

NMI Normalized Mutual Information.

NOM Network Objectives Manager.

NWDAF Network Data Analytics Function.

OFDM Orthogonal Frequency-Division Multiplexing.

ONS Observable Network State.

OPTICS Ordering Points To Identify the Clustering Structure.

OSS Operation Support System.

PACHO Path-Aware Cognitive Handover Optimization.

PAM Partitioning Around Medoids.

PCA Principal Component Analysis.

PLANAR Predictive Location-Aware Network Automation for Radio.

PM Performance Management.

PRB Physical Resource Block.

QoE Quality of Experience.

QoS Quality of Service.

RAN Radio Access Network.

ReLU Rectified Linear Unit.

RIC RAN Intelligent Controller.

RIM Regularized Information Maximization.

RLF Radio Link Failure.

RNN Recurrent Neural Net.

Acronyms 215

RRC Radio Resource Control.

RSRP Reference Signal Received Power.

RSSINR RSRP-based SINR.

SAM State Abstraction Module.

SAT Self-Augmented Training.

SCA Sparse Clustering Autoencoder.

SDN Software-Defined Networking.

SGD Stochastic Gradient Descent.

SINR Signal-to-Interference-plus-Noise Ratio.

SNR Signal-to-Noise Ratio.

SOM Self-Organizing Map.

SON Self-Organizing Networks.

SVM Support Vector Machine.

TTI Transmission Time Interval.

TTT Time-To-Trigger.

TXP Transmission Power.

UE User Equipment.

URLLC Ultra-Reliable Low-Latency Commmunication.

VaDE Variational Deep Embedding.

VAE Variational Autoencoder.

VAEAC Variational Autoencoder with Arbitrary Conditioning.

VM Virtual Machine.

VoIP Voice over IP.

WGAIN Wasserstein-GAIN.

WGAN Wasserstein GAN.

INDEX 217

Index

activation sparsity, 99
adam, 31
adaptive learning rate, 31
affine mapping, 17
association, 7
autoencoder, 35

backpropagation, 23
base point, 102
batch, 25

size, 25
batchnorm layer, 31
blue sky problem, 120
bounding sphere quantization, 57
broadcasting, 26

centroid, 54
classification, 20
cognitive autonomous network, 3
confidence, 7
convex combination, 101
convolution, 33

-al autoencoder, 36
-al layer, 34
-al net, 33

curse of dimensionality, 53, 137

deconvolutional layer, 36
deep learning, 3
dense space, 54
digital twin, 158
discriminative clustering, 119
discriminator, 36

epoch, 25
evaluation set, 27
exemplification, 7
expectation-maximization, 56
exploding gradients, 29

feature, 19
feedforward, 16
filter, 19, 33
fully-connected layer, 16

generative adversarial net, 36
generative clustering, 119
generator, 36
generic function approximator, 18
gradient, 23

descent, 21, 24

hidden layer, 16
hierarchical rules, 19

initialization, 26
input vector, 16

k-means, 56

layer, 16
width, 18

leaky rectified linear unit, 30
learning rate, 23
linear regression, 17
long short-term memory, 32
loss, 21

function, 21

machine
intuition, 7
process, 7

learning, 2
momentum, 30

network state, 47
neural net, 16

depth, 18
neuron, 16

one-hot vector, 21
overfitting, 26

partial derivative, 22
pooling layer, 34
prediction, 7

quantization, 47
quantization error, 54
quantum, 54

Version: 2023/05/26 – 14:32:46

218 INDEX

reconstructive clustering, 119
rectified linear unit, 30
recurrent, 16

layer, 32
neural net, 31

regression, 18, 19
reinforcement learning, 6

sigmoid, 19
simplex, 102
softmax layer, 20
sparse space, 54
stacked autoencoder, 36
state transition graph, 98
stochastic gradient descent, 25
supervised learning, 4

tensor, 33
test

loss, 27
set, 27

training
loss, 27
set, 27

underfitting, 26
unpooling layer, 36
unsupervised learning, 4

vanishing gradients, 28

weight
decay, 28
matrix, 17

LIST OF FIGURES 219

List of Figures

1.1 Use cases with extreme requirements supported by 5G 1

1.2 Bloom’s taxonomy of cognitive learning processes 5

2.1 Neuron . 16

2.2 Fully-connected layer . 17

2.3 Step nonlinearity . 18

2.4 Generic function approximation with MLPs 18

2.5 Sigmoid nonlinearities . 19

2.6 Softmax nonlinearity . 20

2.7 Gradient descent illustration . 22

2.8 Illustration of the effect of different learning rates 25

2.9 Over- and underfitting . 27

2.10 Losses during neural net training . 27

2.11 Histogram of vanishing gradients . 29

2.12 Optimal zone of the sigmoid nonlinearity 29

2.13 ReLU and leaky-ReLU nonlinearities . 30

2.14 Histogram of stabilized gradients . 31

2.15 Recurrent cells . 32

2.16 Convolution of two functions . 33

2.17 Convolutional layer . 34

2.18 Max-pooling layer . 35

2.19 Derivation of a convolutional layer from an FC layer 35

2.20 Traditional autoencoder architecture . 36

2.21 GAN architecture and training . 37

2.22 VGG16 topology . 38

2.23 Feature visualizations from VGG16 layers 39

2.24 Class visualizations from VGG16 . 40

2.25 DL topics in network automation . 41

Version: 2023/05/26 – 14:32:46

220 LIST OF FIGURES

3.1 Anomaly pattern examples . 50

3.2 CBR diagnosis with knowledge sharing . 51

3.3 Diagnosis knowledge sharing . 52

3.4 Illustration of the curse of dimensionality in per-dimension quantization . . 53

3.5 PM data exploration with a SOM . 55

3.6 k -Means quantization on PM data . 56

3.7 BSQ maximization step . 57

3.8 BBQ worst-set construction . 60

3.9 BBQ approximation error distribution . 60

3.10 BSQ and BBQ examples . 61

3.11 k -Means and BSQ comparison on 2-dimensional data 63

3.12 k -Means and BSQ comparison on high-dimensional data 64

3.13 BSQ super-cluster prototype . 65

3.14 Neural-net-based k -Means and BSQ processing steps 67

3.15 Neural-net-based k -Means and BSQ distance calculation 67

3.16 Neural-net-based k -Means and BSQ distance selection 68

3.17 Neural-net-based k -Means and BSQ accumulation 69

3.18 Data transfers in DNN training . 71

4.1 CAN components . 75

4.2 EMA components . 76

4.3 AE losses for different encoding sizes . 80

4.4 Scatterplot of the encoded measurements in the EMA evaluation 80

4.5 Scatterplot of k -Means and BSQ centroids on the EMA dataset 81

4.6 k -Means and BSQ average and maximum distances 82

4.7 k -Means and BSQ overall purity . 83

4.8 State purity distributions in the EMA evaluation 84

4.9 Cluster shares in the EMA evaluation . 84

4.10 Illustration of the ACAI algorithm . 86

4.11 AE topologies in the renewed evaluation . 88

4.12 State purities in the renewed EMA evaluation 89

4.13 Class majority shares in the renewed EMA evaluation 89

6.1 Network state transition graph illustration 99

6.2 SCA modules . 100

6.3 The simplex of convex combinations . 101

LIST OF FIGURES 221

6.4 Gradual limitation of freedom in SCA . 102

6.5 Anchor point generation in SCA . 103

6.6 Parameters and phases during a typical SCA training 106

6.7 Projected scatter plots of the encodings during SCA training 107

6.8 CNN AE topology used for MNIST in the SCA evaluation 108

6.9 Anomalous behavior types in the network state transition graph 109

6.10 MLP AE topology used for network data in the SCA evaluation 110

6.11 Network data as a state transition graph . 110

6.12 Anomalous network state prototypes . 111

6.13 Anomalous network state sequences . 112

6.14 Maps of cell states at two different times in the day 113

6.15 Rotation capability required by SCA . 114

7.1 User behavior clustering use cases . 118

7.2 Reconstructive and generative deep clustering architectures 119

7.3 DANCE overview . 122

7.4 Typical DANCE encoding of MNIST . 125

7.5 RIM initialization and DEC refinement . 126

7.6 Excerpt from the Helsinki simulation scenario in the DANCE evaluation . . 131

7.7 Typical DANCE encoding of the mobile network dataset 134

8.1 HAC dendogram illustration . 137

9.1 Reactive and predictive handover mechanisms 147

9.2 Predictive handover overview . 148

9.3 Labeling the training frames for predictive handover 149

9.4 SINR map of the simulated scenario in the predictive handover evaluation . 151

9.5 Predictive handover example . 153

9.6 Predictive handover evaluation results . 154

10.1 Smart Seaport 5G testbed map . 157

10.2 Shadowing effect in the smart seaport dataset 157

10.3 MPP and radio map trained on the smart seaport dataset 157

10.4 Feature engineered inputs for the mobility-predicting CNN 158

10.5 PLANAR overview . 159

10.6 Example of a beam reconfiguration in PLANAR 160

10.7 The PACHO model life cycle . 162

222 LIST OF FIGURES

12.1 Illustration of confidence values . 170

12.2 Illustration of the propagation of corrupted information in a CF-chain . . . 170

12.3 The MIDA and GAIN architectures . 173

12.4 Integrated imputation . 174

12.5 Cell layout in the imputation simulation scenario 175

12.6 ACC of the ICI trained for various missing rates 178

12.7 Imputation performance with completely random missingness 179

12.8 Imputation performance with sequential missingness 180

12.9 Illustration of HOG processing steps implementing face-detection 182

12.10Excerpt of a presentation on liquid neural nets driving cars. 183

12.11NWDAF architecture . 183

13.1 Confidence value sources in CAN . 185

LIST OF TABLES 223

List of Tables

1.1 Research goals . 9

3.1 BSQ and BBQ statistics . 62

3.2 Neural-net-based k -Means and BSQ statistics 70

4.1 Cell parameters in the EMA simulation . 78

4.2 KPIs collected from the EMA simulation . 79

4.3 Cell parameters in the renewed EMA simulation 87

6.1 Deep clustering algorithm performance comparison on MNIST 109

6.2 KPI groups collected for the SCA evaluation 110

7.1 Published deep clustering algorithm performance on MNIST and CIFAR-10 121

7.2 Re-evaluated deep clustering algorithm performance on MNIST 129

7.3 User groups in the DANCE mobile network dataset 131

7.4 Deep clustering algorithm performance on the DANCEmobile network dataset132

7.5 DANCE ablation study . 133

9.1 Parameters of the simulation in the predictive handover evaluation 152

12.1 User groups in the simulation scenario. 176

Version: 2023/05/26 – 14:32:46

	Title
	Contents
	1 Introduction
	1.1 Cognitive Autonomy
	1.1.1 Cognitive Autonomous Networks
	1.1.2 The Cognitive Capabilities of Deep Learning
	1.1.3 Gaps in Cognitive Network Automation Research

	1.2 Machine Intuition for Cognitive Network Automation
	1.3 Research Objectives and Thesis Outline
	1.3.1 Research Objectives
	1.3.2 Thesis Outline
	1.3.3 Publications in the Context of this Thesis

	2 Deep Learning with Neural Nets
	2.1 Basic Neural Nets
	2.1.1 Fully-connected Layers
	2.1.2 Generic Function Approximation with Step Nonlinearity
	2.1.3 Logistic Nonlinearities, Regression and Classification

	2.2 Neural Net Training
	2.2.1 Gradient Descent and Backpropagation
	2.2.2 Stochasticity, Computational Requirements
	2.2.3 Starting and Stopping, Under- and Overfitting

	2.3 Deep Neural Nets
	2.3.1 Unstable Gradients in Deep Neural Nets
	2.3.2 Stabilizing Gradients
	2.3.3 Recurrent Nets
	2.3.4 Convolutional Nets
	2.3.5 Autoencoders
	2.3.6 Generative Adversarial Nets
	2.3.7 Hierarchical Features Learned in Deep Neural Nets

	2.4 Deep Learning in Mobile Networks
	2.4.1 State-of-the-art
	2.4.2 Drivers, Enablers and Constraints of DL

	I Exemplification
	3 Quantization for Network State Modeling
	3.1 Concept: Diagnosis Knowledge Sharing for Self-Healing
	3.1.1 Automating Diagnosis in Self-Healing
	3.1.2 Knowledge Sharing using Quantization
	3.1.3 Towards Equal-Volume Quantization

	3.2 Density-Invariant Quantization with Bounding Volumes
	3.2.1 Quantization in High-Dimensional Spaces
	3.2.2 Uses of Equal-Volume Quantization in Mobile Networks
	3.2.3 Expectation-Maximization and k-Means
	3.2.4 Bounding Sphere Quantization
	3.2.5 Bounding Box Quantization
	3.2.6 Similar Problems and Algorithms
	3.2.7 Experimental Results
	3.2.8 Conclusion and Critique

	3.3 Neural-Net-Based Quantization
	3.3.1 Algorithms Designed for Massive Parallelization
	3.3.2 Implementation Overview
	3.3.3 Distance Calculation Layer
	3.3.4 Distance Selection Layer
	3.3.5 Cross-Batch Accumulation
	3.3.6 Related Work and Evaluation
	3.3.7 Conclusion

	3.4 On Massively Parallel Algorithms in Mobile Networks

	4 Environment Modeling and Abstraction of Network States
	4.1 Concept: EMA in Cognitive Autonomous Networks
	4.1.1 Elements of Cognitive Autonomous Networks
	4.1.2 Environment Modeling and Abstraction Engine
	4.1.3 Related Work

	4.2 EMA using Bounding Sphere Quantization
	4.2.1 Simulation Environment and Data
	4.2.2 Feature Extraction using an Autoencoder
	4.2.3 Quantization with BSQ and k-Means
	4.2.4 State Mapping
	4.2.5 Conclusion and Critique

	4.3 Towards Deep Clustering in EMA
	4.3.1 Deep Clustering with ACAI
	4.3.2 Differences in Simulation Environment, Data and Net Topology
	4.3.3 Evaluation
	4.3.4 Conclusion

	5 Summary of Research on Exemplification
	5.1 Assessment of Feasibility (A1.1)
	5.2 Assessment of Practicality (A1.2)
	5.3 Assessment of Applicability (A1.3)

	II Association
	6 Network State Modeling using Sparse Clustering Autoencoders
	6.1 Deep Clustering with Sparse Clustering Autoencoders
	6.1.1 State Transition Graphs, Sparsity of Activations
	6.1.2 Sparse Clustering Autoencoders
	6.1.3 From Sparseness to Convex Combinations
	6.1.4 Anchoring Module - Sparseness Loss Calculation
	6.1.5 Guidance Module
	6.1.6 Training
	6.1.7 Related Work in Mobile Network Automation
	6.1.8 Related Work and Comparison in Deep Clustering
	6.1.9 Example Use of SCA: Cell Anomaly Detection
	6.1.10 Conclusion and Critique

	6.2 On Human Bias in DL Algorithms, Explainability

	7 Deep Clustering of Mobile Network Data
	7.1 Decorrelating Adversarial Nets for Clustering Mobile Network Data
	7.1.1 Clustering in Mobile Network Automation
	7.1.2 State-of-the-Art in Deep Clustering
	7.1.3 An Argument for Generative Clustering
	7.1.4 Decorrelating Adversarial Net
	7.1.5 RIM Initialization and DEC Clustering
	7.1.6 Evaluation Methodology
	7.1.7 Evaluation on Image Data
	7.1.8 Evaluation on Mobile Network Data
	7.1.9 Short Ablation Study
	7.1.10 Conclusion

	8 Summary of Research on Association
	8.1 Assessment of Feasibility (A2.1)
	8.2 Assessment of Practicality (A2.2)
	8.3 Assessment of Applicability (A2.3)

	III Prediction
	9 Signal-quality-based Radio Environment Prediction
	9.1 Machine-Learning-Based Predictive Handover
	9.1.1 Minimizing Interruption
	9.1.2 Related Work
	9.1.3 Training the Predictor
	9.1.4 Filtering Classification Decisions using a Dynamic Threshold
	9.1.5 Evaluation Environment and Scenario
	9.1.6 Evaluation Results
	9.1.7 Conclusion and Critique

	10 Mobility-based Radio Environment Prediction
	10.1 Mobility and QoS Prediction for Dynamic Coverage Optimization
	10.1.1 The Hamburg Smart Seaport Testbed
	10.1.2 Mobility and QoS Prediction
	10.1.3 A Digital Twin for QoS Prediction
	10.1.4 Results
	10.1.5 Conclusion

	10.2 On Data Privacy

	11 Summary of Research on Prediction
	11.1 Assessment of Feasibility (A3.1)
	11.2 Assessment of Practicality (A3.2)
	11.3 Assessment of Applicability (A3.3)

	IV Confidence
	12 Communication and Utilization of Confidence Values
	12.1 Robust Deep Learning against Corrupted Data in CAN
	12.1.1 Problem Statement
	12.1.2 CF-chains in Mobile Networks
	12.1.3 State-of-the-Art in DL-based Imputation
	12.1.4 Integrated Imputation
	12.1.5 Evaluation Metrics
	12.1.6 Simulation Scenario
	12.1.7 Evaluated Imputation Methods
	12.1.8 Training for Different Missing Rates and Types
	12.1.9 Evaluation Results
	12.1.10 Conclusion and Outlook

	12.2 On Standardized DL in Mobile Networks

	13 Summary of Research on Confidence
	13.1 Assessment of Feasibility (A4.1)
	13.2 Assessment of Practicality (A4.2)
	13.3 Assessment of Applicability (A4.3)

	V Conclusion
	14 Conclusion and Outlook
	14.1 Machine Intuition
	14.1.1 Increasing Cognitive Power for CAN (A5.1)
	14.1.2 Benefits and Shortcomings of Unsupervised DL (A5.2)
	14.1.3 Short- and Long-Term Adoption, Following Trends (A5.3)

	14.2 Outlook of DL in Mobile Networks
	14.2.1 On the Caveats of DL
	14.2.2 On DL Research

	Literature
	Acronyms
	Index
	List of Figures
	List of Tables

