
Pre
pri
nt

Hardening with Scapolite: A DevOps-based Approach for
Improved Authoring and Testing of Security-Configuration

Guides in Large-Scale Organizations
Patrick Stöckle

patrick.stoeckle@tum.de
Technical University of Munich (TUM)

Munich, Germany

Ionut, Pruteanu
ionut.pruteanu@siemens.com

Siemens AG
Bucharest, Romania

Bernd Grobauer
bernd.grobauer@siemens.com

Siemens AG
Munich, Germany

Alexander Pretschner
alexander.pretschner@tum.de

Technical University of Munich (TUM)
Munich, Germany

Tailoring
and

Authoring

Setup
Error
fixing

Testing as part of CI

Consistency
checks

C
he

ck
Im

pl
.

Application

Target
System

Automated Impl.

Automated Check

D
oc

um
en

ta
tio

n

Automated Impl.

Automated Check

Test
System

Input

1

2

3

3

3 4

4

4

5

Figure 1: Improved process of security hardening. The green arrows represent activities that have been automated.

ABSTRACT
Tool Paper1 Security Hardening is the process of configuring
IT systems to ensure the security of the systems’ components
and data they process or store. In many cases, so-called security-
configuration guides are used as a basis for security hardening.
These guides describe secure configuration settings for components
such as operating systems and standard applications. Rigorous test-
ing of security-configuration guides and automated mechanisms
for their implementation and validation are necessary since erro-
neous implementations or checks of hardening guides may severely
impact systems’ security and functionality. At Siemens, centrally
maintained security-configuration guides carry machine-readable
1We submitted this article as a full-length paper. One can find the full-length version
here [6]. We collected all code example we cut out here [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9220-4/22/04. . . $15.00
https://doi.org/10.1145/3508398.3511525

information specifying both the implementation and validation of
each required configuration step. The guides are maintained within
git repositories; automated pipelines generate the artifacts for im-
plementation and checking, e.g., PowerShell scripts for Windows,
and carry out testing of these artifacts on AWS images. This paper
describes our experiences with our DevOps-inspired approach for
authoring, maintaining, and testing security-configuration guides.
We want to share these experiences to help other organizations
with their security hardening and increase their systems’ security.
CCS CONCEPTS
• Security and privacy → Usability in security and privacy; Soft-
ware security engineering.

KEYWORDS
Hardening, Security Configuration
ACM Reference Format:
Patrick Stöckle, Ionut, Pruteanu, Bernd Grobauer, and Alexander Pretschner.
2022. Hardening with Scapolite: A DevOps-based Approach for Improved
Authoring and Testing of Security-Configuration Guides in Large-Scale
Organizations. In Proceedings of the Twelveth ACM Conference on Data
and Application Security and Privacy (CODASPY ’22), April 24–27, 2022,
Baltimore, MD, USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3508398.3511525

https://orcid.org/0000-0003-0193-5871
https://orcid.org/0000-0002-5573-1201
https://doi.org/10.1145/3508398.3511525
https://doi.org/10.1145/3508398.3511525
https://doi.org/10.1145/3508398.3511525

Pre
pri
nt

CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA Patrick Stöckle, Ionut, Pruteanu, Bernd Grobauer, and Alexander Pretschner

1 INTRODUCTION

Consistency
checks Test

System

Automated Check

Target
System

Automated Impl.

Automated Check

Setup

Automated Impl.

Error
fixing

Testing only on demandTailoring

C
he

ck
D

oc
um

en
ta

tio
n

Im
pl

.

Authoring ApplicationInput

1

2

1

3

5
4

6

6

4

4

Figure 2: Typical process of security hardening. Dotted ar-
rows represent manual tasks. Every arrow within the box is
a task the administrators execute to harden the system.

Insecure configurations of operating systems and applications
are known to be both common and detrimental to cybersecurity [1–
3, 7, 9]. Organizations, therefore, need to identify the security-
relevant configuration settings of the used software, determine the
secure value or a set of secure values for each setting, and ensure
that they configure each instance of the software used within their
organization accordingly. This process is called security-configuration
hardening and is part of the general security hardening of an organi-
zation’s infrastructure. Security hardening is a continuous process
rather than an one-time-only task since the IT infrastructure, the
threat environment, insights about (in)secure configurations, et
cetera are constantly in flux.

Organizations such as the Center for Internet Security (CIS) or
the Defense Information Systems Agency (DISA) provide publicly
available security-configuration guides (also called benchmarks,
guidelines, or baselines) for various software components, e.g., op-
erating systems like Windows 10, web servers like NGINX, or email
clients like Outlook. These guides consist of rules, and each rule
states which values should be used for a configuration setting rel-
evant for security; some of these guides consist of more than 350
rules. Benchmarks written in the SCAP [8] standard often contain
machine-readable definitions of checks, whereas mechanisms for
implementing the required settings are usually either provided sep-
arately or not at all. The usual security-configuration hardening
process, which is based on such public guides, contains many man-
ual steps that are both inefficient and error-prone. Most of the time,
one need to adapt the external guides for their target infrastructure
by modifying specific settings, removing some rules, and adding
others. This problem is intensified by the fact that these adaptions
have to be replicated and kept consistent for each implementation,
such as scripts (e.g., Bash), Infrastructure as Code (IaC) approaches
(e.g., Ansible), et cetera, and for each check mechanism.

1.1 Problems of the Current Security
Hardening Process

Figure 2 illustrates the usual security hardening process; the num-
bers in the figure refer to the following steps:

(1) Input is an external guide in the SCAP standard: The human-
readable parts are defined in the eXtensible Configuration

Checklist Format (XCCDF) with machine-readable checks in
the Open Vulnerability and Assessment Language (OVAL).

(2) XCCDF offers a mechanism for tailoring the guide, e.g., con-
figure changes via so-called profiles. The profiles are also
reflected in the OVAL-based checks.

(3) Because machine-readable implementation mechanisms are
not part of these guides (exception: ComplianceAsCode, dis-
cussed below), one must either manually develop implemen-
tation mechanisms or adjust them if one can re-use existing
mechanisms. Since larger organizations may use several
different implementation mechanisms, one may need to re-
apply the same changes numerous times.

(4) Before applying the implementation mechanisms to and
using the check mechanisms for production systems, one
must test both of them: Erroneous implementation/checking
of security configurations may severely impact the security
and functionality of systems. Because the guides are used
for many target systems (different operating systems and
applications, et cetera), one must manage a corresponding
multitude of test systems.

(5) Feedback about problems, e.g., faulty implementations or
checks, might introduce changes for one or several imple-
mentation/check mechanisms.

(6) Finally, the tailored and tested security guides can be applied
to production systems. If problems are detected in productive
use or a new version of a guide is published, the whole
process restarts.

Repeating these manual steps increases the risk of introducing
errors and, thus, of insecure systems. Therefore, we identified
the following challenges for improving the security hardening:

• Remove superfluous complexity in the security hardening
process resulting from unnecessary manual steps and scat-
tered information.

• Establish automatic quality assurance for the guides to find
errors earlier and easier.

1.2 Our Approach: Improved Authoring,
Artifact Generation, and Automated
Testing

Our solution to these challenges is twofold. We present our im-
proved configuration hardening approach that focuses on automa-
tion to remove error-prone manual steps. Next, we illustrate our
approach to automatic testing guides to detect errors as soon as
possible. Figure 1 shows our improved security hardening process;
again, the numbers refer to the steps below:

(1) We manage guides in a dedicated YAML-based format called
Scapolite, which we keep under version control. Further, we en-
rich the format with machine-readable information about con-
figuration requirements. Ideally, both implementation and check

Pre
pri
nt

Hardening with Scapolite CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

I II
Profiles

Guides

Old
tests

I

II II

IIIIII

I

Cross-checking

I IIII

I
C

ro
ss

-c
he

ck
in

g
U

pd
at

e
re

su
lts

Fe
ed

ba
ck

 le
ad

s
to

 c
or

re
ct

io
ns

IIII II

Test
Results

Test
machines

Checks

Impl.

Figure 3: State-of-the-art execution of tests in a security
hardening process. The green arrows denote steps that are
now automated.

mechanisms can be automatically derived. Thus, we keep infor-
mation about the check, implementation, metadata, and docu-
mentation, e.g., human-readable descriptions about the require-
ments, the rationale, et cetera, at a single location.2

(2) Tailoring to different use-cases in Scapolite works similarly as
in SCAP: We can define profiles for the individual use cases and
create per-use-case modifications.

(3) From this single source, i.e., the machine-readable information
from 1), we automatically generate the required artifacts for
implementing/checking the guides.

(4) Creation of the required test systems as VMs, applying the im-
plementations/checks to these systems, and collecting the test
results is carried out automatically as a part of a DevOps pipeline.

(5) By automatically generating the implementations/checks, we
can fix detected problems with a single change in the Scapolite
document defining the guide or a bug-fix in the transformation
system, rather than changing in several different artifacts.

1.3 Contributions
Our contributions to the field of security hardening are:
• By pulling information required for generating both implementa-
tion and check mechanisms as machine-readable information into
our security-configuration guides, we manage to restrict manual
changes/corrections to a single location, thus reducing errors and
increasing efficiency.

• We show how to operate a DevOps/CI-inspired approach of au-
thoring and maintaining security-configuration guides. In our
approach, changes in the guides trigger automated tests without

2External guides in SCAP can be automatically converted into Scapolite. Adding
machine-readable information from which implementations and checks can be derived
requires, of course, manual effort, but such effort would be necessary for generating sep-
arate implementation mechanism, as well. Furthermore, we developed semi-automated
mechanisms for deriving machine-readable information from human-readable text [5].

human involvement in the execution of the tests, collection of test
results, and correlation of test data with expected results.
The latter point deserves a closer examination: As explained

above, security-configuration mechanisms are affected by the com-
binatorial explosion of test cases, requiring many test systems and
test runs. Figure 2 illustrates the approach without the DevOps: a
single test already requires a substantial manual effort that must be
multiplied by the number of test systems/test cases; when we de-
tect problems, we have to fix them at several locations. In contrast,
Figure 3 illustrates the level of automation of our approach.

Our experiences of handling multiple guides with multiple
profiles authored/maintained using version control and DevOps
pipelines within an industrial context show that an approach that
combines machine-readable information required for implement-
ing and checking security-configuration requirements is not only
feasible but provides enormous benefits. Errors are reduced, and
the efficiency and the effectiveness of an organization’s security-
configuration hardening program are raised. Thus, we tackle two of
the major causes for insecure configurations: erroneous application
and ineffective or incomplete application of secure configurations.

2 OUR APPROACH TO SECURITY
HARDENING

Everyone who published guides to their organization knows the
need for automated implementation and validation of the settings.
Especially in the case of operating systems, publishing a guide with-
out providing automated mechanisms is inefficient and ineffective:
• multiple persons/groups in the constituency work in parallel on
creating implementation/validation mechanisms;

• the manual transcription of required settings into an implementa-
tion mechanism will lead to errors and omissions;

• some constituency members will deem the task of implementation
as too arduous or time-consuming and not bother with it at all.

The SCAP [8] format family defines the state of the art for providing
automated mechanisms along with a guide. We can use the SCAP
formats to augment human-readable information with machine-
readable checks, usually specified in OVAL. In almost all cases,
however, automated implementation mechanisms are maintained
separately, except for the ComplianceAsCode 3. At Siemens, we
strive to operate at a higher level of abstraction – where possible
– by specifying the desired configurations in a machine-readable
form from which we can derive implementation and verification
mechanisms. We combine this with a rigorous “DevOps”-approach
for authoring and maintaining guides: we use pipelines for both
automated derivation and test of implementation and validation
mechanisms.

2.1 The Scapolite Format
We started by defining a format called “Scapolite,” which encom-
passes SCAP’s relevant features but additionally provides

(1) a form that can be created/maintained as text-files under version
control (cf. above comment on changes in rules).

(2) generalizations and additional extension points to support a
broader range of use cases.

3https://github.com/ComplianceAsCode/content

https://github.com/ComplianceAsCode/content

Pre
pri
nt

CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA Patrick Stöckle, Ionut, Pruteanu, Bernd Grobauer, and Alexander Pretschner

1 ---
2 scapolite:
3 class: rule
4 version: '0.51'
5 id: BL942-1101
6 id_namespace: org.scapolite.example
7 title: Configure use of passwords for removable data drives
8 rule: <see below>
9 implementations:
10 - relative_id: '01'
11 description: <see below>
12 history:
13 - version: '1.0'
14 action: created
15 description: Added so as to mitigate risk SR-2018-0144.
16 ---
17 ## /rule
18 Enable the setting 'Configure use of passwords for removable
19 data drives' and set the options as follows:
20 * Select `Require password complexity`
21 * Set the option 'Minimum password length for removable data drive` to `15`.
22 ## /implementations/0/description
23 To set the protection level to the desired state, enable the policy
24 `Computer Configuration\...\Configure use of passwords for removable data drives`
25 and set the options as specified above in the rule.

Listing 1: A very basic example of a rule in Scapolite. Lines
referenced in the text are marked in blue.

(3) fields for tracking of document maintenance data such as change
history information per configuration requirement.
Listing 1 shows a minimal example of Scapolite; highlighted lines

contain the description of how to implement the required setting.

2.2 Adding Machine-Readable Automations
The setting prescribed by the example rule in Listing 1 concerns a
Windows policy setting, specified via a path and the required policy
value. We, therefore, augment the Scapolite rule object shown in
listing 1 with an automation structure. For a programmatic imple-
mentation, however, an intermediate step is necessary. We have,
therefore, implemented an automated transformation of the policy-
based specification to a registry-based automation; similar trans-
formations exist for other “low-level” mechanisms required.

2.3 Transforming Automations
The result of carrying out this transformation is that we must set
three registry keys; the first key signifies that the setting is enabled;
the second specifies that the requirements on password complexity
are active; the third contains the minimum password length. Ideally,
we specify all security requirements as abstractly as possible and
transform them automatically into mechanisms for implementation
and checking. However, if we cannot find a suitable abstraction
level, we must include code in a scripting language.

2.4 Producing Code and Other Artifacts
With the machine-readable specifications of what needs to be im-
plemented/checked and the associated transformation mechanisms,
we can generate artifacts that the system administrators can use to
carry out the rule’s implementation and check. For guides targeting
Windows, we generate a set of PowerShell commandlets together
with a JSON file containing the necessary data used to implement
or check the corresponding rule. We can also transform our struc-
ture in OVAL. Before the scripts implement a rule, they store each
setting’s current value to enable rollbacks.

Our approach to security hardening has two main advantages:
It concentrates all information of a rule in one place and reduces
the risk of inconsistencies, and the transformations replace many
manual steps and significantly reduce the risk of errors.

3 OUR APPROACH TO TESTING
3.1 Maintenance and Release Process
Our workflow in authoring, maintaining, and releasing security-
configuration baselines is as follows:

(1) Authors write guides using Scapolite. The Scapolite files are kept
under version control at an internal GitLab instance.

(2) We use GitLab pipelines to automatically transform the machine-
readable automations into artifacts for implementation and check.

(3) Once we release a guide, Siemens’s security-regulation portal
SFeRA generates human-readable versions (web view, PDF, etc.)
directly from the Scapolite sources.

(4) The pipeline-based transformation mechanism is triggered for
the released version of the Scapolite sources, and we provide the
artifacts to users via dedicated repositories.
In a parallel process, we maintain the technological basis of this

process and develop it further, namely:
(1) libraries for creating and manipulating Scapolite content, e.g.,

imports from SCAP, methods for enriching existing Scapolite
content with additional information, et cetera;

(2) libraries for transforming abstract machine-readable automations
into more concrete automations (cf. Section 2.3);

(3) libraries for further transformation into code or other artifacts
(cf. Section 2.4)

3.2 Test Requirements during Guide Creation
Creating a guide is an iterative process between writing and testing
its implementation. The author, therefore, requires a test environ-
ment in the form of a virtual image.

Manual creation/maintenance of such a test environment, as well
as the manual execution of the tests, is a tremendous overhead: we
must start/reset the virtual image, generate the artifacts, transfer
them to the image, and execute the artifacts; usually, we execute
this process several times for implementing and checking rules
for different use-cases. In the end, we must collect the test results
and prepare them for the manual analysis. Efficient guide creation,
therefore, is impossible without automated testing.

3.3 Test Requirements During Guide
Maintenance

Automated testing also is essential during maintenance. Every
change either in the Scapolite source or the underlying infrastruc-
ture required for generating the artifacts for implementation and
checking may lead to errors. For example:

(1) Errors in the metadata introduced during maintenance may
lead to rule omissions in the generated artifacts.

(2) Errors in the transformation from abstract to concrete infor-
mation, e.g., through bugs in the library, may lead to faulty
specifications respectively implementations/checks.

(3) Similarly, errors in the transformation to program code or
other artifacts may lead to faulty implementations/checks.

Pre
pri
nt

Hardening with Scapolite CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA

Further, we need to detect errors in a timely manner that are
introduced by changes that have nothing to do with our process:

(1) Maintainers may misspecify the machine-readable informa-
tion when making changes during maintenance.

(2) Changes in the target, e.g., upgrades of the OS, may invali-
date or break a particular way of implementing or checking.

(3) Changes in execution environments for a created artifact,
e.g., changes in a vulnerability scanner we generate a speci-
fication for, may invalidate the created artifact.

Only a high automation degree allows us to run the required
regression tests whenever a change occurs.

3.4 The Testing process
Testing a guide’s implementation and checking on a target is likely
to require several test runs: one for each combination of use-case,
target-system revision, and implementation or check runtime en-
vironments. We use the CIS-CAT scanner to verify implementa-
tions/checks generated for CIS baselines. Nevertheless, we can also
have different results for the same tools, e.g., because of different
versions. A test run typically has the following shape:
Run initial checks Run checks on the unchanged system to es-
tablish the status quo before the implementation.
Apply security settings Execute the generated mechanism for
implementing the desired security settings.
Carry out checks for compliance Re-run checks.
Revert settings Reset the revertable settings to their initial values.
Check reverted settings Check the status after we restored the
settings’ old state.

3.4.1 Analysis of a test run. Relevant data that can be collected
from such test runs are:
Quantitative data How many rules were successfully applied?
For how many rules did the check return a success, a failure, or a
runtime problem?
Detailed information Which rules were successfully applied?
For which rules was the check successful, a failure, ran into a
problem, et cetera?
Analysis of the complete set of test runs for a specific setting,

i.e., a combination of use-case and target system, usually entails
two types of comparison:
Comparisons within a test run to find discrepancies, e.g.:
• A rule is reported as applied, but the check mechanism reports
the rule as non-compliant.

• Two check mechanisms report different results for a rule.
• The check mechanism marked a rule as non-compliant before
the implementation, compliant after the implementation, but still
as compliant after the reverting.

Comparison with previous test runs : as regression tests, the
newly collected data are compared with data from previous test
executions. Were there changes? If so, are these desirable changes,
e.g., we improved an implementation or check that did not work
before, or undesireable changes, e.g., unsuccessful check.

3.5 Our Approach to Test Automation
In order to automate testing as much as possible, we implemented
the following approach: Our tooling executes a machine-readable

test specification on VMs created on-demand in AWS; the tooling
carries out the specified test activities, collects the raw data gener-
ated from implementation/check mechanisms, and automatically
prepares summary data and comparisons for the test analysis.

This complete automation of test activities allows an author
or maintainer to carry out tests with no effort; the extensive pre-
processing of the test data enables them to see directly whether
there are deviations from the expected results and enables them to
focus on analyzing the cause of these deviations.

3.5.1 Test Specification. We specified a YAML-based test file for-
mat to define one or more test runs; they are executed on different
instances in parallel. We specify:
• for each test run, a sequence of activities such as implementing,
checking, or reverting rules.

• for each activity, a list of so-called validations; each validation
compiles data from the result or log files created by an activity (for
example, validations can count successfully checked rules, collect
these rules’ identifiers, compare the current results to results of
previous activities, et cetera);

• for each validation, the expected results (as basis for regression
tests along with each validation)
The test specification file is kept under version control with the

Scapolite sources for each guide.

3.5.2 Test Execution. We have implemented a test runner that is
part of the DevOps pipeline that generates the artifacts for imple-
mentation and checks. The test runner accesses the test specifica-
tion file in the repository and executes the tests:
• For each test run, the runner starts the required AWS image.
• The runner transfers the created artifacts and additional resources
required for implementation/checking to the image.

• The runner uses Ansible to carry out the specified activities.
• In the end, the runner retrieves the created result/log files from
each activity from the image, stops and destroys it.

3.5.3 Preprocessing of test results. As described in Section 3.5.1,
we can specify validation tasks for each action carried out in the
test run. Hence, after the runner collected all raw data, the tooling
carries out the validation tasks: it compiles the required data and
compares them to the expected results from the specification file.

As a final step, our tooling commits (1) a detailed log, (2) a report
of found deviations, (3) an updated test specification file with the
current validation results, and (4) all raw data retrieved from the
image to a staging repository.

3.6 Execution of Tests
3.6.1 Testing in the cloud. We test our guides using AWS EC24 and
integrated an S3 bucket into our architecture to transfer the data
within the AWS data center rather than via the internet.

3.6.2 Integration into DevOps pipeline. We generate the artifacts
for implementing and checking from the Scapolite sources with a
DevOps pipeline maintained as a GitLab-CI include filewithin a ded-
icated repository. By factoring out the actual code for the pipeline,

4https://aws.amazon.com/ec2/

https://aws.amazon.com/ec2/

Pre
pri
nt

CODASPY ’22, April 24–27, 2022, Baltimore, MD, USA Patrick Stöckle, Ionut, Pruteanu, Bernd Grobauer, and Alexander Pretschner

we (1) keep the project’s CI file concise, and (2) can carry out the
maintenance of the pipeline via the single pipeline repository.

Each test entails the creation of several virtual machines, and
the execution of a test run may take up to an hour. We, therefore,
chose to carry out only static tests for each push but require an
active request by the author/maintainer for dynamic tests.

3.6.3 Dealing with negative effects of secure configurations on test
execution. The infrastructure relies on specific mechanisms for ac-
cessing and manipulating the test VM. Usually, the guides’ rules
disable some of these mechanisms. If we implemented one of these
rules, the following test activities would fail, with little or no in-
formation about why the activity failed. To facilitate finding those
breaking rules, we implemented the following features:
• Tests can implement the rules in an apply activity one by one
rather than in bulk; they can thus attribute a failure to the last
successfully applied rule.

• Tests can configure the rule implementation to start at a specific
rule or the last rule contained in the blacklist. Unless a combination
causes an execution failure, this suffices to find all breaking rules.

3.7 User Feedback
We have highly automated the testing process, but the test analysis
still requires human interaction. The analysts need to knowwhether
something went wrong and they need easy access to the raw data
for an in-depth analysis of problems uncovered by the test.

3.7.1 Summary Report. Our tooling generates a summary report
providing concise information for each activity:

(1) Did failures occur during an activity, e.g., because a setting inter-
rupted the connection to the VM?

(2) If no failure occurred, did the test yield the expected results as
documented in the test specification file?

(3) Where possible: if the test yielded different results, did the test
show an improvement? Were more rules implemented success-
fully than during the previous test run?
With item 3) we intend to provide the user with an initial as-

sessment of the test results based on a formal definition of what
constitutes an improvement/degradation the users can specify in
the test specification file.

3.7.2 Documentation of full results. The users can access detailed
information about found deviations for each validation step and see
the raw data for each activity within a staging repository containing
the generated artifacts. Also, they can use different mechanisms
provided by git and GitLab such as viewing differences between
test executions, e.g., within the generated artifacts.

3.7.3 Further automation. We provide further support to the users
if they need to re-test several guides, e.g., when the transformation
mechanism was updated. These command-line scripts that use the
GitLab API include tasks like:
• starting pipelines in parallel for several guides;
• informing about the pipelines’ status;
• compiling an overview with the results of all test pipelines;
• showing differences between the newly-generated artifacts and
the latest published version for each guide;

By automating repetitive manual tasks carried out for each guide,
we achieve that tests are executed frequently. Especially small or
seemingly harmless changes are now more often tested because
we lowered the effort for starting the tests and analyzing the test
results for more than one guide significantly.

4 CONCLUSION
We developed an approach towards authoring and maintaining
machine-readable security-configuration guides that extends the
DevOps principle of Continuous Integration to this domain. We
achieved this by creating the Scapolite format that enables authors
to combine human-readable information with machine-readable
information on security-configuration requirements. The latter
serve as input for a process that automatically generates artifacts
for implementation and checking, and tests the created artifacts.
Because the authors specify the rules on an abstract level, we could
significantly reduce the risk of errors because of manual errors.

Due to the high degree of automation in our process, we test the
guides and their generated artifacts much more frequently during
authoring and maintenance than in the usual case. As a result, we
detect the majority of problems before the release of a guide.

In summary, our approach to security hardening via machine-
readable security-configuration guides combined with automated
testing allows us to publish automated, well-tested mechanisms for
implementing and checking along with the guide. Consequently,
we can comply with these configurations more quickly and less
error-prone, leading to better-secured systems.

REFERENCES
[1] Andrea Continella, Mario Polino, Marcello Pogliani, and Stefano Zanero. 2018.

There’s a Hole in That Bucket!: A Large-scale Analysis ofMisconfigured S3 Buckets.
In Proceedings of the 34th Annual Computer Security Applications Conference (San
Juan, PR, USA) (ACSAC ’18). ACM, New York, NY, USA, 702–711. https://doi.org/
10.1145/3274694.3274736

[2] Constanze Dietrich, Katharina Krombholz, Kevin Borgolte, and Tobias Fiebig. 2018.
Investigating System Operators’ Perspective on Security Misconfigurations. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security (Toronto, Canada) (CCS ’18). ACM, New York, NY, USA, 1272–1289. https:
//doi.org/10.1145/3243734.3243794

[3] A. K. Jha, S. Lee, and W. J. Lee. 2017. Developer Mistakes in Writing An-
droid Manifests: An Empirical Study of Configuration Errors. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR). Institute
of Electrical and Electronics Engineers, New York, NY, USA, 25–36. https:
//doi.org/10.1109/MSR.2017.41

[4] Patrick Stöckle. 2022. Hardening with Scapolite: Code Examples. github.com/tum-
i4/CODASPY2022.

[5] Patrick Stöckle, Bernd Grobauer, and Alexander Pretschner. 2020. Automated Im-
plementation of Windows-Related Security-Configuration Guides. In Proceedings
of the 35th IEEE/ACM International Conference on Automated Software Engineering
(Virtual Event, Australia) (ASE ’20). Association for Computing Machinery, New
York, NY, USA, 598–610. https://doi.org/10.1145/3324884.3416540

[6] Patrick Stöckle, Ionut, Pruteanu, Bernd Grobauer, and Alexander Pretschner.
2022. Hardening with Scapolite: Original Version. https://i4.pages.gitlab.lrz.
de/conferences-public/preprints/2022/CODASPY/hardening-with-scapolite.pdf

[7] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,
Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. 2015. Holistic
Configuration Management at Facebook. In Proceedings of the 25th Symposium on
Operating Systems Principles (Monterey, California) (SOSP ’15). ACM, New York,
NY, USA, 328–343. https://doi.org/10.1145/2815400.2815401

[8] David Waltermire, Stephen Quinn, Harold Booth, Karen Scarfone, and Dragos
Prisaca. 2018. The Technical Specification for the Security Content Automation
Protocol (SCAP) Version 1.3. https://doi.org/10.6028/NIST.SP.800-126r3

[9] Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tackling Configu-
ration Errors: A Survey. ACM Comput. Surv. 47, 4, Article 70 (July 2015), 41 pages.
https://doi.org/10.1145/2791577

https://doi.org/10.1145/3274694.3274736
https://doi.org/10.1145/3274694.3274736
https://doi.org/10.1145/3243734.3243794
https://doi.org/10.1145/3243734.3243794
https://doi.org/10.1109/MSR.2017.41
https://doi.org/10.1109/MSR.2017.41
https://github.com/tum-i4/CODASPY2022
https://github.com/tum-i4/CODASPY2022
https://doi.org/10.1145/3324884.3416540
https://i4.pages.gitlab.lrz.de/conferences-public/preprints/2022/CODASPY/hardening-with-scapolite.pdf
https://i4.pages.gitlab.lrz.de/conferences-public/preprints/2022/CODASPY/hardening-with-scapolite.pdf
https://doi.org/10.1145/2815400.2815401
https://doi.org/10.6028/NIST.SP.800-126r3
https://doi.org/10.1145/2791577

	Abstract
	1 Introduction
	1.1 Problems of the Current Security Hardening Process
	1.2 Our Approach: Improved Authoring, Artifact Generation, and Automated Testing
	1.3 Contributions

	2 Our approach to security hardening
	2.1 The Scapolite Format
	2.2 Adding Machine-Readable Automations
	2.3 Transforming Automations
	2.4 Producing Code and Other Artifacts

	3 Our approach to testing
	3.1 Maintenance and Release Process
	3.2 Test Requirements during Guide Creation
	3.3 Test Requirements During Guide Maintenance
	3.4 The Testing process
	3.5 Our Approach to Test Automation
	3.6 Execution of Tests
	3.7 User Feedback

	4 Conclusion
	References

