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Abstract

The thesis at hand examines different approaches to mathematically model the metastatic
process in cancer diseases with ordinary and partial differential equations. Extensions
allow to incorporate treatment possibilities and comparison to clinical data. Statistical
evaluations prove the increased predictive value of the approaches in identifying high-
risk patients on an individual basis.

Die vorliegende Arbeit untersucht verschiedene Ansätze, um den Metastasierungsprozess
bei Krebserkrankungen mathematisch zu modellieren und nutzt dabei gewöhnliche
sowie partielle Differentialgleichungen. Erweiterungen des Modells erlauben die Erfas-
sung von Therapiemöglichkeiten und den Abgleich mit klinischen Daten. Statistische
Auswertungen beweisen den erhöhten prognostischen Nutzen dieser Ansätze um
Hochrisikopatienten auf einer individuellen Ebene zu erkennen.
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1 Introduction

1.1 Motivation

Cancerous diseases are among the most frequent diseases in the Western world. In the
year 2013 about half a million Germans have been diagnosed cancer and about quarter
a million Germans have died directly related to a cancerous disease, with tendency
lately increasing [Koc16]. Despite cancer as a disease group is responsible for about 10
million deaths annually according to the WHO, the disease itself remains incompletely
understood.

The technical and scientific advances of the last decades yield more treatment op-
tions and higher treatment success than ever before, culminating in public attention
with the 2018 Nobel prize in Physiology or Medicine awarded to James P. Allison and
Tasuku Honjo for the identification of the PD-1/PD-L1 pathway as target structure for
several immunotherapeutic drugs.
The metastatic process is yet not fully understood nor predictable, but about 90% of
cancer-related deaths are directly caused by metastatic lesions, most of which are not
detectable with modern clinical imaging techniques at early stage diagnosis [CW11;
LPW17]. Remarkably, even though the technical advances of the last decades yield
better diagnosis accuracy and treatment success than ever before, the quantitative
forecasting possibilities for cancerous diseases are to date relatively poor. Many mathe-
matical models have shed light into specific dynamics of emerging cancerous diseases
and optimized treatment. However, there is to date still no framework capable of
integrating the vast amount of clinical data for proper disease prognosis [GM03]. This
draws attention to mathematical tools for improved estimation of the not detectable
metastatic threat to aim at improved diagnostic and prognostic methodologies and
thus well-informed clinical decisions for improved treatment strategies and patient
care. In this work, several approaches are examined that not only allow for quantified
estimations of number and size of metastases during the clinical time course but also
show the prognostic potential identifying high-risk patients already early in treatment.
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1 Introduction

1.2 Outline

After a short introduction into the biological background of this work, i.e. a brief
presentation into the main lung cancer histology types, the metastatic process, treatment
possibilities and the data sets analysed in the corresponding publications of this thesis,
an overview over the mathematical tools is given. These include formal definitions
of ordinary and partial differential equations, different local and global sensitivity
analysis approaches and statistical evaluations of survival analysis with the Kaplan-
Meier-method, Cox proportional hazards model and concordance indices to determine
the predictive value of these regression models. All mathematical models analysed
and used on the data are properly built up in chapter four: the untreated and the
treated growth dynamics for the primary tumor alone as well as the metastatic density
distribution modeling approach with and without therapy. A slightly simplified model
is also introduced for this purpose for the statistical evaluations. All these models
are properly presented in terms of implementation and general simulation as well as
analysed for their dynamical behavior in chapter five. Chapter six shows the respective
models applied to clinical data and presents how well they are able to describe these
data. The statistical analysis at the end of that chapter gives proof of the significant
increase in clinical prediction possibility for these models applied in clinical routine
and evaluation of their model parameters as computationally generated biomarkers
pointing on helpful clinical information. A short discussion is presented thereafter.
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2 Biological principles

The data sets examined in this work consist of patients that had lung cancer diagnosed.
This chapter briefly introduces the important biological background to understand
the dynamics of lung cancer, the metastasizing process and the currently available
treatment options before the two examined data sets are described. The chapter strongly
builds on the overview published in [SKS21].

2.1 Lung cancer

The globally leading cancer-related mortality cause is lung cancer. Most of the primary
malignant lung tumors are carcinomas that can be divided into two major groups:
non-small cell lung cancer (NSCLC, about 85% of all lung cancer cases) and small cell
lung cancer (SCLC). The five year survival probability for NSCLC is approximately
22% [Bra+18]. Typically, NSCLC can be subdivided into the three main histologi-
cal subgroups of adenocarcinoma (ADC), squamous cell carcinoma (SCC) and large
cell carcinoma [Ken+08; Tra+15], that are determined by immunohistological testing.
Other, less frequent subgroups such as neuroendocrine tumors are not considered here;
throughout this work only patient data with NSCLC is examined.

Adenocarcinoma. This most frequent histology type of lung cancer is usually derived
from secretory epithelial cells and therefore mainly located in the lung periphery [Wei06;
HTC20]. It is also the most frequent tumor type of lung cancer patients without smok-
ing history [Wak+07]. Its genetic profile is rather heterogeneous but several biomarkers
have been identified useful for diagnosis. The pneumocyte marker TTF1 is expressed in
about 80% of primary lung ADC [Hec+01]. If this biomarker test is negative, the marker
Napsin A is recommended for another biomarker test to identify ADC [Suz+05].
Further identified biomarkers such as p53-expression and KRAS or EGFR mutations cor-
relate with worse survival prognosis and worse efficacy of classic chemotherapy [Sle+90;
Lee+16; Lyn+04]. On the other hand, genetic alterations in EGFR, EML4-ALK and Ros1
(among others) show increased efficacy and better survival prognosis during respective
targeted therapy approaches [Lyn+04; Mak+18; HTC20].

3



2 Biological principles

Squamous cell carcinoma. SCC is the second-most common histology type of lung can-
cer. Its incidence is strongly associated with smoking history and higher ratio for men
than for women [Der+15]. Morphologically, SCC is defined by showing cornification or
intracellular bridges and its proliferation rate is high [HTC20]. Molecular markers to
identify differentiation within the group of SCC are cytokeratins such as CK5/6, CK14
and proteins such as p40 and p63. Testing recommendations in clinical routine include
the ADC biomarkers TTF1 and Napsin A for negativity, to exclude ADC. Differential
diagnosis towards SCLC can be performed with immunohistochemical analysis of the
Chromogranin A, Synaptophysin and CD56 biomarkers [HTC20].

Adenosquamous carcinoma. Adenosquamous carcinoma (ASC) are tumors that show
components of both ADC and SCC. By clinical definition, the tumor has to consist of
at least 10% of its volume by these two carcinoma, respectively [Tra+15]. Therefore,
the diagnosis of ASC is only possible considering the tumor resectate [Tra+11]. ASC
is most frequently diagnosed in male smokers [Ish+92] and shows survival prognosis
worse than those of ADC or SCC alone [Fil+11].

2.2 Metastatic process

Lung cancer is very likely to metastasize. Cancer-related deaths are mostly driven by
existence of metastases [Ste16]. They form from cancer cells that leave the tumors via
blood and lymphatic vessels and move to other distant sites in the body [Wei06]. After
extravasation at these sites the metastatic cells construct tumor micro environments
and induce angiogenesis to boost their proliferation [Fid03]. This process is referred to
as colonization and the established daughter tumors are called metastases [Wei06].
Due to immune system activity, only a minority of these metastatic cells even survive
the travel through the body’s vessel. However, a diagnosis of metastases in cancerous
diseases results in significantly lowered survival times [Ste16; Luz+98]. But most
metastases remain unidentified at primary diagnosis of the disease due to technical
limitations [Wei06; GM06; CW11]. The metastases are simply too small to be traceable
with imaging techniques such as computed tomography (CT) and magnetic resonance
imaging (MRI). Still, they can be of considerable number already at primary diagnosis
and their overall summed volume (the total metastatic burden) is of high importance
for treatment options and survival outcomes [PCF99; Oh+09].

4



2 Biological principles

2.3 Treatment

Classic local treatment on primary tumors is surgical excision. However, treatment
options including all metastases as targets at the same time are systemic treatments.
For lung cancer, these are mainly chemo- and immunotherapy. If the mutational profile
consists of non-altered genes, proteins and pathways that would allow a targeted
therapy, usually a PD-1/PD-L1-pathway targeting immunotherapy is administered
right away (first line therapy) or subsequently after a platinum-based chemotherapy
(second-line therapy) [HTC20].

Chemotherapy. Chemotherapeutic agents trigger cytostatic or cytotoxic effects on
different pathways of cells, ideally on cancerous cells with minimal adverse effects
to healthy cells [JRL02; Meh15]. As adverse effects in chemotherapy application are
usually very common, many different combination therapies of classical drugs and
newer targeted therapy methods have been used as a standard of care for different
cancerous diseases [Meh15]. Still, the common theory behind the quantitative effects
of chemotherapy is originally formed by the so-called ‘log cell kill’ theory [SSW64;
Ski86]. It states that an applied chemotherapy dose kills a constant fraction of tumor
cells independent of the actual tumor size during a certain fixed amount of time. Ex-
perimental regimes have shown this behavior in mice, in very contrast to human cancer
settings [Nor+76]. For human tumors, it was shown that the chemotherapy exhibits
effects in tumor regression proportional to the growth rate of an untreated tumor of
this size and that the tumor size also depends on the integrated drug effect during the
course of actual treatment [NS86; SN06]. This allows for an explanation of refractory
effects termed as ‘kinetic resistance’ that are widely observed in clinical chemotherapy
applications on tumors reaching a small size [Fru+10].

Immunotherapy. Growth dynamics of tumors and their metastatic seeding process
is not only subject to the individual cell characteristics. In living organisms, it was
shown that these behaviors are additionally influenced by the immune system [HW11].
Indirect outcomes on the tumor size by enhanced antitumoral activity of the immune
system has become a major key point of modern cancer treatment, the so-called im-
munotherapy [Egg12; He+15; SFR16]. For different cancer types immunotherapy was
proven to show significant clinical benefits in patients with advanced stages of cancer
and is well-established as standard treatment [RK15; Kea16; Iwa+17]. Generally, the
immunotherapeutic treatment can be distinguished into four major subgroups: the
active non-specific immunotherapy (treatment e.g. via cytokines), the active specific
immunotherapy (vaccines), the passive immunotherapy (monoclonal antibodies) and
approaches to block immune escape mechanisms (e.g. CTLA-4) [Ber+17]. For lung
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2 Biological principles

cancer, immunotherapeutic treatment is often times passive immunotherapy, i.e., mon-
oclonal antibodies that regulate immune checkpoint inhibitors. These inhibitors are
expressed by tumor cells to manipulate immune checkpoints to decrease T-cell activity
and suppress immune responses [Par12; QP13].
The PD-1/PD-L1-pathway is a specific immune checkpoint that regulates T-cell activity
in the effector phase of the immune response. Its downregulation caused by PD-1
activation in the peripheral tissue usually prevents collateral damage during an im-
mune response [QP13; Rib12]. Tumor cells can manipulate this pathway by expressing
the ligands PD-L1 and PD-L2. These ligands bind to the T-cells PD-1 receptor and
inactivate the T-cell to decrease the immune response towards the tumor cells [Par12;
QP13; Roz+12; PK15].
Many cancer cells express PD-L1. This made it an attractive target for the immunother-
apeutic treatment approach [TDP15]. An overview of some clinically approved im-
munotherapeutic monoclonal antibodies and their respective characteristic measures
are shown in table 2.1.

Table 2.1: Some clinically approved monoclonal antibodies used as immunotherapeutic
drugs targeting the PD-1/PD-L1 pathway. Taken from [SKS21].

Antibody Type
Year of
approval
(FDA)

Molar
Mass
[kDa]

Approved
Dosages

Half-life
[d]

Atezolizumab humanized 2016 145 1200mg q3w 27
Avelumab human 2017 143 800mg q2w 6.1
Durvalumab human 2017 146 10mg/kg q2w 18

Nivolumab human 2014 146
240mg q2w or
480mg q4w

26.7

Pembrolizumab humanized 2014 146
200mg q3w or
400mg q6w

22

Cemiplimab human 2018 144 350mg q3w 19.4

q2w = quaque two weeks, every two weeks; analogous for other numbers

Non-detected metastases influence therapeutic outcomes since decisions in the treat-
ment protocol are also subject to the number and size of metastases as well as their
properties [Wei06; PCF99; Koy+08; Boe+09]. Therefore, proper estimation of the total
tumor burden in a patient’s body is of uttermost importance.

6



2 Biological principles

2.4 Data presentation

The first data set (published in [SKS21]) contains three patients with NSCLC and
features volumetric size measurements of primary tumors and clinically detected metas-
tases as well as the therapy schedule. Some details are shown in table 2.2.

Table 2.2: Data set one: patient-specific clinical parameters. Taken from [SKS21].
Patient KE-01 KE-02 KE-03
Sex F M M

Histology
Adenosquamous
carcinoma

Adenocarcinoma Adenocarcinoma

Molecular Pathology
EGFR-, PD-L1 5,
CK7+, TTF1+, p63+,
Chromogr-, Syn-

EGFR-, ALK-,
KRAS-, BRAF-,
PD-L1 50, Ros1-

EGFR-, ALK-,
KRAS-, BRAF-
PD-L1 5

Size of pt at diagnosis
[ml]

240.74 14.27 71.75

The three patients with NSCLC of this data set were routinely treated with a prior
Cisplatin/Pemetrexed Chemotherapy and/or 1L/2L immunotherapy (Pembrolizumab
or Nivolumab), as highlighted in table 6.1. The molecular pathology features diverse
histological testing of tumor markers as follows: EGFR = Epidermal Growth Factor
Receptor, PD-L1 = Programmed Death Ligand 1, CK7 = Cytokeratin 7, TTF1 = Thyroid
Transcription Factor 1, p63 = Tumor Protein 63, Chromogr = Chromogranin A, Syn
= Synaptophysin, ALK = EML4-ALK fusion protein, KRAS = Kirsten Rat Sarcoma,
BRAF = rapid accelerated fibrosarcoma (B-Type), Ros1 = rather often translocated in
sarcoma. The sign “+” or “-” indicates a positive respective negative test result for the
gene translocations and upregulations.

All three patients were routinely treated in the Clinic of Pneumology, Thoracic Oncol-
ogy, Sleep and Respiratory Critical Care of the Klinikverbund Allgäu, Germany. Data
use was approved a priori by the ethical commission of BLAEK (Ethik-Kommission
der Bayerischen Landesärztekammer), reference number 19021. The corresponding
volumetric data were calculated from the appraisal environment syngo.CT LCAD of
syngo.Via VB40, Siemens Healthineers, from the CT slices that were acquired in routine
clinical care. These volumetric data can be rescaled into measurements of cell numbers
by applying the conversion rule 10−3 ml = 1 mm3 = 106 cells [Kle09; SMS95].

The second data set (submitted in [Ben+22]) contains 31 patients with NSCLC. Here,
longitudinal diameter measurements were determined from corresponding CT and

7



2 Biological principles

MRI images of primary tumors and their corresponding brain metastases as well as
the therapy schedule and critical time points such as time to relapse and time of death.
Three of these patients had no known primary tumor size measurement at primary
diagnosis and had to be dropped during the evaluation phase. The longitudinal mea-
surements were converted to cell number measurements by assuming a spheroid shape,
calculating the volume as vol(δ) = 4

3 π
(

δ
2

)3
with δ the respective diameter measure-

ment. Again, cell numbers were evaluated from this volumetric measurement using the
conversion rule 1 mm3 =̂ 106 cells. All these clinical histories are listed in the appendix
of [Ben+22], an example patient’s clinical history is shown in Figure 6.3, subplot A.
Further details to these patients are shown in table 2.3.
Also here, all patient data were collected in clinical routine care at the Multidisciplinary
Oncology and Therapeutic Innovations Department, Assistance Publique - Hôpitaux
de Marseille, Aix Marseille University in Marseille, France. The non-interventional ret-
rospective study presented in [Ben+22] did not require opinion of a CPP in accordance
with the requirements of the Jarde 2016 law regarding studies qualified as internal by
the CNIL.

8



2 Biological principles

Table 2.3: Data set two: patient overview. Taken from [Ben+22].
Sex Female N=10 (32%)

Male N=21 (67%)
Age at diagnosis ≤ 40 years N=2 (6%)

> 40,≤ 60 years N=13 (42%)
> 60,≤ 80 years N=14 (45%)
> 80 years N=2 (6%)

Histology of primary tumor adenocarcinoma N=20 (65%)
squamous cell carcinoma N=9 (29%)
other N=2 (6%)

Stage at diagnosis I/II N=20 (65%)
III N=11 (35%)

Size of primary tumor at di-
agnosis (diameter value)

≤ 25 mm N=14 (45%)

> 25,≤ 50 mm N=6 (19%)
> 50,≤ 75 mm N=7 (23%)
> 75 mm N=1 (3%)
unknown N=3 (10%)

Number of brain metastases
at relapse

1 N=18 (58%)

2 N=5 (16%)
3 N=8 (26%)

Volume of brain metastases at
relapse (sum of diameters)

≤ 20 mm N=18 (58%)

> 20,≤ 40 mm N=9 (29%)
> 40,≤ 60 mm N=3 (10%)
> 60 mm N=1 (3%)

Surgery on primary tumor
(before relapse)

yes N=22 (71%)

no N=9 (29%)

9



3 Mathematical background

This chapter discusses the mathematical tools used. Deterministic mathematical models
as dynamic and time-dependent processes are often formulated as systems of differ-
ential equations. A brief overview for those is given in the two first sections. The
explanation for the tools for sensitivity analysis and statistical survival analysis are
presented thereafter.

3.1 Ordinary Differential Equations

A time-dependent process can be expressed with the model output’s change between
two different time points. Let x(t) : R→ Rn be the model output at time t ∈ R with
n ∈N. The difference x(t1)− x(t0) of the model output’s value at two different times
t1 and t0 can be expressed by its change

x(t1)− x(t0)

t1 − t0
. (3.1)

The derivative of x(t) with respect to t evaluated at time t0 is the growth at time t0 and
defined as the corresponding limit

ẋ(t0) := lim
t1→t0

x(t1)− x(t0)

t1 − t0
, (3.2)

if the limit on the right hand side exists. This derivative is frequently also written as
dx
dt = ẋ(t).
A first order ordinary differential equation of inhomogeneous type with an initial
condition x(t0) = x0 ∈ Rn is of the form

ẋ(t) = g(t)x(t) + h(t) (3.3)

with some continuous functions g : D → R and h : D → Rn on an open domain of
definition D ⊂ R. This problem has an unique solution defined on D which can be
calculated from the method of variation of constants and is given as

x(t) = x0e
∫ t

t0
g(τ)dτ

+
∫ t

t0

e
∫ t

t0
g(τ)dτ−

∫ s
t0

g(τ)dτh(s)ds. (3.4)

A proof for this method can be found in various literature on ordinary differential
equations, e.g. [Wal93].

10



3 Mathematical background

3.2 Partial Differential Equations

Partial differential equations are used to model dynamics, where the change of some
model output u(t, x) : R×Rm → Rn with m, n ∈ N is subject to multiple variables
such as time t ∈ R and space x ∈ Rm. In this case, the derivatives read

∂u
∂t

(t, x) = lim
∆t→0

u(t + ∆t, x)− u(t, x)
∆t

∂u
∂x

(t, x) = lim
∆x→0

u(t, x + ∆x)− u(t, x)
∆x

(3.5)

and the general form of a linear partial differential of first order reads

f (t, x)
∂u
∂t

(t, x) + g(t, x)
∂u
∂x

(t, x) + h(t, x)u(t, x) = 0. (3.6)

To solve this analytically, one can apply the so-called method of characteristics on this
equation with an initial condition u(t0, x) = ut0(x) and a boundary condition u(t, x0) =

ux0(t) with t0, x0 ∈ Rn [Zau89]. The method of characteristics directly uses of the so-
called characteristics of such an equation, which roughly correspond to the projection
of the solution u(t, x) on the (t, x)-plane.

3.3 Sensitivity Analysis

Sensitivity analysis is a mighty methodology to determine the influence of parameter
uncertainty intervals and the effects of parameter variation on the behavior of dynamical
systems, in this context outputs and predictions of a mathematical model. It is of high
interest to know the model behavior after perturbations in the input parameter values.
Saltelli et al. [Sal04] define sensitivity analysis as ’the study of how uncertainty in the
output of a model [...] can be apportioned to different sources of uncertainty in the model input’,
in contrast to uncertainty analysis that in turn aims at quantifying uncertainty in the
model input [Sal08].
Sensitivity analysis can be of local or of global nature, depending on the point of
reference that sensitivity is calculated of. For local sensitivity analysis, this is one single
point for which changes in one or more parameter values are examined. However, this
brings limitations in sensitivity interpretation, since the sensitivities are only calculated
with respect to exactly this base line point. Any slight deviation from this base line
could potentially lead to very different sensitivity estimations. Still, for models of
ordinary differential equations, it is the method of choice by its simple implementation
and fast application as well as the background, that the base line reference value can be
reviewed with the technical interpretation in mind. In contrast to that, global sensitivity
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analysis determines conclusions for the global parameter range space. This of course
comes at a larger computational time needed for estimation as well as with more
complex methods of implementation.

3.3.1 Local sensitivity analysis

A typical way to investigate local sensitivity for ordinary differential equation models
is the so-called derivative-based local method. It investigates the changes in the model
output under local first-order changes of a certain parameter, which coincide with the
first derivative evaluated at the point of interest, i.e., the reference base line point. This
is of course highly applicable to a model compounded of differential equations. There
exists a huge variety of methods to consider small parameter changes and their relation
to the resulting effects on the equation’s trajectories.
In the following, a direct method (also known as variational method) from the field of
mathematical theory based on the representation of sensitivities as time-dependent
trajectories is introduced [TV72; DG76; RCM15].
Assume the surveyed model is a system of general first order ordinary differential
equations depending on a vector of parameters Θ ∈ Rm, m ∈N. Let the system be of
the form

∂X(t, Θ)

∂t
= f (X(t, Θ), Θ). (3.7)

A solution of this equation is a vector X(t, Θ) ∈ Rn, n ∈ N, forming the model
output and consisting of n state variables xj(t, Θ) ∈ R, j ∈ {1, ..., n} that depend
on time t and a vector Θ ∈ Rm, m ∈ N which in turn consists of m different time-
independent parameters Θi ∈ R, i ∈ {1, ..., m}. The initial condition X(t0, Θ) = X0 of
the ordinary differential equation (3.7) can be interpreted as a parameter of the model,
i.e. Θki = X0 ∈ Rn for some i with ki ∈ {1, ..., m} ∀1 ≤ i ≤ m. By this, the effects of
varying initial conditions on the model output can be determined as well.
A parameter whose small variations result in large changes in the solution of equation
(3.7) is considered a sensitive parameter and a nonsensitive one otherwise.
If the ordinary differential equation (3.7) cannot be solved explicitly one can use a
workaround as follows: by Taylor’s formula a sufficiently small change1 with respect
to a certain parameter vector component ∆Θi within the system of ordinary differential
equations can be expressed as

X(t, Θ + ∆Θi) ≈ X(t, Θ) +
m

∑
i=1

∂X(t, Θ)

∂Θi
∆Θi (3.8)

1Small enough in terms of linear extrapolation.
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The sensitivity of the solution X(t, Θ) of equation (3.7) depending on perturbations of
the parameter Θi is a vector defined as

SΘi(t) =
∂X(t, Θ)

∂Θi
. (3.9)

For an analytical expression of SΘi one can use its time-dependence:

ṠΘi =
∂SΘi

∂t
=

∂
(

∂X(t,Θ)
∂Θi

)
∂t

=
∂
(

∂X(t,Θ)
∂t

)
∂Θi

(3.10)

by the theorem of Fubini, the time-independence of the parameter vector Θ and each
of its components Θi. Use equations (3.7,3.10) as well as the chain rule to arrive at

ṠΘi =
∂( f (X(t, Θ), Θ))

∂Θi
=

∂ f (X(t, Θ), Θ)

∂Θi
+

n

∑
i=1

∂ f (X(t, Θ), Θ)

∂X(t, Θ)

∂X(t, Θ)

∂Θi
=

=
∂ f (X(t, Θ), Θ)

∂Θi
+

n

∑
i=1

∂ f (X(t, Θ), Θ)

∂X(t, Θ)
SΘi = fΘi + J SΘi

(3.11)

with a vector fΘi ∈ Rn having components ∂ f j
∂Θi

and the Jacobian matrix J ∈ Rn×n of the

original system in equation (3.7). The (k, l) elements of J are given by ∂ fk
∂xl

. This yields
the scalar representations2

SxjΘi =
∂xj(t, Θi)

∂Θi
and (3.12)

ṠxjΘi =
∂ f j(X(t, Θ), Θ)

∂Θi
+

n

∑
k=1

∂ f j(X(t, Θ), Θ)

∂xk(t, Θ)
SxkΘi , (3.13)

of which the latter one can be computed numerically if an analytic solution of equation
(3.12) is not available.
Sensitivities of different parameters are difficult to compare with each other as the
absolute value of the parameters and the model outputs might be subject to huge
differences in orders of magnitude. To receive a measurement about the effect of a
relative change of certain objective parameters introduce the concept of elasticities that
can be interpreted as relative sensitivities. The elasticity of a positive differentiable
function Xj of a positive parameter Θi describes how fast the relation of the parameter
of interest and the objective function changes and is defined as

2Recall the indices i ∈ {1, ..., m}, m ∈N and j ∈ {1, ..., n}, n ∈N.
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EXjΘi = lim
∆Θi→0

∆Xj/Xj

∆Θi/Θi
=

Θi

Xj

∂Xj(t, Θi)

∂Θi
=

Θi

Xj
SΘi(t), (3.14)

by applying the definition of sensitivity of equation (3.9).

3.3.2 Global sensitivity analysis

Though the above presented approach based on derivatives is without doubt very
efficient in terms of computation and thus frequently used, the crucial limitation of it is
the fact, that it needs a reference point at which the derivatives can be computed. The
derivative-based approach does not provide any information on the behavior of other
combinations in the parameter space even slightly off from this reference point. But
this is the most interesting question which is especially of concern under uncertainty
in the input parameters in nonlinear systems [Sal08]. Today, there is some variety
of different methods to conduct such a global sensitivity analysis, depending on the
analysis’ objectives [Sal04; IL15; CSC11].
In the following we use an adjusted version of the elementary effects method introduced
by Morris in 1991 [Mor91]. The method adheres to the concept of local variation around
a previously defined reference point, but allows wider ranges of variations of the input
parameters and is not restricted on a certain sample point. It allows to classify the
inputs into three different groups: the group of inputs of negligible effects, inputs of
large linear effects without interactions and inputs of large non-linear or interaction
effects. As the method’s name might indicate, it forms a special type of a one-at-a-time
design and relies on the determination of elementary effects by varying one parameter
of interest on a previously discretized range in the reasonable parameter space and
keeping all other parameters fixed.

For m, n ∈ N consider a model function f : R+
0 × Rm → Rn returning a measur-

able model output feature X ∈ Rn of the form

X = f (t, Θ) (3.15)

with an input vector Θ that consists of m independent input parameters Θi ∈ R for
i ∈ {1, ..., m}. Now discretize the input parameter space Rm into k ∈ N selected
levels in each dimension, i.e. into a m-dimensional k-level grid Ω, and sample r ∈N

realizations of parameter vectors Θ(j) ∈ Ω with j ∈ {1, ..., r}.
For a model of the form (3.15) the j’th realization for an elementary effect EE(j)

i is
defined in terms of equation (3.16) using the perturbed input parameter component
Θ(j)

i for a fixed sampled parameter vector Θ(j). We need that the parameter vector
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perturbed in the i’th component, (Θ(j) + ∆ei), is still contained in the discretized input
parameter space Ω:

EE(j)
i =

f (Θ(j) + ∆ei)− f (Θ(j))

∆
, (3.16)

with ∆ denoting a predetermined multiple of 1
k−1 as perturbation distance and ei the

canonical unit vector that consists purely of zeros but a one on the i’th component.

The distribution Fi of the elementary effects EEi with perturbed input parameter
component Θi can be computed by random sampling of different parameter vectors Θ
from the interior grid points of the set Ω 3. The sensitivity measures for perturbations
in the component Θi proposed by Morris are the mean µi and the standard deviation σi
of the distribution Fi of those elementary effects. This means that to ensure the reliance
of this approach, one needs a large sample size of different perturbations for each input
parameter component.
The interpretation of the obtained sensitivity measures is more or less intuitive: the
mean µi explains the overall and expected influence of the perturbation in parameter
vector component i on the model output X while the standard deviation σi is a measure
of nonlinear or interaction influences of the i’th input parameter vector component on
the model output X. A high standard deviation σi indicates that the elementary effects
relative to the input parameter component Θi deviate strongly from each other, thus
the elementary effect highly differs from the respective baseline sample points. This
means that the model outcome will depend notably on the choice of the other input
parameter components. A low standard deviation σi however displays similar values of
elementary effects, which in turn implies that the effects of perturbations of the input
parameter component Θi is almost independent of the choice of values for the other
input parameter components.

To prevent type II errors identifying sensitive components Θi, i.e., to prevent the
non-identification of an influential parameter component, Morris suggested to always
consider the measures µi and σi simultaneously. As a type II error would occur when
perturbations in one input parameter component yield different signs in the elementary
effect, the absolute value of µi is very low whereas the value of σi is remarkable. As
argued by [CCS07], this potentially leads to problems for complex and large model
settings with many model outputs. They provided an alternative measure µ∗i , which
is the mean of the absolute values of elementary effects EEi. Still, it is suggested to

3The original Morris method provides a scheme of parameter trajectories, such that the elementary
effects are always computed in a random parameter component Θi from each iteration step. This can
be conferred to as a ‘random walk’ on the grid points of the discretized parameter space. We stick to
random sampling in the parameter space, as computational cost was not the primary point of interest.
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compute the other sensitivity measures aswell to gather the maximum of information
out of the elementary effects method [Sal08]. For example, if the value of µi and µ∗i are
both high, the perturbation of the i’th input parameter component Θi is not only high,
but also the sign of these effects is the same. In contrast, if µ∗i is high and µi is low,
then the perturbation mentioned has high effects with different signs depending on the
points in the space Ω at which these effects are computed. An overview of the formal
definition of all three mentioned sensitivity measures is given in the equation set (3.17).

µi =
1
r

r

∑
j=1

EE(j)
i

µ∗i =
1
r

r

∑
j=1
|EE(j)

i |

σi =

√√√√1
r

r

∑
j=1

(
EE(j)

i − µi

)2

(3.17)

The measures µi and µ∗i return the average value and the average absolute value of
the qualitative influence of the parameter Θi on the model output respectively and
therefore yield valuable insight in the model behavior under parameter perturbations.
A high value of µ∗i , i.e. a value fundamentally different from zero, indicates that the
parameter Θi has an important influence on the reference model output. The measure
of spread σi gives an idea about nonlinear effects of the parameter Θi or interaction
effects of parameter Θi with other parameters. A high value of σi indicates that pa-
rameter Θi highly affects the reference model output in a manner of nonlinear effects
or interactions with other parameters Θj 6= Θi. Two different parameters are said to
interact with each other if their combined effect on the model output value of interest
cannot be expressed as a sum of both single effects [Sal04; Sal08]. When parameters
with small mean absolute values µ∗i are identified, the respective parameters may be
fixed to any value of their uncertainty range without losing too many information of the
model output. But a concrete quantification of the nonlinear or interaction effects aside
from the standard deviation of a certain parameter is not possible with this approach.

To overcome this restriction, introduce the concept of the decomposition of variances,
i.e. the variance for every parameter determined with the approach above gets split
into every possible interaction of first order, second order and higher order. The total
order sensitivity describes the model output variance depending on all these perturba-
tions [Sob01]. The underlying theory is the following:
Let f : Rm → Rn with f ∈ L2, i.e. let f be a square-integrable function, and be defined
on the hypercube [0, 1]m with m ∈ N. By [Hoe48] this function can be rewritten as a
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sum of elementary functions, where every factor is a function depending solely on its
index:

f (Θ) = f0 +
m

∑
i=1

fi(Θi) +
m

∑
i<j

fi,j(Θi, Θj) + ... + f1,2,...,m(Θ) (3.18)

with

fi(Θi) =
∫

f (Θ)∏
k 6=i

dxk − f0,

fi,j(Θi, Θj) =
∫

f (Θ) ∏
k 6=i,j

dxk − f0 − fi(Θi)− f (Θj)
(3.19)

and so on. Following [Sob93] and using {i1, ..., is} ⊆ {1, ..., m} this decomposition is
unique if and only if∫ 1

0
fi1,...,is(Θi1,...,is)dΘik = 0, with 1 ≤ k = {i1, ..., is} ≤ s. (3.20)

Property (3.20) is equivalent to the condition that the expansion’s mean is equal zero,

i.e.
∫

f (Θi)dΘi = 0. Then we have that
∫

f (Θi) f (Θj)dΘidΘj = 0 for all parameter

pairs Θi, Θj with i 6= j, which in turn means that we can calculate the terms of f0, fi, fi,j
etc. by observing the conditional expectation of the model output [Sal08].
In practice, the function f can always be defined on the hypercube [0, 1]m with m ∈N

by tranformation of the parameter vector range to the interval [0, 1] in each component.

Define Vi1,...,is :=
∫

f 2
i1,...,is

(Θi1,...,is)dΘi1 ...dΘis as the partial variance of the parameter

subset {Θi1 , ..., Θis}, i.e. Vi1,...,is is the variance of fi1,...,is(Θi1,...,is). This implies that

Vi = Var( fi(Θi)) = Var(E( f (Θ)|Θi))

Vi,j = Var( fi,j(Θi, Θj)) =

= Var(E( f (Θ)|Θi, Θj))−Var(E( f (Θ)|Θi))−Var(E( f (Θ)|Θj))

Vi,j,k = Var( fi,j,k(Θi, Θj, Θk)) =

= Var(E( f (Θ)|Θi, Θj, Θk))−Vi,j −Vi,k −Vj,k

−Var(E( f (Θ)|Θi))−Var(E( f (Θ)|Θj))−Var(E( f (Θ)|Θk))

(3.21)

and so on. Here we can interpret the value Vi as the first order effect of Θi on the model
output, Vi,j as the second-order effect on the model output, i.e. the joint interaction effect
of two independent parameter components Θ1 and Θj and analogous interpretations
for the higher orders. A model is called to be additive, if it has no other coefficients than
Vi of the form (3.21) that are unequal to zero.
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Squaring and integrating both sides of equation (3.18) using condition (3.20) and
plugging in the just defined definition of variances yields

V = ∑
i=1

Vi + ∑
i<j

Vi,j + ∑
i<j<k

Vi,j,k + ... + V1,2,...,m (3.22)

which i.e. forms a decomposition of the unconditional variance V = Var( f (Θ)), which
is denoted as the measure of uncertainty of the model output. The decomposition is
often denoted as functional ANOVA [ES81].
The variance-based sensitivity indices as introduced by Sobol [Sob93], also called Sobol sen-
sitivity indices for a certain parameter subset {Θi1 , ..., Θis} are special cases of Pearson’s
correlation ratio [Pea05] and defined as

Si1,...,is =
Vi1,...,is

V
. (3.23)

The amount of different indices depends on the number of parameters in the model
and is equal to 2m − 1. By this definition, one can interpret the value

Si =
Vi

V
=

Var(E( f (Θ)|Θi))

Var( f (Θ))
(3.24)

as the normalized first-order involvement of parameter Θi to the model output variance,
the value

Si,j =
Vi,j

V
=

Var(E( f (Θ)|Θi, Θj))−Vi −Vj

Var( f (Θ))
(3.25)

as the normalized second-order involvement of the interaction of the parameters Θi
and Θj, and so on until order m [Sal08].

Dividing equation (3.22) by V yields that all sensitivity indices have to sum up to
1,and that the indices give a percentual measure of their contribution of certain param-
eters and parameter combinations to the model output variance under perturbations:

1 = ∑
i=1

Si + ∑
i<j

Si,j + ∑
i<j<k

Si,j,k + ... + S1,2,...,m ≥ 0. (3.26)

The total-order sensitivity indices STi as introduced by [HS96] is defined as the sum over
all these interaction indices for a certain parameter Θi, using #i as notation indicating
all indices associated to Θi, therefore

STi = Si + ∑
j 6=i

Si,j + ∑
j 6=i,k 6=i,j<k

Si,j,k + ... = ∑
l∈#i

Sl ≥ 0. (3.27)
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The value of STi quantifies the overall effect of one perturbed parameter vector com-
ponent Θi on the model output of interest. By (3.26) and (3.27) we receive the two
inequalities

1 ≥ STi ≥ 0. (3.28)

If STi = 0 for a parameter Θi, the respective parameter is said to be noninfluential
on the model output. For values of STi relatively close to zero, the parameter Θi1 can
be fixed to any value in its predefined range without influencing the model output
variance. The approximation error resulting of this simplification is relative to the value
of STi [Sob+07].

The following implementation of this method follows a Monte Carlo based numerical
approach extended from [Sob93; HS96; Sal02] and presented in [Sal08] (Note that the
formulae of equations (3.34) and (3.35) were wrong in the printed book version!).
Assume to have a model of k factors, i.e., of k different input parameters. Now generate
a matrix of dimension (N, 2k) that consists of random numbers. Split up this matrix
into two sub-matrices A and B of dimension (N, k) each, such that

A =



x(1)1 x(1)2 · · · x(1)i · · · x(1)k

x(2)1 x(2)2 · · · x(2)i · · · x(2)k
...

...
...

...
x(N−1)

1 x(N−1)
2 · · · x(N−1)

i · · · x(N−1)
k

x(N)
1 x(N)

2 · · · x(N)
i · · · x(N)

k


(3.29)

B =



x(1)k+1 x(1)k+2 · · · x(1)k+i · · · x(1)2k

x(2)k+1 x(2)k+2 · · · x(2)k+i · · · x(2)2k
...

...
...

...
x(N−1)

k+1 x(N−1)
k+2 · · · x(N−1)

k+i · · · x(N−1)
2k

x(N)
k+1 x(N)

k+2 · · · x(N)
k+i · · · x(N)

2k


(3.30)

Now further define k matrices Ci that are a copies of matrix B but interchanged their
i’th column with matrix A:

C =



x(1)k+1 x(1)k+2 · · · x(1)i · · · x(1)2k

x(2)k+1 x(2)k+2 · · · x(2)i · · · x(2)2k
...

...
...

...
x(N−1)

k+1 x(N−1)
k+2 · · · x(N−1)

i · · · x(N−1)
2k

x(N)
k+1 x(N)

k+2 · · · x(N)
i · · · x(N)

2k


(3.31)
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The model output for each of the input rows of the matrices A,B and Ci is now
calculated, which yields k + 2 vectors of dimension N each:

yA = f (A), yB = f (B), yCi = f (Ci). (3.32)

Now define

f 2
0 =

(
1
N

N

∑
j=1

y(j)
A

)(
1
N

N

∑
j=1

y(j)
B

)
. (3.33)

The first order sensitivity indices as introduced earlier can then be estimated with

Si =
V [E(Y|Xi)]

V(Y)
=

1
N ∑N

j=1 y(j)
A y(j)

Ci
− 1

N2 ∑N
j=1 y(j)

A y(j)
B

1
N ∑N

j=1

(
y(j)

A y(j)
B

)
− f 2

0

. (3.34)

Analogously, the total-order sensitivity indices can be estimated as

STi = 1− V [E(Y|X i)]

V(Y)
= 1−

1
N ∑N

j=1 y(j)
B y(j)

Ci
− f 2

0

1
N ∑N

j=1

(
y(j)

A y(j)
B

)
− f 2

0

. (3.35)

3.4 Statistical Survival Analysis

The statistical tools used in evaluation of clinical benefit for model-derived parameter
values are briefly presented in this section. We consider time to event analyses to
evaluate whether model-generated computational parameters are indicators of clinical
outcomes.

3.4.1 Survival estimation

In many medical studies the interpretation of time to event analyses plays a major
role. These events can be any events expressed in a binary formulation. If for some
patient the event did not happen until the time at which the observation ended, the
respective patient is censored. This can either happen in a way that the event is simply
unknown, the patient was lost from the observation or that a follow-up examination
was impossible [AB98]. Either way, the information for observed times is not lost: since
the patient did not encounter an event until the observation’s end, this information can
be integrated into the survival analysis.
Patients are usually not recruited at the same time, therefore the observation phase
can be of different length for different patients. An important assumption for studies
that compare survival data is that the prognosis for different patients is the same,
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independent of the time of recruitment for the study.
For our purpose, we examine two different types of events: overall survival (OS) as the
time from primary diagnosis to the patient’s death (induced by the disease examined)
and progression-free survival (PFS) as the time from primary diagnosis to disease
progression. Despite some censoring for several patients of a data set, the survival
probability (in terms of OS and PFS) can be estimated.
A classical method to estimate the survival probability is the well-established Kaplan-
Meier-method [KM58; BA98]. This method considers observation time intervals with
respect to events: the conditional probability of a patient to survive a certain time
interval is calculated if the patient already survived until the start of the respective
interval. The probability to survive until a certain time is simply the product of the
previous conditional probabilities [ZLB07c]. Patients that had to be censored at a certain
time are not considered in the calculation of the future conditional probabilities. An
example for such a Kaplan-Meier-method to examine patient survival times of the
second data set (submitted in [Ben+22]) depending on the histology of the primary
tumor of NSCLC is shown in figure 3.1.

Since special attention is given on the comparison of survival of two different groups
within the data set, it is important to determine statistically whether the mortality risk
in two groups may be considered statistically different. For this, the Kaplan-Meier-
method is applied for each of the two subgroups of the patient collective with respect
to some covariate of interest, e.g., the median value of a parameter - thus the one group
consists of all patients that have this covariate value larger than the median value and
the other group consists of patients that have this covariate value smaller or equal than
the median value of the respective parameter.
A standard and frequently applied method to perform this analysis is the log-rank
test [BA04]. If one of the two groups has an advantage in survival, then in this group
the events would occur later in time. If not, then the events would occur in random
order over both groups independently. The observed and the expected events of the
respective groups are used to determine the test statistic

Λ =
(OI − EI)

2

EI
+

(OI I − EI I)
2

EI I
(3.36)

with OI , OI I the number of observed events in the first and second group and EI , EI I the
number of expected events in the first and second group, respectively. This means that
the log-rank test equally weights all events. For a sufficiently large number of events
the test statistic is approximately χ2-distributed with one degree of freedom [ZLB07a].
This allows to determine the corresponding p-value. For a significance level of 5%,
p-values<0.05 are considered statistically significant, i.e., this results in statistically
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Figure 3.1: Kaplan-Meier curves with respect to overall survival (OS) for the second
patient data set controlling for primary tumor histology, dividing the patient
set in adenocarcinoma and other histologies. The examination with a log-
rank test (explained in the text) yields statistically significant differences in
survival curves when controlling for this covariate (p = 0.0222).
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significant different survival properties for the two groups that were compared. This
significance level will be used throughout this thesis.

3.4.2 Cox regression

The Cox regression model [Cox72], also known as the Cox proportional hazards model,
is one of the most popular methods to analyse survival data. It aims at evaluating
effects of potentially multiple different covariates on the censored survival data. The
important assumption of this model states that the effects of different covariates on
the survival are constant over time. This means, in particular, that the effects along a
certain scale are additive [ZLB07b].
The proportional hazards model uses hazard functions h(t) to be properly evaluated. A
hazard function is the probability per time unit that an event happens to an individual
patient in a short time interval ∆t conditioned that the event did not happen until the
start of this interval. It can therefore be interpreted as the risk per time for the event to
happen at time t which can be formalized as

h(t) =
E(t)

N(t)∆t
(3.37)

with E(t) the number of individuals that the event happens to in the time interval
[t, t + ∆t] and N(t) the number of individuals that are alive at time t.
In terms of the Cox model, the hazard function is described in dependence to n ∈N

input covariate values X1, ..., Xn and a so-called baseline-hazard h0(t):

h(t) = h0(t) · eβ1X1+β2X2+...+βnXn . (3.38)

The baseline-hazard explains the risk for an event, if all covariate values are equal to
zero, i.e., all factors are absent. The coefficients βi are the regression coefficients of the
input covariates. If an input covariate Xi changes, the coefficient βi explains how the
expected hazard changes with respect to the change of Xi.
The hazard function is often times also formulated in its logarithmic expression as

ln h(t) = ln h0(t) + β1X1 + β2X2 + ... + βnXn. (3.39)

Let now, as assumed, the fraction of hazard functions of two different groups be
constant over time, then the hazard ratio HR can be expressed as

HR =
hI(t)
hI I(t)

. (3.40)

This value is now a constant and, in particular, time-independent by assumption. If this
value is smaller one, the first group shows a decreased hazard compared to the second
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group and therefore an increased survival time. The opposite of this argumentation
holds vice versa.
An interpretation for hazard ratios and their consequences on survival can be explained
with an example as follows: Suppose two groups A and B have a HR of 0.6, i.e.
the hazard for group A is lower than the one of group B. Let the (known) survival
probability of group B for a certain time interval, e.g. one year, be denoted by 0 < x < 1.
Then the hazard for group A is reduced by (1− HR) = (1− 0.6) · 100% = 40%. The
expected survival probability for group A in the same time interval (here: one year)
would then be x0.6 > x and clearly increased compared to the survival of group B.

3.4.3 Predictive power of Cox model covariates

To estimate how well a statistical model can predict unseen data, cross-validation
can be applied [RN03]. For some known data set, a certain fraction k of the data is
excluded. The remaining fraction 1− k is used to form prediction hypotheses using a
Cox proportional hazards model, as presented before. These hypotheses are then tested
for their prediction accuracy on the other fraction k of the data. For the cross-validation
used later in this thesis, a value of k = 3 is used. This means that a Cox proportional
hazards is formed on a sampled two thirds fraction of the data and tested for its
predictive accuracy on the remaining third of the data.
This prediction accuracy of the Cox proportional hazards model can, for instance, be
evaluated by determination of Harrel’s concordance index, also called c-index [Har82;
HLM96]. This index is defined as

c =
nc

nc + nd
(3.41)

with nc the number of concordant pairs of patients and nd the number of discordant
pairs. To properly understand this formulation, some definitions have to be introduced,
confer [SWZ16]:
Assume a data set of a patient collective with n patients is given. For a patient i,
1 ≤ i ≤ n, the event response is denoted by Ti. We have that Ti = 1 if the event occurred
to patient i during the time of observation and Ti = 0 otherwise. The Cox proportional
hazards model assigns a risk score ηi for each patient i. For a correct estimation of the
statistical model, a higher risk score would yield a shorter time to event ti.
Now examine the model’s risk scores and times to event for each pair of patients i and
j. If Ti + Tj = 2, both patients had the respective event. Then the pair (i, j) is considered
as a concordant pair if ηi > ηj and ti < tj. In contrast to that, the pair is considered
discordant, if ηi > ηj and ti ≥ tj.
If Ti + Tj = 1, then only one event was observed. Without loss of generality let i be
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the patient to which the event occurred. Then we know that ti is the time to event for
patient i and that tj is the time until which patient j was censored (without an observed
event). If tj > ti, then the event first occurred to patient i. If this patient also had the
higher risk score, i.e., if ηi > ηj, then the pair (i, j) is considered a concordant pair.
For the case where the patient i had the lower risk score such that ηi < ηj, the pair is
considered discordant. If tj < ti, then the patient j is censored too early to determine
whom the event occurred first to. In that case, the pair (i, j) is not considered in the
calculation.
Finally, if Ti + Tj = 0, then no event happened to both of the patients. The pair (i, j) is
therefore also not considered in the calculation.
These thoughts allow us to reformulate the expression for calculation of the concordance
index as

c =
∑i 6=j 1ηi<ηj1ti>tj Tj

∑i 6=j 1ti>tj Tj
. (3.42)

The values of the concordance index return a probability of correct prediction in ranking
when comparing individuals. This means that it can only attain values between zero
and one. A coin flip with a 50% chance to predict the correct ranking would yield
a c-index of 0.5, therefore a c-index larger than 0.5 might already be considered as
helpful in estimating time to events with respect to the risk scores generated by Cox
proportional hazard’s model.
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Mathematical models applied to tumor growth and metastases’ development are rela-
tively recent [AM04]. The first models formulated to study solid tumor growth with
application to experimental data date back to the 1930’s [May32], identifying a linear
growth law for late stage solid Jensen’s rat sarcoma after administration of radiation.
This linear growth behavior is a consequence of the observation that with growing size
of the tumor, the proliferating fraction reduces from the whole tumor to some outer
rim of tissue with even decreasing thickness. The growth dynamic starts with some
exponential growth, eventually decelerating and arriving at a linear growth dynamic
for large tumor sizes.
In 1955, Thomlinson and Gray [TG55] defined a model considering oxygen diffusion
and metabolism in lung cancer cells growing in rods, and noted that from the inside
to the outer rim of a large tumor that usually shows necrotic core formations, some
gradient in oxygen tension has to be present. Further, cells with lowest oxygenation
levels are less damaged by radiation than those with higher oxygenation levels.
Since resources for tumor growth are limited in any living organism, modeling ap-
proaches quickly introduced an environmental carrying capacity to decelerate growth
dynamics at larger sizes. The logistic growth equation introduced by Verhulst [Ver45]
is an ordinary differential equation used in modeling approaches backed with experi-
mental data with certain flaws [KT85]. However, the central awareness to incorporate
growth-limiting dynamics and carrying capacities should be vital for further approaches
with other growth dynamic equations, such as the generalized two-parameter equation
and the von-Bertalanffy equation [Ber57; MB93; Sav79; VA82].
The important milestone concerning tumor growth dynamics with carrying capacities
in living organisms, especially humans, dates back to 1825 [Gom25], though formed in
another modeling context. The general idea of the Gompertz growth function in the
sense of tumor growth postulates that the growing fraction of the tumor size, which
is the fraction of proliferating tumor cells, is a function that decreases in time from
an initially exponential growth. It was Laird to first fit the analytical solution of the
Gompertz equation to volumetric tumor size measurements of animal experiment
data [Lai64; Lai65] with remarkable good results. The biological explanation of the
equations was given several years afterwards [Xu87]. Since its formulation and defini-
tion the Gompertz equation has been successfully applied to describe measured growth
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dynamics of different experimental and clinical tumors for different histologies [SS72;
Aka78; Dem80; Nor88; Ben+14; Ben+16; Ben+17; Bil+19; SKS21].
The uttermost reason of cancer-related deaths is well-proven: 90% of them do not
occur by presence of the primary tumor but are direct consequences of the existence
of metastases that greatly reduce treatment prognosis [NBM09; CW11; CN12; Ste16].
However, quantitative insights into metastasis formation and possible treatment ap-
proaches to counter certain formation mechanisms are relative sparse, possibly due to
limited availability of data [ALM15].
Different approaches established are models based on deterministic ordinary differ-
ential equation formulations that focus on the competition between cancerous and
healthy cells [SLK76], dormancy and cell dynamics of metastatic cancer cells [End+09;
Bil+19] or on genetic and phenotypic diversity of primary tumor and metastatic tumor
cells [Alm+14]. Other modeling approaches have shown that physical effects on and
of the extracellular matrix in turn influence the tumor growth [PK12; Sch+22], drug
delivery [Mic+11] and treatment success [Jai13]. Stochastic Markov chain models have
been implemented to serve as computational frameworks and to estimate treatment
response [CG86; HM10; New+12; Hae+12].
However, applicability to clinical settings on an individual patient basis remain meager.
Based on a landmark publication [IKS00] a von Foerster partial derivative equation
system is used to describe a density of metastases subject to growth and seeding
dynamics including effects from a primary tumor. Several applications with adjust-
ments have been showing astonishing possibilities to potentially fill the gap for clinical
application [Ben+16; Ben+17; Bil+19; SKS21; Ben+22].

4.1 Tumor growth model

Introduce a time-dependent function x(t) as the size of a tumor at time t ≥ 0. The
Gompertz growth equation combines, as previously stated, the initial exponential
growth phase that is slowed down by exponential decay of the growth parameter to
finally reach an asymptotic value for t→ ∞ [SKS21]. This asymptotic value is known
as the tumor carrying capacity (the maximum size a tumor can reach) and is denoted
by K. Then, by definition, x(t) t→∞−−→ K. For some initial tumor size x(0) = x0 > 0 the
Gompertz model reads

dx
dt

= re−atx(t) (4.1)

The parameters r, a > 0 can be interpreted as the initial exponential growth rate and
the exponential decay factor, respectively.
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Reformulating the growth rate as

r = a ln
K
x0

, (4.2)

we arrive at an alternative way frequently used to express the Gompertz growth
dynamics as

dx
dt

= a ln (K/x0)e−atx(t) (4.3)

The Gompertz equation in its two formulations can be solved analytically to calculate
the tumor size x(t) at time t ≥ 0 for x0 > 0:

x(t) = x0e(
r
a (1−e−at)) = xe−at

0 K1−e−at
. (4.4)

The ’one renegade cell’ theory states that the cancer’s origin is one single mutated
cell [Wei06; Bor+09], i.e. x0 = 1. In that case, the Gompertz equation can be reformu-
lated as

dx
dt

= a ln (K/x(t))x(t)

x(0) = 1
(4.5)

Using again the initial tumor size x(0) = 1, the equations (4.1) and (4.5) can be solved
analytically for

x(t) = e(
r
a (1−e−at)) = K1−e−at

. (4.6)

The age of a tumor T, which is the time that a tumor of size x0 = 1 needs to grow to a
size x(T), can be derived by solving equation (4.6) for time as a function depending on
size x [SKS21]. Let T(x) be this function, then

T(x) = −1
a

ln
(

1− a
r

ln (x)
)
= −1

a
ln
(

1− ln (x)
ln (K)

)
. (4.7)

The clinical characterization of the tumor volume doubling time (TVDT) originally
introduced for exponential tumor growth [Sch61; SS76] can also be applied to the
Gompertz growth law. Unlike in the case of exponential growth, the TVDT in case of
Gompertz growth is not a constant value but time-dependent. The TVDT is defined as
the time a tumor of size x > 1 needs to grow to size 2x and can be estimated clinically
[Ver+12]. Using equation (4.7) one receives

TVDT(x) = T(2x)− T(x) = −1
a

ln
(

a ln (2x)
a ln (x)− r

− r
a ln (x)− r

)
= −1

a
ln
(

1− ln (2x)
ln (K)

)
+ ln

(
1− ln (x)

ln (K)

)
.

(4.8)
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A main critic of the Gompertz growth dynamics is that for very small sizes the growth
rate will diverge: dx

dt → ∞ for x → 0. But since the model formulation starts at an
initial tumor size of one and the application to data later in this work focuses on
clinically detectable tumors only (i.e., tumors much larger a size of one), this critic
can be neglected in the context of this thesis. This is consistent with the observation
that the Gompertz function well describes tumor growth especially in mid and later
stages [Ged79; Sot+10; TD15; Rei+17].

4.2 Tumor growth model with therapeutic effects

Validating model feedback with clinical routine data proves to be difficult as there are
rarely patients that have completely untreated cancerous diseases. Thus corresponding
therapy effects should be included into the growth dynamics. The following ideas have
been published in [SKS21] and are proven for their solvability.

4.2.1 Chemotherapy

Let the dynamics of chemotherapy be introduced as follows: 1Ci(t) denotes the charac-
teristic function returning a logical value that indicates the application of a chemothera-
peutic drug Ci at time t ≥ 0. This idea put into a mathematical formulation yields

1Ci(t) =

{
0, if chemotherapy is not applied

1, if chemotherapy is applied
at t ≥ 0 using pharmaceutical i. (4.9)

In the following, let this function have finitely many jump discontinuities, i.e., the
number of switches in therapy is finite. This obviously corresponds to clinical treatment
protocols in reality.
Further assume that on days without chemotherapy, the concentration of chemo-
therapeutic drugs within the body and thus their effect is negligible. This is realistic
for chemotherapeutic drugs, as the half-life of these pharmaceuticals is relatively small
and lies in ranges of several hours. By this definition 1Ci(t) has a finite amount of
jump discontinuities if both the application time of chemotherapeutic drugs and the
amount of applications of the respective drug is measurable but finite. Let µi(t) denote
the fractional effect of chemotherapy administration of drug i on the tumor size. The
refractory effect of drug administration can be expressed based on an idea of [Cla+09]
as an ODE dµi

dt reducing the effects in a constant fraction µ∗i ≥ 0 when the drug is
applied, accounting for a fraction of the tumor to show resistance towards the drug,

29



4 Mathematical models

using µi(0) = µi,0 ∈ [0, 1]:

dµi

dt
=

{
0 , if 1Ci(t) = 0

−µ∗i µi(t) , if 1Ci(t) = 1
(4.10)

This corresponds to an exponential decay of efficacy during application. We can now
compute the effect of a pharmaceutical with initial therapy outcome µi,0 on a later
day within the therapy. The therapy effect will decrease recursively to (1− µ∗i ) of its
original value after each application day in active chemotherapy intervals. For times
t not in the interval of active chemotherapy, the drug effect will stay the same since
the drug is not applied. It is further assumed that if there was a recovery cycle after a
treatment interval, the efficacy of the same pharmaceutical will not change until the
next treatment interval.
The value of µ(t) can be calculated analytically, if 1Ci(t) and, in particular, the jump
discontinuities are known:

Lemma 4.2.1. For some index i ∈ N and time t ∈ R+
0 let µi(t) be a function µi(t) : R+

0 →
(0, 1) that fulfills the equation (4.10), using a function 1Ci(t) : R+

0 → {0, 1} in the form of
definition (4.9), a constant µ∗i ∈ [0, 1] and a constant µi,0 ∈ [0, 1]. In particular, let 1Ci(t) have
only a finite amount of jump discontinuities. Let

∫ t
0 1Ci(ξ)dξ denote the total time in days of

applied chemotherapy in the context of equation (4.9). Then µi(t) can be computed as

µi(t) = µi,0 e−µ∗i
∫ t

0 1Ci (ξ)dξ (4.11)

Proof: Distinguish the two possibilities of chemotherapy application. First assume
1Ci(t) = 0 ∀t ∈ R+

0 , i.e. examine the case of no application. By equation (4.10) we
receive that µ̇i(t) = 0. Basic calculus yields µi(t) = µi,0 ∀ t ∈ R+

0 with µi,0 ∈ R. This
means that under no chemotherapeutic treatment the effectivity of drug i stays at a
constant value.

Assume now that 1Ci(t) = 1 ∀ t ∈ R, i.e., examine the case of active treatment. In this
case equation (4.10) returns µi(t) = µi,0e−µ∗i t and therefore we get µi(t) = µ0e−µ∗i t.
Let ξ ∈ (0, 1) denote the value of µ(t∗) at a time point t∗ at which a jump discontinuity
of 1Ci(t) is happening, i.e. there is a switch in chemotherapy application. Then for
ε > 0 one has for 1Ci(t

∗ + ε) = 1 ⇒ 1Ci(t
∗ − ε) = 0 ∧ µ(t∗ + t) = ξe−µ∗i t and for

1Ci(t
∗ + ε) = 0⇒ 1Ci(t

∗ − ε) = 1∧ µ(t∗ + t) = ξ.

As 1Ci(t) is a step function by the form of (4.9), i.e. solely with nonzero returns
if chemotherapy is applied, we know that the total number of days of chemother-
apeutic application C(t) in the time interval [0, t] is given by the two expressions
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C(t) =
∫ t

0 1Ci(ξ)dξ = ∑t
ξ=0 1Ci(ξ). Note that

∫ t
0 1Ci(ξ)dξ = t if 1Ci(ξ) ≡ 1 and∫ t

0 1Ci(ξ)dξ = 0 if 1Ci(ξ) ≡ 0.

Assume now for ε > 0 to observe different time points 0 < ξ < τ < ϑ with |1Ci(ξ)−
1Ci(τ − ε)| = 0, |1Ci(ξ)− 1Ci(τ)| = 1, |1Ci(τ)− 1Ci(ϑ− ε)| = 0, |1Ci(τ)− 1Ci(ϑ)| = 1
and |1Ci(ξ)− 1Ci(ϑ)| = 0, i.e. between the times ξ and ϑ there are two jump disconti-
nuities, one at time τ, the other at time ϑ. Assume further that µi(ξ) = µi,0. Distinguish
again the two possible cases:

From 1Ci(ξ) = 0 we have that µi(t) = µi(ξ) = µi,0 = µi,0e−µ∗i
∫ t

0 1Ci (s)ds ∀t ∈ [ξ, τ − ε),

1Ci(τ) = 1 and µi(t) = µi,0e−µ∗i t = µi,0e−µ∗i
∫ t

0 1Ci (s)ds ∀t ∈ [τ, ϑ− ε), as well as 1Ci(ϑ) = 0

and µi(t) = µi(ϑ) = µi,0e−µ∗i (ϑ−τ) = µi,0e−µ∗i
∫ t

0 1Ci (s)ds ∀t ≥ ϑ.

From 1Ci(ξ) = 1 follows that µi(t) = µi(ξ)e−µ∗i t = µi,0e−µ∗i
∫ t

0 1Ci (s)ds ∀t ∈ [ξ, τ − ε),

1Ci(τ) = 0 and µi(t) = µi(ξ)e−µ∗i (τ−ξ) = µi,0e−µ∗i
∫ t

0 1Ci (s)ds ∀t ∈ [τ, ϑ − ε), as well as

1Ci(ϑ) = 1 and µi(t) = µi(ξ)e−µ∗i (τ−ξ+t) = µi,0e−µ∗i
∫ t

0 1Ci (s)ds ∀t ≥ ϑ.
Overall for arbitrary and multiple time points of application we receive the final form

µi(t) = µi,0e−µ∗i C(t) = µi,0e−µ∗i
∫ t

0 1Ci (ξ)dξ .

Taking these effects for drug application into account for the growth dynamics of a
tumor one has

dx
dt

=

{
a ln(K/x(t))x(t) , if 1Ci(t) = 0

−µi(t)x(t) , if 1Ci(t) = 1.
(4.12)

The ordinary differential equation is solvable not only for inactive chemotherapy regi-
men (cf. equation(4.4)), but also for the active chemotherapy regimen.

Lemma 4.2.2. The initial value problem dx
dt = −µi(t)x(t) with x(0) = x0 > 0 is analytically

solvable for a function µi(t) of the form (4.11) with 1Ci(t) = 1 ∀t > 0. The solution reads

x(t) = x0e
∫ t

0 −µi,0e
−µ∗i

∫ τ
0 1Ci

(ξ)dξ
dτ for t > 0. (4.13)

Proof: By (4.11) we have that µi(t) = µi,0 e−µ∗i
∫ t

0 1Ci (ξ)dξ = µi,0 e−µ∗i t. Variation of
constants directly yields

x(t) = x0e
∫ t

0 −µi(τ)dτ = x0e
∫ t

0 −µi,0 e
−µ∗i

∫ τ
0 1Ci

(ξ)dξ
dτ = x0e

∫ t
0 −µi,0 e−µ∗i τdτ (4.14)
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For known therapy application times 1Ci(t) and therefore known jump discontinuity
points of 1Ci(t) the solution x(t) of equation (4.12) can be solved explicitly by a step-
by-step approach from every jump discontinuity up to the next one. The solution
procedure in particular depends on the initial therapy state 1Ci(0).

Theorem 4.2.3. For some index i ∈N and time t ∈ R+
0 let µi(t) be a function µi(t) : R+

0 →
(0, 1) fulfilling condition (4.10) using a function 1Ci(t) : R+

0 → {0, 1} of the form (4.9) and
let µ∗i ∈ [0, 1] as well as µi,0 ∈ [0, 1] be two constants, such that Lemma 4.2.1 may be applied.
Let x(t) be a function x(t) : R+

0 → R+
0 solving equation (4.12) and define the initial time point

ψ0 = 0 with x(ψ0) = 1. If 1Ci(t) is known for all t, i.e. the values 1Ci(t) ∈ {0, 1} are known
for all t and {ψ1, ..., ψm} denotes the set of all jump discontinuity time points ψk > 0 of the
function 1Ci(t) with k ∈ {1, ..., m} and m ∈N, then x(t) can be computed at every time point
t between two respective jump discontinuity time points, i.e. t ∈ (ψk, ψk+1].
For 1Ci(ψ0) = 0 we have that

x(t) =

x(ψk)
e−at

Ke−at
, if 1Ci(t) = 0 (k even)

x(ψk)e
∫ t

0 −µi,0e
−µ∗i

∫ τ
0 1Ci

(ξ)dξ
dτ, if 1Ci(t) = 1 (k odd)

(4.15)

while for 1Ci(ψ0) = 1 we have that

x(t) =

x(ψk)
e−at

Ke−at
, if 1Ci(t) = 0 (k odd)

x(ψk)e
∫ t

0 −µi,0e
−µ∗i

∫ τ
0 1Ci

(ξ)dξ
dτ, if 1Ci(t) = 1 (k even).

(4.16)

Proof: Distinguish the two possibilities of chemotherapy application at the initial time
point ψ0 := 0. First assume 1Ci(ψ0) = 0, i.e. examine the case of no application at the
initial time point. Then, by definition, the jump discontinuities ψ1 and ψ2 are the time
points for which 1Ci(t) = 0 ∀t ∈ [ψ0, ψ1) and 1Ci(t) = 1 ∀t ∈ [ψ1, ψ2). Further for the
next jump discontinuity ψ3 we have again that 1Ci(t) = 0 ∀t ∈ [ψ2, ψ3). For the solution
of equation (4.12) this yields that

x(t) = x(ψ0)e−at
Ke−at

for t ∈ [ψ0, ψ1],

x(t) = x(ψ1)e
∫ t

0 −µi,0e
−µ∗i

∫ τ
0 1Ci

(ξ)dξ
dτ for t ∈ (ψ1, ψ2] and

x(t) = x(ψ2)e−at
Ke−at

for t ∈ (ψ2, ψ3]

by equation (4.4), Lemma 4.2.1 and Lemma 4.2.2.
By applying this scheme iteratively we have that 1Ci(t) = 1 ∀t ∈ [ψ2k−1, ψ2k) and
1Ci(t) = 0 ∀t ∈ [ψ2k, ψ2k+1) for k ∈ {1, ..., m} and m ∈ N. Therefore the overall

32



4 Mathematical models

solution of equation (4.12) in the case of non-initial chemotherapy and all time points
t ∈ (ψk, ψk+1] for some k ∈N0 is given by

x(t) =

x(ψk)
e−at

Ke−at
, if 1Ci(t) = 0 (k even)

x(ψk)e
∫ t

0 −µi,0e
−µ∗i

∫ τ
0 1Ci

(ξ)dξ
dτ, if 1Ci(t) = 1 (k odd).

Analogously for assuming 1Ci(ψ0) = 1, i.e. the case of chemotherapy application at the
initial time point, the solution of equation (4.12) for time points t ∈ (ψk, ψk+1] for some
k ∈N0 is given by

x(t) =

x(ψk)
e−at

Ke−at
, if 1Ci(t) = 0 (k odd)

x(ψk)e
∫ t

0 −µi,0e
−µ∗i

∫ τ
0 1Ci

(ξ)dξ
dτ, if 1Ci(t) = 1 (k even).

4.2.2 Immunotherapy

Since the examined data set features patients treated with anti-PD-1 or anti-PD-L1
antibodies as immuntherapeutic drugs and since these drugs share the property to have
half-lives much larger than those of chemotherapeutic drugs, a modelling approach
considering pharmacokinetic effects was chosen.

Let, analogously to the setting of chemotherapeutic drug application in equation
(4.9), 1Ii(t) denote the characteristic function returning a logical value that indicates
the application of an immunotherapeutic drug Ii at time t ≥ 0. This yields

1Ii(t) =

{
0, if immunotherapy is not applied

1, if immunotherapy is applied
at t ≥ 0 using pharmaceutical i.

(4.17)
Since immunotherapy is assumed to be applied over one day the function 1Ii(t) fulfills
the property that a jump discontinuity from value 0 to 1 and a jump discontinuity from
1 back to 0 are always exactly one day apart. Further, let ci(t) denote the concentration
of drug i at time t ≥ 0 in number of drug molecules per body volume. For reasons of
simplicity it is assumed that the body volume is constant over time for any individual
patient. At given times t this concentration’s dynamic depends on the state of the
immunotherapy: When the drug i is applied, a dosage di measured in milligram per
body volume per time increases the drug concentration in the body with respect to
the molar mass Mi of drug i and the Avogadro constant NA. The drug’s clearance is
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influenced by the drug’s half-life t1/2 and happens at any time point. Therefore, we
can formulate a pharmacokinetic equation for the drug concentration as

ċi(t) =


−
(

ln(2)
t1/2
i

)
ci(t) , if 1Ii(t) = 0

−
(

ln(2)
t1/2
i

)
ci(t) + NA

Mi
di , if 1Ii(t) = 1

(4.18)

with some initial drug concentration ci(0) = c(0)i ≥ 0. The immunotherapeutic drug
is applied in cycles of a certain length l measured in time. E.g., this means that after
one application of a daily dose, the time to the next application will be l time units
measured in days. To simplify model analysis the quasi steady state assumption may
be applied to determine the steady state drug concentration that the simulation will
periodically meet and approach for smaller application lengths. Let this value be
denoted as cst

i . The applied mean drug dose over the whole application time d̃i can be
computed as the application time related mean value:

d̃i =
di

l
. (4.19)

Then the steady state value cst
i can be computed as

cst
i =

NA

Mi
d̃i

t1/2
i

ln(2)
. (4.20)

The quantitative effects of immunotherapy are not yet clearly resolved [Agr+16; Fen+17;
Yoo+18]. Thus, we assume the immunotherapeutic drugs to follow a Hill-Langmuir
equation with first order Hill coefficient in its pharmacokinetic efficiency against cancer
cells. The parameter c50

i denotes the drug concentration of drug i necessary to show
half of this efficiency. The parameter χ describes the per time number of cancer cells
destroyed by the direct application of one single molecule. The number of tumor cells
is still denoted by x(t), the pure growth dynamic stays as a Gompertz equation in the
type of equation (4.5). The overall growth dynamic of cancer cells under influence of
immunotherapy with some initial tumor size x(0) = x0, therefore can be formulated as

dx
dt

= ax(t) ln
(

K
x(t)

)
− χ

ci(t)x(t)
c50

i + ci(t)
. (4.21)

The assumption that the drug’s concentration is in its approximated steady state value,
i.e. ci(t) = cst

i ∀t ≥ 0, allows to analytically solve for the tumor size at time t:

x(t) = Ke
cst
i χ(−e−at+1)

a(cst
i +c50

i )
( x0

K

)e−at

(4.22)
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With a baseline tumor size value of x0 to start the immunotherapy as reference point
this equation allows to estimate the time until which there is potential progress of the
disease.
On the other hand, a step-wise solution for the tumor growth dynamics under therapy
is possible if 1Ii(t) has finitely many jump discontinuities, analogous to the case for
chemotherapy:

Lemma 4.2.4. For some index i ∈N and time t ∈ R+
0 let ci(t) be a function ci(t) : R+

0 → R+
0

of the form (4.18) using a function 1Ii(t) : R+
0 → {0, 1} of the form (4.17) and let the initial

condition be ci(0) = c(0)i ≥ 0. Further, let t1/2
i , NA, Mi, di ≥ 0. If 1Ii(t) is known for all t,

i.e. the values 1Ii(t) ∈ {0, 1} are known for all t and {ψ1, ..., ψm} denotes the set of all jump
discontinuity time points ψk > 0 of the function 1Ii(t) with k ∈ {1, ..., m} and m ∈N, then
ci(t) can be solved analytically at every time point t between two respective jump discontinuity
time points, i.e. t ∈ (ψk, ψk+1], depending on the initial state of therapy 1Ii(0): For 1Ii(0) = 0,
i.e. the case of no immunotherapy application at the initial time point, we receive

ci(t) =


ci(ψk)2−t/t1/2

i , if 1Ii(t) = 0 (k even)

ci(ψk)2−t/t1/2
i +

NA
Mi

dit1/2
i

(
1−2−t/t1/2

i

)
ln (2) , if 1Ii(t) = 1 (k odd).

(4.23)

For 1Ii(0) = 1, i.e. the case of immunotherapy application at the initial time point, we receive

ci(t) =


ci(ψk)2−t/t1/2

i , if 1Ii(t) = 0 (k odd)

ci(ψk)2−t/t1/2
i +

NA
Mi

dit1/2
i

(
1−2−t/t1/2

i

)
ln (2) , if 1Ii(t) = 1 (k even).

(4.24)

Proof: Distinguish two possibilities of immunotherapy application. Assume that

1Ii(t) = 0 ∀t ∈ R. Then ci(t) = −
(

ln (2)
t1/2
i

ci(t)
)

by equation (4.18) with ci(0) = c(0)i ≥ 0

can be solved for
ci(t) = c(0)i 2−t/t1/2

i . (4.25)

In particular, if there was no initial drug concentration, i.e., c(0)i = 0, the concentration
over time will stay equal to zero.

Assume now that 1Ii(t) = 1 ∀t ∈ R, i.e., assuming constant immunotherapeutic drug

inflow. Then equation (4.18) yields ċi(t) = −
(

ln (2)
t1/2
i

ci(t) + NA
Mi

di

)
and we therefore

receive for the solution that

ci(t) = c(0)i 2−t/t1/2
i +

NA
Mi

dit1/2
i

(
1− 2−t/t1/2

i

)
ln (2)

. (4.26)
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For general 1Ii(t) let ξ ≥ 0 be the value of ci(t∗) at a time point t∗ where a jump
discontinuity happens. For some ε > 0 we receive that from

1Ii(t
∗ + ε) = 1⇒1Ii(t

∗ − ε) = 0 (if t∗ > 0)

and ci(t∗ + t) = ξ2−t/t1/2
i +

NA
Mi

dit1/2
i

(
1− 2−t/t1/2

i

)
ln (2)

.
(4.27)

by equation (4.25). On the other hand we get that (with 0 < ε < 1 by equation (4.26)):

1Ii(t
∗ + ε) = 0⇒1Ii(t

∗ − ε) = 1 (if t∗ > 0)

and ci(t∗ + t) = ξ2−t/t1/2
i ,

(4.28)

i.e., there is a reverse switch in therapy k earlier in time.

Now distinguish the two possibilities of immunotherapy application at the initial
time point ψ0 := 0. First assume 1Ii(ψ0) = 0, i.e. no initial application of immunothera-
peutic drugs. By definition we have that the jump discontinuities ψ1 and ψ2 are the two
points for which the properties 1Ii(t) = 0 ∀t ∈ [ψ0, ψ1) and 1Ii(t) = 1 ∀t ∈ [ψ1, ψ2) hold.
For the then following jump discontinuity ψ3 we have again 1Ii(t) = 0 ∀t ∈ [ψ2, ψ3).
With equations (4.27) and (4.28) this yields that

ci(t) = ci(ψ0)2−t/t1/2
i for t ∈ [ψ0, ψ1] ,

ci(t) = ci(ψ1)2−t/t1/2
i +

NA
Mi

dit1/2
i

(
1− 2−t/t1/2

i

)
ln (2)

for t ∈ (ψ1, ψ2] and

ci(t) = ci(ψ2)2−t/t1/2
i for t ∈ (ψ2, ψ3]

(4.29)

By applying this scheme iteratively we have that 1Ii(t) = 1 ∀t ∈ [ψ2k−1, ψ2k) and
1Ii(t) = 0 ∀t ∈ [ψ2k, ψ2k+1) for k ∈ {1, ..., m} and m ∈ N. Therefore the overall
solution of equation (4.18) in the case of non-initial immunotherapy and all time points
t ∈ (ψk, ψk+1] for some k ∈N0 is given by

ci(t) =


ci(ψk)2−t/t1/2

i , if 1Ii(t) = 0 (k even)

ci(ψk)2−t/t1/2
i +

NA
Mi

dit1/2
i

(
1−2−t/t1/2

i

)
ln (2) , if 1Ii(t) = 1 (k odd).

Analogously for assuming 1Ii(ψ0) = 1, i.e. the case of immunotherapy application at
the initial time point, the solution of equation (4.18) for time points t ∈ (ψk, ψk+1] for
some k ∈N0 is given by

ci(t) =


ci(ψk)2−t/t1/2

i , if 1Ii(t) = 0 (k odd)

ci(ψk)2−t/t1/2
i +

NA
Mi

dit1/2
i

(
1−2−t/t1/2

i

)
ln (2) , if 1Ii(t) = 1 (k even).
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4.3 Metastatic development

The previously mentioned landmark publication by Iwata et al. [IKS00] introduced
a novel interpretation of solutions of the von Foerster transport equation interpreted
as density distribution in the context of metastatic cancerous diseases that will be
summarized in the following. Adjustments in terms of modeling to this approach are
presented thereafter.

4.3.1 Growth and size distribution of multiple metastatic tumors

Let, again, x(t) denote the tumor size of a primary tumor at time t ≥ 0 of the Gompertz
growth form of equation (4.5). The metastases are as well assumed to grow in size
according to the Gompertz growth dynamics. The growth for a metastasis of size s(t)
at time t ≥ 0 is given by the solution of the initial value problem

ds
dt

:= g(s) := am ln (K/s(t))s(t) with s(0) = s0 = 1. (4.30)

Analogously to the growth equation of the primary tumor, the tumor carrying capacity
is chosen as value K. Thus, again, s(t) t→∞−−→ K. The metastatic growth rate am > 0 is
chosen equal to the growth rate of the primary tumor’s growth rate originally in [IKS00],
i.e., am = a. This is, however, not necessary in general.
Let $(s, t) be defined as the colony size distribution of metastatic tumors with cell
number s ≥ 1 at time t ≥ 0. The number of metastatic tumors with size between s and
s + ∆s at some time t can be expressed as $(s, t)∆x. Since the approach follows the ’one
renegade cell’ theory again, the initial density distribution reads $(s, 0) = 0 ∀s. This
means that no metastatic cells but one primary tumor cell are present at time t = 0.
The growing primary tumor now starts seeding new single metastatic cells at the
so-called ’colonization rate’ β(x). Any of these cells in turn grows at rate g(s) and in
turn forms new single metastatic cells at rate β(s). This means that the formation of
new metastatic single cells reads β(x(t)) from the primary tumor and

∫ ∞
1 β(s)$(s, t)ds

from the metastatic colony size distribution.
The growth and seeding dynamics of the colony size distribution can therefore be
postulated as

∂$(s, t)
∂t

+
∂g(s)$(s, t)

∂s
= 0 (4.31)

with initial and boundary conditions

$(s, 0) = 0, (4.32)
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g(1)$(1, t) =
∫ ∞

1
β(s)$(s, t)ds + β(x(t)). (4.33)

For the colonization rate β(x), [IKS00] suggest the form of

β(x) = mxα, (4.34)

using some colonization coefficient m > 0 and the fractal dimension α > 0 of blood
vessels infiltrating the tumor. The colonization rate summarizes the necessary steps of
the metastatic cascade for a successful formation of a metastasis [GM06], where the
parameter m can be seen as the per day per cell probability for a tumor cell to overcome
every single step of this metastatic cascade [Bil+19]. By equation (4.34) it is assumed
that the rate of metastasizing is proportional to the number of tumor cells in contact
with blood vessels. Here, α expresses how the blood vessels geometrically distribute in
or on a tumor: for α = 0 the colonization rate is a constant pool (e.g. stem cells) while
α = 1 indicates that every tumor cell has equal probability to metastasize. Any values
0 < α < 1 can be interpreted as the geometric disposition of cells that potentially could
metastasize [Bil+19]. The unit for β(x) is the number of formed metastases of size one
per unit time.
In its original formulation the model assumes, by construction, that all metastases are
assumed to grow and seed new metastases at the same rates as the primary tumor,
including the tumor carrying capacity [Bet+12].
From the model formulation we can easily estimate the total metastatic tumor burden,
denoted by N0(t), which is the sum of the metastatic mass described by the colony size
distribution $ at time t ≥ 0:

N0(t) =
∫ ∞

0
$(s, t)ds. (4.35)

Further, the colony size distribution of visible metastatic tumors can be computed. For
this, a certain visibility size threshold svis has to be defined, such that all metastases
of size s > svis can be detected clinically. Then, the total detectable metastatic tumor
burden is defined by Nvis(t) and reads

Nvis(t) =
∫ ∞

svis

$(s, t)ds. (4.36)

If a growth rate is used that features growth limitation towards a carrying capacity, the
upper integral boundary of the boundary condition (4.33) and the two equations (4.35)
and (4.36) can be set as this carrying capacity K instead of ∞.

4.3.2 Metastatic model with systemic therapy

The first data set features a patient that underwent systemic chemotherapy and systemic
immunotherapy. To being able to analyze this data set with a modeling approach, the
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model formulation has to consider these therapeutic effects. For systemic treatment
it can be assumed that metastases are influenced at the same rate for the same drug
i [SKS21]. Distinguishing again for chemo- and immunotherapy, the growth rate g(s)
can now be chosen analogously to equations (4.12) and (4.21). The full model therefore
consists of the following equations:

∂$(s, t)
∂t

+
∂g(s)$(s, t)

∂s
= 0 (4.37)

with initial and boundary conditions

$(s, 0) = 0, (4.38)

g(1)$(1, t) =
∫ ∞

1
β(s)$(s, t)ds + β(x(t)). (4.39)

β(x) = mxα, (4.40)

and the adjusted definition of the growth rate g(s), such that

g(s) :=
ds
dt

=


a ln(K/s(t))s(t)− χ

cj(t)s(t)
c50

j +cj(t)
, if 1Ci(t) = 0

−µi(t)s(t)− χ
cj(t)s(t)
c50

j +cj(t)
, if 1Ci(t) = 1.

with ċj(t) =


−
(

ln(2)
t1/2

j

)
cj(t) , if 1Ij(t) = 0

−
(

ln(2)
t1/2

j

)
cj(t) + NA

Mj
dj , if 1Ij(t) = 1

and
dµi

dt
=

{
0 , if 1Ci(t) = 0

−µ∗i µi(t) , if 1Ci(t) = 1

(4.41)

having cj(0) = c(0)j ≥ 0, µi(0) = µi,0 ∈ [0, 1], µ∗i ≥ 0 and the already known character-
istic functions indicating therapy status, i.e., 1Ci(t) and 1Ij(t) known from equations
(4.9) and (4.17). Note that g(s) applies completely analogous for the primary tumor’s
derivative dx

dt , since the primary tumor is as well assumed to be affected by the systemic
therapy. Since the growth rate g limits the growth to a maximum tumor size of K again
the integral’s upper bound of equation (4.39) may be replaced by K.

4.3.3 Simplified metastatic model without secondary metastasis
dissemination

The second data set includes patients that underwent surgery of their primary tumor,
directed radiotherapy, whole-brain radiotherapy, systemic chemotherapy and systemic
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immunotherapy. However, the aim with this data set was to consider only data up
to the time point of first metastatic relapse (i.e., the first time that metastases have
been diagnosed). Since the patients solely received systemic treatments after this
diagnosis only surgery on the primary tumor had to be considered for the modeling
approach [Ben+22]. The growth dynamics ordinary differential equation for a primary
tumor of size x(t) at time t ≥ 0 starting with the initial condition x(0) = 1 yield using
equation (4.2) that we have er/a = K.
The full dynamics considering surgery at some time TS > 0 reads (analogously to
equation (4.5) and using equation (4.6)){

dx
dt = (r− a ln(x(t))x(t) , for 0 < t ≤ TS

x(t) = 0 , for t > TS.
(4.42)

The primary tumor dynamics can be solved analytically for

x(t) =

{
e

r
a (1−e−at) , for 0 ≤ t ≤ TS

0 , for t > TS.
(4.43)

Dynamics for the metastases are defined analogously without the possibility of surgery.
The function s(t) returns the size of a metastasis at time t > 0 with initial condition
s(0) = 1. Then the growth equation reads

ds
dt

= gm(s) = (rm − am ln(s(t)))s(t) (4.44)

and can be solved as
s(t) = e

r
a (1−e−at). (4.45)

The parameters rm and am are again the initial specific growth rate and the exponential
decay factor of the specific growth rate, but now for the metastases. Assuming the same
tumor carrying capacity K we have that K = erm/am = er/a. Thus, the model assumes
that metastases and primary tumor potentially show different growth dynamics.
The density of metastases is again formulated in the following transport equation:

∂$(s, t)
∂t

+
∂gm(s)$(s, t)

∂s
= 0 (4.46)

with initial and boundary conditions

$(s, 0) = 0, (4.47)

g(1)$(1, t) = β(x(t)), (4.48)
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β(x) = mxα. (4.49)

The new boundary condition (4.48) now describes that new metastases of cell size
one introduced into the density distribution are exclusively formed directly by the
primary tumor. Further, it is still assumed that at t = 0, the time at which the primary
tumor consists of exactly one single cell, no metastases are present. The modeling
approach focuses on primary metastasising only, since there is evidence that secondary
metastasising is of minor clinical importance [Bet+12].
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5 Simulation and sensitivity analysis

5.1 Tumor growth model

5.1.1 Implementation

Since equations (4.4) and (4.6) offer an analytical solution for the tumor growth dynam-
ics, the full simulation is easily implemented for some given initial tumor size of one
cell, i.e. x(0) = 1, and capacity K = 1012 measured in cells [Kle09]. This capacity is
equivalent to a volume of 1000ml or one kilogram of tumor mass [SMS95]. An example
trajectory formulated in Matlab is presented in the next subsection.

5.1.2 Simulation

The simulation resembling to the three patients from data set one is shown in Figure
5.1 having the growth rate fixed to a = 7 · 10−3 with unit [1/day]. This value is close to
the estimated values for the corresponding first data set, as presented later.

5.1.3 Sensitivity analysis

Since the initial condition x(0) = 1 and the tumor carrying capacity K = 1012 are
fixed, the sensitivity analysis for the untreated tumor growth ordinary differential
equation is determined via the OAT approach, i.e., the derivative in direction of the
free tumor growth rate parameter a. We have that the sensitivity Sa(t) in direction of a
is determined with equation (4.6) via

Sa(t) =
d(x(t))

da
= te−atK1−e−at

ln (K). (5.1)

The elasticity is defined as Ea(t) = a
x(t)Sa, therefore

Ea(t) = ate−at ln (K). (5.2)

Since all parameters are strictly positive we have that Sa(t) and Ea(t) are both strictly
positive for t > 0. This means that an increase of the free parameter a results in an
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Figure 5.1: Simulation of the untreated primary tumor size x(t) for growth rate a =

7 · 10−3 and tumor carrying capacity K = 1012.

increase of the tumor size x(t) at any time point t. However, we see that this effect
vanishes for large t:

Sa(t)
t→∞−−→ 0,

Ea(t)
t→∞−−→ 0

(5.3)

i.e., for large t, the tumor size will still converge to the tumor carrying capacity K
independent of the choice of the growth rate parameter a. The plots of these functions
Sa(t) and Ea(t) for the value a = 7 · 10−3 are shown in figure 5.2.

5.2 Tumor growth model with therapeutic effects

5.2.1 Implementation

For clinical cases, the functions (4.9) and (4.17) are known and are never equal to one at
the same time. This allows to solve the sequence of ordinary differential equation initial
value problems with the equations (4.15) and (4.16) in the case of chemotherapy. The
concentration of immunotherapeutic drug i at time t measured in [molecules/volume],
ci(t), can again be solved analytically by equations (4.23) and (4.24), depending on its
initial value. From this, a concrete analytical formulation of equation (4.21) is available.
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Figure 5.2: One-at-a-time analysis as sensitivity analysis on the primary tumor size
without treatment for value a = 7 · 10−3.

This formulation can be estimated numerically using Matlab’s pre-implemented solver
routine ode45 based on a Runge-Kutta (4,5) formula [DP80; SR97].

5.2.2 Simulation

To explore effects of a chemo- or immunotherapeutic treatment, the equations (4.13)
and (4.21) were implemented on a primary tumor of initial size of 109 cells. Two simu-
lations for chemotherapy with different strength of the refractory effect towards the
chemotherapeutic treatment were introduced (µ∗ = 0.13, blue solid line and µ∗ = 0.85,
blue dashed line). To compare the influence of the refractory effect, another simulation
was introduced with µ∗ = 1 (blue dash-dotted line), i.e. the chemotherapeutic efficacy
would not decrease over application time. In all three cases, an application of two
cycles of therapy of one week duration was considered, followed by a break of one
week. The simulations are shown in Figure 5.3, it is clearly distinguishable how fast
chemotherapeutic treatment becomes obsolete under a faster refractory effect.

To consider treatment in a close-to-reality setting, an example treatment protocol
starting with a first-line chemotherapy three weeks after primary diagnosis applied for
four weeks was initiated. After another treatment break of one week the immunothera-
peutic treatment was implemented. A simulation result for this setting can be found
in Figure 5.4, comparing the untreated tumor size (blue dashed line) to the tumor
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Figure 5.3: Simulation of the treated primary tumor growth under chemotherapy (blue
lines) and immunotherapy (red line). The parameters values chosen for
the simulations are for growth rate a = 7 · 10−3, tumor carrying capacity
K = 1012, initial chemotherapy efficacy µ0 = 0.25, immunotherapeutic
efficacy χ = 0.1 and drug-specific concentration for half-maximal response
c50

i = 1.01 · 1016 on a tumor of initial size 109 cells. Refractory effects of
chemotherapy were implemented with µ∗ = 0.13 (blue solid line) and with
µ∗ = 0.85 (blue dashed line). Neglecting the refractory effect was introduced
as well, having µ∗ = 1 (blue dash-dotted line). The drug implemented was
Nivolumab, therefore the drug-specific parameters were chosen as dosage
di = 0.240, application interval l = 14, molar mass Mi = 1.46 · 105 and
drug-specific half-life t1/2

i = 26.7.
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Figure 5.4: Simulation of the treated primary tumor growth for growth rate a = 7 · 10−3,
tumor carrying capacity K = 1012, initial chemotherapy efficacy µ0 = 0.25,
refractory effect on chemotherapy µ∗ = 0.85, immunotherapeutic efficacy
χ = 0.1 and drug-specific concentration for half-maximal response c50

i =

1.01 · 1016. The drug implemented was Nivolumab, therefore the drug-
specific parameters were chosen as dosage di = 0.480, application interval
l = 28, molar mass Mi = 1.46 · 105 and drug-specific half-life t1/2

i = 26.7.
The tumor size under treatment application (blue solid line) is compared to
the untreated tumor size (blue dashed line).

size under treatment (blue solid line). The different treatment intervals are shown as
differently shaded time blocks. Parameter values chosen for this example simulation
were a = 7 · 10−3, K = 1012, µ0 = 0.25, µ∗ = 0.85, χ = 0.1 and c50

i = 1.01 · 1016

with unit [molecules/volume]. The drug implemented was Nivolumab, therefore the
drug-specific parameters were chosen as di = 0.480 grams, l = 28 days, Mi = 1.46 · 105

with unit [Da] and t1/2
i = 26.7 days. Again, values are consistent with the findings for

the first data set.

5.2.3 Sensitivity analysis

For the sensitivity analysis of the tumor growth ordinary differential equation under
therapy, a clinically relevant tumor is examined. Assume that at primary diagnosis,
i.e., at time t = 0, the primary tumor has a size of x(0) = x0 � 1. Consider now two
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different scenarios for the derivative-based OAT analysis:

Scenario 1: A chemotherapy is introduced right away. Let two parameters char-
acterising this therapy in terms of equations (4.10) and (4.12) be defined as µ0 > 0
and µ∗ > 0. Evaluating the sensitivities on the tumor size at the end of an active
chemotherapy of four cycles (28 days) can then be evaluated as the respective derivative

of the tumor size x(t) = x0e
µ0e−µ∗ t

µ∗ by Lemma 4.2.2 and read

Sµ0 =
d(x(t))

dµ0
= x0e

e−µ∗ t
µ∗ ,

Sµ∗ =
d(x(t))

dµ∗
= x0e

µ0e−µ∗ t(µ∗ t+1)
(µ∗)2 ,

Sx0 =
d(x(t))

dx0
= e

µ0e−µ∗ t

µ∗ .

(5.4)

The corresponding elasticities read

Eµ0 =
µ0

x(t)
Sµ0 =

µ0e−
µ0
µ∗ e−µ∗ t−µ∗t

µ∗
,

Eµ∗ =
µ∗

x(t)
Sµ∗ = −

µ0(µ∗t + 1)e−
µ0
µ∗ e−µ∗ t−µ∗t

µ∗
,

Ex0 =
x0

x(t)
Sx0 =

µ0e−
µ0
µ∗ e−µ∗ t−µ∗t

µ∗
.

(5.5)

All parameters are strictly positive, therefore we have that Sµ0 , Eµ0 , Sx0 and Ex0 are
strictly positive for t > 0. This means that an increase of the free parameter µ0 or the
initial tumor size prior to therapy x0 results in an increase of the tumor size x(t) at any
time point t. For the chemotherapy efficacy change factor µ∗ this is slightly different: as
Sµ∗ and Eµ∗ are both strictly negative for all positive parameter values we have that the
tumor size x(t) decreases over time t. We can again observe that these effects vanish
for large t:

Eµ0

t→∞−−→ 0,

Eµ∗
t→∞−−→ 0,

Ex0

t→∞−−→ 0,

(5.6)

i.e., for large t, the tumor size will vanish. This is however not really interesting for the
application, since the chemotherapy can only be administered in a limited time interval
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due to adverse drug effects. Still it is clear that the effects on tumor size will vanish
more if chemotherapy is applied longer. Plots shown in figure 5.5 for values indicate
very clearly at which time points the perturbed parameters affect the tumor size.

Scenario 2: The immunotherapy is introduced from the very beginning. Assume
that the drug concentration’s steady state is present in the patient’s body and equation
(4.22) can be applied. This yields that we can calculate the size of the primary tumor
under active immunotherapeutic treatment as

x(t) = Ke
cstχ(−e−at+1)

a(cst+c50)

( x0

K

)e−at

. (5.7)

Let the tumor carrying capacity K = 1012 be fixed and let the initial tumor size be
defined by x(0) = x0 > 1. Further assume all parameters a, cst, c50 and χ to be strictly
positive. Their sensitivities read

Sa = K
( x0

K

)e−at

e
χcst(1−e−at)

a(c50+cst)

(
χtcste−at

a(c50 + cst)
− χcst(1− e−at)

a2(c50 + cst)

)
,

− Kt ln
( x0

K

) ( x0

K

)e−at

e
χcst(1−e−at)

a(c50+cst)
−at

,

Scst = K
( x0

K

)e−at

e
χcst(1−e−at)

a(c50+cst)

(
χ(1− e−at)

a(c50 + cst)
− χcst(1− e−at)

a(c50 + cst)2

)
,

Sc50 = −
χKcst(1− e−at)

( x0
K

)e−at
e

χcst(1−e−at)
a(c50+cst)

a(c50 + cst)2 ,

Sχ =
Kcst(1− e−at)

( x0
K

)e−at
e

χcst(1−e−at)
a(c50+cst)

a(c50 + cst)
,

Sx0 =
( x0

K

)e−at−1
e

χcst(1−e−at)
a(c50+cst)

−at
,

(5.8)
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Figure 5.5: One-at-a-time analysis as sensitivity analysis on the primary tumor size
under chemotherapeutic treatment.
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and their corresponding elasticities are

Ea =
a

x(t)
Sa = K

( x0

K

)e−at

e
χcst(1−e−at)

a(c50+cst)

(
χtcste−at

a(c50 + cst)
− χcst(1− e−at)

a2(c50 + cst)

)
− Kt ln

( x0

K

) ( x0

K

)e−at

e
χcst(1−e−at)

a(c50+cst)
−at a

Ke
cstχ(−e−at+1)

a(cst+c50)
( x0

K

)e−at
,

Ecst =
cst

x(t)
Scst = cst

(
χ(1− e−at)

a(c50 + cst)
− χcst(1− e−at)

a(c50 + cst)2

)
,

Ec50 =
c50

x(t)
Sc50 = − c50χcst(1− e−at)

a(c50 + cst)2 ,

Eχ =
χ

x(t)
Sχ =

χcst(1− e−at)

a(c50 + cst)
,

Ex0 =
x0

x(t)
Sx0 = e−at.

(5.9)

For the long time behavior we receive

Sa
t→∞−−→ χKcste

χcst

a(c50+cst)

a2(c50 + cst)
,

Scst
t→∞−−→ Kχe

χcst

a(c50+cst)

(
1

a(c50 + cst)
− cst

a(c50 + cst)2

)
,

Sc50
t→∞−−→ −χKcste

χcst

a(c50+cst)

a(c50 + cst)2 ,

Sχ
t→∞−−→ −Kcste

χcst

a(c50+cst)

a(c50 + cst)
,

Sx0

t→∞−−→ 0.

(5.10)

These investigations clearly indicate that all changes in parameters except the initial
tumor size at the start of immunotherapy in the OAT setting have lasting effects over
time. For increased tumor growth rate a and increased drug concentration steady state
cst holding all other parameters equal the tumor size increases in the long run. On
the other hand, increasing values of the parameters c50 and χ yield negative values of
sensitivities, therefore decreasing tumor sizes in the long run. Only the sensitivity for
x0 vanishes over time, which means that the initial size of the tumor does not play a
major role on the tumor size in the long run in the context of the OAT analysis. An
example plot for these sensitivities and elasticities with values fitted from data is given
in figure 5.6. From the equations however, it is difficult to identify the ranking of the
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Figure 5.6: One-at-a-time analysis as sensitivity analysis on the primary tumor size
under immunotherapeutic treatment.
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Figure 5.7: Elementary effects method as sensitivity analysis on the primary tumor size
under treatment.

sensitivity of parameters.

Previously the concept of the elementary effects method was introduced to address
this problem. To consider treatment in this framework, an example standard treatment
was defined as a first-line chemotherapy three weeks after primary diagnosis that
is applied for four weeks. The immunotherapeutic treatment follows after another
week without treatment. This concept was implemented for biologically reasonable
parameter intervals with 2000 randomly sampled trajectories checking the tumor size
90 days after primary diagnosis (24 days after initialising the immunotherapeutic treat-
ment). Corresponding results can be found in figure 5.7 and 5.8. Clearly, the initial
chemotherapy efficacy parameter µ∗ has the highest influence on the primary tumor
size in this protocol, followed by the immunotherapy drug-specific efficacy parameter
χ. To shed light on interaction effects, the Sobol’ indices were implemented on the
same treatment regimen and on the primary tumor size 90 days after primary diagnosis
for a sample size of 50 000. The parameter intervals were chosen the same as for the
elementary effects method. However, the Sobol’ indices allow for sensitivity estimations
over the whole parameter space, not just relatively to a certain reference parameter
combination as the two previous approaches. The results are shown in the table below.
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Figure 5.8: Elementary effects method as sensitivity analysis on the primary tumor size
under treatment, log-scaled.

Index c50 χ a µ∗ µ0

Si 0.0048 0.6801 0.0702 0.0053 0.0052
Stot 0.0076 0.9328 0.3091 0.0163 0.0105

These values clearly show that interaction effects, i.e., combined changes of multiple
parameters at the same time, play a huge role in the outcome of the primary tumor size.
The highest effects are measurable for parameters χ, a and µ∗. Interestingly, the drug
concentration needed for an efficacy of 50% and the initial chemotherapeutic efficacy
µ0 are only of minor importance when sensitivity on the tumor size is considered.
Comparison of the elementary effects and Sobol’ methods clearly shows their respective
advantages and disadvantages. While the elementary effects method is based on
trajectory sampling and focuses on equidistant changes in each direction for any
parameter but only one parameter at a time, the Sobol’ method explores the complete
parameter space also considering the simultaneous perturbation of potentially multiple
parameters. This results in a more concrete estimation for observable effects that might
occur in reality and give insight in the changing importance of apparently less sensitive
parameters for OAT perturbation towards huge influence of higher order sensitivity
measures. An example for such a parameter is the tumor growth rate a in this setting.
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5.3 Metastatic development

5.3.1 Implementation

For the classic model without systemic treatment, the authors offer an analytical
solution [IKS00]. However, the formulation does not allow for easy and explicit
calculation of the metastatic density at any time point t. A discretisation to compute
the partial differential equation’s solution along their characteristic curves can be
established to calculate the density distribution numerically. These characteristic curves
of the system (4.31) - (4.34) correspond to exactly the growth rates g(x, t). These can be
determined analytically (see equation (4.4)).
Let Tmax be the maximum observation time of some patient, i.e. the time interval of
interest for that patient is [0, Tmax] and let k = 1 be a constant time step discretisation on
the time interval [0, Tmax] such that tj = jk for j ∈ {0, ..., n} with t0 = 0 and tn = Tmax.
Choose the size discretisation xj = x(tj) such that x0 = 1 < ... < xn = K. Like this, the
points (xk, tl) and (xk+1, tl+1) belong to the same characteristic for any k, l ∈ [0, n− 1].
Then the classic model with secondary metastasising can be numerically evaluated with
the following explicit scheme making use of Riemann sums and density discretisations
$(x(i), t(j)) ≈ uxi ,tj (see [BC01]):

ux0,0 = 1

uxi ,0 = 0 i = 1, ..., n

ux0,tj =
1

1−mxα
0

n−1

∑
i=1

mxα
i uxi ,tj j = 1, ..., n

uxi ,tj = uxi−1,tj−1 i, j = 1, ..., n

(5.11)

For the model neglecting secondary metastasising, the approach is very similar, but
only considering freshly seeded metastases from the primary tumor, i.e.

ux0,0 = 1

uxi ,0 = 0 i = 1, ..., n

ux0,tj =
1

1−mxα
0

mxα
j uxj,tj j = 1, ..., n

uxi ,tj = uxi−1,tj−1 i, j = 1, ..., n

(5.12)

5.3.2 Simulation

Having the two different model approaches with and without secondary metastasizing
implemented, the corresponding parameters were chosen as the growth rate a = 7 · 10−3,
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Figure 5.9: Simulation of the primary tumor (blue solid line) and the largest five metas-
tases (red solid line) for the model considering no treatment and secondary
metastasising, log-scaled. Critical size for a tumor to be clinically detectable
is indicated with a dash-dotted line on the y-axis, the day of primary di-
agnosis is indicated with a dotted line on the x-axis. The chosen model
parameters are a = 7 · 10−3, K = 1012 and m = 2 · 10−7.

tumor carrying capacity K = 1012 and the metastatic colonization rate m = 2 · 10−7.
Simulations for the approach with secondary metastasizing are the full time course
of the primary tumor (blue line) and the largest five metastases (red lines), Figure
5.9. The corresponding simulation for the model formulation considering primary
metastatic seeding only is shown in Figure 5.10 with analogous colors and indications.
The difference in these two approaches is negligible at this reference.
However, the simulation of the metastatic density at the day of primary diagnosis for
both modeling approaches gives insight in the different model outcomes. Figures 5.11
and 5.12 show the numerical metastatic density distribution approximations at the
day of primary diagnosis. The diamonds indicate integer values, thus full countable
metastases. The largest diamond is the primary tumor. Clearly, the difference of these
two approximations is at the density distribution’s side of very small metastases: the
model considering secondary metastasizing has a full additional metastasis of very
small size only. The density distribution for larger metastases is approximately the
very same, supporting the hypothesis that secondary metastases potentially only play a
minor role in clinical treatment [Bet+12].
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Figure 5.10: Simulation of the primary tumor (blue solid line) and the largest five
metastases (red solid line) for the model considering no treatment and only
primary metastasising, log-scaled. Critical size for a tumor to be clinically
detectable is indicated with a dash-dotted line on the y-axis, the day of
primary diagnosis is indicated with a dotted line on the x-axis. The chosen
model parameters are a = 7 · 10−3, K = 1012 and m = 2 · 10−7.
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Figure 5.11: Simulation of the metastatic density distribution for the model considering
no treatment and secondary metastasising, log-scaled, evaluated at primary
diagnosis. Blue diamonds indicate the integer values, thus ’full’ metastases.
The largest tumor shown here corresponds to the primary tumor. Critical
size for a tumor to be clinically detectable is indicated with a dash-dotted
line. The chosen model parameters are a = 7 · 10−3, K = 1012 and m =

2 · 10−7.
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Figure 5.12: Simulation of the metastatic density distribution for the model considering
no treatment and only primary metastasising, log-scaled, evaluated at
primary diagnosis. Blue diamonds indicate the integer values, thus ’full’
metastases. The largest tumor shown here corresponds to the primary
tumor. Critical size for a tumor to be clinically detectable is indicated with
a dash-dotted line. The chosen model parameters are a = 7 · 10−3, K = 1012

and m = 2 · 10−7.
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Figure 5.13: Elementary effects method as sensitivity analysis on the metastatic mass
with secondary metastasising and without treatment at the day of primary
diagnosis (PD).

5.3.3 Sensitivity analysis

For the sensitivity analysis of the transport equation, the investigation with derivative-
based method might turn out analytically difficult to solve and also neglects com-
bination effects of the parameter perturbations. Therefore for the models including
secondary metastasising of equations (4.31) - (4.33) and excluding secondary metasta-
sising of equations (4.46) - (4.49) the elementary effects method and the Sobol’ indices
estimation are applied directly. For both models, the influence of parameter perturba-
tions on the total metastatic mass and the number of metastases at the day of primary
diagnosis was examined, respectively. Figures 5.13 and 5.14 show the comparison of
influence of perturbations of the two parameters a and m on the metastatic mass at the
day of primary diagnosis for included secondary metastasizing and figures 5.15 and
5.16 without secondary metastasizing. On the other hand, figures 5.17 and 5.18 as well
as figures 5.19 and 5.20 show the influence of the same parameter perturbations on
parameters a and m on the number of metastases at the day of primary diagnosis for
possible secondary metastasizing and without secondary metastasizing, respectively.

The Sobol’ indices were implemented as introduced before and sampled for 15 000
pairs of parameter values from biologically reasonable domains. The advantage of the
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Figure 5.14: Elementary effects method as sensitivity analysis on the metastatic mass
with secondary metastasising and without treatment at the day of primary
diagnosis (PD), log-scaled.
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Figure 5.15: Elementary effects method as sensitivity analysis on the metastatic mass
neglecting secondary metastasising without treatment at the day of primary
diagnosis (PD).
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Figure 5.16: Elementary effects method as sensitivity analysis on the metastatic mass
neglecting secondary metastasising without treatment at the day of primary
diagnosis (PD), log-scaled.
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Figure 5.17: Elementary effects method as sensitivity analysis on the number of metas-
tases with secondary metastasising and without treatment at the day of
primary diagnosis (PD).

61



5 Simulation and sensitivity analysis

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5

log( )

2

3

4

5

6

7

8

9

lo
g(

)

Effects on the number of metastases at PD

 m

 a

Figure 5.18: Elementary effects method as sensitivity analysis on the number of metas-
tases with secondary metastasising and without treatment at the day of
primary diagnosis (PD), log-scaled.

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

3000

3500

4000
Effects on the number of metastases at PD

 m

 a

Figure 5.19: Elementary effects method as sensitivity analysis on the number of metas-
tases neglecting secondary metastasising without treatment at the day of
primary diagnosis (PD).

62



5 Simulation and sensitivity analysis

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

ln( )

2

3

4

5

6

7

8

9

ln
(

)

Effects on the number of metastases at PD

 m

 a

Figure 5.20: Elementary effects method as sensitivity analysis on the number of metas-
tases neglecting secondary metastasising without treatment at the day of
primary diagnosis (PD), log-scaled.

estimated indices over the elementary effects method from above is that these indices
also consider combinations of multiple parameter perturbations at the same time. For
the number of metastases calculated from the model including secondary metastasizing
at the time of primary diagnosis the indices were estimated as

Index m a
Si 0.0285 0.7435

Stot 0.3532 0.9740

and estimated as
Index m a

Si 0.0387 0.7128
Stot 0.2255 0.9617

for the model without secondary metastasizing. We see that for both models the tumor
growth parameter a has the larger sensitivity on the number of metastases compared
to the colonization coefficient m. Further, this indicates that the colonization coefficient
parameter is of higher sensitivity in parallel combined perturbation with the tumor
growth parameter than of the colonization coefficient parameter alone.
For the total metastatic mass the sensitivities of the model with secondary metastasizing
was estimated as

63



5 Simulation and sensitivity analysis

Index m a
Si 0.0086 0.9981

Stot 0.0289 1.0062

compared to the sensitivity of the model without secondary metastasizing with respect
to the total metastatic mass

Index m a
Si 0.0058 0.9839

Stot 0.0110 1.0037

Again, the parameter a has the massive increase in total effect sensitivity on the total
metastatic mass and the combined effect of perturbing a and m at the same time yields
higher outcome differences than a single perturbation of the parameter m. This insight
is gained exclusively from the Sobol’ indices approach, whereas the ranking of the two
parameters with respect to their sensitivity was also observed in the estimations of the
elementary effects method before.

5.4 Metastatic model with systemic therapy

5.4.1 Implementation

Since there is no analytical expression to fully solve the metastatic model of equations
(4.37) - (4.41) including treatment, a discretisation was performed to implement the
model in Matlab (this subsection has been published in the appendix of [SKS21]).
The discretisation follows the computation of partial differential equation solutions
along their characteristics. The characteristics of the partial differential equation system
(4.37) - (4.41) are exactly the growth rates g(x, t). They can be solved stepwise when
knowing the therapy regimen (which is obviously the case for patients with a clinical
history).

Let Tmax be the maximum observation time of some patient, i.e. the time interval
of interest for that patient is [0, Tmax]. Assume to know the time of primary diagnosis
tPD ∈ [0, Tmax] and to know the starting times of the j′th treatment interval of chemo-
and immunotherapy with drug i, respectively called tC,j,i,s, tI,j,i,s for j = 1, ..., n. Further,
assume to also know the end times of those treatments denoted by tC,j,i,e and tI,j,i,e.
Assume further that patients do not have different chemo- or immunotherapy being
applied at the same time, we have that t·,j,i,s < t·,j,i,e and t·,j,i,e < t·,j+1,i,s for all j.
By construction of the model equations (4.9) and (4.17) we have that for t ∈

[
tC,j,i,s, tC,j,i,e

]
it is 1Ci(t) = 1 (and zero otherwise) and that for t ∈

[
tI,j,i,s, tI,j,i,e

]
it is 1Ii(t) = 1 (and

zero otherwise).
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For the untreated time intervals (i.e. for all t at which 1Ci(t) = 0 and 1Ii(t) = 1
for all i) we can solve the growth rate g(x, t) analytically (cf. equations (4.12) and (4.21)
with lemma 4.2.4).
For time intervals of chemotherapeutic treatment (i.e. for all t at which some 1Ci(t) = 1)
first the initial value problem (4.10) is solved to have an explicit expression for the
function µi(t), which is equation (4.11) by lemma 4.2.1. Then this function is used to
solve equation (4.12), the corresponding analytical solutions (4.15) and (4.16) are given
in Theorem 4.2.3.
For time intervals in the immunotherapeutic treatment applications the initial value
problem (4.18) is solved. The dose is just applied in times t where immunotherapy
is active, i.e. 1Ij(t) = 1, so this can be done step-wise until every next switch of the
function 1Ij(t) (before the very first application, i.e. for t ∈ [0, tI,1,i,s], the function ci(t)
simply equals zero since no drug has been applied yet).

Let now k = 1 be a constant time step discretisation on the time interval [0, Tmax]
such that tj = jk for j ∈ {0, ..., n} with t0 = 0 and tn = Tmax. For times t ≤ t·,1,i,s that
represent the untreated setting, we can restrict the sizes to the interval [1, x(t·,1,i,s)]. We
therefore choose the size discretisation xj = x(tj) such that x0 = 1 < ... < xr = x(t·,1,i,s)

for r ≤ n. Like this, the points (xk, tl) and (xk+1, tl+1) belong to the same characteristic
for any k, l ∈ [0, r− 1]. Then we can approximate the model for untreated tumor growth
with the following explicit scheme making use of Riemann sums and density discreti-
sations $(x(i), t(j)) ≈ uxi ,tj (see therapy-free model implementation with secondary
metastasizing and [BC01]):

ux0,0 = 1

uxi ,0 = 0 i = 1, ..., r

ux0,tj =
1

1−mxα
0

n−1

∑
i=1

mxα
i uxi ,tj j = 1, ..., r

uxi ,tj = uxi−1,tj−1 i, j = 1, ..., r

(5.13)

For times in active treatment, i.e. t ∈ {r, te} with te ≤ Tmax, we know that the tumor
sizes are affected. We start to count from the switch with index j and recalculate
the new size first. The computation of the partial differential equation’s boundary
condition is analogous to before. So for any therapy switch at time point r we have for
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chemotherapy with µd,r+j = µd(r + j) that

xi,1 = xi (1− µd,r+1) i = 0, ..., r

xi,j = xi−1,j−1
(
1− µd,r+j

)
i = 0, ..., r; j = 2, ..., te − r

uxi,1,r+1 = uxi ,r i = 0, ..., r

u1,(j+r) =
1

1−m

n−1

∑
i=1

muxi,j−1,(j−1+r)1xi,j−1≥1 j = 2, ..., te − r

(5.14)

and for immunotherapy with cd,r+1 = cd(r + j) as the step wise numerical solution of
equation (4.18) or using the analytical solution of lemma 4.2.4 that

xi,1 = xi (1− cd,r+1) i = 0, ..., r

xi,j = xi−1,j−1
(
1− cd,r+j

)
i = 0, ..., r; j = 2, ..., te − r

uxi,1,r+1 = uxi ,r i = 0, ..., r

u1,(j+r) =
1

1−m

n−1

∑
i=1

muxi,j−1,(j−1+r)1xi,j−1≥1 j = 2, ..., te − r

(5.15)

5.4.2 Simulation

The implementation presented in the previous subsection was programmed in Matlab.
Considering some treatment close to reality, the example treatment protocol was rein-
troduced: starting with a first-line chemotherapy three weeks after primary diagnosis,
which is applied for four weeks. A treatment break of one week is followed by the im-
munotherapeutic treatment. The parameters used for this simulations were the growth
rate a = 7 · 10−3, tumor carrying capacity K = 1012, initial chemotherapy efficacy
µ0 = 0.25, refractory effect on chemotherapy µ∗ = 0.85, immunotherapeutic efficacy
χ = 0.1 and drug-specific concentration for half-maximal response c50

i = 1.01 · 1016.
The drug implemented was Nivolumab, therefore the drug-specific parameters were
again chosen as dosage di = 0.480, application interval length l = 28, molar mass
Mi = 1.46 · 105 and drug-specific half-life t1/2

i = 26.7.
The full time course of primary tumor (blue line) and metastases (red lines) are shown
in Figure 5.21 with chemo- and immunotherapeutic treatment application indicated
with shaded areas. It can clearly be seen that the metastases are quite close to be
detected clinically, still none of them crossed the visibility threshold during the whole
time course. The primary tumor shrinks during immunotherapeutic treatment and
eventually its size decreases below the clinical detection threshold. Evaluating the
metastatic density distributions gives an idea of the full metastatic threat. Figures 5.22
and 5.23 are the corresponding numerical approximations of the metastatic density
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Figure 5.21: Full time course of the primary tumor (blue solid line) and metastases
(red lines) for the metastatic density distribution model with therapy. The
parameters used for this simulation are a = 7 · 10−3, K = 1012, µ0 = 0.25,
µ∗ = 0.85, χ = 0.1 and c50

i = 1.01 · 1016. The drug implemented was
Nivolumab, therefore the drug-specific parameters were again chosen as
di = 0.480, l = 28, Mi = 1.46 · 105 and t1/2

i = 26.7. Critical size for a tumor
to be clinically detectable is indicated with a dash-dotted line on the y-axis,
the day of primary diagnosis is indicated with a dotted line on the x-axis.

distribution at primary diagnosis and 90 days after primary diagnosis, respectively.
Note that in both, the diamonds correspond to integer metastatic values again, showing
fully countable metastases. However, the largest diamond is the primary tumor.

5.4.3 Sensitivity analysis

For the model with equations (4.37) - (4.41), the derivative OAT approach is again not
leading to useful insights. Since we already observed that for both number of metas-
tases and total metastatic mass in the untreated tumor setting combined parameter
perturbations play an important role, for the general therapy setting the elementary
effects method and the estimation of the Sobol’ indices was introduced and applied
once more.
To have comparable outcome estimations, the example standard treatment from the
previous ordinary differential equation analysis was reused: a first-line chemotherapy
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Figure 5.22: Metastatic density distribution corresponding to the previously mentioned
simulation, evaluated at the day of primary diagnosis.
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Figure 5.23: Metastatic density distribution corresponding to the previously mentioned
simulation, evaluated 90 days after primary diagnosis.
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Figure 5.24: Elementary effects method as sensitivity analysis on the metastatic mass
under example treatment at day 90 after primary diagnosis.

is started three weeks after primary diagnosis and is applied for four weeks. The
immunotherapeutic treatment follows after another week without treatment. The imple-
mentation was performed for biologically reasonable parameter intervals with 100 000
parameter pairs and checking the number of metastases as well as the total metastatic
mass 90 days after primary diagnosis (24 days after initialising the immunotherapeutic
treatment). The results for the elementary effects methods are shown in figure 5.24
and 5.25, respectively. The ranking clearly shows that in both endpoints for sensitivi-
ties on the total metastatic mass and the number of metastases, the parameter χ, the
immunotherapeutic drug effect, has the highest influence on the respective covariate.
This is followed by the tumor growth rate a. On the other hand we can identify that
perturbations of µ∗ have relatively higher influence on the total metastatic mass and
relatively lower influence on the number of metastases.

The Sobol’ indices for the total metastatic mass 90 days after primary diagnosis were
estimated as

Index m c50 χ a µ∗ µ0

Si 0.0035 0.0023 0.1989 0.0164 0.0010 0.0010
Stot 0.3974 0.0300 0.9820 0.6322 0.0302 0.0285

while the corresponding Sobol’ indices for the number of metastases 90 days after
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Figure 5.25: Elementary effects method as sensitivity analysis on the number of metas-
tases under example treatment at day 90 after primary diagnosis.

primary diagnosis were calculated as

Index m c50 χ a µ∗ µ0

Si 0.0162 −0.0024 0.1622 0.0065 −0.0023 −0.0022
Stot 0.5630 0.0498 0.9620 0.6581 0.0456 0.0456

The results of the elementary effects method do reproduce in these estimations. The
largest sensitivities are attributed to the two parameters χ and a. However, the effects of
the parameter µ∗ are a lot smaller. Interestingly, the total order sensitivities unveil that
the parameter m has huge interaction effects with the other parameters. This means
that multiple parameter perturbations including perturbations of the parameter m are
a lot more sensitive than the parameters c50, µ0 and in particular µ∗ alone.
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6 Simulation for clinical cases

For the two available data sets of treated patients with NSCLC, the GlobalSearch
environment [Ugr+07] of Matlab was performed on a least squares minimization
function with respect to the number and size of clinically detectable and measured
metastases towards the simulated values.

6.1 Metastatic model with systemic therapy

This whole section is based on methods and results previously published in [SKS21]
and proves that the modeling framework is capable of describing clinical treatment
protocols and measurement series. For this step and due to the long time course of the
patients’ clinical history, secondary metastasising was considered.
The parameters fixed for evaluation were the tumor carrying capacity K = 1012 and
α = 2/3 [IKS00]. For the drug-specific parameters, the values presented in section 2.3
of this thesis were used.

6.1.1 Parameter values

The whole measurement series were implemented to be evaluated with the minimiza-
tion problem. The resulting parameters are shown in table 6.1 and are in biologically
reasonable ranges. The cell cycle length of a tumor can be estimated by ln 2

a [Bil+19],
yielding values between 93 and 101 hours for these three patients. These values are
reasonably close to observed values of about two to four days [Kuf+03].

6.1.2 Simulations

The previously presented implementation scheme was programmed in Matlab to run
the model on the respective clinical treatment history with the fitted and fixed parameter
values. Results were published in [SKS21] in detail, the simulation for the total tumor
burden, i.e. the integral of the density distribution

∫ ∞
0 $(s, t)ds over time, see equation

(4.35), is shown in Figure 6.1 for the three individual patients of the first data set along
with the corresponding concentrations of the immunotherapeutic drug that was applied
at some point of the patients’ clinical history. The comparison of clinical data with the
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Table 6.1: Patient-specific model parameters for the model of metastatic development
with respect to systemic treatment evaluated on clinical data.

Patient KE-01 KE-02 KE-03
Explanation [unit]

K
Environmental carrying capacity
[cells] [Kle09]

1012 1012 1012

a Growth rate [1/day] 7.284 · 10−3 6.877 · 10−3 6.984 · 10−3

m
Colonization coefficient [1/cell
1/day]

1.635 · 10−7 1.984 · 10−7 2.738 · 10−7

α Fractal dimension [-] [IKS00] 2/3 2/3 2/3

Chemotherapeutic drug in use
CisPT/Pemet.
(1L)

-
CisPT/Pemet.
(1L)

µ0 Initial chemotherapy efficiency [-] 0.237 - 0.081

µ∗
Refractory effect for chemotherapy
application [-]

0.132 - 0.132

Immunotherapeutic drug in use Pembr. (2L) Nivol. (1L) Pembr. (2L)

χ
Immunotherapeutic effect under
application [1/day]

0.067 0.499 0.088

c50
i

Drug concentration of im-
munotherapeutic drug for
half-maximal response [molecules
per volume], cf. eq. (4.20)

1.012 · 1016 1.010 · 1016 1.009 · 1016

cst
i

Drug concentration of im-
munotherapeutic drug in serum
steady state [molecules per
volume]

1.41 · 1018 2.77 · 1018 1.41 · 1018

CisPT/Pemet. = Combination therapy of Cisplatinum and Pemetrexed. Pembr. =
Pembrolizumab. Nivol. = Nivolumab. (1L) = First-line therapy. (2L) = Second-line
therapy.

metastatic density distribution for one of these patients at two different time points
under treatment is shown in Figure 6.2. Simulations for the other two patients can be
found on their respective comparison to clinical measurements in [SKS21].
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Figure 6.1: Model simulations over the entire clinical treatment history for three indi-
vidual patients, using parameters shown in table 6.1. The graphs on the
left shown the total tumor burden for all three patients over time (solid
line) compared to a hypothetical untreated metastatic disease with the same
growth parameters (dashed line) and compared to the clinical measure-
ments (asterisks). The right graphs show the drug concentration of the
immunotherapeutic drug over time (dashed line), compared to the calcu-
lated quasi-steady-state that the concentration circulates around. The shaded
areas show the times where chemo- and immunotherapy were applied.
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Figure 6.2: Model simulations for patient KE-03, using parameters shown in table 6.1.
The simulated metastatic density distribution (blue diamonds) is plotted in
comparison with the clinical measurements (red asterisks) and the clinical
visibility threshold (dash-dotted line). The left graph shows the simulation
and the measurements at day 88 after primary diagnosis, the right graph the
same simulation and corresponding measurements at day 152 after primary
diagnosis.

6.2 Metastatic model without treatment

This whole section is based on methods and results previously published in [Ben+22].
To assess prognostic value of the framework, no therapy was considered in the modeling
approach. Further, the hypothesis was followed that secondary seeded metastases play
a minor role in clinical outcome [Bet+12]. The data was used up to the time point
where brain metastases were firstly detected clinically. Let this time point be denoted by
tBM. Then we have that the time of primary diagnosis, i.e., the time where the primary
tumor was discovered first, denoted by tPD, fulfills tPD ≤ tBM. Assume that the primary
tumor and the corresponding metastases show different growth parameters, i.e., r, rm

and a, am are generally different, respectively.
To reduce the number of free parameters for the optimization problem, the approach
by [Bil+19] was followed. As usual, the tumor carrying capacity for both primary tumor
and metastases was fixed to

K = er/a = erm/am = 1012. (6.1)

By this property the parameter a,am can be calculated directly from a determined
parameter r,rm.
A meta-analysis of different studies that examine doubling times of primary tumors at
the time of primary diagnosis yields different doubling time values for different tumor
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histologies. The meta-analysis is presented in the supplementary material to [Bil+19]
and found mean values of 91, 104 and 201 days for undifferentiated carcinoma, SCC
and ADC, respectively. These values can be used in equation (4.8) to determine the
parameter values r, rm and therefore also a, am. For this, the size of the primary tumor
at primary diagnosis has to be known. This was the case for 28 of the 31 patients of the
second data set.
The parameter α was found to lead to biologically meaningful simulations exclusively
for values below 0.3. Further manual exploration suggested that the value α = 0.1
potentially describes best the clinical data for this data set. The two free parameters
remaining for the fitting and optimization procedure are the metastatic growth rate
rm = am ln(K) and the metastatic colonization coefficient m.

6.2.1 Density smoothing

As the objective of this part of the model evaluation was to form predictions on the
metastatic density distribution, especially on the sizes of non-detectable metastases,
and since only data up to time TBM was used to fit the whole density distribution on, a
huge standard error for parameter estimation was expected. To reduce this variance, a
window of possible outcomes for the number of metastases for each of the individual
patients was introduced. Three cases were established to smoothen the shape of the
density distribution that may be distinguished as follows, using v as the number of
clinically detected metastases:

1. no additional brain metastasis, i.e. an artificial metastasis with size of the clinical
detection limit introduced at the value of the clinically detected metastases v. This
translates as the case that the clinicians have successfully detected all existing and
detectable metastases.

2. one additional brain metastasis at the size of the clinical detection limit. This
artificial metastasis with amount v+ 1 is the case where the clinicians were unable
to detect a metastasis that is close to the detection limit and can be interpreted as
a possible ’worst case’ scenario.

3. an artificial metastasis of size of the clinical detection limit introduced with an
amount v + 1

2 . This case was used to generate parameters that were used in the
statistical evaluation later in this section.
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All parameters extracted from each of these three cases were highly correlated with the
other respective parameters of the other two cases. The parameter estimations of the
third case were used as reference for the following subsections.

6.2.2 Parameter values

All parameter values fitted by this procedure lie in reasonable biological ranges for all
patients of the second data set. The description of the fitted parameter values is given
as follows

parameter mean median std min max
rm 4.93 · 10−2 4.03 · 10−2 3.18 · 10−2 1.22 · 10−2 1.34 · 10−1

m 3.57 · 10−4 2.33 · 10−4 2.77 · 10−4 8.22 · 10−5 1.22 · 10−3

while the other parameters are either fixed to α = 0.1 or calculated from equations (4.8)
and (6.1), respectively:

parameter mean median std min max
r 4.75 · 10−2 2.92 · 10−2 4.91 · 10−2 1.38 · 10−2 2.51 · 10−1

a 1.72 · 10−3 1.06 · 10−3 1.78 · 10−3 4.99 · 10−4 9.08 · 10−3

am 1.79 · 10−3 1.46 · 10−3 1.15 · 10−3 4.40 · 10−4 4.84 · 10−3

6.2.3 Simulations

Figure 6.3 shows an example patient for the second data set, subplot A is the clinical
history of the patient. The resulting simulations of case 3 yield the metastatic density
distribution over time until time tBM. This density distribution can be evaluated at times
tPD and tBM to identify number and size of all metastases that exist at the respective
time point - both clinically detectable and clinically undetectable ones. An example
calculation and density distribution plot for these two time points can be found in
Figure 6.3, subplot B and C, respectively. The full time course of primary tumor and
metastases can be calculated by this model formulation until time tBM, results of this
are shown in subplot D. Subplot E finally presents the calculated metastatic sizes (black)
compared to the sizes of clinically detected metastases at tBM (gray).
For all the other patients of the second data set where the method was applicable,
i.e., the primary tumor size at time of primary diagnosis was known, the data and
simulations are fully presented in the very exact same structure in the appendix
of [Ben+22].
Since the whole clinical history for these patients is known, we were able to compare
the prediction of the metastatic density distribution at primary diagnosis to the actual
number of different clinically detected metastases during the whole treatment course.
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A

B C

D

E

Figure 6.3: Model simulations for patient 9 of the second data set, using parameters
from the fitting procedure presented before. The clinical history is shown in
subplot A. Subplot B and C present the model evaluations of the metastatic
density distribution at primary diagnosis (blue dashed line) and time tBM

(red dashed line), respectively. Subplot D shows the calculated time course
of the primary tumor (blue solid line) and the metastases (red solid lines).
Subplot E compares the calculated sizes of metastases (black) to the mea-
sured sizes of clinically detected metastases (gray) at time tBM. Taken
from [Ben+22].
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The accuracy to correctly predict a range of number of metastases (using case 1 and
2) that included the observed real number of metastases during the whole treatment
course had an astonishing accuracy of up to 82%.

6.2.4 Statistical evaluation

To identify the prediction possibilities of the fitted parameters rm and m, the di-
chotomized Kaplan-Meier curves were examined for both, overall survival (OS) and
progression-free survival (PFS). For the growth rate of the metastases, parameter rm,
significant differences in the survival curves were observed for both OS (p=0.0026)
and PFS (p=0.0108) performing a log-rank test. For m, the split at the median value
was not found to be significant, but a split for the 80% quantile resulted in significant
differences in the survival curves for again both OS (p=0.0356) and PFS (p=0.0254).
This could potentially show that the computationally determined parameters rm and m
can indeed be interpreted as computational biomarkers, as observed in earlier publica-
tions [Ben+21]. Parameter rm is suitable as a general biomarker, whereas parameter m
is eventually more useful to identify patients at high-risk. The evaluation of survival
curves is presented in Figure 6.4.

Univariate and multivariate Cox regression were performed on the known clinical
parameters for both OS and PFS using the lifelines python package. To assess the
clinical prediction benefit of the computational biomarkers rm and m, the univariate
and multivariate Cox regression models were first evaluated without, then with the
two parameters. The corresponding results of the Cox regression analyses are shown
in tables 6.2 and 6.3 for univariate analysis and in tables 6.4 and 6.5 for multivariate
analysis.

It is noteworthy that the predictive model without the two computational biomarkers
has no significant covariate in the univariate analysis. However, the predictive model
with the two computational biomarkers has both of them significant for OS (p=0.0229
for rm and p=0.0011 for m). The estimated hazard ratios seem biologically reasonable,
in particular for the univariate analysis the covariates rm and m have two of the three
largest positive values for both OS and PFS.
For the multivariate analysis, the two computational biomarkers again have very large
values for hazard ratio and a significant p-value for rm.

The covariates with a p-value below 0.2 in the univariate analysis were chosen for
another multivariate analysis with and without the computational biomarkers, respec-
tively. These Cox regression models are referred to as the ’reduced multivariate Cox
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Figure 6.4: Kaplan-Meier survival curves for the computational parameters rm and m.
The first row shows the survival curves above and below the population’s
mean value of the respective parameter, whereas the second row shows
the split for the 80% quantile. The first and the third column represent
the overall survival, second and fourth column focus on the progression-
free survival. The corresponding p-value from a corresponding log-rank
test for dichotomized groups is shown in the right lower corner. Taken
from [Ben+22].
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Table 6.2: Results of the univariate Cox regression analysis for OS and PFS without the
computational biomarkers rm and m.

HR
(OS)

p-value
(OS)

95% CI
(OS)

HR
(PFS)

p-value
(PFS)

95% CI
(PFS)

Covariate

Sex 1.14 0.619
0.683-
1.90

0.92 0.711
0.596-
1.42

Age at diagnosis 1.04 0.893
0.604-
1.78

0.68 0.101
0.434-
1.08

Number of bm at relapse 1.37 0.150
0.892-
2.11

1.42 0.104
0.931-
2.15

Stage at diagnosis 1.17 0.552
0.695-
1.98

1.01 0.963
0.639-
1.60

Histology of pt 0.68 0.134
0.413-
1.13

0.78 0.272
0.504-
1.21

Size of pt at diagnosis 1.13 0.604
0.704-
1.83

0.90 0.648
0.574-
1.41

Size of bm at relapse 1.30 0.189
0.877-
1.94

1.63 0.020
1.08-
2.46

HR = Hazard Ratio, CI = Confidence Interval, OS = overall survival, PFS = progression-
free survival, bm = brain metastases, pt = primary tumor

models’.
To examine whether the two computational biomarkers provide clinical prediction
benefit, the multivariate Cox regression models with and without the computational
parameters for all covariates and in the reduced multivariate models were trained
in a three-fold cross-validation learning set. For the corresponding test set, Harrel’s
concordance index was calculated. The whole procedure was repeated one hundred
times, calculating the overall c-index as the mean value of the one hundred estimated
ones.
For PFS, the c-indices of the full models were estimated as 0.560 (95% CI 0.545 to 0.575)
and 0.595 (95% CI 0.582 to 0.608) without and with the computational parameters,
respectively. The slight improvement in predictive value disappears when only consid-
ering covariates with p<0.2: the corresponding c-indices were calculated as 0.708 (95%
CI 0.697 to 0.718) and 0.703 (95% CI 0.693 to 0.713) for the two approaches.
For OS, the c-index for the two full models without and with the computational
biomarkers were 0.585 (95% CI 0.569 to 0.602) and 0.713 (95% CI 0.700 to 0.726), respec-
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Table 6.3: Results of the univariate Cox regression analysis for OS and PFS with the
computational biomarkers rm and m.

HR
(OS)

p-value
(OS)

95% CI
(OS)

HR
(PFS)

p-value
(PFS)

95% CI
(PFS)

Covariate

Sex 1.10 0.602
0.768-
1.58

0.98 0.936
0.663-
1.46

Age at diagnosis 1.03 0.900
0.679-
1.55

0.74 0.167
0.479-
1.14

Number of bm at relapse 1.72 0.0056
1.17-
2.53

1.25 0.255
0.851-
1.84

Stage at diagnosis 0.87 0.435
0.604-
1.24

1.10 0.674
0.716-
1.67

Histology of pt 0.79 0.223
0.545-
1.15

0.72 0.117
0.470-
1.09

Parameter rm 1.65 0.0229
1.07-
2.53

1.25 0.237
0.862-
1.83

Parameter m 1.95 0.0011
1.31-
2.91

1.54 0.073
0.961-
2.46

Size of pt at diagnosis 1.05 0.781
0.755-
1.45

0.90 0.648
0.574-
1.41

Size of bm at relapse 0.99 0.967
0.677-
1.45

1.52 0.040
1.02-
2.26

HR = Hazard Ratio, CI = Confidence Interval, OS = overall survival, PFS = progression-
free survival, bm = brain metastases, pt = primary tumor

tively. This increase in predictive value is even observable for the two corresponding
reduced models for covariates with p<0.2 only: the corresponding indices were 0.647
(95% CI 0.631 to 0.664) and 0.789 (95% CI 0.779 to 0.800), respectively. This can be
interpreted as an improvement in predictive power by 22%, compared to the Cox
proportional hazards model based on usual covariate routinely acquired in the clinics
and clearly shows the astonishing potential of the modeling approach and parameter
interpretation in prediction context, supporting earlier discoveries [Ben+21].
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Table 6.4: Results of the multivariate Cox regression analysis for OS and PFS without
the computational biomarkers rm and m.

HR
(OS)

p-value
(OS)

95% CI
(OS)

HR
(PFS)

p-value
(PFS)

95% CI
(PFS)

Covariate

Sex 1.13 0.662
0.649-
1.98

1.00 0.999
0.630-
1.59

Age at diagnosis 1.51 0.248
0.752-
3.02

0.75 0.355
0.402-
1.39

Number of bm at relapse 1.44 0.175
0.851-
2.43

1.35 0.196
0.856-
2.14

Stage at diagnosis 1.00 0.999
0.904-
1.11

0.95 0.840
0.561-
1.60

Histology of pt 0.65 0.214
0.326-
1.28

1.00 0.987
0.569-
1.77

Size of pt at diagnosis 1.24 0.387
0.762-
2.01

1.00 0.999
0.979-
1.02

Size of bm at relapse 1.39 0.113
0.925-
2.10

1.65 0.0215
1.08-
2.52

HR = Hazard Ratio, CI = Confidence Interval, OS = overall survival, PFS = progression-
free survival, bm = brain metastases, pt = primary tumor

82



6 Simulation for clinical cases

Table 6.5: Results of the multivariate Cox regression analysis for OS and PFS with the
computational biomarkers rm and m.

HR
(OS)

p-value
(OS)

95% CI
(OS)

HR
(PFS)

p-value
(PFS)

95% CI
(PFS)

Covariate

Sex 1.10 0.769
0.548-
2.07

1.01 0.979
0.637-
1.59

Age at diagnosis 1.99 0.095
0.887-
4.47

0.61 0.174
0.300-
1.24

Number of bm at relapse 1.32 0.506
0.586-
2.96

1.05 0.894
0.52-
2.11

Stage at diagnosis 1.48 0.266
0.740-
2.97

1.17 0.585
0.667-
2.05

Histology of pt 1.06 0.879
0.475-
2.39

1.56 0.258
0.721-
3.39

Parameter rm 3.40 0.0039
1.48-
7.81

1.52 0.219
0.780-
2.96

Parameter m 1.92 0.136
0.815-
4.52

2.04 0.087
0.902-
4.59

Size of pt at diagnosis 0.86 0.647
0.443-
1.66

0.75 0.463
0.344-
1.63

Size of bm at relapse 1.46 0.113
0.914-
2.34

1.81 0.0143
1.130-
2.91

HR = Hazard Ratio, CI = Confidence Interval, OS = overall survival, PFS = progression-
free survival, bm = brain metastases, pt = primary tumor
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7 Conclusion

In this thesis, different modeling approaches were formulated to be calibrated to clinical
data. These included ordinary and partial differential equation systems and statistical
models. The models were analysed in terms of parameter sensitivity, accuracy to
explain clinical case data and prognostic value of estimated model parameters.
First, the biological background of lung cancer, the metastatic process and treatment
possibilities was introduced and the two evaluated data sets were described. Chapter
3 provided all mathematical tools to construct the deterministic models as well as to
investigate their parameters’ sensitivities and to perform statistical survival analysis in
a Cox proportional hazards model. Chapter 4 set up the models step by step, starting
with regular untreated tumoral growth in an ordinary differential equation formulation.
This formulation was adjusted to also consider different treatment approaches. The
two approaches were integrated into partial differential equations in an untreated and
a treated setting to consider metastatic growth and development. Further, a slightly
simplified model adjusting for the hypothesis to neglect secondary metastasation in
early disease trend was formalised. This model was then used to assess the prognostic
possibilities of the whole modeling framework in terms of evaluated parameters’ inter-
pretation. For each of the single models an implementation was shown, exploratory
simulations were formed and different sensitivity analyses were evaluated to shed light
into the model and parameter behaviors. Chapter 6 then successfully simulated the
respective models of interest to the corresponding clinical histories of two data sets. The
parameter values were extracted individually and for the simplified modeling approach,
these were used for a statistical analysis. The concordance indices were improved from
0.647 for fully clinical covariate Cox proportional hazards models to 0.789 for Cox
proportional hazards models constructed of the very same clinical parameters plus
two computational biomarkers that were generated by the mathematical modeling
approach. The increase in predictive power is therefore 22%. This evaluation clearly
proves the advantage of considering the model’s parameters in clinical routine care to
potentially establish even better clinical decisions.
The different modeling approaches can be used to quantitatively determine the metastatic
distribution in a patient’s body, estimating what has been so far impossible to measure
- the invisible metastatic threat early in clinical routine care, the greatest unknown for
clinicians, influencing treatment decisions and thus treatment success.
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7 Conclusion

This work with corresponding publications has proven functioning and usability of the
different approaches. Also, statistical evaluations have shown the clinical predictive
value these approaches already carry. It remains that the approaches are tested in depth
on larger data sets to decipher for which patients with certain risk factors the methods
are most accurate and for which covariates they are not. Accordingly, these insights
give hints at which dynamics the modeling approaches potentially might have to be
adjusted and further allow to even better predict disease progression for individual
cancer patients.
Extensions of the framework would then allow to chose the most efficient treatment
setting on this individual basis to assist clinical decision finding especially in debatable
situations.

85



7 Conclusion

86



List of Figures

3.1 Kaplan-Meier curves with respect to overall survival (OS) for the second
patient data set controlling for primary tumor histology, dividing the
patient set in adenocarcinoma and other histologies. The examination
with a log-rank test (explained in the text) yields statistically significant
differences in survival curves when controlling for this covariate (p =

0.0222). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.1 Simulation of the untreated primary tumor size x(t) for growth rate
a = 7 · 10−3 and tumor carrying capacity K = 1012. . . . . . . . . . . . . 43

5.2 One-at-a-time analysis as sensitivity analysis on the primary tumor size
without treatment for value a = 7 · 10−3. . . . . . . . . . . . . . . . . . . 44

5.3 Simulation of the treated primary tumor growth under chemotherapy
(blue lines) and immunotherapy (red line). The parameters values cho-
sen for the simulations are for growth rate a = 7 · 10−3, tumor carrying
capacity K = 1012, initial chemotherapy efficacy µ0 = 0.25, immunother-
apeutic efficacy χ = 0.1 and drug-specific concentration for half-maximal
response c50

i = 1.01 · 1016 on a tumor of initial size 109 cells. Refractory
effects of chemotherapy were implemented with µ∗ = 0.13 (blue solid
line) and with µ∗ = 0.85 (blue dashed line). Neglecting the refractory
effect was introduced as well, having µ∗ = 1 (blue dash-dotted line). The
drug implemented was Nivolumab, therefore the drug-specific parame-
ters were chosen as dosage di = 0.240, application interval l = 14, molar
mass Mi = 1.46 · 105 and drug-specific half-life t1/2

i = 26.7. . . . . . . . . 45
5.4 Simulation of the treated primary tumor growth for growth rate a =

7 · 10−3, tumor carrying capacity K = 1012, initial chemotherapy efficacy
µ0 = 0.25, refractory effect on chemotherapy µ∗ = 0.85, immunothera-
peutic efficacy χ = 0.1 and drug-specific concentration for half-maximal
response c50

i = 1.01 · 1016. The drug implemented was Nivolumab, there-
fore the drug-specific parameters were chosen as dosage di = 0.480,
application interval l = 28, molar mass Mi = 1.46 · 105 and drug-specific
half-life t1/2

i = 26.7. The tumor size under treatment application (blue
solid line) is compared to the untreated tumor size (blue dashed line). . 46

87



List of Figures

5.5 One-at-a-time analysis as sensitivity analysis on the primary tumor size
under chemotherapeutic treatment. . . . . . . . . . . . . . . . . . . . . . 49

5.6 One-at-a-time analysis as sensitivity analysis on the primary tumor size
under immunotherapeutic treatment. . . . . . . . . . . . . . . . . . . . . 51

5.7 Elementary effects method as sensitivity analysis on the primary tumor
size under treatment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.8 Elementary effects method as sensitivity analysis on the primary tumor
size under treatment, log-scaled. . . . . . . . . . . . . . . . . . . . . . . . 53

5.9 Simulation of the primary tumor (blue solid line) and the largest five
metastases (red solid line) for the model considering no treatment and
secondary metastasising, log-scaled. Critical size for a tumor to be
clinically detectable is indicated with a dash-dotted line on the y-axis,
the day of primary diagnosis is indicated with a dotted line on the x-axis.
The chosen model parameters are a = 7 · 10−3, K = 1012 and m = 2 · 10−7. 55

5.10 Simulation of the primary tumor (blue solid line) and the largest five
metastases (red solid line) for the model considering no treatment and
only primary metastasising, log-scaled. Critical size for a tumor to be
clinically detectable is indicated with a dash-dotted line on the y-axis,
the day of primary diagnosis is indicated with a dotted line on the x-axis.
The chosen model parameters are a = 7 · 10−3, K = 1012 and m = 2 · 10−7. 56

5.11 Simulation of the metastatic density distribution for the model consider-
ing no treatment and secondary metastasising, log-scaled, evaluated at
primary diagnosis. Blue diamonds indicate the integer values, thus ’full’
metastases. The largest tumor shown here corresponds to the primary
tumor. Critical size for a tumor to be clinically detectable is indicated
with a dash-dotted line. The chosen model parameters are a = 7 · 10−3,
K = 1012 and m = 2 · 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.12 Simulation of the metastatic density distribution for the model consider-
ing no treatment and only primary metastasising, log-scaled, evaluated at
primary diagnosis. Blue diamonds indicate the integer values, thus ’full’
metastases. The largest tumor shown here corresponds to the primary
tumor. Critical size for a tumor to be clinically detectable is indicated
with a dash-dotted line. The chosen model parameters are a = 7 · 10−3,
K = 1012 and m = 2 · 10−7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.13 Elementary effects method as sensitivity analysis on the metastatic mass
with secondary metastasising and without treatment at the day of pri-
mary diagnosis (PD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

88



List of Figures

5.14 Elementary effects method as sensitivity analysis on the metastatic mass
with secondary metastasising and without treatment at the day of pri-
mary diagnosis (PD), log-scaled. . . . . . . . . . . . . . . . . . . . . . . . 60

5.15 Elementary effects method as sensitivity analysis on the metastatic mass
neglecting secondary metastasising without treatment at the day of
primary diagnosis (PD). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.16 Elementary effects method as sensitivity analysis on the metastatic mass
neglecting secondary metastasising without treatment at the day of
primary diagnosis (PD), log-scaled. . . . . . . . . . . . . . . . . . . . . . 61

5.17 Elementary effects method as sensitivity analysis on the number of
metastases with secondary metastasising and without treatment at the
day of primary diagnosis (PD). . . . . . . . . . . . . . . . . . . . . . . . . 61

5.18 Elementary effects method as sensitivity analysis on the number of
metastases with secondary metastasising and without treatment at the
day of primary diagnosis (PD), log-scaled. . . . . . . . . . . . . . . . . . 62

5.19 Elementary effects method as sensitivity analysis on the number of
metastases neglecting secondary metastasising without treatment at the
day of primary diagnosis (PD). . . . . . . . . . . . . . . . . . . . . . . . . 62

5.20 Elementary effects method as sensitivity analysis on the number of
metastases neglecting secondary metastasising without treatment at the
day of primary diagnosis (PD), log-scaled. . . . . . . . . . . . . . . . . . 63

5.21 Full time course of the primary tumor (blue solid line) and metastases
(red lines) for the metastatic density distribution model with therapy. The
parameters used for this simulation are a = 7 · 10−3, K = 1012, µ0 = 0.25,
µ∗ = 0.85, χ = 0.1 and c50

i = 1.01 · 1016. The drug implemented was
Nivolumab, therefore the drug-specific parameters were again chosen
as di = 0.480, l = 28, Mi = 1.46 · 105 and t1/2

i = 26.7. Critical size for a
tumor to be clinically detectable is indicated with a dash-dotted line on
the y-axis, the day of primary diagnosis is indicated with a dotted line
on the x-axis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.22 Metastatic density distribution corresponding to the previously men-
tioned simulation, evaluated at the day of primary diagnosis. . . . . . . 68

5.23 Metastatic density distribution corresponding to the previously men-
tioned simulation, evaluated 90 days after primary diagnosis. . . . . . . 68

5.24 Elementary effects method as sensitivity analysis on the metastatic mass
under example treatment at day 90 after primary diagnosis. . . . . . . . 69

5.25 Elementary effects method as sensitivity analysis on the number of
metastases under example treatment at day 90 after primary diagnosis. 70

89



List of Figures

6.1 Model simulations over the entire clinical treatment history for three
individual patients, using parameters shown in table 6.1. The graphs
on the left shown the total tumor burden for all three patients over time
(solid line) compared to a hypothetical untreated metastatic disease with
the same growth parameters (dashed line) and compared to the clinical
measurements (asterisks). The right graphs show the drug concentration
of the immunotherapeutic drug over time (dashed line), compared to the
calculated quasi-steady-state that the concentration circulates around.
The shaded areas show the times where chemo- and immunotherapy
were applied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Model simulations for patient KE-03, using parameters shown in table
6.1. The simulated metastatic density distribution (blue diamonds) is
plotted in comparison with the clinical measurements (red asterisks) and
the clinical visibility threshold (dash-dotted line). The left graph shows
the simulation and the measurements at day 88 after primary diagnosis,
the right graph the same simulation and corresponding measurements
at day 152 after primary diagnosis. . . . . . . . . . . . . . . . . . . . . . . 74

6.3 Model simulations for patient 9 of the second data set, using parameters
from the fitting procedure presented before. The clinical history is
shown in subplot A. Subplot B and C present the model evaluations of
the metastatic density distribution at primary diagnosis (blue dashed
line) and time tBM (red dashed line), respectively. Subplot D shows the
calculated time course of the primary tumor (blue solid line) and the
metastases (red solid lines). Subplot E compares the calculated sizes of
metastases (black) to the measured sizes of clinically detected metastases
(gray) at time tBM. Taken from [Ben+22]. . . . . . . . . . . . . . . . . . . 77

6.4 Kaplan-Meier survival curves for the computational parameters rm and
m. The first row shows the survival curves above and below the pop-
ulation’s mean value of the respective parameter, whereas the second
row shows the split for the 80% quantile. The first and the third column
represent the overall survival, second and fourth column focus on the
progression-free survival. The corresponding p-value from a correspond-
ing log-rank test for dichotomized groups is shown in the right lower
corner. Taken from [Ben+22]. . . . . . . . . . . . . . . . . . . . . . . . . . 79

90



List of Tables

2.1 Some clinically approved monoclonal antibodies used as immunothera-
peutic drugs targeting the PD-1/PD-L1 pathway. Taken from [SKS21]. . 6

2.2 Data set one: patient-specific clinical parameters. Taken from [SKS21]. . 7
2.3 Data set two: patient overview. Taken from [Ben+22]. . . . . . . . . . . . 9

6.1 Patient-specific model parameters for the model of metastatic develop-
ment with respect to systemic treatment evaluated on clinical data. . . . 72

6.2 Results of the univariate Cox regression analysis for OS and PFS without
the computational biomarkers rm and m. . . . . . . . . . . . . . . . . . . 80

6.3 Results of the univariate Cox regression analysis for OS and PFS with
the computational biomarkers rm and m. . . . . . . . . . . . . . . . . . . 81

6.4 Results of the multivariate Cox regression analysis for OS and PFS
without the computational biomarkers rm and m. . . . . . . . . . . . . . 82

6.5 Results of the multivariate Cox regression analysis for OS and PFS with
the computational biomarkers rm and m. . . . . . . . . . . . . . . . . . . 83

91



Bibliography

[AB98] D. G. Altman and J. M. Bland. “Statistics Notes: Time to event (survival)
data.” In: BMJ 317.7156 (Aug. 1998), pp. 468–469. issn: 0959-8138, 1468-5833.
doi: 10.1136/bmj.317.7156.468.

[Agr+16] S. Agrawal, Y. Feng, A. Roy, G. Kollia, and B. Lestini. “Nivolumab dose
selection: challenges, opportunities, and lessons learned for cancer im-
munotherapy.” In: Journal for ImmunoTherapy of Cancer 4.1 (Dec. 2016), p. 72.
issn: 2051-1426. doi: 10.1186/s40425-016-0177-2.

[Aka78] A. Akanuma. “Parameter analysis of Gompertzian function growth model
in clinical tumors.” In: European Journal of Cancer (1965) 14.6 (June 1978),
pp. 681–688. issn: 00142964. doi: 10.1016/0014-2964(78)90304-3.

[Alm+14] V. Almendro, H. J. Kim, Y.-K. Cheng, M. Gönen, S. Itzkovitz, P. Argani,
A. van Oudenaarden, S. Sukumar, F. Michor, and K. Polyak. “Genetic and
Phenotypic Diversity in Breast Tumor Metastases.” In: Cancer Research 74.5
(Mar. 2014), pp. 1338–1348. issn: 0008-5472, 1538-7445. doi: 10.1158/0008-
5472.CAN-13-2357-T.

[ALM15] P. M. Altrock, L. L. Liu, and F. Michor. “The mathematics of cancer: inte-
grating quantitative models.” In: Nature Reviews Cancer 15.12 (Dec. 2015),
pp. 730–745. issn: 1474-175X, 1474-1768. doi: 10.1038/nrc4029.

[AM04] R. Araujo and D. McElwain. “A history of the study of solid tumour growth:
the contribution of mathematical modelling.” In: Bulletin of Mathematical
Biology 66.5 (Sept. 2004), pp. 1039–1091. issn: 00928240. doi: 10.1016/j.
bulm.2003.11.002.

[BA04] J. M. Bland and D. G. Altman. “The logrank test.” In: BMJ 328.7447 (May
2004), p. 1073. issn: 0959-8138, 1468-5833. doi: 10.1136/bmj.328.7447.
1073.

[BA98] J. M. Bland and D. G. Altman. “Statistics Notes: Survival probabilities (the
Kaplan-Meier method).” In: BMJ 317.7172 (Dec. 1998), pp. 1572–1580. issn:
0959-8138, 1468-5833. doi: 10.1136/bmj.317.7172.1572.

92

https://doi.org/10.1136/bmj.317.7156.468
https://doi.org/10.1186/s40425-016-0177-2
https://doi.org/10.1016/0014-2964(78)90304-3
https://doi.org/10.1158/0008-5472.CAN-13-2357-T
https://doi.org/10.1158/0008-5472.CAN-13-2357-T
https://doi.org/10.1038/nrc4029
https://doi.org/10.1016/j.bulm.2003.11.002
https://doi.org/10.1016/j.bulm.2003.11.002
https://doi.org/10.1136/bmj.328.7447.1073
https://doi.org/10.1136/bmj.328.7447.1073
https://doi.org/10.1136/bmj.317.7172.1572


Bibliography

[BC01] F. Brauer and C. Castillo-Chávez. Mathematical Models in Population Biology
and Epidemiology. Ed. by J. E. Marsden, L. Sirovich, and M. Golubitsky.
Vol. 40. Texts in Applied Mathematics. New York, NY: Springer New York,
2001. isbn: 978-1-4419-3182-5. doi: 10.1007/978-1-4757-3516-1.

[Ben+14] S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. M. L. Ebos, L. Hlatky,
and P. Hahnfeldt. “Classical Mathematical Models for Description and
Prediction of Experimental Tumor Growth.” In: PLoS Computational Biology
10.8 (Aug. 2014). Ed. by F. Mac Gabhann, e1003800. issn: 1553-7358. doi:
10.1371/journal.pcbi.1003800.

[Ben+16] S. Benzekry, A. Tracz, M. Mastri, R. Corbelli, D. Barbolosi, and J. M. Ebos.
“Modeling Spontaneous Metastasis following Surgery: An In Vivo-In Silico
Approach.” In: Cancer Research 76.3 (Feb. 2016), pp. 535–547. issn: 0008-5472,
1538-7445. doi: 10.1158/0008-5472.CAN-15-1389.

[Ben+17] S. Benzekry, C. Lamont, D. Barbolosi, L. Hlatky, and P. Hahnfeldt. “Math-
ematical Modeling of Tumor–Tumor Distant Interactions Supports a Sys-
temic Control of Tumor Growth.” In: Cancer Research 77.18 (Sept. 2017),
pp. 5183–5193. issn: 0008-5472, 1538-7445. doi: 10.1158/0008-5472.CAN-
17-0564.

[Ben+21] S. Benzekry, C. Sentis, C. Coze, L. Tessonnier, and N. André. “Development
and Validation of a Prediction Model of Overall Survival in High-Risk
Neuroblastoma Using Mechanistic Modeling of Metastasis.” In: JCO Clinical
Cancer Informatics 5 (Jan. 2021), pp. 81–90. issn: 2473-4276. doi: 10.1200/
CCI.20.00092.

[Ben+22] S. Benzekry*, P. Schlicke*, P. Tomasini, and E. Simon. “Mechanistic mod-
eling of brain metastases in NSCLC provides computational markers for
personalized prediction of outcome.” In: submitted (2022).

[Ber+17] D. P. Berger, R. Mertelsmann, J. Duyster, and T. F. CCCF, eds. Das Rote Buch:
Hämatologie und internistische Onkologie. 6., überarbeitete und erweiterte
Auflage. ecomed Medizin. Landsberg am Lech: ecomed Medizin, 2017.
isbn: 978-3-609-51221-1.

[Ber57] L. von Bertalanffy. “Quantitative Laws in Metabolism and Growth.” In: The
Quarterly Review of Biology 32.3 (Sept. 1957), pp. 217–231. issn: 0033-5770,
1539-7718. doi: 10.1086/401873.

[Bet+12] A. Bethge, U. Schumacher, A. Wree, and G. Wedemann. “Are Metastases
from Metastases Clinical Relevant? Computer Modelling of Cancer Spread
in a Case of Hepatocellular Carcinoma.” In: PLoS ONE 7.4 (Apr. 2012). Ed.
by V. Brusic, e35689. issn: 1932-6203. doi: 10.1371/journal.pone.0035689.

93

https://doi.org/10.1007/978-1-4757-3516-1
https://doi.org/10.1371/journal.pcbi.1003800
https://doi.org/10.1158/0008-5472.CAN-15-1389
https://doi.org/10.1158/0008-5472.CAN-17-0564
https://doi.org/10.1158/0008-5472.CAN-17-0564
https://doi.org/10.1200/CCI.20.00092
https://doi.org/10.1200/CCI.20.00092
https://doi.org/10.1086/401873
https://doi.org/10.1371/journal.pone.0035689


Bibliography

[Bil+19] M. Bilous, C. Serdjebi, A. Boyer, P. Tomasini, C. Pouypoudat, D. Barbolosi, F.
Barlesi, F. Chomy, and S. Benzekry. “Quantitative mathematical modeling
of clinical brain metastasis dynamics in non-small cell lung cancer.” In:
Scientific Reports 9.1 (Dec. 2019), p. 13018. issn: 2045-2322. doi: 10.1038/
s41598-019-49407-3.

[Boe+09] M. de Boer, C. H. van Deurzen, J. A. van Dijck, G. F. Borm, P. J. van
Diest, E. M. Adang, J. W. Nortier, E. J. Rutgers, C. Seynaeve, M. B. Menke-
Pluymers, P. Bult, and V. C. Tjan-Heijnen. “Micrometastases or Isolated
Tumor Cells and the Outcome of Breast Cancer.” In: New England Journal
of Medicine 361.7 (Aug. 2009), pp. 653–663. issn: 0028-4793, 1533-4406. doi:
10.1056/NEJMoa0904832.

[Bor+09] T. Borovski, L. Vermeulen, M. R. Sprick, and J. P. Medema. “One renegade
cancer stem cell?” In: Cell Cycle 8.6 (Mar. 2009), pp. 803–808. issn: 1538-4101,
1551-4005. doi: 10.4161/cc.8.6.7935.

[Bra+18] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal.
“Global cancer statistics 2018: GLOBOCAN estimates of incidence and
mortality worldwide for 36 cancers in 185 countries.” In: CA: A Cancer
Journal for Clinicians 68.6 (Nov. 2018), pp. 394–424. issn: 00079235. doi:
10.3322/caac.21492.

[CCS07] F. Campolongo, J. Cariboni, and A. Saltelli. “An effective screening design
for sensitivity analysis of large models.” In: Environmental Modelling &
Software 22.10 (Oct. 2007), pp. 1509–1518. issn: 13648152. doi: 10.1016/j.
envsoft.2006.10.004.

[CG86] A. J. Coldman and J. H. Goldie. “A stochastic model for the origin and
treatment of tumors containing drug-resistant cells.” In: Bulletin of Mathe-
matical Biology 48.3-4 (May 1986), pp. 279–292. issn: 0092-8240, 1522-9602.
doi: 10.1007/BF02459682.

[Cla+09] L. Claret, P. Girard, P. M. Hoff, E. Van Cutsem, K. P. Zuideveld, K. Jorga,
J. Fagerberg, and R. Bruno. “Model-based prediction of phase III overall
survival in colorectal cancer on the basis of phase II tumor dynamics.”
In: Journal of Clinical Oncology: Official Journal of the American Society of
Clinical Oncology 27.25 (Sept. 2009), pp. 4103–4108. issn: 1527-7755. doi:
10.1200/JCO.2008.21.0807.

[CN12] E. Comen and L. Norton. “Self-Seeding in Cancer.” In: Minimal Residual
Disease and Circulating Tumor Cells in Breast Cancer. Ed. by M. Ignatiadis,
C. Sotiriou, and K. Pantel. Vol. 195. Series Title: Recent Results in Cancer

94

https://doi.org/10.1038/s41598-019-49407-3
https://doi.org/10.1038/s41598-019-49407-3
https://doi.org/10.1056/NEJMoa0904832
https://doi.org/10.4161/cc.8.6.7935
https://doi.org/10.3322/caac.21492
https://doi.org/10.1016/j.envsoft.2006.10.004
https://doi.org/10.1016/j.envsoft.2006.10.004
https://doi.org/10.1007/BF02459682
https://doi.org/10.1200/JCO.2008.21.0807


Bibliography

Research. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 13–23.
isbn: 978-3-642-28160-0. doi: 10.1007/978-3-642-28160-0_2.

[Cox72] D. R. Cox. “Regression Models and Life-Tables.” In: Journal of the Royal
Statistical Society: Series B (Methodological) 34.2 (Jan. 1972), pp. 187–202. issn:
00359246. doi: 10.1111/j.2517-6161.1972.tb00899.x.

[CSC11] F. Campolongo, A. Saltelli, and J. Cariboni. “From screening to quantitative
sensitivity analysis. A unified approach.” In: Computer Physics Communica-
tions 182.4 (Apr. 2011), pp. 978–988. issn: 00104655. doi: 10.1016/j.cpc.
2010.12.039.

[CW11] C. L. Chaffer and R. A. Weinberg. “A Perspective on Cancer Cell Metas-
tasis.” In: Science 331.6024 (Mar. 2011), pp. 1559–1564. issn: 0036-8075,
1095-9203. doi: 10.1126/science.1203543.

[Dem80] R. Demicheli. “Growth of testicular neoplasm lung metastases: Tumor-
specific relation between two Gompertzian parameters.” In: European Jour-
nal of Cancer (1965) 16.12 (Dec. 1980), pp. 1603–1608. issn: 00142964. doi:
10.1016/0014-2964(80)90034-1.

[Der+15] B. A. Derman, K. F. Mileham, P. D. Bonomi, M. Batus, and M. J. Fidler.
“Treatment of advanced squamous cell carcinoma of the lung: a review.”
In: Translational Lung Cancer Research 4.5 (Oct. 2015), pp. 524–532. issn:
2218-6751. doi: 10.3978/j.issn.2218-6751.2015.06.07.

[DG76] R. P. Dickinson and R. J. Gelinas. “Sensitivity analysis of ordinary differ-
ential equation systems—A direct method.” In: Journal of Computational
Physics 21.2 (June 1976), pp. 123–143. issn: 00219991. doi: 10.1016/0021-
9991(76)90007-3.

[DP80] J. Dormand and P. Prince. “A family of embedded Runge-Kutta formulae.”
In: Journal of Computational and Applied Mathematics 6.1 (Mar. 1980), pp. 19–
26. issn: 03770427. doi: 10.1016/0771-050X(80)90013-3.

[Egg12] A. Eggermont. “Can immuno-oncology offer a truly pan-tumour approach
to therapy?” In: Annals of Oncology 23 (Sept. 2012), pp. viii53–viii57. issn:
09237534. doi: 10.1093/annonc/mds264.

[End+09] H. Enderling, A. R. Anderson, M. A. Chaplain, A. Beheshti, L. Hlatky,
and P. Hahnfeldt. “Paradoxical Dependencies of Tumor Dormancy and
Progression on Basic Cell Kinetics.” In: Cancer Research 69.22 (Nov. 2009),
pp. 8814–8821. issn: 0008-5472, 1538-7445. doi: 10.1158/0008-5472.CAN-
09-2115.

95

https://doi.org/10.1007/978-3-642-28160-0_2
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1016/j.cpc.2010.12.039
https://doi.org/10.1016/j.cpc.2010.12.039
https://doi.org/10.1126/science.1203543
https://doi.org/10.1016/0014-2964(80)90034-1
https://doi.org/10.3978/j.issn.2218-6751.2015.06.07
https://doi.org/10.1016/0021-9991(76)90007-3
https://doi.org/10.1016/0021-9991(76)90007-3
https://doi.org/10.1016/0771-050X(80)90013-3
https://doi.org/10.1093/annonc/mds264
https://doi.org/10.1158/0008-5472.CAN-09-2115
https://doi.org/10.1158/0008-5472.CAN-09-2115


Bibliography

[ES81] B. Efron and C. Stein. “The Jackknife Estimate of Variance.” In: The Annals
of Statistics 9.3 (May 1981). issn: 0090-5364. doi: 10.1214/aos/1176345462.

[Fen+17] Y. Feng, X. Wang, G. Bajaj, S. Agrawal, A. Bello, B. Lestini, F. G. Fincken-
stein, J.-S. Park, and A. Roy. “Nivolumab Exposure–Response Analyses
of Efficacy and Safety in Previously Treated Squamous or Nonsquamous
Non–Small Cell Lung Cancer.” In: Clinical Cancer Research 23.18 (Sept. 2017),
pp. 5394–5405. issn: 1078-0432, 1557-3265. doi: 10.1158/1078-0432.CCR-
16-2842.

[Fid03] I. J. Fidler. “The pathogenesis of cancer metastasis: the ’seed and soil’
hypothesis revisited.” In: Nature Reviews Cancer 3.6 (June 2003), pp. 453–458.
issn: 1474-175X, 1474-1768. doi: 10.1038/nrc1098.

[Fil+11] P. L. Filosso, E. Ruffini, S. Asioli, R. Giobbe, L. Macri, M. C. Bruna, A.
Sandri, and A. Oliaro. “Adenosquamous lung carcinomas: A histologic
subtype with poor prognosis.” In: Lung Cancer 74.1 (Oct. 2011), pp. 25–29.
issn: 01695002. doi: 10.1016/j.lungcan.2011.01.030.

[Fru+10] S. Fruehauf, A. Radujkovic, J. Topaly, and W. J. Zeller. “Chemotherapie.”
In: Praxis der Viszeralchirurgie Onkologische Chirurgie. Ed. by J. R. Siewert,
M. Rothmund, and V. Schumpelick. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 249–264. isbn: 978-3-642-03808-2. doi: 10.1007/978-
3-642-03808-2_23.

[Ged79] D. Geddes. “The natural history of lung cancer: A review based on rates
of tumour growth.” In: British Journal of Diseases of the Chest 73 (Jan. 1979),
pp. 1–17. issn: 00070971. doi: 10.1016/0007-0971(79)90002-0.

[GM03] R. A. Gatenby and P. K. Maini. “Mathematical oncology: Cancer summed
up.” In: Nature 421.6921 (Jan. 2003), pp. 321–321. issn: 0028-0836, 1476-4687.
doi: 10.1038/421321a.

[GM06] G. P. Gupta and J. Massagué. “Cancer Metastasis: Building a Framework.”
In: Cell 127.4 (Nov. 2006), pp. 679–695. issn: 00928674. doi: 10.1016/j.
cell.2006.11.001.

[Gom25] B. Gompertz. “On the nature of the function expressive of the law of
human mortality, and on the new mode of determining the value of life
contingencies.” In: a letter to Francis Baily 115 (1825), pp. 513–585. doi:
https://doi.org/10.1098/rstl.1825.0026.

96

https://doi.org/10.1214/aos/1176345462
https://doi.org/10.1158/1078-0432.CCR-16-2842
https://doi.org/10.1158/1078-0432.CCR-16-2842
https://doi.org/10.1038/nrc1098
https://doi.org/10.1016/j.lungcan.2011.01.030
https://doi.org/10.1007/978-3-642-03808-2_23
https://doi.org/10.1007/978-3-642-03808-2_23
https://doi.org/10.1016/0007-0971(79)90002-0
https://doi.org/10.1038/421321a
https://doi.org/10.1016/j.cell.2006.11.001
https://doi.org/10.1016/j.cell.2006.11.001
https://doi.org/https://doi.org/10.1098/rstl.1825.0026


Bibliography

[Hae+12] H. Haeno, M. Gonen, M. B. Davis, J. M. Herman, C. A. Iacobuzio-Donahue,
and F. Michor. “Computational Modeling of Pancreatic Cancer Reveals
Kinetics of Metastasis Suggesting Optimum Treatment Strategies.” In: Cell
148.1-2 (Jan. 2012), pp. 362–375. issn: 00928674. doi: 10.1016/j.cell.2011.
11.060.

[Har82] F. E. Harrell. “Evaluating the Yield of Medical Tests.” In: JAMA: The Journal
of the American Medical Association 247.18 (May 1982), p. 2543. issn: 0098-
7484. doi: 10.1001/jama.1982.03320430047030.

[He+15] J. He, Y. Hu, M. Hu, and B. Li. “Development of PD-1/PD-L1 Pathway
in Tumor Immune Microenvironment and Treatment for Non-Small Cell
Lung Cancer.” In: Scientific Reports 5.1 (Oct. 2015), p. 13110. issn: 2045-2322.
doi: 10.1038/srep13110.

[Hec+01] J. L. Hecht, J. L. Pinkus, L. J. Weinstein, and G. S. Pinkus. “The Value of
Thyroid Transcription Factor-1 in Cytologic Preparations as a Marker for
Metastatic Adenocarcinoma of Lung Origin.” In: American Journal of Clinical
Pathology 116.4 (Oct. 2001), pp. 483–488. issn: 0002-9173, 1943-7722. doi:
10.1309/NL4Y-FHG8-2XBC-F9XH.

[HLM96] F. E. Harrell, K. L. Lee, and D. B. Mark. “Multivariable prognostic mod-
els: issues in developing models, evaluating assumptions and adequacy,
and measuring and reducing errors.” In: Statistics in Medicine 15.4 (Feb.
1996), pp. 361–387. issn: 02776715, 10970258. doi: 10.1002/(SICI)1097-
0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4.

[HM10] H. Haeno and F. Michor. “The evolution of tumor metastases during clonal
expansion.” In: Journal of Theoretical Biology 263.1 (Mar. 2010), pp. 30–44.
issn: 00225193. doi: 10.1016/j.jtbi.2009.11.005.

[Hoe48] W. Hoeffding. “A Class of Statistics with Asymptotically Normal Distribu-
tion.” In: The Annals of Mathematical Statistics 19.3 (Sept. 1948), pp. 293–325.
issn: 0003-4851. doi: 10.1214/aoms/1177730196.

[HS96] T. Homma and A. Saltelli. “Importance measures in global sensitivity
analysis of nonlinear models.” In: Reliability Engineering & System Safety 52.1
(Apr. 1996), pp. 1–17. issn: 09518320. doi: 10.1016/0951-8320(96)00002-6.

[HTC20] R. Huber, Tumorzentrum München, and Comprehensive Cancer Center
München, eds. Tumoren der Lunge und des Mediastinums: Empfehlungen zur
Diagnostik, Therapie und Nachsorge. 12. überarbeitete Auflage. Manual /
Tumorzentrum München an den Medizinischen Fakultäten der Ludwig-
Maximilians-Universität und der Technischen Universität. München: Zuckschw-
erdt Verlag, 2020. isbn: 978-3-86371-330-0.

97

https://doi.org/10.1016/j.cell.2011.11.060
https://doi.org/10.1016/j.cell.2011.11.060
https://doi.org/10.1001/jama.1982.03320430047030
https://doi.org/10.1038/srep13110
https://doi.org/10.1309/NL4Y-FHG8-2XBC-F9XH
https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
https://doi.org/10.1002/(SICI)1097-0258(19960229)15:4<361::AID-SIM168>3.0.CO;2-4
https://doi.org/10.1016/j.jtbi.2009.11.005
https://doi.org/10.1214/aoms/1177730196
https://doi.org/10.1016/0951-8320(96)00002-6


Bibliography

[HW11] D. Hanahan and R. A. Weinberg. “Hallmarks of Cancer: The Next Genera-
tion.” In: Cell 144.5 (Mar. 2011), pp. 646–674. issn: 00928674. doi: 10.1016/
j.cell.2011.02.013.

[IKS00] K. Iwata, K. Kawasaki, and N. Shigesada. “A Dynamical Model for the
Growth and Size Distribution of Multiple Metastatic Tumors.” In: Journal
of Theoretical Biology 203.2 (Mar. 2000), pp. 177–186. issn: 00225193. doi:
10.1006/jtbi.2000.1075.

[IL15] B. Iooss and P. Lemaître. “A Review on Global Sensitivity Analysis Meth-
ods.” In: Uncertainty Management in Simulation-Optimization of Complex
Systems. Ed. by G. Dellino and C. Meloni. Vol. 59. Series Title: Operations
Research/Computer Science Interfaces Series. Boston, MA: Springer US,
2015, pp. 101–122. isbn: 978-1-4899-7547-8. doi: 10.1007/978-1-4899-
7547-8_5.

[Ish+92] T. Ishida, S. Kaneko, H. Yokoyama, T. Inoue, K. Sugio, and K. Sugimachi.
“Adenosquamous Carcinoma of the Lung: Clinicopathologic and Immunohisto-
chemical Features.” In: American Journal of Clinical Pathology 97.5 (May 1992),
pp. 678–685. issn: 1943-7722, 0002-9173. doi: 10.1093/ajcp/97.5.678.

[Iwa+17] Y. Iwai, J. Hamanishi, K. Chamoto, and T. Honjo. “Cancer immunotherapies
targeting the PD-1 signaling pathway.” In: Journal of Biomedical Science 24.1
(Dec. 2017), p. 26. issn: 1423-0127. doi: 10.1186/s12929-017-0329-9.

[Jai13] R. K. Jain. “Normalizing Tumor Microenvironment to Treat Cancer: Bench
to Bedside to Biomarkers.” In: Journal of Clinical Oncology 31.17 (June 2013),
pp. 2205–2218. issn: 0732-183X, 1527-7755. doi: 10.1200/JCO.2012.46.
3653.

[JRL02] R. W. Johnstone, A. A. Ruefli, and S. W. Lowe. “Apoptosis.” In: Cell 108.2
(Jan. 2002), pp. 153–164. issn: 00928674. doi: 10.1016/S0092-8674(02)
00625-6.

[Kea16] G. M. Keating. “Nivolumab: A Review in Advanced Nonsquamous Non-
Small Cell Lung Cancer.” In: Drugs 76.9 (June 2016), pp. 969–978. issn:
0012-6667, 1179-1950. doi: 10.1007/s40265-016-0589-9.

[Ken+08] S. A. Kenfield, E. K. Wei, M. J. Stampfer, B. A. Rosner, and G. A. Colditz.
“Comparison of aspects of smoking among the four histological types
of lung cancer.” In: Tobacco Control 17.3 (Feb. 2008), pp. 198–204. issn:
0964-4563. doi: 10.1136/tc.2007.022582.

98

https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1006/jtbi.2000.1075
https://doi.org/10.1007/978-1-4899-7547-8_5
https://doi.org/10.1007/978-1-4899-7547-8_5
https://doi.org/10.1093/ajcp/97.5.678
https://doi.org/10.1186/s12929-017-0329-9
https://doi.org/10.1200/JCO.2012.46.3653
https://doi.org/10.1200/JCO.2012.46.3653
https://doi.org/10.1016/S0092-8674(02)00625-6
https://doi.org/10.1016/S0092-8674(02)00625-6
https://doi.org/10.1007/s40265-016-0589-9
https://doi.org/10.1136/tc.2007.022582


Bibliography

[Kle09] C. A. Klein. “Parallel progression of primary tumours and metastases.”
In: Nature Reviews Cancer 9.4 (Apr. 2009), pp. 302–312. issn: 1474-175X,
1474-1768. doi: 10.1038/nrc2627.

[KM58] E. L. Kaplan and P. Meier. “Nonparametric Estimation from Incomplete
Observations.” In: Journal of the American Statistical Association 53.282 (June
1958), pp. 457–481. issn: 0162-1459, 1537-274X. doi: 10.1080/01621459.
1958.10501452.

[Koc16] R. Koch-Institut. “Bericht zum Krebsgeschehen in Deutschland 2016.” In:
(2016). Publisher: RKI-Bib1 (Robert Koch-Institut). doi: 10.17886/RKIPUBL-
2016-014.

[Koy+08] K. Koyanagi, A. J. Bilchik, S. Saha, R. R. Turner, D. Wiese, M. McCarter,
P. Shen, L. Deacon, D. Elashoff, and D. S. Hoon. “Prognostic Relevance of
Occult Nodal Micrometastases and Circulating Tumor Cells in Colorectal
Cancer in a Prospective Multicenter Trial.” In: Clinical Cancer Research 14.22
(Nov. 2008), pp. 7391–7396. issn: 1078-0432, 1557-3265. doi: 10.1158/1078-
0432.CCR-08-0290.

[KT85] H. Krug and G. Taubert. “Practical application of logistic function to the
growth of experimental tumors.” In: Archiv Für Geschwulstforschung 55.4
(1985), pp. 235–244. issn: 0003-911X.

[Kuf+03] D. W. Kufe, J. F. Holland, E. Frei, and A. C. Society, eds. Cancer medicine 6.
6th ed. Hamilton, Ont. ; Lewiston, NY: BC Decker, 2003. isbn: 978-1-55009-
213-4.

[Lai64] A. K. Laird. “Dynamics of Tumor Growth.” In: British Journal of Cancer 18.3
(Sept. 1964), pp. 490–502. issn: 0007-0920, 1532-1827. doi: 10.1038/bjc.
1964.55.

[Lai65] A. K. Laird. “Dynamics of Tumour Growth: Comparison of Growth Rates
and Extrapolation of Growth Curve to One Cell.” In: British Journal of Cancer
19.2 (June 1965), pp. 278–291. issn: 0007-0920, 1532-1827. doi: 10.1038/bjc.
1965.32.

[Lee+16] T. Lee, B. Lee, Y.-L. Choi, J. Han, M.-J. Ahn, and S.-W. Um. “Non-small
Cell Lung Cancer with Concomitant EGFR, KRAS, and ALK Mutation:
Clinicopathologic Features of 12 Cases.” In: Journal of Pathology and Trans-
lational Medicine 50.3 (May 2016), pp. 197–203. issn: 2383-7837, 2383-7845.
doi: 10.4132/jptm.2016.03.09.

99

https://doi.org/10.1038/nrc2627
https://doi.org/10.1080/01621459.1958.10501452
https://doi.org/10.1080/01621459.1958.10501452
https://doi.org/10.17886/RKIPUBL-2016-014
https://doi.org/10.17886/RKIPUBL-2016-014
https://doi.org/10.1158/1078-0432.CCR-08-0290
https://doi.org/10.1158/1078-0432.CCR-08-0290
https://doi.org/10.1038/bjc.1964.55
https://doi.org/10.1038/bjc.1964.55
https://doi.org/10.1038/bjc.1965.32
https://doi.org/10.1038/bjc.1965.32
https://doi.org/10.4132/jptm.2016.03.09


Bibliography

[LPW17] A. W. Lambert, D. R. Pattabiraman, and R. A. Weinberg. “Emerging Biolog-
ical Principles of Metastasis.” In: Cell 168.4 (Feb. 2017), pp. 670–691. issn:
00928674. doi: 10.1016/j.cell.2016.11.037.

[Luz+98] K. J. Luzzi, I. C. MacDonald, E. E. Schmidt, N. Kerkvliet, V. L. Morris, A. F.
Chambers, and A. C. Groom. “Multistep Nature of Metastatic Inefficiency.”
In: The American Journal of Pathology 153.3 (Sept. 1998), pp. 865–873. issn:
00029440. doi: 10.1016/S0002-9440(10)65628-3.

[Lyn+04] T. J. Lynch, D. W. Bell, R. Sordella, S. Gurubhagavatula, R. A. Okimoto, B. W.
Brannigan, P. L. Harris, S. M. Haserlat, J. G. Supko, F. G. Haluska, D. N.
Louis, D. C. Christiani, J. Settleman, and D. A. Haber. “Activating Muta-
tions in the Epidermal Growth Factor Receptor Underlying Responsiveness
of Non–Small-Cell Lung Cancer to Gefitinib.” In: New England Journal of
Medicine 350.21 (May 2004), pp. 2129–2139. issn: 0028-4793, 1533-4406. doi:
10.1056/NEJMoa040938.

[Mak+18] R. H. Mak, G. Hermann, H. J. Aerts, E. H. Baldini, A. B. Chen, D. Kozono,
M. S. Rabin, S. J. Swanson, Y.-H. Chen, P. Catalano, B. E. Johnson, and P. A.
Jänne. “Outcomes by EGFR , KRAS , and ALK Genotype After Combined
Modality Therapy for Locally Advanced Non–Small-Cell Lung Cancer.”
In: JCO Precision Oncology 2 (Nov. 2018), pp. 1–18. issn: 2473-4284. doi:
10.1200/PO.17.00219.

[May32] W. V. Mayneord. “On a Law of Growth of Jensen’s Rat Sarcoma.” In: The
American Journal of Cancer 16.4 (July 1932), p. 841. doi: 10.1158/ajc.1932.
841.

[MB93] M. Marusic and Z. Bajzer. “Generalized Two-Parameter Equation of Growth.”
In: Journal of Mathematical Analysis and Applications 179.2 (Nov. 1993),
pp. 446–462. issn: 0022247X. doi: 10.1006/jmaa.1993.1361.

[Meh15] T. Mehrling. “Chemotherapy is getting ‘smarter’.” In: Future Oncology 11.4
(Feb. 2015), pp. 549–552. issn: 1479-6694, 1744-8301. doi: 10.2217/fon.14.
248.

[Mic+11] F. Michor, J. Liphardt, M. Ferrari, and J. Widom. “What does physics have
to do with cancer?” In: Nature Reviews Cancer 11.9 (Sept. 2011), pp. 657–670.
issn: 1474-175X, 1474-1768. doi: 10.1038/nrc3092.

[Mor91] M. D. Morris. “Factorial Sampling Plans for Preliminary Computational
Experiments.” In: Technometrics 33.2 (May 1991), pp. 161–174. issn: 0040-
1706, 1537-2723. doi: 10.1080/00401706.1991.10484804.

100

https://doi.org/10.1016/j.cell.2016.11.037
https://doi.org/10.1016/S0002-9440(10)65628-3
https://doi.org/10.1056/NEJMoa040938
https://doi.org/10.1200/PO.17.00219
https://doi.org/10.1158/ajc.1932.841
https://doi.org/10.1158/ajc.1932.841
https://doi.org/10.1006/jmaa.1993.1361
https://doi.org/10.2217/fon.14.248
https://doi.org/10.2217/fon.14.248
https://doi.org/10.1038/nrc3092
https://doi.org/10.1080/00401706.1991.10484804


Bibliography

[NBM09] D. X. Nguyen, P. D. Bos, and J. Massagué. “Metastasis: from dissemination
to organ-specific colonization.” In: Nature Reviews Cancer 9.4 (Apr. 2009),
pp. 274–284. issn: 1474-175X, 1474-1768. doi: 10.1038/nrc2622.

[New+12] P. K. Newton, J. Mason, K. Bethel, L. A. Bazhenova, J. Nieva, and P. Kuhn.
“A Stochastic Markov Chain Model to Describe Lung Cancer Growth and
Metastasis.” In: PLoS ONE 7.4 (Apr. 2012). Ed. by B. Ermentrout, e34637.
issn: 1932-6203. doi: 10.1371/journal.pone.0034637.

[Nor+76] L. Norton, R. Simon, H. D. Brereton, and A. E. Bogden. “Predicting the
course of Gompertzian growth.” In: Nature 264.5586 (Dec. 1976), pp. 542–
545. issn: 0028-0836, 1476-4687. doi: 10.1038/264542a0.

[Nor88] L. Norton. “A Gompertzian model of human breast cancer growth.” In:
Cancer Research 48.24 Pt 1 (Dec. 1988), pp. 7067–7071. issn: 0008-5472.

[NS86] L. Norton and R. Simon. “The Norton-Simon hypothesis revisited.” In:
Cancer Treatment Reports 70.1 (Jan. 1986), pp. 163–169. issn: 0361-5960.

[Oh+09] Y. Oh, S. Taylor, B. N. Bekele, J. M. Debnam, P. K. Allen, D. Suki, R. Sawaya,
R. Komaki, D. J. Stewart, and D. D. Karp. “Number of metastatic sites is a
strong predictor of survival in patients with nonsmall cell lung cancer with
or without brain metastases.” In: Cancer 115.13 (July 2009), pp. 2930–2938.
issn: 0008543X, 10970142. doi: 10.1002/cncr.24333.

[Par12] D. M. Pardoll. “The blockade of immune checkpoints in cancer immunother-
apy.” In: Nature Reviews Cancer 12.4 (Apr. 2012), pp. 252–264. issn: 1474-
175X, 1474-1768. doi: 10.1038/nrc3239.

[PCF99] K. Pantel, R. J. Cote, and O. Fodstad. “Detection and Clinical Importance
of Micrometastatic Disease.” In: JNCI Journal of the National Cancer Institute
91.13 (July 1999), pp. 1113–1124. issn: 0027-8874, 1460-2105. doi: 10.1093/
jnci/91.13.1113.

[Pea05] K. Pearson. On the general theory of skew correlation and non-linear regression.
London: Dulau and co., 1905.

[PK12] A. Pathak and S. Kumar. “Independent regulation of tumor cell migration
by matrix stiffness and confinement.” In: Proceedings of the National Academy
of Sciences 109.26 (June 2012), pp. 10334–10339. issn: 0027-8424, 1091-6490.
doi: 10.1073/pnas.1118073109.

[PK15] S. P. Patel and R. Kurzrock. “PD-L1 Expression as a Predictive Biomarker in
Cancer Immunotherapy.” In: Molecular Cancer Therapeutics 14.4 (Apr. 2015),
pp. 847–856. issn: 1535-7163, 1538-8514. doi: 10.1158/1535-7163.MCT-14-
0983.

101

https://doi.org/10.1038/nrc2622
https://doi.org/10.1371/journal.pone.0034637
https://doi.org/10.1038/264542a0
https://doi.org/10.1002/cncr.24333
https://doi.org/10.1038/nrc3239
https://doi.org/10.1093/jnci/91.13.1113
https://doi.org/10.1093/jnci/91.13.1113
https://doi.org/10.1073/pnas.1118073109
https://doi.org/10.1158/1535-7163.MCT-14-0983
https://doi.org/10.1158/1535-7163.MCT-14-0983


Bibliography

[QP13] S. A. Quezada and K. S. Peggs. “Exploiting CTLA-4, PD-1 and PD-L1 to
reactivate the host immune response against cancer.” In: British Journal of
Cancer 108.8 (Apr. 2013), pp. 1560–1565. issn: 0007-0920, 1532-1827. doi:
10.1038/bjc.2013.117.

[RCM15] R. Richard, J. Casas, and E. McCauley. “Sensitivity analysis of continuous-
time models for ecological and evolutionary theories.” In: Theoretical Ecology
8.4 (Nov. 2015), pp. 481–490. issn: 1874-1738, 1874-1746. doi: 10.1007/
s12080-015-0265-9.

[Rei+17] M. Reiser, F.-P. Kuhn, J. Debus, P. Bartenstein, and H. Holtermann, eds.
Radiologie. 4., vollständig überarbeitete Auflage. Duale Reihe. Stuttgart:
Thieme, 2017. isbn: 978-3-13-125324-8. doi: 10.1055/b-004-132212.

[Rib12] A. Ribas. “Tumor Immunotherapy Directed at PD-1.” In: New England
Journal of Medicine 366.26 (June 2012), pp. 2517–2519. issn: 0028-4793, 1533-
4406. doi: 10.1056/NEJMe1205943.

[RK15] A. Rounds and J. Kolesar. “Nivolumab for second-line treatment of metastatic
squamous non-small-cell lung cancer.” In: American Journal of Health-System
Pharmacy 72.21 (Nov. 2015), pp. 1851–1855. issn: 1079-2082, 1535-2900. doi:
10.2146/ajhp150235.

[RN03] S. J. Russell and P. Norvig. Artificial intelligence: a modern approach; the
intelligent agent book. 2. ed., internat. ed. Prentice Hall series in artificial
intelligence. Upper Saddle River, NJ: Prentice Hall, 2003. isbn: 978-0-13-
080302-3.

[Roz+12] E. N. Rozali, S. V. Hato, B. W. Robinson, R. A. Lake, and W. J. Lesterhuis.
“Programmed Death Ligand 2 in Cancer-Induced Immune Suppression.” In:
Clinical and Developmental Immunology 2012 (2012), pp. 1–8. issn: 1740-2522,
1740-2530. doi: 10.1155/2012/656340.

[Sal02] A. Saltelli. “Making best use of model evaluations to compute sensitivity
indices.” In: Computer Physics Communications 145.2 (May 2002), pp. 280–297.
issn: 00104655. doi: 10.1016/S0010-4655(02)00280-1.

[Sal04] A. Saltelli, ed. Sensitivity analysis in practice: a guide to assessing scientific
models. Hoboken, NJ: Wiley, 2004. isbn: 978-0-470-87093-8.

[Sal08] A. Saltelli, ed. Global sensitivity analysis: the primer. OCLC: ocn180852094.
Chichester, England ; Hoboken, NJ: John Wiley, 2008. isbn: 978-0-470-05997-
5.

102

https://doi.org/10.1038/bjc.2013.117
https://doi.org/10.1007/s12080-015-0265-9
https://doi.org/10.1007/s12080-015-0265-9
https://doi.org/10.1055/b-004-132212
https://doi.org/10.1056/NEJMe1205943
https://doi.org/10.2146/ajhp150235
https://doi.org/10.1155/2012/656340
https://doi.org/10.1016/S0010-4655(02)00280-1


Bibliography

[Sav79] M. A. Savageau. “Allometric morphogenesis of complex systems: Deriva-
tion of the basic equations from first principles.” In: Proceedings of the
National Academy of Sciences 76.12 (Dec. 1979), pp. 6023–6025. issn: 0027-
8424, 1091-6490. doi: 10.1073/pnas.76.12.6023.

[Sch+22] S. Schönfeld, A. Ozkan, L. Scarabosio, M. N. Rylander, and C. Kuttler.
“Environmental stress level to model tumor cell growth and survival.” In:
arXiv:2201.06985 [cs, math, q-bio] (Jan. 2022). arXiv: 2201.06985. To appear in
Mathematical Biosciences and Engineering.

[Sch61] M. Schwartz. “A biomathematical approach to clinical tumor growth.” In:
Cancer 14.6 (Nov. 1961), pp. 1272–1294. issn: 0008-543X, 1097-0142. doi:
10.1002/1097-0142(196111/12)14:6<1272::AID-CNCR2820140618>3.0.
CO;2-H.

[SFR16] A. Steven, S. A. Fisher, and B. W. Robinson. “Immunotherapy for lung
cancer: Immunotherapy for lung cancer.” In: Respirology 21.5 (July 2016),
pp. 821–833. issn: 13237799. doi: 10.1111/resp.12789.

[Ski86] H. E. Skipper. “Laboratory models: some historical perspective.” In: Cancer
Treatment Reports 70.1 (Jan. 1986), pp. 3–7. issn: 0361-5960.

[SKS21] P. Schlicke, C. Kuttler, and C. Schumann. “How mathematical modeling
could contribute to the quantification of metastatic tumor burden under
therapy: insights in immunotherapeutic treatment of non-small cell lung
cancer.” In: Theoretical Biology and Medical Modelling 18.1 (Dec. 2021), p. 11.
issn: 1742-4682. doi: 10.1186/s12976-021-00142-1.

[Sle+90] R. J. Slebos, R. E. Kibbelaar, O. Dalesio, A. Kooistra, J. Stam, C. J. Meijer,
S. S. Wagenaar, R. G. Vanderschueren, N. van Zandwijk, W. J. Mooi, J. L.
Bos, and S. Rodenhuis. “K- ras Oncogene Activation as a Prognostic Marker
in Adenocarcinoma of the Lung.” In: New England Journal of Medicine
323.9 (Aug. 1990), pp. 561–565. issn: 0028-4793, 1533-4406. doi: 10.1056/
NEJM199008303230902.

[SLK76] G. M. Saidel, L. A. Liotta, and J. Kleinerman. “System dynamics of a
metastatic process from an implanted tumor.” In: Journal of Theoretical
Biology 56.2 (Feb. 1976), pp. 417–434. issn: 00225193. doi: 10.1016/S0022-
5193(76)80083-5.

[SMS95] J. S. Spratt, J. S. Meyer, and J. A. Spratt. “Rates of growth of human solid
neoplasms: Part I.” In: Journal of Surgical Oncology 60.2 (Oct. 1995), pp. 137–
146. issn: 00224790, 10969098. doi: 10.1002/jso.2930600216.

103

https://doi.org/10.1073/pnas.76.12.6023
https://doi.org/10.1002/1097-0142(196111/12)14:6<1272::AID-CNCR2820140618>3.0.CO;2-H
https://doi.org/10.1002/1097-0142(196111/12)14:6<1272::AID-CNCR2820140618>3.0.CO;2-H
https://doi.org/10.1111/resp.12789
https://doi.org/10.1186/s12976-021-00142-1
https://doi.org/10.1056/NEJM199008303230902
https://doi.org/10.1056/NEJM199008303230902
https://doi.org/10.1016/S0022-5193(76)80083-5
https://doi.org/10.1016/S0022-5193(76)80083-5
https://doi.org/10.1002/jso.2930600216


Bibliography

[SN06] R. Simon and L. Norton. “The Norton–Simon hypothesis: designing more
effective and less toxic chemotherapeutic regimens.” In: Nature Clinical
Practice Oncology 3.8 (Aug. 2006), pp. 406–407. issn: 1743-4254, 1743-4262.
doi: 10.1038/ncponc0560.

[Sob+07] I. Sobol’, S. Tarantola, D. Gatelli, S. Kucherenko, and W. Mauntz. “Esti-
mating the approximation error when fixing unessential factors in global
sensitivity analysis.” In: Reliability Engineering & System Safety 92.7 (July
2007), pp. 957–960. issn: 09518320. doi: 10.1016/j.ress.2006.07.001.

[Sob01] I. Sobol’. “Global sensitivity indices for nonlinear mathematical models
and their Monte Carlo estimates.” In: Mathematics and Computers in Simula-
tion 55.1-3 (Feb. 2001), pp. 271–280. issn: 03784754. doi: 10.1016/S0378-
4754(00)00270-6.

[Sob93] I. Sobol’. “Sensitivity analysis for non-linear mathematical models.” In:
Mathematical Modelling and Computational Experiment 1 (1993), pp. 407–414.

[Sot+10] A. Sottoriva, J. J. Verhoeff, T. Borovski, S. K. McWeeney, L. Naumov, J. P.
Medema, P. M. Sloot, and L. Vermeulen. “Cancer Stem Cell Tumor Model
Reveals Invasive Morphology and Increased Phenotypical Heterogeneity.”
In: Cancer Research 70.1 (Jan. 2010), pp. 46–56. issn: 0008-5472, 1538-7445.
doi: 10.1158/0008-5472.CAN-09-3663.

[SR97] L. F. Shampine and M. W. Reichelt. “The MATLAB ODE Suite.” In: SIAM
Journal on Scientific Computing 18.1 (Jan. 1997), pp. 1–22. issn: 1064-8275,
1095-7197. doi: 10.1137/S1064827594276424.

[SS72] P. W. Sullivan and S. E. Salmon. “Kinetics of tumor growth and regression
in IgG multiple myeloma.” In: Journal of Clinical Investigation 51.7 (July
1972), pp. 1697–1708. issn: 0021-9738. doi: 10.1172/JCI106971.

[SS76] J. S. Spratt and J. A. Spratt. “The prognostic value of measuring the gross
linear radial growth of pulmonary metastases and primary pulmonary
cancers.” In: The Journal of Thoracic and Cardiovascular Surgery 71.2 (Feb.
1976), pp. 274–278. issn: 0022-5223.

[SSW64] H. E. Skipper, F. M. Schabel, and W. S. Wilcox. “On the criteria and ki-
netics associated with ‘curability’ of experimental leukemia.” In: Cancer
Chemotherapy Reports 35 (Feb. 1964), pp. 1–111. issn: 0069-0112.

[Ste16] P. S. Steeg. “Targeting metastasis.” In: Nature Reviews Cancer 16.4 (Apr.
2016), pp. 201–218. issn: 1474-175X, 1474-1768. doi: 10.1038/nrc.2016.25.

104

https://doi.org/10.1038/ncponc0560
https://doi.org/10.1016/j.ress.2006.07.001
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1016/S0378-4754(00)00270-6
https://doi.org/10.1158/0008-5472.CAN-09-3663
https://doi.org/10.1137/S1064827594276424
https://doi.org/10.1172/JCI106971
https://doi.org/10.1038/nrc.2016.25


Bibliography

[Suz+05] A. Suzuki, N. Shijubo, G. Yamada, S. Ichimiya, M. Satoh, S. Abe, and N.
Sato. “Napsin A is useful to distinguish primary lung adenocarcinoma
from adenocarcinomas of other organs.” In: Pathology - Research and Practice
201.8-9 (Oct. 2005), pp. 579–586. issn: 03440338. doi: 10.1016/j.prp.2005.
05.010.

[SWZ16] M. Schmid, M. N. Wright, and A. Ziegler. “On the use of Harrell’s C for
clinical risk prediction via random survival forests.” In: Expert Systems with
Applications 63 (Nov. 2016), pp. 450–459. issn: 09574174. doi: 10.1016/j.
eswa.2016.07.018.

[TD15] A. Talkington and R. Durrett. “Estimating Tumor Growth Rates In Vivo.”
In: Bulletin of Mathematical Biology 77.10 (Oct. 2015), pp. 1934–1954. issn:
0092-8240, 1522-9602. doi: 10.1007/s11538-015-0110-8.

[TDP15] S. L. Topalian, C. G. Drake, and D. M. Pardoll. “Immune Checkpoint
Blockade: A Common Denominator Approach to Cancer Therapy.” In:
Cancer Cell 27.4 (Apr. 2015), pp. 450–461. issn: 15356108. doi: 10.1016/j.
ccell.2015.03.001.

[TG55] R. H. Thomlinson and L. H. Gray. “The Histological Structure of Some
Human Lung Cancers and the Possible Implications for Radiotherapy.”
In: British Journal of Cancer 9.4 (Dec. 1955), pp. 539–549. issn: 0007-0920,
1532-1827. doi: 10.1038/bjc.1955.55.

[Tra+11] W. D. Travis, E. Brambilla, M. Noguchi, A. G. Nicholson, K. R. Geisinger,
Y. Yatabe, D. G. Beer, C. A. Powell, G. J. Riely, P. E. Van Schil, K. Garg, J. H.
Austin, H. Asamura, V. W. Rusch, F. R. Hirsch, G. Scagliotti, T. Mitsudomi,
R. M. Huber, Y. Ishikawa, J. Jett, M. Sanchez-Cespedes, J.-P. Sculier, T.
Takahashi, M. Tsuboi, J. Vansteenkiste, I. Wistuba, P.-C. Yang, D. Aberle,
C. Brambilla, D. Flieder, W. Franklin, A. Gazdar, M. Gould, P. Hasleton,
D. Henderson, B. Johnson, D. Johnson, K. Kerr, K. Kuriyama, J. S. Lee,
V. A. Miller, I. Petersen, V. Roggli, R. Rosell, N. Saijo, E. Thunnissen,
M. Tsao, and D. Yankelewitz. “International Association for the Study of
Lung Cancer/American Thoracic Society/European Respiratory Society
International Multidisciplinary Classification of Lung Adenocarcinoma.”
In: Journal of Thoracic Oncology 6.2 (Feb. 2011), pp. 244–285. issn: 15560864.
doi: 10.1097/JTO.0b013e318206a221.

[Tra+15] W. D. Travis, E. Brambilla, A. G. Nicholson, Y. Yatabe, J. H. Austin, M. B.
Beasley, L. R. Chirieac, S. Dacic, E. Duhig, D. B. Flieder, K. Geisinger, F. R.
Hirsch, Y. Ishikawa, K. M. Kerr, M. Noguchi, G. Pelosi, C. A. Powell, M. S.
Tsao, and I. Wistuba. “The 2015 World Health Organization Classification

105

https://doi.org/10.1016/j.prp.2005.05.010
https://doi.org/10.1016/j.prp.2005.05.010
https://doi.org/10.1016/j.eswa.2016.07.018
https://doi.org/10.1016/j.eswa.2016.07.018
https://doi.org/10.1007/s11538-015-0110-8
https://doi.org/10.1016/j.ccell.2015.03.001
https://doi.org/10.1016/j.ccell.2015.03.001
https://doi.org/10.1038/bjc.1955.55
https://doi.org/10.1097/JTO.0b013e318206a221


Bibliography

of Lung Tumors.” In: Journal of Thoracic Oncology 10.9 (Sept. 2015), pp. 1243–
1260. issn: 15560864. doi: 10.1097/JTO.0000000000000630.
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