
Technische Universität München
TUM School of Computation, Information and Technology

Fast and Flexible Software-based
Packet Processing Systems

Paul M. Emmerich

Vollständiger Abdruck der von der TUM School of Computation, Information and Tech-
nology der Technischen Universität München zur Erlangung des akademischen Grades
eines

Doktors der Naturwissenschaften

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Pramod Bhatotia

Prüfer der Dissertation:

1. Prof. Dr.-Ing. Georg Carle

2. Prof. Andrew W. Moore, Ph.D.

Die Dissertation wurde am 01.06.2022 bei der Technischen Universität München ein-
gereicht und durch die TUM School of Computation, Information and Technology am
31.10.2022 angenommen.

Abstract

Packet processing systems like routers or firewalls at the core of Internet infrastructure
are currently special-purpose hardware devices. There is an ongoing revolution that is
invisible to outside observers: More and more functionality is moving from hardware
to software. This yields advantages related to flexibility and costs: Anything can be
deployed on inexpensive commodity hardware and adding new functionality merely
requires a software update. However, the performance characteristics of software are
less well-understood than those of the hardware boxes that are being replaced.

Our thesis is that we can utilize high-level programming languages to build fast and
flexible packet processing systems which can replace hardware with software in many
scenarios. This dissertation is a walk through the stack of a software packet processing
system, investigating performance and flexibility at every layer. We present ixy, our own
network driver which we implement in a total of ten different programming languages:
C, Rust, Go, C#, Java, OCaml, Haskell, Swift, JavaScript, and Python. We identify
key components and parameters for improving throughput and reducing latency: batch
processing of 32 packets per batch and DMA ring buffer sizes of 512 are the sweet
spot. Our fastest implementation is in C and achieves a packet forwarding rate of 27.4
million minimum-sized packets per second (18.4 Gbit/s) on a single 3.3GHz CPU core.
Rust achieves 98% of C’s throughput at the same worst-case latency of 22 µs (median
5 µs) while at the same time guaranteeing memory safety in 87% of the source code.
The other languages fare worse and should not be the first choice for building a packet
processing system.

Testing software-based packet processing systems is also more difficult compared to pure
hardware systems. More performance-affecting effects need to be taken into account and
the additional complexity enabled by moving to software means that the testing device
and methodology also needs to be more complex. Traditional hardware-based packet
generators can also be replaced with pure software variants. We present MoonGen, a
software packet generator written in the high-level programming language Lua. Preci-
sion is a challenge for software, especially for packet generators attempting to measure
latency. MoonGen’s timestamping achieves a precision of ±12.8 ns by utilizing hardware
features available on commodity NICs, effectively making it a hybrid system combining
the best of the hardware and software worlds. A second problem is precisely controlling
when a packet is sent. Evaluations using the NetFPGA platform show a mean squared
error of 1.2µs for a hardware-assisted approach and 20.6µs for a pure software imple-
mentation. The best prior software-based packet generator we evaluated only achieved
a mean squared error of 59µs. MoonGen has become the de-facto standard packet
generator used in academia for evaluating software-based packet processing systems.

Zusammenfassung

Paketverarbeitungssysteme wie Router oder Firewalls, die das Herzstück der Internet-
Infrastruktur bilden, basieren derzeit auf spezialisierten Hardware-Geräten. In einer
für Beobachter unsichtbaren Transformation werden immer mehr dieser Funktionen in
reine Software verlagert. Daraus ergeben sich Vorteile in Bezug auf Flexibilität und
Kosten: Alles kann auf preiswerter Standardhardware bereitgestellt werden, und das
Hinzufügen neuer Funktionen erfordert lediglich ein Software-Update. Allerdings sind
die Leistungsmerkmale von Software weniger gut erforscht als die der Hardware, die hier
ersetzt wird.

Unsere These ist, dass wir mit Hilfe von Hochsprachen schnelle und flexible Paket-
verarbeitungssysteme bauen können, die in vielen Szenarien Hardware durch Software
ersetzen können. Diese Dissertation geht systematisch durch den Stack eines Software-
Paketverarbeitungssystems, indem Leistung und Flexibilität auf jeder Ebene untersucht
wird. Wir stellen ixy vor, unseren eigenen Netzwerktreiber, den wir in insgesamt zehn
verschiedenen Programmiersprachen implementieren: C, Rust, Go, C#, Java, OCaml,
Haskell, Swift, JavaScript und Python. Wir identifizieren Schlüsselkomponenten und
-parameter zur Verbesserung des Durchsatzes und zur Verringerung der Latenz: Batch-
verarbeitung von 32 Paketen pro Batch und DMA-Ringpuffergrößen von 512 stellen sich
als ideal heraus. Unsere schnellste Implementierung ist in C geschrieben und erreicht auf
einem einzelnen 3,3 GHz CPU-Kern eine Paketweiterleitungsrate von 27,4 Millionen Pa-
keten pro Sekunde, bzw. 18,4 Gbit/s bei minimaler (64Byte) Paketgröße. Rust erreicht
98% des Durchsatzes von C bei der gleichen Worst-Case-Latenz von 22µs (Median 5 µs)
und garantiert gleichzeitig Speichersicherheit in 87% des Quellcodes. Die anderen Spra-
chen schneiden schlechter ab und sollten nicht die erste Wahl für die Implementierung
eines Paketverarbeitungssystems sein.

Auch das Testen softwarebasierter Paketverarbeitungssysteme ist im Vergleich zu reinen
Hardwaresystemen komplexer. Es müssen mehr leistungsbeeinflussende Effekte berück-
sichtigt werden, und die zusätzliche Komplexität, die durch die Umstellung auf Software
ermöglicht wird, bedeutet, dass auch das Testgerät und die Methodik komplexer sein
müssen. Traditionelle hardwarebasierte Paketgeneratoren können auch durch reine Soft-
warevarianten ersetzt werden. Wir stellen MoonGen vor, einen Software-Paketgenerator,
der in der Hochsprache Lua geschrieben ist. Durch die Verlagerung der Paketerzeugung
in eine Skriptsprache auf der Grundlage eines Userspace Netzwerktreibers können wir
die Herausforderungen überwinden, mit denen frühere Generationen von softwareba-
sierten Paketgeneratoren konfrontiert waren. Präzision ist eine solche Herausforderung,
insbesondere für Paketgeneratoren die Paketlaufzeiten messen. Das Timestamping von
MoonGen erreicht eine Genauigkeit von 12,8 Nanosekunden, indem sie Hardwarefunk-

tionen von handelsüblichen Netzwerkkarten nutzt. MoonGen ist ein hybrides System,
das das Beste aus der Hardware- und der Software-Welt vereint. Ein zweites Problem
ist die genaue Kontrolle darüber wann ein Paket versendet wird. Auswertungen mit der
NetFPGA-Plattform zeigen einen mittleren quadratischen Fehler von 1,2µs für unse-
ren Hardware-gestützten Ansatz und 20,6µs für unsere reine Software-Implementierung.
Der beste von uns untersuchte softwarebasierte Paketgenerator in der Literatur erreich-
te nur einen mittleren quadratischen Fehler von 59 µs. MoonGen hat sich zum De-
Facto-Standard für die Evaluierung von softwarebasierten Paketverarbeitungssystemen
im akademischen Bereich entwickelt.

Contents

I Introduction 1

1 Introduction 3
1.1 Motivation . 3
1.2 Research Questions . 5
1.3 Structure of this Dissertation . 6
1.4 Key Contributions . 7

1.4.1 The ixy Network Driver . 7
1.4.2 Network Drivers in High-Level Languages 7
1.4.3 The MoonGen Packet Generator 8
1.4.4 Hardware-based Precision Evaluation of Packet Generators . . . 8

2 Background 9
2.1 Hardware Architecture of Software-based Packet Processing System . . 9
2.2 Important Performance Numbers . 11

2.2.1 Performance Targets . 12
2.3 Benchmarking methodology and packet generators 13
2.4 Test Setups Used in this Dissertation . 13

2.4.1 Latency Measurement Setups . 14
2.4.2 System Configuration . 15

2.5 User Space Packet Processing . 16
2.6 Network Function Virtualization . 17
2.7 Evolution of Networking Hardware . 18

2.7.1 Another Future: Offloading More to the NIC 19

II Fast and Flexible User Space Packet Processing 21

3 Fast User Space Network Drivers 23

3.1 Introduction and Motivation . 24
3.2 Background and Related Work . 24
3.3 Design . 27

3.3.1 Architecture . 27
3.3.2 NIC Selection . 27
3.3.3 User Space Drivers in Linux . 28
3.3.4 Memory Management . 30
3.3.5 Security Considerations . 32

3.4 ixgbe Implementation . 32
3.4.1 NIC Ring API . 32

3.5 Performance Evaluation . 35
3.5.1 Methodology . 36
3.5.2 Throughput . 36
3.5.3 Batching . 37
3.5.4 Memory Prefetching . 38
3.5.5 Interrupts . 39
3.5.6 Profiling . 40
3.5.7 Queue Sizes . 41
3.5.8 Page Sizes without IOMMU . 43
3.5.9 Page Sizes and IOMMU Overhead 44
3.5.10 NUMA Considerations . 45

3.6 Conclusions . 46
3.7 Author’s Contributions . 47

4 High-Level Languages for Network Drivers 49
4.1 Introduction . 50
4.2 Background and Related work . 51
4.3 Motivation . 52

4.3.1 Growing Complexity of Drivers 53
4.3.2 Security Bugs in Linux . 54
4.3.3 Memory Safety Bugs in Windows 54
4.3.4 The Rise of DPDK . 55
4.3.5 Languages Used for DPDK Applications 55
4.3.6 User Study: Mistakes in DPDK Applications Written in C . . . 56
4.3.7 Summary . 57

4.4 Implementations in High-Level Languages 57
4.4.1 Architecture . 57
4.4.2 Challenges for High-Level Languages 58

II

4.4.3 Rust Implementation . 59
4.4.4 Go Implementation . 61
4.4.5 C# Implementation . 61
4.4.6 Java Implementation . 62
4.4.7 OCaml Implementation . 62
4.4.8 Haskell Implementation . 63
4.4.9 Swift Implementation . 63
4.4.10 JavaScript Implementation . 64
4.4.11 Python Implementation . 64

4.5 Evaluation . 65
4.6 Performance . 66

4.6.1 Test Setup . 67
4.6.2 Effect of Batch Sizes . 67
4.6.3 The Cost of Safety Features in Rust 70
4.6.4 Comparison with Other Language Benchmarks 72

4.7 Latency . 73
4.7.1 Test Setup . 73
4.7.2 Tail Latencies . 74

4.8 Conclusion . 77
4.9 Author’s Contributions . 79

III Flexible Testing of Network Devices 81

5 MoonGen: A fast and flexible packet generator 83
5.1 Introduction . 84
5.2 Related Work . 85
5.3 Implementation . 86

5.3.1 Packet Processing with DPDK 86
5.3.2 Scripting with LuaJIT . 87
5.3.3 Hardware Architecture . 88
5.3.4 Software Architecture . 88

5.4 Scripting API . 89
5.4.1 Initialization . 90
5.4.2 Packet Generation Loop . 91
5.4.3 Packet Counter . 92

5.5 Performance . 93
5.5.1 Test Methodology . 94
5.5.2 Comparison with Pktgen-DPDK 94

III

5.5.3 Multi-core Scaling . 95
5.5.4 Scaling to 40 Gigabit Ethernet 96
5.5.5 Scaling to 100 Gigabit Ethernet 96
5.5.6 Per-Packet Costs . 97
5.5.7 Effects of Packet Sizes . 99

5.6 Hardware Timestamping . 100
5.6.1 Precision and Accuracy . 101
5.6.2 Clock Synchronization . 105
5.6.3 Clock Drift . 106
5.6.4 Limitations . 107

5.7 Rate Control . 107
5.7.1 Software Rate Control in Existing Packet Generators 108
5.7.2 Hardware Rate Control . 108
5.7.3 Controlling Inter-Packet Gaps in Software 109

5.8 Example: Measuring Forwarding Latency of an OpenFlow Switch 110
5.9 Conclusions . 113
5.10 Author’s Contributions . 114

6 Precision of Software-based Packet Generators 117
6.1 Introduction . 117
6.2 Related Work . 118
6.3 Precision of packet generators affects measurement results 119

6.3.1 Generating CBR traffic . 119
6.3.2 Generating Poisson Traffic . 121

6.4 State of the Art for Software Packet Generators 122
6.5 Test setup . 124
6.6 Analysis of rate control . 124

6.6.1 Rate control: three different approaches 125
6.6.2 Performance vs. precision . 126
6.6.3 Accuracy . 127
6.6.4 Precision . 127
6.6.5 Precision with Poisson traffic pattern 134
6.6.6 Lessons learned . 135

6.7 Latency measurements . 136
6.7.1 Approaches for measuring latency 136
6.7.2 Evaluated metrics . 137
6.7.3 Evaluation . 137
6.7.4 Lessons learned . 139

IV

6.8 Conclusion . 140
6.9 Author’s Contributions . 141

IV Conclusion 143

7 Conclusion 145
7.1 Answered research questions . 145
7.2 Conclusion . 148

Bibliography 149

Appendices 161

A MoonGen Example: Basic packet generator 163

B MoonGen Example: Quality of Service Test 167

V

List of Figures

1.1 Structure of this dissertation . 6

2.1 Overview over hardware architecture of a representative server system
used in this dissertation . 10

2.2 Wiring with fiber optic splitters to measure latencies via a third server. 15

3.1 Architecture of user space packet processing frameworks using an in-
kernel driver, e.g., netmap, PF_RING ZC, or PFQ. 25

3.2 Architecture of full user space network drivers, e.g., DPDK, Snabb, or ixy. 26
3.3 DMA descriptors pointing into a memory pool, note that the packets in

the memory are unordered as they can be free’d at different times. . . . 33
3.4 Overview of a receive queue. The ring uses physical addresses and is

shared with the NIC. 33
3.5 Bidirectional single-core forwarding performance with varying CPU speed,

batch size 32. 36
3.6 Bidirectional single-core forwarding performance with varying batch size. 37
3.7 Effect of prefetching on bidirectional single-core forwarding performance

with varying batch size. 38
3.8 Throughput (64Byte packets) with varying descriptor ring sizes at 2.4GHz. 42
3.9 Single-core forwarding performance with and without huge pages and

their effect on the TLB. 43
3.10 IOMMU impact on single-core forwarding at 2.4GHz. 44

4.1 NIC technology node vs. driver size . 53
4.2 Forwarding rate of our implementations with different batch sizes 67
4.3 Tail latency of our implementations when forwarding packets 75
4.4 Forwarding latency of Java at 1Mpps with different garbage collectors . 76

5.1 MoonGen’s architecture . 89
5.2 CPU frequency vs. generated packets per second 94

5.3 Multi-core scaling under high load . 95
5.4 Throughput with an XL710 40Gbit/s NIC 96
5.5 Multi-core scaling (multiple 10Gbit/s NICs) 97
5.6 Loopback configurations to measure the latency incurred by a cable . . 102
5.7 Latencies of different cables lengths, 500 000 measurements per data point.103
5.8 Different clocks in a server running MoonGen. Timestamps are taken

with Clock 1 and Clock 2. 105
5.9 Clock drift between different NICs . 106
5.10 Software-based rate control (figure from [42]) 108
5.11 Hardware-based rate control (figure from [42]) 109
5.12 Precise generation of arbitrary traffic patterns in MoonGen (figure from

[42]) . 109
5.13 Test setup for testing a switch with MoonGen by using traffic amplifica-

tion inside the switch with OpenFlow (adapted from [39]) 110
5.14 Latency distribution of a 1Gbit/s flow forwarded by a hardware Open-

Flow switch with 8Gbit/s of background traffic [39] 112
5.15 Background (BG) and foreground (FG) flow latency under increasing

background load [39]) . 113

6.1 Observed interrupt rate when forwarding packets with Open vSwitch,
traffic generated with different packet generators (Figure from [42]) . . . 120

6.2 Relative observed latency of different burst sizes (traffic generated with
MoonGen CRC rate control) . 120

6.3 Forwarding latency of Open vSwitch with CBR and Poisson traffic pat-
terns (Figure from [42]) . 122

6.4 Software rate control at 1Mpps (1000 ns inter-arrival time) with mean
squared error (MSE) per packet generator 130

6.5 Software rate control at 2 Mpps and 4Mpps 131
6.6 MoonGen with hardware rate control at rates of 1, 4, and 7Mpps 132
6.7 trafgen precision . 133
6.8 D-ITG precision . 133
6.9 Precision of Poisson traffic generation 134
6.10 Precision of software timestamping without framework support 138
6.11 Precision of software timestamping with framework support (MoonGen) 139

VIII

List of Tables

2.1 Server systems used for experiments throughout this dissertation 14

3.1 Forwarding latency by interrupt/poll mode. 39
3.2 Processing time in cycles per packet. 41
3.3 Forwarding latency by ring size and load. 42
3.4 Unidirectional forwarding on a NUMA system, both CPUs at 1.2 GHz. . 46

4.1 Languages used by our implementations 51
4.2 Packet processing frameworks used in academia, cells are uses/mentions;

e.g., 1/3 means 3 papers mention the framework, 1 of them uses it . . . 55
4.3 Mistakes made by students when implementing an IPv4 router in C on

top of DPDK . 57
4.4 Unsafe code in different Rust drivers . 60
4.5 Size of our implementations stripped down to the core feature set 65
4.6 Language-level protections against classes of bugs in our drivers and the

C reference code . 66
4.7 Performance of different Java garbage collectors in Mpps when forwarding

packets at 3.3GHz . 69
4.8 Performance counter readings in events per packet when forwarding packets 71
4.9 Performance results normalized to C, i.e., 50% means it achieves half the

speed of C . 72

5.1 Per-packet costs of basic operations (2.4GHz CPU, performance budget
of 161 cycles) . 98

5.2 Per-packet costs of modifications on 4 byte fields at fixed offsets (2.4GHz
CPU, performance budget of 161 cycles 99

5.3 Timestamping accuracy measurements (±6.4 ns precision) 102

6.1 Investigated software packet generators 124
6.2 Achieved throughput on a Core i7-960 126

6.3 Accuracy evaluation . 128

X

Part I

Introduction

Chapter 1

Introduction

This dissertation explores and analyses performance behavior due to the shift from
special-purpose hardware appliances to software for packet processing devices. We in-
vestigate how packet processing can be made cheaper, safer, and more flexible by using
software in a domain that was traditionally dominated by hardware.

1.1 Motivation

Packet processing systems are systems handling individual packets on OSI layers 2 and
3, e.g., routers, firewalls, or virtual private network (VPN) gateways. They can also
process parts of layer 4 such as ports or header flags. Actions taken by these systems
are typically forwarding, filtering, inspecting, or encapsulating individual packets. This
puts packet processing systems at the core of networking infrastructure, in contrast to
endpoints such as web servers caring about streams of data on higher layers.

Many of these functions were traditionally implemented in special-purpose network ap-
pliances – expensive and inflexible black-boxes implementing specific logic functions in
hardware. As new protocols are invented and deployed, network operators need to up-
grade these boxes. Upgrading means replacing if the implementation is an application-
specific integrated circuit that simply does not support the desired new features. More-
over, flexibility in the form of programmability of all network devices network can
increase reliability, security, and performance of the network as a whole [49].

There are two approaches to make upgrading functionality easier and cheaper:
1. Make devices programmable via an open interface, e.g., OpenFlow [103] or P4 [21].
2. Run the full processing stack in software on commodity off-the-shelf hardware,

e.g., by using netmap [148] or DPDK [96].

Chapter 1: Introduction

Both of these solutions are relatively old in this fast moving field: OpenFlow was pub-
lished in 2008 [103]. The Click modular router demonstrated increasing flexibility in
routers via a pure software implementation in 1999 [92].

This dissertation is concerned with the software approach which was reinvigorated
by software frameworks offering fast packet IO such as netmap (2012) and DPDK
(2013) [148, 96]. Yet, both these frameworks and the network drivers they are built
upon are written in the low-level language C. The same is true for packet processing
systems built on top of them (Section 4.3.5). Our thesis is that we can increase the flexi-
bility and safety properties of these systems further without compromising performance
by using high-level languages instead.

This dissertation is a practical demonstration of the feasibility of packet processing
systems in high-level languages. We build a network driver from scratch in ten different
programming languages: C, Rust, Go, C#, Java, OCaml, Haskell, Swift, JavaScript,
and Python (Chapter 4). Our Rust implementation achieves 98% of C’s performance
while guaranteeing memory safety in 87% of the code.

Another problem to tackle when moving from hardware to software systems is bench-
marking them properly. Software can exhibit performance characteristics that are unex-
pected for users only familiar with hardware implementations. Benchmarking method-
ology differs between software and hardware devices under test, Section 2.3 discusses
how many standards are designed with hardware devices in mind. Test equipment such
as packet generators are also traditionally built as special-purpose hardware devices
with limited flexibility when it comes to supporting new protocols. Software can also
help here: In Chapter 5 we discuss how a software-based packet generator running on
commodity hardware can be made cheaper and more flexible than a hardware device.

We again take an approach relying on an artifact here: we build the packet generator
MoonGen that is implemented in the high-level programming language Lua (Chapter 5).
There are several challenges to overcome: Existing hardware devices are very good at
being fast and precise, tasks that can be hard for pure software solutions. For example,
test equipment needs to be able to measure latencies with a high precision, an easy task
for a dedicated hardware timestamping device. These problems get worse as you move
further away from the hardware through more and more abstraction layers. For example,
high-level languages add unpredictable sources of latency such as garbage collectors and
just-in-time compilers into the mix that needs to be taken into account. MoonGen uses
hardware features found on commodity NICs to overcome these limitations, achieving
a timestamping precision of ±12.8 ns and a mean squared error of 1.2 µs for controlling
when a packet is transmitted (Chapter 6).

4

1.2 Research Questions

1.2 Research Questions

This dissertation addresses the following main research questions.

Q1 What makes software-based packet processing fast?
We need to gain a deep understanding about the basic principles of why some
software-based systems are fast and others are slow. Network devices in software
are not new per se, but fast network devices that only use software are a recent
trend. We examine which foundations such software must be built upon to be fast
by looking at the deepest layer in a software stack: the device drivers. Our ap-
proach to answering this is by building a new driver and packet IO framework from
scratch to evaluate the effects of individual optimizations in isolation (Chapter 3).

Q2 Can high-level languages be used in software-based network devices?
C is the go-to language for code that is considered low-level such as the applications
investigated here. We investigate if and how we can use high-level languages and
look at the trade-offs incurred by them. High-level languages can come with
overheads for performance (e.g., bound checks on memory access) and latency
(e.g., garbage collection or just-in-time compilation). But their use can allow for a
higher flexibility and improved safety. Do all high-level languages suffer from these
overheads? How can these trade-offs be quantified when they are present? We
approach this question by implementing drivers in different high-level languages
and benchmark them (Chapter 4).

Q3 How can modern network devices be benchmarked?
Today’s network devices require a more flexible test approach than using a hard-
ware device for benchmarking. For benchmarking we focus on the metric of packets
per second (pps) instead of bits per second as per-packet costs are the primary
bottleneck (Section 2.2). Especially software-based devices pose a challenge: they
support new protocols and can exhibit performance characteristics only visible
under test conditions that are complex to produce. We apply the learnings about
performance and flexibility of high-level languages to create MoonGen (Chapter 5),
a novel benchmarking tool that is up to these challenges.

Q4 Can software be sufficiently precise to replace hardware in all scenarios?
Replacing hardware with software entails the risk of losing the features provided
by hardware. In particular, hardware can provide high precision. This leads us
to consider the following questions: In which scenarios is a software-only solution
sufficient? What are the trade-offs and how can they be quantified? We quan-
tify the precision of MoonGen by testing it with the hardware packet generator
OSNT [7] running on the NetFPGA platform (Chapter 6).

5

Chapter 1: Introduction

Hardware

Drivers

High-Level
Languages

Packet Processing
Applications

D
ec

re
as

in
g

P
re

ci
si

on
?

In
cr

ea
si

ng
 F

le
xi

bi
lit

y
Chapter 3

Chapter 4 & 5

Chapter 5

Chapter 6Chapter 5

Figure 1.1: Structure of this dissertation

1.3 Structure of this Dissertation

This dissertation is structured in two main parts. We first look at the lowest, and most
crucial, part of the software stack: the drivers. Chapter 3 investigates how modern
user space drivers work in general by presenting the reference implementation ixy in C.
We discuss the architecture and design choices, their impact on performance and the
implementation in deep detail. Chapter 4 builds on this by adding high-level languages
to the mix: How can they help us to achieve our goals? What are their performance
impacts?

The second part looks at higher layers: an application in a high-level language run-
ning on such drivers. Chapter 5 presents the packet generator MoonGen written in
the high-level language Lua. We discuss trade-offs between flexibility and performance.
Finally we evaluate trade-offs between precision requirements and flexibility by evalu-
ating the precision of MoonGen. Which features that traditionally required a hardware
implementation can be done in software with sufficient precision and accuracy?

Figure 1.1 visualizes the building blocks of modern packet processing applications to
the right. Chapters 3 to 5 go through the stack starting right above the hardware and
ending at an application written in a high-level language. Going up this stack increases
flexibility, Chapter 5 discusses how. At the same time precision decreases, Chapter 6
quantifies by how much and what trade-offs can be made to keep it precise enough for
even a high-precision test tool.

6

1.4 Key Contributions

1.4 Key Contributions

This dissertation contributes several important artifacts to the networking research
community as well as several key insights into the behavior of complex packet processing
systems.

1.4.1 The ixy Network Driver
ixy is a high-speed user space network driver targeting the 10Gbit/s Intel ixgbe fam-
ily of network cards (Chapter 3). The driver is stripped down to the bare minimum
required for high-speed packet processing in a modern network application. Its bare-
bone nature allows to evaluate and benchmark individual optimizations or features in
isolation, helping us to understand what makes software-based packet processing fast.
For example, we use these drivers to quantify the effects of interrupts (Section 3.5.5),
IOMMU isolation and page size optimizations (Section 3.5.9), and cache prefetching
(Section 3.5.4) in a minimal setup. ixy can forward 27.4 million minimum-sized packets
per second (18.4Gbit/s) on a single 3.3GHz CPU core (Section 3.5).

But it is more than a building block for research, its simple and well-documented code
base is also an asset for education to aid understanding network drivers at the low-
est level. For this purpose it has been made available under a free and open source
license [44].

1.4.2 Network Drivers in High-Level Languages
To understand how high-level languages can be utilized in software-based network de-
vices we re-implemented the whole ixy driver in the high-level languages C, Rust, Go,
C#, Java, OCaml, Haskell, Swift, JavaScript, and Python (Chapter 4). All implemen-
tations in high-level languages use the ixy driver, which is written in C, as a template.
They implement the same architecture and same feature set, allowing for a comparison
of different languages.

These drivers, collectively called the ixy-language drivers, were implemented by a team
of students (advised by the author of this dissertation) with experience in the respective
programming language to ensure idiomatic implementations in the different languages.
We use these drivers to quantify the trade-offs incurred by different language features.
For example, we can measure the impact of garbage collection on the performance and
latency to quantify the trade-off of traditional memory safe languages vs. performance
(Section 4.6.2). Our Rust implementation achieves 98% of C’s throughput at the same
worst-case latency of 22µs (median 5 µs) while at the same time guaranteeing memory
safety in 87% of the source code (Sections 4.7, 4.4.3).

7

Chapter 1: Introduction

1.4.3 The MoonGen Packet Generator
MoonGen is a corner stone of this dissertation, it is a fully scriptable packet generator
tuned to be as flexible as possible by replacing hardware with software and the high-level
language Lua (Chapter 5). It executes custom user-provided Lua script code for every
single packet it sends out and the whole configuration and test definition is done via
user-provided scripts (Section 5.4). It can be seen as a framework for building packet
generators and tests tailored to a specific system under test. Despite this flexibility it
achieves 14.88Mpps on a single 1.5GHz CPU core (Section 5.5.2).

We combine the advantages of software and hardware packet generators while avoiding
their respective disadvantages. Our MoonGen implementation introduces a novel soft-
ware method for precise control over inter-packet gaps, achieving a mean squared error
of 1.2 µs, the previous state of the art was 59µs for software-based packet generators
(Section 6.6.4). Precise (±12.8 ns) time-stamping is achieved by exploiting a hardware
feature that is commonly found on commodity server hardware: support for the PTP
protocol (Section 5.6). It is not only relevant to answer the question how to bench-
mark modern network devices, it also looks at using high-level languages for domains
traditionally dominated by hardware and/or low-level languages.

MoonGen is an especially impactful artifact developed for this dissertation, we use it
to evaluate and compare all of our other implementations. It also became the de-facto
standard benchmarking tool for network performance researchers and has been used by
several other high-impact publications, e.g., [152, 93, 34, 168].

1.4.4 Hardware-based Precision Evaluation of Packet Generators
Understanding the limitations of your testing tools is important in order to design ex-
periments that produce valid results. We present a detailed comparison of the precision
of various packet generators commonly used in academia (Chapter 6), uncovering short-
comings of commonly used tools that threaten the validity of experiments.

Our experiments use the NetFPGA platform to perform precise and accurate mea-
surements of network tools, validating MoonGen against a hardware packet generator.
These experiments allow us to assess and quantify in which scenarios software imple-
mentations lag behind hardware solutions. Insights obtained from these experiments
allow us to quantify when a software implementation can be precise enough for a given
requirement. Our findings indicate that MoonGen is precise enough to characterize
latency behavior of both software and hardware-based packet processing systems.

8

Chapter 2

Background

There is an ongoing move from special-purpose hardware to software solutions for many
key components in the Internet infrastructure. Appliances providing network functions
such as routing, switching, or firewalling are traditionally implemented as expensive
proprietary black-boxes. This approach comes with an inherent low flexibility: for
example, upgrading a network from IPv4 to IPv6 requires replacing routers that were
built without IPv6 support in mind. Compare this to a modern software router: it can
be upgraded to speak new protocols above layer 2 without replacing hardware.

Dedicated hardware comes with hard performance guarantees: there are well-defined
limits such as sizes of look-up tables or the line rate of a network interface adapter. One
can expect the devices to perform in a predictable manner. Many of these nice properties
get lost when moving to software. A software implementation can be affected by many
factors on all involved layers from the available hardware resources to peculiarities of
a specific programming languages runtime such as just-in-time compilation or garbage
collection. This behavior also poses challenges for testing methodology and software.
Many tools and procedures for testing were developed with hardware as systems under
test in mind.

2.1 Hardware Architecture of Software-based Packet
Processing System

Software needs hardware to run on. In this dissertation we build and evaluate our soft-
ware on Intel network cards and CPUs because Intel provides extensive documentation
on internal details, enabling development of a new driver from scratch. Intel’s detailed

Chapter 2: Background

CPU

CPU Core CPU Core

Shared last-level cache

…
L1/L2 cache L1/L2 cache

Memory controllerPCIe root complexPCIe endpoint

SFP+

Logic

…

Q
ue

ue
s

SFP+

…

NIC

PCIe 2.0 x8

Figure 2.1: Overview over hardware architecture of a representative server system used in this disser-
tation

datasheet for the 82599 networking chip [73] has been an invaluable resource in building
both the ixy network drivers and the MoonGen packet generator.

Figure 2.1 shows the important components of one of the server systems used in this
work. The CPU is an Intel Xeon E5-2620 v3 (Haswell EP) clocked at 2.4GHz with 6
cores, the NIC is an Intel X520-T2 featuring an 82599 network interface controller chip
and two SFP+ (small form-factor pluggable) ports that can be equipped with different
transceivers supporting up to 10Gbit/s. A PCIe 2.0 x8 link is used to connect the NIC
to the controller which can seem somewhat antiquated, but it supports a bandwidth of
32Gbit/s in each direction, enough for the two 10Gbit/s Ethernet ports.

The key component of the NIC used here are the queues. Each physical port features
multiple independent receive and transmit queues, this simplifies scaling of multi-flow
traffic. The driver can configure filters or hashing over packet headers to distribute
incoming traffic into different queues. Outgoing traffic from multiple queues is mixed
together in hardware by the NIC. Each queue comes with its own DMA memory area, so
typically there is one pair of queues for each CPU core to achieve multi-core scaling. [73]

The key component of the modern CPU is that it has an integrated PCIe root complex
that can directly access the system’s last-level cache, on the CPU depicted here via a ring
bus [80]. This implies that the main memory is ideally never involved in processing a
packet as a typical server CPU features a last-level cache in the size of tens of megabytes
(15MiB here) – enough to fit a large burst of packets. However, in a modern CPU even
the last-level cache can be quite far away from the cores doing the actual processing
from a latency perspective: On Haswell EP the access time from a CPU core to the L3
cache is 53 clock cycles [109]. Even the L1 and L2 caches have an access time of 4 and

10

2.2 Important Performance Numbers

11 cycles respectively [80]. Moreover, the cache is organized cache lines of size 64 byte
that are always cached together. That means attempting to access a single byte that is
already in L3 cache but not in the core’s L1 or L2 cache will incur the 53 cycle penalty,
but subsequent accesses to adjacent bytes only need to wait for 4 cycles.

Note that custom processing logic in a packet processing system may need to go to main
memory, e.g., to consult large lookup tables or other data structures. All of our use
cases typically fit entirely into the cache, for example, the entire IPv4 routing table used
for the Internet fits in 2.4MB of memory (IPv6: 1.4MB) when using a data structure
optimized for both lookup performance and size [10]. Any optimizations to larger data
structures that may be required are orthogonal to the work presented here.

Relevant details of the test systems used for the individual experiments are given in the
sections describing the respective test setups as multiple different systems were used
throughout this dissertation. The system depicted above is merely a representative
example of a modern server systems. Details can vary between different systems, but
the core components explained above generalize well. Multiple queues on NICs are
standard across high speed NICs: splitting a port into multiple independent queues
is a de-facto standard abstraction layer for high-speed network drivers, e.g., see the
interfaces of netmap and DPDK [96, 148]. Modern general-purpose multicore CPUs
also all look alike when it comes to the cache hierarchy and embedded memory and
PCIe controllers.

2.2 Important Performance Numbers

We are targeting 10Gbit/s Ethernet connections in this work, but raw throughput as
measured in bits per second is rarely a useful metric for packet processing systems. The
systems we are building are mainly concerned about packet headers, not their payload.
Even systems that process payloads, such as VPN gateways without hardware offloading
for cryptography, are dominated by per-packet costs [140].

So how many packets per second fit through a 10Gbit/s Ethernet connection if they
are all as small as possible? 14.88 million packets per second (Mpps). This is
an important number and it will show up again and again throughout this dissertation.
You can derive this number from the minimum Ethernet frame size of 64 bytes. On top
of this you have to take into account 8 bytes of overhead when packaging an Ethernet
frame into an Ethernet packet: 7 bytes preamble and a 1 byte start-of-frame delimiter.
In addition, two Ethernet packets are separated by 12 bytes of inter-packet gap for an
effective total minimum size of 84B a packet on the wire [67]. Dividing 10Gbit/s by
84B yields the number of 14,880,952 packets per second.

11

Chapter 2: Background

A related measure is the time it takes to serialize a packet onto the wire: 67.2 ns as a
10Gbit/s link transmits a byte in 0.8 ns. This is also the time our system can spend
to process a packet on average. Throughout this dissertation we use CPUs with clock
frequencies of 2.4GHz to 3.3GHz, so we only have 161 to 222 clock cycles available
for each packet.

This seems like an impossible task at first glance when comparing this to cache latencies
given in the previous section. It takes 53 clock cycles to get the packet from the L3
cache to the CPU core, so a third to a quarter of the available time is spent just waiting
on data. The key insight here is that our performance target is only an average. Packets
are queued (we find a buffer size of 512 packets ideal, see Section 3.5.7) and processed
in batches. We can amortize costs such as cache load times across all packets within a
batch by prefetching packet data into caches closer to the CPU cores. See Sections 3.5.3
and 3.5.4 for details.

2.2.1 Performance Targets
One of the applications we are building is MoonGen, a benchmarking tool. It must be
able to handle the absolute worst case—small packets in a single flow at the highest
possible speed—in order to characterize the behavior of other systems under the worst
case. This means we must be able to achieve 14.88Mpps in order to handle 10Gbit/s
Ethernet.

Moreover, this speed must be achieved while using only a single CPU core: Packets
within a single flow cannot be effectively split across multiple CPU cores because of
dependencies between packets for processing logic and ordering requirements. Memory
synchronization between multiple cores is too slow [109] to make data sharing between
multiple cores a feasible option for a single flow.

Scaling to multiple CPU cores relies on having multiple independent flows in the packets
that are being processed. As explained in Section 2.1, a common feature supported
in hardware by high-speed NICs is distributing incoming packets to different queues
based on a hash across customizable header fields. This effectively balances flows across
queues in hardware and each queue can be handled by a dedicated CPU core. We lose
the control over the order of packets between different flows (inter-flow ordering) with
this approach, but this is not an important property as flows are independent. But the
more important property of packet order within a flow (intra-flow ordering) is preserved
since each flow is handled by the same CPU core. Hence, most experiments in this
dissertation will focus on achieving 14.88Mpps on a single core as this is the main
property we focus upon.

12

2.3 Benchmarking methodology and packet generators

2.3 Benchmarking methodology and packet generators

RFC 2544 [25] is a standard specifying a suite of tests to benchmark networking de-
vices. Vendors of hardware networking devices commonly offer performance evaluations
following this standard. Yet, with a publication date of March 1999 the standard is now
well over 20 years old – an eternity in this fast moving field.

One particular problem with this standard is the way latency measurements are spec-
ified. It calls for measuring the latency of a single packet after 60 seconds of test time
and then repeating that 20 times and reporting the average. While this methodology
is perfectly reasonable for a completely predictable device, it is not sufficient for a soft-
ware device. For example, a software router that uses a high-level language featuring
a garbage collector might suffer from unpredictable and rare pause times. Many more
measurements are required to find these.

The Linux Foundation project “Open Platform for NFV” features the sub-project VSperf
which takes a look at performance characterization of virtual switches [121]. They pub-
lished a summary of their methodology as RFC 8204 [158] in 2017 which addresses many
of the problems that showed up when considering software instead of hardware boxes as
systems under test. For example, they explicitly talk about latency distributions and
outliers instead of relying on a simplistic metric like just the average. However, the
RFC is intentionally very vague about the exact measurement parameters and report
formats to use compared to the old RFC 2544.

For this dissertation, we use these standards as guides for making sure our tests follow
the best practice for test setups and consistent terminology. Strictly following the
prescribed methodology is too limiting: RFC 2544 is too old to be applicable and
RFC 8204 is too vague in parameters. We pick ideas and tests that make sense in
context and add our own. In particular, we conduct many white-box tests whereas
standards only describe black-box tests.

It should be noted that the development of RFC 8204 overlapped with the work on
this dissertation. In fact, the packet generator MoonGen developed for this dissertation
is used in the reference implementation of the VSperf project and the author of this
dissertation attended multiple IETF meetings discussing this new RFC.

2.4 Test Setups Used in this Dissertation

Table 2.1 gives the relevant hardware information about the primary test systems used
throughout this dissertation. As this work was done over the course of several years

13

Chapter 2: Background

CPU Frequency Cores NICs
Server 1 Intel Xeon E5-2620 v3 2.4GHz 6 Intel 82599, X540,

X550, XL710
Server 2 2x Intel Xeon E5-2630 v4 2.2GHz 20 Intel 82599, X540,

X550, XL710
Server 3 Intel Xeon E3-1230 v2 3.3GHz 4 Intel 82599
Server 4 Intel Xeon E3-1230 3.2GHz 4 Intel 82599
Server 5 Intel Xeon D-1537 2.3GHz 8 Intel X552 (SoC)

Table 2.1: Server systems used for experiments throughout this dissertation

(experiments conducted between 2014 and 2020) some details (e.g., swapping NICs,
cabling, software upgrades) vary between the individual setups. Details about software
and other hardware, where relevant, is given in the description of the experiments using
the setups throughout this dissertation.

Server 1 and Server 2 are directly connected with 10Gbit/s and 40Gbit/s direct attach
copper cabling for the (Q)SFP+ NICs Intel 82599 and XL710, and Cat 5e cables for the
X540 and X550. These serve as the main development servers on which the bulk of this
work was done. Most experiments in this dissertation were conducted on Server 1, and
it is also the one used as an example in Section 2.1. Server 2 is used for experiments
requiring a NUMA architecture and as a packet generator running MoonGen (Chapter 5)
for experiments on Server 1.

Server 3 and Server 4 are also directly connected to each other, in this case with single
mode fiber cabling. Server 3 serves as system under test, and server 4 as packet gen-
erator. Server 5 is connected via a passive tap device (fiber optic splitter) to intercept
traffic between servers 3 and 4, see Figure 2.2.

2.4.1 Latency Measurement Setups
MoonGen’s latency measurements are restricted to sample the latency of random packets
in the stream, it cannot measure the latency of every single packet (Section 5.6.4). This
is more than sufficient to match requirements for common benchmarking standards
(Section 2.3) and also yields enough data for almost all experiments devised for this
disseration. Yet, there is one experiment in this work for which this was not sufficient:
In Section 4.7 we take a close look into the worst-case behavior and jitter introduced
by just-in-time compilation and garbage collection in high-level languages, we need to
capture more packets than a simple test setup supports to reliably catch rarely occurring
events.

14

2.4 Test Setups Used in this Dissertation

Device under test

SFP+
 RX

 TX

SFP+
 RX

 TX

>
<

Packet generator

SFP+
TX

RX

SFP+
TX

RX

Timestamper

S
FP

+
TX R

X

S
FP

+
TX R

X

>
<

>
<

> >

>
<

Fiber optic splitter

Packet
processing

Packet
generation

Packet
counting

Timestamp
before

Timestamp
after

Figure 2.2: Wiring with fiber optic splitters to measure latencies via a third server.

Figure 2.2 shows a setup that allows us to intercept packets in one direction before and
after the device under test by inserting fiber optic splitters into the setup. The packet
generator inserts a sequence number into each packet which is used by the dedicated
timestamping server to correlate the two copies of the received packet. This timestamper
needs hardware that is able to capture the timestamps of all received packets. Doing this
typically requires expensive dedicated timestamping hardware [4], it is a rare feature
on inexpensive commodity NICs. We use an Intel X552 NIC which is embedded in
the Xeon D-1537 system on chip CPU in Server 5. This is the only commodity NIC
with an SFP+ port that features this timestamping capability that was available. On
the software side we run MoonSniff, based on MoonGen (Section 5), which achieves an
accuracy of 20 ns for latency measurements [5, 4].

2.4.2 System Configuration
We disabled the CPU’s automatic frequency adjustment features to get reproducible
results. All processes of the software under test were always explicitly pinned to CPU
cores to avoid noise due to core migration. Power saving features of the systems were
also disabled to reduce noise.

15

Chapter 2: Background

2.5 User Space Packet Processing
This section is based on joint work by Paul Emmerich, Maximilian Pudelko, Simon Bauer, Stefan Huber,
Thomas Zwickl, and Georg Carle [44] and joint work by Paul Emmerich, Simon Ellmann, Fabian Bonk,
Alex Egger, Esaú García Sánchez-Torija, Thomas Günzel, Sebastian Di Luzio, Alexandru Obada, Maximilian
Stadlmeier, Sebastian Voit, and Georg Carle [43].

Traditional software network applications build on top of the socket layer offered by the
operating system. This is a flexible solution: the socket API is a stable and battle-tested
interface that is available to virtually all programming languages. The problem is that
it is by far too slow to be economically viable as a platform to replace existing hardware
implementations of network functions.

Network functions have therefore traditionally been built directly into the kernel of op-
erating systems, yielding a performance advantage of about one order of magnitude.
Two examples utilizing kernel components are Open vSwitch [132], a virtual switch im-
plementing OpenFlow, and the Click modular router [92], a platform to build network
functions via user-provided modules. But writing kernel code is a cumbersome process
with slow turn-around times. The environment restricts your choice of programming
language: usually only C is possible, sometimes C++, and dynamic or scripting lan-
guages are completely missing. A crash of the application can take the whole operating
system with it, posing a risk for safety and the lack of isolation mechanisms typically
offered by operating systems is a potential security problem. Yet, for many network
functions running in the kernel is still the state of the art, for example, the Linux
routing and firewalling subsystems are widely used.

The solution is, paradoxically, a move back to user space. Slowness is not an inherent
property of a user space application, the problem is only moving data between the
application and the hardware. In other words: a new IO interface can fix the problems
without having to impose the restrictions of the kernel environment on the application.
Over the past decade a large variety of solutions for this have sprung up and network
functions with high performance requirements have moved back from the kernel to user
space.

This move happened in two steps: First, frameworks like PF_RING DNA (2010) [114],
PSIO (2010) [62, 63], netmap (2012) [148], and PFQ (2012) [18] provided a fast-path to
the network driver from user space applications. They speed up packet IO by providing
a kernel module that maps DMA buffers into a user space application. These frame-
works are not user space drivers: all of them rely on a driver running in the kernel,
some requiring minor driver modifications. Using these frameworks meant increased
performance but often also a loss of access to hardware functionality that was available
in the kernel. These APIs all have poor support for hardware offloading features found

16

2.6 Network Function Virtualization

on modern network cards. The next step were user space drivers: DPDK [96] (open
sourced in 2013) and Snabb [99] (2012) move the entire driver logic into a user space
process by mapping PCIe resources and DMA buffers into a user space library, running
the driver in the same process as the application via the uio or vfio Linux subsystems.

An example for this move from a kernel component to something using a user space
driver is the Click modular router [92]: It started out as a kernel extension in 1999
and was later sped up with a netmap interface in 2012 as a demonstration of netmap
itself [148]. Finally, a DPDK backend was added in 2015 to increase performance even
further [15]. Similar migration paths can also be found in other open source projects:
Open vSwitch comes with a kernel module and had plans to add both netmap and
DPDK [132], the DPDK backend was merged in 2014, the netmap version never left
the proof of concept stage [119]. The firewall pfSense [134] started out by using kernel
components, then experimented with both netmap and DPDK in 2015 and finally chose
DPDK [84] as the path forward.

Network functions performing this move inherited a bias towards paradigms found in
the kernel. For example, we show in Section 4.3.5 that there is a bias towards the
programming language C in low-level network applications compared to performance-
critical network applications on higher layers. Also, the user space drivers are directly
derived from the in-kernel version and hence written in C in DPDK. There is room for
improvement: we can still increase flexibility for network functions, for example by using
more modern programming languages and paradigms as we demonstrate in Chapter 4.

2.6 Network Function Virtualization

Network function virtualization is an umbrella term for all kinds of different network
hardware being softwarized. Examples include firewalls, VPN gateways, intrusion detec-
tion systems, routers and even seemingly simple devices like switches. The key point here
is that the actual function is decoupled from the hardware: A traditional deployment
of network functions is not only inflexible when it comes to adding new functionality
to existing hardware, but also to the physical location of the devices. A virtualized
network can deploy a network function on any server. For example, a mobile virtual
network provider can deploy a software network function at the edge in the network of
the infrastructure provider without placing their own hardware at every location. [106]

Running the network function in software is a prerequisite to achieve the goals of net-
work function virtualization. Deployment can work via traditional virtualization by
deploying a virtual machine image, via containers or via plugins for specialized network
applications (e.g., Click [92] or Snabb [99] modules). Our thesis is concerned with the

17

Chapter 2: Background

foundations for building such applications in a highly performant manner, not with the
higher layers of the actual application logic. We care about getting network packets
to (and from) a NFV application in the fastest possible way while avoiding to impose
restrictions on the actual applications.

2.7 Evolution of Networking Hardware

Our thesis is that moving networking processing logic from dedicated hardware to
general-purpose CPUs is the way to go in the future. Moving functionality from dedi-
cated hardware into general-purpose CPUs is nothing new. For example, floating point
calculations were once the domain of dedicated co-processors such as the Intel 8087
math coprocessor announced in 1980 [126]. Later, this functionality became a standard
part of the general-purpose Intel 80486 CPU in 1989 [78]. Moving math functionality
is relatively straight-forward because of well-defined abstraction layers in compilers and
math libraries such that the transition is mostly seamless for users of the functions.

Some functionality used for software-based packet processing devices is supported by
dedicated processing units on the CPUs. For example, the AES-NI instruction set to
speed up encryption with AES was added to Intel CPUs in 2008 [74]. It can be used to
speed up VPN gateways using AES encryption [94]. Intel’s 82599 NIC (2009, 10Gbit/s)
also offers AES offloading capabilities for IPsec on the NIC [73], this functionality was
removed from later Intel NICs, e.g., from the XL710 NIC (2014, 40Gbit/s) [77].

Integrating high-speed network connectivity directly on the CPU is also common. For
example, both Intel’s Xeon D CPUs (2015) [79] and AMD’s Ryzen Embedded series
(2018) [138] feature multiple 10Gbit/s network ports as part of the CPU. However,
these NICs are internally still attached via PCIe and not truly embedded in the core,
i.e., they are part of a system on chip design. Our driver ixy (Chapter 3) supports the
NICs found on Intel Xeon D CPUs as they are a variant of the aforementioned Intel
82599 chip.

Software development drives hardware development and vice versa in an endless virtu-
ous cycle. The work done for this dissertation (started in 2014) was during a golden
age for packet processing in software: netmap (2012) [148] and DPDK (2013) [96] un-
locked high-speed paths to the hardware, allowing researchers and engineers to achieve
unprecedented performance in software. The unlocked flexibility enabled innovation
in packet processing devices, see Section 2.6. Ever growing demands for performance
cause engineers and researchers to look for faster hardware to run their software. For
example, the number of hardware queues available on NICs grew from 64 to 768 on
Intel NICs between 2009 (Intel 82599) and 2014 (Intel XL710) [77, 73]. However, as

18

2.7 Evolution of Networking Hardware

demand for bandwidth grows engineers and researchers are again looking to offload
compute-intensive operations to the NICs, driving their development further. As of-
floading operations grow more complex a whole new world is opening up: running
software directly on the NICs, driving software development.

2.7.1 Another Future: Offloading More to the NIC
This dissertation is focused upon 10Gbit/s networks with some experiments done on
40Gbit/s connections. However, the increase in raw speed of network links has out-
paced the development of processing power of CPUs [169]. So researchers are currently
looking into approaches to offload more work onto the NICs to cope with challenges
for 100Gbit/s and 400Gbit/s systems. Offloading is the exact opposite of what we are
advocating here.

Putting more logic into the NIC to cope with higher network speeds is not a new trend.
Myricom published a NIC based on their LANai chip which features a general-purpose
CPU in 1995 to handle 1Gbit/s network connections in high-performance computing
applications [156].

A more recent example is Corundum (2020), an open source 100Gbit/s NIC that can
be used as a platform for experimental implementations of offloading features and new
protocols [48]. One example for an offloading opportunity is the transport layer, Nano-
Transport demonstrates handling 3801 million requests per second on the transport
layer in a hardware implementation [8].

Beside offloading to dedicated hardware, there is a second interesting approach: bringing
the CPU and NIC closer together. One way of achieving this is by integrating the NIC
tighter with the CPU and removing the PCIe bottleneck as PCIe link speeds have
increased at a slower rate than network link speeds and CPU processing speeds [169].
Lightning NIC is one such proposal which would give a NIC direct access to a core’s
registers [66]. This not only circumvents the PCIe link, but it also overcomes the latency
associated with loading data from the L3 cache into the CPU core (Section 2.1).

A more practical (commercial hardware exists) approach are smart NICs with general-
purpose CPUs to bring the CPU closer to the NIC instead of the other way around.
Mellanox BlueField NICs feature an entire general-purpose ARM64 system running
Linux [104]. These NICs run DPDK internally, which makes porting existing DPDK

1 In a simulation assuming they can achieve 3.2GHz for their chip if they were to build an application-
specific integrated circuit.

19

Chapter 2: Background

applications straightforward. Optimizing hardware in this way is orthogonal to our
work: Lessons learned from this dissertation apply equally to software running on such
systems.

20

Part II

Fast and Flexible User Space
Packet Processing

Chapter 3

Fast User Space Network Drivers

At the core of a modern software-based packet processing system lies a fast specialized
driver. The default drivers of operating systems can’t cope with the requirements of
such systems, so several specialized drivers were developed. Commonly used drivers such
those found in DPDK, are complex beasts that can be hard to understand. Yet it is
important to understand your building blocks, especially those that are your foundations
for achieving a good performance.

Our quest to fully understand the software stack of an application leads us right to
these foundations. So we start the investigation in this dissertation by writing our own
custom network driver. Having a custom network driver allows us to truly understand
what it does and how it can achieve a high performance. In this chapter, we take a deep
dive into the gory details of high-speed drivers.

The goal for this chapter is to answer our research question Q1: What makes software-
based packet processing fast? We need to gain an understanding of the basic principles
before we can walk up the stack to higher layers. We design an architecture for a driver
and discuss different trade-offs for performance.

The remainder of this chapter is based on our publication about user space network
drivers which is joint work by Paul Emmerich, Maximilian Pudelko, Simon Bauer,
Stefan Huber, Thomas Zwickl, and Georg Carle [44]. A full account of the author’s
contributions is given in Section 3.7.

Chapter 3: Fast User Space Network Drivers

3.1 Introduction and Motivation

Developers and researchers often treat user space drivers as black-boxes that magically
increase speed. Abstractions hiding driver details from developers are an advantage:
they remove a burden from the developer. However, all abstractions are leaky, especially
when performance-critical code such as high-speed networking applications are involved.
We therefore believe it is crucial to have at least some insights into the inner workings
of drivers when developing high-speed networking applications.

We present ixy, a user space driver and packet IO framework that is architecturally sim-
ilar to DPDK [96] and Snabb [99]. Both use full user space drivers, unlike netmap [148],
PF_RING [115], PFQ [18], or similar frameworks that rely on a kernel driver. ixy is
designed for educational use only, i.e., you are meant to use it to understand how user
space packet frameworks and drivers work, not to use it in a production environment.
Our whole architecture, described in Section 3.3, aims at simplicity and is trimmed
down to the bare minimum. We currently support the Intel ixgbe family of NICs (cf.
Section 3.4). A packet forwarding application is less than 1,000 lines of C code including
the whole network driver, the implementation is discussed in Section 3.4.

It is possible to read and understand drivers found in other frameworks, but ixy’s driver
is at least an order of magnitude simpler than other implementations. For example,
DPDK’s implementation of the ixgbe driver needs 5,400 lines of code just to handle
receiving and sending packets in a highly optimized way. They implement the same
functionality multiple times, providing optimized code paths based on available vector
instruction sets and enabled hardware offloading features. ixy’s receive and transmit
path for the same driver is only 127 lines of code. The trade-off is that our implemen-
tation is slower (no CPU-specific optimization) and we support almost no hardware
offloading features.

It is not our goal to support every conceivable scenario, hardware feature, or optimiza-
tion. We aim to provide a platform for experimentation with driver-level features or
optimizations. ixy is available under the BSD license for this purpose [2].

3.2 Background and Related Work

A multitude of packet IO frameworks have been built over the past years, each focusing
on different aspects with different trade-offs. They can be broadly categorized into two
categories: those relying on a driver running in the kernel (Figure 3.1) and those that
re-implement the whole driver in user space (Figure 3.2).

24

3.2 Background and Related Work

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Do more in user space?

NIC NIC NIC NIC

User Space

Kernel Space

Control API

Driver

Magic Kernel Module

Magic Library

Application

OS

mmap’ed
Memory

mmap’ed
Memory

Paul Emmerich — Demystifying Network Cards 18Figure 3.1: Architecture of user space packet processing frameworks using an in-kernel driver, e.g.,
netmap, PF_RING ZC, or PFQ.

Examples for the former category are netmap [148], PF_RING ZC [115], PFQ [18],
and OpenOnload [154]. They all use the default driver (sometimes with small custom
patches) and an additional kernel component that provides a fast interface based on
memory mapping for the user space application. Packet IO is still handled by the
kernel driver here, but the driver is attached to the application directly instead of the
kernel datapath, see Figure 3.1. This has the advantage that integrating existing kernel
components or forwarding packets to the default network stack is feasible with these
frameworks. By default, these applications still provide an application with exclusive
access to the NIC. Parts of the NIC can often still be controlled with standard tools
like ethtool to configure packet filtering or queue sizes. However, hardware features
are often poorly supported, e.g., netmap lacks support for most offloading features [50].

Note that none of these two advantages is superior to the other, they are simply different
approaches for a similar problem. Each solution comes with unique advantages and
disadvantages depending on the exact use case.

netmap [148] and XDP [82] are good examples of integrating kernel components with
specialized applications. netmap (a standard component in FreeBSD and also available
on Linux) offers interfaces to pass packets between the kernel network stack and a user
space app, it can even make use of the kernel’s TCP/IP stack with StackMap [167].
Further, netmap supports using a NIC with both netmap and the kernel simultaneously
by using hardware filters to steer packets to receive queues either managed by netmap
or the kernel [17]. XDP is technically not a user space framework: the code is compiled
to eBPF which is run by a JIT in the kernel, this restricts the choice of programming

25

Chapter 3: Fast User Space Network Drivers

Chair of Network Architectures and Services
Department of Informatics
Technical University of Munich

Do even more in user space?

NIC NIC NIC NIC

User Space

Kernel Space

mmap’ed
BAR0

Application

OS

DMA
Memory

Packets

Paul Emmerich — Demystifying Network Cards 21Figure 3.2: Architecture of full user space network drivers, e.g., DPDK, Snabb, or ixy.

language to those that can target eBPF bytecode (typically, a subset of C is used [27]).
It is a default part of the Linux kernel nowadays and hence very well integrated. It is
well-suited to implement firewalls that need to pass on traffic to the network stack [55].
More complex applications can be built on top of it with AF_XDP sockets, resulting in
an architecture similar to netmap applications. Despite being part of the kernel, XDP
does not yet work with all drivers as it requires a new memory model for all supported
drivers. At the time of writing, XDP in kernel 5.15 (current long-term support kernel)
supports fewer drivers than DPDK [81, 35].

DPDK [96], Snabb [99], and ixy implement the driver completely in user space. DPDK
still uses a small kernel module with some drivers, but it does not contain driver logic
and is only used during initialization. Snabb and ixy require no kernel code at all, see
Figure 3.2. A main advantage of the full user space approach is that the application has
full control over the driver leading to a far better integration of the application with the
driver and the hardware. DPDK features the largest selection of offloading and filtering
features of all investigated frameworks [36]. The downside is the poor integration with
the kernel, DPDK’s KNI (kernel network interface) needs to copy packets to pass them
to the kernel unlike XDP or netmap which can just pass a pointer. Other advantages of
DPDK are its support in the industry, mature code base, and large community. DPDK
supports virtually all NICs commonly found in servers [35], far more than any other
framework we investigated here.

ixy is a full user space driver as we want to explore writing drivers and not interfacing
with existing drivers. Our architecture is based on ideas from both DPDK and Snabb.

26

3.3 Design

The initialization and operation without loading a driver is inspired by Snabb, the API
based on explicit memory management, batching, and driver abstraction is similar to
DPDK.

3.3 Design

The language of choice for the explanation here and initial implementation is C as the
lowest common denominator of systems programming languages. Our design goals are:

• Simplicity. A forwarding application including a driver should be less than 1,000
lines of C code.

• No dependencies. One self-contained project including the application and driver.

• Usability. Provide a simple-to-use interface for applications built on it.

• Speed. It should be reasonable fast without compromising simplicity, find the
right trade-off.

It should be noted that the Snabb project [99] has similar design goals; ixy tries to be
one order of magnitude simpler. For example, Snabb targets 10,000 lines of code [85],
we target 1,000 lines of code and Snabb builds on Lua with LuaJIT instead of C limiting
accessibility.

3.3.1 Architecture
ixy only features one abstraction level: it decouples the used driver from the user’s
application. Applications call into ixy to initialize a network device by its PCI address,
ixy choses the appropriate driver automatically and returns a struct containing function
pointers for driver-specific implementations. We currently expose packet reception,
transmission, and device statistics to the application. Packet APIs are based on explicit
allocation of buffers from specialized memory pool data structures.

Applications include the driver directly, ensuring a quick turn-around time when mod-
ifying the driver. This means that the driver logic is only a single function call away
from the application logic, allowing the user to read the code from a top-down level
without jumping between complex abstraction interfaces or even system calls.

3.3.2 NIC Selection
ixy is based on custom user space re-implementation of the Intel ixgbe driver cut down
to their bare essentials. We tested our ixgbe driver on Intel X550, X540, and 82599ES
NICs. All other frameworks except DPDK are also restricted to very few NIC models

27

Chapter 3: Fast User Space Network Drivers

(typically 3 or fewer families) and ixgbe is (except for OpenOnload only supporting
their own NICs) always supported.

We chose ixgbe for ixy because Intel releases extensive datasheets and the ixgbe NICs
are commonly found in commodity servers. These NICs are also interesting because
they expose a relatively low-level interface to the drivers. Other NICs like the newer
Intel XL710 series or Mellanox ConnectX-4/5 follow a more firmware-driven design: a
lot of functionality is hidden behind a black-box firmware running on the NIC and the
driver merely communicates via a message interface with the firmware which does the
hard work. This approach has obvious advantages such as abstracting hardware details
of different NICs allowing for a simpler more generic driver. However, our goal with ixy
is understanding the full stack—a black-box firmware is counterproductive when the
goal is to understand the inner workings.

We also implemented a driver for virtual VirtIO NICs tested against VirtualBox and
qemu with and without vhost-user. VirtIO was selected as second driver to ensure that
everyone can run the code without hardware dependencies. However, its performance
proved to be too low to be interesting in the context of this dissertation, the main
bottleneck was identified to be the crossing of the VM/hypervisor barrier.

3.3.3 User Space Drivers in Linux
There are two subsystems in Linux that enable user space drivers: uio and vfio, we
support both.

uio exposes all necessary interfaces to write full user space drivers via memory mapping
files in the sysfs pseudo filesystem. These file-based APIs give us full access to the
device without needing to write any kernel code. ixy unloads any kernel driver for the
given PCI device to prevent conflicts, i.e., there is no driver loaded for the NIC while
ixy is running.

vfio offers more features: IOMMU and interrupts are only supported with vfio. How-
ever, these features come at the cost of additional complexity: It requires binding the
PCIe device to the generic vfio-pci driver and it then exposes an API via ioctl
syscalls on special files.

One needs to understand how a driver communicates with a device to understand how
a driver can be written in user space. A driver can communicate via two ways with a
PCIe device: The driver can initiate an access to the device’s Base Address Registers
(BARs) or the device can initiate a direct memory access (DMA) to access arbitrary
main memory locations. BARs are used by the device to expose configuration and
control registers to the drivers. These registers are available either via memory mapped

28

3.3 Design

IO (MMIO) or via x86 IO ports depending on the device, the latter way of exposing
them is deprecated in PCIe [130].

Accessing Device Registers
MMIO maps a memory area to device IO, i.e., reading from or writing to this memory
area receives/sends data from/to the device. uio exposes all BARs in the sysfs pseudo
filesystem, a privileged process can simply mmap them into its address space. vfio
provides an ioctl that returns memory mapped to this area. Devices expose their
configuration registers via this interface where normal reads and writes can be used to
access registers. For example, ixgbe NICs expose all configuration, statistics, and de-
bugging registers via the BAR0 address space. Our implementations of these mappings
are in pci_map_resource() in pci.c and in vfio_map_region() in libixy-vfio.c.

A potential pitfall is that the exact size of the read and writes are important, e.g.,
accessing a single 32 bit register with two separate 16 bit reads will typically fail and
trying to read multiple small registers with one read might not be supported. The
exact semantics are up to the device, Intel’s ixgbe NICs only expose 32 bit registers
that support partial reads (except clear-on-read registers) but not partial writes.

DMA in User Space
DMA is initiated by the PCIe device and allows it to read/write arbitrary physical
addresses. This is used to access packet data and to transfer the DMA descriptors
(pointers to packet data) between driver and NIC. DMA needs to be explicitly enabled
for a device via the PCI configuration space, our implementation is in enable_dma() in
pci.c for uio and in vfio_enable_dma() in libixy-vfio.c for vfio. DMA memory
allocation differs significantly between uio and vfio.

uio DMA memory allocation: Memory used for DMA transfer must stay resident in
physical memory. mlock(2) [87] can be used to disable swapping. However, this only
guarantees that the page stays backed by memory, it does not guarantee that the phys-
ical address of the allocated memory stays the same. The linux page migration mech-
anism can change the physical address of any page allocated by the user space at any
time, e.g., to implement transparent huge pages and NUMA optimizations [97]. Linux
does not implement page migration of explicitly allocated huge pages (2MiB or 1GiB
pages on x86). ixy therefore uses huge pages which also simplify allocating physically
contiguous chunks of memory. Huge pages allocated in user space are used by all in-
vestigated full user space drivers, but they are often passed off as a mere performance
improvement [69, 153] despite being crucial for reliable allocation of DMA memory.

29

https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/pci.c#L42
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/pci.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/libixy-vfio.c#L101
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/libixy-vfio.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/pci.c#L27
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/pci.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/libixy-vfio.c#L21
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/libixy-vfio.c

Chapter 3: Fast User Space Network Drivers

The user space driver hence also needs to be able to translate its virtual addresses
to physical addresses, this is possible via the procfs file /proc/self/pagemap, the
translation logic is implemented in virt_to_phys() in memory.c.

vfio DMAmemory allocation: The previous DMA memory allocation scheme is specific
to a quirk in Linux on x86 and not portable. vfio features a portable way to allocate
memory that internally calls dma_alloc_coherent() in the kernel like an in-kernel
driver would. This syscall abstracts all the messy details and is implemented in our
driver in vfio_map_dma() in libixy-vfio.c. It requires an IOMMU and configures
the necessary mapping to use virtual addresses for the device.

DMA and cache coherency: Both of our implementations require a CPU architecture
with cache-coherent DMA access. Older CPUs might not support this and require
explicit cache flushes to memory before DMA data can be read by the device. Modern
CPUs do not have that problem. In fact, one of the main enabling technologies for high
speed packet IO is that DMA accesses do not actually go to memory but to the CPU’s
cache on any recent CPU architecture.

Interrupts in User Space
vfio features full support for interrupts, vfio_setup_interrupt() in libixy-vfio.c
enables a specific interrupt for vfio and associates it with an eventfd file descriptor.
enable_msix_interrupt() in ixgbe.c configures interrupts for a queue on the device.

Interrupts are mapped to a file descriptor on which the usual syscalls like epoll are
available to sleep until an interrupt occurs, see vfio_epoll_wait() in libixy-vfio.c.

3.3.4 Memory Management
ixy builds on an API with explicit memory allocation similar to DPDK which is a very
different approach from netmap [148] that exposes a replica1 of the NIC’s ring buffer
to the application. Memory allocation for packets was cited as one of the main reasons
why netmap is faster than traditional in-kernel processing [148]. Hence, netmap lets
the application handle memory allocation details. Many forwarding cases can then
be implemented by simply swapping pointers in the rings. However, more complex
scenarios where packets are not forwarded immediately to a NIC (e.g., because they are
passed to a different core in a pipeline setting) do not map well to this API and require

1Not the actual ring buffers to prevent user-space applications from crashing the kernel with invalid
pointers.

30

https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/memory.c#L23
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/memory.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/libixy-vfio.c#L113
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/libixy-vfio.c
https://github.com/emmericp/ixy/blob/f0f2ce884ff6a14cd49d9b9aa1d3518c5a65c180/src/libixy-vfio.c#L150
https://github.com/emmericp/ixy/blob/f0f2ce884ff6a14cd49d9b9aa1d3518c5a65c180/src/libixy-vfio.c
https://github.com/emmericp/ixy/blob/f0f2ce884ff6a14cd49d9b9aa1d3518c5a65c180/src/driver/ixgbe.c#L160
https://github.com/emmericp/ixy/blob/f0f2ce884ff6a14cd49d9b9aa1d3518c5a65c180/src/driver/ixgbe.c
https://github.com/emmericp/ixy/blob/f0f2ce884ff6a14cd49d9b9aa1d3518c5a65c180/src/libixy-vfio.c#L181
https://github.com/emmericp/ixy/blob/f0f2ce884ff6a14cd49d9b9aa1d3518c5a65c180/src/libixy-vfio.c

3.3 Design

adding manual buffer management on top of this API. Further, a ring-based API is very
cumbersome to use compared to one with memory allocation.

It is true that memory allocation for packets is a significant overhead in the Linux
kernel, we have measured a per-packet overhead of 102 cycles when forwarding packets
with Open vSwitch on Linux for allocating and freeing packet memory (measured with
perf, more details in [40]). Note that forwarding 10 Gbit/s with minimum-sized packets
on a single 2.4GHz CPU core leaves a budget of only 161 cycles/packet in total, see
Section 2.2. That means more than half of the available time is spent on memory
management overhead in the Linux kernel.

This overhead is almost completely due to (re-)initialization of the kernel sk_buff
struct: a large data structure with a lot of metadata fields targeted at a general-purpose
network stack. Linux mixes high-level protocol logic with low-level driver and memory
management logic: Every protocol supported by the kernel stores data in this struct,
leading to a more complex re-initialization process (more/bigger writes) on a larger
struct (poorer memory locality). Memory allocation in ixy (with minimum metadata
required for the driver) only adds an overhead of 30 cycles/packet. The idea is that you
only pay for the features you need, the buffer is extensible and you can add your own
additional metadata if necessary.

ixy’s API is the same as DPDK’s API when it comes to sending and receiving packets
and managing memory. It can best be explained by reading the example applications
ixy-fwd.c and ixy-pktgen.c. The transmit-only example ixy-pktgen.c creates a
memory pool, a fixed-size collection of fixed-size packet buffers and pre-fills them with
packet data. It then allocates a batch of packets from this pool, adds a sequence
number to the packet, and passes them to the transmit function. The transmit function
is asynchronous: it enqueues pointers to these packets, the NIC fetches and sends them
later. Previously sent packets are freed asynchronously in the transmit function by
checking the queue for sent packets and returning them to the pool. This means that a
packet buffer cannot be re-used immediately, the ixy-pktgen example looks therefore
quite different from a packet generator built on a classic socket API.

The forward example ixy-fwd.c can avoid explicit handling of memory pools in the
application: the driver allocates a memory pool for each receive ring and automatically
allocates packets. Allocation is done by the packet reception function, freeing is either
handled in the transmit function as before or by dropping the packet explicitly if the
output link is full. Exposing the rings directly similar to netmap could significantly
speed up this simple example application at the cost of usability.

31

https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/app/ixy-fwd.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/app/ixy-pktgen.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/app/ixy-pktgen.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/app/ixy-pktgen.c
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/app/ixy-fwd.c

Chapter 3: Fast User Space Network Drivers

3.3.5 Security Considerations
User space drivers effectively run with root privileges even if they drop privileges after
initializing devices: they can use the device’s DMA capabilities to access arbitrary mem-
ory locations, negating some of the security advantages of running in user space. This
can be mitigated by using the IO memory management unit (IOMMU) to isolate the
address space accessible to a device at the cost of an additional (hardware-accelerated)
lookup in a page table for each memory access by the device.

IOMMUs are available on CPUs offering hardware virtualization features as they were
designed to pass PCIe devices (or parts of them via SR-IOV) directly into VMs in
a secure manner. Linux abstracts different IOMMU implementations via the vfio
framework which is specifically designed for “safe non-privileged userspace drivers” [98]
beside virtual machines. Our vfio backend allows running the driver and application
as an unprivileged user. Of the investigated other frameworks only netmap supports
this. DPDK also offers a vfio backend and has historically supported running with
unprivileged users, but recent versions no longer support this with most drivers. Snabb’s
vfio backend was removed because of the high maintenance burden and low usage.

3.4 ixgbe Implementation

All page numbers and section numbers for the Intel datasheet refer to revision 3.3 of
the 82599ES datasheet [73].

ixgbe devices expose all configuration, statistics, and debugging registers via the BAR0
MMIO region. The datasheet lists all registers as offsets in this configuration space in
Section 9 [73]. We use ixgbe_type.h from Intel’s driver as a machine-readable version
of the datasheet, it contains defines for all register names and offsets for bit fields. This
is technically a violation of both our goals about dependencies and lines of code, but we
only effectively use less than 100 lines that are just defines and simple structs. There
is nothing to be gained from manually copying offsets and names from the datasheet or
this file.

3.4.1 NIC Ring API
NICs expose multiple circular buffers called queues or rings to transfer packets. The
simplest setup uses only one receive and one transmit queue. Multiple transmit queues
are merged on the NIC, incoming traffic is split according to filters or a hashing algorithm
if multiple receive queues are configured. Both receive and transmit rings work in a
similar way: the driver programs a physical base address and the size of the ring. It
then fills the memory area with DMA descriptors, i.e., pointers to physical addresses

32

3.4 ixgbe Implementation

16
B 2 kiB

ixgbe_adv_rx_desc.pkt_addr

Descriptor Ring Memory Pool
Physical Memory

Figure 3.3: DMA descriptors pointing into a memory pool, note that the packets in the memory are
unordered as they can be free’d at different times.

rx index

Virt. addr. of buffer 0
Virt. addr. of buffer 1
Virt. addr. of buffer 2
Virt. addr. of buffer 3

Buffer Table

RDT

RDH

RX Desc.
Ring

descn

desc0 desc1

desc2

Figure 3.4: Overview of a receive queue. The ring uses physical addresses and is shared with the NIC.

where the packet data is stored with some metadata. Sending and receiving packets is
done by passing ownership of the DMA descriptors between driver and hardware via
a head and a tail pointer. The driver controls the tail, the hardware the head. Both
pointers are stored in device registers accessible via MMIO.

The initialization code is in ixgbe.c starting from line 114 for receive queues and from
line 173 for transmit queues. Further details are in the datasheet in Section 7.1.9 and
in the datasheet sections mentioned in the code.

Receiving Packets
The driver fills up the ring buffer with physical pointers to packet buffers in start_rx_
queue() on startup. Each time a packet is received, the corresponding buffer is returned
to the application and we allocate a new packet buffer and store its physical address
in the DMA descriptor and reset the ready flag. We also need a way to translate

33

https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/ixgbe.c#L114
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/ixgbe.c#L173
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/ixgbe.c#L64
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/ixgbe.c#L64

Chapter 3: Fast User Space Network Drivers

the physical addresses in the DMA descriptor found in the ring back to its virtual
counterpart on packet reception. This is done by keeping a second copy of the ring
populated with virtual instead of physical addresses, this is then used as a lookup table
for the translation.

Figure 3.3 illustrates the memory layout: the DMA descriptors in the ring to the left
contain physical pointers to packet buffers stored in a separate location in a memory
pool. The packet buffers in the memory pool contain their physical address in a meta-
data field. Figure 3.4 shows the RDH (head) and RDT (tail) registers controlling the
ring buffer on the right side, and the local copy containing the virtual addresses to
translate the physical addresses in the descriptors in the ring back for the application.
ixgbe_rx_batch() in ixgbe.c implements the receive logic as described by Sections
1.8.2 and 7.1 of the datasheet. It operates on batches of packets to increase performance.
A naïve way to check if packets have been received is reading the head register from the
NIC incurring a PCIe round trip. The hardware also sets a flag in the descriptor via
DMA which is far cheaper to read as the DMA write is handled by the last-level cache
on modern CPUs. This is effectively the difference between an LLC cache miss and hit
for every received packet.

Transmitting Packets
Transmitting packets follows the same concept and API as receiving them, but the func-
tion is more complicated because the interface between NIC and driver is asynchronous.
Placing a packet into the ring does not immediately transfer it and blocking to wait for
the transfer is infeasible. Hence, the ixgbe_tx_batch() function in ixgbe.c consists
of two parts: freeing packets from previous calls that were sent out by the NIC followed
by placing the current packets into the ring. The first part is often called cleaning and
works similar to receiving packets: the driver checks a flag that is set by the hardware
after the packet associated with the descriptor is sent out. Sent packet buffers can then
be free’d, making space in the ring. Afterwards, the pointers of the packets to be sent
are stored in the DMA descriptors and the tail pointer is updated accordingly.

Checking for transmitted packets can be a bottleneck due to cache thrashing as both
the device and driver access the same memory locations [73]. The 82599 hardware im-
plements two methods to combat this: marking transmitted packets in memory occurs
either automatically in configurable batches on device side, this can also avoid unnec-
essary PCIe transfers. We tried different configurations (code in init_tx()) and found
that the defaults from Intel’s driver work best. The NIC can also write its current
position in the transmit ring back to memory periodically (called head pointer write
back) as explained in Section 7.2.3.5.2 of the datasheet. However, no other driver im-

34

https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/ixgbe.c#L389
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/ixgbe.c#L442
https://github.com/emmericp/ixy/blob/b1cfa2240655f2644f7218abad3141236168f005/src/driver/ixgbe.c#L173

3.5 Performance Evaluation

plements this feature despite the datasheet referring to the normal marking mechanism
as “legacy”. We implemented support for head pointer write back on a branch [102] but
found no measurable performance improvements or effects on cache contention.

Batching
Each successful transmit or receive operation involves an update to the NIC’s tail pointer
register (RDT or TDT for receive/transmit), a slow operation. This is one of the reasons
why batching is so important for performance. Both the receive and transmit function
are batched in ixy, updating the register only once per batch.

Offloading Features
ixy currently only enables CRC checksum offloading. Unfortunately, packet IO frame-
works (e.g., netmap) are often restricted to this bare minimum of offloading features.
DPDK is the exception here as it supports almost all offloading features offered by the
hardware. However, its receive and transmit functions pay the price for these features
in the form of complexity.

We will try to find a balance and showcase selected simple offloading features in ixy in
the future. These offloading features can be implemented in the receive and transmit
functions, see comments in the code. This is simple for some features like VLAN
tag offloading and more involved for more complex features requiring an additional
descriptor containing metadata information.

3.5 Performance Evaluation

Recall the key performance numbers from Section 2.2: We want to handle 14.88 million
packets per second (Mpps) on a single core, leaving us with a time budget of 67.2 ns
per packet. ixy is much faster faster than that, so we increase the load and use two
10Gbit/s ports (29.76Mpps with minimum-sized packets) at the same time on the
same CPU core. We compare ixy’s ixy-fwd and compare it to a custom DPDK-based
forwarder implementing the same features.

Both forwarders move packets bidirectionally between two ports and modify a byte in
the packet to simulate a somewhat realistic workload. Not doing so would be highly
unrealistic: Loading data from the L3 cache (where the NIC puts the packet via DMA)
into the actual core of the CPU takes 53 clock cycles [109], a significant fraction of the
available time budget. We use an Intel Xeon E5-2620 v3 2.4GHz CPU here with several
different Intel NICs based on the ixgbe family (Server 1 from Section 2.4). Section 2.1
gives an overview over this architecture.

35

Chapter 3: Fast User Space Network Drivers

1.2 1.3 1.5 1.7 1.9 2 2.25 2.4
0

10

20

30
Line Rate (64Byte/Packet)

CPU Frequency [GHz]

P
a
ck
et

R
a
te

[M
p
p
s]

Ixy 1 Dual-Port NIC Ixy 2 NICs

DPDK 1 Dual-Port NIC DPDK 2 NICs

Figure 3.5: Bidirectional single-core forwarding performance with varying CPU speed, batch size 32.

3.5.1 Methodology
We use the MoonGen packet generator developed for this dissertation (Chapter 5),
loading the system with the full rate of 29.76Mpps for all experiments unless men-
tioned otherwise in the description of a test setup. All measurements of throughput are
taken by loading the system for at least 10 seconds and taking an average throughput
observed by the packet generator every second. The packet rate varies by less than
0.1% both within a single run and between different runs, so we omit error bars in the
diagrams. Latency measurements are based on MoonGen’s hardware timestamping (see
Section 5.6).

3.5.2 Throughput
To quantify the baseline performance and identify bottlenecks, we run the forwarding
example while increasing the CPU’s clock frequency from 1.2GHz to 2.4GHz. Figure 3.5
compares the throughput of our forwarder on ixy and on DPDK when forwarding across
the two ports of a dual-port NIC and when using two separate NICs.

The better performance of both ixy and DPDK when using two separate NICs over one
dual-port NIC indicates a hardware limit. This bottleneck likely happens at the PCIe
level, but we were never able to confirm this with the available performance counters.
We run this test on Intel X520 (82599-based) and Intel X540 NICs with identical results.
ixy requires 96 CPU cycles to forward a packet, DPDK only 61.

36

3.5 Performance Evaluation

1 2 4 8 16 32 64 128 256
0

10

20

30 Line Rate

Batch Size

P
a
ck
et

R
a
te

[M
p
p
s]

Ixy 1.2 GHz Ixy 2.4 GHz

DPDK 1.2 GHz DPDK 2.4 GHz

Figure 3.6: Bidirectional single-core forwarding performance with varying batch size.

The high performance of DPDK can be attributed to its more complex transmit path.
As noted in the beginning of this chapter, DPDK features 5,400 lines of code whereas
ixy only needs 127 lines. This more complex code features multiple different imple-
mentations of the transmit logic, each specialized for particular requirements. In this
experiment DPDK picked a vectorized code path specialized to the SIMD instructions
available on this CPU. It could only do so because we did not enable offloading features
at device configuration time (meaning the feature set is similar to ixy). DPDK also
requires us to use a batch size of at least 4 when used in this mode.

Disabling this transmit path in the DPDK configuration, or using an older version of
DPDK, increases the CPU cycles per packet to 91 cycles packet, still slightly faster than
ixy despite doing more (checking for more offloading flags). Overall, we consider ixy
fast enough for our purposes. For comparison, performance evaluations of older (2015)
versions of DPDK, PF_RING, and netmap and required ≈100 cycles/packet for DPDK
and PF_RING and ≈120 cycles/packet for netmap [51].

3.5.3 Batching
Batching is one of the main drivers for performance [52, 89, 14]. DPDK even requires
a minimum batch size of 4 when using the SIMD transmit path. Receiving or sending
a packet involves an access to the queue index registers, invoking a costly PCIe round-
trip. Figure 3.6 shows how the performance increases as the batch size is increased
in the bidirectional forwarding scenario with two NICs. Increasing batch sizes have

37

Chapter 3: Fast User Space Network Drivers

1 2 4 8 16 32 64 128 256
0

10

20

30 Line Rate

Batch Size

P
a
ck
et

R
a
te

[M
p
p
s]

No prefetching, 1.2 GHz No prefetching, 2.4 GHz

With prefetching, 1.2 GHz With prefetching, 2.4 GHz

Figure 3.7: Effect of prefetching on bidirectional single-core forwarding performance with varying
batch size.

diminishing returns: this is especially visible when the CPU is only clocked at 1.2GHz.
Reading the performance counters for all caches shows that the number of L1 cache
misses per packet increases as the performance gains drop off. Too large batches thrash
the L1 cache, possibly evicting lookup data structures in a real application. Therefore,
batch sizes should not be chosen too large. We conclude that a batch size of between
32 and 64 should be selected. Latency is also impacted by the batch size, but the effect
is negligible compared to other buffers (e.g., NIC ring size of 512).

3.5.4 Memory Prefetching
DMA writes by the NIC are stored in the CPU’s L3 cache by the memory controller
(cf. Section 2.1), so traditional memory prefetching from main memory to the caches
cannot be applied. However, memory prefetching is also effective when applied to
different layers of a cache hierarchy. We implemented prefetching in the receive loop
of the driver to evaluate its effect, the code is found on the branch prefetching. The
driver accesses all DMA descriptors within a batch, each DMA descriptor points to a
memory buffer containing both metadata and data. Applications on top of the driver
will then only access the memory buffer itself; this indirection between DMA descriptor
and packet buffer is an opportunity for prefetching.

Figure 3.7 shows the effects of explicitly prefetching packet data in the receive loop of
a driver on the forwarding application running the same benchmark as the previous
section. Prefetching at a batch size of 1 has no measurable effect because the access on

38

3.5 Performance Evaluation

Intr./polling Load Median 99th perc. 99.99th perc. Max
Polling 0.1Mpps 3.8µs 4.7µs 5.8µs 15.8µs
Intr., no throttling 0.1Mpps 7.7µs 8.4µs 11.0µs 76.6µs
Intr., ITR 10µs 0.1Mpps 11.3µs 11.9µs 15.3µs 78.4µs
Intr., ITR 200µs 0.1Mpps 107.4µs 208.1µs 240.0µs 360.0µs
Polling 0.4Mpps 3.8µs 4.6µs 5.8µs 16.4µs
Intr., no throttling 0.4Mpps 7.3µs 8.2µs 10.9µs 53.9µs
Intr., ITR 10µs 0.4Mpps 9.0µs 14.0µs 25.8µs 86.1µs
Intr., ITR 200µs 0.4Mpps 105.9µs 204.6µs 236.7µs 316.2µs
Polling 0.8Mpps 3.8µs 4.4µs 5.6µs 16.8µs
Intr., no throttling 0.8Mpps 5.6µs 8.2µs 10.8µs 81.1µs
Intr., ITR 10µs 0.8Mpps 9.2µs 14.1µs 31.0µs 70.2µs
Intr., ITR 200µs 0.8Mpps 102.8µs 198.8µs 226.1µs 346.8µs

Table 3.1: Forwarding latency by interrupt/poll mode.

the data by the application immediately follows the access on the DMA descriptor by
the driver. Larger batch sizes lead to a larger temporal difference between these two
accesses giving the CPU the necessary time to complete the prefetch in the background.
We observe a performance increase of up to 31% for the somewhat unrealistic case of
the 1.2GHz CPU. There is one scenario in which explicit prefetching harms perfor-
mance: when hitting the aforementioned hardware bottleneck at ≈22Mpps. Inserting
the prefetch instruction drops performance by up to 7% in this case, indicating that the
prefetch is being executed in the same hardware resource that causes the bottleneck.

We conclude that explicit prefetching is not crucial for performance in realistic scenarios
(batch size 32 to 64, CPU at full clock speed) on the Haswell EP CPU platform evaluated
here. The CPU’s heuristics about implicitly prefetching are sufficient since the packets
are stored and handled sequentially in an easily predictable pattern.

3.5.5 Interrupts
Interrupts are a common mechanism to reduce power consumption at low loads. How-
ever, interrupts are expensive: they require multiple context switches. This makes them
unsuitable for high packet rates. NICs commonly feature interrupt throttling (ITR,
configured in µs between interrupts on the NIC used here) to prevent overloading the
system. Operating systems often disable interrupts periodically and switch to polling
during periods of high loads (e.g., Linux NAPI, for more details please refer to [16]).
Our forwarder loses packets in interrupt mode at rates of above around 1.5Mpps even
with aggressive throttling configured on the NIC. All other tests except this one are
therefore conducted in pure polling mode.

39

Chapter 3: Fast User Space Network Drivers

A common misconception is that interrupts reduce latency, but they actually increase
latency. The reason is that an interrupt first needs to wake the CPU from low-power
states (power states down to C6 are enabled on the test system), trigger a context switch
into interrupt context, trigger another switch to the driver and then poll the packets
from the NIC1. Note that if the interrupt rate is sufficiently high such that the system
is not an idle state when the interrupt arrives, then this penalty does not apply. Using
interrupts in this case is just unnecessary overhead in this case which is why Linux NAPI
does switch to polling under higher load. Yet, handling the packet with the interrupt
is still slower than permanently polling: the interrupt is additional work, it still needs
to poll after receiving the interrupt.

Table 3.1 shows latencies at low rates (where interrupts are effective) with and without
interrupt throttling (ITR) and polling. Especially tail latencies are affected by using
interrupts instead of polling. All timestamps were acquired with a fiber-optic splitter
and MoonGen taking a hardware timestamp of every single packet. Each measurement
was run for 10 seconds, so the data is based on 1,000,000 to 8,000,000 timestamps as
the load increases from 0.1Mpps to 0.8Mpps.

These results show that interrupts with a low throttle rate are feasible at low packet
rates. Interrupts are poorly supported in other user space drivers: Snabb offers no
interrupts, DPDK has limited support for interrupts (only some drivers) without built-
in automatic switching between different modes. Frameworks relying on a kernel driver
can use the default driver’s interrupt features, especially netmap offers good support
for power-saving via interrupts.

3.5.6 Profiling
We run perf on ixy-fwd running under full bidirectional load at 1.2GHz with two
different NICs using the default batch size of 32 to ensure that the CPU is the only
bottleneck. The performance scales linearly with CPU frequency with these settings
in this frequency range, so the CPU is the limiting factor. perf allows profiling with
the minimum possible effect on the performance: it periodically samples the current
execution state of a given program and derives utilization from this. We ran perf
for 5 minutes with a sampling frequency of 997Hz, a prime number to avoid overlap
with other period processes. Throughput drops by only ≈5% while perf is running.

1The same is true for Linux kernel drivers, the actual packet reception is not done in the hardware
interrupt context but in a software interrupt

40

3.5 Performance Evaluation

App/Function RX TX Forwarding Memory Mgmt.
ixy-fwd 44.8 14.7 12.3 30.4
ixy-fwd-inline 57.0 28.3 12.5 ?∗
DPDK v17.11 l2fwd 35.4 20.4 †6.1 ?∗
DPDK v1.6 l2fwd‡ 41.7 53.7 †6.0 ?∗

∗Memory operations inlined, separate profiling not possible.
†DPDK’s driver explicitly prefetches packet data on RX, so this is faster
despite performing the same action of changing one byte.

‡Old version 1.6 (2014) of DPDK, far fewer SIMD optimizations, measured
on a different system/kernel due to compatibility.

Table 3.2: Processing time in cycles per packet.

However, we have no way of guaranteeing that this overhead is distributed equally across
all functions.

Table 3.2 shows where CPU time is spent on average per forwarded packet and compares
it to DPDK. Receiving is slower because the receive logic performs the initial fetch, the
following functions operate on the L1 cache. ixy’s receive function still leaves room for
improvements, it is less optimized than the transmit function. There are several places
in the receive function where DPDK avoids memory accesses by batching compared
to ixy. However, these optimizations were not applied for simplicity in ixy: DPDK’s
receive function is quite complex and full of SIMD intrinsics leading to poor readability.
We also compare an old version of DPDK in the table that did not yet contain as many
optimizations; ixy outperforms the old DPDK version on the under-clocked CPU.

Overhead for memory management is significant (but still low compared to the 101
cycles/packet in the Linux kernel from Section 3.3.4). 59% of the time is spent in non-
batched memory operations and none of the calls are inlined. Inlining these functions
increases throughput by 6.5% but takes away our ability to account time spent in them.
Overall, the overhead of memory management is larger than we initially expected, but
we still think explicit memory management for the sake of a usable API is a good trade-
off. This is especially true for ixy aiming at simplicity, but also for other frameworks
targeting complex applications. Simple forwarding can easily be done on an exposed ring
interface, but anything more complex that does not sent out packets immediately (e.g.,
because they are processed further on a different core) requires memory management
in the user’s application with a similar performance impact.

3.5.7 Queue Sizes
Our driver supports descriptor ring sizes in power-of-two increments between 64 and
4096, the hardware supports more sizes but the restriction to powers of two simplifies
wrap-around handling. Linux defaults to a ring size of 256 for this NIC, DPDK’s

41

Chapter 3: Fast User Space Network Drivers

64 128 256 512 1,024 2,048
15

20

25

Line Rate

RX Descriptor Ring Size

P
a
ck
et

R
a
te

[M
p
p
s]

TX Ring Size = 64 TX Ring Size = 1024

TX Ring Size = 128 TX Ring Size = 2048

TX Ring Size = 256 TX Ring Size = 4096

TX Ring Size = 512

Figure 3.8: Throughput (64Byte packets) with varying descriptor ring sizes at 2.4GHz.

example applications configure different sizes; the l2fwd forwarder sets 128/512 RX/TX
descriptors. Larger ring sizes such as 8192 are sometimes recommended to increase
performance [12] (source refers to the size as kB when it is actually number of packets).
Figure 3.8 shows the throughput of ixy with various ring size combinations. There is no
measurable impact on the maximum throughput for ring sizes larger than 64. Scenarios
where a larger ring size can still be beneficial might exist: for example, an application
producing a large burst of packets significantly faster than the NIC can handle for a
very short time.

The second performance factor that is impacted by ring sizes is the overall latency
caused by unnecessary buffering. Table 3.3 shows the latency of the ixy forwarder with
different ring sizes. Latency was measured by sampling 1,000 packets per second with
MoonGen over a period of at least 180 seconds.

The results show a linear dependency between ring size and latency when the system is
overloaded, but the effect under lower loads are negligible. Full or near full buffers are

Ring Sizes Load Median 99th perc. 99.9th perc.
64 15Mpps 5.2µs 6.4µs 7.2µs
512 15Mpps 5.2µs 6.5µs 7.5µs
4096 15Mpps 5.4µs 6.8µs 8.7µs
64 ∗29Mpps 8.3µs 9.1µs 10.6µs
512 ∗29Mpps 50.9µs 52.3µs 54.3µs
4096 ∗29Mpps 424.7µs 433.0µs 442.1µs

∗Device under test overloaded, packets were lost

Table 3.3: Forwarding latency by ring size and load.

42

3.5 Performance Evaluation

64 128 256 512 1,024 2,048 4,096

10.5

11

11.5

RX/TX Ring Size

P
a
ck
et

R
a
te

[M
p
p
s]

0

1

2

3

4

d
T
L
B

M
is
s
R
at
io

[
%

]

Ixy 1.2 GHz, 4 kiB Pages Ixy 1.2 GHz, 2MiB Pages

dTLB Misses, 4 kiB Pages dTLB Misses, 2MiB Pages

Figure 3.9: Single-core forwarding performance with and without huge pages and their effect on the
TLB.

no exception on systems forwarding Internet traffic due to protocols like TCP that try
to fill up buffers completely [54]. We conclude that tuning tips like setting ring sizes to
8192 [12] are detrimental for latency and likely do not help with throughput. ixy uses
a default ring size of 512 at the moment as a trade-off between providing some buffer
and avoiding high worst-case latencies.

3.5.8 Page Sizes without IOMMU
It is not possible to allocate DMA memory on small pages from user space in Linux
in a reliable manner without using the IOMMU as described in Section 3.3.3. Despite
this, we have implemented an allocator that performs a brute-force search for physically
contiguous normal-sized pages from user space. We run this code on a system without
NUMA and with transparent huge pages and page-merging disabled to avoid unexpected
page migrations. The code for these benchmarks is hidden on a branch [101] due to its
unsafe nature on some systems (we did lose a file system to rogue DMA writes on a
misconfigured server). Benchmarks varying the page size are interesting despite these
problems: kernel drivers and user space packet IO frameworks using kernel drivers only
support normal-sized pages. Existing performance claims about huge pages in drivers
are vague and unsubstantiated [69, 153].

Figure 3.9 shows that the impact on performance of huge pages in the driver is small.
The performance difference is 5.5% with the maximum ring size, more realistic ring
sizes only differ by 1-3%. This is not entirely unexpected: the largest queue size of 4096

43

Chapter 3: Fast User Space Network Drivers

1 2 4 8 16 32 64 128 256
0

5

10

15

20

Batch size

T
h
ro
u
gh

p
u
t
[M

p
p
s]

No IOMMU, 4KiB pages

With IOMMU, 2MiB pages

With IOMMU, 4KiB pages

Figure 3.10: IOMMU impact on single-core forwarding at 2.4GHz.

entries is only 16 kiB large, storing pointers to up to 16MiB packet buffers. Huge pages
are designed for, and usually used with, large data structures, e.g., big lookup tables for
forwarding. The effect measured here is likely larger when a real forwarding application
puts additional pressure on the TLB (4096 entries on the CPU used here) due to its
other internal data structures. One should still use huge pages for other data structures
in a packet processing application, but a driver not supporting them is not as bad as
one might expect when reading claims about their importance from authors of drivers
supporting them.

3.5.9 Page Sizes and IOMMU Overhead
Memory access overhead changes if the device has to go through the IOMMU for every
access. Documentation for Intel’s IOMMU is sparse: The TLB size is not documented
and there are no dedicated performance counters. Neugebauer et al. experimentally
determined a TLB size of 64 entries with their pcie-bench framework [112] (vs. 4096
entries in the normal TLB). Our observations are also consistent with a TLB size of
only 64 entries. They note a performance impact for small DMA transactions with
large window sizes: 64 byte read throughput drops by up to 70%, write throughput by
up to 55%. 256 byte reads are 30% slower, only 512 byte and larger transactions are
unaffected [112]. Their results are consistent across four different Intel microarchitec-
tures including the CPU we are using here. They explicitly disable huge pages for their
IOMMU benchmark.

44

3.5 Performance Evaluation

Our benchmark triggers a similar scenario when not used with huge pages: We ask
the NIC to transfer a large number of small packets via DMA. Note that packets in a
batch are not necessarily contiguous in memory: Buffers are not necessarily allocated
sequentially and each DMA buffer is 2KiB large by default, of which only the first n
bytes will be transferred. This means only two packets share a 4 kiB page, even if the
packets are small. 2KiB is a common default in other drivers as it allows handling
normal sized frames without chaining several buffers (the NIC only supports DMA
buffers that are a multiple of 1 kiB). The NIC therefore has to perform several small
DMA transactions, i.e., the scenario is equivalent to a large transfer window in pcie-
bench.

Figure 3.10 shows that the IOMMU does not affect the performance if used with 2MiB
pages. However, the default 4KiB pages (that are safe and easy to use with vfio and
the IOMMU) are affected by the small TLB in the IOMMU. The impact of the IOMMU
on our real application is slightly smaller than in the synthetic pcie-bench tests: The
IOMMU decreases throughput by 62% for the commonly used batch size of 32 with small
packets when not using huge pages. Running the test with 128 byte packets decreases
throughput by 33% and 256 byte packets are not affected at all.

However, enabling huge pages completely mitigates the impact of the small TLB in the
IOMMU. Note that huge pages for the IOMMU are only supported since the Intel Ivy
Bridge CPU generation.

3.5.10 NUMA Considerations
Non-uniform memory access (NUMA) architectures found on multi-CPU servers present
additional challenges. Modern systems integrate cache, memory controller, and PCIe
root complex in the CPU itself instead of using a separate IO hub. This means that
a PCIe device is attached to only one CPU in a multi-CPU system, access from or to
other CPUs needs to pass over the CPU interconnect (QuickPath Interconnect on our
system). At the same time, the tight integration of these components allows the PCIe
controller to transparently write DMA data into the cache instead of main memory. This
works even when direct cache access (DCA) is not used (DCA is only supported by the
kernel driver, none of the full user space drivers implement it). Intel Data Direct I/O
(DDIO) is another optimization to prevent memory accesses by DMA [75]. However,
we found by reading performance counters that even CPUs not supporting DDIO do
not perform memory accesses in a typical packet forwarding scenario. DDIO is poorly
documented and exposes no performance counters, its exact effect on modern systems
is unclear. All recent (since 2012) CPUs supporting multi-CPU systems also support
DDIO. Our NUMA benchmarks where obtained on a different system, Server 2 from

45

Chapter 3: Fast User Space Network Drivers

Ingress∗ Egress∗ CPU† Memory‡ Throughput
Node 0 Node 0 Node 0 Node 0 10.8Mpps
Node 0 Node 0 Node 0 Node 1 10.8Mpps
Node 0 Node 0 Node 1 Node 0 7.6Mpps
Node 0 Node 0 Node 1 Node 1 6.6Mpps
Node 0 Node 1 Node 0 Node 0 7.9Mpps
Node 0 Node 1 Node 0 Node 1 10.0Mpps
Node 0 Node 1 Node 1 Node 0 8.6Mpps
Node 0 Node 1 Node 1 Node 1 8.1Mpps

∗NUMA node connected to the NIC
†Thread pinned to this NUMA node
‡Memory pinned to this NUMA node

Table 3.4: Unidirectional forwarding on a NUMA system, both CPUs at 1.2 GHz.

Section 2.4, (2x Intel Xeon E5-2630 v4) than the previous results because we want to
avoid potential problems with NUMA for the other setups.

Our test system has one dual-port NIC attached to NUMA node 0 and a second one
to NUMA node 1. Both the forwarding process and the memory used for the DMA
descriptors and packet buffers can be explicitly pinned to a NUMA node. This gives us
8 possible scenarios for unidirectional packet forwarding by varying the packet path and
pinning. Table 3.4 shows the throughput at 1.2GHz. Forwarding from and to a NIC
at the same node shows one unexpected result: pinning memory, but not the process
itself, to the wrong NUMA node does not reduce performance. The explanation for this
is that the DMA transfer is still handled by the correct NUMA node to which the NIC
is attached, the CPU then caches this data while informing the other node. However,
the CPU at the other node never accesses this data and there is hence no performance
penalty. Forwarding between two different nodes is fastest when the memory is pinned
to the egress nodes and CPU to the ingress node and slowest when both are pinned
to the ingress node. Real forwarding applications often cannot know the destination of
packets at the time they are received, the best guess is therefore to pin the thread to the
node local to the ingress NIC and distribute packet buffer across the nodes. Latency
was also impacted by poor NUMA mapping, we measured an additional 1.7µs when
unnecessarily crossing the NUMA boundary.

3.6 Conclusions

The insights gained in this chapter address research question Q1 from Section 1.2: What
makes software-based packet processing fast? We now have an understanding about the
foundations and basic principles of fast packet processing in software.

46

3.7 Author’s Contributions

Having a completely custom driver allows us to look at individual effects in isolation.
Our key findings are that it is feasible to receive, modify, and forward a packet in only
96 clock cycles. It is crucial to have a batch size of at least 32 packets to achieve this,
see Sections 3.5.2 and 3.5.3. Further, we find that the NIC’s ring buffers should not be
configured to more than 512 entries in order to keep the latency at below 100µs even
under overload conditions (Section 3.5.7). Performance is not impacted by using the
IOMMU (to run without root privileges) if huge pages (2MiB) are used, we measure a
decrease of up to 62% in throughput with the default 4KiB page size (see Section 3.5.9).
We can now apply these learnings when going up in the stack in the following chapters.

The main takeaway from this chapter is the architecture of ixy (Section 3.3). ixy
serves as a base for our high-level language driver implementations following in the
next chapter. All following drivers are built on the exact same ideas to allow for a fair
comparison. The experiments conducted here also serve as baseline for a comparison of
drivers written in different languages for a quantitative comparison of different language
features.

3.7 Author’s Contributions

Sections 3.1 to 3.5 are based on the following publication [44]:

Paul Emmerich, Maximilian Pudelko, Simon Bauer, Stefan Huber, Thomas Zwickl,
and Georg Carle. “User Space Network Drivers”. In: ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS 2019). IEEE.
Cambridge, UK, Sept. 2019

The author of this dissertation came up with the design for the ixy framework and
implemented its core together with the ixgbe (82599) driver. This includes hugepage-
based memory management logic that works without using vfio, the batch-based API,
and the ixgbe poll-mode driver itself. The author contributed to the IOMMU/vfio
design.

All experiments and benchmarks presented here were conceived and fully specified by
the author. The author also made contributions to the executions of the experiments
and test runs. All white-box profiling experiments were done by the author. Evaluation
and analysis of all experiment results was done by the author.

The following significant changes vs. the paper were made for this dissertation:

• Memory prefetching, an entirely new feature, was implemented for this disserta-
tion.

47

Chapter 3: Fast User Space Network Drivers

• The evaluation of the effects of memory prefetching is new.

• References to our VirtIO implementation, which is not related to the main points
of our thesis, have been removed.

48

Chapter 4

High-Level Languages for Network Dri-
vers

Our driver presented in the last chapter is written in C and is a stepping stone in
our journey towards understanding the use of high-level languages in the context of
network applications. A traditional and simple implementation in C serves as a good
baseline for comparisons with other languages as well as a universally readable reference
implementation.

Understanding if and how high-level languages can be used for software-based packet
processing systems (research question Q2) is the next step in our journey. We take
an experimental approach in this dissertation: We re-implement the same driver in a
variety of different languages and compare them.

Our goal for this chapter is to understand trade-offs: which language features are helpful
for network systems? What is their cost? For example, a language with garbage collec-
tion avoids bugs related to memory safety (a common problem in C), but the garbage
collector can stop our program at unpredictable times thus causing unpredictable la-
tency. We observe tail latencies of several hundred microseconds in some garbage col-
lected languages such as OCaml, Haskell and JavaScript (Section 4.7). Quantifying this
and other effects allows us to make an informed choice about the language selection.
We find that Rust is the ideal choice for a high-level language in drivers, we are able to
write 87% of the driver code in memory-safe code (Section 4.4.3) while achieving the
same latency and only sacrificing 2% throughput (Section 4.6.2).

The remainder of this chapter is based on our publication about high-level languages
for drivers which is joint work by Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex

Chapter 4: High-Level Languages for Network Drivers

Egger, Esaú García Sánchez-Torija, Thomas Günzel, Sebastian Di Luzio, Alexandru
Obada, Maximilian Stadlmeier, Sebastian Voit, and Georg Carle [43]. A full account of
the author’s contributions is given in Section 4.9.

4.1 Introduction

C has been the go-to language for writing kernels since its inception. Device drivers are
also mainly written in C, or restricted subsets of C++ providing barely no additional
safety features, simply because they are tightly coupled with the kernel in all mainstream
operating systems. Network device drivers managed to escape the grasp of the kernel
with user space drivers such as DPDK [96] in the last years. Yet, all drivers in DPDK
are written in C as large parts of them are derived from kernel implementations. DPDK
consists of more than drivers: it is a whole framework for building fast packet processing
apps featuring code from utility functions to complex data structures — and everything
is written in C. This is not an unreasonable choice: C offers all features required for
low-level systems programming and allows fine-grained control over the hardware to
achieve high performance.

But with great power comes great responsibility: writing safe C code requires experience
and skill. It is easy to make subtle mistakes that introduce bugs or even security
vulnerabilities. Some of these bugs can be prevented by using a language that enforces
certain safety properties of the program. Our research questions are: Which languages
are suitable for driver development? What are the costs of safety features? A secondary
goal is to simplify driver prototyping and development by providing the primitives
required for user space drivers in multiple high-level languages.

We implement a user space driver tuned for performance for the Intel ixgbe family of
network controllers (82599ES, X540, X550, and X552) in 9 different high-level languages
featuring all major programming paradigms, memory management modes, and compila-
tion techniques. All implementations are written from scratch in idiomatic style for the
language by experienced programmers in the respective language and follow the same
basic architecture, allowing for a performance comparison between the high-level lan-
guages and our reference C implementation. For most languages our driver is the first
PCIe driver implementation tuned for performance enabling us to quantify the costs of
different language safety features in a wide range of high-level languages. Table 4.1 lists
the core properties of the selected languages.

50

4.2 Background and Related work

Language Main paradigm∗ Memory management Compilation
C Imperative Manual Compiled
Rust Imperative Ownership/RAII† Compiled (LLVM)
Go Imperative Garbage collection Compiled
C# Object-oriented Garbage collection JIT
Java Object-oriented Garbage collection JIT
OCaml Functional Garbage collection Compiled
Haskell Functional Garbage collection Compiled (LLVM)
Swift Protocol-oriented [1] Reference counting Compiled (LLVM)
JavaScript Imperative Garbage collection JIT
Python Imperative Garbage collection Interpreted
∗ All selected languages are multi-paradigm
† Ownership Based Resource Management/Resource Acquisition Is Initialization

Table 4.1: Languages used by our implementations

4.2 Background and Related work

Operating systems and device drivers predate the C programming language (1972 [145]).
Operating systems before C were written in languages on an even lower level: assembly
or ancient versions of ALGOL and Fortran. Even Unix started out in assembly language
in 1969 before it was re-written in C in 1973 [146]. C is a high-level language compared
to the previous systems: it allowed Unix to become the first portable operating system
running on different architectures in 1977 [151]. The first operating systems in a lan-
guage resembling a modern high-level language were the Lisp machines in the 70s. They
featured operating systems written in Lisp that were fast due to hardware acceleration
for high-level language constructs such as garbage collection. Both the specialized CPUs
and operating systems died in the 80s [30]. Operating systems development has been
mostly stuck with C since then.

Low-level packet forwarding applications traditionally deployed in the kernel due to
performance requirements are moving to dedicated user-space drivers to improve per-
formance even further. DPDK is the most feature-complete and commonly used user
space driver and is free of restrictions on the choice of programming language imposed
by the kernel environment. Yet, all drivers in DPDK are still written in C because large
part of their implementations are taken from kernel drivers. Snabb [99] (less popular
than DPDK and only 4 drivers vs. DPDK’s 27 drivers) is the only other performance-
optimized user space driver not written in C: It comes with drivers written in Lua
running in LuaJIT [123]. However, it makes extensive use of the LuaJIT foreign func-
tion interface [124] that erodes memory safety checks that are usually present in Lua.
We are not including Snabb in our performance comparison because its architecture re-

51

Chapter 4: High-Level Languages for Network Drivers

quires additional ring buffers to connect drivers and “apps”, this makes it significantly
slower than our drivers for the evaluated use case.

Related work on high-level languages used in domains traditionally dominated by low-
level languages can be split into two categories:

1. Operating systems and unikernels in high-level languages

2. Language wrappers making low-level libraries available to applications in high-
level languages

These are discussed with our implementations in the respective languages in Section 4.4.

Unrelated work: Orthogonal to our proposal is the work on XDP [82] as it does not
replace drivers but adds a faster interface on top of them. Moreover, eBPF code for
XDP is usually written in a subset of C [27]. P4 [21] also deserves a mention here, it is
a high-level language for packet processing (but not for the driver itself). It primarily
targets hardware, software implementations run on top of existing C drivers, e.g., T4P4S
is using DPDK [164].

4.3 Motivation

Proponents of operating systems written in high-level languages such as Biscuit (Go) [31],
Singularity (Sing#, related to C#) [65], JavaOS [147], House (Haskell) [61], and Redox
(Rust) [143] tout their safety benefits over traditional implementations. Of these only
Redox is under active development with the goal of becoming a production system,
the others are research projects and/or abandoned. These systems are safer, but it is
unlikely that the predominant desktop and server operating systems will be replaced by
them any time soon.

Safe and secure operating systems can also be written in C by applying formal methods.
Doing so gives even stricter guarantees than the aforementioned high-level language
systems. One example of such an effort is the seL4 project, a microkernel written in
C. Their kernel consists of 8,700 lines of C and 600 lines of assembly and it required
an effort of 2.2 person years to build. The formal verification took another 20 person
years, showing that full format verification is an enormous overhead reserved for highly
specialized requirements. Their work is orthogonal to ours: seL4 relies on user space
drivers which are not included these numbers. [91]

Our work builds on Linux for practicality reasons, but the concepts are independent
of the underlying operating system. Given the immense effort required for full formal
verification it is not likely that we will see formally verified drivers on commodity servers

52

4.3 Motivation

10M 100M 1G 2.5G 10G 40G100G
102

103

104

105

0.3624x+ 5781

Max supported speed

L
in
es

of
co
d
e

DPDK drivers Linux drivers

Figure 4.1: NIC technology node vs. driver size

in the near future. It is not our goal to build a perfect system, we want to reduce
the attack surface (see Section 4.3.2). We argue that the goal of building a better
operating system with a lower attack surface can be achieved without replacing the entire
operating system. It is feasible to start writing user space drivers in safer languages
today, gradually moving parts of the system to better languages.

Drivers are also the largest attack surface (by lines of code) in modern operating systems
and they keep growing in complexity as more and more features are added. There are
real-world security issues in drivers that could have been prevented if they were written
in a high-level language [31]. User space drivers are more isolated from the rest of the
system than kernel drivers and can even run without root privileges if IOMMU hardware
is available, see Section 3.3.5.

4.3.1 Growing Complexity of Drivers
66% of the code in Linux 4.19 (current LTS at the time this study was done) is driver
code: 11.2M lines out of 17M in total, 21% (2.35M lines) of the driver code is in
network drivers. 10 years earlier (in 2009), Linux 2.6.29 had only 53% of the code in
drivers (3.7M out of 6.9M lines). Going back 10 more years to Linux 2.2.0 in 1999,
we count 54% in drivers (646 k out of 1.2M) with only 13% in network drivers. One
reason for the growing total driver size is that there are more drivers to support more
hardware.

Individual drivers are also increasing in complexity as hardware complexity is on the
rise. Many new hardware features need support from drivers, increasing complexity
and attack surface even when the number of drivers running on a given system does not
change. Figure 4.1 shows a linear correlation (R2 = 0.3613) between NIC technology

53

Chapter 4: High-Level Languages for Network Drivers

node and driver complexity as a log-log scatter plot. The plot considers all Ethernet
drivers in Linux 4.19 and all network drivers in DPDK that do not rely on further
external libraries. We also omit DPDK drivers for FPGA boards (as these expect the
user to bring their own hardware and driver support), unfinished drivers (Intel ice),
drivers for virtual NICs, and 4 obsolete Linux drivers for which we could not identify
the speed. The linear relationship implies that driver complexity grows exponentially
as network speed increases exponentially.

4.3.2 Security Bugs in Linux
Cutler et al. evaluate security bugs leading to arbitrary code execution in the Linux
kernel found in 2017 [31]. They identify 65 security bugs leading to code execution and
find that 8 of them are use-after-free or double-free bugs, 32 are out-of-bounds accesses,
14 are logic bugs that cannot be prevented by the programming language, and 11 are
bugs where the effect of the programming language remains unclear [31]. The 40 memory
bugs (61% of the 65 bugs) can be mitigated by using a memory-safe language such as
their Go operating system Biscuit or our implementations. Performing an out-of-bounds
access is still a bug in a memory-safe language, but it will only crash the program if it
remains unhandled; effectively downgrading a code execution vulnerability to a denial of
service vulnerability. User space drivers can simply be restarted after a crash, crashing
kernel drivers usually take down the whole system.

We analyze these 40 memory bugs identified by Cutler et al. further and find that 39 of
them are located in 11 different device drivers (the other bug is in the Bluetooth stack).
The driver with the most bugs in this data set is the Qualcomm WiFi driver with 13
bugs, i.e., a total of 20% of all code execution vulnerabilities in the study could have
been prevented if this network driver was written in a memory safe high-level language.
The key result here is that rewriting device drivers in safer languages achieves 97.5% of
the improvement they gained by rewriting the whole operating system.

In theory, eliminating bugs by moving to a high-level languages could be done without
moving to the user space. In practice, the tight coupling of language and kernel makes
this harder than it seems. Our proposal is to decouple drivers (which has other benefits
such as isolation) and kernel to solve this.

4.3.3 Memory Safety Bugs in Windows
Microsoft’s Windows kernel is written in C and C++ and hence suffers from the same
preventable problem. They identified that about 70% of their security issues are due to
problems with memory safety [161]. The relative percentage of memory safety bugs has
been unchanged since 2006, this shows that efforts to improve memory safety in inher-

54

4.3 Motivation

Year DPDK∗ netmap† Snabb∗ PF_RING† PSIO† PFQ†

2010 0/0 0/0 0/0 0/0 1/1 0/0
2011 0/0 0/0 0/0 1/1 0/0 0/0
2012 0/1 1/4 0/0 0/4 0/1 0/1
2013 0/0 3/8 0/0 0/0 0/1 0/0
2014 4/11 4/14 0/0 0/4 1/1 1/2
2015 9/15 6/14 1/2 4/7 2/3 1/2
2016 12/22 1/12 0/1 0/1 0/0 1/1
2017 17/23 3/10 0/0 1/2 1/1 1/1

Sum 41/72 19/64 1/3 6/19 5/8 4/7
∗ User space driver
† Kernel driver with dedicated user space API

Table 4.2: Packet processing frameworks used in academia, cells are uses/mentions; e.g., 1/3 means 3
papers mention the framework, 1 of them uses it

ently unsafe languages have not helped. Microsoft is exploring memory-safe languages
for use in their operating system, starting with Rust [161].

4.3.4 The Rise of DPDK
Chapter 2 used the open source projects Click, Open vSwitch, and pfSense as motivat-
ing examples to show how network applications moved from running completely in the
kernel to user space frameworks with a kernel driver (e.g., netmap) to full user space
drivers (e.g., DPDK). This trend towards DPDK is also present in academia. We run a
full-text search for all user space packet processing frameworks on all publications be-
tween 2010 and 2017 in the ACM conferences SIGCOMM and ANCS, and the USENIX
conferences NSDI, OSDI, and ATC (n = 1615 papers). This yields 113 papers which we
skimmed to identify whether they merely mention a framework or whether they build
their application on top of it or even present the framework itself. Table 4.2 shows how
DPDK started to dominate after it was open sourced in 20131. The previously popular
netmap is still used as a reference to explain packet processing concepts.

4.3.5 Languages Used for DPDK Applications
Applications on top of DPDK are also not restricted to C, yet most users opt to use
C when building a DPDK application. This is a reasonable choice given that DPDK
comes with C example code and C APIs, but there is no technical reason preventing
programmers from using any other language. In fact, DPDK applications in Rust, Go,
and Lua exist [127, 71, 42].

1The paper mentioning DPDK in 2012 is the original netmap paper [148] referring to DPDK as a
commercial offering with similar goals.

55

Chapter 4: High-Level Languages for Network Drivers

DPDK’s website showcases 21 projects building on DPDK. 14 (67%) of these are written
in C, 5 (24%) in C++, 1 in Lua [42], and 1 in Go [71]. There are 116 projects using
the #dpdk topic on GitHub, 99 of these are applications using DPDK; the others are
orchestration tools or helper scripts for DPDK setups. 69 (70%) of these are written in
C, 12 in C++, 4 in Rust (3 related to NetBricks [127], 1 wrapper), 4 in Lua (all related
to MoonGen [42]), 3 in Go (all related to NFF-Go [71]), and one in Crystal (a wrapper).

Determining whether 67% to 70% of applications being written in C is unusually high
requires a comparison baseline. Further up the network stack are web application frame-
works (e.g., nodejs or jetty) that also need to provide high-speed primitives for applica-
tions on the next higher layer. Of the 43 web platforms evaluated in the TechEmpower
benchmark [160] (the largest benchmark collection featuring all relevant web platforms)
only 3 (7%) are written in C. 17 different languages are used here, the dominant being
Java with 19 (44%) entries. Of course not all platforms measured here are suitable for
applications requiring high performance. But even out of the 20 fastest benchmarked
applications (“Single query” benchmark) only one is written in C and 3 in C++. Java
still dominates with 7 here. Go (3), Rust (2), and C# (1) are also present in the top 20.
This shows that it is possible to build fast applications on a higher layer in languages
selected here.

4.3.6 User Study: Mistakes in DPDK Applications Written in C
We task students with implementing a simplified IPv4 router in C on top of DPDK
for one of our networking classes. The students are a mix of undergraduate and post-
graduate students with prior programming experience, a basic networking class is a
pre-requisite for the class. Students are provided with a skeleton layer 2 forwarding
program that handles DPDK setup, threading logic, and contains a dummy routing
table. Only packet validation according to RFC 1812 [13], forwarding via a provided
dummy routing table implementation, and handling ARP is required for full credits.
ICMP and fragmentation handling is not required.

We received 55 submissions with at least partially working code, i.e., code that at least
forwards some packets, in which we identified 3 types of common mistakes summarized in
Table 4.3. Incorrect programs can contain more than one class of mistake. Logic errors
are the most common and include failing to check EtherTypes, forgetting validations,
and getting checksums wrong, these cannot be prevented by safer languages. Memory
bugs including use-after-free bugs can be prevented by the language. No out-of-bounds
access was made because the exercise offers no opportunity to do so: the code only needs
to operate on the fixed-size headers which are smaller than the minimum packet size.

56

4.4 Implementations in High-Level Languages

Total No mistakes Logic error Use-after-free Int overflow
55 12 28 13 14

100% 22% 51% 24% 25%

Table 4.3: Mistakes made by students when implementing an IPv4 router in C on top of DPDK

All integer overflow bugs happened due to code trying to decrement the time-to-live
field in place in the packet struct without first checking if the field was already 0.

Ethical considerations. As handling errors done by humans requires special care we
took all precautions to protect the privacy of the involved students. The study was
conducted by the original corrector of the exercise, these results are used for teaching
the class. No student code, answers, or any identifying information was ever given to
anyone not involved in teaching the class. All submissions are pseudonymized. We were
able to achieve the ethical goals of avoiding correlating errors with persons.

4.3.7 Summary
To summarize: (network) drivers are written in C which leads to preventable bugs in
both the drivers (Section 4.3.2) and in applications on top of them (Section 4.3.6). Con-
straints imposed by the kernel environment requiring C no longer apply (Section 4.3.4).
Driver complexity is growing (Section 4.3.1), so let’s start using safer languages.

4.4 Implementations in High-Level Languages

All of our implementations are written from scratch by experienced programmers in
idiomatic style for the respective language. We target Linux on x86 using the uio sub-
system to map PCIe resources into user space programs which we previously explained
in Section 3.3.3.

4.4.1 Architecture
All of our drivers implement the same basic architecture as the C driver discussed in
the previous chapter. Our C driver serves as reference implementation that our high-
level drivers are compared against. To summarize the architecture: all drivers are poll
mode drivers without interrupts, all APIs are based on batches of packets, and DMA
buffers are managed in custom memory pools. The memory pool for DMA buffers is
also needed despite automatic memory management: not all memory is suitable for use
as DMA buffers, simply using the language’s allocator is not possible. This restriction
potentially circumvents some of the memory safety properties of the languages in parts
of the driver.

57

Chapter 4: High-Level Languages for Network Drivers

4.4.2 Challenges for High-Level Languages
There are three main challenges, all related to memory access, for user space drivers in
high-level languages compared to drivers in C. Refer to Section 3.3.3 for details about
how device memory is exposed to user space drivers in Linux.

Handling external memory
Two memory areas cannot be managed by the default memory allocator of the language
itself: memory-mapped IO regions and DMA buffers. The former are provided by the
device itself, the latter need special flags during allocation. These two requirements can
be handled by a custom memory allocator which needs access to the mmap and mlock
syscalls. We use a small C function in languages where these syscalls are either not
available at all or only supported with restricted flags.

Unsafe primitives
External memory, i.e., PCIe address space and DMA buffers, must be wrapped in
language-specific constructs that enforce bounds checks and allow access to the backing
memory. Many languages come with dedicated wrapper structs that are constructed
from a raw pointer and a length. For other languages we have to implement these
wrappers ourselves.

In any case, all drivers need to perform inherently unsafe memory operations that cannot
be checked by any language feature. However, just because some memory operations
must be unsafe does not mean that we should use a language in which all memory
operations are unsafe. The goal is to avoid unsafe operations wherever possible and
restrict the remaining unsafe operations to as few places as possible to reduce the
amount of code that needs to be manually audited for memory errors. In our Rust
implementation we only need unsafe memory access in 13% of the code, see Section 4.4.3.

An example for an inherently unsafe memory operation is accessing device registers. No
language runtime can have knowledge about how big the register file that is mapped
by our custom memory allocator really is. However, access to it can be restricted to a
single function that contains a bounds check.

This is, to some degree, a problem of the flat memory model of PCIe devices on the
x86 platform. If registers were accessed via specialized IO instructions, we could avoid
damage caused by out of bounds accesses to IO registers. x86 supports dedicated IO
ports, but accessing devices registers through them is deprecated in PCIe [130].

58

4.4 Implementations in High-Level Languages

Memory access semantics
Memory-mapped IO regions are memory addresses that are not backed by memory,
each access is forwarded to a device and handled there. Simply telling the language to
read or write a memory location in these regions can cause problems as optimizers make
assumptions about the behavior of the memory. For example, writing a control register
and never reading it back looks like a dead store to the language and the optimizer is
free to remove the access. Repeatedly reading the same register in a loop while waiting
for a value to be changed by the device, i.e., polling a device, looks like an opportunity
to hoist the read out of the loop.

C solves this problem with the volatile keyword guaranteeing that at least one read or
write access is performed. The high-level language needs to offer control over how these
memory accesses are performed. Atomic accesses and memory barriers found in concur-
rency utilities make stronger guarantees and can be used instead if the language does
not offer volatile semantics. Primitives from concurrency utilities can also substitute
the access-exactly-once semantics required for some device drivers.

Readers interested in gory details about memory semantics for device drivers are referred
to the Linux kernel documentation on memory barriers [95]. It is worth noting that all
modern CPU architectures offer a memory model with cache-coherent DMA simplifying
memory handling in drivers. We only test on x86 as proof of concept, but DPDK’s
support for x86, ARM, POWER, and Tilera shows that user space drivers themselves
are possible on a wide range of modern architectures. Some of our implementations in
dynamic languages likely rely on the strong memory model of x86 and might require
modifications to work reliably on architectures with a weaker memory model such as
ARM.

4.4.3 Rust Implementation
Rust is an obvious choice for safe user space drivers: safety and low-level features are
two of its main selling points. Its ownership-based memory management allows us to
use the native memory management even for our custom DMA buffers. We allocate
a lightweight Rust struct for each packet that contains metadata and owns the raw
memory. This struct is essentially being used as a smart pointer, i.e., it is often stack-
allocated. This object is in turn either owned by the memory pool itself, the driver, or
the user’s application. The compiler enforces that the object has exactly one owner and
that only the owner can access the object, this prevents use-after-free bugs despite using
a completely custom allocator. Rust is the only language evaluated here that protects
against use-after-free bugs and data races in memory buffers.

59

Chapter 4: High-Level Languages for Network Drivers

External memory is wrapped in std::slice objects that enforce bounds checks on each
access, leaving only one place tagged as unsafe that can be the source of memory errors:
we need to pass the correct length when creating the slice. Volatile memory semantics
for accessing device registers are available in the ptr module.

IOMMU and interrupt support
We also implemented support for vfio in the Rust driver, all other implementations
only support the simpler uio interface. This interface enables us to use the IOMMU
to isolate the device and run without root privileges and to use interrupts instead of
polling under low load. Refer to Section 3.3.3 for a detailed discussion on the vfio vs
uio interfaces.

Related work
NetBricks (2016) [127] is a network function framework that allows users to build and
compose network functions written in Rust. It builds on DPDK, i.e., the drivers it uses
are written in C. They measure a performance penalty of 2% to 20% for Rust vs. C
depending on the network function being executed. This is consistent with our results,
see Section 4.6.2.

We also ported our driver to Redox (2015) [143], a real-world operating system under
active development featuring a microkernel written in Rust with user space drivers. It
features two network drivers for the Intel e1000 NIC family (predecessor of the ixgbe
family used here) and Realtek rtl8168 NICs. Table 4.4 compares how much unsafe code
their drivers use compared to our implementations. Inspecting the pre-existing Redox
drivers shows several places where unsafe code could be made safe with some more work
as showcased by our Redox port. Line count for our Linux driver includes all logic to
make user space drivers on Linux work, our Linux version therefore has more unsafe code
than the Redox version which already comes with the necessary functionality. These
line counts also show the relationship between NIC speed and driver complexity hold
true even for minimal drivers in other operating systems.

Code Unsafe
Driver NIC Speed [Lines] [Lines] % Unsafe
Our Linux implementation 10Gbit/s 961 125 13.0%
Our Redox implementation 10Gbit/s 901 68 7.5%
Redox e1000 1Gbit/s 393 140 35.6%
Redox rtl8168 1Gbit/s 363 144 39.8%

Table 4.4: Unsafe code in different Rust drivers

60

4.4 Implementations in High-Level Languages

4.4.4 Go Implementation
Go is a compiled systems programming language maintained by Google that is often
used for distributed systems. Memory is managed by a garbage collector tuned for
low latency. It achieved pause times in the low millisecond range in 2015 [144] and
sub-millisecond pause times since 2016 [11].

External memory is wrapped in slices to provide bounds checks. Memory barriers and
volatile semantics are indirectly provided by the atomic package which offers primitives
with stronger guarantees than required.

Related work
Biscuit (2018) [31] is a research operating system written in Go that features a network
driver for the same hardware as we are targeting here. Unlike all other research operating
systems referenced here, they provide an explicit performance comparison with C. They
observe GC pauses of up to 115 µs in their benchmarks and an overall performance of
85% to 95% of an equivalent C version. Unfortunately it does not offer a feasible way
to benchmark only the driver in isolation for a comparison.

NFF-GO (2017) [71] is a network function framework allowing users to build and com-
pose network functions in Go. It builds on DPDK, i.e., the drivers it uses are written in
C. Google’s Fuchsia [56] mobile operating system features a TCP stack written in Go
on top of C drivers.

4.4.5 C# Implementation
C# is a versatile JIT-compiled and garbage-collected language offering both high-level
features and systems programming features. Several methods for handling external
memory are available, we implemented support for two of them to compare them.
Marshal in System.Runtime.InteropServices offers wrappers and bounds-checked
accessors for external memory. C# also offers a more direct way to work with raw
memory: its unsafe mode enables language features similar to C, i.e., full support for
pointers with no bounds checks and volatile memory access semantics.

Related work
The Singularity (2004) research operating system [65] is written in Sing#, a dialect of
C# with added contracts and safety features developed for use in Singularity. It comes
with a driver for Intel 8254x PCI NICs that are architecturally similar to the 82599
NICs used here: their DMA ring buffers are virtually identical. All memory accesses
in their drivers are facilitated by safe APIs offered by the Singularity kernel. Safety is

61

Chapter 4: High-Level Languages for Network Drivers

ensured by both static verification and runtime checks to ensure that the driver cannot
access memory that it is not supposed to access.

4.4.6 Java Implementation
Java is a JIT-compiled and garbage-collected language similar to C# (which was heavily
inspired by Java). The only standardized way to access external memory is by calling
into C using JNI, a verbose and slow foreign function interface. We target OpenJDK 12
which offers a non-standard way to handle external memory via the sun.misc.Unsafe
object that provides functions to read and write memory with volatile access semantics.
We implement and compare both methods here. Java’s low-level features are inferior
compared to C#, the non-standard Unsafe object is cumbersome to use compared to
C#’s unsafe mode with full pointer support. Moreover, Java does not support unsigned
integer primitives requiring work-arounds as hardware often uses such types.

Related work
JavaOS (1996) [147] was a commercial operating system targeting embedded systems
and thin clients written in Java, it was discontinued in 1999. Their device driver
guide [157] contains the source code of a 100Mbit/s network driver written in Java
as an example. The driver implements an interface for network drivers and calls out to
helper functions and wrapper provided by JavaOS for all low-level memory operations.

4.4.7 OCaml Implementation
OCaml is a compiled functional language with garbage collection. We use OCaml
Bigarrays backed by external memory for DMA buffers and PCIe resources, alloca-
tion is done via C helper functions. The Cstruct library [107] from the MirageOS
project [100] allows us to access data in the arrays in a structured way by parsing de-
finitions similar to C struct definitions and generating code for the necessary accessor
functions.

Related work and MirageOS integration
We also ported our driver to MirageOS (2013) [100], a framework for creating unikernels
written in OCaml with the main goal of improving security. MirageOS is not optimized
for performance (e.g., all packets are copied when being passed between driver and net-
work stack) and no performance evaluation is given by its authors (performance regres-
sion tests are being worked on [108]). MirageOS targets Xen, normal Unix processes,
and a multitude of hypervisors using the Solo5 unikernel execution environment [33]
including Linux’ KVM. The Xen version has a driver-like interface for Xen netfront

62

4.4 Implementations in High-Level Languages

(not a PCIe driver, though), the KVM version builds on the Solo5 unikernel execution
environment [33] that provides a VirtIO driver written in C.

Our port is the first PCIe driver written in OCaml in MirageOS, we target both the
unix backend and KVM backend. We added PCIe support to both MirageOS and Solo5
to enable this. Our Solo5 implementation of PCIe makes use of the IOMMU via the
vfio Linux subsystem to run unprivileged and safe drivers in unikernels.

4.4.8 Haskell Implementation
Haskell is a compiled functional language with garbage collection. All necessary low-
level memory access functions are available via the Foreign package. Memory allocation
and mapping is available via System.Posix.Memory.

Related work
House (2005) [61] is a research operating system written in Haskell focusing on safety.
Its functional interface to memory management, hardware, user-mode processes, and
low-level device IO enables formal verification using P-Logic [88]. No quantitative per-
formance evaluation is given.

PFQ [18] is a packet processing framework offering a Haskell interface and pfq-lang, a
specialized domain-specific language for packet processing in Haskell. It runs on top of
a kernel driver in C. Despite the focus on Haskell it is mainly written in C as it relies
on C kernel modules: PFQ is 75% C, 10% C++, 7% Haskell by lines of code.

4.4.9 Swift Implementation
Swift is a compiled language maintained by Apple mainly targeted at client-side ap-
plication development. Memory in Swift is managed via automatic reference counting,
i.e., the runtime keeps a reference count for each object and frees the object once it is
no longer in use. Despite primarily targeting end-user applications, Swift also offers all
features necessary to implement drivers. Memory is wrapped in UnsafeBufferPointers
(and related classes) that are constructed from an address and a size. Swift only per-
forms bounds checks in debug mode.

Related work
No other drivers or operating systems in Swift exist. The lowest level Swift projects
that are available are the Vapor [163] and Kitura [90] frameworks for server-side Swift.

63

Chapter 4: High-Level Languages for Network Drivers

4.4.10 JavaScript Implementation
We build on Node.js [113] with the V8 JIT compiler and garbage collector, a common
choice for server-side JavaScript. We use ArrayBuffers to wrap external memory in a
safe way, these arrays can then be accessed as different integer types using TypedArrays,
circumventing JavaScript’s restriction to floating point numbers. We also use the BigInt
type that is not yet standardized but already available in Node.js. Memory allocation
and physical address translation is handled via a Node.js module in C.

Related work
JavaScript is rarely used for low-level code, the most OS-like projects are NodeOS [83]
and OS.js [6]. NodeOS uses the Linux kernel with Node.js as user space. OS.js runs
a window manager and applications in the browser and is backed by a server running
Node.js on a normal OS. Neither of these implements driver-level code in JavaScript.

4.4.11 Python Implementation
Python is an interpreted scripting language with garbage collection. Our implementa-
tion uses Cython for handling memory (77 lines of code), the remainder of the driver
is written in pure Python. Performance is not the primary goal of this version of our
driver, it is the only implementation presented here that is not explicitly optimized for
performance. It is meant as a simple prototyping environment for PCIe drivers and as
an educational tool.

Writing drivers in scripting languages allows for quick turn-around times during de-
velopment or even an explorative approach to understanding hardware devices in an
interactive shell. We provide primitives for PCIe driver development in Python that we
hope to be helpful to others as this is the first PCIe driver in Python to our knowledge.

VirtIO driver
We also implemented a driver for virtual VirtIO [117] NICs here to make this driver
accessible to users without dedicated hardware. A provided Vagrant [64] file allows
spinning up a test VM to get started with PCIe driver development in Python in a safe
environment.

Related work
Python is a popular [141] choice for user space USB drivers with the PyUSB library [142].
In contrast to our driver, it is mainly a wrapper for a C library. Python USB drivers are
used for devices that either mainly rely on bulk transfers (handled by the underlying C
library) or that do not require many transfers per second.

64

4.5 Evaluation

Lang. Lines of code1 Lines of C code1 Source size (gzip2)
C [44] 831 831 12.9 kB
Rust 961 0 10.4 kB
Go 1640 0 20.6 kB
C# 1266 34 13.1 kB
Java 2885 188 31.8 kB
OCaml 1177 28 12.3 kB
Haskell 1001 0 9.6 kB
Swift 1506 0 15.9 kB
JavaScript 1004 262 13.0 kB
Python 1242 (Cython) 77 14.2 kB

1 Incl. C code, excluding empty lines and comments, counted with cloc
2 Compression level 6

Table 4.5: Size of our implementations stripped down to the core feature set

4.5 Evaluation

Table 4.5 compares the code size as counted with cloc ignoring empty lines and com-
ments, we also include the code size after compressing it with gzip to estimate informa-
tion entropy as lines of code comparisons between different languages are not necessar-
ily fair. We stripped features not present in all drivers (i.e., all (unit-)tests, alternate
memory access implementations, VirtIO support in C and Python, IOMMU/interrupt
support in C and Rust) for this evaluation. We also omit register definitions because
several implementations contain automatically generated lists of > 1000 mostly unused
constants for register offsets. All high-level languages require more lines than C, but the
Rust, Haskell, and OCaml implementations are smaller in size as their formatting style
leads to many short lines. Java and JavaScript require more C code due to boilerplate
requirements of their foreign function interfaces.

Table 4.6 summarizes protections against classes of bugs available to both our driver
implementations and applications built on top of them. The take-away here is that
high-level languages do not necessarily increase the work-load for the implementor while
gaining safety benefits. Subjectively, we have even found it easier to write driver code
in high-level languages — even if more lines of code were required — after figuring out
the necessary low-level details of the respective language (a one-time effort).

Bugs found in the C driver
Porting the C code to high-level languages also revealed bugs in the C implementation
discussed in the previous chapter. Three bugs were discovered in the C driver:

65

Chapter 4: High-Level Languages for Network Drivers

General memory Packet buffers
Lang. OoB1 Use after free OoB1 Use after free Int overflows
C 7 7 7 7 7

Rust 3 3 (3)2 3 (3)5

Go 3 3 (3)2 (3)4 7

C# 3 3 (3)2 (3)4 (3)5

Java 3 3 (3)2 (3)4 7

OCaml 3 3 (3)2 (3)4 7

Haskell 3 3 (3)2 (3)4 (3)6

Swift 3 3 73 (3)4 3

JavaScript 3 3 (3)2 (3)4 (3)6

Python 3 3 (3)2 (3)4 (3)6

1 Out of bounds accesses
2 Bounds enforced by wrapper, constructor in unsafe or C code
3 Bounds only enforced in debug mode
4 Buffers are never free’d/gc’d, only returned to a memory pool
5 Disabled by default
6 Uses floating point or arbitrary precision integers by default

Table 4.6: Language-level protections against classes of bugs in our drivers and the C reference code

1. Memory for a queue storing configuration was allocated incorrectly, causing out-
of-bounds memory accesses in certain configurations

2. Logic error in queue selection when transmitting packets

3. The VirtIO driver (not discussed in this thesis) had a bug related to buffer man-
agement in the queues

Bug 1 would be caught during run-time in a memory-safe language by bounds checks.
In C it triggers undefined behavior opening doors for potential security vulnerabilities.
Bug 2 was a logic error that would not have been prevented by a better language. The
third bug was also unlikely to be prevented by a high-level language because it occurs
in a low-level part handling pointers to DMA buffers.

So even a small driver (≈ 1 000 lines) written by an experienced low-level developer
(the author of this dissertation) would have 33% fewer bugs if C was a memory-safe
language.

4.6 Performance

We test minimum-sized packets at full bidirectional line rate, i.e., up to 29.76Mpps at
20Gbit/s. Our C driver is also included in the experiments as a baseline.

66

4.6 Performance

1 2 4 8 16 32 64 128 256
0

10

20

30

Batch size

P
ac
k
et

ra
te

[M
p
p
s]

C Rust Go C# Java

OCaml Haskell Swift JavaScript Python

(a) Forwarding rate on 1.6GHz CPU

1 2 4 8 16 32 64 128 256
0

10

20

30

Batch size

P
ac
k
et

ra
te

[M
p
p
s]

C Rust Go C# Java

OCaml Haskell Swift JavaScript Python

(b) Forwarding rate on 3.3GHz CPU

Figure 4.2: Forwarding rate of our implementations with different batch sizes

4.6.1 Test Setup
We run our drivers on a Xeon E3-1230 v2 CPU clocked at 3.3GHz with two 10Gbit/s
Intel X520 NICs (Server 3 from Section 2.4). Test traffic is generated with MoonGen
(Chapter 5). The test application built on top of the drivers is the same as used in the
previous Chapter, see Section 3.5. So all drivers configure the NICs with a queue size
of 512 and run a forwarding application that modifies one byte in the packet headers.
All tests are restricted to a single CPU core as we are interested in the worst-case
performance (Section 2.2).

4.6.2 Effect of Batch Sizes
Processing packets in batches is a core concept of all fast network drivers (Section 3.5.3).
Each received or sent batch requires synchronization with the network card, larger
batches therefore improve performance. Too large batch sizes fill up the CPU’s caches
so there are diminishing returns or even reduced performance. 32 to 128 packets per
batch is the sweet spot for user space drivers [52, 89, 14].

Figure 4.2 shows the maximum achievable bidirectional forwarding performance of our
implementations. We also run the benchmark at a reduced CPU frequency of 1.6GHz as
the performance of the C and Rust forwarders quickly hit some hardware bottleneck at
94% line rate at 3.3GHz. A few trade-offs for the conflicting goals of writing idiomatic
safe code and achieving a high-performance were evaluated for each language. Haskell
and OCaml allocate a new list/array for each processed batch of packets while all other
languages re-use arrays. Recycling arrays in these functional languages building on
immutable data structures would not be idiomatic code, this is one of the reasons for
their lower performance.

67

Chapter 4: High-Level Languages for Network Drivers

Rust
Rust achieves 90% (batch size ≤ 32) to 98% (batch sizes ≥ 64) of the baseline C perfor-
mance when the CPU is at 1.6GHz1, making it the only competitor with a comparable
performance to C.

Our Redox port of the Rust driver only achieves 0.12Mpps due to performance bot-
tlenecks in Redox (high performance networking is not yet a goal of Redox). This is
still a factor 150 improvement over the pre-existing Redox drivers due to support for
asynchronous packet transmission.

Go
Go also fares reasonably well for a garbage-collected language, achieving about 76% of
C’s performance. This proves Go as a suitable candidate for a systems programming
language if performance is not the primary goal.

C#
The aforementioned utility functions from the Marshal class to handle memory proved to
be too slow to achieve competitive performance. Rewriting the driver to use C# unsafe
blocks and raw pointers in selected places improved performance by 40%. Synthetic
benchmarks show a 50-60% overhead for the safer alternatives over raw pointers. C#
performs slightly better than Go with large batch sizes.

Java
Our implementation heavily relies on devirtualization, inlining, and dead-code elimi-
nation by the optimizer as it features several abstraction layers and indirections that
are typical for idiomatic Java code. We used profiling to validate that all relevant
optimization steps are performed, almost all CPU time is spent in the transmit and
receive functions showing up as leaf functions despite calling into an abstraction layer
for memory access.

We use OpenJDK 12 with the HotSpot JIT, the Parallel garbage collector, and the
Unsafe object for memory access. Using JNI for memory access instead is several orders
of magnitude slower. Using OpenJ9 as JIT reduces performance by 14%. These results
are significantly slower than C# and show that C#’s low-level features are crucial
for fast drivers. One reason is that C# features value types that avoid unnecessary
heap allocations. We try to avoid object allocations by recycling packet buffers, but

1To avoid hitting unknown hardware bottlenecks observed at 3.3GHz

68

4.6 Performance

Batch\GC CMS Serial Parallel G1 ZGC Shenandoah Epsilon
4 9.8 10.0 10.0 7.8 9.4 8.5 10.0

32 12.3 12.4 12.3 9.3 11.5 10.8 12.2
256 12.6 12.4 12.3 9.7 11.6 11.2 12.7

Table 4.7: Performance of different Java garbage collectors in Mpps when forwarding packets at
3.3GHz

writing allocation-free code in idiomatic Java is virtually impossible, so there are some
unavoidable allocations. OpenJDK 12 features 7 different garbage collectors which have
an impact on performance as shown in Table 4.7. Epsilon is a no-op implementation
that never frees memory, leaking approximately 20 bytes per forwarded packet. Note
that simply leaking memory is not necessarily faster than properly free’ing it, re-using
memory can be cheaper than allocating new one due to improved locality and fewer
requests to the OS for more and more memory.

OCaml
Enabling the Flambda [118] optimizations in OCaml 4.07.0 increases throughput by 9%.
An interesting optimization is representing bit fields as separate 16 bit integers instead
of 32 bit integers if possible: Larger integers are boxed1 in the OCaml runtime. This
increases performance by 0.7% when applied to the status bits in the DMA descriptors.

Our MirageOS port achieves 3.25Gbit/s TCP throughput using iperf and the Mirage
TCP stack on Mirage’s Unix backend (i.e., running Mirage as a process, not as a uniker-
nel in a VM). Targeting KVM (and enabling the IOMMU to do so) yields the same
throughput. This is an improvement of more than 100% over the built-in networking in
the KVM backend that exposes a TAP network device and achieves 1.6Gbit/s in the
same test.

Haskell
Compiler (GHC 8.4.3) optimizations seem to do more harm than good in this workload.
Increasing the optimization level in the default GHC backend from O1 to O2 reduces
throughput by 11%, we could not identify any reason for this. The data in the graph
is based on the LLVM backend which is 3.5% faster than the default backend at O1.
Enabling the threaded runtime in GHC decreases performance by 8% and causes the
driver to lose packets even at loads below 1Mpps due to regular GC pauses of several
milliseconds.

1Meaning they require additional metadata for the garbage collector.

69

Chapter 4: High-Level Languages for Network Drivers

Swift
Swift increments a reference counter for each object passed into a function and decreases
it when leaving the function. This is done for every single packet as they are wrapped in
Swift-native wrappers for bounds checks. There is no good way to disable this behavior
for the wrapper objects while maintaining an idiomatic API for applications using the
driver. A total of 76% of the CPU time is spent incrementing and decrementing reference
counters. This is the only language runtime evaluated here that incurs a large cost even
for objects that are never free’d.

JavaScript
We also compare Node.js versions 10 (V8 6.9, current LTS), 11 (V8 7.0), and 12 (V8
7.5), older versions are unsupported due to lack of BigInt support. Node 10 and 11
perform virtually identical, upgrading to 12 degrades performance by 13% as access to
TypedArrays is slower in this version.

The main problem is the lack of normal integer data types in JavaScript, the only number
types available are 64 bit floating point values (doubles) and integers of variable lengths
called BigInts. Doubles have sufficient precision to store up to 54 bit long integers,
so it is possible to store many values in them. TypedArrays (which are faster than
plain DataViews) can be used to read up to 32 bit from raw memory into double values
which can be used to avoid BigInts in many places. However, sometimes 64 bit values
are unavoidable in which case BigInts are required which are slower than doubles.
Especially constructing BigInts proved to be a performance bottleneck.

Python
Python only achieves 0.14Mpps in the best case using the default CPython interpreter
in version 3.7. Most time is spent in code related to making C structs available to
higher layers. We are using constructs that are incompatible with the JIT compiler
PyPy. This is the only implementation here not optimized for performance, we believe
it is possible to increase throughput by an order of magnitude by re-cycling struct
definitions. Despite this we are content with the Python implementation as the main
goal was not a high throughput but a simple implementation in a scripting language for
prototyping functionality and to demonstrate implementation equivalence.

4.6.3 The Cost of Safety Features in Rust
Rust is our fastest implementation. It is also the only high-level language without
overhead for memory management here, making it an ideal candidate to investigate

70

4.6 Performance

Batch 32, 1.6GHz Batch 8, 1.6GHz
Events per packet C Rust C Rust
Cycles 94 100 108 120
Instructions 127 209 139 232
Instr. per cycle 1.35 2.09 1.29 1.93
Branches 18 24 19 27
Branch mispredicts 0.05 0.08 0.02 0.06
Store µops 21.8 37.4 24.4 43.0
Load µops 30.1 77.0 33.4 84.2
Load L1 hits 24.3 75.9 28.8 83.1
Load L2 hits 1.1 0.05 1.2 0.1
Load L3 hits 0.9 0.0 0.5 0.0
Load L3 misses 0.3 0.1 0.3 0.3

Table 4.8: Performance counter readings in events per packet when forwarding packets

overhead further by profiling. There are only two major differences between the Rust
and C implementations:

(1) Rust enforces bounds checks while our C code contains no bounds checks (arguably
idiomatic style for C).

(2) C does not require a wrapper object for DMA buffers, it stores all necessary
metadata directly in front of the packet data the same memory area as the DMA
buffer.

However, the Rust wrapper objects can be stack-allocated and effectively replace the
pointer used by C with a smart pointer, mitigating the locality penalty. The main
performance disadvantage is therefore bounds checking.

We use CPU performance counters (read by perf stat over a period of 30 seconds
under full bidirectional load) to profile our forwarder with two different batch sizes.
Table 4.8 lists the results in events per forwarded packet. Recall the key performance
numbers from Section 2.2: we have up to 222 cycles available in total per packet on a
3.3GHz CPU to achieve our performance goal of 14.88Mpps on a single core.

Rust requires 65% (67%) more instructions to forward a single packet at a batch size of
32 (8). The number of branches executed rises by 33% (42%), the number of loads even
by 150% (180%). However, the Rust code only requires 6 (12) more cycles per packet
overall despite executing 82 (93) more instructions per packet. Synthetic benchmarks
can achieve an even lower overhead of bounds checking [45].

A modern superscalar out of order processor can effectively hide the overhead introduced
by these safety checks: normal execution does not trigger bounds check violations, the
processor is therefore able to correctly predict (branch mispredict rate is at 0.2% - 0.3%)

71

Chapter 4: High-Level Languages for Network Drivers

and speculatively execute the correct path. The Rust code achieves about 2 instructions
per cycle vs. about 1.3 instructions with the C code.

A good example of speculatively executing code in the presence of bounds checks is the
Spectre v1 security vulnerability which exists due to this performance optimization in
CPUs [139]. Note that user space drivers are not affected by this vulnerability as the
program’s control flow does not cross a trust boundary (kernel space vs. user space) as
everything runs in the same process.

Caches also help with the additional required loads of bounds information: this workload
achieves an L1 cache hit rate of 98.5% (98.7%). Note that the sum of cache hits and
L3 misses is not equal to the number of load µops because some loads are executed
immediately after the store, fetching the data from the store buffer before it even reaches
the cache.

Another safety feature in Rust are integer overflow checks that catch mistakes common
in our user study (Section 4.3.6). Overflow checks are currently disabled by default in
release mode in Rust and have to be explicitly enabled with a compile-time flag. Doing
so decreases throughput by only 0.8% at batch size 8, the change with larger batch
sizes was less than 0.1%. Profiling shows that 9 additional instructions per packet
are executed by the CPU, 8 of them are branches. Total branch mispredictions are
unaffected, i.e., the branch check is always predicted correctly by the CPU. This is
another instance of speculative execution in an out-of-order CPU hiding the cost of
safety features.

4.6.4 Comparison with Other Language Benchmarks
Table 4.9 compares our performance results with the Computer Language Benchmarks
Game (CLBG) [60], a popular more general performance comparison of different lan-
guages. We use the “fastest measurement at the largest workload” data set from 2019-
07-21, summarized as geometric mean [46] over all benchmarks. Our results are for
batch size 32 (realistic value for real-world applications, e.g., DPDK default) at 1.6GHz
CPU speed to enforce a CPU bottleneck.

This shows that especially dynamic and functional languages pay a performance penalty
when being used for low-level code compared to the more general benchmark results.

Benchmark\Lang. Rust Go C# Java OCaml Haskell Swift JS Py.
Our results 98% 81% 76% 38% 38% 30% 16% 16% 1%
CLBG [60] 117% 34% 73% 52% 80% 65% 64% 28% 4%

Table 4.9: Performance results normalized to C, i.e., 50% means it achieves half the speed of C

72

4.7 Latency

Our implementations (except Python) went through several rounds of optimization
based on profiling results and extensive benchmarks. While there are certainly some
missed opportunities for further minor optimization, we believe to be close to the op-
timum achievable performance for drivers in idiomatic code in these languages. Note
that the reference benchmark is also probably not perfect. Go and C# perform even
better at the low-level task of writing drivers than the general purpose benchmarks,
showing how a language’s performance characteristics depend on the use case. General-
purpose benchmark results can be misleading when writing low-level code in high-level
languages.

Note that Go seems to be doing particularly poorly on the CLBG benchmark. The Go
FAQ [57] blames this outcome on poorly optimized libraries used in these benchmarks.

4.7 Latency

Latency is dominated by the time a packet spends in buffers (due to queuing), not by
time spent handling a packet on the CPU. Our drivers forward packets in hundreds of
cycles, i.e., within hundreds of nanoseconds. A driver with a lower throughput is there-
fore not automatically one with a higher latency while operating below its maximum
service rate. The main factors driving up latency are pauses due to garbage collection
and the batch size.

Note that the batch size parameter is only the maximum batch size, a driver operating
below its limit will process smaller batches. Drivers running closer to their limits will
handle larger batches and incur a larger latency. Load is generated offered as constant
bit-rate traffic (cf. RFC 2544, RFC 1242 [24, 25]), meaning a constant gap between
packets, this leads to a uniform distribution of packet latencies within a batch: The
first packet having the largest (it arrived just after the previous batch was processed)
and the last the shortest (it arrived just before the batch was processed).

Our drivers run with ring sizes of 512 by default and configure the NIC to drop packets
if the receive ring is full instead of buffering them in the NIC to avoid buffer bloat under
overload conditions. More details on the effect of the ring size on latency can be found
in Section 3.5.7.

4.7.1 Test Setup
Choice of language does not affect the average or median latency significantly: garbage
collection pauses and JIT compilation are visible in tail latency. We therefore measure
the latency of all forwarded packets by inserting fiber optic splitters on both sides of

73

Chapter 4: High-Level Languages for Network Drivers

the device under test, see Section 2.4.1 for a detailed description of the test setup. The
device under test uses an Intel Xeon E5-2620 v3 at 2.40GHz and a dual-port Intel X520
NIC (Server 1 from Section 2.4). All latencies were measured with a batch size of 32 and
ring size 512 under bidirectional load with constant bit-rate traffic. The device under
test has a maximum buffer capacity of 1,088 packets in this configuration. Different
batch sizes, ring sizes, and NUMA configurations as discussed in the previous chapter
affect latency in the same way for all programming languages and are therefore not
evaluated separately for all languages.

4.7.2 Tail Latencies
Figure 4.3 shows latencies of our drivers when forwarding packets at different rates,
all graphs are based on 10 million measured latencies. Note: for 20Mpps bidirectional
traffic must be used and our test setup (Section 2.4.1) only captures timestamps in one
direction. The data is plotted as CCDF to focus on the worst-case latencies. Imple-
mentations not able to cope with the offered load are omitted from the graphs — their
latency is simply a function of the buffer size as the receive buffers fill up completely.
No maximum observed latency is significantly different from the 99.9999th percentile.
Java and JavaScript lose packets during startup due to JIT compilation, we therefore
exclude the first 5 seconds of the test runs for these two languages. All other tests
shown ran without packet loss.

Rust and C
Even Rust and C show a skewed latency distribution with some packets taking 5 times
as long as the median packet. One reason for this is that all our drivers handle periodic
(1Hz) printing of throughput statistics in the main thread. Note that the 99.9999th
percentile means that one in a million packets is affected. Printing statistics once per
second at 1Mpps or more thus affects latency at this level. A second reason is that it
is not possible to isolate a core completely from the system on Linux. Some very short
local timer interrupts are even present with the isolcpus kernel option.

C outperforms Rust at 20Mpps in the long tail because of non-linear effects of buffer
usage and effective batch sizes as you approach the limit of the system. Even small
differences in performance can result in comparatively large changes to the worst-case
latency (here: difference starts to show at the ≈ 99.9th percentile).

Go
Go’s low-latency garbage collector achieves the lowest pause times of any garbage-
collected language here. Latency suffers at 20Mpps because the driver operates at

74

4.7 Latency

0 90 99 99.9 99.99 99.999 Max
0

100

200

300

Percentile

L
at
en

cy
[µ
s]

C Rust Go

C# Java OCaml

Haskell Swift JavaScript

(a) Forwarding latency at 1Mpps

0 90 99 99.9 99.99 99.999 Max
0

20

40

60

80

100

Percentile

L
at
en

cy
[µ
s]

C Rust Go C#

(b) Forwarding latency at 10Mpps

0 90 99 99.9 99.99 99.999 Max
0

20

40

60

80

100

Percentile

L
at
en

cy
[µ
s]

C Rust Go

(c) Forwarding latency at 20Mpps

Figure 4.3: Tail latency of our implementations when forwarding packets

its limit on this system here. Cutler et al. measured a maximum garbage collection
pause of 115µs in their Go operating system, demonstrating that sub-millisecond pauses
with Go are possible even in larger applications.

75

Chapter 4: High-Level Languages for Network Drivers

0 90 99 99.9 99.99 99.999 Max
0

500

1,000

1,500

Percentile

L
at
en

cy
[µ
s]

CMS Serial Parallel

G1 ZGC Shenandoah

Epsilon(no-op)

Figure 4.4: Forwarding latency of Java at 1Mpps with different garbage collectors

C#
C# features several garbage collector modes tuned for different workloads [105]. The de-
fault garbage collector caused a latency of 240 µs at the 99.9999th percentile at 10Mpps.
Switching it to SustainedLowLatency reduces latency to only 55 µs, this change also re-
duces the maximum achievable throughput by 1.2%. All measurements were performed
with the SustainedLowLatency garbage collector.

C# also uses a JIT compiler that might introduce additional pause times. However,
the compilation of most functions happens immediately after startup even if no packets
are forwarded: We implement a poll-mode driver that effectively warms up the JIT
compiler.

Java
Java exhibits packet loss and excessive latencies during the first few seconds of all test
runs, this is likely due to JIT compilation hitting a function only after the traffic flow
starts. All latency measurements for Java therefore exclude the first 5 seconds of the
test runs. Achieving these latencies with Java also required disabling periodic printing
of forwarding statistics.

Figure 4.3a shows results for the Shenandoah garbage collector which exhibited the
lowest latency. We also tried the different settings in Shenandoah that are recommended
for low-latency requirements [120]. Neither using a fixed-size heap with pre-touched
pages, nor disabling biased locking made a measurable difference. Changing the heuristic
from the default adaptive to static reduces worst-case latency from 338µs to 323 µs,
setting it to compact increases latency to 800µs.

76

4.8 Conclusion

Figure 4.4 compares the latency incurred by the different available garbage collectors in
OpenJDK 12 while forwarding 1Mpps. We configured the lowest possible target pause
time of 1ms. Note that the maximum buffer time with this configuration is ≈1.1ms,
i.e., the CMS collector drops packets at this rate. This could be mitigated by larger
rings or by enabling buffering on the NIC if the ring is full. There is a clear trade-off
between throughput and latency for the different garbage collectors, cf. Table 4.7. ZGC
hits a sweet spot between high throughput and low latency. Even Epsilon (no-op, never
frees objects) is also not ideal, indicating that the garbage collector is not the only cause
of latency. This can likely be attributed to bad data locality as it fills up the whole
address space and caches, never re-using memory.

OCaml and Haskell
Both OCaml and Haskell ship with only a relatively simple garbage collector (compared
to Go, C#, and Java) not optimized for sub-millisecond pause times. Haskell even drops
packets due to garbage collection pauses when the multi-threaded runtime is enabled,
the single threaded runtime performs reasonably well.

Swift
It remains unclear why Swift performs worse than some garbage-collected languages.
Its reference counting memory management should distribute the work evenly and not
lead to spikes, but we observe tail latency comparable to the garbage-collected Haskell
driver.

JavaScript
JavaScript loses packets during startup, indicating that the JIT compiler is to blame,
the graph excludes the first 5 seconds. Even in the steady state the latency is far worse
than the others starting at the 90th percentile. The worst-case latency is at 359µs.

Python
Python exhibits packet loss even at low rates and is therefore excluded here, worst-case
latencies are several milliseconds even when running at 0.1Mpps.

4.8 Conclusion

Rewriting the entire operating system in a high-level language is a laudable effort but
unlikely to disrupt the big mainstream desktop and server operating systems in the near
future. We propose to start rewriting drivers as user space drivers in high-level languages
instead as they present the largest attack surface in an operating system (Section 4.3.1).

77

Chapter 4: High-Level Languages for Network Drivers

39 of the 40 memory safety bugs in Linux examined here are located in drivers, showing
that most of the security improvements can be gained without replacing the whole
operating system, see Section 4.3.2. Network drivers are a good starting point for this
effort: User space network drivers written in C are already commonplace. Moreover,
they are critical for security: they are exposed to the external world or serve as a
barrier isolating untrusted virtual machines (e.g., CVE-2018-1059 in DPDK allowed
VMs to extract host memory due to a missing bounds check [37]).

Higher layers of the network stack are also already moving towards high-level languages
(e.g., the TCP stack in Fuchsia [56] is written in Go) and towards user space imple-
mentations. The transport protocol QUIC is only available as user space libraries, e.g.,
in Chromium [58] or CloudFlare’s quiche written in Rust [28]. Apple runs a user space
TCP stack on mobile devices [26]. User space stacks also call for a more modern inter-
face than POSIX sockets: the socket replacement TAPS is currently being standardized,
it explicitly targets “modern platforms and programming languages” [159]. This trend
simplifies replacing the kernel C drivers with user space drivers in high-level languages
as legacy interfaces are being deprecated.

Addressing research question Q2 from Section 1.2 (Can high-level languages be used in
software-based network devices?), we can now clearly say: yes. Our evaluation shows
that Rust is a prime candidate for safer drivers: Its ownership-based management system
prevents memory bugs even in custom memory areas not allocated by the language
runtime, see Section 4.5.

The cost of these safety and security features are only 2% of throughput (Section 4.6.2).
Rust’s ownership based memory management provides more safety features than lan-
guages based on garbage collection here and it does so without affecting latency (Sec-
tion 4.7.2). For these 2% in throughput we gain memory safety in 87% of the code
(Section 4.4.3).

We conclude that it is worthwhile to build packet processing systems in high-level lan-
guages, especially Rust. Our Rust implementation manages to forward 27.4Mpps on a
single 3.3GHz CPU core, well above our target of 14.88Mpps (Section 2.2). Go and
C# also manage to stay above the target rate at high CPU speeds and/or large batch
sizes, but with lower margins, see graphs in Section 4.6.2.

However, this was only the lowest software level on a stack of complexity. We evalu-
ated an application that does nothing but touch and forward a packet, having a large
performance margin is important to leave processing time for an application that does
something useful with the packet. Fully answering if and and how high-level languages

78

4.9 Author’s Contributions

can be used requires us to build a real-world application in a high-level language (Chap-
ter 5).

4.9 Author’s Contributions

Sections 4.1 to 4.8 are based on the following publication [43]:

Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Egger, Esaú García Sánchez-
Torija, Thomas Günzel, Sebastian Di Luzio, Alexandru Obada, Maximilian Stadl-
meier, Sebastian Voit, and Georg Carle. “The Case for Writing Network Drivers
in High-Level Programming Languages”. In: ACM/IEEE Symposium on Archi-
tectures for Networking and Communications Systems (ANCS 2019). IEEE. Cam-
bridge, UK, Sept. 2019

All high-level drivers discussed here were implemented by a team of students (as various
types of theses) advised by the author. All experiments in the paper and in this thesis
are either new or re-runs. No data beside the code artifacts from the student theses
were used for either the paper or this thesis.

The core architecture of all drivers is based on the author’s design. All experiments
and benchmarks presented here were conceived and fully specified by the author. The
author also made contributions to the executions of the experiments and test runs. All
analyses and conclusions drawn from the experimental results are the author’s work.
All comparisons between the different languages were done by the author. The micro-
architectural comparison and benchmark between the C and Rust implementation was
done by the author. The comparison of latency of different Java garbage collectors was
done by the author. The investigation of security issues in drivers, complexity of drivers,
the study about bugs in student C code, and the study of languages used for networking
applications were done by the author.

The following significant changes vs. the version published in the conference proceed-
ings1 were made for this thesis:

• The Java driver has been optimized for lower latency, the latency measurement of
it was repeated and the text was updated accordingly.

• The discussion about bugs in operating systems has been extended to include
Microsoft’s Windows operating system.

1The updated Java performance benchmarks have also been distributed on GitHub and in an updated
paper on the author’s web site

79

Chapter 4: High-Level Languages for Network Drivers

• A retrospective look at bugs found in the C driver while porting it to high-level
languages has been added.

• The OCaml driver has been extended to be better integrated with MirageOS with
IOMMU support.

80

Part III

Flexible Testing of Network
Devices

Chapter 5

MoonGen: A fast and flexible packet
generator

When we started to work on this dissertation project in 2014 the world of software-based
networking research was lacking a packet generator meeting the demands of modern
applications being developed. So we build our own software packet generator that
applies the core ideas of our thesis: Using high-level languages in domains traditionally
dominated by C or hardware implementations to gain flexibility.

MoonGen was explicitly designed to be more than just a tool required for our work:
We took care to make it user friendly and accessible to the whole research community.
Since its publication it has become the de-facto standard for packet generators in the
community. There are over 300 papers citing MoonGen, including several high-impact
papers published at SIGCOMM using MoonGen for their experimental evaluation [152,
93, 168].

We take a look at how software-based packet processing applications can be bench-
marked (research question Q3 from Section 1.2). Packet generators for such applications
require an extraordinarily high flexibility because testing entirely new kinds of devices
requires entirely new kinds of testing protocols. MoonGen also serves as a real-world
packet processing application that uses the high-level programming language Lua to
gain unprecedented flexibility by running user-defined code for every packet sent out
(Section 5.4). MoonGen achieves our performance goals of 14.88Mpps on a single CPU
core (Section 2.2) despite being written in a high-level scripting language.

Moreover, we take a look at replacing hardware with software and the trade-offs required
for precision (research question Q4). Packet generators are traditionally a domain dom-

Chapter 5: MoonGen: A fast and flexible packet generator

inated by specialized hardware, we instead use a high-level language here wherever we
can. This comes with trade-offs, especially in the domains related to latency measure-
ments. We find that we can use hardware features commonly found on commodity NIC
to implement precise (±12.8 ns) timestamping in hardware (Section 5.6).

The remainder of this chapter is based on our publication about MoonGen which is joint
work by Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle [42]. A full account of the author’s contributions is given in Section 5.10.

5.1 Introduction

Tools for traffic generation are essential to quantitative evaluations of network perfor-
mance. Hardware-based solutions for packet generation are expensive and in many
cases inflexible. Existing software solutions often lack performance or flexibility and
come with precision problems [23] (discussed in detail in Chapter 6).

The state of the art in packet generation, discussed further in Section 5.2, motivated
us to design MoonGen. Our novel software packet generator is flexible, fast, and pre-
cise without relying on special-purpose hardware. Moving the packet generation logic
into user-controlled Lua scripts ensures flexibility by utilizing modern high-level lan-
guages. We build on the JIT compiler LuaJIT [123] and the packet processing frame-
work DPDK [96]. Our architecture and its implementation are described in detail in
Section 5.3.

MoonGen is controlled through its API instead of configuration files. We explain the
interface in Section 5.4 by presenting code examples for typical use cases. The API
allows for applications beyond packet generation as it makes DPDK packet processing
facilities available to Lua scripts. Section 5.5 evaluates the performance of our approach.
We show that running Lua code for each packet is feasible and can even be faster than
an implementation written in C.

Our packet generator can also receive packets and measure round-trip latencies with sub-
microsecond precision and accuracy. We achieve this by using the hardware features of
Intel commodity NICs intended for clock synchronization across networks. Section 5.6
features a detailed evaluation of timestamping capabilities of modern commodity NICs.

Section 5.7 discusses different ways for rate control, both in software and hardware. We
also present a novel method for controlling inter-packet gaps to generate well-defined
traffic patterns. Our new approach requires only minimal hardware support and is
superior to existing pure software implementations.

84

5.2 Related Work

5.2 Related Work

Packet generators face a tradeoff between complexity and performance. This is reflected
in the available packet generators: Barebone high-speed packet generators with limited
capabilities on the one hand and feature-rich packet generators that do not scale to
high data rates on the other hand. While high-speed packet generators often only send
out pre-crafted Ethernet frames (e.g., pcap files), more advanced packet generators are
able to transmit complex load patterns by implementing and responding to higher-layer
protocols (e.g., web server load tester). Consequently, there is a lack of fast and flexible
packet generators. Besides mere traffic generation, many packet generators also offer the
possibility to capture incoming traffic and relate the generated to the received traffic.

The traditional approach to measure the performance of network devices uses hardware
solutions to achieve high packet rates and high accuracy [23]. Especially their ability
to accurately control the sending rate and precise timestamping are important in these
scenarios. Common hardware packet generators manufactured by IXIA, Spirent, or
XENA are tailored to special use cases such as performing RFC 2544 compliant device
tests [25]. They send predefined traces of higher-layer protocols, but avoid complex
hardware implementations of protocols. Therefore, these hardware appliances are on
the fast-but-simple end of the spectrum of packet generators. They are focused on well-
defined and reproducible performance tests for comparison of networking devices via
synthetic traffic. However, the high costs severely limit their usage [23].

NetFPGA is an open source FPGA-based NIC that can be used as a packet genera-
tor [110]. Although costs are still beyond commodity hardware costs, it is used more
often in academic publications. OSNT [7] is a packet generator and general-purpose
test tool that uses it to measure latencies with nanosecond accuracy.

Software packet generators running on commodity hardware are widespread for different
use cases. Especially traffic generators that emulate realistic traffic, e.g., Harpoon [155],
suffer from poor performance on modern 10Gbit/s links. We focus on high-speed traf-
fic generators that are able to saturate 10Gbit/s links with minimum-sized packets,
i.e., achieve a rate of 14.88Mpps. Bonelli et al. [19] implement a software traffic gen-
erator, which is able to send 12Mpps by using multiple CPU cores. Software packet
generators often rely on frameworks for efficient packet transmission [115, 148, 96] to
increase the performance further to the line rate limit. Less complex packet genera-
tors can be found as example applications for high-speed packet IO frameworks: zsend
for PF_RING ZC [115] and pktgen for netmap [148]. Wind River Systems provides
pktgen-dpdk [165] for DPDK [96]. pktgen-dpdk features a Lua scripting API that
can be used to control the parameters of the generator, but the scripts cannot modify

85

Chapter 5: MoonGen: A fast and flexible packet generator

the packets themselves. Further, existing tools for packet generation like Ostinato have
been ported to DPDK to improve their performance [122]. Previous studies showed that
software solutions are not able to precisely control the inter-packet delays [23, 29]. This
leads to micro-bursts and jitter, a fact that impacts the reproducibility and validity of
tests that rely on a precise definition of the generated traffic.

Ostinato is the most flexible software packet solution of the investigated options as it
features configuration through Python scripts while using DPDK for high-speed packet
IO. However, its scripting API is limited to the configuration of predefined settings, the
scripts cannot be executed for each packet. Precise timestamping and rate control are
also not supported. [122]

One has to make a choice between flexibility (software packet generators) and precision
(hardware packet generators) with the available options. Today different measurement
setups therefore require different packet generators. For example, precise latency mea-
surements currently require hardware solutions. Complex packet generation (e.g., test-
ing advanced features of network middleboxes like firewalls) requires flexible software
solutions. We present a hybrid solution with the goal to be usable in all scenarios.

5.3 Implementation

We identified the following requirements based on our goal to close the gap between
software and hardware solutions by combining the advantages of both. MoonGen must...

(R1) ...be implemented in software and run on commodity hardware.

(R2) ...be able to saturate multiple 10Gbit/s links with minimum-sized packets.

(R3) ...be as flexible as possible.

(R4) ...offer precise and accurate timestamping and rate control.

The following building blocks were chosen based on these requirements.

5.3.1 Packet Processing with DPDK
We chose DPDK for MoonGen because of its speed [53] and support for NICs from
virtually all vendors of server-grade NICs. DPDK is also a full user space driver as dis-
cussed in Chapter 3, an important property for MoonGen: we need to modify the driver
to implement requirement (R4). Another option that was considered but discarded was
netmap. We implemented a prototype of MoonGen on netmap to compare it, but faced
many challenges including poor support for NICs, lack of support for hardware features
and worse performance than DPDK.

86

5.3 Implementation

5.3.2 Scripting with LuaJIT
MoonGen must be as flexible as possible (R3). Therefore, we move the whole packet
generation logic into user-defined scripts as this ensures the maximum possible flexibility.
At the same time, the performance of the scripting engine must not inhibit the overall
performance of MoonGen (R2).

We considered two scripting languages with fast implementations: Lua with LuaJIT and
JavaScript with V8. There were two main reasons why LuaJIT was chosen: Related
work shows that it is suitable for high-speed packet processing tasks [99] at high packet
rates (R2). Moreover, its foreign function interface is excellent for an easy integration of
C libraries like DPDK. V8 requires a large amount of boiler plate code and has unclear
performance characteristics when it comes to converting between different data types.
LuaJIT simply requires a function definition and call it with no additional overhead as
data layout can be controlled to be binary-compatible with the C data types required
by the library.

One concern for scripting languages is always latency due to garbage collection and
compilation of code during run time as discussed in Chapter 4. Note that latency is
less of a problem for packet generators than it is for general-purpose packet processing
systems. MoonGen’s goal is to always fill all buffers completely to handle such inter-
ruptions. This is contrary to goals of a general-purpose system that wants to avoid
buffering to avoid latency.

The currently supported NICs feature buffer sizes in the order of hundreds of kilo-
bytes [72, 73, 76]. For example, the smallest buffer on the X540 chip is the 160 kB
transmit buffer, which can store 128µs of data at 10Gbit/s. In addition, there are
DMA buffers in main memory of thousands of packets This effectively conceals short
pause times if the buffer is full. Pause times introduced by the JIT compiler are in
the range of “a couple of microseconds” [125]. The garbage collector (GC) works in
incremental steps, the pause times depend on the usage. In practice, we find that we
encounter small problems during startup before the queues are filled, we observe pause
times of up to 36 µs between batches for the first 10 batches at rates of 4Mpps and
above (Section 6.6.4). All following batches are unaffected. We could not observe any
adverse effects of this behavior in any benchmarks.

Lua was not one of the high-level languages evaluated in Chapter 4. The attentive reader
has also noticed that the publication of MoonGen predates the research on high-level
languages. Our deep dive into performance of drivers and high-level languages would
simply not have been possible without having a reliable packet generator first. Lua was
not included in the study of high-level languages in Chapter 4 because Lua was already

87

Chapter 5: MoonGen: A fast and flexible packet generator

proven to work well in practice: high-speed drivers in Lua exist [99] and MoonGen is
fast and widely used, so no further research was needed.

5.3.3 Hardware Architecture
Understanding how the underlying hardware works is important for the design of a
high-speed packet generator. The typical operating system socket API hides impor-
tant aspects of networking hardware that are crucial for the design of low-level packet
processing tools.

A central feature of modern commodity NICs is support for multi-core CPUs. Each
NIC supported by DPDK features multiple receive and transmit queues per network
interface. This is not visible from the socket API of the operating system as it is handled
by the driver [70]. For example, both the X540 and 82599 10Gbit/s NICs support 128
receive and transmit queues. Such a queue is essentially a virtual interface and they
can be used independently from each other. [73, 76]

Multiple transmit queues allow for perfect multi-core scaling of packet generation, see
Section 2.1. Each configured queue can be assigned to a single CPU core in a multi-core
packet generator. Receive queues are also statically assigned to threads and the incom-
ing traffic is distributed via configurable filters (e.g., Intel Flow Director) or hashing on
protocol headers (e.g., Receive Side Scaling). [73, 76] Commodity NICs also often sup-
port timestamping and rate control in hardware. This allows us to fulfill (R1) without
violating (R4).

MoonGen does not run on arbitrary commodity hardware, we are restricted to hardware
that is supported by DPDK [96] and that offers support for these features. We currently
support hardware features on Intel chips of the igb, ixgbe, and i40e family. Other NICs
that are supported by DPDK but not yet explicitly by MoonGen can also be used, but
without hardware timestamping and rate control.

5.3.4 Software Architecture
MoonGen’s core is a Lua wrapper for DPDK that provides utility functions required
by a packet generator. The MoonGen API comes with functions that configure the
underlying hardware features like timestamping and rate control. About 80% of the
current code base is written in Lua, the remainder in C and C++. Although our
current focus is on packet generation, MoonGen can also be used for arbitrary packet
processing tasks.

88

5.4 Scripting API

MoonGen Core

DPDK

U
se

rs
cr

ip
t

M
o
on

G
en

H
ar

d
w

ar
e

NIC NIC

Port

Q0 ... Qn

Port

Userscript

Lua VM

Userscript
spawn

Userscript
secondary task

Lua VM

Userscript
main task

Lua VM

Config API Data API

Config API Data API

Figure 5.1: MoonGen’s architecture

Figure 5.1 shows the architecture of MoonGen. It runs a user-provided script, the
userscript, on start-up. This script contains the main loop and the packet generation
logic.

The userscript will be executed in the main task initially by calling the master function
provided by the script. This function must initialize the used NICs, i.e., configure the
number of hardware queues, buffer sizes and filters for received traffic. It can then
spawn new instances of itself running in secondary tasks and pass arguments to them.
It usually receives a hardware queue as an argument and then transmits or receives
packets via this queue. Starting a new task spawns a completely new and independent
LuaJIT VM that is pinned to a CPU core. This new VM executes the same Lua script
with different arguments, the MoonGen dispatcher calls the appropriate main function
for the new task on startup. Tasks only share state through the underlying MoonGen
library which offers inter-task communication facilities such as pipes. All functions
related to packet transmission and reception in MoonGen and DPDK are lock-free to
allow for multi-core scaling.

5.4 Scripting API

Our example scripts in the git repository are designed to be self-explanatory exhaustive
examples for the MoonGen API [3]. The best way to understand how to use MoonGen
is reading one of the example scripts in our repository [3]. We attached two example

89

Chapter 5: MoonGen: A fast and flexible packet generator

1 function master(args)
2 -- Configure devices.
3 local txDev = device.config{port = args.txDev, rxQueues = 1, txQueues = 2}
4 local rxDev = device.config{port = args.rxDev, rxQueues = 2}
5 -- Wait for link on layer 1.
6 device.waitForLinks()
7 -- Setup hardware rate control.
8 txDev:getTxQueue(0):setRate(args.bgRate)
9 txDev:getTxQueue(1):setRate(args.fgRate)

10 -- Start tasks.
11 mg.startTask("loadTask", txDev:getTxQueue(0), 42) -- Use UDP port 42 on tx queue 0.
12 mg.startTask("loadTask", txDev:getTxQueue(1), 43) -- Use UDP port 43 on tx queue 1.
13 mg.startTask("counterTask", rxDev:getRxQueue(0))
14 mg.waitForTasks() -- Wait until all sub-tasks finish or ctrl-c is pressed.
15 end

Listing 1: Initialization and device configuration

scripts in the appendix of this thesis. Appendix A is a configurable packet generator
script that can be used as a starting point for your own scripts.

Appendix B is out quality of service example script which we use in this Section to
explain and showcase features. The listings in this section show modified excerpts from
this script which at its core consists of two transmission tasks to generate two types of
UDP flows and measures their throughput and latencies. It can be used as a starting
point for a test setup to benchmark a forwarding device or middlebox that prioritizes
real-time traffic over background traffic.

The example code in this section has been modified from the example code in the
repository and appendix: it has been edited for brevity. Command-line handling, error
handling, and log messages are omitted The timestamping task has been removed as
this example focuses on the basic packet generation and configuration API. Comments
have been changed and some variables renamed, see Appendix B for the full code.

5.4.1 Initialization
Listing 1 shows the master function. This function is executed in the main task on
startup and receives parsed command line arguments passed to MoonGen: The devices
and transmission rates to use in this case. It configures one transmit device with two
transmit queues and one receiving device with the default settings. The call in line
6 waits until the links on all configured devices are established. It then configures
hardware rate control features on the transmission queues and starts three tasks, the
first two generate traffic, the last counts the received traffic on the given device. The
arguments passed to mg.startTask are passed to the respective functions in the new
task. The loadTask function takes the transmission queue to operate on and a port to
distinguish background from prioritized traffic.

90

5.4 Scripting API

5.4.2 Packet Generation Loop
Listing 2 shows the loadTask function that is started twice and does the actual packet
generation. It first allocates a memory pool, a DPDK data structure in which packet
buffers are allocated. The MoonGen wrapper for memory pools expects a callback
function that is called to initialize each packet. This allows a script to fill all packets
with default values (lines 5 to 10) before the packets are used in the transmit loop (lines
17 to 24). The transmit loop only needs to modify a single field in each transmitted
packet (line 25) to generate packets from randomized IP addresses.

Line 15 initializes a packet counter that keeps track of transmission statistics and prints
them in regular intervals. MoonGen offers several types of such counters with different
methods to acquire statistics, e.g., by reading the NICs statistics registers. This example
uses the simplest type, one that must be manually updated.

Line 17 allocates a bufArray, a thin wrapper around a C array containing packet buffers.
This is used instead of a normal Lua array for performance reasons. It contains a number
of packets in order to process packets in batches instead of passing them one-by-one
to the DPDK API. Batch processing is an important technique for high-speed packet
processing [53, 148].

The main loop starts in line 19 with allocating packets of a specified size from the
memory pool and storing them in the packet array. It loops over the newly allocated
buffers (line 22) and randomizes the source IP (line 25). Finally, checksum offloading is
enabled (line 28) and the packets are transmitted (line 30).

Note that the main loop differs from a packet generator relying on a classic API. Moon-
Gen, or any other packet generator based on a similar framework, cannot simply re-use
buffers because the transmit function is asynchronous. Passing packets to the transmit
function merely places pointers to them into a memory queue, which is accessed by the
NIC later [96]. A buffer must not be modified after passing it to DPDK. Otherwise, the
transmitted packet data may be altered if the packet was not yet fetched by the NIC.

Therefore, we have to allocate new packet buffers from the memory pool in each itera-
tion. Pre-filling the buffers at the beginning allows us to only touch fields that change
per packet in the transmit loop. Packet buffers are recycled by DPDK in the transmit
function, which collects packets that were sent by the NIC earlier [96]. This does not
erase the packets’ contents. Our previously discussed network driver ixy works the same
way, it comes with a minimal packet generation example which implements the same
concept and can serve as a minimal example of the underlying concepts.

91

Chapter 5: MoonGen: A fast and flexible packet generator

1 local PKT_SIZE = 60
2 function loadTask(queue, port)
3 -- Memory pool with pre-filled packet buffers.
4 local mem = memory.createMemPool(function(buf)
5 buf:getUdpPacket():fill{
6 pktLength = PKT_SIZE,
7 ethSrc = queue, -- get MAC from device
8 ethDst = "10:11:12:13:14:15",
9 ipDst = "192.168.1.1",

10 udpSrc = 1234,
11 udpDst = port,
12 }
13 end)
14 -- Log statistics.
15 local txCtr = stats:newManualTxCounter("Port " .. port, "plain")
16 -- BufArrays contain batches of packet buffers.
17 local bufs = mem:bufArray()
18 local baseIP = parseIPAddress("10.0.0.1")
19 while mg.running() do
20 -- Allocate a batch of packet buffers from the memory pool.
21 bufs:alloc(PKT_SIZE)
22 for _, buf in ipairs(bufs) do
23 -- Randomize last byte of source IP.
24 local pkt = buf:getUdpPacket()
25 pkt.ip.src:set(baseIP + math.random(255) - 1)
26 end
27 -- Use hardware checksum offloading.
28 bufs:offloadUdpChecksums()
29 -- Transmit and update statistics.
30 local sent = queue:send(bufs)
31 txCtr:updateWithSize(sent, PKT_SIZE)
32 end
33 txCtr:finalize()
34 end

Listing 2: Packet transmission task with counter

5.4.3 Packet Counter
Listing 3 shows how to use MoonGen’s packet reception API to measure the throughput
of the different flows by counting the incoming packets.

The task receives packets from the provided queue in the bufArray bufs in line 5. It
then extracts the UDP destination port from the packet (line 9) and uses counters to
track statistics per port. The final statistics are printed by calling the counters’ finalize
methods in line 24. Printed statistics include the average packet and byte rates as well
as their standard deviations.

The format to print in is specified in the counter constructor in line 13. All example
scripts use the plain formatter, the default value is CSV for easy post-processing. The
output can also be diverted to a file. Details are in the LuaDoc documentation of
stats.lua.

This script can be used for another similar test setup by adapting the code to the test
setup by changing hardcoded constants like the used addresses and ports. The full

92

5.5 Performance

1 function counterTask(queue)
2 local bufs = memory.bufArray()
3 local counters = {}
4 while mg.running() do
5 local rx = queue:recv(bufs)
6 for i = 1, rx do -- For each received packet.
7 local buf = bufs[i]
8 -- Extract UDP destination port.
9 local port = buf:getUdpPacket().udp:getDstPort()

10 -- One counter for each port, created dynamically
11 local ctr = counters[port]
12 if not ctr then
13 ctr = stats:newPktRxCounter(port, "plain")
14 counters[port] = ctr
15 end
16 -- Track the packet.
17 ctr:countPacket(buf)
18 end
19 -- Free packet memory.
20 bufs:freeAll()
21 end
22 -- Print final statistics.
23 for _, ctr in pairs(counters) do
24 ctr:finalize()
25 end
26 end

Listing 3: Packet counter task

script in the repository [3] includes a separate timestamping task to acquire and print
latency statistics for the two flows.

5.5 Performance

Writing the whole generation logic in a scripting language raises concerns about the
performance, but we are able to achieve our performance targets from Section 2.2 of
14.88Mpps on a single core. One important feature of LuaJIT is that it allows for easy
integration with existing C libraries and structs: it can directly operate on C structs
and arrays without incurring overhead for bound checks or validating pointers [123].
Thus, crafting packets is very efficient in MoonGen.

The obvious disadvantage is that unchecked memory accesses can lead to memory cor-
ruption, a problem that is usually absent from scripting languages. However, most crit-
ical low-level parts like the implementation of the NIC driver are handled by DPDK.
The MoonGen core then wraps potentially unsafe parts for the userscript if possible.
There are only two operations in a typical userscript that can lead to memory corrup-
tion: writing beyond packet buffer boundaries and trying to operate on buffers that are
null pointers. This is an intentional design decision to aid the performance: we are not
interested in the safety properties of high-level languages here but in their flexibility
and ease of use.

93

Chapter 5: MoonGen: A fast and flexible packet generator

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

5

10

15

CPU Frequency [GHz]

P
a
ck
et

R
at
e
[M

p
p
s]

MoonGen
Pktgen-DPDK

Figure 5.2: CPU frequency vs. generated packets per second

5.5.1 Test Methodology
DPDK works—like our ixy driver—with busy-wait loops and always puts 100% on all
configured CPU cores. We therefore use a test setup that enforces a CPU bottleneck
similar to our driver evaluation: we adjust the CPU clock frequency until the evaluated
packet generators fail to achieve line rate to quantify performance in CPU cycles per
packet.

The tests in this section were executed on an Intel Xeon E5-2620 v3 CPU with a
frequency of 2.4GHz that can be clocked down to 1.2GHz in 100MHz steps (Server
1 from Section 2.4). To ensure consistent and reproducible measurement results, we
disabled Hyper-Threading, which may influence results if the load of two virtual cores
is scheduled to the same physical core. TurboBoost and SpeedStep were also disabled
because they adjust the clock speed according to the current CPU load and interfere
with our manual adjustment of the frequency.

5.5.2 Comparison with Pktgen-DPDK
Our scripting approach can even increase the performance compared to a static packet
generator slightly. We show this by comparing MoonGen to pktgen-dpdk [165], a packet
generator for DPDK written in C. Both MoonGen and the version of pktgen-dpdk used
here were build on the same version of DPDK.

We configured both packet generators to craft minimum-sized UDP packets with 256
varying source IP addresses on a single CPU core. We then gradually increased the
CPU’s frequency until the software achieved line rate. pktgen-dpdk required 1.7GHz
to hit the 10Gbit/s line rate of 14.88 Mpps, MoonGen only 1.5GHz. pktgen-dpdk
achieved 14.12Mpps at 1.5GHz. This means MoonGen is more efficient in this specific
scenario.

This increased performance is an inherent advantage of MoonGen’s architecture pktgen-
dpdk needs a complex main loop that covers all possible configurations even though we

94

5.5 Performance

1 2 3 4 5 6 7 8
0

10

20

30

Number of CPU Cores (1.2GHz)
P
ac
k
et

R
a
te

[M
p
p
s]

Figure 5.3: Multi-core scaling under high load

are only interested in changing IP addresses in this test scenario. MoonGen, on the
other hand, can use a script that consists of a tight inner loop that exclusively executes
the required tasks: allocating pre-filled packet buffers, modifying the IP address, and
sending the packets with checksum offloading. You only pay for the features you actually
use with MoonGen.

5.5.3 Multi-core Scaling
The achieved performance depends on the script; the previous example was a light
workload for the comparison to pktgen-dpdk, which is limited to such simple patterns.
Therefore, we test a more involved script to stress MoonGen to show the scaling with
multiple cores sending to the same NIC via multiple transmission queues.

Figure 5.3 shows the performance under heavy load and the scaling with the number of
CPU cores. MoonGen was configured to generate minimum-sized packets with random
payload as well as random source and destination addresses and ports. The code gener-
ates 8 random numbers per packet to achieve this. Each core generated and sent packets
on two different 10Gbit/s interfaces simultaneously. Linear scaling can be observed up
to the line rate limit (dashed line). The trade-off is that we use the NIC’s multi-queue
hardware feature (Section 2.1) is required, meaning we lose control over the exact order
in which packets are sent.

The code was written in idiomatic Lua without specific optimizations for this use case:
LuaJIT’s standard random number generator, a Tausworthe generator with a period
of 2223, was used [123]. Since a high quality random number generator is not required
here, a simple linear congruential generator would be faster. The code also generates a
random number per header field instead of combining multiple fields (e.g., source and
destination port can be randomized by a single 32-bit random number).

Despite the lack of optimizations, the code was initially found to be too fast for mean-
ingful scalability measurements (10.3Mpps on a single core). We therefore reduced the
CPU’s clock speed to 1.2GHz and increased the number of NICs to 2 for this test.

95

Chapter 5: MoonGen: A fast and flexible packet generator

64 96 128 160 192 224 256
0

10

20

30

40

50

Packet size [Byte]

R
a
te

[G
b
it
/
s]

1 core 2 cores 3 cores

Figure 5.4: Throughput with an XL710 40Gbit/s NIC

This test shows that sending to a single NIC port via multiple queues scales linearly, an
important assumption made for our architecture (cf. Section 5.3.3).

5.5.4 Scaling to 40 Gigabit Ethernet
40Gbit/s NICs like the dual port Intel XL710 [77] are nowadays common in many
servers. However, these NICs come with bandwidth limitations that do not exist on
the 10Gbit/s NICs discussed previously: they cannot saturate a link with minimum-
sized packets [137] and they cannot saturate both ports simultaneously regardless of
the packet size [77]. This may limit their use in some scenarios where a large number
of small packets is required, e.g., stress-testing a router.

Figure 5.4 shows the achieved throughput with various packet sizes and number of
2.4GHz CPU cores used to generate the traffic. Packet sizes of 128 bytes or less cannot
be generated in line rate. Using more than two CPU cores does not improve the speed,
so this is a hardware bottleneck as described by Intel [137].

The second bandwidth restriction of this NIC is the aggregate bandwidth of the two
ports. One obvious restriction is the 63Gbit/s bandwidth of the PCIe 3.0 x8 link that
connects the NIC to the CPU. However, the main bottleneck is the media access control
layer in the XL710 chip: it is limited to a maximum aggregate bandwidth of 40Gbit/s
(cf. Section 3.2.1 of the XL710 datasheet [77]). We could achieve a maximum bandwidth
of 50Gbit/s with large packets on both ports simultaneously and a maximum packet
rate of 42Mpps (28Gbit/s with 64 byte frames).

5.5.5 Scaling to 100 Gigabit Ethernet
We equipped one of our test servers with six dual-port 10Gbit/s Intel X540-T2 NICs
to investigate the performance at high rates. Figure 5.5 shows the achieved packet rate
when generating UDP packets from varying IP addresses. We used two Intel Xeon E5-

96

5.5 Performance

1 2 3 4 5 6 7 8 9 10 11 12
0

50

100

150

200

Number of CPU Cores

P
a
ck
et

R
a
te

[M
p
p
s]

0

20

40

60

80

100

120

R
a
te

[G
b
it
/
s]

Figure 5.5: Multi-core scaling (multiple 10Gbit/s NICs)

2640 v2 CPUs with a nominal clock rate of 2GHz for this test, but the clock rate can
even be reduced to 1.5GHz for this packet generation task (cf. Section 5.5.2).

Note that sending to multiple NICs simultaneously is architecturally the same as sending
to multiple queues on a single NIC as different queues on a single NIC are independent
from each other (cf. Section 5.5.3) in an ideal well-behaved NIC like the current gener-
ation of 10Gbit/s NICs. However, the currently available 100Gbit/s NICs have similar
hardware restrictions as the 40Gbit/s NIC discussed in Section 5.5.4. For example, the
Mellanox ConnectX-4 cannot handle transmitting more than 67Mpps (only 45Gbit/s
with minimum sized packets) even under ideal conditions with multiple queues [59].

5.5.6 Per-Packet Costs
MoonGen’s dynamic approach to packet generation in userscripts does not allow for a
performance analysis in a general configuration as there is no typical scenario. Never-
theless, the cost of sending a packet can be decomposed into three main components:
packet IO, memory accesses, and packet modification logic. We devised a synthetic
benchmark that measures the average number of CPU cycles required for various oper-
ations that are commonly found in packet generator scripts. These measurements can
be used to estimate the hardware requirements of arbitrary packet generator scripts.

The full benchmarking script can be found in commit 96818ad9 in our git repository [38].
It works by chaining together different packet modification operations and then trans-
mitting packets over a period of 8 seconds, counting the packets transmitted. Measuring
the packet rate every second during a run shows a deviation of less than 0.1%. Yet,
when repeating this experiment we observe a significant change in throughput depending
on the complexity of the modification operations. Hence, we repeat all measurements
of packet costs 10 times here, the uncertainties given in this section are the standard
deviations.

97

Chapter 5: MoonGen: A fast and flexible packet generator

Operation Cycles/Pkt

Packet transmission 76.0 ± 0.8
Packet modification (constants within the first 64 bytes) 9.1 ± 1.2
Packet modification (constants within the first 128 bytes) 15.0 ± 1.3
IP checksum offloading 15.2 ± 1.2
UDP checksum offloading 33.1 ± 3.5
TCP checksum offloading 34.0 ± 3.3

Table 5.1: Per-packet costs of basic operations (2.4GHz CPU, performance budget of 161 cycles)

Basic Operations
Table 5.1 shows the average per-packet costs of basic operations for IO and memory
accesses. The baseline for packet IO consists of allocating a batch of packets and sending
them without touching their contents in the main loop. This shows that there is a
considerable per-packet cost for the IO operation caused by the underlying DPDK
framework, see Section 3.5.6 for a breakdown.

Modification operations write constants into the packets, forcing the CPU to load them
into the layer 1 cache. Additional accesses within the same cache line (64 bytes) add no
measurable additional cost. Accessing another cache line in a larger packet is noticeable.

Offloading checksums is not free (but still cheaper than calculating them in software)
because the driver needs to set several bitfields in the DMA descriptor. For UDP and
TCP offloading, MoonGen also needs to calculate the IP pseudo header checksum as
this is not supported by the X540 NIC used here [76].

Randomizing Packets
Sending varying packets is important to generate different flows. There are two ways
to achieve this: one can either generate a random number per packet or use a counter
with wrapping arithmetic that is incremented for each packet. The resulting value is
then written into a packet header at a fixed offset. Table 5.2 shows the cost for the
two approaches, the baseline is the cost of writing a constant to a packet and sending
it (85.1 cycles/pkt).

There is a fixed cost for calculating the values while the marginal cost is relatively
low: 17 cycles/packet per random field and 1 cycle/packet for wrapping counters. These
results show that wrapping counters instead of actual random number generation should
be preferred if possible for the desired traffic scenario.

We use the default random number generator in LuaJIT, Tausworthe generator with a
period of 2223 [123]. Since this randomization happens in user-defined code one is free

98

5.5 Performance

Memory locations Cycles/Pkt (Rand) Cycles/Pkt (Counter)

1 32.3 ± 0.5 27.1 ± 1.4
2 39.8 ± 1.0 33.1 ± 1.3
4 66.0 ± 0.9 38.1 ± 2.0
8 133.5 ± 0.7 41.7 ± 1.2

Table 5.2: Per-packet costs of modifications on 4 byte fields at fixed offsets (2.4GHz CPU, performance
budget of 161 cycles

to use a simpler custom random number generation if the quality of randomness is not
a concern. Further, MoonGen supports playing back pcap files, so precomputed packet
streams can be sent out.

Cost Estimation Example
We can use these values to predict the performance of the scripts used for the per-
formance evaluation in Section 5.5.3. The example generated 8 random numbers for
fields with a userscript that is completely different from the benchmarking script: it
writes the values into the appropriate header fields and the payloads, the benchmarking
script just fills the raw packet from the start. The script also combines offloading and
modification; the benchmark tests them in separate test runs.

The expected cost consists of: packet IO, packet modification, random number gen-
eration, and IP checksum offloading, i.e., 229.2 ± 3.9 cycles/pkt. This translates to a
predicted throughput of 10.47±0.18Mpps on a single 2.4GHz CPU core. The measured
throughput of 10.3Mpps is within that range. This shows that our synthetic benchmark
can be used to estimate hardware requirements.

It should be noted that this model has limitations: it assumes that multiple operations
are independent from each other. This might be true logically, but on a lower layer
several effects need to be taken into account including but not limited to optimizations
applied by out-of-order CPUs and effects of the cache.

5.5.7 Effects of Packet Sizes
All tests performed in the previous sections use minimum-sized packets. The reason for
this choice is that the per-packet costs dominate over costs incurred by large packets.
Allocating and sending larger packets without modifications add no additional cost in
MoonGen on 1 and 10Gbit/s NICs. Only modifying the content on a per-packet basis
adds a performance penalty, which is comparatively low compared to the fixed cost of
sending a packet. Using larger packets also means that fewer packets have to be sent at

99

Chapter 5: MoonGen: A fast and flexible packet generator

line rate, so the overall fixed costs for packet IO are reduced: minimum-sized packets
are usually the worst-case.

Nevertheless, there are certain packet sizes that are of interest: those that are just
slightly larger than a single cache line. We benchmarked all packet sizes between 64
and 128 bytes and found no difference in the CPU cycles required for sending a packet.
Larger packets hit the line rate even with the lowest supported CPU clock frequency of
1.2GHz. Since MoonGen also features packet reception, we also tried to receive packets
with these sizes and found no measurable impact of the packet size.1

Rizzo notes that such packet sizes have a measurable impact on packet reception, but
not transmission, in his evaluation of netmap [148]. He attributes this to hardware
bottlenecks as it was independent from the CPU speed. We could not reproduce this
with MoonGen. The likely explanation is that we are using newer server hardware (CPU
launched in 2014), while the evaluation of netmap was done on an older system with a
CPU launched in 2009 [148].

5.6 Hardware Timestamping

Another important performance characteristic beside the throughput is the latency of
a system. Modern NICs offer hardware support for the IEEE 1588 Precision Time
Protocol (PTP) for clock synchronization across networks. PTP can be used either
directly on top of Ethernet as a layer 3 protocol with EtherType 0x88F7 or as an
application-layer protocol on top of UDP [68].

We examined the PTP capabilities of the Intel 82580 1Gbit/s NICs, the Intel 82599,
X540, and X550 10Gbit/s chips as well as the XL710 40Gbit/s NICs. They support
timestamping of PTP Ethernet and UDP packets, the UDP port is configurable on the
10 and 40Gbit/s NICs. They can be configured to timestamp only certain types of PTP
packets, identified by the first byte of their payload. The second byte must be set to
the PTP version number. All other PTP fields in the packet are not required to enable
timestamps and may contain arbitrary values. [72, 73, 76, 77] This allows us to measure
latencies of almost any type of packet.

Most Intel NICs, including the 10 and 40Gbit/s chips used here, save the timestamps
for received and transmitted packets in a register on the NIC. This register must be
read back before a new packet can be timestamped [73, 76], limiting the throughput of

1Note that this is not true for XL710 40Gbit/s NICs which can run into hardware bottlenecks with
some packet sizes (Section5.5.4).

100

5.6 Hardware Timestamping

timestamped packets. The XL710 offers 4 registers that can be used in a queue, offering
a slightly higher throughput but still one additional PCIe round trip for every 4 packets.
However, none of these approaches is fast enough to handle timestamping all packets –
PCIe round trips are prohibitively expensive, see the discussion in Chapter 3 where the
main goal was avoiding PCIe accesses by batching packets.

Timestamping all packets on transmission is not feasible on any evaluated commodity
NIC as none supports the insertion of the timestamp into the packet. But there are
NICs that support appending timestamps of all received packets to the DMA buffers.
MoonGen supports this by providing a small driver (as the DPDK driver does not
support this) to enable this feature for the Intel 82580, X550, and Intel X552 NICs.
This has proven especially useful on the X552 NICs which are available with SFP+
ports and hence can be used to timestamp all packets on passive tap devices. This setup
effectively removes the requirement to acquire timestamps on transmission (infeasible on
commodity hardware) and turns it into timestamping on reception at two observation
points, which is supported on selected NICs. See Section 2.4.1 for a description of this
test setup which allows us to measure the timestamps of all packets, this was used for
the latency measurements presented in Section 4.7.

5.6.1 Precision and Accuracy
We use the Intel 82599 and X540 NICs as examples for the evaluation of timestamping
as they represent two different physical layers: the former NIC has a SFP+ slot that
can be used with fiber optics, the latter a normal RJ45 port used with Cat 5e cabling.

Timestamping mechanisms of the Intel 82599 and Intel X540 10Gbit/s chips operate
at 156.25MHz when running at 10Gbit/s speeds [73, 76]. This frequency is reduced
to 15.625MHz when a 1Gbit/s link is used, resulting in a granularity of 6.4 ns for
10Gbit/s and 64 ns for 1Gbit/s. The datasheet of the Intel 82580 Gbit/s [72] controller
lacks information about the clock frequency, testing shows the acquired timestamps are
always a multiple of 64 ns.

All of these NICs timestamp packets late in the transmit path and early in the receive
path so as to be as accurate as possible [72, 73, 76]. The timestamp is taken when the
last bit of the start-of-frame delimiter of an Ethernet packet is transmitted/received.
For the 82599 and X540 evaluated here, the exact location within the pipeline where
this happens is not specified. The datasheet merely describes it as “as close as possible
to the PHY” [73, 76].

101

Chapter 5: MoonGen: A fast and flexible packet generator

Intel 82599

SFP+
TX

RX

SFP+
TX

RX

<
>

Multi-mode fiber

(unused)

(a) Intel 82599 with a loopback cable

Intel X540-T2 NIC

RJ45TX

RJ45
TX

Cat 5e cable

TX+RX

TX+RX

(b) Intel X540 connected to itself

Figure 5.6: Loopback configurations to measure the latency incurred by a cable

NIC t2m [ns] t8.5m [ns] t10m [ns] t20m [ns] t50m [ns] k [ns] vp

82599 (10GBASE-SR) 320 352 - 403.2 - 310.7± 3.9 0.721c+0.117c
−0.087c

X540 (10GBASE-T) 2156.8 - 2195.2 - 2387.2 2147.2± 4.8 0.69c+0.236c
−0.037

Table 5.3: Timestamping accuracy measurements (±6.4 ns precision)

We can evaluate the precision by using a simple cable as a “system” under test. The
latency t of a cable can be described with the following formula.

t = k + l/vp

Where k is some constant systematic error introduced by the NIC (e.g., (de-)modulation
time), l is the length of the cable, and vp is the propagation speed of the signal in the
selected medium. For the length of the cable we rely on the vendor’s specification.

Timestamping on the 82599 with 10GBASE-SR
Since 10GBASE-SR uses dedicated fibers for each direction we can connect a port to
itself as shown in Figure 5.6a. We measure the latency of OM3 multimode fiber cables
with the length 2m, 8.5m and 20m, taking 500 000 samples for each cable. For the
2m and 20m cabling we measure latencies of 320 ns and 403.2 ns respectively with a
standard deviation of 0. The 8.5m cable measures a time of 345.6 ns in 50.2% of the
measurements and 358.4 ns in the other 49.8%, i.e., a mean of 352 ns with a standard
deviation of 6.4 ns. Table 5.3 summarizes these results.

Figure 5.7a plots the measurement results, the error bars are the ±6.4 ns incurred by the
timestamping granularity for the 2m and 20m case, and the same 6.4 ns of measured
standard deviation for the 8.5m cable. The shaded orange area connects the upper
and lower bounds for the shortest and longest cable measured. The intermediate-length

102

5.6 Hardware Timestamping

0 5 10 15 20
304.36

317.16

340

360

380

400

Cable Length [m]

L
a
te
n
cy

[n
s]

(a) Intel 82599 with a loopback cable

0 20 40

2,153.6

2,200

2,250

2,300

2,350

2,140.8

Cable Length [m]

L
at
en
cy

[n
s]

(b) Intel X540 connected to itself

Figure 5.7: Latencies of different cables lengths, 500 000 measurements per data point.

cable falls within that area, indicating the expected linear relationship between cable
length and measured time.

Calculating the slope of the line connecting the measurements of the shortest and longest
cables yields a value of 4.62 m

ns or 72.1% of the speed of light c as vp. The slope from
the lower end of the shorter cable to the upper end of the longer cable and vice versa
yields error bars of this quantity of 63.4% to 83.8% of the speed of light. Extending
the line until it intersects the y-axis gives us the constant offset k, or systematic error
caused by the NIC, as 310.76±6.4 ns.

We can compare the result for the propagation speed with the theoretical value. The
fibers we use have a specified refractive index of 1.482 at the wavelength of 850 nm
used here. This corresponds to a propagation speed of 67.5% the speed of light. In
addition, some additional delay is caused by internal reflection of the signal inside the
wire. However, the internal refraction happens at a shallow angle: critical angle for
total internal reflection is specified as 81.5° on the cable used here. This corresponds
to an extra path length of up to 1.11%, i.e., an effective propagation speed of 66.75%
the speed of light, matching the common textbook value of 66.7% [131]. This puts the
theoretical value within the measurement uncertainty of our value.

Timestamping on the X550 with 10GBASE-T
Doing the same for the X550 NIC requires us to use two different ports which does
not affect this experiment as there is no clock drift between two ports on the same

103

Chapter 5: MoonGen: A fast and flexible packet generator

NIC (Section 5.6.3). We use Cat 5e cables of length 2m, 10m, and 50m. Table 5.3
summarizes these results.

Measurement results on the 10GBASE-T interface are noiser than the ones from the
previous section. Repeating the measurements 500 000 times as before shows a difference
between 64 ns between the lowest and highest measured latency with the same cable.
A likely reason for this is that 10GBASE-T uses a complex block code on layer 1 [67]
which introduces this variance. Yet, 99.5% of the measured values are within ±6.4 ns of
the mean, the standard deviation is less than the theoretical error of the 6.4 ns incurred
from the granularity, Figure 5.7b therefore shows error bars of ±6.4 ns.

Despite this lack of precision, the mean measured values for the 3 cables are exactly on
a straight line with a slope of 4.8 ns/m (69.5% the speed of light with a possible range of
65.8% to 89.4% when taking the error into account). This straight line indicates a low
random error component of the accuracy. The theoretical value for propagation speed
of signals in Cat 5e cables cannot be calculated easily. Multiple values can be found in
the literature. A value of 77% is given in commonly used networking textbooks [131],
however, it does not specify the exact type of cable used here. Other sources indicate
that this value might refer to thick coax cables as used in 10BASE5 Ethernet [86]. The
same source gives a propagation speed of 59% for unshielded twisted pair, similar to the
shielded Cat 5e wire used here. Another source claims that the “typical” propagation
speed in Cat 5e is 67% of the speed of light, but also gives a worst case of 59% [47].
Our measured value is close to this typical propagation speed, however, without a good
source of truth we cannot make any strong claims based on this result, only that our
measured value is plausible.

The constant offset or systematic error component of the accuracy is 2 147.2±6.4 ns.
This large value is is expected, others have reported an “approximate” constant latency
penalty of 2.5µs for 10GBASE-T [166].

Conclusion
We claim a precision of only ±12.8 ns for the 82599 NIC because of the measurement
result with the 8.5m cable. The reason for this can be found in the datasheet of
the 82599 NIC explaining that while the timestamping logic itself operates at the full
156.25MHz frequency, the counter that is saved when the timestamp is taken can only
be incremented every other clock cycle [73]. While the X540 NIC does not suffer from
this problem, we can only claim a precision of ±32 ns because of the observed outliers
in 0.05% of the measurements.

104

5.6 Hardware Timestamping

HostDual port Intel NIC

PortTX

Port
TX

TX+RX

TX+RX

Controller

Clock 1

Clock 3PCIe CPU

Dual port Intel NIC

PortTX

Port
TX

TX+RX

TX+RX

Controller

Clock 2

PCIe

Figure 5.8: Different clocks in a server running MoonGen. Timestamps are taken with Clock 1 and
Clock 2.

Based on these results we recommend to use a fiber connection on an 82599 NIC for la-
tency measurements. It is not only more precise, but also more accurate: Its systematic
error of 317 ns is 7 times lower than the error of the X540 NIC.

5.6.2 Clock Synchronization
A typical server used for measuring latency with MoonGen features many independent
clocks, see Figure 5.8. Hardware timestamping must rely on the clocks found on the
NICs to be close to the actual reception and transmission of packets. MoonGen therefore
needs to be able to synchronize the clocks between different NICs. This is even necessary
between two ports of a dual-port NIC, which are completely independent from the user’s
point of view because the NIC internally uses different epochs for the two devices exposed
on the PCIe bus.

MoonGen synchronizes the clocks of two ports by reading the current time from both
clocks and calculating the difference. The clocks are then read again in the opposite
order. The resulting differences are the same if and only if the clocks are currently
synchronous (assuming that the time required for the PCIe access is constant). We
observed randomly distributed outliers in about 5% of the reads. We therefore repeat
the measurement 7 times to have a probability of > 99.999% of at least 3 correct
measurements. The median of the measured differences is then used to adjust one of
the clocks to synchronize them. This adjustment must be done with an atomic read-

105

Chapter 5: MoonGen: A fast and flexible packet generator

0 5 10 15 20 25 30 35 40 45
0

500

1000

1500

Time [s]

E
rr
o
r
[µ
s]

X540-T2 vs. X520-T2
X540-T2 vs. X540-T2
Onboard X540-based NIC vs. X540-T2

Figure 5.9: Clock drift between different NICs

modify-write operation. The NICs support this as it is also required to implement
PTP.

Tests show that this technique synchronizes the clocks with an error of ±1 cycle. There-
fore, the best possible accuracy for tests involving multiple network interfaces is 19.2 ns
for the 10Gbit/s chips.

5.6.3 Clock Drift
Using two different clocks also entails the risk of clock drifts. Drift on X540-based
NICs depends on the physical wiring as the timestamping clock is synchronized to the
physical layer. Two ports on different X540-based NICs that are directly connected do
not exhibit any clock drift while the link is established. We did not observe clock drifts
between the two ports of 82599-based dual port NICs, indicating that they always use
the same clock source for both ports (see Figure 5.8).

Figure 5.9 shows clock drifts between several different NICs, all NICs were left uncon-
nected during the test. The worst-case observed drift was 35 µs per second, i.e., 35 ppm
between a X540 NIC integrated on the server’s main board and one on a PCIe card.
Note that the clock drift was stable in this short 45 second test which is in the range
of test lengths typically used for MoonGen. Long-term stability may be affected by
temperature differences.

MoonGen handles clock drift by resynchronizing the clocks (Section 5.6.2) before a
timestamped packet is sent, so this drift translates to a maximum relative error of
only 0.0035% that does not accumulate over time. This is not significant for latency
measurements: for a typical measurement in the 100 µs range this corresponds to an
error of only 3.5 ns due to this effect. Using a dual-port NIC avoids this problem in the
first place as both clocks share a physical clock, so there is no drift, see Figure 5.9. In
practice, we recommend this dual-port NIC setup for latency measurements as other
NICs might have worse clock drift than the ones we evaluated here.

106

5.7 Rate Control

5.6.4 Limitations
Our approach for latency measurements comes with limitations. The latency measure-
ments are restricted to Ethernet frames with the PTP EtherType and UDP packets.
MoonGen cannot measure latencies of other protocols. Note that we do not actually
use any features of the PTP protocol. We just craft packets that look like PTP pack-
ets to the NIC to trigger the timstamping hardware, the UDP port it triggers on is
configurable.

The naïve handling of clock drift by resynchronizing the clocks for each packet allows
for only a single timestamped packet in flight, limiting the throughput to 1Pkt/RTT .
MoonGen scripts therefore use two transmission queues, one that sends timestamped
packets and one that sends regular packets. The regular packets can be crafted such that
the system under test cannot distinguish them from the timestamped packets, e.g., by
setting the PTP type in the payload to a value that is not timestamped by the NIC. So
MoonGen effectively samples random packets in the data stream and timestamps them.
Sampling strictly limited by RTT would introduce bias as the sampling rate would
increase during periods of low latency and decrease during high latency. MoonGen
avoids this by only timestamping 1000 packets every second, this value is adjustable
if latencies above 1ms are expected. Note that the benchmarking standard RFC 2544
calls for only one timestamped packet in a 120 second interval [25].

The investigated NICs refuse to timestamp UDP PTP packets that are smaller than the
minimum PTP packet size of 80 bytes. Larger packets are timestamped properly. This
restriction does not apply to packets with the PTP EtherType as the minimum PTP
packet size is below 64 bytes in this configuration.

Based on the discussed measurement results and despite these limitations, we argue
that special-purpose hardware is not necessary to conduct high-precision and accurate
latency measurements for many scenarios. The very low cost of this setup is espe-
cially attractive: compatible NICs are often found onboard in server-grade mainboards,
compatible PCIe add-on cards are available for around 150 euros (2021 prices).

5.7 Rate Control

An important feature of a packet generator is controlling the packet rate and generating
specific timing patterns to simulate real-world scenarios. MoonGen utilizes hardware
rate control features of Intel NICs to generate constant bit rate and bursty traffic.
We also implement a novel software-based rate control for realistic traffic patterns,
e.g., based on a Poisson process.

107

Chapter 5: MoonGen: A fast and flexible packet generator

Loadgen

NIC

DuT

NIC
p5

p5 p4 p3 p2 p1 p0

Qmemory QNIC Wire

Figure 5.10: Software-based rate control (figure from [42])

5.7.1 Software Rate Control in Existing Packet Generators
Trying to control the timing between packets in software is known to be error-prone [23,
29]. The main problem with software-based rate control is that the software needs to
push individual packets to the NIC and then has to wait for the NIC to transmit it
before pushing the next packet.

However, modern NICs do not work that way: they rely on an asynchronous push-
pull model and not on a pure push model. Chapter 3 Section 3.4 explains the packet
transmission process in detail, to recap: The software writes the packets into a queue
that resides in the main memory and informs the NIC that new packets are available.
It is up to the NIC to fetch the packets asynchronously via DMA and store them in the
internal transmit queue on the NIC before transmitting them.

Figure 5.10 visualizes this packet flow. Only a single packet at a time is allowed in the
queues (Qmemory & QNIC) to generate packets that are not back-to-back on the wire.

This hardware architecture causes two problems: the exact timing when a packet is
retrieved from memory cannot be controlled by the software and queues cannot be used
(unless bursts are desired). The former results in a low precision, as the exact time when
the packet is transferred cannot be determined. The latter impacts the performance
at high packet rates as high-speed packet processing relies on batch processing (cf.
Chapter 3 Section 3.4).

5.7.2 Hardware Rate Control
Intel 10Gbit/s NICs feature hardware rate control: all transmit queues can be config-
ured to a specified rate. The NIC then generates constant bit-rate (CBR) traffic. This
solves the two problems identified in the previous section. The software can keep all
available queues completely filled and the generated timing is up to the NIC. Figure 5.11
shows this architecture. The disadvantage is that this approach is limited to CBR traffic

108

5.7 Rate Control

Loadgen DuT

NICNIC
p9

p9 p8 p7 p6 p5 p4 p3 p2 p1 p0

HW rate control
enabled

Qmemory QNIC Wire

Figure 5.11: Hardware-based rate control (figure from [42])

Loadgen DuT

NICNIC
p6

p6 pi3p5pi4 pi0p2pi1p3pi2p4 p1 p0

HW rate control
disabled

p5

Qmemory QNIC Wire

Figure 5.12: Precise generation of arbitrary traffic patterns in MoonGen (figure from [42])

and bursty traffic (by changing the rate parameter periodically) and relies on black-box
hardware working as advertised (which it does not, see Section 6.6.4).

5.7.3 Controlling Inter-Packet Gaps in Software
To overcome this restriction to constant bit rate or bursty traffic, MoonGen implements
a novel mechanism for software-based rate control. This allows MoonGen to create
arbitrary traffic patterns.

All existing software packet generators try to delay sending packets by not sending
packets for a specified time, leading to the previously mentioned problems. MoonGen
fills the gaps between packets with invalid packets instead. Varying the length of the
invalid packet precisely determines the time between any two packets and subsequently
allows the creation of arbitrary complex traffic patterns. With this technique, we can
still make use of the NIC’s queues and do not have to rely on any timing related to
DMA accesses by the NIC.

This approach requires support by the system under test: it needs to detect and ignore
invalid packets in hardware without affecting the packet processing logic. MoonGen uses
packets with an incorrect CRC checksum and, if necessary, an illegal length for short
gaps. This behavior is configurable as it might pose a problem when testing hardware
devices such as switches or routers.

109

Chapter 5: MoonGen: A fast and flexible packet generator

SwitchMoonGen
BG tra�c outgoing

BG tra�c incoming

FG tra�c

Figure 5.13: Test setup for testing a switch with MoonGen by using traffic amplification inside the
switch with OpenFlow (adapted from [39])

All investigated NICs in our testbed drop such packets early in the receive flow: they are
dropped even before they are assigned to a receive queue, the NIC only increments an
error counter [72, 73, 76, 77]. Subsequently, the packet processing logic is not affected
by this software rate control mechanism.

Figure 5.12 illustrates this concept. Shaded packets pi
j are sent with an incorrect CRC

checksum, all other packets pk with a correct one. Note that the wire and all transmis-
sion queues are completely filled, i.e., the generated rate has to be the line rate.

In theory, arbitrary inter-packet gaps should be possible. The NICs we tested refused to
send out frames with a wire-length (including Ethernet preamble, start-of-frame delim-
iter, and inter-frame gap) of less than 33 bytes, so gaps between 1 and 32 bytes (0.8 ns
to 25.6 ns) cannot be generated. Generating small frames also puts the NIC under an
unusually high load for which it was not designed. We found that the maximum achiev-
able packet rate with short frames is 15.6Mpps on Intel X540 and 82599 chips, only
5% above the line rate for packets with the regular minimal size. MoonGen therefore
enforces a minimum wire-length of 76 bytes (8 bytes less than the regular minimum)
by default for invalid packets. As a result, gaps between 0.8 ns and 60.8 ns cannot be
represented.

5.8 Example: Measuring Forwarding Latency of an Open-
Flow Switch

MoonGen’s usefulness and precision can be demonstrated with an example measure-
ment. We measure the latency of an Edge-Core Networks AS5712-54X 10Gbit/s Open-
Flow switch with a Broadcom BCM56854 Trident II switch ASIC [9]. This measurement
is taken from our publication about traffic amplification with OpenFlow to scale Moon-
Gen beyond 100Gbit/s [39]. The thesis of this publication is that we can use OpenFlow

110

5.8 Example: Measuring Forwarding Latency of an OpenFlow Switch

flooding rules to amplify selected flows of traffic beyond what MoonGen can generate
in software.

For one experiment in this publication we wired the aforementioned 48-port OpenFlow
switch with itself by connecting port 1 with port 2, port 3 with port 4, etc. Ports
47 and 48 were directly connected to a server running MoonGen. All connects use
short (50cm to 1m) direct attach copper SFP+ cables. We then generate two UDP
flows with different UDP ports (see example script in 5.4), one flow carries background
(BG) traffic, the other foreground traffic (FG). On the switch we install the following
OpenFlow rules:

1. FG traffic on port 47 (from MoonGen) is sent to port 48 (to MoonGen)

2. BG traffic on port 47 (from MoonGen) is flooded to all other ports except 48

3. Incoming traffic on ports 1-46 (amplified BG traffic) is forwarded to port 48 (to
MoonGen)

These rules together with the external wiring (ports 1-46 connected to each other)
cause the switch to effectively flood itself, amplifying the background traffic 46-fold.
Figure 5.13 shows this setup with a reduced number of ports and the bi-directional
nature of the flooding omitted for clarity.

For this experiment we send 1.5Mpps (1Gbit/s) of foreground traffic and 0.26Mpps
of background traffic, which gets amplified to 11.9Mpps (8Gbit/s). The volume of
the traffic here is less important than the fact that the incoming amplified background
traffic comes from 46 other ports, which can induce conflicts on the output port as the
traffic from a total of 47 input ports is output to a single output port.

Figure 5.14 shows the resulting latency distribution of the foreground flow when (a)
enabling quality of service features for the foreground flow or (b) without any special
settings for the flow on the switch. When the quality of service feature is enabled in
Figure 5.14 (a) we can clearly identify a bimodal distribution showing that there are
two internal paths the traffic can take in the switch. If the output ports happens to
be unused when a packet of the foreground flow arrives, the packet gets forwarded in
cut-through logic, i.e., immediately. The peak of the latency distribution for this cut-
through operation is 921.6 ns. However, the switch might already be busy transmitting
a packet of the 11.9Mpps background flow in which case our packet needs to be for-
warded in store-and-forward manner for a short time, yielding a second peak at 3.59µs.
The priority settings ensure that it does not get queued for too long to get a clearly
visible bimodal distribution. Disabling the priority setting in Figure 5.14 (b) yields a

111

Chapter 5: MoonGen: A fast and flexible packet generator

1 1.5 2 2.5 3 3.5 4
0

2

4

6

Latency [µs]

R
el
at
iv
e
P
ro
b
ab

il
it
y
[%

]

(a) Quality of service enabled for foreground traffic

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

Latency [µs]

R
el
at
iv
e
P
ro
b
ab

il
it
y
[%

]

(b) Quality of service disabled for foreground traffic

Figure 5.14: Latency distribution of a 1Gbit/s flow forwarded by a hardware OpenFlow switch with
8Gbit/s of background traffic [39]

long-tail distribution with latencies of up to 17µs instead because the queue length is
unpredictable.

This test setup allows us to scale MoonGen beyond 100Gbit/s of generated test traffic:
Figure 5.15 shows latency results for both background and foreground traffic under
increasing background traffic. The 46-fold amplification allows for a background flow
of up to 414Gbit/s (616Mpps) while keeping the foreground traffic at 1Gbit/s. Note
that the constant offset between the minimum and median latencies of background and
foreground traffic is because the background traffic passes through the switch twice due
to the amplification (cf. Figure 5.13). For latency of an amplified background packet
we define the latency as the first copy of the packet that is returned to MoonGen. The
key result of this measurement is the maximum latency, clearly showing that the quality
of service feature in the switch is working as intended, even before the output port is
overloaded. Once the output port is overloaded (background traffic ≥ 16Gbit/s in the
measurement) the bimodal distribution disappears as all packets are queued since the

112

5.9 Conclusions

1 2 4 8 16 32 64 128 256 512

1

10

100

1,000

Background Traffic [Gbit/s]

L
at

en
cy

[µ
s]

1 2 4 8 16 32 64 128 256 512

Background Traffic [Gbit/s]

BG Traffic, x Gbit/s (Median Lat.)

BG Traffic, x Gbit/s (Min/Max Lat.)

FG Traffic, 1 Gbit/s (Median Lat.)

FG Traffic, 1 Gbit/s (Min/Max Lat.)

QoS Disabled QoS Enabled

Figure 5.15: Background (BG) and foreground (FG) flow latency under increasing background
load [39])

output port is always occupied by background traffic when a packet of the foreground
flow arrives.

It is not a goal of this dissertation to analyze the internal details of an OpenFlow hard-
ware implementation, interested readers are referred to our publication about traffic
amplification and benchmarking this OpenFlow switch with MoonGen from which this
measurement was taken [39]. Instead, this example is meant as a practical demonstra-
tion of MoonGen’s capabilities: We can characterize complex behavior of a hardware
switch under a total load of 415Gbit/s with 618Mpps (Figure 5.15). Our timestamping
precision is high enough to clearly identify probability distributions in a device that
takes less than a microsecond to forward a packet (Figure 5.14).

5.9 Conclusions

We have presented a general-purpose software packet generator that uses hardware fea-
tures of commodity NICs to implement functionality that was previously only available
on expensive special-purpose hardware. MoonGen represents a hybrid between a pure
software-based solution and one based on hardware. It combines the advantages of both
approaches while mitigating shortcomings by using both hardware-specific features and
novel software approaches. MoonGen measures latencies with a precision of ±12.8 ns
and a systematic error of only 317 ns (Section 5.6). The desired packet rate can be con-

113

Chapter 5: MoonGen: A fast and flexible packet generator

trolled precisely through both hardware-support and our rate control algorithm based
on filling gaps with invalid packets (Section 5.7).

Addressing question Q2 (Can high-level languages be used in software-based packet
processing tools?), we use MoonGen as real world example of such a system. The Lua
scripting languages gives users unprecedented flexibility and control over how MoonGen
crafts packets: Users are not restricted to predetermined patterns but have full control
and can test complex protocols. At the same time we achieve our performance goals
from Section 2.2 of 14.88Mpps on a single core (Section 5.5.2). This makes MoonGen
both flexible and fast. The flexibility goes beyond the capabilities provided by hardware
load generators as each packet can be crafted in real-time by a script. Tests that respond
to incoming traffic in real-time are possible as MoonGen also features packet reception
and analysis (Section 5.4).

The key takeaway from this chapter is that MoonGen is fast, flexible, and features precise
timestamping that is even precise enough to characterize hardware devices (Section 5.8).
This makes MoonGen the answer to research question Q3: How can modern network
devices be benchmarked? We recommend to use MoonGen with an Intel 82599 NIC with
fiber optic transceivers to achieve the stated precision and accuracy. All software packet
generators prior to MoonGen had serious shortcomings (lack of hardware timestamping
and poor configurability) and were unsuitable to run the experiments required for this
dissertation.

5.10 Author’s Contributions

Sections 5.1 to 5.9 are based on the following publication [42]:

Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. “MoonGen: A Scriptable High-Speed Packet Generator”. In: Internet
Measurement Conference 2015 (IMC’15). Tokyo, Japan, Oct. 2015

The author of this thesis architected and implemented the core of the MoonGen packet
generator. All benchmark experiments were conceived and conducted by the author.
The evaluation of hardware timestamping and clock synchronization was done by the
author. The evaluation of different rate control methods was done by the author. All
analyses and conclusions drawn from experiments was the author’s work.

The following significant changes vs. the paper were made for this thesis:

• Measurements about rate control precision have been removed as they have been
obsoleted by a later publication that is discussed in the next chapter [41].

114

5.10 Author’s Contributions

• Hardware support and feature discussions have been updated throughout the text
to match recent developments in MoonGen.

• Example code was updated to match recent changes to MoonGen.

• The discussion about the choice of the Lua programming language and DPDK
backend has been updated.

• The discussion of clock drift contains a new measurement (Figure 5.9) and system
overview diagram (Figure 5.8).

• Section 5.6 has been updated: Figures 5.6 and 5.7 are new. The explanation of
the timestamping experiment has been extended. A mistake in the calculation of
the error bars for the propagation delay and constant offset has been corrected.

• Section 5.8 is new (measurements based on [39]).

115

Chapter 6

Precision of Software-based
Packet Generators

Building high precision benchmarking tools in software in a high-level language run-
ning on commodity hardware is a difficult task. We need to quantify the precision of
timestamping and rate control in MoonGen to validate in which scenarios a software
solution can replace a hardware solution (research question Q4).

The goal of this chapter is to validate that MoonGen’s hybrid solution to this problem
works better than the state of the art in software. We compare our implementation to
a variety of different software packet generators. We also quantify the limits of different
methods for rate control and timestamping gain a deeper understanding about the
trade-offs involved. In order to achieve these goals we need a more precise measurement
device as ground truth: We use OSNT [7], hardware packet generator based on the
NetFPGA platform to this end.

The remainder of this chapter is based on our publication about the precision packet gen-
erators which is joint work by Paul Emmerich, Sebastian Gallenmüller, Gianni Antichi,
Andrew W. Moore, and Georg Carle. [41]. A full account of the author’s contributions
is given in Section 6.9.

6.1 Introduction

Software packet generators traditionally relied on the operating system’s network stack
and implemented all timing-critical parts in the user space process itself. This introduces
uncertainties caused by the operating system’s scheduling and processing time in the
network stack. The closer you can move packet scheduling and latency measurements

Chapter 6: Precision of Software-based Packet Generators

to the actual physical transmission of the packet on hardware, the better. Clearly, a
pure hardware solution is ideal for these aspects of a packet generator. The question is
how close to we need to get with a pure software approach and how close can we get?

We start with motivating examples in Section 6.3 that show how precision of the packet
generator can influence the behavior of the system under test and skew the measurement
results. Our evaluation in Section 6.6 compares different ways to control the inter-
departure time of packets to validate MoonGen’s novel solution. Section 6.7 focuses on
latency measurements and shows the shortcomings of purely software-based solutions.

6.2 Related Work

The performance and precision of software packet generators has been subject of pre-
vious studies. In particular, Paredes-Farrera et al. [128] in 2006 analyzed the accu-
racy of packet generators. They found that timing primitives available in Linux limit
the achievable precision. Polling techniques can be precise but at the same time are
massively affected by the current CPU load of the system. In 2010 Botta et al. [23]
performed a comparison between software packet generators. In particular, they inves-
tigate the inter-packet gap precision when the traffic being generated follows different
distributions. They showed that despite meeting the required bandwidths, the actual
distribution of the generated traffic can differ substantially from the expected pattern
impacting the measured results. Both of the aforementioned papers investigate only
traffic rates below 1Gbit/s.

With the availability of high-performance IO frameworks, traffic rates of 10Gbit/s are
easily possible [148, 42]. Bonelli et al. [20] described a system for precise traffic gener-
ation in 2012, pfq-gen evaluated by us is a successor of this system. It is designed to
support packet generation with CBR or according to a Poisson process. The performed
measurements show high throughput but the precision has only been validated with a
software solution, limiting the precision of the measurement.

To this end, we performed our measurement campaign using OSNT [7]: an open source
hardware based traffic generator and monitoring system based on the NetFPGA [170].
The system offers the ability to timestamp packets at line rate for traffic of 10Gbit/s,
thus enabling an accurate estimation of the trade-off between throughput and precision
in today’s solutions.

118

6.3 Precision of packet generators affects measurement results

6.3 Precision of packet generators affects measure-
ment results

The behavior of a system under test can change in significant ways when exposed to a
packet generator that fails to adhere to the configured traffic pattern. Traffic pattern
refers to the distribution of inter-packet gaps. For example, sending an average rate of
1Mpps can be done in different ways: by sending one packet every microsecond or by
sending 100 packets in bursts every 100 microseconds. Both traffic looks the same to
an unsophisticated observer at timescales typically observed by statistics outputs (i.e.,
seconds) but very different to a low-level system.

6.3.1 Generating CBR traffic
One example of a low-level system that interprets these traffic patterns differently are
the interrupt throttling mechanisms found in drivers and operating systems. Figure 6.1
compares the number of interrupts per second observed on a system forwarding packets
with Open vSwitch when tested with load generated by MoonGen and the zsend packet
generator (based on PF_RING ZC [135]). We use the interrupt rate as a white-box
measurement as an example of complex system behavior.

Both packet generators were configured to send CBR traffic as defined by RFC 1242,
i.e., a constant gap between individual packets [24]. This is a common configuration for
benchmarking tests, for example, the RFC 2544 benchmarking standard requires this
traffic pattern [25]. MoonGen was configured to use the hardware rate control on an
Intel 82599 NIC (which sends CBR traffic according to the datasheet [73]), zsend was
configured with the dedicated timing thread and CBR traffic. So both should generate
the same traffic and the experiment should show the same behavior of the system under
test. However, white-box measurements show a completely different behavior on the
system under test. When measuring the interrupt rate on the system under test we
observe a large difference while forwarding packets under low load (Figure 6.1).

This indicates that a significant difference in the behavior of a system when observed
in two supposedly identical experimental setups (both test tools were configured identi-
cally). As it turns out neither packet generator sends CBR traffic in this configuration,
even the hardware implementation on the Intel NIC is flawed. The problem here is
batching which is required for high performance in software packet processing. Batch-
ing packets leads to bursts on the wire, resulting in traffic patterns significantly different
from the expected CBR traffic. zsend sends large bursts instead of the configured CBR
traffic due to a bug in its implementation, the Intel NIC sends bursts of size 2 for
unknown reasons. A full evaluation follows in Section 6.6.

119

Chapter 6: Precision of Software-based Packet Generators

0 0.5 1 1.5 2
0

0.5

1

1.5

·105

Offered Load [Mpps]

In
te

rr
u

p
t

R
a
te

[H
z] Load generated with MoonGen

Load generated with zsend

Figure 6.1: Observed interrupt rate when forwarding packets with Open vSwitch, traffic generated
with different packet generators (Figure from [42])

400
500

R
el

a
ti

v
e

la
te

n
cy

[%
] Burst Sizes 4 16 32 64 128

0 0.5 1 1.5 2

100

150

200

Offered load [Mpps]

Figure 6.2: Relative observed latency of different burst sizes (traffic generated with MoonGen CRC
rate control)

At first glance, this might seem like a curiosity of questionable practical relevance for
the typically conducted black-box tests. However, there is a significant difference in
externally observable behavior of the system: the median forwarding latency varies
with the batch size by up to a factor of 3.7 between a burst size of 1 and a burst size of
128.

We run the same forwarding test with varying burst sizes and measure the observed
latency. Figure 6.2 compares true CBR traffic with explicitly configured burst traffic
by plotting the median latency. We use the MoonGen packet generator with the CRC
rate control method (cf. Section 5.7.3 in Chapter 5) to precisely generate the burst
sizes. Latency are measured using hardware timestamping as previously evaluated in
Section 5.6 in Chapter 5. The latency is expressed as relative with respect to the CBR
case.

120

6.3 Precision of packet generators affects measurement results

If burst sizes would not make a difference, then the corresponding plots in Figure 6.2
would simply be a flat line at 100%. However, we observe large differences of up to
370%. Bursts of 4 packets already show a large impact on the observed latency: the
maximum deviation in the non-overload cases is at 2.0Mpps. We observe a latency of
21.2 µs with burst size 4, but only 16.3µs with true CBR traffic, a 30% difference.

This figure demonstrates that a system under test can show different behavior depending
on the input traffic pattern. As the aforementioned RFC argues the need for CBR
traffic, assessing the reliability of the generator itself first is important. Moreover,
analytically removing the additional latency introduced by the burst is not possible as
the measurements show a complex behavior. Given that transmitting each packet on
a 10Gbit/s link takes 67.2 ns, a burst size of 128 packets corresponds to 8.6 µs time on
the wire. The absolute difference in latency between CBR and bursts of 128 packets
is between 50 µs and 100µs and varies with the packet rate. This effect is visible for
other burst sizes too, demonstrating the impossibility to treat the effects of bursts as
manageable measurement artifacts.

Growing internal batch sizes lead to higher performance for packet generators. How-
ever, bursty traffic by definition does not generate a constant bit rate. If we want to
obtain meaningful results (RFC 2544 compliant), it is important not to compromise the
precision of CBR generation to achieve greater overall throughput. We notice that by
default, most of the software packet generators configure batch sizes between 16 and
512 packets resulting in bursts of equivalent sizes. This is an intentional setting to im-
prove performance. Therefore, it is crucial to understand the limitations of the software
packet generators being used for testing and the trade-off between their precision and
performance.

6.3.2 Generating Poisson Traffic
CBR traffic is often an unrealistic test scenario for measurements of latency. However,
CBR or very large bursts are often the only options offered by packet generators. A
more realistic setup could use a Poisson process to also stress buffers as the system
under test becomes temporarily overloaded.

Figure 6.3 shows latencies of the Open vSwitch test setup comparing CBR with Poisson
traffic. Note that the maximum achieved throughput of about 1.9Mpps is the same
regardless of the traffic pattern. However, the behavior at lower latencies differs between
these two traffic patterns. The (perfectly reproducible) outlier at 0.4Mpps for CBR
traffic are likely artifacts of the interaction between the interrupt throttle algorithm
found in the Intel driver [70] and the dynamic interrupt adaption of Linux in NAPI [150]

121

Chapter 6: Precision of Software-based Packet Generators

0 0.5 1 1.5 2
0

20

40

60

80

100

120

140

160

180

System in pure poll mode

Offered Load [Mpps]

L
a
te

n
cy

[µ
s]

CBR (median)

CBR (25th/75th percentile)

Poisson (median)

Poisson (25th/75th percentile)

Figure 6.3: Forwarding latency of Open vSwitch with CBR and Poisson traffic patterns (Figure
from [42])

on the system under test. The sudden drop in latency before hitting the maximum
load is because the perfect CBR traffic puts interrupt into permanent polling mode,
eliminating delays from interrupt throttling and idle states. More information on the
interactions between interrupt throttling and dynamic polling in NAPI can be found in
our publication about modeling latency in the Linux kernel [16].

A Poisson process generates a smoother result and is arguably a more realistic test setup
as it resembles real-world traffic more closely. Yet, most software traffic generators do
not offer this traffic pattern. We also show that generating Poisson traffic is actually
easier for software packet generators in a reliable way in this chapter to argue that mosts
benchmarks should be run with this traffic pattern instead of CBR. Researchers might
also find value in comparing different traffic patterns to gain insights into internals of
black-box devices.

6.4 State of the Art for Software Packet Generators

Software packet generators can be distinguished in two different classes depending on
the generation mechanism.

Traditional software packet generators rely on the interface provided by the kernel
for packet IO. Using a standard OS interface enables a high degree of compatibility and
flexibility. In fact, the wide range of features supported by the network stack of an
OS can be used by these packet generators. Therefore, the user does not have to re-
implement protocols already supported by the OS itself. The main drawbacks are related
to precision and performance. The former is due to the employed timing functions [128],

122

6.4 State of the Art for Software Packet Generators

while the latter is caused by the network stack itself which is optimized for compatibility
and stability rather than high performance or high precision [148, 18].

We investigate how packet generators designed for 1Gbit platforms (traditional ones)
differ from packet generators designed for 10Gbit NICs. As these traditional packet
generators are still used, we want to investigate how they perform on today’s 10Gbit
platforms. D-ITG [32] and trafgen [162] are two examples, optimized for different
design goals but using the same standard Linux IO APIs. We choose trafgen as traffic
generator specialized in high-performance packet generation (in the context of 1Gbit
networks), while we choose D-ITG because of its ability to generate both realistic and
synthetic traffic patterns [22] with high precision. Further, it supports distributions
such as normal, Pareto, Cauchy, gamma, and Weibull beside CBR.

Modern software packet generators use special frameworks which bypass the entire
network stack of an OS when used with a selection of high-speed network cards. They are
optimized for high speed and low latency at the expense of compatibility and support for
high-level features. The user in this case has to re-implement protocols on top of these
frameworks. Those architectural changes overcome the main drawbacks of traditional
packet generators. They reduce the number of costly context switches or avoid them
entirely [53] and rely on polling and busy waiting for precise timing, eliminating the main
cause of packet transmission inaccuracy identified by Botta et al. and Paredes-Farrera
et al. [23, 128]. The dependency of the packet generation process on CPU load can be
avoided by using dedicated cores for packet generation on modern multicore CPUs. The
main drawback of these frameworks is the dependency on specialized drivers, creating
hardware dependency and limited compatibility.

Selected packet generator include Windriver System’s Pktgen-DPDK [136] and Moon-
Gen [3]. We deliberately choose not the most recent version of Pktgen-DPDK but rather
a version which uses the same version of DPDK as MoonGen to make a fair comparison:
later versions of DPDK are slightly slower in our tests due to increased overhead. The
code affecting precision and timing in Pktgen-DPDK was not modified since the version
we use here.

Pkt-gen [111] is a widely used packet generator included in netmap while PFQ offers
pfq-gen [133]. PF_RING ZC [135], a high-performance framework found in production
systems provided by ntop [116], offers the packet generator zsend. Table 6.1 summarizes
the investigated software packet generators.

123

Chapter 6: Precision of Software-based Packet Generators

Version IO API

D-ITG [32] v2.8.1 Linux
trafgen [162] v0.5.7 Linux
Pktgen-DPDK [136] v2.8.0 DPDK (v1.8.0)
MoonGen [3] git 5cf96c72* DPDK (v1.8.0)

git bfe8b5b1†
git 39e0cb64‡

pkt-gen [111] git b24fce99 netmap
pfq-gen [133] v5.2.9 PFQ
zsend [135] v6.3.0.160209 PF_RING ZC

*) Used for CBR traffic and hardware timestamping
†) Used for Poisson traffic
‡) Used for software timestamping

Table 6.1: Investigated software packet generators

6.5 Test setup

Our main test setup consists of two machines, directly connected via two 10 Gbit/s fi-
bre links. One is equipped with a NetFPGA-10G [110] programmed with OSNT [7] for
high precision packet inter-arrival time characterization. OSNT allows for nanosecond-
precision timestamping of all received packets in real time at full line rate with minimum
sized packets [7] and acts a full hardware implementation to verify our software imple-
mentations.

The other system is used to run the software packet generator and has an Intel i7-960
CPU with a base frequency 3.2GHz and an Intel X520 NIC (based on the Intel 82599
Ethernet controller). Ubuntu Linux 14.04 LTS (kernel 3.16) is the chosen OS. Note that
this test setup is different from the other setups (Section 2.4) used in this dissertation
as these experiments were conducted at a lab in the University of Cambridge where the
necessary hardware was available.

6.6 Analysis of rate control

Rate control is the mechanism implemented by a traffic generator to assure the generated
traffic matches the required characteristics. We assess the following criteria for rate
control of the selected packet generators:

• Bandwidth: the maximum throughput (how fast is it in terms of packets per
second?)

124

6.6 Analysis of rate control

• Accuracy: describes the systematic errors, a measure of statistical bias (how
close is the average observed rate to the configured one?)

• Precision: describes the random errors, a measure of statistical variability (how
much do individual inter-packet gaps deviate from the configured value?)

We use the term accuracy to estimate how close the average of a set of measurements
matches the target. Precision refers to the deviation of an individual measurement,
such as the inter-arrival time between two packets, from the target. For instance, a
packet generator configured to produce constant inter-arrival times which generates
bursty traffic would be classified as accurate if the overall average rate is correct. The
precision in contrast would be low due to differences of inter-burst and intra-burst packet
gaps.

6.6.1 Rate control: three different approaches
Software packet generators can generally use three different ways for rate control: relying
on hardware features of NICs, using a pure software approach, or MoonGen’s approach
with corrupted packets called CRC rate control. See Chapter 5 Section 5.7 for a detailed
explanation how these work. We implemented all of these methods in MoonGen to
compare them in a fair manner.

The pure software approach simply waits for a configured time between sending
individual packets. This entails precision problems: sleep functions provided by the OS
are not reliable as their granularity is limited [128, 23]. Busy waiting techniques can solve
this. However, abstractions from the OS and driver can lead to unintended buffering
and high costs for the required system calls to send individual packets. Modern packet
generators solve this issue with specialized IO frameworks that provide full access to the
hardware. Unfortunately, drivers cannot send packet data directly to a NIC: they can
only place it in a DMA memory region and inform the NIC to fetch it asynchronously.
This causes unwanted jitter in the required transmission time due to the two required
PCIe round trips, DMA coalescing on the NIC, and potential buffering on the NIC –
this jitter cannot be removed by a pure software solution. All other evaluated packet
generators support only this method.

MoonGen’s CRC rate control works by injecting invalid packets between real ones to
adjust the desired inter-packet gap. Instead of waiting between the generation of two
packets, MoonGen sends invalid packets by corrupting the CRC checksum. The inter-
packet gap is determined by the length of invalid packets in between two valid packets.
Tests show that it is also possible to send invalid packets violating the 60 byte minimum
for even shorter gaps.

125

Chapter 6: Precision of Software-based Packet Generators

Throughput Throughput
Default (Default) (Precise)

Packet generator Batch size [Mpps] [Mpps]

MoonGen (HW) 63 14.88 13.521

MoonGen (CRC) N/A N/A2 5.74
MoonGen (SW) 1 N/A2 5.36
zsend 16 14.84 14.713

Pktgen-DPDK 16 14.88 4.54
pfq-gen 32 5.67 3.59
netmap pkt-gen 512 14.88 1.55

D-ITG 1 N/A2 0.22
trafgen ?4 0.40 N/A4

1) Intel 82599, highest reliable hardware setting
2) No imprecise generation possible
3) Not precise at high rates despite configuration
4) Batch size unclear, failed to hit target rate within ±10%

Table 6.2: Achieved throughput on a Core i7-960

Our hardware-assisted solution relies on capabilities of the Intel 82599 [73] and Intel
XL710 [77] NICs to do rate control in hardware.

6.6.2 Performance vs. precision
The most common practice to reach high IO throughput is sending large batches of
packets to the driver instead of individual packets (cf. Section 3.5.3). This leads to
a trade-off between speed and precision for packet generators when the user does not
require bursty distributions. Indeed, all frameworks mentioned in Section 3.2 for high-
speed packet IO use large batch sizes by default: Table 6.2 shows the defaults for the
investigated packet generators. These defaults are often unsuitable for precise packet
generation due to the large batch size.

We first run performance tests using the default settings for each packet generator.
Then, we configure each of them to be as precise as possible (forcing the batch size to
one packet) and determine the maximum rate by increasing the packet rate setting in
steps of 1Mpps (0.05Mpps for packet generators that do not reach 1Mpps). These tests
allow us to assess the impact of precise configuration over the performance. Table 6.2
summarizes the results. MoonGen (HW) refers to the MoonGen version with hardware
support (Intel 82599) for the rate control, while MoonGen (CRC) enables the rate
control with the corrupted CRC approach. Finally, MoonGen (SW) has a pure software
implementation of the rate control.

126

6.6 Analysis of rate control

The low performance experienced with netmap pkt-gen in its precise settings is due to
netmap’s architecture itself. netmap relies on system calls for packet IO and uses a burst
size of 512 in its default setting to compensate for its costly transmit operation. While
this solution is beneficial for security and stability [148], it results in poor performance
when a precise packet generation time is required. In fact, reducing the batch size to
one packet causes a system call for every packet, affecting the overall throughput.

Both trafgen and D-ITG do not rely on fast IO frameworks. Indeed, they were archi-
tected for 1Gbit/s links. D-ITG reported incorrect statistics at rates above 0.1Mpps
which is only 67 Mbit/s with minimum-sized packets and 1.2Gbit/s with maximum-
sized packets.

6.6.3 Accuracy
Accurately hitting the target rate is important for the reproducibility of experiments.
Most of the packet generators reliably generate the requested packet rates (unless over-
loaded) within a relative error of less than 0.2%. Table 6.3 shows measurement results
and relative errors. trafgen does not claim to be accurate: the rate control setting
is called “Interpacket gap in us (approx)”. The versions of MoonGen which rely on
hardware features on commodity Intel NICs fail the test as well in some cases. The
hardware rate limiting features of these NICs are not designed for precise packet gen-
eration but rather for limiting applications where a coarse approximation is sufficient
and short bursts may even be desirable.

Pktgen-DPDK provides a granularity of 0.195Mpps, leading to the odd target values
shown in Table 6.3. In addition, the rate control algorithm of Pktgen-DPDK is incorrect:
it assumes that generating and sending a packet does not take a significant time and
waits for a fixed time between sending two packets. This assumption is not valid, leading
to the poor accuracy.

6.6.4 Precision
We target small inter-frame gaps (high load on the system) to evaluate their precision
under stress condition. In fact, the higher the packet rate, the lower the requested
inter-frame gap, leading to higher requirements in terms of precision as the generated
traffic will likely be characterized by micro-bursts (back-to-back frames). Increasing the
rate impacts also the system itself, potentially decreasing the precision, thus amplifying
the problem.

As most of the packet generators fail to achieve high packet of above 6Mpps (cf. Sec-
tion 6.6.2), we use a packet size of 128 bytes (including CRC) corresponding to a maxi-

127

Chapter 6: Precision of Software-based Packet Generators

Target Measured
Packet generator [Mpps] [Mpps] Rel. error

D-ITG
0.01 0.01 < 0.1%
0.1 0.099 0.6%
0.2 0.15 75%

trafgen
0.1 0.069 31%

0.01 0.006 36%

MoonGen
(82599 HW)

1 1.00 < 0.1%
4 4.00 < 0.1%
8 7.98 0.28%

MoonGen
(XL710 HW)

1 1.03 3.3%
4 4.08 2%
8 8.17 2%

1 1.00 < 0.1%
MoonGen (CRC) 3 3.00 < 0.1%

5 4.99 0.2%

1 1.00 < 0.1%
MoonGen (SW) 3 3.00 0.1%

5 5.00 < 0.1%

1 1.00 < 0.1%
zsend 5 5.00 0.1%

8 8.00 0.1%

0.976 0.840 16%
Pktgen-DPDK 2.54 2.17 17%

4.1 3.45 19%

1 1.00 < 0.1%
pfq-gen 2 2.00 < 0.1%

3 3.00 < 0.1%

netmap pkt-gen 1 1.00 < 0.1%

Table 6.3: Accuracy evaluation

128

6.6 Analysis of rate control

mum packet rate of 8.45Mpps for the evaluation. Packet size typically does not influence
the performance of packet generation [148]. This setting allows us to reduce the inter-
frame gap and achieve relatively high bandwidths.

CBR traffic is the hardest pattern to generate precisely as each gap must have exactly
the same length, i.e., the resulting histogram should ideally consist of just a single
bucket. It also allows for an easy visual comparison of the precision as well as an
analytic quantification by determining the mean squared error (MSE) in nanoseconds2.

Rate control: software implementations
Differences in precision between software packet generators stem from different rate con-
trol implementations. Short time intervals are hard to measure due to the granularity
of underlying timers. x86 CPUs feature the RDTSC instruction which returns a cycle
count of the CPU, enabling a cycle-level granularity. This cycle counter is independent
of the actual frequency due to power-saving or Turbo Boost and synchronized across
CPUs on all modern CPUs. System calls can use timers with coarser granularity, which
may not be appropriate for nanosecond time spans that high-speed packet generators
need to deal with. In the following we propose a brief description of the method being
adopted by each packet generator:

PF_RING ZC zsend uses a separate clocking thread with the purpose of calling
clock_gettime() (with parameters that map to RDTSC on the system) and storing
the result in a memory location in a tight loop to alleviate the overhead to the system
call. The transmit thread then uses another busy-wait loop until the counter reaches
the transmit time for a packet before sending packets to the driver. Neither thread uses
memory fences. The transmit thread is therefore not guaranteed to see the most recent
store by the timestamping thread.

Pktgen-DPDK uses RDTSC directly in a busy-wait loop for a fixed time between
passing packets to the driver. This leads to a poor accuracy as explained in Section 6.6.3.
For better comparison of the precision in the following tests, we opted to empirically
determine the packet rate setting, and hence the fixed wait time, such that its self-
reported transmit rate matches our target rate as closely as possible.

PFQ pfq-gen consists of three parts: the userspace application, the PFQ kernel
module and the NIC driver. pfq-gen stores the desired transmit time in the packet
metadata which is evaluated by the PFQ kernel module (running on a separate core).
The kernel module waits for the specified time by calling the Linux kernel function

129

Chapter 6: Precision of Software-based Packet Generators

0

5

10 MSE = 57 508
Mean = 999.6

PF RING ZC zsend

0

5

10 MSE = 38 008
Mean = 1 000.4

MoonGen (SW)

0

5

10 MSE = 36 983
Mean = 999.9

netmap pkt-gen

R
el
a
ti
ve

p
ro
b
a
b
il
it
y
[%

]

0

5

10 MSE = 25 937
Mean = 999.1

pfq-gen

0

5

10 MSE = 20 370
Mean = 992.4

Pktgen-DPDK

750 1000 1250
0

20

40
MSE = 24
Mean = 1 000.4

Inter-arrival time [ns]

MoonGen (CRC)

Figure 6.4: Software rate control at 1Mpps (1000 ns inter-arrival time) with mean squared error (MSE)
per packet generator

ktime_get_real() in a busy-wait loop. Note that this function does not use the RDTSC
instruction to determine time on each call, limiting the precision.

netmap pkt-gen uses the clock_gettime() system call (with parameters that map
to RDTSC on the system) in a busy-wait loop before passing packets to the driver via
a system call.

MoonGen pure software rate control adopts a solution similar to PFQ pfq-gen. It
embeds the desired inter-packet gap in the packet metadata and send the packets via
a lock-free queue to a transmit thread running C code (opposed to Lua in the main
thread). The transmit thread uses a busy-wait loop employing RDTSC to achieve the
highest possible precision.

Results at 1 Mpps
Figure 6.4 shows the measured inter-arrival time at 1Mpps. We judge the precision by
the shape of the distribution and the MSE value. High precision is expressed by a narrow
distribution accompanied by a low MSE. PF_RING ZC’s timestamping thread suffers

130

6.6 Analysis of rate control

0

8

16

MSE = 107 660
Mean = 500.0

PF RING ZC zsend

0

8

16

MSE = 97 732
Mean = 500.2

pfq-gen

0

4

8 MSE = 91 556
Mean = 511.7

R
el
at
iv
e
p
ro
b
ab

il
it
y
[%

]

Pktgen-DPDK

0

4

8 MSE = 24 966
Mean = 500.4

MoonGen (SW)

125 250 375 500 625 750 875 1000
0

35

70
MSE = 16
Mean = 500.7

Inter-arrival time [ns]

MoonGen (CRC)

6250 6750

0

0.01

0.02

Outliers

(a) 2Mpps, 500 ns target

0

10

20

30

MSE = 37 682
Mean = 250.1

PF RING ZC zsend

0

2

4
MSE = 59 838
Mean = 256.0 Pktgen-DPDK

R
el
at
iv
e
p
ro
b
ab

il
it
y
[%

]

0

2

4

MSE = 20 599
Mean = 250.2 MoonGen (SW)

125 250 375 500 625
0

30

60

MSE = 1225
Mean = 250

Inter-arrival time [ns]

MoonGen (CRC)

(b) 4Mpps, 250 ns target

Figure 6.5: Software rate control at 2 Mpps and 4Mpps

from the lack of memory fences on a multi-core CPU: the transmit task does not see the
latest value. This effectively limits the timer’s granularity as the value is not updated
as often as expected, explaining the large deviation present on its distribution resulting
in a high MSE. The deviation of the CRC-based approach is within the precision of
NetFPGA’s timestamping mechanic and shows a narrow distribution, ergo a low MSE.

Results at higher rates
Figures 6.5a and 6.5b show the histograms at 2Mpps and 4Mpps respectively for packet
generators that are still able to cope with these rates in the precise settings. Both
zsend and pfq-gen start to generate bursts. They follow a very similar distribution
at 2Mpps, indicating that the root cause of the bursty traffic is the same. The only
component shared by these two traffic generators is the Intel ixgbe kernel driver in a
slightly modified version. This explains how zsend was able to generate 14.7Mpps in the
performance test even in the precise settings: it is actually not precise at higher rates.
We tried to use DPDK to send packets without batching and found a hardware limit
of 12.9Mpps (using 3 cores/queues, adding another did not increase the performance)
when not using batches. This demonstrates that there must be unintentional batching
of packets to achieve high performance. Pktgen-DPDK and MoonGen are not affected

131

Chapter 6: Precision of Software-based Packet Generators

0

10

20 MSE = 777 414
Mean = 1 000.5

1 Mpps

0

10

20 MSE = 20231
Mean = 250.1

R
el
at
iv
e
p
ro
b
ab

il
it
y
[%

]

4 Mpps

250 500 750 1000 1250 1500 1750
0

10

20 MSE = 5823
Mean = 142.9

Inter-arrival time [ns]

7 Mpps

(a) 82599 NIC

0 0.5 1 1.5 2 2.5 3

·104

94

96

98

100

Inter-arrival time [ns]

C
D
F

[%
]

7Mpps

4Mpps

1Mpps

(b) XL 710 NIC

Figure 6.6: MoonGen with hardware rate control at rates of 1, 4, and 7Mpps

by this problem as both of them use the DPDK userspace variant of the ixgbe driver
which employs a completely different transmit path.

Pktgen-DPDK exhibits another issue at higher rates: there are additional peaks in the
distribution between 6,000 ns and 7,000 ns. These outliers happen periodically every
second. This leads to the MSE values that are far worse than expected from a visual
inspection of the histograms. The problem is not caused by DPDK as MoonGen is not
affected by this. The most likely reason is that the transmit thread in Pktgen-DPDK
calculates and reports statistics regularly while in MoonGen this is done in a separate
thread and via hardware counters. The CRC-based approach also shows a higher MSE
than expected: there are a total of 10 outliers between 3µs and 46µs every 128 packets
in the first 1 280 generated packets. This is caused by the insufficient performance of
the Lua code at higher rates before the initial just-in-time compilation.

Hardware support on commodity NICs
The test campaign conducted so far studies the impact of different software implemen-
tation for the rate control. This section investigates the benefits that the hardware
support can bring for precision and accuracy in packet generation. Hardware rate con-
trol features are available on NICs based on Intel 82599, X540, and XL710 network
chips. Tests show that the Intel X540 10GBASE-T chip is more precise than soft-
ware implementations on DPDK and PF_RING ZC [42]. However, this evaluation was
restricted to 1Gbit/s due to restrictions of the measurement setup. Here, we use Moon-
Gen to evaluate NICs based on Intel 82599 and XL710 chips which feature SFP+ ports
(10Gbit/s).

132

6.6 Analysis of rate control

1.3 1.4 1.5 1.6

·104

0

2

4

Inter-arrival time [ns]

R
el
.
p
ro
b
.
[%

]

0.1Mpps

(a)

1.3 1.4 1.5 1.6 1.7

·105

0

0.3

0.6

Inter-arrival time [ns]

R
el
.
p
ro
b
.
[%

]

0.01Mpps

(b)

Figure 6.7: trafgen precision

0.8 0.9 1 1.1 1.2

·104

0

1

2

Inter arrival time [ns]

R
el
.
p
ro
b
.
[%

]

0.1Mpps

(a)

0.98 0.99 1 1.01 1.02

·105

0

2

4

Inter arrival time [ns]

R
el
.
p
ro
b
.
[%

]

0.01Mpps

(b)

Figure 6.8: D-ITG precision

The Intel 82599 datasheet outlines the rate control algorithm in detail [73, Section
7.7.2.1]. Figure 6.6a shows that the hardware generates bursts of two packets at rates
of 1, 4, and 7Mpps on Intel 82599 NICs. The algorithm described in the datasheet does
not match this observation, highlighting problems when relying on black-box hardware
for reproducible experiments.

The newer XL710 rate control lacks a detailed explanation of its inner working. Our
measurements show that it generates bursts between 64 and 128 packets depending on
the rate and packet size. Figure 6.6b shows the upper part of a CDF as these large
bursts are not easily visualized in a histogram.

A burst size of 2 has no significant effect on the system under test in our experience.
Measuring the latency of a system with the flawed hardware rate control and MoonGen’s
CRC approach results in the same latency [42]. So we find it good enough for practical
purposes. Rate control on the XL710, however, is flawed and should be avoided.

Precision at low speeds
D-ITG and trafgen are both too slow for 10Gbit/s connections, so we handle these two
separately with packet rates of 0.01Mpps and 0.1Mpps (corresponding to 11.8Mbit/s
to 112Mbit/s). Figure 6.7 and 6.8 show histograms of the measured inter-arrival times
of trafgen and D-ITG respectively. trafgen is not only inaccurate (note that the
target line does not even appear on the figure) and slow, but also imprecise.

133

Chapter 6: Precision of Software-based Packet Generators

0 500 1,000 1,500
0

20

40

60

80

100

Inter-arrival time [ns]

C
D
F

[%
]

Ideal Poisson

MoonGen CRC

MoonGen SW

PFQ

(a) 3 Mpps (1 thread)

0 200 400 600 800
0

20

40

60

80

100

Inter-arrival time [ns]
C
D
F

[%
]

Ideal Poisson

MoonGen CRC

MoonGen SW

PFQ

(b) 6 Mpps (2 threads)

0 100 200 300 400
0

20

40

60

80

100

Inter-arrival time [ns]

C
D
F

[%
]

Ideal Poisson

MoonGen CRC

MoonGen SW

PFQ

(c) 9 Mpps (3 threads)

Figure 6.9: Precision of Poisson traffic generation

D-ITG generates a bimodal distribution oscillating around the target rate, alternating
every ≈ 2 packets. The two modes of the distribution are only ≈ 200 ns away from
the target at both tested rates. Note that an error of 200 ns is good result at 1Gbit/s
because the minimum packet length is 672 ns at this rate. It is, however, prone to bursts
as the rate increases. 0.5% of the packets are sent in bursts at 0.1Mpps, compared to
less than 0.01% at 0.01Mpps. We categorize D-ITG as accurate and precise at very low
rates but not performant.

6.6.5 Precision with Poisson traffic pattern
This section investigates the traffic generation precision when a non-CBR traffic pattern
is required. In particular, we study the generation behavior when the inter-packet gap
is set to be a Poisson process. The tests presented in this section allow studying the
impact of the cooperation of multiple threads on the generation precision. The previous
tests have been restricted to a single thread transmitting packets to reliably generate
CBR traffic. This is no longer the case when using a Poisson process: overlaying several
independent Poisson processes forms a new Poisson process. Using multiple threads
to increase the performance is trivial and allows overcoming performance restrictions.
Although real traffic resembles a self-similar pattern [129], traffic generated by a Poisson
process can approximate the self-similar pattern for short time spans, e.g., in a synthetic
benchmark [149]. Moreover, self-similar patterns are not implemented by any readily
available software packet generator. Poisson is implemented in D-ITG, pfq-gen, and
MoonGen. We skip D-ITG here as we are interested in high packet rates.

We measure a maximum throughput of 12.1Mpps with pfq-gen on 4 threads and
12.9Mpps with MoonGen software rate control on 3 threads. This corresponds to the
previously measured limit for unbatched transmits; adding another core does not im-

134

6.6 Analysis of rate control

prove the throughput. The CRC-based rate control is able to generate any configured
rate as it can use batches consisting of valid and invalid packets internally.

Figure 6.9 shows how the achieved precision degrades as the rate and number of threads
being used increases from 3Mpps to 9Mpps and 1 to 3 respectively. This measurement
highlights a shortcoming of the CRC-based implementation: it cannot represent all
possible gaps due to minimum packet sizes of the invalid packets. Some NICs like
the Intel XL710 NICs pad short packets to the minimum size of 64 bytes while others
(82599) allow smaller sizes. However, illegally short packets can be troublesome for the
device under test: we experienced irregular behavior when the NetFPGA test device
was receiving such packets. This test was therefore run with packet sizes of 64 bytes or
higher, MoonGen’s actual precision is likely higher.

The higher the requested throughput and the number of threads being used, the lower
the precision of the generation: overlaying Poisson processes is imperfect in practice.
This technique assumes that the Poisson processes cannot influence one another. How-
ever, this is not the case. A packet incurs a queuing delay if a thread tries to send a
packet while a packet by another thread is still being transmitted. This effect is visible
at both 6Mpps and 9Mpps, it leads to more bursts and fewer packets with larger inter-
arrival times than analytically expected. And this is were we hit the limits of what can
be done in software, there is no way to avoid this without explicit hardware support.

6.6.6 Lessons learned
We have compared three methods for packet generation:

The hardware supported approach offers high performance and reasonable accu-
racy. However, it shows low precision on the investigated NICs as they generate small
bursts instead of CBR traffic. Further, it is inflexible as it cannot be used for arbitrary
distributions.

The pure software approach can offer high accuracy as long as overloading does
not occur. Either high performance or high precision are achievable, depending on the
allowed burst size leading to the previously presented issues (cf. Section 6.3). Differ-
ences in performance and precision between the IO frameworks are visible at high packet
rates, with the DPDK-based frameworks usually performing better.

The corrupted CRC approach offers high performance, high accuracy, and high
precision. Despite its advantages, this method requires setups that can withstand the
large number of invalid packets used as fillers.

135

Chapter 6: Precision of Software-based Packet Generators

trafgen and D-ITG are still not obsolete, despite the advantages of modern software
packet generators. D-ITG is ideal for environments that do not require high packet
rates. It is precise and features a large set of traffic types and patterns. The main
advantage is that it works on any NIC supported by Linux – the other investigated
packet generators rely on specialized drivers only available for certain NICs.

6.7 Latency measurements

Packet generators are not only used to precisely and accurately generate traffic, but they
might be also helpful to derive useful metrics about the system under test: throughput
and latency. Throughput can be measured by counting the number of packets being
successfully processed by the device under test, latency requires more elaborated meth-
ods. In particular, measuring the latency requires timestamping the exact point in time
a packet is sent and received.

6.7.1 Approaches for measuring latency
We identify three different types of timestamping methods.

Software timestamping without framework support is the easiest implementa-
tion: the software simply takes a timestamp before sending and after receiving a packet
to/from a high-level interface like socket APIs. Potential problems are context switches
and queuing delays as the packet crosses the boundary between the program and the
driver in the kernel. Linux allows offloading the timestamp to the kernel via a socket
option to alleviate these problems.

Software timestamping with framework support takes the timestamp at the
framework or driver level. The low-level nature of packet IO frameworks helps. For
example, DPDK moves the whole driver into the same process as the packet generator.
A packet generator based on it can thus take a timestamp at the moment the NIC is
tasked with transmitting the packet. Reception typically works in a busy-wait loop,
polling the NIC for new packets as often as every 100 CPU cycles, a timestamp can be
taken once a poll returns data. The question is: how precise is this?

The third and most reliable solution is hardware timestamping. This moves the
timestamping process as close as possible to the physical layer thus eliminating further
sources of error (i.e., CPU scheduling, driver overhead, or PCIe transfer). Typical values
for timestamping precision on 10Gbit/s NICs are ±6.4 ns, see Section 5.6.1 for details.

136

6.7 Latency measurements

6.7.2 Evaluated metrics
Latency measurement features are rare in packet generators. To the best of our knowl-
edge, and considering the packet generators being analyzed in this paper, only D-ITG
and MoonGen provide support for latency analysis. MoonGen uses hardware time-
stamping as it relies on hardware capabilities present on Intel NICs. D-ITG implements
timestamping without framework support, as it uses traditional APIs without making
use of the timestamp offloading available in Linux. We also implemented a version of
MoonGen with pure software timestamping to evaluate the performance of software
timestamping with a fast IO framework.

Latency measurement is affected by both a systematic error and a random error. The
former is caused by deterministic delays through processing, the latter from the time
spent in buffers and resource contention from concurrent tasks. To minimize both
of them, the timestamp should be moved as close as possible to the actual physical
transmission or reception of a packet. Without hardware support, the timestamps
can only be taken in software and queuing delay can cause high jitter. Deterministic
processing steps contribute to the systematic error, providing a fixed offset on the final
timestamp.

The proposed tests aim to evaluate the accuracy (i.e., average of the measured val-
ues) and the precision (i.e., standard deviation) of latency measurements when one of
the three approaches is being used. An inaccurate timestamping mechanism has little
impact on the results: the systematic error can be determined and subtracted from
latency measurements. Poor precision is more problematic as it limits the usefulness
of the resulting data. While it is still possible to determine the average latency if the
precision is poor, it is difficult to estimate important characteristics of the system under
test (e.g., buffer size). In addition, statistical parameters such as maximum latency or
99th percentile cannot be evaluated properly when the precision is poor.

The third metric we take into account is the granularity of the packet generator itself.
Software using RDTSC has a granularity of the CPU’s clock frequency, i.e., typically
less than 1 ns. clock_gettime() has a granularity of 1 ns on modern systems with
proper arguments as it internally relies on RDTSC as well. Hardware-assisted solutions
as implemented in MoonGen depend on the NIC being used. The Intel 82599 offers a
granularity of 12.8 ns [73], older 1Gbit/s NICs often support only 64 ns [72].

6.7.3 Evaluation
In this section we evaluate the three different approaches using an external loopback
connection of a NIC port with itself via a short (≈ 10 cm/2.5 in) fiber cable as test setup.

137

Chapter 6: Precision of Software-based Packet Generators

0 0.1 0.2 0.3 0.4
0

10

20

30

Load [Mpps]

L
a
te
n
cy

[µ
s]

Average/standard deviation

1st/99th percentile

Figure 6.10: Precision of software timestamping without framework support

As D-ITG would require a second host echoing the traffic back, we emulate its behav-
ior by implementing a tool that performs software timestamping without framework
support on raw sockets.

Hardware
We rely on MoonGen working with hardware support (Intel 82599 NIC) to evaluate
the latency in this scenario. This implementation offers a granularity of 12.8 ns on the
Intel 82599 NIC and reports latencies between 294.4 ns and 320 ns (23 to 25 units of
measurement) depending on the packet rate. The latency never varies by more than
12.8 ns for a given packet rate. We use this result as our ground truth, i.e., the maximum
achievable precision and accuracy.

Software without framework support
Figure 6.10 shows how the precision of software timestamping without fast IO frame-
work support deteriorates as we apply an increasing load of background traffic using
trafgen1. The standard deviation is in the range of several microseconds (vs. nanosec-
onds with hardware timestamping) and the systematic error is 10 µs to 15 µs as this is
the absolute measured value.

Software with framework support
Software timestamping with DPDK support in MoonGen performs better by an order
of magnitude as visualized in Figure 6.11. The standard deviation increases from 0.16 µs
to 0.24µs between no background load and 9Mpps. However, a higher load causes a
sudden increase in both average latency and standard deviation. Rates above 9.3Mpps
show standard deviations of ≈ 0.5 µs. High background traffic causes this software

1Chosen because it achieves the highest rate without requiring exclusive access to the NIC.

138

6.7 Latency measurements

516

520

524

L
a
te
n
cy

[µ
s]

Average/std deviation

1st/99th percentile

0 3 6 9 12 15
0

2

4

Load [Mpps]

Figure 6.11: Precision of software timestamping with framework support (MoonGen)

timestamping method to become inaccurate while still staying reasonably precise. It
is, however, both imprecise and inaccurate in the area between 9Mpps and 9.3Mpps.
The reason for this increase remains unclear, but is likely related to the hardware rate
control feature being used an buffering on the NIC. Note that the accuracy suffers by
factor of about 200 while the precision is only affected by a factor of 2.

We conducted this experiment with hardware rate control on an Intel 82599 NIC for
the background traffic to achieve the highest possible rate. Using the best rate control
method identified earlier (i.e., CRC) requires loading the NIC with full line at all times
and hence suffers from poorer precision and accuracy even at lower rates as the buffers
are always full.

6.7.4 Lessons learned
The test campaign performed in this section assess the precision of software time-
stamping with and without IO framework support. We use hardware solution as our
ground truth because it moves the timestamping process as close as possible to the
physical layer thus eliminating further sources of error.

We distinguish two measurement scenarios with different requirements for the bench-
marking precision: software devices and hardware devices. The former has lower re-
quirements as the experiments deal with higher latencies (in the range between 10µs
and 100µs). For example, our measurements in Section 6.3 exhibit latencies between
14 µs and 110 µs. Based on this, we derive a precision requirement of 1 µs to benchmark
software devices. This means both software timestamping with framework support and
hardware timestamping are precise enough for this task. Hardware devices, on the other
hand, exhibit latencies in the order of hundreds of nanoseconds and consequently need
a packet generator with a precision lower than 100 ns. Only hardware timestamping can
be used in this case.

139

Chapter 6: Precision of Software-based Packet Generators

The feasibility of benchmarking software devices also depends on the measured metric.
It is always possible to determine the average latency if the characteristics of the packet
generator are known. Histograms of observed latencies, that can provide further insight
into internals of a system, can only be measured with framework support or hardware
timestamping. Measuring the maximum latency of a system is limited by the worst-
case behavior of the packet generators: it is impossible to know whether an outlier in an
experiment comes from the packet generator or the tested system. Timestamping with
framework support shows outliers of up to 5 times the average value, while timestamping
without framework support has outliers up to 60 times the average value.

Experimenters should calibrate their packet generators before conducting experiments
involving any latency measurements. The reliability of the packet generator can be
checked by running the test on a setup where the tested system is replaced with a
simple cable. Not only precision is important: the accuracy or systematic error is in
the microsecond-range with the tested approaches and can thus contribute a significant
part of the overall latency. Measuring it beforehand allows eliminating this error, i.e.,
the accuracy of a packet generator does not matter in a well-designed experiment with
a calibrated packet generator.

6.8 Conclusion

This chapter is mainly concerned with research questions Q3 (How can modern net-
work devices be benchmarked?) and Q4 (Can software be sufficiently precise to replace
hardware in all scenarios?). The answer is: mostly yes, software can be precise enough
to replace dedicated hardware for benchmarking in 10Gbit/s networks. Only time-
stamping is best left to hardware features, but MoonGen’s driver support for hardware
timestamping on commonly used NICs makes these capabilities available on cheap com-
modity off-the-shelf hardware.

The results for rate control are unexpected. The hardware implementation on the Intel
XL710 NIC behaves very poorly and is unsuitable for packet generators. Intel’s 82599-
based NICs fared better, but still sent out packets in bursts of two which we consider
good enough for practical purposes. MoonGen using the rate control implemented with
the corrupted CRC approach proved to be the most precise solution. Our conclusion
is that you should use MoonGen’s CRC approach (Section 5.7.3) to control packet
rate if the system under test can handle this. We achieve a mean squared error of
1.2 µs with this implementation, significantly better than the 20.6µs of the software
implementation, which in turn is still an improvement over the 59 µs found in other

140

6.9 Author’s Contributions

software packet generators (Section 6.6.4). The next best option is hardware rate control
on NICs of the 82599 family. Software rate control should be avoided.

Another key result is that the traffic pattern should be chosen carefully. Benchmarking
standards are often focused on CBR traffic, a fixation that arguably stems from the
definition of constant load as CBR in RFC 1242 [24]. Even this standard from 1991
notes that it is an unrealistic traffic pattern. We argue to consider a Poisson distribution
instead of CBR traffic. Poisson traffic is both easier to generate in a performant and
reliable manner and a more realistic test case (Section 6.3.2).

In conclusion, we can now say that MoonGen is a precise and accurate software packet
generator when used with Intel 82599 10Gbit/s NICs.

6.9 Author’s Contributions

Sections 6.1 to 6.8 are based on the following publication [41]:

Paul Emmerich, Sebastian Gallenmüller, Gianni Antichi, Andrew W. Moore, and
Georg Carle. “Mind the Gap — A Comparison of Software Packet Generators”.
In: ACM/IEEE Symposium on Architectures for Networking and Communications
Systems (ANCS 2017). Beijing, China, May 2017

The author implemented the different rate control methods of MoonGen discussed here
and contributed to their analysis. The author contributed to the design and execution
of all measurements and experiments of the rate control methods presented here. All
timestamping code in MoonGen evaluated here was conceived and implemented by the
author. The author contributed to the experiments and their execution.

The following significant changes vs. the paper were made for this thesis:

• Section 6.1 has been rewritten.

• Section 6.3 has been rewritten and features two additional experiments originally
published in [42].

• Table 6.3 has been updated to contain data about all evaluated packet generators.

141

Part IV

Conclusion

Chapter 7

Conclusion

We describe the software stack of a software-based packet processing system, starting at
the driver level (ixy, Chapter 3) through to a real-world application (MoonGen, Chap-
ter 5). At each level we evaluate the performance and trade-offs between flexibility
and performance, yielding unique insights at every level of the stack. Having a com-
pletely custom driver allowed us to evaluate effects of individual features and optimiza-
tions in isolation. Doing the same in ten different languages made for a comprehensive
comparison of language features like garbage collection and their performance impacts
(Chapter 4).

Finally, as a complex, real-world, application MoonGen is a practical example of a fast
and flexible software-based packet processing system. The combination of fast user space
drivers together with a high-level language can provide completely new functionality
that was previously impossible: running user-defined script code for every single packet
that is transmitted without affecting performance (Section 5.5.2).

7.1 Answered research questions

We can now offer answers to our four main research questions posed in Section 1.2.

Q1 What makes software-based packet processing fast?
Being close to the hardware is crucial: Unnecessary layers of abstraction such
garbage collection and JIT compilers may add latency, jitter, or performance
problems and hence must be avoided (Section 4.6 and 4.7). The driver should be
part of the same process as the application, i.e., the driver must be a library that
is embedded in the user space application (Section 3.3). Chapter 3 examines the

Chapter 7: Conclusion

architecture of fast user space network drivers, featuring a full implementation of
a driver that rivals the performance of DPDK (Section 3.5).

We consider important components of user space drivers and discuss how different
settings affect the performance. The single most important identified performance
feature is batch processing. Loading at least 32 packets at the same time helps to
amortize overhead related to accessing the hardware (Section 3.5.3). Moreover, we
look at the necessary trade-offs, identifying a ring buffer size 512 as the sweet spot
between throughput and latency (cf. Section 3.5.7). This is contrary to common
advice for larger batch sizes and ring sizes (e.g., [148, 89, 12]).

Q2 How can high-level languages be used in software-based network devices?
Not all high-level languages are suitable for writing drivers, especially scripting
languages come with serious performance bottlenecks. We implemented drivers in
9 different high-level languages in Chapter 4 to evaluate and compare them.

Our results indicate that Rust is currently the best language to write user space
drivers in, winning performance comparisons for both latency and bandwidth
among the high-level languages. Compared to C we achieve 98% of the throughput
(Section 4.6.2) and without affecting latency at speeds of 10Mpps (Section 4.7.2).
Despite achieving a high performance we guarantee memory safety in 87% of our
Rust driver (Section 4.4.3). This is not entirely unexpected given that Rust was
explicitly designed with writing efficient and correct applications in mind.

All other languages have one primary problem: overhead from memory man-
agement. Relying on a garbage collector yields a bad worst-case latency when an
ongoing garbage collection stops execution temporarily (see graphs in Section 4.7).
The garbage collected languages C# and Go fared exceptionally well for garbage
collected languages, achieving worst-case latencies below 100µs even under load.
Even Apple’s Swift that relies on pure reference counting fares poorly in this com-
parison: the overhead heavily affects the throughput as unnecessary work has to
be done for every packet. Only Rust’s unique ownership-based system avoids all
of these problems.

On the higher layer, our packet generation application MoonGen uses the scripting
language Lua, a garbage collected language. Avoiding problems with garbage
collection is feasible here by clever use of available hardware features where a high
precision is required (Section 5.6). Lua is an ideal choice for a testing application:
it is easy to fully customize the behavior of the packet generator by the user on a
per-packet basis (Section 5.4). Our evaluation shows that we achieve equivalent, or
better, performance than previous less flexible packet generators (Section 5.5.2).

146

7.1 Answered research questions

We conclude that Rust is the best choice for general-purpose software-based packet
processing systems. Other languages can be feasible if the pause times induced by
garbage collection or JIT compilers can be compensated for by hardware features,
as is the case for MoonGen.

Q3 How can modern network devices be benchmarked?
Our focus is on throughput on packets per second, not raw bandwidth in bits
per second as the per-packet processing costs dominates over per-byte costs (Sec-
tion 2.2). We built the packet generator MoonGen for this dissertation – the first
software packet generator that allows running user-defined script code for every
single generated packet without sacrificing performance (Section 5.5.2). This al-
lows supporting a wide range of protocols and applications (Section 5.4).

Despite being a software-based packet processing system, MoonGen achieves a
precision of ±12.8 ns for timestamping by using hardware features of commodity
NICs (Section 5.6).

We conclude that MoonGen is a packet generator suitable for accurate and precise
benchmarks in 10Gbit/s networks. It should be used with an Intel 82599 NIC in
order to use hardware features to achieve the previously stated results. We show
MoonGen is precise enough to characterize hardware switches as devices under
test (Section 5.8).

Q4 Can software be sufficiently precise to replace hardware in all scenarios?
There are scenarios where hardware support is inevitable: Everything that either
requires timestamping or precise control of packet departure times (rate control).
This is a rare use case, many applications simply do not need these capabilities.
And when needed, a hybrid solution such as MoonGen can be constructed to work
around the restrictions.

MoonGen achieves a mean-squared error of 1.2 µs by using a hybrid hardware/-
software rate control implementation, the previous state of the art for software
packet generators was 59 µs (Section 6.6.4). Our hardware-assisted timestamping
achieves a precision of ±12.8 ns and a systematic error of 317 ns (Section 5.6).

We find these values good enough for practical purposes in 10Gbit/s networks.

147

Chapter 7: Conclusion

7.2 Conclusion

This dissertation heavily relies on the artifacts ixy and MoonGen to argue its main
point: It is feasible and advantageous to write packet processing systems in high-level
languages on top of user space drivers.

The advantage of using high-level languages is improved resilience against certain classes
of bugs such as memory bugs. 61% of security-critical bugs found in Linux could have
been prevented by using a high-level programming language instead of C and all but one
investigated bug (n=40) have been found in drivers (Section 4.3.2). When using Rust
we get this advantage in 87% of the code while only trading off 2% of the throughput
and no additional latency under normal load conditions (Sections 4.6.2 and 4.7.2). We
conclude that software-based packet processing systems should be build in a high-level
language. Language selection depends on requirements, but Rust is a good choice in
general.

MoonGen is a practical example of a fast and flexible software-based packet processing
system. It is fast, flexible, and precise at the same time by using a high-level language
and hardware features to achieve precision. We achieve our goal of handling the full
line rate of 14.88Mpps on a single CPU core (Section 5.5), flexibility is ensured by
executing user-defined script code in the high-level language Lua for every transmitted
packet (Section 5.4), and the achieved precision for timestamping of ±12.8 ns is even
good enough to benchmark hardware devices (Section 5.8).

It has been a personal goal of the author to build something that can be adapted and
re-used by others. Both ixy and MoonGen have been made available as free and open
source software [2, 3]. This has been especially successful with MoonGen which has
become the de-facto standard packet generator in academia (≥ 300 citations) and it has
been used in many high-impact publications by others, e.g., [152, 93, 34, 168].

148

Bibliography

[1] Dave Abrahams. “Protocol-Oriented Programming in Swift”. In:WWDC15 (June
2015).

[2] Paul Emmerich et al. ixy code. https://github.com/emmericp/ixy.
[3] Paul Emmerich et al. MoonGen Source Code. https://github.com/emmericp/

MoonGen.
[4] Alexander Frank. “Cost Efficient Hardware Timestamping”. In: TUM Interdis-

ciplinary Project Final Report. TUM. 2018.
[5] Alexander Frank. MoonSniff. https://github.com/emmericp/MoonGen/pull/

227. 2018.
[6] Anders Evenrud et al. OS.js. https://www.os-js.org. 2019.
[7] Gianni Antichi, Muzammil Shahbaz, Yiwen Geng, Noa Zilberman, Adam Cov-

ington, Marc Bruyere, Nick McKeown, Nick Feamster, Bob Felderman, Michaela
Blott, et al. “OSNT: Open Source Network Tester”. In: Network 28.5 (2014).

[8] Serhat Arslan, Stephen Ibanez, Alex Mallery, Changhoon Kim, and Nick McKe-
own. “NanoTransport: A Low-Latency, Programmable Transport Layer for NICs”.
In: Proceedings of the ACM SIGCOMM Symposium on SDN Research (SOSR).
2021, pp. 13–26.

[9] “AS5712-54X Datasheet”. In: Edge-Core Networks. 2015.
[10] Hirochika Asai and Yasuhiro Ohara. “Poptrie: A Compressed Trie with Popula-

tion Count for Fast and Scalable Software IP Routing Table Lookup”. In: ACM
SIGCOMM Computer Communication Review 45.4 (2015), pp. 57–70.

[11] Austin Clements, Rick Hudson. Proposal: Eliminate STW stack re-scanning.
https : / / go . googlesource . com / proposal / + / master / design / 17503 -
eliminate-rescan.md. 2016.

[12] Jamie Bainbridge and Jon Maxwell. “Red Hat Enterprise Linux Network Per-
formance Tuning Guide”. In: Red Hat Documentation (Mar. 2015). Available
at https : / / access . redhat . com / sites / default / files / attachments /
20150325_network_performance_tuning.pdf.

https://github.com/emmericp/ixy
https://github.com/emmericp/MoonGen
https://github.com/emmericp/MoonGen
https://github.com/emmericp/MoonGen/pull/227
https://github.com/emmericp/MoonGen/pull/227
https://www.os-js.org
https://go.googlesource.com/proposal/+/master/design/17503-eliminate-rescan.md
https://go.googlesource.com/proposal/+/master/design/17503-eliminate-rescan.md
https://access.redhat.com/sites/default/files/attachments/20150325_network_performance_tuning.pdf
https://access.redhat.com/sites/default/files/attachments/20150325_network_performance_tuning.pdf

[13] Fred Baker. RFC 1812: Requirements for IP version 4 routers. 1995.
[14] David Barach, Leonardo Linguaglossa, Damjan Marion, Pierre Pfister, Salvatore

Pontarelli, and Dario Rossi. “High-Speed Software Data Plane via Vectorized
Packet Processing”. In: IEEE Communications Magazine 56.12 (2018), pp. 97–
103.

[15] Tom Barbette, Cyril Soldani, and Laurent Mathy. “Fast userspace packet pro-
cessing”. In:Architectures for Networking and Communications Systems (ANCS).
ACM. 2015, pp. 5–16.

[16] Alexander Beifuß, Daniel Raumer, Paul Emmerich, Torsten M Runge, Florian
Wohlfart, Bernd E Wolfinger, and Georg Carle. “A Study of Networking Soft-
ware Induced Latency”. In: 2015 International Conference and Workshops on
Networked Systems (NetSys). IEEE. 2015, pp. 1–8.

[17] Gilberto Bertin. Single RX queue kernel bypass in Netmap for high packet rate
networking. https : / / blog . cloudflare . com / single - rx - queue - kernel -
bypass-with-netmap/. Oct. 2015.

[18] N. Bonelli, S. Giordano, and G. Procissi. “Network Traffic Processing With
PFQ”. In: IEEE Journal on Selected Areas in Communications 34.6 (June 2016),
pp. 1819–1833. issn: 0733-8716.

[19] Nicola Bonelli, Andrea Di Pietro, Stefano Giordano, and Gregorio Procissi. “Flex-
ible High Performance Traffic Generation on Commodity Multi–Core Platforms”.
In: Proceedings of the 4th International Conference on Traffic Monitoring and
Analysis. Vienna, Austria: Springer, 2012, pp. 157–170. isbn: 978-3-642-28533-2.

[20] Nicola Bonelli, Andrea Di Pietro, Stefano Giordano, and Gregorio Procissi. “Flex-
ible High Performance Traffic Generation on Commodity Multi–Core Platforms”.
In: International Conference on Traffic Monitoring and Analysis (TMA). Springer,
2012.

[21] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and
David Walker. “P4: Programming protocol-independent packet processors”. In:
ACM SIGCOMM Computer Communication Review 44.3 (2014), pp. 87–95.

[22] Alessio Botta, Alberto Dainotti, and Antonio Pescapè. “A tool for the generation
of realistic network workload for emerging networking scenarios”. In: Computer
Networks 56.15 (2012).

[23] Alessio Botta, Alberto Dainotti, and Antonio Pescapé. “Do You Trust Your
Software-Based Traffic Generator?” In: IEEE Communications Magazine 48.9
(2010), pp. 158–165.

[24] Scott Bradner. Benchmarking Terminology for Network Interconnection Devices.
RFC 1242 (Informational). Internet Engineering Task Force, 1991.

150

https://blog.cloudflare.com/single-rx-queue-kernel-bypass-with-netmap/
https://blog.cloudflare.com/single-rx-queue-kernel-bypass-with-netmap/

[25] Scott Bradner and Jim McQuaid. Benchmarking Methodology for Network In-
terconnect Devices. RFC 2544 (Informational). Internet Engineering Task Force,
1999.

[26] Stuart Cheshire, David Schinazi, and Christoph Paasch. “Advances in Network-
ing”. In: WWDC17 (June 2017).

[27] Cilium Project. BPF and XDP Reference Guide. https://docs.cilium.io/
en/latest/bpf/. 2021.

[28] Cloudflare. quice: Savoury implementation of the QUIC transport protocol. https:
//github.com/cloudflare/quiche. 2019.

[29] G. Adam Covington, Glen Gibb, John W. Lockwood, and Nick McKeown. “A
Packet Generator on the NetFPGA Platform”. In: 17th IEEE Symposium on
Field Programmable Custom Computing Machines. 2009, pp. 235–238.

[30] Daniel Crevier. AI: The Tumultuous Search for Artificial Intelligence. Basic-
Books, 1993. isbn: 0465029973.

[31] Cody Cutler, M Frans Kaashoek, and Robert T Morris. “The benefits and costs
of writing a POSIX kernel in a high-level language”. In: OSDI’18. USENIX. 2018,
pp. 89–105.

[32] D-ITG. http://traffic.comics.unina.it/software/ITG/index.php.
[33] Dan Williams. Solo5 project. https://github.com/Solo5/solo5. 2019.
[34] Huynh Tu Dang, Han Wang, Theo Jepsen, Gordon Brebner, Changhoon Kim,

Jennifer Rexford, Robert Soulé, and Hakim Weatherspoon. “Whippersnapper:
A P4 Language Benchmark Suite”. In: Proceedings of the Symposium on SDN
Research. 2017, pp. 95–101.

[35] DPDK Project. DPDK: Supported NICs. http://dpdk.org/doc/nics.
[36] DPDK Project. DPDK User Guide: Overview of Networking Drivers. http :

//dpdk.org/doc/guides/nics/overview.html.
[37] DPDK Project. Vhost-user CVE-2018-1059. Mailing list post. http://mails.

dpdk.org/archives/announce/2018-April/000192.html. 2018.
[38] Paul Emmerich. MoonGen Source Code, Commit 96818ad9. https://github.

com/emmericp/MoonGen/commit/96818ad962db92345674242c6935e413ba4eddcd.
[39] Paul Emmerich, Sebastian Gallenmüller, and Georg Carle. “FLOWer – Device

Benchmarking Beyond 100 Gbit/s”. In: IFIP Networking 2016. Vienna, Austria,
May 2016.

[40] Paul Emmerich, Daniel Raumer, Florian Wohlfart, and Georg Carle. “Assessing
Soft- and Hardware Bottlenecks in PC-based Packet Forwarding Systems”. In:
ICN 2015 (2015).

[41] Paul Emmerich, Sebastian Gallenmüller, Gianni Antichi, Andrew W. Moore, and
Georg Carle. “Mind the Gap — A Comparison of Software Packet Generators”.

151

https://docs.cilium.io/en/latest/bpf/
https://docs.cilium.io/en/latest/bpf/
https://github.com/cloudflare/quiche
https://github.com/cloudflare/quiche
http://traffic.comics.unina.it/software/ITG/index.php
https://github.com/Solo5/solo5
http://dpdk.org/doc/nics
http://dpdk.org/doc/guides/nics/overview.html
http://dpdk.org/doc/guides/nics/overview.html
http://mails.dpdk.org/archives/announce/2018-April/000192.html
http://mails.dpdk.org/archives/announce/2018-April/000192.html
https://github.com/emmericp/MoonGen/commit/96818ad962db92345674242c6935e413ba4eddcd
https://github.com/emmericp/MoonGen/commit/96818ad962db92345674242c6935e413ba4eddcd

In: ACM/IEEE Symposium on Architectures for Networking and Communica-
tions Systems (ANCS 2017). Beijing, China, May 2017.

[42] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. “MoonGen: A Scriptable High-Speed Packet Generator”. In: Inter-
net Measurement Conference 2015 (IMC’15). Tokyo, Japan, Oct. 2015.

[43] Paul Emmerich, Simon Ellmann, Fabian Bonk, Alex Egger, Esaú García Sánchez-
Torija, Thomas Günzel, Sebastian Di Luzio, Alexandru Obada, Maximilian Stadl-
meier, Sebastian Voit, and Georg Carle. “The Case for Writing Network Drivers
in High-Level Programming Languages”. In: ACM/IEEE Symposium on Ar-
chitectures for Networking and Communications Systems (ANCS 2019). IEEE.
Cambridge, UK, Sept. 2019.

[44] Paul Emmerich, Maximilian Pudelko, Simon Bauer, Stefan Huber, Thomas Zwickl,
and Georg Carle. “User Space Network Drivers”. In: ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (ANCS 2019). IEEE.
Cambridge, UK, Sept. 2019.

[45] David Flater and William F Guthrie. “A case study of performance degradation
attributable to run-time bounds checks on C++ vector access”. In: Journal of
research of the National Institute of Standards and Technology 118 (2013), p. 260.

[46] Philip J Fleming and John J Wallace. “How not to lie with statistics: the correct
way to summarize benchmark results”. In: Communications of the ACM 29.3
(1986), pp. 218–221.

[47] Fluke networks.Network Cable Propagation Delay. https://www.flukenetworks.
com/knowledge-base/dtx-cableanalyzer/propagation-delay.

[48] Alex Forencich, Alex C Snoeren, George Porter, and George Papen. “Corundum:
An Open-Source 100-Gbps NIC”. In: 2020 IEEE 28th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM). IEEE.
2020, pp. 38–46.

[49] Nate Foster, Nick McKeown, Jennifer Rexford, Guru Parulkar, Larry Peter-
son, and Oguz Sunay. “Using deep programmability to put network owners in
control”. In: ACM SIGCOMM Computer Communication Review 50.4 (2020),
pp. 82–88.

[50] FreeBSD Project. “NETMAP(4)”. In: FreeBSD Kernel Interfaces Manual. FreeBSD
11.1-RELEASE. 2017.

[51] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel Raumer, and
Georg Carle. “Comparison of Frameworks for High-Performance Packet IO”. In:
Architectures for Networking and Communications Systems (ANCS). ACM. Oak-
land, CA, 2015, pp. 29–38.

152

https://www.flukenetworks.com/knowledge-base/dtx-cableanalyzer/propagation-delay
https://www.flukenetworks.com/knowledge-base/dtx-cableanalyzer/propagation-delay

[52] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel Raumer, and
Georg Carle. “Comparison of Frameworks for High-Performance Packet IO”. In:
Architectures for Networking and Communications Systems (ANCS). ACM. Oak-
land, CA, 2015.

[53] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel Raumer, and
Georg Carle. “Comparison of frameworks for high-performance packet IO”. In:
Symposium on Architectures for Networking and Communications Systems (ANCS).
IEEE/ACM. 2015.

[54] Jim Gettys and Kathleen Nichols. “Bufferbloat: Dark buffers in the internet”.
In: Queue 9.11 (2011), p. 40.

[55] Gilberto Bertin. “XDP in practice: integrating XDP into our DDoS mitigation
pipeline”. In: Netdev 2.1, The Technical Conference on Linux Networking. May
2017.

[56] Google. Fuchsia git repositories. https://fuchsia.googlesource.com/. 2019.
[57] Google. Go - Frequently Asked Questions. https://go.dev/doc/faq.
[58] Google. Playing with QUIC. https://www.chromium.org/quic/playing-

with-quic. 2019.
[59] Luke Gorrie. Snabb/ConnectX 100G transmit. https://rpubs.com/lukego/

205901.
[60] Isaac Gouy. The Computer Language Benchmarks Game. https://benchmarksgame-

team.pages.debian.net/benchmarksgame/. 2019.
[61] Thomas Hallgren, Mark P Jones, Rebekah Leslie, and Andrew Tolmach. “A

principled approach to operating system construction in Haskell”. In: ACM SIG-
PLAN Notices. Vol. 40. 9. ACM. 2005, pp. 116–128.

[62] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. “PacketShader: a
GPU-accelerated software router”. In: ACM SIGCOMM Computer Communica-
tion Review 41.4 (2011), pp. 195–206.

[63] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. PacketShader: Packet
I/O Engine. https://shader.kaist.edu/packetshader/io_engine/. 2010.

[64] HashiCorp. Vagrant website. https://www.vagrantup.com/. 2019.
[65] Galen Hunt, James R Larus, Martın Abadi, Mark Aiken, Paul Barham, Manuel

Fahndrich, Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy, et al.
An overview of the Singularity project. Tech. rep. MSR-TR-2005-135, Microsoft
Research, 2005.

[66] Stephen Ibanez, Muhammad Shahbaz, and Nick McKeown. “The Case for a
Network Fast Path to the CPU”. In: Proceedings of the 18th ACM Workshop on
Hot Topics in Networks. 2019, pp. 52–59.

[67] IEEE. IEEE 802.3-2018 IEEE Standard for Ethernet. 2018.

153

https://fuchsia.googlesource.com/
https://go.dev/doc/faq
https://www.chromium.org/quic/playing-with-quic
https://www.chromium.org/quic/playing-with-quic
https://rpubs.com/lukego/205901
https://rpubs.com/lukego/205901
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/
https://shader.kaist.edu/packetshader/io_engine/
https://www.vagrantup.com/

[68] “IEEE Standard for a Precision Clock Synchronization Protocol for Networked
Measurement and Control Systems”. In: IEEE 1588-2008 (2008). doi: 10.1109/
IEEESTD.2008.4579760.

[69] Intel. DPDK Getting Started Guide for Linux. http://dpdk.org/doc/guides/
linux_gsg/sys_reqs.html.

[70] Intel. Intel Server Adapters - Linux ixgbe Base Driver. http://www.intel.com/
support/network/adapter/pro100/sb/CS-032530.htm.

[71] Intel. Network Function Framework for Go. https : / / github . com / intel -
go/nff-go. 2019.

[72] Intel 82580EB/82580DB Gigabit Ethernet Controller Datasheet Rev. 2.7. Intel
Corporation. 2015.

[73] Intel 82599 10Gigabit Ethernet Controller Datasheet Rev. 2.9. Intel Corporation.
2014.

[74] Intel Advanced Encryption Standard (AES) New Instructions Set. Intel Corpo-
ration. 2010.

[75] “Intel Data Direct I/O Technology (Intel DDIO): A Primer”. In: (Feb. 2012).
Available at https://www.intel.com/content/www/us/en/io/data-direct-
i-o-technology-brief.html.

[76] “Intel Ethernet Controller X540 Datasheet Rev. 2.7”. In: Intel. 2014.
[77] “Intel Ethernet Controller XL710 Datasheet Rev. 2.1”. In: Intel. 2014.
[78] Intel i486 Microprocessor. Intel Corporation. 1989.
[79] Intel Xeon Processor D-1500 Product Family. Intel Corporation. 2015.
[80] “Intel Xeon Processor E5-2600 v3 Product Family Architectural Overview”. In:

Intel. Nov. 2014.
[81] IO Visor Project. BPF and XDP Features by Kernel Version. https://github.

com/iovisor/bcc/blob/master/docs/kernel-versions.md#xdp. 2019.
[82] IO Visor Project. Introduction to XDP. https://www.iovisor.org/technology/

xdp. 2019.
[83] Jesús Leganés-Combarro et al. Node-OS. https://node-os.com. 2019.
[84] Jim Thompson. “DPDK, VPP & pfSense 3.0”. In: DPDK Summit Userspace.

Dublin, Ireland, Sept. 2017.
[85] Jonathan Corbet. “User-space networking with Snabb”. In: LWN.net. Feb. 2017.
[86] Joseph Coffey. Latency in optical fiber systems. CommScope White Paper WP-

111432. 2017.
[87] Michael Kerrisk. “mlock(2)”. In: Linux Programmer’s Manual. 2004.
[88] Richard B Kieburtz. P-logic: Property verification for Haskell programs. 2002.

154

https://doi.org/10.1109/IEEESTD.2008.4579760
https://doi.org/10.1109/IEEESTD.2008.4579760
http://dpdk.org/doc/guides/linux_gsg/sys_reqs.html
http://dpdk.org/doc/guides/linux_gsg/sys_reqs.html
http://www.intel.com/support/network/adapter/pro100/sb/CS-032530.htm
http://www.intel.com/support/network/adapter/pro100/sb/CS-032530.htm
https://github.com/intel-go/nff-go
https://github.com/intel-go/nff-go
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#xdp
https://github.com/iovisor/bcc/blob/master/docs/kernel-versions.md#xdp
https://www.iovisor.org/technology/xdp
https://www.iovisor.org/technology/xdp
https://node-os.com

[89] Joongi Kim, Seonggu Huh, Keon Jang, KyoungSoo Park, and Sue Moon. “The
power of batching in the click modular router”. In: Proceedings of the Asia-Pacific
Workshop on Systems. ACM. 2012.

[90] Kitura project. Kitura website. https://www.kitura.io/. 2019.
[91] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,

Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, et al. “seL4: Formal Verification of an OS Kernel”. In: Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles. 2009, pp. 207–
220.

[92] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
“The Click Modular Router”. In: ACM Transactions on Computer Systems 18.3
(Aug. 2000), pp. 263–297. issn: 0734-2071. doi: 10.1145/354871.354874. url:
http://doi.acm.org/10.1145/354871.354874.

[93] Sameer G Kulkarni, Wei Zhang, Jinho Hwang, Shriram Rajagopalan, KK Ra-
makrishnan, TimothyWood, Mayutan Arumaithurai, and Xiaoming Fu. “NFVnice:
Dynamic Backpressure and Scheduling for NFV Service Chains”. In: Proceedings
of the 2017 ACM SIGCOMM Conference. 2016, pp. 71–84.

[94] D. Lacković and M. Tomić. “Performance analysis of virtualized VPN endpoints”.
In: 2017 40th International Convention on Information and Communication
Technology, Electronics and Microelectronics (MIPRO). 2017, pp. 466–471. doi:
10.23919/MIPRO.2017.7973470.

[95] Linux documentation. Linux kernel memory barriers. https://www.kernel.
org/doc/Documentation/memory-barriers.txt. 2019.

[96] Linux Foundation. Data Plane Development Kit. http://dpdk.org. 2013.
[97] Linux Kernel Documentation. Page migration. https://www.kernel.org/doc/

Documentation/vm/page_migration.
[98] Linux Kernel Documentation. VFIO - Virtual Function I/O. https://www.

kernel.org/doc/Documentation/vfio.txt. 2019.
[99] Luke Gorrie et al. Snabb: Simple and fast packet networking. https://github.

com/snabbco/snabb. 2012.
[100] Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj

Singh, Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft.
“Unikernels: Library Operating Systems for the Cloud”. In: Proceedings of the
Eighteenth International Conference on Architectural Support for Programming
Languages and Operating Systems. ASPLOS ’13. Houston, Texas, USA: ACM,
2013, pp. 461–472.

[101] Maximilian Pudelko. ixy - DMA allocator on normal-sized pages. https : / /
github.com/pudelkoM/ixy/tree/contiguous-pages. 2019.

155

https://www.kitura.io/
https://doi.org/10.1145/354871.354874
http://doi.acm.org/10.1145/354871.354874
https://doi.org/10.23919/MIPRO.2017.7973470
https://www.kernel.org/doc/Documentation/memory-barriers.txt
https://www.kernel.org/doc/Documentation/memory-barriers.txt
http://dpdk.org
https://www.kernel.org/doc/Documentation/vm/page_migration
https://www.kernel.org/doc/Documentation/vm/page_migration
https://www.kernel.org/doc/Documentation/vfio.txt
https://www.kernel.org/doc/Documentation/vfio.txt
https://github.com/snabbco/snabb
https://github.com/snabbco/snabb
https://github.com/pudelkoM/ixy/tree/contiguous-pages
https://github.com/pudelkoM/ixy/tree/contiguous-pages

[102] Maximilian Pudelko. ixy - head pointer writeback implementation. https : / /
github.com/pudelkoM/ixy/tree/head-pointer-writeback. 2019.

[103] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peter-
son, Jennifer Rexford, Scott Shenker, and Jonathan Turner. “OpenFlow: enabling
innovation in campus networks”. In: ACM SIGCOMM Computer Communica-
tion Review 38.2 (2008), pp. 69–74.

[104] Mellanox BlueField SmartNIC for Ethernet. Nvidia Corporation. 2020.
[105] Microsoft. .NET Garbage Collection Latency Modes. https://docs.microsoft.

com/en-us/dotnet/standard/garbage-collection/latency. 2019.
[106] R. Mijumbi, J. Serrat, J. Gorricho, N. Bouten, F. De Turck, and R. Boutaba.

“Network Function Virtualization: State-of-the-Art and Research Challenges”.
In: IEEE Communications Surveys & Tutorials 18.1 (2016), pp. 236–262.

[107] MirageOS project. Cstruct. https://github.com/mirage/ocaml- cstruct.
2019.

[108] MirageOS project. Performance harness for MirageOS 3. https://github.com/
mirage/mirage/issues/685. 2019.

[109] Daniel Molka, Daniel Hackenberg, Robert Schöne, andWolfgang E Nagel. “Cache
Coherence Protocol and Memory Performance of the Intel Haswell-EP Architec-
ture”. In: 2015 44th International Conference on Parallel Processing. IEEE. 2015,
pp. 739–748.

[110] NetFPGA. http://netfpga.org/.
[111] netmap. https://github.com/luigirizzo/netmap.
[112] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio

López-Buedo, and Andrew W Moore. “Understanding PCIe performance for end
host networking”. In: SIGCOMM 2018. ACM. 2018, pp. 327–341.

[113] Node.js Foundation. Node.js. https://nodejs.org. 2019.
[114] ntop. Introducing PF_RING DNA (Direct NIC Access). https://www.ntop.

org/pf_ring/introducing-pf_ring-dna-direct-nic-access/. 2010.
[115] ntop. PF_RING ZC (Zero Copy). http://www.ntop.org/products/packet-

capture/pf_ring/pf_ring-zc-zero-copy/.
[116] ntop official website. http://www.ntop.org/.
[117] OASIS VIRTIO TC. Virtual I/O Device (VIRTIO) Version 1.0. http://docs.

oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.pdf. Mar. 2016.
[118] OCaml Manual. Optimisation with Flambda. https://caml.inria.fr/pub/

docs/manual-ocaml/flambda.html. 2019.
[119] Open vSwitch project. Open vSwitch releases. http://docs.openvswitch.org/

en/latest/faq/releases/. 2019.

156

https://github.com/pudelkoM/ixy/tree/head-pointer-writeback
https://github.com/pudelkoM/ixy/tree/head-pointer-writeback
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/latency
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/latency
https://github.com/mirage/ocaml-cstruct
https://github.com/mirage/mirage/issues/685
https://github.com/mirage/mirage/issues/685
http://netfpga.org/
https://github.com/luigirizzo/netmap
https://nodejs.org
https://www.ntop.org/pf_ring/introducing-pf_ring-dna-direct-nic-access/
https://www.ntop.org/pf_ring/introducing-pf_ring-dna-direct-nic-access/
http://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
http://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
http://www.ntop.org/
http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.pdf
http://docs.oasis-open.org/virtio/virtio/v1.0/virtio-v1.0.pdf
https://caml.inria.fr/pub/docs/manual-ocaml/flambda.html
https://caml.inria.fr/pub/docs/manual-ocaml/flambda.html
http://docs.openvswitch.org/en/latest/faq/releases/
http://docs.openvswitch.org/en/latest/faq/releases/

[120] OpenJDK. Shenandoah GC. https : / / wiki . openjdk . java . net / display /
shenandoah/Main. 2019.

[121] OPNVF Website - Vswitch Project Proposal. https : / / wiki . opnfv . org /
display/vsperf/Vswitch+Project+Proposal.

[122] Srivats P. ostinato. http://ostinato.org/.
[123] Mike Pall. LuaJIT. http://luajit.org/. 2020.
[124] Mike Pall. LuaJIT FFI Library. http://luajit.org/ext_ffi.html. 2020.
[125] Mike Pall. LuaJIT in realtime applications. http://www.freelists.org/post/

luajit/LuaJIT-in-realtime-applications,3. Mailing list post. 2012.
[126] J. F. Palmer. “The Intel 8087 numeric data processor”. In: International Work-

shop on Managing Requirements Knowledge. Los Alamitos, CA, USA: IEEE,
1980, p. 887. doi: 10.1109/AFIPS.1980.108.

[127] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Ratnasamy, and
Scott Shenker. “NetBricks: Taking the V out of NFV”. In: OSDI’16. USENIX.
2016, pp. 203–216.

[128] Marcos Paredes-Farrera, Martin Fleury, and Mohammed Ghanbari. “Precision
and accuracy of network traffic generators for packet-by-packet traffic analysis”.
In: Testbeds and Research Infrastructures for the Development of Networks and
Communities (TRIDENTCOM). IEEE, 2006.

[129] Vern Paxson and Sally Floyd. “Wide-Area Traffic: The Failure of Poisson Mod-
eling”. In: Special Interest Group on Data Communication (SIGCOMM). ACM,
1994.

[130] “PCI Express Base Specification Rev. 3.0”. In: PCI-SIG. Nov. 2010.
[131] Larry L Peterson and Bruce S Davie. Computer Networks: a systems approach.

5th ed. Elsevier, 2012.
[132] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno

Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon,
and Martin Casado. “The Design and Implementation of Open vSwitch”. In: 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
15). Oakland, CA: USENIX, 2015, pp. 117–130. isbn: 978-1-931971-218.

[133] PFQ. https://github.com/pfq/PFQ.
[134] pfSense project. pfSense website. https://www.pfsense.org/. 2019.
[135] PF_RING ZC. https://github.com/ntop/PF_RING.git.
[136] Pktgen-DPDK. http://dpdk.org/browse/apps/pktgen-dpdk/refs/.
[137] “Product Brief - Intel Ethernet Controller XL710 10/40 GbE”. In: Intel. 2014.
[138] Product Brief: AMD Ryzen Embedded V1000 Processor Family. AMD. 2018.
[139] Project Zero. Meltdown and Spectre. https://meltdownattack.com/. 2018.

157

https://wiki.openjdk.java.net/display/shenandoah/Main
https://wiki.openjdk.java.net/display/shenandoah/Main
https://wiki.opnfv.org/display/vsperf/Vswitch+Project+Proposal
https://wiki.opnfv.org/display/vsperf/Vswitch+Project+Proposal
http://ostinato.org/
http://luajit.org/
http://luajit.org/ext_ffi.html
http://www.freelists.org/post/luajit/LuaJIT-in-realtime-applications,3
http://www.freelists.org/post/luajit/LuaJIT-in-realtime-applications,3
https://doi.org/10.1109/AFIPS.1980.108
https://github.com/pfq/PFQ
https://www.pfsense.org/
https://github.com/ntop/PF_RING.git
http://dpdk.org/browse/apps/pktgen-dpdk/refs/
https://meltdownattack.com/

[140] Maximilian Pudelko, Paul Emmerich, Sebastian Gallenmüller, and Georg Carle.
“Performance Analysis of VPN Gateways”. In: 2020 IFIP Networking Conference
(Networking). IFP. 2020, pp. 325–333.

[141] PyPi. Download statistics for PyUSB. https://pypistats.org/packages/
pyusb. 2019.

[142] PyPi. PyUSB package. https://pypi.org/project/pyusb/. 2019.
[143] Redox developers. Redox project page. https://www.redox-os.org/. 2019.
[144] Rick Hudson. “Go GC: Latency Problem Solved”. In: GopherCon Denver (July

2015).
[145] Dennis M Ritchie. “The development of the C language”. In: ACM Sigplan No-

tices 28.3 (1993), pp. 201–208. doi: 10.1145/155360.155580.
[146] Dennis M Ritchie and K. Thompson. “The UNIX Time-Sharing System”. In:

Communications of the ACM 17.7 (July 1974), pp. 365–375.
[147] Stuart Ritchie. “Systems programming in Java”. In: IEEE Micro 17.3 (1997),

pp. 30–35. issn: 0272-1732. doi: 10.1109/40.591652.
[148] Luigi Rizzo. “netmap: A Novel Framework for Fast Packet I/O”. In: USENIX

Annual Technical Conference. 2012, pp. 101–112.
[149] Thomas G Robertazzi. Computer networks and systems: queueing theory and

performance evaluation, Chapter 7.6: Self-Similar Traffic. Springer Science &
Business Media, 2012.

[150] Jamal Hadi Salim, Robert Olsson, and Alexey Kuznetsov. “Beyond Softnet”.
In: Proceedings of the 5th Annual Linux Showcase & Conference. Vol. 5. 2001,
pp. 18–18.

[151] Peter H. Salus. “Unix at 25”. In: BYTE magazine 19.10 (Oct. 1994), 75pp.
[152] Muhammad Shahbaz, Sean Choi, Ben Pfaff, Changhoon Kim, Nick Feamster,

Nick McKeown, and Jennifer Rexford. “PISCES: A Programmable, Protocol-
independent Software Switch”. In: Proceedings of the 2016 ACM SIGCOMM
Conference. 2016, pp. 525–538.

[153] Snabb Project. Tuning the performance of the lwaftr. https://github.com/
snabbco/snabb/blob/master/src/program/lwaftr/doc/performance.md.

[154] Solarflare. OpenOnload Website. http://www.openonload.org/.
[155] Joel Sommers and Paul Barford. “Self-Configuring Network Traffic Generation”.

In: Proceedings of the 4th ACM SIGCOMM Conference on Internet Measure-
ment. IMC ’04. Taormina, Sicily, Italy: ACM, 2004, pp. 68–81. isbn: 1-58113-
821-0.

[156] W. Su, D. Cohen, J. N. Seizovic, A. E. Kulawik, R. E. Felderman, N. J. Boden,
and C. L. Seitz. “Myrinet: A Gigabit-per-Second Local Area Network”. In: IEEE
Micro 15.01 (1995), pp. 29–36. issn: 1937-4143. doi: 10.1109/40.342015.

158

https://pypistats.org/packages/pyusb
https://pypistats.org/packages/pyusb
https://pypi.org/project/pyusb/
https://www.redox-os.org/
https://doi.org/10.1145/155360.155580
https://doi.org/10.1109/40.591652
https://github.com/snabbco/snabb/blob/master/src/program/lwaftr/doc/performance.md
https://github.com/snabbco/snabb/blob/master/src/program/lwaftr/doc/performance.md
http://www.openonload.org/
https://doi.org/10.1109/40.342015

[157] Sun microsystems and IBM. JavaOS for Business Device Driver Guide. https:
//www.oracle.com/technetwork/java/josddk-150086.pdf. June 1998.

[158] M Tahhan, B. O’Mahony, and Al Morton. Benchmarking Virtual Switches in the
Open Platform for NFV (OPNFV). RFC 8204 (Informational). Internet Engi-
neering Task Force, 2017.

[159] TAPS Working Group. An Abstract Application Layer Interface to Transport
Services. 2021.

[160] TechEmpower. TechEmpower Framework Benchmarks. https://github.com/
TechEmpower/FrameworkBenchmarks. 2019.

[161] Gavin Thomas. A proactive approach to more secure code. https://msrc-blog.
microsoft.com/2019/07/16/a- proactive- approach- to- more- secure-
code/. 2019.

[162] trafgen. http://netsniff-ng.org/.
[163] Vapor project. Vapor website. https://vapor.codes/. 2019.
[164] Péter Vörös, Dániel Horpácsi, Róbert Kitlei, Dániel Leskó, Máté Tejfel, and

Sándor Laki. “T4P4S: A Target-independent Compiler for Protocol-independent
Packet Processors”. In: 2018 IEEE 19th International Conference on High Per-
formance Switching and Routing (HPSR). IEEE. 2018, pp. 1–8.

[165] Keith Wiles. Pktgen-DPDK. http://github.com/Pktgen/Pktgen-DPDK/.
[166] Yinglin Yang, Sudeep Goswami, and Carl G. Hansen. 10GBASE-T Ecosystem is

Ready for Broad Adoption. White paper. 2012.
[167] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert. “StackMap:

Low-Latency Networking with the OS Stack and Dedicated NICs”. In: 2016
USENIX Annual Technical Conference (USENIX ATC 16). Denver, CO: USENIX
Association, 2016, pp. 43–56. isbn: 978-1-931971-30-0.

[168] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina Argyraki, and George
Candea. “A Formally Verified NAT”. In: Proceedings of the 2016 ACM SIG-
COMM Conference. 2017, pp. 141–154.

[169] Noa Zilberman, Andrew W Moore, and Jon A Crowcroft. “From photons to
big-data applications: terminating terabits”. In: Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences 374.2062
(2016), p. 20140445.

[170] Noa Zilberman, Yury Audzevich, G Adam Covington, and Andrew W Moore.
“NetFPGA SUME: Toward 100 gbps as research commodity”. In:Micro 5 (2014).

159

https://www.oracle.com/technetwork/java/josddk-150086.pdf
https://www.oracle.com/technetwork/java/josddk-150086.pdf
https://github.com/TechEmpower/FrameworkBenchmarks
https://github.com/TechEmpower/FrameworkBenchmarks
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
https://msrc-blog.microsoft.com/2019/07/16/a-proactive-approach-to-more-secure-code/
http://netsniff-ng.org/
https://vapor.codes/
http://github.com/Pktgen/Pktgen-DPDK/

Appendices

Appendix A

MoonGen Example: Basic packet gen-
erator

A MoonGen script generating a configurable number of UDP flows at a given rate.

The script showcases the following MoonGen features:

• Randomized flows
• ARP lookups
• CSV statistics
• The embedded REST webserver to control MoonGen via HTTP/json

1 --- A simple UDP packet generator
2 local mg = require "moongen"
3 local device = require "device"
4 local stats = require "stats"
5 local log = require "log"
6 local memory = require "memory"
7 local arp = require "proto.arp"
8 local server = require "webserver"
9

10 -- set addresses here
11 local DST_MAC = nil -- resolved via ARP on GW_IP or DST_IP, can be overriden with a string here
12 local PKT_LEN = 60
13 local SRC_IP = "10.0.0.10"
14 local DST_IP = "10.1.0.10"
15 local SRC_PORT_BASE = 1234 -- actual port will be SRC_PORT_BASE * random(NUM_FLOWS)
16 local DST_PORT = 1234
17 local NUM_FLOWS = 1000
18 -- used as source IP to resolve GW_IP to DST_MAC
19 -- also respond to ARP queries on this IP
20 local ARP_IP = SRC_IP
21 -- used to resolve DST_MAC

22 local GW_IP = DST_IP
23

24

25 -- the configure function is called on startup with a pre-initialized command line parser
26 function configure(parser)
27 parser:description("Edit the source to modify constants like IPs and ports.")
28 parser:argument("dev", "Devices to use."):args("+"):convert(tonumber)
29 parser:option("-t --threads", "Number of threads per device."):args(1):convert(tonumber):default(1)
30 parser:option("-r --rate", "Transmit rate in Mbit/s per device."):args(1)
31 parser:option("-w --webserver", "Start a REST API on the given port."):convert(tonumber)
32 parser:option("-o --output", "File to output statistics to")
33 parser:option("-s --seconds", "Stop after n seconds")
34 parser:flag("-a --arp", "Use ARP.")
35 parser:flag("--csv", "Output in CSV format")
36 return parser:parse()
37 end
38

39 function master(args,...)
40 -- configure devices and queues
41 local arpQueues = {}
42 for i, dev in ipairs(args.dev) do
43 -- arp needs extra queues
44 local dev = device.config{
45 port = dev,
46 txQueues = args.threads + (args.arp and 1 or 0),
47 rxQueues = args.arp and 2 or 1
48 }
49 args.dev[i] = dev
50 if args.arp then
51 table.insert(arpQueues, {
52 rxQueue = dev:getRxQueue(1), txQueue = dev:getTxQueue(args.threads), ips = ARP_IP
53 })
54 end
55 end
56 device.waitForLinks()
57

58 -- start ARP task and do ARP lookup (if not hardcoded above)
59 if args.arp then
60 arp.startArpTask(arpQueues)
61 if not DST_MAC then
62 log:info("Performing ARP lookup on %s, timeout 3 seconds.", GW_IP)
63 DST_MAC = arp.blockingLookup(GW_IP, 3)
64 if not DST_MAC then
65 log:info("ARP lookup failed, using default destination mac address")
66 DST_MAC = "01:23:45:67:89:ab"
67 end
68 end
69 log:info("Destination mac: %s", DST_MAC)
70 end
71

72 if args.webserver then
73 server.startWebserverTask{
74 port = args.webserver
75 }

76 end
77

78 -- print statistics
79 stats.startStatsTask{devices = args.dev, file = args.output, format = args.csv and "csv" or "plain"}
80

81 -- configure tx rates and start transmit slaves
82 for i, dev in ipairs(args.dev) do
83 for i = 1, args.threads do
84 local queue = dev:getTxQueue(i - 1)
85 if args.rate then
86 queue:setRate(args.rate / args.threads)
87 end
88 mg.startTask("txSlave", queue, DST_MAC)
89 end
90 end
91

92 if args.seconds then
93 mg.setRuntime(tonumber(args.seconds))
94 end
95

96 mg.waitForTasks()
97 end
98

99 function txSlave(queue, dstMac)
100 -- memory pool with default values for all packets, this is our archetype
101 local mempool = memory.createMemPool(function(buf)
102 buf:getUdpPacket():fill{
103 -- fields not explicitly set here are initialized to reasonable defaults
104 ethSrc = queue, -- MAC of the tx device
105 ethDst = dstMac,
106 ip4Src = SRC_IP,
107 ip4Dst = DST_IP,
108 udpSrc = SRC_PORT,
109 udpDst = DST_PORT,
110 pktLength = PKT_LEN
111 }
112 end)
113 -- a bufArray is just a list of buffers from a mempool that is processed as a single batch
114 local bufs = mempool:bufArray()
115 while mg.running() do -- check if Ctrl+c was pressed
116 -- this actually allocates some buffers from the mempool the array is associated with
117 -- this has to be repeated for each send because sending is asynchronous,
118 -- we cannot reuse the old buffers here (async interface)
119 bufs:alloc(PKT_LEN)
120 for i, buf in ipairs(bufs) do
121 -- packet framework allows simple access to fields in complex protocol stacks
122 local pkt = buf:getUdpPacket()
123 pkt.udp:setSrcPort(SRC_PORT_BASE + math.random(0, NUM_FLOWS - 1))
124 end
125 -- UDP checksums are optional, so using just IPv4 checksums would be sufficient here
126 -- UDP checksum offloading is comparatively slow: NICs typically do not support calculating the
127 -- pseudo-header checksum so this is done in SW
128 bufs:offloadUdpChecksums()
129 -- send out all packets and frees old bufs that have been sent

130 queue:send(bufs)
131 end
132 end

Appendix B

MoonGen Example: Quality of Service
Test

A MoonGen script generating two different UDP flows and reporting their respective
latencies. This can be used validate if a device is properly applying quality of service
metrics.

The script showcases the following MoonGen features:

• Multi-threading with multiple device queues
• Hardware rate control
• Hardware timestamping
• Custom statistics

1 --- This script implements a simple QoS test by generating two flows and measuring their latencies.
2 local mg = require "moongen"
3 local memory = require "memory"
4 local device = require "device"
5 local ts = require "timestamping"
6 local filter = require "filter"
7 local stats = require "stats"
8 local hist = require "histogram"
9 local timer = require "timer"

10 local log = require "log"
11

12 local PKT_SIZE = 124 -- without CRC
13 -- hard-coded MAC addresses, see the generic pktgen example for getting this via ARP
14 local ETH_DST = "10:11:12:13:14:15" -- src mac is taken from the NIC
15 local IP_SRC = "192.168.0.1"
16 local NUM_FLOWS = 256 -- src ip will be IP_SRC + random(0, NUM_FLOWS - 1)
17 local IP_DST = "10.0.0.1"
18 local PORT_SRC = 1234
19 local PORT_FG = 42

20 local PORT_BG = 43
21

22 function configure(parser)
23 parser:description("Generates two flows of traffic and compares them." ..
24 " This example requires an ixgbe NIC due to the used hardware features.")
25 parser:argument("txDev", "Device to transmit from."):convert(tonumber)
26 parser:argument("rxDev", "Device to receive from."):convert(tonumber)
27 parser:option("-f --fg-rate", "Foreground traffic rate in Mbit/s."):default(1000)
28 :convert(tonumber):target("fgRate")
29 parser:option("-b --bg-rate", "Background traffic rate in Mbit/s."):default(4000)
30 :convert(tonumber):target("bgRate")
31 end
32

33 function master(args)
34 -- 3 tx queues: traffic, background traffic, and timestamped packets
35 -- 2 rx queues: traffic and timestamped packets
36 local txDev, rxDev
37 -- these two cases could actually be merged as re-configurations of ports are ignored
38 -- the dual-port case could just config the 'first' device with 2/3 queues
39 -- however, this example scripts shows the explicit configuration instead of implicit magic
40 if args.txDev == args.rxDev then
41 -- sending and receiving from the same port
42 txDev = device.config{port = args.txDev, rxQueues = 2, txQueues = 3}
43 rxDev = txDev
44 else
45 -- two different ports, different configuration
46 txDev = device.config{port = args.txDev, rxQueues = 1, txQueues = 3}
47 rxDev = device.config{port = args.rxDev, rxQueues = 2}
48 end
49 -- wait until the links are up
50 device.waitForLinks()
51 log:info("Sending %d MBit/s background traffic to UDP port %d", args.bgRate, PORT_BG)
52 log:info("Sending %d MBit/s foreground traffic to UDP port %d", args.fgRate, PORT_FG)
53 -- setup rate limiters for CBR traffic
54 -- see l2-poisson.lua for an example with different traffic patterns
55 txDev:getTxQueue(0):setRate(args.bgRate)
56 txDev:getTxQueue(1):setRate(args.fgRate)
57 -- background traffic
58 if args.bgRate > 0 then
59 mg.startTask("loadSlave", txDev:getTxQueue(0), PORT_BG)
60 end
61 -- high priority traffic (different UDP port)
62 if args.fgRate > 0 then
63 mg.startTask("loadSlave", txDev:getTxQueue(1), PORT_FG)
64 end
65 -- count the incoming packets
66 mg.startTask("counterSlave", rxDev:getRxQueue(0))
67 -- measure latency from a second queue
68 mg.startSharedTask("timerSlave", txDev:getTxQueue(2), rxDev:getRxQueue(1),
69 PORT_BG, PORT_FG, args.fgRate / (args.fgRate + args.bgRate))
70 -- wait until all tasks are finished
71 mg.waitForTasks()
72 end
73

74 function loadSlave(queue, port)
75 mg.sleepMillis(100) -- wait a few milliseconds to ensure that the rx thread is running
76 local mem = memory.createMemPool(function(buf)
77 buf:getUdpPacket():fill{
78 pktLength = PKT_SIZE, -- this sets all length headers fields in all used protocols
79 ethSrc = queue, -- get the src mac from the device
80 ethDst = ETH_DST,
81 -- ipSrc will be set later as it varies
82 ip4Dst = IP_DST,
83 udpSrc = PORT_SRC,
84 udpDst = port,
85 -- payload will be initialized to 0x00 as new memory pools are initially empty
86 }
87 end)
88 local txCtr = stats:newManualTxCounter("Port " .. port, "plain")
89 local baseIP = parseIPAddress(IP_SRC)
90 -- a buf array is essentially a very thing wrapper around a
91 -- rte_mbuf*[], i.e. an array of pointers to packet buffers
92 local bufs = mem:bufArray()
93 while mg.running() do
94 -- allocate buffers from the mem pool and store them in this array
95 bufs:alloc(PKT_SIZE)
96 for _, buf in ipairs(bufs) do
97 -- modify some fields here
98 local pkt = buf:getUdpPacket()
99 -- select a randomized source IP address

100 -- you can also use a wrapping counter instead of random
101 pkt.ip4.src:set(baseIP + math.random(NUM_FLOWS) - 1)
102 -- you can modify other fields here (e.g. different source ports or destination addresses)
103 end
104 -- send packets
105 bufs:offloadUdpChecksums()
106 txCtr:updateWithSize(queue:send(bufs), PKT_SIZE)
107 end
108 txCtr:finalize()
109 end
110

111 function counterSlave(queue)
112 -- the simplest way to count packets is by receiving them all
113 -- an alternative would be using flow director to filter packets by port and use the queue statistics
114 local bufs = memory.bufArray()
115 local ctrs = {}
116 while mg.running(100) do
117 local rx = queue:recv(bufs)
118 for i = 1, rx do
119 local buf = bufs[i]
120 local pkt = buf:getUdpPacket()
121 local port = pkt.udp:getDstPort()
122 local ctr = ctrs[port]
123 if not ctr then
124 ctr = stats:newPktRxCounter("Port " .. port, "plain")
125 ctrs[port] = ctr
126 end
127 ctr:countPacket(buf)

128 end
129 -- update() on rxPktCounters must be called to print statistics periodically
130 -- this is not done in countPacket() for performance reasons (needs to check timestamps)
131 for k, v in pairs(ctrs) do
132 v:update()
133 end
134 bufs:freeAll()
135 end
136 for k, v in pairs(ctrs) do
137 v:finalize()
138 end
139 end
140

141

142 function timerSlave(txQueue, rxQueue, bgPort, port, ratio)
143 local txDev = txQueue.dev
144 local rxDev = rxQueue.dev
145 local timestamper = ts:newUdpTimestamper(txQueue, rxQueue)
146 local histBg, histFg = hist(), hist()
147 -- wait one second, otherwise we might start timestamping before the load is applied
148 mg.sleepMillis(1000)
149 local baseIP = parseIPAddress(IP_SRC)
150 local rateLimit = timer:new(0.001)
151 while mg.running() do
152 local port = math.random() <= ratio and port or bgPort
153 local lat = timestamper:measureLatency(PKT_SIZE, function(buf)
154 local pkt = buf:getUdpPacket()
155 pkt:fill{
156 -- this sets all length headers fields in all used protocols
157 pktLength = PKT_SIZE,
158 ethSrc = txQueue, -- get the src mac from the device
159 ethDst = ETH_DST,
160 -- ipSrc will be set later as it varies
161 ip4Dst = IP_DST,
162 udpSrc = PORT_SRC,
163 udpDst = port,
164 }
165 pkt.ip4.src:set(baseIP + math.random(NUM_FLOWS) - 1)
166 end)
167 if lat then
168 if port == bgPort then
169 histBg:update(lat)
170 else
171 histFg:update(lat)
172 end
173 end
174 rateLimit:wait()
175 rateLimit:reset()
176 end
177 mg.sleepMillis(100) -- to prevent overlapping stdout
178 histBg:save("hist-background.csv")
179 histFg:save("hist-foreground.csv")
180 histBg:print("Background traffic")

181 histFg:print("Foreground traffic")
182 end

	I Introduction
	Introduction
	Motivation
	Research Questions
	Structure of this Dissertation
	Key Contributions
	The ixy Network Driver
	Network Drivers in High-Level Languages
	The MoonGen Packet Generator
	Hardware-based Precision Evaluation of Packet Generators

	Background
	Hardware Architecture of Software-based Packet Processing System
	Important Performance Numbers
	Performance Targets

	Benchmarking methodology and packet generators
	Test Setups Used in this Dissertation
	Latency Measurement Setups
	System Configuration

	User Space Packet Processing
	Network Function Virtualization
	Evolution of Networking Hardware
	Another Future: Offloading More to the NIC

	II Fast and Flexible User Space Packet Processing
	Fast User Space Network Drivers
	Introduction and Motivation
	Background and Related Work
	Design
	Architecture
	NIC Selection
	User Space Drivers in Linux
	Memory Management
	Security Considerations

	ixgbe Implementation
	NIC Ring API

	Performance Evaluation
	Methodology
	Throughput
	Batching
	Memory Prefetching
	Interrupts
	Profiling
	Queue Sizes
	Page Sizes without IOMMU
	Page Sizes and IOMMU Overhead
	NUMA Considerations

	Conclusions
	Author's Contributions

	High-Level Languages for Network Drivers
	Introduction
	Background and Related work
	Motivation
	Growing Complexity of Drivers
	Security Bugs in Linux
	Memory Safety Bugs in Windows
	The Rise of DPDK
	Languages Used for DPDK Applications
	User Study: Mistakes in DPDK Applications Written in C
	Summary

	Implementations in High-Level Languages
	Architecture
	Challenges for High-Level Languages
	Rust Implementation
	Go Implementation
	C# Implementation
	Java Implementation
	OCaml Implementation
	Haskell Implementation
	Swift Implementation
	JavaScript Implementation
	Python Implementation

	Evaluation
	Performance
	Test Setup
	Effect of Batch Sizes
	The Cost of Safety Features in Rust
	Comparison with Other Language Benchmarks

	Latency
	Test Setup
	Tail Latencies

	Conclusion
	Author's Contributions

	III Flexible Testing of Network Devices
	MoonGen: A fast and flexible packet generator
	Introduction
	Related Work
	Implementation
	Packet Processing with DPDK
	Scripting with LuaJIT
	Hardware Architecture
	Software Architecture

	Scripting API
	Initialization
	Packet Generation Loop
	Packet Counter

	Performance
	Test Methodology
	Comparison with Pktgen-DPDK
	Multi-core Scaling
	Scaling to 40 Gigabit Ethernet
	Scaling to 100 Gigabit Ethernet
	Per-Packet Costs
	Effects of Packet Sizes

	Hardware Timestamping
	Precision and Accuracy
	Clock Synchronization
	Clock Drift
	Limitations

	Rate Control
	Software Rate Control in Existing Packet Generators
	Hardware Rate Control
	Controlling Inter-Packet Gaps in Software

	Example: Measuring Forwarding Latency of an OpenFlow Switch
	Conclusions
	Author's Contributions

	Precision of Software-based Packet Generators
	Introduction
	Related Work
	Precision of packet generators affects measurement results
	Generating CBR traffic
	Generating Poisson Traffic

	State of the Art for Software Packet Generators
	Test setup
	Analysis of rate control
	Rate control: three different approaches
	Performance vs. precision
	Accuracy
	Precision
	Precision with Poisson traffic pattern
	Lessons learned

	Latency measurements
	Approaches for measuring latency
	Evaluated metrics
	Evaluation
	Lessons learned

	Conclusion
	Author's Contributions

	IV Conclusion
	Conclusion
	Answered research questions
	Conclusion

	Bibliography
	Appendices
	MoonGen Example: Basic packet generator
	MoonGen Example: Quality of Service Test

