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Abstract

Hybrid testing is a technique which allows tests on components of complex systems with realistic boundary conditions. This
can be achieved by coupling test rigs with simulation models of the overall system. Applications of hybrid testing to problems
involving complex flexible structures demand careful controller design which may be prone to changes in system dynamics
or model inaccuracies. Adaptive feed-forward filters offer a robust approach to coupling experimental and virtual subcompo-
nents. In this paper, a framework based on adaptive feed-forward filters with harmonic basis functions is presented. Within the
framework, a Least-Means-Squares adaption law and a Recursive-Least-Square adaption law using QR-factorization are pro-
posed. The methods require no prior system knowledge and allow the coupling of structures with multiple degree-of-freedom
interfaces. Questions related the measurement and actuation of interfaces are discussed. The methods are successfully
applied to a double-clamped beam with an interface composed of two degrees of freedom. The results show the agreement
of coupled test and reference system in the frequency domain as well as the ability of the methods to couple systems with
arbitrary harmonic excitations. The experiments, furthermore, include a comparison of the different adaption laws in terms of
the convergence behavior.
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1. Introduction

Vibrational tests are an essential part of the development process in many engineering fields as e.g. in aerospace, biomedical,
or automotive engineering. As physical testing is often more costly and time consuming than simulations, it is desirable to
replace tests with simulations. In contrast, a simulation cannot always capture the complexity inherent to the physical system.
One way to keep costs and complexity down is to test subcomponents of complex systems separately. The behavior of a5

single mechanical component, however, depends on the coupled dynamics of the overall system. To overcome this problem,
methods which combine simulations and experiments have been developed. The idea is to split a complex system into a
physically tested part—referred to as experimental component—and a simulated part—referred to as virtual component in
this paper. An actuation system is controlled such that both components are coupled and the overall system behavior is
imitated. This paradigm is called hybrid testing. The advantages of such approaches are numerous: Frequent changes in the10

virtual component during the development process can be flexibly integrated in tests. Boundary conditions which cannot be
reproduced otherwise such as aerodynamic or fluid interaction forces can be replicated by actuators. Components that do not
yet exist physically can be part of the test. This fact makes it possible to test components early in the design process. Unseen
hardware defects that do not originate from the design process but from the manufacturing process can be detected during
the test. In contrast to full system tests, hybrid tests can be executed under controlled conditions; they are repeatable and15

can be fully automated. The paradigm of coupling simulations and physical systems has been applied to a number of method
classes which differ in their applications and basic assumptions. Hardware-in-The-Loop (HiL) is a well-known approach, which
couples simulation and hardware tests. An overview is given e.g. in [1]. HiL simulations are widely used in automotive and
aerospace industry. Mostly, controller hardware and software are tested while environment, hardware components such as
mechanical components, hydraulic systems, sensors and actuators are simulated in real-time. In classical HiL simulations,20

actuators—if they are present at all—are part of the component under test. The product’s inherent input and output channels
act as interface between experimental and virtual component. Hence in contrast to real-time hybrid testing approaches, the
dynamics of the transfer or actuation system do not deteriorate the test performance.
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Pseudo-Dynamic testing is a method which couples simulations and experiments within an extended time-scale. The method
was first reported in [2]. The first applications of the Pseudo-Dynamic tests were proposed in civil engineering where structures25

were exposed to earthquake loads. The extended time scale implies that all time dependent effects, as inertia or damping, have
to be retrieved from a model. The methods allow effects such as crack propagation in structures to be studied. The extended
time scale also means that no stability issues caused by actuator delays occur. [3] introduces the use of substructures in
Pseudo-Dynamic testing: Instead of coupling the rate dependent effects from a simulation to a test of the overall structure,
only a subcomponent is tested while the overall structure and the rate dependent effects are simulated. [4] describes an30

application of Pseudo-Dynamic testing in the aerospace industry where an air-to-air refilling process is simulated with a hybrid
test. The probe–drogue impacts and contact are replicated using an industrial robot. One drawback to the Pseudo-Dynamic
Testing approach lies in the fact that the rate dependent effects still have to be modeled for the simulation. This is sometimes
impossible and conflicts with the objective of hybrid tests.
Real-time hybrid testing overcomes the limitations of Pseudo-Dynamic testing by applying all forces in real-time and hence35

capturing also rate-dependent effects—as damping and inertia in the experimental component. The first uses of the method
have been reported by [5], [6] and [7]. In contrast to classical HiL tests, the actuator dynamics in real-time Hybrid Tests add
delays and frequency-dependent time lags. Those delays and lags can cause instabilities and deterioration in the accuracy
of the test. Delays are caused by numerical time integration, actuator dynamics and the dynamics of the test specimen, i.e.
the dynamics of the actuation system are changed through the coupling to the test specimen. A model of the test specimen’s40

dynamics is usually not available and the dynamics may be subject to changes during the test. Those problems are addressed
by different interface-synchronization methods. [6] proposes an algorithm for compensating constant actuator delay, which
uses polynomial forward prediction. [8] and [9] discuss a delay estimation during the test which allows the prediction algorithm
to adapt to the system dynamics, or in other words, to adapt to different delays at different frequencies. [10] makes use of
Minimal Control Synthesis, which is a model reference control strategy. The advantage of this approach is that, even with un-45

known actuator or test specimen dynamics, a stable synchronization control can be achieved. [11] introduces a framework for
the linear analysis of real-time hybrid testing systems, referred to as Model-In-The-Loop testing. [12] denotes real-time hybrid
testing as Dynamic Substructure Systems and suggests a framework which allows the use of numerous control strategies. In
this work, linear control, as well as Minimal Control Synthesis are applied. [13], [14] and [15] present work within this frame-
work. [13] proposed a Model-Predictive Control for the synchronization of virtual and experimental component. The approach50

allows actuator saturation and limits to be accounted for. Model-Predictive Control is also applied by [16]. [15] makes use of
neural networks as an adaptive feed-forward controller. To do so, the control problem is formulated as disturbance rejection,
which extends the existing framework. [14] uses linear state space control to synchronize the interface. [17] addresses the
problem of testing a structure consisting of many equivalent components by updating a model of one component during the
test and then using this component model in the simulation of the virtual subsystem. The interaction control in robotics states55

a similar problem. The objective of this type of robot control is not to follow defined force or motions, but rather, to provide
a certain impedance or admittance at the tool-center point. This makes it necessary to control the robot such that it imitates
a certain dynamic model while in contact with the environment. Impedance determines a force output as a result of velocity
input. An approach to impedance control was introduced by [18]. Admittance determines velocity output as a result of force
input. Admittance control stability issues were investigated by [19]. See for example [20] for an overview of different interaction60

control laws. The application for this type of control can be found in force-feedback haptic displays, in physiotherapy or in
compliant manipulation in contact with an unknown environment. The topic of compliant robots has lately become important
in the context of human-robot collaboration. Usually, the applications in robotics allow the use of very simple impedance or
admittance models as lumped inertias or springs. Applications of real-time hybrid testing occur in various fields of engineering
such as aerospace, marine, biomedical, civil, rail or automotive engineering. Many methods are highly application dependent.65

As mentioned above, testing in earthquake engineering was one of the first applications of real-time hybrid testing. [5], [6] and
[7] were among the first to report results in this area. [21] and [22] present an application in testing of off-shore structures.
The described procedure allows tests on scaled structures in water basins. Models of aerodynamic forces are coupled to
structures such as oil-drilling platforms and wind turbines. The wind forces from the model are applied using a system of
wires and winches. The motion of the structures is measured using a visual tracking system. [23] describes satellite testing70

scenarios. [24] propose control strategies for contact simulation of spacecraft docking procedures. Automotive applications
are proposed in [11]: The aerodynamics of a racing car are simulated and coupled to a chassis dynamic test rig. A second
use case suggests improving hub-coupled road excitation test rigs by combing them with tire models. Similar problems as in
mechanical systems occur in electrical power systems. In this area, hardware components like power electronic drives and
motors are coupled to simulation models of power grids, loads or sources. [25] proposes testing inverter hardware with virtual75

motors and associated mechanical loads. Megawatt scale motor drives are tested using virtual gas turbine generator systems
in [26]. [16] couples experimental components such as combustion engines and models of elastic drive-train dynamics. The
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Figure 1: Lumped-mass system used for numerical investigations

test allows optimization of the coupled dynamics to reduce unwanted oscilations. Friction forces, hydraulic valve dynamics
and unmodeled flexibilities make testing railway vehicle pantographs necessary. [27] and [28] propose real-time hybrid testing
techniques as a replacement for expensive test drives: The pantograph is tested in the laboratory while a contact wire, mes-80

senger wire, droppers and suspensions are simulated.
So far, the real-time hybrid testing technique has rarely been applied to Noise, Vibration and Harshness (NVH) engineering.
The objective of work in this field is often to reduce unwanted vibration. Especially when coupling lightly damped structures,
the poles of the coupled overall systems often are close to instability. Complex and unknown dynamics make the design of
hybrid testing controllers a difficult task. An approach that can overcome this problem is the use of adaptive feed-forward85

filters. The test dynamics are inherently more stable since the feed-forward filters do not shift the poles of the system. The
adaption allows the filters to be used without prior system knowledge. Feed-forward filters have been used for testing applica-
tions in the well-established Time Waveform Replication (TWR) method. As described in [29] and [30], the technique allows
replication of reference signals in vibration tests, e.g. road simulations. Usually, the actuators work under real-time control
while the feed-forward filters generate the input signal. In an outer loop, the feed-forward filters are adapted using off-line90

iterations. This process is a type of Iterative Learning Control (ILC). The technique is commercialized and widely used in
industry applications. [31] proposes the use of adaptive feed-forward for the coupling of simulation models and experiments.
A Least-Mean-Squares (LMS) filter is used to test piezo actuators with realistic boundary conditions. The use of LMS filters
in durability tests is described in [32]. The interface synchronization problem can be formulated as a disturbance rejection
problem. This structure is used by [15] with Neural Networks as feed-forward filters. The framework defined in this paper95

makes use of harmonic basis functions and can be seen as extension to the above-mentioned publications for multiple DoF
interfaces and a broader range of adaption laws. We propose two algorithms—one based on an LMS-type adaption law and
one based on a Recursive-Least-Squares (RLS) adaption law. Additionally, problems related to calculating interface forces and
moments in actuation systems are addressed. In Sec. 2 we formulate the coupling problem and rearrange it in a form, which
can be used with adaptive feed-forward filters. A simple numerical example is introduced. Two types of coupling algorithms are100

presented in Sec. 3. The measurement of interface forces and states is discussed in Sec. 4. Finally, the technique is applied
to an experimental test case in Sec. 5.

2. The coupling problem

Three subsystems are part of any hybrid test: the virtual component, the experimental component and the actuation system.
In the following section, the dynamics of the three subsystems are defined. In the next step, equilibrium and compatibility105

constraints, which are necessary for coupling virtual and experimental component, are defined. The equilibrium constraint is
met by choosing the interface forces as an input to the virtual component. Exploiting the assumptions of harmonic excitation
and steady state, the equations can be rewritten such that the system responses are combinations of harmonic basis functions.
This form can be used to derive a feed-forward filter, which enforces the compatibility constraint. An adaption law is chosen
such that the filter coefficients converge to the correct values.110

2.1. A simple numerical example

The idea of the hybrid test is illustrated in Fig. 1 for a simple lumped-mass system. Both, the virtual component (drawn in blue
in Fig. 1) and the experimental component (drawn in green in Fig. 1) are mass-spring-damper systems. The excitation force
f ex t and the interface force λV IR act on the virtual component. The actuator system (drawn in orange in Fig. 1) is represented
by a mass-spring-damper system and the actuation force f act . The aim of a hybrid test is to control f act and λV IR such that115

the motion of the virtual component and of the experimental system simulates the behavior of the coupled overall system.
All properties, which were used for the numerical experiments below, are listed in Tab. 1. Bode plots of the dynamics of the
coupled reference system, the virtual component and the test rig are shown in Fig. 5.



Virtual Component (VIR)

mV IR 0.1 kg

dV IR 0.05 N·s
m

kV IR 1000 N
m

Experimental Component (EXP)

mEX P 0.01kg

dEX P 0.05 N·s
m

kEX P 1000 N
m

Actuator (ACT)

mAC T 0.1kg

dAC T 1 N·s
m

kAC T 100 N
m

Table 1: System parameters used in the numerical case study

2.2. Component model representation
Because we want to couple two mechanical systems, namely the virtual and the experimental components, the objective of
the hybrid testing method will be to satisfy equilibrium and compatibility constraints. The dynamics of the virtual component
with the system coordinates qV IR are defined by Eqs. (1)

MV IRq̈V IR + DV IRq̇V IR + K V IRqV IR = GV IRT
λV IR + f V IR

ex t

yV IR = GV IRqV IR
(1)

where the mass matrix is denoted by MV IR, the stiffness matrix by K V IR, the damping matrix by DV IR, the external forces
by f V IR

ex t , and GV IR restricts the system coordinates to the interface displacements yV IR. Accordingly, the transposed GV IRT

projects the interface forces λV IR on the system coordinates. For the calculation of the system responses during the test,
a Newmark time integration scheme can be applied. Actuation system and experimental component form a coupled system
during the test. On the interface between the two, one can measure interface forces and interface displacements. A set
of dynamic equations and constraints defines their coupled dynamics. Eq. (2) defines the dynamics of the experimental
component with the system coordinates q EX P . Eq. (3) defines the dynamics of the actuators with the system coordinates
qAC T .

M EX P q̈ EX P + DEX P q̇ EX P + K EX Pq EX P = f EX P
ex t +GEX PT

λEX P (2)

MAC T q̈AC T + DAC T q̇AC T + KAC T qAC T = BAC T uAC T +GAC T T
λEX P (3)

In these equations, the system matrices are defined correspondingly to the virtual component. λEX P is the vector of the
interface forces between actuation system and experimental component. Accordingly, GEX PT

and GAC T T
project λEX P on

the systems’ coordinates. λEX P is measured or–if direct measurement is not possible–estimated during the experiment as
described in Sec. 4. The compatibility constraint between actuation system and experimental component is defined by Eq. (4).

GAC T qAC T −GEX Pq EX P = 0 (4)

The interface displacements y EX P are defined as

y EX P = GEX Pq EX P .

The equations for the experimental component and the actuators can be solved e.g. with a HHT-α method for time integration
with constraints for simulation purposes. However, the system, consisting of actuation system and experimental component,
does not have to be solved when using the proposed methods. It is the task of the control law to synchronize the inter-
face of virtual and experimental component and to enforce the compatibility constraint. The interface gap g (t) defines the
synchronization error in the test:

g = y EX P − yV IR

The compatibility constraint between the virtual and the experimental component is defined by g = 0. The equilibrium
constraint is inherently met during the test by applying the measured interface forces λEX P with opposite sign to the virtual
system:

λV IR = λ= −λEX P

We refer to λV IR as λ in the following sections. Fig. 2 shows a block diagram of the described structure, where the interface120

compatibility is enforced by an arbitrary control law. This parallel structure makes applying standard control theory straightfor-
ward. In this contribution, the controller will be implemented as an adaptive feed-forward compensator.
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Figure 2: A parallel control structure for a hybrid test: Interface equilibrium is enforced by imposing the measured interface forces on the virtual component.
A feedback controller minimizes the interface gap g such that the system meets the compatibility constraints.

2.3. Harmonic responses

The objective of this section is to reformulate the compatibility constraint such that a feed-forward filter, which couples the
virtual and the experimental component, can be found. Basic assumptions are steady-state and harmonic excitation. Those
assumptions are valid for many applications in NVH engineering, such as e.g. tests regarding effects of drive-train vibrations.
The harmonic approach allows for efficient filters and adaption laws with low computational costs and memory consumption to
be built. With both assumptions, the actuator input signal is a sum of harmonic basis functions, which can be characterized by
a single vector θ . The vector has to be chosen such that both subcomponents are coupled. To do so, the interface gap g (t)
is written in the frequency domain—depending on the Fourier transforms U(ω) and F ex t(ω) of the actuator inputs and the
excitation forces—and the expression is set to 0. H g,u(ω) is the transfer function between actuator input and interface gap
and H g,ex t(ω) is the transfer function between external excitation and interface gap.

G(ω) = H g,u(ω)U(ω) +H g,ex t(ω)F ex t(ω)
!
= 0 (5)

An example of an excitation force vector with nω harmonics and nint interface DoFs is given in Eq. (6).

f ex t(t) = I
nω∑
i=1

cos(ωi t) (6)

This expression uses the excitation frequencies ωi with i ∈ [1 . . . nω] and the vector of ones I ∈ Rnint . In the frequency
domain using the Dirac δ-function, it writes

F ex t(ω) = I
p

2π
nω∑
i=1

�
δ(ω−ωi)

2
+
δ(ω+ωi)

2

�
.

For an excitation force with nω harmonics, the actuator input signal u(t) has to be a sum of nω harmonics in order to be able
to couple the system. The actuator input in frequency domain is given in Eq. (7).

U(ω) = −H g,u(ω)
−1H g,ex t(ω)F ex t(ω) =

p
2π

nω∑
i=1

ψ(ωi)
�
δ(ω−ωi)

2
+
δ(ω+ωi)

2

�
(7)

All phase shifts and amplitudes caused by F ex t(ω), H g,u(ω) and H g,ex t(ω) are defined by the complex vectors ψ(ωi).
Note that H g,u(ω) is assumed to be invertible, implying that the number of interface DoF is equal to the number of actuator
DoF. Transforming U(ω) back into the time domain and some elementary complex number operations—using the complex



conjugate ψ̄(ωi) ofψ(ωi)—yields the matrix-vector form, Eq. (8).

u(t) = F−1(U(ω)) =
1

2π

∫ ∞

−∞
U(ω)e jωtdω=

1
2

nω∑
i=1

�
ψ̄(ωi)e

− jωi t +ψ(ωi)e
jωi t
�
=

nω∑
i=1

Re
�
ψ(ωi)e

jωi t
�

=
nω∑
i=1

Re e jωi tReψ(ωi)− Ime jωi t Imψ(ωi) =




I cos (ω1 t)
−I sin (ω1 t)

...

I cos
�
ωnω t

�

−I sin
�
ωnω t

�




T

︸ ︷︷ ︸
W(t)




Re (ψ(ω1))
Im (ψ(ω1))

...

Re
�
ψ(ωnω)

�

Im
�
ψ(ωnω)

�




︸ ︷︷ ︸
θ

(8)

The time-dependent harmonic basis functions can be written in a compact way using a matrix W(t) ∈ Rnint×2nint nω . The
characteristics of the input signal are defined by the parameter vector θ ∈ R2nint nω . This form can be used to generate the
actuator input u(t) from θ . Using the same complex number operations, the interface gap g (t) is rearranged in matrix-vector
form as can be seen in Eq. (9).

g (t) =
1

2π

∫ ∞

−∞
H g,u(ω)U(ω)e

jωtdω+
1

2π

∫ ∞

−∞
H g,ex t(ω)F ex t(ω)e

jωtdω

=W(t)




Re
�
H g,u(ω1)ψ(ω1)

�

Im
�
H g,u(ω1)ψ(ω1)

�
...

Re
�
H g,u(ωnω)ψ(ωnω)

�

Im
�
H g,u(ωnω)ψ(ωnω)

�



+ g ex t

=W(t)




Re
�
H g,u(ω1)

� −Im
�
H g,u(ω1)

�

Im
�
H g,u(ω1)

�
Re
�
H g,u(ω1)

�
. . .

Re
�
H g,u(ωnω)

� −Im
�
H g,u(ωnω)

�

Im
�
H g,u(ωnω)

�
Re
�
H g,u(ωnω)

�




︸ ︷︷ ︸
P g,u

θ + g ex t

(9)

g (t) is built from W(t), θ and the interface transfer matrix P g,u. The interface transfer matrix P g,u ∈ R2nint nω×2nint nω contains
the transfer behavior between the actuator inputs and the interface gap in the form of real numbers. We also introduce the125

symbol g ex t(t) for the contribution of the excitation forces to the interface gap. This form can be used to derive the adaption
law for θ . A perfect θ would yield a interface gap g that is zero.

3. Adaption Laws

The matrix-vector formulation of Sec. 2.3 serves as a framework and allows numerous adaption laws to be applied. We
apply two adaption laws which proof to work in the context of coupling structures: a Least-Mean-Squares adaption law, which
is based on a stochastic gradient descent and a Recursive-Least-Squares adaption law, which is based on a deterministic
recursive formulation. Using time step size ∆t and time step number k into Eq. (9) yields the time discrete form given in
Eq. (10).

g [k] = W[k]P g,uθ + g ex t[k] (10)

In this expression, we use brackets to indicate a specific time instance. For clarity, we distinguish the current parameter
vector θ [k] and the optimal parameter vector θ o, which couples virtual and experimental component. In the coupled state130

(g [k] = 0) the parameter vector takes on the optimal value θ [k] = θ o. Accordingly, we distinguish the true interface transfer
matrix P g,u and the estimated matrix P est

g,u. Note that during the adaption and the identification process, θ and P est
g,u change

depending on time step k. Hence, they write θ [k] and P est
g,u[k] in the following section.



3.1. Least-Mean-Squares-based adaption law

Least-Means-Squares-type algorithms have been successfully applied to Active-Noise-Cancellation and disturbance rejection135

(see e.g. [33]). The properties of this algorithms include simple implementation and low computational costs. The coupling
problem can be formulated in the form of a disturbance rejection problem (Fig. 3). Hence, it is possible to apply LMS algorithms
to hybrid testing. The adaption law proposed in the following can be seen as a narrow-band version of the fxLMS algorithm
(see e.g. [34]).

3.1.1. Adaption140

The objective of the adaption process is to find the optimal parameter vector θ o. The parameter vector θ o defines the actuator
input, which is necessary to couple the subcomponents. The LMS-type adaption law makes use of a cost function of Eq. (11),
which is the expected value of the squared interface gap g .

J[k] = E
�
g T [k]g [k]

	
= E

¦�
W[k]P g,u[k]θ [k] + g ex t[k]

�T �
W[k]P g,u[k]θ [k] + g ex t[k]

�©
(11)

The basic idea of the LMS algorithm is a steepest descent on the cost function. The direction of the descent is defined by
the negative gradient of the cost function. Eq. (12) contains the gradient of the given cost function with respect to parameter
vector θ .

∇J[k] =
∂ J[k]
∂ θ [k]

= 2E
�
P g,u[k]

T W[k]T g [k]
	

(12)

This expression for the gradient still depends on the expectation function E
�
P g,u[k]T W[k]T g [k]

	
, which cannot be calcu-

lated directly. For the on-line adaption, the expectation function is approximated using the last sample:

E
�
P g,u[k]

T W[k]T g [k]
	
= P est

g,u[k]
T W[k]T g [k]

The adaption law (13) ultimately results from the gradient of the cost function.

θ [k+ 1] = θ [k]−µLMSP est
g,u[k]

T W[k]T g [k] (13)

The adaption gain µLMS defines the step size of the gradient descent. Note that, instead of the true interface transfer matrix
P g,u, we have to use the estimated matrix P est

g,u. Sec. 3.1.2 shows an identification procedure to build P est
g,u. Fig. 3 shows the

resulting block diagram for the adaption process: The filter uses information from the external excitation signal as an input,
namely the excitation frequencies of the external forces f ex t . They define the basis functions that are contained in W[k]. The
filter coefficients θ are adapted solely from using the interface gap signal g .

H g,u

H g,ex t

θW

Plant

f ex t

u
+

g ex t

g
θ

Figure 3: Block diagram for adapting θ : The system dynamics seen in Fig. 2 can be rearranged as a superposition of interface force contribution and external
force contribution. Interface synchronization is realized via an LMS-type adaptive feed-forward filter.
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3.1.2. Identification
As shown in the previous section, it is necessary to estimate the interface transfer matrix P g,u. An LMS-based approach—
similar to the one used for the adaption of θ—will be used to identify P g,u. The basis for deriving an identification algorithm is
the system identification error e[k].

e[k] = W[k]P est
g,u[k]θ [k] + g ex t[k]− g [k] (14)



Since g ex t[k] may be unknown, it is removed during the identification process by setting f V IR
ex t (t) = 0 and f EX P

ex t (t) = 0. To
make the same derivations as in the previous section, the values in the matrix P est

g,u have to be rearranged in a vector according

to the example given in Appendix A. We refer to this vector as P̃
est
g,u. The resulting rearranged form in Eq. (15) contains the

matrix θ̃ [k], which is a result of rearranging the expressions from Eq. (9).

e[k] = W[k]θ̃ [k]P̃
est
g,u[k]− g [k] with θ̃ ∈ R2n2

int nω×2n2
int nω and P̃ g,u ∈ R2n2

int nω (15)

The cost function and the resulting adaption law are given in Eqs. (16) and (17). The identification process can be initialized
with P̃ g,u = 0.

J[k] = E
�
eT [k]e[k]

	
(16)

P̃
est
g,u[k+ 1] = P̃

est
g,u[k] +µid,LMS θ̃ [k]

T W[k]T g [k] (17)

It is noteworthy that in order to be able to identify P g,u, it is necessary to use an input signal u(t) = W(t)θ , which excites the
dynamics sufficiently. To get this input signal, the parameter vector θ is filled with periodically changing random values. Those
random values are changed in time intervals of length t rand . The block diagram for the identification system is shown in Fig. 4.

W(t)θ

H g,u

H est
g,u

u
+

− e

H est
g,u

Figure 4: Block diagram for identifying P g,u: During the identification process, excitation forces f ex t seen in Fig. 3 are set to zero. The dynamics are exposed
through excitations with a random vector θ i d at the actuator inputs.
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3.1.3. Testing Procedure
Alg. 1 shows a pseudo-code for the testing procedure using the LMS-type algorithm. The procedure starts with an identification
phase. The time length of the identification phase is defined by t id . The identification period t id is split into smaller periods
t rand in which θ changes. The value of t rand has to be chosen sufficiently large to allow the transients to disappear. In
general, transients can be present for rapid changes of θ . For identifying P est

g,u, the vector θ is rearranged into the matrix θ̃155

according to Appendix A after each change in θ . The other way round, the matrix P est
g,u, which is used during the adaption

process, is retrieved by rearrangement of the vector P̃
est
g,u. The parameter vector can be initialized with θ = 0. It can also be

initialized with an estimate from a numerical model using the transfer functions H g,u(ω) and H g,ex t(ω) in order to accelerate
the adaption process. The time length of the adaption phase is defined by tad .

3.1.4. Numerical experiment: Dynamics of the coupled system160

In the following section, the algorithm described above is applied to the lumped-mass system of Sec. 2.1. The system is
harmonically excited with the frequencies fk ∈ [5 Hz,10 Hz, . . . , 50 Hz]. Fig. 5 shows the transfer functions of the open-
loop and closed-loop system between excitation forces and displacements. For the closed loop system, the transfer function
between excitation forces and the interface displacements of the virtual subcomponent are shown. Note that we make use of
the fact that the dynamics of the proposed LMS controller can be expressed as a linear system. See [35] for the proof and165

details. The plots indicate that the closed-loop dynamics match with reference dynamics in phases and amplitudes exactly at
the excitation frequencies. On all other points, the closed-loop transfer function stays on the curve of the virtual component.
Fig. 6 shows a comparison of the closed-loop transfer functions for the described algorithm with automatically generated
controllers. The controllers were created using the Matlab Control System Toolbox, but similar results can be obtained using
any other tuning algorithm. The PID tuning resulted in a pure integral gain. The result is that a correct coupling is achieved170

only for frequencies below 1 Hz. The system coupled with the Linear Quadratic Regulator (LQR) is far closer to the reference
transfer function in a broad frequency range. However, the LQR is complex and highly dependent on the coupled system. As
the following section shows, changes in the system dynamics can deteriorate the test performance or cause instabilities.



Algorithm 1 Hybrid testing with LMS-based interface synchronization

Initialize P̃
est
g,u[0] := 0 and k := 0

while t < t id do
if mod (t, t rand) = 0 then
θ [k] :=vector of random numbers
Rearrange θ [k] in θ̃ [k]

end if
Set actuator input to u[k] = W[k]θ [k]
Measure λ[k] and y EX P[k]
Calculate yV IR[k] through time integration (external forces f ex t[k] = 0 and λ[k])
P̃

est
g,u[k+ 1] = P̃

est
g,u[k] +µLMS θ̃ [k]T W[k]T (y EX P[k]− yV IR[k])

k := k+ 1
end while
Initialize θ [0] := 0, k := 0
Rearrange P̃

est
g,u in P est

g,u
while t < t id + tad do

Set actuator input to u[k] = W[k]θ [k]
Measure λ[k] and y EX P[k]
Calculate yV IR[k] through time integration (external forces f ex t[k] and λ[k])
θ [k+ 1] = θ [k] +µid,LMSP est

g,u[k]
T W[k]T (y EX P[k]− yV IR[k])

k := k+ 1
end while

3.1.5. Numerical experiment: Effects of identification errors on the stability of the coupled system
The stability of the closed-loop system can deteriorate due to modifications in the system dynamics during the test or with175

respect to the assumed system dynamics. Those modifications can be caused e.g. by temperature-dependent effects, wear,
poor system identification, or poor controller tuning. To simulate the effect of system modifications to the control performance,
we modified the mass mEX P in the numerical example. The LQR in Fig. 7 is tuned to the original value of mEX P , while the
value of mEX P in the system under control is varied. More specifically, the mass of the system under test is set to values of
m∗EX P ∈ [0.001 kg, 0.002 kg, . . . , 0.03 kg]. The poles in the right half plane show that the performance and the stability of180

the closed-loop system is highly sensitive to changes in the system dynamics.
In Fig. 8, the same procedure is repeated and applied to the adaptive feed-forward filter. Again, the controller is tuned to the
original value of mEX P , while the system under control is varied. This means, in the case of the adaptive feed-forward filter,
that identifying P est

g,u is performed on the system with the original mass.
Another perspective on the robustness of the approach using the adaptive feed-forward filter is given in Fig. 9. The stability185

of the closed-loop system is mapped over the estimated values of H est
g,u, which are usually obtained from the identification

process. Remember that H est
g,u is a complex scalar for nω = 1 and nint = 1 and the real and imaginary part of H est

g,u are
contained in the matrix P est

g,u. All maps were created using the adaption gain µLMS = 1. The maps are shown for the excitation
frequencies ω0 = 8 Hz, ω0 = 16 Hz, which is close to the virtual component’s resonance and ω0 = 21 Hz, which is close
to the coupled system’s reference. According to Fig. 9, the phase error of the estimated H est

g,u(ω0) with respect to the true190

H g,u(ω0) can amount up to 90◦ for sufficiently small adaption gain. The map for the excitation frequency ω0 = 16 Hz,
however, indicates that the stable region can shrink depending on the system dynamics. Even though this seems robust, for
complex interfaces with multiple DoF and excitations with multiple harmonics, the performance of LMS-type filters may decline.
This is the reason for the application of RLS-type algorithms to the coupling problem as explained in the next section.

3.2. Recursive-Least-Squares-based adaption law195

The LMS-based algorithm from the previous section may face problems where systems with multiple DoF interfaces are
coupled. The algorithm proposed in this section makes use of a Recursive-Least-Squares adaption law. RLS-based adaption
laws have been successfully applied to Active-Noise-Cancellation as shown e.g. in [36] or [34]. The cost function for this type
of algorithm contains the actual sum of squared interface gaps, while the LMS-based algorithm is based on the expected value
of the squared interface gap. This fact makes convergence of the RLS-based algorithm faster since in each time step the exact200
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Figure 5: Coupling of two mass-spring-damper systems with an adaptive feed-forward filter. The transfer functions shows that the steady-state closed-loop
dynamics match with reference dynamics at the excitation frequencies fk ∈ [5 Hz, 10 Hz, . . . , 50 Hz].

solution to the sum of squares problem is obtained. Furthermore, the error of the RLS algorithm approaches zero while—due
its stochastic nature–the LMS algorithm exhibits a remaining small error.

3.2.1. Adaption
The cost function (18) consists of the sum over the squared gap and a regularization term. Since the excitations or the system
properties may be subject to changes during the test, the resulting solution for the parameter vector θ should depend mainly
on new data. A so-called forgetting factor µRLS (0 < µRLS ≤ 1) with an exponent increasing with the age of the data ensures
this property. The exponentially decreasing weight of the squared interface gap causes the contribution of old data to the
solution to decrease as new data is available. The weight for the newest sample is 1. Choosing a low value of µRLS produces
a fast adaption while choosing a high value yields a slow adaption. Ξ is a positive-definite matrix, which is a measure of
confidence in the starting value θ [0] = 0. It can be set to Ξ= β I , with scalar β and unity matrix I . High values of β will help
to prevent jumps in θ at the start of the adaption phase, while low values will allow a faster adaption to the optimal θ o.

J[k] =
k∑

i=0

µk−i
RLSg T [i]g [i] +µk+1

RLSθ
T [k]Ξθ [k]

=
k∑

i=0

µk−i
RLS(W[i]P g,u[i]θ [k] + g ex t[i])

T (W[i]P g,u[i]θ [k] + g ex t[i]) +µ
k+1
RLSθ

T [k]Ξθ [k]

(18)

Setting the gradient of the cost function (Eq. (19)) to ∇J[k] = 0 yields an equation which can be solved for θ [k]. The
computational cost and memory consumption of solving the problem in each time step, however, would be high and would
increase with every additional data sample. This fact is the reason for introducing an update scheme, which adds new data
samples to the solution as they become available.

∇J[k] =
∂ J[k]
∂ θ [k]

=
k∑

i=0

2µk−i
RLS

�
PT

g,u[i]W
T [i]W[i]P g,u[i]θ [k] + PT

g,u[i]W
T [i]g ex t[i]

�
+µk+1

RLSΞθ [k] (19)
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Figure 6: Comparing the closed-loop transfer functions for LMS filter-based algorithms with automatically generated controllers.
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Figure 7: Detail from pole plot for closed-loop transfer functions G(s): The LQR is tuned to the original value of mEX P , whereas the value of m∗EX P ∈
[0.001 kg, 0.002 kg, . . . , 0.03 kg] in the system under test is varied.

Eq. (20) is a rearranged form of the above-mentioned condition ∇J[k] = 0. For convenience, we introduce the symbol Φ for
the terms depending on θ and the symbol s for the terms depending on g ex t :

Φ[k]θ [k] = s[k]

with Φ[k] =
k∑

i=0

µk−i
RLSPT

g,u[i]W
T [i]W[i]P g,u[i] +µ

k+1
RLSΞ and s[k] =

k∑
i=0

−µk−i
RLSPT

g,u[i]W
T [i]g ex t[i]

(20)

The update scheme is obtained by reformulating Φ[k + 1] and s[k + 1] in a recursive form. To do so, the sums from the
definition in Eq. (20) are split into the summands containing the previous values (Φ[k] and s[k]) and the summands containing
the newly added values. Accordingly, the initialization needs to be Φ[0] = Ξ to agree with the definitions in Eq. (20).

Φ[k+ 1] = µRLSΦ[k] + PT
g,u[k+ 1]W T [k+ 1]W[k+ 1]P g,u[k+ 1]

s[k+ 1] = µRLS s[k]− PT
g,u[k+ 1]W T [k+ 1]g ex t[k+ 1]

(21)

A numerically stable and efficient way to perform the update of θ [k] is the so-called QR-RLS algorithm. Alg. 2 describes the
full update cycle. The derivation of the algorithm is described in Appendix B. Φ

1
2 [0] is initialized as

p
β I . The parameter205



−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
·10−5

100

200

300

Re (G(s))

Im
(G
(s
))

adaptive feed-forward, m∗EX P ∈ [0.001 kg, 0.002 kg, . . . , 0.03 kg] adaptive feed-forward, mEX P

Figure 8: Detail from pole plot for closed-loop transfer functions G(s): The interface transfer matrix P g,u is identified with the original value of mEX P , whereas
the value of m∗EX P ∈ [0.001 kg, 0.002 kg, . . . , 0.03 kg] in the system under test is varied.

−4 −2 0 2 4
·10−2

−4

−2

0

2

4

·10−2

Re
�
H est

g,u(ω0)
�

Im
� H

es
t

g,
u
(ω

0
)�

8 Hz

unstable estimate H est
g,u(ω0) stable estimate H est

g,u(ω0) true Hg,u(ω0)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Re
�
H est

g,u(ω0)
�

16Hz

−1 −0.5 0 0.5 1
·10−3

−1

−0.5

0

0.5

1
·10−3

Re
�
H est

g,u(ω0)
�

21 Hz
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vector is initialized with θ [0] = 0. For the correct adaption of θ , an estimate of the interface transfer matrix P est
g,u is necessary.

The identification procedure for this estimate is described in the following section. Note that, in contrast to the LMS-based
algorithm, we make use of the contribution of the external forces g ex t to the interface gap g . The interface gap itself is not
explicitly calculated during the adaption process. A block diagram of the described system is shown in Fig. 10.

3.2.2. Identification210

The matrix Pu,g , which represents the system dynamics at the interface, was used to obtain θ in the previous section. A RLS-
based approach can be applied to identify Pu,g . To do so, we use a cost function that contains the squared identification error
e[i]. For the purpose of identification the values of Pu,g have to be rearranged in the vector P̃u,g according to the example

given in Appendix A. Correspondingly, vector θ is rearranged in the matrix θ̃ according to Appendix A.

J[k] =
k∑

i=0

µk−i
id,RLS

�
eT [i]e[i]

�
+µk+1

id,RLS P̃
est,T
u,g [k]ΞP̃

est
u,g[k]

=
k∑

i=0

µk−i
id,RLS

�
W[i]θ̃ [i]P̃

est
u,g[k]− g [i] + g ex t[i]

�T �
W[i]θ̃ [i]P̃

est
u,g[k]− g [i] + g ex t[i]

�

+µk+1
id,RLS P̃

est,T
u,g [k]ΞP̃

est
u,g[k]

(22)

Alg. 3 results from the recursive formulation based on the cost function in Eq. (22). The derivation is analogous to the one in
the previous section: P est

g,u is replaced by θ̃ and θ is replaced by P̃
est
g,u. The input signal u is produced by setting θ to random

values in time intervals of length t rand .



Algorithm 2 Hybrid testing with RLS-based interface synchronization: adaption

Initialize Φ
1
2 [0] := Ξ

1
2 , θ [0] := 0 and k := 0

while t < tad do
Set actuator input to u[k] = W[k]θ [k]
Calculate g ex t[k+ 1] through time integration (external forces f ex t[k+ 1])

Build up matrix A=

� p
µRLSΦ

1
2 [k] W[k+ 1]P est

g,up
µRLSθ

T [k]Φ
1
2 [k] −g T

ex t[k+ 1]

�

QR-factorization A= BC

Extract values

�
B1,1 B1,2

B2,1 B2,2

�
=

�
Φ

1
2 [k+ 1] 0

θ T [k+ 1]Φ
1
2 [k+ 1] B2,2

�

Solve B2,1 = θ
T [k+ 1]B1,1 for θ [k+ 1]

k := k+ 1
end while

Algorithm 3 Hybrid testing with RLS-based interface synchronization: identification

Initialize Φid, 1
2 [0] := Ξid, 1

2 , P̃
est
g,u[0] := 0 and k := 0

while t < t id do
if mod (t, t rand) = 0 then
θ [k+ 1] :=vector of random numbers
Rearrange θ [k+ 1] in θ̃ [k+ 1]

end if
Set actuator input to u[k] = W[k]θ [k]
Measure λ[k+ 1] and y EX P[k+ 1]
Calculate yV IR[k+ 1] through time integration (external forces f EX P

ex t [k+ 1] and interface forces λ[k+ 1])

Build up matrix Aid =

� p
µid,RLSΦ

id, 1
2 [k] W[k+ 1]θ̃ [k+ 1]p

µid,RLS P̃
est
g,u[k]Φ

id, 1
2 [k] (y EX P[k+ 1]yV IR[k+ 1]− g ex t[k+ 1])T

�

QR-factorization Aid = BidC id

Extract values

�
Bid

1,1 Bid
1,2

Bid
2,1 Bid

2,2

�
=

�
Φid, 1

2 [k+ 1] 0

P̃
est,T
g,u [k+ 1]Φ̃

id, 1
2 [k+ 1] Bid

2,2

�

Solve Bid
2,1 = P̃

est,T
g,u [k+ 1]Bid

1,1 for P̃
est
g,u[k+ 1]

k := k+ 1
end while
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Figure 10: Block diagram for the RLS-based adaption process.

3.3. Simultaneous identification and adaption

In the sequential adaption and identification procedures described in the previous sections, changes in the systems’ dynamics215

make a new identification step necessary. The solution is a simultaneous adaption and identification procedure. The outline of
the algorithm is given in Alg. 4. An identification phase precedes the simultaneous identification and adaption process. This
procedure makes it possible to initialize the interface transfer vector P̃

est
g,u[0] with the identified value, and prevents unwanted

jumps in θ . Note that in this simultaneous approach, knowledge of g ex t[k] is necessary. Thus, applying the algorithm is
possible where the external excitations or an additional identification of g ex t is performed.

Algorithm 4 Hybrid testing with RLS-based interface synchronization: simultaneous identification and adaption

Initialize Φid, 1
2 [0] = Ξid, 1

2 , P̃
est
g,u[0] = P̃

est
g,u, Φ

1
2 [0] = Ξ

1
2 , θ [0] = 0 and k := 0

while t < tad do
Set actuator input to u[k] = W[k]θ [k]
Measure λ[k+ 1] and y EX P[k+ 1]
Calculate yV IR[k+ 1] through time integration (external forces f ex t[k+ 1] and λ[k+ 1])
Calculate g V IR

ex t [k+ 1] through time integration (external forces f ex t[k+ 1] and λ[k+ 1])
Rearrange P̃

est
g,u[k] in P est

g,u[k]

Build up matrix A=

� p
µRLSΦ

1
2 [k] W[k+ 1]P est

g,u[k]p
µRLSθ

T [k]Φ
1
2 [k] −g T

ex t[k+ 1]

�

QR-factorization A= BC

Extract values

�
B1,1 B1,2

B2,1 B2,2

�
=

�
Φ

1
2 [k+ 1] 0

θ T [k+ 1]Φ
1
2 [k+ 1] B2,2

�

Solve B2,1 = θ
T [k+ 1]B1,1 for θ [k+ 1]

Rearrange θ [k+ 1] in θ̃ [k+ 1]

Build up matrix Aid =

� p
µid,RLSΦ

id, 1
2 [k] W[k+ 1]θ̃ [k+ 1]p

µid,RLS P̃
est
g,u[k]Φ

id, 1
2 [k] ((y EX P[k+ 1]yV IR[k+ 1]− g ex t[k+ 1])T

�

QR-factorization Aid = BidC id

Extract values

�
Bid

1,1 Bid
1,2

Bid
2,1 Bid

2,2

�
=

�
Φid, 1

2 [k+ 1] 0

P̃
est,T
g,u [k+ 1]Φ̃

id, 1
2 [k+ 1] Bid

2,2

�

Solve Bid
2,1 = P̃

est,T
g,u [k+ 1]Bid

1,1 for P̃
est
g,u[k+ 1]

k := k+ 1
end while

220

3.3.1. Numerical experiment: Performance of adaptive feed-forward filters
In order to evaluate the performance of the different algorithms, we compare the learning curves of the LMS-based algorithm
and the RLS-based algorithms. The system from Sec. 2.1 is excited using sinusoidal force f ex t = cos (ω0 t) with the excitation
frequencyω0 = 2π·8 1/s. The simulations were performed using four different values ofµLMS and µRLS , since the performance
of the algorithms is highly dependent on the choice of the adaption gains or forgetting factors. All algorithms were tested with225
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Figure 11: Learning curves for three adaption strategies. The curves show the peak envelope of the interface gap g after an identification period with a
duration of t id = 100 s.
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a preceding identification phase (duration t id = 100 s) using the identification gains µid,LMS = 0.01 and µid,RLS = 0.99. The
duration of intervals, in which the identification signal parameters are updated, was chosen as t rand = 2 s. Fig. 11 shows
the envelopes of the interface gap g [k]. Note that the envelope of the oscillations are shown in order to improve readability
of the graphs. The LMS-based adaption law exhibits an instable behavior for one value of the adaption gain µLMS . The less
aggressive choices of µLMS result in a stable adaption. In contrary, the RLS-based algorithm with sequential identification and230

adaption shows fast convergence for all forgetting factors. The gap does, however, only go to zero if the dynamics are identified
properly during the identification phase. The RLS-based algorithm with simultaneous identification and adaption converges
within less than 20 s. In this case, the most aggressive choice for the forgetting factor µRLS leads to a behavior without
convergence. The reason is the excitation of transient dynamics due to the fast changes in the interface force amplitudes,
which is a violation of the steady-state assumptions. Note that the system remains stable, though.235

Fig. 11 shows the envelopes of the interface gap g [k] using an identification with a duration of t id = 0.01 s. The short
identification period has the effect that the transfer behavior is not identified correctly. The LMS-based adaption law exhibits an
instable behavior for all values of the adaption gain µLMS . The RLS-based algorithm with sequential identification and adaption
converges, but an error due to the wrong identification remains. For the RLS-based algorithm with simultaneous identification
and adaption, the dynamics remain stable. The filter convergences and interface synchronization is achieved for choices of240

the forgetting factor µRLS ≤ 1− 10−2.

4. Interfaces

In many applications, forces, moments and displacements or rotations cannot be measured directly on the interface. In such
cases, the quantities used by the coupling controller can be calculated from a model of the actuation system. Parts of the
actuation system need a stiff design for the application forces and moments at the interface. One cannot avoid the fact



that the improved stiffness properties go hand in hand with increased mass and inertia. Additionally, there may be stiffness
and damping effects coming from the attachment of the actuators to the experimental component. An element used for the
attachment as e.g. a stinger, can bring in forces or moments that cannot be measured. In the experiment described below,
stingers and translational force sensors are used. Moments caused by the bending of the stinger are not measured. The
following section describes procedures to compensate the dynamic effects of the actuation system and to calculate interface
quantities necessary for the coupling. Starting point are the Eqs. (23), which represent the dynamics of the experimental
component and the actuation system.

M EX P q̈ EX P + DEX P q̇ EX P + K EX Pq EX P = f EX P
ex t +GEX P,Tλ

MAC T q̈AC T + DAC T q̇AC T + KAC T qAC T = BAC T
f f AC T +GAC T,Tλ

(23)

Note that the actuator input uAC T in Eqs. (3) has been replaced by the actuator forces f AC T , since we assume that f AC T can
be measured during the test.

4.1. Interface Displacements and Accelerations245

The compatibility between the two subsystems is given by Eq. (4). In order to obtain the contribution of the experimental
component, it is necessary to measure the interface displacements or calculate them by time integration of acceleration
signals. The second-order time derivatives q̈AC T of the actuation system states are required for the compensation of the
transfer systems’ inertia effects. They can be calculated from acceleration measurements. Eqs. (24) define the relation
between sensor outputs and states:

yAC T
Sd =




yAC T
Sd,1

yAC T
Sd,2

. . .


= CSdqAC T yAC T

Sa =




yAC T
Sa,1

yAC T
Sa,2

. . .


= CSaq̈AC T (24)

Accordingly, CAC T
Sd is the sensor output matrix for displacements, CAC T

Sa is the sensor output matrix for accelerations, yAC T
Sd

is the vector of the displacement sensor outputs and yAC T
Sa is the vector of the acceleration sensor outputs. The output

matrices CAC T
S∗ =

�
CAC T,T

S∗1 CAC T,T
S∗2 . . .

�T
are built up from submatrices representing the single sensor channels. Solving

the equations using the Moore-Penrose pseudo-inverse yields the state vector qAC T and its second-order time derivative q̈AC T :

qAC T = C+Sd yAC T
Sd q̈AC T = C+Sa yAC T

Sa

The required contribution to the compatibility equation, which is used for coupling virtual and experimental component, can be
calculated using Eq. (25):

GEX Pq EX P = GAC T qAC T = GAC T C+Sd yAC T
Sd

GEX P q̈ EX P = GAC T q̈AC T = GAC T C+Sa yAC T
Sa

(25)

For rigid body interfaces, this approach is equivalent to the virtual point method described in [37].

4.2. Interface Forces

Once the actuation systems state vectors qAC T , q̇AC T and q̈AC T are identified, they can be used to calculate the interface
forces λ from the model. To do so, one can solve the actuator Eqs. (23) for λ:

λ= GAC T,T,+
�
MAC T q̈AC T + DAC T q̇AC T + KAC T qAC T − BAC T

f f AC T
�

(26)

Neglecting all dynamics yields the pure kinematics of Eq. (27). This approach is equivalent to the calculation of the interface
forces with the virtual point method in [37].

λ= −GAC T,T,+BAC T
f f AC T (27)
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Figure 13: Reference system with actuator and sensors used for the admittance measurement. The test setup allows to couple the virtual component and the
experimental component such that the dynamic behavior of the reference system is emulated.

4.3. Interface Modes

The above-mentioned theory allows to couple components with flexible interfaces. Generally, for a given sensor configuration,
only a finite number of states can be observed. To overcome this problem, a reduced order model can be used. The full model
of the actuation system, which can be retrieved e.g. from Finite Elements, is given by Eq. (28).

MAC T üAC T + DAC T u̇AC T + KAC T uAC T = BAC T
A FAC T

A +GAC T,Tλ (28)

The reduced system is given by Eq. (29) where q is the reduced coordinate vector and the matrices of the reduced system are
indicated by bars:

M̄AC T q̈AC T + D̄AC T q̇AC T + K̄AC T qAC T = B̄AC T
A f AC T

A + ḠAC T,T
λ (29)

The reduced matrices are retrieved using the reduction matrix T :

M̄AC T = T T MAC T T D̄AC T = T T DAC T T

K̄AC T = T T KAC T T P̄AC T
A = T T PAC T

A

ḠAC T = T T

�
I
0

�

Reduction matrix T is retrieved e.g. according to Eq. (30) using the Craig-Bampton method with the constraint modes matrix
ΨAC T and the truncated fixed interface modes matrix ΦAC T . Because all states have to be observable it may be necessary to
reduce the interface coordinates. Φb is the interface reduction matrix and projects the coordinates of the interface between
virtual and experimental component on the boundary coordinates uAC T

b of the unreduced actuation system. The interface
reduction matrix Φb can be calculated using a model of the virtual component or a rough model of the overall coupled system.
See [38] and [39] for methods of choosing an interface reduction basis.

uAC T =

�
uAC T

b

uAC T
i

�
=

�
Φb 0

ΨAC T ΦAC T

�

︸ ︷︷ ︸
T

�
qAC T

b

qAC T
i

�

︸ ︷︷ ︸
qAC T

(30)

5. Experiment: Coupling two cantilever beams

For an experimental demonstration of hybrid testing with adaptive feed-forward filters we use a system assembled from two250

cantilever beams. The excitation is chosen such that the coupling of virtual and experimental component is possible with only
two actuators.

5.1. Test setup

5.1.1. Reference System
The objective of the experiment is to replicate the dynamics of a reference system as shown in Fig. 13. The two beams255

represent the two components of the system, which are referred to as the virtual component and the experimental component.
Both subcomponents are cantilever beams connected with bolts. Each bolt is fixed with a torque of 20 Nm and washers
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Figure 14: Measurement and model: Driving point receptance of coupled system (reference system) and test rig

Virtual Component VIR

dV IR
i 100 mm

hV IR
z1 4 mm

hV IR
z2 2 mm

hV IR
y 40 mm

lV IR 400 mm

lV IR
f 30 mm

lV IR
d 250 mm

Test Specimen (EXP)

dEX P
P 200 mm

hEX P
z 4 mm

hEX P
y 40 mm

hEX P
f 30 mm

lEX P 400 mm

lEX P
f 30 mm

Actuation System ACT

dAC T 80 mm

hAC T
z 6 mm

hAC T
y 40 mm

lAC T 100 mm

Material Parameters (All Components)

Young’s Modulus E 210 · 109 N
m2

Density ρ 7850 kg
m3

Table 2: Dimensions of the structure used in the experiment

were placed between base and beam. Foam layers serve as dampers that are mounted on both subcomponents. The
damping elements are necessary to keep the actuator displacements within its workspace at the resonances. The workspace
is constrained as standard voice coil actuators use compliant elements for axial guidance. The subcomponents are bolted260

together with a screw applying a torque of 20Nm at point B. A washer was placed in between the two subcomponents.
Dimensions are given in Fig. 15 and Tab. 2. The system is excited with force f ex t at point P, which is part of the virtual
component. Force and acceleration reference measurements are performed using a combined acceleration and force sensor
(impedance head Dytran 5860B). The input force for the validation measurements is provided by a voice coil actuator (Tira
S50018). In order to prevent the transmission of moments through the actuator, force sensor and voice coil actuator are265

connected through a thin stinger (length 100mm, diameter 1mm, spring-steel wire). Fig. 16 shows the first modes of the
reference system obtained from a finite element model. Modes 1, 2, 3 and 6 are excited through the shaker in the experiment.
Modes 4 and 5 are not excited due to the position of the excitation point P. The dynamics of the reference system result in
the transfer functions shown in Fig. 14 as retrieved from a measurement and a calibrated model. The model consists of finite
element models of the beams and spring-damper-mass elements, which represent the joints at the washers. The spring and270

mass coefficients were updated with the objective of matching the first four resonance frequencies. The resulting models were
used for the virtual subcomponent.

5.1.2. Virtual component
We use an implicit Newmark time integration scheme (parameters β = 0.25 and γ = 0.5) to retrieve the response for
the virtual component. The virtual component is represented by a calibrated finite element model. The model is reduced275

using the Craig-Bampton method (see [38]) using 20 fixed interface modes and the constraint modes. The interfaces used
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Figure 15: Dimensions of the structure used in the experiment: The values can be gathered from Tab. 2.

Mode 1: 95 Hz Mode 2: 211 Hz Mode 3: 319 Hz

Mode 4: 368 Hz Mode 5: 508 Hz Mode 6: 520 Hz

Figure 16: First normal modes of the reference system



overall assembly sensors and stingers damping element

Figure 17: Test rig

in the reduction are the excitation point and the interface between the substructures. The nodes which define the interfaces
were rigidified and the interfaces are describes by rotations and displacements. The time step size for simulating the virtual
component was ∆t = 0.2ms—as it was for the adaption law.

5.1.3. Test rig280

The test rig, which is used for the hybrid coupling test, consists of the experimental component, an actuation system and a real-
time computer. The set-up is shown in Fig. 17. We chose the excitation position and direction such that only deflections are
excited that rotate the interface around the y-axis and cause displacements along the z-axis. As a result, we can realize the
actuation system which imitates the coupling between the two beams with only two actuators. The actuation system contains
voice coil actuators (Tira S50018), combined acceleration and force sensors (impedance head Dytran 5860B), thin stingers285

(length 100 mm, diameter 1mm, spring-steel wire), and a steel plate. An ICP device supplies the impedance heads. The voice
coil actuators are supplied by two amplifiers (Tira BAA120) driven in current control mode. A desktop PC running Simulink
Real Time R© serves as real-time computation platform. The model running on this machine includes adaption algorithm and
simulation model of the virtual component and runs with a time step size of∆t = 0.2ms. The steel plate is necessary to apply
forces and moments to the interface of the experimental component and to measure rotational and translational quantities.290

Additionally, it imitates interface friction and stiffness of the reference system. In the following, the steel plate is assumed to be
rigid.

5.1.4. Interface states and forces
The general procedure for retrieving interface states and forces is described in Sec. 4. We make use of translational ac-
celeration (z̈EX P

act,1 and z̈EX P
act,2) and force sensors (actuator forces FA1 and FA2). The coupling node of the virtual component,

however, contains translational quantities (displacement zV IR
B and force F V IR

B,z ) and rotational quantities (rotation αV IR and mo-

ment M V IR
B,y ). Since the zV IR

B and αV IR have different units, the cost function resulting from their use in the interface gap g
would be inconsistent in its units. For this reason, we use the actuator displacements zact,1 and zact,2 as coupling quantities.
The displacements zV IR

act1 and zV IR
act2 used for the coupling on the virtual component’s side are calculated according to Eq. (31).

yV IR =

�
zV IR

act1

zV IR
act2

�
=

�
1 −dAC T/2

1 dAC T/2

��
zV IR

B

αV IR

�
y EX P =

�
zEX P

act,1

zEX P
act,2

�
(31)

On the experimental components’ side we apply time integration to the acceleration signals to retrieve zEX P
act1 and zEX P

act2 . Possible
drift effects are removed with a Peak filter at the excitation frequencies on the interface forces. Moment MB,y and the force FB,z
define the interface force vector λ. According to our sign conventions from Sec. 2.2, the interface forces from the experimental
component are applied with opposite sign to the virtual component.

λ=
�
F V IR

B,z M V IR
B,y

�T
= −λEX P = −

�
F EX P

B,z M EX P
B,y

�T
(32)

Fig. 18 illustrates the free-body diagram of the transfer system used in the experiment. The inertia properties are defined by
the steel plate’s mass mAC T and moment of inertia θAC T

y . The interface forces are calculated by the solution of the dynamic



equation of the actuation system (33).
�

mAC T 0

0 θAC T
y

��
z̈AC T

B

α̈AC T

�
= −

�
1 0

0 1

��
F EX P

B,z

M EX P
B,y

�
+

�
−1 1
dAC T/2 dAC T/2

��
FA1

FA2

�
(33)

5.1.5. Interface synchronization295

The synchronization plots in Fig. 19 show the displacement of one side of the interface as a function of the displacement of the
other side. They are a measure for the quality of the synchronization. The experiments were performed at 60 Hz, 320 Hz and
800 Hz. A QR-RLS adaption law with simultaneous adaption and identification was used for synchronization control. Here,
we applied a forgetting factor µad = 0.999 for the adaption and a forgetting factor µid = 0.9999 for the identification. In the
synchronization plots ideal synchronization is indicated by a straight diagonal line with a slope of 1. Phase shifts cause an300

ellipsoidal shape of the synchronization curve while amplitude errors change the slope.

5.1.6. System transfer functions
To verify the adaptive feed-forward approach, the test setup should imitate the steady-state dynamics of the reference system.
The resulting transfer functions of the virtually coupled test rig are recorded. In the following section, HPz(ω) is the driving
point receptance for the assembled system, while HBz(ω) and HBα(ω) represent the transfer functions between the excitation305

forces at driving point P and the displacements on the interface B for the assembled system. We used a RLS-based adaption
law with simultaneous adaption and identification as coupling algorithm. For the adaption, the forgetting factor µad = 0.999
and for identification the forgetting factor µid = 0.9999 were applied. The test was conducted with step sine excitation. The
reason for this approach is that phase-shifts—which cannot be instantly followed by the adaption algorithm when using a sine
sweep excitation—occur at the resonances. The potentially incomplete interface synchronization would distort the results. The310

results in Fig. 20 show the agreement of the hybrid test with the simulated reference dynamics. The deviations are caused by
the modeling errors, which can be seen in Fig. 14, and the fact that only two actuators are used to represent the interface. The
high damping in the frequency range above 400Hz is caused by friction of the sensor cables. We come to that conclusion
from reference measurements without cables and a Laser-Doppler vibrometer. Moments are not accounted for by the sensors
and effect the damping of rotational interface modes.315

5.1.7. Learning Curves
Important properties that need to be considered for choosing one strategy in a practical application are the convergence
speed and the difficulty of the adaption gain choice. For evaluating the two properties, we used sinusoidal excitation with a
frequency ofωex t = 2π ·60 1/s and withωex t = 2π ·320 1/s. In order to make the two strategies comparable, we applied four
different adaption gains with each strategy. For the analysis, we use a learning curve, which is the envelope of the normalized
mean-square error (NMSE) of Eq. (34):

N MSE[i] =
g T [i]g [i]
y T

max ymax
(34)

z

x

α
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experimental component

BEX P

Figure 18: The interface state (y EX P and λ) includes interface rotation, displacement, force and moment. They are calculated via a rigid body model of the
transfer system.
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experimental interface over time. The duration of the prior system identification phase is 5 s. The QR-RLS algorithm is used with simultaneous system
identification.

The normalization is performed using the vector of the maximal amplitude ymax of the coupled system. Fig. 21 shows the
resulting learning curves. Even though the choice for an aggressive forgetting factor µRLS—this corresponds to a small value
of µRLS—may deteriorate the performance of the adaption law, the results suggest that the stability of the RLS-based adaption
is not affected. In contrast, the choice of a high adaption gain µLMS for the LMS adaption law may cause an instable behavior320

as seen at ωex t = 2π · 320 Hz for µLMS = 0.1.

5.1.8. Non-sinusoidal periodic excitations
Up to this point, the experiments make use of one harmonic basis function, which is sufficient for coupling linear systems with
a single excitation frequency. Additional harmonics in the basis function space allow—according to the theory—coupling of
systems with arbitrary periodic excitations (period T = 1/ω0). To do so, the frequencies ωk of the harmonics in the basis
function matrix W(t) are set to multiples of the periodic excitation basis frequency ω0:

nω Harmonics in W(t): ωk = k ·ω0 with k ∈ [1 . . . nω]

Fig. 22 shows the interface synchronization results for a square wave excitation as shown in plot (g). The basis function matrix
W(t) contained one harmonic with frequency ω0 (plot (a) and (b)), 5 harmonics (plot (c) and (d)) and 9 harmonics (plot (e)
and (f)). A RLS-based adaption law with simultaneous adaption and identification was used as coupling algorithm. For the325

adaption the forgetting factor µad = 0.999 and for identification the forgetting factor µid = 0.9999 were applied. The duration
of the identification period was t id = 20s. The results show that the increasing number of harmonics enriches the function
space for the control signal and improves the interface synchronization. The methods are in general applicable to any periodic
excitation: Since the mechanical system acts as a filter on the high frequency content, a finite number of harmonics is generally
sufficient to couple two subcomponents.330

6. Conclusion

This paper presents a framework for utilizing adaptive feed-forward filters in hybrid testing. Harmonic basis functions, which
are an efficient way to reduce the filter size, are applied here. We propose algorithms based on LMS-type adaption laws
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Figure 22: Interface synchronization for a square wave external excitation: The interface synchronization improves with additional harmonics in the basis
function matrix W .

and on RLS-type adaption laws. Both types of algorithms require a prior identification phase and assume steady-state. The
LMS-based algorithm is robust against errors in the identification, since it will stay stable with a sufficiently small adaption gain335

for phase errors of ±π/2. The drawback, however, is the slow convergence, which can make practical application unfeasible
in some cases. Large identification errors can lead to instability. In general, the RLS-type adaption laws exhibit faster conver-
gence. Sequential identification and adaption with identification errors can cause a remaining interface gap. The simultaneous
identification and adaption process can overcome identification errors during the adaption phase. An aggressive choice of
the forgetting factor, however, a can cause the violation of the steady-state assumption, since rapid changes in the harmonic340

interface forces excite transient dynamics. For the practical implementation of the method, it is important to compensate for un-
measured dynamics of the interface. The experiments on a beam test rig show that the methods can replicate a structure with
a multiple DoF interface with standard testing equipment as modal shakers and acceleration sensors. The experiments sup-
port the presumption that it is possible to couple not only purely harmonically excited systems but also systems with arbitrary
periodic excitations. Future research directions include improved model order reduction techniques for the virtual component345

and the combination of adaptive feed-forward filters with feed-back techniques.



Appendix A. Rearranging matrices for system identification

The following expression is a simple example for reformulation of P g,u and θ in P̃ g,u and θ̃ , which is necessary for the
identification process in Sec. 3.1.2 and Sec. 3.2.2.

P g,uθ =




Re
�
Hg,u(ω1)

� −Im
�
Hg,u(ω1)

�
0 0

Im
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Appendix B. Proof for RLS-based algorithm

The following derivation refers to the RLS algorithm, which is used in Sec. 3.2.1. In Eq. 21, the matrix Φ is only changed by the
rank-nint matrix PT

g,uW T WP g,u in one time step. Using this fact, an approach based on QR-factorization is an efficient and
numerically stable way to obtain the solution of Eq. (20). Φ is symmetric and positive-definite, since it is the sum of positive
definite matrices. Hence, it can be decomposed into the so-called square-root factors as described by Eq. (B.1). The other
way round, if Φ[k] is built up from the square-root factors Φ

1
2 [k], positive-definiteness is ensured.

Φ[k] = Φ
1
2 [k]Φ

T
2 [k] (B.1)

Using the definition of the square-root factors in Eq. (B.1), the update Eqs. (21) can be split into factors according to Eq. (B.2).
One can verify that Eq. (B.2) is equivalent to Eqs. (21).

AAT = BBT

with A=

� p
µRLSΦ

1
2 [k] W[k+ 1]P g,u[k+ 1]p

µRLSθ
T [k]Φ

1
2 [k] −g T

ex t[k+ 1]

�

and B =

�
B1,1 B1,2

B2,1 B2,2

�
=

�
Φ

1
2 [k+ 1] 0

θ T [k+ 1]Φ
1
2 [k+ 1] B2,2

� (B.2)

If an orthogonal transformation with the matrix C (CTC = I) according to Eq. (B.3) exists, Eq. (B.2)—which corresponds to the
update equations—holds (proof in [40]).

A= BC or AT = CTBT or CA= B with CTC = I (B.3)

This orthogonal transformation can be seen as a sequence of rotations which transform A into B. It corresponds to a QR-
factorization of AT into BT and CT . This means that if B is obtained from A via QR-factorization, the entries of B — θ T [k +
1]Φ

1
2 [k+1] and Φ

1
2 [k+1]— obey the update Eqs. (21). It is noteworthy that it is not necessary to find C explicitly in order to

retrieve B. Since A contains the matrices θ [k]Φ
1
2 [k] andΦ

1
2 [k] of time step k and B contains the matrices θ [k+1]Φ

1
2 [k+1]

and Φ
1
2 [k + 1] from time step k + 1, the QR-factorization of A can be used to update θ . To do so, the final step is to solve

Eq. (B.4) for θ [k+ 1].

θ T [k+ 1]B1,1 = B2,1 (B.4)
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