
DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Constructing Transformations Between
Pre-trained Neural Networks

Victor-Constantin Stroescu

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Constructing Transformations Between
Pre-trained Neural Networks

Konstruktion von Transformationen zwischen
trainierten neuronalen Netzwerken

Author: Victor-Constantin Stroescu
Supervisor: Prof. Dr. Christian Mendl
Advisor: Dr. Felix Dietrich
Submission Date: 15.01.2022

I confirm that this master’s thesis in informatics is my own work and I have documented all
sources and material used.

Munich, 15.01.2022 Victor-Constantin Stroescu

Acknowledgments

I wish to thank my advisor, Dr. Felix Dietrich, for all the support he offered during
this thesis in various forms including the explanations of concepts, advice about the path I
should take for the completion of the Thesis, as well as all the resources he provided, both in
documentation and his previous implementations of similar concepts to those discussed in
this thesis. Further I wish to thank Dr. Ertug Olcay for granting me the permission to use
the dataset and models developed during the interdisciplinary project "Deep-learning based
approaches for fault detection in a rotary mower" by Victor-Constantin Stroescu, for which he
was my advisor.

Abstract

This thesis will describe our approach at implementing transformations between neural
networks, as they were presented in "Transformations between deep neural networks" by
Tom Bertalan, Felix Dietrich, and Ioannis G. Kevrekidis [1], on established, pre-trained
neural networks, like Wav2Vec2 [2], XLNet [3], and other similar networks. By creating
transformations between these neural networks, we aim to establish equivalence classes
between widely used, pre-trained models. For our implementation of the transformations, we
will use the approach established in the aforementioned paper, namely diffusion maps with
a Mahalanobis-like metric. We will also use Whitney’s theorem to estimate the number of
measurements required from each neural network to reconstruct all features from the other
network. For this purpose, we aim to use different models, which were trained to tackle
tasks such as fault detection on sequence data, speech recognition, and text interpretation.
The Models used for the representational experiments were dependent on the availability of
pre-trained neural networks, but we will also present the procedures that aim to implement
the transformation between neural networks that work with popular data types, such as
vibration data, text data, sound data.

iv

Contents

Acknowledgments iii

Abstract iv

1 Introduction 1
1.1 Motivation . 1
1.2 Structure . 2

2 Related Work 4
2.1 Concepts . 4

2.1.1 Manifolds . 4
2.1.2 Mahalanobis Distance . 5
2.1.3 Diffusion Maps . 5

2.2 Models and Datasets . 5

3 Implementation 7
3.1 Implementation Outline . 7
3.2 Sample and Neighborhood Generation . 10

3.2.1 One-dimensional Data . 11
3.2.2 Vibration Data . 12
3.2.3 Speech Data . 12
3.2.4 Text Data . 13

3.3 Activation Generation . 14
3.3.1 Preparation . 14
3.3.2 General case . 15
3.3.3 Text processing models . 15

3.4 Computation of the Transformation . 16
3.5 Applying the Transformation . 19

4 Experiments 21
4.1 1D-Data . 22
4.2 Vibrations . 29
4.3 Automatic speech recognition . 33
4.4 Text Sentiment Analysis . 36
4.5 Speech Sentiment Analysis . 39

v

Contents

5 Conclusion 43
5.1 Discussion of the Results . 43
5.2 Further Research . 44

List of Figures 45

List of Tables 46

Bibliography 47

vi

1 Introduction

This master thesis will present the work done on the topic of "Constructing Transformations
Between Pre-trained Neural Networks", which will include the implementation of established
concepts and new contributions to the topic.

1.1 Motivation

The availability of pretrained neural networks for different tasks has only expanded since
different tasks have had neural network approaches function as solutions. The library
Huggingface lists no less than 25,380 different pretrained open-source models on their
website [4]. These are mostly models that deal with tasks defined for sound and text. An
approach that could make use of these models by combining select pairs of them to deal with
new tasks has a very good opportunity to be an alternative to transfer learning, which also
uses old models to deal with new tasks, which would require no training of neural network
layers.

This intent is based on the assumption that different neural networks sometimes model the
same phenomena observed either through the same or different sensors with very different
learned weights and sometimes very different structures. These networks will then be
considered part of the same equivalence class, a concept introduced in "Transformations
between deep Neural Networks" by Tom Bertalan, Felix Dietrich and Ioannis G. Kevrekidis [1].
If two neural networks belong to the same equivalence class then transformations between
the activations of the networks can be defined. This means that there is an invertible function
between the two different representations of the same phenomenon within the activation
spaces of the two neural networks. The existence of such a function, called a transformation,
between two deep neural networks, can both give us a tool to analyze underlying properties
of networks by assigning them to equivalence classes, and be used to create a new model
using that function to combine the two.

These concepts were first presented and used in the paper "Transformations between
deep Neural Networks" [1] on neural networks that were trained on either N-dimensional
real-valued vectors of images. The scope of this master thesis is to expand the set of possible
neural networks and show that the concepts presented in the aforementioned paper are
generally implementable on other types of neural networks. The focus of this thesis will be
the implementation of transformations on pretrained neural networks trained for processing
of sequence data types.

We will show through the results of experiments performed using a prototype implementa-
tion of the presented concepts that these mappings can be created for neural networks trained

1

1 Introduction

on different datasets, such as vibration, speech, and text datasets, and that they achieve
similar performances to the networks they were built from.

During this master thesis we will also show that a new model can be created from two
neural networks, trained on the previously mentioned dataset types, and one transformation
between their activation spaces. This will be proved through the results of the fifth experiment,
which will create a speech sentiment analysis model by using a transformation from the
activations of a pretrained ASR (Automatic Speech Recognition) model to the activations of a
pretrained text sentiment analysis model and the two models.

1.2 Structure

This thesis will start by presenting the theoretical basis and previous work surrounding this
topic. Next, we will present the implementation of the general algorithm used for all the
experiments encompassed within this work. The experiments serve as the main contribution
of this master thesis, since they are used to show the capabilities of the algorithm for multiple
models.

Further it will present each individual experiment performed during this thesis, through
the use of the implemented algorithm. The sequence in which the experiments are introduced
throughout the thesis is thought out such that they follow a progression in terms of introduced
complexity. Starting from cases that showcase the algorithm’s functionality, a better under-
standing of the implementation can be supported through graphs that help visualize every
step of the process. The later experiments are performed on data with larger dimensionality,
that would result in unintuitive figures, but which serve to outline the implementation’s
usefulness on more complex data with real-world origins (i.e. sound, text).

Thus we will start with a recreation of the first experiment from the paper "Transformations
between deep Neural Networks" by Tom Bertalan, Felix Dietrich and Ioannis G. Kevrekidis
[1], which is used as the main basis for this thesis. During this experiment we train two
neural networks with different architectures which evaluate a one dimensional function on
the domain [-1,1] and then create the transformation between the two networks. Due to the
low dimensionality of the data we can visualize the entire process in the smallest detail.

All other experiments will use widely available pretrained neural networks, due to both
time constraints as well as proof of concept on neural networks for general tasks.

The second experiment will create transformations between two neural networks created
for fault classifications based on vibration data gathered by sensors on the machines over
a time period. The two neural networks used for this classification are a LSTM [5] and
transformer based network [6].

Thus, this second experiment introduces data that has more than one feature, and which is
sequantial. The transformation created for the neural networks made to classify such data are
created accordingly for handling the added complexity

The test set will then be used to present the metrics for the classification task using both
the transformation from the LSTM model to the transformer model and the transformation
from the transformer model to the LSTM model. Since both text data and sound data have

2

1 Introduction

a common sequential nature and text data embeddings are typically high dimensional, this
experiment should be seen as a stepping stone towards both experiments which will be
combined for the last one, which will show a real world application of the transformations.

In the third experiment we will attempt to compute a transformation between two different
pretrained open source neural networks for Speech to Text translation from the Huggingface
library[4]: Speech2Text2 [7] and Wav2Vec2 [8] using a sampling of the Librispeech dataset
[9]. This transformation will be the first step towards the final, fifth, experiment, solidifying
the possibility of building a transformation between a network trained to translate speech to
text and one to process text, since it introduces the contribution made by this thesis through
the implementation of transformations for variable length sequence data. The Librispeech
dataset will also be used in order to train the transformation for the fourth experiment and
for the final experiment since it contains both text data and the equivalent sound data, which
is necessary in order to create equivalent samples and neighborhoods for the two neural
networks.

The fourth experiment will attempt a transformation between two neural networks for
Text Sentiment Analysis. The two neural networks used for this experiment are a pretrained
version of the RoBERTa model [10], and a pretrained version of the XLNet model [3], both
downloaded from the Huggingface library [4]. While both pretrained network were trained
on different datasets, the transformation will be also trained on the Librispeech dataset [9],
this time using the targets as input, since it is text data and we can thus use the same dataset
for the computation of the transformation of the final experiment.

The fourth experiment introduces the second contribution to the established concept made
by this thesis, the generation of neighborhoods and their activations for neural networks with
discrete input domains, in this case networks with text input. This is the last step toward the
final experiment.

The last experiment uses one pretrained network from the third experiment, the Wav2Vec2
model[8], and one pretained network from the fourth experiment, the XLNet model [3], and
computes a transformation that creates a new model based on the two, which combines
their intended usages in a new one. This will showcase another capability of the concept of
transformations between neural networks beyond its ability to asses equivalences between
neural networks, the ability to create new models from two equivalent neural networks.

With the last experiment we will conclude the experiment description portion of this thesis
and thus the main contribution made by this thesis.

This thesis will close with its conclusions. In that chapter we will review the results and
discuss their implications. We will also present other possible research avenues that arose
from the results of the experiments and the problems that arose during the implementation
and experiments.

3

2 Related Work

This section will present the work previously done which was necessary for the writing of this
thesis. It will be split in two sections. The first one will present the work previously done to
establish the concepts used, both the direct prerequisites, like the development of the concept
of transformations and Whitney’s theorem [11], as well as the important mathematical theory
necessary for our implementation, like the Mahalanobis distance and Diffusion Maps. The
second section presents the papers that introduced the models used in this thesis, a brief
description of these models, as well as the main improvements that these models brought
over their precursors.

2.1 Concepts

The main source for the concepts that will be presented in this thesis is the paper "Trans-
formations between deep Neural Networks" by Tom Bertalan, Felix Dietrich, and Ioannis G.
Kevrekidis and all of the sources cited within, since it is both the precursor and the main
inspiration for this thesis.

In order to be able to understand the implementation and experiments presented in this
thesis a number of mathematical concepts and notations have to be introduced. These will
both function as a theoretical foundation for the algorithms and serve as an introduction to
the necessary concepts that explain why the algorithms are effective.

2.1.1 Manifolds

Since the whole implementation is based on the concept of manifolds, they will be the first to
be introduced. As Loring W. Tu presents manifolds in the abstract of a chapter of his book
"An Introduction to Manifolds": "Intuitively, a manifold is a generalization of curves and
surfaces to higher dimensions. It is locally Euclidean in that every point has a neighborhood,
called a chart, homeomorphic to an open subset of Rn. The coordinates on a chart allow one
to carry out computations as though in a Euclidean space, so that many concepts from Rn,
such as differentiability, point-derivations, tangent spaces, and differential forms, carry over
to a manifold" [12]. This description not only introduces the concepts of manifold intuitively
but also shows why we use the the neighbourhoods of points in our algorithms. These
point neighborhoods shall be referred to as neighborhoods instead of charts throughout the
thesis, for maintaining intuitive readability. Two important concepts needed for this thesis
were those of Riemannian manifolds and Whitney’s theorem [11]. Riemannian manifolds
are smooth manifolds which permit the measurement of distance with a Riemannian metric
[13]. Whitney’s Theorem is used in [1] to argue that for a d-dimensional input manifold we

4

2 Related Work

can guarantee the preservation of its topology only by passing it through layers with at least
2d + 1 neurons, and as such only neurons that are before any layer with less than 2d + 1
neurons should be used as input to the transformation.

2.1.2 Mahalanobis Distance

The Mahalanobis distance, first presented in "On the generalized distance in statistics" by
Prasanta Chandra Mahalanobis [14] is a generalisation of the euclidian distance which takes
the variance in different dimensions into account when computing distances. It will be used
when computing the kernel function of the diffusion maps.

2.1.3 Diffusion Maps

The final important concept for this thesis is that of the diffusion maps, which first appeared
in "Diffusion maps" by Ronald R. Coifman and Stéphane Lafon [15]. Diffusion maps are coor-
dinates constructed by using the eigenvectors of a Markov matrix which uses as probabilities
kernel functions, which represent the distance between points in terms of likelihood [15]. A
larger distance between two points represents a smaller likelihood of that state transition. For
our implementation we have used a Gaussian kernel, defined as :

k(x, y) = exp(−||x − y||2
ϵ

) (2.1)

with the Euclidean distance, ||x− y||2, in Equation 2.1 replaced by the Mahalanobis distance.
This method was initially proposed in [1], which functions as a guideline for the concepts
implemented in this thesis.

2.2 Models and Datasets

The first experiment, done with the purpose of replicating the first example in [1], uses both
model definitions, a 1-1-1 model and a 1-8-8-8-1 model and dataset definition, points sampled
from the manifold M = [−1, 1], presented in the first example from [1]. The models were
trained during this thesis to match the performances presented in [1].

The second experiment uses a dataset from the project presented in [16], which contains
6 recordings of sensors of a rotary mower over a time segment of 20 milliseconds, which is
represented through 100 timesteps, as inputs. The targets represent the status of each blade
during the whole time of the recording. For the models the status are concatenated to a single
value which identifies whether any blade is faulty.

Due to the increase in popularity of models used for sequence data, such as models used
for text translation, speech recognition, etc., we have chosen for these experiments performed
in this thesis we used a class of models for time sequence data: vibrations, speech and text.
For this type of data, two layer types have emerged lately as the most chosen components for
new models: LSTM layers [5] and transformer layers [6]. The second experiment uses two

5

2 Related Work

models implemented in [16], each using one of these layers as a central component of the
networks.

For experiments 3 and onward, the Librispeech dataset [9] was chosen for the training of
the transformations. The Librispeech dataset is a dataset with english speech and the text
read to generate the speech. Each entry into the dataset contains a speech component and a
text component along with other descriptors which we will not use. The Librispeech dataset
[9] fits our needs since we need a dataset with speech data for the third experiment, a dataset
for text data for the fourth experiment and a dataset containing both speech data and the
textual translation of that data.

The third experiment used widely available encoder-decoder models with pretrained
weights for automatic speech recognition. Both models use the same encoder layer with the
decoder being different, since the two are trained for different tasks. Both model definitions
were taken from the Huggingface library [4] and their pretrained weights were taken from
projects hosted on the Huggingface platform. The first model chosen was a Wav2Vec2 model
[8], with the weights taken from a project by user "patrickvonplaten" [2] from the platform.
It was trained to transform english speech to english text. The second model used was a
Speech2Text2 model [7], with the pretrained weights presented in the same article and hosted
on the Huggingface platform. This model was trained to perform a translation from english
speech to german text.

The models used for the forth experiment also stem from the Huggingface library [4], with
their weights hosted on the same platform. Both models were trained for sentiment analysis
on english text. An implementation of the XLNet model [3] was chosen as the first model,
with weights sourced from the project [17], attributed to the user "textattack", on the platform.
The second model used was a RoBERTa[10] implementation from the Huggingface library,
with the weights sourced from the project presented in [18].

The presented Wav2Vec2 model [8], with the pretrained weights from [2] and the XLNet
model [3] with the weights from [17] will be reused for the fifth and final experiment.

6

3 Implementation

This chapter of the thesis will present and explain both the implementation of the concepts
presented in the previous chapter, chapter 2, and how these were adapted and melded
together to create the final algorithms used in the experiments presented in chapter 4. It
will start with an outline of the general algorithm, which will give a general idea about
how the algorithm works, and then move on to present each individual component of the
implementation in detail, thus enabling future readers of this thesis to replicate the pursued
experiments.

3.1 Implementation Outline

The outline will present how the algorithm generally works, what its component parts are
and how they combine in order to create the code basis used for the experiments.

The algorithms can be split in two categories: algorithms for the computation of the
transformation (section 3.2, section 3.3 and section 3.4) and algorithms for the usage and
testing of the computation (section 3.5). The first category can be again split in three steps:
The generation of the input data necessary for the computation of the transformations, i.e. the
samples and the neighborhoods, (section 3.2), the propagation of the input data through the
networks to generate the activations (section 3.3), and the computation of the transformation
based on the activations (section 3.4)

Figure 3.1: Outline of the Transformation

Figure 3.1 shows the general outline of the implementation as presented in [1], which also

7

3 Implementation

served as a guide to the steps necessary for our implementation. Each step presented above
can be seen in this outline, with a focus on the component parts of the computation of the
transformation.

Based on the outline in figure and the knowledge from [1], we can create a general road
map of how the algorithm should be implemented, which we will later describe in a number
of steps. The outline of the algorithm to compute the transformation Figure 3.1 indicates the
fact that part of the algorithm is the same for both of the neural networks and it functions
independently for each of the neural networks up to the point of the orthogonal map O. As
such we will present the outline of the algorithm for only one neural network up to that point
and it is assumed that the same procedure occurs for the other.

The initial condition that needs to be met for the concept to function is that the input
domain of both neural networks needs to either be the same or that there is a diffeomorphism,
a smooth, differentiable and invertible function, between the two. Since for all experiment
except for the last we use the same input domain, we can use the identity function as the
chosen the diffeomorphism. For the fifth experiment the discussion of the input domain
manifolds and the existence of the diffeomorphism will be presented in section 4.5. For the
outline and description of the implementation the assumption is made that a diffeomorphism
exists.

Based on that assumption we choose N values from the training domain of the first neural
network (which we assume to be a Manifold), which "cover the training domain well". For
each of those N we compute their mapping to the training domain of the second neural
network (also assumed to be a Manifold) using the chosen diffeomorphism. These values
will be known as the samples of network one and two respectively.

For each of the N samples on the training domain of the first model, we sampled M
points from a multivariate Gaussian distribution with the mean equal to the value and the
same variance for all N values. The variance δ is a hyperparameter. The optimal δ needs
to be found for each experiment, and is dependent on the training domain manifold. After
we generate the M points on the training domain manifold of the first model we also map
those to the training domain of the second model using the chosen diffeomorphism. This
procedure changed only for the fourth experiment. The required adaptation will be explained
in section 4.4. Each of the M values will be called the neighborhood of the sample.

With the N samples and their neighborhoods for each training domain we can now present
the steps needed to be followed, based on the Outline in Figure 3.1, for each of the neural
networks:

1. We have to propagate the samples and the neighborhoods through the neural network
up to the activation layer chosen by us. Even though [1] states that we can use activations
on different layers, we limit this, for reasons stated further, to a single layer. We then have
to record the output values of the chosen activations while passing both the samples
and their neighborhoods through the forward pass of the model. The output values
recorded will be called sample activations and neighborhood activations respectively.

2. We compute covariance matrices from the the neighborhood activations for each sample.

8

3 Implementation

These will be then used to compute the Mahalanobis distance [14] used by the diffusion
map kernel.

3. We create the diffusion map object using the samples and a Gaussian kernel which
uses the Mahalanobis distance computed from the inverse of the covariance matrices
previously computed.

4. We map the samples to the the diffusion map embedding, and then compute interpola-
tions using a Radial Basis Functions Interpolator object from the datafold library [19]
from the sample activations to their diffusion map space representations.

Using the diffusion map representations of the samples we can now compute the orthogonal
transformations between them. We will compute the orthogonal transformation in both
directions, from the diffusion map space of model 1 to the diffusion map space of model
2 and in reverse, at the same point of the algorithm, since both will be necessary at a later
point. In order to compute them we used the orthogonal Procrustes alignment algorithm
from the SciPy library [20]. The first column of all of the eigenvectors of the diffusion
map is a constant, and as such the including them in the orthogonal procrustes alignment
algorithm is suboptimal. This lead to our decision to ignore the first column in the input of
the alignment algorithm. This requires a couple of changes in the algorithm which computes
the transformation, which will be presented in section 3.4.

After propagating the diffusion map representations of the samples of a model through
the matrix generated by the orthogonal procrustes algorithm, they are used as the domain
for another Radial Basis Function interpolator, with the targets set to the diffusion map
representations of the samples of the other model. This procedure needs again to be used for
both directions, in order to generate the interpolation for the inverse of the diffusion map for
both models.

The interpolated function for the diffusion map of one model, the orthogonal transformation
and the interpolated function for the inverse of the diffusion map of the other model are then
called sequentially in the predict function, which is the function called in order to perform
the complete transformation from one activation space to the other. Whether the performed
transformation will be from model 1 activation space to model 2 activation space or its inverse
can be decided at runtime by setting a specific parameter.

Finally, the usage and testing of the algorithm will be presented in section 3.4. Given
an already computed transformation, this section of the implementation does a pass of the
models with the transformation by passing the input to the initial model, recording the
activations at the chosen layer and perform the transformation. The other model is then
started with an input and the transformed activations will replace the activations at the
chosen layer of the target model. This will be repeated for each of the inputs.

The following sections of this chapter shall highlight the corresponding details for the steps
of the algorithm above.

9

3 Implementation

3.2 Sample and Neighborhood Generation

This section will present the algorithms used in order to perform sample and neighborhood
generation, the conditions imposed on the algorithms, and the importance of the correctness
of these algorithms for the performance of the transformations.

The purpose of the algorithm was to create a set of values that cover the training domain
manifold of the chosen neural network well, to create the set of samples, as well as sample
the space around each value to create the neighborhood set for each sample.

Based on the formulation of the theoretical concept, two such sets, of samples and their
neighborhoods, need to be created for each transformation, with the condition that there is
a diffeomorphism between the two sets that is also a diffeomorphism for the two training
domain manifolds [1]. This condition could be ignored up to the last experiment, since all the
model pairs of experiments one two and three were trained on the same training set, and
as such we can assume the diffeomorphism to be the identity function and use the same
set of samples and neighborhoods for both models in these experiments. While the two
models in experiment four were trained on different domains, both were trained on the same
type of data, and as such the argument can be made that both training sets are part of a
larger training domain of general text data, which fits the purpose of the neural networks,
since there is no constraint on the texts that sentiment analysis can be performed on. For
experiment 5 another approach at the generation had to be taken, which will be discussed
later in this section.

We can conclude both from the previous paragraph and the fact that the dimensionality and
characteristics of training domains vary between experiments, that sample and neighborhood
generation have to be tackled on a case by case basis and there is no solution that can function
for all training domains and experiments. As such the algorithm is split into four different
sections, matching the subsections below, based on the datatype that the training domain
contains.

Figure 3.2: General description of the sample and neighborhood generation

10

3 Implementation

Figure 3.2 shows a general visualisation of the sample and neighborhood generation. While
this specific case, a two dimensional disk shaped manifold, never occurs in our experiments,
it is a useful abstraction of what would occur in the case of an N-dimensional manifold. It
shows that the training space manifold should be well covered in all dimensions, and that the
neighborhood of each sample will be created by sampling multivariate Gaussian distribution
with a number of dimensions equal to that of the training domain manifold, with the mean
at the sample and the variance equal in all dimensions. The variance of the multivariate
Gaussian distribution is equal to a fourth of the hyperparameter used, since we tried to use
the "three-sigma rule"[21] so that the hyperparameter is understood as the space around the
sample that the neighborhood covers. We used a division by four instead of three since it
seemed to perform better during the experiments.

The generation is dependent on a couple of hyperparameters, which might differ depending
on the models for which the transformation is generated and on the training domain manifold
of these models. The number of samples, the neighborhood size, and the variance of the
multivariate Gaussian distribution are hyperparameters which need to be specified for all
generations. Other hyperparameters which specify how the manifold will be sampled will
also be necessary for all of the different procedures, but these are dependant on the manifold
and will be specified with the generation procedures presented in the following subsections.

3.2.1 One-dimensional Data

This subsection will present the procedure used to generate the samples and neighborhoods
for the first experiment and other tasks with similar training domains.

This is the simplest case, since the training manifold is one dimensional and its boundaries
are clearly defined. It is given by the experiment setup in [1] that the manifold on which the
samples are situated is equal to M = [−1, 1] ⊆ R for both models. As such the diffeomorphism
is, as previously stated, equal to the one dimensional identity function f (x) = x. As such
only one set of samples and their neighborhoods needs to be computed and they will be used
for the training of both models.

Additional to the usual hyperparameters, the number of samples, the size of the neighbor-
hood and the variance of the multivariate Gaussian distribution, the algorithm also requires
the lower and upper boundaries of the manifold as hyperparameters. In this case we make
the implied assumption that the manifolds from which we select the samples are continuous
and closed.

Due to requirements made by neural network layers, we have to generate sets of samples
of the shape (number of samples, 1) and for each sample a neighborhood of the shape (size of
neighborhood, 1), even if the second dimension is always redundant.

The samples were generated using the function:

Xi = LB + i × (UB − LB)
N

∀i ∈ Z, 0 ⩽ i < N (3.1)

Where LB is the lower boundary, UB is the upper boundary and N is the number of samples.
This formula ensures that the manifold is covered well by setting all the points evenly over

11

3 Implementation

the manifold, and that the lower boundary is enclosed in the set.
NXi is the neighborhood of the sample Xi. It has the shape (neighborhood size,1), for

reasons explained previously, and is generated by using the normal function of the pytorch
library [22], with the mean equal to Xi, the shape equal to the intended shape of the
neighborhood and a variance equal δ/4. Finally, Xi and NXi are returned by the algorithm.

3.2.2 Vibration Data

The algorithm used to generate samples and neighborhoods from the fault detection in
rotary mower dataset [16] is based on the same concepts as the algorithm snippet presented
in the previous subsection, especially since we use the same procedure to generate the
neighborhoods from the samples, only adapting the shape generated by the python function
normal from (neighbourhood shape,1) to (neighbourhood shape, 1, 100, 6) since the shape of
each sample changed to (1, 100, 6).

The dataset is comprised of a set of inputs x ∈ R100x6 and a set of labels. Each input
contains 100 time steps of six input features [16]. This determines the maximum dimension
of the manifold M ⊆ R100x6, which does not also mean that we know the boundaries of said
manifold. This directly results in an inability to create equidistant samples between known
boundaries on the vibration data manifold. As a solution to this problem we have used a
stochastic approach: If we randomly choose enough samples from the dataset, it will cover
the manifold to a satisfactory extent. This assumption can be made since datasets created for
training neural networks generally tend to cover the whole domain of possible inputs well
enough that the networks trained on them are considered robust.

Using the previously discussed idea, the algorithm generates the set of samples by picking
a number of unique indexes in the input dataset equal to N and use the arrays at those
indexes as the set of samples. For each sample we generate the neighbourhood as previously
discussed. The samples and neighborhoods can then be used as inputs for the next step,
presented in section 3.3.

3.2.3 Speech Data

Both models used for experiment 3 (section 4.3) were trained on the speech column of the
Librispeech dataset [9]. Each input is a variable length sequence with one feature. Since there
is a maximal sequence length max in the dataset, we can assume that there exists a input
domain manifold M ⊆ Rmax, where all inputs with size lower than that are padded with
zeros at the the beginning in order to to become a member of said manifold.

The same difficulty presented previously, the fact that we do not know the boundaries of
the manifold, also appears in the case of speech data. As such we use the same procedure
of choosing the arrays at random indexes in the dataset, hoping that they cover the training
domain well, as the samples.

Our input domain being the Librispeech datasets speech column [9] presents a new
challenge, since different samples selected from said dataset do not have the same length. This
poses a problem because the data structure used to store the samples and neighborhoods used

12

3 Implementation

to be a pytorch tensor object [22, 9]. Because the tensor object is similar to a multidimensional
array, it can not be used to store sequences of differing lengths. We have chosen for this case
to use a list of pytorch tensor objects [9] both for samples and neighborhoods, where each
position in the samples list represents one sample and the same position in the neighborhoods
list represents its neighborhood.

The last experiment presented in section 4.5 also uses the speech data sample generation
method. Since it needs to create the mapping between the input manifolds, it will use the
Speech to text model from section 4.5, the Wav2Vec2 model [8], as a mapping from the speech
data manifold to the text data manifold.

3.2.4 Text Data

The first four experiments contained within the thesis are to be considered stepping stones
towards the final, fifth experiment, to be presented in section 4.5. The transformation for
the fourth experiment will not be trained on the datasets on which the two models from the
fourth experiments were trained, but again on the Librispeech dataset [9] – this time using
the target text column as the dataset from which the samples are picked.

The tokenized text data found in the Librispeech dataset [9] is very similar to the speech
data in the same data, because they are both sequences of varying length with only one feature.
Due to this, we can use the same procedure we used for speech data in subsection 3.2.3 to
generate the samples, namely random picking of elements of the dataset as samples which
are all stored in a list.

Even though they share similarities, text data is by definition discrete, as opposed to all
other presented data types, which are continuous. While this fact does not change the way the
samples are generated, the generation of neighborhoods becomes much more complicated.

The solution we have found in order to be able to generate the neighborhoods was to forgo
their generation on the discrete space and generate them on the embedding space created
by the embedding layer of each neural network, since it is continuous. This solution comes
with a drawback, namely the fact that embedding spaces created by the embedding layer of
a neural network can differ depending on the training of the model. Since the embedding
space is different we can not use the exact same neighborhoods for the two neural networks,
and we can not guarantee there is a diffeomorphism between the two sets of neighborhoods
and that such a function is also a diffeomorphism between the two manifolds created by the
embedding layer.

This special case of neighborhood generation will be discussed at large in section 3.3, since
it can be argued that we directly generate the neighborhood activations without any initial
neighborhoods.

A future topic that arises from this problem and its sub-optimal solution is the topic of
efficiently computing either diffeomorphisms between embedding spaces generated by neural
networks for text processing.

13

3 Implementation

3.3 Activation Generation

As presented in the Outline (section 3.1), the next step will be the generation of the sam-
ple activations and neighbourhood activations by using the samples and neighbourhoods
generated in the previous step, section 3.2, and propagating them through the models up
to the activation layer. Since this procedure can be done in parallel for both models and is
independent of the other model, we will henceforth refer to the procedure for one model, and
it is implied that the procedure is performed on both models of the transformation.

This section is split into three parts. First we will discuss in subsection 3.3.1 preparations
that need to be undertaken before any activations can be recorded. We will then present the
algorithms developed for the generation of activations in the general case (subsection 3.3.2),
which occurs in all experiments except Experiment 4 (section 4.4). Finally we will also
showcase what changes needed to be made in order to generate activations for both samples
and neighborhoods for the aforementioned experiment in subsection 3.3.3

3.3.1 Preparation

In order to generate activations, the object which does this tasks has to be initialized with
a couple of necessary parameters: the neural network used, the activation layer chosen, the
dimensionality of the output of the activation layer, the chosen positions of the neurons in the
activation layer, and whether the outputs of the activation layer should be reshaped into a 2D
matrix with row size equal to the number of samples.

Generally the preparation of the activation generation is done in the initialization of
said object. First we set the neural network to the evaluation mode, to make sure that its
weights will not change during the computation of the transformation. We will also create an
empty list of activations which will function as a temporary container for the outputs of the
activations. One important step is the segmentation of the neural network in its component
layers, which we will name children, so that we are able to call the chosen activation layer.
Since all models used are instances of the pytorch library [22] module class, which function
similar to a tree structure, we used a recursive function to gather all the children, inspired by
the code snippet found at [23].

Another important part of the preparation is the generation and usage of the pytorch
library [22] objects called neural network forward hooks. These objects are attached to a
specific layer, in the general case the chosen activation layer and have access to that layer.
This includes its inputs, and outputs and its return value replace the outputs of that layer. We
have defined a couple of different hooks as member objects of the activation generation class
that need to be chosen at the moment of initialisation depending on different possible output
options of the activation layer. These options are the ones noticed during the experiment. If
new options are required, these will need to be hardcoded inside the class, since no possible
implementation was found where they were defined outside of the class. This occurs because
the hooks all store the output of the layers in a class member object, which we previously
called the temporary container of the activations. Additionally, they also call a custom error
at the end which stops the forward pass of the neural network. This was done to shorten the

14

3 Implementation

time in which the activations were generated, by avoiding the completion of the forward pass.
The hooks are automatically attached to the chosen layer during the initialisation of the class
object. The class also includes a function to detach the hook at the end of the generation, in
the case that the neural network needs to be reused.

3.3.2 General case

After finalizing all the necessary preparations, a couple of different functions can be called to
generate activations, depending on whether the activations need to be generated for a single
sample, for a list of samples or for a list of sample neighborhoods.

The first function we will use is intended to return the values of the chosen positions of
the activation layer for one sample. It starts the forward pass of the neural network with the
sample, then catches the previously defined custom error and stores the activations from
the temporary container. Before returning, it selects the values of the chosen neurons from
that layer and reshapes them, based on the previously described parameters, passed during
the initialisation of the object, in such a way that they are directly usable by the next step,
without any further modifications.

To generate the activations for a list of samples we call the algorithm described in the
previous paragraph for each sample in the list and append the result to a list that is then
returned by this algorithm.

The generation of the activations of all neighborhoods is done by calling the algorithm for
generating the activations of a list of samples for each neighborhood in the list of neighorhoods
and append the results to a list which is also the return value of this function. This is possible,
from an algorithmic standpoint, there is no difference between generating the activations of a
list of samples or generating the activations for a neighborhood of a specific sample.

3.3.3 Text processing models

As was previously discussed in subsection 3.2.4, neighborhoods for transformations between
models trained to process text data can not be generated on the discreete input domain, and
they will be generated at the embedding layer.

As we did in the general case (subsection 3.3.2), the same hook is placed at the chosen
activation layer. Additionally, a new container for the outputs of the embedding layer, and
two new hooks, one for storing the embeddings in the container, and one for replacing the
embeddings with the content of the container are defined. The first hook is defined similarly
to the activation layer hook, the only change being which container it stores the output in.
The second one replaces the output of the embedding layer at each forward pass with the
current contents of the container – it sets them as the return value of the hook and omits the
call of the custom error, since it would be counterproductive.

For each sample we call the first hook on the embedding layer, call the neural networks
forward pass on the sample and copy the samples’ embeddings from their temporary storage.
The hook is then removed from the embedding layer, replacing it with the second one.

15

3 Implementation

Using the sample embeddings we compute the neighborhood embeddings using a similar
procedure to that presented in subsection 3.2.1, namely we sample a number of values equal
to the neighborhood size from a multivariate Gaussian distribution with mean at the current
sample and variance equal to δ/4.

Having now the sample and neighborhood embeddings, we first set the sample embeddings
in the embedding container and start the forward pass of the network. During this pass, the
second embedding layer hook replaces the output with the sample embeddings The pass
ends with the error raised by the activation layer hook. The values stored in the activations
container are then appended to a list which stores sample activations. The same procedure
is done afterwards using the neighborhood activations instead of the sample activations
and appending the values in the activation container to a list of neighborhood activations
at the same position as the sample activation of the sample to which the neighborhood
corresponds. The second embedding layer hook is then also removed. After all the sample
and neighborhood activations were appended to their corresponding lists, both lists are
returned by the algorithm.

3.4 Computation of the Transformation

Since all the necessary parameters were computed in the last step, we can now commence
with the computation of the transformation. The processes presented in this section will
occur twice, once for the transformation from the activations of model one to the activations
of model two, and once for the inverse transformation, from the activations of model one to
the activations of model two. Both the transformation in the first direction and its inverse are
used in all experiments except for the fifth. As such, we will present the process of generating
the transformation in one direction with the implication that the same computations occur
for the other direction subsequently.

The implementation of the algorithms for computing the transformation are based on
the algorithms presented in [1], specifically presented as pseudocode in Algorithm 1 and
Algorithm 2 of that paper. The first two steps of Algorithm 1, generation of samples and
neighborhoods, the generation of their activations were already presented in section 3.2 and
in section 3.3. This section will present the third step of Algorithm 1, which is described in
Algorithm 2, along with the last two steps of the first algorithm.

The third step of Algorithm 1, presented in detail in Algorithm 2, details the construction
of the diffusion maps from the activations of the samples to a number of eigenvectors. The
number of eigenvectors used for each experiment is a hyperparameter that can affect the
performance of the transformation to a great extent.

We start by calculating the inverse of the covariance matrices based on the neighborhood
activations, since they are required to compute the mahalanobis distance between the samples,
as dictated by the first step of Algorithm 2. The computation is done using the numpy library
[24] function "cov" to compute the covariance matrix from each neighborhood activation
and the function "pinv" from the linalg section of the numpy library [24] to compute the
pseudoinverse of the covariance matrix. This was done for each neighbourhood activation

16

3 Implementation

and was placed in an array at same position that the sample it is the neighborhood of was
placed in the sample list. The function then returns one array of N inverse covariance matrices
for each model.

The algorithm for the second step, which computes the Mahalanobis kernel, presented in
chapter 2, was provided by Dr. Felix Dietrich in a script named "mahalanobis_kernel.py".
This algorithm uses methods from datafold [19], Scipy [20] and numpy [24] to compute the
Mahalanobis distance, presented in subsection 2.1.2, between all samples. These distances are
then used to create a diffusion map kernel matrix, by employing a Gaussian kernel with a
Mahalanobis distance, concepts which we explained in subsection 2.1.3, and store the values
returned by the kernel for all sample combinations in a matrix. This matrix will then be the
diffusion map kernel matrix used for the computation of the diffusion map eigenvectors.

The third step, the normalization of the kernel matrix and the computation of its non-
harmonic eigenvectors with the largest eigenvalues, is also computed using a function, called
"dmap", supplied by Dr. Felix Dietrich at the start of the thesis. It takes the samples and
inverse covariance matrices as inputs, creates a PCManifold (Principal Component Manifold)
object, defined in the pfold section of the datafold library [19], using the sample activations,
and then calls its opitmize_parameters function. Using the previously computed Mahalanobis
kernel and the number of eigenvectors defined in the parameter we initialize a DiffusionMaps
object, defined in the dfold section of the datafold library [19], and call its fit function using the
PCManifold object. The DiffusionMaps object now contains the diffusion map eigenvectors
required later.

The last step of Algorithm 2 computes the interpolation between the sample activations
and the previously calculated diffusion map eigenvectors. Initially, we have attempted
to do this using a Geometric Harmonics Interpolator [25] from the datafold library [19]
but due to a performance increase and lower computational time required we have opted
to change the interpolator to a Radial Basis Function Interpolator [26] (RBFInterpolator)
from the SciPy library [20]. Using instances of this interpolator object with the samples as
inputs, the eigenvectors of the diffusion map as targets, the thin plate splines option, and a
smoothing hyperparameter, we create the interpolation from the model activation spaces to
their diffusion map spaces. The inverses are also created using other instances of the same
interpolator object, but with the targets being the model activation spaces, and the inputs
being the other models diffusion map eigenvectors, which were orthogonally transformed
using the orthogonal transformation computed in the next step.

The last necessary component of the transformation is the orthogonal transformation
between the two diffusion map eigenvector sets. This is done using an orthogonal procrustes
alignment algorithm [27], found as a function in the SciPy [20] linalg section. This algorithm
needs to be computed twice, since we need an orthogonal transformation for each direction.
Different to the procedure in the second algorithm in the paper [1], we do not compute the
orthogonal procrustes on all of the diffusion map eigenvectors, since the first will always be a
constant. As such, we compute the orthogonal transformation using the procrustes alignment
algorithm on both sets of the diffusion map eigenvectors excluding the first eigenvector in
both sets. The transformation between the eigenvectors on the first position is computed

17

3 Implementation

through a scalar. As such, the matrix performing the transformation will have the values
computed by the orthogonal procrustes algorithm starting with the second row and the
second column, while the first row and column will be filled with zeros excepting the element
on the diagonal, which will contain the quotient of the two constant eigenvectors.

With the two interpolations, their inverse, the orthogonal transformation, and its inverse,
we can now compute the transformation in both directions. This is done in our program by
using the predict function of the transformation generation class object with the activations
needed to be, and the direction they should be transformed in. The predict function will
output both of the diffusion map space representations along with the transformed activations.
This is done for the purpose of visualisation and evaluation of the process and these outputs
will be showcased in sections of chapter 4. Since the two neural networks stored in the
object are numbered based on their order in the initialisation, we shall call them model 1
and model 2. The direction parameter of the predict function indicates the target activation
layer of the transformation and not the input activation layer. If direction 1 is picked, then
the transformation performed will be assuming inputs from the activation layer of model 2
and transform them in the activation space of model 1. Direction 2 assumes inputs from the
activation layer of model 2 and transforms them in the activation space of model 1.

18

3 Implementation

3.5 Applying the Transformation

After computing the transformation T and its inverse, T−1 , we now also have to implement a
way that this transformation can be used. We have chosen not to focus on proving whether
two neural networks are equivalent, but to bind two neural networks through an operation
that transforms the output of an activation of one network and replace the output of the
chosen activation layer on the other network. We thus show our ability to combine two
models and a transformation in a new model.

For this purpose we have implemented a class which creates objects able to perform the
forward pass of the previously described new model. These objects need to be initialized with
the two neural networks, the positions of the activation layers on which the transformation
was trained and the transformation itself. The parameters presented before are necessary
– without them, the forward pass on the combined model is impossible irrespective of the
model used. Additionally, there are optional parameters which deal with having activations
on sequence data: two parameters which indicate the sequence axis in the activations and the
lists of positions in the sequences on which the transformation was trained (Experiment 2-5);
parameters that are used when not all neurons of the activation layer were used: the lists of
neurons in each activation layer on which the transformation was trained(Experiemt 2-5); and
two booleans which mark if the sequence length of one activation is larger than that of the
other (Experiment 4 and 5).

The function predict of these models is the function which implements the forward
pass. It must be called with the inputs of the combined model, the direction in which the
transformation should be performed, which works as it does in section 3.4, direction should
be set equal to the target model, two tuples which indicate the permutation that needs to be
performed on the activations before they are passed as input to the transformation and the
permutation that the output of the transformation needs to be subjected to, and a boolean
variable which indicates whether the target activation layer output is a tuple, a case that
occurs for LSTM layers for example, such that the transformed activations are also formatted
accordingly.

We will only describe the procedure in the predict function that occurs for one direction,
since the procedure for the other is very similar to that. In a very similar fashion as in
section 3.3, the first step is the application of two hooks to the chosen layers of the models.
The layers are set in a list at the initialization of the algorithm using [23] for accessibility
purposes, and as such we only need the positions of the layers in the list for the placement of
the hooks. The first hook is placed on the input model and has the purpose of storing the
activations temporarily in a variable and stopping the forward pass by throwing a custom
error, and the second hook replaces the activations of the target model at the chosen layer
with the transformed activations of the first model, stored in the temporary container. In the
case of Experiments four and five, the second hook also ensures that the sequence length of
the output of the chosen activation layer of the second model is preserved by either trimming
them if the initial output of the chosen activation layer was shorter, or padding with mean
values of the activations if the initial output was longer. This will be explained in more detail
in section 4.4.

19

3 Implementation

After the hooks are in place we will iterate through the list of inputs and for each we
will perform the following operations. We will first call the forward pass of the model with
the current input. The contents of the temporary container are copied then permuted and
reshaped to bring them in a form suitable for the transformation. If necessary, only the
outputs of the chosen neurons will be selected. If only a subgroup of the sequence was used
for the computation of the transformation, then the sequence is split in subgroups of that
length and distance. The algorithm then iterates through them until the whole sequence
is transformed. The diffusion map space representations outputted by the transformations
predict function will also be stored for visualisation and evaluation purposes. For either
the whole output or the current subgroup the transformation is performed and stored in
an array that will contain the transformation of the whole sequence. That array will also
contain positions for the neurons in the target activation layer for which the transformation
is not defined. While at first the transformed activations of those neurons were replaced
with zeros, after a number of experiments with this function we have concluded that they
should be replaced with the mean of the outputs of the transformed activations, since this
implementation choice lead to better performances in section 4.2. After the transformed
output of the target network was computed, it is stored and then placed in the temporary
container.

With the transformed activations placed in the container, forward pass of the target
network is performed and its output is stored. The input of this forward pass varies between
experiments and it will therefore be addresed individually in all the sections of chapter 4.

After iterating through all the inputs, the hooks are removed and all the stored variables
are returned.

20

4 Experiments

After presenting the theoretical basis and the way we implemented the presented concepts
we will now show, through five experiments, that our implementation is correct, and we will
present the capabilities of the presented ideas and our implementation thereof.

Speech

Sentiment Analysis

Speech-to-Text

Text

Sentiment Analysis

Vibration1D

Figure 4.1: Structure of the Experiments

Figure 4.1 presents the main thought behind the ordering of the experiments. The first
experiment has multiple purposes. First it is intended to verify if the implementation is correct.
Since the exact same models and transformations were used in the first experiment of the
paper [1], we could investigate the implementation and its midway results step by step, and
compare it with the results presented in [1]. Thus, based on how the transformations therein
were performing, the implementation was debugged and changed. The second purpose is
that of presentation. Since the function is defined on a one dimensional manifold, the range
of the function is a one dimensional manifold, the activations are 1 and 8 dimensional and
the embedding dimension is only 3, we can plot the whole process in a understandable way.
This enables to accompany the process description with images.

The second experiment functions as a stepping stone towards the next two experiments.
It introduces transformations on sequence data, a category in which both speech and text
data are included. This experiment will also include a proposed solution for the problem
of implementing transformations for data with variable sequence length, which, while
not necessary in this case, does also function as an optimisation of the algorithm for this
experiment. The dataset used was created during the interdisciplinary project "Deep-learning
based approaches for fault detection in a rotary mower" [16], which contains as inputs
segments of one hundred timesteps of the recording of six vibration sensors on a rotary
mower and as target a boolean value which indicates the status of the machinery: functioning
or faulty. The models used were also implemented during said interdisciplinary project, and

21

4 Experiments

both the implemented models as well as their trained weights were used for this thesis. Both
models include at least a layer of higher complexity than the layers used in the first experiment,
and both have different complex layers. The LSTM-linear model includes a LSTM [5] layer
and the 1DConv-transformer-linear-Llnear model includes both a 1D convolutional layer
and a transformer layer. The implementation of the transformations for models containing
different layers with higher complexity is also a stepping stone towards the implementation
of open source pretrained models in experiment 3 and 4, since both include large networks
with different, complex layers.

The third experiment implements transformations between neural networks trained for
ASR (Automatic Speech Recognition). The two networks used, a Speech2Text2 [7] network
and a Wav2Vec2[8] were implemented in the Huggingface library [4], with pretrained weights
taken from two projects, mentioned in section 4.3, hosted on the Huggingface platform. Both
networks have a much larger number of layers than the models in the previous experiments
and both have a higher degree of complexity. The number of activations on the chosen
activation layers also increases drastically, and only a selection of them can be used. Since
the Wav2Vec2 model has different outputs, written sentences of the inputted speech, than
those of the Speech2Text2 model, written sentences of the inputted speech translated in
German, it is also the first experiment with two neural networks used for different purposes,
a characteristic which also occurs also in the fifth experiment.

The last step needed towards the final experiment is presented in the fourth experiment. In
this experiment a transformation is computed between two neural networks that perform
text sentiment analysis. A RoBERTa model [10] and an XLNet model [3] were chosen for this
experiment. Both of their implementations were again found in the Huggingface library [4],
and the pretrained weights, uploaded in two projects mentioned in section 4.4, were also
downloaded from the Huggingface platform. This experiment will introduce the generation
of neighborhoods on the embedding space instead of the input space and the changes
implemented for the computations of transformations on data of variable, unequal sequence
length between two networks, also required for the fifth experiment.

The fifth and final experiment presents our attempt at using two pretrained models and a
transformation to build a new model with a different usecase than that of the component
models. We will take a ASR model and a text sentiment analysis model and build from those
a speech sentiment analysis model using a transformation. The samples, their activations
and the Mahalanobis kernel Diffusion Map spaces generation procedures from the Wav2Vec2
model[8] from the third experiment and those from the XLNet [3] Model from the fourth
experiment will be reused in this experiment. As such, the two experiments can be seen as a
necessary components of the final experiment. This thesis’ conclusions will also take a larger
focus on this experiment.

4.1 1D-Data

Since this thesis was inspired by the paper "Transformations between deep Neural Networks"
by Tom Bertalan, Felix Dietrich and Ioannis G. Kevrekidis [1], and implements methods

22

4 Experiments

presented therein, we have decided for our first experiment to reproduce the first experiment
from the aforementioned paper.

For this experiment we have used the function f (x) = −x2 defined on the manifold
M = [−1, 1] ⊆ R as the function that both neural networks, N1 and N2, attempt to learn.

For the first neural network, N1, we have chosen a network composed from two linear
layers, which take one input feature and output one feature (xin ∈ R and xout ∈ R) and a
tanh activation between them. The last linear layer is the output layer of the network.

For the second neural network, N1, we have chosen a network composed from one linear
layer with one input feature and eight output features, two linear layers with eight input
features and eight output features and a linear layer with eight input features and one output
feature. The last linear layer is again the output layer of the network. Between all linear layers
there are tanh activations.

We have generated for both Netwoks the same dataset on which they will be trained.
The training dataset consists of 10240 input values generated by random sampling from
a uniform distribution on the interval [−1, 0], and their target values computed using the
function f (x) = −x2. The validation dataset consists of 512 input values generated by random
sampling from a uniform distribution on the interval [−1, 0], and their target values computed
using the function f (x) = −x2.

While we assume that our function is defined on the manifold M = [−1, 1] ⊆ R, we will
train both networks using only samples from the domain [−1, 0] ⊆ M, so that we can see
how the transformations perform for the networks on a subset of data for which the networks
will under-perform.

Both neural networks were trained using the pytorch lightning library [22], with the Mean
Squared Error loss [28], implemented by the pytorch library [29] MSELoss function. The
optimizer chosen for the neural networks was an adaptive moment estimation optimizer
(Adam) [30] implemented by the pytorch library optimization package function Adam [29].
While the first network was training using a learning rate of 0.001, the learning rate used for
the training of the second one was 0.0001. The batch size used was left at the default setting
of the pytorch Dataloader [29], namely 1. The training was done using the Trainer object
in pytorch lighning, with a maximum numbers of epochs 200 and a early stopping callback
which monitors the validation loss, and stops the training if the validation loss does not reach
a new minimum for 10 epochs. The first model stops after epoch 52 at a training loss of
2.6748 × 10−5 and a validation loss of 0.1103 and the second model stops after epoch 89 at a
training loss of 8.2741 × 10−7 validation loss of 0.0571. The model parameters are saved after
the training in order to be able to compare different hyperparameters for the transformations
on the same model.

The two models were then used to calculate the function for 51 equidistant values in the
interval [-1,1]. The plotting of the results can be seen in Figure 4.2. True shows the values of
the function f (x) = −x2 on the domain [-1,1], Model1 signifies the results of the first model
on the same domain, Model2 is the label of the line showing the results of the second model
on the same domain. As we can see from it, both models have good results on the domain
they were trained on, while they are both imprecise on the domain that they were not trained

23

4 Experiments

on. This matches our expectations of the models.

Figure 4.2: Experiment 1 models results

Given the two trained models we can move forward with the generation of the transfor-
mation. The first step is the generation of the samples and of their neighbourhoods. As was
presented in section 3.2 Neighborhood Generation, we generate the samples equidistantly
between the two boundaries of the domain, -1 and 1, and the neighborhoods are generated
using the normal function of the pytorch library [29], with mean at the sample for which we
generate the neighborhood and a variance of δ/4. For this transformation we generated 512
equidistant samples, with neighborhoods of size 1024, generated with a variance δ equal to
0.05. The same samples and neighborhoods will be used for both of the neural networks.

The second step of the generation of the transformation is the propagation of the samples
and neighborhoods through the two models. This was done by attaching to the chosen layer
of each neural network the appropriate hook, a concept presented in chapter 3. In this case
we have chosen for the first model the tanh activation layer, and for the second model the last
tanh activation layer. These layers are found by listing all the layers of the model and getting
the element in the list at the positions of the layers. The same hook is attached to both layers.
The hooks functionality is that of saving the output of the layer in a list. That list is a member
of the activations generator object and as such we can use it as a temporary container for
the activations, which stores them during the forward pass of the neural network of each
sample and point in a neighborhood, passes them to the output of the generation function,
and is afterwards emptied in order to repeat the process for the next sample or member of
the neighborhoods. Each sample is passed to the neural network independently, as is every
point in the neighborhood. Afterwards the hook is detached, since it prevents the full pass of
the neural network for time optimisation, and the models need to be reused in a later step.

24

4 Experiments

(a) Sample activations (b) Neighborhood activations

Figure 4.3: Sample and neighborhood activations of both models 1&2

After generating both the sample and the neighborhood activations, we have plotted them
in order to have a picture of the activations that the transformation needs to generate in
both directions. Figure 4.3 shows the aforementioned plotting. The blue line indicates the
activations generated for each point in the [-1,1] domain by the first model. Since the layer
has only one output, only one curve is generated from the points. The red lines show the
activations generated for the same domain by the second model. Since for each input value
there are eight values that the last tanh layer outputs, we can see 8 distinct curves. We can
see that the plot of the activations of the samples is very close to that of the neighborhoods,
which is the expected outcome and a indicator for the fact that the samples cover the domain
well.

The samples, the neighborhoods, the sample activations of both models and the neighbor-
hood activations of both models are all stored in ".pt" files at this point, since we wish to
avoid their generation every time the transformations need to be computed.

Having all the component parts required we can now generate the transformations. We
start by computing the covariance matrices from the neighborhood activations of each sample
for each model. As stated in chapter 3, these are required by the diffusion map algorithm for
the understanding of the topology around each sample activation that they provide. As such
we compute the set of covariance matrices C1 = {Σk

1|k ∈ [0, n)} for the first model and the set
of covariance matrices C2 = {Σk

2|k ∈ [0, n)} for the second model, with Σk
p ∈ Rmp×mp , p ∈ 1, 2,

where n is the number of samples, p is the number of the model, and mp is the number of
features that the flattened activations contain for each point in the neighborhood for model p.

The covariance matrix list of model 1 and the sample activations of model one are then
passed to the diffusion map algorithm received from Dr. Felix Dietrich at the start of the thesis,
along with a number of hyperparameters explained in chapter 3. For the first experiment
we have chosen the number of diffusion map eigenvectors as 3 for both models, the k_min
parameter as 50 for both models and the smoothing parameter as 0. The smoothing parameter
was chosen as 0 since there has been noticed that no regularization was the best option for
the interpolations in these transformation during their testing.

25

4 Experiments

We then generated both diffusion map objects using the datafold library[19]. The first
diffusion map generation yielded an epsilon value of 2.805 × 10−6 and the second one
an epsilon value of 8.882 × 10−6. The sample activation values were then mapped to the
diffusion map space using the transform function of their respective diffusion map objects.
We then compute the interpolation from the sample activation values to their diffusion map
representation. The values generated by the interpolation for both models for the samples
can be seen in Figure 4.4.

(a) Model 1 (b) Model 2

Figure 4.4: Model 1&2 diffusion map space representation of the activations of inputs from
the domain [-1,1]

(a) Model 1 (b) Model 2

Figure 4.5: Model 1&2 Orthogonal transformations of the previous diffusion map space
representations

With the representations we use the orthogonal procrustes algorithm to create the orthogo-
nal transformations between diffusion map spaces. The first column of the representations
are always constants, and as such the algorithm divides one constant by the other and sets on
the first position of the diagonal said value. The matrix excepting the first row and column
is computed by using orthogonal procrustes for the diffusion map space representations

26

4 Experiments

using all but the first column of both diffusion map eigenvectors. Figure 4.6 shows the
difference between using the orthogonal procrustes algorithm with all of the columns of the
eigenvectors, the initial attempt, and using the procedure presented above. In that figure we
can see that the new idea seems to function much better in this case than the previous one,
especially for the constant eigenvector, which remains constant after the transformation. In
the previous figure you can see the orthogonal transformation of the diffusion map spaces of
the two models. Figure 4.5.

(a) Without improvement (b) With improvement

Figure 4.6: Orthogonal transformations from the model 1 diffusion map eigenvectors with
and without the described improvement

Finally, we interpolate from the orthogonal transformations back to the activation space of
the other model. Since the mapping is done to the activation space of the model different
from the initial, they can be visualized by looking at Figure 4.3 and switching the models.
For the interpolations we use a RBFInterpolator (Radial Basis Function Interpolator) object
from the SciPy library [20] with thin plate splines. This procedure was selected during this
experiment, since the initial plan was to use the Nyström extension [31] to map new points
into the diffusion map space and to use an GeometricHarmonicsInterpolator object from the
datafold library [19] to do the inverse interpolation. The use of RBFInterpolator objects in
both directions since in during multiple runs of the experiment it outperformed the other
options.

Thus, with two interpolations and a matrix multiplication we can now map from the
activation space of one model to that of another. The mean squared error between the original
activations of model 1 and the transformations of the activations of model 2 is 6.693 × 10−13

and the same metric between the transformations from the model 1 activations and the
original model 2 activations is 8.848× 10−16. This indicates that the implementation was done
in a correct manner, since the error was expected to be negligible.

The final step of the first experiment was to test the performance of the algorithm on data
that it has not used for training. In that sense we select 1024 equidistant values over the
domain [-1,1], to which we added a positive shift of 5 × 10−5. By using a testing set twice the
size of the training set we ensure that at least half the values were not used during training.

27

4 Experiments

Initial Values

Output

Network 1 Activations

Network 2 Activations

Network 1 DMAP Space

Network 2 DMAP Space

Network 1

Model

Diffusion

Map 1

Network 2

Model

Output

Layer

Inverse

Diffusion

Map 2

Transformation from

Network 1 Model

to Network 2 Model

Network 2

Model

Orthogonal

Procustres

Figure 4.7: Transformation from network 1 to 2

Initial Values

Output

Network 2 Activations

Network 1 Activations

Network 2 DMAP Space

Network 1 DMAP Space

Network 2

Model

Diffusion

Map 2

Network 1

Model

Output

Layer

Inverse

Diffusion

Map 1

Transformation from

Network 2 Model

to Network 1 Model

Network 1

Model

Orthogonal

Procustres

Figure 4.8: Transformation from network 2 to 1

Because the samples not in the training set are located generally at the middle point between
two points that were, we can also look at the behaviour of the transformation at those points
farthest away from its training set, and thus hope to find all errors.

For the purpose of testing, we place a hook which stores the values of the output at the
chosen activations layer of the initial model and a hook which replaces the values of the
output at the layer of the final model with the transformed activations.

28

4 Experiments

The algorithm reaches a mean squared error between the output of the second model and
the output of the transformation of the first to the second model of 2.198 × 10−8. The mean
squared error between the first model and the transformation to the first model reached was
1.339 × 10−7. The mean squared error between a diffusion map space representation and the
orthogonal transformation of the other was approximately 2.38 × 10−4 in both directions.

The test values are individually propagated through the neural networks up to the point
where activation hooks are placed. The algorithm then takes them, flattens them and creates
their transformation using the hyperparameter direction, which determines which model
is the initial one and which is the final one. The transformed activations are then placed
in another array, which replaces at the next forward pass through the final network the
activations at the chosen layer, thus generating the output of the neural Network. Figure 4.7
and Figure 4.8 show the progression of such a test through the whole algorithm in both
directions.

4.2 Vibrations

The second experiment will lay the ground work necessary for the next two, since multiple
concepts implemented and added to the code basis for this experiment will also be used
further on.

Both the models and the dataset used during this experiment were developed during
the interdisciplinary project "Deep-learning based approaches for fault detection in a rotary
mower" by Victor-Constantin Stroescu [16], and were used with the permission of the advisor
to that interdisciplinary project, Dr. Ertug Olcay.

The dataset on which both models were trained is a binary classification set with inputs
and class labels. Four features of the inputs are outputs of two VSA005 vibration sensors,
both recording vibrations in two spatial dimensions, placed on a Krone easy cut 320m mower.
The other two are the speed of the main machinery and the power at which the mower
operates at that point. These measurement recordings, which are all real-valued numbers, are
split in windows of 100 timesteps recorded with a frequency of 5000 Hz, which represent 20
milliseconds, during which the mower is powered. These windows are then the input data
of the dataset. The labels are a boolean array of length 14, with each position in the array
indicating whether the blade of the mower at that position is faulty. The labels need to be
collapsed in a single value that identifies whether any blade was faulty or not, since that is
the operations that the models are trained to perform. The dataset contains 499.874 items
with 50.37% positive labels and 49.62% negative labels, and as such is baslanced, and is split
into 80% training samples, 10% validation samples, and 10% testing samples [16].

For this experiment we will use 650 samples with neighborhoods of size 1024. All of the
samples are on a manifold M ⊆ R100×6, which influences how the neighborhoods will be
computed. As was previously discussed in subsection 3.2.2, the boundaries of the manifold
are not known, and as such the 650 samples are randomly chosen from the validation dataset.
The neighborhood will be generated as discussed in the implementation section Figure 3.2,
namely we sample a 600 dimensional multivariate Gaussian distribution with the mean set at

29

4 Experiments

the sample and the variance, δ, equal for all dimensions and set for this experiment at the
value 0.005.

The two pretrained models used in this experiment are also a product of the aforementioned
interdisciplinary project. The models were developed with the explicit purpose of detecting
in real time if a fault was present during the usage of a rotary mower. For this purpose both
the number of timesteps required for the computation had to be low, which explains why
each sample has the length on the time domain of 20ms, and that the models used had a low
amount of layers, and thus a smaller complexity, in order to shorten the computation time of
the forward pass as much as possible without a steep decrease in performance.

The first model used is a model composed from a LSTM [5] layer and a linear layer, both
implemented using pytorch library [22] modules, which enables the usage of hooks. The
LSTM layer reduces the feature size from six to 1 and the linear layer interprets the 1 feature
of all 100 timesteps and outputs a single value. The activations are then generated for both
the samples as well as the neighborhoods by placing the hook at the output of the LSTM layer,
since the output of the LSTM layer is computed by adding two sigmoid layer outputs and
one tanh layer output, and as such can be interpreted as the output of activation layers. Since
the output of the LSTM layer has 100 timesteps and only one feature, we can consider that
the sequence length of one sample activation is 100 and that the number of neuron outpus of
one timestep in the one sample activation is 1. The pytorch library[22] implementation of
the LSTM layer also has as output a tuple, since, along with the desired output the layer also
returns the final cell and hidden states. Using this knowledge we were able to compute the
sample activations and neighborhoods for the first model and store them for later use, as we
did in section 4.1.

The pytorch library implementations of the 1D convolutional layer, of the transformer
encoder layer [6], and of the linear layer are the pieces constructing the second model.
Because of this the usage of hooks is also available for this model. The model, which has the
exact same input as the first one, starts its forward pass with a one dimensional convolution,
which does not modify the number of timesteps in any way but increases the number of
features from 6 to 64. Two sequential transformer encoder layers then process the output
of the 1 dimensional convolution, without making any changes to the dimensions of the
data. The final two linear layers condense the output of the transformer encoder layer. The
first linear layer aggregates the information of all timesteps into one value for each feature,
and the last linear layer uses that value for all the 64 features to create one single valued
output. The hook used to extract the activations of this model will be placed at the output of
the last transformer layer based on a similar motivation as was the case for the first model.
The output of the last transformer encoder layer will consist of 100 timesteps of 64 features.
This means that the sequence length of one sample activation will be again 100 and that the
number of neuron outputs for each time step will be 64. Out of those 64, we have chosen to
record only 16, since we believe that the 16 were enough to fulfill the conditions posed by
Whitney’s theorem [11], and thus that the intrinsic dimension of the data for one timestep was
7 or lower. The 16 neurons chosen from the 64 were the ones which. when numbered, would
have their corresponding index divisible by 4. For this second model we also computed and

30

4 Experiments

then stored the sample and neighborhood activations needed to compute the transformation.
Now that the samples, their neighborhoods and the activations of the two are available, we

can now compute the transformation. For this transformation we have chosen 60 eigenvectors
for both dimensions and a k_min of 35. The computation is similar to the one performed for
the first experiment with the difference being the sequential nature of the data used for this
experiment. For us to be able to efficiently compute the transformations, the decision was
made not to use the full sequence in the activation for the computation of the transformations,
but different amounts of equidistantly placed points in the time domain, with the purpose of
decreasing the dimensionality of the activations which were transformed. We started with
4 slices of 25 points, each having a distance of 4 timesteps to their neighbors. The 4 slices
were treated as different activation samples, in order to permit the transformation to be able
to map out the full space. To this purpose we needed to reshape the arrays for both the
samples and the neighborhoods from 650 samples of 100 timesteps to 6500 samples of 10
selected timesteps. Since, as the following results will show, this attempt was functional and
returned proper results, we made the decision to optimize the computation further for the
next test, by creating 10 slices of 10 equidistant time steps and then treat the slices again as
different activation samples. Based on the fact that this approach worked, we continued these
experiments with 50 slices of 2 points in the time domain and finally 100 slices of 1 point. We
established how well these attempts performed by evaluating the two combinations of the
two models with the transformation or its inverse.

The computation of the outputs of the combinations of the two models and the transforma-
tion or its inverse is also similar to the procedure previously presented in the first experiment,
but adapted both to sequential data and to the usage of an incomplete activation layer. Addi-
tionally, we have taken into consideration the different permutations of the dimensions that
the layers perform, since transformer sets the neuron activations in the first dimension, the
batch dimension in the second and the sequence in the third, and the LSTM permutes the
activations dimension and sequence dimension. As such both the input to the transformation
and its output had to be permuted using the pytorch library [22] function "permute" so that
they match both the dimensions required by the transformation and the output that the target
layer was supposed to have. At the same time we have also accounted for the LSTM layer
having the aforementioned tuple outputs. The transformation output from the transformer
model to the LSTM model was set for this purpose in a tuple form, such that the following
step of the forward pass would run as intended.

In order to use the transformation trained on a subset of equidistant time steps, we split the
time domain of the activation to be transformed into k subsets of p equidistant time points,
with p equal to the size of the subsets on which the transformations were trained, which
will all be individually transformed into the same k subsets of p time steps of the target
activations. This creates the important condition on the subsets, that they are created such
that the length time domain is divisible by p. This is the reason why for the experiments we
have chosen the k values 25, 10, 2 and 1. The amount of time points in each subset on which
the transformation was trained can be seen as a indicator of how much context data was
required in the time domain at this point of the forward pass to produce the results presented

31

4 Experiments

further.
The other aspect that needs to be addressed for the first time is the usage of an incomplete

output of a layer for the transformation, since the transformation was trained only on 16 from
the 64 features of the output of the transformation. In that sense the transformation from
the transformer encoder output to the LSTM output does not need any adaptation, but the
reverse is not true, since the other 48 neurons that the transformation from the LSTM layer
output to the transformer encoder layer output does not map need to be filled with a value
in order for the forward pass to be able to commence from that layer. With that purpose in
mind we initially filled the empty values in the output of the transformer layer with zeros.
After a number of experiments we have determined that a better approach is to fill it with
values equal to the means of the predicted neurons for each time step. It is unclear why this
approach worked better, but our intuition is that the mean is a more neutral value for the
output of these layers than zeros, since the weighted sums computed by the proceeding linear
layer might reach closer values to those that would have been computed during a forward
pass with the true values using the means than using zeros, while the zeros might impact the
proceeding layers strongly by triggering a steep decrease of the final weighted summations.

The input for the forward pass of the target model was set to dummy array, filled with
zeros, with the same shape as the input to the forward pass of the initial model.

LSTM accuracy precision recall F1-score True negative
Initial 0.8789 0.8168 0.9926 0.8961 0.7526

25 timesteps 0.8740 0.7956 1.000 0.8861 0.7529
10 timesteps 0.8760 0.8028 0.9981 0.8899 0.7529
2 timesteps 0.8828 0.8110 1.000 0.8957 0.7642
1 timestep 0.8604 0.7766 1.000 0.8742 0.7287

Table 4.1: Transformation to LSTM results for ivbrations

Transformer accuracy precision recall F1-score True negative
Initial 0.9658 0.9565 0.9796 0.9679 0.9505

25 timesteps 0.8184 0.8135 0.8069 0.8102 0.8289
10 timesteps 0.8428 0.7937 0.9280 0.8556 0.7569
2 timesteps 0.7988 0.8023 0.7961 0.7992 0.8016
1 timestep 0.7793 0.7683 0.7807 0.7745 0.7780

Table 4.2: Transformation to transformer results for vibrations

Table 4.1 and Table 4.2 present the results of this method on 1024 test samples with different
subset lengths on the time domain. The initial column shows the results that the LSTM based
model and the transformer encoder based model achieve without using any transformation.

Table 4.1 shows, excepting the initial column, the results of the models built using the
transformer encoder based network as initial model and the LSTM based network as the
target model, with a transformation as previously discussed, using different sizes of time

32

4 Experiments

step subsets. These attempts are compared to the LSTM benchmark since the target is that
the transformation maps correctly to the activations of the LSTM and as such the outputs
of the combined model match those of the LSTM model. The same considerations apply to
Table 4.2, but with the LSTM model as initial model and the transformer encoder model as
target model.

The first conclusion of the results is that our models achieve very good results with LSTM
target models and satisfactory results with transformer target models. The second conclusion
is that there is only a mild decrease in performance when experimenting with smaller subsets
of the time domain, which indicates that the activation manifolds can be split into a number
of quasi independent manifolds on the time domain, all having enough in common that a
transformation trained on sets of one time step can map from all time step manifolds in the
input domain to all time step mainfolds in the target domain independently without a great
loss in performance .

4.3 Automatic speech recognition

For the third experiment we have chosen pretrained neural networks designed for automatic
speech recognition. This experiment will introduce both concepts used further on for the
fourth experiment, as well as the model and the sample, neighborhood and their activations
generation used for a the fifth experiment. As such it can be interpreted that this experiment
also covers a little under half of the procedure required for the fifth experiment.

For this experiment, the Librispeech dataset [9] was chosen for the training of the transfor-
mations, since it was either the full or part of the dataset used for training, validation, and
testing of the models for which we compute the transformations. The Librispeech dataset is
an open source dataset containing 1000 hours of English speech read from audiobooks. At
each index of the dataset there is a list containing 5 entries, of which only two interest us.
The two interesting to us are the text and the speech components of the dataset. The speech
component contains speech recordings of up to 35 seconds sampled at 16.000 Hz, while the
text component contains the text read in order to create the speech component. Since not all
readings are done over the full 35 seconds, the speech component has a variable length, with
a maximum length estimated, by multiplying the maximum time with the sampling rate, at
560000 values. Since the values are a time series, we can thus view the sound data as having
one feature and a variable sequence length. Even though the text component is also a big part
of the dataset, for this experiment it will only function as the target, with further analysis of
this component being done in section 4.4, where this component is of more interest.

Two model definitions have been chosen for this experiment, both having been downloaded
from the Huggingface library[4]. The training weights of these models have also been taken
from the Huggingface platform.

The first model chosen was a Wav2Vec2 model, first proposed in "wav2vec 2.0: A Framework
for Self-Supervised Learning of Speech Representations" by Alexei Baevski, Henry Zhou,
Abdelrahman Mohamed, Michael Auli [8]. The model is formed from a feature encoder
created by stacking blocks built from a temporal convolution, a layer normalization and

33

4 Experiments

a GELU activation, which creates from the sound data latent speech representations, that
are then fed, together with the inputs again, into a transformer [6], that outputs the text
embedding [8], which then is decoded using an embedding decoder implemented in the
Huggingface library [4]. The training weights were taken from the project "wav2vec2-
librispeech-clean-100h-demo-dist" by user patrickvonplaten [2] on the Huggingface platform.

The second model used was a pretrained version of the model Speech2Text2, proposed in
"Large-Scale Self- and Semi-Supervised Learning for Speech Translation" by Changhan Wang,
Anne Wu, Juan Pino, Alexei Baevski, Michael Auliand Alexis Conneau [7]. This model’s
decoder is also based on the Wav2Vec2 model, but adds afterwards a 24-layered transformer
[6]. For the decoding process it uses a seven layered transformer that outputs the embeddings
of the text. An embedding decoder implemented in the Huggingface library [4] is also used
to receive the string representation of the text. The training weights used for this model were
taken from the "s2t-wav2vec2-large-en-de project hosted" on the Huggingface platform and
presented in the same paper as the model [7]. Different from the first model which converts
English speech to English text, the second model converts English speech to German text.
This is the first experiment in the thesis where the two networks will have different outputs.

As discussed in subsection 3.2.3, the generation of the samples and neighborhoods will
be done by randomly selecting 128 samples from the speech column of the dataset for the
samples and then sampling multivariate Gaussian distributions of dimension equal the
number of timesteps in the sample, whith the mean set at the sample and a δ = 0.05. The
size of the neighborhoods has been set to 75. Since the samples have varying lengths in the
time domain, they had to be stored in a list, while the neighborhoods had to be stored in
a list, that contains at each position all the neighborhoods for the respective sample. The
low number of samples and neighborhoods was driven by the memory limitations imposed
for the training of the transformations which were strained by the large size of each sample.
Since all the samples and neighborhood activations need to remain in the memory for the
computation of the transformation, this measure of limiting the number of samples and size
of neighborhoods was necessary.

Sample and neighborhood activation computations were changed in the fact that they
needed to be made iteratively, due to the impossibility of bundling multiple samples in a
batch, since their lengths are variable. For both models activation layers from the Wav2Vec2
decoder [8] were chosen, since it was considrered that only those two segements were
modeling the same phenomenons of speech, since the decoders must model the different
linguistic patterns of the two languages. For the Speech2Text2 model [7], we have chosen
the 243rd layer, which has a feature dimension of 1024, from which we have chosen 128
neuron outputs to train the transformation on. Our chosen layer of the Wav2Vec2 model
[8] was the 28th layer. It has an output feature size of 4096, from which we also chose
128 features for each timestep. The sequence of each samples length remained unchanged
during the forward pass of the network until the selected activations. The presented sample
and neighborhood activations were stored afterwards and we then commenced with the
transformation computation.

The approach of using multiple subsets of time steps of size p for the computation of

34

4 Experiments

the transformation is repeated here. As was previously state, all sequence lengths must be
divisible by p for the computation to function afterwards. This is only possible in the case
p=1 since the samples have variable sequence length. We know that such a option is feasible
due to the last test presented in Table 4.1 and Table 4.2. This then creates the other problem
of dimensionality. Since we have 128 sample activations with a maximum sequence length
of 560000 with a feature length of 128 for each network, this would presume that we have
to compute in the worst case a transformation between two 128 dimensional spaces using
approximately 71 million samples. This is not only computationally challenging, but in our
view also redundant. For that purpose we selected from each sample activation only 64
randomly selected time steps that are used for the computation of the transformation. We
also selected the same 64 time steps from all the neighborhoods of the respective sample. This
reduces the number of samples to 8192.

The transformation for these two models were trained using 128 as the number of diffusion
map eigenvectors, as proposed in [1], which advises the usage of the feature length as
the number of eigenvectors, with k_min for both diffursion maps equal to 50. Since all
the sample and neighborhood activations have the same dimensions for one time step, the
transformation computation could be done without any additional considerations about the
variable sample length and could be performed, and the algorithm from section 3.4 was
performed as described.

The computation of the forward pass in the two combined models for testing purposes
could now be performed. The computation is similar to that presented in section 4.2, since
the sequential nature of the data is present and transformations to incomplete outputs of
activation layers occur. Since the variable length of the sequences are always divisible by the
number p of time steps in one subset, no other changes caused by the variable length of the
data were needed for this computation. The change required on the other hand stems from
the nature of the models and not that of the data. The forward functions of the target model
could no longer be started with dummy versions of the inputs, since the input is reused at the
start of the transformer layer, after the decoder has finished its computation, in both models.
Thus the input to the forward function of the target models needs to be the same as that to
the initial model. Since the inputs affect the target model, the results that will be presented
in the next paragraph should be viewed through the following lens: Without the real input,
which have not been transformed in any way, being placed at the start of the target models,
the results presented could not be achieved. A work around this type of difficulty still needs
to be found in the future if this experiment should work without real inputs for the target
models.

Table 4.3 Shows the resulting sentence of the different models used for one example speech
outtake. The first row shows the true sentence in English. Since there is no target sentence
in German, we have to rely on the Speech2Text2 model that the translation performed is
generally correct for our accuracy evaluation. On the other hand we can see in the text of the
table that the translation is not completely correct. The second row shows the result of the
Speech2Text2 model. The third row presents the sentence computed using the two models
and a transformation, with the target model being the Speech2Text2 model.The sentence there

35

4 Experiments

Model Sentence
True Sentence ’the council of state on hearing of this began also

to make ready for eventualities negotiations were still
proceeding between the two countries when martin

tromp the victor of the battle of the downs’
Speech2Text2 ’</s> Als der Staatsrat davon hörte, begann auch die

Verhandlungen zwischen den beiden Ländern zu hören,
als Martin-Tromp die Schlacht der Downs vorrückte. </s>’

Transformation ’</s> Als der Staatsrat davon hörte, begann auch die
from Word2Vec2 Verhandlungen zwischen den beiden Ländern,
to Speech2Text2 den Siegen der Schlacht der Downs vorzubereiten. </s>’

Word2Vec2 ’the council of state on hearing of this began also
to make ready for eventualities negotiations were still
proceeding between the two countries when martin

tromp the victor of the battle of the downs’
Transformation ’the council of state on hearing of this began also

from Speech2Text2 to make ready for eventualities negotiations were still
from Word2Vec2 proceeding between the two countries when martin

thromp the victor of the battle of the downs’

Table 4.3: Example of model outputed sentences

also does not match neither a perfect translation of the true value, nor the previous row. The
fourth row shows the Wav2Vec2 model results for the example, we can see that is exactly the
same as the true value. The fifth row matches also exactly the same the true value and is the
output of the combination of the two models and a transformation, with its target being the
activations of the Wav2Vec2 model.

Due to a lack of true value for the German sentence we will compare the combined model
for speech to German text with the pretrained Speech2Text2 model. In the interest of using the
same metric we compare the combined model for speech to English text with the Wav2Vec2
pretrained model. The metric for comparison will be accuracy of the combined model having
the same output as the target model. The accuracy for the combined model with target
Speech2Text2 was approximatively 0.6971, while the accuracy of the other combined model
was 0.8969. This matches our observations on Table 4.3

4.4 Text Sentiment Analysis

In the fourth experiment we will attempt to compute and evaluate transformations between
neural networks trained for sentiment analysis. This experiment will introduce concepts
further used for the fifth experiment, with the most important one being the computation of
transformations for activations with differing sequence length, since the lengths of the outputs
of the embedding layer of the two networks used in this experiment differ. Furthermore, the

36

4 Experiments

fourth experiment also covers a little under half of the components used for the fifth one,
specifically the generation of the samples, neighborhoods and their respective activations.

The Librispeech dataset [9] will also be used for the training of the transformations
evaluated in this experiment. For this training we will use the text column of the items in the
dataset. Even though the models were not trained using this dataset, we will use it in the
hope that it still covers the text manifold well. The main reason we used to support the usage
of the Librispeech dataset [9] is the necessity of the transformations in the two experiments
used as components of the fifth experiment was trained on the same dataset. This is the main
reason that the Librispeech dataset [9] was used in this thesis, since it contains both speech
and text components. The text component in the items of the dataset is a string variable of
variable length. The length of the strings is, as expected, noticeably smaller than that of their
respective speech corespondent.

We again employed the Hugginface library [4] to choose two widely available model classes
for this experiment. As in subsection 3.2.3, we have also used the Huggingface platform
to find and download weights for the models trained specifically for the task of sentiment
analysis on English text.

An implementation of the XLNet model, first presented in "XLNet: Generalized Autore-
gressive Pretraining for Language Understanding" by Zhilin Yang et al. [3] was chosen as
the first model, with weights sourced from the project "xlnet-base-cased-SST-2/tree/main",
attributed to the user "textattack" on the platform [17]. The model is described in [3] as
having two-stream attention with a Transformer-XL backbone, and uses Transformer-XL
layers combined with layer normalizations and GeLU activations. The model outputs a vector
with two values, the maximum of which indicates weather the sentence is positive or negative.

Since the article presenting the XLNet model tends to often compare its results with the
ones achieved by BERT and RoBERTa models, we have chosen a the RoBERTa model, first
presented in "RoBERTa: A Robustly Optimized BERT Pretraining Approach" by Yinhan Liu et
al. as the second model. Its implementation was taken from the Huggingface library, with
the weights sourced from the project "sentiment-roberta-large-English" by author "siebert"
presented in [18]. This RoBERTa model implementation consists of a pretrained BERT model,
which has a transformer architecture, and linear layers which output the final two valued
vector which indicates the positive or negative nature of the sentence.

As we have done previously, for this experiment we will randomly select 128 items from
the dataset as the samples on which the transformation will be trained. We have previously
discussed in subsection 3.3.3 that the neighborhoods can not in this case be directly generated
on the inputs to the neural network, since the text data is discrete. For this reason we will
generate two sets of neighborhoods, one for each neural network, at the embedding level
the neural network, by sampling 128 values from a a multivariate Gaussian distribution of
dimensionality equal to that of the embedding, the mean set at the sample embedding and
a variance δ = 0.05. Since the generation of the neighborhoods is done seperately at the
embedding layer of each model, we can not ensure that the diffeomorphism between the
neighborhoods exists and that it is also a diffeomorphism between the embedding spaces.

The neighborhood generation procedure will be done during the activation generation step

37

4 Experiments

of each model for both the samples and their neighborhoods, as discussed in subsection 3.3.2.
For the XLNet model [3] we have chosen the output of the 26th layer as the activations on
which we will train the transformations. The output has a total of 768 features for each
point in the sequence, from which only 24 equidistant features of each sequence point were
chosen to be the subject of the transformation. The output of the 116th layer is chosen as the
activations for the RoBERTa model [10], which has 1024 total features, from which we select
16 equidistant features for each time step. The embedding layer, where the neighborhoods
were generated, was the first layer of both models. Since the number of sequence points
generated in the embedding layer of the RoBERTa model [10] is lower than that in the XLNet
model [3], the activations of both the samples and the neighborhoods of the XLNet model
had to be trimmed down in the sequence dimension to the sequence length of the activations
of the RoBERTa model. This is performed, since the activations need to be of equal size in
the sequence dimension, so that the transformation from each sequence point of one models
activation has a target set in the same sequence point in the activation of the other model.
Since the size difference is not large, the amount of information lost for the training of the
transformation was decided to be acceptable.

Before storing, the same procedure is performed as in section 4.3. Only 64 points in the
sequences are selected from each sample and the same time steps are selected from the
samples neighborhoods, which are then treated as different samples and their neighborhoods
for the training of the transformation. While this is not as necessary for this experiment as it
was for the previous one, we still performed this operation in order for the two experiments
to have same procedure up to the generation of the transformation, since both of these will
be then used in the final experiment.

With the activations of the samples and those of the neighborhoods we can now compute
the transformation mapping. The same procedure as presented in section 4.2 and section 3.4
will be followed. The final sample count was 7218, and the transformation was computed
using 50 eigenvectors for both diffusion maps and with a k_min hyperparameter equal to 100.

Having computed the transformation, the final phase, consisting of testing, can now begin.
The computation of the forward passes of the two possible combined models is similar to
the one presented in section 4.3, since the same hurdles appear: variable sequence length
and the selection of only select activation features of both models. The same approaches are
taken in this experiment as in the previous ones. On the other hand an additional difficulty is
presented by the inequality of the sequence lengths of the two activations. This is a problem
since the target model needs to continue the forward pass with an appropriate number of
activations features as would have been generated by a forward pass with the true input. To
counteract this problem we have found a suitable approach in starting the forward pass of the
target model with the input of the initial model and not a dummy structure of the same shape.
This is the same approach used for section 4.3 to counteract a different problem that was in
that case created by the nature of the models themselves. We use the activations created by the
forward pass to determine which shape the activation computed by the transformation should
take. If the output of the transformation has a larger sequence length than the activations
of the forward pass of the target model would indicate, then the difference is trimmed from

38

4 Experiments

the end of the sequence. In the other case additional positions need to be appended to the
transformed activations. Those additional positions are computed by calculating the mean
of the whole sequence for each feature individually, and replacing each missing sequence
positions at the end of the activations sequence with a mean feature array. Both the trimming
and the padding with means operations are performed by the hooks which are placed in
the target model. The two boolean parameters which indicate whether a model has a larger
sequence length than the other need to be properly set so that the proper hooks operations
are selected. This solution used for the inequal sequence length of the activations will also be
used in the last experiment.

nr. samples XLNet RoBERTa XLNet (positive) RoBERTa (positive)
100 0.86 0.64 0.06 0.4
500 0.966 0.892 0.068 0.392

Table 4.4: Experiment 4 test results

Using this algorithm for the computation of the forward pass of the two models which
emerge by combining two pretrained models we have performed two tests on different sets of
samples chosen at random from the Librispeech dataset [9], their result presented in Table 4.4.
Two important comments to this experiment are that the two experiments were performed
using transformations trained on different, randomly selected samples and not the same
transformations, and that, as in section 4.3, the computation of the forward pass of the target
model was started with the inputs of the initial model, and without that measure such results
could not be achieved during this thesis.

The columns XLNet (positive) and RoBERTa (positive) are reference values that show what
proportion of the 500 samples the two models identify as having a positive connotation. The
results here indicate a high number of sentences with negative and neutral connotation, and a
underrepresentation for positive connotations. Since the dataset was not created for sentiment
analysis, an imbalance in the dataset is possible. The results in the other columns are as in the
previous chapter accuracy of the combined model with the indicated target model relative to
the outputs of a forward pass of the target model. We can see in the 100 samples row that
the transformation trained at that point did not have such a good performance either for the
XLNet target model or for the RoBERTa target model, as those trained for the test using 500
samples, which have impressive performances.

4.5 Speech Sentiment Analysis

The last experiment in this thesis will be our attempt at building a new speech sentiment
analysis model by using two previously presented models and a transformation.

For the training of the transformation we will use the Librispeech dataset [9], specifically
both the text and sound column. For this experiment we can not assume we have a diffeomor-
phism between the sound data domain and the text data domain, since some of the conditions
required are not fullfiled. Any function from the sound data domain to the text data domain

39

4 Experiments

is clearly not bijective: the same text can be read by different people with different accents
and create different sound data. Since it is not bijective, it can not be invertible. We hope
that the surjectivity of the function, since for each text there is at least a sound file which
represents its reading, is enough in order to create a non invertible transformation from the
Automatic Speech Recognition network to the text sentiment analysis network. The surjective
function chosen by us for the samples was the relationship between the speech column and
the text column of the chosen dataset.

For the last experiment we will use two pretrained networks introduced in the previous
experiments. From the third experiment we will adopt the Wav2Vec2 Model[8] with the
pretrained weights used in the same experiment and sourced from [2]. The Wav2Vec2 model
was chosen due to the fact that it was trained to transform English speech into English
text, which is useful since we can make the assumption that the two networks model the
same phenomenon with a higher degree of confidence than for the Speech2Text2 model [7]
which translates the speech to German. The XLNet Model [3] was chosen from the fourth
experiment, and was used along with the previously presented weights [17]. This model was
chosen because it will always be the target model part of the combined model developed in
the fifth experiment and the combined models in section 4.4 with the XLNet target model had
better results than their counterparts for all performed tests. All the model implementations
and their weights were imported from the Huggingface library and platform respectively [4],
where they were hosted.

Every procedure up to the computation of the orthogonal transformation is adopted
from the third and fourth experiments, including the sample, neighborhood and activation
generation, as well as the diffusion maps. As such we will select 128 samples from the
Librispeech dataset [9] and generate neighborhoods of size 100 with a variance δ = 0.05
using the same method as in section 4.3. Since the Wav2Vec2 model showed a very high
performance in transforming English speech to English text, we have used it to generate the
samples for the second model. This way we can define the surjective function between the
two input manifolds as the function approximated by the Wav2Vec2 neural network. After
generating the text samples we use the same procedure as in section 4.4 to generate the
neighborhoods at the embedding layer of the XLNet model with the same size of 100 and
variance δ = 0.05.

The activations of the samples and their neighborhoods are generated in the same way
that they are in the experiments which introduce the models. As such, we have chosen the
output of the 28th layer of the Wav2Vec2 model, which has a variable sequence length, a
feature length of 4096, from which we choose 128 equidistant features, as the sample and
neighborhood activations of the first model. For the activations of the XLNetModel we have
chosen the outputs of the 26th layer of the network. The outputs also have a variable sequence
length and a feature length of 768, from which 24 equidistant features are chosen for the
sample and neighborhood activations used during the training of the transformation.

Using the same approach as in section 4.4, we have tackled the problem of training
transformations for activations with different variable sequence length by truncating the
longer sequence, in this case the ones of the Wav2Vec2 model activations, to the length of the

40

4 Experiments

other activation sequence of the same sample and neighborhood. In this case the truncation
is much more impactful, since the size difference between the sequences in the activations of
the Wav2Vec2 model and those in the XLNet model activations is high. This is overlooked
accordingly, since the target model is the one with the shorter activation sequences, and as
such if we should able to predict from a truncated version of the Wav2Vec2 model activations
the full XLNet model activations.

As presented in section 4.3, we have used only 64 randomly selected sequence points in each
activation, and will treat them as different samples, in the hopes of creating a transformation
from each sequence point in one activation to the same sequence point in the other activation.

The sample and neighborhood activations were stored in the presented form and the next
step, the computation of the transformation, was then performed. Since the computation
of the transformation was designed to be the same as in the previous two experiments, the
same procedure is performed with different hyperparameters. This still occurs even though
only one combined model is useful, and as such one of them will never be used. While the
model created by combining the Wav2Vec2 network as initial model, the XLNet network
as target and the respective transformation will create a speech sentiment analysis model,
the combination using the reversed models would take as input an English text and output
the same text ideally, which does not represent in our view a valid task. The number of
samples used for this training was 5549, the selected number of eigenvectors was 65 for both
diffusion maps and both of their k_min parameters were set to 100. After computing the
useful transformation we can now go on to the testing of the combined model.

The testing algorithm functions for this experiment as it does for the fourth, since there we
already tackled all the problems posed by the task in in that experiment. The challenges faced
in this case were, as in section 4.4, using transformations trained between 1 member subsets
of the sequences to predicting the whole sequence of the target activation, sequence length
changing between the input and the output sequence and predicting only a subset of features
for each point in the sequence. This led to us using the same approaches as in section 4.4, by
using the transformation on each sequence point independently to predict the same point
in the target activation, truncating the length of the sequence of the target activation to the
length of the output of that layer from the forward pass, and replacing empty positions in the
feature dimension with the mean of the features at that sequence point.

nr. samples transformation XLNet (positive) transformation (positive)
50|100 0.62 0.05 0.4
128|100 0.63 0.05 0.4
128|500 0.654 0.066 0.4

Table 4.5: Experiment 5 test results

After explaining how the computation of the forward pass is computed, we can now
present and discuss the results of this experiment. Three runs of this model were performed
with different trainings of the transformation and different samples both for training and for
testing. The results of these runs can be seen in Table 4.5. The results of this experiment must

41

4 Experiments

be interpreted while keeping in mind that the two experiments were done with different,
randomly selected training and testing samples during each run and that, similar to the
experiments in in section 4.4, the forward pass of the XLNet was not started using a dummy
input of a proper shape but with the true text translation of the input of the Wav2Vec model.

The first column of Table 4.5 indicates the number of training samples followed by the
number of testing samples used during the run that produced the results on the same row.
The transformation row shows the accuracy of the model created from the XLNet model,
the Wav2Vec model and a transformation in predicting the positive nature of the speech
relative to the predictions of the XLNet on the equivalent text. The XLNet (positive) column
shows how many samples from the test set the XLNet labeled as having a positive meaning,
while the transformation (positive) column shows how many samples from the test set our
model labeled as positive. While the results seem unfavorable at first glance, if we look
at the distribution of the data as detemined by the XLNet model compared to the rate of
model identified positives, we can determine that our model has a set of rules, and as such
the transformation learns to map some of the activations correctly. We can also determine
based on these values that one aspect which might have worsened the results is the approach
presented in section 4.2 taken for incomplete feature dimension transformations, where we
decided to replace the empty positions with the mean, since the predicted distribution is
skewed towards the middle. Another approach, either to estimate the missing features, or to
reduce the computational burden posed by transformations of large feature dimensions so
that the estimate will not be needed is a possible topic of future work.

42

5 Conclusion

In this thesis we were able to implement and experiment with the concepts presented in
"Transformations between deep Neural Networks" by Tom Bertalan, Felix Dietrich and Ioannis
G. Kevrekidis [1]. After describing our implementation and experiments extensively we will
now proceed to discuss their results and the possible topics that might emerge from this
thesis.

5.1 Discussion of the Results

During this thesis we showed that effective transformations can be created between neural
networks that are trained to model different phenomena on different types of sequence data
(vibration, speech, text). We also showed that adapting the transformations for sequence data
of different lengths, both between the different samples and the different neural networks
is doable and that this adaptation produces usable results. Using these transformations we
then created new models by using two pretrained neural networks and a transformation
between their activation spaces. We have tested the models created in each model and we have
achieved optimistic results. While the results of the initial models were never reached, we
have to note that little to no hyperparameter optimisation was performed for the experiments.

Another aspect which has to be noted as an achievement was the fact that all four exper-
iments were ran using the same algorithms presented in chapter 3, which shows not only
the versatility of the concept of transformations, but also their ability to be used for any two
networks which meet the criteria, no matter their internal configuration. As such we have
shown through application that the concepts presented in [1] are robust and can be used for
networks of different sizes and complexity.

Experiment 2 Experiment3 Experiment 4 Experiment 5

highest accuracy 0.8828 0.8969 0.966 0.654

Table 5.1: Best results achieved for experiments 2, 3, 4 and 5

Table 5.1 shows the best results achieved by the created models in each experiment. It
excludes the first experiment both because accuracy was not used as a metric and because
the models created there did not have pretrained networks as components, since we had to
train them during the experiment. The results presented for the second experiment are those
of the model created by performing transformations from the activations of the transformer
model [6] to those of the LSTM model [5]. The number shown represents the accuracy on
the dataset, and in that case the achieved accuracy was very close to that of the LSTM model.

43

5 Conclusion

The results onwards are comparative accuracy metrics to the model which was the target of
the transformation. As such we have used for the third experiment the results of the model
build using a transformation from the Speech2Text2 model [7] to the Wav2Vec2 [2] model
and for the forth experiment the results of the model incorporating a transformation from the
RoBERTa model [10] to the XLNet model [3]. For the last experiment we used the best result
created by the model created from the Wav2Vec2 model as initial model and XLNet model as
target model and the respective transformation.

5.2 Further Research

Based on both the difficulties faced during this thesis and the results achieved a number of
further improvements and possible usages can be found.

Based on the results achieved, one of the first topics opened by our ability to create accurate
transformations between the activations of different pairs of neural networks is the analysis
of the neural network activation spaces, and implicitly also of the neural networks, using the
transformations as a tool for that purpose. Additionally, the creation of large equivalency
classes between widely used neural networks could prove a useful endeavor not only for the
analysis of the networks themselves, but also for the purpose of creating new models based
on the possible combinations created by the equivalency classes.

Other topics also arise from challenges faced during the implementation of the transforma-
tions. Such topics include developing a concept for solving the problem posed by different
sequence lengths between the activations of the same sample propagated in two different
networks and improving the approximation done for neurons which the transformation did
not predict in the target network. Another possible path is the optimisation of the transforma-
tion generation and computation such that these approximations are not required. These two
topics arose due to the comparably worse results that we achieved in the fifth experiment.

While our approach functioned for the neighborhood generation for text data in the
embedding layer, problems with this approach have been pointed out in section 4.4, and
improvements can be made to these concepts.

Finally, another possible topic of interest would be the usage of transformations followed
by other layers for the purpose of establishing similarity measurements between different
points on the same manifold, a task which is a current topic in domains such as natural
language programming and object recognition.

44

List of Figures

3.1 Outline of the Transformation . 7
3.2 General description of the sample and neighborhood generation 10

4.1 Structure of the Experiments . 21
4.2 Experiment 1 models results . 24
4.3 Sample and neighborhood activations of both models 1&2 25
4.4 Model 1&2 diffusion map space representation of the activations of inputs from

the domain [-1,1] . 26
4.5 Model 1&2 Orthogonal transformations of the previous diffusion map space

representations . 26
4.6 Orthogonal transformations from the model 1 diffusion map eigenvectors with

and without the described improvement . 27
4.7 Transformation from network 1 to 2 . 28
4.8 Transformation from network 2 to 1 . 28

45

List of Tables

4.1 Transformation to LSTM results for ivbrations 32
4.2 Transformation to transformer results for vibrations 32
4.3 Example of model outputed sentences . 36
4.4 Experiment 4 test results . 39
4.5 Experiment 5 test results . 41

5.1 Best results achieved for experiments 2, 3, 4 and 5 43

46

Bibliography

[1] T. Bertalan, F. Dietrich, and I. G. Kevrekidis. Transformations between deep neural networks.
2021. arXiv: 2007.05646 [cs.LG].

[2] patrickvonplaten. wav2vec2-librispeech-clean-100h-demo-dist. Last Accessed: 2021-12-27.
url: https://huggingface.co/patrickvonplaten/wav2vec2-librispeech-clean-
100h-demo-dist.

[3] Z. Yang, Z. Dai, Y. Yang, J. G. Carbonell, R. Salakhutdinov, and Q. V. Le. “XLNet: General-
ized Autoregressive Pretraining for Language Understanding”. In: CoRR abs/1906.08237
(2019). arXiv: 1906.08237. url: http://arxiv.org/abs/1906.08237.

[4] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac, T. Rault,
R. Louf, M. Funtowicz, and J. Brew. “HuggingFace’s Transformers: State-of-the-art
Natural Language Processing”. In: CoRR abs/1910.03771 (2019). arXiv: 1910.03771.
url: http://arxiv.org/abs/1910.03771.

[5] S. Hochreiter and J. Schmidhuber. “Long Short-Term Memory”. In: Neural Computation
9.8 (Nov. 1997), pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735. url: https:
//doi.org/10.1162/neco.1997.9.8.1735.

[6] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin. “Attention Is All You Need”. In: CoRR abs/1706.03762 (2017). arXiv:
1706.03762. url: http://arxiv.org/abs/1706.03762.

[7] C. Wang, A. Wu, J. Pino, A. Baevski, M. Auli, and A. Conneau. Large-Scale Self- and
Semi-Supervised Learning for Speech Translation. 2021. arXiv: 2104.06678 [cs.CL].

[8] A. Baevski, H. Zhou, A. Mohamed, and M. Auli. wav2vec 2.0: A Framework for Self-
Supervised Learning of Speech Representations. arXiv: 2006.11477 [cs.CL].

[9] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur. “Librispeech: An ASR corpus
based on public domain audio books”. In: 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). 2015, pp. 5206–5210. doi: 10.1109/ICASSP.2015.
7178964.

[10] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov. “RoBERTa: A Robustly Optimized BERT Pretraining Approach”. In: CoRR
abs/1907.11692 (2019). arXiv: 1907.11692. url: http://arxiv.org/abs/1907.11692.

[11] H. Whitney. “Differentiable Manifolds”. In: Annals of Mathematics 37.3 (1936), pp. 645–
680. issn: 0003486X. url: http://www.jstor.org/stable/1968482.

47

https://arxiv.org/abs/2007.05646
https://huggingface.co/patrickvonplaten/wav2vec2-librispeech-clean-100h-demo-dist
https://huggingface.co/patrickvonplaten/wav2vec2-librispeech-clean-100h-demo-dist
https://arxiv.org/abs/1906.08237
http://arxiv.org/abs/1906.08237
https://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2104.06678
https://arxiv.org/abs/2006.11477
https://doi.org/10.1109/ICASSP.2015.7178964
https://doi.org/10.1109/ICASSP.2015.7178964
https://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://www.jstor.org/stable/1968482

Bibliography

[12] L. W. Tu. “Manifolds”. In: An Introduction to Manifolds. New York, NY: Springer New
York, 2011, pp. 47–83. isbn: 978-1-4419-7400-6. doi: 10.1007/978-1-4419-7400-6_3.
url: https://doi.org/10.1007/978-1-4419-7400-6_3.

[13] J. M. Lee. Introduction to Riemannian Manifolds -. Cham, Heidelberg, New York, Dordrecht,
London: Springer International Publishing, 2019. isbn: 978-3-319-91754-2.

[14] P. C. Mahalanobis. “On the generalized distance in statistics”. In: Proceedings of the
National Institute of Sciences (Calcutta) 2 (1936), pp. 49–55.

[15] R. R. Coifman and S. Lafon. “Diffusion maps”. In: Applied and Computational Harmonic
Analysis 21.1 (July 2006), pp. 5–30. doi: 10.1016/j.acha.2006.04.006. url: https:
//doi.org/10.1016/j.acha.2006.04.006.

[16] V.-C. Stroescu. Deep-learning based approaches for fault detection in a rotary mower.

[17] textattack. xlnet-base-cased-SST-2/tree/main. https://huggingface.co/textattack/
xlnet-base-cased-SST-2/tree/main. Last Accessed: 2021-12-29.

[18] M. Heitmann, C. Siebert, J. Hartmann, and C. Schamp. “More than a feeling: Bench-
marks for sentiment analysis accuracy”. In: Available at SSRN 3489963 (2020).

[19] D. Lehmberg, F. Dietrich, G. Köster, and H.-J. Bungartz. “datafold: data-driven models
for point clouds and time series on manifolds”. In: Journal of Open Source Software 5.51
(2020), p. 2283. doi: 10.21105/joss.02283. url: https://doi.org/10.21105/joss.
02283.

[20] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett, J. Wilson,
K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey,
İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold, R. Cimrman, I.
Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pedregosa,
P. van Mulbregt, and SciPy 1.0 Contributors. “SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi:
10.1038/s41592-019-0686-2.

[21] E. Grafarend. Linear and Nonlinear Models: Fixed Effects, Random Effects, and Mixed Models.
Jan. 2006, p. 553.

[22] W. Falcon et al. “PyTorch Lightning”. In: GitHub 3 (2019). url: https://github.com/
PyTorchLightning/pytorch-lightning.

[23] K. (https://stackoverflow.com/users/9005785/kees). PyTorch get all layers of model. Last
Accessed: 2021-12-07. url: https://stackoverflow.com/a/65112132.

[24] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau,
E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van
Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant,
K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant.
“Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020), pp. 357–362. doi:
10.1038/s41586-020-2649-2. url: https://doi.org/10.1038/s41586-020-2649-2.

48

https://doi.org/10.1007/978-1-4419-7400-6_3
https://doi.org/10.1007/978-1-4419-7400-6_3
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1016/j.acha.2006.04.006
https://doi.org/10.1016/j.acha.2006.04.006
https://huggingface.co/textattack/xlnet-base-cased-SST-2/tree/main
https://huggingface.co/textattack/xlnet-base-cased-SST-2/tree/main
https://doi.org/10.21105/joss.02283
https://doi.org/10.21105/joss.02283
https://doi.org/10.21105/joss.02283
https://doi.org/10.1038/s41592-019-0686-2
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
https://stackoverflow.com/a/65112132
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

Bibliography

[25] R. R. Coifman and S. Lafon. “Geometric harmonics: A novel tool for multiscale out-
of-sample extension of empirical functions”. In: Applied and Computational Harmonic
Analysis 21.1 (2006). Special Issue: Diffusion Maps and Wavelets, pp. 31–52. issn:
1063-5203. doi: https://doi.org/10.1016/j.acha.2005.07.005. url: https:
//www.sciencedirect.com/science/article/pii/S1063520306000522.

[26] G. E. Fasshauer. Meshfree Approximation Methods with Matlab. WORLD SCIENTIFIC, Apr.
2007. doi: 10.1142/6437. url: https://doi.org/10.1142/6437.

[27] P. H. Schönemann. “A generalized solution of the orthogonal procrustes problem”.
In: Psychometrika 31.1 (Mar. 1966), pp. 1–10. doi: 10.1007/bf02289451. url: https:
//doi.org/10.1007/bf02289451.

[28] “Mean Squared Error”. In: Encyclopedia of Machine Learning. Ed. by C. Sammut and
G. I. Webb. Boston, MA: Springer US, 2010, pp. 653–653. isbn: 978-0-387-30164-8. doi:
10.1007/978-0-387-30164-8_528. url: https://doi.org/10.1007/978-0-387-
30164-8_528.

[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A.
Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. “PyTorch: An
Imperative Style, High-Performance Deep Learning Library”. In: Advances in Neural
Information Processing Systems 32. Ed. by H. Wallach, H. Larochelle, A. Beygelzimer,
F. d’Alché-Buc, E. Fox, and R. Garnett. Curran Associates, Inc., 2019, pp. 8024–8035.
url: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
performance-deep-learning-library.pdf.

[30] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv: 1412.
6980 [cs.LG].

[31] E. J. Nyström. “Über Die Praktische Auflösung von Integralgleichungen mit Anwen-
dungen auf Randwertaufgaben”. In: Acta Mathematica 54.none (1930), pp. 185–204. doi:
10.1007/BF02547521. url: https://doi.org/10.1007/BF02547521.

49

https://doi.org/https://doi.org/10.1016/j.acha.2005.07.005
https://www.sciencedirect.com/science/article/pii/S1063520306000522
https://www.sciencedirect.com/science/article/pii/S1063520306000522
https://doi.org/10.1142/6437
https://doi.org/10.1142/6437
https://doi.org/10.1007/bf02289451
https://doi.org/10.1007/bf02289451
https://doi.org/10.1007/bf02289451
https://doi.org/10.1007/978-0-387-30164-8_528
https://doi.org/10.1007/978-0-387-30164-8_528
https://doi.org/10.1007/978-0-387-30164-8_528
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.1007/BF02547521
https://doi.org/10.1007/BF02547521

	Acknowledgments
	Abstract
	Contents
	Introduction
	Motivation
	Structure

	Related Work
	Concepts
	Manifolds
	Mahalanobis Distance
	Diffusion Maps

	Models and Datasets

	Implementation
	Implementation Outline
	Sample and Neighborhood Generation
	One-dimensional Data
	Vibration Data
	Speech Data
	Text Data

	Activation Generation
	Preparation
	General case
	Text processing models

	Computation of the Transformation
	Applying the Transformation

	Experiments
	1D-Data
	Vibrations
	Automatic speech recognition
	Text Sentiment Analysis
	Speech Sentiment Analysis

	Conclusion
	Discussion of the Results
	Further Research

	List of Figures
	List of Tables
	Bibliography

