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Abstract

Accurate estimation of risk measures for financial portfolios is of great importance equally for financial
institutions as well as regulators. Many existing methods lack the ability to adequately incorporate the high
dimensional dependence structure of the financial portfolio.

In this research we capture the cross dependence of the assets using the flexible class of R-vine copulas
and their trend and volatility univariately with ARMA-GARCH models. Given these two components we
simulate portfolio level forecasts and follow a Monte Carlo approach to estimate various risk measures on
the portfolio level. All of this is performed in a rolling window fashion. This approach extends the work
of Maarouf (2021) as not only the Value at Risk (VaR) but also the expected shortfall (ES), which is the
successor of the VaR as the primary market risk measure as of the Basel III accords, is considered. A
detailed discussion of applicable backtesting strategies for the VaR and ES estimates is also provided.

Moreover, in this thesis we introduce a conditional estimation approach. We specify one or two additional
market indices or other main market players that are also univariately modelled via ARMA-GARCH models
and then incorporated in the D-vine copula which is used in the conditional setting for cross dependence
modelling. Then we simulate the portfolio level forecasts conditionally on the market index or indices which
leads to conditional portfolio level risk estimates. We then introduce a quantile based approach to observe
the behavior of the risk measures given a certain state of the conditioning asset or assets. In particular, this
can generate valuable insights in stress testing situations. An important part of the conditional approach
is the conditional sampling from a D-vine copula. Thus, in order to facilitate this approach this thesis also
introduces algorithms to sample from the rightmost or the two rightmost leafs of a D-vine copula.

The last part of the thesis covers multiple case studies on a Spanish stock portfolio where we suc-
cessfully apply all the presented methods. Additionally the algorithms were optimized for computational
efficiency. The complete code is publicly available and the developed R package portvine provides efficient
implementations for all the risk measure estimation approaches proposed in this thesis.
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Introduction

The effective assessment of risk is of great importance for financial institutions and thus also of critical
concern for the corresponding regulators like the BaFin or the EBA. As currently evident accounting for
market risk, that can manifest itself for example as high volatility clusters e.g. during the ongoing pandemic
associated to the Covid-19 virus, is of utmost importance. Global guidelines for the assessment of risk in
the financial context are constructed in the Basel accords. Their central tools in the assessment of risk
are so called risk measures. To extend existing and propose new methods in order to effectively measure
the risk of potentially large asset portfolios is the aim of this thesis. Moreover, we have developed and
published a software package called portvine for the statistical programming language R to facilitate the
usage of all proposed methods.

In this research having a fixed portfolio we model each of its assets given as a financial time series
univariately in order to capture their trend and volatility with ARMA-GARCH models and then capture their
cross dependence using the flexible class of R-vine copulas. Given these two components one can simu-
late portfolio level forecasts and follow a Monte Carlo approach to estimate various risk measures on the
portfolio level. All of this is performed in a rolling window fashion. The central principle of this uncondi-
tional risk measure estimation approach presented in this thesis is illustrated in Figure A below. This

Figure A Illustration of the central principle of the unconditional risk estimation presented in this thesis.

approach extends the work of Maarouf (2021) as not only the Value at Risk (VaR) but also the expected
shortfall as risk measure is considered. Additionally the algorithm was further optimized for computational
efficiency. The expected shortfall as additional risk measure is especially important as it is the successor
of the VaR as the primary market risk measure as of Basel Committee (2016, 2017) because it overcomes
some major theoretical shortcomings of the VaR. Monstvilaite (2016); Sharma and Sahni (2021) both pro-
pose the same unconditional risk measure estimation approach as Maarouf (2021) combining univariate
ARMA-GARCH models with R-vine copula models as the flexible dependence model followed by a Monte
Carlo approach to estimate the risk measures but also lack the coverage of the expected shortfall and
do not provide software or optimized algorithms for the effective estimation. The same holds for Trucíos
et al. (2019) who apply an approach based on Brechmann and Czado (2013) only differing from the one
of Maarouf (2021) in the usage of robust GARCH models instead of ARMA-GARCH models. They apply
the approach to portfolios of cryptocurrencies and indeed cover the expected shortfall but they also neither



2

provide a detailed and optimized algorithm for the rolling window approach nor a publicly available imple-
mentation.

Moreover in this thesis we introduce a conditional estimation approach. One can specify one or two
additional market indices or other main market players that are also univariately modelled via ARMA-
GARCH models and then incorporated in the D-vine copula which is used in the conditional setting for
cross dependence modelling. Then one simulates the portfolio level forecasts conditionally on the market
index or indices which leads to conditional portfolio level risk estimates. Here as the conditioning values
quantiles of the market index or indices are proposed which allows to observe the behavior of the risk
measures conditioned on different states of the conditioning market index or indices. In particular this
can generate valuable insights in stress testing situations. For one conditioning market index the central
principle of this conditional risk measure estimation approach is illustrated in Figure B below. An
important part of the conditional approach is the conditional sampling from a D-vine copula. Thus in order
to facilitate this approach this thesis also introduces an algorithm to sample from the rightmost or the two
rightmost leafs of a D-vine copula in Chapter 6.

Figure B Illustration of the central principle of the conditional risk estimation presented in this thesis.

The thesis is split up into a methodological part and an applied part. The methodological part starts with
Chapters 1 and 2 on the notational conventions and a primer on financial time series. After that in Chapter 3
the used risk measures are discussed in detail. Then Chapter 4 covers the needed theory on the univariate
financial time series models. It is followed by Chapter 5 in which vine copula models are introduced and
Chapter 6 covers the simulation from vine copulas where also the novel conditional simulation algorithms
for D-vines can be found. Chapter 7 then formally presents the unconditional and conditional vine copula
based risk measure estimation approaches and Chapter 8 wraps up the methodology part with a detailed
walk through of applicable backtests for all considered risk measures. The applied part first presents
the developed portvine R package in Chapter 9 which is publicly available and efficiently implements all
the risk measure estimation approaches proposed in this thesis. This chapter also features performance
measures of the implementations in the package. Finally Chapters 10 and 11 include case studies on a
portfolio of Spanish stocks that show the practical application of all proposed methods.
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Part I

Methodological background
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1 Notational conventions and general setup

Regarding the mathematical notation this thesis will mostly adapt the one of Czado (2019). This includes
uppercase random variables (RV) and lowercase notation for realizations of such i.e. Y = y. For abso-
lutely continuous RVs the corresponding densities and distribution functions are existent and denoted by f
and F respectively. The corresponding so called quantile functionQ = F−1 also exists. The same notation
is used for the probability mass and distribution function of discrete RVs. In the following notation on dis-
tributions of random vectors, some essential univariate distributions and an important data transformation
are shortly given following Czado (2019) and Spokoiny and Dickhaus (2015).

Definition 1.0.1 (Joint, marginal and conditional distributions). Let X = (X1, . . . , Xd)T ∈ Rd be a d
dimensional absolutely continuous random vector. Then for the well defined joint, marginal and conditional
densities and distribution functions the following notation is used:

density function distribution function
Joint f(x1, . . . , xd) F (x1, . . . , xd)

Marginal fj(xj), j ∈ {1, . . . , d} Fj(xj), j ∈ {1, . . . , d}
Conditional fj|k(xj |xk), j 6= k Fj|k(xj |xk), j 6= k

Definition 1.0.2 (Uniform distribution). An absolutely continuous RV X ∈ R is univariately uniformly dis-
tributed on the interval [a, b] if it follows the density

f(x) :=
{ 1
b−a x ∈ [a, b]
0 else

(1.1)

and will be denoted as X ∼ U(a, b).

Definition 1.0.3 (Normal distribution). An absolutely continuous RV X ∈ R is univariately normally dis-
tributed with mean µ ∈ R and variance σ2 > 0 if it follows the density

f(x;µ, σ2) := 1√
2πσ2

e−
(x−µ)2

2σ2 (1.2)

and will be denoted as X ∼ N (µ, σ2). The widely used standard normal distribution is N (0, 1) and its
density and distribution function are denoted as φ(·) and Φ(·) respectively.

Definition 1.0.4 (Student’s t distribution). An absolutely continuous RV X ∈ R is univariately Student’s t
distributed with mean µ ∈ R, variance σ2 > 0 and degree of freedom parameter ν > 0 if it follows the
density

fν(x;µ, σ2) :=
Γ(ν+1

2 )
Γ(ν2 )

√
νπσ2

{
1 +

(
x− µ
σ

)2 1
ν

}− ν+1
2

(1.3)

and will be denoted as X ∼ tν(µ, σ2).

Notably the Student’s t distribution has heavier tails than the normal distribution which is clearly visible in
Figure 1.1. This behavior is the reason why this distribution is way more popular in the financial domain as
empirically the data arising in finance often showed heavy tailed characteristics as outlined in Tsay (2010).
A distribution that is especially important for upcoming hypothesis tests is the so called χ2-distribution.
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Figure 1.1 The densities of the standard normal (N (0, 1)) and standard Student’s t (tν=2(0, 1)) distribution. ν > 0
denotes the degree of freedom parameter for the Student’s t distribution.

Definition 1.0.5 (χ2-distribution). For n i.i.d. samples of the standard normal distribution Yi it holds that

n∑
i=1

Y 2
i ∼ χ2(n) (1.4)

where χ2(n) denotes the χ2-distribution with n degrees of freedom.

Another important tool that will be of utmost importance in the main algorithms down the road is the so
called probability integral transform that is defined next.

Definition 1.0.6 (Probability integral transform). Let X be a absolutely continuous RV with distribution
function F . Then the transformation of realization x of X

u := F (x) (1.5)

is the probability integral transform (PIT) at x.

It can be easily shown that the distribution of U := F (X) is standard uniform i.e. U(0, 1) as

P (U ≤ u) = P (F (x) ≤ u) = P (X ≤ F−1(u)) = F (F−1(u)) = u ∀u ∈ [0, 1]

by the definition of the distribution function. The PIT will be used to transform the realizations that follow
an in practice estimated distribution to the uniform scale. Of course for estimated or empirical distributions
the resulting transformed values are only approximate uniform. This uniform scale will be called copula-
scale from now on and be covered more thoroughly in the subsequent Sections. Notably also the reverse
transformation from now on called the inverse PIT can be used to (approximately) transform realizations
from the copula to the original scale. Hereby the possibly estimated quantile function Q = F−1 is utilized.
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2 Univariate financial time series

As evident from the introduction chapter at the core of all covered risk assessment approaches and al-
gorithms in this thesis is a portfolio of interest. So it is reasonable to keep a consistent notation of its
components. The portfolio of interest Ω consists of d ∈ N assets denoted by A1, . . . , Ad. Additionally the
weights w1, . . . , wd indicate the volume of each asset in the portfolio. For each of the portfolios assets
its value or price pAjt over a discrete time frame of interest t ∈ {1, . . . , T} is observed. In most financial
studies instead of the prices one works with the log returns of the assets that are introduced next following
Tsay (2010).

Definition 2.0.1 (Log returns). For a fixed asset with prices pt and pt−1 the log return or also called
continuously compounded return at time t is defined as

rt = ln
pt
pt−1

(2.1)

This formula results from the infinite compounding frequency limit case of discrete compounding. For
more details on discrete compounding or the incorporation of dividend payments consult Chapter 1 of
Tsay (2010).

The statistical properties of the derived log returns are more tractable than the ones of simple returns(
pt−pt−1
pt−1

)
and a nice additional property is that one can easily sum up log returns over a time interval

to get valid multi-period log returns. But it has to be noted that the weighted sum of the log returns of a
portfolio at time t is only an approximation of the full portfolio log return.

rΩ
t ≈

d∑
j=1

wj ∗ r
Aj
t (2.2)

This widely used approximation will also be used in this thesis. So all in all the relevant portfolio information
is given by the set

Ω = {wj , r
Aj
t |t = 1, . . . , T ; j = 1, . . . , d}.

This set encompasses one univariate financial time series of log returns for each asset. Such a time series
will be treated as a collection of RVs over time. An important prerequisite for many univariate time series
models like the ones that will be introduced in Chapter 4 and thus now defined consulting Shumway and
Stoffer (2017) is the stationarity of a time series .

Definition 2.0.2 (Stationary time series). A time series is strictly stationary if the probabilistic behavior
of an arbitrary collection of time points {Xt1 , . . . , Xtk} does not change for any possible time shift like
{Xh+t1 , . . . , Xh+tk}. So all joint distribution functions stay the same independent of arbitrary time shifts.
A time series is weakly stationary if the process has finite variance, the mean value function µt = E[Xt]
is constant over time and the autocovariance function γ(s, t) = Cov(Xs, Xt) depends only on the lagged
time difference |s− t|. In particular for s = t this means a constant variance i.e. γ(s, s) = V ar(Xs) = σ2.

For the upcoming covered theory the notion of weak stationarity of the log return series is sufficient and
without additional comments the term stationary will refer to weak stationarity. To check the stationarity
of a given log return series one can use a visualization as in Figure 2.1. One should spot a constant
variation around a constant value. Smoothing lines e.g. by loess smoothing can be a beneficial add on
for the visualization. They help to assess the constant mean assumption and might uncover periodicity.
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Figure 2.1 Illustration of a weakly stationary zero mean time series. The blue LOESS smoothing line helps to assess
the constant mean assumption.

Of course one could also split the data into subsamples or bootstrap samples and then compare their
empirical first two moments. For obviously non stationary time series one can have a look into detrending
with regression methods or also differencing as outlined in Shumway and Stoffer (2017). When observing
variance heterogeneity for example in the form of a cluster with considerably higher variance, which might
be observable during a crash of the financial market, one will have to keep this in mind when modeling. The
upcoming Section will indeed also present a class of models that can deal with these heterogeneities and
thus times series that are not weakly stationary, but the mean function should still be constant over time.
Before covering the univariate modeling of such time series of log returns in Chapter 4 it is reasonable with
regard to the overall goal of risk assessment through backtesting to introduce the risk measures that will
be used. Then it will also be even more obvious why the modeling of the log return series is needed. Thus
the next section covers different measures of risk.
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3 Risk measures

Before defining the actual risk measures and their estimators that will be used during this thesis a general
definition of a risk measure will be given. This chapter follows Tasche (2002) and Pfaff (2016).

3.1 Definition and desired properties

Definition 3.1.1 (Risk measure). Given a probability space with sample space O, σ-Algebra F and prob-
ability measure P as well as a non-empty set of F -measurable absolutely continuous RVs R, then any
mapping ρ : R → R ∪∞ is considered a valid risk measure.

Here elements ofR might be seen as random variables at a certain time point for the value or log return
of an asset. The mapping ρ then should return a reasonable real value indicating the risk of the asset at the
specific point in time. Definition 3.1.1 will be met by every presented risk measure below. For quite some
time now there is a strong case for using so called coherent risk measures which come with reasonable
additional properties that a risk measure should satisfy and thus will be introduced next.

Definition 3.1.2 (Coherent risk measure). A risk measure ρ as defined in Definition 3.1.1 is called coherent
if it satisfies the following properties:

1. Monotonicity: X,Y ∈ R, X ≤ Y ⇒ ρ(X) ≥ ρ(Y ).

2. Positive homogeneity: X ∈ R, h > 0, hX ∈ R ⇒ ρ(hX) = hρ(X).

3. Translation invariance: X ∈ R, a ∈ R, a+X ∈ R ⇒ ρ(a+X) = ρ(X)− a

4. Subadditivity: X,Y ∈ R, X + Y ∈ R ⇒ ρ(X + Y ) ≤ ρ(X) + ρ(Y )

While the consequences of the first three properties are quite obvious, the subadditivity has major
implications on portfolio management that are not directly visible. Say one manages multiple portfolios
and wants to estimate overall risk over all portfolios so the sum of all portfolios. Then when having risk
estimates from a coherent risk measure for each portfolio one can get an upper bound on the overall risk
by a simple summation. This cannot be achieved in general for risk measures lacking this fourth property
and this could then for example lead to a discouragement regarding diversification. Having these general
definitions covered one can move on and have a look at specific risk measures.

3.2 Value at Risk (VaR)

The most common risk measure in practice is still the Value at Risk. The measure was initially presented
in the first version of the publication RiskMetrics by JP Morgan as pointed out by Pfaff (2016).

Definition 3.2.1 (Value at risk). For a given asset or portfolio P, the continuous random variable RPt cor-
responding to the value of P at time t and with continuous distribution FRPt and quantile function QRPt the
value at risk (VaR) with confidence level α ∈ (0, 1) is defined as

V aRP,t
α := sup{r|FRPt (r) ≤ α} = QRPt

(α) (3.1)

and can be interpreted as the value that RPt will only fall below with a probability of α. An illustration is
given in Figure 3.1.
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Figure 3.1 Illustration of the Value at Risk for the continuous random variable RPt using its distribution function FRP
t

.

Here for the estimation of the VaR a Monte Carlo approach is utilized. The estimate for the V aRP,t
α

given samples rP,st , for s ∈ {1, . . . , S} from the random variable RPt is thus given straightforward by the
empirical α level quantile of these samples as can be seen below in Equation (3.2).

V̂ aR
P,t

α = V̂ aR({rP,st |s ∈ {1, . . . , S}}, α) = Q̂{rP,st |s∈{1,...,S}}
(α) (3.2)

Here Q̂Set(α) denotes the standard empirical quantile function based on a Set of samples evaluated at
the confidence level α.

Remark 3.2.1. Shortcomings of the VaR

• The Value at Risk is indeed a valid risk measure as defined in Definition 3.1.1 but not a coherent
one as it lacks the discussed subadditivity property as proven in Artzner et al. (1999) and Acerbi and
Tasche (2002). This is a major weakness as this makes it hard to assess overall risk when managing
multiple portfolios.

• The VaR is also law invariant which means that the distributions of the random variables of interest
must not be identical in order to have the same VaR. This was in particular shown for heavy and light
tailed distributions in Embrechts et al. (1997).

• The risk measure contains no information about the value of the asset or portfolio if its value falls
below the VaR at the chosen confidence level. As for such a scenario the VaR is the upper bound
for the portfolio value so for example corresponding to the best possible portfolio value in case a
once in a hundred year crash happens. The more interesting question could be if such a crash
happens what portfolio value may be expected. The answer to this question is actually estimated by
the expected shortfall which will be discussed right below.

3.3 Expected shortfall (ES)

Due to the mentioned shortcomings of the Value at Risk the banking regulators shifted their focus from
this prominent risk measure with the third Basel Accords to the risk measure expected shortfall that will be
introduced next Bayer and Dimitriadis (2020b).
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Definition 3.3.1 (Expected shortfall). For a given asset or portfolio P, the continuous random variable RPt
corresponding to the value of P at time t and with continuous distribution FRPt and quantile function QRPt
the expected shortfall (ES) with confidence level α ∈ (0, 1) is defined as

ESP,tα = E[RPt |RPt ≤ V aRP,t
α ] = 1

α

ˆ α

0
V aRP,t

u du (3.3)

and can be interpreted as the average value of RPt if the asset or portfolio drops in value below the
V aRP,t

α . The second characterization lends itself for the interpretation as the average value at risk for the
lower confidence span of (0, α).

The two characterizations in Equation (3.3) can be connected as stated on page 5 of Bayer and Dimitriadis
(2020b). One can do this by integration by substitution and by using the fact that the RV is continuous.

E[RPt |RPt ≤ V aRP,t
α ] = 1

α

ˆ F−1
RP
t

(α)

−∞
rfRPt

(r)dr

= 1
α

ˆ F−1
RP
t

(α)

−∞
F−1
RPt

(FRPt (r))F ′RPt (r)dr

= 1
α

ˆ α

0
F−1
RPt

(r)dr

= 1
α

ˆ α

0
V aRP,t

u du

Contrary to the VaR the expected shortfall is indeed a coherent risk measure which was proven for
example in Tasche (2002) and thus has the desired subadditivity property. So indeed the ES can mitigate
the major shortcomings of the VaR but for example the law invariance weakness still applies to the ES.
Moreover it should be noted that in the literature the expected shortfall is often called the conditional
Value at Risk (CVaR) and the representation using the expected value for general also non absolutely
continuous random variables is often called the tail conditional expectation (TCE) which is equivalent to
the ES in the continuous case. The following decomposition shows that the ES is always smaller or equal
to the VaR so actually more conservative as a risk measure. This comes from the non-negativity of the
last expectation.

ESP,tα = E[RPt |RPt ≤ V aRP,t
α ]

= E[RPt + V aRP,t
α − V aRP,t

α |RPt ≤ V aRP,t
α ]

= E[V aRP,t
α |RPt ≤ V aRP,t

α ] + E[RPt − V aRP,t
α |RPt ≤ V aRP,t

α ]
= V aRP,t

α − E[V aRP,t
α −RPt |RPt ≤ V aRP,t

α ] (3.4)

Again for the estimation of the expected shortfall a Monte Carlo approach is taken. The base setting is
the same as for the VaR estimation, samples rP,st , for s ∈ {1, . . . , S} from the random variable RPt are
given, but here the ESP,tα should be estimated. Other than for the VaR here three different estimators are
presented below.
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ÊS
P,t

mean,α = ÊSmean({rP,st |s ∈ {1, . . . , S}}, α)

= 1
|{rP,st |s ∈ {1, . . . , S}, r

P,s
t ≤ V aRP,t

α }|

∑
{rP,st |s∈{1,...,S},r

P,s
t ≤V aR

P,t
α }

rP,st (3.5)

ÊS
P,t

median,α = ÊSmedian({rP,st |s ∈ {1, . . . , S}}, α)
= Q̂{rP,st |s∈{1,...,S},r

P,s
t ≤V aR

P,t
α }

(0.5) (3.6)

ÊS
P,t

mc,n_mc,α = ÊSmc({rP,st |s ∈ {1, . . . , S}}, α, n_mc)

= 1
n_mc

n_mc∑
i=1

V aRP,t
ui ui ∼ U(0, α) for i ∈ {1, . . . , n_mc} (3.7)

The first two estimates are derived by just applying standard statistics for the expected value i.e. the em-
pirical mean in (3.5) and median in (3.6) on the returns for which the condition that its value falls below
the a priori computed VaR at the same confidence level α holds. Here the median based estimate might
be more robust. These two estimating strategies are outlined in Pfaff (2016) and are the natural choice
given the first representation of the ES in (3.3). The last estimate (3.7) is a Monte Carlo integration ap-
proach based on the second characterization of the ES in (3.3). Note that for this approach an additional
parameter that specifies the number of Monte Carlo samples must be introduced. A comparison of their
respective performances in practice is covered in the applied part of the thesis.

Having covered these two important risk measures as well as their estimators it is evident that for the
risk measure estimation samples of the RVs of interest are needed. These RVs of interest are the future
portfolio log returns. A crucial step in the process of computing these samples that will be covered in detail
in Chapter 7 is the modelling and forecasting of each of the portfolios asset log return series. The models
used for this will be called assetwise marginal time series models and be introduced in the next section.
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4 Univariate financial time series models

The assetwise marginal time series models or short marginal models are called this way because for
each assets log return series of the portfolio Ω an individual univariate time series model will be fitted in a
rolling window fashion which will be described in detail in Chapter 7 and thus each asset can be viewed
as a margin of the whole portfolio. So in this section this marginal modeling of one of the assets log return
series {rAjt , t = 1, . . . , T} or in this section for simplicity {rt, t = 1, . . . , T} is discussed. Moreover starting
this chapter the return series are assumed to be stationary according to Definition 2.0.2. The approach
is the same for all log return series of the portfolio. The considered model class for the time series will
be a so called ARMA-GARCH model. In this chapter first the components of the ARMA-GARCH models
i.e. ARMA and GARCH models are introduced before stating the final model. Besides the model formulas
also notes on parameter estimation, forecasting and useful properties are given. The chapter that follows
mostly Shumway and Stoffer (2017) and Tsay (2010) concludes with a section on ways to assess model
quality.

4.1 Autoregressive models (AR)

Autoregressive (AR) models of order p translate mathematically the intuitive idea that the current value
rt of the time series can be explained as a function of its last p values rt−1, . . . , rt−p. In the classic AR
model this function is a linear one which results in the following formal definition.

Definition 4.1.1 (Autoregressive model). An autoregressive model of order p for the time series {rt, t =
1, . . . , T} has the model formula

rt =
p∑
l=1

φlrt−l + wt (4.1)

with wt
i.i.d.∼ wn(0, σ2) often called the innovations and wn called white noise being a zero mean,

constant variance distribution. When the white noise distribution is a normal distribution one speaks of
Gaussian white noise. The φl are the model parameters to be estimated. The model is abbreviated by
AR(p).

From the definition it is evident that one models the time conditional mean of the time series while assuming
constant variance over time. Having the coefficients φl one can define the so called AR polynomial

φ(z) = 1−
p∑
l=1

φlz
l

with z ∈ C and then so called causal AR processes. A process is called causal if it does not depend on
future observations like rt+1 at time t. An AR model is causal if and only if the roots of φ(z) lie outside the
complex unit circle as outlined in Shumway and Stoffer (2017). In the following the considered AR models
are assumed to be causal as future values of the time series are considered unknown.

For a better grasp of autoregressive models one has an exemplary look at the first order causal AR(1)
model with |φ1| = |φ| < 1 i.e. rt = φrt−1+wt. The first two moments conditioned on the past observations
are directly given by
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E[rt|rt−1, rt−2, . . . ] = φrt−1

V ar(rt|rt−1, rt−2, . . . ) = V ar(wt) = σ2.

Iterating backwards in time one can get the stationary linear process representation of the time series

rt = φrt−1 + wt

= φ2rt−2 + φwt−1 + wt
...

=
∞∑
l=0

φlwt−l. (4.2)

This is now useful for the calculation of the unconditional moments of the time series.

E[rt] =
∞∑
l=0

φlE[wt−l] = 0

γ(h) = Cov(rt+h, rt)

= E
[( ∞∑

l=0
φlwt+h−l

)( ∞∑
k=0

φkwt−k

)]

= σ2
∞∑
l=0

φlφl+h

= σ2 φh

1− φ2 , h ≥ 0.

Here the fact that |φ| < 1 is used which leads to the convergence of the sum as a geometric series in
the last line of the derivation of the autocovariance function. The zero mean assumption can be and is
often relaxed by introducing a mean parameter φ0 additive in the model formulation given in (4.1). The
general behavior of AR models is not influenced by this and in the AR(1) model this leads to the mean
φ0/(1 − φ1). Also it is evident that a greater φ corresponds to a stronger autocovariance and variance
structure following from the above given autocovariance function γ. This can be observed in Figure 4.1
that displays sample paths and their corresponding empirical autocovariance function γ̂ of AR(1) models
with φ ∈ {0.1, 0.9,−0.9}. One can also observe that a negative φ leads contrary to the positive one not to a
quite smooth sample path but to a very rough one. The alternating pattern in the empirical autocovariance
functions is also no surprise when looking at the equation for the theoretical one above.

4.2 Moving average models (MA)

Other than the AR models moving average (MA) models of order q assume that the current value rt can
be explained via a function of the last q and the current noise terms wt, . . . , wt−q. Again in the classic MA
models this function is assumed to be linear which results in the following formal definition.

Definition 4.2.1 (Moving average model). A moving average model of order q for the time series {rt, t =
1, . . . , T} has the model formula

rt =
q∑
l=1

θlwt−l + wt (4.3)
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Figure 4.1 Illustration of the sample paths and the corresponding empirical autocovariance function γ̂ of three AR(1)
models differing in their parameter φ.

with wt
i.i.d.∼ wn(0, σ2) again denoting a white noise distribution. The θl are the parameters. The model is

abbreviated by MA(q).

Again the conditional mean is modeled under the assumption of constant variance. Having the coeffi-
cients θl one can define the so called MA polynomial

θ(z) = 1 +
q∑
l=1

θlz
l

with z ∈ C and then the so called invertible MA processes. This is important as certain combinations of
parameters and white noise specifications lead to the same and not distinguishable autocovariance struc-
ture. From these models always the model with an infinite AR representation is chosen. This model is
then called the invertible process. A MA model is invertible if and only if the roots of θ(z) lie outside the
complex unit circle as shown in Shumway and Stoffer (2017). In the following the considered MA models
are assumed to be invertible.

Like for the AR models an exemplary look at the first order invertible MA(1) model with |θ1| = |θ| < 1
i.e. rt = θwt−1 + wt is taken. The first two unconditional moments conditioned on the observed past are
trivially given from the model formulation. Also the unconditional moments are easily derivable.

E[rt] = θE[wt−1] + E[wt] = 0
γ(h) = Cov(rt+h, rt)

=


(1 + θ2)σ2 h = 0
θσ2 h = 1
0 h > 1

Notably the autocovariance function cuts of after the lag h corresponding to the order q. This will be
useful and covered again when addressing model selection for ARMA models. So rt in a MA model other
than in an AR model for which rt is correlated with all its predecessors is actually just correlated with its
q predecessors. In the MA(1) case with its direct predecessor. Again the sample path of MA(1) models
with positive θ is slightly smoother than their negative counterpart as depicted in Figure 4.2. Also the
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Figure 4.2 Illustration of the sample paths of three MA(1) models with differing parameters θ.

reduced variation for smaller θ can be spotted. As in the AR case one can and often does relax the zero
mean assumption and introduces a mean parameter θ0 additive in the model formulation given by Equation
(4.3). This parameter is by linearity of the expectation directly the expected value of the process and its
introduction does not influence the general properties of the MA model.

4.3 Autoregressive moving average models (ARMA)

Model definition

Having introduced AR and MA models separately one can combine the two models into one more flexible
model the so called autoregressive moving average models short ARMA model.

Definition 4.3.1 (Autoregressive moving average models). A autoregressive moving average model of AR
order p and MA order q for the time series {rt, z = 1, . . . , T} has the model formula

rt = φ0 +
p∑
l=1

φlrt−l + wt +
q∑

k=1
θkwt−k (4.4)

with wt
i.i.d.∼ wn(0, σ2) once again denoting a white noise distribution. The parameters are here θk, φl and

note that here the mean parameter φ0 is considered. The actual expected value of the time series is then
φ0/(1− φ1 − · · · − φp). The model is abbreviated by ARMA(p, q).

In general especially for higher orders of p and q one should be aware of the problem of parameter
redundancy. For the detection one should spot common roots in the respective AR and MA polynomials
as parameter redundancy can result in wrong interpretations. An ARMA(p,q) model is considered causal if
the respective AR(p) model is causal. The same applies for the invertability of the ARMA(p,q) model w.r.t.
the invertability of the corresponding MA(q) model as stated in Shumway and Stoffer (2017).

AR and MA order selection

In order to fit such an ARMA model one has to determine the orders p and q. This because just fitting a
large order model will lead to less efficient and less precise parameter estimates as outlined in Shumway
and Stoffer (2017). Useful tools for choosing reasonable orders are the autocorrelation function (ACF)
and the partial autocorrelation function (PACF). Of course in practice their efficient empirical estimators
are used. The autocorrelation function ACF is basically a standardized version of the autocovariance
function and measures the linear influence of rs on rt i.e. the serial correlation. The formula is given by
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ACF (s, t) = γ(s, t)√
γ(s, s)γ(t, t)

(4.5)

and simplifies for stationary time series to

ACF (h) = γ(h)
γ(0) (4.6)

So it holds that ACF ∈ [−1, 1] with −1 and 1 indicating a perfect linear relationship as in the classical
Pearson correlation and 0 indicating no linear dependence. Already indicated by the first order AR and MA
models discussed the ACF of an AR model does tail off (mostly exponentially or in a sinusodial fashion)
and the ACF of an MA(q) model cuts off after h = q. Thus using ACF plots one can determine the MA
order of an MA or ARMA model. For the choice of the AR order of a stationary process one uses the
partial autocorrelation function PACF. For h = 1 one has PACF (1) = ACF (1) and for subsequent
h > 1 the partial autocorrelation is given by

PACF (h) = Cor(rt+h − r̂t+h, rt − r̂t) (4.7)

were r̂t is linearly regressed on rt+1, . . . , rt+h−1 i.e. the fitted value from the regression

r̂t = β1rt+1 + β2rt+2 + · · ·+ βh−1rt+h−1

and were r̂t+h is linearly regressed on rt+1, . . . , rt+h−1 i.e. the fitted value from the regression

r̂t+h = β1rt+h−1 + β2rt+h−2 + · · ·+ βh−1rt+1.

So the PACF is basically the correlation of rt and rt+h with the linear dependence on the values between
them removed on each of them.

One can follow Shumway et. al Shumway and Stoffer (2017) that show that in this case the PACF of an
AR(p) model cuts off after h = p and the MA model tails off. Thus this can be a valuable tool to determine
the AR order p. Nevertheless for a general ARMA(p,q) model both ACF and PACF might tail off which can
make the order selection difficult. A reasonable approach is then to start with low orders, assess and com-
pare model quality with the tools that will be introduced at the end of this section and gradually increase
the orders until the desired model quality is achieved or one detects the deficiency of the ARMA model to
represent the data in a good enough way.

Estimation

For the estimation of AR(p), MA(q) and ARMA(p,q) models one assumes the order parameters p and q to
be known. Although for AR models one has an optimal method of moments estimator through the so called
Yule-Walker equations that are based on using empirical autocovariance functions of the observed process
already for MA(1) models the method of moments estimation is inferior to the most prominent estimation
method in the field which is maximum likelihood estimation (MLE). Before starting the estimation one
also has to specify a parametric distribution for the assumed white noise distribution. Common choices are
the normal or Student’s t distribution. As the white noise distribution is assumed to have a zero mean only
the volatility parameter σ2 has to be estimated alongside the θ and φ parameters. The estimation is then
carried out by numerically e.g. by Newton-Raphson maximizing the overall likelihood of the ARMA(p,q)
model

L(φ0, φ1, . . . , φp, θ1, . . . , θq, σ
2) =

T∏
t=1

f(rt|rt−1, . . . , r1) (4.8)



18

with respect to the unknown parameters and with f being the density of the specified white noise distribu-
tion. If the conditional distribution is Gaussian one has the mean rt−1

t and variance P t−1
t of the conditional

distributions in Equation (4.8) where they represent the one step ahead forecast

rt−1
t = E[rt|rt−1, . . . , r1]

and the prediction error variance of it

P t−1
t = E[(rt − rt−1

t )2]

respectively. They both are functions of the parameters to be estimated alone and can recursively be
estimated with algorithms like the Innovations or Durbin-Levinson Algorithm as outlined in Shumway and
Stoffer (2017) thus one can write down the overall likelihood as

L(φ0, φ1, . . . , φp, θ1, . . . , θq, σ
2) = (2π)−T/2(P 0

1P
1
2 · · ·P T−1

T )−1/2exp

(
− 1

2

T∑
t=1

[(rt − rt−1
t )2

P t−1
t

])
.

The same approach is taken for the case where the conditional distributions in Equation (4.8) are from the
Student’s t distribution with degree of freedom ν. The overall likelihood is then given as

L(φ0, φ1, . . . , φp, θ1, . . . , θq, σ
2) =

( Γ(ν+1
2 )

Γ(ν2 )
√
νπ

)T
(P 0

1P
1
2 · · ·P T−1

T )−1/2
T∏
t=1

{
1 +

(
rt − rt−1

t

P t−1
t

)2 1
ν

}− ν+1
2
.

One speaks of unconditional estimation if one just maximizes without further restrictions the above
likelihood with respect to all the unknown model parameters. The conditional estimation approach uses
initial values obtained from the observed data to speed up the computations. Both the unconditional and
conditional approach lead to optimal estimators for causal and invertible ARMA(p,q) models and as AR(p)
and MA(q) models are just special ARMA models this applies also for their estimation. Moreover these
estimation procedures lead to asymptotic results that allow the construction of confidence intervals and
hypothesis test for the estimates. More details on the estimation of ARMA models as outlined above can
be found in Shumway and Stoffer (2017).

Forecasting

Of course in this thesis one is very much interested in forecasting returns for a given fitted time series
model. For the forecasting all model parameters are assumed to be estimated. The one step ahead
forecast in the setting of causal and invertible ARMA(p,q) model is straightforward given by

r̂T+1 = φ̂0 +
p∑
l=1

φ̂lrT+1−l +
q∑

k=1
θ̂k(rT+1−k − r̂T+1−k) (4.9)

Where the fitted residuals are used in the sum corresponding to the MA part. The one step ahead esti-
mates r̂t are iteratively calculated via algorithms like the Innovations or the Durbin-Levinson algorithms as
given in Shumway and Stoffer (2017). These algorithms assume as the starting value r̂1 = E[r1] = µ as
a stationary time series with constant mean is assumed and additionally calculate the corresponding one
step ahead estimated forecast errors. One can observe a gradual dampening of the influence of the AR
coefficients and the MA coefficients disappearing according to their order q when looking at these iterative
calculations. So the forecasts converge to the estimated mean of the series quite quickly at least if there
is not a very strong autocovariance structure and the estimated variance grows towards the estimated
variance of the whole process.

Until now all models covered had the assumption of constant variance in common. So the residuals are
assumed to be homoscedastic. How to check this in practice will be covered in the last part of this section



19

that is concerned with quality assessment of time series models. In the practice of modelling log returns
this assumption often does not hold and thus more flexible models that can account for heteroscedasticity
are required. This leads to so called volatility models that will be introduced next.

4.4 Generalized autoregressive conditional heteroscedasticity models
(GARCH)

Model definition

For volatility modeling using the generalized autoregressive conditional heteroscedasticity (GARCH)
model class one splits the model formula into two components.

rt = µt + wt (4.10)

The so called mean equation µt is there to model the conditional mean as discussed for ARMA models.
Actually often ARMA(p,q) models are used to parameterize the mean equation.

µt = φ0 +
p∑
l=1

φlrt−l +
q∑

k=1
θkwt−k (4.11)

with wt being the innovation at time t. If the mean equation is parameterized this way one speaks of a so
called ARMA-GARCH model. The parameterization of the innovations wt = rt − µt called the volatility
equation is following a GARCH(m, s) model if it is given by

wt = σtεt, σ2
t = α0 +

m∑
i=1

αiw
2
t−i +

s∑
j=1

βjσ
2
t−j (4.12)

So the innovations wt are decomposed multiplicatively into a time dependent component σt and again a
white noise component εt

i.i.d.∼ wn(0, 1). Additionaly it must hold that αi ≥ 0, βj ≥ 0 and
∑max(m,s)
i=1 (αi +

βi) < 1. The latter constraint implies a finite unconditional variance of the innovations wt. For s = 0 the
model reduces to an ARCH model. For details on this submodel class consult Chapter 3.4 of Tsay (2010).

Definition 4.4.1 (ARMA-GARCH model). The model specified by combining Equations (4.10), (4.11) and
(4.12) is called an ARMA(p,q)-GARCH(m,s) model. The orders p, q, m and s are fixed and the parameters
φl, θk, αi and βj are to be estimated under discussed constraints.

The parallels in the mean and volatility equations are quite evident so one can think of the GARCH
model like an ARMA approach for the squared time dependent volatility component σ2

t of the innovations.
Moreover one can conclude from the volatility equation that prior strong volatility gives rise to larger mod-
elled volatility. This behavior is called volatility clustering and such periods of high volatility can be for
example market crashes. Obviously this is a strength of the model. Additionally the model provides a
functional insight describing the evolution of volatility. A weakness of the model however is that due to the
square in the volatility equation it can not differentiate between positive and negative innovations. At this
point it should also be noted that in most practical applications to financial time series data rather small
order specifications often achieve the best results like the most common order specification ARMA(1,1)-
GARCH(1,1).

Estimation

The estimation of ARMA-GARCH models is often performed using a two pass estimation method. First
one focuses on the estimation of the parameters of the mean equation (4.11) and basically omits the
volatility modeling. This results in the estimation of an ARMA model e.g. by MLE which was covered
previously. After having fitted the mean equation on is left with a fitted residual series ŵt. The second
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step is then to use the squared residual series ŵ2
t for the maximum likelihood estimation of the parameters

of the volatility equation (4.12). As mentioned before the volatility equation is constructed like an ARMA
model and thus the likelihood is given analogously to the ARMA case. This two pass method is of course
just an approximation of the true parameters but empirical results especially on moderate or large sample
sizes have shown very promising approximations. Alternatively one can also opt for a joint estimation
of the parameters by considering the joint likelihood. This is computationally more demanding but the
computational burden could be reduced by considering initial values from the two pass estimation method.

Forecasting

The forecasting of a fitted ARMA-GARCH model is quite similar to the one for ARMA models. The only
difference is that one iteratively determines both the forecasts for the mean µ̂T+1 and volatility σ̂2

T+1 like for
ARMA models respectively as they both are time dependent. Exemplary for an ARMA(1,1)-GARCH(1,1)
model the one step ahead volatility forecast is given by

σ̂2
T+1 = α̂0 + α̂1(rT − r̂T )2 + β̂1σ̂

2
T

where like for the ARMA forecasting the estimates r̂t and σ̂2
t are calculated iteratively with the initial values

set to r̂1 = µ and σ̂2
1 = 0 as described in Tsay (2010) and Shumway and Stoffer (2017).

4.5 Assessment of model quality

The assessment of model quality for all the discussed time series models boils down to a thorough resid-
ual analysis. In order to work on a common scale one analyzes the standardized residuals which are
calculated by

zt = rt − µ̂t
σ̂t

(4.13)

where in the case of AR, MA and ARMA models the volatility estimate σ̂t is of course not time dependent
but constant. These standardized residuals {zt|t = 1, . . . , T} should for a well suited model as stated
in the model definitions be i.i.d. samples of the specified white noise distribution. So the analysis of
these standardized residuals w.r.t. no autocorrelation structure is the most important model quality as-
sessment step for AR, MA and ARMA models. For ARMA-GARCH models this step is only the first of two
as it only checks the adequacy of the mean equation. For the assessment of the volatility equation one
has to additionally check for the nonexistence of autocorrelations in the squared standardized residuals
{z2
t |t = 1, . . . , T}.

For the residual analysis one has multiple tools. The first and most straight forward one is to simply
plot and visually inspect the residuals over time. This was done for four standardized residual series in
Figure 4.3. For these examples one assumes to have fitted a hypothetical time series model with the
standard Normal distribution as the specified target residual distribution. The exemplary standardized
residual series all with total sample size 100 were simulated as follows.

1. I.i.d. normal: zt
i.i.d.∼ N (0, 1).

2. I.i.d. Student’s t: zt
i.i.d.∼ t2(0, 1).

3. Correlated: zt is a sample path from an AR(4) model with parameters φ1 = 0.1, φ2 = φ3 = 0.3, φ4 =
0.2 and zero mean.

4. Variance heterogeneity: zt
i.i.d.∼ N (0, 0.5) for t ∈ {1, . . . , 50} and zt

i.i.d.∼ N (0, 1 + (t − 51)/49) for
t ∈ {51, . . . , 100}.
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Figure 4.3 Plots of the standardized residuals zt over time for four different sampled residual series all with sample
size 100.

Thus for the assumed model only the first exemplary series is perfectly aligned with the model assumptions.
In these basic exploratory plots already the autocorrelation of the correlated sample can be anticipated as
well as the variance heterogeneity. Notably the i.i.d. normal and Student’s t samples are not really distin-
guishable and both do not give rise to model quality concerns. The plots for the correlated sample suggest
a poor modelling of the conditional mean which should be adjusted and the one showing severe variance
heterogeneity suggests to either incorporate or to adjust the volatility equation.

Secondly as one does not want to spot any autocorrelation in the standardized residuals the visualiza-
tion of the empirical ÂCF (h) computed for the first lags h can be a valuable tool to check this assumption.
Notably the empirical ACF based on T samples if the sample is white noise is under mild regularity as-
sumptions and large T approximately normal distributed with zero mean and the standard deviation of√
T
−1

. This allows for the construction of 95% confidence bands around 0 that will be drawn in blue
dashed lines in the following. These can assist in the process of detecting anomalous autocorrelation
structure. Again the four exemplary samples are used for the empirical ACF plots in Figure 4.4. Here all
plots besides the one of the correlated sample show no truly concerning autocovariance structure. For the
correlated sample the findings are plain obvious and when observing such or slightly similar patterns one
should reassess the conditional mean modeling.

Next one checks whether the distribution of the standardized residuals matches the specified one. This
can be achieved by comparing the empirical sample quantiles with the theoretical ones. The approach and
the corresponding plot is widely adapted and known as Q-Q plot. One plots the sample quantiles on the
y axis and the corresponding theoretical ones on the x axis. So if the sample comes from the distribution
one should observe a point cloud very close to the identity line. Notably this is only doable with a constant
residual distribution. Thus whenever a volatility equation is included in the model this assessment method
is not used. The Q-Q plots for the four exemplary residual series are given in Figure 4.5. For each plot the
standard normal as the specified residual distribution is used for the theoretical quantiles. The slightly yet
visible heavier tails for the Student’s t distribution with degree of freedom ν = 2 suggest the refitting with a
heavier tailed residual distribution. In the variance heterogeneity case the heavy tails once again suggest
a bad model fit.
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Figure 4.4 Plots of the empirical ACF of the standardized residuals zt for four different sampled residual series. The
blue dashed lines indicate the 95% two sided confidence interval for the empirical ACF under the null hypothesis of
white noise.

Figure 4.5 Normal Q-Q plots of the standardized residuals zt for four different sampled residual series. The identity
is given as blue line.
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Figure 4.6 Plots of the p-values of Ljung-Box tests for different lags h based on the standardized residuals zt for four
different sampled residual series. The blue dashed line highlights the 0.05 confidence level.

In addition to plotting the empirical ACF one can consider a general hypothesis test for the existance of
autocorrelation. The test that is called the Ljung-Box test is taking also the magnitude of the empirical
ACF for multiple lags into consideration. For the residual series {zt|t = 1, . . . , T} the Ljung-Box-Pierce
Q-statistic is given by

Q = T (T + 2)
H∑
h=1

ÂCF (h)2

T − h
(4.14)

using the empirical ACF of the zt. Under the null hypothesis of no autocorrelation up to lag H i.e. the
ACF (1) = · · · = ACF (H) = 0 it holds that Q ∼ χ2

H . Thus if Q would exceed the (1− α)-quantile of the
given χ2 distribution one would reject the null hypothesis. In the use case of model quality assessment
this will be a goodness of fit hypothesis test that indicates a good fit for high p-values i.e. one does not
want to reject the null hypothesis. In practice often multiple values of H are tested. The resulting p-values
can be displayed graphically like in Figure 4.6 for again the four exemplary residual series. On the left
hand side one can spot once a picture perfect for the i.i.d. normal case and once the worst case scenario
for the correlated sample. Both plots on the right side suggest not a perfect but sufficient behavior of the
p-values. All in all one should use all the presented model assessment tools in order to perform a holistic
residual analysis as every one of them has their strengths and weaknesses.

Until now only the model quality assessment given a single model was discussed. For the comparison
of AR, MA, ARMA and also ARMA-GARCH models more or less the same principles apply. One should
always opt for a parsimonious model w.r.t. the model parameters as already discussed above overfitting
can result in inefficient estimates and wrong conclusions. In order to select both efficient which is mostly
measured with the likelihood and sparse models the most common way to go is the usage of classical
information criteria like the Akaike Information Criterion AIC of Akaike (1998) and the even more sparsity
encouraging Bayesian Information Criterion BIC of Schwarz (1978).

Now given a univariate stationary log return series {rt; t = 1, . . . , T} one can construct powerful and
most importantly well suited ARMA(p,q)-GARCH(m,s) models. After the successful assessment of model
quality one can make one step or multi step forecasts that feature an estimate of the mean µ̂ and of the
volatility σ̂2 for every forecasted time point. Moreover one has specified a known parametric distribution
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for the residuals like the Student’s t distribution. Using the PIT introduced in Definition 1.0.6 with this
distribution one can transform the standardized residuals z of the model to the copula-scale. This copula
data serves as the basis for the dependence modelling of multiple assets with vine copula models as
described in Czado (2019). Moreover one can transform from the copula-scale to the log return scale
by first applying the inverse PIT in order to transform to the standardized residual scale and secondly by
adding the estimated mean µ̂ to the product of the estimated volatility σ̂2 and the standardized residual
scale value that was calculated via the inverse PIT. These transformations to and from the copula scale
using estimated and forecasted values based on a well suited ARMA-GARCH model will play a vital role
in the risk estimation algorithms that are presented further down the road. Thus they will be discussed
in more rigorous notion later. As already mentioned one does not restrict oneself to the univariate view
of each of the portfolios assets but will apply multivariate dependence modeling with vine copulas to the
whole portfolio. Thus the next chapter will start with a gentle introduction into the world of vine copulas
before a closer look at their simulation is taken.
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5 Vine copulas

This section will introduce the concept of vine copulas for high dimensional dependence modeling. For
this we will closely follow Czado (2019).

5.1 Bivariate dependence measures

Although we are interested in high dimensional dependence modeling we first introduce bivariate depen-
dence measures. These will then later be used in the modeling of higher dimensional dependencies.
Arguably the most prominent bivariate dependence measure of all is the Pearson product-moment cor-
relation more widely known as simply the Pearson correlation. It measures linear dependence between
two random variables X1 and X2 and takes values in [−1, 1].

Definition 5.1.1 (Pearson product-moment correlation). For the random variables X1 and X2 with finite
second moments one defines the Pearson product-moment correlation coefficient ρ as

ρ := ρ(X1, X2) := Cor(X1, X2) = Cov(X1, X2)√
V ar(X1)

√
V ar(X2)

. (5.1)

It can be estimated using the empirical maximum likelihood estimators of the theoretical quantities.

Thus a value close to zero indicates that there is little evidence for a linear dependence, but even from a
theoretical zero ρ no independence is implied. Values close the boundaries indicate a negative - close to
-1 - and a positive - close to 1 - linear dependence respectively.

Remark 5.1.1. Notably later one would like to access the bivariate linear dependence of two variables
on the copula scale data i.e. the data uij lives in [0, 1] with i denoting the observation number and j the
variable number. As outlined in Czado (2019) for the estimation of the Pearson correlation of two variables
U1 and U2 on the copula scale a prior transformation to the normalized scale through

zij = φ−1(uij) ∀i, j (5.2)

is advisable.

But when building vine copulas later one is not only interested in the direct pairwise dependence. In par-
ticular one would also like to assess the dependence of variables with the effect of other variables already
removed. A dependence measure that is constructed for this purpose is called the partial correlation.

Definition 5.1.2 (Partial correlation). Given are the d random variables X1, . . . , Xd that have zero mean
and variances σ2

1, . . . , σ
2
d as well as the reduced index set Id−(i,j) = {1, . . . , d} \ {i, j} with i 6= j. Then

the partial regression coefficients bi,j;Id−(i,j)
without loss of generality i < j are defined as the quantities

that minimize

E[(Xi −
d∑

j=2,j 6=i
ai,j;Id−(i,j)

Xj)2] (5.3)

with respect to the coefficients ai,j;I−(i,j) . Then the partial correlation ρi,j;I−(i,j) is defined as

ρi,j;Id−(i,j)
= sgn(bi,j;Id−(i,j)

)×
√
bi,j;Id−(i,j)

× bj,i;Id−(i,j)
. (5.4)
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As shown by Yule and Kendall (1950) these can be calculated recursively using the following recursions.

Theorem 5.1.1 (Recursion for partial correlations). The partial correlations as of Definition 5.1.2 satisfy
the recursion

ρi,j;Id−(i,j)
=
ρi,j;Id−1

−(i,j)
− ρi,d;Id−1

−(i,j)
ρj,d;Id−1

−(i,j)√
1− ρ2

i,d;Id−1
−(i,j)

√
1− ρ2

j,d;Id−1
−(i,j)

. (5.5)

In practice however the most prominent estimation method as outlined in Kim (2015) is given by inverting
the empirical covariance matrix of all variables to get the estimated pairwise partial correlations in the
resulting matrix. The theory for this approach was given by Whittaker (1990). Notably for the case where
the determinant of the covariance matrix is close to zero one uses the Moore-Penrose pseudo inverse for
numerical stability.

5.2 Copula fundamentals

First up a short review of the most important data scales is given:

• original scale: The data is denoted with xi,j and lives on the whole real line.

• copula scale: The data is denoted with ui,j and lives on the interval [0, 1].

• normalized scale: The data is denoted with zi,j and is computed via φ−1(ui,j).

The transformation of i.i.d. data from the original to the copula scale is most often achieved with a so called
inference for margins (IFM) approach where one estimates a univariate parametric marginal distribution
function F and uses it to transform the data with

ui,j = F (xi,j). (5.6)

To get back to the original scale one simply applies the inverse transformation. Besides the calculation of
dependence measures like the partial correlation as given in Definition 5.1.2 the normalized scale is also
often used for visualizations. This will be showcased in the next section.

Before introducing vine copulas one has to be familiar with the concept of a copula in general. A copula
is basically a multivariate distribution function as given in Definition 1.0.1 but with the one constraint of all
marginal distributions being the uniform distribution as given in Definition 1.0.2. This is formalized in the
following definition.

Definition 5.2.1 (Copula). A multivariate distribution function C as given in Definition 1.0.1 on the d-
dimensional unit cube [0, 1]d is called a copula if and only if all marginal distributions are uniformly dis-
tributed. The corresponding copula density c is obtained by partial differentiation of the distribution function.

c(u1, . . . , ud) = ∂d

∂u1 . . . ∂ud
C(u1, . . . , ud) ∀u ∈ [0, 1]d (5.7)

A crucial result in the context of copulas and also integral to the construction of vine copulas is the repre-
sentation theorem of Sklar which will now be given.

Theorem 5.2.1 (Sklar’s theorem). The joint distribution function F of a d-dimensional random vector X
can be expressed by the marginal distribution functions Fi, i ∈ {1, . . . , d} and a d-dimensional copula C
as

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)) (5.8)

and in the same way one has the result for the corresponding densities.

f(x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) · · · fd(xd) (5.9)
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If the distribution F is absolutely continuous the copula C is unique. Moreover also the inverse statements
hold i.e. the copula corresponding to a multivariate distribution can be written in terms of its marginal
distributions as follows.

C(u1, . . . , ud) = F (F−1(u1), . . . , F−1(ud)) (5.10)

Again the same can be stated for the respective densities.

c(u1, . . . , ud) = f(F−1(u1), . . . , F−1(ud))
f1(F−1

1 (u1)) · · · fd(F−1
d (ud))

(5.11)

The proof for this theorem can be found in Nelsen (2010). Sklar’s theorem now allows for representations
of conditional bivariate distribution in terms of their copula. As these will be important further later these
representations are displayed in the following lemma.

Lemma 5.2.2 (Conditional distribution functions and densities of bivariate distributions in terms of their
copula). Using Theorem 5.2.1 one can rewrite the conditional bivariate quantities as

F1|2(x1|x2) = ∂

∂u2
C12(F1(x1), u2)|u2=F2(x2) (5.12)

=: ∂

∂F2(x2)C12(F1(x1), F2(x2)) (5.13)

f1|2(x1|x2) = c12(F1(x1), F2(x2))f1(x1). (5.14)

Proof. Using the definition of conditional densities and Theorem 5.2.1 one has

f1|2(x1|x2) = f12(x1, x2)
f2(x2)

= c12(F1(x1), F2(x2))f1(x1)f2(x2)
f2(x2)

= c12(F1(x1), F2(x2))f1(x1)

and using the identity

c12(F1(x1), F2(x2))f1(x1) = ∂2C12(u1, u2)
∂u1∂u2

|u1=F1(x1),u2=F2(x2)
∂u1
∂x1

= ∂

∂u2

(
∂

∂x1
C12(F1(x1), u2)

)
|u2=F2(x2)

one can derive that

F1|2(x1|x2) =
ˆ x1

−∞
f1|2(z1|x2)dz1

=
ˆ x1

−∞

∂

∂u2

(
∂

∂z1
C12(F1(z1), u2)

)
|u2=F2(x2)dz1

= ∂

∂u2

( ˆ x1

−∞

∂

∂z1
C12(F1(z1), u2)dz1

)
|u2=F2(x2)

= ∂

∂u2
C12(F1(x1), u2)|u2=F2(x2).

As for copulas one has univariate marginal distributions one can derive the associated conditional distri-
bution function as

C1|2(u1|u2) = ∂

∂u2
C12(u1, u2) ∀u1 ∈ [0, 1]. (5.15)
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Copula family C(u1, u2) parameter range independence

Clayton (u−δ1 + u−δ2 − 1)−
1
δ 0 < δ <∞ δ → 0

Gumbel exp(−[(−lnu1)δ + (−lnu2)δ]
1
δ ) δ ≥ 1 δ = 1

Frank −1
δ ln

(
1

1−e−δ ((1− e−δ)− (1− e−δu1)(1− e−δu2))
)

δ ∈ R\{0} δ → 0+

Joe 1−
(

(1− u1)δ + (1− u2)δ − (1− u1)δ(1− u2)δ
) 1
δ

δ ≥ 1 δ = 1

Table 5.1 A selection of bivariate archimedean single parametric copula families.

These bivariate conditional distribution functions are of major importance in the vine copula theory and
thus have a special name which is h-functions.

Definition 5.2.2 (h-functions of bivariate copulas). For a bivariate copulaC12 the corresponding h-functions
are defined as

h1|2(u1|u2) = ∂

∂u2
C12(u1, u2) (5.16)

h2|1(u2|u1) = ∂

∂u1
C12(u1, u2) (5.17)

for all (u1, u2) ∈ [0, 1]2.

5.3 Bivariate copula families

Also of major importance for the vine copula theory are bivariate parametric copulas also called bivariate
copula families. Without further ado the this section will introduce some of them. The simplest bivariate
copula is without a doubt the independence copula. This copula actually has no parameters and is given
by

C(u1, u2) = u1 × u2

Copulas that are derived from elliptical distributions by applying the inverse statement in Theorem 5.2.1
represent the class of elliptical copulas. The two most important representatives of this class of copulas
are the Gaussian and Student’s t copula. The bivariate Gaussian copula is given as

C(u1, u2) = Φ2(Φ−1(u1),Φ−1(u2))

with Φ2 being the two-dimensional standard normal distribution function. The bivariate Student’s t copula
is constructed via

C(u1, u2) = Tν,2(T−1
ν (u1), T−1

ν (u2))

with Tν,2 being the two-dimensional standard normal Student’s t distribution function and Tν the univariate
standard Student’s t distribution function both with degree of freedom ν. The parameters of the copulas
directly arise from the location and scale parameters of the elliptical distributions. Another important class
of copulas are the Archimedean copulas which are constructed via generator functions. Details on the
construction can be found in Chapter 3 of Czado (2019). Prominent single parametric representatives of
this class of copulas are displayed in Table 5.1.

Of course there are more parametric copula families like the extreme-value copulas and Chapter 3
of Czado (2019) gives a tour of all major parametric bivariate copula families. Additionally one can use
rotations of these copulas like a 90 degree counterclockwise rotation by C90(u1, u2) = C(1 − u1, 1 − u2)
in order to extend the possible dependence patterns that might be covered. Figure 5.1 shows marginal
normal contour plots of all the bivariate copula families presented i.e. the marginal copula scale domains
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are transformed by the inverse standard normal distribution function φ−1 for the sake of a better visual-
ization in the tails. Each copula beside the independence copula is shown once with a strong and once
with a rather weak dependence. These plots also show that by not restricting oneself to the class of ellip-
tical copulas but also using Archimedean copulas one opens the door for much more flexible dependence
patterns especially in the tails. This is also referred to as tail dependence whose modeling is considered
crucial especially in financial risk modeling as stressed in Pfaff (2016). Now having an idea of bivariate
parametric copula families one moves on towards rules to build a pair copula construction from data that
uses exactly these bivariate building blocks as a basis.
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Figure 5.1 Marginal normal contour plots of the presented bivariate copula families.
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5.4 Introduction to vine copulas

The fundamental idea in the theory of vine copulas is the one of pair copula constructions i.e. decom-
posing high dimensional distributions into bivariate building blocks by recursive conditioning. This idea can
be well illustrated in the three-dimensional case where one uses Sklar’s Theorem 5.2.1.

f(x1, x2, x3) = f3|12(x3|x2, x1)× f2|1(x2|x1)× f1(x1)
= c13;2(F1|2(x1|x2), F3|2(x3|x2);x2)f3|2(x3|x2)× f2|1(x2|x1)× f1(x1)
= c13;2(F1|2(x1|x2), F3|2(x3|x2);x2)c23(F2(x2), F3(x3))f3(x3)
× c12(F1(x1), F2(x2))f2(x2)× f1(x1)

where c13;2 denotes the associated copula density of the bivariate distribution of (X1, X3) given X2 = x2.
This decomposition of an arbitrary three-dimensional density into only bivariate building blocks is however
not unique as other - here in the three dimensional case exactly two more - conditioning orders could have
been applied. One then speaks of a so called pair copula decomposition of some multivariate distribution
if the copulas associated with the conditional distributions depend on a conditioning value like x2 in c13;2.
If one ignores this dependence one is making the famous simplifying assumption i.e. mathematically
speaking one assumes ∀(ui, uj) ∈ [0, 1]2 and conditioning set D that cij|D(ui, uj ;Xd = xd ∀d ∈ D) =
cij(ui, uj). This simplifying assumption will be made for the rest of this thesis. For a three-dimensional
copula such a pair copula construction simplifies even further as all marginal distributions are uniform.

c(u1, u2, u3) = c13;2(C1|2(u1|u2), C3|2(u3|u2))× c23(u2, u3)× c12(u1, u2) (5.18)

This formula could be used constructively if one uses the parametric bivariate copulas as this would allow
to construct a potentially high dimensional - in this case three-dimensional - parametric density with these
bivariate building blocks. The concept of regular vine copulas now formalizes this constructive procedure.

5.5 Regular (R) vine copulas

In order to achieve an algorithmic approach for the build up of pair copula constructions in d dimensions
one utilizes tools from graph theory as introduced in Bedford and Cooke (2002). One thinks of the bivariate
(conditional) copula building blocks as edges in a sequence of linked graphs. More specific these graphs
are trees which means that all nodes are connected and there are no circles. What the for now mysterious
nodes of these graphs are will become evident after the next definition. Figure 5.2 shows such a sequence
of trees in 5 dimensions. Actually this sequence of trees in Figure 5.2 is a valid regular vine (R-vine) tree
sequence. Such an R-vine tree sequence poses some important constraints on the tree sequence that
allow to build valid pair copula constructions in high dimensions and is now defined formally.

Definition 5.5.1 (Regular vine tree sequence). The set of treesW = (T1, . . . , Td) is called a regular vine
tree sequence on d elements if

1. ∀j ∈ {1, . . . , d} : Tj is connected i.e. there exists a path from each node to each other node.

2. T1 has the fixed node set N1 = {1, . . . , d}.

3. Every node set Nj with j ≥ 2 is exactly the edge set Ej−1.

4. For each {a, b} ∈ Ej it has to hold that |a ∩ b| = 1 for j ≥ 2.

where property (4) is called the proximity condition that ensures that for each edge (a, b) in tree Tj , j ≥ 2
between the nodes a and b, that are thus edges in the previous tree Tj−1, it holds that these edges a and
b have a common node in Tj−1.
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Figure 5.2 Exemplary R-vine tree sequence on 5 elements.

Before formally defining a regular vine copula some additional notation regarding such a tree sequence is
needed.

Definition 5.5.2 (Complete union and conditioned sets). Given a regular vine tree sequence W as of
Definition 5.5.1 and an edge e = {a, b} ∈ Ej where the tree Tj is comprised of the edge set Ej and node
set Nj one can define the following sets.

• complete union: Ae := {i ∈ N1|∃e1 ∈ E1, . . . , ej−1 ∈ Ej−1 such that i ∈ e1 ∈ · · · ∈ ej−1 ∈ e}

• conditioning set: De := Aa ∪Ab

• conditioned sets: Ce,a := Aa \De, Ce,b := Ab \De and Ce := Ce,a ∩ Ce,b

A common abbreviation of the edge e = (Ce,a, Ce,b;De) is e = (ea, eb;De).

Now one can define a regular vine copula.

Definition 5.5.3 (Regular vine copula). A d-dimensional copula for the random vector U = (U1, . . . , Ud)
is called a regular vine (R-vine) copula if one can determineW and B such that

1. R-vine tree sequence: W is a R-vine tree sequence on d elements.

2. Bivariate copulas: A set B = {Ce|e ∈ Ej with j = 1, . . . , d− 1} with Ce being symmetric bivariate
copulas.

3. Relationship between B and W : Each edge e = {a, b} in the trees of W is associated with the
corresponding copula Ce in B such that it is the associated conditional distribution of UCe,a and UCe,b
given UDe = uDe . Moreover the simplifying assumption is made and thus Ce(·, ·) does not depend
on the value of uDe .

As one speaks of a copula of course all marginal distribution functions of the Uj are uniform distributions on
[0, 1]. Additionally if the bivariate copulas contained in B are parametric one collects the copula parameters
of the respective pair copulas in B in the set Θ(B).
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Figure 5.3 Exemplary D-vine tree sequence on 4 elements.

5.6 Drawable (D) vine copulas

Beside the general R-vine copulas there are also two prominent special cases namely the drawable
vines (D-vines) and the canonical vines (C-vines). In this thesis only the D-vines will be used beside
the general R-vine. For details on C-vines a consultation of Chapter 4 of Czado (2019) is recommended.

Definition 5.6.1 (Drawable vine copula). An R-vine copula is called a drawable vine (D-vine) if the fol-
lowing additional constraint holds for its tree sequenceW :

∀n ∈ Nj , j = 1, . . . , d− 1 : |{e ∈ Ej |n ∈ e}| ≥ 2. (5.19)

This means graphically that each tree is just an ordered connected path with no loops.

Example 5.6.1. An exemplary 4-dimensional D-vine tree sequence is displayed in Figure 5.3. The corre-
sponding D-vine copula density is given by

c1234(u1, u2, u3, u4) = c12(u1, u2)× c23(u2, u3)× c34(u3, u4)
× c13;2(C1|2(u1|u2), C3|2(u3|u2))× c24;3(C2|3(u2|u3), C4|3(u4|u3))
× c14;23(C1|23(u1|u2, u3), C4|23(u4|u2, u3)). (5.20)

A notable fact is that due to the proximity condition if the ordering in the first tree is fixed all other trees
are fixed too as outlined in Czado (2019). Moreover the nodes that are at the end of the paths are often
called leaf nodes.

5.7 Recursion for conditional distribution functions and estimation

In order to decompose the conditional distributions appearing in Equation (5.20) for the estimation or
simulation from such vine copulas the following theorem whose proof was first stated in Joe (1996) comes
in very handy.

Theorem 5.7.1 (Recursion for conditional distribution functions). The conditional distribution function Cj|D
with the conditioning set D can be decomposed with i ∈ D and D−i = D \ {i} like

Cj|D(uj |uD) = hj|i;D−i

(
Cj|D−i(uj |uD−i)|Ci|D−i(ui|uD−i)

)
. (5.21)
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So far the introduction to vine copulas was done in a theoretical manner. In practice one is obviously
interested in estimating such vine copulas from copula scale data in order to model the dependence
structure between random quantities of interest. The estimation procedure has to determine on the one
side the vine tree structureW and on the other side the set of bivariate copulas B corresponding to the tree
edges alongside its parameters Θ(B). The most prominent method in practice is currently the sequential
top-down estimation as introduced in Dißmann et al. (2013). The estimation boils down to the following
steps that are iterated over the trees in a top down fashion i.e. starting with T1.

1. Select the edges of the tree such that the sum of the edge weights, which are for example for the
edge {a, b} chosen to be an absolute empirical dependence measure of the data corresponding to
a and b, is maximized. Note that the first tree is arbitrary but for the subsequent tree only edges that
satisfy the proximity condition are allowed.

2. For each edge estimate the parameters of a specified set of bivariate copula families. This is mostly
performed via a classical maximum likelihood estimation. Then choose the copula family with the
corresponding estimated parameters for the edge that minimizes the AIC.

3. Generate pseudo observations from the fitted bivariate copulas to perform the above steps on this
pseudo data representing the next tree level. For example for the edge {a, b;D} in the next tree with
conditioning set D one uses the pseudo observations generated from the parametric estimates of
Ca|D and Cb|D for the estimation of the edge weight and the bivariate copula.

This sequentially estimates the tree structureW and the pair copulas B with parameters Θ(B). Although
the algorithm might propagate missspecifications sequentially and makes only locally optimal choices in a
greedy fashion it has been shown in simulation studies and in practice that it has a good performance. As
the estimation procedure is not the primary focus of this thesis one refers to Chapter 7 of Czado (2019) as
an excellent resource to get an overview of vine copula estimation techniques. The same goes for model
selection. The most prominent tools in this setting are classical likelihood based information criteria like
the Akaike information criterion (AIC) but now not on the pair copula but overall vine level.
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6 Simulation from vine copulas

6.1 General simulation from multivariate distributions

For the risk measure estimation that will be proposed later a critical part will be to sample from a given
vine copula. Thus now we assume to have selected and estimated the tree sequence W as well as
the bivariate copula families in the set B and their respective parameters Θ(B). At the base of the vine
copula simulation algorithms presented in this thesis is the so called Rosenblatt transform which was
first introduced in Rosenblatt (1952) and allows to sample from a d-dimensional distribution using inverse
conditional distributions.

Theorem 6.1.1 (Rosenblatt transform). One obtains a multivariate random sample (x1, . . . , xd) from the
d-dimensional distribution F1,...,d by iterating through the following steps.

Sample wj
i.i.d.∼ U(0, 1), j = 1, . . . , d

x1 := F−1
1 (w1)

x2 := F−1
2|1 (w1|x1)

...

xd := F−1
d|d−1,...,1(wd|xd−1, . . . , x1)

The proof of Theorem 6.1.1 can be performed via induction with the induction start being trivial as x1 is
obviously a sample from the marginal distribution of X1. Thus computing conditional distribution functions
will be integral for sampling from them. For this endeavour the result in Theorem 5.7.1 comes in very
handy.

6.2 Sampling from a D-vine copula

For a three dimensional R-vine copula which by the way has to be also a D-vine and has a fixed tree
structure up to permutations of the node order we have the bivariate copulas C12, C23 and C13;2 with
corresponding parameters θ12, θ23 and θ13;2. In order to get the random sample (u1, u2, u3) from this
three-dimensional vine copula we then determine the needed conditional distributions according to the
Rosenblatt transformation by applying the Theorem 5.7.1 and using the uniform samples w1, w2, w3.

u1 = w1

w2 = C2|1(u2|u1) = h2|1(u2|u1)
⇒ u2 = h−1

2|1(w2|u1)

w3 = C3|21(u3|u2, u1)

= ∂

∂C1|2(u1|u2)C13;2(C1|2(u1|u2), C3|2(u3|u2))

= h3|1;2(h3|2(u3|u2)|h1|2(u1|u2))
⇒ u3 = h−1

3|2(h−1
3|1;2(w3|h1|2(u1|u2))|u2)
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These tedious calculations of conditional copulas for the simulation from arbitrary D- or R-vines are per-
formed using iterative algorithms. Firstly the algorithm presented in Czado (2019) for the sampling from
D-vines will now be discussed. The algorithm that aims to calculate iteratively conditional distributions uses
three d× d auxiliary matrices. The matrices V and V 2 contain the to be computed conditional distribution
functions.

V :=


u1 u2 u3 u4 . . .
− C2|1(u2|u1) C3|2(u3|u2) C4|3(u4|u3) . . .

− − C3|2,1(u3|u2, u1) C4|3,2(u4|u3, u2) . . .

− − − C4|3:1(u4|u3:1) . . .

− − − − . . .

 ∈ Rd×d (6.1)

V 2 :=


u1 u2 u3 u4 . . .
− C1|2(u1|u2) C2|3(u2|u3) C3|4(u3|u4) . . .

− − C1|2,3(u1|u2, u3) C2|3,4(u2|u3, u4) . . .

− − − C1|2:4(u1|u2:4) . . .

− − − − . . .

 ∈ Rd×d (6.2)

The matrix Θ containing all the parameters of the bivariate copulas corresponding to the edges of the tree
sequence.

Θ :=


− θ1,2 θ2,3 θ3,4 . . .
− − θ3,1;2 θ4,2;3 . . .
− − − θ4,1;3,2 . . .

− − − − . . .

 ∈ Rd×d (6.3)

The iterative algorithm that takes Θ as the input in order to calculate V and V 2 is given in Algorithm 1.

Algorithm 1: Sampling from D-vine copulas (Taken from Czado (2019))
Input : Parameter matrix Θ for the d-dimensional D-vine C1,...,d(·)
Output: A d-dimensional sample u1, . . . , ud from C1,...,d(·)
Sample wj

i.i.d.∼ U(0, 1), j ∈ {1, . . . , d}
v1,1 = w1, v2

1,1 = w1

for j ← 2 to d do
vj,j = wj

for k ← j − 1 to 1 do
vk,j = h−1

j|j−k;(j−k+1):(j−1)(vk+1,j |v2
k,j−1, θj|j−k;(j−k+1):(j−1))

if j < d then
v2
k+1,j = hj−k|j;(j−k+1):(j−1)(v2

k,j−1|vk,j , θj−k|j;(j−k+1):(j−1))
end
v2

1,j = v1,j

end
ui = v1,j for j ∈ {1, . . . , d}

For regular vines the approach is quite similar and is facilitated by the introduction of one further auxiliary
matrix. This algorithm will however not be discussed in detail here as the focus of the remainder of this
section will stay with D-vine copulas. The general algorithm for unconditional R-vine sampling as for D-
vines in Algorithm 1 can be found in Czado (2019) and a formal proof of it is given in Chapter 5 of Dißmann
(2010).
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6.3 Sampling from a D-vine copula conditional on the rightmost leaf node

Here we want to first construct and then sample conditionally from a specific D-vine copula. We assume
now to have the d assets A1, . . . , Ad and a market index I with corresponding i.i.d. copula data for the
fitting. So we want to capture their dependence using a d+ 1 dimensional D-vine copula.

Determine the D-vine ordering

As for the fitting of a D-vine copula as described in the previous subsections an ordering is needed. This
ordering directly specifies the vine tree structureW . Here an ordering of the following scheme is proposed,
using a permutation j1, . . . , jd of the indices 1, . . . , d.

Ajd −Ajd−1 − · · · −Aj1 − I (6.4)

This ordering allows for the following practical interpretation. Asset Aj1 is most dependent on the market
index I, the assetAj2 is most dependent on the assetAj1 after the effect of the market index I is accounted
for, Aj3 is most dependent on Aj2 after accounting for Aj1 and I and so on. Here an approach using the
Pearson and partial correlations as given in Definition 5.1.2 is proposed in Algorithm 2 in order to determine
a sensible ordering for the fitting process.

Example 6.3.1. Algorithm 2 can be well explained using the 4 dimensional copula Cj3j2j1I . We can
decompose its density into the bivariate densities cj1,I , cj2,j1 , cj3,j2 , cj2,I;j1 , cj3,j1;j2 and cj3,I;j2,j1 just like in
Example 5.6.1. Figure 6.1 illustrates this D-vine where each edge corresponds to one of these bivariate
densities. Now we would like to iteratively determine the permutation j1 up to jd in such a way that the
overall likelihood which can be factorized with the mentioned bivariate densities is as high as possible. The
idea is to estimate weights of the edges corresponding to the bivariate copula densities. These weights are
in the case of the first tree levels the absolute Pearson correlation coefficients estimated on the normalized
scale data and for the other tree level that have conditioning sets we use the partial correlation to account
for the conditioning set i.e. the weight for edge j3, j1; j2 is |ρj3,j1;j2 | estimated again on the normalized
scale data. The transformation of the copula data to the normalized scale is facilitated through Equation
(5.2). Then we determine the next jk such that the sum of all the edge weights corresponding to the
additional edges that were not yet specified but contain only jk, jk−1, . . . , I is maximized. The considered
edges in each step are highlighted in different colors in Figure 6.1.

This greedy process does of course not guarantee a global optimum as it makes local choices. Espe-
cially for high dimensions however this approach can be simplified by introducing the cutoff depth cdepth.
This implies that only all Pearson or partial correlation coefficients corresponding to the edges up to the
specified depth will be used for the calculation of the ordering. This cutoff value is indicated in Figure 6.1
by a dotted line so all edges below the line are not considered. Example 6.3.2 showcases Algorithm 2 in
5 dimensions.

Example 6.3.2. This example showcases how Algorithm 2 determines the desired permutation j1, . . . , jd
in 5 dimensions i.e. d = 4. Here we will not use the cutoff depth so it defaults to d. Thus we would like to
determine j1 up to j4 as I is fixed as the rightmost leaf node. Given the normalized data z1, . . . , z4, z

I , j1
is straight forwardly given as the variable index that maximizes the absolute Pearson correlation coefficient
between the market index I and itself estimated on the normalized scale i.e. |ρj1,I | estimated using zj1 and
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Algorithm 2: Determine D-vine ordering including a market index as the rightmost leaf node

Input : A1, . . . , Ad and a market index I with corresponding i.i.d. copula data u1, . . . , ud, u
I as well

as a cutoff depth cdepth ∈ {1, . . . , d} defaulting to d
Output: j1, . . . , jd permutation for the indices 1, . . . , d specifying an ordering as in (6.4)
Transform the copula data to the normalized scale using Equation (5.2). The data on the normalized
scale is denoted by z1, . . . , zd, z

I with the convention zj0 = zI for simplicity in the algorithm below.
j1 ← δ ∈ {1, . . . , d} s.t. |ρδ,I | ≥ |ρδ′,I |, ∀δ′ ∈ {1, . . . , d}
for l← 2 to d do

jl = argmaxδ∈{1,...,d}\{j1,...,jl−1}
∑l−1
k=max(l−cdepth,0) |ρδ,jk;jk+1:jl−1 |

end
Here ρa,b;D denotes the Pearson (if D is the empty set) or partial correlation coefficient between za
and zb with conditioning set D and it is estimated always using the data on the normalized scale.

Figure 6.1 Illustration for Algorithm 2 in 4 dimensions.
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zI is maximized with respect to j1. We then enter the for loop in the algorithm to determine the remaining
j2, j3, j4.

l = 2 : j2 = argmax
δ∈{1,2,3,4}\{j1}

|ρδ,j0=I;j1:j1 |+ |ρδ,j1;j2:j1 |

= argmax
δ∈{1,2,3,4}\{j1}

|ρδ,I;j1 |+ |ρδ,j1;∅|

= argmax
δ∈{1,2,3,4}\{j1}

|ρδ,I;j1 |+ |ρδ,j1 |

l = 3 : j3 = argmax
δ∈{1,2,3,4}\{j1,j2}

|ρδ,j0=I;j1:j2 |+ |ρδ,j1;j2:j2 |+ |ρδ,j2;j3:j2 |

= argmax
δ∈{1,2,3,4}\{j1,j2}

|ρδ,I;j1,j2 |+ |ρδ,j1;j2 |+ |ρδ,j2 |

l = 4 : j4 = {1, 2, 3, 4} \ {j1, j2, j3}
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Sampling algorithm conditioned on the rightmost leaf node

Now assume the D-vine copula Cj1,...,jd,I is fitted. The next step is to have an algorithm at hand to sample
from Cj1,...,jd|I(·|u

I) for uI being a fixed realisation of the market index I on the copula scale. Before
writing down a generic algorithm we start with an illustrative example.

Example 6.3.3. Assume the ordering A1−A2−A3− I with fitted D-vine copula C1,2,3,I . So the following
pair copulas were fitted: C1,2, C2,3, C3,I , C1,3;2, C2,I;3, C1,I;2,3. The exemplary 4-dimensional D-vine is
displayed in Figure 6.2. As in the regular vine case the simulation approach will be based on a Rosenblatt
transform as given in Theorem 6.1.1. The goal is to conditionally sample conditioned on the index I thus
we start the Rosenblatt transform from the back and sample our way to the left i.e. first sample u3 from the
inverse of the conditional copula C3|I , then sample u2 from the inverse of C2|3,I and so on.

The detailed computations are elaborated now down below for this example.

uI fixed

w1, w2, w3
i.i.d.∼ U(0, 1)

w3 = C3|I(u3|uI)
= h3|I(u3|uI)
⇒ u3 = h−1

3|I(w3|uI), so u3 is a sample from C3|I=uI .

w2 = C2|3,I(u2|u3, u
I)

= ∂

∂CI|3(uI |u3)C2,I;3(C2|3(u2|u3), CI|3(uI |u3))

= ∂

∂v2
C2,I;3(h2|3(u2|u3), v2) |v2=hI|3(uI |u3)

= h2|I;3(h2|3(u2|u3), hI|3(uI |u3))
⇒ u2 = h−1

2|3(h−1
2|I;3(w2|hI|3(uI |u3))|u3), so u2 is a sample from C2|3=u3,I=uI .

w1 = C1|2,3,I(u1|u2,3 , u
I)

= ∂

∂CI|2,3(uI |u2, u3)C1,I;2,3(C1|2,3(u1|u2, u3), CI|2,3(uI |u2, u3))

= h1|I;2,3(C1|2,3(u1|u2, u3)|CI|2,3(uI |u2, u3))
= h1|I;2,3(h1|3;2(C1|2(u1|u2)|C3|2(u3, u2))|CI|2,3(uI |u2, u3))
= h1|I;2,3(h1|3;2(h1|2(u1|u2)|h3|2(u3, u2))|CI|2,3(uI |u2, u3))
⇒ u1 = h−1

1|2(h−1
1|3;2(h−1

1|I;2,3(w1|CI|2,3(uI |u2, u3))|h3|2(u3, u2))|u2),

so with CI|2,3(uI |u2, u3) = hI|2;3(hI|3(uI |u3)|h2|3(u2, u3))
u1 is a sample from C1|2=u2,3=u3,I=uI .

Finally (u1, u2, u3) is a realization of the conditional distribution of (U1, U2, U3) given I = uI and it can
be easily checked that all the needed bivariate copulas are estimated by the assumed D-vine. So for a 4
dimensional D-Vine copula one can sample conditional on the last instance backwards with the formulas
given above. It is also evident that this can be extended to arbitrary d + 1 dimensions. But it is also quite
obvious in the example that the formulas blow up quite quickly and thus a generic sampling algorithm like
the one already established for the unconditional sampling from D-vines has to be stated. This is the next
step.
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Figure 6.2 Illustration of the tree sequence of a 4-dimensional D-vine with the market index I as the rightmost leaf
node.

Now for simplicity of notation in the algorithm the market index I will be denoted by the d+ 1 component
e.g. uI = ud+1. The fitted parameter matrix Θ, the notation is adapted from Algorithm 1 and the auxiliary
matrices V and V2 containing the to be computed conditional distribution functions are given below.

Θ :=


− θ1,2 θ2,3 θ3,4 . . .
− − θ3,1;2 θ4,2;3 . . .
− − − θ4,1;3,2 . . .

− − − − . . .

 ∈ Rd+1×d+1 (6.5)

V :=


ud+1 ud ud−1 ud−2 . . .
− Cd−1|d(ud−1|ud) Cd−2|d−1(ud−2|ud−1) Cd−3|d−2(ud−3|ud−2) . . .

− − Cd−2|d−1,d(ud−2|ud−1, ud) Cd−3|d−2,d−1(ud−3|ud−2, ud−1) . . .

− − − Cd−3|(d−2):d(ud−3|u(d−2):d) . . .

− − − − . . .

 ∈ Rd+1×d+1

(6.6)

V2 :=


ud+1 ud ud−1 ud−2 . . .
− Cd|d−1(ud|ud−1) Cd−1|d−2(ud−1|ud−2) Cd−2|d−3(ud−2|ud−3) . . .

− − Cd|d−1,d−2(ud|ud−1, ud−2) Cd−1|d−2,d−3(ud−1|ud−2, ud−3) . . .

− − − Cd|(d−1):(d−3)(ud|u(d−1):(d−3)) . . .

− − − − . . .

 ∈ Rd+1×d+1

(6.7)

Note that the above defined matrices V ,V2 are not the same as the auxiliary matrices V ,V 2 of Algorithm
1. Now the formal algorithm to iteratively derive those matrices and thus also the conditional sample in the
first row of the final V matrix is proposed.
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Algorithm 3: Sampling from D-vine copulas conditional on the last component
Input : Parameter matrix Θ for the d+1 dimensional D-vine and the fixed conditioning value ud+1 for

the last component
Output: A d dimensional sample u1, . . . , ud from C1,...,d|d+1(·|ud+1)
Sample wj

i.i.d.∼ U(0, 1), j ∈ {1, . . . , d}
v1,1 = ud+1, v2

1,1 = ud+1

for j ← 2 to d+ 1 do
a = d+ 2− j
vj,j = wa

for k ← j − 1 to 1 do
vk,j = h−1

a|a+k;(a+1):(a+k−1)(vk+1,j |v2
k,j−1, θa|a+k;(a+1):(a+k−1))

if j < d+ 1 then
v2
k+1,j = ha+k|a;(a+1):(a+k−1)(v2

k,j−1|vk,j , θa+k|a;(a+1):(a+k−1))
end
v2

1,j = v1,j

end
ui = v1,d+2−j for j ∈ {1, . . . , d}
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Example 6.3.4. In order to grasp Algorithm 3 better it will be applied to a 5 dimensional example. So d = 4
and the conditioning component is the fifth. The parameter specifications contained in Θ will be omitted
for this display to not crowd the computations too much.

u5 = uI given

w1, w2, w3, w4
i.i.d.∼ U(0, 1)

v1,1 = u5, v
2
1,1 = u5

Get u4 : v2,2 = w4

v1,2 = h−1
4|5(v2,2|v2

1,1) = u4

correct as w4 = C4|5(u4|u5)
Get u3 : v2

2,2 = h5|4(v2
1,1|v1,2)

v2
1,2 = v1,2

v3,3 = w3

v2,3 = h−1
3|5;4(v3,3|v2

2,2)

v2
3,3 = h5|3;4(v2

2,2|v2,3)
v1,3 = h−1

3|4(v2,3|v2
1,2) = u3

correct as w3 = C3|4,5(u3|u4, u5) = h3|5;4(C3|4(u3|u4)|C5|4(u5, u4))
Get u2 : v2

2,3 = h4|3(v2
1,2|v1,3)

v2
1,3 = v1,3

v4,4 = w2

v3,4 = h−1
2|5;3,4(v4,4|v2

3,3)

v2
4,4 = h5|2;3,4(v2

3,3|v3,4)
v2,4 = h−1

2|4;3(v3,4|v2
2,3)

v2
3,4 = h4|2;3(v2

2,3|v2,4)
v1,4 = h−1

2|3(v2,4|v2
1,3) = u2

correct as w2 = C2|3:5(u2|u3:5) = h2|5;3,4(h2|4;3(h2|3(u2|u3)|C4|3(u4|u3))|C5|3,4(u5|u3, u4))
Get u1 : v2

2,4 = h3|2(v2
1,3|v1,4)

v2
1,4 = v1,4

v5,5 = w1

v4,5 = h−1
1|5;2:4(v5,5|v2

4,4)

v3,5 = h−1
1|4;2,3(v4,5|v2

3,4)

v2,5 = h−1
1|3;2(v3,5|v2

2,4)

v1,5 = h−1
1|2(v2,5|v2

1,4) = u1

correct as w1 = C1|2:5(u1|u2:5)
= h1|5;2:4(h1|4;2,3(h1|3;2(h1|2(u1|u2)|C3|2(u3|u2))|C4|3,2(u4|u3, u2))|C5|2:4(u5|u2:4))

for completeness: v2
1,5 = v1,5

In order to understand the algorithm even better Figure 6.3 might help. It shows visually how the algorithm
builds up the matrices. First the diagonal of V is initialized with the conditional value and the uniform sam-
ples. Then one follows the arrows corresponding to calls of (inverse) h-functions of both matrices, always
alternating between the two, from left to right in order to calculate all the needed quantities to finally end
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up with the desired sample in the first rows of both matrices.

V =

u5 u4 u3 u2 u1

w4 = C4|5(u4|u5) C3|4(u3|u4) C2|3(u2|u3) C1|2(u1|u2)

w3 = C3|4,5(u3|u4, u5) C2|3,4(u2|u3, u4) C1|2,3(u1|u2, u3)

w2 = C2|3:5(u2|u3:5) C1|2:4(u1|u2:4)

w1 = C1|2:5(u1|u2:5)





h−1
4|5(·|v2

1,1) h−1
3|4(·|v2

1,2) h−1
2|3(·|v2

1,3) h−1
1|2(·|v2

1,4)

h−1
3|5;4(·|v2

2,2) h−1
2|4;3(·|v2

2,3) h−1
1|3;2(·|v2

2,4)

h−1
2|5;3,4(·|v2

3,3) h−1
1|4;2,3(·|v2

3,4)

h−1
1|5;2:4(·|v2

4,4)

V2 =

v1,1 = u5 v1,2 = u4 v1,3 = u3 v1,4 = u2 v1,5 = u1

C5|4(u5|u4) C4|3(u4|u3) C3|2(u3|u2)

C5|3,4(u5|u3, u4) C4|3,2(u4|u3, u2)

C5|2:4(u5|u2:4)





h5|4(·|v1,2) h4|3(·|v1,3) h3|2(·|v1,4)

h5|3;4(·|v2,3) h4|2;3(·|v2,4)

h5|2;3,4(·|v3,4)

Figure 6.3 Show the build up of the matrices V,V2 according to Algorithm 3 in a visual form for the 5 dimensional
example.

So these detailed walk-throughs of Algorithm 3 display how the recursions build up the correct conditional
distribution functions. This algorithm can be naturally extended to sample from the last n components, but
it has to be noted that due to the curse of dimensionality the conditioning structure gets harder to grasp
and to interpret.
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6.4 Sampling from a D-vine copula conditional on the two rightmost leaf
nodes

Here besides the case with one conditioning market index also the case with 2 market indices I1, I2 will
be covered. This results in slightly modified algorithms compared to the ones given in Algorithms 2 and 3.
The modified ordering scheme that has to be determined in order to fit the now d + 2 dimensional D-vine
copula now not only has to select a permutation on the asset indices but also a permutation j̃1, j̃2 on the
market index’s indices 1, 2.

Ajd −Ajd−1 − · · · −Aj1 − Ij̃1 − Ij̃2 (6.8)

The interpretation of the ordering stays more or less the same to the single market index case. Again
an approach based on the Pearson and partial correlation coefficients like presented in Algorithm 2 is
proposed in Algorithm 4 in order to select a sensible ordering for the fitting of the D-vine copula.

Algorithm 4: Determine D-vine ordering including 2 market indices
Input : A1, . . . , Ad and 2 market indices I1, I2 with corresponding i.i.d. copula data

u1, . . . , ud, u
I1 , uI2 as well as a cutoff depth cdepth ∈ {1, . . . , d+ 1} defaulting to d+ 1

Output: j1, . . . , jd permutation for the indices 1, . . . , d and j̃1, j̃2 permutation for the market indices
specifying an ordering as in (6.8)

Transform the copula data to the normalized scale using Equation (5.2). The data on the normalized
scale is denoted by z1, . . . , zd, z

I1 , zI2 with the conventions zj0 = zI1 , zj−1 = zI2 to simplify the
algorithm below with respect to the notation.
j̃2 = 3− j̃1
j1, j̃1 ← δ ∈ {1, . . . , d}, k ∈ {1, 2} s.t. |ρδ,Ik | ≥ |ρδ′,Ik′ |,∀δ

′ ∈ {1, . . . , d}, k′ ∈ {1, 2}
for l← 2 to d do

jl = argmaxδ∈{1,...,d}\{j1,...,jl−1}
∑l−1
k=max(l−cdepth,−1) |ρδ,jk;jk+1:jl−1 |

end
Here ρa,b;D denotes the Pearson (if D is the empty set) or partial correlation coefficient between za
and zb and it is estimated always using the data on the normalized scale.

The next step is again to have an algorithm at hand to sample from now Cj1,...,jd|I1,I2(·|uI1 , uI2) for
uI1 , uI2 being fixed realisations of the market indices I1, I2 on the copula-scale. For simplicity the market
indices Ij̃1 , Ij̃2 will be denoted by the d + 1, d + 2 component e.g. uIj̃1 = ud+1. The to be constructed
auxiliary matrices V,V2 of course are just shifted so one has to add 1 to all the indices and extend them
by one dimension, the formal algorithm is given as Algorithm 5.
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Algorithm 5: Sampling from D-vine copulas conditional on the last 2 components
Input : Parameter matrix Θ for the d+2 dimensional D-vine and the fixed conditioning values

ud+2, ud+1 for the last 2 components
Output: A d dimensional sample u1, . . . , ud from Cj1,...,jd|I1,I2(·|uI1 , uI2)
Sample wj

i.i.d.∼ U(0, 1), j ∈ {1, . . . , d}
v1,1 = ud+2, v2

1,1 = ud+2

v1,2 = ud+1, v2
1,2 = ud+1

v2
2,2 = hd+2|d+1(v2

1,1|v1,2)
for j ← 3 to d+ 2 do

a = d+ 3− j
vj,j = wa

for k ← j − 1 to 1 do
vk,j = h−1

a|a+k;(a+1):(a+k−1)(vk+1,j |v2
k,j−1, θa|a+k;(a+1):(a+k−1))

if j < d+ 1 then
v2
k+1,j = ha+k|a;(a+1):(a+k−1)(v2

k,j−1|vk,j , θa+k|a;(a+1):(a+k−1))
end
v2

1,j = v1,j

end
ui = v1,d+3−j for j ∈ {1, . . . , d}
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7 Vine copula based risk measure estimation

Now the overall conditional and unconditional estimation approaches for risk measures are presented
whose integral parts were discussed in the previous sections. Before stating the algorithms in the final
rolling window fashion first the one step ahead risk measure estimation procedures that are at the very
basis of the rolling window approach are covered respectively.

7.1 Unconditional vine copula based risk measure estimation

First some additional notation is needed. Given a portfolio Ω = {wj , r
Aj
t |t = 1, . . . , T ; j = 1, . . . , d}.

• Γ < T ∈ N: Length of the fitting window for the marginal models. Here one assumes that this
is also the time index of the most recent asset return observation when starting the rolling window
approach. So for the first marginal time series model one uses all the available historic data. In
Figure 7.2 the associated window to Γ is highlighted in blue.

• Ψ ≤ Γ ∈ N: Length of the fitting window for the vine copula model in order to capture depen-
dencies.

• S ∈ N: Number of simulated log returns for the risk measure estimation.

Figure 7.1 illustrates the flow of the data along the applied methods and transformations for the one step
ahead unconditional risk measure estimation approach.

• Starting with the log returns of the d assets rAjt one first fits an adequate ARMA-GARCH model for
each of the assets log return series. An ARMA(1,1)-GARCH(1,1) is probably often a good starting
point as also mentioned in Tsay (2010) and with the quality assessment tools covered in Section 4.5
one can adjust the models to be adequate.

• The next step is to work with the fitted standardized residuals of the univariate models for the time
frame of the vine training window. In order to model the dependence between assets using the now
assumed i.i.d. standardized residuals one transforms them to the copula scale using the PIT with
the fitted marginal residual distributions.

• The obtained copula scale data is then used to estimate a R-vine copula. Afterwards one can
simulate S samples from this vine copula of course on the copula scale.

• In order to retransform the copula scale residuals to forecasted log returns of the assets one uses
the inverse PIT and the forecasted mean and volatility estimates of the one step ahead time unit.

• Using the weights one can then aggregate the individual log return samples to portfolio level log
return samples.

• From the resulting vector of size S it is then straightforward to derive risk measure estimates for the
one step ahead time unit.

For this approach to be efficient not only a good modeling of the margins is needed but one also has the
implicit assumption that the dependence structure assumed via the vine copula does not change for the
upcoming one step ahead time unit. This one step approach can then be applied repeatedly to estimate
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Figure 7.1 Illustration of the one step ahead unconditional risk measure estimation approach using ARMA-GARCH
marginal and R-vine dependence models.

risk measures for the whole interval spanned by Γ + 1 and T , which is mostly required in backtesting
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Figure 7.2 Illustration of the parameters Γ and Ψ alongside the one step ahead unconditional risk measure estima-
tion.

applications. This repeated one step approach for the interval and the parameters Γ and Ψ is illustrated
in Figure 7.2. Already for moderately large intervals of interest, like 100, a huge number of models has
to be fitted which is a computational burden. Thus a rolling window approach is proposed in order to refit
the models only after a certain time interval of usage. This of course might come to the price of potentially
larger model misfits e.g. the dependence structure is assumed to stay constant over the whole interval. To
extend the approach to a rolling window two additional parameters have to be specified.

• γ ≤ (T − Γ) ∈ N: Length of the forecasting window of the marginal models.

• κ ≤ γ ∈ N: Length of the usage window of the vine copula model.

It might be reasonable to pick them such that (T − Γ) mod γ ≡ 0 and γ mod κ ≡ 0 will have to hold. An
illustration of the parameters and the rolling of the respective windows of the rolling window approach is
given in Figure 7.3. Now the general approach for the unconditional risk measure estimation in a rolling

Figure 7.3 Illustration of the rolling parameters and the actual rolling of the respective windows of the rolling window
approach.

window fashion is stated in Algorithm 6.
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Algorithm 6: The rolling window unconditional risk measure estimation approach
Input : Portfolio Ω, parameters Γ, γ,Ψ, κ, S and risk measure estimator RM(·|α) at level α
Output: Risk measure estimates m̂t for t ∈ {Γ + 1, . . . , T}
First estimate the marginal models in a rolling window fashion.
for marginal_window ← 1 to d(T − Γ)/γe do

for j ← 1 to d do
Fit an appropriate marginal model i.e. here an ARMA-GARCH model on
r
Aj
1+γ∗(marginal_window−1), . . . , r

Aj
Γ+γ∗(marginal_window−1)

Estimate from the model the conditional means and standard deviations given below.

µ̂
Aj
1+Γ−Ψ+γ∗(marginal_window−1), . . . , µ̂

Aj
min[T,Γ+γ∗(marginal_window)]

σ̂
Aj
1+Γ−Ψ+γ∗(marginal_window−1), . . . , σ̂

Aj
min[T,Γ+γ∗(marginal_window)]

Calculate the standardized residuals using the formula zAjt = r
Aj
t −µ̂

Aj
t

σ̂
Aj
t

for the window in order

to get zAj1+Γ−Ψ+γ∗(marginal_window−1), . . . , z
Aj
min[T,Γ+γ∗(marginal_window)]

They should, under the assumption of a correct marginal model, be approximate i.i.d. with
marginal distribution function Fj . Convert those values on the residual scale to the copula
scale by applying Fj to each of the values resulting in
u
Aj
1+Γ−Ψ+γ∗(marginal_window−1), . . . , u

Aj
min[T,Γ+γ∗(marginal_window)]

end

end
Estimate the dependence structure and the risk measures by simulation in a rolling window fashion.
for vine_window ← 1 to d(T − Γ)/κe do

Use only uAjt , µ̂
Aj
t , σ̂

Aj
t from the marginal window dκ ∗ vine_window/γe.

Fit a regular vine copula C1,...,d using the copula data
u
Aj
1+Γ−Ψ+κ∗(vine_window−1), . . . , u

Aj
Γ+κ∗(vine_window−1), for j ∈ {1, . . . , d}.

for k ← 1 to κ if vine_window < d(T − Γ)/κe ∨ (T − Γ) mod κ ≡ 0 else to (T − Γ) mod κ do
Simulate from C1,...,d multivariate samples ûs = (ûA1

s , . . . , ûAds ), for s ∈ 1, . . . , S
Then transform the samples from copula→ residual→ return scale.
r̂
Aj ,s
Γ+κ∗(vine_window−1)+k = µ̂

Aj
Γ+κ∗(vine_window−1)+k + σ̂AiΓ+κ∗(vine_window−1)+k ∗ F

−1
j (ûAjs ), for

j ∈ {1, . . . , d} and s ∈ {1, . . . , S}
Get the weighted full portfolio return by a simple weighted sum.
r̂Ω,s

Γ+κ∗(vine_window−1)+k =
∑d
j=1wj ∗ r̂

Aj ,s
Γ+κ∗(vine_window−1)+k, for s ∈ {1, . . . , S}

Having all these samples one can estimate various risk measures.
m̂Γ+κ∗(vine_window−1)+k = RM({r̂Ω,s

Γ+κ∗(vine_window−1)+k|s ∈ {1, . . . , S}}|α)
end

end
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7.2 Conditional vine copula based risk measure estimation using a single
market index as conditioning variable

For the single conditional variable risk measure estimation approach some further notation is required.

• Market index I that is observed over the same time scale as the portfolio Ω, the log returns are
again denoted by rIt .

• Let j1, . . . , jd be a to be determined permutation of the indices of the assets 1, . . . , d.

• αI ∈ (0, 1): Confidence level of the estimated quantile from the marginal market index dis-
tribution. This confidence level is the conditioning value for the final risk measure estimate on the
copula scale. How this fits into the estimation process can be found in detail below.

Actually the whole inference for margins approach that includes fitting the individual marginal models and
transforming their standardized residuals to the copula-scale is almost identical in the conditional case with
the only slight difference that the same procedures are applied to the market index I too. But then instead
of a regular vine copula model a D-vine copula model with ordering Ajd − Ajd−1 − · · · − Aj1 − I is fitted.
The ordering is determined as outlined in Algorithm 2. After that the conditional character of the approach
starts to shine through as now one estimates a prespecified αI level quantile of the marginal market index
distribution on the copula scale. As on the copula scale the marginals are all uniform the quantile is actually
given by the confidence level αI itself. Then conditionally on that quantile one again simulates multivariate
samples from Cj1,...,jd|I(·|α

I). The retransformation to the return scale is then performed also on the
conditioning value αI as well as for all assets. As the sample is now conditional also the estimated risk
measure is conditional on the market index evaluated at the respective estimated quantile on the return
scale. This approach is illustrated for the one step ahead case in Figure 7.4 and formally written down in
a rolling window fashion in Algorithm 7. Thus the resulting risk measure allows to analyze its robustness
with respect to states of the overall or some specific market represented by I. These states are controlled
via the αI level. This might be applied to stress testing situations were one for example would like to
assess the effect of a really bad performing market index I or asset on the risk estimates. This would then
correspond in this setting to estimating conditional risk measures with a small αI level. It might also be a
more conservative risk measure for small αI levels in the case of a generally positive dependence of the
portfolio with the market index I. We will call this conditional strategy the quantile based one. Additionally
to this approach based on a quantile level one can also use the copula scale residual of the index I from
the prior time unit i.e. to estimate the risk measure at time unit t use uIt−1 as the conditioning value at the
copula scale. The only change to the quantile based approach is that one simulates conditionally from

Cj1,...,jd|I(·|u
I
t−1) (7.1)

and the forecasted conditioning value of I on the log return scale can be determined with

µ̂It + σ̂It ∗ F−1
I (uIt−1). (7.2)

The resulting estimated risk measure will emulate the behavior of conditioning on the predicted market
index log return series and might be a valuable comparison to the estimated quantile based conditional
risk measures. Opposed to the quantile based conditional risk measures we will call these prior
residual conditional risk measures. It should be noted that the conditional series based on the fitted
residuals of the time unit before will most likely exaggerate sudden high volatility situations. Imagine the
univariate marginal time series model can not anticipate a sudden price drop of the conditioning asset
at time t − 1. This leads to a very small copula scale residual uIt−1. By then conditioning at time t on
this very harsh drop at the prior time unit one will probably in many situations exaggerate the drop of
the estimated risk measures assuming without loss of generality a generally positive dependence of the
portfolio with the market index I. In this case of a sudden drop this might even be beneficial by resulting in
more conservative estimates at time t but the same applies to large copula scale residuals at time t− 1 in
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Figure 7.4 Illustration of the one step ahead single conditional risk measure estmation approach using ARMA-
GARCH marginal and D-vine dependence models.
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Algorithm 7: The rolling window conditional risk measure estimation approach using D-vines

Input : Portfolio Ω, market index I, parameters Γ, γ,Ψ, κ, S, αI and risk measure estimator RM(·|α)
at level α

Output: Conditional risk measure estimates m̂t|I for t ∈ {Γ + 1, . . . , T}
First estimate the marginal models in a rolling window fashion.
for marginal_window ← 1 to d(T − Γ)/γe do

for j ← 1 to d do
Fit an appropriate marginal model i.e. here an ARMA-GARCH model on
r
Aj
1+γ∗(marginal_window−1), . . . , r

Aj
Γ+γ∗(marginal_window−1)

Estimate from the model the conditional means and standard deviations given below.

µ̂
Aj
1+Γ−Ψ+γ∗(marginal_window−1), . . . , µ̂

Aj
min[T,Γ+γ∗(marginal_window)]

σ̂
Aj
1+Γ−Ψ+γ∗(marginal_window−1), . . . , σ̂

Aj
min[T,Γ+γ∗(marginal_window)]

Calculate the standardized residuals using the formula zAjt = r
Aj
t −µ̂

Aj
t

σ̂
Aj
t

for the window in order

to get zAj1+Γ−Ψ+γ∗(marginal_window−1), . . . , z
Aj
min[T,Γ+γ∗(marginal_window)]

As outlined in Algorithm 6 transform from residual to the copula scale by applying Fj to each
of the values resulting in uAj1+Γ−Ψ+γ∗(marginal_window−1), . . . , u

Aj
min[T,Γ+γ∗(marginal_window)]

end
Apply the same modeling procedure to the index returns rIt in order to estimate the uIt , µ̂

I and σ̂I

end
Estimate the dependence structure and the risk measures by simulation in a rolling window fashion.
for vine_window ← 1 to d(T − Γ)/κe do

Use only ut, µ̂t, σ̂t from the marginal window dκ ∗ vine_window/γe.
The copula data for the vine window is given by
uA1+Γ−Ψ+κ∗(vine_window−1), . . . , u

A
Γ+κ∗(vine_window−1), for A ∈ {A1, . . . , Ad, I}.

Determine the ordering Ajd −Ajd−1 − · · · −Aj1 − I i.e. the permutation of indices j1, . . . , jd as
outlined in Algorithm 2 in order to fit the D-vine.

Fit the corresponding D-vine copula Cj1,...,jd,I using the copula data and the ordering.
for k ← 1 to κ if vine_window < d(T − Γ)/κe ∨ (T − Γ) mod κ ≡ 0 else to (T − Γ) mod κ do

Simulate from Cj1,...,jd|I(·|α
I) multivariate samples ûs = (ûA1

s , . . . , ûAds ), for s ∈ 1, . . . , S
Then transform the samples and the conditioning quantile αI from copula→ residual→ return
scale.
r̂
Aj ,s
Γ+κ∗(vine_window−1)+k = µ̂

Aj
Γ+κ∗(vine_window−1)+k + σ̂

Aj
Γ+κ∗(vine_window−1)+k ∗ F

−1
j (ûAjs ), for

j ∈ {1, . . . , d} and s ∈ {1, . . . , S}
r̂I,α

I

Γ+κ∗(vine_window−1)+k = µ̂IΓ+κ∗(vine_window−1)+k + σ̂IΓ+κ∗(vine_window−1)+k ∗ F
−1
I (αI)

Get the weighted full portfolio return by a simple weighted sum.
r̂Ω,s

Γ+κ∗(vine_window−1)+k =
∑d
j=1wj ∗ r̂

Aj ,s
Γ+κ∗(vine_window−1)+k, for s ∈ {1, . . . , S}

Having all these samples one can estimate various conditional risk measures.
m̂

Γ+κ∗(vine_window−1)+k|I=r̂I,α
I

Γ+κ∗(vine_window−1)+k
= RM({r̂Ω,s

Γ+κ∗(vine_window−1)+k|s ∈

{1, . . . , S}}|α)
end

end
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the opposite way. Thus it has to be examined in practice how strong this volatility exaggeration might play
out. Another non quantile based conditional risk measure estimation approach is the one calculating the
realized residual conditional risk measures which are based on the actual observed residuals which
means one conditions on the actually realized value of the conditional asset. The only change with respect
to the quantile based approach is here that one simulates conditionally from

Cj1,...,jd|I(·|FI(
rIt − µ̂It
σ̂It

)) (7.3)

in order to estimate the risk at time t, notably by using rIt which is a look in the future and not a forecast
like µ̂It and σ̂It . The conditioning value on the log return scale is then exactly the realized log return of the
conditional asset. This is an oracle estimator as it suffers from information leakage but might be a valuable
comparison to the quantile based conditional risk measures.
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7.3 Conditional vine copula based risk measure estimation using two
market indices as conditioning variables

Extending Algorithm 7 to the case of two conditioning market indices I1, I2 is actually quite straight forward.
Perform the inference for margins/ marginal models block in the algorithm equivalently for all assets and
market indices. Then in each vine window determine the permutation indices of the assets j1, . . . , jd and
the market indices j̃2, j̃2 that specify the ordering

Ajd − · · · −Aj1 − Ij̃1 − Ij̃2

for the d + 2 dimensional D-vine copula using Algorithm 4 and fit the D-vine. The only crucial change
left is to get both conditioning values for the conditional sampling as outlined in Algorithm 5. This is done
by setting the conditioning copula scale value of Ij̃1 to αI as in the single conditional approach and then
to set the conditioning copula scale value of Ij̃2 to h−1

d+2|d+1(αI |αI). This mimics the αI level quantile
of the bivariate copula between the market indices on the copula scale adjusting for their dependence.
Then sample the asset returns conditioning on these sampled market indices according to Algorithm 5
and proceed as in the single conditional case. The prior residual and realized residual based conditional
risk measures can be calculated in exactly the same manner as in the single conditional setting. This now
allows for the stress testing of the risk measures with respect to two market indices.
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8 Backtesting of the estimated risk measures

Now having estimated the risk measures in a rolling window fashion we want to assess the quality of the
estimation process by comparing the estimated risk estimates for the portfolios log returns with the realized
log returns. This assessment of the risk measurement procedure is not only crucial for regulators but also
for internal evaluation of the methods used in the risk assessment and is mostly framed as statistical
hypothesis test. This chapter will first cover and discuss the applicability to the presented estimation
procedure of various traditional backtests that are framed like classical goodness of fit tests and then
comparative backtests that provide tools for the comparison of different risk estimation procedures.

8.1 Traditional backtesting

The term traditional backtest here is adapted from Nolde and Ziegel (2017) and refers to a goodness of fit
type hypothesis test with the null hypothesis:

H0 : "The risk measure estimation procedure is correct."

So one considers the procedure to be adequate if one does not reject the null hypothesis at a certain
confidence level. Like most goodness of fit tests such tests do not control for the power i.e. when not
rejecting the null hypothesis one can not be sure that the null hypothesis is correct. In the following
traditional backtests for the two discussed risk measures VaR and ES are covered.

Value at Risk backtesting

The de facto standard backtests for the Value at Risk (VaR) were introduced in Christoffersen (1998)
and Christoffersen et al. (2001) and build upon the idea of so called violation processes. Given the
VaR estimates {m̂t

V aRα
; t = Γ + 1, . . . , T} at level α and the corresponding realized portfolio log returns

{rt; t = Γ + 1, . . . , T} the violation process is is defined as

Iαt = 1{rt<m̂tV aRα}
(8.1)

The first test is an unconditional likelihood ratio test in the sense of a traditional backtest also called un-
conditional coverage test. The unconditional here means that one assumes the violation process to
have independent observations with respect to when they appear. This independence assumption will
later be dropped when introducing a conditional approach. Nevertheless there is a place for unconditional
coverage tests as pointed out in Acerbi and Székely (2014). They stress that the often preferred practice
in the industry is a visual check for independence as well as violation clusters and then applying an un-
conditional coverage test. The hypothesis for a traditional backtest translates in this unconditional setting
to the following Definition.

Definition 8.1.1 (LR test of unconditional coverage). In order to test a violation process {Iαt ; t = Γ +
1, . . . , T} of VaR estimates calculated with confidence level α, that is assumed to arise independently,
w.r.t. unconditional coverage the following hypotheses should be tested against each other.

H0 : E[Iαt ] = α

H1 : E[Iαt ] 6= α
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The unconditional expected values used in these hypothesis explain the name of the test. The respective
likelihoods then of course are derived from the binomial distribution and the binomial coefficient can be
omitted due to the construction of a likelihood ratio test.

L0(α; IαΓ+1, . . . , I
α
T ) = (1− α)

∑T

t=Γ+1(1−Iαt )(α)
∑T

t=Γ+1 I
α
t

L1(π; IαΓ+1, . . . , I
α
T ) = (1− π)

∑T

t=Γ+1(1−Iαt )(π)
∑T

t=Γ+1 I
α
t

The final test statistic along its asymptotic distribution is then given as

LRαuc = −2log
(
L0(α; IαΓ+1, . . . , I

α
T )

L1(π̂; IαΓ+1, . . . , I
α
T )

)
∼ χ2(1) (8.2)

with the maximum likelihood estimate π̂ = 1
|{Iαt ;t=Γ+1,...,T}|

∑T
t=Γ+1 I

α
t .

Notably an equivalent test was stated by Kupiec as outlined in Roccioletti (2016). Obviously following
from the independence assumption this test does not control for clustered violations with respect to the
time they appear. In order to fix this potential issue one first states a likelihood ratio test of independence
that will then be combined with the above test of unconditional coverage to get a conditional coverage test.

Definition 8.1.2 (LR test of independence). Here the independence of a violation process {Iαt ; t =
Γ + 1, . . . , T} resembles the null hypothesis which is tested against a first-order Markov alternative. Math-
ematically this translates to hypotheses in terms of transition probabilities

H0 : P (Iαt = 0|Iαt−1 = 1) = P (Iαt = 1|Iαt−1 = 1) ∀t
H1 : P (Iαt = 0|Iαt−1 = 1) 6= P (Iαt = 1|Iαt−1 = 1) ∀t.

As a violation process has only the two states {0, 1} the transition probability matrix from time t− 1 to t of
the corresponding binary first-order Markov chain aligned with the alternative hypothesis is given as

Π1 =
(

1− π01 π01
1− π11 π11

)

with πij = P (Iαt = j|Iαt−1 = i). This leads to the approximate likelihood of the alternative hypothesis

L1(Π1; IαΓ+1, . . . , I
α
T ) = (1− π01)n00πn01

01 (1− π11)n10πn11
11

with nij being the number of observed transitions from state i at time t − 1 to state j at time t. The
corresponding maximum likelihood estimate of Π1 is straightforwardly given as

Π̂1 =
(

n00
n00+n01

n01
n00+n01

n10
n10+n11

n11
n10+n11

)

Under the null hypothesis i.e. independence the probability transition matrix is parameterized by

Π0 =
(

1− π0 π0
1− π0 π0

)

where π0 = P (Iαt = 0|Iαt−1 = 1) = P (Iαt = 1|Iαt−1 = 1) with corresponding likelihood

L0(Π0; IαΓ+1, . . . , I
α
T ) = (1− π0)n00+n10πn01+n11

0
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and maximum likelihood estimate π̂0 = n01+n11
n00+n10+n01+n11

. The final test statistic along its asymptotic distri-
bution is then given as

LRind = −2log
(
L0(Π̂0; IαΓ+1, . . . , I

α
T )

L1(Π̂1; IαΓ+1, . . . , I
α
T )

)
∼ χ2(1) (8.3)

As a remark one notes that this independence test does not depend on the confidence level α of the
risk measure estimation. So it truly just tests for independence. The two LR type tests can now be framed
as a single test for conditional coverage i.e. a test that both tests the independence of the VaR estimates
and the raw number of violations.

Definition 8.1.3 (LR test for conditional coverage). The previous two LR tests for unconditional coverage
and independence can be used jointly to construct a likelihood ratio test for conditional coverage in the
spirit of a traditional backtest. Again a violation process {Iαt ; t = Γ+1, . . . , T} of VaR estimates calculated
with confidence level α is needed. The conditional coverage test statistic along its asymptotic distribution
is then given as

LRαcc = LRαuc + LRind ∼ χ2(2) (8.4)

Both the presented unconditional and conditional coverage tests are widely adapted in practice as they
do just require the VaR estimates and the respective realizations and no additional information like the
estimation method. This is especially important for regulators that get reported just these risk estimates.
Furthermore they are quite easy to carry out.

Expected Shortfall backtesting

Of course by construction violation processes as the basis of backtests make no sense with the expected
shortfall as the ES is not quantile based. Thus the backtesting of the ES needs a different approach and
other than in the VaR setting not a predominant method has evolved. Therefore in the following different
approaches are introduced and evaluated regarding their applicability to the estimation process outlined in
this thesis.

Exceedance residual tests

The first backtest for the expected shortfall proposed in McNeil and Frey (2000) is focused on how the ES
estimates compare with the realized log returns in the case of a violation with respect to the VaR. This
way of thinking about the problem of backtesting is very natural when looking at the Definition of the ES
in Equation (3.3). This idea is formalized by introducing the so called exceedance residuals given the
ES estimates {m̂t

ESα
; t = Γ + 1, . . . , T}, VaR estimates {m̂t

V aRα
; t = Γ + 1, . . . , T} at level α and the

corresponding realized portfolio log returns {rt; t = Γ + 1, . . . , T}:

{rt − m̂t
ESα ; t = Γ + 1, . . . , T and rt < m̂t

V aRα} (8.5)

These exceedance residuals should under correct estimation of both risk measures have a zero mean.
This leads to the following test definition. Here one interprets that m̂t

V aRα
and m̂t

ESα
are random quantities.

Definition 8.1.4 (Exceedance residual backtest). Again in the spirit of a traditional backtest the two sided
exceedance residual test tests the hypotheses

H0 : The exceedance residuals as in Equation (8.5) have zero mean.

H1 : Not H0

In order to test this null hypothesis H0 against the alternative H1 one utilizes the distribution independent
bootstrap test proposed on page 224 of Efron and Tibshirani (1994). From the regulators view however
a two sided test is not necessary as a too conservative estimate and thus stronger capital requirements
should not be punished. Therefore also a one sided exceedance residual test with the null hypothesis
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corresponding to the exceedance residuals having a mean greater or equal to zero can alternatively or
additionally be performed. These tests can also be performed on the standardized exceedance residuals
and McNeil and Frey report similar results for both approaches. Additionally the here discussed tests on
the unstandardized exceedance residuals are also called simple exceedance residual tests.

As in the presented risk measure estimation algorithms of this thesis no portfolio level volatility estimates
are computed the choice is easy as one can only use the exceedance residuals as defined in (8.5) and
not the standardized ones. Moreover it has to be mentioned that this backtest uses additionally the VaR
estimates. This is for the presented estimation process no problem but in a regulatory framework where the
financial institution might only report the ES estimates the test is not applicable for the regulator. Moreover
a bad estimation of the VaR could potentially harm the backtest of perfectly estimated ES estimates as the
backtest is basically a joint one. This weakness of additional estimates is shared across many proposed
ES backtesting procedures in the literature with some even calling for specific fixed estimation models.
The next proposed backtest will also have this weakness.

Conditional calibration tests

For the discussion of conditional calibration tests following Nolde and Ziegel (2017) some additional nota-
tion is needed. A vector of risk measures ρk as defined in Definition 3.1.1 is denoted by

% = (ρ1, . . . , ρk) (8.6)

Having % one can now define properties of such a vector of risk measures.

Definition 8.1.5 (Identifiable risk measures). A vector of risk measures % is identifiable if and only if there
exists a function V : Rk × R→ Rk such that it holds for all X ∈ R (see Definition 3.1.1) that

E[V (m,X)] = 0⇔ m = %(X) (8.7)

V is then called the identification function.

One can think of a identification function for a certain risk measure as one that returns negative values for
violations of the measure and positive ones if no violation occurs in a weighted fashion such that for the
theoretical risk measure an expected value of 0 is achieved. For the VaR at confidence level α one has
identifiability for the identification function

V (m,x) = α− 1{x<m} (8.8)

and the reader may spot the conceptual similarity with the null hypothesis of the unconditional coverage
test in Definition 8.1.1. For the vector (VaR, ES) both at confidence level α one has identifiability for the
identification function

V ((mV aR,mES), x) =
(

α− 1{x<mV aR}
mES −mV aR − 1

α1{x<mV aR}(mV aR − x)

)
(8.9)

Note that again like in the exceedance residual tests the ES is not treated on its own but jointly with the
VaR this comes from the fact that on its own the ES is not identifiable as proven in Fissler and Ziegel
(2016). These identification functions then allow the formal definition of calibration.

Definition 8.1.6 (Calibrated risk measures). A sequence of estimated risk measures {m̂t; t ∈ N} for Xt

is called calibrated for % on average if ∀t ∈ N it holds almost surely that

E[V (m̂t, Xt)] = 0 (8.10)

and conditionally calibrated for % if it holds almost surely ∀t ∈ N that

E[V (m̂t, Xt)|Ft−1] = 0 (8.11)
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where Ft−1 is the σ-algebra that encompasses all the information at hand at time t−1 and % is identifiable
with V .

The notion of conditional calibration is a stronger one as due to the tower property of conditional expec-
tations the conditional calibration implies calibration on average while the converse is generally not true.
Nolde and Ziegel (2017) thus argue that in a dynamic risk management context the construction of back-
tests upon the stronger notion of conditional calibration is reasonable. This leads to the following backtest
for conditional calibration that again is in the spirit of a traditional backtest.

Definition 8.1.7 (Conditional calibration backtest). For a k dimensional vector of risk measures % and a
fixed estimation procedure one can formulate the test hypotheses for conditional calibration as

H0 : The sequence of risk measure estimates is conditionally calibrated for %

H1 : Not H0

From the fact that
E[V (m̂t, Xt)|Ft−1] = 0⇔ E[H>t V (m̂t, Xt)] = 0

holds almost surely for all Ft−1-measurable functions Ht that are Rk×q valued one can construct a test
statistic in the spirit of a classical Wald test. The Ft−1-measurable function Ht is also called the test
function. For estimated risk measures m̂t in the interval t ∈ {1, . . . , n}, corresponding realizations xt and
identification function V the general test statistic is of the form

Tcc = n

( 1
n

n∑
t=1

H>t V (m̂t, xt)
)>

Σ̂n

( 1
n

n∑
t=1

H>t V (m̂t, xt)
)

(8.12)

with

Σ̂n = 1
n

n∑
t=1

[H>t V (m̂t, xt)][H>t V (m̂t, xt)]> (8.13)

Under the null hypothesis H0 one has under mild regularity conditions that

Tcc
D→ χ2(q) as n→∞

which allows to construct an asymtotic test.

For the choice Ht = 1 one calls the resulting tests simple conditional calibration tests. Other choices of
test functions will not be considered here as the choice is yet somewhat subjective. Nolde and Ziegel even
stress that a missspecification of Ht could lead to a slow convergence to the asymptotic test distribution.
Moreover they often require volatility estimates that as discussed before are not available at a portfolio
level for the here presented estimation method.

Notably these conditional calibration tests are closely related to the backtests that were covered so far.
The simple conditional calibration test of the VaR translates also to a test of the number of exceedances
like the unconditional coverage test by Christoffersen. Likewise for a certain test functionHt the conditional
calibration test is almost identical to the exceedance residual test proposed by McNeil and Frey. As the
proposed conditional calibration tests are two sided tests again from a regulators perspective a one sided
test that does not punish arbitrary conservative estimates is desirable. In this case one aims to test for the
so called conditional super-calibration i.e. E[V (m̂t, Xt)|Ft−1] ≥ 0. The construction of these one sided
tests is in line with the two sided tests above. The only difference is that one tests each dimension of the
risk measure vector % individually which leads to the problem of multiple testing. To deal with this either
the classical Bonferroni or the Hommel correction is applied as proposed in Nolde and Ziegel (2017).
As already mentioned the weakness of joint testing for the ES still holds here but the next class of ES
backtests that will be covered actually does not suffer from this weakness.
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ES regression tests

Quite recently Bayer and Dimitriadis (2020b) have introduced the first ES backtests that solely rely on
estimates for the ES and no auxiliary information like VaR estimates that are not mandatorily reported to
the regulators. This overcomes the major weakness of the backtests for the ES presented so far. They use
so called regression based testing. In particular they regress the actual realizations Xt on the expected
shortfall estimates m̂t

ES at confidence level α

Xt = γ1 + γ2m̂
t
ES + εt (8.14)

with EStα(εt|Ft−1) = 0 almost surely. Ft−1 again denotes the σ-algebra containing the history up to t− 1.
For correctly specified risk estimates the intercept parameter γ1 should be 0 and the slope parameter
γ2 should be 1 almost surely. The naive way of proceeding would be to fit this simple linear regression
model and to test these parameters via a Wald-test. But here again it comes into play that there is no
identification function as covered in Definition 8.1.5 for the ES alone. This makes maximum likelihood as
well as generalized methods of moments estimation infeasible in a stand alone manner. But based on the
joint identification functions that were introduced in Fissler and Ziegel (2016) for the pair (VaR, ES) Bayer
and Dimitriadis (2020b) outline a joint regression technique that extends Equation (8.14) with the second
regression

Xt = β1 + β2m̂
t
V aR + ε∗t (8.15)

with V aRt
α(ε∗t |Ft−1) = 0 almost surely. This allows the joint estimation of all the parameters γ1, γ2, β1, β2.

Note that here still VaR estimates are needed which is generally undesirable. Thus the first proposed
backtest is called the auxiliary expected shortfall regression (ESR) backtest as it still requires auxiliary
information.

Definition 8.1.8 (Auxiliary ESR backtest). The setup is the regression system specified by Equations
(8.14) and (8.15) and all their respective variables. Due to the joint identifiability of the VaR and ES joint
parameter estimation is feasible and one tests for the correct specification of the ES Equation (8.14) via
the hypotheses

H0 : (γ1, γ2) = (0, 1) and arbitrary β1, β2

H1 : (γ1, γ2) 6= (0, 1) and arbitrary β1, β2

The test is then a classical Wald-test with statistic

TAESR = n((γ̂1, γ̂2)− (0, 1))Σ̂−1((γ̂1, γ̂2)− (0, 1))′ (8.16)

and asymptotic covariance estimator Σ̂ for the reduced parameter vector (γ1, γ2). Σ̂ is estimated via the
joint regression framework for VaR and ES by Dimitriadis and Bayer (2019) and its involved structure as
well as its asymptotic theory is described in detail in Section 1.4 of Bayer and Dimitriadis (2020b). Here n
denotes the sample size.

Now in order to get rid of the dependence on the VaR estimates they are just substituted by the respective
ES estimates which leads to the so called strict ESR backtest.

Definition 8.1.9 (Strict ESR backtest). The setup is the regression system specified by the Equation (8.14)
and

Xt = β1 + β2m̂
t
ES + ε∗t (8.17)

and all their respective variables. Again estimation is performed like in the auxiliary ESR backtest and one
tests for the correct specification of the ES Equation (8.14) via the same hypotheses



63

H0 : (γ1, γ2) = (0, 1) and arbitrary β1, β2

H1 : (γ1, γ2) 6= (0, 1) and arbitrary β1, β2

The test is then once again a classical Wald-test with statistic

TSESR = n((γ̂1, γ̂2)− (0, 1))Σ̂−1((γ̂1, γ̂2)− (0, 1))′ (8.18)

and asymptotic covariance estimator Σ̂ for the reduced parameter vector (γ1, γ2). Σ̂ is estimated via the
joint regression framework for VaR and ES by Dimitriadis and Bayer (2019) and its involved structure as
well as its asymptotic theory is described in detail in Section 1.4 of Bayer and Dimitriadis (2020b). Here n
denotes the sample size.

Note that through the usage of ES estimates in Equation (8.17) potential missspecifications if the VaR
and ES are not colinear can arise. However Bayer and Dimitriadis (2020b) provide asymptotic theory
for this missspecification case that assures consistency of the parameter estimates under mild regularity
conditions. This is achieved by posing constraints on the covariance structure during estimation. The
strict ESR backtest still has one shortcoming which is that it is a two sided test and as worked out for the
presented ES backtests a one sided test is very interesting for the regulator that does not want to punish
conservative risk estimation. Therefore the third and final ESR test enters the stage.

Definition 8.1.10 (One sided intercept ESR backtest). As the name one sided intercept ESR back-
test suggests one regresses the risk estimation errors on just an intercept parameter in the primary ES
regression. This leads to the following regression setup

Xt − m̂t
ES = β1 + β2m̂

t
ES + ε∗t (8.19)

Xt − m̂t
ES = γ1 + εt (8.20)

with EStα(εt|Ft−1) = 0 and V aRt
α(ε∗t |Ft−1) = 0 almost surely. Having this setup one can define two

sided as well as one sided hypotheses

H two sided
0 : γ1 = 0 and arbitrary β1, β2

Hone sided
0 : γ1 ≥ 0 and arbitrary β1, β2

which are tested via t-tests based on the estimated covariance against their alternatives.

Note that this approach is equivalent to just fixing the slope parameter of the strict ESR backtest to one.
Bayer and Dimitriadis (2020b) verify the performance of these ESR backtests in an extensive simulation
study. All three of these ESR backtests are applicable to the estimation approach presented in this the-
sis as no additional information, like volatility estimates, expect for the risk estimates is needed for the
backtests. This makes these backtests very appealing for portfolio level risk estimates as well as for the
regulator. This concludes the tour of some state of the art ES backtests in the spirit of traditional backtests
and the discussion on whether they are applicable in this particular setting.

8.2 Comparative backtesting

In order to compare the performance of certain estimation procedures traditional backtests framed like
goodness of fit tests do not suffice. Thus comparative backtests following Nolde and Ziegel (2017) will be
introduced now. At the core of such tests are the so called scoring functions.
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Definition 8.2.1 (Consistent scoring functions). A mapping S : Rq × R → R is called scoring function.
If for the scoring function and the k dimensional vector of risk measures % it holds for all X ∈ R (see
Definition 3.1.1) and for all m = (m1, . . . ,mk) 6= %(X) that

E[S(%(X), X)] < E[S(m, X)] (8.21)

then S is strictly consistent. If such a strictly consistent scoring function exists for a vector of risk
measures % one calls % elicitable.

While the Value at Risk is itself elicitable the expected shortfall is not. But the combination of (VaR, ES)
is indeed elicitable as first shown by Fissler and Ziegel (2016). Thus again in order to perform comparative
backtesting for the ES in the sense of Nolde and Ziegel (2017) one has to use the joint workaround. One
can think of a strictly consistent scoring function as one that is minimized for an optimal estimation proce-
dure. Thus having such a scoring function one can directly compare different risk estimation approaches
in absolute terms. Thereby the procedure with the smallest mean scoring value is considered the best
estimation procedure. The choice of the scoring function is however not unique. In the following the strictly
consistent suggestions of Nolde and Ziegel (2017) will be presented. For the VaR at confidence level α
the scoring function

S(m,x) = (1{x<m} − α)m− 1{x<m}x (8.22)

was proposed. This piecewise linear scoring function is well known under the name pinpall loss and is
heavily used in quantile regression settings. As the VaR is basically a quantile forecast this fits nicely also
in this context. It basically returns the weighted distance to the estimated quantile where violations of the
estimate are weighted stronger for small confidence levels α. For the pair (VaR, ES) the following scoring
function is suggested in Nolde and Ziegel (2017):

S((mV aR,mES), x) = 1{x<mV aR}
x−mV aR

mES
+ α

(
mV aR

mES
− 1 + log(−mES)

)
(8.23)

This of course always assumes negative risk estimates. For a comparative test one needs two estimation
procedures here called the standard and internal model. The aim is to challenge the standard model
with the internal model. Their risk measure estimates are denoted as m̂∗ and m̂ respectively. The next
step is then to state the comparative backtest according to Nolde and Ziegel (2017).

Definition 8.2.2 (Comparative backtest). Having the internal model challenging the standard model for a
risk measure estimation task of an elicitable vector of risk measures % one can state the two null hypothe-
ses for comparative backtesting.

H−0 : The internal model estimates the risk measures at least as well as the standard one.

H+
0 : The internal model estimates the risk measures at most as well as the standard one.

In this comparative backtesting setting H−0 is again a goodness of fit test that one does not want to reject.
In order to control the type I error i.e. preferring an inferior internal model over the standard model, H+

0 is
introduced which one then aims to reject. Nolde and Ziegel (2017) worked out that under mild regularity
assumptions both these hypotheses can be asymptotically tested with the following test statistic for n
observed risk estimates for each model.

Tcomp = ∆nS̄

σ̂n/
√
n
D→ N (0, 1) (8.24)

∆nS̄ := 1
n

n∑
t=1

[S(m̂t, xt)− S(m̂∗t , xt)] (8.25)
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Figure 8.1 Three zone approach for comparative backtesting with confidence level η as in Nolde and Ziegel (2017).
The challenging model is assigned to one of the three regions Passed (green), Failed (red) or Further investigation
needed (yellow) according to the test statistic given in Equation (8.24).

where σ̂n is the square root of the empirical variance estimate of the vector of score function differences
that is summed up in Equation (8.25). H−0 is rejected at confidence level η when 1 − Φ(Tcomp) ≤ η and
H+

0 when Φ(Tcomp) ≤ η.

Testing these hypotheses simultaneously leads to the three zone approach displayed in Figure 8.1. So
while the Passed (H+

0 is rejected) and Failed (H−0 is rejected) regions suggest that there is a superior or
inferior estimation approach at a certain level of confidence the Further investigation needed region (no
hypothesis can be rejected) allows the interpretation as the situation that lacks evidence for a definitive
decision at the respective level of confidence. As outlined above the choice of the scoring function that is
used at the core of the comparative backtest is not unique. In the practical part of this thesis the ones for
the VaR and the pair (VaR, ES) given in Equations (8.22) and (8.23) are used. Again the joint treatment of
VaR and ES is a weakness as a perfectly good ES estimation procedure could be not identified because
of a bad estimation of the VaR. This comparative backtesting strategy is not intended to be used instead of
traditional backtests that are especially interesting from a regulators standpoint but should be a tool for the
assessment of new estimation techniques in comparison with existing approaches. Thus when backtesting
a new model one should first have a look into traditional backtesting and when passing these tests one
can move on and challenge existing or alternative models. This closes the theoretical part of the thesis
and now the discussed theory as well as the proposed methods are put to the test in practice in thorough
case studies.
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Part II

Case studies
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9 R package portvine

9.1 Introduction

In order to perform the estimation techniques that were proposed in this thesis we have developed the
portvine package for the statistical computing language R, R Core Team (2021). The thoroughly tested and
documented package was build on the shoulders of giants. Most importantly one has to name the pack-
ages rvinecopulib of Nagler and Vatter (2021) and rugarch of Ghalanos (2022). These facilitate the effec-
tive estimation of vine copula and ARMA-GARCH models respectively. The package is publicly available on
GitHub and will be submitted to CRAN. It furthermore features extensive documentation with the main API
documentation at https://emanuelsommer.github.io/portvine/ and all package related references are given
there. For the further analysis of the risk measure estimates derived from the portvine package mainly
packages from the tidyverse from Wickham et al. (2019) were used for data wrangling and visualizations.
For the traditional backtesting of the ES we will use the esback R package of Bayer and Dimitriadis (2020a).
Notably all the source code for the upcoming analyses and the theoretical visualizations presented up to
now are also publicly available on GitHub at https://github.com/EmanuelSommer/PortvineThesis. Before
starting with the case studies we will have a look at the performance of the portvine package.

9.2 Performance assessment

As evident in the Algorithms 6 and 7 the unconditional as well as the conditional estimation approach is
highly parallelizable. This should definitely be exploited on modern tech stacks that often allow the use of
many cores at once. In particular the portvine package even allows for nested parallel processing i.e.
two levels of parallel processes. These levels are the following.

1. The first level allows to fit the univariate time series models for each asset in parallel and to fit each
vine window in parallel.

2. The second level allows if specified that within each vine window the time units, here in the case
studies days, are processed using parallel processes. This is illustrated in Figure 9.1.

From here on we will use the notation p1/p2 for the possible parallel strategies where p1 specifies the
number of parallel processes/cores on the first level and p2 the number of parallel processes/cores every
first level process can in turn call. This means 1/1 is the default sequential case, 5/1 does only use the first
level parallelization and 8/2 would require 16 cores as every first level parallel process can use 2 parallel
processes while iterating over the time units/days. An illustration of the nested parallelization of the vine
windows can be found in Figure 9.1.

Moreover the conditional sampling algorithms specified in Algorithms 3 and 5 were implemented in the
low level programming language C++ which reduced the runtime by a factor of roughly 30 and memory
consumption by a factor of roughly 200. This is important as especially for large sampling sizes (the
parameter S) the runtime is mainly driven by the sampling.

In the following some measurements that drastically show the significance of using the power of par-
allelization are shown. The measurements were performed on a Linux Cluster of the Leibniz Supercom-
puting Centre. The provided computational resources are gratefully acknowledged. The used R version
is 3.6.0. For details on the extensive possibilities to set up the parallel strategy on your tech stack have a
look at the package documentation. For all following performance measures we have the fixed and realistic
parameters.

https://emanuelsommer.github.io/portvine/
https://github.com/EmanuelSommer/PortvineThesis
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Figure 9.1 Illustration of the first two processing rounds of the 2/3 nested parallel strategy with regard to the vine
windows. Here for illustrative purposes one assumes 4 vine windows with the size of 10 time units.

• The data set contains 1000 observations so roughly 4 financial years i.e. T = 1000.

• The marginal time series training windows size Γ is set to 750.

• The forecasting window of the marginal time series has size γ = 50, which leads to 5 marginal
windows.

• The vine copula training windows size Ψ is set to 200.

• The vine copula usage window has size κ = 25, which leads to 10 vine windows.

• We estimate the VaR and the expected shortfall with mean estimation as specified in Equation (3.5).

• We estimate these risk measures at the common confidence levels α 1% and 2.5%.

Thus in this setting the highest reasonable parallel strategy is 10/25 as then one would parallelize each
vine window and each time unit/day within these windows. This of course requires quite a strong setup
that can handle 250 parallel processes and the extensive memory requirements that come with this level
of parallelization.

Performance of the unconditional approach

Firstly in order to explore the influence of different simulation sample sizes S we further fix the number
of variables in the data set to 10 and use all available parametric bivariate copula families for the fitting
process. This influence on the runtime is important as in practice we would like to have really large number
of samples of the portfolios log returns because the risk measure is then estimated upon this sample.
Figure 9.2 and the corresponding Table 9.1 display the runtimes of different simulation sample sizes and
the respectively used parallel strategy. Especially for 100000 samples the use of 40 cores with 10/4
instead of 20 cores with 10/2 pays off almost linearly. The maximum strategy of 10/25 achieves a great
runtime of under 7 minutes. For the reasonable simulation sample size of 10000 we see that with already
20 cores we can achieve a quite quick runtime of roughly 5 minutes. Also it seems reasonable to assign
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Figure 9.2 The influence of different simulation sample sizes and the respectively used parallel strategy on the
runtime of the unconditional risk measure estimation implemented in the portvine package.

Parallel strategy
Simulation samples S 5/1 10/1 4/6 5/4 1/25 10/2 10/3 10/4 10/25

1000 4.33 2.07 3.38 2.47 9.12 1.56 1.42 1.35 1.11
10000 18.98 9.82 7.94 6.72 11.31 5.60 4.20 3.54 1.57
100000 - - - - 33.57 45.66 - 25.26 6.58

Table 9.1 The influence of different simulation sample sizes and the respectively used parallel strategy on the run-
time given in minutes of the unconditional risk measure estimation implemented in the portvine package. The
number of variables is fixed to 10 and all parametric bivariate copula families are allowed for the fitting.

as many parallel processes as possible up to the number of vine windows to the first level of parallelization
and then to assign as many additional processes to the second level of parallelization. This however
changes for really large simulation sample sizes where it can be seen that assigning lots of processes to
the second level might pay off. This is evident when looking at the strategy 1/25.

The next comparison which now explores the influence of including more variables in the data set fixes
the simulation sample size S = 10000. The results indicate an almost linear behavior between the number
of variables and the runtimes are given in Figure 9.3. The results are not surprising as the computational
effort is obviously larger for more variables in the data set.

The last comparison in the unconditional case will be the one of different sets of bivariate copulas
that are allowed. The simulation sample size S is again fixed to 10000 and the number of variables to
10. The results are depicted in Figure 9.4. We can definitely detect a reduced runtime by using only
single parametric copula families, which are here given by the Gaussian, Frank, Joe, Clayton and Gumbel
bivariate copulas. By using only the Gaussian or Student’s t bivariate copulas it is indicated that we can
reduce the runtime even further.

Table 9.2 gives a quick overview of some of the most interesting scenarios. We see that this uncondi-
tional approach can be easily scaled up to large portfolios using a modern set up.
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Figure 9.3 The influence of different numbers of variables and the respectively used parallel strategy on the runtime
of the unconditional risk measure estimation implemented in the portvine package.

Number of variables d Simulation sample size S Cores used Runtime (minutes)
10 10000 20 5.60
10 100000 20 45.66
10 10000 250 1.57
10 100000 250 6.58
30 10000 20 18.80

Table 9.2 Overview of the runtime of some of the most interesting scenarios from the performance assessment of
the unconditional risk measure estimation approach. In all displayed cases all parametric copula families were
allowed, the observations per variable were fixed to T = 1000 and 5 marginal windows of size 50 as well as 10 vine
windows of size 25 were used.

Figure 9.4 The influence of different sets of bivariate copula families and the respectively used parallel strategy on
the runtime of the unconditional risk measure estimation implemented in the portvine package.
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Performance of the conditional approach

As the conditional approach performs almost identical for a single or two conditional variables we display
just the performance measures of the single conditional case. Furthermore we will estimate at the two
quantile levels αI 5% and 50%. The conditional risk measure estimation approach is expected to have
longer runtimes mostly due to the fact that for each specified quantile level αI and the additional prior
residual risk estimates one has to sample S conditional samples. For the here specified two quantile
levels this means that one samples 3 times as many conditional samples as unconditional samples in the
unconditional risk estimation approach. Moreover the overhead of the conditional estimation is slightly
higher. These expectations are indeed met in the experiments. Again we start with the exploration of
the influence that is induced by different simulation sample sizes S on the runtime. For this the number
of variables is fixed to 10 and all parametric bivariate copula families are allowed for the D-vine fitting.
Figure 9.5 and the corresponding Table 9.3 display the runtimes of different simulation sample sizes and
the respectively used parallel strategy. As annotated on the plot the observation for the maximal strategy

Figure 9.5 The influence of different simulation sample sizes and the respectively used parallel strategy on the
runtime of the conditional risk measure estimation implemented in the portvine package. The observation for the
strategy 10/25 and simulation sample size of 100000 corresponds to the estimation of only 1 conditional quantile as
2 conditional quantiles would come with the extensive memory requirements of >100Gb. From this fact we directly
expect this observation to be roughly 33% faster.

10/25 and simulation sample size of 100000 corresponds to the estimation of only 1 conditional quantile
as 2 conditional quantiles would come with the extensive memory requirements of >100Gb. From this fact
we directly expect this estimation to be roughly 33% faster. But even after adjusting for this expected 33%
faster result we observe a drop of another 44% in runtime for this particular parallel strategy. To get a
better sense for the smaller simulation sample sizes 10000 and 1000 the filtered visualization is given in
Figure 9.6. Once again the time saving from the slowest runtime which is roughly 1.5 hours to the fastest
runtime which is less than 7 minutes is clearly visible.

The next comparison which now again explores the influence of including more variables in the data set
fixes the simulation sample size S = 10000. The results of this comparison are given in Figure 9.7. The
results are again not surprising as the computational effort is obviously larger for more variables in the
data set.
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Parallel strategy
Simulation samples S 5/1 10/1 4/6 5/4 1/25 10/2 10/3 10/4 10/25

1000 10.86 5.65 5.85 4.36 10.88 3.48 2.67 2.61 1.57
10000 86.77 45.37 31.51 25.71 25.55 24.11 16.97 15.80 6.22
100000 - - - - 171.93 231.20 - 148.02 34.67

Table 9.3 The influence of different simulation sample sizes and the respectively used parallel strategy on the run-
time given in minutes of the conditional risk measure estimation implemented in the portvine package. The number
of variables is fixed to 10 and all parametric bivariate copula families are allowed for the fitting. The entry for the
strategy 10/25 and simulation sample size of 100000 corresponds to the estimation of only 1 conditional quantile as
2 conditional quantiles would come with the extensive memory requirements of >100Gb. From this fact we directly
expect this entry to be roughly 33% smaller.

Figure 9.6 The influence of the two simulation sample sizes 1000 and 10000 and the respectively used parallel
strategy on the runtime of the conditional risk measure estimation implemented in the portvine package.

In the conditional case it makes sense to also examine the influence of more quantile levels αI that are
to be estimated on the runtime. From the framing of the algorithm it should have a linear influence. This
expectation is supported by Figure 9.8.

The last comparison will be again the one of different sets of bivariate copulas that are allowed. The
simulation sample size S is again fixed to 10000 and the number of variables to 10. The results are
depicted in Figure 9.9. We can clearly see an almost identical pattern as in the unconditional case.

Table 9.4 again gives a quick overview of some of the most interesting scenarios. We see due to the
fact that the conditional approach requires more samples one needs a stronger hardware setup in order to
apply the approach with high simulation sample sizes of >10000 on large portfolios.

All in all we can conclude that by enabling really flexible parallelization the portvine package is able to
save a lot of runtime even on reasonably sized tech stacks with for example 20 parallel processes but
can also be used on high performance computing infrastructure. This enables to base the risk measure
estimation of large portfolios on large sample sizes which is desirable for the practical application.
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Figure 9.7 The influence of different numbers of variables and the respectively used parallel strategy on the runtime
of the conditional risk measure estimation implemented in the portvine package.

Number of variables d Simulation sample size S Cores used Runtime (minutes)
10 10000 20 24.11
10 100000 20 231.20
10 10000 250 6.22
10 100000 250 34.67 (only 1 quantile level)
30 10000 20 119.25

Table 9.4 Overview of the runtime of some of the most interesting scenarios from the performance assessment
of the conditional risk measure estimation approach. In all displayed cases all parametric copula families were
allowed, the observations per variable were fixed to T = 1000 and 5 marginal windows of size 50 as well as 10 vine
windows of size 25 were used. Besides the case in the fourth scenario, which would require memory of >100Gb for
two quantile levels, always two quantile levels αI were estimated.

Figure 9.8 The influence of different numbers of quantile levels αI that are to be estimated and the respectively used
parallel strategy on the runtime of the conditional risk measure estimation implemented in the portvine package.
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Figure 9.9 The influence of different sets of bivariate copula families and the respectively used parallel strategy on
the runtime of the conditional risk measure estimation implemented in the portvine package.
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10 Unconditional Spanish stock portfolio analysis

In this chapter we will first present the portfolio of Spanish stocks that will be used for the case studies
as well as the two time frames of interest in Section 10.1. After that we will assess the quality of the
fitted marginal models in Section 10.2. The next step is then to analyze the fitted R-vines in Section
10.3. Section 10.4 provides a comparison of the three different estimators for the ES that were presented
in Chapter 3. Thereafter we visualize and backtest the estimated risk measures in Section 10.5. We
first perform the traditional backtests on all models considering various specifications right after the initial
visualizations of the risk measures in Section 10.5 and then compare the different models with respect to
different vine training parameters and the set of used bivariate copula families for the D-vine. This is done
towards the end of Section 10.5 using comparative backtesting with a focus on the ES.

10.1 The setup

At the core of all following analysis will be a portfolio of nine Spanish stocks i.e. d = 9. These are the nine
top constituents of the MSCI Spain stock market index. The nine assets along their corresponding weights
wj are given below in Table 10.1. The weight corresponds to the respective market capitalization (EUR
billions) of the asset on the 29th October 2021.

Asset Iberdrola Banco Santander BBV Argentaria Inditex Cellnex Telecom
Weight 60.48 56.82 40.42 34.08 27.09

Asset Amadeus It Group Telefonica Repsol Ypf Ferrovial
Weight 26.06 19.37 16.04 12.99

Table 10.1 The assets of the Spanish stock portfolio of interest with their respective market capitalization (EUR
Billions) on the 29.10.2021.

We will have a look at the following two time frames.

• Time frame 1: 01.01.2016 - 31.12.2019, T = 1042 daily log returns and a training window of
Γ = 750.

• Time frame 2: 02.04.2020 - 13.10.2021, T = 400 daily log returns and a training window of Γ = 300.

They are both highlighted on the time series plot of the daily log returns of the MSCI Spain in Figure 10.1.
We can observe greater volatility during the stock market selloffs 2015-2016 maybe due to Chinese stock
market turbulence, the EU dept crisis and the Brexit votum as well as for the first ’Covid-19 year’ 2020.
The second time frame with the pandemic in place allows backtest our estimation approach in a higher
volatility setting.

The time series of the individual assets of the portfolio along side the one of the MSCI Spain are given
in Figure 10.2 and indeed they look stationary and volatility clusters can be observed. Thus an approach
using only ARMA models would probably not perform well. The forecasting window size for the marginal
time series models is fixed to γ = 50 which corresponds to roughly 2 financial months. This results in six
rolling marginal windows i.e. refits in the first time frame and in two rolling marginal windows in the second
time frame. The default marginal model is an ARMA(1,1)-GARCH(1,1) model with the residual white noise
distribution being a skewed Student’s t distribution. The assessment of the quality of marginal model
fit follows right after this section. For the parameters specifying the repeated R-vine fitting and refitting
four different specifications were examined. These are all possible combinations of the two parameters
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Figure 10.1 The daily log return series of the MSCI Spain with the time frames of interest highlighted.

Ψ ∈ {250, 500} and κ ∈ {25, 50} for the first time frame and Ψ ∈ {100, 200} and κ ∈ {25, 50} for
the second time frame. We will try to determine the best specification later via comparative backtesting.
For the R-vine fitting all parametric bivariate copula families implemented in the rvinecopulib package
were allowed. A comparison with models restricted to only Gaussian or Student’s t components will be
performed later also via comparative backtesting. For all models the VaR and the ES were estimated
for the α levels 0.01, 0.025, 0.05. For the ES all presented estimators in Chapter 3 were used and a
comparison of the estimators will also be given later. Moreover all estimated risk measures were based on
a realistic simulation sample size of S = 100000 samples.
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Figure 10.2 The daily log return series of the MSCI Spain and the individual assets.
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10.2 Assessment of the marginal models

We will use the tools presented in Section 4.5 in order to assess the quality of the marginal models. The
first time frame with 6 marginal models corresponding to the marginal windows for each asset will be
analyzed first. It is actually quite realistic to only have a look at the residual analysis of the first marginal
model as at the beginning of the rolling window approach only this analysis would be possible. Here only
the residual plots corresponding to the asset Iberdrola will be displayed in Figure 10.4. All other residual
plots for the first time frame and first marginal window can be found in the Appendix A. Overall all residual
plots were not indicating any model misfit. To have a better overview over all assets at once for a certain
marginal window one can have a look at the heatmaps displayed in Figure 10.4 that show the results of
the Ljung-Box tests for different lags and all considered assets at once. Once again no concerning misfit
can be detected for any of the six marginal windows. Thus we will stick to the default model for all marginal
models for the first time frame.

The same analysis is then also performed on the second time frame. The exemplary residual plots for
the asset Iberdrola are displayed in Figure 10.5 and the Ljung-Box heatmaps for both marginal windows in
Figure 10.6. Again the other residual plots are collected in the Appendix A. All in all, for the second time
frame no severe model misfit was detected with the fit of the series corresponding to the Banco Santander
asset, whose residual plots can be found in Figure A.9, being the most questionable. As it is a close call we
will also for the second time frame stick to the default ARMA(1,1)-GARCH(1,1) model in all cases. Thus,
the next step is to have a look at the fitted R-vine copulas.
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(a) Residual plots for the mean equation.

(b) Residual plots for the volatility equation.

Figure 10.3 The residual plots for the asset Iberdrola for the first marginal training window (01.01.2016 - 15.11.2018)
and the first time frame (2016-2019).
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(a) The first rolling window.

(b) The last rolling window.

Figure 10.4 The Ljung-Box heatmaps on the standardized residuals for the first time frame (2016-2019) and the first
and last marginal training window (01.01.2016 - 15.11.2018 and 16.12.2016 - 31.10.2019).
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(a) Residual plots for the mean equation.

(b) Residual plots for the volatility equation.

Figure 10.5 The residual plots for the asset Iberdrola for the first marginal training window (02.04.2020 - 26.05.2021)
and the second time frame (2020-2021).
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(a) The first rolling window.

(b) The last rolling window.

Figure 10.6 The Ljung-Box heatmaps on the standardized residuals for the second time frame (2020-2021) and the
first and last marginal training window (02.04.2020 - 26.05.2021 and 11.06.2020 - 04.08.2021).
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10.3 The fitted R-vines

Now we analyze the fitted R-vines. The most interesting questions that arise in this context are which
bivariate building blocks were fitted in which structure and how strong their dependence is. Also it might
be interesting to detect changing dependence patterns over time. This can be facilitated by visualizing the
first tree level. As a large number of R-vines was fitted for all models in this section we will focus only on
one model per time frame.

First time frame (2016-2019) Again one starts with the first time frame and as the model we choose the
one with Ψ = 250 and κ = 25. Thus 12 R-vine copula models were fitted and Figure 10.7 displays the first
tree of the first, sixth and twelfth R-vine. The fitted bivariate copula family and the empirical Kendall’s tau
are displayed on each edge.

The strongest bivariate dependence is the one between the two banks Banco Santander and the BBV
Argentaria. These two assets and the Telefonica stock seem to have a central role for the given portfolio.
Moreover, Table 10.2 shows that quite a significant proportion of components were non Gaussian.

Copula family Number of usage Copula family Number of usage
Gaussian 3 Independence 7
Student’s t 2 Clayton 5

Frank 12 Gumbel 5
Joe 1 BB7 1

(a) The first vine window.

Copula family Number of usage Copula family Number of usage
Gaussian 3 Independence 7
Student’s t 5 Clayton 5

Frank 8 Gumbel 6
Joe 1 BB8 1

(b) The sixth vine window.

Copula family Number of usage Copula family Number of usage
Gaussian 6 Independence 9
Student’s t 5 Clayton 1

Frank 4 Gumbel 5
Joe 5 BB8 1

(c) The tweltfth vine window.

Table 10.2 The used copula families alongside their frequencies for the first, sixth and twelfth fitted R-vine for the
first time frame (2016-2019) in the unconditional setting.
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(a) The first vine window.

(b) The sixth vine window .

(c) The twelfth vine window.

Figure 10.7 The first trees of the R-vines corresponding to the first, sixth and twelfth vine window for the first time
frame (2016-2019) in the unconditional setting.
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Second time frame (2020-2021) For the second time frame, we choose the model with Ψ = 200 and
κ = 25. This leads to 4 fitted R-vine copulas. The first trees of the first and fourth R-vine copula are
displayed in Figure 10.8. The central assets are the same as in the first time frame.

(a) The first vine window.

(b) The sixth vine window .

Figure 10.8 The first trees of the R-vines corresponding to the first and fourth vine window for the second time frame
(2020-2021) in the unconditional setting.
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Table 10.3 shows that for the second time frame a lot more copulas with a focus on modelling tail
dependence e.g. the BB copulas were used. This might be connected to the generally higher volatility for
this time frame.

Copula family Number of usage Copula family Number of usage
Gaussian 1 Independence 8
Student’s t 3 Clayton 4

Frank 4 Gumbel 7
Joe 3 BB1 3
BB7 2 BB8 1

(a) The first vine window.

Copula family Number of usage Copula family Number of usage
Gaussian 5 Independence 9
Student’s t 5 BB1 2

Frank 5 Gumbel 5
Joe 3 BB8 2

(b) The fourth vine window.

Table 10.3 The used copula families alongside their frequencies for the first and fourth fitted R-vine for the second
time frame (2020-2021) in the unconditional setting.

All in all, one can detect for both time frames that the refitting of the dependence model is indeed
necessary as the structure and composition of the fitted R-vines changes over time. An adequate fre-
quency of the refitting can be determined using comparative backtesting. Also we detected a lot of non
Gaussian or Student’s t components especially for the second time frame so the comparison of this more
flexible class of R-vine allowing for all parametric copula families with the restricted classes only allowing
Gaussian and/or Student’s t components is of interest. This comparison will also be performed using the
comparative backtests.
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10.4 Expected Shortfall estimators

As we present three different estimators for the ES namely the mean, median and Monte Carlo integration
based estimators in Chapter 3 a comparison of the resulting estimates seems reasonable.

First time frame (2016-2019) Again we start with the first time frame and have only a look at one of the
four fitted models. Here again the one with the parameters Ψ = 250 and κ = 25 is used. Figure 10.9
shows how the three estimators for the ES at confidence level α = 0.05 behave over time. The Monte
Carlo integration based estimator is based on 10000 Monte Carlo samples and the resulting ES estimates
are almost identical to the ones corresponding to the mean estimator. Only the median based estimator
differs from the other two as it is always less conservative than the two. As the VaR exceedances are
apparently left skewed the median is more robust resulting in less conservative estimates. This left skew
of the VaR exceedances is most likely the usual case in practice. Figure 10.10 shows that overall the three

Figure 10.9 Comparison of the three ES estimators at confidence level α = 0.05 over time for the first time frame
(2016-2019).

estimators are almost colinear as we can roughly observe an identity line.
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(a) (b)

Figure 10.10 Two views of the 3d plot relating the risk estimates of the three different estimators for the ES at
confidence level α = 0.05 for the first time frame (2016-2019).
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Second time frame (2020-2021) Figure 10.11 displays how the three estimators for the ES at confidence
level α = 0.05 behave over time for the second time frame. Here again the model with parameters Ψ = 200
and κ = 25 is chosen. We observe the exact same pattern as for the first time frame. This also holds for

Figure 10.11 Comparison of the three ES estimators at confidence level α = 0.05 over time for the second time
frame (2020-2021).

the 3d plot displayed in Figure 10.12 again simply relating the estimated risk measures for the time frame
without the time.

(a) (b)

Figure 10.12 Two views of the 3d plot relating the risk estimates of the three different estimators for the ES at
confidence level α = 0.05 for the second time frame (2020-2021).

We will from now on only use the ES estimator based on the mean as defined in Equation (3.5). This
more conservative choice would probably also be reasonable for a regulator. Having performed this com-



92

parison we can move on to the highly interesting section covering the backtesting of the estimated risk
measures.
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10.5 Backtesting

Before one backtests the estimated risk measures, one can use visualizations to get a rough sense for the
behavior of the estimated risk measures. Figure 10.13 provides a visual comparison of the VaR and ES
estimates for the two time frames. Obviously the ES estimates are always smaller than the VaR which is
clear by definition and estimation. Moreover, these plots show that the implicit assumption of colinearity
of the VaR and ES that Bayer and Dimitriadis (2020b) use for the strict ESR backtests seems to be very
reasonable. The sudden drop in the risk measures in the beginning of May 2021 in Figure 10.13b is due
to the fact that there the marginal window ends and the marginal models as well as the vine copula were
adjusted.

Quite prominent visualizations of the VaR are exceedance plots that highlight the exceedances. Figure
10.14 shows an exemplary exceedance plot for each time frame.

For a similar visualization of the ES it is reasonable to not mark the exceedances of the ES but again the
ones of the corresponding VaR which is more natural given that the ES is defined as the expected value
given the VaR is exceeded. Such an ES exceedance plot is exemplarily given in Figure 10.15 for the first
time frame (2016-2019).

These descriptive plots may directly show flaws in the estimation as well as clustered failing of the
approach. This can then be analyzed further in the business setting. Here no odd behavior is visible and
we can proceed with the traditional backtests.
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(a) The first time frame (2016-2019).

(b) The second time frame (2020-2021).

Figure 10.13 Visual comparison plots of the VaR and ES risk estimates at the two α levels 0.01 and 0.05 for the first
and second time frame. The vine window parameters are Ψ = 250 and κ = 25 for the first time frame and Ψ = 100
and κ = 25 for the second time frame.
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(a) The first time frame (2016-2019). (b) The second time frame (2020-2021).

Figure 10.14 Exceedance plots of the VaR at α level 0.025 for the first and second time frame. The vine window
parameters are Ψ = 250 and κ = 25 as well as Ψ = 100 and κ = 25 respectively.

Figure 10.15 Exemplary exceedance plot for the ES at α level 0.025 for the first time frame (2016-2019). The vine
window parameters are Ψ = 250 and κ = 25.
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Traditional backtesting

As outlined in Chapter 8 we want to test all our estimated risk measures with traditional backtests. These
are goodness of fit type tests where we would not like to reject the null hypothesis which states that
the risk estimation procedure is correct. In Table 10.4 we collect all the p-values from all the presented
backtests in Chapter 8 for both the VaR and ES at the confidence levels α ∈ {0.01, 0.025, 0.05} and
for all four models of the first time frame. In some cases (especially for small α levels) where no result
was reported this is due to limitations of the ESR approach and its implementation. More specifically the
smallest simulation Bayer and Dimitriadis (2020b) have tested is the one with α = 0.025 and a forecasting
window of size 250. Thus whenever the ESR approach could not be performed the results are omitted.
We will from now on consider the common significance level of 5% to evaluate the resulting p-values of
the traditional backtests. For the first time frame the results are really pleasing as at every α level and
for every successfully performed backtest one does not reject the null hypothesis of having a correct risk
estimation procedure at the significance level of 5%.

The respective results of the models for the second time frame are collected in Table 10.5. Here again
some ESR backtests could again not be performed as the forecasting window of size 100 in the second
time frame is smaller then the smallest test simulation of the authors of the ESR approach. Thus, for
the second time frame the ESR approach reaches its limits even quicker. Moreover, in two cases the
exceedance residual backtests could not be performed due to the fact that there were no exceedance
residuals. This suggest a conservative enough estimation. For the second time frame and the α level of
0.01 actually the risk estimation was in some cases too conservative this is also indicated by the four two
sided backtests that failed i.e. one had to reject the null hypothesis. The p-values of the corresponding
one sided backtests were then consequently as the estimation was too conservative very large. All other
backtests could mostly quite clearly not be rejected and thus the results are also very pleasing for the
second time frame.

All in all every considered model passed almost all the traditional backtests for both VaR and ES on
all considered confidence levels α with only four exceptions where the estimation was too conservative
resulting in the rejection of the two sided test. This suggests that the proposed unconditional risk measure
estimation approach for both considered risk measures performs really good in practice. Yet it is quite
obvious that from these results no favourable model can be chosen. For this endeavour we will have a look
at comparative backtesting next.
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Vine training length Ψ: 250, Vine window size κ: 25

Risk measure Backtest α: 0.01 α: 0.025 α: 0.05
VaR unconditional coverage 0.27 0.11 0.71
VaR conditional coverage 0.49 0.16 0.37
ES exceedance residuals (two sided) 0.99 0.86 0.18
ES exceedance residuals (one sided) 0.70 0.49 0.08
ES simple conditional calibration (two sided) 0.64 0.39 0.49
ES simple conditional super-calibration (one sided) 0.69 0.45 0.49
ES strict ESR test (two sided) - 0.39 0.22
ES one sided intercept ESR test - 0.29 0.15

Vine training length Ψ: 250, Vine window size κ: 50

Risk measure Backtest α: 0.01 α: 0.025 α: 0.05
VaR unconditional coverage 0.27 0.054 0.71
VaR conditional coverage 0.49 0.08 0.37
ES exceedance residuals (two sided) 0.90 0.94 0.16
ES exceedance residuals (one sided) 0.65 0.54 0.08
ES simple conditional calibration (two sided) 0.64 0.27 0.42
ES simple conditional super-calibration (one sided) 0.59 0.38 0.43
ES strict ESR test (two sided) - 0.49 0.35
ES one sided intercept ESR test - 0.24 0.14

Vine training length Ψ: 500, Vine window size κ: 25

Risk measure Backtest α: 0.01 α: 0.025 α: 0.05
VaR unconditional coverage 0.27 0.11 0.87
VaR conditional coverage 0.49 0.16 0.49
ES exceedance residuals (two sided) 1.00 0.66 0.16
ES exceedance residuals (one sided) 0.68 0.72 0.08
ES simple conditional calibration (two sided) 0.56 0.35 0.32
ES simple conditional super-calibration (one sided) 1.00 0.74 0.65
ES strict ESR test (two sided) - 0.48 0.52
ES one sided intercept ESR test - 0.32 0.26

Vine training length Ψ: 500, Vine window size κ: 50

Risk measure Backtest α: 0.01 α: 0.025 α: 0.05
VaR unconditional coverage 0.27 0.11 0.87
VaR conditional coverage 0.49 0.16 0.49
ES exceedance residuals (two sided) 1.00 0.69 0.12
ES exceedance residuals (one sided) 0.68 0.71 0.06
ES simple conditional calibration (two sided) 0.57 0.36 0.30
ES simple conditional super-calibration (one sided) 0.95 0.73 0.65
ES strict ESR test (two sided) - 0.73 0.56
ES one sided intercept ESR test - 0.39 0.27

Table 10.4 The results of the traditional backtests for the first time frame (2016-2019). In some cases (especially for
small α levels) where no result was reported this was due to limitations of the ESR approach and its implementation.
P-values smaller than 0.05 are marked bold.
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Vine training length Ψ: 100, Vine window size κ: 25

Risk measure Backtest α: 0.01 α: 0.025 α: 0.05
VaR unconditional coverage 0.38 0.16 0.20
VaR conditional coverage 0.65 0.28 0.22
ES exceedance residuals (two sided) 0.00 0.32 1.00
ES exceedance residuals (one sided) 1.00 0.87 0.54
ES simple conditional calibration (two sided) 0.06 0.32 0.54
ES simple conditional super-calibration (one sided) 1.00 0.99 0.60
ES strict ESR test (two sided) - - 0.69
ES one sided intercept ESR test - - 0.37

Vine training length Ψ: 100, Vine window size κ: 50

Risk measure Backtest α: 0.01 α: 0.025 α: 0.05
VaR unconditional coverage 1.00 0.16 0.20
VaR conditional coverage 0.99 0.28 0.22
ES exceedance residuals (two sided) - 0.19 0.49
ES exceedance residuals (one sided) - 0.88 0.77
ES simple conditional calibration (two sided) 0.00 0.11 0.46
ES simple conditional super-calibration (one sided) 1.00 1.00 0.78
ES strict ESR test (two sided) - - 0.93
ES one sided intercept ESR test - - 0.41

Vine training length Ψ: 200, Vine window size κ: 25

Risk measure Backtest α: 0.01 α: 0.025 α: 0.05
VaR unconditional coverage 0.38 0.16 0.20
VaR conditional coverage 0.65 0.28 0.22
ES exceedance residuals (two sided) 0.00 0.35 0.98
ES exceedance residuals (one sided) 1.00 0.81 0.54
ES simple conditional calibration (two sided) 0.07 0.33 0.54
ES simple conditional super-calibration (one sided) 1.00 1.00 0.57
ES strict ESR test (two sided) - - 0.69
ES one sided intercept ESR test - - 0.38

Vine training length Ψ: 200, Vine window size κ: 50

Risk measure Backtest α: 0.01 α: 0.025 α: 0.05
VaR unconditional coverage 1.00 0.38 0.20
VaR conditional coverage 0.99 0.57 0.22
ES exceedance residuals (two sided) - 1.00 0.39
ES exceedance residuals (one sided) - 0.67 0.81
ES simple conditional calibration (two sided) 0.00 0.07 0.44
ES simple conditional super-calibration (one sided) 1.00 1.00 0.83
ES strict ESR test (two sided) - - 0.98
ES one sided intercept ESR test - - 0.43

Table 10.5 The results of the traditional backtests for the second time frame (2020-2021). In some cases (especially
for small α levels) where no result was reported this was due to limitations of the ESR approach and its imple-
mentation, except for the one case where the exceedance residual test could not be performed as there were no
exceedance residuals. P-values smaller than 0.05 are marked bold.
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Comparative backtesting

First time frame (2016-2019)

Vine window/training related parameters First up we would like to determine which specification of
the two vine window/training parameters Ψ ∈ {250, 500} and κ ∈ {25, 50} is the preferred one for the first
time frame. We will base our decision on comparative backtests for the ES. The results of the comparative
backtests as of Definition 8.2.2 for the ES at the two α levels 0.01 and 0.05 are displayed in Table 10.6.
To evaluate the given transformed test statistic Φ(Tcomp) one should remember the three zone approach
illustrated in Figure 8.1. Thus a value below 0.5 indicates a superior internal model. A significant decision
at the common significance level ν = 0.05 can only be supported if Φ(Tcomp) < ν or Φ(Tcomp) > 1 − ν.
It follows that here no definitive decision can be supported in all comparisons. However we can have a
look at indications. We for example observe that the bigger vine training length of Ψ = 500 seems to be
superior to the smaller one of Ψ = 250. Moreover the smaller window size of the vines κ = 25 seems
not to be necessary as the comparative backtests even suggest that the parameter κ set to 50 performs
better. So from the indications one would probably use the model with vine training size Ψ = 500 and
window size κ = 50.

α = 0.01 standard model
internal model Ψ = 250, κ = 25 Ψ = 500, κ = 25 Ψ = 250, κ = 50 Ψ = 500, κ = 50

Ψ = 250, κ = 25 0.8127 0.7170 0.8456
Ψ = 500, κ = 25 0.1873 0.2757 0.5677
Ψ = 250, κ = 50 0.2830 0.7243 0.7648
Ψ = 500, κ = 50 0.1544 0.4323 0.2352

(a) ES estimated at confidence level α = 0.01.

α = 0.05 standard model
internal model Ψ = 250, κ = 25 Ψ = 500, κ = 25 Ψ = 250, κ = 50 Ψ = 500, κ = 50

Ψ = 250, κ = 25 0.6957 0.6546 0.6657
Ψ = 500, κ = 25 0.3043 0.3421 0.3670
Ψ = 250, κ = 50 0.3454 0.6579 0.6227
Ψ = 500, κ = 50 0.3343 0.6330 0.3773

(b) ES estimated at confidence level α = 0.05.

Table 10.6 The results i.e. Φ(Tcomp) of the comparative backtests as of Definition 8.2.2 for the first time frame (2016-
2019) for the ES at the two α levels 0.01 and 0.05 with respect to different rolling vine window parameters Ψ and
κ. A value below 0.5 indicates a superior internal model but here in all cases no significant decision at confidence
ν = 0.05 can be supported.

Allowed copula families As already mentioned before we have also fixed the vine parameters Ψ and
κ to 250 and 50 respectively to compare how the variation in the set of allowed bivariate copula families
influences the risk estimation quality. In particular we examine the three cases where only Gaussian
components, Student’s t and Gaussian components and all parametric copula families are allowed.
The results of the comparative backtest on the ES again at the two α levels 0.01 and 0.05 are displayed
in Table 10.7. Again for the significance level ν = 0.05 no clear decision is supported however here for
the first time frame the indications suggest that the model with Gaussian and Student’s t components per-
forms the best. Figure 10.16 shows both the ES estimates at α level 0.05 based on the R-vine copula
allowing for all parametric copula families and only Gaussian and Student’s t ones. There we can observe
that both models estimate the risk for the first time frame quite similar. The only obvious difference is the
third exceedance for the general R-vine. It will be interesting whether a more flexible model allowing for
all parametric copula families and accounting better for tail dependence is superior to the Gaussian and
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α = 0.01 standard model
internal model All parametric copula families Gaussian & Student’s t Gaussian

All parametric copula families 0.7002 0.5801
Gaussian & Student’s t 0.2998 0.1880

Gaussian 0.4199 0.8120
(a) ES estimated at confidence level α = 0.01.

α = 0.05 standard model
internal model All parametric copula families Gaussian & Student’s t Gaussian

All parametric copula families 0.8160 0.6848
Gaussian & Student’s t 0.1840 0.1154

Gaussian 0.3152 0.8846
(b) ES estimated at confidence level α = 0.05.

Table 10.7 The results i.e. Φ(Tcomp) of the comparative backtests as of Definition 8.2.2 for the first time frame
(2016-2019) for the ES at the two α levels 0.01 and 0.05 with respect to the copula families used in the R-vine. The
parameters Ψ = 250, κ = 50 and all other parameters are fixed. A value below 0.5 indicates a superior internal
model but here in all cases no significant decision at confidence ν = 0.05 can be supported.

Figure 10.16 Comparison of the ES estimates at α level 0.05 based on the R-vine copula allowing for all parametric
copula families and only Gaussian and Student’s t ones for the first time frame (2016-2019).

Student’s t vine in the second time frame that is set in an overall more volatile market situation.
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Second time frame (2020-2021)

Vine window/training related parameters Now we would like to determine which specification of the
two vine window/training parameters Ψ ∈ {100, 200} and κ ∈ {25, 50} is the suggested one for the
second time frame. We will again base our decision on comparative backtests for the ES. The results of
the comparative backtests for the ES at the two α levels 0.01 and 0.05 are displayed in Table 10.8 in the
same manner as above for the first time frame. As for the first time frame at the significance level ν = 0.05

α = 0.01 standard model
internal model Ψ = 100, κ = 25 Ψ = 200, κ = 25 Ψ = 100, κ = 50 Ψ = 200, κ = 50

Ψ = 100, κ = 25 0.6760 0.0686 0.7091
Ψ = 200, κ = 25 0.3240 0.1999 0.7862
Ψ = 100, κ = 50 0.9315 0.8001 0.7983
Ψ = 200, κ = 50 0.2909 0.2138 0.2017

(a) ES estimated at confidence level α = 0.01.

α = 0.05 standard model
internal model Ψ = 100, κ = 25 Ψ = 200, κ = 25 Ψ = 100, κ = 50 Ψ = 200, κ = 50

Ψ = 100, κ = 25 0.8260 0.0981 0.8454
Ψ = 200, κ = 25 0.1740 0.1153 0.9069
Ψ = 100, κ = 50 0.9019 0.8847 0.8898
Ψ = 200, κ = 50 0.1546 0.0931 0.1102

(b) ES estimated at confidence level α = 0.05.

Table 10.8 The results i.e. Φ(Tcomp) of the comparative backtests as of Definition 8.2.2 for the second time frame
(2020-2021) for the ES at the two α levels 0.01 and 0.05 with respect to different rolling vine window parameters
Ψ and κ. A value below 0.5 indicates a superior internal model but here in all cases no significant decision at
confidence ν = 0.05 can be supported.

we can not support a definitive decision. The indications however are the same as in the first time frame.
The longer vine training window of Ψ = 200 and the longer vine usage of κ = 50 is suggested quite clearly
by the results of the comparative backtests on the ES.

Allowed copula families With exactly these suggested parameters fixed we again examine the three
cases where only Gaussian components, Student’s t and Gaussian components and all parametric copula
families are allowed now for the second time frame. The results of the comparative backtest on the ES
again at the two α levels 0.01 and 0.05 are displayed in Table 10.9. Here we again can not make a
definitive decision at the ν = 0.05 significance level but especially for α = 0.05 there is a clear indication
that the model allowing for all parametric copula families results in a superior risk measure estimation than
the ones restricted to Gaussian and/or Student’s t components. The higher usage of copulas accounting
for tail dependence seems to pay off in the higher volatility setting of the second time frame. Visually
however the difference between the models is difficult to detect as visible in Figure 10.17 that shows the
ES estimates at α = 0.05 of the model allowing for all parametric copula families and the one restricted to
Gaussian and Student’s t components side by side.
This concludes the portrayal of the unconditional approach using the portfolio of Spanish stocks and we
move on to the conditional approach.
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α = 0.01 standard model
internal model All parametric copula families Gaussian & Student’s t Gaussian

All parametric copula families 0.3903 0.4444
Gaussian & Student’s t 0.6097 0.6114

Gaussian 0.5556 0.3886
(a) ES estimated at confidence level α = 0.01.

α = 0.05 standard model
internal model All parametric copula families Gaussian & Student’s t Gaussian

All parametric copula families 0.1005 0.1000
Gaussian & Student’s t 0.8995 0.7078

Gaussian 0.9000 0.2922
(b) ES estimated at confidence level α = 0.05.

Table 10.9 The results i.e. Φ(Tcomp) of the comparative backtests as of Definition 8.2.2 for the second time frame
(2020-2021) for the ES at the two α levels 0.01 and 0.05 with respect to the copula families used in the R-vine. The
parameters Ψ = 200, κ = 50 and all other parameters are fixed. A value below 0.5 indicates a superior internal
model but here in all cases no significant decision at confidence ν = 0.05 can be supported.

Figure 10.17 Comparison of the ES estimates at α level 0.05 based on the R-vine copula allowing for all parametric
copula families and only Gaussian and Student’s t ones for the second time frame (2020-2021).
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11 Conditional Spanish stock portfolio analysis

This chapter is split up into the first more detailed Section 11.1 covering the single conditional risk measure
estimation approach and the shorter Section 11.2 shortly displaying the conditional approach using two
conditional assets. Section 11.1 thereby is organized as follows. First up the extended setup with the two
considered conditional assets the SP500 and Eurostoxx 50 is introduced. Then the additional marginal
models are checked for an appropriate fit in the next subsection of Section 11.1. This is followed by a
detailed look at the fitted D-vine copulas for both time frames and conditional assets. The next part of
Section 11.1 covers the behavior of the conditioning values. It is important to have a good grasp how the
conditioning values behave for the quantile based, prior residual and realized residual strategy in order
to interpret the resulting conditional risk measures correctly. Finally the last part of Section 11.1 displays
the conditional risk measure estimates. In particular one compares the quantile based conditional risk
measure estimates with the ones based on the prior residuals and realized residuals as well as with the
unconditional risk measure estimates in order to understand which influence and how big the influence of
the conditioning asset is on the portfolio level risk measure estimates.

11.1 One conditional asset

The setup

To showcase the conditional risk measure estimation based on a single conditional asset we will use the
same base portfolio of Spanish stocks as given in Table 10.1 with the corresponding weights. The two
time frames of interest as they were highlighted in Figure 10.1 will also be the same. The additional
two conditional assets that will be considered are the SP500 and the Eurostoxx 50 index. While the
former is an index indicating the state of the American economy the latter does the same for the European
economy. As our portfolio consists of Spanish stocks we expect the influence of the Eurostoxx 50 index
to be greater than the one of the SP500. Some assets are also part of the Eurostoxx index, namely the
Banco Santander, the Amadeus It Group, Iberdrola and Inditex. However they cumulatively only account
for roughly 5% of the index. The parameters concerning the marginal time series models will be the
same as for the unconditional approach and the parameters concerning the here D-vine copula models
will be fixed in the conditional case to the values that were suggested by the comparative backtesting
in the unconditional setting. These were Ψ = 500 and κ = 50 for the first time frame and Ψ = 200
and κ = 50 for the second time frame. Also the simulation sample size is again set to S = 100000.
Moreover all parametric copula families implemented in the rvinecopulib were allowed in the D-vine fitting.
The default marginal model is also for the conditional assets an ARMA(1,1)-GARCH(1,1) model with the
residual white noise distribution being a skewed Student’s t distribution. The quality assessment of the
additional two time series models for each time frame will follow right below. For all models the VaR and
the ES were estimated for the α levels 0.01, 0.025, 0.05. The focus during this conditional analysis will
however lie on the ES estimated at the level α = 0.025.

Quality assessment of the additional marginal models

Again the tools of Section 4.5 are used to assess the quality of the four additional marginal time series
models. We will perform the residual analysis for the model corresponding to the first marginal model.
The residual plots for the first time frame are given in Figure 11.1 for the SP500 and in Figure 11.2 for the
Eurostoxx 50 index. All plots for both the mean and volatility equation do not look suspicious and thus the
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fit of the ARMA(1,1)-GARCH(1,1) models is assumed to be good. The residual plots for the second time
frame are given in the Appendix as Figures A.17 and A.18. The mean equation of the SP500 asset shows
a slightly questionable fit but as no severe misfit is visible and all other residual plots indicate good fits we
will also stick to the default model for both marginal models of the second time frame.

(a) Residual plots for the mean equation.

(b) Residual plots for the volatility equation.

Figure 11.1 The residual plots for the conditional asset the SP500 index for the first marginal window and the first
time frame (2016-2019).
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(a) Residual plots for the mean equation.

(b) Residual plots for the volatility equation.

Figure 11.2 The residual plots for the conditional asset the Eurostoxx 50 index for the first marginal window and
the first time frame (2016-2019).
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The fitted D-vines

Now we analyze the fitted D-vines. Here we would like to see how Algorithm 2 has determined the ordering
and how strong the dependencies are. Also it is interesting to detect changing patterns over time. This is
again facilitated by visualizing the first tree level. Furthermore also the used bivariate building blocks are
of interest and especially the ones associated with the conditioning market index. These are the bivariate
copulas associated with the rightmost edge in each tree/path of the D-vine.

The first time frame (2016-2019) We start with the first time frame and the SP500 as the conditional
asset. The first trees of the D-vines corresponding to the first and last vine window alongside the edge
copula families and the associated empirical Kendall’s tau are displayed in Figure 11.3. The really weak

(a) The first vine window.

(b) The sixth/last vine window.

Figure 11.3 The first trees of the D-vines corresponding to the first and sixth/last vine window for the first time frame
(2016-2019) in the single conditional setting. The conditional asset is the SP500.
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dependence between the conditional SP500 asset and the rightmost portfolio asset in both cases is ac-
tually surprising. Although the American market is one of the most important export markets outside of
Europe for Spain, the index seems to have very little influence on our portfolio. Consequently also the
ordering of the other stocks changes very strongly over time. Table 11.1 displays the used bivariate copula
families with their frequency of usage. Especially in the sixth vine window we can detect a quite large
number of used independence copulas. This might have to do with the weak influence of the SP500. In
order to even better understand how the conditional asset influences our D-vine we look at the used copula
families alongside their empirical Kendall’s tau directly associated with the conditional asset i.e. the ones
associated with the rightmost edge in each tree level. They are given in Table 11.2 and indeed for each
tree level the dependence is very weak and quite some independence copulas arise directly in the context
of the conditional asset for the sixth vine window.

Copula family Number of usage Copula family Number of usage
Gaussian 2 Independence 6
Student’s t 8 Clayton 4

Frank 11 Gumbel 2
Joe 6 BB1 2
BB8 4

(a) The first vine window.

Copula family Number of usage Copula family Number of usage
Gaussian 3 Independence 11
Student’s t 7 Clayton 5

Frank 9 Gumbel 4
BB1 3 BB8 3

(b) The sixth vine window.

Table 11.1 The used copula families alongside their frequencies for the first and sixth fitted D-vine for the first time
frame (2016-2019) in the single conditional setting. The conditional asset is the SP500.
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Tree level Copula Copula family Empirical Kendall’s tau
1 Cj1,I Joe -0.0593
2 Cj2,I;j1 Student’s t -0.0061
3 Cj3,I;j1,j2 Joe 0.0455
4 Cj4,I;j1:j3 Joe 0.0308
5 Cj5,I;j1:j4 Joe 0.0268
6 Cj6,I;j1:j5 Independence 0
7 Cj7,I;j1:j6 Independence 0
8 Cj8,I;j1:j7 Joe 0.0703
9 Cj9,I;j1:j8 Frank 0.0479

(a) The first vine window. (j1 = Ferrovial, j2 = Iberdrola, j3 = Telefonica, j4 = Banco Santander, j5 = BBV Argentaria,
j6 = Cellnex Telecom, j7 = Inditex, j8 = Repsol Ypf, j9 = Amadeus It Group)

Tree level Copula Copula family Empirical Kendall’s tau
1 Cj1,I Student’s t 0.0425
2 Cj2,I;j1 Independence 0
3 Cj3,I;j1,j2 Independence 0
4 Cj4,I;j1:j3 Independence 0
5 Cj5,I;j1:j4 Clayton -0.0389
6 Cj6,I;j1:j5 Clayton -0.0344
7 Cj7,I;j1:j6 Gaussian 0.0422
8 Cj8,I;j1:j7 Clayton -0.0472
9 Cj9,I;j1:j8 Independence 0

(b) The sixth vine window. (j1 = Repsol Ypf, j2 = Banco Santander, j3 = BBV Argentaria, j4 = Telefonica, j5 =
Amadeus It Group, j6 = Ferrovial, j7 = Inditex, j8 = Iberdrola, j9 = Cellnex Telecom)

Table 11.2 The used copula families alongside their empirical Kendall’s tau associated with the conditional asset for
the first and sixth fitted D-vine for the first time frame (2016-2019) in the single conditional setting. The conditional
asset is the SP500.
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Now we have a look of the case with the Eurostoxx 50 index as the conditional asset for the first time
frame. Here the first trees of the D-vines corresponding to the first and last vine window alongside the
edge copula families and the associated empirical Kendall’s tau are displayed in Figure 11.4. The story
here is quite different from the one before. We can observe a quite strong positive bivariate dependence
between the conditional asset the Eurostoxx 50 index and the rightmost portfolio asset which is over time
stable the bank Banco Santander. Also the rest of the ordering especially on the right side is quite stable.
This indicates that the conditional risk measures based on this dependence structure will be quite strongly
influenced by the conditional asset. Table 11.3 shows again the used bivariate components alongside
their usage frequency. Visibly in the last used D-vine a lot less Gaussian and Student’s t components
were used. The flexibility to adapt the dependence model facilitated by the rolling window approach is
here displayed once again. Table 11.4 shows that not only in the first tree level the dependence on the
conditional asset was quite strong, but for example for the first vine window even in the last tree level the
fitted Frank copula had a corresponding empirical Kendall’s tau of 0.2335.

Copula family Number of usage Copula family Number of usage
Gaussian 4 Independence 5
Student’s t 10 Clayton 3

Frank 9 Gumbel 5
Joe 2 BB1 1
BB8 6

(a) The first vine window.

Copula family Number of usage Copula family Number of usage
Gaussian 3 Independence 7
Student’s t 5 Clayton 1

Frank 11 Gumbel 8
BB1 5 BB8 3
Joe 2

(b) The sixth vine window.

Table 11.3 The used copula families alongside their frequencies for the first and sixth fitted D-vine for the first time
frame (2016-2019) in the single conditional setting. The conditional asset is the Eurostoxx 50.
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(a) The first vine window.

(b) The sixth/last vine window.

Figure 11.4 The first trees of the D-vines corresponding to the first and sixth/last vine window for the first time frame
(2016-2019) in the single conditional setting. The conditional asset is the Eurostoxx 50.
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Tree level Copula Copula family Empirical Kendall’s tau
1 Cj1,I Student’s t 0.5236
2 Cj2,I;j1 Gaussian 0.1225
3 Cj3,I;j1,j2 Student’s t 0.1966
4 Cj4,I;j1:j3 Gumbel 0.1200
5 Cj5,I;j1:j4 Frank 0.2296
6 Cj6,I;j1:j5 Gumbel 0.1104
7 Cj7,I;j1:j6 Clayton 0.0869
8 Cj8,I;j1:j7 Gaussian 0.0925
9 Cj9,I;j1:j8 Frank 0.2335

(a) The first vine window. (j1 = Banco Santander, j2 = BBV Argentaria, j3 = Telefonica, j4 = Repsol Ypf, j5 = Inditex,
j6 = Iberdrola, j7 = Cellnex Telecom, j8 = Ferrovial, j9 = Amadeus It Group)

Tree level Copula Copula family Empirical Kendall’s tau
1 Cj1,I BB1 0.5015
2 Cj2,I;j1 Gumbel 0.0948
3 Cj3,I;j1,j2 BB1 0.1765
4 Cj4,I;j1:j3 Frank 0.2133
5 Cj5,I;j1:j4 BB1 0.2921
6 Cj6,I;j1:j5 Frank 0.2063
7 Cj7,I;j1:j6 Gaussian 0.1875
8 Cj8,I;j1:j7 Gumbel 0.0898
9 Cj9,I;j1:j8 Independence 0

(b) The sixth vine window. (j1 = Banco Santander, j2 = BBV Argentaria, j3 = Telefonica, j4 = Repsol Ypf, j5 =
Amadeus It Group, j6 = Inditex, j7 = Ferrovial, j8 = Iberdrola, j9 = Cellnex Telecom)

Table 11.4 The used copula families alongside their empirical Kendall’s tau associated with the conditional asset for
the first and sixth fitted D-vine for the first time frame (2016-2019) in the single conditional setting. The conditional
asset is the Eurostoxx 50.
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The second time frame (2020-2021) We repeat the same analysis for the second time frame and again
start with the SP500 as the conditional asset. A look at Figure 11.5 shows that again the conditional
asset has almost no influence on our portfolio. This is also suggested by the Tables A.1 and A.2 containing
information about the used bivariate copula components which were moved to the appendix as they almost
show the same pattern as the ones in the first time frame, only with even more independence copulas.
Thus, we again do not expect the conditional asset to have a large influence on the risk measure estimates.

(a) The first vine window.

(b) The second/last vine window.

Figure 11.5 The first trees of the D-vine corresponding to the first and second/last vine windows for the second time
frame (2020-2021) in the single conditional setting. The conditional asset is the SP500.

The results for the second conditional asset the Eurostoxx 50 index are also similar to the ones for the
first time frame and the first trees of the fitted D-vines are given in Figure 11.6. An interesting observation
is that again the ordering is quite stable but the assets that are most associated with the conditioning asset
are not longer the two banks Banco Santander and BBV Argentaria as well as the asset Telefonica but
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the Amadeus It Group, Inditex and Ferrovial then followed by the Banco Santander asset. So it seems like
during the Covid-19 pandemic the dependence between the general European market was stronger with
software, clothing and construction companies than with the banks that had the strongest dependence
right before the pandemic. This could be due to the fact that the direct consequences of the pandemic
or economic downtrends show themselves quicker in industries like the clothing industry as people might
be discouraged to spend their money on leisure items. The Tables A.3 and A.4, which display again the
used bivariate copula families with the respective frequencies and the copula families corresponding to the
edges directly associated with the conditional asset, can be found in the appendix. They again show the
higher usage of copulas stressing the modelling of tail dependence and strong dependencies associated
with the conditional asset throughout the tree levels.

(a) The first vine window.

(b) The second/last vine window.

Figure 11.6 The first trees of the D-vine corresponding to the first and second/last vine windows for the second time
frame (2020-2021) in the single conditional setting. The conditional asset is the Eurostoxx 50.
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Behavior of the conditioning values

Having a good grasp of the fitted dependence structure, it is reasonable to know how the actual condi-
tioning values on which the conditional risk measure estimates are based upon behave. In particular the
three major strategies will be compared. The quantile based, the prior residual and the realized residual
approach. As the strategies are conceptually the same for both time frames here only the first time frame
is considered. The plots showing the important quantile based conditioning values for both conditioning
assets on the second time frame however can be found in the appendix in Figures A.19 and A.20.

The first conditioning values of interest are the quantile based ones. Basically through the specification
of the quantile level αI we would like to mitigate a bad performance of the conditional asset with values
close to 0 and a good performance over the time frame of interest with values closer to 1. We can then
retransform this conditional quantile level by the inverse PIT as discussed in the methodology part to obtain
the conditional values on the original log return scale. We visualize these conditioning values on the log
return scale alongside the realized time series of the conditional asset. This allows us to see whether the
quantile based conditioning values actually do what we expect. Figures 11.7 and 11.8 show the quantile
based conditioning values for both considered conditional assets. In both cases we can observe that
the quantile based approach produces forecasted time series that are mitigating various states of the
conditioning asset. For example the conditioning values based on the αI = 0.05 provide somewhat of a
worst case scenario at least for the SP500 asset.

Figure 11.7 Behavior of the quantile based conditioning values on the log return scale of the conditioning asset
SP500 for the first time frame (2016-2019).

The prior residual and realized residual strategies are displayed only exemplary for the SP500 as the
conditioning asset because the behavior is the same for the Eurostoxx 50 index. The conditioning values
corresponding to the prior residual strategy as of Equations (7.1) and (7.2) are given in Figure 11.9. We
can definitely see a close mitigation of the realized time series. There are however slight delays and some
exaggerations visible. This already in the theoretical part anticipated behavior is especially problematic
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Figure 11.8 Behavior of the quantile based conditioning values on the log return scale of the conditioning asset
Eurostoxx 50 for the first time frame (2016-2019).

with respect to exaggerations towards higher log returns. But a look at the corresponding conditional risk
measure estimates will later show whether this strategy can be a valid one especially for comparisons.

Speaking of comparisons, the realized residual based conditioning values as of Equation (7.3) should
exactly mitigate the realized time series of the conditioning asset in order to compare the resulting oracle
risk measure estimates with the ones resulting from the quantile based approach. This is supported by
Figure 11.10 which shows the realized residual based conditioning values on the log return scale of the
conditioning asset SP500 for the first time frame.
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Figure 11.9 Behavior of the prior residual based conditioning values on the log return scale of the conditioning
asset SP500 for the first time frame with a zoom at March 2019. The realized log returns of the conditional asset are
drawn in grey and the conditioning values are drawn in violet.

Figure 11.10 Behavior of the realized residual based conditioning values on the log return scale of the condition-
ing asset SP500 for the first time frame with a zoom at March 2019. The realized log returns of the conditional asset
are drawn in grey and the conditioning values are drawn in green.
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The conditional risk measure estimates

Now finally we want to have a look at the actual conditional risk measure estimates. As mentioned at the
beginning of this section we will have a look at the ES estimated at the level α = 0.025. We will first focus
on the quantile based conditional risk measures and will compare these with the realized residual based
risk measures and the unconditional risk measures. Therefore we consider unconditional risk measures
on the same portfolio and with all parameters held equal to the conditional estimation once allowing for
the general unconditional estimation based on a R-vine copula and once allowing only for a D-vine in the
unconditional approach. This leads to 3 comparisons of the conditional quantile based ES estimates for
each conditional asset and time frame.

Again starting with the first time frame we look at the ES estimates conditioned on the SP500. Figure
11.11 shows the raw quantile based ES estimates. Quite evidently as also anticipated by the weak de-

Figure 11.11 Quantile based conditional ES estimates at α = 0.025 with the conditioning asset SP500 for the
first time frame (2016-2019).

pendence in the corresponding D-vines the resulting conditional ES series lie quite close to each other
although the biggest difference in the quantile level is quite large with 0.45. So as the portfolio level ES
seems to be quite robust against strong market downtrends of the American market one could argue that
the portfolio might be a good hedge against the risk of a downtrend in the American market. Also the
comparison with the conditional ES estimates based on the realized residuals displayed in Figure 11.12
paints the same picture. Although much more volatile the realized residual based ES estimates are very
close to the quantile based ones.

Moreover the comparisons with the unconditional ES estimates given in Figure 11.13 show that all
quantile based conditional ES estimates are quite close to the unconditional estimates. This not surprising
behavior shows how the conditional risk measure estimation approach not only provides the final condi-
tional risk measure estimates but with the possibility to interpret the dependence model we can provide
insights why the conditional risk measures behave like they do. The results for the second time frame
considering the SP500 as the conditional asset are almost identical to the ones presented here for the first
time frame. Thus the visualizations concerning the second time frame can be found in the Appendix A.
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Figure 11.12 Comparison of the quantile based conditional ES estimates at α = 0.025 (blue) with the ones based
on the realized residuals (green) for the first time frame (2016-2019). The conditioning asset is the SP500.

All in all the portfolio manager might use these results to argue that the portfolio at hand is well protected
against market risks based on fluctuations of the American market.
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(a) Unconditional approach using a D-vine.

(b) Unconditional approach using a R-vine.

Figure 11.13 Comparison of the quantile based conditional ES estimates at α = 0.025 (blue) with the uncondi-
tional ES estimates (orange/gold) for the first time frame (2016-2019). The conditioning asset is the SP500.
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Next up we look at the ES estimates conditioned on quantiles resembling states of the European market
i.e. the Eurostoxx 50 index for the first time frame. Figure 11.14 shows the raw quantile based ES
estimates. Opposed to the ones shown before with the SP500 as the conditioning asset here we can see

Figure 11.14 Quantile based conditional ES estimates at α = 0.025 with the conditioning asset Eurostoxx 50 for
the first time frame (2016-2019).

that indeed the different series corresponding to the quantile levels are clearly distinguishable and thus
states of the European economy have a serious effect on the estimated ES. This is also evident when
looking at the comparison with the ES estimates based on the realized residuals given in Figure 11.15.
The visualization emphasises that the portfolio is indeed vulnerable to market risk based on fluctuations of
the European market.

Valuable insights are derived from Figure 11.16 comparing the conditional ES estimates at the different
quantile levels with the unconditional ES estimates at the same α level. Notably it does not seem to have
a huge influence whether one uses a D-vine or a more flexible R-vine in the unconditional case. The
most interesting observation we can make here is that the unconditional ES series is very close to the
one corresponding to the quantile level αI = 0.1. Thereby the D-vine based unconditional ES series is
especially at the end of the series a bit closer to the quantile based conditional ES series than the R-vine
based one. Thus we can argue that by using only the unconditional approach to estimate the ES at the
confidence level α = 0.025 we have already accounted for a quite bad general European market. However
if we would like to account for a really bad European market for example at the quantile level 0.05 we would
have to further adjust our risk estimates to be more conservative as indicated by the series corresponding
to the quantile level αI = 0.05. These conditional risk measure estimates could then also be used to further
analyze the effects on capital requirements or other key metrics. The results for the second time frame are
again very similar to the ones displayed here for the first time frame. The corresponding visualizations can
be found in the Appendix A.
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Figure 11.15 Comparison of the quantile based conditional ES estimates at α = 0.025 (blue) with the ones based
on the realized residuals (green) for the first time frame (2016-2019). The conditioning asset is the Eurostoxx 50.
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(a) Unconditional approach using a D-vine.

(b) Unconditional approach using a R-vine.

Figure 11.16 Comparison of the quantile based conditional ES estimates at α = 0.025 (blue) with the uncon-
ditional ES estimates (orange/gold) for the first time frame (2016-2019). The conditioning asset is the Eurostoxx
50.
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Yet we have not had a look at the conditional risk measure estimates based on the prior residual strategy.
As an example Figure 11.17 displays the conditional ES estimates with the conditional asset being the
Eurostoxx 50 for the first time frame. At the first glance the conditional risk measure estimates seem to be

Figure 11.17 Display of the conditional ES estimates at α = 0.025 based on the prior residuals (violet) along side
the realized portfolio log returns (grey) for the first time frame (2016-2019). The conditioning asset is the Eurostoxx
50.

very close to the actual realized portfolio returns which might be highly desirable. A closer look however
uncovers that often the risk measures are not at all conservative enough. Moreover the comparison with
the quantile based conditional risk measure estimates is not fair as they use forecasted quantities for a
whole marginal window while the prior residual strategy has access to the realized data of the day before.
We also performed traditional backtest on the risk measures based on the prior residuals and due to the
already visible and theoretically anticipated exaggerations the resulting risk measures failed almost all
traditional backtests. Just for comparison the risk measures based on the realized residuals performed
very well on the traditional backtests, which is however as they are oracle estimators not too surprising.
As further research one could try to truncate the prior day residuals for example with the ReLU function
f(z) = max(0, z), which is prominently known from deep learning. But this could of course lead to too
conservative risk measure estimates.

All in all the strategy based on the quantiles clearly seems to be the most promising one. This comes
mainly from its good interpretability and robustness. Especially the comparison with the unconditionally
estimated risk measures can lead to a good understanding how well the market risk based on fluctuations
of the conditional asset is already accounted for in the unconditional approach.
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11.2 Two conditional assets

After having covered the case with one conditional asset in much detail we would like to shortly display
the very similar approach that involves two conditional assets. At first we considered the Spanish stock
portfolio with the indices SP500 and Eurostoxx 50 as the two conditional assets. But as we have seen
in the single conditional case the SP500 had almost no influence which led to the fact that the double
conditional case basically ended up to be almost identical to the single conditional case with just the
Eurostoxx 50 index considered. Thus we take the Eurostoxx 50 index as the one conditional asset and
the asset with the highest market capitalization Iberdrola as the second one. The remaining stocks of our
Spanish portfolio will represent the base portfolio of interest. Besides that all parameters and time frames
will be held exactly like in the single conditional case.

As the portfolio involves only stocks we have already covered we do not need to assess the quality of fit
of the ARMA(1,1)-GARCH(1,1) models again. This means we can right away have a look at the fitted D-
vines. The D-vine ordering is now based on Algorithm 4 and thus it will be also interesting which ordering
the two conditional assets will have. Figure 11.18 shows the first trees of the D-vines corresponding to
the first and last vine window of the first time frame. We can observe that over time the ordering was
very much stable. Taking the second rightmost position the Eurostoxx 50 index has the strongest bivariate
dependency with again the Banco Santander asset. Also the rest of the ordering reminds of the single
conditional case.

Figure 11.19 displays the first trees of the D-vines corresponding to the first and last vine window of the
second time frame. Also for the second time frame the Eurostoxx 50 index takes the second rightmost
position but this time with the strongest bivariate dependence being with the Amadeus It Group which has
a more important role during the pandemic as we have uncovered also in previous analyses.
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(a) The first vine window.

(b) The sixth/last vine window.

Figure 11.18 The first trees of the D-vine corresponding to the first and sixth/last vine window for the first time frame
(2016-2019) in the double conditional setting. The conditional assets are the Eurostoxx 50 index and Iberdrola.
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(a) The first vine window.

(b) The sixth/last vine window.

Figure 11.19 The first trees of the D-vine corresponding to the first and second/last vine window for the second
time frame (2020-2021) in the double conditional setting. The conditional assets are the Eurostoxx 50 index and
Iberdrola.
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Subsequently we have a short look at the estimated conditional risk estimates and as the procedure is
also the same as in the single conditional case we will just present the comparison of the quantile based
conditional ES estimates at level α = 0.025 with the ones obtained by the realized residual strategy in
Figure 11.20 for both time frames.

(a) The first time frame (2016-2019).

(b) The second time frame (2020-2021).

Figure 11.20 Comparisons of the quantile based conditional ES estimates at α = 0.025 (blue) with the ones
based on the realized residuals (green) for the first and second time frame. The conditioning assets are the
Eurostoxx 50 index and Iberdrola.

As already evident from the fitted D-vines of course the two conditional assets have a major influence on
the ES estimates. The influence is also stronger than for example the influence of just the Eurostoxx 50 in-
dex as the conditioning asset as both conditional assets have a strong dependence with the base portfolio.
All additional analyses and comparisons performed for the single conditional case can be performed as
well for the double conditional approach and thus it provides an extended toolset to uncover and measure
the influence of important market players or indices simultaneously on the risk measures of interest.
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Conclusion

In this master thesis, we have extended existing and proposed new methods to effectively measure the
market risk of potentially large financial portfolios. Our proposed unconditional risk measure estimation
approach is based on univariately modelling each asset given as a financial time series in order to capture
its trend and volatility with ARMA-GARCH models, then using the flexible class of R-vine copulas to model
the cross dependence within the portfolio and to finally estimate various risk measures on the portfolio
level following a Monte Carlo approach. The whole estimation is performed in a rolling window fashion.
This approach extends existing approaches like the one of Maarouf (2021) by incorporating the estimation
of the expected shortfall, which as of the Basel III accords is the primary risk measure for market risk.

Furthermore we introduced a novel conditional estimation approach. Having one or two additional mar-
ket indices or other main market players we modelled them also univariately and incorporated them in our
dependence model, which in the conditional case is a D-vine copula. Then we simulated conditionally
on the index or indices portfolio level forecasts based on which we estimated conditional risk measures.
We proposed as the conditioning values quantiles of the conditioning asset or assets, which allows to ob-
serve the behavior of the risk measures conditioned on different states of the conditioning market index or
indices.

To facilitate the conditional approach we have introduced novel algorithms to not only build up a D-
vine with a fixed position of the conditioning asset or assets but most importantly algorithms to sample
conditionally on the rightmost or two rightmost leafs from a D-vine copula. In addition a detailed discussion
of applicable backtesting strategies for both the VaR but most notably the ES was provided.

All of these approaches were put to the test in multiple case studies using the developed R package
portvine, which efficiently implements all proposed risk measure estimation approaches and is publicly
available. The implemented risk measure estimation algorithms were also optimized for computational
efficiency and for example allow as a consequence to be processed highly parallelized. We used a portfolio
based on the top constituents of the MSCI Spain index for the case studies and the main findings were the
following.

• In almost all examined cases the unconditional risk measure estimation procedure proposed in this
thesis passed all considered traditional backtests for both risk measures of interest. Only in very
few cases the estimation was slightly too conservative which is generally the desirable way to fail a
backtest.

• For the considered time frame 2, that is set during the Covid-19 pandemic (02.04.2020-13.10.2021)
and exhibits an increased market volatility, using comparative backtests we found clear indications
that using the flexible class of R-vine copulas provides superior risk measure estimation than using
vine copulas that only consider Gaussian or Student’s t components for our proposed unconditional
estimation approach.

• Concerning the conditional risk measure estimation approach, we have shown that not only the
resulting conditional risk measure estimates but also the analysis of the dependence model i.e.
the D-vines can create valuable insights about the influence of the conditional asset(s) on the risk
measures of interest.

• The comparison of the quantile based conditional risk measure estimates with the unconditionally
estimated risk measures can lead to a good understanding how well the market risk based on fluc-
tuations of the conditional asset(s) is already accounted for in the unconditional approach. In this
manner we for example found strong indications that the considered portfolio of Spanish stocks might
be a good hedge against fluctuations in the American market.
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All in all, both the unconditional and conditional estimation approaches proposed in this theses per-
formed really well in the presented case studies. Having published the R package portvine it is now easy
to try out and incorporate these methods for risk measure estimation yourself.

Further research is possible in multiple directions. For instance, one could explore different conditional
strategies like simulations with fixed conditional series, although fixed conditioning simulations would prob-
ably result in an explosion of runtime. Also the extension of the conditional approach to other vine classes
as the dependence model would be possible if one can provide a generic conditional sampling algorithm
for the vine class. Finally, only a hand full of use cases of the proposed conditional risk measure estimates
were presented in this thesis and one could introduce further comparisons or metrics involving those, that
help portfolio managers making better decisions concerning the assessment of market risk.
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A Appendix

Plots for the assessment of quality for the marginal models

(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.1 The residual plots for the asset Banco Santander for the first marginal window and the first time frame
(2016-2019).

(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.2 The residual plots for the asset Inditex for the first marginal window and the first time frame (2016-2019).
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(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.3 The residual plots for the asset Cellnex Telecom for the first marginal window and the first time frame
(2016-2019).

(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.4 The residual plots for the asset Repsol Ypf for the first marginal window and the first time frame (2016-
2019).

(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.5 The residual plots for the asset Ferrovial for the first marginal window and the first time frame (2016-
2019).
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(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.6 The residual plots for the asset Amadeus It Group for the first marginal window and the first time frame
(2016-2019).

(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.7 The residual plots for the asset Telefonica for the first marginal window and the first time frame (2016-
2019).

(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.8 The residual plots for the asset BBV Argentaria for the first marginal window and the first time frame
(2016-2019).
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(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.9 The residual plots for the asset Banco Santander for the first marginal window and the second time frame
(2020-2021).

(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.10 The residual plots for the asset Inditex for the first marginal window and the second time frame (2020-
2021).

(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.11 The residual plots for the asset Cellnex Telecom for the first marginal window and the second time frame
(2020-2021).
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(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.12 The residual plots for the asset Repsol Ypf for the first marginal window and the second time frame
(2020-2021).

(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.13 The residual plots for the asset Ferrovial for the first marginal window and the second time frame
(2020-2021).

(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.14 The residual plots for the asset Amadeus It Group for the first marginal window and the second time
frame (2020-2021).
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(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.15 The residual plots for the asset Telefonica for the first marginal window and the second time frame
(2020-2021).

(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.16 The residual plots for the asset BBV Argentaria for the first marginal window and the second time frame
(2020-2021).

(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.17 The residual plots for the conditional asset the SP500 index for the first marginal window and the second
time frame (2020-2021).
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(a) Residual plots for the mean equation. (b) Residual plots for the volatility equation.

Figure A.18 The residual plots for the conditional asset the Eurostoxx 50 index for the first marginal window and the
second time frame (2020-2021).
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Additional material corresponding to the fitted D-vines in the single
conditional case

Copula family Number of usage Copula family Number of usage
Gaussian 2 Independence 12
Student’s t 4 Clayton 5

Frank 6 Gumbel 2
Joe 7 BB1 3
BB7 3 BB8 1

(a) The first vine window.

Copula family Number of usage Copula family Number of usage
Gaussian 5 Independence 10
Student’s t 5 Clayton 2

Frank 7 Gumbel 4
BB1 2 BB7 3
BB8 1 Joe 6

(b) The second vine window.

Table A.1 The used copula families alongside their frequencies for the first and second fitted D-vine for the second
time frame (2020-2021) in the single conditional setting. The conditional asset is the SP500.

Tree level Copula Copula family Empirical Kendall’s tau
1 Cj1,I Joe -0.0566
2 Cj2,I;j1 Independence 0
3 Cj3,I;j1,j2 Joe -0.0675
4 Cj4,I;j1:j3 Joe 0.0972
5 Cj5,I;j1:j4 Independence 0
6 Cj6,I;j1:j5 Independence 0
7 Cj7,I;j1:j6 Independence 0
8 Cj8,I;j1:j7 Independence 0
9 Cj9,I;j1:j8 Independence 0

Table A.2 The used copula families alongside their empirical Kendall’s tau associated with the conditional asset for
the first fitted D-vine for the second time frame (2020-2021) in the single conditional setting. The conditional asset
is the SP500. (j1 = Iberdrola, j2 = Ferrovial, j3 = Inditex, j4 = Repsol Ypf, j5 = Amadeus It Group, j6 = Banco
Santander, j7 = BBV Argentaria, j8 = Telefonica, j9 = Cellnex Telecom)
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Copula family Number of usage Copula family Number of usage
Gaussian 5 Independence 6
Student’s t 4 Clayton 2

Frank 11 Gumbel 6
Joe 5 BB1 1
BB7 5

(a) The first vine window.

Copula family Number of usage Copula family Number of usage
Gaussian 5 Independence 7
Student’s t 5 Clayton 5

Frank 6 Gumbel 6
BB1 2 BB7 4
BB8 1 Joe 4

(b) The second vine window.

Table A.3 The used copula families alongside their frequencies for the first and second fitted D-vine for the second
time frame (2020-2021) in the single conditional setting. The conditional asset is the Eurostoxx 50.

Tree level Copula Copula family Empirical Kendall’s tau
1 Cj1,I Gaussian 0.4461
2 Cj2,I;j1 Frank 0.3078
3 Cj3,I;j1,j2 Frank 0.1747
4 Cj4,I;j1:j3 Gumbel 0.1528
5 Cj5,I;j1:j4 Independence 0
6 Cj6,I;j1:j5 Gaussian -0.0902
7 Cj7,I;j1:j6 Independence 0
8 Cj8,I;j1:j7 Frank 0.3420
9 Cj9,I;j1:j8 Joe 0.0404

Table A.4 The used copula families alongside their empirical Kendall’s tau associated with the conditional asset for
the first fitted D-vine for the second time frame (2020-2021) in the single conditional setting. The conditional asset is
the Eurostoxx 50. (j1 = Amadeus It Group, j2 = Inditex, j3 = Ferrovial, j4 = Banco Santander, j5 = Repsol Ypf, j6 =
BBV Argentaria, j7 = Telefonica, j8 = Iberdrola, j9 = Cellnex Telecom)
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Behavior of the quantile based conditioning values for the second time
frame (2020-2021)

Figure A.19 Behavior of the quantile based conditioning values of the conditioning asset SP500 for the second
time frame (2020-2021).

Figure A.20 Behavior of the quantile based conditioning values of the conditioning asset Eurostoxx 50 for the
second time frame (2020-2021).
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Visualizations of the single conditional risk measure estimates for the
second time frame (2020-2021)

Figure A.21 Quantile based conditional ES estimates at α = 0.025 with the conditioning asset SP500 for the
second time frame (2020-2021).

Figure A.22 Comparison of the quantile based conditional ES estimates at α = 0.025 (blue) with the ones based
on the realized residuals (green) for the second time frame (2020-2021). The conditioning asset is the SP500.
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(a) Unconditional approach using a D-vine.

(b) Unconditional approach using a R-vine.

Figure A.23 Comparison of the quantile based conditional ES estimates at α = 0.025 (blue) with the uncondi-
tional ES estimates (orange/gold) for the second time frame (2020-2021). The conditioning asset is the SP500.
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Figure A.24 Quantile based conditional ES estimates at α = 0.025 with the conditioning asset Eurostoxx50 for
the second time frame (2020-2021).

Figure A.25 Comparison of the quantile based conditional ES estimates at α = 0.025 (blue) with the ones based
on the realized residuals (green) for the second time frame (2020-2021). The conditioning asset is the Eurostoxx
50.
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(a) Unconditional approach using a D-vine.

(b) Unconditional approach using a R-vine.

Figure A.26 Comparison of the quantile based conditional ES estimates at α = 0.025 (blue) with the uncondi-
tional ES estimates (orange/gold) for the second time frame (2020-2021). The conditioning asset is the Eurostoxx
50.
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