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Abstract

Collection of big datasets is extremely challenging for many fields (e.g healthcare and
biology) and goals have to be achieved with limited amount of data. Data Augmentation
(DA) techniques can help us mitigate this issue. The recent rise of Deep Generative
Models has made them very attractive models to perform DA. In this Master Thesis
we explore the field of Deep Generative Modelling of Microscopy Image Data that
depict the Arbuscular Mycorrhiza Fungi (AMF). We develop a Variational Autoencoder
(VAE) in order to generate verisimilar synthetic Microscopy Image Data which can later
be used to increment the size of AMF datasets and allow them to be utilized further
for classification or segmentation purposes. We provide a full generation pipeline,
where the original dataset is being preprocessed, split into smaller parts, passed to
the model for training and used afterwards for generating new image data. The VAE
has a new architecture, developed from scratch and inspired by Residual Network
(ResNet). Additionally, a novel training approach for the ResNet based VAE has
been developed and explored which is inspired by Progressive Generative Adversarial
Network (ProGAN). The results are encouraging and motivate future research in the
field of Deep Generative Modelling.
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1 Introduction

Over the last decade, Deep Neural Networks (DNN) have produced unprecedented
performance on a number of tasks, given sufficient data. DNNs have been demonstrated
in a variety of domains spanning from image classification [18] to machine translation
[45]. In all above mentioned cases very large datasets have been utilized.

However, in reality the collection of big datasets is extremely challenging for many
fields (e.g healthcare and biology) and goals have to be achieved with limited amount of
data. For example, collecting Microscopy Images which depict the Arbuscular Mycorrhiza
Fungi (AMF) is a complex process which is time consuming (staining arbuscular-
mycorrhizal fungal colonizations in root tissues and prepare the AMF samples for
the microscope) but also involves some risk in case the staining is not successful.
Another example is healthcare where practitioners have to deal most of the time with
small patient cohorts (low sample size) along with very high dimensional data (e.g 3D
neuroimaging data). Additionally, small datasets make DNNs and statistical methods
unreliable. A way to address those issues is to perfrom data augmenation (DA) [18].
In a nutshell, DA is the art of increasing the size of a given data set by creating
synthetic data. For instance, the easiest way to do this on images is to apply simple
transformations such as the addition of Gaussian noise, cropping or padding, rotation
[18]. While such augmentation techniques have been very useful, they remain strongly
data dependent and limited. The recent rise in performance of generative models such
as Generative Adversarial Networks (GAN) [8] or Variational Autoencoders (VAE) [16] has
made them very attractive models to perform DA (Fig. 1.1). GANs have already been
explored towards this direction [1] and demonstrated promising results.

In this Master Thesis we explore further the field of Deep Generative Modelling of
Microscopy Image Data. We develop a Variational Autoencoder and explore a novel
training method in order to generate verisimilar synthetic Microscopy Image Data that
depict the Arbuscular Mycorrhiza Fungi (AMF). The synthetic image data can later on be
used to increment the size of AMF datasets and allow them to be utilized further for
classification or segmentation purposes.

We initially start by providing the biological background of the dataset and the
technical foundations needed for the understanding of a Variational Autoencoder (Ch.
2). More specifically, in Sec. 2.1 we explain what is the Arbuscular Mycorrhiza Fungi
(AMF) and how it is beneficial for the plants. Afterwards, in Sec. 2.2 we analyze the
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1 Introduction

Figure 1.1: Data Augmentation using Generative Modelling.

difference between Generative and Disriminative modeling and in Sec. 2.3 we give an
introduction to Autoencoders. Next, in Sec. 2.4 and Sec. 2.5 we dive deeper into the
two most popular generative models, Variational Autoencoders (VAE) and Generative
Adversarial Networks (GAN) respectively. In Sec. 2.6 and Sec. 2.7 we present the two
main methods that our contributions have been inspired from: the Progressive Generative
Network (ProGAN) and Residual Network (ResNet) respectively. Following the theoretical
foundations we outline in detail our own developed method in Ch. 3. First, we provide
information about the dataset (Sec. 3.1) and the techniques used for preprocessing the
data (Sec. 3.2). Thereafter, in Sec. 3.3 we analyze in depth our first contribution which
is a new architecture for Variational Autoencoder inspired by ResNet and in Sec. 3.4 we
present our second contribution which is the development and exploration of a novel
training approach for the model. Consequently, in Sec. 3.5 we present the loss function
that we used for training the model and in Sec. 3.6 we present the results for our two
contributions. Last but not least, in Sec. 3.7 we provide the implementation details
about setting up the required infrastructure for running and testing the models. Finally,
in Ch. 4, we summarize our findings and discuss potential future directions.
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2 State of the Art

The goal of this chapter is to provide the biological background and technical foun-
dations needed for the understanding of the Deep Generative Model that has been
developed for the purpose of this Master Thesis.

2.1 Arbuscular Mycorrhiza Fungi

Arbuscular Mycorrhiza Fungi (AMF) is the most common symbiotic association of
terrestrial plants with microbes [40]. Spores that are present in soil grow, infect the
root system, and form arbuscule structures inside the cells [40] (Fig. 2.1 ). Arbuscules
are the sites where the plant and the fungal exchange nutrients. The presence of a
vast mycorrhizal network around the root system is another feature of this relationship
[40]. AMF can be found in almost all natural settings and provide a variety of critical
ecological functions, including improved plant nutrition, stress resistance and tolerance,
soil structure, and fertility [5]. AMF also interacts with most crop plants, including
cereals, vegetables, and fruit trees, therefore their potential use in sustainable agriculture
is gaining traction [5]. Microscopy Images that depict AMF are visualized in Fig. 3.1.

2.2 Generative Modelling versus Discriminative Modelling

A Generative Model is a statistical model that captures the joint probability distribution
P(X, Y) on given observable variable X and target variable Y or simply P(X) if there
are no labels present [14]. Generative Models can generate new data instances (Fig. 2.2)
and model the data distribution of the original space. Typical Generative Moodels
are: Variational Autoencoders (explained in Sec. 2.4), Generative Adversarial Networks
(explained in Sec. 2.5), Normalizing Flows [36].

Discriminative Models, on the other hand, capture the conditional probability p(Y|X)

or map the given unobserved variable (target) x to a class label y dependent on the
observed variables (training samples) [25]. Discriminative models try to define data
space boundaries. Typical discriminative models are: Logistic Regression [24] and
Decision Trees [37].
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2 State of the Art

Figure 2.1: Schematic representation of AMF establishment inside a host and the known
exchange between the two partners. Figure credit: Florence Sessoms [40]

For example, in the Figure 2.3 the Discriminative Model tries to tell the difference
between handwritten 0’s and 1’s by drawing a line in the data space. Even if it doesn’t
know exactly where the data is in the space, it can tell the difference between 0s and 1s
if the line is drawn correctly. In contrast, the Generative Model has to model the data
disribution across the entire space and if successful generates digits that are near to the
real ones, making it hard in this way to distinguish between them [9].

For the purpose of this Master Thesis, we will concentrate on Generative Modelling
and particularly on Deep Generative Modelling. As a result of the rise of Deep Learning,
a new family of Generative Models has emerged from the intersection of Generative
Models and Deep Learning, known as Deep Generative Models (DGMs). DGMs have
advanced greatly in the past few years [3] [27]. This is due to architectural advances
as well as computational development that allows them to be trained at a bigger scale
in terms of both model depth and data size [34]. Their applications range from data
augmentation [4] to WaveNet which is a generative model for raw audio [27]. There are
two main types of Generative Models: Likelihood Based Models and Implicit Generative
Models [34]. The Likelihood Based Models include Variational Autoencoders [43] [10],
Flow Based [36] and Autoregressive Models [44]. The Implicit Generative Models include
models like Generative Adversarial Networks (GANs)[8].
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2 State of the Art

Figure 2.2: New data instances generated by VQ-VAE 2. The model generates realistic
looking faces that respect long-range dependencies such as matching eye
colour or symmetric facial features, while covering lower density modes of
the input dataset (e.g., green hair). Picture taken from [34].

GANs [8] optimize a min-max objective. The Generator, which is a neural network,
produces images by transforming random noise input into a meaningful output. The
Discriminator, also a neural network, classifies the samples produced by the Generator
as real or fake. Larger scale GAN models can now generate high-quality and high-
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2 State of the Art

Figure 2.3: Discriminative vs Generative Model of handwritten digits.

resolution images [3]. However, it is well known that the variety of the original
distribution is not fully captured by those models. Furthermore, GANs are hard to
evaluate, and currently there is not a satisfactory evaluation metric on a test set for
measuring overfitting [34]. For model comparison and selection, researchers have used
image samples or proxy measures of image quality such as Inception Score (IS) [38] and
Fréchet Inception Distance (FID) [13] [34].

In contrast, Likelihood Based Models optimize negative log-likelihood (NLL) of the
training data. This objective allows model comparison and measuring generalization in
previously unseen data. Moreover, since the probability that the model assigns to all
examples in the training set is maximized, Likelihood Based Models cover all modes of
the data, and do not suffer from the problems of mode collapse and lack of diversity
seen in GANs [34]. However, maximizing likelihood directly in the pixel space can
be a challenging task. NLL in pixel space is not always a useful indicator of sample
quality [42], and it can’t be used to compare different model classes reliably [34]. Some
of these issues are mitigated by introducing inductive biases such as multi-scale [42] or
by modeling the dominant bit planes in an image [17] [34].

All in all, there’s not a perfect generative model as each of these models offer several
trade-offs such as sample quality, diversity, speed, etc. and the choice of it depends on
the application.
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2 State of the Art

2.3 Autoencoders

An Autoencoder (AE) is an unsupervised learning technique that uses neural networks
to learn a non-linear representation (encoding) for a set of data, typically for dimen-
sionality reduction or feature learning, by training the network to ignore insignificant
data (noise).

Figure 2.4: Illustration of an Autoencoder with its loss function.

The AE consists of two parts: an Encoder Network, z = e(x) and a Decoder Network x̂ =

d(z) (Fig. 2.4). The input data is defined by x and y is the latent vector representation
of x, x̂ is the reconstruction of the input data x from the latent space. The Encoder e(x)
and the Decoder d(x) are both neural networks. The entire model can be described by
the equation:

x̂ = d(e(x)) (2.1)

We expect the Decoder to be able to accurately reconstruct the raw data from the
latent vector representation. If the model is able to learn such reconstruction then we
assume that the latent space represents the raw data quite well. In order to enforce this
objective, we train the model end to end with a reconstruction loss between x and x̂
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2 State of the Art

like the l2 loss ∥x − x̂∥2
2. It’s also important to mention here that latent space should

have lower dimension than the input space (raw data). The reason for that is that the
model should be able to find the most representative features of the data or in other
words a lossy compression of the data.

In order to ensure that the reconstructions from latent space are meaningful we
need to ensure a regular latent space with the following two properties: continuity and
completeness. Continuity means that two close points in the latent space should not give
two completely different contents once decoded. Completeness means that for a chosen
distribution a point sampled from the latent space should give meaningful content once
decoded.

However, in the AEs the dimensionality reduction performed on the input space has
no supervision, meaning is not regulated by a loss or a term in the general loss function
(lack of regularity). The AE is solely trained to encode and decode with the smallest
loss possible, no matter how the latent space is organised. So, it is pretty difficult (if
not impossible) to ensure, a priori, that the encoder will organize the latent space in a
smart way compatible with the needed regularity. Variational Autoencoders fill the gap
of regularity and they are able to use the decoder as a generator too.

2.4 Variational Autoencoders

A Variational Autoencoder (VAE) can be defined as being an Autoencoder (Sec. 2.3) whose
training is regularized to avoid overfitting and ensure that the latent space has good
properties that enable the generative process. Similarly to an Autoencoder, the VAE
also consists of two parts: an Encoder and Decoder network.

Let x ∈ RD be our input data. The input data can be for example color images. VAE
aims at maximizing the likelihood of a given parametric model Pθ , θ ∈ Θ [4]. It is
assumed, that there are latent variables z which live in a lower continuous dimension
space, the so-called latent space. The main advantage of making z continuous is that is
easier to sample with reparametrization from continuous distributions. The marginal
distribution of the data can be now written as:

pθ(x) =
∫
Z

pθ(x|z)q(z) dz (2.2)

where pθ(x|z) is the Decoder that models the parameters of a parametrized distribu-
tion (e.g Gaussian, Bernoulli) and q is the prior distribution over the latent space which
acts as a regulating factor.

By applying the Bayes Theorem P(A|B) = P(B|A)P(A)
P(B) the posterior distribution

pθ(z|x) is formulated as follows:
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2 State of the Art

pθ(z|x) =
pθ(x|z)q(z)∫

Z pθ(x|z)q(z) dz
(2.3)

However, the calculation of the posterior becomes very difficult because of the
intractable integral of Eq. 2.2. This integral requires exponential time to compute as it
needs to be evaluated over all configurations of latent variables. We therefore need to
approximate the posterior distribution by using techniques like Variational Inference [2].
Therefore, we introduce a variational distribution qϕ(z|x) which aims at approximating
the true posterior distribution pθ(z|x) [4]. In order to know how well the variational
distribution qϕ(z|x) approximates the true posterior pθ(x) we can compute the Kullback
- Leibler divergence as follows [11]:

KL(qϕ(z|x)||pθ(z|x)) =
∫

qϕ(z|x)log
qϕ(z|x)
pθ(z|x)

(2.4)

Now our objective function can be formulated as follows [11]:

logpθ(x) = Ez∼qϕ [log
pθ(x, z)
qϕ(z|x)

]︸ ︷︷ ︸
L(θ,q)

+KL(qϕ(z|x)||pθ(z|x))︸ ︷︷ ︸
≥0

(2.5)

Since Kullback - Leibler divergence is nonnegative, then L(θ, q) is a lower bound on
logpθ(x). The expression logpθ(x) is often called Evidence, so we call L(θ, q) Evidence
Lower Bound (ELBO) [11].

Therefore, we can equivalently rewrite the ELBO as:

L(θ, q) = −KL(qϕ(z|x)||pθ(z|x)) + logpθ(x) (2.6)

Finally, in order to sample from the latent space which is modelled by the variational
distribution qϕ(z|x), we use the so-called Reparametrization Trick. The trick will allows
us to compute gradients wrt ϕ [11]. For example, let qϕ(z|x) = N(z|µ, RRT) be a
multivariate normal distribution whose parameters µϕ and Σϕ are modelled by the
Encoder Network. The sampling from qϕ(z|x) is equivalent to [11]:

1. Drawing a sample ϵ ∼ N(0, I).

2. Obtaining z = T(ϵ, ϕ = µ, R) = Rϵ + µ

2.5 Generative Adversarial Networks (GAN)

A Generative Adversarial Network (GAN) is a Deep Generative model introduced by Ian
Goodfellow in 2014 [8].
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2 State of the Art

Figure 2.5: Architecture of Generative Adversarial Network.

The network consists of two models. A Generative model G that learns the data
distribution and a Discriminative model D that estimates the probability that a sample
came from the real domain (data distribution) rather than G (a fake sample) (Fig. 2.5)

Figure 2.6: Backpropagation in Discriminator Training.

The Discriminator D is a neural network with parameters θD which performs clas-
sification [7]. The Discriminator’s training data comes from two sources: real and
fake data instances (Fig. 2.5). The Discriminator uses the real instances as positive
examples during training while fake data instances are created by the Generator and
are used as negative examples during training. The Discriminator connects to two
loss functions (Fig. 2.5). During Discriminator training, the Discriminator ignores
the Generator loss and just uses the Discriminator loss (Fig. 2.6). The Discriminator
classifies both real data and fake data from the Generator. The Discriminator loss
penalizes the Discriminator for misclassifying a real instance as fake or a fake instance
as real. Finally, it updates its weights through backpropagation from the Discriminator
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2 State of the Art

loss through the Discriminator network (Fig. 2.6).

Figure 2.7: Backpropagation in Generator Training.

The Generator G is a neural network with parameters θG [7]. G takes random noise
(e.g uniform) as its input and transforms this noise into a meaningful output. The
Generator G is not directly connected to the loss that’s why learns how to create
fake data by incorporating feedback from the Discriminator. The Generator feeds
into the Discriminator, and the Discriminator produces the output we’re trying to
affect. The Generator loss penalizes the Generator for producing a sample that the
Discriminator network classified as fake. Afterwards, we backpropagate through both
the Discriminator and Generator to obtain gradients but we use gradients to change
only the Generator weights (Fig. 2.7).

In other words, Discriminator and Generator play the following two-player minimax
game with value function V(G, D) [8]:

minGmaxDV(D, G) = Ex[logD(x)] + Ez[log(1 − D(G(z)))] (2.7)

where D(x) is the Discriminator’s estimate of the probability that real data instance
x is real, Ex is the expected value over all real data instances, G(z) is the Generator’s
output when given noise z, D(G(z)) is the Discriminator’s estimate of the probability
that a fake instance is real, Ez is the expected value over all random inputs to the
Generator. The Generator can’t directly affect the log(D(x)) term in the function, so, for
the Generator, minimizing the loss is equivalent to minimizing log(1 - D(G(z))).

While GANs are a breakthrough in generative modelling with really good results, in
practice is often quite difficult to train. This is largely due to the famous problem which
is called mode collapse. Mode collapse can occur when the discriminator essentially “wins”
the game, and the training gradients for the Generator become less and less useful.
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2 State of the Art

This can happen relatively quickly during training, and when it does, the Generator
starts outputting nearly the same sample every time, meaning it stops getting better. In
the years since, the research community has come up with many ways to make training
more reliable, with one of the most successful being the famous Progressive GAN [15]
(2.6).

2.6 Progressive Generative Adversarial Network (ProGAN)

Progressive Growing of GANs is a training methodology for Generative Adversarial Networks
introduced by NVIDIA [15]. The key idea is to increase the depth of Generator and
Discriminator progressively and is inspired by the work in [19], which uses multiple
discriminators that operate on different spatial resolutions. The training starts with
low-resolution images (4x4), and then progressively the resolution is increased by
adding layers to the networks as visualized in Fig. 2.8. The benefit of the progressive
growing comes from the fact that by increasing gradually the resolution, the networks
are asked to learn a much simpler piece of the overall problem.

Figure 2.8: Training setup in ProGAN. On the right six example images are generated
using progressive growing at 1024 × 1024. Picture taken from [15]

More specifically, the authors first shrunk their training images to the starting resolu-
tion (4x4). Then, they create a Generator with just a few layers to synthesize images at
this low resolution, and a corresponding Discriminator of mirrored architecture. These
networks are small, therefore training is relatively quick and focuses only on high
level structures which are visible in the images [15]. When the first layers are trained

12
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completely, another layer is added to the Generator and Discriminator respectively.
After the addition of the new layer the learned resolution is now doubled to 8x8. The
trained weights in the earlier layers are kept and the new layer is faded in gradually in
order to stabilize the transition [15].

To prevent shocks in the network from the sudden addition of a new layer, the new
layer is linearly faded in. This fading in is controlled by a parameter α, which is linearly
interpolated from 0 to 1 over many training iterations [15] (Fig. 3.7).

Figure 2.9: Illustration of Fading in. In this figure we observe the transition from 16
× 16 images (a) to 32 × 32 images (c). Here 2x and 0.5x refer to doubling
and halving the image resolution using nearest neighbor filtering and
average pooling, respectively. The toRGB represents a layer that projects
feature vectors to RGB colors and fromRGB does the reverse; both use 1 × 1
convolutions. When training the discriminator, the real images that are fed
in are downscaled to match the current resolution of the network. During a
resolution transition, interpolation is happening between two resolutions
of the real images, similarly to how the generator output combines two
resolutions. Picture taken from [15].

Additionally, instead of using batch normalization, the authors introduced Pixel
Normalization. Pixel Normalization layer has no trainable weights. It normalizes the
feature vector in each pixel to unit length, and is applied after the convolutional layers
in the Generator. This is done to avoid signal magnitudes from spiraling out of control
during training [15].

13
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bx,y =
ax,y√

1
C ∑C

j=0 α
j
x,y + ϵ

(2.8)

where ϵ = 10−8, N is the number of feature maps, and αx,y and βx,y are the original
and normalized feature vector in pixel (x, y) respectively.

In general, GANs tend to produce samples with less variation than that found in the
training set. One approach to mitigate this issue is to have the Discriminator compute
statistics across the batch, and use this information to help distinguish the real training
data batches from the fake generated batches. This encourages the Generator to produce
more variety, such that statistics computed across a generated batch are closer to the
ones from a training batch. In ProGAN, a minibatch standard deviation layer is inserted
near the end of the discriminator exactly for this reason. This layer has no trainable
parameters. It computes the standard deviations of the feature map pixels across the
batch, and appends them as an extra channel [15].

Moreover, the authors observed that in order to ensure a healthy competition between
the generator and discriminator, it is essential that layers learn at a equivalent speed. To
achieve an equalized learning rate, they scale dynamically the weights of a layer according
to how many weights that layer has [15].

Furthermore, the authors used the improved Wasserstein loss function, also know as
WGAN - GP [10].

LossG = −D(x′) (2.9)

GP = (∥∇D(ax′ + (1 − a)x)∥2 − 1)2 (2.10)

LossD = −D(x) + D(x′) + λ ∗ GP (2.11)

Here, x′ is the generated image, x is an image from the training set, and D is the
Discriminator. GP is a gradient penalty that helps stabilize training. The α term in GP
refers to a tensor of random numbers between 0 and 1, chosen uniformly at random. It
is common to set λ = 10. Since we usually train in batches, the above losses are usually
averaged over the minibatch. It is important to note that the WGAN-GP loss function
does not expect the output of the discriminator to be a value between 0 and 1. This is
slightly different than the traditional GAN formulation, which views the output of the
discriminator as a probability.
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2 State of the Art

2.7 Residual Network (ResNet)

Residual Network (ResNet) is a Convolutional Neural Network (CNN) that was intro-
duced in 2015 by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun in their
paper Deep Residual Learning for Image Recognition [12]. ResNet-152 (152 layers) is the
deepest network ever presented on Imagenet and the one that won the 1st place in
ILSVRC 2015 classification competition [12]. The deep representations also have ex-
cellent generalization performance on other recognition tasks (1st place on ImageNet
Detection, ImageNet localization) which provides a strong evidence that the residual
learning principle is generic and can be applied to other problems [12]. Deep Neural
Networks incorporate low to high level features and classifiers end to end. Additionally,
the learned features can be enriched by the number of stacked layers (depth). Network
depth is of crucial importance however stacking more layers doesn’t mean learning
better networks. One obstacle to that is the famous problem of vanishing/exploding
gradients. Another problem is the degradation of training accuracy problem which
appears when networks start converging: when depth increases, accuracy gets satu-
rated and then degrades rapidly. One might think that degradation issue is caused by
overfitting but it actually indicates that not all systems are similarly easy to optimize
[12]. ResNet is addressing the degradation problem by introducing a deep residual
learning framework. The core idea is the so called identity shortcut connection (residual
connection). Identity Shortcut Connections simply perform identity mapping and their
outputs are added to the outputs of stacked layers. Identity Shortcuts add neither extra
parameters nor complexity. The entire network can still be trained end to end by using
stochastic gradient descent and backpropagation. Another important component in the
architecture is the residual or building block visualized in Fig. 2.10.

A building block is defined as:

y = F(x, Wi) + x. (2.12)

Here, x and y are the inputs and outputs respectively of the considered layers. The
function F(x, Wi) represents the residual mapping to be learned. For example in Fig.
2.10 that has two layers, F = W2σ(W1x) in which σ denotes RELU [46] and the biases
are omitted for simplifying notations. The operation F + x is performed by a shortcut
connection and element - wise addition. We adopt the second non-linearity after the
addition σ(y).

However, it can happen that the dimensions of the input x vary from the dimensions
of the output F (when changing input/output channels). This problem is overcome by
performing a linear projection Ws by the shortcut connections to match the dimensions:

y = F(x, Wi) + Wsx. (2.13)
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Figure 2.10: Residual Learning: A building Block.

ResNet architecture is mainly inspired by the philosophy of VGG Nets [41] with the
new addition of the shortcut connection [12]. These shortcut connections then convert
the network into the residual network. The VGG-19 model [41] has 19.6 billion FLOPs
[12]. A plain network with 34 parameter layers has 3.6 billion FLOPs [12]. The residual
counterpart with 34 layers and skip connections has exactly the same amount of FLOPs
(3.6 billion FLOPs) with the plain network [12] (Fig. 2.11).

The authors of ResNet [12] have tested a plain 18-layer and a 34-layer convolutional
neural network against two residual networks with the same depths. The plain 34-layer
CNN performs worse than the 18-layer plain CNN. The ResNet architecture on the
other hand achieved better results for the 34-layer network than for the 18-layer network,
and altogether a better result than the plain network (Fig. 2.12).
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Figure 2.11: On the left we see the VGG-19 which was the baseline for ResNet. In
the middle we see a plain network with 34 layers. On the right we see a
residual network (ResNet) with 34 layers. Picture taken from [12].
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2 State of the Art

Figure 2.12: Training on ImageNet. Thin curves denote training error, and bold curves
denote validation error of the center crops. Left: plain networks of 18 and
34 layers. Right: ResNets of 18 and 34 layers. In this plot, the residual
networks have no extra parameter compared to their plain counterparts.
Diagrams taken from [12]
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3 Deep Generative Modelling of
Microscopy Image Data

In this chapter, we present our methodology end to end in order to generate synthetic
Microscopy Image Data. First, we start by providing information about the Dataset
and the Data Preprocessing techniques we used. Afterwards, we analyze our first
contribution which is a new architecture for a Variational Autoencoder inspired by
ResNet. Following our first contribution, we describe our second contribution which is
the development and exploration of a novel training approach inspired by ProGAN for
the ResNet based Variational Autoencoder. Next, we present evaluation metrics and the
loss function. Finally, we provide the results and discuss a few implementation details.

3.1 Dataset

The Dataset has been provided by Dr. Catarina Cardoso from the Gutjahr Lab at the
TUM School of Life Sciences. It consists of images that depict the soil microorganism
Arbuscular Mycorrhiza Fungi (AMF) (Sec. 2.1). The images were taken by a Leica DM6 B
wide-field microscope using a 10x magnification objective at 10-14 different focal planes
across the root diameter. In total our dataset consists of 21 Microscopy Images of size
1536 x 2048 and a sample of them is visualized in Fig. 3.1.

3.2 Image Preprocessing

The Microscopy Images used for the training of the models are grayscale. A grayscale
image is one in which the value of each pixel is a single sample representing only
an amount of light and are composed of shades of gray. The intensity of a pixel is
expressed within a given range between a minimum and a maximum. This range is
represented from 0 (total absence, black) and 255 (total presence, white), with any
fractional values in between. Although these pixel values can be presented directly
to neural network models in their raw format, this can result in challenges during
modeling, such as in the slower than expected training of the model. Instead, there can
be great benefit in preparing the image pixel values prior to modeling, such as simply
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Figure 3.1: Six example Miscroscopy Images from the Dataset.

20
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scaling pixel values to the range 0-1 to centering and even standardizing the values.
In our case we positively standardized the pixel values. Positive Standardization means
that the pixel values to remain in the positive domain in order to be able to visualize
them later. A popular way of achieving this is the following: first we use the z-score
normalization in order to standardize the data (mean µ = 0 and standard deviation
σ = 1). The z-score normalization of an image Xi is defined as:

Z(Xi) =
Xi − X̄i

σi
(3.1)

where X̄i is the mean pixel value of the image Xi and σi the standard deviation across
the pixel values of the image Xi. Afterwards, we clip the pixel values in the range
(−1, 1) and then rescale the values from (−1, 1) to (0, 1).

Furthermore, the initial images are split further into smaller ones, the so-called chunks.
In this way, we are increasing the size of our dataset and focusing on learning smaller
parts of an image rather a larger one. The chunks are extracted in an overlapping
manner from each image. The total number of chunks extracted from each image is
calculated as follows:

CW =
W − C

S
+ 1 (3.2)

CH =
H − C

S
+ 1 (3.3)

Total = CW xCH (3.4)

where W = 1536 is the input width of the original image, H = 2048 is the height of
the input image, C = 224 is the desired size of the extracted image, and S = 16 is the
stride, meaning how much overlap we would like the extracted images to have.

Last but not least, we observed that the root is usually centrally placed in the original
images. Hence, there are extracted chunks which will be completely white. We found
out that by removing the chunks that have mean pixel value large than 0.85 (completely
white with no root info depicted) and smaller than 0.10 (completely black) reduces the
noise while keeps a good content variation in the images. The thresholds are flexible
and can be anytime adapted based on the quality of the initial images. The final size of
our dataset after removing noise is 99791 images.
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3.3 ResNet Based Variational Autoencoder

Our first contribution is a new architecture for Variational Autoencoder. The architecture
is based on ResNet-18 [12] and developed from scratch. The architecture of the Encoder
follows the logic of standard ResNet-18[12], meaning we input an image from a high
dimension space and we project it in a lower dimension space. However, the Decoder
is performing the exact opposite process, it takes as input a vector from the latent
space and outputs an image in a much larger dimension space. Therefore, all the
layer operations of the ResNet-18 Decoder have to be adapted to perform the opposite
(mirrored) process of the ResNet-18 Encoder equivalent and still respect the ResNet-18
design (residual connection, residual blocks).

Specifically, the first operation which needs to be adapted for the ResNet-18 Decoder
is the Convolutional layers of various kernel sizes. The Convolutional layer’s parameters
consist of a set of learnable filters. Every filter is small spatially (along width and
height), but extends through the full depth of the input volume. During the forward
pass, we slide each filter across the width and height of the input volume and compute
dot products between the entries of the filter and the input at any position [20]. As
we slide the filter over the width and height of the input volume we will produce a
2-dimensional activation map that gives the responses of that filter at every spatial
position (Fig. 3.2) [20]. The output dimensions are smaller than the input dimension.
The PyTorch [31] function performing the convolution operation is torch.nn.Conv2d [32].
The convolution operation is described formally by the following equation:

out(Ni, Coutj) = bias(Coutj) +
Cin−1

∑
k=0

weight(coutj , k) ∗ input(Ni, k) (3.5)

where * is the 2D cross-correlation operator [32], N is batch size, C denotes number
of channels, H is height in pixels and W is width in pixels [32]. The output dimensions
are calculated as follows:

Wout = (Win − F + 2P)/S + 1 (3.6)

Hout = (Hin − F + 2P)/S + 1 (3.7)

where W is width of the image in pixels, H is the height of the image in pixels, F is
the filter/kernel size, P the amount of zero padding and S is the stride [32].

For the ResNet-18 Decoder we need a convolution operation which gives larger
output dimensions than the input. This operation is called Transposed Convolution
and in PyTorch is implemented by the function torch.nn.ConvTranspose2d [33]. In the
Transposed Convolution, we multiply every element of the input with every element
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Figure 3.2: Convolution operation

of the kernel starting from the uper left element as shown in Fig. 3.3. Some of the
elements of the resulting upsampled feature maps are over-lapping. To solve this issue,
we simply add the elements of the over-lapping positions [47]. The output dimensions
of the Transposed Convolution are calculated as follows:

Wout = S ∗ (Win − 1) + F − 2 ∗ P (3.8)

Hout = S ∗ (Hin − 1) + F − 2 ∗ P (3.9)

where W is width of the image in pixels, H is the height of the image in pixels, F is
the filter/kernel size, P the amount of zero padding and S is the stride [47].

Figure 3.3: Transposed Convolution. A 2x2 input upsampled to 3x3.

The second operation that needs to be adapted for the Resnet-18 Decoder is pooling
[20]. There’s a maxpooling happening at the beginning of ResNet-18 but also average
pooling which is happening at the end before the fully connected layer [12] (Fig.
3.4). Pooling reduces the spatial size of the representation to reduce the amount of
parameters and computation in the network, and hence to also control overfitting [20].
The Pooling Layer operates independently on every depth slice of the input and resizes
it spatially, using the max or average operation (Fig. 3.4). The output dimensions of
pooling layers are calculated as follows:
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Hout = (Hin − F + 1)/S (3.10)

Wout = (Win − F + 1)/S (3.11)

Figure 3.4: Illustration of Max and Average Pooling.

For the ResNet-18 Decoder we need an un-pooling operation, in order to revert
the effect of the max/avg pooling operation which happens in ResNet-18 Encoder.
However, a traditional un-pooling operation would be problematic for the following
two reasons: First of all, we would have to save the exact pixel values at each pooling
operation in order to be able to retrieve them in the un-pooling, which makes the
computation less efficient. Secondly, in case we did not keep the original pixel values in
each pooling layers then in the un-pooling we would have to fill them with zeros which
would introduce a lot of noise. Therefore, we decided to replace the un-pooling with a
Transposed Convolution [33] layer. In the case want to double the output dimensions
we are using Transposed Convolution with kernel 2 and stride 2.

Last but not least, in ResNet-18 Encoder we downsample the input at the first residual
block of each layer by using convolutional operation with stride 2. Except the first layer
where the input is downsampled using maxpool with stride 2. We are following the
exact same logic for the ResNet-18 Decoder but mirrored and instead of downsampling
we are performing upsampling. The architecture of the both the ResNe-18 Encoder and
ResNet-18 Decoder is visualized in Fig. 3.5. The results from training the Variational
Autoencoder with the new architecture are presented in Sec. 3.6.1.

3.4 Progressive Variational Autoencoder (proVAE)

Our second contribution is the development and exploration of a novel training ap-
proach for the ResNet-18 Variational Autoencoder (Sec. 3.3). The training method has
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Figure 3.5: ResNet Encoder and ResNet Decoder network architectures.
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been inspired by Progressive Generative Adversarial network (ProGAN) (Sec. 2.6) is
called proVAE (progressive Variational Autoencoder).

The training of ResNet-VAE in the new setup is happening in a progressive manner.
We train the Encoder and Decoder end to end and we start the training at a low
resolution image (7x7). In the first iteration only the last block of the Encoder and the
first block of the Decoder are trained. Since our VAE is ResNet based, when referring
to a block we mean a residual block (Fig. 2.10). As soon as the training is satisfactory,
we proceed by appending one more block to the (left of) Encoder and one more layer
to the (right of) Decoder. The trained weights in the earlier layers are kept and used
in the next appended layer. We repeat the same steps until we have reached the full
size of the model. However, in order to prevent the network from having big shocks
when inserting the new untrained block, instead of inserting it directly to the flow
we are instead fading it in. The fading in is controlled by a parameter α which is
linearly interpolated from 0 to 1 over many training iterations. Additionally, we also
implemented the equalized learning rate and the pixel normalization (which replaces
the batch normalization) as described in Sec. 2.6. Last but not least, as each appended
block requires a different image size than the initial one (224x224), we resize the image
to the needed dimension and feeding in to the model. The progressive training process
is visualized in Fig. 3.6. The visualization follows the same color conventions as in Fig.
3.5 for better explainability and understanding.

The reason that led us in the development and exploration of this method is twofold.
First of all, we want to overcome the common blurring issue of VAEs which we also
observed in our own results. Secondly, we would like our model to improve further in
learning and generating more detailed images. Therefore, we investigate whether the
progressive training and the fact that the networks are asked to learn a much simpler
piece of the overall problem can help us mitigate the above mentioned issues. The
results of this method are presented in Sec. 3.6.2.

3.5 Evaluation metrics

The loss function of Variational Autoencoder consists of two terms, one which maxi-
mizes the probability of the data and a second term the Kullbalck - Leibler Divergence
which encourages our approximate posterior distribution qϕ(z|x) (learnable) to be
similar to the true posterior pθ(z|x):

ELBO = logpθ(x)− KL(qϕ(z|x)||pθ(z|x)) (3.12)

In order to maximize the first term, we chose to minimize the Mean Squared Error
(MSE) loss.
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Figure 3.6: Progressive Training of the ResNet-18 Variational Autoencoder. The training
starts with both the Encoder (E) and Decoder (D) operating at low spatial
resolution of 7×7. As the training advances, we incrementally add layers to
E and D, thus increasing the spatial resolution of the generated images. All
existing layers remain trainable throughout the process. Here N × N (e.g
7x7) refers to residual blocks (as visualized in the right side of the diagram)
that receive as input an N × N image size. The colors convention follow the
one in Fig. 3.5 for consistency and better explainability.

MSE(y, ŷ) =
1
N

N

∑
i=0

(y − ŷ)2 (3.13)

where ŷ is the predicted pixel value, y is the original pixel value and N is the size of
the image (total number of pixels).

3.6 Experiments & Results

In this section, we present the results from training the ResNet-18 VAE using the
standard conventional approach as described in Sec. 3.3) and by training the ResNet
VAE using the progressive method as described in Sec. 3.4. Finally, we provide
information about the implementation and the infrastructure used for the training.
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Figure 3.7: The example illustrates the fading-in of the 7x7 residual block (blue gradient)
in the Encoder (left) and Decoder (right) (see progressive VAE architecture
in Diag 3.6 ). Here, the 7x7 residual block have similar meaning to the one
explained in Diag. 3.6. The gray blocks ’increased depth’ and ’to depth 1’
are used in order to adapt the input depth to the needed block depth.

3.6.1 Results ResNet-18 Variational Autoencoder

We run a series of experiments in order to find the best learning rate and the best
number of epochs by performing grid search. First, we split our dataset in Training,
Validation and Test Set (Table 3.1). Our hyperparameter optimization for the learning
rate and number of epochs happened on the validation set. Evaluation metrics for
unsupervised generative models still remain an open challenge, therefore the evaluation
happened manually by comparing the quality of reconstructed images on validation
set. The range that we experimented for the learning rate was [0.0005, 0.002] with lr =
0.0005 being the best value. The range that we experimented for the Number of Epochs
was [70, 110] with epochs = 90 being the best value. After finding the best value for the
learning rate and the number of epochs we used them in order to perform inference
(generation) on the Test Set. The results are presented in the Tables 3.2 & 3.3 & 3.4.

Data Split No. Images Image Size
Training 97791 224x224
Validation 1000 224x224
Test 1000 224x224
Total 99791 224x224

Table 3.1: Information about Dataset split.

In both reconstructed and generated images we observe a blurriness which is a
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KL-Divergence Training Loss

Table 3.2: Kl-Divergence and Training Loss of the best model.

very common phenomenon in variational autoencoders. However, the results are
rather promising and the model is able to approximate really well the true posterior
distribution.

3.6.2 Results Progressive ResNet Variational Autoencoder (proVAE)

We run a series of experiments in order to find the best number of epochs we should
train per each faded in block. First, we split our dataset in Training, Validation and Test
Set according to the Table 3.1. Afterwards, we tested different number of epochs by
performing grid search while keeping the learning rate = 0.0005 for all the experiments.
The range that we experimented for the Number of Epochs was [30, 40] per block with the
best value being epochs = 30. As the problem is still unsupervised, the challenge with
the evaluation metric still remains as in the previous results. Therefore the evaluation
happened manually by comparing the quality of reconstructed images on validation
set. After having identified the best hyperparameters for the model, we used them in
order to perform inference (generation) on the Test Set. The results are presented in the
tables 3.5 & 3.6 & 3.7.

To sum up, the results of proVAE do not outperform the results of the regular training
method 3.6.1. The blurry effect is much more visible in proVAE results and also the
model learned less details in proVAE compared to the conventional training of Resnet-
18 VAE. In general, developing and tuning the proVAE has been quite a challenge since
it is an advanced architecture with a lot of parameters that need to be developed and
taken care of (e.g pixelnorm versus batchnormalization, alpha parameter, equalized
learning rate, image resizing, weight clipping).
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3.7 Implementation Details

The training of Variational Autoencoder has happened at two places: in Google Cloud
Platform (GCP) [28] and at Home One Cluster installed in one of RBG server rooms
and owned by the Chair of Scientific Computing in Computer Science at TUMunich.
Specifically, the training of our first contribution, the Variational Autoencoder with
the ResNet inspired architecture happened at GCP while the training of our second
contribution, the Progressive Variational Autoencoder (ProVAE) happened at Home
One Cluster. The specifications for both of the machines are provided in the table [add
reference]. In GCP, we configured a Virtual Machine Instance with GPU and exposed
the jupyter notebook to an external IP address in order to be able to utilize the GUI.
In order to enable training with GPUs in our VM instance in GCP, we installed all the
needed CUDA drivers [6]. Furthermore, we used neptune.ai [23] for keeping track of
all the experiments, saving all the hyperparameters, storing metrics and versioning the
models. Neptune is a metadata store for MLOps, built for research and production
teams that run a lot of experiments [23]. The data is stored in a central Metadata
Database hosted by the providers [23]. The database can be accessed from any place
that you run your code by providing your authentication credentials and the name of
the project that you would like to register the data.

All the pipeline (from reading the images to training the networks and visualizing the
results) has been implemented in Python3 [30]. For data preprocessing and visualization
we used libraries like OpenCV [21], NumPy [26], Matplotlib [22], seaborn [39]. The
Variational Autoencoder is implemented using the Pytorch library [31]. Last but not
least, we used the venv module [29] in order to create lightweight “virtual environments”
with their own site directories, isolated from system site directories. Each virtual
environment has its own Python binary (which matches the version of the binary that
was used to create this environment) and can have its own independent set of installed
Python packages in its site directories [29].
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Original Image Reconstructed Image

Table 3.3: Original and Reconstructed Images on Test set using the best model for
ResNet-18 VAE. In the first three rows we provide single images and their
reconstructed equivalent. In the last row we provide a grid of 50 original
images and the grid with the 50 equivalent reconstructed images.
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Generated Images

Table 3.4: Generated Images using the best model for ResNet-18 VAE. We observe
that the model is able to learn very detailed pictures and also pictures that
have different orientation. This is happening because in the training set for
example we have chunks that are coming from the right part of the root
(usually the root is centrally placed in the picture), meaning that in this case
the root appears on the left side and then the white background is on the
right hand-side.
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KL-Divergence Training Loss

Table 3.5: KL-Divergence and Training Loss of the best model for proVAE. In those
diagrams we observe the KL-Divergence and the Loss respectively for all
the appended (faded in) blocks. In both diagrams we are observing ’steps’
because we are having a new training round every time we append a new
block. One training round lasts 30 epochs. The loss value in each training
round might start from a different starting value. The starting value is
higher in the cases in which the appended block operates in a higher spatial
resolution (e.g we have trained the 7x7 and we add the 14x14) because we are
using MSELoss without averaging over the total number of pixels. Therefore,
in higher spatial resolution there are more pixels that we need to compare
for the loss and therefore the loss is higher. The same applies for the KL-
Divergence, however as the KL-Divergence is a regulating factor in the ELBO
loss it might increase but it also might decrease (depending on what the
gradient descent ’decides’).
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Original Image Reconstructed Image

Table 3.6: Original and Reconstructed Images on Test set using the best model for
proVAE. In the first three rows we provide single images and their recon-
structed equivalent. In the last row we provide a grid of 50 original images
and the grid with the 50 equivalent reconstructed images.
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Generated Images

Table 3.7: Generated Images using the best model for proVAE.

Google Cloud Platform Home One Cluster
CPU Intel(R) Xeon(R) CPU @ 2.30GHz AMD EPYC 7402 @ 2.80GHz
RAM 15 GB 256 GB
GPU NVIDIA Tesla T4 RTX 3080 Turbo with 10GB video RAM
OS Ubuntu 16.04 Xenial Ubuntu 20.04.2 LTS

Table 3.8: Technical specifications of the compute nodes used for training and image
generation.
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4 Conclusion

We presented an end-to-end pipeline on how to create Synthetic Microscopy Images
using a Deep Generative Model which is a Variational Autoencoder (VAE). First, we
introduced the image preprocessing techniques that we used and then we analyzed
in depth our main two contributions. The first contribution is a new architecture for
VAE inspired by ResNet (ResNet-18 VAE) and the second contribution is a novel way
of training the ResNet-18 VAE inspired by the famous ProGAN. Finally, we described
the loss function that we used for the training and presented results for our two
contributions. The results are promising and motivate future research in the field. In
conclusion, the overall aim of this Master Thesis, which is the generation of Synthetic
Microscopy Image Data which look realistic has been completed successfully.

Currently, the end-to-end pipeline as described above is in place and ready to be
used by a future researcher in order to generate realistic looking image chunks, but
not a complete image. Those realistic looking patches can be created by using the
ResNet-18 VAE which has given the best results so far. In this way, more training data
can be created and increase the size of training data, allowing it in this way to be used
further for classification or segmentation purposes.

As for the future, there would be two directions to be further developed. The
first one is the improvement of the current performance of the models, especially the
progressive training of ResNet-18 VAE. The current model for progressive training
does not outperform the conventional training and we still observe the blurry effect
in the results. Therefore it would be interesting to explore further its potential by
using a different loss function, experimenting with chunks generation (increase or
decrease overlap), merging them into one picture, trying simple pixel normalization
instead of positive standardization, including minibatch standard deviation in proVAE
as described in [15], including data augmentation techniques (e.g high contrast in order
to boost the learning of smaller details) and even experimenting with different prior
distributions.

The second direction would be the exploration of evaluation metrics for Variational
Autoencoders. The metric will enable researchers with evaluating the quality and the
diversity of the generated images in a formal way, limiting in this way the manual
evaluation which is sensitive to subjectivity. One idea could be to adapt the famous
Inception Score [38] for Variational Autoencoders. This would require to manually
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label some samples as fake or real or use methods like active learning to automate the
labelling process [35].
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