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Abstract

Appropriately modeling multivariate data is an important and present topic in statistics.
Bayesian Networks, following Pearl (1988), have become a useful and intuitive tool to chal-
lenge this task. A common approach is to model each conditional density as a conditional
normal density receiving a Linear Gaussian Bayesian Network (Koller and Friedman,
2009), which then represents a multivariate Gaussian distribution. This automatically
results in disadvantages if the underlying data is not jointly normally distributed.

In this thesis we will present a solution approach to this shortfall where we will model
the conditional density of each node as a D-vine on the set of its parents following the
work of Kraus and Czado (2017). We illustrate this approach with the biological data set
from Sachs et al. (2005) describing different levels of phosphoproteins and phospholipids in
individual cells. We allow for different marginals and copulas while modeling and compare
the results to a Linear Gaussian Bayesian Network. We compare the models using different
goodness of fit measures and their ability to recreate the original data. Further, we analyze
how the conditional density of each node, given its parents, behaves when conditioning
on specific values.
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Chapter 1

Introduction

These days the computational power is continuously growing, without any signs that
this trend might stop in the near future. Despite this development, the at least equally
strong growing availability of data has made it more and more necessary to create a
balance between the complexity of the models and their calculation time. This is even
more important if not only the number of samples but also the amount of covariates
grows.

One approach to fit models is the use of copulas based on Sklar’s theorem (Sklar, 1959)
providing the advantage to model the dependence structure and the margins independent
of each other. Resulting in one, depending on the amount of covariates, high dimensional
copula modeling the whole dependence structure. Instead Joe (1996) proposed a decom-
position into two-dimensional building blocks further developed by Bedford and Cooke
(2002). Therefore, increasing the number of covariates does not result in an increased di-
mension but an excessive increase in building blocks restricting the usability at a certain
size.

To overcome this we will utilize a Bayesian Network following Koller and Friedman (2009),
dividing the problem of fitting a model to a full data set into a set of problems on smaller
data sets. Each of these smaller problems is then tackled following the idea of Kraus and
Czado (2017) by performing a D-vine regression.

In the following we will first introduce the necessary theoretical background and later
apply the approach to the data set discussed in Sachs et al. (2005) and compare the
results to a Linear Gaussian Bayesian Network as defined by Koller and Friedman (2009).
As we will find indications that the data might not be identical distributed throughout
the whole set, we will repeat our approach only considering parts of the data. We then
conclude the thesis stating the main results of the analysis.
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Chapter 2

Theoretical Background

In this chapter we will, if not cited otherwise, closely follow the book "Analysing Depen-
dent Data with Vine Copulas" by Czado (2019).

2.1 Introduction to Copulas

2.1.1 General Notation

As we will have to deal a lot with distributions and densities in the following, it is im-
portant to fix the notation first. From now on we will denote densities with f and the
corresponding distribution function with F . If we look at random variables, we will always
denote them with capital letters and their outcome with small letters, i.e., X = x. More
often we will have to deal with several variables at once. In this case we will consider them
as a vector.

Definition 1. Let X1, ..., Xd be d random variables where each Xi follows some distribu-
tion. Then, we can arrange them in a vector X = (X1, ..., Xd)

> and assign the following
properties to them

• Joint density f(x) = f(x1, ..., xd): The density of all elements in X together

• Marginal density fj(xj): The density of the j-th element of the vector for
j ∈ {1, ..., d}

• Conditional density fj|k(xj|xk): The density of the j-th element of the vector given
the k-th element of the vector for all j 6= k

2



2.1. INTRODUCTION TO COPULAS 3

For all three properties there also exists the corresponding distribution function denoted
by F (x), Fj(xj) and Fj|k(xj|xk).

One distribution which we will often need in the following is the the normal or Gaussian
distribution. It is the probably most used continuous distribution.

Example 1. Given a vector X = (X1, ..., Xd)
> where each Xi, i ∈ {1, ..., d}, follows a

Gaussian distribution with parameter µi and variance σ2
i . We write Xi ∼ N(µi, σ

2
i ). Hence

the density of Xi is given by

f(xi;µi, σ
2
i ) =

1√
2πσ2

i

exp

{
− 1

2σ2
i

(xi − µi)2

}
(2.1)

In that case X is also normally distributed and we write X ∼ Nd(µ,Σ) with
µ = (µ1, ..., µd)

> and Σ = (σij)i,j∈[1,d] ∈ Rd×d. Its density function is then given by

f(x;µ,Σ) =
1

(2π)
d
2

|Σ|−
1
2 exp

{
−1

2
(x− µ)>Σ−1 (x− µ)

}
Following the first part of the example the marginal distribution of each Xi is N(µi, σi).

In practice we often only have some multivariate dimensional data X but do not know
which kind of distribution the data follows. Therefore, there are two questions arising:

• What is the marginal distribution of each Xi?

• How do the Xi interfere with each other?

The copula approach tries to separate these problems and tackle them one after the other.
First, we have to find suitable margins which we then use to transform the data to a space
where we can use copulas to model dependencies.

2.1.2 Marginal Distributions and the Probability Integral Trans-

form

The easiest way to find a marginal distribution for an arbitrary data set would be to use
empirical distribution functions.

Definition 2. (Empirical distribution function) Let xi = (x1i, ..., xdi) be an independent
and identical distributed sample of size n from the d-dimensional distribution F . The
multivariate empirical distribution function is defined as

F̂ (x1, ..., xd) :=
n∑
i=1

1x1i≤x1,...,xdi≤xd

for all x := (x1, ..., xd)
> ∈ Rd. This also holds for the simple case where d = 1.
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Figure 2.1: Histograms and densities of a normal distribution and two normal mixtures.
Left: normal distribution with µ = 2 and σ = 1. Middle: Two component Gaussian mixture
model with µ1 = 1, µ2 = 3, σ1 = 0.5, σ2 = 1 and w1 = 0.4, w2 = 0.6. Right: Three com-
ponent Gaussian mixture model with µ1 = 1, µ2 = 2, µ3 = 3, σ1 = 0.5, σ2 = 0.2, σ3 = 1

and w1 = 0.25, w2 = 0.3, w3 = 0.45

A disadvantage of the empirical distribution function is that it is not possible to calculate
a measure for the goodness of fit, like the later explained likelihood, for it. Hence, it cannot
be used when we compare different models. Therefore, we have to find other solutions.

In our case one approach will be the use of mixtures of normal distributions. In Example
1 we have already seen the normal distribution. However in practice data does not always
follow this rather strict shape. Therefore, to be able to model more general kinds of data
we define a mixture of several normal distributions following Härdle and Simar (2015).

Definition 3. (Gaussian mixture model) The probability density function of a mixture
distribution consists of k distributions with density functions pi and can be written as

f(x) :=
k∑
i=1

wipi(x)

under the constraints

0 ≤ wi ≤ 1

k∑
i=1

wi = 1∫
pi(x)dx = 1, ∀i = 1, ..., k

We speak of a Gaussian mixture model if all pi are of the form as in Equation (2.1).

For our later used transformations, we do not need the probability density function but
the probability distribution function. Thanks to the formulation of the Gaussian mixture
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model we can integrate each component separately. This is, knowing that all pi follow a
Gaussian distribution, rather simple. Hence, we end up with a weighted sum of Gaussian
probability distribution functions.

Another approach to model complex densities in a flexible way are kernel density estimates
as defined in Weglarczyk (2018).

Definition 4. (Kernel density estimate) Let x = (x1, ..., xn) be an independent and iden-
tically distributed sample of observations of an unknown probability distribution function
f(x). Then, the kernel estimate f̂(x) assigns a function K(xi, t) to each sample data point
xi which is called a kernel function. This is done in the following way

f̂(x) :=
1

n

n∑
i=1

K(xi, t) (2.2)

with K(x, t) being non-negative and bounded for all real xi and t. Additionally for all real
x it holds ∫

K(x, t)dt = 1

If K(x, t) is a symmetric function, we can rewrite the kernel function in a formulation
more frequently used

Ksym(x, t) :=
1

h
K ′
(
x− t
h

)
where h is the so called smoothing parameter.

In our case, we will use a Gaussian kernel which satisfies the symmetry requirement as it
is the density function of a standard normal distribution.

KGauss(t) :=
1√
2π

exp

{
−t2

2

}
Again, this is important as we later need the probability distribution function, i.e., we
need to integrate over the probability density function. This can easily be done over a
weighted combination of densities of the standard normal distribution. To later compare
fitted kernel density estimates we need to be able to determine the amount of parameters
used. For kernel density estimates they are called effective parameters. As it is not crucial
for the the work in this thesis, we refer for the calculation procedure to Example 5.1 in
Loader (1999).

Figure 2.2 illustrates kernel density estimates fitted to data drawn from the distributions
from Figure 2.1. We observe that the kernel density estimates fit very well and it is hard
to see any difference compared to the original distributions.
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Figure 2.2: Fitted kernel density estimates to the data drawn from the distributions in
Figure 2.1

For a more scientific way to compare the fit of different marginals, than graphically com-
paring histograms, we introduce different goodness of fit measures following Held and
Sabanés Bové (2014).

Definition 5. (Marginal log-likelihood, AICM and BICM) Given independent realizations
x = (x1, ..., xn) of the random variable X and assume X follows a density function f(xi;θ)

with parameters θ = (θ1, ..., θr). Then, the marginal log-likelihood, Akaike information
criterion (AICM) and Bayesian information criterion (BICM) are defined as

• Log-likelihood:

lM(θ;x) :=
n∑
i=1

ln (f(xi;θ)) (2.3)

• Akaike information criterion:

AICM(θ;x) := −2
n∑
i=1

ln(f(xi;θ)) + 2|θ|

• Bayesian information criterion:

BICM(θ;x) := −2
n∑
i=1

ln(f(xi;θ)) + |θ| ln(n)

In general a higher marginal log-likelihood, respectively smaller AICM and BICM , corre-
sponds to a better fit when comparing two different densities for the same realizations.

Now that we have ways to find suitable margins we want to use them to transform the data
to a space where it is easier to investigate dependencies. Therefore, we want to transform
each Xi into a uniformly [0, 1] distributed variable. For this we use the probability integral
transform (PIT).
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Definition 6. (Probability integral transform (PIT)) Let X follow a continuous distri-
bution F and let x be the observed value of X. Then, the transformation u := F (x) is
called the probability integral transform (PIT) at x.

This new random variable U := F (X) is now uniformly distributed as

P (U ≤ u) = P (F (X) ≤ u) = P (X ≤ F−1(u)) = F (F−1(u)) = u

The random variable U does not contain any more information about the distribution
of X. Hence, we can now analyze dependencies between uniformly distributed variables
U1, ..., Ud without the influence of the marginal distributions of X1, ..., Xd.

2.1.3 Copulas

Being now able to transform a data set to a multivariate uniformly distributed data set
defined on a d-dimensional [0, 1] hypercube, we want to estimate how the d variables
interact with each other. Since we got rid of the information about the marginals by
applying the PIT to each variable, we have the suitable data set for this purpose. We will
now model this dependence by a special function called a copula.

Definition 7. (Copulas) Let U = (U1, ..., Ud)
> be a d-dimensional random vector on the

hypercube [0, 1]d with uniform margins. Then, the d-dimensional multivariate distribution
function C of U is called a copula. Assuming C is continuous, then the associated copula
density is obtained by partially differentiating C, i.e.,

c(u1, ..., ud) :=
∂d

∂u1, ..., ∂ud
C(u1, ..., ud)

For all u ∈ [0, 1]d.

Up to here we do not have a result saying that it is possible to separate the estimation
of marginals and and dependence structure. However, this is what is stated in Sklar’s
theorem. For every multivariate distribution function there is a copula C which uses the
marginal distribution functions as inputs and allows us to express the associate multivari-
ate distribution function.

Theorem 1. (Sklar’s theorem part 1) Let X be a d-dimensional random vector with joint
distribution function F and marginal distribution functions Fi, i ∈ [1, d]. Then, the joint
distribution function of X is given by

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd))
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Further its density function can be expressed by

f(x1, ..., xd) = c(F1(x1), ..., Fd(xd))× f1(x1)× ...× fd(xd)

for some d-dimensional copula C with copula density c.

Moreover, Sklar’s theorem also states, that if the underlying distribution is absolutely
continuous, C is also absolutely continuous. This is important as the data studied later is
assumed to be exactly that. What is missing is if we can construct a copula derived from
every d-dimensional distribution. This is also stated in Sklar’s theorem.

Theorem 2. (Sklar’s theorem part 2) The copula corresponding to a multivariate dis-
tribution function F with marginal distribution functions Fi, i ∈ [1, d], can be expressed
as

C(u1, ..., ud) = F (F−1
1 (u1), ..., F−1

d (ud)) (2.4)

and its copula density by

c(u1, ..., ud) =
f(F−1

1 (u1), ..., F−1
d (ud))

f1(F−1
1 (u1))× ...× fd(F−1

d (ud))

Returning to the previous subsection, it is often required to estimate a density given
another variable. Hence, are also interested how to represent conditional densities using
copulas. As we will later focus on two-dimensional data, we will in the following only
consider conditional densities in the bivariate case.

Lemma 1. The conditional density and distribution function of a bivariate variable can
be expressed as

f1|2(x1|x2) = c12(F1(x1), F2(x2))f2(x2)

F1|2(x1|x2) =
∂

∂u2

C12(F1(x1), u2)|u2=F2(x2) :=
∂

∂F2(x2)
C12(F1(x1), F2(x2))

Similar to the conditional density of a copula we can define a conditional distribution
for a bivariate distribution derived from a copula. In literature, this is often called the
h-function.

Definition 8. (h-functions) Given a bivariate copula C12 the corresponding h-functions
for all (u1, u2) ∈ [0, 1] are defined as

h1|2(u1|u2) : =
∂

∂u2

C12(u1, u2)

h2|1(u2|u1) : =
∂

∂u1

C12(u2, u1)
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Up to this point we have been talking about modeling dependence structures between
variables. Still, we do not know any procedure to quantify the strength of the dependence
between the variables. Hence, next we will discuss measures that will help us to quantify
dependence.

2.1.4 Dependence Measures

The most famous dependence measure between two random variables X1 and X2 might
be the Pearson product-moment correlation defined as

Cor(X1, X2) :=
Cov(X1, X2)√

Var(X1)
√

Var(X2)

with Cov denoting the covariance and Var the variance of the variables. In our case
the Pearson product-moment correlation is not applicable, as it is not invariant under
monotone transformations. By applying the PIT we applied exactly such a transformation,
i.e., Cor(Xi, Xj) = Cor(Ui, Uj) does not hold in general for all i, j ∈ [1, d]. Hence, even if we
measure dependence between Ui and Uj, using the Pearson product-moment correlation,
we cannot use the results to make assumptions about the dependence between Xi and
Xj. To overcome this problem we will in the following use Kendall’s τ . It is a rank based
dependence measure and therefore invariant under monotone transformations.

Definition 9. (Kendall’s τ) Having two continuous random variables X1 and X2. Then
Kendall’s τ of X1 and X2 is defined as

τ(X1, X2) := P ((X11 −X21)(X12 −X22) > 0)− P ((X11 −X21)(X12 −X22) < 0)

where (X11, X12) and (X21, X22) are independent and identical distributed copies
of (X1, X2).

Again, note that we often do not have explicit knowledge about the distribution of the
random vector, but only have its outcomes given. Hence, we have to estimate Kendall’s τ
using the observations. For this we have to count concordant, discordant and, depending
on allowing ties, extra pairs.

Definition 10. (Concordant, discordant and extra pairs) Given two realizations of the
random variables X1 and X2 xi = (xi1, xi2) and xj = (xj1, xj2) then the pair (xi,xj) is
called

• Concordant if the ordering in x1 := (xi1, xj1) is the same as in x2 := (xi2, xj2), i.e.,
xi1 < xj1 and xi2 < xj2 holds or xi1 > xj1 and xi2 > xj2 holds
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• Discordant if the ordering in x1 is opposite to the ordering of x2 so either xi1 < xj1

and xi2 > xj2 or xi1 > xj1 and xi2 < xj2 holds

• Extra x1 pair if xi1 = xj1 holds

• Extra x2 pair if xi2 = xj2 holds

Given a sample of realization of X1 and X2 of size n and consider all
(
n
2

)
unordered pairs

of (xi,xj). We count all of the pairs where Nc is the number of concordant pairs, Nd the
number of discordant pairs, N1 the number of extra x1 pairs and N2 the number of extra
x2 pairs. These pairs can then be used to estimate Kendall’s τ between X1 and X2 either
by allowing for ties or allowing no ties.

Definition 11. (Estimate of Kendall’s τ allowing for ties) When allowing for ties,
Kendall’s τ between the variables X1 and X2 on a sample of size n can be estimated
by

τ̂ ∗n :=
Nc −Nd√

Nc +Nd +N1 ×
√
Nc +Nd +N2

Definition 12. (Estimate of Kendall’s τ not allowing for ties) An estimate of Kendall’s τ
between the variable X1 and X2 on a sample of size n without ties is defined as

τ̂n :=
Nc −Nd(

n
2

)
In addition we are able to express Kendall’s τ by using copulas.

Theorem 3. (Kendall’s τ expressed in terms of a copula) Let (X1, X2) be continuous
variables, then Kendall’s τ can be expressed as

τ = 4

∫
[0,1]2

C(u1, u2)dC(u1, u2)− 1

However, one dependence measure often is not sufficient to describe the dependence struc-
ture between two variables. It often happens that the dependence structure around the
mean of the variables strongly differs to the structure in the outer quantiles. For example
the data might have a higher dependence between (extreme) high values of X1 and X2

than in the middle of the data. Hence, we introduce the concept of tail dependence.

Definition 13. (Upper and lower tail dependence coefficient) The upper tail dependence
coefficient of a bivariate distribution with copula C is defined as

λupper := lim
t→1−

P (X2 > F−1
2 (t)|X1 > F−1

1 (t)) = lim
t→1−

1− 2t+ C(t, t)

1− t
while the lower tail dependence coefficient is defined as,

λlower := lim
t→0+

P (X2 ≤ F−1
2 (t)|X1 ≤ F−1

1 (t)) = lim
t→0+

C(t, t)

t
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Hence, up to this point we are able to measure dependence between two variables. Often
this is not sufficient for example if we have a d > 2 dimensional data set and we are
interested in how two variables correlate if we remove the effect of the remaining variables.
Thereto we introduce the concept of partial correlations.

Definition 14. (Partial regression and partial correlation) Let X1, ..., Xd be random
variables with mean zero and variance σ2

i . Further, denote by Id−(i,j) the set {1, ..., d} with
indices i and j, i 6= j, removed. Define the partial regression coefficients bi,j;Id−(i,j)

for i < j

as the quantities which minimize

E

[Xi −
d∑

j=2,j 6=i

bi,j;Id−(i,j)
Xj

]2


The corresponding
(
n
2

)
partial correlations ρi,j;Id−(i,j)

are defined as

ρi,j;Id−(i,j)
:= sgn

(
bi,j;Id−(i,j)

)
×
√

bi,j;Id−(i,j)
× bj,i;Id−(i,j)

To simplify the calculation of the partial correlations we can use the following recursion
formula.

Theorem 4. (Recursion for partial correlation) The partial correlations satisfy the fol-
lowing recursions

ρi,j;Id−(i,j)
=
ρi,j;Id−1

−(i,j)
− ρi,d;Id−1

−(i,j)
× ρj,d;Id−1

−(i,j)√
1− ρ2

i,d;Id−1
−(i,j)

√
1− ρ2

j,d;Id−1
−(i,j)

(2.5)

Now, we are able to quantify dependence in the data. Next, we will see which kind of
bivariate copulas are available to model these dependencies.

2.1.5 Bivariate Copulas

Later we will find a way to describe d-dimensional data by a structure consisting only of
two-dimensional building blocks, which we will then be able to model by two-dimensional
copulas. Therefore, we will in the following concentrate on these bivariate copulas. In
general we distinguish between parametric and non-parametric copulas which we will
consider in this section.

The class of parametric copulas can be separated into three different types:

• Elliptical copulas: Recalling Equation (2.4) we see an easy way to construct copulas.
We only need a multivariate distribution and its marginals. Well known examples
for this are the bivariate Gaussian copula and the bivariate Student’s t copula.
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Example 2. (Bivariate Gaussian copula) Given a bivariate normal distribution
with mean zero vector and correlation ρ, in the following denoted as Φ2(·, ·; ρ), and
a standard normal distribution, i.e., with zero mean and variance one, denoted by
Φ(·). Then, we can apply the inverse of Sklar’s theorem to define the Gaussian
copula as

C(u1, u2; ρ) := Φ2(Φ−1(u1),Φ−1(u2); ρ)

Example 3. (Multivariate Student’s t copula) Instead of using a Gaussian distri-
bution function we can also use a Student’s t distribution function. For this let µ
be a zero vector of size two and

Σρ =

(
1 ρ

ρ 1

)

Let us denote by T2,Σρ,ν the two-dimensional Student’s t distribution with zero mean
vector, scale parameter matrix Σρ and ν degrees of freedom and by T−1

ν the inverse
of the univariate standard Student’s t distribution with ν degrees of freedom. We
can then define the bivariate Student’s t copula as

C(u1, u2; Σρ, ν) := T2,Σρ,ν(T
−1
ν (u1), T−1

ν (u2))

• Archimedean copulas: The second class are the Archimedean copulas, for its con-
struction we use generator functions ϕ.

Definition 15. (Generators and Archimedean copulas) Let Ω be the set of all
continuous, strictly monotone decreasing and convex functions ϕ : I → [0,∞] with
ϕ(1) = 0. Additionally denote the pseudo-inverse of ϕ by ϕ[−1]. It is defined as
ϕ[−1] : [0,∞]→ [0, 1] by

ϕ[−1](t) :=

ϕ−1(t) , 0 ≤ t ≤ ϕ(0)

0 , ϕ(0) ≤ t ≤ ∞

If it further holds that ϕ(0) =∞ then the generator is called strict.
We define an Archimedean copula with generator ϕ by

C(u1, u2) := ϕ[−1](ϕ(u1), ϕ(u2))

Well known examples of the Archimedean copula class with one parameter are the
Clayton, Gumbel, Frank and Joe copula families.
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Example 4.

– Clayton copula

C(u1, u2) := (u−δ1 + u−δ2 − 1)−
1
δ

where 0 < δ < ∞ is the dependence parameter denoting full dependence at
δ →∞ and independence at δ → 0

– Gumbel copula

C(u1, u2) := exp
[
−
{

(− lnu1)δ + (− lnu2)δ
} 1
δ

]
where δ ≥ 1 is the parameter for dependence. With δ → ∞ denoting full
dependence, while δ = 1 corresponds to independence

– Frank copula

C(u1, u2) := −1

δ
ln

(
1

1− e−δ
[
(1− e−δ)− (1− e−δu1)(1− e−δu2)

])
with δ ∈ [−∞,∞] \ {0} where δ → 0+ corresponds to independence

– Joe copula

C(u1, u2) := 1−
(
(1− u1)δ + (1− u2)δ − (1− u1)δ(1− u2)δ

) 1
δ

with δ ≥ 1 and independence corresponding to δ = 1

In addition there are Archimedean copulas with two parameters. For example the
copulas from the BB1 and BB7 family.

Example 5.

– BB1 copula

C(u1, u2; θ, δ) :=
{

1 +
[
(u−θ − 1)δ + (u−θ2 − 1)δ

] 1
δ

}− 1
θ

=η
(
η−1(u1) + η−1(u2)

)
with η being the inverse generator , i.e., η(s) = ηθ,δ(s) =

(
1 + s

1
δ

)− 1
θ . The

parameters are defined as θ > 0 and δ ≥ 1 where for θ → 0+ and δ → 1+

independence arises

– BB7 copula

C(u1, u2; θ, δ) :=

(
1−

[(
1− (1− u1)θ

)−δ
+
(
1− (1− u2)θ

)−δ − 1
]− 1

δ

) 1
θ

=η
(
η−1(u1) + η−1(u2)

)
with η(s) = ηθ,δ(s) = 1 −

[
1− (1 + s)−

1
δ

] 1
θ , θ ≥ 1 and δ > 0. Independence

arises for θ = 1 and δ = 0
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• Extreme-value copulas: The third class is often used to study the behavior of ex-
treme events. To characterize the class of bivariate extreme value copulas we use
the characterization of Pickands (1981).

Theorem 5. (Characterization of bivariate extreme-value copulas in terms of the
Pickands dependence function) A bivariate copula C is an extreme-value copula if
and only if

C(u1, u2) = exp

{
[ln(u1) + ln(u2)]A

(
ln(u2)

ln(u1u2)

)}
where A is called the Pickands dependence function A : [0, 1] → [1

2
, 1] which is

convex and satisfies max{1− t, t} ≤ A(t) ≤ 1, ∀t ∈ [0, 1].

Note that this characterization is only valid in the bivariate case. An example for
extreme value copulas are the Marshall-Olkin and the Tawn copula.

Example 6.

– Marshall-Olkin copula

A(t) = max{1− α1(1− t), 1− α2t}

with parameters 0 ≤ α1, α2 ≤ 1

– Tawn copula

A(t) = (1− ψ1)(1− t) + (1− ψ2)t+ [(ψ1(1− t))θ + (ψ2t)
θ]

1
θ

with 0 ≤ ψ1, ψ2 ≤ 1 and θ ≥ 1

Examples of non-parametric copulas estimations are the Empirical Bernstein copula (Yang
et al. (2020)), Bernstein polynomials (Sancetta and Satchell (2004)) or B-splines (Kauer-
mann et al. (2013)). As we will later use the vinereg package by Nagler (2019) which only
uses transformation local likelihood kernel estimators (TLL) based copulas these will be
the only ones we define. We will here use the definition as in Nagler et al. (2017).

The idea of TLL copulas is not to fit the copula to the uniformly distributed data but
instead using a transformation trick so we fit the copula to data where the margins are
normally distributed. The reason is, that kernel density estimators work very well if they
are calculated on an unbounded set.

Definition 16. (Transformation trick) Given a random sample of two uniformly [0, 1] dis-
tributed random variables U1 and U2. Let Φ be the standard normal distribution function
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and φ its density. Then, (Z1, Z2) = (Φ−1(U1),Φ−1(U2)) has normally distributed margins
and is supported on R2. Using the first part of Sklar’s theorem in Theorem 1 we can write
the density of (Z1, Z2) as

f(z1, z2) = c(Φ(z1),Φ(z2)× φ(z1)× φ(z2)

for all z1, z2 ∈ R. By rearranging and a change of variables uj = Φ(zj) for j = 1, 2 we
obtain

c(u1, u2) =
f(Φ−1(u1),Φ−1(u2))

φ(Φ−1(u1))× φ(Φ−1(u1))

In a next step we can estimate f with an estimation f̂ which will give us an estimation ĉ
of c

ĉ(u1, u2) =
f̂(Φ−1(u1),Φ−1(u2))

φ(Φ−1(u1))× φ(Φ−1(u1))

For calculation purposes we will not approximate f(z1, z2) of the random vector
Z = (Z1, Z2) but log f(z1, z2). We do this by using a polynomial of degree q.

Example 7. (Log-quadratic expansion) Letting q = 2 we can approximate log f(z′1, z
′
2)

by

log f(z′1, z
′
2) ≈ a1 + a2(z1 − z′1) + a3(z2 − z′2) + a4(z1 − z′1)2

+ a5(z1 − z′1)(z2 − z′2) + a6(z2 − z′2)2

for (z′1, z
′
2) in a neighborhood of z = (z1, z2). To keep it readable we denote the right side

of the equation from now on with Pa(
˜
z) with a = (a1, ..., as)

>. Additionally we introduce
A(z) = 1 + (z1 − z′1) + ...+ (z2 − z′2)r which we will need later.

What is missing is a way to calculate the set a. It can be obtained solving the weighted
maximum likelihood problem

â = arg max
a

{
n∑
i=1

K
(
B−1

(
z− Z(i)

))
Pa

(
z− Z(i)

)
−n
∫
R2

K
(
B−1(z− s)

)
× exp {Pa(z− s)} ds

} (2.6)

where we denoted the i-th sample point of Z with Z(i) and K(z) = K(z1)K(z2) is the
product kernel with K(·) a kernel function as in Definition 4. The matrix B ∈ R2×2 with
det(B) > 0 is called the bandwidth matrix, it therefore plays the role of h in Definition
4. We obtain â1 as the optimized parameter of log f(z1, z2), so exp{â1} is the desired
parameter vector needed for the estimate of f(z1, z2).
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Definition 17. (Transformation local likelihood kernel estimator (TLL)) A copula con-
structed using Definition 16 where f̂ (Φ−1(u1),Φ−1(u2)) is approximated using a polyno-
mial of degree q, which is solved by solving Equation (2.6), is called a q-TLL copula.

While for the earlier defined copulas the number of degrees of freedom can easily be
determined this is not the case for the class of TLL copulas. Here, we have to be content
with calculating the effective number of parameters as we already did for the kernel density
estimates in Definition 4. For the calculation procedure we again refer to Loader (1999).

Theorem 6. (Effective number of parameters for TLL copulas) Given a TLL copula as
defined in Definition 17, then the effective number of parameters ν is defined as

ν :=
n∑
i=1

infl(Z(i))

where infl is defined as

infl(x) := n−1K(B−1(0))e>1 M
−1e1

and e1 is the unit vector e1 = (1, 0, ..., 0) ∈ Rq+1 and

M :=

∫
K(B−1(v))A(v)A(v)> exp {Pa(z− s)} dv

To complete our list of the different copula classes we define another very important
copula. A copula to model the case where two variables are independent. Here, we use
the definition as in Sun et al. (2020).

Definition 18. (Independence copula) Given two variables U1 and U2 that are indepen-
dent we define the following copula to model this independence

C(u1, u2) := u1 × u2

This is the so called independence copula.

If we look at the copulas that we have defined, we can see that some of the copulas are not
symmetric. To extend the range of dependencies that can be modeled by these copulas
we define a way to counter clockwise rotate rotate them.

Definition 19. (Rotated and reflected copulas) Let c(·, ·) be a copula density, then its
counter clockwise rotation is defined by

• 90◦ : c90(u1, u2) := c(1− u2, u1)
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• 180◦ : c180(u1, u2) := c(1− u1, 1− u2)

• 270◦ : c270(u1, u2) := c(u2, 1− u1)

Sometimes one might not be interested in the dependence between two variable but instead
in the dependence of the two variables given a third X3 = x3. We model this again using
a bivariate copula.

Definition 20. (Conditional bivariate copula with one-dimensional conditioning set) Let
U1 and U2 be two uniformly [0, 1] distributed random variables and U3 = v3 given. Then,
the conditional bivariate copula of U1 and U2 given U3 = v3 is defined as

C12,3(u1, u2|v3) := C12|3(C−1
1|3(u1|v3), C−1

2|3(u2|v3)|v3)

where C12|3 is the distribution function of U1 and U2 given U3 = v3

C12|3(u1, u2|v3) :=
∂

∂u3

C123(u1, u2, u3)|u3=v3

In the following we assume that the conditional bivariate copula does not depend on the
specific value v3. This is called the simplifying assumption.

Definition 21. (Simplifying assumption in three dimensions) The simplifying assumption
of a conditional bivariate copula with one-dimensional conditioning set is satisfied when
for any v3 ∈ R it holds that

c12;3(u1, u2; v3) = c12;3(u1, u2)

for all u1, u2 ∈ [0, 1].

In Section 2.1.4 we have seen a way to calculate Kendall’s τ . As the following defini-
tion shows us there exists a direct connection between some parametric copulas and
Kendall’s τ .

Theorem 7. (Kendall’s τ for elliptical, Archimedean and extreme-value copulas) Let ρ
be the association parameter for the bivariate elliptical copula, ϕ the generator of the
bivariate Archimedean copula and A the Pickands dependence function of the bivariate
extreme-value copula with existing first derivative. Then, for the bivariate elliptical copula
it holds that

ρ = sin
(π

2
τ
)

For the bivariate Archimedean copula it holds that

τ = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt
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and for the bivariate extreme-value copula that

τ =

∫ 1

0

t(1− t)
A(t)

dA′(t)

Hence, to this point, given two random variables we can calculate their dependency with
each other in terms of Kendall’s τ and have a wide range of bivariate copulas with, even
more parameter sets, that we can use to create a model with the same Kendall’s τ . Now
is the question which of the model fits best to the given data. For this we again introduce
three characteristics to quantify the fit. First, the well known log-likelihood second the
Akaike information criterion and then the Bayesian information criterion. The last two
penalize the size of the used parameter vector.

Definition 22. (Copula log-likelihood, AICC and BICC) Given a copula density c(·, ·)

with parameter vector θ of size |θ| and data U =


u11 u12

...
...

un1 un2

 the copula log-likelihood,

copula Akaike information criterion (AICC) and copula Bayesian information criterion
(BICC) are defined as

• Copula log-likelihood:

lC(θ;U) :=
n∑
i=1

ln(c(ui1, ui2;θ))

• Copula Akaike information criterion:

AICC(θ;U) :=− 2
n∑
i=1

ln(c(ui1, ui2;θ)) + 2|θ|

• Copula Bayesian information criterion:

BICC(θ;U) :=− 2
n∑
i=1

ln(c(ui1, ui2;θ)) + |θ| ln(n)

where ui = (ui1, ui2) denotes the i-th observation of the pseudo copula data. In gen-
eral a higher copula log-likelihood (smaller AICC and BICC) indicates a better fit when
comparing two different copulas.

Now, we are able to model two-dimensional dependencies using bivariate copulas. In the
next sections we will introduce different approaches to also model d-dimensional data
using bivariate copulas.
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2.2 D-vine Pair Copula Constructions

As shown by Russell and Norvig (2003) we can model the density of any d-dimensional
random vector using

f(x1, ..., xd) = f(x1)× f(x2|x1)× ...× f(xd|x1, ..., xd−1)

= f(x1)×
d∏
i=2

f(xi|x1, ..., xi−1)
(2.7)

The question is, whether there is a way to substitute every conditional density with copula
terms and marginal densities. One possibility is to decompose the density to a so called
drawable D-vine density. Before doing so we have to adjust our notation to keep the
upcoming terms readable.

Definition 23. (Copulas associated with bivariate conditional distributions) Let
(X1, ..., Xd) be a set of random variables.

• Let D be a set of indices from {1, ..., d} not including i and j. The copula associated
with the bivariate conditional distribution (Xi, Xj) given X = xD is denoted by
Cij;D(·, ·;xD)

• In contrast the conditional distribution function of (Ui, Uj) given UD = uD is ex-
pressed as Cij|D(·, ·;uD) with bivariate density function cij|D(·, ·;uD)

• For distinct indices i, j and D = {i1, ..., ik} with i < j and i1 < ... < ik we use the
abbreviation

ci,j;D := ci,j;D(Fi|D(xi|xD), Fj|D(xj|xD);xD)

Theorem 8. (Drawable D-vine density) Using the abbreviations from Definition 23 we
can decompose every density f1,...,d to

f1,...,d(x1, ..., xd) =

[
d−1∏
j=1

d−j∏
i=1

ci,(i+j);(i+1),...,(i+j−1)

][
d∏

k=1

fk(xk)

]
(2.8)

The distribution associated with this density decomposition is called a drawable D-vine.

Proof. Using Definition 1 for the conditional distribution of (X1, Xt) given X2, ..., Xt−1

we can express the conditional density ft|1,...,t−1(xt|x2, ..., xt−1) recursively as

ft|1,...,t−1(xt|x1, ..., xt−1) = c1,t|2,...,t−1 × ft|2,...,t−1(xt|x2, ..., xt−1)

=

[
t−2∏
s=1

cs,t;s+1,...,t−1

]
× c(t−1),t × ft(xt)
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Plugging this into Equation (2.7) and setting s = i and t = i+ j leads to

f1,...,d(x1, ..., xd) =

[
d∏
t=2

t−2∏
s=1

cs,t;s+1,...,t−1

]
×

[
d∏

k=1

fk(xk)

]

=

[
d−1∏
j=1

d−1∏
i=1

ci,(i+j);(i+1),...,(i+j−1)

]
×

[
d∏

k=1

fk(xk)

]

Note that in Equation (2.8) we only have pair copula densities ci,j;D(·, ·;xD) evaluated at
conditional distribution functions Fi|D(xi|x1, ..., xik) and Fj|D(xj|xi, ..., xik) for specified
indices i, j, i1, ..., ik and marginal densities fk. That is why this class of decompositions
is called a pair copula decomposition. With this specific decomposition class named the
class of D-vine compositions.

In the following we will introduce a way to compute the conditional distribution functions
which we evaluate in the copula terms.

Theorem 9. (Recursion for conditional distribution functions) Let X be a random vari-
able and Y a random vector which has an absolute continuous joint distribution. Let Yj
be a component of Y and denote the sub-vector of Y with Yj removed by Y−j. In this case
the conditional distribution FX|Y(·|y) of X given Y = y satisfies the following recursion

FX|Y(·|y) =
∂CX,Yj ;Y−j(FX|Yj

(x|y−j), FYj |Yj
(y|y−j))

∂FYj |Y−j(yj|y−j)

where CX,Yj ;Y−j(·, ·|y−j) denotes the copula corresponding to (X, Yj) given Y−j = y−j.

Hence, while increasing the conditional set in each step we can calculate the necessary
conditional distribution function with terms that we already know. These are the copula
and conditional distribution functions derived in the last step with a smaller conditioning
set.

Note that in Definition 21 we have only defined a simplifying assumption for conditioning
on one variable. In Equation (2.8) copulas with whole sets of conditioning variables might
appear. Hence, we have to extend Definition 21 on bigger sets. In the following we will
assume that Definition 24 holds.

Definition 24. (Simplifying assumption for D-vines) Assume that

cij,D(Fi|D(xi|xD), Fj|D(xj|xD),xD) = cij,D(Fi|D(xi|xD), Fj|D(xj|xD))

holds for all xD and i, j and D are chosen to occur as in Equation (2.8) then the corre-
sponding D-vine distribution is called simplified.
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Bear in mind that the order in which we aligned the variables in the density function in
Equation (2.8) was arbitrary. However, different orders will lead to different copulas being
modeled. We will come back to this in Section 2.3 when we have a way to graphically
express D-vines.

Example 8. (Simplified D-vine density on five dimensions) For d = 5 one way to express
the simplified D-vine density is

f12345(x1, x2, x3, x4, x5) =

[
5∏
i=1

fi(xi)

]
× c12(x1, x2)× c23(x2, x3)× c34(x3, x4)× c45(x4, x5)

× c13,2(F1|2(x1|x2), F3|2(x3|x2))× c24,3(F2|3(x2|x3), F4|3(x4|x3))

× c35,4(F3|4(x3|x4), F5|4(x5|x4))

× c14,23(F1|23(x1|x2, x3), F4|23(x4|x2, x3))

× c25,34(F2|34(x2|x3, x4), F5|34(x5|x3, x4))

× c15|234(F1|234(x1|x2, x3, x4), F5|234(x5|x2, x3, x4))

2.3 Graphical Representation of D-vines

In Section 2.2 we have seen how to decompose a density into a drawable D-vine but we
did not speak about why this D-vine is called drawable. For this we first need some graph
theoretic background.

Definition 25. (Graph, node, edge, adjacent, degree)

• A graph G := (N,E) is a pair of sets such that E ⊆ {{x, y} : x, y ∈ N}

• Elements of E are called edges of the graph G while elements of N are called nodes

• Two nodes are said to be adjacent if there is an edge e ∈ E connecting them,
otherwise they are said to be non-adjacent. Nodes that are adjacent to a node
x ∈ N are called neighbors of x

• The number of neighbors of a node x ∈ N is the degree of x, denoted by d(x)

Definition 26. (Path, cycle, connected) A path from v0 to vk is a graph P ′ = (N ′, E ′)

with node set N ′ = {v0, v1, ..., vk} and edges E ′ = {{v0, v1} , {v1, v2} , ..., {vk−1, vk}} for
any k ∈ N. It is called a cycle if it also holds that v0 = vk. A graph G := (N,E)

is called connected if for any two nodes x, y ∈ N there exists a path P ′ = (N ′, E ′),
N ′ ⊂ N, E ′ ⊂ E from x to y.
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Theorem 10. (Characterization of trees) The following statements are equivalent for a
graph T = (N,E)

• T is a tree

• Any two nodes of T are connected by a unique path in T

• T is minimally connected, i.e., T is connected but T − e is disconnected for every
edge e

• T is maximally acyclic, i.e., T contains no cycle but T + {x, y} does for any non-
adjacent nodes x, y ∈ N

We now have all the necessary basics to define a regular (R-)vine tree sequence. Our
D-vine tree sequence will be a special case thereof.

Definition 27. (Regular (R-)vine tree sequence) A set of trees T = (T1, ..., Td−1) is a
regular vine tree sequence of d elements if

• Each tree Tj = (Nj, Ej) is connected

• T1 is a tree with node set N1 = {1, ..., d} and edge set E1

• For j ≥ 2, Tj is tree with node set Nj = Ej−1 and edge set Ej

• For j = 2, ..., d− 1 and {a, b} ∈ Ej it must hold that |a ∩ b| = 1

The last property of Definition 27 ensures that if two nodes are connected by an edge e
in Tj, j ≥ 2, then these two nodes, which are edges in Tj−1 share a common node. This is
called the proximity condition.

As already mentioned, a D-vine sequence is a special case of Definition 27.

Definition 28. (D-vine tree sequence) A regular vine tree sequence T = (T1, ..., Td−1) is
called a D-vine sequence if for each node n ∈ Ni we have |{e ∈ Ei|n ∈ e}| ≤ 2, i.e., each
node has at most two neighbors.

Following the proximity condition this means that once T1 is fixed all other trees
T2, ..., Td−1, are already uniquely determined.

Example 9. (Four-dimensional D-vine tree sequence) Given the first tree
T1 = (N1 = {1, 2, 3, 4}, E1 = {{1, 2}, {2, 3}, {3, 4}}) of a D-vine tree sequence. Then, the
second and third tree are defined as

T2 : N2 = E1 = {{1, 2}, {2, 3}, {3, 4}}
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E2 = {{{12}, {23}}, {{23}, {34}}}

T3 : N3 = E2 = {{{12}, {23}}, {{23}, {34}}}

E3 = {{{{12}, {23}}, {{23}, {34}}}}

Already in the case with only four nodes the notation gets complicated. Therefore, we
introduce a more simple one by using conditioning sets.

Definition 29. (Complete union and conditioning sets) Given a regular vine tree sequence
T . For any edge e ∈ Ei we define the set

Ae := {j ∈ N1|∃e1 ∈ E1, ..., ei−1 ∈ Ei−1 such that j ∈ e1 ∈, ...,∈ ei−1 ∈ e}

The set Ae is called the complete union of the edge e. The conditioning set De of an edge
e = {a, b} is defined as

De := A1 ∩ Ab

and the conditioned sets Ce,a and Ce,b are given by

Ce,a := Aa \De, Ce,b := Ab \De and Ce := Ce,a ∪ Ce,b

Often the edges e = (Ce,a, Ce,b;De) in the vine tree sequence are abbreviated by

e = (ea, eb;De)

Example 10. (Continuation of Example 9) Given the tree structure from Example 9
using the notation from Definition 29 the edge sets simplify to

E1 = {(1, 2), (2, 3), (3, 4)}

E2 = {(1, 3; 2), (2, 4; 3)}

E3 = {(1, 4; 2, 3)}

Figure 2.3 displays a graphical representation of the structure.

Up to this point the R-vine sequence, with the special case of a D-vine sequence, is only
a graph theoretic object. Next we want to link it with a stochastic component.

Definition 30. (Regular vine distribution) The joint distribution F for the d-dimensional
random vector X = (X1, ..., Xd) has a regular vine distribution if we can specify the
following triplet (F ,T ,B):
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• Marginal distributions: F = (F1, ..., Fd) is a vector of continuous invertible
marginal distribution functions representing the marginal distribution function of
the random variables Xi, i = 1, ..., d

• Regular vine tree sequence: T is a R-vine tree sequence on d elements

• Bivariate copulas: B = {Ce|e ∈ Ei, i = 1, ..., d − 1} is the set of symmetric
bivariate copula families Ce with densities ce and θ = {θCe|e ∈ Ei, i = 1, ..., d − 1}
the set of the corresponding parameters. Here, Ei is the edge set of tree Ti in the
R-vine tree sequence T

• Relationship between R-vine tree sequence T and set B of bivariate cop-
ulas: For each e ∈ Ei, i = 1, ..., d, e = {a, b}, Ce is the copula associated with the
conditional distribution of XCe,a and XCe,b given XDe = xDe . Further Ce(·, ·) does
not depend on the specific value of xDe

2,4;31,3;2

3,41,2 2,3

1 42 3
1,2 2,3 3,4

2,4;3
1,3;2

1,4;2,3

Figure 2.3: Representation of the D-vine tree structure from Example 10

As shown in Bedford and Cooke (2002) every R-vine triplet (F ,T ,B) which satisfies the
first three properties of Definition 30 can be uniquely connected to a d-dimensional distri-
bution F . As we will solely use D-vines, for which we have already seen a representation of
a d-dimensional distribution in Theorem 8, this is of no interest in the following. Instead
we only needed a way to graphically represent D-vines.

What we still require is a procedure to denote which variable X1, ..., Xd is assigned to
which node. For this purpose we define the order of a D-vine.

Definition 31. (Order of a D-vine) Given the first tree of a D-vine tree se-
quence as in Definition 28 on d nodes with node set N1 = {1, ...d} and edge set
E1 = {(j, j + 1), j = 1, ..., d− 1} as well as d random variables, X1, ..., Xd. We denote
l = (l1, ..., ld) as the order of the D-vine if it is a bijection of the variables Xi to the nodes
in N1. We say that X l

i is the variable Xj assigned to the node i according to l.
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Referring to the variables assigned to the nodes greatly simplifies the notation, as the nodes
and the respective variables assigned to them have the same index. This is something we
will especially need in Section 2.5 and Section 2.6 as different orderings come in line with
a different goodness of fit when we have to estimate the copulas.

Note that for each order l a second order l′ exists such that if a variable Xi is assigned
to node j in l, it is assigned to node d − j in l′. However, both orderings correspond to
the same D-vine and specify the same set of copulas. Instead the D-vine is only viewed
at from the other direction.

2.4 Estimating d-Dimensional Densities Using Di-

rected Acyclic Graphs (DAGs)

We have already seen in Equation (2.7) that we can write the density of any d-dimensional
random vector as

f(x1, ..., xd) = f(x1)× f(x2|x1)× ...× f(xd|x1, ..., xd−1) = f(x1)×
d∏
i=2

f(xi|x1, ..., xi−1)

or in terms of a drawable non-simplified D-vine

f1,...,d(x1, ..., xd) =

[
d−1∏
j=1

d−j∏
i=1

ci,(i+j);(i+1),...,(i+j−1)

]
×

[
d∏

k=1

fk

]

The problem is that already for an 11-dimensional density 55 copulas need to be modeled.
This would grow to 190 copulas if a 20-dimensional density would be considered instead.
To cope with that problem we need to find a way to simplify some of the terms by reducing
the number of conditioning variables.

2.4.1 Conditional Independence

Given d random variables the question arises: does each of the d variables have a depen-
dency with all of the others. And even more important does this also hold if all other
variables are given. To this end, we now introduce the concept of conditional indepen-
dence.

Definition 32. (Conditional density and conditional independence (Mathias Drton,
2009)) Let X = (X1, ..., Xd) be an d-dimensional random vector with joint density
f(x) = f(x1, ..., xd). For each subset A ⊆ {1, ..., d} let XA = (Xa)a∈A be the subvec-
tor of X indexed by A. The density fA(xA) of XA is the marginal density of the subset A.
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Now, let A,B ⊆ {1, ..., d} be two disjoint subsets. If fB(xB) > 0, the conditional density
of XA given XB = xB is defined as

fA|B(xA|xB) :=
fA,B(xA,xB)

fB(xB)
(2.9)

where fA,B(xA,xB) is the marginal density of the union of the subsets A and B. The
conditional density is undefined if fB(xB) = 0. Now, let A,B,C ⊆ {1, ..., d} be pairwise
disjoint. We say the random vector XA is conditionally independent of XB given XC if
and only if

fA∪B|C(xA,xB|xC) = fA|C(xA|xC)fB|C(xB|xC)

for all xA,xB and xC such that f(xC) > 0. In that case we write XA

∐
XB|XC which we

abbreviate in the following by A
∐
B|C.

From this definition there directly follow some properties, the so called conditional inde-
pendence axioms following Mathias Drton (2009). We refer to the same work for the proof
of the following proposition.

Proposition 1. Let A,B,C,D ⊆ [d] be pairwise disjoint sets. Then,

• A
∐
B|C ⇒ B

∐
A|C (symmetry)

• A
∐
B ∪D|C ⇒ A

∐
B|C (decomposition)

• A
∐
B ∪D|C ⇒ A

∐
B|C ∪D (weak union)

• A
∐
B|C ∪D and A

∐
D|C ⇒ A

∐
B ∪D|C(contraction)

2.4.2 Modelling Conditional Dependencies Using DAGs

Now knowing which of our variables are conditional dependent or independent, we would
like to represent these relationships in some way. For this we will use directed acyclic
graphs, a special case of the graphs in Definition 25. To be able to distinguish between
the two definitions we use a slightly different notation as well as a different style when
plotting. Nodes in directed acyclic graphs are colored in black with white text whereas
graphs that describe vine tree structures have white nodes and black text.

Definition 33. (Directed acyclic graphs (DAGs), (Wasserman, 2004)) A directed graph
G = (V , E) consist of a set of vertices V and an edge set E of ordered pairs of vertices. A
directed graph is called acyclic if there does not exist a directed path, i.e., a set of arrows
all pointing in the same direction linking one node to another, for any node to itself.
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In our case each vertex corresponds to a random variable. If (X, Y ) is part of the edge set
E we display it by an arrow going from the vertex X to the vertex Y .

Definition 34. (Parents) Given a directed acyclic graph. We denote with π(X) all nodes
which have an edge to a node X, i.e.,

π(X) := {Y ∈ V with (Y,X) ∈ E}

We say the vertices in the set π(X) are the parents of X.

The characterization of parents can now be used to give a DAG a topological order. For
this we follow the definition of Koller and Friedman (2009).

Definition 35. (Topological order of a DAG) Let G = (V , E) be a DAG. An order
X1, ..., Xd on the vertices of G is a topological order relative to G if i < j, whenever
Xi → Xj ∈ E .

Figure 2.4: Example of a directed cyclic graph on four vertices

Example 11. Figure 2.5 shows a directed acyclic graph G = (V , E) with V = {W,X, Y, Z}
and edge set E = {(X,W ), (Y,W ), (Z,W ), (Z, Y )}. It follows, e.g., π(W ) = {(Y, Z)}.

Example 12. Figure 2.4 shows a directed cyclic graph as there exists a directed path
W → Z → Y → W .

We further want to consider a procedure to model conditional dependencies using DAGs.
For this we follow such a procedure proposed by Russell and Norvig (2003).
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Figure 2.5: Example of a directed acyclic graph (DAG) on four vertices

Definition 36. (Modelling dependency structures using a DAG)

• Nodes: Given d variables X1, ..., Xd in a topological order and assign each of them
to one vertex

• Edges: FOR i = 2 : d DO

– Choose for XI the minimal set of parents π(Xi) ⊂ {X1, ..., Xi−1} such that

P (Xi|X1, ..., Xi−1) = P (Xi|Parents(Xi)) (2.10)

In accordance with Definition 34 the right hand side can be written as
P (Xi|π(Xi))

– For each parent insert an edge from the parent to Xi

More precisely Equation (2.10) can be understood as: Find the biggest subset XBi
of

Xi−1 = (X1, ..., Xi−1) such that

P (Xi|Xi−1) = P (Xi|Xi−1 \XBi
) for i = 2, ..., d

After some calculations we can see that this subset XBi
can easily be interpreted. For this

we define XAi
:= Xi−1 \XBi

which corresponds to the parents of Xi. We obtain

P (Xi|Xi−1) = P (Xi|Xi−1 \XBi
)

⇔ P (Xi|Xi−1) = P (Xi|XAi
)

⇔ P (X1, ..., Xi)

P (X1, ..., Xi−1)
=
P (Xi,XAi

)

P (XAi
)
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⇔ P (Xi,XAi
,XBi

)

P (XAi
,XBi

)
=
P (Xi,XAi

)

P (XAi
)

⇔ P (Xi,XAi
,XBi

)

P (Xi,XAi
)

=
P (XAi

,XBi
)

P (XAi
)

⇔ P (Xi,XAi
,XBi

)

P (XAi
)

P (XAi
)

P (Xi,XAi
)

=
P (XAi

,XBi
)

P (XAi
)

⇔ P (Xi,XAi
,XBi

)

P (XAi
)

=
P (Xi,XAi

)

P (XAi
)

P (XAi
,XBi

)

P (XAi
)

⇔ P (Xi,XBi
|XAi

) = P (Xi|XAi
)P (XBi

|XAi
)

Recalling Equation (2.9) this means Xi is conditionally independent of all elements in
XBi

given XAi
. Or in other words: a vertex Xj with j < i exactly is a parent of Xi if it

is not conditional independent from Xi given the other parents.

Hence, if we are able to construct a DAG using the procedure from Definition 36, it is
enough to only condition every variable on the set of its parents instead of all variables
that appear before it in the topological order. Inserting this into Equation (2.7) we observe
that it simplifies to

f(x1, ..., xd) =
d∏
i=1

f(xi|π(Xi)) (2.11)

leaving us with fewer dependencies to model. Following Pearl (1988) this structure is now
called a Bayesian Network.

2.4.3 Linear Gaussian Bayesian Networks (LGBNs)

Section 2.4.2 still leaves us with the question on how to model the f(xi|π(Xi)), to which
we will refer to as conditional probability distributions (CPDs). Before coming up with
an approach involving copulas, a first possibility is to use conditional linear Gaussian
probability distributions. In this section we will closely follow Koller and Friedman (2009).

Definition 37. (Linear Gaussian conditional probability distribution) Let Y,X1, ..., Xk be
random variables. Using the notation from Example 1, we say Y follows a linear Gaussian
model of X1, ..., Xk, if there are parameters β = (β0, ..., βk)

> such that

(Y |X1, ..., Xk) ∼ N(β0 + β1x1 + ...+ βkxk;σ
2)

= N(β0 + β>x;σ2)
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It shows that, Y is a linear function of the parameters X1, ..., Xk with addition of Gaussian
noise ε with mean 0 and variance σ2, i.e.,

Y = β0 + β1x1 + ...+ βkxk + ε

If this holds for all variables in a network on the set of its parents, this defines a Linear
Gaussian Bayesian Network.

Definition 38. (Linear Gaussian Bayesian Network (LGBN)) Given a DAG as in Defini-
tion 33 where every conditional probability distribution is of the form given in Definition 37
then the network is called a Linear Gaussian Bayesian Network (LGBN).

We now have a way to model all the CPDs necessary to calculate Equation (2.11) which
describes a Linear Gaussian Bayesian Network. Even more the LGBN will have a density
of a well known form.

Theorem 11. Let Y follow a Linear Gaussian conditional probability distribution of
its parents X1, ..., Xk as in Definition 37. If X1, ..., Xk are jointly Gaussian distributed
N(µ; Σ) with µ = (µ1, ..., µk)

> and Σ = (Σij)i,j∈[1,k], then

• The joint distribution of (X1, ..., Xk, Y ) is a normal distribution with

Cov(Xi;Y ) =
k∑
j=1

βjΣi,j

• The unconditional distribution of Y is a normal distribution with

– µY = β0 + β>µ

– σ2
Y = σ2 + β>Σβ

• Or the other way around, given a multivariate normal distribution the conditional
distribution of Y given X = (X1, ..., Xk) is

(Y |X) ∼ N(β0 + β>X;σ2)

with

– β0 = µY − ΣYXΣ−1
XXµX

– β = Σ−1
XXΣYX

– σ2 = ΣY Y − ΣYXΣ−1
XXΣXY
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where we decompose the joint distribution over X and Y to

(X, Y ) ∼ N

((
µX

µY

)
;

[
ΣXX ΣXY

ΣYX ΣY Y

])

with µX ∈ Rk, µY ∈ R, ΣXX ∈ Rk×k, ΣYX = Σ>XY ∈ R1×k and ΣY Y ∈ R1×1.

Theorem 12. Given a Linear Gaussian Bayesian Network the specified joint distribution
follows a multivariate Gaussian distribution.

Proof. Proof by induction:

• Base case: Given any node without parents. Following Definition 37 it is Gaussian
distributed as it follows a N(β0;σ2) distribution

• Induction step: Assume all parents of a node follows a Gaussian distribution. Then,
following Theorem 11 the child node together with the parent nodes follow a mul-
tivariate Gaussian distribution

2.4.4 Modelling Conditional Densities Using D-vines

We now want to introduce a way to model the conditional densities using copulas. We
start from Theorem 1 but this time assume that the D-vine is simplified as in Definition
24. Using the abbreviations from Definition 23 we follow the idea of the proof of Theorem
8 and recursively obtain

ft|1,...,t−1(xt|x1, ..., xt−1) =

[
t−2∏
s=1

cs,t;s+1,...,t−1

]
× c(t−1),t × ft(xt)

Reversing the order such that we have the density of the first variable given the rest, we
derive

f1|2,...,t(x1|x2, ..., xt) =

[
t−1∏
s=2

c1,s+1;2,...,s

]
× c1,2 × f1(x1) (2.12)

This is the desired result, i.e., we can express any conditional density of a variable given
its parents only using its marginal density and copula terms.
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Example 13. (Conditional density in a D-vine on four nodes) Given four variables X1,
X2, X3 and X4 which we model using the D-vine tree structure from Figure 2.3 and its
associated regular D-vine distribution. Assigning Xi to node i we can write the conditional
density of X1 given X2, X3 and X4 by

f1|2,...,t(x1|x2, x3, x4) = c1,4;2,3 × c1,3;2 × c1,2 × f1(x1) (2.13)

Looking at the conditional density in Example 13 we observe that the copulas appearing
in the expression of the density are exactly the first copulas in each tree of the associated
D-vine structure in Figure 2.3. We can see this behavior for any length of the D-vine.
Hence, to express the density of a variable given the set of its parents, it is sufficient to
model them using a D-vine where the desired variable is modeled as the first node. Then,
only the most left copula of each tree is needed to express the conditional density.

2.4.5 Special Case: Gaussian D-vines

We observed in Section 2.4.3 that we can interpret the Linear Gaussian Bayesian Network
as a set of conditional normal distributions. For the D-vine approach there is a similar
conclusion for the special case of a Gaussian D-vine following Morales et al. (2008). It
gives a convenient specification of a multivariate normal distribution.

Definition 39. (Gaussian D-vine) Given a d-dimensional D-vine such that every modeled
copula is a Gaussian copula and every marginal follows a Gaussian distribution. Then,
the D-vine is called a Gaussian D-vine. Furthermore, each d-dimensional D-vine specifies
a d-dimensional normal distribution N(µ; Σ) with

µ =


µ1

...
µd

 and Σ =



σ2
1 p1,2σ1σ2 · · · p1,dσ1σd

p1,2σ1σ2 σ2
2

. . . ...

... . . . . . . pd−1,dσd−1σd

p1,dσ1σd · · · pd−1,dσd−1σd σ2
d


. The µi and σ2

i

i = 1, ..., d are given by the mean and the variance of the i-th marginal and the correlations
pi,j are specified by the copulas.

This leaves us with the translation of the copula parameters to the entries of the correlation
matrix. Each copula ci,i+1 of the first tree defines the i, i+1 entry of the correlation matrix
by its parameter with pi,i+1 = ρi,i+1. Since we only have d− 1 copulas in the first tree but
need d2−d

2
correlations this is not sufficient.
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To overcome this problem we follow Kendall and Stuart (1961) proposing that in multivari-
ate normal distributions conditional correlations, which we have given by the parameters
defined by the copulas in the lower trees, equal partial correlations. Hence, we can use
Equation (2.5) to calculate the missing correlations.

Example 14. (Correlation calculation in a four-dimensional Gaussian D-vine) Given a
D-vine on four variables U1, U2, U3 and U4, in this order, which have been transformed
from X1, X2, X3 and X4 using Gaussian margins, i.e., each variable Xi follows a N(µi;σi)

distribution. Further assume that it each copula of the D-vine is a Gaussian copula. Then,
p1,2, p2,3 and p3,4 are already defined by the parameters of the c1,2, c2,3 and c3,4 copula, i.e.,
p1,2 = ρ1,2 , p2,3 = ρ2,3 and p3,4 = ρ3,4. Apart from this the parameters of the copulas from
the deeper trees define conditional correlations, i.e., ρ1,3;2, ρ2,4;3 and ρ1,4;2,3. Rearranging
Equation (2.5) we can calculate p1,3 and p2,4 by

p1,3 = ρ1,3 = ρ1,3;2 ×
√

((1− ρ2
1,2)× (1− ρ2

2,3)) + ρ1,2 × ρ2,3

p2,4 = ρ2,4 = ρ2,4;3 ×
√

((1− ρ2
2,3)× (1− ρ2

3,4)) + ρ2,3 × ρ3,4

Now, only the p1,4 correlation is missing. To calculate it we need to repeat the application
of Equation (2.5) until we have all the necessary values to calculate p1,4.

p3,4;2 = ρ3,4;2 =
ρ3,4 − ρ2,3 × ρ2,4√
(1− ρ2

2,3)(1− ρ2
2,4)

p1,4;2 = ρ1,4;2 = ρ1,4;2,3 ×
√

((1− ρ2
1,3;2)× (1− ρ2

3,4;2)) + ρ1,3;2 × ρ3,4;2

and then finally

p1,4 = ρ1,4 = ρ1,4;2 ×
√

((1− ρ2
1,2)× (1− ρ2

2,4)) + ρ1,2 × ρ2,4

This gives us all the needed correlations to specify Σ and therefore the multivariate normal
distribution.

As we have already seen in Theorem 11 the conditional distribution of a multivariate
normal distribution is again a normal distribution. Equation (2.13) therefore also specifies
a conditional normal distribution. Hence, we can represent the Gaussian D-vine as a
Gaussian distribution. The only difference to fitting the Linear Gaussian Bayesian Network
directly, as in Section 2.4.3, is that there the optimization is performed in one step. For
the D-vine first the marginals have to be estimated to then be able to estimate the
corresponding copulas. Therefore we expect very similar outcomes in a LGBN and a
Gaussian D-vine, with the D-vine possibly fitting a little bit worse.
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Example 15. (Linear Gaussian conditional probability distribution specified by a four-
dimensional D-vine) Given the D-vine of the four variables X1, X2, X3 and X4 as in Ex-
ample 14. Then, it specifies a four-dimensional Gaussian distribution N(µ; Σ) as defined
in Definition 39. Following Theorem 11 we can calculate the conditional distribution of
X1 given X2, X3 and X4. By decomposing the joint density we obtain

µX =

µ2

µ3

µ4

 , µY = µ1, ΣXX =

 σ2
2 p2,3σ2σ3 p2,4σ2σ4

p2,3σ2σ3 σ2
3 p3,4σ3σ4

p2,4σ2σ4 p3,4σ3σ4 σ2
4

 , ΣXY =

p1,2σ1σ2

p1,3σ1σ3

p1,4σ1σ4

 ,

ΣYX = Σ>XY and ΣY Y = σ2
4

Plugging the above into the equations from Theorem 11

• β0 = µY − ΣYXΣ−1
XXµX

• β = Σ−1
XXΣYX

• σ2 = ΣY Y − ΣYXΣ−1
XXΣXY

we obtain the necessary parameters to define the conditional distribution of X1 given
X2 = x2, X3 = x3 and X4 = x4. Denoting x = (x2, x3, x4) we can write it as

(X1|X2, X3, X4) ∼ N(β0 + β>x;σ2)

Apart from knowing that the node corresponding to the variable we want to model has
to be the first node in the D-vine structure, we do not know in which order the other
variables appear in the structure. As the explanatory power depends on the specific order
we want to find a way to order these variables in a way that gives us the best fit without
having to test all possible combinations.

2.5 Structure Selection

Section 2.5 is based on Kraus and Czado (2017).

Given the variables Y,X1, ..., Xd and we want to model the conditional density of Y
given X1, ..., Xd using a D-vine. Then, Y has to be assigned to the first node but for the
X1, ..., Xd there are d! possible orderings on the remaining nodes of the D-vine. It does
not seem reasonable to try out all these possibilities to see which results in the ordering l

that maximizes the conditional goodness of fit. Instead we consider a procedure where we
stepwise improve the fit. We do this such that in the k-th step, k = 1, ..., d− 1, the k − 1
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nodes right of Y are known and we only find the best node to be at the k-th position right
of Y . Hence, after d− 1 steps we have an order l of the variable X1, ..., Xd that provides
us with the best goodness of fit. To formally introduce this we first need to define how we
measure this goodness of fit.

Definition 40. (Conditional copula log-likelihood) Given an estimated D-vine on the
data set (y, X) with ordering l, pair copula families B, corresponding parameters θ and
pseudo copula data (v, U) constructed by applying the PIT using the marginals F . Then
the conditional copula log-likelihood is defined as

cllC(l,B,θ;v, U) :=
n∑
i=1

ln cV |U(v(i)|u(i); l,B,θ) (2.14)

with cV |U being the right-hand side of Equation (2.12) without the marginal density so

cV |U :=

[
t−1∏
s=2

c1,s+1;2,...,s

]
× c1,2

Similar to Definition 22 we extend Definition 40 to penalize the use of parameters.

Definition 41. (AIC- and BIC-corrected conditional copula log-likelihood) Given the
same setting as in Definition 40 the Akaike information criterion (cllAICC ) and Bayesian
information criterion (cllBICC ) corrected conditional copula log-likelihood are defined as

cllAICC (l,B,θ;v, U) := −2 cllC(l,B,θ;v, U) + 2|θ|

cllBICC (l,B,θ;v, U) := −2 cllC(l,B,θ;v, U) + log(n)|θ|

In the following we will often refer to the contribution of each separate copula in cV |U .
We then speak of the copula log-likelihood of a specific copula even though, if we do not
speak of the c1,2 copula, it is technically a conditional copula log-likelihood. The same
holds for the cllAICC and cllBICC to which we, in correspondence with Definition 22, refer
to as AICC and BICC .

After having found a measure to quantify the fit of a D-vine we continue by introducing
a procedure to sequentially order the d predictor nodes in the D-vine. Assume that at
the beginning of the k-th step of the algorithm the current optimal D-vine contains k− 1

predictors. For each of the remaining variables Xj that have not been chosen yet, we fit
the pair copulas that are needed to extend the model to a D-Vine with Xj as the next
node. Then, the current model is updated by adding the variable corresponding to the
highest cllC , cllAICC or cllBICC depending on the measure of choice, concluding step k. This
way, step by step, the covariates are ordered regarding their power to predict the response.
If at some step k it is not possible to choose a covariate to increase the measure of choice,
then the algorithm terminates and the model only contains k − 1 predictors.
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2.6 Model Comparison

To this point, we have found two fundamentally different ways to model our data with the
help of graphical models by either modeling each conditional density as Linear Gaussian
CPD or using a D-Vine. In the second approach we can additionally vary the marginals
and copula families. Now, we are interested in a measure to compare these models with
each other. We will again use versions of the log-likelihood, and later the Akaike informa-
tion criterion and Bayesian information criterion for this. First however, we introduce a
way to decompose the log-likelihood of the whole model into the log-likelihoods of each
conditional density following Koller and Friedman (2009).

Theorem 13. (Global log-likelihood decomposition) Given a Bayesian Network on the

nodes X = (X1, ..., Xd) which is used to model a data set X =


x11 · · · x1d

... . . . ...
xn1 · · · xnd

 with

parameter vector θ = (θ1, ..., θr). Then, the global log-likelihood of the model can be
decomposed into

lF (θ, X) =
d∑
i=1

ln(lF,i(X;θXi|π(Xi)))

where lF,i(X;θXi|π(Xi)) is the local likelihood function, i.e., the conditional density function
of the node Xi given the parents π(Xi) of Xi and the parameters defining the CDF. In
our case the set θ is a disjoint set for the different CDFs, i.e., each conditional density is
modeled with its own set of parameters.

The remaining question is how the lF,i(X;θXi|π(Xi)) look like in the different models. For
the LGBN we have already seen this in Section 2.4.3.

Theorem 14. (Local likelihood function in the Linear Gaussian Bayesian Network) In the
Linear Gaussian Bayesian Network the local likelihood function is a conditional Gaussian
density following Theorem 11

lF,i(X;θXi|π(Xi)) ∼ N(β0 + β>π(Xi);σ
2)

with θXi|π(Xi) = (β0,β).

Hence, in the Linear Gaussian Bayesian Network the global log-likelihood is a sum over
log-likelihoods of conditional normal densities. For the D-vine models it is even more
simple as the local log-likelihood can be expressed by a sum over two measures which we
have already defined.
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Theorem 15. (Local log-likelihood in the D-vine model) In the D-vine model on the

data set X =


x11 · · · x1d

... . . . ...
xn1 · · · xnd

 the local log-likelihood of the node i with ordering l, pair

copula families B and parameters θXi|π(Xi) can be expressed as

lF,i(X;θXi|π(Xi)) = cllC(l,B,θC,Xi|π(Xi);ui, U)× lM(θM,Xi|π(Xi);xi)

Here U =


u11 · · · u1d

... . . . ...
un1 · · · und

 denotes the data set after applying the PIT with the chosen

marginals f1, ..., fd to the data set X. Furthermore, θC,Xi|π(Xi) and θM,Xi|π(Xi) denote the
parameters of the copulas and the marginals conditional on the parents ofXi in the model.

Proof. For D-vine models we have already seen a representation of the conditional densi-
ties in Equation (2.12). For readability reasons we will refer to the variables assigned to
the nodes according to l as introduced in Definition 31, i.e., X l

j is the variable assigned
to node j and especially X l

1 = Xi. Hence, we can write the conditional density as

f(xi|π(Xi)) = f1|2,...,t(x
l
1|xl2, ..., xlt) =

[
t−1∏
s=2

c1,s+1;2,...,s

]
× c1,2 × f1(xl1)

Now, we take the logarithm and use that we model the copulas and the
marginals on distinct parameter sets. Therefore, θXi|π(Xi) decomposes to
θXi|π(Xi) = (θC,Xi|π(Xi),θM,Xi|π(Xi)), and we can see that this splits up in into terms
that we have already defined

ln(lF,i(X;θXi|π(Xi))) = ln(f1|2,...,t(x
l
1|xl

2, ...,x
l
t,θXi|π(Xi)))

= ln

(
t−1∏
s=2

c1,s+1;2,...,s(F1|2,...,s(x
l
1|xl2,...,s), Fs+1|2,...,s(x

l
s+1|xl2,...,s));xl2,...,s,θC,Xi|π(Xi))

)
× ln

(
c1,2(F1(xl

1), F2(xl
2))θC,Xi|π(Xi) × f1(x1

l;θM,Xi|π(Xi))
)

= ln

(
n∏
j=1

t−1∏
s=2

c1,s+1;2,...,s(F1|2,...,s(x
l
j,1|xl

j,2,...,s), Fs+1|2,...,s(x
l
j,s+1|xl

j,2,...,s);x
l
j,2,...,s,θC,Xi|π(Xi))

)

× ln

(
n∏
j=1

c1,2(F1(xlj,1), F2(xlj,2);θC,Xi|π(Xi))× f1(xlj,1,θM,Xi|π(Xi))

)

=
n∑
j=1

t−1∑
s=2

ln
(
c1,s+1;2,...,s(F1|2,...,s(x

l
j,1|xl

2,...,s), Fs+1|j,2,...,s(x
l
j,s+1|xl

j,2,...,s);x
l
j,2,...,s,θC,Xi|π(Xi))

)
+

n∑
j=1

ln
(
c1,2(F1(xlj,1), F2(xlj,2);θC,Xi|π(Xi)) + f1(xlj,1,θM,Xi|π(Xi))

)
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Following Equation (2.14) and Equation (2.3) we can rewrite this as

= cllC(l,B,θC,Xi|π(Xi);ui, U)× lM(θM,Xi|π(Xi);xi)

with B being the chosen pair copula families in the model and l the order of the D-vine
which we denoted by X2, ..., Xt.

Hence, to calculate the local log-likelihood of a conditional density of a node in the D-
vine model we can sum up the marginal log-likelihood and the copula log-likelihood of
the node. Furthermore, to calculate the global log-likelihood of the model it is sufficient
to sum this up over all nodes.

Taking the number of parameters in the model into account, we can again define two
different versions of the Akaike- and Bayesian information criterion.

Definition 42. (Global and local Akaike- and Bayesian information criterion) Given the
global and local log-likelihood as in Theorem 13, then the local Akaike- and Bayesian
information criterion are defined as

• Local Akaike information criterion:

AICF,i(θXi|π(Xi), X) := −2lF,i(X;θXi|π(Xi)) + 2|θXi|π(Xi)|

• Local Bayesian information criterion:

BICF,i(θXi|π(Xi), X) := −2lF,i(X;θXi|π(Xi)) + ln(n)× |θXi|π(Xi)|

Additionally, the global Akaike- and Bayesian information criterion are defined as the sum
over the local Akaike- and Bayesian information criterion of all nodes, respectively.

Another way to compare models is to compare their ability to recreate the data set
on which they have been fitted. When fitting models which only consist of conditional
densities it might further be important to see how these conditional densities behave
when conditioned on different values. For both it is crucial to be able to sample from the
conditional densities given certain conditioning values. We have seen that the conditional
densities in the Linear Gaussian Bayesian Network each follow a Gaussian density. Hence,
here we only need to simulate from a Gaussian distribution. This can for example be done
by following the approach of Box and Muller (1958) and then rescaling according to the
parameters.

The tricky part about sampling from D-vine models is that we do not generally want
to sample the D-vine. An algorithm for this can for example be found in Czado (2019).
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Instead we want to sample from the D-vine given some of the covariates. For this, we refer
to the sampling algorithm from Bevacqua et al. (2017).

Theorem 16. (Conditional sampling from a D-vine) To create a uniform sample
U = (U1, ..., UNcond , UNcond+1, ..., Ud) from a d-dimensional D-vine given the correspond-
ing pair copulas, parameter matrix Θ and the values U1, ..., UNcond = ucond1 , ..., ucondNcond

it is
sufficient to follow the upcoming steps:

• Sample wNcond+1, ..., wd independent from [0, 1]

• IF Ncond 6= 0 THEN

– FOR i = 1, ..., Ncond DO

∗ wi = ucondi

– END FOR

• END IF

• u1 = v1,1 = w1

• IF Ncond < 2 THEN

– u2 = v2,1 = h−1(w2, v1,1, θ1,1)

• ELSE

– u2 = v2,1 = w2

• END IF

• v2,2 = h(v1,1, v2,1, θ1,1)

• FOR i = 3, ..., d DO

– vi,1 = wi

– IF i > Ncond then

∗ FOR k = i− 1, i− 2, ..., 2 DO

· vi,1 = h−1(vi,1, vi−1,2k−2, θk,i−k)

∗ END FOR

∗ vi,1 = h−1(vi,1, vi−1,1, θ1,i−1)

– END IF

– ui = vi,1
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– IF i = d THEN

∗ STOP

– END IF

– vi,2 = h(vi−1,1, vi,1, θ1,i−1)

– vi,3 = h(vi,1, vi−1,1, θ1,i−1)

– IF i > 3

∗ FOR j = 2, ..., i− 2 DO

· vi,2j = h(vi−1,2j−2, vi,2j−1, θj,i−j)

· vi,2j+1 = h(vi,2j−1, vi−1,2j−2, θj,i−j)

∗ END FOR

– END IF

– vi,2i−2 = h(vi−1,2i−4, vi,2i−3, θi−1,1)

• END FOR

Note that in the algorithm the D-vine is conditioned on the most left variables. Hence, to
sample from the first node, given all other nodes, we have to revert the order and set the
size of the conditioning set to d− 1.

Example 16. (Sampling on a four-dimensional D-vine) Given a D-vine on four variable
U1, U2, U3 and U4 in that order, and the corresponding pair copulas and parameter
matrix Θ. Assume that we want to draw a sample from U1 given U2 = u∗2, U3 = u∗3 and
U4 = u∗4. To follow the Algorithm from Theorem 16 we first need to revert the order, i.e.,
U1 → U4, U2 → U3, U3 → U2 and U4 → U1. With that notation we derive Ncond = 3,
U1, U2, U3 = ucond1 , ucond2 , ucond3 = u∗4, u

∗
3, u
∗
2 and Ncond+1 = d = 4. Now, we follow the steps

of the algorithm introduced in Theorem 16.

• Sample w4 independent from [0, 1]

• w1 = u∗4, w2 = u∗3 and w3 = u∗2

• u1 = v1,1 = w1

• u2 = v2,1 = w2

• v2,2 = h(v1,1, v2,1, θ1,1)

• i = 3:
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– v3,1 = w3

– u3 = v3,1

– v3,2 = h(v2,1, v3,1, θ1,2)

– v3,3 = h(v3,1, v2,1, θ1,2)

– v3,4 = h(v2,2, v3,3, θ2,1)

• i = 4:

– v4,1 = w4

∗ v4,1 = h−1(v4,1, v3,4, θ3,1)

∗ v4,1 = h−1(v4,1, v3,2, θ2,2)

– v4,1 = h−1(v4,1, v3,1, θ1,3)

– u4 = v4,1

• i = d⇒ STOP

Hence, the output of the algorithm is (u1, u2, u3, u4). Reverting the order to agree with
the original one. Then U1 = u4, U2 = u3 = u∗2, U3 = u2 = u∗3 and U4 = u1 = u∗4 is the final
sample.



Chapter 3

Data Exploration of the Sachs Dataset

In the following we will examine the "Sachs Protein Data" data set. The data set, in the
following abbreviated as Sachs data set, was first analyzed in "Causal Protein-Signaling
Networks Derived from Multiparameter Single-Cell Data" by Sachs et al. (2005). It con-
sists of logarithmized levels of 11 phosphoproteins and phospholipids in individual cells
after the cells have been perturbed. The researchers then used these measurements to
reconstruct the classic signaling network using Bayesian Network modeling.

While the original data set includes the results of 14 experiments, we will work with the
implementation from the sparsebn package from Aragam et al. (2019) which only takes
9 of the 14 experiments into account. These 9 experiments are namely: b2camp, cd3cd28,
cd3cd28 + aktinhib, cd3cd28 + g007, cd3cd28 + ly, cd3cd28 + psitect, cd3cd28 + u0126,
cd3cd28icam2 and pma. In the following we consider the different phosphoproteins and
phospholipids as nodes, representing a variable, and each level as a sample.

To later transform the data to the copula scale the corresponding marginal distribution for
each variable is needed, therefore choosing a suitable marginal distribution is crucial. First
though, we clean up the data set. In Table 3.1 we can observe that for the node pkc almost
ten percent of the samples are zero. Hence, independent of the marginal distribution that
we choose, there will always be a peak in the histogram after applying the PIT. Hence, we
will not be able to achieve a uniform distribution which is needed to correctly fit copulas
to the data. Thus, we first delete all 1305 rows in the data where at least one variable
equals zero. This now leaves us with a smaller data set with only 6161 samples.

raf mek plc pip2 pip3 erk akt pka pkc p38 jnk

14 115 122 134 79 164 3 16 698 165 159

Table 3.1: Quantity of samples that equal zero for each node
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Figure 3.1: Marginal histograms of each of the eleven nodes colored according to the
respective experiment the data is from

Table 3.2 shows us how the formerly described clean-up affected each of the experiments.
We observe that as most of the samples from the b2camp data set included the value zero
such that it now only contains 155 data points. Apart from that, also the cd3cd28+u0126

experiment and the cd3cd28 + psitect experiment contained many samples including zero
values and therefore shrunk notable.

Exp. b2camp cd3cd28 cd3cd28+akt. cd3cd28+g. cd3cd28+ly cd3cd28+psi. cd3cd28+u. cd3cd28icam2 pma
Before 707 853 911 723 848 810 799 902 913
After 155 817 845 695 801 604 508 863 873

Table 3.2: Number of samples in each of the nine experiments before and after the samples
containing at least one zero value have been deleted

Figure 3.1 shows the histograms of this new data set before transforming them to the
[0, 1]11-hypercube. Additionally the data is colored according to the respective experiment.
In the following we will first assume that the data in the Sachs data set is independent and
identically distributed throughout the whole data set, even though the colored histograms
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indicate that this might not hold. We observe notable differences throughout the different
experiments. The biggest differences in the histograms can be seen for the cd3cd28 + g007

experiment. Its data points lie mostly in the tails of the distributions, for example for the
nodes pka and p38.

Later we will repeat our analysis on some of the selected experiments only assuming that
the data within these experiments is independent and identically distributed. In addition
to that Figure 3.1 indicates that all nodes other than pip3 and erk follow a non-normal
marginal distribution.

Figure 3.2: Illustration of the consent DAG with partial correlations, conditioned on all
other nodes, as edge weights. Edges are colored in red if the absolute value of the empirical
partial correlations is bigger than 0.1

To be able to fit both types of our models, the D-vine copula approach and the Linear
Gaussian Bayesian Network, we need to make assumptions on which variables are depen-
dent and model these relationships as a graph. Instead of calculating this on our own
we instead use the already known dependence graph from Aragam et al. (2019). It is a
directed acyclic graph on 11 nodes with 20 edges. We refer to it in the following as the
consent DAG or only DAG. Figure 3.2 gives an illustration of the structure and Table 3.3
a topological order.
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X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11

pip3 plc pip2 pkc pka p38 jnk raf mek erk akt

Table 3.3: Topological order of the consent graph

As we will model each node dependent on the set of its parents it would be good to have
high dependencies between nodes that are connected via an edge and even better to have
low dependencies between nodes that are not connected. Looking at the values of Kendall’s
τ for all pairs of nodes in the upper triangle in Figure 5.2, to be found in Chapter 5.1, we
can see that the highest dependencies exist between the variables: raf ↔ mek, erk ↔ akt,
pkc↔ p38, plc↔ pip2 and p38↔ jnk. Of these only the nodes p38 and jnk with a value
of Kendall’s Tau of 0.31 miss an edge in the graph. This dependence might instead also
be related to the fact that both have the same set of parents and have at least a high
dependence to one of them, namely the to the node pkc.

Figure 3.3: Partial correlations, conditioned on all other nodes, between each set of nodes
in the Sachs data set

Further, we examine the partial correlations between the variables, i.e., how variable are
correlated given all other nodes, displayed in Figure 3.3. We observe that the five pairs of
nodes with the highest partial correlation each have an edge between them in the consent
DAG. In total ten of twenty node pairs that are connected in the consent graph by an
edge have a partial correlation bigger than 0.1. What also needs to be mentioned is the
edge pip3→ akt with a partial correlation of zero indicating independence.
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Now, we can start to fit our models. As already mentioned we will first assume an iden-
tical distribution throughout the Sachs data set. There, we will fit a Linear Gaussian
Bayesian Network as described in Section 2.4.3. After that, we will fit various D-vine re-
gression models where we vary the chosen marginals and copulas. To shorten the notation
we denote the models as MC models where the super scripted text of M denotes the
chosen marginals and the super scripted text of C denotes the chosen copulas with the
abbreviations following in the brackets. We will order the models such that in each step
we restrict the copulas or margins even more to see how the results worsen. For this, we
start by allowing for parametric and non-parametric copulas (pnp) then only for para-
metric (par) copulas and finally for only Gaussian (gauss) copulas. Each time using the
three different types of margins which we will fit in Chapter 5 descending in the goodness
of fit, i.e., kernel density margins (ker), Gaussian mixture margins (mix) and Gaussian
margins (gauss).

After this we check if it is possible to fit models to the data of certain experiments such
that the assumption of identical distributed data is less violated. The crucial part here is
to end up with big enough data sets, such that is reasonable to fit copula based models,
while it is still justifiable to assume the data is identical distributed. The notations in this
cases stay the same only a subscript is added to denote the part of the data on which
the models are fitted. Figure 3.4 shows a flowchart of the upcoming model fitting and
comparing.



Chapter 4

Linear Gaussian Bayesian Network
Fitting

The first model we fit to the Sachs data set is a Linear Gaussian Bayesian Network. Given
the graph in Figure 3.2 we can decompose its joint density, on the original scale, using
Equation (2.11)

f(Sachs) =
∏

node in Sachs

f(node|π(node))

= f(akt|erk, pka, pip3) ∗ f(erk|mek, pka) ∗ f(mek|raf, pka, pkc)

∗ f(raf |pka, pkc) ∗ f(jnk|pka, pkc) ∗ f(p38|pka, pkc) ∗ f(pka|pkc)

∗ f(pkc|pip2, plc) ∗ f(pip2|plc, pip3) ∗ f(plc|pip3) ∗ f(pip3)

(4.1)

Following Definition 38 we model every conditional density as a linear function of its
parents with additional Gaussian noise.

To fit the Linear Gaussian Bayesian Network we use the glm function from the stats
package implemented by the R Core Team (2020). Note that in the glm function the log-
likelihood and not the AICF is maximized. Therefore, we can assume that in the Linear
Gaussian Bayesian Network every possible dependency is modeled, even if the influence
on the fit of the model is marginal. As every modeled dependency has the same number of
parameters, the only influence on the amount of parameters is if a dependency is modeled
or not. Since each added dependency results in only one added parameter, the absolute
amount of parameters stays low for every conditional density and is limited by five, as
the maximum amount of parents of a node is four. Therefore, even if we later compare
the models based on the AICF the influence of the misspecification of the LGBN due to
the maximization of the log-likelihood when fitting is vanishing.
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Global
Node log-likelihood # Parameters AICF BICF

raf -8373.91 4 16755.81 16782.72
mek -6521.22 5 13052.44 13086.07
plc -10160.95 3 20327.90 20348.08

pip2 -9618.88 4 19245.76 19272.66
pip3 -8513.61 2 17031.22 17044.67
erk -8743.38 4 17494.77 17521.67
akt -5811.81 5 11633.62 11667.25
pka -10459.41 3 20924.83 20951.73
pkc -9009.44 4 18026.88 18053.79
p38 -6306.69 4 12621.37 12648.27
jnk -9362.29 4 18732.58 18759.48∑

: -92881.59 42 185847.18 186136.39

Table 4.1: Global log-likelihood, number of parameters, AICF and BICF of the fitted
linear models for each node given the set of its parents in the Linear Gaussian Bayesian
Network

Node β̂0 β̂ σ̂

raf 6.31 (-0.36, -0.03) 0.89
mek 0.53 (0.98, -0.16, 0.05) 0.49
plc 2.92 0.02 1.59
pip2 0.09 (0.80, 0.53) 1.33
pip3 2.84 0.93
erk 3.28 (-0.02, -0.06) 1.00
akt 3.28 (0.67, -0.22, -0.01) 0.39
pka 7.40 -0.59 1.75
pkc 1.48 (0.01, 0.38) 1.09
p38 3.84 (-0.31, 0.62) 0.45
jnk 3.62 (-0.28, 0.47) 1.22

Table 4.2: Estimated parameters of the conditional normal distributions N(β0 +β>x;σ2)

of each node on the set of its parents modeled in the Linear Gaussian Bayesian Network
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Table 4.1 shows the resulting log-likelihood, AICF and BICF of each conditional distribu-
tion. Overall, fitting a Linear Gaussian Network results in a log-likelihood of -92881.59,
an AICF of 185847.18 and a BICF of 186136.39 of the whole model. As the node
pip3 does not have any parents we here fit a univariate normal distribution to fulfill the
conditions of the model.

Following Definition 37 in the Linear Gaussian Bayesian Network each conditional distri-
bution is a conditional normal distribution of the form N(β0 + β>x;σ2). The estimated
parameters β̂0, β̂ and σ̂ can be seen in Table 4.2 where the order of the covariates is the
same as in Equation (4.1).



Chapter 5

Marginal Fitting

In D-vine regression based networks the chosen marginals not only appear in the mod-
eled conditional densities but also the copulas are modeled on the with the marginals
transformed data. Hence, choosing suitable marginals is a crucial part here.

In the following we will vary between three different approaches to estimate the mar-
gins. First, we estimate Gaussian margins Mgauss using the fitdistrplus package from
Delignette-Muller and Dutang (2015). In a second approach, to be able to model more
complex marginal densities, we fit Gaussian mixtures margins Mmix instead using the R-
packages mixtools from Benaglia et al. (2009) and nor1mix from Maechler (2019). Finally,
we use a non-parametric approach and fit kernel density estimates Mker as implemented
in kde1d from Nagler and Vatter (2019).

The measure that we optimize here is the AICM . Taking the BICM instead would not
result in significantly different results as the number of parameters is fixed when fitting
Gaussian margins or Gaussian mixture margins and only varies fractionally when using
kernel density margins on this data set.

To see if the chosen marginals are correct we use a graphical analysis on three types of
plots. We consider a density plot to see if the density matches the observed histograms,
a Q-Q plot to see if the quantiles of the fitted distribution match the empirical ones and
finally we plot the histogram after applying the probability integral transform. If the fitted
marginal is suitable, the data should then be approximately uniformly distributed.
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5.1 Gaussian Margin Fitting (Mgauss)

Overall, assuming independence, fitting Gaussian margins results in a log-likelihood of
the marginals of -109358.56, an AICM of 218761.13 and a BICM of 218909.09. The
detailed results for each node can be found in Table 5.1.

As we have seen in Figure 3.1 the marginal distributions of the nodes, apart from pip3

and erk, do not seem like they follow a Gaussian distribution. Looking at the graphical
analysis of the fitted Gaussian margins in Figure 5.1 it seems that our assumption for
these two nodes is correct. Especially the data of these two nodes after applying the PIT,
using the fitted Gaussian margins, seems to be uniformly distributed. This does not hold
for any other node. Therefore technically the requirements to fit a D-vine copula model
on this data set in combination with Gaussian margins are not fulfilled.

We observe that in the Linear Gaussian Bayesian Network the node pip3 is modeled as
an unconditional Gaussian distribution. It therefore coincides with the Gaussian margin
we fitted here.

Marginal
Node log-likelihood AICM BICM

raf -9204.76 18413.51 18426.97
mek -10789.50 21583.01 21596.46
plc -10161.41 20326.82 20340.27

pip2 -11724.33 23452.65 23466.10
pip3 -8513.61 17031.22 17044.67
erk -8765.56 17535.13 17548.58
akt -8710.61 17425.22 17438.67
pka -11182.07 22368.13 22381.58
pkc -9633.31 19270.62 19284.07
p38 -9960.84 19925.69 19939.14
jnk -10712.56 21429.13 21442.58∑

: -109358.56 218761.13 218909.09

Table 5.1: Marginal log-likelihood, AICM and BICM of the fitted Gaussian margins

We then applied the PIT using the chosen marginals in order to receive the data on the
copula scale which is needed to fit the copulas. Figure 5.2 shows the normalized pairwise
contour and scatter plots as well as again the histograms of the data on the copula scale.
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Figure 5.1: Density plot and Q-Q plot of the fitted Gaussian margins (in the first two
columns) and histogram of the data after applying the distribution function of the fitted
Gaussian margins for all nodes in the third column
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Figure 5.2: Normalized contour plots in the lower left triangle, normalized scatter plots
in the upper right triangle, with the value of Kendall’s tau displayed in the middle of
the plot, and histograms in the diagonal elements after applying the PIT using the fitted
Gaussian margins
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5.2 Gaussian Mixture Margin Fitting (Mmix)

We have already found suitable Gaussian margins for the nodes pip3 and erk, which are
a special case of Gaussian mixture margins, i.e., with one component, in Section 5.1.
Therefore, we also use them in this section. To quantify the number of components of the
Gaussian mixture margins for the remaining nodes we again look at Figure 3.1.

• raf : While raf almost seems to follow a normal distribution, looking closer we
can see that it is positively skewed, indicating it does not follow a simple normal
distribution but a mixture of two normal distributions

• mek: This node has two modes, one at around 3 and one at approximately 6. Addi-
tionally, it seems it has a small peak close to zero. As the modes do not appear to
be symmetric an additional component is needed for the model. Hence, we assume
it follows a mixture of four normal distributions

• plc: Similar to the node mek we can see two modes at 3 and 6. As the first one seems
to be negatively skewed, we add one more component to model the distribution
correctly and end up with a mixture of three normal distributions

• pip2: As in the two previous nodes we can see two peaks at 3 and 6. In addition, we
need one more component to model the small peak at zero. Hence, we again assume
a mixture of three normal distributions

• akt: For this node we only see one mode at 3 which is positively skewed indicating
the need of a second component. Therefore, we assume it follows a mixture of two
normal distributions

• pka: We can see two modes here, at 2 and at 6. As the second one is positively
skewed we need a third component to model the distribution correctly. Hence, we
assume it follows a mixture of three normal distributions

• pkc: Even though pkc has only one peak at 3 a simple normal distribution will
not suffice. Not only that is not symmetrical, it also has high values around zero.
Therefore, we assume a mixture of three normal distributions to model the node

• p38: As in some of the previous nodes we see two modes at 3 and 6, both being non-
symmetric. Hence, we assume a normal mixture distribution with four components

• jnk: Here, we can see one clear peak at 3, but as the distribution is not symmetric
we need a second component. Additionally, we observe a second mode at around 7.
Hence, we assume a mixture of three normal distributions
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Figure 5.3: Density plot and Q-Q plot of the fitted Gaussian mixture margins (in the first
two columns) and histogram of the data after applying the distribution function of the
fitted Gaussian mixture margins for all nodes in the third column
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Figure 5.4: Normalized contour plots in the lower left triangle, normalized scatter plots
in the upper right triangle, with the value of Kendall’s tau displayed in the middle of
the plot, and histograms in the diagonal elements after applying the PIT using the fitted
Gaussian mixture margins
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To see if our assumptions are correct we again use a graphical analysis. Looking at the
results in Figure 5.3 we can see that all the proposed distributions fit quite good, where
only for very small or big values the Q-Q plots show small inaccuracies. Overall, it seems
the estimated Gaussian mixture margins fit well, among others, as the data after applying
the PIT with Gaussian mixture margins seems to be approximately uniformly distributed.
It therefore fulfills the necessary condition to fit copulas to it. The resulting normalized
pairwise contour and scatter plots as well as again the histograms of the data on the
copula scale can be seen in Figure 5.4.

Assuming independence in all nodes, this results in an overall log-likelihood of the
marginals of -101244.90, an AICM of 202641.80 and a BICM of 203153.00.

Marginal
Node Distribution log-lik. # Parameters AICM BICM

raf two component normal -8972.36 5 17954.72 17988.35
mek four component normal -9361.27 11 18744.54 18818.52
plc three component normal -9277.45 8 18570.89 18624.70

pip2 three component normal -11332.45 8 22680.90 22734.71
pip3 normal -8513.61 2 17031.22 17044.67
erk normal -8765.56 2 17535.13 17548.58
akt two component normal -8152.43 5 16314.87 16348.50
pka three component normal -8909.55 8 17835.10 17888.91
pkc three component normal -9196.36 8 18408.73 18462.53
p38 four component normal -8224.14 11 16470.29 16544.27
jnk three component normal -10539.72 8 21095.43 21149.24∑

: -101244.90 76 202641.80 203153.00

Table 5.2: Marginal log-likelihood, number of parameters, AICM and BICM of the fitted
Gaussian mixture margins
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5.3 Kernel Density Margin Fitting (Mker)

As a third approach we fitted kernel density estimates for the margins. Looking at the
results in Figure 5.5 we can see almost the same results compared to the use of Gaussian
mixture margins in Figure 5.3, only the Q-Q plots seem to fit a little bit better. Therefore,
we also accept the proposed kernel density margins.

Assuming independence for all nodes this leads to an overall log-likelihood of the marginals
of -100636.10, an AICM of 201575.00 and a BICM of 202593.20. The detailed results
can be found in Table 5.3.

Marginal Effective
Node Distribution log-likelihood # parameters AICM BICM

raf kernel density -8943.97 14.87 17917.68 18017.66
mek kernel density -9286.63 19.65 18612.56 18744.74
plc kernel density -9229.39 14.61 18487.99 18586.23

pip2 kernel density -11247.11 10.30 22514.81 22584.06
pip3 kernel density -8416.39 10.87 16854.53 16927.66
erk kernel density -8740.15 4.11 17488.52 17516.18
akt kernel density -8110.79 18.70 16258.99 16384.80
pka kernel density -8850.50 20.44 17741.87 17879.34
pkc kernel density -9129.07 11.42 18280.98 18357.79
p38 kernel density -8179.29 16.96 16392.50 16506.58
jnk kernel density -10502.81 9.46 21024.52 21088.12∑

: -100636.10 151.39 201575.00 202593.20

Table 5.3: Marginal log-likelihood, number of effective parameters, AICM and BICM of
the fitted kernel density margins

Now, using these margins to transform our data to the copula scale, as displayed in
Figure 5.6, we can see almost the same pattern as in the approach with Gaussian mixture
margins.
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Figure 5.5: Density plot and Q-Q plot of the fitted kernel density margins (in the first two
columns) and histogram of the data after applying the distribution function of the fitted
kernel density margins for all nodes in the third column
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Figure 5.6: Normalized contour plots in the lower left triangle, normalized scatter plots
in the upper right triangle, with the value of Kendall’s tau displayed in the middle of
the plot, and histograms in the diagonal elements after applying the PIT using the fitted
kernel density margins



62 CHAPTER 5. MARGINAL FITTING

5.4 Comparison of Marginal Fits

Comparing the overall log-likelihood of the three different approaches to find the best
suiting margins, we observe that using Gaussian margins results in a significantly worse
fit than the other two. Further, looking at the log-likelihood of the Gaussian mixture
margins and kernel density margins, we observe that the second one is only a little bit
better. Taking the absolute value of the log-likelihood into account, this advantage is
almost negligible. Considering the log-likelihood of the individual nodes in these two
approaches, we can see that this holds for all of them, i.e., their marginals have an almost
equal log-likelihood when choosing Gaussian mixture margins or kernel density margins.

Comparing the AICM , instead of the log-likelihood, does not change the argument. This
holds due to the size of the log-likelihood and the fact that in both models the marginals
have, at least speaking of the order of magnitude, a similar number of parameters. In
total, in the kernel density margin approach twice as many effective parameters are used
as in the Gaussian mixture margin approach. The same holds when comparing the BICM .
Here, the parameters are only stressed approximately four times as strong as in the AICM .
Again due to the similar number of (effective) parameters there are no notable changes
in the outcome.

Comparing the by-node log-likelihood of these two similar approaches with the Gaussian
margin approach, we observe a strong worsening in the Gaussian approach for all nodes
except pip3, erk and jnk. For the first two nodes, the result is not surprising as pip3
and erk are also modeled as a Gaussian distribution in the Gaussian mixture margin
approach. For the node jnk we have already seen in its histogram in Figure 3.1 that it
almost follows a normal distribution if we ignore the small peak in the right tail. Hence, it
does seem reasonable that the difference for this node is rather small when comparing the
three approaches. Again, if we switch to any other goodness of fit measure, either AICM

or BICM , the arguments will not change. As before, this is due to the similar amount of
(effective) parameters, the size of the data set and in this case the notable differences in
the log-likelihood.

To highlight even more how similar the chosen Gaussian mixture margins and the kernel
density margins are we look at the scatter and contour plots after applying the PIT in
Figure 5.4 and Figure 5.6. In both cases we observe very similar patterns in the scatter
plots and shapes of the contour plots up to a level where it is hard to see any differences.
This is not the case when comparing them to the same plots for the fitted Gaussian
margins for the PIT in Figure 5.2. Especially in some of the scatter plots extremely
different patterns can be observed. Nevertheless, we can see in the scatter plots of the
three chosen margins that tail dependencies are present between almost all pairs of nodes.



5.4. COMPARISON OF MARGINAL FITS 63

In this context node pka is to be mentioned particularly. Small values for this node seem
to come in line with only very high values of all other nodes except pip3. While this
behavior is present when using Gaussian margins, in Figure 5.2, it can be observed more
clearly when using Gaussian mixture margins or kernel density margins in Figure 5.4 and
Figure 5.6.

Overall, the pseudo copula data when using Gaussian mixture margins or kernel density
margins for the PIT seems to be very similar. This does not hold when instead using
Gaussian margins for the probability integral transform. Therefore, we expect similar
results when fitting D-vine models with either Gaussian mixture margins or kernel density
margins. On the other hand using Gaussian margins might result in different copulas. If
the fit of the copulas is not superior in these models the fitted conditional densities will
automatically be worse than in the models with Gaussian mixture margins or kernel
density margins. This is due to the significantly worse fit of the Gaussian margins.
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D-vine Regression

To fit the D-vine regressions we again decompose the distribution in the same way as for
the Linear Gaussian Bayesian Network. In a next step we model the conditional densities
using copulas following Equation (2.12). Therefore, each node and its parents will be
modeled as a simplified D-vine.

The selected node whose conditional density is modeled will then be assigned to the first,
i.e., most left, node of the D-vine. If a node has more than one parent, the order of the
D-vines might change depending on the chosen marginals and copulas. In this case we use
numbers to denote the position in the order of the D-vine instead of the explicit nodes.
Hence, "1" denotes the response variable, i.e., the modeled node, "2" the second node in
the D-Vine and so on.

Therefore, we can write the joint density as

f(Sachs) =
∏

node in Sachs

f(node|π(node))

=
∏

node in Sachs

∏
# of trees in D−V ine

c(first copula in tree) ∗ f(node)

= c(akt 1) ∗ c(akt 2; 1) ∗ c(akt 3; 1, 2) ∗ f(akt) ∗ c(erk 1) ∗ c(erk 2; 1) ∗ f(erk)

∗ c(mek 1) ∗ c(mek 2; 1) ∗ c(mek 3; 1, 2) ∗ f(mek) ∗ c(raf 1) ∗ c(raf 2; 1) ∗ f(raf)

∗ c(jnk 1) ∗ c(jnk 2; 1) ∗ f(jnk) ∗ c(p38 1) ∗ c(p38 2; 1) ∗ f(p38)

∗ c(pka pkc) ∗ f(pka) ∗ c(pkc 1) ∗ c(pkc 2; 1) ∗ f(pkc)

∗ c(pip2 1) ∗ c(pip2 2; 1) ∗ f(pip2) ∗ c(plc pip3) ∗ f(plc) ∗ f(pip3)

In the following, when we speak of the goodness of fit of a node this refers to the goodness
of fit of its conditional density given the parents of the node.
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First, we will only look at the fit of the copulas per node and ignore the margin terms
in the conditional densities. We will speak here of the fit "of the copula terms". Later,
we will include the different choices of the marginals such that we are able to finalize
the models and compare them with the Linear Gaussian Bayesian Network modeled in
Chapter 4.

As a measure to optimize we use the AIC-corrected conditional log-likelihood AICC . If
instead we would take the BIC-corrected version BICC , similar to when fitting the margins,
this would not significantly change the results. This is due to the fact that in the cases
with only parametric or Gaussian copulas the number of parameters is fixed. Also, when
we allow for parametric and non-parametric copulas the number of parameters is not that
much larger that there are notable difference.

It is important to note that if one wants to use any other method than kernel density
margins to transform the input data to the copula scale before fitting the D-vine models
using the built-in regression function in the vinereg package changes have to be applied to
the source code. Otherwise, the regression function of the package automatically applies
kernel density estimates to the input data even if it is already approximately uniformly
distributed in [0, 1]d and performs a second PIT.
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6.1 Kernel Density Margins with Parametric and Non-

Parametric Copulas (MkerCpnp)

Transforming the data to the copulas scale using kernel density margins and then fit-
ting the copulas using the D-vine regression allowing for parametric and non-parametric
copulas results in a log-likelihood of 27699.15, an AICC of -54193.44 and a BICC of
-50141.44 of the copula terms.

D-vine Copula
Node order log-lik. AICC BICC

raf pka, pkc 1239.90 -2325.20 -1805.29
mek raf, pkc, pka 5618.52 -11051.44 -10427.22
plc pip3 525.89 -1001.89 -834.06

pip2 plc, pip3 4341.34 -8572.24 -8200.81
erk pka, mek 1558.95 -2985.48 -2540.14
akt erk, pka, pip3 5148.76 -10157.28 -9685.63
pka pkc 1202.51 -2338.71 -2115.73
pkc plc, pip2 1263.94 -2410.94 -2017.66
p38 pkc, pka 4634.90 -9131.93 -8668.29
jnk pkc, pka 2164.43 -4218.33 -3846.61∑

: 27699.15 -54193.44 -50141.44

Table 6.1: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MkerCpnp model

The detailed results for each node can be seen in Table 6.1. We observe that in the model
all of the twenty edges in the DAG are modeled using a copula. A list of these copulas
can be found in Table 6.2 where we can see that nineteen of them are modeled as a
non-parametric copula and only one, i.e., the cakt,pip3;erk,pka copula, as a parametric one.
Contour plots of the fitted copulas are illustrated in Section 6.3 in Figure 6.1 together
with the ones from the MmixCpnp model and the MgaussCpnp model.

Effective Copula
Node Pair copula Family # parameters log-lik. AICC BICC Est. Ken. τ

raf
raf pka tll 36.97 1116.67 -2159.41 -1910.78 -0.22

raf pkc; pka tll 40.33 123.23 -165.79 105.49 0.10

mek
mek raf tll 35.51 5373.82 -10676.63 -10437.81 0.64

mek pkc; raf tll 27.42 181.41 -307.99 -123.58 0.11
mek pka; raf pkc tll 29.88 63.29 -66.82 134.17 -0.22

plc plc pip3 tll 24.95 525.89 -1001.89 -834.06 0

pip2
pip2 plc tll 26.72 3228.61 -6403.79 -6224.10 0.38

pip2 pip3; plc tll 28.51 1112.73 -2168.45 -1976.71 0.25

erk
erk pka tll 33.97 1433.57 -2799.20 -2570.7 0.06

erk mek; pka tll 32.24 125.38 -186.28 30.56 0.03

akt
akt erk tll 29.44 4376.55 -8694.21 -8496.17 0.59

akt pka; erk tll 39.68 770.75 -1462.14 -1195.26 0.01
akt pip3; erk pka frank 1.00 1.47 -0.93 5.80 -0.09

pka pka pkc tll 33.15 1202.51 -2338.71 -2115.73 -0.15

pkc
pkc plc tll 29.76 1228.73 -2397.94 -2197.78 0.14

pkc pip2; plc tll 28.71 35.21 -13.00 180.12 0.16

p38
p38 pkc tll 36.68 4428.45 -8783.52 -8536.78 0.57

p38 pka; pkc tll 32.25 206.45 -348.41 -131.51 -0.20

jnk
jnk pkc tll 28.30 2029.11 -4001.62 -3811.31 0.25

jnk pka; pkc tll 26.97 135.33 -216.71 -35.30 -0.13

Table 6.2: Summary of all copulas fitted in the MkerCpnp model
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6.2 Gaussian Mixture Margins with Parametric and

Non-Parametric Copulas (MmixCpnp)

Instead transforming the data to the copulas scale using Gaussian mixture margins and
then fitting the copulas using the D-vine regression allowing for parametric and non-
parametric copulas results in a log-likelihood of 27585.26, an AICC of -54046.21 and a
BICC of -50265.02 of the copula terms.

D-vine Copula
Node order log-lik. AICC BICC

raf pka, pkc 1246.03 -2356.53 -1900.71
mek raf, pkc, pka 5582.16 -10987.23 -10391.68
plc pip3 516.07 -959.16 -713.72

pip2 plc, pip3 4297.59 -8484.32 -8111.51
erk pka, mek 1560.08 -2992.08 -2561.31
akt erk, pka, pip3 5138.75 -10131.24 -9639.35
pka pkc 1199.86 -2340.47 -2141.19
pkc plc, pip2 1224.98 -2394.34 -2207.31
p38 pkc, pka 4665.35 -9201.86 -8768.53
jnk pkc, pka 2154.39 -4198.98 -3829.71∑

: 27585.26 -54046.21 -50265.02

Table 6.3: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MmixCpnp model

Table 6.3 shows the results for each node. We observe that in the model again all
twenty edges in the DAG are modeled using a copula. The list of copulas modeled in
the MmixCpnp model can be found in Table 6.4 where we can see that eighteen of them
are modeled as a non-parametric copula and two, i.e., the cakt,pip3;erk,pka and the cpkc,pip2;plc

copula, as a parametric one. Contour plots of the fitted copulas can be found in Section 6.3
in Figure 6.1.

Effective Copula
Node Pair copula Family # parameters log-lik. AICC BICC Est. Ken. τ

raf
raf pka tll 34.14 1119.28 -2170.28 -1940.67 -0.22

raf pkc; pka tll 33.63 126.75 -186.25 39.96 0.10

mek
mek raf tll 34.81 5348.02 -10626.43 -10392.33 0.64

mek pkc; raf tll 23.92 178.61 -309.37 -148.46 0.11
mek pka; raf pkc tll 29.81 55.53 -51.43 149.11 -0.22

plc plc pip3 tll 36.49 516.07 -959.16 -713.72 0

pip2
pip2 plc tll 23.92 3205.13 -6362.40 -6201.49 0.38

pip2 pip3; plc tll 31.50 1092.46 -2121.92 -1910.02 0.25

erk
erk pka tll 31.86 1435.08 -2806.43 -2592.11 0.06

erk mek; pka tll 32.18 125.01 -185.65 30.80 0.03

akt
akt erk tll 32.17 4336.67 -8608.99 -8392.59 0.59

akt pka; erk tll 39.96 800.90 -1521.88 -1253.12 0.01
akt pip3; erk pka frank 1.00 1.19 -0.37 6.36 -0.09

pka pka pkc tll 29.63 1199.86 -2340.47 -2141.19 -0.15

pkc
pkc plc tll 26.81 1223.12 -2392.63 -2212.33 0.14

pkc pip2; plc clayton 1.00 1.85 -1.71 5.02 0.16

p38
p38 pkc tll 34.87 4454.75 -8839.77 -8605.25 0.57

p38 pka; pkc tll 29.56 210.60 -362.09 -163.28 -0.20

jnk
jnk pkc tll 25.25 2021.56 -3992.61 -3822.75 0.25

jnk pka; pkc tll 29.65 132.83 -206.37 -6.96 -0.13

Table 6.4: Summary of all copulas fitted in the MmixCpnp model
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6.3 Gaussian Margins with Parametric and Non-

Parametric Copulas (MgaussCpnp)

As a third approach to transform the data to the copula scale we use Gaussian margins
and then allow for parametric and non-parametric copulas in the D-vine regression. This
results in a log-likelihood of 23993.53, an AICC of -46336.37 and a BICC of -40785.13
of the copula terms.

D-vine Copula
Node order log-lik. AICC BICC

raf pka, pkc 1170.45 -2227.48 -1846.08
mek raf, pka, pkc 5884.02 -11586.52 -10976.06
plc pip3 165.01 -222.22 140.28

pip2 plc, pip3 2416.08 -4739.43 -4427.60
erk pka, mek 1080.37 -2021.97 -1555.29
akt erk, pka 4488.86 -8477.06 -6793.34
pka pkc 1207.66 -2269.58 -1779.43
pkc plc, pip2 1356.81 -2517.94 -1859.86
p38 pkc, pka 4058.33 -8024.75 -7715.65
jnk pkc, pka 2165.94 -4249.42 -3972.10∑

: 23993.53 -46336.37 -40785.13

Table 6.5: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MgaussCpnp model

To examine the fit of each node, Table 6.5 shows the results for each of them. Note that
the dependency of akt from pip3 is not modeled. This time six of nineteen copulas are
modeled as a parametric one. A list of all copulas is displayed in Table 6.6. Contour plots
of the fitted copulas can be found in Figure 6.1.

Effective Copula
Node Pair copula Family # parameters log-lik. AICC BICC Est. Ken. τ

raf
raf pka bb8 2.00 1013.06 -2022.11 -2008.66 -0.22

raf pkc; pka tll 54.71 157.39 -205.37 162.58 0.10

mek
mek raf bb6 2.00 4895.28 -9786.55 -9773.10 0.64

mek pka; raf tll 42.34 807.46 -1530.24 -1245.43 -0.22
mek pkc; raf pka tll 46.42 181.28 -269.73 42.47 0.11

plc plc pip3 tll 53.90 165.01 -222.22 140.28 0

pip2
pip2 plc t 2.00 1572.98 -3141.95 -3128.50 0.38

pip2 pip3; plc tll 44.36 843.10 -1597.48 -1299.10 0.25

erk
erk pka tll 67.38 941.11 -1747.46 -1294.23 0.06

erk mek; pka bb8 2.00 139.26 -274.51 -261.06 0.03

akt
akt erk tll 53.15 2982.76 -5859.21 -5501.71 0.59

akt pka; erk tll 197.18 1506.11 -2617.85 -1291.63 0.01
pka pka pkc tll 72.87 1207.66 -2269.58 -1779.43 -0.15

pkc
pkc plc tll 52.00 1211.87 -2319.73 -1969.95 0.14

pkc pip2; plc tll 45.84 144.94 -198.21 110.09 0.16

p38
p38 pkc gumbel 1.00 3081.91 -6161.82 -6155.09 0.57

p38 pka; pkc tll 44.96 976.42 -1862.93 -1560.56 -0.20

jnk
jnk pkc tll 39.23 2005.32 -3932.19 -3668.32 0.25

jnk pka; pkc bb7 2.00 160.61 -317.23 -303.78 -0.13

Table 6.6: Summary of all copulas fitted in the MgaussCpnp model
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(a) MkerCpnp (b) MmixCpnp (c) MgaussCpnp

Figure 6.1: Contour plots of the respective copulas in the models allowing for parametric
and non-parametric pair copulas where kernel density margins, Gaussian mixture margins
or Gaussian margins were used for the PIT
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6.4 Kernel Density Margins with Parametric Copulas

(MkerCpar)

Transforming the data to the copulas scale using kernel density margins and then fitting
the copulas using the D-vine regression allowing only for parametric copulas results in
a log-likelihood of 19042.41, an AICC of -38020.84 and a BICC of -37805.57 of the
copula terms.

D-vine Copula
Node order log-lik. AICC BICC

raf pka, pkc 794.14 -1580.28 -1553.36
mek raf, pka, pkc 5260.60 -10515.20 -10495.01
plc pip3 32.77 -63.54 -56.81

pip2 plc, pip3 2675.20 -5342.39 -5315.49
erk pka, mek 316.10 -626.21 -606.03
akt erk, pka, pip3 3249.16 -6486.32 -6445.97
pka pkc 674.83 -1345.66 -1332.21
pkc plc, pip2 698.03 -1390.06 -1369.87
p38 pkc, pka 4006.29 -8006.58 -7986.41
jnk pkc, pka 1335.30 -2664.60 -2644.41∑

: 19042.41 -38020.84 -37805.57

Table 6.7: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MkerCpar model

The detailed results for each node are displayed in Table 6.7. As in the previous model
where kernel density margins were used all dependencies from the DAG are modeled. A
list of the copulas can be found in Table 6.8. Note that not a single copula is modeled as
a Gaussian copula. The contour plots of the fitted copulas can be found in Section 6.6 in
Figure 6.2 together with the ones from the MmixCpar model and the MgaussCpar model.

Copula
Node Pair copula Family Rotation log-lik. AICC BICC 1. Par. 2. Par. Est. Ken. τ

raf
raf pka bb8 270 769.87 -1535.74 -1522.28 1.78 0.97 -0.22

raf pkc; pka t 0 24.27 -44.54 -31.08 0 10.84 0.10

mek
mek raf joe 0 5157.49 -10312.99 -10306.26 5.00 0.64

mek pka; raf clayton 90 67.32 -132.64 -125.91 0.17 0.11
mek pkc; raf pka joe 180 35.79 -69.57 -62.84 1.05 -0.22

plc plc pip3 clayton 180 32.77 -63.54 -56.81 0.10 0

pip2
pip2 plc bb7 0 2027.09 -4050.18 -4036.73 2.14 0.35 0.38

pip2 pip3; plc bb8 0 648.11 -1292.21 -1278.76 4.09 0.56 0.25

erk
erk pka t 0 269.77 -535.54 -522.08 0.07 2.67 0.06

erk mek; pka clayton 270 46.34 -90.67 -83.95 0.11 0.03

akt
akt erk bb8 0 2905.74 -5807.48 -5794.03 4.51 0.89 0.59

akt pka; erk bb8 270 337.05 -670.10 -656.65 1.45 0.96 0.01
akt pip3; erk pka bb8 90 6.37 -8.74 4.71 1.16 0.76 -0.09

pka pka pkc bb8 90 674.83 -1345.66 -1332.21 1.54 0.99 -0.15

pkc
pkc plc bb8 0 691.19 -1378.38 -1364.92 1.53 1.00 0.14

pkc pip2; plc frank 0 6.84 -11.68 -4.95 0.27 0.16

p38
p38 pkc joe 0 3841.30 -7680.59 -7673.87 3.84 0.57

p38 pka; pkc bb8 270 164.99 -325.99 -312.54 1.40 0.93 -0.20

jnk
jnk pkc bb7 0 1280.26 -2556.53 -2543.07 1.78 0.14 0.25

jnk pka; pkc joe 270 55.03 -108.07 -101.34 1.10 -0.13

Table 6.8: Summary of all copulas fitted in the MkerCpar model
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6.5 Gaussian Mixture Margins with Parametric Copu-

las (MmixCpar)

If we use Gaussian mixture margins to transform the data to the copula scale and then fit
the copulas using the D-vine regression allowing only for parametric copulas this results
in a log-likelihood of 18933.93, an AICC of -37799.87 and a BICC of -37571.19 of the
copula terms.

D-vine Copula
Node order log-lik. AICC BICC

raf pka, pkc 800.24 -1592.48 -1565.58
mek raf, pka, pkc 5198.59 -10389.18 -10362.28
plc pip3 28.55 -55.10 -48.37

pip2 plc, pip3 2653.53 -5299.06 -5272.16
erk pka, mek 278.28 -550.56 -530.38
akt erk, pka, pip3 3273.49 -6534.98 -6494.63
pka pkc 671.30 -1338.60 -1325.14
pkc plc, pip2 682.87 -1359.73 -1339.55
p38 pkc, pka 4004.82 -8001.63 -7974.73
jnk pkc, pka 1342.27 -2678.55 -2658.37∑

: 18933.93 -37799.87 -37571.19

Table 6.9: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MmixCpar model

If one wants to look closer at the results for each node they can be seen in Table 6.9.
There, it is displayed that again all dependencies are modeled. The individual copulas
which are modeled are shown in Table 6.10. Here, again no single copula is modeled as
a Gaussian copula. The contour plots of the fitted copulas are given in Section 6.6 in
Figure 6.2.

Copula
Node Pair copula Family Rotation log-lik. AICC BICC 1. Par. 2. Par. Est. Ken. τ

raf
raf pka bb8 270 776.54 -1549.07 -1535.62 1.77 0.97 -0.22

raf pkc; pka t 0 23.71 -43.41 -29.96 0 10.52 0.10

mek
mek raf bb8 0 5109.24 -10214.48 -10201.03 4.96 1.00 0.64

mek pka; raf clayton 90 54.39 -106.77 -100.05 0.15 0.11
mek pkc; raf pka joe 180 34.96 -67.93 -61.20 1.06 -0.22

plc plc pip3 clayton 180 28.55 -55.10 -48.37 0.10 0

pip2
pip2 plc bb7 0 2016.64 -4029.28 -4015.83 2.14 0.37 0.38

pip2 pip3; plc bb8 0 636.89 -1269.78 -1256.33 3.99 0.57 0.25

erk
erk pka t 0 230.29 -456.58 -443.13 0.07 2.84 0.06

erk mek; pka clayton 270 47.99 -93.98 -87.25 0.11 0.03

akt
akt erk bb8 0 2884.33 -5764.67 -5751.22 4.59 0.88 0.59

akt pka; erk bb8 270 382.00 -760.00 -746.55 1.45 0.97 0.01
akt pip3; erk pka bb8 90 7.15 -10.31 3.14 1.16 0.79 -0.09

pka pka pkc bb8 90 671.30 -1338.60 -1325.14 1.54 0.99 -0.15

pkc
pkc plc bb8 90 675.27 -1346.54 -1333.09 1.54 0.99 0.14

pkc pip2; plc frank 0 7.60 -13.19 -6.46 0.29 0.16

p38
p38 pkc bb7 0 3839.17 -7674.34 -7660.89 3.81 0.06 0.57

p38 pka; pkc bb8 270 165.65 -327.29 -313.84 1.40 0.93 -0.20

jnk
jnk pkc bb7 0 1284.02 -2564.04 -2550.59 1.78 0.15 0.25

jnk pka; pkc joe 270 58.25 -114.51 -107.78 1.10 -0.13

Table 6.10: Summary of all copulas fitted in the MmixCpar model
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6.6 Gaussian Margins with Parametric Copulas

(MgaussCpar)

Instead using Gaussian margins to transform the data to the copula scale and then fit
the copulas using the D-vine regression allowing only for parametric copulas results in
a log-likelihood of 20722.79, an AICC of -41373.59 and a BICC of -41131.46 of the
copula terms.

D-vine Copula
Node order log-lik. AICC BICC

raf pka, pkc 1097.47 -2186.95 -2160.05
mek raf, pka, pkc 5605.06 -11198.12 -11157.77
plc pip3 9.05 -16.10 -9.37

pip2 plc, pip3 2292.29 -4576.59 -4549.68
erk mek, pka 202.24 -396.49 -369.58
akt erk, pka, pip3 3618.07 -7224.14 -7183.79
pka pkc 1023.43 -2042.87 -2029.42
pkc plc 953.83 -1903.65 -1890.20
p38 pkc, pka 4293.46 -8580.92 -8560.74
jnk pkc, pka 1627.88 -3247.76 -3220.86∑

: 20722.79 -41373.59 -41131.46

Table 6.11: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MgaussCpar model

The goodness of fit measures of the individual nodes can be found in Table 6.11. Note that
in this model the dependency of pkc from pip2 is not modeled. The individual copulas are
displayed in Table 6.12. Here, as well as in the other two models where only parametric
copulas are used, no single copula is modeled as a Gaussian copula. The contour plots of
the fitted copulas are displayed in Figure 6.2.

Copula
Node Pair copula Family Rotation log-lik. AICC BICC 1. Par. 2. Par. Est. Ken. τ

raf
raf pka bb8 270 1013.06 -2022.11 -2008.66 2.45 0.88 -0.22

raf pkc; pka bb8 270 84.42 -164.84 -151.39 1.13 0.10

mek
mek raf bb6 0 4895.28 -9786.55 -9773.10 1.99 1.95 0.64

mek pka; raf bb8 270 644.12 -1284.24 -1270.79 1.79 0.95 0.11
mek pkc; raf pka t 0 65.67 -127.33 -113.88 -0.01 6.64 -0.22

plc plc pip3 clayton 180 9.05 -16.10 -9.37 0.04 0

pip2
pip2 plc t 0 1572.98 -3141.95 -3128.50 0.62 14.81 0.38

pip2 pip3; plc bb8 0 719.32 -1434.64 -1421.18 5.52 0.47 0.25

erk
erk mek t 0 171.61 -339.21 -325.76 0.06 4.36 0.03

erk pka; mek t 0 30.64 -57.28 -43.82 -0.04 11.12 0.06

akt
akt erk bb8 0 2487.68 -4971.35 -4957.90 5.57 0.75 0.59

akt pka; erk bb8 270 1123.02 -2242.05 -2228.60 2.17 0.92 0.01
akt pip3; erk pka bb8 90 7.37 -10.74 2.71 1.08 0.99 -0.09

pka pka pkc bb8 90 1023.43 -2042.87 -2029.42 1.76 0.98 -0.15
pkc pkc plc bb8 90 953.83 -1903.65 -1890.20 1.76 0.98 0.14

p38
p38 pkc gumbel 0 3081.91 -6161.82 -6155.09 2.23 0.57

p38 pka; pkc bb8 270 1211.55 -2419.10 -2405.65 3.98 0.74 -0.20

jnk
jnk pkc bb7 0 1448.77 -2893.53 -2880.08 1.74 0.20 0.25

jnk pka; pkc bb7 90 179.12 -354.23 -340.78 1.06 0.18 -0.13

Table 6.12: Summary of all copulas fitted in the MgaussCpar model
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(a) MkerCpar (b) MmixCpar (c) MgaussCpar

Figure 6.2: Contour plots of the respective copulas in the models with only parametric
copulas where kernel density margins, Gaussian mixture margins or Gaussian margins
were used for the PIT
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6.7 Kernel Density Margins with Gaussian Copulas

(MkerCgauss)

Restricting the set of copula families to only Gaussian copulas in the D-vine regression
and using kernel density margins to transform the data to the copula scale results in
a log-likelihood of 11874.60, an AICC of -23709.19 and a BICC of -23574.66 of the
copula terms.

D-vine Copula
Node order log-lik. AICC BICC

raf pka, pkc 412.65 -821.30 -807.85
mek raf, pkc, pka 3271.45 -6536.90 -6516.71
plc pip3 4.39 -6.78 -0.06

pip2 plc, pip3 1910.02 -3816.05 -3802.59
erk pka, mek 38.61 -73.23 -59.78
akt erk, pka, pip3 2353.47 -4700.93 -4680.75
pka pkc 251.68 -501.36 -494.63
pkc plc, pip2 320.93 -637.87 -624.41
p38 pkc, pka 2455.79 -4907.58 -4894.14
jnk pkc, pka 855.60 -1707.19 -1693.74∑

: 11874.60 -23709.19 -23574.66

Table 6.13: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MkerCgauss model

Detailed results for each node are displayed in Table 6.13. As in the previous models where
kernel density margins were used for the PIT all dependencies from the DAG are modeled.
A list of copulas can be found in Table 6.14. The contour plots of the fitted copulas are
displayed in Section 6.9 in Figure 6.3 together with the ones from the MmixCgauss model
and the MgaussCgauss model.

Copula
Node Pair copula Family log-lik. AICC BICC Par. Est. Ken. τ

raf
raf pka gaussian 398.67 -795.33 -788.61 -0.35 -0.22

raf pkc; pka gaussian 13.98 -25.97 -19.24 0.07 0.10

mek
mek raf gaussian 3198.08 -6394.16 -6387.43 0.80 0.64

mek pkc; raf gaussian 51.39 -100.79 -94.06 0.13 0.11
mek pka; raf pkc gaussian 21.98 -41.95 -35.22 -0.08 -0.22

plc plc pip3 gaussian 4.39 -6.78 -0.06 0.04 0

pip2
pip2 plc gaussian 1405.94 -2809.87 -2803.14 0.60 0.38

pip2 pip3; plc gaussian 504.09 -1006.18 -999.45 0.39 0.25

erk
erk pka gaussian 28.80 -55.60 -48.88 0.10 0.06

erk mek; pka gaussian 9.81 -17.63 -10.90 0.06 0.03

akt
akt erk gaussian 2224.36 -4446.71 -4439.99 0.72 0.59

akt pka; erk gaussian 123.62 -245.24 -238.51 -0.20 0.01
akt pip3; erk pka gaussian 5.49 -8.98 -2.25 -0.04 -0.09

pka pka pkc gaussian 251.68 -501.36 -494.63 -0.28 -0.15

pkc
pkc plc gaussian 261.19 -520.38 -513.65 0.28 0.14

pkc pip2; plc gaussian 59.74 -117.49 -110.76 0.14 0.16

p38
p38 pkc gaussian 2298.39 -4594.78 -4588.06 0.72 0.57

p38 pka; pkc gaussian 157.40 -312.80 -306.08 -0.22 -0.20

jnk
jnk pkc gaussian 776.30 -1550.60 -1543.87 0.47 0.25

jnk pka; pkc gaussian 79.30 -156.59 -149.87 -0.16 -0.13

Table 6.14: Summary of all copulas fitted in the MkerCgauss model
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6.8 Gaussian Mixture Margins with Gaussian Copulas

(MmixCgauss)

Using Gaussian mixture margins for the PIT to transform the data to the copula scale
and then using only Gaussian copulas in the D-vine regression results in a log-likelihood
of 11767.73, an AICC of -23495.45 and a BICC of -23360.93 of the copula terms.

D-vine Copula
Node order log-lik. AICC BICC

raf pka, pkc 417.38 -830.75 -817.30
mek raf, pkc, pka 3261.15 -6516.30 -6496.12
plc pip3 2.79 -3.58 3.14

pip2 plc, pip3 1889.09 -3774.17 -3760.72
erk pka, mek 36.19 -68.38 -54.93
akt erk, pka, pip3 2243.36 -4480.71 -4460.53
pka pkc 256.32 -510.65 -503.92
pkc plc, pip2 324.13 -644.26 -630.81
p38 pkc, pka 2467.63 -4931.26 -4917.80
jnk pkc, pka 869.70 -1735.39 -1721.94∑

: 11767.73 -23495.45 -23360.93

Table 6.15: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MmixCgauss model

Results for each node are displayed in Table 6.15. Again as in the previous models where
Gaussian mixture margins were used for the PIT all dependencies from the DAG are
modeled. The copulas that are estimated in the MmixCgauss model can be found in
Table 6.16. Additionaly the contour plots of the fitted copulas are displayed in Section 6.9
in Figure 6.3.

Copula
Node Pair copula Family log-lik. AICC BICC Par. Est. Ken. τ

raf
raf pka gaussian 403.60 -805.20 -798.48 -0.35 -0.22

raf pkc; pka gaussian 13.77 -25.55 -18.82 0.07 0.10

mek
mek raf gaussian 3187.30 -6372.61 -6365.88 0.80 0.64

mek pkc; raf gaussian 51.01 -100.03 -93.30 0.13 0.11
mek pka; raf pkc gaussian 22.83 -43.66 -36.94 -0.09 -0.22

plc plc pip3 gaussian 2.79 -3.58 3.14 0.03 0

pip2
pip2 plc gaussian 1402.82 -2803.64 -2796.91 0.60 0.38

pip2 pip3; plc gaussian 486.27 -970.53 -963.81 0.38 0.25

erk
erk pka gaussian 29.55 -57.11 -50.38 0.10 0.06

erk mek; pka gaussian 6.64 -11.27 -4.55 0.05 0.03

akt
akt erk gaussian 2113.49 -4224.97 -4218.24 0.70 0.59

akt pka; erk gaussian 124.47 -246.94 -240.21 -0.20 0.01
akt pip3; erk pka gaussian 5.40 -8.80 -2.08 -0.04 -0.09

pka pka pkc gaussian 256.32 -510.65 -503.92 -0.28 -0.15

pkc
pkc plc gaussian 260.53 -519.06 -512.33 0.28 0.14

pkc pip2; plc gaussian 63.60 -125.20 -118.48 0.14 0.16

p38
p38 pkc gaussian 2314.38 -4626.77 -4620.04 0.73 0.57

p38 pka; pkc gaussian 153.24 -304.49 -297.76 -0.22 -0.20

jnk
jnk pkc gaussian 788.25 -1574.51 -1567.78 0.48 0.25

jnk pka; pkc gaussian 81.44 -160.88 -154.16 -0.16 -0.13

Table 6.16: Summary of all copulas fitted in the MmixCgauss model
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6.9 Gaussian Margins with Gaussian Copulas

(MgaussCgauss)

Finally using Gaussian margins together with Gaussian copulas in the D-vine regression
results in a log-likelihood of 16144.37, an AICC of -32254.75 and a BICC of -32140.40
of the copula terms.

D-vine Copula
Node order log-lik. AICC BICC

raf pka, pkc 830.82 -1657.63 -1644.18
mek raf, pka, pkc 4268.49 -8530.99 -8510.81
plc

pip2 plc, pip3 2105.36 -4206.71 -4193.25
erk pka 20.58 -39.15 -32.43
akt erk, pka, pip3 2625.44 -5244.88 -5224.71
pka pkc 690.23 -1378.45 -1371.73
pkc plc 601.84 -1201.67 -1194.94
p38 pkc, pka 3652.30 -7300.60 -7287.14
jnk pkc, pka 1349.33 -2694.67 -2681.21∑

: 16144.37 -32254.75 -32140.40

Table 6.17: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MgaussCgauss model

Table 6.17 shows the results for each node. In this model three dependencies of the graph
are not modeled. Namely mek → erk, pip2→ pkc and pip3→ plc. Especially the last one
is interesting as it is the only dependency of the node plc, meaning that in this model plc
is modeled independent of all other nodes. The remaining copulas which are estimated
can be found in Table 6.18 and the respective contour plots in Figure 6.3.

Copula
Node Pair copula Family log-lik. AICC BICC Par. Est. Ken. τ

raf
raf pka gaussian 826.44 -1650.89 -1644.16 -0.49 -0.22

raf pkc; pka gaussian 4.37 -6.74 -0.02 -0.04 0.10

mek
mek raf gaussian 3915.99 -7829.99 -7823.26 0.85 0.64

mek pka; raf gaussian 336.79 -671.59 -664.86 -0.32 0.11
mek pkc; raf pka gaussian 15.71 -29.41 -22.69 0.07 -0.22

pip2
pip2 plc gaussian 1545.35 -3088.70 -3081.97 0.63 0.38

pip2 pip3; plc gaussian 560.01 -1118.01 -1111.28 0.41 0.25
erk erk pka gaussian 20.58 -39.15 -32.43 -0.07 0.06

akt
akt erk gaussian 2125.42 -4248.85 -4242.12 0.71 0.59

akt pka; erk gaussian 498.70 -995.39 -988.67 -0.21 0.01
akt pip3; erk pka gaussian 1.32 -0.64 6.08 -0.02 -0.09

pka pka pkc gaussian 690.23 -1378.45 -1371.73 -0.38 -0.15
pkc pkc plc gaussian 601.84 -1201.67 -1194.94 0.36 0.14

p38
p38 pkc gaussian 2697.70 -5393.40 -5386.67 0.76 0.57

p38 pka; pkc gaussian 954.60 -1907.20 -1900.47 -0.53 -0.20

jnk
jnk pkc gaussian 1032.88 -2063.77 -2057.04 0.52 0.25

jnk pka; pkc gaussian 316.45 -630.90 -624.17 -0.32 -0.13

Table 6.18: Summary of all copulas fitted in the MgaussCgauss model
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(a) MkerCgauss (b) MmixCgauss (c) MgaussCgauss

Figure 6.3: Contour plots of the respective copulas in the models with only Gaussian
copulas where kernel density margins, Gaussian mixture margins or Gaussian margins
were used for the PIT
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As we have already stated in Section 5.1 the conditions to fit a D-vine after using Gaussian
margins for the PIT are not fulfilled. Here, we observe this by noting that the relationship
between Kendall’s τ and the parameter of the Gaussian copulas, as derived in Theorem 7,
is not fulfilled for all copulas.

Furthermore, we have observed in Section 2.4.5 that a Gaussian D-vine specifies a Gaus-
sian distribution. Conditioning on the D-vine therefore results in a conditional Gaussian
distribution. The respective parameters of the conditional distributions can be found in
Table 6.19.

Node β̂0 β̂ σ̂

raf 6.29 ( -0.36, -0.03) 0.89
mek 0.55 (0.98, -0.17, 0.05) 0.49
plc 2.97 1.59
pip2 0.08 (0.81, 0.53) 1.33
pip3 2.84 0.93
erk 3.12 -0.05 1.00
akt 2.52 (0.69, -0.10, -0.02) 0.47
pka 7.13 -0.49 1.89
pkc 1.69 0.33 1.16
p38 3.71 (-0.30, 0.66) 0.45
jnk 3.58 (-0.28, 0.49) 1.23

Table 6.19: Estimated parameters of the conditional normal distributions N(β0 +β>x;σ2)

of each node on the set of its parents modeled in the Gaussian D-vine in the MgaussCgauss

model. The order of the parents is the same as in Table 4.2
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6.10 Comparison of D-vine Regression Models

After fitting nine different D-vine regression models with different copula families and
margins we can observe that on this data set the choice of copula families has a huge
influence. None of the models where only parametric copulas are used has a comparable
fit close to the goodness of fit of any model where parametric and non-parametric copulas
are used. The same holds when only Gaussian copulas are used compared to the use of
parametric copulas. Hence, in this section we will only compare how the models within
the use of a certain class of copulas behave with the change of margins used.

When fitting kernel density margins and Gaussian mixture margins in Chapter 5 we have
already seen that both are very similar. Hence, we assumed that the data set after using
both of them for the PIT is very similar as well. Now, after fitting several D-vine models to
both data sets, our assumption can be confirmed. For each of the three choices of copula
families, Cpnp, Cpar and Cgauss, the models have a similar log-likelihood of the copula
terms, AICC and BICC when using kernel density margins or Gaussian mixture margins.

This does not only hold when looking at the whole model, but also when looking at
each node alone. Even the order of the D-vines are the same and many similarities in the
individual modeled copulas are present. When allowing for parametric and non-parametric
copulas only the cplc,pip3 copula and the cpkc,pip2;plc copula are modeled differently in the
MkerCpnp model and the MmixCpnp model. All other copulas are from the same family
and, if they are modeled as TLL-copula, have a similar number of effective parameters.
In the cplc,pip3 copula even only the number of parameters differs. Comparing the contour
plots in Figure 6.1 it is hard to observe any difference.

When instead restricting to only parametric copulas we can see that seventeen of twenty
of the modeled copulas are from the the same family and have the same rotation and
similar parameters in the MkerCpar model and the MmixCpar model. Note that the Joe
copula corresponds to a BB8 copula with a second parameter that equals one, as in Cheng
et al. (2020). Therefore, a BB8 copula with a second parameter near one almost defines
a Joe copula and hence, even 18 of the copulas almost agree. Only the copulas cpkc,plc
and cp38,pkc are modeled differently in both models where for the cpkc,plc copula only the
rotation does not coincide. Comparing the contour plots of the copulas in both models in
Figure 6.2 it is again almost impossible to note any differences, even in the cp38,pkc copula.

In the approach with only Gaussian copulas all copulas have a similar parameter in both
the MkerCgauss model and the MmixCgauss model. Here, once more it is hardly possible
to see differences in the contour plots for both models in Figure 6.3. Hence, to summarize,
in regards to the copula terms there are no big differences whether kernel density margins
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or Gaussian mixture margins are used in the model. Instead the fit only depends on the
choice of copulas in the D-vine regression.

Comparing these models with the models where we used Gaussian margins for the data
transformation the bigger variations in the orders of the D-vine is what stands out first. For
the MkerCpnp model, the MkerCgauss model, the MmixCpnp model and the MmixCgauss

model all D-vines are ordered in the same way. The MkerCpar model and the MmixCpar

model differ only from these models for the order of the D-vine for the node mek. In each
of these models all dependencies from the DAG are modeled.

This is not the case when using Gaussian margins. There, for each choice of copulas at
least one dependency is not modeled and orders might not coincide. This is namely for
pip3 → akt in the MgaussCpnp model, pip2 → pkc in the MgaussCpar model and the
MgaussCgauss model, pip3 → plc and mek → erk in the MgaussCgauss model. While not
modeling the dependencies pip3→ akt, pip2→ pkc and pip3→ plc seems reasonable due
to their low partial correlations of 0, 0.06 and −0.04 this does not hold for mek → erk.
It has a partial correlation of −0.35 which is the seventh highest of all pairs of nodes.
Figure 6.4 graphically displays the order of the D-vines in each model.

Speaking of the goodness of fit, we observe that the MgaussCpnp model in total has a
worse fit speaking of log-likelihood, AICC and BICC than the MkerCpnp model and the
MmixCpnp model. This worsening does not affect every node similar. While some like
akt and p38 suffer a modest worsening, the fit of pip2 shrinks heavily. On the other hand
there are nodes that have a similar of even better fit, like e.g. mek, than in the MkerCpnp

model and the MmixCpnp model. While when using kernel density margins or Gaussian
mixture margins only one or two copulas are modeled as a parametric copula, in the
MgaussCpnp model six of nineteen copulas are parametric ones. Comparing the contour
plots of the MgaussCpnp model to the MkerCpnp model and the MmixCpnp model in
Figure 6.1 several notable differences are present for example in the cmek,raf or the cpip2,plc
copula.

When instead using Gaussian margins and only allowing for parametric copulas the
MgaussCpar model in total outperforms the MkerCpar model and the MmixCpar model in
all three measures. Looking at the individual nodes, we observe that only the D-vines at
plc, pip2 and erk are modeled better in the MkerCpar model and the MmixCpar model.
All other nodes have a better goodness of fit in regards of the log-likelihood of the cop-
ula terms, AICC and BICC when using Gaussian margins. As already eight of nineteen
copulas are modeled with a different copula family in the MgaussCpar model than in the
MkerCpar model and the MmixCpar model it does not surprise that we observe many
differences in the contour plots in Figure 6.2.
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Figure 6.4: Fitted D-vines of each node on the set of its parents when using kernel density
margins Mker or Gaussian mixture margins Mmix for the PIT (left) or Gaussian margins
Mgauss (right). Text in superscript indicating which kind of copulas are used, i.e., pnp =
Cpnp, p = Cpar or g = Cgauss
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We can see a similar behavior comparing the models where we restricted to Gaussian cop-
ulas only. There, the copula terms of the MgaussCgauss model outperform the MkerCgauss

model and the MmixCgauss model in all three measures for all nodes except plc and erk.
However, for plc and erk the fit is generally quite poor in all three models which reduces
the significance here.

We have already seen that in all three models where Gaussian margins are used, at least
one dependency in the DAG is not modeled. This does not play a big role in the overall fit
when compared to the other models as the missing dependencies only contribute slightly
to the fit of the D-vine in the models where it is present. Generally one might think about
truncating some of the D-vines. Some nodes, and therefore dependencies, modeled have
a very low Kendall’s τ such that their influence can almost be neglected. Examples are
erk → pka with a Kendall’s τ of 0.06 or pip3→ plc with a Kendall’s τ of 0.

Overall, we observe that using kernel density margins or Gaussian mixture margins results
in almost the same copula terms. Comparing them to the models where Gaussian margins
are used the Gaussian margins models resulted in a better fit when using only parametric
or Gaussian copulas but in a worse fit when using parametric and non-parametric copulas.



Chapter 7

Goodness of Fit Measures Model
Comparison

While fitting the D-vine models in Chapter 6, we have observed that restrictions on copula
families or margins always come in line with a worsening of the goodness of fit measure
that we optimize. In this chapter we will now analyze this in more depth. More precisely,
we want to compare the fit of the conditional densities calculated for each node. For this
we add up the goodness of fit measures of the marginals and the copulas. The question
then is, whether this worsening, caused by the restriction on the copulas or margins, in
each model affects every node equally. Further, we compare the goodness of fit of the
D-vine models to the Linear Gaussian Bayesian Network.

In the following, we will, if not stated otherwise, only compare the models using the AICF

as this is the measure we used to optimize in the copula models. Note that the Linear
Gaussian Bayesian Network was fitted maximizing the log-likelihood. However, as we have
already described in Chapter 4, if we would have instead maximized the AICF a possible
increase in the AICF would be, taking the absolute value into account, almost vanishing
and only less dependencies would have been modeled.

A summary of the log-likelihood, the AICF , the BICF and the number of parameters of the
conditional densities of the fitted models are displayed in the Tables 7.1, 7.2, 7.3 and 7.4.
We already derived that in general it does not play a role if Gaussian mixture margins or
kernel density margins were used for the PIT on this data set. In both models the AICF

only depends on the chosen copulas, with the model where kernel density margins are used
being slightly better. Using Gaussian margins results in different outcomes which are in
general worse than in the other two models. This is mostly because of the bad fit of the
margins which prevails the better fit of the copulas in the models with only parametric
or Gaussian copulas.

83
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For the node pip3 we observe only differences in the way its marginal density is modeled,
as the node has no parents in the consent graph. For pip3 the estimated Gaussian mixture
margin is a normal distribution. Hence, it coincides with the one in the model with only
Gaussian margins. Using kernel density margins here, gives only a minimal advantage as
we have already stated when comparing the marginals in Section 5.4.

For most of the other nodes modeling them using a D-vine copula approach provides a
significant advantage when using Gaussian mixture margins or kernel density margins
compared to the LGBN. This especially holds when allowing for parametric and non-
parametric copulas. We observe that in the models with parametric and non-parametric
copulas with other margins than Gaussian margins, all nodes have a better AICF than
the Linear Gaussian Bayesian Network, most of them even more than 10% better. If we
use Gaussian margins instead the overall AICF is still better than in the LGBN but for
some nodes the advantage shrinks heavily. Partly even that much that there is almost no
difference any more such as for example the node pka.

The worsening that occurs through restricting on parametric copulas has different effects
on each node. While for example mek and p38 only suffer a small worsening, keeping their
good fit, the AICF of erk increases strongly compared to the models with parametric and
non-parametric copulas. This holds for all three models. We further observe that the
reaction on the restrictions on copulas is different depending on the chosen margins. The
node plc worsens significantly when the model is fitted using Gaussian mixture margins or
kernel density margins but almost does not react to the restrictions when using Gaussian
margins. Compared to the LGBN model especially mek, pip2, akt, pka and p38 still have
a superior fit. Especially interesting are the nodes raf and jnk. There, the very good fit
of the copulas in the MgaussCpar model exceeds the bad fit of the marginals compared
to the MpnpCpar model and the MgaussCpar model and therefore has the best AICF of
the three models. However, looking at the overall fit using Gaussian mixture margins or
kernel densities margins in the model together with parametric copulas still results in a
better AICF than the reference model, i.e., the Linear Gaussian Bayesian Network. If we
instead assume Gaussian margins, the resulting model ranges almost on the same level as
the LGBN.

When restricting only on Gaussian copulas the node pka still has a 10% better AICF

than the LGBN when using Gaussian mixture margins or kernel density margins. While
this restriction compared to the models with parametric copulas has a moderate impact
on most nodes in these two models, for some it does almost not have any impact at all,
e.g. for the nodes plc and erk. On the contrary the restriction has the biggest impact on
the nodes mek and akt. Additionally we observe that the nodes raf and jnk are again
the only nodes which are modeled better when using Gaussian margins than when using
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Gaussian mixture margins or kernel density margins. Altogether, when using Gaussian
mixture margins or kernel density margins the models with only Gaussian copulas still
have a slightly better fit than the LGBN.

Looking at the MgaussCgauss model we observe that the AICF is almost equal to the fit
of the LGBN for all nodes except akt. Knowing that both models describe a conditional
Gaussian distribution this is what we would expect. For the node akt it surprises that the
LGBN, even though it was fitted optimizing the log-likelihood, has a better AICF than
the MgaussCgauss model. This is due to two reasons. First, optimizing the log-likelihood
instead of the AICF for the Linear Gaussian Bayesian Network does not have a big
influence. Second the parameters of the MgaussCgauss model are not modeled in one step
but two. In the first step we model the margins, which define the mean and variance of the
distribution, and in a second step the dependence structure which defines the correlation.
This can result in a worse fit than when fitting all parameters in one step.

As we know that both models specify a conditional Gaussian distribution, we can compare
the corresponding parameters in Table 4.2 and Table 6.19. There, we can see that they
are mostly similar. Note that the conditional normal specified by the Gaussian D-vine
does not model the dependencies pip3→ plc, mek → erk and pip2→ pkc.

In general, it is hard to predict a scheme of how the fit of a node behaves compared to
the reference model, when its copula families are being more and more restricted. For
most nodes the AICF decreases in similar steps for each added restriction. On the other
hand, some nodes stay almost unaffected by the restrictions, e.g., raf . For other nodes
restricting to parametric has almost no impact but restricting to Gaussian copulas has,
e.g., mek and akt.

If instead we would compare the log-likelihood the results stay the same, i.e., if a node
has a better log-likelihood in one model than in another one, then it also has a better
AICF in that one. This also holds when looking at the BICF apart from when comparing
a model with kernel density margins to a model with Gaussian mixture margins on the
same set of copula. There, in some cases a node has a better BICF when using Gaussian
mixture margins in the model.

In summary, modeling the Sachs data set using a D-vine copula regression on the consent
graph using Gaussian mixture margins or kernel density margins provides a significant
improvement compared to the Linear Gaussian Bayesian Network. This hold especially
when allowing for non-parametric and parametric or only parametric copulas. Allowing
only for Gaussian copulas ends up with a similar result as the LGBN with better fits for
some nodes in both models. Using Gaussian margins takes away most of the advantages
of the copulas models, such that only allowing for parametric and non-parametric copulas
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in the D-vine regression gives a reason to use a copula approach instead of the Linear
Gaussian Bayesian Network. Already when using only parametric copulas the D-vine
model with Gaussian margins and the LGBN have a similar goodness of fit. Restricting
to only Gaussian copulas results in a conditional Gaussian distribution and therefore in
almost exactly the same fit as the Linear Gaussian Bayesian Network.



Chapter 8

Simulation Based Comparison

A second approach to compare the models is to compare the strength of each model
to recreate the Sachs data set. For this we selected four of the ten models. The
four models we want to compare more closely are, the two models with parametric
and non-parametric copulas with kernel density margins or Gaussian mixture margins
MkerCpnp and MmixCpnp, the model with only Gaussian copulas and Gaussian margins
MgaussCgauss and as a reference model the Linear Gaussian Bayesian Network. From
each model we sampled 6161 times by starting in the node pip3 and sampling it using
its marginal density. We then moved on by following the topological order, in each step
simulating the data of the node given the data we have already simulated for its parents.

For the Linear Gaussian Bayesian Network we used that we can express the conditional
distribution as a conditional normal distribution which is easy to sample from. To sample
from the D-vine models we followed the algorithm from Theorem 16. We then fitted kernel
density estimates to this data. If the model fits well we expect similar results as when
fitting kernel density estimates to the Sachs data set after deleting all samples that contain
a zero value. The kernel density estimates fitted to the Sachs data set can be found in
Section 5.3.

The kernel density estimates fitted to the simulated data sets are displayed in Figure 8.1.
There, we observe very similar results between the MkerCpnp model and the MmixCpnp

model. The same holds for the MgaussCgauss model and the LGBN where only notable
differences for the node akt are present. Note that Figure 8.1 does not display any in-
dications of the goodness of fit of the dependence structure, but only information about
the fit of the marginals. The reason is that we are not looking at each sample point for
each node but instead at the whole set of 6161 samples. In particular for the marginals
we already know that kernel density margins and Gaussian mixture margins outperform
Gaussian margins and have analyzed their fit in detail in Section 5.4.
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Figure 8.1: Marginal histograms of the Sachs data set of each of the eleven nodes in
topological order after samples containing a zero value have been deleted and kernel
density estimates have been fitted to the simulated data from the different models
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What we can instead do, is to compare the pairs plots of the simulated data sets with the
pairs plots of the Sachs data set. The results for the MkerCpnp model and the MmixCpnp

model are displayed in Figure 8.2 and the results for the MgaussCgauss model and the
Linear Gaussian Bayesian Network in Figure 8.3. Note that the order of the variables in
the upper panel is the same as in the lower panel so the plots are directly comparable and
do not need to be reflected.

Again, we observe almost indistinguishable results comparing the MkerCpnp model and
the MmixCpnp model. Therefore, we can compare the pairs plots of both models together
with the pairs plots of the Sachs data set. Looking at the pairs plots directly modeled,
i.e., the nodes between which a modeled edge exists, colored in green in Figure 8.2, we
derive that for all plots at least the general shape agrees between the simulated data and
the Sachs data. This even holds for the more complicated looking shapes, e.g., between
the node pairs raf ↔ mek or plc ↔ pip2 which are very well replicated. Only small
dissimilarities can be observed for example between the nodes pkc↔ p38 or akt↔ pka.

Now, on the other hand, comparing the MgaussCgauss model and the LGBN in Figure 8.3
we observe again many similarities. Only two dependencies, erk ↔ akt and akt ↔ pka,
show visible differences. Nevertheless, comparing the pairs plots of both models with the
ones in the Sachs data set we observe almost no similarities. Hence, again the MkerCpnp

model and the MmixCpnp model outperform the MgaussCgauss model and the Linear
Gaussian Bayesian Network.

Further, for a suitable model one would expect that in the simulated data set samples
with high/low values in several nodes together appear in a similar frequency as in the
original data set. To see if this is the case one can sum up over the data of several nodes,
in both the model one wants to check and the Sachs data set, and analyze the histograms
of the sums. If they are similar, this is an indication for a good fit of the model.

In both, the D-vine models and the LGBN, we modeled a set of 10 conditional densities
on different nodes. In the following, we first sum according to each of these, i.e the node
and the set of its parents, giving us 10 different sums to compare. Note that this time
we strictly define the parents over the edges in the DAG and not by whether a specific
dependency is actually modeled. This is important for the MgaussCgauss model as there
dependencies are missing.

Looking at the results in Figure 8.4 we can again observe similar results for both the
MkerCpnp model and the MmixCpnp model. For both models all histograms are very
close to the ones calculated on the Sachs data set.
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(a) MkerCpnp

(b) MmixCpnp

Figure 8.2: Pairs plots for each pair of nodes of the respective model in the lower panel
and of the Sachs data set in the upper panel. Green plots in the lower panel indicate that
an edge exists between these two nodes in the model. For a better visibility the same pairs
are colored in red in the upper panel
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(a) MgaussCgauss

(b) Linear Gaussian Bayesian Network

Figure 8.3: Pairs plots for each pair of nodes of the respective model in the lower panel
and of the Sachs data set in the upper panel. Green plots in the lower panel indicate that
an edge exists between these two nodes in the model. For a better visibility the same pairs
are colored in red in the upper panel
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Figure 8.4: Histograms of the sum of each node on the set of its parents according to the
consent DAG in the Sachs data set and in the simulated data sets of theMkerCpnp model,
MmixCpnp model, MgaussCgauss model and the Linear Gaussian Bayesian Network
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Figure 8.5: Histograms of the sum over all nodes in the Sachs data set and in the simulated
data sets of the MkerCpnp model, MmixCpnp model, MgaussCgauss model and the Linear
Gaussian Bayesian Network in the first five plots and fitted kernel density estimates to
each of the data sets in the sixth plot.

The same holds for the histograms of the MgaussCgauss model and the Linear Gaussian
Bayesian Network which are very similar for all nodes except akt. However, it seems
that both models have problems to recreate the correct height of the peaks of the Sachs
data set, e.g., for the nodes pkc, mek and akt. For the node akt the MgaussCgauss model
struggles more than the LGBN. The histograms of the samples from the MgaussCgauss

model and the LGBN therefore again seem way less similar to the ones from the Sachs
data set than the ones from the samples from the MkerCpnp model and the MmixCpnp

model.

As we are not only interested in how good the modeled conditional densities fit compared
to the Sachs data set but also in how good the whole model fits we sum up over the data of
all nodes and compare the resulting histograms. The results are displayed in Figure 8.5.
We observe that all of the four models have a problem recreating the second peak, at
about 55, in the Sachs data set. Even more all of them struggle to achieve the height of
the first peak, at around 38, of the Sachs data set. Again, the MkerCpnp model and the
MmixCpnp model are significantly better than the MgaussCgauss model and the LGBN.



98 CHAPTER 8. SIMULATION BASED COMPARISON

Figure 8.6: Histograms of the sum over all nodes in the Sachs data set without the samples
from the cd3cd28+g007 experiment and in the simulated data sets of theMkerCpnp model,
MmixCpnp model, MgaussCgauss model and the Linear Gaussian Bayesian Network in the
first five plots and fitted kernel density estimates to each of the data sets in the sixth plot

Searching for reasons why the fitted models have a problems with the second peak we go
back to the normalized pairs plots, as for example given in Figure 5.6. There, we observed
that low values of the node pka coincide with high values in nearly all other nodes. Going
back to the histogram of the Sachs data set distinguished by the underlying experiment
in Figure 3.1, we observed that the node pka has a small first peak where the data almost
only originates from the cd3cd28 + g007 experiment. Combining this, lets us assume that
this second peak, which is present in the histogram of the sum over all nodes, comes
exactly from the samples from the cd3cd28 + g007 experiment.

To confirm the assumption we again calculate the sum over all nodes in the Sachs data
set but ignore the samples from the cd3cd28 + g007 experiment. This leaves us with 5466
samples. Taking samples of the same size from the four models and calculating the sum
over all nodes, we can again compare the resulting histograms. As Figure 8.6 shows the
second peak in the Sachs data set is gone. Nevertheless, the problem that the fitted models
are not able to reach the height of the first peak is still present.
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Figure 8.7: Marginal histograms of each node split by experiments and kernel density
estimates fitted to the data simulated from the conditional densities of the different mod-
els given the parents as in the data set from the specific experiment. Blue: MkerCpnp.
Green: MmixCpnp. Brown: MgaussCgauss. Orange: LGBN
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Figure 8.8: Marginal histograms of each node split by experiments and kernel density
estimates fitted to the data simulated from the conditional densities of the different models
given the parents as in the data set from the specific experiment. Blue: MkerCpnp. Green:
MmixCpnp. Brown: MgaussCgauss. Orange: LGBN.
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Hence, it looks like the models are not able to recreate the data from the cd3cd28 + g007

experiment properly. Therefore, it would be interesting to examine if this also holds for
other experiments. For this we partition the Sachs data set according to the nine experi-
ments. On each of these smaller data sets we then sample from each conditional density
of the four models, given the actual values for the parents and again fit kernel density
estimates to the resulting output. We can then compare the fitted kernel density estimates
with the histograms of the node of the different experiment to check if we can find any
pattern throughout the nodes and data sets.

First, we observe something we already mentioned while performing the data exploration,
no single node seems to be identically distributed over all experiments. The one closest
to an identical distribution is the node pip3. Here, only for the cd3cd28 + psitect ex-
periment fewer values lie in the right tail as in the other experiments. Looking at the
different experiments we observe that for the cd3cd28 + g007 (plc), cd3cd28 + psitect

(pip2), cd3cd28 + u0126 (erk) and the b2camp (mek) experiment at least for one node
none of the fitted models is able to properly model its distribution. For the b2camp exper-
iment one needs to take into account that after deleting the zero rows it only consists of
155 samples and therefore here the analysis is less meaningful. Looking at the individual
nodes it seems that for the nodes pip3, jnk, raf and erk the differences between the four
models are rather small. On the other hand, for the other nodes the MkerCpnp model and
the MmixCpnp model in general result in way better fits than the MgaussCgauss model or
the Linear Gaussian Bayesian Network.



Chapter 9

Conditional Simulation Based
Comparison

In the last chapter we have simulated data from the MkerCpnp model, the MmixCpnp

model, theMgaussCgauss model and the Linear Gaussian Bayesian Network and compared
the results to the Sachs data set. Next, we want to examine how the conditional densities
of these models behave and if we can see differences between them.

If a node only has one parent in the Sachs data set, we chose the 10%, 50% and 90%

quantile of the empirical distribution of the parent node as conditioning values. This was
done for the nodes plc and pka and can be found in Figure 9.1. As there is no exact
equivalent of quantiles in two or three dimensional distributions a different approach had
to be used for all other nodes.

If a node has two parents, we fitted a two-dimensional kernel density estimate to the joint
distribution of the parent nodes using the Sachs data. We then manually choose one point
close to the mode of the fitted density, two in the tails and two more which are neither
close to the mode nor in the tails. This is illustrated in Figure 9.2. Note that while six
nodes have two parents, raf , pip2, erk, pkc, p38 and jnk, three of them, raf , p38 and
jnk, have the same set of parents, i.e., pka and pkc, so we only obtain four plots. A
similar approach was performed when a node has three parents, i.e., for the nodes mek
and akt. Then, a three-dimensional kernel density estimate was fitted to the joint data of
the parents and the same procedure was used to identify five points to condition on. The
results are given in Figure 9.3.

The list of points on which we condition on can be found in Table 9.1. In the following we
will headline the points which we chose close to the the mode of the fitted distribution as
"Mode", the points in the tails as "Tail" and the points between them as "Middle". If a
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Figure 9.1: Empirical density of the nodes pip3 and pkc with horizontal lines at the 10%,
50% and 90% quantile

Node Parent Mode Middle Tail

raf, p38, jnk
pka 6.20 6.20 7.00 5.50 2.50
pkc 2.50 2.00 3.00 0.75 4.50

mek
raf 4.52 3.86 2.78 4.52 7.15
pka 5.79 6.92 6.76 2.96 4.61
pkc 2.50 3.51 2.73 2.62 3.14

plc pip3 1.60 2.87 4.03

pip2
plc 2.75 2.75 2.40 3.75 5.50

pip3 2.75 1.50 3.50 4.20 2.00

erk
mek 3.10 3.70 2.90 6.25 2.00
pka 6.10 7.10 6.40 2.50 6.30

akt
erk 2.63 3.08 3.38 4.49 5.06
pka 6.00 6.24 7.47 2.80 5.81
pip3 3.19 1.20 3.45 4.76 2.54

pka pkc 1.12 2.70 3.97

pkc
plc 3.00 2.60 2.60 5.50 2.00

pip2 3.00 2.60 4.80 6.00 1.25

Table 9.1: Parent nodes used for conditioning of each density
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Figure 9.2: Contour plots of the two-dimensional kernel density estimates of the node
pairs pka ↔ pkc, plc ↔ pip3, mek ↔ pka and plc ↔ pip2. Red points correspond to the
points chosen for conditioning
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Figure 9.3: Scatter plots of the parents of the nodes mek (left) and akt (right). Points in
yellow are points within the 10%, 50% and 90% quantile of the fitted three-dimensional
kernel density estimates (from top to bottom). Blue points are the points chosen for
conditioning
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Mode Middle Tail

Figure 9.4: Density plots of the kernel density estimates fitted to the simulated data
from the different models conditioned on the nodes in Table 9.1 in the same order.
Blue: MkerCpnp. Green: MmixCpnp. Brown: MgaussCgauss. Orange: LGBN
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node only has one parent, we will assign the points from the 10% and the 90% quantile to
"Tail" and the point from the 50% quantile to "Mode". Note that as in the MgaussCgauss

model not all dependencies have been modeled, in this model sometimes the number of
parents differs from the other models.

As in Chapter 8 we sampled 6161 times from each node of the model given the parent
nodes and then fitted kernel density estimates to this sample. The resulting density plots
are displayed in Figure 9.4. There, we observe that when comparing the modelsMkerCpnp

and MmixCpnp, apart from the nodes pip2 and pkc, only small differences in the general
shape of the density plots can be found. More precisely, the differences are normally
limited to the conditional density of one of the two models having a higher peak. This
holds for the plots of all areas.

In Chapter 8 we have seen that theMgaussCgauss model and the Linear Gaussian Bayesian
Network display similar results when simulating from both. This is here again the case.
On the other hand, for all five points we cannot identify a single node for which the
MgaussCgauss model results in similar density plots as the other two D-vine models. Es-
pecially, it holds that for at least one of the two points chosen in the tail, the plot barely
agrees with the ones from the MkerCpnp model and the MmixCpnp model.

As we cannot properly compare the conditional densities to the ones of the Sachs data set
it is hard to make a statement about the quality of the plots in Figure 9.4. We can say
however that the MkerCpnp model or MmixCpnp model are able to recreate more flexible
conditional densities than the other two models which is generally a big plus. Later, we
will also be able to compare the density plots in this chapter to the ones from the models
fitted on partitions of the Sachs data set.



Chapter 10

Partitioning of the Sachs Dataset

We already observed in the data exploration in Chapter 3 that the assumption on having
identically distributed data throughout the Sachs data set does not seem to be correctly
fulfilled. Instead the distribution of the data depends on the experiment through which
the data is generated. When we compared the fitted models in Chapter 8, we have seen
that the models had problems recreating some parts of the data set and conjectured that
this is due to the violation of this requirement. To investigate how the results change if we
actually have independent and identically distributed data we will in the following repeat
our analysis but this time only consider parts of the Sachs data set.

The crucial part is considering a sufficiently large data set, to be able to properly fit
copula models, while still having identically distributed data throughout the data set. It
is clear that within the data of any single experiment assuming that the data is identi-
cally distributed is reasonable. On the other hand, we observed in Table 3.2 that, after
deleting all data points with at least one zero value, about half of the experiments consist
of approximately 800 samples, the rest of considerable less. Therefore, we also want to
investigate if we can identify pairs of experiments within which we can assume that the
data is identically distributed.

To this end, we fitted kernel density estimates to the data of the nine experiments for
each node. We assume that within two experiments the data is identically distributed if
the fitted kernel density estimates are similar for all eleven nodes in both data sets. We
can observe in Figure 10.1 that it is not possible to find such a pair for the data sets
from the b2camp, cd3cd28 + g007, cd3cd28 +u0126 and cd3cd28 +psitect experiment. For
the b2camp experiment we cannot find a similar distribution for example for the nodes
mek or p38. For the cd3cd28 + g007 experiment, among other things, the distribution of
the nodes plc or pka is unique. For the data from the cd3cd28 + u0126 experiment no
other fitted kernel density estimate of another experiment has a similar distribution for
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Figure 10.1: Kernel density estimates for each node in the nine experiments the Sachs
data set consists of

the node erk. Further, for the data from the cd3cd28+psitect experiment the distribution
of pip2 is different to the distribution of pip2 for all other experiments. As all of the four
described experiments consist of less than 700 data points (155, 695, 508 604) it does not
seem reasonable to fit copula models to one of these data sets alone.

Instead we will focus on the remaining five experiments. For a better visibility Figure 10.2
shows only the kernel density estimates of these experiments. While all of them are mostly
similar for the nodes erk, akt, pka and p38, it seems that for the other nodes it is possible
to divide them into three groups. First considering the data from the cd3cd28+aktinhib

experiment we observe that the fitted kernel density estimates look particularly different
to the ones from all other data sets for the nodes pip2, pip3 and jnk. However, the
cd3cd28 + aktinhib data set consists of a reasonable large number of sample data points
(845). We therefore say that Group 1 consists only of the data from this experiment.

Next, we can observe that the data from the cd3cd28 and cd3cd28 + ly experiments seems
to be similar. This is especially visible when looking at the nodes pip2, pkc and jnk where
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the kernel density estimates fitted to both data sets each time have a similar shape which
is different to all others. Hence, we say these two experiments belong to Group 2.

Something similar can be observed between the remaining data sets of the cd3cd28icam2

and pma experiments. Here, the shape of the fitted kernel density estimates are especially
similar, and different to the ones of all other experiments, for the nodes raf , mek, plc
and pip3. Therefore, these two experiments belong to Group 3. Now, partitioning the
Sachs data set into these three groups leaves us with data sets consisting of 845, 1618
and 1736 data points.

To investigate further whether the data within Group 2 and Group 3 is identically dis-
tributed we check if the data in the experiments the groups consist of is similar dependent.
For this we analyze the estimated partial correlations, given all other nodes, calculated for
the data of each experiment. We hereby only consider pairs of nodes which are connected
by an edge in the DAG and therefore can be directly modeled.

Looking at the results in Table 10.1 we observe that for the data in Group 2, i.e., from
the cd3cd28 and cd3cd28 + ly experiments, almost all connected pairs of nodes have a
similar partial correlation in both experiments. The biggest differences are between the
node pairs jnk ↔ pkc and pip2↔ plc which are the only ones higher than 0.1. Hence, no
clear indications against the assumption of identically distributed data in Group 2 were
found.

Group 1 Group 2 Group 3
Dep. cd3cd28+akt. cd3cd28 cd3cd28+ly cd3cd28icam2 pma cd3cd28+g. cd3cd28+psi. cd3cd28+u. b2camp

raf-pka 0.06 0.03 -0.03 -0.05 0.03 0.06 -0.03 -0.00 -0.07
raf-pkc 0.06 0.01 -0.03 0.05 0.04 0.01 0.01 0.02 -0.06
mek-raf 0.65 0.69 0.66 0.88 0.65 0.99 0.57 0.99 0.11
mek-pka -0.00 -0.03 0.03 0.06 -0.02 -0.06 -0.00 0.01 0.02
mek-pkc -0.04 -0.03 0.02 -0.06 0.00 -0.01 -0.05 -0.02 0.14
plc-pip3 0.32 0.02 -0.02 0.33 0.11 -0.16 0.11 0.01 0.22
pip2-plc -0.00 0.13 0.01 0.11 0.37 0.98 0.08 0.17 0.04
pip2-pip3 0.41 0.35 0.40 0.60 0.61 0.26 0.22 0.47 0.67
erk-mek 0.03 0.08 0.06 -0.01 0.02 0.04 0.01 -0.01 0.02
erk-pka -0.42 0.02 -0.07 0.12 -0.25 0.06 -0.09 0.67 -0.23
akt-erk 0.87 0.79 0.73 0.83 0.88 0.96 0.82 0.01 0.83
akt-pka 0.60 0.23 0.31 0.25 0.50 -0.02 0.34 0.44 0.55
akt-pip3 0.02 -0.00 -0.03 0.02 0.04 -0.00 0.02 0.02 0.00
pka-pkc -0.09 0.07 -0.03 0.03 -0.00 0.02 0.05 0.02 0.09
pkc-pip2 0.07 -0.04 -0.01 -0.05 0.07 -0.00 -0.06 0.07 -0.07
pkc-plc -0.01 -0.01 -0.02 0.02 -0.02 0.01 0.02 0.13 0.04
p38-pka 0.03 -0.02 0.02 -0.04 0.01 -0.01 -0.03 -0.02 -0.01
p38-pkc 0.74 0.68 0.75 0.56 0.65 0.98 0.75 0.50 0.29
jnk-pka 0.07 0.03 -0.01 -0.01 0.03 -0.03 0.01 0.07 -0.08
jnk-pkc -0.05 -0.34 -0.53 0.43 0.26 0.44 -0.31 0.28 0.21

Table 10.1: Estimations of the partial correlations between nodes which are connected by
an edge in the DAG, given all other nodes, of the different data sets

Slightly bigger differences can be observed between the experiments in Group 3,
cd3cd28icam2 and pma, with the biggest difference being between the nodes erk and pka
with an absolute value of 0.37. In total in seven of the twenty observed pairs the difference
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between the partial correlation in the two experiments is bigger than 0.1. Therefore, still
most of the node pairs have a similar partial correlation in the experiments in Group 3
and it seems reasonable to assume that the data in this group is identically distributed.

In the following chapters, we will fit four models to each of the groups: a Linear Gaussian
Bayesian Network and three kinds of D-vine regressions, where in one we will use kernel
density margins for the probability integral transform and allow for parametric and non-
parametric copulas, one where we will use Gaussian mixture margins instead and one
where we use Gaussian margins and only Gaussian copulas. These are the models we
have already analyzed further in Chapter 8 and Chapter 9. We will start with the data
set from Group 1, then repeat the procedure on the data set from Group 2 and finally
fit the models on the data from Group 3.

Figure 10.2: Kernel density estimates for each node of the experiments in
Group 1 (cd3cd28 + aktinhib), Group 2 (cd3cd28 and cd3cd28 + ly ) and
Group 3 (cd3cd28icam2 and pma)



Chapter 11

Analysis of Group 1:
cd3cd28 + aktinhib

In this chapter we will investigate the data of the cd3cd28 + aktinhib experiment using
three types of D-vine models and a Linear Gaussian Bayesian Network.

11.1 Linear Gaussian Bayesian Network Fitting

(LGBNcd3+akt)

Fitting a Linear Gaussian Bayesian Network on the data from the cd3cd28 + aktinhib

experiment results in a log-likelihood of -9189.29, an AICF of 18462.58 and a BICF of
18666.37 of the whole model. Detailed results are displayed in Table 11.1.

Global
Node log-likelihood # Parameters AICF BICF

raf -969.82 4 1947.64 1966.60
mek -551.50 5 1112.99 1136.69
plc -921.77 3 1849.53 1863.75

pip2 -1249.37 4 2506.74 2525.70
pip3 -986.90 2 1977.81 1987.29
erk -968.07 4 1944.14 1963.09
akt -196.03 5 402.06 425.75
pka -830.92 3 1667.84 1686.80
pkc -952.32 4 1912.64 1931.60
p38 -570.72 4 1149.45 1168.40
jnk -991.87 4 1991.74 2010.70∑

: -9189.29 42 18462.58 18666.37

Table 11.1: Global log-likelihood, number of parameters, AICF and BICF of the fitted
linear models for each node given the set of its parents in the Linear Gaussian Bayesian
Network on the data set from the cd3cd28 + aktinhib experiment
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11.2 Marginal Fitting (Mcd3+akt)

11.2.1 Gaussian Margin Fitting (Mgauss
cd3+akt)

Fitting Gaussian margins to the data from the cd3cd28 + aktinhib experiment results in
a log-likelihood of the marginals of -10690.40, an AICM of 21424.77 and a BICM of
21529.04 when assuming independence in the data. Table 11.2 displays detailed results
for each node.

Marginal
Node log-likelihood AICM BICM

raf -971.98 1947.95 1957.43
mek -785.21 1574.41 1583.89
plc -979.48 1962.97 1972.44

pip2 -1338.108 2680.35 2689.83
pip3 -986.90 1977.81 1987.29
erk -997.54 1999.07 2008.55
akt -912.43 1828.85 1838.33
pka -831.22 1666.44 1675.92
pkc -954.10 1912.21 1921.69
p38 -925.20 1854.40 1863.88
jnk -1008.16 2020.31 2029.79∑

: -10690.40 21424.77 21529.04

Table 11.2: Marginal log-likelihood, AICM and BICM of the fitted Gaussian margins
Mgauss

cd3+akt to the data set from the cd3cd28 + aktinhib experiment

Looking at the plots in the third column of panel (a) in Figure 11.4 we observe that the
data does not seem to be approximately uniformly distributed for all nodes except erk.
This again violates the requirement to fit copulas to the data.

Normalized pairwise contour and scatter plots using the fitted Gaussian margins for the
PIT as well as again the histogram of the data on the copula scale are displayed in
Figure 11.1.
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Figure 11.1: Normalized contour plots in the lower left triangle, normalized scatter plots
in the upper right triangle, with the value of Kendall’s tau displayed in the middle of
the plot, and histograms in the diagonal elements after applying the PIT using the fitted
Gaussian margins to the data from the cd3cd28 + aktinhib experiment
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11.2.2 Gaussian Mixture Margin Fitting (Mmix
cd3+akt)

Extending the class of marginals to Gaussian mixture margins and fitting these to the
data from the cd3cd28 + aktinhib experiment results in a log-likelihood of the marginals
of -9879.15, an AICM of 19892.29 and a BICM of 20209.81. The results for each node
are displayed in Table 11.3.

Marginal
Node Distribution log-lik. # Parameters AICM BICM

raf two component normal -926.74 5 1863.48 1887.18
mek two component normal -725.23 5 1460.47 1484.16
plc three component normal -951.96 8 1919.92 1957.83

pip2 three component normal -1225.04 8 2466.07 2503.99
pip3 two component normal -916.83 5 1843.66 1867.36
erk normal -997.54 2 1999.07 2008.55
akt two component normal -880.65 5 1771.30 1794.99
pka three component normal -769.54 8 1555.08 1592.99
pkc three component normal -777.10 8 1570.20 1608.11
p38 two component normal -778.79 5 1567.58 1591.28
jnk three component normal -929.73 8 1875.46 1913.37∑

: -9879.15 67 19892.29 20209.81

Table 11.3: Marginal log-likelihood, number of parameters, AICM and BICM of the fit-
ted Gaussian mixture margins Mmix

cd3+akt to the data set from the cd3cd28 + aktinhib

experiment

Looking at panel (b) of Figure 11.4 we deduce no obvious indications that the estimated
margins do not fit. Especially the data after applying the PIT using the fitted Gaussian
mixture margins seems to be uniformly distributed. We already derived that the node
erk seems to follow a normal distribution when fitting Gaussian margins to this data
set. Therefore, also when fitting Gaussian mixture margins the node erk is modeled as
a normal distribution. The histograms of the data after applying the probability integral
transform using the fitted Gaussian mixture margins and the normalized scatter and
contour plots can be found in Figure 11.2.
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Figure 11.2: Normalized contour plots in the lower left triangle, normalized scatter plots
in the upper right triangle, with the value of Kendall’s tau displayed in the middle of
the plot, and histograms in the diagonal elements after applying the PIT using the fitted
Gaussian mixture margins to the data from the cd3cd28 + aktinhib experiment
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11.2.3 Kernel Density Margin Fitting (Mker
cd3+akt)

Again as a third approach fitting kernel density estimates to the data results in a log-
likelihood of the marginals of -9780.28, an AICM of 19786.78 and a BICM of 20322.79.
Comparing the results in Table 11.4 with the ones from the fitted Gaussian mixture
margins in Table 11.3 we observe a very similar log-likelihood and AICM for all nodes. Only
the number of (effective) parameters is higher, about twice the size, when using kernel
density estimates instead of Gaussian mixture margins. Therefore, we can see slightly
bigger differences when comparing the BICM .

Marginal Effective
Node Distribution log-likelihood # parameters AICM BICM

raf kernel density -921.52 11.06 1865.16 1917.58
mek kernel density -710.24 14.94 1450.37 1521.20
plc kernel density -952.81 10.70 1927.03 1977.73

pip2 kernel density -1214.93 9.04 2447.95 2490.80
pip3 kernel density -895.20 11.54 1813.47 1868.14
erk kernel density -991.42 7.30 1997.43 2032.01
akt kernel density -865.88 11.02 1753.80 1806.03
pka kernel density -767.31 8.85 1552.31 1594.24
pkc kernel density -771.76 7.28 1558.08 1592.58
p38 kernel density -765.47 7.94 1546.82 1584.45
jnk kernel density -923.74 13.44 1874.36 1938.03∑

: -9780.28 113.11 19786.78 20322.79

Table 11.4: Marginal log-likelihood, number of effective parameters AICM and BICM of
the fitted kernel density margins Mker

cd3+akt to the data set from the cd3cd28 + aktinhib

experiment

The similarities continue when looking at the graphical analysis of the kernel density
estimates in panel (c) of Figure 11.4 and comparing them with the ones from the Gaussian
mixture margins in panel (b). Here, again no obvious indication can be found that the
fitted kernel density estimates do not fit. Further, all three types of plots in Figure 11.3
strongly resemble the ones from Figure 11.2.
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Figure 11.3: Normalized contour plots in the lower left triangle, normalized scatter plots
in the upper right triangle, with the value of Kendall’s tau displayed in the middle of
the plot, and histograms in the diagonal elements after applying the PIT using the fitted
kernel density margins to the data from the cd3cd28 + aktinhib experiment
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(a) Mgauss
cd3+akt (b) Mmix

cd3+akt (c) Mker
cd3+akt

Figure 11.4: Density plot and Q-Q plot of the chosen margins (in the first two columns)
and histogram of the data after applying the distribution function of the fitted marginal
distributions, in the third column, for all nodes for the chosen marginals on the cd3cd28+

aktinhib data set
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11.2.4 Comparison of Marginal Fits

Having fitted three different types of marginals to the cd3cd28 + aktinhib data set we
derived that the fitted kernel density estimates and Gaussian mixture margins have an
almost identical goodness of fit speaking in terms of the log-likelihood, AICM and BICM .
This holds even though the kernel density estimates require approximately twice as many
(effective) parameters. As the absolute amount of parameters is still very small, together
with the size of the data set, this difference has an almost vanishing influence on these
three goodness of fit measures.

Compared to these two approaches fitting Gaussian margins results overall in a worse fit.
Not only in terms of log-likelihood, AICM or BICM , also none of the graphical analysis has
shown that Gaussian margins seem suitable. The only exception here is the node erk. For
this node especially the histogram after using the Gaussian margins seems to be approxi-
mately uniformly distributed. Therefore it is also modeled as as Gaussian distribution in
the approach where Gaussian mixture margins were estimated.

As we observed that fitting Gaussian mixture margins and kernel density estimates up to
now resulted in a similar goodness of fit, it does not surprise that their normalized contour
and scatter plots are also almost identical as well. Only about ten of the 55 normalized
contour plots have a shape different from an ellipse. Looking at the scatter plots we can
see that in most of the pairs of nodes tail dependencies are present, for example between
the nodes akt ↔ pka or pkc ↔ p38. This does not hold for pairs of nodes where the
dependence structure follows an elliptical form. There, no clear tail dependencies can be
identified.

Instead examining the normalized contour plots with the fitted Gaussian margins many
of the shapes are not as smooth as in the other two approaches, for example between
the nodes pip2 and pkc. On the other hand, pairs that follow an elliptical shape in the
other two approaches also follow an elliptical shape here and vice versa. Again it needs to
be stressed that the data after applying the PIT with Gaussian margins is not uniformly
distributed. Therefore, in conclusion the results are very similar to the ones in Section 5.4.
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11.3 D-vine Regression (MCcd3+akt)

11.3.1 Kernel Density Margins with Parametric and Non-

Parametric Copulas (MkerCpnp
cd3+akt)

Using the fitted kernel density margins from Section 11.2.3 to transform the data from
the cd3cd28 + aktinhib experiment to the copula scale and then fit a D-vine regression
allowing for parametric and non-parametric copulas results in a log-likelihood of 2328.56,
an AICC of -4236.95 and a BICC of -3241.29 of the copula terms.

D-vine Copula
Node order log-lik. AICC BICC

raf pka, pkc 19.93 -11.07 57.16
mek raf, pkc, pka 310.64 -574.42 -463.38
plc pip3 125.93 -207.80 -103.43

pip2 pip3, plc 293.84 -509.94 -325.71
erk pka 169.48 -301.30 -212.06
akt erk, pka 786.97 -1517.86 -1384.96
pka pkc 1.08 -0.16 4.58
pkc pip2 1.82 -1.64 3.09
p38 pkc, pka 519.43 -982.10 -847.58
jnk pkc, pka 99.44 -130.66 31.00∑

: 2328.56 -4236.95 -3241.29

Table 11.5: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MkerCpnp

cd3+akt model

Detailed results per node are displayed in Table 11.5 and per copula in Table 11.6. In the
fitted model three of the twenty edges, namely mek → erk, pip3 → akt and plc → pkc,
in the DAG are not modeled. Of the remaining edges seven are modeled as a parametric
copula. Contour plots of the fitted copulas can be found in Section 11.3.3 in Figure 11.5
together with the ones from the MmixCpnp

cd3+akt model and the MgaussCgauss
cd3+akt model.

Effective Copula
Node Pair copula Family # parameters log-lik. AICC BICC Est. Ken. τ

raf
raf pka tll 13.40 18.66 -10.53 52.96 0.05

raf pkc; pka clayton 1.00 1.27 -0.54 4.20 0.01

mek
mek raf tll 21.43 303.88 -564.91 -463.35 0.48

mek pkc; raf gaussian 1.00 4.52 -7.03 -2.29 -0.06
mek pka; raf pkc gumbel 1.00 2.24 -2.48 2.26 0.01

plc plc pip3 tll 22.02 125.93 -207.80 -103.43 0.24

pip2
pip2 pip3 tll 19.76 175.66 -311.80 -218.16 0.05

pip2 plc; pip3 tll 19.11 118.19 -198.14 -107.55 0.29
erk erk pka tll 18.83 169.48 -301.30 -212.06 0.10

akt
akt erk tll 26.04 664.74 -1277.39 -1153.96 0.67

akt pka; erk bb8 2.00 122.24 -240.47 -231.00 0.26
pka pka pkc frank 1.00 1.08 -0.16 4.58 -0.03
pkc pkc pip2 clayton 1.00 1.82 -1.64 3.09 -0.01

p38
p38 pkc tll 27.38 517.73 -980.69 -850.91 0.60

p38 pka; pkc joe 1.00 1.71 -1.41 3.33 -0.01

jnk
jnk pkc tll 21.09 85.61 -129.04 -29.08 0.15

jnk pka; pkc tll 13.02 13.83 -1.62 60.08 0.00

Table 11.6: Summary of all copulas fitted in the MkerCpnp
cd3+akt model
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11.3.2 Gaussian Mixture Margins with Parametric and Non-

Parametric Copulas (MmixCpnp
cd3+akt)

If we use the fitted Gaussian mixture margins from Section 11.2.2 instead of the fitted
kernel density margins for the probability integral transform, the fitted D-vine model has
a log-likelihood of 2294.97, an AICC of -4187.84 and a BICC of -3235.00 of the copula
terms if we allow for parametric and non-parametric copulas.

D-vine Copula
Node order log-lik. AICC BICC

raf pka, pkc 19.33 -9.65 59.08
mek raf, pkc, pka 308.88 -572.12 -463.99
plc pip3 125.93 -210.15 -111.31

pip2 pip3, plc 292.01 -501.05 -304.45
erk pka 167.43 -296.76 -206.45
akt erk, pka 778.05 -1496.78 -1356.20
pka pkc 1.13 -0.26 4.48
pkc pip2 1.84 -1.68 3.06
p38 pkc, pka 515.64 -977.80 -851.09
jnk pkc, pka 84.74 -121.59 -8.13∑

: 2294.97 -4187.84 -3235.00

Table 11.7: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MmixCpnp

cd3+akt model

The results per node are given in Table 11.7 and the results per copula in Table 11.8.
There, we observe that the same seventeen edges as in the MkerCpnp

cd3+akt model are fitted.
Furthermore, eight of them are modeled using a parametric copula. All but the cjnk,pka;pkc

copula have also been modeled as a parametric copula in the MkerCpnp
cd3+akt model. The

respective contour plots can be found in Figure 11.5 in Section 11.3.3.

Effective Copula
Node Pair copula Family # parameters log-lik. AICC BICC Est. Ken. τ

raf
raf pka tll 13.50 18.12 -9.24 54.75 0.05

raf pkc; pka clayton 1.00 1.20 -0.41 4.33 0.01

mek
mek raf tll 20.82 302.03 -562.43 -463.78 0.48

mek pkc; raf gaussian 1.00 4.68 -7.35 -2.61 -0.06
mek pka; raf pkc gaussian 1.00 2.17 -2.34 2.40 0.01

plc plc pip3 tll 20.85 125.93 -210.15 -111.31 0.24

pip2
pip2 pip3 tll 20.25 175.48 -310.46 -214.50 0.05

pip2 plc; pip3 tll 21.23 116.53 -190.59 -89.95 0.29
erk erk pka tll 19.05 167.43 -296.76 -206.45 0.10

akt
akt erk tll 27.66 653.59 -1251.86 -1120.76 0.67

akt pka; erk bb8 2.00 124.46 -244.92 -235.44 0.26
pka pka pkc frank 1.00 1.13 -0.26 4.48 -0.03
pkc pkc pip2 clayton 1.00 1.84 -1.68 3.06 -0.01

p38
p38 pkc tll 25.74 513.87 -976.27 -854.29 0.60

p38 pka; pkc joe 1.00 1.77 -1.53 3.20 -0.01

jnk
jnk pkc tll 22.94 83.66 -121.44 -12.72 0.15

jnk pka; pkc gumbel 1.00 1.08 -0.15 4.59 0.00

Table 11.8: Summary of all copulas fitted in the MmixCpnp
cd3+akt model
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11.3.3 Gaussian Margins with Gaussian Copulas (MgaussCgauss
cd3+akt)

As a third approach to transform the data to the copula scale we used Gaussian margins
and then allowed for only Gaussian copulas in the D-vine regression. This results in a
log-likelihood of 1497.84, an AICC of -2971.68 and a BICC of -2914.80 of the copula
terms.

D-vine Copula
Node order log-lik. AICC BICC

raf pka, pkc 2.15 -0.30 9.18
mek raf, pkc 232.86 -461.72 -452.24
plc pip3 57.72 -113.43 -108.69

pip2 pip3 88.80 -175.61 -170.87
erk pka 29.16 -56.33 -51.59
akt erk, pka 715.74 -1427.47 -1417.99
pka
pkc pip2 1.73 -1.46 3.28
p38 pkc 354.14 -706.28 -701.54
jnk pkc 15.54 -29.08 -24.34∑

: 1497.84 -2971.68 -2914.80

Table 11.9: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MgaussCgauss

cd3+akt model

Table 11.9 shows the results for each D-vine while Table 11.10 displays the results for
each copula. There, we can see that of the twenty relationships given by the DAG only
twelve are modeled. Additional to the ones missing in the MkerCpnp

cd3+akt model and
the MmixCpnp

cd3+akt model, this time also the dependencies pka → mek, plc → pip2,
pkc → pka, pka → p38 and pka → jnk are missing. The contour plots are displayed in
Figure 11.5.

Copula
Node Pair copula Family log-lik. AICC BICC Par. Est. Ken. τ

raf
raf pka gaussian 1.08 -0.15 4.59 0.05 0.05

raf pkc; pka gaussian 1.08 -0.15 4.59 0.05 0.01

mek
mek raf gaussian 227.58 -453.17 -448.43 0.65 0.48

mek pkc; raf gaussian 5.27 -8.55 -3.81 -0.11 -0.06
plc plc pip3 gaussian 57.72 -113.43 -108.69 0.36 0.24

pip2 pip2 pip3 gaussian 88.80 -175.61 -170.87 0.44 0.05
erk erk pka gaussian 29.16 -56.33 -51.59 0.26 0.10

akt
akt erk gaussian 530.82 -1059.63 -1054.89 0.85 0.67

akt pka; erk gaussian 184.92 -367.84 -363.10 0.60 0.26
pkc pkc pip2 gaussian 1.73 -1.46 3.28 0.06 -0.01
p38 p38 pkc gaussian 354.14 -706.28 -701.54 0.75 0.60
jnk jnk pkc gaussian 15.54 -29.08 -24.34 0.19 0.15

Table 11.10: Summary of all copulas fitted in the MgaussCgauss
cd3+akt model
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(a) MkerCpnp
cd3+akt (b) MmixCpnp

cd3+akt (c) MgaussCgauss
cd3+akt

Figure 11.5: Contour plots of the respective copulas in the models allowing for paramet-
ric and non-parametric pair copulas where kernel density margins or Gaussian mixture
margins were used for the PIT and the model where Gaussian margins and only Gaussian
copulas were used on the cd3cd28 + aktinhib data set
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11.3.4 Comparison of D-vine Regression Models

Comparing the results of the MkerCpnp
cd3+akt model and the MmixCpnp

cd3+akt model it seems
that the decision between using kernel density margins and Gaussian mixture margins for
the probability integral transform does not have a notable influence on the outcome.

All of the D-vines have the same order in both models with all but two copulas, the
cmek,pka;raf,pkc and the cjnk,pka;pkc copula, having the same family and similar number of
effective parameters. This also holds for the goodness of fit, speaking in terms of log-
likelihood, AICC and BICC . Additionally it holds that the cmek,pka;raf,pkc and the cjnk,pka;pkc

copula have an almost vanishing influence in both models. Looking at the contour plots in
both models in Figure 11.5 it is hard to derive any differences, even in the cmek,pka;raf,pkc

copula. The only visible differences can be observed in the contour plot of the cjnk,pka;pkc

copula.

In total leading to an almost identical fit of each node in both models and therefore an
almost identical fit of the whole model. This is something we have also seen when we
fitted these two types of models to the complete Sachs data set in Chapter 6.

When we fitted models with kernel density margins or Gaussian mixture margins and
allowing for parametric and non-parametric copulas on the complete Sachs data set all
twenty edges of the DAG have been modeled. This is not the case when fitting the same
models on the cd3cd28 + aktinhib data set. In both the MkerCpnp

cd3+akt model and the
MmixCpnp

cd3+akt model only seventeen of these edges are modeled.

Instead using Gaussian margins and only Gaussian copulas on the cd3cd28 + aktinhib

data set does even more decrease the number of modeled dependencies to twelve. One of
these additional missing dependencies is the pkc→ pka dependency meaning that in this
model the node pka is modeled independent of all other nodes. On the contrary, compared
to that in the MgaussCgauss model still seventeen of the edges were modeled.

Hence, it does not surprise that the goodness of fit of the MgaussCgauss
cd3+akt model is way

worse than the fit of the MkerCpnp
cd3+akt model and the MmixCpnp

cd3+akt model.
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11.4 Goodness of Fit Measures Model Comparison

To be able to compare the D-vine regression model and the Linear Gaussian Bayesian
Network fitted on the cd3cd28 + aktinhib data set in terms of log-likelihood, AICF and
BICF we add up the respective measures of the marginals and of the copula terms. The
results for the log-likelihood can be found in Table 11.11, for the AICF in Table 11.12, for
the BICF in Table 11.13 and for the (effective) number of parameters used in the models
in Table 11.14.

Following Section 2.4.3 and Section 2.4.5 we know that both the MgaussCgauss
cd3+akt model

and the LGBNcd3+akt specify a Gaussian distribution. It therefore does not surprise that
the goodness of fit measures are extremely similar up to the point where they are almost
identical in regards to the log-likelihood and the AICF .

Only for the BICF small differences can be seen. This is due to the fact that we maximized
the log-likelihood instead of the AICF when fitting the LGBNcd3+akt. It therefore models
each possible dependency even if it only provides a small increase in the log-likelihood.
Hence, in generally we expect this model to have a higher number of parameters

Looking at the MkerCpnp
cd3+akt model and the MmixCpnp

cd3+akt model instead, we observe
that both provide a way better fit than the other two models due to the relaxations on
the copula families and the use of margins with a better fit. Comparing the log-likelihood
and the AICF we derive that all nodes apart from plc have a slightly better fit in the
MkerCpnp

cd3+akt model than in the MmixCpnp
cd3+akt model. Therefore, the MkerCpnp

cd3+akt is
overall the best model when looking at the log-likelihood or the AICF .

Instead considering the BICF , all nodes except pip2, akt, pkc and p38 have a better fit
in the MmixCpnp

cd3+akt model. This is due to the increased amount of effective parame-
ters required for the kernel density margins compared to the Gaussian mixture margins.
Therefore, considering the overall BICF the MmixCpnp

cd3+akt model is the best of the four
models analyzed. Taking the absolute value of the measures into account the differences
between the MkerCpnp

cd3+akt model and the MmixCpnp
cd3+akt model are not significant.



11.4. GOODNESS OF FIT MEASURES MODEL COMPARISON 127

M
od

el
ra

f
m

ek
pl

c
pi

p2
pi

p3
er

k
ak

t
pk

a
pk

c
p3

8
jn

k
∑ :

LG
B

N
c
d
3

+
a
k
t

-9
70

-5
52

-9
22

-1
24

9
-9

87
-9

68
-1

96
-8

31
-9

52
-5

71
-9

92
-9

18
9

M
k
e
r
C

p
n
p

c
d
3

+
a
k
t

-9
02

-4
00

-8
27

-9
21

-8
95

-8
22

-7
9

-7
66

-7
70

-2
46

-8
24

-7
45

2

M
m

ix
C

p
n
p

c
d
3

+
a
k
t

-9
07

-4
16

-8
26

-9
33

-9
17

-8
30

-1
03

-7
68

-7
75

-2
63

-8
45

-7
58

4

M
g
a
u
ss
C

g
a
u
ss

c
d
3

+
a
k
t

-9
70

-5
52

-9
22

-1
24

9
-9

87
-9

68
-1

97
-8

31
-9

52
-5

71
-9

93
-9

19
3

Ta
bl
e
11

.1
1:

G
lo
ba

ll
og

-li
ke
lih

oo
d
of

th
e
m
od

el
fit
te
d
on

th
e
cd

3c
d
28

+
a
k
ti
n
h
ib

da
ta

se
t
fo
r
ea
ch

no
de
.V

al
ue
s
in

gr
ee
n
sh
ow

th
at

it
is

at
le
as
t
10

%
be

tt
er

th
an

th
e
re
sp
ec
ti
ve

va
lu
e
in

th
e
Li
ne
ar

G
au

ss
ia
n
B
ay
es
ia
n
N
et
w
or
k.

M
od

el
ra

f
m

ek
pl

c
pi

p2
pi

p3
er

k
ak

t
pk

a
pk

c
p3

8
jn

k
∑ :

LG
B

N
c
d
3

+
a
k
t

19
48

11
13

18
50

25
07

19
78

19
44

40
2

16
68

19
13

11
49

19
92

18
46

3

M
k
e
r
C

p
n
p

c
d
3

+
a
k
t

18
54

87
6

17
19

19
38

18
13

16
96

23
6

15
52

15
56

56
5

17
44

15
55

0

M
m

ix
C

p
n
p

c
d
3

+
a
k
t

18
54

88
8

17
10

19
65

18
44

17
02

27
5

15
55

15
69

59
0

17
54

15
70

4

M
g
a
u
ss
C

g
a
u
ss

c
d
3

+
a
k
t

19
48

11
13

18
50

25
05

19
78

19
43

40
1

16
66

19
11

11
48

19
91

18
45

3

Ta
bl
e
11

.1
2:

A
IC

F
of

th
e
m
od

el
s
fit
te
d
on

th
e
cd

3c
d
28

+
a
k
ti
n
h
ib

da
ta

se
t
fo
r
ea
ch

no
de
.V

al
ue
s
in

gr
ee
n
sh
ow

th
at

it
is
at

le
as
t
10

%
be

tt
er

th
an

th
e
re
sp
ec
ti
ve

va
lu
e
in

th
e
Li
ne
ar

G
au

ss
ia
n
B
ay
es
ia
n
N
et
w
or
k.



128 CHAPTER 11. ANALYSIS OF GROUP 1: CD3CD28 + AKTINHIB

M
odel

raf
m

ek
plc

pip2
pip3

erk
akt

pka
pkc

p38
jnk

∑
:

LG
B

N
c
d
3

+
a
k
t

1967
1137

1864
2526

1987
1963

426
1687

1932
1168

2011
18666

M
k
e
rC

p
n
p

c
d
3

+
a
k
t

1975
1058

1874
2165

1868
1820

421
1599

1596
737

1969
17082

M
m

ixC
p
n
p

c
d
3

+
a
k
t

1946
1020

1847
2200

1867
1802

439
1597

1611
740

1905
16975

M
g
a
u
ssC

g
a
u
ss

c
d
3

+
a
k
t

1967
1132

1864
2519

1987
1957

420
1676

1925
1162

2005
18614

Table
11.13:B

IC
F
ofthe

m
odels

fitted
on

the
cd

3cd
28

+
a
k
tin
h
ib

data
set

for
each

node.V
alues

in
green

show
that

it
is
at

least
10%

better
than

the
respective

value
in

the
Linear

G
aussian

B
ayesian

N
etw

ork.

M
odel

raf
m

ek
plc

pip2
pip3

erk
akt

pka
pkc

p38
jnk

∑
:

LG
B

N
c
d
3

+
a
k
t

4
5

3
4

2
4

5
3

4
4

4
42

M
k
e
rC

p
n
p

c
d
3

+
a
k
t

25
38

33
48

12
26

39
10

8
36

48
323

M
m

ixC
p
n
p

c
d
3

+
a
k
t

20
28

29
49

5
21

35
9

9
32

32
268

M
g
a
u
ssC

g
a
u
ss

c
d
3

+
a
k
t

4
4

3
3

2
3

4
2

3
3

3
34

Table
11.14:N

um
ber

of(effective)
param

eters
ofthe

m
odels

fitted
on

the
cd

3cd
28

+
a
k
tin
h
ib

data
set

for
each

node



11.5. SIMULATION BASED COMPARISON 129

11.5 Simulation Based Comparison

To compare the models fitted to the data set of the cd3cd28+aktinhib experiment in more
detail we simulated from all of them. To be able to compare the results with the original
data set we sampled 845 times from all four models following the procedure as described
in Chapter 8. Figure 11.6 shows the histograms of the cd3cd28+aktinhib data set for each
node and the fitted kernel density estimates to the data simulated from the four models.
For the MC models the fit of the kernel density estimates to the simulated data only
depends on the fit of the marginals in the models. Hence, it does not surprise that the
MkerCpnp

cd3+akt model and theMmixCpnp
cd3+akt model outperform theMgaussCgauss

cd3+akt model
and the LGBNcd3+akt. This holds as we derived that both the kernel density margins and
the Gaussian mixture margins fit quite good to the data. Only for the node erk the fit
is similar as it is also modeled as a Gaussian distribution in the approach with Gaussian
mixture margins with the fitted kernel density margins being very similar to that. Note
that all four models seem to have problems to recreate the correct height of the peak
at the nodes plc and jnk. Still it looks like in general the kernel density estimates fitted
to the data simulated from the MkerCpnp

cd3+akt model and the MmixCpnp
cd3+akt model are

quite close to the kernel density estimates fitted to the data from the cd3cd28 + aktinhib

experiment.

To compare the dependence structures we instead consider the pairs plots of the cd3cd28+

aktinhib data set and the simulated data sets in Figure 11.7 and Figure 11.8. Looking
at the pairs plots from the data sets simulated from the MkerCpnp

cd3+akt model and the
MmixCpnp

cd3+akt model in Figure 11.7 we observe almost no differences between their plots.
This does not surprise as we have already seen that their copulas are almost identical.
Comparing them to the ones from the cd3cd28+aktinhib data set almost only similarities
are visible as well. For all pairs plots the shapes, even more complicated ones like between
the node pairs raf ↔ mek or erk ↔ akt, are close between the simulated data of the two
models and the original data.

Comparing the pairs plots of the MgaussCgauss
cd3+akt model and the LGBNcd3+akt instead, it

is clear that both of them have problems modeling more complicated shapes as they are
only able to model elliptical shaped dependencies. It seems that theMgaussCgauss

cd3+akt model
does this a little bit better looking at the pairs plots of raf ↔ mek and erk ↔ akt which
are closer to the ones from the original data set than the ones from the LGBNcd3+akt.

Next, we want to determine if the models create samples in which accumulations of
high/low values appear in a similar frequency as in the original data. Hence, we first
sum up according to the dependencies given by the DAG and then over all nodes. The
results of the first analysis are illustrated in Figure 11.9 and of the second in Figure 11.10.
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Figure 11.6: Marginal histograms of the cd3cd28 + aktinhib data set of each of the eleven
nodes in topological order after samples containing a zero value have been deleted and
kernel density estimates have been fitted to the simulated data from the different models
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(a) MkerCpnp
cd3+akt

(b) MmixCpnp
cd3+akt

Figure 11.7: Pairs plots for each pair of nodes of the respective model in the lower panel
and of the cd3cd28 + aktinhib data set in the upper panel. Green plots in the lower panel
indicate that an edge exists between these two nodes in the model. For a better visibility
the same pairs are colored in red in the upper panel
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(a) MgaussCgauss
cd3+akt

(b) LGBNcd3+akt

Figure 11.8: Pairs plots for each pair of nodes of the respective model in the lower panel
and of the cd3cd28 + aktinhib data set in the upper panel. Green plots in the lower panel
indicate that an edge exists between these two nodes in the model. For a better visibility
the same pairs are colored in red in the upper panel
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Figure 11.9: Histograms of the sum of each node on the set of its parents according to
the consent DAG in the cd3cd28 +aktinhib data set and in the simulated data sets of the
MkerCpnp

cd3+akt model,MmixCpnp
cd3+akt model,MgaussCgauss

cd3+akt model and the LGBNcd3+akt
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Figure 11.10: Histograms of the sum over all nodes in the cd3cd28 + aktinhib data
set and in the simulated data sets of the MkerCpnp

cd3+akt model, MmixCpnp
cd3+akt model,

MgaussCgauss
cd3+akt model and the LGBNcd3+akt in the first five plots and fitted kernel den-

sity estimates to each of the data sets in the sixth plot.

Looking at the histograms in Figure 11.9 we observe that theMkerCpnp
cd3+akt model and the

MmixCpnp
cd3+akt model are able to recreate the histograms of the cd3cd28 + aktinhib data

set quite good. There is only one discrepancy visible for the node pip2 where both models
are not able to recreate the height of the peak. Considering the MgaussCgauss

cd3+akt model
and the LGBNcd3+akt we can see that for these models similarities of the histograms to
the original data seem to be the exception.

Finally, comparing the histograms of the sum over all nodes in Figure 11.10 we derive that
especially the data set simulated from the MkerCpnp

cd3+akt model and the MmixCpnp
cd3+akt

model seem to be very close to the original data set. This holds in particular when con-
sidering the fitted kernel density estimates which seem to be only slightly shifted to the
left. On the other hand, we observe that the histogram of the sum of the MgaussCgauss

cd3+akt

model does not reach the height of the peak compared to the original data set whereas
the LGBNcd3+akt overestimates the height of the peak.
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11.6 Conditional Simulation Based Comparison

Now we want to investigate how the conditional densities of the four models behave if the
values of the parents are given. This does not show us how well the models are fitted to
the data set but gives us the possibility to compare how the models change if we fit them
on other data sets.

As conditioning values we take the values we have already determined in Chapter 9 in
Table 9.1 in order to compare the plots with the ones of the models fitted on the other
data sets.

The results are displayed in Figure 11.11. There, we observe something we have
seen throughout the model comparison. This is, the MkerCpnp

cd3+akt model and the
MmixCpnp

cd3+akt model in general create very similar results. Here it seems that the peaks
of the MkerCpnp

cd3+akt model tend to be a little bit higher comparing these two. However,
only in some chosen plots clear differences can be seen. This is mostly the case when we
condition on points from the tails of the distribution of the parents, e.g., for the nodes
p38 and jnk.

Furthermore, note that for none of the nodes the MgaussCgauss
cd3+akt model is close to the

MkerCpnp
cd3+akt model and the MmixCpnp

cd3+akt model for all three, respectively five, points
on which the node is conditioned on.

Comparing the MgaussCgauss
cd3+akt model with the LGBNcd3+akt we can now observe more

differences than when both models where fitted on the complete Sachs data set. This is
due to the fact that in the MgaussCgauss

cd3+akt model only twelve of the twenty dependencies
are modeled while in the LGBNcd3+akt all of them are modeled.
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Mode Middle Tail

Figure 11.11: Density plots of the kernel density estimates fitted to the simu-
lated data from the different models conditioned on the nodes in Table 9.1 in the
same order. Blue: MkerCpnp

cd3+akt. Green: MmixCpnp
cd3+akt. Brown: MgaussCgauss

cd3+akt. Or-
ange: LGBNcd3+akt



Chapter 12

Analysis of Group 2: cd3cd28 and
cd3cd28 + ly

In this chapter we will investigate the data of the cd3cd28 and cd3cd28 + ly experiments
using three types of D-vine models and a Linear Gaussian Bayesian Network.

12.1 Linear Gaussian Bayesian Network Fitting

(LGBNcd3&cd3+ly)

Fitting a Linear Gaussian Bayesian Network on the data from the cd3cd28 and cd3cd28+ly

experiments results in a log-likelihood of -18460.01, an AICF of 37003.99 and a BICF

of 37235.73 of the whole model. The results are shown in Table 12.1.

Global
Node log-likelihood # Parameters AICF BICF

raf -1749.70 4 3507.39 3528.95
mek -985.17 5 1980.35 2007.29
plc -1793.30 3 3592.59 3608.76

pip2 -2247.66 4 4503.31 4524.87
pip3 -2070.70 2 4145.39 4156.17
erk -1819.81 4 3647.62 3669.17
akt -728.84 5 1467.68 1494.62
pka -1781.51 3 3569.02 3590.58
pkc -1964.41 4 3936.82 3958.38
p38 -1017.78 4 2043.56 2065.12
jnk -2301.13 4 4610.26 4631.82∑

: -18460.01 42 37003.99 37235.73

Table 12.1: Global log-likelihood, number of parameters, AICF and BICF of the fitted
linear models for each node given the set of its parents in the Linear Gaussian Bayesian
Network on the data set from the cd3cd28 and cd3cd28 + ly experiments

137
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12.2 Marginal Fitting (Mcd3&cd3+ly)

12.2.1 Gaussian Margin Fitting (Mgauss
cd3&cd3+ly)

Assuming independence in the data and fitting Gaussian margins to the data from the
cd3cd28 and cd3cd28 + ly experiments results in a log-likelihood of the marginals of
-20480.04, an AICM of 41004.04 and a BICM of 41122.61. The results for each node
are displayed in Table 12.2.

Marginal
Node log-likelihood AICM BICM

raf -1750.67 3505.33 3516.11
mek -1454.68 2913.35 2924.13
plc -1796.23 3596.45 3607.23

pip2 -2381.50 4767.01 4777.79
pip3 -2070.70 4145.39 4156.17
erk -1889.11 3782.22 3792.99
akt -1576.09 3156.18 3166.96
pka -1783.47 3570.94 3581.72
pkc -1967.68 3939.35 3950.13
p38 -1443.18 2890.36 2901.14
jnk -2366.73 4737.46 4748.24∑

: -20480.04 41004.04 41122.61

Table 12.2: Marginal log-likelihood, AICM and BICM of the fitted Gaussian margins
Mgauss

cd3&cd3+ly to the data set from the cd3cd28 and cd3cd28 + ly experiments

Analyzing the fit of the margins in panel (a) of Figure 12.3 we observe that for none of
the nodes all three types of plots indicate that a Gaussian margin is suitable. Therefore,
as when we fitted Gaussian margins on other data sets, technically the requirements to
fit copulas to the data using the estimated Gaussian margins for the PIT are not fulfilled.
Further, Figure 12.1 displays the normalized contour and scatter plots of each pair of
nodes.
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Figure 12.1: Normalized contour plots in the lower left triangle, normalized scatter plots
in the upper right triangle, with the value of Kendall’s tau displayed in the middle of
the plot, and histograms in the diagonal elements after applying the PIT using the fitted
Gaussian margins to the data from the cd3cd28 and cd3cd28 + ly experiments
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12.2.2 Gaussian Mixture Margin Fitting (Mmix
cd3&cd3+ly)

In the next step fitting Gaussian mixture margins instead of Gaussian margins results in
a log-likelihood of the marginals of -19344.55, an AICM of 38847.09 and a BICM of
39272.82. We observe in Table 12.3 that no single node is modeled a Gaussian distri-
bution. Instead all nodes except the node pip2, which is modeled as a four component
Gaussian mixture, are modeled as a two or three component Gaussian mixture.

Marginal
Node Distribution log-Lik. # Parameters AICM BICM

raf two component normal -1667.51 5 3345.02 3371.96
mek two component normal -1357.54 5 2725.09 2752.03
plc two component normal -1744.75 5 3499.50 3526.44

pip2 four component normal -2280.28 11 4582.55 4641.83
pip3 three component normal -2034.97 8 4085.94 4129.05
erk three component normal -1845.22 8 3706.45 3749.56
akt two component normal -1487.83 5 2985.65 3012.60
pka three component normal -1497.51 8 3011.02 3054.14
pkc three component normal -1797.63 8 3611.26 3654.38
p38 three component normal -1365.08 8 2746.15 2789.26
jnk three component normal -2266.23 8 4548.46 4591.57∑

: -19344.55 79 38847.09 39272.82

Table 12.3: Marginal log-likelihood, number of parameters, AICM and BICM of the fitted
Gaussian mixture margins Mmix

cd3&cd3+ly to the data set from the cd3cd28 and cd3cd28+ ly

experiments

Again looking at panel (b) of Figure 12.3 we derive that all three types of plots indicate
a good fit for all nodes. Especially the histograms of the data after applying the PIT
using the fitted Gaussian mixture margins seem to be uniformly distributed. Further
information is displayed in Figure 12.2. There the normalized scatter and contour plots as
well a again the histograms of the data after applying the PIT using the fitted Gaussian
mixture margins can be found.
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Figure 12.2: Normalized contour plots in the lower left triangle, normalized scatter plots
in the upper right triangle, with the value of Kendall’s tau displayed in the middle of
the plot, and histograms in the diagonal elements after applying the PIT using the fitted
Gaussian mixture margins to the data from the cd3cd28 and cd3cd28 + ly experiments
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12.2.3 Kernel Density Margin Fitting (Mker
cd3&cd3+ly)

Instead fitting kernel density estimates to the data, assuming independence, results in
a log-likelihood of the marginals of -19299.83, an AICM of 38962.12 and a BICM of
39938.74. Similar to the earlier approaches on the other data sets, we observe that the
results when fitting kernel density estimates are very close to the results when fitting
Gaussian mixture margins.

Marginal Effective
Node Distribution log-likelihood # parameters AICM BICM

raf kernel density -1660.43 9.84 3340.55 3393.60
mek kernel density -1348.14 49.50 2795.28 3062.05
plc kernel density -1739.36 12.51 3503.75 3571.18

pip2 kernel density -2279.52 10.53 4580.09 4636.81
pip3 kernel density -2027.86 9.56 4074.82 4126.32
erk kernel density -1842.67 35.51 3756.36 3947.71
akt kernel density -1495.11 7.89 3006.01 3048.54
pka kernel density -1489.91 16.56 3012.95 3102.19
pkc kernel density -1795.41 6.90 3604.63 3641.83
p38 kernel density -1362.81 12.23 2750.08 2815.98
jnk kernel density -2258.61 10.19 4537.60 4592.53∑

: -19299.83 181.22 38962.12 39938.74

Table 12.4: Marginal log-likelihood, number of effective parameters, AICM and BICM

of the fitted kernel density margins Mker
cd3&cd3+ly to the data set from the cd3cd28 and

cd3cd28 + ly experiments

This can be seen in the detailed results for each node in Table 12.4 which are very similar
to the ones in Table 12.3 as well as in the graphical analysis in panel (c) of Figure 12.3.
There only slightest differences to panel (b) are visible. Furthermore, the normalized
contour and scatter plots in Figure 12.4 strongly resemble the ones from Figure 12.2.
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Figure 12.4: Normalized contour plots in the lower left triangle, normalized scatter plots
in the upper right triangle, with the value of Kendall’s tau displayed in the middle of
the plot, and histograms in the diagonal elements after applying the PIT using the fitted
kernel density margins to the data from the cd3cd28 and cd3cd28 + ly experiments
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(a) Mgauss
cd3&cd3+ly (b) Mmix

cd3&cd3+ly (c) Mker
cd3&cd3+ly

Figure 12.3: Density plot and Q-Q plot of the chosen margins (in the first two columns)
and histogram of the data after applying the distribution function of the fitted marginal
distributions, in the third column, for all nodes for the chosen marginals on the cd3cd28

and cd3cd28 + ly data set
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12.2.4 Comparison of Marginal Fits

As when we fitted the same three types of margins to the Sachs data set or the the
data from the cd3cd28 + aktinhib data set the results when fitting Gaussian mixture
margins and kernel density estimates are very similar. Log-likelihood and AICM almost
coincide as well as the density plots and Q-Q plots. This holds for all nodes. What is
notable here is the bigger difference in the number of (effective) parameters required for
the two approaches. While overall fitting kernel density estimates required around double
the amount of effective parameters as fitting Gaussian mixture margins we observe strong
differences from node to node.

For example for the nodes p38 and jnk fitting kernel density estimates requires only
around three more effective parameters. For some nodes, e.g., pip2 and pkc, fitting Gaus-
sian mixture margins even requires more parameters than fitting kernel density estimates.
On the other hand the fitted kernel density estimates for the nodes mek and erk require
49.50 and 35.51 effective parameters while Gaussian mixture margins only need 5 and
8 parameters. Therefore, we observe notable differences in the BICM for these two ap-
proaches. For both nodes the fitted Gaussian mixture margins provide a better BICM

than the fitted kernel density estimates. Further, when we look at the BICM of all nodes
together, we can see that the Gaussian mixture margins outperform the kernel density
estimates.

As none of the nodes is modeled as a normal distribution when fitting Gaussian mixture
margins it does not surprise that the fitted Gaussian margins have a worse fit in terms
of the log-likelihood, AICM and BICM than the fitted Gaussian mixture margins and
therefore also the fitted kernel density estimates. Looking at the graphical analysis we
can see that especially the Q-Q plots show problems in the tails of most nodes. Overall
leading to the assumption that fitting Gaussian margins does not seem reasonable.

Considering the normalized contour and scatter plots for the fitted Gaussian mixture
margins and kernel density estimates we observe mostly the same shapes. However, com-
pared to the marginal fitting, for example in Section 11.2 where the results were almost
identical, this time more differences are present.

It seems that the fitted kernel density estimates result in smoother contour plots for
example between the nodes raf ↔ pka or plc ↔ pka. Even less smooth normalized
contour plots can be observed when using the fitted Gaussian margins. Overall, if a pair
of nodes has a non-elliptical shape using one of the three approaches to normalize it, it also
has a non-elliptical shape using the other two. The only thing changing is the smoothness
of the contours.
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12.3 D-vine Regression (MCcd3&cd3+ly)

12.3.1 Kernel Density Margins with Parametric and Non-

Parametric Copulas (MkerCpnp
cd3&cd3+ly)

Transforming the data from the cd3cd28 and cd3cd28 + ly experiments to the copula
scale using the fitted kernel density margins and then fit a D-vine regression allowing for
parametric and non-parametric copulas results in a log-likelihood of 4127.36, an AICC

of -7706.08 and a BICC of -6227.74 of the copula terms.

D-vine Copula
Node order log-lik. AICC BICC

raf pkc 1.12 -0.25 5.14
mek raf, pka 622.28 -1147.74 -886.83
plc pip3 82.14 -113.07 24.93

pip2 pip3, plc 539.74 -963.38 -650.56
erk pka, mek 269.16 -502.23 -404.98
akt erk, pka 1234.55 -2366.62 -2090.52
pka pkc 15.85 -7.24 58.63
pkc plc, pip2 4.93 -5.87 4.91
p38 pkc 907.17 -1755.05 -1595.29
jnk pkc 450.42 -844.63 -693.17∑

: 4127.36 -7706.08 -6227.74

Table 12.5: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MkerCpnp

cd3&cd3+ly model

Results per node are displayed in Table 12.5 and per copula in Table 12.6. There, we
observe that of the twenty possible dependencies given by the DAG only fifteen are mod-
eled. The five missing ones are pka → raf , pkc → mek, pip3 → akt, pka → p38 and
pka → jnk. Of the remaining fifteen eleven are modeled as a non-parametric copula.
Contour plots of the fitted copulas can be found in Section 12.3.3 in Figure 12.5 together
with the ones from the MmixCpnp

cd3&cd3+ly model and the MgaussCgauss
cd3&cd3+ly model.

Effective Copula
Node Pair copula Family # parameters log-lik. AICC BICC Est. Ken. τ

raf raf pkc frank 1.00 1.12 -0.25 5.14 -0.01

mek
mek raf tll 24.66 597.81 -1146.30 -1013.41 0.49

mek pka; raf tll 23.76 24.47 -1.44 126.58 -0.01
plc plc pip3 tll 25.61 82.14 -113.07 24.93 0.02

pip2
pip2 pip3 tll 21.99 260.59 -477.20 -358.70 0.06

pip2 plc; pip3 tll 36.06 279.15 -486.18 -291.86 0.26

erk
erk pka tll 17.05 267.94 -501.79 -409.93 0.04

erk mek; pka gumbel 1.00 1.22 -0.44 4.95 0.01

akt
akt erk tll 30.18 1041.44 -2022.52 -1859.87 0.60

akt pka; erk tll 21.05 193.10 -344.10 -230.65 0.16
pka pka pkc tll 12.22 15.85 -7.24 58.63 0.01

pkc
pkc plc frank 1.00 2.40 -2.81 2.58 -0.04

pkc pip2; plc gumbel 1.00 2.53 -3.06 2.33 -0.02
p38 p38 pkc tll 29.65 907.17 -1755.05 -1595.29 0.57
jnk jnk pkc tll 28.11 450.42 -844.63 -693.17 -0.10

Table 12.6: Summary of all copulas fitted in the MkerCpnp
cd3&cd3+ly model



12.3. D-VINE REGRESSION (MCCD3&CD3+LY ) 147

12.3.2 Gaussian Mixture Margins with Parametric and Non-

Parametric Copulas (MmixCpnp
cd3&cd3+ly)

If we use the fitted Gaussian mixture margins from Section 12.2.2 for the probability
integral transform instead, the fitted D-vine model has a log-likelihood of 4112.81, an
AICC of -7698.11 and a BICC of -6276.70 of the copula terms if we allow for parametric
and non-parametric copulas.

D-vine Copula
Node order log-lik. AICC BICC

raf pkc 1.12 -0.24 5.15
mek raf, pka 621.25 -1149.70 -899.62
plc pip3 81.51 -113.43 20.22

pip2 pip3, plc 532.63 -956.51 -663.50
erk pka, mek 268.99 -502.19 -405.72
akt erk, pka 1238.08 -2379.35 -2118.47
pka pkc 14.85 -12.50 33.84
pkc plc, pip2 4.61 -5.22 5.56
p38 pkc 906.87 -1755.51 -1598.63
jnk pkc 442.89 -823.46 -655.53∑

: 4112.81 -7698.11 -6276.70

Table 12.7: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MmixCpnp

cd3&cd3+ly model

Detailed results for each D-vine are displayed in Table 12.7 and the detailed results for
each copula in Table 12.8. We observe that compared to using kernel density margins
for the probability integral transform and then fit a D-vine with parametric and non-
parametric copulas the same fifteen edges are present in the model with the same eleven
being modeled as a non-parametric copula. The respective contour plots can be found in
Figure 12.5 in Section 12.3.3.

Effective Copula
Node Pair copula Family # parameters log-lik. AICC BICC Est. Ken. τ

raf raf pkc frank 1.00 1.12 -0.24 5.15 -0.01

mek
mek raf tll 25.68 597.47 -1143.58 -1005.21 0.49

mek pka; raf tll 20.73 23.79 -6.12 105.59 -0.01
plc plc pip3 tll 24.80 81.51 -113.43 20.22 0.02

pip2
pip2 pip3 tll 21.39 257.92 -473.06 -357.80 0.06

pip2 plc; pip3 tll 32.98 274.71 -483.45 -305.70 0.26

erk
erk pka tll 16.90 267.58 -501.35 -410.27 0.04

erk mek; pka gumbel 1.00 1.42 -0.84 4.55 0.01

akt
akt erk tll 28.02 1044.72 -2033.40 -1882.41 0.60

akt pka; erk tll 20.39 193.36 -345.95 -236.06 0.16
pka pka pkc tll 8.60 14.85 -12.50 33.84 0.01

pkc
pkc plc frank 1.00 2.39 -2.78 2.61 -0.04

pkc pip2; plc gumbel 1.00 2.22 -2.44 2.95 -0.02
p38 p38 pkc tll 29.11 906.87 -1755.51 -1598.63 0.57
jnk jnk pkc tll 31.16 442.89 -823.46 -655.53 -0.10

Table 12.8: Summary of all copulas fitted in the MmixCpnp
cd3&cd3+ly model
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12.3.3 Gaussian Margins with Gaussian Copulas

(MgaussCgauss
cd3&cd3+ly)

Again as third approach using Gaussian margins for the probability integral transform
and only allowing for Gaussian copulas in the D-vine regression results in a log-likelihood
of 2005.63, an AICC of -3989.28 and an BICC of -3929.99 of the copula terms.

D-vine Copula
Node order log-lik. AICC BICC

raf
mek raf 469.32 -936.63 -931.24
plc pip3 2.93 -3.86 1.53

pip2 pip3, plc 133.85 -263.70 -252.92
erk pka 63.61 -125.23 -119.84
akt erk, pka 844.16 -1684.32 -1673.54
pka pkc 1.87 -1.74 3.65
pkc plc 2.63 -3.27 2.12
p38 pkc 421.66 -841.33 -835.94
jnk pkc 65.60 -129.20 -123.81∑

: 2005.63 -3989.28 -3929.99

Table 12.9: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MgaussCgauss

cd3&cd3+ly model

In Table 12.9 more detailed results for each node can be found. As we observe in Table
12.10 only eleven of the twenty possible dependencies are modeled. Additional to the
ones missing in the MkerCpnp

cd3&cd3+ly model and the MmixCpnp
cd3&cd3+ly model also the

dependencies pkc → raf , pka → mek, mek → erk and pip2 → pkc are missing. The
contour plots are displayed in Figure 12.5.

Copula
Node Pair copula Family log-lik. AICC BICC Par. Est. Ken. τ

mek mek raf gaussian 469.32 -936.63 -931.24 0.66 0.49
plc plc pip3 gaussian 2.93 -3.86 1.53 0.06 0.02

pip2
pip2 pip3 gaussian 129.93 -257.87 -252.48 0.39 0.06

pip2 plc; pip3 gaussian 3.92 -5.83 -0.44 0.07 0.26
erk erk pka gaussian 63.61 -125.23 -119.84 0.21 0.04

akt
akt erk gaussian 785.42 -1568.85 -1563.46 0.79 0.60

akt pka; erk gaussian 58.74 -115.47 -110.08 0.27 0.16
pka pka pkc gaussian 1.87 -1.74 3.65 0.05 0.01
pkc pkc plc gaussian 2.63 -3.27 2.12 -0.06 -0.04
p38 p38 pkc gaussian 421.66 -841.33 -835.94 0.67 0.57
jnk jnk pkc gaussian 65.60 -129.20 -123.81 -0.28 -0.10

Table 12.10: Summary of all copulas fitted in the MgaussCgauss
cd3&cd3+ly model
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(a) MkerCpnp
cd3&cd3+ly (b) MmixCpnp

cd3&cd3+ly (c) MgaussCgauss
cd3&cd3+ly

Figure 12.5: Contour plots of the respective copulas in the models allowing for paramet-
ric and non-parametric pair copulas where kernel density margins or Gaussian mixture
margins were used for the PIT and the model where Gaussian margins and only Gaussian
copulas were used on the cd3cd28 and cd3cd28 + ly data set
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12.3.4 Comparison of D-vine Regression Models

Comparing the MkerCpnp
cd3&cd3+ly model and the MmixCpnp

cd3&cd3+ly model we observe
the same strong similarities as when comparing the MkerCpnp

cd3+akt model and the
MmixCpnp

cd3+akt model. The same fifteen edges are modeled, all of the D-vines have the
same order and all copulas have the same family, a similar number of (effective) parame-
ters and goodness of fit (log-likelihood, AICC and BICC). Hence, it does not surprise that
there are no obvious differences in the contour plots in Figure 12.5.

Again restricting to Gaussian margins and Gaussian copulas unsurprisingly results in
a notable decrease of the goodness of fit compared to the other two models. In the
MgaussCgauss

cd3&cd3+ly model only eleven of the twenty possible dependencies are modeled.
Most importantly both the pka→ raf and pkc→ raf dependencies are missing meaning
the node raf is modeled independent of all other nodes in this case. What is striking that
in the DAG the node pka is the one with the highest number of children, six, but in the
MgaussCgauss

cd3&cd3+ly model only one of these dependencies is modeled.
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12.4 Goodness of Fit Measures Model Comparison

To calculate the goodness of fit measures for the whole D-vine regression models fitted
to the cd3cd28 and cd3cd28 + ly data set we sum up the measures of the copula terms
and of the marginals. Only then we are able to compare the D-vine models to the Linear
Gaussian Bayesian Network. The results for the log-likelihood are displayed in Table 12.11,
for the AICF in Table 12.12, for the BICF in Table 12.13 and for the number of (effective)
parameters used in the models in Table 12.14.

Comparing the MgaussCgauss
cd3&cd3+ly model and the LGBNcd3&cd3+ly we observe very sim-

ilar results. This is again something we expected as both specify a normal distribution.
Since we optimized the log-likelihood when fitting the LGBNcd3&cd3+ly it has a better
log-likelihood than the MgaussCgauss

cd3&cd3+ly model for every node. The reverse does not
hold. Not all nodes have a better AICF in the MgaussCgauss

cd3&cd3+ly model than in the
LGBNcd3&cd3+ly even though the MgaussCgauss

cd3&cd3+ly model was fitted optimizing the
AICF .

While most nodes have a better a better AICF in the MgaussCgauss
cd3&cd3+ly model compared

to the LGBNcd3&cd3+ly, this does not hold for the nodes erk, akt and p38. The reason
is that in the LGBNcd3&cd3+ly the parameters are modeled all together in one step and
in the MgaussCgauss

cd3&cd3+ly model in two steps which can result in a worse fit. For the
node erk the difference is that big that it is the only one with a better BICF in the
LGBNcd3&cd3+ly.

As expected both the MkerCpnp
cd3&cd3+ly model and the MmixCpnp

cd3&cd3+ly model provide
a better fit than the MgaussCgauss

cd3&cd3+ly model and the LGBNcd3&cd3+ly. Depending on
the measure used for the comparison it changes which of the two is slightly better than
the other one. When looking at the log-likelihood all nodes except akt have a better fit in
the MkerCpnp

cd3&cd3+ly model. Instead looking at the AICF only five nodes have a better fit
in the MkerCpnp

cd3&cd3+ly model leading to the MmixCpnp
cd3&cd3+ly model having a slightly

better fit when comparing based on the AICF . For both measures the differences are,
taking the absolute value into account, almost vanishing.

Finally, looking at the BICF all nodes except pip3 and jnk have a better fit in the
MmixCpnp

cd3&cd3+ly model. This is due to the excessive amount of effective parameters
needed to model the kernel density marginals in this case. Comparing the BICF at least
slight differences are present.
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12.5 Simulation Based Comparison

For a further analysis we again followed the procedure as described in Chapter 8 and
sampled 1618 times from the four fitted models to analyze how the models are able to
recreate the data set they are fitted on. First, we fit kernel density estimates to the data
simulated from each node of the four models and investigate how they behave compared
to the kernel density estimates fitted to each node in the cd3cd28 and cd3cd28 + ly data
set.

The results are displayed in Figure 12.6. We have already stated when we previously
analyzed these plots that the quality of the fit almost only depends on the fit of the
marginals. Hence, as expected the MkerCpnp

cd3&cd3+ly model and the MmixCpnp
cd3&cd3+ly

model outperform the other two. This holds especially for the nodes where the histograms
are not normally distributed, for example pip2 and jnk. It is not possible to prefer one of
the two models over the other, as depending on the specific node it changes which one is
closer to the original data.

As we are more interested in the analysis of the dependence structures we analyze the
pairs plots next. The results for the MkerCpnp

cd3&cd3+ly model and the MmixCpnp
cd3&cd3+ly

model can be observed in Figure 12.7, as well as for the MgaussCgauss
cd3&cd3+ly model and

the LGBNcd3&cd3+ly in Figure 12.8.

In Figure 12.7 we can see that the pairs plots of the MkerCpnp
cd3&cd3+ly model and the

MmixCpnp
cd3&cd3+ly model are almost identical. Comparing them to the pairs plots of the

cd3cd28 and cd3cd28 + ly data set we derive very similar shapes for all dependencies and
not only the ones that are directly modeled. This also holds for more complicated shapes
like between the nodes raf and mek or mek and pka.

As the MgaussCgauss
cd3&cd3+ly model models each dependency as a Gaussian copula the re-

spective pairs plots each have the typical elliptical form. Therefore, it is clear that the
model has problems recreating more complicated forms. Looking at Figure 12.8 we can
see that the pairs plots from the MgaussCgauss

cd3&cd3+ly model seem to be more similar to the
ones from the cd3cd28 and cd3cd28+ ly data set than the ones from the LGBNcd3&cd3+ly.
This can for example be deduced at the plots for the nodes raf and mek. Both models
are still way worse in recreating the original pairs plots compared to the MkerCpnp

cd3&cd3+ly

model and the MmixCpnp
cd3&cd3+ly model.

Finally, we are looking at the histograms of the sum of each node and the set of its
parents as given by the DAG. If the models fit well, high/low values at several nodes at
once should appear in a similar frequency as in the original data set. In that case the
histograms of the sums should be similar. Figure 12.9 shows the results. It seems that the
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Figure 12.6: Marginal histograms of the cd3cd28 and cd3cd28 + ly data set of each of the
eleven nodes in topological order after samples containing a zero value have been deleted
and kernel density estimates have been fitted to the simulated data from the different
models
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(a) MkerCpnp
cd3&cd3+ly

(b) MmixCpnp
cd3&cd3+ly

Figure 12.7: Pairs plots for each pair of nodes of the respective model in the lower panel
and of the cd3cd28 and cd3cd28 + ly data set in the upper panel. Green plots in the lower
panel indicate that an edge exists between these two nodes in the model. For a better
visibility the same pairs are colored in red in the upper panel
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(a) MgaussCgauss
cd3&cd3+ly

(b) LGBNcd3&cd3+ly

Figure 12.8: Pairs plots for each pair of nodes of the respective model in the lower panel
and of the cd3cd28 and cd3cd28 + ly data set in the upper panel. Green plots in the lower
panel indicate that an edge exists between these two nodes in the model. For a better
visibility the same pairs are colored in red in the upper panel
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Figure 12.9: Histograms of the sum of each node on the set of its parents according to the
consent DAG in the cd3cd28 and cd3cd28 + ly data set and in the simulated data sets of
the MkerCpnp

cd3&cd3+ly model, MmixCpnp
cd3&cd3+ly model, MgaussCgauss

cd3&cd3+ly model and the
LGBNcd3&cd3+ly
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Figure 12.10: Histograms of the sum over all nodes in the cd3cd28 and cd3cd28+ly data set
and in the simulated data sets of the MkerCpnp

cd3&cd3+ly model, MmixCpnp
cd3&cd3+ly model,

MgaussCgauss
cd3&cd3+ly model and the LGBNcd3&cd3+ly in the first five plots and fitted kernel

density estimates to each of the data sets in the sixth plot

histograms of both theMkerCpnp
cd3&cd3+ly model and theMmixCpnp

cd3&cd3+ly model are quite
close to the ones from the cd3cd28 and cd3cd28 + ly data set for all nodes. Looking at
the MgaussCgauss

cd3&cd3+ly model instead the histograms of some nodes are still close to the
original ones, for example for the nodes plc or pip2. However, the more non-symmetric the
histograms of the underlying data are the more problems the MgaussCgauss

cd3&cd3+ly model
gets at recreating them. For the LGBNcd3&cd3+ly almost no similarities with the cd3cd28

and cd3cd28 + ly data can be seen.

Looking at the sum over all nodes in Figure 12.10 we observe the same results as when
we have been considering the sums according to the set of the parents for each node.
The MkerCpnp

cd3&cd3+ly model and the MmixCpnp
cd3&cd3+ly model seem to resemble the data

from the cd3cd28 and cd3cd28 + ly data set quite good. On the other hand, while for
the MgaussCgauss

cd3&cd3+ly model at least some similarities exist, this is not the case for the
LGBNcd3&cd3+ly.
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12.6 Conditional Simulation Based Comparison

To end the comparison of the models fitted to the cd3cd28 and cd3cd28 + ly data set we
want to compare how the conditional densities on the different models behave if they are
conditioned on different values. This is not done in order to compare the models to the
data set they are fitted on, but rather to later be able to compare how the models fitted
on different data sets behave. Therefore, we condition the models which we fitted on the
cd3cd28 and cd3cd28 + ly data set using the nodes we specified in Chapter 9 in Table 9.1.

The results are given in Figure 12.11. As before we observe that the results for the
MkerCpnp

cd3&cd3+ly model and the MmixCpnp
cd3&cd3+ly model are extremely similar. For al-

most all plots the fitted kernel density estimates on the sampled data from both models
are identical. This holds even for not unimodal shapes like for example the plots for the
node pkc. Only when we condition on points from the tails small differences for the node
pip2 are visible.

Considering the fitted kernel density estimates of the samples from theMgaussCgauss
cd3&cd3+ly

model, we observe that while the results are still comparable to the ones from the
MkerCpnp

cd3&cd3+ly model and the MmixCpnp
cd3&cd3+ly model for the node raf this is not

the case for any other node. For all other nodes at least one of the fitted kernel density es-
timates differs strongly from the ones fitted to the data from the MkerCpnp

cd3&cd3+ly model
and the MmixCpnp

cd3&cd3+ly model. Looking at the kernel density estimates fitted to the
data simulated from the LGBNcd3&cd3+ly we can see no clear similarities to any other
model.
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Mode Middle Tail

Figure 12.11: Density plots of the kernel density estimates fitted to the simulated data
from the different models conditioned on the nodes in Table 9.1 in the same order.
Blue: MkerCpnp

cd3&cd3+ly. Green: MmixCpnp
cd3&cd3+ly. Brown: M

gaussCgauss
cd3&cd3+ly. Orange:

LGBNcd3&cd3+ly



Chapter 13

Analysis of Group 3: cd3cd28icam2

and pma

In this chapter we will investigate the data of the cd3cd28icam2 and pma experiments
using three types of D-vine models and a Linear Gaussian Bayesian Network.

13.1 Linear Gaussian Bayesian Network Fitting

(LGBNicam2&pma)

Fitting a Linear Gaussian Bayesian Network on the data from the cd3cd28icam2 and pma
experiments results in a log-likelihood of -18200.39, an AICF of 36484.75 and a BICF of
36719.50 of the whole model. Detailed results for each node are displayed in Table 13.1.

Global
Node log-likelihood # Parameters AICF BICF

raf -2005.29 4 4018.57 4040.41
mek -1070.10 5 2150.20 2177.50
plc -1481.60 3 2969.19 2985.57

pip2 -2147.33 4 4302.66 4324.50
pip3 -2410.15 2 4824.29 4835.21
erk -2038.28 4 4084.57 4106.40
akt -419.79 5 849.59 876.88
pka -1772.69 3 3551.37 3573.21
pkc -1968.04 4 3944.07 3965.91
p38 -1105.76 4 2219.51 2241.35
jnk -1781.36 4 3570.73 3592.56∑

: -18200.39 42 36484.75 36719.50

Table 13.1: Global log-likelihood, number of parameters, AICF and BICF of the fitted
linear models for each node given the set of its parents in the Linear Gaussian Bayesian
Network on the data set from the cd3cd28icam2 and pma experiments

162
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13.2 Marginal Fitting (Micam2&pma)

13.2.1 Gaussian Margin Fitting (Mgauss
icam2&pma)

Again fitting Gaussian margins, this time to the cd3cd28icam2 and pma data set, assuming
independence in the data, results in a log-likelihood of the marginals of -22794.69, an
AICM of 45633.37 and a BICM of 45753.48. The detailed results for each node can be
found in Table 13.2.

Marginal
Node log-likelihood AICM BICM

raf -2006.54 4017.08 4028.00
mek -1990.81 3985.61 3996.53
plc -1704.21 3412.41 3423.33

pip2 -2762.70 5529.41 5540.33
pip3 -2410.15 4824.29 4835.21
erk -2301.77 4607.55 4618.46
akt -1968.98 3941.97 3952.89
pka -1772.70 3549.39 3560.31
pkc -1968.31 3940.62 3951.54
p38 -1753.96 3511.92 3522.84
jnk -2154.56 4313.12 4324.04∑

: -22794.69 45633.37 45753.48

Table 13.2: Marginal log-likelihood, AICM and BICM of the fitted Gaussian margins
Mgauss

icam2&pma to the data set from the cd3cd28icam2 and pma experiments

We observe in panel (a) of Figure 13.3 that assuming an underlying Gaussian distribution
for the node erk seems reasonable. For this node especially the histogram of the data after
applying the PIT with the fitted Gaussian distribution is approximately uniformly dis-
tributed. This does not hold for any other node. Therefore, the necessary requirements to
fit copulas to the data in combination with Gaussian margins are not fulfilled. Figure 13.1
shows a further graphical analysis of the data.
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Figure 13.1: Normalized contour plots in the lower left triangle, normalized scatter plots
in the upper right triangle, with the value of Kendall’s tau displayed in the middle of
the plot, and histograms in the diagonal elements after applying the PIT using the fitted
Gaussian margins to the data from the cd3cd28icam2 and pma experiments
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13.2.2 Gaussian Mixture Margin Fitting (Mmix
icam2&pma)

Fitting Gaussian mixture margins to the data set from the cd3cd28icam2 and pma experi-
ments results in a log-likelihood of the marginals of -21727.79, an AICM of 43625.60 and
a BICM of 44089.62 assuming independence in the data. As we can see in Table 13.3 all
nodes except of four, i.e., pip2, pip3, erk and akt, are fitted as a three component normal
distribution. Out of these only the node erk is fitted as a Gaussian distribution.

Marginal
Node Distribution log-lik. # Parameters AICM BICM

raf three component normal -1966.20 8 3948.4 3992.07
mek three component normal -1937.97 8 3891.94 3935.62
plc three component normal -1557.11 8 3130.22 3173.89

pip2 four component normal -2500.14 11 5022.29 5082.34
pip3 four component normal -2367.66 11 4757.32 4817.37
erk normal -2301.77 2 4607.55 4618.46
akt two component normal -1922.48 5 3854.96 3882.25
pka three component normal -1611.80 8 3239.60 3283.28
pkc three component normal -1863.56 8 3743.11 3786.79
p38 three component normal -1648.78 8 3313.57 3357.24
jnk three component normal -2050.32 8 4116.64 4160.31∑

: -21727.79 85 43625.60 44089.62

Table 13.3: Marginal log-likelihood, number of parameters, AICM and BICM of the fitted
Gaussian mixture margins Mmix

icam2&pma to the data set from the cd3cd28icam2 and pma
experiments

Looking at panel (b) of Figure 13.3 we observe no clear evidence that the fitted distri-
butions are incorrect. Especially the histograms of the data after applying the PIT with
the fitted Gaussian mixture margins seem to follow a uniform distribution. Normalized
contour and scatter plots as well as the histograms of the data after applying the PIT are
displayed in Figure 13.2.
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Figure 13.2: Normalized contour plots in the lower left triangle, normalized scatter plots
in the upper right triangle, with the value of Kendall’s tau displayed in the middle of
the plot, and histograms in the diagonal elements after applying the PIT using the fitted
Gaussian mixture margins to the data from the cd3cd28icam2 and pma experiments
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13.2.3 Kernel Density Margin Fitting (Mker
icam2&pma)

Finally, fitting kernel density estimates to the data from the cd3cd28icam2 and pma exper-
iments, assuming independence, results in a log-likelihood of the marginals of -21630.72,
an AICM of 43574.47 and a BICM of 44428.90. As we derive in Table 13.4 the log-
likelihood and the AICF for each node are almost the same as in the approach where we
used Gaussian mixture margins to model the marginals. On the other hand, compared to
the Gaussian mixture margins, we observe small differences when considering the BICF .
This is due to the higher number of effective parameters needed to model the kernel
density estimates.

Marginal Effective
Node Distribution log-likelihood # parameters AICM BICM

raf kernel density -1958.42 13.06 3942.95 4014.24
mek kernel density -1936.74 20.98 3915.44 4029.99
plc kernel density -1544.03 14.56 3117.18 3196.69

pip2 kernel density -2499.00 16.16 5030.32 5118.54
pip3 kernel density -2355.16 10.55 4731.43 4789.04
erk kernel density -2286.60 12.10 4597.41 4663.46
akt kernel density -1909.99 11.36 3842.70 3904.70
pka kernel density -1602.01 13.97 3231.96 3308.23
pkc kernel density -1855.62 14.55 3740.35 3819.81
p38 kernel density -1636.79 15.29 3304.16 3387.63
jnk kernel density -2046.36 13.92 4120.57 4196.57∑

: -21630.72 156.50 43574.47 44428.90

Table 13.4: Marginal log-likelihood, number of effective parameters, AICM and BICM of
the fitted kernel density margins Mker

icam2&pma to the data set from the cd3cd28icam2 and
pma experiments

Considering the density plots and Q-Q plots in panel (c) of Figure 13.3 we can see no
indications that the fitted kernel density estimates are not suitable. The same holds for
the histograms of the data after applying the PIT with the fitted kernel density estimates
which seem to be approximately uniformly distributed. Additionally normalized contour
and scatter plots are displayed in Figure 13.4.
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(a) Mgauss
icam2&pma (b) Mmix

icam2&pma (c) Mker
icam2&pma

Figure 13.3: Density plots and Q-Q plot of the chosen margins (in the first two
columns) and histogram of the data after applying the distribution function of the fitted
marginal distributions, in the third column, for all nodes for the chosen marginals on the
cd3cd28icam2 and pma data set
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Figure 13.4: Normalized contour plots in the lower left triangle, normalized scatter plots
in the upper right triangle, with the value of Kendall’s tau displayed in the middle of
the plot, and histograms in the diagonal elements after applying the PIT using the fitted
kernel density margins to the data from the cd3cd28icam2 and pma experiments
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13.2.4 Comparison of Marginal Fits

Fitting the same three types of margins as before, this time to the cd3cd28icam2 and pma
data set, we again observe similar results. The fitted kernel density estimates and Gaussian
mixture margins have an almost identical log-likelihood, AICM and and a similar BICM .
Looking at their density plots and Q-Q plots it is hard to spot differences that would
point to preferring one over the other. This also holds when looking at the histograms of
the data after applying the probability integral transform. For both choices of margins
the data is approximately uniformly distributed after performing the PIT.

Fitting kernel density estimates overall requires about twice the amount of effective pa-
rameters as fitting Gaussian mixture margins. These numbers strongly depend on the
explicit node. For example the fitted kernel density estimate to the node pip3 has even
less effective parameters than the Gaussian mixture margin fitted to the node. On the
other hand when fitting Gaussian mixture margins, the node erk is modeled as a normal
distribution and therefore has only two parameters while the fitted kernel density estimate
for this node requires 12.10 effective parameters. Due to the still small absolute amount
of (effective) parameters and the size of the data set the influence on the AICC is almost
vanishing if we take the absolute value into account.

When fitting Gaussian mixture margins the node erk is modeled as a normal distribution.
It therefore coincides with how it is fitted when fitting Gaussian margins. For all other
nodes restricting to only Gaussian margins comes with a worsening in the results compared
to the other two approaches. This holds for the log-likelihood, AICM and BICM as well
as for the graphical analysis. Again especially the data after applying the PIT with the
fitted Gaussian margins is not uniformly distributed. Therefore, the requirements to fit
copulas to the data are not fulfilled.

Looking at the normalized contour and scatter plots in the approaches with Gaussian mix-
ture margins and kernel density estimates it is hard to observe any differences. Comparing
them to the ones where Gaussian margins are used, it seems that there the contours are
not as smooth as in the other two approaches. However, the general form of the shapes is
the same in all three.
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13.3 D-vine Regression (MCicam2&pma)

13.3.1 Kernel Density Margins with Parametric and Non-

Parametric Copulas (MkerCpnp
icam2&pma)

Using the fitted kernel density margins to transform the data from the cd3cd28icam2 and
pma experiments to the copula scale using the PIT with the fitted kernel density margins
and then fit a D-vine regression model allowing for parametric and non-parametric copulas
results in a log-likelihood of 6955.73, an AICC of -13275.60 and a BICC of -11539.93
of the copula terms. Detailed results for each node are displayed in Table 13.5.

D-vine Copula
Node order log-lik. AICC BICC

raf pka, pkc 29.88 -16.73 100.73
mek raf 1220.48 -2372.48 -2185.56
plc pip3 542.91 -1033.12 -889.30

pip2 pip3, plc 949.67 -1838.96 -1674.15
erk pka, mek 452.58 -792.00 -483.11
akt erk, pka 2040.21 -3953.44 -3606.82
pka
pkc pip2 30.74 -5.99 145.48
p38 pkc 1063.79 -2073.06 -1924.25
jnk pkc 625.48 -1189.82 -1022.95∑

: 6955.73 -13275.60 -11539.93

Table 13.5: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MkerCpnp

icam2&pma model

As we observe in Table 13.6 thirteen of the twenty possible dependencies are mod-
eled, all but two of them as a non-parametric copula. The missing dependencies are
the pka → mek, pkc → mek, pip3 → akt, pkc → pka, plc → pkc, pka → p38

and pka → jnk dependency. Contour plots of the fitted copulas can be found in
Section13.3.3 in Figure 13.5 together with the ones from the MmixCpnp

icam2&pma model
and the MgaussCgauss

icam2&pma model.

Effective Copula
Node Pair copula Family # parameters log-lik. AICC BICC Est. Ken. τ

raf
raf pka tll 20.52 27.25 -13.47 98.53 0.02

raf pkc; pka frank 1.00 2.63 -3.26 2.20 -0.04
mek mek raf tll 34.24 1220.48 -2372.48 -2185.56 0.62
plc plc pip3 tll 26.34 542.91 -1033.12 -889.30 0.27

pip2
pip2 pip3 bb8 2.00 764.85 -1525.71 -1514.79 0.26

pip2 plc; pip3 tll 28.19 184.81 -313.25 -159.36 0.52

erk
erk pka tll 23.35 412.13 -777.56 -650.06 0.25

erk mek; pka tll 33.23 40.44 -14.44 166.95 -0.05

akt
akt erk tll 42.53 1858.63 -3632.19 -3400.01 0.75

akt pka; erk tll 20.96 181.59 -321.25 -206.81 0.30
pkc pkc pip2 tll 27.75 30.74 -5.99 145.48 -0.01
p38 p38 pkc tll 27.26 1063.79 -2073.06 -1924.25 0.53
jnk jnk pkc tll 30.57 625.48 -1189.82 -1022.95 0.43

Table 13.6: Summary of all copulas fitted in the MkerCpnp
icam2&pma model
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13.3.2 Gaussian Mixture Margins with Parametric and Non-

Parametric Copulas (MmixCpnp
icam2&pma)

As a second approach on the cd3cd28icam2 and the pma data set we used the fitted
Gaussian mixture margins from Section 13.2.2 for the probability integral transform. The
fitted D-vine model using this transformation has a log-likelihood of 6896.51, an AICC

of -13171.49 and a BICC of -11474.94 of the copula terms if we allow for parametric
and non-parametric copulas. Results for each D-vine can be found in Table 13.7 and the
detailed results for each copula in Table 13.8.

D-vine Copula
Node order log-lik. AICC BICC

raf pka, pkc 28.70 -19.87 82.58
mek raf 1208.66 -2345.68 -2150.11
plc pip3 536.89 -1023.96 -887.94

pip2 pip3, plc 941.82 -1824.66 -1663.67
erk pka, mek 449.19 -792.71 -504.26
akt erk, pka 2024.51 -3916.92 -3556.31
pka
pkc pip2 28.58 -5.68 134.83
p38 pkc 1055.53 -2054.46 -1899.96
jnk pkc 622.62 -1187.55 -1030.10∑

: 6896.51 -13171.49 -11474.94

Table 13.7: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MmixCpnp

icam2&pma model

Again we can see that compared to when using kernel density margins for the probability
integral transform and then fit a D-vine with parametric and non-parametric copulas the
same edges are present in the model with the same being modeled as a non-parametric
copula. The contour plots of the model are displayed in Figure 13.5 in Section 13.3.3.

Effective Copula
Node Pair copula Family # parameters log-lik. AICC BICC Est. Ken. τ

raf
raf pka tll 17.77 25.95 -16.38 80.61 0.02

raf pkc; pka frank 1.00 2.75 -3.49 1.97 -0.04
mek mek raf tll 35.82 1208.66 -2345.68 -2150.11 0.62
plc plc pip3 tll 24.92 536.89 -1023.96 -887.94 0.27

pip2
pip2 pip3 bb8 2.00 758.55 -1513.09 -1502.17 0.26

pip2 plc; pip3 tll 27.49 183.27 -311.57 -161.50 0.52

erk
erk pka tll 22.55 409.98 -774.86 -651.75 0.25

erk mek; pka tll 30.29 39.21 -17.85 147.49 -0.05

akt
akt erk tll 44.66 1847.79 -3606.26 -3362.45 0.75

akt pka; erk tll 21.40 176.73 -310.66 -193.86 0.30
pkc pkc pip2 tll 25.74 28.58 -5.68 134.83 -0.01
p38 p38 pkc tll 28.30 1055.53 -2054.46 -1899.96 0.53
jnk jnk pkc tll 28.84 622.62 -1187.55 -1030.10 0.43

Table 13.8: Summary of all copulas fitted in the MmixCpnp
icam2&pma model
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13.3.3 Gaussian Margins with Gaussian Copulas

(MgaussCgauss
icam2&pma)

In a third approach we fitted a Gaussian D-vine, i.e., used Gaussian margins for the
probability integral transform and only allowed for Gaussian copulas in the D-vine re-
gression. This resulted in a log-likelihood of 4591.00, an AICC of -9160.00 and a BICC

of -9099.95 of the copula terms. Table 13.9 shows the results for each node and Ta-
ble 13.10 the results for each copula.

D-vine Copula
Node order log-lik. AICC BICC

raf pkc 1.02 -0.03 5.43
mek raf 920.61 -1839.22 -1833.77
plc pip3 222.61 -443.22 -437.76

pip2 pip3, plc 613.28 -1222.57 -1211.65
erk pka, mek 263.49 -522.98 -512.06
akt erk, pka 1549.02 -3094.04 -3083.12
pka
pkc
p38 pkc 647.86 -1293.71 -1288.25
jnk pkc 373.11 -744.23 -738.77∑

: 4591.00 -9160.00 -9099.95

Table 13.9: Log-likelihood of the copula terms, AICC , BICC and order of the D-vine for
each node in the MgaussCgauss

icam2&pma model

We observe that only eleven of the twenty possible copulas are modeled. Additional to
the ones missing in the MkerCpnp

icam2&pma model and the MmixCpnp
icam2&pma model also the

dependencies pka→ raf and pip2→ pkc are missing. The contour plots are displayed in
Figure 13.5.

Copula
Node Pair copula Family log-lik. AICC BICC Par. Est. Ken. τ

raf raf pkc gaussian 1.02 -0.03 5.43 -0.03 0.02
mek mek raf gaussian 920.61 -1839.22 -1833.77 0.81 0.62
plc plc pip3 gaussian 222.61 -443.22 -437.76 0.48 0.27

pip2
pip2 pip3 gaussian 550.89 -1099.79 -1094.33 0.69 0.26

pip2 plc; pip3 gaussian 62.39 -122.78 -117.32 0.27 0.52

erk
erk pka gaussian 258.03 -514.06 -508.60 0.51 0.25

erk mek; pka gaussian 5.46 -8.92 -3.46 -0.08 -0.05

akt
akt erk gaussian 1419.65 -2837.31 -2831.85 0.90 0.75

akt pka; erk gaussian 129.37 -256.73 -251.27 0.37 0.30
p38 p38 pkc gaussian 647.86 -1293.71 -1288.25 0.73 0.53
jnk jnk pkc gaussian 373.11 -744.23 -738.77 0.59 0.43

Table 13.10: Summary of all copulas fitted in the MgaussCgauss
icam2&pma model
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(a) MkerCpnp
icam2&pma (b) MmixCpnp

icam2&pma (c) MgaussCgauss
icam2&pma

Figure 13.5: Contour plots of the respective copulas in the models allowing for paramet-
ric and non-parametric pair copulas where kernel density margins or Gaussian mixture
margins were used for the PIT and the model where Gaussian margins and only Gaussian
copulas were used on the cd3cd28icam2 and pma data set
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13.3.4 Comparison of D-vine Regression Models

What stands out first looking at the MkerCpnp
icam2&pma model and the MmixCpnp

icam2&pma

model is that compared to all the earlier models with kernel density margins or Gaus-
sian mixture margins used for the PIT and parametric and non-parametric copulas fitted
on the different data sets the MkerCpnp

icam2&pma model and the MmixCpnp
icam2&pma model

are the only ones where one node is modeled independent of all others. We observe that
the only parent dependency of the node pka, pkc → pka, is not modeled in both the
MkerCpnp

icam2&pma model and the MmixCpnp
icam2&pma model. Additionally, there are many

further similarities between these two models. In both of them only thirteen of the twenty
possible dependencies are modeled, all nine D-vines have the same order and all copu-
las have the same family and a similar number of effective parameters, log-likelihood,
AICC and BICC . Therefore, unsurprisingly, as a consequence also their contour plots in
Figure 13.5 are almost indistinguishable.

When instead restricting to Gaussian copulas and using Gaussian margins for the prob-
ability integral transform the goodness of fit is notably worsened. One reason is that
in the MgaussCgauss

icam2&pma model only eleven dependencies are modeled. Additional to
the node pka being modeled independently as in the MkerCpnp

icam2&pma model and the
MmixCpnp

icam2&pma model also the node pkc is modeled independently of all others. Note
that four of six dependencies with pka as a parent node are not modeled. This is something
we have observed similar for the MgaussCgauss

cd3&cd3+ly model.
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13.4 Goodness of Fit Measures Model Comparison

One last time, we add up the goodness of fit measures of the margins and the copulas of
the D-vine models fitted on the cd3cd28icam2 and pma data set such that we are able
to compare the results with the fitted Linear Gaussian Bayesian Network. The results
for the log-likelihood are displayed in Table 13.11, for the AICF in Table 13.12, for the
BICF in Table 13.13 and for the number of (effective) parameters used in the models in
Table 13.14.

Comparing the two models in which we allow for parametric and non-parametric copulas
we can see that they are extremely similar for all three goodness of fit measures. For
the log-likelihood and the AICF it seems that the MkerCpnp

icam2&pma model produces a
slightly better output than the MmixCpnp

icam2&pma model. This holds for all nodes when
considering the log-likelihood and all but one node, jnk, when considering the AICF . This
leads to the MkerCpnp

icam2&pma model being the best model of the four when comparing
the log-likelihood or the AICF . However, when taking the absolute value into account the
differences between the two models can almost be neglected.

On the other hand, comparing the BICF the results for most nodes in the
MmixCpnp

icam2&pma model are slightly better than in the MkerCpnp
icam2&pma model. This

is due of the increased amount of effective parameters used in the kernel density margins.
Therefore, making the MmixCpnp

icam2&pma model the best of the four models when looking
at the BICF . However, as before when considering the log-likelihood or the AICF , taking
the absolute value into account no significant differences are present for the BICF .

While the MgaussCgauss
icam2&pma model and the LGBNicam2&pma have a worse fit than the

MkerCpnp
icam2&pma model and the MmixCpnp

icam2&pma model they both range on the same
level. Comparing the log-likelihood and the AICF they are even almost identical. Only
when considering the BICF we derive that the MgaussCgauss

icam2&pma model fits a little bit
better than the LGBNicam2&pma.
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13.5 Simulation Based Comparison

Similar to when we fitted models to the Sachs data set or the data from other chosen
experiments, we again simulated from the fitted models as described in Chapter 8. The
cd3cd28icam2 and pma data set consists of 1736 samples and so we also sampled 1736
times from the models to be able to compare the output with the cd3cd28icam2 and pma
data set. First, we look at how the kernel density estimates fitted to the data of each node
in the four models behave compared to kernel density estimates fitted to each node in the
original data set.

This is displayed in Figure 13.6. We already discussed earlier that this mostly gives infor-
mation about the fit of the marginals of the models. Hence, it does not surprise that the
MkerCpnp

icam2&pma model and theMmixCpnp
icam2&pma model, where the margins fit quite well,

outperform the other two models. This holds especially for the nodes which do not seem
to be Gaussian distributed, i.e., all but erk, as the marginals in the MgaussCgauss

icam2&pma

model and the LGBNicam2&pma are Gaussian distributed.

Next we want to analyze how well the models are able to resemble the dependence struc-
tures in the cd3cd28icam2 and pma data set. For this we compare the pairs plots of the
simulated data sets with the original data set.

Figure 13.7 shows the pairs plots of the simulated data from the MkerCpnp
icam2&pma model

and the MmixCpnp
icam2&pma model compared to the pairs plots of the cd3cd28icam2 and

pma data set. First, to say is that we hardly observe any differences between the pairs plots
of the two models. Comparing them to pairs plots of the original data set many similarities
are present. This holds for dependencies directly modeled as well as for dependencies not
directly modeled. We already derived a similar result when analyzing the models with
kernel density margins or Gaussian mixture margins and parametric and non-parametric
copulas on the cd3cd28 + aktinhib or cd3cd28 and cd3cd28 + ly data set.

The results for the MgaussCgauss
icam2&pma model and the LGBNicam2&pma are displayed in

Figure 13.9. As both models are only able to model Gaussian dependence structures it
does not surprise that both models have problems recreating more complicated non-normal
dependence structures like for example between the nodes pkc and p38.

Therefore, compared to the MkerCpnp
icam2&pma model and the MmixCpnp

icam2&pma model the
ability of theMgaussCgauss

icam2&pma model and the LGBNicam2&pma to recreate the pairs plots
of the original data set is as expected way worse. Looking for example at the raf ↔ mek

pairs plot it seems that data simulated from theMgaussCgauss
icam2&pma model is slightly closer

to the original data than the simulated data from the LGBNicam2&pma.
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Figure 13.6: Marginal histograms of the cd3cd28icam2 and pma data set of each of the
eleven nodes in topological order after samples containing a zero value have been deleted
and kernel density estimates have been fitted to the simulated data from the different
models
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(a) MkerCpnp
icam2&pma

(b) MmixCpnp
icam2&pma

Figure 13.7: Pairs plots for each pair of nodes of the respective model in the lower panel
and of the cd3cd28icam2 and pma data set in the upper panel. Green plots in the lower
panel indicate that an edge exists between these two nodes in the model. For a better
visibility the same pairs are colored in red in the upper panel
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(a) MgaussCgauss
icam2&pma

(b) LGBNicam2&pma

Figure 13.8: Pairs plots for each pair of nodes of the respective model in the lower panel
and of the cd3cd28icam2 and pma data set in the upper panel. Green plots in the lower
panel indicate that an edge exists between these two nodes in the model. For a better
visibility the same pairs are colored in red in the upper panel
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Figure 13.9: Histograms of the sum of each node on the set of its parents according to the
consent DAG in the cd3cd28icam2 and pma data set and in the simulated data sets of
the MkerCpnp

icam2&pma model, MmixCpnp
icam2&pma model, MgaussCgauss

icam2&pma model and the
LGBNicam2&pma
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Figure 13.10: Histograms of the sum over all nodes in the cd3cd28icam2 and pma data set
and in the simulated data sets of the MkerCpnp

icam2&pma model, MmixCpnp
icam2&pma model,

MgaussCgauss
icam2&pma model and the LGBNicam2&pma in the first five plots and fitted kernel

density estimates to each of the data sets in the sixth plot

Next, we compare how accumulations of high/low values appear within the samples in
the simulated data sets and the cd3cd28icam2 and pma data set. As in the fitted models
each node is modeled on the set of its parents according to the DAG, we first want to
observe how well each of these conditional dependencies is modeled. For this we sum up
according to the parents of each node in the data sets and then compare the resulting
histograms. In the results in Figure 13.9 we can see that it seems that the histograms
of the MkerCpnp

icam2&pma model and the MmixCpnp
icam2&pma model are quite close to the

histograms of the cd3cd28icam2 and pma data set.

If the sum of a node and its parents is not normally distributed or skewed, it seems
that both the MgaussCgauss

icam2&pma model and the LGBNicam2&pma are not able to recreate
the histogram. As this is the case for many nodes, like plc, pip2 or erk, not too many
similarities can be observed between these two models and the cd3cd28icam2 and pma

data set.
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As we are also interested how the accumulation of high/low values within each sample
over all nodes is, we sum up over all nodes and compare the results for the four models to
the cd3cd28icam2 and pma data set. The results are given in Figure 13.10. It seems that
while the MkerCpnp

icam2&pma model and the MmixCpnp
icam2&pma model are able recreate the

shape of the histogram of the original data set really good, the MgaussCgauss
icam2&pma model

has problems recreating the height of the peak and the LGBNicam2&pma creates a too high
peak. This observation gets confirmed looking at the fitted kernel density estimates fitted
to the sums of all nodes in the models. Especially the one from theMkerCpnp

icam2&pma model
and theMmixCpnp

icam2&pma model are almost identical with the ones from the cd3cd28icam2

and pma data set.
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13.6 Conditional Simulation Based Comparison

The last analysis to compare the models fitted on the cd3cd28icam2 and pma data set
is to compare how conditional densities behave if they are conditioned on certain values.
This is no indication on which model fits best on the cd3cd28icam2 and pma data set but
on how the models change if they are fitted on different data sets. Therefore, we condition
on the same set of points as in in Chapter 9 where the values are displayed in Table 9.1.

Considering the results in Figure 13.11 we observe that, knowing how similar the results for
theMkerCpnp

icam2&pma model and theMmixCpnp
icam2&pma model have been so far, as expected

the kernel density estimates fitted to the data generated by the MkerCpnp
icam2&pma model

and the MmixCpnp
icam2&pma model are very similar. Only when conditioning on points from

the tails we can see slight differences for the nodes pip2, p38 and jnk.

More differences can be seen if we compare these two to the kernel density estimates fitted
to the data set simulated from the MgaussCgauss

icam2&pma model. Doing this only similarities
for the node raf can be derived. For all other nodes at least one of the plots strongly
differs.

Finally looking at the data simulated from the LGBNicam2&pma we observe that there
are even less similarities compared to the other models. For no single node all the three,
respectively five, fitted kernel density estimates are similar to any other model. Again, the
missing similarities to the MgaussCgauss

icam2&pma model are due to the many dependencies
not modeled in the MgaussCgauss

icam2&pma model.
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Mode Middle Tail

Figure 13.11: Density plots of the kernel density estimates fitted to the simulated data
from the different models conditioned on the nodes in Table 9.1 in the same order.
Blue: MkerCpnp

icam2&pma. Green: MmixCpnp
icam2&pma. Brown: MgaussCgauss

icam2&pma. Orange:
LGBNicam2&pma



Chapter 14

Summary of the Model Fitting on the
Partitions of the Sachs Dataset

In Chapter 10 we have identified three partitions of the Sachs data set to which we fitted
a selection of models that we have previously already fitted to the full Sachs data set.
We have already observed that especially the models with parametric and non-parametric
copulas and either kernel density estimates or Gaussian mixture margins fit quite well on
all three partitions. The question now is if we can derive similarities throughout the fitted
models on the different partitions and on the complete Sachs data set.

Note that on all three partitions the fitted Gaussian mixture margins and kernel density
margins resulted in a very similar fit which outperformed the fitted Gaussian margins.
This is something we have already observed during the model fitting on the complete
Sachs data set. Further, using the fitted Gaussian margins for the PIT did not result
in uniformly distributed data in any case. Therefore, Gaussian margins do not fulfill the
requirements to fit copulas on the data transformed with them them. Recall that the main
features that we used to partition the Sachs data set were the fitted kernel densities to
each node. Therefore, the margins of the models fitted to different data sets will surely
be different and it does not seem reasonable to compare them in more detail.

What we can instead do is to compare how the contour plots of the data look like after
applying the the PIT using the fitted margins. We observed that the general shape of the
contour plots are the same for all types of margins on a certain data set. Therefore, it
is enough to compare the contour plots for the different data sets. We can see that the
contours of the same ten pairs of nodes have a non-elliptical form on every partition of
the Sachs data. However, for some pairs of nodes, for example for the pair p38 ↔ jnk,
the shape changes depending on the data set. Comparing them with the contour plots on
the complete Sachs data set we derive that if a pair of nodes has a non-elliptical shape
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Group 1 Group 2 Group 3
Sachs cd3cd28 + aktinhib cd3cd28 and cd3cd28 + ly cd3cd28icam2 and pma

MCpnp MCgauss MCpnp MCgauss MCpnp MCgauss MCpnp MCgauss

raf-pka X X X X X X X X
raf-pkc X X X X X X X X

mek-raf X X X X X X X X

mek-pkc X X X X X X X X
mek-pka X X X X X X X X
plc-pip3 X X X X X X X X

pip2-plc X X X X X X X X

pip2-pip3 X X X X X X X X

erk-pka X X X X X X X X

erk-mek X X X X X X X X

akt-erk X X X X X X X X

akt-pka X X X X X X X X

akt-pip3 X X X X X X X X
pka-pkc X X X X X X X X
pkc-plc X X X X X X X X
pkc-pip2 X X X X X X X X
p38-pka X X X X X X X X
p38-pkc X X X X X X X X

jnk-pka X X X X X X X X
jnk-pkc X X X X X X X X

Table 14.1: Dependencies modeled in the MkerCpnp model, MmixCpnp model and
MgaussCgauss model on the different data sets. We indicate that a dependency is modeled
in a specific model by X and that it is not modeled by X. As the modeled dependencies
agree for theMkerCpnp model and theMmixCpnp model, if they are modeled on the same
data set, we summarize them under MCpnp. Furthermore we abbreviate MgaussCgauss

by MCgauss. Pairs of nodes whose normalized contour plots have a highly non-elliptical
shape on all three partitions are colored in blue

on the partitions it also has a non-elliptical shape on the whole data set. Nevertheless,
the reverse does not hold as there exist many more non-elliptical shaped contour plots on
the Sachs data set.

Note that the dependency p38 ↔ jnk cannot be directly model as there does not exist
an edge in the DAG. Therefore, we only see nine edges colored in blue in Table 14.1.
Apart from that, dependencies which have a non-elliptical shape are modeled in almost
all fitted models. Looking at Table 14.1 we observe that only the pip2↔ plc dependency
is not modeled in the MgaussCgauss

cd3+akt model and the plc ↔ pip3 dependency in the
MgaussCgauss model fitted on the Sachs data set as a whole. Recalling Table 10.1 we
observe that the pairs where the contour plots have a non-elliptical shape are also the
dependencies between which a high dependency, speaking in terms of Kendall’s τ , exists in
the data of almost all experiments. Apart from that it seems that especially in the models
fitted to the data sets of the cd3cd28 and cd3cd28 + ly experiments or the cd3cd28icam2

and pma experiments many dependencies of the node pka are not modeled.

In general significantly less dependencies are modeled if we only consider parts of the Sachs
data instead of the whole set. This indicates that some dependencies are only present in
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the data of certain experiments. Note that again independent of which data set we use
to fit a MC model allowing for parametric and non-parametric copulas and either using
Gaussian mixture margins or kernel density margins for the PIT the results are almost
identical. Essentially, the same dependencies are modeled in both.

Comparing the AICF of the nodes in theMC models with parametric and non-parametric
copulas we can see that there the same five nodes are more than 10% better than in the
Linear Gaussian Bayesian Networks on all three data sets. Namely these are the nodes
mek, pip2, akt, p38 and jnk. For each of the nodes exists at least one other node with
which it has a highly non-elliptical pairs plot. Apart from these nodes the nodes plc, erk
and pkc are also significantly better modeled in some of the MCpnp models. For all of
these nodes exists another node with which they form a highly non-elliptical pairs plot as
well.

Comparing the results of the simulation from the different models to the data sets the
models are fitted on, we deduce the same results for all three partitions. The MkerCpnp

models and the MkerCpnp models create very similar data which is very close to the data
the models are fitted on. This does not hold for the MgaussCgauss models and the Linear
Gaussian Bayesian Networks where the MgaussCgauss models seem to recreate the data
they are fitted on slightly better.

Finally, we can also compare the behavior of the conditional simulations when we condi-
tioned on the values from Table 9.1. We will here only compare the models with parametric
and non-parametric copulas as the other two models are only able to model conditional
Gaussian distributions which therefore will always have a similar shape. What is inter-
esting is that we can already see notable differences in the conditional densities of some
nodes for which we said that the data is similarly distributed for all five experiments
when we partitioned the Sachs data set in Chapter 10. These are namely the nodes erk,
akt, pka and p38. While for the node akt the conditional densities seem to be mostly
similar this does not hold for erk and p38 especially when looking at the plots where we
condition on points from the tails. Note that we cannot compare the conditional densities
for the node pka as it is modeled independent of all other nodes in the models fitted on
the data of the cd3cd28 and cd3cd28 + ly experiments. Hence, it does not surprise that
in the nodes for which we assumed that the distribution is different when we partitioned
the Sachs data set, e.g., pip2 and jnk, more differences can be observed. These are again
especially visible considering the plots where we condition on points from the tails of the
distributions. Overall it seems reasonable that many differences in the conditional simu-
lations are present as we choose the data sets in a way that the distributions of the nodes
are different on the different data sets.



Chapter 15

Conclusion

In this thesis we combined the D-vine regression from Kraus and Czado (2017) with a
graphical approach, i.e., beforehand modeling the dependence structure as a Bayesian
Network following Pearl (1988) and applied this to the Sachs data set. By first fitting
a Bayesian Network to the data set we reduced the number of dependencies we need to
consider modeling. This helps to reduce to computation time of the model fitting if in
the Bayesian Network the parent sets of the nodes are of reasonable size, which is the
case here. We then modeled each conditional density given by the Bayesian Network as a
D-vine.

For our investigations we varied between Gaussian margins, Gaussian mixture margins or
kernel density margins and allowed for three different sets of copulas, Gaussian copulas,
parametric copulas or parametric and non-parametric copulas. The results were then
compared to a Linear Gaussian Bayesian Network using the full log-likelihood, AICF and
BICF . There, we have observed that especially when we allowed for parametric and non-
parametric copulas and used Gaussian mixtures margins or kernel density margins for the
probability integral transform the results outperformed the LGBN. For a further analysis
we chose these two models, theMkerCpnp model and theMmixCpnp model, together with
the MgaussCgauss model and the Linear Gaussian Bayesian Network and analyzed how
they are able to recreate the Sachs data set.

Here, we have again seen that the results of the MkerCpnp model and the MmixCpnp

model outperformed the other two. However, some of the results were not as good as
expected. As a reason for that we identified the violation of the requirement of identically
distributed data throughout the Sachs data set which seems reasonable as the Sachs data
set is composed of data from nine different experiments.
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Therefore, we considered the individual data sets and identified two pairs of experiments
for which the assumption of identical distributed data within them seemed reasonable.
Together with these two pairs we chose the data of a third experiment on which we have
repeated our analysis. This time, we only fitted four models on each of the data sets,
three D-vine regressions, two of them with parametric and non-parametric copulas and
either Gaussian mixture margins or kernel density margins, as well as one with Gaussian
margins and Gaussian copulas and again a Linear Gaussian Bayesian Network.

As expected on all three data sets the respective MkerCpnp model and the MmixCpnp

model outperformed the other two. Their results leave almost no room for improvement in
recreating the underlying data sets in the performed analysis. We have observed that this
does not hold for the MgaussCgauss models and the Linear Gaussian Bayesian Networks
where it seems that the results for the MgaussCgauss models were slightly better. This
might indicated the correctness of the assumption that the data in the Sachs data set is
not identically distributed.

Overall, we have seen that on all four data sets the fitted models of a D-vine regression
based Bayesian Network approach outperformed the Linear Gaussian Bayesian Network
especially when we used either Gaussian mixture margins or kernel density margins for the
PIT and parametric and non-parametric copulas. Additionally it seems that the models
are in general a good approach to describe the Sachs data set or only the data from certain
experiments.
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