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Abstract

Computational electromagnetics and in particular boundary integral equations
are an important tool for the analysis of electromagnetic scattering and radiation
scenarios, be it for simulation purposes or for the processing of measured data. By
leveraging the algorithms presented in this dissertation, solutions to surface-source
problems may be retrieved with less computational effort, with increased reliability,
and/or with increased accuracy.

The first part of the thesis focuses on the simulation of radiation and scattering
scenarios involving perfectly conducting objects with boundary integral equations,
especially tackling the high-frequency accuracy issues of the magnetic field integral
equation with a low-order discretization. Several approaches to deal with those
inaccuracies are proposed, including a combined-source integral equation and a
weak-form discretization scheme for the identity operator appearing inside the
magnetic field integral equation. These approaches are discussed with respect
to their benefits regarding the solution accuracy, both for the lowest-order Rao-
Wilton-Glisson basis functions as well as for a set of hierarchical higher-order
functions.

The second topic of this dissertation are surface-source reconstruction methods
for near-field antenna measurements and related near-field to far-field transforma-
tions. Three distinct problems are treated. First, different choices for equivalent
surface sources for the antenna-under-test representation are compared with re-
spect to the ill-posedness of certain choices, the conditioning differences of the
system matrices, the achievable accuracy of the reconstructed fields, and the re-
spective diagnostics capabilities. Second, two echo suppression techniques are
presented which help to cope with the presence of undesired scattering objects in
the vicinity of an antenna under test. This is either done by incorporating knowl-
edge about the scatterer material, shape, and location or by software time-gating
based on broadband measurements. Third, the special case of phaseless near-field
measurements is considered—lacking a global phase information for the individual
measurement samples. Two approaches are discussed, which are both based on
specialized receiver hardware which is able to capture coherent subsets of the
near-field data, either for multi-frequency measurements or for multi-probe setups.
In the former case, the phase retrieval process is based on a non-linear optimization
just as for most classical phase retrieval algorithms. The latter approach introduces
a linearization of the problem which greatly improves the reliability of the phase
retrieval process, bringing it close to standard antenna measurements with full
phase information.
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Kurzfassung

Numerische Feldberechnung und insbesondere Randintegralgleichungen sind ein
wichtiges Werkzeug für die Analyse elektromagnetischer Streu- und Strahlungssze-
narien, sei es für Simulationszwecke oder die Verarbeitung von Messdaten. Durch
den Einsatz der in dieser Dissertation vorgestellten Algorithmen können Lösungen
für Oberflächenquellen-Probleme mit geringerem Rechenaufwand, mit höherer
Zuverlässigkeit und/oder mit höherer Genauigkeit gefunden werden.

Der erste Teil der Arbeit befasst sich mit der Simulation von Strahlungs- und
Streuszenarien mit Randintegralgleichungen, insbesondere mit den Problemen der
Genauigkeit der Magnetfeldintegralgleichung bei hohen Frequenzen und mit einer
Diskretisierung niedriger Ordnung. Es werden mehrere Ansätze zur Behandlung
dieser Ungenauigkeiten vorgeschlagen, darunter eine Integralgleichung mit kombi-
nierten elektrischen undmagnetischen Oberflächenstromquellen und ein Ansatz, der
den in der Magnetfeldintegralgleichung auftretenden Identitätsoperator in schwa-
cher Form diskretisiert. Diese Ansätze werden im Hinblick auf ihre Vorteile hinsicht-
lich der Lösungsgenauigkeit sowohl für die Rao-Wilton-Glisson-Basisfunktionen
niedrigster Ordnung als auch für eine Reihe hierarchischer Funktionen höherer
Ordnung diskutiert.

Das zweite Thema dieser Dissertation sind Oberflächenquellen-Rekonstruktions-
methoden für Nahfeld-Antennenmessungen und damit verbundene Nahfeld-Fern-
feld-Transformationen. Es werden drei verschiedene Probleme behandelt. Erstens
werden verschiedene Möglichkeiten zur Darstellung der zu testenden Antenne mit
äquivalenten Oberflächenquellen im Hinblick auf die Unzulänglichkeiten bestimm-
ter Varianten untersucht. Außerdem werden die Konditionierungsunterschiede der
Systemmatrizen, die erreichbare Genauigkeit der rekonstruierten Felder und die
jeweiligen Diagnosemöglichkeiten verglichen. Zweitens werden zwei Verfahren
zur Echounterdrückung vorgestellt, die helfen, unerwünschte Streuobjekten in
der Nähe einer zu testenden Antenne zu berücksichtigen and die Rekonstruktion
entsprechend zu korrigieren. Dies geschieht entweder durch die Einbeziehung von
Kenntnissen über das Material, die Form und den Ort des Streuobjekts oder durch
Software-Time-Gating auf der Grundlage von Breitbandmessungen. Drittens wird
der Sonderfall der phasenlosen Nahfeldmessungen betrachtet, bei denen keine
globale Phaseninformation für die einzelnen Messproben vorliegt. Es werden zwei
Ansätze diskutiert, die beide auf spezieller Empfängerhardware basieren, die in
der Lage ist, kohärente Teilmengen der Nahfelddaten zu erfassen. Dies geschieht
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entweder durch simultane Messungen bei mehreren Frequenzen oder durch den
Einsatz einer Anordnung mehrerer Sonden. Im ersten Fall basiert der Phasenrück-
gewinnungsprozess auf einer nichtlinearen Optimierung, wie bei den meisten
klassischen Phasenrekonstruktionsalgorithmen. Der letztere Ansatz führt eine Li-
nearisierung des Problems ein, die die Zuverlässigkeit der Phasenrückgewinnung
erheblich verbessert und den Algorithmus mit Phasenrekonstruktion in die Nähe
von klassischen Antennenmessungen mit vollständiger Phaseninformation bringt.
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Chapter 1
Motivation & Background

“Well, I mean, yes idealism, yes the dignity of pure research, yes the pursuit of truth in all
its forms, but there comes a point I’m afraid where you begin to suspect that if there’s
any real truth, it’s that the entire multi-dimensional infinity of the Universe is almost
certainly being run by a bunch of maniacs. And if it comes to a choice between spending
yet another ten million years finding that out, and on the other hand just taking the
money and running, then I for one could do with the exercise.”

— Douglas Adams, The Hitchhiker’s Guide to the Galaxy

Everyone’s everyday life is decisively influenced by modern ways of mo-
bile communication and the related emerging opportunities [Chowdhury

et al. 2020; W. Jiang et al. 2021; De Alwis et al. 2021; Tataria et al. 2021]. Other
wireless applications such as navigation [Gozick et al. 2011; Betz 2013; Ayyalaso-
mayajula et al. 2020], near-field communications [Fischer 2009; Want 2011] and
(remote) sensing (e.g., radar and imaging) [Nikolova 2011; Zink et al. 2014; Bilik
et al. 2016; Woodhouse 2017; Modiri et al. 2017; García-Fernández et al. 2018b;
Freethy et al. 2018; Zheng et al. 2020; Edemsky et al. 2021] are also gaining in
importance in countless daily-life situations and other civil and military settings—
among other reasons due to providing convenience, enabling an increasing degree
of automation, and enabling innovative technologies. There are at least two sides to
these advances, whenever new frequency bands, size constraints, or beamforming
and multi-user requirements come into play: the involved signal and data pro-
cessing [Massa et al. 2015; Kornprobst et al. 2016; Molisch et al. 2017; Kornprobst
et al. 2017a; X. Yang et al. 2017; M. Wang et al. 2019] and the physical layer for
power/signal transmission via antennas [K. Wang et al. 2016; Hamberger et al. 2016;
Kornprobst et al. 2017b; Y. Li et al. 2017; Kornprobst et al. 2018a, 2018b; Nayeri
et al. 2018; Mahmood et al. 2020; Singh et al. 2020; Kornprobst et al. 2021b]. There
are many other areas in which similar electromagnetic effects play a role, including
microwave heating, spectroscopy, electric motors, alternating-current power grids,
(high-speed) wired data connections, and optical systems.

The basis of all these applications is found in electromagnetism—one of the four
known fundamental interactions—, which describes, among others, electromagnetic
radiation. Our understanding of these electromagnetic phenomena is based on
Maxwell’s [1865] equations and special relativity [Einstein 1905].
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Chapter 1 Motivation & Background

This thesis can be subsumed into the field of computational electromagnetics
(cem), which aims to model the interaction of electromagnetic fields with the
environment [Harrington 1968; Peterson et al. 1997; Chew et al. 2001; Jin 2011;
Rylander et al. 2012; Sumithra and Thiripurasundari 2017]. Two topics concerning
such interactions are covered. The first one is the simulation of radiation and
scattering scenarios with the goal of imitating and predicting real-world behavior
based upon our understanding of real-world physics and the derived models. The
second topic is source reconstruction: The goal is to build and adapt models based
on real-world observations in order to match simulations with constructed devices
or to obtain insights about electromagnetic properties of unknown objects.

Only very few problems in cem can be solved with (closed-form) analytical
solutions. Hence, numerical simulation models are indispensable. The growth in
available computing power has enabled a massive increase in the practical use
cases of such methods since the 2nd half of the 20th century. Today’s use of
analytical methods is mostly limited to the verification of the solutions obtained
with numerical methods in canonical scenarios [Shafieipour et al. 2017; Manohar
and Rahmat-Samii 2017; Erricolo 2017; Gürel 2017] and to the exploration of
asymptotic and approximate methods [Senior and Volakis 1995; Bouche et al. 1997;
Adana et al. 2011; Balanis 2012]—but measured and numerical benchmark solutions
are equally important [Marchand et al. 2017; Massey and Yılmaz 2017; Massey
et al. 2018; Massey 2018].

There are many ways to classify numerical methods in cem. Aspects for compar-
ison include the accuracy, the speed and computation effort, and the applicability
and limitations. Regarding the last point, this thesis is mostly concerned with
time-harmonic scenarios, which work with the steady state at a single frequency
[Harrington 1961]. Without any claim to be all-encompassing, there are differ-
ential equation, integral equation, and asymptotic solvers. Differential equation
solvers, such as the finite element method (fem), work with local variations of the
electromagnetic quantities and are well-suited for objects with arbitrary material
compositions and geometries. However, they may suffer from accuracy issues for
electrically large scenarios due to numerical dispersion [J.-Y. Wu and R. Lee 1997;
J.-F. Lee et al. 1997; Deraemaeker et al. 1999; Lou and Jin 2006; Kabir et al. 2013].
Integral equation solvers yield accurate results independent of the problem size but
have a harder time accounting for granular changes of material properties since
they typically work with the boundary surfaces of volumetric objects. Furthermore,
these formulations require fully populated matrices for describing the interactions
between all discretization elements. Hence, it is not directly obvious whether
the reduction to the surface decreases the computational complexity or the full
population of the system matrices causes an increased complexity as compared
to differential equation solvers. With the use of fast methods exhibiting quasi-
linear complexity—for instance, employing a multi-level fast multipole method
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(mlfmm) accelerated matrix-vector product (mvp)—, integral equation methods
gain a certain advantage in terms of computational complexity while maintaining
a controlled accuracy. The third and final relevant method are asymptotic solvers,
which approximate the electromagnetic behavior for electrically large objects. Of
course, the accuracy may be compromised but these methods make the simulation
of very large scenarios feasible in the first place. Hybridization between the three
types of methods enables us to leverage the respective advantages and still simulate
the electrically largest scenarios possible [Chew et al. 2001; Ma et al. 2012; B.-Y. Wu
and Sheng 2013; Z.-L. Liu et al. 2014; Karagounis et al. 2015].

The scope of this thesis lies on integral equation methods. Given an accelerated
mlfmm solver and two application scenarios [simulation of perfect electric con-
ductor (pec) objects and source reconstruction], we focus on the solver accuracy,
the well-posedness of the problem and uniqueness of the solution, and the well-
conditioning of the system matrix, which is directly related to the iterative solver
convergence speed.

The thesis is structured as follows. Chapter 2 introduces the relevant time-
harmonic electromagnetic theory upon which the remainder of the thesis is mostly
based—apart from one minor excursus to the time domain. The method of moments
(mom) as a general discretization approach and its application to several integral
equations (ies) for the treatment of pec objects are discussed in Chapter 3. One of
these ies, the magnetic field integral equation (mfie), exhibits serious drawbacks in
its classical discretization which are tackled from various angles in Chapter 4. The
subsequent Chapter 5 examines several aspects of source-reconstruction problems:
the impact of choosing the (surface-source) reconstruction model, modeling und
suppressing the impact of adverse environmental measurement conditions via
echo suppression techniques, and source reconstruction with imperfect informa-
tion, where the phase information of complex observations is (at least partially)
unavailable. Chapter 6 summarizes all contributions presented in this thesis.

3





Chapter 2
Electromagnetic Theory &
Boundary Integral Equations

Seen from outside, and even more so from within, the process of scientific research
is disorderly and confusing. It is tempting to deduce that scientists themselves are
disorderly and confused. In a way, they are – that’s what research involves. If you knew
what you were doing it wouldn’t be research.

— Terry Pratchett, Darwin’s Watch

Maxwell’s equations are the governing equations of the behavior of elec-
tromagnetic fields. Their formulation is too general to tackle the specific

problems investigated in this thesis. Hence, it is necessary to derive specific
problem formulations as treated in the following chapters. For the specific circum-
stances of this thesis, the notation of electromagnetic quantities is introduced and
the relevant theorems are briefly summarized in Section 2.1. To establish a basis
for the subsequent chapters, the radiation problem is solved in Section 2.2. The
continuity and boundary conditions introduced in Section 2.3 as well as the surface
equivalence theorem presented in Section 2.4 are employed as prerequisites for
boundary integral equations, which are discussed for radiation, scattering, and
source reconstruction in Section 2.5.

2.1 Maxwell’s Equations in Time-Harmonic Notation

The general task addressed in this thesis is to solve electromagnetic problems in
three-dimensional space. The underlying space of such a setting is spanned by
the three spatial dimensions (described by the position vector 𝒓 ∈ ℝ3) and the one
dimension of time as described by the variable 𝑡. Since all scenarios are restricted
to the time-harmonic case, the e j𝜔𝑡 time-dependence is suppressed and the time-
derivatives are simplified to the factor j𝜔, where 𝜔 = 2π𝑓 represents the angular
frequency. The quantities of interest are the three-dimensional, complex-valued
electric field vector 𝒆 ∈ ℂ3, the electric displacement field 𝒅, the magnetic field 𝒉,
the magnetic flux density 𝒃, the electric volume current and charge densities 𝒋v and
𝜚e,v, and the fictitious magnetic ones 𝒎v and 𝜚m,v. Typically, all these quantities
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Chapter 2 Electromagnetic Theory & Boundary Integral Equations

are evaluated at a position 𝒓 in this thesis.
As the foundation for time-harmonic scenarios, we use the famous Maxwell’s

[1865] equations in differential form [Harrington 1961; Jin 2011; Balanis 2012]

div 𝒅 = 𝜚e,v , (2.1)

div 𝒃 = 𝜚m,v , (2.2)

− curl 𝒆 = j𝑘𝒉 + 𝒎v , (2.3)

curl 𝒉 = j𝑘𝒆 + 𝒋v , (2.4)

where the del-operator ∇ may be employed to express the divergence as ∇∙ = div
and the curl as ∇× = curl as derivatives with respect to 𝒓.

Combining (2.1) and (2.4) and analogously (2.2) and (2.3) gives the charge con-
servation (or current continuity) conditions

div 𝒋v = −j𝜔𝜂𝜚e,v , div𝒎v = −j𝜔𝜚m,v . (2.5)

Material properties are considered in (2.3) and (2.4) by the wavenumber

𝑘 = 𝜔
√
(𝜀 +

𝜅e
j𝜔)(𝜇 +

𝜅m
j𝜔 ) , (2.6)

which contains—considering scalar quantities for linear, homogeneous, and isotropic
materials only—the permittivity 𝜀 = 𝜀0𝜀r, the permeability 𝜇 = 𝜇0𝜇r, as well as the
electrical and magnetic conductivities 𝜅e and 𝜅m. The wavenumber simplifies to
𝑘 = 𝜔√𝜀𝜇 for non-conductive materials and to 𝑘0 = 𝜔√𝜀0𝜇0 in free space—always
indicated by a subscript (⋅)0. This very wavenumber is employed to determine the
wavelength 𝜆 = 2π/Re{𝑘} and the speed of light 𝑐 = 𝜆𝑓. In more detail, the material
properties are linked to the electromagnetic fields by the constitutive relations

𝒅 = 𝜀𝒆 , 𝒃 = 𝑐−1𝒉 , (2.7)

𝒋v = 𝜂𝜅e𝒆 , 𝒎v = 𝜅m𝜂−1𝒉 , (2.8)

the latter two of which are also known as Ohm’s [1827] law.1

As the attentive reader has noticed, scaled versions of the classical magnetic
field ħ = 𝜂−1𝒉 and the classical electric current density ȷv̄ = 𝜂−1𝒋v are employed
in this thesis. This normalization has been chosen in order to avoid conditioning

1. The magnetic current and charge densities are purely fictitious quantities, not real physical
phenomena, as is the magnetic conductivity. The currents and charges are employed for the description
of equivalent scenarios and help in handling certain scenarios. The magnetic conductivity 𝜅m is
introduced for symmetry reasons—in a time-harmonic description, both conductivities are redundant
with respect to the complex permittivity/permeability anyhow.
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issues and to condense the notation. The scaling factor is the wave impedance of
the background material

𝜂 =
√
𝜅m + j𝜔𝜇
𝜅e + j𝜔𝜀 , (2.9)

which simplifies to 𝜂 = √𝜇/𝜀 for non-conductive materials and to 𝜂0 = √𝜇0/𝜀0 for
free space.

In the international system of units, commonly known as si units, the speed of
light in vacuum

𝑐0 = 299 792 458m s−1 (2.10)

is a universal constant which is defined without uncertainty in the up-to-date
2018 codata recommended values [Tiesinga et al. 2020]. The permittivity, the
permeability, and the wave-impedance of vacuum are deemed to be measured
quantities, i.e., their numerical values are given as

𝜀0 = 8.854 187 812 8 ⋅10−12 A sV−1 m−1 , (2.11)

𝜇0 = 1.256 637 062 12 ⋅10−6 V sA−1 m−1 , (2.12)

𝜂0 = 376.730 313 668Ω , (2.13)

all subject to a relative standard uncertainty of 1.5 ⋅10−10. If the electric current den-
sity and the magnetic field are not normalized as indicated above, this uncertainty
affects Maxwell’s equations. Theoretical analyses are of course not affected.

2.2 The Radiation of a Current Distribution

Maxwell’s equations do not immediately reveal how to solve problems in cem. A
potential next step is to calculate the radiation of a constant-current element with
infinitesimal length, i.e., the radiation of a so-called Hertzian or Fitzgerald dipole.
In order to analyze the different contributions in the radiated fields, the magnetic
vector potential 𝒂 [Neumann 1845; Weber 1846; Thomson 1851; A. C. T. Wu and
C. N. Yang 2006] and the corresponding electric scalar potential 𝜙 are employed
as auxiliary quantities with the Lorenz gauge div 𝒂 = −j𝑘𝜙 [Lorenz 1867]. The
magnetic field is (by definition) calculated as

𝒉 = curl 𝒂 (2.14)

and the electric field [by leveraging (2.3) and the Lorenz gauge condition] as

𝒆 = −j𝑘𝒂 − grad 𝜙 = −j𝑘𝒂 − j𝑘−1 grad div 𝒂 (2.15)
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Chapter 2 Electromagnetic Theory & Boundary Integral Equations

from electric sources in the absence of magnetic ones—hence, we have div 𝒃 = 0
in this case. The effect of magnetic sources may be considered separately due to
linearity and the related superposition principle. This allows to rewrite Maxwell’s
equations—in particular (2.4)—as the Helmholtz equation

Δ 𝒂 + 𝑘2𝒂 = −𝒋v (2.16)

with the Laplace operator Δ = div grad. In a homogeneous medium of infinite
extent, the scalar Green’s function

𝑔(𝒓, 𝒓′) = 𝐺 𝒂
𝒋v(𝒓, 𝒓

′) = e−j𝑘|𝒓−𝒓
′|

4π|𝒓 − 𝒓′|
(2.17)

is obtained for the radiated fields, which fulfills the Sommerfeld [1912, 1949]
radiation condition

lim
‖𝒓‖→∞

‖𝒓‖(
∂

∂‖𝒓‖
+ j𝑘)𝑔(𝒓, 𝒓′) = 0 (2.18)

for outgoing waves with an observation coordinate 𝒓 and a source coordinate 𝒓′.
The same procedure for the electric vector potential 𝒇 of magnetic current densities
yields the very same Green’s function 𝑔(𝒓, 𝒓′) due to duality [Balanis 2012].

From now on, surface current densities 𝒋 and 𝒎 on a surface 𝑠 are considered
instead of volume current densities. The same is done for surface charge densities
𝜚e and 𝜚m. Thus, the dimensionality of the radiation integrals is reduced by one.
With this adjustment, the vector potential is calculated as

𝒂(𝒓) = ∬
𝑠
𝑔(𝒓, 𝒓′) 𝒋(𝒓′) d2𝑟 ′ . (2.19)

For the magnetic field in (2.14), we find the simplification

𝒉(𝒓) = curl∬
𝑠
𝑔(𝒓, 𝒓′) 𝒋(𝒓′) d2𝑟 ′ = ∬

𝑠
grad 𝑔(𝒓, 𝒓′) × 𝒋(𝒓′) d2𝑟 ′ (2.20)

utilizing curl(𝑔𝒋) = grad 𝑔 × 𝒋 + 𝑔 curl 𝒋 and utilizing the fact that 𝒋(𝒓′) has no
𝒓-dependence [Bladel 2007]. Then, the electric and magnetic fields of an arbitrary
surface current distribution on 𝑠—with 𝒓′ ∈ 𝑠 unless stated otherwise—are calculated
as

𝒆(𝒓) = − j𝑘∬
𝑠
𝑔(𝒓, 𝒓′) 𝒋(𝒓′) d2𝑟 ′ − j𝑘−1 grad div∬

𝑠
𝑔(𝒓, 𝒓′) 𝒋(𝒓′) d2𝑟 ′

− ∬
𝑠
grad 𝑔(𝒓, 𝒓′) × 𝒎(𝒓′) d2𝑟 ′ , (2.21)
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2.3 Continuity and Boundary Conditions

medium 1: (𝜀1, 𝜇1, 𝜅e1, 𝜅m1)

medium 2: (𝜀, 𝜇, 𝜅e, 𝜅m)

volume 𝑣

volume 𝑣1

𝒏

𝒆1, 𝒉1, 𝒅1, 𝒃1

𝒆, 𝒉, 𝒅, 𝒃

boundary
𝑠 = ∂𝑣1

𝒋𝒎

Fig. 2.1: Boundary surface between two media.

𝒉(𝒓) = − j𝑘∬
𝑠
𝑔(𝒓, 𝒓′)𝒎(𝒓′) d2𝑟 ′ − j𝑘−1 grad div∬

𝑠
𝑔(𝒓, 𝒓′)𝒎(𝒓′) d2𝑟 ′

+ ∬
𝑠
grad 𝑔(𝒓, 𝒓′) × 𝒋(𝒓′) d2𝑟 ′ . (2.22)

Even though (2.21) and (2.22) provide the basis for the field calculation from sources
in homogeneous media, these equations are not applicable per se for general
material distributions. However, Huygen’s principle serves as a remedy to create
equivalent problems for which homogeneous media of infinite extent may be
assumed.

2.3 Continuity and Boundary Conditions

Let us assume a surface 𝑠 between two volumes with the unit normal 𝒏 pointing
from a first volume 𝑣1 into a second volume 𝑣. The continuity conditions for the
electromagnetic fields on 𝑠 read [Jin 2011]

𝒏 × (𝒆1 − 𝒆) = 𝒎 , 𝒏 × (𝒉 − 𝒉1) = 𝒋 , (2.23)

𝒏 ∙ (𝒅 − 𝒅1) = 𝜚e , 𝒏 ∙ (𝒃 − 𝒃1) = 𝜚m , (2.24)

where the surface current densities 𝒎 and 𝒋 on the interface cause a jump in the
electric and magnetic fields, respectively. In Fig. 2.1, this scenario is changed such
that 𝑠 is a boundary between two media. Then, the continuity conditions are still
valid as the so-called boundary conditions for the boundary surface 𝑠. In this
thesis, the focus lies on medium 1 being a perfect conductor with infinite electric
conductivity. This changes the boundary conditions on the surface of the pec object

9



Chapter 2 Electromagnetic Theory & Boundary Integral Equations

to

𝒏 × 𝒆 = 0 , (2.25)

𝒏 × 𝒉 = 𝒋 , (2.26)

𝒏 ∙ 𝒅 = 𝜚e , (2.27)

𝒏 ∙ 𝒃 = 0 . (2.28)

If medium 1 is not a perfect but a good electrical conductor, the tangential electric
field on the interface does not completely vanish. Instead, the tangential electric
field is related to the magnetic field via the normalized surface impedance

𝜂s =
𝜂1
𝜂 = 1

𝜂√
𝜅m1 + j𝜔𝜇1
𝜅e1 + j𝜔𝜀1

≈
1 + j
𝜂 √

𝜔𝜇1
2𝜅e1

. (2.29)

This relation is known as the Leontovich impedance boundary condition (ibc)
[Leontovich 1948; Senior and Volakis 1995; Balanis 2012]

𝒆 × 𝒏 = 𝜂s 𝒏 × 𝒉 × 𝒏 . (2.30)

For thin dielectric coatings with (𝜀r,c, 𝜇r,c) and thickness 𝑑c on a pec medium, the
surface impedance

𝜂s = j
√

𝜇r,c
𝜀r,c

tan(𝑘𝑑c√𝜇r,c𝜀r,c) (2.31)

may be employed for the ibc in (2.30).

2.4 The Surface Equivalence Theorem: Huygens’
Principle

The Huygens’ [1690] principle is a method of analysis for wave propagation, where
each point on a primary wavefront is assumed to emit secondary spherical waves.
In the more mathematical formulation by Love [1901] and Schelkunoff [1936], it
provides the basis for boundary integral equations since it allows to introduce
equivalent problems with simplified material distributions. These can be solved
numerically for arbitrarily shaped objects since their associated Green’s functions
are well-known.
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exterior medium
(𝜀, 𝜇, 𝜅e, 𝜅m)

exterior
volume 𝑣

interior
volume 𝑣i

𝒏
𝒆, 𝒉, 𝒅, 𝒃

𝒆, 𝒉, 𝒅, 𝒃
boundary
𝑠 = ∂𝑣i

𝒋v𝒎v

𝜀i(𝒓)

𝜇i(𝒓)

(a)

𝒆i, 𝒉i, 𝒅i, 𝒃i

𝒆, 𝒉, 𝒅, 𝒃
boundary
𝑠 = ∂𝑣i

exterior medium
(𝜀, 𝜇, 𝜅e, 𝜅m)

exterior
volume 𝑣

interior
volume 𝑣i

𝒏

𝒋v

𝒎v

𝜀i(𝒓)

𝜇i(𝒓) 𝒎𝒋

(b)

Fig. 2.2: The surface equivalence principle. (a) An arbitrary closed surface 𝑠 for the demon-
stration of the uniqueness theorem. (b) An equivalent problem for the exterior
fields.

2.4.1 A Prerequiste: The Uniqueness Theorem

Consider a closed surface 𝑠 enclosing a volume 𝑣i with the outward unit normal 𝒏,
see Fig. 2.2(a). Known electromagnetic sources may exist both inside and outside
of 𝑣i. The uniqueness theorem provides the insight that the electromagnetic fields
inside of 𝑣i are unique if the tangential field components either of 𝒏 × 𝒆, of 𝒏 × 𝒉, or
mutually exclusive parts of both are known on the whole surface 𝑠 [Rubinowicz
1926; Stratton 1941; Balanis 2012]. While this holds for lossy media in 𝑣i and even if
the loss dissipation in 𝑣i approaches zero, this uniqueness theorem breaks down in
the lossless case for interior solutions—i.e., the interior fields can be superimposed
with so-called interior resonances if only either the electric or the magnetic field
components are known.

The uniqueness theorem proves particularly useful whenever exterior solu-
tions (in a volume of infinite extent, i.e., outside of 𝑣i) are of interest. Enforcing
outgoing waves at infinite distance—e.g., by imposing the Sommerfeld radiation
condition (2.18) for the scalar Green’s function or the equivalent condition for vec-
tor fields by Müller [1948] and Silver [1949]—is equivalent to imposing a small loss
as pointed out by Chew [1995] and the field solution according to (2.21) and (2.22)
is unique if the tangential field components either of 𝒏 × 𝒆, of 𝒏 × 𝒉, or mutually
exclusive parts of both are known on the whole surface 𝑠—whether the medium is
lossy or lossless.
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2.4.2 Huygens’ Principle

The Huygens principle is an immediate consequence of the uniqueness theorem
and the continuity conditions. As discussed, the exterior solution is unique if at
least one of the tangential field components 𝒏 × 𝒆 or 𝒏 × 𝒉 is known everywhere on
𝑠 for the scenario depicted in Fig. 2.2(a). Figure 2.2(b) depicts an equivalent setup
for these unique exterior fields: Equivalent surface current densities

𝒎 = (𝒆 − 𝒆i) × 𝒏 , ∀𝒓 ∈ 𝑠 (2.32)

𝒋 = 𝒏 × (𝒉 − 𝒉i) ∀𝒓 ∈ 𝑠 (2.33)

are introduced to replace all interior sources, which leads to the surface equivalence
principle or Huygens’ principle—in other words, there are infinitely many descrip-
tions of the original scenario in Fig. 2.2(a) depending on the choice of the interior
fields 𝒆i and 𝒉i. Note that the subscript (⋅)i labels the interior fields evaluated on 𝑠,
and the lack of a subscript denotes the exterior fields evaluated on 𝑠 in (2.32) and
(2.33). While the equivalent electric and magnetic surface current densities are
obviously not unique, the uniqueness of exterior fields produced by these currents
holds true. The interior fields do not influence the exterior solution at all.

Three special choices of the interior fields are evident, for which not only the
exterior fields but also the equivalent currents are unique. Only magnetic currents
𝒎 result from choosing 𝒏 × 𝒉 = 𝒏 × 𝒉i and only electric currents 𝒋 result from
𝒏× 𝒆 = 𝒏× 𝒆i. Obviously, these two approaches may suffer from interior resonances
if the medium in the volume 𝑣𝑖 is lossless. The outstanding third version of the
equivalent currents is obtained if the interior fields 𝒆i = 𝒉i = 0 are deliberately
chosen as zero. The resulting equivalent surface current densities

𝒎l = 𝒆 × 𝒏 , (2.34)

𝒋l = 𝒏 × 𝒉 (2.35)

are known as the Love currents. They are often called physical since the equivalent
currents are directly related to the unique exterior fields and not superimposed by
interior solutions.

Another equivalent current representation worth mentioning is obtained by
combining the electric and magnetic currents via [Brakhage and Werner 1965;
Bolomey and Tabbara 1973; Mautz and Harrington 1979; Rogers 1985; Morita et
al. 1990; Buffa and Hiptmair 2005; Darbas 2006; Steinbach and Windisch 2009;
Melenk 2012]

𝒎cs = 𝒏 × 𝒋cs , (2.36)

which is typically called a combined source (cs) solution or the Brakhage-Werner
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trick.2 The interior fields are implicitly defined in this case (as this is obviously
required for a unique solution). The cs condition reminds of the ibc (employing
equivalent Love currents)

𝒎l = 𝒆 × 𝒏 = 𝜂s 𝒋l × 𝒏 = 𝜂s 𝒏 × 𝒉 × 𝒏 , (2.37)

however, with a change of sign. Also, the equivalent cs currents in (2.36) are no
Love currents as opposed to the ones in the ibc. The discussion of the impact of
this choice is left for later since part of the context is still missing.

There exist further non-Love equivalent currents which are for instance employed
in the single-source surface integral equations [Marx 1982; Glisson 1984; Harrington
1989; Yeung 1999; Menshov and Okhmatovski 2013; Shi and Liang 2015; Patel et
al. 2017; Lori et al. 2018]. However, these do not necessarily offer similar benefits
as Love-current or cs solutions.

The greatest benefit of the Huygens principle, though, stems from the Love-
current representation of the equivalent currents. The zero field inside 𝑣i allows
a deliberate manipulation of the material properties in 𝑣i without influencing the
exterior field solution. In the following, a homogeneous background medium in the
exterior volume 𝑣 is assumed.3 The material distribution in 𝑣i may still be arbitrary;
however, after introducing equivalent Love currents, the material inside 𝑣i may
be changed to the background material. Then, it is possible to employ the Green’s
function for a homogeneous medium and the equivalent current representation
may even be changed again.

2.5 Boundary Integral Equations

The Huygens’ principle can be exploited to calculate equivalent sources from given
boundary values for the fields. In a rather general manner, the total electric and
magnetic fields

𝒆 = 𝒆𝑣 + 𝒆𝑠 , 𝒉 = 𝒉𝑣 + 𝒉𝑠 (2.38)

are evaluated everywhere in the exterior solution volume 𝑣, i.e., outside of or on the
surface 𝑠. The total fields are separated according to two distinct source types: The
incident field 𝒆𝑣 originates from sources somewhere in 𝑣 and is assumed to be known
a priori in most cases—one notable exception are unknown echo sources in antenna

2. The combination of a Hertzian and a Fitzgerald dipole according to (2.36) is known as Huygens
radiator and shows a directive radiation characteristic with the main beam in 𝒏-direction and a null in
the opposite direction [Schelkunoff and Friis 1952; Luk and B. Wu 2012; Niemi et al. 2012].

3. In this thesis, this is done for the sake of knowing the Green’s function according to (2.17). In
other cases, for which the Green’s function can be evaluated (e.g., layered media or an infinite pec half
space), the equivalence principle also proves to be very useful since homogeneous objects of finite
extent may be eliminated.
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measurements. The field 𝒆𝑠 is radiated by yet-to-determine equivalent surface
sources on 𝑠, i.e., this is typically the unknown quantity. This field is expressed by
radation integrals from the equivalent surface sources; hence, (2.38) becomes an ie.
After introducing the quantities of interest which are to be calculated with the help
of boundary ies, three cases of how the mentioned fields 𝒆𝑣 and 𝒆𝑠 are composed
are discussed in the following.

The constant in these different scenarios is the total field, which is evaluated
at the observation coordinate 𝒓 on a surface 𝑎 with unit normal 𝒏. This surface
may coincide with 𝑠, but it may also be located in 𝑣, e.g., (closed) around 𝑠 in some
distance. The former case is referred to as a surface integral equation (sie), as
the boundary integral method (bim), as the mom, or as the boundary element
method (bem); while the latter one may pose a source-reconstruction problem.
Both can be seen as boundary-ie-based inverse problems since the sources which
have generated the observations on 𝑎 shall be retrieved.

Thechallenging part is the calculation of the fields 𝒆𝑠 and 𝒉𝑠 from (2.21) and (2.22)
on 𝑎. When evaluating the fields of sources placed on the Huygens surface 𝑠 at an
observation coordinate 𝒓 located on the surface 𝑎, we obtain

𝒏(𝒓) × 𝒆𝑠(𝒓) = 𝓣 {𝒋}(𝒓) − [
1
2𝓘{𝒎}(𝒓) − 𝓚{𝒎}(𝒓)] , (2.39)

𝒏(𝒓) × 𝒉𝑠(𝒓) = 𝓣 {𝒎}(𝒓) + [
1
2𝓘{𝒋}(𝒓) − 𝓚{𝒋}(𝒓)] (2.40)

employing the dyadic electric field integral operator for electric currents

𝓣 {𝒋}(𝒓) ≔ 𝑘 𝓣s{𝒋}(𝒓) + 𝑘−1𝓣h{𝒋}(𝒓) (2.41)

composed of the singular (or vector potential)

𝓣s{𝒋}(𝒓) ≔ −j 𝒏(𝒓) ×∬
𝑠
𝑔(𝒓, 𝒓′) 𝒋(𝒓′) d2𝑟 ′ (2.42)

and hypersingular (or scalar potential) operators

𝓣h{𝒋}(𝒓) ≔ −j 𝒏(𝒓) × ( grad div∬
𝑠
𝑔(𝒓, 𝒓′) 𝒋(𝒓′) d2𝑟 ′) (2.43)

as well as the magnetic field operator for electric currents composed of the identity
operator

𝓘{𝒋}(𝒓) ≔ 𝒋(𝒓) = ∬
𝑠
δ𝑠(𝒓, 𝒓′) 𝒋(𝒓′) d2𝑟 ′ (2.44)

with the Dirac surface delta distribution δ𝑠(𝒓, 𝒓′) for the surface 𝑠 and the magnetic
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field integral operator

𝓚{𝒋}(𝒓) ≔ −𝒏(𝒓) × (⨍⨍
𝑠
grad 𝑔(𝒓, 𝒓′) × 𝒋(𝒓′) d2𝑟 ′) . (2.45)

If the surfaces 𝑠 and 𝑎 coincide, the 𝓚 integral operator has to be evaluated in
a Cauchy principal value sense in (2.45) and the 𝓘 operator contributes to the
evaluated magnetic field. If 𝑠 and 𝑎 are apart, only 𝓚 is considered.

2.5.1 Quantities of Interest: Near Field, Far Field, Radiation Patterns,
and Radar Cross-Section

All considerations so far concerned a valid description of the electromagnetic fields
everywhere. This generally applicable description of the fields is in particular
employed in the so-called near field (nf) of the currents, whereas approximations
may simplify the handling of the involved operators at an electrically large distance.
This is the case in many applications, where the distances between the radiating
structures and the objects interacting with them are much larger than the wave-
length or the objects’ dimensions. The so-called far field (ff) approximations are
obtained when the fields originate from a region of finite extent and when they
are evaluated for the limiting case of infinite distance, i.e., ‖𝒓‖ → ∞. Then, the
del-operator is replaced by −j𝑘𝒖𝑟, where 𝒖𝑟 is the unit vector in radial direction, and
‖𝒓 − 𝒓′‖ is replaced by ‖𝒓‖ − 𝒖𝑟 ∙ 𝒓′ for phase terms and by ‖𝒓‖ for magnitude terms.
In practical scenarios, the limit ‖𝒓‖ → ∞ is reached only approximately. A common
rule of thumb for antennas large compared to the wavelength is ‖𝒓‖ > 2𝐷2/𝜆with𝐷
being the diameter of the minimum sphere around all radiating structures [Stutzman
and Thiele 2013; Balanis 2016].

For the case of electric sources only and a known magnetic vector potential, we
have

𝒉ff = −j𝑘𝒖𝑟 × 𝒂ff , 𝒆ff = −j𝑘(𝒂ff − 𝒖𝑟 𝒖𝑟 ∙ 𝒂ff) = 𝒉ff × 𝒖𝑟 (2.46)

with the vector potential

𝒂ff(𝒓) =
e−j𝑘‖𝒓‖

4π‖𝒓‖
∬

𝑠
e j𝑘𝒖𝑟∙𝒓′𝒋(𝒓′) d2𝑟 ′ , (2.47)

which is evaluated according to the radiation integral (2.19) but considering the ff
approximation for the scalar Green’s functions (2.17). For magnetic currents and
the associated vector potential 𝒇ff, we find by duality

𝒆ff = j𝑘𝒖𝑟 × 𝒇ff , 𝒉ff = −j𝑘(𝒇ff − 𝒖𝑟 𝒖𝑟 ∙ 𝒇ff) = 𝒖𝑟 × 𝒆ff . (2.48)
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Chapter 2 Electromagnetic Theory & Boundary Integral Equations

As seen in (2.47), the fields decay in every direction with 1/‖𝒓‖ in a homoge-
neous medium of infinite extent. For inherently radiating objects, i.e., antennas,
interesting properties are the angle-dependent radiation pattern

𝐶(𝜗 , 𝜑) =
‖𝒆ff(𝒓)‖

max
(𝜗 ,𝜑)

‖𝒆ff(𝒓)‖
for ‖𝒓‖ = const. and ‖𝒓‖ → ∞ (2.49)

and the directivity

𝐷(𝜗 , 𝜑) =
4π 𝐶(𝜗 , 𝜑)

∬ 𝐶(𝜗 , 𝜑)2 sin 𝜗 d𝜗 d𝜑
, (2.50)

whichmeasures the power density radiated in a certain direction (𝜗 , 𝜑) as compared
to the power density of an ideal isotropic radiator radiating the same total power.
Here, the angles 𝜗 and 𝜑 denote the polar and azimuthal angles of the spherical
coordinates, i.e., they are part of the position vector 𝒓. The gain

𝐺(𝜗 , 𝜑) = 𝜁𝐷(𝜗 , 𝜑) (2.51)

is related to the directivity via the efficiency 𝜁. If dielectric, magnetic, and ohmic loss
are considered, we speak of the radiation efficiency, which equals “the ratio of the
total power radiated by an antenna to the net power accepted by the antenna” [IEEE
Antennas and Propagation Society 2014], and of the (absolute) gain. If mismatch
loss is considered in addition, we speak of the total radiation efficiency (the ratio
of radiated power and available power) and of the realized gain.

For scattering scenarios, the scattered field of an object is often expressed by
means of the bi-static radar cross-section (rcs)

𝜎(𝜗 , 𝜑) = lim
‖𝒓‖→∞

4π‖𝒓‖2 ‖𝒔
𝑠(𝒓)‖

‖𝒔𝑣(𝒓)‖
= 4π‖𝒓‖2

‖𝒔𝑠ff(𝒓)‖
‖𝒔𝑣ff(𝒓)‖

= 4π‖𝒓‖2
‖𝒆𝑠ff(𝒓)‖2

‖𝒆𝑣ff(𝒓)‖2
, (2.52)

where the energy flux is represented via the Poynting vector

𝒔 = 1
2𝜂𝒆 × 𝒉

∗ ≈
‖𝒓‖→∞

1
2𝜂𝒖𝑟 ‖𝒆ff‖

2 (2.53)

with the complex conjugate (⋅)∗. If the scattered field is evaluated only in a single
direction opposite to the incident plane wave incidence 𝒌, we speak of the mono-
static rcs. In order to relate the rcs to the electrical size of the scatterer, we employ
the normalized rcs

𝜎(𝜗 , 𝜑)/𝜆2 = 4π‖𝒓‖
2

𝜆2
‖𝒆𝑠ff(𝒓)‖2

‖𝒆𝑣ff(𝒓)‖2
. (2.54)

The electric field may also be analyzed by its polarization components. A typical
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2.5 Boundary Integral Equations

choice in the ff are the components tangential to the radiation direction 𝒖𝑟: [𝒆ff]𝜗
and [𝒆ff]𝜑. The component-wise rcs is defined accordingly as

𝜎𝜗(𝜗 , 𝜑) = 4π‖𝒓‖2
‖[𝒆𝑠ff(𝒓)]𝜗‖2

‖𝒆𝑣ff(𝒓)‖2
. (2.55)

2.5.2 Scattering and Radiation Problems

The difference between radiation and scattering problems lies in the origin of the
exterior field 𝒆𝑣. For radiation problems, the excitation is closely placed in the
nf—for instance, a delta gap in the mesh or the excitation of a waveguide mode. We
call 𝒆𝑣 or 𝒉𝑣 the excitation and 𝒆 = 𝒆𝑣 + 𝒆𝑠 and 𝒉 = 𝒉𝑣 + 𝒉𝑠 the radiated fields. With
an impinging wave originating from some distance—possibly even infinitely far
away—, we speak of a scattering problem. Then, 𝒆𝑣 is referred to as the incident field
and 𝒆𝑠 as the scattered field. Both scenarios are treated in the same mathematical
way.

The investigations in this thesis are restricted to pec objects. For scatterers
with material distributions, ies for homogeneous dielectric objects such as the
Müller or the Poggio-Miller-Chang-Harrington-Wu-Tsai boundary ies may be
employed [Müller 1969; Poggio and E. K. Miller 1973; T.-K. Wu and Tsai 1977;
Y. Chang and Harrington 1977; Mautz and Harrington 1977; Harrington 1989].
Alternatively, hybrid formulations such as the finite-element boundary-integral
(fe-bi) method can be used [Marin 1982; Jin and Liepa 1988; Gong and Glisson
1990; Jin et al. 1991; Gedney et al. 1992; Eibert et al. 1999]. For electrically large
scenarios, a hybridization of sies with asymptotical methods such as the (uniform)
geometrical theory of diffraction or physical optics is feasible [Helmers et al. 1999;
P. Persson and Josefsson 2001; Alaydrus et al. 2002; Chew et al. 2002; Tzoulis and
Eibert 2005]. The particular implementationchallenges of sies as they are presented
in the following are discussed in more detail in Chapter 3.

Figure 2.3(a) shows an electromagnetic wave (𝒆𝑣, 𝒉𝑣 ), for instance a plane wave

𝒆𝑣(𝒓) = 𝑒0 𝒑 e−j𝒌∙ 𝒓 , 𝒉𝑣(𝒓) = 𝒌
𝑘 × 𝒆𝑣(𝒓) (2.56)

with amplitude 𝑒0, polarization according to the complex unit vector 𝒑, for instance
𝒑 = 𝒖𝑥 for 𝑥-polarization, and wave vector 𝒌 with ‖𝒌‖ = 𝑘, for instance 𝒌 = 𝑘 𝒖𝑧 for
propagation in+𝑧-direction, impinging on a pec scattering object. The incident field
𝒆𝑣 causes a scattered field 𝒆𝑠 due to the presence of the scatterer and its boundary
condition 𝒏 × 𝒆 = 0.

The scenario after introducing equivalent Love currents is shown in Fig. 2.3(b).
Due to the boundary conditions (2.25) and (2.26), only the electric Love currents
are nonzero. Intriguingly, the Love currents match the real physical currents for
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𝒏
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𝒏
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𝑣i

𝑣

𝒋
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Fig. 2.3: The surface equivalence principle applied for the derivation of boundary ies for a
pec scattering scenario. (a) A pec scatterer. (b) Equivalent Love-current problem
for the exterior fields. (c) Equivalent non-Love-current problem for the exterior
fields.

pec objects—this does not hold true in general. In this step, the scatterer in 𝑣i was
already replaced by the background material, which is possible due to the zero field
caused by the equivalent Love currents. This offers the advantage of employing
the Green’s function of the homogeneous background medium.

Figure 2.3(c) shows a facultative second application of the Huygens principle.
After altering the medium inside 𝑣i, the equivalent currents may be chosen as
non-Love ones which results in a non-zero interior field. This is exploited in the
following for constructing different ies.

Stratton and Chu [1939] have proposed the first sies for electromagnetic diffrac-
tion problems. Those ies work with the tangential and normal field components
on 𝑠. In this thesis, we employ a formulation which works with the tangential field
components only, which was proposed by Maue [1949].

The Electric Field Integral Equation

For the case of pec objects, the total electric field

𝒏 × 𝒆𝑣 + 𝒏 × 𝒆𝑠 = 0 (2.57)

is known to vanish on 𝑠 from (2.25), which leads to the electric field integral equation
(efie) if the radiation operators of the equivalent currents are employed to express
𝒆𝑠. We obtain the classical efie with Love currents [Maue 1949]

𝒆𝑣 × 𝒏 = 𝓣𝒋l (2.58)
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or a version with generic electric and magnetic currents

𝒆𝑣 × 𝒏 = 𝓣𝒋 − [
1
2𝓘 − 𝓚]𝒎 . (2.59)

The Magnetic Field Integral Equation

For pec boundary conditions, the statement about the magnetic field

𝒏 × 𝒉𝑣 + 𝒏 × 𝒉𝑠 = 𝒋l (2.60)

can only be made if the appearing currents are Love currents since only they pose
restrictions on the magnetic field. Furthermore, it is apparent that the mfie does
not work for open objects, viz., objects with zero volume but with a non-zero
surface area—if we imagine that the volume 𝑣i becomes infinitesimally thin until
both sides of the surface 𝑠 touch, the superposition of the two boundary conditions
𝒋 = 𝒏 × 𝒉 from both sides of the surface merge and vanish. The efie does not
suffer from this restriction. Again, the scattered field 𝒉𝑠 is expressed by a radiation
operator, which yields the mfie [Fock 1946; Maue 1949]

𝒉𝑣 × 𝒏 = [
1
2𝓘 + 𝓚]𝒋l . (2.61)

The Problem of Interior Resonances

If the backgroundmedium is lossless, the interior resonance problem is evidently not
avoided for the efie and the mfie with a Love-current solution. Hence, the interior
solution is not unique at distinct frequencies; for the mfie, even the exterior fields
do not exhibit a unique solution. The fact that interior resonances—eigensolutions
to an interior problem—may occur for the discussed integral equations has been
stated already as early as in 1949 [Maue 1949; Waterman 1965]. Later, this was
observed to cause numerical artefacts [Mei and Bladel 1963; Andreasen and Mei
1964; Andreasen 1964] which even lead to a surface-current measurement for a
“pec” scattering setup [Mei and Moberg 1965]; the theoretical explanations for
these observed phenomena were pointed out afterwards [Klein and Mittra 1975;
Yaghjian 1981; Peterson and Mittra 1987; Peterson 1990]. During these early
observations, it became already clear that increasing the computational accuracy
helps to circumvent the interior resonance problem to some extent [Andreasen
and Mei 1964; Andreasen 1964; Eibert and V. Hansen 1996].

For the efie, we imagine a pec cavity (complementary to the originally consid-
ered pec object). Such an equivalent scenario is depicted in Fig. 2.4(a). There exist
non-trivial homogeneous solutions 𝒋pecir for the tangential electric field in (2.57),
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Fig. 2.4: The interior resonance problem of surface ies. (a) A pec cavity filled with the
background material of the original problem. (b) Likewise, a pmc cavity. (c) The
equivalent Love-current scenario for (b). (d) A possible equivalent non-Love-current
scenario for (b).

viz. non-trivial solutions to

𝓣𝒋pecir = 𝒏 × 𝒆𝑠 = 0 (2.62)

at discrete interior resonance frequencies according to the cavity modes. The
tangential magnetic field on the cavity walls corresponds to the current 𝒋pecir .

A similar effect is observed for the mfie. However, the origin of the interior
resonances for the pec mfie is slightly less obvious, since the related perfect
magnetic conductor (pmc) cavity as shown in Fig. 2.4(b) supports only magnetic
surface current densities 𝒎pmc

ir on its boundary 𝑠 (tangential electric fields of the
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cavity mode).4 The transition to electric currents is achieved via the Huygens’
principle.

First, we introduce a problem equivalent to the pmc cavity with magnetic Love
currents placed in a homogeneous material of infinite extent in Fig. 2.4(c). There-
after, we arbitrarily choose specific alternative equivalent currents in Fig. 2.4(d)
according to the Huygens principle described by (2.32) and (2.33) such that we find
vanishing equivalent magnetic surface current densities

0 = (𝒆𝑠 − 𝒆𝑠i) × 𝒏 = 𝒆𝑠 × 𝒏 + 𝒎pmc
ir , (2.63)

and non-zero equivalent electric surface current densities

𝒋pmc
ir = 𝒏 × (𝒉𝑠 − 𝒉𝑠i) = 𝒏 × 𝒉𝑠 . (2.64)

Note that 𝒏 × 𝒉𝑠i = 0 on 𝑠. The exterior fields 𝒉𝑠 and 𝒆𝑠 on 𝑠 are not directly defined
but depend on each other. In the case at hand, we express 𝒆𝑠 in terms of the newly
found equivalent electric currents in (2.63) and solve the (pec scattering) equation5

𝓣 𝒋pmc
ir = 𝒎pmc

ir . (2.65)

This procedure of applying the Huygens principle as in the previous steps has
already been passed through earlier in this section, cf. the steps taken in Fig. 2.3.
The resulting equivalent electric currents 𝒋pmc

ir constitue non-Love-current versions
of the interior-resonance pmc cavity eigensolutions—i.e., non-trivial solutions to

[
1
2𝓘 + 𝓚]𝒋pmc

ir = 𝒏 × 𝒉𝑠 = 0 . (2.66)

Obviously, these equivalent currents 𝒋pmc
ir contain a radiating component, since

a non-Love current representation of an interior solution does exhibit non-zero
exterior fields.

The discussed homogeneous solutions to the efie and mfie are parasitic to the
original problem and occur in theory at discrete resonance frequencies only. Due
to limitations of the discretization, the influence is present at some bandwidth
around the discrete frequencies dependent mostly on the computational accuracy.
For the efie, two numerical issues arise as a consequence. Numerical cancella-
tion errors deteriorate the solution accuracy and the non-trivial null space of the

4. Chew and Song [2007] and Chew et al. [2008] have demonstrated (with an elaborate gedanken
experiment) that the “interior resonance” scattering currents 𝒋pmc

ir constitute an exterior pec scattering
solution with a suitably constructed excitation. However, such a solution still emanates from the pmc
cavity, whose magnetic currents 𝒎pmc

ir are the excitation of the mentioned pec scattering problem. The
very same scattering problem has to be solved in the context of our discussion.

5. This equation even reveals the relation of the interior-resonance currents of the efie and the
mfie since 𝒎pmc

ir ∝ 𝒋pecir by duality.
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system of equation worsens the conditioning dramatically, resulting in increased
solution times for iterative solvers. These two issues appear more emphasized for
electrically large scenarios, where the parasitic interior problem becomes strongly
overmoded. The mfie is affected much more than the efie. Unfortunately, the
exterior fields of the parasitic mfie solution deteriorate the accuracy much more
than the purely interior parasitic efie solution. This happens even without any
numerical cancellation effects. An increased condition number due to numerical
effects is also observed for the mfie.

Several approaches to tackle the interior resonance problem have been reported,
for instance by numerically extracting the vector in the operator nullspace related
to the parasitic interior resonance solution, by adding a small loss term to the
wavenumber, or by enforcing zero interior fields [Medgyesi-Mitschang and D.-S.
Wang 1985; Murphy et al. 1990; Canning 1991; Correia 1993; Martin and Ola 1993;
Canning 1995; Leviatan and Baharav 1995; Mohsen et al. 1995; Caorsi et al. 1996;
Tsalamengas 2016]. The combined field integral equation (cfie) is nowadays
the prevalent approach to fix the interior resonance problem for pec scattering
scenarios. The combined source integral equation (csie) is closely related but has
received much less attention. Both are introduced in the following.

Avoiding Interior Resonances: The Combined Field Integral Equation

Fortunately, the non-trivial solutions to the pec and pmc cavities differ from each
other—one being purely interior with 𝒏 × 𝒆𝑠 = 0 and the other one being com-
bined interior & exterior with 𝒏 × 𝒉𝑠i = 0. A combination of the efie and mfie
operators—a combined field (cf) solution—is able to eliminate the problem of the
non-trivial nullspace caused by interior resonances. The prevalent way to do so is
the cfie [Oshiro et al. 1970; Poggio and E. K. Miller 1973; Mautz and Harrington
1978]

[𝜒cf𝒏 × 𝒆𝑣 + (1 − 𝜒cf)𝒉𝑣] × 𝒏 = [𝜒cf𝒏 × 𝓣 + (1 − 𝜒cf)(
1
2𝓘 + 𝓚)]𝒋l (2.67)

with a weighting 0 ≤ 𝜒cf ≤ 1. We attain a pure mfie for 𝜒cf = 0 and a pure efie
for 𝜒cf = 1.

In the cfie, either the magnetic or the electric field receives an additional 90°-
rotation. This helps to enforce a unique solution [Mautz and Harrington 1978]. As a
starting point, we assume that there exists a non-trivial homogeneous solution 𝒋cfiehom
to the cfie. In this homogeneous equation

[𝜒cf𝒏 × 𝓣 + (1 − 𝜒cf)(
1
2𝓘 + 𝓚)]𝒋cfiehom = 𝜒cf𝒏 × 𝒏 × 𝒆𝑠 + (1 − 𝜒cf)𝒏 × 𝒉𝑠 = 0 , (2.68)
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the scattered fields can be rearranged as the ibc

𝜒cf𝒏 × 𝒆𝑠 × 𝒏 = (1 − 𝜒cf)𝒏 × 𝒉𝑠 . (2.69)

If this ibc can be fulfilled by scattered fields or by any fields produced by equivalent
electric surface currents on 𝑠, a non-trivial homogeneous solution to the cfie
exists—and hence a non-trivial nullspace in the cfie operator. In order to show
that this is indeed impossible, we take a look at the Poynting vector [according
to (2.53)]

𝒔 = 1
2𝜂(𝒏 × 𝒆𝑠 × 𝒏) × 𝒉𝑠∗ =

1 − 𝜒cf
2𝜂𝜒cf

(𝒏 × 𝒉𝑠) × 𝒉𝑠∗ = −
1 − 𝜒cf
2𝜂𝜒cf

𝒏‖𝒉𝑠‖22 (2.70)

for tangential surface fields on 𝑠 (which are evaluated by the use of 𝒏× 𝒆𝑠 ×𝒏 instead
of 𝒆𝑠). Apparently, the power flow has to be real and inwards oriented on every
point on the surface for the considered ibc.

However, this is not possible for fields originating from surface sources on 𝑠,
since such sources exhibit an outwards power flow though 𝑠

Re {∬
𝑠
𝒔 ∙ 𝒏 d2𝑟 } ≥ 0 (2.71)

greater equal zero. This contradicts (2.70) and we deduce that 𝒋cfiehom = 0.
From these considerations, it becomes clear that the cfie is equivalent to enforc-

ing a lossy impedance boundary for the homogeneous solution. Since our basic
assumption was a lossless background medium—only then, the interior resonance
problem occurs at all—, resonances can only be found at complex frequencies [Jin
2011].

Avoiding Interior Resonances: The Combined Source Integral Equation

Instead of combining the electric andmagnetic fields, a similar effect can be achieved
by employing the generic efie (2.59) and imposing the cs condition (2.36), which
is a uniqueness constraint formulated for the sources instead of the fields,

𝒎cs =
1 − 𝜒cs
𝜒cs

𝒏 × 𝒋cs (2.72)

with the weighting 0 ≤ 𝜒cs ≤ 1. This leads to the csie [Brakhage and Werner
1965; Bolomey and Tabbara 1973; Mautz and Harrington 1979; Rogers 1985; Morita
et al. 1990]

𝒆𝑣 × 𝒏 = 𝓣𝒋cs +
𝜒cs − 1
𝜒cs

[
1
2𝓘 − 𝓚]𝒏 × 𝒋cs . (2.73)
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As for the cfie, the weighting factor 𝜒cs is designed in a way that with 1, we have
a pure 𝓣 operator, with 0 a pure mfie operator, and with 0.5 an equal weighting of
both. With the same choice for 𝜒cs = 𝜒cf, the csie is the adjoint formulation of
the cfie [Mautz and Harrington 1979; Harrington 1989]. With a similar reasoning
as presented above for the cfie, Mautz and Harrington [1979] have shown that
a non-trivial homogeneous solution to the csie would exhibit a Poynting vector
pointing inwards everywhere on 𝑠, which is a contradiction to the behavior of
surface currents on 𝑠 in a lossless medium. In particular, the equivalent cs currents
enforce a wave propagation into the direction of 𝒏, i.e., into the solution domain,
and the propagation of scattered fields though the scatterer is suppressed to some
extent.

The Interpretation of Combined-Source Fields

The cs currents are obviously different from Love currents, which are the prevalent
choice for solving pec scattering ies. At most frequencies, it is sufficient to look at
the efie or mfie solutions in order to see the differences of Love and cs currents.
Only at interior resonance frequencies, the particular property of an interior zero
field, which is related to a Love current solution, is enforced just by the cfie and
not the efie or mfie alone. The influence of interior resonances is eliminated
since the outward-oriented Poynting vector of sources on the surface 𝑠 enforces
that there is no non-trivial homogeneous solution to the csie and the cfie (the
latter with Love currents). As mentioned above, the decisive property of Love
currents (zero interior fields) can be conveniently examined at frequencies where
no interior resonances are observed. The same holds for the radiation properties of
cs currents.

Here, we look at plane-wave scattering (incidence direction 𝒌 = 𝑘𝒖𝑧 and polar-
ization 𝒑 = 𝒖𝑥) at a pec sphere with a diameter of 1m.6 The simulation frequency
is 200MHz, meaning that the sphere is simulated below the first interior resonance.
Figure 2.5 depicts the total and scattered electric nfs produced by the Love current
and cs solutions. The exterior fields—both total and scattered—in both cases are
visually indistinguishable and even theoretically identical. For the Love current
solution, we observe a zero total field as well as ‖𝒆𝑠‖ = 𝑒0 inside the scatterer, just
as expected. The cs solution shows a quite strong total field inside the scatterer
with field values fluctuating around 𝑒0, i.e., similar to the field of the incident wave.
Looking at solely the scattered field 𝒆𝑠 reveals why. The combination of approxi-
mately orthogonal electric and magnetic currents—known as the so-called Huygens
radiator for just two dipole current elements—exhibits an outward-oriented radia-
tion characteristic with suppressed radiation into the interior region. Hence, the

6. The sphere is discretized with 999 Rao-Wilton-Glisson (rwg) unknowns. The details on how the
currents are calculated are discussed in Chapter 3 for the efie and in Chapter 4 for the csie.
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Fig. 2.5: The impact of choosing Love or cs currents on the magnitude of the electric nf. (a)
Total electric field 𝒆 of the csie solution. (b) Total field 𝒆 of the efie/Love current
solution. (c) Scattered field 𝒆𝑠 of the csie solution. (d) Scattered field 𝒆𝑠 of the efie
solution.

scattered field (lacking the incident field component 𝒆𝑣) shows a close to vanishing
field inside the scatterer. As this concerns the interior fields only, there are of
course no relevant effects on the exterior solution.

Whenever there is no field from exterior sources to consider—for instance for
most source reconstruction problems—, the cs and Love current solutions are fairly
similar. Whenever there is a non-vanishing field 𝒆𝑣, Love-current solutions suppress
the total field 𝒆 inside 𝑣i while cs solutions suppress some of the scattered field 𝒆𝑠
inside 𝑣i.
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2.5.3 Source Reconstruction for Antenna Measurements and Further
Inverse Problems

Source reconstruction is based on a different underlying assumption than radia-
tion or scattering problems: The boundary values are determined by observation
samples collected with a field probe, not by physical boundary conditions of the
material of an object under consideration. The field samples of 𝒆𝑠 or 𝒉𝑠 are taken
on the observation surface 𝑎 in the nf or ff, which is enclosing the Huygens sur-
face 𝑠—which, in turn, encloses the object under test—at some reasonable distance.

Typically, all radiation originates fromwithin 𝑣i. This may be achieved in practice
by going into a controlled environment such as an anechoic chamber [Parini et
al. 2020].7 In order to reduce the required size of such chambers—and, on a related
note, their cost—, antenna measurements are often conducted in the nf, even
though most of the time only the antenna under test (aut) ff properties are of
interest in order to characterize an aut or to make sure that an aut meets its
specifications. So-called near-field far-field transformation (nffft) algorithms are
then required to calculate the properties of interest in a post-processing step [Tice
and Richmond 1955; Ludwig 1971; Johnson et al. 1973; Yaghjian 1986]. These
algorithms may even provide additional benefits. Source reconstruction algorithms
with a suitable reconstruction basis filter and average random errors. Since such a
reconstruction basis only provides a limited number of degrees of freedom (dofs)
for the radiated fields, some parts of systematic errors can also be taken care of.
With more measurement samples than required by the Nyquist sampling limit,
more robustness against measurement noise and other errors is attained for nffft
algorithms.

Equivalent surface-current models are one of the reconstruction bases which
give the possibility to incorporate geometrical information about the aut into the
nffft. By this, they may provide diagnostic and spatial filtering capabilities [Petre
and Sarkar 1992; Sarkar and Taaghol 1999; Alvarez et al. 2007; Araque Quijano
and Vecchi 2010a; Jørgensen et al. 2010; Foged et al. 2014; Parini et al. 2020; Eibert
et al. 2016; Kornprobst et al. 2019b; Kornprobst et al. 2021a]. Such an equivalent
current model for an nf antenna measurement setup is schematically illustrated in
Fig. 2.6, with the equivalent surface currents placed on the Huygens surface 𝑠. The
first step—introducing an equivalent scenario just as in Fig. 2.3(b) and eliminating
any (unknown) aut material—has already been carried out. Hence, the equivalent
surface sources on the Huygens’ surface 𝑠 radiate in free space–or any other
surrounding medium with an evaluable radiation operator. The surface 𝑠 fully and
tightly encloses the aut (whose material composition and exact geometric location

7. One notable exception occurs if there are non-ideal environmental influences beyond the control
of the measurement engineer. Then, echo suppression and source localization techniques are a must to
ensure high-quality measurement results.
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(𝜀, 𝜇, 𝜅e, 𝜅m)
𝑣

Fig. 2.6: An equivalent scenario for an antenna measurement setup. The aut is replaced by
the background material and enclosed by the Hugens surface 𝑠. Observations are
taken from the tangential fields on 𝑎 at some distance to the aut.

may remain unknown). Ideally, the observation surface 𝑎 shall be placed around
𝑣i, spatially separated at some distance, and closed. If 𝑎 is not closed, the valid
angular range of the reconstruction is limited and truncation errors may reduce
the reconstruction accuracy, in particular at the borders of 𝑎. Furthermore, the
field sampling has to be sufficiently dense to capture all dofs in the fields coming
from 𝑠 (and maybe even undesired influences in addition). For a convex surface
𝑠, an approximate value for the required number of measurements is given by a
half-wavelength sampling on 𝑠 projected on 𝑎. With continuous field observations
at 𝒓 ∈ 𝑎 and equivalent surface sources at 𝒓′ ∈ 𝑠, the boundary integral equation
for the measured tangential electric 𝒆𝑠(𝒓) on 𝑎 reads

𝒏(𝒓) × 𝒆𝑠(𝒓) = 𝓣 {𝒋(𝒓′)}(𝒓) − [
1
2𝓘{𝒎(𝒓′)}(𝒓) − 𝓚{𝒎(𝒓′)}(𝒓)] . (2.74)

A similar equation holds true for the magnetic field by duality, see (2.40).
This equivalent source representation with electric and magnetic surface cur-

rent densities, proposed by Alvarez et al. [2007], is not unique as we know from
the equivalence theorems [Huygens 1690; Love 1901; Schelkunoff 1936; Martini
et al. 2008]. Thus, the inverse problem is ill-posed [Kılıç and Eibert 2015; T. B.
Hansen et al. 2019]. Unique solutions can be attained if we choose purely elec-
tric or magnetic surface current densities [Petre and Sarkar 1992, 1994; Sarkar
and Taaghol 1999; Eibert and Schmidt 2009; Eibert et al. 2010; Araque Quijano
and Vecchi 2010b, 2010a; Eibert et al. 2011] or combinations of electric and mag-
netic surface current densities such as Love currents [Araque Quijano and Vecchi
2009; Jørgensen et al. 2010; Araque Quijano and Vecchi 2010b, 2010a; Jørgensen
et al. 2011b; Jørgensen et al. 2012a; Foged et al. 2014; Kılıç and Eibert 2015; Korn-
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probst et al. 2019b; Kornprobst et al. 2019e; Kornprobst et al. 2019f; Kornprobst
et al. 2021a] or css [Eibert and Vojvodic 2016; Eibert et al. 2016; Eibert and T. B.
Hansen 2017; Kornprobst et al. 2019b; Kornprobst et al. 2021a]. Worth mentioning
is also the work by K. Persson and Gustafsson [2005], K. Persson et al. [2010], and
K. Persson et al. [2014], where the focus was on radome applications and where
the body-of-revolution symmetry was utilized in order to decompose the inverse
equivalent current problem by the corresponding eigenmodes.

Many variants of and extensions to this problem are worth researching—possibly
inspired by real-world measurement challenges with innovative measurement
setups [Faul et al. 2018; Faul et al. 2019; Mauermayer et al. 2019; Kornprobst
et al. 2020]. The handling of electrically large measurement scenarios has to be
done in a computationally efficient manner [J. E. Hansen 1988; Bucci et al. 1991;
Coifman et al. 1993; Chew et al. 2001; K. Zhao et al. 2005; Eibert 2005; Alvarez
et al. 2008; Schmidt and Eibert 2009; Lopez et al. 2009; Eibert and Schmidt 2009;
Qureshi et al. 2013; Foged et al. 2014; Y. Wang et al. 2018; Varela et al. 2020].
Reducing the required number of measurement samples, which are closely related
to the dofs in the radiated fields, is one way to reduce measurement times to the
practicable minimum [Bucci and Gennarelli 1988; D’Agostino et al. 2009; Cornelius
et al. 2016; Hofmann et al. 2019; Bangun et al. 2020]. Probe correction takes care
of the behavior of the probe antenna if its behavior is different from an idealized
Hertzian or Fitzgerald dipole [Larsen 1977; Schmidt et al. 2008; Eibert et al. 2015]. In
the presumably most extreme case, a correction of the non-ideal fields of compact
ranges and plane-wave generators may be investigated [Johnson et al. 1969; Bucci
et al. 2013; Gemmer and Heberling 2019; Scattone et al. 2021]. Echo suppression
with additional radiation sources outside of 𝑣i has already been mentioned [Foged
et al. 2013b; Yinusa 2015; Paulus et al. 2019; Knapp et al. 2019a; Knapp et al. 2019b;
Kornprobst et al. 2019d; Knapp et al. 2020]; a variation of sources outside of 𝑣i is
considered when the surrounding medium is not free space but for instance a half-
space [Mauermayer and Eibert 2018; Eibert and Mauermayer 2018a, 2018b; Saccardi
et al. 2019]. A variety of closely related problems is found in phaseless antenna
measurements, where only the field magnitude ‖𝒆𝑠(𝒓)‖ is measured [Yaccarino
and Rahmat-Samii 1999; Pierri et al. 1999; Paulus et al. 2017b; Paulus et al. 2020;
Kornprobst et al. 2021d; Knapp et al. 2021; Paulus et al. 2021]. This possibly leads to
a much harder-to-solve non-linear and non-convex source reconstruction problem.

Antenna measurements are the only measurement task with an associated in-
verse problem discussed in this thesis, but by far not the only one in electromag-
netics. The most notable other case is inverse scattering [Y. Wang and Chew 1989;
Bucci and Isernia 1997; Kılıç and Eibert 2015; Colton and Kress 2019], where the
mono- or bi-static scattering behavior of an object under test is measured and
reconstructed by suitable algorithms. Microwave imaging may be seen as an in-
verse scattering task, where the goal is to retrieve an object’s spatially varying

28



2.5 Boundary Integral Equations

electromagnetic behavior or material composition [Schnattinger 2014; Neitz 2015].
These scenarios can be tackled by reconstructing scattering currents, idealized
scattering centers or material distributions. The first one is closely related to source
reconstruction for antenna measurements.
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Chapter 3
Surface Integral Equations and
Their Discretization

I have always believed that scientific research is another domain where a form of
optimism is essential to success: I have yet to meet a successful scientist who lacks
the ability to exaggerate the importance of what he or she is doing, and I believe that
someone who lacks a delusional sense of significance will wilt in the face of repeated
experiences of multiple small failures and rare successes, the fate of most researchers.

— Daniel Kahneman, Thinking, Fast and Slow

Boundary integral equations can be employed for the simulation of radiation
and scattering problems. The continuous description of these problems has

been introduced in the preceding chapter and is here transformed into numerically
solvable, discretized problems according to the mom. This is done for the efie in
Section 3.1 and the mfie in Section 3.2, whose advantages and drawbacks, as well
as state-of-the-art solution approaches to the respective problems, are discussed in
these sections. The cfie discretization is discussed in Section 3.3.

3.1 Discretization of the Electric Field Integral Equation

3.1.1 A Walkthrough for the Method of Moments

The mom is a numerical technique to transform a linear operator equation (of-
ten with an integral operator as part of a boundary ie) into a linear system of
equations [Harrington 1968; Morita et al. 1990; Peterson et al. 1997; Jin 2011; Gib-
son 2014]. It follows the method of weighted residuals (potentially a variational
approach): With a given linear operator, and a choice of basis (or ansatz/expan-
sion/trial) and weighting (or testing) functions, a minimization of the residual
presumably yields the best possible approximation to the true solution within a
given basis. For instance, the fem may be seen as a subset of the mom with a
differential operator instead of an integral operator.

The flexibility of the mom allows a vast number of choices for the basis and
testing functions. Whereas some fundamental properties such as div-conformity
seem evident for the expansion functions of current densities, such considerations

31



Chapter 3 Surface Integral Equations and Their Discretization

turn out to be more cumbersome for the testing functions. Well-known approaches
for the choice of the testing functions include Dirac delta testing with Hertzian
dipoles for three-dimensional fields (point matching or collocation method), just
the same as the basis functions (Galerkin testing), or any other than the basis
functions (Petrov-Galerkin method). Among all these options, the mom does not
reveal—for given operators and/or basis functions—how a testing function should
look like or which testing function is superior to others. This issue can be tackled
by operator theory in a mathematically rigorous manner.

The initial step of the mom is to expand the surface current densities with 𝑁
basis functions 𝒗𝑛 as

𝒋 =
𝑁
∑
𝑛=1

[i]𝑛 𝒗𝑛 , 𝒎 =
𝑁
∑
𝑛=1

[v]𝑛 𝒗𝑛 , (3.1)

where each basis function receives an unknown coefficient [i]𝑛 or [v]𝑛 leading to
the column vectors i ∈ ℂ𝑁 and v ∈ ℂ𝑁. The basis functions for electric and magnetic
current unknowns do not have to be same; here, this is only an exemplary choice
which is discussed in more detail when specific basis functions are introduced.

There are two major possibilities for the expansion functions: entire-domain vs.
sub-domain functions. While the former are defined on the complete surface 𝑠 of
the scatterer, the latter are functions with compact support, for the 𝑛th expansion
function on a subdomain 𝑠𝑛 ⊂ 𝑠. This is for instance achieved by meshing the object
under consideration and defining sub-domain functions only on one or several,
possibly adjacent, mesh cells. Hence, sub-domain functions offer more versatility
for the modeling of arbitrary geometries and are nowadays the conventional choice.

Unlike the basis functions, the discretization of the operators depends on the
field quantities of interest. This step, i.e., choosing a suitable set of weighting
functions, is to be discussed for each equation separately. The procedure of mom
itself is discussed in detail for the efie first.

Evaluating the efie (2.58) for the discretized electric surface current densities
according to (3.1) leads to

𝑁
∑
𝑛=1

[i]𝑛𝓣 𝒗𝑛 = 𝒆𝑣 × 𝒏 . (3.2)

The field description also has to be transformed into single numerical values instead
of the continuous description. This is is done with a set of weighting functions
on a surface 𝑎. Except for exotic approaches such as the method of auxiliary
sources [Popovidi-Zaridze et al. 1978; Bogdanov et al. 1999; Kaklamani and Anas-
tassiu 2002; J. Lee and Nam 2005], the source surface 𝑠 and the observation surface
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𝑎 typically coincide when scattering objects are treated.1 As a sub-domain function,
the 𝑚th weighting function 𝒘𝑚 (of overall 𝑀 functions) exhibits a compact support
on 𝑎𝑚 ⊂ 𝑎. We attain the inner-product-like interaction integral

⟨𝒘𝑚, 𝒆𝑣 × 𝒏⟩ = ∬
𝑎
𝒘𝑚(𝒓) ∙ (𝒆𝑣(𝒓) × 𝒏(𝒓)) d2𝑟 for 𝑚 ∈ {1, 2, … ,𝑀} . (3.3)

This leads, when employed for (3.2), to the linear system of equations

𝑁
∑
𝑛=1

[i]𝑛 ⟨𝒘𝑚, 𝓣 𝒗𝑛⟩ = ⟨𝒘𝑚, 𝒆𝑣 × 𝒏⟩ for 𝑚 ∈ {1, 2, … ,𝑀} . (3.4)

In a compact notation, the equation may be written in matrix form as

T𝒘,𝒗 i = e𝒘 , (3.5)

where the subscripts 𝒗 and 𝒘 denote the choice of a set of basis and weighting
functions, respectively. The unknown coefficients are collected in the vector i. The
system matrix—here T𝒘,𝒗 ∈ ℂ𝑀×𝑁—has entries given as

[T𝒘,𝒗]𝑚𝑛 = ⟨𝒘𝑚, 𝓣 𝒗𝑛⟩ for 𝑚 ∈ {1, 2, … ,𝑀}, 𝑛 ∈ {1, 2, … , 𝑁 } (3.6)

and the entries of the right-hand-side vector e𝒘 ∈ ℂ𝑀 of the equation system are
given as

[e𝒘]𝑚 = ⟨𝒘𝑚, 𝒆𝑣 × 𝒏⟩ for 𝑚 ∈ {1, 2, … ,𝑀} . (3.7)

The matrix entries are numerically evaluated leveraging a singularity cancellation
technique [Duffy 1982; R. Graglia 1987; Khayat and Wilton 2005; Ismatullah and
Eibert 2008; L. Li et al. 2014a]. The most common choice is 𝑀 = 𝑁 for the system
matrix to be quadratic and, in the best case, non-singular. For sies, this is the only
case to be considered in the remainder of this chapter.

The whole discretization procedure from (3.1) to (3.7) is called mom; however, as
indicated above, the question of picking suitable basis or testing functions remains
unanswered and has to be deducted from the properties of the discretized operators.

1. This choice is usual and reasonable in the case of scattering or radiating problems as shown in
Fig. 2.3. For antenna measurements, see Fig. 2.6, the separation of source and observation surfaces is
much more common. The formalism with the observation surface 𝑎 holds in any case, though.
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3.1.2 Choosing a Suitable Set of Basis and Testing Functions

An Intuitive Approach

Taking the same basis 𝒗 for 𝒋 and 𝒎—as suggested in (3.1)—is not necessary but
reasonable to some extent. In order to fulfill the physics-based current continuity
conditions (2.5), divergence-conforming expansion functions are equally appro-
priate for both equivalent current types. Approaches with a non-div-conforming
basis for the current densities—or, more specifically, containing curl-conforming
parts—may lead to spurious solutions [Rao et al. 1982; Yuan 1990; Schroeder and
Wolff 1994; B.-N. Jiang et al. 1996].2 Furthermore, it may not be possible to evaluate
hypersingular integrals which lead to diverging field values [Maue 1949].3

Thus, the choice of 𝒗 is rather clear in favor of a div-conforming set of basis
functions based on the properties of current densities. The questions of how this is
reflected in the equations and of how to choose the appropriate testing functions
remain. For quite some time, the answer to these two issues has been evident—at
least for the efie operator due to its contained hypersingular contribution: The
integral ‖𝒓 − 𝒓′‖−3 appearing in 𝓣h simply cannot be evaluated for a self-coupling
term, i.e., for 𝑠𝑛 ∩ 𝑎𝑛 ≠ . Hence, the numerical evaluation of (2.43) has to be
discussed in more detail. The first step is to take one del-operator into the integral—
converting it into a surface derivative—and apply it to the current densities—and
no longer to the Green’s function—as4

𝓣h{𝒗𝑛}(𝒓) = −j 𝒏(𝒓) × grad∬
𝑠𝑛
𝑔(𝒓, 𝒓′) div′𝑠 𝒗𝑛(𝒓′) d2𝑟 ′ . (3.8)

It is obvious that div-conforming basis functions present an advantage in the
evaluation of this integral. The second step is the interaction integral with the
testing function, which is reformulated by the application of a surface Gauss
theorem to [Bladel 2007]

⟨𝒘𝑚, 𝓣h𝒗𝑛⟩ = −j∬
𝑎𝑚
𝒘𝑚(𝒓) ∙ (𝒏(𝒓) × grad∬

𝑠𝑛
𝑔(𝒓, 𝒓′) div′𝑠 𝒗𝑛(𝒓′) d2𝑟 ′) d2𝑟

2. This holds true for sies. For the fem, a curl-conforming basis is required for the fields.
3. This is the case for the 𝓣 operator, viz., the electric field of electric currents and the magnetic field

of magnetic currents. Even if we consider non-div-conforming basis functions for the classical mfie, in
which only the magnetic field of electric currents is evaluated, the electric field cannot be evaluated in
the post-processing. This has been for instance studied by Rao and Wilton [1990] for curl-conforming
expansion functions of magnetic currents.

4. We employ div𝑠(𝑔𝒗) = 𝑔 div𝑠 𝒗 + grad𝑠 𝑔 ∙ 𝒗 with div𝑠 𝒗 = 0 since 𝒗(𝒓′) has no 𝒓-dependence;
then, grad𝑠 𝑔 = − grad′𝑠 𝑔 with a derivative after 𝒓′; finally, a surface Gauss theorem helps to move the
derivative to the surface current densities [Bladel 2007].
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= −j∬
𝑎𝑚

div𝑎 (𝒏(𝒓) × 𝒘𝑚(𝒓))∬
𝑠𝑛
𝑔(𝒓, 𝒓′) div′𝑠 𝒗𝑛(𝒓′) d2𝑟 ′ d2𝑟

−j∮
∂𝑎𝑚

𝒖t,𝑚(𝒓) ∙ 𝒘𝑚(𝒓)∬
𝑠𝑛
𝑔(𝒓, 𝒓′) div′𝑠 𝒗𝑛(𝒓′) d2𝑟 ′ d𝑟 . (3.9)

Here, we have assumed that the 𝑚th weighting function exhibits compact support
on 𝑎𝑚, and that this support has a unit tangential vector 𝒖t,𝑚 on ∂𝑎𝑚, positively-
oriented according to the outward unit normal 𝒏.5

With the choice of curl-conforming testing functions, the line integral in (3.9)
vanishes. Additionally, 𝒏×𝒘 is then div-conforming which simplifies the evaluation
of the surface integral. Just from looking at this interaction integral, we have arrived
at choosing div-conforming basis and curl-conforming testing functions for the
efie. Note that the tangential electric field inside the efie was written as the
rotated version 𝒏 × 𝒆 to reach this conclusion.

However, div- and curl-conformity is not the only decisive feature. A well-
conditioned system matrix is also desirable. An indicator can be how dominant
the diagonal entries of the matrix are, which happens only for a significant overlap
between the basis function domain 𝑠𝑛 and the weighting function domain 𝑎𝑛 of
the 𝑛th functions. Furthermore, the respective functions 𝓣 𝒗𝑛 and 𝒘𝑛 should point
approximately into the same direction for every 𝒓 ∈ 𝑠𝑛 ∩ 𝑎𝑛—in other words, the
angle between 𝓣 𝒗𝑛 and 𝒘𝑛 should be as small as possible. This ensures a large value
of the dot product inside the interaction integral ⟨𝒘𝑛, 𝓣 𝒗𝑛⟩ of the self-coupling
terms. Due to the mapping properties of the 𝓣 operator, this desired behavior
can be achieved by 𝒘 = 𝒏 × 𝒗—viz., 𝓣 𝒗𝑛 is approximately co-linear with 𝒏 × 𝒗𝑛 on
𝑠𝑛—, which has the very welcome bonus effect that the weighting functions are
curl-conforming for a div-conforming basis.

A Theoretical Approach

The question of the correct choice of a set of testing functions for a given basis
and operator can be answered mathematically much more rigorously with the
help of operator theory [Cessenat 1996]. For the further discussion, the concept of
Sobolev spaces is briefly introduced, which are—without rigorously introducing all
necessary definitions in this context—complete normed vector spaces of integrable
functions whose weak-sense derivatives up to a certain order are integrable up
to a certain order. For the case of electromagnetic fields on a smooth surface 𝑠,
we consider Hilbert spaces with square-integrable weak-sense derivatives up to a
order of 1/2 [Cessenat 1996; Nédélec 2001]. Square-integrability makes sense from

5. Another way to define 𝒖t,𝑚 is via the outward unit normal 𝒏 on 𝑎 and the outward unit normal
𝒖n,𝑚 on ∂𝑎𝑚 lying in the tangent plane to 𝑎𝑚 as 𝒖t,𝑚 = 𝒏 × 𝒖n,𝑚. For a sketch, see Fig. 3.1(a) on p. 38.
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a physical point of view as it implies finite solution energy.

In the case of a one-dimensional generalized complex-valued function 𝑓 (𝒓)
dependent on a three-dimensional position vector 𝒓 ∈ ℝ3 but with the restriction
that 𝒓 ∈ 𝑠, we have the Sobolev space

𝐻−1/2(𝑠) = {𝑓 ∈ 𝒮′(𝑠) ∶ ‖𝑓 ‖𝐻−1/2(𝑠) < ∞} (3.10)

with the space 𝒮′ of tempered distributions and the associated norm

‖𝑓 ‖2𝐻−1/2(𝑠) = ∬
𝑠
|𝑓 (𝒓)|2 d2𝑟 +∬

𝑠
∬

𝑠

|𝑓 (𝒓) − 𝑓 (𝒓′)|2

‖𝒓 − 𝒓′‖
d2𝑟 ′ d2𝑟 . (3.11)

The first integral ensures finite energy in the function itself and the latter ensures
the same yet in presence of a ‖𝒓 − 𝒓′‖−1 singularity, which is somewhat comparable
to the presence of the Green’s function 𝑔(𝒓, 𝒓′) inside an integral.

We deduce the three-dimensional case for tangential vector fields 𝒗 ∈ ℂ3 as

𝑯−1/2
t (𝑠) = {𝒗 ∈ (𝐻−1/2(𝑠))3, 𝒏 ∙ 𝒗 = 0 } . (3.12)

The particular two sub-spaces of 𝑯−1/2
t (𝑠), which we are interested in, are

𝑯−1/2(div𝑠, 𝑠) = {𝒗 ∈ 𝑯−1/2
t (𝑠), div𝑠 𝒗 ∈ 𝐻−1/2(𝑠)} and (3.13)

𝑯−1/2(curl𝑠, 𝑠) = {𝒗 ∈ 𝑯−1/2
t (𝑠), curl𝑠 𝒗 ∈ 𝐻−1/2(𝑠)} , (3.14)

which may be seen as a more formal definition of the widely used terms div-
conforming and curl-conforming. The surfacic divergence is defined as

div𝑠 𝒗 ≔ div 𝒗 (3.15)

since 𝒗 ∈ 𝑯−1/2
t (𝑠) with 𝒏 ∙ 𝒗 = 0 and the surfacic curl as

curl𝑠 𝒗 ≔ curl 𝒗 ∙ 𝒏 = div𝑠(𝒗 × 𝒏) . (3.16)

Their respective norms are defined according to (3.11) as

‖𝒗‖2𝑯−1/2(div𝑠,𝑠)
= ‖𝒗‖2

𝑯−1/2
t (𝑠)

+ ‖div𝑠 𝒗‖2𝐻−1/2(𝑠) , (3.17)

‖𝒗‖2𝑯−1/2(curl𝑠,𝑠)
= ‖𝒗‖2

𝑯−1/2
t (𝑠)

+ ‖curl𝑠 𝒗‖2𝐻−1/2(𝑠) . (3.18)

The spaces 𝑯−1/2(div𝑠, 𝑠) and 𝑯−1/2(curl𝑠, 𝑠) are dual to each other [Cessenat 1996;
Nédélec 2001]. As seen from (3.16), any div-conforming function is converted to a
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curl-conforming one by a 𝒏× 90°-rotation on a surface, and vice versa.

Forging a bridge back to the topic of the efie discretization, we choose basis
functions in𝑯−1/2(div𝑠, 𝑠) due to current continuity. The efie operator 𝓣 as defined
in this thesis constitutes a mapping from 𝑯−1/2(div𝑠, 𝑠) to 𝑯−1/2(div𝑠, 𝑠). The
mom as described above does not suggest any particular type of testing functions.
However, its proper application requires that the testing is performed in the dual
space of the range of the operator under consideration [Cessenat 1996; Q. Chen and
Wilton 1990; Q. Chen 1990; Nédélec 2001; Tong et al. 2009; Buffa and Christiansen
2007; Ylä-Oijala et al. 2010; Cools et al. 2011; Yan et al. 2011a; Ylä-Oijala et al. 2012b;
Yan and Jin 2013; Ylä-Oijala et al. 2013b; Ylä-Oijala et al. 2014; Adrian 2018]. It
follows for the efie that the field evaluation should be performed in the dual
space of 𝑯−1/2(div𝑠, 𝑠), which is 𝑯−1/2(curl𝑠, 𝑠). This was already the result of the
simplistic reasoning above.

However, testing in the dual space is not sufficient. What was mentioned before
as the goal of a well-conditioned system matrix is—put mathematically—known as
the Ladyzhenskaya–Babuška–Brezzi condition or inf-sup condition. This comprises
not only well-posedness but also existence and uniqueness of the solution, both for
the analytical/continuous problem (ensured by the uniqueness theorem except for
interior resonances) and for the discetized problem (ensured by a proper choice of
basis and testing functions). Furthermore, it is a requirement that the discretized
solution converges to the analytical solution when the mesh is refined, i.e., when
the discretization density increases. For the classical rwg-discretized efie, these
conditions are fulfilled.

3.1.3 Intermission: Basis and Testing Functions on a Triangular Mesh

The Rao-Wilton-Glisson Functions

The introduction of div-conforming functions by Rao et al. [1982]—also known
from the works of Raviart and Thomas [1977] or Nédélec [1980] as the basis of
lowest polynomial order—defined on adjacent pairs of facets on a triangular mesh
was a breakthrough for sies since spurious solutions were avoided for the first
time. As compared to other meshes, triangular mesh cells provide a great deal of
flexibility for the geometric modeling. An 𝑛th rwg function is assigned to all pairs
of (adjacent) triangles, which share an 𝑛th interior edge of the mesh. These two
triangles are denoted as 𝑠+𝑛 and 𝑠−𝑛 with 𝑠𝑛 = 𝑠+𝑛 ∪ 𝑠−𝑛 ; their respective area is 𝐴±

𝑛 . A
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𝒖t,𝑛

triangle 𝑠+𝑛

triangle 𝑠−𝑛

𝒏

𝒓−𝑛

𝒓+𝑛

𝒓−𝑛 −
𝒓 𝑗

𝒓𝑗
𝒓𝑖
𝒓𝑖 − 𝒓+𝑛

𝜆3

𝜆2

𝜆1

𝐴−
𝑛

𝑛th edge𝒖n,𝑛

(a) (b) (c)

Fig. 3.1: Illustrations of the rwg functions on a single pair of adjacent triangles. (a) Depiction
of the relevant vectors and quantities. (b) A single 𝜷 function. (c) A single 𝜶 function.

single function may be defined as

𝜷𝑛 =

⎧
⎪

⎨
⎪
⎩

𝒓 − 𝒓+𝑛
2𝐴+𝑛

for 𝒓 ∈ 𝑠+𝑛 ,

𝒓−𝑛 − 𝒓
2𝐴−𝑛

for 𝒓 ∈ 𝑠−𝑛 ,

0 for 𝒓 ∈ 𝑠\𝑠𝑛 ,

(3.19)

see Fig. 3.1, where 𝒓𝑖 and 𝒓𝑗 are two possible realizations of 𝒓. In contrast to [Rao
et al. 1982], the functions are not scaled with the length of the interior edge. The
rwg functions are div-conforming—they live in 𝑯−1/2(div𝑠, 𝑠)—since the normal
vector component is continuous everywhere, in particular across the shared edge.
Consequently, their rotated counterparts 𝜶 = 𝜷 × 𝒏 are curl-conforming.

The definition in (3.19) is tedious to deal with for numerical integration schemes.
Typically, quadrature is performed in a triangle-specific barycentric coordinate
system with the coordinates

1 = 𝜆1 + 𝜆2 + 𝜆3 , (3.20)

𝒓 = 𝒓node1𝜆1 + 𝒓node2𝜆2 + 𝒓node3𝜆3 . (3.21)

The barycentric coordinates 𝜆𝑘 depend on the coordinate 𝒓. With the total area of
the triangle ‖(𝒓node1 − 𝒓node3) × (𝒓node2 − 𝒓node3)‖/2, each barycentric coordinate
corresponds to the normalized area of the respective subtriangle, see Fig. 3.1,
according to

𝜆1 =
‖(𝒓node2 − 𝒓) × (𝒓node3 − 𝒓)‖

‖(𝒓node1 − 𝒓node3) × (𝒓node2 − 𝒓node3)‖
. (3.22)

This allows one to rewrite the rwg function definition as, here given for 𝜷𝑛 inside
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3.1 Discretization of the Electric Field Integral Equation

the triangle 𝑠+𝑛 as depicted in Fig. 3.1(a),

𝜷𝑛 = 𝒏 × (𝜆2 grad 𝜆3 − 𝜆3 grad 𝜆2) for 𝒓 ∈ 𝑠+𝑛 , (3.23)

where the edge vectors 𝒏×grad 𝜆3 and grad 𝜆2 ×𝒏 are constant on 𝑠+𝑛 . Considering
all functions on one triangle at the same time, the quadrature of only three scalar
linear functions is sufficient. For div 𝜷𝑛 = ±1/𝐴, 𝒓 ∈ 𝑠±𝑛 , the constant function has
to be integrated in addition. Overall, only a 1/‖𝒓 − 𝒓′‖ singularity inside 𝑔(𝒓, 𝒓′)
has to be evaluated for the efie.

The rwg functions are a polynomial basis of order 𝑝 = 0.5. Along the direction
of current flow, they exhibit a piecewise-linear rooftop-alike dependence, and,
along the lateral direction, a constant one. For a smooth modeling of typically
sinusoidal current distributions, a rather dense discretization with a triangle edge
length ℎ of about 𝜆/10 is commonly employed. To avoid this dense discretization
and allow approximately for the naïvely expected, coarser discretization density
with an sampling of approximately 𝜆/2 unknowns per surface dimension (and an
even larger ℎ), higher-order (ho) functions may be employed.

Hierarchical Higher-Order Vector Functions on a Triangular Mesh

There are two ways to define ho functions: either interpolatory or hierarchical [Pe-
terson 2006]. In the hierarchical case, the functions are designed to be (nearly)
orthogonal and low-order (lo) functions form a subset of the ho ones. The ho
basis considered in this thesis has been proposed in [Ismatullah and Eibert 2009a,
2009b; Ismatullah 2010; L. Li et al. 2014b; L. Li 2016]. It is a 90∘ rotated version
𝜷 = 𝒏 × 𝜶 of the basis presented in [Sun et al. 2001; Y. Zhu and Cangellaris 2006],
which is done to make the curl-conforming fem basis div-conforming.

The functions are defined via a polynomial description with barycentric (or
simplex) coordinates 𝜆1 + 𝜆2 + 𝜆3 = 1, see Fig. 3.1(a). Then, the three half rwg
functions in one triangle (e.g., in 𝑠+𝑛 ) may be defined as

𝒗 = 𝒏 × (𝜆𝑖 grad 𝜆𝑗 − 𝜆𝑗 grad 𝜆𝑖) for 𝑖 ∈ {1, 2}, 𝑗 ∈ {2, 3}, and 𝑖 ≠ 𝑗 . (3.24)

A sign for each triangle with respect to the global surface orientation has to be
considered, if the function is an edge-element and has to be continuous across
triangle boundaries. The vectors 𝒏 × grad 𝜆𝑗 describe the edge vectors of the
triangles. The rwg functions represent the first-order div-conforming space (edge-
related). They exhibit linear variation only in one direction, hence we speak of a
polynomial order of 𝑝 = 0.5. The first polynomial order ansatz functions (𝑝 = 1)
are completed by the functions

𝒗 = 𝒏 × (𝜆𝑖 grad 𝜆𝑗 + 𝜆𝑗 grad 𝜆𝑖) for 𝑖 ∈ {1, 2}, 𝑗 ∈ {2, 3}, and 𝑖 ≠ 𝑗 (3.25)
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(a) (b) (c)

Fig. 3.2: Div-conforming hierarchical ho basis functions. (a) Exemplary 𝑝 = 1.0 function on
two adjacent facets. (b) First 𝑝 = 1.5 function on a single facet. (c) Second 𝑝 = 1.5
function on a single facet.

in the first-order rotational subspace (again edge-oriented). In a similar way,
polynomial functions of the simplex coordinates may be defined up to arbitrary
polynomial orders. The 𝑝 = 1.5 expansion functions are obtained by including the
(face-associated) second-order div-conforming subspace, the 𝑝 = 2 subspace by
the (both face- and edge-associated) second-order rotational subspace. The highest
order considered in this work is 𝑝 = 2.5 including the third-order div-conforming
subspace with face-associated functions.

The ho basis is finally built by putting together the half edge-associated functions
and collecting them and the face-associated functions in a set of functions 𝜷. Up to
order 𝑝 = 1.5, the ho basis functions are shown in Fig. 3.2.

3.1.4 The Classical EFIE Discretization

Following the preceding argumentation with 𝒗 = 𝜷 and 𝒘 = 𝜶, a conforming
discretization of the efie with rwg functions (or the hierarchical ho functions)
reads

T𝜶,𝜷 i = e𝜶 . (3.26)

This classical discretization of the efie (with an rwg basis) yields very accurate
results. However, its system matrix T𝜶,𝜷 suffers from ill-conditioning due to several
reasons—apart from the interior resonance problem. Looking at the electric field ra-
diated by an electric current—given by (2.15)—, there are two distinct contributions
from the vector and scalar potential. These can also be identified in the first line
of (2.21), where the singular integral for electric surface current densities 𝒋 scales
with 𝑘, and the hyper-singular integral for 𝒋 scales with 1/𝑘. This is the cause of
the so-called low-frequency (lf) breakdown, which leads to conditioning issues for
electrically small problems and to numerical accuracy issues at extremely lfs. Well-
studied approaches for solving the lf problem are loop-star/tree decompositions
and Calderòn preconditioning [Wilton and Glisson 1981; Mautz and Harrington
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1984; J.-S. Zhao and Chew 2000; J.-F. Lee et al. 2003; Eibert 2004; Andriulli et al. 2008;
Stephanson and J.-F. Lee 2009; Yan et al. 2009; Andriulli 2012; Andriulli et al. 2013;
Adrian et al. 2017, 2019]. A further issue causing conditioning problems is the
dense-discretization breakdown. This happens due to the spatial derivatives in
the hypersingular operator 𝓣h, which leads to the condition number of the efie
increasing with descreasing mesh size according to ℎ−2, i.e., quadratically inversely
proportional to the average triangle edge length ℎ. This can be solved for instance
by quasi-Helmholtz decompositions or Calderòn preconditioning [Contopanagos
et al. 2002; Adams 2004; Darbas 2006; R.-S. Chen et al. 2009; Andriulli et al. 2010;
Andriulli and Vecchi 2012; Adrian et al. 2014]. Dély et al. [2019] have identified
and tackled another issue: the ill-conditioning when the frequency increases along
with the discretization density, i.e., a high-frequency (hf) breakdown unrelated
to interior resonances. Apart from numerical issues in extreme cases, all these
efie breakdowns concern the condition number of the system matrix and not the
accuracy, which typically remains excellent. Hence, the efie solution serves as an
accurate reference at the frequency ranges and discretization densities considered
in this thesis, in particular when an ℎ- or 𝑝-refined solution is considered.

3.2 Discretization of the Magnetic Field Integral
Equation

Following the procedure, which was introduced for the discretization of the efie,
for the mfie (2.61), the linear system of equations

[
1
2G𝒘,𝒗 + K𝒘,𝒗]i = h𝒘 (3.27)

is obtained, where we have the discretized identity operator in the form of a
so-called Gram matrix with the entries

[G𝒘,𝒗]𝑚𝑛 = ⟨𝒘𝑚, 𝒗𝑛⟩ for 𝑚 ∈ {1, 2, … , 𝑁 }, 𝑛 ∈ {1, 2, … , 𝑁 } , (3.28)

the discretized mfie integral operater as a matrix with the entries

[K𝒘,𝒗]𝑚𝑛 = ⟨𝒘𝑚,𝓚𝒗𝑛⟩ for 𝑚 ∈ {1, 2, … , 𝑁 }, 𝑛 ∈ {1, 2, … , 𝑁 } . (3.29)

as well as the right-hand-side vector with its entries given as

[h𝒘]𝑚 = ⟨𝒘𝑚, 𝒉𝑣 × 𝒏⟩ for 𝑚 ∈ {1, 2, … , 𝑁 } . (3.30)
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(a) (b)

Fig. 3.3: Tangential field (real part) evaluation on a surface placed 𝜆/20 over an rwg basis
(length 𝜆/6, width 𝜆/12) for an electric surface current density. (a) Electric field
over a planar function. (b) Magnetic field over a planar function.

3.2.1 Choosing a Suitable Set of Basis and Testing Functions

At first sight, the 𝓚 integral operator including a 1/‖𝒓 − 𝒓′‖2 singularity seems
to be the challenging part for the discretization—more than the identity operator.
However, a look on the interaction integral

⟨𝒘𝑚,𝓚𝒗𝑛⟩ = −∬
𝑎𝑚
𝒘𝑚(𝒓) ∙ (𝒏(𝒓) ×⨍⨍

𝑠𝑛
grad 𝑔(𝒓, 𝒓′) × 𝒗𝑛(𝒓′) d2𝑟 ′) d2𝑟 (3.31)

reveals that the self-coupling integral vanishes for planar surfaces,6 since the
singularity has already been extracted from the integral leading to its evaluation
in a Cauchy principal-value sense. Hence, there is no self-interaction integral for
planar surfaces—the identity operator 𝓘 takes care of the self-interaction. For
smooth non-planar (e.g., curvilinear) surfaces or at edges, the integral has some
small contribution, but accurate quadrature and singularity treatment techniques
help to avoid any numerical issues.

Shifting the derivative operator from the Green’s function to the testing func-
tions is in principle possible for certain basis functions, but neither necessary nor
recommended for the integral in (3.31).7 The second part of the “intuitive” approach
to the choice of the testing functions for the efie was to determine an appropriate
direction of the testing functions to attain a diagonally dominant system matrix.
The same considerations can be done for the mfie. In order to clarify the differ-
ences between the mfie and the efie, a visualization of the fields of one rwg basis
function is given in Fig. 3.3, where the tangential fields on a planar surface placed
with 𝜆/20 distance over a planar rwg electric surface current density are shown.

6. The vector grad 𝑔(𝒓, 𝒓′) × 𝒋(𝒓′) is co-linear with the unit normal 𝒏(𝒓′) and 𝒏(𝒓′) = 𝒏(𝒓) if the
surfaces 𝑠𝑛 at 𝒓′ and 𝑎𝑚 at 𝒓 are in the same plane. Then, we have 𝒏 × 𝒏 = 0.

7. It is possible to shift the derivative to the basis functions, which requires a curl-conforming basis.
This is nonsense due to charge conservation, though.
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It is observed that the tangential electric field Re{(𝓣𝒋) × 𝒏} and the tangential mag-
netic field Re{(−𝓚𝒋) × 𝒏} over the source triangles (i.e., the self-coupling fields) are
approximately orthogonal. This suggests that the testing functions for the efie and
mfie—both for pec objects with purely electric currents—should be approximately
orthogonal in order to achieve well-conditioned system matrices.

This fact has been one of the major issues of sies. The mfie operator—just as
the efie one—constitutes a mapping from 𝑯−1/2(div𝑠, 𝑠) to 𝑯−1/2(div𝑠, 𝑠). Hence,
operator theory suggests weighting functions in 𝑯−1/2(curl𝑠, 𝑠). Together with the
goal of obtaining a diagonally-dominant matrix, this cannot be achieved with rwg
functions. This conflict can be resolved though when working with the dual mesh.

3.2.2 The Discretization of the MFIE, Associated Problems, and
Solution Approaches

Div-Conforming Basis and Testing Functions for the MFIE

Historically, when discretizing the mfie, the goal was to obtain a well-conditioned
system of equations. This is very simply achieved by choosing the same set of
functions as basis and testing functions, i.e., 𝒗 = 𝒘 = 𝜷, which leads to the linear
system of equations

[
1
2G𝜷,𝜷 + K𝜷,𝜷]i = h𝜷 . (3.32)

Thischoice causes several problems, some of which appear with particular emphasis
when an rwg basis is employed.

The Problems of the MFIE and Their Reasons

The classically discretized mfie behaves completely different than the efie: While
the condition number is always stable and rather small (except for interior reso-
nances of course), the solution accuracy is severely deteriorated in many scenarios;
the classical mfie is generally seen as inaccurate. This has several underlying
reasons, based on the discretization of both the 𝓘 and 𝓚 operators. The accuracy
of the classical mfie is usually lower than the accuracy of the efie for the same
discretization density. However, if a lowest-order (zeroth order, to be more precise)
mesh with planar cells is taken to model a smooth surface (e.g., most prominently
a sphere), the negative influence on the accuracy of the imperfect modeling of
the geometry is approximately on the same level than the inherent inaccuracy of
the classical mfie. Then, the inaccuracy of the mfie is hidden—at least to a large
extent—by the inaccuracy caused by the meshed geometry representation. For
sharp-eged objects, the inaccuracy of the mfie is more pronounced and also easier
to observe since it is so prevalent that it can easily deteriorate the solution quality
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by one order of magnitude.
This happens equally for electrically small and large scenarios as long as the

simulation frequency is not chosen too small. Unfortunately, for large problems,
the cfie (including the mfie) is widely employed to ensure a well-conditioned
system of equations at and around interior resonance frequencies. Hence, the mfie
inaccuracy issues may affect any hf scattering or radiation scenario concerning
closed objects. The reason of this problem is not solely the wrong testing space of
the classical mfie but it has been quite clearly identified that the discretization of
the identity operator is the root cause of hf problems [Gürel and Ergül 2009; Ergül
and Gürel 2009; Yan et al. 2011a]. Put simply, the identity operator (2.44) exhibits a
Dirac delta distribution integral kernel, which negates the positive influence of the
variational integral equation solution to the scattering problem.

The second problem is a rather serious lf breakdown. The classical rwg-tested
mfie shows a stable and good conditioning behavior at lfs. However, Y. Zhang
et al. [2003] reported that the real part of the divergence of the retrieved current
distributions has erroneously a constant limit. This issue contaminates the current
solution already at mildly lfs. Looking at the ff of these currents, the problem
seems to be less severe since the inaccuracies occur at frequencies one or two
decades lower, cf. the numerical studies in Subsection 4.4.2. Bogaert et al. [2011b]
and Bogaert et al. [2014] have identified the lack of dual-space testing in the classical
mfie as the reason that the divergence of the current, i.e., the charge distribution,
is not modeled properly.

Solution Approaches to the MFIE Accuracy Issues

For the lf breakdown of the mfie, it is clear that testing in 𝑯−1/2(curl𝑠, 𝑠) instead
of 𝑯−1/2(div𝑠, 𝑠) does not suffice to cure the problem. Dual-space testing with
functions defined on the dual mesh—with functions as proposed by Q. Chen and
Wilton [1990] and Q. Chen [1990], Buffa and Christiansen [2007], or Bogaert et
al. [2013]—is strictly necessary. Each basis functions (Buffa-Christiansen (bc) or
razor-blade) on the dual mesh is associated with an edge of the primal (triangular)
mesh but exhibits an approximately orthogonal current flow with respect to the
original rwg function. Those functions are associated with the nodes of the
dual mesh since the definitions of faces/edges and nodes of the dual mesh are
interchanged as compared to the primal one. For lf scenarios, loop/tree or loop/star
decompositions are of particular interest—which are approximately related to the
scalar and vector potential contributions in the fields, and where the loop functions
exhibit zero charge and divergence. Early approaches to fix the efie lf breakdown
were based on them, as was the original discovery of the mfie lf breakdown by
Y. Zhang et al. [2003]. With the dual basis, there is also a duality between loops and
stars [Stephanson and J.-F. Lee 2009]. That is, each rwg loop function is associated
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with a dual basis star function and vice versa. This explains the working principle of
the Calderón multiplicative preconditioner and also why the dual basis is required
for the testing of the lf mfie. There are additional issues such as the behavior for
global loops for the mfie at lfs [Bogaert et al. 2011a] but we will not go into the
details of this since it is not in the scope of this work.

The hf inaccuracies of the mfie have gotten much more attention and are also
the main focus of the discretization schemes proposed in Chapter 4. In general,
testing in the dual space with the dual basis is also a solution to the accuracy issues
[Cools et al. 2011; Yan et al. 2011b; Yan et al. 2013; Ylä-Oijala et al. 2013b; Ylä-Oijala
et al. 2014]. However, the inaccuracy has been also investigated from different
perspectives which are discussed in the following. Rius et al. [2001] and Ergül and
Gürel [2004b] were among the first to report that the classical rwg-mfie exhibits
a poor accuracy with rwg functions (which is nowadays assumed to be a known
fact), especially for scatterers with electrically small features and sharp edges. The
inaccuracies persist for electrically large problems though. The discretization of
the highly-singular identity operator, which may be seen as Dirac delta integration
kernel as in (2.44), has been identified to be one root cause of the inaccuracies at
hfs by Davis and Warnick [2004, 2005], Warnick and Peterson [2007], Ergül and
Gürel [2009], Gürel and Ergül [2009], Yan et al. [2011b], and Kornprobst and Eibert
[2018a, 2018c, 2018e].

Rao andWilton [1990], Peterson [2002], Ubeda and Rius [2005b], Ergül and Gürel
[2006], and Peterson [2008] have studied curl-conforming bases, such as 𝒏×rwg
functions, for the electric currents in the mfie operator—possibly with the goal
of improving the discretization accuracy. This is feasible since the mfie integral
operator 𝓚 by itself does not really require a div-conforming basis [Peterson 2002].
However, only with a div-conforming basis, the non-solenoidal part of the current
can be modeled correctly. This also makes sense from the view of physically
div-conforming surface current densities [Gürel et al. 1999]. Subsequently, it
prevents the use of the cfie (which is required for electrically large problems)
and also leads to issues in the more general dielectric case, where the electric
fields must also be computed from these functions with the need to appropriately
handle the additionally introduced hyper-singular line charges [Rao and Wilton
1990]. The same problem arises when a monopolar rwg basis is considered [Ubeda
and Rius 2005a, 2006; L. Zhang et al. 2010], where no additional constraint is
considered as it is done for instance in discontinous Galerkin approaches [Peng
et al. 2013], which then yield the same solution as the classical rwg-mfie and only
show conditioning and implementation but no accuracy differences. In addition to
introducing the issue of non-physical line charges—and maybe even introducing
spurious solutions—, these approaches do not provide mfie discretizations with
satisfying accuracy.

Karaosmanoğlu and Ergül [2016, 2017] have numerically optimized the quadra-
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ture weights for the evaluation of the mfie matrix entries in order to arrive at
accurate but problem-specific integration rules. Then, an erroneous integration
compensates the mfie inaccuracy. The underlying issues of the mfie are not
resolved and this method is not transferable to previously unknown scattering
scenarios.

Some approaches for an improved mfie discretization focus on edges in the
geometry [Rius et al. 2001; Ergül and Gürel 2004b; Pan et al. 2014; Huang et
al. 2016]. This is certainly a particular topic of interest but does by far not cover
the whole spectrum of hf inaccuracies of the rwg-mfie which also appear for
smooth objects. Furthermore, the “solid-angle correction” seems to be based on a
misconception of the “half” Dirac delta integrations resulting in the 𝓘/2 part of
the mfie operator [Maue 1949; Eibert and V. Hansen 1997; Ergül and Gürel 2004b;
Michalski and Kucharski 2014]. For a correct modelling of edges, a consideration
of singular basis functions—allowing an infinite current flow along the edges but
not perpendicalur to them—seems to be the more expedient way [Meixner 1949;
Maue 1949; Meixner 1972; Bladel 1991; Brown and Wilton 1999; R. D. Graglia and
Lombardi 2008].

Another approach to solve the mfie inaccuracy is to employ an ho expansion for
the current distribution. Ergül and Gürel [2004a, 2007] and Ylä-Oijala et al. [2005]
have demonstrated that an improved mfie-operator accuracy is achievable with
the full first-order functions proposed by Trintinalia and Ling [2000] (also called
linear-linear basis functions), which was extended to ho expansion functions in
[Ylä-Oijala et al. 2008]. Alternatively, Ismatullah and Eibert [2009a] have shown
the same for a rotated Nédélec basis [Nédélec 1980; Wandzura 1992; R. D. Graglia
et al. 1997]; Pan et al. [2014] have employed a Coiflet basis; and Gil and Conde-
Pumpido [2020] have incorporated a solenoidal/non-solenoidal decomposition in
addition to ho functions which improves the modeling of the problematic star/tree
current solution inside the mfie. The question remains, though, whether the
improved accuracy is observed since ho functions are more accurate in general due
to their increased number of provided dofs for the modelling of the current flow or
whether the mfie issues really dissappear. This aspect is studied in Section 4.7. The
reasonable expectation is that the inaccuracies persist at a lower level without extra
measures—similar to choosing a finer discretization density with rwg functions
only.

Basis (or testing) functions approximately orthogonal to rwg functions, pro-
posed by Jakobus and Landstorfer [1993] for the magnetic currents in dielectric
scattering, have been analyzed by Gürel et al. [1999] but only for the efie. These are
not defined on a dual mesh and they thus do not allow to construct divergence-free
loops. Moreover, the Gram matrix condition number of the interaction between
rwg and Jakobus-Landstorfer functions is significantly larger than for the rwg
Gram matrix due to the design of the functions, which is reflected in the condi-
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tioning of such an mfie. A similar approach is found in [Mackenzie et al. 2009],
where a basis approximately orthogonal to rwg functions has been proposed. This
basis is neither div- nor curl-conforming and hence not generally suitable for the
expansion of surface current densities.

In summary, all these approaches do not really solve the mfie inaccuracy problem
at hfs in a satisfying manner. In the literature, only mixed discretizations with bc-
alike (testing) functions have been reported to offer solutions to the mfie problems
with a satisfactory accuracy [Q. Chen and Wilton 1990; Q. Chen 1990; Buffa and
Christiansen 2007; Tong et al. 2009; Cools et al. 2009; Cools et al. 2010; Cools
et al. 2011; Yan et al. 2011a, 2011b; Yan et al. 2013]. When we employ the rotated bc
functions 𝜶̃ = ̃𝜷 × 𝒏 defined on the barycentric refinement of the primal triangular
mesh, we obtain the bc-mfie

[
1
2G 𝜶̃,𝜷 + K 𝜶̃,𝜷]i = h 𝜶̃ . (3.33)

In this thesis, the Julia package boundary element analysis and simulation toolkit
(beast) by Cools et al. [2021] is employed for all numerical results related to bc
functions. This mixed discretization constitutes a kind of reference for an accurate
mfie implementation. The same holds true for the mixed discretization of the
csie and the efie with ibc which involves the electric field radiation operator of
magnetic surface currents [Ylä-Oijala et al. 2010; W. D. Li et al. 2012; Ylä-Oijala
et al. 2012a; Ylä-Oijala et al. 2013a; Yan and Jin 2013] since both are closely related
to the operator of the pec mfie. Discretization schemes with a dual basis and
dual mesh are of course not limited to triangular meshes. For instance, Smith and
Peterson [2005] have investigated a dual basis for the cfie discretized on quadri-
lateral meshes; R. Chang and Lomakin [2013] extended the use of the Calderòn
multiplicative preconditioner for mixed triangular/quadrilateral meshes.

Conveniently, both the accuracy issues at hfs and the lf breakdown are solved
with such a mixed discretization of the mfie operator. However, this is computa-
tionally costly since the full system matrix grows by a factor of 36 if the matrix is
set up for the refined mesh. Even when accelerated by fast methods, an increase by
a factor of 6 may remain. This is of course implementation-specific and may be less
severe if the factor only comes into play during the setup of the system matrix, but
a common way is to set up the rwg-matrix for the barycentric refinement of the
mesh and define rwg- and bc-functions on a coarser level by mapping matrices
[Andriulli et al. 2008]. It is still desirable to avoid this computational overhead if
possible and to work with standard rwgs—given that the mentioned issues of the
mfie are resolved.
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3.3 The Combined Field Integral Equation

As discussed in Subsection 2.5.2, the cfie is the prevalent way to cope with the
problem of interior resonances, which worsens the conditioning of the efie and
the mfie and introduces parasitic exterior solutions for the mfie. Having the rwg
discretizations of both ies in mind, the classical cfie is attained by the weighted
superposition of the efie (3.26) and the mfie (3.32). This can be seen as taking
rwg functions for both the basis and the testing functions in the continuous
description (2.67) of the cfie (with the weighting factor 0 < 𝜒cf < 1), leading to

[𝜒cf T𝜶,𝜷 + (1 − 𝜒cf)(
1
2G𝜷,𝜷 + K𝜷,𝜷)]i = C𝜒 i = 𝜒cf e𝜶 + (1 − 𝜒cf)h𝜷 . (3.34)

The cfie inherits all properties (positive and negative) of the efie and the mfie
to some extent, but the weighting 𝜒cf may adjust how strong the cfie suffers from
a respective problem. For instance, it is common to choose 𝜒cf close to one to
avoid the negative influence of the mfie on the accuracy. This already helps to
reduce the condition number of the overall system matrix C𝜒 since this choice
counteracts the influence of interior resonances on the efie. Hence, the iterative
solver convergence is negatively affected by choosing a large value for 𝜒 but to
a lower degree than for the plain efie. This is of course no satisfactory solution
and covers, by far, not all the issues of the efie and the mfie at both lfs and hfs.
Tackling all the issues of both ies simultaneously (for scattering scenarios involving
dielectric and pec bodies) is actively researched [Adrian et al. 2016; Guzman et
al. 2017; Adrian 2018; Chhim et al. 2018; G.-Y. Zhu et al. 2019; Merlini 2019; Chhim
et al. 2020; Merlini et al. 2020; Hofmann et al. 2021; Adrian et al. 2021].

Some of these issues, especially the inaccuracy stemming from the rwg-mfie,
can be resolved by replacing the mfie by the bc-mfie. This yields the bc-cfie

[𝜒bc−cf T𝜶,𝜷 + (1 − 𝜒bc−cf)G𝜷,𝜷 G
−1
𝜶̃,𝜷 (

1
2G 𝜶̃,𝜷 + K 𝜶̃,𝜷)]i

= 𝜒bc−cf e𝜶 + (1 − 𝜒)G𝜷,𝜷 G
−1
𝜶̃,𝜷 h 𝜶̃ . (3.35)

Note that a mapping from rotated bc testing functions to standard rwg functions
is necessary [Beghein et al. 2012]. With sophisticated preconditioning techniques,
this may change. Each ie has to be discretized appropriately on their own, and the
two discretized systems of equations have to be combined in a suitable way. For
instance when the Calderòn multiplicative preconditioner is employed for the efie,
which maps the rwg basis onto bc testing functions for the efie, the bc-mfie
remains untouched [Cools et al. 2010].
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Chapter 4
Accurate Discretization Strategies for the
Operator of the PEC MFIE

We have a habit in writing articles published in scientific journals to make the work
as finished as possible, to cover all the tracks, to not worry about the blind alleys or to
describe how you had the wrong idea first, and so on. So there isn’t any place to publish,
in a dignified manner, what you actually did in order to get to do the work.

— Richard Feynman, Nobel Lecture

An accurate discretization for the operator of the pec mfie is an unsolved
challenge when the computationally costly barycentric refinement of the mesh

shall be avoided. Two approaches to tackle this issue are discussed in this chapter.
First, several discretization strategies with an rwg-only basis are compared to
mixed-discretization approaches for the mfie operator. Second, ho expansions
are analyzed with regard to the discretization accuracy of the mfie operator. As a
first step toward an accurate discretization of the pec mfie operator, a csie based
on a mixed rwg/bc discretization and an rwg-only csie discretization scheme
are presented in Section 4.1. The work related to the rwg-based csie in this
section and related subsequent numerical investigations are based on [Kornprobst
and Eibert 2017c, 2017a, 2017b, 2018a, 2018c, 2018f]. Section 4.2 introduces an
accurate weak-form (wf) lo discretization scheme for the rwg-discretized identity
operator; the results therewithin are partially based on [Kornprobst and Eibert
2018e]. In Section 4.3, we incorporate the wf identity operator discretization into
the rwg-mfie. This section and subsequent results are based on [Kornprobst and
Eibert 2018d, 2018f, 2018e, 2019; Kornprobst et al. 2019a]. Section 4.4 presents
scattering results for the ies a lo rwg basis, demonstrating that the proposed
discretization of the magnetic-currents radiation operator inside the csie and the
wf-mfie show a superior accuracy (in particular for structures with sharp edges)
as compared to the classical mfie—on a level close to the bc-tested mfie and the
standard efie. Section 4.5 focuses on electrically larger scattering and radiation
scenarios suffering from interior resonances, where we find that the csie and
the wf-cfie exhibit an iterative solver convergence faster than the efie (for the
csie) or comparable to the standard cfie (for the wf cfie) as well as a greatly
improved accuracy. The interior resonance problem is also well under control. In
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Section 4.6, the tradeoff between accuracy and conditiong when choosing the cf/cs
combination factor is investigated for several scenarios. The work is extended
to hierarchical ho expansion functions for both the csie and the wf-mfie in
Subsection 4.7.2. The results therewithin are based in part upon [Kornprobst et
al. 2021c; Kornprobst and Eibert 2018b, 2019, 2022].

4.1 A Combined Source Integral Equation with a
Weak-Form Relation of Electric and Magnetic
Currents

The analytical description of the csie has already been introduced in Subsec-
tion 2.5.2 on p. 17. For a better understanding, we briefly repeat the most important
aspects here and conflate the csie with the discretization procedure discussed in
Subsection 3.1.1 on p. 31. The csie [see (2.73)]

𝒆𝑣 × 𝒏 = 𝓣𝒋cs +
𝜒cs − 1
𝜒cs

[
1
2𝓘 − 𝓚]𝒏 × 𝒋cs . (4.1)

combines the mfie and efie operators, which implies that the csie should be
interior-resonance free just as the cfie.

Even though the discretization and the resulting systems of equations are fairly
similar, the csie has not attracted much attention. While many (more or less sound)
discretization schemes have been proposed for the mfie which are applicable to the
cfie—Subsection 3.2.2 was particularly focused on triangular meshes with rwg
basis functions—, one has to search in detail to find any literature at all concerning
the csie. Treating dielectric scattering with a mixed-discretization csie has been
proposed by Ylä-Oijala et al. [2012a] and Ylä-Oijala et al. [2013a], but no related
literature exists about the pec csie. For the method of auxiliary sources (i.e.,
working with displaced sources instead of continuous sources on 𝑠), the csie has
been investigated by J. Lee and Nam [2005]. A pure rwg discretization has been
reported by Glisson [1992] and Ismatullah and Eibert [2009b] for the similar ibc .

The task of discretizing the csie features the same challenge as the cfie: The
alignment of vectorial sources and vectorial fields—i.e., the alignment of basis
and testing functions in three-dimensional space, in particular for self-coupling
terms—is to some extent required for a well-conditioned system matrix. However,
it is not trivially achievable for the combination of the 𝓣 and [𝓘/2−𝓚] operators in
particular when bc functions shall be avoided. In the case of the csie, the necessary
𝒏× rotation is applied to the current unknowns instead of the evaluated fields.

Since the standard rwg-tested efie is accurate, we want to retain this quality.
This determines the basis functions for the electric surface current densities to be
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rwg functions in 𝑯−1/2(div𝑠, 𝑠)

𝒋cs =
𝑁
∑
𝑛=1

[ics]𝑛 𝜷𝑛 (4.2)

and the testing functions for the 𝓣 operator to be rotated rwgs 𝜶 in the dual space
𝑯−1/2(curl𝑠, 𝑠) of the operator. Just as for the standard efie with Love currents, we
obtain the matrix T𝜶,𝜷. The testing functions for the radiation operator [𝓘/2 − 𝓚]
of the magnetic currents are then set to be rotated rwgs.

4.1.1 Brief Revision of Discretization Approaches

The more challenging part is to choose suitable basis functions for the magnetic
surface current densities. Both considered operators (the ones of the pec efie
and the mfie) constitute mappings from 𝑯−1/2(div𝑠, 𝑠) to 𝑯−1/2(div𝑠, 𝑠). The 𝓣
operator has been tested in its dual space accordingly. For the mfie, dual-space
testing might be achievable with a div-conforming rwg or bc basis. However,
the discretization of the mfie operator is not the only demanding task. The cs
condition

𝒎cs =
1 − 𝜒cs
𝜒cs

𝒏 × 𝒋cs , (4.3)

see (2.72), has to be looked at simultaneously. Choosing div-conforming rwg basis
functions for the expansion of 𝒋cs poses restrictions on the discretization of the
mfie operator and simultaneously on the discretization of the magnetic surface
current densities. In the literature, several ways to discretize the magnetic surface
currents have been reported for comparable scenarios in the combination with
rwgs for 𝒋. These are reviewed in the following.

We call (4.3) a strong-form condition, since a fixed relation between the two
current types is enforced point-wise everywhere on 𝑠. Implementing such a strong-
form rotation of div-conforming expansion function leads to a curl-conforming
basis, which originates quite naturally from (4.3), when the 𝒏×-rotation yields 𝜶
functions for 𝒎cs according to

𝒎cs =
𝑁
∑
𝑛=1

[vcs]𝑛 𝜶𝑛 =
𝜒cs − 1
𝜒cs

𝑁
∑
𝑛=1

[ics]𝑛 𝜷𝑛 × 𝒏 =
1 − 𝜒cs
𝜒cs

𝒏 × 𝒋cs (4.4)

or just for the 𝑛th basis function coefficient

[vcs]𝑛 =
𝜒cs − 1
𝜒cs

[ics]𝑛 for 𝑛 ∈ {1, 2, … , 𝑁 } . (4.5)
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The whole system of equations then reads

[T𝜶,𝜷 +
1 − 𝜒cs
𝜒cs

(
1
2G𝜶,𝜶 − K𝜶,𝜶)] i = e𝜶 . (4.6)

Since G𝜷,𝜷 = G𝜶,𝜶, the magnetic-currents part of this csie is well-conditioned.
However, this part of the equation may suffer from the same inaccuracy problems
as the standard rwg-mfie.

While such a discretization has never been published for scattering scenarios to
the author’s knowledge,1 Rao and Wilton [1990] have employed curl-conforming
rotated rwgs for the expansion of the magnetic currents for dielectric scattering;
and Glisson [1992] has done the same for an ibc, which is closely related to the
cs condition. As already discussed in Subsection 3.2.2, this leads to problems
regarding the integration of hypersingular line charges prohibiting the evaluation
of the magnetic field on 𝑠—which is required for the dielectric scattering scenario
as discussed by Rao and Wilton [1990]. The solution in their work is to distribute
the line charge over some adjacent area as “charge patches.” Such tricks do not
seem appropriate for a discretization procedure which should converge to the true
solution—and also not for the div-conforming nature of surface current densities.

The alternative is found in a weak-form (wf) rotation of the basis functions.
Just as for the ies themselves, a variational approach is followed and leads, in
some sense, to the desired best approximation of the orthogonal current flow
within a given basis. In [Ylä-Oijala et al. 2012a; Ylä-Oijala et al. 2013a], the only
reported discretization of a csie for dielectric objects on a triangular mesh (a mixed
rwg/bc basis for the electric/magnetic currents) is found. A similar approach has
been reported for the expansion of the magnetic currents with div-conforming bc
functions inside the closely related ibc [Ylä-Oijala et al. 2010; W. D. Li et al. 2012;
Yan and Jin 2013; Dély et al. 2017]. In this thesis, the csie for pec scattering is
analyzed, which has not been reported so far.

Both currents are modeled by their respective basis functions as

𝒋cs =
𝑁
∑
𝑛=1

[ics]𝑛 𝜷𝑛 , 𝒎cs =
𝑁
∑
𝑛=1

[vcs]𝑛 ̃𝜷𝑛 , (4.7)

with the rwg basis 𝜷 for the electric currents and the bc basis ̃𝜷 for the magnetic

1. Eibert et al. [2016] have reported such a cs implementation for inverse source problems, where
the very nf evaluation of reconstructed sources is not as decisive as the more distant nf or the ff.
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currents, and (4.3) is tested appropriately by rotated rwgs as

𝑁
∑
𝑛=1

[vcs]𝑛 ⟨𝜶𝑚, ̃𝜷𝑛⟩ =
1 − 𝜒cs
𝜒cs

𝑁
∑
𝑛=1

[ics]𝑛 ⟨𝜶𝑚, 𝒏 × 𝜷𝑛⟩ for 𝑚 ∈ {1, 2, … ,𝑀} . (4.8)

Written as a matrix equation, we have

G𝜶, ̃𝜷 v =
𝜒cs − 1
𝜒cs

G𝜶,𝜶 i =
𝜒cs − 1
𝜒cs

G𝜷,𝜷 i . (4.9)

The well-conditioned mixed Gram matrix G𝜶, ̃𝜷 has to be inverted to attain the
magnetic current coefficients from the electric current ones. Then, the cs relation
is enforced globally in a variational sense. Overall, the system of equations

[T𝜶,𝜷 +
1 − 𝜒cs
𝜒cs

(
1
2G𝜶, ̃𝜷 − K𝜶, ̃𝜷)G

−1
𝜶, ̃𝜷 G𝜶,𝜶] i = e𝜶 (4.10)

is obtained. For the implementation, the Julia package beast by Cools et al. [2021]
is employed. Interestingly, the rwg Gram matrix G𝜶,𝜶 = G𝜷,𝜷 appears in the
discretization of the identity, when the electric current unknowns in (4.10) are
considered. Since the magnetic currents are expanded with a bc basis, this equation
is referenced as bc-csie in the following. For the case of 𝜒cs = 0, considering only
the 𝓘 and 𝓚 operators, we have

(
1
2G𝜶, ̃𝜷 − K𝜶, ̃𝜷) v = e𝜶 . (4.11)

This efie with only magnetic currents (expanded by bc functions) is referred to as
m-efie. It is similar to the bc-mfie with interchanged basis and testing functions.

Admittedly, the discretization of the 𝓘 and 𝓚 operators is appropriate. This
subsequently results in a well-conditioned and well-tested system matrix; however,
the resulting surface current densities are not really smooth, at least visually, cf.
Figs. 7 and 8 in [Dély et al. 2017]. Futhermore, this approach suffers from the
increased computational effort of bc functions and cannot simply be extended to
ho schemes.
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4.1.2 Pure Rao-Wilton-Glisson Discretization of the Combined
Source Integral Equation

In order to avoid the computationally costly bc functions, we work with rwg
basis functions only for the discretization of both electric and magnetic surface
current densities. The work of Ismatullah and Eibert [2009b] even precedes the
wf discretization approaches with ibcs mentioned earlier. Similar approaches for
ibc sies with an rwg basis have been reported by Stupfel [2015] and Ylä-Oijala
et al. [2018]. Just as for the mixed basis case, these formulations implement the
(ibc instead of cs) side constraint (sc) in a wf. Both types of equivalent surface
current densities are expanded with rwg basis functions according to (3.1) as

𝒋cs =
𝑁
∑
𝑛=1

[ics]𝑛 𝜷𝑛 , 𝒎cs =
𝑁
∑
𝑛=1

[vcs]𝑛 𝜷𝑛 . (4.12)

Bearing in mind the issues of a curl-conforming basis for (magnetic) currents,
we do not employ div-conforming functions directly for the discretization of the
cs condition (4.3) but the wf relation is obtained by inserting the basis function
expansion into (4.3). We test the equation

𝑁
∑
𝑛=1

[v]𝑛 𝜷𝑛 =
1 − 𝜒cs
𝜒cs

𝑁
∑
𝑛=1

[i]𝑛 𝒏 × 𝜷𝑛 . (4.13)

with rwg functions

𝑁
∑
𝑛=1

[v]𝑛⟨𝜷𝑚, 𝜷𝑛⟩ =
1 − 𝜒cs
𝜒cs

𝑁
∑
𝑛=1

[i]𝑛⟨𝜷𝑚, 𝒏 × 𝜷𝑛⟩ for 𝑚 ∈ {1, 2, … , 𝑁 } , (4.14)

which yields a wf relation between the magnetic and electric current unknowns
via the rwg Gram matrices as

G𝜷,𝜷 v =
𝜒cs − 1
𝜒cs

G𝜶,𝜷 i , (4.15)

where G𝜶,𝜷 = −G𝜷,𝜶 was used. This wf cs condition finds a global approximation
of a 90° rotation for the magnetic current vector within the rwg basis. Considering
only one exemplary element of the electric current vector—setting one specific
element in the unknowns vector to one and all others to zero—all magnetic current
coefficients may be non-zero. The resulting current distribution of such a wf
rotation of a single electric current function is depicted in Fig. 4.1. It is observed
that the orthogonal current flow is modeled well inside the original pair of triangles.
In addition, the current is distributed over neighboring triangles.
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(a) (b)

Fig. 4.1: Illustration of the wf rotation. (a) Original electric current rwg basis i with only
one entry. (b) Superposition of magnetic current rwg basis functions for a wf
rotation G−1

𝜷,𝜷 G𝜶,𝜷 i © 2018 ieee [Kornprobst and Eibert 2018e].

With this wf cs condition, the efie (2.73) is discretized as the linear system of
equations

T𝜶,𝜷 i + [
1
2G𝜶,𝜷 − K𝜶,𝜷]v = e𝜶 . (4.16)

Augmenting the efie with the cs condition as a sc yields [Kornprobst and Eibert
2018a]

[ T𝜶,𝜷 ( 1
2
G𝜶,𝜷 − K𝜶,𝜷)

(𝜒cs − 1)G𝜶,𝜷 𝜒cs G𝜷,𝜷
] [ i

v
] = [e𝜶

0
] . (4.17)

Here, the additional cs equations are solved as a part of the overall system of
equations. This leads to a sub-optimal conditioning of the overall system matrix
since it is difficult to optimally scale the cs sc [Kornprobst and Eibert 2018c]. A
better way is to explicitly invert the well-conditioned rwg Gram matrix to get rid
of the magnetic current unknowns, which leads to [Kornprobst and Eibert 2018c]

[T𝜶,𝜷 +
1 − 𝜒cs
𝜒cs

(
1
2G𝜶,𝜷 − K𝜶,𝜷)G

−1
𝜷,𝜷 G𝜶,𝜷]i = e𝜶 . (4.18)

If we compare this wf csie with the strong-form approach pursued in (4.6), it
is noticeable that the discretization of the mfie operator is significantly different.
In the strong-form approach, the identity operator is discretized to an rwg Gram
matrix G𝜷,𝜷, which is well-conditioned but is known to cause the inaccuracies of
the rwg-mfie. In the wf approach, the rwg-𝒏×rwg Gram matrix G𝜶,𝜷 appears
instead, which is not ideal either. This matrix is degenerate with dim kerG𝜶,𝜷 ≈
𝑁/3, and it exhibits zeros on the main diagonal. The complete discretization of
the 𝓘 operator consisting of the matrix multiplication G𝜶,𝜷 G

−1
𝜷,𝜷 G𝜶,𝜷 is typically
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diagonally dominant though. Due to the non-trivial null space of the Gram matrix
G𝜶,𝜷, the csie relies on the efie operator part of the system matrix and weightings
𝜒 close to 0 are not feasible.

The wf discretization of the cs condition, see Fig. 4.1 for a visualization, helps
to cope with the strong singularity of the identity operator, which was identified
as one of the root causes of the mfie problems in literature [Davis and Warnick
2004; Ergül and Gürel 2009; Yan et al. 2011b]. In conjunction with the correct
dual-space testing of the electric field, this proposed csie provides an accuracy
similar to the standard efie: to be exact, an accurate discretization but with an
improved conditioning and without the interior resonance problem.

4.1.3 Comparison of the CSIE Variants

For detailed numerical results, we refer to Section 4.4 and Section 4.5. Here, we
briefly analyze the differences of the “cs with sc” version (4.17) and the version
with “explicit inversion of the cs condition” (4.18); both for a weighting 𝜒cs = 0.5.
We consider scattering from a pec sphere with 1m diameter at the frequencies
200MHz—below any resonance—and 371.8MHz—hitting the second interior reso-
nance. The frequency-normalized radii 𝑘 𝑟 of the sphere are 2.096 and 3.896. The
mesh of the sphere exhibits 𝑁 = 999 rwg functions and an average triangle edge
length ℎ = 0.104m, i.e., 0.07𝜆 and 0.129𝜆. The singular value (sv) spectra of the
csie system matrices are compared to the standard mfie, efie, and cfie in Fig. 4.2
at both considered frequencies. At both frequences, we observe some well-known
facts. The efie has a clear separation of larger and smaller svs, which is more
pronounced at lower frequencies, while the mfie does not experience such an effect
and the cfie is mildly affected by the efie. At the interior resonance frequency in
Fig. 4.2(b), the last sv of the mfie and efie drop to almost zero—their respective
condition numbers are 167.8 and 1692.4. The cfie maintains an excellent condition
number of 4.6. Both csie versions do not offer a condition number as low as the
cfie, but the sv distribution is more favorable than for the efie (i.e., mostly larger
svs) and the drop at the last sv is effectively avoided with condition numbers 27.3
for the csie with explicit inversion of the cs constraint and 29.0 for the csie with
the sc. Apart from the slightly better condition number, the csie with the explicit
inversion of the cs condition exhibits only half the number of unknowns and a
potentially beneficial distribution of the svs (possibly also a beneficial distribution
of the eigenvalues in the complex plane). When solving the equation with an
iterative solver such as the generalized minimum residual method (gmres) [Saad
and Schultz 1986], this csie hence converges even faster than indicated by the only
slightly lower condition number [Kornprobst and Eibert 2018c]. Figure 4.3 shows
the iterative solver convergence to a stopping threshold of 10−5 for a plane wave
scattered by the afore-mentioned 1-m diameter sphere. The csie with explicit
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Fig. 4.2: The sv spectra of scattering system matrices of a pec sphere. (a) 𝑘 𝑟 = 2.096.
(b) 𝑘 𝑟 = 3.896.
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pec sphere.
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inversion of the cs condition converges within about 55 iterations while the csie
with sc takes between 100 and 90. The csie solutions are indistinguishable and
the accuracy of both versions is comparable to the efie. Due to its advantages, we
only consider the csie (4.18) with explicit inversion of the cs condition hereafter.

4.1.4 Intermission: On the RWG Gram Matrix Inversion

What was skipped in the above discussion is how the Gram matrix is explicitly
inverted. For each matrix multiplication with G−1

𝜷,𝜷, a nested conjugate gradient
method (cg) solver [Hestenes and Stiefel 1952] with a termination threshold of 10−7

was used, which is two orders of magnitude lower than the ie solver threshold for
the results presented in Fig. 4.3. This intermediate solution is calculated extremely
fast since the rwg Gram matrix is sparse with only 5𝑁 entries and rather well-
conditioned. Kornprobst et al. [2019a] have compared the straight-forward iterative
inversion by the cg to a diagonally-preconditioned cg solution and to one with an
aproximate inverse (ai) preconditioner.

The diagonally preconditioned Gram matrix

G
diag
𝜷,𝜷 = diag(G𝜷,𝜷)−1 G𝜷,𝜷 . (4.19)

is evaluated very efficiently. All off-diagonal matrix entries are already divided by
the respective diagonal entrywhen stored. Hence, no divisions are necessary during
the solution and only 𝑁 multiplications with the diagonal entries are required after
the iterative solution—while these 𝑁 multiplications are even saved during the
iterative solution since the preconditioned matrix has ones on its main diagonal.

The ai is based on the “monopolar” rwg representation, i.e., splitting all rwg
interactions in half by considering single triangles only. This introduces an inter-
mediate step when calculating the Gram matrix. The Gram matrix block-diagonal
is set up triangle-wise as

G̃𝜷,𝜷 =

⎡
⎢
⎢
⎢
⎢
⎣

G1 … 0 … …
⋮ ⋱ 0 … …
0 0 G𝑖 0 …
⋮ ⋮ 0 ⋱ …
⋮ ⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎥
⎦

, (4.20)

where G𝑖 is the 3 × 3 monopolar rwg interaction matrix on the 𝑖th triangle. The
standard rwg Gram matrix is calculated as

G𝜷,𝜷 = MT G̃𝜷,𝜷M , (4.21)
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Fig. 4.4: Spectrum of the (potentially preconditioned) rwg Grammatrix for the 1-m diameter
sphere with 𝑁 = 999.

where M ∈ ℝ2𝑁×𝑁 is a mapping matrix, which contains a single entry with mag-
nitude one, value ±1, in each of the 𝑁 rows. The pseudo-inverse of M is easily
calculated as M+ = 1/2MT. The inverse of the block matrix G̃𝜷,𝜷 is obtained by
inverting all sub-matrices G𝑖 on the main diagonal, which is feasible in closed form.
Unfortunately, the matrix inversion theorem (AB)−1 = B−1A−1 only holds true for
full-rank matrices—and M is tall and thus singular. Hence, the multiplication of
the pseudo-inverses according to

Gai
𝜷,𝜷 = 1

4M
T G̃

−1
𝜷,𝜷M , (4.22)

can only serve as an ai. This ai has the same number of entries 5𝑁 as the rwg
Gram matrix. Using it as a preconditioner doubles the computational cost per mvp.

The inversion of a Gram matrix is frequency-independent. Hence, we can look
at the preconditioners for some objects in a general manner. First, the spectrum of
the three system matrices (G𝜷,𝜷 and the two preconditioned variants) is shown in
Fig. 4.4 for the previously considered sphere with 𝑁 = 999. Clearly, the diagonal
preconditioner works well; and the ai works even better.

How does this translate into praxis? Is the additional effort worth it? The
iterative solver performance for two scenarios is analyzed in Tab. 4.1 regarding
the efficiacy of the preconditioners. The analysis is based on condition numbers,
number of iterations to convergence for a cg solver with residual 𝑟th (given is an
average number for hundreds of random right-hand sides), and the norm of the
residual error vector, i.e., ‖r‖2 = ‖xcg − ξ‖2, with the cg solution xcg and the real
solution ξ . The considered scenarios are the previously mentioned sphere and
a sharp wedge with an opening angle of 3°, whose Gram matrix shows a larger
condition number.
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Tab. 4.1: Analysis of the cg iterative solver behavior for inverting (preconditioned) rwg
Gram matrices for different meshes.

(a) The 999 unknowns sphere.

Matrix A = cond(A) its. 𝑟th = 10−12 avg. ‖r‖2
G𝜷,𝜷 3.13 12 1.8 ⋅10−11

G
diag
𝜷,𝜷 2.5 10 4.7 ⋅10−11

Gai
𝜷,𝜷 G𝜷,𝜷 1.28 6 2.5 ⋅10−12

(b) A sharp wedge with 1284 unknowns.

Matrix A = cond(A) its. 𝑟th = 10−10 avg. ‖r‖2
G𝜷,𝜷 68.4 33 5.7 ⋅10−9

G
diag
𝜷,𝜷 31.5 27 5.8 ⋅10−8

Gai
𝜷,𝜷 G𝜷,𝜷 50.9 16 1.4 ⋅10−9

The accuracies of the three preconditioners are similar. To be on the safe side, it is
advised to choose the cg termination threshold below the iterative solver threshold
of the whole system, e.g., by two orders of magnitude. Otherwise, the insufficient
accuracy of the repeatedly calculated cs solutions may introduce noise and prevent
the main iterative solver to converge. The effect of the diagonal preconditioner is
minor but consistent. Hence, it is worth being employed since it does not increase
the computational effort. The ai is cutting the required number of iterations
approximately in half. However, this is offset by doubling the computational effort
per preconditioned mvp. As a result, it is not worth the extra effort.

Güler et al. [2018] have found that the inversion of a sparse Gram matrix with a
direct solver—by lower-upper or Cholesky decompositions—suffers from a com-
plexity larger than 𝒪(𝑁 log𝑁); making it unattractive to precompute the inverse.
On a related note, it is known that inverses of sparse matrices can unfortunately
lose the sparsity property, which has for instance been studied by Wiedenmann
[2015] with regard to optimized direct solvers for sparse matrices (exmployed
for preconditioners based on a lower-upper factorization of a thinned-out system
matrix). Overall, direct solvers for the Gram matrix inverse computation seem to
increase the effort disproportionately. Hence, the Gram matrix inverse is calculated
with a diagonally preconditioned iterative cg solver when needed in this work.
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4.2 Accurate Identity Operator Discretization: A Basis
Transformation Scheme

The csie integrates the efie and mfie operators into one single ie. In the following,
we focus on the mfie alone and discuss how the insights gained from the pure rwg
csie can be transferred to the mfie. The inaccuracy of the rwg-discretized mfie
operator can be seen as separated in the discretization of the 𝓘 and 𝓚 operators.
The correct handling of both is crucially important at low frequencies. At hfs, it is
well-known that the dual-space testing of these operators is not the most decisive
factor but how the high spectral content of the 𝓘 is taken care of. The accurate
wf csie gives the motivation to develop a similar discretization scheme for the
standard mfie. The starting point is evidently the identity operator.

4.2.1 Discretization Approach

From an ie operator point of view, the strong form cs condition as well as the
identity operator, are highly singular operators. This becomes obvious by writing
the identity operator with a Dirac delta integral kernel as done in (2.44). The high
spectral content of these operators requires careful discretization to obtain an
isotropically averaging low-pass effect [Davis and Warnick 2004; Ergül and Gürel
2009; Yan et al. 2011b].

The adaptation of the wf cs condition inside the discretization of the standard
mfie appears to be possible only indirectly since it approximates a 90° vector
rotation instead of an identity. We introduce the two fictitious electric surface
current distributions ̂ȷ and ̃ȷ and perform the 90°-rotation twice as

̂ȷ = 𝒏 × ̃ȷ = 𝒏 × (𝒋 × 𝒏) = 𝒋 with ̃ȷ = 𝒋 × 𝒏 . (4.23)

Overall, ̂ȷ reproduces the original 𝒋 and ̃ȷ is a 90°-rotated intermediate version of
the current—very similar to the cs rotation.

It is possible to discretize both of these strong-form rotations just as the wf cs
condition, yielding the two linear systems of equations [see (4.12)–(4.15)]

G𝜷,𝜷 ̂ı = −G𝜶,𝜷 ̃ı , (4.24)

G𝜷,𝜷 ̃ı = G𝜶,𝜷 i . (4.25)

Combining both of these systems is summarized in one single matrix R, leading to

̂ı = R i = −G−1
𝜷,𝜷 G𝜶,𝜷 G

−1
𝜷,𝜷 G𝜶,𝜷 i . (4.26)

Effectively, this means to perform two subsequent wf vector rotations by 90° and
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(a) (b)

Fig. 4.5: Illustration of thewf discretization scheme for the identity operator © 2018 ieee [Ko-
rnprobst and Eibert 2018e]. (a) One column of the classically discretized Grammatrix
G𝜷,𝜷. (b) One column of the newly introduced Gram matrix including a wf basis
transformation G𝜷,𝜷 R.

an inversion in sign, i.e., multiplication by −1. As discussed for the csie, the matrix
G𝜶,𝜷 is singular and the matrix R inherits this non-trivial null space. Hence, such an
approach to approximate the identity operator has to fail. It may not be employed
solely as a wf identity operator discretization which tries to cope with the high
spectral content. In order to fix this issue, we augment the wf representation by
the identity matrix I ∈ ℝ𝑁×𝑁. This leads to the wf basis transformation

̂ı = W𝛾 i = [𝛾 I + (1 − 𝛾)R]i . (4.27)

Beginning with the rwg current coefficients in i, the wf identity scheme is applied
to these coefficients (with a weighting 𝛾 < 1). The resulting current coefficients
in ̂ı approximate the ones in i since the identity operator is discretized in a wf.
We can multiply the wf basis transformation matrix W𝛾 with any operator. For
instance, we rewrite the discretized identity operator G𝜷,𝜷 as the matrix

G𝜷,𝜷W𝛾 = 𝛾G𝜷,𝜷 + (𝛾 − 1)G𝜶,𝜷 G
−1
𝜷,𝜷 G𝜶,𝜷 . (4.28)

When discussing the wf-mfie, it will become clear that this is the preferable way
of how to implement the basis transformation (4.27). For a better understanding of
the wf scheme, we visualize one column of G𝜷,𝜷 in Fig. 4.5(a), where interactions
only with adjacent triangles are observed. The vector-valued field associated with
one column of G𝜷,𝜷 R is shown in Fig. 4.5(b), where the identity is approximated
globally by all rwg functions. This may be seen as a kind of regularization to the
standard identity operator—similar to changing the Dirac delta integration kernel
or similar to employing more spread-out bc functions. Just as for the csie, we
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have to make sure that the weighting 𝛾 is not too small in order to avoid issues
induced by the non-trivial kerG𝜶,𝜷.

Instead of relying on the heuristically found addition of an identity matrix,
another approach to solve the null space problem of G𝜶,𝜷 is to take care of the
kernel and co-kernel of G𝜶,𝜷 individually. The projection matrix into the image of
the 𝒏×rwg-rwg Gram matrix imG𝜶,𝜷 = imGH

𝜶,𝜷

P𝜶,𝜷 = G+
𝜶,𝜷 G𝜶,𝜷 = G𝜶,𝜷 G

+
𝜶,𝜷 , (4.29)

with a generalized inverse (⋅)+ (for instance the Moore-Penrose pseudo-inverse), is
able to isolate the influence of the null space. Then, the contributions in the null
space and the image can be treated separately.

We can identify a term in (4.28), which is subtracted from the original Gram
matrix, with the same (𝛾 − 1) prefactor as the part suffering from the G𝜶,𝜷 null
space by rewriting it as

G𝜷,𝜷W𝛾 = G𝜷,𝜷 + (𝛾 − 1)G𝜷,𝜷 + (𝛾 − 1)G𝜶,𝜷 G
−1
𝜷,𝜷 G𝜶,𝜷 (4.30)

and project the image and the inverse image of this subtracted term (𝛾 − 1)G𝜷,𝜷
into imG𝜶,𝜷, leading to

G𝜷,𝜷W
proj
𝛾 = G𝜷,𝜷 + (𝛾 − 1)P𝜶,𝜷 G𝜷,𝜷 P𝜶,𝜷 + (𝛾 − 1)G𝜶,𝜷 G

−1
𝜷,𝜷 G𝜶,𝜷

= G𝜷,𝜷 + (𝛾 − 1)P𝜶,𝜷(G𝜷,𝜷 + G𝜶,𝜷 G
−1
𝜷,𝜷 G𝜶,𝜷)P𝜶,𝜷 . (4.31)

This has the effect that the correction term trailing G𝜷,𝜷 only influences the result
in the co-image of G𝜶,𝜷 if the input vector has contributions in imG𝜶,𝜷, since
G𝜶,𝜷 = P𝜶,𝜷 G𝜶,𝜷 = G𝜶,𝜷 P𝜶,𝜷.

Using solely the matrix G𝜶,𝜷 for the discretization of the 𝓘 operator does not
work since it is singular. Introducing the weighting scheme helps to cope with
this issue. There remains an uncertainty for the plain I-addition method in (4.27)
or (4.28) whether it suffers from the singular matrix G𝜶,𝜷 in the presence of G𝜷,𝜷.
If this is the case, the projection-based method (4.31) still should provide reliable
results. The effect is expected to be more emphasized for 𝛾 → 0, where the non-
trivial kerG𝜶,𝜷 becomes dominant. However, the computational effort is increased
by the additionally required pseudoinverse calculation inside the projection matrix.
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4.2.2 Field Synthesis and the Construction of Non-Radiating
Currents

Typically, the 𝓘 and 𝓚 operators appear together in sies such as the mfie. In order
to analyze each on its own, a separation of the two operators is of interest. For
the identity operator 𝓘, this isolated analysis may be achieved when a suitable
formulation for the construction of non-radiating currents is considered [Ergül and
Gürel 2009; Yan et al. 2011a]. Here, we assume an incident plane wave in free space
and a meshed sphere in free space without any boundary condition or scattering
behavior. Hence, the field of the surface sources on 𝑠

𝒆𝑠(𝒓) = 𝒉𝑠(𝒓) = 0 , 𝒓 ∈ 𝑣 , (4.32)

in the exterior volume 𝑣 vanishes. In the interior of 𝑠, in the volume 𝑣i, the surface
current densities 𝒋 and 𝒎 on 𝑠 synthesize the incident field according to

𝒆𝑠(𝒓) = 𝒆𝑣(𝒓) = 𝒆(𝒓) , 𝒓 ∈ 𝑣i , (4.33)

𝒉𝑠(𝒓) = 𝒉𝑣(𝒓) = 𝒉(𝒓) , 𝒓 ∈ 𝑣i . (4.34)

Assuming Love currents according to (2.34) and (2.35), this leads to the set of
equations [Ergül and Gürel 2009; Yan et al. 2011a]

[𝓘 0
0 𝓘] [

𝒎
𝒋 ] = [𝒆

𝑣 × 𝒏
𝒏 × 𝒉𝑣] , (4.35)

which are studied with four different discretizations. First, it is expanded and tested
by rwgs as

[
G𝜷,𝜷 0

0 G𝜷,𝜷
] [v

i
] = [

e𝜷
−h𝜷

] (4.36)

This is similar to the discretization of the identity operator in the standard rwg-mfie.
It is also possible to implement the proposed wf identity operator discretization
with rwgs, which leads to the system of equations

[
G𝜷,𝜷W𝛾 0

0 G𝜷,𝜷W𝛾
] [v

i
] = [

e𝜷
−h𝜷

] . (4.37)

Another way is to test the identity with bc functions [Yan et al. 2011a]

[
G 𝜶̃,𝜷 0

0 G 𝜶̃,𝜷
] [v

i
] = [ e 𝜶̃

−h 𝜶̃
] . (4.38)
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The same non-radiating surface current densities are described if the incident
surface fields are represented by radiation integrals. Then, the identity operator
may be eliminated completely, which yields the equation

[ 𝓣 𝓚
−𝓚 𝓣 ] [ 𝒋𝒎] =

1
2 [𝒏 × 𝒆𝑣

𝒏 × 𝒉𝑣] . (4.39)

These integral operators are discretized with efie-alike testing, i.e., rotated rwg
testing functions, as [Ergül and Gürel 2009]

[
T𝜶,𝜷 K𝜶,𝜷
−K𝜶,𝜷 T𝜶,𝜷

] [ i
v
] = −1

2 [e𝜶
h𝜶
] . (4.40)

It is possible to leave the identity as a part of the operator, i.e., accompanying
𝓚 with 𝓘. This yields the interior Calderón projector, which inherently has a
non-trivial null space. This would foil the objective of separating the influence of
integral operators and the identity and of studying the influence of the identity
operator separately.

4.2.3 Numerical Results for Field Synthesis

For a numerical analysis, we consider a sphere with 1𝜆 diameter with 1239 rwg
electric and magnetic current unknowns each; the average triangle edge length ℎ is
about 𝜆/10. The incident (to synthesize) plane wave exhibits a wave vector 𝒌 = 𝒖𝑧,
i.e., the unit vector in 𝑧-direction, an amplitude 𝑒0 = 1V/m and 𝒑 = 𝒖𝑥 polarization.
The synthesized electric ff is evaluated for ‖𝒓‖ = 1𝜆 and, as an error measure, the
arithmetically averaged normalized field

𝜖ff = avg
‖𝒓‖=𝜆

‖𝒆𝑠ff(𝒓)/𝑒0‖ (4.41)

is calculated in 1∘-steps in the 𝜗 = 90∘-, 𝜑 = 0∘-, and 𝜑 = 90∘-cuts. This ff should be
close to zero, since the equivalent currents are constructed in a way that they are
non-radiating—or, more aptly named, Love current sources for interior plane-wave
field synthesis.

Hence, the synthesized interior field is of equal importance. It should match
the incident plane wave whose fields are recreated by the surface currents on
the Huygens surface. For the analysis of the electric field 𝒆(𝒓) with 𝒓 ∈ 𝑣i, a
regular Cartesian grid with a step size 𝜆/25 in all three directions is chosen for the
evaluation. Only field samples for ‖𝒓‖ ≤ 0.45𝜆 are considered in order to avoid the
negative influence of the evanescent fields near the reconstruction surface 𝑠. The
deviation of the synthesized field 𝒆𝑠 with respect to the incident field 𝒆𝑣 is averaged
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Fig. 4.6: Synthesized plane-wave field with magnitude 𝑒0 = 1V/m inside a sphere with 1𝜆
diameter with the discretized rwg identity operator (4.36). (a) Magnitude of the
synthesized electric field 𝒆. (b) Phase of the [𝒆]𝑥 component of the synthesized
electric field.

over all those samples and is given as the interior nf error

𝜖nf,i = avg
‖𝒓‖∈𝑣i

(𝒆(𝒓) − 𝒆𝑣(𝒓))/𝑒0 . (4.42)

Before going into the details about the numerical results, the synthesized plane-
wave field is shown in Fig. 4.6. Inside the sphere, we see a constant magnitude and
the phase distribution of a plane wave in propagation direction; outside, the field
values are very low and the phase varies arbitrarily.

The interesting part about the wf discretization scheme for the identity operator
is the choice of 𝛾. Hence, the two quantities of interest—the achieved zero-field
level in the ff and the field synthesis quality—are shown for different values of
𝛾 in Fig. 4.7. We observe that the influence on the supposed zero ff is marginal;
that is why Fig. 4.7(a) with a focused ordinate range comprises the ffs of the rwg
and wf-rwg discretized 𝓘 operator only. The two other discretizations show field
values tens of decibels lower. At the same time, the accuracy of the synthesized
field is improved by over 10 dB in the best case as seen in Fig. 4.7(b), coming much
closer to the bc-tested-identity and integral-operator formulations. For 𝛾 → 0,
the solution diverges due to the negative influence of the non-trivial kerG𝜶,𝜷 for
the wf-rwg formulation. The projection-based wf does not have this diverging
behavior. Nevertheless, the error increases in a similar fashion for small weights
but is bounded. Except for very small weights (𝛾 < 0.2), the accuracy with the
projection is slightly worse than for the wf scheme without. For both versions,
the improvement is best with 𝛾 ≈ 0.6.
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Fig. 4.7: Analysis of the wf weighting factor 𝛾 for a 1𝜆 diameter sphere. (a) Averaged ff
magnitude of the non-radiating currents. (b) Error of the synthesized electric nf
avg ‖(𝒆𝑠 − 𝒆𝑣)/𝑒0‖.

Next, we consider a cube with 1𝜆 edge length and ℎ ≈ 𝜆/10, which features 2232
rwg unknowns for both surface current types. This scenario is a bit different since
the incident wave is aligned with the object such that the incident tangential field
vanishes on four faces (out of six in total). Unlike the scattering case, the identity
operator does not show a worsened behavior for edged objects since no singular
current distribution on the edges is to be expected. The analyses are carried out in
the same way as before and the results are very similar to the case of the sphere.
The interior nf is evaluated only at a distance of larger than 0.05𝜆 to the mesh in
Fig. 4.8(a). Again, the best value for 𝛾 is observed to be at (slightly above) 0.6.

An additional test case is a sphere with 3.6𝜆 diameter with 14 466 rwg unknowns
for each current and again with ℎ ≈ 𝜆/10. The accuracy of the synthesized nf
versus the wf weighting factor is analyzed in Fig. 4.8(b). The distance of interior
field samples to the mesh is again kept greater than 0.05𝜆; however, the sampling
density is only 𝜆/10 in the three Cartesian directions.

The field synthesis accuracy improvements are similar to the first scenario in
both other cases. The same holds for the ff, which is not shown in detail. The
accuracy numbers for all considered scenarios and all formulations—the wf case
with 𝛾 = 0.6—are given in Tab. 4.2.

We conclude that the projection-based approach has no significant benefit—
possibly even a slight disadvantage—for weightings which yield an improved
accuracy. At very small values 𝛾 < 0.2, a diverging error is prevented. These values
of the weighting factor are, however, not of interest due to the observed large error
levels. Overall, the increased computational effort of computing a projection and
the involved pseudoinverse instead of only inverting the well-conditioned matrix
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Fig. 4.8: Analysis of the wf weighting factor 𝛾 regarding the error of the synthesized electric
nf. (a) A cube with 1𝜆 edge length. (b) A sphere with 3.6𝜆 diameter.

Tab. 4.2: Quality of the exterior zero field and interior synthesized plane wave for three
scenarios. Both wf discretization schemes with 𝛾 = 0.6.

main
diagonal

𝓘 𝓣

testing
function

rwg wf-rwg wf proj. 𝒏×bc 𝒏×rwg

1𝜆 𝜖ff −66.5 dB −67.8 dB −67.6 dB −95.4 dB −85.2 dB
sphere 𝜖nf,i −41.4 dB −52.2 dB −52.2 dB −63.6 dB −60.7 dB

1𝜆 𝜖ff −61.8 dB −64.2 dB −62.3 dB −82.3 dB −82.7 dB
cube 𝜖nf,i −42.9 dB −52.5 dB −52.2 dB −67.3 dB −66.9 dB

3.6𝜆 𝜖ff −52.3 dB −52.9 dB −52.8 dB −87.5 dB −70.4 dB
sphere 𝜖nf,i −41.3 dB −52.5 dB −52.7 dB −70.6 dB −66.4 dB

G𝜷,𝜷 does not seem to be worth the effort. The sparse Gram matrix can easily
be inverted iteratively within a few iterations—for instance with the diagonally
preconditioned conjugate gradient method [Hestenes and Stiefel 1952; Güler et
al. 2018; Kornprobst et al. 2019a]. Hence, only the simpler approach without the
projection is employed for the following investigations.

It has to be noted though that neither the standard rwg identity operator dis-
cretization nor the improved wf rwg discretization come close to the accuracy of
the identity operator tested with the dual bc-function or the field synthesis with
radiation operators, which both operate at tens of decibels smaller errors.
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4.3 Improved Magnetic Field Integral Equation with
Weak-Form Identity Operator Discretization

We have demonstrated in the previous section that a wf basis transformation
scheme helps to reduce the discretization error of the identity operator when
handled solely with rwg functions since the high spectral content is taken care of.
In this section, this insight is incorporated into the mfie.

4.3.1 The Discretization Schemes

Inspired by the rwg discretization of the csie, there are several possibilities of
how to integrate the wf basis transformation scheme as proposed in (4.27) into the
mfie. One may follow a similar strategy as for the magnetic current unknowns
resulting from the wf cs condition: The matrixW𝛾 is employed for the total electric
current unknowns, i.e., to the mfie matrix as a whole. If multiplied from the right
just before the electric currents, this leads to

[
1
2G𝜷,𝜷 + K𝜷,𝜷]W𝛾 i = h𝜷 . (4.43)

This equation is referred to as wf-basis mfie.
It is also possible to implement a wf-rwg testing scheme. Then, the matrix W𝛾

is multiplied from the left as

G𝜷,𝜷W𝛾 G
−1
𝜷,𝜷 [

1
2G𝜷,𝜷 + K𝜷,𝜷]i = h𝜷 . (4.44)

This equation is referred to as wf-testing mfie in the following. In these two cases,
the wf scheme is applied to the discretized 𝓘 and 𝓚 operators. It is not to expect
that the wf scheme cures the mfie lf breakdown since a proper dual-space testing
in a sense of curl-conforming testing functions and in a dual-mesh sense would be
needed to do so. In particular for hf scenarios, improvements may be observed
where the accuracy issues of the mfie arise mostly from the 𝓘 operator.

It is also possible to introduce the basis transformation (4.27) solely for the
discretized identity operator of the classical mfie (3.32)—i.e., the rwg Gram matrix.
This matches more the strategy pursued in Section 4.2 than the magnetic-current
part of csie discretization in Section 4.1. Employing the wf basis transformation
to the Gram matrix only as

[
1
2G𝜷,𝜷W𝛾 + K𝜷,𝜷]i = [

𝛾
4G𝜷,𝜷 +

𝛾 − 1
4 G𝜶,𝜷 G

−1
𝜷,𝜷 G𝜶,𝜷 + K𝜷,𝜷]i = h𝜷 (4.45)

is called wf identity mfie in the following. If the matrix W𝛾 is introduced for
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(a) (b)

Fig. 4.9: Two models for the analysis of the the wf basis transformation scheme in the
rwg-tested mfie © 2018 ieee [Kornprobst and Eibert 2018e]. (a) A sphere. (b) A
Pyramid.

the testing functions of the Gram matrix only, this results in the same system of
equations.

It remains to find the best version among the three proposed variations for
the wf-mfie discretization. Additionally, the weighting factor 𝛾 has to be chosen.
In order to evaluate the accuracy of the mfie, several scattering scenarios are
investigated.

4.3.2 Comparison of the Weak-Form Discretization Approaches

The two pec scatterers as depicted in Fig. 4.9 are considered: a small sphere and a
small sharp-edged pyramid, where the accuracy issues of the rwg-mfie appear in a
pronounced manner. The sphere has a diameter of 0.67𝜆 (below its first resonance)
and is meshed with ℎ ≈ 𝜆/14, leading to 999 rwg unknowns. The scattered field is
caused by a linearly-polarized plane wave. We consider two different reference
solutions: a Mie series expansion and an efie solution with 1.5th order expansion
functions on a refinedmesh, whose surfaces exactlymatches the coarsely discretized
sphere. The relative ff rcs error of the 𝒖𝜓-polarized electric field, with 𝜓 ∈ {𝜑, 𝜗},

𝜖ff𝜓 (𝜗 , 𝜑) =
‖[𝒆𝑠ff(𝒓)]𝜓 − [𝒆𝑠ff,ref (𝒓)]𝜓‖

max
𝜗 ,𝜑

‖[𝒆𝑠ff,ref (𝒓)]𝜗, [𝒆
𝑠
ff,ref (𝒓)]𝜑‖

for ‖𝒓‖ = const. and 𝜓 ∈ {𝜗 , 𝜑}

(4.46)
is then calculated in the 𝜗 = 90°, 𝜑 = 0°, and 𝜑 = 90° cuts. In Fig. 4.10(a), the
average and maximum rcs errors are analyzed for the different proposed mfies
and a varying weighting factor 𝛾 with respect to a Mie series reference solution.
All three wf-mfie solutions diverge at 𝛾 → 0. The wf identity mfie performs
better by a few decibels. Its error levels come close to the ones of the efie and
bc-mfie (around −38 dB peak error and −47 dB mean error), which is a good deal
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Fig. 4.10: Analysis of the influence of the weighting factor 𝛾 on the three wf-mfie discretiza-
tion schemes for two scattering scenarios. (a) Relative ff rcs error for the sphere
with respect to a Mie series expansion. (b) Error for the sphere with respect to a
ho efie solution on a refined mesh. (c) Error for the pyramid with respect to an
efie solution on a refined mesh.

better than the rwg-mfie, whose error can be read off at 𝛾 = 1 (−34 dB peak and
−43 dB mean error). In Fig. 4.10(b), the ho efie solution on a refined mesh is taken
as the reference instead of the Mie series expansion. This is a more meaningful
“true” solution since the enforced boundary conditions of the considered scatterers
match exactly. Hence, all sies consistently achieve a lower error. In particular, the
increased accuracies of the efie and the bc-mfie are remarkable (−64 dB peak and
−75 dB mean error). The wf schemes cannot keep up with these accuracy levels
and the classical mfie falls even further behind. The accuracy improvement is the
most for the wf identity variant. Specifically, it is more than 10 dB at 𝛾 ≈ 0.6 as
compared to the rwg-mfie (−41 dB peak and −51 dB mean error). Furthermore,
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Fig. 4.11: Scattering from the small pyramid. Thewf-mfie is the variant with an wf identity,
𝛾 = 0.5. (a) Co-polar rcs in the 𝜑 = 0° cut. (b) Relative error in the same cut.

we observe that the Mie series expansion is not the best choice for the reference
solution since the surface discretization error covers most of the sie discretization
error—excluding the rwg-mfie which fares worst.

The second considered scattering scenario is a pyramid exhibiting a basis of
0.19𝜆 × 0.19𝜆 and a height of 0.135𝜆. It is discretized with an average edge length
ℎ ≈ 𝜆/10 leading to 36 rwg unknowns. The incident field is a plane wave with
𝒖𝑥 polarization and 𝒌 = −𝑘 𝒖𝑧. The ff rcs error is calculated in the 𝜗 = 90°,
𝜑 = 0°, and 𝜑 = 90° cuts with reference to an efie solution on a refined mesh
with 576 unknowns. Figure 4.10(c) shows the peak and average rcs errors for
the efie (−22 dB and −29 dB), the bc-mfie (−14 dB and −22 dB), and the rwg-mfie
at 𝛾 = 1 (−11 dB and −18 dB). The application of the wf scheme to the basis or
testing functions achieves an accuracy improvement which reaches almost bc-mfie
levels; the wf identity scheme achieves a larger improvement—coming close to
the efie accuracy at 𝛾 ≈ 0.4. Again, all three wf-mfie solutions diverge at 𝛾 → 0.
The rcs and the related relative errors are shown in Fig. 4.11 for the co-polarized
field component in the 𝜑 = 0° cut. The bi-static rcs of the efie, the bc-mfie,
and the wf-mfie are visually indistinguishable on the chosen scale. The error in
Fig. 4.11(b) shows the differences though. Small scatterers with sharp edges such as
the treated pyramid are eye-catching illustrations of the inaccuracy of the classical
mfie. Figure 4.11(a) strinkingly shows how much the mfie solution is off.

In both scenarios, only employing the wf scheme for the identity operator
discretization achieves a better accuracy and is therefore chosen for further investi-
gations. The wf discretization of the 𝓚 operator is neither fully meaningful nor
does it give an improvement in performance as significant as the wf representa-
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tion of solely the 𝓘 operator. The question remains how to optimally choose the
weighting factor 𝛾. This is analyzed in detail in the following section. The two
scenarios discussed so far are just a brief start. Nevertheless, it already became
apparent that 0.4 ≤ 𝛾 ≤ 0.6 might be a range of reasonable values.

4.4 Numerical Investigations of the Single-Field
Low-Order Schemes

We investigate the discussed sies for pec scattering scenarios with a single (domi-
nant) integral operator for either the electric or the magnetic field. These include
the classical efie and mfie as well as the bc-tested mfie, the csie with dominant
magnetic currents, and the wf-mfie. In a first step, the optimal weighting factor
for the rwg wf-mfie is searched for. This is done for several mesh refinement
scenarios spanning fine and coarse meshes as well as objects of differing electrical
size. Then, the lf behavior of the proposed sies is studied. We investigate several
sharp-edged objects with accuracy issues and evaluate the nf and ff accuracies
thereafter.

4.4.1 Convergence to the Correct Solution—Mesh Refinement &
Choosing the WF-MFIE Weighting Factor

It is important for any discretization that the solution converges to the correct solu-
tion when the mesh is refined. For the mfie, there are two cases of interest: objects
with (sharp) edges and objects with smooth surfaces. The latter exhibit a drawback
in the accuracy analysis, which was observed already in Subsection 4.3.2. While
objects with smooth surfaces are not that problematic from the electromagnetics
point of view, they are not representable with a linear (order 𝑝 = 1) triangular
mesh. Hence, the object’s surface discretization error is expected to dominate
even though the employed rwgs exhibit only 0.5th order. For objects with sharp
edges, the mesh is able to conform with the desired surface perfectly but the mfie
accuracy is negatively affected by the geometric singularities. We study both types
of scatterers in the following.

A Cube

The first scenario is plane-wave scattering from a pec cube with 0.5𝜆 edge length.
Figure 4.12 shows four of the employed 14models for the mesh refinement analysis.
The average triangle edge length ℎ ranges from 0.28𝜆 for the coarsest mesh to 0.035𝜆
for the finest mesh; the respective number of electric current rwg unknowns 𝑁
ranges from 72 to 4302. The csie also exhibits the same number of unknowns since
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(a) (b) (c) (d)

Fig. 4.12: Some of the cuboid models for the mesh refinement analysis © 2018 ieee [Korn-
probst and Eibert 2018e].

the magnetic currents are directly calculated from the electric current unknowns
vector. All systems of equations are solved iteratively by the gmres with a residual
stopping criterion of 10−4. The nested cg solvers for the Gram matrix inversion
are stopped at 10−8. An 2.5th order efie solution on the finest mesh is taken as the
reference, which is calculated with a gmres termination threshold of 10−6.

First, we consider 𝛾 = 0.5 for the wf-mfie. The bi-static rcs in the 𝜑 = 0° cut
for an impinging plane wave with 𝒑 = 𝒖𝑥 and 𝒌 = −𝑘 𝒖𝑧 is shown in Fig. 4.13 for
one of the considered meshes with ℎ ≈ 𝜆/10 (𝑁 = 504). The reference solution
is not shown since the co-polarization 𝜎𝜗 is visually indistinguishable and the
cross-polarization 𝜎𝜑 < −80 dB lies below the abscissa. The accuracy of the efie
is best among the considered sies; the mfie fares the worst. The other sies—viz.
the bc-mfie, the m-csie, and the wf-mfie—perform in between. Note that we
choose a weighting factor 𝜒cs = 1/11 for the m-csie in order to obtain a dominant
magnetic-current part—in other words, the surface impedance linking magnetic
and electric currents overweights the magnetic ones by a factor of 10 as compared
to the standard csie. The wf-mfie comes off well in the co-polarization but not so
in the cross-polarization. Nonetheless, the cross-pol error is too low to matter—still
lower than any co-pol error.

Such rcs calculations in the 𝜑 = 0°, 𝜑 = 90°, and 𝜗 = 90° cuts provide the
basis to compute the arithmetic average of the bi-static rcs ff error 𝜖ff according
to (4.46) for all considered meshes and sies. Figure 4.14 shows the results of this
mesh refinement study. Figure 4.14(a) shows the maximum ff error. As for the
single mesh, the efie performs best, the mfie worst, and the other sies somewhere
in between. The same is observed in Fig. 4.14(b) for the averaged ff error. In
Fig. 4.14(c), the arithmetically averaged relative error of the current coefficients

𝜖i =
avg‖i − iefie‖
max‖iefie‖

(4.47)

with respect to the efie solution on the respective mesh is shown. A consistent

74



4.4 Numerical Investigations of the Single-Field LO Schemes

−π −π/2 0 π/2 π

−60

−40

−20

0

polar angle 𝜗

ff
rc

s𝜎
/𝜆

2
in

dB

efie
mfie

bc-mfie
m-csie

wf-mfie
𝜎𝜗
𝜎𝜑

(a)

−π −π/2 0 π/2 π

−80

−60

−40

−20

polar angle 𝜗

ff
rc

se
rr
or

in
dB

𝜖𝜗

(b)

−π −π/2 0 π/2 π

−80

−60

−40

−20

polar angle 𝜗

ff
rc

se
rr
or

in
dB

𝜖𝜑

(c)

Fig. 4.13: Scattering from a pec cube for various sies in the 𝜑 = 0° cut. wf-mfie with 𝛾 = 0.5,
m-csie with 𝜒cs = 1/11. (a) Both polarizations of the bi-static rcs. (b) Relative
rcs error of the co-polarization 𝜎𝜗. (b) Relative rcs error of the cross-polarization
𝜎𝜑.

advantage of the wf-mfie over the standard mfie is observed. Figure 4.14(d)
provides the number of iterations for convergence with the gmres solver. This may
be seen as an estimate for the condition number of the respective ie formulations.
The efie shows the typical dense-mesh breakdown, whereas all mfies do not suffer
from this issue. The mfie and the wf-mfie are mostly on par and the bc-mfie
converges within a few iterations less. This advantage has to be taken with a grain
of salt, though, as the setup and possibly also the involved mvp is computationally
more costly. The m-csie starts on a similar level as the efie—with 38 iterations
instead of below 20 for the mfies—but exhibits a lower slope: The efie ends up with
161 iterations for the finest mesh; the m-csie only takes 59. Hence, the dense-mesh
breakdown is indeed avoided in its total severity. This is caused by the (weak) efie
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Fig. 4.14: Mesh refinement analysis for a 0.5𝜆 cube, lowest-order rwg basis functions (𝑝 =
0.5), 𝛾 = 0.5. (a) Maximum relative ff error. (b) Arithmetically averaged relative
ff error. (c) Arithmetically averaged relative current-coefficient error. (d) Solver
iterations as condition number estimate.

presence in the null space of the Gram matrix G𝜶,𝜷.
With this experiment in mind, we carry out an analysis for the wf weighting

factor 𝛾. The scenario under consideration is the same mesh refinement for a
0.5𝜆 cube. The models’ changing mesh parameter leads to great variations in the
achievable error of more than one order of magnitude, see Fig. 4.14(b). First, the
arithmetically averaged ff error 𝜖ff,𝑘 of the 𝑘th mesh is calculated for the angles
(𝜗 , 𝜑) and for the two polarizations (𝒖𝜗, 𝒖𝜑), based on (4.46). Then, an appropriate
choice to condense all the errors into one number is the geometric mean of the
arithmetic averages

𝜏 ie(𝛾 ) = (∏
𝐾

𝑘=1
𝜖ff,𝑘ie (𝛾 ))

1/𝐾
= exp (∑

𝐾
𝑘=1

ln 𝜖ff,𝑘ie (𝛾 )) , (4.48)
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Fig. 4.15: Optimal wf-mfie weighting factor for scattering from the mesh refinement models
of a 0.5𝜆 cube, lowest-order rwg basis functions (𝑝 = 0.5).

where the order of the error is averaged due to the contained logarithm. Fig. 4.15
compares the error level of the wf-mfie to the other considered sies. Since the
error values fluctuate from mesh to mesh and do not follow the ideal convergence
trend [Weggler 2011; Dölz et al. 2019; Jin 2011], the variation for each mesh at each
value of 𝛾 is also contained as a scatter plot. The baseline is given by the efie error,
and the individual error values are adjusted to the (geometric) mean ratio between
efie and wf-mfie error levels. Such a seemingly complicated way to calculate the
error relationship is required to cope with error levels approximately between 10−1
and 10−3. Given 𝛾 and the 𝑘th mesh, a scatter-plot marker is shown accordingly in
Fig. 4.15 at the error level

𝜏wf-mfie(𝛾 , 𝑘) = 𝜏efie 𝜖ff,𝑘wf−mfie/𝜖ff,𝑘efie . (4.49)

Above 𝛾 ≈ 0.3, the spread between the minimum and maximum deviations of
the wf-mfie to the efie is reasonably small. Below 𝛾 < 0.1, the error is worse
than for the standard mfie—the reason being the discussed non-trivial null space
in the wf basis transformation. The lowest error levels, close to the ones of the
m-csie and the bc-mfie, are found at 0.3 ≲ 𝛾 ≲ 0.5. It makes sense to choose one
of the larger values in this range to avoid the issues of low 𝛾 values.

Next, we double the simulation frequency and repeat the same analysis for a 1𝜆
cube. 20 triangluar meshes with ℎ ranging from 0.37𝜆 to 0.027𝜆 are considered with
𝑁 between 162 and 30 240. All the steps of calculating ff rcs errors are performed
in the same way. The only difference is the lower iterative solver threshold of 10−6.
Figure 4.16 shows the weighting analysis for 𝛾. We see that the wf-mfie comes
close to, but never reaches the m-csie and bc-mfie error levels.

Exemplary results of the ff errors and solver iterations for all individual meshes
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Fig. 4.16: Optimal wf-mfie weighting factor for scattering from the mesh refinement models
of a 1𝜆 cube, lowest-order rwg basis functions (𝑝 = 0.5).
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Fig. 4.17: Mesh refinement analysis for a 1𝜆 cube, lowest-order rwg basis functions (𝑝 = 0.5),
𝛾 = 0.5. For the legend, cf. for instance Fig. 4.16. (a) Arithmetically averaged
relative ff error. (b) Iterative solver convergence.

are shown in Fig. 4.17. For these results, 𝛾 is chosen as 0.5 again (to maintain
consistency among the scattering scenarios). While the wf-mfie shows a lower
error than the plain rwg mfie, a consistent disadvantage for the wf-mfie over all
other sies is observed. Lower values of 𝛾 improve thewf-mfie error in this scenario.
Furthermore, the wf-mfie error levels show a slight stagnation towards finer
meshes. The bc-mfie converges a bit faster with 30 instead of about 40 iterations
for the other two mfies; but this is again offset by the larger computational effort.
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(a) (b) (c) (d)

Fig. 4.18: Some of the sphere models for the mesh refinement analysis © 2018 ieee [Korn-
probst and Eibert 2018e].

A Sphere

A similar mesh refinement study as for the cubes is performed for a pec sphere
with a diameter of 0.5𝜆. The triangle edge length ℎ ranges from 0.14𝜆 to 0.034𝜆
with 𝑁 from 126 to 2388. Four of the 16 meshes are shown in Fig. 4.18. Again, an
m-csie with a dominant magnetic current part due to 𝜒cs = 1/11 is considered.
For the initial rcs analysis, the wf-mfie is considered with 𝛾 = 0.5. For all ies,
the gmres threshold is set to 10−4. The ff rcs errors are evaluated with respect to
a Mie series expansion. The same is done for the scattered nf at a radius of 0.6𝜆,
i.e., with a distance of 0.1𝜆 to the sphere. The associated nf error is calculated
analogously to (4.46).

Figure 4.19(a) shows the iterative solver convergence. The efie suffers from the
dense-mesh breakdown; the m-csie not really but starts already on the same (high)
level as the efie. The bc-mfie converges fastest, the standard mfie fares slightly
worse, and the wf-mfie again sligthly worse—all within only a small number of
iterations. This basically confirms the findings for the scattering from the cubes.
The more interesting part is the accuracy analysis. For all three considered error
measures, see Fig. 4.19(b) and (c), the classical rwg-mfie performs the worst and
all other sies show exactly the same error level with an accuracy advantage of
about 3 dB over the mfie. The reason why the same accuracy (and just such a small
advantage) is observed for the efie, the bc-mfie, the m-csie, and the wf-mfie
lies in the surface discretization of the sphere, which exhibits a non-negligible
discretization error of the curved surface with linear edges (𝑝 = 1) [Weggler 2011].
Furthermore, the discretized spheres are effectively smaller than the ideal sphere
considered in the Mie series expansion. This imperfection is cleary visible in
Fig. 4.18. The same effect has already been observed in Section 4.3. There, it was
mitigated by choosing a ho efie solution on a refined mesh as a reference. Here,
we follow the same strategy in order to reach a reasonable accuracy judgment
since the imperfect geometric modeling has a larger accuracy impact than the
use of rwg functions. For each of the considered meshes, a refined version has
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Fig. 4.19: Mesh refinement analysis for a 0.5𝜆 diameter sphere with rwg functions, 𝛾 = 0.5.
(a) Solver iterations as condition number estimate. (b) Maximum and mean ff
errors w.r.t. a Mie series solution. (c) Mean nf errors w.r.t. a Mie series solution.
(d) Mean ff errors w.r.t. a 1.5th order efie solution. (e) Mean nf errors w.r.t. a
1.5th order efie solution.
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Fig. 4.20: Optimal wf-mfie weighting factor for scattering from the mesh refinement models
of a 0.5𝜆 sphere, lowest-order rwg basis functions (𝑝 = 0.5). Note the different
ordinate scales of the subfigures. (a) Error w.r.t. a Mie series solutions. (b) Error
w.r.t. a ho efie solution on a refined mesh.

been created—replacing each triangle with 4 smaller ones—and the 1.5th order efie
solution is employed as a reference solution.

The corresponding results are shown in Fig. 4.19(d) and (e). This leads to generally
much lower error levels and differences between the more accurate versions. The
most accurate one is the m-csie, followed by the efie and bc-mfie which are on
a comparable level. For the coarser meshes, the wf-mfie ff error comes close
to the efie error but the wf-mfie performs worse for finer meshes and ends up
in between of the efie/bc-mfie and the mfie. The nf error of the wf-mfie is
between the accurate solutions (efie and m-csie) and the classical mfie.

Equipped with this suitable reference solution, we can calculate the wf-mfie
ff error for 0 < 𝛾 < 1 in Fig. 4.20(b) [Fig. 4.20(a) with the Mie series reference for
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completeness]. The same methodology as for the cubes is followed, i.e., we show
the geometric average 𝜏 (over the various meshes) of the arithmetically averaged
rcs ff errors. At around 0.5 < 𝛾 < 0.6, the wf-mfie performs best, but reaches
efie/bc-mfie error levels only halfway. Nevertheless, for the prominent case of
ℎ ≈ 0.1𝜆, the accuracy is similar to the more accurate sies.

Summary

Considering the different scenarios—scattering from a pyramid, a cube at two
frequencies, and a sphere at two frequencies—, choosing 𝛾 = 0.5 seems a good
compromise to cure the inaccuracy problem of the standard rwg-mfie for some
scenarios fully and for others partially. One way to further improve the wf-mfie
is to put more weight on the wf scheme when the objects’ edges are sharper
and less weight on smooth surface areas, for which we refer to the discussion in
Subsection 4.7.3. On such smooth surfaces, a more conservative choice of 𝛾 ≈ 0.6
also improves the mfie accuracy significantly and circumvents the null space
problems to an even higher degree of certainty.

4.4.2 Low-Frequency Behavior

We study one lf scattering scenario in order to determine whether the lf break-
down of the standard rwg-mfie still occurs in the proposed formulation. It is,
however, not expected that the problem is solved by the wf-mfie. For the csie,
this is not directly clear but the dual-space testing of the electric field may be able
to circumvent the wrong discretization of the charge for the mfie operator.

We consider a pec sphere with a diameter of 1m. Its triangular mesh exhibits 126
rwg unknowns. For now, the considered frequency is 5 kHz, leading to a diameter
of about 1.67 ⋅10−5𝜆. The bi-static rcs for plane-wave scattering with 𝒑 = 𝒖𝑥 and
𝒌 = 𝑘𝒖𝑧 is given in Fig. 4.21. The reference solution for calculating the error in
Fig. 4.21(b) is a 1.5th order efie solution on a refined mesh (with 1680 unknowns),
which is known to be accurate at such frequencies despite the slower iterative solver
convergence. Numerical cancellation errors which cause accuracy deterioration
for the efie only become an issue at even lower frequencies—at the considered
frequency, the accuracy is still excellent. The efie offers the most accurate solution
with an average ff error of −57.5 dB. We observe that the m-csie is still accurate
at such a rather lf with an average ff error of −57.3 dB, whereas the accuracy of
the two mfies is deteriorated (−11.1 dB and −11.2 dB on average).

Performing this kind of analysis for a frequency sweep yields Fig. 4.22. At
the lower end of the frequency range (at 20 kHz), the diameter of the sphere is
6.7 ⋅10−5𝜆; at the upper end (at 500MHz), it is 0.67𝜆. We observe the transition to the
hf regime at the highest studied frequencies. The discretization density becomes
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Fig. 4.21: Scattering from a 1-m diameter pec sphere at 𝑓 = 5 kHz for various sies in the
𝜑 = 0° cut. wf-mfie with 𝛾 = 0.5, m-csie with 𝜒cs = 1/11. (a) The bi-static rcs.
(b) Relative error of the bi-static rcs.
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Fig. 4.22: Frequency sweep of the lf sphere. (a) ff rcs error. (b) gmres iteration count for
convergence to a residual of 10−10.
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Fig. 4.23: Norm of (a) the retrieved electric surface current density unknowns and of (b) the
divergence of the current density at lfs.

already rather coarse with an average edge length ℎ of about 0.3𝜆. For each ie, a
different behavior is observed. The efie lf breakdown causes the iteration count to
increase with decreasing frequency already at at 50MHz and ℎ ≈ 0.04𝜆. The m-csie
shows a similar behavior as the efie, with a slightly increased accuracy and a faster
iterative solver convergence. Only below 1MHz, it converges slower than the efie
while maintaining marginally better accuracy. This threshold coincides with the
mfie’s lf breakdown: While the iterative solver convergence is not affected for
both the classical rwg-mfie and the wf-mfie, the ff error increases significantly
below 1MHz.

What we notice in the ff does not reveal the whole truth about the lf issues of
the mfie, though. The underlying reason is that the real part of the divergence of
the current exhibits erroneously a constant limit at lf as reported first by Y. Zhang
et al. [2003]. Bogaert et al. [2011b] and Bogaert et al. [2014] have shown that this
is caused by the wrong choice of the testing functions. Only dual-space testing
can mitigate this issue. Hence, we cannot expect the wf scheme to solve this
problem of the mfie. In Fig. 4.23, we analyze the current and the charge coefficients
separately. Figure 4.23(a) shows that ‖i‖2 exhibits the same behavior over frequency
for all three ies. The erroneous contribution in the mfie solution is not visible.
The picture changes when we consider the divergence of the current on the 𝑖th
triangle, which is related to the charge on the 𝑖th triangle via the current continuity
conditions (2.5),

𝜚e,𝑖 =
j
𝜔𝜂

3
∑
𝑘=1

div𝑠 𝒋𝑘,𝑖 with 𝒋𝑘,𝑖 = [i]𝑚(𝑘,𝑖) 𝜷𝑚(𝑘,𝑖) (4.50)
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(a) (b)

Fig. 4.24: A sharp wedge employed for demonstrating the mfie’s inaccuracy © 2018 ieee
[Kornprobst and Eibert 2018e]. (a) The studied coarse mesh. (b) The refined mesh
used for calculating for the efie reference solution.

for the three rwg functions on the respective triangle. The function 𝑚(𝑘, 𝑖) maps
the number of the triangle 𝑖 and the number of the triangle-wise rwg function 𝑘
on the suitable unknown number 𝑛 ∈ {1, 2, … , 𝑁 }. Note that div𝑠 𝜷𝑚(𝑘,𝑖) is constant
(±1/𝐴±

𝑚(𝑘,𝑖)) on 𝑠𝑖 for each rwg function [Rao et al. 1982]. We introduce a div-
current vector as a proxy for the triangle-wise surface charge density accordingly

[d]𝑘 =
3
∑
𝑘=1

div𝑠 𝒋𝑘,𝑖 for 𝑘 ∈ {1, 2, … , 𝐾} (4.51)

with the total number of triangles 𝐾.
In Fig. 4.23(b), the erroneous limit in ‖Re{d(wf−)mfie}‖2 appears at around 50MHz

and lower. This is more than one decade higher than the highest frequency at which
the error in the ff becomes observable, and might be even considered closer to hf
than lf scenarios with ℎ ≈ 0.05𝜆 and a sphere diameter of 𝜆/6. As the testing space
is not changed by the wf scheme, the lf breakdown persists for the wf-mfie.

4.4.3 Scattering Results for Electrically Small Objects with Accuracy
Issues

In the following, we analyze some scattering results for the various ies in more
detail. We focus in particular on the ff and nf accuracy and in the limiting case
the surface current densities. All of these measures show severe inaccuracies for
sharp-edged scatterers when solved with the classical rwg-mfie.

A Sharp Wedge

The first scenario is an electrically small wedge discretized with 84 rwg unknowns,
see Fig. 4.24. The simulation frequency is chosen such that the average triangle
edge length is 𝜆/11. The base rectangle has dimensions of 0.08𝜆 × 0.27𝜆, the height
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Fig. 4.25: Bi-static rcs from the wedge.

is 0.27𝜆. Accordingly, the wedge angle is 16.5°. The rwg efie solved on a refined
mesh with 𝜆/128 discretization, see Fig. 4.24(b), is employed as reference solution.
Figure 4.25 compares the bi-static rcs of the efie, the mfie, and the wf-mfie to
the reference solution for a plane-wave incidence with 𝒑 = 𝒖𝑥 and 𝒌 = −𝑘𝒖𝑧. The
mfie shows an absolute error of a couple of decibels. In relative terms, the efie
and the wf-mfie exhibit maximum ff errors of about −22 dB. The mfie fares much
worse with a maximum error of −9 dB.

The scattered nf is depicted in Fig. 4.26. Figures 4.26(a) and 4.26(e) show the
absolute values of the electric and magnetic fields of the reference solution, re-
spectively. The relative errors 𝜖nf of the electric and magnetic nfs are calculated
similar as the ff, cf. (4.46), for each polarization 𝒖𝜓 as

𝜖nf𝜓 (𝒓) =
‖[𝒆𝑠(𝒓)]𝜓 − [𝒆𝑠ref (𝒓)]𝜓‖

max 𝒓 ‖𝒆𝑠ref (𝒓)‖
, (4.52)

or, as it is done here, as the overall relative error

𝜖nf(𝒓) =
‖𝒆𝑠(𝒓) − 𝒆𝑠ref (𝒓)‖
max 𝒓 ‖𝒆𝑠ref (𝒓)‖

. (4.53)

It is observed that the wf-mfie offers improvements for both electric and magnetic
nfs, while it cannot achieve EFIE error levels completely. The arithmetically
averaged electric nf errors in the considered cut plane read −34.7 dB, −40.8 dB,
−44.7 dB for the mfie, the wf-mfie, and the efie respectively; as well as −17.7 dB,
−25.0 dB, and −28.9 dB for the magnetic nf.

A word about the iterative solver convergence: The gmres solver for mfie, the
wf-mfie, and the efie converges within 26, 31, and 63 iterations to a residual of
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Fig. 4.26: Scattered nf field around and inside a sharp wedge: normalized absolute field
values and relative vector error magnitudes of the fields © 2018 ieee [Kornprobst
and Eibert 2018e]. (a) Electric field reference solution. (b) Electric field error of the
efie. (c) Electric field error of the mfie. (d) Electric field error of the wf-mfie. (e)
Magnetic field reference solution. (f) Magnetic field error of the efie. (g) Magnetic
field error of the mfie. (h) Magnetic field error of the wf-mfie. (i) Colorbar for all
plots.
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Fig. 4.27: Electric surface current distribution on a small pyramid © 2018 ieee [Kornprobst
and Eibert 2018e]. (a) efie. (b) mfie. (c) wf-mfie. (d) efie reference on a refined
mesh.

10−6. The nested diagonally preconditioned cg solver for the inversion of G𝜷,𝜷
converges within 10 iterations to 10−10. Overall, the computational cost for the
weak-form rotation is more or less negligible, even for such a small problem and
even though the Gram matrix is not really well-conditioned due to deformed
triangles, see Subsection 4.1.4.

A Pyramid

The bi-static rcs of the electrically small pyramid, as already shown in Fig. 4.9(b), is
considered in Fig. 4.11. The rwg-mfie is found to exhibit a much larger error. Here,
we look at the accuracy of the surface current densities in Fig. 4.27 for the same
scattering scenario as before. The wf-mfie and efie solutions give very similar
results, whereas the mfie solution differs quite a lot. Of course, the efie solution
on a finer mesh looks quite different. Nevertheless, it is clear that the currents of
the efie and wf-mfie solutions are more accurate than the mfie one.

4.5 Numerical Investigations of the CF/CS Schemes

In this section, extensive studies on the behavior of the proposed lo discretization
schemes are carried out for electrically larger objects (spanning at least multiple
wavelengths). First, several scattering problems and one radiation scenario are
discussed looking at the ff in detail. Then, several scattering scenarios are investi-
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Fig. 4.28: Rear view of the stealth object flamme with a pair of triangles on top © 2018 ieee
[Kornprobst and Eibert 2018e].

gated regarding the stability and accuracy of the interior-resonance free ies. The
studied ies comprise the cfie, the bc-cfie, the bc-csie, the csie, as well as the
wf-cfie.

4.5.1 More Scattering and Radiation Results

Stealth Object Flamme

Figure 4.28 shows the pec stealth object Flamme meshed with 52 782 triangles (i.e.,
79 173 rwg unknowns) [Gürel et al. 2003; Eibert 2005]. At the simulation frequency
of 8GHz, the size of the (scaled) object is 16𝜆 in 𝑥-direction, 6.4𝜆 in 𝑦-direction,
and 1.6𝜆 in 𝑧-direction and ℎ ≈ 0.08𝜆. For the incident field, we consider a dipole-
like excitation placed on top of the scatterer [Kornprobst and Eibert 2018e]. The
distance of the excitation to the pec surface is 0.05𝜆 (in 𝑧-direction) and consists
of a pair of deformed triangles, each with a height of 0.027𝜆 and a width of 0.005𝜆,
whose gap is excited with a voltage source.

The gmres stopping criterion is chosen as 10−5 for all simulations. The efie
converges within 1277 iterations, the wf-cfie within 125, and the cfie within
126. The mlfmm accuracy parameter is chosen as 𝐷0 = 5.0 and the box size is
0.2𝜆. The reference solution is a cfie solution on a refined mesh with 287 923 rwg
unknowns, computed with 𝜒cf = 0.999 and a stopping criterion of 10−8.

In Fig. 4.29, the calculated radiation patterns are compared. The maximum errors
of the cfie, the wf-cfie, and the efie are −29.6 dB, −36.6 , and −43.4 dB. The
negative influence of the mfie operator is reduced with the wf scheme but does
not disappear completely.

We consider the same object Flamme for scattering from a plane wave with
polarization 𝒑 = 𝒖𝑦 and wave vector 𝒌 = 𝑘𝒖𝑥 at a frequency of 10GHz. The
incident wave is directly illuminating the probably most challenging part of the
Flamme—the rear as shown in Fig. 4.28—with lots of sharp edges and cavity-like
structures. With the same rwg mesh as before (except for the dipole excitation),
the mesh size ℎ is about 0.1𝜆. For this scattering problem, we consider a 1.5th order
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Fig. 4.29: Directivity of the “dipole” placed on top of the Flamme.

cfie solution on a refined mesh with 1 055 640 unknowns as a reference, computed
with 𝜒cf = 0.99, a stopping criterion of 3 ⋅10−6, and an mlfmm box size of 0.125𝜆.
For the reference, an inner-outer preconditioning scheme for the gmres solver is
employed [Saad 1996; Eibert 2007].

Even for the standard mfie, the iterative solver convergence is quite slow with
a convergence within 1238 iterations due to the deformed mesh and the large elec-
trical size. For the wf-mfie, the number of iterations to convergence increases to
1580. The m-csie converges faster with just 549 iterations, while the efie struggles
much more and takes 4697 iterations to convergence. The cf/cs formulations are
able to cope with this to some extent. The cfie and wf-cfie converge within 323
and 395 iterations, respectively. The csie with equal weighting of mfie and efie
operators performs worse with 457 iterations.

The bi-static rcss of the reference solution and the solution with the largest
error—obviously, the standard rwg-mfie—in the 𝜗 = π/2 cut plane are shown
in Fig. 4.30. The rcs error for all considered ies, separately for the 𝜑- and 𝜗-
components of the rcs, are shown in Fig. 4.31. The mfie is particularly inaccurate
with a maximum 𝜖𝜑 error of −15.9 dB. This is also visible in the rcs plot itself,
quite similar to the previously discussed scattering scenarios for objects with sharp
edges—cf. Figs. 4.11 and 4.25. The inaccuracies are observable also at large rcs
levels, for instance looking into the shadow region at 𝜑 = 0 or looking at the mono-
static rcs at 𝜑 = π which is off by several decibels. Sorted in descending order, we
find the average rcs errors for the mfie, wf-mfie, cfie, wf-cfie, m-csie, csie,
and efie as −33.2 dB, −37.0 dB, −44.6 dB,−50.9 dB, −53.3 dB, −61.5 dB, and −65.5 dB,
respectively. The wf-cfie shows an advantage of about 6 dB over the classical
cfie; the csie performs another 10 dB better; and the efie even another 5 dB. Over
the angular range shown in Fig. 4.31, only the csie reaches the efie error level.
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As another scattering scenario involving the stealth object Flamme, we increase
the simulation frequency further to 12GHz, i.e., ℎ ≈ 0.12𝜆. Furthermore, the
incident plane wave exhibits 𝒑 = 𝒖𝑥 and 𝒌 = −𝑘𝒖𝑧, which means the wave is
impinging from above on a mostly planar surface. This incident field results in a
right-hand side that is easier to handle for some ies. The mfie converges within
1067 iterations, the wf-mfie within 1618, the m-csie within 481, and the efie
within 4827. The interior-resonance-free formulations show, as expected, a faster
convergence rate with 228 iterations to convergence for the cfie, 275 for the
wf-cfie, and 311 for the csie.

Since the Grammatrix is not really well-conditioned for this scattering scenario—
as indicated by the slow iterative solver convergence of the mfie and by the large
the ratio of the longest to the shortest triangle edge length (0.37𝜆/0.005𝜆 ≈ 89)—, we
look at the performance of the Gram matrix inversion in more detail. The calcula-
tions are run on an amd Ryzen 9 3950X with 16 cores (32 threads) and a maximum
boost clock up to 4.7 GHz. The mlfmm-accelerated mvp may be parallelized with
OpenMP (but is limited by the memory-speed for more than 7 threads at a 3.9-fold
speed-up); the other parts of the solver—the gmres and cg methods, or the nf and
Gram mvps—are not worth to parallelize since the memory throughput limits the
calculations anyhow, in particular for large problems. For computationally intense
tasks such as the setup of the nf interaction matrix, the observed speed-up in wall
time is 19.7-fold. For the Gram matrix inversion, we have chosen a challenging
threshold of 10−12. For the csie, the average time to convergence is 0.0386 s, i.e.,
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Fig. 4.31: Bi-static rcs error for plane-wave scattering from a pec Flamme at 10GHz with
𝒌 = 𝑘𝒖𝑥, shown for various ies, 𝜗 = π/2. (a) Error for the 𝜎𝜑 component. (a) Error
for the 𝜎𝜗 component.
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Fig. 4.32: Bi-static rcs and rcs errors for plane-wave scattering from a pec Flamme at
12GHz with 𝒌 = −𝑘𝒖𝑧, shown for various ies, 𝜑 = 0. (a) Bi-static rcs of the
reference and the mfie solutions. (a) Error for the 𝜎𝜗 component.

63.4 cg iterations with 0.59ms per mvp. Similarly for the wf-cfie with different
right-hand sides for the Gram matrix inversions, the cg solver converges within
67.8 iterations and 0.0378 s on average, with about the same 0.58ms per mvp. The
cpu time taken by one complete csie mvp (including magnetic currents, without
exploiting symmetries) is 4.98 s; the time for one wf-cfie mvp is 2.42 s; both run-
ning on a single thread. The time taken by the Gram matrix inversion contributes
about 0.78% and 1.6%, which is more or less negligible.

Figure 4.32 shows the rcs in the 𝜑 = 0 cut plane and the error of various ies
for the dominant 𝜎𝜗 component—the error for the 𝜎𝜑 component is much lower for
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all solutions in this cut. As seen in Fig. 4.32(a), even the most inaccurate solution
(obviously the classical mfie) shows a much better agreement with the reference
solution for this incident wave. Clearly, the illumination of the scatterer matters;
and here we consider a less challenging scenario. Visually apparent deviations in
the rcs magnitude are only seen at about 40 dB below the peak, i.e., below the large
mono-static rcs. The error of the dominating 𝜎𝜗-component of the rcs is shown in
Fig. 4.32(b). Some differences are observed at the angle 𝜗 = 0, where all solutions
show their largest error. In the other regions, all ies except for the two mfies
are doing fairly well. The maximum errors of the mfie, wf-mfie, cfie, wf-cfie,
m-csie, csie, and efie as −33.1 dB, −40.4 dB, −44.1 dB,−49.7 dB, −52.4 dB, −56.6 dB,
and −60.0 dB, respectively. The average errors are all much lower, viz. −53.3 dB,
−56.4 dB, −70.9 dB,−75.7 dB, −76.5 dB, −81.0 dB, and −83.1 dB. Just as for the first
incident wave, the wf-cfie offers accuracy improvements over the classical cfie,
but the csie comes somewhat closer to efie accuracy levels.

Airbus Airplane

Another electrically larger scatterer is a pec airplane Airbus A320 with 756 288
rwg unknowns at 470MHz (𝜆 ≈ 0.64m), with a total object length of about 38m
in 𝑧-direction, a span of 36m in 𝑥-direction, and a height of 12m in 𝑦-direction [Ko-
rnprobst and Eibert 2018e]. The average triangle edge length ℎ is about 0.1𝜆. The
model is simulated for plane wave incidence with 𝒌 = −𝑘𝒖𝑧 and 𝒑 = 𝒖𝑥 polariza-
tion, hitting the airplane from the front. The mvp is accelerated by the mlfmm
with 𝐷0 = 5 and a box size of 0.2𝜆. For the iterative solution with gmres, an
inner-outer preconditioning scheme, with 20 iterations in the first inner loop and
10 iterations in the innermost loop, is employed. Additionally, all system matrices
are diagonally preconditioned. In case of the wf-cfie, the standard cfie matrix
diagonal is employed. In case of the csie, the standard efie matrix diagonal is
employed. The reference solution is calculated on a refined mesh (3 025 152 rwg
unknowns) with the cfie and 𝜒cf = 0.999.

The cfie converges within 24 iterations of the outer gmres solver to a residual
of 10−5, the wf-cfie within 25 iterations, and the csie within 30, while the efie
takes 300 iterations to converge to a residual of just 2 ⋅10−5.

The bi-static rcs in the 𝜑 = π/2 cut plane is shown in Fig. 4.33. Even the cfie
solution is at least visually indistinguishable from the reference except for some
parts of the cross-polarization 𝜎𝜗. The cross-polarization exhibits such a small
magnitude that its error is much lower than for the co-polarization, which is why
only 𝜖𝜑 is shown in Fig. 4.33(b). The cfie shows a maximum/average relative
error of −48.0 dB/−73.1 dB, while the wf-cfie is more accurate by about 10 dB
with −57.1 dB/−82.2 dB. The csie performs another 10 dB better regarding the
maximum error, but only a couple of decibles better regarding the average error
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Fig. 4.33: Bi-static rcs and rcs errors for plane-wave scattering from a pec Airbus airplane
at 150MHz with 𝒌 = −𝑘𝒖𝑧, rrors shown for various ies, 𝜑 = π/2. (a) Bi-static rcs
of the reference and mfie solutions. (a) Error for the 𝜎𝜑 component.

with −67.6 dB/−86.1 dB. The efie has a slightly worse maximum error, but the best
average one with −65.2 dB/−88.7 dB.

For a further analysis of this scattering scenario regarding other choices of the
cf/cs weighting factors, including the mfies and a csie with dominant magnetic
currents, we refer to Section 4.6.
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Fig. 4.34: Bi-static rcs and rcs errors for plane-wave scattering from a 168𝜆 sphere with
𝒌 = 𝑘𝒖𝑧, errors shown for various ies, 𝜑 = 0. (a), (b) Bi-static rcs of the Mie series
and the (wf-)cfie solutions. (c) Error for the dominant 𝜎𝜗 component.

An Electrically Large Sphere

Last but not least, a pec sphere with 168𝜆 diameter, 0.1𝜆 mean edge length dis-
cretization, and 30 631 608 rwg unknowns is simulated for a plane wave with
𝒑 = 𝒖𝑥 polarization and 𝒌 = 𝑘𝒖𝑧 incidence. The mvp is accelerated by the mlfmm
with a box size on the lowest level of 0.1𝜆 and an accuracy parameter of 𝐷0 = 5.5.
With an inner-outer preconditioned gmres solver with a termination threshold of
10−4, all three considered interior-resonance free ies converge within 4 iterations.
The final residual of the cfie is 1.36 ⋅10−4; the wf-cfie exhibits 1.78 ⋅10−4 and the
csie 3.13 ⋅10−4. Though not visible in the small number of iterations, the residuals
tell the same story about the conditioning of the system matrices as before.

In Fig. 4.34, the bi-static co-polarized rcs of the three interior-resonance free ies
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is compared to the Mie series reference. Since the rcs shows the largest magnitude
in the shadow region (around 𝜗 = 0), the error levels are dominated by the rcs in
this region. The cfie error is generally larger, which is visible in Fig. 4.34(b) and
Fig. 4.34(c). The rcs and rcs errors are only shown in selected angular ranges due
to the strong fluctuations and the large dynamic range.

The classical cfie shows a maximum error of −45.8 dB and an average error of
−98.7 dB, while the wf-cfie shows errors of only −61.5 dB and −104.5 dB. The csie
performs slightly better with −62.8 dB and −105.4 dB. Note that the average errors
of the wf-cfie and the csie are limited by the chosen mlfmm accuracy parameter.

As for the previous considered scenarios, the csie shows the best accuracy with
the same choice of 𝜒 = 0.5, closely trailed by the wf-cfie but with a somewhat
slower iterative solver convergence.

4.5.2 Stability at Interior Resonances

For hf boundary ies applied to objects spanning more than about 0.5𝜆, interior
resonances may occur and negatively affect the iterative solver convergence and
the solution accuracy if no countermeasures are taken. This problem is studied in
this subsection for all proposed ies and the conventional rwg discretizations.

Looking at the First Two Resonance Frequencies of a Sphere

We revisit the scattering scenario discussed in Fig. 4.3: Plane-wave scattering from a
1-m diameter pec sphere with 999 unknowns, where the mom systems of equations
are solved by the gmres method to a threshold of 10−5. The considered frequency
range goes from 200MHz to 400MHz, covering the first two interior resonances
of a pec sphere with free-space background. The average triangle edge length of
the mesh ranges from 0.07𝜆 to 0.14𝜆.

Figure 4.35 shows the obtained error levels, the iterative solver convergence, and
the system matrix condition numbers of the rwg-discretized sies. Figure 4.35(a)
analyses the relative arithmetically averaged ff rcs error with respect to a solution
obtained by a Mie series expansion. As noted in previous discussions of scattering
results, the issue here is that the models do not match: The Mie series assumes a
perfect 1-m diameter sphere and the ies are calculated on a discretized boundary
of an effectively smaller body. One approach is to calculate the Mie series solution
for a smaller sphere. An appropriate value here might be a diameter of 0.996m.
However, the two surfaces would still not coincide.

Hence, a 1.5th order efie solution on a refined mesh is taken as the reference
in Fig. 4.35(b) for the rwg-based discretizations and in Fig. 4.36(a) for the mixed
discretization schemes. Error levels drop by about 10 dB for the more accurate ies;
and more distinct differences between the ies become apparent. In more detail,
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Fig. 4.35: Analysis of the accuracy and conditioning of classical rwg sies and wf rwg sies
around the first two interior resonance frequencies of a pec sphere. (a) Average
ff rcs errors w.r.t. to a Mie series reference. (b) Average ff rcs errors w.r.t. to a
ho efie reference on a refined mesh. (c) Number of gmres iterations to 10−5. (d)
System matrix condition numbers.
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Fig. 4.36: Analysis of the accuracy and conditioning of classical rwg sies and mixed-
discretization sies around the first two interior resonance frequencies of a pec
sphere. (a) Average ff rcs errors w.r.t. to a ho efie reference on a refined mesh.
(b) Number of gmres iterations to 10−5. (c) System matrix condition numbers.

the classical mfie shows the worst accuracy with a “base level” of around −45 dB
and severely worsened accuracy around the interior resonance frequency. The
effect of the parasitic exterior solution (cf. the discussion of interior resonances in
Subsection 2.5.2) is noticeable, leading to errors up to −13 dB at 263.5MHz.2 The
wf-mfie (in Fig. 4.35) and also the bc-mfie (in Fig. 4.36) show the same worst-case
error at the same frequencies albeit with a lower bandwidth—indicating that the
parasitic exterior solution is excited in the same manner. The erroneous solution
shows a smaller bandwidth though and the wf-mfie error comes close to efie

2. Around the interior resonance frequency, the frequency sampling step is chosen as 0.1MHz; except
for the efie, whose accuracy is less sensitive and, hence, the sampling step is reduced to 0.001MHz in
the critical regions.
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levels of below −50 dB when the influence of the interior resonances is negligible.
Only the rwg m-csie and the bc-mfie as well as the bc-efie achieve to reach the
efie error, though.

This translates to the cfie error levels. The classical cfie with 𝜒cf = 0.5 is
influenced by the inaccurate mfie and reaches on average an error of about −50 dB.
The wf-cfie comes closer to the efie error levels (e.g., 3 dB worse at 200MHz).
The csie (𝜒cs = 0.5), bc-cfie (𝜒cf = 0.5), and bc-csie (𝜒cs = 0.5) are just as
accurate as the efie with an error of about −58 dB. We observe the same for
the m-csie (𝜒cs = 1/11), whose accuracy is only slightly influenced at the first
interior resonance and not at all at the second one. Even though the efie is affected
in its condition number and solver convergence, the interior resonances only
have a minor effect on the error. Its error only slightly increases at very distinct
frequencies, and this is even suppressed almost completely in the presented results
by choosing very accurate quadrature rules and an effective singularity cancellation
technique. Seen is a minor influence at the second resonance: At around 371.5MHz,
the error increases by 0.2 dB when simulating in 1 kHz steps. For lower-accuracy
settings, the bandwidth of erroneous solutions increases and errors above −50 dB
are easily observable.

The effect of interior resonances at the iterative solver convergence and the
condition number of the efie system matrix is more severe—see Figs. 4.35(c) and
4.35(d), as well as Figs. 4.36(b) and 4.36(c). The efie shows the worst performance
in this regard, in particular at interior resonances. The wf-mfie and mfie are also
strongly affected (in particular regarding the condition number). The bc-mfie and
bc-efie are affected more, which is most probably due to the different implementa-
tion in the beast Julia package, for instance a different quadrature. Both even fail
to converge at all at 371.5MHz within 1000 gmres iterations. While the condition
numbers of bc-mfie and bc-efie are lower than the one of the classical mfie, the
reverse is observed for the respective cfie/csie condition numbers. The reason is
found in the mappings from rwg to bc functions via the Gram matrices, which are
only present in the cf/cs equations. The m-csie suffers from no negative effects,
but the iterative solver convergence is rather slow. The condition number (not
shown) is the exactly same as for the csie, since it is dominated by the lowest efie
svs. For both of them, the condition number is the same as the efie but without
the increase around the interior resonance frequencies. However, only the csie
keeps the increasing number of solver iterations with increasing frequency well
under control. A similar effect is observed for both cfies, albeit at a much better
conditioning. The wf versions of the mfie and the cfie performs slightly worse
than the standard versions, but the observed behavior is otherwise the same.

Overall, the bc-cfie, the bc-csie, the csie, and the wf-cfie are able to cope
with the interior resonance problem in a similar manner as the cfie such that the
non-trivial interior-resonance null space is removed and the problem becomes
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well-posed. The increase in iterative solver iterations and condition number is well
under control for all four ies. The bc-cfie and bc-csie stand out since they achieve
efie accuracy with the lowest increase with regard to the condition number solver
iterations. The number of iterations is increased just by one as compared to the
classical cfie, whereas the wf-cfie takes three to five iterations more and the
csie is even slower. However, the at least six-fold increased computational effort
of the matrix setup and potentially each mvp has to be kept in mind. The csie is
able to offer the same excellent accuracy albeit at the cost of more than double the
iterations to convergence. The wf-cfie comes quite close to the efie error levels
at an only minor cost regarding the conditioning.

Frequency Sweep for Flamme

For an electrically larger and geometrically more challenging scattering scenario,
we look again at the stealth object Flamme from Subsection 4.5.1. The simulation
settings are chosen just as in Subsection 4.5.1 for the scattering from a plane wave
with 𝒌 = 𝑘𝒖𝑥 at 10GHz; however, the simulation frequency is swept from 8GHz to
12GHz in steps of 50MHz. The results regarding error levels and iterative solver
convergence are shown in Fig. 4.37.

Studying the iterative solver convergence in Fig. 4.37(a) reveals several inter-
esting aspects. The classical mfie suffers much less from fluctuating convergence
levels than the efie and the wf-mfie. It is noteworthy that the wf-mfie struggles
with an increasing number of iterations with increasing frequency similar to the
efie and m-csie. Opposed to this, all three interior-resonance free ies show a
downward trending number of iterations with increasing frequency. This decrease
is not monotonous, though; at around 10GHz, we observe an increased number of
iterations for all of these ies and the m-csie.

For both the average error in Fig. 4.37(b) and the maximum error in Fig. 4.37(c),
the most interesting observation is made for the wf-mfie. At 8.3 GHz, the error is
quite large—an interior resonance hits the solution much harder for the wf scheme.
The wf-cfie is unaffected by this and shows a stable behavior. In general, the
wf-mfie is more accurate than the mfie. The wf-cfie is more accurate than the
cfie, both in the range of 5 dB to 10 dB. The m-csie exhibits errors close to the
wf-cfie and the csie performs better by about 10 dB—on a similar level as the
efie. It remains to be investigated which choices of 𝜒cf and 𝜒cs offer the fastest
convergence rate at the best, efie-alike accuracy.

An Electrically Larger, Overmoded Sphere

For electrically larger scattering scenarios, the interior resonance problem becomes
more severe. Effectively, there is an influence of some neighboring interior reso-
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Fig. 4.37: Analysis of the accuracy and iterative solver convergence of various sies for the
pec Flamme. (a) Number of gmres iterations to 10−5. (b) Average relative ff rcs
errors w.r.t. to a ho cfie reference. (c) Maximum relative ff rcs errors w.r.t. to a
ho cfie reference.
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nance at every simulation frequency. We consider again a 1-m diameter sphere,
which is now meshed much finer leading to 242 238 rwg unknowns for both elec-
tric and magnetic surface currents [Kornprobst and Eibert 2017b]. The mvp is
accelerated by the mlfmm with an accuracy parameter 𝐷0 = 5.5 and a box size of
0.25𝜆. At a frequency of 4.42GHz, the mean edge length ℎ of the utilized triangular
mesh is approximately 𝜆/10 and the diameter is about 14.7𝜆. In order to examine
the interior resonance problem, the frequency is swept from 4GHz to 5GHz in
steps of 5MHz.

Figure 4.38(a) shows the number of iterations which the gmres solver takes for
convergence to a threshold of 10−5. The efie, mfie, and wf-mfie show strong
fluctuations dependent on the simulation frequency; the m-csie also but somewhat
reduced with 𝜒cs = 1/11. The efie fares by far worst with the number of gmres
iterations almost always above 103. In some cases, this also has minor conse-
quences for the ff error, see Fig. 4.38(b) for the average error, and in particular
Fig. 4.38(c) for the maximum error, which is worsened by a couple of decibels at
a few frequencies. The mfie and wf-mfie converge within a couple of hundred
iterations; the wf-mfie always performs slightly worse. This results in a signifi-
cantly faster solution time than for the efie at any of the considered frequencies.
However, the ff error is significantly affected for both of them by the erroneous
exterior contribution of the interior resonances, while the wf-mfie beats the mfie
handily at almost any frequency. The m-csie does not suffer as much from interior
resonances due to its efie part (converging within around 200 iterations), which
also has the effect that its accuracy is on almost the same level as the csie with
𝜒cs = 0.5.

The three interior-resonance-free formulations show a stable behavior: Their
iterative solver convergence is not affected by the choice of the solution frequency.
The classical cfie converges within the lowest number of iterations, between 61
and 63, closely trailed by the wf-cfie with 68 or 69 iterations to convergence. The
csie falls a bit behind with 122 to 124 iterations. All of them beat the ies suffering
from interior resonances regarding the pure number of iterations.3

The classical cfie shows an about 11 dB worse average error and an about 35 dB
worse maximum error than the efie. The wf-cfie trails the efie by less than 5 dB
for the average error and 15 dB for the maximum error. The csie fares better than
the efie regarding the average error by up to two decibels but trails the efie by
about 5 dB for the maximum error. While a similar behavior (a benefit for the csie)
has been observed previously—for instance in Fig. 4.19—, it remains to be seen
whether this is really the case or whether this is an artifact of employing the not

3. Note that one iteration of the csie contains two mvps for the electric and magnetic current
unknowns, respectively. This means doubled computational effort per solver iteration even if the
symmetric parts of the matrices are stored efficiently and only the memory of one full matrix is
occupied. Hence, the computation time spent for the csie and the mfie/cfie is similar.
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Fig. 4.38: Analysis of the accuracy and iterative solver convergence of various sies for a 1-m
diameter pec sphere. (a) Number of gmres iterations to 10−5. (b) Average relative
ff rcs errors w.r.t. to a Mie series reference. (c) Maximum relative ff rcs errors
w.r.t. to a Mie series reference.
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Tab. 4.3: Error level comparison with Mie and ho references for the 1-m diameter pec sphere
at 5 GHz.

reference
solution

Mie series ho cfie, 𝜒cf = 0.999

error type 𝜖ffavg 𝜖ffmax 𝜖ffavg 𝜖ffmax

mfie −48.4 dB −27.5 dB −51.8 dB −27.1 dB
cfie −76.2 dB −44.8 dB −78.0 dB −44.6 dB

wf-mfie −58.5 dB −41.1 dB −60.9 dB −41.1 dB
wf-cfie −87.0 dB −66.6 dB −88.8 dB −64.0 dB
m-csie −92.9 dB −71.2 dB −97.3 dB −71.9 dB
csie −94.8 dB −76.1 dB −100.3 dB −71.2 dB
efie −92.6 dB −81.4 dB −98.2 dB −79.7 dB

perfectly matching Mie series reference solution.
In order to investigate this, a 1.5th order cfie solution with 𝜒cf = 0.999 on a

refined mesh is taken as another reference solution. The number of unknowns
increases to 3 229 840. In addition to diagonal preconditioning, an inner-outer
preconditioning scheme was employed with 25 iterations on a second level and
10 iterations on the third, innermost level. The preconditioned gmres solver
converged to 10−7 after 226 iterations. This solution was only calculated at a
frequency of 5GHz. Table 4.3 gives an overview over the error levels of the various
ies at that frequency. While most results only differ by a couple of decibels and
the observations are the same as for previous scenarios, the efie exhibits a lower
average ff error than the m-csie with the better reference solution (and closes the
gap to the csie halfway). The average errors of the csie and the efie are so close
to the expected minimum given by the mlfmm accuracy parameter 𝐷0 = 5.5 that
no real insight is found here except that they are all rather accurate. Overall, we
find that the Mie series offers an acceptably accurate reference solution for this
electrically larger sphere, where the surface discretization error takes a back seat.

4.5.3 Summary

All cf and cs formulations involving both the efie and mfie operators are shown
to be interior-resonance free; they give rise to well-posed systems of equations.
This includes the classical rwg cfie, the rwg wf-cfie, the rwg csie, as well as
the bc-cfie and the bc-csie with a mixed discretization. Three formulations are
able to achieve an accuracy close to the efie for smooth surfaces but suffer a bit
from edges in the geometry: the rwg csie, the bc-cfie, and the bc-csie. The
wf-cfie falls a bit behind in terms of accuracy.
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Regarding the bare number of iterations and in terms of the condition number,
only the wf-cfie, the bc-cfie, and the bc-csie are able to come very close to the
classical cfie; the very accurate rwg csie falls a bit behind. Hence, the formulation
with mixed rwg/bc functions seem clearly favorable. Once the time to solution
comes into play, the picture changes. The mixed-discretization formulations suffer
from the issue of increased computational effort. The choice of the best formulation
is, hence, not obvious; especially since the choice of the cf/cs weighting factor 𝜒
also influences the accuracy for the less accurate equations.

4.6 The Trade-Off between Accuracy and Conditioning

In a world with just the classical versions of the rwg efie, mfie, and cfie, one will
employ the cfie necessarily for the computation of large scattering scenarios since
the accurate efie does not converge on its own due to the conditioning problems
associated with interior resonances, dense meshes, and hfs. However, one will
also fear the negative impact of the mfie on the solution accuracy. Hence, the
cfie combination factor is commonly chosen rather large in order to reduce the
influence the impact of the mfie solution. Typical values might be 𝜒cf = 0.99 or
even 𝜒cf = 0.999—values which we have also considered when calculating (ho)
reference solutions (on refined meshes).

In this chapter, two approaches to solve the mfie accuracy issues and the interior
resonance problem simultaneously with only rwg functions have been discussed so
far: the rwg csie and the cfie with awfweighting scheme for the discretization of
the identity inside the rwg-mfie. Furthermore, the mixed discretization schemes of
the bc-cfie and the bc-csie also solve both issues. As we have seen in the previous
section in particular, all of these discussed approaches are able to cope excellently
with the interior resonance problem. However, differences in the iterative solver
convergence behavior, the involved computational effort, and the accuracy have
been observed. The choice between the four ies—or just the csie and the wf-cfie
with rwg functions only—is hence not really obvious since the wf-cfie comes out
on top regarding conditioning but the csie shows the superior accuracy; the two ies
with a mixed discretization combine the best accuracy with best conditioning but
exhibit higher computational effort; all with 𝜒 = 0.5. In the following, we analyze
the optimal choice of the respective combination factors 𝜒cs and 𝜒wf−cf when the
goal is to maintain efie-alike accuracy levels for electrically large scattering and
radiation scenarios. One insight is already known from the discussion so far: All
four discussed approaches offer far better trade-offs between solution accuracy and
time to convergence than the classical cfie.
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Fig. 4.39: Analysis of cfie, wf-cfie, csie, bc-csie, and bc-cfie error levels and iterative
solver convergences for varying weighting factors 𝜒, scattering from a sphere
around the first interior resonances.4

4.6.1 Electrically Smaller Sphere

As a first scenario, we look at the 1-m diameter pec sphere with 999 rwg unknowns
which was already investigated previously. The same scenario is the same as in
Subsection 4.5.2 and we consider three frequencies, which are not affected by
interior resonances,—2GHz, 3 GHz, and 4GHz—and two further frequencies which
are close to interior resonances, cf. Fig. 4.35 on p. 98—2.635GHz and 3.72GHz. The
error levels and gmres solver iterations are geometrically/arithmetically averaged
for the results obtained at those five frequencies.

Figure 4.39 shows the solver iterations and (twice) averaged error levels of the
five interior-resonance free ies for weighting factors 𝜒 ranging from 0 to 0.9 in steps
of 0.1 and one additional data point at 0.99. The maximum and average efie errors
are at −52.0 dB and −58.5 dB, and its average iteration count to convergence is
136.6—which is included as a baseline in Fig. 4.39. The versions with only the mfie
operators are included at 𝜒 = 0. The fastest convergence of the cfie is observed at
𝜒cf = 0.2 with 17.8 iterations and maximum/average errors of −35.7 dB/−47.0 dB.
The wf-cfie converges a bit slower but is generally more accurate: The fastest
convergence is observed also at 𝜒wf−cf = 0.2 with 20.4 iterations (about 15% more)
and a maximum/average errors of −44.5 dB/−54.9 dB (about 8 dB better). The csie
shows its fastest convergence at 𝜒cs = 0.3 with 60.2 iterations (238% more than the

4. Note that the convergence of the two bc-based ies is slower than the one of the efie for large values
of 𝜒; the reason being the beast implementation in particular around interior-resonance frequencies.
In particular for the highlighted value of 𝜒 = 0.99, the bc-csie converges only within 372.6 iterations
on average and the bc-cfie converges within 435 iterations. The pure efie–with the same code as
used for the cfie, wf-cfie, and csie—converges in just 122.8 iterations to the same residual of 1 ⋅10−5.
The other sies take fewer iterations to convergence than the efie, except for the csie at 𝜒 = 0, which
suffers from the non-trivial null space of G𝜶,𝜷.
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cfie) and errors of −49.7 dB/−58.3 dB—about more than 10 dB better than the cfie
and very close to the efie error. Note that the csie with only the mfie operator
does not converge well due to the non-trivial null space in the matrix—the average
number of iterations to convergence is 378.4 and the error goes up to −9.5 dB.

It is not fully clear yet whether the minor accuracy advantage of the csie over
the wf-cfie is systematic or just “noise.” The latter achieves the same number
of iterations (close to 60) at 𝜒wf−cf = 0.7, with errors of −47.8 dB/−56.4 dB—that
is only 2 dB worse than the csie/efie. Accepting an additional error of 1 dB, the
iteration count is reduced to a third.

For this electrically small scenario, the bc-cfie and the bc-csie are also included
in the analysis. For larger scenarios, this is not possible due to missing acceleration
in the employed Julia package beast. Just as the csie, the bc-cfie stays close to
the efie error level except for 𝜒bc−cf = 0, i.e., the pure mfie solution. The fastest
convergence is found with 𝜒bc−cf = 0.2 and 17.8 iterations to convergence, where
the solution exhibits maximum/average errors of −49.6 dB/−57.8 dB. The bc-csie
shows a comparable behavior but with a slightly worse accuracy and slightly slower
solver convergence. The fastest convergence is observed again at 𝜒bc−cs = 0.2
and with 18.8 iterations to convergence. The maximum/average errors at this
weighting read −48.8 dB/−57.0 dB. As mentioned previously, the matrix setup and
each mvp are computationally more costly than for the other ies and the look at
the iteration count favors the bc-cfie spuriously. If we assume a six-fold increase
in computational effort as a reasonable estimate for an accelerated solver, both
mixed-discretization formulations perform clearly worse than the rwg csie.

4.6.2 Stealth Object Flamme

The next scattering scenario is the stealth object Flamme first discussed in Subsec-
tion 4.5.1. We consider the incident plane wave with 𝒌 = 𝑘𝒖𝑥 at the frequencies
8GHz, 9 GHz, 10GHz, 11GHz, and 12GHz; and the incident plane wave with
𝒌 = −𝑘𝒖𝑧 at the frequencies 8.5 GHz, 9.5 GHz, 10.5 GHz, and 11.5 GHz. As a base-
line, the efie converges within an average of 5057.4 iterations and shows an average
error of−72.9 dB.

Figure 4.40 shows the simulation results for varying 𝜒 from 0 to 0.9 in steps of 0.1
and the additional points 0.94 and 0.98. The cfie shows the fastest convergence for
𝜒cf = 0.2 with 281.3 iterations and an average ff error of −51.6 dB. The wf-cfie
shows the fastest convergence at 𝜒wf−cf = 0.4 with 304.7 iterations and an average
ff error of −58.8 dB. The csie also shows the fastest convergence at 𝜒cs = 0.3 with
323.2 iterations and an ff error of −67.1 dB. Overall, the wf-cfie is about 5 dB (or
slightly more) more accurate as the cfie, and the csie shows an improvement of
another 10 dB.
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Fig. 4.40: Analysis of cfie, wf-cfie, and csie accuracies and iterative solver convergences
for varying weighting factors 𝜒, scattering from Flamme.
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Fig. 4.41: Analysis of cfie, wf-cfie, and csie accuracies and iterative solver convergences
for varying weighting factors 𝜒, scattering from a sphere with 16.7𝜆 diameter.

4.6.3 Electrically Larger Sphere

The next scattering scenario is the sphere from Subsection 4.5.2 with 242 238 rwg
unknowns at a simulation frequency of 5GHz, i.e., the sphere exhibits a diameter of
16.7𝜆. Since the accuracy in general is limited by the mlfmm settings, see Tab. 4.3,
we look at the more meaningful maximum error. Figure 4.41 shows the simulation
results for varying 𝜒 from 0 to 0.9 in steps of 0.1 and the additional points 0.94
and 0.98. The choices for the fastest convergences are as follows. The cfie with
𝜒cf = 0.3 converges within 32 iterations and shows amaximum/average ff errors of
−39.3 dB/−72.8 dB. The wf-cfie with 𝜒wf−cf = 0.3 converges within 36 iterations
and shows a maximum/average ff errors of −58.3 dB/−83.7 dB—about twenty and
ten decibels lower. The csie with 𝜒cs = 0.3 converges within 85 iterations and
shows an maximum/average ff errors of −71.4 dB/−100.1 dB—about twenty and
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Fig. 4.42: Analysis of cfie, wf-cfie, and csie accuracies and iterative solver convergences
for varying weighting factors 𝜒, scattering from the airplane.

ten decibels lower. Except for the choice 𝜒cs = 0, the csie offers the most accurate
solution. The wf-cfie is able to catch up in terms of accuracy and iterations for
𝜒wf−cf ≥ 0.7.

4.6.4 Airbus Airplane

Scattering from a pec airplane with 756 288 rwg unknowns has already been
discussed in Subsection 4.5.1. We re-investigate the scenario with the same settings.
We recall that the gmres solver is preconditioned with an inner-outer scheme and
that the efie did only converge to 2 ⋅10−5 within 300 iterations. This efie solution
gives −88.6 dB as baseline for the average error of the solution The weighting
parameter 𝜒 is swept from 0.0 to 0.9 in steps of 0.1, and in steps of 0.04 up to
𝜒 = 0.98. In Fig. 4.42, the results of this sweep are shown.

The cfie shows the fastest iterative solver convergence between 𝜒cf = 0.4 and
0.5 with 24 iterations for convergence to 10−5. For 𝜒cf = 0.5 (the better case), it
exhibits an average rcs error of −73.1 dB. The wf-cfie takes 25 iterations with
𝜒wf−cf = 0.5, leading to an average error of −82.2 dB. The csie converges slower
but does show the fastest convergence with 𝜒cs = 0.5 (30 iterations), too. The error
is a bit smaller with −86.1 dB but still 2.5 dB worse than the efie error. The fact that
all three ies show the fastest convergence at 𝜒 = 0.5 clearly hints at the fact that,
for large and overmoded objects, the equal weighting of efie and mfie operators is
more important than the better conditioning of the mfie operator since the interior
resonance problem becomes more severe.

The cfie only achieves csie error levels with 𝜒cf = 0.96 and 33 iterations to
convergence, i.e., slower than the csie. The wf-cfie is able to “beat” the csie
with 𝜒wf−cf = 0.8 and 28 iterations. Also for the considered values 𝜒wf−cf above
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0.8, the wf-cfie beats the csie in the combined consideration of error level and
conditioning.

4.6.5 Summary

Overall, the csie and the wf-cfie show comparable accuracy improvements over
the classical rwg cfie. The choices of 𝜒wf−cf ≥ 0.8 and 𝜒cs ≥ 0.5 seem reasonable
in order to come close to efie accuracy at a much faster convergence rate. Both
offer a more balanced approach than the classical cfie, whichmay not even provide
an accurate solution with 𝜒cf ≥ 0.98. If implemented efficiently (one full operator
for the (wf-)cfie and two symmetric ones for the csie), not only the iteration count
to convergence but also the computational effort are comparable for appropriate
choices of 𝜒wf−cf and 𝜒cs. From an implementation perspective, the wf-cfie may
offer the advantage that the involved singular integrals are the same as for the
classical cfie.

There is one major advantage to the use of the wf-cfie. Retrieving a Love
current solution offers a wider range of applications, for instance concerning the
sie part of the hybrid fe-bi method. The csie on the other hand has its own two
potential benefits. One, the csie is able to cope better with inaccuracies of the
mfie operator for challenging scenarios (objects with sharp edges). Two, it does
not suffer from the severe lf breakdown of the rwg-mfie.

The theoreticallymore soundmixed-discretization schemes leading to the bc-cfie
and the bc-csie are favorable when looking just at accuracies and solver iteration
counts, but they lose this advantage once the increased effort for the barycentric
refinement of the mesh is considered.

4.7 Higher-Order Rao-Wilton-Glisson Discretization
Schemes

In Subsection 3.2.2, we have mentioned employing ho expansion functions as
one among many reported approaches to tackle the mfie inaccuracy problem.
Trintinalia and Ling [2001], Sun et al. [2001], Ismatullah and Eibert [2009b], L. Li et
al. [2014b], Ylä-Oijala et al. [2005], Ergül and Gürel [2007], Gil and Conde-Pumpido
[2020], and Kornprobst et al. [2021c] have demonstrated that div-conforming
ho expansion approaches may improve the accuracy of both the efie and mfie,
where it remains unclear whether the mfie inaccuracy issues are really completely
resolved or only partially. Notably, Kornprobst et al. [2021c] have proposed to fix the
hf rwg-mfie by applying the wf discretization scheme for the discretized identity
operator while working with classical div-conforming rwg testing functions and
a hierarchical ho basis [Ismatullah and Eibert 2009a, 2009b; Ismatullah 2010; L.
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Li et al. 2014b; L. Li 2016], which is only capable of fixing the mfie inaccuracy
in part. In this section, we propose hierarchical ho discretizations for the csie
and the wf-mfie. Just as for the lo case, numerical studies for various scattering
demonstrate the accuracy, well-conditioning and the effectiveness to deal with the
problem of interior resonances.

4.7.1 Higher-Order Combined-Source Integral Equation

It is straight-forward to extend the rwg csie implementation to the ho case.
Ismatullah and Eibert [2009a, 2009b] have proposed a similar approach for the mfie
and the efie with a Leontovich ibc—both with the same ho expansion functions as
discussed here. However, this implementation was done by a sc for the cs condition.
As we have demonstrated in Subsection 4.1.3, this is a suboptimal implementation.
Hence, we only consider the csie with an explicit inversion of the cs condition in
each mvp according to (4.18). This equation reads, for the sake of completeness,

[T𝜶,𝜷 +
1 − 𝜒
𝜒 (

1
2G𝜶,𝜷 − K𝜶,𝜷)G

−1
𝜷,𝜷 G𝜶,𝜷]i = e𝜶 . (4.54)

Of course, the set of div-conforming basis functions 𝜷 includes all ho functions up
to order 𝑝; and the rotated curl-conforming counterparts are denoted as 𝜶. The full
set of magnetic currents is mapped onto a 90° rotated version by a wf rotation.

Such a discretization scheme for the csie is feasible for any set of ho expansion
functions. There is no need to employ the particular set of hierarchical ho functions
which we consider in this work.

4.7.2 Higher-Order Weak-Form Scheme for the Magnetic Field
Integral Equation

The following investigations for the ho mfie are tailored to the employed hierar-
chical ho functions. Other ho approaches, especially interpolatory ones, may not
directly contain an rwg-alike subset of the functions. However, identifying and
isolating the anisotropic influence of the rwg functions is crucially important to
improve the accuracy of the hf mfie as considered in this work.

Revisiting the Low-Order Case

The foundation of the proposed formulation is the wf identity operator discretiza-
tion scheme for the rwg-mfie, which was proposed in Section 4.3. In order to
integrate this scheme with the hierarchical ho basis functions, we have to revisit the
basic equations and name the occurring matrices more specifically as designated
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for the rwg or lo part 𝜷lo with 𝑝 = 0.5. First, we have the wf basis transformation
matrix based on (4.27)

Wlo
𝛾 = 𝛾 Ilo + (1 − 𝛾)Rlo (4.55)

with the identity matrix Ilo ∈ ℝ𝑁lo×𝑁lo as well as the twice-rotated wf identity
matrix

Rlo = −G−1
𝜷lo,𝜷lo

G𝜶lo ,𝜷lo
G−1
𝜷lo,𝜷lo

G𝜶lo ,𝜷lo
. (4.56)

This is used to build the rwg/lo wf-mfie in (4.45) as

[
1
2G𝜷lo,𝜷lo

Wlo
𝛾 + K𝜷lo,𝜷lo

]ilo = h𝜷lo
(4.57)

The Higher-Order Case

We assume that the anisotropy of the rwg functions is the major cause of the
problems of the identity operator discretization. Hence, we investigate two different
approaches to cope with the rwg anisotropy inside the hierarchical ho basis. First,
we apply the wf discretization scheme to all ho functions as a whole. This means
that we can re-use (4.45) (just as for the csie)

[
1
2G𝜷,𝜷W𝛾 + K𝜷,𝜷]i = h𝜷 , (4.58)

where 𝜷 includes the whole set of hierarchical ho expansion functions.
Second, we tackle only the rwg part of the Gram matrix. Here, the whole Gram

matrix G𝜷,𝜷 is split into lo/rwg and ho interaction blocks in the way of

G𝜷,𝜷, i = [
G𝜷lo,𝜷lo

G𝜷lo,𝜷ho
G𝜷ho,𝜷lo

G𝜷ho,𝜷ho

] [ ilo
iho

] . (4.59)

The respective lo/rwg expansion coefficients are represented by the vector ilo,
the ho part by iho. Then, the wf basis transformation scheme including two wf
rotations is employed only for the lo subset of the basis functions as described
in (4.55). This alters the Gram matrix to

Gwf−lo
𝜷,𝜷 i = [

G𝜷lo,𝜷lo
Wlo

𝛾 G𝜷lo,𝜷ho
G𝜷ho,𝜷lo

G𝜷ho,𝜷ho

] [ ilo
iho

] , (4.60)

where the weighting factor 𝛾 depends on the polynomial order 𝑝 of the expansion
functions but is fixed for the whole matrix otherwise. Note that the basis trans-
formation (4.55) is in fact not even employed for the LO functions as a whole set
of basis functions but just for the self-interaction Gram matrix block, i.e., for the
inner products ⟨𝜷lo, 𝜷lo⟩ of lo with lo functions themselves. In consequence, the
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hierarchical ho mfie including a wf identity operator representation follows as

[
1
2G

wf−lo
𝜷,𝜷 + K𝜷,𝜷]i = h𝜷 . (4.61)

In the hierarchical ho discretization, a part of the rwg anisotropy is already taken
care of by the expansion functions themselves. This effect should increase with
increasing order of the expansion functions. Hence, we expect that 𝛾 has to come
closer to one with a higher order of the expansion functions. This means that the
discretization might come closer to the classical one overall.

4.7.3 Analyzing the Weighting Factor for Both Proposed HO
WF-MFIEs

In Subsection 4.4.1, extensive studies for choosing the weighting factor 𝛾 for the
case 𝑝 = 0.5 have been carried out. There, it became clear that the weighting factor
𝛾 certainly exhibits some dependence on the considered scenario. For instance,
the optimal choice was found to be 𝛾 ≈ 0.4 for a cube with 0.5𝜆 edge length and
𝛾 ≈ 0.55 for a smooth sphere. Here, we carry out a similar analysis over a set of
scattering scenarios in order to determine what a suitable choice of 𝛾 might look
like—as problem-independent as feasible.

A 0.5𝜆 Cube

We consider once again plane-wave scattering from a 0.5𝜆 square cuboid, with all
simulation settings just as discussed in Subsection 4.4.1 for the rwg case. Figure 4.43
shows the analysis of the weighting factor 𝛾 for the wf scheme concerning all ho
functions. For the rwg discretization, we compute the solutions on 14 different
triangular meshes ranging from 0.28𝜆 to 0.035𝜆 average edge lengths ℎ. The number
of rwg unknowns goes from 72 up to 4302 on the finest mesh. For the full first-
order expansion functions (𝑝 = 1), we have 144 up to 8604 unknowns; for the 1.5th
order functions, we have 240 up to 14 340 unknowns. Just as before, the rcs of
the pec cube scattering for plane-wave incidence is evaluated in the ff for the
mfie, the efie, the bc-tested mfie, the m-csie (again with 𝜒cs = 1/11) as well
as the proposed wf-mfie. Then, the relative (arithmetic) average ff error with
respect to the reference solution (a 2.5th order efie solution on the finest among
the considered meshes) is computed for each choice of the mesh and also for each
choice of 𝛾 and 𝑝 = {0.5, 1, 1.5} in the wf-mfie.5 Among these mesh variations, the
geometric average 𝜏 of the individual arithmetically averaged ff errors is calculated.

5. It has been analyzed previously that accuracy improvements of the wf-mfie occur also in the nf
and not only in the ff.
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Fig. 4.43: Optimal wf-mfie weighting factor for scattering from the mesh refinement models
of a 0.5𝜆 cube, ho basis functions, for the wf scheme for all ho functions according
to (4.58). (a) Order 𝑝 = 1. (b) Order 𝑝 = 1.5.

The geometric mean is chosen since the individual (already averaged) errors vary
by orders of magnitude, and, unlike the arithmetic average, the geometric average
is not dominated by large values. For more details, see (4.48). The scatter marks
denote the error ratio of efie and wf-mfie solutions, see (4.49).

In Fig. 4.43, no improvement is observed for full first-order basis functions. At
values below 0.15, the wf schemes show their slightly negative influence and the
error is slightly increased. For the case 𝑝 = 1.5, the error is improved by a couple of
decibels in a stable manner, with the optimal value at 𝛾 = 0.35: Here, the average
wf-mfie error goes down to −55.7 dB (from −53.0 dB for the classical mfie).

For comparison, the optimumvalue found for this scenario and the rwgwf-mfie
is 𝛾 = 0.4 as shown in Fig. 4.44(a). Figure 4.44 shows the results for the wf scheme
focusing on the rwg part according to (4.61). We observe significant improvements.
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Fig. 4.44: Optimal wf-mfie weighting factor for scattering from the mesh refinement models
of a 0.5𝜆 cube, ho basis functions, for the wf scheme focusing on the rwg part
according to (4.61). (a) Order 𝑝 = 0.5, same as Fig. 4.15. (b) Order 𝑝 = 1. (c) Order
𝑝 = 1.5.

For 𝑝 = 1, the lowest error of −55.5 dB is found at 𝛾 = 0.7, which is more than
10 dB better than the error −45.0 dB of the classical mfie. For 𝑝 = 1.5, the error
goes down from −53.0 dB to −57.6 dB at 𝛾 = 0.9. These accuracy improvements are
larger than for the scheme applied for all functions. However, the deterioration of
the solution below the optimal value of 𝛾 is rather severe for the ho cases.

It is important to analyze further scenarios in order to consider the observations
as robust. Just as in Subsection 4.4.1 for the rwg case, we investigate an electrically
larger cube with 1𝜆 edge length first and then a sphere with 0.5𝜆 diameter.
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Fig. 4.45: Optimal wf-mfie weighting factor 𝛾 for scattering from the mesh refinement
models of a 1𝜆 cube, ho basis functions, for the wf scheme for all ho functions
according to (4.58). (a) 𝑝 = 1. (b) 𝑝 = 1.5.

A 1𝜆 Cube

For the 1𝜆 cube, 20 meshes with ℎ ranging from 0.37𝜆 to 0.027𝜆 are considered.
These meshes exhibit between 162 and 30 240 rwg unknowns, between 324 and
60 480 full first-order unknowns and between 540 and 100 800 1.5th order un-
knowns. The results for the wf scheme for all ho functions according to (4.58)
are shown in Fig. 4.45. The accuracy improvements for the 1.5th order expansion
functions are not confirmed in this scenario. The best case is found at 𝛾 = 0.7,
but the error is only improved by a negligible tenth of a decibel. For both sets of
ho functions, the solutions deteriorate below 𝛾 = 0.25. Since there are no stable
accuracy improvements, this wf method seems to be rather useless to reduce the
mfie error levels in general.
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Fig. 4.46: Optimal wf-mfie weighting factor 𝛾 for scattering from the mesh refinement
models of a 1𝜆 cube, ho basis functions, for the wf scheme focusing on the rwg
part according to (4.61). (a) 𝑝 = 0.5, same as Fig. 4.16. (b) 𝑝 = 1. (c) 𝑝 = 1.5.

Looking at the results of the wf scheme focusing on the rwg part according
to (4.61) in Fig. 4.46, the improved error levels are also observed in this scattering
scenario. For the rwg-only case, the lowest error of −51.7 dB is found at 𝛾 = 0.35,
which is an improvement over the error of −44.4 dB of the classical mfie. For the
full first-order functions, the difference between the best solution at 𝛾 = 0.85 and
the classical mfie is 4.6 dB—with the error reduced from −54.8 dB to 59.4 dB. The
improvement for the 1.5th order functions is not as large with an error of the
classical mfie of −58.8 dB and the lowest error of −61.1 dB at 𝛾 = 0.925.
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Fig. 4.47: Optimal wf-mfie weighting factor 𝛾 for scattering from the mesh refinement
models of a 0.5𝜆 sphere, ho basis functions, for the wf scheme for all ho functions
according to (4.58). (a) 𝑝 = 1. (b) 𝑝 = 1.5.

A 0.5𝜆 Sphere

The last scenario is a 0.5𝜆-diameter pec sphere, which has been analyzed in Subsec-
tion 4.4.1 for lo functions. For the lo case, larger values for 𝛾 have been observed
to be optimal. Here, we consider 16 triangular meshes with ℎ ranging from 0.14𝜆 to
0.034𝜆. These meshes exhibit 126 to 2388 rwg unknowns, 252 to 4776 first-order
unknowns, or 420 to 7960 1.5th order unknowns. The reference solution is a 2.5th
order efie solution on a refined version of each of the individual meshes, where
the surfaces of the respective reference matches with the original one.

The results for the wf scheme for all ho functions according to (4.58) are shown
in Fig. 4.47. Again, the influences on the error are minor. For 𝑝 = 1.5, the most
improvement of just 2.2 dB is found at 𝛾 = 0.55.
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Fig. 4.48: Optimal wf-mfie weighting factor 𝛾 for scattering from the mesh refinement
models of a 0.5𝜆 sphere, ho basis functions, for the wf scheme focusing on the
rwg part according to (4.61). (a) 𝑝 = 0.5, same as Fig. 4.21(b). (b) 𝑝 = 1. (c) 𝑝 = 1.5.

Figure 4.48 shows the weighting analysis for the wf scheme focusing on the
rwg part according to (4.61), including the rwg-only case. Here, we find an
improvement of 4.5 dB at 𝛾 = 0.9 for 𝑝 = 1 and 2.8 dB at 𝛾 = 0.975 for 𝑝 = 1.5. These
𝛾 values are very close to 1 (the classical mfie) and the observed improvements are
not as large as for the two cubes.

Tackling Geometrical Singularities

Overall, the wf scheme applied only to the rwg part of the Gram matrix yields
better results, particularly for the first-order functions. This scheme seems hence
more promising and will be investigated further. In any case, the observed ho
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Tab. 4.4: Comparison of the optimal ho weighting factors 𝛾 regarding the improvement of
the average ff error.

0.5𝜆 cube 1𝜆 cube 0.5𝜆 sphere

order 𝛾 improvement 𝛾 improvement 𝛾 improvement

𝑝 = 0.5 0.4 10.0 dB 0.35 7.3 dB 0.55 12.5 dB
𝑝 = 1 0.7 10.5 dB 0.85 4.6 dB 0.9 4.5 dB
𝑝 = 1.5 0.9 4.6 dB 0.925 2.3 dB 0.975 2.8 dB

𝒏1

π − 𝜓𝑛

𝒏2

Fig. 4.49: Illustration of the angle 𝜓 associated with the edge between two adjacent triangles.

accuracy improvements are smaller for the sphere than for the two cubes, the
optimal values of 𝛾 are shifted to larger values for the (smoother) sphere, and
the choice of a suitable value for 𝛾 becomes more sensitive with increasing basis
function order 𝑝. This insight is summarized in Tab. 4.4. In order to be safe from the
negative influence of the non-trivial kernel of G𝜶lo ,𝜷lo

, the following investigations
are based on the values found for the sphere.

One way to improve the wf scheme might be to adjust 𝛾 as presented in [Ko-
rnprobst and Eibert 2018b, 2019]. Since we do not need to take action for smooth
surfaces, the first step is to identify sharp edges in the discretized geometry. This
is done by calculating the angles associated with each 𝑛th interior edge or, more
specifically, each rwg function. The definition of these angles 𝜓𝑛 is illustrated in
Fig. 4.49. We construct a diagonal matrix Γ with the entries

[Γ]𝑛𝑛 = 𝑤(ψ, 𝑛) , (4.62)

where each edge is associated with a weighting function dependent on the vector of
the angles ψ associated with the edges of the mesh, i.e., [ψ]𝑛 = 𝜓𝑛 = arccos(𝒏1 ∙ 𝒏2).
The most simple choice would be 𝑤(ψ, 𝑛) ∝ 𝜓𝑛. However, it is rather clear that
this does not yield satisfactory results. Such a weighting would only affect rwg
functions with a current across each edge. It is even more important to take care
of currents flowing in parallel to sharp edges, though, since these currents may
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become singular, cf. Fig. 4.27(d) on p. 88. Hence, we employ a moving average filter

ℎmav(ψ, 𝑛) =
1
5[[ψ]𝑛 +

∑
𝑚∈

neighbors(𝑛)

[ψ]𝑚] (4.63)

spreading the effect of the edge on all four adjacent edges, too, whether they
themselves exhibit 𝜓𝑛 > 0 or not. If two triangles are in a flat area, the respective
entry is zero. The matrix entry is increased proportionally to the averaged angle
with the weighting function

𝑤(ψ, 𝑛) = {
𝜈, for 𝜓th ≤ |ℎmav(ψ, 𝑛)|
𝜈 |ℎmav(ψ, 𝑛)|/𝜓th, for 0 < |ℎmav(ψ, 𝑛)| < 𝜓th
0, for 0 = |ℎmav(ψ, 𝑛)|

(4.64)

up to a threshold 𝜓th. A reasonable choice is π/10, which occurs for a single
geometrical angle of 𝜓 = π/2. With this choice, the maximum effect occurs
whenever the sum of the adjacent angles reaches π/2. The maximum weighting is
done by the factor 𝜈. We can integrate this diagonal matrix and augment the effect
of 𝛾 where suitable. This yields the wf approximated identity matrix for the rwg
part only

Wlo
𝛾 ,𝜈,𝜓th = 𝛾 Ilo − Γ + [(1 − 𝛾)Ilo + Γ]Rlo (4.65)

Finally, we plug this matrix into the wf-mfie, i.e., into (4.60) and (4.61).

For the wf weighting factor 𝛾, we choose the conservative values for the sphere.
The choice of 𝜈 is analyzed briefly, again for the two cubes. The results are shown
in Fig. 4.50. The observed error improvements are summarized in Tab. 4.5 for
𝛾 ∈ {0.55, 0.9, 0.975} and 𝜈 = 0 as well as for the respective optimal choice for 𝜈.
Overall, the accuracy improvements observed with the best choice of 𝜈 are on the
same level as the ones given for the optimal choice of 𝛾 in Tab. 4.4. However, the
version with 𝜈, i.e., tackling geometrical edges individually, seems to be more stable
regarding the choice of the weighting factor 𝜈. As we can see in the comparison of
Fig. 4.50 with the previous analyses for the choice of 𝛾, a too large weighting of
the wf scheme has less negative influence here. In the following, we consider the
choice 𝜈 = 0 as well as the choices 𝜈 = {0.2, 0.1, 0.075} for 𝑝 = {0.5, 1, 1.5}.

Going into a more in-depth analysis, we find that the best value of 𝛾 increases
with increasing 𝑝. For the considered scenarios, we havechosen 𝛾 ∈ {0.55, 0.9, 0.975}.
The additional wf weighting factor 𝜈 has the opposite sign in (4.65) and decreases
with 𝑝. Not only are the wf weighting factors reduced, there are also diminishing
gains for ho expansions, i.e., the error is reduced to a lesser extent. For 𝑝 > 0.5,
the gains are only on a smaller level and the required value of the overall wf
weighting factor comes closer to 1, i.e., the choice for the pure classical mfie. For
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Fig. 4.50: Analysis of the weighting factor 𝜈 for scattering from the two discussed cubes,
𝛾 ∈ {0.55, 0.9, 0.95} for 𝑝 ∈ {0.5, 1, 1.5}. (a) 𝑝 = 0.5, 0.5𝜆 cube. (b) 𝑝 = 0.5, 1𝜆 cube.
(c) 𝑝 = 1, 0.5𝜆 cube. (d) 𝑝 = 1, 1𝜆 cube. (e) 𝑝 = 1.5, 0.5𝜆 cube. (f) 𝑝 = 1.5, 1𝜆 cube.

Tab. 4.5: Comparison of the optimal ho weighting factors 𝜈 regarding the improvement of
the average ff error, 𝛾 ∈ {0.55, 0.9, 0.975} for 𝑝 ∈ {0.5, 1, 1.5}.

0.5𝜆 cube 1𝜆 cube

order 𝜈 improv. 𝜈 improv. 𝜈 improv. 𝜈 improv.

𝑝 = 0.5 0 7.2 dB 0.2 9.9 dB 0 5.2 dB 0.3 8.3 dB
𝑝 = 1 0 3.4 dB 0.2 9.6 dB 0 3.7 dB 0.1 5.1 dB
𝑝 = 1.5 0 1.5 dB 0.125 4.9 dB 0 1.1 dB 0.1 3.3 dB
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the three scattering scenarios analyzed in Tab. 4.4, the average error improvements
as compared to the classical mfie are 9.9 dB for 𝑝 = 0.5, 6.5 dB for 𝑝 = 1.0, and
3.2 dB for 𝑝 = 1.5. Furthermore, the error spread increases with increasing 𝑝;
this is observed both for the mfie and the wf-mfie. The meaning of this is best
investigated by showing the underlying errors in more detail in the following
Subsection 4.7.4.

Another interesting observation is that all three of the rwg wf-mfie, the
bc-mfie, and the classical full first-order mfie are on a very similar accuracy
level. This is consistently observed for all our analyzed scenarios, with minor
advantages for one or another in each specific instance. Such observations have led
to the conclusion that the ho mfie fixes the mfie accuracy problems. Nonetheless,
we have demonstrated that further improvements are indeed possible, and also
how to achieve these improvements for hf scenarios.

4.7.4 Numerical Investigations of the HO Schemes

Mesh Refinement Analysis

In this section, we discuss one particular mesh refinement study in more detail for
all ho ies. The rwg case for the cube with 0.5𝜆 edge length has been discussed
already in Fig. 4.14, there with 𝛾 = 0.5. The error levels and gmres iterations
to a residual of 10−6 are shown in Fig. 4.51. For the rwg basis functions, the
observations are the same as in Fig. 4.14 with 𝛾 = 0.5. Here, 𝛾 = 0.55 exhibits
a slightly higher (geometrically) averaged error of −46.0 dB instead of −47.2 dB.
Choosing 𝜈 = 0.2 lowers the error to −48.7 dB. The rwg m-csie with 𝜒cs = 1/11
and the bc-mfie show about the same average error with −48.8 dB and −47.0 dB,
respectively. None of these ies involving the mfie operator comes close to the
efie, which exhibits an error of only −54.6 dB. The wf-mfies and the bc-mfie are
able to retain the excellent conditioning of the classical mfie independent of ℎ
whereas the m-csie exhibits a slight dependence on ℎ and barely beats the efie in
terms of iterations to convergence.

The full first-order wf-mfie with 𝛾 = 0.9 exhibits an average error of −48.3 dB,
clearly better than the mfie with −45.0 dB. With a local emphasis on thewf scheme
with 𝜈 = 0.1, the error is decreased to even −51.5 dB, beating the efie error of
−51.0 dB for the coarser meshes and on average. The ho csie is doing only slightly
better than the classical mfie with an error of −47.0 dB. It exhibits a worse iterative
solver convergence than the efie, though. Thewf schemes are again able to almost
retain the excellent, mesh-size independent conditioning of the mfie. Note that
the first-order efie surprisingly shows a larger error than rwg efie. This is not a
recurring observation, though, and dependent on object size and frequency. Yet, it
is clear that the hf mfie, which suffers from the anisotropy of the rwg functions
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Fig. 4.51: Mesh refinement analysis for a 0.5𝜆 cube. Average ff error in the left column,
iterations for convergence to a residual of 10−6 in the right column. (a), (b) 𝑝 = 0.5,
𝛾 = 0.55, 𝜈 = {0, 0.2}. (c), (d) 𝑝 = 1, 𝛾 = 0.9, 𝜈 = {0, 0.15}. (e), (f) 𝑝 = 1.5, 𝛾 = 0.975,
𝜈 = {0, 0.075}.
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and the singularity of the identity operator, potentially benefits more from ho
expansion functions.

For the 1.5th order expansion functions, the classical mfie exhibits an average
error of −52.8 dB. Thewf-mfie with 𝛾 = 0.975 is able to lower this to −54.3 dB. The
additional wf weighting with 𝜈 = 0.075 lowers the error further to −56.8 dB. The
m-csie and efie exhibit clearly lower error levels of −63.5 dB and −67.5 dB, though.
As for the first-order case, the csie does not offer a significant improvement in
the iteration count to convergence over the efie, whereas the number of wf-mfie
iterations is only marginally above that of the classical mfie.

Overall, the ho wf-mfie seems to promise accuracy improvements, while the
csie shows a worse error than the efie and also a worse iterative solver con-
vergence. It remains to be studied whether the csie offers any benefits at all, in
particular at the presence of interior resonances.

Stability at Interior Resonances

We investigate the first two interior resonances of a sphere discretized with 666
triangles. The ies with rwg expansion functions have been studied in Fig. 4.35. In
Fig. 4.52, the iterative solver convergence and error levels as compared to a ho
efie reference on a refined mesh are analyzed with the same simulation settings
and frequency sampling as in Fig. 4.35.

Looking at the full first-order functions (𝑝 = 1), we find that the efie and
the ies with dominant mfie operator show an increased number of iterations for
convergence to a threshold of 10−5 at the interior resonances. The cf/cs ies do
not show such a behavior. The wf-cfie retains the excellent conditioning of the
cfie, whereas the csie shows about the same convergence rate as the efie but
neglecting the increase at the interior-resonance frequencies. The classical mfie,
the wf-mfie with 𝛾 = 0.9 and 𝜈 = 0, and the m-csie with 𝜒cs = 1/11 show an
increased error around these frequencies. The mfies’ errors go up to −12 dB (not
shown, truncated). As observed previously, the efie error is rather large and mostly
above the rwg efie error of about −58 dB. The wf-cfie beats the cfie by about
one decibel, whereas the wf-mfie performs better than the mfie up to 300MHz
and slightly worse above. In the lower frequency range, the csie is a couple of
decibels better than the wf-cfie.

For the 1.5th order functions, most observations regarding the gmres solver
iterations are similar. The most significant difference is that the csie converges
slightly faster than the efie. Albeit the picture changes when we look at the error
levels. The error of the m-csie is about 5 dB larger than of the mfie, while the
wf-mfie beats the mfie handily by another 5 dB. This translates to the cf/cs
solutions: The csie is about half a decibel less accurate than the cfie. The wf-cfie
is, on average, about 4 dB more accurate than the cfie.
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Fig. 4.52: Analysis of the ho ies at the first two interior resonances of a 1-m pec sphere.
Maximum ff error on the left, iterations for convergence to a residual of 10−5 on
the right. (a), (b) 𝑝 = 1, 𝛾 = 0.9. (c), (d) 𝑝 = 1.5, 𝛾 = 0.975.

While both the ho wf-cfie and the ho csie have been able to cope with the
problem of interior resonances, the ho csie’s improvements regarding accuracy
and conditioning are marginal or non-existent. For 𝑝 = 1, part of the reason might
be the rather poor performance of the efie itself. This stands in contrast to the
rwg case, where both ies have been on a comparable accuracy level for scatterers
with smooth surfaces and the csie has been clearly advantageous for scatterers
with sharp edges. The latter aspect is investigated in the following.

Electrically Larger Scattering Scenario

Once again, we study the scaled stealth object Flamme since it has proven to be
one of the most challenging scattering scenario from the ones studied in Section 4.6.
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Tab. 4.6: Error level comparison with Mie and ho references for the 1-m diameter pec sphere
at 5 GHz. (a) 𝑝 = 0.5, 𝜒cf/cs = 0.5, 𝛾 = 0.55, 𝜈 = {0, 0.2}. (b) 𝑝 = 0.5, 𝜒cf/cs = 0.5,
𝛾 = 0.9, 𝜈 = {0, 0.1}. (c) 𝑝 = 1.5, 𝜒cf/cs = 0.5 unless otherwise stated, 𝛾 = 0.975,
𝜈 = {0, 0.075}.

(a)

its. 𝜖ffavg 𝜖ffmax

cfie 267 −22.7 dB −45.3 dB
wf-cfie 287 −28.7 dB −51.6 dB
𝜈 > 0 394 −29.8 dB −51.5 dB
csie 340 −36.9 dB −60.7 dB
efie 9508 −37.0 dB −61.6 dB

(b)

its. 𝜖ffavg 𝜖ffmax

349 −34.8 dB −57.8 dB
407 −36.8 dB −60.8 dB
542 −31.2 dB −54.3 dB
896 −34.8 dB −58.7 dB

9459 −36.3 dB −59.3 dB

(c)

its. 𝜖ffavg 𝜖ffmax

cfie 955 −34.8 dB −57.9 dB
wf-cfie 1969 −35.4 dB −58.9 dB
𝜈 = 0.2 1026 −36.9 dB −59.2 dB

𝜈 = 0.2, 𝛾 = 0.85 1924 −39.6 dB −62.2 dB
csie 1918 −42.5 dB −65.2 dB
efie >10 000 −41.9 dB −66.9 dB

The bi-static rcs is evaluated for a plane wave incidence with polarization 𝒑 = 𝒖𝑦
and wave vector 𝒌 = 𝑘𝒖𝑥, now at a frequency of 15GHz. The electrical length is
30𝜆 and ℎ ≈ 0.15𝜆; this is a rather coarse mesh for rwg functions. As a reference,
we employ a 1.5th order cfie solution with 𝜒cf = 0.999 on a refined mesh. The
simulation results are summarized in Tab. 4.6.

The rwg-only results confirm the observations from earlier investigations: The
csie is on the same accuracy level as the efie and all other ies exhibit larger errors.
The wf-cfie is a couple of decibels better than the classical cfie, though.

For full first-order expansion functions with 𝑝 = 1, the efie and csie accuracies
are worse than for rwg functions. All studied ies show similar error levels. The
best one is the wf-cfie with 𝜈 = 0. Surprisingly, choosing 𝜈 = 0.1 is detrimental
here.

With 𝑝 = 1.5 expansions functions, the efie and the efie are able to show their
superior accuracy again. Just as for the rwg case—cf. also Fig. 4.40—the csie is
able to deliver its superior error levels also at low weightings of the efie operator
with 𝜒sc < 0.5, which leads to a faster iterative solver convergence.
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Summary

The csie and the wf-mfie have been integrated with a set of hierarchical ho
functions. For the csie, the wf rotation of the electric currents was implemented
for all functions just as in the rwg case. The wf-mfie shows its greatest benefit
when the wf identity scheme is only employed for the Gram matrix of rwg
functions, which are a subset of the employed hierarchical ho functions. The
benefits over the classical testing of the mfie with div-conforming functions, which
is prone to accuracy issues, are in general comparable to the rwg case but minor
differences are observed. We have demonstrated that the accuracy issues of the
classical mfie persist in a ho discretization in a decreasing manner even though
the accuracy is improved—in contrast to how the results may appear at first glance.
This can be seen by looking at the results of the full first-order mfie solved on the
same mesh as the rwg mfie. The accuracy is improved, and the improvement is
on a similar level with accurate discretization schemes for the lo mfie—namely,
the bc-tested mixed-discretization mfie, the csie, and the wf-mfie; all with an
rwg basis. Taking into account the increased number of dofs provided by ho
expansion functions, it becomes clear that the ho mfie is still not as accurate as it
should be possible with the increased number of dof.

The wf scheme for the mfie takes care of the anisotropy of the rwg part of the
ho functions and is, thus, able to mitigate the accuracy issues in part. The resulting
full first-order discretization can be more accurate than the classical one, which
only achieves about the same accuracy as the bc-tested mfie or the rwg wf-mfie.

The csie shows contradictory results. For most results, the error levels were on
the same level as for the efie and the same holds for the iterative solver convergence.
However, for scattering from a pec sphere, the ff rcs error was slightly worse
than the error of the classical cfie. The csie seems to be a viable option for ho
scattering solutions to challenging geometries, while the wf-cfie offers some
improvements whenever Love current solutions are needed, for instance for fe-bi
approaches.
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Chapter 5
Surface-Source Reconstruction for Antenna
Measurements

Science is the belief in the ignorance of experts.
— Richard Feynman, What is Science?

Equivalent surface-source models offer a great deal of versatility as a ba-
sis for nfffts and related post-processing methods, which constitute the

overarching theme of this chapter. Section 5.1 discusses linear surface-source recon-
struction approaches when complex field measurement data is available, with the
focus on the fact that in general the number of observations and unknowns do not
match. This section and subsequent results in Section 5.3 are based on [Kornprobst
et al. 2019e; Kornprobst et al. 2019f; Kornprobst et al. 2019b; Kornprobst et al. 2019g;
Kornprobst et al. 2019c; Kornprobst et al. 2020; Mauermayer et al. 2019; Kornprobst
et al. 2021a; Mauermayer and Kornprobst 2022]. Four different approaches to
retrieve the special Love currents are presented in Section 5.2, which are founded
on the work in [Kornprobst et al. 2019e; Kornprobst et al. 2019f; Kornprobst et
al. 2019b; Kornprobst et al. 2021a]. The algorithms of the first two sections are put
into practice in Section 5.3, where source reconstruction results and nfffts based
on such retrieved surface sources are discussed in detail. The following Section 5.4
touches the subject of echo suppression from two directions. The inverse equivalent
source approach is combined with the pec mom in order to get rid of the influence
of echo objects [Paulus et al. 2019; Kornprobst et al. 2019d] and the current distribu-
tions altered by mutual coupling with scatterers are cured by time-gating [Knapp
et al. 2020; Knapp et al. 2019b]. Another application of equivalent-source based
nfffts, magnitude-only source reconstruction, is discussed in Section 5.5, which
is based upon [Paulus et al. 2020; Knapp et al. 2021; Kornprobst et al. 2021d; Paulus
et al. 2021; Paulus et al. 2022a; Kornprobst et al. 2022].

5.1 Linear Equivalent Source Reconstruction

In the ideal case, we consider a boundary value radiation problem as shown in
Fig. 2.6. The radiation originates from the source region 𝑣i enclosing the aut and
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𝑎

𝒏 𝑠

source region 𝑣i
𝒋(𝒓 ′)
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𝑣

probe region
placed at 𝒓𝑚

Fig. 5.1: A general equivalent source scenario with equivalent electric and magnetic surface
current densities 𝒋 and 𝒎 on the Huygens surface 𝑠 enclosing the aut © 2021 ieee
[Kornprobst et al. 2021a].

is described by equivalent sources on its surface 𝑠 (or inside this region for other
source types) according to the Huygens principle. Prescribed boundary values may
be defined anywhere on 𝑠 (e.g., for a scattering problem) or outside of 𝑣i. Figure 2.6
includes a second closed observation surface 𝑎, where the measurements are taken.
For real-world nf antenna measurements, boundary values are defined in the
form of measurement values of a probe antenna, i.e., the continuous fields on the
ideally closed surface 𝑎 are sampled and evaluated with an appropriate weighting
function representing the probe. Such an equivalent scenario is depicted in Fig. 5.1.
Then, the measurement surface 𝑎 is not closed any more since there might be holes
between the different probe measurement locations 𝒓𝑚 and, additionally, 𝑎 might
be truncated due to geometrical restrictions of the measurement setup.

5.1.1 General Discretization Strategy

With a triangular mesh on 𝑠, the surface current densities are modeled by rwg
functions as

𝒋 =
𝑁
∑
𝑛=1

[i]𝑛 𝜷𝑛 , 𝒎 =
𝑁
∑
𝑛=1

[v]𝑛 𝜷𝑛 (5.1)
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on pairs of neighboring triangles. The electric current unknowns i and the magnetic
ones v may be, if used at the same time, concatenated to the unknowns vector
x = [iT vT]T. In a rather general way, the field evaluation is then performed by
surface density testing functions 𝒘(𝒓), see Fig. 5.1. These surface testing functions
are either defined as 𝒘𝑠 directly on the surface 𝑠 enclosing the aut or as 𝒘𝑝 on a
surface around a probe somewhere in 𝑣 (placed on 𝑎). Evaluating 𝒏 × 𝒆 radiated by
an electric surface current density basis function 𝒗 (or 𝒏 × 𝒉 for a magnetic current
basis function) with one specific testing function 𝒘, we obtain one element of a
forward operator matrix as

[T𝒘,𝒗]𝑚𝑛 = ⟨𝒘𝑚, 𝓣 𝒗𝑛⟩ for 𝑚 ∈ {1, 2, … ,𝑀}, 𝑛 ∈ {1, 2, … , 𝑁 } (5.2)

For the other matrices K𝒘,𝒗 and G𝒘,𝒗, we follow the notation, which has already
been introduced in Chapter 3. The inner-product alike interaction integral is
evaluated according to (3.3). The matrix entries are defined in (3.6), (3.28), and
(3.29). Furthermore, the involved radiation operators are described by (2.41), (2.44),
and (2.45).

In the following, we assume that there are 𝑁 rwg functions on 𝑠 and 𝑀 probe
measurements taken on 𝑎. One important detail is different for antenna measure-
ments: Testing the radiated electric field gives a right-hand side vector of the
system of equations with the entries

[b]𝑚 = ⟨𝒘𝑚, 𝒏 × 𝒆𝑠⟩ + [𝝐oe]𝑚 for 𝑚 ∈ {1, 2, … ,𝑀} , (5.3)

where the vector 𝝐oe includes the observation error (oe) arising for instance from
noise or imperfectly known probe positioning or behavior.

5.1.2 Description of the Forward Operator

For the source reconstruction, the received power wave at the probe is evaluated in
the presented formulation by testing the radiated electric fields with an equivalent
current representation of the probe or, equivalently, with a spectral representation
in the accelerated implementation of the fast irregular antenna field transformation
algorithm (fiafta). We have full freedom to choose any current representation
of the probe. The following equations employ a current discretization with rwg
functions 𝜷 without loss of generality. Then, the discretized inverse problem reads

A x = [T𝒘𝑝,𝜷 K𝒘𝑝,𝜷] x = b , (5.4)

where 𝒘𝑝(𝑚) is chosen to be an equivalent electric surface current description
of the probe antenna employed for the 𝑚th measurement, correctly rotated and
shifted in space to the measurement location 𝒓𝑚. Of course, the employed probe for

133



Chapter 5 Surface-Source Reconstruction for Antenna Measurements

different measurement samples may differ, as it is often the case for dual-polarized
probes.

For the equivalent current description, the aut geometry is enclosed by the
Huygens surface exactly as depicted in Fig. 5.1. According to the equivalence
principle, we can choose a source description with both 𝒋 and 𝒎 or, alternatively,
one with 𝒋 only, dropping the 𝒎 unknowns (or vice versa).

Assuming we know a true solution ξ of the inverse problem, imperfect measure-
ments cause the oe in the nf

𝜖oe =
‖A ξ − b‖2

‖b‖2
=

‖𝝐oe‖2
‖b‖2

. (5.5)

Some part of this error may be reconstructed by a false solution contribution, which
is linearly superimposed to the correct solution. The remainder of the oe is not
attributable to any x. Solving (5.4) retrieves thus a solution x, but at the observation
locations, there remains a reconstruction deviation (rd)

𝜖rd =
‖A x − b‖2

‖b‖2
, (5.6)

which estimates the oe and helps to suppress errors not attributable to a recon-
structed source.

The total number of unknowns 𝑁un equals either 𝑁 or 2𝑁 and defines the length
of the vector x and the number of columns of A. The number of observation points
𝑀, which is the number of rows in A and at the same time the number of entries in
b, does not match to 𝑁un in general, but the matrix A is wide for common antenna
nf measurement setups with subsequent equivalent current nfffts, i.e., 𝑀 < 𝑁un.
This is due to the fact that the number of measurements necessary for a correct nf
reconstruction 𝑀 is approximately chosen according to the number of dofs 𝑁dof
of the radiation fields which in turn solely depend on the size, shape, and excitation
of the aut. For instance, if a field representation with spherical modes is chosen,
the number of radiating modes (i.e., the possible dofs in the fields) is limited by
the minimum sphere centered around the aut [J. E. Hansen 1988]. Often, 𝑀 is
chosen a bit larger than 𝑁dof to avoid aliasing in the aut mode spectrum and to
cope with measurement errors.

In other words, a typical observation is that A is quasi band-limited, the reason
being the finite aut size. In real-world scenarios, the number of reconstructable
dofs may be even further limited by the measurement error; this can be pictured
as a threshold to the decaying spectrum of radiating modes [Piestun and D. A. B.
Miller 2000; Stupfel and Morel 2008]. Going below this threshold does not add
meaningful information but distorts the solution.

This property of the forward operator certainly leads to a nontrivial cokernel
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(also called left nullspace) kerAH, since rankA ≈ 𝑁dof. We find the reconstructed
solution in the image imA. Any part of b in kerAH cannot be reconstructed
and leads to a rd. This is desired, since the rd should contain all measurement
errors and noise, i.e., contributions which cannot be mapped onto the equivalent
sources and which are thus suppressed. With 𝑀 > 𝑁dof, we have a non-vanishing
cokernel dimension and the system of equations in (5.4) can be considered to be
overdetermined despite A being wide.

In addition to the oversampling of observations, the inverse equivalent sur-
face source problem exhibits another totally unrelated kind of oversampling in
the unknowns space. The equivalent currents are modeled on a (possibly non-
convex) mesh where 𝜆/10 is a typical discretization density for the lowest-order
rwg functions. This source representation is by far oversampled due to a large
𝑁un as compared to the dofs of the aut, which can be roughly approximated by
𝜆/2-spaced measurements on the minimum sphere or a smaller aut hull. A similar
oversampling is present in a distributed spherical harmonics (dsh) expansion. Due
to this oversampling, evanescent modes are possibly excited. However, they are
impossible to reconstruct even with infinitely precise algorithms since they are
typically not observable at the measurement distance due to various types of un-
certainties. In a mlfmm-accelerated forward operator, strongly evanescent modes
are typically not propagated to the measurement locations due to the inherent
low-pass filtering. All of this implies a non-trivial null space kerA, i.e., the solution
of (5.4) cannot be unique and the inverse problem is thus mildly ill-posed. This
non-uniqueness does not affect the reconstructed exterior fields at a sufficiently
large distance, though.1

Additionally, various surface current representations (purely electric or magnetic,
both, etc.) exist which obviously differ by non-radiating currents, i.e., they differ by
solutions of the corresponding interior problem. Changing the retrieved solution
by non-radiating currents has no effect on any fields outside of 𝑠 for reasonably
chosen shapes of 𝑣i if numerical issues are under control; neither on radiating nor
on evanescent modes. Such an inverse problem can be seen as severely ill-posed.

Both effects cause a non-trivial kerA (with a larger dimension for ambiguous
electric and magnetic currents). Unknown vectors with an effect on the recon-
struction are only found in imAH. In the sense of 𝑁un ≫ 𝑁dof, we conclude
that the system of equations (5.4) is underdetermined. Typically, some kind of
regularization is employed to get rid of negative effects of kerA.

1. If the Huygens surface is too large or a spherical harmonics (sh) expansion is utilized, the number
of dofs of the equivalent source representation is larger than the number of dofs supported by the
aut. However, this does not cause an increased dimensionality of kerA since such an equivalent source
representation exhibits additional (spurious) radiating modes which do propagate to the observation
location. This is not a uniqueness issue but can lead to false solutions when the oe is mapped to
radiating modes not supported by the real aut.
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The unknowns ambiguity is commonly removed by minimizing a certain norm of
the currents or nf residuals. A commonway is the solution of (5.4) in a least-squares
sense by minimizing an ℓ2-norm, which is discussed in the following subsection.
Only in special scenarios, other norms might be of interest [Hofmann et al. 2019].
In summary, we find that the band-limited forward operator of inverse surface-
source problems with oversampled measurements exhibits a non-trivial kernel and
a non-trivial cokernel. Both have to be kept in mind to appropriately solve the
inverse surface-source problem. Due to the typical surface-source oversampling
and the existence of non-radiating currents, we commonly have to deal with
dim(kerA) ≫ dim(kerAH).

5.1.3 The Normal Equations

In order to solve (5.4), direct methods are not suitable due to their high complexity
and incompatibility with fast algorithms. To reduce the computational complexity,
iterative solvers are the method of choice in conjunction with well-conditioned fast
formulations to obtain a solution with 𝒪(𝑁it𝑁un log𝑁un) complexity, where 𝑁it ≪
𝑁un. Since standard iterative solvers such as the cg method [Hestenes and Stiefel
1952] or the gmres method [Saad and Schultz 1986] have been initially proposed for
square matrices, which are commonly not encountered for measurement scenarios,
normal systems of equations (nes) are the method of choice to resolve this issue and
to obtain a square system matrix [Saad 1996]. The common formulation employed
in antenna nf measurements is the normal-residual system of equations (nre)

AHA x = AHb , (5.7)

where the adjoint of the forward operator AH is multiplied from the left-hand side.
Eq. (5.7) is well suited for overdetermined systems of equations [Saad 1996]. The
overdeterminedness of the inverse problem is resolved by minimizing the ℓ2-norm
of the residual of (5.4), i.e., by minimizing the rd ‖A x − b‖2 [Saad 1996]. Hence, the
nre takes care of a possibly non-trivial kerAH. The problem of a non-trivial kerA
for underdetermined problems persists and additional regularization is necessary
for a stable solution. The employed solver may impose additional regularization
constraints to remove any ambiguity in the solution. In the case of gmres, we
observe an ‖x‖2 regularization with a suitable termination threshold [Calvetti et
al. 2002; Eldén and Simoncini 2012]. A truncated singular value decomposition
(svd) has a similar effect. Notably, this regularization of the unknowns norm ‖x‖2
contains no information about the behavior of the associated currents 𝒋 and 𝒎
or about the reconstructed interior fields. The exterior fields are theoretically the
same anyhow.

Although the nre is quite commonly found in the literature for efficient iterative
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inverse source solvers, the typical equivalent-current nffft scenario resembles
more an underdetermined system than an overdetermined one, see the discussion
in the previous Subsection 5.1.2. Accordingly, the better suited normal-error system
of equations (nee) [Saad 1996]

AAH y = b , (5.8)

multiplies the adjoint operator prior to the standard forward operator. To retrieve
the solution of the inverse problem, the post-processing step

x = AH y (5.9)

has to be carried out. Several important differences are listed in the following.
First, the iterative solution works with the vector y, an auxiliary nf vector at the
locations of the observation samples. Second, the nf rd ℓ2-norm is evaluated
during the solution process— and not the ℓ2-norm of the current residual. This
is advantageous since no termination criterion for the current residual has to
be defined. Au contraire, the iterative solution stops on its own if the nf error
approaches the possible minimum, limited by the oe. From a theoretical point of
view, this kind of ne finds a different least-squares solution since it takes care of
a non-trivial kerA: It minimizes the ℓ2-error norm of the unknowns vector, i.e.,
the norm ‖AH y − ξ‖2 for any correct solution ξ of (5.4), where ξ is not necessarily
unique for common surface-source models. Additional regularization of y may also
be employed; however, this does not influence the solution except for negligible
numerical effects since any contribution to the retrieved solution in the column
null-space of A is suppressed by the post-processing step in (5.9).

Both nes give similar solutions since the difference only consists of current
components which cause no difference in the fields at the observation locations.
However, the nee offers advantages in the iterative solution process [Kornprobst
et al. 2019c]. For direct solutions, the two solutions

xnre = (AHA )+AHb , (5.10)

xnee = AH(AAH)+b (5.11)

to the nre and nee are mostly interchangeable when the same pseudo-inverse (⋅)+
is used both times, for instance by a reasonably truncated svd.
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5.2 Zero-Field Enforcement

The equivalent source description on any closed Huygens surface is unique (unam-
bigous) if one type of currents is utilized, i.e., either electric or magnetic surface
current densities.2 Choosing both electric and magnetic surface current densities,
additional constraints can be enforced to restrict the solution space and arrive at a
mildly ill-posed problem. One possible constraint is the Love condition according
to (2.34) and (2.35), where the surface current densities

𝒋l = 𝒏 × 𝒉 , 𝒎l = 𝒆 × 𝒏 (5.12)

are represented by the total tangential fields on the Huygens surface 𝑠. This Love-
current representation produces zero fields inside the source region, i.e., the aut
volume. All other surface current solutions result from a superposition of non-
radiating currents3 with interior fields only. Araque Quijano and Vecchi [2009,
2010a, 2010b] and Jørgensen et al. [2011a] have claimed that enforcing the Love
condition exhibits a better conditioning and a more stable and accurate solution
behavior than other equivalent current methods. The improved solution stability
might hold true dependent on the solver and its implicit regularization proper-
ties [Araque Quijano and Vecchi 2010a]. Unconstrained current solutions may
vary arbitrarily as compared to Love currents and may, thus, depend strongly on
measurement errors. However, according to the equivalence principle, the external
fields (both near and far) of all equivalent current scenarios are indistinguishable.
This concerns both evanescent and radiating fields. Hence, the solution stability of
the retrieved currents is not very meaningful for the field reconstruction problem
as long as the current variations do not cause additional numerical errors in the
solution process, e.g., by numerical cancellation.

In the following, four (two approximate and two exact) possibilities for the
zero-field enforcement are described. In the subsequent source reconstruction and
nffft results, we analyze which benefits are observed when such reconstruction
methods are employed, regarding the reconstruction accuracy and the interior
zero-field quality, i.e., the accuracy of the Love condition.

2. Except for interior resonances, of course. Since the exterior fields are enforced to match the
observations, there are no accuracy issues/parasitic exterior solutions associatedwith interior resonances
as it might happen for the pec mfie; and the additional nullspace dimension also does not play any
role since the non-trivial kerA dominates the system matrix anyhow.

3. Note that the term “non-radiating currents” is used with different meanings in literature. Careful
attention has to be paid to the particular definition in each source. Here, we employ the term „non-
radiating currents“ to distinguish between purely exterior, mixed interior/exterior, and purely interior
solutions. The unique exterior solution is expressed by Love currents lacking the non-radiating part. Non-
radiating currents constitute a purely interior Love current solution. Another frequently encountered
meaning is that of current coefficients with minimum (ℓ2) norm, which exhibit—at least in some abstract
sense—minimum energy and are not directly related to any fields.
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5.2 Zero-Field Enforcement

5.2.1 Combined Source Approximation

An approximation of the Love condition is given by the cs condition, which en-
forces locally outward-oriented radiation for the sources placed on 𝑠 [Mautz and
Harrington 1979; Eibert et al. 2016]. This works if the surface under consideration
contains all sources of the scenario4 and if the surface is convex and sufficiently
smooth.

We briefly discuss the cs equivalent surface current representation since it is
employed for comparison to the other methods. Assuming general equivalent
surface currents according to (5.1) [and ignoring (5.12)], the magnetic surface
current densities are obtained via the cs condition (2.36)

𝒎cs = 𝒏 × 𝒋cs (5.13)

from the electric surface current densities. Due to the directive, outward-oriented
radiation characteristic of the resulting sources, a null field inside the source region
is approximated for convex Huygens surfaces.

The discretization of (5.13) is achieved either by enforcing the 𝒏×-rotation of
one type of surface current density or by a mapping between two sets of the same
basis functions, for instance for rwg functions [Eibert et al. 2016; Eibert and T. B.
Hansen 2017; Kornprobst and Eibert 2018a]. We follow the latter strategy since
it was demonstrated by Eibert and T. B. Hansen [2017] to be more accurate for
inverse equivalent surface-source scenarios. The very same approach has been
proposed for tackling pec scattering scenarios with a wf implementation of the cs
condition in Section 4.1.

5.2.2 Love-Current Retrieval via Post-Processing

After retrieving any kind of arbitrary equivalent surface current densities—for
instance unconstrained electric and magnetic surface currents 𝒋 and 𝒎—, we can
change this solution to an entirely exterior Love current solution by evaluating the
interior fields 𝒆i and 𝒉i of these currents on 𝑠 and then subtracting the currents
associated with this purely interior solution from the arbitrary solution. Alterna-
tively, the exterior fields can be also evaluated. Since the Love current solution is
related to specific (zero) fields inside 𝑣i, the resulting equivalent currents, which
are altered by a solution for the interior fields only, are Love currents according to
(2.32) and (2.33), which are related to the total exterior fields.

One way to achieve this is to calculate the fields slightly outside of 𝑠 for each
triangle and map them back on the basis functions for 𝒋 and 𝒎. Hence, the inverse

4. For more general scenarios with an impinging field, it is not a zero-field approximation any more,
see the analaysis related to Fig. 2.5 on p. 25.
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Chapter 5 Surface-Source Reconstruction for Antenna Measurements

problem is solved and (5.12) is fulfilled. Alternatively, the Love-current mapping
proposed in the following Subsection 5.2.3 can be performed as a post-processing
step just after we have obtained an unconstrained solution [Kornprobst et al. 2019b].

5.2.3 Love-Current Mapping via Calderón Projection

It is possible to obtain Love currents by evaluating the tangential electric and
magnetic fields on the Huygens surface, which in turn relate to the Love surface
current densities 𝒋l and 𝒎l. This mapping is known as the Calderón projector (cp),
written in the form of [Calderón 1963; Hsiao and Kleinman 1997; Nédélec 2001;
Kornprobst et al. 2019e]

[ 𝒋l𝒎l
] = [𝒏 × 𝒉

𝒆 × 𝒏] = [
1
2
𝓘 − 𝓚 𝓣

−𝓣 1
2
𝓘 − 𝓚

] [ 𝒋𝒎] , (5.14)

which consists of the suitably arranged equations (2.39) and (2.40). Discretized as a
mapping matrix, we have

G xl = [
G𝜷,𝜷 0

0 G𝜷,𝜷
] [ il

vl
] = [

1
2
G𝜷,𝜷 − K𝜷,𝜷 T𝜷,𝜷

−T𝜷,𝜷
1
2
G𝜷,𝜷 − K𝜷,𝜷

] [ i
v
] = Lm x (5.15)

with 𝜷 testing functions for the rotated fields 𝒆 × 𝒏 and 𝒏 × 𝒉. The diagonal blocks
of Lm are a well-conditioned mfie-alike matrix. Even if rwgs might not be the
optimal choice of testing functions, this kind of testing is necessary since the
mapping from the evaluated fields back to the currents is only possible due to the
Gram matrices on the left-hand side of (5.15).5 The Gram matrix G𝜷,𝜷 on the left
side of (5.15) is easily inverted iteratively, cf. Subsection 4.1.4. The conditioning
of this formulation is excellent due to the dominant Gram matrices on the matrix
diagonal and the typically smooth and convex recontruction surfaces, for which
the mesh quality is well under control.

However, it might happen that this mfie-alike discretization of the mapping
operator may suffer from the discretization inaccuracies of the standard mfie, cf.
Chapter 4 [Cools et al. 2011; Kornprobst and Eibert 2018a, 2018e]. We investigate
the accuracy improvement attained in an improved discretization of the identity
operator, which was presented in Section 4.3. Transfering this approach to the
present case, the wf discretization of the identity operator inside the surface field
evaluation reads

G𝜷,𝜷,wf =
1
2G𝜷,𝜷 −

1
2G𝜷,𝜶G

−1
𝜷,𝜷G𝜷,𝜶 , (5.16)

5. bc testing functions are also feasible, 𝒏×rwgs are not.
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5.2 Zero-Field Enforcement

Gwf = [
G𝜷,𝜷,wf 0

0 G𝜷,𝜷,wf
] (5.17)

which changes the wf-cp matrix to

Lm,wf−cp = [
1
2
Gwf − K𝜷,𝜷 T𝜷,𝜷

−T𝜷,𝜷
1
2
Gwf − K𝜷,𝜷

] . (5.18)

Both cps are applied to the nre (5.7) in the form of a left preconditioner as

G−1 Lm AH(A x − b) = 0 . (5.19)

The nre maps the field residual (A x𝑖 − b) of the 𝑖th solver iteration back to the
currents by the adjoint operator AH. Then, the cp has the effect that the residual

r𝑖 = G−1 Lm AH(A x𝑖 − b) (5.20)

of the 𝑖th search vector x𝑖—and, thus, also the final solution composed of search
vectors only of that kind—mostly contain Love currents with zero field inside
the source region, where the inner-field suppression is limited by the current
discretization and the accuracy of the cp.

An important effect of the cp is that the ambiguity of choosing both electric and
magnetic equivalent currents is eliminated. Possible benefits are analyzed in the
following results section. For the nee, the very same mapping is introduced as

AG−1 Lm AH y = b (5.21)

and the post-processing step for retrieving the equivalent currents is adapted as

x = G−1 Lm AH y . (5.22)

5.2.4 Love-Current or Zero-Field Side Constraint

The second possibility to enforce the zero-field condition in an exact manner is to
set up a system of equations just for the Love currents without any mapping. The
assumption that all currents occurring in (5.14) are Love currents yields6

0 = [
− 1
2
𝓘 − 𝓚 𝓣

−𝓣 − 1
2
𝓘 − 𝓚

] [ 𝒋l𝒎l
] . (5.23)

6. The resulting operator in (5.23) is just an interior cp, which is employed to ideally enforce a null
field inside of 𝑣i.
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This equation is utilized as a sc and no mapping back to the current unknowns is
required as for the cp. Thus, the testing functions can be chosen freely. Testing as
for the pec mfie with 𝜷-functions leads to

0 = [
− 1
2
G𝜷,𝜷 − K𝜷,𝜷 T𝜷,𝜷

−T𝜷,𝜷 − 1
2
G𝜷,𝜷 − K𝜷,𝜷

] [ i
v
] = Lsc−mf x (5.24)

with diagonal matrix blocks as known from the classical mfie. Flipping the
magnetic-fieldwith the electric-field equations in (5.23) and testingwith𝜶-functions
results in

0 = [
−T𝜶,𝜷 − 1

2
G𝜶,𝜷 − K𝜶,𝜷

− 1
2
G𝜶,𝜷 − K𝜶,𝜷 T𝜶,𝜷

] [ i
v
] = Lsc−ef x (5.25)

with the well-tested efie matrix blocks T𝜶,𝜷, as known from the classical pec efie.
As we have seen in the analyses in Chapter 4, the lo rwg discretization of the

efie is very accurate, whereas this is not the case for the mfie. This may affect the
Love-condition discretization and, thus, the achievable level of field suppression
inside the aut volume 𝑣i. Since the numbers of side conditions in (5.24) or (5.25)
are actually twice as many as theoretically required, it is possible to enforce only
𝑁 = 𝑁un/2 of the equations in (5.24) or (5.25) with the drawback of interior
resonances or, in order to avoid interior resonances, to combine (5.24) and (5.25)
in the manner of a cfie approach. The most comprehensive approach with equal
weighting of (5.24) and (5.25) and of the electric field and magnetic field leads to

0 = [I I] (Lsc−mf + Lsc−ef) x = Lsc−cf x (5.26)

with the identity matrices I ∈ ℝ𝑁×𝑁.

5.2.5 Scaling of the Zero-Field Side Conditions

The proper scaling of a sc with respect to the forward operator is a challenging
task. A detailed investigation is necessary to arrive at a problem-independent
method. In literature, the weighting is never discussed in detail with respect to
nfffts. Either no satisfying solution is proposed in previously reported nfffts
with a sc matrix [Paulus et al. 2019], or the L-curve method is mentioned to find
the optimal weighting factor [Jørgensen et al. 2010; P. C. Hansen 1992; Kornprobst
et al. 2019b], which does not seem to be very practical. The L-curve method means
that the (Tikhonov-regularized) inverse problem is solved for a wide range of
weighting factors for the sc. For a weak weighting of the sc, this yields a small
residual. A sharp increase of the residual is observed at some value of an increased
weighting factor. This gives a typically L-shaped curve if the norm of the residual
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5.2 Zero-Field Enforcement

is plotted versus the norm of the regularization term. The desired weighting and
its associated solution is found at the knee of the L. We perform a similar analysis
in the following with the goal of determining an almost problem-independent
weighting factor, or at least with the goal of obtaining a rule of thumb which does
not require to solve the inverse problem multiple times.

In order to find a suitable weighting, we have to discuss the conditioning,7 and
hence the svds of the two matrices under consideration, the forward operator A
and the sc matrix Lsc−𝑖. Both matrices are expected to exhibit a non-trivial null
space. The formulation with electric and magnetic current unknowns is ill-posed
per se as mentioned in Subsection 5.1.3. All Love constraint equations

Lsc−𝑖 x = 0 (5.27)

must also exhibit a (discretization-limited) nullspace which contains the sought
solution. All non-Love currents are filtered out by nonzero svs. It is worth noting
that a wrong scaling does not only influence the conditioning of the system matrix,
but also determines how accurately the inverse problem on the one hand and the sc
on the other hand are solved for a certain residual stopping threshold. It might even
occur that the weighting of the sc determines the achievable residual threshold.

At this point, we have to distinguish between the nre and the nee, whose
differences have been analyzed in detail in Subsection 5.1.3. The nre preserves
the nullspace of A and an additional regularization is both possible and necessary
for a unique solution. This is a starting point for a meaningful regularization by
the Love sc to eliminate the null-space of A. The sc receives the scaling factor 𝜉,
yielding the systems of equations

[
A

√𝜉 Lsc−𝑖
] x = [b

0
] (5.28)

and, subsequently, we attain the modified nre

[AHA + 𝜉 LHsc−𝑖 Lsc−𝑖] x = AHb (5.29)

augmented by a Tikhonov regularization term.

In the nee, the ill-posedness of the current unknowns x is already mitigated.
Employing the sc as a regularization term is not required anymore and is also not
required for a unique solution. Nevertheless, having (5.28) in mind, the formulation

7. The conditioning of a singular matrix is just related to the nonzero svs of a (truncated) svd.
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of the nee including a sc is still possible as

[ AAH √𝜉A L
H
sc−𝑖

√𝜉 Lsc−𝑖 AH 𝜉 Lsc−𝑖 LHsc−𝑖
] [y ̃y] = b (5.30)

where ̃y are additional unknowns in the space of the Love condition equations,
constructed by a mapping

x = [AH √𝜉 LHsc−𝑖] [
y

̃y] (5.31)

similar to the one in (5.9). Further detailed investigations on the sc weighting are
carried out for the nre only and should be easily transferable to the nee.

Side Condition Scaling for the NRE

TheL-curve approach shows high computational cost and is highly problem-specific
[P. C. Hansen 1992]. Hence, we propose a weighting based on the svd properties
of the matrices A and Lsc−𝑖, which can be stated for any measurement setup. Em-
ploying an iterative solver with residual-limited accuracy, the smaller svs are more
likely to be “ignored” dependent on the stopping threshold. Thereby, the key is that
neither the relevant svs of the forward operator nor of the Love sc are neglected.
The decay of the svs of A is much stronger than for Lsc−𝑖, since the observability
of the various propagating modes decreases with the measurement or observation
distance, whereas the observation distance for the Love condition is zero.

For an empirical study, we employ a small synthetic example, see Fig. 5.2. A
dipole model of an open-ended waveguide (oewg), size 𝜆/4×𝜆/2×𝜆/4, is employed
to generate 300 ideal measurements with Fibonacci sampling on a sphere with
radius 3𝜆 [Keinert et al. 2015]. The source reconstruction mesh is 𝜆/2 × 3𝜆/4 × 𝜆/2
in size and features 477 rwg electric and magnetic current unknowns each. In
Fig. 5.3, the sv spectra of the forward operator A, of the sc matrices Lsc−mf (mfie-
alike), Lsc−ef (efie-alike), Lsc−cf (cfie-alike), and of the cp mapping matrix Lm
are shown. While the matrix A exhibits a clear null space after 𝑀 = 300 and a
strong decay beforehand, the sv decay of the Love-current conditions is weaker.
Interior and exterior solutions are clearly separated with the sc-cf constraint (drop
of svs to zero after 𝑁 = 477), but this is not as clearly observed with the sc-mf
and sc-ef constraints. Here, the discretization errors of the overdetermined sets
of equations do not allow to clearly separate the non-radiating from the strongly
evanescent modes. The svs are interpreted as follows. For the cp, Love currents
are found at large svs, while for the scs, Love currents are found for the small,
close to vanishing svs.
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300 Hertzian dipole probes as 𝒆 probes
located on a 3𝜆 sphere

oewg

model

𝒋, 𝒎 (1𝜆 sphere)

𝒋, 𝒎 (cuboid)

𝑥

𝑧

𝑦

Fig. 5.2: Setup of synthetic measurements with Hertzian dipole probes and reconstruction
surfaces for equivalent electric and magnetic surface currents © 2021 ieee [Korn-
probst et al. 2021a].
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Fig. 5.3: Comparison of sv spectra of the forward operator, the differently tested Love scs,
and the cp © 2021 ieee [Kornprobst et al. 2021a].
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Fig. 5.4: Absolute electric field of singular vectors corresponding to (a) 𝜍max of LHsc−ef Lsc−ef
(non-Love current, evanescent) and to (b) 𝜍min of PA LHsc−ef Lsc−ef PA (Love current,
strongly radiating) © 2021 ieee [Kornprobst et al. 2021a].

This small example is mostly intended to be an illustration of the fact that
the decay of the sv spectrum of A is steeper than of the sc spectra. This key
property stems from the different interaction distances between the sources and the
observation locations in the forward operator and in the sc operators, respectively.
Larger and more realistic test cases follow in the subsequent subsections.

Since the aut box with dimensions 3𝜆/4 × 𝜆/2 × 𝜆/2 cannot provide a partic-
ularly strong field suppression inside, we repeat the same investigation with a
sphere with radius 1𝜆 and about 13 000 electric and magnetic current unknowns
each. Only the first 300 svs and corresponding singular vectors are efficiently
computed [Martinson et al. 2011], since the smallest svs cannot be evaluated realis-
tically due to the matrix size. The spectra (not shown) look very similar to Fig. 5.3
with the only difference of a slightly smaller decay of the svs of A, since more
modes are excitable on the enlarged equivalent surface—however, still steeper than
the sv decay of the scs of course. The spherical aut hull is employed to illustrate
the meanings of the svs in the sc. The electric field in a cut plane is evaluated
for several singular vectors related to specific svs of the sc-ef matrix in Fig. 5.4.
Figure 5.4(a) shows the electric field of the singular vector related to the largest
sv 𝜍max of the matrix LHsc−ef Lsc−ef, i.e., of the efie-alike sc matrix. This large sv
corresponds to an evanescent mode from a non-Love current, which is also what
can be seen in the field plot. For the smallest svs, we project the matrices into imA

by utilizing the projection matrix

PA = A+A , (5.32)
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where (⋅)+ denotes a generalized inverse. The fields of the singular vector cor-
responding to the smallest sv of PA L

H
sc−efLsc−efPA are evaluated in Fig. 5.4(b).8

The radiated fields are rather strong and a certain suppression of the interior field
is observed. Overall, a separation of strongly and weakly radiating currents is
observed for the largest and smallest svs, respectively. For the cp, the meanings of
maximum and minimum svs are of course interchanged.

Note that all considered singular vectors are orthonormal, i.e., their possible
influence on the norm ‖x‖2 is the same and non-Love currents are suppressed
by the Love condition only at a suitable weighting. A weak weighting has a
negligible effect on the inverse problem solution, and a strong weighting limits
the achievable solver residual threshold, which has a similar effect as an too early
solver termination.

The question remains as how to incorporate these insights in a meaningful way
into the transformation process appropriate for any kind of measurement. From
the svd analysis, it is clear that an equal weighting normalized to the maximum
svs—as shown in Fig. 5.3—will lead to a dominant sc and a poor solution quality
of the inverse problem. With the knowledge of the achievable accuracy of the
algorithm and of the measurement setup,9 one can choose a weighting of the sc
at a somewhat larger ratio than the expected accuracy. The accuracy, e.g., as a
measure for the signal-to-noise ratio (snr), can be quantified at the maximum of
the measured aut nf as

SNR =
‖𝝐oe‖2/√𝑀
max

𝑘∈[0 𝑀]
|[b]𝑘|

(5.33)

scaled according to the number of observation points 𝑀 and assuming ‖𝝐oe‖2 is
known. The relative ℓ2-norm of the oe in the nf is estimated as the rd 𝜖rd. As
discussed in Subsection 5.1.2, the rd of the retrieved solution 𝜖rd is commonly a bit
smaller than 𝜖oe since parts of the oe are almost inevitably attributed to the solution
of the inverse problem. Measurement errors (echoes, positioning uncertainties,
etc.) may increase the 𝜖oe. These quantities, and the eventually achievable 𝜖oe,
are commonly known for a measurement setup and determine the iterative solver
stopping threshold or the svd truncation criterion for direct solvers.

The correct weighting of the sc is now apparent: The Love-current svs—i.e.,
the smallest svs of the sc—have to disappear below 𝜖2oe, and the non-Love current
svs have to be located above 𝜖2oe. With a suitable iterative solver termination
criterion based on 𝜖oe, the non-Love parts in the solution are effectively suppressed.
Certainly, the full sv spectrum is computationally too costly to compute, but a

8. After the projection into imA, there are only 𝑀 = 300 non-zero svs instead of 𝑁un svs. The
projector PA suppresses non-observable (non-radiating) components at the measurement locations.

9. The fiafta itself is limited by numerical errors controllable by the mlfmm accuracy settings;
measurements have inherent limitations by the snr and other measurement errors.
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normalization relative to the largest sv is feasible and also reasonable, if we keep
in mind that the decay of the svs related to the Love sc is considerably slower
than the decay of the svs in the forward operator. Estimating the largest sv is
easily done with a few so-called power iterations. A repeated evaluation of the
matrix-vector product gives a good estimate of the largest sv

̂𝜍B,max =
xHB𝑘x

xHB𝑘−1x
, (5.34)

assuming a Hermitian matrix B. This method converges rather fast, for a reasonable
residual below 10−1 typically with 𝑘 < 5. Other possibilities include Arnoldi
iterations or a Rayleigh quotient with the starting vector AHb.

In order to attain a normalization according to the largest svs of A and the Love
sc, respectively, (as seen in Fig. 5.3) we employ the (estimated) ratio

𝜐 =
̂𝜍AHA

̂𝜍Lsc−𝑖HLsc−𝑖
. (5.35)

The normalization has to be done in a way that, first, the larger svs of A influence
the reconstruction and, second, the iterative solver termination threshold at 𝜖oe
coincides with the desired sv threshold within the sv spectrum of the Love sc.
This is achieved by choosing the scaling factor 𝜉 according to (5.29) as

1 >
𝜉
𝜐 > 𝜖2oe . (5.36)

For the studied example of an oewg, the svs of the combined operator according
to (5.29) of several values of 𝜉/𝜐 and for an efie-alike sc are shown in Fig. 5.5.
An 𝜖2oe range is depicted for each value of 𝜉/𝜐. The corresponding 𝜖oe value is
determined as follows. Based on the nre including an error vector 𝝐oe within
b, we recognize that AH is multiplied to both the forward operator and the error
vector. Hence, the 𝜖oe range in Fig. 5.5 has to be considered. We assume that, for
the discussed scenario,

𝜉/𝜐 = (101…103) 𝜖2oe (5.37)

is a good choice. For larger scenarios, the upper bound 𝜉/𝜐 is shifted to slightly
larger values. In the following results section, it is demonstrated that this scaling
is indeed meaningful. Analyzing this relation in depth for any individual source
reconstruction scenario would require the L-curve method.
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Fig. 5.5: Analysis of the weighting 𝜉/𝜐 by a look at the svs of (5.29). Gray areas approximately
show possible 𝜖oe ranges for the given weights.

Tab. 5.1: Summary of equivalent source type notation.

abbreviation long version

j purely electric currents
m purely magnetic currents
jm unconstrained electric and magnetic currents
cs weak-form combined sources
sc-mf Love-current side constraint, mfie-alike
sc-ef Love-current side constraint, efie-alike
sc-cf Love-current side constraint, cfie-alike
cp Calderón projector
wf-cp improved weak-form Calderón projector
sh spherical harmonics expansion
dsh distributed spherical harmonics expansion

5.3 Source Reconstruction and FF Transformation
Results

We consider two types of measurement scenarios. First, accuracy analyses are
performed for simulated synthetic data since only in such a case the true solution,
which is to be retrieved, is known. Second, we consider real measurement data
taken inside an anechoic chamber. In both cases, we investigate two separate issues.

First, we examine the question of which source representation is the most bene-
ficial choice. Table 5.1 summarizes the studied equivalent source types. A standard
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version is to expand the fields with shs, either scalar or vectorial. The number
of unknowns 𝑁un is determined under the assumption that a certain amount of
propagating modes is supported inside the volume of the AUT minimum sphere
[J. E. Hansen 1988]. Therefore, 𝑁un is usually larger than the real 𝑁dof if the aut
shape is not spherical but with this source representation, it is not that simple to
really separate these two numbers. As an alternative, we consider a dsh expansion.
The aut surface is subdivided into smaller pieces, which are assigned to the typical
(non-empty) boxes of the mlfmm on a certain level. Then, shs are employed as
expansion functions in each non-empty box individually. This allows for a better
source localization than with a single sh expansion, and furthermore, geometrical
information about the aut shape is incorporated into the transformation algorithm.
Commonly, 𝑁un ≫ 𝑁dof and the forward operator is band-limited subject to the
mlfmm settings. This dsh expansion may be improved by considering combi-
nations of shs which show an outward-oriented radiation similar to css [Eibert
et al. 2022b; Ostrzyharczik et al. 2023; Eibert et al. 2022a].

In contrast, a source representation with even better source localization is a
surface-source representation on a Huygens surface (closed or open) around the
aut. Geometrical details can be described as granularly as desired. We consider
electric and magnetic surface current densities (jm) with rwg discretization. Thus,
the surface currents are oversampled and, again, 𝑁un ≫ 𝑁dof holds. These jm
currents have inherently even another ambiguity (leading to an increased kernel
dimension) between electric and magnetic current solutions, as discussed in this
work in detail. To avoid these ambiguities, we also consider just electric surface
current densities (j), just magnetic ones (m), and restricted combinations of both as
proposed in Section 5.2. A clear downside of the enforcement of a Love current
solution is the considerably increased computational effort, which can exceed the
effort required for the solution of the actual inverse equivalent surface-source
problem. It remains to be investigated whether this effort is worth it in terms of its
influence in the solution process.

Second, we investigate the related question of how to regularize the inverse
source solution effectively without sacrificing accuracy. To this end, not only the
constraints on the retrieved surface current densities are studied but also the choice
between the nres and the nees.

5.3.1 Results with Synthetic Near Field Data

Transformation Results for the Small Synthetic OEWG

For the discussed oewg example, we consider the equivalent source types listed in
Tab. 5.1, the various types of surface current densities, but also—for completeness
regarding (surface) source representations—sh and dsh sources. For the latter, the
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mlfmm-octree is built for the aut hull and sh expansions are employed in the
non-empty lowest-level boxes with a size of 0.15𝜆.

White Gaussian noise with 𝜖oe = 10−2 is added to the ideal synthetic data. All
the solvers except the sc ones have been analyzed for the small cube mesh with
regard to their properties and the results are summarized in Tab. 5.2. Excellent
results are highlighted in bright green, good ones in blue, worse ones in darkish
orange, and the underwhelmingly poor ones in dark red. Cells without a judgment
are gray. To put these ratings into perspective, the following should be considered.
An iteration count 𝑁it below ten is rather good, while hundreds of iterations are
too many. The solver residual 𝜖res only conveys information for the nee case.
The normalized rd 𝜖rd/𝜖oe has an ideal value of 1, with lower values indicating
over-fitting and larger values indicating a wrong solution. The zero field quality
inside 𝑣i 𝜖zf,avg is judged by averaging the field inside 𝑠 at 100 observation points,
normalized to the jm-nee case, which shows a strong but not excessive interior
field. This is visualized in Fig. 5.6 for various different solutions. The relative ff
error between the reconstructed 𝒆ff and the reference 𝒆ffref is calculated as per (4.46).

Iterative solver settings are chosen as the residual thresholds 𝜖res,th = 10−4 for
the nre and 𝜖res,th = 𝜖rd = 10−2 for the nee. We further investigate a somewhat
relaxed, relative termination criterion10 dependent on the iterative solver conver-
gence ratio: The solver stops if the relative residual improvement Δ‖r‖ becomes
worse than 0.99 three times in a row. This is demonstrated to work almost as well
as the absolute stopping for the nee in Tab. 5.2(d), whereas the nre struggles to
prevent overfitting without an absolute stopping, cf. Tab. 5.2(a) and (b). Overfit-
ting leads to a solution which is numerically contaminated by the null space of A.
Furthermore, we note that the nee version always converges in fewer iterations
than the nre for any specific source type or stopping criterion.

Various values of 𝜉/𝜐 for both the sc-mf and the sc-ef discretizations are inves-
tigated in Tab. 5.3, again for the same absolute and relative stopping criteria. We
observe that the sc with increasing weighting i) slows down the iterative solver
(undesired), ii) increases the ff error if the weighting becomes too strong (unde-
sired), and iii) increases the rd (up to a certain limit, desirable). The rd limitation
is observed even though the solver performs hundreds of iterations and reaches a
residual of 10−9—if the correct weight of about 𝜉/𝜐 = 101…102 is set in Tab. 5.3(b)
and (d). The same is observed, to a certain degree, for the cp and for the wf-cp in
Tab. 5.2(b).

Overall, the only ensured and meaningful effect of enforcing a Love-current
solution is a zero field inside 𝑠, see Fig. 5.6(e) and (f). The second effect of influencing
the iterative solver residual threshold is achieved much more conveniently—and

10. The advantage of a relative stopping criterion is that no pre-knowledge about the measurement
setup (i.e., knowledge of the oe) is required.
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Fig. 5.6: Reconstructed electric field in a cut plane of the (a) j – nee, (b) jm – nee, (c) cs –
nee, and (d) cp – nee solutions with 𝜖res,th = 10−2 termination criterion as well as (e)
sc-mf – nre (𝜉/𝜐 = 102) and (f) sc-ef – nre (𝜉/𝜐 = 101) solutions with 𝜖res,th = 10−4
termination criterion. © 2021 ieee [Kornprobst et al. 2021a].
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at a much lower computation cost—with an ambigous jm solution or a unique cs
solution by choosing an appropriate stopping criterion for the selected ne, with a
clear preference for the nee.

Interestingly, no significant differences in the solution quality between mfie- and
efie-alike discretizations of the Love sc can be identified—while this classical mfie
discretization causes accuracy problems for scattering problems, see Chapter 4.
Even the zero-field quality is comparable, with slight advantages for the sc-mf.
A similar lack of influence is observed for the cp, where the potentially accuracy-
improved wf-cp does not perform better in any of the considered measures.

The sh approach shows the fastest iterative solver convergence, however, also an
about 3 dB to 8 dB larger ff error. However, this is by nomeans a fair comparison.11

It is listed for the sake of completeness. The second-fastest source type is dsh,
again without the full diagnostic capabilities. The fastest surface-current solutions
are obtained either with ambiguous jm or unique cs currents. The use of the nee
speeds up the solution process from 32 to 26 and 28 iterations. Furthermore, we
observe that the jm and cs solutions are among the most accurate ones.

In this investigation, the jm-nee and cs-nee are the fastest-convergent (i.e., best
conditioned) and most accurate (in the nf and ff) surface-current formulations.
Hence, jm or cs currents with the nee seem to be the most reasonable choice
for best accuracy and best conditioning. Diagnostics capabilities can be easily
enhanced in the post-processing, cf. Subsection 5.2.2.

Finally, we analyze the weighting of the Love sc-mf for different snrs in Fig. 5.7.
An acceptably suppressed interior field is observed with weightings larger than
𝜉/𝜐 = 101𝜖2oe, and the reconstructed ff deteriorates with a too strong weighting
above 𝜉/𝜐 = 103𝜖2oe. Note that the ff error is given with reference to the oe; the
processing gain is therefore included. As seen in Tab. 5.3, a similar behavior is
observed for the sc-ef variant. However, the zero-field quality is more sensitive
especially to the choice of the stopping criterion.

A More Realistic Antenna Model

In the following, a simulation model of a DRH400 antenna at 6GHz is consid-
ered [RFspin 2021b]. The integral equation solver of the simulation software Feko
was employed to generate synthetic nf data (3754 measurement samples) for
a spiral scan with 20% oversampling in relation to the minimum sphere of the
aut [Altair 2021; J. E. Hansen 1988; Bucci et al. 2003]. The advantage compared to
measurements is that the real solution (i.e., a reference) is known from simulation.

11. Since the measurement distance of this example is quite large (beneficial for sh), the iterative
solver convergence of the sh nffft is extremly fast. Yet, the sh solution exhibits the drawback that it
cannot offer the same diagnostic information and source localization as an equivalent current approach
and, thus, exhibits larger nf and ff errors.
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Fig. 5.7: Love sc-mf weighting analysis regarding (a) zero-field quality and (b) maximum ff
error for varying oe levels, for the oewg simulation model © 2021 ieee [Kornprobst
et al. 2021a].

First, we perform an analysis of the Love sc weighting (for the case of sc-mf)
in Fig. 5.8. The results are similar to the oewg case. Deterioration of the solution
is observed at larger weights of the sc, at about 𝜉/𝜐 = 105𝜖2oe. The lower limit
for obtaining an acceptable zero field again depends on the snr. Also, the gmres
stopping criterion heavily influences the sc fulfillment. For the high-snr/low-
weighting region, the weighting needs to be relaxed to obtain a Love-current
solution. In the following, we choose 𝜉/𝜐 = 103𝜖2oe.

For further investigations, white Gaussian noise with 𝜖oe = 10−3 is added to
the simulated nf. The inverse problem is solved for three different equivalent
surfaces of the aut: the minimum sphere, a tight hull (close to the smallest convex
hull) around the aut, and an exact geometrical representation, see Fig. 5.9. The
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Fig. 5.8: Love sc-mf weighting analysis regarding (a) zero-field quality and (b) maximum ff
error for varying oe levels, for the DRH400 simulation model © 2021 ieee [Korn-
probst et al. 2021a].

(a) (b) (c)

Fig. 5.9: Huygens surfaces for the DRH400 simulation model: (a) a sphere, (b) a tight, close
to convex hull, and (c) an exact model © 2021 ieee [Kornprobst et al. 2021a].
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Tab. 5.4: Source type comparison on a convex hull around the aut, 𝜖oe = 10−3, for (a) the
nre with Δ‖r‖ = 0.995 and (b) the nee with Δ‖r‖ = 0.999.

(a)

type 𝑁it 𝜖res,th 𝜖rd/𝜖oe 𝜖zf,avg 𝜖ff,max

j 402 2.6 ⋅10−6 0.81 7.0 dB −70.8 dB
m 451 1.6 ⋅ 10−6 0.74 6.7 dB −72.0 dB
jm 336 1.2 ⋅ 10−6 0.70 0.0 dB −73.1 dB
cs 336 1.2 ⋅ 10−6 0.71 −6.8 dB −72.5 dB
cp 157 1.2 ⋅ 10−5 0.99 −27.4 dB −66.5 dB
wf-cp 153 1.3 ⋅ 10−5 1.02 −27.2 dB −66.1 dB
sc-mf 451 1.7 ⋅ 10−5 0.69 −30.0 dB −73.0 dB
sc-ef 357 3.3 ⋅ 10−6 0.72 −9.4 dB −71.7 dB

(b)

j 368 7.4 ⋅ 10−4 0.74 6.8 dB −71.1 dB
m 330 8.0 ⋅ 10−4 0.80 6.7 dB −69.0 dB
jm 222 7.3 ⋅ 10−4 0.73 0.0 dB −73.3 dB
cs 228 7.5 ⋅ 10−4 0.75 −6.8 dB −71.5 dB
cp 127 1.0 ⋅ 10−3 1.04 −28.1 dB −66.4 dB
wf-cp 128 1.0 ⋅ 10−3 1.05 −27.8 dB −66.6 dB

respective number of triangles is 100 238, 53 286, and 64 508. The distance of the
hull and the (slightly enlarged) exact equivalent model to the simulation model
is about 1mm, which is about 𝜆/50 at the simulation frequency. As previous
investigations and Kornprobst et al. [2019c], Kornprobst et al. [2019g], Kornprobst
et al. [2019b], and Kornprobst et al. [2021a] have shown, the solver residual of
the nre is rather meaningless. Hence, we evaluate the nf rd in each step of the
iterative solver while the stopping is still based on the nre residual. We consider
the same surface-source types as before and a relative solver stopping criterion, for
the nre if Δ‖r‖ > 0.995 three times in a row, and for the nee a somewhat relaxed
version with Δ‖r‖ > 0.999. In order to estimate the accuracy and conditioning of
the source representations, the iterative solution process is studied in Fig. 5.10. A
summary of results is given in Tab. 5.4 for the convex hull model.

The number of solver iterations and the convergence rate give some insight into
the conditioning. The nf rd and ff error provide insight into the achievable accu-
racy levels. The largest differences in the solution behavior are observed between
the three choices of the reconstruction surface: The sphere leads to the fastest
convergence (i.e., the best conditioning), the convex hull performs worse for any
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Chapter 5 Surface-Source Reconstruction for Antenna Measurements

source type, and the exact geometrical representation is even slower. Investigations
on the shape of the reconstruction surface have already been performed by Araque
Quijano et al. [2010], Leone et al. [2018], Knapp and Eibert [2019], and Leone
et al. [2021], in part for echo suppression applications. The shape of the equivalent
source surface may introduce weakly radiating currents (evanescent modes) if
the surface is non-convex. Hence, the reconstruction surface has to be chosen
accordingly. In the comparison at hand including various equivalent source types,
the influence of the Huygens surface shape is certainly also an interesting factor of
influence. Notably, the convergence curves of Love-current representations and
pure electric-current solutions are very similar if the reconstruction surface comes
close to the conducting antenna model. From a physical point of view, this kind of
similar behavior is expected due to the fact that both systems of equations yield
the same solution of purely electric currents for the same right-hand side, hence
the matrices have to be very similar.

Looking at the accuracy of the equivalent surface choices, we can state that the
sphere leads to overfitting (nf rd below the noise level of 10−3, see Fig. 5.10) and,
hence, reduced accuracy. The ff errors of the sphere model are in the range of
−44 dB to −54 dB—the worst results are obtained for j and m solutions. The convex
hull offers a rd of about 10−3 and ff errors of mostly below −70 dB, which is a
significant improvement (the so-called processing gain). The exact model is able to
provide better diagnostic information, but requires a lot of detailed information
about the aut. The optimal reconstruction deviation of 10−3 is reached, see Fig. 5.10,
and the ff errors are about one to two decibels worse than for the convex hull—i.e.,
absolutely comparable. Overall, for best accuracy and reasonable conditioning
(fast iterative solver convergence), a convex hull is the reasonable choice.

A Large Reflector Antenna

To showcase the differences between the nes, we consider an electrically large
simulation model, see Fig. 5.11, of a real-world reflector antenna located in Raisting,
Germany [Paulus et al. 2018]. The simulation frequency is 1.1 GHz, the reflector
diameter is 92𝜆 and the height in 𝑧-direction including the feed and the support
structure in the back is almost 41𝜆. Subject to the electrical size of the minimum
sphere, we choose a spiral sampling with 𝑀 = 700 000 measurement samples on
a sphere of radius 55𝜆 [J. E. Hansen 1988; Keinert et al. 2015]. The measurement
vector is superimposed with white Gaussian noise 𝝐oe, with ‖𝝐oe‖2 = 10−2‖b‖2.

With the nee formulation, the number of unknowns obviously equals𝑀, whereas
for the nre, there are 17 248 275 dsh unknowns or 7 725 366 jm unknowns. Both
source types are placed according to the reconstruction surface 𝑠, i.e., the mesh
shown in Fig. 5.11(b). Assuming that the (intentionally introduced) oe is unknown,
we consider a relative solver stopping criterion: If the residual decreases three times
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5.3 Source Reconstruction and FF Transformation Results

(a) (b)

Fig. 5.11: Simulation model of a large reflector antenna located in Raisting, Germany. (a)
The real part of the simulated electric surface current density. (b) Closed source
reconstruction surface around the simulation model © 2019 ieee [Kornprobst
et al. 2019c].
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Fig. 5.12: Iterative solver convergence of the reflector antenna source reconstruction © 2019
ieee [Kornprobst et al. 2019c].

in a row by less than 3%, the solver halts. The convergence curves of the residuals
and nf reconstruction deviations for all cases are given in Fig. 5.12. Both nee
versions converge to an nf rd of 10−2 after 15 iterations, while the nre ones take
nearly 70 iterations and go slightly below the error-induced 10−2 nf rd—meaning
a part of the error is mistakenly fitted to a contribution in the retrieved currents.

It has to be highlighted that the nre version was modified to output the NF
deviation in each solver step, i.e., a 50% extra effort of one mvp per iteration (about
15 s on a Intel Xeon E5-1650 v4 running at 3.60GHz). This information is in general
not available since only incremental changes in the residual are evaluated, and
cannot be used without additional effort to control the solver termination criterion.
What is surprising in this example (and not a general rule) is that, in the beginning
of the solution process, the NRE residual resembles the nee nf deviation. Later in
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Fig. 5.13: Comparison of reference and reconstructed ff of the Raisting reflector antenna
model, for the dsh nee, 𝜑 = 270∘ cut © 2019 ieee [Kornprobst et al. 2019c].

the solution process, the residual becomes arbitrary and also differs between the
source representations even when the nf rds are on a comparable level.

Finally, the reconstructed ff is compared to the simulated reference in Fig. 5.13
exemplarily for the dsh nee solution. The complex deviation between the fields
normalized to their respective maxima is below −77 dB in all cuts and for both
polarizations. The source localization helps to suppress the additive noise in the
reconstructed sources to a great extent. In this specific scenario, the additional
iterations carried out for the nre solution have no detrimental effect on the accuracy
but also lack any other positive impact on the solution process.

5.3.2 Results for Measurement Data

Source Reconstruction for a Reflector Antenna

Spherical nf measurements of a parabolic reflector antenna have been conducted at
18GHzwith a DRH18 probe in themeasurement facilities of Rohde & Schwarz [Neitz
et al. 2017; Steatite Ltd. 2021; RFspin 2021a]. The aut exhibits a diameter of 1.23m
and the measurement distance was 5m. Based on our previous insights, only a
convex hull is considered as reconstruction surface. The aut inside the anechoic
chamber and the reconstruction surface are shown in Fig. 5.14.

The number of nf measurement samples is 812 702 (for two orthogonal polar-
izations), which also equals the number of unknowns for all nee variants. For the
nre, the dsh formulation has 14 143 275 unknowns. The employed mesh comprises
4 289 139 rwg unknowns, with double the number for the jm approach.

An iterative solver convergence study is shown in Fig. 5.15. The stopping cri-
terion was chosen relative with a residual decrease slower than 0.997 three times
in a row. Additionally, the nre solver was stopped once a residual threshold of
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5.3 Source Reconstruction and FF Transformation Results

(a) (b)

Fig. 5.14: Measured reflector antenna (a) inside the anechoic chamber and (b) as a recon-
struction model © 2021 ieee [Kornprobst et al. 2021a].

10−5 was reached. The rd estimates the oe to about 2% consistently among all
solvers. All formulations show a comparable convergence behavior with a slight
advantage for the nee. The control of the solver termination, once a stagnating
nf rd is reached, works much better for the nee. For instance, the jm nee version
stops at an nf rd of 1.96% after 36 iterations, while the jm nre version stops after
141 iterations at a residual of 9.9 ⋅10−6 and an nf rd of 1.89%. The nre reaches the
same nf rd as the nee with convergence at 39 iterations. The jm, cs, and dsh
variants perform very similarly. The j and m versions show a worse convergence.

The Love-current sc formulations show a worse convergence than the jm, cs,
and dsh formulations. The cp and wf-cp variants show a comparable convergence.
However, keep in mind that each iteration is computationally more costly.

For comparison, a fully probe-corrected spherical transformationa according to
Mauermayer and Eibert [2018] with the nre takes 35 iterations for a residual of
10−4 and stops at an nf rd of 1.67%, i.e., it suffers from a bit of overfitting due to
the inherently limited source localization.

Transformed ffs of the spherical transformation and the cs nee source recon-
struction are shown in Fig. 5.16, with the relative magnitude deviation reaching
up to −48.5 dB. The deviation between the various surface-source formulations is
below this level. Hence, an accuracy analysis for measurement data is not feasi-
ble. We can, however, compare some of the deviations. The maximum deviation
between the cs solutions with the nee and the nre is at −59.0 dB, between the jm
and the cs solutions with the nee at −72.1 dB, between the j nre and the cs nee
solutions is at −53.8 dB, between the cp nre and the cp nee solutions at −59.0 dB,
and between the sc-mf nre and the cs nee solutions at −59.9 dB. All these values
are below the measurement accuracy.
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Fig. 5.15: Iterative solver convergence for the source reconstruction of reflector antenna
NF measurements. (a) nf rd of non-physical surface source representations, for
both the nre and the nee. (b) nf rd of Love-current formulations, for the nre.
(c) Solver residual of the nre solvers © 2021 ieee [Kornprobst et al. 2021a].
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Fig. 5.17: DRH400 aut mounted for a spherical nf scan inside an anechoic chamber.

NF Measurements of a DRH400 AUT

The dual-ridged DRH400 horn antenna, which has been employed as a simulation
model in Subsection 5.3.1, has been measured in the anechoic chamber of the Chair
of High-Frequency Engineering, Technical University of Munich [RFspin 2021b].
This aut as mounted during the nf measurement is shown in Fig. 5.17. Spherical
near-field measurements are performed at a frequency of 6GHz with a roll-over-
azimuth positioner and a DRH18 probe antenna [RFspin 2021a]. 𝑀 = 58 322
measurements have been collected.

First, we investigate the benefits of the nee over the nre. We only consider dsh
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Fig. 5.18: Comparison of the nre and nee convergences for DRH400 nf measurements
[Kornprobst et al. 2019c].

equivalent sources, which are located on a closed surface tightly fitted around the
aut. This leads to a dsh expansion with 160 272 coefficients. We consider a relative
gmres convergence criterion of the residual decrease, i.e., a relative decrease by
less than 1% three times in row. The convergence results for nf rd and gmres
solver residual are given in Fig. 5.18. The nee converges in 29 iterations to an
nf rd of 1.24%, whereas the nre takes 127 iterations to converge to a residual of
1.8 ⋅10−5. In this scenario, a slight benefit for the nee in terms of iterative solver
convergence is observed. The 1.24% nf rd is reached at iteration 32 with the nre
(instead of 29). Furthermore, the nre residual is—as expected—totally unrelated
to the nf rd. We can state that the nre exhibits one of two disadvantages. One
either needs to put extra effort into the evaluation of the nf rd or one needs to
trust a residual stopping criterion which can only be based on experience and is
checked ex-post. The latter is highly unreliable: In the two considered scenarios,
the nee stopping threshold of about 1% nf rd was reached at residuals of 0.0109
and 2.5 ⋅10−4, respectively—orders of magnitude apart.

In order to evaluate the reconstruction quality of both the nre and the nee
solutions, we compare the reconstructed ff patterns in Fig. 5.19. The deviation
is mostly below −50 dB, which is better than the estimated measurement error of
about −40 dB in this measurement setup. We conclude that both algorithms exhibit
a comparable accuracy.

Second, we analyze the diagnostic capabilities of a Love current reconstruction,
in particular with a cp. In the iterative solution of the nre, a solver residual of
10−4 is used as termination criterion. We consider three different source types:
generic jm unknowns, the cp Love current solution, and the sc-ef Love condition.
Without the Love current mapping, but with the non-unique electric and magnetic
equivalent currents, 61 gmres iterations are necessary to reach this residual. The
solution achieves a relative nf rd of 1.40%. With Love current mapping, only 53
iterations are performed, while the relative nf rd is comparable with 1.44%. The
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Fig. 5.19: Comparison of the ff patterns for the DRH400 measurements, dsh sources for the
nre and nee, 𝜑 = 0∘ cut [Kornprobst et al. 2019c].

Love current sc, however, takes 86 iterations to convergence (and shows then about
the same nf rd). As we can see here, the residuals in the nre solution process are
meaningless. The system matrices are different in every case. Hence, the residuals

rjm,𝑖 = AH(Ax𝑖 − b) , (5.38)

rcp,𝑖 = G−1LmA
H(Ax𝑖 − b) , (5.39)

rsc,𝑖 = [AHA + 𝜉 LHscLsc]x𝑖 − AHb (5.40)

cannot be meaningfully compared and choosing the same iterative solver threshold
based upon ‖r‖ is not really sensible.

The difference in the field solutions is analyzed in Fig. 5.20, where the zero field
inside the source region is clearly visible up to a level of −60 dB in the case of the
Love current solution. The radiated nfs around the aut look, by visual inspection,
identical. This is also confirmed in the field difference plot in Fig. 5.20(c).

Furthermore, we show the magnitude distributions of the equivalent currents in
Fig. 5.21. For the solution without the Love condition, the currents are concentrated
on the rear side of the antenna and radiate through the antenna volume, as already
observed in the corresponding near-field plot in Fig. 5.20(a). If the Love current
solution is retrieved, the radiating currents concentrate on the front side—in the
aperture of the horn antenna—, where the electromagnetic waves are expected to
detach from the aut.

Finally, we look at the radiated fields in Fig. 5.22 to check whether the retrieved
equivalent currents behave similar. This is done by determining the ff patterns of
both current distributions. An excellent agreement of below −60 dB is observed in
Fig. 5.22, which is lower than typical measurement accuracies.
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Fig. 5.20: Electric field of the equivalent currents obtained for DRH400 nf measurements
at 𝑦 = 0. The black line marks the outline of the Huygens surface 𝑠. (a) Field of
the generic jm solution. (b) Field of the Love current cp solution. (c) Difference
between the two reconstructed fields [Kornprobst et al. 2019e].

UAV-Based Diagnostics

The diagnostic features of Love current reconstructions are an excellent exten-
sion for specialized measurement applications. For instance, García-Fernández
et al. [2018a] have performed outdoor measurements of a base station aut with an
unmanned aerial system. Such kind of in-situ measurements, possibly with highly
specialized measurement hardware such as unmanned aerial vehicles (uavs) and
radio-frequency over fiber (rfof) connections, can benefit greatly from the flexi-
bility of fiafta (since the observation samples are typically taken on an irregular
grid), from phaseless field transformation algorithms as discussed in Section 5.5,
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Fig. 5.21: Magnitudes of the generic jm equivalent (a) electric and (b) magnetic surface
current densities, and of the (c) electric and (d) magnetic Love currents obtained
with the cp, both on 𝑠 for 𝑦 < 0 [Kornprobst et al. 2019e].
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[𝒆𝑠ff]𝜗 component [Kornprobst et al. 2019e].

and from the diagnostic source-localization capabilities of a Love current recon-
struction. In this work, we consider an nf measurement conducted by Mauermayer
and Kornprobst [2022] (preliminary measurement results have been presented in
[Mauermayer et al. 2019]) in the controlled environment of the anechoic chamber
of the Chair of High-Frequency Engineering, Technical University of Munich.

Figure 5.23 shows the measurement hardware in action. The uav position and
orientation is tracked with the help of four base station of a HTC Vive tracking
system. The visible cable connects the uav to a ground station, which supplies the
necessary power, is able to configure the flight trajectory and measurement settings,
and collects the measurement data. The hf measurement itself is performend with
a low-cost software-defined radio (sdr) board LimeSDR mounted on the uav and
features two synchronous measurement channels (utilized for two polarizations of
a dual-polarized patch antenna probe). The aut is fed synchronously by the same
sdr via a custom rfof connection to the ground station and then via a coaxial
cable to the aut. The trajectory of a cylindrical scan including the magnitude of the
collected nf of the co-polarized patch probe antenna port is depicted in Fig. 5.24,
where maneuver paths are omitted. Figure 5.25 shows the Love currents, which
have been reconstructed with the cp approach for nf measurement data taken at
a frequency of 1.8 GHz. Clearly, the reconstructed currents look like the currents
of a horn antenna should like: We can identify the radiation coming from the
aperture. Hence, uav-based measurements concepts combined with Love-current
reconstruction algorithms offer valuable diagnostics for on-site measurement and
troubleshooting scenarios.
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Fig. 5.23: Photograph of the measurement setup in the anechoic chamber, showing two of
the four tracking base stations in the background, as well as the horn aut in the
center and the hovering drone in the front.
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Fig. 5.25: Equivalent (a) electric and (b) magnetic Love surface current densities on 𝑠 recon-
structed from the uav-based nf measurement.

Post-Processing Based Love-Current Calculation

As a final step, we investigate how enforcing the Love condition during the solution
process compares to calculating Love currents in a post-processing step—where
the latter choice implies significantly reduced computational effort. To this end, we
consider an HF907 double-ridged waveguide horn antenna [Rohde & Schwarz 2021].
𝑀 = 90902 spherical nfmeasurements have been collected in the anechoicchamber
at the Chair of High-Frequency Engineering, Technical University of Munich, at a
frequency of 18GHz with an oewg probe. For the surface-source reconstruction,
we employ a tightly fitted mesh with 282 135 rwg unknowns for electric and
magnetic currents each. We calculate one solution with a Love current sc (with
the efie-alike testing), one solution with a Love cp, and one with unconstrained
jm currents, both for the nee and with a stopping threshold of a relative nf rd
improvement of worse than 0.999 three times. The convergence of the solution
with the Love sc is slower than the other two approaches but reaches the same
residual eventually; in addition, each mvp of the Love solutions is of course more
costly to compute [Kornprobst et al. 2019b].

As compared to a spherical nffft, all three solutions show about the same
relative deviations (up to −47 dB), which is below the measurement accuracy of the
setup. Figure 5.26(a) visualizes the retrieved Love currents of the cp approach. In
addition, Fig. 5.26(b) shows the Love currents which are obtained with the cp, after
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Fig. 5.26: |Re{𝒎}| of the reconstructed Love current on the Huygens surface of a HF907 aut,
colormapping clipped with max |Re{𝒎}| ≈ 21V/m. (a) Retrieved with the nee and
cp. (b) Love currents attained by post-processing a jm nee solution. Reproduced
courtesy of The Electromagnetics Academy [Kornprobst et al. 2019b].

unconstrained jm currents have been retrieved in the iterative solution process. The
differences of both Love current representations are insignificant, both show the
same behavior and suffice for antenna diagnostics. Certainly, the post-processing
method is preferred due to the lower computational effort.

5.3.3 Summary

Based on the theoretical analyses in Sections 5.1 and 5.2, we have analyzed the
the inverse surface-source problem related to nf antenna measurements in detail.
The first aspect is the regularization of the ill-posed inverse problem. The use
of fast methods such as the mlfmm or the adaptive cross-approximation (aca)
already requires to employ an inherently regularized iterative solver (such as
gmres) and an ne with regularizing properties. In addition to that, the various
source representations have almost no measurable influence. The only noticeable
effect is that enforcing a Love current solution prevents overfitting to some extent,
which can be achieved computationally cheaper with the appropriate choice of the
nee over the nre.

In combination with the superior nee, which makes the choice of the iterative
solver stopping criterionmuch simpler, the ambiguous unconstrained jm solution or
the unique cs solution are the sensible choices for equivalent surface currents. This
is due to the importance of making use of both radiation operators 𝓣 and 𝓚, e.g.,
employing electric and magnetic currents simultaneously, in order to arrive at the
best possible conditioning of the inverse source problem with the most reasonable
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computational effort. Additionally, we found that a close to convex hull around
the aut without too much geometrical details offers the best conditioning at the
best possible accuracy.

The third side of the investigation is that for the best reconstruction accuracy,
it is crucial to choose a source representation working with a close to convex
hull around the aut in order to avoid the excitation of spurious radiating modes.
This basically excludes a plain sh expansion for most (non-spherical) auts if the
best accuracy is desired. The choice of a specific (surface) source representation
is, however, not critical, since all of them are identical from both a practical and
theoretical point of view—they all offer (in practice only approximately) the same
number of dofs for the reconstruction of radiated fields. This brings us back to the
first issue of solver regularization: Despite the theoretical equivalence, preventing
overfitting remains important no matter which source representation is employed.

A further aspect are the diagnostic capabilities of surface source methods. In
this respect, the various surface-source representations indeed differ. However,
the largest distinction is found in the computational effort associated with the
calculation of the Love currents. Since there are no observable benefits over a
computationally cheaper post-processing step, the Love current solutions via a sc
or cp seem to be generally not worth the effort. In most cases, the reconstruction
of a unique cs solution should suffice. Post-processing techniques for the field
visualization on the aut surface also seem to be a viable method if desired.

5.4 Echo Suppression

Typically, nf antenna measurements are performed in a controlled environment,
for instance in anechoic chambers, to avoid spurious signals which do not propagate
along the line-of-sight between the aut and the measurement probe. There are
circumstances in which the environment is not completely under control, such
as outdoor/on-site measurements [Faul and Eibert 2021], or in which an echoic
environment is not avoidable for other sound reasons, such as the use of metallic
thermal vacuum chambers investigated by Knapp and Eibert [2019] and Knapp
et al. [2019a]. The processing methods and specific measurement hardware to
cope with negative influences of echoic measurement environments work either
with time-domain or time-harmonic data. Inverse surface-source algorithms are
typically concerned with the latter case. These algorithms, similar to ones based
on spectral properties, already provide spatial filtering capabilities by source lo-
calization [Hess 2010; Araque Quijano et al. 2011; Gregson et al. 2012; Jørgensen
et al. 2012b; Mauermayer et al. 2013; Foged et al. 2013a; Kozan et al. 2014; Cappellin
and Pivnenko 2014]. However, source localization for the aut might not suffice to
separate the radiation of reconstructed equivalent surface current densities for the
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Fig. 5.27: A variation of the general equivalent inverse surface-source scenario depicted in
Fig. 5.1, which involves echo source localization on the surface 𝑠echo.

aut from echo contributions. Source reconstruction algorithms based on equiva-
lent surface current densities can be enhanced by modeling echo contributions with
separate equivalent sources and by software time-gating for multi-frequency mea-
surement data [Araque Quijano et al. 2010; Yinusa and Eibert 2013; Mauermayer
and Eibert 2015, 2017; Knapp and Eibert 2018; Paulus et al. 2019; Knapp et al. 2019b;
Knapp et al. 2019a; Kornprobst et al. 2019d; Knapp et al. 2020]. Contributions to
both of these approaches are discussed in the following.

5.4.1 Echo Source Localization with a MOM Side Constraint

We are not restricted to modeling the aut sources but can also include echo objects
in the equivalent source representation, as depicted in Fig. 5.27. In principle, it is
sufficient to place sources at all locations where radiation or scattering occurs as
long as the relative positions of radiating and scattering sources do not change,
i.e., measuring a stationary aut. However, to restrict the number of dofs in the
reconstruction (and reduce the number of required nf measurement samples),
it can be beneficial to incorporate knowledge about the material properties and
exact shapes of scattering objects. One way to do this is to link the solver of the
nffft inverse problem to a forward problem for scattering objects, which has
been reported both for dielectric objects by Mitharwal and Andriulli [2015] and
Omi et al. [2019] and for pec objects by Giordanengo et al. [2013], Giordanengo
et al. [2016], Ciorba et al. [2019], Paulus et al. [2019], and Kornprobst et al. [2019d].
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The topic of echo suppression is related to an important challenge of nf antenna
measurements: Measurements shall be sped-up significantly, which is a particularly
severe topic for electrically large antennas and for measurements with scatterers,
since the mode spectrum increases significantly due to a larger minimum sphere.
Hence, efforts have been made to directly integrate electromagnetic models of
objects close to the aut into the transformation problem in two different ways.
Giordanengo et al. [2013], Giordanengo et al. [2016], and Ciorba et al. [2019] have
pre-computed basis functions before the measurement which include the influence
of the scatterer, i.e., they have solved the scattering problem for any possible or
expected variation of the aut. This poses a tremendous computational overhead.
Paulus et al. [2019] and Kornprobst et al. [2019d] have proposed a more efficient
approach which is discussed in the following.

From electromagnetic theory, themost efficient samplingmethods and traditional
sampling limits due to the spatial bandwidth of the radiated fields are well-known,
with the most practical method being spiral sampling in various fashions [J. E.
Hansen 1988; Bucci et al. 2003; Keinert et al. 2015]. More aggressive approaches to
reduce the number of samples and, thus, the measurement time, seem to be rather
unstable and unreliable if the made assumptions are not met; for instance in the
case of compressed sampling, no speed-up is gained with random measurement
locations [Hofmann et al. 2019]. To be more reliable, the approaches to reduce
measurement samples and time need to incorporate additional information such as
geometrical data of the aut.

Theoretical Description

We pursue an approach to incorporate knowledge about the exact geometry and
material parameters of certain objects close to the aut into the nffft and, subse-
quently, reduce the required field samples due to a significantly shrunk minimum
sphere of the aut. However, some measurement efforts are transferred into the spa-
tial domain: To save nf measurement time, the geometrical shape of some objects,
which are part of or surrounding the aut, can be captured using a high-accuracy
3-D laser scanner. This geometry information, combined with the knowledge of
the material parameters, is utilized to treat the objects not as unknown radiation
sources within the nffft inverse problem but as a standard scattering problem.
This is implemented as a mom sc within the standard inverse problem of the
nffft—just as it has been done for the Love sc in Subsection 5.2.4 and 5.2.5. By
doing so, we are able to model any known scattering object or any part of the aut
as pec or whatever boundary condition is enforced by the sie sc.

The basis is the typical rwg modeling of electric and magnetic surface current
densities according to (5.1). The according unknowns are represented by the vector
x, the field observations are collected in the vector b, and the forward operator
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from the sources to the unknowns is written in discretized form as the matrix A.
This allows us to write the source reconstruction problem as the standard linear
system of equations A x = b. For the treatment of additional echo sources with a
known boundary condition, whose unknowns are also contained in x, we split the
unknowns vector and the forward operator

A x = [Aaut Aecho] [
xaut
iecho

] = b (5.41)

into separate parts for sources placed on the aut hull and on the pec echo object,
which only exhibits electric surface current unknowns. Furthermore, we need to
evaluate the radiation of the aut sources on the echo object’s surface, which is
done by the mvp Aa→e xaut, which contains the submatrices

Aa→e xaut = [
Ta→e
𝜶,𝜷 Ka→e

𝜶,𝜷
−Ka→e

𝜷,𝜷 Ta→e
𝜷,𝜷

] [ iaut
vaut

] = [
−eecho

𝜶
−hecho

𝜷
] (5.42)

with the matrix entries

[Ta→e
𝒘,𝜷 ]𝑚𝑛 = ⟨𝒘𝑚, 𝓣 𝜷𝑛⟩ for 𝑚 ∈ {1, 2, … , 𝑁echo}, 𝑛 ∈ {1, 2, … , 𝑁aut} (5.43)

for electric currents and, similarly, for magnetic currents

[Ka→e
𝒘,𝜷 ]𝑚𝑛 = ⟨𝒘𝑚,𝓚 𝜷𝑛⟩ for 𝑚 ∈ {1, 2, … , 𝑁echo}, 𝑛 ∈ {1, 2, … , 𝑁aut} , (5.44)

where 𝒘𝑚 ∈ {𝜶𝑚, 𝜷𝑚} are located on 𝑠echo, and 𝜷𝑛 on 𝑠. Knowing the electric and
magnetic fields eecho

𝜶 and h
echo
𝜷 on the surface of the echo object, we can employ a

suitable scattering ie, for instance the cfie (3.34) written compactly as

C0.5 iecho = 1
2(e

echo
𝜶 + h

echo
𝜷 ) . (5.45)

In terms of the complete rwg unknowns vector x, the sc matrix reads

S x = [− 1
2
[I I]Aa→e C0.5] [

xaut
iecho

] = 0 (5.46)

Employing this system of equations as a sc in (5.28) and (5.29) yields the Tikhonov-
regularized source reconstruction equation

[AHA + 𝜉SH S] x = AHb (5.47)

Theweighting factor 𝜉 is set according to the procedure described in Subsection 5.2.5.
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Fig. 5.28: Feko simulation model of a horn antenna with a pec cube echo object in front
[Kornprobst et al. 2019d].
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Fig. 5.29: Co-polar [𝒆]𝜗 component of the horn antenna ff in the comparison of free-space
solution and the antenna currents influenced by mutual coupling with the cube in
the 𝜗 = 90∘ cut [Kornprobst et al. 2019d].

This regularized nre can of course be further augmented by a Love sc.

Transformation Results

We consider the simulation setup in Fig. 5.28 including a horn antenna and a
scatterer in front, a square pec cube as a known echo object. In the simulation with
Altair Feko [Altair 2021], we extract the ff of the horn antenna part and compare
it to the horn simulated in free space. The mutual coupling with the cube distorts
the ff up to a level of −26 dB, see Fig. 5.29, if the complex deviation between the
maximum-normalized ffs is considered. For the case of “mutual coupling,” only
the currents on the aut are taken to calculate the ff. In the following, the task
is to retrieve these aut currents influenced by mutual coupling and filter out the
currents on the echo object.12 We consider three different source-reconstruction

12. Reconstructing the free-space solution poses a more challenging task and requires, for instance,
knowledge about the material composition and shape of the horn antenna itself. An approach for this
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techniques for the scenario in Fig. 5.28. For all of them, we extract the same
𝑀 = 14 640 electric nf samples around the aut including the cube with a spiral
sampling proposed by Bucci et al. [2003] at a frequency of 3GHz. This is about
a ten-fold oversampling according to the minimum sphere of the horn antenna
only and about a four-fold oversampling with respect to the sphere with minimum
diameter enclosing the aut plus echo object. Hence, the sampling suffices to
capture more than the dofs of the aut alone, which is reasonable in the presence
of an echo object which increases the dofs in the radiated fields.

The first approach is just a simple source localization for the aut, i.e., exploiting
the spatial filtering capabilities of a surface-source method. Only the unknowns
xaut are retrieved and employed for the calculation of nfs and ffs. This simplistic
spatial filtering is equivalent to the work done by Hess [2010], Gregson et al. [2012],
Mauermayer et al. [2013], and Kozan et al. [2014] from a theoretical point of
view, as Knapp [2021] has pointed out. The second approach considers additional
electric and magnetic Love currents xecho on the scatterer without enforcing a
boundary condition on the scatterer. We refer to this method as a reconstruction
of unconstrained (Love) currents, which resembles the methodology proposed by
Araque Quijano et al. [2010], Araque Quijano et al. [2011], and Yinusa et al. [2012a,
2012b]. The third approach incorporates the pec boundary condition on the echo
object and introduces the additional electric current unknowns iecho for the solution
of the Tikhonov-regularized nre (5.47). In all three solutions, a Love current sc
with mfie-alike testing is considered.

The simple source localization approach converges to a residual of 10−4 within
221 iterations and a large nf rd of 24.2% remains after the solution is found. The
reconstruction of unconstrained currents on both aut and scatterer converges
within 84 iterations and exhibits an nf rd of 0.25%, much lower than in the first
case. The approach including the cfie sc for the pec echo object converges within
67 gmres iterations to the same threshold. Here, the equivalent currents placed
additionally on the scatterer are able to reproduce the observed fields even better,
leading to an nf rd of only 0.18%.

Next, we look at the reconstructed electric nfs. Figure 5.30(a) shows the nf of
the reconstructed currents on the aut and the echo object including the mom sc
and the Love sc for the aut. These fields are visually almost indistinguishable from
the simulated reference fields. In Fig. 5.30(b), the radiation contributions of the
echo object are effectively removed and we evaluate the radiation of the currents on
the aut only. However, we still observe the effect of mutual coupling: While the
(symmetric) horn antenna in free space shows a symmetric radiation with respect
to the 𝑥-axis, we can identify unsymmetrical contributions in particular for the
backradiation. This effect is inherent in the considered model and cannot be “cured”

is discussed in the following Subsection 5.4.2.
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Fig. 5.30: Electric nf magnitude in the 𝑧 = 0 cut plane for the reconstruction with a mom
sc. (a) Fields of all reconstructed currents. (b) Fields of aut currents only.

with mono-frequent measurements. Furthermore, the Love current property of a
zero field inside the aut is lost since this condition was enforced together with
the equivalent sources placed on the echo object. Without the radiation from the
scatterer, the radiated fields do not cancel any more.

The reconstructed nf of the unconstrained Love currents are shown in Fig. 5.31,
for the whole set of reconstructed currents in Fig. 5.31(a) and evaluating only the
currents on the aut in Fig. 5.31(b). The differences to the fields shown in Fig. 5.30
for the pec boundary sc are few and far between. However, when looking at the
difference of the fields between the reconstruction with unconstrained currents and
with the mom sc in Fig. 5.31(c)—both cases for the aut currents only—,we observe
two noteworthy details. First, evanescent modes along the Huygens surface enclos-
ing the aut are excited more pronouncedly. Second, the evanescent fields between
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Fig. 5.31: Electric nf magnitude in the 𝑧 = 0 cut plane for the reconstructed Love currents
on both the aut and the scatterer. (a) Fields of all reconstructed currents. (b) Fields
of aut currents only. (c) Field difference to the solution including the mom sc, for
aut currents only.
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Fig. 5.32: Electric nf magnitude in the 𝑧 = 0 cut plane for spatial filtering with an aut
model only. (a) Reconstructed fields. (b) Field difference to the solution including
the mom sc, for aut currents only.

the aut and the cube are not resolved as well with unconstrained currents; the
reason being that the reconstruction of unconstrained currents exhibits more dofs.
This makes the separation of the radiation originating from two closely placed ob-
jects more challenging and requires extreme measurement accuracy and/or extreme
oversampling [Klinkenbusch 2009; Knapp 2021] or, alternatively, measurements
taken at the locations of strongly evanescent fields [Paulus et al. 2019].

Finally, Fig. 5.32 shows the electric nf of the reconstructed currents for the
spatial filtering with the aut hull only. In this case, the evanescent modes on the
aut hull are strongly excited, the reason being that ho modes are necessary in
order to reconstruct the observations which originate from a different location (i.e.,
the echo). This is also apparent in the difference plot in Fig. 5.32(b). In comparison

182



5.4 Echo Suppression

with Figs. 5.30(a) and 5.31(a), the equivalent currents of the simple spatial filtering
approach in Fig. 5.32(a) try to mimic the fields of the other cases (i.e., the real
solution) as well as possible. For instance, the fields exhibit a minium at the
position of the cube. The radiation contributions leading to these field distortions
cannot be removed. They deteriorate the equivalent current distribution on the
aut.

In the last step of the nffft, we evaluate the ff of the currents on the horn
antenna for all three reconstructions. The resulting patterns are shown in Fig. 5.33
and compared to the Feko reference solution from Fig. 5.29, which is influenced
by mutual coupling. The simple source localization approach fares clearly the
worst with a maximum error of −14.5 dB. The reconstruction of unconstrained
currents achieves a maximum error of −38.5 dB, and the mom sc solution even
−60.8 dB. Clearly, introducing additional knowledge about the inverse problem
helps to improve the reconstruction accuracy.

In order to investigate the benefits of the mom sc, we reduce the number of
measurements to about twice the number required by the minimum sphere of the
aut, i.e., 𝑀 = 2928. This sampling would in theory be sufficient to capture the
dofs of the aut radiation. For the considered setup, this is, however, just an 80%
undersampling regarding to the minimum sphere around aut plus scatterer. Hence,
it does not completely suffice for the whole dofs of aut plus echo object. The
retrieved ffs of the two more accurate methods which include the echo object are
shown in Fig. 5.34. The simple source localization approach is not included since it
works even worse than with the ten-fold oversampling. The method including the
mom sc comes close to its performance before with a maximum error of −56.5 dB
(about 4 dB worse). Compared to that, the unconstrained-currents solution exhibits
a larger error of −24.9 dB (about 14 dB worse).

Again, introducing knowledge about the boundary condition of the echo sources
helps to improve accuracy since the (evanescent) modes can be separated better
between the two source locations and, hence, retrieving the aut currents works
with fewer measurement samples.

The knowledge about the behavior, in particular the boundary condition, of the
echo object helps to achieve an improved accuracy since the (evanescent) modes
can be separated better between the two source locations. Put differently, this
knowledge allows us to reduce the number of measurements compared to the case
without this knowledge because less dofs are to be determined. The measurement
effort is, however, shifted to the spatial domain since the surfaces of conducting
objects should be known with at least about 𝜆/10 accuracy or even lower [Paulus
et al. 2019].

One issue remains when echo sources are introduced in order to separate aut and
echo contributions in the source reconstruction, though. As illustrated in Fig. 5.29,
the retrieved solution is still influenced by mutual coupling since the current
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Fig. 5.33: Co-polar [𝒆]𝜗 ff component of the aut currents only, compared to the Feko refer-
ence influenced by mutual coupling on the horn antenna. (a) Source localization
for the aut hull only. (b) Additional unconstrained currents on the scatterer, which
are neglected for the ff evaluation. (c) Currents obtained with mom sc, scatterer
currents neglected for the ff evaluation.
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Fig. 5.34: Co-polar [𝒆]𝜗 ff component of the aut currents only, compared to the Feko
reference influenced by mutual coupling on the horn antenna. (a) Unconstrained
currents on the scatterer, which are neglected for the ff evaluation. (b) Currents
with mom sc, scatterer neglected for the ff evaluation.
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distribution on the aut is changed in reality in close vicinity to a scattering object.
In some scenarios, this is indeed the desired solution since the echo comes from
the aut mounting structures which might be present in the real-world application
[Saporetti et al. 2019]. In other cases, mutual coupling is seen as a degradation of
the “true” free-space solution. Then, broadband measurements and software-based
time-gating for the surface sources are able to remove the influence of mutual
coupling [Knapp et al. 2019b; Knapp et al. 2020].

5.4.2 Time-Gating for Equivalent Sources & Mutual Coupling

In general, the equivalent surface currents obtained from nf measurements and
source reconstruction techniques are only valid in the environment the measure-
ments have been taken. That is why we commonly aim for a controlled mea-
surement environment such as anechoic chambers. In scenarios where this is not
feasible, the measurements are inferred by coupling effects, cf. Fig. 5.29. One of the
approaches to reduce the influence of coupling/echo effects on the reconstructed
nfs and ffs is (possibly software-based) time-gating [Henderson et al. 1989; Levitas
and Ponomarev 1996; De Jough et al. 1997; Leather et al. 2004; Loredo et al. 2004;
Leibfritz et al. 2007; Loredo et al. 2009]. When we work with time-harmonic mea-
surements, the nf samples are collected over a broad bandwidth and transformed
into the time-domain via an inverse Fourier transform. Then, the desired con-
tributions are identified via an analysis of the path length of the line-of-sight
connection of the aut and the field probe and the longer path lengths of parasitic
paths involving echo objects. After windowing the desired pulse, another Fourier
transform yields the filtered broadband time-harmonic measurement data, which
may be employed in subsequent post-processing steps such as a surface-source
reconstruction. Special care has to be taken of the ringing at the edges of the mea-
surement bandwidth, for instance by the use a frequency-extension technique or
sparsity-base time-gating [Mauermayer and Eibert 2016, 2017; Knapp et al. 2019a].

If the path lengths of the direct, line-of-sight connection and indirect paths
including reflections are close to each other or whenever multiple interactions play
a role, time-gating of the probe signals may be unfeasible for some configurations of
aut and probe positions since the time-domain signals overlap. This poses a crucial
limitation to time-gating of the nf at the observation locations for scenarios where
mutual coupling changes the aut current distribution due to multiple interactions
between aut and scatterer. Time-gating of the reconstructed currents is able to
cope with such scenarios [Knapp et al. 2019b; Knapp et al. 2020].

We consider a source reconstruction approach similar to the one introduced in
Subsection 5.4.1. One particular difference is that multi-frequency time-harmonic
measurements are required. At each single frequency 𝑓, equivalent currents xaut(𝑓 )
are reconstructed on a hull enclosing the aut. The same is done for any echo objects,
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𝑧

𝑦𝑥

Fig. 5.35: The horn antenna as simulated in Feko, with a pec sphere in front [Paulus et
al. 2019].

where currents xecho(𝑓 ) are retrieved. Since we process the multi-frequency data
simultaneously, choosing a unique solution might be important. In the following,
we retrieve the computationally efficient and unique wf cs solution [Eibert and
T. B. Hansen 2017].

This has been done for the simulation setup shown in Fig. 5.35, which includes the
same simulation model of a horn antenna as discussed previously but now with a
pec sphere as an echo object in front. The fields of this echoic antenna configuration
have been simulated from 1.7 GHz to 5.7 GHz in steps of 50MHz, allowing a time
resolution of a standard Fourier transform of Δ𝑡 = 1/4GHz = 0.25 ns. This
corresponds to a “length resolution” in free space of about 0.075m. The sphere was
placed with a distance of about 0.3m to the aperture of the horn antenna, which
should give us the possibility to identify mutual interactions reliably.

In the following, we evaluate the ff for the reconstructed currents on the aut
xaut only. The reconstructed ff pattern of these currents is compared to the free-
space radiation of the horn antenna in Fig. 5.36, at the center frequency 3.7 GHz
of the considered bandwidth. The deviation between the two solutions goes up to
−27 dB in this scenario. If we want to get rid of the mutual coupling influence on
the aut and reconstruct the behavior in free space, this deviation is an error in the
solution.

In the next step, we calculate the time-domain signal for each 𝑛th rwg function

𝑥𝑛(𝑡) = ℱ −1{[x(𝑓 )]𝑛} (5.48)

attained by an inverse Fourier transform. The resulting time-domain signal—as
the summed absolute-value signal of all coefficients log10(∑𝑛 |𝑥𝑛(𝑡)|

2)—is given
in Fig. 5.37. The dominant main pulse has its maximum shortly after 1 ns. The
excitation of the currents on the sphere (the echo object) occurs at around 3 ns. The
dispersion of those currents on the scatterer stems from the fact that the detaching
wave coming from the aut takes some time to pass the sphere. Beginning at 4 ns,
we observe the arrival of backscattered fields at the aut. After 7 ns to 8 ns, we

187



Chapter 5 Surface-Source Reconstruction for Antenna Measurements

−90° −45° 0° 45° 90° 135° 180° 225° 270°

−60

−40

−20

0

polar angle 𝜗

no
rm

al
iz
ed

ff
|[𝒆
] 𝜗
|i
n
dB

Feko fiafta error

Fig. 5.36: Co-polar [𝒆]𝜗 component of the horn antenna ff in the comparison of free-space
reference solution and the reconstructed aut currents influenced by mutual cou-
pling in the 𝜑 = 0∘ cut at 3.7 GHz [Knapp et al. 2020].
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Fig. 5.37: Time-domain current signal on the aut and on the echo object, presented by
Knapp et al. [2019b] and Knapp et al. [2020].
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Fig. 5.38: Co-polar [𝒆]𝜗 component of the horn antenna ff in the comparison of free-space
solution and the time-gated aut currents in the 𝜑 = 0∘ cut at 3.7 GHz [Knapp
et al. 2020].

see another interaction with the echo object. With each interaction, the pulse
becomes more dispersed since the fields of the already broadened pulse traverse
the complete volume of the aut or echo object and are scattered at different places.
According to the distance of aut and echo object of 0.3m, a time gate was applied
to the aut currents 2.5 ns after the main peak. The resulting current time signal
log10(∑𝑛 |𝑥

aut
𝑛 (𝑡)|2) is also contained in Fig. 5.37.

After another Fourier transform for every time-gated signal 𝑥̂𝑛(𝑡) associated with
an rwg function on the aut

x̂aut(𝑓 ) = ℱ {𝑥̂𝑛(𝑡)} , (5.49)

we evaluate the ff of the processed coefficients of the aut currents x̂aut(𝑓 ) in
Fig. 5.38. The detrimental effect of mutual coupling is reduced and the agreement
to the free-space Feko solution has increased significantly with an maximum error
of below −40 dB.

In conclusion, echo sources and time-gating of the observed nf samples do not
suffice for a full echo suppression in many nf antenna measurement scenarios
where the measurement environment is not ideal free space or anechoic. In such
cases, augmenting a surface-source reconstruction technique with software-base
time-gating of the currents helps to improve the reconstruction quality and effec-
tively reduces the undesired impact of mutual coupling and multiple interactions
between echo objects and the aut.
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5.5 Phase Retrieval for Source Reconstruction Problems

Yet another challenging source reconstruction scenario is encountered when the
measurement hardware is restricted to measure only the magnitude |b| of the
radiated fields of an aut, where | ⋅ | operates element-wise. Then, the task of an
nffft is expanded by an initial step of phase retrieval, i.e., reconstructing the
complex observations for which the standard algorithms may be employed. In the
scope of source reconstruction techniques, this may be formulated as the non-linear
inverse problem

|A x| = |b| (5.50)

or including an unknown phase vector φ with the entries

[φ]𝑚 = e j𝜙𝑚 (5.51)

in addition to the unknown source coefficients x

A x = diag(φ)|b| s. t. |[φ]𝑚| = 1 for 𝑚 ∈ {1, 2, … ,𝑀} , (5.52)

where diag(⋅) creates a diagonal matrix from a vector (or a vector from the diagonal
of a matrix).

Besides the field of hf engineering, the inverse problem of phase retrieval comes
up in many other research fields [Isernia et al. 1996; Yaccarino and Rahmat-Samii
1999; Paulus et al. 2017b; Knapp et al. 2019c; Paulus et al. 2020; Kornprobst et
al. 2021d; Knapp et al. 2021; Paulus et al. 2021]: including optics [Gerchberg and
Saxton 1972; Shechtman et al. 2015], X-ray crystallography [Miao et al. 2012; Pfeiffer
et al. 2006], transmission electron microscopy [Coene et al. 1992; Faulkner and
Rodenburg 2004], coherent diffraction imaging [Guizar-Sicairos and Fienup 2008;
Candès et al. 2015b; Bacca et al. 2020], applied mathematics [Candès et al. 2013;
Candès et al. 2015a; Candès et al. 2015c; Netrapalli et al. 2015; Iwen et al. 2019;
Grohs et al. 2020; Cheng et al. 2021; Grohs and Rathmair 2021], and ptychography
[Iwen et al. 2016; Ramos et al. 2019; Sissouno et al. 2019].

For most practical scenarios, phase retrieval cannot be proven to work with
certainty and convergence analyses are mostly probabilistic. In order to improve
the convergence chances, additional information may be incorporated into the
phase retrieval problem—with or without renouncing pure magnitude-only mea-
surements. If feasible, the observation kernel can be changed (masking [Pohl et
al. 2014], exploiting multiple measurement distances [Isernia et al. 1996; Yaccarino
and Rahmat-Samii 1999; Schmidt and Rahmat-Samii 2009]), one may attempt to
measure spatial derviatives [Paulus and Eibert 2020], or one may enforce sparsity
[Jaganathan et al. 2017; Qiu and Palomar 2017; Pauwels et al. 2018; G. Wang et
al. 2018; Baechler et al. 2019]. Two approaches working with additional relative
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phase information are discussed in the following.
The implementation of the surface sources is done a bit different for the nu-

merical results in this section. While we have considered div-conforming basis
functions for the surface current densities so far (with mlfmm acceleration for
both the bem solver and the fiafta), we work with point sources in the following.
Hertzian dipoles are placed tangentially on the aut Huygens surface. Apart from
the excitation of evanescent modes close to the aut hull, this is an equivalent de-
scription to employing electric surface currents 𝒋 only; offering the same radiation
properties and also the same dofs as any other sensible surface description. The
implementation is sped up only by parallelization, possibly on a gpu [Paulus and
Eibert 2018].

5.5.1 Multi-Frequency Phase Retrieval and the Problem of Local
Minima

One way to incorporate additional information for antenna measurements is to
transmit a modulated signal during the nf measurement setup and acquire knowl-
edge of relative phases among the spectral components of the modulated signal at
all individual measurement locations [Paulus et al. 2020; Knapp et al. 2021]. The
implementation of a possible setup working with modulated signals was described
and put into practice by Knapp et al. [2021]. In the following, we focus on the
algorithmic challenges of phase retrieval.

Observation Model and Phase Reconstruction Algorithm

The observation model is extended in a way where we formulate the phase retrieval
problem at an 𝑖th frequency as

|A𝑖 x𝑖| = |b𝑖| . (5.53)

At each other considered 𝑘th of 𝐾 frequencies, we measure not only the magnitudes
|b𝑘| but also the relative phases with respect to the observation at the 𝑖th frequency.
This relation between the data of the 𝑘th and 𝑖th measurement frequency is collected
in a diagonal matrix with the entries

[U𝑘,𝑖]ℓℓ =
[|b𝑘|]ℓ
[|b𝑖|]ℓ

e j(𝜙𝑘,ℓ−𝜙𝑖,ℓ) . (5.54)

Knowing the complex data at the 𝑖th frequency, we can calculate the complex
observation data as b𝑘 = U𝑘,𝑖 b𝑖. Unfortunately, we do not know this complex data.
Hence, we employ an equivalent source model of the aut to represent b𝑖 as the
mvp A𝑖 x𝑖. The mapping matrices U𝑘,𝑖 allow us to enforce additional restrictions on
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the problem via the data at other frequencies. In order to ensure physically correct
solutions at those frequencies during the solution process, the projection matrices
PA,𝑘 = A𝑘 A

+
𝑘 are employed. Overall, the task is to solve the non-linear system of

equations

⎡
⎢
⎢
⎢
⎢
⎣

|b1|
⋮
|b𝑖|
⋮

|b𝐾|

⎤
⎥
⎥
⎥
⎥
⎦

=

|
|
|
|
|
|
|

⎡
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⋮
I

⋮
PA,𝐾 U𝐾,𝑖

⎤
⎥
⎥
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⎦

A𝑖 x𝑖

|
|
|
|
|
|
|

(5.55)

for x𝑖, the unknowns at one 𝑖th frequency which is picked arbitrarily. Subsequently,
the knowledge of the phase information allows us to solve the inverse problem at
all other frequencies.

Transformation Results for Measurement Data

For a real-world measurement setup, we consider spherical measurements of the
horn antenna shown in Fig. 5.23 taken with a DRH18 probe [RFspin 2021a]. The
nf was captured at four distances with radii 2.512m, 2.642m, 2.892m, and 3.092m
on a 1∘ grid. From this enormous amount of measurements, 20 000 samples were
picked on a regular grid, which is still a strong oversampling for this aut with
several thousand dofs. The equivalent source representation is implemented as
5000 tangential Hertzian dipoles on a conformal hull around the aut. Measure-
ments have been taken at various frequencies. In the following, we consider the
measurement data at 2.8 GHz, 3.0 GHz, and 3.2 GHz. The non-convex cost functions
were minimized with a solver based on the memory limited 𝐿-BFGS method [D. C.
Liu and Nocedal 1989; Nocedal and Wright 2006], by Broyden, Fletcher, Goldfarb,
and Shannon. For the initial guess of the single-frequency solutions, we employ a
spectral method by Candès et al. [2015c].

The ff of a magnitude-only nffft at 3.2 GHz is shown in Fig. 5.39(a). The phase
reconstruction does not work satisfactorily despite employing measurement data
on four surfaces with varying distance to the AUT.The ff error goes up to −10.3 dB.
For the multi-frequency approach, the single frequency solution at 2.8 GHz is solved
first and taken as a starting point for the multi-frequency solver. Then, the complex
problem for the reconstructed observations at 3.2 GHz is solved. The resulting ff
pattern is given in Fig. 5.39(b). The error is significantly smaller, with the maximum
error being −26.1 dB.

While this is a significant improvement, it still is clearly worse than a solution
with full phase information. The underlying issue is that the non-convex mini-
mization might get stuck in local minima. Not only is this problem getting worse
with increasing size—electrical size as well as number of dofs—, but also local
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Fig. 5.39: Reconstructed ff patterns in the 𝜑 = 0∘ cut at 3.2 GHz. (a) Magnitude-only ap-
proach. (b) Augmented by relative phase data at 2.8 GHz and 3.0 GHz. © 2021 ieee
[Knapp et al. 2021].

minima might not be identifiable with magnitude-only information even though
only the unique global minimum should exhibit a cost function value of zero in the
ideal noise-free case. Whenever the observations are contaminated, the oe gives a
limit to the rd, and local minima with cost function values below the error floor
become indistinguishable from the true solution. While the ff does not reveal such
information, this becomes evident when looking at achievable magnitude-only
and complex nf rds. The complex nf rd is, of course, not available in a true
phaseless measurement setup but can be used here to judge the reliability of the
algorithms. Since we have this possibility with the fully coherent measurement
data, for which we consider a suitable phaseless/phase-restricted portion for phase
retrieval, both kinds of nf rd are given in Fig. 5.40. Here, we analyze the impact of
the initial guess on the solution quality and, at the same time, observe how severe
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Fig. 5.40: Comparison of magnitude-only and complex nf rds for 20 000 measurements
on a regular grid and four distances. (a) Standard single-frequency approach.
(b) Multi-frequency minimization. © 2021 ieee [Knapp et al. 2021].

the problem of local minima is. 100 random initial guesses are considered for the
non-convex optimization. In the single-frequency case, we additionally consider
the initial guess according to the mentioned spectral method, which is marked with
a star. In the multi-frequency case, this single frequency solution employed as an
initial guess is highlighted by a star.

For the single-frequency approach, we observe that there is no way to know
whether a lower magnitude-only rd ‖|b|−|A x|‖ correlates with a better true complex
rd ‖b − A x‖, since lots of perhaps good, perhaps poor solutions with similar
magnitude-only nf rd exist. With the good initial guess provided by the mentioned
spectral method, the magnitude-only solver is also stuck in a local minimum.

An advantage of the multi-frequency method is found in the fact that the quality
of the solution can be judged to some extent by looking at the reconstruction
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deviation of the multi-frequency solution. We observe that local minima with
rather low magnitude deviation are still present, but most of the local minima
are shifted to much larger nf rd values. While this is a probabalistic statement
about the convergence, there is no reliable way to ensure convergence to the global
minimum—which is not achieved by any of the random 100 initial guesses.

Non-convex solvers for phase retrieval in antenna measurements struggle with
the convergence to the correct solution even when additional information is avail-
able, for instance sampling at multiple measurement distances and multi-frequency
data. Even though more information certainly helps for convergence, the non-
linear problem is hard to solve. Given the current capabilities of local optimization
algorithms, one should avoid these kind of problems, since local minima may
prevent to retrieve a reasonable solution at all—and this is not even noticeable with
magnitude-only data.

5.5.2 Linear Phase Retrieval for Partially Coherent Observations

As seen in the previous Subsection 5.5.1, phase retrieval is a non-convex optimiza-
tion problem in practice13 and the corresponding algorithms generally struggle
to find the true global solution—if it exists and is unique. Here, we consider the
special case of having coherently linked subsets of measurements which relaxes
the phase retrieval problem and allows to develop a linear phase reconstruction
algorithm which inherently avoids the problem of local minima.

To this end, we propose to use a special measurement equipment which allows
to observe (possibly small) sets of observations coherently. Such measurement
configurations have been already employed for nf antenna measurements with
multi-probe measurements by Costanzo et al. [2001], Costanzo and Di Massa
[2001], Costanzo et al. [2005], Costanzo and Di Massa [2008], Paulus et al. [2017a,
2017b, 2018], Tena-Sánchez et al. [2020], and Tena-Sánchez et al. [2021b] and with
multi-frequency measurements by Paulus et al. [2020] and Knapp et al. [2021].
Related measurement configurations are found for the stitching of holographic
images, which is relevant to antenna measurements [Junkin et al. 2000; Castaldi
and Pinto 2000; Laviada and Las-Heras 2013; Laviada Martinez et al. 2014; Arboleya
et al. 2015; Arboleya et al. 2018; Tena-Sánchez and Sierra-Castafier 2018; Berlt et
al. 2020] and optics [Gabor 1949; Leith and Upatnieks 1962; Barmherzig et al. 2019].
These two scenarios of a multi-probe and holographic antenna measurement setup

13. In theory, phase retrieval can be formulated as a linear problem once sufficient information
is available. However, practically speaking, this is close to impossible to achieve for antenna nf
measurements: It is unclear how to “design” the measurement in order to capture the necessary
information content, the linear formulation requires enormous oversampling of order 𝒪(𝑁 2

dof), and it
involves tremendous computational complexity of inverting a system of equations of the according size.
Each of these aspects alone causes us to consider phase retrieval as non-linear and non-convex in any
realistic implementation [Knapp et al. 2019c].

195



Chapter 5 Surface-Source Reconstruction for Antenna Measurements

aut

[|b|]𝑘

[|b|]𝑚

Δ𝜙𝑘,𝑚

(a)

aut

reference 2
𝐶 observations

reference 1
𝐶 observations

(b)

Fig. 5.41: Antenna measurement setups with partially coherent observations. (a) A multi-
probe approach, 𝐶 = 2. (b) A holographic approach with two coherent data sets,
𝑀 = 2 and 𝐶 is large. © 2021 ieee [Kornprobst et al. 2021d].

are depicted in Fig. 5.41. A third possibility is to measure multiple frequencies
coherently with one probe antenna, i.e., a slight variation of the setup in Fig. 5.41(a)
[Knapp et al. 2021]. As shown, we collect an additional phase measurement Δ𝜙𝑘,𝑚
as

[φ]𝑘/[φ]𝑚 = e j(𝜙𝑘−𝜙𝑚) = e jΔ𝜙𝑘,𝑚 (5.56)

between the 𝑘th and 𝑚th entry of the observation vector. In the case of multi-probe
systems, see Fig. 5.41(a), the phase retrieval task is harder since 𝐶 is typically
rather small, e.g., 𝐶 = 2 in the measurement systems proposed by Costanzo and
Di Massa [2001], Costanzo et al. [2001, 2005], Costanzo and Di Massa [2008], and
Paulus et al. [2017b]. Having such a measurement setup, localized and generally
disconnected “isles” of coherent observations are captured on the observation
surface 𝑎. This may be achieved with vector and scalar receivers. The particular
phase differences of interest are observed either directly by multi-channel receivers
with shared oscillator signals or via distinct magnitude observations in the form
of [|b|]𝑘, [|b|]𝑚, |[b]𝑘 + [b]𝑚|, |[b]𝑘 + j[b]𝑚|, which allows to numerically reconstruct
the phase differences as [Paulus et al. 2017b]

Δ𝜙𝑘,𝑚 = atan
|[b]𝑘 + [b]𝑚|2 − [|b|]2𝑘 − [|b|]2𝑚
|[b]𝑘 + j[b]𝑚|2 − [|b|]2𝑘 − [|b|]2𝑚

. (5.57)

Other sets of at least four independent linear combinations of [b]𝑘 and [b]𝑚 can
reconstruct the same phase difference. In the following, we abstract from the
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hardware implementation and assume the 𝐶 − 1 phase differences of each set of 𝐶
measurement samples to be known. Furthermore, we constrain the way of how
these observations are taken when studying the effect of such partially coherent
observations. A special observation probe shall be able to capture 𝐶 independent
observations coherently whenever it performs a measurement.14 For instance,
Fig. 5.41(a) shows a setup with fixed 𝐶 = 2.

Phase retrieval for partially coherent observations is certainly a less challenging
task than the general phase retrieval problem since additional but limited infor-
mation about relative phases is available. Nevertheless, the algorithms found in
literature, which tackle this particular problem, are limited to solving non-convex
non-linear minimization problems, which is known to be unreliable [Paulus et
al. 2017b; Knapp et al. 2017; Tena-Sánchez et al. 2020; Tena-Sánchez et al. 2021b; Ro-
dríguez Varela et al. 2021b; Tena-Sánchez et al. 2021a] (also for the case of classical
magnitude-only observations [Bangun et al. 2019; Moretta and Pierri 2019; Pierri
et al. 2020; Varela et al. 2021] and possibly with multiple measurement surfaces
[Varela et al. 2019; Fuchs et al. 2020; Rodríguez Varela et al. 2021a]) or they utilize
restrictive, unrealistic, or even practically unfeasible sampling strategies [Costanzo
et al. 2001; Pohl et al. 2017; Tena-Sánchez et al. 2020].

A Linear Phase Retrieval Algorithm

It is possible to incorporate the information in (5.56) about phase differences into
(5.52) as an additional sc. This yields different formulations of the same underlying
non-linear optimization problem, which all continue to struggle with the problem of
getting stuck in local minima [Kornprobst et al. 2021d]. For the linear formulation
presented in the following, Kornprobst et al. [2021d], Paulus et al. [2021], and Paulus
et al. [2022a] have proposed several formulations, which exhibit slightly different
constraints and benefits. The approach has also be generalized for measurement
signals an with unstable magnitude reference [Paulus et al. 2022b]. One of the linear
formulations for phase retrieval is discussed in detail [Kornprobst et al. 2021d].

In order to exploit the structured information of the partially coherent measure-
ments, we use the block-structured partially-coherent observation matrix

B = [B1 B2 … B𝑐 … B𝐶]
T , B ∈ ℂ𝐶𝑀×𝑀 . (5.58)

Here, 𝑀 denotes the number of measurement locations, at each of which 𝐶 mea-
surements are taken. The diagonal submatrices contain all available information:

14. While this restriction is not required to profit from the presented phase-retrieval algorithm, it
facilitates the notation and enables us to predict at which oversampling ratio phase retrieval becomes
reliable. In the more general case, 𝐶 may change rather arbitrarily from one observation to another but
all methods and insights presented here are still applicable [Paulus et al. 2021].
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They are built from the magnitude-only observations vector

|b| = [|bT1 | |bT2 | … |bT𝑐 | … |bT𝐶 |]
T
, (5.59)

where the 𝑐th subvector b𝑐 ∈ ℝ𝑀 contains the observed magnitudes of the 𝑐th probe
of the overall 𝐶 probes at all 𝑀 location. In this notation, |b| ∈ ℝ𝐶𝑀, b ∈ ℂ𝐶𝑀, and
A ∈ ℂ𝐶𝑀×𝑁. Furthermore, the diagonal submatrices B𝑐 contain the additionally
measured phase differences Δ𝜙𝑚+𝑐𝑀,𝑚 between the first and the 𝑐th subset of
measurements. This means that the first submatrix

B1 = diag(|b1|) (5.60)

only contains magnitudes, lacking a globally connected phase. The other submatri-
ces are defined via their entries on the diagonal

[B𝑐]𝑚𝑚 = [|b𝑐|]𝑚 e jΔ𝜙𝑚+𝑐𝑀,𝑚 (5.61)

and contain the relative phases to the observations of the first part of the obser-
vations in B1. Obviously, we have reduced the number of phase unknowns to 𝑀
from 𝐶𝑀 in φ. This can be formalized by introducing the reduced phase unknowns
vector ψ ∈ ℂ𝑀 in (5.52), yielding the partial-coherent phase retrieval problem with
both source coefficient unknowns and observation phase unknowns

A x = Bψ s. t. |[ψ]𝑚| = 1 for 𝑚 ∈ {1, 2, … ,𝑀} . (5.62)

After retrieving the phase ψ, we reconstruct the complex observations vector as

b = Bψ . (5.63)

We know that this reconstructed vector has to be generated by the aut source
model. The effect of these sources are evaluated by the mvpA x. With the projection
matrix PA = AA+, we are able to enforce an observation vector

b = PA b = PA Bψ (5.64)

matching the source model, even if the retrieved complex vector Bψ contains parts
which cannot be attributed to aut sources. So far, we have not yet revealed how
to retrieve ψ in the first place.

With the above considerations, we are able to calculate the difference between
any guess of a complex vector Bψ and its associated projection into imA, i.e., the
part of a guess representable by sources on 𝑠. We want minimize this difference to
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retrieve a reasonable solution, and aim to solve the system of equations

Rψ = [PA − I]Bψ = 0 , s. t. |[ψ]𝑚| = 1 for 𝑚 ∈ {1, 2, … ,𝑀} (5.65)

including a non-linear sc for ψ. If the submatrices B𝑐 and accordingly defined
submatrices A𝑐 fulfill certain requirements [Kornprobst et al. 2021d], we posit the
necessary but not sufficient condition

𝑀(𝐶 − 1) ≥ 𝑁 − 1 (5.66)

for a unique solution, which allows to drop the non-linear sc. Then, the phase
retrieval problem is solved once the unique vector ψ in the one-dimensional null-
space of R is retrieved.15 This can be either achieved by computing an svd of R or
by constraining the 𝑖th phase unknown (i.e., defining the irrelevant global phase)
and solving the inhomogeneous and invertible linear system

R⋆ψ = u𝐶𝑀+1 with R⋆ = [RT u𝑖]
T
, (5.67)

where u𝑖 refers to the 𝑖th unit vector. This offers the additional advantage that the
generalized inverse A+ can be approximated iteratively and, thus, the implementa-
tion can be done computationally much more efficiently.

After retrieving the phase vector, the complex observations

b = B diag(|ψ|)−1ψ , (5.68)

are reconstructed similarly to (5.63) but taking into account that the magnitude-one
constraint has been dropped. The standard source-reconstrunction problem may
be solved subsequently, and the quantities of interest such as the aut ff can be
calculated afterwards from the retrieved vector x.

Numerical Results

First, we consider Gaussian Random matrices A. For each realization, we randomly
pick a true solution ξ and a right-hand side b′ = A ξ . We evaluate the true rd

𝜖b = ‖A x − A ξ‖2/‖A ξ‖2 , (5.69)

where, however, the solution x is obtained for a noise-contaminated vector b with
the snr ‖b‖2/‖b′ − b‖2.16 We consider𝑁 = 3000 unknowns and 𝐶𝑀 = 2.1𝑁 = 6300

15. Suitable measures have to be taken in scenarios where the null-space of R is inherently not
one-dimensional, for instance for truncated measurement surfaces [Paulus et al. 2022a].
16. This is an alternative definition to (5.33), which fits better to the quantity 𝜖b. Eq. (5.33), on the

other hand, fits well to measurement scenarios for which the snr is known per measurement sample.
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Fig. 5.42: 100 random simulations for an snr analysis, 𝑁 = 3000, 𝐶𝑀 = 2.1𝑁. (a) Non-
linear solvers for phaseless and partially coherent data, kpke21 by Kornprobst
et al. [2021d] and pke17 by Paulus et al. [2017b]. (b) Linear solvers for partially
coherent data and also with full phase information © 2021 ieee [Kornprobst et
al. 2021d].

observations, which is above the success threshold (5.66) for any 𝐶 ≥ 2. Apart
from the linear phase retrieval algorithm, we consider several non-convex solvers.
The most basic one is of course a pure magnitude-only solver. Additionally, one
non-linear solver proposed by Kornprobst et al. [2021d] (kpke21) and another one
by Paulus et al. [2017b] (pke17). For all of these, the initial guess is computed with
a spectral method by Candès et al. [2015c].

For each of the snrs {102, 103, 104}, we have performed 100 Monte Carlo simu-
lations. The resulting rds 𝜖b are shown in Fig. 5.42. All non-convex solvers, see
Fig. 5.42(a), fail to converge reliably to the correct solution and get stuck in local
minima for some realizations of the inverse problem. The standard phaseless solver
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Fig. 5.43: Synthetic nf antenna measurement setup for capturing partially coherent obser-
vations with L-shaped multi-probe arrays on a closed spherical surface © 2021
ieee [Kornprobst et al. 2021d].

(a non-convex minimization of the magnitude-only cost functional) fails to retrieve
a good solution at all. The solver from pke17 achieves a “success rate” of just 65%
for the case 𝐶 = 2. The non-linear solvers from kpke21 fare better with 94.14%
success rate on average over all 𝐶 and snrs. In contrast, we do not observe such an
issue for the linear algorithms studied in Fig. 5.42(b), which all show a “success rate”
of 100%. Differences are only observed regarding the achievable rd: The solution
with full phase information to the standard complex inverse problem offers the
best accuracy and the best reliability. For the chosen scenario, we see an increasing
rd with decreasing 𝐶—which is somewhat expected since the phase information
content is reduced with decreasing 𝐶.

Eventually, we employ the linear phase retrieval in a (synthetic) nf antenna
measurement setup, which is depicted in Fig. 5.43. The equivalent-source sphere
enclosing the aut and a measurement sphere, exhibit diameters of 5𝜆 and 8𝜆, re-
spectively. As equivalent sources, 𝑁 = 1200 tangential Hertzian dipoles are utilized,
whose coefficients form the solution vector x and which are placed tangentially on
the smallest (orange) sphere enclosing the horn antenna. An L-shaped probe array
(consisting of Hertzian dipoles indicated by red arrows in Fig. 5.43) is placed at each
the measurement position, whose center is denoted by a green dot. The horizontal
as well as the vertical spacing between the probe-array elements is 1𝜆. This array
is used to acquire magnitude and local phase difference information with 𝐶 = 2
and 𝐶 = 3 at all sample locations visualized by blue diamonds. For the case 𝐶 = 2,
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Fig. 5.44: Analysis for the rd of the inverse problem solved for a synthetic nf measurement
setup, including the non-linear solver pke17 by Paulus et al. [2017b]. (a) Using
the two diagonal elements of the L-shaped probe array, 𝐶 = 2. (b) Using the full
L-shaped probe array, 𝐶 = 3. © 2021 ieee [Kornprobst et al. 2021d].

we pick the measurement samples of the two diagonal probe elements only.
The obtainable rds for the two phase retrieval formulations from literature

(non-convex minimization for phaseless data and pke17) as well as the proposed
linear algorithm are shown in Fig. 5.44. For every ratio of 𝐶𝑀/𝑁, 50 random
orientations of the aut were simulated, resulting in different measurement vectors.
All results were obtained for an snr of 103. The magnitude-only approach fails
completely to retrieve any solution close to the global solution. This problem
persists if multiple measurement distances are considered, which is one of the most
famous approaches to the phase retrieval problem [Gerchberg and Saxton 1972;
Isernia et al. 1996; Yaccarino and Rahmat-Samii 1999; Schmidt and Rahmat-Samii
2009; Varela et al. 2019; Fuchs et al. 2020]. The non-convex optimization from pke17

202



5.5 Phase Retrieval for Source Reconstruction Problems

also mostly fails to retrieve a good solution and there is certainly no guarantee for
overcoming the problem of local minima. Looking at the proposed linear phase
retrieval algorithm, we observe a sharp transition from complete failure at about
𝐶𝑀/𝑁 = 2 for 𝐶 = 2 and 𝐶𝑀/𝑁 = 1.5 for 𝐶 = 3. This matches the condition
given in (5.66). Notably, the non-linear solver from pke17 achieves better results
below this threshold, where the linear approach is doomed to fail—albeit with an
unacceptable convergence rate.

Looking at the behavior of the linear phase retrieval algorithm above the success
threshold, we further observe that the approach with the L-shaped probe and
𝐶 = gives a systematically lower rd. The root cause is found in the behavior
of electromagnetic fields. Observations have to be made on a two-dimensional
surface 𝑎which is closed around the aut in the ideal case. In terms of an orthogonal
expansion, there are always two independent directions on a two-dimensional
surface. Connections between the observed fields have to be made accordingly
in at least two independent directions, just as it was implemented with the L-
shaped probe array. However, there is one more aspect to consider. Radiated
electromagnetic fields may exhibit two independent polarizations. Both need to
be captured and coherently linked for each (or at least most) set of measurement
samples. Without infinite measurement accuracy or without matching polarizations
between probe and aut as done in Fig. 5.43, Paulus et al. [2022a] and Kornprobst
et al. [2022] have advised to use at least four probe antennas with individually
differing polarizations. Working with fewer antennas (say three) is only reasonable
if they are dual-polarized and the polarization may be switched from sample to
sample. None of these two requirements have been met in practical multi-probe
measurement setups so far [Costanzo et al. 2001; Costanzo and Di Massa 2001;
Costanzo et al. 2005; Costanzo and Di Massa 2008; Paulus et al. 2017a, 2017b;
Tena-Sánchez et al. 2020; Tena-Sánchez et al. 2021b; Rodríguez Varela et al. 2021b;
Tena-Sánchez et al. 2021a] but they are certainly feasible in future work.

With the presented linearized phase retrieval algorithm, accurate and reliable
phase reconstruction for partially coherent observations is possible. There are two
major advantages over any other state-of-the-art phase retrieval algorithms for nf
antenna measurements. The solution process for a linear system of equations is
reliable as opposed to previous non-convex algorithms and tedious optimization
procedures. Additionally, the solution quality and the success of the algorithm
can be judged by looking into the null space of the linear system of equations—a
great benefit over non-linear optimization methods, where noise may conceal local
minima as false solutions which prevents a judgment of the solution quality. Under
ideal, noise-free conditions, the required sampling density of the proposed
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algorithm is less than two times the number of unknowns.17 Noise and other
observation errors increase this value slightly. This seems acceptable given the
benefits of the method.

17. The number of required measurement locations 𝑀 remains the same or even decreases, but 𝐶
partially coherent measurements are necessary at each location. The total number 𝑀𝐶 of necessary
measurements is, under ideal conditions, in the range of 𝑁 < 𝑀𝐶 < 2𝑁.
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Chapter 6
Contributions & Conclusion

“I don’t think it was for reading. It was for having written.”
— Terry Pratchett, A Collegiate Casting-Out of Devilish Devices

Surface source representations have been employed in this thesis for han-
dling electromagnetic scattering, radiation, and source reconstruction problems.

The analyzed aspects include the achievable accuracy, the well-posedness (at least
partially by avoiding false solutions & enforcing uniqueness), the well-conditioning,
as well as the computational effort.

The theoretical foundations for these topics are closely related. In Chapter 2,
the continuous description of the involved ies has been derived based upon the
time-harmonic Maxwell’s equations. Chapter 3 gave an overview over the mom
and the classical rwg discretizations of the efie, the mfie, and the cfie.

Simulation of PEC Scattering and Radiation Scenarios

Boundary ies for pec bodies were the core theme of Chapter 4. The tackledchallenge
was in particular the classical mfie discretized with div-conforming functions
which shows severe inaccuracies both at lfs and hfs. The first part was focused
on the lo/rwg case, for which two rwg-based discretization strategies have been
presented. The proposed wf discretization scheme for the identity operator inside
the wf-mfie improves the accuracy for hf scattering and radiation problems
significantly and may also be employed inside the interior-resonance free and well-
posed wf-cfie, while the conditioning is almost not compromised as compared to
the standard rwg cfie. The proposed csie, based on a pure rwg discretization and
a wf implementation of the cs condition, achieves an even better accuracy, which
reaches efie levels for smooth objects and comes close to it when the geometry
exhibits sharp edges. It is also able to avoid the problem of interior resonances.
While the conditioning is worse than for the classical rwg cfie, the csie and the
better-conditioned wf-cfie are mostly on par once a cf/cs weighting targeting
a pre-defined accuracy is considered. Conformal mixed discretization schemes
have also been considered as comparison algorithms. The cfie with a mixed
discretization—using an mfie with rwg basis and bc testing functions—shows
an accuracy comparable to that of the rwg csie. While the conditioning is good
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(almost as good as for the classical cfie), the extra computational effort of working
with the barycentric refinement of the mesh reduces this advantageous property so
far that the time to solution may as well be longer. The observations for a mixed-
discretization csie with rwg functions for the electric currents and bc functions
for the magnetic currents are fairly similar to the ones for the mixed-discretization
cfie. Overall, the proposed rwg-only discretization schemes offer decent accuracy
improvements at a reasonable conditioning whenever the barycentric refinement
of the mesh is undesirable and the radiation or scattering scenario is posed as an
hf problem. The rwg csie works better for challenging geometries, while the
wf-cfie exhibits the advantage of working with Love currents.

Furthermore, the discretization schemes for the csie and the wf-cfie have
been extended for the use with hierarchical ho functions. It was demonstrated
that the inaccuracy of the mfie discretized with div-conforming functions in a
Galerkin approach persists for ho functions and that extra measures need to be
taken. However, the impact of the rwg anisotropy is lower once ho functions are
considered and the positive impact of the wf schemes on the accuracy is, hence,
reduced—and more sensitive to parameter choices inside the wf-cfie. Both the ho
csie and the ho wf-cfie have been demonstrated to be interior-resonance free
and to work well for electrically larger scattering scenarios.

Source Reconstruction for Antenna Measurements

The embracive topic of Chapter 5 was surface-source reconstruction for (nf) an-
tenna measurements and subsequent nfffts, where three distinct problems have
been discussed.

First, the linear inverse equivalent surface-source problem arising from complex
time-harmonic field observations has been analyzed in detail. In general, this
problem is ill-posed. Different approaches to the necessary regularization and
their impact on accuracy and conditioning have been investigated. This concerns,
on a superordinate level, the choice of the nee over the nre, and on a more
detailed level, the choice of a possibly unique and well-conditioned equivalent
source representation. The nee combined with unconstrained jm or unique and
computationally cheap cs currents is found to be the most universal approach.
Other approaches have the disadvantages of an unclear stopping criterion, worse
conditioning, or increased computational effort. The achievable accuracy of all
surface-source representations is similar since it is dominated by the measurement
configuration and observation errors. However, one critical choice concerns the
reconstruction surface. Enlarging the Huygens surface compared to a close to
convex hull is detrimental to accuracy. This happens inherentlywith a sh expansion,
which is hence less accurate than surface-source based approaches.

While the impact of the choice of the source representation and the choice of
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the basis and testing functions were important for the ies considered in the first
part, such an effect is not observed when the source and observation surfaces are
separated, as it is the case for antenna measurements. It remains important though
to employ both radiation operators (e.g., of the electric field of both electric and
magnetic currents) in order to achieve the best possible conditioning of the inverse
problem.

Second, echo suppression is of concern whenever the measurement environment
is not fully under control or when external circumstances dictate an echoic environ-
ment. Echo source localization was demonstrated to work much better than simple
spatial filtering, and incorporating additional knowledge about the behavior of
echo objects helps to reduce the required number of measurements and to increase
accuracy since the dofs which have to be measured are reduced. Even with source
localization, multiple interactions between the aut and scatterers in close vicinity
cause a changed current distribution on the aut, so-called mutual coupling. It was
proposed to solve this problem with broadband time-harmonic measurements and
software time-gating of the reconstructed equivalent currents. Hence, the accuracy
of the equivalent-current echo suppression methods is further increased.

Third, phase retrieval is a particularly challenging task where only magnitudes of
the aut field are observable. The state of the art approach to this inverse problem
with non-convex minimization is unreliable. Even with additional information
from multiple surfaces and an proposed approach incorporating relative phase
information from multiple frequencies, local minima may prevent retrieving the
true solution to the phase retrieval problem. Moreover, local minima become false
solutions in the presence of observation errors: They are not identifiable when
working with magnitude-only data. Overall, non-linear phase retrieval with local
minimization does not and cannot work reliably for nf antenna measurements
in the current non-linear formulation. In order to solve this problem, a linearized
phase retrieval algorithm was presented, which augments the magnitude-only
data with partially coherent observations, i.e., multi-frequency data, multi-antenna
probes, or holographic measurement systems. This approach leverages a projection
into the space of physically possible solutions, which offers a promising way
forward for phaseless source reconstruction techniques. All involved operations
are inherently linear and are thus able to circumvent at least some or even all
of the problems associated with classical phase retrieval. Thus, reliable phase
retrieval becomes possible. It remains to be seen whether such an approach can be
transferred to magnitude-only measurements without relative phase information.
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Glossary

Notation
A A matrix in ℂ(⋅)×(⋅); bold, italic and sans-serif

e A mathematical constant, roman and serif

ℎ(𝑥) A scalar function with a scalar argument, font-style and -weight accordingly

𝓛 A dyadic operator in ℂ3; bold, italic and serif

𝑥 A scalar quantity, italic and serif

𝒙 A “physical” vector in ℂ3; bold, italic and serif

‖𝒙‖ The magnitude (ℓ2-norm) of a “physical” or “linear algebra” vector

x A “linear algebra” “column” vector in ℂ(⋅); bold, italic and sans-serif

[x](⋅) (⋅)th entry or component of the vector x or of a matrix

|x| Element-wise absolute value operator, here applied to a “linear algebra” vector

Physical Quantities and Mathematical Symbols
𝑎 Observation surface; may coincide with 𝑠

𝒂 Magnetic vector potential, [𝒂] = V

𝜶̃ Dual curl-conforming rotated bc functions

𝜶 Curl-conforming basis functions, rotated versions of rwg or ho functions

A Forward operator of an inverse (surface) source problem

A−1 Inverse of a matrix

A+ Generalized inverse or Moore-Penrose pseudoinverse of a matrix

̃𝜷 Dual div-conforming bc functions

𝜷 Div-conforming basis functions, rwg or ho
b Generic right-hand side vector

𝒃 Magnetic flux density, [𝒃] = V sm−2

𝐶(𝜗 , 𝜑) Antenna radiation pattern

𝑐 Speed of light in a medium, [𝑐] = ms−1
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Physical Quantities and Mathematical Symbols

𝑐0 Speed of light in free space

𝜒 Weighting factor for the cfie and csie with 0 ≤ 𝜒 ≤ 1

curl 𝒙 Curl of a vector 𝒙; also ∇ × 𝒙

𝐷(𝜗 , 𝜑) Directivity of an antenna

δ(⋅) Dirac delta distribution with [δ(⋅)] = [⋅]−1

div 𝒙 Divergence of a vector 𝒙; also ∇ ∙ 𝒙

𝒅 Electric displacement field, [𝒅] = A sm−2

e𝒘 Tested electric field vector

e Euler’s number

𝜖 Relative error; maximum, average, or norm of 𝝐

𝝐 Relative error of a vector quantity

𝜖oe Relative (norm of) observation error

𝜖rd Relative nf rd of a source reconstruction

𝜀 Permittivity, [𝜀] = A sV−1 m−1

𝜂 Wave impedance of a homogeneous medium, [𝜂] = Ω

𝜂𝑠 Normalized surface wave impedance

𝒆 Electric field, [𝒆] = Vm−1

𝒆𝑠 Scattered or radiated electric field (equivalent sources on 𝑠)

𝒆𝑣 Incident electric field (sources in 𝑣)

𝑓 Frequency variable, [𝑓 ] = s−1

𝒇 Electric vector potential, [𝒇 ] = V

𝐺(𝜗 , 𝜑) Antenna gain

𝑔(𝒓, 𝒓′) Scalar Green’s function

𝛾 Weighting factor of wf identity scheme

G𝒘,𝒗 (Gram) matrix for 𝓘 operator discretized with basis 𝒗𝑚 and trial functions 𝒘𝑚

grad 𝑔 Gradient of a scalar function 𝑔; also ∇𝑔

ℎ The average edge length of a mesh

𝑯−1/2(curl𝑠, 𝑠) Curl-conforming Sobolev space on 𝑠

𝑯−1/2(div𝑠, 𝑠) Div-conforming Sobolev space on 𝑠

h𝒘 Tested magnetic field vector

𝒉 Magnetic field, [𝒉] = Vm−1

𝒉𝑠 Scattered or radiated magnetic field (equivalent sources on 𝑠)

𝒉𝑣 Incident magnetic field (sources in 𝑣)
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i Electric current unknowns vector

Im{𝑧} Imaginary part of a complex quantity

𝓘 Identity operator

j Imaginary unit with j2 = −1

𝒋 Electric surface current density, [𝒎] = Vm−1

𝒋v Electric volume current density, [𝒎] = Vm−2

𝑘 Wavenumber ‖𝒌‖, [𝑘] = m−1

𝜅e Electrical conductivity, [𝜅e] = AV−1 m−1

𝜅m Magnetic conductivity, [𝜅m] = VA−1 m−1

K𝒘,𝒗 Matrix for 𝓚 operator discretized with basis 𝒗𝑚 and trial functions 𝒘𝑚

𝓚 Magnetic field integral operator for electric currents

𝒌 Wavevector

𝜆 Wavelength 𝑐/𝑓 = 2π/𝑘

𝜆𝑖 Barycentric coordinates on a triangle, 𝜆1 + 𝜆2 + 𝜆3 = 1

L Love current sc or cp matrix

𝑀 Number of observations

𝑚 Running index for observations

𝜇 Permeability, [𝜇] = V sA−1 m−1

𝒎 Magnetic surface current density, [𝒎] = Vm−1

𝒎v Magnetic volume current density, [𝒎] = Vm−2

𝑁 Number of rwg/basis functions
𝑛 Running index for unknowns

∇ Nabla-operator, containing component-wise derivatives

𝑁dof Number of dofs
𝑁it Number of iterative solver iterations to convergence

𝜈 Weighting factor of wf identity scheme associated with edges in the geometry

𝑁un Number of unknowns

𝒏 Outward unit normal vector on a surface

𝜔 Angular frequency 2π𝑓

𝑝 Polynomial order of basis functions

𝜑 The azimuthal angle in a spherical coordinate system

𝜙 Electric scalar potential

P(⋅) Matrix for the projection into the range indicated by the subscript
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𝒑 Electric field polarization of a plane wave

𝑟 The radial distance in a spherical coordinate system, [𝑟] = m

𝒓′ Source coordinate vector

Re{𝑧} Real part of a complex quantity

r Iterative solver residual vector

𝜚e Electric surface charge density, [𝜚e] = A sm−2

𝜚e,v Electric volume charge density, [𝜚e,v] = A sm−3

𝜚m Magnetic surface charge density, [𝜚m] = V sm−2

𝜚m,v Magnetic volume charge density, [𝜚m,v] = V sm−3

𝑟th Iterative solver stopping threshold

𝒓 Position in three-dimensional space; mostly employed for the observation coordinate

𝑠 Source or Huygens surface, 𝑠 = ∂𝑣i
𝜎(𝜗 , 𝜑) Bi-static radar cross section, , [𝜎] = m2

𝜍𝑖 The 𝑖th sv of an svd
𝒔 Poynting vector, [𝒔] = VAm−2

𝑡 Time variable (time convention e j𝜔𝑡), [𝑡] = s

𝜗 The polar angle in a spherical coordinate system

T𝒘,𝒗 Matrix for 𝓣 operator discretized with basis 𝒗𝑚 and trial functions 𝒘𝑚

𝓣 Electric field integral operator for electric currents

𝜐 Weighting factor to shift the Tikhonov sc scaling 𝜉 above the oe
𝒖(⋅) Unit normal vector in the direction of the subscript

𝑣 Exterior volume

𝑣i Source region

v Magnetic current unknowns vector

𝒗 Generic basis function

𝒘 Generic trial function

𝜉 Weighting factor of Tikhonov regularization term

x Generic unknowns vector

𝜁 Antenna efficiency, radiation or total

𝑧∗ Complex conjugate of a complex quantity
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Abbreviations

aca Adaptive cross-approximation 173
ai Aproximate inverse 58–60
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beast Boundary element analysis and simulation toolkit 47, 53, 100, 107, 108
bem Boundary element method 14, 191
bim Boundary integral method 14
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cf Combined field 22, 50, 88, 90, 95, 100, 105, 106, 126, 144, 205
cfie Combined field integral equation 22–24, 31, 44, 45, 47–50, 56, 89–91, 93, 94, 96, 97,
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cg Conjugate gradient method 58–60, 74, 88, 91, 93, 136
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77, 79, 81–84, 89–91, 93–97, 100, 101, 103, 105–114, 124, 126–129, 205, 206, 210

dof Degree of freedom 26–28, 46, 129, 134, 135, 174, 175, 179, 182, 183, 191, 192, 207, 211
dsh Distributed spherical harmonics 135, 149, 150, 152, 155, 160, 162, 163, 165–167

efie Electric field integral equation 18, 19, 21–25, 31, 32, 34, 35, 37, 39–44, 46–51, 53, 55,
56, 58, 61, 65, 70–75, 77, 79–82, 84–91, 94, 95, 97–101, 103, 105–108, 110–112, 114,
115, 119, 124, 126–129, 142, 144, 146, 148, 149, 155, 172, 205

fe-bi Finite-element boundary-integral 17, 111, 129
fem Finite element method 2, 31, 34, 39
ff Far field 15, 17, 26, 44, 52, 65–67, 70–74, 76–86, 88, 97–99, 102–105, 108, 109, 114,

121, 123, 125, 127, 129, 151, 155–158, 160, 162, 163, 165–167, 170, 178, 179, 183–189,
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fiafta Fast irregular antenna field transformation algorithm 133, 147, 159, 168, 191

gmres Generalized minimum residual method 56, 74, 75, 79, 83, 86, 89–91, 94, 96–100,
102–105, 107, 110, 124, 126, 136, 156, 166, 173, 179

hf High-frequency 41, 44–48, 61, 69, 82, 85, 97, 106, 111, 112, 124, 170, 190, 205, 206
ho Higher-order 39, 40, 46, 49, 50, 53, 71, 79, 81, 91, 98, 99, 102, 105, 106, 111–124,

126–129, 182, 206, 209

ibc Impedance boundary condition 10, 13, 23, 47, 50, 52, 54, 112
ie Integral equation 3, 14, 17, 18, 20, 24, 31, 48, 49, 52, 58, 61, 75, 79, 84, 85, 89–97, 101,
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lf Low-frequency 40, 44, 45, 47, 48, 69, 73, 82–85, 111, 205
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mfie Magnetic field integral equation 3, 19–22, 24, 31, 34, 41–53, 55, 56, 61, 62, 64, 69–75,
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mlfmm Multi-level fast multipole method 2, 3, 89–91, 94, 96, 97, 103, 105, 109, 135, 147, 150,
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mom Method of moments 3, 14, 31–33, 37, 97, 131, 176, 179–185, 205
mvp Matrix-vector product 3, 59, 60, 75, 91, 93, 94, 96, 101, 103, 108, 112, 161, 172, 177,

191, 198

ne Normal system of equations 136, 137, 152, 155, 160, 173
nee Normal-error system of equations 137, 141, 143, 144, 150–153, 155, 158, 160–167,
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