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1 Introduction and Problem Statement

High-performance racing applications have been serving as a development and testing platform
for technological innovations [24]. Since the automation and the electrification of vehicles pertain
to the key developments in the automotive domain, racing series combining both technologies
have been established [25]. In the following, we will therefore introduce these developments and
their challenges in greater detail and derive the underlying motivation and the goal of this thesis
therefrom.

1.1 Future Trends in the Automotive Domain

Autonomous Driving

One key trend regarding transportation standards are autonomous vehicles within the next
decade [26], which are enhanced with perception, reasoning/decision-making, and controllable
actuators [27, p. 1176]. The reasons for this development include the optimization of the traffic
flow [28] [29, p. 4], which has already been subject of the well-known “Programme for a European
traffic with highest efficiency and unprecedented safety” (Prometheus, 1987–1994) [30, chap. 2].
By improving the traffic flow, the energy efficiency of road vehicles is increased [27, p. 1176] [31]
and, through this, the amount of CO2-emissions can significantly be reduced. Although the
number of traffic accidents is constantly decreasing, still 1.35 million people have died in road
accidents worldwide in 2018 [32]. Autonomous driving promises to significantly diminish this
number [29, chap. 17] [27, p. 1176].

The necessary functional blocks for autonomous driving are the sensing, processing and
decision-making, and vehicle control [33, p. 6]. They can also be found in the high-level architec-
ture of an autonomous driving system presented by [34, p. 46], which is depicted similarly in
Figure 1.1.

Sensors Mapping

Localization

Perception Motion

Strategy

Tactics

Pre-LTPL Local Traj. Planner (LTPL)

Controller

Post-LTPL

Map for Planning

Vehicle

Figure 1.1: High-level architecture of an autonomous driving system, classified according to their position
regarding the local trajectory planner (LTPL), which is similar to [34, p. 46].
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1 Introduction and Problem Statement

The autonomous vehicle senses its environment with the help of, e.g., light detection and
ranging (LiDAR), radio detection and ranging (RADAR) or Cameras, and determines its state of
motion with the additional help of the global positioning system (GPS) and wheel speed sensors.
Simultaneously, a map of the environment can be created and saved. Subsequently, the gathered
environmental information is used by the local trajectory planning step, which comprises a
strategic, tactical, and motion planning part. Briefly, the strategic planning determines a high-
level long-term goal, the tactical part identifies reasonable lane changes or overtaking maneuvers,
and the motion planning calculates a finely discretized trajectory, consisting of path and velocity,
on the available driving surface [34, p. 47]. A dynamics controller operates the actuators (steering,
throttle, brake) to have the vehicle perform either a re-optimized version of the planned trajectory
(in the case of model predictive control (MPC)) or to make it follow exactly. It is also possible to
classify these modules according to the famous scheme “navigation, guidance, and control” [35,
p. 183], which we adapted slightly to “pre-local trajectory planner (LTPL), LTPL, and post-LTPL”
to emphasize the local planning task in this architecture.

Electrified Vehicles

Alternative powertrains are gaining increasing significance [36]. By 2020, the number of electrified
vehicles surpassed 10 million worldwide and is still growing [37, p. 17]. Reasons for the transition
from internal combustion engine (ICE)-powered vehicles to electric vehicles (EVs) are diverse.
First, it is argued that EVs have a smaller environmental impact regarding global warming and
urban air quality through avoiding local emissions, and will therefore boost public health [38–
40]. Second, energy security pressures have encouraged manufacturers to increase their
development activities in EVs [39].

Despite this transition process, EVs are still facing many technological challenges. These
include a limited driving range, a higher charge time compared to the conventional refueling
time [38], and smaller thermal operating ranges of the electrical components in comparison to
conventional powertrains. Electric machines used for traction applications usually do not exceed
the temperatures above 170 ◦C [41]. The battery cells in EVs should not be operated above
55 ◦C [42].

Electric Race Vehicles Competing Fully Autonomously

In the past, racing series have been a development and testing platform for technological
innovations [24]. Arising from both aforementioned developments, it is therefore a logical step that
racing series like the Formula E [43], pushing the boundaries of electric powertrain technology, or
the Indy Autonomous Challenge [44], aiming to extend the limits of autonomous driving software,
have been evolving over the past years. Roborace [25] represents a competition for autonomous
race vehicles with electric powertrains and, therefore, serves as a platform for technological
advancements in an area combining both domains [45].

1.2 Motivation and Goal

A high-performance racing application reinforces the mentioned challenges of autonomous EVs,
since they must meticulously adhere to the small technical operating ranges of their powertrain
components to avoid safety shutdowns. Nevertheless, these limits must permanently be exploited
to have the vehicle operate at its limits of handling to leverage maximum performance. To reach

2



1 Introduction and Problem Statement

this goal, an appropriate Energy Strategy (ES), which seamlessly integrates into an existing
autonomous driving software stack, is necessary. By doing so, the race car reaches the minimal
race time from a point of view comprising its driving dynamics, its thermodynamics, and the
available amount of energy. Thus, the goal of this thesis involves the concept, the development
and the implementation of an ES, which is closely related to and part of the local trajectory
planning module (Figure 1.1).

The objective of the ES is the calculation of a time-minimal race strategy in a traffic-free
environment. Whilst optimizing this goal, the ES must meet the following requirements:
The ES

• must adhere to the technical limitations of the electric powertrain and the driving
dynamics. Nevertheless, the ES must exploit the available limited amount of battery
energy as “lap-time-efficiently” as possible to achieve a time-minimal result. Lap-
time-efficient expresses that the vehicle must travel as fast as possible while
adhering to the available energy budget.

• must be real-time-capable whilst simultaneously correctly predicting the powertrain
behavior with small physical errors.

• must be implementable in an existing software stack used for autonomous driving.

• must effortlessly be expandable by additional physical constraints whilst being
computationally efficient.

Throughout the explanations of the developed algorithms, which realize the ES in this work,
we will refer to the aforementioned stated objective and the incorporation of these conflicting
constraints.

3





2 Preliminaries and State of the Art

First, this chapter describes the state of the art in the field of electric powertrain design. The
physical working principles of its main components, and their efficient mathematical modeling
are explained. Furthermore, we analyze the generation of power losses therein, and additionally
discuss thermodynamic characteristics. The powertrain architecture we will focus on is the
one used inside the Roborace “DevBot 2.0” [12], which is the unitary race vehicle among the
teams participating in the Roborace competition. Roborace itself is the world’s first racing series
for autonomous electric race vehicles at full scale. Second, we summarize the mathematical
background, which is necessary to select appropriate optimization procedures for the deduction
of an online-capable ES. Finally, we depict the current advances in the field of trajectory planning
algorithms for autonomous driving.

2.1 Powertrain Design and Modeling

The primary electric propulsion components in a battery-electric powertrain are constituted by
an energy storage, namely the battery pack, one or multiple voltage source inverters (VSIs), and
one or multiple electric machines [46, 47], [48, p. 6]. These are commonly called “electric motors”,
which does not express the generative operation capabilities in the automotive domain [49]. In
this section we will introduce the basic working principles of these powertrain components and
describe their behavior using mathematical models. Moreover, the mechanisms leading to power
losses in each of them will be explained.

Figure 2.1 displays an all-electric, rear-wheel-drive powertrain architecture, which is used inside
the Roborace vehicle DevBot 2.0. It can be extended to an all-wheel-drive architecture by adding
the propelling components, which will be introduced in the following, also to the front of the
powertrain architecture. Its energy storage (B) consists of rechargeable batteries, and is mounted
directly underneath the bodywork. In the back, the inverters (Il/r) on the left and right hand side
convert the direct current (DC) power from the energy storage into alternating current (AC) power
to feed the electric motors (Ml/r). These are mechanically connected to the wheels (Wrl/rr) by
the gearboxes (Gl/r) that translate the motor output torque. We summarize the autonomous
driving sensors, the computing units, and other consumers drawing a low-voltage DC power
as auxiliaries (Ax). The powertrain of the Formula E car “Gen2” is built similarly with a single
inverter and electric motor [43].

An active liquid cooling system dissipates the powertrain heat losses. Since the maximum
temperature of the inverters and motors is higher compared to the battery, two separate cooling
circuits are installed. The radiators (RMI and RB) temper the respective cooling fluids.

5



2 Preliminaries and State of the Art

BIl/rMl/rGl/r

Wrl

Wrr

Wfl

Wfr

DC/DC

Ax

RMI RB

M Motor
I Inverter
B Battery
Ax Auxiliaries

DC/DC Converter
G Gear
W Wheel
R Radiator

Ind. l/r left/right

Figure 2.1: All-electric, rear-wheel-drive powertrain architecture including separate cooling circuits and
their radiators RMI and RB to temper the combination of motors Ml/r and inverters Il/r at
the rear left and right, and the battery B. Auxiliaries are denoted by Ax including a DC/DC-
converter from high to low voltage, wheels and gears are depicted by the symbols W and
G. Bold straight lines indicate mechanical connections, thin lines the electrical ones, and
curved arrows the cooling liquids.

2.1.1 Energy Storage

In the Roborace DevBot 2.0, the energy storage consists of lithium-ion batteries, which follows
today’s trends in EVs [50, p. 50], [51, 52]. When discharging these batteries to produce a usable
electrical current, lithium-ions move from the negative to the positive electrode through a solid or
liquid electrolyte; this process reverses during charging. To form an energy storage, which fulfills
the electrical requirements regarding voltage, current, and energy capacity of an EV, the battery
cells are interconnected in series and in parallel, resulting in an XsY p battery pack configuration.
According to the big cell-method, the serial combination scales the pack output voltage, and the
parallel connection the total capacity [53].

Working Principle

To describe the electrical behavior of lithium-ion cells, the literature mainly uses and differentiates
between three major modeling approaches [54], which are

• mechanistic (physico-electrochemical) models [55–57],

• equivalent circuit models (ECMs) [52, 58–62],

• data-driven models: black [18] and gray boxes [63–65].

They can also be combined to hybrid models [66–68].

In [53], the properties of the mentioned modeling approaches are listed. Therein, the model
accuracy is emphasized and put into perspective with the corresponding computational com-
plexity, which is important in real-time applications. We summarize the main characteristics of
the aforementioned battery modeling approaches in Table 2.1 and assess their applicability
for online optimal control problems (OCPs). Mechanistic models require a large set of system
parameters, which are often unknown and difficult to measure [56]. Data-driven ones do not
provide information about the local rates of change of the system dynamics [54].

Due to their high accuracy [59], practical applicability, and real time capability [70] ECMs are
widely used in the automotive domain [59, 71]. They are based on the Thevenin model, which
in the simplest case consists of an ideal no-load battery voltage, a constant resistor capacitor
(RC) element, and a constant internal resistance [59, 71, 72]. Therein, the electrical components
are parameterized using electrochemical impedance spectroscopy (EIS) measurements [73].
6



2 Preliminaries and State of the Art

Table 2.1: Characteristics and online capability of different modeling approaches of lithium-ion battery
cells.

Mechanistic model ECM Data-driven model

Characteristics • The modeling is based
on the ordinary differential
equations ODEs describ-
ing the physico-chemical
relationships [69].
• Many system parameters
are necessary [69], which
are often unknown and dif-
ficult to measure [56].

• A combination of stan-
dard electrical components
describes the dominating
battery dynamics [54].
• ECMs are easily tune-
able, transferable among
different battery types due
to the lumping of electro-
chemical processes, and
scalable to pack or module
level [54].
• The model quality is
strongly connected to the
measurement data qual-
ity [54].

• The nonlinear relation-
ships between the battery
states and its performance
features are completely de-
scribed relying on data-
driven techniques.
• Black box models omit an
underlying physical model,
gray box models fuse
physically motivated mod-
els with data-driven algo-
rithms [54].

Applicability in
online OCPs

Mechanistic models are
too complex for most con-
trol applications [53] but
provide detailed insights
into the battery behavior
via sensitivity analyses.

ECMs combine a real time
applicability in OCPs in-
cluding sufficient accuracy
for ES control systems [52,
70], especially at low sam-
ple rates and long predic-
tion horizons [53].

The governing equations
can have rather low com-
putational complexity but
they do not provide infor-
mation about local dynam-
ics, which are necessary
for control purposes [54].

For the deduction of an ES for eco-driving applications [50, p. 50] proposes an ECM of 0th
order, which consists of an ideal voltage source Uoc and a constant internal resistance Ri. The
model accuracy can be increased by adding a temperature dependency (TB) to the internal
resistance Ri(TB) or a state of charge (SOC)-open circuit voltage (OCV)-relationship [71, 74, 75].
Figure 2.2 depicts a widely used version of an ECM for electric vehicle modeling and simulation
purposes [71]. It comprises two RC elements [59, 76–78] and follows the dynamics [53]:

∂ uk(t)
∂ t

= −uk(t)
RkCk

+
i(t)
Ck

, (2.1a)

udc(t) = uoc(t)− Rii(t)−
2
∑

k=1

uk(t). (2.1b)

Here, k = 2 denotes the number of RC-elements, uk(t) the voltage drop over the kth RC-element,
Rk and Ck the RC resistance and capacitance, uoc(t) the OCV, udc(t) the terminal voltage, i(t)
the battery current, and Ri the internal cell resistance.

uoc

Ri

C1

R1

C2

R2

i

udc

Figure 2.2: ECM of second order of a lithium-ion battery cell [53].
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2 Preliminaries and State of the Art

Power Loss

Thermal power in battery cells occurs either through the internal resistance Ri(t), a change in
entropy, or overpotential losses. When considering an ECM of second order (Figure 2.2), the
change in heat energy QB(t) can be expressed as [53, 79]

dQB(t)
dt

= Ri(t)i
2(t)

︸ ︷︷ ︸

Q̇B,ih

+
1

nmolF
TB(t)∆S (σ(t)) i(t)

︸ ︷︷ ︸

Q̇B,re

+ i(t)
2
∑

k=1

uk(t)

︸ ︷︷ ︸

Q̇B,op

, (2.2)

where Q̇B,ih denotes the irreversible resistive heating power, Q̇B,re the reversible effect of heat
generation through a change in entropy ∆S, and Q̇B,op the overpotential losses due to kinetic
and mass transport effects. To calculate Q̇B,re, the Faraday constant F , the number of electrons
per reaction nmol, and the battery SOC σ(t) are involved. The change in entropy ∆S is

∆S (σ (t)) =
∂ uoc (σ(t))
∂ TB

nmolF, (2.3)

which indicates a strong dependency on the battery SOC σ(t). Since the major source of power
loss is the irreversible heating power Q̇B,ih, especially in high power applications, Q̇B,re and Q̇B,op

are often neglected [53]. Assuming an ECM with a time-dependent voltage source uoc(t) and an
internal resistance Ri(t), the following equation describes the battery losses Pl,B(t) directly [50,
p. 50]:

Pl,B

�

Po,B(t)
�

=
u2

oc(t)

2Ri(t)
− uoc(t)

Æ

u2
oc(t)− 4Po,B(t)Ri(t)

2Ri(t)
︸ ︷︷ ︸

Pi,B(t)

−Po,B(t), (2.4)

where Pi/o,B(t) describe the internal and the output power of the battery cell.

The internal battery power Pi,B(t) causes the SOC dynamics σ̇, which can be indicated by the
Coulomb counting method [80, p. 71], [50, p. 51], [79]:

dσ(t)
dt

= − Pi,B(t)

EB
, (2.5)

where EB denotes the battery energy capacity.

The literature reports an operating range between −20 ◦C to 55 ◦C when discharging and between
0 ◦C to 45 ◦C when charging for automotive lithium-ion cells [42].

2.1.2 Voltage Source Inverter

In general, the VSI in an EV powertrain transforms DC and AC power bidirectionally to propel
the electric motors or to recharge the energy storage during recuperation phases [81–83]. In
the remainder of this section we drop the time dependency of the battery DC voltage to simplify
the explanations of the VSI working principle. VSIs consist of active power semiconductor
devices like insulated-gate bipolar transistors (IGBTs) or metal oxide semiconductor field effect
transistors (MOSFETs), where they are used as motor load drivers [84, p. 117]. In this work, we
focus on IGBTs, since they operate in the Roborace DevBot 2.0 VSI. The basic semiconductor

8



2 Preliminaries and State of the Art

load switching configurations are classified into the groups, low-side, high-side or half-bridge
switching, where the latter one is chosen in automotive powertrain applications [84, p. 118].

Working Principle

VSIs can be classified into two main categories, which are square wave inverters, that only allow
controlling the output frequency, and pulse width modulation (PWM) inverters, that additionally
enable the control of the output signal amplitude [85, p. 267]. A hardware circuit realizing the
DC-AC power conversion is depicted in Figure 2.3. This three-phase bridge circuit comprises
six IGBTs Tn and free-wheeling diodes Dn to form the piecewise-constant output pole voltages
uU/V/WN(t) with the levels of 0 V, −Udc

2 , or +Udc
2 [85, p. 278]. The freewheeling diodes Dn enable a

bidirectional power flow in the three half-bridges and prevent from over-voltage peaks.

Udc
2

Udc
2

U
V
W

N

T1 T2 T3

T4 T5 T6

D1 D2 D3

D4 D5 D6

Figure 2.3: B6 three-phase bridge circuit [81, 82].

Figure 2.4 visualizes the working principle of a square wave VSI. In the currently active switching
period the transistors T1, T3, and T5 are active, i.e., conducting. Therefore, the poles U and W
are connected with the positive potential and pole V with the negative one. After one sixth of
the switching period, T3 is switched off and, alternately, T6 is switched on [85, p. 277]. In total,
each transistor conducts for one half of the switching period [86, 87], i.e., six on-/off-switchings
per fundamental period of the output signal 1

f0
take place. The motor phase voltages uU/V/WP(t)

result, including the fundamental component uU/V/WP,1(t) as a sinus-wave with an amplitude of
the value 2

πUdc. The line-to-line motor voltages are [85, p. 278], [88, p. 315]

uUV(t) = uUN(t)− uVN(t), uUW(t) = uUN(t)− uWN(t), uVW(t) = uVN(t)− uWN(t), (2.6)

the motor phase voltages uU/V/WP(t) can be obtained from the pole line-to-line voltages [85,
p. 279]:

uUP(t) =
1
3
(uUV(t)− uWU(t)) , uVP(t) =

1
3
(uVW(t)− uUV(t)) , uWP(t) =

1
3
(uWU(t)− uVW(t)) .

(2.7)

Besides the square wave technique, different PWM methods exist [85, p. 315], [89], which are
divided into programmed PWM, carrier-based PWM, and space vector PWM methods, whereby
the carrier-based methods are further subdivided into sinusoidal and third harmonic injection
PWMs. The space vector PWM methods split into continuous and discontinuous ones.

Figure 2.5 depicts the working principle of the sinusoidal PWM. Here, a carrier signal is per-
manently compared to the desired reference signal uref(t). If the value of the reference signal
is higher than the carrier signal, the upper switch of the corresponding VSI pole is turned on.

9



2 Preliminaries and State of the Art

-0.5

0

0.5
T1 T4 T1

u U
N

U
dc

-0.5

0

0.5
T5 T2 T5

u V
N

U
dc

-0.5

0

0.5
T3 T6 T3

u W
N

U
dc

0 1
3π

2
3π

π 4
3π

5
3π

2π
-2/3
-1/3

0
1/3
2/3 2

πUdc

ωt

u U
P

U
dc

Phase voltage uUP

Fundamental phase voltage uUP,1

Figure 2.4: Six-step square wave inverter switching scheme and resulting pole and phase voltages.
The pole voltages uU/V/WN(t), uVN(t) take the values −0.5Udc or +0.5Udc. The motor phase
voltages uUP(t), uVP(t), and uWP(t) take the form of a step function, which fundamental
voltage uUP,1(t) is a sin-wave with an amplitude of 2

πUdc [85, p. 278ff.].
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Figure 2.5: PWM switching scheme and resulting pole voltage uUN(t) [85, p. 292].

Therefore, the switching frequency fsw for every transistor is much higher compared to the
six-step square wave modulation method (Figure 2.4). The frequency modulation index mf,

mf =
fc
f0

, (2.8)

describes the ratio of the carrier frequency fc =
1
Tc

, which equals the switching frequency

fsw =
1

Tsw
in the sinusoidal PWM method [85, p. 295], and the fundamental output voltage

frequency f0 =
1
T0

.

The PWM methods have been developed to reduce generating harmonics, which are an inherent
disadvantage of the simpler square wave modulation. Through this, undesired noise and heat
losses inside the VSI are avoided [85, p. 273]. Conversely, PWM methods, which operate at a
higher switching frequency fsw, tend to increase the inverter’s switching losses [85, p. 289].
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Power Loss

The literature differentiates the power losses generated in a semiconductor between

• the switching losses,

• the conducting losses, and

• the leakage losses,

where the latter are negligible [90, p. 925], [87]. To further analyze the switching and the
conducting losses, Figure 2.6 depicts the collector current ic(t) and the collector-emitter voltage
uce(t) of a transistor during a single switching period of duration Tsw [87]. The symbols Îc and Ûce

denote the corresponding peak values. Rising or falling edges of the gate-emitter voltage uge(t),
which stems from an external control signal, trigger the measurements of the turn-on and turn-off
times ton/off, respectively. Therein, the rise time tr denotes the time span between reaching 10 %
of the maximum stationary value of the collector current (Il) and of the collector-emitter voltage
(Udc) during the IGBT turn-on process. Accordingly, the fall time tf is defined as the duration
between reaching 90 % and 10 % of the stationary collector current Il during the turn-off process.
Additionally, the conduction time tc lies in between the end of tr and the beginning of tf.

t

u c
e,

i c

Ûce

tr

ton

tc tf

toff

Udc

Il

Îc

uce
ic

u g
e

Figure 2.6: IGBT collector current ic(t) and collector-emitter voltage uce(t) during a single switching
period including their corresponding peak values [81, 87].

Switching losses in an IGBT occur when turning the semiconductor on and off, hence this
power loss is directly proportional to the switching frequency when operated by one of the PWM
methods [91, p. 82] [87, 92],

Psw =
1

Tsw











∫ tr

0

ic,r(t)uce,r(t)dt

︸ ︷︷ ︸

Wr

+

∫ tf

0

ic,f(t)uce,f(t)dt

︸ ︷︷ ︸

Wf











, (2.9)

where the indices r (rising) and f (falling) denote the signals during turn-on and turn-off, respec-
tively.

To enable a reverse power flow in the VSI half-bridges, external freewheeling diodes are
necessary, causing a reverse recovery loss [93] [90, p. 925]. When the collector current ic(t) of

11
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the switching-on IGBT reaches the load current Il, the opposing diode in one VSI half bridge
starts turning-off [87, 94, 95]. Thereby, the diode releases a reverse recovery current, which
results in the collector current peak value Îc (Figure 2.6). In total, the reverse recovery effect
causes power losses in the transistor by increasing the collector current ic,r(t). Additionally, the
excess power Prr is consumed by the diode itself [87, 95], which adds up to the VSI power losses:

Prr =
1

Tsw

∫ trr

0

id,rr(t)ud,rr(t)dt

︸ ︷︷ ︸

Wrr

≈ 1
4

ÎrrUdc trr fsw, (2.10)

where id,rr(t) and ud,rr(t) denote the current and the voltage of the freewheeling diode during
reverse recovery. The symbol Îrr indicates the maximum reverse recovery current, and trr the
time duration of the recovery effect.

When using datasheet numbers, the dissipating energies Wr/f/rr are given for a typical operating
point [93]:

Psw = (Wr +Wf +Wrr) fsw. (2.11)

The conducting losses can be written as [81]:

Pc =
1

Tsw

∫ tc

0

uce,c(t)ic,c(t)dt (2.12)

where uce,c(t) and ic,c(t) denote the collector-emitter voltage drop and the emitter current in the
on-state operation of the IGBT, i.e., when it is conducting for the time duration of tc.

The total inverter losses Pl,I are calculated by

Pl,I = Psw,I + Pc,I, (2.13)

where the total switching and conduction losses Psw/c,I are determined by scaling the single
IGBT losses [87, 96]. By this, the conduction losses turn out to be independent of the switching
frequency in the VSI [92].

In order not to damage the semiconductors or risk a limited performance, their temperature
measurement and surveillance is crucial [97, p. 245]. The maximum temperature for a VSI
operating a permanent magnet synchronous machine (PMSM) is around 120 ◦C [97, p. 459].

2.1.3 Electric Motor

Electric motors can be divided into two main groups [97, p. 122], which are the brushed and the
brushless motors (Figure 2.7). Thereby, brushed motors are not relevant for automotive power-
trains, since brushless motors combine a higher average efficiency, require less maintenance,
and are outstandingly robust [97, p. 135]. The brushless versions can further be subdivided
according to the ratio of the stator’s electrical and the rotor’s mechanical speed, which can either
be synchronous or asynchronous. The rotors in asynchronous machines (ASMs) are built in
a wound or squirrel-cage design. The synchronous machines can either be commutated by
trapezoidal DC power (brushless direct current (BLDC) machines) or by sinusoidal AC power (in

12
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Electric Motors

Brushed Brushless

Asynchronous Synchronous

• Wound Induction
• Cage Induction

• Trapezoidal BLDC • Sine PMSM
• SynRM

Figure 2.7: Overview of electric motors [97, p. 122]. A further subdivision of the brushed machines is
omitted.

the case of PMSMs). An additional construction method are synchronous reluctance machines
(SynRMs), which produce torque based on the reluctance principle [97, p. 180].

Especially in racing applications PMSMs are chosen due to their torque-per-weight ratio [98],
and their high efficiency level [99].

Working Principle

This section explains the working principle and the control of a three-phase PMSM, which is
connected to a VSI through its UVW motor phases as visualized in Figure 2.8.

Decoupling and
UVW-, αβ-, dq-transformations

TorqueMm,tar

Flux

VSI

Battery

d·
dt

iU iV iW

θ

id,t

iq,t

Control signal

PMSM
3 ∼

Signal
Power

Figure 2.8: Working principle of a modern field-oriented control (FOC) method for the control of a
three-phase (3 ∼) PMSM [100, p. 11].

In a vehicle, the motor output torque Mm(t) should follow the target torque Mm,tar(t), where

Jm
dωm(t)

dt
= Mm(t)−Ml(t), (2.14)

with Jm denoting the rotor inertia, ωm(t) the mechanical rotational speed, and Ml(t) the time-
dependent motor load [101, p. 138]. The torque Mm(t) produced by a PMSM can be written as

Mm(t) =
3
2

zp



ψP iq(t)
︸ ︷︷ ︸

main

+ id(t)iq(t)
�

Ld − Lq

�

︸ ︷︷ ︸

reaction



≈ 3
2

zpψP iq(t), (2.15)

where zp denotes the number of pole pairs, and ψP a constant pole flux, which can be regarded
to be a manufacturer-given system parameter [100, p. 86]. The inductances Ld/q and the current
values id/q(t) are expressed in a virtual rotor-fixed dq-field-coordinate system. The current signals
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id/q(t) are computed through a transformation of the stator-fixed UVW motor phase signals via
the Clarke (αβ)- [102] and Park (dq)-equations [103]. These conversions simplify the control of
an electric motor, since the resulting dq-signals are quasi-constant over time.

The torque Mm(t) comprises the main and the reaction torque. In the case of a non-salient
PMSM, which have similar d- and q-inductances (Ld ≈ Lq [101, p. 137], [104, chap. 17-3], [105])
the reaction torque contribution is negligible, since the current id(t) does not influence the output
torque Mm(t) [106]. As a result, the mechanical motor torque Mm(t) is directly proportional to the
quadrature current iq(t) [100, p. 11] [101, p. 138]. The PMSMs empowering the DevBot 2.0 are
manufactured with surface-mounted magnets and a wet-wound pre-preg carbon fibre epoxy as a
magnet retention sleeve type. They can be classified to be non-salient, i.e., they are “magnetically
round” [107, p. 25], [104, chap. 17].

To vary the UVW motor phase currents, a control method like the FOC is necessary, which is
depicted in Figure 2.8. The PMSM is fed by a three-phase current iU/V/W(t), which is converted
from the battery DC power by the VSI. Accordingly, a control signal, which can either be a square
wave or a PWM signal, switches the VSI transistors. It imprints the target voltages uU/V/W,t(t)
on the motor’s phases which, in turn, result in the UVW-currents iU/V/W(t). The control signal
is calculated taking into account the measured currents iU/V/W(t), the rotor angle θ (t), and the
target currents id/q,t(t) in the virtual, rotor-fixed dq-field-coordinate system. After the Clarke- and
Park-transformations of the stator-fixed UVW signals the error between the actual values id/q(t)
and their targets id/q,t(t) can be computed. Finally, using this error, the target voltages ud/q,t(t)
are calculated after decoupling the following first-order ODEs, that are valid for PMSMs [100,
p. 85], [101, p. 137]:

did(t)
dt

= −Rs

Ld
id(t) +

Lq

Ld
ω(t)iq(t) +

1
Ld

ud(t), (2.16)

diq(t)

dt
= − Ld

Lq
ω(t)id(t)−

Rs

Lq
iq(t) +

1
Lq

uq(t)−
ψP

Lq
ω(t). (2.17)

Here, Rs denotes the stator resistance, and ω= zpωm the electrical rotational speed. After an
inverse transformation of the target voltages ud/q,t(t) to the UVW-system they are converted to
the VSI control signal, which imprints the target voltages on the motor phases.

The induced voltage in the motor increases proportionally with its rotational speed ωm(t) [104,
chap. 17-3]. Therefore, the back electromotive force will limit the current flow into the motor at its
rated rotational speed, since the total output voltage of the VSI is technically limited. Therefore,
to further increase the rotational speed ωm(t) in the field weakening range, two measures are
necessary to adhere to the VSI’s voltage constraint in a vector diagram. First, a negative direct
current id(t) must be applied to enable the compensation of the induced voltage [101, p. 116].
Second, the quadrature current iq(t) must be reduced by the factor 1

ωm
in the motor’s power

limited region [101, p. 117]. A summary of the motor working principle is given in Figure 2.9,
where the torque and power outputs, and the dq-current inputs at maximum power are visualized
qualitatively.

In a steady-state operation, one can approximate the output torque Mm(t) by the formula [104,
chap. 8]

Tm(t) = kT îs(t), (2.18)
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Figure 2.9: Qualitative visualization of the working principle of an electric motor. Depicted are the torque
and power outputs, and the dq current inputs.

where kT is the PMSM’s torque constant, and îs(t) is the amplitude of the stator current [108,
p. 87].

Power Loss

Three main types of power losses occur in electric motors [109, p. 181], [110], [111, p. 41f.],
which are the

• copper losses Pl,M,cop(t),

• iron or core losses Pl,M,cre(t),

• mechanical losses Pl,M,mec(t),

whereby the major part is formed by the copper and iron losses [112], [109, p. 181]. The core
losses Pl,M,cre(t) can be subdivided into hysteresis and eddy-current losses [105, 113], the
mechanical losses Pl,M,mec(t) comprise bearing and windage losses.

To study the power losses Pl,M(t) in an electric motor, the finite element method (FEM) has at-
tracted growing attention. Many studies that devise analytical formulations to describe the power
losses spatially resolved [114–116], or explain the effects of machine design parameters [117],
use FEM to validate their results.

To describe the motor losses on a temporal level, equivalent circuits, modeling the electrical
behavior of the rotor and the stator, are used. These models allow for the analytical deduction
of the governing equations to describe the different types of power losses. Leveraging this
approach for PMSMs leads to the following equations [92, 113, 118]:

Pl,M,cop(t) =
3
2

Rs

�

i2
d(t) + i2

q(t)
�

=
3
2

Rs





�

ψd(t)−ψP

Ld

�2

+





Mm(t)
3
2

�

ψP
Lq
+
�

Ld − Lq

� ψd(t)−ψP
Ld Lq

�





2

 ,

(2.19)

Pl,M,cre(t) =
3
2
ω2(t)

RFe + RP

�

ψ2
q(t) +ψ

2
d(t)
�

=
3
2
ω2(t)
Rcre

�

�

Lqiq(t)
�2
+ (ψP + Ldid(t))

2
�

. (2.20)

Here, ψd/q(t) denotes the pole flux in d- and q-directions. The iron RFe and magnet resistance
RP add up to the equivalent core resistance Rcre. In general, the core losses Pl,M,cre(t) are
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complicated to predict in comparison to the copper losses Pl,M,cop(t), which mainly depend on
the current density [119].

Finally, the machine losses Pl,M(t) can also be approximated by measurement data. An advan-
tage of this method is the relatively low computational complexity of the fitting equations. Still,
their accuracy can be adjusted by additional nonlinear terms and the usage of real-world data,
which covers physically relevant effects. According to [120], the power losses Pl,M(t) occurring in
different types of electric machines can be approximated by polynomials comprising different
degrees of the free variables, which are rotational speed ωm(t) and torque output Mm(t). In
a basic approximation, the copper losses Pl,M,cop(t) are a function of the output torque Mm(t)
and thus proportional to the square of the stator current is(t). [121, p. 94] suggest a rotational
speed-dependent model to describe the iron losses Pl,M,iro(t), which can be refined in the field
weakening range by adding the stator voltage to the fitting function [122].

The thermal management of electric motors becomes particularly important in high-performance
applications [123]. The temperature hot-spots during designed operation are associated with the
specific motor design. However, they are normally located near the motor windings, specifically
the end-windings [110, 124–126], [111, p. 42]. Their energy dissipation capabilities are relatively
low due to the geometrically complex embedding and additional insulating material [111, p. 41f.].
Moreover, the windings are directly exposed to the exciting current. The admissible maximum
temperature values are material-dependent but can, for a PMSM used in a race application,
be found in the range of 200 ◦C for the motor windings, 170 ◦C for the stator and the rotor, and
120 ◦C for the permanent magnets [127].

2.2 Mathematical Optimization

In general, mathematical optimization algorithms can be classified into deterministic and stochas-
tic ones [128, p. 20] (Figure 2.10). Prominent deterministic examples are the gradient [129,
p. 466] or steepest descent methods [129, p. 475]. Stochastic techniques comprise heuristics
and metaheuristics. The metaheuristics combine stochasticity with a local search method and
are subdivided into population- or trajectory-based methods [128, p. 21]. Examples of stochastic
algorithms are the genetic algorithm (GA), the particle swarm optimization (PSO), and simulated
annealing (SA) [130].

Optimization Algorithms

Deterministic Stochastic: Heuristic and Metaheuristic

Trajectory-based Population-based

Figure 2.10: Classification of optimization algorithms [128, p. 21].

Stochastic algorithms should be considered if the governing functions are discontinuous and
non-differentiable, multimodal, or if a high amount of numerical noise exists [131, p. 141]. (Meta)-
heuristics can be used flexibly, since they do not require the optimization problem to exhibit a
specific mathematical format [132]. However, these methods are computationally expensive
and perform, in general, poorly on large-scale problems [133], since the probability of finding a
globally optimal solution decreases with increasing problem size [132]. Therefore, their solutions
also lack global optimality guarantees.
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Deterministic methods leverage mathematical properties of the formulated optimization prob-
lem [132]. They rely on the problem’s gradients, which can be analytically devised or accurately
approximated in many engineering optimization problems [134, p. vii], [133]. In the following,
the characteristics of deterministic methods will be listed. First, they exploit the mathematical
structure of the underlying optimization problem and are therefore computationally efficient [131,
p. 141]. Moreover, they provide global optimality guarantees when applied to convex optimization
problems like, e.g., linear programs (LPs) or positive semidefinite quadratic programs (QPs) [129,
p. 138]. Second, their solutions are smooth [135] and adhere to the user-specified constraints if
the problem is feasible, which cannot be assured for, e.g., GAs [136, 137], since the constraints
must be integrated into their objective function or the solution candidates be repaired. Third, a
solver initialization can significantly speed up the iterative procedure, especially in MPC-like ap-
plications where local approximations of the theoretical global solution are sufficient or real time
requirements must be met [138, p. 571f.]. Fourth, deterministic algorithms converge in a finite
amount of iterations when applied to specific types of mathematical programming problems [139,
p. 477]. Finally, they require little problem-specific parameter tuning [133].

In the remainder of this section we will focus on deterministic algorithms, since we will leverage
them to solve OCPs in a direct fashion in the main part of this thesis. We will start by introducing
the necessary and sufficient criteria to assess the solution quality of deterministic algorithms.

2.2.1 Optimality Criteria

A vector o∗ is said to be an unconstrained global minimum of the objective function J : Rn 7→ R
if [140, p. 6]

J(o∗)≤ J(o), ∀o ∈ Rn, (2.21)

where o ∈ Rn defines the vector of optimization variables of dimension n.

A global algorithm will find the best possible solution o∗ ∈ Rn of a nonlinear program (NLP)
independently of its initialization. An example of such an algorithm is the Shubert-Piyavskii
method [141, 142]. The drawback of this algorithm is that it requires knowing or estimating an
appropriate Lipschitz constant to obtain accurate results [143, p. 46]. In a similar approach, called
divided rectangles (DIRECT) [144], specifying the Lipschitz constant is not necessary. However,
the original formulation of DIRECT only handles upper and lower bounds on the state variables.
Moreover, its convergence rate towards a high-accuracy solution is low, since it does not exploit
local characteristics of the governing equations to speed up the optimization process. In addition,
its computational effort increases significantly with the number of optimization variables [145].

Due to the backdrops of global algorithms, and to solve practical non-convex NLPs in real time,
a compromise between finding the globally best solution and efficiency must be obtained [129,
p. 10]. Therefore, many well-studied local algorithms are available, which are widely used in
practical applications where finding a “good point” is sufficient [129, p. 9], [138, p. 147]. To
validate the solution quality of a local algorithm compared to the global optimum, [140, p. 231 f.]
suggests restarting the algorithms from a broad variety of initial points. Additionally, different
solver strategies can be implemented to check for improvements in the result quality.

The vector o∗ is an unconstrained local minimum of J if

J(o∗)≤ J(o), ∀o ∈ Rn with




o − o∗




< ε, (2.22)
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and a constrained local minimum if

J(o∗)≤ J(o), ∀o ∈ O with




o − o∗




< ε, (2.23)

where O ⊂ Rn is a constraint set, and ε the neighborhood of o∗ [140, p. 5 f.].

Conditions for Unconstrained Problems

In an unconstrained NLP,

min
o ∈ Rn

J(o), (2.24)

the candidates for a local optimum, i.e., the “stationary points” [140, p. 8], can be determined by
the first-order necessary condition (FONC) [140, p. 15],

∇J(o∗) = 0, (2.25)

which was originally discovered by Pierre de Fermat in 1637 [146]. If the objective function J(o)
is convex, the FONC is not only necessary but also sufficient to determine optimality [140, p. 8].
To further distinguish whether the stationary point o∗ describes a local minimum, maximum, or
stationary point of the nonlinear function J(o), the second-order necessary condition (SONC)
must be evaluated [140, p. 15]:

∇2J(o∗) : positive semidefinite. (2.26)

Figure 2.11 depicts an edge case where both, the FONC and the SONC, will fail to determine a
maximum or minimum correctly, since they interpret inflection points as optima.

−2 0 2

−20

0

20

40

o∗

o

J(
o)
=

o3

Figure 2.11: At the inflection point o∗ both, the FONC and the SONC are fulfilled: ∇J(o∗) = 3 (o∗)2 =
3 · 02 = 0, and ∇2J(o∗) = 6o∗ = 0. Nevertheless, o∗ does not depict a minimum or a
maximum [140, p. 9].

Hence, to reliably detect a local optimum of the nonlinear function J(o), the second-order
sufficient condition (SOSC) must be fulfilled. It basically extends the FONC by the following
sufficient condition [140, p. 21]:

∇2J(o∗) : positive definite. (2.27)
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Conditions for Constrained Problems

In this section we will extend the FONC (2.25), and the SOSC (2.27) for constrained optimization
problems. In general, a constrained NLP can be written as [134, p. 215]

min
o ∈ Rn

J(o) (2.28a)

s.t. h1(o) = 0, ..., hm(o) = 0 (2.28b)

g1(o)≤ 0, ..., gr(o)≤ 0, (2.28c)

comprising m equality and r inequality constraints. More compactly, the formulation is summa-
rized to [140, p. 377]

min
o ∈ Rn

J(o) (2.29a)

s.t. H(o) = 0 (2.29b)

G(o)≤ 0, (2.29c)

where H(o) = (h1(o), ..., hm(o)) : Rn 7→ Rm and G(o) = (g1(o), ..., gr(o)) : Rn 7→ Rr . To obtain
candidates o∗ solving this NLP analytically, one must search for an optimal set which fulfills the
first-order necessary Karush-Kuhn-Tucker (KKT) conditions [134, p. 197]. They can be written
as [134, p. 258], [140, p. 379]

∇oL(o∗,λ∗,µ∗) =∇J(o∗) +
m
∑

i=1

λ∗i∇hi(o
∗) +

r
∑

j=1

µ∗j∇g j(o
∗) = 0 (2.30a)

hi(o
∗) = 0 (2.30b)

g j(o
∗)≤ 0 (2.30c)

µ∗j ≥ 0 (2.30d)

µ∗j g j(o
∗) = 0, (2.30e)

where o are also called the “primal” variables and λ, µ the “dual” variables or the Langrange
multipliers. The Lagrangian function L is defined as [138, p. 543], [147, p. 292]

L(o,λ,µ) = J(o) +λT H(o) +µT G(o). (2.31)

To fulfill the KKT conditions (2.30) a solution must be stationary (2.30a). Additionally, pri-
mal ((2.30b), (2.30c)) and dual feasibility (2.30d) are required. Moreover, either the inequality
constraints g j must be active, i.e., hold with equality at the optimal solution o∗ or, if the inequality
constraints g j are not active, the corresponding Lagrange multipliers µ∗j must be zero [143,
p. 176 f.]. The complementary slackness condition (2.30e) enforces this behavior and can
compactly be written as

µ∗j ≥ 0

µ∗j g j(o∗) = 0

)

µ∗j ≥ 0⊥ g j(o
∗)≤ 0. (2.32)

Strict complementarity is achieved if

µ∗j = 0, g j(o
∗) ̸= 0 (2.33)
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or

µ∗j ̸= 0, g j(o
∗) = 0 (2.34)

holds and no combination of µ∗j = 0, g j(o∗) = 0 exists [148, p. 11]. In general, complementarity
conditions are challenging for a numerical optimization solver, since they require solving an
underlying combinatorial problem [139, p. 424]. To handle inequalities in an NLP, the solver
determines whether they actively constrain the optimal solution o∗. If not, they can be excluded
from the optimization problem via the Lagrange multipliers.

To guarantee whether the candidate o∗ depicts a local optimum, the KKT conditions (2.30) need
to be extended by [140, p. 383]

y T∇2
ooL(o

∗,λ∗,µ∗)y > 0, for all y ̸= 0 such that (2.35a)

∇hi(o
∗)T y = 0 (2.35b)

∇g j(o
∗)T y = 0, ∀ j ∈ A(o∗), (2.35c)

resulting in the SOSCs for equality- and inequality-constrained problems [140, p. 383]. Here,
A(o∗) denotes the set of active constraints, i.e., the inequalities g j(o∗) which hold with equality
at the optimal solution o∗. The vector y , which has to be orthogonal to the gradients of the
equality and the active inequality constraints, is used to determine the positive definiteness of
the Hessian matrix of the problem’s Lagrangian ∇2

ooL(o∗,λ
∗,µ∗).

2.2.2 Numerical Algorithms

Solving the KKT conditions analytically can result in large systems of equations and a massive
combinatorial search [134, p. 287], [139, p. 424], since the activity of the inequality constraints
g j at the optimum o∗ must be determined. Therefore, iterative algorithms for constrained NLPs
have emerged, which will be presented in the remainder of this section.

Table 2.2 organizes methods, frameworks, and solvers, which have been developed for general
NLPs or specifically for QPs.

Table 2.2: Iterative numerical optimization algorithms.

NLP

Method IP SQP
Framework CasADi acados
Solver IPOPT Any QP solver

QP

Method Active-set ADMM IP
Solver qpOASES OSQP HPIPM

To solve NLPs, two widely used Newton-type methods have been developed, which are the non-
linear interior point (IP) and the sequential quadratic program (SQP) methods [138, p. 551], [148,
p. 14]. To formulate NLPs a framework, which supports symbolic expressions and directly inter-
faces the optimization solver, is helpful. Therefore, we further introduce the row “Framework”,
which comprises both CasADi [149] and acados [150, 151]. An IP method can be used via
CasADi in combination with, e.g., the interior point optimizer (IPOPT) solver [152]. Acados, which
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was primarily developed for nonlinear model predictive control (NMPC) applications, implements
an SQP method and interfaces a broad variety of standard QP solvers.

In particular, QPs can be flagged up as infeasible or be solved in a finite amount of iterations.
The absolute number of iterations depends on the mathematical form of the objective function
and the number of inequality constraints [139, p. 449]. This advantage is especially helpful in
real-time-critical embedded systems.

NLP Methods

In this section two well-known NLP solution methods will be introduced.

NLP - Interior Point Methods

The following paragraph considers the general NLP problem (2.29) and explains the general
principles of nonlinear IP methods. To mitigate the combinatorial difficulty of identifying the active
inequality constraints at the optimal solution o∗, a barrier parameter ε is introduced,

0< εk+1 < εk, k = 0, 1, ..., εk→ 0, (2.36)

which is used to transform the inequality constraints into penalty terms. Subsequently, these
are added to the objective function [153, p. 488], [154, p.108]. Symbol k denotes the sequence
iteration number [140, p. 447]. Through a logarithmic barrier function, the original problem (2.29)
turns into the equality-constrained version [138, p. 553], [139, p. 424]

min
o ∈ Rn, s ∈ Rr

J(o)− εk
r
∑

j=1

ln s j = min
o ∈ Rn, s ∈ Rr

J̃(o, s ,ε) (2.37a)

s.t. H(o) = 0 (2.37b)

G(o) + s = 0. (2.37c)

In (2.37) the slack variables s > 0 transform the inequality constraints G into equalities. The
logarithmic barrier function −∑ ln s j enforces adhering to the inequality constraints g j(o). For
increasing values of s the smaller the objective function value J̃(o, s ,ε) becomes. For s → 0, i.e.,
when the inequality constraints G tend towards their upper bound, the objective function grows
to infinity.

The format of the KKT-conditions for problem (2.37) differs slightly compared to that of the original
problem in (2.30). The major difference is that the complementarity condition µ∗j g j(o∗) = 0 (2.30e)

is replaced by the smooth version µ∗j s
∗
j = ε

k [138, p. 553]:

∇J(o∗) +
m
∑

i=1

λ∗i∇hi(o
∗) +

r
∑

j=1

µ∗j∇g j(o
∗) = 0 (2.38a)

hi(o
∗) = 0 (2.38b)

g j(o
∗) + s∗j = 0 (2.38c)

µ∗j ≥ 0 (2.38d)

µ∗j s
∗
j = ε

k. (2.38e)
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The demonstrated principle of an IP algorithm is implemented in the well-known solver IPOPT.
Many other variants of nonlinear IP algorithms exist, which can also be tailored to linear or
quadratic programs, see for example [140, p. 447], [153, p. 488].

NLP - Sequential Quadratic Programming Methods

In an SQP method [155], NLP (2.29) is linearized in every iteration k resulting in an inequality-
constrained QP of the form [139, p. 423]

min
zqp ∈ Rn

1
2

zT
qpP(ok,λk,µk)zqp +∇J(ok)T zqp (2.39a)

s.t. ∇hi(o
k)T zqp + hi(o

k) = 0 (2.39b)

∇g j(o
k)T zqp + g j(o

k)≤ 0. (2.39c)

Here, P(ok,λk,µk) ∈ Rn×n denotes the problem’s Hessian, and ok the current linearization point.
In every iteration k, the QP in (2.39) is solved. The subsequent iterate k is updated according
to [155]

ok+1 = ok +αzqp (2.40a)

λk+1 = λqp (2.40b)

µk+1 = µqp, (2.40c)

where zqp denotes the search direction, λqp and µqp the Lagrange multipliers of the QP, and
α the step size, which can be computed by, e.g., the Armijo rule [153, p. 230]. The Hessian
is either calculated exactly by ∇2

ooL(ok,λk,µk) or approximated by, e.g., the Broyden-Fletcher-
Goldfarb-Shanno or the Gauss-Newton algorithm [148, p. 16].

Compared to nonlinear IP algorithms, the SQP method requires a smaller number of iterations
to converge, whereby one iteration is computationally more expensive. This stems from the
fact that IP methods solve one linear system per iteration resulting in a smaller computation
time. SQP methods have convergence advantages in MPC-applications where an initial guess,
which is close to the optimal solution of the subsequent optimization problems, is available [138,
p. 554 f.], [140, p. 549].

Solving the quadratic subproblems in (2.39) requires a QP solver. In the section below we will
therefore discuss the algorithmic background of three widely-used QP solver methods [156], [139,
p. 422].

QP Methods

In this section three famous QP solution methods will be explained.

QP - Interior Point Methods

A convex QP has the form [156]

min
zqp ∈ Rn

1
2

zT
qpPzqp + q T zqp (2.41a)

s.t. l ≤ Azqp ≤ u, (2.41b)
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where P ∈ Rn×n is positive semidefinite, q ∈ Rn, A ∈ Rm×n contains the linear constraints and
l, u ∈ Rm their upper and lower boundaries, with li ∈ {−∞} ∪ R and ui ∈ {+∞} ∪ R. For
convenience, we rewrite (2.41) and split the constraints into equality and inequality constraints,
indicated by the indices E and I, respectively,

min
zqp ∈ Rn

1
2

zT
qpPzqp + q T zqp (2.42a)

s.t. AEzqp − bE = 0 (2.42b)

AIzqp − bI ≥ 0, (2.42c)

where bI ∈ RmI , bE ∈ RmE and mI +mE = m.

To solve the QP (2.41) by an interior point algorithm, the FONC in the form of the KKT conditions
must be deduced [129, p. 567], [138, p. 553]. Since QP (2.41) is convex, these are also
sufficient to determine an optimal solution [139, p. 481]. The resulting KKT conditions look
similar compared to those arising in nonlinear IP methods applied to NLPs (2.38),

Pz∗qp + q − AT
Eλ
∗ − AT

I µ
∗ = 0 (2.43a)

−AEz∗qp + bE = 0 (2.43b)

−AIz
∗
qp + bI + s∗ = 0 (2.43c)
�

µ∗j , s∗j
�

≥ 0 (2.43d)

µ∗j s
∗
j = ε

k. (2.43e)

The KKT conditions lead to a linear system, which can effortlessly be solved to obtain Newton
steps into the direction of the globally optimal solution z∗qp.

IP methods deliver good performance across a broad range of practical problems [139, p. 480],
[153, p. 487], [156]. Moreover, they can efficiently deal with a large number of inequality
constraints [152]. However, IP methods cannot easily be warm-started [138, p. 555], [139,
p. 485], which means that a good initial guess does not speed up the solution process as much
as in active-set methods. An IP method tailored to QPs is implemented in, e.g., the open-source
solver high-performance interior point method (HPIPM) [157].

QP - Active-set Methods

We consider the QP (2.41) with a quadratic objective function J(o) and linear inequality con-
straints g j(o),

min
o ∈ Rn

J(o) (2.44a)

s.t. g1(o)≤ 0, ..., g j(o)≤ 0. (2.44b)

If one identified the subset of binding inequality constraints at the optimal solution o∗ correctly, the
resulting equality-constrained problem would directly lead to the optimal solution o∗. Therefore,
the main idea behind active-set methods is to split the inequality constraints into two groups,
which shall be treated as active and inactive ones in every phase of the algorithm. The FONC
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for this approach can be written as [153, p. 363], [139, p. 467]

∇J(o∗) +
∑

j∈A

µ∗j∇g j(o
∗) = 0 (2.45a)

g j(o
∗) = 0, j ∈ A (2.45b)

g j(o
∗)< 0, j /∈ A (2.45c)

µ∗j > 0, j ∈ A (2.45d)

µ∗j = 0, j /∈ A. (2.45e)

Here, (2.45c) guarantees that the inactive constraints are satisfied and their corresponding
Lagrange multipliers are zero (2.45e). At the same time, the Lagrange multipliers of the active
constraints must be nonnegative (2.45d).

An active-set method assumes a working set W , which is a subset of the active constraints A, in
each phase of the algorithm [153, Section 12.3]: This working set W spans a “working surface”,
on which the algorithm moves to improve the solutions of its iterations. If during the movement
on the working surface new constraints become active, they are added to the working set W .
Finally, if the stationarity condition (2.45a) is fulfilled within the working set W , and its Lagrangian
multipliers are nonnegative, the optimal point o∗ is found. However, if some of the Lagrange
multipliers are negative, the corresponding constraints are removed from the working set W and
the procedure is restarted.

Negative Lagrange multipliers µ j directly indicate that the objective function J(o) can further
be improved by dropping the corresponding constraint from the active set W . We illustrate this
principle in Figure 2.12 [153, p. 365]. In the current phase of the active-set algorithm, o denotes
the minimum point of the objective function J(o) which additionally adheres to the constraint
g1 (o) = 0. The Lagrange multiplier µ1 is negative. The gradient of J(o) suggests moving into the
feasible region for further improvement. By this, g1(o) will not hold with equality, i.e., g1(o) will
become inactive but will still be fulfilled.

g1 (o) = 0 g2 (o) = 0

o

∇gT
1 (o)

∇J T (o)

feasible region

Figure 2.12: Moving into the feasible region and along the opposite direction of the gradient of the
objective function J (o) improves the solution. Constraint g1 (o) should therefore be dropped
from the working set W [153, p. 365].

Active-set methods can efficiently be warm-started to reduce the computation time compared to
IP methods [139, p. 490], [156, 158]. However, in the worst case, i.e., when the algorithm has to
explore all possible combinations of binding constraints, its solver time can rise enormously [139,
p. 477]. Active-set methods are in general slower on large QP problems compared to IP
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methods [139, p. 490], [158]. Normally, they require more iterations to converge, whereas
one iteration is computationally cheaper compared to IP methods [159]. In addition, active-set
algorithms can get stuck during cycling/zigzagging when repeatedly dropping and adding the
same constraints to the active set W [153, p. 367], [139, p. 477]. A primal-dual active-set method
is implemented in the open-source solver QP online active set strategy (qpOASES) [159]. It is
particularly well-suited for, e.g., MPC applications, since the optimal solutions of subsequent
optimization problems are often close to the previous ones [148, p. 32].

QP - Alternating Direction Method of Multipliers

To formulate the alternating direction method of multipliers (ADMM) we consider the general QP
in (2.41). It can be rewritten to [156], [140, p. 693]

min
zqp ∈ Rn

1
2

zT
qpPzqp + q T zqp (2.46a)

s.t. Azqp = z̃ (2.46b)

z̃ ∈ C, (2.46c)

where the convex set C = {z̃ ∈ Rm | li ≤ z̃i ≤ ui , i = 1, ..., m}. The augmented Lagrangian of (2.46)
can be written as

LA

�

zqp, z̃,λ
�

=
1
2

zT
qpPzqp + q T zqp +λ

T
�

Azqp − z̃
�

+
c
2





Azqp − z̃






2

2
(2.47)

with λ representing the Lagrangian multipliers of the equality constraints, and c denoting a
penalty factor. A new iterate

�

zk+1
qp , z̃k+1,λk+1
�

is calculated according to the update rules [140,
p. 693]

zk+1
qp ∈ arg min

zqp∈Rn
LA

�

zqp, z̃k,λk
�

(2.48a)

z̃k+1 ∈ arg min
z̃∈Rm

LA

�

zk+1
qp , z̃,λk
�

(2.48b)

λk+1 = λk + c
�

Azk+1
qp − z̃k+1
�

. (2.48c)

This preceding procedure illustrates that the ADMM uses alternate minimizations to decouple
connected variables, which makes it well-suited for parallel computing for large problems [140,
p. 691]. Additionally, an ADMM provides solutions of modest accuracy in a small number
of computationally cheap iterations. The method is therefore also ideally suited for practical
implementations on embedded processors with limited computing power as [156] summarizes.
An open-source solver which has an ADMM implemented is operator splitting quadratic program
(OSQP) [156].

2.2.3 Application to Optimal Control Problems

Practical problems in engineering like the computation of a maximum velocity profile under the
constraints stemming from a vehicle’s driving dynamics, finding a time-optimal ES or global race
trajectory for an electric race car, are OCPs. In general, OCPs can be solved by three different
methods, namely dynamic programming (DP), indirect, and direct methods. Applying DP results
in the Hamilton-Jacobi-Bellman equation, which suffers from the course of dimensionality after a
tabulation in state space when solved numerically. Indirect methods derive a boundary value
problem, which comprises differential equations that are difficult to solve due to a high degree of
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nonlinearity and instability. Finally, direct methods transform the OCP into a finite-dimensional
NLP [160], which can be solved with off-the-shelf algorithms. Direct methods handle inequality
constraints well in comparison to indirect techniques. According to [161], [162], direct methods
are the most successful methods to solve OCPs, especially in practical applications. Therefore,
we will focus on them in the remainder of this thesis.

In the previous sections we have introduced the necessary and the sufficient optimality criteria
and explained their specific form in different iterative optimization methods. These criteria remain
valid to compute the optimal control strategies in nonlinear optimal control problems (NOCPs),
since their mathematical form is directly connected to NLPs after discretization. The general,
time-continuous form of an OCP can be written as [138, p. 493], [148, p. 23]

min
o(t)

∫ T

0

l(x (t), u(t)
︸ ︷︷ ︸

o(t)

)dt + lf (x (T )) (2.49a)

s.t. x (0) = x 0 (2.49b)

dx (t)
dt

= ẋ (t) = f (x (t), u(t)) , t ∈ [0, T] (2.49c)

g (x (t), u(t))≤ 0, t ∈ [0, T] (2.49d)

g f (x (T ))≤ 0. (2.49e)

In this formulation, l : Rnx×nu 7→ R denotes the running cost, lf : Rnx 7→ R the final stage cost,
g : Rnx×nu 7→ Rr the path constraints, and g f : Rnx 7→ Rrf the terminal constraints. The vector
f : Rnx×nu 7→ Rnx contains the system dynamics, and T marks the final time. In the following
sections we will introduce several discretization techniques to transform OCPs into an NLP.

Single Shooting

Single shooting discretizes the control trajectory u(t) of an OCP by the parameters q k, which
are, e.g., piecewise constant, u(t) = q k for t ∈ [tk, tk+1] with k = 0, ..., N − 1. The control input
per time step k has the dimension nq, therefore q ∈ RN−1×nq . The system states x can then be
expressed as dependent variables on the time t and the control parameters q and the governing
dynamics f , i.e., x (t;q), when an initial value x 0 is provided [161, p. 7],

ẋ (t) = f (x (t), u (t;q)), ∀t ∈ [t0, tN ] (2.50a)

x (0) = x 0. (2.50b)

The notation · (t; ·) expresses that t is a free variable, and there are additional parameters noted
after the semicolon. To numerically integrate f (x (t), u (t;q)), schemes like the Euler or Heun
method can be applied. Different explicit and implicit Runge Kutta methods of higher order
deliver more accurate and stable results at the expense of computational steps to perform [138,
p. 496f.].

Figure 2.13 illustrates the single shooting approach for a problem with one system state x(t;q)
and a one-dimensional control input u(t;q). Finally, the NLP of an OCP discretized by single
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t

x0

q0

q1

qN−1

tN0

u(t;q)

x(t;q)

gf (x(tN ;q))

t0 t1

Figure 2.13: Single shooting discretization method for a problem with a single system state x(t;q), a
one-dimensional control input u(t;q), and a terminal constraint gf(x(tN ;q)) [161, p. 7].

shooting reads

min
q ∈ RN−1×nq

N−1
∑

k=0

l
�

x (tk;q),q k

�

+ lf(x (tN ;q)) (2.51a)

s.t. g (x (tk;q),q k)≤ 0, k = 0, ..., N − 1 (2.51b)

g f(x (tN ;q))≤ 0. (2.51c)

An advantage of single shooting are the relatively few optimization variables and constraints.
Moreover, an initial guess is only necessary for the control variables, which makes this approach
simple to use. On the other hand, in single shooting the user cannot provide prior knowledge
of the state trajectory x (t;q). Additionally, this technique can in general not handle unstable
systems [161, p. 8].

Multiple Shooting

As in single shooting, the control trajectory u(t) is parametrized by the discrete values q k, which
are constant between the discretization points, u(t) = q k for t ∈ [tk, tk+1]. However, in multiple
shooting the governing ODE system f , representing the physical behavior of the controlled
system, is solved independently in each of the discretization intervals. Therefore, artificial state
variables χk are necessary, which must be constrained to equal the integrated values of the
ODEs [161, p. 10]:

ẋ k(t) = f
�

x k(t),q k

�

, t ∈ [tk, tk+1] (2.52a)

x k(tk) = χk. (2.52b)

By solving the initial value problem in (2.52) the trajectory pieces x k

�

t;χk,q k

�

result (Fig-
ure 2.14).

27



2 Preliminaries and State of the Art

t

q0

q1 qk qN−1

χ0

χ1

χk
χk+1

χN−1
x0

0 t0 t1 tk tk+1 tN−1 tN

χN

xk (tk+1;χk, qk)

Figure 2.14: Discretization using multiple shooting for a problem with a single discretized system state
xk (t;χk, qk), and a one-dimensional control input u(t) = q [161, p. 11].

The formulation of the resulting sparse NLP reads [163]

min
χ ∈ RN×nx , q ∈ RN−1×nq

N−1
∑

k=0

lk
�

χk,q k

�

+ lf
�

χN

�

(2.53a)

s.t. χ0 = x 0 (2.53b)

χk+1 = x k

�

tk+1;χk,q k

�

, k = 0, ..., N − 1 (2.53c)

g
�

χk,q k

�≤ 0, k = 0, ..., N − 1 (2.53d)

g f

�

χN

�≤ 0. (2.53e)

The objective function (2.53a) sums over the running costs per interval lk
�

χk,q k

�

, thus

lk
�

χk,q k

�

=

∫ tk+1

tk

l
�

x k

�

tk;χk,q k

�

,q k

�

dt. (2.54)

Further, (2.53b) constrains the initial value of the first artificial state vector χ0, and (2.53c)
ensures continuity between the artificial states χk+1 and the physical ones x

�

tk+1;χk, qk

�

. The
discretized path and terminal constraints are denoted by (2.53d) and (2.53e), respectively.

By solving the ODE system f independently on every discretization interval, the numerical
stability of the optimization process is significantly improved [161, p. 10], since the growth of an
error stemming from a poor initialization of the optimization problem is prevented. Additionally,
inherent instabilities of the ODE system are propagated in a minimal way [163]. Prior knowledge
of the state trajectory can be used during initialization of the optimization algorithm when the
multiple shooting technique is applied. However, the resulting optimization problems is larger
compared to single shooting, since additional artificial states χk need to be introduced.

Direct Collocation

Direct collocation discretizes the states and the controls simultaneously [161, p. 8 f.]. The system
behavior for t ∈ [0, T],

ẋ − f (x (t), u(t)) = 0

χk+1−χk
tk+1−tk

− f
�χk+χk+1

2 ,q k

�

= 0 = hk

�

q k,χk,χ ′k,χk+1

�

,
(2.55)
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is integrated into the optimization problem by finitely many equality constraints hk. The symbols
χ ′k denote intermediate states between the main discretization points k. We will neglect the
dependency on χ ′k in the remainder of this section.

The resulting NLP can be written as [161, p. 9 f.]

min
χ ∈ RN×nx , q ∈ RN−1×nq

N−1
∑

k=0

lk
�

q k,χk,χk+1

�

+ lf
�

χN

�

(2.56a)

s.t. χ0 = x 0 (2.56b)

hk

�

q k,χk,χk+1

�

= 0, k = 0, ..., N − 1 (2.56c)

g
�

χk,q k

�≤ 0, k = 0, ..., N − 1 (2.56d)

hf

�

χN

�≤ 0, (2.56e)

where the running costs can approximately be integrated by

lk
�

χk,χk+1,q k

�

=

∫ tk+1

tk

l (x (t), u(t))dt ≈ l
�χk +χk+1

2
,q k

�

(tk+1 − tk) . (2.57)

The benefits of direct collocation include the sparsity of the resulting NLP. However, it comprises
a higher dimensionality compared to multiple shooting. Direct collocation shows fast local
convergence during the iterative solving procedure. Moreover, the state trajectory x (t) can be
initialized prior to the optimization process, and inherently unstable systems can be handled by
this discretization technique [161, p. 10].

2.3 Trajectory Planning

The task of trajectory planning with regards to the driving dynamics of a vehicle, is a widely
studied field. There are real-time-capable algorithms, which are usually developed to be operated
in an autonomous driving software stack and therefore tailored to a specific task. Offline methods
are commonly used to perform, e.g., sensitivity analyses of vehicle parameters. A prominent
application regarding passenger vehicles are the eco-driving algorithms, which are used offline
for the analysis of a globally optimal route selection and driving behavior. In an online fashion,
they can evaluate the driving pattern regarding, e.g., the driver’s energy efficiency. In racing, the
calculation of a globally time-optimal race trajectory is rather performed offline. In contrast, the
planning and control of a fully autonomous race vehicle must be calculated by sufficiently fast
algorithms online. In rare cases, pure planning algorithms consider the behavior of an electric
powertrain, since electrified autonomous racing series are just evolving. Nevertheless, the SOC
of the energy storage, and the temperatures of the powertrain components are crucial to operate
at the global performance limits. In the remainder of this section we will therefore give a brief
overview of the related literature (Table 2.3), focusing on planning algorithms suited for racing
applications. Further analyses can be found in the main part of this thesis, which is framed by
our prior publications that also incorporate detailed topic-specific literature reviews.
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Table 2.3: Literature overview of trajectory planning algorithms, subdivided into groups according to
their online capability and the incorporation of the electric powertrain behavior.

No el. powertrain behavior Incorporated el. powertrain be-
havior

Offline [160, 164–170] [127, 171–180]
Online [24, 181–201] [14, 202–210]

2.3.1 Offline Computation Without Powertrain Behavior

In the following we will describe offline trajectory optimization algorithms, which do not consider
a detailed powertrain behavior. They are used for sensitivity analyses of the vehicle parameters
and to find global time-optimal race trajectories.

The theoretically optimal maneuvering behavior of a Formula 1 car has been studied via
formulation of NLPs. These have subsequently been solved using either an SQP method [164]
that is implemented in the sparse nonlinear optimizer (SNOPT) solver package [211], or a
nonlinear IP method as in IPOPT [212]. These minimum lap time problems (MLTPs) are extended
by the three-dimensional geometry of race tracks in [169]. To solve them, the general purpose
optimal control software (GPOPS-II) [213] is used, which transcribes the formulated OCP via a
direct pseudo-spectral collocation method. Further extensions include the thermodynamic tire
behavior [170], and the interaction of the suspension system and the aerodynamics [168]. By
this means, the influence of tire wear and the aerodynamic setup on the lap time performance
was analyzed. The work in [166] increases the vehicle dynamics model complexity to 14 degrees
of freedom. A GP2 car is modeled as a multi-body system, which is capable of calculating wheel
spin, suspension travel, and the full chassis motion. This detailed description allows to tune, e.g.,
the aerodynamic setup or gearing settings. The resulting OCP is solved by the indirect method
PINS [214]. Tire-specific friction coefficients are considered in [165]. The formulated MLTP is
transcribed via the direct orthogonal collocation discretization technique. In turn, the resulting
NLP is fed into the nonlinear IPOPT solver [152].

A less computational-intense approach approximates the time-optimal global race path [167]. To
do so, a minimum-curvature QP formulation, based on an occupancy grid map, is deduced.

In order to optimize the vehicle movement during a double-lane change manoeuvre [160]
formulates an OCP, which comprises the vehicle dynamics of a single track model and includes
integer variables to represent gear shifts. The applied solver package multiple shooting code for
direct optimal control (MUSCOD-II) [215] implements a multiple shooting discretization technique,
and allows to select various SQP-type solution strategies [216].

2.3.2 Offline Computation With Powertrain Behavior

When it comes to offline trajectory planning algorithms that also consider the electric powertrain
behavior, the majority of the available literature has been published most recently.

For solar race cars, velocity profiles [174] and energy management strategies [171] have been
optimized. The strategies in both aforementioned publications compute the time-optimal race
trajectories whilst the latter one takes also the electric motor efficiency and battery constraints
into account. As solvers for the resulting NLPs, stochastic algorithms and MATLAB’s general
purpose solver “fmincon” were leveraged.
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An energy management strategy is also vital for hybrid electric vehicles. The presented algorithm
in [179] minimizes the usage of fuel energy. The resulting optimization problem is relaxed to
obtain a convex form and subsequently solved by the embedded conic solver (ECOS) [217].
Also, [176] deduces the optimal velocity profile and energy management strategies for a hybrid
Formula 1 powertrain architecture by a convex formulation. The optimized control inputs are the
engine input and the mechanical motor generator unit power, which lead to a minimum lap time.
This formulation was also adapted to describe qualifying scenarios [180]. For the same race
format, [175] optimizes the energy management and gearshift strategies, iteratively combining
algorithms based on Pontryagin’s minimum principle (PMP), DP, and convex optimization.

Finally, fully electric powertrain architectures have been considered in the frame of MLTPs.
The convex [173] and the quasi-convex OCP formulations in [127, 172] derive minimum time
velocity profiles for the Le Mans race circuit. They compare fixed gear and continuously variable
transmission systems including different levels of transmission efficiency and available battery
energy. Moreover, [127] incorporates the thermodynamic behavior of the electric motor such
that the optimal velocity profiles do not violate the critical admissible machine temperatures.
A nonlinear OCP to deduce an energy strategy for the Formula E racing format is presented
in [178], where GPOPS-II was leveraged as the NLP solver. The presented results discuss the
effects of different energetic and thermal powertrain constraints. For the same problem, also
artificial neural networks have been used [177]. In this approach the battery temperature and its
SOC span the decision variables. The presented method provides optimal control predictions for
horizons of up to 32 race laps. Conversely, subsequent extensions of the neural network by, e.g.,
different physical effects, require a computationally intensive re-training phase.

2.3.3 Online Planning Without Powertrain Behavior

In online-capable trajectory planning approaches the computation time plays a crucial role.
Specifically, its peak values can cause serious safety issues for an autonomous vehicle operating
at the limits of handling. Therefore, different concepts have been formulated in the literature to
efficiently compute local trajectories in an autonomous driving software stack.

Decoupled approaches are presented in [187, 193, 201]: First, a physically drivable path is
selected and, second, a feasible velocity profile is added. Therein, the paths are generated
by graph search and mesh methods. For the isolated task of velocity profile planning, tailored
packages for ground vehicles like MTSOS [191] are available. Similar graph- and sampling-based
approaches can be found in [185, 186, 188, 189, 192, 196, 199]. Specifically, [196] sets up a
multi-layered graph-based path planner tackling non-convex scenarios, and generates feasible
solutions during car following or overtaking maneuvers. The algorithm generates drivable splines
offline and selects them online through solving a shortest path problem.

Since decoupling the path and velocity planning problem can lead to suboptimal solutions,
research has also been done on combined approaches. Computational efficient algorithms use
techniques of iteratively linearizing the underlying optimization model. Based on this method,
an MPC was implemented [183], which also avoids obstacles, leveraging the least squares
solver LSSOL [218]. Its real time capability was validated in a test vehicle. A similar approach is
shown in [181] which also considers velocity-dependent friction maxima. The resulting problem
was solved by the IBM “cplexqp” solver routine [219]. A stochastic MPC is proposed in [200],
which is solved on a powerful GPU to operate a model car. To iteratively increase the controller
performance [182] proposes a repetitive learning MPC, which solves the underlying optimization
problem in real time using IPOPT.
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Safety trajectories are computed in [197] by an OCP, where the working principle was validated
in simulation. The experiments were conducted dealing with objects traveling at city driving
speeds. The optimality of the numerical results calculated using the automatic control and
dynamic optimization (ACADO) toolkit [220] was additionally validated against a DP algorithm.

Static obstacles were also dealt with in [24] by replanning given reference trajectories at spatially
fixed points on the race track. The formulation is based on a point mass including longitudinal
weight shifting, resulting in a quadratically constrained quadratic program (QCQP). Leveraging
the nonlinear solver FORCES Pro [221], the computation times allow to evade static obstacles at
experimentally validated velocities above 100 kmh−1. The studies in [198] combine a trajectory
pre-sampling method and a subsequent optimization, which is solved using Gurobi [222], to
select the cost-minimal side to pass an obstacle. Thereby, a varying tire road friction potential is
included. Instead of pre-sampling trajectories to cope with the logical constraints of where to
overtake other cars, [190, 195] formulate mixed-integer quadratic programs (MIQPs). These
formulations are particularly promising to find solutions with global optimality guarantees but
they can demand large peak computation times.

Additional safety features through intermediate milestones were included in [184], which ad-
dresses the problem of finite computation times on limited hardware resources. Therein, a
randomized incremental roadmap planning algorithm, which considers dynamic constraints on
the vehicle’s motion, is proposed. The approach was validated on an autonomous ground robot
and a model helicopter. To operate in uncertain environments including dynamic obstacles, [194]
sets up an OCP to navigate the vehicle through the remaining free space, which is limited by the
obstacle movement predictions. The approach was validated experimentally on a model-sized
KUKA robot. The resulting trajectory planning NLP is solved using CasADi and IPOPT.

2.3.4 Online Planning With Powertrain Behavior

Currently, there are few publications available which deal with the task of online trajectory
planning while simultaneously incorporating the powertrain behavior in the modeling approach.
Therefore, we will also present related eco-driving algorithms that are not necessarily well-suited
for racing applications. However, some of their general ideas can be reused.

Analytical solutions to eco-driving problems for combustion, hybrid, and electric powertrain
architectures are summarized in [209].The work in [202] proposes the formulation of an OCP,
which objective function strives to minimize the energy drawn from the battery storage. The
algorithm can be used online as a driver assistance system to inform about the optimal velocity
profile. Therein, the powertrain losses are assumed to be quadratically dependent on the
PMSM torque. Similarly, [210] implements an MPC to predictively adapt the vehicle velocity
profile for energy saving purposes. The underlying system model is based on a point mass
description including a loss map of the electric motor. The gradient-based MPC (GRAMPC)
solver was chosen [223], which is specifically designed for OCPs. Most recent literature also
formulates numerically efficient eco-driving algorithms leveraging IPOPT for different powertrain
architectures [14], and to incorporate driver preferences [203].

When it comes to racing applications, [204] proposes a multi-stage optimization method for a
solar-powered vehicle. Thereby, an ES comprising several race days is computed. In addition
to planning this high-level strategy, the detailed, continuous vehicle control inputs are simul-
taneously optimized on the low level. A nonlinear loss model of the BLDC motor is included.
With the help of a pseudo-spectral discretization technique and the general purpose optimal
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control software (GPOPS), competitive calculation times were achieved. For Formula 1, a series
of publications dealing with real-time-capable ESs are available: In [206] the optimal power
distribution for hybrid high-performance powertrains is studied. The work derives an ES an-
alytically leveraging PMP and nonsmooth analysis. In a subsequent work, a two-level MPC
scheme is introduced to recalculate the formulated ES, thus reacting to unforeseen events in real
time [207]. Therein, an upper level is implemented, which runs a convex MPC that is solved by
ECOS [217] to frequently update the lap-time-optimal strategy. The additional low-level controller
tracks the state trajectories computed by the high-level algorithm by iteratively solving an LP
via the commercial package FORCES Pro [221]. Also, a feedback controller, inspired by the
equivalent consumption minimization strategy (ECMS), was implemented to achieve a minimum
lap time [208]. The presented approach is able to handle stochastic disturbances by tracking and
adapting an offline-generated ES. Moreover, this algorithm drastically reduces the computational
effort compared to the MPC approach. To jointly optimize the race trajectory and the hybrid
powertrain’s power flow, [205] proposes an indirect method operating in real time.
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ture

As stated in the previous Section 2.3, many algorithms, which deal with the task of local
trajectory planning for vehicles, incorporating the driving dynamics, are available. However, these
algorithms seldom consider the combination of thermal and energetic constraints, stemming from
the electric powertrain operating at the performance maximum. By doing so, their computational
complexity would increase substantially and they may therefore lose the sufficiency for an online
operation. Some offline-suited global race trajectory algorithms partially include the electric
powertrain behavior. Nevertheless, these are not designed for an online integration on an
embedded vehicle electric control unit (ECU). With the evolution of autonomous electric vehicles,
algorithms dealing with the efficient consumption of energy, while simultaneously adhering
to the thermodynamic powertrain constraints, become vital. Moreover, these algorithms must
seamlessly be integrable in an existing autonomous driving software stack, which operates
the vehicle at the handling limits. Therefore, the following research questions arise and will be
addressed throughout this thesis.

3.1 Research Questions

• Which software module architecture is appropriate to realize an ES, building on an
existing software stack used for autonomous driving?

• How can an ES be structured to adhere to the technical limitations of the electric
powertrain and the driving dynamics? How can the ES still use the available,
limited amount of battery energy as lap-time-efficiently as possible to achieve a
time-minimal result in a racing application?

• Which mathematical and numerical formulations of the ES algorithms are real-
time-capable but will simultaneously predict small physical errors regarding the
powertrain behavior?

• Which mathematical formulation of the ES is adequate for future extensibility by
additional physical constraints whilst keeping its computational complexity small?

3.2 Energy Strategy for Battery Electric Race Vehicles

Following up on the first two research questions, we introduce the software stack used in
the autonomous driving competition Roborace in Figure 3.1 [12, 224]. The structure of the
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Sensors Mapping

Localization

Perception Velocity Optimization 3

Local Path Planner
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Energy Strategy
Core Module 2

Energy Strategy
Trajectory Planner 1
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Powertrain states

Current position Power
limits

Global raceline

Global
trajectory

Autonomous driving software stack ES-related software modules Hardware
Slow update frequency

Figure 3.1: Software stack of an autonomous, electric car. The software modules which have been
created or extended by ES-related content, are marked by black rectangles, the ES Core
module is additionally highlighted in green to express its slower update frequency in compar-
ison with the rest of the software stack [9, 12, 224].

software modules basically follows the scheme of navigation, guidance, and control as well as
the high-level architecture introduced in Chapter 1.

The software modules that extend this software stack by energy strategy-related functionality are
marked in black. To clarify the basic ideas of the proposed ES architecture, we will briefly intro-
duce the local trajectory planner and its requirements in greater detail in the following paragraph,
since energy-related considerations must be taken into account during the planning of the vehicle
movement. Subsequently, we will explain the key ideas of the energy strategy-related software
modules to justify their functionality and position in the proposed architecture. We introduce
the final software architecture here, since it is important to understand the interconnection
and the interplay of the single software modules before diving into their specific functionality.
The software architecture in Figure 3.1, which is also part of the results of this thesis, will be
presented in Chapter 5 in greater detail.

3.2.1 Local Trajectory Planner in an Autonomous Driving Software
Stack

A local trajectory must be [225] [226]

• collision-free,

• physically drivable with respect to the vehicle parameters,

• within the identified and free driving space,

• continuous in its heading, and – depending on the type of vehicle motion controller –
be steering-continuous [167, 196],

• recursively feasible regarding the planning horizon by restricting the final state of
every local trajectory to a safe one.
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Furthermore, and especially in autonomous racing, there are several performance requirements
a local trajectory planner must meet. First, it must be able to solve combinatorial problems
to identify the best suitable path avoiding or overtaking obstacles [227]. To deal with this
task, an approach capable of discrete decision making is necessary. Second, tight real-time
requirements must be met. Operating a vehicle at speeds of up to 220 kmh−1 as in the Roborace
competition [25] or even 270 kmh−1 as in the Indy Autonomous Challenge [44] requires the
trajectory planner to operate at a frequency of at least 10 Hz [196]. Smaller update rates would
result in an uncontrollable vehicle motion, since the reaction time regarding static or dynamic
obstacles would be too high. In the following section we will therefore propose an ES architecture,
which tackles these challenges.

3.2.2 Energy Strategy Architecture

To meet the introduced requirements of the trajectory planning algorithm and those of its output in
real time, we propose the ES architecture given in black rectangles in Figure 3.1. It considers the
energetic and thermodynamic powertrain behavior by extending the autonomous driving software
stack by three contributions. These are the “ES Trajectory Planner”, the “ES Core Module” that
adapts the ES in real time, and a “Velocity Optimization” algorithm. Their functionality will be
introduced in the paragraphs below.

1 Energy Strategy Trajectory Planner (Global, Offline)

This module builds upon the offline race trajectory optimization algorithm of [165]. We extend the
nonlinear double track model by the description of a fully electric powertrain to deduce the power
losses occurring in each of its components. Therewith, we compute the powertrain components’
thermodynamic behavior and include constraints on the energetic and thermodynamic state
variables, which must not be exceeded when following the global race trajectory. By this, the
influence of the powertrain thermodynamics on the optimal raceline, i.e., the geometry of the
trajectory, and the corresponding time-optimal velocity profile can be studied. Furthermore, the
generated racelines serve as input into the ES Core Module.

Publications: [2, 3]; open source (OS) Code: [6].

2 Energy Strategy Core Module (Global, Online)

The ES Core Module includes an online-capable algorithm, which iteratively reoptimizes the
power usage of the vehicle for a horizon of the remaining race distance and thereby solves a
minimum race time problem (MRTP). To do so, it adapts the ES to unforeseen events and distur-
bances to permanently adhere to the constraints arising from the driving dynamics, energy, and
thermodynamics. Finally, the calculated power limitations are forwarded to the LTPL. The power
loss descriptions of the powertrain components, that translate into temperature contributions,
are based on physically detailed models. The component losses and their temperature profiles
have been validated with the help of measurement data of a full-scale electric race vehicle.
The corresponding publication additionally presents a justification of the selected numerical
solver to iteratively compute the ES, and validates the module’s results for a single race lap by a
comparison to a state-of-the-art MLTP algorithm.

The ES Core Module’s computation time lies in the range of approx. 0.1 Hz. Since an autonomous
vehicle’s planning frequency must be significantly faster, the module cannot be integrated in
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series with the other software modules of the autonomous driving software stack. Therefore
we propose the dual architecture given in Figure 3.1. Here, the ES Core Module is running in
parallel to the Pre-, Post-, and LTPL modules. The outer software loop provides local trajectories
with a sufficiently high update rate of about 10 Hz to 20 Hz. The inner software loop (connections
to and from the ES Core Module, which is marked in green) is permitted to replan the ES with a
frequency of about 0.1 Hz, since the proposed architecture decouples the task of fast trajectory
planning and vehicle control from the ES recalculations. Once a valid ES for the remaining race
distance is available, it will be updated with a frequency which is in accordance with the slower
change rate of the powertrain thermodynamics. Thus the power limitations can be independently
retrieved by the velocity optimization module.

Publication: [9]; OS Code: [10]; Manual [11].

3 Velocity Optimization (Local, Online)

As part of the trajectory planning module, the velocity optimization algorithm acts as the interface
between both, the inner and the outer software loop in the architecture. In real time, it computes
speed profiles, leading to a time-minimal racing behavior on the locally selected paths [196].
To achieve this goal, its computation time is kept low by setting up the underlying optimization
problem as numerically efficient as possible. However, the multi-parametric formulation enables
to incorporate external information stemming from, e.g., the ES Core Module, which provides
spatially discretized maximum power values. The real-time capability of the formulated algorithm
was proven on an embedded vehicle ECU in a high-fidelity nonlinear hardware-in-the-loop (HIL)
simulator in the corresponding publication. Additionally, this module’s output speed profiles have
been validated by a comparison to different mathematical problem formulations and optimization
solvers.

Publication: [4]; OS Code: [7, 8]; Manual: [5].
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4 Energy Strategy Trajectory Planner
(Global, Offline)

The offline calculation of the ES is vital to study the impact of energetic and thermodynamic
constraints of the powertrain components on the global race trajectory. The following sections will
quantify their influence, and derive conceptual ideas for the implementation of an online-capable
algorithm for the dynamic replanning of the ES.

4.1 Concept and the Influence of
Energetic Constraints – ITSC 2019

Summary

The corresponding publication presents the concept for the static calculation of an ES for
autonomous electric race cars. The proposed OCP identifies the time-minimal global trajectories,
consisting of path and velocity, along the race track. The algorithm builds upon the MLTP depicted
in [165], which is extended by constraints imposed by energetic limitations and recuperation
through braking. Moreover, we deduce and interpret their influence on the geometry of the
optimal global race path and the related vehicle velocities.

The literature review testifies to a broad variety of publications dealing with the optimal control
of road vehicles. They differ in the applied mathematical and numerical approaches, ranging
from analytical solutions, mixed-integer linear programs (MILPs), MIQPs, graph search methods,
second order conic programs (SOCPs), towards NLPs [160, 164, 169, 176, 179, 184, 188, 195,
202, 208, 209, 228]. We choose to solve the energy-constrained MLTP using an NLP, since this
formulation allows for a subsequent extension by the powertrain component behavior, delivers
results which have proven to cohere with real-world applications, and promises competitive
computation times.

The presented OCP models the vehicle dynamics as a nonlinear double track model, including
the tire behavior using the Pacejka formulation [229]. The space-dependent state variables com-
prise the vehicle dynamics with the reference line forming the basis of the trajectory optimization.
The control inputs are the acceleration and brake forces as well as the steering angle.

After the transcription via direct collocation to an NLP within the CasADi framework [149], the
optimization problem is solved by IPOPT [152] (Section 2.2). IPOPT is well-known for its accurate,
high-quality results [151]. The results present the significant influence of energetic constraints on
the time-optimal, global race trajectories, and are summarized in Figure 4.1. We vary the allowed
amount of energy per lap consumption ĒΣ manually: By decreasing this design parameter the
vehicle reduces the velocity maxima through shorter acceleration phases combined with coasting.
Thus the race car rolls off into the braking zones, leveraging the aerodynamic drag to slow down.
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Moreover, this behavior influences the optimal race path. Trajectories constrained by tight energy
limitations are shorter in distance to compensate for a time-minimal operation. The vehicle is still
able to follow the suggested path geometries, since the combination of sharper radii in front of
the curve entries in combination with reduced velocities still adhere to the tire constraints.

The correlation between the energy demand per lap and the achievable lap time is displayed
as a Pareto curve. Its hyperbolic shape suggests that a significant reduction of the energy
consumption relates to a small increase in lap time in a certain area of the plot. Powertrain
recuperation improves the Pareto front and thereby allows for a more beneficial compromise
between both opposing objectives.
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Energy Management Strategy for an Autonomous Electric Racecar
using Optimal Control

Thomas Herrmann1, Fabian Christ2, Johannes Betz1 and Markus Lienkamp1

Abstract— The automation of passenger vehicles is becoming
more and more widespread, leading to full autonomy of cars
within the next years. Furthermore, sustainable electric mobility
is gaining in importance. As racecars have been a development
platform for technology that has later also been transferred
to passenger vehicles, a race format for autonomous electric
racecars called Roborace has been created.
As electric racecars only store a limited amount of energy, an
Energy Management Strategy (EMS) is needed to work out the
time as well as the minimum energy trajectories for the track.
At the same time, the technical limitations and component
behavior in the electric powertrain must be taken into account
when calculating the race trajectories. In this paper, we present
a concept for a special type of EMS. This is based on the
Optimal Control Problem (OCP) of generating a time-minimal
global trajectory which is solved by the transcription via
direct orthogonal collocation to a Nonlinear Programming
Problem (NLPP). We extend this minimum lap time problem
by adding our ideas for a holistic EMS. This approach proves
the fundamental feasibility of the stated ideas, e.g. varying race-
paths and velocities due to energy limitations, covered by the
EMS. Also, the presented concept forms the basis for future
work on meta-models of the powertrain’s components that can
be fed into the OCP to increase the validity of the control
output of the EMS.

I. INTRODUCTION

In 2018, the Technical University of Munich (TUM) par-
ticipated in the first Roborace event [1]. Roborace stages the
first race series for autonomous vehicles (Robocars) and is a
support series for Formula E. The software stack developed
by the team at TUM used to operate the Robocar [2] is
already partially publicly available [3]. This paper presents
a concept and the main ideas for an EMS that extends the
software module calculating the global trajectories leading
to the minimum lap time [4]. The EMS is crucial as it
considers component behavior and the inherent limitations
of the all-electric powertrain. This is necessary because of
the significant influence of components on the minimum
achievable race time in total over all laps.
According to [5], the results from research in the field
of autonomous motorsport provide information on future
autonomous road vehicles for the following three reasons:

• The algorithms developed for and tested in an au-
tonomous racecar must be capable of being calculated

1Thomas Herrmann, Johannes Betz and Markus Lienkamp are with
the Chair of Automotive Technology, Faculty of Mechanical Engineering,
Technical University of Munich, 85748 Garching b. Muenchen, Germany
thomas.herrmann@tum.de

2Fabian Christ is with the Chair of Automatic Control, Department of
Mechanical Engineering, Technical University of Munich, 85748 Garching
b. Muenchen, Germany

using limited computational resources in real-time and
must be exceptionally robust.

• As the Robocars have electric powertrains, the devel-
opment of an EMS that enables energy-saving and
energy recovery ensures progress beyond established
technologies, including series production vehicles.

• Since it is also included in the presented EMS, the
choice of trajectory is of major interest for autonomous
passenger vehicles as well as racecars for reasons of
safety, range or a minimal lap time.

For these reasons, the EMS is being developed in the context
of autonomous motorsport for testing under extremely tough
conditions in an enclosed environment, where technical ef-
fects and correlations of the powertrain components can be
clearly seen.
The structure of this paper is as follows: In Section II, the
state of the art is being summarized. Section III contains
the concept of the presented EMS. Section IV describes
the methods used together with formulation of the OCP,
including its states and control inputs as well as the pow-
ertrain architecture of an electric rear wheel drive vehicle.
The results of the presented OCP are described in Section
V, Section VI summarizes the results obtained and also states
the direction of future work and how the presented OCP will
be extended.

II. STATE OF THE ART

The optimal control of vehicles is a complex field that
has been dealt with in prior publications. In the following,
several different mathematical approaches are summarized
in order to plan velocities, paths or entire trajectories with
optimal control based approaches. Their specific advantages
and drawbacks are described.
Within this section we do not distinguish between the specific
objectives that are being optimized in these approaches. They
are classified according to the mathematical optimization
methods, to solve the OCP.

1) Explicit solution: The authors of [6] and [7] calculate
one-dimensional velocity profiles for predefined paths to
minimize the energy demand of the traveling vehicle. The
vehicle’s dynamics are expressed using a simplified point
mass model [8]. The driving resistance is described applying
Newton’s second law resulting in

mẍ =
1

r
Meig −

1

2
ρaAcwẋ

2 −mgcr −mg sin (α(x)) (1)

where x is the vehicle’s position, m the vehicle mass,
Me the output torque of the electric machine, ig the gear



transmission, r the wheel radius, ρa the air density, A the
vehicle’s front surface, cw the aerodynamic drag coefficient,
g the gravitational acceleration, cr the rolling resistance
coefficient and α(x) the road slope.
To bring the energy consumption EΣ into play, [6] introduces
a second order polynomial of the form

EΣ =

∫
b1τ + b2ẋ(t)τ

2dt (2)

with b1, b2 being constant fitting coefficients and τ the
required torque. Neglecting aerodynamic drag, [7] approx-
imates the energy demand by

EΣ =

∫
Fwẋ(t)dt (3)

where Fw depicts the traction force deduced from (1). The
Hamiltonian is devised to deduce an explicit solution to
the stated OCP. As one can distinguish, only simple model
equations can be formulated to be able to determine a
solution using an explicit approach.

2) Mixed Integer Linear/Quadratic Programming: Mixed
Integer Linear Programming (MILP) or Mixed Integer
Quadratic Programming (MIQP) is used widely in order to
generate optimal trajectories for specific driving maneuvers.
In [9], an MIQP formulation is used to solve problems like
vehicle overtaking, obstacle avoidance or lane changes. To
plan global trajectories, [10] uses MILP to find the time-
minimal path while simultaneously avoiding static obstacles.
Furthermore, [11] uses MILP to calculate the optimal energy
distribution within an electric powertrain during driving to
control fail-operational power nets. However, the driving
kinematics modeled within the enumerated publications are
based on simplified point mass models.

3) Graph search: To account for more complex models of
vehicle dynamics, nonlinearities in objective functions or in
the boundary conditions of the optimization problem, graph
search approaches are used widely. The architecture used
in [12] addresses the dynamic constraints on the vehicle’s
motion in real-time. An RRT*-algorithm is implemented
to solve the minimum lap-time problem using a half-car
dynamic model to find its local steering input in [13].

4) Convex optimization: There are several approaches to
relax an OCP of electric vehicles to a convex optimiza-
tion problem [14], [15]. The main advantage of these re-
formulations is the almost negligible calculation time needed
to solve the defined problem. On the other hand, these prob-
lem formulations suffer from subsequent extension, since
any additional equality or inequality constraint must also be
formulated to fit into the existing framework. Furthermore,
[15] and [16] assume a fixed driving path as well as a point
mass to reduce the complexity of the optimization problem.
This in turn enables calculation of a time-optimal velocity
profile exploiting the convexity of the problem formulation.

5) Nonlinear Programming: [17] uses Nonlinear Pro-
gramming (NLP) to solve a minimal lap time problem for a
Formula 1 racecar modeled as nonlinear double track model
including a detailed tire model. The problem formulation

is extended in [18] taking gear shifts into account. Track-
specific parameter optimization is done in [19]. [20] also
considers three-dimensional track courses when solving the
minimal lap time problem. As one can recognize, complex
dynamic scenarios are modeled using an NLP approach.
Unfortunately, the computing times for solving these are rel-
atively long in comparison with other mathematical problem
formulations.

III. CONCEPT

This paper covers the concept and the main ideas for an
EMS for autonomous electric cars. This EMS aims to find
the minimum race time by optimizing global lap trajectories
(path & velocity) while taking the technical constraints of
the components in the all-electric powertrain into account.
The results in this paper demonstrate the overall feasibility
of the stated OCP for one lap trajectory. The formulation of
this optimal control based approach enables us to extend
the problem formulation by component behaviors in the
future. Furthermore, we will be able to consider multiple
consecutive race laps.
On the racetrack, highly dynamic driving scenarios, in-
cluding maximum velocities and peak positive as well as
negative accelerations, occur. These put enormous stress on
electric powertrain components. Additionally, environmental
conditions vary, depending on race locations. Therefore,
extreme heat or cold or humidity and aridness can occur.
Due to these facts, component behavior must be considered
when solving the minimal race time OCP.
Our approach is based on our previous work, as presented in
[4]. Therein, an OCP for planning time-optimal trajectories
was formulated that allows for easy subsequent extension via
the components’ behavior within the electric powertrain. In
this way, we can consider technical constraints and include
energetic considerations in the OCP. This extension enables
planning of the global race trajectories for all race laps that
need to be completed.
Effects within the powertrain leading to unexpected compo-
nent behavior or limited available power can be due to:

• Reaching the maximum permitted battery temperature.
• The maximum permitted temperature of the electric

machines are reached, especially during qualifying, as
higher peak power is allowed there compared to the race
itself.

• A decreased level of efficiency of the motor inverters
due to the battery’s voltage drop to equal the input
voltage of the motor inverters and due to increased
inverter temperature.

• Quadratically higher thermal power loss (Pl,T ∝ I2)
due to higher current I within the powertrain owing to
the continuous voltage decrease in accordance with the
State of Charge (SOC) of the main battery.

The most important components of the electric powertrain
with rear wheel drive are depicted in Fig. 1 with

• Energy storage represented as the battery (B).



• Power electronics converting the battery’s Direct Cur-
rent (DC) into Alternating Current (AC) at rear left (Il)
and rear right (Ir).

• Synchronous permanent electric machines at the rear
left (Ml) and rear right (Mr).

• Gears attached to the electric machines (Gl/r) to trans-
form the motor torque into drive torque.

• Sensors for autonomous driving (Ax) that need to be
powered by the battery and must not be neglected, since
they consume a major amount of the vehicle’s total
energy demand.

The wheels are Wrl and Wrr; displayed is only the rear part
of the whole powertrain.

BIl/rMl/rGl/r

Wrl

Wrr

Ax

Fig. 1. Electric powertrain architecture of a rear wheel drive vehicle

IV. METHODOLOGY

Section III presented a concept and the main ideas for the
EMS for an autonomous electric racecar. This strategy will
lead to the minimum race time TΣ totaled over all the race
lap times Ti,

TΣ =
∑

i=1

Ti. (4)

The vehicle’s dynamics are described using a nonlinear
double track model that includes longitudinal, lateral and
yaw freedoms. This means that a quasi-steady state wheel
load transfer is permitted whenever the car is accelerating
or cornering. For a detailed description of the required
first-order ordinary differential equations describing the
model dynamics, we refer to [4].

An OCP including equality and inequality constraints
to be solved by the EMS is defined by [21, p. 478], [22,
p. 127], [23, p. 215]:

min l(x) (5)

s.t.
dx

ds
= f(x(s),u(s)) (6)

hi = 0 (7)
gj ≤ 0 (8)

with i = 1, ...,m and j = 1, ..., r, where s as the independent
variable within the OCP denotes the distance along the
reference line of the racetrack (Fig. 2).
The following summarizes the formulation of the time-
minimal OCP defined in our previous work [4] and is

extended by energy-related considerations.
The state vector x(s) within the OCP is defined as

x(s) =
(
v β ψ̇ n ξ

)T
(9)

with the vehicle’s states v, β as the side slip angle and ψ the
yaw angle of the vehicle as well as the path model’s states
n denoting the lateral distance to the reference line and ξ
being the relative angle of the vehicle’s longitudinal axis to
the tangent tan on the reference line. Fig. 2 visualizes the
used states of the OCP. θ denotes the angle between tangent
and local x-axis. The gray rectangle with rounded corners
represents the vehicle heading north-east.

x

y

n

tan

θ

ξ

β

ψ

v

reference line

Fig. 2. Vehicle and path model used in the OCP [4]

The control input vector u(s) is defined by

u(s) =
(
Fd Fb δ γ

)T
(10)

with Fd being the driving force, Fb the braking force, δ the
steering input and γ the wheel load transfer according to the
nonlinear double track model [4].
The independent variable s changes according to

ṡ =
v cos (ξ + β)

1− nκ
. (11)

The transitions of the states in x(s) can be summarized as
follows:

v̇ = π1(v, β, δ, Ftire) (12)

β̇ = π2(v, β, δ, ψ̇, Ftire) (13)

ψ̈ = π3(δ, Ftire) (14)
ṅ = v sin (ξ + β) (15)

ξ̇ = ψ̇ − κ
v cos (ξ + β)

1− nκ
(16)

where κ = 1
R describes the geometrical curvature by the

inverse radius R of a local curve in the reference line.
The πi(·) denote a mathematical function. For a detailed
description of these equations, we refer to our previous work
[4].

Here, f(x(s),u(s)) describes the system dynamics and
contains (12) - (16), as well as a functional correlation of the



wheel load transfers according to the used nonlinear double
track model [4].
The objective function l(x) that minimizes the race time can
be written as

l(x) =

∫ SΣ

0

L(x(s),u(s))ds (17)

with L(·) being the Langrangian cost function defined in [24]

L =
dt

ds
=

1− nκ

v cos (ξ + β)
(18)

and SΣ the entire race distance cumulated over all race laps.
The Lagrangian is also needed to transform the time-
dependent Ordinary Differential Equations (ODEs) into
space-dependent ones.
The equality constraints are

h1 = γ −Π (19)
h2 = Fd · Fb (20)

with Π denoting the lateral wheel load transfer. The inequal-
ity constraints are

g1 =
√
F 2
x + F 2

y − 1 (21)

g2 = Fdv − Pmax (22)
g3 = Fd − Fd,max (23)
g4 = −Fd (24)
g5 = Fb (25)
g6 = δ − δmax (26)
g7 = δmin − δ (27)

g8 =
∆Fd

L∆s
− Fd,max

Td
(28)

g9 =
Fb,max

Tb
− ∆Fb

L∆s
(29)

g10 =
∆δ

L∆s
− δmax

Tδ
(30)

g11 =
δmin

Tδ
− ∆δ

L∆s
, (31)

where Fx and Fy are the longitudinal and the lateral forces
set down by the tire. Pmax is the maximum traction power
of the vehicle, Fd,max and Fd,min describe the maximum
drive and break force, respectively, δmax and δmin denote
the maximum positive and the minimal negative steering
angle input. With Tj, appropriate time constants are defined
to restrict the actuator dynamics [24].
The energy consumption during driving EΣ is calculated
using

EΣ =

∫ TΣ

0

Pd + f̄rPbdt (32)

=

∫ TΣ

0

(Fd + f̄rFb)vdt (33)

with Pd being the driving power, Pb the braking power and
f̄r denoting a mean recuperation factor between 0% and
100%. The braking energy can then partially be re-stored

in the battery (Fig. 1).
The inequality constraint

g12 = EΣ − ĒΣ (34)

results, limiting the maximum available amount of energy
(ĒΣ) for the entire race.

V. RESULTS

This section presents the results obtained with the primal-
dual interior-point method IPOPT called by CasADi [25].
The execution time of the solver for the NLP for one
parameter set was always less than a minute on a PC with an
i7-7820HQ CPU and 16GB of memory. The discretization
step size is ∆s = 5.0m.
In all of the following plots, the states x(s) as well as the
control inputs u(s) are optimized to obtain the minimum
race time. To show the feasibility of the presented concept,
the race consists of a single lap on the Formula E track in
Berlin, Germany.
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Fig. 3. Power PΣ, energy demand EΣ and velocity v(s) over the raceline
distance s on the Berlin Formula E racetrack

In Fig. 3, the effects of different limitations of the max-
imum allowed amount of energy per lap ĒΣ are shown.
The influence of ĒΣ can clearly be seen in a constantly



repeating pattern: Peak velocity values are avoided if ĒΣ

gets decreased due to the driving resistance growing quadrat-
ically with the velocity (EΣ ∝ v2). Peak power demands
PΣ(s) are requested on shorter distances and coasting phases
(PΣ(s) = 0 kW) increase with a smaller EΣ. The behavior
at s ≈ 1600m differs a little from the described pattern
but reinforces this explanation (marked with rectangles in
the plots): At this position on the racetrack, a curve to the
right follows a short straight part. With the limited available
amount of energy of ĒΣ = 1.0kWh

lap no positive acceleration
takes place before the curve. In contrast, with twice the
amount of energy allowed for the lap ĒΣ = 2.0kWh

lap , a
positive acceleration occurs resulting in a higher velocity on
the straight part. These described patterns are similar to the
technique of ”lift and coast” in Formula E: Shortly before
a curve, the optimized controlling policy suggests reduction
of the peak power request and keeping the vehicle rolling
for a short distance ∆s. This behavior helps to lose kinetic
energy without braking while simultaneously also reducing
total energy demand.
In the middle of Fig. 3, the cumulated energy demand ĒΣ

is depicted. As the recuperation factor fr was set to 0%
for these experiments, these graphs either ascend or remain
constant. As already stated in the concept in Section III,
the time minimal path of the raceline varies, depending
on the limited amount of every ĒΣ available per lap. In
Fig. 4, both displayed paths vary, especially from (25m, 0m)
to (−40m,−200m) corresponding to the interval of s =
[0m, 500m] of the path distance. In this part of the racetrack
the time-minimal path (ĒΣ = 2.0kWh

lap ) is a little longer than
the one for ĒΣ = 1.0kWh

lap . This is because of the lower
curvature κ following sĒΣ=2.0 kW h

lap
, which simultaneously

allows a higher peak velocity and therefore a smaller lap
time.
A summary of the results presented is given in Fig. 5. Two
Pareto fronts containing the correlation between the minimal
reachable lap time TΣ with a limited amount of available
energy ĒΣ including an average recuperation factor f̄r
are shown. The hyperbolic form of the two fitted curves
expresses the following: reducing the lap time leads to a
squared increase in the energy demand EΣ for the same lap.
When introducing an average recuperation factor, converting
negative braking force Fb to charge the battery (Fig. 1), the
Pareto front bends into the direction of the origin of the
plot. With the help of these Pareto fronts, the decision on
how to set up the race strategy can be made: the effects of
a fast lap on energy consumption can be distinguished and
the consequences for subsequent laps can be deduced. The
future integration of powertrain components’ behavior into
the OCP, as well as extension of the optimization problem to
multiple race laps, help to determine a realistic race strategy
for the entire race.

VI. CONCLUSION & OUTLOOK
In this paper, we presented an optimal control based

approach for determining time-optimal lap trajectories for
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Fig. 4. Time optimal raceline paths for different energy limitations on the
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a rear wheel drive all-electric autonomous racecar, taking
energy limitations into account. The solver IPOPT was able
to find a feasible solution to the formulated OCP in less than
one minute on a standard user PC. The results show that



the EMS can determine the relationships between requested
power, energy demand and path velocity when energy re-
strictions need to be met. Furthermore, the assumption that
the optimal driving path differs from the time-minimal path
when energetic limitations are considered, is confirmed.
This paper defines the basis for future work: The OCP pre-
sented will be extended to multiple race laps instead of one.
Furthermore, the behavior of the powertrain’s components
will be described using meta-models. These can then be
included in the OCP to achieve results taking the powertrain’s
states, e.g. temperatures of the energy storage or the electric
machines, into account. With the help of these meta-models,
a complete race strategy for a given powertrain configuration
and an entire race can be determined.
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4 Energy Strategy Trajectory Planner (Global, Offline)

4.2 Power Losses and the Influence of
Thermodynamic Constraints – ITSC 2020

Summary

In contrast to ICE-powered cars, electric powertrains face tighter temperature limitations. Es-
pecially in electric racing applications these thermodynamic limits must often be exploited to
achieve a minimum race time totaled over the subsequently driven laps. The DevBot 2.0, which
is used as the unitary race car in the Roborace competition among the teams [25], is equipped
with an all-electric powertrain. Its energy storage, consisting of lithium-ion batteries, the VSIs,
and the temperature hotspots in the PMSMs, which are the windings, must not exceed 55 ◦C,
100 ◦C and 180 ◦C, respectively. In this publication we therefore show the significant influence
of the powertrain thermodynamics on the race time performance. When the vehicle follows
the deduced global static ES trajectory, the powertrain components operate at their technical
limits without hazarding safety shutdowns while simultaneously achieving a minimum race time.
Note that no energetic constraints are active in this problem formulation. By this, we isolate the
resulting effects on the static ES due to the thermodynamic constraints, and are able to discuss
them independently.
Apart from the algorithmic implementation of the OCP, this publication defines the three levels
that form the proposed ES of this thesis, which was introduced in greater detail in Section 3. The
global static level comprises the offline computation of the global race trajectories as explained
in Sections 4.1 and 4.2. These plannings need to be dynamically adapted during a race on the
global level to react to disturbances or unforeseen events, which are studied in Chapter 5. Finally,
a local path and velocity planner is necessary to realize the globally (re-)planned strategies,
which are the content of Chapter 6.

A literature study reveals several publications dealing with MLTPs [160, 169, 176, 183, 188, 206,
210]. However, these do not consider the behavior of electric powertrains. Therefore we extend
the OCP presented in Section 4.1 [2], comprising the race car’s driving dynamics as a nonlinear
double-track model, by the powertrain component thermodynamics. The powertrain architecture
and its cooling circuits are depicted in Figure 2.1. We approximate the power losses of the
PMSMs and the VSIs as second order polynomials. These are deduced using measurement
data from our nonlinear HIL-simulator [230]. The description of the battery pack follows an open
circuit model, consisting of a constant OCV and a constant internal resistance [50, p. 51].

The calculated power losses are directly connected to a temperature contribution in the electric
components and their cooling fluids. We deduce the governing ODEs of first order, which express
the temperature dynamics, with the help of a lumped thermal network of the entire powertrain.
Herein, the thermal resistance of the PMSMs (Figure 4.2) is modeled in detail to accurately
describe the heat flow Pcol,M from their temperature hotspots, which are the stator end windings
(temperature TW) [124]. The thermodynamic power Pcol,M is concurrently conducted to the rotor
and the exterior of the electric motor (temperatures T̄F1,M).

After the transcription of the OCP to an NLP via direct collocation using the CasADi modeling
language [149], the discretized optimization problem was solved by the primal-dual IP method
IPOPT [152].

The powertrain’s influence on the time-optimal race strategy is shown by comparing two sce-
narios, spanning two race laps each, where the initial values of the thermodynamic ODEs have
been varied (Figure 4.3): The baseline scenario called “cold” (index “-”) is necessary to calculate
the reference race strategy without active thermodynamic constraints. The scenario “hot” (index

47



4 Energy Strategy Trajectory Planner (Global, Offline)
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Figure 4.2: Thermal resistance model of the PMSM, © 2020 IEEE.

“+”) reveals valuable insights on how to achieve a minimum race time, while simultaneously
adhering to the technical powertrain constraints. Here, we set the initial battery temperature
TB(s) equal to almost its allowed maximum. By following the corresponding optimal race strategy
“hot”, the critical battery temperature TB,max is reached directly when crossing the finish line. This
result can be achieved by a strategy that is different to the lift-and-coast strategy, which was
identified when energetic constraints were active in Section 4.1: In this experiment, the vehicle
linearly decreases the requested driving power on the straights. Through this, the absolute
temperature of the battery can nearly be kept constant on the straights, resulting in an optimal
cooling through the fluid temperature TF2(s) which, in turn, allows for a high driving velocity v(s).
The temperatures of the electric motors, inverters, and the motor-inverter cooling liquid can be
neglected in this experiment, since they stay far below their limitations.

The influence of the thermodynamic constraints on the geometry of the race path, which is a
free optimization variable in the presented OCP, turned out to be minor.
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Minimum Race-Time Planning-Strategy
for an Autonomous Electric Racecar

Thomas Herrmann1, Francesco Passigato1, Johannes Betz1 and Markus Lienkamp1

Abstract— Increasing attention to autonomous passenger ve-
hicles has also attracted interest in an autonomous racing series.
Because of this, platforms such as Roborace and the Indy
Autonomous Challenge are currently evolving.
Electric racecars face the challenge of a limited amount of
stored energy within their batteries. Furthermore, the ther-
modynamical influence of an all-electric powertrain on the
race performance is crucial. Severe damage can occur to the
powertrain components when thermally overstressed. In this
work we present a race-time minimal control strategy deduced
from an Optimal Control Problem (OCP) that is transcribed
into a Nonlinear Problem (NLP). Its optimization variables stem
from the driving dynamics as well as from a thermodynamical
description of the electric powertrain. We deduce the necessary
first-order Ordinary Differential Equations (ODE)s and form
simplified loss models for the implementation within the numer-
ical optimization. The significant influence of the powertrain
behavior on the race strategy is shown.

I. INTRODUCTION

The first autonomous race series for all-electric racecars
is called Roborace. Its main goal is to be a platform for the
development of software powering self-driving cars. There-
fore, Roborace is a race format, bringing cars to their limits
of handling [1]. The special requirements for the algorithms
regarding computational resources, real-time capability, and
robustness are thus outstanding [2], [3]. The race format
of autonomous motor-sports delivers perfect conditions for
testing under tough conditions in an enclosed environment.
We, a team from the Technical University of Munich (TUM),
are participating in this race series. Most parts of our
software stack are available online [4]. This paper describes
the extension of our software by a control strategy calculating
the minimum race-time, taking into account energetic and
thermal constraints arising from the powertrain architecture.
The minimum time control strategy is one of three parts of
our race strategy (Fig. 1). As discussed in the results section
of this paper, the powertrain thermodynamics have a major
impact on the entire race strategy.
This paper is based on the ideas for an energy management
strategy for autonomous electric cars as stated in our previous
work [5]. We extend the state of the art by taking into account
multiple race laps as well as the thermodynamics of the all-
electric powertrain in the OCP that needs to be solved.

1Thomas Herrmann (corresponding author), Francesco Passigato, Jo-
hannes Betz and Markus Lienkamp are with the Chair of Automotive Tech-
nology, Faculty of Mechanical Engineering, Technical University of Munich,
85748 Garching (Munich), Germany thomas.herrmann@tum.de

A. State of the Art

OCPs dealing with trajectory optimization, which is equiv-
alent to solving a Minimum Lap Time Problem (MLTP)
in motor-sports, are well known in the literature. Different
mathematical approaches are used to solve an MLTP. The
variety ranges from graph search methods [6] over Sequen-
tial Quadratic (SQP) [7] to Second Order Conic Problems
(SOCP) [8]. By the transformation of the OCP into an
NLP, the MLTP can be solved with detailed and complex
double-track vehicle and tire models for the purpose of,
e.g., vehicle parameter optimization for Internal Combustion
Engine (ICE) powered cars [9]–[11]. Latest publications in
the field of trajectory optimization also consider optimal
power distributions within hybrid powertrains [12] or use
Model Predictive Control (MPC)-approaches for the planning
of energy-saving trajectories [13].
However, none of these sources consider the thermodynamics
of the powertrain during their optimizations. Unless the tem-
perature limits of a conventional ICE, the electric machines
of the Roborace cars must not reach temperatures beyond
180 ◦C, the inverter’s limit is 100 ◦C [14]. Additionally,
the efficiency level of an electric machine decreases as it
heats up, leading to further reduction in efficiency [15],
[16]. Furthermore, the energy storage, a lithium-ion battery
in our case, must reduce its output power from 50 ◦C to
0% output power when reaching 55 ◦C for safety reasons
[14]. In order to therefore prevent the unwanted power loss,
the thermal behavior of the powertrain components must be
considered for consecutive race laps when dealing with all-
electric racecars.
This paper is organized as follows: In Subsection I-B, an
overview of the structure of our race strategy is given.
Section II describes the powertrain architecture including
power loss descriptions, thermodynamical models as well
as the formulation of the optimization problem. Section III
explains the results in detail. A summary of the presented
work is given in Section IV.

B. Structure of the race strategy

The race strategy is split into three levels. All of these
levels have a different optimization horizon as well as a
different problem size stemming from the combination of
their optimization horizon as well as their model complexi-
ties (Fig. 1).
Before the race starts, the global time-minimal trajectories
per lap for the entire race are calculated offline. Here, we
can use a non-linear double track model describing the
driving dynamics as well as a detailed thermal powertrain
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Fig. 1: Three levels of the proposed race strategy.

model to consider all necessary physical effects in detail. The
pre-computed global trajectories are recalculated during the
race, reacting to external disturbances, e.g., overtakes, using
a significantly reduced optimization problem formulation.
For example, the path can often be completely removed
during the replanning phase as it is almost equal for all
the race laps. The global trajectories are then fed into the
local trajectory planner that transforms all given physical
constraints from the global trajectory (e.g., max. power,
max. torque) as well as mathematical requirements (e.g.,
guaranteed feasibility, calculation time) into locally optimal
paths and velocities [17]. Furthermore, the local planner
considers external influences, e.g., overtakes opponent cars
or reacts to speed limits. In this paper we focus on the global
level of the proposed race strategy and describe the offline
optimization.

II. POWERTRAIN ARCHITECTURE & MODELING

The all-eletric powertrain of the racecar (Fig. 2) consists
of

• A battery (B).
• Two power electronics/inverters at rear left and right

(Il/r).
• Two synchronous permanent electric machines (Ml/r).

Two separate cooling circuits are necessary in order to con-
trol the component temperatures Tc. Circuit 1 is responsible
for machines Ml/r and inverters Il/r leveraging radiator RMI.
The same is true for circuit 2, battery B and radiator RB.
For the sake of completeness, the gears (Gl/r), sensors
required for autonomous driving (Ax), as well as the wheels
Wrr/rl, are also displayed within the rear part of the whole
powertrain.
In this work, the index c indicates the powertrain component,
i.e., c ϵ {M, I,B,RMI,RB}. The second index d of the tem-
perature symbols of both cooling liquids TF1/2,d enumerates
the components the fluids are entering.

A. Power loss models

Meta-models of the powertrain are used to describe the
internal losses of its components within the OCP. Mathemat-

BIl/rMl/rGl/r

Wrl

Wrr

Ax

RMI RB

TF1,ITF1,RMI

TF1,M

TF2,RB TF2,B

Fig. 2: Electric powertrain architecture of a rear-wheel
drive vehicle including two separate cooling circuits.

ically, the meta-models for the electric machines as well as
the inverters can be formulated as second order polynomials
with the output power Pout as free variable (1):

Pin,fit(Pout) = afitP
2
out + bfitPout + cfit. (1)

The Mean Square Error (MSE) eMS,fit,

eMS,fit =
1

N

N∑

i

(Pin,fit,i − Pin,mes,i)
2 (2)

is minimized by fitting the constant parameters afit, bfit, and
cfit. The input power Pin into the single components is a
function depending on the requested output power Pout [8].
Pin,mes stems from measurement data from our Hardware-
in-the-Loop (HiL)-Simulator [18] where detailed non-linear
powertrain models, that are based on real-world measurement
data from the Roborace cars, are implemented. The index i
denotes a counter variable in the range [1 .. N ].
Fig. 3 displays a polynomial fit to simulated data of an
electric machine. The probability distributions of data on
both axis indicate that mainly max- or minimal power
is requested by the racecar. Therefore, the parabolic fit,
showing high accuracy at these points, results in low MSEs.
These are eMS,fit,M = 3.19% for the electric machine and
eMS,fit,I = 4.16% for the inverter. The diagonal indicates
100% efficiency.
We use an open circuit model to describe the internal battery
power [19, p. 51] Pin,B,

Pin,B(Pout,B) =
U2
OCV

2Ri
−UOCV

√
U2
OCV − 4Pout,BRi

2Ri
. (3)

The open circuit voltage is UOCV and Ri is the internal
battery resistance.
The component power loss Plos,c can now be described
using (1) and (3) that can easily be implemented within the
numerical optimization,

Plos,c = Pin,c − Pout,c. (4)

B. Thermal models

As introduced in Section II, the thermal model of the
powertrain is split into two circuits, one cooling the electric
machines Ml/r and both inverters Il/r in series using the
radiator RMI, the other one being responsible for the battery
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Fig. 3: Parabola fit to measurement data to deduce a
polynomial expression of the electric machine’s efficiency.

temperature TB leveraging radiator RB (Fig. 2). Power losses
(4) from the electric components c are directly fed into the
thermal circuits.
In the following, the ODEs describing the powertrain ther-
modynamics, i.e., the heat transfer from the powertrain com-
ponents to the cooling liquids, are deduced. In general, the
product of the thermal heat capacities C and the temperature
gradients dT

dt equal loss Plos and cooling power Pcol for
electric machines, inverters and battery:

CM
dTM
dt

= Plos,M − TM − TM,∞
RM

=

= Plos,M − 2TM − (TF1,M + TF1,RMI
)

2RM︸ ︷︷ ︸
Pcol,M

(5)

CI
dTI
dt

= Plos,I −
2TI − (TF1 + TF1,M)

2RI︸ ︷︷ ︸
Pcol,I

(6)

CB
dTB
dt

= Plos,B − TB − TF2
RB︸ ︷︷ ︸

Pcol,B

. (7)

Here and in the following, TF1 = TF1,I. The symbol TM,∞
denotes the temperature of the surroundings of the specific
component M. This temperature can be assumed to be equal
to the mean value of the inflowing and effluent cooling liquid
temperature [20].
To describe the absorbed energy by the coolant fluid from
both inverters the following formulation is used:

2
TI − TI,∞

RI
= ṁF1cF (TF1,M − TF1) , (8)

where ṁF1 describes the coolant mass flow through both
inverters and cF the specific heat capacity of the coolant fluid.
Using TI,∞ = 1

2 (TF1 + TF1,M), the following equations
can be deduced to explicitly describe the temperatures of
the cooling liquid entering electric machines as well as the

radiator RMI:

TF1,M =
TF1 (ṁF1cFRI − 1) + 2TI

1 + ṁF1cFRI
(9)

TF1,RMI
=
TF1 (2ṁF1cFRRMI

+ 1)− 2Tenv
2ṁF1cFRRMI − 1

. (10)

We can formulate the gradients of TF1 and TF2 using the
cooling power of the powertrain components Pcol as well as
the temperature differences to the environment Tenv,

CF1
dTF1
dt

= 2Pcol,M+

+ 2Pcol,I−

− 1

RRMI

(
TF1,RMI

+ TF1
2

− Tenv

)
(11)

CF2
dTF2
dt

= Pcol,B − TF2 − Tenv
RRB

. (12)

The thermal resistance of the motor model RM can be
written as a combination of two thermal resistances R1/2

in parallel as the heat transfer acts from the air gap to
both directions, the environment as well as its shaft (Fig.
4). For this model we make use of [21] that describes the
stator winding temperature TW as highest and most critical.
T̄F1,M = 1

2 (TF1,M + TF1,RMI) denotes the mean temperature
of the cooling liquid through the electric machine. Therefore,

RM =
R1R2

R1 +R2
, (13)

with

R1 =
ln r4

r3

2πLkiro
+

1

2πr4Lhf
(14)

R2 =
ln r2

r1

2πLkiro
+

1

4πLkiro
+

1

2πr3Lhg
. (15)

Fig. 4 indicates the geometry of the electric machine. The
first term in resistance R1 takes into account conduction of
the stator where L denotes its length and kiro the thermal
conductivity of iron. The second term describes the convec-
tive heat flux between the stator and the cooling liquid with
hf being the liquid’s convective heat flux coefficient that can
be assumed constant [22, p. 11]. Resistance R2 consists of
the thermal conductivity of the rotor and shaft [16] as well
as the convection into the air gap with the respective heat
flux coefficient hg.
The thermal resistance of the inverter is assumed to be

RI =
1

AIhI
, (16)

as well as for the battery [20]

RB =
1

ABhB
, (17)

and the radiators

RRMI/B
=

1

ARMI/B
hRMI/B

. (18)

Here, A denotes the surface used for the heat exchange, h
again represents heat flux coefficients.
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Fig. 4: Thermal resistance model of the electric machine.

C. Optimization problem

The OCP transformed into an NLP with equality and
inequality constraints hi and gj has the form [23, p. 478],
[24, p. 127]

min l(x) =

∫ SΣ

0

dt

ds
ds =

∫ SΣ

0

1− nκ

v cos (ξ + β)
ds (19)

s.t.
dx

ds
= f(x(s),u(s)) (20)

hi = 0 (21)
gj ≤ 0 (22)

with i = 1, ...,m and j = 1, ..., r. The independent variable
is s, the distance along the reference line, κ denotes the cur-
vature profile of the race track. The objective is l(x), defined
as the integral over the lethargy dt

ds [8] being minimized over
the entire racing distance SΣ. The lethargy can be interpreted
as the time taken to travel a distance of 1m.
The state vector x(s) within the OCP is defined as

x(s) =


v β ψ̇ n ξ︸ ︷︷ ︸

Driving
Dynamics

TM TI TB TF1 TF2︸ ︷︷ ︸
Thermo-
dynamics




T

, (23)

consisting of the optimization variables needed to express
the thermodynamics as introduced in Section II-B as well as
the variables defining the driving dynamics. These variables
are the velocity v on the raceline, the side slip angle β, the
yaw angle ψ, the lateral distance to the reference line n, and
ξ as the relative angle of the vehicle’s longitudinal axis to
the tangent on the reference line. For a detailed description
of the driving dynamics as well as their first-order ODEs and
constraints stemming from a nonlinear double track model,
we refer to our previous works [5], [25], as we focus on the
thermodynamical side within this paper.
The box constraints that are translated into inequality con-
straints for the thermodynamical state variables are

Tc,min ≤ Tc ≤ Tc,max, (24)

with every component’s allowed operating temperature range
defining the lower Tc,min and upper boundaries Tc,max.
The input vector has the form

u(s) =
(
Fd Fb δ γ

)T
, (25)

containing driving and braking force Fd/Fb, the steering
angle δ, and the wheel load transfer γ as artificial control
variable.

III. RESULTS

The results were calculated using an i7-7820HQ CPU and
16GB of memory. The NLP was solved with the primal-
dual interior-point method IPOPT interfaced by CasADi [26]
using a direct collocation transcription. The execution time of
the solver for the NLP for two race laps was approximately
2.5min. The discretization step size varied along the race-
track. In curves, a finer mesh was implemented to allow for
a better description of the rapidly changing variables and
their gradients leading to a step size of ∆s = 3m. On the
straight parts, a coarser mesh of ∆s = 9m was sufficient
to reach high numerical precision in combination with small
computation times. In total, approx. 44·103 decision variables
and 50 · 103 constraints were present.
Two minimum race-time control strategies for a race, con-
sisting of two laps, can be seen in Fig. 6. Two different
cases were considered: In case “cold” (−), the initial tem-
peratures of all the powertrain components Tc,0,− equaled
the environment temperature Tenv. In case “hot” (+), the
initial component temperatures Tc,0,+ were set to the values
given in Table I.

TABLE I: Initial temperature values Tc,0 of powertrain
components.

TM,0 TI,0 TB,0 TF1,0 TF2,0

in ◦C

“cold” (−) 30 30 30 30 30
“hot” (+) 100 70 48 55 40

In case “cold”, none of the components c reached their
maximum allowed temperature. Therefore, the maximum
vehicle power of PΣ = Fv of 270 kW could be requested at
all times when allowed by the driving dynamics as displayed
in the last plot. The maximum physically achievable velocity
of approx. 220 kmh−1 for this vehicle on the Monteblanco
race-track resulted on the straights. The battery temperature
TB remained far below the limit of TB,max = 50 ◦C.
Case “hot” shows the necessity and performance of the
developed control-strategy. Here, the initial component tem-
peratures Tc,0,+ were set to a valid combination of rea-
sonable values (Table I) that can occur during a race.
The optimization’s initial battery temperature TB,0,+ almost
equaled TB,max. The race-strategy then was adapted to the
given conditions to reach TB,max exactly when crossing the
finish line at s = 4.73 km to avoid a safety stop during the



race. This was achieved by augmented phases of lift and
coast in comparison with the race-strategy for case “cold”:
As the requested power PΣ,+ shows, the vehicle braked later
before curves. Additionally, the requested power PΣ,+ slowly
decreased on the straights. When the driving resistances
could not be overcome by PΣ,+, the vehicle’s velocity v+ de-
creased till the entry of the next curve. Therefore, the breaks
could be applied late. Still, acceleration phases overlapped
in both strategies, even if they ended in different maximum
velocities v. The requested power maxima differed in their
absolute values. The influence on the vehicle speed v+ in
case “hot” is evident: Physically, maximum velocity was
never reached and mean acceleration as well as deceleration
occurred less aggressively, meaning the velocity’s gradients
were decreased.
The coolant fluid temperature TF2,+ reached an equilibrium
at the end of the optimization horizon since only as much
heat was allowed to be released internally by the battery as
the coolant fluid could dissipate. Coolant circuit F1 could
be neglected in this case. Machine and inverter temperatures
TM,+ and TI,+ did not reach their limits.
Another important point is the difference in the race paths
to be driven in both cases (Fig. 5). In case “hot” velocity
v+ in curve 4 (marked) was higher. This per se had a
positive influence on the lap time. Nevertheless, the higher
curve speed v+ required the path to change slightly within
and immediately after this turn. Since the combined tire
usage was already at the limit here, the race-path radius in
case “hot” increased. By this, its curvature decreased and
the higher speed v+ could feasibly be driven. Nevertheless,
the decreased acceleration after turn 4 led to a diminished
increase of the powertrain temperatures.
The total race times cumulated over the two laps were
142.12 s in case “cold” and 149.59 s in case “hot”.
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Fig. 5: Race paths for case “cold” and “hot”.

IV. CONCLUSION & OUTLOOK

In the next Roborace season, the methods presented in
this publication will be applied to the racecar. On the one
hand, the available energy can then be used as effectively as
possible. On the other hand, the powertrain components can
be exploited as much as possible without loosing race time.
Additionally, powertrain losses and component temperatures
can then be compared with measurement data we receive

when driving the proposed global race lines that were cal-
culated considering the thermodynamical influence.
Furthermore, an additional optimization will be implemented
that allows for the mentioned online re-planning of the race-
strategy in the presence of disturbances. With the help of the
results in this publication this simplified online optimization
can be realized.
Along with these improvements the loss-models will be
replaced by physically more detailed descriptions of the
powertrain components.
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Summary

Maximum performance by an all-electric vehicle on the race track can only be achieved using
a global ES, which is capable of being dynamically recomputed in real time. Doing so, it must
consider the current vehicle state, which will slightly differ compared to the predictions by the
ES Core Module, due to vehicle dynamics control errors, external disturbances, or unforeseen
overtaking maneuvers. In this work, we therefore present the ES Core Module, which solves an
MRTP online for an optimization horizon spanning the remaining race distance (Section 3). It
considers the large rates of change in the driving dynamic states of the race car, and the slowly
reacting thermodynamic and energetic powertrain states. The algorithm allows to finish a race
in minimum time from an energetic point of view, whilst leveraging the available battery energy
in the most lap-time-efficient way. Simultaneously, temperature limitations are not exceeded
and, therefore, safety shutdowns avoided. To summarize, this publication presents an online-
capable algorithm which adheres to the combination of the energetic and thermodynamic
constraints presented in Chapter 4. To achieve small prediction errors by the governing ODEs,
we use efficient approximations of the physically exact descriptions of the powertrain component
behaviors.
In this publication, we also take up the three levels of the proposed ES in Section 4.2 [3] and
explain this concept with a focus on the dynamic modules, which are the ES Core Module (this
chapter) and the Velocity Optimization Module (Section 6) [4]. It is important to recapitulate
that the ES Core Module forwards power limitations, which summarize the energetic and
thermodynamic constraints, to the velocity planner. Thus, the Velocity Optimization Module acts
as an interface to the outer loop of the autonomous driving software stack (Figure 3.1) and
thereby realizes the ES.

Prior to the presentation of our algorithm, a detailed literature review reveals that MLTPs, but not
MRTPs, were solved by many studies before [165, 166, 169, 170]. Optimal control strategies
for hybrid powertrain architectures are considered in [206–208], the powertrain behavior of
all-electric race cars has been taken into account only most recently in [172, 173, 177, 178].

The underlying algorithm in the ES Core Module is formulated as a space-dependent, nonlinear
OCP. It comprises the vehicle velocity, the SOC, and the component temperatures as free states
together with the acceleration and brake force as control variables. The differential algebraic
equation (DAE) system is completed by the lethargy, an algebraic variable denoting the time
spent per traveled distance. The constraints arising from the driving dynamics are formulated for
a point mass model. Additionally, based on the results in Section 4.2 [3], we entirely remove the
path geometry from the optimization problem to keep the computation time low.

The mathematical description of the powertrain comprises a battery loss model [50, p. 51],
including an SOC-dependent OCV and a temperature-variable internal cell resistance [231].
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The VSI losses are accumulated on the basis of a semiconductor level [81, 87, 92, 93]. To
also integrate the PMSM energy dissipation, their stator-iron and rotor, as well as temperature-
dependent copper losses are formulated [92, 112] (Section 2.1). We mainly parameterize these
models by datasheet numbers, and validate them against real-world telemetry measurement
data collected during competition runs with the race car DevBot 2.0. We compare the measured
and calculated battery output power, the SOC, the temperatures of the battery and the PMSM.
The power losses can be translated into temperature contributions reusing the ODEs deduced in
Section 4.2 [3].

We formulate the MRTP with the acados framework [150, 151]. It is transcribed to an NLP via
the multiple shooting discretization technique and solved by an SQP method. As an integration
scheme, we chose the implicit Runge Kutta method of the 4th order. The underlying QPs are
handled by the HPIPM [157]. The SQP method was chosen to achieve real-time capability,
since we solve a sequence of neighboring problems [138, p. 555]. To mitigate convergence
difficulties, we divide the solution procedure into the three steps “ES Guess”, “ES Presolve” and
“ES Resolve” (Figure 5.1). The ES Guess calculates a time-optimal reference speed profile for
a single lap, which is only constrained by the driving dynamics. It is subsequently used as an
initial guess for the step ES Presolve, which is computed before a race start to provide a first
ES solution. During the race, we iteratively call the ES Resolve step, which dynamically reacts
to the current vehicle state and adapts the global race strategy for a lookahead distance of the
remaining race laps. The ES Resolve step achieves fast solver convergence, since previous
solutions, which have been calculated several hundred meters before the current solver call, are
close to the optimal solution of the current iteration.

ES Guess
single lap

ES Presolve
max. laps

ES Resolve
remaining laps

Figure 5.1: Solution procedure of the ES.

Exemplary, we show results for an MRTP consisting of 12 race laps on the Monteblanco (Spain)
circuit in Figure 5.2. At the beginning of the race, the optimized strategy suggests to heat up the
PMSMs as fast as possible to increase its cooling power. This is achieved by a vehicle speed,
which almost equals the reference velocity profile. In the second half of the race, the vehicle
keeps its velocity pattern constant on a reduced absolute level to save energy. When crossing the
finish line after approx. 30 km, the SOC reaches 0 % and the PMSM its temperature maximum.
A second experiment addresses the computation times of the ES Core Module. We conduct
several calls of the ES Resolve step for different race lengths and circuits. Optimization horizons
of up to 80 km are handled in less than 15 s of computation. We consider this computation
time to be small enough for an online application, since the global strategy can be adapted
several times during a single race lap, which is in accordance with the relatively slowly varying
thermodynamics of the powertrain.

To validate the output of the ES Core Module, we compare its results to MLTP solutions from the
literature [165], and the ones obtained in Chapter 4, which shows a small normalized root mean
square error (NRMSE). In a further step, we directly solve the optimization problem of the ES
Core Module using IPOPT [152]. This experiment proves that the SQP method converges to the
same results calculated by the nonlinear IP method with a numerical suboptimality of less than
one percent. However, the SQP approach is one order of magnitude faster.
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Figure 5.2: Minimum Race Time Strategy for 12 consecutive race laps on the Monteblanco (Spain)
circuit, © 2022 SAE/The Authors.
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Abstract
Solving a Minimum Lap Time Problem (MLTP), under the constraints stemming from a race car’s 
driving dynamics, can be considered to be state of the art. Nevertheless, when dealing with electric 
race vehicles as in Formula E or the Roborace competition, solving an MLTP is not enough to form 
an appropriate competition strategy: Maximum performance over the entire race can only be achieved 
by an optimization horizon spanning all the subsequent laps of a race. This results in a Minimum 
Race Time Problem (MRTP). To solve this, the thermodynamic and energetic limitations of the electric 
powertrain components must be taken into account, as exceeding them leads to safety shutdowns. 
Therefore, we present an Optimal Control Problem (OCP) to calculate an Energy Strategy (ES) for 
electric race cars, which contain physically detailed descriptions of its powertrain components. 
Leveraging a Sequential Quadratic Programming (SQP) solver, the OCP can be solved numerically 
in real time. This enables the ES to be recalculated during a race. As a consequence, powertrain 
overheating can be omitted and the limited amount of stored battery energy utilized as efficiently 
as possible. Simultaneously, the race can be completed in minimum time.

This article is part of a Special Issue on Autonomy and Connectivity at the Edge—Autonomous Racing.

© 2022 The Authors. Published by SAE International. This Open Access article is published under the terms of the 
Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits distribution, and 
reproduction in any medium, provided that the original author(s) and the source are credited.
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Introduction

Research into real-time-capable Energy Strategies (ES) 
is attracting growing attention. The reasons for this 
development are the evolution of electric vehicles on 

the road and fully electric motorsport series like Formula E 
or Roborace [1]; see Figure 1. In motorsports applications, an 
ES is crucial to be able to complete a race without exceeding 
the thermal or energetic constraints arising from the all-
electric powertrain architecture. However, a time-optimal 
result can only be achieved when leveraging the maximum 
possible power. To address both opposing objectives, this 
article presents an online-capable ES optimization for electric 
cars solving a Minimum Race Time Problem (MRTP). It takes 
into account the technical constraints arising from the driving 
dynamics, the powertrain thermodynamics, and the available 
amount of energy while minimizing the total racing time. 
We  use the High-Performance Interior-Point Method 
(HPIPM) solver [2] interfaced by acados [3] to achieve recal-
culation results in short computation times and compare the 
results obtained to the well-known general Nonlinear 
Programming (NLP) solver Interior Point OPTimizer 
(IPOPT) [4], interfaced by CasADi [5]. By this, we validate 
the numerical optimality of the solutions obtained by our 
problem formulation in combination with HPIPM.

State of the Art
A lot of research has already been conducted in the field of 
global race trajectory optimization. These Minimum Lap 
Time Problems (MLTP) have often been formulated as an 
Optimal Control Problem (OCP). For reader’s reference, 
we  wish to mention a few: Limebeer and Perantoni [6], 
Tremlett and Limebeer [7], Christ et al. [8], and Dal Bianco 
et al. [9]. The implemented optimizations are based on the 
assumption that no thermodynamic constraints from the 
powertrain become active. This is valid for Internal 
Combustion Engine (ICE)-powered race cars or a short opti-
mization horizon of a single race lap. Nevertheless, with the 
evolution of the electric racing series, the existing global 
trajectory optimization algorithms must be extended by the 
powertrain thermodynamics and be capable of solving the 
MLTP for multiple subsequent race laps. By this, possible lap 
time losses from unwanted power restrictions can be omitted.

As one of the first approaches, Liu and Fotouhi [10] use 
Artificial Neural Networks (ANN) and Monte Carlo Tree 
Search (MCTS) methods to deduce a race strategy for prerace 
planning and in-race recalculations in Formula E. They 
consider the battery temperature using a Bernardi model 
and its State of Charge (SOC) as optimization variables. 
Results are achieved in several seconds of computation time 
for 32 race laps. In contrast, the necessary data generation 
process using simulation, and training the ANN, takes days. 
Further extensions of the presented approach by additional 

physical equations require a computationally intensive 
retraining phase.

A more flexible approach to solving an MLTP is presented 
by the same authors [11], using optimal control leveraging the 
General Purpose OPtimal Control Software (GPOPS-II) [12] 
as a solver. Results are shown for different energetic and 
thermal constraints, which become active during their experi-
ments in simulation. Calculation times are not given. Therefore 
statements about the real time capability of the proposed algo-
rithm cannot be made.

A partial sequential Second-Order Conic Programming 
(SOCP) formulation is presented by Borsboom et al. [13], formu-
lating a quasi-convex MLTP for a battery electric race car. They 
consider battery, electric motor, and transmission losses. For an 
optimization horizon of approximately 14 km, their algorithm’s 
runtime is around one minute. Still a thermal description of the 
powertrain components is missing as the thermodynamics have 
a major influence on the race time performance [14, 15].

Salazar et al. [16] state that the control algorithm for a 
hybrid electric powertrain in Formula 1 strongly influences 
the achievable lap time. Therefore, they design a feedback 
control approach based on ideas from Equivalent Consumption 
Minimization Strategies (ECMS), which can track and adapt 
an offline generated energy management strategy online. By 
this, their algorithm reacts to external stochastic disturbances 
in a lap-time optimal way. Results are shown for subsequent 
race laps, but thermal models are not required for the problem 
in this publication due to the hybrid powertrain architecture.

For the same powertrain, Salazar et al. [17] derive an 
analytic ES for the optimal split of power delivered by the 
electric motors or the combustion engine. For this, they 
leverage Pontryagin’s Minimum Principle (PMP) and nons-
mooth analysis. Different operating modes for the car, being 
in power-limited or grip-limited sections of the track, are 
deduced. To further enhance this power split strategy, 
feedback controllers are introduced [18] by setting up a two-
level Model Predictive Control (MPC) scheme to recalculate 
the ES in real time. The upper-level MPC consists of an OCP 
with a look-ahead of a single lap. This is solved using ECOS 
[19] within a second of calculation time. The low-level MPC 
is designed to track the optimal state trajectories found by the 
high-level controller. The Linear Programming (LP) problem 
in the low-level controller can be solved within several milli-
seconds by FORCES Pro [20]. The fuel and the battery energy 
consumption per race lap are considered to be tuning param-
eters. In contrast, when solving an MRTP with a look-ahead 
distance of the remaining race distance, the optimal, variable 
energy consumption per lap could be calculated.

Several authors set up an ES to find the optimal velocity 
profile for a solar race car [21, 22, 23]: Cifuentes and Pradenas 
[23] use algorithms like iterated local search, simulated 
annealing, and genetic algorithms leading to calculation times 
in a magnitude of several seconds for approximately 50 spatial 
discretization points. Merino and Duarte-Mermoud [22] 
propose a multistage optimization method to solve the MRTP 
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to account for the long planning horizons of several race days 
in combination with calculations on a continuous level. They 
include a nonlinear loss model of the Brushless Direct Current 
(BLDC) motor. Using a pseudo-spectral method in the resulting 
OCP, computation times of 1.5 min on a dual-core processor 
using GPOPS [24] for a prediction horizon comprising an entire 
race are achieved. Atmaca [21] calculates the ES taking into 
account the BLDC motor losses, which are assumed to 
be quadratically proportional to the motor’s coil current, and 
the battery efficiency, which is assumed to be constant. The 
resulting NLP to find the minimum lap time velocity is solved 
using MATLAB’s fmincon. This yields a computation time of 
half a minute for a circuit discretized by approximately 200 
segments with a segment length of 2 m to 16 m.

Contributions
In this work we present the following contributions:

	 1.	 An OCP, which is solved by a Sequential Quadratic 
Programming (SQP) method [25] in real time to find 
an ES for electric race cars, is formulated. The 
optimization problem includes state-of-the-art 
equations and approximations, describing the 
vehicle’s driving and detailed powertrain 
thermodynamics, to take the corresponding technical 
limitations into account. The formulation of the OCP 
enables a suitable compromise between a small 
physical error and a low computational complexity.

	 2.	 We present a methodology to solve the resulting NLP 
for long planning horizons, comprising all the 
subsequent race laps efficiently. With this method, an 
optimal solution to the formulated MRTP, regarding 
the comprehensive optimization horizon, can 
be found.

	 3.	 We include power loss models, which are based on 
physical descriptions and are mainly parametrized by 
datasheet values, in the OCP. These loss models span

•• A description of the electric motor’s stator-iron 
and rotor, as well as copper losses

•• The inverter’s switching and conduction losses

•• A battery model with an SOC-dependent Open-
Circuit Voltage (OCV) and a temperature-
dependent internal cell resistance to determine 
battery loss power

	 4.	 For validation purposes, we compare the presented 
powertrain equations to real-world measurement 
data, collected with the Roborace DevBot 2.0 during 
competition runs; see Figure 1. To further prove 
numerical optimality, we compare the results of our 
ES, which is discretized using the multiple shooting 
method method and solved by HPIPM, to a state-of-
the-art MLTP planner [8, 14], which uses direct 
orthogonal collocation and IPOPT.

Preliminaries
A continuous OCP in a general space-dependent form can 
be written as [3]
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	 0 � � � � � � �� �g x z us s s, , .	 Eq. (1c)

Here x ∈ ℝnx×1 represents the state vector, �x� �nx 1 its 
derivative, z  ∈  ℝnz×1 the algebraic variable vector, and 
u ∈ ℝnu×1 the collection of control inputs. The cost function 
includes a Lagrange term l ∈ ℝ and a Mayer term M ∈ ℝ, for 
the running and the terminal cost, respectively. The system 
dynamics are given by a set of Differential-Algebraic Equations 
(DAE) in f ∈ ℝnf  ×1. The constraints are denoted by g ∈ ℝng×1. 
The horizon length of the free-space variable s is fixed, i.e., 
s ∈ [0, S]. Additional slack variables su(s) ∈ ℝns×1 can be used 
to soften the upper bounds of hard constraints. Here matrices 
Zu ∈ ℝns×ns penalize the quadratic and vectors zu ∈ ℝns×1 the 
linear slack variable values, as the exact penalty theory 
states [26].

In acados [3], OCPs are discretized using the multiple 
shooting method to obtain an NLP, which can be  solved 
numerically. In embedded optimization, it is common to write 
the discrete objective function as a least-squares equation [3]. 
Therefore, the Lagrange and Mayer terms transform into 
Equations 2a and 2b. Their entries are additionally weighted 

 FIGURE 1  Roborace DevBot 2.0 on the racetrack.
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by the diagonal matrices W ∈ ℝnΣ × nΣ and WK ∈ ℝnx × nx, where 
nΣ = nx + nu + nz:
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	 Eq. (2b)

where k denotes a discrete position index in s, running till K. 
The reference value of the respective variable is denoted by 
the index r.

As an error metric, we will use the Normalized Root 
Mean Square Error (NRMSE) throughout this article. By this, 
the given errors are easily interpretable and convertible to 
absolute values:

	 NRMSE �

�� �

�

� i

N

i iy y

N
y y

ˆ

.
max min

2

	 Eq. (3)

Here y and ŷ are the compared signals with N data points 
and their corresponding maximum and minimum values 
indicated by the indices “max”/“min.”

Powertrain Modeling
The powertrain of the race car, which is based on the Roborace 
DevBot 2.0, is given in Figure 2. It consists of mechanical parts 
like wheels (Wl/r) and gears (Gl/r) at the rear left (l) and right 
(r) and electrical components like electric motors (Ml/r), 
inverters (Il/r), battery (B), and auxiliary devices (Ax). The 
radiators RMI and RB are necessary to remove the heat gener-
ated by internal power losses inside the electrical components. 
Convective heat transfer is realized by two cooling liquids, 
whose temperatures are denoted by TCM(s) and TCB(s). The 
second subscripts at the temperature symbols denote a 
location in the cooling circuit, where the liquids enter a certain 
powertrain component.

Power Loss Models
To represent the battery pack, an electric equivalent circuit 
for a single cell is modeled (see Figure 3) and scaled to fit an 
NsNp (series/parallel) pack configuration. The equivalent 
circuit consists of an SOC-dependent voltage source Uoc,c(σ(s)) 
and the cell’s temperature-dependent internal resistance 
Ri,c(TB(s)) [27]. To mathematically integrate these dependen-
cies into an OCP, we approximate their datasheet measure-
ments: For the correlation of Uoc,c(σ), we assume a third-degree 
polynomial, which results in an NRMSE of 3.15%; see Figure 
4 (top). Similarly, the correlation of the internal cell resistance 
Ri,c and the temperature TB is modeled as a linear correlation; 
see Figure 4 (bottom), with an NRMSE of 9.01% in the shown 
operating range. Multiple measurement values of the internal 
resistance Ri,c for the same temperature TB represent different 
SOC levels.

The electrical cell variables scaled to pack level are
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 FIGURE 4  Dependency of the battery cell OCV Uoc,c on its 
SOC σ, and Ri,c(TB) correlation. The NRMSE for the third-order 
Uoc,c(σ) approximation is 3.15% and for the linear correlation 
Ri,c(TB) 9.01%.
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 FIGURE 2  Architecture of the race car’s powertrain, 
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The battery pack terminal voltage Udc(s) can be written 
with the pack current IB(s) as

	 U s U s R T s I sdc oc i B B� � � � �� � � � �� � � �� .	 Eq. (5)

To calculate the internal battery pack power Pi,B(s), the 
following nonlinear equation can be applied [28]:
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The battery output power Po,B(s) is the sum of the power 
losses of the inverters P1,I(s), electric motors Pl,M(s), and the 
requested wheel power PW(s):

	 P s P s P s P so B W I l M, , , .� � � � � � � � � � �2 21 	 Eq. (7)

Through this, one obtains the battery power loss as

	 P s P s P sl B i B o B, , , .� � � � � � � � 	 Eq. (8)

The inverter losses are modeled on a semiconductor level 
and follow the expressions [29, 30, 31]
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where Pl,I,swi(s) denotes the switching and P1,I,con(s) the conduc-
tion losses, which form the inverter losses Pl,I(s) through 
summation [32, 33]. The reference voltage Ur and current Ir 
are datasheet parameters, together with the switching energy 
losses when turning on En and off Ef, and the reverse recovery 
energy Er [29] as well as the nominal switching frequency fswi. 
The description of the conduction losses in Equation 9b is 
valid for Insulated-Gate Bipolar Transistor (IGBT) inverters 
[33, 34]. The dependency of the collector-emitter voltage 
Uce(Ie(s)) as part of the datasheet can be assumed to be linear 
[29] for the inverters in the race car (DevBot 2.0), where Ûce 
is the approximation’s offset and Uce its slope.

The power loss Pl,M(s) in the electric motor consists of 
current-dependent copper Pl,M,cop(s) [32, 35] and stator iron 
and rotor losses Pl,M,sir(s) [36], which are dependent on the 
rotational frequency ωM,

	 P s I s T s Rel M cop c M pC, , � � � � � � � � �� � �� �3

2
20 12 � 	 Eq. (10a)

	 P s f cl M sir M ,, , .. .� � � � �� 1 5 	 Eq. (10b)

In Equation 10a, the temperature-dependent copper 
losses Pl,M,cop(s) are calculated using the known ohmic phase 

resistance of the motor windings at room temperature Rp and 
the linear temperature coefficient of resistance of copper αc. 
Apart from the copper losses Pl,M,cop(s), the stator iron and 
rotor losses Pl,M,sir(s) can only be approximated by recorded 
measurement data as their analytic description is highly 
complex and part of current research [37]. Therefore, 
we analyzed recorded telemetry measurement data where 
we subtracted the recorded mechanical powertrain power 
PW(s) from the recorded battery output power Po,B(s) and 
reduced the result by the calculated inverter losses Pl,I(s), cf. 
Equation 7. Subtraction of the motor’s calculated copper losses 
Pl,M,cop(s) gives the sum of stator iron and rotor losses:

	 �P s P s P sl M sir l M l M cop, , , , , .� � � � � � � � 	 Eq. (11)

We can then fit the resulting data point cloud �P sl M sir, , � � 
using polynomial expressions of the fourth degree Pl,M,sir(s) 
with the constant parameters cj, which are subject to identi-
fication; see Figure 5.

The effective current Ie(s) through the motor-inverter 
combination can be  calculated by the steady-state 
approximation [38]

	 I s
M s

k
e

M

� � � � �
,	 Eq. (12)

with the motor constant kM and the motor torque M(s).

Model Validation
To validate the given powertrain model equations in Section 
Power Loss Models, we show a comparison with real-world 
measurement data for a run with a duration of approximately 
6.5 min with the race car DevBot 2.0 on the Monteblanco 
(Spain) race circuit. We assumed physically plausible values 
based on the literature for parameters like, e.g., the heat transfer 
coefficients, since they are only determinable with uncertainty.

Power Losses The presented model equations were imple-
mented in a backward simulation. Input into the simulation 
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 FIGURE 5  Approximation and measurement of stator iron 
and rotor loss Pl,M,sir, plotted as the dependency of engine 
rotational speed ωM. The NRMSE is 3.29%. Some negligible 
negative measurement values have been ignored 
during plotting.
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was the measured motor output torque M(t) and rotational 
speed ωM(t), which were propagated through the powertrain 
model. The upper plot in Figure 6 depicts the battery output 
power Po,B(t), which was measured using its terminal voltage 
Udc(t) and current IB(t). This course was compared to the 
modeled battery output power Po,B(t) and therefore directly 
expresses the error in the inverter and motor loss models: The 
NRMSE for the battery output power Po,B(t) is 4.59%.

To also validate the battery loss description Pl,B(t) in 
Equation 6, we compared the calculated SOC σ(t) with the 
vehicle’s recorded telemetry data: the deviation after the run 
is 1.84% of SOC; see the second plot in Figure 6.

Temperature Gradients The power losses directly influ-
ence the component temperatures. Therefore, we plot the 
calculated temperature curves for the most critical compo-
nents in the powertrain, the battery, and the electric motor, 

in Figure 6 (third and fourth plots). The thermodynamic first-
order Ordinary Differential Equations (ODEs), which describe 
the heat exchange of the powertrain components with their 
cooling liquids and the environment, are taken from [14] and 
are summarized in Equations 22a-22e. We reach an NRMSE 
for the thermodynamic battery model of 8.51%. In the error 
calculation, the temperature sensor resolution of 0.5°C plays 
an important role: The battery temperature TB(t) increases by 
4°C during the run, but sensor measurements are only 
discretized by nine numeric values in total, which are 
compared to a continuously simulated course. The motor’s 
temperature error is smaller at 5.38%.

Energy Strategy
First, we define the software environment the ES module is 
operating in: The ES module is responsible for determining 
the power limits for the local trajectory planner. As shown 
in Figure 7, it uses the powertrain state, comprising compo-
nent temperatures and battery SOC, and the vehicle’s 
dynamic state, i.e., its current position and velocity, as inputs. 
Additionally, the geometry of the global time-optimal 
raceline is necessary information for the ES module. The ES 
is recalculated on this path, which will most likely be the 
driven one during the race [14]. The ES module itself forwards 
optimized space-dependent power limitations to a velocity 
optimization module, which utilizes this information during 
the local trajectory planning step [39]. An update rate in the 
order of seconds of the ES module is sufficient in this archi-
tecture since it decouples the problem of fast trajectory 
planning and vehicle control [40] from the ES recalculation. 
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 FIGURE 6  Battery output power Po,B(t) (first plot) and 
SOC σ(t) (second plot) for a run of approximately 6.5 min 
with the race car DevBot 2.0 in comparison with a backward 
simulation through the powertrain loss models presented in 
Section Power Loss Models. The NRMSE for the battery 
output power Po,B(t) is 4.59%, and the SOC deviation 
between the vehicle’s recorded telemetry data and the 
simulation after the entire run is 1.84%. In the thermodynamic 
description, NRMSEs for the battery temperature and the 
electric motor temperature TB(t)/TM(t) are 8.51% and 5.38% 
(third and fourth plots), respectively.
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Once an ES is available, it is valid for the remaining race 
distance and only needs to be updated in accordance with 
the slower change rate of the powertrain thermodynamics. 
Therefore, the necessary power limitations can independently 
be retrieved by the trajectory planner. With the presented 
software architecture, the vehicle can utilize as much power 
as possible, without exceeding any technical limitation, while 
simultaneously minimizing the entire race time. In other 
words, the ES module optimizes a race strategy which lets 
the vehicle pass the finish line with either 0% of SOC and/or 
a powertrain component temperature, which reached its 
thermodynamic limit.

Optimal Control Problem
This section defines the OCP for the ES, which must be solved 
in real time.

States The space-dependent state variables of the OCP, cf. 
Equations 1a-1c, are

	 x s t T T T T T
T nx� � � � � � �� � B M I CM CB  1 ,	 Eq. (13)

where υ(s) denotes the vehicle velocity along s, t(s) the travel 
time, σ(s) the battery SOC, and Tc(s) the component tempera-
tures. Here index c represents the battery (B), the electric 
motors (M), the inverters (I), the cooling liquid in the motor-
inverter circuit (CM), and the battery cooling circuit (CB). 
The cooling liquid temperatures are simulated directly at the 
respective component inlets, cf. Figure 2.

As control input vector u, we chose

	 u s F F
T nu� � � � � � �

d b  1 ,	 Eq. (14)

which contains the necessary driving and braking force, Fd(s) 
and Fb(s), respectively.

The algebraic variable z reads

	 z s nz� � � � � ��
�
1 1 ,	 Eq. (15)

where τ(s) characterizes the time spent traveling one meter, 
called lethargy [17]. This expression can also be used to trans-
form time-dependent DAEs, representing the dynamics of a 
point mass model following a fixed path, into space-dependent 
ones [6].

System Dynamics The system dynamics are given by a 
set of space-dependent DAEs Equation 1b. The time 
derivative reads

	
d

d

t s

s
s

s

� �
� � � �

� �
�

�
1

.	 Eq. (16)

The space-dependent change rate of the vehicle velocity,

	
d

d

d

d
r

v

� s

s

F s

m

t s

s

� �
�

� � � �
,	 Eq. (17)

can be written using the resulting force Fr,

	 F s F s F s F s F sr d b c a� � � � � � � � � � � � � �,	 Eq. (18)

which itself consists of both control inputs, the rolling resis-
tance Fc(s), and the aerodynamic drag force Fa(s),

	 F s m gcc v r� � � ,	 Eq. (19a)

	 F s c A sa a w v� � � � �1

2
2� � .	 Eq. (19b)

Here mv denotes the vehicle mass, g the gravitational 
constant, cr the rolling resistance coefficient, ρa the air density, 
cw the aerodynamic resistance coefficient, and Av the vehicle 
front surface.

The battery SOC dynamics can be formulated as

	
d

d

d

d
o B l B

B

� s

s

P s P s

E

t s

s

� �
� �

� � � � � � �, , ,	 Eq. (20)

where EB denotes the battery’s energy capacity.
To not increase model complexity by adding the battery 

output current IB(s) as an additional algebraic variable to the 
OCP, we assume

	 U s U sdc oc� � � � �� �� ,	 Eq. (21)

as the voltage drop over Ri in Equation 5 is small.
In the following, we summarize the temperature ODEs, 

describing the convective and the conductive thermodynamic 
power flow of the powertrain components, and refer the reader 
to our previous work in [14] for a more detailed derivation:

  

C
T s

t s

P s
T s T s T s

R
P

M
M

l M

M CM M CM R

M

d

d

MI

col

� �
� �

�

� � � �
� � � � � � � �� �

,

, ,2

2

,,M s� �
� ������� �������

	 Eq. (22a)

	 C
T s

t s
P s

T s T s T s

R
P s

I
I

l I

I CM CM M

I

d

d

col I

� �
� �

� � � �
� � � � � � � �� �

� �

,

,

,

2

2�� ������ ������
	

Eq. (22b)

      C
T s

t s
P s

T s T s

R
P s

B
B

l B
B CB

B

d

d

col B

� �
� �

� � � � � � � � �

� �

,

,

� ��� ���
	 Eq. (22c)
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C
T s

t s
P s P s

R

T s T s

CM
CM

col M col I

MI

CM R CM

d

d

MI

� �
� �

� � � � � � �

�
� � �

2 2

1

, ,

, �� �
�

�

�
��

�

�
��2

Te

	 Eq. (22d)

	 C
T s

t s
P s

T s T

R
CB

CB
col B

CB e

B

d

d

� �
� �

� � � � � � �
, .	 Eq. (22e)

The equations above are converted to the spatial domain 

by multiplying by the lethargy 
d

d

t s

s

� �
. The thermal capacities 

are denoted by Cc and the thermal resistances of the powertrain 
components by Rc, cf. Figure 2. Internal power losses are given 
by Pl,c(s) and the heat exchange rates by Pcol,c(s). To describe 
the transfer of energy to the environment, its temperature Te 
is important.

Constraints The initial values of the presented DAE system 
are implemented as equality constraints

	 x xs s�� � �� 0 .	 Eq. (23)

Here �s  represents the current position of the vehicle 
between 0 and sf.

The state constraint on the vehicle velocity

	 � � �min max� � � �s 	 Eq. (24)

prevents backward movement through a small, positive 
numeric constant υmin and includes a limited maximum 
velocity υmax.

Furthermore the component and cooling fluid tempera-
tures need to be constrained according to their respective 
operating ranges,

	 T T s Tc c c,min ,max .� � � � 	 Eq. (25)

The SOC is limited by

	 0 1� � � �� s .	 Eq. (26)

The input box constraints,

	 0 � � � �F s Fd d,max ,	 Eq. (27a)

	 F F sb b,max ,� � � � 0 	 Eq. (27b)

are necessary to limit the driving and braking force according 
to the vehicle’s actuator limits. The bilinear power expression 
P(s) is limited by the maximum engine power Pmax,

	 0 � � � � � � � � �P s F s s Pd � max .	 Eq. (28)

With the help of the complementarity constraint

	 F s F sd b� � � � � 0,	 Eq. (29)

simultaneous activation of the brakes while accelerating is 
avoided. We only use this constraint to calculate a reference 
velocity profile υref(s), which would be time-optimal if no ther-
modynamic constraints became active. When calculating an 
optimal ES instead, the driving force Fd(s) is inherently limited 
by the thermodynamic constraints Equation 25 and the 
maximum available amount of energy Equation 26, which 
become active when the solver converges to an optimal 
solution x*(s). Thus they make the explicit formulation of 
Equation 29 redundant, as unnecessary power losses are 
omitted by nature. At the same time, the computation speed 
of the ES increases enormously.

The vehicle dynamics are limited by

  
F s F s

F s

F s

F s
s nsd b

N

y

N

u,
� � � � �

� �
� �
� �

�

�
��

�

�
�� � � � �� �

� �
1

11 s  ,	 Eq. (30)

where the normal force

	 F s F F sN N s N d� � � � � �, , 	 Eq. (31)

consists of a static and a dynamic contribution, which can 
be expressed as

	 F m gN s v, ,= 	 Eq. (32a)

	 F s c c sN d l f l r, , , .� � � �� � � �1

4
2� 	 Eq. (32b)

Here cl,f and cl,r denote the lift coefficients at the front and 
the rear axle. The lateral force is

	 F s m s sy v� � � � � � �� � 2 	 Eq. (33)

with κ(s) describing the raceline curvature and μ the road 
friction parameter. In Equation 30, we use the vector su(s) 
containing the slack variables, as we rewrite the l1-norm to 
the following set of four constraints [39]

  �
� � � � �

� �
�

� �
� �

� � � � �� �
F s F s

F s

F s

F s
s s ii

d b

N

y

N

u , ,
� �

1 1 4, , .. .	 Eq. (34)

By softening constraint  Equation 30, using slack variables 
su(s), the optimization problem stays feasible if noisy and 
filtered velocity measurement values υ0 are inserted as the 
initial condition in Equation 23.

Objective Function The objective of the ES optimization 
algorithm is given by Equation 1a. The matrices, which weigh 
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the entries in the Lagrange term l (Equation 2a) and Mayer 
term M (Equation 2b), are

	 W Q R W Q� � � �diag , ,P K, ,	 Eq. (35)

where

  Q � �� ��� ��� � � � � � �diag 0 01 1 1 1 1 12 5 5 5 5 5e e e e e e n nx x ,	 Eq. (36a)

	 R � �� ��� ��� � �diag 1 12 3e e n nu u ,	 Eq. (36b)

	 P n nz z� � �1  .	 Eq. (36c)

The residuals are calculated using the reference values

	
x xk K

T
T T T T T

, ,

, , , , , ,

r r

r B M I CM CB

� �

� �� ��0 0 0 0 0 0 0�
	 Eq. (37a)

	 uk

T
F F, , , ,r d r b r� �� �� 	 Eq. (37b)

	 zk , .r = 0 	 Eq. (37c)

The weight on the algebraic variable z(s) = τ(s) and its 
reference value of 0 s m−1 in Equation 37c were chosen to 
enforce a time-optimal solution: The additional weights on 
the battery SOC, the temperature, and the control reference 
tracking errors act as a regularization contribution and do 
not have a significant influence on time-optimality [3]. The 
reference values were chosen to be the environmental condi-
tions for the temperatures Tc,0 and to be constants, which 
equal about half the maximum of the actuator limits in 
Equations 27a and 27b, for Fd,r and Fb,r. The parameter σr is 
set to a small numeric constant value, which expresses 0% 
SOC, when calculating a reference speed profile υref, and to 
100% when optimizing an ES strategy.

The penalties in the objective on the slack variables su(s) 
in Equation 30 are

	 Z Iu n� � � �10 n ns s ,	 Eq. (38a)

	 z Iu e� � � �1000 1ns ,	 Eq. (38b)

where In denotes the identity matrix and Ie an all-ones vector. 
No slack variables on the final coordinate su(S) are present.

Real-Time-Capable Concept
To meet the real-time requirements in the ES module, 
we divide the optimization of the presented OCP into three 
steps; see Figure 8.

ES Guess An initial guess is crucial for an SQP optimiza-
tion method. Therefore, we calculate an initial guess for the 
velocity profile υref(s), which we call the “driving dynamics 
reference”: We solve an MLTP for a fixed path κ(s) by solving 
the nonlinear OCP in Section Optimal Control Problem for 
two race laps. By doing so, the second lap is a flying one, which 

has continuous initial and final velocity values. After solving 
the MLTP, we can repeat the reference velocity profile υref(s) 
for the provided number of race laps and, afterward, start the 
ES solver therewith to optimize an MRTP. Optimizing the ES 
for two race laps is possible by including constraint Equation 
29 in the optimization problem to form a unique solution: 
Since no thermodynamic constraints will become active 
during the two laps, an infinite number of possible combina-
tions of the control inputs u would otherwise exist.

ES Presolve In this step, the ES module is initialized, i.e., 
an optimal ES for the entire race horizon till the final coor-
dinate sf is calculated. Here the initial battery SOC and the 
initial component temperatures in x(s = 0) are set in accor-
dance with the environment temperature Te. To accelerate the 
convergence in this step, we provide an initial guess for the 
optimal velocity profile, which equals half the values of the 
υref(s) profile. Thereby the initial guess takes into account that 
the optimal velocity profile will definitely have smaller values 
than υref(s). Otherwise, no ES would be necessary. The refer-
ence velocity profile is used as an initial guess since it fulfills 
the modeled driving dynamic constraints and could only 
violate the thermodynamic and energetic ones. In combina-
tion with the calculation of the problem’s exact Hessian in 
acados [3], no convergence issues have been detected in exten-
sive simulations on multiple racetracks (Berlin [Germany], 
Hong Kong [China], Modena [Italy], Monteblanco [Spain], 
Paris [France], Upper Heyford [UK]).

The purpose of this step is to ensure the calculation of a 
valid ES and to initialize the numerical solver prior to the race 
start. Therefore, it is sufficient in this step to solve the OCP 
presented in Section Optimal Control Problem offline.

ES Resolve During the race, the ES is permanently recal-
culated with current measurement input from the powertrain: 
Based on the remaining race distance from the current 

ES presolve

ES resolve

ES guess

x0(s = 0)

κ(s)

s̃

x̃(s = s̃)

single lap

max. laps

rem. laps
P ∗(s|sfs̃ )

vref

Initialized solver,
results x∗(s)

Results x∗(s)

Prior to
race

Iterated

 FIGURE 8  ES concept consisting of the stages “Guess,” 
“Presolve,” and iterative “Resolve.”
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position �s  to the race finish sf, the ES solver is recompiled to 
account for the decreasing optimization horizon length. 
Afterwards the ES can be updated considering the measured 
states � �x s� �. In every iteration, the last optimal solution x*(s) 
of the ES is used as a first guess to reduce computation times. 
The optimal power usage of the vehicle P s

s

s� � ��f  for the 
remaining race distance between �s  and sf is then forwarded 
to our trajectory planner, which considers this input in the 
velocity planning phase [39], cf. Figure 7.

Results
The experiments in this section have been conducted on a 
laptop running Ubuntu 20.04 equipped with an Intel 
i7-7820HQ CPU. The racetrack discretization was variably 
spaced with step size lengths ranging from 2 m in the corners 
to 14 m on the straights. By this, dynamic stages with high 
gradients are resolved accurately while the computation time 
can be kept low. We implemented the problem using the SQP 
method in acados [3], where the Quadratic Programming (QP) 
problems were solved by HPIPM [2] internally. For this, the 
implicit Runge-Kutta method of the fourth order was chosen 
as an integration scheme. The discretization technique was 
multiple shooting. All the experiments were conducted several 
times to account for operating-system-related varying compu-
tation times. They turned out to be  constant without 
significant variations.

MRTP
We show an optimized MRTP for 12 laps on the Monteblanco 
(Spain) racetrack. The solver took approximately 10.5 s for the 
initial calculation of the ES, cf. Section ES Presolve, depicted 
in Figure 9. A total number of around 54,000 optimization 
variables from x(s), u(s), su(s), and z(s) on 300 discretization 
points per lap arises. The number of states, control, and 
nonlinear constraints (see Section Constraints) sums up to 
approximately 50,000 in the NLP.

In Figure 9 it can be seen that the optimized velocity 
profile υ(s) and the corresponding power PW(s) are almost at 
a maximum at the beginning of the race [compared to the 
unconstrained velocity profile υref(s)] when the powertrain 
components are cold. Because of this, the powertrain is heated 
up as fast as possible to reach the electric motor temperature 
limit TM,max after approximately 16 km of traveled distance. 
After reaching this temperature limit, the velocity profile 
keeps υ(s) in a lap-wise repeating pattern in order to not exceed 
TM,max; see magnification in the sixth diagram in Figure 9. 
This behavior can be considered time-optimal for the following 
argumentation: In the shown scenario, consisting of 12 race 
laps, the initial battery SOC σ(s) of 50% provides a sufficient 
amount of energy, which is less crucial to complete the race 
than exceeding the motor temperature limit. It is therefore 

beneficial to increase the motor temperature TM(s) to the 
highest possible absolute value to maximize the motor’s 
cooling power Pcol,M(s), cf. Equation 22a. By doing this, the 
acceptable motor power losses Pl,M(s) are maximized, which 
ultimately leads to a minimization of the race time t(sf), i.e., 
the summed lethargy z(s).

The constant velocity pattern in the second half of the 
race is not only beneficial for keeping the motor temperature 
TM(s) within its boundary but also for keeping the absolute 
power losses Pl(s) = Pi,B(s) − PW(s) in the powertrain to a 
minimum: Increased driving velocity or driving power leads 
to overproportional losses Pl(s), cf. Equations 6, 9b, and 10a. 
In contrast, decreasing the vehicle velocity υ(s) reduces power 
losses Pl(s) only proportionally less. Additionally, a linear 
increase of the average velocity for a race lap in combination 
with a linear decrease of the same magnitude of the average 
driving velocity on a subsequent lap leads to a diminished 
average race speed over time for both laps. Due to this, a 
uniform driving pattern supports both the minimization of 
power losses Pl(s) and race time t(sf).

In Figure 9, we also depicted battery Pl,B(s), motor Pl,M(s), 
and inverter losses Pl,I(s). Even if the driven average velocity 
per lap decreases slightly between 0 km and 8 km, motor losses 
Pl,M(s) increase. Here the rising motor temperature TM(s) leads 
to the increasing copper losses Pl,cop(s), cf. Equation 10a. Stator 
iron and rotor losses Pl,sir(s) vary with the rotational frequency 
ωM(s) as modeled in Equation 10b. Similarly, battery losses 
Pl,B decrease with the dropping internal resistance Ri(s), but 
increase in total, due to the decreasing voltage Uoc(s) and there-
fore increasing current IB(s). The lower velocity υ(s) at the end 
of the race (16 km to 28 km) leads to a falling battery tempera-
ture TB(s), which, in turn, raises the internal resistance Ri(s) 
again. The inverter’s peak switching losses Pl,I,swi(s) decrease 
slightly by approximately 0.2 kW from s = 0 km to 12 km due 
to the decreasing DC voltage Udc(s), cf. Equation 9a. The effect 
on the peak conduction losses Pcon(s) over the same race 
distance due to less requested motor torque M(s), and therefore 
Ie(s), is minor at 0.1 kW, cf. Equation 9b.

The optimal vehicle behavior over the last few meters of 
the shown scenario is also interesting. Here the imminent 
crossing of the finish line lets the algorithm break with the 
previous velocity pattern and, instead, maximize the requested 
vehicle power P(s). By doing this, the battery SOC σ(s) 
decreases to 0% of the remaining energy and the motor 
temperature TM(s) simultaneously reaches TM,max at the end 
of the race.

Real Time Capability
To demonstrate the real time capability of the presented ES 
concept, we show its calculation times in Figure 10.

For the Monteblanco (Spain) and the Modena (Italy) race-
track, we show the calculation times Δtcal achieved to initialize 
(ES Presolve) and to subsequently recalculate (ES Resolve) the 
ES, cf. Section Real-Time-Capable Concept. To re-optimize, 
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we insert a simulated measurement value at �s , with the differ-
ence that the sensor resolution (0.5°C) is added to the initially 
calculated battery temperature TB(s). The discretization point 
�s  was chosen randomly after the first meters of the race start 
to showcase the ES recalculation on a long remaining opti-
mization horizon till sf. By doing this, the solver has to recal-
culate the ES and converge from an infeasible starting point 
x0 as the ODEs in the environment of the discretization point 
�s  are not fulfilled anymore. The calculation times Δtcal, given 
for the ES Resolve-step, comprise the solver recompilation 
and its runtime to account for the entire computation proce-
dure in the online scenario. The starting conditions for the 
ES initialization are 35°C and 100% of the SOC.

On the Modena track, we obtain the following results: In 
the 24 km and 40 km run, the motor temperature TM,max is 
permanently exploited. Here the recalculation times are 
almost equal to the ones of the ES initialization phase. With 
longer optimization horizons (60 km, 80 km, and 100 km), 
the constraining variable shifts from the motor temperature 
TM(s) to the battery SOC σ(s), which limits the velocity υ(s) in 
the optimal solution. In these scenarios, recalculation times 
are smaller compared to the ES initialization.

On the Monteblanco track, the results are similar quali-
tatively: The recalculation times are smaller than for the 
initialization. In the experiments comprising optimization 
horizons of 29 km, 40 km, and 60 km, the motor temperature 
TM(s) permanently represents an active constraint and limits 
full-speed operation. On the 100 km run, the battery SOC σ(s) 
is the crucial variable. The calculation times Δtcal for both ES 
concept steps with a horizon of 80 km are interesting: In this 
case, both SOC σ(s) and motor temperature TM(s), reach their 
corresponding lower and upper boundaries, respectively, 
when crossing the finish line. Because of this, the computation 
time Δtcal for the ES initialization resulted in a slightly higher 
value compared to Δtcal for sf = 100 km.

From Figure 10 we can conclude that for optimization 
horizons up to 70 km, corresponding to 35 and 29 race laps 
on the Modena and the Monteblanco racetracks, respectively, 
the recalculation times Δtcal remained below 15 s. Compared 
to the lap times achieved during maximum speed operation 

leveraging υref(s), the ES can be recalculated several times 
during a single race lap. Therefore we consider the online 
update rate to be sufficient for a competition run.

Validation and Benchmark
In the following, we will validate the numerical optimality of 
the proposed ES algorithm and justify the solver selection.

Optimality To prove the optimality of the proposed ES 
algorithm (Section Energy Strategy), we compare our results 
to the algorithms presented in [8, 14] for the Monteblanco 
(Spain) race circuit: The authors discretize an MLTP using 
direct orthogonal collocation and solve the resulting NLP 
with the numerical solver IPOPT [4]. The MLTP algorithm 
in [8] has been proven to produce accurate results in real-world 
autonomous racing applications.

When comparing the results produced by our ES algorithm 
for one race lap, i.e., when solving an MLTP for a fixed path (ES 
Guess in Figure 8), we achieve the results shown in Figure 11. 
The NRMSE for the optimized velocity profile υ(s) is 3.11% in 
comparison to the solution produced by the IPOPT setup. The 
error mainly stems from different velocity extrema, caused by 
the model descriptions: In the ES algorithm, we use a point 
mass model (Section Optimal Control Problem), whereas the 
MLTP formulation in [8] comprises a Nonlinear Double Track 
Model (NDTM) including a detailed tire behavior description.

Due to the good correlation in the optimal velocities υ(s), 
the temperatures Tc calculated by HPIPM and IPOPT also 
match accurately; see Figure 11 (bottom). The difference in 
the motor temperature TM(s) at the end of the race lap is 0.78 
°C, which correlates to a normalized error for the entire 
temperature increase of 1.19%. This behavior is feasible as the 
IPOPT velocity profile is slightly more aggressive regarding 
accelerations and the velocity maxima, as the selected discreti-
zation points by both algorithms do not match exactly. In 
turn, exponentially higher power losses Pl(s) are produced by 
the scenario solved by the IPOPT setup from [8, 14].
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Solver Comparison In this paragraph, we justify the 
choice of the HPIPM solver. Therefore we compare the MRTP’s 
optimal velocity profile υ(s), calculated in the ES Initialization 
step for 12 race laps from Section MRTP, to a solution υIPOPT(s) 
calculated by the solver IPOPT for the same OCP, cf. Section 
Optimal Control Problem. IPOPT is a well-known solver for 
offline applications, which is often used for benchmarking 
solution quality [3, 39]. Note that the IPOPT solver is also 
initialized with the reference velocity profile υref(s).

Both velocity profiles—υ(s) and υIPOPT(s)—match closely 
with a small numerical error of 0.95%; see Figure 9 (first plot). 
The calculation times differ by the absolute values of 10.5 s to 
calculate υ(s) and 2.4  min to optimize υIPOPT(s). In this 
scenario, HPIPM is approximately 13.5 times faster, and the 
solution quality is nearly the same.

Summary of the Results
In the following, we wish to summarize the results in this 
publication. We presented

•• And solved an MRTP comprising 12 subsequent race 
laps on the Monteblanco (Spain) racetrack in an 
initialization calculation time of approximately 10.5 s. 
When the vehicle follows this strategy, it resolves the 
conflict of achieving a minimum race time while 
simultaneously adhering to its technical constraints.

•• An analysis of the computation times of our ES 
algorithm. Race distances of approximately 70 km to 
80 km can be re-optimized in less than our target 
calculation time of 15 s.

•• A qualitative argumentation explaining the plausibility 
of the ES results and a quantitative comparison to a 
state-of-the-art MLTP optimization. The benchmark 
showed an error of 3.11% for the velocity and 1.19% for 
the machine temperature profile.

•• A justification of the selected numerical solver (HPIPM). 
We compared its solving time to IPOPT, where 
we identified a speedup of the factor 13.5 and a 
suboptimality of 0.95%.

Conclusion
To achieve maximum performance in an all-electric vehicle 
race, we presented an ES which solves an MRTP in real time. 
It takes into account the thermodynamic limitations of the 
powertrain components and can, therefore, avoid safety shut-
downs during a race.

Furthermore, the limited amount of stored battery energy 
is utilized as efficiently as possible. By this, a race can 
be finished without exceeding technical limitations from the 
powertrain in a minimum time. The necessary powertrain 
models for the battery, electric motors, and inverters are based 
on physical descriptions, which are mainly parameterized 
using their datasheet values and a data-driven approximation 

for the stator iron losses. We also compared the powertrain 
models to real-world measurement data.

Optimization horizons with a length of up to 100 km can 
be  solved in less than a minute, while simultaneously 
discretizing the racetrack finely enough to accurately describe 
the fast-changing driving dynamics. We validated the output 
of our ES algorithm by a comparison with the results obtained 
with a state-of-the-art MLTP planner, where we achieved good 
coherence. We also justified the solver selection, HPIPM, for 
solution quality and computational speed.

In future research, we wish to entirely validate the results 
of the proposed ES algorithm, when applied to an electric race 
car, which follows the optimized ES strategy. Further, we will 
investigate the mathematical structure of the resulting opti-
mization problem in greater detail to speed up its computa-
tion. The source code of the ES algorithm is available on an 
open-source basis on our institute’s GitHub page [42].
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Acronyms
ANN - Artificial Neural Network
BLDC - Brushless Direct Current
DAE - Differential-Algebraic Equation
ECMS - Equivalent Consumption Minimization Strategy
ES - Energy Strategy
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HPIPM - High-Performance Interior-Point Method
ICE - Internal Combustion Engine
IGBT - Insulated-Gate Bipolar Transistor
IPOPT - Interior Point OPTimizer
LP - Linear Programming
MCTS - Monte Carlo Tree Search
MLTP - Minimum Lap Time Problem
MPC - Model Predictive Control
MRTP - Minimum Race Time Problem
NDTM - Nonlinear Double Track Model
NLP - Nonlinear Programming
NRMSE - Normalized Root Mean Square Error
OCP - Optimal Control Problem
OCV - Open-Circuit Voltage
ODE - Ordinary Differential Equation
PMP - Pontryagin’s Minimum Principle
QP - Quadratic Programming
SOC - State of Charge
SOCP - Second-Order Conic Programming
SQP - Sequential Quadratic Programming
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Summary

In order to implement the global ES on the road, we present an optimization-based velocity
planner. This real-time software module acts as the interface to an autonomous driving software
stack: Together with a graph-based path planner [196], the proposed velocity optimization
algorithm forms the trajectory planning module in our Roborace software stack [12, 25, 224].
The velocity module handles external information about the environment like the tire-road friction
potential, and the power limitations, which are computed by the ES Core Module presented in
Chapter 5 [9]. This approach allows to use the limited amount of available energy as lap-time-
efficiently as possible, and to transfer the global and dynamically adapting ES to the road. The
final local trajectory is forwarded to the vehicle dynamics controller [167] (Figures 3.1 and 6.1).

Velocity Optimization

Local Path Planner

Controller

Energy Strategy
Core Module

Environmental
information

Figure 6.1: In- and outputs of the Velocity Optimization module. Environmental information is, e.g., the
tire-road friction potential.

We split the literature dealing with the online replanning of trajectories into the three fields
of “separated/two-step trajectory planning”, where path and velocity are calculated indepen-
dently [187, 191, 193, 201], “combined trajectory planning”, where the free variables defining a
trajectory are jointly optimized [24, 194, 197, 198], and “MPC approaches”, which also consider
the current vehicle state and feasible terminal sets [181, 183, 200, 227, 232]. Our two-step
approach allows to be applied in real-time-critical applications, while simultaneously considering
the ES input, spatially variable acceleration limits [233], and the selected path as external
parameters. The algorithmic combination with the graph-based path planner handles non-convex
scenarios at a high update rate being sufficient for autonomous racing [196].

To solve the problem of velocity planning, we present a nonlinear model predictive planner
(NMPP), mathematically formulated as a tailored multi-parametric sequential quadratic program
(mpSQP) [234, p. 353]. It iteratively solves local convex approximations [227] of the original
problem. The underlying point mass vehicle dynamics model delivers a small number of opti-
mization variables. We also integrate slack variables into the problem formulation to allow the
algorithm for violations of the combined acceleration constraints. These slacks are crucial to
preserve recursive feasibility, since the friction estimation module and the local path planner
deliver slightly numerically varying inputs, possibly leading to infeasibility while driving. We
implement the objective function as a sum of the squared l2-norms of the desired vehicle velocity
and its jerk, together with the l2- and l1-norms of the slack variables to keep their values small
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and maintain the original problem’s optimum. Through this formulation, we obtain a constant
Hessian matrix of the objective function with a tunable condition number, which supports the
real-time capability of the algorithm.

To show the real-time performance of the developed algorithm, we run the full software stack on
a HIL-simulator including the automotive-grade ARM-based vehicle ECU NVIDIA Drive PX2 [235,
p. 115], [236]. On this device, the mpSQP permanently computes both, an emergency and a
performance speed profile. First, we validate the most important part of the algorithm, the design
of the objective function. A run including an autonomous start and stop scenario shows that
the slack variables are not exploited for lap time gains, and that the jerk term contributes by
smoothing numerical oscillations.

To demonstrate the ability of the proposed algorithm to transfer the global ES to the road,
we conduct an experiment where the space-dependent power limits are received externally
(Figure 6.2). We calculate a global static ES beforehand to isolate the interaction between local
and global planner without inference from a dynamic ES replanning. By this, the mpSQP adapts
the local velocities to meet the variable power constraints. A drift between the globally admissible
energy expenditure and the local consumption after one race lap originates from different vehicle
dynamics assumptions, which stem from a nonlinear double-track model in the global ES, and a
point mass model in the velocity planning algorithm.
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Figure 6.2: Global ES locally implemented, © 2020 IEEE.

The multi-parametric nature of the proposed SQP algorithm also allows to handle other envi-
ronmental information like, e.g., the spatially variable acceleration limits (Figure 6.1). A second
simulation reveals that drops of up to 50 % in the friction potential within several meters be-
tween the tires and the road can algorithmically be handled, while fully leveraging the maximum
available acceleration potential, ultimately leading to the minimum achievable lap time.

A third experiment summarizes the computation time of the developed SQP algorithm. Mean
runtimes between 6 ms to 7 ms are achieved on an Intel i7-7820HQ CPU, and 32 ms to 34 ms on
the target hardware with an ARM A57 CPU. To justify our QP solver selection, we benchmarked
three iterative solvers, where each of them implements a different mathematical solving strategy
(Section 2.2). The selected solvers are the ADMM solver OSQP [156], the active set solver
qpOASES [159], and the primal-dual nonlinear IP method IPOPT [152]. It turned out that the
solution quality using OSQP was higher compared to qpOASES. Even the calculation time
was smaller by orders of magnitude. To validate the effort we put into tailoring the proposed
mpSQP, we directly solve the original nonlinear velocity optimization problem by IPOPT. To this
end, we implement the optimization problem using the CasADi modeling language [149]. Here,
the IPOPT solver produces velocity profiles which are slightly better in quality compared to the
mpSQP solved by OSQP in an SQP method. However, the calculation time of the nonlinear
76
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problem solved by IPOPT was approximately five times higher on average. Additionally, the peak
calculation times of IPOPT exclude this solver for the usage in our real-time setup.
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Real-Time Adaptive Velocity Optimization for
Autonomous Electric Cars at the Limits of Handling

Thomas Herrmann, Alexander Wischnewski, Leonhard Hermansdorfer, Johannes Betz, Markus Lienkamp

Abstract—With the evolution of self-driving cars, autonomous
racing series like Roborace and the Indy Autonomous Challenge
are rapidly attracting growing attention. Researchers partic-
ipating in these competitions hope to subsequently transfer
their developed functionality to passenger vehicles, in order
to improve self-driving technology for reasons of safety, and
due to environmental and social benefits. The race track has
the advantage of being a safe environment where challenging
situations for the algorithms are permanently created. To achieve
minimum lap times on the race track, it is important to gather
and process information about external influences including, e.g.,
the position of other cars and the friction potential between the
road and the tires. Furthermore, the predicted behavior of the
ego-car’s propulsion system is crucial for leveraging the available
energy as efficiently as possible. In this paper, we therefore
present an optimization-based velocity planner, mathematically
formulated as a multi-parametric Sequential Quadratic Problem
(mpSQP). This planner can handle a spatially and temporally
varying friction coefficient, and transfer a race Energy Strategy
(ES) to the road. It further handles the velocity-profile-generation
task for performance and emergency trajectories in real time on
the vehicle’s Electronic Control Unit (ECU).

Index Terms—Real-Time Numerical Optimization, Optimal
Control, Velocity Planning, Trajectory Planning, Autonomous
Electric Vehicles, Energy Strategy, Variable Friction Potential

I. INTRODUCTION

THE Technical University of Munich has been participat-
ing in the Roborace competition since 2018. Many parts

of our software stack are already available on an open source
basis [1] including the code of the algorithm in this work [2].
This paper explains an optimization-based Nonlinear Model
Predictive Planner (NLMPP), mathematically formulated as a
multi-parametric Sequential Quadratic Problem (mpSQP) [3],
to calculate the velocity profiles during a race. The velocity
planner inputs are the offered race paths (“performance” and
“emergency”), stemming from our graph-based path-planning
framework [4], see Fig. 1. The presented velocity optimiza-
tion in combination with the path framework span our local
trajectory planner that will be used within the competition. The
trajectory planner’s output is forwarded to the underlying ve-
hicle controller [5], [6], transforming the target trajectory into
actuator commands for the race car, called “DevBot 2.0”, see
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Fig. 1. Software environment of presented velocity optimization module.

Fig. 2. TUM Roborace DevBot 2.0 on the race track.

Fig. 2. A huge motivation behind setting up an optimization-
based velocity planner was to be able to handle information
about the locally and temporally varying friction potential
on the race track [7], and utilize the information provided
by the race Energy Strategy (ES) [8] as a vehicle’s velocity
profile has a significant influence on it’s energy consumption
and power losses [9]. The friction potential estimation and
the calculation of the ES are handled by separate modules in
our software stack. Their outputs, the friction potential and
variable power limits, are then considered in the presented
velocity optimization algorithm.

To achieve real-time-capable calculation times, we build
local approximations of the nonlinear velocity-planning prob-
lem, resulting in convex multi-parametric Quadratic Prob-
lems (mpQP) [10] that can be solved iteratively using a
Sequential Quadratic Problem (SQP) method. We evaluated
different open-source Quadratic Problem (QP) solvers and
compared their solution qualities and calculation times to a
direct solution of the Nonlinear Problem (NLP). We chose the
Operator Splitting Quadratic Problem (OSQP) [11] solver as it
outperformed its competitors on a standard x86-64 platform as
well as on the DevBot’s automotive-grade Electronic Control
Unit (ECU), the ARM-based NVIDIA Drive PX2.
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A. State of the art

The field of trajectory planning of vehicles at the limits
of handling is attracting growing attention in research. The
scenarios where the car is required to be operated at the limits
of its driving dynamics will become more and important as we
see the spread of cars equipped with self-driving functionality,
and even fully autonomous vehicles. Through this, complex
scenarios with self-driving vehicles on the road will occur
more frequently. Research is also being carried out on the
race track where these challenging scenarios can deliberately
be created in a safe environment [12].

In the field of global trajectory optimization for race tracks,
different mathematical concepts are applied. In the work of
Ebbesen et al. [13] a Second Order Conic Problem (SOCP)
formulation is used to calculate the optimal power distribution
within the hybrid powertrain of a Formula One race car leading
to globally time-optimal velocity profiles for a given path.
For the same racing format, Limebeer and Perantoni [14]
took into account the 3D geometry of the race track within
their formulation of an Optimal Control Problem (OCP) to
solve a Minimum Lap Time Problem (MTLP). In a similar
approach, Tremlett and Limebeer [15] consider the thermody-
namic effects of the tires. Christ et al. [16] consider spatially
variable but temporally fixed friction coefficients along the
race track to calculate time-optimal global race trajectories
for a sophisticated Nonlinear Double Track Model (NDTM).
They show a significant influence of the variable friction
coefficients on the achievable lap time when considered during
the trajectory optimization process. A minimum-curvature QP
formulation, calculating the quasi-time-optimal trajectory for
an autonomous race car on the basis of an occupancy grid map,
is given by Heilmeier et al. [5]. Their advantage in comparison
to [16] is the computation time, but the resulting trajectories
are suboptimal in terms of lap time. Also, Dal Bianco et al.
[17] formulate an OCP to find the minimum lap time for a
GP2 car and include a detailed multibody vehicle dynamics
model with 14 degrees of freedom. However, none of these
approaches are intended to work in real-time on a vehicle
ECU, but to deliver detailed and close-to-reality results for lap
time or for the sensitivity analysis of vehicle setup parameters.

A further necessary and important part in a software stack
for autonomous driving is the online re-planning of trajectories
to avoid static and dynamic obstacles at high speeds. The
literature can be structured into the three fields:

• “separated/two-step trajectory planning”, where the ve-
locity calculation is a subsequent process of the path
planner [18]–[20].

• “combined trajectory planning”, optimizing both path and
velocity at the same time [21]–[23].

• “Model Predictive Control (MPC) approaches” taking
into account the current vehicle state [10], [24]–[27].

In the following, we evaluate the literature according to the
implemented features regarding

• spatially and temporally varying friction coefficients,
• powertrain behavior,
• applicability at the limits of vehicle dynamics through

fast computation times.

In the spline-based approach of Mercy et al. [23] trajectories
for robots operating at low velocities are optimized. The
calculation times of the general NLP-solver Interior Point
OPTimizer (IPOPT) [28] range up to several hundred mil-
liseconds, which is too long for race car applications. Another
general NLP-formulation is done by Svensson et al. [29].
The latter describe a planning approach for safety trajectories
of automated vehicles, which they validate experimentally in
simulations for maximum velocities of 30 kmh−1, leveraging
the general nonlinear optimal control toolkit ACADO [30].

Huang et al. [18] describe a two-step approach: first de-
termining the path across discretized available space and
then calculating a sufficient velocity. Also, Meng et al. [19]
leverage a decoupled approach using a quadratic formulation
for the speed profile optimization, reaching real-time capable
calculation times below 0.1 s in this step. Nevertheless, both
publications deal with low vehicle speeds in simulations of
max. 60 kmh−1. Furthermore, Zhang et al. [20] implement a
two-step algorithm where they use MTSOS [31] for the speed
profile generation within several milliseconds for path lengths
of up to 100m. The speed-profile optimization framework
MTSOS developed by Lipp and Boyd [31] works for fixed
paths leveraging a change of variables. As in the aforemen-
tioned publications, they consider a static friction coefficient
and neglect the maximum available power of the car. The
same is true for the MPC algorithm by Carvalho et al. [24].
They plan trajectories considering the driving dynamics of a
bicycle model, neglecting physical constraints stemming from
the powertrain, like maximum available torque or power. This
is a major drawback for our application, as the DevBot 2.0 is
often operating at the power limit of its electric machines.

Subosits and Gerdes [21] formulate a Quadratically Con-
strained Quadratic Problem (QCQP) replanning path and ve-
locity of a race car at spatially fixed points on the track
to avoid static obstacles. They consider a constant friction
potential and the maximum available vehicle power. However,
the obstacles need to be known in advance before the journey
commences, and must be placed at a decent distance from
the replanning points to allow the algorithm to find a feasible
passing trajectory, given the physical constraints. In order to
reach fast calculation times, Alrifaee et al. [25] use a sequential
linearization technique for real-time-capable trajectory opti-
mization. They consider the friction maxima, with included
velocity dependency that they determine beforehand. This
dependency is assumed to be globally constant, thus neglecting
the true track conditions during driving. Their experimental
results stem from simulations with peak computation times of
several hundred milliseconds on a desktop PC.

Considering variable friction on the road is attracting more
attention, as it is an emergency-relevant feature for passenger
cars and a performance-critical topic for race cars. Therefore,
Svensson et al. [22] describe an adaptive trajectory-planning
and optimization approach. They pre-sample trajectory prim-
itives to avoid local optima in subsequent SQPs stemming
mainly from avoidance maneuvers to the suboptimal side of
an obstacle. The vehicle adaptively reacts to a varying friction
potential on the road at speeds of up to 100 kmh−1. The
resulting problem is solved using simulations in MATLAB,
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so no information about the calculation speed on embedded
hardware is given.

Stahl et al. [4] describe a two-step, multi-layered graph-
based path planner. This approach allows for functionalities
such as following other vehicles and overtaking maneuvers,
also in non-convex scenarios at a high update rate. We use
this path planner to generate the inputs for the velocity-
optimization algorithm.

B. Contributions

In this paper we contribute to the state of the art in the field
of real-time-capable trajectory planning with the following
content.

(1) We formulate a tailored mpSQP algorithm capable
of adaptive velocity planning for race cars operating at the
limits of handling, and at velocities above 200 kmh−1. The
planner computes velocity profiles for various paths using
the path planner [4] in real time on the target hardware,
an NVIDIA Drive PX2 [32] being an ECU already proven
for autonomous driving. The adaptivity refers to the multi-
parametric input to the planner, depending on the vehicle’s
environment. The quadratic subproblems within the mpSQP
are handled using the OSQP [11] solver. Its primal and dual
infeasibility detection for convex problems [33] was integrated
to flag up (as fast as possible) offered paths which could not
feasibly be driven [4].

(2) With the formulation of an mpSQP optimization algo-
rithm, it is possible to integrate our race ES, described in our
previous works [8], [34]. The necessary variable power param-
eters are forwarded to the velocity planner and considered as
a hard constraint, see Fig. 1. In the case of electric race cars,
such an ES is vital in order not to overstress the powertrain
thermodynamically.

(3) We further allow the friction coefficient on the race track
to vary spatially as well as temporally [7]. Therefore, global
limits of the allowed longitudinal and lateral acceleration of
the vehicle are omitted. This improves the achievable lap
time significantly as the tires are locally exploited to their
maximum. Via the temporal variation of the friction limits,
we take into account varying grip due to, e.g., warming tires
or changing weather conditions.

(4) To boost the solver selection for similar projects deal-
ing with trajectory optimization within the community, we
compare the efficiency of different solver types regarding
calculation speed and solution quality. Therefore, we solve the
quadratic subproblems in our mpSQP using a first-order Alter-
nating Direction Method of Multipliers (ADMM) implemented
in the OSQP-framework. Its results are compared to the active-
set solver QP Online Active SEt Strategy (qpOASES) [35].
We contrast both SQPs with a direct solution of the nonlinear
velocity optimization problem with the open-source, second-
order interior point solver IPOPT [28], interfaced by the
symbolic framework CasADi [36].

Section II introduces the mathematical background of an
SQP method to solve an NLP. In the following Section III,
the nonlinear equations of our velocity planner are introduced.
We explain their efficient incorporation within an mpSQP and

explain details about the recursive feasibility of our optimiza-
tion problem. The Results section shows the realization of
the ES and the handling of variable friction by our velocity-
optimization algorithm. Furthermore, we contrast different
solvers in terms of their runtime and solution quality.

II. PRELIMINARIES

In this section, the mathematical background to an SQP
optimization method to solve local approximations of an
NLP with objective function J(o), hb(o) and gc(o), denoting
equality and inequality constraints of scalar quantity b and c,
and optimization variables o is introduced.

The standard form of a Nonlinear Optimal Control Problem
(NOCP) is given by [36], [37]:

min J(x(s), u(s)︸ ︷︷ ︸
o

) (1)

s.t.
dx(s)

ds
= f(x(s), u(s)) (2)

hb(o) = 0 (3)
gc(o) ≤ 0. (4)

The independent space variable s describes the distance along
the vehicle’s path in our problem. The function f(x(s), u(s))
specifies the derivatives of the state variable x(s) as a function
of the state x(s) and the control input u(s).

The standard form of a QP is expressed as [38]

min
1

2
zT
qpPzqp + qTzqp

s.t. l ≤ Azqp ≤ u, (5)

where zqp is the optimization vector, matrix P is the Hessian
matrix of the discretized objective J(ok) and the vector qT

equals the Jacobian of the discretized objective ∇J(ok) with
iterate k. Matrix A contains the linearized versions of the
constraints hb and gc in the optimization problem. Their upper
and lower bounds are summarized in both vectors, l and u.

In an SQP method, the linearization point ok is updated
after every QP iteration k using [39]

ok+1 = ok + αzqp (6)

λk+1 = λk
qp (7)

zqp = o− ok. (8)

In the quadratic subproblem, a solution for zqp is computed.
We chose to initialize the Lagrange multiplier vector λk+1

using the previous QP solution as stated in the local SQP
algorithm in [40].

On the one hand, the steplength parameter α must be
calculated in order to perform a large step in the direction
of the optimum o∗ for fast convergence. On the other, α
must be small enough to not skip or oscillate around o∗. It is
therefore necessary to define a suitable merit function, taking
into account the minimization of the objective function as well
as the adherence of the constraints [37], [39]. As it is hard to
find such a merit function, we use the SQP Root Mean Square
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Error (RMSE) ε̄SQP as well as the SQP infinity norm error
ε̂SQP to determine whether a stepsize α is suitable or not,

ε̄SQP =
1

K

∥∥ok+1 − ok
∥∥
2
≤ ε̄SQP,tol (9)

ε̂SQP =
∥∥ok+1 − ok

∥∥
∞ ≤ ε̂SQP,tol, (10)

where K denotes the number of elements in ok. In case one of
the two errors εSQP increases when applying (6), the counting
variable γ is increased and, therefore, α is reduced until the
tolerance criteria values ε̄SQP,tol and ε̂SQP,tol are met:

α = βγ . (11)

The parameter β ∈ ]0, 1[ is to be tuned problem-dependent as
the Armijo rule states [37] with γ ∈ [0; 1; 2; ...].

To bring the objective J(o) and the necessary nonlinear
constraints hb(o) and gc(o) into the mathematical form of a
QP (5), they are discretized and approximated quadratically
or linearly, respectively, using Taylor series expansions in the
form

J(o) ≈1

2
(o− ok)TP (ok)(o− ok)+

∇J(ok)(o− ok) + J(ok) (12)

and

gc(o) ≈ ∇g(ok)(o− ok) + g(ok). (13)

III. OPTIMIZATION-BASED VELOCITY PLANNER

This section describes the implemented point mass model,
the used objective function, and the constraints necessary to
optimize the velocity on the available paths. The point mass
model was chosen, as it is commonly used to describe the
driving dynamics in the automotive context. Due to its sim-
plicity, it delivers a small number of optimization variables and
constraints. Therefore, quick solver runtimes can be achieved.
It still delivers quite accurate results for the task of pure
velocity optimization [13].

The concept of the optimization-based algorithm is to plan
velocities with inputs from other software modules, cf. Section
I. We do not deal with sensor noise in the planner but in the
vehicle dynamics controller [5], which receives the trajectory
input. The trajectory planning module, consisting of a path
planner [4] and the presented velocity optimization algorithm,
always keeps the first discretization points of a new trajectory
constant with the solution from a previous planning step. After
matching the current vehicle position to the closest coordinate
in the previously planned trajectory, a new plan starting from
this position is made within the remaining part of a new
trajectory. Through this, two control loops can be omitted,
and prevent from unnecessary inferences in the planning and
the control module.

A. Nonlinear problem

This subsection presents the nonlinear velocity optimization
problem, structured into its system dynamics, equality and
inequality constraints as well as its objective function.

1) System dynamics: Let us first introduce the system
dynamics of the point mass model for our physical vehicle
state v(s). Newton’s second law for a point mass mv states

mvv(s)
dv(s)

ds
= mvax(s). (14)

With the derivative of the kinetic energy,

dEkin(s)

ds
=

1

2
mv

dv2(s)

ds
= mvv(s)

dv(s)

ds
, (15)

the system dynamics are given by the longitudinal acceleration

ax(s) =
1

mv

dEkin(s)

ds
. (16)

The force Fx,p(s) applied by the powertrain to move the point
mass model can be calculated by

Fx,p(s) = mvax(s) + crv
2(s) (17)

where cr is the product of the air density ρa, the air resistance
coefficient cw and the vehicle’s frontal area Av,

cr =
1

2
ρacwAv. (18)

2) Equality and inequality constraints: To improve numer-
ical stability and avoid backward movement, the velocity v(s)
is constrained,

0 ≤ v(s) ≤ vmax(s). (19)

To ensure that the optimization remains feasible in combina-
tion with a moving horizon, the terminal constraint

v(sf) ≤ vend (20)

on the last coordinate point sf within the optimization horizon
is leveraged. Here, vend denotes the minimal velocity the
vehicle can take in the case of maximum specified track
curvature κmax at the vehicle’s technically maximum possible
lateral acceleration ay,max. Therefore,

vend =

√
ay,max

κmax
. (21)

At the beginning of the optimization horizon, the velocity
and acceleration must equal the vehicle’s target states of the
currently executed plan vini and ax,ini,

v(ss) = vini,

ax,ini − δa ≤ ax(ss) ≤ ax,ini + δa, (22)

where ss denotes the first coordinate within the moving
optimization horizon and δa a small tolerance to account for
numerical imprecision.

As the vehicle’s maximum braking as well as driving forces
are technically limited, the resulting constraints are

Fmin ≤ Fx,p(s) ≤ Fmax. (23)

The negative force constraint Fmin does not affect the
optimization-problem feasibility, as the DevBot’s braking ac-
tuators can produce more negative force than the tires can
transform.

The electric machine’s output power P (s) is computed
using

P (s) = Fx,p(s)v(s), (24)
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limited by the available maximum

P (s) ≤ Pmax(s). (25)

We highlight that Pmax(s) is a space-dependent parameter in
contrast to the constant maximum force Fmax. By this, the
given race ES based on our previous works [8], [34] is realized.

To further integrate the tire physics, we interpret the friction
potential as a combined, diamond-shaped acceleration limit for
the vehicle [7] given by the inequality

∥∥(âx(s), ây(s))
∥∥
1
≤ 1 + ϵ(s) (26)

where ||·||1 denotes the l1-norm. Furthermore, the normalized
longitudinal âx(s) as well as the lateral tire utilizations ây(s)
are given by

âx(s) =
Fx,p(s)

mv

1

āx(s)
, ây(s) =

ay(s)

āy(s)
. (27)

Here, we use āx/y(s) to indicate a variable, space-dependent
acceleration potential in both longitudinal and lateral direction,
which is to be leveraged [7]. The lateral acceleration ay(s)
reads [41]

ay(s) = κ(s)v2(s) (28)

accounting for the target path geometry by the variable road
curvature parameter κ(s).

In (26) the slack variable ϵ(s) ensures the recursive feasibil-
ity of the optimization problem: details are given in Subsection
III-D. We constrain the slack variable ϵ(s) by

0 ≤ ϵ(s) ≤ ϵmax (29)

to prohibit negative values and additionally keep the physical
tire exploitation within a specified maximum.

Similarly to (21), the longitudinal and lateral acceleration
limits at the end of the optimization horizon āx(sf) and āy(sf)
must be set to the lowest physically possible acceleration limits
āx/y,min for the current track conditions,

āx/y(sf) ≤ āx/y,min. (30)

3) Continuous objective function: With the help of the
introduced symbols and equations we can now formulate the
objective function J(x(s)) to minimize the traveling time
along the given path:

J(x(s)) =

∫ sf

0

1

v(s)
ds+

ρj
sf

∫ sf

0

(
d2v(s)

d2t

)2

ds+

ρϵ,l
sf

∫ sf

0

ϵ(s)ds+
ρϵ,q
sf

∫ sf

0

ϵ2(s)ds. (31)

We chose the optimization variables o to be the state velocity
v(s) as well as the slacks ϵ(s). The control input to the vehicle
u(s) = Fx,p(s) doesn’t occur explicitly in the objective
function but can be recalculated from the state trajectory v(s),
cf. (17).

Minimizing the term 1
v(s) is equivalent to the minimization

of the lethargy dt
ds , which can be interpreted as the time

necessary to drive a unit distance [13]. To weight the different
terms, the penalty parameters ρ are used. These include a jerk
penalty ρj, a slack weight ρϵ,l on their integral and a penalty

ρϵ,q on the integral of the squared slack values. The linear
penalty term on the slack variable ϵ(s) is necessary to achieve
an exact penalty maintaining the original problem’s optimum
[v∗(s) ϵ∗(s)] if feasible [42]. Similar to a regularization term,
the integral of the squared slacks ϵ(s) is additionally added to
improve numerical stability and the smoothness of the results.

B. Multi-parametric Sequential Quadratic Problem

This chapter gives details about the implementation of the
NLP given in Subsection III-A as an mpSQP in order to
efficiently solve local approximations of the velocity planning
problem. We describe how to approximate the nonlinear
objective function J(x(s)) (31) to achieve a constant and
tuneable Hessian matrix within our tailored mpSQP algorithm.
Furthermore, we present a method to reduce the number of
slack variables ϵ(s) and the slack constraints (29) therefore
necessary.

Our optimization vector z = ok in a discrete formulation
transforms into

z =

[
v1(s1) . . . vM−1(sM−1)︸ ︷︷ ︸

v

ϵ0(s0) . . . ϵN−1(sN−1)︸ ︷︷ ︸
ϵ

]T

(32)

∈ RK×1

where K = M − 1 + N where M denotes the number of
discrete velocity points vm and N the number of discrete slack
variables ϵn used in the tire inequality constraints within one
optimization horizon. We drop the dependency of z on sm in
the following for the sake of readability. The velocity variable
v0 is removed from the vector z as it is a fixed parameter
equaling the velocity planned in a previous SQP l− 1 for the
current position.

To reduce the problem size, we apply one slack variable
ϵn to multiple consecutive discrete velocity points vm. This is
done uniformly and leads to:

[
v1 . . . vÑ︸ ︷︷ ︸

ϵ0

vÑ+1 . . . v2Ñ︸ ︷︷ ︸
ϵ1

v2Ñ+1 . . . vM−1︸ ︷︷ ︸
...

]
(33)

Here, Ñ is a problem-specific parameter setting a trade off
between the number of optimization variables and therefore
the calculation speed and accuracy in the solution.

From domain knowledge we know that the objective func-
tion can be approximated in the form

J(z) ≈
∥∥v − vmax

∥∥2
2︸ ︷︷ ︸

Jv

+ ρj
∥∥∆v

∥∥2
2︸ ︷︷ ︸

Jj

+

ρϵ,l
∥∥ζϵ

∥∥2
1︸ ︷︷ ︸

Jϵ,l

+ ρϵ,q
∥∥ζϵ

∥∥2
2︸ ︷︷ ︸

Jϵ,q

. (34)

The slack variables are transformed via the constant factor ζ;
how this is selected is discussed at the end of this section.
By using the l2-norm of the vector difference of v and vmax,
the solution tends to minimize the travel time along the path.
Still, this formulation in combination with (19) makes the car
keep a specified maximum velocity vmax(s) dependent on the
current position s to react, e.g., to other cars. To control the
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vehicle’s jerk behavior, we add the Tikhonov regularization
term ρj

∥∥∆v
∥∥2
2

[38] that approximates the second derivative
of v. The tridiagonal Toeplitz matrix ∆ ∈ RM−3×M−1

contains the diagonal elements ( 1 −2 1 ) [38]. By the l1-
norm within Jϵ,l, the summation of the absolute values of the
slack variable vector entries in ϵ is achieved. To improve the
numerical conditioning of the problem, their l2-norm is added
additionally by Jϵ,q.

For the specific choice of cost function in (12), the Hessian
matrix P ∈ RK×K does not depend on z. The condition
number σH of the Hessian P is tuned to be as close to 1 as
possible via the penalties ρj and ρϵ,l as well as ζ denoting the
unit conversion factor of the tire slack variable values in ϵ to
SI units:

P =




. . . . . . 0

. . . cjρj
. . . 0

0
. . . . . .

0
2ρϵ,qζ

2 0

0
. . .




(35)

The function cjρj represents different constant entries j that
are linearly dependent on ρj. This upper left part of P is a
bisymmetric matrix with constant entries on its main diagonal,
as well as on its first and second ones.

By using the approach of multi-parametric programming,
we can vary several problem parameters online in the SQP
(Section II) without changing the problem size. These param-
eters include the

• spatial discretization length ∆sm.
• curvature of the local path κ(sm) [4].
• maximum allowed velocity vmax(sm).
• power limitations Pmax(sm) stemming from a global race

strategy taking energy limitations into account [8], [34].
• longitudinal and lateral acceleration limits āx(sm),
āy(sm) [7].

C. Variable acceleration limits

To fully utilize the maximum possible tire forces, a time-
and location-dependent map of the race track, containing
the maximum possible accelerations, is generated. The ac-
celeration limits can be interpreted as vehicle-related friction
coefficients, cf. Subsection III-A. The 1D map along the global
coordinate sglo with variable discretization step length stores
the individual acceleration limitations Σā(sglo) in longitudinal
and lateral directions. The acceleration limits are used in
the selected local path as the parameters āx/y(s) (27). It is
important to know that while the vehicle proceeds, the target
path is updated constantly, i.e., the global coordinates sglo
selected as the local path s vary permanently in subsequent
velocity optimizations. The path planning guarantees to re-
use the first few global coordinates sglo from a previous
timestep t0 as the starting coordinates sm of the subsequently
chosen path at t1. Still, the path coordinates sm at the end
of the planning horizon are not guaranteed to precisely match
all of the previously used global coordinates sglo since the

path might change. Therefore, the requested coordinates in
the acceleration map do also vary slightly, but are matched
to the same local coordinate indices in sm within the local
path in subsequent timesteps. This leads to differences in the
acceleration limits āx/y(sm) in subsequent planning iterations
for identical local path indices m and therefore probably to
infeasible problems in terms of optimization, see Section III-D.

The nature of the discretization problem is illustrated in
Fig. 3. The given example provides stored acceleration limits
Σā(sglo) in 10m steps. The planning horizon ranges from
sglo = 0m to 300m. Therefore, we show a snippet of the
end of the planning horizon (sglo = 200m to 270m) as the
discretization issues are clearly visible here. At timestep t0,
the planning algorithm requests the stored acceleration limits
Σā(sglo) every 5.5m, starting at sglo = 0m. Within the
depicted path snippet, the subsequent iteration at t1 starts at a
shift of 2.0m with the same stepsize.

The simple approach of directly obtaining the local accel-
eration limits from the stored values Σā(sglo) by applying
zero-order hold comes with drawbacks. A slight shift in
the global coordinate selection can lead to situations where
the acceleration limits āx/y(sm) differ between subsequent
timesteps (t0, t1) in the local path. If the subsequent accel-
eration limits āx/y(sm) at t1 are smaller, they can lead to
infeasibility. In Fig. 3, the gray areas highlight the situations
where the obtained acceleration limits āx/y(sm) at t1 are
smaller compared to t0 for identical local path indices m.

To mitigate the discretization effects, we propose an interpo-
lation scheme leading to the values Σ̃ā(sglo). It applies linear
interpolation between the stored acceleration limits Σā(sglo)
but acts cautiously in the sense that it always underestimates
the actual values Σā(sglo). This can be seen from sglo =
200m to 210m, where the value is kept constant instead of
interpolating between 11 and 12m s−2, and from sglo = 230m
to 240m where the algorithm adapts to the decreasing values
although the stored value is 13m s−2. Then, zero-order hold
is applied to this conservatively interpolated line. The limits
obtained at t1 often lie above āx/y(sm) at t0, which allow
higher accelerations ax/y(sm) than expected at t0 and thus
compensating for overestimated areas (gray areas).

The acceleration limits Σā(sglo) are constantly updated by
an estimation algorithm [7] and are therefore also considered
time-variant. During the update process, it must be guaranteed
that the update does not lead to an infeasible vehicle state
for the velocity-planning algorithm, e.g., when the vehicle
is approaching a turn already utilizing full tire forces under
braking, and the acceleration limits are suddenly decreased in
front of the vehicle. Therefore, the updates only take place
outside the planning horizon of the algorithm.

The difference between subsequently obtained acceleration
limits āx/y(sm) at identical local path coordinates sm can
be controlled via the maximum change between the stored
values Σā(sglo). The slope of the interpolated values Σ̃ā(sglo)
can be used to calculate the maximum error when applying a
particular step size ∆sm in path planning.
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Fig. 3. Diagram of acceleration limits for two subsequently planned paths;
with pure readout values Σā(sglo) (top) and with the proposed interpolation
scheme Σ̃ā(sglo) (bottom). Gray areas show where the subsequently planned
path receives decreased maximum acceleration limits āx/y(sm) due to
tolerances in the spatial discretization.

D. Recursive feasibility

The minimum-time optimization problem tends to produce
solutions with many active constraints, as it maximizes the
tire utilization. It follows from this property, that ensuring
recursive feasibility is a highly relevant aspect for the ap-
plication of such an algorithm, and should be achieved via
the terminal constraints (21) and (30) by making a worst-case
assumption about the curvature κ(sf) and acceleration limits
āx/y(sf) at the end of the optimization horizon. This property
holds as long as the optimization problem is shifted by an
integer multiple of the discretization ∆sm while the relations
of the local path coordinates sm with the curvature κ(sm) and
the acceleration limits āx(sm) and āy(sm) remain constant.
This cannot be ensured since the path planner [4] might
slightly vary the target path due to an obstacle entering the
planning horizon, or due to discretization effects. This leads
to a deviation in the curvature profile κ(sm) and deviations
in the admissible accelerations āx(sm) and āy(sm) since the
local coordinate sm might refer to a different point in global
coordinates sglo now, see Fig. 3.

To mitigate this deficiency, we introduce slack variables
ϵ based on the exact penalty function approach [42]. This
strategy ensures that the hard-constrained solution is recovered
if it is feasible, and therefore the solution is not altered by
addition of the slacks unless it is mandatory. The nature of the
combined acceleration constraint (26) allows for a straightfor-
ward interpretation of the slack variables as a violation of ϵ
in %. Together with the upper bound on the slack variables
in (29), we can therefore state that the optimization problem
is always feasible as long as the maximum required violation
is limited to ϵmax. In case no solution is found within the
specified tolerance band, a dedicated failure-handling strategy
is employed within the trajectory planning framework. We
wish to point out that a suitable scaling of the slack variables
is crucial to achieve sufficiently tight tolerances εQP,tol when

TABLE I
EMERGENCY- AND PERFORMANCE-SQP PARAMETRIZATION.

Parameter Unit Value
Performance Emergency

M - 115 50
N - 12 5
δa ms−2 0.1 inactive

ϵmax % 3.0 3.0
ρj - 3e2 0.0
ρϵ,l m2 s−2 1e5 5e4

ρϵ,q m2 s−2 1e4 1e3

nSQP,max - 20 20
∆tmax ms 300 100

β - 0.5 0.5
ε̄SQP,tol - 1e0 1.5e0

ε̂SQP,tol - 1e0 1.5e0

εQP,tol - 1e−2 1e−2

using a numerical QP solver. We therefore employ a variable
transformation with ϵ = ζϵn and optimize over ϵn instead. Re-
alistic values for the maximum slack variable ϵmax were found
to be around 3% in extensive simulations on different race
tracks (Berlin (Germany), Hong Kong (China), Indianapolis
Motor Speedway (USA), Las Vegas Motor Speedway (USA),
Millbrook (UK), Modena (Italy), Monteblanco (Spain), Paris
(France), Upper Heyford (UK), Zalazone (Hungary)) and ob-
stacle scenarios. We consider this to be an acceptable tolerance
level and believe it will be difficult to achieve significantly
tighter guarantees in the face of the scenario complexity we
tackle in [4].

IV. RESULTS

In this section, the results achieved with the presented
velocity mpSQP will be presented. We conducted the experi-
ments on our Hardware-in-the-Loop simulator, which consists
of a Speedgoat Performance real-time target machine, where
validated physics models of the real race car in combination
with realistic sensor noise are implemented. An additional
NVIDIA Drive PX2 receives this sensor feedback and cal-
culates the local trajectories. A Speedgoat Mobile real-time
target machine transforms this trajectory input into low level
vehicle commands to close the loop to the physics simulation.
Therefore, we used the DevBot 2.0 data: mv = 1160 kg,
Pmax = 270 kW, Fmax = 7.1 kN, Fmin = −20 kN, cr =
0.85 kgm−1. The results in this section have been produced
with the velocity planner parametrizations given in Table I.

We show results for two types of offered paths: performance
and emergency. The emergency path is identical to the perfor-
mance one, except for a coarser spatial discretization, and the
fact that the velocity planner tries to stop as soon as possible
on the emergency line. The optimization of the emergency line
requires therefore fewer variables M + N . This formulation
reduces the necessary calculation time of the emergency line
that must be updated more frequently for safety reasons.

A. Objective function design

To explain the chosen values of the penalty weights ρ, we
show the values of the single objective function terms in J(z)
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Fig. 4. Cost terms of the objective function J being minimized within the
performance velocity profile. Jv shows the most significant influence on the
solution due to its value range compared to the other objective terms Jj, Jϵ,l
and Jϵ,q (not displayed as it equals almost 0). Symbol l denotes the number
of the optimized velocity profiles.

being minimized during the calculation of the performance
velocity profile in Fig. 4. The symbol l denotes the number of
the optimized velocity profiles during the driven lap (including
the race start) as well as the vehicle’s stopping scenario. It
can clearly be seen that the velocity term Jv has the highest
relative impact on the optimum solution. Its value range is at
least two orders of magnitude higher than the slack penalty
terms Jϵ,l, Jϵ,q (not displayed) and the jerk penalty Jj. The
penalty weight ρϵ,l on the linear slack term was chosen to
increase the value of Jϵ,l to be one order of magnitude higher
than Jv if ϵmax was fully exploited on all the slack variables
ϵn. Therefore, Jϵ,l prevents the solver from permanent usage
of tire slack ϵ for further lap time gains. As ρϵ,q is applied to
the squared values ϵn, it is sufficient to keep the magnitude of
ρϵ,q one order smaller than ρϵ,l. To provide a smooth velocity
profile, we set the jerk penalty ρj to increase the value of
Jj to be higher than the slack penalty terms during normal
operation. By this, effects on a possible lap time loss stay as
small as possible, whilst a smoothing effect in the range of
numerical oscillations on the velocity and acceleration profile
is still visible.

We further integrated a calculation time limit ∆tmax for the
velocity optimization and a maximum SQP iteration number
nSQP,max. In case of reached limits, the algorithm would
return the last suboptimal but driveable solution. The SQP
never reached these limits during our experiments, and they
can be considered as safety limitations. Instead, the SQP-
algorithm always terminated due to the reached tolerance
criteria ε̄SQP,tol and ε̂SQP,tol, cf. (9) and (10).

B. Energy Strategy

As stated in Subsection III-B, the presented mpSQP is able
to implement our global race ES [8], [34]. The ES is pre-
computed offline and re-calculated online due to disturbances,
unforeseen events during the race and model uncertainties.
Through this, we account for the limited amount of stored
battery energy and the thermodynamic limitations of the
electric powertrain. Therefore, the ES delivers the maximum
permissible power Pmax(sglo) in order to reach the minimum
race time, see Fig. 1. It takes the following effects into account:

• the vehicle dynamics in the form of an NDTM including
a nonlinear tire model;

• the electric behavior of battery, power inverters and elec-
tric machines, i.e., the power losses of these components
during operation;

• the thermodynamics within the powertrain transforming
power losses into temperature contribution.

Fig. 5 depicts the output of the ES computed offline (top).
We varied the amount of energy available for one race lap by
the three values 100% (Eglo,100(sglo)), 80% (Eglo,80(sglo))
and 60% (Eglo,60(sglo)). The optimal power usage Pglo(sglo)
belonging to these energy values Eglo(sglo) is depicted in the
first diagram. The positive values in Pglo(sglo) become the
parametric input of the power constraint within the velocity
optimization (25). By this formulation, we only restrict the
vehicle’s acceleration power but leave the braking force unaf-
fected. This experiment consists of one race lap with constant
maximum acceleration values āx/y on the Modena (Italy) race
circuit.

The power usage Ploc,80(sglo) locally planned by the mp-
SQP is shown in the middle plot of Fig. 5. The positive power
values in Ploc,80(sglo) remained below the maximum power
request allowed by the global strategy Pglo,80(sglo). Differ-
ences between the globally optimal power usage Pglo(sglo) and
the locally transformed power Ploc(sglo) stem from different
model equations in both - offline ES and online mpSQP -
optimization algorithms. The velocity planner’s point mass
is more limited in its combined acceleration potential due to
the diamond-shaped acceleration constraint (26) compared to
the vehicle dynamics model (NDTM) in the ES. The NDTM
overshoots the dynamical capability of the car slightly in
edge cases due to parameter-tuning difficulties. Furthermore,
the effect of longitudinal wheel-load transfer is considered
within the NDTM. For these reasons, the point mass model
accelerates less but meets the maximum admissible power
Pglo(sglo) on the straights. The accumulated error in this
experiment can be expressed by the energy demand Eloc

resulting from

Eloc =

∫
Fx,p(sglo)dsglo. (36)

In total, an energy amount of Eglo = 1.27 kWh was allowed
whereas Eloc = 1.07 kWh was used, implying 15.8% drift.
With the help of a re-calculation strategy adjusting the ES
during the race, this error can be significantly reduced. This
feature was switched off during this experiment to isolate the
working principle of the race ES, i.e., the interaction between
global and local planners.

The effect of the ES on the vehicle speed vP80 is de-
picted in Fig. 6. The left part (A) of both plots consists
of a scenario where the race car is accelerating with the
maximum available machine power of Pmax = 270 kW and a
subsequent straight where the ES forces the vehicle to coast
(Pglo,80(sm) = Ploc,80(sm) = 0 kW). Acceleration without
any power restriction on this straight would have resulted in
the velocity curve vP100 meaning a slightly higher top speed
by approx. 4% or 8 kmh−1. The second part (B) of the shown
planning horizon ensures recursive feasibility. Here, we force
the velocity variable v(sN ) to reach vend (20).
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C. Variable acceleration limits

Fig. 7 shows a locally variable acceleration map to deter-
mine the values of āy(s) along the driven path. We conducted
three experiments with a constant acceleration potential of āx
= 12.5m s−2 and varied āy in three different ways:

• ā+y,cst has a constant value of 12.5m s−2 along the entire
track, describing a high friction potential.

• ā−y,cst has a constant value of 6.5m s−2 along the entire
track, describing a low friction potential.

• āy,var(s) has a variable value in the range of 6.5m s−2

to 12.5m s−2 with the steepest gradients between sglo =
1520 - 1550m and sglo = 1670 - 1700m, as shown in
Fig. 7.

The results of these experiments can be seen in Fig. 8. We
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Fig. 7. Race track map displaying the spatially variable acceleration potential
Σā(sglo) including the driven path and markers starting from the global s-
coordinate of 1400m at 100m gaps.
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Fig. 8. Comparison of velocity v(sglo) and lateral acceleration ay(sglo) pro-
files resulting from spatially and temporally varying acceleration coefficients
āy(sglo).

depicted the acceleration potentials āy of the three scenarios
in combination with the planned lateral acceleration ay(sglo)
(top) and the vehicle velocity v(sglo) (bottom). In both scenar-
ios with constant āy,cst values, the planner leverages the entire
admissible lateral potentials which can be seen between sglo =
1500 - 1600m and sglo = 1650 - 1700m. The results achieved
using the variable āy,var(s) are interesting: The planned lateral
acceleration ay(s) stayed within the boundaries of the low-
and high-friction experiments. The planner handles the drop
of āy,var(s) of 50% at sglo = 1520m by reducing ay(s) in
advance, while still fully leveraging āy,var(s). This results in
a vehicle velocity of v(sglo) in the low-friction scenario. The
same is true for sglo = 1670m. Also during the rest of the
shown experiment, the oscillating values of āy,var(s) can be
handled by the mpSQP algorithm. This behavior allows us to
fully exploit the dynamical limits of the race car on a track
with variable acceleration potential.

A further indicator that the velocity planner utilizes the full
acceleration potential is shown in Fig. 9. Here, we depicted the
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friction experiments (µ̄l and µ̄h) for a planning horizon ranging from the
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vehicle’s optimized operating points µo(s) regarding combined
acceleration ax(s) and ay(s) within the planning horizon of
sglo = 1500 - 1800m. Both solid diamond shapes express the
given constant acceleration limits of the high-friction scenario,
µ̄h = āx & ā+y,cst = 12.5 & 12.5m s−2, and the low-friction
scenario µ̄l = āx & ā−y,cst = 12.5 & 6.5m s−2. The horizontal
red dashed line indicates the maximum available electric
machine acceleration āx,m = Fmax

mv
. From this diagram we see

that the vehicle operates at the limits of the given acceleration
constraints in both scenarios. This means the mpSQP leverages
the maximum acceleration potential in combination with fully
available cornering potential.

D. Solver comparison

The number of variables in the performance profile within
one QP for the performance trajectory is 126, including
810 constraints. From the problem formulation (34), a small
number of non-zero entries in the matrices A and P of 2295
in total arises with constant entries in the problem’s Hessian
P .

Fig. 10 contains a comparison of the ADMM solver OSQP
[11] and the active set solver qpOASES [35] as QP solvers for
an mpSQP method as proposed in this paper. Furthermore,
we solve the original NLP using the interior point solver
IPOPT [28] interfaced via CasADi [36] to obtain a measure
of solution quality for the proposed mpSQP. Note that IPOPT
is widely used to benchmark the solution quality even if it
is not specifically designed for embedded optimization. We
chose a scenario where the vehicle is heading towards a narrow
right-hand turn at a high velocity of almost 200 kmh−1. The
optimization horizon spans this turn including the consecutive
straight where positive acceleration occurs. Therefore, the
solvers have to deal with high gradients for the longitudinal
force Fx(sm) and lateral acceleration ay(sm) stemming from
curve entry and exit. The velocity plot shows that the optimal
solution z∗ almost equals the initial guess zini for both the
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Fig. 10. Comparison of the solution of the mpSQP (internal QPs solved by
the ADMM solver OSQP [11]) with the general NLP interior point solver
IPOPT [28] interfaced by CasADi [36] and the active set solver qpOASES
[35]. The chosen scenario includes the vehicle heading towards a narrow
right-hand bend at a high velocity of almost 200 kmh−1. The optimization
horizon spans the curve, and includes the subsequent straight.

velocity vector v and the slack values ϵ. This behavior is
expected, as the previous SQP solution zl−1(sm) is shifted
by the traveled distance and used as initialization zini. The
optimization outputs z∗

OSQP and z∗
IPOPT overlap except at

the end of the planning horizon where IPOPT initially al-
lows more positive longitudinal force Fx(sm), resulting in
more aggressive braking to fulfill the hard constraint vend.
qpOASES’s solution oscillates in the force Fx(sm) at the
steep gradients. All the algorithms keep the initially given
longitudinal force Fx(ss) within the specified tolerance of
±0.1 kN, with OSQP matching the exact value (see magnified
section in the second plot). The slack values ϵ are close
to zero. However, the OSQP-solution shows small numerical
oscillations within a negligible range of approx. ±0.04%.
Nevertheless this behavior is typical for an ADMM algorithm,
and is thus noteworthy.

Apart from the solution qualities, we further analyzed the
velocity optimization runtimes. The scenario consisted of two
race laps, including a race start and coming to a standstill after
the second lap on the Monteblanco (Spain) race circuit with a
variable acceleration potential along the circuit, cf. Subsection
IV-C. The histograms in Fig. 11 display the calculation times
∆tsol for the number of calls C to optimize a speed profile.
CP and CE denote the calls for the performance and the
emergency lines, respectively. Their mean values are given
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TABLE II
SOLVER MEAN RUNTIMES.

CPU Intel i7-7820HQ A57 ARM
Prob. formulation mpSQP NLP mpSQP mpSQP
Solver OSQP IPOPT qpOASES OSQP
Performance in ms 6.20 40.4 164 32.4
Emergency in ms 6.95 29.8 26.1 34.2

by ∆t̃sol. We wish to point out that the algorithm runtimes
shown refer to an entire SQP optimization process for a speed
profile consisting of the solution of several QPs in the case
of the used solvers OSQP or qpOASES, which have been
warm-started. The optimization runtimes on the specific CPUs
are also summarized in Table II where the ARM A57 is the
NVIDIA Drive PX2 CPU. As we selected OSQP for our
application on the target hardware, we do not show additional
solver times of IPOPT or qpOASES for the ARM A57 CPU.

Our mpSQP in combination with the QP solver OSQP
reaches nearly equal mean runtimes of 6ms to 7ms for both
velocity profiles on an Intel i7-7820HQ CPU and 32ms to
34ms on an A57 ARM CPU. An amount of 2 to 5 SQP
iterations for the performance line was sufficient to reach the
defined tolerances εSQP. To optimize the emergency speed
profile, a higher amount of SQP iterations in the range of 5 -
10 was necessary. Therefore, the computational effort for the
iterative linearizations increased on this profile. In contrast, it
was possible to solve the single QPs in less calculation time,
as less than half the number of optimization variables M +N
in comparison to the performance profile are present. With
maximum computation times of 16.9ms (73.3ms A57 ARM)
on the performance profile and 15.0ms (77.1ms A57 ARM)
for the emergency line, we managed to stay far below our
predefined process-timeouts, see Table I.

The same optimization problem was formulated with the
CasADi-language [36] as a general NLP and passed to the
interior point solver IPOPT. The IPOPT mean solver runtimes
are at least approximately five times higher, with maxima of
around 0.1 s on the emergency line being too long for vehicle
operations at velocities beyond 200 kmh−1. On the emergency
profile, the active set solver qpOASES beats IPOPT slightly in
terms of its mean runtime ∆t̃sol but consumes four times the
IPOPT computation time to generate the performance speed
profile, see Table II. This behavior is rational, as a higher num-
ber of optimization variables and active constraints increases
the calculation speed of an active set solver significantly.
Nevertheless, maximum computation times for the mpSQP of
around 0.5 s on the performance line exclude the QP solver
qpOASES for this type of application.

V. CONCLUSION

In this paper we presented a tailored mpSQP algorithm
capable of adaptive velocity planning in real time for race
cars operating at the limits of handling, and velocities above
200 kmh−1. The planner can deal with performance and
emergency velocity profiles. Furthermore, the optimization
handles multi-parametric input, e.g., from the friction estima-
tion module or the race ES. We also specified the boundaries
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Fig. 11. Solver runtimes for the mpSQP with the local QPs solved by OSQP
[11] or by the active set solver qpOASES [35], compared to the problem
solved by the general NLP formulation passed to the interior point solver
IPOPT interfaced by CasADi [36].

of maximum variation within these parameters to keep the
problem feasible. Additionally, we compared different solvers
applied to our problem formulation to compare calculation
times as well as the solution qualities. Here, our mpSQP
in combination with the ADMM solver OSQP outperformed
the active set strategy qpOASES and the general NLP solver
IPOPT in terms of calculation time, but reached nearly the
same solution quality as IPOPT. This indicates that the first
order ADMM in OSQP shows its strength for the minimum-
time optimization problem as it handles the large set of active
constraints well.

In future work we will apply the presented algorithm in
autonomous races and implement a tailored trajectory opti-
mization module based on the presented results and techniques
for comparison.
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7 Summary and Discussion

This chapter summarizes the content and results of the thesis, discusses its strengths and
limitations, and introduces directions for future research.

7.1 Summary

The objective of this thesis was to develop an online-capable ES, which operates a race vehicle
at the performance limit to achieve a minimum race time, leveraging the available amount of
energy as efficiently as possible.

We conducted offline studies in Chapter 4 to isolate the most important effects of the energetic
and thermodynamic constraints on the time-optimal global race trajectories. The formulation of
an NLP allowed to precisely model the driving dynamics and the thermodynamic powertrain
behavior. In particular, the powertrain model comprises descriptions of the battery, VSIs, electric
motors, and cooling fluids. In this process, the effects on the time-optimal velocity profiles and
the corresponding race paths were jointly studied. Moreover, we were able to formulate and
solve an MRTP for multiple subsequent race laps considering long-term effects of the SOC and
the powertrain component temperatures.

To dynamically recompute the global ES during a race for optimization horizons spanning the
remaining race distance, we introduced the ES Core Module (Chapter 5). To achieve real-time
capability, the computations in the ES Core Module are split into the three steps of “ES Guess”,
“ES Presolve”, and “ES Resolve”, leveraging an SQP method. A comparison of real-world
measurement data with our powertrain models, which were mainly parametrized by datasheet
numbers, validate the underlying ODE system.

As a final necessary element to implement the global ES on the road, we presented an
optimization-based velocity planner in Chapter 6. It handles external information like the power
limitations provided by the ES Core Module. The velocity optimization algorithm forms the local
trajectory planner together with a graph-based path planner in our autonomous software stack.
Therefore, it must meticulously meet real-time requirements to operate a vehicle at the handling
limits. To do so, we implemented the velocity computation algorithm as an mpSQP. Since the
solver selection is crucial, we thoroughly benchmarked three open-source packages for the
velocity planning problem, which implement a different iterative strategy each. Thereby, the
solver unifying the best compromise between solution accuracy and computation speed on the
embedded vehicle ECU could be selected.

To summarize, in this thesis we presented a software architecture to realize an ES, which is
seamlessly integrable into an existing autonomous driving software stack. This is achieved
by the interconnection of two software loops, which operate at a higher and a lower update
frequency, via the power limitation interface. The results demonstrated that the planned global ES
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adheres to the technical constraints stemming from the electric powertrain while still achieving
a minimum lap time compared to state-of-the-art and real-world-validated global trajectory
planning algorithms. At the same time, the locally requested vehicle power never exceeds the
admissible global limitations. Several runtime analyses prove the real-time capability of the
proposed ES architecture in combination with the autonomous driving software stack. Still, the
governing equations describing the powertrain predict an accurate system behavior compared
to measurement data. The mathematical nonlinear formulation of the ES algorithms allows for
future extensions by, e.g., additional physical constraints.

7.2 Discussion and Outlook

Algorithmic Setup

In the ES Core Module we selected an IP method to solve the underlying QPs with high accuracy.
According to our solver comparison in [4], mathematical strategies like ADMM can provide a
competitive alternative to IP methods regarding the compromise between the resulting solution
accuracy and the computation time. According to the literature (Section 2.2), ADMMs handle
large-scale optimization problems well. Therefore, they would also depict a noteworthy research
direction when applied to the ES problem.

In the current implementation of the ES Core Module, the optimization problem does not
comprise the driving path as a free variable. But we assume that the vehicle will mainly follow
the ideal race line, which is generated by solving an MLTP for a single race lap. Future research
should therefore deal with the following two topics: First, one could incorporate the driving path
into the optimization problem, since energetic and thermodynamic constraints do affect the
geometry of the optimal race path, even if the velocity profile has the major impact on the energy
consumption (Chapter 4). Second, the OCP in the ES Core Module could be reformulated in
a convex way. In our work [22], we have demonstrated the convex formulation of an OCP to
compute maximum-distance race strategies for optimization horizons spanning a compulsory
endurance race time. Here, we have included a maximum velocity profile to incorporate the
limitations of the driving dynamics, and additional constraints on the permissible amount of
energy consumption per stint. To formulate the OCP, the physical governing equations were
replaced by convex approximations. By doing so, approximation errors in the model descriptions
are introduced but the global optimality of the obtained solution can be guaranteed.

Opponent Vehicles

As stated in the introduction in Chapter 1, the ES architecture and its formulation aim to solve the
ES problem from a self-perspective. Therefore, the possible influence of opponent vehicles on
the energy consumption is neglected, i.e., we considered a traffic-free race track in the planning
phase. In the case of interactions with opponent vehicles, they are considered as disturbances in
the proposed ES architecture, which reacts by computationally fast reoptimizations. Through this,
the current powertrain state, which might differ from the previous prediction of the ES, is taken
into account when adapting the ES to the remaining race distance. However, when integrating
the behavior of opponent vehicles already in the planning phase, benefits through slipstream
effects, e.g., could actively be leveraged. Similarly, necessary amounts of energy and “positive
temperature delta” for overtaking maneuvers could be reserved in advance.
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Closed-loopd Study

The physical powertrain descriptions in the ES Core Module are based on models with static
parameters. These imply difficulties reacting to long-term effects like a varying internal battery
resistance, which can occur during the course of a race season. Furthermore, systematic
modeling discrepancies, which can stem from parameters like heat transfer coefficients that
are only determinable with uncertainty from vehicle telemetry measurement data, cannot be
handled by static parameters. To show the influence of a systematic modeling discrepancy,
we set up a closed-loop simulation environment with the proposed ES architecture running in
parallel to the autonomous driving software stack [237] (Figure 3). The vehicle powertrain is
simulated based on the ODE system presented in Chapter 5 but with 7 % higher component
power losses, which are additionally added to the vehicle dynamics control errors compared
to the planned trajectories. The results in Figure 7.1 compare the initially planned ES to the
iteratively adapted, i.e., the currently active ES trajectories. In the first ES prediction, the motor
temperature would have limited the vehicle performance the most. Since the power losses during
the course of the race are higher compared to the initial prediction, the SOC drops significantly
faster. Through permanently replanning the ES trajectories the vehicle power gets limited such
that the motor temperature does not reach its permitted limit but decreases during the course of
the last race laps. Moreover, the difference between the initial SOC prediction and the measured
powertrain SOC stops increasing after half the total race distance, which stresses that the
ES replannings are able to react to disturbances or parameter uncertainties and to adapt the
trajectories accordingly.

The results show that the ES Core Module is able to adapt the optimal driving behavior since
it takes the current powertrain state into account during replanning. Nevertheless, the vehicle
SOC will reach 0 % slightly before the finish line as can be seen around the distance of approx.
28 km in Figure 7.1. Since the iterative adaptions of the ES are based on constant model
parameters, the actual powertrain behavior permanently differs from the ES predictions in this
experiment. This can also be seen when comparing the last available ES prediction and the low
SOC region, ultimately leading to a prematurely empty battery. Therefore, parameter estimation
algorithms should be included into the ES Core Module to retune the model parameters online. In
combination with the high update frequency of the ES Core Module, dynamic model parameters
can be handled and iteratively replanning the ES with retuned model parameters will lead to a
high prediction accuracy.

In future work, the output of the ES Core Module and the simulated close-loop behavior of the
proposed ES architecture should also be validated in a prototype vehicle.
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