
Chapter 1

Network Virtualization and

Network Hypervisors

Andreas Blenk1,2 and Wolfgang Kellerer1

1Chair of Communication Networks, Technical University of Munich, 80333, Munich,
Arcisstr. 21, Germany

2Faculty of Computer Science, University of Vienna, Vienna, Währinger Str. 29, Austria

*Corresponding Author: Wolfgang Kellerer; wolfgang.kellerer@tum.de

Abstract: Modern communication networks, have to deal with dynami-

cally changing requirements of emerging applications. In order to support

such heterogeneous requirements on the same substrate network concepts

for network abstraction and network programmabiluty are essential to offer

applications individually tailored views on the network. Network virtualiza-

tion is the basic concept to provide an abstraction of a substrate network

that can be offerend to a network application provider. Here, a network

hypervisor realizes the level of indirection between substrate network and

virtual network(s). Additional programmability can be offered through the

concept of Software Defined Networking (SDN). SDN provides a network

abstraction based on a centralized view on a network to program individ-

ual features such as forwarding rules inside a network. This chapter gives

an overview over the networking concept network virtualization at the ex-

ample of the virtualization of SDN-based networks. The combination of

1



network virtualization and Software Defined Networking provides full net-

work abstraction and adaptability. We detail the basic features of a network

hypervisor: abstraction and isolation and provide the example of FlowVisor

as a prominent network hypervisor example in the state of the art.

Keywords: Network Virtualization, Network Hypervisors

1.1. Introduction
Communication networks such as the Internet, data center networks or enterprise

networks have become a critical infrastructure of our society. Although these commu-

nications networks and their protocols have been a great success, they have been de-

signed for providing connectivity in a best-effort manner. However, given the current

shift away from human-to-human communication toward machine-to-machine com-

munication, e.g., in the context of (distributed) cloud computing or Cyber-Physical

Systems (CPSs), designing networks for best-effort transmission is no longer suffi-

cient. The reasons are manifold: future applications like Internet-of-Things or robotics

require communication networks providing Quality-of-Service (QoS) guarantees and

predictable performance while they are sharing the same underlying network infras-

tructure. Whereas traditional communication networks have been planned and oper-

ated by humans, resulting in a rather slow operation and update, modern applications

require fast and automatic changes to new requirements as those of future networking

concepts such as 5G [Agyapong et al., 2014].

Indeed, traditionally it has been assumed that communication networks serve ap-

plications with homogeneous network resource requirements not changing over time.

However, today’s application requirements fluctuate on time scales from minutes to

milliseconds and are possibly highly diverse with respect to their required network

resources [Benson et al., 2010, Erman and Ramakrishnan, 2013, Garcia-Dorado et al.,

2012, Gehlen et al., 2012]. For example for CPSs, communication networks must serve

2



latency-critical control loops where resource adaptations must be put into effect within

millisecond timescales. Despite of their different requirements, applications typically

share the same physical infrastructures. As a consequence, they rely on the same pro-

tocol stack. However, communication network infrastructures with their current pro-

tocol stacks lack adequate mechanisms to handle changing application requirements in

a timely manner. Hence, today’s communication networks lack the flexibility in pro-

viding efficient resource sharing with a high level of adaptability, needed to support

demands with diverse network resource requirements changing over time. Overall, this

results in a performance that is far from perfect for both the network operator and

the network users.

Two paradigms, namely Network Virtualization (NV) [Anderson et al., 2005] and

Software-Defined Networking (SDN) [McKeown et al., 2008], are expected to cope with

those requirements for flexible network resource sharing and adaptability. Whereas NV

is seen as a key enabler to overcome the ossification of the Internet by introducing

flexible resource sharing [Anderson et al., 2005], SDN introduces a new way of flexibly

programming the shared resources at runtime [McKeown et al., 2008].

NV abstracts physical resources of Infrastructure Providers (InP) and enables ten-

ants, i.e., Service Providers (SP), to use virtual resources according to their users’

demands. Due to NV, InPs and SPs can control physical and virtual resources re-

spectively in a dynamic and independent manner. To gain the highest efficiency out

of virtualized networks, InPs need mechanisms that quickly provide (virtual) network

resources in a predictable and isolated manner. On the other side, SPs should be able

to flexibly request and control their resources with high degree of freedom. Hence, NV

opens a new path towards communication systems hosting multiple virtual networks

of SPs.

SDN decouples control planes of network devices, such as routers and switches,

from their data planes. Using open interfaces such as OpenFlow [McKeown et al.,

2008], SDN provides new means of network programmability [McKeown et al., 2008].

With networks being completely programmable, SDN can realize Network Operat-

3



ing Systems (NOSs) integrating new emerging concepts; NOSs can be tailored to

application-, service-, and user-specific demands. As an example, NOSs can integrate

raising mechanisms from the research field of Artificial Intelligence (AI). This might

lead to future NOSs, and communication networks that self-adapt to unforeseen events,

e.g., based on knowledge that is inferred at runtime from the behavior of network users,

network topologies, or the behavior of network elements.

Combining NV and SDN offers the advantages of both worlds: a flexible and dy-

namic resource acquisition by tenants through NV and a standardized way to program

those resources through SDN. This is called the virtualization of software-defined net-

works, leading to the existence of multiple Virtual Software-Defined Networks (vSDNs)

sharing one infrastructure [Sherwood et al., 2009, 2010, Al-Shabibi et al., 2014a,b].

With both paradigms, it is expected that multiple vSDNs coexist while each one is in-

dividually managed by its own NOS. The combination makes it possible to implement,

test, and even introduce new NOSs at runtime into existing networking infrastructures.

Like in computer virtualization where a hypervisor manages Virtual Machines

(VMs) and their physical resource access [Barham et al., 2003], a so-called virtualiza-

tion layer realizes the virtualization of SDNs [Sherwood et al., 2009]. The virtualization

layer assigns, manages, and controls the physical network resources, while coordinating

the access of virtual network tenants. The virtualization layer in SDN-based networks

is realized by one or many network hypervisors [Koponen et al., 2014]. They imple-

ment the control logic needed for virtualizing software-defined networks. They act as

proxies between the NOSs of tenants and the shared physical infrastructure, where

the vSDN networks reside. Due to their key position, a deep understanding of design

choices and performance implications of network hypervisor implementations is of sig-

nificant importance. Without this understanding, network operators cannot provide

SPs with guaranteed and predictable network performance - a critical obstacle for the

success of combining NV and SDN.

In this book chapter, we introduce background needed to understand the concept

of network virtualization and the SDN network hypervisors concept, i.e., NV and SDN.

4



Legacy Network

CPCP
DP

DP DP DP

DP
CP CP CP

(a) Legacy network where the control plane

(CP) and the data plane (DP) are integrated

into a device.

Soware-defined Network

DP

DP DP DP

DP

Control PlaneControl Plane

(b) Software-defined network where the con-

trol plane (CP) is decoupled from the data

plane (DP) of the devices.

Figure 1.1: Comparison of legacy and software-defined network.

Furthermore, we provide an outline of the defining characteristics of network hypervi-

sors. Finally, we briefly survey the first SDN network hypervisor, namely FlowVisor.

1.2. Background

1.2.1. Software-Defined Networking (SDN)

In legacy networks, the control plane is tightly coupled into the same device as the

data plane. Fig. 1.1a shows an example network where the control plane is distributed

among the devices. The control plane is responsible for control decisions, e.g., to

populate the routing tables of Internet Protocol (IP) routers for effective packet for-

warding. Accordingly, in case of distributed control planes, an overall network control

is established through the operation of distributed network operating systems. As dis-

tributed operating systems may belong to different stakeholders, a common agreement

on the available functions and protocols is always needed in case of adaptations. This,

however, may hinder the innovation of communication networks: in order to let oper-

ating systems cooperate, basic agreements need to be established first. Achieving such

agreements might, however, be a time intensive and long taking task.

In order to overcome such problems, SDN decouples the control plane from the

5



data plane, which allows a centralized logical control of distributed devices [McKeown

et al., 2008]. Fig 1.1b illustrates an example where the control is decoupled from the

devices. The control plane logic is centralized in the SDN controller, which operates

the SDN switches. The centralized control maintains the global network state, which is

distributed across the data plane devices. While the data plane devices still carry out

the forwarding of data packets, the centralized control now instructs the data plane

devices how and where to forward data packets.

SDN defines the Data-Controller Plane Interface (D-CPI)1 to program distributed

networking devices. The D-CPI is used between the physical data plane and the (log-

ically centralized) control plane. The connection between SDN devices and SDN con-

trollers is referred as control channel. To establish connections through control chan-

nels, SDN switches still need to implement logics, so-called agents, which receive and

execute commands from the external control plane. To provide a common operation

and control among heterogeneous SDN devices, instruction sets that abstract the

physical data plane hardware are needed. The most most popular development is the

OpenFlow (OF) protocol [McKeown et al., 2008].

SDN controllers are written in software, which can be implemented through a

variety of programming languages, e.g., C++ or Python. This hardware independence

is expected to bring faster development and deployment of networking solutions. One

of the first SDN controllers has been NOX [Gude et al., 2008]. Many SDN controllers

have followed: e.g., Ryu [ryu], ONOS [Berde et al., 2014], Beacon [Erickson, 2013],

OpenDayLight [OpenDaylight, 2013]. Being implemented in software, SDN further

allows to freely design control plane architectures among the whole spectrum from

one central entity to a completely distributed control plane, such as in traditional

networks [Tootoonchian and Ganjali, 2010, Koponen et al., 2010].

SDN applies a match and action paradigm to realize packet forwarding decisions.

The SDN controller pushes instruction sets to the data plane, which include a match

1This interface has also been known as the Southbound interface earlier.

6



and action specification. In SDN, match specifications define a flow of packets, i.e., net-

work traffic flow. A match is determined by the header values of packets of a network

flow. For example, OF defines a set of header fields including, e.g., the Transmission

Control Protocol (TCP) header and the IP header. An SDN controller instructs SDN

switches to match on the specified fields and apply actions. The main actions are for-

ward, drop, or modify network packets. Each version of the OF specification extended

the set of header fields that can be matched on as well as the available actions.

An SDN switch stores the instructions on how to handle network packets in one or

multiple flow tables. The size for storing flow table entries is a defining characteristic

of an SDN switch. Flow tables can be implemented either in hardware or software.

Current OF switches use Ternary Content Addressable Memories (TCAMs) for hard-

ware tables, which are fast but costly and limited. In contrast, software tables provide

more space but are slower than hardware tables in storing and complex matching

of network flows [Kuźniar et al., 2015]. Accordingly, for a predictable isolation, such

resources also need to be allocated properly.

In order to ease the development of new networking applications as well as the

control of software-defined networks, controllers provide Application-Controller Plane

Interfaces (A-CPIs) [Open Networking Foundation (ONF), 2014b,c]. Networking ap-

plications, like firewalls or load balancers, reside in the application control plane and

use such A-CPIs, . However, networking applications can be developed upon the pro-

vided functionality of the controllers’ specific A-CPIs. Accordingly, while networking

application designers and operators can again freely develop in any programming lan-

guage, they are dependent on the A-CPI protocol of the respective controller, e.g.,

the REST API of ONOS [Berde et al., 2014] in OF-based networks. Unfortunately, no

common instruction set for the A-CPI has been defined yet.

This book chapter targets network hypervisors for OpenFlow (OF)-based SDN net-

works. Hence, this section introduces background information on the OF protocol, its

implementation aspects and message types, which are defined by the Open Networking

Foundation (ONF) in different versions Open Networking Foundation (ONF) [2009,

7



2011a,b, 2012, 2013, 2014a]. Moreover, it introduces several SDN network hypervisors.

1.2.2. OpenFlow Protocol

As OF is so far the most prominent and accepted realization for SDN-based networks,

many OF controllers, switches, and network hypervisors exist. Accordingly, when dis-

cussing OF-based vSDNs, background information on the OF protocol be provided

for a basic understanding of OF-based network hypervisors.

OpenFlow components.. In an SDN network, one controller manages multiple

OF switches: controllers and switches build the end-points of the OF protocol. The

switches are connected via multiple OpenFlow (OF) control channels with the con-

troller.

An OF switch typically has one control channel for one controller; auxiliary (par-

allel) control channels are possible, e.g., to improve redundancy. The OF specification

does not specify the control channel to be an out-band network, i.e., dedicated switches

for the control traffic, or an in-band one, where control traffic is transmitted through

the managed OF switches.

Literature sometimes calls the entity that implements the OF specification on the

switch side the OpenFlow (OF) agent [Kreutz et al., 2015]. Given the IP address

of the controller, OF agents initiate TCP connections to the controller via the OF

control channel interface. The controller’s IP address is normally pre-configured on

switches before starting network control and operation. OF messages, i.e., commands,

statistics, and notifications are sent through the control channels.

OpenFlow messages.. OF defines three message types: Controller-to-Switch,Asyn-

chronous, and Symmetric. The controller initiates Controller-to-Switch messages: e.g.,

to request features or to send a packet out on the data path of the switch. Only

switches send asynchronous messages. Switches use these messages to report network

events to controllers or changes of the their states. Both controllers or switches can

8



send Symmetric messages. They are sent without solicitation. The following message

are typically used in OF-based networks. Asynchronous messages:

� OFPT PACKET IN: Switches send OFPT PACKET IN messages to controllers to transfer

the control of the packet. They are either triggered by a flow entry (a rule that

specifies to send OFPT PACKET IN messages) or by a table-miss (when no rule can

be found and the switch is then sending OFPT PACKET IN messages as its default

behavior).

Controller-to-Switch messages:

� OFPT FEATURES REQUEST and OFPT FEATURES REPLY: This message request/reply

pattern exchanges the main information on switch identities and on switch capa-

bilities. A controller normally requests features once when a new control channel

connection is established.

� OFPT FLOW MOD: This message modifies flow table entries; it adds, modifies, or re-

moves flows from tables.

� OFMP PORT STATS: The controller sends this message to request statistics about one

or many ports of the switch. Statistics can be about received or transmitted packets

and bytes etc.

� OFPT PACKET OUT: A controller uses this message type to send a packet out through

the datapath of a switch. The controller sends this message, for instance, to discover

topologies by using the Link Layer Discovery Protocol (LLDP).

The next section provides a brief introduction on network virtualization. After-

wards, we connect both worlds, i.e., SDN and NV through the notion of network

hypervisors.

9



Internet Service Provider (ISP)

Service
Provider 1

Service
Provider 2

Customer
SP1

Customer
SP2

(a) Traditional role: SP providing access to

service providers and customers. SPs cannot

impact network decision and resource alloca-

tion.

Infrastructure Provider (InP)

Service
Provider 1

Service
Provider 2

Customer
SP2

Customer
SP1

(b) NV business model: SPs request virtual

networks. Customers connect to services via

virtual networks.

Figure 1.2: Traditional business model with SP versus NV business model with INP.

1.3. Network Virtualization
NV has its roots in the virtualization of computers. Virtualization of computers has

been one of the main drivers for the deployment of data centers and clouds [Goldberg,

1974, Li et al., 2010, Sahoo et al., 2010, Douglis and Krieger, 2013, Smith and Nair,

2005, Zhang et al., 2014]. Inspired by this successful development, NV has initially

been investigated for testbed deployments [Anderson et al., 2005, Turner and Taylor,

2005, Feamster et al., 2007]. The idea of sharing physical networking resources among

multiple tenants or customers has then been transferred to communication networks

serving production network traffic: NV is seen as the key enabler for overcoming the

ossification of the Internet [Anderson et al., 2005, Feamster et al., 2007, Turner and

Taylor, 2005]. As the idea of virtual networks is not new in general (e.g., VLAN de-

fines layer 2 virtual networks), different network virtualization definitions and models

have been proposed [Chowdhury and Boutaba, 2008, Bari et al., 2013, Casado et al.,

2010, Koponen et al., 2015, 2014], e.g., based on the domain (data centers, wide area

networks) they target.

NV has led to new business models, which are seen as main drivers for innovation

for communication network technologies. One business model for network virtualiza-

tion is introduced in [Chowdhury and Boutaba, 2009], as briefly introduced in the

following. Fig. 1.2 compares the traditional roles with the NV roles. Traditionally, an

10



Internet Service Provider (ISP) provides Internet access for its customers towards a

Service Provider (SP), such as Google, Netflix, Amazon, etc., which host their ser-

vices in data centers (Fig. 1.2a). In the business models of network virtualization, as

illustrated in Fig. 1.2b, the traditional role of an Internet Service Provider (ISP) of

managing and operating networks is split into an SP role and an InP role [Feamster

et al., 2007]. The SP’s role can be enriched with network control. They become the

operators of virtual networks. Thus, SPs can use their knowledge about their services

and applications to implement advanced network control algorithms, which are de-

signed to meet the service and application requirements. It is then the task of the

InP to provide virtual networks to the SPs. SPs (tenants) might even create virtual

networks by requesting resources from multiple InPs.

Generally, virtualization is construed differently among networking domains [Chowd-

hury and Boutaba, 2009]. Hence, different networking domains use varying technolo-

gies to realize virtual networks. For instance, VXLAN [Mahalingam et al., 2014],

GRE [Farinacci et al., 2000], or GRE’s NV variant NVGRE [Garg and Wang, 2015]

are used in data centers to interconnect virtual machines of tenants. Techniques such

as Multiprotocol Label Switching (MPLS) [Xiao et al., 2000, Rosen et al., 2001] create

logically-isolated virtual networks on the IP layer based on tunneling technologies,

while potentially relying on specialized networking hardware.

Full network virtualization comprises all physical resources that are needed to

provide virtual networks with guaranteed and predictable performance. The ability to

program virtual networks, e.g., by using SDN, is a further important key aspect of (full)

network virtualization [Koponen et al., 2014]. Taking a look at Virtual Local Area

Network (VLAN)-based virtualization without the ability of programming, tenants

have no opportunity to instruct switches to make traffic steering decisions. However, to

fully benefit from NV opportunities, tenants should obtain virtual network resources,

including full views of network topologies and allocated networking resources, involving

link data rates and network node resources, such as Central Processing Unit (CPU)

or memory.

11



Providing isolated and programmable virtual networks has manifold advantages:

first, network operators can design, develop, and test novel networking paradigms,

without any constraints imposed by the currently deployed protocols or (Internet)

architecture [Anderson et al., 2005]. Second, network systems that are designed to

the demands of the served applications or users do not suffer from the overhead of

unused network stacks or protocols. Furthermore, NV is seen as a key to provide

predictable (guaranteed) network performance [Ballani et al., 2011]. As a consequence,

SPs should be enabled to offer new services over existing infrastructures much faster

with higher flexibility, i.e., ease to adapt their networks to changing user and service

demands [Keller et al., 2012]. One way to offer this kind of feature is to use so-called

network hypervisors, as introduced in the next section.

1.4. SDN Network Hypervisors
SDN network hypervisors implement the virtualization layer for virtualizing SDN net-

works. They provide the main network functions for virtualization of SDN networks.

In this section, we explain how to virtualize SDN networks through a network hyper-

visor and its virtualization functions. We highlight the main functions that need to

be implemented towards being compliant with the introduced abstraction demands of

NV.

1.4.1. From Software-Defined Networks to Vir-

tual Software-Defined Networks

Combining NV and SDN provides tenants the advantages of both concepts, i.e., flexible

resource sharing by acquiring virtual networks, and programmability of the network

resources by using SDN. With the introduced programmability of SDN, NV offering

12



Physical Network

VN 1

VN 2

(a) Virtual Networks

Physical SDN Network

SDN Controller

(b) SDN Network

Physical SDN Network

Virtualization Layer

SDN C1 SDN C2

(c) Virtualized SDN Network

Figure 1.3: Comparison of virtual networks, SDN network, and virtual SDN networks.
Dotted lines on Fig. 1.3a indicate the embedding of the virtual nodes. Dashed lines
in Fig. 1.3b illustrate the control connections between the SDN controller and the
physical SDN network. Black dashed lines in Fig 1.3c show the connection between
tenant controllers and the virtualization layer, while dashed colored lines show the
connections between the virtualization layer and the physical SDN network. Dotted
lines between virtual nodes on the physical network indicate the virtual paths between
them.

virtual resource programmability towards tenants can now be put into effect [Jain

and Paul, 2013]. Accordingly, NV is seen as one killer application of SDN [Drutskoy

et al., 2013, Feamster et al., 2014], that is, it provides the programmability of virtual

network resources. The result of combining NV and SDN are vSDNs sharing the same

infrastructure.

Figure 1.3 illustrates the differences between virtual networks, software-defined

networks, and virtual software-defined networks. Figure 1.3a shows the traditional

view of virtual networks. Two virtual networks are hosted on a substrate network.

The dashed lines illustrate the location of the virtual resources. The interconnection

of the virtual nodes is determined by the path embedding or routing concept of the

InP. A clear way how a tenant can control and configure its virtual network is not

given. SDN provides one option for providing virtual network resource control and

even configuration to tenants. Figure 1.3b illustrates how an SDN controller operates

on to top of a physical SDN network. The SDN controller is located outside of the

network elements. It controls the network based on a logically centralized view. Fig-

ure 1.3c shows the combination of NV and SDN. A virtualization layer is responsible

13



for managing the physical network. Besides, the virtualization layer orchestrates the

control access among SDN controllers (here SDN C1 and C2) of tenants. As an ex-

ample, tenant 1 (VN 1) has access to three network elements while tenant 2 (VN 2)

has access to two network elements. Note the virtualization layer in the middle that

is shared by both tenants.

1.4.2. SDN Controllers versus SDN Network Hy-

pervisors

By adding a virtualization layer, i.e., a network hypervisor, on top of the networking

hardware, multiple vSDN operating systems are alleviated to control resources of the

same substrate network. This concept has been proposed by [Sherwood et al., 2009,

2010]. The network hypervisor interacts with the networking hardware via the D-CPI

through an SDN protocol, e.g., OF. In case of NV, the hypervisor provides on top the

same D-CPI interface towards virtual network tenants. This feature of the hypervisor

to interface through multiple D-CPI with multiple virtual SDN controllers is seen as

one of the defining features when virtualizing SDN networks.

Fig. 1.4 illustrates the difference between SDN networks and vSDNs in terms of

their interfaces to tenants. In SDN networks (Fig. 1.4a), network applications are

running on top of an SDN controller. The applications use the A-CPI of the controller

to connect and communicate with the SDN controller.

For vSDNs, as depicted in Fig. 1.4b, the network hypervisor implements the vir-

tualization layer. The tenants now communicate again via a D-CPI with the network

hypervisor. Still, on top of the tenant controllers, applications communicate via the

controllers’ A-CPI interfaces during runtime. The hypervisor acts as a proxy: it in-

tercepts the control messages between tenants and the physical SDN network. The

hypervisor acts as the SDN controller towards the physical SDN network. It trans-

lates the control plane messages between the tenant SDN controllers and the physical

14



Physical SDN Network

SDN Controller

App1 App2

A-CPI

D-CPI

(a) Applications interact via A-CPI with SDN

Controller. SDN controller interacts via D-

CPI with physical SDN network.

Physical SDN Network

SDN Network Hypervisor

D-CPI

D-CPI

vSDN Ctrl-1 vSDN Ctrl-2

App1 App2 App1 App2

A-CPI

(b) Comparison of SDN and vSDNs, and

respective interfaces. The tenant controllers

communicate through the SDN network hy-

pervisor with their virtual switches.

Figure 1.4: Comparison of SDN and Virtual Software-Defined Network (vSDN), and
respective interfaces.

SDN network. Message translation is the main functional task a hypervisor has to

accomplish.

1.4.3. SDN Network Hypervisors: Virtualization

Tasks and Functions

Next to translating messages, SDN network hypervisors face many tasks when virtual-

izing SDN networks: they need to grant access to tenants, isolate the virtual networks

on the data plane, avoid interference on the control plane, guarantee predictable net-

work operation, grant adaptation capabilities etc. In the following, we outline the

tasks of a network hypervisor to abstract (virtualize) SDN networking resources and

to create isolated virtual SDN networks.

15



Network Hypervisor

Physical Switch

Virtual
Switch

Virtual
Switch

(a) Switch Partitioning

Physical Switch

Virtual
Switch

Virtual
Switch

Physical Switch

Network Hypervisor

(b) Switch Partitioning & Aggregation

Figure 1.5: Comparison between switch partitioning and switch partitioning & aggre-
gation. Fig. 1.5a shows a physical switch partitioned into two virtual switches. Fig. 1.5b
illustrates partitioning and aggregation. Here, the right virtual switch represents an
aggregation among two physical switches.

1.4.3.1. Abstraction

Overall, many tasks are affected by the realization of the main feature that hypervisors

need to offer — the abstraction feature. Abstraction means ”the act of considering

something as a general quality or characteristic, apart from concrete realities, specific

objects, or actual instances” [Corsini, 2002]. As abstraction is seen as a fundamental

advantage of NV and SDN [Casado et al., 2014, 2010, Douglis and Krieger, 2013],

an SDN network hypervisor should be able to abstract details of the physical SDN

network. The degree of abstraction of the network representation determines also

the level of virtualization [Chowdhury and Boutaba, 2008], which is provided by a

network hypervisor. The available features and capabilities are directly communicated

by a hypervisor towards the tenants.

Three SDN network abstraction features are seen as the basic building blocks of a

virtualization layer for SDN: topology abstraction, physical node resource abstraction,

and physical link resource abstraction.

Topology Abstraction

Topology abstraction involves the abstraction of topology information, i.e., the in-

formation about the physical nodes and links that tenants receive as their view of

the topology. The actual view of tenants is defined by the mapping of the requested

16



Embedding:

vSDN View:

vSDN Request:

(a) View abstraction with a

1-to-N link mapping and 1-

to-1 node mapping, which in-

volves the intermediate node.

No path abstraction and no

path splitting.

Embedding:

vSDN View:

vSDN Request:

(b) View abstraction with 1-

to-N link mapping and 1-to-

1 node mapping, which does

not involve the intermediate

node. Path abstraction and

no path splitting.

Embedding:

vSDN View:

vSDN Request:

(c) Link abstraction with 1-

to-N link mapping and 1-to-

1 node mapping, which does

not involve the intermediate

nodes. Path abstraction and

path splitting.

Figure 1.6: Comparison between link abstraction procedures. On top the requested
virtual network. In the middle the provided view based on the embedding on the
bottom.

nodes/links to the physical network and the abstraction level provided by the vir-

tualization layer. Generally, we define the mapping of a virtual node/link to many

physical nodes/links as a ”1-to-N” mapping. A virtual node, for instance, can span

across many physical nodes. In case a tenant receives a ”1-to-N” mapping without

abstraction, he has to do additional work; the tenant has to implement the forwarding

of network packets on intermediate nodes by himself. When regarding links, while a

tenant requests only a virtual link between two nodes, he receives a view also con-

taining intermediate nodes to be managed by the tenant. In case nodes and links are

mapped to only one physical instance, we call this a ”1-to-1” mapping.

The provided information about nodes involves their locations and their intercon-

nections through links. A virtual node can be realized on one (”1-to-1”) or across many

physical nodes (”1-to-N”). Fig. 1.5 illustrates the two cases. Fig. 1.5a shows an exam-

ple where a switch is partitioned into multiple virtual instances. Each virtual switch is

running on one physical switch only. As an example for node aggregation, i.e., where

two physical instances are abstracted as one, a tenant operating a secure SDN network

wants to operate incoming and outgoing nodes of a topology only. Thus, a physical

17



topology consisting of many nodes might be represented via ”one big switch” [Mon-

santo et al., 2013, Chowdhury and Boutaba, 2008, Casado et al., 2010, Jin et al., 2015].

As illustrated in Fig. 1.5b, the right green switch is spanning two physical instances.

The network hypervisor aggregates the information of both physical switches into one

virtual switch.

Similar, different mapping and abstraction options for virtual links or paths ex-

ist. Physical links and paths are abstracted as virtual links. Realizations of virtual

links can consist of multiple hops, i.e., physical nodes. A tenant’s view might contain

the intermediate nodes or not. An example where intermediate nodes are not hidden

from the view is shown by Fig. 1.6a. The request involves two nodes and a virtual

path connecting them. As the physical path realization of the virtual link spans an

intermediate node, the view depicts this node. Fig. 1.6b shows a view that hides the

intermediate node. Besides, a virtual path can also be realized via multiple physical

paths, which is illustrated by Fig. 1.6c. For this, the infrastructure needs to provide

path splitting techniques [Yu et al., 2010].

Physical Node Resource Abstraction

In virtual networks, CPU and memory are usually considered as the main network node

resources. For SDN networks, memory is additionally differentiated from the space to

store matching entries for network flows, i.e., flow table space. While flow table space

is only used for realizing the match-and-action paradigm, memory might be needed

to realize a network stack (e.g., a tenant NOS on a device in case of a distributed

virtualization architecture) or for realizing network management functionality (e.g., a

byte counter for charging). CPU resource information can be abstracted in different

ways. It can be represented by the number of available CPU cores or the amount of

percentage of CPU. Similar, tenants can receive a concrete number or partitions of

memories. Flow table resources involve, e.g., the number of flow tables or the number

of TCAMs [Pagiamtzis and Sheikholeslami, 2006, Panigrahy and Sharma, 2002]. For

18



Isolation of Vir-
tual SDN Networks

Control Plane Hy-
pervisor: Instances

(CPU, Memory, etc.),
Network (Data rate,
Buffer Space, etc.)

Data Plane Physical
Network: Nodes, Links

Virtual SDN Netw.
Addr.: Address

Domain (IP, MAC,
TCP Port, etc.)

Type of Isolated Network Attribute

Figure 1.7: Network hypervisors isolate three network virtualization attributes: control
plane, data plane, and vSDN addressing.

instance, if switches provide multiple table types such as physical and software tables,

network hypervisors need to reserve parts of these tables according to the demanded

performance. Again, based on the level of abstraction, the different table types (soft-

ware or hardware) are abstracted from tenants’ views in order to lower operational

complexity for them.

Physical Link Resource Abstraction

Physical link resources involve the data rate, the available queues, the queue attributes

such as different priorities in case of a priority queuing discipline, as well as the link

buffers. Tenants might request virtual networks with delay or loss guarantees. To

guarantee delay and upper loss bounds, substrate operators need to operate queues

and buffers for the tenants. That is, the operation of queues and buffers is abstracted

from the tenant. However, tenants might even request to operate queues and buffers

themselves. For instance, the operation of meters, which rely on buffers, is a funda-

mental feature of recent OF versions. To provide tenants with their requested modes

of operations, like metering, substrate operators need to carefully manage the physical

resources.

19



1.4.3.2. Isolation

Network hypervisors should provide isolated virtual networks for tenants while trying

to perceive the best possible resource efficiency out of the physical infrastructure.

While tenants do not only demand physical resources for their operations, physical

resources are also needed to put virtualization into effect, e.g., to realize isolation.

Physical resources can be classified into three main categories as depicted in Fig 1.7:

the provided addressing space, the control plane and the data plane resources.

vSDN Addressing Isolation

With virtualized SDN networks, tenants should receive the whole programmability

of an SDN network. This means, tenants should be free to address flows according

to their configurations and demands. Accordingly, techniques need to provide unique

identification of the flows of different tenants. In a non-virtualized SDN network, the

amount of addressable flow space is limited by the physical infrastructure attributes,

i.e., the type of network (e.g., layer 2 only) and the used protocols (e.g., MPLS as the

only tunneling protocol). The available headers and their configuration possibilities

determine the amount of available flows. In virtualized SDN networks, more possibili-

ties are available: e.g., if the vSDN topologies of two tenants do not overlap physically,

the same address space in both vSDNs would be available. Or if tenants request lower

OF versions than the deployed ones, extra header fields added by higher OF versions

could also be used for differentiation. For instance, OF 1.1 introduced MPLS that can

be used to distinguish tenants who request only OF 1.0.

Control Plane Isolation

In SDN networks, it is well known that the control plane performance affects the data

plane performance [Tootoonchian and Ganjali, 2010]. In addition, execution platforms

(i.e., their CPU, memory, etc.), which host SDN controllers, directly influence the

control plane performance [Kuzniar et al., 2014, Rotsos et al., 2012, Tootoonchian

20



and Ganjali, 2010, Tootoonchian et al., 2012]. For instance, when an SDN controller

is under heavy load, i.e., available CPUs run at high utilization, OF control packet

processing might take longer. As a result, forwarding setups on switches might be

delayed. On the other hand, also the resources of the control channels and switches

can impact the data plane performance. In traditional routers, the routing processor

running the control plane logic communicates with the data plane elements (e.g.,

Forwarding Information Base (FIB)) over a separate bus (e.g., a PCI bus). In SDN,

controllers are running as external entities with their control channels at the mercy of

the network. If a control channel is currently utilized by many OF packets, delay and

even loss might occur, which can lead to delayed forwarding decisions. On switches, so

called agents manage the connection towards the external control plane. Thus, switch

resources consumed by agents (node CPU & memory, and link buffer & data rate) can

also impact the performance of the control plane.

The overall performance perceived by tenant controllers is determined by many

factors: the physical network, i.e., node and link capabilities; the processing speed

of a hypervisor being determined by the CPU of its host; the control plane latency

between tenant controllers and hypervisors is determined by the available data rate of

the connecting network. What comes in addition is the potential drawback of sharing

resources: performance degradation due to resource interference. Resource interfer-

ence happens, for instance, when misconfigured controllers overwhelm virtualization

infrastructures with too many control messages. Without isolation, the overload gen-

erated by a tenant can then degrade the perceived performance of other tenants, which

degrades the data plane performance. To provide predictable and guaranteed perfor-

mance, a resource isolation scheme for tenants needs to carefully allocate all involved

resources at the data and the control plane.

21



Data Plane Isolation

The main resources of the data plane are node CPUs, node hardware accelerators, node

flow table space, link buffers, link queues, and link data rates. Node resources need to

be reserved and isolated between tenants for efficient forwarding and processing of the

tenants’ data plane traffic. On switches, for instance, different sources can utilize their

CPU resources: (1) generation of SDN messages, (2) processing data plane packets

on the switches’ CPUs, i.e., their ”slow paths”, and (3) switch state monitoring and

storing [Sherwood et al., 2009]. As there is an overhead of control plane processing due

to involved networking operations, i.e., exchanging control messages with the network

hypervisor, virtualizing SDN networks requires an even more thorough allocation of

all involved resources. Besides, the utilization of the resources might change under

varying workloads. Such variations need also be taken into account when allocating

resources.

In order to successfully accomplish all these tasks, many challenges need to be

solved in different research areas: e.g., architecture design of hypervisors providing

predictable and guaranteed performance as well as solving algorithmically hard re-

source allocation problems for provisioning isolated virtual network resources.

1.5. A Network Hypervisor example: FlowVi-

sor
FlowVisor (FV) [Sherwood et al., 2009] has been the first hypervisor for virtualizing

OF-based software-defined networks, enabling sharing of SDN networking resources

between multiple SDN controllers. In this section, we will briefly describe how FlowVi-

sor addresses some of the aforementioned attributes of network hypervisors. For a more

comprehensive elaboration and comparison of different network hypervisor implemen-

tation, we refer to our survey in [Blenk et al., 2016].

22



Architecture. FV is a software network hypervisor and can run stand-alone on

any commodity server or inside a virtual machine. Sitting between the tenant SDN

controllers and the SDN networking hardware, FV processes the control traffic between

tenants from and to the SDN switches. FV further controls the view of the network

towards the tenants, i.e., it can abstract switch resources. FV supports OF 1.0 Open

Networking Foundation (ONF) [2009].

Flowspace. FV defines the term flowspace. A flowspace for a tenant describes a

possibly non-contiguous sub-space of the header field space of an OF-based network.

Flowspaces between tenants should not overlap; therefore, FV guarantees isolated

flowspaces for tenants. If tenants try to address flows outside their flowspaces, FV

rewrites the packet headers. If packet headers cannot be rewritten, FV sends an OF

error message. FV distinguishes shared from non-shared switches between tenants

for flowspace isolation. For shared switches, FV ensures that tenants cannot share

flowspaces, i.e., packet headers. For non-shared switches, flowspaces can be reused

among tenants as those are physically isolated.

Bandwidth Isolation. While OF in its original version has not provided any QoS

techniques for data plane isolation, FV realized data plane isolation by using VLAN

priority bits in data packets. Switches are configured out-of-band by a network ad-

ministrator to make use, if available, of priority queues. FV, then, rewrites tenant

rules to further set the VLAN priorities of the tenants’ data packets [Sofia, 2009]. The

so called VLAN Priority Code Point (PCP) specifies the 3-bit VLAN PCP field for

mapping to eight distinct priorities. As a result, data packets can be mapped to the

configured queues; hence, they receive different priorities.

Topology Isolation. FV isolates the topology in a way that tenants only see the

ports and switches that are part of their slices. For this, FV edits and forwards OF

messages related to a specific slice per tenant only.

Switch CPU Isolation. In contrast to legacy switches, where control does not need

an outside connection, OF switches can be overloaded by the amount of OF messages

they need to process. The reason is that the processing needed for external connec-

23



tions adds overhead on switch CPUs. In detail, OF agents need to encapsulate and

decapsulate control messages from and to TCP packets. Thus, in case a switch has

to process too many OF messages, its CPU might become overloaded. In order to

ensure that switch CPUs are shared efficiently among all slices, FV limits the rate of

messages sent between SDN switches and tenant controllers. For this, FV implements

a software-based message policing (briefly software isolation). This message policing

needs to be specified and installed with the respective slice configuration.

Flow Entries Isolation. To efficiently realize the match-plus-action paradigm, SDN

switches store match-plus-action instructions in flow tables. In case tenants demand

Gigabit transmissions, this lookup needs to perform in nanoseconds. A special memory

that operates in such timescales is TCAM [Fang Yu et al., 2004]. However, due to its

cost, TCAM space is limited. FV reserves each tenant parts of the table space for

operation. For this, FV keeps track of the used table space per tenant. Tenants cannot

use table space of other tenants in case they demand more table space. FV sends

tenants, which exceed their capacities, an indicator message telling that the flowspace

is full.

Control Channel Isolation. To distinguish between vSDNs, each vSDN is assigned

its distinct transaction identifier. If tenants use the same identifier, FV rewrites the

OF transaction identifiers to make them distinct again. It further modifies controller

buffer accesses and status messages to put isolation into effect.

1.6. Summary
In this cahper we have described the necessity of network abstraction to address het-

ereogeneous application requirement on the same network substrate. The concept of

network virtualization provides an abstraction of the network topology and of the net-

work node and link resources to offer an individual network view, a virtual network,

to a network application provider. Several virtual networks may run on the same net-

24



work substrate and have to be isolated from each other. A network hypervisor as an

intermediary layer takes care of providing the abstracted view and of the isolation.

Further network abstraction for adaptation of (virtual) networks is provided by the

concept of Software Defined Networking (SDN). SDN supports a cetralized view on a

network to program e.g. individual forwarding rules. As the combination of network

virtualization and SDN realizes full network abstraction and programmability, this

chapter has used this combination to illustrate and explain network virtualization.

Without loss of generality, the network virtualization concept based on the described

hypervisor concepts can also be applied without SDN. However, when dealing with

network virtualization, it is important to understand both concepts and the difference

between network hypervisor and SDN controller, in particular.

25



26



Bibliography

RYU SDN framework, http://osrg.github.io/ryu.

Patrick Kwadwo Agyapong, Mikio Iwamura, Dirk Staehle, Wolfgang Kiess, and Anass

Benjebbour. Design considerations for a 5G network architecture. IEEE Commun.

Mag., 52(11):65–75, 2014. ISSN 01636804. doi: 10.1109/MCOM.2014.6957145.

Ali Al-Shabibi, Marc De Leenheer, Matteo Gerola, Ayaka Koshibe, William Snow,

and Guru Parulkar. OpenVirteX: a network hypervisor. In Proc. USENIX Open

Netw. Summit (ONS), pages 1–2, Santa Clara, CA, March 2014a.

Ali Al-Shabibi, Marc De Leenheer, and Bill Snow. OpenVirteX: Make your virtual

SDNs programmable. In Proc. ACM Workshop on Hot Topics in Softw. Defined

Netw., HotSDN ’14, pages 25–30. ACM, August 2014b. ISBN 978-1-4503-2989-7.

doi: 10.1145/2620728.2620741. URL http://doi.acm.org/10.1145/2620728.2620741.

Thomas Anderson, Larry Peterson, Scott Shenker, and Jonathan Turner. Overcoming

the Internet impasse through virtualization. IEEE Computer, 38(4):34–41, April

2005. ISSN 0018-9162. doi: 10.1109/MC.2005.136.

Hitesh Ballani, Paolo Costa, Thomas Karagiannis, and Ant Rowstron. Towards pre-

dictable datacenter networks. In Proc. ACM SIGCOMM, SIGCOMM ’11, pages

242–253. ACM, August 2011. ISBN 978-1-4503-0797-0. doi: 10.1145/2018436.

2018465. URL http://doi.acm.org/10.1145/2018436.2018465.

Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtu-

alization. In Proc. ACM Symp. on Operating Systems, SOSP ’03, pages 164–

27

http://doi.acm.org/10.1145/2620728.2620741
http://doi.acm.org/10.1145/2018436.2018465


177. ACM, 2003. ISBN 1-58113-757-5. doi: 10.1145/945445.945462. URL http:

//doi.acm.org/10.1145/945445.945462.

Md Faizul Bari, Raouf Boutaba, Rafael Esteves, Lisandro Zambenedetti Granville,

Maxim Podlesny, Md Golam Rabbani, Qi Zhang, and Mohamed Faten Zhani. Data

center network virtualization: A survey. IEEE Commun. Surveys & Tutorials, 15

(2):909–928, 2013. ISSN 1553-877X. doi: 10.1109/SURV.2012.090512.00043.

Theophilus Benson, Aditya Akella, and David a. Maltz. Network traffic characteristics

of data centers in the wild. In Proc. ACM SIGCOMM IMC, page 267, New York,

New York, USA, November 2010. ACM Press. ISBN 9781450304832. doi: 10.1145/

1879141.1879175. URL http://portal.acm.org/citation.cfm?doid=1879141.1879175.

Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,

Toshio Koide, Bob Lantz, William Snow, Guru Parulkar, Brian O’Connor, and

Pavlin Radoslavov. ONOS: Towards an open, distributed SDN OS. In Proc. ACM

Workshop on Hot Topics in Softw. Defined Netw., pages 1–6, Chicago, Illinois, USA,

August 2014. doi: 10.1145/2620728.2620744.

Andreas Blenk, Arsany Basta, Martin Reisslein, and Wolfgang Kellerer. Survey

on Network Virtualization Hypervisors for Software Defined Networking. IEEE

Commun. Surveys & Tutorials, 18(1):655–685, 2016. ISSN 1553-877X. doi:

10.1109/COMST.2015.2489183. URL http://ieeexplore.ieee.org/xpls/abs{ }all.jsp?

arnumber=7295561http://ieeexplore.ieee.org/document/7295561/.

Mart́ın Casado, Teemu Koponen, Rajiv Ramanathan, and Scott Shenker. Virtualizing

the network forwarding plane. In Proc. ACM Workshop on Programmable Routers

for Extensible Services of Tomorrow (PRESTO), PRESTO ’10, pages 8:1–8:6. ACM,

November 2010. ISBN 978-1-4503-0467-2. doi: 10.1145/1921151.1921162. URL

http://doi.acm.org/10.1145/1921151.1921162.

Martin Casado, Nate Foster, and Arjun Guha. Abstractions for software-defined

networks. Communications of the ACM, 57(10):86–95, September 2014. ISSN

28

http://doi.acm.org/10.1145/945445.945462
http://doi.acm.org/10.1145/945445.945462
http://portal.acm.org/citation.cfm?doid=1879141.1879175
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=7295561 http://ieeexplore.ieee.org/document/7295561/
http://ieeexplore.ieee.org/xpls/abs{_}all.jsp?arnumber=7295561 http://ieeexplore.ieee.org/document/7295561/
http://doi.acm.org/10.1145/1921151.1921162


00010782. doi: 10.1145/2661061.2661063. URL http://dl.acm.org/citation.cfm?

doid=2661061.2661063.

N. M. Mosharaf Kabir Chowdhury and Raouf Boutaba. A survey of network virtual-

ization. Computer Networks, 54:862–876, 2008.

N. M. Mosharaf Kabir Chowdhury and Raouf Boutaba. Network virtualization: state

of the art and research challenges. IEEE Commun. Mag., 47(7):20–26, July 2009.

ISSN 0163-6804. doi: 10.1109/MCOM.2009.5183468. URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=5183468.

R. J. Corsini. The Dictionary of Psychology. Psychology Press, 2002.

Fred Douglis and Orran Krieger. Virtualization. IEEE Internet Computing, 17(2):

6–9, 2013. doi: 10.1109/MIC.2013.42.

Dmitry Drutskoy, Eric Keller, and Jennifer Rexford. Scalable network virtualization

in software-defined networks. IEEE Internet Computing, 17(2):20–27, 2013.

David Erickson. The beacon openflow controller. In Proc. ACM Workshop on Hot

Topics in Softw. Defined Netw., HotSDN ’13, pages 13–18. ACM, August 2013.

ISBN 978-1-4503-2178-5. doi: 10.1145/2491185.2491189. URL http://doi.acm.org/

10.1145/2491185.2491189.

Jeffrey Erman and K.K. Ramakrishnan. Understanding the super-sized traffic of the

super bowl. In Proc. ACM SIGCOMM IMC, IMC ’13, pages 353–360. ACM, 2013.

ISBN 978-1-4503-1953-9. doi: 10.1145/2504730.2504770. URL http://doi.acm.org/

10.1145/2504730.2504770.

Fang Yu, R.H. Katz, and T.V. Lakshman. Gigabit rate packet pattern-matching using

TCAM. In Proc. IEEE ICNP, pages 174–183, October 2004. doi: 10.1109/ICNP.

2004.1348108.

Dino Farinacci, Tony Li, Stan Hanks, David Meyer, and Paul Traina. Generic

29

http://dl.acm.org/citation.cfm?doid=2661061.2661063
http://dl.acm.org/citation.cfm?doid=2661061.2661063
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5183468
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5183468
http://doi.acm.org/10.1145/2491185.2491189
http://doi.acm.org/10.1145/2491185.2491189
http://doi.acm.org/10.1145/2504730.2504770
http://doi.acm.org/10.1145/2504730.2504770


routing encapsulation (gre). RFC 2784, RFC Editor, March 2000. URL http:

//www.rfc-editor.org/rfc/rfc2784.txt. http://www.rfc-editor.org/rfc/rfc2784.txt.

Nick Feamster, Lixin Gao, and Jennifer Rexford. How to lease the internet in

your spare time. ACM SIGCOMM Computer Commun. Rev., 37(1):61, January

2007. ISSN 01464833. doi: 10.1145/1198255.1198265. URL http://portal.acm.org/

citation.cfm?doid=1198255.1198265.

Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to SDN: An intellectual

history of programmable networks. ACM SIGCOMM Computer Commun. Rev., 44

(2):87–98, April 2014.

Jose Luis Garcia-Dorado, Alessandro Finamore, Marco Mellia, Michela Meo, and

Maurizio M. Munafo. Characterization of ISP Traffic: Trends, User Habits, and

Access Technology Impact. IEEE Trans. on Netw. and Serv. Manage., 9(2):142–

155, June 2012. ISSN 1932-4537. doi: 10.1109/TNSM.2012.022412.110184. URL

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6158423.

Pankaj Garg and Yu-Shun Wang. Nvgre: Network virtualization using generic routing

encapsulation. RFC 7637, RFC Editor, September 2015.

Vinicius Gehlen, Alessandro Finamore, Marco Mellia, and Maurizio M. Munafò. Un-

covering the Big Players of the Web, pages 15–28. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2012. ISBN 978-3-642-28534-9. doi: 10.1007/978-3-642-28534-9 2. URL

https://doi.org/10.1007/978-3-642-28534-9 2.

Robert P Goldberg. Survey of virtual machine research. IEEE Computer, 7(6):34–45,

1974.

Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Mart́ın Casado, Nick McK-

eown, and Scott Shenker. NOX: towards an operating system for networks. ACM

SIGCOMM Computer Commun. Rev., 38(3):105–110, 2008.

30

http://www.rfc-editor.org/rfc/rfc2784.txt
http://www.rfc-editor.org/rfc/rfc2784.txt
http://www.rfc-editor.org/rfc/rfc2784.txt
http://portal.acm.org/citation.cfm?doid=1198255.1198265
http://portal.acm.org/citation.cfm?doid=1198255.1198265
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6158423
https://doi.org/10.1007/978-3-642-28534-9_2


Raj Jain and Subharthi Paul. Network virtualization and software defined networking

for cloud computing: a survey. IEEE Commun. Mag., 51(11):24–31, November 2013.

Xin Jin, Jennifer Gossels, Jennifer Rexford, and David Walker. CoVisor: A compo-

sitional hypervisor for software-defined networks. In Proc. USENIX Symp. NSDI,

NSDI’15, pages 87–101. USENIX Association, May 2015. ISBN 978-1-931971-218.

URL http://dl.acm.org/citation.cfm?id=2789770.2789777.

Eric Keller, Dushyant Arora, Soudeh Ghorbani, Matt Caesar, and Jennifer Rex-

ford. Live Migration of an Entire Network (and its Hosts). Princeton Uni-

versity Computer Science Technical Report, pages 109–114, 2012. doi: 10.1145/

2390231.2390250. URL http://dl.acm.org/citation.cfm?doid=2390231.2390250ftp:

//ftp.cs.princeton.edu/techreports/2012/926.pdf.

T. Koponen, M. Casado, P.S. Ingram, W.A. Lambeth, P.J. Balland, K.E. Amidon,

and D.J. Wendlandt. Network virtualization, US Patent 8,959,215, February 2015.

Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,

Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and

Scott Shenker. Onix: A distributed control platform for large-scale production net-

works. In Proc. USENIX Conf. OSDI, OSDI’10, pages 351–364. USENIX Associa-

tion, October 2010. URL http://dl.acm.org/citation.cfm?id=1924943.1924968.

Teemu Koponen, Keith Amidon, Peter Balland, Martin Casado, Anupam Chanda,

Bryan Fulton, Igor Ganichev, Jesse Gross, Paul Ingram, Ethan Jackson, Andrew

Lambeth, Romain Lenglet, Shih-Hao Li, Amar Padmanabhan, Justin Pettit, Ben

Pfaff, Rajiv Ramanathan, Scott Shenker, Alan Shieh, Jeremy Stribling, Pankaj

Thakkar, Dan Wendlandt, Alexander Yip, and Ronghua Zhang. Network virtu-

alization in multi-tenant datacenters. In Proc. USENIX Symp. NSDI, NSDI’14,

pages 203–216. USENIX Association, April 2014. ISBN 978-1-931971-09-6. URL

http://dl.acm.org/citation.cfm?id=2616448.2616468.

Diego Kreutz, Fernando MV Ramos, PE Verissimo, C Esteve Rothenberg, Siamak

31

http://dl.acm.org/citation.cfm?id=2789770.2789777
http://dl.acm.org/citation.cfm?doid=2390231.2390250 ftp://ftp.cs.princeton.edu/techreports/2012/926.pdf
http://dl.acm.org/citation.cfm?doid=2390231.2390250 ftp://ftp.cs.princeton.edu/techreports/2012/926.pdf
http://dl.acm.org/citation.cfm?id=1924943.1924968
http://dl.acm.org/citation.cfm?id=2616448.2616468


Azodolmolky, and Steve Uhlig. Software-defined networking: A comprehensive sur-

vey. Proc. IEEE, 103(1):14–76, 2015.

Maciej Kuzniar, Peter Peresini, and Dejan Kostic. What you need to know about

SDN control and data planes. Technical report, EPFL, TR 199497, 2014.

Maciej Kuźniar, Peter Pereš́ıni, and Dejan Kostić. What You Need to Know About

SDN Flow Tables, pages 347–359. Springer International Publishing, Cham, 2015.

ISBN 978-3-319-15509-8. doi: 10.1007/978-3-319-15509-8 26. URL https://doi.org/

10.1007/978-3-319-15509-8 26.

Yunfa Li, Wanqing Li, and Congfeng Jiang. A survey of virtual machine system:

Current technology and future trends. In Proc. IEEE Int. Symp. on Electronic

Commerce and Security (ISECS), pages 332–336, July 2010. doi: 10.1109/ISECS.

2010.80.

M. Mahalingam, D. Dutt, K. Duda, P. Agarwal, L. Kreeger, T. Sridhar, M. Bursell, and

C. Wright. Virtual extensible local area network (vxlan): A framework for overlaying

virtualized layer 2 networks over layer 3 networks. RFC 7348, RFC Editor, August

2014. URL http://www.rfc-editor.org/rfc/rfc7348.txt. http://www.rfc-editor.org/

rfc/rfc7348.txt.

Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,

Jennifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: enabling innova-

tion in campus networks. ACM SIGCOMM Computer Commun. Rev., 38(2):69–74,

2008.

Christopher Monsanto, Joshua Reich, Nate Foster, Jennifer Rexford, and David

Walker. Composing Software-Defined Networks. In Proc. USENIX Symp.

NSDI, pages 1–13, Lombard, IL, April 2013. USENIX Association. ISBN 978-1-

931971-00-3. URL https://www.usenix.org/conference/nsdi13/technical-sessions/

presentation/monsanto.

32

https://doi.org/10.1007/978-3-319-15509-8_26
https://doi.org/10.1007/978-3-319-15509-8_26
http://www.rfc-editor.org/rfc/rfc7348.txt
http://www.rfc-editor.org/rfc/rfc7348.txt
http://www.rfc-editor.org/rfc/rfc7348.txt
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/monsanto
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/monsanto


Open Networking Foundation (ONF). OpenFlow Switch Specifications 1.0 (ONF

TS-001), December 2009. https://www.opennetworking.org/wp-content/uploads/

2013/04/openflow-spec-v1.0.0.pdf.

Open Networking Foundation (ONF). OpenFlow Switch Specifications 1.1.0 (ONF TS-

002), February 2011a. https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.

com/wp-content/uploads/2014/10/openflow-spec-v1.1.0.pdf.

Open Networking Foundation (ONF). OpenFlow Switch Specifications 1.2 (ONF TS-

003), October 2011b. https://www.opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf.

Open Networking Foundation (ONF). OpenFlow Switch Specifications 1.3.0 (ONF

TS-006), October 2012. https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.

com/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf.

Open Networking Foundation (ONF). OpenFlow Switch Specifications 1.4 (ONF TS-

012), October 2013. https://www.opennetworking.org/images/stories/downloads/

sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf.

Open Networking Foundation (ONF). OpenFlow Switch Specifications 1.5.0 (ONF

TS-020), December 2014a. https://www.opennetworking.org/images/stories/

downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.

noipr.pdf.

Open Networking Foundation (ONF). SDN Architecture Overview, Version 1.0, ONF

TR-502, June 2014b. https://www.opennetworking.org/images/stories/downloads/

sdn-resources/technical-reports/TR SDN ARCH 1.0 06062014.pdf.

Open Networking Foundation (ONF). SDN Architecture Overview, Version 1.1,

ONF TR-504, November 2014c. https://www.opennetworking.org/images/

stories/downloads/sdn-resources/technical-reports/TR SDN-ARCH-Overview-1.

1-11112014.02.pdf.

33

https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://www.opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-spec-v1.1.0.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-spec-v1.1.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.2.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://3vf60mmveq1g8vzn48q2o71a-wpengine.netdna-ssl.com/wp-content/uploads/2014/10/openflow-spec-v1.3.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/onf-specifications/openflow/openflow-switch-v1.5.0.noipr.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN_ARCH_1.0_06062014.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf


OpenDaylight. A linux foundation collaborative project, 2013. URL http://www.

opendaylight.org.

Kostas Pagiamtzis and Ali Sheikholeslami. Content-addressable memory (CAM) cir-

cuits and architectures: A tutorial and survey. IEEE J. Solid-State Circuits, 41(3):

712–727, 2006.

Rina Panigrahy and Samar Sharma. Reducing TCAM power consumption and increas-

ing throughput. In Proc. IEEE High Perf. Interconnects, pages 107–112, August

2002. doi: 10.1109/CONECT.2002.1039265.

E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching architecture.

RFC 3031, RFC Editor, January 2001. URL http://www.rfc-editor.org/rfc/rfc3031.

txt. http://www.rfc-editor.org/rfc/rfc3031.txt.

Charalampos Rotsos, Nadi Sarrar, Steve Uhlig, Rob Sherwood, and AndrewW. Moore.

OFLOPS: An Open Framework for OpenFlow Switch Evaluation, pages 85–95.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-28537-0. doi:

10.1007/978-3-642-28537-0 9. URL https://doi.org/10.1007/978-3-642-28537-0 9.

Jyotiprakash Sahoo, Subasish Mohapatra, and Radha Lath. Virtualization: A survey

on concepts, taxonomy and associated security issues. In Proc. IEEE Int. Conf. on

Computer and Netw. Techn. (ICCNT), pages 222–226, April 2010. doi: 10.1109/

ICCNT.2010.49.

Rob Sherwood, Glen Gibb, Kok-Kiong Yap, Guido Appenzeller, Martin Casado, Nick

Mckeown, and Guru Parulkar. FlowVisor: A network virtualization layer. Technical

report, OpenFlow Consortium, 2009.

Rob Sherwood, Jad Naous, Srinivasan Seetharaman, David Underhill, Tatsuya Yabe,

Kok-Kiong Yap, Yiannis Yiakoumis, Hongyi Zeng, Guido Appenzeller, Ramesh Jo-

hari, Nick McKeown, Michael Chan, Guru Parulkar, Adam Covington, Glen Gibb,

Mario Flajslik, Nikhil Handigol, Te-Yuan Huang, Peyman Kazemian, and Masayoshi

34

http://www.opendaylight.org
http://www.opendaylight.org
http://www.rfc-editor.org/rfc/rfc3031.txt
http://www.rfc-editor.org/rfc/rfc3031.txt
http://www.rfc-editor.org/rfc/rfc3031.txt
https://doi.org/10.1007/978-3-642-28537-0_9


Kobayashi. Carving research slices out of your production networks with OpenFlow.

ACM SIGCOMM Computer Commun. Rev., 40(1):129–130, January 2010.

James E Smith and Ravi Nair. The architecture of virtual machines. IEEE Computer,

38(5):32–38, 2005.

Rute C Sofia. A survey of advanced ethernet forwarding approaches. IEEE Commun.

Surveys & Tutorials, 11(1):92–115, 2009.

A. Tootoonchian, S. Gorbunov, Y. Ganjali, M. Casado, and R. Sherwood. On controller

performance in software-defined networks. In Proc. USENIX Wkshp. on Hot Topics

in Management of Internet, Cloud, and Enterprise Networks and Services, Hot-

ICE’12, pages 10–10, Berkeley, CA, USA, April 2012. USENIX Association. URL

http://dl.acm.org/citation.cfm?id=2228283.2228297.

Amin Tootoonchian and Yashar Ganjali. HyperFlow: A distributed control plane for

OpenFlow. In Proc. USENIX Internet Network Management Conf. on Research

on Enterprise Netw., INM/WREN’10, pages 3–3. USENIX Association, April 2010.

URL http://dl.acm.org/citation.cfm?id=1863133.1863136.

J.S. Turner and D.E. Taylor. Diversifying the Internet. In Proc. IEEE Globecom,

volume 2, pages 6 pp.–760, December 2005. doi: 10.1109/GLOCOM.2005.1577741.

Xipeng Xiao, Alan Hannan, Brook Bailey, and Lionel M Ni. Traffic engineering with

MPLS in the internet. IEEE Network, 14(2):28–33, 2000.

Minlan Yu, Jennifer Rexford, Michael J. Freedman, and Jia Wang. Scalable flow-

based networking with DIFANE. ACM SIGCOMM Computer Commun. Rev., 40

(4):351–362, October 2010.

Zhaoning Zhang, Ziyang Li, Kui Wu, Dongsheng Li, Huiba Li, Yuxing Peng, and

Xicheng Lu. VMThunder: fast provisioning of large-scale virtual machine clusters.

IEEE Trans. Parallel and Distr. Systems, 25(12):3328–3338, December 2014. ISSN

1045-9219. doi: 10.1109/TPDS.2014.7.

35

http://dl.acm.org/citation.cfm?id=2228283.2228297
http://dl.acm.org/citation.cfm?id=1863133.1863136


36


	Network Virtualization and Network Hypervisors
	Introduction
	Background
	Software-Defined Networking (SDN)
	OpenFlow Protocol

	Network Virtualization
	SDN Network Hypervisors 
	From Software-Defined Networks to Virtual Software-Defined Networks
	SDN Controllers versus SDN Network Hypervisors
	SDN Network Hypervisors: Virtualization Tasks and Functions

	Topology Abstraction
	Physical Node Resource Abstraction
	Physical Link Resource Abstraction
	vSDN Addressing Isolation
	Control Plane Isolation
	Data Plane Isolation
	A Network Hypervisor example: FlowVisor
	Summary


