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Abstract

Cancer is a class of diseases characterized by the accumulation of mutations in healthy cells

and the progressive aberrations of physiological mechanisms that lead to abnormal growth,

proliferation, and ultimately the invasion of neighboring and distant tissues. In the past

decades, improvements in cancer prevention and treatment and an increased understanding of

the basic mechanisms of cancer genesis, progression, and maintenance have led to significant

improvements in outcomes for many cancer types. The rise of new medical approaches, such

as precision medicine, and powerful technologies, like artificial intelligence, is destined to

give further impulse to this trend and result in more efficient diagnostic, prognostic, and

therapeutic strategies. In this work, I show how computational approaches can pave the

way for precision medicine approaches in oncology and present two studies where I exploit

machine learning techniques to analyze large molecular datasets to stratify observations and

identify mechanistic biomarkers. In the first study, I present the design of a new tool for

the inference of patient- or sample-specific post-transcriptional regulatory subnetworks. The

identified subnetworks, or modules, summarise the contributions of miRNAs and competing

endogenous RNAs, also known as microRNA sponges, in the regulation of RNAs with shared

microRNA binding sites and allow for the identification of important biomarkers. I showcase

the designed method by applying it to a breast cancer subtype classification example. In the

second study, I introduce an innovative pharmacogenomic pipeline designed to predict drug

response values resulting from high-throughput drug screens from the transcriptional profiles

of 251 murine pancreatic ductal adenocarcinoma cell cultures. I show how the integration of a

priori knowledge, in the form of gene sets, and overall general levels of drug sensitivity across

the screened cohort substantially increases the performance of the prediction models and

leads to the identification of response biomarkers that can be further validated with functional
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assays. This work lays the foundation for the implementation of advanced computational

methods for precision medicine-based approaches such as patient stratification and biomarker

identification in pre-clinical and clinical datasets.



Kurzfassung

Krebs umfasst eine Klasse von Krankheitsbildern, die durch die Anhäufung von Mutationen

in gesunden Zellen und die fortschreitende Abweichung von physiologischen Mechanismen

gekennzeichnet sind. Diese führen zu abnormalem Wachstum, Proliferation und schließlich

zur Invasion von benachbartem und entferntem Gewebe. In den letzten Jahrzehnten haben

Fortschritte in der Krebsvorbeugung und -behandlung sowie ein besseres Verständnis der

grundlegenden Mechanismen der Krebsentstehung, -progression und -erhaltungstherapie bei

vielen Krebsarten zu deutlich verbesserten Behandlungsergebnissen geführt. Das Aufkommen

neuer medizinischer Ansätze wie der Präzisionsmedizin sowie die Entwicklung leistungs-

fähiger Technologien wie der künstlichen Intelligenz werden diesen Trend weiter vorantreiben

und zu effizienteren diagnostischen, prognostischen und therapeutischen Strategien führen.

In dieser Arbeit zeige ich, wie computergestützte Ansätze den Weg für präzisionsmedizinis-

che Konzepte in der Onkologie ebnen können. Daher stelle ich zwei Studien vor, in denen

ich Machine-Learning-Technologien zur Analyse großer molekularer Datensätze nutze, um

Beobachtungen zu stratifizieren und mechanistische Biomarker zu identifizieren. In der

ersten Studie zeige ich das Design eines neuen Tools, das die Einflussnahme von patienten-

oder probenspezifische post-transkriptionellen regulatorischen Subnetzwerken zeigt. Die

identifizierten Subnetzwerke oder Module fassen die Beteiligungen von miRNAs und konkur-

rierenden endogenen RNAs, auch bekannt als microRNA-Sponges, bei der Regulierung von

RNAs mit gemeinsamen microRNA-Bindungsstellen zusammen und ermöglichen die Iden-

tifizierung wichtiger Biomarker. Ich demonstriere die Nutzung der entwickelten Methode

anhand von Beispielen zur Klassifizierung von Brustkrebs-Subtypen. In der zweiten Studie

stelle ich eine innovative pharmakogenomische Pipeline vor, die darauf ausgelegt ist, aus den

Transkriptionsprofilen von 251 Zellkulturen des duktalen Adenokarzinoms der Bauchspe-
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icheldrüse von Mäusen Werte für das Ansprechen auf Arzneimitteltherapie vorauszusagen,

die sich aus high-throughput Wirkstoffscreens ergeben. Ich zeige, wie die Integration von

A-priori-Wissen in Form von Gene-sets und allgemeiner Arzneimittelempfindlichkeit in der

untersuchten Kohorte die Leistung der Vorhersagemodelle erheblich steigert. Dies führt

des Weiteren zur Identifizierung von Response-Biomarkern, die mit funktionellen Assays

weiter validiert werden können. Diese Arbeit legt den Grundstein für die Entwicklung

fortschrittlicher Berechnungsmethoden für Präzisions-Ontologie basierte Ansätze wie Patien-

tenstratifizierung und Biomarker-Identifizierung in präklinischen und klinischen Datensätzen.
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1 Introduction

Cancer is the second-leading cause of death globally, accounting for nearly 1 out of 6 deaths

in 2020 [1], and is projected to become the leading cause of premature deaths worldwide by

the end of this century [2].

The term cancer is used to define a broad class of diseases sharing the production of

abnormal cells that rapidly grow, divide, spread, and eventually invade neighboring tissues

of the host organisms in a process called metastasis. The transformation of healthy normal

cells into tumor ones is extremely complex and multifaceted. It takes place as a sequence of

steps that drives the degeneration of healthy tissues into malignant ones. Various causes have

been linked to cancer, such as internal genetic factors and exposure to external agents such

as radiation and chemical or biological carcinogens. At the same time, multiple factors have

been associated with increased susceptibility to these diseases, such as the use of tobacco or

alcohol, unhealthy diets, air pollution, or infections (e.g., from the human papillomavirus)

[3, 4, 5]. Moreover, socio-economical disparities have been shown to contribute to differences

in cancer incidence and mortality numbers, mainly due to limited access to healthcare services

in disadvantaged or isolated communities [6].

Despite the 19.3 million new cases and almost 10 million deaths in 2020 [7], death rates

from many cancer types have been steadily falling in the last decade [8, 9], with improvements

for 11 of the 19 and 14 of the 20 most common cancers in men and women respectively [10].

While being partly due to broadened access to basic cancer care services and improvements

in preventive, diagnostic, and prognostic technologies, these improvements can be directly

linked to an increased understanding of the biological mechanisms driving cancer formation,

progression, and maintenance. These discoveries have been successfully translated to the

1
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clinical setting and fueled new approaches in oncology, such as the use of patient-specific

information to drive clinical decisions, i.e., precision oncology.

In parallel to these advancements, biology and medicine have witnessed the unprecedented

production and accumulation of large quantities of different types of data, offering the chance

for exploration, mining, and hypothesis validation while exploiting the power of emerging

technologies such as artificial intelligence (AI) and machine learning (ML). These tools are

poised to deliver further impulses to cancer research along the translational pipeline and

impact the way medicine is perceived and performed [11, 12]. AI applications in oncology

have found most of their success in imagining applications, where seminal works have shown

the potential of these agents for image-based diagnosis and prognosis [13]. Moreover, they

have demonstrated the potential to tackle tasks such as prediction of treatment response,

design of novel therapies, and clinical decision-making [14].

In addition to clinical applications, machine learning tools are becoming integral tools

of the scientific process. They can be designed and trained to run in silico experiments

and interrogated to study critical biological mechanisms [15, 16, 17]. This is partly due

to the widespread accumulation of molecular information, made possible by technological

advancements that now allow the collection of thousands of measurements from multiple

patients simultaneously.

In this work, I investigate the potential of computational techniques for biological discov-

eries in cancer biology. In particular, I focus on the importance these tools have towards

the realization of precision oncology approaches. In Chapter 1, I will introduce the main

biological mechanisms regulating cellular homeostasis (i.e., equilibrium) that are relevant

for this thesis, emphasizing how they are altered in cancer. In Chapter 2, I follow with an

overview of precision medicine and artificial intelligence. I describe the potential of the

integration of the two fields and describe a few applications where computational approaches

are already leading to new insights and discoveries. Chapter 3 and Chapter 4 contain the

methodological contributions of my work and showcase two potential applications of com-

putational techniques for the analysis of large and multi-dimensional datasets, namely the

inference of post-transcriptional regulatory networks and the pharmacogenomic analysis of

2
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high-throughput drug screens. I conclude this work with a personal take on the potential of

Artificial Intelligence in biomedicine, with a particular focus on promising future research

directions.

3



2 A primer to cancer biology

The human body is estimated to consist, on average, of 4×1013 cells [18] that constantly work

together to give rise to a considerable diversity of structures. Such organization is managed

through a complex network of interactions and signals that set whether every single cell

should rest, divide, differentiate or die. Cell-cell interactions determine the possibility for cells

to cooperate and, ultimately, allow the preservation and maintenance of tissues and organs

throughout the lifespan of an organism. In physiological conditions, cellular behavior is tightly

controlled to maintain homeostasis and the stability of the whole system [19]. In particular,

basic functions such as cell duplication, differentiation, or apoptosis (i.e., programmed cell

death) must be aligned, given that improper control of any of these mechanisms may disrupt

the equilibrium and lead to abnormal behaviors, such as uncontrolled proliferation, which

can, in turn, lead to cancer.

Proteins are one of the main molecules playing a role in controlling intracellular and intercel-

lular communications. The process that drives the synthesis of proteins can be schematically

described following the central dogma of biology, which defines the directionality of the

process that leads from DNA to RNA and finally to proteins. The copying of a DNA sequence,

and more specifically of the DNA functional units (i.e., genes), into an RNA one is called

transcription and is strictly controlled during the life cycle of a cell. Transcribed genes are

considered to be expressed, while those not actively taking part in the transcription process

are deemed to be repressed. Once transcribed, RNA molecules are further translated into

sequences of amino acids that ultimately form proteins. While the long-standing problem of

the definition of the unique 3D structure of proteins based on the amino acid sequence has

received a great impulse from computational technologies and artificial intelligence [20, 21],

the link between genotypes, i.e., the genetic makeup of organisms defined by the sequence

4



2 A primer to cancer biology

of DNA bases, and phenotypes, i.e., observable or measurable traits that can range from

complex behaviors to morphology, is still obscure in many complex diseases such as cancer,

where different alterations of physiological mechanisms in different patients might lead to

the same observable phenotype [22].

All the information necessary to maintain equilibrium, i.e., homeostasis, is contained in

the DNA sequence, structured as a sequence of four nucleotides, adenine (A), cytosine (C),

guanine (G), and thymine (T). Variations in the DNA sequence, structure, and organization

can take many forms and involve portions of varying lengths, ranging from a single nucleotide

to megabases. The size of the DNA sequence affected by the aberration defines the type of

variations. Changes in a single nucleotide (e.g., substitutions, insertions, or deletions) are

typically classified as Single Nucleotide Variants (SNVs) or Single Nucleotide Polymorphisms

(SNPs), depending on whether their population frequencies are, respectively, below or above

1%. Longer aberrations may consist of insertion or deletion of a few nucleotides (indels)

or whole segments, Copy Number Variations (CNVs), and are typically grouped under

the umbrella of structural variants together with more significant aberrations that modify

chromosome structure, such as translocations or inversions [23]. Generally, these aberrations

are the results of mistakes occurring during DNA replication and can accumulate during the

lifespan of an individual.

Genetic variants may affect both genomic regions that serve as templates for the production

of proteins, called coding regions, or regions not directly associated with any protein, non-

coding regions, and thus result in the production of aberrant proteins or the alteration of

key mechanisms such as gene regulation. Genetic variants can be of interest if associated

with specific diseases and have drawn a lot of interest as genetic markers of disease [23].

Interestingly, multiple studies have found that genetic variants can often be associated with

non-coding regions, offering the chance to investigate how aberrations impact gene regulation

and, ultimately, the progression and maintenance of a disease [24, 25].

Cells that accumulate aberrant modifications may escape homeostasis control mechanisms

and give rise to cancer. Typically, cancers are classified according to the tissue and cell types of

origin. Most frequently diagnosed tumors arise from epithelial cells, i.e., cells that form layers

5
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covering channels and ducts [26]. Cancers arising from these cell types are referred to as

carcinomas. They can be further characterized as squamous cell carcinomas if they originated

from epithelial cells forming protective layers or as adenocarcinomas if the epithelial cells

differentiated to secrete substances into ducts. Other cell types, such as those constituting

connective tissues or muscles (mesenchymal cells or fibroblasts), give rise to sarcomas. Finally,

cancers may arise from cell types present in the blood that are part of the immune system

and are classified based on specific cell types, e.g., leukemia.

Multiple single and independent mutational events must happen for the carcinogenesis

process to start. Tumor progression is often a slow process defined by the accumulation of

mutations in multiple genes of the cancer cells, driving their behavior from an initial status

of disorder to a malignant one. Such progression is a cycle in which cells descended from

a single mutant ancestor evolve to more aggressive stages by successive steps of mutation

and selection. At each step, new mutations are introduced to overcome the complexity and

interconnection of cellular systems. Mutations conferring further selective advantages to

tumor cells are called ‘driver’ mutations, as opposed to neutral, or ‘passenger’, mutations

that do not directly impact tumor cells’ fitness but may confound the search for causal

mechanisms driving tumorigenesis. This cycle is aided by specific characteristics shared by

tumor cells, like: i) resisting cell death, ii) sustained proliferative signaling, iii) evasion of

growth suppressor, iv) enablement of replicative immortality, v) induction of angiogenesis,

and vi) activation of invasion and metastasis (as reported in [27, 28, 29, 26]). To understand

the process underlying cancer initiation, progression, and maintenance and ultimately define

efficient treatment strategies, it is pivotal to understand the molecular mechanisms that give

rise to malignant cells to identify which genes harbor the relevant mutations and how they

cooperate.

Cancer-associated genes tend to be classified into oncogenes and tumor suppressor genes

[30]. Such classes operate in opposite ways, increasing cancer cells’ proliferation and survival.

Typically, oncogenes act in a dominant manner, where gain-of-function mutations (i.e., muta-

tions in a copy of the gene lead to overactivity) in specific regions of proto-oncogenes drive a

cell towards cancer. A typical example of an oncogene is KRAS, which leads to uncontrolled

6
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cell division and survival when mutated [29]. On the other hand, tumor suppressor genes

act in a recessive manner, where a loss-of-function mutation allows cancer cells to overcome

barriers to proliferation and division. The first example of a tumor suppressor was the RB

gene, a major cell cycle regulator [31].

2.1 Transcription and gene expression regulation

Over 21000 coding genes have been cataloged in the human genome, working and being

activated in different configurations to give rise to the extensively observed heterogeneity

in functions, structures, and cell types at the basis of living tissues and organs. Phenotypic

heterogeneity results from changes in the expression of genes, driving the synthesis of sets of

molecules without altering the DNA sequence. Such changes happen in response to specific

stimuli and may differ from cell type to cell type.

RNA synthesis, a direct result of gene expression, is a complex process. The initial RNA

molecule can be as long as the parent gene it derives from. In the first steps, segments

of different lengths called introns are cut out of the pre-mRNA. The remaining sequences,

called exons, are flanked together in a process that takes the name of splicing and results

in a molecule called messenger RNA (mRNA). Diversity in spliced regions leads to variety

in downstream proteins starting from a single gene. Alternative splicing, i.e., the different

combinations of exons that form mature mRNA strands, has been shown to play a role in

offering evolutionary advantage [32], differentiation [33], and development [34] and to be

regulated at the tissue level so that tissue-specific variants can cooperate at in protein-protein

interactions [35]. Being such an important step in the synthesis of RNA, it is no surprise

that alternative splicing and its deregulation play a role in the biology of cancer [36]. After

splicing, the mature molecule of mRNA is exported to the cytoplasm and to the ribosomes,

where it serves as a template for the synthesis of proteins.

Different steps during transcription and translation can be regulated (Figure 2.1). These

are briefly described here, but the reader is encouraged to read more at [26], given that in

this work, I will focus only on one of these mechanisms. Any given cell can adjust protein

7
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synthesis by controlling i) the transcription rate of a gene (transcriptional control), ii) RNA

splicing, iii) the transport of RNA transcripts outside of the nucleus and to specific areas in

the cytosol, iv) selection of which mRNA to translate via ribosome, and v) degradation of

specific mRNA molecules in the cytoplasm.

Figure 2.1: Schematic representation of the process leading to the synthesis of new proteins. In red, the control
mechanism further investigated in this work.

2.1.1 Transcription factors

Complex phenotypes derive from the coordinated transcription of groups of genes and

simultaneous repression of others. Such coordination is achieved through transcription

factors (TFs), specialized proteins designed to target and bind specific regions of a gene,

such as the promoter or upstream enhancer regions, to control its transcription [26]. Their

binding is facilitated by the recognition of sequences in the promoter region of a gene, called

motif. Every single TF has the potential to recognize multiple motifs in different genes, thus

having the ability to control the transcription of many different elements simultaneously. In

pathological conditions, e.g., in cancer, malfunctioning of one of these proteins may lead to

downstream activation/repression of multiple genes that might contribute to the observed

aggressive phenotypes.

Gene activation depends upon the action of several of such molecules that must be rec-

ognized by the enhancer sequences of the target genes to activate expression. 1600 coding

8
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genes in the human genome are identified as transcription factor genes [37], making the

analysis of the combined effect of this multitude of interactions often intractable. Given

their importance, the dysfunction of TFs can lead to aberrant cell behaviors and assume a

leading role in tumorigenesis, tumor progression, and maintenance. Indeed, around 20% of

typically identified oncogenes are TFs [38] supporting key processes in cancer cells. Similarly,

loss-of-function of tumor-suppressor TFs may lead to uncontrollable proliferation, as shown

by loss-of-function events in the TP53 gene that has been measured in 50% of cancers [39],

or an increase in metastatic potential, as happens for example with mutations of the KLF4

gene, known to maintain E-cadherin expression while reducing SLUG expression to control

metastasis [40, 41][40,41]. Other TFs of interest, whose activity is often mentioned in cancer

studies, are the ones belonging to the Myc family (containing three proteins, c-MYC, N-MYC,

and L-MYC), known to be involved in cell growth, proliferation, and differentiation and to

be often dysfunctional in cancer [42]. Given their pivotal role, the study of TFs in cancer

regulation is a key topic, both to elucidate tumor initiation and progression mechanisms and

to identify new potential druggable targets. Given the complexity of the interactions involved,

computational methods able to capture patterns and identify important connections have

assumed a key role in this effort. In particular, algorithms inferring transcriptional regulatory

networks based on different data sources and existing biological knowledge and designed to

highlight the role of TFs in regulating groups of genes (collectively referred to as regulon) [43]

that have been shown to play a role in the biology of cancers such as breast adenocarcinoma

[44, 45].

2.1.2 Chromatin accessibility and methylation

TFs and the RNA transcription machinery (e.g., RNA polymerase II, a molecule driving

transcription) directly interact with DNA. In the absence of transcription, the DNA is packed

together with multiple proteins into a tight structure called chromatin. The way these

proteins allow the interaction between TFs and the DNA chain is a major determinant of gene

expression.

The functional units of chromatin are called nucleosomes, which are made up of four

9
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histone proteins (H2A, H2B, H3, and H4) that behave as spools around which small portions

of DNA (147 bp ca.) are wrapped [46, 47]. Tails of the core histones are exposed from the

nucleosome and subject to modifications that alter chromatin structure. Different families of

proteins, containing domains such as the bromodomain, target and bind these units and lead

to structural changes that open genomic regions to interact with transcriptional regulators

such as TFs [48].

Given its role in regulating gene expression, many cancer genomes are characterized by

mutations in chromatin-related structures [49] and histone modifications [50] directly linked

to tumor development. For example, inactivation of the SWI/SNF complex, responsible

for chromatin remodeling, resulted in the direct silencing of the CDKN2 gene, a widely

acknowledged tumor-suppressor controlling cell proliferation [51, 52]. Likewise, alterations

in the coding portions of histone H3 have been identified as of important in cancers such as

pediatric glioma [53].

Changes happening without modification of the DNA sequence are typically grouped

under the umbrella of epigenetic changes, such as modifications of histones (e.g. acetylation),

or DNA methylation. DNA methylation can be loosely defined as the addition of a methyl

group (-CH3) to the DNA sequence. CH3 addition often happens to a cytosine ring found

next to a guanine base, giving rise to the so-called CpG sites. While the majority of CpG sites

in the genome are methylated, those found in gene start sites are often protected from such

modification. In homeostatic conditions, methylation patterns are believed to preserve DNA

packaging and control unwanted transcription and gene expression [54]. On the contrary, it

has been found that cancer genomes are often characterized by global losses of methylation

patterns (i.e., hypomethylation) [55], with frequent modifications of CpG sites at the start sites

of genes typically involved in key pathways regulating cell growth, cell cycle, proliferation

and differentiation [56]. Hypermethylation events in cancer are commonly observed in

tumor suppressor genes regulating cell cycle, as in the case of CDKN2 on chromosome 9p21,

frequently a target of methylation in breast and non-small cell lung cancer [57, 58]. Unlike

genetic changes, epigenetic aberrations are reversible and offer an appealing target for the

development of new targeted inhibitors [50].
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2.1.3 Small and non-coding RNAs

Only 3% of the genome is constituted by protein-coding genes [59]. The remaining portion has

been historically referred to as non-coding or “junk DNA”, given the absence of indications

that these DNA regions had a clear biological purpose. On the opposite, projects like the

Encyclopedia of DNA Elements (ENCODE) [60] have revealed that at least 75% of the DNA

is transcribed into RNAs, opening new research avenues for the understanding of non-coding

RNAs [61] In particular, a growing body of evidence suggests that non-coding genes play

an important role in gene regulation [62]. Here, I focus on two classes of non-coding RNA,

microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), and on their relationship in

the framework of a recently introduced layer of post-transcriptional regulation, i.e. competing

endogenous RNA (ceRNA) networks.

MicroRNAs

Towards the end of the 20th century, a new class of RNA molecules, alongside mRNAs and

other RNA molecules such as ribosomal RNAs, transfer RNAs, and small nuclear RNAs, has

emerged as involved in controlling mRNA levels and translation. These molecules, called

microRNAs (miRNAs), are 21-25bp long (when mature) and able to bind with different

mRNA targets to drive their post-transcriptional activities. MiRNAs are typically encoded

in intronic regions, with 54% of them originating from non-coding transcripts [63], and

often occupy neighboring genomic regions, called clusters, that are collectively transcribed.

Transcription of these loci results in the production of primary miRNAs (pri-miRNAs) that

are processed by the microprocessor complex into precursor miRNAs (pre-miRNAs), 70bp

long molecules containing a terminal stem-loop [64]. Pre-miRNAs are then exported to

the cytoplasm, where the loop is clipped by DICER to produce mature miRNA strands

(Figure 2.2.a) [65]. Overall, miRNA biogenesis has not been fully understood yet, limiting

the investigation of the mechanisms behind miRNA regulation. For example, the location of

promoter regions regulating miRNA transcription is still a matter of debate [66]. Moreover,

details about the subcellular localization and transport of miRNAs are still lacking [65].

Once mature, miRNA strands are loaded into the 4 AGO proteins encoded by the mam-
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malian genome (argonaute proteins) [67] to form the RNA-induced silencing complex (RISC)

[68]. Once loaded onto the complex, miRNAs pair with their regulatory targets by matching

their seed region, located at the 5’ end, to a specific mRNA binding site, called microRNA

response element (MRE). While typical binding regions have been found at the 3’ ends of

target miRNAs (canonical targeting), the action of other locations outside of the seed has

been shown to contribute to the recognition of the target (non-canonical targeting ) and

the downstream effects of the pairing [69, 70]. Indeed, perfect matching of the seed region

to the MRE results in the cleavage of the target by the AGO proteins, while incomplete

matching leads to the recruitment of additional proteins that can mediate silencing through a

combination of various mechanisms [67].

miRNAs are traditionally grouped in families, whose members are defined based on the

sharing of the same seed sequences and/or similar pre-miRNA structures [71]. miRNA

families have assumed an important role in the study of these molecules, in that miRNAs

belonging to the same family are believed to share specific biological functions [71]. Fur-

thermore, genomic studies highlighted that miRNAs part of the same families tend to be

localized around key genes involved in crucial cellular processes such as signal transduction,

proliferation, and inflammation [72].

While the exact number of existing miRNAs and their targets is unclear, it is estimated that

they regulate at least half of the genes in our genome [73]. As in the case of TFs described

above, a single miRNA can regulate multiple mRNAs and can thus exercise its regulatory

control on multiple cellular processes and pathways. Given their function, it has been

demonstrated that miRNAs could play a key role in health and disease. In cancer, miRNAs

have been shown to act either as tumor suppressors, taking the name of tumor-suppressing

miRs (TSmiRs), or as oncogenes (oncomiRs). For example, members of the miR34 family

have been found to be dysregulated in many cancers and to be directly associated with the

activity of TP53. The miR-34 family is known to inhibit tumorigenesis and has therefore been

suggested as a potential therapeutic target of interest [74]. Differently from the miR-34 family,

members of the miR-99 family may have both tumor-suppressing and oncogenic roles based

on the cellular context and tumor type [75], confirming the importance of these molecules in
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health and disease.

Long non-coding RNAs

Together with miRNAs, another class of RNAs has captured the focus of researchers in the

past few years, given their role in a growing number of cellular processes [76]. Long non-

coding RNAs (lncRNA) are a class of molecules 200bp long that do not contain protein-coding

sequences. Compared to mRNAs, lncRNAs are thought to undergo different transcription and

regulation processes that are closely linked to their functions. In addition, they are commonly

localized in the cellular nucleus at lower expression levels than their coding counterparts

[77, 78, 79].

lncRNAs are believed to be involved in multiple gene regulation levels (Figure 2.2.b) (see

[76] for a detailed overview of the role of lncRNAs). They have been shown to be associated

with chromatin changes via the interaction with chromatin modifiers that they recruit to

activate or suppress the expression of target genes, both in genomic sites distant from the

genomic locus of origin of the lncRNA (trans-activity) [80] or based on the loci from which

they were transcribed (cis-activity) [81]. For example, lncRNAs mediate the activity of

Polycomb Repressive Complexes (PRCs) [82], multiprotein complexes that modify histones

when gene silencing is required [83]. LncRNA ANRIL mediates PRC1, acting on histone H2A,

and PRC2, acting on histone H3 and recruits them to the promoter region of nearby genes

CDKN2A and CDKN2B thus influencing cell senescence [84] (cis-activity). The same gene

has also been studied for its trans-activity in association with Alu motifs across the genome

[80]. Another important lncRNA mediating gene silencing via PRC2 recruitment is HOTAIR,

whose overexpression has been measured in different tumor types and demonstrated to

contribute to their metastatic behaviors [85]. lncRNAs can also promote gene activation by

recruiting chromatin modifiers, as in the case of lncRNA HOTTIP regulating the HOXA gene

cluster [86], or by working as a decoy, as the TP53-regulated lncRNA PRESS1 does by binding

to the pluripotency repressing SIRT6 [86].

Further evidence of lncRNA activity has been found at the transcriptional level, where

these molecules have been observed to interfere with the transcriptional machinery of a
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cell and thus result in gene silencing via altered recruitment of transcription factors [87] or

modification of histones [88] and chromatin accessibility [89]. Finally, lncRNAs can work as

post-transcriptional regulators by interacting with proteins or nucleic acids to amper further

processing of mRNAs. Notably, they have been proven to bind with RNA-binding proteins to

form complexes that result in alterations of RNA splicing mechanism [90], mRNA stability

[91], and even in the modulation of signaling pathways [78, 76]. Importantly for this work,

lncRNAs have been observed to often harbor various MREs and have thus been hypothesized

to constitute a layer of post-transcriptional regulation in the shape of competing endogenous

RNAs, as discussed below.

Competing endogenous RNA networks

In light of the discovery of the role of miRNAs in many biological processes, miRNAs have

been suggested as key components for the regulation and control of gene expression at

the RNA level (i.e. post-transcriptional modification). As described earlier, miRNAs can

recognize target sites on molecules belonging to different classes of RNAs such as such as

circular RNAs (circRNAs), long non-coding RNAs (lncRNAs), and messenger RNAs (mRNAs)

[92, 93, 94, 95]. Importantly for this thesis, non-coding RNAs have been observed to carry

many miRNA target sequences and have thus been identified as important putative targets

for miRNA binding [96].

Given their potential affinity with multiple RNA classes, miRNAs are seen as regulatory

molecules that can mediate the communication between RNAs sharing the same MREs,

which end up indirectly regulating their respective expression levels by binding to the

miRNAs first thus sequestering them from the cellular environment. This type of mutual

regulatory relationship can be extended to the full transcriptome, resulting in (indirect)

post-transcriptional networks of regulatory interactions, typically referred to as competing

endogenous RNA (ceRNA) networks (Figure 2.2.c) [94]. The name derives from the fact that

RNAs must “compete” for a limited pool of miRNAs (2600 mature miRNAs are estimated to

be encoded in the human genome, against more than 200 000 transcripts [97]). The hypothesis

offers a way to provide mechanisms behind unexpected changes in expression [96]. For
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example, ZEB2, a master regulator of the epithelial to mesenchymal transition [98], has been

shown to modulate PTEN, an important tumor suppressor [99], in a miRNA-mediated and

protein-coding-independent way [100, 95]. Following the ceRNA hypothesis, low expression

of RNAs harboring miRNA targets would lead to the release of many miRNA transcripts that

would then be free to target and silence other molecules. On the opposite, high expression

of the target would end in a lower amount of miRNAs and thus in the decrease of their

regulatory activity on the other target RNAs.

Examples of ceRNA interactions have been observed both in health and disease. These

regulatory relationships have been shown to play a role in brain tissue development [101]

and liver regeneration [102], and to be involved in fundamental cellular processes such as

reprogramming [103] and differentiation [104]. Moreover, investigation of dysregulation of

these post-translational mechanisms has assumed importance in the framework of complex

diseases such as cancer, where alteration of gene expression regulation is known to play

a fundamental role in the appearance of malignant phenotypes. It is in this setting that

non-coding RNAs have become an object of study, given the possibility of defining the

biological role of these previously poorly understood molecules [96]. For example, lncRNA

HOTAIR, already mentioned in the previous chapter, is broadly known for its role in tumor

development and is often used as a prognostic biomarker in different cancer types, e.g.,

nasopharyngeal carcinoma [105]. In addition to its regulatory role in association with PRC2,

HOTAIR acts as ceRNA by competing for binding with miRNA130a in gallbladder cancer

[106] and with mir-331-3p in gastric cancer, where it regulates HER2 [107]. Finally, HOTAIR

is known for its relationship with tumor suppressor PTEN [95].

Understanding ceRNA regulatory mechanisms in cancer has proven to be a valuable

task, given the importance that uncovering altered or aberrant relationships might have in

elucidating the biology of cancer. This has not been always possible, given the multiplicity

of potential miRNA-target pairs and the size and complexity of the regulatory interactions

involved in ceRNA networks. Computational models have quickly become an efficient way to

infer biologically plausible ceRNA networks and further investigate them. These methods

typically rely on two different approaches that dictate network inference. On the one hand,
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they exploit the fact that ceRNAs should be positively correlated with each other, while

simultaneously being negatively correlated with miRNAs they are regulated by and use

miRNA and ceRNA expression data to estimate these associations [108, 109]. On the other,

miRNA-ceRNA interactions are predicted by matching of the seed regions of the miRNAs

with the target region of potential transcripts of interest [112,113]. More recent methods

tried to combine the two steps, to reduce the number of false-positive interactions and define

robust ceRNA networks [110].
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Figure 2.2: Overview of the regulatory role of non-coding RNAs in health and disease. a) Schematic representation
of miRNA biogenesis. From the top, pri-miRNAs are transcribed from intronic regions and processed
by the microprocessor complex into pre-miRNAs. pre-miRNAs are transported to the cytoplasm and
cut by DICER. Mature miRNAs bind with AGO proteins and bind to target mRNAs. b) Overview
of the regulatory tasks of lncRNAs described in this thesis. i) lncRNAs recruit chromatin modifier
complexes to induce chromatin changes and inhibit transcription, ii) lncRNAs can work as promoters
or decoys of transcription, iii) lncRNAs can influence post-transcriptional regulation. c) Depiction of a
ceRNA network comprising 4 RNAs in total. Potential matching is indicated by the same coloring.
Binding of the target genes with the miRNAs establishes a cross-talk between genes. Once extended to
the whole genome, these cross-talks can be seen as a regulatory layer of interactions, i.e. a ceRNA
network.
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2.2 Intercellular signaling

As previously mentioned, cellular homeostasis relies on a complex and precise communica-

tion network between cells to control growth, division, and proliferation. These mechanisms

are modified to allow higher proliferation rates and faster growth in cancer. Intercellular

signaling mechanisms can be broadly grouped into three steps, (signal) reception, transduc-

tion, and response [111]. Much of the communication between cells happens through growth

factors, small proteins that allow cell-cell communication. Growth factors are sensed by

receptor proteins extruding from the cell membrane. Once phosphorylated, these proteins are

functionally altered and proceed to alter further downstream cells to propagate the external

stimulus. Epidermal growth factors (EGFs) were the first family of growth factors to be

discovered. EGFs and their receptors, normally involved in early embryonic development and

stem cell renewal in healthy tissues such as liver and skin, have surged as an important player

in tumorigenesis and progression of different cancer types [112]. EGFs are recognized by cells

via surface proteins identified as EGF receptors (EGFRs), belonging to the class of receptor

tyrosine kinases (RTKs) and some of the most common types of observed receptors. RTKs in

the inactive state, i.e., in the absence of a ligand, present themselves as a pair of unconnected

monomers. Upon ligand binding, the monomers dimerize, leading to phosphorylation of the

tyrosine domain part of the intracellular monomer and to the subsequent activation of the

receptor. Activation then drives the recruitment of new proteins and their phosphorylation to

propagate the signal further.

Kinases are the most frequently mutated proteins in cancer [113], and phosphorylation is

one of the main post-translational mechanisms of signal transduction, making it suitable as a

therapeutic target [114]. Kinases act by removing a high-energy phosphate group from a GTP

molecule and transferring it to other available proteins. Tyrosine kinases are a particular class

of kinases, so defined given the fact that they phosphorylate tyrosine, as opposed to the action

of serine/threonine kinases that phosphorylate serine and threonine [115], as in the case of

CKD proteins known to regulate the cell cycle [116]. Many ligand-receptor pairs have been

identified since the discovery of EGFs-EGFRs, such as platelet-derived growth factors and

receptors (PDGFs and PDGFRs), vascular endothelial growth factors and receptors (VEGFs
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and VEGFRs), or fibroblast growth factors and receptors (FGFs and FGFRs).

Once receptors bind with their respective signal, signaling cascades are propagated to

achieve the desired target response, either directed toward the cell nucleus, e.g., to induce

changes in gene expression, or towards the cytoplasm, e.g., to reorganize the cytoskeleton

structure. While the pairing is necessary for healthy cells to start the signaling cascade, cancer

cells can become independent of the availability of growth factors in the extracellular space

to grow and proliferate constantly. For example, mutations in genes encoding growth factor

receptors may drive activation of the signaling cascade independently of the presence of

a ligand. Alternatively, tumor cell surface receptors’ overexpression might increase their

signaling output [112].

Ligand-receptor binding is followed by various downstream signal-transducing cascades to

the nucleus. While a wide range of pathways is known to be altered in cancer [117], such as

the TGF- pathway [118], the PI3K-AKT pathway [119], or the JAK-STAT pathway [120], I here

focus on the RAS-RAF-MEK-ERK signaling pathway, that plays a role in many cancer types

and particular in pancreatic cancer, which is important for this thesis (Figure 2.3).

The RAS-RAF-MEK- signaling pathway is activated upon ligand binding to tyrosine kinase

receptors and subsequent recruitment of adaptor proteins such as GRB2 and SOS. Signals are

further transmitted via activation of GTPases (enzymes able to bind GTP and hydrolyze it

to GDP), e.g., belonging to the RAS family. GTP activated RAS activates downstream RAF

isoforms such as ARAF, BRAF, and CRAF, all able to activate MEK1/2 and its downstream

effector ERK1/2. The simplicity of the RAS-RAF-MEK-ERK cascade is opposed to the com-

plexity of the negative feedback mechanisms that developed to maintain ERK activation (for

more see [121, 122]). ERK activity is directly related to cellular proliferation, differentiation,

and apoptosis via multiple substrates, for example, via the downstream pathway ERK-MSK-

CREB which leads to the expression of cyclin D, required for CDK proteins activity to control

cell cycle arrest, making this pathway a critical component for cancer cells to drive enhanced

proliferation and other mechanisms [123]. Other important substrates of ERK are RSK, an

inhibitor of tumor suppressor p27 [124] and activator of the PI3K-AKT pathway [125], and

MYC, an important transcription factor known to enhance DNA transcription [126, 127]
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and to be over-activated in many cancer types [128]. ERK is recognized as an important

part of many cancer hallmarks, such as cell proliferation or avoidance of cell death [129].

Its over-activation can be achieved in multiple ways, either via overexpression of tyrosine

receptors (e.g., ERBB family amplifications [130]) or amplification or mutational activation of

the downstream molecules, e.g., kinases such as RAS and BRAF [131, 132]

Figure 2.3: Schematic illustration of the main molecules involved in the ERK signaling pathway.

Intracellular signaling is a complex and dynamic process characterized by high redundancy

in routes activating the same pathways. Cancer cells take advantage of these mechanisms
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by promoting the rewiring of existing pathways, negative feedback signals, and pathway

cross-talks. For example, the multiple negative feedback loops between ERK and its upstream

molecules described above are known to grant robustness to the cascade [121], as shown in

experiments where multiple members of the pathway were targeted in melanoma samples

and led to improved therapeutic response and prognosis [133]. Cross-activation has been

observed between the PI3K-AKT and the RAF-MEK-ERK pathway, with observed resistance

to the inhibition of the PI3K-pathway in murine lung cancer samples harboring a KRAS

mutation [134].

2.3 Breast adenocarcinoma

Breast cancer is the most frequent cancer diagnosed in the world (11.7% of newly diagnosed

cases) and the main cause of cancer-related deaths in female patients [7]. 10% of breast cancers

have been linked to hereditary factors and genetic predisposition with the most common

germline mutations being observed in the BRCA1 and BRCA2 genes [135]. The advent of

next-generation sequencing and large availability of genomic datasets brought to the surface

additional genes related to the disease, such as ATM, CHEK2, PALB2 (stabilized by BRCA2),

and TP53 [136]. In addition to genetic aberrations, other elements associated with a higher risk

of breast cancer are genetic syndromes ( e.g., the Lynch syndrome), pregnancy-derived events,

obesity and unhealthy lifestyles, and hormonal therapies (e.g., Menopausal hormone therapy).

Early screening has shown to be beneficial to decrease breast cancer-related mortality, thanks

to improvements in techniques such as mammography, ultrasonography, and MRI. Moreover,

preventive care options such as treatment with tamoxifen, raloxifene, or mastectomies can

reduce breast cancer development or recurrence [137].

Breast cancer is a complex disease that is characterised by the alteration of physiological

mechanisms at multiple levels [138]). This results in an extremely diverse set of diseases that

may present drastically diverse clinical phenotypes. Multiple stratification efforts identified

five breast cancer subtypes (Luminal A, Luminal B, Basal, HER2-positive, and Normal-like)

[139] that have been linked to specific oncogenes and tumor suppressors and that present
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clear differences in aggressiveness and metastatic potential [136]. Clinical decisions are

typically driven by the stratification of patients into subgroups defined by expression of

estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor

receptors 2 (HER2). Despite the connection between histopathological subtypes and intrinsic

cancer subtypes, highlighted in the 2013 St. Gallen Consensus Recommendations [140],

misalignments between protein-based and gene expression-based subtypes have been reported

[141] and highlighted the importance of identifying robust biomarkers for patient stratification

beyond established molecular signatures such as PAM50 and similar [142, 143, 144].

2.4 Pancreatic ductal adenocarcinoma (PDAC)

Pancreatic ductal adenocarcinoma (PDAC) is the most frequent form of pancreatic neoplasms,

accounting for 90 to 95% of all pancreatic neoplasms [145], characterized by an overall 5-

year survival rate of 9% (in the United States) [9]. It is thought to develop via pancreatic

intraepithelial neoplasia (PanIN) and from cystic lesions (e.g., intraductal papillary muci-

nous neoplasm (IPMN), intraductal tubulopapillary neoplasm (ITPN), and mucinous cystic

neoplasm (MCN)). PanIN lesions are known to be the most common precursor [146]. Such

lesions give rise to cancer through the gradual accumulation of genetic alterations that lead

to phenotypic changes and, ultimately, to the progression of invasive pancreatic cancer, or

rapidly progress through catastrophic events, such as chromothripsis to invasive PDAC. The

earliest lesion is defined as Acinar-to-ductal metaplasia (ADM), during which mutations

in key oncogenes such as KRAS, mutated in >90% of PDACs, initiate the differentiation of

pancreatic acinar cells to ductal-like ones [147, 148] and whose impairment has been shown

to impact further degeneration in later steps of tumorigenesis [149].

KRAS oncogenic activation has been observed in 80-90% of all early-stage lesions [150],

and is involved in the dysregulation of cell differentiation and inhibition of tissue repair

mechanisms. KRAS point mutations, with the most frequent ones being G12D, G12V, and

G12R [151], result in the activation of downstream pathways (see paragraph above) such

as the MAPK and PI3K pathways. CDKN2A loss-of-function is present in more than 80%
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of PDACs [152] via, e.g., loss of both alleles or hypermethylation in the promoter region

[153]. CDKN2A is known to encode two important tumor suppressor proteins, p14 and

p16, controlling checkpoints of the G1/S transition during the cell cycle by binding to CDK

proteins such as CDK4 and CDK6 [154].

Moreover, further aberrations in later steps, such as in TP53 and SMAD4, are often found

in pancreatic cancer patients. 62.5% of PDAC patients harbor loss-of-function modification in

the TP53 gene by homozygous deletion and/or intragenic mutations [155], driving genomic

instability in PDAC [156]. Similarly, SMAD4 intragenic and hemizygous deletions are

observed in 50% of PDAC patients, leading to alterations of the TGF- pathway and correlated

with metastasis and poor prognosis [157]. The development of next-generation sequencing

technologies and the advent of large international consortia dedicated to the collection and

analysis of molecular data for different cancer types (see next chapter for more details) have

given the opportunity to analyze the molecular pathology of pancreatic cancer more in detail

and highlighted key aspects that could have deep implications for the advancement of new

therapeutic strategies.

Massive sequencing efforts highlighted the heterogeneity of pancreatic cancer beyond a few

key frequent mutations [158]. They accentuated alterations in germline DNA damage repair

genes such as BRCA1, BRCA2, or ATM/ATR, leading to genomic instability [159, 160, 161].

Further works reported complex chromosomal rearrangements as a feature of PDAC [162, 163].

Whole-exome sequencing efforts revealed frequent aberrations ( 30% of pancreatic cancer)

in chromosome arms such as deletion of 8p, 9p, 18p, and 18q and amplification of 1q

[164, 165, 166]. Other recurrent events are amplifications of GATA6, KRAS, and MYC and

deletions of CDKN2A, SMAD4, ARID1A, and PTEN [166]. In parallel to genomic studies, the

use of gene expression (both from sequencing and array-based based technologies) for PDAC

subtyping (see next chapter for a description of tumor subtyping approaches) identified two

main broad and general subtypes of pancreatic cancer, a more differentiated, less aggressive

classical subtype and an undifferentiated, aggressive and more therapy-resistant mesenchymal

subtypes, one [167, 168, 162].
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2.5 Summary

Cancer is an extremely heterogeneous class of diseases characterized by the accumulation

of genetic aberrations that alter cellular homeostasis. Gene expression, a process that allows

the synthesis of proteins and is key to preserving cellular equilibrium in healthy tissues, is

particularly susceptible to modifications induced by mutations and structural variants and

must be carefully characterized and analyzed to understand how its dysregulation gives rise

to malignant phenotypes.

Gene expression is regulated at different levels and by different mechanisms. Transcription

factors are a class of proteins primarily designed to modulate gene expression. The action of

transcription factors depends on the availability of open genomic regions, which depends

on the structure of the chromatin, the protein-bound DNA. Chromatin structure can be

modified via epigenetic changes such as changes in its structural components, e.g., histones,

or via changes in the DNA methylation patterns. Finally, transcriptional products, such

as messenger RNAs can be further processed by small RNAs, e.g., miRNAs, and other

classes of non-coding RNAs, e.g., long non-coding RNAs (lncRNAs). These two classes of

molecules have drawn a lot of attention in the past few years in cancer research, thanks to

their potential as diagnostic biomarkers and therapeutic targets. Importantly, new hypotheses

regarding their activity have surfaced. For example, the competing endogenous RNA (ceRNA)

hypothesis suggested that different RNA molecules, e.g., lncRNAs and mRNAs, compete for

the binding with miRNAs, shaping complex post-transcriptional regulatory networks that

can be exploited to study cancer mechanisms.

Intercellular signaling is another important process governing cellular functions such as

growth, proliferation, and death throughout the cell cycle. It works as a cascade of signals

that are transduced from the cell membrane to the nucleus through the work of signaling

proteins. Kinases are one of the main classes of signaling proteins and constitute the core of

some of the most important signaling pathways in a cell, such as the RAF-MEK-ERK signaling

pathway. Kinases have also acquired importance in the framework of cancer research, being

the most frequently mutated class of proteins in tumors. In particular, they have become one

of the main targets for therapeutic strategies aiming at inhibiting signaling pathways to stop
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tumor cells’ growth and proliferation.

25



3 Precision oncology in the age of Artificial

Intelligence

In recent years, the traditional paradigm “one symptom-one target-one drug” [169] has

shown its limitations, with the ten highest-grossing drugs in the United States resulting in

improved conditions only for a small proportion of patients [170]. Moreover, increased access

to healthcare services has highlighted differences in performances between ethnic groups

[171]. Precision medicine has emerged as a possible alternative by offering the chance to

tailor medical decisions to patients’ clinical and molecular profiles. In particular, stratified

medicine [172] allows the identification and prediction of clinically relevant strata that share

molecular disease mechanisms, offering the chance for the development of mechanism-based

diagnostic and therapeutic strategies [169].

Oncology has pioneered the transition toward this new paradigm, recognizing that similar

clinical phenotypes may be the result of different tumor development routes that impact

treatment response [173]. This effort has been aided by the systematic collection of genomic

alteration information [174, 175, 176] that resulted in the identification of a wide range of

cancer-specific alterations. Current precision medicine approaches rely on these to investigate

“first-order” relationships (i.e., linking of patients’ mutation and copy number profiles

with specific clinical strategies) [177] and mechanisms of “oncogenic addiction” (i.e., the

dependency of tumor cells on a specific oncogene) to identify biomarkers able to stratify

patients between potential responders (sensitivity biomarkers) and non-responders (resistance

biomarkers) [178]. Targeted therapies exploiting these characteristics are the foundation of

modern cancer treatment, with multiple compounds available in the clinics exploiting genomic

biomarkers such as Crizotinib (targeting ALK rearrangements) [179], Nilotinib (BRC-ABL
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fusion) [180], and Dabrafenib (BRAFV600E and BRAFV600K) [181].

Recently, innovative cancer treatment options have surfaced, leveraging and targeting

different aspects of cancer biology. For example, increased understanding of the mechanisms

driving alternative splicing and their relevance in cancer has led to the development of

treatment options designed to correct or modulate alternative splicing events [182]. Different

approaches try to exploit the patients’ own immune systems to fight cancer progression.

For example, immune checkpoint blockades, such as anti-PD-1, anti-PD-L1, and anti-CTL-

4 therapies [183], control the inhibition of tumor-infiltrating T cells. The use of chimeric

antigen receptor T (CAR-T) cells for adoptive T-cell transfer therapies has a similar goal and

has been shown to be effective in non-solid tumors such as B-cell lymphoblastic leukaemia

[184]. Finally, recent advancements raised high hopes for the development of effective cancer

vaccines able to identify antigen peptides and boost a patient’s immune system [185]. Despite

the lack of concrete examples of successful use of cancer vaccines in clinical practice, they

have shown promising results in different cancer types [186, 187, 188, 189, 190].

All these approaches are set to benefit from the technical and methodological advancements

that have brought to the surface the complexity of cancer genomes and that have highlighted

the need for a more comprehensive molecular profiling of cancer patients, going past “first-

order” relationships. Molecular characterization efforts allowed the creation of complete

datasets encompassing different molecular layers, such as the genome [191], transcriptome

[192], epigenome [193], and proteome [194], typically collected under the term “omics”

technologies. The accumulation of multiple information layers has made clear the need for

the use of advanced computational techniques to analyze and interpret biological data [195],

creating a fertile ground for the use of computational techniques such as machine learning

(ML) and artificial intelligence (AI) in precision medicine [196]. Successful integration of these

disciplines will pave the way to a new data-driven age for medicine and biology [197] and

will enable the leveraging of the whole molecular landscape of patients to drive treatment

decisions and potentially design new therapeutic strategies.
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3.1 Artificial intelligence

Artificial intelligence-based technologies have established themselves as a disruptive force

taking different fields and industries by storm [198, 199, 200]. Particularly important for this

work, they are assuming an increasingly important role in biology, medicine, and healthcare

[201], in particular in the medical imaging field and in sectors such as radiology and pathology,

where automated classification agents have achieved excellent performances in diagnosis, risk

prediction, and as decision-support systems for selecting treatment across different diseases

and applications [202, 203, 204]. Similar technologies have been successfully employed beyond

imaging tasks, where AI technologies have shown their potential as signal-processing tools

for medical signals such as electrocardiograms (ECGs) [205] or electroencephalograms (EEGs)

[206], together with the great advances in the field of biochemistry and structural biology

[207].

Artificial intelligence is an umbrella term that refers to all the techniques based on the

simulation of human intelligence by machines, such as natural language processing, robotics,

computer vision, machine learning (ML), and deep learning. In this work, I will mainly

focus on machine learning, an AI research area focused on the design of agents able to

learn general rules and patterns from predefined example datasets [208]. ML applications

can be categorized into three broad frameworks. Supervised ML learning methods are

designed to identify and approximate the relations between input features and outcomes of

interest. Supervised approaches can be categorized based on the type of outcome variable

of interest, with regression approaches analyzing numerical or continuous variables and

classification ones where the outcome variable is categorical. On the other hand, unsupervised

machine learning methods try to define hidden patterns in the features of interest. Finally,

reinforcement learning has grown alongside these two more traditional methods, establishing

a framework where agents take actions in predefined environments while maximizing user-

defined and task-specific reward functions [209].

Different types of machine learning methods have been introduced, differing in the complex-

ity of the patterns they can learn and identify, in the type of data they can be applied to, and

in the degree to which they can offer explanations of their inner functioning (interpretability).
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For instance, linear models have been extensively used in statistical literature because of their

straightforward implementation and inherent interpretability [210]. On the opposite hand,

neural network-based strategies such as deep neural networks can automatically identify

complex patterns while offering limited room for interpretation [211].

Artificial intelligence is poised to revolutionize the way precision medicine and the broader

medical industry are defined. However, broad translation of new technologies and tools to

daily clinical use is still lacking, mainly due to important technical, ethical, and regulatory

challenges [201]. The main technical challenges are related to building models that are

trustworthy, reliable, easy to use and understand, and easily integrable into existing clinical

frameworks [212]. Explainability is another characteristic often mentioned as one of the key

obstacles to the widespread deployment of these technologies. Despite recent advancements

in this direction, current strategies are very limited [210] and require further research.

Regulatory challenges are mainly related to the accuracy, robustness, and fairness of AI

models across different settings, e.g., hospitals and patient populations. Furthermore, it

is necessary to define the relationship between humans and automated agents and how

the two systems interact and exchange information [213]. Finally, the introduction of such

technologies might imply shifts in responsibility accountability and might lead to new sets of

rights and duties for all the stakeholders in the healthcare field [214, 215]. Such issues would

require AI technologies to be explainable and justifiable, i.e., they should provide reasons for

their decisions in the framework of rights, laws, and norms in our society [216].

Significant problems are then related to the ethical use of patient data, which these tech-

nologies are intrinsically dependent on. These must be protected from potentially malicious

agents interested in such highly sensitive data. Approaches such as federated learning might

ease decentralization while making the calibration of AI models using data from different

centers/locations easier [217]. Problems related to the exacerbation of existing inequalities

based on biases hidden in the data are a known problem for ML models that need to be

tackled to assure fairness in healthcare [218, 219, 220] with specific actions at every step of an

ML pipeline [221].
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Despite the appearance of the first approaches able to successfully exploit algorithms in

the field of precision oncology [177], the true potential of ML in this field remains untapped.

In particular, the potential of these technologies to identify complex disease biomarker

signatures across multiple omics layers offer the chance to advance precision medicine [222].

In this chapter, I describe a handful of potential applications of ML in precision oncology. In

particular, I focus on disease subtyping (Figure 3.1.a), drug response prediction (Figure 3.1.b),

drug repurposing tasks (Figure 3.1.c), and design of drug combinations (Figure 3.1.d). The

intent here is not to discuss these topics exhaustively but rather to draw a general overview

of the main models and methods used in these applications. Drug response prediction will

be discussed more in detail as it is of particular relevance for this work and will be the main

topic of Chapter 4.
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Figure 3.1: Computational models described in this chapter are here represented as neural networks for sake of
simplicity. a) ML approaches can exploit different molecular layers to identify clinically relevant tumor
subtypes. Typical subtyping approaches try to define low-dimensional representations (extracted
with, e.g., an autoencoder) of the phenomenon of interest. b) ML algorithms can be used to predict
drug response from multiple -omics layers and analyzed to identify biomarkers of drug response.
c) AI techniques can be used to identify new targets for drugs compounds previously approved for
different diseases in the framework of drug repurposing. d) ML methods can identify new effective
drug combinations by combining different layers of information on the compounds of interest and
available molecular layers.

3.2 Disease subtyping

As discussed in the introduction, a cancer type is not a unique disease but rather a hetero-

geneous class of sub-malignancies that, despite having their origin in the same tissue type,

may differ in cell of origin, etiology, micro-, and macroenvironment [223]. Such differences
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make these groups, typically referred to as subtypes, unique in their molecular characteristics,

prognostic outcomes, and sensitivity to targeted therapies [224]. Various subtyping efforts led

to the identification of clinically relevant tumor subtypes, as in colorectal cancer [225], bladder

cancer [226], breast cancer [227], and pancreatic cancer [228] (see Chapter 1). A plethora of

methods, both computational and non-, has been developed to identify clinically relevant

subtypes, e..g., histopathological analyses [229, 230]. I here give an overview of current

approaches for tumor subtyping, focusing on the most frequently implemented techniques

and on the datasets that allowed the discovery or validation of tumor subtypes. The reader

can find a more comprehensive overview of tumor subtyping applications at [231, 232].

Standard tumor subtyping methods are based on unsupervised ML techniques such as non-

negative matrix factorization (NMF) and independent component analysis (ICA), particularly

useful since they result in subtype-specific signatures that are biologically interpretable.

The growing availability of large-scale omics datasets, such as The Cancer Genome Atlas

(TCGA) [233], the International Cancer Genome Consortium (ICGC) [234], and the Pan-Cancer

Analysis of Whole Genomes (PCAWG) [235], led to the application of deep learning strategies

to tumor subtyping tasks. For instance, variational autoencoders have been designed to

stratify non-small cell lung cancer patients based on methylation patterns [236]. Similar

approaches aim at exploiting multiple molecular layers, or even data modalities, to further

boost precision oncology [237] and uncover potentially interesting patterns in neuroblastoma

[238], lung adenocarcinoma [239] and breast cancer [240].

3.3 High-throughput drug screens

in vitro and in vivo models have always had an important role in oncology and cancer research,

with the first in vitro cultures being used over a century ago [241]. Later studies used these

models to investigate sensitivity to chemotherapeutics using a broad range of readouts such

as proliferation rates or viability, with results that drove, for example, the definition of many

treatment regimens today [242]. Despite their known limitations and questionable role in the

identification of clinically relevant biomarkers [243, 244], the growing amount of information

on the heterogeneity of cancer genomes, the increasing availability of active compounds, and
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the introduction of new models such as 3D patient-derived organoids, have renewed the push

for preclinical models. In particular, in vitro models offer the chance to systematically compare

the effect of large libraries of therapeutic drugs on large cohorts in a high throughput fashion.

When complemented with deep molecular characterization of the samples of interest, such

efforts offer the chance to identify clinically relevant drug response biomarkers [245]. 2D

tumor-derived cell cultures have always been the workhorse of these projects, with the first

high-throughput screening efforts exploiting rather limited cohorts of 60 cell lines [246] and

the more recent ones expanding the screened samples up to 1000 cell lines representing more

than 30 cancer types screened with hundreds of compounds (e.g., the Genomics of Drugs

Sensitivity in Cancer (GDSC) project [247], and the Cancer Target Discovery and Development

(CTD2) initiative [248]). 3D self-organizing tumor cell cultures, i.e., organoids, have been

identified as the up-and-coming model for HTSs [249], as they are better at capturing the

heterogeneity observed in tumors and at conserving architecture and cell-type composition

of the tissue of origin [250].

Traditionally in HTS projects, drug efficacy has been quantified via “static” approaches

that measured proliferation, survival, or viability, with metrics such as the half-maximal

inhibitory concentration (IC50) or by the area under the dose-response curve (AUC). The

advent of new technologies paved the way to more “functional” approaches, able to measure

perturbations of living cells and to incorporate analysis at single-cell resolution to evaluate,

for example, sub-clonal phenotypic effects [251, 252]. These technologies could overcome

the intrinsic limitations of traditional tumor models by simulating the presence of the tumor

microenvironment or the pharmacokinetics and mode of drug delivery with innovative

organ-on-a-chip technologies [253, 254].

Pharmacogenomic analyses try to find patterns and links between drug response data

and existing -omics datasets. Typical approaches rely on the approximation of functions

mapping drug response read-outs, e.g., AUC or IC50, onto gene expression, gene methylation,

mutations, etc. [255]. More advanced approaches, such as transfer learning, have been

used to leverage information from large HTS datasets to predict drug response in smaller,

proprietary datasets collected from a single cancer type [256]. Moreover, representation
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learning techniques have been implemented to define low-dimensional embeddings associated

with drug-relevant modules, e.g., constrained matrix factorization [102] or manifold learning

[257]. Deep learning methods have proven to be successful in the prediction of HTS results,

using traditional architectures such as convolutional neural networks [258] or autoencoders

[259].

While HTS analyses typically use baseline molecular profiles to predict drug response,

drug signatures can be derived by measuring changes in omics profiles before and after

treatment, as in the case of the connectivity map (C-Map) [260, 261]. Similar strategies can

enable drug repurposing, an approach based on identifying and prioritizing drugs that

have already successfully undergone clinical and safety trials as new treatment strategies for

diseases different from the ones they were originally designed for, thus accelerating drug and

clinical development pipelines [262]. Such approaches find their strength in the availability

of extensive chemical datasets and databases such as ChEMBL [263] and PubChem [264],

collecting information and biological and chemical properties (e.g., toxicity, pharmacokinetics,

and pharmacodynamic profiles) of thousands of compounds. Moreover, the availability

of experimentally validate interaction networks, such as protein-protein interaction (PPI)

networks [265], has created a fertile ground for the integration of AI for drug repurposing

applications [266].

3.4 Drug combinations

One of the main complications in cancer care is the surfacing of resistance to treatment,

a phenomenon that leads to cancer cells becoming less tolerant to the administered cure.

Drug resistance in cancer has historically been categorized either as intrinsic, or primary,

and acquired, or secondary, drug resistance [267]. While the former implies that some or all

tumor cells are observed not to respond to the chosen treatment, in the latter one tumor cells

initially responding to treatment show a decrease in treatment efficacy in later stages [268].

Multiple biological mechanisms have been associated with drug resistance, such as tumor

intrinsic factors, e.g., tumor burden tumor [269], tumor heterogeneity [270], or rewiring of
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intercellular pathways (as described in chapter 1), or tumor extrinsic ones, e.g., the influence

of the tumor microenvironment [271].

Drug combinations, or multi-drug therapies, offer an alternative to address both, primary

resistance as well as the appearance of secondary drug resistance by exploiting drug synergies

[272]. For example, colorectal cancers harboring BRAF mutations are known to activate

negative feedback loops to EGFR when BRAF is inhibited [273]. Simultaneous activation of

BRAF and EGFR has shown to be highly synergistic [274]. In typical approaches, optimal

drug combinations are identified via two different approaches: i) “double-hit” strategies

where both compounds target the same signaling pathway, or ii) targeting of two independent

mechanisms or pathways [272, 275].

High-throughput strategies coupled with computational analysis approaches have proven

to be the optimal method to systematically identify and prioritize effective drug combinations

in different cancer types [276, 272]. Notably, algorithms can reduce the complexity of the

searchable combination space (growing with a complexity of (n2-n)/2, where n is the number

of considered monotherapies) while taking into account key aspects such as the toxicity of

the identified cocktail [277].

Various techniques have been implemented in this setting, focusing on the similarity of

drug signatures to identify optimal combinations [278] or exploiting various computational

approaches, as in the case of the AstraZeneca-DREAM crowd-sourcing challenge [272],

where the best-performing methods utilized a combination of prior-knowledge and vanilla

machine learning (random forest algorithm in this case) or various deep learning applications

[279, 280]. Recently, single-cell sequencing technologies have given further impulse to the field,

by offering the possibility to identify potential drug combinations based on the expression of

specific receptors on the cell surface via algorithmic approaches [281].

3.5 Summary

Precision medicine aims at overcoming the limited effects of the traditional “one-drug-fits-all”

medical paradigm by tailoring treatment choices to patients’ clinical and molecular profiles.
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In particular, stratified medicine tries to exploit the wealth of clinical and molecular data

being generated to identify groups of observations that share defined disease characteristics

to design mechanism-based diagnostic, prognostic, and therapeutic strategies. In oncology,

multiple treatment strategies have been collected under the umbrella of precision medicine,

exploiting different characteristics of cancer biology. For example, targeted therapies and

different forms of immunotherapy have proven their efficacy against multiple cancer types.

Artificial intelligence is believed to have the potential to give further impulse to the

advancement of precision medicine, by offering a way to analyze and mine large datasets

to identify biologically meaningful patterns. For example, fields like medical imaging and

biomedical signal processing have already benefited from the power of supervised and

unsupervised computational strategies. These technologies have also created fertile ground

for new scientific discoveries at the basic and translational level, as in the case of the analysis

of multidimensional and complex omics data that can be exploited for patient stratification

and biomarker identification purposes. They have had an influence on the investigation of

tumor subtypes and in applications related to the prediction of drug response and optimal

drug combinations and catalyzed further scientific and clinically relevant discoveries. In the

next chapters, I will show two examples of such applications and describe how computational

techniques can be pivotal to uncover and prioritize new potential biomarkers for patient

stratification.
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4.1 Declaration of contributions

This chapter is the result of a project started in the Big Data in Biomedicine group at the

Technical University of Munich (Freising, Germany) under the supervision of Dr. Markus

List, and in collaboration with the Universidade Federal do Paraná (Curitiba, Brazil) and

the BC Cancer Genome Sciences Centre (Vancouver, Canada). The work described here has

been driven by me and Markus Hoffmann, doctoral student in the Big Data in Biomedicine

Group, who has equally contributed to it. The related manuscript has been submitted to the

proceedings of the European Conference in Computational Biology (ECCB) 2022 on April

15th 2022 [282].

4.2 Introduction

The growing availability of large sequencing datasets, together with advancements in com-

putational techniques and an increased understanding of the mechanisms driving gene

expression regulation shed new light on the importance of non-coding RNAs as potential

biomarkers and added a new information-rich layer for precision oncology approaches,

moving past the traditional analysis of genome aberrations and gene expression alterations.

In particular, microRNAs (miRNAs) have been identified as important players in gene

regulation, both in healthy and cancerous tissues [283, 284] and as important mediators in

competing endogenous RNA (ceRNA) networks (see Chapter 1). lncRNAs have recently
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received particular attention in the context of ceRNA networks, with recent works suggesting

that one of the roles of lncRNAs is to indirectly regulate the expression of mRNAs via

competition for the same miRNAs (see Chapter 1) [285].

Experimental identification and validation of miRNA-target interactions have proven to be

extremely costly and laborious. Computational approaches have shown the potential to be a

valid substitute, with many different approaches being implemented to identify important

miRNAs and targeted genes. While the ultimate goal of these methods is the generation of a

handful of hypotheses suitable for experimental validation, they are typically designed to

infer complex regulatory networks comprising thousands of interactions. Such complexity

hinders the discovery of portions of these networks that might assume an important role in

the disease under analysis. The identification of network functional units, or modules, is a key

aspect of biological network analysis [286] and assumes an even bigger role in the framework

of ceRNA networks, where the identification of modules could point out discrepancies in

regulation between healthy and disease statuses and eventually lead to the definition of novel

diagnostic or prognostic biomarkers or new potential therapeutic targets.

Recent works have tackled the ceRNA network module identification problem, exploiting a

broad range of computational approaches such as community detection algorithms, network-

based clustering, and matrix factorization techniques [287]. Despite showing interesting

results, these methods often result in a small number of modules containing a large number

of edges [288] related to very broad pathways typically associated with cancer, making it

difficult to identify robust hypotheses for further experimental validation. Moreover, while

recent techniques have focused on the inference of patient specific-networks and on the

identification of “aberrant” edges that deviate from the norm [285], none of the ceRNA

module identification methods are, to the extent of my knowledge, able to compute sample-

specific or patient-specific scores summarising the information contained in the identified

modules. Such a summary can be extremely valuable, in that it might offer a straightforward

way to link computationally identified modules with their biological functions while offering

a starting point for further downstream modeling steps.

In this chapter, I describe spongEffects, a tool able to infer ceRNA modules from pre-
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computed ceRNA networks, like the ones inferred by SPONGE [110]. In addition, spongEffects

offers the chance to quantitatively estimate the regulatory activity of the inferred modules

using single sample enrichment score-inspired frameworks and thus building a platform

for the comparison of ceRNA modules across different groups. The general pipeline is

presented in Figure 4.1. Using gene expression data and pre-computed ceRNA networks,

spongEffects can i) find important nodes in the network via the calculation of different node

centrality metrics, ii) define modules centered around high degree nodes, iii) perform gene

set enrichment to calculate module- and patient-specific scores, and eventually iv) use the

calculated scores for downstream machine learning tasks. I here show an example of how to

use spongEffects to retrieve insights into the biology of breast cancer subtypes.

Figure 4.1: SpongEffects requires a gene expression matrix and a ceRNA network as input. Once these are
provided, it 1) preprocesses the network and computes weighted centrality scores, 2) defines modules
3) calculates modules’ enrichment scores (spongEffects scores), and 4) formats the data for further
downstream tasks. Figure from [282].
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4.3 Material and methods

4.3.1 Data sources and preprocessing

SpongEffects relies on previous work on ceRNA networks from the Big Data in Biomedicine

Group. In particular, we envision it as an add-on to “Sparse Partial correlation on Gene

Expression” (SPONGE), a data-driven approach able to infer ceRNA networks from gene-

and miRNA- level expression data [110]. SPONGE ceRNA networks for 22 cancer types

have been computed and made freely available, together with accompanying information

and analyses via SPONGEdb, an online resource for the investigation of ceRNA networks

[289]. Log2-transformed tpm-normalized RNA-Seq data for the TCGA breast cancer dataset

(TCGA-BRCA) were downloaded together with associated miRNA expression levels and clin-

ical metadata from the XENA Browser [290]. Furthermore, we downloaded log-transformed

Illumina microarray data for the 1st and 2nd Molecular Taxonomy of Breast Cancer Interna-

tional Consortium (METABRIC) cohorts [291] and used them as an independent dataset to

validate our findings.

We selected in both cohorts all patients with tumor gradings annotated as stage I, II, III, and

IV, and removed all the samples not associated with any of the five subtypes investigated here,

namely LumA, LumB, Her2, Basal, Normal-like. After the preprocessing step, we obtained

a training cohort of 944 patients (TCGA-BRCA) and a validation cohort of 1699 patients

(METABRIC). The TCGA-BRCA specific ceRNA network was downloaded via SPONGEdb

(http://sponge.biomedical-big-data.de/) and filtered down (mscor > 0.1, adjusted p-value <

0.01) from 3x107 to 702.026 edges to preserve all connections with significant effect size (see

[110] for more information). SPONGE networks and RNA-seq data were used as input data

for spongEffects to calculate module-level enrichment scores, i.e., spongEffects scores.

4.3.2 Identification of ceRNA modules

Centrality measures are a pivotal step in the analysis of complex networks, given their poten-

tial in providing essential clues about the organization of biological graphs [292, 293]. Degree,

closeness, and betweenness, standard centrality measures introduced for the first time by
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Freeman et al. [294], have been extensively found to be able to capture and identify important

nodes in biological networks [295, 296, 297]. While originally designed for applications

in unweighted networks, they have been generalized to be applied in weighted network

frameworks [298, 299, 300]. In this section, I focus on degree centrality, with closeness and

betweenness considered as equally important and powerful but outside the scope of this

work. In particular, given an unweighted network comprising N nodes, the adjacency matrix

Xij is a binary matrix containing the description of the connection between node i and node

j, with xij = 1 if node i and node j are connected, and xij = 0 otherwise. In the case of a

weighted network, the associated weight matrix Wij is a matrix with elements wij > 0 if node

i and node j are connected and values corresponding to the weight of the edge between them.

Degree centrality can be defined as the number of edges connecting to node i. More

formally, degree centrality can be calculated as:

Degreei = ∑N
j xi,j (1)

The weighted counterpart of degree centrality, here called node strength, can be formalized

as:

Strengthi = ∑N
j wi,j (2)

Further solutions have been proposed to combine the two measures and strike a trade-off

between the influence of the number of edges and the scale of the weights on the definition

of important nodes. In particular, Opsahl et al. introduced the following [301]:

Centralityα
i = Degreei × ( Strengthi

Degreei
)α = (Degreei)

(1−α) × Strengthα
i (3)

Where α is described as “a positive tuning parameter that can be set according to the

research setting and data. If this parameter is between 0 and 1, then having a high degree

is taken as favorable, whereas if it is set above 1, a low degree is favorable” [301]. In

this chapter, I implement the definition of weighted centrality as described in Opsahl et

al. and as implemented in the R package tnet (version 3.0.16) [302], with the α = 1 to
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prioritize the identification of ceRNAs with high involvement (i.e. high node strength) in

the ceRNA network, where multiple sensitivity correlation values are considered as the edge

weights/effect sizes. Identified ceRNAs with high weighted centrality scores are considered

to be the central nodes of the sponge modules, defined as all the first-degree neighbors of the

central ceRNA nodes.

4.3.3 spongEffects scores

Various gene enrichment methods have been introduced to combine the information from

multiple genes, belonging e.g. to a pathway, gene set, or, as in this case, to sponge modules,

in a unique score. They are typically grouped under the umbrella "unsupervised single

sample enrichment tools" [303], given the fact that they do not rely on a priori knowledge

or the existence of specific phenotype groups and result in sample-specific aggregated

scores. I implemented three of these methods in spongEffects: i) single sample Gene Set

Enrichment Analysis (ssGSEA), ii) Gene Set Variation Analysis (GSVA) algorithms (both

added as implemented in the GSVA package (version 1.34.0) [303]), and iii) Overall Expression

(OE) [304]. While the choice of the optimal approach is closely related to the task and available

datasets and can hardly be defined a priori, as observed in the original GSVA publication

[303], I highlight here a shared benefit derived from the implementation of these methods.

Namely, they all allow the calculation of spongEffects scores independently of the fact that

all the genes in the modules are also present in the gene expression matrix used as input.

This is particularly important in validation scenarios, where the validation matrix is likely

to contain expression of a set of genes only partially overlapping with the ones part of the

original training matrix and part of the modules.

4.3.4 Random Forest for subtype classification

SpongeEffects scores hold the potential to be used in a wide range of downstream tasks. In

this chapter, I showcase their use in a classification setting, where spongEffects scores are

used as inputs to classify tumor samples in their respective annotated subtypes. To do so,

I exploit Random Forest for classification, an ensemble tree-based algorithm that classifies
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samples via majority voting [305]. In particular, I used Random Forest as implemented in the

caret R package (version 6.0.90) [306]. Hyperparameter optimization is achieved via repeated

(3x) 5-fold cross-validation, as implemented in the same R package. Ex-post identification of

sponge modules driving subtype prediction is achieved via calculation of the Gini index, as

implemented in the randomForest package (version 4.6.14) [307].

4.3.5 Quality control of the classification model via module randomization

As typical in any computational analysis, we evaluated the quality of the classification

model by comparing its accuracy to the performance of a model built on randomly defined

modules. This step is important to understand if the ceRNA modules capture random noise or

covariance structures that are not biologically meaningful or directly related to the differences

in subtypes. To define the random modules, we randomly sampled the ceRNA network. More

specifically, we defined for each ceRNA module (see above) a random module containing

the same number of genes. These were randomly selected from the ceRNA network. Finally,

we calculated the spongEffects scores and calibrated a classification model as previously

described.

4.3.6 Implementation and data availability

We implemented spongEffects in R (version 3.6.2), and we made it publicly available as a new

function in the SPONGE package in Bioconductor at:

https://www.bioconductor.org/packages/release/bioc/html/SPONGE.html

spongEffects source code is available at:

https://www.bioconductor.org/packages/release/bioc/html/SPONGE.html

SPONGE is available at:

https://github.com/biomedbigdata/SPONGE

SPONGEdb is available at:

http://sponge.biomedical-big-data.de/.

The spongEffects scores for each TCGA datasets are available at:
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https://doi.org/10.6084/m9.figshare.19328885.v1

4.4 Results and discussion

4.4.1 SPONGE modules are predictive of breast cancer subtypes

I here present an example of the potential use of the spongEffects methods for cancer sub-

typing and biomarker identification. In particular, I focus on breast ductal carcinoma (see

chapter 1). This is just a specific example, as we envision spongEffects being utilized in differ-

ent scenarios and for various cancer types in which miRNA-mediated post-transcriptional

regulation might have an effect on the observed phenotype.

Alterations of miRNA regulation are a known factor in breast cancer [308] and have been

proposed as potential disease biomarkers [309]. The newly developed method spongEffects

introduced in this chapter can be used to analyze such alterations and how they characterize

different breast cancer subtypes. To do so, we used two large publicly available breast cancer

datasets, TCGA-BRCA and METABRIC, respectively, containing 944 and 1699 samples after

preprocessing (see Materials and methods paragraph above). We used the TCGA-BRCA

dataset as training set and the METABRIC one as external validation set, as standard in any

ML pipeline.

I calculated SPONGE modules using the TCGA-BRCA ceRNA network available at

http://sponge.biomedical-big-data.de/ [289], preprocessed as described in the Materials

and methods section. Weighted centrality values were calculated for all the ceRNAs in the

network that could be classified as lncRNA after annotation with the R package biomaRt

(version 2.42.1) [310]. This choice derived from the potential of this RNA family to be used

as biomarkers [285], and from their validated importance in breast cancer subtypes [311].

The top 750 lncRNAs (ranked on by their weighted centrality scores) were further selected

as central nodes to define the sponge modules, using the first-neighbor approach described

above. Only modules containing between 10 and 200 genes were considered, in a filtering

step recommended in similar endeavors [303].
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We calculated the SpongEffects scores for the two datasets independently, using the three

different single sample enrichment methods described above. Given the differences in the

three methods, we were interested in comparing how different enrichment choices impacted

the performances of models calibrated on spongEffects scores calculated via GSVA, ssGSEA,

and OE. Interestingly, the three approaches showed very comparable performances (Figure

4.2), hinting at the robustness of our approach for the definition of sponge modules.

Figure 4.2: Comparison of model performances based on spongEffects scores calculated on the TCGA (training, in
green) and METABRIC (validation, orange) datasets using the three different single-sample enrichment
tools, Overall Expression (OE), Gene Set Variation Analysis (GSVA), and Single-Sample Gene Set
Enrichment Analysis (ssGSEA), implemented in the package. Subset accuracies were evaluated on
ceRNA modules (left) and randomly defined gene sets (right). Figure from [282].

I here focus on the results of the spongEffects calculated via OE, given the way this method

was used in the original publication on similar bulk transcriptional data [304]. OE-based

spongEffects scores are designed to be normally distributed [304]. Discrepancies from such

distribution can point at the presence of subgroups of patients/observations potentially

different from the rest of the class representatives. This holds true for the spongEffects scores

calculated for the samples belonging to the different breast cancer subtypes (Figure 4.3).

45



4 Patient-specific ceRNA modules can elucidate the cancer miRNA regulatory landscape

Figure 4.3: Distribution of the spongEffects scores in training (TCGA, left) and testing (METABRIC, right) datasets
divided by tumor subtypes. All classes show normal-like distributions apart from the Basal subtype.
Figure from [282].

Indeed, while the majority of the subtypes seem to follow a normal-like distribution in both

cohorts, the basal samples show a bimodal distribution. The samples belonging to this class

can be further modeled via model-based clustering, as implemented in the R package mixtools

(version 1.2.0) [312], in two subpopulations that show differences in purity and stroma content

as calculated via ESTIMATE [313] (Figure 4.4.a) and an over-enrichment of extracellular

matrix-associated genes that have been observed to be involved in typical basal invasion

programs [314] (Figure 4.4.b). The differences could potentially hint at the role of miRNA

regulation in the crosstalk between tumors and their microenvironment. Similar studies have

hypothesized the existence of multiple subgroups in Basal cancers based on different data

types [315], laying the ground for the investigation of new biomarkers that could help to

better stratify breast cancer patients. This emphasizes the potential of spongEffects for the

identification of subgroups of patients with potential prognostic value.
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Figure 4.4: Gaussian mixture modeling applied to the spongEffects scores for the Basal samples pinpoints the
existence of two subpopulations of patients with different characteristics and points at the role of
miRNA regulation in the tumor microenvironment. a) ESTIMATE scores related to purity and stromal
content are significantly different between the identified subpopulations. b) Heatmaps showing genes
belonging to a validated ECM signature in TCGA (left) and METABRIC (right). Figure from [282].

We calibrated a Random Forest classifier algorithm on the TCGA-BRCA dataset, using

sponge modules as input features and annotated subtypes classes as labels. After training, the

model was evaluated with multiple metrics. Overall accuracy was evaluated using the exact

match ratio, also known as subset accuracy and often used in multiclass classification tasks,

while standard singe-glass measures such as sensitivity and specificity were calculated to

check the behavior of the model for subtypes traditionally tricky to distinguish and separate

from the others, such as Luminal B. Furthermore, we compared the spongEffects-based model

to one calibrated on randomly defined modules and on a baseline model trained on the
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expression of the central ceRNAs alone. spongEffects scores outperformed the performance

of the other approaches in both training and testing and preserved good performance across

all subtypes (Figure 4.5).

Figure 4.5: Visualization of the performances of the Random Forest models trained on SPONGE modules (red),
random modules (green), and central genes only (yellow) on the training and test datasets. a) Subset
accuracy values for the three types of models in training and testing. b) Sensitivity and specificity
for the three types of models across the 5 breast cancer subtypes taken into consideration. Sponge
modules preserve good performance for all the subtypes. Figure from [282].

4.4.2 Interpretation of spongEffect scores

spongEffects scores are designed to summarise the contribution of two different post-

translational regulatory mechanisms, namely regulation at the ceRNA network level and

miRNA regulation. The method explained in this chapter can summarise the effect of the

two different layers on the expression measurements of genes that have the potential to be

involved in key mechanisms in the biology of cancer. Purely computational approaches have

limited capabilities to disentangle the two effects unless expression data are paired with

miRNA one, as is the case for TCGA data shown in the next paragraphs.

SpongEffects scores are hypothesized to be the result of two possible scenarios, shown

in Figure 4.6. The first scenario describes the above-mentioned contributions in the case
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of increased spongEffects scores. Specifically, these can result from i) upregulation of the

central ceRNA, which in turn drives upregulation of the target ceRNAs part of the module

independently of the miRNA expression levels, or ii) downregulation of miRNAs and

subsequent decreased post-translational regulation. In the opposite situation, i.e., decreased

spongEffects scores, downregulation of central ceRNAs may lead to similar effects for the

target genes in the modules, or upregulation of the miRNAs could lead to higher regulation.

Figure 4.6: Interpretation of increases and reductions of spongEffects scores. i) Increased expression levels of
the central ceRNA or ii) lower the expression of miRNAs may result in increased expression of the
ceRNAs in a module and thus to higher enrichment scores. On the contrary, iii) lower expression of
the central ceRNA and iii) higher expression of targeting miRNAs might lead to lower expression
levels of the genes in the modules and overall decreased spongEffects scores. Figure from [282].

4.4.3 ceRNA modules identify fundamental biological mechanisms

In machine learning, the term “feature importance” relates to a group of techniques able

to score the variables used to train models to quantify their impact on the final prediction.

In biology, features identified with these methods can offer a glimpse into the biology of

the system of interest. Here, we used the Gini Index, one of the main feature importance

methods applied in Random Forest tasks, to analyze the top 25 ceRNA modules driving

subtype prediction in breast cancer (Figure 4.7).
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Figure 4.7: Visualization of the Gini indexes for the top 50 most predictive sponge Modules for breast cancer
subtype classification tasks. The top25 modules further analyzed in this work are highlighted in red.
Figure from [282].

SpongeEffects scores of these modules show clear differences between basal samples and

the remaining breast cancer subtypes (Figure 4.8).
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Figure 4.8: Visualization of the spongeEffects scores of the 25 most predictive modules for the training (TCGA,
left) and testing (METABRIC, right) cohorts. Basal samples’ scores are clearly different from the
remaining subtypes, hinting at the potential role of miRNA-based post-transcriptional regulation in
the etiology of this aggressive disease. Figure from [282].

Particularly interesting is the case of modules centered around lncRNAs that have been

experimentally shown to act as miRNA sponges, such as CACNA1G-AS1, DNM3OS, TPM1-

AS, whose modules seem to be downregulated in basal samples, or LINC00461, enriched in

the basal subtype. All of these modules have been validated as markers of aggressiveness,

proliferation, and migration in multiple cancer types (including breast cancer) [316, 317, 318,

319], thus assuming relevance in this framework.

As described earlier, spongEffects scores are designed to summarise the independent or

combined effect of miRNA regulation and ceRNA-target regulation. While the two layers

are generally difficult to disentangle, it is possible to gain a qualitative understanding of the

relative contributions if matched gene-miRNA expression data are available for the cohort

of interest, as is the case for the TCGA-BRCA dataset. In order to do so, we analyzed how

many times different miRNAs were predicted by SPONGE to target the genes in the most

predictive modules mentioned above. The results for the 51 most representative modules

are represented in Figure 4.9.a as the number of genes in a module targeted by the same

miRNA divide by the size of the modules and hint at certain over-represented miRNAs and

miRNA families that might have an important role in breast cancer biology (more on this in
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the original publication [282]). Interestingly, 13 of these are also driving prediction in baseline

classification models calibrated on miRNA expression alone and show important differences

in expression between the different subtypes (Figure 4.9.b).

Figure 4.9: The availability of miRNA expression data can help in interpreting the spongEffects scores. a) miRNAs
that are predicted to target the most predictive ceRNA modules.Colour coding refers to the number
of times a miRNA was predicted to target the genes in the module. Additionally,miRNA families
and subtype-predictive miRNAs are highlighted b) Normalized expression of the subtype-predictive
miRNAs. Figure from [282].

In order to showcase the interpretation of spongEffects explained above, I here focus on

two specific modules, CACNA1G-AS1 and LINC00461, and on the target ceRNAs part of

the modules that have been experimentally tested for their role in basal breast cancer. The

first module, showing lower spongEffects scores in basal samples in comparison to other

subtypes, is composed of genes that are known to have lower expression in basal cancers

(Figure 4.10.a and b), such as TBC1D9 [320], MYB, or ZBTB16 [321, 322]. miRNAs predicted

to target the majority of the genes in this module (Figure 4.10.c), such as hsa-miR-301b-3p
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and hsa-miR-130b-3p have higher expression in the Basal subtypes, offering a potential way

to interpret the resulting scores. Module LINC00461 contains genes that have been found

to be highly expressed in basal cancer and to be instrumental to its observed phenotypes

(Figure 4.10.d and e), such as CRYAB [323, 324, 325], RARRES1 [326], BCL11A [327], IGF2BP2

[328], and CDK6 [329] and are regulated by miRNA miR-190b-5p (1q21.3), showing lower

expression in Basal samples (Figure 4.10.f).

Figure 4.10: Contribution of miRNA regulation on breast cancer subtypes for the CACNA1G-AS1 and LINC00461
modules. a) 3 experimentally validated genes in the CACNA1G-AS1 module and their shared
targeting miRNAs. b) The three genes under analysis part of the CACNA1G-AS1 module (TBC1D9,
ZBTB16, and MYB) show different expression levels in the different subtypes. c) Expression of
miRNAs targeting the genes in panel b, divided by subtypes. d) 4 experimentally validated genes
in the LINC00461 and their shared targeting miRNAs. e) The four genes under analysis part of the
LINC00461 module (IGF2BP2, CKD6, RARRES1, and BCL11A) show different expression levels in
the different subtypes. f) Expression of miRNAs targeting the genes in panel e. Figure from [282].
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4.5 Conclusion and outlook

In this chapter, I introduced spongEffects, a newly developed method able to infer ceRNA

modules from available ceRNA networks and calculate sample-specific scores that recapitulate

the regulatory activity of ceRNAs and associated miRNAs. By applying it to two large

breast cancer transcriptional datasets, I showcase how spognEffects can elucidate regulatory

mechanisms in breast cancer subtypes. Importantly, I show how learned modules and sample-

specific scores generalize well to new datasets, even if based on different sequencing platforms

(e.g., RNA-seq or microarrays). Moreover, I show how ceRNA modules inferred from existing

ceRNA networks can be validated on datasets that are missing miRNA expression data. I

hypothesize that spongEffects scores recapitulate two different regulation mechanisms, i.e.,

ceRNA regulation and miRNA regulation, and explain how disentangling the two is possible

only in the presence of miRNA data.

I focus on lncRNAs and their role in breast cancer subtypes to elucidate their regulatory

mechanisms in combinations with miRNAs. SpongEffects is able to identify important

lncRNAs that are known to have an impact on the biology of different cancer types, thus

offering the chance to prioritize them in future validation experiments. Significant for future

endeavors will be the investigation of lncRNAs’ mode of action. For example, it is currently

unclear whether lncRNAs are carried outside of the nucleus, transport that would be required

for them to take part in the Argonaute-dependent mechanisms of miRNA regulation [70].

Such advancements would lead to the validation of the ceRNA hypothesis and the role of

lncRNAs as potential biomarkers or therapeutic targets.

Notably, while this chapter was about post-transcriptional regulation and ceRNA networks

inferred via SPONGE, the same framework can in principle be applied to different ceRNA

networks and, more generally, gene regulatory networks where similar approaches have been

implemented [44, 330].

Finally, I foresee two potential new research avenues. First, spongEffects could be integrated

with current methods able to infer transcription factor activity [44, 45], thus combining two

different regulatory levels. Second, the increased availability of single-cell datasets, now able
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to capture miRNAs’ and lncRNAs’ expression levels [331, 332], is opening new directions of

research for the study of regulatory mechanisms at a higher resolution [333, 334, 335] and

has the potential to drive the development of new tools able to disentangle the complexity of

regulation in cancer biology.
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5 A pharmacogenomics analysis for the

identification of biomarkers of drug response

in pancreatic cancer

5.1 Declaration of contributions

This project is the result of a collaborative effort as part of the Pancreatic Cancer Collaborative

Research Center (SFB 1321) and has been mainly led by Prof. Dr. Dieter Saur and Prof.

Dr. Günter Schneider. Hannah Jakubowsky has performed the screening experiments and

contributed to the validation of the results of the computational analysis together with

Christian Schneeweis. Chiara Falcomatà drove the experimental validation and biological

interpretation and performed the functional genomics screens. I designed and implemented

the pharmacogenomics analysis, ran the analysis pipeline, and performed the data analysis.

In this chapter, I illustrate the technical details related to the implementation of the pipeline.

Validation and further experiments related to this project are going to be available in the

related publication.

5.2 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and deadly disease, projected

to become the 2nd leading cause of cancer-related deaths by 2030 in the US [336]. Unlike

other solid tumors, whose prognosis has significantly improved in the past few decades [9],

patients diagnosed with PDAC still suffer from very poor outcomes, with 1% of PDAC

patients surviving 10 years [8]. The development of targeted therapies offered new hope
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for PDAC patients, with retrospective studies on a small cohort of patients (n = 46), which

received matched therapies to actionable molecular alteration, showing improved median

survival [337]. Such efforts highlight the potential for molecularly-driven therapies in PDAC

relying on the mechanistic understanding of drug action, biomarkers of drug sensitivity, and

pathways driving resistance, as discussed in this chapter.

Standard PDAC treatment strategies involve surgery as first-line treatment, suitable for

only 15% of patients and often combined with adjuvant regimens [338]. Chemotherapy-based

therapies typically involve cycles of 5-fluorouracil, leucovorin (folinic acid), irinotecan, and

oxaliplatin (FOLFIRINOX), or gemcitabine with or without nab-paclitaxel. Approved targeted

therapies for PDAC currently include gemcitabine/erlotinib, inhibitors of poly-ADP-ribose

polymerase (PARP) for patients with germline BRCA1/2 mutations, and immune-checkpoint

blockade (ICB) for microsatellite unstable or mismatch repair-deficient tumors [167, 339], with

new potential strategies aiming at the targeting of specific PDAC subtypes [168]. The causes

for the limited success of targeted therapies in PDAC are multifaceted and have been linked

to the high heterogeneity of this disease (see Chapter 1), whose analysis is limited by the low

number of tissue and culture resources publicly available and often confounded by the high

stroma content, a hallmark of PDAC, hampering molecular profiling and playing a role in the

immunosuppressive phenotypes often observed for this disease [340].

Genetically engineered mouse models (GEMMs) have been shown to be a suitable option to

overcome the limited availability of PDAC tissues and to offer a route to discover actionable

biomarkers for PDAC treatment. GEMMs can be bred in large numbers to fully represent

the genetic and molecular heterogeneity observed in PDAC patients, including examples of

advanced, highly aggressive, and metastatic tumors that are often not surgically resectable.

Furthermore, GEMMs have been shown to recapitulate the main feature of human PDAC, such

as the complexity of its microenvironment, while allowing the flexibility of controlling and

manipulating fundamental genes involved in PDAC [341, 342]. In this work, I exploit access

to the world’s largest cohort of 2D cell cultures derived from PDAC GEMMs. The cell cultures

were isolated from GEMMs harboring mutations in commonly observed oncogenes such as

KRAS, BRAF, MEK, and PIK3CA, often combined with loss-of-function alleles from known
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tumor suppressors such as TP53, CDKN2A, ARF, CDKN1B, or SMAD4. Such alterations

induce tumors that recapitulate the mutational landscape found in human PDAC tumors,

together with salient histopathological and evolutionary features [163, 342].

High-throughput screens offer a chance to systematically investigate drug response in

PDAC cell cultures and identify biomarkers of drug resistance or sensitivity (see chapter

2). Existing large scale screening efforts screened and characterized only a small number of

human pancreatic cancer cell lines, 48 and 40 by the Cancer Cell Line Encyclopedia [343] and

The Genomics of Drug Sensitivity in Cancer (GDSC) [247] respectively, limiting the potential

for the identification of robust biomarkers given the limited sample size and statistical

power. Moreover, the high passage number of these cultures, often lacking matched normal

samples, led to the accumulation of mutations that further confound biomarker-identification

approaches, despite the large molecular characterization undergone by these consortia.

Typical pharmacogenomic settings involve the prediction of drug response, quantified e.g.

via IC50 or AUC, from basal molecular features such as genomics (e.g. copy number variation

or point mutations) or transcriptomics. While different methods have been implemented to

tackle this prediction problem (see chapter 2 for an overview of available methods), it has

been observed that prediction performances tend to perform similarly independently of the

complexity of the ML techniques used [344, 345]. Recent efforts focused on the integration

of multiple omics layers for drug response prediction [346, 347] or the addition of a priori

knowledge [348] to improve predictions.

The latter has shown particularly meaningful results, not only in terms of increased

predictive performances but also in terms of enhanced interpretability of the trained models.

For instance, combinations of genomic data and chemical structures have shown promising

results in the identification of pathways involved in response to mTOR and CDK4/6 inhibitors

in breast cancer [349]. Manually annotated and validated gene sets, as the ones collected

in the Molecular Signature Database [350], can be a powerful source of a priori knowledge,

given the advantage they offer in supplying an intuitive and interpretable way to evaluate

biological activity and in shifting the focus from the role of single genes to the coordination

of multiple gene groups and, potentially, disease mechanisms [303]. Furthermore, the use of
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gene sets rather than single genes as input features tackles one of the main problems often

encountered in pharmacogenomic projects, namely the differences in complexity between

HTS results, often available in limited sample sizes, and heterogeneous and information-rich

sequencing data [351, 352]. Finally, gene sets can be easily integrated with RNA-seq data to

obtain sample-specific summaries of gene set activity in the cohort by using single-sample

gene set enrichment methods such as single-sample Gene Set Enrichment Analysis (ssGSEA)

[303, 353].

Network-based approaches have given further impulse to the use of gene sets and provided

a solid ground for the characterization of the relationship between drugs and diseases. For

instance, different network-based approaches have been implemented in the framework

of drug repurposing (see chapter 2), where supervised and unsupervised methods have

used networks to investigate target similarity between drugs initially developed for different

diseases [354, 355]. In addition, it has been demonstrated that network analyses can result in

the identification of clusters of genes associated with treatment outcomes, in particular when

information about the proximity of drug targets and disease-relevant subnetworks are taken

into account [356, 357]. Similar approaches can be implemented to select clusters of genes of

relevance for the drug of interest, thus performing a network-based feature selection step that

reduces the complexity of the system under analysis.

In parallel to these methodological advancements, in-depth analysis of existing drug

screening efforts, e.g., CCLE, GDSC mentioned above and the Cancer Therapeutics Response

Portal (CTRP) [358], and smaller-scale ex vivo functional drug testing efforts showed that

cell lines undergoing high-throughput drug screens tend to display comparable resistant

behaviors across different drugs [359, 360]. This phenomenon, which I will refer to as “General

Response across Drugs” (GRD, as in [359]), has been hypothesized to be related to multi-drug

resistance, typically observed in the clinical setting [360]. Multi-drug resistance occurs when

tumors display mechanisms of resistance that confer protection against compounds that are

structurally and functionally different. Multi-drug resistance has been traced back to different

causes, such as pathways rewiring and over-activation or inhibition of mechanisms inducing

apoptosis [361, 362]. GRD may play an important role in high-throughput drug screens and

59



5 A pharmacogenomics analysis for the identification of biomarkers of drug response in pancreatic

cancer

has been shown to confound the identification of biomarkers of drug response [359, 360].

In this chapter, I introduce an innovative pharmacogenomic pipeline for drug response pre-

diction and biomarker discovery in murine PDAC cell lines. We performed high-throughput

drug screens on 251 murine PDAC cell lines using an extensive drug library comprising 416

compounds ranging from chemotherapeutics to targeted therapies. Baseline transcriptional

profiles of the cell lines were measured via RNA-sequencing and used to find associations

between drug response and gene expression in order to uncover biomarkers of drug sensitiv-

ity or resistance. In order to do so, the pipeline builds on in-house generated data, namely

RNA-seq and drug response data, and publicly available information such as protein-protein

interaction (PPI) networks and manually annotated gene sets related to cellular processes,

signaling pathways, and regulatory mechanisms (Figure 5.1.a). I exploit the gene sets to drive

an a priori feature selection step implemented via a network-based approach, thus overcoming

the limitations imposed by typical techniques used in this framework, e.g., the instability of

feature selection in elastic-net and lasso regression (Figure 5.1.b). In parallel to the feature

selection step, I investigate the HTS results data to calculate estimates of general mechanisms

of resistance (i.e., GRD) (Figure 5.1.c). Finally, I calculate the single sample enrichment scores

for the selected gene sets and use them, together with the GRD estimates, as covariates in the

pharmacogenomic model to predict drug response values (Figure 5.1.d). To my knowledge,

this is the first example where information from the drug space, i.e., estimation of GRD, and

expression space, i.e., a combination of RNA-seq data and gene sets, are unified in a unique

pipeline. Combination of the a priori feature selection step and GRD estimate results in models

that help identify biomarkers of drug sensitivity and resistance that can be experimentally

validated (Figure 5.1.e).
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Figure 5.1: Schematic overview of the pharmacogenomics analysis designed in this chapter. a) The pipeline
uses both in-house generated data, i.e., gene expression data and drug response values, and publicly
available information, i.e., PPI networks and curated gene sets, as inputs. b) A network-based feature
selection step is introduced to reduce the dimensionality and complexity of the analysis. c) General
Response across Drugs (GRD) is taken into account as a potential confounding source to control for
hypersensitive cell lines responding to all drugs. d) Training of penalized linear regression models to
associate selected features with drug response values. e) Interpretation and validation of predictive
features lead to the identification of potential mechanistic biomarkers or pathways linked to drug
response or resistance.

5.3 Material and methods

5.3.1 Primary PDAC cell cultures

Primary low-passaged 2D mPDAC cell cultures were isolated from a large cohort of genetically

engineered PDAC mouse models, with various different genotypes [363, 364, 365, 366, 342].

Endogenous tumors are initiated by various oncogenic drivers, such as KRASG12D, BRAFV600E,

MEK1S218D/S222D, and PIK3CAH1047R combined with loss and gain of function alleles for >30

genes and gene combinations, which recapitulate the spectrum of genetic alterations in human

PDAC, such as TP53, CDKN2A, INK4a, ARF, SMAD4, TGFBR2. All samples were in culture

for <30 passages, genotyped and quality tested for Mycoplasma contaminations, as described

in [168].

5.3.2 Automated high-throughput drug screening

Automated drug screening of the 2D cell cultures was performed as described in [367]. In

particular, tumor cells were seeded in 96-well plates (750/2000 cells/well) using a Multidrop™
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Combi Reagent Dispenser (Thermo Fisher Scientific). After overnight incubation, the drugs

were added to the cells using a CyBio® FeliX pipetting platform (Analytik Jena, Jena, Ger-

many). The drug library consisted of 416 drugs, all obtained from SelleckChem targeting a

variety of cancer-relevant pathways in clinical and preclinical development. Cells were treated

at 7 different concentrations defined via serial dilutions (3x), with minimum and maximum

concentration values set at 10 nm and 10 µM respectively. Cell viability was measured with

CellTiter-Glo® Luminescent Cell Viability Assay after 72 hours of treatment. Dose-response

curves and traditional measures of drug sensitivity, i.e., half-maximal effective concentration

(EC50), efficacy (Emax), area under the curve (AUC), and half-maximal inhibitory concentra-

tion (IC50), were generated with the GRmetrics R package (version 1.12.2) [368, 369]. Every

cell line was treated in 2 replicates to obtain reliable metrics of drug response.

5.3.3 Gene expression profiling and pathway data

RNA isolation was performed as described in [168]. RNA-seq library preparation and

sequencing were done as described in [163]. RNA sequencing data were normalized and

log-stabilized with the DESeq2 R package (version 1.26.0). Single-sample gene set enrichment

analysis (ssGSEA) [370] was performed with the GSVA R package (version 1.34.0) [303] using

standard parameters on the normalized gene expression data to obtain sample-specific scores

of the pathways of interest. The PID pathways [371] and 50 cancer hallmark gene sets with

mouse genome annotation were downloaded via the msigdbr R package (version 7.4.1)[372].

5.3.4 Quantification of drug target-pathway proximity

A network-based feature selection approach was implemented prior to the model calibration

step to identify pathways potentially related to the targets of the monotherapy, following the

procedure presented in [348]. Drug target-pathway associations were assessed on the shortest

distance between genes in the gene sets/pathways and drug targets within a protein-protein

interaction network. More specifically, distances were defined as the average of the shortest

paths d(g,t) between genes t annotated as drug targets Gt and genes g in the gene set Gs, as

described in [348]:
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dc =
1

|GT | ∑tϵGt
mingϵGs d(g, t) (1)

Significance of the gene-target distance d(s,t) was assessed via 10,000 bootstrapping itera-

tions of random genes, selected by maintaining the degree of the original drug target and

gene-set genes. Such a procedure resulted in a control distribution that was used to calculate

z-scores of the resulting distances calculated as in equation 4. Gene sets resulting in z-scores

lower than -1.286 (i.e. alpha = 0.9) were considered as proximal to the drug targets. Such

procedure was based on the implementation at: https://github.com/emreg00/toolbox. The

protein-protein interaction network used for the proximity search was downloaded from

STRING (version 11) [373], while the drug targets were downloaded from DrugBank or

Proteome DB (downloaded on 17.01.2022) [374, 375].

5.3.5 General Response across Drugs (GRD)

Patterns of resistance across multiple drugs have been previously identified in high-throughput

drug screening efforts (see Introduction). It has been shown that it is possible to estimate

them via the analysis of the drug screening space, to obtain sample specific estimates that

can be included as covariates in pharmacogenomic models. In this work, I referred to them

as General Response across Drugs (GRD, as done in [359]) and estimated them similarly to

what was done in [360]. For each drug, I selected a set of unrelated drugs by applying the

following two selection steps. First, I selected all the drugs not sharing the same targets as

the drug of interest. Targets annotated by the drug producing company were used in this

step. Second, I calculated Pearson correlation coefficients between the Area Under the Curve

(AUC) values of the drugs selected in the first step and the ones of the drug of interest. I

ranked the correlation coefficients and removed the 10 drugs with the highest correlation.

The resulting drugs are seen as “negative-control” and used to calculate GRD without the

risk of taking into account any signal specific to the drug of interest [360]. I estimated the

GRD via principal component analysis as implemented in the prcomp built-in R function and

selected the first 5 principal components as similarly done in the original publication. These

were then included as covariates in the penalized linear regression model.
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5.3.6 Penalized linear regression

Penalized linear models were calibrated on PID pathway enrichment scores to predict drug

response values, here represented by the Area Under the Curve (AUC). Each drug was

predicted separately, including the first 5 components from the GRD estimation as covariates,

as done in [359, 360]. Thus, the resulting models had the following form for each compound

c:

AUCc = ∑5
i=1 GRDi + ∑gϵGs

βgxg (2)

Model coefficients were penalized with ridge regularization, to constrain model weights

and avoid overfitting [376] while minimizing the following penalized sum of squares:

∑n
i=1(yi − ∑

p
j=1 xijβ j)

2 + λ(∑
p
j=1 β2

j ) (3)

All the models were implemented with the glmnet R package (version 4.1-2) with mixing

parameter alpha = 0 to force l2 regularization [377]. For each drug, the full cohort was split

before the training step, with 90% of the samples being allocated for model calibration and 10%

as an external validation set. Calibration and optimization of the lambda parameter, defining

the constraints on the model weights, were achieved through 5-fold cross-validation on the

training samples. The whole process was repeated 1000 times to assess model transferability

and to obtain robust estimations and resulted in 1000 different models for each drug in

the library. For each iteration, I calculated the Pearson correlation between predicted and

observed AUC values in the external validation set and defined the model performance as the

median coefficient across the 100 iterations. I considered drug-specific models to be predictive

if i) the resulting Pearson correlation coefficient was above 0.3 and ii) their performance was

consistently better than models built after randomization of the response variable.

Finally, I compared the performance of these models to baseline ones trained on the gene

expression data alone and on the pathway enrichment scores without the addition of the

GRD covariates.
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5.3.7 Whole-genome CRISPR–Cas9 screens

The whole-genome CRISPR–Cas9 screen was performed as described in [168]. In short, the

screen was performed in the clonal 9091 Cas9-expressing cell line, using the genome-wide

Brie library (pLenti-guide puro). The cells were infected with pLenti Cas9-2A-BSD (Addgene)

and selected with BlasticidinS (Invivogen; 10 µg ml1). After dilution and testing for Cas9

expression, cells were treated with different doses of trametinib (from 1.25to 20 nM, 2x

dilutions) the cell lines were assessed for cell proliferation and ERK1/2 phosphorylation

at the indicated doses of trametinib. Thereby, we identified a concentration of 5 nM tram-

etinib as the optimal concentration to perform the CRISPR/Cas9 negative selection screen.

Cas9-expressing cells were transduced with the Brie whole-genome library and selected in

puromycin-containing media (by Sigma-Aldrich). After puromycin withdrawal, the cells were

left to recover and subsequently treated with either DMSO (control arm of the screen) or

5 nM trametinib (experimental arm). The cells were treated for two weeks and passaged

every 4 days. On the final day, genomic DNA was extracted after harvesting of the cells using

the DNeasy Blood Tissue kit or the Blood Cell Culture DNA Maxi Kit (according to the

manufacturer’s instructions).

Downstream analysis was performed with MAGeCK (version 0.5.9.4) [378]. Specifically,

reads were aligned using sgRNA sequences as references and counted. β-scores were

estimated for each gene via maximum likelihood estimation. β-scores represent enrichment

(β-score > 0) or depletion (β-score <0) of the sgRNAs with respect to their initial abundance.

Scores falling 2 standard deviations away from the mean of the overall distribution were

considered to be related to genes conferring resistance to Trametinib.

5.4 Results and discussion

5.4.1 Gene expression reveals significant heterogeneity in transcriptional states of

mPDAC 2D cell cultures

Pancreatic cancer is an extremely heterogeneous disease, presenting a variety of phenotypes

that may impact clinical decisions. Transcriptional profiling has proven to be an important tool

65



5 A pharmacogenomics analysis for the identification of biomarkers of drug response in pancreatic

cancer

to study tumor heterogeneity and has been often implemented as the main molecular layer for

tumor subtyping approaches (see Chapter 2). Here, I exploited baseline RNA-sequencing data

derived from 251 primary low-passaged murine PDAC 2D cell cultures harboring activating

mutations in multiple oncogenic drivers (i.e. Kras, Braf, or Pi3k) in combination with different

tumor suppressors (Figure 5.2.a) to identify signatures and signaling pathways enriched in

PDAC subtypes.

Dimensionality reduction techniques such as Principal Component Analysis (Figure 5.2.b)

show the presence of a gradient along with the first principal component, explaining more

than 20% of the total variance, which can be linked to the differences between epithelial and

mesenchymal subtypes. This confirms the existence of a continuum of transcriptional states

that cover the different PDAC subtypes while highlighting the limitations in defining discrete

tumor groups [379].

I further characterized the cohort by performing single-sample Gene Set Enrichment

Analysis (ssGSEA) [370] using the 50 cancer hallmark gene sets from the MsigDB [380]

(Figure 5.2.c). Differences in epithelial and mesenchymal phenotypes appear to be associated

with clear discrepancies in enriched pathways. In particular, while mesenchymal cells show

higher enrichment scores for pathways related to inflammation and epithelial to mesenchymal

transition, epithelial cell lines are more metabolically active. Interestingly, a small cluster of

epithelial cells shows high enrichment of pathways related to enhanced transcription, such as

the MYC-related ones. Finally, it is possible to observe that the main oncogene drivers dictate

the transcriptional states of the cell lines, with the clearest distinction being between the PI3K-

and the KRAS-driven tumors thus emphasizing the role of these two interconnected signaling

cascades.

66



5 A pharmacogenomics analysis for the identification of biomarkers of drug response in pancreatic

cancer

Figure 5.2: Overview of the screened murine cell cultures and exploratory analysis of the related transcriptional
profiles. a) Circular plot showing the overall distribution of genetic background of the genetically
engineered mouse models that originated the screened PDAC cell lines. b) Principal Component
Analysis (PCA) of the 251 baseline RNA-seq profiles of the cohort in analysis. c) Heatmap of the
enrichment scores from the 50 Hallmarks of cancer gene sets, annotated with main oncogenic and
morphology of the cell lines.

5.4.2 HTSs highlight variability in levels of drug sensitivity

The genetic and phenotypic heterogeneity of PDAC tumors results in a high degree of

variability in response to therapy, with patients presenting highly aggressive tumors often

not responding to therapeutic interventions. We performed high throughput drug screening

on murine PDAC cell cultures to assess drug sensitivity across the full spectrum of PDAC

heterogeneity. We used an extensive library of 416 compounds, consisting of drugs approved

for clinical use (31%), in clinical trials (29%), or in pre-clinical development (40%), and

targeting key pathways and molecular mechanisms altered in cancer (Figure 5.3.a). We

observed high variability of drug sensitivity values across the cohort, confirming the high

heterogeneity in drug response that characterizes pancreatic cancer (Figure 5.3.b). In order
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to carry out the analysis and filter out not informative results (e.g., general cytotoxic or

not-effective drugs), I selected the top 102 drugs that presented a median AUC between 0.2

and 0.8 (Figure 5.3.c bottom) and a median absolute deviation higher 0.05 (Figure 5.3.c top).

For each of the selected drugs, I calculated their mean response across cell lines (MRC) and

analyzed whether drugs targeting similar pathways had similar AUC values (Figure 5.3.d).

Similarly, I calculated for each cell line its median response across drugs (a proxy for the

GRD), to quantify whether I could observe a similar response across all drugs for different

groups of samples. A small group tended to respond relatively poorly to the filtered drugs

(red, top part of Figure 5.3.d). Similar observations have already been made in previous works

[359, 360], and motivate the need to take into account this phenomenon in any downstream

modeling step.

AUC values were, in general, positively correlated across the selected drugs (Figure 5.3.e),

with 84% of Spearman’s rank correlation values being positive, showing that the screened

cell lines had comparable responses to treatment, independently of the different modes of

actions of the drugs in the library and backing the notion that GRD plays a role in high-

throughput screens. Valuable insights from further analysis of drug-drug correlations can

be extracted by focusing on, e.g., negative correlation values. For example, a group of drugs

targeting epigenetic mechanisms or kinases shows the highest anticorrelation with agents

targeting metabolic or ubiquitin-related pathways (Figure 5.3.e, bottom right in the red

square). Interestingly, these are the same drugs whose AUCs show statistically significant

differences when compared between epithelial and mesenchymal cell lines (adjusted P-values

calculated via ANOVA testing, effect scores are differences in mean AUCs between subtypes).

This comparison highlights already known associations, such as the high effectiveness of

HDAC inhibitors in mesenchymal cell lines (Figure 5.3.f, left) [381] or the relevance of MEK

inhibitors in the epithelial subtypes (Figure 5.3.f, right). These discoveries offer a possible

way to stratify patients better towards different treatment strategies based on the relevant

PDAC subtype.
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Figure 5.3: Figure caption in the following page
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Figure 5.3: Exploratory analysis of the drug space. a) Overview of the drug compound library used for the
screens. b) Transformed AUC values for all the drugs in the library across the full cell line cohort.
c) Overview of two descriptive statistics, median and median absolute deviation (mad), of the drug
response distribution across the whole cohort. The red lines define the cut-offs used to select the 102
drugs of interest for further downstream processing. Drugs showing mad values lower than 0.5 (top)
and median outside of the 0.2-0.8 range (bottom) were excluded. d) Transformed AUC values for the
selected drugs across the full cohort. Pathways, AUC distributions, and median response across cell
lines (MRC) are used to annotate the different drugs (columns). Morphology and median response
across drugs (taken as a proxy for GRD) are used to annotate the cell lines (rows). e) Correlation
matrix of the 102 selected drugs. Colors represent the Spearman’s rank correlation coefficient, ranging
from 0.5 (purple) to 1 (green). Rows and columns are annotated with the pathways targeted by the
drugs taken into account. A specific group of agents showing interesting negative correlation values is
highlighted with a red square. f) Volcano plot on the results of two-way ANOVA test comparing AUC
values between epithelial and mesenchymal cell lines, with the x-axis representing the differences in
AUCs and the y-axis representing the adjusted p-value. Each dot represents one of the drugs showing
negative correlation values and highlighted in panel e. The epithelial morphology was chosen as
reference. The color legend is at the bottom.

5.4.3 The addition of a priori knowledge and GRD improves predictive

performances and interpretability of pharmacogenomic models

High-throughput drug screens allow for the systematic analysis of the therapeutic effects of a

vast number of compounds across many samples, in particular when drug response data are

integrated with extensive molecular characterization of the screened cohorts. Computational

algorithms have the potential to disentangle the complexity of pharmacogenomics interactions

to predict drug response and identify potential biomarkers of sensitivity or resistance [196].

The limited success of computational approaches to identify robust biomarkers of drug

response can be linked to the heterogeneity and high collinearity of the molecular features,

e.g. RNA-seq data, often used as inputs of these pharmacogenomic models, and to the

complex and non-linear relationship between omics layers and drug response [348]. Moreover,

advanced computational models often lack interpretability, i.e., it is not always possible to

understand how and why they reached a solution [382], limiting the possibility of investigating

the molecular mechanisms driving drug sensitivity or resistance. Here, I introduce a two-step

pipeline designed to overcome these limitations.

First, I implemented a network-based feature selection approach. This class of methods

has been shown to significantly improve drug response prediction [356, 357] while offering

the chance to use a priori knowledge in the shape of validated gene sets and known protein-
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protein interactions to overcome the instability of feature selection approaches such as elastic

net or LASSO, typically used in pharmacogenomics pipelines. This feature selection method

is based on the identification of potential biological pathways that can be associated with

drug response and is subsequently used as input features for the prediction of drug response

values.

In the second step, variability in general drug response (GRD) is taken into account. GRD

has been shown to confound the identification of robust biomarkers and to be an important

covariate in the modeling of drug response values [359, 360]. I calculated GRD levels for each

drug as described in the Materials and methods section and added them as covariates in the

prediction model.

I used ridge regression to associate drug response values to the enrichment scores of the

selected pathways, in order to regularize the model coefficients and decrease the chances

of overfitting. The use of the selected pathways as inputs for the model drastically reduces

the size of the input space, while increasing the possibility of obtaining more stable and

reproducible models than those typically built using LASSO or elastic net regression using

the expression of single genes as features [383]. RNA-seq-based expression profiles of the

251 murine PDAC 2D cell cultures were transformed into pathway enrichment scores via

single-sample enrichment analysis. I used the Pathway Interaction Database (PID) to extract

gene sets of interest [371]. It contains 196 manually curated gene sets collecting genes part of

key cellular processes, molecular signaling pathways, and regulatory structures. For each

drug, I calculated the pathways considered as proximal to its target(s) and used them as

inputs to train the ML model together with the GRD estimation via 5-fold cross-validation to

predict AUC values. I compared the results of these models to three baseline ones, respectively

obtained by calibrating elastic net linear models on gene expression data, alone and with

the addition of the estimated GRD, and on ridge regression models calibrated on proximal

pathways without the addition of GRD. The addition of GRD has a clear effect on model

performances, both in models using gene expression data and pathway enrichment scores,

reinforcing the hypothesis that GRD is a useful confounder to take into account in this

framework (Figure 5.4.a). A comparison of the performances of models built on single gene
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expression and on pathway enrichment scores shows that the performances of models built

on different input features may vary based on the drug of interest (Figure 5.4.b). While I

am focusing on the pathway-based models for the remainder of this chapter, further work is

needed to understand which factors drive better predictive performance based on different

inputs and whether there is a biological reason, e.g., the mode of action of the compound,

behind it. Moreover, similar works comparing performances of gene-based and pathway-

based models showed that the first ones tend to perform better than the others on the training

dataset but lose predictive performance on independent datasets [384].

Figure 5.4: Comparison of the performances of the different classes of calibrated models. a) Distribution of the
Pearson’s correlation values for the different models calibrated in this step of the analysis, i.e., elastic
net models based on gene expression alone, with (blue) and without (orange) the addition of GRD
control, and ridge regression models calibrated on pathway enrichment scores, with (yellow) and
without (green) the addition of GRD control. Each dot represents the performance of a model built on
one of the 102 drugs of interest. Higher correlation values correspond to better predictive performance.
b) Comparison of the performances of two classes of models resulting from the addition of GRD
estimates, i.e., gene expression-based models (blue) and pathway-based ones (yellow). Pearson’s
correlation values, used as estimates of model performance, are on the x-axis while the 102 drugs
under analysis are represented on the y-axis.

5.4.4 Computational models identify important biomarkers of drug response

The approach described earlier resulted in 102 models that can be further investigated to

analyze whether they are able to capture mechanisms of drug response and how to use these

to derive biomarkers of sensitivity or resistance. I showcase how to do so by illustrating an
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example based on the pathway-based model trained to predict response to Trametinib, a

highly selective MEK inhibitor found to be a valid anchor for combination therapies in one of

our previous works [168]. In principle, the same analysis can be applied to the remaining

models and will be part of a follow-up publication.

Robust and hence informative models can be identified by comparing their predictive

performance with models calibrated on the same set of input features but randomized drug

response values. This approach is designed to identify models that capture meaningful

relationships between inputs and outputs, as opposed to models that capture random noise or

non-informative signals. To do so, I compare the true distribution of Pearson correlation values

to a background distribution of Pearson correlation values from 1,000 random models, see

Materials and methods section. For Trametinib, this procedure results in the two distributions

depicted in Figure 5.5.a. The difference between the means of the distributions, equal to

0.554, and the p-values resulting from a t-test, equal to 3.2e-145, hint that the model is able

to capture informative associations between pathway enrichment scores and response to

Trametinib.

Furthermore, investigation of the most predictive features, identified by their coefficients in

the model (Figure 5.5.b), can be useful to pinpoint pathways that were found to be positively

or negatively associated with drug response. In this framework, positive associations point

to the fact that increasing pathway enrichment scores correspond to an increment in AUC

values, i.e., to higher resistance. For example, the response of the screened cell cultures to

Trametinib showed a strong positive association with KIT-, ERBB1-, ERBB3-, and MYC-related

pathways, suggesting that an increase in the activity of these pathways might confer MEKi

resistance to tumor cells (Figure 5.5.c), and targeting these pathways might sensitize them

towards Trametinib. On the other hand, negative association values correspond to inverse

relationships between pathway enrichment scores and drug response values, as in the case of

the RAS signaling, for which decreased enrichment scores, i.e., lower evidence of pathway

activity, is associated with higher resistance to Trametinib, a compound specifically targeting

Ras downstream signaling and MEK-EKR signaling (see Chapter 1).

These dependencies were validated via a pooled genome-wide CRISPR/Cas9-based nega-
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tive selection (viability) screen, where PDAC cell lines were screened upon or in absence of

Trametinib treatment (Figure 5.5.d), similarly to what was done in [168]. Inferred β-scores,

see Materials and methods section for more details, were used to investigate which genes

influenced the response to the administered treatment. We focused on genes presenting

higher β-scores in the control arm when compared to treatment one, to identify enhanced

depletion upon treatment (Figure 5.5.e). The screen allowed us to functionally validate the

role of pathways such as ERBB and KIT in driving response to MEK inhibitors (Figure 5.5.f).

74



5 A pharmacogenomics analysis for the identification of biomarkers of drug response in pancreatic

cancer

Figure 5.5: Figure caption in the following page
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Figure 5.5: Analysis and validation of the model calibrated to predict response to Trametinib treatment. a)
Comparison of the distributions of the Pearson correlation values, used as model performance metric,
resulting from training a ridge regression model 1000 times to predict observed (violet, right) and
randomized (grey, left) AUC values calculated upon Trametinib treatment. P-value, as calculated
via a t-test, and difference in means of the distributions hint that the trained model was able to
capture potentially informative relationships between inputs and outputs and not pure noise. b)
Visualization of the model coefficients for the pathways associated with drug response. The top
10 positively (blue) and top 10 negatively (red) associated pathways are shown. c) Visualization of
the single-sample enrichment (ssGSEA) scores for the pathways found to be positively correlated
with Trametinib response, stratified by AUC values. d) Design of the whole-genome CRISPR-Cas9
experiment, as presented in [168]. PDAC cell lines were transfected with Cas9 expressing lentivirus
and treated in two treatment arms to identify gene dropouts selective to Trametinib treatment. e)
Network-based visualization of the genes associated with Trametinib response. Nodes are colored by
differences in beta scores between treatment and control arm. Negative differences point to increased
depletion upon treatment. f) Ranking of the pathways involved with the development of resistance to
Trametinib, resulting from the enrichment of the genes shown in panel e.

5.5 Conclusion

In this chapter, I presented the results of a pharmacogenomics analysis performed on a large

yet unpublished murine PDAC 2D cell culture cohort. 251 2D murine PDAC cell cultures have

been screened with 416 different compounds in a high-throughput fashion and sequenced

to collect their baseline expression profiles. I highlight how the analysis of drug response

alone can help the stratification of tumor cells towards specific classes of inhibitors. Moreover,

I show how the implementation of a pharmacogenomic pipeline associating drug response

to RNA-seq data can uncover meaningful mechanisms of drug response and resistance and

point at potential biomarkers. I do so by integrating a priori knowledge in the form of gene

sets and by applying a network-based feature selection method. Finally, I demonstrate that

the inclusion of covariates related to the general response of a drug across the screened cohort

drastically improves the predictive performance of the pharmacogenomic model and allows

the identification of pathways associated with drug response and resistance that have been

successfully validated in independent in vitro functional screens.

While this chapter focused on one drug only, the MEKi Trametinib, this analysis lays the

ground for the systematic investigation of multiple pathways of drug resistance and can be

used as starting point for the design of new, effective, and personalized combination therapies

[272, 385]. To achieve this, a few more steps are required in the future. First, the addition

of an independent dataset is going to be important to test the results shown in this work
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and to check whether pathway-based models are indeed able to capture the biology of drug

response better than gene-based ones, as stated in [384, 383]. Moreover, the results must

be validated in existing human pharmacogenomic datasets in order to identify associations

with the potential of being translated. We are currently in the process of generating such a

resource, which will appear in the related publication. Second, in vitro models are not able to

recapitulate in vivo drug action and efficacy. For example, the use of 2D cell cultures does not

take into account the effect of the tumor-microenvironment on drug response. More accurate

estimations of drug response could be achieved by perturbing 3D organoid or organ-on-a-chip

cultures [253, 254], or by using system modeling approaches to model in silico tumor cells

and their response to drug perturbations [386, 387]. Third, the presented pipeline suffers

from limitations given by the chosen feature selection method, which biases the analysis

towards known drug targets and ignores potential unknown off-target effects that could

explain drug response. In addition, the hard thresholds identified here (i.e., the removal of

the 10 drugs with the highest correlation and the selection of the first 5 principal components

to include in the model, see Materials and methods) are not optimal and will need to be

defined appropriately and separately for each compound in future iterations of this work.

Finally, while the use of transcriptional data has been shown to be beneficial in these types

of applications, the addition of multiple molecular layers of characterization may offer the

chance to identify biological mechanisms driving resistance or sensitivity not necessarily

captured in transcriptional changes across the cohort. Furthermore, the availability of multiple

omics layers would pave the way for the use of advanced modeling techniques that would offer

the chance to move past the simple associations built in this chapter and better approximate

the real relationship between molecular processes and drug response. For example, the

integration of proteomic and genomic data with transcriptional profiles, as done in [388], has

the potential to offer new insights into the mechanisms of drug response and mode of action

of different drugs.
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6.0.1 Declaration of contributions

This chapter is a personal take on the main topics discussed in this thesis and possible future

developments in computational biology and medicine.

In the past decade, advancements in computational biology, machine learning, and artificial

intelligence have been the catalysts for the beginning of a new age of discoveries in medicine

and biology. This has been possible thanks to the development of new technologies that

allowed the generation of large collections of data with different modalities, e.g. imaging or

sequencing technologies, at different resolution scales, e.g., at the bulk or single-cell level,

often in a high-throughput fashion and at a constantly decreasing price [389].

Precision medicine is one of the fields that are expected to benefit the most from this

transformation, given the possibility of using large datasets to find patterns and similarities

across different molecular layers to better drive diagnosis, prognosis, and clinical interventions.

The benefits of computational techniques have already been established at the level of basic

and translational research, where they have become an integral part of the scientific endeavor

and contributed to important discoveries.

The aim of this thesis was to investigate applications of machine learning and computational

biology to analyze large datasets, with the goal of elucidating mechanisms that play a role in

cancer biology. In Chapter 3, I showed how to investigate post-transcriptional regulation at the

patient-specific level, with a particular focus on small RNAs such as miRNAs and lncRNAs.

I used publicly available human datasets and created a framework for the application

of the newly introduced method, spongEffects, to better stratify incoming patients and
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identify meaningful prognostic biomarkers or therapeutic targets. In Chapter 4, I presented

the implementation of a pharmacogenomics pipeline, designed to associate drug response

values generated via high-throughput drug screens to the transcriptional profiles of 251

murine pancreatic cancer cell lines. This is the biggest available pancreatic cancer cohort

and lays the ground for the characterization of this extremely aggressive and heterogeneous

disease. I showed how the integration of a priori knowledge combined with the estimation

of confounding factors related to the general effects of the drugs on the screened samples

results in highly predictive models and the identification of meaningful biomarkers of drug

sensitivity. While both projects are not strictly related to the clinical setting and need further

experimental validation, they resulted in the generation of a significant amount of results that

can be exploited for patient stratification and the prioritization of biomarkers, thus paving

the way towards new precision medicine approaches.

These projects are part of a more general process that is becoming more and more integrated

into the way research is performed. While the possibility of measuring thousands of variables,

e.g., genes, loci, or genomic regions, with new sequencing technologies has been the main

driver of the first large consortia and sequencing efforts such as the ones mentioned in this

thesis (e.g., TCGA, CCLE or GDSC), the appearance of single-cell technologies offered a way

to increase the resolution by collecting thousands of measurement for hundreds of thousands

of observations, i.e. cells, and created an ideal ground for the application of ML and AI

technologies in biomedicine [390]. The appearance of the first organ-wide atlases (see for

example, [391]) collecting hundreds of thousands of cells from different organs in health and

disease are going to be the pivot point for these applications and hold the promise to lead to

important discoveries with high translational potential.

The use of AI-based techniques as tools in biomedical research presents different prob-

lems than the ones typically associated with the use of these technologies, e.g., fairness or

transparency (see Chapter 2 for an overview). Indeed, the applications require predictive

performance to be associated with the ability to capture biological phenomena that must be

testable and falsifiable. Biological systems are extremely complex and heterogeneous, where

observable outputs, i.e. measurable and observable phenotypes, are the results of different
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internal processes happening a different scales (e.g., nucleotides form DNA sequences, linear

sequences encode 3D proteins, proteins create signaling pathways, etc.). Models, by definition

and independently of their nature (i.e., mechanistic or data-driven [382]), can only represent

part of this complexity. Recent works suggested the importance of adding prior knowledge

and leveraging understanding of the biological processes under analysis when designing

and developing new tools [392, 393, 394, 395, 396]. While this idea is mainly applied to

advanced machine learning techniques such as deep neural networks, it can be exploited

for more basic approaches to gain useful insights, as shown in this work. While not trivial,

successfully embedding prior knowledge in computational models will have two advantages,

far more important and impactful, from my point of view, than a mere increase in predictive

performances: i) increase generalization capabilities of the trained models by introducing

inductive biases [392], ii) increased model interpretability. I see these developments as pivotal

steps toward the possibility for computational methods to reach their full potential and drive

a new era of scientific discoveries.
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