TUTi

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Sign Language Translation
on Mobile Devices

Maximilian Karpfinger

TUTi

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Master’s Thesis in Informatics

Sign Language Translation
on Mobile Devices

Ubersetzung von Gebirdensprachen auf
mobilen Endgeriten

Author: Maximilian Karpfinger
Supervisor: Prof. Dr. Christian Mendl
Advisor: Dr. Felix Dietrich

Submission Date: 15.04.2022

0

I confirm that this master’s thesis in informatics is my own work and I have documented
all sources and material used.

Munich, 15.04.2022 Maximilian Karpfinger

Acknowledgments

I would like to thank Prof. Mendl and Dr. Dietrich for giving me the opportunity to
write this thesis. As my advisor Dr. Dietrich always gave great insights in our meetings
and was always fast to answer my questions to problems that occurred during this project.
I also want to thank my girlfriend for taking the pictures of me doing sign language to
test the app and supporting me emotionally during the whole study.

Abstract

It is very important for the people of the deaf community to communicate with each
other and also with people that are not able to speak sign languages, but the language
barrier makes this difficult. However, automated translation of sign language to spoken
language is a difficult task. For the time being, there is not one application which does
sign language translation in this way. There are some approaches which can detect
and translate alphabetical characters but not full sentences. While there are many tools
that support people who need seeing or reading assistance like the Google Assistant,
the number of tools available for the deaf community is still very small. Though,
with new technologies and smartphones more opportunities open up. This thesis is
about translating sign language on mobile devices. In particular an app for Android
smartphones was created that can translate sign language to text in real-time. The
framework behind this technology is MediaPipe by Google. By using holistic tracking,
hand, facial and pose landmarks are extracted from a camera stream and put into a model
that maps these landmarks to translated German text which will then be displayed on the
smartphone’s display. Three different models were trained with the data provided by the
DGS-Korpus which is a long-term project by the Academy of Sciences and Humanities
in Hamburg on sign languages. As a result, an Android app that uses a neural network
trained on the 100 most appearing signs in the available videos of the DGS-Korpus to
translate pose landmarks to words was successfully implemented. The network has
approximately 30% accuracy, so a lot of improvements are still possible.

Contents

Acknowledgments
Abstract
1. Introduction

2. State of the Art
21. Signlanguage e
2.2. Existing Assistance Tools on Mobile Devices Using Machine Learning . .
2.3. Neural Networks
2.4. Previous Work on Sign Language Recognition

3. Sign Language Translation on Mobile Devices

31. DGS-KorpusData
32. MediaPipe
3.2.1. MediaPipe Framework’s Concepts
3.2.2. MediaPipe on Android Based Devices
3.2.3. MediaPipe Holistic Tracking

3.3. Sign Language Gesture Translation Model
3.4. Translation Pipeline
3.4.1. DataPreprocessing
3.4.2. Evaluation Metric.
3.4.3. Training the Translation Model
3.4.4. Adapting Holistic Tracking Graph
3.44.1. Combining Landmarks

3.44.2. Converting Landmarks to Tensors

3.4.4.3. Inference on Translation Model

3.4.4.4. Converting Tensors to Classifications

3.44.5. Converting Results to Render Data

3.5. UserInterface e
3.6. Testing& Results
3.6.1. Performance evaluation
3.6.2. Test Set Evaluation on all Translation Models
3.6.3. Different scenarios

4. Conclusions

List of Figures

iv

e O Ul = W=

10
10
11
12
12
13
17
20
21
24
26
32
36
38
39
39
40
41
43
44
45
46

49

53

vi

Contents

List of Tables
List of Listings
Bibliography

A. Appendix

55

56

57

60

vii

1. Introduction

Mobile phones assist humans in everyday life. More generally speaking, many assisting
tools on mobile phones were introduced in the last decade. While most of these tech-
nologies focus on making the usability of the device easier for humans, the amount of
assisting tools that deal with sign language is low.

Nevertheless, automated sign language translation and the topic of sign languages
have been a hot topic in research areas in recent years. This is mostly due to the fact that
automated translation of sign language is a more complex task than the translation from
one spoken language to another spoken language and also in comparison to text to voice
problems or vice versa. Research on a machine translation of sign language is where
it has been years ago for other problems like generating text from voice or reading a
given text. For the latter many famous tools like the Google Assistant or Siri were created
which both assist humans in everyday life.

There are many situations in which an app that is able to translate sign language
could be helpful. While deaf people can communicate with other deaf people, it can
be challenging for a deaf and a non-deaf person to talk to each other if the non-deaf
person cannot speak sign language. There is a lot of use for an app that can translate
sign language. For example, when a deaf person needs to see a doctor, or wants to have
their hair cut at the barber. More generally speaking, any person offering a service could
use the app to communicate with deaf people. Expressing their needs is crucial for every
human being.

With recent advancements in machine learning, new ideas for solving some of these
problems have come up. For example with the help of neural networks, image analysis
has made huge improvements. By applying these techniques it is possible to make
human pose estimation and thereby finding key points, for instance of the hands and
face. In this master’s thesis the creation of an application for mobile devices running
on Android is discussed. The goal is to create a translation pipeline and for that matter
use existing pose estimation modules from the MediaPipe framework. In the main part
of this thesis the implementation of such a pipeline is elaborated. However, in addition
to the pipeline a model that is able to translate key points from the pose estimation
models to words is also required. In order to train neural networks data is needed. Thus,
the main part of this thesis also discusses the data acquisition, where videos from an
online source which show people speaking sign language are analysed. These videos are

1. Introduction

annotated with the meaning of each signed gesture. By using these annotations, a data
set is established which combines key points from pose estimation with a given label
representing a word. Through that models can be trained that classify gestures.

For the translation model, three different types of architectures are analyzed and tested
on the data set created from the previously mentioned data. As a result, an application
was built that can translate gestures from German sign language to text as can be seen
in Figure 1.1. The Figure shows a screenshot from the app translating German sign
language in real-time.

13:06 4 QPAR1% 12:55 4 5 PA064%

Sign Translator g Sign Translator

Figure 1.1.: Screenshots of gestures being translated by the app. The app displays
the translated sign and also the score of the classification network for the
prediction.

Finally, this thesis is structured in the following way. There are three sections, whereas
the first section State of the Art is about putting the thesis into its context by citing relevant
literature. Here, sign language is discussed at first. There will be explanations on how
sign language works according to literature. This is followed by a section on tools on
mobile phones that assist humans. After that a section on neural networks introduces

1. Introduction

the network architectures, which have been mentioned previously and are deployed in
this thesis. Subsequently, some previous work that focuses on sign language recognition
is referred to. Continuing with the main part of this thesis Sign Language Translation
on Mobile Devices, which is about the implementation of an app that is able to do sign
language translation. Starting with an overview of the data source and how they have
collected their data. Then the framework used to create the pipeline for the app is
introduced. Here, the focus lies on the framework’s key concepts and how it can be
used to create apps for mobile devices. Also, an example module from the framework
is introduced. Afterwards a section on ideas and requirements for a sign language
translation model follows. Here, the architectures, which are used in the training phase,
are presented. Then follows a section on how the data sets, used to train the translation
models, were created and what evaluation metrics are used to evaluate their performance.
The training of the translation models is showcased. After that, the pipeline’s different
parts are explained and how they are implemented. In the next section, screenshots from
the apps are presented that show the app being used on videos showing people speaking
sign language. In the last section, the translation models are evaluated on a test set. The
app will also be used in different scenarios to investigate how different scenarios might
impact the app’s possibility to translate certain gestures. Additionally, the pipeline will
be examined on its performance in terms of computational costs. Finally, in the third and
last section Conclusions the work of this thesis is summarized, discussed and an outlook
is given on thoughts and ideas about possible improvements or future additions to the
pipeline and app.

Pose estimation models by MediaPipe
predicting landmarks from input frame

Translation model predicts word
from landmarks

Figure 1.2.: Dataflow from input image to landmarks to translated sign.

2. State of the Art

This section gives an introduction to sign language, especially on German sign language.
The differences of sign language to spoken language are elaborated and the key concepts
of German sign language are explained superficially. Then some tools for mobile devices
which assist humans in everyday life are mentioned and also some apps which touch
the topic of sign language are brought up. This is followed by a section about neural
networks architectures which are used in this thesis. In the final section of this chapter
related works on sign language detection and recognition are noted.

2.1. Sign Language

Sign languages are a form of communication which is based on visual aspects in contrast
to spoken language which depends on vocal aspects. Because different sign languages
exist, just like multiple other spoken languages exist, the focus in this thesis will be on
German sign language. Similar to spoken German, dialects exist in the German sign
language, whereas the idioms may have different words. By using hands, mouth and
pose a signer can create or use existing signs to communicate. Sign language itself is a
complex language with rules that are unlike the rules used in spoken languages [1]. The
language is used mostly by deaf people. As [2] states, there are approximately 80.000
deaf people in Germany and around 16 million hearing-impaired people. The website
also states that most of the deaf people turned deaf during their life while only 15%
inherited their deafness.

Coming back to German sign language, it is not a word by word translation from
spoken German, but rather uses a different grammar and vocabulary [3]. Transmitting
information in sign language can be done with two key components which are manual
and non-manual means of expression. Manual expressions are done by moving the
hands or arms, whereas manual means of expression can be divided into four categories.
These are the shape of the hand, the orientation, the position in terms of space and the
movement itself [4]. [3] elaborates further on these and found that there are around
30 different shapes of the hand which express a different meaning. In addition, the
orientation is determined by either the palm of the hand or by the beginning of the
fingers. Both could point in any direction of the 3D space around the signer. Next on,
the position of the hand is also important. Again, the position of the hand can be placed
in any place around the signing person, however, most of the signs are placed in front
of the chest [3]. This 3D space is called the signing space. The final property of manual
expressions is the movement of the hand which also has several attributes. Moving the
hand in a certain path, moving the fingers and how often the movement is repeated all

2. State of the Art

determine what a signer is expressing. The speed of the movement is also important.
[3] makes an example where a person signs the gesture WORK, but does so in a slow
movement. This could mean that the person expresses WORK-dull. The sign can be
supported by non-manual means of expression.

These expressions also can be divided into four categories. Beginning with the fa-
cial expression, [5] differentiates between non linguistic and linguistic sign language
facial expressions. Here, non linguistic expressions are the basic emotions and the other
ones are expressions with a function in sign language. These can be adverbs, marking cer-
tain words, changing roles and more [3]. The most important areas for facial expressions
are around the eyes and the mouth [3]. Proceeding with the next aspect of non-manual
means of expressions which is the eye’s expressions and the viewing direction. Similar
to spoken language, the eyes can be used to see how a person is feeling, e.g. if they are
paying attention or are distracted. Further utilization is looking into the signing space,
looking at the partner of conversation, view of a role, and looking at the signing hand [3].
Signers can change roles by imitating the person’s pose and facial expression, which is
helpful for story telling. Looking to a place in the signing space can be used to reference
some object which was indexed to be placed there beforehand and looking at the hand
can be used to draw the conversational partner’s attention to it [3]. Following with the
next component which is the posture of body and head. By moving the body and head
in a certain way, a signer can imitate someone else as mentioned before. It is also used
for direct and indirect speech. However, not all of the body is important because the
legs are not used in German sign language [3]. Finally, the last aspect of non-manual
expression is the mouthings. These are mostly used for words which do not have a
sign in sign language. One can either move the lips to imitate saying the word or say
the word non-vocally. Another use of the mouthings is to give further information to
a sign. As an example [3] states that both BROTHER and SISTER share the same sign,
but can be distinguished by the mouthing. Not all sign languages utilize the mouth as
German sign language does. For instance, in American sign language mouthings are
replaced by finger signs because in the US, they are socially more accepted for being
more subtle [3]. When a signing person uses both hands, there are two rules that must be
considered. The signing has to be either symmetric or one hand has to be the dominant
one, which is the active one and the other hand has to stay passive [3]. Considering all
this information about German sign language, this thesis describes how a pipeline is
created for application on mobile devices that tries to translate signs by using a model
that gets pose estimation information as input. [1] claims that there are no apps or
computer programs that translate sign language as of now.

2.2. Existing Assistance Tools on Mobile Devices Using
Machine Learning
While there may not be existing tools for sign language translation, there are other

apps that use image processing. Furthermore, tools which support a user by reading
certain texts on their phone to them or write text from what the user is saying have been

2. State of the Art

around for years. In the following, some of these will be mentioned. Beginning with the
framework MediaPipe [6] by Google, which offers a variety of solutions which all use
object detection or pose estimation, for example doing face detection, object detection
and tracking or selfie segmentation. These solutions can be downloaded, as pre-built
versions for Android devices already exist. Moving on to tools that support a user with
reading or by voice, famous examples are the Google Assistant [7], or Siri [8] by Apple.
Both of them can support a user by listening to their voice commands, for example doing
an online lookup, calling contacts, writing messages or reading texts to them. Although
these tools provide a variety of functionality, none of them have features which focus
on translating sign language. Some apps exist which handle the topic of sign languages.
However, most of them are dictionaries or for instance the EiS app [9] which has its focus
on teaching sign language.

2.3. Neural Networks

All the tools mentioned in the section before which use pose estimation utilize machine
learning techniques, like the object detection app by MediaPipe. Some sort of model for
detecting and translating sign language needs to be implemented in the sign language
translation application as well. In machine learning various approaches exist for solving
problems of different kinds. The most basic tasks are regression and classification. For
classification tasks of images neural networks can be used [10].

%X u) s ;

- . s T3 ! 13 dense dense|
5 27 ENI R\ A
11 3 i 1000

\ss -
1 102 192 128 Max

224\lstride Max 128 Max pooling
Uof 4 pooling pooling
3 48

LW |

192 128 204¢

28 \dense

Ny
o

13

204¢ 2048

Figure 2.1.: An illustration of the architecture of AlexNet. The network’s input is 150,528-
dimensional, and the number of neurons in the network’s remaining layers is
given by 253,440-186,624—64,896—64,896—43,264— 4096—-4096-1000.
Figure from [10], including the cut-off on the top.

As seen in the architecture of AlexNet [10] which is visualized in Figure 2.1, the
network consists of multiple convolutional layers whereas some have a max pooling layer
in between. With these layers the network tries to find features in the given images by
applying kernels which have been learned by the model.

A more sophisticated approach, which also has a more adequate input format for
the problem case of this project, is PointNet [11]. PointNet originally was developed for
point clouds in three dimensional space. However, as shown in [11] it can also be used

2. State of the Art

for two dimensional point clouds. This is important for this study, because the training
data will be two-dimensional.

l PointNet l l
2 7 mug? Y ' ; =i

BNy s which sign?
" { & B
N s table? J’) it
car? L0)
Classification Part Segmentation ~ Semantic Segmentation Sign Translation

Figure 2.2.: Original applications of PointNet as in [11]. In addition, application on
landmarks for gesture translation.
Figure adapted from [11].

As seen in Figure 2.2 the network is capable of doing classifications from a set of
data points with n dimensions. In addition, it can do semantic segmentation and part
segmentation when the architecture is adapted. In this project, landmarks of hands, face
and pose will be used to translate sign language to spoken language. These landmarks
will be available in sets. Because the input for PointNet is a set of data points, it fits the
use case in this project a lot more than ordinary convolutional neural networks which are
usually used on two or three dimensional images. The authors of [11] state that the input
data points have three properties. First, the data points are not ordered. This means that
regardless of the order of points, or in the case of this project landmarks, the network
should be invariant to any permutation. While landmarks will actually be provided in
order, the landmarks themselves can be arbitrarily permuted. Second, the points can
be in relation with each other. Such a relation can be for example the distance between
two points. This also holds for landmarks since they are structured locally and therefore
build meaningful subsets (e.g. left hand). Third, the points are invariant to numerous
transformations like rotation and translation. This also holds for landmarks. Together,
these three properties need to be handled by a model so the network’s architecture was
designed appropriately.

2. State of the Art

Classification Network

m inpﬁt mlp (6411;64») B .,,féén.l,re. I mlp (64]281024) IR .n,la),(. . m,lp. .
£ transform transform pool 1024 (512,256.k)
S |en o NS NS
;‘ S & shared E 1 1 E shared nx1024 lF
obal feature
£ : £ k
N . O E . output scores
o : o) y LT point features .
X3 ! ; 6464]
fmlsform :ran(sform] :ﬁr’ = = §
1088 2 % &
|rix mx : mXx shared = shared g -]
multiply multiply [_Iﬁ—’ s E'
— -]
. [P — : E
DGO ()

Segmentation Network

Figure 2.3.: PointNet Architecture. The classification network takes n points as input,
applies input and feature transformations, and then aggregates point features
by max pooling. The output is classification scores for k classes. The segmen-
tation network is an extension to the classification net. It concatenates global
and local features and outputs per point scores. “mlp” stands for multi-layer
perceptron, numbers in bracket are layer sizes. Batchnorm is used for all
layers with ReLU. Dropout layers are used for the last mlp in classification
net.
Figure from [11].

In Figure 2.3 the architecture of PointNet is visualized. However, only the blue part
matters for this project as the lower part is the architecture for a segmentation network.

Another useful class of network architectures are graph neural networks [12]. These
networks can operate on graphs instead of images or data points like the models dis-
cussed previously. GNNs can be used for either graph classification or classification
of nodes. Graphs are a different form of data structure in which information can be
saved in nodes and relationships between the nodes are stored as edges. In the nodes the
coordinates of the landmarks will be stored and the edges are a binary value, marking
if two nodes are connected to each other or not. The landmarks from hands and pose
can be seen as a graph by connecting them in a reasonable way. Landmarks will be
represented as nodes, whereas the edges connect landmarks. For example, nodes which
represent the fingers should have edges to each other and all fingers should be connected
with the wrist of the hand. Additionally, the hands need to be connected to the pose
nodes as well.

2.4. Previous Work on Sign Language Recognition

Automatic sign language translation has been a hot topic in researches regarding com-
puter vision in the recent years. In the thesis [13] the author explores how sign languages
can be translated in a two-step process. First, landmarks from pose and hands are
detected to recognize a gesture. In the second step the gesture is mapped to a word.

2. State of the Art

The author focuses on American sign language (ASL) which is different to German sign
language and uses videos from the data set [14]. In the first step they create a model that
detects alphabet gestures from images and also recognizes each letter of the alphabet.
Then they also test their model on images captured from a webcam. For the landmarks
from the hands MediaPipe is used which is also used in this thesis. Detecting landmarks
for the pose is done by utilizing OpenPose [15].

In another thesis [16] which also focuses on detection of gestures by using hand pose
estimation, the author also uses the framework MediaPipe and compares it to a classical
approach which utilizes computer vision techniques. The author describes the classical
approach in a seven step algorithm, whereas in the first steps the image is collected from
the webcam and a color filter is applied where the face is already removed by blacking
it out. In the next step, the image is reduced to the hand only, by applying a skin color
filter. This is followed by applying the Sobel [17] filter to detect edges of the hand. In the
last steps the number of fingers are calculated and thereby detecting the gesture. As a
result the author finds that MediaPipe is more accurate than the classical approach.

Another thesis [18] discusses how data preprocessing is important for sign language
detection. Because instead of using whole images for translation models, a lot of
computing complexity can be saved by using only the important features of the image
which are the landmarks of a signing person. The author’s research concentrates on how
MediaPipe does these preprocessing steps.

3. Sign Language Translation on Mobile
Devices

This chapter gives an introduction to the DGS-Korpus which provides videos of people
speaking sign language. These videos can be used for machine learning models that focus
on sign languages. There is also a section which explains the framework MediaPipe. This
framework is used in this thesis to create a pipeline for sign language gesture translation.
The framework’s concepts will be elaborated and how a graph, that represents a pipeline
for the translation of gestures, is created. The app’s user interface is also shown and the
app is evaluated on its performance. It is important that the pipeline used in the app is
not too expensive in terms of computing costs, as mobile devices tend to have hardware
which cannot deal with huge complex models.

3.1. DGS-Korpus Data

Training neural networks requires a lot of data. Therefore, for this project data from
the DGS-Korpus will be used and in the following a brief overview of the DGS-Korpus
and their data acquisition conventions is given. The DGS-Korpus is a long term project
by the Academy of Sciences in Hamburg with focus on documenting and researching
German sign language. It aims to collect and share data of sign language and also to
provide a dictionary of German sign language. Starting the data acquisition was done
by finding participants who fulfill the requirements mentioned in [19]. These carefully
selected participants needed to speak German sign language fluently, live among different
regions in Germany, be of different age, gender and have different occupations. The
participants were sat in-front of each other in a studio with blue screens as background.
Each informant had a camera facing them. A moderator then started to ask questions to
begin the discussion and kept the conversation going when the informants had nothing
more to say, by asking new questions or adding comments. The topic of conversation
varied among many subjects like sports, politics and everyday life. A full list of all topics
can be seen in [20] and the studio setup is visualized in Figure 3.1.

10

3. Sign Language Translation on Mobile Devices
A B

Moderator

Figure 3.1.: Own visualization of the studio setup. Participant A and B are placed in
front of a screen with a camera facing them.

After the recording of the discussions was done, all the video-material needed to be
annotated. This was done in several steps. In the first step, the videos were segmented
by the occurring signs into tokens. Each token will be annotated by a type later on. As
a rule it was chosen that the beginning of one gesture is not necessarily the end of the
previous gesture. Therefore, the transition between gestures is not part of the gestures
themselves. An advantage of this rule is that tokens of one type do not vary as much
as when the transition is included. Another way could be to have the beginning of a
token as the end of the previous token. In addition to the gesture, mouthings are also
taken into consideration, because they help finding the correct type of a token. However,
segmentation does not depend on mouthings, but they need to be annotated too. These
and more conventions of the segmentation are further elaborated in [21]. In a next step,
all tokens needed to be annotated, which is called the lemmatization step. In this project
double glossing was used. For this, a type hierarchy was used with a parent-children
relation. Each type is the parent of multiple subtypes and is further described by a
citation form, whereas subtypes are usually described by a combination of gesture and
mouthing. All types and subtypes can have lexical and phonological variants. These
need to be labeled as such to distinguish between the variants. Signs can be of different
nature such as lexical, productive, pointing or name. Name signs are either anonymized
or in the case of famous people, they are named after said person. Pointing signs are
where either the whole hand or some fingers are used to point at a local position or
person. Productive signs, which are created in the context by the signer, help provide
information. Lexical signs tend to be stable among different contexts and represent actual
words of a language. Signs can be either signed by one or two hands. For simplicity it
was decided to have only one hand annotated for each token, even if both hands sign a
different gesture. Whenever this happens, the dominant hand gets the annotation. Other
signs and more about naming conventions can be found in [22].

3.2. MediaPipe

In the following section the framework MediaPipe is elaborated. At first an overview
of its concepts will be given which is followed by a subsection about how MediaPipe is

11

3. Sign Language Translation on Mobile Devices

applicable on mobile Android devices. Finally, the existing Holistic Tracking module is
examined.

3.2.1. MediaPipe Framework’s Concepts

MediaPipe is a framework by Google which provides functionality to create or use
existing machine learning software with focus on image, video and audio sources for
several platforms [6]. With MediaPipe it is possible to create a complete pipeline from
taking camera input and using this as an input for a neural network to produce an output
that can be viewed on the screen. The framework also takes care of inference on the
translation model. MediaPipe also provides ready to use solutions for problems like face
detection, object detection and many more [23]. In the following the framework’s concepts
such as graphs, calculators, packets and streams are elaborated. Beginning with graphs,
which represent a complete pipeline from input to output, they consist of several nodes.
A graph has its specification file where all nodes and the connections between them
are listed. Nodes either represent a single calculator or a subgraph. Subgraphs contain
several nodes again and were introduced to simplify re-usability of certain workflows.
Continuing with calculators, they can have an arbitrary amount of input and output
streams. These streams are used to transmit packages. Inside the calculators all the data
processing work is done, so the typical workflow inside one calculator is to retrieve one
package from the previous calculator, process it and send it to the next calculator. All
calculators provide four methods which are explained in the following. The method
GetContract() checks if all input and output streams are available and have the correct
type. It is basically used in a verification step in the initialization of a graph which checks
the specification file of a graph. The method Open() is called when the graph starts and
takes care of all necessary work which needs to be done before processing packets. For
all calculators with input streams the method Process() is called whenever at least one
input stream has a packet ready. Inside this method all computing should be done and as
well as sending packets to the next calculators by output streams. The last method Close()
is called when an error occurs in either Open() or Process() or when all of the calculator’s
input streams close. Another way for a calculator to acquire data is via input side-packets
or options which can be provided in the specification file. Options are implemented as
C++ protocol buffers [24]. As a last concept of this framework, packets are explained.
Packets contain data and are sent between calculators. They also provide a timestamp
which is needed for synchronisation [25].

3.2.2. MediaPipe on Android Based Devices

One of the platforms which can be targeted by MediaPipe is Android, so it is possible to
bring existing machine learning solutions to android devices and develop on their bases.
Android apps can be built using the tool Bazel [26]. For this, some prerequisites need to
be met, for example the Android SDK version must be at least 30 and the Android NDK
version needs to be between 18 and 21. Also, Bazel is set to version 3.7.2. An Android
App needs a directory for its source files called res, an AndroidManifest, a BUILD file
and a MainActivity. In the resource directory all resource files like drawables or layout

12

3. Sign Language Translation on Mobile Devices

files for the activities are stored. For a small project only a layout file for the MainActivity
is needed. Furthermore, values for strings, colors and styles are stored in this directory.
In the AndroidManifest meta information about the app are stored such as all activities.
Here, atleast the MainActivity needs to be announced. In addition, there are some meta
data values set from MediaPipe. In the BUILD file everything needed for building the
app is declared. Starting with all necessary Android libraries, the AndroidManifest,
dependencies and linking information are provided. Finally, all Tflite models and further
files which should be used are declared in the assets, as well as the graph as binary
which will be used in the app. Here the values which get set in the AndroidManifest are
maintained. In the MainActivity libraries are loaded for example the needed OpenCV
[27] and MediaPipe libraries. In the method onCreate() the layout of the MainActivity
is inflated and then the processor with the provided graph is initialized. Beforehand,
permissions for camera access is requested. For this project the graph for holistic tracking
by MediaPipe is used by the processor in the MainActivity, but it is adapted to this thesis’
work.

3.2.3. MediaPipe Holistic Tracking

The MediaPipe Holistic Tracking is an existing solution in the MediaPipe framework
[28]. This solution was created to track human pose movements. It consists of several
modules of the framework and combines the face landmarks, human pose and hand
tracking. Therefore it can be used for many use cases such as sport analysis, but more
important for this project sign language translation as it also provides landmarks for
hands and pose in addition to the already mentioned face landmarks. Altogether, this
pipeline creates 543 landmarks where 468 are from the face, 33 from the pose and 21
for both hands. For that, it uses existing models from the framework. Additionally, a
hand re-crop model is uFsed which supports finding the region of interest in case the
pose model predicts too inaccurate results. As output, the solutions display the found
landmarks and connect them accordingly.

13

3. Sign Language Translation on Mobile Devices

IMAGE

ot vid HolisticLandmarkGpu

Inpu —VI 0 POSE_DETECTION POSE_LANDMARKS POSE_ROlI FACE_LANDMARKS LEFT_HAND_LANDMARKS RIGHT_HAND_LANDMARKS
F!N\éHED 0
FlowLimiter

IMAGE_GPU
ImageProperties
SIZE

IMAGE_SIZE POSE_LANDMARKS POSE_ROI FACE_LANDMARKS LEFT_HAND_LANDMARKS RIGHT_HAND_LANDMARKS

HolisticTrackingToRenderData

RENDER_DATA_VECTOR

IMAGE_GPU VECTOR

AnnotationOverlay
IMAGE_GFPU

output_video

Figure 3.2.: Original graph topology of holistic tracking module by MediaPipe.

In Figure 3.2 the topology from the holistic tracking graph can be seen. The image
was created using the visualization tool of MediaPipe by uploading the specification file
of the graph. As it can be seen, the graph has as the the input video as the topmost
node which is taken as input by the FlowLimiter calculator. This calculator drops input
frames when necessary and has a back edge as another input from the AnnotationOverlay
subgraph. The FlowLimiter outputs unaltered frames from the input video stream from
the camera. These frames then get fed into the HolisticLandmarkGpu subgraph and the
ImageProperties calculator. The later processes the frames and outputs the size of the
frames. The HolisticLandmarkGpu is a subgraph where all the important tracking work
is done, which will be explained in the following.

1 MODEL_COMPLEXITY IMAGE

SMOOTH_LANDMARKS
ENABLE_SEGMENTATION PoselLandmarkGpu

SMOOTH_SEGMENTATION
USE_PREV_LANDMARKS 'WORLD_LANDMARKS ~SEGMENTATION_MASK ROI_FROM_LANDMARKS DETEGTION LANDMARKS

POSE_LANDMARKS POSE_LANDMARKS IMAGE
pose landmarks HandLandmarksLeftAndRightGpu SplitNormalizedLandmarkList

RIGHT_HAND_LAWNDMARKS LEFT_HAMND_LAMDMARKS

RIGHT_HAND_LANDMARKS LEFT_HAMND_LANDMARKS FACE_LANDMARKS_FROM_POSE IMAGE

right_hand_landmarks left_hand_landmarks rerine_Lanomarks Facel andmarksFromPoseGpu
FACE_LANDMARKS

FACE_LANDMARKS
face_landmarks

Figure 3.3.: Original HolisticLandmark subgraph.

14

3. Sign Language Translation on Mobile Devices

In Figure 3.3 the subgraph topology of HolisticLandmarkGpu can be seen, where the
input packets from PoseLandMarkGpu and some of the output streams, which are not
important for this thesis, are omitted for visibility reasons. On top is PoseLandMarkGpu
which is another subgraph, where the pose landmarks are calculated at first. These
landmarks are then used in the following subgraphs HandLandmarkLeftAndRightGpu
and FaceLandmarksFromPoseGpu which extract face and hand landmarks from a frame.
In addition, the FaceLandmarksFromPoseGpu takes in a side packet which tells the
subgraph whether to refine the face landmarks, meaning that the landmarks around the
lips should be refined, resulting in ten extra face landmarks.

As it can be seen in Figure 3.2, all the landmarks are collected in another subgraph
called HolisticTrackingToRenderData. As the name suggests, in this subgraph all the land-
marks are combined and converted into a rendering vector. In a last step this rendering
vector is used by the AnnotationOverlay calculator which then produces an output video.
The AnnotationOverlay calculator also has a back edge to the FlowLimiter calculator, to
inform it how many frames are actually created for the output. The limiter uses this infor-
mation to adapt the flow of frames from the camera and throttles its output when needed.

Actually, the subgraph PoseLandmarkGpu is an existing module from the framework
called Pose [29]. This module was made to detect and track human poses. Figure
3.4 visualizes the 33 detected landmarks. Furthermore, the subgraph HandLandmark-
sLeftAndRightGpu also uses existing models from [30]. A visualization of the hand’s
landmarks can be found in Figure 3.5. A last module which is also utilized is Face Mesh
[31] from MediaPipe. With this model, 468 face landmarks can be detected. Interestingly,
the models used in this module are lightweight, so they can also be used on mobile
devices.

15

3. Sign Language Translation on Mobile Devices

0. nose

17. left_pinky

1. left_eye_inner

18. right_pinky

2. left_eye

19. left_index

3. left_eye_outer

20. right_index

10H9 4. right_eye_inner 21. left_thumb
20 27 12 e 11 21 19 5. right_eye 22. right_thumb
6. right_eye_outer 23. left_hip
18 17
7. left_ear 24. right_hip
8. right_ear 25. left_knee
9. mouth_left 26. right_knee

10. mouth_right

27. left_ankle

11. left_shoulder

28. right_ankle

12. right_shoulder

29. left_heel

13. left_elbow

30. right_heel

14. right_elbow

31. left_foot_index

15. left_wrist

32. right_foot_index

16. right_wrist

31

32 30 29

Figure 3.4.: All 33 pose landmarks.
Figure from [29].

129

e ®16 0. WRIST 11.
» 11T 1. THUMB_CMC 12,
U s |15 2. THUMB_MCP 13.
6% 107 ¢, 20 3 THUMBIP 14.
o o JS19 4. THUMB_TIP 15.
4 S\ 9 3 Me 5. INDEX_FINGER_MCP 16.
3® 17 6. INDEX_FINGER_PIP 17.
" 7. INDEX_FINGER_DIP 18,
2 8. INDEX_FINGER_TIP 19.
1 9. MIDDLE_FINGER_MCP 20.

Yo 10. MIDDLE_FINGER_PIP

Figure 3.5.: 21 hand landmarks.
Figure from [30].

MIDDLE_FINGER_DIP
MIDDLE_FINGER_TIP
RING_FINGER_MCP
RING_FINGER_PIP
RING_FINGER_DIP
RING_FINGER_TIP

PINKY_MCP
PINKY_PIP
PINKY_DIP
PINKY_TIP

16

3. Sign Language Translation on Mobile Devices

12210 @O & CAUA7T% 1221 O & QPAR47%

Holistic Tracking Holistic Tracking

Figure 3.6.: Screenshot from MediaPipe’s Holistic Tracking app.

In Figure 3.6 two screenshots from the prebuilt Holistic Tracking app for Android
devices by MediaPipe can be seen. As visualized, MediaPipe does a good job precisely
tracking the landmarks. However, there are cases when the framework has problems.
For example, the author of [18] states that the models have difficulties when hands are
overlapping or when one hand is placed in front of the face.

3.3. Sign Language Gesture Translation Model

Before a new pipeline can be created which is adapted to this thesis” problem, there are a
few assumptions about the model, which is responsible for translating sign language,
that need to be made. As previously mentioned, German sign language has two key
concepts which are manual and non-manual means of expressions. A sophisticated
translation model needs to consider all the aspects of the two key concepts to translate a
single gesture. However, a perfect translation model would be able to translate gestures
to the corresponding types and also form sentences in spoken German language from
the types. An approach to this could be to split the tasks into several models that work
together. For example one model to classify mouthings and one for the pose including

17

3. Sign Language Translation on Mobile Devices

both hands. While the meaning of gestures depends on various things like position
of the hands, MediaPipe is not able to give meaningful results on 3D coordinates for
pose estimation at this point [28]. However, this is important in sign language because
signers do not only use a 2D space around them but also put information into gestures
by signing close or far away from their bodies. Another problem is that signers often use
their hand to point at objects or people around them. These signs can be detected as
indexing signs, but to create complete sentences the model would need more information
about the surroundings of the signer. One more problem is that signers sometimes create
new gestures which depend on the context. These signs are known as productive signs
and it would be very difficult for a network to translate them as they are most probably
unknown to it.

MediaPipe can provide information about landmarks of the face, pose and both hands.
In this thesis only models which take these landmarks as input will be used. This means
that the pipeline needs to provide functionality to combine the landmarks and convert
them into tensors so that the translation model can use them as input. The pipeline
also has to take care of the model’s output and transform it into rendering data. In this
thesis three different types of networks will be used and evaluated. All of them perform
classification tasks of single input frames.

Beginning with the convolutional network, the network has two convolutional layers
with ReLU activation and as output one dense layer with Softmax activation as visualized
in Figure 3.7. The first convolutional layer has a kernel of size two and also strides of
size two. This makes the kernel consider each landmark individually. In the second
convolutional layer, the kernel has size 16. Because of that, the layer will consider the 65
input landmarks as groups of 16 landmarks. This output is then flattened and forwarded
into two fully connected layers that decrease the size of the input down to 128. As a
final layer another dense layer is used with an output size of 10 or 100, depending on the
amount of classes.

18

3. Sign Language Translation on Mobile Devices

input: | (None, 130, 1)

input layer | Input
Uty P output: [(None, 130, 1)

input: | (None, 130, 1)
output: [(None, 65, 64)

first convolutional layer | ConvlD

l

second convolutional layer | ConvlD

l

input: | (None, 50, 64)
output: [(None, 3200)

input: | (None, 65, 64)
output: [(None, 50, 64)

flatten | Flatten

input: | (None, 3200)
output: | (None, 1024)

dense | Dense

input: | (None, 1024)
output: | (None, 128)

dense | Dense

mput: | (None, 128)
output: [(None, 10)

dense | Dense

Figure 3.7.: Architecture of the CNN model.

The second network is PointNet which was discussed before. Its architecture can be
seen in Figure 2.3. The third and final model is a graph neural network. This model
consists of graph convolutional and pooling layers from Spektral [32] as it can be seen in
Figure 3.8. Graph convolutional layers take a whole batch of graphs as input and forward
the same nodes and adjacency matrix. However, the last dimension of the node’s features
is changed to a a desired size. They also apply ReLU activation. After each convolutional
layer a pooling layer takes the batch as input and changes the shape for each graph by
applying soft clustering [32]. After these layers the number of nodes is reduced to the
provided size and also the adjacency matrix is adapted to the new size.

19

3. Sign Language Translation on Mobile Devices

mput: | Graph(65 Nodes, 65x65 adjacency matrix)

input convolutional layer | GCNConv

output: | Graph(65 Nodes, 65x65 adjacency matrix)

;

input: | Graph(65 Nodes, 65x65 adjacency matrix)

first pooling | MinCutPool

output: | Graph(32 Nodes, 32x32 adjacency matrix)

:

input: | Graph(32 Nodes, 32x32 adjacency matrix)

second convolutional layer | GCNConv

output: | Graph(32 Nodes, 32x32 adjacency matrix)

;

input: | Graph(32 Nodes, 32x32 adjacency matrix)

second pooling | MinCutPool

output: Graph(8 Nodes, 8x8 adjacency matrix)

;

input: | Graph(8 Nodes, 8x8 adjacency matrix)
output: (None, 384)

:

input: | (None, 384)
output: | (None, 10)

flatten | Flatten

dense | Dense

Figure 3.8.: Architecture of the GNN used in this thesis.

3.4. Translation Pipeline

In this section, the main part of this thesis is described which is the sign language
translation pipeline. In this section all steps of the implementation of a pipeline, which
does sign gesture translation on mobile devices, are explained. Beginning with the data
preprocessing step which is necessary for creating a data set on which a translation
model can be trained on. Then the evaluation metrics for the trained models are listed
and also metrics for the performance of the app. This is followed by a section on how
the models were trained and which results were achieved. In the final subsection of this
section the implemented pipeline is explained in detail.

20

3. Sign Language Translation on Mobile Devices

3.4.1. Data Preprocessing

For training the translation model, it is mandatory to have data in an adequate format
which can be put into the network. Most preferably the data should be in form of a set
of features and a target value, whereas the features will be the landmarks of a frame and
the target value is the corresponding meaning of the gesture seen in the frame. For each
transcript in the DGS-Korpus, a video for participant A and B and a ELAN file which
has an XML-like structure is provided. After acquiring all videos and ELAN files, in a
first filtering step all ELAN files, which are called meta files in the following, with no
time-step data are removed. This occurs in all transcripts that are of the Joke category as
they are not annotated by the DGS-Korpus.

ANNOTATION_

DOCUMENT

TIME_ORDER °
TIER_ID o
@ @ PARTICIPANT ANNOTATION 0 ANNOTATION N

TIME_VALUE TIME_VALUE
ID ID

ALIGNABLE_ ALIGNABLE_

ANNOTATION ANNOTATION

VALUE VALUE
TIME_REF1 TIME_REF1
TIME_REF2 TIME_REF2

ID ID

Figure 3.9.: Structure of a meta file. It has an XML-like structure with the node ANNO-
TATION_DOCUMENT as the root element.

Continuing with the format of the meta files as seen in Figure 3.9, where the names
are slightly altered for readability reasons. These files have a root element which is the
ANNOTATION_DOCUMENT node. The root’s children are one TIME_ORDER node
and a variable amount of TIER nodes, depending on whether translation for English or
mouthings are annotated. Another reason for this variation is when only one participant
is annotated. On one hand is the TIME_ORDER node which has all TIME_SLOT elements
as children that store the TIME_VALUE and an ID as attributes. On the other hand, the
TIER nodes represent annotations for a participant.

3. Sign Language Translation on Mobile Devices

TIER ID

REFERENCE

Deutsche Ubersetzung A

Translation into English A

Lexem Gebidrde r A

Lexem Signr A Lexem Gebédrde r A
Gebdrde r A Lexem Gebédrde r A
Signr A Lexem Gebédrde r A
Lexem Gebédrde 1 A -
Lexem Sign1 A Lexem Gebédrde 1 A
Gebdrde 1 A Lexem Gebédrde 1 A
Signl A Lexem Gebédrde 1 A
Mundbild Mundgestik A -

Deutsche Ubersetzung B

Translation into English B

Lexem Gebirde B A

Lexem Signr B

Lexem Gebarde r B

Gebirde r B Lexem Gebirde r B
Signr B Lexem Gebédrde r B
Lexem Gebérde 1 B -
Lexem Sign 1 B Lexem Gebérde 1 B
Gebidrde 1 B Lexem Gebirde 1 B
Sign 1B Lexem Gebirde 1 B
Mundbild Mundgestik B -
Moderator -

Translation into English Mod -

Table 3.1.: All annotation tiers.

All different annotation tiers can be found in table 3.1. In this project the tiers of
Gebarde of the right and left hands for both participants A and B are used. Thus, the
training will use data from the types which got referenced from the subtypes stored in
the corresponding Lexem sign tiers. The decision to use types instead of subtypes was
made to decrease the number of possible classes in the training of the network. This also
decreases the difficulty of the training.

As mentioned before, the data needs to be fed into a neural network. Thus, it is desired
to have features and a label for every frame from the given TIME_SLOTS child of the
TIME_ORDER element. Because the model will be trained on single frames and not
sequences, it is necessary to get the final frame of a gesture. This is done in several steps.
For all meta files left after the first filtering a csv file for each of the participants A and B
with the desired values is created, as the annotations are stored in a shared meta file. In a
first step the file is parsed into a tree object by an XML parser. Then, all time slot values
of the tree are filled into a list. A dictionary is created that stores the list of time slots and
all the annotations of the tree for both participants and both hands in German language.

22

3. Sign Language Translation on Mobile Devices

At this point, it is required to create a merged list of annotations of the left and right
hand keeping the time order in place. Now, for every final time value of an annotation
a label is annotated and only the according feature values need to be created. As these
feature values are represented by the landmarks found by the MediaPipe holistic tracking
graph, every final frame from an annotation is processed by the graph. The resulting
landmarks for face, hands and pose are stored in a dictionary. These landmark values
and the label get written to a csv file, whereas all csv files are merged into a large csv file.
But, before these values can be used as training data, a numpy array from the large csv
file is created since it is easier to transform the data in that form. This numpy array also
gets stored in a file, which can be accessed as a data set used for training networks.

$GEST-DECLINE NO
0.7 1
0.6 1 ®
. . ° .
0.6 < o
(] - L)
o L] ° ..f
051 ° ° ° ° * ot
° eoe® H 054 %o ° o’
- e "0 4
eeos® ©
P o ° ® o
o %0 ° 4 .O ° o 00
0.4 N ° 041 e ® O
o 00 . o0
°
° :.
034 @ lefthand 03] @ lefthand
® right hand ® right hand
pose pose

0.40 0.45 0.50 0.55 0.60 0.30 0.35 0.40 0.45 0.50 0.55 0.60

(a) Normalized landmarks for the gesture $GEST- (b) Normalized landmarks for the gesture NO.
DECLINE.

Figure 3.10.: Normalized landmarks plotted in a coordinate system with different colors
for different parts.

In Figure 3.10 two training samples can be seen. The landmarks in the Figure are
colored by the group they belong to. It is important to note that the holistic tracking
model normalizes these landmarks by the given image size. The landmarks are also
flipped horizontally. Furthermore, the lexical and phonological variant information are
already removed from the labels, but this will be explained in the next section.

Additionally, for the graph neural networks the data needs to be transformed first.
Instead of simply using landmarks as input, this model needs these landmarks to be
stored as a graph. For that, a graph for each sample needs to be created. For all
landmarks, a node is created which stores the x and y coordinate from the landmark. As
the graph will be topological the same for all samples, the adjacency matrix is also the
same for all samples. The nodes are connected as visualized in Figure 3.4 and Figure
3.5. Furthermore, the hands are connected to the pose subgraph by connecting the wrist
of the hands to the wrist of the pose landmarks. Because all nodes should be reachable
from all other nodes, the landmarks from the pose which describe the points of the face
also need to be connected to the landmarks from the pose which represent the body. This
is done by connecting the mouth with the shoulders as seen in Figure 3.11.

23

3. Sign Language Translation on Mobile Devices

- ,,,//(i”
0.7 -
\

0.6 - /

0.5 -

0.4 -

0.3

N
0.3 0.4 0.5 0.6 0.7

Figure 3.11.: Own visualization of how the nodes are connected to each other nodes.
Each node represents a landmark from either pose or hand. The landmarks
are horizontally flipped by the tracking module.

3.4.2. Evaluation Metric

For all models the ADAM [33] optimizer is used and sparse categorical crossentropy as
a metric for the loss. Sparse categorical crossentropy represents the crossentropy loss
between the model’s predictions and the true labels. The loss is defined as

H(p,q) = — vZIO(X)ZOg(q(X))-

Here, p is the true distribution of a label and q represents the models predicted distribu-
tion for each class. For measuring scores of a model more metrics will be utilized. First,
the precision which is defined as

TP

precision = TP+ EP°

24

3. Sign Language Translation on Mobile Devices

TP is the number of true positive predictions and incorrect predictions for each class.
Second, the recall is another important metric and defined as

TP

T’ECLZZZ — m.

In this metric the number of correctly predicted samples is divided by the sum of correctly
predicted samples and the number of samples which were not predicted as the classes
true label. Another metric which is utilized is the f; score. It represents the accuracy of a
model. It is a combination of the two previous metrics precision and recall and defined

as
TP

flz 1 .
TP + E(FP-FFN)

The f1 score is an important metric because it looks at both the precision and recall and
thus not only the proportion of true positives to false positives or true positives to false
negatives. As a final metric the accuracy of the model is studied. The accuracy is defined

as
TP+ TN

IN|

In words this means the number of correctly classified samples divided by the number
of total samples N. In general, the accuracy metric is used when there are no class
imbalances. The f; score is better when there are class imbalances, because when the
model only learns to correctly classify a dominant class, it will not be useful in a real
world application. A theoretical example could be the following. If in a language the
most often appearing word is GOOD, with an occurrence of 80% among all other words.
Then a model that only learns to predict the class GOOD will achieve an accuracy of 80%
which would be a decent score. In comparison to that the f; score also considers the
distribution of the classes. However, the f; is harder to interpret as it is a combination of
precision and recall.

accuracy =

As performance of apps for mobile devices is a crucial topic, the pipeline will
be measured in terms of time spent per calculator, frames per second and idle times.
Therefore, metrics for measuring the performance of the pipeline are needed as it is
important to keep computational costs as low as possible. For the profiling of the app
MediaPipe’s built-in tracer and profiler are used [34]. With the help of these tools, it is
possible to measure how much time calculators need to process incoming packages and
send new packages as output. Among the most important metrics, which these tools
keep track of, are the frames per second which each calculator can produce, the latency
for each calculator, the time spent within each calculator and the number of packages
which were received and either completed or dropped. The latency represents the time
a calculator needs from receiving a package until actually processing it. Enabling the
profiling is done by adding the statement seen in Listing 3.1 to the main graph’s file. It is
also required to add a flag while building the app by setting MEDIAPIPE_PROFILING
to 1.

25

3. Sign Language Translation on Mobile Devices

1 # profiler's values

2 profiler_config {

3 trace_enabled: true

4 enable_profiler: true

5 trace_log_interval_count: 200

6 trace_log_path: "/sdcard/Download/"
7 |}

Listing 3.1.: The profiling configuration.

3.4.3. Training the Translation Model

Like in all scenarios where supervised machine learning is used, the data first needs to be
split into a training and a test set, whereas the test set is left untouched, until a decision
for a final model is made. A requirement for the test data is that it has to be unseen, so
it is necessary to select participants from the set of all participants and exclude them.
Another requirement is that the set should have a similar distribution as the training set.
Participants can be distinguished by a combination of the geographical region value and
a unique id for that region, whereupon 13 regions exist.

ber | fra | goe | hb | hh | koe | lei | mst | mue | mvp | nue | sh | stu
28 |30 | 20 |16 | 16 | 42 |28 | 30 | 26 16 | 17 |16 | 36

Table 3.2.: Amount of participants per region.

In Table 3.2 the amount of participants per region can be seen, altogether 321 partici-
pants exist. For this project, two randomly selected participants per region defined by
the DGS-Korpus were put into the test set. The sampling was done by creating lists of
participants for all regions and then sampling two random numbers in the range of 0 to
the length of the list. These random numbers are used as indexes and the participants
at the according index of the list are chosen for the test set. All the videos, where a
participant of the test set is shown, are moved into a separate directory. Altogether, the
test set contains 49 videos. In comparison to the training set with 527 videos, the test
set has roughly 8.5% of the total available annotated videos. However, this does not
guarantee that the actual size of the test set is 8.5% because not all videos have an equal
amount of annotated frames. This is because of the different length of videos and in
some cases participants are less communicative and rather listen to the other participant.
Yet, it is approximately in the range of 8.5% since the number of videos in the test set is
high enough to have a roughly averaged amount of annotations. By doing this sampling
of participants, there will be no bias of German sign language in the test set in terms of
regional differences.

The aforementioned data set stored as a numpy array is used to create sub data sets. As
a first experiment a top-10 classes data set is created where the ten most used signs are

26

3. Sign Language Translation on Mobile Devices

taken into consideration. But before that, the labels of each sample were changed. A
label consists of several information such as the actual name of the type, the phonological
variant and the lexical variant. Finally, a label can have an asterisk at the end to show
that the according sign differs from its normal form and a circumflex to show that it is
a type and not a sub-type. An example for a label is HOUSE1A". For this project all
phonological and lexical variant information are removed. The information about the
lexical variant is represented by the number after the types name and the phonological
variant is represented by the letter after the number. Additionally, the asterisk and
circumflex are also removed. Altogether, this groups labels into their type’s content. An
advantage of this grouping is that there will be fewer classes and more samples per class.
However, with this approach information is lost which would be needed for a real world
sign language translation model.

I $INDEX | $GEST-OFF | $PROD | $GEST | NO | $NUM-ONE-TO-TEN | GOOD | TO-KNOW-OR-KNOWLEDGE | MUST
22702 | 22129 12433 5588 5391 | 4626 4623 3334 2999 2965

Table 3.3.: Top 10 classes of signs in the available DGS-Korpus’ videos.

After transforming the labels, the ten most often appearing classes are seen in 3.3. For
training the first network another data set is created with an equal amount of samples
per class. The amount was set to 2000 samples per class. After the preprocessing steps,
the models can be trained. Beginning with the CNN, it was trained with a randomly
split training and validation set whereas the training set has 80% of the available samples.
The batch size used for the training was set to 128 and as an optimizer ADAM with
learning rate set to 0.001 was utilized. In addition to that, early stopping depending on
the validation loss with patience 10 and sparse categorical cross entropy as a loss function
was used. After 37 epochs the training was stopped by the early stopping mechanism.
In Figure 3.12 the loss curve for both training and validation set can be seen as well as
the accuracy of both set. Table 3.4 shows the classes” individual precision and recall
scores. Overall, the network achieves a validation set accuracy of 63%. It is noticeable
that the model has better scores for classes that represent a type that is actually a real
word unlike classes like $GEST, $PROD and $INDEX. $INDEX is used by a signer to
point at something locally and $PROD are gestures which are made up in the moment
by the signer and are no existing gestures.

27

3. Sign Language Translation on Mobile Devices

Sparse categorical cross entropy loss curves Accuracy curves
2.24 —— val_loss — val_acc
train_loss train_acc
0.7 4
2.0
1.8 0.6 1 //\\/\/\./\/\/—/\—\/\/
1.6 > /
@ © 0.5
° 3
1.4 4 S
0.4
1.2 ~—
1.0 0.3
0.8 02
0 5 0 15 20 25 30 35 0 5 0 15 20 25 30 35
epochs epochs
(a) Categorical cross entropy loss over epochs. (b) Accuracy over epochs

Figure 3.12.: Training curves for the CNN on 10 classes.

Simple CNN scores on each class
Label precision recall f1-score support
TO-KNOW-OR- || 0.81 0.78 0.79 428
KNOWLEDGE
$INDEX 0.47 0.54 0.51 409
$GEST 0.29 0.33 0.31 355
MUST 0.59 0.68 0.63 391
I 0.73 0.85 0.78 409
$NUM-ONE-TO- || 0.66 0.60 0.63 382
TEN
$PROD 0.51 0.48 0.49 398
NO 0.72 0.68 0.70 421
GOOD 0.9 0.81 0.85 391
$GEST-OFF 0.63 0.48 0.54 416

Table 3.4.: CNN’s scores for each class.

The same was done for the training of the PointNet. While its architecture has a better
fit to the problem, it could not surpass the results of the CNN model. Overall, it reaches
an accuracy of 47.5% on a validation set. Noticeably is that in comparison to the simple
CNN all scores are shifted by more or less the same amount, besides for the classes
SINDEX and $PROD which are far off.

28

3. Sign Language Translation on Mobile Devices

Sparse categorical cross entropy loss curves Accuracy curves

—— val_loss
train_loss train_acc

o
o

4 — val_acc

od
o

6.50 rMJW'WV

6.25
2
2 6.001
] v
3751 ‘\/\/\\/\/\/\/\’\/\
0 10 20 30 40 50 60 0 10 20 30 40 50 60
epochs epochs

accuracy
=3
IS

o
w

o

I

o
o
N

o
H

(a) Categorical cross entropy loss over epochs. (b) Accuracy over epochs.

Figure 3.13.: Training curves of PointNet on 10 classes.

PointNet scores on each class

Label precision recall f1-score support
TO-KNOW-OR- || 0.75 0.66 0.71 428
KNOWLEDGE

$INDEX 0.33 0.28 0.30 409
$GEST 0.23 0.08 0.12 355
MUST 0.49 0.57 0.53 391
I 0.52 0.68 0.59 409
$NUM-ONE-TO- || 0.37 0.43 0.40 382
TEN

$PROD 0.35 0.42 0.38 398
NO 0.56 0.51 0.53 421
GOOD 0.53 0.49 0.51 391
$GEST-OFF 0.42 0.50 0.46 416

Table 3.5.: PointNet’s scores for each class.

As the third network architecture, the graph neural network is also trained on the same
data set.

29

3. Sign Language Translation on Mobile Devices

Sparse categorical ¢

ross entropy loss curves

2.81

l

2.6

2.4

loss

2.29

2.01

1.84

—— val_loss
train_loss

MWM/WW‘V\/\W

4000
€

0 2000

6000 8000 10000

pochs

(a) Categorical cross entropy loss over epochs.

accuracy

0.51

o
'S

o
w

e
N}

0.14

Accuracy curves

— val_acc
train_acc

0 2000 4000

6000 8000 10000

epochs

(b) Accuracy over epochs.

Figure 3.14.: Training curves of the GNN on 10 classes.

Most notably, the training for this network takes a lot more epochs to converge. After
approximately 10000 epochs the validation accuracy stops increasing and peaks at 41%
as can be seen in Figure 3.14. Note, that the curves are smoothed.

GNN scores on each class
Label precision recall f1-score support
TO-KNOW-OR- || 0.53 0.75 0.62 400
KNOWLEDGE
$INDEX 0.25 0.22 0.24 404
$GEST 0.21 0.23 0.22 411
MUST 0.4 0.2 0.26 382
I 0.34 0.78 0.48 426
$NUM-ONE-TO- || 0.3 0.31 0.31 426
TEN
$PROD 0.35 0.36 0.35 363
NO 0.57 0.28 0.38 404
GOOD 0.43 0.18 0.25 383
$GEST-OFF 0.41 0.32 0.36 401

Table 3.6.: GNN's scores for each class.

Overall, the GNN has similar precision scores for each class compared to PointNet.
However, the f; is lower for all classes. The best f; score is achieved by the class TO-
KNOW-OR-KNOWLEDGE, followed by the class L.

In the next experiment, the networks were trained on a data set with the top 100
classes. For this, all three architectures were kept the same as before, but with a change
in the output layer to adapt to 100 classes instead of 10 classes. All classes can be found

30

3. Sign Language Translation on Mobile Devices

in Table A.3. For that a new sub data set is created in the same way it was done for the
top 10 class data set. However, as there are fewer samples per classes, the amount per
class is set to 500. Doing so, an equalized data set is created.

Sparse categorical cross entropy loss curves Accuracy curves

—— val_loss —— val_acc
4.5 train_loss train_acc
0.4

. i

loss
w
n
o
w

o
N

accuracy

2.59

0.0

6 1‘0 2‘0 3‘0 4‘0 Sb (‘) 1‘0 2‘0 3‘0 4‘0 5‘0
epochs epochs
(a) Categorical cross entropy loss over epochs. (b) Accuracy over epochs.

Figure 3.15.: CNN'’s performance on the top 100 classes dataset.

Figure 3.15 shows that the CNN model still is able to learn to distinguish the classes,

however the accuracy dropped from 63% to approximately 33% on a validation set going
from 10 to 100 classes.

Sparse categorical cross entropy loss curves Accuracy curves

951 —— val_loss 0.25 1 — val_acc

train_loss train_acc

9.0

" V\\Ww
7.59

0.05 1 /
7.01

0.00 4

loss

accuracy
o
=
o

o
=
o
2

o 10 20 30 40 50 6 70 80 o 10 20 30 40 50 6 70 80
epochs epochs
(a) Categorical cross entropy loss over epochs. (b) Accuracy over epochs

Figure 3.16.: PointNet’s performance on the top 100 classes data set.

Again, PointNet is also trained on the data set with the top 100 most appearing classes.
As seen in Figure 3.16 the model peaks at 19% validation accuracy. Therefore, it achieves
a lower accuracy than the convolutional network.

Finally, the GNN is trained on the same data set as the other two networks. After 1000
epochs the results yields, as seen in Figure 3.17. It is again the worst performing model
among the three networks, despite the fact that it has been trained for a lot more epochs.
Another noticeable fact is, that the validation loss already is increasing after 200 epochs,

31

3. Sign Language Translation on Mobile Devices

but the validation accuracy is still increasing after that. Again, the curves are smoothed
to reduce jitter.

Sparse categorical cross entropy loss curves Accuracy curves

—— val_loss — val_acc
train_loss train_acc

o
-
N

5.51

N \M

4.5 4

[
Y
5]

loss
accuracy
o
o
®

o
o
>

4.0 4

o
o
N

o

o

=
—

3.5

0 200 400 600 800 1000 0 200 400 600 800 1000
epochs epochs

(a) Categorical cross entropy loss over epochs. (b) Accuracy over epochs.

Figure 3.17.: GNN'’s performance on the top 100 classes data set.

3.4.4. Adapting Holistic Tracking Graph

Instead of creating a new pipeline from scratch, existing modules and calculators from
MediaPipe are used. As a base for the graph, used in the sign language translation app,
the holistic tracking graph seen in Figure 3.2 will be used and adapted such that it still
does all the landmark tracking. However, it will be adapted in terms of what can be seen
on the display and the translation model also needs to be implemented.

input_video

0 FINISHED
FlowLimiter

IMAGE
HolisticLandmarkGpu

RENDER_DATA_VECTOR
VECTOR IMAGE_GPU

AnnotationOverlay
IMAGE_GPU

output_video

Figure 3.18.: Graph topology of sign translating app.

32

3. Sign Language Translation on Mobile Devices

In Figure 3.18 it can be seen that the graph has changed in the mentioned regions.
First of all, the subgraph HolisticTrackingToRenderData is removed completely, as all
the visualization, like pose, hand and face landmarks displayed by it, is not necessary
in the translation app. On top of that the HolisticLandmarkGpu subgraph now only
outputs the render data stored in a vector as packets to the AnnotationOverlay calculator.
Nevertheless, all the major changes happen inside the HolisticLandmarkGpu subgraph.

33

3. Sign Language Translation on Mobile Devices

image
IMAGE

MODEL_COMPLEXITY IMAGE
SMOOTH_LANDMARKS

ENABLE_SEGMENTATION PoseLandmarkGpu
SMOOTH_SEGMENTATION

USE_PREV_LANDMARKS LANDMARKS

SplitNormalizedLandmarkList_2 SplitNormalizedLandmarkList

IMAGE POSE_LANDMARKS FACE_LANDMARKS_FROM_POSE IMAGE
HandLandmarksLeftAndRightGpu FacelLandmarksFromPoseGpu
LEFT_HAND_LANDMARKS RIGHT_HAND_LANDMARKS FACE_LANDMARKS
12 3 0
MyConcatenateNormalizedLandmarkList
SIGNAL 0
LandmarksToTensor
MISSING_LANDMARK MATRIX
MyMissingLandmarksToRenderData TfLiteConverter
RENDER_DATA TENSORS
TENSORS
TfLitelnference
TENSORS
TENSORS

TfLiteTensorsToClassification
CLASSIFICATIONS

CLASSIFICATION_LIST
MyClassificationsToRenderData
RENDER_DATA
10

ConcatenateRenderDataVector

RENDER_DATA_VECTOR
render_data_vector

Figure 3.19.: Adapted HolisticLandmark subgraph to do sign translation from landmarks.

34

3. Sign Language Translation on Mobile Devices

Figure 3.19 shows the transformed subgraph HolisticLandmark. As before, input side
packets from the subgraph PoseLandmarkGpu are omitted for visibility reasons. Begin-
ning with the first side packet which is MODEL_COMPLEXITY, it determines the com-
plexity of the model used for detecting pose landmarks. Higher complexity means higher
accuracy but also higher computational costs, thus it is set to 1 which produces more
accurate landmarks than when using complexity 0, but the computational costs are kept
reasonable in comparison to complexity 2. Continuing with SMOOTH_LANDMARKS
which is the next side packet that is set to true as default. This helps reduce jitter across
different frames for pose landmarks [28]. ENABLE_SEGMENTATION is set to false
since a segmentation mask is not needed, thus SMOOTH_SEGMENTATION is also set to
false. The changed subgraph HolisticLandmark still takes the images provided by the
FlowLimiter calculator and forwards them to three further subgraphs which are Pose-
LandmarkGpu, FaceLandmarksFromPoseGpu and HandLandmarksLeftAndRightGpu.
The first one also provides inputs for the later two. Altogether, these subgraphs create
landmarks for pose, face and hands.

1 # Predicts pose landmarks.

2 | node {

3 calculator: "PoseLandmarkGpu"

4 input_stream: "IMAGE:image"

5 input_side_packet: "MODEL_COMPLEXITY:model_complexity"

6 input_side_packet: "SMOOTH_LANDMARKS:smooth_landmarks"

7 input_side_packet: "ENABLE_SEGMENTATION:enable_segmentation"
8 input_side_packet: "SMOOTH_SEGMENTATION:smooth_segmentation"
9 input_side_packet: "USE_PREV_LANDMARKS:use_prev_landmarks"
10 output_stream: "LANDMARKS:pose_landmarks"

11 }

12

13 # Predicts left and right hand landmarks based on the initial

14 # pose landmarks.

15 node {

16 calculator: "HandLandmarksLeftAndRightGpu"

17 input_stream: "IMAGE:image"

18 input_stream: "POSE_LANDMARKS:pose_landmarks"

19 output_stream: "LEFT_HAND_LANDMARKS:left_hand_landmarks"
20 output_stream: "RIGHT_HAND_LANDMARKS:right_hand_landmarks"
21 }

22

23 # Extracts face-related pose landmarks.

24 node {

2 calculator: "SplitNormalizedLandmarkListCalculator"

26 input_stream: "pose_landmarks"

27 output_stream: "face_landmarks_from_pose"

28 options: {

35

3. Sign Language Translation on Mobile Devices

29 [mediapipe.SplitVectorCalculatorOptions.ext] {

30 ranges: { begin: 0 end: 11 }

31 }

32 }

33 }

34

35 # Predicts face landmarks based on the initial pose landmarks.
36 node {

37 calculator: "FacelLandmarksFromPoseGpu"

38 input_stream: "IMAGE:image"

39 input_stream: "FACE_LANDMARKS_FROM_POSE:face_landmarks_from_pose"
40 output_stream: "FACE_LANDMARKS:face_landmarks"

41 }

Listing 3.2.: First nodes handling the detection of landmarks.

3.4.4.1. Combining Landmarks

As these landmarks need to be interpreted by the translation model, they first need to be
concatenated and transformed into a tensor. But before that, the landmarks from the pose
are stripped from lower body information because they are not needed in the translation
of German sign language as mentioned in 3.4.1 . This is done in the SplitNormalizedLand-
markList calculator which can be parameterized with the desired range of landmarks
of a given input landmark list stream. Beginning with the concatenation step, which is
done in the MyConcatenateNormalizedLandmarkList calculator. As the name suggests, it
takes lists of landmarks as input and combines them into a list of normalized landmarks.
The landmarks are already normalized by the subgraphs beforehand, so all it needs to
do is merge the provided lists into a bigger list. The calculator does so by iterating over
its input streams from the three previous subgraphs, whereas the subgraph responsible
for the hand landmarks has two outputs, one for each hand. In the implementation the
calculator actually also considers the landmarks from the face subgraph. However, it is
told to skip these by setting its options for skip_face_landmarks to true. Furthermore, this
calculator has an option only_emmit_if all present which changes the output behaviour
in such a manner that when it is set to True, the calculator will only output a package
to the next calculator when all the input streams have a package ready to be consumed.
This is a crucial decision to be made for the inference on the model, because sometimes
there are not packages from all input streams ready. There are several reasons for this,
for example when the hands are not present in a given frame or the face landmarks
could not be dealt with. Hence, when this option is set to True, the graph will have less
outputs, for example when a hand is hidden behind the body. However, when the option
is set to False, it is necessary to take care of the missing packets from the input streams.
In this implementation this is done by creating dummy landmarks which can be set to
a desired valued e.g. 0 or -1. While this is possible and maybe useful in other projects
with different goals, this approach will not be used in this thesis as training a model

36

3. Sign Language Translation on Mobile Devices

already is a challenging problem, so making the model learn to take care of these dummy
landmarks would be even more difficult. Providing these two boolean values is done
by adding an option to the calculator. The MyConcatenateNormalizedLandmarkList
calculator has a second output which is a signal stored in a Classification proto. The
signal is used to provide information when some of the landmarks could not be acquired.
In Table A.2 all different signal codes are listed. The code represents the sum of missing
inputs, whereas each input’s value is calculated by two to the power of its index in the

input stream list. Handling the signal is done in a calculator explained later.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Removes lower body from pose landmarks.
node {
calculator: "SplitNormalizedLandmarkListCalculator"
input_stream: "pose_landmarks"
output_stream: "no_lower_body_pose_landmarks"
options: {
[mediapipe.SplitVectorCalculatorOptions.ext] {
ranges: { begin: 0 end: 23 }
}
}
b

Combines pose landmarks all together. Piped to translation model
node {
calculator: "MyConcatenateNormalizedLandmarkListCalculator"
input_stream: "face_landmarks"
input_stream: "left_hand_landmarks"
input_stream: "right_hand_landmarks"
input_stream: "no_lower_body_pose_landmarks"
output_stream: "landmarks_merged"
output_stream: "SIGNAL:missing_landmarks"
node_options: {
[type.googleapis.com/mediapipe.
MyConcatenateVectorCalculatorOptions] {
only_emit_if_all_present: true
skip_face_landmarks: true
+
}
X

Listing 3.3.: Next nodes, combining the present landmarks.

37

3. Sign Language Translation on Mobile Devices

3.4.4.2. Converting Landmarks to Tensors

After this first step, the combined list of normalized landmarks is send to the next
calculator which is LandmarksToTensor. Inside this, the list of landmarks is taken and
stored in a buffer. Here, only the x and y values of the landmarks are kept, as the model
is not trained on z, visibility and presence. From the buffer a Matrix of the MediaPipe
Matrix format is created and send to the next calculator.

The following three calculators are provided by the MediaPipe framework. Beginning
with TfLiteConverter calculator. This calculator can have either a Matrix proto, Tensor
proto or an Image proto as input. This is the reason why the landmarks were transformed
from a list into a Matrix in the first place. The main work this calculator does, is transform
its input into TfLite tensors and can be used with tensors on CPU or GPU.

1 # Converts merged landmarks to Matrix format

2 node {

3 calculator: "LandmarksToTensorCalculator"

4 input_stream: "landmarks_merged"

5 output_stream: "matrix_from_landmarks"

6 node_options: {

7 [type.googleapis.com/mediapipe

8 .LandmarksToTensorCalculatorOptions]{

9 attributes: [X, Y]

10 }

11 }

12 }

13

14 # Converts Matrix to Tensors

15 node {

16 calculator: "TfLiteConverterCalculator"

17 input_stream: "MATRIX:matrix_from_landmarks"
18 output_stream: "TENSORS:tensors_from_matrix"
19 options: {

20 [mediapipe.TfLiteConverterCalculatorOptions.ext] {
21 zero_center: false

22 }

2 }

24 }

Listing 3.4.: Next nodes, converting landmarks to tensors which can be put into the
translation model.

38

3. Sign Language Translation on Mobile Devices

3.4.4.3. Inference on Translation Model

Followed by the TfLiteInference calculator which takes the TfLite tensors from its input
stream and inferences them on the model provided in the calculator’s options. The
output of this calculator is the model’s output tensors.

1 # Predicts type class.

2 | node {

3 calculator: "TfLiteInferenceCalculator"

4 input_stream: "TENSORS:tensors_from_matrix"

5 output_stream: "TENSORS:tensors"

6 options: {

7 [mediapipe.TfLiteInferenceCalculatorOptions.ext] {
8 model_path: "mediapipe/modules/holistic_landmark/model.tflite"
9 b

10 }

11 }

Listing 3.5.: Node that takes care of inference on the translation model.

3.4.4.4. Converting Tensors to Classifications

Since a classification model is used, the output tensors from the translation model need
to be transformed into Classifications. This is done by the TfLiteTensorsToClassifica-
tion calculator. Classification is another format of the MediaPipe framework which is
represented by its index in a given label-map, the probability score calculated by the
model and a label name. Classifications are represented in C++ protocol buffers. The
calculator has three options it can be set to. First of, the path to the label-map. Second
of, a minimum score threshold which needs to be exceeded for a gesture to be qualified
as a classification and a top k value which determines how many classifications will
be added to the output in descending order depending on their scores. Each packet
received by this calculator goes through the following processing steps. In the beginning
the calculator checks if it is set to binary classification or multiple classes classification.
For this thesis only the later is needed. It then proceeds to check all scores for each class
and creates a Classification for all that surpass the threshold. These Classifications are
then stored into a list, which gets sorted and cut in a final step, where the last elements
are cut depending on the value set of top k. In this project k will be set to 1. The top k
classifications are outputted as a Classification list.

1 # Tensors to classification proto

2 node {

3 calculator: "TfLiteTensorsToClassificationCalculator"
4 input_stream: "TENSORS:tensors"

5 output_stream: "CLASSIFICATIONS:classifications"

39

3. Sign Language Translation on Mobile Devices

6 options: {

7 [mediapipe.TfLiteTensorsToClassificationCalculatorOptions.ext] {
8 top_k : 1

9 min_score_threshold: 0.1

10 label_map_path: "labelmap.txt"

11 }

12 }

13 }

Listing 3.6.: Node converting tensors from model to classification C++ proto.

3.4.4.5. Converting Results to Render Data

Classifications now need to be displayed which is done in the continuing two calculators.
MyClassificationToRenderData takes the list and transforms it to render data. It does
so by iterating over the list of Classifications and adding render data for each of the
Classifications. The render data contains values of the color given in the calculators
options, a text with properties like the string to be displayed, font height and thickness.
Another calculator to generate render data is the MyMissingLandmarksToRenderData
calculator. It takes a Classification as input where the signal of the MyConcatenateNor-
malizedLandmarkList is stored. Render data from this calculator is set to be shown
at a lower position than the output of the translation model. Also, for better visibility
a filled rectangle which is placed behind the signal’s text is added to the render data.
Altogether, the render data gets piped to the last node of the HolisticLandmark subgraph,
which is the ConcatenateRenderData calculator. In this last calculator the render data
is converted into a vector of render data. This calculator also has the functionality to
concatenate multiple render data input streams into one output stream, similar to the
ConcatenateNormalizedLandmarkList calculator.

Coming back to the graph seen in Figure 3.18, in a final step the output from the Holisti-
cLandmarkGpu subgraph and images from the FlowLimiter are taken as input by the
AnnotationOverlay calculator. Here output images, that show the information stored in
the render data vector, are created which are displayed on the screen of the device.

1 # classification proto to render data

2 node {

3 calculator: "MyClassificationsToRenderDataCalculator"

4 input_stream: "CLASSIFICATION_LIST:classifications"

5 output_stream: "RENDER_DATA:classification_render_data"
6 options {

7 [mediapipe.MyClassificationsToRenderDataCalculatorOptions.ext] {
8 produce_empty_packet : false

9 color { r: 2565 g: 0 b: 0 }

10 }

11 }

40

3. Sign Language Translation on Mobile Devices

12 }

13

14 # missing landmarks info to render data

15 node{

16 calculator: "MyMissinglLandmarksToRenderDataCalculator"
17 input_stream: "MISSING_LANDMARK:missing_landmarks"

18 output_stream: "RENDER_DATA:missing_info_render_data"
19 options {

20 [mediapipe.MyMissingLandmarksToRenderDataCalculatorOptions.ext] {
21 produce_empty_packet : false

2 color { r: 0 g: 0 b: 0%}

23 fill_color { r: 255 g: 255 b: 255}

24 }

25 }

26 }

27

28 # Concatenates all render data.

2 node {

30 calculator: "ConcatenateRenderDataVectorCalculator"
31 input_stream: "classification_render_data"

32 input_stream: "missing_info_render_data"

3 output_stream: "render_data_vector"

34 }

Listing 3.7.: Nodes taking care of creating rendering data.
All python code for creating the data set and training the models can be found in a git
repository stored in https://gitlab.lrz.de/ga94mor/ma.
Furthermore, the adapted MediaPipe directory including all new calculators is also stored
there. Also, a bash file which builds and deploys the app via adb can be found in the
repository. The code from MediaPipe is licensed under Apache 2.0 [35].

3.5. User Interface

In this chapter the app’s user interface is documented. For that, the design of the app
is elicited. Beginning with the two existing activities, the app contains a MainActivity
as all apps do. In general, activities represent pages in Android which usually fill up
the whole screen. The MainActivity is launched when starting the app and its layout
is a ConstraintLayout in this case. ConstraintLayouts are an easy way to structure user
interface as desired.

41

3. Sign Language Translation on Mobile Devices

10:35 ®A40Q37% 1:31 5 PAUS3%

Sign Translator Sign Translator

Please grant camera permissions.

L — |
Figure 3.20.: Screenshot of the MainActvitiy of the app.

As the left screenshot of Figure 3.20 shows, there are four different parts in this
activity. Beginning with the top bar, it contains the app’s name on the left and an action
menu on the right represented by three dots below one another. From there the second
activity can be launched which is the SettingsActivity. The third part is the orange
FloatingActionButton with a camera icon that illustrates a switch on it. With this button
the user is able to change between back and front camera, however, the back camera is
the default one. The FloatingActionButton is utilized, because it can live over another
view, which in this case is the FrameLayout in which the output video from the pipeline
is visualized. Finally, the black part of the screenshot is the FrameLayout which shows
the pipeline’s output as already mentioned. Here, the translated gestures are visualized
in addition to what the camera is seeing. On the right screenshot, a message can be seen
which asks the user to grant camera permissions. However, this screen can only be seen if
the user does not grant the permission the first time the app is started. If denied, the app
is not able to use the camera at all. After restarting, the user can choose again to grant
this essential permission or by editing the permissions of the app in their phone’s setting
permission can be given. The previously mentioned SettingsActivity can be viewed in
Figure 3.21. For this activity’s layout the LinearLayout was chosen because it only needs
to represent a simple list of items and LinearLayouts are preferable for simple layouts.

42

3. Sign Language Translation on Mobile Devices

As this activity has the MainActivity as its parent, there is a button with a left arrow
which lets the user navigate back to the main page. The content of this activity is a list
of items which contain information about the app. Additionally, there could be items
which allow the user to parameterize the app, but more on that in the last chapter of
this thesis. The items of the list have a LinearLayout as their layout with two TextView
objects that represent the title and the description of the item and are separated by a line.
More items can be appended by adding values to the arrays storing the information in
the SettingsActivity.

1115 5 QAB49%

< Sign Translator

Email

maximilian.karpfinger@tum.de
Version

1.0

Figure 3.21.: The SettingsActivity’s user interface.

3.6. Testing & Results

At first, this section reviews the performance of the app. Furthermore, the trained
networks are evaluated on a test set to check if they meet their achieved accuracy. At last,
the app is tested in different scenarios and checked if it is able to perform sign language
translation.

43

3. Sign Language Translation on Mobile Devices

3.6.1. Performance evaluation

On mobile devices, real-time applications need to be efficient because the hardware
usually is slow. In order to measure the performance of the calculators used in the trans-
lation pipeline, MediaPipe’s profiling and tracing tools are used. For a first experiment a
Google Pixel 4a is used on a 60 seconds long video from the DGS-Korpus.

H name counter completed dropped fps time latency H
AnnotationOverlay 648 647 1 4856 3.568 202.372
ConcatenateRenderDataVector 648 648 0 3.113 0.021 321.178
FlowLimiter 2439 648 1791 4.806 89.795 118.261
LandmarksToTensor 376 376 0 2952 0.021 338.724
MyClassificationsToRenderData 376 376 0 2948 0.026 339.19
MyConcatenateNormalizedLandmarkList 648 648 0 3.117 0.125 320.669
MyMissingLandmarksToRenderData 272 272 0 3.376 0.037 296.135
SplitNormalizedLandmarkList 648 648 0 3.796 0.044 263.389
TfLiteConverter 376 376 0 2951 0.026 338.8
TfLiteInference 376 376 0 2949 0.233 338.859
TfLiteTensorsToClassification 376 376 0 2948 0.018 339.144

Table 3.7.: App profiling statistics. Mobile device used is Google Pixel 4a and the transla-
tion model is the CNN designed on classifying the top 10 classes of gestures.

From Table 3.7 there are a few interesting insights on how the calculators of the
translation part of the app are utilized. The total number of packages that went into the
FlowLimiter calculator from the video’s input stream is 2439. Out of that, 1791 were
dropped. As explained previously, this calculator only forwards packages when the next
calculator is ready and does not create waiting queue or similar buffering strategies. In
total, approximately 73.4 % of all packages were dropped. Another remarkable fact is that
the FlowLimiter has the highest average time spent within the calculator in milliseconds
and thereby having a total of 38.3% total time spent in the whole pipeline. After the
FlowLimiter calculator, numerous calculators from the landmark detection subgraphs
of hands, face and pose are actually used. However, these are left out from the table
for visibility reasons. After these three subgraphs the SplitNormalized calculator is next
in the pipeline. As it can be seen, it receives all the packages which went from the
FlowLimiter through the detection subgraphs and also forwards the same number of
packages. Followed by the calculators for combining and converting landmarks and
also by applying inference on the translation model and converting the results back to
render data, all these calculators share a small average time spent within themselves
and also do not drop any packages. None of them have a noticeable amount of time
spent. However, as the TfLiteInference calculator uses a small model in this experiment
it would be important to check if the pipeline behaves the same for a bigger and more
complex model. The results from the profiler also show that all calculators are run on
seven threads besides the AnnotationOverlay calculator.

44

3. Sign Language Translation on Mobile Devices

3.6.2. Test Set Evaluation on all Translation Models

For the test set evaluation at first a test set is created. As previously elaborated, the
videos for the test set are selected by randomly sampling participants and excluding
them from the other data. Then, in the same way as for the training data, a test set
is created. Additionally, all samples which do not have a label of the top 100 classes
training set are removed. For the GNN the data also is transformed to graphs.

Model | Training | Validation | Test
CNN 0.44 0.34 0.32
PointNet 0.23 0.19 0.18
GNN 0.12 0.08 0.07

Table 3.8.: Accuracy of all models on all sets. The low accuracy can be explained because
of multiple reasons. For example, using only 65 landmarks from pose and
hands of the final frame of a sign is not enough and more data is needed like
the previous frames and considering landmarks from the face. Furthermore,
for the amount of classes more sophisticated models need to be used. More
reasons are discussed in the Conclusions section.

Resulting test set accuracy is lower than the validation accuracy for all three models.
However, this is expected, because the data is completely unknown to the model. Again,
the performance compared in between the models does not change as the convolutional
network still achieves the highest accuracy, followed by PointNet and then the graph
neural network.

45

3. Sign Language Translation on Mobile Devices

3.6.3. Different scenarios

13:06 4 QA% 12:55 4 5 PA064%

Sign Translator : Sign Translator

Figure 3.22.: Screenshot of gestures from DGS-Korpus videos being translated.

Figure 3.22 shows screenshots of the app translating gestures from videos of the DGS Kor-
pus. In this case, the convolutional network is used which is trained on the top 10 classes.
In the left frame the person is signing the gesture for TO-KNOW-OR-KNOWLEDGE
which is WISSEN in German. This gesture’s characteristic is the index finger pointing
to the head. The app successfully recognizes this and annotates the output video with
the string. Additionally, the network’s score for the prediction is also seen next to the
translation. On the right frame a different sign can be seen, this time the sign MUST
which is MUSS in German. Again, both the word and the network’s prediction score are
rendered on top of the output video.

46

3. Sign Language Translation on Mobile Devices

10:25 5 PAANM%

Sign Translator

Linke Hand nicht erkannt

Figure 3.23.: Info message displayed by the app when landmarks are missing from a
frame.

As previously discussed, the app needs to handle the case when the pose estimators
detect landmarks, but not all do in a certain frame. For example, when one hand is not
visible. This case can be seen in Figure 3.23 where a person is actually signing the gesture
for MUST, however, their left hand is cut off in the image. Thus, the app does not try to
translate the gesture, but rather informs the user that the landmarks from the left hand
cannot be detected. This would be the same, if for instance the right hand is hidden or
even both hands are not visible.

In another test scenario the app was tested outside at night. The experiment showed that
the app is not able to detect the necessary landmarks when there is not enough light for
the camera. Furthermore, the holistic tracking app by MediaPipe was tested at the same
time to confirm that the pose estimation models do not detect the landmarks.

47

3. Sign Language Translation on Mobile Devices

10:36 6t 4 W94 % 10:58 46+ 4 W90 %

Sign Translator g Sign Translator

Figure 3.24.: Screenshot of gestures being translated in a real world scenario.

Figure 3.24 shows that the app can work with more difficult backgrounds than a blue
wall. The left image was taken outside during sunny weather and the app detects the
sign KLEIN which is German for small. On the right image, the app was used in a coffee
shop. Here, the app detects the sign SO which is like this in English. Additionally, the
CNN which was trained on the top 100 most used signs was used for these pictures.

48

4. Conclusions

In this final chapter of the thesis, the study on sign language translation on mobile
devices is first summarized, followed by a discussion on the findings and then an outlook
on future work which could extend on the implemented pipeline is given.

As a first step, the functionality and rules of sign language were examined. Certain
classes of signs are elicited, for example indexing or productive signs in comparison to
normal signs. The differences between manual and non-manual means of expression are
explained. On one hand are the possibilities of using hands and arms and on the other
hand a signer can support their message by adding non-manual means of expression, for
example by using facial expressions. In the second step, architectures of neural networks
that can be used for the translation of sign language gestures were investigated. After
reading into the literature of the mentioned topics, the translation pipeline had to be
implemented. For that the decision to settle with the MediaPipe framework was made.
With MediaPipe it is necessary to create a pipeline of calculators from an input video
stream to an output video stream. Because MediaPipe already has a complete module
that does pose estimation and provides landmarks of face, hands and pose. The module
was used and a new pipeline was created from it. Summarizing, the new pipeline had to
deal with combining the provided landmarks and then converting these to tensors, so
that they can be fed into a TensorflowLite model. Finally, the results from the translation
model had to be transformed into render data which can be displayed and seen on the
mobile phone. For the training of the models, data from the DGS-Korpus was used. They
provide video material of people speaking German sign language, which is annotated
with the meaning of each gesture. Three different architectures were tried. First, a small
convolutional network which surprisingly achieved the best results. Second, PointNet
was also able to learn to recognize signs. Third, a graph neural network was trained
which achieved the lowest accuracy of the networks. The pipeline also was evaluated in
terms of computational costs for each calculator to show that the app is able to perform
gesture translation in real time. Concluding, the implementation of an app, that is able to
do sign language translation, was done successfully, however, the road to achieve results
that are applicable in the real world is long.

Now, the study of this thesis is discussed. Starting with the pipeline of the app, it
was decided to use the framework MediaPipe by Google. The main reason for that was
that the framework offers a broad variety of modules for pose estimation and is also able
to build apps for mobile devices which is important for this thesis. Another possibility
is OpenPose, however, the support for Android devices is scarce in comparison to Me-
diaPipe. Building the pose estimation modules from scratch and thereby not needing

49

4. Conclusions

a framework to begin with is not a reasonable approach for such a thesis, due to the
limited time available. Going on to the implementation of the pipeline, it can be said that
the task was done successfully. Every required part works as intended, from combining
existing landmarks to converting them to tensors and applying them on a translation
model. Resulting classification is rendered onto the display of the device as desired.
Making use of existing calculators for converting landmarks instead of creating an own
implementation seems reasonable to reduce implementation costs. An improvement to
the pipeline could be to create a subgraph which includes all the introduced calculators.
By doing so, the subgraph could be used in other models easily, if desired. Again, the
pipeline itself was not created from scratch but rather is an adaption from the existing
holistic tracking module by MediaPipe whereas all the visualization parts for landmarks
and joints are removed and instead the part for translating gestures from landmarks
is added. While the app technically works, it is not yet applicable in the real world.
This is because of the lack of a sophisticated translating model which is able to correctly
translate gestures. Coming back to the key concepts of sign languages, it can be said
that the models used in this study only looked at three of the four categories from
the manual means of expression. These are the shape, orientation and the position of
the hand. Still, these features lack some information as they are only provided in 2D.
The missing aspect of the manual means of expression is the movement of the hand.
Sequences of landmarks would need to be considered for this instead of only the final
frame of a gesture. From the non-manual means of expression none of the four categories
are considered. This is because the landmarks from the face are not included. Even if
such a model would be implemented, there is still a lot of work which needs to be done
because translating single signs is not enough. As sign languages are different to spoken
languages another model which maps a sequence of translated signs to spoken language
sentences is required. With that, one could speak of real time sign language translation.
In this study, three models with different architectures were tested. Beginning with the
convolutional network, which surprisingly had the best results on the validation set. It
achieved an accuracy up to 33% on the top 100 classes set. Continuing with PointNet,
which at first seems like the superior model as it focuses on data points instead of images
which is the normal use case of convolutional networks. However, as the training showed,
it was not quite able to achieve the same results, peaking at approximately 19% on the
validation set. Reasons for that could be that PointNet was designed to work on 3D
points instead of the available 2D landmarks. In the future, these landmarks are likely
to be present in 3D as well, so it might be interesting to see how PointNet performs in
that case. Another cause for the lower accuracy is that PointNet actually was meant to
work on data points from point clouds. This means that the points could be sampled
for example from a plain. Landmarks, in contrast to that, are not from 3D objects where
one just cannot sample points from. Finally, the worst performing model was the graph
neural network. While it might not achieve the same results as the other two networks, it
probably fits the problem case the best. Because the landmarks can form graph structures,
for example fingers from the hand, it seems intuitive to work with GNNs. A more
thought-out model is needed. For example, techniques to prevent over-fitting such as
dropout could be useful. More and different kinds of layers can help as well. An idea

50

4. Conclusions

here would be to have a hierarchical structure which at first looks at all landmarks and
then reduces the amount of nodes in the later layers. Not surprisingly, the results from
the test set reflect the findings from the training of the network, as all models almost
achieve their validation accuracy. This is desirable, because then the models prove to
generalize and thus being able to correctly predict on unseen data. Reviewing the results
from the profiling and tracing of the app’s performance, the app does not require too
high computational costs. All introduced calculators have a low average time spent per
package in comparison to the existing calculators from the holistic tracking module. The
TfLiteInference calculator has the most time spent of all the new calculators. Because
the profiling was done with a small translation network it would be interesting to see
how much the time spent increases when using a larger model. The app was tested
in different scenarios. Beginning with the first scenarios which were videos from the
DGS-Korpus, it can be said that the app is able to detect landmarks and thereby also use
the landmarks to predict a translation. However, when there is not enough light, the app
does not work as the landmarks from the pose cannot be found. Because of that, it would
be important to have functionality to turn the flashlight on. As seen in Figure 3.24 the
app also works in more realistic scenarios. Instead of using a blue wall as background,
the app is tested in the real world. With good lighting the app is able to do its job outside
in nature or even in a coffee shop. However, when the lighting was very bright due to
sunny weather, the app sometimes struggles to detect all landmarks and therefore shows
the message that some of the landmarks are missing.

There is a lot of work which can build up on this project. One huge topic is improving
the translation of sign language. The approach used in this thesis for the translation of
signs is not sophisticated enough for an application used in the real world. For example,
for an appropriate translation, one would need three dimensional landmarks coordinates
instead of the existing two dimensional ones. With these the usage of the space around
a signing person could be understood more clearly. Furthermore, the network would
need to be trained on subtypes instead of types. Another approach to this could be to
train another network that translates from types to subtypes. As real world signs do not
only depend on their final frame, it is also required to utilize some sort of network that
can take sequences of frames as input. Using more frames per sign will most probably
enhance the quality of the translation. A future project should also take the landmarks
from the face into consideration and especially have a look at mouthings. For instance,
these could be separately detected by a network that was trained on mouthings. Together
with another model that takes the rest of the landmarks from pose and hands as input,
the translation could be improved. Changing the pipeline would be necessary for that.
However, it can be done without great effort, as the pipeline can be easily adapted
and more calculators can be added to it. After all, this would still not be enough for a
complete translation of sign languages as only single signs will be translated. Another
model which translates sequences of detected signs to spoken German language would
be required. This seems to be a very complex task on its own, as the German sign
language differs from German spoken language in terms of grammar and vocabulary

51

4. Conclusions

and cannot be translated word by word, as it is done in other NLP tasks. There are some
features which could be added to the current app. For example, an activity could be
added in which the user first selects a translation model which then will be loaded by
the graph. Thereby, it would allow users to switch between multiple sign languages, if a
trained network exists for that given language. The settings menu could be improved by
offering more parameterization possibilities. Here, parameters for displaying text could
be set or additional options for calculators, like a minimum threshold for classifications
to be displayed. One feature which would improve usability could be a button which
allows the user to switch off/on the flashlight. This can help when the app cannot detect
landmarks due to bad lightning. For example, the implemented FloatingActionButton
could be expanded and then offer the functionality for switching between front and back
camera and additionally turning off/on the flashlight.

52

List
1.1.

1.2.

2.1.

2.2.

2.3.

3.1.

3.2.
3.3.
3.4.
3.5.
3.6.
3.7.
3.8.
3.9.

3.10.
3.11.

3.12.
3.13.

of Figures

Screenshots of gestures being translated by the app. The app displays
the translated sign and also the score of the classification network for the
prediction. L
Dataflow from input image to landmarks to translated sign.

An illustration of the architecture of AlexNet. The network’s input is
150,528-dimensional, and the number of neurons in the network’s remain-
ing layers is given by 253,440-186,624-64,896-64,896—43,264— 4096-4096-1000.
Figure from [10], including the cut-off on thetop.
Original applications of PointNet as in [11]. In addition, application on
landmarks for gesture translation. Figure adapted from [11].
PointNet Architecture. The classification network takes n points as input,
applies input and feature transformations, and then aggregates point
features by max pooling. The output is classification scores for k classes.
The segmentation network is an extension to the classification net. It
concatenates global and local features and outputs per point scores. “mlp”
stands for multi-layer perceptron, numbers in bracket are layer sizes.
Batchnorm is used for all layers with ReLU. Dropout layers are used for
the last mlp in classification net. Figure from [11].

Own visualization of the studio setup. Participant A and B are placed in
front of a screen with a camera facing them.
Original graph topology of holistic tracking module by MediaPipe.
Original HolisticLandmark subgraph.
All 33 pose landmarks. Figure from [29].
21 hand landmarks. Figure from [30].
Screenshot from MediaPipe’s Holistic Tracking app..
Architecture of the CNN model.
Architecture of the GNN used in this thesis.
Structure of a meta file. It has an XML-like structure with the node
ANNOTATION_DOCUMENT as the root element.
Normalized landmarks plotted in a coordinate system with different colors
for differentparts. L L L Lo
Own visualization of how the nodes are connected to each other nodes.
Each node represents a landmark from either pose or hand. The landmarks
are horizontally flipped by the tracking module.
Training curves for the CNN on 10 classes.
Training curves of PointNet on 10 classes.

11
14
14
16
16
17
19
20

21

23

24

28
29

53

List of Figures

3.14.
3.15.
3.16.
3.17.
3.18.
3.19.
3.20.
3.21.
3.22.
3.23.

3.24.

Training curves of the GNN on 10classes.. 30
CNN'’s performance on the top 100 classes dataset. 31
PointNet’s performance on the top 100 classes dataset. 31
GNN's performance on the top 100 classes dataset. 32
Graph topology of sign translatingapp. 32
Adapted HolisticLandmark subgraph to do sign translation from landmarks. 34
Screenshot of the MainActvitiy of theapp. 42
The SettingsActivity’s user interface. 43
Screenshot of gestures from DGS-Korpus videos being translated. 46
Info message displayed by the app when landmarks are missing from a

frame. 47
Screenshot of gestures being translated in a real world scenario. 48

54

List of Tables

3.1. Allannotationtiers.. Lo o
3.2. Amount of participants per region.o L oL
3.3. Top 10 classes of signs in the available DGS-Korpus’ videos.
3.4. CNN’sscores foreachclass.
3.5. PointNet’s scores foreach class..
3.6. GNN’sscores foreachclass..
3.7. App profiling statistics. Mobile device used is Google Pixel 4a and the
translation model is the CNN designed on classifying the top 10 classes of
gestures.
3.8. Accuracy of all models on all sets. The low accuracy can be explained
because of multiple reasons. For example, using only 65 landmarks from
pose and hands of the final frame of a sign is not enough and more data is
needed like the previous frames and considering landmarks from the face.
Furthermore, for the amount of classes more sophisticated models need to
be used. More reasons are discussed in the Conclusions section.

A.1l. Randomly sampled participants for the testset.
A.2. Signal codes of missing landmarks.
A.3. Classes of the top 100 classes dataset.

44

55

List of Listings

3.1.
3.2
3.3.
34.

3.5.
3.6.
3.7.

The profiling configuration. 26
First nodes handling the detection of landmarks. 36
Next nodes, combining the present landmarks. 37
Next nodes, converting landmarks to tensors which can be put into the

translationmodel. L. Lo Lo 38
Node that takes care of inference on the translation model.. 39
Node converting tensors from model to classification C++ proto. 40
Nodes taking care of creating rendering data. 41

56

Bibliography

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

D. Gehorlosen-Bund. (2022). “Deutsche gebdardensprache,” [Online]. Available:
https://www.gehoerlosen-bund.de/faq/deutsche’,5C%20geb’,C3%A4rdensprache,
5C%20(dgs) (visited on 02/02/2022).

D. Gehorlosen-Bund. (2022). “Deutsche gebdrdensprache,” [Online]. Available:
https : //www . gehoerlosen-bund . de/faq/geh%C3%B6rlosigkeit (visited on
02/02/2022).

L. Marcel, “Avatare zur darstellung von gebardensprache,” Masterarbeit, Branden-
burgische Technische Universitat Cottbus, 2012.

J. Stokoe William C., “Sign Language Structure: An Outline of the Visual Communi-
cation Systems of the American Deaf,” The Journal of Deaf Studies and Deaf Education,
vol. 10, no. 1, pp. 3-37, Jan. 2005, 1ssNn: 1081-4159. por: 10.1093/deafed/eni001.
eprint: https://academic . oup . com/ jdsde/article-pdf/10/1/3/1034248/
eni0O01.pdf.

C. Papaspyrou, Grammatik der Deutschen Gebirdensprache aus der Sicht gehorloser
Fachleute. Signum Verlag, 2008.

MediaPipe. (2022). “Live ml anywhere,” [Online]. Available: https://mediapipe.
dev/ (visited on 12/25/2021).

Google. (2022). “Google assistant,” [Online]. Available: https://assistant.google.
com/intl/de_de/ (visited on 02/09/2022).

Apple. (2022). “Siri,” [Online]. Available: https : //www . apple . com/de/siri/
(visited on 02/09/2022).

W. fiir Unterstiitzte Kommunikation UG. (2022). “Eis - eine inklusive sprachler-
napp,” [Online]. Available: https://www.eis-app.de/ (visited on 02/09/2022).

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Advances in Neural Information Processing Systems,
E. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, Eds., vol. 25, Curran
Associates, Inc., 2012.

R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas, “Pointnet: Deep learning
on point sets for 3d classification and segmentation,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2017, pp. 77-85. por: 10.1109/CVPR.
2017.16.

J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun, “Graph neural networks:
A review of methods and applications,” CoRR, vol. abs/1812.08434, 2018. arXiv:
1812.08434.

57

https://www.gehoerlosen-bund.de/faq/deutsche%5C%20geb%C3%A4rdensprache%5C%20(dgs)
https://www.gehoerlosen-bund.de/faq/deutsche%5C%20geb%C3%A4rdensprache%5C%20(dgs)
https://www.gehoerlosen-bund.de/faq/geh%C3%B6rlosigkeit
https://doi.org/10.1093/deafed/eni001
https://academic.oup.com/jdsde/article-pdf/10/1/3/1034248/eni001.pdf
https://academic.oup.com/jdsde/article-pdf/10/1/3/1034248/eni001.pdf
https://mediapipe.dev/
https://mediapipe.dev/
https://assistant.google.com/intl/de_de/
https://assistant.google.com/intl/de_de/
https://www.apple.com/de/siri/
https://www.eis-app.de/
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/CVPR.2017.16
https://arxiv.org/abs/1812.08434

Bibliography

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

R. Khan, “Sign language recognition from a webcam video stream,” Masterarbeit,
Technische Universitiat Miinchen, 2022.

A. C. Duarte, S. Palaskar, D. Ghadiyaram, K. DeHaan, F. Metze, J. Torres, and X.
Gir6-i-Nieto, “How?2sign: A large-scale multimodal dataset for continuous american
sign language,” CoRR, vol. abs/2008.08143, 2020. arXiv: 2008.08143.

Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “Openpose: Realtime multi-
person 2d pose estimation using part affinity fields,” CoRR, vol. abs/1812.08008,
2018. arXiv: 1812.08008.

A. Khanal, “Hand pose estimation and gesture detection from webcam images,”
Masterarbeit, Technische Universitat Miinchen, 2021.

N. Kanopoulos, N. Vasanthavada, and R. L. Baker, “Design of an image edge
detection filter using the sobel operator,” IEEE Journal of solid-state circuits, vol. 23,
no. 2, pp. 358-367, 1988.

C. Kellinger, “Data preprocessing for sign language detection with machine learn-
ing models,” Bachelorarbeit, Technische Universitidt Miinchen, 2021.

S. Konig, G. Langer, T. Hanke, R. Konrad, D. Blanck, S. Goldschmidt, I. Hofmann,
S.-E. Hong, O. Jeziorski, L. Konig, R. Nishio, C. Rathmann, S. Matthes, and S.
Worseck, Handbuch fiir Kontaktpersonen Teil I: Projekt, Werbung, Informantensuche,
Raumsuche, Oct. 2020. po1: 10.25592/uhhfdm. 1893.

G. Langer, S. Konig, T. Hanke, R. Konrad, D. Blanck, S. Goldschmidt, I. Hofmann,
S.-E. Hong, O. Jeziorski, L. Konig, R. Nishio, C. Rathmann, S. Matthes, and S.
Worseck, Handbuch fiir Kontaktpersonen Teil 1I: Erhebung, Einverstindniserklirung, Oct.
2020. por: 10.25592/uhhfdm. 1895.

T. Hanke, S.-E. Hong, S. Konig, R. Konrad, G. Langer, S. Matthes, R. Nishio, and
A. Regen, “Segmentierung / segmentation,” German and English, DGS-Korpus
project, IDGS, Hamburg University, Hamburg, Germany, Project Note AP03-2010-
01, version 3, Mar. 2019. por1: 10.25592/uhhfdm.817.

R. Konrad, T. Hanke, G. Langer, S. Konig, L. Konig, R. Nishio, and A. Regen,
“Offentliches DGS-Korpus: Annotationskonventionen / Public DGS Corpus: Anno-
tation conventions,” German and English, DGS-Korpus project, IDGS, Hamburg
University, Hamburg, Germany, Project Note AP03-2018-01, version 3, Sep. 2020.
DOI: 10.25592/uhhfdm. 822.

C. Lugaresi,]J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays, F. Zhang,
C.-L. Chang, M. Yong, J. Lee, W.-T. Chang, W. Hua, M. Georg, and M. Grundmann,
“Mediapipe: A framework for perceiving and processing reality,” in Third Workshop
on Computer Vision for AR/VR at IEEE Computer Vision and Pattern Recognition (CVPR)
2019, 2019.

G. Developers. (2022). “Protocol buffers,” [Online]. Available: https://developers.
google.com/protocol-buffers/docs/cpptutorial (visited on 02/07/2022).

58

https://arxiv.org/abs/2008.08143
https://arxiv.org/abs/1812.08008
https://doi.org/10.25592/uhhfdm.1893
https://doi.org/10.25592/uhhfdm.1895
https://doi.org/10.25592/uhhfdm.817
https://doi.org/10.25592/uhhfdm.822
https://developers.google.com/protocol-buffers/docs/cpptutorial
https://developers.google.com/protocol-buffers/docs/cpptutorial

Bibliography

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

C. Lugaresi, J. Tang, H. Nash, C. McClanahan, E. Uboweja, M. Hays, F. Zhang, C.-L.
Chang, M. G. Yong, J. Lee, W.-T. Chang, W. Hua, M. Georg, and M. Grundmann,
Mediapipe: A framework for building perception pipelines, 2019. arXiv: 1906 . 08172
[cs.DC].

Bazel. (2022). “Build and test software of any size, quickly and reliably,” [Online].
Available: https://bazel.build/ (visited on 12/25/2021).

G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

MediaPipe. (2022). “Mediapipe holistic — simultaneous face, hand and pose pre-
diction, on device,” [Online]. Available: https://ai.googleblog. com/2020/12/
mediapipe-holistic-simultaneous-face.html (visited on 12/25/2021).

MediaPipe. (2022). “Mediapipe pose,” [Online]. Available: https://google.github.
io/mediapipe/solutions/pose.html (visited on 02/15/2022).

MediaPipe. (2022). “Mediapipe hands,” [Online]. Available: https: //google .
github.io/mediapipe/solutions/hands.html (visited on 02/15/2022).

MediaPipe. (2022). “Mediapipe face mesh,” [Online]. Available: https://google.
github.io/mediapipe/solutions/face_mesh.html (visited on 02/16/2022).

Spektral. (2022). “Spektral,” [Online]. Available: https://graphneural .network/
(visited on 02/28/2022).

D. P. Kingma and]. Ba, Adam: A method for stochastic optimization, 2017. arXiv:
1412.6980 [cs.LG].

MediaPipe. (2022). “Tracing and profiling,” [Online]. Available: https://google.
github.io/mediapipe/tools/tracing_and_profiling.html (visited on 03/08/2022).

Apache. (2022). “Apache license, version 2.0,” [Online]. Available: https://www.
apache.org/licenses/LICENSE-2.0 (visited on 03/19/2022).

59

https://arxiv.org/abs/1906.08172
https://arxiv.org/abs/1906.08172
https://bazel.build/
https://ai.googleblog.com/2020/12/mediapipe-holistic-simultaneous-face.html
https://ai.googleblog.com/2020/12/mediapipe-holistic-simultaneous-face.html
https://google.github.io/mediapipe/solutions/pose.html
https://google.github.io/mediapipe/solutions/pose.html
https://google.github.io/mediapipe/solutions/hands.html
https://google.github.io/mediapipe/solutions/hands.html
https://google.github.io/mediapipe/solutions/face_mesh.html
https://google.github.io/mediapipe/solutions/face_mesh.html
https://graphneural.network/
https://arxiv.org/abs/1412.6980
https://google.github.io/mediapipe/tools/tracing_and_profiling.html
https://google.github.io/mediapipe/tools/tracing_and_profiling.html
https://www.apache.org/licenses/LICENSE-2.0
https://www.apache.org/licenses/LICENSE-2.0

A. Appendix

ber-14
ber-54
fra-43
fra-63
goe-06
goe-35
hb-26
hb-10
hh-04
hh-13
koe-06
koe-55
lei-41
lei-72
mst-12
mst-19
mue-36
mue-11
mvp-17
mvp-29
nue-08
nue-01
sh-04
sh-05
stu-61
stu-04

Table A.1.: Randomly sampled participants for the test set.

60

A. Appendix

] Code ‘ Landmarks not detected
0 None
1 Face
2 Left hand
3 Face and left hand
4 Right hand
5 Face and right hand
6 Both hands
7 Face and both hands
8 Pose
9 Pose and face
10 Pose and left hand
11 Pose, left hand and face
12 Pose and right hand
13 | Pose, right hand and face
14 Pose, both hands
15 All

Table A.2.: Signal codes of missing landmarks.

$GEST-AUFMERKSAMKEIT BEISPIEL VERGANGENHEIT ZUSAMMEN KLAR
WIE SEHEN-AUF SINDEX $GEST-NM $GEST
TITEL-UBERSCHRIFT ZEIT MUSS GEHOREN ICH
GEBARDEN STIMMT GLEICH HAUPT $NUM-EINER
HOREND TAUB DANACH KANN DA
FUR $PROD ABLAUF VIEL EIGEN
GEFUHL $GEST-ABWINKEN ARBEITEN ANDERS AUF-PERSON
GEBEN AB RICHTUNG MEHR KORPER
UNGEFAHR NASAL JAHR FREI RUND
$GEST-RUHIG-BLEIBEN BEREICH INTERESSE NEIN ACHTUNG
GUT SPRACHE PERSON SAGEN KEIN
WAS WIEDER JA KLEIN GRUPPE
SCHREIBEN BIS $NUM-ORD ORT AUSSEHEN-GESICHT
DU UNTER KOMMEN HIER-JETZT $NUM-ZEHNER
BEDEUTUNG ENDE ALLE $ORAL AUSSEN
VIERECK SO $LIST1 FALTE-WANGE SCHNEIDEN
WEG-VERLIEREN KREUZ $GEST-OFF UNTERSCHIED $GEST-UBERLEGEN
$GEST-NM-KOPFSCHUTTELN OFT SEHR LASSEN SEHEN
ABER $SALPHA PICKELHAUBE UM GELD
$GEST-ICH-WEISS-NICHT KOMMA $GEST-NM-KOPFNICKEN WISSEN BESCHEID

Table A.3.: Classes of the top 100 classes data set.

61

	Acknowledgments
	Abstract
	Contents
	Introduction
	State of the Art
	Sign Language
	Existing Assistance Tools on Mobile Devices Using Machine Learning
	Neural Networks
	Previous Work on Sign Language Recognition

	Sign Language Translation on Mobile Devices
	DGS-Korpus Data
	MediaPipe
	MediaPipe Framework's Concepts
	MediaPipe on Android Based Devices
	MediaPipe Holistic Tracking

	Sign Language Gesture Translation Model
	Translation Pipeline
	Data Preprocessing
	Evaluation Metric
	Training the Translation Model
	Adapting Holistic Tracking Graph
	Combining Landmarks
	Converting Landmarks to Tensors
	Inference on Translation Model
	Converting Tensors to Classifications
	Converting Results to Render Data

	User Interface
	Testing & Results
	Performance evaluation
	Test Set Evaluation on all Translation Models
	Different scenarios

	Conclusions
	List of Figures
	List of Tables
	List of Listings
	Bibliography
	Appendix

