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Abstract—Airline companies are currently investigating means
to improve in-flight services for passengers. Given emerging
Air-to-Ground (A2G) communication technologies and the high
desire of passengers for in-flight services, the servers providing
in-flight services can be moved from the airplane to Data
Centers (DCs) on the ground. In this scenario, network nodes
(airplanes) demanding network services move over a ground core
network. Therefore, the selection of DCs to connect to, as well as
the underlying routing decisions are challenging. In particular, to
keep a low-delay in-flight connection during the flight, airplanes
connections can be reconfigured from a DC to another one, which
comes at a delay cost.

This paper presents a formal model for the in-flight service
provisioning problem, also as an Integer Linear Program (ILP).
We show that the problem is NP-hard and hence propose an
efficient online heuristicc HOMA, which addresses the above
challenges in polynomial time. HOMA models the problem as a
dynamic matching with special properties, and then efficiently
solves it by a transformation into the shortest-path routing
problem. Our simulation results indicate that HOMA can achieve
near-optimal performance and outperform the baseline and state-
of-the-art algorithms by up to 15% while reducing the runtime
from hours to seconds.

Index Terms—Service Selection, Reconfiguration, Service Mi-
gration, Dynamic Service Allocation, Mobility-Aware, Mobile
Users.

I. INTRODUCTION AND BACKGROUND

Today, with a significant increase in worldwide flight traffic
volume, providing in-flight services such as entertainment to
onboard passengers has become an important goal for airline
companies [1]. Recently, there have been advances in pro-
viding high-capacity Air-to-Ground (A2G) communications
to airplanes [2], [3]. In particular, Low Earth Orbit (LEO)
satellites can relay the airplane traffic towards a gateway on
the ground with a high link capacity [4] Also, Direct-Air-to-
Ground (DA2G) connections enable airplanes to communicate
directly to the base stations located on the ground network [5],
[6]. These developments have made new opportunities for
airlines to deploy new online and interactive services, such
as air-to-ground voice/video calls and gaming to improve pas-
senger experience and grow the revenues [1]. To realize these
services, airline companies can move the servers providing
the in-flight services from the airplane to the distributed Data
Centers (DCs) located on the ground. This can also reduce

@ Airplane node ® Satellite node @ Datacenter node —>> Movement dir.
@ DA2G node @ Satellite gateway .®yp Reconfiguration == Traffic path

(a) Time: 5 PM (b) Time: 6 PM

Fig. 1: An exemplary scenario with two flights in two snap-
shots. (a) shows two airplanes that are connected to the left and
the right DC, respectively, at 5 PM. Also, the orange (bottom)
airplane cannot use the DA2G connection, since it is out of
the tower’s range. (b) an hour later, the airplanes are located in
different positions with different connectivity opportunities. To
improve the delay, the connection of the blue (top) airplane is
reconfigured from the left to right DC. With similar reasoning,
the orange (bottom) airplane also starts using the left DC.
Therefore, we see two reconfigurations at 6 PM.

the weight of the airplane, hence the fuel consumption. Due
to their real-time and interactive design, these types of services
are usually demanding in terms of delay [7]. Thus, it is
important to determine the DC to connect to as well as the
underlying routing decisions to provide low-delay services to
the airplane. Moreover, due to the mobility of airplanes over
time, a DC may not remain the efficient one over time (i.e.,
the distance of the airplane to DC and hence the routing delay
can increase during flight).

Therefore, to maintain a continuous low-delay service de-
livery to the airplanes, the airplane-to-DC assignments can be
adapted over time, henceforth called reconﬁgurationsl. While
these reconfigurations can improve the airplane to DC routing
delay, they come at a cost, for example, in terms of the

'In this paper, reconfiguring/reconfiguration and reassigning/reassignment
terms are used interchangeably



delay (e.g., airplane session’s data synchronization between
two DCs). For clarification, an exemplary scenario with two
flights is shown in Fig. 1.

Given a set of flights, their A2G connections, and a ground
core network with capacitated DCs and links, it is of critical
importance to choose the best DCs for airplanes to connect to
using an efficient routing, as well as the necessary reconfigu-
ration decisions during their flight period to keep the delay of
in-flight service delivery minimized in a best-effort approach.

We see our work partially embedded in the Mobile Edge
Computing (MEC) research area [8]-[10], with use-cases such
as Internet-of-Vehicles (IoV) [11], [12]. Some works [10], [11]
assuming that there is a single access point in the network
and it is always available for the users to connect to, they
focused on service placement on the available MEC servers.
Further, by overlooking the end-to-end routing decisions, some
works [8], [9] have focused on selecting the access point for
the users. While in our case, in addition to selecting the A2G,
we determine the routing from an airplane node to the DC with
minimum delay. Also, in our scenario, the A2G availability can
change over time, e.g., due to DA2G congestion or when an
airplane is located out of DA2G communication range. This
makes the joint A2G selection, and routing, considering the
reconfiguration decisions more challenging. Moreover, some
works [10], [11] ignored the capacity of the hosting resources,
while we consider the DC capacity in our scenario. Further,
in contrast to the existing works [11], we know the future
positions of the users (airplanes), since the flight path is pre-
determined and static, at least in normal circumstances. This
feature gives us opportunities to investigate novel approaches
to tackle the mobility-aware resource management problems.
Further, in the area of in-flight service provisioning, some
works [6], [13], [14] have focused on offline algorithms
for service-delivery cost optimization and A2G throughput
improvement. However, an online algorithm with dynamic
and low-delay service provisioning is missing. We believe
an online solution would improve the network and resource
allocations as it will adapt to late and/or unexpected flight
changes with a low computational time.

In summary, the questions that we need to answer can be
stated as follows:

1) At each timeslot, which airplane should be assigned to

which DC? (Airplane-to-DC Connection)

2) When to reconfigure an airplane connection from a DC
to another one? (Reconfiguration Decisions)

3) How to route the airplane traffic towards the selected DC?
(Airplane-to-DC Routing)

4) How to jointly answer the above questions with minimum
routing and reconfiguration cost (end-to-end delay) over
the whole time horizon?

There are several challenges in designing this solution.
Firstly, the designed solution needs to be efficient in terms of
achieving minimum delay for the overall active flights in the
network. Secondly, this algorithm needs to be fast, considering
the incremental and dynamicity of the input (i.e., the arrival
of unknown flight requests, and even emergency changes in

the flight paths). Finally, the algorithm must meet different
resource constraints such as network and DC capacities.

Thus, the contributions of this paper can be summarized as
follows:

« First, we formulate the offline problem as an Integer Lin-
ear Programming (ILP) optimization model. Thereafter, by
reducing the Generalized Assignment Problem (GAP) [17],
we prove its NP-hardness. This shows that the ILP formu-
lation is not scalable for large problem instances. However,
the ILP formulation is still useful to compare the optimality
of the proposed heuristics.

e To cope with the high complexity of ILP, we propose
HowMmaA, an efficient online algorithm that addresses the in-
flight service provisioning problem in polynomial time. We
consider a flight-by-flight approach to solve the problem
in online settings, where the flight requests are coming in
sequence and with an unknown order. From the algorithmic
viewpoint, our problem can be mapped to dynamic bipartite
matching in graph theory [15], [16]. Specifically, in our sce-
nario, a minimum-weight (routing delay) matching between
airplanes and DCs needs to be maintained during the time,
while the graph is changing dynamically over time due to
the mobility of flights and hence, the availability of different
A2G connections to them. Therefore, given a sequence of
graphs as input, we formulate the problem into a dynamic
bipartite matching problem with special properties. Having
a sequence of bipartite matchings to be solved, we transform
the matching and reconfiguration decisions in an auxiliary
graph and use a shortest-path algorithm (e.g., Dijkstra) to
solve the problem in a flight-by-flight fashion. We also show
that HOMA finds the optimal solution in specific scenarios.

« Finally, we evaluate the performance of HOMA using exten-
sive simulations in a European-based network with realistic
settings. The simulation results show that the HOMA while
significantly reducing the runtime, performs very closely
to the optimal solution obtained from an ILP solver and
outperforms the baseline and state-of-the-art algorithms.

Outline. We model and formulate the offline optimization
problem in Sections II and III. In section IV, we introduce
HOMA heuristic framework in detail. Then, we evaluate the
performance of the proposed approach in Section V. Finally,
Section VI discusses the related work, followed by the con-
clusions in Section VII.

II. PROBLEM FORMULATION

In this section, we present the formulation of the problem,
using the notations summarized in Table 1. Let us start the
mathematical formulation by defining dynamic graphs. Infor-
mally speaking, a dynamic graph is a graph that changes over
time, either node and/or links. The formal definition is given
by Definition 1.

Definition 1. A discrete and finite number of timeslots is
defined as T. We define a dynamic graph as a sequence of
T static graphs G1 = (N1,L1),Go = (Na, La),...,Gr =
(Nt, L7).



[ Parameter [ Definition |

T Set of timeslots
Gt = (Nt, Lt) | Dynamic graph at timeslot ¢t € T, N and L are
the set of nodes and links of the graph
Npc Set of data center nodes
NF Set of airplane nodes at time ¢
C’D c Capacity of DC j
NC Set of ground core network nodes
Lo Set of ground core network links
F Set of flights
Ty The duration of flight f € F
Pr.t The position of flight f at timeslot ¢
byt The traffic volume of flight f at timeslot ¢
Dy, The delay of link uv € L
R; Reconfiguration delay of assigning an
airplane from DC node ¢ to j
UF(3), ¥~ (i) | Outgoing and incoming nodes from and to node 4
Z;utm g Total routing delay
DIl f Total reconfiguration delay
Matching solution for a dynamic bipartite graph
C(S) Total routing delay of solution S
R(S) Total reconfiguration delay of solution S
d(j) Degree of node j
Decision Variables
:c;;f’t € {0,1} | =1 if flight node py ; is assigned to
DC j at timeslot ¢
lzfvt] € {0,1} | =1 if link u,v is used to route flight node py ; to
DC j at timeslot ¢
pf *€{0,1} | =1 if flight node py,¢ is reassigned from DC ¢
to 7 at timeslot ¢

TABLE I: Notation definition.

The dynamic graph consists of four parts:

1) Flights: The set of flights is defined as F =
{f1, f2, .., fip|}- At each timeslot, each flight f has a certain
position over the earth (in terms of latitude and longitude),
which is denoted by py ;. Also, each flight f has a flying
duration of 7; timeslots. Each airplane location py; is a
network node in G;. Therefore, we define the set of airplane
nodes as Nf" = {ps, : f € F,t € T;} and N}/’ C N;. Note
that a feature of our problem is the prior knowledge of flight
positions since the flight path is pre-determined and normally
does not change. Moreover, the data rate of each flight (for all
the passengers) is denoted by bs: (e.g., in Mbps). These in-
flight services are considered to be interactive/real-time, such
as air-to-ground voice/video calls, gaming, etc., with delay
requirements of around 100 ms [7].

2) Ground Network: We define No C N; and Lo C Ly
as the set of nodes and links of the ground core network,
respectively. These services are hosted by DCs located on
the ground, defined as Npc C Ng. A limited amount of
resources are rented at each DC. Thus, each DC j can process
a maximum traffic volume of C'P¢.

3) DA2G Base Stations: We denote the set of DA2G
base station nodes as Npaasg C N, distributed/located on
the ground. These nodes can directly communicate to the
airplane flying over them and connect them to the ground
network. Each DA2G base station has a communication range,
usually between 150-250 km based on the technology that they

® Ground core nodes
Ground core links
Datacenter nodes
® Satellite node

A Satellite gateway

DA2G nodes

» Airplane nodes
A2G connections

Fig. 2: An instance of graph G; at a specific timeslot ¢. It is
a realistic Europe-based core network with three DC nodes
(| Npc |= 3), and real DA2G base station locations. It
shows three flights over Europe (| V' |= 3) with the A2G
connections: a representative satellite node and its gateway
in Rome, and the connection to the distributed DA2G base
stations in Europe.

use [17].

4) Satellite Connections: We use a single representative
satellite node that relays the airplane traffic towards the satel-
lite gateway located on the ground core network. We assume
the satellite connection to be available to all the airplanes
during the flight. Considering the dynamicity of the satellite
constellations are out of the topic of this paper. Therefore, in
graph G, we connect all the airplane nodes to the satellite
node at all its timeslots. Fig. 2 shows an exemplary graph G;
with three flights at a specific timeslot. Finally, we associate a
constant propagation delay and a bandwidth capacity to each
link (u,v) € Ly, denoted by D, , and C’u »» Tespectively.
We note that these values are different for each connection
(link) type, i.e., core, satellite, and DA2G. The dynamicity
of G; comes from the mobility of flights and their DA2G
connections. As shown in Fig. 3, the availability of DA2G
base stations around the airplane position can change due to a
congestion model [13], hence the available links of the graph
G in a particular timeslot.

III. INTEGER LINEAR PROGRAM FORMULATION

In this section, we present the offline optimization formu-
lation as an Integer Linear Programming (ILP) model. Let us
start with two delay functions:

1) Routing Delay: The routing delay (i.e., here delay) is
the defined sum of the propagation delay of the path from the
airplane to the selected DC in all timeslots, and is denoted by

T .
routing*
P
Dlowting =20 2. Do WiDuw (D
teT fEF jeENDC (u,w)ELy
where 177 € {0,1} is a decision variable that is equal to 1

if the traffic of airplane node p;; is routed towards DC j
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Fig. 3: An example of the problem, where input is a dynamic
graph with two flights, two DC nodes, and three timeslots.
With the change of airplane positions over time, the available
connection links might change. For example, Flight 2 att = 1,
(i.e., node ps 1) is connected only to the satellite, while at t = 2
(i.e., node ps 2), it gets into a DA2G base station range, thus,
both A2G options are accessible.

using the link (u,v) at timeslot ¢.

2) Reconfiguration Delay: Due to the mobility of airplanes,
the reassignment of an airplane connection from a DC to
another one requires state synchronization and data migration
between two DCs. This reassignment has a penalty in terms of
overhead traffic and effort, which is defined as the total reas-
signments delay for all the required reconfigurations D
as:

reconf

=20, 2

teT feF (i,j5)ENpcXNpc

rﬁgvtRi,j (2)

7e(onf

where rp 2t € {0,1} is a decision variable that is equal to 1

if the connectlon of airplane node py; is reconfigured from
DC node i to j at timeslot ¢. Also, R; ; represents the time it
takes for an airplane to change its connection from DC ¢ to j.

Let us now define the constraints that need to be met by
the model.

Assignment: Assuming that flows are not splittable, so each
airplane must be assigned to one and only one DC at each
timeslot ¢:

Y Al =1VteT,Vf€F, (3)
JjENDC
where xé’f * € {0,1} is a binary decision variable which is

equal to 1, if the airplane node py; is assigned to DC j at
timeslot .

Traffic Generation: The traffic is generated from the
airplane nodes towards a neighbor node in the graph, either
the satellite node or a DA2G node (if in range):

Z Z li;:z,v,j =1,vteT,VfeF. 4)

veSt(ps,t) IENDC

We note that §%(i)/6 (i) is a function that returns the
outgoing/incoming links from/to node 1.

Flow Conservation: These constraints route the traffic flow
through the network towards the assigned DC:

> > > nh )
vEST (u) JENDC v€S—(u) JENDC
B {o Vt e T\Vf € F,Yu € N\Npc,u # pra

lpft
u,v,j

Mt vte T\Vf € F,Yu € Npe

Routing-Assignment Relation: We need to ensure that the
traffic flow of each airplane node at a particular timeslot is
forwarded towards the assigned DC:

IPht < aPP (u,v) € Ly, Vit € T,Yf € F,¥j € Npc, (6)

u,v j — J
In the above constraints, the traffic of the airplane node p; ¢
can be routed towards DC j, if and only if the airplane node
is assigned to it at timeslot ¢ (i.e., x?f't =1).

DC Capacity: As mentioned before, the amount of airplane
traffic that is being processed by each DC is limited:

S < OO T N, )
fEF

Link Capacity: The amount of the airplane traffic volume
that can be delivered on a network link is limited to the link’s
capacity. To express this, we define the following constraints:

oD Wb <O

u,v,j w,v? (U‘?v)GLMVtET (8)
feEF jeENDC

Reconfigurations: The final set of constraints belongs to
the reconﬁgurations that have to be performed:

= Y P vte T\{0}.Vf € F,Yj € Npo, (9)

iENDC

= Y M vte T(t#£T),Vf € F,Vj € Npe.
ieNDpc

(10)
Constraints (9) and (10) link x and r variables in a flow
conservation way. If xpf * = 0, the airplane node py,; is not
assigned to DC j at tlmeslot t, meaning no reconfigurations.
x?f ** = 1 implies that a reconfiguration assigns the airplane
node py; to DC j at timeslot ¢ and reassigns it at ¢ + 1. This
reassignment can be from the DC j to j, which incurs zero
reconfiguration delay: Vi, j € (J x J), if i = j, R; ; = 0. We
note that reconfiguration is not possible at the first timeslot.
Finally, the ILP formulation can be presented as follows.
The objective function aims at minimizing the routing and
reconfiguration delays over the whole time horizon.

minimize (D;yuiing + Drecony) » 1)
s.t. Constraints (3) — (10),
vars: z77 € {0,1},Vt € T,VF € F,Vj € Npc,
lﬁﬂjj €{0,1},Vt e T,Vf € F,
Vi € Npe,V(u,v) € Ly,

p“e{o 1},vt € T,Yf € F,Vi,j € Npc.



Theorem 1. The optimization model (11) is NP-hard.

Proof. Let us begin by defining the Generalized Assignment
Problem (GAP). According to [18], GAP determines the
minimum-cost assignment of n jobs to m agents, such that
considering the capacity restrictions on the agents, each job
is assigned to exactly one agent. Therefore, we are able to
reduce from GAP to an instance of model (11) with 7" = 1:

Minimize » > 'l (12)
fEF jENDC
Pf _
s.t. Z z; =1,Vf € F,
J€ENDC
Z by < CJDC»W € Npc,
feF

vars: z3" € {0,1},Vf € F,Vj € Npc,

where c?f is the assignment cost of airplane node (job) py

to DC (agent) j (e.g., the shortest-path delay value). This
transformation is doable in polynomial time. If there exists
an algorithm that solves the model (11), it solves the corre-
sponding GAP as well. Given the NP-hardness of GAP [18],
the model (11) must be NP-hard too. O

IV. HOMA: THE HEURISTIC FRAMEWORK

In this section, we present HOMA, a deterministic approach
that solves the problem mentioned in Section I in polynomial
time. The proposed heuristic is formulated as a Dynamic Con-
strained Minimum-Weight Bipartite Matching (DC-MWBM)
problem, as explained in Section IV.A. In this context, a
bipartite matching should be maintained (considering the re-
configuration cost) for a sequence of graphs that may change
over time dynamically. We solve the DC-MWBM in a flight-
by-flight manner where a set of flight requests for the service
provisioning during their flight time. This set of flight requests
is assumed to arrive in an online manner. Also, the size of
this set can be variable in different settings (later we assume
it as 1 for the worst case). To solve the problem for a given
flight, we transform the problem into a shortest-path routing
problem, where using an auxiliary graph, the airplane-to-DC
assignments, routing, and reconfiguration decisions are taken.
These steps are explained in the following.

A. Dynamic Constrained Minimum-Weight Bipartite Matching
(DC-MWBM)

Given the sequence of graphs G; (see Fig. 3), we trans-
form each G, to a bipartite graph G,. We define bipartite
graph G, = (NI, Npc,L:). The set of links is defined
as Lo ={(f,j,n): fENL,j€Npc,n € (psi)} which
shows a matching from airplane node py; to DC j through
A2G node n (i.e., n can be satellite or DA2G connection).
Each (f,j,n) € L; is associated with a weight function
w(f,j4,n) : Ly — RT which is defined as the routing delay
between f € N} and j € Npc through the A2G node n
(routing is performed in G;). Since the position of airplanes
changes per timeslot, the link weights from w function also
change, i.e., due to the airplanes’ mobility, the routing delay

between the airplane nodes and DCs changes. Considering
that, the total number of links for each G; can be at most
2 | NF'| - | Npc |. For clarification, Fig. 4 shows the
bipartite graphs created for the scenario in Fig. 3. In this
example, it is assumed that Vf € F, T, =T = 3.

Having the sequence of bipartite graphs G;, we define the
DC-MWBM problem:

Definition 2. Given a sequence of bipartite graphs, find a
sequence of per-graph matchings, such that the sum of total
matching weights and their changes (i.e., reconfigurations) is
minimized.

In this problem, we need to select a set of edges M; C L;
such that each DC node j has a node degree at most equal
to its capacity CJD . For simplification purposes, we consider
the DC capacity as the maximum number of airplanes that can
use the DC resources at the same time.

d(j) < CP°,Vj € Npc, (13)
where d(j) indicates the node degree of node j. Also, since
we focus on the best-effort delay minimization, we relax the
bandwidth constraints for now. However, we later show that
in our solution, the bandwidth constraint can be addressed by
simply removing the links with not enough available capacity.

Remark 1. Considering Hall’s theorem [19], G; can have a
matching with cardinality | NF' |. Although | N |>| Npc |
in Gi; however, by making CJDC copies of nodes j € Npc in
Gi, we have YU C N, | U |<| 6 (U) | (where 5% (U) is the
set of DC nodes, i.e., copied nodes, that airplanes can connect
to them). This condition is true by having the lower bound
value for the DC capacity as Vj € /\/’DC,CJDC = [IAlfI;‘cl—‘
(and thus a feasible solution).

Hence, we ensure that all the airplane nodes in G; are
matched (connected) to one DC node, i.e.,:
d(pss) = 1,¥pr e NF t €T, (14)
Having a sequence of dynamic bipartite graphs G, the
solution of the offline DC-MWBM problem is a sequence of
matchings § = My, Mo, ..., Mp, where M, is the matching
of bipartite graph G;. Similar to the objective function in ILP
model (11), the cost of solution S can be defined as follows:
1) Matching Cost (routing delay): The total matching cost
of a solution S is the sum of matchings (selected links in
bipartite graphs) in all timeslots:

cS)=>_ > wl,

teT le M,

15)

where | = (f, j,n) in G;. We remind that C(S) is the sum for
the routing delay of all the airplanes to the matched DC nodes
in all timeslots.

2) Reconfiguration Cost: We define a per-link reconfig-
uration cost to model the cost of matching changes (i.e.,
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Fig. 4: The sequence of bipartite graphs G; is based on the
example in Fig. 3. At each timeslot ¢, airplane nodes py; can
be matched to a DC node j through an A2G if available:
satellite (dashed lines) or DA2G (solid lines). For example, at
the t = 1, Flight 1 has both DA2G and satellite connections,
whereas Flight 2 has only access to the satellite. At ¢ = 2,
both flights have access to both A2G connections, while at ¢t =
3, only have the satellite connection available. Also, at each
timeslot ¢, due to the mobility of airplanes, the link weight
(airplane-to-DC routing delay) changes dynamically.

reconfiguration delay). We denote the total reconfiguration cost
of solution S as R(S), defined as:

RE)= D>, D,

teT\O (fri)eMy (f',5)eEMe—1,(f=F".37#5")

where R/ ; is the cost (delay) of reconfiguring an airplane
connection from DC node j' to j in two consecutive timeslots.
We note that reconfigurations are not possible at the first
timeslot.

Having the cost functions in hand, our goal is to calculate
S for the sequence of My, My, ..., M, minimizing the total
matching and reassignment costs:

Minimize (C(S) + R(S)). (17)

Similar to Theorem 1, the DC-MWBM can be proved to be
NP-hard, which is omitted due to the lack of space.

Ry 5, (16)

B. Solving DC-MWBM

In this subsection, we propose an approach to solve the
DC-MWBM problem. At this stage, a request for service
provisioning for a set of flights is given as an instance of DC-
MWBM. To solve this matching problem, HOMA is designed
to work in a flight-by-flight manner. In practice, when a flight
is parked in an airport, before takeoff, the control center
determines its flight path during the flight. HOMA uses this
information (i.e., the airplane locations during the flight) to
schedule the DC connections and reconfigurations for the
whole flight period. Therefore, given a flight f with duration
Ty, we first build an auxiliary graph G4. We then introduce
and solve a shortest-path routing problem in G4, which gives
the solution of service assignment and reconfiguration problem
for the given flight.

The main algorithm is aligned in Algorithm 1. The input of
the algorithm is a single flight f with duration 7T, for which,
we find the airplane-to-DC assignment and the necessary
reconfigurations at each timeslot. Also, to keep track of DC
capacities, a dictionary with key-value pairs (j, (£, C’?)),j €

Algorithm 1: HOMA Online Algorithm

Input : Flight f, 7, dc_capacity_dic
Output: Solution S

1 initialize G, Vt € Ty ;

2 G4 = new MultiGraph() ;

3 available_dcs = {} ;

4 foreach t € 77 do

5 available_dcs[t] = get_available_dcs(dc_capacity_dic[t]);
6 airplane_a2g_nodes = G';.get_node_neighbors(py,+);
/% Case 1 %/
7 if £t == 1 then
Ga.add_node(py.¢) ;
9 foreach j; € available_dcst] do
10 Ga.add_node(j:);
11 foreach n € airplane_a2g_nodes do
12 delayl = Gy.dijkstra_path_length(py ¢, n) ;
13 delay2 = G¢.dijkstra_path_length(n, ji);
14 sum_delay = delayl + delay?2 ;
15 Ga.add_link(py.¢, ji, sum_delay);
16 else
/* Case 2 */
17 foreach j;_; € available_dcs[t — 1] do
18 foreach j; € available_dcst] do
19 G a.add_node(j:);
20 foreach n € airplane_a2g_nodes do
21 delayl = Gy.dijkstra_path_length(py ¢,
n);
22 delay2 = G:.dijkstra_path_length(n, ji);
23 sum_delay = delayl + delay2;
24 if ji_1 # j: then
25 sum_delay += Rji_lvj ™
26 G a.add_link(j;_+, j¢, sum_delay);
/* Case 3 %/

27 Ga.add_node(s);

28 foreach j; € available_dcs[T; — 1] do
29 | Ga.add_link(jy, s, 0);

30 S = Ga.dijkstra_path(py,o, $);

31 update_capacity(dc_capacity_dic, S));
32 return S;

Npc,t € Ty is calculated and given using the network status
from previously served flights. In line 1, we initialize the
sequence of bipartite graphs G1, G, ..., G7, for the given flight
f. In line 2, we create the auxiliary graph G4 as a multigraph.
We create a dictionary in line 3 to keep the DCs with enough
capacity at each timeslot (line 5). Thereafter, we start to build
Ga.

1) Case I, t = 1: This is the case for the first timeslot of
the flight f. In this case, we first add the airplane node p¢ +
to G4 as the first node (line 8). Then, we create a node for
each available DC node (line 10), and connect the airplane
node ps; node at ¢t = 1 to it (lines 11-15). These links
represent an assignment decision, for instance link (py.1, 1)
means airplane node f is assigned to DC j; at timeslot ¢ = 1.
As mentioned before, each airplane node can connect to a DC
using one of the A2G connections (i.e., satellite or DA2G),
which is determined in line 6. Therefore, for each available
A2G (line 11), and add a link for each of them (line 15).
For example, in Fig.3a, it can be seen that at ¢ = 1, flight
f = 2 has only satellite connection. Therefore, in Fig. 5b
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Fig. 5: Building the auxiliary graph G4, and solving the
DC-MWBM problem for the scenario in Figs. 3 and 4 in
a flight-by-flight manner. (a) The auxiliary graph G4 and
solution for f = 1 is built with the possible assignment
and reconfiguration decisions through the flight time. It can
be seen that at ¢ = 3, only satellite connection is available
(dashed line). The calculated shortest-path from p; ; to s is
P11 --* j1 — j2 --» j2 — s. This path means at ¢t = 1, the
airplane node p;,; is connected to DC j; through DA2G (the
one in range), at ¢ = 2 the airplane node p; o is connected
to jo using DA2G (one reconfiguration from j; to j2), and
at t = 3, the airplane node p; 3 continues connecting to DC
J2 through satellite. (b) The calculated shortest-path here is
P21 —=* J2 — j1 —-* j2 — s, which uses satellite, DA2G,
and satellite to connect to DCs jo, j1, and jo at timeslots
t =1,1t =2, and t = 3, respectively. For this flight, two
reconfiguration at ¢t = 2 and ¢t = 3 between DC j; — ji,
and j; — j2 are determined, respectively. We note that the
reconfiguration between DA2G and satellite connection inside
the airplane can be done with an almost instant routing table
update using e.g., OpenFlow [20].

at ¢ = 1, we connect the airplane node py; to the DCs
only using the satellite connection (dashed line). For each of
these links, we define a weight, which will be used later to
calculate the shortest path. These weights are defined as the
delay of the shortest path between the airplane and DC nodes
(in the original graph G;) through the corresponding A2G
connection. Note that, before calculating the shortest path, the
links with lower than by ; available capacity are removed from
the network. Therefore, in lines 12 and 13, we calculate the
shortest-path delay from the airplane node py ; to the neighbor
node n (i.e., either satellite or DA2G node), and from n to the
DC node, respectively. We then sum up these two delay values

(line 14) and finally create a link between the airplane and DC
node with the total delay value as its weight (line 15).

2) Case 2, 1 <t < Ty: In this case, we continue building
G4 by connecting DC nodes in two consecutive timeslots. We
create a link between the DC nodes in {—1 and ¢,V1 < t < Ty
(lines 17-26). The link (i;—1,7;) which connected DCs i and
j in G4, indicates that in two consecutive timeslots ¢t — 1 and
t, the airplane nodes py ;1 and py; are assigned to DC nodes
1 and 7, respectively. Compared to the first case, in addition to
the assignment decisions, the possibility of reconfigurations is
enabled here. When ¢ # j, the link represents a reconfiguration
from DC ¢ to j at timeslot ¢{. We loop through the previous
DC nodes at t — 1 (line 17) and also at ¢ (line 18). We create
a node in G4 for all the available DC nodes j; (line 19).
Similar to the first case, a maximum of two links can exist
between nodes (per A2G connection type). We calculate the
delay of the shortest-path between py; and DC ¢ through the
neighbor node (i.e., A2G connections) n in G;. In case two
DC nodes at t — 1 and ¢ are not the same node in Gy, it
indicates a reconfiguration decision. Therefore, we add the
reconfiguration cost between two DC nodes to the link weight
(line 25). Finally, in line 26, we add a link to G4 from node
Jji—1 to j; with the summed routing delay as the weight.

3) Case 3, dummy sink: This is the case where we add a
dummy sink node s to G4 in line 27. Thereafter, we connect
the DC nodes in timeslot ¢ = 77 (last flight timeslot) to s with
weight 0 (line 29).

Having the auxiliary graph G4 built, we can calculate the
solution for the flight f. To do this, we simply need to
calculate the shortest path from p;; and the dummy sink
node s nodes using conventional algorithms e.g., Dijkstra
(line 30). The returned path gives us the assignment, routing,
and reconfiguration decisions with minimum total delay. A
comprehensive example is presented in Fig. 5. Finally, the DC
capacities are updated in line 31 to be used for future flights.

Remark 2. Algorithm 1 can solve the problem for flights of
any duration. In particular, we only need to keep track of DC
capacities per timeslot. That is, the Ga can be formed for a
flight with any duration. The number of nodes and links for
Ga would depend on the flight duration.

Remark 3. For a given flight f with duration Ty times-
lots, graph Ga can have O(T;- | Npc |) nodes and
O(T; - | Npc |?) links.

Lemma 2. For any given flight f with duration Ty, HOMA is
complete® and optimal.

Proof. For a given flight f, we build the auxiliary graph G4
with the available DC nodes. Also, we add all the possible
routing options (DA2G and/or satellite) with the weight de-
fined as the shortest-path delay between the airplane and DC.
Also, we consider all possible assignments and reconfiguration
decisions in G4. Therefore, since Dijkstra is complete and

2 An algorithm is complete if it always finds a solution if one exists. The
completeness does not imply optimality.



optimal [21], for the given flight f, HOMA is also complete
and optimal. O

set of flights F, if
, HOMA is complete and optimal.

Theorem 3. For any given
Vj €NDc,CjDC > F

Proof. Flights in F' depend on each other through the DC
capacity. If Vj € Npc, CJDC >| F'|, it simply means at each
timeslot, a single DC node can host all the flights. Thus, the
DC capacity constraints can be relaxed in this case. Therefore,
according to the Lemma 2, HOMA is complete and optimal for
all the set of flight F'. O

Theorem 4. For any given flight f, the complexity of HOMA
for finding the optimal solution is O(T7 - |N¢|?).

Proof. We calculate the runtime based on the number of times
that the Dijkstra algorithm needs to be performed to find
the solution for flight f. The Dijkstra algorithm needs to be
executed for each link in the auxiliary graph G4, except the
links for the dummy destination node s. Therefore, considering
Remark 3, we need 2 - (T; — 1) | Npc > + | Npc |
links (i.e., Dijkstra runs) to build the G 4. Each Dijkstra run is
executed for Gy = (N, L), with runtime O(| N; |*). Since
| Npe |<] Ny |, the overall algorithm runtime for any flight
f can be expressed as O(T; - |N;|?). We note that in use-
cases where the duration of the timeslots is very small (close
to 0), the algorithm complexity is pseudo-polynomial (based
on 7). O

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of HOMA
in various scenarios and settings. We first introduce the
algorithms that we compare with the optimal offline (ILP)
solution. Thereafter, we explain the simulation setup, input
parameters, and scenarios. Finally, we present the results of the
performance evaluation of HOMA against the offline optimal
solution (section III) and the two baseline algorithms.

A. Algorithms to Compare

For comparison purposes, we re-implemented the algorithm
presented in the state-of-the-art work [11]. Further, we develop
two variations of HOMA (Minimize Delay - MD, and Maintain
Connection - MC) as the baseline algorithms. Below, we
explain these approaches in short.

1) Threshold-Based Reconfiguration (TBR): The first algo-
rithm to compare with HOMA is taken from the state-of-the-art
work [11]. In [11], the authors propose a resource management
framework for service placement and migration for the auto-
motive use case, within the Mobile Edge Computing (MEC)
scenario. Similar to us, they have focused on providing low-
delay services to the mobile users (cars in their case), while
determining the appropriate MEC server to host the services,
and the necessary reconfigurations according to the mobility
of the cars. In their approach, they set a threshold for which,
if the current routing delay value is lower than a threshold
value, the service is migrated to another MEC server. This
MEC server (destination of the migration) is chosen as the

farthest one, to lower the number of future migrations. For
comparison purposes, we have chosen two threshold values,
20 and 40 ms. We show these two algorithm versions as TBR-
20 and TBR-40, respectively.

However, in contrast to us, the approach presented in
[11] lacks considering a few constraints. Firstly, they do not
consider the DC and link capacities into the account. Secondly,
they ignore the service migration (reconfiguration) penalty in
their algorithm. Nevertheless, for a fair comparison, we have
added these considerations into the implementation of their
algorithm.

2) Minimize Delay (MD): The next algorithm is a baseline
that focuses on minimizing the routing delay between the
airplane nodes and the assigned DC. MD reconfigures the air-
plane connections whenever it leads to a lower routing delay.
At t =1, it chooses the DC with the lowest routing delay to
connect the airplane to it. For ¢ > 1, it reconfigures the airplane
connection to a DC which keeps the routing delay at that
specific timeslot minimized. Regarding the implementation, it
is enough to set Vi,j € Npc, R;; = 0, i.e., reconfiguration
becomes a decision with no cost. Thus, in the procedure of
building G 4, in the case 2 where ¢ > 1, we update the weight
of link (4,5),4,7 € Npc with zero reconfiguration cost, i.e.,
changing line 25 to sum_delay += 0 in Algorithm 1.

3) Maintain Connection (MC): As it appears from its name,
this algorithm always maintains its connection to the first
selected DC. The goal of developing this algorithm is to
highlight the importance of providing flexibility in the network
(i.e., reconfigurations). At the first timeslot of the flight, MC
connects the airplane to the DC with minimum routing delay
and keeps using it for the rest of the flight duration. The
implementation is done with a small tweak in Algorithm 1,
in Case 2, where ¢t > 1. In particular, while building the G4,
in two consecutive timeslots t — 1 and ¢, MC adds links only
between DC nodes i;_1 and j;, if ¢ = j where i,7 € Npc.
In this way, the reconfiguration of airplane connections would
not be possible for the Algorithm (since there are no links
between different DCs in G4).

B. Simulation Setup

In this subsection, we explain the simulation setup and
input parameters used in the simulations for evaluating the
performance of the proposed algorithm.

The set of flight requests (i.e., F)) was exported from
FlightRadar24 live air traffic for 24 hours on 9.11.2017. We
extracted the position of flights at each timeslot and use it as
Dy, parameter. In our experiments, we select a set of flights F',
such that | F' |= {20, 50,100, 300, 500}. For simplification,
we assume that all the airplanes are transmitting the same
amount of traffic b¢; during all the timeslots. As the ILP takes
several hours to solve a problem instance with 100 flights,
the number of timeslots has been limited to eight, so we
can have problem instances with a high number of flights.
Thus, we choose F' with two different flight duration, long
and short flights, with four and eight timeslots, respectively.
For simplicity, the duration of each timeslot is considered 30



Description Values
Number of flights (| F' |) 20, 50, 100, 300, 500
Flight duration (7¢,Vf € F) 4,8
Number of DCs (] Npc |) 3,6
DC capacity (Cch,Vj € Npc) low, medium, high

TABLE II: A summary of important input parameters and their
values used for the performance evaluation. The default value
is in bold text.

minutes (this point is discussed in section V-D.D). Indeed, the
number of timeslots depends on the airplane speed and the
range of the DA2G and satellite coverage, which can lead to
an even different number of timeslots per flight. However, to
simplify the evaluation scenario, we consider the same number
of timeslots and duration for all the flights.

The simulation settings are based on a realistic European-
based flight space (See Fig. 2). We use the European Cost266
topology [22] for the ground core network and set the values
of N¢ and L¢ accordingly. The delay of links (D, ., u,v €
N¢) in Lo is determined according to the length of the
optical fiber transmissions. Regarding the DC nodes, we
choose two sets of locations, distributed over Europe [23]:
a small set N'pc={Hamburg, Madrid, Budapest}, and a larger
set NV pc={Strasbourg, Stockholm, Madrid, Athens, Glasgow,
Krakow}. We set the value of DC capacity C’JD ¢ by consid-
ering three cases:

1) low: Vj € NDC,CJDC = [IA‘/I;LI—‘ (note that lower DC
capacity makes the problem infeasible, see Remark 1).

2) high: it sets the DC capacity equal to the total number
of flights in the network Vj € Npc, CPY =| F |.

3) medium (med): the average of low and high values.

Since the focus of this work is to provide (best-effort) low-
delay in-flight services, we consider Vf € F,t € Ty, by, =1
with a relaxation on the bandwidth constraints for the A2G
and ground network links. There are 295 DA2G base stations
(already deployed in Europe), and their location (in terms of
latitude and longitude) is taken from [24]. Also, the propaga-
tion delay from airplane to the DA2G base station is set to
10 ms [17] (i.e., Dy, u € N, v € Npaag). Also, we con-
sider the DA2G connectivity range as 350 km [25], although
in practice it can vary based on, e.g., the antenna employed
technology and weather conditions. Without loss of generality,
we connect the airplane nodes py; to the closest DA2G base
station in range. Further, to make our scenario more realistic,
we consider a DA2G congestion model from [13]. Using the
flight routes in our data that pass through the DA2G base
station coverage, this congestion model selects a subset of
DA2G nodes to be congested during all the timeslots (i.e.,
cannot accept any airplane connections).

For the satellite connection, we consider the LEO satellites.
According to [26], the number of LEO satellites existing
over Europe is rather low (5 out of the 72 LEO satellites
in the Iridium constellation). Compared to the Geostationary
Orbit (GEO) satellites, LEO causes lower delay, which is more
suitable for our use case. Therefore, in this paper, we only

consider the LEO constellation for the evaluation scenario. For
simplification purposes, we apply an abstraction model, where
the group of LEO satellites occupying Europe is represented as
a single satellite node. However, to avoid unrealistic assump-
tions, we set the latency of the satellite link to the worst-case
achievable latency 50 ms (i.e., Dy, u € Nif',v € N through
the satellite node). This value is calculated according to the
LEO delay calculations provided in [27]. Also, the satellite
gateway node is considered to be located in Rome, Italy [28].
An instance of the built European-based scenario can be seen
in Fig. 2 (for a single timeslot).

Regarding the reconfiguration overhead, we use the distance
between source and destination DCs:

R M « dijkstra_path_length(i,j),i,5 € Npc (i # j),
" \044, € Noe (i = j),

M is a random number between O and 2. We note that the
modeling of the service migration is out of the scope of this
paper. However, different R; ; models can be plugged into the
HoMmA, depending on the specific application.

To design different experiments, we use the input parameters
and their values in Table II where in each experiment, three
parameters are fixed and the fourth one is varied. We imple-
ment and solve the ILP using Gurobi [29]. Also, HOMA, TBR,
MC, and MD approaches are implemented in Python.

We perform the evaluations for 30 random sets of scenarios
on a machine equipped with Intel Core i7-6700 CPU3.40 GHz,
16 GB RAM, and running Arch Linux with kernel 5.5.11-
archl-1.

C. Simulation Results

In this subsection, we present the simulation results for
different parameters and experiments.

1) Number of Flights: We first consider the default values
for flight duration (7%), number of DCs (| Npc |), and DC
capacity (CJD ©) according to Table II. The effect of number of
flights on total delay (i.e., the objective function value), routing
delay, and number of reconfigurations can be seen in Fig. 6a-
6¢c. In Fig. 6a, it can be seen that HOMA achieves a near-
optimal objective function value with around 1% of distance
from the optimal. Also, HOMA outperforms the baseline and
state-of-the-art algorithms for up to 15% on average for a high
number of flights. The MD algorithm achieves a lower routing
delay compared to HOMA (see Fig. 6b) since it greedily
reconfigures the airplane connection to the closest DC to
minimize the routing delay. However, it requires a significant
number of reconfigurations to be able to minimize the airplane
to DC delay (See Fig. 6¢). Further, MC leads to a larger routing
delay compared to HOMA, since it maintains the connection
of the airplanes to the first selected DC for the whole flight
period and does not reconfigure the connection. Therefore,
during the flight, when the airplane gets far from the DC,
the routing delay also increases. Also, it can be seen that the
TBR-20 and TBR-40 lead to a higher objective value function.
The reason is in TBR, determining the threshold value for
triggering the reconfiguration is challenging, especially when
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the goal is to minimize the overall delay. Lower threshold
values (i.e., TBR-20) can lead to higher total delays and more
reconfigurations are trigerred for TBR (see Fig. 6¢). According
to its design, TBR reconfigures the service to the farthest
DC, which increases the routing delay. In addition, since TBR
does not consider the reconfiguration cost into the account, the
balance between the routing delay and reconfiguration delay
is missed, hence, leading to sub-optimal decisions. Fig. 6¢
shows the number of per-flight reconfigurations for the flight
duration, in which, the proposed HOMA approach can make
near-optimal reconfiguration decisions for the flights. Also, as
expected, MC does not perform any reconfigurations.

All in all, HOMA can accurately balance the airplane to
DC routing delay and reconfigurations, demonstrating a near-
optimal behavior, while outperforming the baseline and state-
of-the-art algorithms. The algorithms exhibit similar behavior
with short flights. However, we omit these results from the
paper due to space limitations. We note that we can derive the
average round-trip delay per flight per timeslot from Fig. 6a,
which is around 68 ms in the worst case for 500 flights for
the proposed HOMA approach (requirements being around
100 ms [7]), which can support a wide range of interactive
services such as air-to-ground voice calls, video conferencing,
and gaming [7].

2) Number of DCs: Fig. 7a-7c show the evaluation results
of the algorithms for a varied number of DCs, while keeping
the default values for the other parameters. The goal here is to
compare the behavior of different approaches when the number

(b) Total routing delay (D} ring)-

(c) Number of reconfigurations.

results for different number of DCs.

of available DCs changes. This can assist operators in more
accurate capacity planning. Regarding the total delay, Fig. 7a
indicates that generally, a lower number of DCs leads to a
higher delay value. That is because, with a higher number of
DCs, airplane nodes get in a closer distance to a DC node on
average during their flight. This can be seen also in Fig. 7b,
where the routing delay is generally lower in the case with six
DC nodes. However, the TBR algorithm does not follow this
trend, with each reconfiguration, the routing delay increases
(since the reconfiguration is done towards the farthest DC).

Also, it can be seen that the difference in total delay
achieved by the algorithms, is generally lower for three DCs
compared to six. This is because the role of DC capacity
(which is the main cause of sub-optimality) is more critical
with a higher number of DCs (i.e., there is more room to be
sub-optimal).

However, regarding the number of reconfigurations, Fig. 7¢
shows that the case with six DCs has around 20% more
reconfigurations compared to the case with three, since it
brings more flexibility and more opportunities for reconfigura-
tion, especially for the TBR algorithm). Of course, this value
gets lower with services with higher reconfiguration delay.
However, still, the case with three DC makes more sense, since
the proposed approach, HOMA, leads to low-delay solutions,
while the number of reconfigurations is kept low. The results
show that using HOMA can reduce the operators’ costs, by
renting/building fewer DCs, while providing an good solution
quality.
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[F[=20 | [F] =50 | [F|=100 | |F| =300 | |F] =500
ILP 187.1 5602 124124 N/A N/A
HOMA 153 522 166.8 11754 32165
MD 6.8 s 1519 10147 3140.1
MC a7 12 575 1235 163.6
TBR-20 08 33 2 94.63 27854
TBR-40 05 24 87 80.8 2281

TABLE III: The comparison of the mean runtime of the differ-
ent approaches (in seconds) for the default input parameters.

3) DC Capacity: In this study, we use the default values
for the number of flights, flight duration, and the number of
DC nodes, and vary the DC capacity as per Table II. The goal
of this study is to find out what is the impact of different
DC capacities on the performance of different algorithms.
Fig. 8a shows the comparison of the achieved total delay
by the algorithms for low, medium, and high DC capacities.
Since our approach is online (flight-by-flight), the DC capacity
can play a big role in having the available resources in a
good DC location when needed. It can be seen that generally,
the behavior of the algorithms is similar for the cases with
different DC capacities. However, the total delay decreases
with higher DC capacity. Also, the same trend is there for the
routing delay as in Fig. 8b. The reason behind this is there are
more DCs available to serve the airplanes (i.e., the average
distance between airplanes and DCs is decreased). Moreover,
as proved in Theorem 3, it is evident that HOMA is able to
take optimal decisions for DC selection and reconfiguration
in case of high DC capacity. Finally, Fig. 8c shows that the
DC capacity does not change the number of reconfigurations
much for the optimal and HOMA, i.e., they stay around one
reconfiguration per flight for all the DC capacities.

These evaluations show that it is not necessary to rent plenty
of resources at each DC. Medium or even low amount of
resources could provide a good solution. This indicates that in
contrast to other algorithms, HOMA can lead to cost savings
for the operators.

4) Runtime: The runtime comparison of the optimal offline
solution (i.e., ILP), HoMA, MD, MC, and TBR algorithms is
presented in Table III. Firstly, this table shows that the ILP
formulation is significantly slower than the other heuristics.
Also, it can be seen that HOMA can solve the problem for

500 flights in around six seconds per flight. Also, MC has the
lowest runtime, since it does not consider the reconfiguration
decisions, thus the number of Dijkstra runs is considerably
lower, compared to the HOMA, and MD approaches. Finally,
the TBR algorithms are the fastest ones, since they are less
sophisticated in nature.

D. Remarks

Let us summarize some remarks related to the design of
HoMA. Firstly, we choose to adopt the discrete-time model
mainly due to its simplicity. Furthermore, this model can be
arbitrarily close to the continuous-time model by making the
timeslot duration very small. However, it is not the case for
our scenario. Considering the airplane speed and the A2G
coverage range, the decision-making can be done in longer
periods (on a scale of a few minutes).

Secondly, we consider the flight paths to be a priori knowl-
edge, once planes are ready to take off. In practice, the
paths can be changed in some emergencies (e.g., bad weather
conditions). In this case, HOMA can be rerun to adapt the
previously-made decisions using the updated network status
(e.g., network link availability/congestion status) according to
the emergency.

Third, in this work, the LEO satellite constellation has been
modeled with a single representative node with the worst-case
delay value. The integration of the dynamic satellite network
considering the cost/delay of the satellite handover could be
added to our approach as follows: the handover cost between
two consecutive timeslots could be added to the cost of satellite
connection links (i.e., dashed lines in Fig. 4).

Finally, we point out that HOMA does not guarantee the
service-specific delay requirements but follows a best-effort
approach toward delivering low-delay in-flight services to the
airplane. However, the routing decision-making part of HOMA
can be enhanced with deterministic networking theories such
as Network Calculus [30], to provide a delay guarantee for the
critical traffic flows (e.g., flight status).

VI. RELATED WORK

The related work can be discussed in different categories.
A closely-related domain to our work is space-air-ground
integrated (terrestrial) networks. [31], [32]. In this area, there



are studies that have focused on resource allocation [13],
[14], [25], [33]-[35], satellite-based vehicular networks [36],
reliability [37], and energy-efficiency [38]. For example,
Varasteh et. al. [13], [25] has presented an offline mobility-
aware optimization formulation for the joint service placement,
routing, and migration for flying airplanes. Further, in [35],
they have extended their work to use reinforcement learning
for decision making. Moreover, authors in [14], [34] have
focused on the onboard A2G communication analysis. In
particular, in [14], the authors have performed a throughput
analysis of DA2G communication during its flight. Also, [34]
has presented a QoS-aware approach to satisfy the passengers’
traffic flows using different A2G alternatives during a flight.

On the other hand, some works have focused on the resource
allocation and management of MEC environments [39]-[43].
In [39], authors have proposed a graph-based algorithm to
determine the number of servers, their size, and the operation
area. Considering a maximum resource capacity for the MEC
servers, their goal is to serve the maximum number of users
at the edge area. Similar to them, the authors in [40] tackled
the problem of edge server placement. They have proposed
a multi-objective formulation for balancing the workloads on
the MEC servers and reducing the delay between the clients
(industrial control centers in their case) and MEC servers.

A closer area to our work is where the works have consid-
ered the resource allocation reconfiguration problem with mo-
bile users [8]-[10], [44]-[52]. Authors in [46], have proposed
a mobility-aware service placement approach, considering the
mobility of users and location, to minimize the service access
delay and deployment costs. Further, some works [49], [51]
have studied the dynamic placement of network functions on
MEC servers according to the future handover probability
of users. Specifically, [49] proposes two service migration
solution for MEC-based applications: reactive, and proactive.
There are other works with a focus on proactive service
provisioning using a look-ahead window and pre-allocation
techniques [43], [47]. Also, authors in [10] have proposed a
Virtual Machine (VM) migration method, called Follow-Me
Cloud, to deal with user mobility. In more detail, the aim of
them is to always connect the mobile users to the optimal
gateway, while the service instance (i.e., VM) follows the
users, using the migration technologies. They have proposed
an approach based on the Markov decision process to deter-
mine the appropriate migration decisions. However, they do
not consider the network and servers capacity limits.

In the oV area, there are similar works [11], [12], [53], [54]
that provide service continuity to users (vehicles), considering
their mobility. For instance, Zhang et. al in [53] have focused
on the placement of a constant number of edge servers to
improve the QoS (i.e., reducing the average waiting time of
services in the IoV), and load balancing. Also, the authors
in [11] present a 5G-enabled framework that migrates the
services based on the mobility of the vehicles along the road.
They keep monitoring the delay between the vehicle and the
MEC server. In case the delay goes higher than a threshold,
they migrate the service to another MEC in the direction of

the vehicle movement. However, these works overlook the
end-to-end routing, reconfiguration overheads, and resource
capacities. Also, some works [10], [51] assume that the access
points are always available to the users to connect to. Also,
some of them overlooked the end-to-end routing decisions [8],
[9], [11], [50], DC capacity [8], [9], [11].

Finally, from an algorithmic viewpoint, this work is related
to the matching problem in graph theory. The matching
problem has a long history of research, going back to decades
ago [55], [56]. Due to the enormous applications of matching
in practice [57], there is a huge body of research for online
(bipartite) static matching and its variants [58]-[65], [65],
[66]. However, due to the dynamic nature of many matching
problems in practice (e.g., considering the temporal/dynamic
graphs), recently, dynamic matching has been receiving atten-
tions [15], [16], [67]-[69]. Despite the similarity in names, our
problem in this paper is different from others. In our problem,
there is a sequence of graphs that change dynamically due
to airplanes’ mobility. Therefore, the goal is to maintain a
minimum-weight bipartite matching, considering the mobility
of airplanes.

VII. CONCLUSIONS

This paper initiated the study of an online service pro-
visioning problem in the context of emerging air-to-ground
communication technologies. We presented a formal model
together with an efficient algorithm, HOMA to decide about
airplane-to-DC connections, routing, and possible reconfig-
uration decisions over the flight period. HOMA showed a
good performance in realistic scenarios, achieving a near-
optimal objective function value, while significantly reducing
the runtime. We see our work as a first step and believe that
it opens several interesting avenues for future research. In
particular, it would be interesting to explore the achievable
competitive ratio in deterministic and randomized online set-
tings and explore how to optimize and re-optimize schedules
in scenarios that feature some uncertainty and in which a
bounded number of unexpected events may occur.

We note that a similar approach can be applied to other
areas such as Autonomous Driving where a vehicle needs to
travel from point A to B in a city. Considering the positions
of the vehicle at different times, the required services can be
scheduled on the MEC servers available in the city.
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