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Abstract

The dissertation aims at improving the control performance of finite control set model pre-
dictive control (FCS-MPC) for electrical drive systems. The main concept centers around the
reformulation of the objective function as a set of easier optimization problems which can be
solved efficiently, either in a sequential or concurrent manner.

In addition, the thesis presents a method using a derivative projection as well as an extended fi-
nite control set to improve the tracking performance of FCS-MPC in steady state and reduce the
complexity of the control algorithm. The technique makes use of two voltage vectors instead
of one in each sampling period. Moreover, thanks to a performant gradient descent, finding
the minima of the objective function in the FCS-MPC scheme only requires a few steps, as a
convex quadratic programming (QP) problem is considered.

Finally, the benefits of the proposed FCS-MPC method to encoderless drive control are in-
vestigated.
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Kurzfassung

Die vorliegende Dissertation hat zum Ziel, die Performanz der direkten modellprädiktiven
Regelung mit Finite Control Set (FCS-MPC) für elektrische Antriebssysteme zu erhöhen. Der
Hauptansatz beruht auf der Umformulierung der Kostenfunktion als Satz einfacherer Opti-
mierungsprobleme, die sich sequenziell oder gleichzeitig effizient lösen lassen.

Darüber hinaus stellt die Arbeit eine Methode zur Erhöhung der Regelgenauigkeit von FCS-
MPC-Algorithmen vor, welche sich eine ableitungsbasierte Projektion sowie eine Erweiterung
des Finite Control Sets zunutze macht. Das Verfahren verwendet, in jeder Abtastperiode, zwei
Spannungszeiger anstelle von einem. Des Weiteren lassen sich die Minima der Kostenfunktion
mithilfe eines effizienten Gradientenverfahrens in wenigen Schritten finden, da ein konvexes
quadratisches Problem betrachtet wird.

Schließlich werden die Vorteile der vorgeschlagenen FCS-MPC-Methode für die geberlose
Antriebsregelung untersucht.
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CHAPTER 1

Introduction

This work focuses on the objective function reformulation for the model predictive control
strategies of electrical drive system. The background, research motivation and the contribution
of this dissertation are introduced in this chapter. Firstly, the electrical drives are introduced
along with their industrial applications. The introduction of conventional control strategies for
electrical drives, e.g., direct torque control (DTC) and field oriented control (FOC), as well
as model predictive control (MPC) are summarized. Based on the research motivation, the
contribution of the following chapters have been also summarized in the end of this chapter.

1.1 Background

1.1.1 DC and AC drive systems
Direct current (DC) machines and alternating current (AC) machines are the two mainstream
categories in the family of electric machines [1]. The DC machines convert electrical energy
into mechanical energy. The operating mechanism of DC machines centers around Faraday’s
principle that a conductor with current flow placed in a magnetic filed experiences a mechanical
force. Based on the Fleming’s “Left hand rule” that the motion of the conductor is in a direc-
tion perpendicular to the current flow and magnetic field, the pertinent conductors are forced
to rotate in the stator magnetic field as the direction of current flow in the armature coils is
reversed by the commutators and brushes [2]. However, such construction of commutator and
brush results in the inherent drawbacks in the DC machines. The presence of commutator and
brush not only increases the size and weight of the DC machines, restricts the capability of
speed control, but also requires a higher maintenance cost due to the degraded safety. The AC
machines mainly include asynchronous machines (induction machines, as shown in Fig. 1.1)
and synchronous machines [3]. The operating principle of the induction machine (IM) is based
on the electromagnetic induction between the rotor and the stator. The stator winding is con-
nected to the AC power supply, and the rotor winding is short-circuited (in the squirrel-cage



2 CHAPTER 1. INTRODUCTION

machines) to generate the current flow and electromagnetic torque. Due to the absence of both
the commutator and the brush, IM has the advantages of rugged construction, high efficiency,
the ability to work in the harsh environment and so on. It is noteworthy that the rotation speed
is slightly lower than the synchronous speed of IM. The featured applications of IM are lifts,
cranes, household appliances, oil extraction and textile industries. Another category of AC
machines is synchronous machine. The operating of a synchronous machine depends on the
interaction of the magnetic field of the stator with that of the rotor. Although the synchronous
machines require the measurements for start-up and synchronizing, it achieves the merits of
higher power efficiency and higher torque density, which is most-frequently employed for the
applications with constant speed, such as dc generators, electrical vehicles, centrifugal pumps
and compressors.

Figure 1.1: Induction machine (source: https://www.theengineeringprojects.com).

1.1.2 Control strategies for AC drives

1.1.2.1 Field oriented control (FOC)

FOC was firstly proposed by Hasse and Blaschke in the 1970s [4]. The concept is raised for
solving the problem that flux and torque cannot be controlled independently in the AC ma-
chines. The stator current, which contains the coupled information of the exciting and armature
current, can be represented as a vector with two orthogonal components. The decoupling is
achieved by the decomposition of the vector [5]. One component, defines the magnitude of
flux, while the other defines the torque. By doing so, the AC machine can be controlled by
the similar method of a separately excited DC machine. The stator current is transformed from
the two-phase stationary coordinate frame through Park transformation and the stator voltage is
transformed from the three-phase stationary coordinate frame through the Clarke transforma-
tion, to project on the two-phase rotation coordinate frame. The torque and flux are indirectly
controlled by the decoupled components of the stator current in FOC, to yield a better control
performance of AC machines. However, the current and speed are regulated by the PI con-
trollers in a cascaded structure. The dynamic response of FOC is restricted by the bandwidth of
the inner-loop proportional-integral (PI) controller and the modulation stage.
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1.1.2.2 Direct control with a look-up table

DTC was introduced by Takahashi and Noguchi in the 1980s, to control the torque and flux by
directly applying the switching sequences in the inverter [6]. Accuracy and fast control of flux
and torque can be achieved in DTC without the complex algorithm for coordinate transforma-
tion. Due to its intuitive concept and simple implementation, DTC has attracted increasingly
attention in both academic and industrial communities [7]. More specifically, DTC shows less
sensitivity against the parameter variations in the system model that only the knowledge or
stator resistance is required. The selection of the vector is based on assigned region in the
look-up table (LUT). Although DTC has the merits of quick dynamic response and low switch-
ing frequency, it still suffers from the drawback of large ripple at the steady state, especially
in the scenario of a low speed range. To tackle the issue, DTC combined with a space vector
modulation (SVM) algorithm is regarded as a promising solution.

1.1.2.3 Model predictive control

Arisen from the control of process industries in the 1970s, model predictive control (MPC)
aims to solve an online optimization problem for a control system with constraints [8, 9]. The
main concept of MPC centers around resolving the optimal solution by predicting the future
behavior of the control plant in a receding horizon [10, 11]. As illustrated in Fig. 1.2, the
action of the controller is based on the state of the control plant. MPC was first applied in
the linear control system with slow dynamics, e.g., petroleum extraction and refining, chemical
industry, supply chain management, control of energy efficiency in building and water treatment
in urban [12]. The reason for this is the huge computational task can be allowed to be carried out
in a long control period [13]. Thanks to the tremendous development of the digital controllers,
i.e., digital signal processor (DSP), field-programmable-gate-array (FPGA) and dSPACE, the
computational capability of the controller has been increased more than 100 times in the last
three decades [14]. Therefore, the applications of MPC can be extended to the control of power
electronics and electrical drive systems [15–17], as shown in Fig. 1.3.

Figure 1.2: The close-loop structure of MPC.

To tackle the issue of high computational burden in MPC, an explicit MPC is proposed in
2002, to solve the multi-objective optimization problem with an offline method [18]. How-
ever, the offline computational complexity increases drastically when the scale of the NP-hard
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problem increases, which leads to the exponential growth in the number of regions. In 2007,
a MPC strategy with a finite control set (FCS) solution is proposed to control a voltage source
inverter (VSI) [19]. Since that, finite control set MPC (FCS-MPC) has become one of the
most frequently-used MPC strategy, and has been extensively investigated in the applications
of power electronics and electrical drive systems [20]. In FCS-MPC, the objective function
is formulated and determined according to the type of the control variables to be optimized.
Thus, the control inputs are exhaustively searched to find the optimal solution for the objective
function [21].

Based on the trend and research status of MPC, the existing problem that MPC suffers from,
has become a major concern for further performance improvement [22]. First, MPC is still pe-
nalized by the high computational complexity, especially for the implementations with a longer
prediction horizon. Moreover, the number of searched control inputs increases as the control
plant is a multi-level or multiple-phase power converter. Second, the scale of the multi-objective
optimization problem is larger when the additional constraints or specific system demands are
taken into consideration. It is noteworthy that the relationship among the different control vari-
ables should be carefully dealt with in the objective function. Third, as a model-based controller,
the control performance of MPC will be inevitably influenced by the parameter variations in the
control system. Therefore, the robustness improvement against parameter mismatches is still
an open discussion for MPC [23].

(a) source: https://www.thyssenkrupp-industrial-solutions.com/

(b) source: https://www.utwente.nl/en/news/2021/6/1095055/
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(c) source: https://www.autonomousvehicleinternational.com

Figure 1.3: The applications of MPC.

1.2 Research motivations

The research motivations of MPC for the applications of electrical drive systems are summa-
rized in this section. This work mainly focuses on the optimization problem underlying FCS-
MPC strategies for electrical drives, especially the implementation on the IMs as a case study.
In FCS-MPC, all the contol inputs are exhaustively searched to find the optimal solution in the
optimization stage, while only one vector is executed in the whole sampling period. Moreover,
the objective function aims to minimize the tracking deviations of the different control vari-
ables, e.g., torque, flux, current and speed. Problem formulation of FCS-MPC is summarized
as follows.

1.2.1 Regulation principle among the control variables
The most attractive feature of FCS-MPC lies in its ability to handle flexible constraints and
specific system demands. The constraints are explicitly incorporated in the online optimiza-
tion problem when they are flexibly included in the objective function. More specifically, the
control variables are determined by the specific demands in the varied applications. Although
FCS-MPC shows its superiority in dealing with complicated control systems incorporated with
constraints, the multiple control targets are conflicted in the optimization process of the objec-
tive function. Normally, the trial-and-error weighting parameters are introduced to modify the
relationship among the control variables. However, they are not easy to be fine-tuned. The
regulation principle among the control variables in the objective function should be further in-
vestigated.

1.2.2 Computational burden reduction
The high computational complexity is an inherent drawback of FCS-MPC along with its de-
velopment. The FCS-MPC strategies, search all the possible control inputs in an enumeration-
based approach, to find to optimal solution for the online optimization problem. In the im-
plementations of simple control system, the issue can be mitigated by the advanced digital
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controllers. However, the number of control inputs increases when the control system is more
complicated, i.e., for the multi-level converters or multi-phase motor drives. Specifically, the
algorithm complexity grows exponentially with an increased number of prediction horizon.
Although lots of computationally efficient FCS-MPC algorithms have been proposed in the lit-
erature review, how to realize the trade-off among the feasible set, computational burden and
control performance of FCS-MPC, is still an open issue.

1.2.3 Performance improvement at the steady state
Compared with the counterpart FOC strategy, FCS-MPC has the merits of fast dynamic re-
sponse and relatively lower switching frequency. However, only one control input is carried
out in the entire sampling period, which leads to the unsatisfactory control performance at the
steady state, i.e., higher torque and current ripples in the electrical machine drives. Another
reason relates to this is the varied switching frequency in FCS-MPC. Therefore, a potential
research trend for FCS-MPC is to improve the steady-state performance while retains the fast
dynamic response.

1.2.4 Robustness improvement against parameter mismatches
The dynamic model of the control plant is employed in the prediction stage of FCS-MPC, to
predict the future behavior of the control system. As the parameter variation occurs in the
system model, it will inevitably leads to the error of the predicted value and deteriorated control
performance of the controller. To cope with this issue, the observer-based technologies should
be applied in FCS-MPC for robustness improvement.

1.3 Main work of this thesis
The main work of this thesis is to solve the aforementional issues in the optimization problem
underlying FCS-MPC for the applications of power electronics and electrical drive systems.
Following the description of the control plant, problem formulation of FCS-MPC is investi-
gated. The FCS-MPC algorithms with single control objective and multi-objective are experi-
mentally verified on the lab-constructed platform. Several regulation principles are evaluated in
the multi-objective FCS-MPC, to tackle the issue of weighting parameters tuning.

Furthermore, the objective function is reformulated to improve the steady-state performance
of FCS-MPC. The optimization problem underlying FCS-MPC is regarded as a quadratic pro-
gramming (QP) problem, to be solved by a gradient descent solution. Moreover, the extension
of the feasible set, iterative algorithms and computationally efficient solutions are investigated.

The encoderless technology for FCS-MPC is also presented, for the elimination of an encoder
as well as robustness improvement against parameter mismatches. The MRAS estimator is
implemented in the constrained parallel structure FCS-MPC as a case study.
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CHAPTER 2

Description of the control plant

In this chapter, the control plant description for the MPC schemes is presented. As a case
study, the squirrel-cage induction machines (IMs) fed by a two-level voltage source inverter
(2-L VSI) are introduced in this work. The mathematical model of the induction machine is
derived, followed by the principles of coordinate transformations. Afterwards, the topology of
a 2-L VSI as well as its discrete vectors are described.

2.1 Mathematical modelling of IM

The dynamic model of the squirrel-cage IM is described in the following equations (2.1-2.5)
using the stationary αβ frame.

usα,β = Rs · isα,β +
dψsα,β
dt

(2.1)

0 = Rr · irα,β +
dψrα,β
dt

− j · ω ·ψrα,β (2.2)

ψsα,β = Ls · isα,β + Lm · irα,β (2.3)
ψrα,β = Lm · isα,β + Lr · irα,β (2.4)

Te =
3

2
p · Im {ψ∗s · is} (2.5)

where usα,β denotes the stator voltage vector, isα,β and irα,β are the stator and rotor currents,
respectively. Ls, Lr and Lm are the stator, rotor and magnetizing inductances, and ψsα,β and
ψrα,β are the stator and rotor flux-linkages, respectively. Rs and Rr are the equivalent stator
and rotor resistances, p denotes the number of pole pairs and ω is the electrical angular speed.
It is noteworthy that the rotor winding is short circuited in the squirrel-cage IMs. Thereby, the
rotor voltage urα,β in (2.2) is zero.
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For the number of pole pairs p = 1, the relationship between the electromagnetic torque and
the derivative of the rotor speed can be expressed as

J
dω

dt
= Te − TL (2.6)

where J is the moment of inertia and TL represents the load torque.
Assuming that the control system is linear time-invariant, we consider that ψsα,β and ψrα,β

are the control variables and usα,β is the control input, the dynamic model of IM can be con-
verted to the space-state model, as shown in (2.7-2.8)

dψsα,β
dt

= usα,β −Rs · isα,β (2.7)

dψrα,β
dt

= −Rr · irα,β + j · ω ·ψrα,β (2.8)

where isα,β and irα,β can be substituted by the control variables in (2.3-2.4).

2.2 Three-phase two-level voltage source inverter

The topology of a three-phase two-level voltage source inverter (2-L VSI) is shown in Fig. 2.1(a).
The dc-link voltage of the 2-L VSI is defined by uDC . Sa, Sb and Sc represent the signal of
power devices in the upper side of the bridge configuration. Sa, Sb and Sc = 1 means the
corresponding power device turns on, while Sa, Sb and Sc = 0 means the corresponding power
device turns off. Therefore, the voltage vector can be calculated by (2.9).

u =
2

3
UDC(Sa+a · Sb+a2 · Sc) (2.9)

where a = ej
2π
3 , usα,β is the applied voltage vector, ui = Si · uDC , i = a, b, c. Based on the

above, the combinations of the discrete control set for the 2-L VSI are shown in Fig. 2.1(b). As
can be understood, there are six discrete voltage vectors (u1−u6) and two zero vectors (u0, u7).

uDC

Sa Sb Sc

Sa Sb Sc

usα

usβ

v1

v2v3

v4

v5 v6

v0,7

(a) (b)

Figure 2.1: 2-level voltage source inverter. (a) the topology. (b) the generated voltage vectors.
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2.3 Principles of coordinate transformations
As can be seen, the state-space model of IM is built in the stationary αβ frame, while the voltage
vectors in the abc-frame is generated in the 2-L VSI. To cope with this issue, the principles
of coordinate transformations i.e., Clarke transformation, is proposed. The description of the
Clarke transformation is shown in Fig. 2.2. The stationary αβ frame is represented by the black
lines, while the abc-frame is described by the red dashed lines.

Therefore, we use matrix K to transform the voltage vectors in the abc-frame to that in the
stationary αβ frame, through Clarke transformation in (2.10).

uα,β = Kuabc (2.10)

K =
2

3
·

1 −1

2
−1

2

0

√
3

2
−
√

3

2

 (2.11)

To transform the voltage vectors (udq) in the rotation dq frame to that (uα,β) in the stationary
αβ frame, the Park transformation is applied by using K(θ), as shown in (2.12)

udq = K(θ)uα,β (2.12)

K(θ) =
2

3
·

[
cos(θ) sin(θ)

−sin(θ) cos(θ)

]
(2.13)

α a

b

c

β
d

q
θ

Figure 2.2: Description of coordinate transformations. (black lines denote the stationary αβ
frame, red dashed lines denote the abc-frame, blue dashed lines represent the rotation dq frame.

2.4 Lab-constructed testbench and real-time control system
In this section, the lab-constructed testbench and the real-time control system are introduced.
The description of the experimental platform is shown in Fig. 2.3. The lab-constructed ex-
perimental platform is consisted of a 3.0 kW Danfoss VT-302 inverter with a control panel, a
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14 kVA IGBT-based Servostar620 inverter, 1.4 GHz Linux-based real-time control system and
two 2.2 kW squirrel-cage IMs. The dc-link voltage uDC is 582 V and the low-voltage power
supply for the gate drive and control board is 24 V. The high-performance controller can be
operated with a sampling frequency ranges from 5 kHz to 48 kHz, to achieve a competitive
control performance. A 1024-point incremental encoder is employed for the measurement of
rotor position. The parameters of the IMs are illustrated in TABLE 2.1.

Figure 2.3: Description of the lab-constructed testbench and real-time control system (A)
3.0 kW Danfoss VT-302 inverter for load machine (B) 14 kVA IGBT-based Servostar620 in-
verter for main machine (C) Control panel (D) 1.4 GHz Linux-based real time controller (E)
Main machine (F) Load machine.

Table 2.1: The parameters of the IMs

Parameters Values

dc-link voltage udc[V ] 582

stator resistance Rs [Ω] 2.68

rotor resistance Rr [Ω] 2.13

magnetizing inductance Lm [H] 0.275

stator inductance Ls [H] 0.283

rotor inductance Lr [H] 0.283

number of pole pairs P [/] 1

norminal rotor speed ωnom [rad/s] 290

nominal flux ψnom [Wb] 0.71

norminal torque Tnom [Nm] 7.5

moment of inertia J [kg ·m2] 0.005
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CHAPTER 3

MPC problem formulation

The MPC problem formulation is introduced in this chapter. First, a brief instruction as well as
the classification of MPC problem is proposed. Following, the optimization problem underlying
MPC with finite control set (FCS) in the electrical drive systems, is presented. To solve the
MPC problem from a mathematical perspective, a geometric description of the MPC problem
is derived.

3.1 Classification of MPC problem

The evolution of MPC (also referred as to “receding horizon control”) is revisited in this sec-
tion. MPC has been firstly proposed in the 1970s, to solve the optimization problem in the
control system with slow dynamic, i.e., process industry. With the tremendous development
of the commercial digital controllers (such as DPS, FPGA and dSPACE), MPC has extended
its applications to power electronics and electrical drive systems [24]. It is one of the main-
stream categories of predictive control, the other two are hysteresis-based predictive control
and trajectory-based predictive control. The future behavior of MPC is predicted based on the
model of the control plant, combined with the past state and the control input in the future [25].
The concept of MPC is similar to that of Kalman filter rather than the abovementioned predic-
tive controller. Thereby, MPC resolves the optimal solution by evaluating a customized objec-
tive function over a receding horizon. The block diagram of MPC is shown in Fig. 3.1, which
consists of the control plant and its model, the prediction stage and the optimization stage.

In the MPC family, the schemes can be categorized as follows: explicit MPC, continuous
control set MPC (CCS-MPC) and finite control set MPC (FCS-MPC) [26]. Explicit MPC has
been proposed by Bemporad etal in 2002, to offline solve a multi-parametric programming
problem [18]. The control inputs are piecewise affine in the state space which is divided into
several regions. A feedback control law is designed, to solve the desired control inputs which
are piecewise affine (PWA) in the state space with divided regions. However, the computational
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prediction stage optimization stage
x*

control 
inputs

control plant

model of control plant

x(k+1)

x(k)

Figure 3.1: Block diagram of MPC.

burden as well as the memory requirement of the controller suffer from an exponential growth,
with the increased scale of the optimization problem. Regarding the features of controlling a
power converter or an electrical drive system, CCS-MPC and FCS-MPC has been extensively
investigated for decades. The former CCS-MPC schemes require an additional modulation
stage, to generate the applied voltage vectors with their corresponding duty cycles. Therefore,
CCS-MPC has a fixed switching frequency and resolve the solution in a continuous control set.
The latter FCS-MPC schemes bypass the modulation stage, directly apply the discrete voltage
vectors by the optimization of the objective function with a minimum value. The switching
frequency of FCS-MPC is varied and its control set is discrete. The main concepts of CCS-
MPC and FCS-MPC schemes are shown in Fig. 3.2.

control plant

CCS-MPC Modulator

x*

u(k)*

u(k),d(k)

(a) CCS-MPC

control plant

FCS-MPC

x*

x(k) u(k)

(b) FCS-MPC

Figure 3.2: The concepts of CCS-MPC and FCS-MPC schemes.

3.2 Optimization problem underlying FCS-MPC

As a mainstream category in the MPC family, FCS-MPC has become a predominant control
strategy for the electrical drive systems, due to the discrete nature of the inverter. Compared
with the counterpart CCS-MPC, FCS-MPC does not require any modulators. FCS-MPC has the
merits of simple concept, straightforward implementation, fast dynamic response and flexible
inclusion of constraints. The main concept of FCS-MPC centers around evaluating the future
behavior of the control plant by the optimization of the formulated objective function with the
predicted control variables. FCS-MPC is consist of the prediction stage and the optimization
stage, which are explained in detail as follows.
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3.2.1 Prediction stage

3.2.1.1 Forward Euler discretization

In the prediction stage, the predicted control variable in the next interval x(k + 1) can be cal-
culated by the known information, i.e., the control variable in the current interval x(k) and the
applied switching sequence u(k). The space-state model of the control plant in (2.7-2.8) can be
rewritten as

dx(k)

dt
= Ax(k) +Bu(k) (3.1)

where the matrices A, B are the parameters of the control plant. The first-order forward Euler
discretization is applied to calculate the predicted control variable x(k + 1)

dx(k)

dt
=
x(k + 1)− x(k)

Ts
(3.2)

x(k + 1) = (ATs + I)x(k) +BTsu(k) (3.3)

where Ts is the sampling period, I is the identity matrix. Similarly, the predicted control variable
in the k+h interval can be obtained in (3.4) for the FCS-MPC schemes with a longer prediction
horizon h.

x(k + h) = (ATs + I)x(k + h− 1) +BTsu(k + h− 1) (3.4)

3.2.1.2 Time-delay compensation

It is noteworthy that not merely the prediction of the control variables but also the optimization
for every switching sequence are time-consuming in the real-time implementations [27]. To ad-
dress this issue, a compensation strategy for time-delay is proposed for the FCS-MPC schemes.
For FCS-MPC with a prediction horizon of 1 (h = 1), the predicted control variable in k + 2
interval is calculated and to be optimized.

x(k + 2) = (ATs + I)x(k + 1) +BTsu(k + 1) (3.5)

where x(k + 1) is obtained in (3.3), u(k + 1) is the switching sequence in k + 1 interval. The
description of time-delay compensation is illustrated in Fig. 3.3. As shown in Fig. 3.3(a), the
control variable x(k − 1) and are measured at the same time (k − 1 interval) in the idealized
implementation. Therefore, the optimal solution u(k) can be obtained at k interval. However,
we still require computational effort for optimization in the real-time implementation. By doing
so, the optimal solution u(k) will be obtained at k + 1 interval. To cope with this issue, a time-
delay compensation strategy is proposed. As shown in Fig. 3.3(b), u[(k)|(k − 1)] denotes the
optimal solution for k interval which is obtained at k − 1 interval. As can be understood, x(k)
is predicted with the known information x(k − 1) and u[(k)|(k − 1)] between k − 1 to k.
Afterwards, x(k + 1) is predicted and optimized between k to k + 1. Therefore, the optimal
solution u[(k + 1)|(k)] can be applied at k + 1 interval.
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k - 1 k + 1k

(a) Idealized implementation

x(k - 1)

u(k - 1)

x(k)

u(k)

x(k + 1)

u(k + 1)
t

k - 1 k + 1k

(b) With time-dealy compensation

x(k - 1)

u[(k - 1)|(k - 2)]

x(k)

u[(k)|(k - 1)]

x(k + 1)

u[(k+1)|(k)]
t

Sample

Apply

Sample

Apply

Figure 3.3: Description of time-delay compensation.

3.2.2 Optimization stage

To evaluate the future behavior of the control plant, a customized objective function is for-
mulated in the optimization stage. As we can understand, the objective function is designed
according to the specific requirements of the control system. As shown in Fig. 3.4, the multiple
control targets of the control system includes the core control targets, specific system demands
and the physical constraints.

Multiple 
Control 

Objectives

Core Control 
Targets

System 
Demands

Physical 
Constraints

Figure 3.4: Multiple control targets of the control system.

(1) Core control targets: The core control targets are the predominate terms in the objective
function, which determine the control performance of the control system. Classified by dimen-
sion of the core control targets, the the number of core control targets can be one (single control
target), or more than one (multiple control targets). It should be mentioned that the multiple
control targets require the weighting parameters to modify their importance in the objective
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function. Considering the control plant is the IM drives as a case study, the core control targets
can be torque, stator flux, stator current, rotor speed and so on.
(2) Specific system demands: The specific system demands are regarded as the soft constraints
of the control plant, which are also penalized in the objective function. The system demands
included in the objective function are flexible, according to the different type of control plant.
For instance, the switching frequency is specifically concerned in the power converters appli-
cations, to avoid a high switching frequency. In the applications of multilevel converters, the
neural-point voltage is regarded as the specific system demand for voltage balancing.
(3) Physical constraints: Apart from the soft constraints (specific system demands), the physical
constraints (hard constraints) are handling in the objective function. The most frequently-used
physical constraint in the applications of the power converters is the limitation of current
magnitude. The physical constraints must be satisfied when the optimal solution is selected.
Otherwise, the control system does not work or breakdown, due to the severe failure.

Based on the above, the objective function of FCS-MPC can be formulated as:

gj = λx1 [x∗1 − x1(k + 2)j]
2 + λx2 [x∗2 − x2(k + 2)j]

2 + · · ·+ λx(l+m)

[
x∗(l+m) − x(l+m)(k + 2)j

]2
+ F1(k + 2)j + F2(k + 2)j + · · ·+ Fn(k + 2)j

(3.6)

Fi(k + 2)j =

{
0, if |xl+m+i(k + 2)j| ≤ |xl+m+imax|
∞, if |xl+m+i(k + 2)j| > |xl+m+imax|

(3.7)

where x1, x2 · · · xl are the core control targets, xl+1, xl+2 · · · xl+m are the system demands,
xl+m+1, xl+m+2 · · · xl+m+n are the physical constraints, λx1, λx2 · · ·λx(l+m) are their corre-
sponding weighting parameters, F1, F2 · · · Fn are the physical constraint functions, l, m and n
are integers. ∗ denotes the reference trajectory, j is the applied switching state, j ∈ 0, 1, . . . , 6.

In this work, the FCS-MPC schemes are applied for controlling the IM drives as a case study.
The formulated objective functions are designed as follows

gj =
[
T ∗ − T̂ (k + 2)j

]2
+ λ2

ψ ·
[
‖ ψ∗s ‖ − ‖ ψ̂s(k + 2)j ‖

]2
+ λ2

sw · n2
sw +Im(k + 2)j

(3.8)

Im(k + 2)j =

{
0, if |is(k + 2)j| ≤ |ismax|
∞, if |is(k + 2)j| > |ismax|

(3.9)

when the torque and stator flux are regarded as the core control targets. λψ and λsw are the
weighting parameters, nsw is the number of switching, Im(k+ 2) is the current limitation term,
ismax is the maximum value of stator current magnitude. The objective function of FCS-MPC
is formulated in (3.10)

gj = [(isα(k + 2)∗ − isα(k + 2)j)
2 + (isβ(k + 2)∗ − isβ(k + 2)j)

2] + λsw · nsw2 + Im(k + 2)j
(3.10)

when the stator current is considered as the core control target.
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3.3 Geometric description of FCS-MPC problem
In this section, the FCS-MPC problem is described from a geometric perspective. As can be
understood, the optimization problem underlying FCS-MPC aims to search the optimal control
input, which minimizes the tracking deviation of the control variable between its predicted and
reference value. As shown in Fig. 3.5, the orthogonal components of control variable x in the
stationary αβ frame are displayed. The black points (xα(k), xβ(k)), (xα(k + 2), xβ(k + 2))
and (x∗α, x

∗
β) represent the control variable at k and k + 2 interval as well as its reference value,

the red dashed lines d(k) and d(k + 2) denote the distance of the control variable between its
predicted and reference value at k and k + 2 interval.

From a geometric perspective, the tracking deviation of the control variable is regarded as
the quadratic Euclidean norm of the distance d(k+ 2) between x∗ and x(k+ 2). Therefore, the
optimization problem underlying FCS-MPC is converted to find the solutions that geometrically
reduce the distance d(k + 2).

xβ

xα(xα(k),xβ(k))

(xα
*,xβ

*)

d(k)
d(k+2)

(xα(k+2),xβ(k+2))

Figure 3.5: Geometric description of the FCS-MPC optimization problem

f(k + 2) = ||d(k + 2)||22 = [x∗α − xα(k + 2)]2 + [x∗β − xβ(k + 2)]2 (3.11)
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CHAPTER 4

Multi-objective FCS-MPC schemes

In this chapter, the principle of the multi-objective FCS-MPC schemes for IM drives are intro-
duced. We focus on the two predominant schemes: finite control set predictive torque control
(FCS-PTC) and finite control set predictive current control (FCS-PCC). Following, the differ-
ences between the control variables in the two schemes are investigated in detail. The control
performance of FCS-PTC and FCS-PCC at both the steady state and transient state are ex-
perimentally validated. Moreover, an experimental assessment is conducted to evaluate the
advantages of the two proposed multi-objective FCS-MPC schemes.

4.1 Principle of FCS-PTC

The electrical drive systems in the traction applications (e.g., railway applications, electrical ve-
hicles) raise special concern on the torque performance [28]. The main control objectives in the
abovementioned applications are electromagnetic torque and stator flux-linkage [29]. There-
fore, the tracking deviations of torque and stator flux-linkage are optimized in the formulated
objective function. The close-loop control schematic of FCS-PTC is depicted in Fig. 4.1. The
FCS-PTC scheme is consist of flux-linkage estimation, prediction stage and optimization stage,
which are described as follows.

4.1.1 Flux-linkage estimation

The measured stator current isα,β(k) is the known information in the real-time implementation
of IM drive. However, the stator and rotor flux-linkage ψ̂sα,β(k) and ψ̂rα,β(k) can not be di-
rectly measured by the controller. According to (4.1-4.2), the stator and rotor flux-linkage are
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Figure 4.1: The close-loop control schematic of FCS-PTC.

estimated by the dynamic model of IM.

ψ̂sα,β(k) = Ls · isα,β(k) + Lm · irα,β(k) (4.1)

ψ̂rα,β(k) = Lm · isα,β(k) + Lr · irα,β(k) (4.2)

The estimated stator and rotor flux-linkages ψ̂sα,β(k) and ψ̂sα,β(k) are subsequently employed
in the prediction stage.

4.1.2 Prediction stage
To evaluate the future behavior of the control plant, the predicted values of the control variables
are calculated in the prediction stage. In the FCS-PTC algorithm, the predicted electromag-
netic torque and stator flux-linkage is required. The predicted values can be obtained by two
discretization methods: the first-order forward Euler discretization or the Taylor discretization.

4.1.2.1 First-order forward Euler formula

Assuming that the derivatives of the control variables are constant in a sampling period when
the sampling period Ts is enough small, the derivatives dx(k)/dt are applied in the first-order
forward Euler formula, as described in (4.3).

dx(k)

dt
=
x(k + 1)− x(k)

Ts
= Ax(k) +Bu(k) (4.3)

Therefore, the predicted value of the control variable can be rewritten as

x(k + 1) = x(k) + Ts ·
dx(k)

dt
= (ATs + I)x(k) +BTsu(k) (4.4)
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where the control variables x = [isα,β, ψsα,β]T . According to the state-space model of the IM
in (2.1-2.4), the derivatives of stator current and flux-linkage can be obtained as

disα,β(k)

dt
=

1

τσ
isα,β(k) +

1

τσRσ

· [kr · (
1

τr
− jω(k)) · ψ̂rα,β(k) + usα,β(k)] (4.5)

dψsα,β(k)

dt
= usα,β(k)−Rs · isα,β(k) (4.6)

The predicted stator current îsα,β(k + 1) can be expressed as

îsα,β(k + 1) = (1− Ts
τσ

)isα,β(k) +
Ts
τσRσ

· [kr · (
1

τr
− jω(k)) · ψ̂rα,β(k) + usα,β(k)] (4.7)

where the system parameters kr = Lm/Lr, Rσ = Rs+k2
r ·Rr, Lσ = σ ·Ls and τσ = σ ·Ls/Rσ.

Similarly, the predicted stator flux-linkage ψ̂sα,β(k + 1) is expressed by (4.8).

ψ̂sα,β(k + 1) = ψsα,β(k) + Ts · (usα,β(k)−Rs · isα,β(k)) (4.8)

Based on the above, the predicted electromagnetic torque is calcualted by (4.9).

T̂ (k + 1) =
3

2
· p · Im

{
ψ̂s(k + 1)∗ · îs(k + 1)

}
(4.9)

Considering the time-delay compensation, the predicted values at k + 2 interval are further
calculated in (4.10-4.12).

ψ̂sα,β(k + 2) = ψ̂sα,β(k + 1) + Ts · (usα,β(k)−Rs · isα,β(k + 1)) (4.10)

îsα,β(k + 2) = (1− Ts
τσ

)̂isα,β(k + 1) +
Ts
τσRσ

· [kr · (
1

τr
− jω(k)) · ψ̂rα,β(k + 1) + usα,β(k)]

(4.11)

T̂ (k + 2) =
3

2
· p · Im

{
ψ̂s(k + 2)∗ · îs(k + 2)

}
(4.12)

where the predicted values at k + 1 interval are obtained in (4.7-4.9). We assume that the
switching sequence and rotor speed are unchanged in the consecutive (k and k + 1) intervals.

4.1.2.2 Taylor’s formula

Apart from first-order forward Euler formula, the predicted values of the control variables
can also be obtained by the Taylor’s formula. The main concept of Taylor’s formula centers
around (4.13).

x(k + 1) = x(k) +
dx(k)

dt
Ts +

1

2!

d2x(k)

dt2
T 2
s + · · ·+ 1

n!

dnx(k)

dtn
T ns

= eATsx(k) +

∫ Ts

0

eAtdt · u(k)

(4.13)

where o(t) =
1

2!

d2x(k)

dt2
T 2
s + · · · + 1

n!

dnx(k)

dtn
T ns is the reminder term. As the reminder term

o(t) is considered as zero (o(t) 0), the Taylor’s formular is simplified as the first-order forward
Euler formula.
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4.1.3 Optimization stage
The tracking errors between the predicted value of the control variables and their reference val-
ues are evaluated in the optimization stage. It is noteworthy that the multiple control variables to
be evaluated in the optimization stage are very flexible, including the core control targets, spe-
cific system demands and physical constraints. (as described in Chapter 3.2.2). The customized
formulation of the objective function in the optimization stage are illustrated as follows.

4.1.3.1 Objective function with absolute value norm

In the objective function with absolute value norm (l1-norm), the tracking deviations of the
control variables are optimized by their absolute values. The objective function is formulated
as the sum of the absolute values of the tracking deviation terms. To balance the relationship
among the different control variables, the tracking error terms are normalized by a predefined
weighting parameter. The formulated l1-norm objective function in the FCS-PTC algorithm is
rewritten in (4.14).

gj = (T̂ (k + 2)− T ∗) + λψ(||ψ̂s(k + 2)|| − ψ∗s) + λsw · nsw + Im(k + 2) (4.14)

where λψ and λsw are the weighting parameters for the terms of stator flux-linkage and switch-
ing frequency. Im(k + 2) is the current limitation term, which has been introduced in (3.9).
The tracking errors of the control variables in the l1-norm objective function are intuitively op-
timized that the normalized tracking errors are directly added up. The optimal solution that
minimizes the sum of the tracking errors is delivered to the inverter.

4.1.3.2 Objective function with quadratic norm

The tracking deviations of the control variables can also be evaluated in the objective function
with quadratic norm (l2-norm) [30]. Instead of the absolute values, the squared values of the
tracking deviations are applied in the l2-norm objective function formulation. The sum of the
squared values are minimized in the objective function. However, it is worth mentioned that the
weighting parameters of the squared tracking error terms should be modified by their squared
values, i.e., λ2

ψ and λ2
sw. Therefore, the l2-norm objective function in the FCS-PTC algorithm is

described as

gj = (T̂ (k + 2)− T ∗)2 + λ2
ψ(||ψ̂s(k + 2)|| − ψ∗s)2 + λ2

sw · n2
sw + Im(k + 2) (4.15)

4.2 Principle of FCS-PCC
Current quality is of great importance for the applications of electrical drive systems [31]. High
distortion in the stator current will lead to the deteriorated performance in the control system
[32]. Therefore, finite control set predictive current control (FCS-PCC) is one of the FCS-MPC
strategies, in which reducing the current distortion is regarded as the predominant task [33].
Although FCS-PTC can effectively decrease the tracking deviation of electromagnetic torque,
the error of stator current is not directly optimized in its objective function. Thus, the stator
current distortion in the FCS-PTC algorithm is still relatively high. On the contrary, the stator
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current is considered as the main control target in the FCS-PCC. The block diagram of FCS-
PCC is demonstrated in Fig. 4.2.

Figure 4.2: The close-loop control schematic of FCS-PCC.

4.2.1 Prediction stage
The stator and rotor flux-linkage are estimated by (4.1-4.2) in FCS-PCC, which is similar to
that of FCS-PTC. The predicted stator current in the stationary αβ frame is calculated in (4.16),
as the first-order forward Euler discretization is applied.

îsα,β(k + 1) = isα,β(k) + Ts ·
disα,β(k)

dt

= (1− Ts
τσ

)isα,β(k) +
Ts
τσRσ

· [kr · (
1

τr
− jω(k)) · ψ̂rα,β(k) + usα,β(k)]

(4.16)

where the system parameters kr = Lm/Lr, Rσ = Rs + k2
r · Rr, Lσ = σ · Ls and τσ = Lσ/Rσ.

The predicted stator current îsα,β(k + 2) at k + 2 interval is calculated with the time-delay
compensation, as shown in (4.17).

îsα,β(k + 2) = (1− Ts
τσ

)̂isα,β(k + 1) +
Ts
τσRσ

· [kr · (
1

τr
− jω(k)) · ψ̂rα,β(k + 1) + usα,β(k)]

(4.17)

4.2.2 Optimization stage
As the stator current is the main control target in the FCS-PCC algorithm, the tracking devi-
ations of the stator current in the stationary αβ frame are evaluated in the objective function
of FCS-PCC [34, 35]. It is noteworthy that the stator current components in the stationary αβ
frame have the equal priority. Therefore, it is not required to design a weighting parameter
for the modification between the stator current terms. However, the weighting parameter that
balances the importance between the terms of stator current and specific system demand, i.e.,
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switching frequency, is still required. Based on the above, the l1-norm objective function in the
FCS-PCC algorithm is formulated as

gj = (̂isα(k + 2)− i∗sα) + (̂isβ(k + 2)− i∗sβ) + λsw · nsw + Im(k + 2) (4.18)

where i∗sα and i∗sβ are the reference value of the stator current in the stationary αβ frame. The
reference values can be expressed as

i∗sd =
|ψ∗r |
Lm

(4.19)

i∗sq =
2Lr
3Lm

· T
∗

|ψ∗r |
(4.20)[

i∗sα
i∗sβ

]
=

[
cos(θ) −sin(θ)

sin(θ) cos(θ)

][
i∗sd
i∗sq

]
(4.21)

where θ = arctan(ψ̂rα/ψ̂rβ) is the rotation angle. The formulation of the l2-norm objective
function can be described as

gj = (̂isα(k + 2)− i∗sα)2 + (̂isβ(k + 2)− i∗sβ)2 + λ2
sw · n2

sw + Im(k + 2) (4.22)

4.3 Assessment of FCS-PTC and FCS-PCC algorithms

4.3.1 Performance evaluation of FCS-PTC
In this section, the control performance of FCS-PTC is evaluated by both the simulation and
experimental results. The simulation is conducted in the Matlab/Simulink environment with a
sampling period of 62.5 µs. The applied parameters of the induction machine in the simulation
model are the same with that applied in the experimental testbench, as shown in TABLE. 2.1.

4.3.1.1 Simulation results

Fig. 4.3 presents the performance of FCS-PTC during a simulated load disturbance. The pro-
posed method operates at a medium rotor speed (1000 rpm), and the torque reference alters from
2 to 5 Nm. The electromagnetic torque rises from 2 Nm to 5 Nm in 0.4 ms with approximately
5 rpm variation in rotor speed. The FCS-PTC method shows a fast dynamic response due to the
inherent advantages of predictive control. The ripples of the electromagnetic torque and stator
flux-linkage in the FCS-PTC method are approximated 2.3 Nm and 0.05 Wb, respectively.

Fig. 4.4 illustrates the FCS-PTC’s performance during a flux disturbance. The simulation
operates at a 1000 rpm rotor speed with a 2 Nm load torque, and the flux magnitude decreases
from 0.91 to 0.71 Wb at t = 0.2 s. As can be seen, the torque ripple drops from 2.8 to 2.4 Nm
with the FCS-PTC method when the flux magnitude ||ψs|| is varied. Moreover, it can be observed
that the ripple of stator flux magnitude is 0.06 Wb. Considering the current quality, the stator
current THD in the FCS-PTC method is 5.9 % in this simulational scenario. The simulation
results indicate that FCS-PTC achieves a fast dynamic response during the transient state, and
performs well before and after the transient state.
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Figure 4.3: Load step performance of the FCS-PTC algorithm (ω = 1000 rpm, T rises from 2
to 5 Nm).

Figure 4.4: Flux step performance of the FCS-PTC algorithm (ω = 1000 rpm, T = 2 Nm, ||ψs||
decreases from 0.91 to 0.71 Wb).

4.3.1.2 Experimental verification

Corresponding to the simulations, the torque step performance of the FCS-PTC method is eval-
uated in Fig. 4.5. The main motor operates at torque control mode that torque reference is
directly set in the algorithm. The rotor speed of 1000 rpm is given by the Danfoss load inverter.
In the testing controller, the torque reference is altered from 2 Nm to 5 Nm for the use of cost
function. It can be seen that the FCS-PTC method achieves a fast dynamic performance. The
load torque increases in 0.4 ms, and rotor speed rises to about 1100 rpm and then drops back
within 80 ms. The torque and flux ripple of the FCS-PTC method are 2.0 Nm and 0.16 Wb,
respectively. Accordingly, the torque squared mean error of FCS-PTC algorithm is 0.40. More-
over, the switching frequency of the FCS-PTC algorithm is 2.0 kHz.

The flux step performances are investigated in Fig. 4.6 at a rotor speed of 1000 rpm with a
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Figure 4.5: Experimental performance of the FCS-PTC algorithm with a load torque step (ω =
1000 rpm, T rises from 2 to 5 Nm).

2 Nm load torque. Since electromagnetic torque is proportional to the q-axis flux, the torque
ripple increases in the direct relation to the flux magnitude (from 0.71 to 0.91 Wb). The torque
ripple of FCS-PTC alters from 1.9 Nm to 2.2 Nm as flux magnitude rises. The stator current
THD of the FCS-PTC method in this test scenario is 6.1 %. The maximum ripple in the stator
flux-linkage magnitude is 0.22 Wb.

The load disturbance performance of FCS-PTC is given in Fig. 4.7. The FCS-PTC method
is implemented with a 300 rpm rotor speed and a 4 Nm load disturbance. In the FCS-PTC
method, as the torque disturbance occurs, rotor speed shows a slight reduction of 100 rpm and
then stabilizes, returning to the original speed within 250 ms. More specifically, the tracking
error of stator flux-linkage in the FCS-PTC method is 0.05 Wb. It can be observed that FCS-
PTC performs well at the steady state after the load disturbance that the stator current THD is
6.0 %.

The induction machine’s stator and rotor resistances are varied to evaluate the parameter
sensitivity of the FCS-PTC scheme. The results of Rs mismatch are illustrated in Fig. 4.8. The
rotor speed is set at 300 rpm, with a Rs variation from 2.68 to 3.5 Ω (30 % mismatch). It can be
seen that the FCS-PTC controller becomes instability when Rs rises to 3.5 Ω, that the control
performance is dramatically deteriorated when Rs reaches the peak.

In Fig. 4.9 the robustness validation of an Rr mismatch is presented at the same rotor speed
of 300 rpm. The rotor resistance is varied from 2.13 to 3.5 Ω (65 % mismatch). It is shown
that the FCS-PTC algorithm achieves a strong robustness to Rr variations. More specifically,
the FCS-PTC method obtains a 1.6 Nm torque ripple and 90 rpm speed variation. It is indicated
that the FCS-PTC scheme achieves a satisfactory steady-state performance at a low speed.
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Figure 4.6: Experimental performance of the FCS-PTC algorithm with a flux-linkage step (ω =
1000 rpm, T = 2 Nm, ||ψs|| decreases from 0.91 to 0.71 Wb).

Figure 4.7: Experimental performance of the FCS-PTC algorithm with a load disturbance (ω =
300 rpm, T alters from 0 to 4 Nm).
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Figure 4.8: Robustness validation of the FCS-PTC algorithm with aRs mismatch (ω = 300 rpm,
Rs increases from 2.68 to 3.5 Ω).

Figure 4.9: Robustness validation of the FCS-PTC algorithm with aRr mismatch (ω = 300 rpm,
Rr increases from 2.13 to 3.5 Ω).

4.3.2 Performance Evaluation of FCS-PCC

In this section, the control performance of the FCS-PCC algorithm is evaluated by the experi-
mental assessment. The FCS-PCC algorithm is conducted with a 16 kHz sampling frequency.
The test scenarios at both the steady state and transient state are conducted.

Fig. 4.10 illustrates the steady-state performance of the FCS-PCC method, from up to down
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are the measured waveforms of rotor speed, electromagnetic torque, rotor flux and stator current.
In the first steady-state test scenario, the IM operates at 50 rad/s with a 3 Nm load torque.
The electromagnetic torque and stator current errors of the FCS-PCC method is obtained in
Fig. 4.10, which are Terr = 1.68 Nm and iserr = 0.47 A (iserr/||is|| = 12.3 %), respectively.
Compared with the abovementioned FCS-PTC method, FCS-PCC achieves a relatively lower
stator current error, while the torque error becomes higher. The reason for this is that the term
of stator current has the highest priority in the objective function of FCS-PCC.

Figure 4.10: Experimental results: steady-state performance of the FCS-PCC method at 50 rad/s
with a 3 Nm load torque.

The second test scenario for the FCS-PCC method is conducted at 200 rad/s with a 5 Nm load
torque, as shown in Fig. 4.11. Compared with the first steady-state scenario, a larger torque error
(Terr = 1.83 Nm) and a smaller stator current deviation (iserr = 0.51 A, iserr/||is|| = 10.4 %)
are obtained in the FCS-PCC method. Similar trend can be found in the comparative results
between FCS-PTC and FCS-PCC in the second scenario. In FCS-PTC, less torque deviation
is achieved because torque and stator flux are considered as the main control targets. On the
contrary, a better stator current quality is found in the FCS-PCC algorithm, in which the stator
current error is formulated as the penalty term in the objective function. It can be concluded
that the control objectives are customized and flexible included in the objective function of the
FCS-MPC schemes.

The transient-state performance of the FCS-PCC method is investigated, which includes
speed step test and load step test. The speed step performance is initially evaluated. The IM
works at a rotor speed of 100 rad/s, and a 3 Nm load torque is provided by the control panel. A
speed step from 100 rad/s to 150 rad/s is suddenly carried out by the algorithms at t = 80 ms. As
can be seen in Fig. 4.12, the rotor speed rises from 100 rad/s to 150 rad/s in about 60 ms. Due to
its merit of quick dynamic response, it is obvious that FCS-PCC achieves a short settling time
during the transient state. It can be seen that the FCS-PCC algorithm performs very well both
during and after the transient state, which indicates that the FCS-PCC algorithm not merely
obtains a fast dynamic response but also retains a satisfactory steady-state performance.
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Figure 4.11: Experimental results: steady-state performance of the FCS-PCC method at
200 rad/s with a 5 Nm load torque.

Figure 4.12: Experimental results: speed step performance of the FCS-PCC method from
100 rad/s to 150 rad/s with 3 Nm load toque.

The load step performance of the FCS-PCC method is shown in Fig. 4.13. As shown, the
IM operates at the given rotor speed 100 rad/s which is provided by the control panel. As can
be understood, the initial value of the torque reference is 5 Nm, which suddenly drops to 3 Nm
within 400 µs as the load step takes place. As shown in Fig. 4.13, the rotor speed decreases to
about 81 rad/s and then recovers to the original value within 200 ms simultaneously. The errors
of torque and stator current after the transient state are 1.30 Nm and 0.48 A, respectively.
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Figure 4.13: Experimental results: load step performance of FCS-PCC from 5 Nm to 3 Nm at
100 rad/s.

4.4 Conclusion
In this chapter, the FCS-MPC schemes with multiple control targets for IM drives are investi-
gated. Categorized by the type of control targets, FCS-PTC and FCS-PCC are the two main-
stream control strategies in the FCS-MPC family. The formulation of FCS-PTC and FCS-PCC,
especially the prediction stage and optimization stage, are introduced in detail. Finally, the con-
trol performance of the two FCS-MPC algorithms at the steady state, transient state and speed
reversal maneuver are tested by an experimental assessment.
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CHAPTER 5

Multi-objecitve FCS-MPC without weighting
parameters

In the FCS-MPC schemes with multiple control targets, we aim to resolve the optimal solution
by minimizing the tracking deviations of the control variables. To do so, multiple control vari-
ables are flexibly included in the formulated objective function of FCS-MPC. However, how
to balance the relationships among the different control variables in the objective function, i.e.,
the design of the weighting parameters has become an open discussion. In this chapter, the
multi-objective FCS-MPC schemes without weighting parameters are introduced.

5.1 Introduction
The FCS-MPC schemes has shown the superiority of resolving an optimization problem with
multiple control objectives. Therefore, multiple control variables are included in the customized
objective function of FCS-MPC. The weighting parameters are required to define the contri-
bution of each control variable. However, the design of the weighting parameters is still a
challenging task. The most frequently-used approach is to design the weighting parameters as
the empirical values, by normalizing the different control variables. An obvious drawback of
the empirical weighting parameter is that it can not be always fine-tuned in the varied operat-
ing conditions. To cope with the aforementioned issue, the weighting parameter design in the
FCS-MPC schemes with multiple objectives are discussed in this chapter in detail.

5.2 Classification of the weighting parameter optimization
solutions

Several literature review has extensively investigated the methods of weighting parameter opti-
mization in the FCS-MPC schemes. Apart from the empirical values obtained by the trial-and-
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error method, from elimination of the weighting parameters by unifying the dimension of the
control variables, to the adaption of the weighting parameter via an online/offline approach.

5.2.1 Elimination of the weighting parameters
The first category of the weighting parameter optimization solutions is to eliminate the weight-
ing parameters directly. As we reduce the dimension of the control objectives in the objective
function to one, the usage of the weighting parameters is avoided. The weighting parameter
elimination methods are very simple that they do not increase the computational burden as well
as algorithm complexity. However, it is obvious that the methods become less effectiveness
in a complex control system, in which the number of multiple control targets in the objective
function is high. In [36], a weighting factor-less FCS-PTC using virtual vector for PMSM
drives is presented. The cost function is constructed as the deviation between the desired and
applied voltage vector. It is worth noting that the applied voltage vectors are selected by the
deadbeat (DB) technology in advance. In [37], a two-vector based FCS-PTC without weight-
ing factors for IM drives is proposed, which obtains the similar reference vector of stator flux
with [36]. More specifically, two optimal vectors as well as the least-squares optimized duty
cycles are carried out in the inverter. The aforementioned weighting parameter elimination
strategies with DB solution show weak robustness against parameter variations, and the switch-
ing frequency is higher when more vectors are executed in a sampling interval. Recently, a
very simple sequential structure FCS-MPC for IM drives is presented in [38]. The torque and
flux tracking error terms in the cost function are separated and evaluated in a sequential order.
However, the global optimal solution is not guaranteed because only two optimal vectors are
selected according to the torque criterion. Based on the above, a generalized sequential FCS-
MPC (GS-FCSMPC) is proposed in [39] for performance improvement. The priorities of the
control targets are assigned in the GS-FCSMPC and the field-weaken ability is experimentally
validated. In [40], an even-handed sequential FCS-MPC is studied, in which the priorities of
the control targets are determined by the obtained cross-error. To conclude, how to assign the
priorities of control targets in the objective function is still an open discussion for sequential
FCS-MPC strategies. Moreover, the number of the optimal switching sequences is reduced in
the sequential FCS-MPC algorithms as the specific control objective is optimized. As more
control targets are included, the global optimal state is difficult to be achieved.

5.2.2 Online adaptation of the weighting parameters
Another category of weighting parameter optimization solutions is to adapt the weighting pa-
rameters via an online approach. The main concept of online weighting parameter adaption
methods is to select the optimal solution by a predefined regulation. In the conventional FCS-
MPC schemes, the objective function is designed as the sum of the normalized tracking de-
viations. On the contrary, the online adaption methods, such as ranking criteria or searching
the mutual elements are employed to modify the tracking error terms instead of the weight-
ing parameters. In [41], a FCS-PTC strategy without weighting parameters is developed. The
tuning of weighting parameters is replaced by the multi-objective optimization based on the
ranking criterion. However, the additional weighting parameters are introduced to modify the
ranking values. In [42], a parallel structure FCS-PTC without weighting factor for IM drives
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is proposed, which optimizes the torque and flux tracking error terms simultaneously. The
weighting parameter is eliminated in the parallel FCS-PTC, but the constraints for torque and
flux are required to be carefully designed. A fuzzy decision-making approach for FCS-PTC is
presented in [43], by evaluating the normalized membership functions. The similar concept of
fuzzy control for online weighting parameter adjustment is investigated in [44]. However, an
importance matrix among the different control targets is assigned to evaluate the normalized
membership functions. In [45], a simulated annealing algorithm is proposed to solve the open
issue of weighting factor selection in FCS-PTC. The convergence criterion is achieved by the
formulated energy function as well as the tracking error terms. Although the online optimization
solutions bypass the process of weighting parameters selection, the additional data is indirectly
applied instead of the weighting parameters.

5.2.3 Offline adaptation of the weighting parameters

The weighting parameters can also be adapted offline in the FCS-MPC schemes. In [46], the
weighting parameters in the multi-objective FCS-MPC are adjusted by the empirical approach.
The amount of multiple simulational procedures is reduced by a branch and bound algorithm.
Recently, the offline search based on artificial neural network (ANN) has attracted much atten-
tion in weighting parameter tuning. In [47], the weighting parameters are dynamically adapted
by the trained ANN within the safe margin. However, performance metrics for electrical drive
systems such as torque and flux tracking error are not considered. In [48], an ANN approach
is proposed to design the parameters in the objective function for FCS-PTC. In this application,
both the weighting parameters and the reference of stator flux are obtained by the fitness func-
tion in varied testing scenarios. The offline design for weighting parameters depends on the
trial and error procedures or large scale data based on the repetitive simulational results, which
is both resource-consuming and lack of theoretical analysis.

5.3 Artificial neural network (ANN) based FCS-MPC

In the ANN based FCS-MPC scheme, the weighting parameters for the stator flux-linkage term
and the switching frequency term as well as the reference of the stator flux-linkage are designed
by the ANN approach [48]. The proposed ANN structure has 3 neurons in the input layer, 12
neurons in the first hidden layer, 5 neurons in the second hidden layer and 5 neurons in the output
layer. The training data are generated from repetitive simulation results with the combination of
different weighting parameters. To select the optimal combination of the weighting parameters,
a fitness function (fANN ) is formulated to evaluate the performance metrics, as described in
(5.1). It can be seen that the following performance metrics, i.e., the errors of torque, stator
current and stator flux-linkage (Terr, iserr, ψserr), the average switching frequency (fswavg) are
evaluated in the fitness function fANN .

fANN =ψserr
2 + i2serr + T 2

err + (f1 − fswavg)2 (5.1)

The block diagram of ANN is illustrated in Fig. 5.1. The first step is to collect the train-
ing data generated from the simulation results with various weighting parameter combinations.
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Subsequently, the performance metrics are trained in the proposed ANN to find the optimal so-
lution, which minimizes the fitness function (5.1). The optimal combination of the parameters
are delivered to the FCS-MPC scheme.

Figure 5.1: Block diagram of ANN.

As a case study, 200 rad/s with a 2 Nm load torque and 150 rad/s with a 5 Nm load torque are
tested as the two steady-state scenarios for the proposed ANN. The combinations of the optimal
parameters can be observed in the plots of the fitness function, as shown in Fig. 5.2 and Fig. 5.3.
As the load torque becomes higher, it can be seen that the region of optimal parameters moves
towards the direction of a higher value of λψ and a lower value of λsw. The optimal parameter
combination for the first test scenario is λψ = 10, λsw = 0.1, ψ∗s = 0.675, while that for the
second test scenario is λψ = 6.88, λsw = 0.07, ψ∗s = 0.66. The moving trend indicates the change
of designed parameters with various working conditions.

Fig. 5.4 shows the steady-state performance of the proposed ANN-based FCS-MPC con-
ducted at 200 rad/s with 2 Nm. The test scenario is conducted at a sampling frequency fsamp
= 16 kHz. From up to down the waveforms of rotor speed, electromagnetic torque, stator flux,
stator current and the applied switching state are presented. As can be seen, the ANN-based
FCS-MPC with a group of optimal weighting parameters (λψ = 10, λsw = 0.1, ψ∗s = 0.675)
achieves an improved tracking performance in terms of electromagnetic torque and stator cur-
rent (0.48 Nm and 11.6 %). More specifically, the appropriate tuning of λsw leads to a significant
lower average switching frequency (2.53 kHz) than the conventional method. The tracking error
of the stator flux-linkage magnitude is 0.055 Wb. As shown in Fig. 5.4, it can be claimed that
the proposed ANN-based FCS-MPC algorithm outperforms the conventional FCS-MPC in this
test scenario.
The steady-state performance at 150 rad/s with 5 Nm is investigated as the second experimental

scenario. For a fair and comprehensive comparison, the ANN-based FCS-MPC is conducted
with an average switching frequency of 2.5 kHz. As shown in Fig. 5.5, a higher tracking devi-
ation is obtained by the conventional FCS-MPC using fixed weighting parameters. Compared
with ANN-based FCS-MPC, the tracking deviations of the conventional FCS-MPC are 36.8 %
and 2.1 % higher in terms of torque and stator current. The torque and stator current errors of
the ANN-based FCS-MPC are 0.57 Nm and 8.65 %, respectively. A similar trend can be ob-
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Figure 5.2: Plot of the fitness function in the test scenario of 200 rad/s with a 2 Nm load torque,
f1 = 2.5 kHz.

Figure 5.3: Plot of the fitness function in the test scenario of 150 rad/s with a 5 Nm load torque,
f1 = 2.5 kHz.

served between the conventional and ANN-based FCS-MPC methods in both the steady-state
scenarios that a better tracking performance is achieved by the proposed ANN-based FCS-MPC
algorithm.

5.4 FCS-MPC with a sequential structure

To cope with the issue of weighting parameter design in the FCS-MPC schemes, a sequential
structure is proposed in the optimization stage to avoid the usage of the weighting parameters.
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Figure 5.4: Steady-state performance of ANN-based FCS-MPC at 200 rad/s with 2 Nm.

Figure 5.5: Steady-state performance of ANN-based FCS-MPC at 150 rad/s with 2 Nm.

The weighting parameters are eliminated by unifying the dimension of the control variables
in the objective function. By splitting the objective function (4.15) in the conventional FCS-
MPC, two tracking error terms are formulated in the optimization stage of the FCS-MPC with
a sequential structure. The torque and stator flux-linkage error terms gT and gF are described
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in (5.2).
gT = (T̂ (k + 2)− T ∗)2 + Im(k + 2)

gF = (||ψ̂s(k + 2)|| − ψ∗s)2 + Im(k + 2)
(5.2)

In the FCS-MPC with a sequential structure (SMPC), the control variables are separately
optimized in sequence. As can be understood, only one control variable is optimized in each
optimization stage. All the control inputs are searched in the first optimization stage, and the
feasible set is gradually narrowed according to the results of the former optimization stage. The
block diagram of SMPC is described in Fig. 5.6. It can be seen that the torque error term is
initially optimized, in which the two voltage vectors that minimize the torque error the most are
selected. Subsequently, the two voltage vectors are delivered to the second stage. The voltage
vector which obtains a minimum stator flux-linkage error is selected as the optimal solution.

Figure 5.6: Block diagram of FCS-MPC with a sequential structure.

The SMPC algorithm can be conducted in a generalized approach that the torque and flux
terms obtain the priority in turns [39]. The GS-FCSMPC algorithm is experimentally validated
in both the steady-state scenarios. As shown in Fig. 5.7, the GS-FCSMPC algorithm achieves
a 26.8 %, 19.7 % and 6.5 % reduction in terms of torque, stator current and flux error, when
compared with the conventional FCS-MPC. Nevertheless, it has to be mentioned that the in-
herent feature of the sequential structure restricts its ability to handle more complicated cost
function (with multiple conflicting targets). Compared with the ANN-based FCS-MPC, the
GS-FCSMPC is penalized by a higher average switching frequency. The reason for this relates
to the absence of the conflicting targets (e.g. switching frequency) in the objective function.
It can be observed that the average switching frequency (2.69 kHz) is slightly higher than that
of ANN-based FCS-MPC. A similar trend can be observed in Fig. 5.8 that a better tracking
performance is achieved by the GS-FCSMPC algorithm. The Terr and iserr of the GS-FCSMPC
algorithm are 0.62 Nm and 6.71 %, respectively.
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Figure 5.7: Steady-state performance of FCS-MPC with a generalized sequential structure at
200 rad/s with 2 Nm.

Figure 5.8: Steady-state performance of FCS-MPC with a generalized sequential structure at
150 rad/s with 5 Nm.
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5.5 FCS-MPC with a constrained parallel structure
Apart from the FCS-MPC with a sequential structure, a constrained parallel structure can be
applied in the FCS-MPC schemes to eliminate the weighting parameters. The proposed con-
strained parallel FCS-MPC method (PPTC) is implemented in a parallel structure in order to
optimize the torque and flux cost functions. Instead of handling a cost function with multiple
control objectives and fixed weighting parameters, the control objectives are achieved simulta-
neously but independently. When the operating conditions shift, the relationship between torque
and flux should be adjusted accordingly. To further improve the performance of the proposed
control method, one important factor is to constrain the torque and flux tracking errors within
the boundaries. Those vector candidates which make the torque and flux magnitude errors
within the predefined boundaries are then evaluated by an adaptive selection mechanism.

The block diagram of the proposed PPTC strategy is shown in Fig. 5.9. The reference torque
Tref is generated by a speed PI controller that measures the tracking error of the speed refer-
ence and the measured rotor speed. Although the tracking error terms employed in the proposed
PPTC algorithm are the same with that of SMPC algorithm, the optimization principle is differ-
ent.

Figure 5.9: Block diagram of FCS-MPC with a constrained parallel structure.

To enhance the proposed PPTC’s performance, gtmin and gfmin are designed as the initial
boundaries for torque and flux constraints, respectively. The first step is to choose candidate
vectors for optimal torque (OT), best-optimal flux (BF) and sub-optimal flux options (SF). For
every switching state (i = 0-7), the torque cost function term is compared with gtmin. The
candidates are registered as elements in the OT array when gti is less than gtmin. Simultaneously,
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the enumerative vectors are inserted into the BF array if the corresponding gfi is within the
gfmin boundary, while the rest are categorized as SF. The candidates in each array are sorted by
ascending cost function value.

Regarding that the uncertain number of the candidates in the three arrays, there are some
possibilities. The best possibility is that there are some mutual candidates both in OT and BF,
the vector that minimize torque error is selected. It is reasonable that torque is more crucial than
flux in the PPTC method. The other condition is that there are no mutual candidates between
OT and BF, then the optimal choice is the mutual vector with minimize flux error between OT
and SF. In very few occasions such as starting process, there are no candidates in OT. In that
case the vector that minimize the torque error is delivered, so as to track the reference value
Tref instantly.

To guarantee both torque and flux magnitude are optimized in the proposed PPTC method,
the amount of vector candidates within each boundary should be 2-4. If there is less than 2
candidates within one boundary, the other term can not be effectively optimized. Otherwise, the
boundary is too high if there are more than 4 candidates within it. When the amount of vector
candidate within optimal-torque (OT) is less than 2, the torque boundary gtmin should have a 5 %
increase. On the contrary, if the amount is more than 4, gtmin should have a 5 % reduction. The
same adaption is employed for flux boundary gfmin. The flowchart of the proposed algorithm
is introduced in Fig. 5.10.
To ensure the proper number of VVs in VT and VF , the constraints for electromagnetic torque

and flux-linkage should be carefully designed. To do so, the values of tracking deviations gT
and gF are obtained in the different test scenarios. The number in the square bracket means
the sorted sequence for tracking deviation. For example, gT [2] is the torque deviation which is
the second smallest, and gF [2] is the stator flux-linkage deviation which is the second smallest
and so on. The values of gT [2 − 4] and gF [2 − 4] can be seen in Fig. 5.11. It can be observed
from Fig. 5.11(a) that the average gT [2], gT [3], gT [4] in 2.0 ms are 0.7 Nm, 1.1Nm and 1.8Nm,
respectively. The average gF [2], gF [3], gF [4] are 0.01 Wb, 0.02 Wb and 0.035Wb, respectively.
As can be understood, the constraints in PPTC aim to register a proper number (2-4) of control
inputs in VT and VF . Therefore, Tmin should ranges from 0.7 to 1.8 Nm, Fmin should ranges
from 0.01 to 0.035 Wb, to guarantee that there are 2-4 VVs in VT and VF . Similarly, the average
gT [2], gT [3], gT [4] are 0.8 Nm, 1.8 Nm and 2.5 Nm, and the average gF [2], gF [3], gF [4] are 0.01
Wb, 0.02 Wb and 0.04 Wb in Fig. 5.11(b). In the test scenario of 2772 rpm with 7.5 Nm, Tmin
should ranges from 0.8 to 2.5 Nm, Fmin should ranges from 0.01 to 0.04 Wb. Based on the
above, Tmin = 1.2 Nm and Fmin = 0.03 Wb are selected as the initial constraints.

In order to verify the proposed PPTC’s feasibility, performances in the entire speed range are
investigated. Rotor speed, torque, and stator flux are shown in the αβ-axis in Fig. 5.12. The
rotor speed reverses from 2600 rpm to -2600 rpm within about 400 ms. The results indicate
that the proposed PPTC method achieves fast dynamic response and performs well in the whole
speed range.

The steady-state performance of the proposed constrained PPTC algorithm is shown in
Fig. 5.13 and Fig. 5.14. As shown in Fig. 5.13, the torque and stator current error of the pro-
posed method are 0.40 Nm and 9.23 %, respectively. However, the average switching frequency
is slight higher (2.68 kHz) when compared with the conventional FCS-MPC method. As can



5.5. FCS-MPC WITH A CONSTRAINED PARALLEL STRUCTURE 41

Figure 5.10: Flowchart of FCS-MPC with a constrained parallel structure.

be seen in Fig. 5.14, the tracking errors are 0.55 Nm and 7.07 %, which are smaller than that
of conventional FCS-MPC with the fixed weighting parameters. The reason for this is the
self-tuning of the weighting parameters in the parallel optimization principle.

The transient state performance of the proposed PPTC is investigated as follows. In Fig. 5.15,
a load step occurs that the load torque alters from 2 Nm to 5 Nm. The torque and flux ripple of
the proposed PPTC algorithm are 1.5 Nm and 0.12 Wb, respectively. The values are less than
that of the conventional FCS-MPC method (2.0 Nm and 0.16 Wb). As shown in Fig. 5.16, The
proposed PPTC method’s torque ripple alters from 1.5 Nm to 1.7 Nm as flux magnitude rises.
It is shown that, compared with conventional PTC, the proposed PPTC reduces torque and flux
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(a)

(b)

Figure 5.11: The values of gT and gF in two test scenarios. (a) 300 rpm with 4 Nm. (b) 2772 rpm
with 7.5 Nm.

error by approximately 23 % and 36 %, respectively.

5.6 FCS-MPC with an ensemble regulation principle

As the multiple control targets are tackled in the multi-objective FCS-MPC, it is essential that
the importance of both the core control targets and system demands are carefully regulated.
In this section, the concept of the proposed ensemble regulation approach is presented. The
proposed ensemble regulation principle for multi-objective FCS-MPC consists of priority eval-
uation, sorting algorithm and ensemble regulation mechanism. More specifically, the proposed
ensemble regulation principle requires neither additional penalty coefficients nor knowledge of
offline data resources.

Instead of incorporating multiple control targets in the objective function of the multi-
objective FCS-MPC algorithm, the splitting of the objective function into multiple terms of
single control target is proposed in (5.3). Therefore, the dimensions of the single terms are
reduced to 1. It is obvious that no penalty coefficients are required in these one-dimension
terms. It should be noted that a control system has both the major and supplement objectives.
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Figure 5.12: Speed reversal maneuver of FCS-MPC with a constrained parallel structure (from
2600 rpm to -2600 rpm without load torque).

Figure 5.13: Steady-state performance of FCS-MPC with a constrained parallel structure at
200 rad/s with 2 Nm.

The priority of the major (more prior) objectives is higher than that of supplement (less prior)
objectives. Although the one-dimension terms are optimized simultaneously, the sequence
of applying the optimal solutions is determined by the priority of the specific control target.
The priority of each control target in the multi-objective FCS-MPC algorithm is evaluated in
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Figure 5.14: Steady-state performance of FCS-MPC with a constrained parallel structure at
150 rad/s with 5 Nm.

Figure 5.15: Load step performance of FCS-MPC with a constrained parallel structure. (ω =
1000 rpm, T alters from 2 to 5 Nm).

Fig. 5.17.
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Figure 5.16: Load step performance of FCS-MPC with a constrained parallel structure. (ω =
1000 rpm, T = 2 Nm, flux magnitude decreases from 0.91 to 0.71 Wb).

Priorities of the multiple control targets

More Prior Less Prior

Physical Constraints Core Control Targets System Demands
xl+m+1 xl+m+2 ... xl+m+n x1 x2 xl... xl+1 xl+2 ... xl+m

x'1 x'2 ... x'P  (0 < P < l + m) ... x'l+m

Figure 5.17: Priority evaluation of the multiple control targets in the FCS-MPC.

g(x1)j = [x∗1 − x1(k + 2)j]
2

g(x2)j = [x∗2 − x2(k + 2)j]
2

...

g(xl+m)j =
[
x∗l+m − xl+m(k + 2)j

]2
g(xl+m+1)j = F1(k + 2)j

g(xl+m+2)j = F2(k + 2)j
...

g(xl+m+n)j = Fn(k + 2)j

(5.3)
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As shown in Fig. 5.17, the multiple control targets in the multiobjective FCS-MPC algorithm
are categorized as the core control targets, system demands and physical constraints. Among
them the physical constraints take the highest priority to guarantee the safety of the control
system, which are satisfied by the selected optimal solutions. The core control targets show
a significant influence on the control performance of the multi-objective FCS-MPC algorithm,
which are less prior than the physical constraints. The system demands are supplemented in the
objective function for a certain application, which are of the least importance to be optimized.
Based on the above, the physical constraint terms are inserted in the homogeneous terms g(x1)j ,
g(x2)j ,. . . ,g(xl+m)j , as rewritten in (5.4).

g(x′P )j = [x′P
∗ − x′P (k + 2)j]

2
+

n∑
i=1

Fi(k + 2)j (5.4)

where the integer P represents the priority of the control target, 0 < P ≤ l + m. The control
target x′P is more prior as P is smaller.

A sorting algorithm (SA) is conducted for each homogeneous objective term g(x′P )j , where
P is integer, 0 < P ≤ l + m. The tracking deviations g(x′P )j in (5.4) are compared among
all the switching states, ∀ j ∈ 0, 1, . . . , 6. Three optimal switching states bP [0], bP [1] and bP [2]
are regarded as the best-optimal solutions (stored in the array bP ), while the rest (sP [0], sP [1],
sP [2] and sP [3]) are the elements of the sub-optimal solutions (stored in the array sP ). It is
noted that the tracking deviation g(x′P ) is the smallest as j = bP [0], while it obtains the largest
value as j = sP [3]. Namely, the elements in bP and sP are sorted according to the tracking
performance of the control target x′P . The formulation of the best-optimal and suboptimal
solutions is described in Fig. 5.18. Based on the above, an ensemble regulation mechanism
(Step 3) is employed for the collected data in bP and sP , to obtain the optimal solution of the
multi-objective FCS-MPC.

gj

g(x'1)j g(x'2)j ... g(x'l+m)jg(x'l+m-1)j

Step 1: splitting the 
objective function and 

priority evaluation 

Step 2: applying the 
sorting algorithm (SA) 

b1 s1 b2 s2 bl+m-1 sl+m-1bl+msl+m

Step 3: the ensemble 
regulation principle is 

employed 

Ensemble Regulation Mechanism

the optimal solution

Figure 5.18: The formulation of the best-optimal and suboptimal solutions.

Finally, an ensemble regulation mechanism is established for the swept weighting param-
eters in the objective function of multi-objective DMPC. The optimal solution is generated
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by searching the mutual switching states among b1, b2,. . . , and bl+m. The concept is simple
and straightforward that the mutual switching states among all the best-optimal solutions can
achieve satisfactory performance for every control target. Considering that x′1 is the control
target with the most priority in x′P , the switching state with minimum tracking deviation g(x′1)
is selected when there are more than one mutual solutions. The reason for constraint tightening
is, we expect to achieve better tracking performance of the control objective, which is of more
importance. For example, b1[0] and b1[1] are the mutual best-optimal solutions among b1, b2,. . . ,
and bl+m. b1[0] is selected as the optimal switching state to be delivered to the inverter, because
the value of g(x′1) is smaller when b1[0] is applied.

Providing that there are no mutual switching states among all the best-optimal solutions, the
constraint of the least important control target x′l+m is preliminarily relaxed. To explore the
potential mutual element, the sub-optimal solution sl+m is applied instead of bl+m. Therefore,
the ensemble regulation mechanism is adjusted to find the mutual solution among b1, b2,. . . , and
bl+m−1 and sl+m. Likewise, the constraint of the control target with less priority is relaxed in
sequence to search among b1, b2,. . . , bP−1 and sP (0 < P ≤ l + m), until the mutual solution is
obtained. Two criteria are proposed to resolve the optimal solution as there are multiple mutual
solutions. First, the mutual solutions are compared with the elements from bP+1 to bl+m in the
order of priority. The mutual solutions which are also the elements in the best optimal solutions
of the more prior target are selected. To alleviate the negative influence of the sub-optimal
solution sP , the switching state with the smallest g(x′P ) is regarded as the optimal solution. The
flowchart of the proposed ensemble regulation mechanism is illustrated in Fig. 5.19.

The block diagram of multi-objective FCS-MPC combined with the proposed ensemble reg-
ulation principle is depicted in Fig. 5.20. The control objectives are predicted by the discrete
model of the control plant. The priorities of the control targets are evaluated and the multiple
homogeneous terms are constructed. The switching states are categorized by the sorting algo-
rithm. Finally, the elements in the best-optimal and sub-optimal solutions are optimized by the
ensemble regulation mechanism, to generate the optimal solution.

The proposed FCS-MPC with an ensemble regulation principle shows a competitive control
performance at both the steady-state scenarios. For the first test scenario (as shown in Fig. 5.21),
the tracking errors are Terr = 0.36 Nm , iserr = 8.54 % and ψserr = 0.049 Wb, respectively.
The tracking errors in the second scenario (as shown in Fig. 5.22) are Terr = 0.40 Nm , iserr =
6.28 % and ψserr = 0.052 Wb. The turnaround time of the proposed FCS-MPC with an ensemble
regulation principle is 37 µs.

The transient-state performance of the proposed FCS-MPC algorithm is tested. The IM starts
at t = 0.9 s and a speed reversal maneuver is conducted at t = 2.9 s. Thereafter, a 5 Nm load
torque disturbance is provided at t = 6.17 s. As shown in Fig. 5.23, it is confirmed that the
proposed method shows fast transient response and performs well at a wide speed range. It can
be observed that the electromagnetic torque rises from 0 to 5 Nm in 50 ms. The rotor speed
suffers from a 15 rad/s drop and returns in 80 ms.

Finally, the principle of the proposed ensemble regulation method is analyzed. As shown in
Fig. 5.24, three best solutions for both torque and stator flux optimization (b1[0−2] and b2[0−2])
as well as the selected switching states are presented. It can be seen that the optimal voltage
vectors are entirely selected from the torque best-optimized solutions (b1). For selecting the flux
best-optimized solutions (b2), the possibility is approximately 62 %. Moreover, the distribution
of the selected switching sequences is illustrated in Fig. 5.25. As concluded, the least torque
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Collect the data in b1, b2, ..., bl+m

and s1, s2, ..., sl+m, P=l+m

Search the mutual elements in b1, 
b2, ..., bl+m

the number of 
mutual elements = 0

Yes

Search the mutual elements in b1, 
b2, ..., bP-1, sP

P = P - 1

the number of 
mutual elements = 1

Yes

No

No

Select the mutual element in
bP+1, ...,bl+m, in sequence

Select the mutual element 
with minimum g(x'P)

Output the optimal solution

Start

Figure 5.19: Flowchart of the ensemble regulation mechanism.



5.6. FCS-MPC WITH AN ENSEMBLE REGULATION PRINCIPLE 49

Discrete model of 
the control plant

x1(k+2), x2(k+2), …, 
xl+m+n(k+2)

Priority Evaluation

Multiple terms of 
homogeneous control target

x'P(k+2)

Sorting algorithm

g(x'P)

Ensemble regulation 
mechanism

bP, sP

us

Figure 5.20: Block diagram of multi-objective FCS-MPC combined with ensemble regulation
principle.

Figure 5.21: Steady-state performance of FCS-MPC with an ensemble regulation principle at
200 rad/s with 2 Nm.
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Figure 5.22: Steady-state performance of FCS-MPC with an ensemble regulation principle at
150 rad/s with 5 Nm.

Figure 5.23: Dynamic performance of the proposed FCS-MPC algorithm. The IM starts at
0.9 s, the rotor speed reverses at 2.9 s with a 5 Nm load torque at 6.17 s.
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error is obtained by 66 % of the optimal solutions, while the percentage for the smallest flux
error is 26 %. Compared with the conventional method, the proposed FCS-MPC algorithm has
more possibility to select the solutions with less tracking error.

Figure 5.24: Comparisons between the best-optimal solutions for torque/flux and the selected
switching sequences.

5.7 Conclusion
In this chapter, the solutions for the modification of the multiple control targets in the FCS-
MPC schemes are investigated. First, the classification of the weighting parameter optimization
solutions are proposed. Based on the above, several weighting parameter solutions for the FCS-
MPC are evaluated and experimentally validated.
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Figure 5.25: Comparisons between the percentage of selecting the best-optimal solutions.
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CHAPTER 6

Objective function reformulation in FCS-MPC
using a derivative projection

Multiple control targets, e.g., electromagnetic torque, stator current, voltage balance in the
neural point and average switching frequency, are optimized in the objective function of the
FCS-MPC schemes. The optimal switching sequence is selected by minimizing the predefined
objective function, to reduce the tracking errors. Thus, an improved control performance is
achieved in FCS-MPC. However, the conventional FCS-MPC schemes still suffers from the
inherent drawbacks, i.e., high ripples at the steady state and high computational burden. In
this chapter, the objective function is reformulated in the FCS-MPC schemes using a derivative
projection, to tackle the abovementioned issues.

6.1 Introduction
The state-of-the-art FCS-MPC algorithms can be considered as an emerging control strategy for
the electrical drive systems, due to its flexible definition of the control targets. FCS-MPC shows
the superiority on straightforward concept, simple implementation, fast dynamic response and
low switching frequency, which has become an attractive alternative to the conventional control
strategies, e.g., direct torque control (DTC) and field oriented control (FOC).

One of the drawbacks in the FCS-MPC schemes is the high computational burden. In FCS-
MPC, all the possible control inputs are enumerated in the prediction and optimization stage, to
resolve an optimal solution in the optimization problem. However, the computational effort will
be very high via an exhaustive search, especially in the multilevel converters and multistep im-
plementations. It is noteworthy that the number of searched control inputs grows exponentially
with an increased number of the prediction horizon. As we can understood, some of the control
inputs are not likely to be the optimal solution in the implementation. For example, the tracking
errors will be definitely larger with the movement in a prediction horizon, when the direction of
the movement is opposite to that of the reference. Based on the above, the preselection principle
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is designed to distinguish the desired and undesired control inputs. The computational effort
of FCS-MPC can be significantly reduced without the sacrifice of the control performance, as
the undesired control inputs are unvisited in the prediction and optimization stage. Several
computationally-efficient methods have been investigated in the previous work. [49] introduces
a Quasi-centralized direct MPC scheme incorporates with computationally efficient concept for
the back-to-back converter based PMSG wind turbine system. The DC-link voltage tracking
errors are eliminated by a flexible cost function using revised dynamic reference. In [50], a
low-complexity approach for single vector based MPC is proposed. Unfortunately, it is lim-
ited by special applications. In [51], a weighting factor-less FCS-PTC with reduced complexity
for five-phase PMSM is presented. Furthermore, a three-vector based direct predictive power
control for doubly fed induction generators is proposed in [52]. However, the comparisons be-
tween the three-vector method and one-vector method are conducted at the different switching
frequencies.

The latter drawback is, the tracking deviations is relatively high at the steady state, because
only one switching state is employed in the entire sampling period in FCS-MPC. The reason
relates to this is the discrete nature of the finite control set. In [53], the multistep FCS-MPC
scheme for the three-level inverter is investigated as a case study and its performance is fur-
ther evaluated in [54]. Although a simple rounding scheme is developed to alleviate the ex-
ponential growth of the switching sequences, the computational effort of multistep FCS-MPC
is still larger than that of conventional FCS-MPC. In [55], a computationally efficient multi-
step direct predictive torque control (DPTC) is proposed for surface-mounted permanent mag-
net synchronous motor (PMSM). The number of candidates is reduced by the look-up table
to avoid exhaustive searching. However, the multistep DPTC approach still suffers from high
computational complexity that the computational time of the algorithm is about 50 µs with 3
horizons. [56] introduces a multistep MPC with voltage and current constraints for linear induc-
tion machine (LIM), to yield better closed-loop performance and reduced calculation burden.
However, the FCS-MPC with a longer predictive horizon shares the same drawbacks with [53],
which have not been fundamentally solved. Authors in [57] present a FPGA-implemented
longhorizon FCS-MPC with a nonrecursive sphere decoding algorithm (SDA). The effective-
ness of the controller at a prediction horizon of 5 is experimentally verified. It is noted that the
amount of switching sequences is decreased by the SDA in a non-recursive manner, However,
the long-horizon FCS-MPC strategies rely on the emerging high-performance controllers such
as system-on-chip based FPGA (SOC-based FPGA) and dSPACE, especially for the multi-level
converter applications. In [58], a long-horizon FCS-MPC algorithm combined with a branch-
and-bound strategy and moving blocking scheme, is adopted to control the quasi-Z-source in-
verter (qZSI). However, the tradeoff between the length of horizon and the computational bur-
den is required in the long-horizon FCS-MPC strategies. In [59], the optimization problem
underlying multistep FCS-MPC is formulated to be solved by a fast SDA, in order to show a
significant improvement in the current THD of the cascaded H-bridge inverters. Moreover, it is
potential to further reduce the amount of control inputs over a prediction horizon. As concluded
in [60], a fixed switching frequency based multi-vector predictive torque control for six phase
PMSM is proposed. However, the deadbeat principle is employed to select the optimal vectors
and calculate their duty ratios, which raises more concern on robustness improvement. In [61],
a multi-vector MPC algorithm with geometric solution for five-phase flux-switching permanent
magnet motor is experimentally verified. In [62], a two-vector based MPC is presented for
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performance improvement of the PWM rectifier. The average switching frequency is reduced
by 30 % compared to the prior algorithm due to the modulated deadbeat solution. In order to
control a three-level inverter with LC filter, MPC combined with modulated optimal vector is
introduced in [63], but the additional space-vector modulation stage is also required.

6.2 Objective function reformulation using a derivative pro-
jection

The proposed computationally efficient predictive current control (PCC) with an extension of
finite set (PCC-II) is consist of the following components: current derivative calculation, pre-
selection principle, duty cycles optimization by the least-squares (LS) method and objective
function minimization. The components of the proposed controller are introduced in detail as
follows.

6.2.1 Derivation projection
Instead of the predicted values calculated by the forward Euler discretization in the conven-
tional FCS-PCC algorithms, the proposed method directly generates the desired stator current
derivative for zero-error tracking as the reference, which is defined in (6.1).

dx∗(k)

dt
=
x∗(k)− x(k)

Ts
(6.1)

where Ts is the sampling period, x = [isα, isβ]T , x∗(k) − x(k) denotes the forward difference
of the state variable at k interval. The derivative of x(k) can be directly obtained by the state-
space model in (3.1). The geometric description of the optimization problem underlying FCS-
PCC is shown in Fig. 6.1(a), while the control variable x(k) and the its reference value x∗ are
projected on their derivatives dx(k)/dt and dx∗(k)/dt in Fig. 6.1(b). It is noteworthy that the
derivative of the control variable dx/dt can be formulated in the objective function using current
derivative projection. As shown in the stationary frame in Fig. 6.1(b), the desired stator current
derivative dx∗(k)/dt is calculated by (6.1). Simultaneously, for every switching sequence the
stator current derivative dx(k)/dtj , ∀j = 0, 1, . . . , 6, is achieved.

xβ

xα

(xα(k),xβ(k))

(xα
*,xβ

*)

d(k+1)

(xα(k+1),xβ(k+1))

dxβ/dt

dxα/dt00

(dxα
*/dt,dxβ

*/dt)

(dxα(k)/dt,dxβ(k)/dt)

Figure 6.1: Geometric description of the derivative projection in the optimization problem un-
derlying FCS-PCC. (a) without derivative projection. (b) with derivative projection.
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It is noteworthy that the FCS-PCC scheme can mitigate the discretization error using a deriva-
tive projection instead of forward Euler formula, because the predicted values are not required
in the reformulated objective function of the proposed scheme. Considering that the derivatives
of variables are also applied in the prediction stage of the conventional FCS-PCC, the derivative
projection will not result in the wrong selection of the optimal solution.

6.2.2 Formulation of the objective function
To obtain a satisfactory control performance, it is required to reduce the tracking error between
the calculated and the desired stator current derivative in the proposed algorithm. Unfortunately,
the discrete nature of both the switching sequences and the corresponding stator current deriva-
tives inevitably yields a high tracking deviation. Considering that the time-delay compensation,
the selected stator current derivative dx(k)/dt at k interval and dx(k+1)/dtj (for optimization)
are introduced to synthesize the potential solution. As shown in Fig. 6.2(b), the synthesized so-
lution is constructed by dx(k)/dt and dx(k+ 1)/dtj as an example. Their duty cycles t(k)j and
t(k + 1)j ∈ [0, 1] are optimized by the LS method to minimize the quadratic objective function
gj , which is rewritten as the squared Euclidean-norm of the tracking derivation d(k + 1)j .

gj = ‖d(k + 1)j‖2
2

= (t(k)j
dxα(k)

dt
+ t(k + 1)j

dxα(k + 1)

dt j
− dx∗α(k + 1)

dt
)2

+ (t(k)j
dxβ(k)

dt
+ t(k + 1)j

dxβ(k + 1)

dt j
−
dx∗β(k + 1)

dt
)2

(6.2)

subject to t(k)j + t(k + 1)j = 1 (6.3)

where the derivative of reference at the instance k+ 1 is calculated with the known information
at the instance k (assuming that x∗(k) = x∗(k + 1)).

6.2.3 Optimization of the duty cycle
As expressed in (6.4), the objective function gj is partial differentiated with t(k)j and t(k+ 1)j .
To optimize the duty cycles, the minimal value of the objective function gj is achieved by
solving its partial derivatives to zero.

∂gj
∂t(k)j

= 0,
∂gj

∂t(k + 1)j
= 0 (6.4)

which is rewritten as

∂gj
∂t(k)j

= 2
dxα(k)

dt
dα(k + 1)j + 2

dxβ(k)

dt
dβ(k + 1)j = 0

∂gj
∂t(k + 1)j

= 2
dxα(k + 1)

dt j
dα(k + 1)j + 2

dxα(k + 1)

dt j
dβ(k + 1)j = 0

(6.5)

where dα(k + 1)j and dβ(k + 1)j are the components of stator current derivative tracking de-
viation in the αβ frame. Therefore, the duty cycles t(k)j and t(k + 1)j are solved with the



6.2. OBJECTIVE FUNCTION REFORMULATION USING A DERIVATIVE PROJECTION 57

dxα /dt

dxβ /dt
dx*(k+1)/dt

dxα /dt0

dx(k+1)/dt2

dxβ /dt

0

dj

(a) (b)

dx(k)/dt

dx(k+1)/dt1

dx(k+1)/dt0

dx(k+1)/dt6

dx(k+1)/dt5

dx(k+1)/dt4

dx(k+1)/dt3

dx(k)/dt

dx(k+1)/dtj
dx*(k+1)/dt

t(k)j
t(k+1)j

Figure 6.2: Description of the stator current derivatives in the stationary αβ frame. (a) The
desired and applied stator current derivatives. The black line is the desired current derivative,
the blue line is the optimal current derivative at k interval, the red lines are the applied current
derivatives at k+1 interval. (b) The synthesis of current derivatives with least-squares optimized
duty cycles. The tracking deviation dj is represented by the red dashed line.

constraint (6.3). At last, the optimal stator current derivative incorporated with the correspond-
ing duty cycles are selected via sorting the minimal value of the objective function gj(min).
The optimal solution minimizes gj(min) most is delivered to the inverter.

6.2.4 Preselection principle
To avoid exhaustive search, a preselection principle is introduced in the proposed PCC-II algo-
rithm to alleviate the computational burden by reducing the number of searched control inputs.
As shown in Fig. 6.3(a), seven control inputs are exhaustive searched without the preselection
principle, to resolve the optimal solution in the reformulated objective function. It is noteworthy
that the directions of several current derivatives (i.e., dx(k + 1)/dt0,5,6 in Fig. 6.3(a)) are op-
posite to that of the desired derivative dx∗(k + 1)/dt. The tracking deviation dj is larger when
the current derivative with an opposite direction is applied with the former optimal solution
dx(k)/dt. Therefore, the current derivative with an opposite direction can not be selected as the
optimal solution. Based on the above, the finite set is divided into two regions according to the
angle θ between the applied and desired current derivative. As shown in Fig. 6.3(b), the angle θ
is an acute angle (θ ≤ π/2) in the red region, while θ is an obtuse angle (θ ≥ π/2) in the purple
region. The current derivatives in the red region are employed in the formulation of the objec-
tive function and the optimization stage. On the contrary, the derivatives in the purple region
are unvisited in the preselection principle. It can be observed that the proposed preselection
principle can significantly reduce the computational burden of the proposed PCC-II algorithm
while retains the optimal tracking performance.

The close-loop control schematic of the proposed PCC-II is shown in Fig. 6.4, which includes
four control components, i.e., current derivative calculation, preseletion principle, duty cycles
optimization and objective function minimization. First, the desired and applied current deriva-
tives are calculated by the system model. Based on the above, the finite set is divided into two
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Figure 6.3: Comparisons between the two search approaches in the proposed PCC-II algorithm.
(a) exhaustive search (b) preselection principle.

separate regions to preselect the control inputs. The control inputs in the red region are used for
the formulation and optimization of the objective function, while those in the purple region are
unvisited. Therefore, the computational burden of the proposed algorithm can be significantly
reduced by the preselection principle. Subsequently, the objective function is formulated as the
quadratic Euclidean norm of the tracking deviation, in which the duty cycles are optimized by
the LS method. The current derivatives as well as their duty cycles that minimize the objective
function the most are selected as the optimal solutions for the controller.

The flowchart of the proposed PCC-II algorithm is illustrated in Fig. 6.5. Moreover, the
execution steps in the proposed algorithm are described in Algorithm 1.

6.3 Experimental validation

6.3.1 Speed reversal maneuver

First, the feasibility of the proposed PCC-II algorithm is verified by the experimental imple-
menting during a full speed reversal maneuver, as reported in Fig. 6.6. The IM initially operates
at 290 rad/s, and a speed step change to -290 rad/s occurs at t = 0.86 s subsequently. Owing to
that the quick dynamic response of FCS-MPC schemes, it is indicated that the speed reversal
duration of the proposed PCC-II algorithm is 270 ms. Due to the LS optimized tracking devi-
ations, it is obvious that the proposed method shows the benefits for reduced electromagnetic
torque and stator current errors (Terr = 0.85 Nm and iserr/||is|| = 6.6 %). Compared with that
of conventional FCS-PCC (Terr = 1.21 Nm and iserr/||is|| = 13.4 %), the values are decreased
by 29.8% and 50.7%. The turnaround time and average switching frequency of the proposed
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Figure 6.4: Block diagram of the proposed PCC-II algorithm.

algorithm are 27 µs and 3.8 kHz, respectively. The comparative performance metrics between
the conventional FCS-PCC and PCC-II algorithms during the speed reversal maneuver are sum-
marized in TABLE.6.1. More specifically, it is confirmed that the proposed PCC-II algorithm
performs well at the whole speed range.

Table 6.1: The comparative performance metrics between conventional FCS-PCC and PCC-II
during the speed reversal maneuver

Metrics FCS-PCC PCC-II

speed reversal duration [ms] 300 270

Terr [Nm] 1.21 0.85

ψrerr [Wb] 0.04 0.03

iserr/||is|| [%] 13.4 6.6

fsw [kHz] 3.3 3.8
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Figure 6.5: Flowchart of the proposed PCC-II algorithm.

Algorithm 1 The execution of the proposed PCC-II algorithm
1: System initialization, rotor speed and stator current measurement, stator and rotor flux es-

timation.
2: Calculation of the desired and applied stator current derivatives dx∗(k + 1)/dt in (6) and
dx(k + 1)/dtj in (10), ∀j = 0, 1...6.

3: A preselection principle is introduced to divide the finite control set into two separate re-
gions. The control inputs in the purple region are unvisited.

4: The synthesized current derivative is achieved by dx(k)/dt and dx(k + 1)/dtj . The objec-
tive function gj is further formulated.

5: The duty cycles t(k)j and t(k+1)j for the applied current derivatives dx(k)/dt and dx(k+
1)/dtj are optimized by the least-squares method to yield the minimal value of gj .

6: The minimal value of the objective function gj(min) is sorted within the preseleted control
set. The control input that minimizes gj(min) most is selected as the optimal solution.

7: The optimal switching sequences in the continuous sampling periods incorporated with
their duty cycles are delivered to the inverter.

6.3.2 Steady-state performance

Fig. 6.7 illustrates the steady-state performance of the conventional FCS-PCC, duty-cycle based
FCS-PCC and the proposed PCC-II algorithm, from up to down are the measured waveforms
of rotor speed, electromagnetic torque, rotor flux and stator current. In the first steady-state
test scenario, the IM operates at 50 rad/s with a 3 Nm load torque. As shown in Fig. 6.7(a),
the conventional FCS-PCC suffers from the largest torque and stator current errors, which are
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Figure 6.6: Experimental results: speed reversal performance of the proposed PCC-II algorithm
from 290 rad/s to -290 rad/s.

Terr = 1.68 Nm and iserr = 0.47 A (iserr/||is|| = 12.3 %), respectively. The duty-cycle based
FCS-PCC achieves the advantages of smaller torque and current tracking errors, due to the ex-
tension of the finite set. Compared with the conventional FCS-PCC, the values are decreased
by 27.4 % and 46.8 %. However, the duty-cycle based FCS-PCC is penalized by a higher fsw
because the number of applied vectors in a sampling period is more than 1. The proposed PCC-
II algorithm improves the steady-state performance without the increased number of applied
switching states in each sampling period. The reason for this is at most one vector is employed
in a sampling period averagely. Compared with the duty-cycle based FCS-PCC at the same
switching frequency fsw = 2.0 kHz, the proposed PCC-II algorithm obtains a further reduction
on torque and current by 13.1 % and 24.0 %, respectively. It can be observed that the pro-
posed PCC-II achieves the least tracking deviations among the three algorithms in the first test
scenario.

The second test scenario is conducted among the three algorithms at 200 rad/s with a 5 Nm
load torque, as shown in Fig. 6.8. Compared with the first steady-state scenario, a larger torque
error (Terr = 1.83 Nm) and less stator current deviation (iserr = 0.51A, iserr/||is|| = 10.4 %) is
obtained in the conventional FCS-PCC. Similar trend can be found in the comparative results
among the three algorithms in the second scenario. As depicted in Fig. 6.8(b), the tracking errors
of torque and stator current in the duty-cycle based FCS-PCC is reduced by 8.7 % and 35.3 %,
when compared with the values of the conventional FCS-PCC. Moreover, it can be observed in
Fig. 6.8(c) that the proposed PCC-II algorithm achieves the least tracking errors (Terr = 1.15 Nm
and iserr = 0.24A). The comparative performance metrics of three algorithms at the steady state
are summarized in TABLE 6.2.
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(b)

(c)

Figure 6.7: Experimental results: steady-state performance at 50 rad/s with a 3 Nm load torque.
(a) conventional FCS-PCC. (b) duty-cycle based FCS-PCC. (c) the proposed PCC-II algorithm.
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Table 6.2: The comparative performance metrics among the three algorithms at the steady state

50 rad/s, 3 Nm FCS-PCC duty-cycle based FCS-PCC PCC-II

Terr [Nm] 1.68 1.22 1.06

ψrerr [Wb] 0.045 0.039 0.034

iserr [A] 0.47 0.25 0.19

200 rad/s, 5 Nm FCS-PCC duty-cycle based FCS-PCC PCC-II

Terr [Nm] 1.83 1.67 1.15

ψrerr [Wb] 0.048 0.044 0.036

iserr [A] 0.51 0.33 0.24

6.3.3 Transient-state performance

The transient-state performance among the three algorithms are investigated, which includes
speed step test and load step test. The speed step performance is initially evaluated. The IM
works at a rotor speed of 100 rad/s, and a 3 Nm load torque is provided by the control panel. A
speed step from 100 rad/s to 150 rad/s is suddenly carried out by the algorithms at t = 80 ms.
As can be seen in Fig. 6.9(c), the rotor speed rises from 100 rad/s to 150 rad/s in 58 ms. A
similar rise time of rotor speed (about 60 ms) can be found in the conventional FCS-PCC and
duty-cycle based FCS-PCC, due to the same parameters (kp = 0.23, ki = 5.38) in the speed
PI regulator. Compared with the conventional FCS-PCC, the proposed algorithm shows the
superiority of 23.7 % and 51.8 % reduction in terms of torque and current errors. The proposed
PCC-II algorithm achieves the least tracking deviations at the steady state, while retains a fast
dynamic response during the transient state.

The load step performance of the conventional FCS-PCC, duty-cycle based FCS-PCC and
the proposed PCC-II algorithm are compared in Fig. 6.10. As shown, the IM operates at the
given rotor speed 100 rad/s which is provided by the control panel. The initial value of the
torque reference is 5 Nm, which suddenly drops to 3 Nm within 400 µs as the load step takes
place. As shown in Fig. 6.10(c), the rotor speed decreases to about 83 rad/s and then recovers to
the original value within 200 ms simultaneously. It can be observed that the proposed algorithm
retains the merit of fast dynamic response of its counterpart FCS-PCC algorithms. The error
of rotor flux magnitude in the proposed PCC-II algorithm is 0.03 Wb. Compared with the
conventional FCS-PCC algorithm, the torque and stator current errors of the proposed algorithm
is decreased by 41.5 % and 37.5 %, respectively.

6.3.4 Robustness validation

In this section, the robustness validation to parameter variations (i.e. Rr and Lm) of the pro-
posed PCC-II algorithm is presented. As shown in Fig. 6.11, the IM runs at 15 rad/s without
load torque, and the stator resistance Rr changes from 2.13 Ω to 4.26 Ω (100 % variation) in
0.7 s. During the Rr variation, the proposed PCC-II algorithm shows strong robustness against
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the parameter mismatch that all the measured waveforms keep stable. It is revealed by the ex-
perimental results that the proposed algorithm shows weak sensitivity to varied stator resistance.

The robustness performance of the proposed algorithm with 10 % Lm variation is evaluated
in Fig. 6.12. As shown, the mutual inductance is increased by 10% in 1 s. Due to the negative
impact of Lm variation on the reference value of stator current, the control performance of the
proposed algorithm is significantly deteriorated that the measured waveforms become instability
at t = 0.8s. The robustness performance of the proposed PCC-II algorithm shows a similar trend
with that of the conventional FCS-PCC.

6.3.5 Computational burden analysis
Finally, the computational burden of the three FCS-PCC algorithms are analyzed. In the conven-
tional FCS-PCC and duty-cycle based FCS-PCC, the control inputs are exhaustive searched in
every sampling period. Compared with the conventional FCS-PCC, the duty-cycle based FCS-
PCC improves the steady-state performance using extended finite set. However, the turnaround
time of duty-cycle based FCS-PCC (40 µs) is much longer than that of conventional FCS-
PCC (24 µs). In the proposed PCC-II algorithm, the number of searched control inputs is
significantly reduced by the preselection principle. The turnaround time of the proposed algo-
rithm is 27 µs. The turnaround time and the average number of searched control inputs of the
three algorithms are compared in TABLE 6.3. As can be understood, the number of searched
nodes in the proposed algorithm is reduced by 45.7 % and 78.3 % averagely, when compared
wtih the conventional and duty-cycle based FCS-PCC algorithms. More specifically, the prese-
lection principle will not result in the selection of the suboptimal solutions, which degrades the
control performance.

Table 6.3: Comparisons of turnaround time and the average number of searched control inputs
η among the three algorithms

Metrics FCS-PCC duty-cycle based FCS-PCC PCC-II

η [/] 7 17.5 3.8

Talgo [µs] 24 40 27

6.4 Conclusion

In this chapter, a computationally efficient FCS-PCC with an extension of finite set (PCC-II)
for IM drives is proposed. The optimization problem underlying FCS-PCC is resolved using a
current derivative projection from a geometric perspective. By doing so, the objective function
is formulated as the quadratic Euclidean norm of the tracking deviation. An extension of finite
set is formed by applying the current derivatives in the consecutive sampling periods. The
corresponding duty cycles are optimized by the LS method. Moreover, a preselection principle
is introduced for computational burden reduction that the control inputs in the purple region
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are unvisited. The optimal solution is solved by minimizing the formulated objective function.
Compared with conventional and duty-cycle based FCS-PCC, the proposed PCC-II algorithm
achieves a significant improvement on steady-state performance while retains the merit of fast
response at the transient state. More specifically, the number of searched control inputs is
significantly reduced in the proposed algorithm.
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Figure 6.8: Experimental results: steady-state performance at 200 rad/s with a 5 Nm load
torque. (a) conventional FCS-PCC. (b) duty-cycle based FCS-PCC. (c) the proposed PCC-II
algorithm.
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Figure 6.9: Experimental results: speed step performance from 100 rad/s to 150 rad/s with
3 Nm load toque. (a) conventional FCS-PCC. (b) duty-cycle based FCS-PCC. (c) the proposed
PCC-II algorithm.
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Figure 6.10: Experimental results: load step performance from 5 Nm to 3 Nm at 100 rad/s. (a)
conventional FCS-PCC. (b) duty-cycle based FCS-PCC. (c) the proposed PCC-II algorithm.
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Figure 6.11: Experimental results: robustness evaluation of the proposed PCC-II algorithm at
15 rad/s, Rr changes from 2.13 Ω to 4.26 Ω (100 % Rr variation).

Figure 6.12: Experimental results: robustness evaluation of the proposed PCC-II algorithm at
15 rad/s, Lm changes from 275 mH to 302.5 mH (10 % Lm mismatch).
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CHAPTER 7

Gradient descent solutions for FCS-MPC problems

Increasingly attention on the performance improvement of FCS-MPC has been arisen by the
power electronic applications. The optimization problem underlying FCS-MPC can be geomet-
rically considered as a quadratic programming (QP) problem. In this chapter, a gradient descent
solution is proposed to solve the constrained QP problem that the value of the objective function
can be effectively decreased. The effectiveness and feasibility of the gradient descent solution
for FCS-MPC optimization problems has been verified on the lab-built 2.2 kW IM drive test-
bench. Special issues on the gradient descent solution, i.e., extension of finite set and selection
of step lengths have also been discussed.

7.1 Introduction

FCS-MPC has drawn widespread attention, due to its merits of straightforward concept, flexible
inclusion of constraints and the ability to handle multiple conflicting criteria [16, 24, 64]. As
mentioned, due to the single control input employed in the entire sampling interval, FCS-MPC
suffers from the major drawback of unsatisfactory control performance at the steady state, i.e.,
high current distortion and large torque fluctuations, which remains an open issue [65, 66].

To tackle the abovementioned challenge, one of the intuitive solutions is to implement a fi-
nite control set model predictive controller combined with multiple-vector method. The concept
centers around the extension of the feasible set with the combination of multiple control inputs,
to track the reference trajectory (i.e., the desired control input). Zhang et al [67] propose a
generalized multiple-vector based FCS-MPC for PMSM drives. Although the result has found
smaller tracking deviations at the steady state, the number of switching actions in a sampling pe-
riod is increasing. In [60], a fixed switching frequency PTFC with multiple vectors for six-phase
permanent magnet synchronous machine (PMSM) drive is proposed. Similarly, the proposed
control scheme is conducted at a higher switching frequency with a longer sampling period,
whereas the comparisons with the conventional method are not fair to some extent. In [68],
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a voltage pre-selection based PTFC with multi-vector for PMSM drive is presented, aiming
to reduce the number of active voltage vectors. However, specific concerns are required in
such technology to alleviate the sensitivity to parameter variations, which makes the algorithm
more complicated. A possible solution to enhance the steady-state performance is investigated
in [69], but the main control objectives are the active and reactive power at the common cou-
pling point. To suppress the influence of nonsinusoidal back EMF in the five-phase PMSM, a
constant switching frequency FCS-PCC with virtual vector tracking is proposed in [70]. Since
the virtual vector strongly depends on the accuracy of the system parameter, it is worth noted
that a discrete-time disturbance observer is designed to improve the robustness performance.
In addition, a model predictive direct duty cycle control (MPD2C) with varied control set for
PMSM is introduced in [71]. The duty cycles of the optimal vectors are regarded as the control
variables, to be directly regulated in the objective function without the modulator. In [72], a
space-vector modulation (SVM) based PTFC using a deadbeat solution is proposed. In [73], a
deadbeat-based FCS-MPC with symmetrical modulation for interior PMSM (IPMSM) is pre-
sented. However, the merit of quick dynamic response in FCS-MPC is sacrificed, in the pres-
ence of a modulation stage. Furthermore, a multiple vector FCS-MPC for multilevel inverter is
proposed in [74], to reduce the algorithm complexity through mapping the reference vector into
a large sector. The proposed method eliminates the weighting parameter, but the issue of robust-
ness against parameter mismatches has not been addressed. To conclude, the multiple vector
solution can be a promising choice for FCS-MPC to decrease the steady-state tracking error.
Nevertheless, there is still one limitation (e.g., higher switching frequency) due to the higher
number of switching in a control cycle. Moreover, the algorithm complexity of the multiple-
vector FCS-MPC becomes higher, to alleviate the sensitivity against parameter variations.

Over the last decade, the optimization problem underlying FCS-MPC is rearranged as an in-
teger least-squares (ILS) problem, can be solved over a longer prediction horizon. To improve
the current quality at the steady state while retaining a low switching frequency, such FCS-MPC
control schemes with long-horizon (namely, multistep FCS-MPC) have attracted substantial in-
terest from the researchers. Geyer and Quevedo [53] propose a multistep FCS-MPC algorithm
for the three-level inverter. It is worth mentioning that the computational effort grows expo-
nentially along with the increased number of horizon. To address this issue, a sphere decoding
algorithm (SDA) is introduced to significantly reduce the number of searched control inputs.
In [57], a resource-efficient long-horizon FCS-MPC for a three-level converter with a passive
load is proposed. This work mainly focuses on the reduction of computational burden with
a nonrecursive SDA on a field-programmable gate array (FPGA), to implement the proposed
algorithm with a horizon of 5 in 13.4 µs. An exposition of the experimental results in the long-
horizon FCS-MPC for an H-bridge inverter is provided in [59]. The redundant elements are
unvisited by control inputs transformation from a cube-lattice to a hexagon. Beyond that, the
long-horizon FCS-MPC extends its application to various topologies of the power converters,
e.g., seven-level H-bridge inverter in [75]. To eliminate the objective function and weighting
parameters, the proposed method directly calculates the optimal vector with the best current
performance while retaining the minimum common-mode voltage. To the best of our knowl-
edge, the concept shares the similar weakness with the deadbeat technology. [76] analyzes the
impact of the transient state on the effectiveness of multistep FCS-MPC. Based on the above, a
box-constrained quadratic programming (QP) solver is applied for transients.

Recently, the gradient descent (GD) solution has been extensively investigated, due to its
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merits of fast tracking performance for resolving a convex problem [77]. In [78], an updating
mechanism based on the current gradient is proposed to improve the control performance of
FCS-MPC, in the absence of model parameters. It is worth noted that the proposed model-free
FCS-MPC performs well as the machine knowledge is not provided. In [79], the GD opti-
mization is employed for parameter identification, to enhance the robustness against parameter
mismatches in FCS-MPC for a grid-connected converter. In [80], a computational efficiency
model predictive pulse pattern control (MP3C) combined with a gradient method is conducted
on an FPGA. The results have shown an impressive resource reduction by 17 times compared
with the existing solutions. In [20], a GD method based FCS-PCC with least-squares duty cy-
cles is presented. However, the algorithm in this work has not been implemented with a longer
horizon, i.e., the exponential growth of computational burden has not been taken into consider-
ation. Although the least-squares method can minimize the tracking deviation in the objective
function, the control objective that searches along with the direction of GD, is still not guar-
anteed. In [81–84], a fast-gradient solution for computational complexity reduction has been
extensively researched, in which the explicit MPC is considered as an ILS problem. However,
the offline computational burden and resource requirements will grow dramatically with the in-
creased scale of the explicit MPC problem. The advantages of the GD method for FCS-MPC
schemes have not been fully investigated.

Motivated by the above, a GD-based objective function reformulation for FCS-MPC with
extended prediction horizon is proposed, to achieve lower tracking deviations at the steady state
while retaining a short settling time at the transient state. First, the convexity of the quadratic
programming (QP) problem underlying FCS-MPC is proved. Thereby, the optimization prob-
lem is resolved by the GD method. The reason for this is, the tracking deviations of the control
objectives can be minimized more efficiently, as they search along with the direction of GD.
Based on the above, the objective function is reformulated as the deviation between the nor-
malized gradient descent and derivative with an extension of the feasible set. The latter is, the
abovementioned procedures are iteratively learned in an extended prediction horizon of 3 for the
convergence of the tracking deviations. More specifically, a pruning algorithm is introduced to
reduce the computational burden with decreased number of searched control inputs. Compared
with the conventional and multi-vector FCS-MPC, the proposed algorithm tracks the reference
in a faster and more efficient way. A deepest decrease occurs in the objective function as the
control variables search along the direction from the gradient descent.

7.2 Proof of convexity

It is noted that the main objective of FCS-PCC is to regulate the current trajectory along with its
reference in the stationary αβ frame. The tracking deviation is regarded as the Euclidean norm
between isα,β and i∗sα,β from a geometric perspective. Therefore, the quadratic Euclidean norm
of the tracking deviation expressed in (7.1) is included in the objective function, to reformulate
FCS-PCC as a QP problem.

F (k) = (i∗sα − isα(k))2 + (i∗sβ − isβ(k))2 (7.1)
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F (k) is partially differentiated with isα,β in (8) and its Hessian matrix H is defined as

∂F (k)

∂isα,β(k)
= −2(i∗sα,β − isα,β(k)) (7.2)

H =

[
2 0

0 2

]
(7.3)

The following lemma and theorem are introduced to confirm the convexity of F (k).
Lemma 1: For the twice differentiable function f :X → Rn, if its Hessian matrix is positive

semidefinite, f is convex.
Theorem 1: For the function f :X → Rn, iff(θx1 + (1 − θ)x2) ≤ θf(x1) + (1 −

θ)f(x2),∀ x1, x2 ∈X,∀ θ ∈ [0, 1], the function f is convex.

7.2.1 Proof 1

Proof 1: The quadratic function f(x) = x2 is regarded as each term of F (k,n), as x is denoted
by the forward difference of the stator current. The convexity of f(x) is proved by Theorem 1.

f(tx1 + (1− t)x2)− tf(x1) + (1− t)f(x2)

=− (t− t2)x1
2 − (t− t2)x2

2 + 2t(t− 1)x1x2

≤0

(7.4)

Therefore, each term of F (k,n) is convex. Owing to that F(k,n) is the sum of the quadratic
functions with non-negative weightings, F (k,n) is convex [85].

7.2.2 Proof 2
Proof: To proof Lemma 1, the Taylor expansions of F (x0) with Peano form of the remainder is
rewritten as

F (x0) = F (x) +∇F (x)(x0 − x) +
1

2
(x0 − x)TH(x0 − x)

+ o((x− x0)T (x− x0))
(7.5)

where d denotes the forward difference x0 − x. It is noted that the remainder lim
d→0

o(d2)
d2

= 0.

Owing to that H is positive semidefinite, we have 1
2
(x0 − x)TH(x0 − x) ≥ 0, yields

F (x0) ≥ F (x) +∇F (x)(x0 − x) (7.6)

As x1 < x < x2, it is obtained that x = θx1 + (1− θ)x2, θ ∈ [0, 1]. By substituting x1, x2

into x0 and multiply the coefficient θ, 1− θ on both sides, (7.6) is rewritten as

θF (x1) ≥ θF (x) + θ∇F (x)(x1 − x)

(1− θ)F (x2) ≥ (1− θ)F (x) + (1− θ)∇F (x)(x2 − x)
(7.7)

Thus, we obtain that
θF (x1) + (1− θ)F (x2) ≥ F (x) +∇F (x)

((θx1 + (1− θ)x2)− x)
(7.8)
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where the right term is rewritten as

F (x) +∇F (x)(x− (θx1 + (1− θ)x2)

= F (x) = F (θx1 + (1− θ)x2)
(7.9)

The convexity of F (x) is proved by (7.10) according to Theorem 1.

θF (x1) + (1− θ)F (x2) ≥ F (θx1 + (1− θ)x2) (7.10)

x0x1 x x2

F(x) F(x2)

F(x1)

F(x0)

θF(x1)+(1-θ)F(x2)

Figure 7.1: Definitions of the function F (x) and the variables.

Conversely, it is noted that if F (x) is convex, the Hessian matrix H is positive semidefinite.
Remark 1: The convexity of the objective function is of importance that the minimum value
of the convex function is unique within its feasible set. The gradient descent represents the
negative partial derivative of the objective function, which is the direction to search for the
convergence of the objective function to zero in a most effective manner. A deepest decrease in
the value of the objective function occurs as the control variable moves along with the direction
of the gradient descent.

7.3 Objective function reformulation

7.3.1 With finite control set
As can be understood, a deepest decrease in the tracking deviation of the stator current can be
achieved, when the stator current is iteratively learned in the direction of gradient descent. By
doing so, the reference trajectory in the convex objective function, i.e., equation (7.1), can be
effectively tracked. As described in Fig. 7.2, the stator current moves with the predetermined
step size in every iteration, and the gradient descent −∇F (k) is updated accordingly. To force
the tracking deviation to zero in the fastest manner, the normalized stator current derivative
and gradient descent are compared for every switching sequence, as described in (7.11). The
optimal switching state that minimizes gj the most is selected to be carried out.

gj = (
−∂F (k, n)

∂isα
| − ∇F (k, n)|

−

disα(k, n)

dt

|dis(k, n)

dt
|
)2 + (

−∂F (k, n)

∂isβ
| − ∇F (k, n)|

−

disβ(k, n)

dt

|dis(k, n)

dt
|
)2 (7.11)
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(isα
*,isβ

*)

(isα(k,0),isβ(k,0))

(k,1)
(k,2)

(k,3)
(k,4) (k,n)

Figure 7.2: Iterative learning of stator current in the direction of gradient descent to solve the
convex QP problem in (7.1). The dashed lines denote the contour lines of tracking derivation.

where n denotes the number of iterations, j is the switching state, h = 0 represents FCS-MPC
with one prediction horizon, a tilde “ ~ ” is derived as the symbol for the normalized values. As
shown in Fig. 7.3, the stator current derivative which tracks the gradient descent best is selected
as the optimal solution. Considering that the proposed algorithm cannot be executed in one
iteration period, the adverse effect of time-delay should be compensated. Akin to conventional
FCS-PCC, we update the value of gradient descent −∇F (k, n + 1) instead of −∇F (k, n) by
(7.12).

−∇F (k, n+ 1) = −∇F (k, n)−H

[
∆isα

∆isβ

]
(7.12)

Therefore, the reformulated objective function with time-delay compensation is rewritten as

gj = (
−∂F (k, n+ 1)

∂isα
| − ∇F (k, n+ 1)|

−

disα(k, n)

dt

|dis(k, n)

dt
|
)2 + (

−∂F (k, n+ 1)

∂isβ
| − ∇F (k, n+ 1)|

−

disβ(k, n)

dt

|dis(k, n)

dt
|
)2 + λ2

sw · n2
sw

(7.13)

7.3.2 With an extension of finite control set

Noted that the discrete nature of the control inputs, it is a challenging task to search exactly
along with GD by the discrete current derivatives. To address this issue, the expansion of feasi-
ble set (of current derivative) is achieved, in a combination of normalized derivative and the op-
timal one in the former iteration. For simplification, we assume that (α1, β1) represents the nor-
malized optimal derivative (d̃i(n−1)

sα (k + h)/dt, d̃i(n−1)
sβ (k + h)/dt) in n− 1th iteration, (α2, β2)

represents the normalized derivative (d̃i(n)
sα (k + h)/dt, d̃i(n)

sβ (k + h)/dt) in nth iteration to be
evaluated, and (α3, β3) is defined as the updated GD −∇fn+1(k + h). ∀i = 1, 2, 3, (αi, βi ∈
R). As shown in Fig. 7.4(a), the duty cycles of (α1, β1) and (α2, β2) are t and (1 − t) (t ∈
R, 0 ≤ t ≤ 1), respectively. The direction of GD can be approached by the regulation of
duty cycle t in (7.16). It should be mentioned that (α1, β1) is applied in the entire iteration (i.e.,
t = 1) when t ≥ 1. On the other hand, t is set as 0 when t ≤ 0.
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isβ
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(isα(k,n),isβ(k,n))
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(isα(k,n+1),isβ(k,n+1))
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Figure 7.3: Description of stator current derivatives and the gradient descent. The red line is
the selected stator current derivative, the blue lines are the rest derivatives of stator current, the
black dashed line represents the movement of the stator current, the black solid lines are the
gradient descent at n and n+ 1 iterations.

To track the direction of the gradient descent, the following equation (7.14) should be satis-
fied.

α1t+ α2(1− t) = κα3

β1t+ β2(1− t) = κβ3

0 ≤ t ≤ 1

(7.14)

where κ is the coefficient. By eliminating the parameter κ, we can obtain the function with one
freedom that

β1t+ β2(1− t) =
β3

α3

· (α1t+ α2(1− t)) (7.15)

The duty cycle t is solved by

t =
β2 − α2 ·

β3

α3

(β2 − β1) + (α1 − α2) · β3

α3

(7.16)

The objective function J is reformulated to minimize the tracking deviation between GD and
the combination of stator current derivatives in the continuous iterations after normalization. To
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(α3, β3)

(α1, β1)
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(α3, β3)
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(α2, β2)1
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(a) 0 < t < 1 

(b) t = 1 (c) t = 0 

Figure 7.4: The combination of normalized derivatives in the continuous iterations and the
updated GD. (a) 0 <t <1. (b) t = 1. (c) t = 0.

do so, J is rewritten as

J = (α3 − tα1 − (1− t)α2)2 + (β3 − tβ1 − (1− t)β2)2

+ λsw · n2
sw

(7.17)

where λsw is applied for switching frequency modification, nsw represents the number of switch-
ing in an iteration, nsw =

∑
v=a,b,c

|Snv (k + h)− Sn−1
v (k + h)|. The current derivative (α2, β2) (as

well as the corresponding control input) that minimizes J most is selected as the optimal.

7.4 Design of the step lengths
The proposed FCS-PCC algorithm solved by the gradient descent method is essentially an iter-
ative learning method. The optimal voltage vector does not manipulate in the entire sampling
period because the gradient descent only indicates the movement direction for the convergence
of stator current tracking deviation. As can be understood, GD is only a vector that indicates the
searching direction. Therefore, the period for each iteration (namely step length η) is required
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to be further designed. If η is small enough, it is obvious that the stator current can track the
reference value very well. However, the algorithm is penalized by the weakness of high compu-
tationally demanding ability caused by the increased number of iterations. On the other hand,
the convergence of tracking deviation is not satisfied when η is too large. The design of the step
length η is discussed as follows.

7.4.1 Dichotomy-based approach
A simple dichotomy-based approach is introduced in this section. As can be understood, the
period of the nth iteration is 1/2n+1 of the sampling period Ts. As shown in Fig. 7.5, each
iteration period in the dichotomy-based approach with 2 iterations is Ts/2, and the periods with
3 iterations are Ts/2, Ts/4 and Ts/4, respectively. The number of iterations is determined by the
stopping criterion, as described in (7.18).

Ts
(n) ≤ ηTs, Ts

(n+1) < ηTs (7.18)

where η is the coefficient in the stopping criterion.

Figure 7.5: The applied iteration periods in a sampling period. (a) with 2 iterations (b) with 3
iterations.

To determine the step lengths of the iterations, the dichotomy-based method is one of the
simple choices that the step length of the n + 1th iteration is half of that of the former iteration
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(nth). The first reason is that the stator current tracks the reference in an effective manner in
the first several iterations because their step lengths are relatively larger. The latter is that the
tracking performance of stator current is improved by the increased number of iterations. Con-
sidering that the computational ability of the real-time control system, the number of iterations
in a sampling period is limited by the stopping criterion (7.18).

7.4.2 Backtracking approach
The relationship between the control variables and the objective function is shown in Fig 7.6, in
which x denotes (isα(k, n), isβ(k, n)), d is defined as the direction of stator current derivative
using optimal voltage vector, λ ∈ (0, 1] represents the coefficient. As described in (7.19),
the inequality is constructed to evaluate whether the tracking error is converging, as well as its
convergence rate. The step length η(k, n) should be modified by ε as (7.20) is not satisfied.
Otherwise, η(k, n) is set as the same value of η(k, n− 1).

F (x+ ηd) ≤ F (x) + ηλ
dx

dt
d (7.19)

η(k, n) = ε · η(k, n− 1), ε ∈ (0, 1] (7.20)

Figure 7.6: Relationship between the control variables and the objective function.

The stopping criteria of the proposed iterative algorithm are shown in (7.21) and (7.22).
Regarding that the execution time, it is noted that the iterative learning stops when the step
length η(k, n) is less than the predefined value ρTs. The latter criterion is that the 2-norm of
gradient descent is enough small, to guarantee the algorithm to be efficiently iterated. Therefore,
the last iteration operates in the rest of the sampling period once either stopping criterion is
satisfied.

η(k, n) ≤ ρTs, ρ ∈ (0, 1] (7.21)

|| − ∇F (k, n+ 1)||2 ≤ δ (7.22)

where Ts is the sampling period.
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7.4.3 Convergence analysis
The convergence of the gradient descent solution can be obtained by the backtracking approach.
As can be seen in Fig. 7.7, we assume that the control variable is x1 and the corresponding value
of f(x) is f(x1). ∇f(x)denotes the slop of f(x), d represents the step direction. Based on the
above, we consider a coefficient λ ∈ (0, 1], to adjust the gradient to the slope of red dashed
line. It can be observed that there is an intersection point f(x2) between f(x) and the red
dashed line. The equation (7.19) is satisfied when the control variable x1 <x1 + ηd <x2. In such
circumstances, the function f(x) is below the red dashed line. The step length η is decreased
by (7.20), when (7.19) is not satisfied.

According to Fig. 7.7, we can obtain (7.23) that

f(x1 + ηd) ≤ f(x1) + ηλ · ∇f(x1)d ≤ f(x1) (7.23)

Therefore, the convergence of the proposed algorithm is confirmed that the updated value of
function f(x) is smaller in each iteration and finally converges to 0.

x1 xx*

d

f(x)

f(x1)

f(x1)

Δ

f(x1)
Δ

λ
f(x2)

x1+ηd

f(x1+ηd)

f(x1)+λη f(x1)d

Δ

Figure 7.7: The relationship between f(x) and its control variable in the cross-section of d.

7.5 Decision variables reduction methods

7.5.1 Generalized search tree for decision making
Although the optimal switching sequence can be achieved via exhaustive enumeration, the com-
putational complexity of the proposed algorithm multiplies with the increased number of itera-
tion. As the conventional FCS-PCC is applied in the 2-L VSI, the number of decision variables
to be enumerated in the abc framework is 8 (as shown in the cube lattice in Fig. 7.8(a)). The
redundant decision variables are excluded in [59] that a hexagon with 7 control inputs in the
αβ framework is formulated. Based on the above, the two-layer decision-making approach is
proposed to further reduce the number of control inputs. According to (3.4), the predicted stator
current in the αβ framework are calculated. It is worth noting that the control variables with
different usα share the same value of isβ(k + 1), and those with different usβ share the same
isα(k + 1). Therefore, the αβ components of predicted stator current can be optimized in the
two-layer structure independently. As shown in Fig. 7.8(c), the control inputs in Fig. 7.8(b)
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are projected in the β axis, to make decision for usβ in the first layer. Once the optimal usβ is
decided by minimizing the objective function gjβ in (18), the elements in the selected branch
are optimized by gjα minimization in the next layer. On the other hand, the decision-making
algorithm with isα priority is shown in Fig. 7.8(d). It can be observed that there are five different
usα to be optimized in the first layer. Namely, the tree has five branches that the elements in
the same branch share the same usα and isα(k+ 1). The optimal branch is visited in the second
layer to decide the optimal usβ .
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Figure 7.8: Principle of decision variables reduction algorithm. (a) 8 decision variables in
the conventional FCS-PCC. (b) redundant candidates reduction in [59]. (c) the proposed two-
layer decision making algorithm with isβ priority. (d) the proposed two-layer decision making
algorithm with isα priority.

gjβ = (

−∂F (k, n)

∂isβ
| − ∇F (k, n)|

−

disβ(k, n)

dt

|dis(k, n)

dt
|
)2 (7.24)
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gjα = (
−∂F (k, n)

∂isα
| − ∇F (k, n)|

−

disα(k, n)

dt

|dis(k, n)

dt
|
)2 (7.25)

A generalized approach is introduced to determine the priorities of the control variables in the
cascaded structure. As demonstrated in Fig. 7.9, usβ is optimized before usα in the first iteration
at k interval, while usα obtains the priority in the next iteration. As shown in Fig. 5, a simple
two-layer decision-making algorithm for decision variables selection is introduced to reduce
the algorithm complexity. The cascade structure decision-tree has two layers. The first layer
is used for the decision of one control variable, while the latter layer is employed for selection
of the other variable. Thus, the split terms in the objective function (7.11) are optimized in
the first and second layer, respectively. For the iterations with isβ priority, seven switching
sequences are served as the input elements of the decision-tree, to be classified as the three
branches in the first layer. The branch that minimizes (7.24) is selected as the optimal solution
in the first layer and the another two branches are discarded. The elements in the selected
branch are subsequently used for the optimization of (7.25). In the case that isα is optimized
in the first layer, the optimal branch is selected (from the five branches) by optimizing (7.25)
in the first layer and (7.24) is subsequently optimized in the second layer. The concept of

1 2 3

1 2 1 21 2 3
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usβdecision

usα decision
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...

n = 2
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n = 2N+1
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Figure 7.9: Two-layer generalized search tree for optimal switching sequence selection. The
red elements represent the selected optimal solutions, the blue elements represent the discarded
solutions, the black elements are the searched solutions but not selected.

the proposed two-layer generalized decision-making algorithm is simple and intuitive that the
number of decision-variables is reduced by discarding the undesired branches. The proposed
low-complexity decision-making method is even promising in the field of multi-level power
converters to overcome the obstacle of computational burden.
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7.5.2 Pruning algorithm
The generalized search tree can reduce the number of searched control inputs in one prediction
horizon. However, the algorithm complexity grows exponentially with the increased length of
horizon, which still remains a challenge for FCS-MPC with a longer prediction horizon. To
address this issue, a pruning algorithm (PA) based on branch-and-bound (BB) is introduced
to reduce the number of searched control inputs. As shown in Fig. 7.10, a decision tree with
branches and leaves is built. Owing to that the 2-L VSI has 7 control inputs with different
current derivatives in the case study, there are 7 leaves in each branch of the decision tree. The
leaf is applied to predict the outcome of the control plant, which grows as a branch in the next
prediction horizon. Therefore, the amount of leaves increases significantly to 7N with a horizon
of N .

1 2 6 73 4 5h = 1

h = 2

h = N

the number of 
horizon

...

1 2 6 73 4 5 1 2 6 73 4 5

start

...

1 2 6 73 4 5 1 2 6 73 4 5
...

1 2 6 73 4 5

Figure 7.10: The pruning algorithm in the decision tree to select the optimal solution. The red
elements represent the selected optimal solutions (within the boundary), the black elements are
the searched solutions but not selected.

The concept of PA centers around discarding the undesired branches, in which the outcome of
leaf exceeds the predefined constraint Ch. It is worth noted that the boundary for each horizon
Ch is tighten with the increased h (Cm < Cl, l < m, ∀ l,m ∈ h). To evaluate whether a
certain branch is required to be visited in the (h+ 1)th horizon, the outcome of leaf fn(k + h)
is compared with the constraint Ch. The leaf terminates, i.e., the corresponding branch in the
(h+ 1)th horizon is unvisited, as (7.26) is not satisfied. The pseudo code of PA is summarized
as follows.

fn(k + h) < Ch (7.26)

Ch = A ·B(h−1) · ||i∗s||2 (7.27)

where A and B are the coefficients to design the boundaries in PA.

7.6 Experimental verifications
In this section, several case studies of the gradient descent solution for FCS-MPC are proposed.
Subsequently, the feasibility and effectiveness are experimentally verified.
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7.6.1 Case study

Three gradient descent solutions for FCS-MPC are investigated, regarding the differences in
extension of finite control set, design of step lengths and the number of prediction horizon.
The description of the three gradient descent solutions are illustrated in TABLE. 7.1. As can be
seen, GD-FCSMPC1 applies single switching state with a backtracking iteration approach and a
prediction horizon of 1. In GD-FCSMPC2, an extension of control set with a dichotomy-based
method is applied in one prediction horizon. GD-FCSMPC3 employs an extended control set
with a backtracking algorithm and a long prediction horizon.

Table 7.1: Description of three gradient descent solutions for FCS-MPC

GD solutions Finite set extension Step lengths design Prediction horizon

GD-FCSMPC1 No Backtracking one

GD-FCSMPC2 Yes Dichotomy-based one

GD-FCSMPC3 Yes Backtracking Multiple

7.6.2 Experimental assessment

7.6.2.1 GD-FCSMPC1

The block diagram of the GD-FCSMPC1 algorithm is demonstrated in Fig. 7.11 and the algo-
rithm description is shown in Algorithm 2.
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Figure 7.11: Block diagram of the proposed GD-FCSMPC1.
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Algorithm 2 GD-FCSPCC algorithm with backtracking iteration approach

1: System initialization, is and ω measurement, ψ̂s(k) and ψ̂r(k) estimation.
2: Gradient descent and stator current derivatives for every switching state calculation.
3: By minimizing the deviation functions gjβ and gjα in the two-layer cascade structure deci-

sion tree, the optimal solution is selected.
4: The abovementioned procedures are iteratively repeated according to a backtracking ap-

proach, until the stopping criterion is satisfied.
5: The optimal vector and the step length for every iteration are delivered to the inverter.

The first experimental test is implemented to validate the control performance during a nom-
inal speed reversal maneuver (from 2772 rpm to -2772 rpm). In Fig. 7.12, the measured wave-
forms of rotor speed, electromagnetic torque, rotor flux and stator current are illustrated. The
speed reversal maneuver starts at t = 0.82 s, and the rotor speed reaches -2772 rpm at t = 1.11 s.
It is noted that the proposed GD-FCSPCC has the advantage in terms of fast dynamic response
that the settling time is only 290 ms. More specifically, the feasibility of the proposed algorithm
is verified at the whole speed range.

Figure 7.12: Speed reversal performance of the proposed GD-FCSMPC1 at full speed range.

The performance of the proposed GD-FCSMPC1 is investigated at the steady-state of
150 rpm with 4 Nm as well as rated rotor speed and load torque (2772 rpm with 7.5 Nm),
respectively. The measured waveforms of rotor speed, electromagnetic torque, rotor flux, stator
current and selected switching state at 150 rpm with 4 Nm are shown in Fig. 7.13. As we
can see, the torque mean squared error (Tmse = 0.21 Nm) of the proposed GD-FCSPCC is
lower than that of the conventional FCS-PCC (0.25 Nm), multistep FCS-MPC (0.48 Nm) as
well as multi-vector based FCS-MPC (0.30 Nm). It is also observed that the proposed method
obtains a slightly lower error of stator current magnitude ( ||iserr|| = 0.23 A) due to its fast and
effective convergence of tracking deviation. Compared with ||iserr|| of the conventional FCS-
PCC, multistep FCS-MPC as well as multi-vector based FCS-MPC, the value is decreased by
20.7%, 39.5% and 11.5%, respectively. The stator current tracking performance is also shown
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in Fig. 7.13. As can be seen, the stator current of the proposed algorithm tracks its reference
value very well both in α and β-axis.

Figure 7.13: Steady-state performance of the proposed GD-FCSMPC1 at 150 rpm with 4 Nm.

The comparisons among the steady-state performance of the four algorithms at nominal rotor
speed and load torque are shown in Fig. 7.14. As can be seen in Fig. 7.14, the mean squared error
of electromagnetic torque is 0.31 Nm when FCS-PCC employs the gradient descent solution
combined with a backtracking iterative approach. The value achieves a significant reduction
than the conventional FCS-PCC (0.55 Nm), multistep FCS-MPC (0.68 Nm) as well as multi-
vector based FCS-MPC (0.47 Nm). It is indicated that the error of rotor flux magnitude is
0.033 Wb. Moreover, the proposed method improves the performance in terms of stator current
THD. The ||iserr|| of the proposed GDFCSMPC1 as well as methods in [32], [53] and [86]
are 0.46 A, 0.67 A, 0.80 A and 0.58 A, respectively. Furthermore, the stator current of the
proposed method tracks its reference value better than the other three algorithms. The steady-
state performance of IM operates at rated speed and torque shares the similar trend with that of
150 rpm with 4 Nm. The trend of switching frequency versus rotor speed and torque for the
proposed algorithm is illustrated in Fig. 7.15.

To validate the dynamic behavior of the proposed GD-FCSMPC1, the load step and load
disturbance tests are carried out with the applied 10 kHz sampling frequency. Firstly, the IM
operates at the torque control mode that 1000 rpm rotor speed is provided by the control panel
and a constant 5 Nm torque reference is directly set in the algorithm. At the time instant 0.96 s,
the electromagnetic torque decreases to 2 Nm in 0.3 ms. As the load step occurs, the rotor speed
decreases to 790 rpm correspondingly. It is observed in Fig. 7.16 that the rotor speed returns to
the original value in 300 ms thanks to the MPC’s merit of quick transient response. In addition,
the proposed method shows a significant improvement in very low Tmse (0.30 Nm) and stator
current tracking error (0.14 A).
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Figure 7.14: Steady-state performance of the proposed GD-FCSMPC1 at 2772 rpm with
7.5 Nm.

(a)

The load disturbance performance of the proposed method is evaluated subsequently. The IM
runs at a constant rotor speed of 1500 rpm, and a 5 Nm load disturbance is further implemented.
As shown in Fig. 7.17, the electromagnetic torque rises from 0 Nm to 5 Nm within 30 ms.
Meanwhile, the rotor speed suffers from a 100 rpm decrease. The recovery time of rotor speed
is approximately 90 ms. The Tmse and ||iserr|| of the proposed GD-FCSPCC are 0.43 Nm and
0.39 A, respectively. It can be seen that the proposed method performs well at the transient
state.

Finally, the execution time of the four algorithms are collected in the 10 consecutive sampling
periods from the controller, as shown in Fig. 7.18. The average algorithm time (defined as Talgo)
is calculated and listed in TABLE 7.2. The Talgo of the proposed GD-FCSPCC is 38.426 µs,
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(b)

Figure 7.15: Switching frequency versus rotor speed and torque for the proposed algorithm. (a)
5 kHz sampling frequency. (b) 10 kHz sampling frequency.

Figure 7.16: Load step performance of the GD-FCSMPC1 (ω = 1000 rpm, T decreases from
5 Nm to 2 Nm). From up to down are the measured waveforms of rotor speed, electromagnetic
torque, rotor flux, stator current and the selected switching state.

and the value of the multi-vector based FCS-MPC is slightly lower (28.045 µs). The multistep
FCS-MPC suffers from the longest Talgo (49.500 µs) while the conventional FCS-PCC achieves
the least (22.459 µs).

7.6.2.2 GD-FCSMPC2

The block diagram of the GD-FCSMPC2 algorithm is demonstrated in Fig. 7.19 and the algo-
rithm description is shown in Algorithm 3.
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Figure 7.17: Load disturbance performance of the GD-FCSMPC1 (ω = 1500 rpm, T rises from
0 Nm to 5 Nm). From up to down are the measured waveforms of rotor speed, electromagnetic
torque, rotor flux, stator current and the selected switching state.

Figure 7.18: The execution time of the four algorithms in the 10 consecutive sampling periods.

The experimental implementation is firstly conducted to investigate the steady-state per-
formance. The IM operates at the working condition of 50 rad/s with 4 Nm. As shown in
Fig. 7.20, the measured waveform of vector is described as the decimal value (from 0 to 7) of
the three-digit binary number from 000 to 111. It is indicated in Fig. 7.20 that the proposed
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Table 7.2: The comparative issues among the average execution time of the four algorithms

Algorithms Ref [32] Ref [53] Ref [86] GD-FCSMPC1

Talgo [µs] 22.459 49.500 28.045 38.426
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Figure 7.19: Flow diagram of the proposed GD-FCSMPC2 algorithm.

GD-FCSMPC2 algorithm obtains the lowest torque ripple (Tripple = 0.91 Nm) and stator current
magnitude error (||iserr|| = 0.25 A). The aforementioned values are significantly reduced, com-
pared with that of FCS-PCC (60.7 % and 48.3 %). Therefore, the steady-state performance of
the GD-FCSMPC2 is improved at an affordable cost of increased algorithm complexity (47 µs)
and averaged switching frequency (1.15 kHz).

Experimental verification is conducted on the proposed GD-FCSMPC2 at the nominal speed
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Algorithm 3 The execution of the proposed GD-FCSMPC2 algorithm

1: System initialization, measurement of ω(k,0) and i(k,0)
s , estimations of ψ̂(k,0)

s and ψ̂(k,0)
r .

2: Calculation of the gradient descent and stator current derivatives for every switching state.
3: The optimal vector is selected by minimization the deviation function J .
4: Calculation of the duty cycles of the optimal vectors in the n − 1th and nth iterations by

least squares optimization to polyfit the required gradient descent.
5: The abovementioned procedures are iterated by a dichotomy-based method until the stop-

ping criterion is satisfied.
6: The optimal vectors with their duty cycles in a sampling period are delivered to the inverter.

Figure 7.20: Steady-state performance of the proposed GD-FCSMPC2 at 50 rad/s with 4 Nm.

and torque afterwards. As shown in Fig. 7.21, a significant reduction (44.4 %) is achieved
in terms of electromagnetic torque ripple by GD-FCSMPC2 than the conventional FCS-PCC.
Moreover, the stator current magnitude error of GD-FCSMPC2 and FCS-PCC at rated speed and
torque, are 0.52 A and 0.87 A, respectively. The reasons that the proposed algorithm achieves
better control performance are twofold. First, the iterative gradient descent method tracks the
reference value more efficiently than the conventional FCS-PCC. Second, the discrete switching
state is directly applied in the conventional and dichotomy-based FCS-PCC. Contrary to this,
the optimal solution in the proposed is optimized by the least squares method to achieve a
smaller tracking deviation.

The speed reversal maneuver is carried out to verify the feasibility of the proposed GD-
FCSMPC2 algorithm at the whole speed range. Measured waveforms of rotor speed, electro-
magnetic torque, rotor flux in αβ frame and stator current are shown in Fig. 7.22. It can be seen
that the proposed algorithm performs well that the torque mean squared error is 0.35 Nm and
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Figure 7.21: Steady-state performance of the proposed GD-FCSMPC2 at 290 rad/s with 7.5
Nm.

||iserr|| is 0.46 A. The fast dynamic response of the proposed method is revealed that the speed
reversal maneuver is completed within 260 ms. More specifically, the error of the rotor flux
magnitude is 4.3%.

Figure 7.22: Speed reversal maneuver performance of GD-FCSMPC2.

In order to investigate the dynamic behavior of the proposed algorithm, load disturbance test
is conducted that the induction machine operates at 200 rad/s against a 5 Nm load disturbance.
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As depicted in Fig. 7.23, the fast dynamic response of the proposed method is validated that the
electromagnetic torque rises from 0 to 5 Nm in 30 ms. At the same time, the rotor speed suffers
from a 10 rad/s reduction and recovers to the original value in 75 ms. It can be observed that the
proposed algorithm achieves a low torque ripple and stator current magnitude error (1.58 Nm,
0.32 A).

Figure 7.23: Load disturbance performance of GD-FCSMPC2.

A load step test is implemented on the testbench that the IM runs at the rotor speed of 50 rad/s.
At t = 0.98 s, the electromagnetic torque increases from 2 to 5 Nm in 300 s, with a step change
of load torque. It is exhibited in Fig. 7.24 that the rotor speed climbs to the peak of 80 rad/s. As
the load step is completed, the electromagnetic torque ripple of the proposed algorithm is 1.04
Nm, which is lower than that of the conventional FCS-PCC (49.7 %). Similarly, the proposed
method obtains the a lower stator current magnitude error (0.36 A), while the ||iserr|| of FCS-
PCC is 0.58 A.

7.6.2.3 GD-FCSMPC3

A closed-loop block diagram of the proposed algorithm is shown in Fig. 7.25. The proposed
algorithm has several control components including the prediction stage, the optimization stage
of the gradient descent based objective function, the extension of finite set and the pruning
algorithm. To describe the full implementation step, the flowchart of the proposed algorithm is
demonstrated in Fig. 7.26.

Firstly, the effectiveness of the proposed GD-FCSMPC3 algorithm is validated. The mea-
sured waveforms of rotor speed, torque and rotor flux are investigated in Fig. 7.27. It can be
observed that the rotor speed reverse from 290 rad/s to -290 rad/s at t = 0.84 s. The settling
time of speed reversal maneuver is 250 ms. The experimental results verify that GD-FCSMPC3
obtains excellent performance includes small tracking errors and a very short settling time in a
wide speed range [87–89].

The investigation of steady-state performance is carried out in the scenario of 30 rad/s with a
3 Nm load torque. As shown in Fig. 7.28, the measured waveforms of speed, torque, rotor flux
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Figure 7.24: Load step performance of GD-FCSMPC2.

Figure 7.25: The closed-loop block diagram of the proposed algorithm.

and stator current are presented from up to down. The proposed algorithm with a prediction
horizon of 3 achieves a lower torque and stator current error (Terr = 0.15 Nm, iserr = 4.7 %).
The reason relates to this is, the control objective iteratively searches along with the direction
of GD, which minimizes the value of convex function F (the stator current deviation) more
efficiently.

To validate the advantages of the proposed algorithm in the varied operating conditions, three
FCS-PCC algorithms are compared in another test scenario of 200 rad/s with 5 Nm subse-
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Figure 7.26: The flowchart of the proposed algorithm.

quently. As shown in Fig. 7.29, a similar conclusion can be drawn at a higher rotor speed
with a 1.5 kHz switching frequency. Compared with the first test scenario, the proposed GD-
FCSMPC3 algorithm achieves a slight higher iserr (4.8 %) and torque error (Terr = 0.48 Nm).
The performance metrics of the conventional FCS-PCC, long-horizon FCS-PCC and the pro-
posed GD-FCSMPC3 algorithms in both scenarios are demonstrated in Fig. 7.30. It can be
observed from the performance metrics that the current and torque tracking deviation of long-
horizon FCS-PCC is increased by 29.2 % and 10.4 %, when compared with the proposed algo-
rithm at 200 rad/s with 5 Nm. Moreover, the conventional FCS-PCC is penalized by the highest
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Figure 7.27: Speed reversal performance of the proposed algorithm (from 290 rad/s to -
290 rad/s).

Figure 7.28: Steady-state performance of the proposed GD-FCSMPC3 in the test scenario of
30 rad/s with 3 Nm.

tracking deviations that iserr is 7.5 % and Terr is 0.65 Nm. It is worth noted that the proposed
algorithm only obtains about 46 % of the known information (i.e., measured stator current) from
the control plant, when compared with the two prior FCS-PCC algorithms.

The load disturbance test of GD-FCSMPC3 is carried out, to evaluate the transient-state
performance. In this scenario, the main machine runs at a constant rotor speed of 150 rad/s,
which is given by the algorithm. Meanwhile, a 5 Nm load torque disturbance is applied to
the load machine by the control panel. As shown in Fig. 7.31, it can be observed that the
proposed algorithm retains the merit of fast dynamic response. As the load disturbance occurs,
the rotor speed suffers from a slight 5 % decrease (7.5 rad/s), and returns to the original value
within 80 ms afterwards. The load torque, rises from 0 Nm to 5 Nm in 30 ms with an 8
% overshoot. It can be concluded that the proposed algorithm achieves very short settling time
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Figure 7.29: Steady-state performance of the proposed GD-FCSMPC3 in the test scenario of
200 rad/s with 5 Nm.

Figure 7.30: Performance metrics of the three algorithms in the steady-state scenarios. (a)
comparison of torque deviations (b) comparison of stator current deviations.

and competitive control performance at the transient state when compared with the conventional
and long-horizon FCS-PCC methods, due to the same speed PI parameters. The performance
metrics of the proposed GD-FCSMPC3 at the transient state are summarized in TABLE. 7.3.

The robustness performance of the proposed GD-FCSMPC3 algorithm against variations of
the system parameters (i.e., Rr and Lm), is validated. As shown in Fig. 32, the IM runs at a low
rotor speed of 20 rad/s with a 200 % Rr mismatch, by increasing the rotor resistance from the
nominal value 2.13 Ω to 6.4 Ω. It can be observed that the proposed algorithm shows strong
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Figure 7.31: Transient-state performance of GD-FCSMPC3 at 150 rad/s with a 5 Nm load
disturbance.

Table 7.3: Transient-state performance of the proposed GD-FCSMPC3

Performance metrics GD-FCSMPC3

Rotor speed drop 7.5 rad/s

Speed recovery time 80 ms

Settling time of T 30 ms

Torque overshoot 8 %

robustness against Rr parameter mismatch. As a 200 % Rr mismatch occurs, the torque and
flux tracking deviations keep stable, which are 0.18 Nm and 0.05 Wb, respectively.

The parameter sensitivity of the proposed algorithm against Lm mismatch is investigated in
Fig. 7.33. As can be seen, the proposed controller becomes significant unstable, as a 20 %
Lm variation takes place. The rotor speed and torque suffer from a larger ripple, while the
magnitude of rotor flux is reduced by 60 %. The reason relates to this is the impact of Lm
mismatch on the reference trajectory of stator current, as well as the calculation of GD. This
conclusion is consistent with that has been drawn in [32].

Finally, the computational efforts of the three algorithms are evaluated in TABLE 7.4. It
can be observed that the conventional FCS-PCC achieves the smallest algorithm time (Talgo =
21.6 µs), due to its simple concept. The pruning algorithm is used in both the long-horizon
FCS-PCC and the proposed GD-FCSPCC-3, to dramatically reduce the number of searched
control inputs with a prediction horizon of 3. The Talgo of long-horizon FCS-PCC is 48.8 µs.
The algorithm time of the proposed GD-FCSPCC-3 with exhaustive search is 458 µs, which
can be reduced to 69.3 µs by appling the pruning algorithm. As shown in Fig. 7.34, a pie chart
illustrates the percentage of the computational requirements for each control component in the
three algorithms. The percentages of calculation and optimization stage in the long-horizon
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Figure 7.32: Robustness performance of the proposed GD-FCSMPC3 with a 200 % Rr mis-
match.

Figure 7.33: Robustness performance of the proposed GD-FCSMPC3 with a 200 % Lm mis-
match.

FCS-PCC and the proposed algorithm are higher than that in the conventional FCS-PCC.

Table 7.4: Comparisons among the algorithm time of the three algorithms

Algorithms Ref [32] Ref [53] GD-FCSPCC3 Exhaustive Search

Talgo [µs] 21.6 48.8 69.3 458

To evaluate the effectiveness of the pruning algorithm, the number of searched nodes in
the GD-FCSPCC-3 is compared with the proposed algorithm with exhaustive search and the
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Lenstra-Lenstra-Lovasz (LLL) method in [90]. As illustrated in TABLE 7.5, the number of
searched nodes decreases from 517 to 14 by the LLL method for a three-level power converter,
while the value declines from 1197 to 80 by the proposed PA. The results indicate that the
proposed PA shows a competitive effectiveness compared with the LLL method.

Table 7.5: Comparative issues among the maximum number of nodes by exhaustive search,
LLL and PA

Algorithms Exhaustive Search in [90] LLL

number [/] 517 14

Algorithms GD-FCSMPC3 without PA GD-FCSMPC3 with PA

number [/] 1197 80

Figure 7.34: The computational requirements of the controller components in the three algo-
rithms. (a) conventional FCS-PCC (b) long-horizon FCS-PCC (c) the proposed GD-FCSMPC3.
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7.7 Conclusion
In this chapter, the potential of performance improvement for the FCS-MPC schemes is inves-
tigated. Firstly, the FCS-MPC optimization problem is regarded as a QP problem from a geo-
metric perspective. Based on the above, the convexity of the QP problem is proved, to employ
the gradient descent solution in FCS-MPC, in which a deepest decrease occurs as the control
variable searches along with the direction of gradient descent. Furthermore, the convergence
of the gradient descent solution has been analyzed. Finally, three gradient descent solutions for
FCS-MPC are evaluated as the case studies. The effectiveness of the proposed solutions are
validated on the testbench.
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CHAPTER 8

Encoderless technology for FCS-MPC

MPC has explored its advantages of very intuitive concept, straightforward implementation,
flexible inclusion of constraints, fast dynamic response and the capability to handle with mul-
tiple conflicting targets in the power electronic applications. As a model-based strategy, MPC
still requires the known information, i.e., rotor angular speed in the electrical drive systems,
to predict the behavior of the control variables. Although an encoder can be used to measure
the rotor speed, it will result in the increased cost of installation and maintenance and degraded
system reliability. Moreover, the parameter mismatches in the system model will inevitably
lead to the prediction error and deteriorated control performance. In this chapter, the encoder-
less technologies for FCS-MPC scheme with a reformulated objective function are introduced
instead of an encoder, which bring the merits of cost reduction, high reliability, easy installa-
tion and maintenance, the ability to operate in harsh environment and strong robustness against
parameter variations.

8.1 Introduction

As a model-based control strategy, FCS-MPC calls for the inherent requirement on the rotor
position, which is normally measured by an encoder [34]. However, the installation of the en-
coder results in the increased system complexity, wherein the significant degradation of stability
takes place [91]. Thus, several model-based speed estimator has been intensively researched in
recent years, such as Luenberger observer, adaptive full-order observer (AFO), sliding mode
observer (SMO), model reference adaptive system (MRAS) and extended Kalman filter (EKF).
In [92], AFO with the corresponding feedback gain is developed for IM. It is confirmed that the
estimated error of rotor speed caused by the system parameter variations, is reduced. A robust
sensorless scheme based on flux observer is proposed in [93], which improves robustness by
the approach of parameter compensation. In [94], a sensorless FCS-PTC for IM using extended
Kalman filter (EKF) is proposed, to reduce the speed error in a wide speed range. In [95], a
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compensated MRAS estimator based FCS-PTC for IM is presented. However, the influence of
rotor time constant on speed estimation is ignored. Yang et al [96] proposed a MRAS current
observer for sensorless control of a doubly-fed induction machine. The stability and feasibility
of the proposed method are confirmed by simulation and experimental results. As concluded
in [97], the rotor time constant is modified in the MRAS estimator for IM drives. However,
the tuning of stator resistance is simple but not satisfactory. In [98], a MRAS estimator is de-
signed to estimate the rotor speed and flux for the PPTC algorithm. However, the mismatch of
rotor time constant has not been taken into consideration, and the influence of parameter un-
certainties on PPTC has not been theoretically analyzed. A discrete hybrid prediction model is
presented in [99] to improve the robustness performance of PTC for PMSM drives, to establish
the close-loop prediction models for stator current and flux. In [100], a robust predictive torque
and flux control for N*3-phase PMSM drives is proposed. The robustness against load torque
disturbance and parameter uncertainties of the proposed algorithm is effectively strengthened
by the unknown torque disturbance observer. In [101]. the impressing results on simultaneous
stator and rotor resistance identification for sensorless IM drives are presented. The topic is
explored according to a novel direction that the IM dynamic is transformed into the form of
adaptive observer (AO). More specifically, an alternative solution is proposed in [102] to solve
the issue of parameter sensitivity in high gain AO. The proposed algorithm yields the merits
that the two-way coupling is removed and less computational resources are consumed. How-
ever, the prediction error in FCS-MPC is not considered in the aforementioned strategies, which
is required to be further investigated.

As can be understand, the encoderless technology for FCS-MPC schemes not only estimates
the rotor speed but also improves the robustness against parameter variations. In this chapter,
a model reference adaptive system (MRAS) is employed for the FCS-PTC and constrained
parallel structure FCS-PTC, respectively. The reasons for choosing MRAS are the shared IM
model with the FCS-PTC schemes, the improved estimation accuracy in stator flux-linkage and
easier parameter tuning. The proposed algorithms are experimentally carried out on the 2.2 kW
IM drive testbench for further evaluation.

8.2 MRAS for FCS-PTC

8.2.1 MRAS estimator
The block diagram of the MRAS estimator is shown in Fig. 8.1. To estimate the rotor speed for
FCS-PTC scheme, the voltage and current model are employed as the reference and adjustable
model. In the stationary reference frame, the voltage model is calculated as

ψ̂s =

∫
(us − isR̂s)dt (8.1)

ψ̂r =
Lr
Lm

(ψ̂s − Lsσis) (8.2)

The current model is described as

dψ̂rI
dt

=
LrRr

Lm
· is − (

Rr

Lr
− jω̂ · is)ψ̂rI + f(ê) (8.3)
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Thus, the error term between the reference model and the adjustable model is

êψr = ψ̂rIαψ̂rβ − ψ̂rIβψ̂rα (8.4)

As can be seen, a PI controller is designed as the adaptation mechanism in the MRAS estimator.
It is employed for modification in the adjustable model. The adaptation mechanism of MRAS
is constructed as (8.5)

f(ê) = kpωêψr + kiω

∫
êψrdt (8.5)

The stator resistance compensation is described as

êRs = isα · (ψ̂rIα − ψ̂rα) + isβ · (ψ̂rIβ − ψ̂rβ)

R̂s = kpRsêRs + kiRs

∫
êRsdt

(8.6)

Figure 8.1: Block diagram of the MRAS estimator.

8.2.2 Encoderless FCS-PTC scheme
The encoderless FCS-PTC scheme selects torque and stator flux as the control objectives. As
shown in Fig. 8.2, the block diagram of the encoderless FCS-PTC scheme is presented. The
predicted stator current and flux-linkage are calculated as

ψ̂s(k + 1) = ψ̂s(k) + Ts(us(k)− R̂s · is(k)) (8.7)

îs(k + 1) = (1− Ts
τσ

)is(k) +
Ts
τσRσ

· [kr · (
1

τr
− jω(k)) · ψ̂r(k) + us(k)] (8.8)
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The predicted electromagnetic torque is calculated by the predicted current and flux.

T̂ (k + 1) =
3

2
· p · Im

{
ψ̂s(k + 1)∗ · îs(k + 1)

}
(8.9)

For every switching candidates, the tracking error between the predicted stator flux and torque
and their reference value is calculated in the cost function gj , as shown in (8.10). The optimized
switching state which minimizes the cost function will be chosen as the optimal solution.

gj = (T̂ (k + 2)− T ∗)2 + λ2
ψ(||ψ̂s(k + 2)|| − ψ∗s)2 + Im(k + 2) (8.10)

where T ∗ is the torque reference generated by the speed PI controller, and ψ∗s is the stator flux
magnitude reference. λ is the weighting factor to modify the torque and flux terms in accordance
with the working conditions.

Considering that the time delay compensation in the encoderless FCS-PTC scheme, the pre-
dicted values of torque and flux in the k+2 period are compared with the reference values in the
objective function. More specifically, the constraint for current limitation is designed as follows

Im(k + 2)j =

{
0, if |is(k + 2)j| ≤ |ismax|
∞, if |is(k + 2)j| > |ismax|

(8.11)
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Figure 8.2: Block diagram of the encoderless FCS-PTC scheme.

8.3 Robust MRAS for constrained parallel structure FCS-
MPC

The principle description of the proposed constrained parallel structure FCS-MPC has been
introduced in Chapter. 5.5. In this section, the issues on robustness as well as the encoderless
technology for the proposed method are discussed in detail.
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8.3.1 Parameter sensitivity analysis
As a model-based control strategy, the control performance of PPTC is detrimentally influenced
by the inevitable predicted errors, due to the parameter variations in the control plant. Therefore,
the sensitivity analysis of the algorithm to the parameters such as the stator resistance Rs and
rotor time constant τr is of great importance to improve the robustness of PPTC. In this paper,
the parameter sensitivity is studied according to the following assumptions.
(1) Rr has the same changing rate with that of Rs.
(2) The measured noise of stator current is ignored that is(k) is accuracy.

Hence, ∆Rs and ∆τr are the errors between the actual and mismatched parameters. When
the stator resistance deviation ∆Rs is considered, the actual values of the predicted stator flux-
linkage and current are rewritten as

ψ̂R
s (k + 1) = ψ̂s(k) + Ts (vs(k)− is(k) · (Rs+∆Rs) (8.12)

îRs (k + 1) =(1− Ts
τσ + ∆τσ

) · is(k) +
Ts
σLs
· [kr(

1

τr
− jω̂)ψ̂r(k) + vs(k)] (8.13)

Thus, the unknown disturbances of the predicted values are denoted by ∆ψ̂R
s (k+1) =ψR

s (k+
1) - ψ̂s(k + 1) and ∆iRs (k + 1) = îRs (k + 1) - îs(k + 1), which are deduced as

∆ψR
s (k + 1) = −Tsis(k)∆Rs (8.14)

∆iRs (k + 1) =
∆τσ

τσ(τσ + ∆τσ)
Tsis(k) (8.15)

As the deviation of rotor time constant ∆τr occurs, it does not lead to the stator flux-linkage
error in the prediction stage. The predicted value îτs(k + 1) are described as follows:

îτs(k + 1) =(1− Ts
τσ

) · is(k) +
Ts
σLs
· [kr(

1

τr + ∆τr

− jω̂ψ̂r(k) + vs(k)]

(8.16)

where ∆iτs(k + 1) = îτs(k + 1) - îs(k + 1), which is described as

∆iτs(k + 1) = − ∆τr
τr(τr + ∆τr)

krTs
σLs

ψ̂r(k) (8.17)

Based on the above, the variation of predicted stator current ∆is(k + 1) can be expressed in
(8.18) when ∆Rs and ∆τr are taken into consideration simultaneously. The predicted flux-
linkage error ∆ψs(k + 1) is described in (8.19).

∆is(k + 1) = ∆iRs (k + 1) + ∆iτs(k + 1)

=
∆τσ

τσ(τσ + ∆τσ)
Tsis(k)− ∆τr

τr(τr + ∆τr)

krTs
σLs

ψ̂r(k)
(8.18)

∆ψs(k + 1) = ∆ψR
s (k + 1) = −Tsis(k)∆Rs (8.19)

Therefore, the predicted stator current and flux-linkage deviations of PPTC with Rs and τr
mismatches are evaluated under different operating conditions. The measured deviations are
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obtained by the repetitive simulation implementations in the Matlab/Simulink environment. As
shown in Fig. 8.3, the percentage of predicted stator current deviation increases significantly
according to Rs and τr mismatches (14.8% with 200% Rs and τr at the nominal operating
condition). More specifically, it is more sensitive to Rs variation. Similar trend can be observed
in the test scenario of 150 rpm with 2 Nm, the predicted current error increases from 5.88 % to
10.96 %, as shown in Fig. 8.4. In terms of predicted stator flux-linkage deviation, the percentage
of deviation reaches 23.0% with 200% Rs in Fig. 8.5. It is demonstrated that the percentage of
stator flux-linkage deviation keeps constant as the variation of τr occurs. The three-dimensional
diagram of predicted error with ∆Rs and ∆τr is shown in Fig. 8.6. The predicted flux-linkage
error is 16.8 % with 100 % ∆Rs.

Figure 8.3: Predicted stator current deviation of PPTC with Rs and τr mismatches. (2772 rpm
with 7.5 Nm).

8.3.2 Robust MRAS estimator

In this section, the robust encoderless MRAS estimator with online parameter identification
algorithm is presented, to meet the control system’s requirements for accuracy speed estimation
and robustness improvement. In the proposed MRAS estimator, the voltage model is used as
the reference model to estimate stator flux-linkage, while the current model is employed as
the adaptive model, as shown in (8.20-8.21). kpω and kiω are the gains for the MRAS speed
estimator.

dψ̂s
dt

= us − R̂sis

dψ̂r
dt

=
Lr
Lm

(
dψ̂s
dt
− Lsσ ·

dis
dt

)

(8.20)
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Figure 8.4: Predicted stator current deviation of PPTC with Rs and τr mismatches. (150 rpm
with 2 Nm).

Figure 8.5: Predicted stator flux-linkage deviation of PPTC with Rs and τr mismatches. (2772
rpm with 7.5 Nm).

dψ̂rI
dt

=
LrRr

Lm
· is − (

Rr

Lr
− jω̂ · is)ψ̂rI

+ kpωêψr + kiω

∫
êψrdt

(8.21)

The difference term êψr is constructed according to the cross product of rotor flux-linkages
estimated in the reference and adjustable models, which is forced to zero by the adaptive mech-
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Figure 8.6: Predicted stator flux-linkage deviation of PPTC with Rs and τr mismatches. (150
rpm with 2 Nm).

anism with PI controller.
êψr = ψ̂rIαψ̂rβ − ψ̂rIβψ̂rα (8.22)

However, the variations of stator resistance and mutual inductance lead to the inaccuracy
estimation of rotor speed and flux-linkage in the MRAS estimator, which subsequently leads
to inevitable deviations in the prediction stage and unsatisfactory performance of PPTC. To
enhance the robustness of the MRAS-based PPTC scheme, an online parameter identification
algorithm in which stator resistance and rotor time constant are updated in a sequential structure,
is presented. The dot product of stator current and rotor flux-linkage deviation is eliminated, to
compensate the stator resistance according to the PI mechanism.

êRs = isα · (ψ̂rIα − ψ̂rα) + isβ · (ψ̂rIβ − ψ̂rβ)

R̂s = kpRsêRs + kiRs

∫
êRsdt

(8.23)

The dot product of stator current and rotor flux-linkage (defined as τ̂r_ref ) is calculated in the
reference model. The obtained dot product is compared with the estimated value (τ̂rI) in the
adjustable model, as shown in (8.24). The error between (τ̂r_ref ) and (τ̂rI) is constructed as a
tuning parameter that goes though an integral process to update the reciprocal of τ̂r.

êτr = τ̂r_ref − τ̂rI
= ψ̂rαisα + ψ̂rβisβ − Lmi2sd

(8.24)

where isd = cos(θ)isα + sin(θ)isβ, θ = arctan( ψ̂rα
ψ̂rβ

).

1

τ̂r
=

1

τr
+ kiτr

∫
êτrdt (8.25)

The block diagram of robust MRAS estimator is shown in Fig. 8.7, which is one of the compo-
nents in the robust MRAS-based PPTC controller in Fig. 8.8.
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Figure 8.7: Block diagram of the robust MRAS estimator.
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Figure 8.8: Block diagram of PPTC with robust MRAS estimator.

8.4 MRAS for FCS-PTC

8.4.1 Steady-state performance

To validate the performance of the proposed R-MRAS based PPTC scheme, steady-state ex-
perimental implementations are firstly conducted in two scenarios of low and rated rotor speed.
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The waveforms of estimated stator flux-linkage in α and β axis (ψsα,β), estimated and error
rotor speed (ω̂ and ∆ω), electromagnetic torque (T ) and stator current (is) are shown in Fig. 8.9
and Fig. 8.10. The tests are carried out at 300 rpm with 1 Nm and 2772 rpm with 7.5 Nm,
respectively. In Fig. 8.10, it can be seen that the estimated rotor speed accurately tracks the
measured value with less than 18 rpm deviation (defined by ∆ω = ω̂ − ω), which is simi-
lar to the speed tracking performance in Fig. 8.9. As illustrated in Fig. 8.9, the mean squared
error of electromagnetic torque (Tmse) and stator current THD (isTHD) are 0.35 Nm and 8.6%,
respectively. More specifically, it is presented in Fig. 10 that relatively higher Tmse (0.44 Nm)
and lower isTHD (5.7%) are obtained when the IMs operate at rated speed and load torque. The
performance metrics of the proposed method at the steady state are listed in TABLE 8.1. It
is worth noted that although the speed deviation (18 rpm) is slightly higher at nominal rotor
speed and load torque, the percent value (0.65 %) is significantly lower than that at 300 rpm,
1 Nm (4 %).

Figure 8.9: Measured waveforms in steady state for ω = 300 rpm, T = 1 Nm.

8.4.2 Steady-state performance
The second test is to validate the performance of speed reversal maneuver of the proposed
method at a low speed range. The given rotor speed of the induction machine is reversed from
60 rpm to -60 rpm (2% of the rated speed). As shown in Fig. 8.11, the estimated rotor speed
drops at t = 1.06 s and then reaches the reverse value at t = 1.2 s. During the whole reversal
maneuver, the maximum speed deviation is 15 rpm. Specifically, the magnitude of estimated
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Figure 8.10: Measured waveforms in steady state for ω = 2772 rpm, T = 7.5 Nm.

Table 8.1: The performance metrics of R-MRAS based PPTC at steady-state

Feature 300 rpm, 1 Nm 2772 rpm, 7.5 Nm

∆ω [rpm] 12 (4%) 18 (0.65%)

Tmse [Nm] 0.35 0.44

isTHD [%] 8.6 5.7

||∆ψs|| [Wb] 0.05 0.04

fsw [kHz] 0.80 3.74

stator flux-linkage remains stable ( ||∆ψs||||ψs|| ≤ 4%). It can be seen that Tmse is considerably low
(0.21 Nm), and isTHD is 10.8 % without load torque.

8.4.3 Dynamic performance
In this section, the dynamic performance of the proposed method, namely the load step perfor-
mance, load disturbance performance and speed step performance are evaluated. The first test is
to operate the induction machine at 500 rpm with two 2 Nm load step changes. The load torque
changes from 2 Nm to 4 Nm at t = 0.45 s and to 6 Nm at t = 1.4 s, respectively. In Fig. 8.12, it
is indicated that the estimated rotor speed rises to 535 rpm and returns to original value in 0.4 s
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Figure 8.11: Measured waveforms of speed reversal maneuver from 60 rpm to -60 rpm.

when the torque step occurs. The maximum deviation between the estimated and measured ro-
tor speed is 30 rpm. It is shown that low isTHD is achieved (5.4 %) and the maximum deviation
of flux-linkage magnitude is 0.04 Wb.

Subsequently, the load disturbance behavior from 2 to 4 Nm is validated on the experimental
platform, and the waveforms are presented in Fig. 8.13. The applied rotor speed is 600 rpm,
while the load torque is given by the control panel. As shown in Fig. 8.13, the average de-
viation of rotor speed at steady-state is approximately 1.5%. The estimated rotor speed drops
to 550 rpm when the load disturbance takes place, and the maximum ∆ω is 45 rpm at the
same time. In the term of electromagnetic torque and stator current, a 3 Nm load torque is
employed at t = 0.4 s and a 4 Nm load torque is applied at t = 1.36 s with about 25% overshoot.
Thanks to the merits of fine-tuned weighting factor at dynamic transient, the proposed method
achieves low torque mean squared error (Tmse = 0.32 Nm) and small stator current harmonic
distortion (isTHD = 5.6%).

At last, the experimental results of speed step performance are illustrated in Fig. 8.14. The
induction machines are initially operated at 500 rpm with 3 Nm load torque, and then the ref-
erence value of rotor speed is set as 1000 rpm. The estimated rotor speed rises to 1080 rpm
and then drops back to 1000 rpm in the duration of 0.1 s, and the maximum rotor speed error
is 60 rpm. Meanwhile, the torque mean squared error and stator current THD of the proposed
method are 0.38 Nm and 6.7%. The dynamic performance metrics of the proposed method are
summarized in TABLE 8.2.
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Figure 8.12: Load step performance of the proposed R-MRAS based PPTC from 2 Nm to 6 Nm
at 500 rpm.

8.4.4 Robustness evaluation

To validate the robustness performance against parameter variations, the proposed method is
compared with PPTC in [42] and MRAS-PTC in [95], respectively. The three algorithms are
executed fairly that Rs and τr are changed in the same way. The robustness experiments of
three algorithms against Rs deviation are performed at 150 rpm, in which the stator resistance
reaches 200% initial value in 2 s. The control performance of PPTC is significantly degraded
because it becomes instability when Rs reaches the peak value. Thanks to the Rs compensation
by parameter identification algorithm, both R-MRAS based PPTC and MRAS-PTC show strong
robustness to Rs variation. Compared with MRAS-PTC, the proposed algorithm obtains better
tracking performance like lower estimated rotor speed (8 rpm) and torque deviation (0.19 Nm)
in average, as well as lower stator current THD (9.7%).

The comparative results of τr mismatch among the three algorithms are illustrated as follows.
In the implementation, the rotor time constant changes from 0.133 to 0.4 (200% deviation) at
t = 1.0 s. It can be seen that PPTC shows smaller torque and stator current error than that of the
counterpart MRAS-PTC. However, the τr variation generates a negative influence on the pre-
dicted value. The estimated rotor speed suffers from a 5.9 % deviation in MRAS-PTC without τr
identification. Compared with MRAS-PTC, the proposed R-MRAS PPTC obtains accuracy ro-
tor speed estimation (3.2%), as well as significantly reduction in torque deviation (0.2 Nm) and
current THD (9.4%). It is indicated that the proposed algorithm achieves satisfactory steady-
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Figure 8.13: Load disturbance performance of the proposed R-MRAS based PPTC from 2 Nm
to 4 Nm at 600 rpm.

state performance at a low speed.

Table 8.2: The performance metrics of R-MRAS based PPTC at dynamic-transient

Feature load step load disturbance speed step

∆ω [rpm] 30 45 60

Tmse [Nm] 0.38 0.32 0.38

isTHD [%] 5.4 5.6 6.7

||∆ψs|| [Wb] 0.04 0.06 0.06

fsw [kHz] 1.43 1.68 2.55 (at 1000 rpm)

8.5 Conclusion

In this chapter, the encoderless techonology for FCS-MPC schemes is introduced, which not
merely estimates the rotor speed for the proposed model predictive controller but also improve
the robustness against parameter mismatches. The influence of parameter mismatches on the
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Figure 8.14: Speed step performance of the proposed R-MRAS based PPTC from 500 rpm to
1000 rpm with 3 Nm load.

Figure 8.15: Robustness performance of the proposed R-MRAS based PPTC against 100 % Rs

deviation.
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Figure 8.16: Robustness performance of the proposed robust MRAS-based PPTC against 200 %
τr deviation.

FCS-MPC schemes are investigated. Moreover, the designed MRAS estimators are applied on
the proposed FCS-MPC schemes, in which the stator resistance and rotor time constant are
updated. It is validated by experimental implementation that the proposed algorithm achieves
low speed and flux-linkage estimation deviations, as well as low torque mean squared error and
current THD at both steady-state and dynamic transient.
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CHAPTER 9

Conclusion

In this dissertation, MPC strategies with objective function reformulation are investigated, to
achieve the increasing requirements arising from the rapid development of the power electronic
and electrical drive systems. The state-of-the-art FCS-MPC schemes show the superiority of
straightforward concept, simple implementation, flexible inclusion of constraints, fast dynamic
response, low switching frequency and the ability to handle with multiple conflicting targets.
With the tremendous development of the commercial digital processors, FCS-MPC has emerged
as an alternative control strategy with satisfactory control performance in the field of power
electronic and electrical drive systems.

In chapter 2 and 3, the basic principles of the control plant and FCS-MPC methods are intro-
duced. Based on the above, FCS-MPC schemes with multiple control objectives for IM drives
are formulated and experimentally evaluated in chapter 4. As can be seen, the predominate ob-
jective of FCS-PTC is electromagnetic torque and that of FCS-PCC is stator current. Compared
with FCS-PCC, FCS-PTC achieves a smaller torque ripple but suffers from a worse current
quality. Moreover, FCS-PTC shows a strong robustness against the variation of magnetizing
inductance. On the contrary, FCS-PCC is less sensitive to the stator resistance mismatch.

In chapter 5, several weighting parameter optimization solutions are proposed for the multi-
objective FCS-MPC schemes, to tackle the issue of weighting parameter design. It is promising
to design the weighting parameters using an artificial neural network (ANN) approach, to offline
obtain the optimal combination of the required parameters. Another solution is the splitting
of the objective function combined with different optimization structures. By doing so, the
weighting parameters are not required because the dimension of the reformulated tracking error
terms is 1. A sequential, parallel and ensemble structure is designed to resolve the global
optimum for the FCS-MPC optimization problem, respectively.

In chapter 6, the FCS-MPC optimization problem is resolved using a derivative projection, to
improve the control performance at the steady state. To do so, the objective function is reformu-
lated as the quadratic Euclidean-norm of the tracking deviation from a geometric perspective.
An extension of finite control set is by the reformulated objective function, to overcome the
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high ripples caused by the single control input in the entire sampling period. Moreover, a pres-
election principle is proposed to obtain a significant reduction on the computational burden of
the proposed FCS-MPC scheme.

In chapter 7, a newly-developed gradient descent solution is proposed for the FCS-MPC
schemes. The convexity of the quadratic programming (QP) problem is proved. Therefore,
a deepest decrease occurs in the value of the reformulated objective function, as the control
variable moves along with the direction of gradient descent. The convergence of the proposed
gradient descent solution is confirmed. More specifically, special concerns, i.e., extension of
finite set, selection of step size and the number of prediction horizon, have also been discussed.

In chapter 8, the encoderless technologies for the reformulated FCS-MPC schemes are in-
vestigated. A model reference adaptive system (MRAS) estimator is applied for FCS-MPC,
which can not only estimates the rotor speed but also improves the robustness against parame-
ter mismatches. The parameter sensitivity of the proposed is investigated. The proposed MRAS
estimators for FCS-PTC and parallel structure FCS-MPC are experimentally verified.
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APPENDIX B

Nomenclature

General electrical variables:

is stator current
ir rotor current
ψs stator flux
ψr rotor flux
Rs stator resistance
Rr rotor resistance
Ls stator inductance
Lr rotor inductance
Lm magnetizing inductance
us stator voltage vector
ω rotor angular speed
kr rotor coupling factor
Rσ effective resistance of both windings
Lσ transient stator inductance
τσ transient time constant
p number of pole pairs
J moment of inertia
θ rotation angle
TL load torque
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Abbreviations:

AC Alternating current
ANN Artificial neural network
CCS-MPC Continuous control set model predictive control
DB Deadbeat
DC Direct current
DTC Direct torque control
DSP Digital signal processor
FCS-MPC Finite control set model predictive control
FCS-PCC Finite control set predictive current control
FCS-PTC Finite control set predictive torque control
FOC Field oriented control
FPGA Field programmable gate arrays
GD Gradient descent
GSDMPC Generalized sequential direct model predictive control
IM Induction machine
LIM Linear induction machine
LS Least squares
MPC Model predictive control
MRAS Model reference adaptive system
OT Optimal torque
PA Pruning algorithm
PI Proportional-integral
PMSM Permanent magnet synchronous machine
PPTC Parallel predictive torque control
PWM Pulse width modulation
QP Quadratic programming
SA Sorting algorithm
SDA Sphere docoding algorithm
SOC System-on-chip
THD Total harmonic distortion
VSI Voltage source inverter
VV Voltage vectors
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