Department of Informatics

Technical University of Munich

Master’s Thesis in Informatics

Pose Estimation and Analysis for American
Football Videos

Ludwig Dickmanns

Department of Informatics

Technical University of Munich

Master’s Thesis in Informatics

Pose Estimation and Analysis for American

Football Videos
Posenschidtzung und -analyse fiir American
Football Videos

Author: Ludwig Dickmanns
Supervisor: Univ.-Prof. Dr. Christian Mendl
Advisor: Dr. Felix Dietrich

Submission date: November 15th, 2021

I hereby declare that this thesis is entirely the result of my own work except where other-
wise indicated. I have only used the resources given in the list of references.

November 15th, 2021 Ludwig Dickmanns

Acknowledgments

First up, I want to thank my advisor, Dr. Felix Dietrich, for his guidance and inspiration.
Throughout the entire project, he supported me with valuable ideas and tips, for instance,
for the individual pipeline steps. Furthermore, Felix supported me with proofreading
towards the end of the work. Secondly, I am grateful that Felix and the Chair of Scientific
Computation in Computer Science at the TUM Department of Informatics gave me the
opportunity to write my thesis about two topics I am highly passionate about: American
football in the problem domain and deep learning for computer vision in the solution
domain. Thirdly, I want to thank Rob Hess and Alan Fern from Oregon State University
for kindly providing me with their data set. Fourthly, my cousin Jonas helped me in the
final stages of the thesis with proofreading, which I am highly thankful for. Fifthly, I want
to express my thankfulness to my partner Laura for covering my back, especially during
the final weeks of the project. Finally, I am deeply grateful for the support with
proofreading through my father.

Vii

viii

Abstract

Strategic analysis of American football is of high importance for live commentary, fans,
coaches, and players. For the latter, this analysis is essential to prepare appropriately for
the next match. Conventionally, this strategic analysis is done manually; that is, people
watch and analyze videos. This is a tedious and time-consuming task. To alleviate some of
the challenges related to manual strategy analysis, this thesis describes an approach that
identifies defensive coverage schemes from single image frames. To increase robustness
while reducing learning effort for classifiers, the approach includes several pre-processing
steps. Professional game analysts often use the so-called “all 22” camera angle. “All 22”
means that the camera is placed in a high position filming all 22 players on the field. The
approach in this thesis uses the “all 22” camera angle as well. In order to be less suscepti-
ble to different lighting and weather conditions, a pose estimation network already robust
against those conditions extracts body key points of the players. Most of the time, the
camera is situated in the middle of the playing field. Therefore, plays and corresponding
player key points on the camera’s left side look different from plays on the right since cam-
era angles are very different. Thus, domain knowledge is incorporated to transform poses
into a 3D model in two steps. In the first step, a projective transformation is calculated to
get a top-down view of the playing field. This projective transformation is then applied
to the key points in the second step. Additionally, the projected key points are stacked in
layers and centered above the center of the feet. This transformation results in a global 3D
model of the playing field and players for a single frame, which is entirely independent
of the initial frame’s camera angle, resolution, and aspect ratio. Finally, this 3D model is
used for two sample tactical analyses. For both analyses, a baseline, a convolutional neu-
ral network, and a custom ResNet were trained. The first task was to distinguish between
man and zone coverage. The best-performing model predicts the correct coverage on the
validation and test data set with 85% accuracy. For the second analysis, four more specific
coverage classes were analyzed. In this case, the best model predicts the correct class with
a 58.07% (validation) and 46.00% (test) accuracy. Overall, the work described in this the-
sis resulted in a robust and modular pre-processing pipeline, which instead of end-to-end
learning, incorporates modeled domain knowledge to facilitate learning of labels.

ix

Contents

Acknowledgements vii
Abstract ix
1 Introduction 1
1.1 Motivation e e e e e 1

1.2 American Football: Concepts and Terminology 1

1.3 Outline e 2

2 State of the Art 5
2.1 Analysis of American Football 5
211 SupportiveTools 5

212 Situational Analysis oo 6

2.1.3 Field Registration, Projection, or Reconstruction 7

214 Player Tracking and Recognition 7

2.1.5 Individual Contribution 8

21.6 Formation Analysis. 9

2.1.7 Offensive Play Classification 10

2.1.8 Defensive Coverage Classification 11

219 Summary ... 12

2.2 Deep Learning for Computer Vision 13
221 ActivationFunctions o oo 0oL ool 13

222 LossFunctions o o Lol 14

223 Backpropagation o 15

224 Optimizers. e e 15

225 Regularization L. 16

22.6 Limited Data and Class Imbalances 17

227 Convolutional Neural Networks (CNNs) 19

22.8 Residual Networks (ResNets) 20

229 EvaluationMetrics L 21

23 PoseEstimation o o 22
231 Bottom-up 22

232 Top-down e 23

xi

Contents

3 Pose Estimation and Analysis for American Football Videos 25
3.1 Benefits of Additional Pre-Transformations 25
311 2DPoseEstimation 26

3.12 Playing Field Registration 26

313 3DPointExtraction. 26

314 Summary 27

32 ObtainingData 28
321 OSUDataset. 29

322 Sports-IMDataset oo 29

323 Additional Cutting L 29

33 PoseEstimation o 29
331 TensorFlow 30

332 OpenPose 30

333 PyTorch 31

334 Comparison e 32

3.4 Playing Field Registration, 33
341 SelectingaVideo o oL 34

3.42 Setting the Four Source Points 34

3.4.3 Tracking the Source Point through the Video 34

3.44 Specifying the Parameters Required for the Projection 35

3.45 Calculation of the Projective Matrix 36

3.4.6 ResettingofPoints 36

3.4.7 ProjectionPreview 0 000 L. 38

3.4.8 Storing Projective Matrices 39

349 Summary ... 39

35 Labelling e 39
3.5.1 Defensive Personnel, 40

352 ManCoverage e 41

353 ZoneCoverage 43

354 LabellingManvs. Zone 45

355 PFourClassLabelling, 45

3.6 3D Player Extraction o 46
3.7 Tactical Analysis. 47
371 Dataset 47

372 TechnicalSetup 47

373 Manvs. ZoneCoverage 48

374 Four Class Coverage Analysis 54

4 Conclusion 61
41 Summaryo e 61
42 Outlook. 61

xii

Contents

Bibliography 62

List of Figures 73

xiii

1 Introduction

1.1 Motivation

In an article from 1959 in the IBM Journal of Research, the term “machine learning” was
popularized by Arthur Samuel [1]. Due to computational restrictions, however, training
sophisticated models was impractical. Fortunately, recent CPU and, especially, GPU ad-
vancements alleviated this restriction. Overall, this development opened up the path for
artificial neural networks [2]. Today, neural networks consist of millions and even billions
of parameters. In May 2020, Tom B. Brown et al. published a paper introducing a language
model called Generative Pre-trained Transformer 3 (GPT-3), consisting of of 175 billion pa-
rameters [3]. All this shows that complex machine — and especially deep —learning models
can now be trained to address complex tasks due to the developments in processor tech-
nology. One central research area of deep learning is computer vision. Here, models are
used to solve image classification, object detection, and semantic segmentation tasks. An-
other task possible with today’s hardware is human body pose estimation, where models
are trained to estimate the location of different joints, such as ankles, knees, hands, or
eyes. This yields into the topic of this thesis: Applying pose estimation in combination
with some transformations to analyze American football videos.

1.2 American Football: Concepts and Terminology

Since the application area of this thesis is American football, some central concepts and
terminology need to be introduced. As for soccer, two teams of eleven players face each
other on a rectangular field of play. For American football, this field is 120 yards long and
53 Y5 yards wide. On either of the long side’s ends, there is a field goal and a ten-yard long
end zone, as shown in Figure 1.1. In contrast to the figure, however, the field goals are at
the end of the end zone and not inside. Further, there are rows of single-yard markers on
both sidelines and two inside of the field. Those two inside the field are called hash marks.
Moreover, there are lines distanced five yards from one another. Every second line has a
number indicating the distance to the next closest end zone.

In contrast to more dynamic sports like basketball or ice hockey, American football is
played play-by-play. That is, the offense of one team executes a run or a pass play. The
play ends when a defender tackles the ball-carrying player successfully or when the ball
carrier leaves the field of play. A play can also end if the passer — usually the quarterback
(QB) — throws an incomplete (not caught) pass or a defender intercepts the ball. For the

1 Introduction

Figure 1.1: Schematic illustration of an American football field (Image: public domain).

latter case, ball possession changes. Then, the next play is carried out. Each play starts at
the so-called line of scrimmage (LOS), which is at the position of the ball when the previous
play terminated. For the subsequent play, the ball is placed on the LOS. The teams align
on their respective side of the LOS. The offensive line, consisting of five players aligning
close to each other and close to the LOS, protects the QB. The middle offensive lineman,
the center, holds the ball on the LOS with one hand before the play. Notably, offensive
linemen are not allowed to receive a pass. On a signal of the QB, the center hands or
throws the ball through his legs to the QB. This is called the snap or snapping the football,
and it starts a play. After the snap, both teams can cross the LOS, but not before. The goal
of the team in possession of the ball is to advance the ball down the field into the end zone
of the opposing defense. To achieve this goal, the offense has four chances — also called
downs — to advance the ball ten yards. If they manage to gain those ten yards, they get
a new set of downs. Otherwise, ball possession changes. This article [4] provides more
information on the rules of football and in-depth information on football terminology can
be found in this glossary [5].

1.3 Outline

The approach introduced in this research work uses 2D pose estimation combined with a
projective transformation to extract 3D poses of American football players. This 3D data
about the players is then used to analyze defensive pass coverage. Therefore, the remain-

1.3 Outline

der of this thesis is structured as follows: Chapter 2 introduces recent and relevant research
work on American football analysis, deep learning in computer vision, and pose estima-
tion. Chapter 3 explains the classification pipeline starting with an overview of the benefits
over end-to-end learning in Section 3.1. Then, Section 3.2 through Section 3.7 describe the
individual pipeline steps and how data was obtained and labeled. Finally, Chapter 4 con-
cludes the thesis with a summary, a discussion of the results, and an outlook for future
work.

2 State of the Art

This part of the thesis is split up into three parts. Firstly, Section 2.1 discusses relevant
work in the problem domain: American football analysis. Secondly, the required concepts
in the solution domain — deep learning for computer vision — are introduced in Section 2.2.
Thirdly, Section 2.3 focuses on relevant work and techniques for pose estimation.

2.1 Analysis of American Football

The analysis of American football is as old as the sport itself, as teams need to prepare
for their upcoming opponents. These investigations translated into research analyzing
the sport from various perspectives over the recent decades. In the following, I want to
lay out a categorized summary of the relevant scientific publications on the analysis of
American football. I categorized the publications as follows: Firstly, there is work — pri-
marily by researchers supporting their university’s football team — on tools helping teams
and coaches with player evaluation and decision making. Secondly, are papers on situ-
ational analysis. Thirdly, there are publications focusing on projecting or registering the
field into a model or reconstructing the playing field. Those were particularly helpful for
my work in that area. Further and fourth, I summarize the work on tracking and recogniz-
ing players. Moreover, there is work analyzing individual players and their contribution
to a team’s success. Moving closer to what I did in my final tactical analysis, there is re-
search on, sixthly, formation identification and, seventhly, play classification. For those
two, however, most of the publications focus on the offensive side, whereas my focus is on
defensive play classification. This leads to the last category — defensive analysis — where I
found just one relevant publication.

2.1.1 Supportive Tools

To support the decision-making of the American football team of the University of Vir-
ginia, the researchers around Harry Elkins developed a suite of data analytics tools and
published the companion paper in 2017. Those tools support coaches with in-game de-
cisions and help them with scouting opponents. All models are based on textual inputs
or data from the IT department. Furthermore, those models were developed to be used
intuitively by non-data scientists [6].

A year after [6], Jack Corscadden et al. published a similar paper, further supporting the
team of the University of Virginia. They extended some of the previous work of Elkins et

2 State of the Art

al.. Furthermore, they added a player performance model and vision-based tools helping
to scout opposing offenses [7].

Also in 2018, another paper on supportive tooling was released. The researchers R.
Yurko, S. Ventura, and M. Horowitz provided four contributions: Firstly, they imple-
mented a package for the programming language R providing access to NFL play-by-play
data. Secondly, they developed an approach to estimate the expected points for a play.
Thirdly, they developed a model, which estimates the win probability using the afore-
mentioned expected points. Finally, they implemented a framework that can measure the
individual contribution of offensive players [5].

2.1.2 Situational Analysis

The research work laid out in this subsection is about recognizing certain situations during
an American football game. They are relevant for this thesis since they analyze football
with a vision-based approach. Furthermore, they could be used in future work as a pre-
processing step to extract plays and relevant information from the raw video material of a
football game.

One of those studies — “Camera View-based American Football Analysis” by Yi Ding
and Guoliang Fan - focuses on classifying which camera or camera angle was used in a
shot. For this classification, they use a set of extracted and selected field features. This
approach can help to find videos in the proper camera angle for my analysis [9].

Since a typical American football match lasts up to three hours for 60 minutes of playing
time, automatic video summarization can support the process of cutting raw material. In
that regard, several approaches have been introduced. First, in 2001, B. Li and M. Ibrahim
Sezan presented their framework, which is capable of detecting events and summarizing
sports broadcast videos. For event detection and summarization, their framework has two
approaches: a rule-based and a Hidden Markov Model (HMM) based approach, where
the rule-based approach outperformed the HMM-based alternative. Their experiments
also include two other sports: sumo wrestling and baseball [10].

A second paper on play start detection was published four years later, in 2005. The
authors developed a feature extractor for the field color or field marks. To select features
and make decisions, they use a boosting chain. [11]. Furthermore, they compare their
results to the results from [10]. While their field color detection accuracy was just 3% to
5% higher than the one in [10], their overall play detection was much more accurate [11].

Lastly for play start detection, there is the work by Mahasseni et al. from 2013.Their pa-
per describes, discusses, and evaluates their approach for detecting the start of an Ameri-
can football play. However, in contrast to [10] and [11], they only detect the start of a play
without detecting the end of it [12].

After the play has started, the approach by K. Kin, D. Lee, and I. Essa from 2012 alleviates
the process of finding regions of interest on the camera image. To find such regions, they
employ an approach based on camera motion [13].

2.1 Analysis of American Football

In 2010, Li and Chellappa developed an approach to segment group motions. That is,
they separate the 22 players into offensive and defensive players based on their trajectories.
In contrast to the pipeline developed in this thesis, their model is not invariant to different
viewing angles [14].

Finally, in 2014, Chen et al. published a paper on the automatic annotation of play situ-
ations. They differentiate five situations: offense, defense, field goal, punt, and kickoff. As
for the previous studies, this approach is entirely vision-based [15].

2.1.3 Field Registration, Projection, or Reconstruction

This subsection discusses research work in the area of registering or projecting the playing
field into a model. Such work is especially relevant since I use a similar transformation in
my pipeline as well. To illustrate such a projection, an example of this transformation from
my work is shown in Figure 3.8 in Section 3 .4.

In their 2007 paper, Rob Hess and Alan Fern explain their approach for registering a
playing field into a model. In contrast to other methods, they developed their approach
to work without sufficient distinctive image features. To tackle this issue, they introduce
a concept called local distinctiveness. With that, they obtained sufficient matches between
image and model for robust playing field registration. Moreover, their technique can be
fully automated [16]. In two other papers [17, 18], they reuse their approach for further
analyses. Those analyses, however, fall into another category and hence will be discussed
at a later point of the state-of-the-art. In his dissertation, Rob Hess included the work
of [16] and discussed an approach for automatically generating the reference set for video
registration [19].

Similarly, Bernard Ghanem and Narendra Ahuja released a paper on their framework
for video registration in 2012. While other work focuses on matching explicit structures,
they register the video frames with image or image patch matching [20].

Additionally, approaches of other papers [7, 21, 22, 23, 24] transform video frames into
a top-down view. However, those do not focus on the transformation but rather use it as a
pre-processing step.

2.1.4 Player Tracking and Recognition

Another subcategory of American football analysis found comparatively often is player
tracking and recognition. The earliest work I found in that regard is “Tracking Using a
Local Closed-World Assumption: Tracking in the Football Domain” by Stephen S. Intille
from 1994. In contrast to conventional trackers at that time, he incorporates contextual
information — i.e. knowledge about American football — into tracking to improve perfor-
mance [25]. In a later publication, Intille and Bobick use player tracking as a pre-processing
step for play classification [26].

Besides their work in playing field registration, Rob Hess and Alan Fern likewise worked
on multiple player tracking with discriminatively trained particle filters [27]. As for field

2 State of the Art

registration, Rob Hess discusses this approach in his dissertation [19]. A similar approach
— discriminatively trained particle filters — was also used in the pipeline of [24] to control a
simulator from video observations. Another multiple player tracking approach based on
particle filters was introduced in 2012 by T. Zhang, B. Ghanem, and N. Ahuja [28]. In order
to further tracking accuracy, they incorporate their video registration developed in [20].

In his Master’s Thesis, Amit Bawaskar developed an interactive tool to track a player.
Interactive means that tracking errors are corrected by human interaction to improve track-
ing performance. In contrast to [19, 27, 28], his work uses an online multiple instance learn-
ing tracker. However, he demonstrates tracker independence by using a particle filter as
well [29].

Four years later — for the 2018 MIT Sloan Sports Analytics Conference —, Omar Ajmeri
and Ali Shah submitted a paper on vision-based player tracking. For tracking players, they
use a color-based analysis. Player location and tracks are then used to identify formations,
calculate distance ran and speed of players, and compare pass receivers’ route-running
skills. Overall, however, the descriptions of their approach are not very detailed [30].

2.1.5 Individual Contribution

As mentioned in Subsection 2.1.1, Yurko, Ventura, and Horowitz developed a framework
to isolate and estimate the individual contribution of a player. Additionally, their frame-
work can estimate the win above replacement (WAR) for a player. Thus, the name of the
framework is nflIWAR [8].

As the name suggests, “Going Deep: Models for Continuous-Time Within-Play Valua-
tion of Game Outcomes in American Football with Tracking Data” provides a framework
for game outcome valuations, even within a play. Most other databases, in contrast, com-
pute their analysis on a play-by-play basis. To do so, they incorporate player tracking data.
Moreover, the researchers developed a model for ball carriers, which estimates the yards a
player is expected to gain. This estimate is based on the positions and trajectories of all 22
players on the field [31].

Another paper, which already appeared in Subsection 2.1.1, is [7]. Here, the researchers
developed a model for player performance based on grades by a company called Pro Foot-
ball Focus and sensor data from Catapult wearable vests [7].

The earliest relevant paper from the MIT Sloan Sports Analytics Conference is from 2016.
In his submission, Jeremy Hochstedler discusses an approach to evaluate the decision-
making of a quarterback from player location tracking data. His approach incorporates
the “openness” of a receiver, that is, the distance between a receiver and the closest de-
fenders [32]. Similarly, three years later, another relevant paper was submitted to the 2019
MIT Sloan Sports Analytics Conference by Brian Burke. This work focuses on assessing
a quarterback’s decision-making and performance from tracking data as well. However,
both analyses and descriptions are more in-depth. For the implementation of his approach,
Burke uses deep neural networks [33].

A paper focusing on the analysis of wide receivers was submitted to and won the “Open

2.1 Analysis of American Football

Entry” category of the 2019 Big Data Bowl. In his paper, Nathan Sterken uses a convolu-
tional neural network (CNN) in order to classify routes run by wide receivers. As an input
of the CNN, he uses plots of the receiver’s tracking data. In a second step, the classified
routes are used to estimate optimal combinations of receiver and route using the metric
“win probability added” from [8]. However, the second step did not reveal significant
insights, as mentioned by the authors [34].

2.1.6 Formation Analysis

In this category of American football analysis, I summarize papers that analyze a team’s
formation. One paper in that area is [30], which already appeared in Subsection 2.1.4
because the researchers track players to analyze formations and route combinations. With
regards to formation assessment, they carried out two analyses. Firstly, they classify the
quarterback position into three categories with an 86.5% accuracy. Secondly, they classify
entire formations with a 72.3% accuracy. For both analyses, they evaluated five different
machine learning algorithms with “Classification and Regression Trees” performing best
for both cases.

Besides their work in supportive tools and player performance evaluation, Corrscadden
et al. also addressed formation analysis. Their approach includes a projective transforma-
tion, player detection, and a decision tree to classify the formation [7].

As the title suggests, “ Automatic Recognition of Offensive Team Formation in American
Football Plays” from 2013 focuses on classifying offensive formations. One of the authors
is Bernard Ghanem, whose work from [20] was reused as a pre-processing step. Their
process for formation recognition includes four steps. Firstly, they identify the frame in
which the players align in the formation. Secondly, the line of scrimmage is detected.
Thirdly, they identify the offensive team in order to use all previously acquired knowledge
to, fourthly, classify the offensive formation. For accuracy, the formation frame is detected
in 95% of the videos. The line of scrimmage is detected at an even higher 98%. Formation
classification, however, only reached a 67% accuracy [21]. In 2014, [21] was reworked and
appeared in a computer vision book from Springer [22].

In 2007, two similar papers were published that rather focus on the computer vision
techniques employed. However, they apply those techniques to identify players and clas-
sify formations [17, 18]. As for the other work by Rob Hess, he discusses the findings in
his dissertation [19].

Within two years, from 1998 until 1999, Lazarescu et al. published three papers on for-
mation classification. Those three publications refer to formation classification with play
classification, which can be misleading at times. In terms of employed techniques, their
work combines a vision-based approach with a natural language processing-based ap-
proach [35, 36, 37].

Finally, there is the work by Stracuzzi et al. from 2011. They use observations of video
material to control a simulator. Besides playing field registration and player tracking, they
incorporate formation recognition into their approach [24].

2 State of the Art

2.1.7 Offensive Play Classification

This subsection addresses the classification of offensive plays. The earliest work I found in
this area was published in 2001 by Intille and Bobick. Their approach uses visual inputs to
recognize a predefined set of plays [26].

The most recent work, in contrast, was published in 2020. Here, Cameron Taylor uses
situational information combined with a single pre-snap image only of the play to forecast
both yardage outcome and the play call. Play call forecasting has two classes — run and
pass — with the best model having a 61.4% accuracy [38].

A more in-depth analysis of offensive playcalling was introduced in 2003 by Lazarescu
and Venkatesh. Their approach uses the camera motion to identify seven classes of foot-
ball plays — short and long pass, short and long run, quarterback sack, punt, and kickoff.
To train and evaluate their classifier, they used 782 plays — 68% of which were classified
correctly [39].

In 2009, Li et al. introduced a paper explaining their approach for classifying offensive
plays. As an intermediary step, they introduce a discriminative temporal interaction man-
ifold (DTIM) to represent the cooperation between multiple objects compactly. With re-
gards to experiments, they classified 56 plays into the following five categories: Combo
Dropback, HITCH Dropback, Middle Run, Wideleft Run, and Wideright Run. Their best
model yielded an 83.7% recognition accuracy [40]. A year later, in 2010, Li published an-
other paper with Chellappa. They classify the same data into three more general classes:
Dropback, Middle&Right Run, and Wideleft Run. The final recognition accuracy was a
worse 70% [41].

In 2009, Swears and Hoogs wrote a short publication on the recognition of American
football plays [42]. In 2012, they followed up on this work with a more in-depth paper.
Their approach employs an HMM model to classify plays into both four and seven classes.
They classified 25 pass plays for the four-class classification and achieved a probability of
correct classification (Pcc) of 76%. For the more specific case — seven classes — their dataset
consisted of 78 plays. However, Pcc declined to 57.7% [43]. Figure 2.1 depicts the four
pass plays for the four-class classification (left) and the additional three run classes for the
seven class classification.

In their 2009 paper, Siddiquie, Yacoob, and Davis discuss a vision-based, sparse multiple
kernel learning approach to classify 78 offensive American football plays. Similar to [42,
43], they analyze a less and a more complex case on the same dataset. They classify the
two classes run and pass for the less complex case with an 89.4% recognition rate. For
the more complex case, plays are classified into the seven labels from [42, 43]: short pass,
option pass, rollout pass, deep pass, run left, run right, and run middle. However, with a
(compared to [42, 43]) much higher, 71.9% accuracy [23].

Finally for offensive play analysis, there is the conference paper by]J. Varadarajan et
al., which discusses a supervised topic model approach to analyze offensive plays. They
were able to classify run and pass with a 88% accuracy. Furthermore, they analyzed more
specific labels. That is, run or pass combined with a direction (left, mid, right). Here, they

10

2.1 Analysis of American Football

—[American Football Plays

i

Figure 2.1: Four pass classes (left) and three run classes (right) used by Swears and Hoogs
in [42, 43].

reached 70% accuracy [44]. The following figure illustrates an overview of their approach
and their classification:

@ Feature extraction @ Output
mottlici:eaggle, Play type templates and labels

player role run left pass left

QB /
Q) QB

Documents

= [] | i pasipright
A N o QB

w; - documents, y - labels "\

Trajectories © MedLDA modeling

WR

pass mid

- - @ @K - WR

rem 22

H e ..

Figure 2.2: The approach of Varadarajan et al. to classify offensive plays [44].

2.1.8 Defensive Coverage Classification

The most relevant paper I found was published recently in 2020 by Dutta, Yurko, and
Ventura. In contrast to all the previously mentioned papers, it discusses the defensive
side of American football. In particular, they developed an approach to identify defensive
pass coverage. Therefore, it is the work closest to mine in the problem domain. However,

11

2 State of the Art

my work is distinguished in two ways. First, they use NFL player location tracking data,
whereas I use a vision-based approach — not requiring the location trackers. Secondly,
they classify coverage per player as illustrated in Figure 2.3. My approach, in contrast,
was developed to classify the coverage of the entire defense. In their work, they use an
unsupervised learning approach. This learning approach does not require any training
data. Instead, they defined a feature set distinguishing between man and zone coverage.
For that, they employ clusters obtained from mixture models. Their approach indicates
the importance of each feature used [45].

Figure 2.3: Probability for each player for playing man (m) or zone (z) [45].

2.1.9 Summary

The state-of-the-art American football analysis indicates that there is comparatively much
work on supportive tools, situational analysis, field registration, and player tracking. Tac-
tics of the offense in terms of formations and playcalling have been studied — again, com-
paratively — much. In contrast, defenses were not studied as extensively. Thus, one signif-
icant contribution of this thesis’s final defensive tactical analysis is providing literature, a
body of work, and inspiration for further studies of the defensive side of football.

12

2.2 Deep Learning for Computer Vision

2.2 Deep Learning for Computer Vision

Several technologies and techniques are required for the pose estimation at the beginning
and the classification of defensive pass coverages at the end of the pipeline. However, as
pose estimation can be seen as a separate field of research, it is discussed in a separate
section — Section 2.3. This section focuses on deep learning concepts. The subsections
discuss different building blocks for deep learning in computer vision. The first subsection
discusses standard activation functions. A subsection on loss functions to determine the
error in predictions follows. The subsequent two subsections explain how the error/loss is
used to optimize neural networks with (1) backpropagation and (2) optimizers. Before the
two subsections on convolutional neural networks and ResNets, I discuss two important
topics — regularization and data augmentation. The final subsection concludes this section
with an introduction to basic evaluation metrics.

2.2.1 Activation Functions

To introduce non-linearity into otherwise linear neural networks, several activation func-
tions have been proposed. Typically, those activation functions are applied after the in-
puts of a layer have been multiplied with the layer weights. As recent references for the
following functions, more in-depth explanations, and additional activation functions, con-
sider [46, 47, 48].

Sigmoid Function

The Sigmoid or logistic function is a non-linear, bounded function that outputs a number
in the interval (0, 1). Therefore, it is often used to predict a probability, e.g. for a binary
classification task (as in this thesis). The following formula defines it:

1

oo 2.1)

Softmax Function

Similar to the Sigmoid function, one can interpret the Softmax function’s outputs as prob-
abilities. In contrast to the Sigmoid function, however, Softmax can output a probability
distribution for more than two classes. As a probability distribution, the sum of the out-
put probability vector is one. Thus, the Softmax activation function is used in the output
layers of multi-class, deep learning architectures. This formula defines the output Softmax
activation function for the i-th class:

exp(z;)

Z]’ exp(z;)

x; is the i-th neuron’s output, and the denominator sums up exp(z;) over all neurons j.

2.2)

13

2 State of the Art

Hyperbolic Tangent Function

The hyperbolic tangent function (tanh) is another bounded, non-linear activation function.
However, it is zero centered in the interval (—1, 1), and alleviates some of the problems of
the Sigmoid function. The following is the formula defining the tanh function:

exp(a:) — exp(—x) (2 3)
exp(z) + exp(—x) '
Rectified Linear Unit Function

The rectified linear unit (ReLU) function is a commonly applied activation function in
state-of-the-art deep learning models. Due to its simplicity, it is much faster to compute
than the tanh or the Sigmoid activation functions.

max (0, x). (2.4)

2.2.2 Loss Functions

Besides activation functions, there is a second set of functions relevant to training neural
networks —loss functions. As explained in the following subsections, networks are trained
by propagating the gradient of a loss of predictions backward through the network. This
subsection addresses some loss functions used for classification tasks. For all loss func-
tions, N is the number of samples, y; is the actual label — either zero or one — of the i-th
sample and g; is the predicted label — which can be interpreted as a probability — of the i-th
sample.

Mean Absolute Error

The following formula gives the mean absolute error (MAE) loss function:
1 X
MAE = — i — Uil 25
¥ ; lyi — 3l (2.5)

Mean Squared Error

The mean squared error (MSE) formula is the following:

N
1 12
MSE = N Z;(yi —9i)~. (2.6)

14

2.2 Deep Learning for Computer Vision

Binary Cross-Entropy Loss

The binary cross-entropy (BCE) loss function is given by:

N

BCE = - (yi-logii + (1 —y;) - log(1 — §). (2.7)
=1

Cross-Entropy Loss

The following formula defines the (categorical) cross-entropy (CE) loss:

N K
CE == (vt - log §in)- (2.8)

i=1 k=1

Here, the additional variable K was added for different classes. It is also easy to obtain
that CE is the generalization of BCE for multiple classes.

2.2.3 Backpropagation

Backpropagation is the common technique to compute the gradient of the loss function
w.r.t all network weights and biases. It is called backpropagation because it employs the
chain rule to propagate the gradient backward through the network. The gradient is cal-
culated because it can be used to find (local) minima of the loss function w.r.t. weights
and biases. Thus, optimizers can adjust network parameters to produce a smaller loss.
Such optimizers are discussed in the following subsection. Backpropagation was popular-
ized by Rumelhart, Hinton, and Williams [49, 50]. However, other researchers (e.g. [51])
discovered it independently as well.

2.2.4 Optimizers
This subsection introduces and discusses some relevant optimizers. For an extensive sum-
mary of gradient descent optimization algorithms, see e.g. [52, 53].

(Batch) Gradient Descent

Standard (batch) gradient descent computes the gradient of the loss function L w.r.t the
network parameters 6 for the whole training set. As the gradient points in the direction
of the steepest increase of the loss, weights are adjusted in the opposite direction with a
specified learning rate #:

0=0—1n-VeL(0). (2.9)

A significant drawback of batch gradient descent is that the entire dataset is used to calcu-
late the gradients. Therefore, it can be slow or even impractical for large datasets. Another

15

2 State of the Art

drawback is that incremental or online learning is not possible. Thus, optimization must
be re-run to incorporate new training data [52].

Stochastic Gradient Descent

Stochastic gradient descent (SGD) addresses the two drawbacks of batch gradient descent.
Instead of performing a gradient step over the entire dataset, SGD updates weights and
biases for each individual training sample:

0=0—n-VoL(0;x, ;). (2.10)

z; and y; are the i-th sample — features and label, respectively — of the training set. The
structure of SGD allows for much faster and online learning. However, SGD can also lead
to noisy weight updates since it only uses a single data point to update weights [52].

Mini-Batch Gradient Descent

Mini-Batch Gradient Descent combines the advantages of the previous two gradient de-
scent algorithms. Instead of a single sample, a mini-batch of n samples is used for opti-
mization. This way, gradients are less noisy than those for SGD while still allowing for
large datasets and online learning:

0=0—n-VoL(0; X;,Y;). (2.11)

X; and Y; are the features and labels of the i-th mini-batch, respectively. Again, there
are also drawbacks to this optimizer. That is, gradients are not scaled individually across
different directions. Therefore, a conservative learning rate is required in order to avoid
divergence. Further, SGD can get stuck in plateaus surrounding saddlepoints [52].

Adam

To tackle the issues of previous optimizers, several other optimizers have been proposed.
For an overview, see section 4 of [52]. A prevalent one of them is the adaptive moment
estimation (Adam) algorithm. Adam was proposed by Kingma and Ba in 2015 [54]. The
researchers designed this algorithm to compute an adaptive learning rate for each parame-
ter. Thus, convergence is faster, and it alleviates the training of deep neural networks [52].

2.2.5 Regularization

Regularization is employed to make models less prone to overfitting, thus, generalizing
better to unseen data. For my thesis, I worked and experimented with the following four:
L1- and L2-Regularization, dropout, and batch normalization. For an extensive overview
of regularization techniques, see [55].

16

2.2 Deep Learning for Computer Vision

L1-Regularization

L1-Regularization is a regularization technique, where a regularization loss is added to the
loss function. In particular, the following term is added to the loss function:

R(0) = X+ [0;]. (2.12)

g; are the individual weights, and); is the individual regularization factor of weight 6;.
Thus, high absolute network parameters values are penalized. Therefore, sparse weight
matrices are favored by L1-Regularization, and it can be used for feature selection.

L2-Regularization

Similar to L1-Regularization, L2-Regularization adds a regularization term to the loss func-
tion:

R(0) =) -6} (2.13)

¢; and \; are defined as for L1-Regularization. In contrast to L1-Regularization, L2-Reg-
ularization enforces similar values for all weights. Thereby, weights incorporate all infor-
mation.

Dropout

Dropout is a regularization technique to prevent the neurons of a neural network from co-
adaption. This is achieved by randomly omitting a percentage of a layer’s neurons for each
training batch. Thus, many sub-networks are optimized at training time. At test time, the
mean of all of the sub-networks is used [56, 57]. The following figure from [57] illustrates
a neural network before (left) and after applying a dropout of 50% (right):

Batch Normalization

In 2015, Sergey loffe and Christiean Szegedy introduced batch normalization (BN). It was
explained as a technique to accelerate the training of deep neural networks. However, the
authors also noted that it also regularizes models. BN can even render dropout unneces-
sary. Instead of using a sub-model for each training batch like dropout, BN normalizes
layer inputs for each batch [58].

2.2.6 Limited Data and Class Imbalances

Training neural networks can be problematic in the presence of limited or imbalanced data.
This issue can be addressed by under- and oversampling and data augmentation. While

17

2 State of the Art

12
5
8

OIS

Q
<

X
o
%
5
2%

W

Y
AN

4,

A

D

"l.,
5
"

A"A
\\V
\V,

Q

.'tv
"

¢
®:

Figure 2.4: A neural network without (left) and with dropout (right) [57].

data augmentation can be seen as a data-based regularization technique [55], I decided
to address it here because it has two benefits. As mentioned, data augmentation can be
used to increase dataset size. Thus, it decreases the chances of overfitting (data regulariza-
tion). However, data augmentation is also often employed to balance out a dataset. This
is achieved by increasing the number of samples just for underrepresented classes. Before
discussing data augmentation in detail, two other techniques to address class imbalance
are discussed: Under- and oversampling.

Undersampling

As the name suggests, this technique balances a dataset by undersampling majority class
samples to the number of samples of the minority class. Besides balancing the dataset,
undersampling has another benefit. That is, by reducing the overall number of training
samples, it decreases training time. However, this also introduces a drawback: It can
remove important information from excluded samples of majority classes.

Oversampling

Instead of excluding samples of all majority classes, one can also increase the instances of
the minority classes to match the number of samples of the single majority class. Typically,
this is done by replicating instances of the minority classes. In contrast to undersampling,
all information of the majority class is retained. However, a larger training set increases
training time. Furthermore, it induces an increased risk for overfitting minority classes
since samples are just replicated.

Data Augmentation

A standard method to alleviate the problems of oversampling is data augmentation. While
data augmentation still increases training time due to more training samples, it also in-

18

2.2 Deep Learning for Computer Vision

creases variance with transformed replications. Training samples in this thesis are images
or image-like (3D tensors with width, height, and channels) data. Therefore, the focus is
on a specific image data augmentation technique. For a comprehensive overview of image
data augmentation, see this article [59] by Connor Shorten and Taghi M. Khoshgoftaar.
The augmentation method of choice is the geometric transformation of flipping. For im-
age data, flipping horizontally is more common than flipping vertically [59]. However,
both are useful for my work. Figure 2.5 depicts a sample image of a cat (top-left), a hori-
zontal flip (top-right), a vertical flip (bottom-left), and the combination of both horizontal
and vertical flipping. A model trained on such augmented data can thus learn different
representations of a cat.

(c) Vertical flip. (d) Horizontal and vertical flip.

Figure 2.5: Horizontal and vertical flipping (Image: public domain).

2.2.7 Convolutional Neural Networks (CNNs)

Regarding state-of-the-art deep learning for computer vision, one of the most basic yet
most important concepts is the convolutional neural network architecture. Inspired by
Hubel and Wiesel’s work on the visual nervous system [60, 61], Fukushima introduced
the neocognitron in 1980 [62]. In literature, the neocognitron is often referred to as the

19

2 State of the Art

predecessor of CNNs. Ten years later, in 1989/90, CNNs were introduced by Yann LeCun
et al. [63, 64]. Since then, CNN architectures have evolved drastically. Here, a clear trend
is towards more depth, with literature supporting this trend, e.g. [65, 66]. With increas-
ing depth, however, networks become harder to optimize due to exploding or vanishing
gradients [67]. Careful weight initialization [67, 68] and batch normalization [58] can alle-
viate those problems. However, for even deeper networks, the degradation problem was
discovered [69, 70]: At some point during training, accuracy saturates and then degrades.
However, this degradation is not due to overfitting as training accuracy degrades as well.
An architecture resolving this issue and allowing for much deeper models is discussed in
the following.

2.2.8 Residual Networks (ResNets)

Residual networks were first introduced by He et al. in 2014 [71]. As mentioned in the
previous subsection on CNNs, deeper networks can perform better than their shallower
counterparts. However, this also induces problems. One of these problems is the degra-
dation of training accuracy with deeper models. Thus, ResNets were designed to alleviate
this problem. To achieve this goal, they introduce a shortcut, identity mapping of the input
of a convolution block to its output. This shortcut connection enables a direct backward
flow of the gradient. The following figure depicts a standard residual block (left) and a
bottleneck block (right):

64-d 256-d

Y

| 1x1, 64 |

l relu

| 3x3, 64 |

l relu

| 1x1, 256

Figure 2.6: Standard residual block (left) and bottleneck block (right) [71].

ResNets employ a stride of two for the first convolution layer in a residual block to ex-
change image size for channel depth. However, since shrinking the image and increasing
channel depth render a direct identity mapping impractical, the researchers propose two
solutions. FEither (1) padding the input with zeros or (2) using one-by-one convolutions.
Both options use a stride of two for image dimension reduction. Furthermore, they discuss
a bottleneck layer, which was introduced mainly for practical reasons. That is, they put a
one-by-one convolution before and after the three-by-three convolution to reduce dimen-
sions for the three-by-three convolution. However, the bottleneck design is susceptible to
the degradation problem as well. Instead of dropout, ResNets use batch normalization —

20

2.2 Deep Learning for Computer Vision

before activation, right after convolutions. With those three building blocks, ResNets can
be built by stacking residual blocks. The head of the standard residual network consists of
a global average pooling layer after the residual blocks and a fully-connected layer with
softmax activation for classification. The authors train the networks with SGD [71].

ResNets are highly relevant for this thesis, as the pose estimation network used in the
approach uses a ResNet-50 backbone. Moreover, the network implemented to classify
defensive coverage from 3D points is a ResNet as well.

2.2.9 Evaluation Metrics

In order to evaluate the models classifying the 3D point clouds, some evaluation metrics
are discussed in the following. All metrics are discussed for a binary classification case.
However, their multi-class extensions are straightforward.

Confusion Matrix

A confusion matrix compactly depicts the ground truth labels — negative and positive — as
rows versus the predicted labels as columns. As obtainable from Table 2.1, true negatives
(TN) are correctly classified as negative samples, while true positives (TP) are correctly
classified as positive samples. In turn, mispredictions can be categorized as false positives
(FP) — predicted positive; actually negative — and false negatives (FN) — predicted nega-
tive; actually positive. Besides their concise illustration of results, confusion matrices also
facilitate the calculation of the other metrics.

negative | positive
negative TN FP
positive FN P

Table 2.1: Schematic confusion matrix.

Accuracy

One of the most basic evaluation metrics for classification is accuracy. It measures how
man labels were predicted correctly. That is, the rate of TNs plus TPs divided by the total
number of samples:

TN +TP
TP+TN+FP+FN’

Accuracy = (2.14)

21

2 State of the Art

Precision

Precision is a metric to evaluate the accuracy of positive predictions. Thus, the number of
true positives is divided by the number of all positively classified samples:

TP
Precision = —————. .
recision = —— TP (2.15)

Recall

Finally, recall describes the rate of detected positives to all actually positive samples. Hence,
it is also called true positive rate (TPR). TPR is computed by dividing all positive classifi-
cations by the total number of actually positive samples:

TP
RGCCL” = m. (2.16)

2.3 Pose Estimation

Apart from implementation-based categorization, human body pose estimation can be cat-
egorized into single-person pose estimation and multi-person pose estimation. For this
thesis, the latter is more relevant. For a recent survey on the former, see e.g. [72] by Zhang,
Zhu, and Wang. Moreover, pose estimation (PE) can be further distinguished in terms
of their implementation. That is, conventional vs. deep learning-based pose estimation.
For the latter, there is a very recent survey [73] as well, which also lists some surveys on
conventional methods for human pose estimation. However, the approach developed for
this thesis employs a deep learning-based person pose estimation network, particularly a
deep learning-based multi-person 2D pose estimation. Thus, the remainder of this section
focuses on those. For single-person and 3D PE, [73] also provides an overview. Regard-
ing 2D multi-person PE, [73] uses a common distinction for state-of-the-art approaches:
bottom-up vs. top-down. Both approaches are discussed in more depth in the following
two subsections.

2.3.1 Bottom-up

As the name suggests, bottom-up approaches start by detecting individual joints. Then
those joints are assembled into full human bodies in a second step. One prevalent pose de-
tection system using a bottom-up approach is OpenPose [74, 75, 76, 77]. OpenPose is very
fast, offering even real-time capability. However, drawbacks outlined in [73] are problems
with both low resolution and occlusions.

22

2.3 Pose Estimation

Input image Body part candidates detection Output 2D multi-person poses

Figure 2.7: Bottom-up pose estimation (figure adapted from [73]).

2.3.2 Top-down

In contrast to bottom-up pose estimation, top-down PE approaches the problem in the
opposite direction. An object detector first detects the persons, and then a single-person
pose estimator predicts the joints. Top-down models tend to be slower than their bottom-
up counterparts because bottom-up networks do not run single person pose estimation
separately on each detected person. However, they tend to be more accurate and are less
susceptible to occlusions, in turn [73].

A top-down architecture of particular interest for this thesis is Mask-RCNN, as intro-
duced by Kaiming He et al. in 2018 [78]. Internally, Mask-RCNN uses a ResNet-50-feature
pyramid network (FPN) as a feature extractor. Further information on FPN can be ob-
tained from [79].

Input image Output 2D multi-person poses

Detected human subjects Single-person pose

Figure 2.8: Top-down pose estimation (figure adapted from [73]).

23

3 Pose Estimation and Analysis for American
Football Videos

The central contribution of this thesis is the usage of a classification pipeline consisting
of five intermediary steps instead of direct end-to-end classification. In particular, this
pipeline is a combination of a model-based and learning-based approach. Since specific
knowledge can be extracted via minor manual labeling, the classification model has less to
learn. The five steps of the pipeline are:

1. Video input

2. Pose estimation

3. Playing field registration via a projective transformation
4. 3D transformation from 2D poses

5. Classification

Before discussing the five steps and their implementation, Section 3.1 describes why this
pipeline was developed, highlighting benefits obtained over direct end-to-end learning.
Then follow sections on the individual parts of the pipeline and corresponding imple-
mentation work. Thus, Section 3.2 discusses how the video input for the first step of the
pipeline was obtained. For the next step, Section 3.3 discusses the three pre-trained pose
estimation models investigated and an in-depth description of the model of choice. Next,
Section 3.4 contains a description of how the video input was projected into a field model.
Before the next step of the pipeline — 3D transformation —, follows Section 3.5 on how the
data was labeled for the final classification. This section was inserted here because a tool
developed for the playing field registration was reused for labeling. Continuing with the
pipeline parts, Section 3.6 explains how a 3D model was extracted from the 2D pose key
points using the projection from the third step. Finally, a classification of the 3D models
into two and four classes is described in Section 3.7.

3.1 Benefits of Additional Pre-Transformations

Before explaining how I implemented the different steps of the processing pipeline, I want
to outline the benefits of the intermediary steps. In comparison to end-to-end learning
directly from the input images to the final labels, I obtained several benefits, which are
explained in the following subsections.

25

3 Pose Estimation and Analysis for American Football Videos

3.1.1 2D Pose Estimation

Employing pose estimation yields two benefits. Firstly, it induces robustness against dif-
ferent weather, lighting, and coloring conditions, since the pose estimation network used
in this thesis is already trained to be robust against those. Figure 3.1 depicts consistent de-
tection of the player key points despite drastically different lighting and colors. Secondly,
the pose of players can reveal indicators for the type of coverage a defense plays. In zone
coverage, for instance, players stay to keep turned towards the quarterback, whereas, in
man coverage, a defender turns around to run with the assigned man.

(a) Pose estimation (OSU Dataset). (b) Pose estimation (Sports-1M Dataset).

Figure 3.1: Robustness induced by 2d human pose estimation network.

3.1.2 Playing Field Registration

A significant benefit of the playing field registration is that it makes the field model inde-
pendent of video resolution and aspect ratio. That is because the playing field is projected
into a uniform model. Therefore, no adjustments are needed for different video resolutions
or aspect ratios. Extracting the playing field and creating a model of the field yields even
further benefits. For once, situations could be analyzed both locally, centered around the
line of scrimmage, and in the context of the position on the field. Moreover, it is straight-
forward to exclude non-player persons from the remaining pipeline by looking at whether
their feet are located within the playing field or not.

3.1.3 3D Point Extraction

Through the 3D extraction of player joints, not only the field of play but the entire model
becomes independent of the video resolution and aspect ratio. The reason for this is that
the same projection as in the previous step is applied to the 3D points. As for the playing
field registration, no additional adjustments are needed for different video resolutions or

26

3.1 Benefits of Additional Pre-Transformations

aspect ratios. Furthermore, using projected 3D points in comparison to the 2D pose es-
timation points makes the analysis independent of camera angles. The skeletons (of the
relevant players) of two similar situations can look significantly different just due to field
position. To the human observer, the two situations in Figure 3.2 appear similar. However,
Figure 3.3 depicts the difference in the perspective on the skeletons and their alignment.
Finally, the 3D skeletons and their alignments look similar again in the 3D model in Fig-
ure 3.4:

—TT A TR

} N AR g) e

AR "“,T“A _-‘.:':rm?"""
5

A "

oy »

-

(a) Situation 1. (b) Situation 2.

Figure 3.2: Two similar situations with different field position.

(a) Skeletons of situation 1. (b) Skeletons of situation 2.

Figure 3.3: Skeletons of the two situations in Figure 3.2.

3.1.4 Summary

All of the benefits mentioned above yield another, more general one. My approach in-
troduces a camera-angle- and resolution-independent intermediary model and obtains ro-
bustness against weather and lighting conditions from the pose estimation. Therefore, the
classification algorithms do not need to be trained or adjusted for variations in any of those
parameters. Thus, domain knowledge is used and modeled to reduce learning effort.

27

3 Pose Estimation and Analysis for American Football Videos

(b) 3D skeletons of situation 2.

Figure 3.4: 3D skeletons of the two situations in Figure 3.2.

3.2 Obtaining Data

For football analysis, particularly the tactical analysis, professionals and coaches use a
unique camera angle called “all 22”. As the name suggests, the camera is positioned high
above the players filming all 22 of them. In order to analyze and learn from videos, two
things are required: Firstly, the raw videos, and, secondly, labels for the videos. The la-
beling is discussed in Section 3.5. Regarding raw video material, the initial plan was to
do pose estimation and analysis on NFL videos in the all 22 camera angle. However, due
to legal restrictions, this plan was adapted to use 60 single play all 22 videos from the
following two video sources:

28

3.3 Pose Estimation

3.2.1 OSU Dataset

For once, the OSU researchers Rob Hess and Alan Fern kindly provided their data set from
their studies [16, 17, 19, 27]. This data set consisted of 20 cut, single-play videos. Hence,
little additional effort was needed to use the videos.

3.2.2 Sports-1M Dataset

Moreover, Andrej Karpathy et al. published a paper and corresponding data set, where
they classified one million open-licensed videos from YouTube [80]. Luckily, there were
around 2000 American football videos contained in this data set. Hence, I sought through
all 2000 videos looking for the proper all 22 camera angle. This process in itself took a
considerable amount of time. In contrast to the OSU videos, however, the YouTube videos
are not cut into single plays. Therefore, additional work was needed to cut the videos.
Thus, I selected a video with 40 plays in the all 22 camera angle and cut out each of the 40

plays.

(a) OSU Dataset. (b) Sports-1M Dataset.

Figure 3.5: Sample frames of the OSU Dataset and the video from the Sports-1M Dataset.

3.2.3 Additional Cutting

Initially, all 60 videos from both sources were cut from seconds before the snap until the
play ended. After the snap, however, the camera often zoomed out substantially. This
zooming, combined with the low resolution of the videos, led to low detection rates of the
subsequent pose estimation step. Hence, the videos were cut shorter if the camera zoomed
out too far.

3.3 Pose Estimation

The next step in the classification pipeline is 2D multi-person pose estimation. For this
step, three pre-trained multi-person 2D pose estimation networks from three frameworks

29

3 Pose Estimation and Analysis for American Football Videos

were evaluated. The three frameworks are: TensorFlow [81], OpenPose [74, 75, 76, 77],
and PyTorch [82]. Each corresponding models is discussed in a separate subsection: the
TensorFlow model in Subsection 3.3.1; the OpenPose model in Subsection 3.3.2; and the
PyTorch model in Subsection 3.3.3. Finally, Subsection 3.3.4 provides a comparison.

3.3.1 TensorFlow

TensorFlow Hub [83] offers a variety of pre-trained models. For 2D multi-person human
body pose estimation, the site offers a model called MoveNet [84]. To extract features, it
uses a MobileNetV2 [85] FPN. From the extracted features, joint locations are predicted by
CenterNet [86] heads. However, MobileNet was designed to only detect up to six persons.
Thus, other options were investigated.

3.3.2 OpenPose

OpenPose is a state-of-the-art, real-time, bottom-up, multi-person 2D pose estimation sys-
tem. Besides human body key points, it is also capable of detecting hand, facial, and foot
key points. Different pre-trained pose estimation networks are available and easy to install
via either a traditional website [87] or their GitHub [88]. As a bottom-up approach, it is
relatively fast. In particular, OpenPose is even entirely invariant for the number of people
in an image [74]. However, OpenPose has difficulties detecting occluded or low-resolution
joints [73]. This problem was further confirmed in my experiments. Throughout different
videos, the pose estimator did detect just a few of the 22 players with standard configura-
tion. Even by setting a flag that maximizes detected joints (at the cost of much more false
positives), all 22 players were not detected consistently. To exacerbate those problems for
my application, OpenPose must be run on a GPU to be fast and requires at least — but rather
more than — 16GB of VRAM (RAM on the GPU) to achieve optimal results [$9]. As the two
systems I had access to had only 12GB of VRAM, parameters needed to be reduced, which
in turn reduced accuracy drastically. Therefore, OpenPose was run on a CPU and con-
sumed up to 20GB of RAM with the aforementioned optimal configuration. However, in
this configuration, the processing time for a single video is two to three hours. Thus, the
benefit of OpenPose — fast computation time — was not given anymore. In sum, problems
with occlusion, low-resolution videos, and low true positives (or more true positives at the
cost of much more false positives) unfortunately rendered OpenPose impractical for this
thesis.

For model training in the final step of the pipeline, I carried out some experiments on
Google Colab [90], where I discovered that some instances offer 16GB of VRAM. Hence,
OpenPose can be run on those with optimal configurations. This reduced processing time
significantly to three to four minutes per video. However, the other problems remained.

30

3.3 Pose Estimation

3.3.3 PyTorch

In contrast to the bottom-up OpenPose network, PyTorch offers a pre-trained, top-down
network for 2D multi-person pose estimation [91]. The model is an implementation of the
Mask-RCNN with ResNet-50-FPN backbone [78]. This ResNet backbone was pre-trained
on ImageNet [97] to serve as a feature extractor. Pose estimation was pre-trained on the
dataset from the 2017 COCO Keypoint Detection Task [93]. For this thesis, I used the pre-
trained versions of both the feature extractor and the pose estimator. Applying the model
was straightforward with just minor pre-processing required, i.e. permuting the channels
of the images to the correct order and normalizing the pixel values to values between zero
and one. Compared to the two to three hours per video of OpenPose (CPU), the PyTorch
model was rather fast, requiring under an hour for all videos (on average under a minute
for each of the 60 videos). However, the increased speed is mainly attributed to the fact
that model inference can be run on the GPU. The pose estimation network of PyTorch
outputs a tensor of shape NV x 17 x 3 where N is a variable number of detected persons.
For each person, 17 key points are detected with x- and y- coordinates and whether the
point is visible or not. The 17 key points are listed below and depicted in Figure 3.6.

Nose 3 2
LNy
Left eye 5¢ i *4

Right eye

Left ear 7 6
Right ear
Left shoulder 9 » 8

Right shoulder

Left elbow 114 130 t1s % 10
Right elbow

Y X Nk wh

—_
e

Left wrist

—_
—_

. Right wrist

. Left hip 15 e e 14
. Right hip |

. Left knee

. Right knee |

Left ankle 17¢ *16

. Right ankle Figure 3.6: The 17 pose key points.

S
N o Gk WD

31

3 Pose Estimation and Analysis for American Football Videos

3.3.4 Comparison

As described in Subsection 3.3.2, OpenPose had problems with detecting the joints of all 22
players consistently. These problems were primarily due to low video resolution. Even by
setting a flag that maximizes true positive detections, the system either still detected only a
few players or had an unbearable number of false positives. In contrast, the PyTorch model
predicted poses well and even was faster than OpenPose. The following figures serve as a
sample to depict results from OpenPose (with and without maximized true positives) and
from PyTorch:

(e) PyTorch. (f) PyTorch.

Figure 3.7: Pose estimation on sample frames.

32

3.4 Playing Field Registration

For the classification in the last step of the pipeline, defensive players are particularly
important (in all pictures the players to the left with the same jersey color). Furthermore,
offensive pass receivers are relevant. In all pictures, those are the players to the right that
are not the offensive line and not the quarterback. As Figure 3.7 indicates, OpenPose has
problems detecting all relevant players’ joints (top row). Enabling the flag for maximized
true positives resulted in the pictures in the middle row. Poses for more players are de-
tected, but with a drastic increase in false positives. The PyTorch network, in contrast,
consistently detects all (or most of) the relevant players.

3.4 Playing Field Registration

As mentioned earlier, my approach registers the raw video into a top-down view. Fig-
ure 3.8 illustrates an example of that.

(a) Sample frame. (b) Projected sample frame.

Figure 3.8: A sample frame (left) projected into a field model (right).

As Subsection 2.1.3 indicates, this is a rather common pre-processing technique. In order
to compute the projection of a frame, I used two OpenCV [94] functions. The first func-
tion (getPerspectiveTransform) computes the projective matrix used by the second
function (warpPerspective) to project the image. To calculate the projective matrix,
getPerspectiveTransform requires four source points on the image frame and the
corresponding destination points on the projection plane. Thus, to create a projection for
each frame of a video, the following steps are necessary:

1. Select a video

N

. Set the four source points for the projective transformation.

W

. Track the points (otherwise, they would have to be set for each frame manually).

.

. Enter the location of and the distance between the points on the field.

a1

. Calculate the projective matrix with the points and parameters set.

33

3 Pose Estimation and Analysis for American Football Videos

6. Show the projection to validate correctness.

7. Reset the source points/set new points and parameters whenever the point tracker
diverged too far.

8. Store the projective matrix for later use on the key points.

At first, I did this process manually, but this was tedious and time-consuming. There-
fore, I implemented a dashboard to facilitate this process. The dashboard was imple-
mented in Plotly Dash, an open-source Python framework to develop dashboards in pure
Python [95]. I selected Plotly Dash over other Python GUI frameworks due to prior expe-
rience shortening implementation time. An image of the entire dashboard is depicted in
Figure 3.15, whereas the following subsections discuss and illustrate the implementation
of each individual part.

3.4.1 Selecting a Video

To do the first step — i.e. select a video — I used a dropdown menu. To be visible in the
dropdown, a video must be placed in a specific folder. On the selection of a video, the
video frames are loaded into the dashboard, as illustrated in Figure 3.9

3.4.2 Setting the Four Source Points

The second step is selecting the four source points of the projection. This was implemented
with a button, which opens a window. In this window, the four points can be set by
clicking on the corresponding point on the image. To implement this, I used the Python
API of OpenCV to record the pixels where the four points should be. Here, the ordering
and alignment of the points are vital. The points must be a rectangle when projected. To
facilitate the calculation of the destination points, they must be in the following order: top-
left, top-right, bottom-left, bottom-right. When the four points are set, and the enter key is
pressed, the four points are stored.

3.4.3 Tracking the Source Point through the Video

Repeating the second step for each image frame is impractical. Therefore, I applied the
OpenCV point tracker function calcOpticalFlowPyrLK. This function uses the itera-
tive Lucas-Kanade method with pyramids [96]. To track points from one to the follow-
ing image, calcOpticalFlowPyrLK needs the previous image, the current image, and
the points from the previous image that should be located in the current image. Further-
more, I experimented with the parameters winSize, maxLevel, and criteria to im-
prove tracking results. winSize is the search window size at each pyramid level, and
I found the best results with a 31-by-31 window. maxLevel specifies the depth of the
pyramid, where the default — zero — means no pyramids are used. One means using a

34

3.4 Playing Field Registration

p09_00.mpd X a
009_00.mp4 I
009 _01.mp4
009_02.mp4
009_03.mp4
009_04.mp4
009 07.mp4

o 100 400 500 600

Figure 3.9: Dropdown for video selection (top) and loaded video frames (underneath).

pyramid of two levels, and so on. I achieved the best results with a maxLevel of 400. Fi-
nally, criteria is a three-tuple. First is the termination criteria, where I used the integer
number three to incorporate both the maximum iteration count and the epsilon criteria.
The second and third are maximum iteration count and epsilon, respectively. The former
is self-explanatory, and I found the best results with 10000. The latter is a parameter for
adjusting accuracy. Here, the best results were obtained with 5000.

3.4.4 Specifying the Parameters Required for the Projection

In order to calculate the projective matrix, the destination points of the four selected and
tracked source points are needed. To obtain those, I used four integer number input fields.
The first input is for the yard distance of the top-left point to the left goal line. The second
input is for the foot distance of the top-left point to the upper sideline. The third input is
for the longitudinal foot distance between the left two and the right two points. Finally,
the fourth input field is for the lateral distance between the upper two and the lower two
points in feet. With this, the destination rectangle is fully defined. Note that I intentionally
used yards for the longitudinal position on the field and foot for all others. This was the

35

3 Pose Estimation and Analysis for American Football Videos

Set Points: tl, tr, bl, br

(x=583, y=4) ~ R:10 G:10 B:10

Figure 3.10: OpenCV window to select the four source points.

choice because there are yard lines for the longitudinal position on the field. In contrast,
hash marks, which I often used for the lower two points, are distanced an integer number
away from the sidelines in feet, but a floating-point number away in yards.

3.4.5 Calculation of the Projective Matrix

With the points set and tracked, and parameters specified in the previous three steps, the
OpenCV function getPerspectiveTransform has all required inputs to compute the
projective matrices. Therefore, the projective matrix for each frame can now be calculated
via getPerspectiveTransform, and the other OpenCV function warpPerspective
can calculate the projections.

3.4.6 Resetting of Points

As mentioned in the previous step, projections can be calculated for each frame of a video.
However, the point tracker is not perfect. Thus, points can, at times, diverge from where
they were set due to blurring, fast camera movement, zooming, occlusion by a player,
or the point leaving the image frame. An example of those is depicted in the following
figures:

36

3.4 Playing Field Registration

150]

400]

450

00

o 100 200 400 500 600 700

Figure 3.11: Initally set points (red crosses).

NG a;g AR

o 100 200 300 400 500 600 700

Figure 3.12: Diverging due to occlusion (bottom-left) and motion/zoom (bottom-right).

37

3 Pose Estimation and Analysis for American Football Videos

? '“‘"I,".if?.&; ¥ *k?: “‘.*.*s:‘"f;‘ ""{%L‘f‘ o
2 '"“ Mﬁ"’ : - v ['1{ !
N e

R A
N Vi
N 87 .S

R .
T e 1 g - ek
2 ‘e vy 2 _ ' Yo, Wl "“‘-_)-]., i i (B
200 300 400 500 600

Figure 3.13: Tracked point left the image frame (bottom-right).

Hence, a mechanism for resetting such points was needed. Fortunately, the implemen-
tation was straightforward. It included used a slider and two buttons to navigate to the
precise frame, where point(s) started to diverge. The two buttons were added to move a
single frame forward or backward since moving to just the next frame can be challenging
with the slider for longer videos. When I arrived at the desired frame, I used the same
mechanism for resetting as I used for the initial setting of the points. Then, the newly set
points were tracked through the remainder of the video. To make this step more chal-
lenging, there were some cases where I had to select new points instead of resetting the
previous ones. This could happen, for example, when a landmark is completely occluded
for a few frames, too blurry, or moves out of the image frame, like in Figure 3.13. With
new points, however, the location of and distances between the points can change and also
have to be reset. Here, I also reused the mechanism I used for the initial setting of those
parameters and overwrote the projection parameters for the remaining image frames.

3.4.7 Projection Preview

Furthermore, I needed a possibility to check the projection results. For this, I used another
button, which shows the video projected into the field model. To aid validation, I added
expected field marks:

38

3.5 Labelling

Prujecl:lun

s
|
! (P
; \ I
1 " I
)

(x=599, y=29) ~ R:255 G:255 B:255

Figure 3.14: Projection preview.

3.4.8 Storing Projective Matrices

Finally, the projective matrices had to be stored, so that I can use them later to project
the key points of the pose estimation. This was implemented with NumPy [97], as the
projective matrices are NumPy arrays and could be stored easily via the NumPy APIL

3.4.9 Summary

Overall, this dashboard drastically facilitated and accelerated the calculation of the pro-
jective matrices and projections. Furthermore, it provides a platform for the next step —
labeling the data. Figure 3.15 illustrates the entire dashboard.

3.5 Labelling

The next step was annotating the videos with labels. For this, I extended the dashboard
mentioned above. Thus, two text fields were added — one for man vs. zone coverage and
one for the four-class classification. The text input fields of the dashboard are illustrated
in Figure 3.16 In order to discuss the labeling process appropriately, the following three

subsubsections contain explanations of defensive personnel, man coverage, and zone cov-
erage with three common variations of the latter two. These coverage classes are then used
to label the data appropriately into man vs. zone and the four classes for the classification
in the final pipeline step.

39

3 Pose Estimation and Analysis for American Football Videos

009_00.mp4d X v

[Prev Frame | set Points | Next Frame | show video |

Please enter the yard line of the top left marker (0: left, 100: right):
Please enter the distance of the top left marker to the upper sideline in ft;
Please enter the delta x in ft:

Please enter the delta y in ft:

[set projection for the remaining frames | show projection | save |

Figure 3.15: The entire dashboard.

3.5.1 Defensive Personnel

To understand the diagrams in the following depicting man and zone coverage variations,
it is crucial to know the defensive positions and their abbreviations. Generally, the defen-
sive personnel is split up into three groups. Firstly, there is the defensive line (DL) consist-
ing of defensive tackle(s) (DTs) and defensive ends (DEs). The defensive line is lined up
opposite to the offensive line, close to the line of scrimmage, and close to the ball. The DEs
are the two players aligned on the outside — the so-called “edge” — of the defensive line.
Commonly, between the DEs play one or two DTs. The two primary responsibilities of the
defensive line are (1) rushing to and tackling the passer and (2) providing the first line of
defense against run plays. In the following diagrams, there are always two DTs and two
DEs, since those illustrate a 4-3 defense, where the four stands for four defensive linemen.

40

3.5 Labelling

Prev Frame | Set Points | Next Frame | Show video

Please enter the yard line of the top left marker (0: left, 100: right):

Please enter the distance of the top left marker to the upper sideline in ft:

Please enter the delta x in ft:

Please enter the delta y in ft:

Set projection parameters for the remaining frames | Show projection | Save

Please enter the type of coverage (m: man, z: zone)

Save coverage label

Please enter the type of coverage (0: Cover 0, 1: 2 Man under, 2: Cover 2, 3: Cover 3, 4: Other)

Save coverage label

Figure 3.16: Text input with labelling extension.

The three in 4-3 stands for three linebackers (LBs), which leads to the second positional
group. Linebackers are aligned behind or on the side of the defensive line providing a sec-
ond line of defense and literally “back the line.” They can rush the passer, drop into a zone
or play in man coverage. Finally and the third group are defensive backs (DBs), which are
further split up into cornerbacks/corners (CBs) and safeties — usually strong safety (SS)
and free safety (FS). DBs’ primary responsibility is pass coverage. Cornerbacks align out-
side and can drop into zones or play man coverage. Safeties play the same coverages but
are aligned more towards the center. The FS most commonly aligns rather deep, whereas
the SS can also play closer to the line of scrimmage and help with defending run plays.
The abbreviations will be used below for coverage illustrations. Moreover, the offensive
players are either boxes or circles. Boxes indicate offensive linemen, which are not allowed
to receive a pass. Circles are either the quarterback or offensive players eligible to receive a
pass. For all coverage illustrations, defensive linemen rush the passer. LBs and DBs either
cover a man or zone or rush the QB. A dashed line indicates man coverage. Zone coverage
is indicated by an arrow into a blue (deep) or yellow (underneath) box. An arrow towards
the QB indicates a rush to the QB.

3.5.2 Man Coverage

The most basic way to distinguish defensive coverage in American football is man cov-
erage vs. zone coverage. As the name implies, defenders get a man assigned in man
coverage. Usually, the quarterback is left unassigned since the pass rush is responsible
for him. Offensive linemen are left unassigned as well since they are not allowed to run a
route and receive a pass. Hence, only five players remain. Those are covered by a defender
each. The remaining six defenders do one of the following things: Rush the passer, drop
into a zone, or help a fellow defender cover a man. As this allows for man combinations,
the following subsubsections discuss the most common man coverage variations.

Cover 0

“Cover 0” or “Zero Blitz” means that there are zero deep zones. All five offensive receivers
are covered by a defender each, and the other six defenders rush the passer. The central

41

3 Pose Estimation and Analysis for American Football Videos

goal of this coverage is pressuring the quarterback. It is, however, susceptible to allowing
big plays for the opposing offense since there is no player deep acting as a safety net [98].

Figure 3.17: Sample Cover 0.

Cover1

In this defensive coverage, one player plays in a deep central zone. Again, the five of-
fensive players eligible to receive a pass are man-covered. Commonly, four players rush
the passer, and the final man either covers a zone underneath the deep middle zone (just
“Cover 1”), double-teams a receiver, or also rushes the passer (“Cover 1 Blitz”) [99].

Figure 3.18: Sample Cover 1.

42

3.5 Labelling

Cover 2 Man

Similar to “Cover 17, the “2” in “Cover 2 Man” indicates that two players play in a deep
zone. In particular, each one is responsible for one of the deep halves. Again, there is a
four-man pass rush. The remaining five players cover the five corresponding attackers in
man coverage [100].

Figure 3.19: Sample Cover 2 Man.

3.5.3 Zone Coverage

For zone coverage, in contrast, every defender is assigned to a zone for which he is re-
sponsible. Similar to man coverage, there are many variations, and the following subsub-
sections discuss the most common ones. Again, a four-man pass rush is most common.
However, it is also possible to sacrifice a zone or two for more pressure on the opposing
quarterback.

Cover 2

As for man coverage, the number after “Cover” indicated the number of deep zones.
Therefore, “Cover 2” has the two safeties playing one deep half each. The two corners
play in so-called flat zones on the outside. In between are the three LBs playing in three
short zones in the middle and underneath the safeties [101].

43

3 Pose Estimation and Analysis for American Football Videos

Figure 3.20: Sample Cover 2.

Cover 3

In this coverage scheme, three players play in deep thirds. Typically, these are the FS and
the two CBs, as shown in Figure 3.21. A LB and the SS play in the flat zones, and the
remaining two LBs cover the middle [102].

Figure 3.21: Sample Cover 3.

Cover4

Finally, there is “Cover 4”, which means that the deeper part of the coverage is split into
quarters. Thus, this coverage is sometimes called “Quarters.” Those four zones are covered

44

3.5 Labelling

by the FS, the SS, and the two CBs. Underneath, the LBs play in thirds [103].

Figure 3.22: Sample Cover 4.

3.5.4 Labelling Man vs. Zone

Distinguishing man and zone coverage is straightforward. While watching a video of a
play, one only needs to monitor whether defenders follow an assigned man. This indicates
man coverage. For zone coverage, defenders do not follow a man but rather drop back
into a zone. They also tend to keep their eyes on the quarterback or route combinations in
front of them, whereas in man coverage, defenders solely focus on their assigned man.

3.5.5 Four Class Labelling

Previously, I discussed six coverage classes: Cover 0, Cover 1, Cover 2 Man, Cover 2,
Cover 3, and Cover 4. Those are the six classes initially intended to classify. However,
Cover 1 and Cover 4 were drastically underrepresented in my dataset (just one video each).
Thus, I excluded them. Still, knowing these six basic coverage variations as outlined above
facilitated labeling man vs. zone. The three man coverage variations can be distinguished
by looking at deep zones (zero vs. one vs. two). For zone coverages, the same applies (two
vs. three vs. four deep zones). However, two man-zone pairs require further investigation.
Cover 1 and Cover 3 can appear quite similar because there is one player in the deep
middle of the field for both. Thus, the remaining players have to be observed closely on
whether they stay inside a zone or follow an assigned man. Even harder to distinguish
can be Cover 2 and Cover 2 Man. Again, due to the same amount of deep safeties, but as
before, one has to examine other players” behavior.

45

3 Pose Estimation and Analysis for American Football Videos

3.6 3D Player Extraction

As mentioned in Subsection 3.4, I reused the projective matrix to project the key points of
the players, as well. In order to obtain a 3D model, I stacked the key points in six layers
(from bottom-up): (1) ankles, (2) knees, (3) wrists and hips, (4) elbows, (5) shoulders, and
(6) nose, eyes, and ears. However, since upper key points are also higher in the image,
they are projected father back, and players do not stand upright (as in Figure 3.23a). Thus,
I centered each pair of left and right key points above the center of the left and right foot
(as in Figure 3.23b):

(b) Centered key point projection.

Figure 3.23: Uncentered and centered projection and layering of keypoints.

To carry out tactical analysis in the next step, the players’ joints were put into 3D ten-
sors. As mentioned in the introduction, an American football field is 120 yards long and
53 5 yards wide. In feet, this translates to 360 by 160 feet. Thus, by rounding the x-, y-,
and z-coordinates to integer values, the 3D model of a single image frame can be repre-

46

3.7 Tactical Analysis

sented by a 360x160x6 tensor. To represent densities of key points, I added one for each
key point that fell into a voxel. However, with a projected field size of 360x160, many
key points were in the same voxels. Therefore, the field resolution was doubled to adjust
for that impreciseness while staying at a size where models still trained in a reasonable
amount of time. Hence, one sample has 720x320x6 voxels. By default, NumPy uses 64-bit
integers, which results in 720 - 320 - 6 - 64 = 88473600 bits or about 11MB per sample. With
about 20000 overall frames, the largest augmented dataset would require 220GB. This is
inefficient. For better memory efficiency, tensors were adjusted to contain 8-bit unsigned
integers, thus only requiring an eight of the initial 220GB. Secondly, I switched from dense
to sparse tensors decreasing memory requirement even further. Overall, this is a compact
representation of the 3D data, ready for classification in the next step.

3.7 Tactical Analysis

The data format described in the previous section was chosen to have a fixed-size input
for classification. Tensors of size 720x320x6 are quite similar to image data in the sense
that they can be interpreted as width x height x channels. Thus, previous research on and
experience with convolutional neural networks and residual networks were reapplied for
classification.

3.7.1 Dataset

As mentioned previously, the dataset was built from 20 videos from OSU and 40 videos
cut from a video from the Sports-1M Dataset. Each frame of each video was used as a
single data point totaling 7895 samples. For validation and testing, one full video per label
was kept out of training (for each validation and testing) to validate and test on completely
unseen data during and after training. Keeping out random frames could result in a mean-
ingless classification accuracy because the network would train on frames closely before
and after excluded frames.

3.7.2 Technical Setup

In order to train and evaluate the models, two resources were used: a local desktop com-
puter and Google Colab [90]. The former was used to train both baselines and CNNs,
while Google Colab functioned as a second resource to experiment with hyperparameters
for the CNNs. Baseline models were trained on a six-core AMD Ryzen 5 3600 with 32GB of
RAM, whereas CNNs were trained with the highly optimized GPU version of TensorFlow.
The desktop was set up with an Nvidia GeForce RTX 3060 with 12GB of VRAM. Google
Colab instances were set up with Nvidia Tesla P100 GPUs with 16GB of VRAM. Thus, both
baseline and complex models could be trained efficiently.

47

3 Pose Estimation and Analysis for American Football Videos

(a) No augmentation. ntal/longitudinal flip.

(c) Vertical/lateral flip. (d) Horizontal and vertical flip.

Figure 3.24: 3D data augmentation.

3.7.3 Man vs. Zone Coverage

For the first tactical analysis, I trained models to distinguish between man and zone cov-
erage. As data was limited, it was augmented. Similar to image data augmentation with
flipping, 3D point cloud tensors were flipped horizontally —i.e. longitudinal to the field —,
vertically —i.e. lateral — and both horizontally and vertically when looking top down. To
make this more expressive, see Figure 3.24. For American football, such transformations
are sensible. Offensive teams commonly use a lateral flip of their plays, and defenses react
to it by flipping coverage laterally. Longitudinal flips are what would happen if the offense
played in the opposite direction with a lateral flip. Since a lateral flip is common, and di-
rections are switched each quarter, this is nothing unrealistic either. Finally, a longitudinal
and lateral flip just represents the same play in the opposite direction. As described in
Subsubsection 3.7.1, two videos per label were kept out of training for validation and test-
ing. Thus, the videos of the train set consisted of 7535 frames (95.44%). The validation and
test set videos consisted of 175 frames (2.22%) and 185 frames (2.34%), respectively. Of the
7535 image frames in the training set, 2327 (30.88%) had the label man, while the remain-
ing 5208 (69.12%) were labeled with zone (Figure 3.25a). Hence, labels were imbalanced.
Therefore, the minority class — man — was augmented fourfold, while the majority class —
zone — was augmented just twofold. This resulted in a larger, much more balanced 9308
(47.18%) man and 10416 (52.81%) zone labeled frames (Figure 3.25b). Both the validation
and the test set were already quite balanced. The validation set consists of 96 (54.86%)
man and 79 (46.14%) zone samples. There were 98 (52.97%) man and 87 (47.03%) zone

48

3.7 Tactical Analysis

data points in the test set. Since the applied augmentations represent meaningful Ameri-
can football plays, both the validation and the test set were augmented, as well, to increase
their size and variance while not sacrificing more training samples. This resulted in 700
samples for the validation set and 740 samples for the test set.

10000 A 10000 1
8000 A 8000 1
6000 1 6000 1

4000 - 4000 -

2000 + 2000 A

Man Zone Man Zone

(a) Label numbers before augmentation. (b) Label numbers after augmentation.

Figure 3.25: Label numbers before and after data augmentation for the train set.

Models

For classification into man and zone, I trained several models. Firstly, a linear model was
trained as a baseline. Then, two convolutional neural networks were trained with in-
creasing complexity and sophisticated architectures: (1) a CNN with batch normalization,
ReLU, and max-pooling and (2) a custom ResNet. If not mentioned otherwise, convolu-
tions always use 3x3 filters with 1x1 stride, a padding of one, and weights are initialized
as in [104]. Max-pooling is computed with a 2x2 filter and stride, and batch size was 32.

I also carried out experiments with residual blocks with full pre-activation as in [105].
However, no significant improvements over the standard residual blocks were obtained.

Baseline As a baseline, an SGDClassifier from scikit-learn [106] with standard con-
figuration (linear SVM) and a regularization multiplier (alpha) of 0.01 was trained. The
data was pre-processed with a StandardScaler before training and classification.

The classifier achieved a training, validation, and test accuracy of 99.99%, 60.00%, and
69.73%, respectively. Table 3.1 depicts the confusion matrices for the train (left), validation
(middle), and test (right) sets. Precision and recall are concisely represented in Table 3.2
for each of the sets.

Only one zone coverage sample was mispredicted as man for the train set, while all other
samples were predicted correctly. For both the validation and the test set, a clear tendency
can be obtained. Recall for zone coverage is comparatively good with 76.27% (validation)
and 79.89% (test). However, precision is not as good with 54.04% and 64.35%, respectively.

49

3 Pose Estimation and Analysis for American Football Videos

Man | Zone Man | Zone Man | Zone
Man | 9308 0 Man | 179 205 Man | 225 167
Zone 1 10415 Zone 75 241 Zone 78 270
(a) Train set. (b) Validation set. (c) Test set.

Table 3.1: Confusion matrices for the baseline classifier.

Precision | Recall Precision | Recall Precision | Recall

Man | 99.99% 100% Man | 70.47% | 46.41% Man | 77.27% | 60.71%

Zone 100% 99.99% Zone | 54.04% | 76.27% Zone | 64.35% | 79.89%
(a) Train set. (b) Validation set. (c) Test set.

Table 3.2: Precision and recall for the baseline classifier.

For man coverage, the recall was at 46.13% and 57.38%. Precision, in turn, was 70.47% and
an even higher 74.26% on the validation and test set, respectively. Thus, the classifier de-
tects zone coverage (comparatively) well but at the cost of a high number of false positives.
In contrast, the detection rate of man plays is rather low, while the predictions for the label
man are rather precise. The discrepancy between train and validation/test accuracy is an
indicator for overfitting. However, increasing the regularization multiplier alpha did not
improve the model’s generalization on the validation set. Thus, the model was evaluated
on the test set with the best alpha value.

CNN As the first more advanced model a CNN was implemented in TensorFlow. Fol-
lowing [58], BN was applied before the activation function directly after convolution. After
a convolution block with BN and activation, max-pooling was added, thus sampling down
dimensions. After the last convolutional block, global average pooling was used to flatten
feature maps into single values. The remaining neurons were connected to a single neuron
with a Sigmoid activation function for binary classification. For optimization, the Adam
optimizer was used with a learning rate of 0.0003. MAE, MSE, and BCE were tested as loss
functions, with MSE yielding the best results.

The final, best-performing model consists of six layers of convolution, batch normal-
ization, ReLU, and max-pooling. Figure 3.26 illustrates the resulting architecture, which
contains 1373 parameters — of which 1317 are trainable. The model was trained for 50
epochs. Figure 3.27 illustrates training and validation accuracies (left) and losses (right)
over epochs. As the left plot indicates, validation accuracy starts to decrease slightly to-
wards the final epochs. Thus, training for more epochs yields worse results. Moreover,
training accuracy flattens around 75%. However, increasing parameters — both via more
depth or channels per convolutional layer — resulted in overfitting. Furthermore, valida-
tion accuracy surpasses training accuracy for most epochs. This is expected because the
regularization via dropout decreases accuracy during training.

50

3.7 Tactical Analysis

6@720x320

2@720x320

2@360x160

Conv / Conv

Conv conv Avg Pool FC

Figure 3.26: CNN architecture (created with [107]).

After the 50 epochs of training, the CNN achieved a final training accuracy of 79.26%.
Validation and test accuracies were 85.14% and 74.05%, respectively. Hence, the model
overfitted slightly on the validation set. Compared to the baseline, the CNN performed
19.74%-points worse on the training data while surpassing validation accuracy by 25.14%-
points and test accuracy by 4.32%-points. In order to compare the results of the CNN to
the baseline further, Table 3.3 depicts the confusion matrices. Additionally, precision and

recall are illustrated in Table 3.4.

Man | Zone
Man | 6555 | 2753
Zone | 1337 | 9079

(a) Train set.

Man | Zone
Man | 297 87
Zone 17 299
(b) Validation set.

Man | Zone
Man | 240 152
Zone 40 308

(c) Test set.

Table 3.3: Confusion matrices for the CNN.

Precision | Recall Precision | Recall Precision | Recall

Man 83.06% | 70.42% Man 94.59% | 77.34% Man 85.71% | 61.22%

Zone | 76.73% | 87.16% Zone | 77.46% | 94.62% Zone | 66.96% | 88.51%
(a) Train set. (b) Validation set. (c) Test set.

Table 3.4: Precision and recall for the CNN.

Regarding precision and recall, the CNN outperformed the baseline (for both man and

51

3 Pose Estimation and Analysis for American Football Videos

0.26 \ — loss
val_loss
08 0.24 N
0.22
> 07
8 n 0.20
g 5
< g6 018
/ 0.16
05
— accuracy 014
val_accuracy
0 10 20 E @ 50 0 10 20 e @ 50
Epoch Epoch
(a) Training and validation accuracy. (b) Training and validation loss.

Figure 3.27: Training and validation accuracy and loss over epochs for the CNN.

zone) for validation and testing. Similar to the baseline, the CNN detects zone well (higher
recall) while being more precise for man coverage (higher precision). Overall, the CNN is
superior to the baseline.

ResNet For the second, advanced model, I implemented a custom ResNet. As for the
CNN, the ResNet was implemented in TensorFlow. I implemented the standard residual
block with and without downsampling (via a stride of two) as described in [71] (or Sec-
tion 2.2.8 in this document). The network was constructed by stacking residual blocks.
The first residual block has two channels and applies downsampling. Then, follow three
more residual blocks with two channels before the next downsampling block. This sub-
sequent downsampling block exchanges feature map size for channel depth, increasing
the channel number to four. Again, this is followed up by three more standard residual
blocks with the same channel number. The last downsampling block halves feature map
size again while increasing channel number to eight. After the single following, eight-
channel residual blocks follows global average pooling to create eight neurons from the
eight final feature maps. Those eight neurons are connected with a 50% dropout to a sin-
gle neuron with a Sigmoid activation function for binary classification. With a total of ten
residual blocks and each residual block containing two convolutions, this network has 20
convolutional layers.

The model was optimized on the MSE by the Adam optimizer with a learning rate of
0.0001. With those settings, the model contains 3987 total parameters and 3799 trainable
parameters trained for 100 epochs. Corresponding accuracy and loss plots are illustrated
in Figure 3.28. The learning curves exhibit similar behavior to those of the CNN: validation
accuracy peaks slightly decrease towards the later epochs, and more training only leads to
overfitting.

52

3.7 Tactical Analysis

0.9 — loss

026 val_loss

‘-_\

N\

\

20

0.8 0.24
022

020

Accuracy
Lioss

018
06

016

05 —— accuracy 014

val_accuracy

012

40 60 80 100

Epoch

0 &0 80 100 0

Epoch

o 20

(a) Training and validation accuracy. (b) Training and validation loss.

Figure 3.28: Training and validation accuracy and loss over epochs for the ResNet.

The final ResNet predicts the classes in the train, validation, and test set with 79.82%,
85.29%, and 85.81% accuracy, respectively. Hence, it was also outperformed by the baseline
on the train set by 20.17%-points. However, the ResNet generalized better than the baseline
to the validation and test set by 25.29%-points and 16.08%-points, respectively. Further, the
ResNet surpassed the CNN by 0.56%-points, 0.15%-points, and 11.76%-points for train,
validation, and test set. Notably, the ResNet generalized much better to the test set than
the CNN. Table 3.5 contains the confusion matrices and Table 3.6 precision and recall.

Man | Zone Man | Zone Man | Zone
Man | 7135 | 2173 Man | 300 84 Man | 365 27
Zone | 1807 | 8609 Zone 19 297 Zone 78 270
(a) Train set. (b) Validation set. (c) Test set.
Table 3.5: Confusion matrices for the ResNet.
Precision | Recall Precision | Recall Precision | Recall
Man 79.79% | 76.65% Man 94.04% | 78.13% Man 82.39% | 93.11%
Zone | 79.85% | 82.65% Zone | 77.95% | 93.99% Zone | 90.91% | 77.59%
(a) Train set. (b) Validation set. (c) Test set.

Table 3.6: Precision and recall for the ResNet.

As for the previous two previous models, recall tends to be higher for zone coverage,

whereas precision tends to be higher for the man label. However, the differences are much
smaller, and the tendency is even inverted for the test set. Therefore, precision and recall
are better. In summary, the ResNet outperforms the CNN - likely due to increased network
depth (20 vs. 6 convolutional layers).

53

3 Pose Estimation and Analysis for American Football Videos

Discussion

The baseline was much faster to train (minutes) than the two more complex models (hours).
However, increased complexity and training time paid off, and both models outperformed
the baseline by a considerable margin (on the validation and test set). The best performing
model, the custom ResNet, generalized the best to unseen data with about 85% accuracy
(for both the test and the validation set), despite learning on the augmented 19724 frames
of only 60 different videos. Moreover, for all three models, inference for a single video runs
in under a second. Overall, predictions are quite accurate and can be computed in real-
time. Thus, the developed models are not only already helpful for post-game analysis (for
players and coaches) but could even serve predictions during a game (for live commentary
and fans).

3.7.4 Four Class Coverage Analysis

The task for the second tactical analysis was distinguishing between four coverage classes
from Section 3.5. The classes are Cover 0, Cover 2 Man, Cover 2, and Cover 3 and will
henceforth be abbreviated with C0, C2M, C2, and C3, respectively. Similar to the pre-
vious classification, data was augmented due to a limited number of samples and class
imbalances. Data augmentation was carried out with the same flipping technique as be-
fore. During training, eight videos were kept out for validation and testing, i.e. two per
label. As before, the data was augmented with the flipping technique. This resulted in
13987 samples for the training set, 1512 for the validation set, and 1476 for the test set. The
number of labels per class is depicted in Table 3.7 for each set:

CO0 | 3768 (26.94%) CO0 | 356 (23.54%) CO0 | 392 (26.56%)
C2M | 3508 (25.08%) C2M | 384 (25.40%) C2M | 392 (26.56%)
C2 | 3622 (25.97%) C2 | 456 (30.16%) C2 | 344 (23.31%)
C3 | 3078 (22.01%) C3 | 316 (20.90%) C3 | 348 (23.58%)
Total ‘ 13987 Total ‘ 1512 Total ‘ 1476
(a) Train set. (b) Validation set. (c) Test set.

Table 3.7: Label numbers and distributions.

Models

As for the classification into man and zone, one linear baseline model and two more com-
plex models (CNN and ResNet) were trained. As before, convolutions use 3x3 filters, a
1x1 stride, padding of one, and their weights are initialized as in [104] (if not mentioned
otherwise). Batch size was at 32, and max-pooling is computed with a 2x2 filter and stride.

54

3.7 Tactical Analysis

Baseline The baseline for this task was a scikit-learn [106] SGDClassifier as well, with
the regularization term set to L1-Regularization and the corresponding multiplier (alpha)
set to 0.008. Additionally, the data was pre-processed with a StandardScaler.

With those parameters, the model achieved the highest accuracy on the validation set
(50.20%). However, the model seems to be overfitting to the validation set, since test accu-
racy was just 37.06%. The accuracy on the train set was 88.66%. Similar to the baseline for
the first tactical analysis, there is an indicator for overfitting, i.e. the discrepancy between
train and validation/test accuracy. However, increasing the multiplier of the regulariza-
tion term made generalization worse. Confusion matrices, precision, and recall are listed
in Table 3.8.

o |C2M | 2 C3 Precision | Recall

Co | 3711 4 29 24 Co 95.11% | 98.48%
C2M | 57 | 2980 | 262 | 209 C2M | 85.07% | 84.95%
C2 74 285 | 3098 | 176 C2 87.00% | 85.27%
C3 60 234 | 172 | 2612 C3 86.46% | 84.86%

(a) Train set.

co|Cc2M | C2 | C3 Precision | Recall

CO0 | 326 0 30 0 Co 91.06% | 91.57%
C2M | 8 214 | 99 | 63 C2M | 43.94% | 55.72%
C2 10 | 160 | 136 | 150 C2 36.66% | 29.82%
C3 14 | 113 | 106 | 83 C3 28.04% | 26.27%

(b) Validation set.

co|Cc2M | C2 | C3 Precision | Recall

CO | 248 | 23 85 | 36 Co 55.98% | 63.27%
C2M | 137 | 89 124 | 43 C2M | 31.79% | 22.70%
C2 9 79 113 | 143 C2 25.98% | 32.85%
C3 49 89 113 | 97 C3 30.50% | 27.87%

(c) Test set.

Table 3.8: Confusion matrices and precision and recall values for the baseline.

A few notable observations can be obtained from the tables: Firstly, Cover 0 has the
highest precision and recall. Thus, it is easy to detect and distinguish for the classifier.
Considering the coverage schemes from Section 3.5, this is reasonable. All three other
coverage classes have two to three players playing in a deep zone, offering a clear indicator
for distinction. Secondly, the confusion matrices depict another tendency that could be
expected: Cover 2 Man and Cover 2 are relatively hard to distinguish for the algorithm —
likely due to both having two players in deep zones. Somewhat unexpectedly, however,

55

3 Pose Estimation and Analysis for American Football Videos

Cover 3 had the worst recall and precision for the train and validation set and the second-
worst for both metrics on the test set. Similar to Cover 0, one could expect that Cover 3 is
easier to both detect and distinguish because it has a unique number of deep zones among
the four classes as well.

CNN The CNN for the second tactical analysis was built similarly to the one in the first
tactical analysis. I implemented it in TensorFlow, and BN was applied before activation di-
rectly after convolution, as in [58]. In contrast to the first CNN, max-pooling was not used
after each activation. Instead, max-pooling was just applied when the channel number
was increased. The first six convolution-BN-activation blocks have only a single channel.
Then, feature map size is halved while doubling channel depth to two. The same is done
for the following two layers quadrupling channel depth to eight after the eighth block.
Subsequently, global average pooling is applied and connected to the output layer with a
dropout of 50%. The output layer consisted of four neurons with the Softmax activation
function. As loss functions, I experimented with MSE and CE. Again, MSE provided better
results. Optimization was done with Adam with a learning rate of 0.008.

The model’s 613 weights (573 trainable) were trained for 50 epochs. Figure 3.29 depicts
the corresponding training and validation accuracies on the left and losses on the right.
While the model seems to underfit the training data, increasing parameters only leads to
overfitting and obtained no better generalization. Again, validation accuracy surpasses
training accuracy during training due to dropout.

0565
— loss

0.60 035 val_loss

055

050 N A s 030
= wll
8 045 'd i
g g0z
4 040

0354 | 020

030 / b

= accuracy 015 ____‘_‘____
025 val_accuracy i
0 1 0 £ a0 50 0 1 B B @ 50
Epoch Epoch
(a) Training and validation accuracy. (b) Training and validation loss.

Figure 3.29: Training and validation accuracy and loss over epochs for the CNN.

After training for 50 epochs, accuracy was at 53.67%, 52.91%, and 44.65% for train, vali-
dation, and test set, respectively. Thus, the model performed slightly better on the valida-
tion set. The CNN outperformed the baseline in terms of generalization by 2.89%-points
and 7.59%-points on validation and test set, respectively. Table 3.9 lists confusion matrices,
precision, and recall for the CNN.

56

3.7 Tactical Analysis

co |C2M | C2 | C3 Precision | Recall
CO | 3211 | 228 | 329 0 Co 92.72% | 85.22%
C2M | 72 1592 | 1844 | 0 C2M | 43.41% | 45.38%
C2 96 837 | 2700 | 0 C2 39.38% | 74.32%
C3 84 1010 | 1984 | 0O C3 - 0.00%
(a) Train set.
Co|C2M | C2 | C3 Precision | Recall
CO | 308 18 30 0 (@] 99.04% | 86.53%
C2M | 3 231 [150 | O C2M | 50.11% | 60.16%
C2 0 195 | 261 | O C2 35.27% | 57.24%
C3 0 17 299 | 0 C3 - 0.00%
(b) Validation set.
Co|C2M | C2 | C3 Precision | Recall
Co | 100 | 219 73 0 (@] 67.11% | 25.51%
C2M | 47 237 | 108 | O C2M 48.27% 60.46%
C2 0 22 322 0 C2 38.52% | 93.60%
C3 2 13 | 333| 0 C3 - 0.00%

(c) Test set.

Table 3.9: Confusion matrices and precision and recall values for the CNN.

As for the baseline, Cover 0 was easy to detect and distinguish for the model indicated
by a comparatively high recall and precision. Further, the model has a higher recall than
precision for most labels in all three sets. However, this is partly attributed to the fact that
the model could not learn the Cover 3 label. This reflects the findings from the baseline:
while Cover 3 should be relatively easy to classify, the model is unexpectedly unable to do
so. Despite not being able to classify Cover 3, the CNN still had better accuracy on unseen
data than the baseline.

ResNet The ResNet for the second tactical analysis was built in the same manner as the
first ResNet, that is, by stacking residual blocks. The first residual block applies downsam-
pling and has four channels. After that, follow three more standard residual blocks with
an equal number of channels. Then, feature map size is halved while doubling channels
to eight, and another standard residual block with eight channels follows. The head of the
network is built from a global average pooling layer connected to four neurons with Soft-
max activation via a 50% dropout. This architecture contains six residual blocks resulting
in twelve convolutional layers.

As before, the best optimization results were obtained by Adam optimizing on the MSE

57

3 Pose Estimation and Analysis for American Football Videos

with a learning rate of 0.00005. Overall, the model has 3712 weights, of which 3560 are
trainable. The neural network was trained for 75 epochs, and the corresponding plots for
accuracies and losses on the train and validation set can be seen in 3.30. While the loss
curves indicate that further learning could decrease the loss, the accuracy plots indicate
the opposite: validation accuracy decreases towards the later epochs. Thus, training for
more epochs resulted in overfitting.

0.60 0.19 — loss
val_loss

— accuracy 0.15

0.25 val_accuracy

o 10 20 30 40 50 &0 70 o 10 20 30 40 50 60 70
Epoch Epoch

(a) Training and validation accuracy. (b) Training and validation loss.

Figure 3.30: Training and validation accuracy and loss over epochs for the ResNet.

After optimization, the model predicts the samples in the train set with a 52.43% accu-
racy. On unseen data, the ResNet achieved 58.07% (validation) and 46.00% (test), thus out-
performing the baseline by 7.87%-points and 8.94%-points and the CNN by 5.16%-points
and 1.35%-points. Hence, the ResNet outperformed the CNN just slightly. Table 3.10 lists
the ResNet’s confusion matrices, precision, and recall for train, validation, and test set.

As for the CNN, the ResNet was unable to learn to predict Cover 3. Increasing depth
or channels only resulted in overfitting. Cover 3 was misclassified primarily as Cover 2.
Cover 2, in turn, was often confused with Cover 2 Man and vice versa. Paralleling the
results of the first tactical analysis, the ResNet outperforms the CNN - again, probably
due to having four more convolutional layers than the 8 of the CNN. In summary, only
three of the four classes, Cover 0, Cover 2 Man, Cover 2, and Cover 3, can be predicted. To
do so, the model learned on the 13987 frames of only 58 videos. Two of the 60 videos were
excluded from analysis since they were labeled as Cover 1 and Cover 4.

Discussion

In many occurrences, the four-class tactical analysis emitted tendencies similar to those of
the two-class tactical analysis. Due to their much more complex architecture, the CNN and
the ResNet took much longer (hours) to train than the baseline (minutes). This increase in
training time, however, was worth the time because both models generalized better on
unseen data. The model generalizing the best was the ResNet with 58.07% and 46.00%
accuracies on the validation and test set, respectively. The inference is fast for all three

58

3.7 Tactical Analysis

models, running in under a second per video. While there remains room for improve-
ments, predictions run in real-time and thus are close to being usable in many real-world

applications such as coaching or live commentary.

Co |C2M | C2 | C3 Precision | Recall
C0 | 3755 6 7 0 Co 75.54% | 99.65%
C2M | 275 | 1163 | 2070 | O C2M | 42.38% | 33.15%
C2 538 679 | 2416 | O C2 38.58% | 66.50%
C3 403 89 | 1779 | 0 C3 - 0.00%
(a) Train set.

CoO|C2M | C2 | C3 Precision | Recall

C0 | 352 3 1 0 Co 86.06% | 98.88%
C2M | 34 228 [122 | O C2M | 47.01% | 59.38%
C2 23 135 | 298 | O C2 48.22% | 65.35%
C3 0 119 | 197 | O C3 - 0.00%

(b) Validation set.

Co|C2M | C2 | C3 Precision | Recall
C0 | 296 77 19 0 Co 56.38% | 75.51%
C2M | 224 | 107 61 0 C2M | 39.63% | 27.30%
C2 1 67 276 | O C2 40.52% | 80.23%
C3 4 19 3251 0 C3 - 0.00%

Table 3.10: Confusion matrices and precision and recall values for the ResNet.

(c) Test set.

4 Conclusion

4.1 Summary

The goal of this thesis was to create a classification pipeline, which uses model-based in-
termediary transformations of the input data. These model-based transformations incor-
porate knowledge from the application domain — American football. Thus, the learning
of labels is facilitated for the final step of the pipeline. In particular, the pipeline uses a
pre-trained 2D multi-person pose estimation model on an input image to extract joint lo-
cations of the players. Then, the playing field is registered into a top-down model with a
projective transformation. This transformation is also applied to the joints of the players.
After centering the projected key points above the center of each player’s feet, they are
stacked in layers resulting in a 3D model. This concludes the model-based steps of the
pipeline. Finally, the last step of the pipeline is classifying the 3D point clouds. As sample
analyses, the classification pipeline was applied to analyze defensive coverage in Amer-
ican football videos. Firstly, a binary classification between man and zone coverage and
secondly, a four-class classification with two variations of man and zone coverage, respec-
tively. For both cases, I trained a baseline, a CNN, and a custom ResNet. In the first case,
the baseline achieved a 60.00% accuracy on the validation set and 69.73% accuracy in the
final evaluation on the test set. The CNN yielded a higher accuracy for both validation and
test set with 85.14% and 74.05%, respectively. Even better were the results of the ResNet
with 85.29% and 85.81%, respectively. In the second case, the baseline predicted the valida-
tion and test set samples with a 50.20% and a 37.06% accuracy, respectively. Those results
were improved by the CNN with 52.91% and 44.65% and slightly more so by the ResNet
with 58.07% and 46.00%. While the results of the four-class classification remain improv-
able, the binary classification task illustrates that the main goal of this work was achieved
successfully: Building a robust yet modular pre-processing pipeline, which incorporates —
instead of learns — domain knowledge through a model to facilitate learning of labels.

4.2 Outlook

To conclude this thesis, I want to provide an outlook for potential future research and
pipeline improvements. One idea is to add the approach for group motion segmentation
developed by Ruonan Li and Rama Chellappa [14] as a pipeline step. This step could
separate offensive from defensive players enriching the information for the final classifi-
cation algorithm. For my application case, this could help significantly because knowing

61

4 Conclusion

if a player is a defender and if he is close to an offender gives a clearer indication of the
coverage played. Furthermore, it might be possible to automate the playing field reg-
istration using the approach by Rob Hess and Alan Fern from [16]. For comparability
to related studies, analyzes could be extended to offensive formations and plays or indi-
vidual players. Finally, this approach is not limited to American football. The pipeline
could be adapted to other field sports such as soccer, basketball, or ice hockey with just
minor adjustments to the projection. In addition to those directions, one could further in-
vestigate individual steps of the pipeline as well. For instance, pose estimation might be
improved further with the recent work of Chen Wang et al. from 2021 [108]. Otherwise,
the sample classifications in the final step of the pipeline may be improved using archi-
tectures designed explicitly for 3D classification such as PointNet [109], PointNet++ [110],
OctNet [111], or O-CNN [112]. However, setting up or even implementing and training
another pose estimation network or 3D classifier would have exceeded the frame of this
thesis. Thus, these topics provide a second direction for further research. As this sec-
tion illustrates, the pipeline developed in this thesis provides a platform for various future
work.

62

Bibliography

[1] A. L. Samuel, “Some Studies in Machine Learning Using the Game of Checkers,”
IBM Journal of Research and Development, vol. 3, pp. 210-229, July 1959. Conference
Name: IBM Journal of Research and Development.

[2] N. C. Thompson, K. Greenewald, K. Lee, and G. E. Manso, “The Computational
Limits of Deep Learning,” arXiv:2007.05558 [cs, stat], July 2020. arXiv: 2007.05558.

[3] T. B. Brown, B. Mann, N. Ryder, M. Subbiah,]J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler,]. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Rad-
ford, I. Sutskever, and D. Amodei, “Language Models are Few-Shot Learners,”
arXiv:2005.14165 [cs], July 2020. arXiv: 2005.14165.

[4] J. Alder, “The Basic Rules of Football,” 2019.

(last accessed:
11/14/2021).

[5] J. Alder, “Football Glossary,” 2018.
(last accessed: 11/14/2021).

[6] H. Elkins, A. Beane, J. Cherkes, W. Clougherty, J. Krohn, H. Sellars, W. T. Scherer,
and J. Valeiras, “Implementing data analytics for U.Va. Football,” in 2017 Systems
and Information Engineering Design Symposium (SIEDS), pp. 202-207, Apr. 2017.

[7] J. Corscadden, R. Eastman, R. Echelberger, C. Hagan, C. Kipp, E. Magnusson,
G. Muller, S. Adams, J. Valeiras, and W. T. Scherer, “Developing analytical tools to
impact U.Va. football performance,” in 2018 Systems and Information Engineering De-
sign Symposium (SIEDS), pp. 249-254, Apr. 2018.

[8] R. Yurko, S. Ventura, and M. Horowitz, “nfIWAR: A Reproducible Method for Of-
fensive Player Evaluation in Football,” arXiv:1802.00998 [stat], July 2018. arXiv:
1802.00998.

[9] Y. Ding and G. Fan, “Camera View-Based American Football Video Analysis,” in
Eighth IEEE International Symposium on Multimedia (ISM'06), pp. 317-322, Dec. 2006.

63

https://www.liveabout.com/football-101-the-basics-of-football-1333784
https://www.liveabout.com/football-101-the-basics-of-football-1333784
https://www.liveabout.com/football-glossary-1335397
https://www.liveabout.com/football-glossary-1335397

Bibliography

[10] B. Li and M. Ibrahim Sezan, “Event detection and summarization in sports video,”
in Proceedings IEEE Workshop on Content-Based Access of Image and Video Libraries
(CBAIVL 2001), pp. 132-138, Dec. 2001.

[11] T.-Y. Liu, W.-Y. Ma, and H.-J. Zhang, “Effective Feature Extraction for Play Detection
in American Football Video,” in 11th International Multimedia Modelling Conference,
pp- 164-171, Jan. 2005. ISSN: 1550-5502.

[12] B. Mahasseni, S. Chen, A. Fern, and S. Todorovic, “Detecting the Moment of Snap in
Real-World Football Videos,” in IAAI, 2013.

[13] K. Kim, D. Lee, and I. Essa, “Detecting regions of interest in dynamic scenes with
camera motions,” in 2012 IEEE Conference on Computer Vision and Pattern Recognition,
pp- 1258-1265, June 2012. ISSN: 1063-6919.

[14] R.Liand R. Chellappa, “Group motion segmentation using a Spatio-Temporal Driv-
ing Force Model,” in 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, pp. 2038-2045, June 2010. ISSN: 1063-6919.

[15] S. Chen, Z. Feng, Q. Lu, B. Mahasseni, T. Fiez, A. Fern, and S. Todorovic, “Play type
recognition in real-world football video,” in IEEE Winter Conference on Applications of
Computer Vision, pp. 652659, Mar. 2014. ISSN: 1550-5790.

[16] R. Hess and A. Fern, “Improved Video Registration using Non-Distinctive Local
Image Features,” in 2007 IEEE Conference on Computer Vision and Pattern Recognition,
pp- 1-8, June 2007. ISSN: 1063-6919.

[17] R.Hess, A. Fern, and E. Mortensen, “Mixture-of-Parts Pictorial Structures for Objects
with Variable Part Sets,” in 2007 IEEE 11th International Conference on Computer Vision,
pp. 1-8, Oct. 2007. ISSN: 2380-7504.

[18] R. Hess and A. Fern, “Toward Learning Mixture-of-Parts Pictorial Structures,” p. 8,
2007.

[19] R. W. Hess, “Toward computer vision for understanding American football in
video,” 2012. Publisher: Oregon State University.

[20] B. Ghanem, T. Zhang, and N. Ahuja, “Robust Video Registration Applied to Field-
Sports Video Analysis,” Jan. 2012.

[21] I. Atmosukarto, B. Ghanem, S. Ahuja, K. Muthuswamy, and N. Ahuja, “Automatic
Recognition of Offensive Team Formation in American Football Plays,” in 2013 IEEE
Conference on Computer Vision and Pattern Recognition Workshops, pp. 991-998, June
2013. ISSN: 2160-7516.

64

Bibliography

[22] 1. Atmosukarto, B. Ghanem, M. Saadalla, and N. Ahuja, “Recognizing Team For-
mation in American Football,” Advances in Computer Vision and Pattern Recognition,
vol. 71, pp. 271-291, Jan. 2014.

[23] B. Siddiquie, Y. Yacoob, and L. Davis, “Recognizing Plays in American Football
Videos,” Jan. 2009.

[24] D.J. Stracuzzi, A. Fern, K. Ali, R. Hess, J. Pinto, N. Li, T. Konik, and D. G. Shapiro,
“An Application of Transfer to American Football: From Observation of Raw Video
to Control in a Simulated Environment,” Al Magazine, vol. 32, pp. 107-125, Mar.
2011. Number: 2.

[25] S. S. Intille, Tracking using a local closed-world assumption : tracking in the football
domain. Thesis, Massachusetts Institute of Technology, 1994. Accepted: 2005-09-
27T20:30:51Z.

[26] S.S. Intille and A. F. Bobick, “Recognizing Planned, Multiperson Action,” Computer
Vision and Image Understanding, vol. 81, pp. 414-445, Mar. 2001.

[27] R. Hess and A. Fern, “Discriminatively trained particle filters for complex multi-
object tracking,” in 2009 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 240-247, June 2009. ISSN: 1063-6919.

[28] T. Zhang, B. Ghanem, and N. Ahuja, “Robust multi-object tracking via cross-domain
contextual information for sports video analysis,” in 2012 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pp. 985-988, Mar. 2012. ISSN:
2379-190X.

[29] A. Bawaskar, “Interactive player tracking for videos in American football,” 2014.
Publisher: Oregon State University.

[30] O. Ajmeri and A. Shah, “Using Computer Vision and Machine Learning to Auto-
matically Classify NFL Game Film and Develop a Player Tracking System,” 2018.

[31] R. Yurko, F. Matano, L. E Richardson, N. Granered, T. Pospisil, K. Pelechrinis, and
S. L. Ventura, “Going Deep: Models for Continuous-Time Within-Play Valuation of
Game Outcomes in American Football with Tracking Data,” arXiv:1906.01760 [stat],
Nov. 2019. arXiv: 1906.01760.

[32] J. Hochstedler, “Finding the Open Receiver: A Quantitative Geospatial Analysis of
Quarterback Decision-Making,” 2016.

[33] B. Burke, “DeepQB: Deep Learning with Player Tracking to Quantify Quarterback
Decision-Making & Performance,” 2019.

[34] N. Sterken, “RouteNet: a convolutional neural network for classifying routes,” p. 12,
2019.

65

Bibliography

[35] M. Lazarescu, S. Venkatesh, G. West, and T. Caelli, “Combining NL processing and
video data to query American Football,” in Proceedings. Fourteenth International Con-
ference on Pattern Recognition (Cat. No.98EX170), vol. 2, pp. 1238-1240 vol.2, Aug.
1998. ISSN: 1051-4651.

[36] M. Lazarescu, S. Venkatesh, G. West, and T. Caelli, “On the automated interpretation
and indexing of American Football,” in Proceedings IEEE International Conference on
Multimedia Computing and Systems, vol. 1, pp. 802-806 vol.1, June 1999.

[37] M. Lazarescu, S. Venkatesh, and G. West, “Using Natural Language and Video Data
to Query and Learn American Football Plays,” in International Conference on Advances
in Pattern Recognition (S. Singh, ed.), (London), pp. 63-72, Springer, 1999.

[38] C. Taylor, “Deep Learning for In-Game NFL Predictions,” 2020.

[39] M. Lazarescu and S. Venkatesh, “Using camera motion to identify types of American
football plays,” in 2003 International Conference on Multimedia and Expo. ICME '03.
Proceedings (Cat. No.03TH8698), vol. 2, pp. 11-181, July 2003.

[40] R. Li, R. Chellappa, and S. K. Zhou, “Learning multi-modal densities on Discrimi-
native Temporal Interaction Manifold for group activity recognition,” in 2009 IEEE
Conference on Computer Vision and Pattern Recognition, pp. 2450-2457, June 2009. ISSN:
1063-6919.

[41] R. Li and R. Chellappa, “Recognizing offensive strategies from football videos,” in
2010 IEEE International Conference on Image Processing, pp. 4585-4588, Sept. 2010.
ISSN: 2381-8549.

[42] E.Swears and A. Hoogs, “Learning and Recognizing American Football Plays,” Jan.
2009.

[43] E. Swears and A. Hoogs, “Learning and recognizing complex multi-agent activities
with applications to american football plays,” in 2012 IEEE Workshop on the Applica-
tions of Computer Vision (WACV), pp. 409-416, Jan. 2012. ISSN: 1550-5790.

[44]]J. Varadarajan, I. Atmosukarto, S. Ahuja, B. Ghanem, and N. Ahuja, “A Topic Model
Approach to Represent and Classify American Football Plays,” Jan. 2013.

[45] R. Dutta, R. Yurko, and S. Ventura, “Unsupervised Methods for Identify-
ing Pass Coverage Among Defensive Backs with NFL Player Tracking Data,”
arXiv:1906.11373 [stat], Apr. 2020. arXiv: 1906.11373.

[46]]J. Gu, Z. Wang,]. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, L. Wang,
G. Wang, J. Cai, and T. Chen, “Recent Advances in Convolutional Neural Networks,”
arXiv:1512.07108 [cs], Oct. 2017. arXiv: 1512.07108.

66

Bibliography

[47] C.Nwankpa, W.IJjomah, A. Gachagan, and S. Marshall, “Activation Functions: Com-
parison of trends in Practice and Research for Deep Learning,” arXiv:1811.03378 [cs],
Nov. 2018. arXiv: 1811.03378.

[48] T. Szandaa, “Review and Comparison of Commonly Used Activation Functions for
Deep Neural Networks,” arXiv:2010.09458 [cs], vol. 903, 2021. arXiv: 2010.09458.

[49] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning Internal Representa-
tions by Error Propagation,” tech. rep., CALIFORNIA UNIV SAN DIEGO LA JOLLA
INST FOR COGNITIVE SCIENCE, Sept. 1985. Section: Technical Reports.

[50] D.E.Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” Nature, vol. 323, pp. 533-536, Oct. 1986. Bandiera_abtest: a
Cg_type: Nature Research Journals Number: 6088 Primary_atype: Research Pub-
lisher: Nature Publishing Group.

[51] P. Werbos, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral
Science. Thesis (Ph. D.). Appl. Math. Harvard University. PhD thesis, Jan. 1974.

[52] S. Ruder, “An overview of gradient descent optimization algorithms,”
arXiv:1609.04747 [cs], June 2017. arXiv: 1609.04747.

[53] L. Bottou, F. E. Curtis, and J. Nocedal, “Optimization Methods for Large-Scale Ma-
chine Learning,” arXiv:1606.04838 [cs, math, stat], Feb. 2018. arXiv: 1606.04838.

[54] D.P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,” ICLR, 2015.

[55] J. Kukaka, V. Golkov, and D. Cremers, “Regularization for Deep Learning: A Taxon-
omy,” arXiv:1710.10686 [cs, stat], Oct. 2017. arXiv: 1710.10686.

[56] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdi-
nov, “Improving neural networks by preventing co-adaptation of feature detectors,”
arXiv:1207.0580 [cs], July 2012. arXiv: 1207.0580.

[67] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” Journal
of Machine Learning Research, vol. 15, no. 56, pp. 1929-1958, 2014.

[58] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network Train-
ing by Reducing Internal Covariate Shift,” arXiv:1502.03167 [cs], Mar. 2015. arXiv:
1502.03167.

[59] C. Shorten and T. M. Khoshgoftaar, “A survey on Image Data Augmentation for
Deep Learning,” Journal of Big Data, vol. 6, p. 60, July 2019.

67

Bibliography

[60] D.H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex,” The Journal of Physiology, vol. 160, pp. 106—
154.2, Jan. 1962.

[61] D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture in two
nonstriate visual areas (18 and 19) of the cat,” Journal of Neurophysiology, vol. 28,
pp- 229-289, Mar. 1965. Publisher: American Physiological Society.

[62] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position,” Biological Cybernetics,
vol. 36, pp. 193-202, Apr. 1980.

[63] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D.
Jackel, “Backpropagation Applied to Handwritten Zip Code Recognition,” Neural
Computation, vol. 1, pp. 541-551, Dec. 1989. Conference Name: Neural Computation.

[64] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel,
“Handwritten Digit Recognition with a Back-Propagation Network,” in Advances in
Neural Information Processing Systems, vol. 2, Morgan-Kaufmann, 1990.

[65] C.Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich, “Going Deeper with Convolutions,” arXiv:1409.4842 [cs], Sept.
2014. arXiv: 1409.4842.

[66] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-
Scale Image Recognition,” arXiv:1409.1556 [cs], Apr. 2015. arXiv: 1409.1556.

[67] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” in Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pp. 249-256, JMLR Workshop and Conference Proceedings,
Mar. 2010. ISSN: 1938-7228.

[68] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Mller, “Efficient BackProp,” in Neural
Networks: Tricks of the Trade: Second Edition (G. Montavon, G. B. Orr, and K.-R. Mller,
eds.), Lecture Notes in Computer Science, pp. 9-48, Berlin, Heidelberg: Springer,
2012.

[69] K. He and J. Sun, “Convolutional Neural Networks at Constrained Time Cost,”
arXiv:1412.1710 [cs], Dec. 2014. arXiv: 1412.1710.

[70] R. K. Srivastava, K. Greff, and]J. Schmidhuber, “Highway Networks,”
arXiv:1505.00387 [cs], Nov. 2015. arXiv: 1505.00387.

[71] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recogni-
tion,” arXiv:1512.03385 [cs], Dec. 2015. arXiv: 1512.03385.

68

Bibliography

[72] F. Zhang, X. Zhu, and C. Wang, “Single Person Pose Estimation: A Survey,”
arXiv:2109.10056 [cs], Sept. 2021. arXiv: 2109.10056.

[73] C. Zheng, W. Wu, T. Yang, S. Zhu, C. Chen, R. Liu,]J. Shen, N. Kehtar-
navaz, and M. Shah, “Deep Learning-Based Human Pose Estimation: A Survey,”
arXiv:2012.13392 [cs], Jan. 2021. arXiv: 2012.13392.

[74] Z. Cao, G. H. Martinez, T. Simon, S. Wei, and Y. A. Sheikh, “OpenPose: Realtime
Multi-Person 2D Pose Estimation using Part Affinity Fields,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2019.

[75] T. Simon, H. Joo, I. Matthews, and Y. Sheikh, “Hand Keypoint Detection in Single
Images using Multiview Bootstrapping,” in CVPR, 2017.

[76] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime Multi-Person 2D Pose Estima-
tion using Part Affinity Fields,” in CVPR, 2017.

[77] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh, “Convolutional pose ma-
chines,” in CVPR, 2016.

[78] K. He, G. Gkioxari, P. Dollr, and R. Girshick, “Mask R-CNN,” arXiv:1703.06870 [cs],
Jan. 2018. arXiv: 1703.06870.

[79] T.-Y. Lin, P. Dollr, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature
Pyramid Networks for Object Detection,” arXiv:1612.03144 [cs], Apr. 2017. arXiv:
1612.03144.

[80] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, “Large-
Scale Video Classification with Convolutional Neural Networks,” in 2014 IEEE Con-
ference on Computer Vision and Pattern Recognition, pp. 1725-1732, June 2014. ISSN:
1063-6919.

[81] Martn Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig
Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, lan Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal
Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Man,
Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon
Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-
houcke, Vijay Vasudevan, Fernanda Vigas, Oriol Vinyals, Pete Warden, Martin Wat-
tenberg, Martin Wicke, Yuan Yu, and Xiaoqgiang Zheng, “TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems,” 2015.

[82] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “PyTorch: An

69

Bibliography

Imperative Style, High-Performance Deep Learning Library,” in Advances in Neural
Information Processing Systems 32 (H. Wallach, H. Larochelle, A. Beygelzimer, F. d.
Alch-Bug, E. Fox, and R. Garnett, eds.), pp. 8024-8035, Curran Associates, Inc., 2019.

[83] “TensorFlow Hub.” (last accessed: 11/12/2021).

[84] “TensorFlow MoveNet.”
(last accessed: 11/12/2021).

[85] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “MobileNetV2:
Inverted Residuals and Linear Bottlenecks,” Jan. 2018.

[86] X.Zhou, D. Wang, and P. Krhenbhl, “Objects as Points,” Apr. 2019.

[87] “OpenPose Web Page.”
(last accessed: 11/12/2021).

[88] “OpenPose GitHub.”
(last accessed: 11/12/2021).

[89] “OpenPose Maximum Accuracy Configuration.”

(last accessed: 11/12/2021).

[90] “Google Colab.” (last accessed:
11/14/2021).

[91] “PyTorch Keypoint R-CNN.”
(last accessed: 11/12/2021).

[92]]J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale
hierarchical image database,” in 2009 IEEE Conference on Computer Vision and Pattern
Recognition, pp. 248-255, June 2009. ISSN: 1063-6919.

[93] “COCO 2017 Keypoint Detection Task.”
(last accessed: 11/12/2021).

[94] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[95] P. T. Inc, “Collaborative data science,” 2015. Place: Montreal, QC Publisher: Plotly
Technologies Inc.

[96] B.D. Lucas and T. Kanade, “An iterative image registration technique with an appli-
cation to stereo vision,” in In IJCAI81, pp. 674-679, 1981.

70

https://tfhub.dev/
https://tfhub.dev/google/movenet/multipose/lightning/1/
https://tfhub.dev/google/movenet/multipose/lightning/1/
https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/
https://cmu-perceptual-computing-lab.github.io/openpose/web/html/doc/
https://github.com/CMU-Perceptual-Computing-Lab/openpose/
https://github.com/CMU-Perceptual-Computing-Lab/openpose/
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/01_demo.md#maximum-accuracy-configuration/
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/01_demo.md#maximum-accuracy-configuration/
https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/01_demo.md#maximum-accuracy-configuration/
https://colab.research.google.com/
https://pytorch.org/vision/stable/models.html#keypoint-r-cnn/
https://pytorch.org/vision/stable/models.html#keypoint-r-cnn/
https://cocodataset.org/#keypoints-2017/
https://cocodataset.org/#keypoints-2017/

Bibliography

[97]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cour-
napeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H.
van Kerkwijk, M. Brett, A. Haldane, J. F. del Ro, M. Wiebe, P. Peterson, P. Grard-
Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abbasi, C. Gohlke, and T. E.
Oliphant, “Array programming with NumPy,” Nature, vol. 585, pp. 357-362, Sept.
2020.

“ITP Glossary: Cover 0,” Sept. 2015. https://insidethepylon.
com/football-101/glossary—football-101/2015/09/23/
itp-glossary-cover—0/ (last accessed: 11/14/2021).

“ITP Glossary: Cover 1,” Sept. 2015. http://insidethepylon.
com/football-101/glossary—-football-101/2015/09/30/
itp-glossary-cover—1/ (last accessed: 11/14/2021).

“ITP Glossary: Cover 2 Man,” Nov. 2015. http://insidethepylon.
com/football-101/glossary—football-101/2015/11/02/
itp-glossary-2-man/ (last accessed: 11/14/2021).

“ITP Glossary: Cover 2,” Nov. 2015. https://insidethepylon.
com/football-101/glossary—football-101/2015/11/16/
itp-glossary-cover—2/ (last accessed: 11/14/2021).

“ITP Glossary: Cover 3,” Dec. 2015. http://insidethepylon.
com/football-101/glossary—football-101/2015/12/09/
itp-glossary-cover—3/ (last accessed: 11/14/2021).

“ITP Glossary: Cover 4,” Jan. 2016. http://insidethepylon.
com/football-101/glossary—-football-101/2016/01/13/
itp-glossary-cover—4/ (last accessed: 11/14/2021).

K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification,” arXiv:1502.01852 [cs], Feb.
2015. arXiv: 1502.01852.

K. He, X. Zhang, S. Ren, and J. Sun, “Identity Mappings in Deep Residual Net-
works,” arXiv:1603.05027 [cs], July 2016. arXiv: 1603.05027.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-

peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning
in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.

“NN SVG.” http://alexlenail.me/NN-5VG/ (last accessed: 11/12/2021).

71

https://insidethepylon.com/football-101/glossary-football-101/2015/09/23/itp-glossary-cover-0/
https://insidethepylon.com/football-101/glossary-football-101/2015/09/23/itp-glossary-cover-0/
https://insidethepylon.com/football-101/glossary-football-101/2015/09/23/itp-glossary-cover-0/
http://insidethepylon.com/football-101/glossary-football-101/2015/09/30/itp-glossary-cover-1/
http://insidethepylon.com/football-101/glossary-football-101/2015/09/30/itp-glossary-cover-1/
http://insidethepylon.com/football-101/glossary-football-101/2015/09/30/itp-glossary-cover-1/
http://insidethepylon.com/football-101/glossary-football-101/2015/11/02/itp-glossary-2-man/
http://insidethepylon.com/football-101/glossary-football-101/2015/11/02/itp-glossary-2-man/
http://insidethepylon.com/football-101/glossary-football-101/2015/11/02/itp-glossary-2-man/
https://insidethepylon.com/football-101/glossary-football-101/2015/11/16/itp-glossary-cover-2/
https://insidethepylon.com/football-101/glossary-football-101/2015/11/16/itp-glossary-cover-2/
https://insidethepylon.com/football-101/glossary-football-101/2015/11/16/itp-glossary-cover-2/
http://insidethepylon.com/football-101/glossary-football-101/2015/12/09/itp-glossary-cover-3/
http://insidethepylon.com/football-101/glossary-football-101/2015/12/09/itp-glossary-cover-3/
http://insidethepylon.com/football-101/glossary-football-101/2015/12/09/itp-glossary-cover-3/
http://insidethepylon.com/football-101/glossary-football-101/2016/01/13/itp-glossary-cover-4/
http://insidethepylon.com/football-101/glossary-football-101/2016/01/13/itp-glossary-cover-4/
http://insidethepylon.com/football-101/glossary-football-101/2016/01/13/itp-glossary-cover-4/
http://alexlenail.me/NN-SVG/

Bibliography

[108] C. Wang, F. Zhang, X. Zhu, and S. S. Ge, “Low-resolution Human Pose Estimation,”
arXiv:2109.09090 [cs], Sept. 2021. arXiv: 2109.09090.

[109] C. R. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point Sets
for 3D Classification and Segmentation,” arXiv:1612.00593 [cs], Apr. 2017. arXiv:
1612.00593.

[110] C. R. Qi, L. Yi, H. Su, and L.]J. Guibas, “PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space,” arXiv:1706.02413 [cs], June 2017. arXiv:
1706.02413.

[111] G.Riegler, A. O. Ulusoy, and A. Geiger, “OctNet: Learning Deep 3D Representations
at High Resolutions,” arXiv:1611.05009 [cs], Apr. 2017. arXiv: 1611.05009.

[112] P-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-CNN: Octree-based Con-
volutional Neural Networks for 3D Shape Analysis,” ACM Transactions on Graphics,
vol. 36, pp. 1-11, July 2017. arXiv: 1712.01537.

72

List

1.1

21

2.2
2.3
2.4
25
2.6
2.7
2.8

3.1
3.2
3.3
3.4
35
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23

of Figures

Schematic illustration of an American football field (Image: public domain). 2

Four pass classes (left) and three run classes (right) used by Swears and

Hoogsin [42,43]. e 11
The approach of Varadarajan et al. to classify offensive plays [44]. 11
Probability for each player for playing man (m) or zone (z) [45]. 12
A neural network without (left) and with dropout (right) [57]. 18
Horizontal and vertical flipping (Image: public domain). 19
Standard residual block (left) and bottleneck block (right) [71]. 20
Bottom-up pose estimation (figure adapted from [73]).. 23
Top-down pose estimation (figure adapted from [73]). 23
Robustness induced by 2d human pose estimation network. 26
Two similar situations with different field position. 27
Skeletons of the two situations in Figure3.2. 27
3D skeletons of the two situations in Figure3.2. 28
Sample frames of the OSU Dataset and the video from the Sports-1M Dataset. 29
Thel7 posekeypoints. 31
Pose estimation on sample frames. 32
A sample frame (left) projected into a field model (right). 33
Dropdown for video selection (top) and loaded video frames (underneath). 35
OpenCV window to select the four source points. 36
Initally set points (red crosses). 37
Diverging due to occlusion (bottom-left) and motion/zoom (bottom-right). 37
Tracked point left the image frame (bottom-right). 38
Projectionpreview. e 39
The entire dashboard. o L 40
Text input with labelling extension. 41
Sample Cover 0. e 42
SampleCover 1. e 42
Sample Cover2Man. L L e 43
Sample Cover2. e 44
SampleCover3. 44
Sample Cover4. e 45
Uncentered and centered projection and layering of keypoints. 46

73

List of Figures

3.24 3D dataaugmentation. Lo Lo Lo
3.25 Label numbers before and after data augmentation for the trainset.
3.26 CNN architecture (created with [107]).
3.27 Training and validation accuracy and loss over epochs for the CNN.

3.28 Training and validation accuracy and loss over epochs for the ResNet.

3.29 Training and validation accuracy and loss over epochs for the CNN.

3.30 Training and validation accuracy and loss over epochs for the ResNet.

74

	Acknowledgements
	Abstract
	Introduction
	Motivation
	American Football: Concepts and Terminology
	Outline

	State of the Art
	Analysis of American Football
	Supportive Tools
	Situational Analysis
	Field Registration, Projection, or Reconstruction
	Player Tracking and Recognition
	Individual Contribution
	Formation Analysis
	Offensive Play Classification
	Defensive Coverage Classification
	Summary

	Deep Learning for Computer Vision
	Activation Functions
	Loss Functions
	Backpropagation
	Optimizers
	Regularization
	Limited Data and Class Imbalances
	Convolutional Neural Networks (CNNs)
	Residual Networks (ResNets)
	Evaluation Metrics

	Pose Estimation
	Bottom-up
	Top-down

	Pose Estimation and Analysis for American Football Videos
	Benefits of Additional Pre-Transformations
	2D Pose Estimation
	Playing Field Registration
	3D Point Extraction
	Summary

	Obtaining Data
	OSU Dataset
	Sports-1M Dataset
	Additional Cutting

	Pose Estimation
	TensorFlow
	OpenPose
	PyTorch
	Comparison

	Playing Field Registration
	Selecting a Video
	Setting the Four Source Points
	Tracking the Source Point through the Video
	Specifying the Parameters Required for the Projection
	Calculation of the Projective Matrix
	Resetting of Points
	Projection Preview
	Storing Projective Matrices
	Summary

	Labelling
	Defensive Personnel
	Man Coverage
	Zone Coverage
	Labelling Man vs. Zone
	Four Class Labelling

	3D Player Extraction
	Tactical Analysis
	Dataset
	Technical Setup
	Man vs. Zone Coverage
	Four Class Coverage Analysis

	Conclusion
	Summary
	Outlook

	Bibliography
	List of Figures

