
Rule-Compliant Trajectory Repairing using
Satisfiability Modulo Theories

Yuanfei Lin and Matthias Althoff

Abstract— Autonomous vehicles must comply with traffic
rules. However, most motion planners do not explicitly consider
all relevant traffic rules. Once traffic rule violations of an
initially-planned trajectory are detected, there is often not
enough time to replan the entire trajectory. To solve this prob-
lem, we propose to repair the initial trajectory by investigating
the satisfiability modulo theories paradigm. This framework
makes it efficient to reason whether and how the trajectory
can be repaired and, at the same time, determine the part
along the trajectory that can remain unchanged. Moreover,
the robustness of traffic rule satisfaction is used to formulate
a convex optimization problem for generating rule-compliant
trajectories. We compare our approach with trajectory replan-
ning and demonstrate its usefulness with traffic scenarios from
the CommonRoad benchmark suite and recorded data. The
evaluation result shows that rule-compliant trajectory repairing
is computationally efficient and widely applicable.

I. INTRODUCTION

©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

One of the barriers to the development of autonomous
driving is the liability issue for traffic accidents. This issue
can be addressed, e.g., by unambiguously formalizing traffic
rules for autonomous vehicles [1]. If autonomous vehicles
always comply with traffic rules, they cannot be held liable
for a collision. However, it is computationally nontrivial to
ensure the compliance of real-time motion planning with all
traffic rule constraints, especially in complex situations.

Compliance with traffic rules can be evaluated with run-
time monitors online [2]. If planned trajectories are not rule-
compliant or physically infeasible, one can replan them for
consecutive planning cycles. Replanning a complete trajec-
tory, however, is often unnecessary and time-consuming. One
interesting approach is trajectory repairing, as visualized in
Fig. 1 and proposed in our previous work [3], to overcome
this challenge. The concept in [3] only considers scenarios
with collisions but does not repair trajectories violating traffic
rules formalized in temporal logic, which is addressed in this
study.

A. Related Work

Subsequently, we categorize related works using rule-
based trajectory planning algorithms and satisfiability check-
ing techniques.

a) Traffic-Rule-Informed Trajectory Planning: The use
of formal methods allows autonomous vehicles to comply
with high-level specifications and safely participate in traffic.
These rules can be ensured, e.g., by reachability analysis [4],
assume-guarantee contract formalisms [5], and partially by

The authors are with the Department of Informatics, Technical Uni-
versity of Munich, 85748 Garching, Germany.

yuanfei.lin@tum.de, althoff@tum.de

other vehicleego vehicle most likely trajectory

initial trajectory repaired trajectory

state at time-to-violation state at time-to-comply

Fig. 1: Sketch of trajectory repairing regarding traffic rule violations. The
initially-planned trajectory for the ego vehicle violates the traffic rule since
it does not yield to vehicles entering the main carriageway from the access
ramp. In our approach, only part of the initial trajectory is repaired to avoid
the incompliance.

the responsibility-sensitive safety model [6]. To formalize
the traffic rules in a precise and machine-readable manner,
temporal logic is often used. Linear temporal logic (LTL) [1],
[7], [8] can provide Boolean values for the satisfaction of
rules. Metric temporal logic (MTL) [2], [9] extends LTL to
support time intervals representing metric constraints. MTL
is equipped with quantitative semantics, i.e., the robustness
degree [10], [11], which indicates how far a behavior is
from satisfying or violating a specification. In [12], the
authors introduce the rulebook as a preordered set of rules
to select preferred trajectories, which can be used for safety
verification [13] and optimal control [14] in autonomous
driving.

Trajectory planning with respect to specifications is com-
putationally challenging due to the coupling of dynamical
feasibility requirements and high-level specifications [15]. A
large group of works uses automata-based approaches [16]–
[18] or mixed-integer programming [19], [20] to develop
plans that satisfy requirements described by temporal logic.
However, common in these works is that they neither are
computationally efficient nor take complex specifications and
high-dimensional system dynamics into account.

b) Satisfiability Checking: Boolean satisfiability (SAT)
is the problem of determining whether there exists an eval-
uation that satisfies a Boolean formula [21]. Satisfiability
modulo theories (SMT) [22] extend this concept to gen-
eral formulas by interpreting them within a certain formal
theory T in first-order logic. One of the major approaches
for implementing SMT solvers is the lazy approach [23],
where a SAT-solving algorithm is integrated with a theory
decision procedure (T -solver). This method abstracts the

input formula to a propositional one and feeds it to a SAT
solver to suggest possible assignments. The T -solver checks
the satisfiability of the obtained assignment in a theory T (T -
consistency) to refine the formula and guide the SAT solver.

Satisfiability checking techniques have been successful
in tackling system verification and combinatorial search
problems. In [24], SMT solvers are used for identifying
driving rule violations for autonomous vehicles. Shoukry
et. al. [25] decompose the robot planning problem into
smaller subproblems by leveraging the lazy SMT paradigm,
which is extended to address LTL specifications in [26].
However, these works do not quantify the satisfaction of
task specifications and cannot refine trajectories in dynamic
environments efficiently. Using the lazy SMT framework, we
aim at not only generating rule-compliant trajectories but
also utilizing the robustness degree of specifications. In this
regard, our approach is also inspired by the control synthesis
described in [20], which includes the robustness degree of
temporal logic specifications as an objective.

B. Contributions

We present the first work to repair trajectories violating
traffic rules formalized in temporal logic. The repairability
of trajectories can be automatically reasoned using the frame-
work of lazy SMT solvers, i.e., whether and how a trajectory
can be repaired to satisfy the traffic rules. Our contributions
are as follows:

1) abstracting traffic rules to propositional logic formulas
to exploit SAT solvers;

2) utilizing the robustness degree as heuristics in the SAT
solver to efficiently find solutions;

3) defining assessment metrics in the T -solver to check
the T -consistency of the solution yielded from the SAT
solver and to determine the part of the trajectory to be
repaired; and

4) applying continuous optimization methods to generate
kinematically feasible, comfortable, and rule-compliant
repaired trajectories.

The remainder of this paper is structured as follows: In
Sec. II, required preliminaries and definitions are introduced.
Sec. III provides an overview of our trajectory repairing
approach. In Section IV, the lazy SMT-based trajectory re-
pairing framework is described. We demonstrate the benefits
of our method by case studies in Sec. V, followed by
conclusions in Sec. VI.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. System Description

We introduce discrete-time systems to model the dynamics
of the ego vehicle, i.e., the vehicle to be controlled, as:

xk+1 = fd(xk, uk), (1)

where xk ∈ Rn is the n-dimensional state, uk ∈ Rm is the
m-dimensional input, and k ∈ N0 is the discrete time step
corresponding to the time tk = k∆t, where ∆t ∈ R+ is the
time increment. Without loss of generality, the initial time

step is 0 and the final time step is h. The system is subject to
the set of admissible states Xk ⊂ Rn and admissible control
inputs Uk ⊂ Rm, each at time step k. We adhere to the
notation u([0, k]) to denote input trajectories for the time
interval [0, k]. The solution of (1) at time step k for an initial
state x0 and an input trajectory u([0, k]) is then denoted
by the state trajectory χ

(
k, x0, u([0, k])

)
. A complete state

trajectory for the time interval [0, h] is abbreviated as χ.
Let � be a variable, we use �int and �rep to denote its

initial and repaired values, respectively. The set B describes
rule-relevant obstacles in the scenario. We adhere to the
notation Ob(k) ⊆ R2 to denote the occupancy of an obstacle
b ∈ B at time step k. The environment model of the ego
vehicle Ω := 〈L,OB〉 consists of a road network L and the
occupancy set OB of other traffic participants, which is the
entire sequence of occupancies OB(k) =

⋃
b∈BOb(k).

B. Definitions

As motivated in Sec. I, we select the part of a rule-
violating trajectory that remains unchanged until a cut-off
state defined as:
Definition 1 (Cut-off State xcut):
The cut-off state xcut [3, Sec. III-A] is the state from which
the repaired trajectory begins.

Let X CF
k = Xk \ OB(k) be the collision-free set of states

at time step k, ϕ be one or multiple rules since one can
combine the rules using conjunction, and χ |= ϕ denote that
a trajectory χ complies with ϕ. The violation-free states are
defined as:
Definition 2 (Violation-Free States X VF):
The set X VF

k (ϕ) ⊆ X CF
k is the set of collision-free states

that additionally comply with traffic rules ϕ at time step k,
i.e., X VF

k (ϕ) := {xk ∈ X CF
k | xk = χ

(
k, x0, u([0, k])

)
∧

χ
(
[0, k], x0, u([0, k])

)
|= ϕ}.

Definition 3 (Rule-Compliant Set C):
Given traffic rules ϕ, the rule-compliant set Ck(ϕ) ⊆ X VF

k (ϕ)
at time step k contains all states from which feasible trajec-
tories exist to remain rule-compliant for a finite time horizon
h and is defined as Ck(ϕ) := {xk ∈ X VF

k (ϕ) | ∃u([k, h]) :
χ
(
[k, h], xk, u([k, h])

)
|= ϕ}.

This definition is illustrated in Fig. 2. For brevity, we omit
the ϕ-dependency in the notations for X VF and C. With this,
we introduce the following measures to find an appropriate
xcut from which the repaired trajectory branches off:

Xk

X CF
k

X VF
k

Ck

State space

Collision-free states

Violation-free states

Rule-Compliant set
Underapproximation
of Ck

Fig. 2: Relation of state space, collision-free states, violation-free states, and
rule-compliant set at time step k.

X
X VF

C

xTV

χ1

xTC
χ2

χ3

Fig. 3: Violation properties of trajectories. Only trajectory χ1 continuously
complies with traffic rules. Both trajectory χ2 and χ3 violate traffic rules
at time step TV. Trajectory χ2 leaves the rule-compliant set C at TC.

Definition 4 (Time-To-Violation):
The time-to-violation (TV) is the first time step at which
the trajectory originating from the initial input uint([0, h])
leaves the set of violation-free states X VF:

TV := min{k ∈ N0 | χ
(
k, x0, u

int([0, k])
)
6∈ X VF

k }.

If no violation is detected, i.e., all states are within X VF, we
set TV =∞.
Definition 5 (Time-To-Comply):
Assuming that x0 ∈ X VF

0 , the time-to-comply (TC) is the last
time step for which a rule-compliant trajectory exists:

TC := max{k ∈ [0, TV] | χ
(
k, x0, u

int([0, k])
)
∈ Ck}.

Note that TC is set to −∞ in case there exists no maneuver
to avoid the rule violation and TC = TV =∞ if no violation
occurs.

As a result, we use the state at TC as the cut-off state,
i.e., xcut := xTC. Fig. 3 shows the violation properties of
different trajectories and indicates the states at time steps
TV and TC.

C. Metric Temporal Logic

Given formulas ϕ, ϕ1, and ϕ2, the logical True >, a
propositional variable σ presenting a Boolean statement,
an associated interval I of N0, the Boolean negation and
disjunction operator ¬ and ∨, and the temporal since and
until operator SI and UI , MTL syntax is defined as [9]:

ϕ := > | σ | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1SIϕ2 | ϕ1UIϕ2. (2)

The semantics of since and until operators is equivalent to
the following first-order logic expressions [27, Sec. 1]:

ϕ1SIϕ2 ⇔∃k′∈(k−I)∩N0 : (ϕ2 ∧ ∀k′′∈(k′, k] : ϕ1),

ϕ1UIϕ2 ⇔∃k′∈(k+I)∩N0 : (ϕ2 ∧ ∀k′′∈ [k, k′) : ϕ1).
(3)

For ease of notation, I is dropped from the grammar
when considering the total signal domain. According to [27,
Sec. 2.1], we use the following symbols and operators for
our convenience:

⊥ := ¬>
ϕ1 ∧ ϕ2 := ¬(¬ϕ1 ∨ ¬ϕ2)

ϕ1 ⇒ ϕ2 := ¬ϕ1 ∨ ϕ2

OIϕ := >SIϕ
Pϕ := ⊥Sϕ
FIϕ := >UIϕ

GIϕ := ¬FI¬ϕ,

(4)

where OI , P, FI , and GI are the once, previously, finally
(aka eventually), globally (aka always) temporal operators,
respectively.

We denote the robustness degree of ϕ with respect to a
trajectory χ at time step k as ρ(ϕ, χ, k), which is defined as
[10, Def. 22]:

ρ(>, χ, k) :=∞
ρ(σ, χ, k) := DistE(xk,X VF

k (σ))

ρ(¬ϕ, χ, k) := −ρ(ϕ, χ, k)

ρ(ϕ1 ∨ ϕ2, χ, k) := max(ρ(ϕ1, χ, k), ρ(ϕ2, χ, k))

ρ(ϕ1SIϕ2, χ, k) := max
k′∈(k−I)∩N0

(
min

(
ρ(ϕ2, χ, k

′),

min
k′′∈(k′,k]

ρ(ϕ1, χ, k
′′)
))

ρ(ϕ1UIϕ2, χ, k) := max
k′∈(k+I)∩N0

(
min

(
ρ(ϕ2, χ, k

′),

min
k′′∈[k,k′)

ρ(ϕ1, χ, k
′′)
))
,

(5)

where the signed distance DistE is defined based on a metric
E (typically the Euclidean distance) as:

DistE(x,X VF) :=

{
−inf{E(x, x′)|x′∈X VF} if x /∈ X VF

inf{E(x, x′)|x′∈X \X VF} if x ∈ X VF.
(6)

D. Davis-Putnam-Logemann-Loveland Algorithm
The Davis-Putnam-Logemann-Loveland (DPLL) algo-

rithm [28] is often used in SAT solvers to check the sat-
isfiability of abstracted Boolean propositional formulas in
the SMT framework (aka DPLL(T) [29]). To streamline
the notation, we write ϕp and σp to denote ϕ and σ after
propositional abstraction as input for the DPLL algorithm,
respectively. The propositional formula also needs to be
in conjunctive normal form (CNF) as

∧
i

∨
j(¬)σi,j , i.e, a

conjunction of clauses that are disjunctions of literals, where
a literal is either a positive or negative atomic proposition σ.
If all individual clauses are satisfied (SAT) by partial variable
assignments, i.e., only the values of some literals are fixed,
the entire formula is solved as SAT and the DPLL algorithm
constructs a partial satisfying solution φ.

E. Problem Statement
For rule-compliant trajectory repairing, we use traffic rules

formalized in MTL. To exploit SMT solvers, we need to
eliminate temporal operators in the rule to obtain first-order
logic formulas [23, Sec. 2.1], which can be achieved by
instantiating it for each time step according to (3) since
quantifiers with finite intervals are equivalent to logical
conjunction or disjunction of instances. As the number of
satisfiable instances for existential quantification grows expo-
nentially with the time horizon, it is generally computation-
ally expensive to enumerate all satisfying possibilities [30,
Sec. 9.5]. We only address the rules starting with temporal
operators that can be expressed by universal quantifiers in
this work, i.e., the operator G and its equivalents, and leave
the other rules to future work with a possible integration
of specification-compliant reachable sets [4]. For Gϕ to be
satisfied, we need ϕ to be satisfied at all time steps. Thus, Gϕ
is equivalent to JϕK[0,h] := JϕK0∧. . .∧JϕKk∧. . .∧JϕKh = >,
where JϕKk is the valuation of ϕ at time step k. Although
we restrict ourselves to some temporal operators, all the
interstate rules for autonomous vehicles driving on German
highways in [2] can be considered by our approach.

III. OVERALL ALGORITHM

Alg. 1 summarizes our approach for rule-compliant tra-
jectory repair. We assume that our method receives as input
an initially-planned trajectory χint for the ego vehicle and
an MTL monitor M which is constructed by our previous
works [2], [11] with the environment model Ω to evaluate
traffic rules Gϕ. Our algorithm outputs a repaired trajectory
that complies with Gϕ.

As a first step, we run the monitor to obtain TV and
the robustness degree of χint at all time steps which is
denoted by ρintϕ (see line 1). If χint violates the traffic
rule Gϕ and TV 6= 0, ϕ is abstracted to ϕp in CNF (see
line 3), which is later explained in Sec. IV-A. Our approach
is iterative using the DPLL(T) algorithm with a lazy SMT
propagation. At each iteration, we start by checking the
Boolean satisfiability of ϕp for the time interval [TV, h] using
DPLL-based SAT solvers (see line 4). In case the result
is SAT, we simultaneously obtain a satisfying solution φ
for ϕp (see line 5). Then the T -solver reasons about the
repairability r ∈ B of φ (see line 6). If r is equal to >, we
return the corresponding repaired trajectory χrep (see line 8).
Otherwise, we update ϕp by treating φ as a conflicting
clause ¬φ in the future runs (see line 10). We repeat this
process (lines 4-11) until a feasible trajectory is found or
the SAT solver returns UNSAT. In the latter case, we can
execute a minimum-violation trajectory [17] or a fail-safe
trajectory [31], which is however not the focus of this work.

Algorithm 1 RULECOMPLIANTTRAJECTORYREPAIRING

Input: initial trajectory χint, traffic rule monitor M, rule Gϕ
Output: repaired trajectory χrep

1: TV, ρintϕ ← M.EVALUATE(χint, Gϕ)
2: if TV /∈ {0,∞} then
3: ϕp ← ABSTRACTTRAFFICRULE(Gϕ) . Sec. IV-A
4: while SAT.CHECK(ϕp, ρintϕ , TV) ==SAT do . Sec. IV-B
5: φ ← SAT.SOLUTION()
6: r, χrep←T -SOLVER.CHECK(φ, M, ρintϕ) . Sec. IV-C
7: if r == > then
8: return χrep

9: else
10: ϕp ← ϕp ∧ ¬φ
11: end if
12: end while
13: end if
14: return ∅

IV. SMT-BASED TRAJECTORY REPAIRING

In this section, we apply the lazy DPLL(T)-based SMT
paradigm. We start by abstracting the traffic rules formalized
in MTL to propositional logic formulas. Afterward, the SAT
solver and the trajectory-repairing framework in the T -solver
are introduced.

A. Propositional Logic Formula Abstraction

The formalization of traffic rules and the robustness degree
definition of predicates are based on [2], [11]. To provide
a more intuitive understanding of the rules, they can be
rewritten as request-response requirements [32] containing at

least one implication operator. Thus, when a rule is violated,
a true antecedent implies a false consequent (> ⇒ ⊥).

Running example: Consider the general traffic rule R G1
from [2], i.e., keeping a safe distance to the preceding
vehicle, which is reformulated as:
Gϕ = G

(
in same lane(xego, xb) ∧ in front of(xego, xb)∧

¬O[0,tc]

(
cut in(xb, xego) ∧P

(
¬cut in(xb, xego)

))
⇒ keeps safe distance prec(xego, xb)

)
,

(7)

where xb is the state of the rule-relevant vehicle b ∈ B, tc
is the recovery time for the safe distance violation caused
by a cut-in maneuver of b, and in same lane (whether two
vehicles are in the same lane), in front of (whether b is in
front of the ego vehicle), cut in (whether b enters the lane
of ego vehicle), and keeps safe distance prec (whether the
ego vehicle keeps a safe distance to b) are the predicates.

When investigating SMT solvers, we first need to eliminate
the temporal operator G by instantiating Gϕ to JϕK[0,h] = >
and abstract ϕ to a propositional logic formula ϕp. The latter
can be achieved by replacing the predicates and the elements
starting with temporal operators within ϕ with propositional
variables σp. With this, ϕp is then deduced to an equivalent
formula in CNF, which is trivial and can be, e.g., performed
by the Tseitin transformation [33].

Running example: If (7) is violated with respect to
the traffic participant b′, ϕ is abstracted to a propositional
formula ϕp in CNF as:
ϕp := in same lane(xego, xb′)︸ ︷︷ ︸

σ
p
1

∧ in front of(xb′ , xego)︸ ︷︷ ︸
σ
p
2

∧

¬O[0,tc]

(
cut in(xb′ , xego) ∧P

(
¬cut in(xb′ , xego

))︸ ︷︷ ︸
σ
p
3

⇒ keeps safe distance prec(xego, xb′)︸ ︷︷ ︸
σ
p
4

≡¬σp1 ∨ ¬σ
p
2 ∨ σ

p
3 ∨ σ

p
4 ,

(8)

of which the violating assignments at time step k can only
be Jσp

1Kk = >, Jσp
2Kk = >, Jσp

3Kk = ⊥, and Jσp
4Kk = ⊥.

B. SAT Solver

After obtaining the abstracted formula, we can use the
DPLL algorithm to solve the Boolean satisfiability of ϕp for
the time interval [TV, h]. To reduce computational load, we
assume that the assignment of selected propositions keeps
unchanged within [TV, h]. If this assumption does not hold
in a rare case, our approach fails to find a feasible solution
and we will execute a fail-safe maneuver as presented in,
e.g., [31]. As the robustness degree captures how close a
trajectory comes to reaching the violation or satisfaction of
the rule, we can utilize it to determine the sequential order
of branching atomic propositions in the DPLL algorithm.
For better comparability of different robustness values, we
normalize them to the interval [−1, 1] as described in [11,
Sec. IV-A] and only compare their values at TV. Afterward,
to select the least robust proposition, the atomic propositions
are sorted in an ascending order based on their absolute
robustness degree obtained from the initial trajectory.

TABLE I: Description of the assessment metric for compliant maneuvers.

Metric Description Category [4] Predicate [2]

Time-to-brake (TTB) Full braking with maximum deceleration. Longitudinal position,
Velocity

in front of , keeps safe distance prec,
keeps lane speed limit, keeps fov speed limit,
keeps type speed limit, . . .

Time-to-kick-down
(TTK)

Full accelerating until reaching the maximum
velocity and then maintaining the velocity.

Time-to-steer (TTS) Full steering to reach a certain lateral offset. Lateral position in same lane, left of , drives rightmost, . . .
Time-to-maintain-
velocity (TTMV) Maintaining a steady velocity. Acceleration brakes abruptly, . . .

Running example: Assuming the sequence of the atomic
propositions in (8) is (σp

1 , σ
p
3 , σ

p
2 , σ

p
4) based on the robustness

degree evaluation, the first obtained solution from the DPLL
algorithm is determined as Jσp

1K[TV,h] = ⊥.

C. T -Solver

In the T -solver, the T -consistency of φ needs to be
determined regarding the environment model Ω and the
system dynamics of the ego vehicle, which is summarized in
Alg. 2. To address this, we first obtain propositions φr to be
repaired by comparing the valuations of atomic propositions
in φ with the violating assignments for JϕpK[TV,h] = >,
i.e., only the atomic propositions with a different value in
φ are considered (see line 1). After determining the TC of
φr (cf. Sec. IV-C.1), we formulate a continuous optimization
problem to check whether feasible repaired trajectories can
be obtained (cf. Sec. IV-C.2).

Running example: If the obtained solution φ from the
SAT solver is Jσp

1 ∧ σ
p
4K[TV,h] = >, we can obtain the

proposition to be repaired as φr = σp
4 since Jσp

1K[TV,h] is
already equal to > (cf. (8)).

1) Time-To-Comply Search: Calculating the TC for es-
tablishing the cut-off state is challenging since all possible
maneuvers must be evaluated. Similar to the calculation of
time-to-react in [3], we underapproximate the TC (cf. Fig. 2)
by using a point-mass vehicle model [34] and focusing
only on the predicates contained in φr. To achieve this,
we introduce assessment metrics based on the category of
predicates from [4], which are listed in Tab. I and illustrated
in Fig. 4.

The initial values of TC and r are set to −∞ and ⊥,
respectively (see line 2 in Alg. 2). Next, we automatically
obtain the compliant maneuvers according to Tab. I based
on the category of predicates in φr (see line 3). Afterward,
we use binary search to detect the maximum remaining
time for executing rule-compliant maneuvers in the function

Algorithm 2 T -SOLVER.CHECK

Input: solution from the SAT solver φ, M, ρintϕ
Output: repairability r, repaired trajectory χrep

1: φr ← OBTAINREPAIREDPROPOSITIONS(φ, ρintϕ)
2: TC ← −∞, r ← ⊥
3: M ← SETCOMPLIANTMANEUVERS(φr)
4: TC ← SEARCHTC(M, M)
5: if TC 6= −∞ then
6: χrep ← OPTIMIZATIONBASEDREPAIR(ρintϕ , TC, φ, φr)
7: r ← CHECKRULECOMPLIANCE(M, χrep)
8: end if
9: return r, χrep

xTTS

initial trajectory

xTTB xTTMVxTTK

Fig. 4: Illustration of different compliant maneuvers. The points indicate the
start of the corresponding maneuvers.

SEARCHTC(·), which is adapted from [35, Alg. 2] by setting
violation-free as search conditions (see line 4).

Running example: The assessment metrics for repair-
ing the assignment of σp

4 consist of TTB and TTK
according to Tab. I since it contains the predicate
keeps safe distance prec, which belongs to the longitudinal
position category.

2) Optimization-based Trajectory Repairing: If the TC
is finite, we specify an optimization problem for gener-
ating repaired trajectories (see line 6). To ensure a fast
convergence to the optimal solution, we use convex linear-
quadratic programs [36, Sec. 4.4], similarly to [31]. The
motion (cf. (1)) starting from the cut-off state is separated
into longitudinal and lateral components (xlon, xlat)

T in a
curvilinear coordinate system [37] aligned with a predefined
reference path Γ, which is typically obtained from a high-
level route planner. The longitudinal state xlon = (s, v, a, j)T

consists of position s, velocity v, acceleration a, and jerk j.
The lateral motion is described by xlat = (d, θ, κ, κ̇)T , where
d is the lateral distance to Γ, θ is the orientation, κ is the
curvature, and κ̇ is the change of curvature.

a) Cost Function: The optimization problem for both
longitudinal and lateral motions is to minimize a quadratic
cost function J for all k ∈ {TC, . . . , h}, which comprises a
performance term Jp and a robustness term Jr. Jp focuses
on the trajectory quality concerning control and smoothing
cost, using the definitions in [31, (12) and (18)] to achieve
comfortable motions. In contrast, Jr is chosen to increase
the robustness of rule compliance. However, the robustness
degree of the entire traffic rule formula is nonconvex and
nondifferentiable in general (cf. (5) and [2]), which makes
online optimization a challenge [38]. To remedy this, we
relax the problem inspired by the nature of min and max
functions and optimize only the robustness degree of φr.
In order to preserve convexity for any predicate, a positive
quadratic robustness term is chosen with weight ωr ∈ R+

as:
Jr(x, x̂) = ωr

h∑
k=TC

(xk − x̂k)2, (9)

which is to keep the result close to the reference state x̂
with a sufficiently large robustness degree greater than a
predefined threshold εr ∈ R+, i.e., |ρ(φr, x̂, k)| ≥ εr.

b) Constraints: The repaired trajectory must simulta-
neously adhere to a set of system and rule constraints.
Assuming the latter can be formulated as linear or at least
linearizable constraints according to [4, Sec. III], they can
be addressed by adding lower and upper bounds of states
and inputs based on the definition and assignment of propo-
sitions. Otherwise, we relax the requirement and check the
rule compliance after the optimization process (see line 7).
All atomic propositions have the same assignments from TC
to TV as the initial trajectory. In contrast, the assignment of
φ is used for constructing rule constraints in the remaining
time steps since ϕp is checked as SAT by φ in the SAT
solver (cf. Sec. IV-B).

Running example: If φ is Jσp
4K[TV,h] = >, rule constraints

for all k ∈ [TV, h] can be formed as:

sk ∈ (−∞, rear(xb′,k)−∆safe(vk, xb′,k)], (10)

where ∆safe is the safe distance defined in [31, (4)] and
rear(·) is the position of the rear bumper of a vehicle.

V. CASE STUDIES

This section shows the applicability and efficacy of our
rule-compliant trajectory repairing approach to traffic sce-
narios from the CommonRoad benchmark suite1 [34] and
the highD dataset [39]. In our implementation, we use the
convex programming package CVXPY [40] and the solver
OSQP [41] to model the trajectory optimization problem. All
approaches are implemented in Python on a computer with
an Intel Core i7-1165G7 CPU and 16 GB of memory. The
parameters for the traffic rule evaluation are obtained from
[2], [11]. We set the planning horizon h to 2s with a time
increment ∆t = 0.1s. The animation of the evaluation can
be found at https://mediatum.ub.tum.de/1641743.

A. Keeping a Safe Distance to the Preceding Vehicle (R G1)

We first evaluate a rural scenario2 where the initial tra-
jectory of the ego vehicle violates the safe distance rule
(cf. rule R G1 in (7)) starting from TV = 14. Fig. 5a
shows the initial configuration of the scenario and the initial
robustness degrees of the atomic propositions within the time
interval [TV, h] are listed in Tab. II. The occupancy of the
ego vehicle that violates the rule is marked in red. The first
obtained solution from the SAT solver is Jσp

4K[TV,h] = >. In
the T -solver, we check the T -consistency of σp

4 and obtain
TC = 13 using TTB (cf. Tab. I). Afterward, we obtain the
repaired trajectory with convex linear-quadratic programs. As
illustrated in Fig. 5b, the ego occupancy along the repaired
trajectory is marked in green where a braking maneuver is
executed after the cut-off state to enlarge the violation-free
area. We visualize X VF in the k-s plane together with the
initial and repaired trajectory in Fig. 5c.

1https://commonroad.in.tum.de/
2CommonRoad ID: DEU Gar-1 1 T-1

ego vehicle

initial trajectory

dynamic obstacle most likely trajectory

xTV
(a) Initial configuration.

repaired trajectoryxTC
(b) Repaired trajectory by selecting φr = keeps safe distance prec(·).

0
0

10

20

30

5 10 15 20
k

s
in
m

X VF,int ∩ X VF,rep X VF,rep

(c) Comparison of X VF projected onto the k-s plane.

Fig. 5: Rural scenario in which the ego vehicle violates the rule R G1.

B. Avoiding Unnecessary Braking (R G2)

Let us consider the unnecessary braking rule (R G2)
from [2], i.e., braking abruptly (a < aabrupt) is not al-
lowed without justification (violation of safe distance or
its preceding vehicle brakes abruptly), where aabrupt ∈ R−
denotes the predefined acceleration threshold. The rule can
be reformulated based on the modification in [11, Tab. I] as:

Gϕ = G
(

brakes abruptly(xego)︸ ︷︷ ︸
σ
p
1

⇒

braking justification(xego,Ω)︸ ︷︷ ︸
σ
p
2

)
,

(11)

where the predicate brakes abruptly specifies whether a
vehicle brakes abruptly and braking justification is a gen-
eral traffic situation predicate that indicates whether abrupt
braking is allowed in the current environment. Fig. 6a
depicts a lane-merging scenario3, in which the ego ve-
hicle brakes abruptly. However, this is unnecessary since
braking justification(xego) is ⊥ detected by the traffic rule
monitor. Thus, the initially-planned trajectory violates R G2
starting from time step TV = 5 and needs repair. After
abstracting the rule to ϕp = ¬σp

1 ∨ σ
p
2 and running the SAT

TABLE II: Robustness degree of the atomic propositions obtained from χint

at time step TV, the corresponding TC, and average computation times of
evaluated scenarios. A dash denotes that the value is not needed.

Scenario I Scenario II Scenario III
Proposition Rob. TC Rob. TC Rob. TC

σ1 0.1132 — 0.0017 4 −0.0026 14
σ2 0.0695 — −0.0017 — 1.0000 —
σ3 −0.0249 — 0.5175 —
σ4 −0.0027 13 0.4167 —

Computation Time in ms

Repairing 223 168 147

Replanning 887 399 398

3CommonRoad ID: ZAM Zip-1 56 T-1

https://mediatum.ub.tum.de/1641743
https://commonroad.in.tum.de/

xTVego vehicle

dynamic obstacle initial trajectory most likely trajectory
(a) Initial configuration.

repaired trajectoryxTC

(b) Repaired trajectory by selecting φr = brakes abruptly(·).

0

-2
-1
0

5 10 15 20-3
k

a
in
m
/s

2

aabrupt

(c) Initial and repaired acceleration profile.

Fig. 6: Lane-merging scenario where the ego vehicle violates the rule R G2.

solver, we obtain a satisfying solution for JϕpK[TV,h] = > as
Jσp

1K[TV,h] = ⊥. In the T -solver, TC is computed as 4 using
TTMV (cf. Tab. I). As illustrated in Fig. 6b, we obtain a
rule-compliant trajectory with which the ego vehicle keeps a
more reasonable deceleration than the initial trajectory (see
Fig. 6c).

C. Adhering to the Speed Limit (R G3)
Next, we present the rule for limiting maximum driving

velocity (R G3) in [2] as:

Gϕ = G
(
keeps lane speed limit(xego)∧
keeps type speed limit(xego)∧
keeps fov speed limit(xego)∧
keeps braking speed limit(xego)

)
≡ G(> ⇒ σp1∧σ

p
2∧σ

p
3∧σ

p
4) ≡ G(σp1∧σ

p
2∧σ

p
3∧σ

p
4),

(12)

with which the ego vehicle is not allowed to ex-
ceed 1) the speed limit of driving lanes vmax

sl ∈ R0

(keeps lane speed limit), 2) the maximum velocity allowed
for the vehicle type vtype∈R0 (keeps type speed limit), 3)
the speed limit to ensure enough field of view vfov ∈ R0

(keeps fov speed limit), and 4) the speed for comfortable

xTV
initial trajectoryego vehicle

most likely trajectory
dynamic obstacle

(a) Initial configuration.

repaired trajectory
xTC

(b) Repaired trajectory by selecting φr = keeps lane speed limit(·).

0 5 10 15 20

15

10

5
k

v
in
m
/s vmax

sl

(c) Initial and repaired velocity profile.

Fig. 7: Urban scenario in which the ego vehicle violates the rule R G3.

99.6%R G1
R G2
R G3

0 20 40
Repairability rate in %

60

96.1%
100.0%

80 100

Fig. 8: Repairability of the evaluated trajectories.

braking vbr ∈ R0 (keeps braking speed limit). We demon-
strate the repairing process as for R G3 with an urban sce-
nario4 as shown in Fig. 7. After using our approach, smooth,
comfortable, and rule-compliant trajectories are generated to
avoid the ego vehicle exceeding the speed limit.

D. Performance Evaluation

We compare our approach to trajectory replanning using
a sampling-based trajectory planner [42], which computes
trajectories as jerk-optimal quintic polynomials. The MTL
monitor M evaluates each sampled polynomial and the
violation-free one with the minimum cost is selected as the
optimal trajectory. According to the computation times in
Tab. II, replanning is more computationally expensive than
our approach since each sampled trajectory needs evaluation,
and rule-compliant trajectories often have low priority due
to high input costs.

Furthermore, we use the highD dataset [39] to test our
approach on over 1,000 rule-violating trajectories obtained
using M, where each lasts several seconds and is rule-
compliant for the initial time step. The evaluation result for
rules R G1-R G3 is shown in Fig. 8. Since highD scenarios
are non-interactive, i.e., other traffic participants do not react
to the ego vehicle, we do not count the rear-end collisions
caused by other vehicles as a rule violation for the ego
vehicle. After implementing our algorithm, over 95% of the
trajectories can be repaired to comply with the traffic rules.
The irreparability of the rest is either caused by the initial
state being already outside the rule-compliant set or by our
method relaxing the constraints (cf. Sec. IV-C.2.b).

VI. CONCLUSIONS

This paper proposes a novel concept for generating rule-
compliant trajectories for autonomous vehicles based on a
trajectory-repairing framework. Unlike most existing studies
on motion planning with specifications, our approach can
not only bridge temporal logic formulas with satisfiability
checking technologies, but it can also reuse the rule-violating
planned result to generate repaired trajectories efficiently. In
addition, the MTL robustness degree is utilized as a heuristic
for the SMT paradigm and an optimization objective for
traffic rule satisfaction. We demonstrated the benefits of our
rule-compliant trajectory repairing algorithm with German
interstate rules in real traffic scenarios and compare the
results by replanning the entire trajectory. Future work will
focus on improving the accuracy of the TC using reach-
ability analysis, learning the robustness degree from data,
and extending the current framework to cooperative driving
scenarios.

4CommonRoad ID: DEU Muc-4 2 T-1

ACKNOWLEDGMENTS

The authors gratefully acknowledge partial financial sup-
port by the German Federal Ministry for Digital and Trans-
port (BMDV) within the project Cooperative Autonomous
Driving with Safety Guarantees (KoSi).

REFERENCES

[1] A. Rizaldi, F. Immler, B. Schürmann, and M. Althoff, “A formally
verified motion planner for autonomous vehicles,” in Proc. of the Int.
Symposium on Automated Technology for Verification and Analysis,
2018, pp. 75–90.

[2] S. Maierhofer, A.-K. Rettinger, E. C. Mayer, and M. Althoff, “For-
malization of interstate traffic rules in temporal logic,” in Proc. of the
IEEE Intelligent Vehicles Symposium, 2020, pp. 752–759.

[3] Y. Lin, S. Maierhofer, and M. Althoff, “Sampling-based trajectory
repairing for autonomous vehicles,” in Proc. of the IEEE Int. Conf. on
Intelligent Transportation Systems, 2021, pp. 572–579.

[4] E. Irani Liu and M. Althoff, “Computing specification-compliant
reachable sets for motion planning of automated vehicles,” in Proc. of
the IEEE Intelligent Vehicles Symposium, 2021, pp. 1–8.

[5] T. Phan-Minh, K. X. Cai, and R. M. Murray, “Towards assume-
guarantee profiles for autonomous vehicles,” in Proc. of the IEEE Conf.
on Decision and Control, 2019, pp. 2788–2795.

[6] S. Shalev-Shwartz, S. Shammah, and A. Shashua, “On a for-
mal model of safe and scalable self-driving cars,” arXiv preprint
arXiv:1708.06374, 2018.

[7] T. Wongpiromsarn, S. Karaman, and E. Frazzoli, “Synthesis of prov-
ably correct controllers for autonomous vehicles in urban environ-
ments,” in Proc. of the IEEE Int. Conf. on Intelligent Transportation
Systems, 2011, pp. 1168–1173.

[8] K. Esterle, L. Gressenbuch, and A. Knoll, “Formalizing traffic rules
for machine interpretability,” in Proc. of the IEEE Connected and
Automated Vehicles Symposium, 2020, pp. 1–7.

[9] R. Alur and T. A. Henzinger, “Real-time logics: complexity and
expressiveness,” Information and Computation, vol. 104, no. 1, pp.
35–77, 1993.

[10] G. E. Fainekos and G. J. Pappas, “Robustness of temporal logic spec-
ifications for continuous-time signals,” Theoretical Computer Science,
vol. 410, no. 42, pp. 4262–4291, 2009.

[11] L. Gressenbuch and M. Althoff, “Predictive monitoring of traffic
rules,” in Proc. of the IEEE Int. Conf. on Intelligent Transportation
Systems, 2021, pp. 915–922.

[12] A. Censi, K. Slutsky, T. Wongpiromsarn, D. Yershov, S. Pendleton,
J. Fu, and E. Frazzoli, “Liability, ethics, and culture-aware behavior
specification using rulebooks,” in Proc. of the IEEE Int. Conf. on
Robotics and Automation, 2019, pp. 8536–8542.

[13] A. Collin, A. Bilka, S. Pendleton, and R. D. Tebbens, “Safety of
the intended driving behavior using rulebooks,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2020, pp. 136–143.

[14] W. Xiao, N. Mehdipour, A. Collin, A. Y. Bin-Nun, E. Frazzoli, R. D.
Tebbens, and C. Belta, “Rule-based optimal control for autonomous
driving,” in Proc. of the ACM/IEEE Int. Conf. on Cyber-Physical
Systems, 2021, pp. 143–154.

[15] E. Plaku and S. Karaman, “Motion planning with temporal-logic
specifications: Progress and challenges,” AI communications, vol. 29,
no. 1, pp. 151–162, 2016.

[16] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning for dynamical systems,” in Proc. of the IEEE
Conf. on Decision and Control held jointly with Chinese Control Conf.,
2009, pp. 5997–6004.

[17] L. I. R. Castro, P. Chaudhari, J. Tumová, S. Karaman, E. Frazzoli,
and D. Rus, “Incremental sampling-based algorithm for minimum-
violation motion planning,” in Proc. of the IEEE Conf. on Decision
and Control, 2013, pp. 3217–3224.

[18] J. Karlsson, F. S. Barbosa, and J. Tumova, “Sampling-based motion
planning with temporal logic missions and spatial preferences,” IFAC-
PapersOnLine, vol. 53, no. 2, pp. 15 537–15 543, 2020.

[19] E. M. Wolff, U. Topcu, and R. M. Murray, “Optimization-based
trajectory generation with linear temporal logic specifications,” in
Proc. of the IEEE Int. Conf. on Robotics and Automation, 2014, pp.
5319–5325.

[20] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in Proc. of the IEEE Conf. on Decision
and Control, 2014, pp. 81–87.

[21] A. Biere and D. Kröning, “SAT-based model checking,” in Handbook
of Model Checking. Springer, 2018, pp. 277–303.

[22] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook
of Model Checking. Springer, 2018, pp. 305–343.

[23] R. Sebastiani, “Lazy satisfiability modulo theories,” Journal on Sat-
isfiability, Boolean Modeling and Computation, vol. 3, no. 3-4, pp.
141–224, 2007.

[24] Q. Zhang, D. K. Hong, Z. Zhang, Q. A. Chen, S. Mahlke, and Z. M.
Mao, “A systematic framework to identify violations of scenario-
dependent driving rules in autonomous vehicle software,” Proc. of
the ACM on Measurement and Analysis of Computing Systems, vol. 5,
no. 2, pp. 1–25, 2021.

[25] Y. Shoukry, P. Nuzzo, I. Saha, A. L. Sangiovanni-Vincentelli, S. A.
Seshia, G. J. Pappas, and P. Tabuada, “Scalable motion planning using
lazy SMT-based solving,” in Proc. of the IEEE Conf. on Decision and
Control, 2016, pp. 6683–6688.

[26] Y. Shoukry, P. Nuzzo, A. Balkan, I. Saha, A. L. Sangiovanni-
Vincentelli, S. A. Seshia, G. J. Pappas, and P. Tabuada, “Linear
temporal logic motion planning for teams of underactuated robots
using satisfiability modulo convex programming,” in Proc. of the IEEE
Conf. on Decision and Control, 2017, pp. 1132–1137.

[27] E. Bartocci, J. Deshmukh, A. Donzé, G. Fainekos, O. Maler,
D. Ničković, and S. Sankaranarayanan, “Specification-based mon-
itoring of cyber-physical systems: a survey on theory, tools and
applications,” in Lectures on Runtime Verification. Springer, 2018,
pp. 135–175.

[28] M. Davis, G. Logemann, and D. Loveland, “A machine program for
theorem-proving,” Communications of the ACM, vol. 5, no. 7, pp.
394–397, 1962.

[29] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and
SAT modulo theories: From an abstract Davis–Putnam–Logemann–
Loveland procedure to DPLL (T),” Journal of the ACM, vol. 53, no. 6,
pp. 937–977, 2006.

[30] D. Kroening and O. Strichman, Quantified Formulas. Springer, 2016,
pp. 199–227.

[31] C. Pek and M. Althoff, “Fail-safe motion planning for online ver-
ification of autonomous vehicles using convex optimization,” IEEE
Transactions on Robotics, vol. 37, no. 3, pp. 798–814, 2021.

[32] A. Dokhanchi, S. Yaghoubi, B. Hoxha, and G. Fainekos, “Vacuity
aware falsification for MTL request-response specifications,” in Proc.
of the IEEE Conf. on Automation Science and Engineering, 2017, pp.
1332–1337.

[33] G. S. Tseitin, “On the complexity of derivation in propositional
calculus,” in Automation of Reasoning. Springer, 1983, pp. 466–483.

[34] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Compos-
able benchmarks for motion planning on roads,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2017, pp. 719–726.

[35] A. Tamke, T. Dang, and G. Breuel, “A flexible method for criticality
assessment in driver assistance systems,” in Proc. of the IEEE Intelli-
gent Vehicles Symposium, 2011, pp. 697–702.

[36] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge:
Cambridge University Press, 2004.

[37] E. Héry, S. Masi, P. Xu, and P. Bonnifait, “Map-based curvilinear
coordinates for autonomous vehicles,” in Proc. of the IEEE Int. Conf.
on Intelligent Transportation Systems, 2017, pp. 1–7.

[38] Y. V. Pant, H. Abbas, and R. Mangharam, “Smooth operator: Control
using the smooth robustness of temporal logic,” in Proc. of the IEEE
Conf. on Control Technology and Applications, 2017, pp. 1235–1240.

[39] R. Krajewski, J. Bock, L. Kloeker, and L. Eckstein, “The highD
dataset: A drone dataset of naturalistic vehicle trajectories on German
highways for validation of highly automated driving systems,” in Proc.
of the IEEE Int. Conf. on Intelligent Transportation Systems, 2018, pp.
2118–2125.

[40] S. Diamond and S. Boyd, “CVXPY: A Python-embedded modeling
language for convex optimization,” The Journal of Machine Learning
Research, vol. 17, no. 1, pp. 2909–2913, 2016.

[41] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[42] M. Werling, J. Ziegler, S. Kammel, and S. Thrun, “Optimal trajectory
generation for dynamic street scenarios in a Frénet frame,” in Proc. of
the IEEE Int. Conf. on Robotics and Automation, 2010, pp. 987–993.

	Introduction
	Related Work
	Contributions

	Preliminaries and Problem Statement
	System Description
	Definitions
	Metric Temporal Logic
	Davis-Putnam-Logemann-Loveland Algorithm
	Problem Statement

	Overall Algorithm
	SMT-based Trajectory Repairing
	Propositional Logic Formula Abstraction
	SAT Solver
	T-Solver
	Time-To-Comply Search
	Optimization-based Trajectory Repairing

	Case Studies
	Keeping a Safe Distance to the Preceding Vehicle (R_G1)
	Avoiding Unnecessary Braking (R_G2)
	Adhering to the Speed Limit (R_G3)
	Performance Evaluation

	Conclusions
	References

