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Abstract

Quantum field theories and in particular gauge theories are at the base of our under-

standing of modern physics. In the Standard Model of Particle Physics, they explain

three of the four fundamental interaction known in nature. The evaluation of quan-

tum field theories (QFT), however, is quite involved. While weakly coupled QFT can

be studied with perturbation theory in the continuum, strongly coupled theories like

quantum chromodynamics are usually discretized. Even after a discretization on a lat-

tice, certain regions of the phase diagram of the standard model cannot be explored

with traditional Monte Carlo methods. The path to the finite-density regime of the

standard model is blocked due to the sign problem in Monte Carlo and time dynamics

cannot be explored since the action formalism has no explicit notion of time.

Here, we explore new algorithms for QFT in the continuum and on the lattice. Instead

of the action formalism, we focus on the Hamiltonian formulation of QFT. The com-

bination of Hamiltonian formalism and new algorithms enables us to explore which

were inaccessible with prior methods.

The thesis is structured into four main parts which focus on different combinations

of algorithms and systems. All projects are grouped along two axes: the type of the

algorithm and the discretization of the system. The first two chapters give an incre-

asingly technical introduction into the topic and present the methods which are used

throughout. We review recent advances and show where we connect to the known

state of the field.

The first project investigates a pure Z3 lattice gauge theory with a tensor network

based ansatz, gauged Gaussian projected entangled pair states (GGPEPS) in two spa-

tial dimensions. While the gauge field can be integrated out in one dimension, the

two-dimensional case is more involved due to the self-interactions of the gauge fields.

GGPEPS are locally gauge invariant by design and explore only the physically relevant

part of the Hilbert space. In a first explorative, numerical study, we benchmark the

performance of the states and investigate their viability.

In the second project, we change from tensor networks to a periodic Gaussian Ansatz

to simulate compact quantum electrodynamics (cQED) on the lattice. We stay with

the lattice formulation in two spatial dimensions, while adapting the states. Extending

previous work to complex periodic Gaussian states, we simulate the first time-evolution

after quenches in two-dimensional cQED. In this thesis, we focus on the formulation

of the Ansatz and computational challenges.

The third project changes the focus from lattice gauge theories to QFT in the continu-

um while returning to tensor network based states. We choose to work with Gaussian

continuous tensor network states (GCTNS), a restriction of general continuous tensor

networks. The Gaussian character lets us treat most of the calculations analytically,

such that the numerical investigation can focus on the actual match of the states to the

true ground state. GCTNS capture the ground states of Gaussian theories excellently,

and we can explore their limitations with quartic theories like the Lieb-Liniger model.

We prove the numerical viability of CTNS as a numerical tool to investigate theories
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directly in the continuum.

Finally, we turn to the last remaining combination: a study of QFT (without dis-

cretization) without tensor networks. The computation of entanglement entropies in

quantum field theories directly in the continuum is challenging since the usually used

momentum basis does not allow for a trivial bipartition in real space. In the framework

of Hamiltonian truncation, we devise the first algorithm to numerically investigate ar-

bitrary entanglement measures for quantum field theories. By splitting the system into

two subsystems, and mapping the full fields onto fields on the partitions, we are able

to explicitly compute the reduced density matrix, giving access to many entanglement

related quantities. We verify the procedure on the massive Klein-Gordon and obtain

interesting new results on the interacting sine-Gordon model.
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Zusammenfassung

Quantenfeldtheorien bilden die Grundlage für unser Verständnis der modernen Physik.

Im Standardmodell der Teilchenphysik formulieren sie drei der vier bekannten funda-

mentalen Wechselwirkungen in der Natur. Die Auswertung von Quantenfeldtheorien

(QFT) ist jedoch kompliziert. Während schwach gekoppelte QFT mit Hilfe von Stö-

rungsrechnung direkt im Kontinuum berechnet werden können, müssen stark gekop-

pelte Theorien üblicherweise auf einem Gitter dargestellt werden. Selbst nach einer

Diskretisierung auf einem Gitter, können bestimmte Regionen des Phasendiagramms

des Standardmodells nicht mit traditionellen Monte-Carlo-Methoden erforscht werden.

Aufgrund des Vorzeichenproblems in Monte Carlo Algorithmen, können Regionen mit

endlichem chemischen Potenzial im Standardmodells nicht simuliert werden. Die Be-

rechnung von Zeitdynamik scheitert an der Formulierung der Theorie im Aktionsfor-

malismus.

In dieser Dissertation untersuchen wir neue Algorithmen für QFT im Kontinuum

und auf dem Gitter. Anstelle des Aktionsformalismus konzentrieren wir uns auf die

Hamiltonsche Formulierung von QFT. Die Kombination aus Hamiltonformalismus und

neuen Algorithmen ermöglicht uns das Studium neuer Phänomene, die mit früheren

Methoden unzugänglich waren.

Die Arbeit ist in vier Hauptteile gegliedert, die sich auf verschiedene Kombinatio-

nen von Algorithmen und Systemen konzentrieren. Alle Projekte sind entlang zweier

Achsen gruppiert: die Art des Algorithmus und die Diskretisierung des Systems. Die

ersten beiden Kapitel geben eine zunehmend technische Einführung in das Thema und

stellen die verwendeten Methoden vor. Wir geben einen Überblick über die jüngsten

Fortschritte und zeigen, wo wir den Anschluss an den bekannten Stand des Feldes fin-

den.

Das erste Projekt untersucht eine reine Z3-Gittereichtheorie mit tensornetzwerkba-

sierten Zuständen, geeichten Gaußschen verschränkten Paarzuständen (GGPEPS), in

zwei Raumdimensionen. Während das Eichfeld in einer Dimension ausintegriert wer-

den kann, ist dies im zweidimensionale Fall aufgrund der Selbstwechselwirkung der

Eichfelder nicht möglich. GGPEPS sind per Definition eichinvariant und erforschen nur

den physikalisch relevanten Teil des Hilbert-Raums. In einer ersten explorativen, nu-

merischen Studie vergleichen wir die Qualität der Zustände und untersuchen weitere

Möglichkeiten zur Anwendung.

Im zweiten Projekt wechseln wir von Tensornetzwerken zu einem periodischen Gauß-

schen Ansatz, um kompakte Quantenelektrodynamik (cQED) auf dem Gitter zu simu-

lieren. Wir bleiben bei der Gitterformulierung in zwei räumlichen Dimensionen, passen

aber die Zustände an. Indem wir frühere Arbeiten auf komplexe periodische Gaußsche

Zustände ausdehnen, können wir die erste Zeitentwicklung nach Quenches in zweidi-

mensionaler cQED simulieren. In dieser Arbeit konzentrieren wir uns auf die Formu-

lierung des Ansatzes und numerische Herausforderungen.

Das dritte Projekt wechselt den Fokus von Gittereichtheorien zu kontinuierlichen

QFT und kehrt gleichzeitig zu tensornetzwerkbasierten Zuständen zurück. Wir arbeiten
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mit Gaußschen kontinuierlichen Tensornetzwerkzuständen (GCTNS), einer Einschrän-

kung allgemeiner kontinuierlicher Tensornetzwerke. Der Gaußsche Charakter macht

die meisten Berechnungen analytisch behandelbar, sodass sich die numerische Unter-

suchung auf die tatsächliche Übereinstimmung der Zustände mit dem wahren Grund-

zustand konzentrieren kann. GCTNS erfassen die Grundzustände von Gaußschen Theo-

rien hervorragend, und wir können ihre Grenzen mit quartischen Theorien wie dem

Lieb-Liniger-Modell erkunden. Wir zeigen die Perspektive von CTNS als numerisches

Werkzeug zur Untersuchung von Theorien direkt im Kontinuum.

Schließlich wenden wir uns der letzten verbleibenden Kombination zu: einer Un-

tersuchung von QFT (ohne Diskretisierung) ohne Tensornetzwerke. Die Berechnung

von Verschränkungsentropien von QFT direkt im Kontinuum ist komplex, da die übli-

cherweise verwendete Impulsbasis keine einfache Zweiteilung in Ortskoordinaten zu-

lässt. Im Rahmen von Hamiltonscher Trunkierung entwickeln wir den ersten Algorith-

mus, um beliebige Verschränkungsmaße für Quantenfeldtheorien numerisch zu unter-

suchen. Die Zweiteilung des Systems ermöglicht die Abbildung der Felder des ganzen

Systems auf Felder auf den Partitionen, sodass wir in der Lage sind die reduzierte Dich-

tematrix explizit zu berechnen. Sie gibt uns Zugang zu Verschränkungsmaßen wie der

von Neumann Entropie oder Rényi Entropien sowie deren Dynamik. Wir testen das

Verfahren am massiven Klein-Gordon und erhalten interessante neue Ergebnisse für

das wechselwirkende Sinus-Gordon-Modell.
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1 Introduction

At the beginning of the last century, two discoveries fundamentally changed our un-

derstanding of physics: the principle of relativity and quantum mechanics. While the

first deals with phenomena at very high velocity (special relativity) or the motion of

stars (general relativity), the other is concerned with the structure of atoms and the

entanglement of different parties. Contrary to the first impression, these two fields are

closely related when describing the fundamental forces of nature.

The principle of relativity changed the understanding of mechanics and gravity. Spe-

cial relativity dictates that information cannot be transmitted faster than the speed of

light [7]. Before the discovery of relativity, Newtonian mechanics was used and ac-

cording to this theory objects could travel at an arbitrary speed. Relativity manages

to reconcile the principle of locality with gravity. The idea of locality is omnipresent

in classical mechanics: objects can only interact if they are in direct contact (or via

gravity) – a spring moves a weight because it is connected to it. In contrast, Newtonian

gravity did not have any notion of locality; the interaction is instantaneous between

arbitrarily remote particles which implies a communication at arbitrary speed. This is

similar to two charges when considering Coulomb’s law. According to Coulomb’s law,

two opposite charges attract each other, while identical charges interact repulsively.

Coulomb’s law, however, does not answer how one charge gets the information that it

should be pushed or pulled by another one and in which direction. The instantaneous

communication required in Coulomb’s law violates the principle of relativity since in-

formation is transmitted faster than light. In order to preserve locality, the notion of a

field is introduced to transmit the information. In electromagnetism, local interactions

are ensured via a classic field theory formulated as Maxwell’s equations. Here, electric

and magnetic fields are present everywhere in space. They moderate the interaction

between charged particles and all interactions are local. In analogy with the single

spring that we discussed as an example for classical mechanics, we can now think of

small springs at every point in space that interact with our charge. The information

about a change in charge can only travel with the speed of light. After considering the

example of two charges, we can return to the case of gravity. The problem of non-local

interactions occurs also when two masses attract each other and the theory of general

relativity solves the problem by reconciling locality with gravity.

Physics on the atomic and molecular scale works manifestly different from our every-

day experience. Motivated by effects like black-body radiation [8] and the photoelec-

tric effect [9], physicists realized that light is not only a wave but exhibits a particle-like

character at the same time. Light is quantized into particles, better known as photons

and the classical world discovered quantum mechanics and experienced the first quan-

tum revolution. In the quantum realm, the Heisenberg principle of uncertainty dictates

that velocity and position cannot be measured with arbitrary accuracy anymore [10].

Whereas, in a classical setting it is possible to measure speed and position precisely at

the same time. Additionally, quantum mechanics cannot be reconciled with the idea

of locality, leading to the EPR-paradox [11]. If one of the biggest successes of the cen-
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tury is to make gravity local and causal (eliminating faster-than-light communication),

then it is quite surprising if quantummechanics does not follow the same guidelines. In

particular, it turns out that quantum mechanics hosts manifestly non-local correlations

and is not just a bad approximation of a hidden theory. This statement is formulated in

testable terms in the Bell inequalities [12] and by now, they have been experimentally

tested [13].

A priori, quantum mechanics and relativity are two independent theories. One de-

scribes the interaction at low energies for atoms and molecules while the other one

usually speaks about velocities close to the speed of light. However, there are par-

ticles, that combine those two qualities, like fast electrons. They are quantum me-

chanical in nature, travel close to the speed of light and interact electromagnetically.

Quantum field theory (QFT) manages the feat to unify both theories, relativity and

quantum mechanics, into one framework. It describes interactions in a local fashion

while preserving the non-local effects of quantum mechanics. Quantum field theories

are immensely successful in describing nature, but they are notoriously hard to evalu-

ate. They are usually easy to formulate, in the sense of writing them down, but hard

to compute in relevant settings, i.e. to calculate a prediction for an experiment.

In the last century, not only science, also technology developed at a rapid pace. The

advent of the first digital computers transformed our capability to analyze and compute

data; computer simulation had a vast impact on physics. Problems that cannot be

solved on a piece of paper, can now be solved or approximated with computers. Despite

the rapid growth of computing power, some problems remain challenging even with

the most advanced computers; among them the simulation of problems in quantum

physics.

Since the invention of computers, physicists have been exploring theories and pre-

dictions using computers. Some of the first large scale computers were purposefully de-

signed to evaluate lattice gauge theories, a formulation of a quantum field theory that

can be treated numerically. Lattice gauge theories are usually simulated with Monte

Carlo algorithms [14, 15], a heuristic procedure to approximate the actual value of a

function. These algorithms, however, are limited to certain regimes where the approx-

imation works well. Naturally, there is an interest to explore the unknown parts of the

theory with new algorithms.

In the last few years, we are witnessing a second quantum revolution [16]: technol-

ogy allows us to control quantum systems to an extent that we can use them as more

advanced computers. The idea to use a well-controlled quantum system as a quantum

computer was brought up by Feynman in the 1980s [17–19]. The idea of quantum

information processing is born, and this new paradigm opens new pathways to solving

formerly hard problems. The essential challenge of classical simulation is the complex-

ity of the quantum system. It is inherently hard to map a quantum system to a classical

computer. Intuitively, a quantum system does not have to store explicitly all the super-

positions that a quantum system can be in. It is a quantum system itself and can deal

with superpositions more naturally. For a classical computer, it is hard to keep track

of the state of the quantum system. In recent years the implementation of the idea

to employ quantum computers gets within reach of experimental systems. The actual

mapping to a quantum system is performed in different ways, mainly two approaches

are pursuit – analog and digital simulation. Analog quantum simulation describes the

idea to simulate a system of interest with another system that is easier to control. This

is a purpose-built quantum simulator to understand a specific system. An orthogonal

2



1.1 Outline

approach is a universal (digital) quantum simulator. In contrast to analog quantum

simulators, a digital simulator can simulate arbitrary quantum systems (within bound-

aries) but it must approximate the original system with customized operations. While

simulators are often not yet refined enough to keep up with classical simulations, they

show promise at exploring uncharted territory. In particular, quantum field theories

are currently considered as targets for digital and analog simulations.

The idea to enrich the spectrum of algorithms for the simulation of quantum field

theories is the guiding theme of this thesis. When using new technologies like quan-

tum simulation – digital or analog –, the need for verification of the new method arises.

Quantum simulators excel at computing time dynamics, a task among others that tradi-

tional Monte Carlo frameworks [15, 20] cannot help with. Thus, new classical methods

are in demand. We focus on the simulation of quantum field theories in the Hamil-

tonian formalism, a formulation of quantum systems that is usually used in quantum

simulation. Here, we address the issue from different directions. On the one hand, we

explore continuous and discretized systems with tensor networks, a class of ansätze

motivated by quantum information processing. On the other hand, we develop new

algorithms for Hamiltonian QFT, in the continuum and on the lattice, independently

of the framework of tensor networks.

The present work represents a valuable contribution to the exploration of quantum

field theories by adding new computational methods.

1.1 Outline

This thesis explores new numerical methods to investigate quantum field theories in

the Hamiltonian formalism. The projects presented in this thesis can be grouped along

two axes: methods and discretization. An overview of the projects is given in fig. 1.1.

The choice of the ansatz determines the subsequent capabilities and limitations of

the computations. In two projects, we explore tensor network based ansätze, both in

the continuum and on the lattice. This introduces directly the second dimension of the

classification: discretization. Two projects were undertaken in the continuum, while

the other two used a lattice regularization.

All four combinations of the two categories on each axis are explored in four different

projects. Each chapter of the thesis explores one of the projects.

In chapter 2, we lay the foundation for subsequent chapters. Concepts like Hamil-

tonian QFT and lattice gauge theories are introduced in more detail. We also give an

overview of tensor networks and other methods used in the thesis.

Chapter 3 starts in the top-left corner of the overview with a tensor-network based

simulation of a lattice gauge theory. We evaluate a Z3 gauge theory with a tensor

network based ansatz, more precisely with gauged Gaussian projected entangled pair

states (GGPEPS). The project focuses on the computation of ground-state quantities to

obtain a first benchmark for GGPEPS. In contrast to prior projects, the computation is

performed in two spatial dimensions. Here, the computation is more involved than in

one dimension since the gauge field is dynamic and cannot be integrated out as in the

one dimensional case.

In chapter 4, we stay on the topic of lattice gauge theories, but consider a different

ansatz. Introducing periodic complex Gaussian states, we investigate the confinement

behavior in compact Quantum Electrodynamics, a U(1) gauge theory. It is the first

3



1.1 Outline

tensor network based other methods

Lattice Gauge
Theories

continuous QFT
Entanglement entropy 

for QFT

GGPEPS for Z3
Chapter 3

Chapter 6

CTNS for 
bosonic theories

Chapter 5

Periodic Gaussian 
states for U(1)

Chapter 4

Figure 1.1: Overview of the different projects in this thesis. The projects are ordered

along two axes: methods and systems. They all investigate Hamiltonian

quantum field theories from different angles.

computation of time dynamics of quantum electrodynamics on the lattice. The chapter

in this thesis focuses on the computational aspects of the project.

Chapter 5 changes both the method and the description of the theory with regard

to chapter 4, and we use tensor networks to investigate several quantum field theories

in the continuum. We limit the class of continuous tensor network states (CTNS) to

the Gaussian submanifold and check their numerical performance. The work with

tensor networks in the continuum has been explored very little so far. We show that

continuous tensor networks are a viable ansatz to be further investigated.

Finally, we change the computational method while remaining in the continuum. In

chapter 6, we focus on the entanglement properties of QFT and devise an algorithm

to compute reduced density matrices in the framework of Hamiltonian truncation.

The model-independent algorithm enables us to compute entanglement measures and

their time dynamics directly in the continuum. The algorithm benchmarked with the

massive Klein-Gordonmodel, and we obtain new results for the interacting sine-Gordon

model.
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2 Preliminaries

This chapter provides an overview of the systems and methods used throughout the

thesis. We do not attempt to give an extensive introduction into all subjects, but rather

would like to familiarize the reader with the concepts that are explored in detail in

subsequent chapters.

2.1 Tensor Networks

The simulation of quantum many-body systems is a computationally challenging task

since we have to battle against two exponentials. Firstly, the number of states in a

many-body system, also a classical one, grows exponentially with the system size. A

classical spin system experiences an exponential growth of configurations just as a

quantum system. In the case of a quantum system, however, the description of the

state in a given basis will take exponentially many coefficients as well. This second

exponential does not exist in a classical system, since a classical system cannot be in a

superposition of different states.

Computational methods try to circumvent the problem of exponential scaling in dif-

ferent ways. Variational approaches are one option to achieve this goal. Instead of

considering the whole Hilbert space, these methods consider a parameterized sub-

manifold of the Hilbert space. The goal is to find the best approximation of the ground

state ∣𝜓⟩ of the system in the given manifold. The ansatz states ∣𝜓𝛼⟩ are parameterized

by a set of parameters 𝛼 which are adapted to minimize the expectation value of the

energy

min𝛼 E𝛼 =
⟨𝜓𝛼∣H∣𝜓𝛼⟩
⟨𝜓𝛼∣𝜓𝛼⟩

, (2.1)

where H is the Hamiltonian of the system. While the variational principle guarantees

that the energy of the approximated can never be smaller than the actual ground state,

the quality of the approximation depends crucially on the choice of ansatz states.

In the following section, we will construct tensor networks, a class of ansatz states, in

one and two spatial dimension since they are an important building block for chapters 3

and 5. We start with a short introduction about matrix product states (MPS) [21, 22]

in section 2.1.1. In section 2.1.2, we formulate the two-dimensional analog to MPS,

projected entangled pair states (PEPS) [23–25]. As a preparation for chapter 5, we

introduce continuous tensor networks in section 2.1.3.

2.1.1 Matrix Product States

As with many other variational approaches, the basic idea of tensor network states is

to reduce the number of parameters that describe a state. In one spatial dimension,
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matrix product states have become one of the most powerful methods to study many-

body phenomena in and out of equilibrium [26].

This section provides only an overview of the most relevant features of MPS that we

need for subsequent chapters. For more information, we refer the reader to introduc-

tions [27, 28] and reviews [26, 29] on tensor networks.

As the name suggests, MPS are parameterized by a set of matrices (or more generally,

tensors) that define the state. The idea of the decomposition predates the name MPS

and was used numerically in the density matrix renormalization group (DMRG) [26,

30]. In math and computer science, a similar concept called tensor trains [31–33] is

used for example for data compression.

We consider a general quantum state 𝜓 for an N particle system that is written in a

computational basis |𝜎⟩

∣𝜓⟩ = ∑
𝜎1…𝜎N

c𝜎1,𝜎2…𝜎N ∣𝜎1𝜎2 … 𝜎N⟩ . (2.2)

Here, we use a shorthand notation for the tensor product ∣𝜎1, … , 𝜎N⟩ = ∣𝜎1⟩ ⊗ ∣𝜎2⟩ ⊗
⋯ ⊗ ∣𝜎N⟩. The number of states in the product Hilbert space of N particles scales ex-

ponentially. Consequently, the number of components in c𝜎1,…,𝜎N scales exponentially,

as well. As an example, we consider N two-level systems with internal states |0⟩ and
|1⟩. The state of each particle lives in d = 2 dimensional Hilbert space and the size of

the tensor c𝜎1,…,𝜎N scales as 2N with the system size N. This exponential scaling makes

the numerical treatment of large systems impossible.

The idea of matrix product states is to approximate the tensor c𝜎1,…,𝜎N with a product

of matrices. We rewrite eq. (2.2) as

|𝛹⟩ = ∑
𝜎1…𝜎N

∑
a1,…,aN−1

A
𝜎1
1,a1A

𝜎2
a1,a2 ⋯A

𝜎N−1
aN−2,aN−1A

𝜎N
aN−1,1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

c𝜎1,𝜎2…𝜎N

∣𝜎1𝜎2 … 𝜎N⟩ , (2.3)

where A𝜎
ai,ai+1 are tensors with three indices. To distinguish between the different in-

dices, we call the indices 𝜎 physical indices (here with d = 2 dimensions) and ai virtual

indices of dimension D. While the indices 𝜎 relate to the physical system, the ai are in-

troduced in the construction and are traced out at the end. The first and the last tensor

in eq. (2.3) have a special form since we chose open boundary conditions. The index

1 is only an artificial dimension that is added to ensure the compatibility with other

tensors. In the case of periodic boundary conditions, the first and last index would be

contracted

|𝛹⟩ = ∑
𝜎1…𝜎N

∑
a1,…,aN

A
𝜎1
aN,a1A

𝜎2
a1,a2 ⋯A

𝜎N−1
aN−2,aN−1A

𝜎N
aN−1,aN

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
c𝜎1,𝜎2…𝜎N

∣𝜎1𝜎2 … 𝜎N⟩ . (2.4)

Without any further approximations, the scaling of the number of parameters with

system size does not change. However, the matrix product structure enables us to

truncate the matrices Aai,ai+1 to lower rank versions. This is equivalent to restricting

the virtual bond dimension to a maximum dimension D. Thus, adding a new particle

adds D × D parameters instead of multiplying the number the parameter by d. The

original scaling of the tensors c of O (2N) is reduced to O (NdD2) since each tensor has

dD2 coefficients.

In practical computations, the transformation of the multi-index tensor c𝜎1,…,𝜎N into

the three-dimensional tensors is performed via singular value decompositions (SVD).

Further details about the decomposition can be found in [26–28].
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2.1 Tensor Networks

Figure 2.1: Graphical tensor network notation. Vertical (yellow) indices are physical

indices with physical bond dimension d. Horizontal (black) legs are virtual

legs of bond dimension D. Connected legs are contracted.

The construction based on SVD takes a top-down approach in the sense that we start

with the full tensor c𝜎1,…,𝜎N and decompose it into smaller (rank-3) tensors. In some

scenarios, as wewill see below, it is more convenient to start with local constituents and

build the tensor network bottom-up. We start the construction with a set of maximally

entangled pairs on neighboring sites

|𝛷⟩ =
D−1
∑
j=0

∣jj⟩ . (2.5)

These states ”live” in a Hilbert space of dimension D, the virtual bond dimension in-

troduced above. In order to obtain the same state that we defined via SVD before, we

project neighboring, unentangled sites together with

𝜔 = ∑
𝜎,𝛼,𝛽

A𝜎
𝛼,𝛽 |𝜎⟩ ⟨𝛼𝛽∣ . (2.6)

The states |𝜎⟩ are the computational basis used in eq. (2.3) and A𝜎
𝛼,𝛽 is the same tensor

as above. Here, we formulated the system as translational invariant by using identical

tensors A on all sites, but the same construction holds with different tensors. Since the

construction is commonly used to build the AKLT state [26, 28, 34], an SO(3) symmet-

ric state constructed from entangled pairs, we will sometimes refer to this construction

as AKLT construction. As the construction uses entangled pairs as a starting point, it

is in a way a one-dimensional PEPS. The construction builds the basis for fermionic

PEPS and gauged Gaussian PEPS (cf. chapter 3).

Graphical notation

Since the matrix notation of tensor networks can be cumbersome, a graphic notation is

commonly used. Tensor are represented as circles (or squares) and indices are depicted

by lines (so-called legs) attached to the circles. By convention, vertical(horizontal) legs

represent physical(virtual) indices. Figure 2.1 shows an MPS in graphical notation.

Legs that are connected are contracted, i.e. summed over. The MPS in fig. 2.1 is defined

with open boundary conditions, i.e. the first and the last leg are not contracted.

One key criterion for variational states is the computational efficiency of physical

quantities like norms, expectation values and correlators. In the case of MPS, these

quantities can be efficiently computed due to the canonical form [26]. Since not all

MPS represent a different physical state [35], a gauge transformation can be applied

to the virtual legs in the form of an invertible matrix. The transformation works by

inserting a D×DmatrixM and its inverseM−1 between to tensors and absorb them into

the two neighboring tensors. In MPS, we can always find transformations that render
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certain contractions trivial, bringing the state into canonical form. This enables the

efficient minimization and computation of observables with MPS. Note that this gauge

transformation is fundamentally different from the gauge transformations discussed

in chapter 3. When we are constructing a canonical form, the gauge transformations

do not have any physical significance. They act on the virtual degrees of freedom

which are traced out in the end of the construction. In the case of gauged Gaussian

PEPS, the invariance under the gauge transformation is warranted by the physical

system. Physical degrees of freedom are involved in the invariance and it is not only

an insertion of a matrix and its inverse. Further details about canonical forms can be

found in [35].

Entanglement and area law

The success of MPS in simulating condensed matter systems is rooted in their entangle-

ment properties. A typical measure for entanglement entropy between two partitions

A and B of a system is the von Neumann entropy

SvN = −Tr (𝜌A log 𝜌A) (2.7)

with the reduced density matrix 𝜌A ≡ TrB 𝜌, where 𝜌 is the density matrix of the full

system. Since the logarithm in eq. (2.7) is numerically difficult to compute, it is con-

venient to study Rényi entropies

S(𝛼)
A = 1

1− 𝛼 log Tr (𝜌𝛼
A) (2.8)

from which the 𝛼 → 1 limit recovers the von Neumann entropy. The special case of S0
is called entanglement rank and is the logarithm of the number of non-zero singular

values for a given bipartition. For general states in a one-dimensional system, the

entanglement entropy depends on the size of subsystem, i.e. it follows a volume law.

Ground states of local, gapped Hamiltonians, however, are special states [36]. Their

entropy is bounded for any bisection such S0 < log c for some number c, i.e. the states

follows an area law instead of a volume law. Such a state can be expressed (exactly)

with an MPS using O(dNc2) parameters. Thus, MPS can approximate ground states of

gapped local Hamiltonians with polynomially many parameters in system size.

2.1.2 Projected Entangled Pair States

Although MPS have been used for the simulation of two-dimensional systems [26],

the one-dimensional structure of the state leads to a mismatch between locality on the

Hamiltonian and the state level. If we want to cover a two-dimensional system with

an MPS, the most common option is to use a snake-pattern through the system (cf.

fig. 2.2). While interactions in one direction act on neighboring sites, interactions in

the second direction act on sites removed by the system size in the MPS.

Alternatively, MPS can be extended to the second dimension by adding direct cou-

plings between all neighboring sites to build PEPS (cf. right panel of fig. 2.2). While

PEPS match better in terms of locality, the introduction of loops in the construction

leads to much higher numerical cost. Even simple PEPS can only be contracted ef-

ficiently if post-selected quantum computing can be classically simulated [37]. In
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practice, however, many algorithms actively use PEPS in the finite [38] and infinite

case [39, 40] using approximate methods to contract the states [38, 39, 41–43].

The problem of increasing numerical cost can be tackled in different ways. One

approach to circumvent the expensive scaling of PEPS is to consider loop-free tensor

networks [44, 45]. Alternatively, the complexity of contraction can be reduced by

restricting the PEPS manifold to a smaller one, e.g. a Gaussian one. The consequences

of a such a restriction will be analyzed in depth in chapter 3.

Figure 2.2: MPS (left) and PEPS (right) for two-dimensional systems. As above, vertical

(yellow) legs are physical indices and the horizontal (black) connections are

virtual indices.

While the construction of PEPS resembles the AKLT construction of MPS, some fea-

tures like the contraction complexity are manifestly different. In addition to the dif-

ferent complexity, the scaling of correlations differs between the two formulations.

While MPS can only host exponentially decaying correlation functions, PEPS can host

algebraically decaying correlations. Thus, PEPS are a priori more suitable to describe

critical systems. However, the vast majority of PEPS hosts exponentially decaying cor-

relation functions [46]. If critical systems are of interest, a more specialized ansatz

like the multiscale entanglement renormalization ansatz (MERA) might be more suit-

able [47].

Fermionic PEPS

PEPS are commonly formulated in terms of a spin basis. Since many condensed matter

systems of interest host fermions, a formulation in terms of fermionic degrees of free-

dom is desirable. In one dimension, a Jordan-Wigner transformation maps fermions

to spins (and vice versa) while keeping interactions local. In two (and higher) spa-

tial dimensions, however, the existence of loops renders the mapping non-local which

renders simulation more challenging.

One formulation of fermionic PEPS (fPEPS) is derived in [48]. The key idea is to re-

formulate the PEPS construction in terms of fermionic modes. On-site operators create

entangled pairs of fermions which are then projected to the physical subspace. This is

in close correspondence to the PEPS construction for spins. Similar constructions are

used as a building block to tackle lattice gauge theory systems [49] (cf. chapter 3).

In parallel, fermionization ideas from the multiscale entanglement renormalization

ansatz [47, 50, 51] computations were transferred to PEPS [52] to simulate condensed

matter systems.
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2.1.3 Continuous Tensor Networks

Since tensor networks have been undeniably successful on the lattice, it is tempting to

try to formulate tensor networks in the continuum. There are two possible scenarios:

one can either discretize continuum theories to the lattice or bring tensor networks

to the continuum. The first scenario is much more common and is so far unmatched

in its efficiency [53–55]. Bringing tensor network states to the continuum can be

done rather straightforwardly in d = 1 space dimension, with the so-called continuous

matrix product states (cMPS) [56]. They have been applied successfully to several

QFT [57–59]. A formulation in d ≥ 2 space dimensions has proved more difficult due

to differences in the continuum limit. In one space dimension, the continuum limit can

be obtained by successive blocking of local tensors [56, 60]. While the physical bond

dimension increases in this procedure, the virtual bond dimension stays constant. The

same blocking procedure does not work in two dimensions, since it increases also the

virtual bond dimension in spatial dimensions d > 1. Thus, a different prescription has

to be found for the virtual bond dimension on the links.

Recently, two candidates for higher dimensional tensor network states in the contin-

uum were presented [61, 62]. Both of them are limits of lattice tensor network states

which are extended to the continuum. In the following, we focus on the continuous

tensor network(CTN) formulation [61], since it will be used for numerical simulations

in chapter 5.

A continuous tensor network state (CTNS) is a quantum state |V , 𝛼⟩, belonging to the
Fock space F[L2(Rd)]. It is defined by the functional integral [61]

|V , 𝛼⟩ ≡ ∫D𝜙 exp {− ∫ddx
1

2
∥∇𝜙(x)∥2 + V[𝜙(x)] − 𝛼[𝜙(x)]𝜓†(x)} |vac⟩} , (2.9)

where |vac⟩ is the “physical” Fock vacuum state, (𝜓†, 𝜓) are the canonical bosonic

creation-annihilation operators on this Fock space, satisfying the canonical commu-

tation relation [𝜓(x), 𝜓†(y)] = 𝛿d(x − y). The “auxiliary” field 𝜙 that is integrated

over has D components, 𝜙 = [𝜙k]
D

k=1, and ∥∇𝜙∥2 ∶= ∑
k ∇𝜙k ⋅ ∇𝜙k. The number D is

the (field) bond dimension, and it is analog of the bond dimension of discrete tensor

networks in the continuous case [cf. section 2.1.1]. Here, we restrict the discussion

to the translation invariant case and take the thermodynamic limit, eliminating the

discussion of boundary effects. The state as written in eq. (2.9) is not normalized, and

not all choices of functions V and 𝛼 yield a state at all, e.g. if V[𝜙] = −𝜙2. We assume

functions V and 𝛼 such that the functional integral in eq. (2.9) at least formally makes

sense.

The state is parameterized by two complex functions V[𝜙] and 𝛼[𝜙], which means

that there is an infinite number of parameters even for a fixed number D of auxiliary

fields. In practice, we can expand both functions as polynomials in the fields

V[𝜙] = V(0) + V(1)
j 𝜙j + V(2)

jk 𝜙j𝜙k + V(3)
jkℓ 𝜙j𝜙k𝜙ℓ + … ,

𝛼[𝜙] = 𝛼(0) + 𝛼(1)
j 𝜙j + 𝛼(2)

jk 𝜙j𝜙k + 𝛼(3)
jkℓ 𝜙j𝜙k𝜙ℓ + … .

Themaximum degrees 𝜅V , 𝜅𝛼 of these two expansions, together with D, then give a mea-

sure of the expressiveness. Formally, the coefficients in the expansion are also tensors,

recovering the simple idea that a tensor network state should associate a quantum state

to a few elementary low-rank tensors.
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Before starting with the actual formulation, we can try to give some intuition of the

connection between the CTNS ansatz in eq. (2.9) and discrete TNS (cf. section 2.1).

As described in section 2.1, a tensor network state is obtained by taking a product of

elementary tensors and contracting a fraction of their indices (the virtual bond indices)

along the edges of a lattice. For CTNS, the equivalent of the product of tensors is the

exponential of the integral over the auxiliary fields 𝜙. Analogously, the product of

integrals over auxiliary fields is the equivalent to the contraction of discrete indices.

The product of integrals becomes a functional integral in the limit [61]. The gradient

square term in eq. (2.9) connects the tensors to their nearest neighbors.

Generating functional

To compute expectation values of local observables with a CTNS, the most straight-

forward method is to introduce the generating functional Zj′,j for the normal ordered

correlation functions

Zj′,j =
⟨V , 𝛼| exp (∫ j′ 𝜓†) exp (∫ j𝜓) |V , 𝛼⟩

⟨V , 𝛼|V , 𝛼⟩ . (2.10)

For example, it can be used to compute the simple two-point function

⟨𝜓†(x)𝜓(y)⟩
V,𝛼 ∶=

⟨V , 𝛼|𝜓†(x)𝜓(y)|V , 𝛼⟩
⟨V , 𝛼|V , 𝛼⟩

= 𝛿
𝛿j′(x)

𝛿
𝛿j(y)Zj′,j∣

j,j′=0
. (2.11)

Using the Baker-Campbell-Hausdorff formula to commute the two exponentials in eq. (2.10)

and then using the formula for the overlap of unnormalized field coherent states, one

obtains [61]:

Zj′,j = 1

N
∫D𝜙D𝜙′ exp { − ∫

∥∇𝜙∥2 + ∥∇𝜙′∥2

2
+ V[𝜙] + V∗[𝜙′] − 𝛼∗[𝜙′]𝛼[𝜙] (2.12)

− j𝛼[𝜙] − j′𝛼∗[𝜙′]} .

It is important to note that powers of the field in the expansion of 𝛼 comemultiplied and

connect together the two auxiliary fields coming from bra and ket, as in a Schwinger-

Keldysh functional integral. In general, if arbitrary powers of the field appear, the

functional integral eq. (2.12) might be diverging. Assuming that the divergences can

be properly subtracted, then actually computing correlation functions remains difficult

non-perturbatively. Apart from Monte-Carlo techniques, a boundary cMPS method

was suggested in [61].

2.2 Hamiltonian Quantum Field Theory

Quantum field theory allows treatment of quantum mechanics and special relativity in

one framework. Some quantum field theories, like quantum electrodynamics, are only

weakly interacting and can be treated with perturbative methods [63]. If the coupling

is small, higher order terms contribute to an increasingly small degree.
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Gauge theories, a special class of quantum field theories, are one of the fundamen-

tal building blocks of modern physics. The standard model of particle physics is a

gauge theory including the gauge groups SU(3) × SU(2) × U(1). It unifies quantum

chromodynamics (QCD) in the strong interaction [SU(3)], the weak interaction and

electromagnetism [spontaneously broken SU(2) × U(1)] and describes the interaction

of (fermionic) matter with gauge bosons mediating the forces [63–65]. Gauge theories

are also often considered as effective theories in condensed matter, e.g. in the form of

an Ising gauge theory [66, 67].

In contrast to Abelian gauge theories like quantum electrodynamics [U(1)], the
strong interaction in the standard model is a non-Abelian theory [SU(3)]. Due to the

non-Abelian character, QCD experiences a phenomenon called asymptotic freedom at

high energy scale. The coupling constant decreases as the energy scale increases, thus

the high energy part of the theory can be treated with perturbation theory [68, 69]. In

the low-energy regime, however, the coupling constant increases and non-perturbative

methods are required [63]. The regime of high-coupling is analytically not accessible

and only the introduction of lattice gauge theories allowed first numerical studies of

the confinement of quarks [70]. Quarks are said to be confined since they are only

observed in terms of baryons (three quarks) and mesons (two quarks). This is in stark

contrast to the asymptotic freedom that is expected at high energies. Only numerical

studies [70, 71] were a first convincing evidence that QCD could indeed explain the

experimentally observed confinement. Even today, there is no analytic derivation of

confinement from first principles [72].

In the following section, we introduce lattice gauge theories, a lattice regularization

of quantum field theories that is commonly used numerically. We focus on compact

quantum electrodynamics (cQED), a U(1) gauge theory, and a subgroup of U(1), the
Z3 lattice gauge theory which share features like confinement with QCD. We will not

attempt to give a full systematic review of quantum field theories, but rather present

the models that are investigated in subsequent chapters. For a more systematic intro-

duction into quantum field theory, we refer to [63, 73].

2.2.1 Lattice Gauge Theories

The traditional approach to lattice gauge theories is a formulation in terms of an action

S which depends on a field configuration at every space point. Since we will consider

quantum electrodynamics later as a theory on the lattice in section 2.2.1, we will

introduce it in the continuum here. For the sake of simplicity, we start by formulating

the theory for the fields without any charges. The action of pure QED is

SQED[A𝜇] = −1
4

∫dx𝛼F𝜇𝜈(x𝛼)F𝜇𝜈(x𝛼) , (2.13)

where A𝜇 is the electromagnetic four-potential and F𝜇𝜈 = ∂𝜇A𝜈(x𝛼) − ∂𝜈A𝜇(x𝛼). To

avoid unnecessary sums, the Einstein summation convention is assumed over repeated

indices. Greek indices are summed over all four spacetime dimension 𝜇, 𝜈 = {0,1,2,3},
where we implicitly assume a Minkowski metric with the signature (− + + +). The

local gauge symmetry under U(1) transformations is described by A𝜇 → A𝜇 + ∂𝜇𝛼(x)
where 𝛼(x) is a scalar function.
The goal of our study is the computation of expectation values. In the path integral

formalism [63, 65, 74] expectation values are computed by integrating over all pos-

sible field configurations at all spacetime points. The observable is weighted by the
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exponential of the action at a given point. In the case of QED, we integrate over all

field configurations A𝜇(x𝛼) of the four-vector. The expectation value for an observable
O is defined as

⟨𝛺∣O∣𝛺⟩ =
∫DAO[A𝜇]eiSQED[A𝜇]

∫DAeiSQED[A𝜇] , (2.14)

where 𝛺 is the vacuum and DA denotes the functional measure of the path integral.

Equation (2.14) is not convenient to evaluate in its current form since the exponen-

tial in the numerator is heavily oscillating. Additionally, the expression is problematic

from a mathematical standpoint since the measure DA of the gauge field is mathe-

matically ill-defined. By changing the metric from a Minkowski metric to a Euclidean

metric with a signature of (+ + + +), time is treated on the same footing as all other

coordinates. This transformation is called Wick rotation, t → i𝜏. The change between
the metric transforms the problem into a statistical mechanics problem with one addi-

tional dimension. We change from a Minkowski action SM to a Euclidean action SE by

a change of variables in the integral

eiSM ≡ ei∫dx𝛼
ML(x𝛼

M) = e− ∫dx𝛼
EL(x𝛼

E ) ≡ e−SE , (2.15)

where LM and LE are the Lagrangian density in the Minkowski and Euclidean formu-

lation, respectively. The Euclidean metric leads to a more favorable behavior in the

exponent since it is now decaying with increasing action instead of oscillating. On

the other hand, the evaluation of time-dependent quantities becomes more difficult

requiring analytic continuation of the sampled data.

In the case of QED, we do not have to resort to Monte Carlo computations on the

lattice. Since the interaction vertex of QED is weighted with the fine structure constant

𝛼 = 1/137, we can use perturbation theory, e.g. in terms of Feynman diagrams. Each

order of interaction is weighted with 𝛼 and high orders of perturbation are heavily

suppressed. Perturbation theory relies on the weight of the interaction vertex to be

small. With changing energy scales, the coupling constant 𝛼; a behavior described by

the beta function

𝛽(g) = 𝜇dg

d𝜇 = dg

d ln𝜇 , (2.16)

where 𝜇 is the considered energy scale. In the case of QED, the beta function is pos-

itive which positive and the coupling increases with increasing energy. The growth,

however, is rather small and the existence of a Landau pole, i.e. an infinite coupling at

finite energy, is not finally settled.

Unfortunately, the non-Abelian gauge theory of quantum chromodynamics (QCD),

which describes the strong interaction between quarks, exhibits a running coupling

[75] with negative beta function. In contrast to QED, the coupling increases with de-

creasing energy scale in QCD. For high energies, quarks are asymptotically free and the

coupling of quarks and gluons 𝛼gl ≪ 1 such that perturbative methods are valid. At low

energies, however, the coupling increases to 𝛼gl ≈ 1 and perturbative methods break

down. In order to explore the low energy behavior of QCD, new, non-perturbative

methods have to be used.

One option is lattice gauge theories, a lattice regularization of the continuumQFT [70].

The formulation on a lattice has several advantages: a lattice renders the number of
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points finite, which makes the representation on a computer possible. Additionally,

the lattice acts as a UV cut-off to the theory [70], and thus regulates possible UV di-

vergences of the theory. Since perturbative methods break down at low-energy scales,

LGT enables the numerical study of confinement. On the other hand, the theory is not

represented in the continuum anymore and a continuum limit must be taken at the

end of the calculation. We will consider the continuum limit in more detail at the end

of the section.

Although, we could solve QED with perturbation theory, we will use it as an example

for the discretization procedure. As we will see, the discretized version of QED shares

some features with the SU(3) description that makes it worth to study. Introducing a

square lattice geometry was first considered byWilson in his seminal paper Confinement

of Quarks [70]. The gauge fields of the theory reside on the links of the lattice and the

fermions are pinned to the vertices. We will add the fermions in a second step and

focus on the gauge fields for the moment.

More concretely, we change from a continuous spacetime described by the continu-

ous four-vector x𝛼 to a four-dimensional lattice with spacing a described with a discrete

four dimensional vector x. The fermionic matter of the theory resided on the vertices

and the gauge fields moderating the interaction ”live” on the links. The description

of the gauge field changes from A𝜇(x𝛼) in terms of a Lie algebra (in our case 𝔲(1))
to Ux,𝜇 = e

iaAx,𝜇 which is an element of the group U(1). We use the notation x, 𝜇 to

identify a link emanating from vertex x in direction 𝜇 ∈ {0,1,2,3}. The field in the

continuum is the generator of the group on the lattice.

We choose to work with compact QED, i.e. Ax,𝜇 ∈ [−𝜋, 𝜋). In principle, we could

also work with non-compact QED. However, cQED shares interesting features like con-

finement with non-Abelian theories [76].

The goal is to find an action on the lattice that agrees with the continuum action in

the limit of vanishing lattice spacing (a → 0). The most common choice is the Wilson

action [70]

ScQED (Ux,𝜇) = 1

g2
∑
x

∑
𝜇<𝜈

ReTr(1− W1×1
𝜇,𝜈 ) (2.17)

where W1×1
𝜇,𝜈 is the simplest Wilson loop on a single plaquette

W1×1
𝜇,𝜈 = U𝜇(x)U𝜈(x + 𝜇̂)U𝜇(x + ̂𝜈)†U𝜈(x)† (2.18)

= exp(iag [A𝜇(x + 𝜇̂/2) + A𝜈(x + 𝜇̂ + 𝜈/2) − A𝜇(x + ̂𝜈 + 𝜇̂/2) − A𝜈(x + ̂𝜈/2)]) .
(2.19)

Greek letter with hats 𝜇̂ represent the unit vector in direction 𝜇 on the lattice. The last

line re-expresses the Wilson action on the lattice in the corresponding variables of the

continuous theory. In the a → 0, we recover the continuum action of pure QED that

we originally wanted to simulate.

The gauge invariance of the continuous case is preserved on the lattice with U𝜇(x) →
ei𝜙(x)U𝜇(x)ei𝜙(x+𝜇̂), where 𝜙(x) ∈ [−𝜋, 𝜋). Once the lattice is introduced, we can

rewrite the expectation value (2.14) in terms of the lattice action in Euclidean space-

time

⟨O[U]⟩ =
∫DUO[U]e−SE[U]

∫DUe−SE[U] , (2.20)
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2.2 Hamiltonian QFT

where DU = ∏
x,𝜇 dU𝜇(x) is formulated in terms of the group’s Haar measure which

is well-defined in contrast to the measure DA in eq. (2.14). One advantage of the

Wilson action (2.17) are the local interactions. If we want to evaluate the change of

the action upon changing a gauge field, the total action changes only with respect to

the neighboring plaquettes of the gauge field. This allows a local evaluation of the

action which is computationally advantageous [77–79].

In contrast to eq. (2.14), eq. (2.20) is amenable to numerical treatment. The sec-

ond part in the numerator and the denominator can be interpreted as a probability

distribution

p(U) = e−SE[U]

∫DUe−SE[U] , (2.21)

if the SE[U] ∈ ℝ∀U. The high-dimensional integral in eq. (2.20) is well-suited for

Monte Carlo sampling [14] and the expectation value of an observable is computed as

⟨O⟩ ≈ 1

N

N

∑
i=1

O[Ui] , (2.22)

where i is the index of a sampled gauge field configuration.

In practice, more involved algorithms like hybridMonte Carlo and refinements thereof

are employed [15]. The success of Monte Carlo computations for static quantities in

high energy physics is unparalleled. The masses of hadronic particles agree with the

experimental measures with astonishing precision [20]. However, the action formal-

ism comes with one drawback. Since the action is expressed in Euclidean spacetime,

real-time evolution becomes almost impossible to compute. If we want to study dy-

namic phenomena like string-breaking in a confining theory, other methods have to

be used.

Until now, we have considered a pure theory without any matter content. To include

fermions, we add the fermionic action Sfer to the exponent

Sfer[𝜓, ̄𝜓,U] = m∑
x

̄𝜓(x)𝜓(x) + 1

2a
̄𝜓(x) ∑

𝜇
𝛾mu [U𝜇(x)𝜓(x + 𝜇̂) − U𝜇†(x − 𝜇̂)𝜓(x − 𝜇̂)]

≡ ∑
x

̄𝜓(x)Mxy[U]𝜓(y) , (2.23)

where we introduced the interaction matrix M of the fermions

Mi,j[U] = m𝛿ij + 1

2a
∑
𝜇

[𝛾𝜇Ui,𝜇𝛿i,j−𝜇 − 𝛾𝜇U
†
i−𝜇,𝜇𝛿i,j+𝜇] , (2.24)

with the Euclidean 𝛾𝜇 matrices. The first term in eq. (2.24) is the mass term of the

fermions with mass m. The last two terms are the interaction of the fermions with the

gauge field. We obtain for the expectation value

⟨O⟩ =
∫DUD𝜓D ̄𝜓O[U]e−SE[U]−Sfer[𝜓, ̄𝜓,U]

∫DUD𝜓D ̄𝜓e−SE[U]−Sfer[𝜓, ̄𝜓,U]

= DUO[U]det(M[U])e−SE[U]

DU det(M[U])e−SE[U]

=
∫DO[U]p(U)

∫Dp(U)
,

(2.25)
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where we integrated out the fermions from the first line to the second using Grassmann

integral identities

∫D𝛹̄D𝛹e−𝛹̄M[U]𝛹 = det(M[U]) (2.26)

and the probability distribution is modified to

p(U) ≡ det (M[U]) e−SE[U]

∫DU det (M[U]) e−SE[U] . (2.27)

The crucial requirement for Monte Carlo simulation is the interpretation of a part of

the equation as a probability distribution p(U). In the case of finite chemical potential

𝜇 or an odd number of fermion flavors in the system, the determinant of the coupling

matrix M[U] ∈ ℂ. This leads to the infamous sign-problem [80] and the convergence

of the Monte Carlo approximation breaks down. Instead of a convergence to the true

mean in O(1/√N), the convergence gets exponentially slow.

The introduction of the lattice is a modification of the system that was necessary

to obtain a computationally viable procedure. With Monte Carlo sampling, we obtain

expectation values of observables ⟨O(g(a), a, L)⟩ which depend on the lattice spacing

a, the size of the lattice L and the parameters of the theory g. The coupling depends

explicitly on the lattice spacing, since the coupling of the theory is usually scale de-

pendent. At the end of the computation, however, we are interested in results that are

on infinite systems and on infinitely small lattice spacings, i.e. in the continuum. The

first limit, is the thermodynamic limit N → ∞ and it is usually obtained by extrapo-

lating the data from large lattices to an infinite lattice. Since the coupling does not

change with the system size, it is mainly a computational challenge to obtain data for

large enough lattices to perform a reliable extrapolation. The second limit, the con-

tinuum limit a → 0, is more challenging, because the coupling of the theory depends

on the length-scale of the problem. In general, the functional dependence g(a) is not
known which makes the continuum limit much more challenging. Multiple works on

one-dimensional lattice gauge theories have explored the continuum limit with matrix

product states in more detail [81, 82]. In this thesis, we work at a fixed lattice spacing

of a = 1 (in chapters 3 and 4) since we do not focus on the continuum limit but on the

description of confinement on the lattice.

In addition to the continuum limit, fermions on the lattice exhibit a problem called

fermion doubling. Instead of considering the full theory, we will demonstrate the issue

and common solutions using the example of a free fermion. The Dirac equation of a

free, massless fermion in one dimension is given by

i∂t𝜓(x) = i𝛼∂x𝜓(x) , (2.28)

where 𝜓 = (𝜓1 𝜓2)T is the two-component Dirac spinor, and the Dirac matrices are

given by

𝛾0 = (1 −1) 𝛼 = (0 1

1 0
) . (2.29)

The problem of fermion doubling appears upon introducing a lattice with spacing a and

coordinate x = na for the nth. We can formulate eq. (2.28) on the lattice by replacing

the spatial derivative by a finite differences

i∂t𝜓(n) = i𝛼 1
2a

[𝜓 (n + 1) − 𝜓 (n − 1)] , (2.30)
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where we replaced the continuous variable by the lattice index n. In both cases, we

can compute the dispersion law and we obtain for the continuous theory

𝜔 = 𝛼k , −∞ < k < ∞ (2.31)

and

𝜔 = 𝛼sin(l)
a

, −𝜋 ≤ l ≤ 𝜋 (2.32)

for the discrete theory. The dispersion relation in the continuum [cf. eq. (2.31)] shows

the expected linear dispersion for a relativistic particle. On the lattice, the frequency

changes as 1/a except for special points l → ka, l−𝜋 → ka and l+𝜋 → ka due to the sine

term in eq. (2.32). In the limit, we obtain finite frequencies for around l = 0 and around

l = ±𝜋. The modes at l = 0 can be identified with linear dispersion relation of the

continuum modes. The gapless modes at l = ±𝜋, however, pose a problem since they

allow finite momentum excitations of the system with zero energy cost. In the limit

of a → 0, these modes will carry infinite momentum which is significantly different

from the continuum case that we started from. While we can choose to only populate

the zero momentum modes (l = 0) in the free theory, an interaction can populate the

modes around l = 𝜋. The effect of multiple roots of the dispersion relation is called

fermion doubling.

Two well-known solutions to fermion doubling are Wilson fermions and staggered

fermions. The basic idea of Wilson fermions is to shift the dispersion relation at the

points l = ±𝜋 up by modifying the Hamiltonian of the system [70]. Thus, only the

modes at l = 0 are gapless excitations and as long as the gap of at l = ±𝜋 is bigger than

the energy scale that we are interested in, there will be no influence on the physics.

The other option are staggered fermions as presented in [83, 84]. Instead of full two-

component spinors, only one component of the spinor is placed on a given lattice point,

e.g. 𝜓1 on even and 𝜓2 on odd sites. This construction effectively doubles the lattice

spacing which leads to a shrinking of the Brillouin zone by a factor of two. Thus,

we only observe the l = 0 node in the first Brillouin zone. While the procedure of

staggering eliminates fermion doubling in one dimension, the issue is more involved

in higher dimensions since not all doublers can be eliminated. In chapter 3, we will

use an ansatz formulated in terms of staggered fermions to facilitate the inclusion of

physical fermions. A more detailed presentation of staggering and fermion doubling

in one and three dimensions is given in [84]. The need for a modification of the

naive discretization of fermions can be also derived from the Nielsen-Ninomiya no-go

theorem for lattice gauge theorems [85].

Motivated by the distinct problems of the action formalism, the main ones being the

sign-problem and difficulties in the simulation of time dynamics, it is worth to explore

other formulations of lattice gauge theories. One formulation, that lends itself also

well to experimental implementation, is the Hamiltonian formalism [83]. Here, time

is kept continuous, while space is discretized. Since time keeps its special role and

is not Wick-rotated, real-time evolution is possible in this framework. The transition

from an action S[U𝜇(x)] to a Hamiltonian is performed by taking the limit a𝜏 → 0 for

the lattice spacing in the temporal direction and using the temporal gauge U0 ≡ 0. The

temporal gauge implies that all gauge field on temporal links are set to 0 and it allows

to use canonical quantization in subsequent steps [83, 86].

In the Hamiltonian formulation, a Hamiltonian operator explicitly acts on a Hilbert

space. Thus, the Hilbert space has to be treated numerically. This is in stark contrast to
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the action formalism, where the problem is reduced to a statistical mechanics problem

with a scalar action. If the gauge group is a compact Lie group, like U(1) or SU(3),
the Hilbert space of each link becomes infinite dimensional. One formulation, that

we focus on in this thesis, is based on the Hamiltonian formulation proposed by Kogut

and Susskind [83]. Other formulations in the Hamiltonian picture include the quantum

link model [87–90] or the prepotential approach [91].

In the following sections, we introduce the Kogut-Susskind Hamiltonian for the

gauge groups U(1) and Z3 in more detail. One-dimensional lattice gauge theories

present a special case since the fermionic matter content fully determines the gauge

fields. There are no loops and the gauge fields are only influenced from the two neigh-

boring sites. The gauge field cannot interact with itself in the form of loops, since a

one-dimensional system does not contain loops. Upon integrating out the gauge de-

grees of freedom, the theory only contains the fermionic degrees of freedom. Details

on the classic computations in one dimension are summarized in section 2.2.2.

Chapters 3 and 4 focus on systems in (2+1) dimensions. Here, the gauge cannot be

integrated out and the self-interaction of the gauge field (in the form of loops) plays

a major role. We consider the Kogut-Susskind Hamiltonian in (2+1) dimensions for

cQED, the U(1) gauge theory treated above. Additionally, we introduce the Z3 since

we explore it in chapter 3.

(2+1)-dimensional compact QED

Additional to a short review of the general formulation presented in section 2.2.1, we

introduce a new set of variables on the plaquettes to reduce the degrees of freedom. We

consider (2+1)-dimensional cQED on an L × L square lattice with periodic boundary

conditions. As described above, the gauge fields reside on the links; Ux,i denotes the
gauge field operator on the link emanating from site x in direction ei. The notation

changed from U𝜇(x) to Ux,i since we are now considering a two-dimensional spatial

lattice and not a four dimensional spacetime lattice. The Hamiltonian in lattice units

as proposed by Kogut and Susskind [83] takes the form

HKS = g2

2
∑
x,i

E2x,i + 1

2g2
∑
p

[2− (Up + U†
p)] , (2.33)

where g2 is the coupling constant and Up ≡ Ux,1Ux+e1,2U
†
x+e2,1U

†
x,2 where x is the

bottom left corner of plaquette p. Ux,i is in the fundamental representation of U(1);
and we write it in terms of an angle 𝜃x,i, Ux,i = ei𝜃x,i with −𝜋 < 𝜃x,i ≤ 𝜋. As mentioned

above, the theory is called compact QED due to the restriction of the gauge field to

the compact interval 𝜃x,i ∈ (𝜋, 𝜋]. It causes interesting features such as confinement

in contrast to the non-compact theory [76]. Ex,i is the electric field operator fulfilling

the commutation relations

[Ex,i,Uy,j] = 𝛿x,y𝛿i,jUx,i and (2.34)

[𝜃x,i,Ey,j] = i𝛿x,y𝛿i,j . (2.35)

Since we work in the temporal gauge, there is a residual spatial gauge symmetry de-

fined by the Gauss law operators Gx. All physical states must be eigenstates of Gx

Gx ∣phys⟩ =
2

∑
i=1

(Ex,i − Ex−ei,i) ∣phys⟩ = Qx ∣phys⟩ ∀ x , (2.36)
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where the eigenvalue Qx are determined by the static charge configuration at x.
These local constraints put severe restrictions on the choice of variational states.

Following [92], we thus change to a different set of variables that incorporates gauge

invariance up to a global constraint. We split the electric field Ex,i on a link into its

dynamic, transversal part ETx,i and a longitudinal part ELx,i fixed by the static charge

configuration. The transversal field in direction i is given by

ETi (x) = ∇(−) × 𝜀 ≡ 𝜖ij∇(−)
j 𝜀(x) , (2.37)

where ∇(−)f (x) = f (x) − f (x− ei) is the backward lattice derivative in direction i. The

electric field 𝜀 is defined on the plaquette whose bottom-left corner is the vertex x. The
longitudinal component

ELi (x) = −∇(+)𝜙(x) ≡ − (𝜙(x + ei) − 𝜙(x)) (2.38)

is defined by the forward derivative ∇(+) of a scalar field 𝜙 defined on the vertices

and 𝜖ij is the antisymmetric Levi-Civita symbol. The scalar field 𝜙 is fixed by the static

charge configuration that we impose. For a full reformulation of the electric energy

in terms of transversal and longitudinal fields, we refer to Appendix A of [2]. Since

the transversal part of the electric field can be expressed by a plaquette field Lp (the

lattice analog of a solenoidal vector field), the remaining dynamical degrees of freedom

{Lp,Up = e
i𝜃p} reside on plaquettes. They have the same Hilbert space structure and

fulfill the same commutation relations as the link variables

[Lp,Up′] = 𝛿p,p′Up′ and (2.39)

[𝜃p, Lp′] = i𝛿p,p′ . (2.40)

The operator Up creates an electric flux excitation around plaquette p. Not the dif-

ference between the operator Ux,𝜇 acting on a link and Up acting on a plaquette. To

construct all possible gauge-invariant flux configurations, two global non-contractible

flux loops around the torus (one for each spatial direction) are required. Their oper-

ators are denoted by {𝜃1, L1} and {𝜃2, L2} specifying the topological sector of the flux

configuration. L1 and L2 commute with the Hamiltonian, and we restrict ourselves to

the topological sector with L1 = L2 = 0 which corresponds to no electric flux loops

winding around the torus. For more details see [93] or Appendix A of [2].

Writing the Hamiltonian in terms of these new variables, we obtain

HKS = EC + 1

g2
∑
p

(1− cos 𝜃p) + g2

2
∑
p

2

∑
i=1

(Lp − Lp−êi
+ 𝜖p − 𝜖p−êi

)
2

, (2.41)

where EC is an energy offset given by the lattice Coulomb energy and 𝜖p accounts for the
transversal part of the electric field caused by the static charges only, i.e. 𝜖p = 0 in case

of no static charges. Even in this formulation there is one remaining global constraint

left which is intuitively clear since raising the electric flux around all plaquettes should

return the same state due to the periodic boundary conditions. Thus,

∏
p

Up ∣phys⟩ = ∣phys⟩ , (2.42)

for all physical states ∣phys⟩. For further details on this formulation, we refer to [92,

93].
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Figure 2.3: Convention for labeling the links of a plaquette. The red arrows indicate

the orientation of the plaquette. The blue arrows show the convention for

the calculation of a divergence on the lattice.

(2+1)-dimensional ZN theory

In the following section, we focus on Abelian lattice gauge theories with finite gauge

groups (ZN), without dynamical matter, i.e. pure gauge theories. As in the U(1) case,
we consider a two-dimensional L × L lattice with periodic boundary conditions. Thus,

the only degrees of freedom of the theory reside on the links. There are no static

charges or dynamic fermions in the model used in chapter 3. Both extension will be

considered in future works.

As described in Ref. [94], the N → ∞ limit of ZN reproduces U(1), and hence ZN

lattice gauge theories flow, in the large N limit, to cQED [86].

We write the Hamiltonian of a pure ZN gauge theory as

H = HE + HB

= g2

2
∑
x,i

[2− (Px,i + P†
x,i)] + 1

2g2
∑
p

[2− (Qp1
Qp2

Q†
p3
Q†
p4

+ H.c.)] , (2.43)

where p is a plaquette [94]. The indices pj refer to one of the four links of plaquette p

as indicated in fig. 2.3. The terms HE and HB are referred to as electric and magnetic

part of the Hamiltonian, respectively [83].

The operators in eq. (2.43) obey the ZN algebra given by

PNℓ = QN
ℓ = 1 P†

ℓPℓ = Q†
ℓQℓ = 1

P†
ℓQℓPℓ = ei𝛿Qℓ 𝛿 = 2𝜋

N
,

(2.44)

where we introduced the shorthand ℓ = (x, i) for the link variables. Operators that act
on different links commute with each other.

The Hamiltonian eq. (2.43) is invariant under the action of the local unitary opera-

tors

𝛩(x) = Px,1 Px,2 P
†
x−ê1,1

P†
x−ê2,2

. (2.45)

This local gauge invariance implies that 𝛩(x) commutes with the Hamiltonian on each

site

[𝛩(x),H] = 0 ∀ x . (2.46)

Due to the generators of local symmetry [given in eq. (2.45)], we know that the phys-

ical states of the system obey the symmetry

𝛩(x) |𝛹⟩ = |𝛹⟩ ∀ x . (2.47)
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Equation (2.47) holds since we do not consider static charges in chapter 3.

Given the group ZN, we define a set of group element states ∣q(ℓ)⟩ labeled by integers
q = 0, ...,N − 1, which span the local gauge field Hilbert space on link ℓ. They corre-

spond to group elements with the discrete angles 𝜙(ℓ) = q𝛿 [𝛿 is defined in eq. (2.44)].

In contrast to the U(1) theory presented in section 2.2.1, the angle does not take con-

tinuous values in Z(N). The group element states form an orthonormal basis for the

local Hilbert space ⟨q∣q′⟩ = 𝛿q,q′.

These states are eigenstates of the Q operators, with

Q ∣q⟩ = ei𝛿q ∣q⟩ . (2.48)

They are lowered by the P operators, periodically as

P ∣q⟩ = ∣q − 1⟩ . (2.49)

We will actively use the two formulations of the Kogut-Susskind Hamiltonian in

chapters 3 and 4.

2.2.2 Classical simulation of Hamiltonian Lattice Gauge

theories

The first works to consider tensor networks for lattice gauge theories are formulated in

one spatial dimension. A typical test bench in one spatial dimension is one-dimensional

QED, i.e. the Schwinger model [95, 96]. The match of highly efficient MPS algorithms

and the possibility to integrate out the gauge field, makes them a perfect candidate for

new algorithms. In [97], the Schwinger model is evaluated with DMRG which is equiv-

alent to a treatment with MPS. In order to use MPS algorithms, the Schwinger model is

formulated as a Kogut-Susskind Hamiltonian in terms of staggered fermions [83] and

then transformed to a spin Hamiltonian [98]. This formulation can be directly treated

with MPS methods. In subsequent works, the mass spectrum [99, 100], the behavior at

finite temperature [101] and the time-evolution of string breaking [102] were studied

in more detail. In [81], the Schwinger model is treated at finite density, a setting that

cannot be treated with Monte Carlo methods due to the sign problem.

With Abelian U(1) successfully mastered in one dimension, the focus shifted to non-

Abelian theories. In [103], an MPS formulation for SU(2) is presented.

As discussed above, lattice gauge theories change dramatically when changing from

one to two dimensions. In addition, the contraction of PEPS states becomes more

difficult (cf. section 2.1.2). In [104], a (2+1)-dimensional iPEPS simulation shows the

possibilities of PEPS. Here, gauge invariance is enforced during the optimization and

not explicitly encoded in the state. An alternative approach where gauge invariance

is encoded in a finite PEPS state is presented in chapter 3. The prohibitively high cost

during the contractions originates from the loop structure in fully connected PEPS. As

an alternative, a loop-less tensor network construction was proposed [45] which can

be extended to more than one dimension while keeping contractions efficient.

The exploration of lattice gauge theories is not limited to tensor network states. A

generalization of Gaussian states has proven suitable [105] to describe one dimensional

theories. As an alternative, we present a new class of Gaussian states, complex periodic

Gaussian states, in chapter 4.
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Machine learning (ML) plays an increasingly prominent role when defining ansatz

states in condensed matter [106, 107]. The local constraints in form of the Gauss law

have so far precluded the direct application of ML methods to lattice gauge theories.

In [108, 109], first approaches have been explored to use gauge-invariant machine-

learning states for lattice gauge theories.

An alternative formulation to the Kogut-Susskind Hamiltonian are quantum link

models [87–90, 110]. The basic idea is to replace the gauge fields on the links by

bilinear operators with additional constraints, the number of link particles must be

conserved. This formulation renders the Hilbert space finite dimensional even for con-

tinuous groups like U(1), making the model amenable for exact diagonalization. On

the other hand, the formulation limits the number of electric field occupations that

can be represented. Beyond the simulation of lattice gauge theories with high energy

or experiments [111, 112] in mind, quantum link models have been used recently to

explore many-body effects like localization [113–115].

All prior ideas are based on the variational principle – an ansatz state is formulated

to control the exponential growth of parameters – or on exact diagonalization. Al-

ternatively, we can try to model a quantum system using partition sums in statistical

mechanics. The product structure of a partition sum can be interpreted as a contraction

of local tensors. Tensor renormalization group (TRG) approaches large system sizes by

repeatedly contracting tensors [116] to coarse-grain the system following a renormal-

ization group idea. Typically, properties like phase transitions can be studied. TRG

methods have been transferred to lattice gauge theories [117–119].

2.2.3 Quantum simulation of Hamiltonian Lattice Gauge

Theories

High energy physics systems are usually difficult to manipulate since high energies

and big experiments like the Large Hadron Collider (LHC) are necessary. Quantum

simulations – digital or analog – can offer the possibility to probe a system with the

same physical properties as the original in a table-top experiment. Analog simulation

describes the idea of purpose-built experiments that emulate another physics system

while being easier to manipulate and to measure. If we can understand the behavior

of the simulating experiment, we can transfer the results to the actual system.

Digital simulation is a more general approach to quantum simulation. A given simu-

lator uses a stroboscopic time-evolution expressed in terms of gates to simulate another

quantum system. The generality of simulating an arbitrary system requires the approx-

imation of a stroboscopic evolution.

Both approaches do not imply that colliders are not needed anymore. Quantum

simulations can only explore physics that we understand to the degree that we are

able to formulate it in equations. The exploration of the actual system can still lead to

fundamentally new insights.

The following sections explore the current state-of-the art in digital and analog quan-

tum simulation of lattice gauge theories. Naturally, the ideas presented here are only

an overview. For more details, we refer to reviews on the subject [120–122].
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Analog Quantum Simulation

Since the analog simulator is a quantum system itself, there is no computational over-

head comparable to the classical simulation of quantum systems. Even the time-

evolution of the quantum system, a challenging task in classical computing, is directly

accessible, since the model system follows the same dynamics as the original system. In

recent years, different platforms have been proposed to simulate lattice gauge theories,

e.g. cold atoms [123–125], trapped ions [112] and superconducting circuits [126]. To

make cold atoms amenable for well controlled manipulations the atoms are trapped in

a light field created by counter-propagating laser beams. The beams create a lattice

that is strong enough to fix the atoms at given positions. Conceptually, this is already

very close to a lattice gauge theory. Some proposals were recently realized in cold

atom experiments, like the quantum simulation of an Abelian Z2 double-well in [127]

or a demonstration of U(1) gauge invariance in Bose-Einstein condensates [128]. Due

to experimental constraints, the systems are currently limited to low spatial dimensions

and cannot yet compete with the most sophisticated classical simulations.

In the upcoming years, we expect to see experiments for both, more involved gauge

groups like non-Abelian gauges and simulations in higher dimensions.

Digital Quantum Simulation

Since fully fault-tolerant digital quantum simulators are not available yet, simula-

tions are either formulated for noisy intermediate scale quantum devices (NISQ de-

vices) [129] or the algorithms are proposals for future machines.

In [130], the authors present a quantum algorithm for a fault-tolerant quantum com-

puter to evaluate the scattering amplitudes of the interacting 𝜙4 theory. The algorithm
is polynomial in the number of particles, their energy and the desired precision. Thus,

it presents an exponential speed-up in comparison to the best classical algorithms [131–

133].

An orthogonal approach to the development of a pure quantum algorithm, is the

idea to use a hybrid quantum-classical approach. The ansatz is implemented in terms

of an n-qubit circuit parameterized by classical variables. These variables are adapted

by a classical optimizer. By iterating the procedure many times until convergence, the

algorithm obtains an approximate solution for the ground sate. In the case of classical

combinatorics, the approach is named Quantum Approximate Optimization Algorithm

(QAOA). If it is applied to a quantum problem, it is called variational quantum eigen-

solver (VQE). In [134] the VQE algorithm is implemented on a photonic device to

demonstrate the performance in computing ground states of nuclei like helium.

Digital simulators cannot only be implemented in photonics, but also in cold atom

arrays and trapped ions experiments. In [135] a digital simulation of the Schwinger

model with trapped ions is performed. The algorithm is demonstrated with four ions

and a gate sequence of more than 200 gates. Since it is a digital simulation, the time-

evolution is trotterized [136].

A simulation of LGT in superconducting qubits was proposed in [137] for the non-

Abelian SU(2) theory. Experimental realizations of non-Abelian theories, however,

are more challenging than Abelian ones and have yet to be performed.

Finally, Rydberg atoms are considered to be a promising platform for universal quan-

tum computation. Rydberg simulators are based on the idea to excite neutral atoms in

an optical lattice to highly excited states. Due to the so-called Rydberg blockade, very

23



2.3 Hamiltonian Truncation

strong interactions between spatially separated atoms can be introduced. The interac-

tions between atoms enable the implementation of gates and cold atoms can be used

for digital quantum computation. Several proposals [138–142] point out that a fully

gauge-invariant simulation of gauge theories can be achieved with Rydberg atoms.

2.3 Hamiltonian Truncation

In the last part of the preliminary materials, we move from lattice theories back to the

continuum. Hamiltonian Truncation (HT) is a numerical method to study strongly in-

teracting QFT directly in the continuum. It was first introduced by Yurov and Zamolod-

chikov [143, 144] in the 1990s. Instead of finding an ansatz state for the ground state

(as in section 2.1), HT is closer to exact diagonalization in spirit. The idea is to repre-

sent the Hamiltonian of a field theory defined on a compact domain as

H = H0 + V , (2.50)

where H0 is the solvable part of the Hamiltonian and V is a perturbing potential. Tradi-

tionally, the conformal field theory (CFT) of the UV fixed point of the theory was used

as solvable H0. More modern approaches consist of using other solvable theories like

free massless and massive theories [145, 146]. In contrast to perturbation theory, the

perturbing potential V does not need to be small which gives HT the power to capture

non-perturbative effects.

The method proceeds with representing the Hamiltonian operator H as a matrix in

the Hilbert space of H0, the space H0 as

Hij = ⟨i|H ∣j⟩ . (2.51)

Since H0 is solvable, we know the orthogonal eigenstates |i⟩ that diagonalize H0. In

order to explore the spectrum of the theory, we want to diagonalize the Hamiltonian.

Until now, this method is identical with exact diagonalization (ED) which consists of

diagonalizing a matrix representation of the Hamiltonian. In order to speed up the

computation, it is common to exploit quantum numbers that split the Hamiltonian

into sectors. These sectors are diagonalized separately which reduces the complexity

of the problem [147]. In the case of a continuous quantum field theory, however, the

Hilbert space is infinite dimensional and the Hilbert space cannot be diagonalized a

priori; we have to introduce a truncation to make the Hilbert space finite.

The following presentation of the method follows [145] in spirit and notation. Ide-

ally, we could solve the actual eigenvalue problem of the infinite dimensional system

H ∣𝜓⟩ = E ∣𝜓⟩ , (2.52)

where E are the exact eigenvalues of the Hamiltonian H and ∣𝜓⟩ are infinite dimen-

sional energy eigenvectors. The crucial step of HT is to introduce a high energy cutoff,

keeping only the low energy states of H0 which renders the matrices finite and enables

numerical computations. Thus, we split the Hilbert space into two subspaces Hl, the

low-energy sector of the Hilbert space, and Hh, the high-energy sector

H = Hl ⊕Hh . (2.53)
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The low-energy subspaceHl is finite dimensional andwill be treated numerically, while

the sector Hh contains infinitely many states that we discarded.

Given the splitting of the Hilbert space, we can rewrite eq. (2.52) and obtain

Hll ∣𝜓l⟩ + Hlh ∣𝜓h⟩ = E ∣𝜓l⟩ (2.54)

Hhl ∣𝜓l⟩ + Hhh ∣𝜓h⟩ = E ∣𝜓h⟩ , (2.55)

where we defined ∣𝜓⟩ = ∣𝜓l⟩ ⊕ ∣𝜓h⟩ to split the low-energy part of the eigenvector

from the high-energy part. Note, that we do not know the exact value for E or ∣𝜓⟩.
Additionally, we defined the projected Hamiltonians H𝛼,𝛽 ≡ P𝛼HP𝛽 where P𝛼 is the

projector the low- or high-energy subspace with 𝛼 ∈ {l, h}.
Since we are interested in computing the low-energy sector of the spectrum numer-

ically, we use eq. (2.55) to eliminate ∣𝜓h⟩ in eq. (2.54)

[Hll − Hlh (Hhh − E)−1
Hhl] ∣𝜓l⟩ = Ecl . (2.56)

While eq. (2.56) has the structure of an eigenvalue problem in the low-energy sector,

it contains the unknown energies E of the true problem. Since H0 is diagonal and

cannot couple the low- to the high-energy sector of the spectrum, we identify Hlh ≡ Vlh,

Hhl ≡ Vhl, and Hhh ≡ Vhh. This transforms eq. (2.56) to

[Htrunc + 𝛥H] ∣𝜓l⟩ = E ∣𝜓l⟩ ,
𝛥H = −Vlh (H0 + Vhh − E)−1

Vhl .
(2.57)

Here, we identified Hll ≡ H0.

Until now, all modifications to the equations have been exact. In order to proceed,

we start to expand 𝛥H in Vhh

𝛥H = −Vlh (H0 − E)−1
Vhl + ⋯ . (2.58)

For more details on a possible inclusion of higher order terms, we refer to [145]. The

formulation of 𝛥H in eq. (2.58) is entirely in Hl now, the matrix elements, however

contain contributions from the high-energy spectrum still

(𝛥H)ij = − ∑
k∶Ek>Emax

VikVkj

Ek − E∗
, (2.59)

where we introduce a reference energy E∗ since we do not know the true value of E

that enters into the computation of 𝛥H.
As presented in [145, 148], 𝛥H can be rewritten without infinite sums and the ref-

erence energy can be eliminated as well. Finally, we obtain a matrix in the low-energy

sector that contains some information about the coupling to the high-energy sector via

𝛥H.
The method of Hamiltonian truncation converges if the perturbation V does not

mix significantly the low energy sector of H0 with the higher energy sectors, i.e. that

Vlh does not strongly couple low-energy states to high-energy states. All excitations

from H0 into the high energy sector are lost. In case of an expansion around the CFT

point, this is guaranteed by the renormalization group theory for relevant perturbations

V. If computed for several high enough cutoffs the results of an HT simulation can

often be extrapolated to obtain the infinite cutoff value. Alternatively, a numerical

renormalization group algorithm can be used [149].

We use HT in chapter 6 to study the entanglement properties of quantum field the-

ories directly in the continuum.
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3 Gauged-Gaussian Projected
Entangled Pair States

3.1 Motivation

Gauge theories appear in many fundamental physical contexts, e.g. the standard model

of particle physics, where gauge fields act as force carriers. In particular, the standard

model includes quantum chromodynamics (QCD), the theory of the strong nuclear

force, which, as a non-Abelian gauge theory [63], has a running coupling with negative

beta function. In QCD, asymptotic freedom [68] gives rise to asymptotically weak

couplings for high energy scales (e.g. collider experiments), and therefore perturbation

theory could be used in these physical regimes. On the other hand, at low energy QCD

is a strongly coupled model, requiring non-perturbative treatment.

As described in the preliminary material [cf. section 2.2.1], lattice gauge theories are

a common approach to access regimes where non-perturbative methods break down.

They provide a gauge invariant regularization of gauge theories on the lattice, dis-

cretizing either spacetime [70] or only space (leaving time continuous) [83]. While

extremely successful for static studies (such as the hadronic spectrum), Monte Carlo

methods face two major difficulties, the calculation of time dynamics and the sign

problem at finite chemical potential [80]. This limitation blocks the way to important

phases of the QCD phase diagram [150].

Motivated by the success of tensor networks in condensed matter physics, they have

been generalized and applied to particle physics problems, in particular to lattice gauge

theories (LGT) [121]. In one space dimension, matrix product states (MPS) have been

very successful in finding ground states and describing time dynamics (see Ref. [121]

and references therein). In higher dimensions, MPS are generalized to projected en-

tangled pair states (PEPS), whose contraction is in general very costly. This hinders

the application of variational PEPS algorithms in higher dimensions, although state-of-

the-art algorithms can handle all terms in a gauge theory [151] and a first numerical

study for a pure gauge theory has been recently presented in [104]. Earlier numerical

studies used less general tensor networks for two-dimensional lattice gauge theories,

either purely gauge [152] or including fermions [153].

Analytical approaches have developed faster, with the formulation of gauge invari-

ant pure gauge PEPS [154], and more general gauging mechanisms including matter

for arbitrarily dimensional PEPS [49, 155]. In these works, the global symmetry of a

matter-only PEPS (without gauge fields) is lifted to a local symmetry by introducing

a gauge field, in a way analogous to minimal coupling. This gauging method is used

to construct gauged Gaussian fermionic PEPS (GGPEPS) [156, 157], where the initial

matter state is a free (Gaussian) fermionic state, in a manner analogous to minimal cou-

pling of a Hamiltonian [6]. The restriction to GGPEPS enables the efficient contraction

of the states with Monte Carlo techniques [158]. Since the sampling probability of the

algorithm depends only on the norm of the state, the Monte Carlo algorithm cannot
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suffer from the sign problem. Furthermore, the construction allows for a natural and

efficient extension to higher bond dimensions which is numerically very expensive

in general PEPS calculations. However, until now, these states have only been used

to compute observables of toy models – either exact contractions, showing relevant

physical behavior [156, 157] or a demonstration of the feasibility of the Monte Carlo

contraction of the PEPS, but for given states, without variational techniques [158].

The next logical step is the numerical evaluation of GGPEPS as a variational ansatz

state.

The content of this chapter is based on Ref. [1].
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3.2 Executive Summary

Gauge theories lie at the heart of our understanding of particle physics. Since direct

evaluations of the quantum field theory in the continuum is analytically impossible,

lattice regularization are a common tool to treat these theories numerically [15, 20,

70]. The restrictions of Monte Carlo computations motivate the development of new

algorithms [80].

A direct treatment of QCD is difficult since the theory is non-Abelian. The non-

commutativity of gauge fields creates further difficulties in the computational method.

Instead of full QCD, we consider a Z3 theory in (2+1) spacetime dimensions, a theory

which shares some key features with QCD. The confinement properties of non-Abelian

SU(N) theories are intimately related to the ZN center of the gauge group [159–164].

Thus, the Abelian Z3 theory is a step towards understanding color confinement in

QCD. The Z3 theory exhibits a (first-order) phase transition between a confining and

non-confining phase, and thus constitutes a non-trivial test bench [78]. Furthermore,

extensive Monte Carlo studies have been performed on ZN theories, which enable a

benchmark of our results against known results [165]. Our goal is to demonstrate the

expressibility of the ansatz presented in Ref. [158] and how it can be applied to study

gauge theories. We use gauged Gaussian PEPS (GGPEPS) as an ansatz to compute

the ground state energy. Due to the symmetries encoded in the state, the number of

parameters is strongly restricted. To increase the expressive power of the ansatz, we

couple several GGPEPS to the same gauge field. We call each independently param-

eterized GGPEPS that builds the full state a layer. Since all layers can be evaluated

independently, the complexity scales linearly in the number of layers.

The next step, required for demonstrating the credibility and feasibility of themethod,

is the actual energy minimization procedure of a real lattice gauge theory Hamilto-

nian: a numerical verification that the such ansatz states can converge to true ground

states. In this chapter, we present the application of fermionic GGPEPS[49, 156–158]

as ansatz states in a variational Monte Carlo (VMC) procedure [166–168].

Figure 3.4 shows an initial benchmark of the state. For small systems, the GGPEPS

can be contracted exactly and compared with the exact ground state (obtained via exact

diagonalization). With a single layer, i.e. two parameters, only the high-coupling part

of the theory matches due to the construction of the state. With an increasing number

of layers, the correspondence between the two methods increases also for the low-

coupling regime.

The computation is not limited to small systems. By using Monte Carlo computa-

tions instead of exact contractions, we can also obtain results for larger systems (cf.

fig. 3.5). However, precisely locating the phase transition remains challenging, even

with an increased number of layers (cf. fig. 3.6). The main obstacle is the expensive

evaluation of a Pfaffian that appears in the calculation of the electric energy. It has

to be calculated in every Monte Carlo step during the energy minimization. We show

that the GGPEPS are promising states to study gauge theories in higher dimensions.

The next steps include increasing the spatial dimension to three space dimension and

to include physical fermions.

The rest of the chapter is structured as follows: In section 3.3, we construct the ansatz

states and introduce the numerical method used in the minimization. The results of

the variational procedure are presented in section 3.4. Finally, we discuss our findings

and further research directions in section 3.5.
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3.3 Theoretical Framework

Expressing a lattice gauge theory in terms of a Hamiltonian implies that we have to

work with a Hilbert space. This problem is elegantly avoided in the path integral

formalism. The path integral does not need an explicit formulation of the Hilbert

space; instead, the path integral is directly sampled via Monte Carlo.

In the case of a general lattice gauge theory with fermions and gauge fields, we

have to consider two Hilbert spaces: one for the fermions on the vertices and one for

the gauge fields on the links. One problem of numerically simulating a lattice gauge

theories with compact Lie groups [even the Abelian U(1)] is the infinite dimension of

each Hilbert space on the links. This can be approached by truncating the local Hilbert

spaces, either by introducing a cutoff to the electric field, allowing one to restore the

full theory by extending the cutoff [156] or integrating over an extra dimension [87–

89], or by sampling group elements [94] from the gauge group, which form a subgroup.

Due to the construction of our states (see section 3.3.1), we chose the second approach,

i.e. instead of simulating the full U(1) theory, we consider a ZN subgroup that serves

as an approximation for U(1). Since we restrict ourselves to a pure gauge theory, we

will not treat the fermionic Hilbert spaces on the vertices. Further details about ZN

lattice gauge theories are provided in section 2.2.1.

3.3.1 Construction of GGPEPS

The original GGPEPS construction [49, 156, 158] builds the basis for the numerical

ansatz. We enlarge the family of variational states by using several GGPEPS coupled

to the same gauge field. Each GGPEPS is called a layer and has an independent set

of parameters. We start by describing the construction of a single layer and combine

them in a second step.

Construction with a single layer

Products of local group element states define the configuration of gauge fields on the

lattice. Such product states, |G⟩ = ⊗ℓ ∣q(ℓ)⟩ with ℓ = (x, i) form an orthonormal basis,

and we use it to expand every state in the gauge field Hilbert space

∣𝜓⟩ = ∑
G

𝜓(G) |G⟩ , (3.1)

where the sum runs over all possible gauge field configurations on the links and 𝜓(G)
is a gauge field dependent wave function of the configuration G. This expression is

a special case of the more general formulation presented in [158], where 𝜓(G) can

be a quantum state of the dynamical (fermionic) matter, ∣𝜓(G)⟩, instead of the wave

function we have in the pure gauge case.

As described in section 2.2.1, not every state that can be expressed with eq. (3.1)

is physically relevant, i.e. fulfills the local symmetry in eq. (2.45). Thus, the wave

function 𝜓(G) has to be chosen such that the full state ∣𝜓⟩ obeys the correct symmetries.

Additionally, the state that we pick should allow for efficient numerical calculations

of observables and gradients. Following the general construction in [158], we choose

a gauged Gaussian projected entangled pair state (GGPEPS) as an ansatz. For details

and further motivation, we refer to Refs. [6, 156].
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Following the idea of the PEPS construction presented in section 2.1.2, we build

the GGPEPS out of local constituents which help us to impose the symmetry. The

local parts are entangled during the construction to form the final wave function. The

elementary building blocks for the wave function are auxiliary (or virtual) fermionic

modes that are attached to each leg of the vertices of the lattice. They are chosen to be

fermionic to enable a consistent coupling to fermionic matter which obeys the correct

statistics [158]. Although, for the description of a pure gauge theory, the coupling to

matter is not necessary.

Before we construct the variational ansatz state in full detail, we give a general

overview of the process. The construction of a GGPEPS consists of three essential parts

(cf. fig. 3.1). First, the fiducial operatorsA(x) create virtual fermionic states with modes

associated to each site. These fermionic states are constructed in a way that guarantees

virtual gauge invariance. The virtual invariance is used in general PEPS constructions

to impose global symmetries. This step of the construction can be readily extended to

include more virtual fermions, in a similar spirit that the bond dimension of a PEPS

can be increased. Details for a construction with multiple layers are given below. In

a second step, some of the virtual modes on each site are rotated with respect to the

physical gauge fields of the theory, in a particular way that lifts the virtual symmetries

to physical ones [158]. This is done by gauging operators UG acting on the virtual

fermions and controlled by the gauge field configuration. Finally, the pairs of virtual

fermionic modes on the two sides of each link are projected onto maximally entangled

states by projection operators 𝜔ℓ. That contracts the state from its local constituents

and introduces correlations to the state.

The wave function can thus be written as

𝜓(G) = ⟨𝛺v∣ ∏
ℓ

𝜔ℓ ∏
ℓ
UG(ℓ) ∏

x

A(x) ∣𝛺v⟩ , (3.2)

where the products are over all links ℓ of the lattice and ∣𝛺v⟩ is the fermionic Fock vac-

uum. In the following, we will treat the three main components of the construction A,

UG, and 𝜔 in more detail, and see how to make sure that 𝜓(G) obeys the right symmetry

properties. Furthermore, we aim for a wave function that enables an efficient compu-

tation of norms and expectation values. We choose to pick a Gaussian formulation for

𝜓(G), thus all its constituents must be Gaussian too.

After the intuitive overview of the full process, we describe the details in the fol-

lowing paragraphs. On each vertex x of the two-dimensional lattice, we define eight

virtual fermionic modes, two associated to each leg – left, right, up and down. On each

leg we label the two modes by ±, and sort them into two groups: ai = {l+, r−, u−, d+}
(which we call the negative modes) and bi = {l−, r+, u+, d−} (positive modes). The

modes obey the Dirac anti-commutation relation {c(x), c†(y)} = 𝛿x,y and {c(x), c(y)} =
{c†(x), c†(y)} = 0, where x,y are vertices on the lattice and c is a fermionic mode.

We define the virtual electric fields

E0(x, k) = (−1)x(k†
+(x)k+(x) + k†

−(x)k−(x)) (3.3)

with k ∈ {r, l, u, d} and the generator of the gauge transformation on the virtual degrees

of freedom,

G0(x) = E0(x, r) + E0(x, u) − E0(x, l) − E0(x, d) . (3.4)
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Figure 3.1: Illustration of the state’s construction. The blue circles with four legs are

created by the fiducial operator A. The four black legs mark virtual modes

in the different directions. The red ellipses between the virtual modes illus-

trate the unnormalized projectors 𝜔. The gauge fields on the links between

the sites are depicted as green lines. They couple to the respective virtual

mode that the green line emanates from.

This can be seen as a version of a Gauss law operator: the divergence of the virtual

electric fields at the vertex. The staggering is introduced to accommodate the general

case with physical fermions [158] (aiming at the problem of physical fermion dou-

bling [84] which we do not encounter in the pure gauge case). It is taken care of

already on the level of electric fields [cf. eq. (3.3)] and thus the rest of the equations

can be stated without explicit reference to staggering.

The fiducial operator A(x) creates the modes out of the vacuum and has to be Gaus-

sian to ensure the Gaussian character of 𝜓(G). Additionally, it must be invariant under

transformation generated by G0(x). Hence, it is given by [6, 156]

A(x) = exp⎛⎜
⎝

∑
ij

Tija
†
i (x)b†

j (x)⎞⎟
⎠

, (3.5)

where Tij is a 4 × 4 matrix containing all parameters of the ansatz. A is a Gaussian

operator by construction. It obeys the correct symmetry property since positive modes

are only coupled to negative ones, thus

exp(i𝛼G0(x))A(x) exp(−i𝛼G0(x)) = A(x) (3.6)

is satisfied for every angle 𝛼, hence forming a U(1) parameterization. As such, it

contains also the ZN cases, with a discrete choice of angles. Due to other symmetry

considerations (e.g. lattice rotation invariance), only two independent parameters in

Tij of initially sixteen remain, y and z. They couple different modes in a given ver-

tex: y couples right(up) and left(down) modes in a vertex, z couples modes that are

building corners, e.g. right and up modes. The exact form of T and a motivation of the

symmetries can be found in appendix 3.A.

For now, we will formulate the ansatz with eight virtual fermions per vertex. One

set of eight virtual fermions is referred to as one layer. In a second step, we will enlarge

the number of variational parameters by adding more layers, i.e.more virtual fermions

to the links. Each layer gets an independent set of parameters y and z. Increasing the
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Figure 3.2: Arrangement of vertices and gauge fields in a lattice gauge theory. Vertices

are indicated in red, gauge fields are shown in green. The convention for

labeling links around a vertex x is indicated in blue.

number of layers is the analogue to increasing the virtual bond dimension in a non-

fermionic PEPS.

In a second step, we entangle the virtual fermions on the links with physical gauge

fields on the links. The gauging operator for a given gauge field configuration G takes

the form

UG (ℓ) =
⎧{
⎨{⎩

ei(−1)xq(ℓ)𝛿E0(x,r) ℓ horizontal
ei(−1)xq(ℓ)𝛿E0(x,u) ℓ vertical ,

(3.7)

where q(ℓ) parameterizes the group element on the link ℓ in the configuration G. The

local gauge transformation changes only the modes in the up and right direction. Mod-

ifying the left and bottom modes as well would undo the gauge transformation due to

the staggering. For a detailed overview of the gauging procedure in terms of PEPS

operators, i.e. in graphical notation, we refer to Refs. [6, 49, 156].

In order to create more than a product state, we project the virtual, fermionic modes

adjacent to each link onto maximally entangled states. The unnormalized projectors

𝜔x,1 = exp (l†+ (x + ̂e1) r†
− (x) + l†− (x + ̂e1) r†

+ (x)) 𝛺ℓ×
× exp (r− (x) l+ (x + ̂e1) + r+ (x) l− (x + ̂e1)) (3.8)

𝜔x,2 = exp (u†
+ (x) d†

− (x + ̂e2) + u†
− (x) d†

+ (x + ̂e2)) 𝛺ℓ×
× exp (d− (x + ̂e2) u+ (x) + d+ (x + ̂e2) u− (x)) , (3.9)

connect the left(upper) and right(lower) modes of neighboring sites. Here, 𝛺ℓ is the
projector to the virtual vacuum on link ℓ and ̂ei is the unit vector in direction i. Similar

to the fiducial operators A, the projectors 𝜔 are Gaussian and commute among each

other since they are products of fermionic modes on different links. The projectors link

the virtual modes of one site with the virtual modes of the next site in the horizontal and

the vertical direction, respectively. It is essential that the projectors are unnormalized

since the norm of a state will serve as a transition probability between different gauge

field configurations in the Monte Carlo algorithm.

Combining A, 𝜔, and UG, we get the wave function in eq. (3.2). Now, we can show

that the construction is indeed gauge invariant and fulfills eq. (2.47). We act with
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𝛩(x) on ∣𝜓⟩ explicitly, on some given vertex x:

𝛩(x) ∣𝜓⟩ = ∑
G

𝜓(G)Px,uPx,rP
†
x−ê1,r

P†
x−ê2,u

|G⟩

= ∑
G

𝜓(G) ∣q(ℓ1) − 1, q(ℓ2) − 1, q(ℓ3) + 1, q(ℓ4) + 1⟩ ⊗ ∣q̃⟩

= ∑
G

𝜓(q(ℓ1) + 1, q(ℓ2) + 1, q(ℓ3) − 1, q(ℓ4) − 1, q̃⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
≡G′

) |G⟩ ,

(3.10)

where q̃ are all gauge fields that are not affected by the gauge transformation, i.e. that

are not adjacent to x. To shorten notation, we named the different links according to

the labels defined in the left panel of fig. 3.2. The third line is linked to the second

one by a change of variables in q. The gauge invariance holds if 𝜓(G) = 𝜓(G′). We can

write the wave function 𝜓(G′) as

𝜓(G′) = ⟨𝛺v∣ ∏
ℓ

𝜔ℓ ∏
̃ℓ
UG( ̃ℓ)e±i𝛿(q1+1)E0(x,r)e±i𝛿(q2+1)E0(x,u)e∓i𝛿(q3−1)E0(x−ê1,r)

e∓i𝛿(q4−1)E0(x− ̂e2,u) ∏
x

A(x) ∣𝛺v⟩

= ⟨𝛺v∣ ∏
ℓ

𝜔ℓ ∏
̃ℓ
UG( ̃ℓ)e±i𝛿(E0(x,r)+E0(x,u)−E0(x,l)−E0(x,d)) ∏

x

A(x) ∣𝛺v⟩

=𝜓(G) , (3.11)

where ̃ℓ are all links that are unaffected by the gauge transformation and 𝛺v is the

vacuum of all virtual modes. The notation of multiple signs shows the transformation

for an even (top sign) and an odd (bottom sign) vertex at the same time. We used

the invariance of the fiducial operator (3.6) in the last line. In order to transform the

virtual electric field from the adjacent vertices x − ̂e1 and x − ̂e2 to vertex x, we use

the invariance of the projectors 𝜔:

𝜔x−ê1,1e
i𝛿E0(x−ê1,r) = 𝜔x− ̂e1,1e

−i𝛿E0(x,l)

𝜔x−ê2,2e
i𝛿E0(x−ê2,u) = 𝜔x−ê2,2e

−i𝛿E0(x,d) .
(3.12)

All operators employed in the construction (A, 𝜔, and UG) are Gaussian operators.

Since products of Gaussian operators are Gaussian [169], the wave function 𝜓(G) can
be efficiently described with covariance matrices. As detailed in [158], there are mul-

tiple ways of combining the operators to covariance matrices. We choose to group

the gauging operators and the projectors together into 𝛤in(G), a covariance matrix that

depends on the gauge. The fiducial operators are summarized in a second covariance

matrix D. The relation between the covariance matrices and the gauged ansatz state

can be summarized as

𝜓(G) = ⟨𝛺v∣ ∏
x

𝜔(x) ∏
ℓ
UG(ℓ)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝛤in(G)

∏
x

A(x) ∣𝛺v⟩⏟⏟⏟⏟⏟⏟⏟
D

. (3.13)

For further details about the formulation of Gaussian operators in terms of covariance

matrices, we refer to appendix 3.C. The covariance matrices or parts of them allow the

efficient calculation of the Monte Carlo transition probability [cf. eq. (3.18)].
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Construction with multiple layers

Although the ansatz wave function with a single layer, i.e. two variational parameters,

captures the high coupling regime very well, the low coupling regime is challenging

for a single layer (cf. fig. 3.4). Upon increasing the number of layers, the agreement

between exact diagonalization data and the variational PEPS approach improves dra-

matically. In order to increase the number of variational parameters, we add more

virtual fermions to the construction. Each layer carries an independent set of param-

eters, i.e. the matrix T in the fiducial operator A is different for each layer, while the

states are coupled to the same gauge field. This ensures that all states fulfill the Gauss

law. The virtual fermions of different layers on the links do not interact. The com-

plexity of the computation scales linearly in the number of layers because the state

can be contracted as independent layers of equally sized PEPS. Further details about

the contraction and the changes to the calculation of observables are explained in ap-

pendix 3.B.

3.3.2 Computational Evaluation

The ansatz defined above characterizes a family of states that depends on two parame-

ters per layer. In order to find the ground state of the Hamiltonian (2.43) for N = 3, we

have to adapt the parameters such that the energy is minimized. By computing expec-

tation values of observables and gradients with respect to the parameters via sampling,

we circumvent the unfavorable scaling of PEPS contractions. The variational Monte

Carlo technique works in a two-step procedure: first, the energy and the gradients are

sampled for a given set of parameters 𝛼. In the second step, the parameters are changed

𝛼 → 𝛼′ according to the gradients and a minimization algorithm.

Calculation of expectation values

The Hamiltonian (2.43) consists of two terms, the electric energy and the magnetic

energy. Due to translational invariance of the states and the Hamiltonian, it is sufficient

to calculate the energy of a single plaquette and a single link,

⟨H⟩ =nlinks (2− ⟨Pℓ + P†
ℓ ⟩) + nplaq (2− ⟨Qp1

Qp2
Q†
p3
Q†
p4

+ H.c.⟩) , (3.14)

where nplaq = L2, nlinks = 2nplaq and L is the linear extent of the quadratic lattice

(number of vertices). In the equation above, ℓ is a freely chosen link. If not stated

otherwise, we choose the link at x = 0 in the horizontal direction. Calculating the

magnetic energy is a special case of the expectation value of a Wilson loop. The Wilson

loop operator is defined as

W(R1,R2) = ∏
ℓ∈C

Qℓ , (3.15)

where C is an oriented, rectangular curve of length R1 in the horizontal and R2 in the

vertical direction. The operator Qℓ is picked as is or daggered according to whether

the link is traversed in the direction of the blue arrows (cf. fig. 3.3) or against them.

The Wilson loop operator does not only play a role for the calculation of the energy,

but can be used as an indicator for confinement in the theory (cf. section 3.4). Given
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3.3 Theoretical Framework

C

Figure 3.3: Illustration of a Wilson loop. The operator Qℓ is chosen as is if the red path

follows the direction of the blue arrows and daggered if it traverses the

blue arrows in the opposite direction.

the state defined in eq. (3.1), the expectation value of a Wilson loop is

⟨W(R1,R2)⟩ = ∑
G

FW(R1,R2)(G)p(G) (3.16)

= ⟨FW(R1,R2)⟩MC
,

where the estimator FW(R1,R2) = ∏ℓ∈C exp(±i𝜙(ℓ)) is a complex number and the sam-

pling probability is

p(G) =
∣𝜓(G)∣2

∑
G′ ∣𝜓(G′)∣2

. (3.17)

While the expression ⟨⋅⟩ is the expectation value of an operator, the expression ⟨⋅⟩MC

is a p(G)-weighted average over complex numbers. Since the norm of a state is always

real and larger than zero, this formulation of a Monte Carlo procedure cannot suffer

from the sign problem.

The Monte Carlo procedure requires a transition probability between different con-

figuration states of the gauge field. In our case, this is the squared norm of the state.

While the norm of a PEPS is a difficult quantity to compute in the general case, the

Gaussian nature of 𝜓(G) enables the efficient computation. Using the covariance ma-

trices defined in eq. (3.13) for Majorana fermions (cf. appendix 3.C), we can write the

squared norm of the wave function as a determinant

∣𝜓(G)∣2 = √det(1− 𝛤in(G)D
2

) . (3.18)

In our Monte Carlo scheme, we use the Metropolis algorithm [14] with eq. (3.17) as a

transition probability. In each step, one gauge field is randomly selected and updated

according to the transition probability. The gauge field is initialized with state |0⟩
everywhere and warmed up without measurements for a fixed number of iterations.

After the warm-up phase, each iteration includes a measurement of the observables.

In contrast to the magnetic energy, the electric energy is not diagonal in the gauge

field basis. Instead of evaluating the full electric energyHE, we focus on the expectation

value ⟨Pℓ⟩. Pℓ acts as a lowering operator on the gauge field states. Thus, we have to

evaluate an expression that has a modified gauge field on one link. We can transfer

that modification to the covariance matrices by evaluating the integrals in Grassmann

variables directly. The estimator for ⟨Pℓ⟩ in a Z3 gauge theory is

Fel(G) = 1

4

Pf ( ̃𝛤in − D−1)

√det (D−1 − 𝛤in)
, (3.19)
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3.3 Theoretical Framework

where ̃𝛤in is a modified version of 𝛤in that differs from the original one on a single link

ℓ. Further details about the calculation are provided in appendix 3.D.

Evaluation of gradients

The evaluation of gradients with respect to the parameters in T enables the efficient

minimization of observables. Instead of directly tracking the derivative of the param-

eters through the state construction, we derive the matrix equations obtained for the

covariance matrices with respect to the variational parameters. The covariance matrix

of the fiducial state D does not change during the Monte Carlo computation, and it is

the only covariance matrix that contains variational parameters 𝛼 ∈ {y, z}. Thus, we
can calculate the gradient for an arbitrary observable O whose estimator FO(D) can

depend on the covariance matrix D of the fiducial operator explicitly

∂
∂𝛼 ⟨O⟩ = ∂

∂𝛼 ⟨FO(D)⟩
MC

= ⟨ ∂
∂𝛼FO(D)⟩

MC

+ ⟨FO(D)
∂

∂𝛼 ∣𝜓(G)∣2

∣𝜓(G)∣2
⟩
MC

− ⟨FO(D)⟩
MC

⟨
∂

∂𝛼 ∣𝜓(G)∣2

∣𝜓(G)∣2
⟩
MC

.

(3.20)

Since we aim to find the best ground state approximation with our ansatz, we calcu-

late the gradients of the energy. They consist of two parts, the gradient of the magnetic

and the gradient of the electric energy. In the case of the magnetic energy, the first

term on the right-hand side of eq. (3.20) vanishes since the gauge field has no explicit

dependence on the parameters. It remains to calculate the expression ∂
∂𝛼 ∣𝜓(G)∣2 since

we know the form of ∣𝜓(G)∣2 from the evaluation of the transition probability (3.17)

already. Using Jacobi’s formula

d

d𝛼 detA(𝛼) = Tr(Adj(A(𝛼))dA(𝛼)
d𝛼 ) , (3.21)

we obtain

∂
∂𝛼∣𝜓(G)∣2 = ∂

∂𝛼
√det(1− 𝛤in(G)D

2
)

= − 1

2N+1√det(1− 𝛤in(G)D)Tr⎛⎜
⎝

𝛤in(G)∂D
∂𝛼

−1
⎞⎟
⎠

. (3.22)

Combining eq. (3.18) and eq. (3.22), we find

∂
∂𝛼 ∣𝜓(G)∣2

∣𝜓(G)∣2
=

∂
∂𝛼 ∣𝜓(G)∣2

√det(1−𝛤in(G)D
2

)

= −1
2
Tr(𝛤in(G)∂D

∂𝛼 (1− 𝛤in(G)D)−1) , (3.23)
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3.4 Results

where ∂D
∂𝛼 is the explicit derivative of the covariance matrix of the virtual modes with

respect to parameter 𝛼. This expression can be derived analytically.

In contrast to the magnetic energy, the electric energy depends explicitly on the

parameters of the ansatz. Thus, the first term on the right-hand side of eq. (3.20) does

not vanish. The explicit form of the gradient is stated in appendix 3.D.

Variational minimization

For small systems (L = 2), we can substitute the Monte Carlo step with an exact con-

traction (EC) of the PEPS. Each possible gauge field configuration on the lattice is

sampled and the individual contributions of the different states are summed up. For

the L = 2 lattice, there are 8 links and thus 38 = 6561 possible gauge field states. In

the case of exact calculations of the gradients and observables, we used the Broyden-

Fletcher-Goldfarb-Shanno (BFGS) algorithm [170] to adapt the parameters of the state.

If the gradients and the observables are calculated with Monte Carlo sampling, the in-

herent error of the estimates makes the use of a line search based algorithm like BFGS

difficult. The fluctuations of the estimate lead to inconsistencies during the line-search

which cause the termination of the algorithm. Thus, we decided to work with a simple

gradient descent algorithm if the expectation values are estimated with Monte Carlo.

After estimating the energy and the gradients, we adapt the set of parameters in the

opposite direction of the gradient,

𝛼′ = 𝛼 − 𝜉(i)∂ ⟨H⟩
∂𝛼 , (3.24)

where 𝜉(i) is the weight for the gradient in dependence of the step. We used 𝜉(i) =
0.01 ⋅ 0.99i in our simulation. The choice of parameters and the schedule of 𝜉(i) may

be further optimized.

3.4 Results

Applying the ansatz developed in Ref. [158] to a physical Hamiltonian, we want to

ensure that we are able to capture relevant physics despite the small number of pa-

rameters of the states. In particular, our goal is to demonstrate that a higher number

of layers leads to an improved expressibility.

As a first step, we compare to a small system with L = 2, i.e. four plaquettes, which

can be solved with exact diagonalization (cf. fig. 3.4). Due to the small lattice size, we

can contract the GGPEPS exactly by summing over all configurations of the gauge field

explicitly. Since we do not use Monte Carlo, we can separate the statistical errors from

theMonte Carlo simulation from the expressibility problems of the state. Amismatch in

energy after exact contraction must be a problem of the state. Figure 3.4 and the inset

therein show good agreement for states at high couplings where the electric energy is

the dominant contribution in the Hamiltonian (2.43). The ground state of the electric

Hamiltonian is the state with no electric excitations, i.e. the electric field is zero on

all links. We expect to approximate it well because it is the state that we obtain if

the operator A is equal to the identity. This happens if both parameters y = z = 0:

T(y = 0, z = 0) = 1. We observed that the values of y and z indeed approach zero as

the coupling increases.
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Figure 3.4: Convergence of the energy for an L = 2 system. The solid blue line is the

exact diagonalization (ED) result. The colored dots are exact contractions

(EC) of the ansatz state with varying number of layers of virtual fermions

on the links. The inset displays the relative error 𝜖r of the energy with

respect to the exact diagonalization results at high coupling.

While the high coupling regime matches well to the exact values, the low coupling

regime, which is dominated by the magnetic energy, is more challenging. States with

few layers show a divergent behavior at low couplings. The quadratic divergence is

caused by a lack of expressibility of states with few layers: The parameters approach a

constant for low coupling and the 1/g2 term in the Hamiltonian leads to the divergence.

An increase in the number of layers helps to systematically improve the states while

only linearly affecting the run-time.

The error around the transition g ≈ 1 does not decrease when additional layers are

used. We attribute this behavior to the specific ansatz that we are using. We do not

expect a Gaussian PEPS based ansatz to hold at criticality.

Figure 3.5 shows the energy density of the system for different lattice sizes for three

layers of the parameters. Due to the larger system sizes, we cannot contract the GG-

PEPS exactly. The Monte Carlo estimation uses 104 steps for the warm-up phase that is

performed without measurement and 105 steps for the sampling. Since the Monte Carlo

simulation has to be performed for each variational minimization step, the number of

Monte Carlo steps with measurements is kept rather small. Especially the calculation

of the electric energy, which features a Pfaffian, is expensive.

The estimates agree very well with the ED data for an L = 2 system over a large range

of the coupling. The deviations at the phase transition due to the ansatz as described

above. The deviation at very low coupling for large system sizes originates from the

fact that the minimization becomes increasingly costly. Especially the calculation of

the Pfaffian in the electric energy is computationally expensive. While all determinants

that appear in the calculation of norms can be calculated by updating previous results

if the gauge field is changed, the Pfaffian has to be recalculated in every step. The

Pfaffian is the single most expensive step in the algorithm. Since we are plotting the

energy density in relation to an L = 2 system, deviations can be either finite size

effects (in which case the MC points would be more correct than ED) or errors due to

the Monte Carlo sampling procedure.
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Figure 3.5: Finite size effects for different system sizes. The blue line is the exact data

for an L = 2 system. All data points are computed with VMC for different

system sizes using with three layers in the construction of the state.

Following previous works, we expect the theory to have two phases [86, 94]. Ac-

cording to Elitzur’s theorem [171], the expectation value of any operator that is not

gauge invariant will vanish, and thus a local order parameter is ruled out. Instead,

following Wegner and Wilson [66, 70], we can analyze the correlation in the different

phases by studying the Wilson loop. The corresponding operator is gauge invariant

and shows different scaling in the different phases of ZN theories. In the low-coupling

regime, which is dominated by the magnetic part HB of the Hamiltonian, the expec-

tation value of the Wilson loop follows a perimeter law which, to the lowest order in

perturbation theory [86], reads

⟨W (R1,R2)⟩ ∼ exp(−𝜅p2 (R1 + R2)) . (3.25)

Here, 𝜅p is a constant and 2 (R1 + R2) is the perimeter of the Wilson loop. The scaling

changes in the high coupling regime, where the electric energy is the dominant con-

tribution to the total energy and the Wilson loop operator scales with the area of the

curve. The area scaling reads to the lowest order in perturbation theory [86],

⟨W (R1,R2)⟩ ∼ exp (−𝜎R1R2) , (3.26)

where 𝜎 is the string tension. Since the potential of static charges, i.e. charges that

are not dynamically coupled to the gauge fields in the Hamiltonian, increases linearly

with the distance in this phase, it costs an infinite amount of energy to separate two

static charges. The two static charges are confined.

We can use the states that we obtained using the VMC procedure for an L = 6

lattice to evaluate the scaling behavior in the different regimes (cf. fig. 3.6). Here,

we used three layers in the minimization. The Wilson loop expectation values are

recomputed for the minimal parameters with 104 warm-up steps and 106 sampling

steps. By fitting eq. (3.26) to different Wilson loopsW (R1,R2) of a maximal size of L/2
and ∣R1 − R2∣ < 1, we can obtain the string tension of the states. The result of the fits for

different couplings is shown in fig. 3.6. The Z3 gauge theory can be mapped to a three

state Potts model [78] and the first order phase transition has been studied with Monte
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Figure 3.6: String tension for different value of the coupling. The string tension is

extracted by fitting the area law expectation to Wilson loops of different

size. The state is constructed with three layers of virtual fermions.

Carlo [165]. The plot shows that the string tension is almost zero in the low-coupling

phase and rises to a finite value in the high-coupling, confining phase. Around the

transition region, the minimization becomes difficult due to the ansatz we are using.

Thus, results in direct vicinity to the transition region might not be obtained for the

ground state and one has to be careful to use them for an interpretation of confining or

non-confining behavior [172]. The range of accessible couplings is limited from above

since the Wilson loop decays exponentially with size and coupling. The Monte Carlo

procedure cannot reliably resolve the expectation value of the Wilson loop in the high

coupling regime.

3.5 Discussion

We show that GGPEPS are promising ansatz states for ZN lattice gauge theories in two

spatial dimensions. Since the transition probability between two configurations of the

gauge field is given by the squared norm of a state, the sign problem is avoided. The

norm as well as the gradients for a given set of parameters can be efficiently computed

with the covariance matrix formalism leading to a scalable algorithm.

By contracting small systems exactly we show that the states themselves capture the

relevant physics well, although they are based only on a few parameters. We demon-

strate a systematic improvement of the energy by increasing the number of virtual

fermions on the links while impacting the run-time only linearly.

The variational optimization with Monte Carlo is very successful for large couplings,

but gets increasingly difficult for smaller couplings and larger lattices. In this regime,

the states have to approximate states dominated by the magnetic interaction in the

Hamiltonian. Since the ansatz is based on the electric vacuum on the links, this regime

is challenging. Additionally, larger lattices lead to higher run-times, especially in the

calculation of the Pfaffian in the electric energy.

We expect to be able to improve the results of the Monte Carlo simulation further by

changing to a more advanced sampling scheme. Currently, the algorithm updates only
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one gauge field at a time, which leads to a smaller relative change if the system size

increases. The usage of collective cluster updates [173, 174] or hybrid Monte Carlo

techniques [15] may lead to better convergence.

Additionally, the ansatz introduced in Ref. [158] allows for static charges and dy-

namic fermions. The introduction of static charges allows to measure the string tension

directly as an observable between two opposite charges and leads to another measure

of confinement which is especially beneficial at large couplings. Simulating dynamic

fermions presents the interesting possibility to study the behavior of mesonic strings.

Finally, the optimization in the weak coupling regime could be improved by starting

from a different initial state on the links. If the state on the links is more suited for the

magnetic Hamiltonian, the physics of the magnetic phase might be easier to capture

with fewer layers.
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Appendix

3.A Derivation of T

The fiducial operator (3.5) used in the GGPEPS construction (3.2) determines the sym-

metries of the state ∣𝜓⟩. We demand rotational invariance by 𝜋/2, translational invari-
ance when shifting by two sites due to the staggering and charge conjugation invari-

ance if we shift by one site. Since the parameterization was originally developed to

accommodate a U(1) gauge theory [156], the formulation obeys, additionally, a global

U(1) symmetry. Here, we state only the result

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 y z/√2 z/√2
−y 0 −z/√2 z/√2

−z/√2 z/√2 0 y

−z/√2 −z/√2 −y 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.27)

with y, z ∈ C. y and z are the only two independent parameters that remain. The ma-

trix is given in themode order {l, r, u, d}. The rows correspond to themodes {l+, r−, u−, d+},
and the columns to {l−, r+, u+, d−}. In this work, we restrict ourselves to y, z ∈ R.

3.B Formalism with multiple layers

We achieve a higher expressibility of the ansatz states by increasing the number of

virtual fermions on the links. Different layers of virtual fermions do not interact with

each other and have independent sets of parameters y(i) and z(i), where i is the index of
the layer. Each layer can be seen as an independent PEPS coupled to the same gauge

field. Since the layers are independent, the norm of the state ∣𝜓⟩ is the product of the
norms of its layers ∣𝜓i⟩:

⟨𝜓∣𝜓⟩ = ∏
i

⟨𝜓i∣𝜓i⟩ , (3.28)

where i is the index of the layer and runs from 1 to the number of layers. This con-

struction leads to a linear scaling with the bond dimension. The matrix size of the

covariance matrices stays unchanged because we do not add the parameters to the T

matrix. Instead, we consider multiple covariance matrices generated by different pa-

rameter matrices Ti. Thus, we have to perform parts of the calculation multiple times

with varying covariance matrices of the same size.

Since we layer only the virtual fermions, the computation of diagonal observables in

the gauge field does not change. Observables like the electric energy, however, need

more consideration. Due to the product structure of the ansatz state, we can write

the estimator of the electric energy as a product Fel = ∏
iF

(i)
el , where i is again the
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3.C Gaussian formalism

index of the layer. Each F(i)
el involves only the covariance matrices of layer i and can

be calculated with eq. (3.40).

Finally, the gradients for the squared norm and the explicit derivative of the electric

energy have to be adapted. The derivative of the squared norm enters the equations

only as a fraction of the squared norm [cf. eq. (3.20)], we only have to adapt the

expression

∂
∂𝛼i

∏
j
⟨𝜓j(G)∣𝜓j(G)⟩

∏
j
⟨𝜓j(G)∣𝜓j(G)⟩

=
∑

i
∏

i≠j
⟨𝜓j(G)∣𝜓j(G)⟩ ∂

∂𝛼i
⟨𝜓i(G)∣𝜓i(G)⟩

∏
j
⟨𝜓j(G)∣𝜓j(G)⟩

=
∂

∂𝛼i
⟨𝜓i(G)∣𝜓i(G)⟩

⟨𝜓i(G)∣𝜓i(G)⟩
.

(3.29)

Here, we move the derivative with respect to parameter 𝛼i ∈ {y, z} of layer i to the

respective layer i since all other parameters are independent of 𝛼i.
The gradient of the electric energy is adapted similarly because the derivative acts

only on one of the layers.

3.C Gaussian formalism

Given a Dirac mode c, we can construct the corresponding Majorana operators 𝛾(1)

and 𝛾(2) as

𝛾(1) = c + c†

𝛾(2) = i(c − c†) . (3.30)

The Majorana modes obey the anti-commutation relation {𝛾a, 𝛾b} = 2𝛿a,b. The con-

struction in eq. (3.2) uses only Gaussian operators, thus, we can formulate it in terms

of covariance matrices. We define the covariance matrix of a Gaussian state |𝛷⟩ in

terms of Majorana modes as

𝛤a,b = i

2
⟨[𝛾a, 𝛾b]⟩ = i

2

⟨𝛷| [𝛾a, 𝛾b] |𝛷⟩
⟨𝛷|𝛷⟩ . (3.31)

The construction of the Gaussian state is divided into two covariance matrices. We

separate the covariance matrix of the fiducial operators D from the covariance matrix

of the gauged projectors 𝛤in(G). This allows us to calculate the squared norm of the

state with eq. (3.32). During one Monte Carlo simulation, D stays constant and can

be calculated during the initialization. Changing the gauge field value on a link only

alters 𝛤in(G). We refer to Ref. [158] for more details on the Gaussian mapping.

In order to calculate the squared norm of the wave function, we use the following

identities [169]:

∫D𝜃 exp( i

2
𝜃TM𝜃) = in Pf (M)

∫D𝜃 exp(𝜂T𝜃 + i

2
𝜃TM𝜃) = in Pf (M) exp(− i

2
𝜂TM−1𝜂)

Tr(XY) = (−2)n ∫D𝜃D𝜇e𝜃T𝜇[X]G,𝜃[Y]G,𝜇 ,

(3.32)

where M is a complex antisymmetric 2n×2nmatrix and [X]G,𝜃 is the Grassmann repre-

sentation of the operator X in terms of Grassmann variables 𝜃. Equation (3.18) follows

directly from eq. (3.32).
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3.D Calculation of the electric energy and its

gradient for ZN

Since the electric energy is not diagonal in the group element basis, we cannot use the

equivalent of eq. (3.16) directly. We have to consider the computation of expectation

values for the electric energy more carefully.

3.D.1 Calculation of the expectation value of the electric

energy

Due to the translational invariance of the states and the Hamiltonian, it is sufficient

to calculate the expectation value of the electric energy over one link ℓ. The notation
for 𝜓(G) introduced in eq. (3.2) is changed to distinguish between the group element

q on link ℓ and all other group elements G to 𝜓(q,G). In the following, we focus on

the calculation of the expectation value ⟨Pℓ⟩; the extension to ⟨Pℓ + P†
ℓ ⟩ which appears

in the Hamiltonian (2.43) follows directly by complex conjugation. Since we are only

considering a single, fixed link for the rest of the calculation, we drop the index ℓ:

⟨P⟩ =
⟨𝜓∣P ∣𝜓⟩

⟨𝜓∣𝜓⟩

= ∑
q,q′,G

⟨q′∣P ∣q⟩
𝜓∗(G, q′)𝜓(G, q)

∣𝜓(G)∣2
p(G, q)

= ∑
q,G

𝜓∗(G, q − 1)𝜓(G, q)

∣𝜓(G)∣2
p(G, q)

= ∑
q,G
Fel(G, q)p(G, q) , (3.33)

where Fel(G) is the Monte Carlo estimator of the electric energy. From the second line

to the third line we use that P acts as a lowering operator on the gauge field states. The

remaining expression is the product of two wave functions that differ in terms of the

gauge field on one link. Using the explicit formulation of the state, we obtain [product

symbols as in eq. (3.2)]

𝜓∗(G, q′)𝜓(G, q) = ⟨𝛺v∣A†U†
(q′,G)𝜔U(q,G)A ∣𝛺v⟩

= ⟨𝛺v∣A†U†
(q,G)U(q̃)𝜔U(q,G)A ∣𝛺v⟩ .

(3.34)

Thus, we calculate the expectation value of the new operator U( ̃q)𝜔 with the density

matrix resulting from the original wave function 𝜓(G). Since we gauge only the right

and upper modes, we can focus on the gauging transformation U(q′) = exp(i𝛷r†
+r+) =

exp(i𝛷r†r) with 𝛷 = ±𝛿. Without loss of generality, we choose a right mode for the

computation. We consider only positive modes r+ for simplicity. The negative modes

r− are gauged with the same expression where 𝛷 is substituted by −𝛷. For increased

readability, we will skip the plus and minus signs of the modes in the following calcu-

lation:

U(q̃)𝜔 = ei𝛷r†r(1+ l†l)rr†ll†(1+ lr)
= rl + rr†ll† + ei𝛷l†lr†r + ei𝛷l†r† .
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We use the Majorana modes in eq. (3.30) to rewrite U( ̃q)𝜔 with p = 1 + ei𝛷 and m =
ei𝛷 − 1:

U( ̃q)𝜔 = 1

4
p [1− m

p
r1l1 − ir1l1 + m

p
r2l2 − ir2l1 + i

m

p
r1r2 + i

m

p
l1l2] + 1

4
p [−r1r2l1l2] .

(3.35)

Following [169], we replace the Majorana operators with Grassmann variables, to

calculate the overlap:

[U( ̃q)𝜔]G = (−m

p
𝜃r1𝜃l1) (m

p
𝜃r2𝜃l2) + (−i𝜃r1𝜃l2) (−i𝜃r2𝜃l1) + (im

p
)
2

𝜃r1𝜃r2𝜃l1𝜃l2 . (3.36)

Finally, we can formulate eq. (3.36) as a matrix for the full operator U( ̃q)𝜔 :

U( ̃q)𝜔 = 1

4
(1+ ei𝛷) exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

i

2
(𝜃r1 𝜃r2 𝜃l1 𝜃l2)

⎛⎜⎜⎜⎜⎜⎜
⎝

0 it −t −1
−it 0 −1 t

t 1 0 it

1 −t −it 0

⎞⎟⎟⎟⎟⎟⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

M(𝛷)

⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝜃r1
𝜃r2
𝜃l1
𝜃l2

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (3.37)

where t = tan(𝛷
2

). The covariance matrix M(𝛷) in eq. (3.37) of the r and l modes

replaces a part of the original covariance matrix 𝛤inthat belongs to the link that U(q̃) acts
on. Since one link consists of positive and negative modes, we will have to substitute

the single link with the direct sum M(𝛷) ⊕ M(−𝛷).
Due to the modification of the original covariance matrix for the projectors, we

have to adapt the calculation for the overlap of two wave functions. While the iden-

tities (3.32) still hold, eq. (3.18) cannot be used. Instead, we calculate the overlap

using

Tr(XY) = 2−n Pf (𝛤X)Pf (𝛤Y − 𝛤−1
X ) (3.38)

which follows from eq. (3.32). Here, X and Y are operators and 𝛤X and 𝛤Y are the

covariance matrices of X and Y in terms of Grassmann variables. If the operators

are Gaussian, these representations coincide with the covariance matrices in terms of

Majorana fermions.

The Grassmann representation of the involved operators is

[𝜌]G,𝜇 = 1

2n
exp( i

2
𝜇TD𝜇)

[U†
q𝜔]G,𝜃 =1

2
(1+ cos(𝛷)) 1

2n
exp⎛⎜

⎝
i

2
𝜃T ⎛⎜

⎝

nlinks−2 copies
⨁
l

𝛤in(ℓ)⎞⎟
⎠

𝜃⎞⎟
⎠

× exp( i

2
𝜃TM(𝛷)𝜃) exp( i

2
𝜃TM(−𝛷)𝜃) .

(3.39)

Here, 𝛤in(ℓ) is the covariance matrix of link ℓ. Thus, we have to use an adapted pref-

actor for eq. (3.38):

Tr(U†
q𝜔𝜌) = 1

2
(1+ cos(𝛷))2−n Pf (D)Pf ( ̃𝛤in − D−1) ,
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3.D Electric energy calculation

where ̃𝛤in is the modified covariance matrix of the links as defined in eq. (3.39). In the

case of a Z3 gauge, we know that cos(𝛷) = −1
2
and obtain

Tr(U†
g𝜔𝜌) = 1

4
2−n Pf (D)Pf ( ̃𝛤in − D−1) . (3.40)

This expression can be further simplified since the Monte Carlo estimator in eq. (3.33)

divides by the square of the norm, and we obtain

Fel(G) = 1

4

Pf ( ̃𝛤in − D−1)

√det (D−1 − 𝛤in)
. (3.41)

This is the expression stated in the main text as eq. (3.19). In the case of a pure gauge

theory, eq. (3.41) can be further simplified with D−1 = −D.

3.D.2 Calculation of the gradient of the electric energy

In contrast to the calculation of the gradient of the Wilson loop, we cannot neglect the

first term in eq. (3.20). The estimator of the electric energy depends explicitly on the

parameters of the ansatz. Thus, we have to build the derivative of Fel in eq. (3.41),

the estimator of the electric energy, with respect to the parameters 𝛼 ∈ {y, z}.

∂
∂𝛼Fel(G,D) = 1

2
Fel(G,D) [Tr(D−1∂D

∂𝛼 ) + Tr(( ̃𝛤in − D−1)−1
D−1∂D

∂𝛼D
−1)

+Tr(𝛤in
∂D
∂𝛼D

−1 (D−1 − 𝛤in)−1)] .
(3.42)

As stated in the main text, the expression for ∂D
∂𝛼 is an analytical expression. Since D

is a covariance matrix of Majorana fermions in a pure gauge theory, D−1 = D† = −D

holds. Thus, the first trace of eq. (3.42) is zero.
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4 Non-Gaussian Variational
States

4.1 Motivation

Gauged Gaussian PEPS (cf. chapter 3) are one possible ansatz state to variationally

treat lattice gauge theories. In this chapter, we will change the focus towards a different

class of states while staying on the lattice.

As we discussed in chapters 2 and 3, the evaluation of gauge theories in the contin-

uum is often challenging, and a lattice regularization enables the numerical evaluation

of observables. The evaluation of lattice gauge theories in the action formalism with

Monte Carlo methods reaches its limits if a chemical potential [80] is introduced or

time dynamics are considered. The Hamiltonian formalism, however, keeps a notion

of time and enables the explicit time-evolution of states.

Following the idea of a Hamiltonian approach, we explored a tensor network ap-

proach in two spatial dimensions in chapter 3. While the capabilities of finding the

ground state are promising, a caveat of tensor networks is the scaling of entanglement

during time evolution. Since excited states do not follow the area-law of the ground

state, the bond dimension has to grow to capture time evolution accurately. Due to the

logarithmic connection between entanglement and virtual bond dimension, the bond

dimension must grow exponentially for a polynomially growing entanglement [175–

177]. This limits tensor network simulation for time dynamics typically to small times.

Other variational states do not necessarily have this restriction.

Here, we introduce complex periodic Gaussian states, a generalization of periodic

Gaussian states, first proposed in [92] to prove confinement in the weak-coupling limit

of 2+1d compact QED. We use them to study (2+1)-dimensional compact quantum

electrodynamics (compact QED), a U(1) theory similar to the theory studied in chap-

ter 3. The theory is good starting point for the study of higher dimensional lattice

gauge theories since it shares some features with (3+1)-dimensional quantum chro-

modynamics, i.e. it is in a confined phase for all values of the coupling constant [172].

The content of this chapter is based on Ref. [2]. Here, we focus on the computational

aspects of the publication. The physical implications are discussed in detail in the

publication and will be part of Julian Bender’s PhD thesis.
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4.2 Executive Summary

Since exact diagonalization methods become infeasible in higher dimensions for rea-

sonable system sizes, in particular due to the infinite local Hilbert space of the gauge

field, it seems unavoidable to use variational techniques. In (1+1) dimensions the

infinite dimension can be avoided either by integrating out the gauge field non-locally

[103, 178, 179] or by using the natural restriction of gauge symmetry which makes

the dimensions finite [180].

In this chapter, we introduce complex periodic Gaussian states and study compact

quantum electrodynamics in (2+1) dimensions. Here, the gauge field cannot be inte-

grated out, and we have to consider it explicitly in our ansatz. As expectation values

with respect to periodic Gaussian states cannot be evaluated analytically, the authors

of reference [92] used Feynman diagram techniques to evaluate all relevant quantities

in the weak-coupling regime. In contrast to that approach, we develop a numerical

approximation scheme to evaluate these states for the whole coupling region. Further-

more, the extension of the variational manifold to complex periodic Gaussian states

enables the study of real-time dynamics. Importantly, the states do not require any

truncation in Hilbert space. Thus, we can explicitly study truncation effects which

are occurring in other approaches and give estimates in which coupling regimes the

truncations are justified.

In [2], we benchmark the energy convergence of the states and study real-time dy-

namics after quenches. We establish the existence of one confining phase for all cou-

plings also in the Hamiltonian picture (after it had been proven in the action formal-

ism [172]). Static charges provide a direct probe for the string tension and work as

an additional indicator for confinement at large coupling. At low coupling, the string

tension can be computed with high accuracy from the Wilson loop.

In this chapter, we focus on the numerical approximation scheme and its imple-

mentation. Depending on the coupling region, the variational parameters in the state

demand a different evaluation strategy. For small couplings, the infinite sums in the

periodic Gaussian formulation can be split into orders, similar to perturbation scheme.

For large couplings, however, the negative exponents of the terms become small and

convergence is faster with an inverse scheme in the exponentials. Both schemes are

presented and their respective range of applicability is benchmarked in fig. 4.3.1. Fig-

ure 4.3.2 shows an explicit comparison of the ansatz with exact results for a single

plaquette. The physical results are presented in detail in [2] and the thesis by Julian

Bender.

The chapter is structured as follows: In section 4.3, we introduce the variational

ansatz. The model is introduced as part of the preliminaries in section 2.2.1. In sec-

tion 4.4, we detail the numerical evaluation of the ansatz. In section 4.5, we discuss

the implications of the evaluation. For further details, we refer to Ref. [2].
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4.3 Theoretical Framework

In the preliminary material (cf. section 2.2.1), we presented a formulation of compact

QED in terms of plaquette variables. The main idea is to split the electric field into

a transverse and a longitudinal component. Subsequently, the U(1) gauge theory can

be reformulated in terms of plaquette variables that obey only one global constraint

(cf. eq. (2.42)) instead of many local ones. Our ansatz is based on this formulation in

terms of 𝜃p since a global constraint is easier to handle than many local ones.

The ansatz is used for two distinct tasks in the simulation. First, we need to find

the ground state of the U(1) Kogut-Susskind Hamiltonian. In a second step, we will

analyze the behavior of observables after quenches from one coupling to another. The

construction is based on a periodic Gaussian state [92], and we enhance the express-

ibility by adding an imaginary part to the wave function to treat the real-time dynamics

in the second step. For now, we start with a complex Gaussian (CG)

𝜓CG ({xp}) ≡ exp⎛⎜
⎝

−1
2

∑
p,p′

xpApp′xp′ − i∑
p

𝜖pxp⎞⎟
⎠

(4.1)

with xp ∈ ℝ and p = (p1, p2), p1, p2 ∈ [0, .., L − 1].
As a part of the confinement analysis, we use static charges in the system directly

access the string tension. The static charge configuration in the system fixes the linear

part in the exponent, i.e. 𝜖p (for further details see section 2.2.1 and Appendix A of [2]).

The coupling matrix App′ in eq. (4.1) is defined by the variational parameters

App′ ≡ 1

𝜋L2
L−1
∑

k1,k2=0
exp⎛⎜

⎝
2𝜋i

(p1 − p′
1) k1 + (p2 − p′

2) k2
L

⎞⎟
⎠

(𝛾R
k + i𝛾I

k
) , (4.2)

where {𝛾R
k

} couples to the real part and {𝛾I
k
} couples to the imaginary part. For the

rest of this chapter, we introduce the shorthand notation pk ≡ 2𝜋p1k1+p2k2
L

(inspired

by a scalar product). The factor of 1/𝜋 in eq. (4.2) is chosen for later convenience.

If we consider the system without static charges, it is translational invariant. This

invariance is broken when static charges are introduced. Since this influence is already

taken care of by 𝜖p, the quadratic part A is assumed to stay translationally invariant.

Given the translational invariance, we can treat the system using Fourier components

xk = 1
L

∑
p e

ipkxp and the quadratic coupling in the exponential becomes

∑
p,p′

xpApp′xp′ = 1

𝜋 ∑
k

∣xk∣2 (𝛾R
k + i𝛾I

k
) . (4.3)

In order to guarantee convergence of the ansatz wave function 𝜓CG, we require 𝛾R
k >

0∀k. Since ∣xk∣2 = ∣x−k∣2 after the Fourier transform, we can eliminate some redun-

dancy in the variational parameters 𝛾R/I
k and 𝛾R/I

−k . The R/I notation is a shorthand to

avoid writing the equations for the parameters 𝛾I and 𝛾R separately.

We define the equivalence relation

k ∼k k
′ if k1 = −k′

1 (mod L)
and k2 = −k′

2 (mod L)
(4.4)
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and use the quotient set K ≡ {[0, .., L − 1]2 (0,0)} /∼k to define a new set of inde-

pendent variational parameters, {𝛾R/I
k

}
k∈K

. The independence of the variational pa-

rameters will enable us later to apply the time dependent variational principle (see

section 4.3.1) for time-evolution after quenches.

To construct the actual ansatz state for compact U(1) gauge fields (𝜃p ∈ [−𝜋, 𝜋]),
we sum over infinitely many complex Gaussian states, thus ensuring periodicity

𝜓CPG ({𝜃p}) ≡ ∏
p

⎛⎜⎜
⎝

+∞
∑

Np=−∞

⎞⎟⎟
⎠

𝜓CG ({𝜃p − 2𝜋Np}) 𝛿 ⎛⎜
⎝

∑
p

𝜃p − 2𝜋Np
⎞⎟
⎠

. (4.5)

The delta function needs to be included in order to satisfy condition (2.42) for physical

states. To shorten notation, we will denote the product over infinite sums ∏
p

∑+∞
Np=−∞

by ∑{Np} and the product over integrals ∏
p

∫𝜋
−𝜋 d𝜃p by ∫𝜋

−𝜋 D𝜃.
The name of periodic Gaussian states can be slightly misleading. Although the con-

struction of the state features Gaussian parts in the sum, the resulting state 𝜓CPG is

not Gaussian since a sum of Gaussian is not Gaussian itself. Thus, we expect that the

descriptive power of the state is not limited to free theories.

The Gaussian nature of parts of the wave function, however, is exploited when com-

puting expectation values of observables O. We combine the integral over 2𝜋 with one

of the two infinite sums to an integration over the real axis

⟨𝜓CPG∣O∣𝜓CPG⟩ = ∑
{Np}

𝛿 ⎛⎜
⎝

∑
p

Np
⎞⎟
⎠
fO({Np}) (4.6)

with

fO({Np}) ≡
+∞
∫

−∞
D𝜃𝜓CG (𝜃p − 2𝜋Np)O (𝜃p) 𝜓CG (𝜃p) 𝛿 ⎛⎜

⎝
∑
p

𝜃p⎞⎟
⎠

. (4.7)

The integral fO({Np}) can be calculated analytically, while the remaining infinite sum

needs to be evaluated numerically. The evaluation of the infinite sum is the main topic

in section 4.4.

Exemplary, we demonstrate the procedure for the norm of the state ⟨𝜓CPG∣𝜓CPG⟩.
The computation of observables follows analogously; further details are presented in

Appendix C of [2]. After calculating the integrals analytically, the remaining function

f1 ({Np}) is

f1({Np}) = ∏
k≠0

√
𝜋
𝛾R
k

exp⎛⎜
⎝
2𝜋i∑

p

𝜖pNp
⎞⎟
⎠
exp⎛⎜

⎝
−𝜋 ∑

k

𝛾k∣Nk∣2⎞⎟
⎠

(4.8)

where Nk ≡ 1
L

∑
p exp (ipk)Np is the discrete Fourier transform of Np and 𝛾k ≡ 𝛾R

k +
(𝛾I

k
)2 (𝛾R

k
)−1

. The parameters 𝛾k determine the prefactor of the exponential decay of

terms in eq. (4.6) with increasing ∣Nk∣2.
The rest of the computation is a numerical problem. The goal is to evaluate the sum

in eq. (4.8) as precisely as possible. One benefit of the sum is that higher order terms

in ∣Nk∣ are suppressed exponential.

In a first step, we analyze the structure of the terms. The configurations Np can be

ordered such that within each order configurations only change up to permutations.
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Although Np ∈ ℤ, we notice that all relevant configurations contain mostly zeros. For

better readability, we identify orders by their non-zero elements, e.g. {N}1 is the set

of all permutations of the configuration N′ defined by N′
p=0 = 1 and N′

p≠0 = 0, i.e.

{N}1 ≡ SN′. Orders with more non-zero terms are exponentially suppressed due to the

form of eq. (4.8).

An evaluation of the full sum (including all terms) is not possible on a computer

since it includes infinitely many terms. In principle, there are multiple ways to deal

with a sum. On option would be a heuristic approach like Monte Carlo sampling. By

defining a weight for each configuration, we can obtain an estimator for the full sum.

Here, we decided to use a truncation strategy instead. Since we know that higher

orders are exponentially suppressed, we can avoid the statistical error of Monte Carlo

sampling and sum instead the important contributions at low orders completely. The

quality of the approximation when truncating the sum depends on the parameters 𝛾k.
With increasing values of 𝛾k, the sum can be approximated well by orders with small

Euclidean norm, ∥Np∥
2

2
= ∑

p
∣Np∣

2
= ∥Nk∥22. The argument is actually slightly more

involved. On one hand, terms of higher orders are suppressed due to the decaying

exponential. In contrast, higher orders have more combinations in the permutations.

The higher number of permutations, however, cannot compensate for the exponential

suppression (this would not be the case if the 𝛾k were arbitrarily small).

Thinking in terms of orders of non-zero contributions in N, the constraint 𝛿 (∑
pNp)

is essential as it excludes many orders, e.g. {N}1 or {N}−1. The first order with non-

zero norm is {N}1,−1. Upon closer inspection, the sum in eq. (4.6) can be expanded in

orders containing only pairs of 1, −1:

⟨𝜓CPG∣𝜓CPG⟩ = ∏
k≠0

√
𝜋
𝛾R
k

∑
{Nk=0=0}

e
2𝜋i∑p 𝜖pNpe−𝜋 ∑

k
∣Nk∣2𝛾k

= ∏
k≠0

√
𝜋
𝛾R
k

⎛⎜⎜
⎝
1+ ∑

{N}1,−1

e
2𝜋i∑p 𝜖pNpe−𝜋 ∑

k
∣Nk∣2𝛾k

+ ∑
{N}1,1,−1,−1

e
2𝜋i∑p 𝜖pNpe−𝜋 ∑

k
∣Nk∣2𝛾k + ⋯⎞⎟⎟

⎠
.

(4.9)

Here, ∑{Nk=0=0} denotes the sum over the set of all Np configurations with Nk=0 = 0,

i.e. fulfilling the global constraint. If the parameters of the wave function 𝛾k become

sufficiently large, higher orders of the type {N}2,−2 or {N}−2,1,1 are exponentially sup-
pressed as well as orders with many 1, −1 pairs. Thus, the above expansion can be

truncated after the first few terms. The remaining orders are evaluated numerically.

The fact that configurations only change up to permutations within one order can be

used to highly parallelize the computation. Further details about the parallelization

scheme is presented in section 4.4. On an 8 × 8 lattice we are able to compute the

first three orders exactly. This procedure works well for configurations of variational

parameters with 𝛾k ≳ 1. However, in the intermediate regime 𝛾k ≈ 1 more orders are

required to obtain good convergence since the exponential suppression is not as pro-

nounced. In these cases, higher orders are included with a uniform sampling approach.

Since in all of our numerical simulations 𝛾k parameters are of the same order of mag-

nitude and the Np configurations only change up to a permutation within an order, a

uniform probability distribution is a good ansatz for the exponential in eq. (4.8). This

is only the case for sampling within one order; it will fail if we try to sample the whole
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sum since exponentials from different will contribute with a different weight. This

combined approach of exact evaluation of the truncated sum and uniform sampling

has the advantage that it introduces almost no error for most of the variational man-

ifold (up to truncated orders which are exponentially suppressed). Even for regions

where uniform sampling is required the error is still suppressed since the approach is

only used to evaluate higher order contributions. For a detailed analysis of the errors

resulting from sampling and truncation, see section 4.4.

The analysis above is based on the assumption that higher order contributions are

strongly exponentially suppressed due to 𝛾k ≳ 1. When the parameters become small,

the approximation fails. However, we can exploit that ⟨𝜓CPG∣𝜓CPG⟩ can be identified

with a multidimensional Riemann theta function [181]

𝜃(z|𝛺) = ∑
N∈ℤg

e2𝜋i(z⋅N+ 1
2
N⋅𝛺⋅N) (4.10)

where z ∈ ℂg, 𝛺 ∈ ℂg×g, such that 𝛺 = 𝛺T and Im(𝛺) is strictly positive definite. By

rewriting the delta function as the limit of a Gaussian, we can bring ⟨𝜓CPG∣𝜓CPG⟩ into
this form and exchange the limit with the infinite sum due to uniform convergence. We

exploit the invariance of the Riemann theta function under modular transformations,

in particular the following relation holds (for details see [181])

𝜃 (z|𝛺) = 1

√det (−i𝛺)
e−i𝜋z⋅𝛺⋅z𝜃 (𝛺−1z| − 𝛺−1) . (4.11)

Combining the two equations, we obtain

⟨𝜓CPG∣𝜓CPG⟩ = ∏
k≠0

√
𝜋

𝛾R
k𝛾k

∑
{Np}

exp⎛⎜
⎝

−𝜋 ∑
k

∣Nk − 𝜖k∣2𝛾−1
k

⎞⎟
⎠

≡ ∑
{Np}

finv,1 ({Nk≠0}) (4.12)

with 𝛾−1
0 = 0.

In comparison to the earlier formulation, the exponential weight depends now on

𝛾−1
k . In principle, it allows to approximate the sum with a limited number of orders

for sufficiently small 𝛾k. However, the sum is not well-defined since all constant con-

figurations Np = c(1,1, ...,1) have weight one for c ∈ ℤ. Fortunately, all finv,O({Nk≠0})
are independent of Nk=0 (as a result of the global constraint on physical states), and all

these configurations can be factored out such that they cancel when calculating expec-

tation values. We formulate this more rigorously by defining an equivalence relation

for Np configurations

Np ∼1 N
′
p if ∃ c ∈ ℤ s.t. Np − N′

p = c(1,1, ...,1) . (4.13)

When calculating expectation values of observables only a sum over representatives of

this equivalence relation is required

⟨𝜓CPG∣O∣𝜓CPG⟩
⟨𝜓CPG∣𝜓CPG⟩

=
∑{Np}/∼1

finv,O({Nk≠0})

∑{Np}/∼1
finv,1({Nk≠0})

. (4.14)
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If we choose the representative to be the one closest in norm to the Np = 0 configura-

tion, we can expand the sum again in orders having mostly 0’s. In this case we have

no constraint so that all orders must be taken into account.

Now, we have two ways to evaluate the sum, one in the large parameter regime and

one in the low parameter regime. Depending on the parameters, we can adapt the

evaluation method. To check the validity of both numerical approximation schemes,

we ensure that they agree in the parameter region 𝛾k ≈ 1.

To illustrate that both approximation schemes complement each other, we give the

variational energy of 𝜓CPG with respect to the Kogut-Susskind Hamiltonian given in

eq. (2.41), written both in the infinite sum representation for high and for low 𝛾k

⟨𝜓CPG∣HKS∣𝜓CPG⟩
⟨𝜓CPG∣𝜓CPG⟩

=EC + g2

4𝜋 ∑
k

𝛾k (4− 2 cos(2𝜋k1
L

) − 2 cos(2𝜋k2
L

))

− g2

2
∑
k

𝛾2k (4− 2 cos(2𝜋k1
L

) − 2 cos(2𝜋k2
L

)) ⟨∣Nk∣2⟩

+ 1

g2
∑
p

⎛⎜⎜
⎝
1− e

− 𝜋
4L2

∑
k≠0

(𝛾R
k
)−1

⟨(−1)Np cosh⎛⎜
⎝

𝜋 ∑
k

Re (Nkb
p
k
)⎞⎟
⎠

⟩⎞⎟⎟
⎠

(4.15)

with b
p
k = 1

L
𝛾I
k

(𝛾R
k

)−1
e−ipk. In eq. (4.15), we use the following expressions for the

norm

⟨∣Nk∣2⟩ ≡
∑{Nk=0=0} exp (2𝜋i∑p 𝜖pNp) exp (−𝜋 ∑

k′ ∣Nk′ ∣2𝛾k′) ∣Nk∣2

∑{Nk=0=0} exp (2𝜋i∑p 𝜖pNp) exp (−𝜋 ∑
k′ ∣Nk′ ∣2𝛾k′)

= 1

2𝜋𝛾−1
k

(4− 2 cos(2𝜋k1
L

) − 2 cos(2𝜋k2
L

))

− 𝛾−2
k

∑{Np}/∼1
exp (−𝜋 ∑

k′ ∣Nk′ − 𝜖k′ ∣2𝛾−1
k′ ) ∣Nk − 𝜖k∣2

∑{Np}/∼1
exp (−𝜋 ∑

k′ ∣Nk′ − 𝜖k′ ∣2𝛾−1
k′ )

(4.16)

and the expectation value of the hyperbolic cosine

⟨(−1)Np cosh⎛⎜
⎝

𝜋 ∑
k

Re (Nkb
p
k
)⎞⎟
⎠

⟩

=
∑{Nk=0=0}(−1)Np cosh (𝜋 ∑

k Re (Nkb
p
k
)) exp (2𝜋i∑p 𝜖pNp) exp (−𝜋 ∑

k
∣Nk∣2𝛾k)

∑{Nk=0=0} exp (2𝜋i∑p 𝜖pNp) exp (−𝜋 ∑
k

∣Nk∣2𝛾k)

=
∑{Np}/∼1

e
−𝜋 ∑

k
(∣Nk−𝜖k− 1

2

p

k
∣
2
− 1
4
∣bpk∣2)𝛾−1

k
cos(𝜋 ∑

k 𝛾−1
k Re [(Nk − 𝜖k − 1

2

p

k
) bpk])

∑{Np}/∼1
exp (−𝜋 ∑

k
∣Nk − 𝜖k∣2𝛾−1

k
)

(4.17)

with 1
2

p

k
= 1

2L
e−ipk. Finally, we can set 𝛾I

k = 0∀k in the expressions for high 𝛾R
k ,

i.e. with the sums ∑{Nk=0=0}. The resulting expression agrees with the computations

given in [92] up to redefinitions. This is expected since 𝛾I
k = 0∀k leads back to

periodic Gaussian states with real coefficients.
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Figure 4.3.1: Evaluation of the complex periodic Gaussian states in different coupling

regimes on a 6 × 6 lattice. The standard method performs best at small

couplings when the coefficients 𝛾k are big. At large couplings, the inverse
method yields more reliable results.

In fig. 4.3.1, we compare the different evaluation methods in different coupling

regimes. The idea to use a complex periodic Gaussian state as an Ansatz is a varia-

tional method implying that it should be impossible to energies smaller than the true

ground state energy of the system. However, this implication requires the correct

evaluation of the state. As described above, the standard approximation (blue dots

in fig. 4.3.1) in orders breaks down if the coefficients 𝛾k are becoming too small (at

couplings g2 ≤ 1.1). For small couplings, the standard evaluation method works well

because higher order have a negligible contribution. At larger couplings, however, the

contributions become sizable and the evaluation of the Ansatz becomes unreliable. In

this coupling region, i.e. for small values of 𝛾k, the inverse scheme (orange plus signs

in fig. 4.3.1) is preferable. In the intermediate regions of couplings around g2 ≈ 1.1
both evaluation schemes agree, as we would expect.

To check the validity of the mixed evaluation scheme, we compare against an exact

solution. A single plaquette of the system can be solved exactly in terms of Mathieu

functions (for details see [2]). In fig. 4.3.2, we see excellent agreement between the

exact solution and the complex periodic Gaussian state. At intermediate couplings

around g2 ≈ 1.1, which are challenging for both the standard and the inverse method,

the deviations reach a maximal deviation of ≈ 0.5%. The evaluation of the state works

reliable, since we never reach energies smaller than the exact solution.

The convergence of the infinite sums, and subsequently the ansatz, is determined

by 𝛾k = 𝛾R
k + (𝛾I

k
)2 (𝛾R

k
)−1

or 𝛾−1
k , respectively. For real-time evolutions, e.g. a

quantum quench, (𝛾I
k
)2 will typically become large and so will 𝛾k, irrespective of the

real part 𝛾R
k . This allows a truncation of the expansion in eq. (4.9) already after the

first term such that everything can be evaluated without resorting to sampling. Thus,

the ansatz is well suited for real-time evolution compared with other methods where

computational hurdles make it difficult to reach long times.
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Figure 4.3.2: Comparison of the exact ground state energy of one plaquette and the

approximation with a complex periodic Gaussian state. The inset shows

the relative error of the Ansatz.

4.3.1 Time-dependent variational principle

In addition to static phenomena, we aim to study the time evolution of the system af-

ter quenches. One option to perform time evolution is the time-dependent variational

principle (TDVP). Here, the equations of motion are projected onto the tangent plane

of our variational manifold. For every variational parameter 𝛾R/I
k , we define a corre-

sponding tangent vector ∣𝜓R/I
k

⟩ ≡ ℙ𝜓 ( ∂
∂𝛾R/I

k

∣𝜓CPG⟩) where ℙ𝜓 ensures orthogonality to

∣𝜓CPG⟩

ℙ𝜓 (∣𝜓⟩) ≡ ∣𝜓⟩ − ⟨𝜓CPG∣𝜓⟩ ∣𝜓CPG⟩ . (4.18)

By restricting the momenta k of the variational parameters to the set K defined in

eq. (4.4), all tangent vectors become linearly independent. This independence enables

us to invert the Gram matrix Gk′k ≡ ⟨𝜓R
k′ ∣𝜓R

k
⟩ with k,k′ ∈ K. Having a well-defined

inverse is not always the case for the Gram matrix. If the parameters are not indepen-

dent of each other, one has to resort to approximate methods to obtain an approximate

inverse like the minimal residual method. Since our variational manifold is Kähler, we

can express the time evolution of the variational parameters 𝛾R/I
k (k ∈ K) [182]

i (𝛾̇R
k + i𝛾̇I

k
) = 1

2
∑
k′∈K

(G−1)
kk′

⎛⎜
⎝

∂E
∂𝛾R

k′
+ i

∂E
∂𝛾I

k′

⎞⎟
⎠

(4.19)

with E ≡ ⟨𝜓CPG∣HKS∣𝜓CPG⟩
⟨𝜓CPG∣𝜓CPG⟩ the variational energy in eq. (4.15) and 𝛾̇ ≡ ∂𝛾

∂t . The formula

for the calculation of the Gram matrix and the gradient of the variational energy can

be found in Appendix C of [2].
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4.4 Computational Considerations

In this section, we review the numerical evaluation of complex periodic Gaussian states

in more detail. As stated above, the region with 𝛾k = 𝛾R
k + (𝛾I

k
)2 (𝛾R

k
)−1 ≈ 1 is the

most difficult to evaluate since the exponential decays slowly in both formulations (di-

rect and inverse in 𝛾k). Since the variational ground state with 𝛾I
k = 0 varies from

high 𝛾R
k for low couplings to low 𝛾R

k for large couplings, there is a transition region

at g2 ∼ 1.1 where 𝛾k ≈ 1. Thus, we choose this regime to study the quality of the

approximations of the infinite sums in this regime. Concretely, we analyze the con-

vergence of the ground state energy (4.15) on an 8×8 lattice without static charges at
for two couplings. First, we consider g2 = 1.1 which is the highest coupling where the

high 𝛾k approximation is used. Second, we study the convergence for g2 = 1.2 which

is the lowest coupling for we use the low 𝛾k approximation. For all other considered

couplings the contributions to infinite sums decay faster with higher orders compared

to one of the two examples discussed below.

Using 𝛾I
k = 0 and 𝜖p = 0, the expressions for the variational ground state at g2 = 1.1

simplifies to

Iel ≡ ∑
{Nk=0=0}

e−𝜋 ∑
k

∣Nk∣2𝛾R
k ∑

k

(𝛾R
k

)2 ∣Nk∣2 (4− 2 cos(2𝜋k1
L

) − 2 cos(2𝜋k2
L

)) (4.20)

for the electric energy,

Imag ≡ ∑
{Nk=0=0}

e−𝜋 ∑
k

∣Nk∣2𝛾R
k ∑

p

(−1)Np (4.21)

for the magnetic energy and the normalization

I0 = ∑
{Nk=0=0}

e−𝜋 ∑
k

∣Nk∣2𝛾R
k . (4.22)

In total, we include orders with Np configurations of up to 8 pairs of {1, −1} and

the rest zeros. The first three orders are computed exactly and the remaining five

by uniform sampling. Additionally, we compute exactly the orders {N}2,−1,−1 and

{N}−2,1,1 to show they have negligible contributions. The configuration of orders like

{N}2,−1,−1 and {N}−2,1,1 differ only by a minus sign, and they can be evaluated together

by computing for every permutation not only the contribution of Np but also of −Np.

Therefore, from now on orders which are not closed under reflection will also include

all their permutations multiplied by minus one. This is heavily used in the low 𝛾k
approximation.

The exact evaluation of orders is based on an algorithm which iteratively generates

new permutations of a multi-set in O(1) time [183], i.e. the time to generate a new

permutation is independent of the permutation size. It is much smaller than the time

needed to do computations with a permutation which allows to highly parallelize the

process and reach higher orders. The algorithm uses a combination of generators [184]

and the multiprocessing [185]. In Python, the global interpreter lock [186] prevents

the execution of multithreaded code. Thus, we use process-based parallelism instead

of thread-based parallelism.

Before forking the processes, we assign a range of configurations to each process.

Since the generation of samples is cheap, we allocate an independent generator for
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Figure 4.4.1: Contributions of different orders of Np configurations to the infinite sums

Iel (a) and Imag (b) appearing in the high 𝛾k approximation of the varia-

tional energy. Every bar represents the summed contributions of all Np

configurations containing a certain number of (1,-1) pairs and the re-

maining entries zero. Orders which are not of this type have a negligible

contribution, e.g. {N}−2,1,1 has a summed contribution to Iel of 0.076 and
a summed contribution to Imag of 0.23.

each process and move the generator to the beginning of the assigned interval. When

the process has evaluated all configurations, the results is added to a value in shared

memory. Thus, the amount of communication among the processes in minimized and

the respective computation can run independently. The major advantage of using

a generator instead of computing all permutations beforehand is memory-efficiency.

By generating the configurations during the computation, we never have to store all

configurations in main memory.

The evaluation of an observable with respect to a set of permutations {N} with uni-

form sampling is based on the approximation:

∑
Np∈{N}

O(Np) ≈ p

s
∑
Np∈S

O(Np) (4.23)

where S is a set of s randomly drawn Np configurations from {N} and p the number

of permutations within this order. For all orders which are computed with uniform

sampling we use s = 108 in the high 𝛾k approximation and s = 107 in the low 𝛾k
approximation. The contributions to Iel and Imag for the high 𝛾k approximation are

displayed in fig. 4.4.1. We do not show this analysis for the normalization since its

contributions decay faster than the ones for Iel and Imag. The errors due to uniform

sampling are too small to be shown in the plot, the biggest error occurs in the order with

four pairs of {1, −1} which has a contribution of 347.54(15) to Iel and of 622.70(24)
to Imag.

As a second example, we consider the evaluation method of inverse 𝛾k. For the

variational ground state at g2 = 1.2, the infinite sums in eq. (4.15) reduce to

Jel = ∑
{Np}/∼1

e−𝜋 ∑
k

∣Nk∣2(𝛾R
k
)−1

∑
k

(4− 2 cos(2𝜋k1
L

) − 2 cos(2𝜋k2
L

)) ∣Nk∣2 (4.24)
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Figure 4.4.2: Contributions of different orders of Np configurations to the infinite sums

Jel (a) and Jmag (b) appearing in the low 𝛾k approximation of the varia-

tional energy. Due to absence of a constraint, all Np configurations need

to be considered. For better overview, the orders are organized in groups:

P denotes orders which contain a growing number of 1’s. Since Np and

−Np are evaluated together, P also represents orders with a growing num-

ber of −1’s. M(1)P contains orders whose non-zero elements are a single

−1 and a growing number of 1’s. The first order inM(1)P contains a pair

of (1,-1) as non-zero elements. M(2)P is structured in the same way as

M(1)P but with two −1’s. Analogously for the other groups. The Np = 0
configuration (denoted as 0) has vanishing contribution to Jel but a non-

zero contribution to Jmag.

for the computation of the electric energy,

Jmag = ∑
{Np}/∼1

∑
p

e
−𝜋 ∑

k
∣Nk− 1

2

p

k
∣
2
(𝛾R

k
)−1

(4.25)

with 1
2

p

k
= 1

2L
e−ipk for the computation of the magnetic energy and

J0 = ∑
{Np}/∼1

e−𝜋 ∑
k

∣Nk∣2(𝛾R
k
)−1

(4.26)

for the normalization. Since we do not have a global constraint in the low 𝛾k approxi-
mation, more orders contribute to the infinite sums. The contributions to Jel and Jmag

of different orders are given in fig. 4.4.2. The errors are again too small to be displayed,

the biggest one occurs in the order {N}−1,1,1,1,1,1 with contributions of 15.22(1) to Jel
and of 44.07(4) to Jmag.

Both approximation schemes decay reasonably well with higher orders and the trun-

cation of even higher orders can be justified. Moreover, the errors introduced due to

uniform sampling are small, in particular since the lowest orders were still calculated

exactly. The algorithm we applied during computations to decide with which approx-

imation method an expectation value should be evaluated was to select higher orders

and compute them by uniform sampling with a low sample size of s = 105. This

allowed us to choose the scheme which had a better decay with higher orders.
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4.5 Discussion

We introduced a new class of variational states, complex periodic Gaussian states, to

study ground state properties and real-time dynamics in a (2+1)-dimensional U(1)
lattice gauge theory. The evaluation of expectation values can only partially be done

analytically, an infinite sum remains to be computed numerically. The sum is nu-

merically approximated for all variational parameters on an 8 × 8 lattice and for the

weak-coupling regime up to a lattice size of 20 × 20. This allows us to study the vari-

ational ground state of these states over the whole coupling region and extract the

thermodynamic limit.

The physical results are presented in detail in [2]. Here, we summarize the results

concisely. The implementation was checked by comparing the ansatz against a well-

known approximation for the ground state energy in the single plaquette case. The

confinement of the ground state for all couplings was verified with a direct computation

of the string tension between two charges and a fit to the area law of Wilson loops. We

see confining behavior for all couplings g2.

Finally, the time-dependent variational principle enables the investigation of quan-

tum quenches in the coupling constant. The implementation of the time-evolution was

verified with exact diagonalization data from a Z3 system. Subsequently, we studied

the equilibration of observables after quenches in the coupling constant. For all con-

sidered quenches, we observe equilibrating behavior of the observables up to times

when boundary effects start to play a role.

As a perspective, it would be interesting to compare the equilibrated expectation

values to thermal expectation values. The thermal expectation values can be obtained

with Monte Carlo techniques in the action formalism [187, 188]. Another application

for Monte-Carlo methods could be numerical evaluation of the variational ansatz by

approximating the infinite sums. This could potentially enable the simulation of larger

system sizes. The new evaluation scheme would replace the current truncation proce-

dure. The accuracy of these simulations would need to be high in order to carry out

the evolution over reasonable time scales while ensuring energy conservation.

A natural extension is the treatment of (3+1)-dimensional compact QED. By gen-

eralizing an idea in Ref. [92] to complex Gaussian states, a variational ansatz can be

designed for 3+1 dimensions. However, due to additional local constraints appearing

in 3+1 dimensions (compared to one global constraint in 2+1 dimensions), a new nu-

merical approximation scheme would be required. It would be especially interesting

to combine the (3+1)-dimensional formulation with the new Monte Carlo evaluation

mentioned above.

Finally, dynamical matter could be included into the system. To couple the gauge

degrees of freedom to matter, it is essential to find a formulation of such a theory,

which admits the same gauge-invariant variables as used in this work for static matter.

Recently, such a formulation has been proposed in Ref. [189].
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5.1 Motivation

Quantum field theories are difficult to solve out of the perturbative regime with deter-

ministic techniques. One common option are lattice Monte Carlo algorithms [20, 70,

77, 78] in the action formalism. These algorithms, however, rely heavily on the action

formalism and need a lattice discretization.

A complementary option are variational algorithms to solve strongly coupled QFT.

The central idea is to guess a suitable manifoldM of states ∣𝜓𝜈⟩ described by a man-

ageable number of parameters 𝜈 and to minimize the energy ⟨𝜓𝜈∣H ∣𝜓𝜈⟩ over this class
M. We hope that the answer is close enough to the real ground state |0⟩. In contrast

to Monte Carlo techniques, variational approaches are highly dependent on the choice

of the manifoldM. If the manifold does not contain the ground state or states that are

very similar, the minimization is bound to fail. The main idea was noted by Feynman

already [190], finding such a good manifold for typical QFT is a highly non-trivial

task. In particular, apart from simple Gaussian states such as free ground states, it

seems impossible to have a sparsely parameterized state with easily computable lo-

cal observables ⟨𝜓𝜈∣O(x1) ⋯O(xn) ∣𝜓𝜈⟩ while keeping an extensive ansatz – the latter

requirement excluding e.g. simple expansions in the particle number basis.

The last two chapters focused on lattice formulations of gauge theories and different

Ansatz states in the discrete setting. In particular, in chapter 3, we explored a special

class of gauged tensor network states, GGPEPS. Motivated by the success of discrete

tensor networks, several proposals for continuous tensor networks have been made in

the last years [56, 61, 62]. Since continuous tensor networks are working directly in

the continuum, a continuum limit can be avoided when applying them to quantum

field theories. Continuous matrix product states (cMPS) [56] are a continuous exten-

sion of discrete matrix product state. They have been successfully applied to quantum

field theories [57–59]. In this chapter, we focus on the dimension-independent pro-

posal [61] for continuous tensor network states (CTNS). They are proposed as a varia-

tional ansatz for ground states of quantum field theories. While CTNS show promising

analytical properties, their numerical performance has not been tested.

The content of this chapter is based on Ref. [3].
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5.2 Executive Summary

Discrete tensor networks are undeniably successful in describing quantum field theories

on the lattice [1, 100, 104, 191]. Motivated by their success, we numerically explore

the capabilities of continuous tensor network states (CTNS) for quantum field theories

directly in the continuum.

In this chapter, we use a Gaussian submanifold of CTNS, Gaussian CTNS (GCTNS),

to benchmark the states on quadratic and quartic Hamiltonians. Restricting to the

manifold to Gaussian states enables the analytic calculation of expectation values and

correlators. We numerically minimize the energy of different Hamiltonians to obtain

the ground state of the respective model. As benchmark models, we use the free boson,

a quadratic Hamiltonian, and the Lieb-Liniger model, a quartic Hamiltonian. Both

models have exact solutions in terms of Bogoliubov transformations or Bethe ansatz,

respectively. We compare the variational ground state of the one- and two-dimensional

systems with exact results and find excellent agreement (cf. figs. 5.4.1 and 5.4.3). In

addition to the energy, the correlations of the states match the exact results as well.

Following the intuition borrowed from discrete tensor network, the results improve

with increasing virtual bond dimension D.

In a second step, we compare the variational results of GCTNS with Bethe ansatz

calculations for the Lieb-Liniger model. Given the non-Gaussian ground state of the

model, we do not expect to match the ground state exactly. For small couplings, where

the theory approaches a Gaussian ground state, we match well (cf. fig. 5.4.5). Interest-

ingly, we are able to capture most of the Gaussian features already with a small bond

dimension of D = 1.

The benchmark shows that CTNS are a promising ansatz for quantum field theories

and further research into more general CTNS can lead to interesting results.

The following chapter is organized as follows: section 5.3 presents the Gaussian

submanifold and the models used for the benchmark. Furthermore, it provides details

about the variational optimization procedure and the renormalization that is necessary

in two space dimensions. The benchmarking results are shown in section 5.4. Finally,

we discuss possible research directions in section 5.5.
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5.3 Theoretical framework

5.3.1 Gaussian Approximation

Continuous tensor networks [61] are hard to evaluate in their full generality. If no

restrictions are placed on the function V and 𝛼 in the functional integral in eq. (2.12),

the evaluation of observables and states cannot be done analytically. The integral of

the virtual field (in the exponent) can be evaluated with Monte Carlo techniques for

certain choices of V and 𝛼. Since we want to test rather the manifold of states than

the contraction in the exponent, we focus here on the analytically contractible case.

Expectation values and correlations can be computed exactly if the expansions of V

and 𝛼 are truncated to quadratic and linear order respectively 1:

V[𝜙] = V(0) + V(1)
j 𝜙j + V(2)

jk 𝜙j𝜙k ,

𝛼[𝜙] = 𝛼(0) + 𝛼(1)
j 𝜙j .

Due to the restriction to quadratic order, we call these states Gaussian CTNS. Since

the state are Gaussian, we can carry out the Gaussian integral directly in the state

definition (2.9) and obtain:

|V , 𝛼⟩ = exp {∫ 𝜓†G𝜓† + 𝛽 𝜓†} |vac⟩ , (5.1)

where

G = 𝛼(1)T (−∇2
2
1+ V(2))

−1

𝛼(1) (5.2)

𝛽 = 𝛼(0) − 1

2
⎡⎢
⎣
V(1)T (−∇2

2
1+ V(2))

−1

𝛼(1) + 𝛼(1)T (−∇2
2
1+ V(2))

−1

V(1)⎤⎥
⎦

. (5.3)

Equation (5.3) demonstrates some redundancies in the parameterization. We ob-

serve that V(0) does not appear because it only changes the state’s normalization and

during the computation, we do not actively track the normalization of the state. In-

stead, we normalize the state numerically when we evaluate expectation values. Ad-

ditionally, we notice that the second term in eq. (5.3) can be incorporated into 𝛼(0),
and thus we may fix V(1) = 0 without lack of generality. From an intuitive standpoint,

we can interpret the redefinition as a compensation of one term with another. A non-

zero expectation value of an auxiliary field can be compensated by a constant source.

Finally, under the mild assumption that V(2) is diagonalizable V(2) = U−1(M/2)U, we
have a straightforward rewriting:

G = 1

2
∑

ℓ
[ ∑

jk

𝛼(1)
j UjℓU

−1
ℓk 𝛼k]

⏟⏟⏟⏟⏟⏟⏟⏟⏟
∶=Aℓ

( − ∇2 + Mℓℓ)
−1

. (5.4)

Equation (5.4) can be obtained directly by taking V(2) = M/2 diagonal and 𝛼(1)
k a

complex square root of Ak. Thus, without lack of generality, we can now assume that

we have diagonal “mass” matrix M ∶= diag(m1, … ,mD) for the auxiliary field. In the

1Beware of the factor of 2 difference in the definition of V(2) compared to [61]
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end, a GCTNS is parameterized by two complex vectors 𝛼(1) and m, and a scalar 𝛼(0),
i.e. 2D + 1 complex parameters, where D is the dimension of the virtual fields.

With these simplifications in mind, we now go back to the computation of the gen-

erating functional (2.12). As above, we can perform the Gaussian integration, yielding

Zj′,j = exp( ∫ 1

2
J(j, j′)T K J(j, j′) + j𝛼(0) + j′𝛼(0)∗),

where the operator K fulfills

( −∇2 + M −𝛼(1)𝛼(1)∗T

−𝛼(1)∗𝛼(1)T −∇2 + M∗ )K(x, y) = 1 𝛿(x − y) ,

and J(j, j′)T = (𝛼(1)[j + 𝛼(0)∗], 𝛼(1)∗[j′ + 𝛼(0)]). Because of translation invarianceK(x, y) =
K(x − y), and it is convenient to formulate the equation in Fourier space:

K(x − y) = ∫ ddp

(2𝜋)d
K(p) eip(x−y) (5.5)

which yields K(p) = (p2 1+ W)−1
with

W = ( M −𝛼(1)𝛼(1)∗T

−𝛼(1)∗𝛼(1)T M∗ ) . (5.6)

This formulation allows us to compute various expectation values of the state, for

example the two-point functions using eq. (2.11).

5.3.2 Models

In the following section, we test GCTNS for two models in d = 1 and d = 2. First,

we consider a quadratic, bosonic model in one and two space dimensions. While the

energy density is finite in the one-dimensional case, we have to renormalize it in two

space dimensions. In a second step, we consider a quartic model in one space dimen-

sion which does not have a Gaussian ground state.

We first consider a non-relativistic model with a Hamiltonian quadratic in bosonic

creation and annihilation operators 𝜓

H = ∫
Rd

∇𝜓†∇𝜓 + 𝜇 𝜓†𝜓 + 𝜆 [𝜓†𝜓† + 𝜓 𝜓] . (5.7)

Since it is quadratic in bosonic operators, it has a Gaussian ground state. In fact,

for a single species of spinless bosons and the usual non-relativistic kinetic term, it is

essentially the most general one can write. Such a Hamiltonian can be obtained as the

mean field approximation of a weakly interacting Bose gas, but we take it as an exact

starting point here. We can also interpret the same Hamiltonian as the regularized

Hamiltonian of the relativistic free boson [58]

H𝛬
fb = 1

2
∫
Rd

𝜋2 + (∇𝜙)2 + m2𝜙2 + 1

𝛬2
(∇𝜋)2

⏟⏟⏟⏟⏟
regulator

, (5.8)
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where 𝜋, 𝜙 are the traditional canonically conjugate fields [𝜙(x), 𝜋(y)] = i𝛿d(x − y),
and 𝛬 is a non-relativistic momentum cutoff. The Hamiltonian H𝛬

fb in eq. (5.8) reduces

to eq. (5.7) with the field mapping

𝜙 = √ 1

2𝛬(𝜓 + 𝜓†) (5.9)

𝜋 = √𝛬
2

(𝜓 − 𝜓†) (5.10)

and the parameters

𝜇 = 𝛬2 + m2

2
, (5.11)

𝜆 = 𝛬2 − m2

4
. (5.12)

The closing the gap at 𝜆/𝜇 → fc = 1/2 is equivalent to lifting the non-relativistic

regulator (m ≪ 𝛬).
The model (5.7) is exactly solvable, and we find (see appendix 5.A) the ground state

energy density

e0 = 1

2
∫ ddp

(2𝜋)d
[√(p2 + 𝜇)2 − 4𝜆2 − (p2 + 𝜇)] , (5.13)

which is infinite when d ≥ 2. Consequently, we have to treat the system in one dimen-

sion differently from the system in higher dimensions. While the optimization of the

energy is directly possible in d = 1, we will have to renormalize away the divergent

part in d = 2. The corresponding two-point functions can also be computed exactly,

and we have e.g.

⟨0| 𝜓†(x)𝜓(y) |0⟩ = ∫ ddp

(2𝜋)d
C0(p)eip(x−y)

with C0(p) = 1

2

⎛⎜⎜⎜
⎝

p2 + 𝜇

√(p2 + 𝜇)2 − 4𝜆2
− 1

⎞⎟⎟⎟
⎠

.
(5.14)

In addition to the quadratic models in d = 1 and d = 2, we consider a quartic model,

the Lieb-Liniger model. It is one of the simplest models for interacting bosons in d = 1

and is given by the Hamiltonian

HLL = ∫
R

∂x𝜓†∂x𝜓 + c𝜓†𝜓†𝜓𝜓, (5.15)

where c is the strength of the coupling. The Hamiltonian preserves the number of

particles. The filling is controlled by the particle density 𝜌 = ⟨𝜓†𝜓⟩. The physics of

the model depends on the adimensional coupling 𝛾 = c/𝜌. The model is integrable,

and it is possible to write an exact equation for the energy density in the ground state

with the Bethe ansatz. It can be solved numerically to essentially arbitrary precision

or expanded in a power series at weak and strong coupling [192, 193]. We use these

expansions to evaluate the performance of our method.

The ground state of the Lieb-Liniger model is not a Gaussian state. As a result a

GCTNS cannot approximate it with arbitrary precision even for large D, because we
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restricted the CTNS to be Gaussian. However, it is possible for a GCTNS to give rea-

sonable approximation in some regime, which is what we aim to explore here. We

compare the GCTNS results with two other simple approximation techniques: classical

solution and mean field. The classical solution is the result of a minimization of the

energy in the space of coherent states, or equivalently a GCTNS with D = 0. The mean-

field approximation corresponds to the ground state of a different Hamiltonian, namely

the mean field quadratic Hamiltonian of the same model. In section 5.B.2, we explain

how to deal with the quartic terms and how to obtain the mean field Hamiltonian.

Our analysis can be seen as the continuum analogue of the one carried recently for

the Bose-Hubbard model [194], where a generic Gaussian state approximation was

compared with standard classical and mean field solutions. In our case, aside from

dealing with the continuum, we have the refinement that we do not use the most

general Gaussian states in the first place (which would anyway require infinitely many

parameters), but a tower of more and more expressive submanifolds indexed by D.

5.3.3 Variational optimization

The goal of our analysis is to numerically check whether CTNS are a promising ansatz

for ground state computations in QFT. Thus, we have to numerically find the ground

state for a given Hamiltonian. We now summarize the strategy to variationally opti-

mize GCTNS in practice.

In what follows, we will study models specified by a local bosonic Hamiltonian:

H = ∫
Rd

ddx h (𝜓†, 𝜓) (x) , (5.16)

where h (𝜓†, 𝜓) (x) contains product of the operators 𝜓, 𝜓† and its derivatives. More

concretely, we will consider the free boson in one and two space dimensions and the

Lieb-Liniger model in one space dimension. For a GCTNS |V , 𝛼⟩ we introduce the asso-
ciated energy density

⟨h⟩
V,𝛼 ∶=

⟨V , 𝛼|h(𝜓†, 𝜓)|V , 𝛼⟩
⟨V , 𝛼|V , 𝛼⟩ . (5.17)

Our objective is to minimize it to find an approximation to the ground state |0⟩ and an

upper bound to the ground energy density e0:

|0⟩ ≃ |V , 𝛼⟩ = argmin ⟨h⟩
V,𝛼 , (5.18)

e0 ≤ min
V,𝛼

⟨h⟩
V,𝛼 . (5.19)

To minimize the energy, we must compute ⟨h⟩
V,𝛼 [cf. eq. (5.17)], which reduces

to the computation of a sum of correlation functions of 𝜓, 𝜓†, which we know how to

compute in general from the generating functional (see appendix 5.B). The numerical

minimization can be sped up significantly by also providing the (analytic) gradient

of the energy density with respect to the 2D + 1 complex parameters. Since we have

explicit expressions for all correlation functions, the gradients can be computed ana-

lytically. Details can be found in appendix 5.B.

In d = 2 space dimensions, several two point functions of interest diverge when taken

at equal points. In particular, the kinetic energy ∇𝜓†∇𝜓 and 𝜓𝜓 + 𝜓†𝜓† terms diverge

when evaluated on GCTNS. This can be traced back to the fact that the corresponding

momentum integrals (see appendix 5.B) diverge logarithmically.
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This divergence can be renormalized. First, we introduce a hard momentum cutoff

𝛬 such that correlation functions are finite. We then observe that the energy density

evaluated on a GCTNS changes to

⟨h⟩
V,𝛼 = ⟨h⟩

r
+ 1

4𝜋 ln(𝛬2) ⟨h⟩
div

+ o(1) , (5.20)

such that the energy can be split into a regular and log divergent part. For the quadratic

Hamiltonian (5.7), the log divergent part can be evaluated exactly and we find

⟨h⟩
div

= ⎡⎢
⎣

D

∑
j=1

𝛼2j
⎤⎥
⎦

⎡⎢
⎣

D

∑
j=1

𝛼2j
⎤⎥
⎦

∗

+ 𝜆
D

∑
j=1

(𝛼2j + 𝛼∗2
j ) , (5.21)

where we used the simplified notation 𝛼(1)
j = 𝛼j. Importantly, ⟨h⟩

div
can be made

negative and minimized exactly, yielding the condition

D

∑
j=1

𝛼2j = −𝜆. (5.22)

This condition defines a submanifold of “maximally divergent energy” GCTNS onwhich

the parameters can be numerically tuned to minimize the remaining finite part ⟨h⟩
r
.

The remaining numerical challenge is to minimize the regular part of the energy in

this submanifold.

We obtained the condition (5.22) in a variational way by only asking that the energy

is minimal and taking the cutoff to infinity. As a welcome surprise, it provides the same

divergence of the energy density as the exact solution! The energy density diverges

as −𝜆2 ln𝛬2/(𝜋) [cf. eq. (5.13)], exactly as for GCTNS on the submanifold defined by

eq. (5.22). Thus, a GCTNS can not only capture the UV behavior of the exact ground

state, it captures it exactly upon optimization.

5.4 Results

We start by presenting the results for the quadratic Hamiltonian in one and two space

dimensions. Since we can solve it exactly with a Bogoliubov transformation, we use

it as a benchmark for the GCTNS computations. In a second part, we detail our find-

ings for the Lieb-Liniger model in one space dimension. To compute the ground state

energy with our ansatz, we compute the energy density, its gradient with respect to

the parameters, and use a standard BFGS solver [170] to find the point yielding the

minimal energy. In this setting, we can use the more advanced BFGS solver in contrast

to the stochastic gradient that we used for the minimization of GGPEPS in chapter 3.

Energies and gradients are computed by evaluating analytic formulas which leads to

deterministic results instead of results with statistical error as in the Monte Carlo case.

The use of BFGS facilitates the minimization of the energy.

The results for the one-dimensional, quadratic model are shown in fig. 5.4.1. We

observe that for parameter values of order 1 away from the gap closing (e.g. f = 𝜆/𝜇 =
0.25 = fc/2), the convergence to the exact value is extremely fast in D – to the point

that it is difficult to probe large values of D because of machine precision issues. Note

that the plots in fig. 5.4.1 display the relative error of the energy density and not the
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Figure 5.4.1: Convergence of the energy density in d = 1. Left – Relative error in the

energy density ⟨h⟩
V,𝛼 /e0 − 1 as a function of the field bond dimension

D. Right – Relative error as a function of the distance 1/2− 𝜆/𝜇 from the

gap closing point for D = 1,2,3.
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Figure 5.4.2: Convergence of the correlation function in d = 1. Two-point correlation

function in momentum space CV,𝛼(p) for 𝜇 = 1 away from the gap closing

for 𝜆 = 0.25 (left) and near the gap closing for 𝜆 = 0.495 (right). The

GCTNS correlation function converges uniformly to the exact one as D is

increased, but larger values of D are required as the gap closes.

absolute error. As we get closer to the parameters of the gap closing, the convergence

becomes slower, but moderate values of D still give accurate values, even for 𝜆/𝜇 =
0.99fc. This is compatible with the tensor network interpretation that gapped systems

can be precisely approximated with low bond dimension. However, larger values of

the bond dimension are needed closer to a critical point.

In QFT, one might worry that optimizing the energy does not give a fast convergence

of the state itself (summarized by its two-point functions in the Gaussian case). Here,

because the theory is regular (or equivalently non-relativistic), this is not the case, and

we observe a fast uniform convergence of the two-point function, at least away from

the gap closing (see fig. 5.4.2).

Before we move on to the more involved d = 2 space dimensions case, it is helpful

to understand better the structure of GCTNS correlation functions and compare them

to the exact one (5.14). Using the expression for the generating functional, we notice
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that CV,𝛼(p), the Fourier transform of ⟨𝜓†(x)𝜓(0)⟩
V,𝛼, is of the form

CV,𝛼(p) =
2D

∑
k=1

ak
p2 + wk

, (5.23)

where wk are the complex eigenvalues of W defined in eq. (5.6) and ak are complex

coefficients (see appendix 5.B for more detail). Bringing all the fractions in eq. (5.23)

on the same denominator shows that CV,𝛼(p) is an even rational function of degree at

most 4D. It is impossible to capture C0(p) exactly for a finite D, since it contains a

square root. However, using the identity

(1− x)a =
∞
∑
n=0

(a
n
) xn, (5.24)

we obtain that

C0(p) = 1

2

+∞
∑
n=1

(−1
2

n
) [ 4𝜆2

(p2 + 𝜇)2
]
n

, (5.25)

with uniform convergence for all p as long as 𝜆/𝜇 < 1/2. This is the same structure

as a GCTNS correlation function, except that the expansion in rational functions is

truncated at order 4D in p for GCTNS.

At short distances, p → +∞, only the first term in the expansion matters. It can be

reproduced exactly already by a GCTNS with D = 1, which means the UV behavior of

the QFT can be captured by the simplest non-trivial GCTNS. At long distances, p ≃ 0,

the series (5.25) is still absolutely convergent with an error decreasing exponentially

with the number of terms. Hence, for a GTCNS the error should be dominated by the

infrared and at most O([2𝜆/𝜇]2D).
In our method, we perform a variational optimization of the energy and not a per-

turbative term by term optimization of the two-point function. As a result the error

obtained in practice could scale differently. Indeed, we observe in fig. 5.4.1 that the

error decreases faster than naively expected for small D.

In what follows and for comparison, we consider only the renormalized part of the

energy density ⟨h⟩
r

∶= lim𝛬→∞ ⟨h⟩ − 𝜆2 ln(𝛬2)/(4𝜋). For the exact solution it gives

the “renormalized” energy density

eR0 = ∫ d2p

(2𝜋)2
(𝜀0(p) + 𝜆2

(p2 + 𝜇)
) + 𝜆2

4𝜋 ln(𝜇), (5.26)

which is of course finite and which we can compare to ⟨h⟩
r
since the counter terms used

in both cases (the divergent parts) are identical. Again, we insist that this optimization

procedure and the associated renormalization of the energy density do not require

knowing the exact solution.

Results are shown in fig. 5.4.3, and we observe that the convergence for the renor-

malized energy density and two point function is qualitatively as good as in the d = 1

case.

After considering the quadratic model, we turn to the more involved case of the

quartic model. We do not expect to match the ground state exactly (since it is not

Gaussian). In practice, we minimize the energy density of the model over GCTNS of

fixed D keeping 𝜌 = 1 fixed with gradient descent. Since we are working in a special

submanifold with 𝜌 = 1, we do not use the BFGS algorithm here. As GCTNS are
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Figure 5.4.3: Convergence of the energy density in d = 2. Relative error in the energy

density as a function of the bond field dimension D for 𝜆/𝜇 = 0.25 (away
from the gap closing) and 𝜆/𝜇 = 0.495 (close to the gap closing).
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Figure 5.4.4: Convergence of the correlation function in d = 2. Two-point correlation

function in momentum space CV,𝛼(p) for 𝜇 = 1 away from the gap closing

for 𝜆 = 0.25 (left) and near the gap closing for 𝜆 = 0.495 (right). As in

d = 1, the GCTNS correlation function converges uniformly to the exact

one as D is increased in two space dimensions.
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Figure 5.4.5: Energy density of the Lieb-Liniger model ground state as a function of

the coupling strength 𝛾 = c/𝜌. At 𝛾 = 0 the theory becomes Gaussian

and the GCTNS matches the ground state energy very well. For larger

values of 𝛾 the theory becomes increasingly non-Gaussian and the match

between the ansatz and the true ground state energy deteriorates.

Gaussian states, the expectation value of the quartic term is simply computed with

Wick’s theorem (see appendix 5.B), and thus the energy density and its gradient are

easily evaluated.

In fig. 5.4.5, we can see that the upper bound provided by GCTNS approaches the

exact ground energy as the coupling 𝛾 gets smaller. This is expected: the ground state

of a weakly interacting Bose gas becomes Gaussian when the coupling approaches zero.

What is remarkable is that the simplest GCTNS ansatz for D = 1 is already sufficient

to get all the expressive power of Gaussian states in this case. Almost all the improve-

ment from the classical solution D = 0 is reached for D = 1. The refinements obtained

with larger D are not necessary in the sense that they bring improvements in the energy

density much smaller than the distance between the best Gaussian energy density and

the true energy density. This is rather intuitive: if a Gaussian state is not the exact

solution, we do not gain much by getting the best Gaussian state; an approximation of

the best Gaussian state can do qualitatively as well.

5.5 Discussion

In summary, we are mainly interested in knowing if CTNS can be a promising trial

wave functions for quantum field theories, coming close to the efficiency of discrete

lattice tensor networks. Our aim is to benchmark the performance of the states and not

of the numeric algorithm that we used. Thus, we focused on a subclass of analytically

tractable CTNS, Gaussian CTNS. The optimizing of GCTNS on a simple non-relativistic

quadratic Hamiltonian matches well with the exact solution, both for the energy den-

sity and the state itself (parameterized by its two point function). In two space dimen-

sions, the renormalization of the Gaussian theory becomes necessary. GCTNS show the

correct divergence in the UV to enable exact renormalization of the divergent. Impor-

tantly, the renormalization is performed entirely variationally, i.e. without knowing
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the exact solution. Upon increasing the bond dimension of GCTNS to moderate values

of D, we can even approximate the regime where the gap closes, corresponding to the

relativistic limit of the theory. Hence, GCTNS have exactly the right UV properties to

approximate non-relativistic QFT.

Many-body Hamiltonians are usually interacting and their ground state is not Gaus-

sian. In general, we cannot expect a GCTNS to approximate the ground state of a non-

Gaussian theory with good precision. It is, however, worthwhile to see how GCTNS

perform in comparison to other approximation methods like mean-field approxima-

tion. We chose to test GCTNS on the Lieb-Liniger model, a simple quartic model. At

low coupling, GCTNS provide a good approximation to the energy since the theory

becomes Gaussian if the coupling drops to zero. The approximation is largely inde-

pendent of the bond dimension D, and the lowest bond dimension of D = 1 already

captures essentially everything that general Gaussian states (with an infinite number

of parameters) can capture. Thus, we are able to drastically compress the number of

parameters needed for a similar approximation quality. All these results show that

GCTNS are a viable approximation and deserve to be studied in more detail.

The work can be extended in multiple directions, even when keeping the Gaussian

character of the states. If the Hamiltonian includes fermions, even quadratic Hamil-

tonian can yield richer physics. Additionally, the exploration of topological phases

becomes possible if multiple species of bosons or fermions are included. Following the

ideas for geometric methods in [182, 194], GCTNS could be used to explore real-time

dynamics and spectral properties. Finally, entanglement properties have been a key

to our understanding of discrete tensor network algorithms. A similar analysis in the

case of GCTNS could shed new light on the performance of the states.

In addition to considering Gaussian states, we could leave the Gaussian setting and

deal with genuinely interacting theories. Since a sum of Gaussian states is not Gaussian

anymore, a sum of GCTNS could be first step into a non-Gaussian direction. As we

saw above, low field bond dimensions yield already a good description of the best

Gaussian states. This efficient parameterization would enable large sums of GCTNS

to be considered as an Ansatz. A similar idea would be numerically unfeasible due

to the large number of parameters of generic Gaussian states. In line with the work

chapter 6, GCTNS are an interesting starting point to create a better basis of states for

Hamiltonian truncation. With GCTNS, the commonly used free Fock space basis could

be replaced by the Fock space built from the excitations above a GCTNS optimized

on the interacting Hamiltonian, leading possibly to a better convergence for a given

cut-off.

When leaving the environment of GCTNS altogether, exact computations of corre-

lation functions become impossible. In particular, there is no exact expression for the

energy density that we aim to minimize. The needed correlations could be evaluated

with Monte-Carlo or perturbatively. The most appealing option and the one closest to

discrete tensor network methods would be an evaluation of the correlation functions

of a CTNS in 2 dimensions using the transfer matrix method in 1 dimension as pro-

posed in [61]. In 1 space dimension, cMPS algorithms [60] can evaluate the largest

eigenstate of an operator, in this case the transfer matrix. The problem of minimizing a

CTNS is reduced to optimizing a cMPS. Ultimately, although a lot of challenges remain

to be solved to make CTNS a viable numerical ansatz for interacting QFT, we hope that

the present work offers motivation to further explore CTNS.
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Appendix

5.A Exact diagonalization of H

Since it is quadratic, the Hamiltonian (5.7) can be diagonalized exactly using a Fourier

and a Bogoliubov transformation. The Fourier transformation yields

H = ∫ ddp

(2𝜋)d
(p2 + 𝜇) 𝜓†

p𝜓p + 𝜆 (𝜓†
p𝜓†

−p + 𝜓p𝜓−p) . (5.27)

A subsequent Bogoliubov transformation consists in introducing new creation annihi-

lation operators (b†
p, bp) linearly related to the original ones

𝜓p = upbp + vpb
†
−p (5.28)

𝜓†
p = u∗

pb
†
p + v∗

pb−p , (5.29)

where |up|2 − |vp|2 = 1 to ensure the canonical commutation relations remain valid.

The Hamiltonian (5.27) becomes diagonal if

upvp = 𝜆
p2 + 𝜇

(u2p + v2p) , (5.30)

which is solved by

up =
√
√
√
⎷

p2 + 𝜇

2√(p2 + 𝜇)2 − 4𝜆2
+ 1

2
, (5.31)

vp = −
√
√
√
⎷

p2 + 𝜇

2√(p2 + 𝜇)2 − 4𝜆2
− 1

2
. (5.32)

Finally, the diagonalized Hamiltonian reads:

H = ∫ ddp

(2𝜋)d
𝜀1(p) b†

pbp + 𝜀0(p), (5.33)

with

𝜀1(p) = √(p2 + 𝜇)2 − 4𝜆2 (5.34)

𝜀0(p) = 1

2
[𝜀1(p) − (p2 + 𝜇)] . (5.35)

The associated ground state energy density e0, which will be useful for benchmarks, is

e0 = ∫ ddp

(2𝜋)d
𝜀0(p) . (5.36)

For large p, 𝜀0(p) decays as p−2 and thus the ground energy density is infinite for d ≥ 2.

Expressing 𝜓p as a function of the bp, we get the ground state two-point function:

⟨𝜓†
p𝜓q⟩ = (

p2 + 𝜇
2 𝜀1(p) − 1

2
) 𝛿(p − q). (5.37)
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5.B Correlation functions and their gradients

5.B.1 Two-point functions

The expectation values of GCTNS are computed as functional derivatives of the gener-

ating functional Zj′,j given in eq. (5.5)

⟨𝜓†(x)𝜓(y)⟩
V,𝛼 = 𝛿

𝛿j′(x)
𝛿

𝛿j(y)Zj′,j∣
j,j′=0

. (5.38)

Since all two point functions can be computed in the same way, we focus on the com-

putation of the correlation function given above. Using the expression for Zj′,j we
obtain:

⟨𝜓†(x)𝜓(y)⟩
V,𝛼 = ∫ ddp

(2𝜋)d
CV,𝛼(p)eip(x−y) (5.39)

with

CV,𝛼(p) = (0, 𝛼(1)∗)K(p)(𝛼(1),0)T + ⟨𝜓†
p⟩ ⟨𝜓p⟩ 𝛿(p) . (5.40)

Here, (𝛼(1),0) and (0, 𝛼(1)∗) are 2D vectors, K(p) = (p2 1+ W)−1
(see eq. (5.6)) and

only the second term (the zero mode) depends on 𝛼(0)

⟨𝜓†
p⟩ = 𝛼(0) [(𝛼(1), 𝛼(1)∗)K(p) (𝛼(1),0)T] . (5.41)

Note that in the models we are considering one can choose the gauge where a(0) ∈ R.

We set

CV,𝛼(p)∣𝛼(0)=0 = (0, 𝛼(1)∗)K(p) (𝛼(1),0)T (5.42)

because it corresponds to the CV,𝛼 when 𝛼(0) = 0.

In order to compute the energy density, we now compute the real space correlation

function at equal points. As the momentum integral of the zero mode is trivial, we focus

on the contribution from CV,𝛼(p)∣𝛼(0)=0. In a first step, we diagonalize matrix K(p) with
a unitary 2D × 2D matrix U, such that W = U−1LU and L is a 2D × 2D diagonal matrix

with eigenvalues 𝜆1, 𝜆2, ..., 𝜆2D. The matrixW needs to be positive definite for the state

to be physical, thus Re[𝜆i] > 0. We obtain

K(p) = U−1 (p2 ⋅ 1+ L)−1
U, (5.43)

and hence

CV,𝛼(p)∣𝛼(0)=0 = (0, 𝛼(1)∗)U (p2 ⋅ 1+ L)−1
U−1 (𝛼(1),0)T . (5.44)

This allows to find the equal point 2-point function

⟨𝜓†(x)𝜓(x)⟩∣𝛼(0)=0 =
2D

∑
i=1

[(0, 𝛼(1)∗)U]
i
I1(𝜆i) [U−1(𝛼(1),0)T]

i
(5.45)

with the integral

I1 (𝜆i) = ∫ ddp

(2𝜋)d
1

p2 + 𝜆i
.
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5.B Correlation functions and their gradients

The integral is convergent in d = 1 and logarithmically divergent in d = 2. However,

the divergences cancel each other in the sum (5.45) as they do not depend on 𝜆i and
thus the particle density is finite in d = 2 space dimensions (and in fact even in d = 3).

We can proceed in the sameway to compute the other correlation functions ⟨𝜓(x)𝜓(x)⟩
and ⟨𝜓†(x)𝜓†(x)⟩. For these, the logarithmic divergences do not cancel each other in

d = 2 and contribute to the divergence of the energy density. The renormalization

procedure is explained in the main text.

To compute the kinetic energy density, we take the derivative of the two point func-

tion limx→y ∂x∂y ⟨𝜓†(x)𝜓(y)⟩. Ultimately, this yields the same formula as before with

the replacement of I1 by

I1kin(𝜆i) = ∫ ddp

(2𝜋)d
p2

p2 + 𝜆i
. (5.46)

This latter integral is linearly divergent in d = 1, but again this divergent part is in-

dependent of 𝜆i and thus cancels in the expression for the kinetic energy. In d = 2,

the leading divergence is quadratic and cancels in the sum but a subleading logarith-

mic divergence remains in the expression of the kinetic energy density, as well as in
⟨𝜓(x)𝜓(x)⟩ and ⟨𝜓†(x)𝜓†(x)⟩, contributing to the overall logarithmic divergence of the

energy density.

5.B.2 Four-point function

The Lieb-Liniger Hamiltonian contains quartic terms and, as a result, evaluating its

energy density requires computing a 4-point function. As our states are Gaussian, we

can use Wick’s theorem or the expression for the generating functional Zj′,j to get:

⟨𝜓†𝜓†𝜓𝜓⟩ = ∣⟨𝜓⟩∣4 + 4 ∣⟨𝜓⟩∣2 ⟨𝜓†𝜓⟩∣𝛼(0)=0 + ∣⟨𝜓⟩∣2 {⟨𝜓†𝜓†⟩ + ⟨𝜓𝜓⟩}∣𝛼(0)=0
+ 2 ⟨𝜓†𝜓⟩∣𝛼(0)=0 ⟨𝜓†𝜓⟩∣𝛼(0)=0 + ⟨𝜓†𝜓†⟩∣𝛼(0)=0 ⟨𝜓𝜓⟩∣𝛼(0)=0 ,

(5.47)

where all the operators are taken in the same point x which we omitted since the

problem is translation invariant. We have also split the 2-point functions into a part

that does not depend on 𝛼(0) and the zero mode contribution:

⟨𝜓⟩ ∶= ⟨𝜓(x)⟩ = 1

(2𝜋)d
⟨𝜓p=0⟩ . (5.48)

The latter corresponds to the condensed fraction in the Lieb-Liniger model. Taking the

mean field approximation is equivalent to neglecting the last two lines in eq. (5.47) as

one assumes that the zero mode ⟨𝜓⟩ dominates.

5.B.3 Gradients

To carry the optimization efficiently, we need the gradient of ⟨h⟩
V,𝛼 with respect to

the 2D + 1 complex coefficients parameterizing the state. The coefficients include D

complex parameters fromM, D complex parameters from 𝛼(1) vector and one parameter

from 𝛼(0). We present the computations for one 2-point function, ⟨𝜓†(x)𝜓(x)⟩, as the
rest of the gradients are computed in the same manner. The derivative of the Fourier
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5.B Correlation functions and their gradients

transformed 2-point function CV,𝛼(p) with respect to some GCTNS parameter a is given

by

∂CV,𝛼(p)
∂a =

∂CV,𝛼(p)
∂a ∣

𝛼(0)=0
+ ⟨𝜓†

p⟩
∂ ⟨𝜓p⟩

∂a 𝛿(p) +
∂ ⟨𝜓†

p⟩
∂a ⟨𝜓p⟩ 𝛿(p) . (5.49)

We start by computing the first term. Using

dK−1

dx
= −K−1dK

dx
K−1 (5.50)

for a matrix K depending on a parameter x and U−1K−1U = (p2 + L)−1
, we obtain the

derivative with respect to parameters of the mass matrix M

∂CV,𝛼(p)
∂Re(mj)/iIm(mj)

∣
𝛼(0)=0

= − (0, 𝛼(1)∗)U (p2 + L)−1
FR/I(j) (p2 + L)−1

U−1 (𝛼(1),0)T

(5.51)

where F(j) is 2D × 2D a complex matrix with elements

FRlk(j) = U−1
lj Ujk + U−1

l,j+DUj+D,k (5.52)

FIlk(j) = U−1
lj Ujk − U−1

l,j+DUj+D,k . (5.53)

The derivative with respect to the parameters of 𝛼(1) yields

∂CV,𝛼(p)
∂Re(𝛼j)/iIm(𝛼j)

∣
𝛼(0)=0

= − (0, 𝛼(1)∗)U (p2 + L)−1
U−1GR/I(j)U (p2 + L)−1

U−1 (𝛼(1),0)T

+ [(0, 𝛼(1)∗)U (p2 + L)−1
U−1]

j
± [U (p2 + L)−1

U−1 (𝛼(1),0)]
j+D

(5.54)

where GR(j) and GI(j) are 2D × 2D matrices

GR/I(j) = − [ej ⋅ (0, 𝛼(1)∗) ± ej+D ⋅ (𝛼(1),0) + (0, 𝛼(1)∗)T ⋅ eTj ± (𝛼(1),0)T ⋅ eTj+D] (5.55)

with ej the 2D column vector with the j-th coefficient 1 and zero otherwise. To go get

the equal point correlation functions in real space, we need to integrate over momenta,

which means we need to compute the integral

I2(𝜆i, 𝜆j) = ∫ ddp

(2𝜋)d
1

p2 + 𝜆i
1

p2 + 𝜆j
, (5.56)

which is well-behaved in the dimensions we consider and given in appendix 5.C. The

gradient of the kinetic term is obtained in the same way and adds a p2 term in the

previous integral

I2kin(𝜆i, 𝜆j) = ∫ ddp

(2𝜋)d
p2

p2 + 𝜆i
1

p2 + 𝜆j
. (5.57)

The zero mode terms in the gradient (5.49) are computed in the same way and the

integration over p is then immediate because of the Dirac 𝛿 in eq. (5.49) (only the zero

mode contributes).

75



5.C A few (regulated) momentum integrals

5.C A few (regulated) momentum integrals

In one dimension, we can compute I1(𝜆) with the theorem of residues or using the fact

that arctan is an explicit primitive of the integrand to get

I1(𝜆i) = ∫ dp

2𝜋
1

p2 + 𝜆
= 1

2√𝜆
.

The integral I1kin = ∫dp/(2𝜋)1−𝜆I1 clearly diverges. With a UV regulator𝛬 (unrelated

to the non-relativistic regulator of section 5.3.2) we obtain

I1kin(𝜆) = ∫
𝛬

−𝛬
dp

2𝜋
p2

p2 + 𝜆
(5.58)

= 𝛬
𝜋 −

√𝜆
𝜋 arctan(𝛬/√𝜆) (5.59)

= 𝛬
𝜋 −

√𝜆
2

+ o(1) . (5.60)

The integrals I2(𝜆i, 𝜆j) and I2(𝜆i, 𝜆j) are convergent and computed with the theorem of

residues which yields

I2(𝜆i, 𝜆j) = ∫ dp

2𝜋
1

p2 + 𝜆i
1

p2 + 𝜆j
(5.61)

= 1

2(√𝜆i + √𝜆j)(√𝜆i√𝜆j)
(5.62)

and

I2kin(𝜆i, 𝜆j) = ∫ dp

2𝜋
p2

p2 + 𝜆i
1

p2 + 𝜆j
(5.63)

= 1

2(√𝜆i + √𝜆j)
. (5.64)

In two dimensions, I1 already requires a UV regulator ‖p‖ ≤ 𝛬

I1(𝜆) = ∫
‖p‖≤𝛬

d2p

(2𝜋)2
1

p2 + 𝜆

= ∫
𝛬2

0

d(p2)
4𝜋

1

p2 + 𝜆i
= 1

4𝜋 ln(𝛬2 + 𝜆) − 1

4𝜋 ln(𝜆) (5.65)

= 1

4𝜋 ln(𝛬2) − 1

4𝜋 ln(𝜆) + o(1) . (5.66)

Using the relation between I1 and I1kin as in d = 1, we obtain

I1kin(𝜆) = ∫
‖p‖≤𝛬

d2p

(2𝜋)2
p2

p2 + 𝜆i
= 1

4𝜋[𝛬2 − 𝜆 ln(𝛬2 + 𝜆) + 𝜆 ln(𝜆)] . (5.67)
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5.C A few (regulated) momentum integrals

The integral I2 is convergent in d = 2 and computed with the theorem of residues

I2(𝜆i, 𝜆j) = ∫ d2p

(2𝜋)2
1

p2 + 𝜆i
1

p2 + 𝜆j

=
⎧{
⎨{⎩

ln(𝜆i/𝜆j)
4𝜋(𝜆i−𝜆j)

, for 𝜆i ≠ 𝜆j
1

4𝜋𝜆i
, for 𝜆i = 𝜆j

. (5.68)

Finally, I2kin needs to be regulated. Using I2kin(𝜆i, 𝜆j) = I1(𝜆j) − 𝜆iI2(𝜆i, 𝜆j), we get

I2kin(𝜆i, 𝜆j) = ∫
‖p‖≤𝛬

d2p

(2𝜋)2
p2

p2 + 𝜆i
1

p2 + 𝜆j
= 1

4𝜋 ln(𝛬2) −
𝜆i ln(𝜆i) − 𝜆j ln(𝜆j)

4𝜋(𝜆i − 𝜆j)
+ o(1) .

(5.69)
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6 Entanglement Entropy for
Quantum Field Theories

6.1 Motivation

Entanglement is one of the key feature that distinguishes quantum from classical sys-

tems. In an entangled system, the constituents of the system cannot be described inde-

pendently of all other parts – in other words, the state of the system is not separable.

The interest in entanglement is driven by the rise of quantum technologies [195],

where the entanglement acts as a resource, and the improved understanding of numer-

ical Ansatz states like tensor networks. The computation of entanglement quantities

like the Neumann or the Rényi entropy demand access to a partial density matrix of

the system (cf. section 2.1). The evaluation of partial traces is very natural in lattice

systems (like tensor networks) where the Hilbert space inherently has a local tensor

product structure.

The calculation of entanglement properties is much more challenging in the case

of continuous field theories. Here, the number of degrees of freedom is infinite, and

the reduced density matrix can only be defined through the path integral formalism

and entropies only become meaningfully defined after the introduction of an ultravi-

olet (UV) cutoff. A widely used approach to compute entanglement entropies is the

replica trick [196] which can be carried out for free [197], integrable [198], and con-

formal field theories (CFT) [199]. It has been argued that some results apply also to

the general non-integrable case [200], yet it remains an open question. Another field

theoretical approach consists of the covariance matrix formalism where the entangle-

ment entropies are computed from the correlation functions of Gaussian states [197,

201]. Finally, the field theory can be approximated with a lattice system and discrete

methods tensor networks can be used to compute the entanglement measures. This

has been extremely successful for computing equilibrium properties [26, 121] but is

suffering from severe limitations when computing non-equilibrium dynamics due to

the exponentially increasing bond dimension during time evolution [26].

The spectrum of current methods leaves room for a numerical method that works

directly in the continuum and gives access to the reduced density matrix. A powerful

class of numerical methods for quantum field theory (QFT) are Hamiltonian trunca-

tion (HT) based methods [202]. HT does not require to approximate the field theory

with a lattice system and to take the continuum limit in the end. The method works

directly in the continuum.

While HT is very successful at computing spectral properties and non-equilibrium

time evolution, it has not been the most convenient choice for computing entangle-

ment related quantities. In preceding works [203, 204], HT was used to calculate

matrix elements between higher excited states. By using analytic replica techniques,

correlation functions of twist fields and other entanglement related objects for those

states were calculated. While such approaches proved useful at computing low Rényi
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6.1 Motivation

entropies, the calculation of vN entropies and entanglement negativity remained out

of reach.

We aim to combine the possibilities of Hamiltonian truncation with direct access to

the reduced density matrix to compute entanglement related quantities.

The content of this chapter is based on Ref. [4].
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6.2 Executive Summary

Entanglement entropy is one of the guiding principles of numerical and analytical de-

velopment when considering quantum systems. The computation of entanglement

related quantities for quantum field theories directly in the continuum, however, is

difficult.

In this work, we develop a general way to construct reduced density matrices with

Hamiltonian Truncation (HT). The algorithm splits the system explicitly into two sub-

systems and maps the original fields onto the two partitions. The output of the method

is the reduced density matrix of a state explicitly represented in a computational basis

which is a tensor product of the basis of the left and right subsystems. The tensor

product structure enables the direct computation of almost any entanglement related

quantity: von Neumann entropy, entanglement negativity, and mutual information.

Additional, the method allows the direct study of the entanglement Hamiltonian and

of the reduced density matrix of an interacting field theory. The method is model-

independent and can be widely used on top of any HT code that uses expansions in

free bases (see section 2.3) which is a common choice in modern applications [145,

205–208]. This enables us to take full advantage of the power of HT for real time evolu-

tion of a wide range of interacting QFT and study the whole spectrum of entanglement

related quantities without needing to approximate the theory with a lattice system.

It gives access to the entanglement properties of ground, excited and time dependent

non-equilibrium states as well as thermodynamic entropies of thermal states.

As an initial test for the method, we benchmark it with the massive Klein-Gordon

model. Since the Klein-Gordon model is a Gaussian model, its entanglement properties

can be computed analytically with the covariance matrix formalism. e see excellent

agreement between the HT based method and exact results for the von Neumann en-

tropy in the ground and in thermal states (cf. figs. 6.4.2 and 6.4.3). Additionally,

the time evolution of quenches between different masses agrees with the analytical

prediction (cf. fig. 6.4.4). In a second step, we consider the sine-Gordon model, an

interacting quantum field theory. We find good agreement with previous works when

considering the time dynamics of the system (cf. fig. 6.4.6). The frequencies present in

the time-evolution (cf. fig. 6.4.7) correspond to even breather frequencies as predicted

in earlier works [209].

The method has the potential to provide new insights into interacting field theories

directly in the continuum.

The chapter is organized as follows: In section 6.3 we present our method for com-

puting reduced density matrices. We begin in section 6.3.1 with the theoretical con-

struction and continue in section 6.3.2 outlining an efficient algorithm for the numer-

ical implementation. In section 6.4 we present the results and a comparison against

analytical predictions. Section 6.4.1 focuses on the results for the Klein Gordon model.

These results are used a benchmark for the method. Section 6.4.2 details the results

for the interacting sine Gordon model. We conclude in section 6.5 with an overview,

discussion and the scope for the future work.
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6.3 Theoretical Framework

Our main goal is the construction of reduced density matrices for truncated Hamilto-

nian methods. We consider a field theory defined on a finite interval F = [0, L] (full)
with open boundary conditions and are interested in computing the entanglement be-

tween two subsystems L = [0, ℓ] (left) and R = [ℓ, L] (right). The letter L is used in

this chapter as a label for a subsystem and for the length of the system; its interpre-

tation will be clear from the context. Using HT, we can compute the density matrix 𝜌
of a ground, excited, thermal or non-equilibrium state of the theory expressed in the

Hilbert space HF of the full interval F. However, tracing out a spatial part of the sys-

tem is difficult in the full (momentum) basis. If we express 𝜌 as 𝜌LR in a Hilbert space

HL ⊗HR built out of Hilbert spaces HL and HR on the intervals L and R, we can trace

one part of the system directly. We thus need to construct HF , HL and HR and find the

unitary transformation

UT ∶ HF → HL ⊗HR (6.1)

to compute

𝜌LR = UT𝜌U†
T . (6.2)

The idea of the method is visualized in fig. 6.3.1.

6.3.1 Splitting the System

Fields and Hilbert spaces

We start with the construction of the Hilbert space on the full interval HF . We expand

the fields of the free theory (massless or massive) in terms of momentum modes. The

Fock space generated by the mode creation operators serves as the computational basis.

For concreteness, we choose an expansion around a massless free bosonic field theory

with Dirichlet boundary conditions (𝜙(0) = 𝜙(L) = 0) at the edges. The procedure

is easily generalizable to expansions around massive free theories and other boundary

conditions and could by construction be applied also in dimensions d > (1+ 1).
The field expansion can be written as

𝜙(x, t) = √1
L

∞
∑
k=1

1

√pk
(Ake

−ipkt + A†
ke

ipkt) sin(pkx), (6.3)

with pk = k𝜋
L
and Ak the bosonic modes on the full interval fulfilling the commutation

relations [Ak,Al] = [A†
k,A†

l
] = 0 and [Ak,A†

l
] = 𝛿k,l. We refer to the modes Ak as full

modes in the rest of the text.

The full modes Ak span the Hilbert space HF

∣ ⃗nF⟩ ≡ ∣n1, n2, …⟩ ≡ 1

NF
∏
k>0

(A†
k
)nk |0⟩ (6.4)

with nk the bosonic occupation numbers, the normalization NF = ∏
k>0 √nk! and |0⟩

the vacuum of the massive free boson theory.
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Figure 6.3.1: Schematic drawing of the algorithm. Left – We split the system on the

top by representing the field 𝜙 living on the full interval [0, L] with an

equivalent setting: a pair of fields 𝜙L and 𝜙R living on sub-intervals [0, ℓ]
and [ℓ, L] with an additional boundary condition at ℓ. The figure depicts
the case of Neumann boundary conditions at the cut. The boundary con-

ditions at the edges are chosen to be Dirichlet. Right Quantization of the

fields gives rise to two isomorphic Hilbert spaces H and HLR = HL ⊗HR

and a unitary map between them. This maps density matrices to a form

suitable for taking partial traces. The cones in the figure represent the ex-

ponentially growing number of states with the energy above the ground

state. H and HLR are generated on top of different vacua (horizontal line

below the cone).

A cut at position ℓ divides the system into two subsystems L and R (left and right),

as shown in fig. 6.3.1. Similarly to H, we construct HL ⊗HR by defining two fields 𝜙L

and 𝜙R (split fields) living on the two sub-intervals and quantizing them.

The formulation of the fields on the intervals depends on the additional boundary

conditions that we introduce at the cut. Throughout the chapter, the outer edges of

the system are fixed to be Dirichlet boundary conditions (𝜙(0) = 𝜙(L) = 0). In the

following paragraph, all boundary conditions describe the boundary conditions at the

cut. We choose to study Neumann (∂x𝜙|x=ℓ = 0) and Dirichlet (𝜙L(ℓ) = 𝜙R(ℓ) = 0)

boundary conditions. In the main text, we focus on Neumann boundary conditions

(∂x𝜙L(ℓ) = ∂x𝜙R(ℓ) = 0). The treatment of the Dirichlet case is detailed in ap-

pendix 6.B. For Neumann boundary conditions at the cut, the fields on the intervals

are defined as

𝜙L(x, t) = √1
ℓ

∞
∑
m=1

1

√q(ℓ)
m

(aLme−iq(ℓ)
m t + aL,†

m eiq
(ℓ)
m t) sin (q(ℓ)

m x) (6.5)

𝜙R(x, t) = √ 1

L − ℓ
∞
∑
m=1

1

√q(L−ℓ)
m

(aRme−iq(L−ℓ)
m t + aR,†

m eiq
(L−ℓ)
m t) sin (q(L−ℓ)

m (L − x)) (6.6)

where q(ℓ)
m = (m − 1

2
) 𝜋

ℓ , q
(L−ℓ)
m = (m − 1

2
) 𝜋
L−ℓ and a𝜎

m are the bosonic annihilation

operators on the two partitions for 𝜎 ∈ {L,R}. Both, the fields 𝜙L, 𝜙R and the modes

aL/R defined in eqs. (6.5) and (6.6) fulfill the respective bosonic commutation relations.

Fields and modes on different sub-intervals commute. In analogy to the full fields,

the modes on the sub-intervals span their respective Hilbert spaces HL and HR. The
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computational bases for the two sub-intervals are

∣ ⃗n𝜎⟩ ≡ ∣n1,𝜎, n2,𝜎, …⟩ ≡ 1

N𝜎
∏
m>0

(a𝜎,†
m )

nm |0⟩𝜎 , (6.7)

with the normalization N𝜎 = ∏
m>0 √nm,𝜎!. The choice of mixed boundary conditions

(Dirichlet on the edges and Neumann at the cut) has the advantage that no zero-modes

appear in the system. The vacua of the sub-intervals are not equal to each other and

in particular they are not equal to the full system vacuum |0⟩L ≠ |0⟩R ≠ |0⟩. The

product space HL ⊗HR is then generated by ∣ ⃗nL, ⃗nR⟩ ≡ ∣ ⃗nL⟩ ⊗ ∣ ⃗nR⟩ on top of the vacuum
|0,0⟩ ≡ |0⟩L ⊗ |0⟩R ≠ |0⟩.
Before we continue, a couple of words on conventions and notation. Throughout the

chapter, we will use k as an index for the full modes Ak and l,m as indices for partial

modes a𝜎
m. Greek indices always indicate a left or a right partition, 𝜎 ∈ {L,R}.

Bogoliubov transformation

At first glance it might not be obvious that the descriptions of the system in terms

of the full field and split fields are equivalent. From an intuitive point of view: for

any given field configuration of 𝜙, one can find a configuration of 𝜙L and 𝜙R that is

arbitrarily close to it and still respects the boundary condition at the cut. We can

choose the two functions defined on the subsets to be equal to the function defined on

the full set everywhere except for a small neighborhood of the cut. There, they have

to deviate in order to satisfy the boundary condition. This neighborhood, however,

can be arbitrarily small while still preserving the continuity of the functions and the

boundary conditions. Later, we give a more detailed argument for the correspondence

on the algebraic level.

We now formally construct the unitary mapping between HF and HL ⊗HR proposed

in eq. (6.1)

(UT) ⃗nL ⃗nR; ⃗nF
= ⟨ ⃗nL, ⃗nR∣ ⃗nF⟩ . (6.8)

In order to compute the matrix elements (6.8), we take two distinct steps. First, we

express the full modes Ak in terms of the partial modes {a𝜎
m}m,𝜎 and {a𝜎†

n }n,𝜎. Second,
we rewrite the full vacuum in terms of the partial vacua and partial modes. The latter

is particularly important because the Hilbert spaces are not defined on top of the same

vacuum.

We rewrite the full modes as a mixture of modes defined on the sub-intervals

Ak = ∑
m

𝛾+,L
km aLm + ∑

m

𝛾−,L
km aL,†

m + ∑
m

𝛾+,R
km aRm + ∑

m

𝛾−,R
km aR,†

m , (6.9)

where the coefficients 𝛾 are to be determined. The coefficients 𝛾 are the result of

identifying the fields on the full interval with the split fields

𝜙(x, t) =
⎧{
⎨{⎩

𝜙L(x, t) if x < ℓ,
𝜙R(x, t) if ℓ < x < L

. (6.10)

This identification, the continuity condition, is the core of the unitary map between

the full and the split Hilbert spaces.
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We can express the full modes Ak in terms of the fields 𝜙(x, t) and the canonical

momentum operator 𝜋(x, t) = ∂
∂t𝜙(x, t)

Ak = √pk
L

∫
L

0
dx [𝜙(x, t) + i

pk
𝜋(x, t)] sin (pkx) . (6.11)

Combining eq. (6.11) with the continuity condition in eq. (6.10) links the full system

modes Ak to the partial modes a𝜎
m. Evaluating the integral, we obtain the coefficients

𝛾 for Neumann boundary conditions at the cut as

𝛾+,L
km =

⎧{{
⎨{{⎩

(−1)m√pk cos(pkℓ)

√Lℓ√q(ℓ)
m (pk−q(ℓ)

m )
pk ≠ q(ℓ)

m

√ ℓ
L

pk = q(ℓ)
m

(6.12)

𝛾−,L
km =

(−1)m√pk cos (pkℓ)

√Lℓ√q(ℓ)
m (pk + q(ℓ)

m )
(6.13)

𝛾+,R
km =

⎧{{
⎨{{⎩

(−1)m+1√pk cos(pkℓ)

√L(L−ℓ)√q(ℓ)
m (pk−q(L−ℓ)

m )
pk ≠ q(L−ℓ)

m

(−1)k+1√L−ℓ
√L

(1+ sin(pkℓ)
2pk(L−ℓ)) pk = q(L−ℓ)

m

(6.14)

𝛾−,R
km =

(−1)m+1√pk cos (pkℓ)

√L(L − ℓ)√q(ℓ)
m (pk + q(L−ℓ)

m )
. (6.15)

The special cases in eqs. (6.12) and (6.14) are divergences of the integrand. The coef-

ficients are obtained by integrating the special cases separately.

Multimode squeezed coherent vacuum

When expressing the full modes as a superposition of partial modes, we also have to

re-express the vacuum of the system. To find a formulation of the full system vac-

uum in terms of the partial modes, we identify eq. (6.9) as a multi-mode Bogoliubov

transformation [210]

[ A
A†] = M[ a

a†] (6.16)

with A = (A1, … ,ANF
), a = (aL1, … , aLNL

, … , aRNR
) and

M = [u v

v u
] = [𝛾L,+ 𝛾R,+ 𝛾L,− 𝛾R,−

𝛾L,− 𝛾R,− 𝛾L,+ 𝛾R,+] . (6.17)

Note thatM is not an operator here, but a matrix of numbers. Since all the coefficients

𝛾 in eqs. (6.13) to (6.14) are real, we focus on the case of real u and v. We use

the same symbols as in eqs. (6.13) to (6.14) without the subscript indices to refer

to matrices of coefficients. For ease of notation, we still express equations in terms of

u = [𝛾L,+ 𝛾R,+] and v = [𝛾L,− 𝛾R,−].
The transformation (6.17) expresses bosonic modes A in terms of different bosonic

modes a. Thus, the transformation must preserve the commutation relations. These
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are encoded in the symplectic structure of M

M−1 = KM†K with K = [1 −1] . (6.18)

It can be verified that 𝛾 coefficients in eqs. (6.12) to (6.15) obey the symplectic struc-

ture of the Bogoliubov transformation.

The Bogoliubov transform (6.17) is equivalent to a unitary transformation [210]

U[ a
a†]U† = M[ a

a†] (6.19)

with

U = exp(−1
2

[a†T aT]K lnM[ a
a†]) . (6.20)

In contrast to M, U is an operator and not a matrix of numbers. Thus, the vacuum of

the full modes |0⟩ can be expressed in terms of the vacuum of the partial modes |0,0⟩
as

|0⟩ = U |0,0⟩ . (6.21)

because then Ak |0⟩ = U†aUU† |0,0⟩ = 0.

The disentangling form transforms U into a more convenient form for actual com-

putations,

U = exp (−Tr(𝜎)) exp (−a†T𝜒a†) exp (−2a†T𝜎a) exp (aT𝜏a) (6.22)

with

𝜒 = 1

2
u−1v, 𝜎 = 1

2
ln u, 𝜏 = 1

2
v∗u−1 . (6.23)

Since we have an expression of the full modes in terms of the partial modes and an

expression of the full vacuum in terms of the partial vacua, we can compute the matrix

elements of UT . The elements of UT are overlaps between states in the full basis ∣ ⃗nF⟩
and the split basis ∣ ⃗nL, ⃗nR ⟩.

⟨ ⃗nL, ⃗nR ∣ ⃗nF⟩ = 1

N
⟨0,0| ⎡⎢

⎣
∏
m>0

(aRm)nm,R (aLm)nm,L⎤⎥
⎦

×

⎡⎢
⎣
∏
k>0

⎡⎢
⎣
∑
𝜎

∑
l>0

(𝛾𝜎,−
kl a𝜎

l + 𝛾𝜎,+
kl a𝜎†

l
)⎤⎥
⎦

nk
⎤⎥
⎦

×

⎡⎢
⎣
exp⎛⎜

⎝
− ∑

ij

∑
𝜎,𝜒

a𝜎†
i 𝜒𝜎,𝜉

ij a
𝜉†
j

⎞⎟
⎠

⎤⎥
⎦

|0,0⟩ ,

(6.24)

with

N = 1

exp (−Tr (𝜎))
⎡⎢
⎣

∏
m>0

√(nm,R!) (nm,L!)⎤⎥
⎦

⎡⎢
⎣
∏
k>0

√(nk!)⎤⎥
⎦

. (6.25)
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The first bracket in eq. (6.24) builds the occupation number state ⟨ ⃗nL, ⃗nR ∣ from the

partial vacuum ⟨0,0|. The order of left and right creation operators does not matter

here, since they commute as they act on different partitions. The second bracket rep-

resents the operators A†
k which build ∣ ⃗nF⟩ on top of the vacuum of the full modes |0⟩.

We choose to express the full modes in terms of the partial modes [cf. eq. (6.9)]. The

opposite way of expressing the partial modes in terms of full modes would work as

well. The last bracket in eq. (6.24) expresses the vacuum of full modes in terms of

the split modes. Looking at formulation of the norm in eq. (6.25), we recognize the

first term from the transformation of the vacuum; it is constant for all matrix elements.

The second and third term are the norms of the partial and the full occupation number

states. The contributions of the exponentials with 𝜎 and 𝜏 in eq. (6.22) vanish due to

the order of operators in the exponentials and their action on the vacuum to the right.

Equivalence of Hilbert spaces

We have now defined the unitary transformation between H and HL ⊗HR. Before we

proceed to numerical considerations, we would like to justify why the two descriptions

of a physical state are equivalent despite the additional boundary condition at the cut.

We can think about the transformation in terms of Fourier analysis. The sine modes

of the split intervals in eqs. (6.5) and (6.6) serve as a functional basis in which a field

configuration of the full interval field is expanded. The sine functions build a basis as

a consequence of Carleson’s theorem for convergence of Fourier series [211, 212].

However, we are dealing with quantum fields not just simple scalar valued functions.

Upon quantization, the Fourier coefficients in the expansion become operator valued as

indicated in eqs. (6.5) and (6.6). The symplectic structure of the Bogoliubov transform

between the two algebras (6.18) guarantees that the two quantizations of the system,

the one in terms of the full field in eq. (6.3) and the one in terms of the split fields, are

equivalent.

In the complete, infinite dimensional Hilbert spaces, the unitary map betweenH and

HL ⊗ HR is exact. However, once we introduce a truncation, it becomes an approx-

imation in the same fashion as HT is always an approximation of the quantum state

using the low energy sector of the Hilbert space. Using the partial field expansion then

becomes in spirit very similar to using a finite Fourier series to approximate a func-

tion. In section 6.4 we demonstrate that such an approximation indeed performs well

at computing entanglement entropies.

Truncation

The mapping between the full system and the partitioned system formulated with-

out considering the truncation until now. In its current form, we cannot transfer the

method to a computer because the sums contain infinitely many terms. We have to

consider a finite dimensional approximation of the Hilbert spaces. In HT, it is often

important to choose the most suitable truncation scheme for the problem. In our case,

we have to introduce three truncations: on for each H, HL and HR. For convenience,

we choose the cutoffs such that the Bogoliubov transformation (6.17) becomes a square

matrix. This leads to the restriction sF = sL + sR, where sF , sL and sR are the number of

momentum modes kept in the full system, the left and the right partition, respectively.

We truncate all Hilbert spaces,H,HL andHR with an energy cutoff such that the cutoff
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Figure 6.3.2: Illustration of the M matrix for different cut-off schemes. The amount

of coefficients for the left and the right partition in the matrices u and v

differ depending on the cut-off scheme. The coefficients belonging to the

left(right) side are displayed in red(blue).

energy is equal to the energy of the single excitation of the largest momentum mode

kept, sF , sL and sR respectively. For a free massless boson Hamiltonian, the energy of

the state ∣ ⃗nF⟩ defined in eq. (6.3) above the ground state is 𝜖( ⃗nF) − 𝜖(0) = 𝜋
L

∑∞
k=1 knk.

We use the formula to determine the cut-off of H0 as described in section 2.3. The

definition of the energy for the states in the split Hilbert spaces in eqs. (6.5) and (6.6)

follow analogously: L is replaced by ℓ and L − ℓ, respectively.
The symplectic structure in eq. (6.18) is fulfilled exactly in the infinite, non-truncated

space. By introducing the cut-off this property can be compromised. Different cut-

off schemes are benchmarked by checking the bosonic commutation relations, i.e. the

symplectic structure of the resulting transformation.

We investigate two different cut-off schemes. In the first one, we distribute the

number of partial modes equally across the left and the right partition independent

of the position of the cut (fixed cutoff): sL = sR = sF/2. This leads to an easy imple-

mentation but is questionable from a physical standpoint. A short interval with many

modes leads to a greater resolution in position space than the same number of modes

on a large interval. Furthermore, such a non-uniform UV cut-off leads to a position-

dependent non-universal constant in the entanglement entropy that obscures the true

functional dependence. The second cut-off scheme takes into account the length of

the partition. The number of modes is distributed proportionally to the length of the

interval sL = ℓ
L
sF and sR = sF − sL (constant mode density). This scheme keeps a con-

stant density of momentum modes and thus a homogeneous UV cut-off. Both cut-off

schemes are illustrated in fig. 6.3.2.

All further considerations use the constant mode density cut-off scheme. Most im-

portantly, it reproduces the bosonic commutation relations more faithfully (cf. ap-

pendix 6.A).

6.3.2 Algorithm

The evaluation of the overlap as given in eq. (6.24) is difficult because the expression

is not normal ordered and the sums in the expression are taken to powers nk. Its com-
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putation in the current form would require an overwhelming number of commutations

of individual mode operators.

Generating functional formulation

The expression simplifies if we express it in the spirit of a generating functional. The

repeated application of a mode a is equivalent to

an = [ dn

dJn
eJa]

J=0
, (6.26)

where J is a scalar variable.

Inserting the identity (6.26) in the formulation of the matrix elements of UT in

eq. (6.24), we obtain an expression resembling a generating functional

⟨ ⃗nL, ⃗nR ∣ ⃗nF⟩ = 1

N
∏
m>0

∏
𝜎

dnm,𝜎

dj
nm,𝜎
m,𝜎

∏
k>0

dnk

dJ
nk
L

⟨0,0| eSeFeV |0,0⟩
∣∣∣∣Jk=0,jm,𝜎=0

, (6.27)

with

S = ∑
m>0

∑
𝜎
jm,𝜎a

𝜎
m (6.28)

F = ∑
k,m>0

∑
𝜉
Jk (𝛾+,𝜉

k,ma
𝜉†
m + 𝛾−,𝜉

k,ma
𝜉
m) (6.29)

V = − ∑
𝜅,𝜆

∑
m,n>0

a𝜅
−m𝜒𝜅,𝜆

m,na𝜆
−n . (6.30)

Here, S are all terms related to the split modes, F is the term that is associated with

the full system modes and V are the terms that build the vacuum. We introduced two

kinds of additional, scalar variables: Jk are the additional variables for the full modes

and jm,𝜎 are defined for the partial modes.

Using the Baker-Campbell-Hausdorff (BCH) relations [213], we can bring this expres-

sion into normal order and evaluate the expectation value. The series of commutators

in the BCH relations terminate at most at the second order since the highest power of

mode operators in the exponent is two. We can write the normal ordered expression

as

eSeFeV = Z e[A,V] ∶ eSeFeV ∶ (6.31)

with

Z = exp [ComF + ComSF + ComAV] . (6.32)

The terms ComF, ComSF and ComAV are results of the BCH operations. They are

defined as

ComF = 1

2

∞
∑

k,k′=1
JkJk′ ∑

𝜎
∑
n>0

𝛾+,𝜎
k,n 𝛾−,𝜎

k′,n (6.33)

ComSF = ∑
m>0

∑
𝜎
jm,𝜎 ∑

k>0
Jk𝛾+,𝜎

k,m (6.34)

ComAV = −1
2

∑
m>0

∑
𝜎

⎧{
⎨{⎩
jm,𝜎 + ∑

k>0
Jk𝛾−,𝜎

k,m
⎫}
⎬}⎭

∑
m′>0

∑
𝜇

⎧{
⎨{⎩
jm′,𝜇 + ∑

k′>0
Jk′𝛾−,𝜇

k′,m′

⎫}
⎬}⎭

(𝜒𝜇,𝜎
m′,m + 𝜒𝜎,𝜇

m,m′) .

(6.35)
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The commutator [A,V] is linear in creation operators. The derivation of the commu-

tators is detailed in section 6.C.1.

The problem of computing the overlap reduces to computing multiple derivatives of

a scalar expression if we express eq. (6.24) as the derivative of a generating functional

⟨ ⃗nL, ⃗nR ∣ ⃗nF⟩ = 1

N
∏
m>0

∏
𝜎

dnm,𝜎

dj
nm,𝜎
m,𝜎

∏
k>0

dnk

dJ
nk
L

Z
∣∣∣∣Jk=0,jm,𝜎=0

. (6.36)

Tackling the exponential complexity of differentiation

The next goal is the efficient calculation of all derivatives in eq. (6.36). The pure

symbolic evaluation of derivatives becomes prohibitively expensive with increasing

cut-off. The number of terms to evaluate exponentially with the number of derivatives

n. In the following, we show how the structure of the generating functional helps us

to make the evaluation more efficient.

From an algorithmic point of view, there are two distinct exponentially scaling prob-

lems involved in the computation. On the one hand, the size of the unitary transfor-

mation grows with the size of the Hilbert space. We have to evaluate exponentially

many terms in order to fill the matrix. It is impossible to circumvent this exponential

since the method is based on exact diagonalization. On the other hand, each matrix el-

ement needs an increasing number of derivatives with increasing occupation numbers.

The number of terms in the derivation scales also exponentially with the occupation

number (and thus the cut-off). In the following section, we describe an algorithm

to make the evaluation of the derivatives feasible for relevant cut-offs. We are not

able to reduce the exponential growth of terms to a polynomial growth. However,

we can restrict ourselves to computing only relevant terms which largely reduces the

exponential growth. Thus, it is possible to reach HT cut-offs that provide reasonable

approximations of interesting physics.

A commonly used alternative to symbolic differentiation is automatic differentiation

(AD) [214, 215]. The algorithm of AD tracks the computation of the function and uses

predefined derivatives of elementary functions to evaluate the derivative numerically.

In our case, it is hard to use AD directly since we have to compute possibly very high

derivatives of the function and that we do not need the actual function value. Fur-

thermore, we can exploit the structure of the function to determine which terms must

be 0 without computing them. Here, we do not rely on AD, but devise an individual

scheme that uses as much information from analytic considerations as possible.

By inspecting the structure of the expressions in eq. (6.36), we note that the deriva-

tive always acts on an expression of the form

Z = eT , (6.37)

with T = ComF + ComSF + ComAV, a summary of all terms in the exponent of Z

in eq. (6.32). For the ensuing discussion, we introduce a shorthand notation for the

derivatives of Z

d

dJi
Z = d

dJi
eT

= T [Ji, •] eT .
(6.38)
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The expression T ≡ T[•, •] has two arguments because the commutators in T are

always quadratic in Jk and jm,𝜎. For the rest of the discussion of the algorithm, we will

not distinguish jm,𝜎 and Jk. We can always write them in terms of a general Ji by using

i as a multi-index.

This new notation helps us to demonstrate that many terms are 0 and we can drop

them. Due to the commutativity of the derivatives and the step of setting Jk = 0 in

the end [cf. eq. (6.36)], we find

T [Ji,Ji′] = T [Ji′,Ji]
T [•, •]|Ji=0∀i = 0

T [Jk, •]∣
Ji=0∀i = 0∀k .

(6.39)

All expressions that are not derived twice must be zero if we set all Jk = 0 in the

end because Jk appears quadratically in each commutator. Thus, the number of Ts

for each derivative is given by NT = ∑
i ni
2

, where ni are the occupation numbers of the

full-system state and the partitioned state.

The restrictions described above lead to a more efficient algorithm in comparison to

symbolic derivation of the full expression. Considering the restrictions in eq. (6.39),

the result of the derivatives in eq. (6.36) is heavily constrained. Every term must be

derived twice (otherwise it is 0). Furthermore, we only sum over unique combinations

since we can freely exchange the arguments of T and the order of the T[Jl1,Jl2] in the

product over l.

The input of the algorithm is a list of Ji with corresponding powers ni, and we only

compute combinations of fully derived T

∏
i

d ni

dJ
ni
i

eT
∣∣∣∣Ji=0

= ∑
′

k

ck ∏
l

Tpkl [Jl1,Jl2] , (6.40)

where ck are the multiplicities of the terms in T. The sum ∑
′

runs over all unique

combinations of T. A combination is unique if it cannot be transformed into another

combination of Ts by swapping the arguments of T or commuting Ts. This corresponds

to iterating over all pairwise lexicographically ordered tuples of J. The exponents pkl
are the powers of certain terms T if the same arguments (Jl1,Jl2) appear multiple

times in the same sequence. Thus, the number of terms in the product over l can vary

depending on the number of individual combinations of (Jl1,Jl2). Since we are not

considering the full system and the split modes separately at the moment, the indices

k,m, and l are used without further implications here.

For concreteness, we consider a simple example of three modes J1, J2 and J3 to

illustrate the procedure. We are interested in the second derivative with respect to each

Ji. In terms of occupation numbers, we can write the configuration as ⃗n = (2,2,2),
where ⃗n is the vector of occupations numbers. The primed sum in eq. (6.40) runs

over all unique configurations of derivatives. In our example, there are five distinct

configurations

1 ∶ (J1,J1) , (J2,J2) , (J3,J3)
2 ∶ (J1,J2) , (J1,J2) , (J3,J3)
3 ∶ (J1,J1) , (J2,J3) , (J2,J3)
4 ∶ (J1,J3) , (J1,J3) , (J2,J2)
5 ∶ (J1,J2) , (J1,J3) , (J2,J3) .

(6.41)
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The tuples in eq. (6.41) represent the arguments of T [•, •]. Combinations other than

those listed above can either be generated by swapping tuples or by exchanging the

arguments inside a tuple. A swap of two tuples is allowed due to the commutativity of

multiplication in eq. (6.40). The exchange of arguments is equivalent to exchanging the

derivatives of a single T which corresponds to one of the identities in eq. (6.39). Since

there are six derivatives in total, we must have three distinct T terms in each string.

We can express the five combinations in eq. (6.41) more compactly with powers pkl

1 ∶ (J1,J1) , (J2,J2) , (J3,J3)

2 ∶ (J1,J2)
2 , (J3,J3)

3 ∶ (J1,J1) , (J2,J3)
2

4 ∶ (J1,J3)
2 , (J2,J2)

5 ∶ (J1,J2) , (J1,J3) , (J2,J3) .

(6.42)

Here, k is the index of the overall combination of all pairs J and l is the index of

the tuple in the string. More concretely, p2,1 = 2 because the second string contains

(J1,J2)2 as first pair.
Some configurations in eq. (6.41) may appear multiple times during the application

of the product rule in eq. (6.40). Thus, we have to take care of the multiplicities in

front of the terms. In our simple example, we can just list them as c⃗ = (1,2,2,2,8).
Here, they are calculated by explicitly performing the derivatives on the left side of

eq. (6.40). The primed sum in eq. (6.40) can be evaluated given all configurations in

eq. (6.41) and the vector ⃗c. All terms of the form T[Jl1,Jl2] are numbers that can be

evaluated by summing the derivatives of commutators in eq. (6.32) explicitly.

As demonstrated in the example, the computation of eq. (6.40) can be divided into

two subproblems. Firstly, we have to determine all unique combinations of pairs
(Jl1,Jl2) for a given ⃗n. Secondly, we have to compute the coefficients ck given pkl
and the tuples (Jl1,Jl2).
The first task can be solved with a tree-based algorithm that is described in detail in

section 6.C.2. The idea is to build only the combinations of tuples (Jl1,Jl2) that adhere
to the uniqueness condition defined for the primed sum, i.e. lexicographical ordering

of all index tuples. The condition can be checked locally at every node of the tree.

Thus, only nodes that can still build valid configurations are expanded in subsequent

operations. The trivial approach of listing all combinations of Ji for a given ⃗n and

filtering for the unique ones gets prohibitively costly already for low cut-offs.

The coefficients ck have a closed form expression and are given by

ck =
∏

i
(ni!)

2
Ndiag,k ∏

l
(pkl!)

, (6.43)

where ni are the occupation numbers and Ndiag,k is the number of identical arguments

for T in the string with index k. In our example of ⃗n = (2,2,2), Ndiag,1 = 3 and

Ndiag,3 = 1. The proof of the equation is given in the appendix of [4].

Finally, we can put all the pieces together. An element of UT corresponds to the

calculation of an overlap of the form ⟨ ⃗nL, ⃗nR ∣ ⃗nF⟩. Each of the states is given as an occu-

pation number vector. Equation (6.36) connects the occupation numbers to derivatives

of a scalar function. These derivatives can be computed explicitly by first enumerating
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all unique configurations of the primed sum in eq. (6.40). Each of the tuples in a con-

figuration represents the arguments of T. The derivatives of T for some tuple (Jl1,Jl2)
can be evaluated explicitly. The product of all T values in a string is weighed by a

factor [cf. eq. (6.43)] and summed to yield the final value of the matrix element. The

explicit expressions for the derivatives of the commutators are given in section 6.C.1.

6.3.3 Models

We test the new method to compute entanglement entropies with HT on two well-

known models, the free Klein-Gordon theory and the interacting sine-Gordon model.

Our aim is to show that the algorithm described in section 6.3.2 is indeed model inde-

pendent and leads to correct entanglement entropies.

The Klein-Gordon model

One of the most fundamental quantum field theories is the one-dimensional Klein-

Gordon (KG) model, the massive free boson theory, described by the Hamiltonian

HmFB = 1

2
∫
L

0
dx [(∂t𝜙(x))2 + (∂x𝜙(x))2 + m2𝜙2(x)] , (6.44)

where 𝜙(x) is a real-valued quantum field and m is the mass of the boson.

Its entanglement properties are known analytically both from replica trick tech-

niques [197, 199] and from covariance matrix methods [197, 201] including the equi-

librium states and the non-equilibrium dynamics. For the massless case, the entangle-

ment entropy can be computed analytically [199]

S(ℓ) = c

6
log( L

𝜋a sin(𝜋ℓ
L

)) + 2g + U(a) , (6.45)

where the central charge of the CFT c = 1, a is a UV cutoff, g is the Affleck-Ludwig

boundary entropy [216] and U(a) is a non-universal constant dependent on the precise
form of the cutoff.

Due to a finite correlation length 𝜉 ∼ 1
m the entanglement for m > 1

L
saturates to an

area law plateau where S(ℓ) = const. At distance closer than 𝜉 to the boundaries, the

vN entropy SN interpolates smoothly to the zero value at the boundaries. For m < 1
L
,

there is a smooth crossover from a log law to an area law scaling of the entanglement

entropy.

For thermal states, the vN entanglement entropy becomes the thermodynamic en-

tropy and there is a smooth crossover with increasing temperature to a volume law

S(ℓ) ∝ ℓ. In non-equilibrium dynamics in the massless case, the vN entropy is expected

to grow linearly in time [196]. For finite systems, the growth stops when excitations

from the splitting point reach the boundaries of the system and one expects a recur-

rent dynamics. In the massive case, the linear growth is superposed with an oscillatory

component with a frequency given by the boson mass [217].

Sine Gordon model

A paradigmatic model of strongly interacting QFT is the sine-Gordon (sG) model

HsG = ∫dx [1
2

{(∂t𝜙(x))2 + (∂x𝜙(x))2} − m2

𝛽2
cos(𝛽𝜙(x))] (6.46)
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with the mass parameter m and the interaction parameter 𝛽. The sG model is one of

the simplest models displaying confinement and is an integrable model solvable by

S-matrix bootstrap techniques [218]. The model has solitonic topological excitations

and a rich phase diagram. For 𝛽 < √4𝜋 the interaction is attractive and the solitons

form bound states - breathers. For √4𝜋 < 𝛽 < √8𝜋 the interaction is repulsive, for

the separating line 𝛽 = √4𝜋, the model can be mapped to a free Dirac fermion and at

𝛽 ∼ √8𝜋 the model undergoes a Berezinskii–Kosterlitz–Thouless phase transition to a

free model [218].

A convenient way to parameterize the sG interaction parameter in the attractive

regime 𝛽 < √4𝜋 is

𝛽2 = 8𝜋
1+ 𝜆 (6.47)

where the parameter 𝜆 is convenient because ⌊𝜆⌋ equals number of breathers present

in the sG spectrum. The mass mn of the n-th breather is given by

mn = 2M sin(n𝜋
2𝜆 ) , (6.48)

where M is the soliton mass. In particular, the mass of the lightest particle, the first

breather, m1 determines the gap of the system. In a finite system, these masses get

modified and can be obtained with the form factor and boundary bootstrap formal-

ism [219–222]. Each of the breathers has a tower of excited states as a result of ac-

quiring a nonzero momentum. The set of allowedmomentum values is discrete in finite

volume. The expressions for finite volume breather energies are given in appendix 6.F.

The entanglement properties of the sG model in the repulsive regime have been

studied by spectral form factor and corner transfer matrix techniques [223, 224] and

predict the height of the vN entropy area law plateau

S = 1

6
log( 1

Ma
) + 1

6
log

⎛⎜⎜⎜⎜⎜
⎝

sin [𝜋 (1− 𝛽2
8𝜋)]

1− 𝛽2
8𝜋

⎞⎟⎟⎟⎟⎟
⎠

+ O( 1

log(a)) , (6.49)

where M is the soliton mass which is a function of m and 𝛽. We are working in the

attractive regime, where the entanglement properties are less understood. Based on

general arguments for gapped systems, the vN entropy plateau is expected to follow

the form [200]

S = c

3
log (𝜉1) + U − 1

8

ℓ
∑
𝛼=1

K0 (2ℓm𝛼) + O (e−3rm1) , (6.50)

where K0 is the modified Bessel function, c is the central charge of the UV critical point,

m𝛼 are the masses of the particles in the spectrum (breathers in the sG case), 𝜉1 the

correlation length corresponding to the lightest particle and U a constant.

6.4 Results

The following section is structured in two main parts. In the first part, we show results

of the method for the Klein Gordon model, both in and out-of equilibrium. These
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results are compared to covariance matrix calculations and serve as a benchmark. In a

second part, we show results for the interacting sine Gordon model to demonstrate that

our method works beyond the free regime. As in the Klein Gordon case, we present

data for the equilibrium situation and time dynamics of the von Neumann entropy.

All results shown in this section are computed for a finite cut-off sF = 18, correspond-

ing to 1597 states. The boundary conditions at the cut are chosen to be Neumann while

the (physical) boundary conditions at the outer edges are Dirichlet. A constant mode

density truncation scheme is used in all computations. Further details on the cut-off

scheme are described in appendix 6.A. Normalizations (like the global prefactor in

eq. (6.25)) are enforced by normalizing the reduced density matrix numerically after

the transformation.

6.4.1 Klein Gordon model

The Klein Gordon model (6.44) represents a non-trivial check for HT because its Hamil-

tonian is non-diagonal when expanded in the massless basis for any mass m ≠ 0.

As an initial check for the splitting procedure, we reproduce the correlations of the

Klein Gordon theory in terms of the split modes. The correlations ⟨𝜙(x)𝜙(L − x)⟩ can
be either calculated in terms of the full fields 𝜙 acting on the full interval density matrix

𝜌 or in terms of the split fields of the left and right partition 𝜙L and 𝜙R acting on the

partitioned density matrix 𝜌LR

⟨𝜙(x)𝜙(L − x)⟩ = Tr(𝜙(x)𝜙(L − x)𝜌)
= Tr(𝜙L/R(x)𝜙L/R(L − x)𝜌LR).

(6.51)

Here, we use the notation 𝜙L/R to refer to the field on the sub-interval that x belongs to.
If the mapping between the different Hilbert spaces work well, we expect the result to

be identical. Figure 6.4.1 compares the correlations across the full range of the system

for a cut at position ℓ/L = 1/3 for Neumann and Dirichlet boundary conditions at the

cut. Both of the split field curves agree well with the correlations of the full system.

In the case of Neumann boundary conditions at the cut, we only observe deviations

at the cut. A plateau forms around the split at ℓ, since we impose ∂x𝜙 = 0. The

Dirichlet boundary conditions enforce 𝜙 = 0 at ℓ and we notice that the correlations

drop to zero as expected. The figure is symmetric around ℓ/L = 0.5 due to choice

of arguments in the correlator. The overall wavy features in the curve for the full

and the partial modes are a feature of the finite cut-off in HT. With an increase in

the cut-off, we expect these features to reduce in amplitude. Since correlations with

Neumann boundary conditions at the cut agree better with the full correlations, we

choose Neumann boundary conditions at the cut for all further entropy computations.

We expect Dirichlet boundary conditions at the cut to be eventually equivalent to the

choice of Neumann boundary conditions for higher cut-offs (cf. section 6.3.1).

We continue checking the performance of our method by calculating the von Neu-

mann entropy. We compare the von Neumann entropy with an analytic calculation

using the covariance matrix approach (cf. fig. 6.4.2). The formalism is explained in de-

tail in appendix 6.E. All covariance matrix computations in this section are performed

using 200 momentum modes. HT entropies are calculated at all points ℓ/L = n/sF ,
n = 1, … , sF − 1 since the bosonic commutation relations in the truncated split basis

are fulfilled best at these points (cf. appendix 6.A). The points ℓ/L = 0 and ℓ/L = 1 can

be trivially added since they both must yield 0 by construction. We did not add them

94



6.4 Results

0.0 0.2 0.4 0.6 0.8 1.0
`/L

0

2

4

6

8

〈φ
(x

)φ
(L
−

x)
〉

full

split (Neumann)

split (Dirichlet)

Figure 6.4.1: Correlations ⟨𝜙(x)𝜙(L − x)⟩ of the Klein-Gordon system for massm = 1.0.
The plot shows the correlations of the system computed with the original

(full) mode decomposition of the fields as a reference. The system is cut

at ℓ/L = 1/3.

in the plots. The calculation of the entropy at other points is possible, but will result

in more significant errors due to the truncation effect leading to worse preservation of

the canonical commutation relation by the splitting procedure. The covariance matrix

results (dashed lines) and the CFT results (solid lines) in the figure are shifted by a

constant to coincide with the HT curves at ℓ/L = 0.5 for ease of comparison. This ac-

counts for the non-universal cutoff dependent constant [cf. eq. (6.45)] which is slightly

different in the analytic and the HT case due to the different truncation schemes.

In all cases, our method agrees well with the analytic predictions. The massless

boson shows the expected logarithmic growth in entropy. This agrees perfectly with

the CFT prediction in eq. (6.45) [199].

With increasing mass, the curve develops a flat plateau in the central region, tran-

sitioning to the area law regime as expected for a massive boson. For distances less

than a correlation length away from the boundary, the curve undergoes a non-linear

behavior before it reaches 0 at the boundaries due to finite size effects.

Similar data can be obtained for Dirichlet boundary conditions at the cut. We present

the results for Neumann boundary conditions here since they show better agreement

with the expectation. The Dirichlet data has slightly stronger deviations at the bound-

aries. This is expected since the correlations already agree better for the Neumann

than for the Dirichlet case.

In addition to ground state properties, we can also access the von Neumann entropy

of thermal states since HT provides access to the reduced density matrix at arbitrary

temperatures. Figure 6.4.3 shows the entanglement entropy (T = 0) and the thermo-

dynamic entropy (T > 0) of a massive (m = 5) free boson at different spatial positions.

As before, the results obtained by our method agree well with the covariance matrix

computation. The dashed curves are again shifted to coincide at ℓ/L = 0.5 to account

for cut-off dependent constants. At T = 0, the we see the expected plateau of the area

law of the entanglement entropy. This curve is the equivalent plot to fig. 6.4.2 with a

higher mass. At a finite temperature, the entropy becomes extensive and grows linear

with the system size.
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Figure 6.4.2: Spatially resolved von Neumann entropy for the Klein-Gordon model at

different masses m (displayed in different colors). Different methods are

encoded in the linestyle. The massless case is compared to the CFT result

while the massive cases are compared to covariance matrices computa-

tions.
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Figure 6.4.3: Von Neumann entropy of thermal states of the Klein-Gordon system with

m = 5. The dots are the results of HT and the dashed lines are covariance

matrix computations. Entropies at finite temperature are computed from

a Boltzmann distribution at temperature T. The curve at zero tempera-

ture uses the ground state of the system.
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Figure 6.4.4: Time evolution of the von Neumann entropy after quenches in the Klein

Gordon model. The system is split at ℓ/L = 0.5. Different panels show

quenches from and to different masses (as indicated in the insets). Solid

lines are results fromHT and dashed lines represent the covariance matrix

results. The inset in panel (d) details the behavior of the quench m =
50 → 200 at short times.

In addition to equilibrium properties, we can study time dynamics as well by quench-

ing a ground state of a system at m0 to a system with mass m. The resulting time

dynamics can be simulated both with the covariance matrix approach and with our

method.

Figure 6.4.4 presents several quenches with increasing post-quench. We study the

dynamics of the vN entropy between the left and the right half of the system (ℓ = 0.5)
and compare the HT results with the analytical results from the covariance matrix

formalism. We displace the curves by a constant such that they start from the same

point. This is to account for the non-universal cutoff dependent constant resulting from

the difference in truncation schemes in the two methods.

In panel (a) of fig. 6.4.4 we observe the expected CFT linear growth of the vN entropy

quenches for a quench to a massless Hamiltonian. The linear growth is interrupted at

t = L/2 when quasiparticles from the cut are reflected at the system boundaries. At

t = L this results in a recurrence and the free dispersionless nature of the model leads

to periodic dynamics.

At nonzero mass, the entropy develops an oscillatory component with a frequency

proportional to the boson mass m. For a thermodynamically large system L ≫ 1/m,
oscillatory dynamics are expected to be on top of a linear growth before reaching

a plateau. This is indeed what we observe in panel (d) with the largest mass case.

Because the size of the subsystem that we are computing the entropy of (half of the

system) is of the same order as the system size, there are a few oscillations due to reflec-

tions at the boundaries before the plateau fully equilibrates. For masses of the order of

the system size, the finite size reflections from the boundaries dominate, so the linear

growth becomes obscured by them, which is what we see in panel (b). For intermediate

masses for which the correlation length is an order of magnitude (but not more) smaller

than the system size, linear growth becomes visible (although superposed with signifi-
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Figure 6.4.5: Spatially resolved von Neumann entropy of the sine Gordon model for

Neumann boundary conditions at the cut. The curves are plotted for the

interaction parameter 𝜆 = 7 and soliton mass M = 25 and for 𝜆 = 17 for

two different mass values, M = 25 at M = 60.29. At M = 60.29 the gap

(mass of the first breather) agrees with that of the 𝜆 = 7 case.

cant oscillations). However, the plateau keeps undergoing significant oscillations due

to reflections from the boundary as shown in panel (c).

The quenches in fig. 6.4.4 expose the limitations of the truncated Hamiltonian ap-

proximation. At smaller masses [panels (a) and (b)], the HT results match perfectly the

analytic prediction up to times several times longer than the system size. This shows

that the HT calculation of real time dynamics can be very reliable up to considerably

long times. At higher masses [panel (c)], the real time dynamics start to deviate from

the analytic curve for late times and the curve develops a phase shift. This is due to

truncation effects – at higher masses the low energy part of the Hilbert space becomes

too small to accommodate all the relevant modes for the dynamics. The quality of the

time evolution depends also on the amplitude of the quench, the difference between

the pre- and the post-quench mass. For small quenches, the HT evolution is reliable

even at large masses and for bigger quenches it gets less reliable even at smaller masses.

Large quenches excite states high up in the spectrum and exceed the HT truncation.

The very high masses shown in panel (d) cannot be reliably simulated with our current

implementation of the HT and we show only the analytic curve to support the discus-

sions in the previous paragraphs. The main problem in the simulation is the massless

basis chosen for H0 in the HT procedure. In the massless basis, a large quench excites a

sizable number of highly excited states. We expect much better convergence for large

quenches in a massive basis.

6.4.2 Sine Gordon Model

The basis transformation from a full to a split system is independent of the model.

We apply the same methodology to the interacting sine-Gordon Hamiltonian (6.46) as

shown in fig. 6.4.5. We compare the spatially resolved vN entropy for two different

values of the coupling parameter 𝜆 and different values of the solitonmassM. The cases

of 𝜆 = 7, M = 25 and 𝜆 = 17, M = 60.29 are chosen such that the gap of the model
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Figure 6.4.6: Time evolution of the von Neumann entropy after quenches. The top

panel shows the Klein-Gordon evolution of the entropy at ℓ/L = 0.5 for

a quench from boson mass m0 = 7 to m = 12. The bottom panel depicts

a quench of the sine Gordon model for 𝜆 = 7 from a soliton mass of

M0 = 15.73 to M = 26.96. The masses are chosen such that the first

breather masses m1 of the sG model agree with the KG boson masses.

(the mass of the first breather) matches. In comparison to the Klein-Gordon model, we

do not see the onset of a plateau in the middle of the curve. For the matching breather

mass case, the gap is m1 = 11.13L meaning that the correlation length is less than one

tenth of the system size. At such a short correlation length, an area law plateau would

generally be expected. The log-like deviation from that could be indicative of longer

range entanglement in the sG case which could be a consequence of the topological

nature of solitons or a subtlety of the continuum limit that does not occur in lattice

systems. It would be interesting to further understand this surprising scaling with

analytical tools.

The perfect overlap of the curves 𝜆 = 7, M = 25 and 𝜆 = 17, M = 60.29 indicates

that the vN entropy scaling in the attractive regime of the sG model is dominated solely

by the first breather and not by the higher particles in the spectrum. This is consistent

with the general expression (6.50). At large volumes, the K0 corrections are highly

suppressed, resulting in the value of vN entropy depending only on the correlation

length.

In addition to equilibrium quantities, we can also study quenches in the sG model.

The vN entropy dynamics of the sG quench is shown in Figure 6.4.6 and compared with

an equivalent KG quench. The comparison is done at such choices of the parameters

that the gaps of the two systems agree. We observe an oscillatory motion as predicted

by recent work by Castro-Alvaredo [209]. As known previously in the literature [217]

and also demonstrated here in Figure 6.4.4, the oscillating dynamics is a generic conse-

quence of the gap and in not a special feature of interaction. From our present results

it is not yet possible to determine whether the oscillations in sG quenches remain un-

damped at longer times as predicted by [209]. In order to study both questions, the

quenches would have to be computed at a much larger post quench soliton mass, al-

lowing to explore larger times before the reflection from the boundaries. Recently,
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Figure 6.4.7: Frequency spectrum of the von Neumann entropy SN time evolution af-

ter a sine-Gordon mass quench from soliton mass M0 = 15 to M = 20

at 𝜆 = 7. The spectrum is obtained using a discrete Fourier transform.

The amplitude at frequencies 𝜔 is compared against breather masses.

The breather masses are computed using reflection factors from refer-

ence [222], obtained using boundary bootstrap to include finite size cor-

rections. The inset shows the original time evolution of the von Neumann

entropy following the quench.

an advanced HT implementation of the sG model has been developed [208] allowing

for calculations with Hilbert space sizes of several hundred thousand states. It would

be interesting to combine our method with such an approach to study sG quenches in

large volume. This would, however, require even more efficient approaches to deal

with the exponential complexity of the derivatives discussed in section 6.3.2.

In Figure 6.4.7 we show the results of a Fourier analysis of the time series and com-

pare the frequency spectra with breather energy levels. In order to have a more reliable

time evolution at longer times, we study a small quench in mass - a quench generated

by a moderate change of the soliton mass. This reduces the excitations of states high

up in the spectrum which are outside of our truncation. The analytical breather en-

ergies for comparison are computed using the form factor and boundary bootstrap

formalism in references [219–222], for completeness the expressions are listed also in

appendix 6.F. The sG ground states which are the prequench states are even under the

charge conjugation C ∶ 𝜙 → −𝜙 which interchanges solitons with anti-solitons. There-

fore, as predicted by [209], only C even states get populated during the quench. These

include even breather states and even multiples of odd breathers.

6.5 Discussion

We presented a method to compute reduced density matrices of a quantum field the-

ory using Hamiltonian truncation. Our method constructs a unitary transformation

between the Hilbert space of the full interval and a tensor product of Hilbert spaces

corresponding to two sub-intervals.
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6.5 Discussion

The method enables the direct evaluation of a wide spectrum of entanglement re-

lated quantities, including von Neumann and Rényi entropies, mutual information and

entanglement Hamiltonians. Most importantly, our method is model-independent and

can be applied for any HT that is based on an expansion around a free (massive or

massless) theory, which is the most common choice in modern implementations. We

studied the entanglement in ground, excited and thermal states as well as the real time

evolution of the entanglement entropy. By construction, the method could in principle

be applied in any dimension where HT converge.

To check the validity of the approach, we benchmarked the method using the Klein-

Gordon Hamiltonian describing a massive free boson. Despite being a free theory, it

represents a non-trivial test because its Hamiltonian is a non-diagonal perturbation of

the massless free theory. The exact solutions for this model can be obtained using

covariance matrix methods [201] making it suitable as a benchmarking model. We

found excellent agreement of the von Neumann entropy with theoretical predictions

for ground and thermal states. For small quenches, the time dynamics of the Klein-

Gordon model are accurately reproduced for up to times several times longer than the

system size.

Due to the model independence of the method, we continued by studying an inter-

acting system, the sine-Gordon field theory in the attractive regime. For the scaling of

the ground state von Neumann entropy, we found a logarithmic behavior instead of

an area-law. At this point, it is unclear whether this is a feature of the model in the

continuum or a related to the method. In the large volume regime, the vN entropy

depends only on the gap of the system but not the higher particle content. Studying

the quench dynamics of the sG model, we found an oscillating behavior, as predicted

by [209]. The resonances in the frequency spectrum of the time series matched the

masses of the lowest breathers. Whether the oscillations are superimposed with a lin-

ear growth needs further investigation. One option would be a more sophisticated

implementation of the sG model with a higher cutoff. The recently developed chirally

factorized approach [208] could be a suitable candidate.

Our method enables many interesting explorations and can be extended in several

directions. The oscillatory time dependence of the vN entropy after quenches could

be analyzed. Here, a possible direction is the role of integrability and the effects of

integrability breaking. Suitable candidates are non-integrable perturbations of the sG

model, like the double sG model and the massive sG model. Another more fundamental

possibility would be the 𝜙4 theory which is a non-integrable QFTmodel and has already

been successfully implemented in the HT framework [145, 146]. Our method can be

adapted for the 𝜙4 model by computing the Bogoliubov coefficients for the massive

field expansion.

Furthermore, it is interesting to study the entanglement Hamiltonian and the Bisognano-

Wichmann theorem [225, 226]. Several interesting properties have been established

for the CFT case [227–230], and it would be important to explore how they extend to

the interacting gapped QFT. The explicit representation of the reduced density matrix

in a computational basis given by our method is naturally suited to such a study.

An implementation of our method in (2 + 1) dimensions is interesting due to the

lack of methods in systems with dimension d > (1 + 1). By construction, our method

can be easily generalized to any dimension. The main obstacle would be the quickly

growing size of the full and the split system Hilbert spaces. However, HT has already

been successfully applied in higher dimensions [148].
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6.5 Discussion

Finally, in case of free theories, massless and massive, our construction yields an

exact construction of the reduced density matrix of the theory. It could be a fruitful

direction to use that to get further analytical insights into the entanglement structure

of QFT.

102



Appendix

6.A Cut-off effects and symplectic structure

The main approximation in our method is the representation of the full system modes

in terms of a finite number of partial modes. We have to ensure that the approxima-

tion conserves basic properties of the system like the bosonic commutation relations.

Equation (6.18) can be reformulated to test the transformation as

MKM† = K (6.52)

M†KM = K . (6.53)

Equation (6.52) evaluates the commutation relations of the full modes Ak expressed in

terms of the partial modes. The structure of K on the diagonal of 1 on the first half of the

diagonal and −1 on the second half reflects the anti-symmetry of the commutator upon

exchanging its arguments. The commutation relations of the reverse transformation

(partial modes expressed in full modes) are tested in eq. (6.53). The two equations

provide us with an objective quality criterion of the transformation. If the commutation

relations of the bosonic modes are not fulfilled, the transformation is invalid.

As described in the main text, we consider two cut-off schemes. The fixed cut-off

scheme distributes the partial modes equally across both intervals, irrespective of the

size of the interval (sL = sR = sF/2). The second scheme, constant mode density, dis-

tributes the modes proportionally to the size of the intervals (sL = ℓ/LsF , sR = sF − sL).
The quality of the two schemes can be assessed by checking the commutation rela-

tions of the transformed modes. Figure 6.A.1 shows the result of the calculation of

eq. (6.52). The top row shows that the fixed cut-off scheme does not reproduce the

bosonic commutation relations if the full modes are expressed in terms of partial modes

for splits that are not at x = 0.5. A cut in the middle represents a special case. Here,

the constant mode density scheme and the fixed cut-off scheme coincide. The bottom

row illustrates that the constant mode density cut-off schemes reproduces the correct

commutation relations for different cuts. All the computations in the main text are

performed with this cut-off scheme.

The commutation relations are not exactly fulfilled for all points on the interval

[0, L]. If we assume sF full modes, we can split the system at multiples of 1/sF such

that we have the exact same density of modes on the left and the right side of the cut.

If the mode density is not exactly the same, we have to decide which distribution of

partial modes we pick.

The choice of the rounding scheme influences the values for the entropy. We show

in fig. 6.A.2 the influence of different rounding schemes. The points in blue always

floor the number of modes in the left partition sL = ⌊ ℓ
L
sF⌋. This leads to increasingly

bad results as we move to the right between commensurate cuts. If we round the

number of left modes to the closest integer instead (depicted in orange), the problems

get less severe and obtain a symmetric structure around the middle of the intervals.
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6.A Cut-off effects

fixed cutoff

`/L = 0.2 `/L = 0.5 `/L = 0.8

const.

mode density

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

-1

0

1

Figure 6.A.1: Check of the symplectic properties of the transformation from full modes

to partial modes for sF = 10. The fixed cut-off scheme does not faithfully

reproduce the bosonic commutation relations except for the case of x =
0.5. In this case, the fixed scheme and the constant mode density scheme

coincide.

The commensurate cuts of the system are drawn in green. In the main text, we only

calculate points at commensurate splittings to avoid the influence of rounding effects.
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6.B 𝛾 coefficients for Dirichlet boundary conditions at the cut

0.2 0.4 0.6 0.8
`/L

0.2

0.3
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0.5

S N
floor

round

exact

Figure 6.A.2: Effect of rounding schemes for the number of modes in the left and right

partition sL and sR for Dirichlet boundary conditions at the cut. The

system is a Klein-Gordon model with mass m = 1. The transformation

yields the correct bosonic commutation on commensurate cuts (green)

with distance 1/sF . If we do not cut at commensurate splits, the sL can

be either floored to the next integer (blue) or rounded (orange).

6.B 𝛾 coefficients for Dirichlet boundary

conditions at the cut

Our goal is to find an expression for each full system mode Ak in terms of the partial

modes aRm and aLm. To avoid unnecessary back and forth with the main text, some

equations from the main text will be repeated here. The starting point is the mode

expansion of the scalar field of the full system [cf. eq. (6.3)]

𝜙(x, t) = 1

√L

∞
∑
k=1

1

√pk
(Ake

−ipkt + A†
ke

ipkt) sin(pkx), (6.54)

with pk = k𝜋
L
and [Ak,Al] = [A†

k,A†
l
] = 0 and [Ak,A†

l
] = 𝛿k,l. The expression can be

inverted with the help of the canonical conjugate momentum field

𝜋(x, t) = ∂t𝜙(x, t) = − i

√L

∞
∑
k=1

√pk (Ake
−ipkt − A†

ke
ipkt) sin (pkx) . (6.55)

By adding the field operator (6.54) and the momentum operator (6.55), we obtain for

each k and t = 0

[𝜙(x, t) + i

pk
𝜋(x, t)]

k,t=0
= 2

√Lpk
Ak sin (pkx) . (6.56)

Projecting out all except one momentum mode by multiplying the expression on both

sides with sin (pkx) and integrating, we invert of the mode expansion of the field

Ak = √pk
L

∫
L

0
dx [𝜙(x, t) + i

pk
𝜋(x, t)] sin (pkx) . (6.57)
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6.C Algorithm

Our aim is to express the field operator on the full interval in eq. (6.57) by the fields

defined on the sub-intervals. In addition to the full field, we also need the split fields

with Dirichlet boundary conditions at the cut

𝜙L(x, t) = 1

√ℓ

∞
∑
m=1

1

√p(ℓ)
m

(aLme−ip(ℓ)
m t + aL,†

m eip
(ℓ)
m t) sin (p(ℓ)

m x) (6.58)

𝜙R(x, t) = 1

√L − ℓ

∞
∑
m=1

1

√p(L−ℓ)
m

(aRme−ip(L−ℓ)
m t + aR,†

m eip
(L−ℓ)
m t) sin (p(L−ℓ)

m (x − ℓ)) , (6.59)

where we have defined p(d)
m = m𝜋

d
. The expression for the canonical momentum on

the sub-systems L and R follow analogously to eq. (6.55).

The relationship between the full fields (6.54) and split fields in eq. (6.59) is given

by the continuity condition, eq. (6.10) in the main text. Inserting the split field ex-

pansions in eqs. (6.58) and (6.59) into eq. (6.57) and performing the integrals yields

the Bogoliubov transformation between the full and the split modes, eq. (6.16) in the

main text.

The resulting 𝛾 coefficients for Dirichlet boundary conditions at the cut are

𝛾+,L
km =

⎧{{
⎨{{⎩

(−1)m√p(ℓ)
m sin(pkℓ)

√Lℓ√pk(pk−p(ℓ)
m )

pk ≠ p(ℓ)
m

√ ℓ
L

pk = p(ℓ)
m

(6.60)

𝛾−,L
km =

(−1)m√p(ℓ)
m sin (pkℓ)

√Lℓ√pk(pk + p(ℓ)
m )

(6.61)

𝛾+,R
km =

⎧{{
⎨{{⎩

−
√p(L−ℓ)

m sin(pkℓ)
√L(L−ℓ)√pk(pk−p(L−ℓ)

m )
pk ≠ p(L−ℓ)

m

sin(pkℓ)+pk(L−ℓ) cos(pkℓ)

pk√L√L−ℓ
pk = p(L−ℓ)

m

(6.62)

𝛾−,R
km = −

√p(L−ℓ)
m sin (pkℓ)

√L(L − ℓ)√pk(pk + p(L−ℓ)
m )

(6.63)

The coefficients 𝛾+,L
km and 𝛾+,R

km can diverge if the denominator becomes 0. This is

impossible for 𝛾−,L
km or 𝛾−,R

km sincem, k > 0. We can compute the integrals again explicitly

for the two diverging cases. 𝛾+,L
km diverges if k = Lm

ℓ . The integral with this parameter

combination yields √ l
L
. The coefficient 𝛾+,R

km diverges if k = Lm
L−l

.

6.C Algorithm

6.C.1 Derivation and Derivatives of Commutators

In order to use the scalar formulation for the matrix elements of UT in eq. (6.36), we

have to bring the terms into normal order. Our starting point is eq. (6.27)

⟨ ⃗nL, ⃗nR ∣ ⃗nF⟩ = 1

N
∏
m>0

∏
𝜎

dnm,𝜎

dj
nm,𝜎
m,𝜎

∏
k>0

dnk

dJ
nk
L

⟨0,0| eSeFeV |0,0⟩
∣∣∣∣Jk=0,jm,𝜎=0

.
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6.C Algorithm

with

S ≡ ∑
m>0

∑
𝜎
jm,𝜎a

𝜎
m

F ≡ ∑
k,m>0

∑
𝜉
Jk (𝛾+,𝜉

k,ma
𝜉†
m + 𝛾−,𝜉

k,ma
𝜉
m)

V ≡ − ∑
𝜉,𝜆

∑
m,n>0

a
𝜉,†
m 𝜌𝜉,𝜆

m,na
𝜆,†
n .

To avoid unnecessary jumping back and forth between the main text and the appendix,

we will repeat some of the equations here. As mentioned in the main text, S creates

the excitations of the split modes on the partial vacuum according to the occupation

numbers in ∣ ⃗nL, ⃗nR ⟩. F represents the creation operators of the full modes according to
∣ ⃗nF⟩ expressed in the split modes. Finally, V transforms the full vacuum into a squeezed

state on top of the split vacuum.

We normal order the expression in three steps. First, we normal order the exponen-

tial eF which contains both creation and annihilation operators. In a second step, we

commute eS, which consists of annihilation operators only, past the creation operators

of eF . Finally, we commute all annihilation operators of eS and eF past the vacuum

transformation eV .

Normal ordering or eF is achieved by the application of the Baker-Campbell-Hausdorff

formula eXeY = eX+Y+ 1
2
[X,Y] for [[X,Y],X] = [[X,Y],Y] = 0. We get

eF = eF
++F−

= eComFeF
+
eF

− (6.64)

where define

F+
k ≡ ∑

k,n>0
∑

𝜉
Jk𝛾

+,𝜉
k,n a

𝜉,†
n

F−
k ≡ ∑

k,n>0
∑

𝜉
Jk𝛾

−,𝜉
k,n a

𝜉
n

to be the parts containing creation/annihilation operators respectively. The commu-

tator in eq. (6.65) evaluates to

ComF ≡ −1
2

[F+, F−]

= 1

2

∞
∑

k,k′=1
JkJk′ ∑

𝜎
∑
n>0

𝛾+,𝜎
k,n 𝛾−,𝜎

k′,n . (6.65)

In a second step, we commute annihilation operators of partial modes in eS past eF
+
,

using BCH in the form eXeY = eY+[X,Y]eX for [[X,Y],X] = [[X,Y],Y] = 0. We get

eSeF
+ = eComSFeF

+
eS (6.66)

with the commutator

ComSF ≡ [S, F+]
= ∑

k,m>0
∑
𝜎
jm,𝜎Jk𝛾+,𝜎

k,m . (6.67)
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Finally, we commute the annihilation operators in eS+F−
and F− past the vacuum

transformation eV . For convenience, we rewrite the annihilation operators in S and F−

as A

A ≡ S + F−

= ∑
m>0

∑
𝜎

⎧{
⎨{⎩
jm,𝜎 + ∑

k>0
Jk𝛾−,𝜎

k,m
⎫}
⎬}⎭
a𝜎
m .

(6.68)

In this commutation, the terms in the exponent of the BCH formula only vanish after

the second commutator [A, [A,V]]. Thus, using eXeY = e
(Y+[X,Y]+ 1

2! [X,[X,Y]])
eX, we find

eAeV = eComAVeV+[A,V]eA (6.69)

with the commutators

[A,V] = − ∑
m>0

∑
𝜎

⎧{
⎨{⎩
jm,𝜎 + ∑

k>0
Jk𝛾−,𝜎

k,m
⎫}
⎬}⎭

∑
𝜉

∑
l>0

(𝜒𝜎,𝜉
m,l + 𝜒𝜉,𝜎

l,m ) a𝜉,†
l , (6.70)

and

ComAV ≡ 1

2
[A, [A,V]]

= −1
2

∑
m>0

∑
𝜎

⎧{
⎨{⎩
jm,𝜎 + ∑

k>0
Jk𝛾−,𝜎

k,m
⎫}
⎬}⎭

∑
l>0

∑
𝜉

⎧{
⎨{⎩
jl,𝜉 + ∑

k′>0
Jk′𝛾−,𝜉

k′,l
⎫}
⎬}⎭

(𝜒𝜎,𝜉
m,l + 𝜒𝜉,𝜎

l,m ) .

(6.71)

Finally, the full expression in the normal ordered form is

eSeFeV = exp [ComF + ComSF + ComAV] e[A,V] ∶ eSeFeV ∶ . (6.72)

For readability, we skipped the derivative and the partial vacua in the expression

above. When computing the expectation value in the split vacuum, only the zeroth

order in the power expansion of e[A,V] ∶ eSeFeV ∶ survives and we obtain

⟨0,0| eSeFeV |0,0⟩ = exp [ComF + ComSF + ComAV]
≡ eT . (6.73)

The computation of the matrix elements of UT in eq. (6.36) does not depend on

the form of T directly, but on the second derivatives T[Ji, Jk]. All terms that are not

derived twice will vanish once we set Jk = 0.

The second derivatives are

d

dJi

d

dJp
ComF = 1

2
∑
𝜎

∑
n>0

(𝛾+,𝜎
i,n 𝛾−,𝜎

p,n + 𝛾+,𝜎
p,n 𝛾−,𝜎

i,n ) (6.74)

d

djl,𝜉

d

dJi
ComSF = 𝛾+,𝜉

i,l (6.75)

d

dJp

d

dJi
ComAV = − ∑

m,m′>0
∑
𝜎,𝜇

𝛾−,𝜎
i,m′ 𝛾−,𝜇

p,m (𝜒𝜇,𝜎
m,m′ + 𝜒𝜎,𝜇

m′,m) (6.76)

d

djp,𝛼

d

djl,𝜉
ComAV = − (𝜒𝜉,𝛼

l,p + 𝜒𝛼,𝜉
p,l ) (6.77)

d

dJi

d

djl,𝜉
ComAV = − ∑

m>0
∑
𝜎

𝛾−,𝜎
i,m (𝜒𝜉,𝜎

l,m + 𝜒𝜎,𝜉
m,l ) . (6.78)

All other derivatives vanish.
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6.C.2 Tree building algorithm

The primed sum in eq. (6.40) runs over all lexicographically unique configurations of

the arguments (J1,J2) of T. Lexicographically unique implies that all tuples are sorted

internally J1 < J2 and the string of tuples is sorted as well. Two tuples are sorted by

sorting them first by their first entry and then by second entry.

The generation of all unique pairs can be approached in at least two ways. We could

take all Js independently and find all possible ways of distributing them as pairs. In

this case, we would have to filter out all the repeated configurations due to ordering

in the arguments of T and in the string. Alternatively, we can incrementally create all

orderings in a tree-like structure. By tracking the ordering as we progress, we can avoid

the generation of forbidden configurations. We will only consider the latter alternative

since the generation of all permutations scales with n! where n = ∑
i ni, i.e.the number

derivatives.

We start with vector ⃗n = (n1, n2, … , rN). Since we consider only sorted tuples and

a globally sorted string of tuples, we build all valid pairs (Ji,Jk) with the first Ji
corresponding to the smallest non-zero ni. A pair is valid if the Ji < Jk for a pair
(Ji,Jk) and the pair is greater or equal to the previous selected pair. We proceed in a

recursive manner and modify the vector ⃗n by subtracting one from ni and nk and select

again all valid pairs in the next step of the tree. In total, we build a tree of the form in

fig. 6.C.1. We start on the left with the full string of the example that is also used in the

main text ⃗n = (2,2,2). Lists in round brackets describe the occupation numbers of the

state. Each level of the tree represents one level of recursion. In each level, the vectors

in round parentheses represent the vector ⃗n after picking the tuple in brackets. The

topmost entry on the second level describes the case of picking [1,3] from the tuple as

first argument for T. Thus, the first and the third entry are decreased by one. All valid

combinations of T can be enumerated by following the branches of the tree. If we pick

up all tuples in brackets, we obtain the full string of arguments for T. The algorithm

stops if no valid pair can be found for a given vector ⃗n or if ⃗n = ⃗0. In the example, the

second condition is met after 3 iterations. Some branches are not continued because

the following tuple is smaller than the previous one (first termination condition). In

the example, [1,2] < [1,3] in the third level and we abort the branch. This step would
not result in a sorted combination of tuples. In total, the tree in fig. 6.C.1 has five leafs.

Following all the paths leading to those leafs, we obtain the five configurations that

are listed in eq. (6.41).

The number of strings still scales exponentially, but the approach allows us to gen-

erate all tuples with a local condition. Given the current occupation number vector,

we can call the same function recursively and obtain the next level. We do not have

to store a global state in order to decide which pairs to build. Thus, we never have

to store all tuples at the same time. This significantly decreases the memory require-

ments of the algorithm. More concretely, the algorithm is implemented in terms of a

recursive generator in Python[184].

As we can see in the tree, the generated strings depend only on the initial occupation

number vector ⃗n. The allowed occupation number vectors, in turn, depend only on the

cut-offs that are chosen for the subsystems. Thus, we can generate all the strings once

and write them directly to disk. These files can be stored in a compressed format and

can be loaded as a stream when the actual unitary matrices are evaluated. Again, we

can avoid loading the entire file into main memory. The unitary demands much less

memory than storing all T contributions.
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6.D HT matrix elements

(2,2,2)

[1,1] ∶ (0,2,2)
[2,2] ∶ (0,0,2) [3,3]

[2,3] ∶ (0,1,1) [2,3]

[1,2] ∶ (1,1,2)
[1,2] ∶ (0,0,2) [3,3]

[1,3] ∶ (0,1,1) [2,3]

[1,3] ∶ (1,2,1)
[1,2]

[1,3] ∶ (0,2,0) [2,2]

Figure 6.C.1: Tree to build all tuples of configurations of ⃗n = (2,2,2). The expression
in parentheses are the Ji that still have to be distributed. The tuple that

is added to the configuration at every step is noted in brackets. The final

configuration of every path can be assembled by following the arrows

and collecting the entries of all brackets. The missing leaf in the last

layer on the right indicates a configuration that cannot be build due to

the restrictions on the tuples.

6.D HT matrix elements

The HT computations use the matrix elements from the methods developed in [222,

231]. In this work, we use the explicit parameterizations of the Klein Gordon model

and the sine Gordon model in terms of massless, bosonic fields. The boundary condi-

tions at the edges of the physical system (x = 0, x = L) are chosen to be Dirichlet.

For an operator O, we list matrix elements

O ⃗n′, ⃗n = ⟨ ⃗n′∣O ∣ ⃗n⟩ (6.79)

with states spanning the computational basis, the Hilbert space of the massless free

boson

∣ ⃗n⟩ ≡ ∣n1, n2, …⟩ ≡ 1

N ⃗n
∏
k>0

(A†
k
)nk |0⟩ (6.80)

with Ak, k = 1,2, … the bosonic modes fulfilling the canonical commutation relations
[Ak,Al] = [A†

k,A†
l
] = 0 and [Ak,A†

l
] = 𝛿k,l. The normalization is defined as N ⃗n =

∏
k>0 √nk! and Ak |0⟩ = 0 ∀k the vacuum of the massless free boson theory.

The massless free boson Hamiltonian for Dirichlet boundary conditions

H0FB = 1

2
∫
L

0
dx [(∂t𝜙)2 + (∂x𝜙)2] . (6.81)

is diagonal with matrix elements

H ⃗n′, ⃗n
0FB = 𝜋

L
⎛⎜
⎝

∞
∑
k=1

knk − 1

24
⎞⎟
⎠

𝛿 ⃗n′, ⃗n . (6.82)

The Hamiltonian of the massive free boson

HmFB = 1

2
∫
L

0
dx [(∂t𝜙)2 + (∂x𝜙)2 + m2𝜙2] (6.83)
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has the matrix elements

H ⃗n′, ⃗n
mFB =𝜋

L

⎧{
⎨{⎩

𝛿 ⃗n′, ⃗n
⎛⎜
⎝

∞
∑
k=1

(1+ m2L2

2𝜋2k2
) knk − 1

24
⎞⎟
⎠

+m2L2

4𝜋2

∞
∑
k=1

⎛⎜⎜⎜⎜
⎝

∞
∏
j=1
j≠k

𝛿n′
j ,nj

⎞⎟⎟⎟⎟
⎠

1

k2
(√nkk√(nk − 1)k 𝛿n′

k+2,nk

+√(nk + 2)k√(nk + 1)k 𝛿n′
k−2,nk)} .

(6.84)

The Hamiltonian of the sine-Gordon model can be expressed as

HsG = ∫
L

0
dx [1

2
{(∂t𝜙(x))2 + (∂x𝜙(x))2} − 2𝜅(𝛥)M2−2𝛥

S cos (𝛽𝜙(x))]

=H0FB − 𝜅(𝛥)M2−2𝛥
S ∫

L

0
dx (V1(x) + V−1(x)) (6.85)

where

Vp(x) ≡ eiq𝜙(x), p ∈ ℤ (6.86)

for q ≡ p𝛽 is the vertex operator, M is the semi-classical soliton mass, the interaction

related coefficient 𝛥 is defined as

𝛥 ≡
𝛽2
8𝜋 (6.87)

and the coupling-mass ratio 𝜅(𝛥) [232],

𝜅(𝛥) = 1

𝜋
𝛾b (𝛥)

𝛾b (1− 𝛥)
⎡⎢
⎣

√𝜋𝛾b ( 1
2−2𝛥)

2𝛾b ( 𝛥
2−2𝛥)

⎤⎥
⎦

2−2𝛥

. (6.88)

The vertex operator can be written in normal ordered form as

Vp(z, ̄z) = eiq𝜙(z, ̄z) = |z − ̄z|−q2 ∶ eiq𝜙(z, ̄z) ∶ (6.89)

where for convenience we have introduced z ≡ ei
𝜋
L
x. The matrix elements are

V
𝜓′,𝜓
p (z, ̄z) = N−1

⃗n′ N
−1
⃗n [2 sin(𝜋x

L
)]

−q2 ∞
∏
k=1

⟨0|An′
k

k e
−q

A†
k

√k
(zk− ̄zk)

e
q
Ak

√k
(z−k− ̄z−k)

(A†
k
)nk |0⟩ ,

(6.90)

with

⟨0|An′
k

k e
−q

A†
k

√k
(zk− ̄zk)

e
q
Ak

√k
(z−k− ̄z−k)

(A†
k
)nk |0⟩

=
∞
∑
j′=0

∞
∑
j=0

(−1)j′

j′!j!
⎛⎜
⎝
2q

√k
⎞⎟
⎠

j′+j

[ ̄zk − zk

2
]
j′+j

⟨0∣An′
k

k
(A†

k
)j

′
A
j
k

(A†
k
)nk ∣0⟩

(6.91)

and

⟨0∣An′
k

k
(A†

k
)j

′
A
j
k

(A†
k
)nk ∣0⟩ = ( n′

k
j′

) ( nk
j

) j′!j!(nk − j)!𝛿n′
k−j′,nk−j𝛩(nk ≥ j) (6.92)
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with the Heaviside step function 𝛩.

To get the matrix elements of the spatially integrated vertex operator that appears

in the sine-Gordon Hamiltonian, the following relation is useful

∫
𝜋

0
du [2 sin (u)]−q2 e−iku = e−i𝜋

2
k𝜋

(1− q2)B (1
2

(2− q2 − k) , 1
2

(2− q2 + k))
. (6.93)

Here, B(x, y) = 𝛤(x)𝛤(y)
𝛤(x+y) is the beta function.

6.E Covariance matrix formalism for free

theories

Eigen, thermal and time-evolved states of free theories are Gaussian and the com-

putation of their entanglement properties can be simply achieved by means of the

covariance matrix formalism [201].

A Gaussian state is completely determined by its covariance matrix

𝛤 = [ Q R

RT P
] (6.94)

with

Qmn = ⟨𝜙m𝜙n⟩
Pmn = ⟨𝜋m𝜋n⟩

Rmn = ⟨1
2

{𝜙m, 𝜋n}⟩ (6.95)

where [𝜙m, 𝜙n] = [𝜋m, 𝜋n] = 0, [𝜙m, 𝜋n] = i𝛿m,n are harmonic oscillator conjugate

pairs. All higher order correlations are given by Wick’s theorem.

In the case of a bosonic field theory, we have to introduce an IR (finite volume L)

and UV (maximal momentum mode kept, K) cutoff in order to keep the covariance

matrix finite. Then, the harmonic oscillators are finitely many, and we can treat the

covariance matrix either in momentum space or position space. For covariance matrix

calculations it is convenient to go back and forth between those representations using

a discrete sine transform. The field expansion can be written as

𝜙(xn, t) = √2
L

K

∑
k=1

𝜙k(t) sin(k𝜋
L
xn)

𝜋(xn, t) = √2
L

K

∑
k=1

𝜋k(t) sin(k𝜋
L
xn) (6.96)

with xn = na for n = 1, … ,K with the lattice spacing a = L
K+1 . The inverse discrete

sine transform is achieved by

𝜙k(t) = a√2
L

K

∑
n=1

𝜙(xn, t) sin(k𝜋
L
xn)

𝜋k(t) = a√2
L

K

∑
n=1

𝜋(xn, t) sin(k𝜋
L
xn) . (6.97)
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6.E Covariance matrix formalism

Such definitions of fields correspond to approximating the field theory with a lattice

system. We shall be keeping the relativistic dispersion, however.

For the calculation of entanglement entropy it is most convenient to take the position

space covariance matrix of the bosonic degrees multiplied by the lattice spacing a, that

is 𝜙n = a𝜙(xn) and 𝜋n = a𝜋(xn) to keep the correct dimensions. In position space, the

covariancematrix of a reduced density matrix corresponding to a subsystem is achieved

by taking only those matrix elements corresponding to the lattice points that lie within

the subsystem. For example if we are interested in the entanglement between the

interval [0, ℓ] and the rest of the system, we take the covariance matrix of the lattice

sites xn ∈ [0, ℓ].
Then, the von Neumann entanglement entropy is computed by calculating the sym-

plectic spectrum of the covariance matrix 𝛤. This is achieved by diagonalizing

iJ𝛤 (6.98)

with the symplectic unit

J = [ 0 I

−I 0
] . (6.99)

The eigenvalues appear in pairs ±𝛾k, k = 1, … ,K. This maps the problem to computing

the entropy of K harmonic oscillators at inverse temperatures

𝛽 = log
𝛾k + 1

2

𝛾k − 1
2

. (6.100)

The von Neumann entropy is then

S(𝛤) =
K

∑
k=1

[(𝛾k + 1

2
) log(𝛾k + 1

2
) − (𝛾k − 1

2
) log(𝛾k − 1

2
)] (6.101)

and the Rényi entropies are

S𝛼(𝛤) = 1

𝛼 − 1

K

∑
k=1

log [(𝛾k + 1

2
)

𝛼
− (𝛾k − 1

2
)

𝛼
] . (6.102)

The covariance matrix approach to computing the entanglement entropies is conve-

nient because it lets us model also the truncation effects by taking finite K. The results

are not exactly comparable to the HT cutoff at the same maximal momentum, because

in the HT case, we have an energy cutoff which implies also a maximal occupation

number for a mode. But it is the closest approximation of the cutoff effect that we can

get. Taking K large, we can recover the exact analytical results in the continuum limit.

The concrete results presented in the main text for the thermal states of the Klein-

Gordon model

HmFB = 1

2
∫
L

0
dx [𝛱2(x) + (∂x𝜙(x))2 + m2𝜙2(x)] (6.103)

can be recovered using the thermal covariance matrix of the model

⟨𝜙(xm)𝜙(xn)⟩ = 1

L

K

∑
k=1

1

𝜖k
coth( 𝜖k

2T
) sin(k𝜋

L
xm) sin(k𝜋

L
xn)

⟨𝜋(xm)𝜋(xn)⟩ = 1

L

K

∑
k=1

𝜖k coth( 𝜖k
2T

) sin(k𝜋
L
xm) sin(k𝜋

L
xn)

1

2
⟨{𝜙(xm), 𝜋(xn)}⟩ = 0 (6.104)
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6.F Finite size sine-Gordon breather masses

with the dispersion relation E0q = √(k𝜋
L

)
2

+ M2.

The quench dynamics can be computed using the equations of motion Ȯ = i[H,O],
yielding for the KG model

𝜙k(t) = cos (𝜖kt) 𝜙k(0) + sin (𝜖kt)
𝜖k

𝜋k(0) (6.105)

𝜋k(t) = −𝜖k sin (𝜖kt) 𝜙k(0) + cos (𝜖kt) 𝜋k(0) . (6.106)

The procedure for a KG mass quench from the pre-quench mass m0 to the post-quench

mass m is the following: take the momentum space representation of the thermal cor-

relations (6.104) for the pre-quench mass m0 and propagate them using the equations

of motion (6.106) for the post-quench mass m. The covariance matrix is transformed

back to position space, the reduced covariance matrix corresponding to the subsystem

taken as described above and the entanglement entropies computed.

6.F Finite size sine-Gordon breather masses

The corrections to infinite size sine-Gordon breather masses to obtain their finite vol-

ume counterparts can be computed using the boundary bootstrap [219–222]. The

finite size energy En of the (excited) n-the breather can be written in the parametric

form

(ML(𝜃), 𝜖(𝜃) − 𝜖0) = ⎛⎜
⎝

2𝜋In + 2i log (R(n)(𝜃))
2
mn

M
sinh(𝜃)

, mn

M
cosh(𝜃)⎞⎟

⎠
, (6.107)

where 𝜃 ∈ [0, ∞) is the parameter of the parameterization and In ∈ ℤ is the quantum

number labeling the breather lines. Each value of In corresponds to one of the excited

states of the n-th breather. These are moving breathers whose momentum has a dis-

crete set of possible values due to the finite volume. In the L → ∞ limit, all breather

lines converge to the infinite volume breather mass mn. Further, 𝜆 is the sine-Gordon

interaction parameter [eq. (6.47) in the main text], M is the soliton mass and the infi-

nite volume breather mass of the n-th breather mn is given by

mn = 2M sin(n𝜋
2𝜆 ) . (6.108)

The functions R(n) are the boundary breather reflection factors.

In case of Dirichlet boundary conditions at the edges the reflection factors are given

by [219–222]

R(n)(𝜃) = R(n)
0 (𝜃)S(n)(0, 𝜃) , (6.109)

with

R(n)
0 (𝜃) =

(1
2
)𝜃 ( n

2𝜆 + 1)
𝜃

( n
2𝜆 + 3

2
)

𝜃

n−1
∏
k=1

( k
2𝜆)

𝜃
( k
2𝜆 + 1)

𝜃

( k
2𝜆 + 3

2
)
2

𝜃

,

S(n)(x, 𝜃) =
n−1
∏
k=0

( x
𝜋𝜆 − 1

2
+ n−2k−1

2𝜆 )
𝜃

( x
𝜋𝜆 + 1

2
+ n−2k−1

2𝜆 )
𝜃

, (6.110)
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6.F Finite size sine-Gordon breather masses

where we introduced the following shorthand notation

(x)𝜃 ≡
sin [ i𝜃

2
− 𝜋x

2
]

sin [ i𝜃
2

+ 𝜋x
2

]
. (6.111)
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