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Abstract

The continuous drive to automate increasingly complex and intricate manufacturing pro-
cesses with robot manipulators also pushes manufacturers to further improve the path track-
ing accuracy of their robots. This is a quite challenging task, since commonly suggested
methods for high-precision robot control require high-fidelity models of complex effects in
the robot’s drivetrain, as well as its flexible joints and flexible links.

The goal of this thesis is to accomplish a path tracking accuracy of below 20µm with a
robot manipulator. In order to achieve this, the influence of structural dynamics on the per-
formance of robot manipulators is investigated, with the conclusion that it is quite unfeasible
to achieve such a high accuracy by modifying the control system of an existing industrial
robot.

Instead, this thesis investigates two different approaches of using an external device to
stabilize the manufacturing tool for higher path accuracy. The first approach focuses on
damping the pose dependent structural dynamics of a robot manipulator using active vibra-
tion damping methods applied via a proof-mass actuator and acceleration feedback. The
second approach uses a highly precise positioning system to stabilize the process tool against
any disturbances transferred over the robot’s structure.

Both approaches are tested using a high-fidelity robot simulation model, which is devel-
oped throughout this thesis. The final prototypes are applied to two different robot manipu-
lators, with the second external stabilization approach improving the path tracking accuracy
of a UR10 robot from 1mm to below 15µm.
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Zusammenfassung

Das anhaltende Bestreben immer komplexere und kompliziertere Fertigungsprozesse mit Ro-
botermanipulatoren zu automatisieren drängt Hersteller auch dazu die Bahngenauigkeit ihrer
Roboter weiter zu verbessern. Dies ist eine recht anspruchsvolle Aufgabe, da die üblicherwei-
se vorgeschlagenen Methoden für eine hochpräzise Robotersteuerung sehr genaue Modelle
der komplexen Effekte im Antriebsstrang des Roboters sowie seiner flexiblen Gelenke und
Arme erfordern.

Das Ziel dieser Arbeit ist es mit einem Robotermanipulator eine Bahngenauigkeit von
unter 20µm zu erreichen. Hierzu wird zunächst der Einfluss der Strukturdynamik auf die
Genauigkeit von Robotermanipulatoren untersucht, mit der Schlussfolgerung, dass es sehr
unwahrscheinlich ist eine solch hohe Genauigkeit durch die Modifikation des Steuerungssys-
tems eines bestehenden Industrieroboters zu erreichen.

Stattdessen werden in dieser Arbeit zwei verschiedene Ansätze zur Verwendung einer
externen Vorrichtung zur Stabilisierung des Fertigungswerkzeugs für eine höhere Bahnge-
nauigkeit untersucht. Der erste Ansatz konzentriert sich auf die Dämpfung der positions-
abhängigen Strukturdynamik eines Robotermanipulators unter Verwendung aktiver Schwin-
gungsdämpfungsmethoden, die über einen Proof-Mass-Aktuator und Beschleunigungsfeed-
back angewendet werden. Der zweite Ansatz nutzt ein hochpräzises Positioniersystem, um
das Prozesswerkzeug gegen die über die Roboterstruktur übertragenen Störungen zu stabili-
sieren.

Beide Ansätze werden mit einem hochwertigen Robotersimulationsmodell getestet, das
im Rahmen dieser Arbeit entwickelt wird. Die endgültigen Prototypen werden auf zwei ver-
schiedenen Robotermanipulatoren angewendet, wobei der zweite externe Stabilisierungsan-
satz die Bahngenauigkeit eines UR10-Roboters von 1mm auf unter 15µm verbessert.
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Chapter 1

Introduction

Starting with their first introduction into the industrial manufacturing landscape in 1961 in
a General Motors factory for die casting handling and spot welding, robot manipulators had a
large impact on increasing the productivity of manufacturing processes over the past decades
[204]. The typical industrial robot manipulator consists of six or seven actuated rotational
degrees of freedom (DOF) connected by theoretically rigid links in a tree-like structure [248].
Their general objective is to substitute a human arm by being able to reach a larger workspace
in any orientation, carry larger loads, being more precise, faster and able to perform the same
repetitive task in a predictable and reliable manner without tiring.

Typical applications for industrial robot manipulators are the automation of welding or
cutting processes (e.g. MIG/MAG welding, spot welding, plasma cutting/welding, laser cut-
ting/welding, etc.), material handling processes (e.g. pick-and-place, injection molding, ma-
chine loading, machine tending, order picking, packaging, etc.) and other applications like
assembly, bonding/sealing, coating/painting, drilling/grinding/milling, etc. [73].

Because of their potential for high productivity and cost efficiency, it is only natural that
the industrial market is driven to further automate increasingly complicated and intricate
manufacturing processes. This also presents the robot manufactures with the challenge to
further improve the performance of their robot manipulators to meet this demand of the
industry. Over the past decade, one large trend has been to develop torque-controlled robot
manipulators that are able to sense their environment, which are potentially more useful for
assembly tasks and safe to work collaboratively with humans [121]. However, the other trend
is to quite simply make the next generation of position-controlled robots faster and more
precise in order to enable them to perform tasks like high-precision laser cutting or welding.
For example, the topic of this theses was largely motivated by an R&D project between the
Chair of Applied Mechanics at TUM and Boeing Research and Technology Europe that had the
goal to automate a high-precision non-contact manufacturing process using a large industrial
robot manipulator which needed to follow a trajectory path with 20µm accuracy.

Robot Accuracy

The first step to further increase the accuracy of robot manipulators is to find a common
definition and test scenario. This was done in 1990 with the norm ISO 9283, according to
which the performance of a robot manipulator can be determined by conducting the following
tests with a laser tracker or a similar device, Fig 1.1:

• The pose repeatability is the tolerance RP between the real tool center point (TCP)
positions of the robot, after moving it into the same pose multiple times.

• The pose accuracy is the deviation AP between the mean of the real TCP positions B and
the planned TCP position A, after moving the robot into the same pose multiple times.

• The path repeatability is the tolerance RT between the real paths of the robot’s TCP,
after tracking the same trajectory multiple times.

1
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Figure 1.1: Definitions for a robot accuracy test according to ISO 9283, adapted from [6].

• The path accuracy is the maximum deviation AT of the average real path to the planned
path E, after tracking the same trajectory multiple times.

While ISO 9283 is the agreed industry standard to evaluate the performance of industrial
manipulators, manufactures unfortunately often only disclose the pose repeatability of their
robots1. The main reason for this is probably that it is often the best of the above mentioned
accuracy measures. However, the pose repeatability only tells us that while the robot might
not end up at the desired position, it is at least always wrong in a similar way. A good pose
repeatability is therefore somewhat reassuring, and also a requirement to further improve the
pose accuracy using volumetric calibration methods as I will discuss later. However, it gives us
no real information about the real pose accuracy and definitely not about the path accuracy.
Most larger robot manufacturers like ABB, Kuka and Fanuc claim a pose repeatability of up
to 10µm for their smaller sized robots with a reach below 1.0 m [3, 94, 162]. However,
according to measured data published by ABB, the path repeatability and path accuracy is
always at least one order of magnitude worse [3, 6, 7].

The important accuracy measures for this thesis are the path repeatability and path accu-
racy, which were both required to be below 20µm. A brief market analysis shows that there
are no manipulators with a reach over 2m available that can even achieve a pose repeatability
below 20µm.

Fig. 1.2 shows the measured vertical path error at the TCP of a selection of commercially
available robot manipulators, while following a horizontal trajectory. We can easily see that
none of these robots are even close to achieving the desired path accuracy.

Error Sources of Robot Manipulators

In order to derive methods to improve the accuracy of robot manipulators, we can first have
a look at typical sources of error. According to [145, 174, 206] these can be categorized as
follows:

• Environmental errors such as the varying temperature of the joints during the warm
up process, which can have an influence on the lubrication of the gears and therefore
backlash and friction.

• Parametric errors which include kinematic parameter variation because of manufactur-
ing and assembly tolerances, the influence of dynamic parameters like the flexibilities

1The only major robot manufacturer that publicly discloses the other accuracy measures as defined by ISO
9283 for their robot models seems to be ABB, see e.g. [6].
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(a) The UR10 made by Universal Robots is a cheap, lightweight, position controlled robot. Its maximum payload
is 10kg and maximum reach is 1.3 m. The manufacturer only discloses a pose repeatability of ±0.1 mm according
to ISO 9283 [279].
The measurements show the vertical path error while following a 1.0 m horizontal trajectory with 30mm/s start-
ing close to the base of the robot until it is almost completely stretched out. The measurements were performed
using highly precise eddy-current sensors from Micro-Epsilon with a usable resolution of 3µm. These measure-
ments are published as part of my paper [51].
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(b) The Panda made by Franka Emika is a cheap, lightweight, torque controlled robot. Its maximum payload is
3 kg and maximum reach is 0.85 m. The manufacturer discloses a pose repeatability of ±0.1 mm and path accu-
racy of ±1.25 mm according to ISO 9283 [98].
The measurements show the vertical path error while following a 0.8 m horizontal trajectory with 40mm/s start-
ing close to the base of the robot until it is almost completely stretched out. The measurements were also
performed using highly precise eddy-current sensors from Micro-Epsilon with a usable resolution of 3µm. These
measurements were part of the master’s thesis of my student PRAUTZSCH [217].
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(c) The IRB 4600 made by ABB is a typical position controlled industrial robot manipulator. Its maximum
payload is 40 kg and maximum reach is 2.05 m. The manufacturer discloses a pose repeatability of ±0.06mm,
pose accuracy of ±0.02 mm, path repeatability of ±0.28 mm and path accuracy of ±0.57 mm according to ISO
9283 [6].
The measurements show the vertical path error while following a 1.0 m horizontal trajectory with 45mm/s. The
measurements were performed using a AT960 laser tracker from Leica. These measurements were part of our
R&D project with Boeing Research and Technology Europe and were performed by the WZL laboratory of the RWTH
Aachen.

Figure 1.2: Measured vertical path error for a selection of robot manipulators with the accuracy
requirement of 20µm marked with dotted horizontal lines.
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of the joints and links, as well as friction and other non-linearities like hysteresis and
backlash.

• Measurement errors of the various sensors used in a robot manipulator, like incremental
and absolute encoders or torque sensors.

• Computational errors caused by wrongly planned trajectories or control system errors.

• Application errors e.g. caused by installing the robot on a flexible mounting surface.

Regarding the accuracy of robot manipulators, it is generally agreed that the main sources
of error are geometrical errors of the robot assembly and the compliance of the gears, joints
and links that cause the robot to deform depending on the current pose and load [247,
252]. This is a problem, since a typical industrial robot manipulator can only measure the
angles of its motors. It is then assumed that there is no deformation of the gears, joints
and links to derive the needed motor angles to follow a desired trajectory at the TCP using
inverse kinematics. However, depending on the load of the robot and its current position, the
compliant components of the robot will deform and cause the TCP to sink below the desired
position.

Investigating the measured vertical path error of e.g. the UR10 in a bit more detail (Fig.
1.3), we can see that the real behavior is even more complicated than this. The test trajec-
tory starts with the TCP of the robot right next to its base in its most folded position. The
robot should therefore experience the least amount of torque caused by its own weight in its
starting position. The robot then moves its TCP away from its base following a horizontal
trajectory. The moment arm, and therefore the load on the robots compliant components, can
consequently only increase. This would imply that the TCP can only drop below its planned
trajectory in vertical direction. However, we can see that the TCP of the robot actually starts
to raise up for the first half of its trajectory. The rising of the robot is probably caused by a
combination of a slightly miss-planned trajectory due to geometrical errors and backlash in
the gears.

Additionally to this slowly changing ’quasi-static’ error, there are also dynamic oscillations
visible during the entirety of the robot’s motion, with larger amplitudes towards the end of
the trajectory while the robot is stretched out the most2. These dynamic phenomena are
mainly caused by the torque ripple of the robot’s drivetrain exciting the structural dynamics
of its mechanical components and will be a significant part of this theses.

For now, we can try to separate the error into a ’quasi-static’- and ’dynamic’ error3. We
can see that the ’quasi-static’ error (Fig. 1.3 green line), while probably quite hard to predict
purely based on models, is at least repeatable, since the robot is following the same error
profile while moving backwards and forwards. Provided that the robot otherwise has a good
pose repeatability, this repeatable error can be compensated by using a volumetric calibra-
tion process [206]: The robot is moved into different poses while the real TCP position is
measured using a laser tracker. The recorded pose accuracy data is then used to create a
compensation map that uses slightly different joint angles for each pose to improve the pose
accuracy.

However, even under the assumption that we can perform an almost perfect volumetric
calibration, the ’dynamic’ error (Fig. 1.3 orange line) would still be larger than our accuracy

2I want to emphasize here that these measurements were performed using highly accurate eddy-current
sensors with a usable resolution of below 3µm, the dynamic error shown in Fig. 1.3 is therefore not sensor noise,
but real motion measured at the TCP of the robot.

3This is done here by performing a Fourier transform of the measured error signal and then plotting the result
of an inverse Fourier transformation that only uses the frequency contributions below 0.25Hz for the ’quasi-static’
error and the frequency contributions higher than 0.25Hz for the ’dynamic’ error.
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Figure 1.3: Detailed view of the measured vertical path error of the UR10 during a horizontal trajec-
tory as also shown in Fig. 1.2a.

requirement. This leaves us with no choice, but to also somehow consider the structural
dynamics of the robot to further improve its accuracy. Unfortunately, this is a vastly more
complicated problem, since the error will in most cases not be as nicely repeatable as the
’quasi-static’ error. While the vibration amplitudes will be similar when repeating the same
trajectory, the exact motion is very dependent on the exact starting state of the system and
how it is excited by the different possible excitation sources like torque-ripple, grinding of
the gears and other external disturbances. Additionally, there is also the interaction between
the joint controllers of the robot and its own structural dynamics to consider.

Over the past decades, quite a large amount of research effort has been dedicated to meth-
ods that try to modify the robot’s own control system to compensate these dynamics effects
caused be the excitation of the dynamics of the mechanical structure of a robot manipulator.
However, the big disadvantage of these methods is that the available control variables for the
robot are either the motor angles, or the joint-torques for torque-controlled robots4. Since
we are interested in precise control of the robot’s TCP, there are additional dynamics of the
flexible gear, joints and links of the robot between the input (motor angle / joint-torque) and
the output (actual TCP position) of this supplementary control system. Without direct feed-
back at the TCP of the robot, a control system like that would be entirely feedforward based
and would require almost unachievable precise models of the plants between the joints of
the robot and the TCP, see Fig. 1.4a green arrows. Some methods propose to use measured
feedback at the TCP using additional sensors or camera systems. However, these methods
also have to deal with the still non-collocated nature of the control problem which can be
quite problematic in the field of structural control systems [219].

External Approaches

For the above mentioned reasons, we decided to approach the problem of reducing the dy-
namic error at the robot’s TCP differently by using an additional set of actuators at the robots
end effector. This makes the control problem collocated and, as we will see later, has some
great advantages like not needing precise models of the system for good performance. In this
thesis I will investigate two approaches:

4As we will see later, there is the additional problem that typical robot joint position-, as well as torque-
controllers, have a quite limited bandwidth of usually around 10 Hz at the joint side, which will also inherently
limit any kind of control system that will try to use these quantities as their control variable.
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(a) High precision laser welding using a robot manipulator.
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(b) Active vibration damping approach.

(c) Active stabilization approach.

Figure 1.4: Concepts for high-precision robot control.

• The first one uses an additional proof-mass actuator at the mounting flange of the robot,
Fig. 1.4b. The reaction force created by the inertia of the moving proof-mass actuator
is then used as the control variable. Using acceleration feedback at the same position,
we can employ traditional active vibration techniques to damp the structural vibrations
of the robot.
The big challenge here is going to be the time-variability of the controlled structure,
since the structural dynamics of the robot highly depend on its current position [46,
48]. Using exclusively measured accelerations also has some unique challenges like be-
ing more susceptible to instabilities due to control spillover when using modern control
methods. However, since it is much more convenient to just attach a set of acceleration
sensors near the robots end effector than to acquire position feedback using for example
laser trackers, we wanted to stick to control designs that exclusively use acceleration
feedback.

• The second approach uses an extra set of actuators at the mounting flange to move the
process tool, Fig. 1.4c. The idea here is to decouple the tool from any disturbance com-
ing from the robot, similar to in-body image stabilization (IBIS) systems in professional
cameras. The concept is also sometimes called inertially stabilized platforms (ISP) and
has been used for systems like camera tracking or laser guidance systems on warships
[126]. The main challenge of this concept is the need for a good estimation of the
real TCP position to counteract the undesired motion, as well as an adequate actuator
design that is able to support the required bandwidth of the control system.

Since both of these approaches need no prior knowledge about the robot itself and can the-
oretically work completely independently of the robot’s own control system, we named this
thesis ’External Stabilization of Robot Manipulators’.
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1.1 Goal, Methodology and Structure of the Thesis

The main goal of this thesis was to develop an external stabilization device to increase
the path accuracy of robot manipulators.

This was largely motivated by an industrial project with Boeing Research & Technology
which had the following requirements:

• The automated process works without contact to the process surface and requires a
path accuracy of 20 µm.

• The prototype stabilization device is a proof-of-concept and needs to be able to stabilize
a 200g dummy tool with 20 µm precision and compensate a maximum path error of
±2.5mm.

• The prototype is tested on a UR10 robot tracking a horizontal process surface at various
speeds.

• The complexity of the system should be as low as possible to ensure a more straight-
forward industrialization of the prototype system. The system should therefore work
with the least amount of prior knowledge as possible. Meaning, without having to uti-
lize complex models of the robot’s structural dynamics and without having to interface
with the control system of the robot. Ideally, the device can be mounted independently
on any kind of robot manipulator and used with minimal tuning effort.

• The control system should be robust against additional unknown disturbances trans-
ferred over the robot’s mechanical structure to the process tool.

Considering the frequency spectrum of the vertical path error measurements of the UR10
robot (Fig. 1.5), we can do a rough estimate of the minimum attenuation needed for the
stabilization system. In order to keep the maximum error peaks below 20µm5, we need a
minimum attenuation of up to −70dB in the quasi-static frequency region and a minimum
attenuation of up to −40 dB of the dynamic error, Fig. 1.6. Additionally, the control system

5For simplicity, I assume an even attenuation across the frequency spectrum.
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needs a control bandwidth of at least 50Hz to effect the necessary frequency range. As we
will see in the following State of the Art chapter, these are quite extreme requirements for a
mechatronic positioning system. Especially considering the system is mounted on a moving,
vibrating robot manipulator with a flexible mechanical structure.

Methodology

Since this thesis was tightly coupled to an industrial project, my number one priority was
to produce a working prototype that fulfills the above mentioned requirements. From ex-
perience, most of the time spent in the development of new mechatronic systems relates to
implementation and hardware issues that do not make good topics for scientific publications.
This also meant that I could not spend too much time on investigating exotic control methods
that might not work on the real system, in order to not jeopardize the final goal of this thesis
by running out of time. I therefore followed a strict methodology:

1. Gain a better understanding of the influence of structural dynamics on robots and
mechatronics systems in general.
In order to achieve this, we performed a series of tests on a UR10, ABB IRB 4600, Franka
Panda and our own CROPS harvesting robot. We also did experiments on a robot joint
test rig, a mechanical single harmonic oscillator test rig and our biped walking robot
LOLA (Fig. 1.7 orange area). The results were then used to identify all relevant physical
effects that needed to be considered for the development of the external stabilization
prototypes.

2. Built a full robot simulation model as a development platform in Simulink based
on this knowledge.

3. Derive smaller models with higher levels of abstraction for hierarchical testing of
new stabilization concepts and control methods (Fig. 1.7 blue area).
The full robot model was first reduced to a single flexible joint model with one flexible
link, then further reduced to a flexible joint model with one rigid link and finally to a
simple reduced linear transfer function model that represented the structural dynamics
at the TCP of the flexible model with one link. This was an important step, since we
could easily test new ideas on simple models in order to rule them out as quickly as
possible to save time. For example, almost every control method worked on the linear
transfer function model, however, roughly half of our tested control strategies could
already be eliminated with the flexible single link models. Finally, only a small amount
of methods proofed to be actually promising on the full robot manipulator model.

4. After deciding on a small number of worthwhile prototype concepts, built small com-
ponent test rigs to separately tests subcomponents.
This is also an important step to save development time. Immediately building a first
version of the entire prototype makes it difficult to reiterate on separate subcompo-
nents, since a small change to one component might have a large effect on another
subcomponent that is otherwise already working as intended, causing unnecessary re-
design effort. This proofed especially valuable for the mechanical system of the stabi-
lization prototype, since we had to go through a few iterations to achieve the desired
performance.

5. Tune and test the prototypes on moving robot manipulators.
As described in the requirements, we tested the stabilization prototype on a UR10 robot.
However, the active vibration damping prototype was tested on our CROPS harvesting
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robot. The main reason for this is that these robots behave quite differently, which
shows that different approaches might be more suitable for different types of robots.

In order to keep this thesis concise, I will only report on the final working prototypes, without
mentioning specific reiterations or subcomponent tests. Nevertheless, I will still comment on
important lessons-learned at the appropriate places.

Structure of the Thesis

The structure of the thesis aims to reflects this methodology. First, we will have a detailed
look at the current state of the art in chapter 2. This includes a short analysis of the perfor-
mance of currently available industrial robot manipulators, as well as common approaches
to model robots and methods to improve their accuracy. Additionally, I will give a short
overview of various stabilization systems and their performance, as well as active vibration
damping approaches.

Chapter 3 will explain the fundamental theory needed to understand the following core
chapters of the thesis. My assumption for the most likely type of reader is that they have a
stronger background in typical robotics topics and a weaker background in structural dynam-
ics and active vibration control. For this reason, I will start with a more thorough introduction
of structural dynamics concepts, followed by classical active vibration damping methods and
finally common joint control strategies for position- and torque-controlled robots.
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Chapter 4 first showcases the Simulink based robot manipulator model, which we de-
veloped over the past years. The model is based on a flexible multibody simulation with
flexible links and drivetrains. The multibody model also includes additional effects like
motor-cogging, which is probably the main excitation source for moving robots. The model is
verified using measurements from a UR10 robot. The robot model is then used to investigate
pose dependent structural dynamics and the effects of structural dynamics on position- and
torque controlled robots. Our findings are then also verified using measurements from our
CROPS harvesting robot, a joint test rig and the torque-controlled Franka Panda robot. The
chapter ends with an excursus about the influence of structural dynamics on our biped walk-
ing robot Lola. This section is not necessary for the following development of the external
stabilization prototypes. However, it is still helpful to gain a deeper understanding about the
influence of structural dynamics on the performance of complex mechatronic systems.

The final prototypes for the active vibration damping- and external stabilization approach
are described in chapter 5. For both cases, I will first introduce the actuator and control
design, and then show the simulated system performance. The active vibration damping
approach is then tested on our CROPS harvesting robot and the stabilization unit is tested
using a UR10 robot. For the active vibration damping approach, I will also use a section to
comment on the performance of more modern control methods.

Finally, the overall conclusions and outlook are discussed in chapter 6.
The appendix first showcases many important implementation and hardware issues using

a mechanical single harmonic oscillator test rig. I also give a quick summary of the first
version of the stabilization unit. The rest of the appendix includes a full list of students I
have had the pleasure to work with during my time at the chair, my full publication list and
an overview of the Simulink blocks of the robot simulation model.

1.2 Thesis Contributions

The novel contributions of this thesis can be summarized as fallows:

• An experimental investigation of the pose dependent structural dynamics of robot ma-
nipulators using an experimental modal analysis of our CROPS harvesting robot. While
this is not the first modal analysis of a robot manipulator, it is definitely the most de-
tailed one to my knowledge. Most published results only use 5 to 10 sensors, while
our analysis used 77 measurement points. The high level of detail also allowed us to
observe that only certain mode shapes are controllable via the robots joint controllers.
Furthermore, we were able to easily visualize the pose dependent structural dynamics
of a robot manipulator by measuring the driving point dynamics at the TCP of the robot
at 60 different poses. The results are also published in our paper [46].

• An investigation of the influence of structural dynamics on cascaded joint position con-
trollers using a flexible multibody simulation with flexible drivetrains/links and exper-
imental verification results on a joint test rig. We further investigated the feasibility of
using a cascaded control structure with the position- and/or velocity-loop being closed
behind the flexibility of the drivetrain using direct joint position/-velocity feedback.
The results are also published in our paper [47].

• An investigation of the influence of structural dynamics on the performance of torque-
controlled robots. Especially regarding the possible control-bandwidth of joint-torque
controllers and their influence on passivity based control schemes for high-precision
path tracking. The results are verified using experimental results from a Franka Panda
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robot. The results are partially based on the master’s thesis of my student6 PRAUTZSCH

[217] and are also published in our paper [218].

• A full procedure to simulate a robot manipulator in Simulink, including verified cou-
pled models for the BLDC motors, motor-cogging, joint-position or -torque controllers,
flexible drivetrain, and reduced order models for flexible links. The results are veri-
fied using measurements from a UR10 robot. A similar methodology was used by my
student ZIMMERMANN for a Dymola model in her master’s thesis [312], which I super-
vised in cooperation with ABB Robotics. The results are partially published in our paper
[313].

• The first experimental modal analysis of a biped walking robot. We were able to show-
case the influence of the dynamics of the mechanical structure of our biped robot LOLA

on her control system, and also use the results to later improve her mechanical design.
The results are published in our papers [50, 52, 240].

• Investigation of the feasibility of using proof-mass actuators and active vibration damp-
ing techniques with acceleration feedback to damp the structural dynamics of a moving
robot manipulators and subsequently improve their path accuracy. The approach is
tested in simulation and an actuator prototype is developed to perform experiments
on our CROPS harvesting robot. Preliminary simulation results using an intermediate
version of our robot simulation model are published in our papers [48, 49]. I also com-
ment on the performance of modern control methods for this application based on the
results of the master’s thesis of my student HARDER [125] and the semester thesis of
my student BODEIT [54].

• The development of a stabilization unit for high precision applications of robot manip-
ulators. The approach is again first tested in simulation and two actuator prototypes
are developed and tested on a UR10 robot. The second version of the stabilization unit
improves the path tracking performance of the robot from a maximum error of 1 mm
to below 15 µm. The results are also partially published in our paper [51].

During my time at the Chair of Applied Mechanics, I published 7 papers as the main-author
and 4 papers as a co-author that are relevant to this thesis. I also co-authored 9 further
unrelated publications7. My full publication list can be found in Appendix E.

I also had the pleasure to supervise 15 student theses and 16 student assistants for various
research and industry projects. Some of them also produced results that I reuse or reference
in this thesis. A full list of my students and their contributions can be found in Appendix D.

6For the sake of simplicity, I will always refer to the students I had the pleasure to work with as ’my students’,
without wanting to sound possessive. The various student theses I refer to during this work were of course always
co-supervised together with Prof. Rixen.

7These are mainly resulting from my preceding time as a student assistant in the rotordynamics group of the
chair.





Chapter 2

State of the Art

In this chapter, I will summarize the state of the art of the relatively broad fields that will be
addressed during this thesis.

In section 2.1, I will talk more deeply about the accuracy of current robot manipulator
systems and absolute calibration methods in subsection 2.1.1. Subsection 2.1.2 will be about
the modeling of robot manipulators with regards to the joint motor, drivetrain and joint- / link
flexibilities. I will also shortly introduce a full flexible robot manipulator model developed
by my student ZIMMERMANN during her master’s thesis in cooperation with ABB. Subsection
2.1.3 summarizes the current state of the art of control concepts for high precision robotics
and will touch on the topics of position- and torque-controlled robots, as well as robots with
micro / macro redundancy and other approaches.

Section 2.2 will be about inertially stabilized platforms like image stabilization systems
or gimbals, since these type of systems are quite comparable to the external stabilization
approach for robot manipulators investigated in this thesis.

Finally, section 2.3 will give an overview of the capabilities and applications of current
active vibration damping techniques.

Since these are three quite different and extremely broad fields, I will mainly focus on
the summary of publications that are also concerned with the development of real prototype
systems or the application of methods to real systems. While a deeper exploration of more
theoretical work might also be interesting and of value, it would simply go way beyond the
scope of this thesis.

2.1 High Precision Robot Manipulators

As we have already seen in the introduction, small commercially available robot manipulators
can reach a claimed pose repeatability of up to 10µm [3, 94, 162]. Unfortunately, the actual
pose accuracy as well as the path repeatability and path accuracy according to ISO 9284 are
not disclosed by most manufacturers. The main reason for this is that for most industrial ap-
plications, the other accuracy measures are just not as important. Most processes automated
with robot manipulators are variations of point-to-point applications, which do not need high
accuracy while moving between the planned points and mostly care about time efficiency and
collision avoidance while actually moving the robot. Most industrial processes that actually
benefit from the large workspace of robot manipulators are also comparatively slow and do
not need micrometer precision [117]. This means that achieving a high pose repeatability is
usually good enough, since a worker has to teach the program for the robot anyway and can
just adapt the planned end points of the robot’s trajectory for the process until they achieve
satisfactory results.

For high-speed pick-and-place applications like the mass assembly of circuits boards, par-
allel kinematics robots can be designed much stiffer and can therefore move a lot faster at

13
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ABB IRB 360 ABB IRB 120 ABB IRB 4600 ABB IRB 6700
(Parallel kin.) (Small size) (Medium size) (Large size)

Max. reach [mm] 400 580 2050 3200
Max. load [kg] 1 3 40 150

Pose repeatability [mm] 0.04 0.01 0.06 0.05
Pose accuracy [mm] 0.09 0.02 0.02 0.06
Path repeatability [mm] 0.52 0.07-0.16 0.28 1.6
Path accuracy [mm] 0.21 0.21-0.38 0.57 0.14

Source [5] [3] [6] [7]

Table 2.1: Accuracy of differently sized robot manipulators from ABB according to ISO 9283.

the cost of available workspace. For example, ABB’s FlexPicker robot can achieve a maximum
acceleration of its TCP of 150m/s2 and maximum velocity of 10 m/s [5]. However, these
types of robots are of course also limited by their structural dynamics, which will cause large
oscillation amplitudes at their TCP when moved too quickly [88]. While parallel kinematics
or SCARA robots (Selective Compliance Assembly Robot Arm) are an interesting alternative,
their workspace is also very limited. For this reason, I will concentrate on classic serial robot
manipulators in this work.

Tab. 2.1 compares the accuracy of a selection of ABB robots1. All of these robots achieve
a quite impressive pose repeatability in the 10 − 50µm range. However, the path repeata-
bility gets worse the larger the robot is and none of these robot would achieve our accuracy
requirement, which would demand both the path accuracy and repeatability to be below
20µm. Unfortunately, the path accuracy also does not allow us to determine how much of
the path error can be attributed to the quasi-static and dynamic error amplitudes, since the
path repeatability is just the average radius of a tube containing all test trajectories. The path
accuracy only tells us how close the TCP is on average to the desired path. It is probably
a reasonable assumption that larger robots will experience more sag and larger vibration
amplitudes while moving, which both contribute to a worse path repeatability.

This reveals a quite significant weakness of the current way of determining the accuracy
of robot manipulators according to ISO 9283: there is no way to differentiate between quasi-
static and dynamic error. The quasi-static error profile is usually well repeatable, since it is
mostly caused by geometric errors due to manufacturing tolerances, as well as the static sag
of the robot caused by the bending of its flexible components due to its own weight (see
Fig. 1.2 and Fig. 1.3). This type of error can therefore often reliably be reduced by using
calibration methods. If we were able to potentially reduce the quasi-static error to zero using
a calibration procedure, we would still be left with the dynamic error. This would cause
the path accuracy to be 0.0mm while the path repeatability would be equal to the largest
amplitude of the dynamic error (see Fig. 1.3), which would be quite a misleading way to
specify ’accuracy’.

Nevertheless, the first commonly taken step to further improve the accuracy of robot
manipulators are absolute calibration methods, which are already offered by some manufac-
turers (e.g. the ’absolute accuracy option’ offered by ABB [2]).

1I am at the risk of being suspect of advertising for ABB here. However, they just publish the most compre-
hensive product specifications compared to other large robot manufactures like KUKA, Fanuc or Stäubli.
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2.1.1 Absolute Calibration Methods

Robot calibration methods have been studied since the 1980s [34] and are categorized into
three different levels [248]:

• Level 1 calibration is only applied on the joint level and tries to compensate the differ-
ence between actual and measured joint angles. This only compensates the flexibility
of the individual joint’s gears and drivetrains.

• Level 2 calibration tries to compensate the error between the actual and planned TCP
position and therefore also includes geometric errors of the entire robot structure, as
well as static sag caused by the robot’s flexible components. The calibration is usually
performed by updating the robots Denavit-Hartenberg (DH) parameters, which results
in a more accurately planned TCP trajectory.

• Level 3 calibration also includes non-geometric parameters like stiffness, joint compli-
ance and friction. This kind of calibration not only creates a compensation map for
multiple measured points in the workspace, but also tries to fit model parameters like
a stiffness model in certain positions that are then expected to be valid for every pose
of the robot.

Level 2 calibrations are the most common ones and are usually performed by measuring the
actual TCP position using a laser tracker, laser interferometry, camera systems, string pull
devices, or any other kind of distance sensors. Earlier calibration efforts sometimes also just
touched reference parts [117]. Level 3 calibrations are much more involved, since they try
to derive a parametric model using for example measured transfer functions [290]. I will go
into more detail about the modeling of robot manipulators in the next section.

A quite comprehensive compilation of recent calibration efforts for robot manipulators can
be found in [206]. A Motoman P-8 robot is calibrated in [202] using an SMX laser tracker
by measuring 367 robot configurations and identifying 27 kinematic error parameters. The
RMS error at the TCP is reduced from 3.595mm to 2.524mm, which is validated at 21 TCP
positions. In [299], an ABB IRB 2400/L industrial robot is calibrated using a Faro laser
tracker. The mean position errors at the TCP are improved from 0.963mm to 0.470 mm and
the maximum errors from 1.764 mm to 0.64mm. The results are verified at 20 robot positions.
An ABB IRB 2000 robot arm is calibrated in [113] using a ROMER measurement arm. The
mean error at the TCP is reduced from 1.25mm to 0.3 mm and the maximum error from
2.2 mm to 1.4 mm. Finally, an ABB IRB 1600 robot is calibrated in [206] using a laser tracker
and 1,000 measurement points. The mean error at the TCP is reduced from 0.968mm to
0.364 mm and the maximum error from 2.158mm to 0.696mm. The results are verified using
8 robot configurations.

The above mentioned examples are all level 2 calibrations. An example for a level 3
calibration that actually provides verified experimental results is [172], where the authors
load a Mitsubishi PA10-6C robot with a 44 N weight and determine the parameters for a
simple flexible model using torsional springs for the joint stiffnesses. The calibration using the
flexible model improves the mean error at the TCP from 1.8mm to 0.33mm and the maximum
error from 2.45mm to 0.71mm. The results are verified using a coordinate measurement
machine with 10 measurement points.

The shown calibration results are summarized in Tab. 2.2. The ’mean’ value here is de-
termined by moving the robot into multiple poses and determining the absolute positioning
error at the TCP. The mean is then taken over all measurement points. This makes the mean
value shown in Tab. 2.2 quite comparable to the pose accuracy of ISO 9283 shown in Tab.
2.1. It is immediately apparent that the accuracies determined by the independent sources
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Moto. P-8 ABB IRB 2400 ABB IRB 2000 ABB IRB 1600 Mits. PA10-6C

Before
mean [mm] 3.595 0.963 1.25 0.968 1.8
max [mm] – 1.764 2.2 2.158 2.45

After
mean [mm] 2.524 0.47 0.3 0.464 0.33
max [mm] – 0.64 1.4 0.696 0.71

Red.
mean [%] 29.79 51.24 76 52.07 81.67
max [%] – 63.72 36.36 67.75 71.02

Level 2 2 2 2 3

Source [202] [299] [113] [206] [172]

Table 2.2: Static accuracy of a selection of robots after a calibration procedure.

in Tab. 2.2 are in general quite a lot worse than the values provided by ABB in Tab. 2.1.
Admittedly, the robot models on which the calibration methods were performed are quite a
bit older. However, ABB still offers the IRB 1600 and specifies a pose repeatability of 0.02 mm,
pose accuracy of 0.04mm, path repeatability of 0.19mm and path accuracy of 1.03mm ac-
cording to ISO 9283 [4]. This would indicate that the static accuracy of this robot should be
much better than it was determined by [206].

The reason for this is most likely different applied testing procedures. For example, ISO
9283 uses a tilted test plane that fits into the largest possible cube inside of the robot’s
workspace, while the sources cited above use somewhat arbitrary pose configurations for
the calibration procedures2. Interestingly, the tests that were performed by us on different
types of robots (see Fig. 1.2) all showed the error to be within the margin specified by the
manufacturers. The large differences here are definitely notable and show how important it is
to use standardized testing procedures to determine the ’accuracy’ of a robot in a meaningful
and comparable manner.

Nevertheless, all the calibration methods prove to be quite powerful tools to improve
their specifics robot’s static accuracy. However, the static accuracies reached by all of these
examples are lower than the specified pose accuracies of modern ABB robots (see 2.1) and
definitely lower than our requirements. While the amount of improvement reached by all of
these examples is quite impressive, they will most likely never be able to fully compensate the
static error, especially not over the entire workspace. They also do not give any indications
regarding how the path accuracy is affected by these methods. It is reasonable to assume
that the path accuracy will somewhat improve. However, because of the residual quasi-static
error and the still unaffected dynamic error, absolute calibration methods will by themselves
never be enough to reach a path accuracy in the micrometer range with robot manipulators.

To further improve the accuracy of robot manipulators, most approaches try to acquire a
more complete model of the robot that also includes parameters like joint-/link flexibilities
and drivetrain effects like backlash, friction or hysteresis. This was already summarized as a
level 3 calibration in this subsection. However, in order to also reduce the dynamic error of
the robot, these high-fidelity models also need to be combined with active control approaches.
I will give an overview of both of these topics in the following two subsections.

2The accuracy values cited in Tab. 2.1 also probably only represent a ’best case’ scenario and are not neces-
sarily representative for the performance of the robot for real applications.
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2.1.2 Modeling of Robot Manipulators

Regarding the modeling of robot manipulators, my student ZIMMERMANN already gave a very
thorough overview of the entire field in her master’s thesis [312], which I co-supervised in
cooperation with ABB. The results of her thesis are summarized in our paper [313]. Popu-
lar books like [248] and [249] also give a very comprehensive summary of a lot of relevant
topics for the modeling of robot manipulators. This subsection will therefore be partially
based on the above mentioned sources. However, written in a more concise manner and with
several more recent additions by me. I will go into more detail about our work [313] at the
appropriate places.

Since robot manipulators usually have a tree-like structure, most modeling challenges
can be described by looking at a single link. If we are able to perfectly model one link, we
can then chain together multiple links using a flexible multi body simulation to model an
entire robot. Fig. 2.1 gives an overview of the main topics that might be relevant to create a
high-fidelity robot model. A robot link can be divided into three subsystems:

• The motor, including the power electronics and joint control system, which will receive
a desired position / torque from the robot’s higher-level planning system.

• The drivetrain, which receives the motor torque and has the main purpose of ampli-
fying the motor torque via its gear ratio. As we will see, the drivetrain is probably the
main source of error for robot manipulators and also receives the most attention from
the research community.

• The link itself, which is moved by the drivetrain. While the errors introduced by the
link flexibilities are probably smaller compared to the drivetrain, they can still be quite
significant for high-precision tasks.

Modeling of the Motor

Most robots are driven by brushless DC (BLDC) motors. This type of electrical machine
is fairly well understood and can be modeled quite well, see e.g. [28, 195, 284]. I will
show a simple model and a few control approaches for position- and torque-controlled joints
in the Fundamental Theory section 3.4, since this is going to be important to get a good
understanding of the influence of a robot’s structural dynamics on its control system.

A significant source of error that I want to mention here is torque-ripple, which describes
the variation of the motor-torque during operation [263]. This effect is probably the main
excitation source that causes the dynamic error at the TCP of the robot by exciting the struc-
tural dynamics of the mechanical system. Unfortunately, there are quite a lot of effects that
can contribute to torque-ripple [127, 160]:

• For trapezoidal electromotive force (EMF) machines, the ideal EMF waveform gets dis-
turbed by fringing fields at the pole edges of the rotor. The torque magnitude can also
change significantly because of the finite time intervals required by the commutation
between the stator phase windings [138]. Furthermore, the currents applied to the
motor are not perfectly rectangular. The variation in the motor torque can reach up to
25% of the rated torque and happen periodically with the revolution of the rotor [78].

• Sinusoidal EMF machines experience much less torque ripple. However, they are still af-
fected by residual non-sinusoidal flux linkages and current waveform distortion, which
cause additional harmonic torque components.
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Figure 2.1: Overview of subsystems and effects relevant for the modeling of a single robot link.

• Stator slot harmonics are caused by variable magnetic reluctance in the air gaps and
show up as a multiple of the rotational speed and number of slots. Lower frequency
torque harmonics result from the interaction between unbalanced magnetization of the
poles with rotor eccentricity.

• Strain wave gears like Harmonic Drives introduce a kinematic error, which shows up
as an additional disturbance mainly proportional to the second harmonics of the motor
rotation. The actual cause of this error is still not clearly identified, but is most likely
linked to the deformation of the flexspline while the wave generator is being pressed
into it under different loading conditions [111, 140, 180].

While these are quite a lot of effects that add up to the total torque-ripple and are natu-
rally difficult to differentiate by looking at a torque measurement, the disturbance caused
by the torque-ripple is usually well controllable on sinusoidal EMF machines by the motor
controller in the lower frequency range. Torque-ripple effects therefore usually show up in
the 100 Hz - 2 kHz range, with higher frequency disturbances being mechanically filtered by
the motor inertia [127]. Lower frequency torque-ripple, which can cause quite large dis-
placement amplitudes at the TCP of the robot and is still present in most industrial robots, is
therefore usually a sign of insufficient tuning of the joint-controller or too much flexibility in
the drivetrain3.

Since excitation frequencies above 100 Hz are negligible because of their very low dis-
placement amplitudes, these effects are usually omitted when modeling a robot manipulator.
Lower frequency torque-ripple caused by the electrical machine itself can be considered as
an unknown disturbance on the motor axis and can theoretically be controlled quite well by
having a robust current control loop.

In order to still have a somewhat realistic excitation source, I will use a harmonic distur-
bance with additional higher harmonics proportional to the motor speed in my models. This
assumptions matches quite well with measurements we made on different robots, which I
will show in section 4.1.

3When we did our measurements with the RWTH Aachen on an ABB IRB 4600 robot, the low frequency
motor cogging was actually so large that we could use the motor angle measurements and forward kinematics to
quite accurately predict the dynamic error at the TCP for very slow trajectories. Unfortunately, for faster motions
the motor cogging frequencies are high enough to excite the structural dynamics of the robot, which causes much
larger amplitudes at the TCP. This behavior can no longer be predicted by only using the measured motor angles
without a high fidelity model that includes joint and link flexibilities.
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Modeling of the Drivetrain

Link i

Motor

Drivetrain

θm,i+1
θ j,i+1

Link i+1

Figure 2.2: Drivetrain of a
robot.

Most publications concerning the flexibility of robot manipu-
lators will assume a flexible drivetrain. The most simple, and
also most common, approach is to assume a torsional spring
between the motor angle θm and the actual joint angle θ j (Fig.
2.2), see e.g. [164, 259, 264, 272]. Since most of these publi-
cations are concerned with the derivation of a control law that
includes joint flexibility, they often only assume viscous damp-
ing between the motor and joint axis for simplicity. This is
of course a quite gross oversimplification of the friction inside
of a typical robot drive. Additionally, most publications ignore
the typically large gear ratios, which basically completely elim-
inate the influence of external disturbances on the control of
the motor axis. The main disturbance on the motor side is
therefore mainly friction caused by the gearbox.

The friction inside of robotic gears can induce large positioning errors, stick-slip and limit
cycles [55] and is quite difficult to model [242]. The most common friction model combines
viscous damping with Coulomb friction [90] and is for examples also used in [115] for a
more accurate model of a robot drivetrain. A more detailed model is Stribeck friction, which
includes a continuous function between the stiction pre-sliding regime and the friction during
sliding [23]. In [37], the friction of harmonic drive gears is parameterized using a Stribeck
model with good results. It is notable that the measurements and identified model vary quite
a lot from the data provided by the manufacturer. For our work [313] we achieved the best
results using the LuGre model [62], which is a dynamic friction model. A large amount of
further friction models and compensation methods are summarized in [24].

According to [233], the transmission stiffness curve of typical robot gearboxes like har-
monic drive gears include non-linear effects like backlash, hysteresis, soft- and windup zones,
which are quite difficult to model and to parameterize using experiments. A more detailed
model is for example used in [115], which uses a stiffening spring characteristic for the gear,
viscous damping with additional Coulomb friction and current limiters for the motor.

The complexity of the drivetrain dynamics is probably the main reason why control meth-
ods that just use the position of the motor axis could never significantly improve a robot’s
performance outside of simulation models4. As we will see later, using additional position
feedback from the joint side with an absolute encoder will also limit the achievable control
bandwidth significantly without the use of accurate models [47]. All of these problems have
caused a significant amount of research effort to shift towards torque-controlled robots over
the last decades, which I will discuss in the following section 2.1.3.

Modeling of the Links

While the most common approach to model the structural dynamics of a robot manipulator
is to just model the flexibility of the drivetrain as mentioned above, the obvious deficiency of
these kinds of models is that they can only represent torsional flexibilities around the motor
axes. Such a robot model would therefore behave completely rigid for any disturbance acting
orthogonally to the robot’s joint space. In some poses, the real dynamic behavior can also

4In my experience, the limit of the actuators, sensor noise and controller clock-rate are often the most signifi-
cant effects that limit controller performance when trying to apply control methods to real systems. Unfortunately,
these effects are often completely ignored by most publications, which is why I supervised a bachelor’s theses by
my student MAICHNER to investigate exactly these effects on a simple harmonic oscillator test rig. The results can
be found in Appendix B.
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(a) Model with flexible joints and rigid links. (b) Model with flexible joints and links.

Figure 2.3: Static deformation due to gravity of models using either only flexible joints/drivetrains
or flexible joints and links. Motor angles are indicated with black dotted lines and joint angles and
actual deformation of the links with green dotted lines. A completely rigid model with the same motor
angles is sketched in the background.

often not be modeled precisely enough by just using torsional springs around the motor axes
[193].

In [207], it is therefore proposed to use three dimensional spring damper pairs at the
joints of the robot, Fig. 2.4.a., in addition to drivetrain flexibilities. The links are still assumed
to be stiff, however, the model is parameterized using real measurements. The contribution
of the flexible links is therefore lumped together with the joint stiffnesses. A similar approach
is done in [8] for a milling robot. The authors also combine a flexible drivetrain model
including backlash with a lumped parameters model for the three main axes of the robot.
In both works, the simulation is capable of predicting the quasi-static error, which is good
enough for their specific applications, however, fail to predict the dynamic error.

A lumped parameter model that concentrates the compliance of the robot in its joints
has its charm in terms of simplicity and might be good enough in some cases. However,
for high-accuracy applications we would need models of much higher quality. My student
ZIMMERMANN did a sensitivity analysis for her master’s thesis that suggested that the total
compliance of a modern robot manipulator is distributed rather evenly among its joints and
links. The real situation for modern large industrial robots is therefore probably more closely
represented in Fig. 2.3b.

There has been a significant amount of research effort in the field of modeling robot
manipulators with flexible links [89]. Most modeling attempts can be categorized as

• lumped parameter models that add additional spring-damper pairs at the links to
model the link flexibilities (Fig. 2.4.b), e.g. [148, 188, 309],

• assumed mode models where the link flexibility is modeled by a truncated finite modal
series, e.g. [146, 226, 314],

• or full finite element models that investigate the dynamic behavior of robot manipu-
lators in specific poses, e.g. [87, 198, 200].

Most published research is concentrated on deriving mathematical models for flexible link
manipulators without verifying their results on real systems. The sources mentioned in the
items above even only concentrate on single link systems. Sources that focus on two-link
system are for example [102, 103, 197].

It was recognized quite early that for larger multi-link robot models, the system dynamics
can be linearized in a fixed pose, however, the mode shapes and dynamic behavior of the
system are dependent on the current pose and will therefore change with the configuration
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(a) Lumped paramter model
with three dimensional spring-
damper pairs at the joints.

x

y

z

(b) Lumped paramter model
with three dimensional spring-
damper pairs at the links.

(c) Flexible multi-body simulation
with reduced FE models for the
links.

Figure 2.4: Common approaches to model flexibilities in robot manipulators.

of the overall non-linear multi-body system [226]. There is still quite a large amount of
publications that try to tackle this modeling problem and can again mostly be categorized in
the three above mentioned approaches, e.g. [10, 56, 158, 178, 262]. A very good literature
overview for specific modeling approaches can be found in [89]. I will go into more detail
regarding how to use a lumped parameter and reduced FE model for a flexible multi-body
simulation in the Fundamental Theory section 3.2.

Unfortunately, most research is only concerned with deriving mathematical models and
investigating quite specific theoretical effects using these models. There are some publica-
tions that manage to verify their models on academic test benches with one joint and a large
flexible beam with somewhat accurate results [199, 298, 305]. However, there are no pub-
lications that can use their models to actually predict the dynamic error of a full industrial
robot manipulator, especially not in the 10µm range as is needed for this work. As already
mentioned, there are a few lumped parameter models that could later be tuned with real
measurement data that can achieve a quite accurate prediction of the quasi-static error [8,
207], however, these tuned models also fail to give an accurate prediction of the dynamic
error at the robot’s TCP.

A Full Robot Manipulator Model

In order to show the capabilities of current modeling techniques, I want to showcase the
work of my student ZIMMERMANN here, who developed a full robot manipulator model in
cooperation with ABB in her master’s thesis [312]. The results are also published in our
paper [313].

ZIMMERMANN built two robot models of a six-axes ABB robot in Dymola:

• The Flex-Model uses data sheet parameters to estimate models for drivetrain compo-
nents like the gear box and bearings. A LuGre friction model is identified for the gear
box using measurement data available from ABB. The joint and link flexibilites are
modeled using reduced FE models. The link substructures are first meshed in a FEM
software and then reduced using the Craig-Bampton method5. The reduced models for
the substructures are then imported into Dymola using the Standard Input Data (SID)
format. Finally, the model is coupled to a real ABB robot controller using a software-in-
the-loop approach.

5I will go into more detail about model order reduction techniques in the Fundamentel Theory section 3.2
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Figure 2.5: Matrix of FRFs from motor torque (columns) to motor acceleration (rows) for one robot
pose. Adapted from our paper [313].

• The Flex-Model, coupled wrist is the same as the Flex Model, however, also considers the
kinematic couplings of the final three joints of the robot.

The performance of these models is compared to the following data:

• The Lumped-Model is based on seven rigid bodies and flexible joints with three-dimensional
pairs (see Fig. 2.4.b). The parameters are then tuned using measurement data from the
real robot as described in [194, 290]. The main difference here is that the models
developed by ZIMMERMANN are entirely based on manufacturer data sheets and CAD
data, which is already available in early development stages. The Lumped-Model, how-
ever, can only reach a good predictive quality after it is tuned with real measurement
data of the already existing robot.

• The Rigid-Model is based on the Flex-Model, but only uses the drivetrain models with
rigid links, which is more similar to the common modeling approach for robot manipu-
lators.

• Finally, the data is compared to real frequency and time domain measurement data
taken on the real robot.

Fig. 2.5 shows the frequency response functions (FRF) from the motor torque to the motor
axis acceleration. The measurements are organized in a matrix showing the FRFs of e.g. the
input torque of the first joint with the output acceleration of the third joint axis in the first
column and third row. An enlarged view of one measurement is shown in Fig. 2.6.

The Flex-Models predict the dynamic behavior very well across all of these transfer func-
tions. This is remarkable, especially since these models are only based on data sheet and
CAD data, without any additional model tuning. The tuned Lumped-Model also does a good
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job for the first mode of most FRFs, however, often fails to give an accurate prediction of
the higher frequency behavior. The Rigid-Model almost always shows a significant mismatch
between the model and the measurements. This again underlines the importance of includ-
ing flexible links in the model to achieve a high fidelity dynamic model. Link flexibilites
can be somewhat neglected, however, the model then needs to be tuned later with the real
measurement data to lump the link flexibilities onto the joints as it was done here for the
Lumped-Model.

Fig. 2.7 shows three sections of a test trajectory performed by the robot with a constant
speed of 500 mm/s. The real TCP position is measured using a laser tracker. The Lumped-
and Flex-Model perform roughly the same on average, however, depending on the specific
trajectory sections one of the models will shortly perform significantly better, e.g. at the top
right Fig. 2.7. The average model deviation over the entire test trajectory is 0.367 mm for
the Flex-Model, which is again very impressive for an entirely un-tuned predictive model,
however, still one order of magnitude worse than the 20µm accuracy requirement for this
work.

These results make it quite clear that even with very sophisticated modeling approaches,
the current state of the art is not capable of making predictions for the real TCP path of a
large robot manipulator in the 20µm range. The main reason for this is that while we are
able to achieve quite a good model fit for the overall dynamic behavior as can be seen in Fig.
2.5 and Fig. 2.6, we still have no good way of estimating the actual excitation sources of the
real system. The main driving forces of the dynamic error are probably torque-ripple at the
motors, grinding and stick-slip effects at the gears, as well as additional external excitation
sources like running factory equipment. In order to achieve a perfect prediction of the actual
TCP path, we not only need a high quality model of the pose depend system dynamics of
the robot, but also a good estimation of all of these excitation sources, which are transferred
through different paths of the system and finally add up to the total response at the TCP .

This currently makes it unfeasible to use models to predict the actual TCP position in
high enough accuracy for this work, by just using measurement data available to the typ-
ical robot manipulator like the motor angles. However, an accurate models of the robot’s
structural dynamics could still be used for active vibration damping approaches that aim to
dampen the system’s dynamic response by reducing resonance peaks in the transfer path of
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the control plant. I will present a few common control approaches for high-precision robotics
applications in the following section.

2.1.3 Control Concepts for High Precision Robotics

Over the past decades, there has been a very large research effort to find suitable control
strategies to precisely control the TCP of a flexible robot using its joint torques. The main
challenge here is the non-collocated nature of the control problem that makes it quite diffi-
cult to achieve a stable closed-loop system [219], especially with high enough bandwidth to
control multiple modes of the structural dynamics of the system to achieve a tracking perfor-
mance in the 10µm range. A lot of common control approaches are already well summarized
in the books [248, 249] and overview papers [44, 89]. Most methods can be categorized as
follows:

• Feedforward based approaches:
These methods usually assume that the joint torque is an available control variable and
will then try to use an inverse model of the link flexibilities of the system to predict
the robots structural dynamics in order to steer the joint torques in a predictive way to
reduce the tracking error at the robot’s TCP.

• Methods using additional feedback:
For these approaches, most authors still use the joint torques of the robot as the con-
trol input, however, they try to augment the control system with additional feedback
sensors. These are usually either strain gauges or acceleration sensors attached to the
links of the robot, or a measured distance between the robot’s TCP and the process
surface using e.g. laser sensors. While this will simplify the control problem, the inputs
and outputs of the system are still non-collocated and also require high quality models
to function. The applied approaches vary widely, from just passivity based approaches
that try to introduce more damping into the system to full tracking controllers.

• Passivity based methods:
Some methods just try to introduce more damping at the joint controllers to reduce the
dynamic error by increasing the dissipation of energy in the system. These methods
can work quite well without additional knowledge about the exact system behavior.
However, they will not improve the overall tracking performance of the system, since
the controllers can not influence the quasi-static error, which cause the robot’s TCP to
sag down due to gravity.

Most literature concentrates on simplified single link (e.g. [80, 141, 166, 177]) or two link
systems (e.g. [22, 39, 147, 192]), which I will not discuss here because of their lack of
practical relevance. In the following, I will shortly describe some approaches used by authors
that at least tried to tackle a flexible multi-link problem for completeness’ sake. However,
since most of the proposed control methods share the same issues, when trying to apply
them to the control system of a real robot manipulator, I will not go into too much detail
here.

In [173], a controller for a model with joint and link flexibilities is designed by using
non-linear feedforward and PID state feedback controllers. The controllers are designed by
converting the manipulator dynamics into error driven system dynamic equations, which are
then stabilized using the second method of Lyapunov. The controller shows good results,
however, is only implemented on a numerical model.

The authors of [85] combine a closed-loop shaped-input filter with a conventional PD con-
troller. The control approach is tested on an academic manipulator test rig with five DOFs,
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however, with the main portion of the robot being a stiff parallel kinematic and only the final
link being a large flexible beam. The controller is capable of significantly reducing the vibra-
tion amplitudes of the large flexible beam from 20mm to 2mm. However, it is questionable
how much these results could be transferred to a more typical industrial robot manipulator
that consists of more than just one artificially imposed flexible component. [228] developed
a passive control design that uses a passive D part that directly acts on the measured joint an-
gle instead of the error. The controller is tested on the same academic test bench as [85] and
achieves a similar reduction of the vibrations, however, with quite bad tracking performance.

A computed torque control law for flexible manipulators is derived in [147] using general-
ized Newton-Euler models. The work is more focused on the efficiency of the implementation
in Mathematica and does not show any performance results for the derived controller. [106]
introduces a non-linear vibration feedback term into a traditional PD controller to control a
flexible SCARA robot. The controller can perfectly control the simulation model, however,
there are no experiments shown.

A purely feedforward computed torque based approach is shown in [25] using an ana-
lytical model for flexible beams. The results are also only tested in simulation on a simple
flexible multi-link model. [128] also uses a computed torque approach based on the iterative
inversion of a non-linear non-minimum phase model. Tests are also only performed on a
simple simulation model.

The authors of [44] utilize a backwards integration scheme of the elastic dynamics along
the desired joint trajectories. Additionally, a feedback controller is implemented that only
requires measurable joint states. The method is shown to be stable on an academic test
bench with two flexible links. However, the experiments still show quite large tracking errors
of over 10mm and settling times of over 15 seconds. The authors then propose an optimal
trajectory planning algorithm to reduce jerk in the planned trajectory.

The authors of [232, 297, 304] derive mathematical flexible link models in order to com-
pensate the TCP error with measured position feedback using a laser. The models and control
methods are again only tested in simulation.

A neural network based adaptive controller to damp the vibration of a flexible multi-
link system is developed in [135], resulting in a slight reduction of residual vibrations in
their simulation model. [167] investigates an adaptive energy-based robust control scheme,
which shows some improvement in their simulation model.

A model using non-linear generalization of the standard Euler-Bernoulli kinematics is
shown in [43]. They then propose a feedforward approach using causal stable inversion over
a bounded time domain of non-linear non-minimum phase systems. The method is again
only tested numerically, showing good results.

A more robust approach is investigated in [308]. The authors enhance the standard
PD joint controllers with another dissipative term to derive a control scheme that does not
require exact model knowledge to function. However, the authors can not give any tuning
guidelines for their control parameters and also only test their method in a simple simulation.
A similar approach is used in [105]. [67] also investigates a passivity based approach using
modal feedback vibration control on the joint level. The method is tested on an academic test
bench resembling a large flexible double pendulum. The authors are capable of significantly
reducing the vibrations caused by a step response. However, with the settling time still being
over two seconds and without performing additional tracking experiments. In [271], it is
shown that the over-estimation of natural frequencies can lead to an unstable closed-loop
response when using a model based inversion controller. The authors also propose a robust
control design based on the second method of Lyapunov. The control design is only tested on
a simple numerical model.

[149] investigates the possibility of using additional piezo electric sensors and actuators
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across the flexible links. Input/output linearization and adaptive feedback linearization is
used to design a control scheme for a multi-link model where only one final link is flexible.
The controller is capable of reducing vibrations in their simulation model by about 50%.

While there is quite a large amount of publications available that try to solve the under-
lying control problem, almost none of these are even tested on academic test benches. There
seems to be no published work available that managed to adapt the control system of a real
industrial manipulator in a way to improve its dynamic error below the 20µm range required
for this work. The main reasons for this are probably:

• Most approaches assume that the joint torques are just readily available as the con-
trol input. The motor current, and therefore torque on the motor side, can indeed be
measured. However, industrial robots usually utilize gear boxes with a quite large gear
ratio of N ≥ 100, which are also not perfectly stiff. As already mentioned in the pre-
vious subsection, this means that the torque on the motor side and joint side are not
equal, because of the large effects of friction and compliance inside of the drivetrain
of the robot joint. Consequentially, for torque-controlled robots there is an additional
torque-controller needed that just tries to enforce the desired torque on the joint side.
However, the bandwidth of these controllers is usually severely limited by sensor noise
and modeling errors. E.g. the Franka Panda robot claims a bandwidth of 10Hz, which
would already be quite low in order to control multiple structural modes for effective
vibration damping. I will go into more detail into the limitations of torque-controlled
robots in section 4.3.2.

• Because of the non-collocated nature of the control problem, most proposed approaches
require very precise models in order to be stable. I already elaborated on the large
challenges to get a good dynamic model of a real industrial manipulator in the previ-
ous subsection: Because of the large amount of components, bolted connections and
non-linear effects like friction, backlash and stick slip in the drivetrain, it is still quite
unfeasible to acquire a good enough model of the entire global dynamic behavior of an
industrial robot manipulator.

• As it is unfortunately still common practice in the control community, almost all pro-
posed approaches are not tested while also considering effects like sensor noise, signal
delay, actuator dynamics/limits and discrete controller clock rates. However, these
kind of effects are very relevant for the performance, robustness and stability of a real
mechatronic system and a newly developed control approach should always be tested
with these in mind to give them more practical relevance6.

Force controlled robots that use position controlled joints with a force/torque sensor at
the robot’s end effector to apply a desired contact force also have similar stability issues,
when their structural dynamics are not considered in the control scheme, see e.g. [142, 159,
163, 169, 186, 295]. However, since this work is only concerned with high-accuracy path
tracking for non-contact processes, I will not go into more detail here.

Collaborative Robots

Over the past two decades, a new class of collaborative robots has started to emerge. The
main purpose of these types of robot manipulators is to be light weight, easy to handle and

6I am aware of the importance of doing fundamental research on simplified simulation models to keep the
field moving and potentially discover new powerful control methods. However, this thesis is mainly concerned
with the development of working mechatronic prototypes, which is why I am a bit harsh here on purely theoretical
publications.
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to safely operate in cooperation with human workers. These robots often utilize torque-
controlled joints in order to enable them to sense any kind of unforeseen contact and operate
safely in the proximity of human workers.

One of the early origins of torque-controlled robot is for example the German Aerospace
Center of DLR [84]. The main challenge of building a collaborative robot is actually con-
trolling the joint torque, which is a requirement for most methods described in the above
section. In order to achieve this, most collaborative robots utilize a torque sensor on the
joint side and a simple model for the drivetrain flexibilities [12, 260, 272]. When the joint
torque is then available as a control variable, one common strategy is to use an impedance
controller to enforce a desired stiffness and damping for the respective joints, or globally in
the task space. This enables the control system to let the robot behave quite softly against
external disturbances, which has advantages for the safe operation with humans and cer-
tain assembly tasks [182]. In order to still achieve an accurate tracking performance, an
additional gravity compensation scheme is usually applied that uses a model of the robot’s
rigid body dynamics to compensate for the quasi-static gravity loads on the joints. A lot of
incremental improvements to these types of control schemes can for example be found in
[13–17], which also led to the development of commercial collaborative robots like the Kuka
iiwa [161] or Franka Panda [98].

While these robots can achieve new applications in the field of collaborative robotics like
human robot interaction and assembly tasks, they are still not suitable for high-precision
path tracking yet. The main issue for torque-controlled robots is that they rely on an accurate
model of the robot’s rigid body dynamics for quasi-static accuracy. As I have already shown in
the Fig. 1.2b in the introduction of this theses, the Franka Panda actually shows significantly
worse tracking performance than the position controlled UR10, which is comparable in size,
weight and cost. This is most likely because of the imperfect gravity compensation. How-
ever, this is mostly a tuning issue that might be improved using similar absolute calibration
methods as mentioned in section 2.1.1. Torque-controlled robots should be also better suited
for individual calibration, since their control system is inherently designed with a gravitation
compensation. In contrast, traditional position-controlled robots are usually calibrated by
modifying their DH parameters, which is not necessarily easy to do for most commercially
available robot manipulators.

The second issue is the bandwidth of the joint torque-controller. While development of
new and better torque-controlled robots continues to move forward, their control bandwidth
is probably still not sufficient to apply most methods described in the above section.

One of newest torque controlled robots is the SARA IV by the German Aerospace Center.
This robot uses improved hardware that enables it to incorporate direct position feedback
from the joint side into the control system. This simplifies its control scheme, since a lot of
previous methods needed to estimate the actual joint angle for their gravity compensation
[18, 210]. The current control scheme of the robot is published in [134]. The authors show
that they are able to significantly reduce the quasi-static and dynamic errors on the joint
side position below 0.2 mrad using the additional joint side feedback. Unfortunately, mea-
surements on the tracking performance at the TCP of the robot are not provided. However,
assuming two rigid main links with 0.5 m lengths each, this would still result in a tracking
error at the TCP of the robot in the range of 100µm. The authors also show a validation mea-
surement for their torque controller, which shows good tracking of the desired torque with
some residual vibrations. However, the torque-controller is only verified up to a bandwidth
of 0.3Hz.
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Micro / Macro Redundancy and Other Approaches

In the previous sections we have seen that the current state of the art is not capable of
reaching a path tracking accuracy below 20µm using the control system of an industrial robot
manipulator. In this section, I want to briefly discuss other methods that are also somewhat
similar to our completely external approach.

An idea that is closely related to this work, and has already been explored in the lit-
erature, is the utilization of micro/macro redundancy: A first set of actuated macro DOFs
provide a large range of motion, but without the required accuracy. The second set of micro
DOFs utilize smaller sized actuators, which only have to carry the robot’s tool or payload
and provide the required high precision over a larger bandwidth. In [58], the authors try
to suppress unwanted vibrations of a large flexible manipulator through the inertial forces
induced by the joint torques of a small robot arm located at the TCP of the large robot. The
concept is further explored in [57] by using the small arm as a two DOFs vibration absorber
with acceleration feedback. Similarly, the vibrations of the mounting base of a manipulator
are compensated by acceleration feedback in [170]. In [246], a small reach manipulator is
also used to damp the vibrations of a long reaching one. Simulation and experimental results
of a similar approach are shown in [107].

The main difference to the external approaches investigated in this work is that these
methods are implemented within the control structure of the robot system, while the follow-
ing concept is supposed to work independently of the base robot. The project that produced
most of the works cited above was only focused on very large manipulators with over 10m
reach for disaster sites. They were therefore more concerned with just keeping the oscilla-
tions at the TCP of the large robot in some manageable region, than high-precision tracking
of a desired trajectory.

The most closely related work is probably [82], where the author developed a 6-DOF
Lorentz actuator with gravity compensation for vibration isolation in in-line surface metrol-
ogy. The actuator is supposed to stabilize a camera system carried by a robot to perform high
precision measurements on nano-scale production lines of e.g. wafers or solar panel cells.
However, only the gravity compensation is controlled actively, while the vibration isolation is
implemented using a passive design. The actuator achieves up to 35Hz bandwidth in 6 DOFs
for its closed-loop tracking performance with a 2kg payload. The controller achieves 5µm
tracking precision on a step response, however, only within a movement range of 100µm. Un-
fortunately, the system is only tested on an isolated test bench and never used on a moving
robot.

Conclusions

The literature research for this section made it quite clear that there is currently no robot ma-
nipulator system available that can achieve the accuracy requirements specific to this work.
Since we are are convinced that there is no way to achieve the required path accuracy using
the robot’s own control system with the current state of the art, we decided to investigate
external stabilization approaches in this thesis.

A similar concept to the micro/macro approach for robots are inertially stabilized plat-
forms, which I will discuss in the coming section.

2.2 Inertially Stabilized Platforms

The concept of inertially stabilized platforms (ISP) is already well explored and has multiple
applications, such as stabilizing the imaging sensor inside of a camera [69], precise pointing
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of space telescopes [130] or inter-satellite laser communications [119]. While these devices
mainly share the same goal of controlling the line of sight (LOS) of one object relative to
another object or inertial space, the requirements and implementation for their specific ap-
plication can be considerably different [86, 95, 187]. A comprehensive overview of the main
concepts and challenges of building an ISP can be found in [126].

Image Stabilization Systems

The general idea of an ISP is to stabilize a mass against external disturbances. For example,
the imaging sensor of a camera system has to be held as stable as possible to produce sharp
images. In order to isolate the sensor against the natural hand shake of the human operator,
a lot of camera manufacturers started to employ optical image stabilization- (OIS) and in
body image stabilization (IBIS) systems over the past decade. An OIS system stabilizes a
lens of the optical system [196, 256, 303], while an IBIS system stabilizes the sensor itself
inside of the camera [212]. A typical IBIS system is shown in Fig. 2.8.a. The sensor is usually
embedded on a stabilized platform, which is passively held in place by a set of springs (not
depicted). The platform is then actuated by a set of Lorentz-actuators. Feedback is usually
provided by a MEMS acceleration sensor placed on either the stabilized platform or in the
camera body, or even by using the image data from the sensor itself. Unfortunately, since
IBIS systems are part of the quite competitive commercial camera market, there is not much
information available about the exact workings of the control systems. Control algorithms
are usually a lot harder to reverse engineer than mechanical designs and are therefore well
protected by the individual companies.

Typically, the performance of IBIS systems is specified by camera manufactures using
’stops of light’, meaning the ability of the system to reduce disturbances at the camera sensor
to allow for a lower shutter speed while still being able to produce a sharp image. The
testing procedure is very specific to imaging systems and is described in the CIPA standard
[71]. One of the most modern professional cameras is the Sony Alpha 1, which claims an
improvement of 5.5 ’stops of light’ from their IBIS system [257]. Since one ’stop of light’ is
equal to one halving of the possible shutter speed. This could, somewhat naively, be equated
to a reduction of vibrations of about 45-fold. For comparison, for this work we need a 50-fold
improvement of the tracking performance of the UR10 robot.

Of course it is difficult to directly compare these two quite different applications. IBIS sys-
tems do not have to actually track a target and only have to decouple the vibrations from the
sensor, while they can still allow a slow drift. The stabilized load is also significantly smaller
and the typical disturbance frequencies produced by human hand shake is only around 5Hz.
A human operator also usually tries to stay as still as possible and is not moving while they
are taking pictures. The testing procedure applied to camera systems is also quite hard to
compare to the application investigated in this work.

There are significantly more scientific publications available that investigate the perfor-
mance of digital image stabilization algorithms for video [203]. For example, [120] compares
the performance of various digital image stabilization methods on a series of video tests. The
most modern algorithm [154] is capable of reducing the average acceleration of feature
points in the video by around a factor of 7. From experience, digital image stabilization algo-
rithms, which can be applied in post processing, usually perform much better for video than
the physically actuated IBIS systems in the camera. This is therefore probably a much more
reasonable metric to evaluate the performance of modern camera stabilization systems. For
comparison, the stabilization unit developed in this work is capable of reducing the average
position tracking error of an UR10 robot by a factor of c.a. 140, while attenuating the average
accelerations below 5Hz by a factor of 100 and below 50Hz by a factor of 20.
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Figure 2.8: Examples for ISP systems.

While we drew quite a bit of inspiration from typical IBIS systems, the stabilization unit
that we developed in this work for robot manipulators is capable of reducing vibrations by a
significantly larger amount with higher bandwidth, while also being able to precisely track
a desired trajectory in the 10µm range with a higher payload. Additionally, our system also
had to deal with the interaction between actuation forces and the structural dynamics of the
robot and typical implementation challenges like sensor noise which get significantly more
difficult to handle as the system becomes more precise.

Gimbal Systems

Another example for ISPs are gimbal systems, which are usually actuated by two to three
rotary DOFs, Fig. 2.8.b. They are for example used for laser pointing devices or stabilization
systems for cameras [185]. Gimbals are mostly actuated by BLDC or stepper motors and
sometimes utilize gears if higher accuracy is needed. They are usually used to track or sta-
bilize larger motions and can be quite effective in reducing the quasi-static error, however,
are often less suited for high precision applications where high bandwidth control is needed
[110].

In practice, most gimbals can be controlled using simple PID control strategies, depending
on the application. In [171], a cascaded extended state observer is investigated for the precise
control of a control moment gyroscope (GCO), which are commonly used in spacecraft for
attitude control. Using a desired harmonic speed profile with an amplitude of 5deg/s at 3Hz,
the system can achieve an angular speed error of 0.5deg/s , which correspond to a 0.4 mrad
angular position error. For comparison, a gimbal with the same performance mounted on
a robot and assuming a distance of 10 cm to the process surface would result in a 40µm
tracking error at 3 Hz. The authors of [176] also investigate a GCO system and achieve a
similar angular speed error of 0.6 deg/s at 3.8 Hz. This seems like a good enough performance
to consider these systems also for this work. However, GCOs are generally not intended for
pointing applications, which allows them to be build in a very compact way, which partially
explains there good performance. It would therefore be quite challenging to transfer the
typical GCO design to a pointing device, while still maintaining the same performance. The
above mentioned systems are also only tested at relatively low bandwidth and at a very
low speed of 5deg/s. As of the time of writing, there seems to be no commercial gimbal
system that would be suitable to our applications, since most systems are designed to stabilize
comparatively large disturbances for camera systems and do not require high speed or µm
precision.
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As with IBIS systems, it is difficult to find accurate information about the exact control
architecture and possible precision with these kinds of systems, since the majority of them
are used in commercial or military applications. The French manufacturer of UAC payload
systems Merio claims a precision of 150µrad for their gyro-stabilized camera gimbal systems
[280], with a usable bandwidth of ∼ 10Hz for our specific requirements7. In 2016 the US
Air Force published a Small Business Innovation Research (SIBR) project about a multi-axis
precision seeker-laser pointing gimbal [281]. The claimed goal of this project is a precision
of 100µrad with no specified bandwidth. Using the same 10cm distance, this new military
grade gimbal system would result in a 10µm tracking error.

One of the main reasons why the gimbal systems quoted above can be this precise is that
they usually do not have to consider the dynamic interaction between the actuated gimbal
and the system carrying the gimbal. For example, a laser pointing gimbal attached to a ship
is negligibly lighter than its host system and does not have to worry about the reaction forces
from its motions effecting the ship, if it is rigidly mounted. The same is true for gimbals that
are carried by humans to stabilize camera footage. In this case, the gimbal is used to stabilize
larger quasi-static disturbances caused by for example walking and the IBIS system of the
camera to attenuate higher frequency jitter introduced by hand shake. On the other hand, a
gimbal mounted to a UAV might by limited in its dynamics because of the effects of its own
motion on the flight controller.

The Effects of Structural Dynamics on Gimbal Systems

Structural dynamics can also have a quite significant influence on the performance of gimbal
systems. For example, the effect of bending of the gimbal structure itself is investigated in
[190, 224]. In [79], a lead compensator is used to attenuate jitter by 20 dB up to 100 Hz.
An interesting application is shown in [270], where the authors use GPS data to control the
structural modes of a large academic gimbal structure using a LQR control scheme, with the
closed-loop system achieving a precision of 0.1 rad. The control for the gimbal system inside
of the Hubble telescope is investigated in [291]. A standard PID controller is extended with
two dipoles to reject disturbances coming from two structural modes of the system. The
controller is able to attenuate the the two resonance peaks by up to −40 dB and achieves an
overall control bandwidth of 1.5Hz.

Similar to the drivetrain flexibilities of robots, the torsional flexibilities of the servo mo-
tors can severely limit the performance of gimbal systems. Typically, the important transfer
function is from the servo motor torque to the gyro feedback at the gimbal, which can ex-
perience an amplification of up to a factor of 15-25 at the resonance peaks, which usually
limits the closed-loop bandwidth to 1/10 of the first resonance frequency [126]. The most
common control approach to improve the performance of the system regarding torsional
structural modes are notch filters. However, because of the additional phase lag introduced
by these filters, the final closed-loop control bandwidth is often limited to 1/3 of the first
resonance peak [175]. For example, a controller for a gimbal moving a panel for the Orbiting
Solar Observatory-8 is investigated in [300], which employs a compensation filter to cancel
structural modes of the system.

A third effect that will effect the performance of gimbal systems is flexibilities in the

7Merio does not specify the bandwidth of their gimbals. However, I got a confirmation from their engineering
team that they achieved a closed-loop transfer function for one of their military projects that could be fitted with
a second order system with ωn = 122.23 rad/s and ζ = 0.3. This would result in a control bandwidth of about
∼ 30Hz if the bandwidth is defined at −3dB. Using the same 10cm distance as before, we would need 200µrad
precision. Starting from 150µrad precision, we can define the ’usable bandwidth’ at the frequency at which the
closed-loop transfer function has a larger error than 200µrad, which would happen here at ±2.5 dB magnitude or
more than 30 deg phase delay, which both happens at about 10Hz in the transfer function given to me by Merio.
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mounting structure. Especially if relative feedback between the gimbal and the ground is
needed, which is a similar situation to a the stabilization of a flexible robot that is investi-
gated in this work. The most common approach here is to stiffen the mounting structure.
Effective control methods again mostly include the employment of notch filters to attenuate
resonance frequencies in the closed-loop transfer function [60, 118].

As we have seen in this subsection, the performance of gimbal systems can be severely
limited by the structural dynamics of the gimbal itself or its mounting structure. Systems
that have to deal with structural dynamics can still be quite precise, however, can often only
operate with rather limited bandwidth. Some commercial systems like the gimbal systems
available from Merio come close to our required specifications at first glance, however, these
systems are probably tested on fixed rigid mounting structures.

Conclusions

As this short overview has shown, there is probably no commercial product available that we
could just mount on our robot as an ’of-the-shelf’ solution to meet our accuracy requirements.
Especially, since the dynamic interaction between the pose dependent structural dynamics of
a lightweight robot arm and a high-precision stabilization unit is a rather untouched field
as of right now. The overview papers [126, 185] also recommend that every gimbal solu-
tion should be developed specifically for the desired application, since the requirements and
possible approaches can vary widely. For these reasons, we decided to develop our own
stabilization unit for our specific application.

2.3 Active Vibration Damping Approaches

The other approach we want to investigate in this work is the employment of active vibration
damping techniques using additional proof-mass-actuators at the robots TCP. In this section,
I will give a short overview of the field of active vibration control, with focus on the appli-
cation and capabilities for real world systems. A more detailed overview about the theory
of vibration control that is necessary for this work will be given in the Fundamental Theory
chapter 3.3

Active vibration control has a very long history with already a lot of good books summa-
rizing the most common control approaches [77, 219, 282]. Good overview papers are for
example [20, 168, 190]. A typical active vibration damping problem is shown in Fig. 2.9.
A flexible structure is excited by a disturbance force fdist, causing the structure to react with
high vibration amplitudes depending on its system dynamics. The general goal of active vi-
bration control is to reduce any residual vibrations at one or multiple points of interest on the
structure. In order to do this, one or multiple actuator forces fact are applied to the structure
following a control law. Feedback might also be provided by one or multiple sensors placed
on the structure.

The most commonly used actuators to produce a control force on the structure are shak-
ers, which are directly connected to the structure via a stinger and are usually actuated
using a piezoelectric, elctrodynamic or hydraulic design. Another possibility are proof-mass-
actuators, which create a control force using the inertia of a moving mass without needing
to be attached to another structure. A less common approach is also to use actuators that are
attached at two points of the same structure and can exert a force by contracting or extending
themselves. Typical sensors for feedback are piezo accelerometers, MEMS, strain-gauges, or
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Figure 2.9: A flexible beam as a typical active vibration damping problem.

any kind of position sensors like lasers or eddy-current sensors [139].
The most common control approaches can be structured as follows:

• Classical active vibration damping feedback based approaches like Positive Position Feed-
back [114], Direct Velocity Feedback [219], lead compensators, or notch filters.
These methods usually aim to reduce resonance peaks in the closed-loop transfer func-
tion and are therefore also only effective at those frequencies. Their big advantage,
however, is their simplicity and guaranteed stability if sensors and actuators are collo-
cated. They also do not require accurate models and are quite robust against spillover
due to unmodeled system dynamics [93].

• Model based approaches with sensors feedback like Pole Placement, Linear Quadratic
Regulators, H∞ Control, or Receptance Based Eigenstructure Assignment [222].
Modern control methods can seem quite powerful, since they are theoretically able to
completely reshape the entire closed-loop transfer function and therefore the dynamic
behavior of the controlled system. However, they require very accurate models and
often even full state feedback to work properly. This makes them very sensitive to
typical implementation problems like modeling errors, sensors noise, or time delay
[219].

• Pure feedforward approaches like LMS or fxLMS based noise canceling methods [11].
The basic idea of these methods is to produce a 180 degree phase shifted copy of the
vibration signal at the point of interest to cancel out any disturbance. These meth-
ods can work quite well if the disturbance is stationary and does not change rapidly.
They require no system models, however, are mostly effective against narrow-band
disturbances. Unfortunately, these methods need a good measurement of the distur-
bance signal to function properly. This works quite well in for example noise canceling
headphones, since the disturbing sound vibrations can be measured with a microphone
outside of the headphones to produce a 180 degree phase shifted signal at the ears.
However, the measurement of the underlying excitation signal of the system becomes
much more difficult for mechanical systems like our robot manipulators that are mainly
excited by a combination of torque ripple and gearbox stutter. These methods also of-
ten work very well at reducing the vibrations at the point of interest, however, might
produce a large amplifications of vibrations at other points of the structure.

Active vibration damping has found a lot of use in any form of application that has to deal
with harmful vibrations like the reduction of gearbox vibrations [27], vibration control in
helicopters [155] and the suppression of vibrations in rotating machines [307]. Active vibra-
tion damping techniques are also often employed in civil engineering for structural control
against earthquakes [1, 250], floor vibration control [241], or vibration control for telescopes
[150].

Most relevant for this work are active vibration control applications in the field of high-
precision machines and processes, which I will elaborate in a bit more detail in the following.
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Active Vibration Control for High-Precision Applications

An H∞ controller is designed in [306] for the active suspension of hard drive disks. The
system dynamics are described by a simple model with two states, with the controller man-
aging a reduction of the RMS of the residual motion at the hard drive of 42%. Another H∞
controller is used in [66] for the control of the pick up head of a disk drive, achieving an im-
provement of 43 % in tracking precision. For the same application, a sliding mode controller
is designed in [293], reducing the tracking error by 50 %. All of these publications have in
common that they only have to control the first dominant mode of the system and can use
very simplified models to design their controllers. It is rather questionable if the same or
better results could not also have been achieved with much simpler classical controllers.

In [201], a positioning system of a space borne interferometer mounted on a 10 m long
flexible structure is described, which requires 10 nm precision. The system consists of three
actuated stages: a stepper motor for low frequency, long travel reach (1 m); an intermediate
voice-coil actuator for medium-frequency (< 10Hz); and an actuated piezoelectric device
(PZT) for high-bandwidth control (10 − 1, 000Hz). Classical control design methods were
used to design the control-loops of the each subsystem using measured transfer functions of
the control plants. All three stages managed to reduce the tracking error of the telescope
by 98.6 % from 735nm to 10.1 nm, which is a similar ratio of improvement needed for this
work8.

A 6-DOF vibration isolation platform is shown in [152]. The concept is similar to the
stabilization unit developed in this work. The platform is held by four parallel springs and
actuated by Lorentz actuators. In order to deal with the coupled dynamics of the 6 DOFs
of the system, the authors used a modal PI controller with the control goal to set all modal
accelerations to zero. The platform is tested for one DOF and achieves a vibration attenuation
of up to −24dB at the first 10Hz resonance frequency of the system. The system is, however,
not designed to also perform a tracking task.

In [136], a survey is performed for high-precision control of 2-DOF lightweight galvano
scanners. Classical control strategies for these kinds of systems are shown for example in [26,
189]. The design of disturbance observers are investigated in e.g. [33, 151]. Feedforward
approaches are for example discussed in [61, 205, 230]. However, the authors of [136]
recommend to always use feedforward approaches in combination of feedback methods to
compensate for modeling errors.

As an example for the performance of 2-DOF galvano scanners, I want to discuss the
system shown in [136]: Two lightweight galvano mirrors are mounted on one BLDC motor
each in order to reflect a laser beam on printed circuit boards. The authors use a linear
matrix inequality (LMI)-based robust feedforward compensator design as the bases of the
positioning system. In order to attenuate any residual vibrations, the control scheme is com-
plemented with a feedback compensator consisting of a lead-lag phase filter and two notch
filters. The system achieves a pointing accuracy of 5µm on the circuit boards. The band-
width of the system is not shown, however, the settling time of a step response is below 1ms.
Compared to the application investigated in this work, the overall challenge of designing
2-DOF galvano scanners is a bit simpler. For example, the two mirrors of the system can
be actuated completely independently, meaning one does not have to worry about the cou-
pled DOFs in the control system. The mirrors are also very lightweight and probably do not
cause any dynamic interaction with the mounting structure, with the main dynamics visible
in the control-loop probably coming from the structural dynamics of the actuated mirrors

8This is a nice example of using clever system design in combination with properly applied classical control
methods to achieve very impressive results on a real system. The key for this application were the three different
actuator stages, which are each suitable for a specific region of the desired control bandwidth. This is a similar
approach that we tried with our first stabilization unit prototype, see Appendix C.
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themselves. The system can also be mounted on a fixed rigid structure, instead of a moving,
flexible robot manipulator. However, the accuracy that can be achieved with these systems is
certainly impressive and we used some lessons learned from the above sources in the design
of our stabilization unit, like ensuring a mechanical design with decoupled DOFs.

Even more accurate scanner systems are usually actuated using piezos and are for ex-
ample discussed in [165, 294], however, at the cost of way lower actuation range. In both
cases, a high-gain PD feedback controller is accommodated with notch-filters at the resonance
peaks of the close-loop systems to achieve better system performance. Additionally, creep
and hysteresis compensation schemes are employed. The system shown in [165] achieves
a maximum error of 1µm at 200Hz scanning rate with a maximum motion range of 50µm,
which corresponds to a 2% accuracy relative to the maximum motion range of the system.
Unfortunately, piezo actuators were not suitable for our application because of their very lim-
ited possible range. For comparison, the stabilization unit developed in this work achieves
15µm tracking precision on a moving robot with a maximum motion range of 5mm, which
corresponds to a relative accuracy of 0.3%.

More similar to the topic of this thesis is the system shown in [245], which uses PZTs on an
academic test bench with one flexible beam actuated by one joint. The PZTs are mounted on
different positions across the beam and position feedback at the tip of the beam is measured
using a laser diode mounted near the joint of the system. The authors use a Positive Position
Feedback controller and achieve an attenuation of about −20 dB at the first two resonance
frequencies of the system, which is tested using the step response of the joint.

Active Vibration Damping with Proof-Mass-Actuators

For our second external stabilization approach, we will use proof-mass-actuators (PMA) to
change the closed-loop structural dynamics of the robot manipulator in order to damp un-
desired vibrations. This concept has of course already been explored in quite a bit of detail
in the literature, however, mainly for stationary systems that do not change their dynamic
properties over time.

In [83, 213], a small scale PMA is built using a voice coil and three spring rings. The
actuator is used to damp the frequency response of a plate. The authors note that even
the uncontrolled actuator already adds a significant amount of damping to this system by
just acting like a passive spring-mass vibration absorber. A standard Velocity Feedback Con-
troller adds another −10dB of attenuation to the closed-loop system response over a broad
frequency range of 1− 1.000 Hz.

Another standard PMA consisting of a voice-coil and two springs is used in [42] to actively
damp a plate. The authors first modify the actuator dynamics of the PMA by using a position
PID controller as an inner-loop. This is a similar approach as we used for this work, except
that we completely removed the physical spring from the PMA to give us more flexibility in
the actuator control design. The authors then use an outer-loop Velocity Feedback Controller
to attenuate the plates structural dynamics. The system is capable of attenuating the first res-
onance peak by −20dB, however, it worsens the frequency response below the first resonance
peak by +15 dB, which might be undesirable depending on the application9.

In [63], a PMA is used to damp the structural dynamics of an entire bridge. A single
large PMA of typical design is placed in the middle of the bridge using a H∞ controller to
damp the first mode of the bridge. The controller achieves an attenuation of −20dB at the
first resonance peak, however, also worsens the frequency response of the bridge in the lower
frequency region by up to +10dB. The system is tested by measuring the decay of the impulse
response of the bridge using people jumping as the excitation force, resulting in an increase

9This is a typical behavior of these type of controllers that I will explain in more detail in section 3.3.
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of modal damping from 0.91% to 3.53 %.
Another PMA is used in [132] to damp the vibrations of an academic test structure. The

authors test a skyhook control scheme, a virtual passive absorber, virtual passive-active ab-
sorber and multi-mode virtual passive absorber. All control methods achieve a similar perfor-
mance of −30 dB attenuation at the first resonance peak. In [30], a Positive Position Feedback
controller is used to damp the structural resonances of an academic cantilever beam using
two piezo shear actuators. The PPF controller is designed for the first four structural modes
of the system and manage to damp all resonance peak by about −10dB to −30 dB. A portable
PMA is shown in [53] using an automatic tuning procedure for standard loop shaping control
design. The device is tested on multiple pieces of factory equipment, achieving an attenuation
of up to −40 dB.

Conclusions

PMA’s seem to be a rather accepted approach to deal with vibration issues in various ap-
plications. They are mostly employed using classical control strategies like Positive Position
Feedback or Direct Velocity Feedback. There are some applications that utilize modern con-
trol techniques, however, they are often still limited to only damp the first few modes and
seldom achieve a complete reshaping of the closed-loop system dynamics on a real system.
The reasons for this are probably that for modern control design, effects like actuator dynam-
ics, sensor noise and signal delay are often still ignored. Especially for PMA’s it is important
to consider the dynamics of the actuator in the control design as shown in e.g. [42, 70].
Most applied approaches achieved an attenuation of −20dB to −30dB at the resonance fre-
quencies of the controlled structures. However, most systems are not able to also effect broad
band disturbances outside of the natural frequencies of the closed-loop system and often even
slightly worsen the response near the resonance peaks.

I was not able to find any publications that applied PMA’s to damp the structural dynam-
ics of robot manipulators, or any other real system with time variant structural dynamics in
general. Another difference from this work to most publications is that we used a PMA design
without a mechanical spring, completely relying on the controller to design the desired actu-
ator dynamics. The approach is similar to [42], however, the authors modified the actuator
dynamics of a PMA that still used a mechanical spring.



Chapter 3

Fundamental Theory

In this chapter, I will go over the fundamental theory for the concepts applied in the following
chapters. My assumption about the prior knowledge of the typical reader of this thesis is
that they have a strong background in robotics topics like inverse kinematics and trajectory
planning, however, a probably less strongly developed understanding of structural dynamics
and active vibration damping.

For this reason, I will begin with a more comprehensive introduction to structural dy-
namics in section 3.1, starting with the basics of the mechanical single harmonic oscillator1,
followed by the dynamic description of multi-degree-of-freedom systems and modal analysis.

Section 3.2 will go into detail about flexible multibody simulations and model order re-
duction techniques. However, without going into too much detail, since we are going to
mainly apply these concepts using Simulink/SimMechanics models and not do research about
these specific methods themselves.

In section 3.3, I will give an overview of classical active vibration damping methods that
will be applied throughout this thesis. Finally, section 3.4 will introduce typical joint con-
trol methods for position- and torque-controlled robot joints, which will be important to
understand the possible dynamic interaction between the robot’s control system and external
stabilization devices.

3.1 Structural Dynamics

This section will introduce a selection of concepts from the field of structural dynamics, which
are necessary for the understanding of this thesis. There is already a number of good books
available that do a great job of summarizing the field from the view of a structural engineer
[72, 76, 91]. In this section, I will try to also incorporate the view of a controls engineer,
since both fields can be quite similar, however, are not perfectly unified. Another book that is
following the same approach is [219], which I can also greatly recommend.

3.1.1 The Basics: Single Harmonic Oscillator

The mechanical single harmonic oscillator (MSHO) is the most simple dynamic structure we
can design that is able to vibrate. Despite its simplicity, it is a great tool to analyze basic struc-
tural dynamics phenomena. Sometimes, it is even good enough as a simple approximation

1That might seem like an unnecessary low starting point for a theory chapter in a Ph.D. thesis. However,
most problems that we will face in the following chapters can be broken down to the control of a single harmonic
oscillator. For this reason, it is quite important to me that there is a strong understanding of the dynamics of
these types of systems. The educated reader is of course invited to just skim through the first subsection.

37
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Figure 3.1: A mechanical spring-damper-mass system.

of the real system dynamics to design machines such as a Laval rotor or washing machines
[68].

The MSHO consists of a mass m that is connected to a fixed point via a linear spring k and
a viscous damper c, Fig. 3.1. By summing up the forces created by the spring and damper, as
well as an external force f acting on the mass, we can use Newton’s second law of motion
to derive the ordinary differential equation (ODE) governing the dynamic behavior of the
system:

mẍ + c ẋ + kx = f , (3.1)

with x being the displacement of the mass relative to the point of equilibrium. Using the
substitutions

ω2
0 =

k
m

and ζ=
c

2mω0
, (3.2)

we can rearrange this equation to the more general form of a second order system:

ẍ + 2ζω0 ẋ +ω2
0 x =

1
m

f , (3.3)

with ω0 being the undamped eigenfrequency2 and ζ the damping ratio of the system. The
general dynamic behavior of the MSHO is therefore equal to an electrical harmonic oscillator
consisting of an inductance, capacitance and resistance, which can also be described as a
second order system.

Solution in the Time Domain

We can analyze the dynamic behavior of the system by calculating its step response, which is
the response of the system to a constant applied force fc. We start by deriving the homoge-
neous solution of the system by plugging the ansatz function

xh = φeλt → ẋh = λφeλt → ẍh = λ
2φeλt (3.4)

2Note that ω0 is the angular undamped eigenfrequency in radians with the unit [ω0] = 1/s. It relates to the
undamped eigenfrequncy fn with the unit [ fn] = Hz with the equation ω0 = 2π fn. For simplicity, I will just call
both "frequency" in the following, assuming that the reader knows the difference.
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Figure 3.2: Step response (blue) to a constant force fc with the oscillating (orange) and damping
(green) part of the solution.

into the ODE (3.3) while setting the input force fc to zero which gives:
�

λ2 + 2ζω0λ+ω
2
0

�

φeλt = 0 , (3.5)

with φ being a yet unknown constant and λ the eigenvalue of the system. We can calculate
the eigenvalues of the system by computing the roots of the above characteristic polynomial:

λ1/2 = −ζ jω0 ±ω0

Æ

ζ2 − 1

= −ζω0 ± jω0

Æ

1− ζ2 (3.6)

We therefore get an eigenvalue pair, which is complex for damping ratios between −1< ζ < 1.
The harmonic solution describes the inherent eigendynamics of the system. In order to

get the total solution for our step response, we also have to derive the response of the system
to the particular input force fc, which is called the particular solution xp. We can calculate
this by using the Method of Undetermined Coefficents, which assumes an ansatz function
for the particular solution xp that is from the same type as the input function. In this case,
we have a constant input force. Consequently, we also assume the particular solution to be
constant:

xp = const. (3.7)

Plugging this into the ODE (3.3) with the constant input force yields:

ω2
0 xp =

1
m

fc

→ xp =
1
k

fc (3.8)

Finally, we can derive the total solution for the step response by superimposing all funda-
mental solutions of the harmonic solution xh and the particular solution xp:

x = xh + xp

= φ1e(−ζω0+ jω0

p
1−ζ2)t + φ2e(−ζω0− jω0

p
1−ζ2)t +

fc

k
(3.9)
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In order to determine φ1 and φ2 we can evaluate the above equation for the two boundary
conditions

x(0) = 0 and ẋ(0) = 0 , (3.10)

which yields for the constants

φ1 =
fc

k
·
−ζ− j
p

1− ζ2

2 j
p

1− ζ2
and φ2 = −

fc

k
·
−ζ+ j
p

1− ζ2

2 j
p

1− ζ2
. (3.11)

Plugging these into the total solution (3.9) and then slightly rearranging it we finally get:

x =
fc

k

�

−ζ− j
p

1− ζ2

2 j
p

1− ζ2
e jω0

p
1−ζ2 t −

−ζ+ j
p

1− ζ2

2 j
p

1− ζ2
e− jω0

p
1−ζ2 t

�

· e−ζω0 t +
fc

k
(3.12)

The resulting step response is plotted in blue in Fig. 3.2. There are three parts to this solution:

• The large portion between the brackets includes two exponential functions with com-
plex conjugate arguments for damping ratios between −1 < ζ < 1. This can be inter-
preted as two complex pointers rotating in opposite directions. The summation of both
results in a cancellation of their imaginary parts and a purely real oscillation.
We can prove this mathematically by rearranging (3.12) using Euler’s formula

e j x = cos(x) + j sin(x) (3.13)

which after some additional mathematical operations results in

x = −
fc

k

�

ζ
p

1− ζ2
sin(ω0

Æ

1− ζ2 t) + cos(ω0

Æ

1− ζ2 t)

�

· e−ζω0 t +
fc

k
. (3.14)

The resulting motion of the part between the brackets is therefore a single harmonic
oscillation with the frequency ωd =ω0

p

1− ζ2, which is also called the damped eigen-
frequency of the system3. It becomes apparent from equation (3.14) that increasing
the damping ratio in the interval 0< ζ < 1 not only decreases the vibration frequenecy
of the step response ωd , but also causes a phase shift. However, this only really be-
comes noticeable for higher damping ratios ζ→ 1. The oscillating part of the solution
is marked in orange in Fig. 3.2.

• The oscillating part of the solution is then multiplied by another exponential function
with a purely real argument. For positive damping ratios ζ > 0, this exponential func-
tion causes the oscillating part of the solution to ring down with the decay constant
δ = ζω0. This represents the damping portion of the response, which is caused by
the dissipation of energy by the viscous damper. The damping part of the solution is
marked in green in Fig. 3.2.

• While the first two parts represent the harmonic part of the solution that will always
ring down after a certain amount of time depending on the damping ratio ζ, the last
part of the solution represents the particular solution that is imposed on the system
by the external force. In this case, the steady state solution that is left over after the
harmonic part has rung down is just a static deflection, which is caused by the spring
being displaced by the applied constant force fc. The steady state solution is marked in
dark blue in Fig. 3.2.
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Figure 3.3: Step response of a MSHO for different damping ratios ζ.

The step response is therefore a very good way to test a system. In this case, we can fully
parameterize a MSHO by just applying a known constant force fc to the system. We can get
the damped eigenfrequency ωd by looking at the oscillation frequency of the response and
the damping ratio ζ by identifying the decay constant δ from the peaks ringing down. We can
get the stiffness k of the system by measuring the steady state solution, after the harmonic
oscillation has died down, and the mass m and viscous damping coefficient c using equations
(3.2).

While the step response shown in Fig. 3.2 is the most common one for real oscillating
systems, there are also different types of responses possible depending on the damping ratio
ζ, which are shown in Fig. 3.3:

• For no damping ζ = 0, the system oscillates forever and never rings down. This can
be seen in equation (3.12) by the argument of the exponential function causing the
damping to become zero.

• For damping ratios between 0> ζ > 1 we get the already discussed behavior.

• A damping ratio larger then ζ≥ 1 causes the system to be over-damped and suppresses
all vibrations. This can bee seen in equation (3.12) by the arguments of the exponential
functions between the brackets becoming real, meaning the solution does not oscillate
anymore.

• Negative damping ratios generally show the same behavior regarding oscillations, how-
ever, the system is unstable. A negative damping ratio can be interpreted as instead of
dissipating energy from the system, we continuously pump more energy into the sys-
tem. This can also be seen in equation (3.12) by the argument of the exponential func-
tion causing the damping to become positive, and therefore exponentially increasing
the envelope of the solution instead of ringing it down.

All of these properties are already included in the eigenvalues (3.6) of the system, which fully
characterize its dynamics. The real part of the eigenvalue pair is equal to the argument of the
exponential function causing the damping in (3.12), while the imaginary part is equal to the
argument of the two exponential functions between the brackets governing the oscillation
behavior.

A good way to analyze the dynamics of a system is therefore to plot its eigenvalue pairs
in the complex plane, Fig. 3.4. The real part gives information about the amount of damping

3Equation (3.12) can also be rearranged into a single cosine function with a phase delay. However, in order
to calculate the phase delay the inverse of the tangent function is needed, which is why I prefer the version with
the separated sine and cosine as shown here.
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Figure 3.4: Complex eigenvalue pair with the
real (orange) and imaginary part (green) high-
lighted.

Figure 3.5: Movement of the eigenvalue pairs
λ1 (blue) and λ2 (orange) when decreasing the
damping ratio from ζ > 1 to ζ < −1 .

in the system, as well as stability, making all systems with positive eigenvalues unstable.
The imaginary part is equal to the damped eigenfrequency ωd , giving information about the
oscillating behavior of the system, where systems with purely real eigenvalue pairs are over-
damped. The movement of the eigenvalue pairs depending on the damping ratio ζ is shown
in Fig. 3.5.

Two other important properties of the eigenvalues in the complex plane are that the length
of the corresponding complex pointer is equal to the undamped eigenfrequency for ζ≤ |1|:

|λ|2 =
s

(−ζω0)
2 +
�

ω0

Æ

1− ζ2
�2
=ω0 , (3.15)

and that systems with the same damping ratio ζ always have the same angle between the
imaginary axis and their corresponding complex pointer:

sin(α) =
−ζω0

ω0
= −ζ . (3.16)

Solution in the Frequency Domain

Instead of analyzing a system in the time domain by measuring its response to test inputs like
the step or impulse function, we can also characterize its dynamics by looking at the steady
state response of the system to any harmonic excitation

f (t) = F(s)est , (3.17)

with s being the Laplace variable s = σ+ jω and F(s) the excitation amplitude at the frequency
ω. For the subjects discussed in this thesis, the damping portion σ of the Laplace variable is
not needed and we can set

s =̂ jω (3.18)

for the remainder of this thesis4.
4This basically makes the Laplace transform equal to the Fourier transform and is a little sloppy use of the

Laplace variable s. However, as long as we are only interested in the steady state response it is fine to replace
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Since we are interested in the steady state solution, we only need the particular solution
that according to the Method of Undetermined Coefficients again has to be of the same type
as the input:

x(t) = X (s)est . (3.19)

Plugging input and output into the ODE (3.3) of the MSHO yields:
�

ms2 + cs+ k
�

︸ ︷︷ ︸

GZ (s)

X (s) = F(s) (3.20)

The transfer function between the brackets is called the impedance Gz(s) of the system. In
the case of displacements as the output quantity, it is also called the dynamics stiffness. It can
be used to calculate the specific harmonic input F(s) needed to cause the harmonic output
X (s):

GZ(s) =
F(s)
X (s)

= ms2 + cs+ k (dynamic stiffness) (3.21)

A more intuitive transfer function to describe the system behavior can be found by solving
for the output in (3.20):

X (s) =
1

ms2 + cs+ k
︸ ︷︷ ︸

GY (s)

F(s) (3.22)

The quotient that relates the harmonic input force F(s) to the harmonic output X (s) is called
the admittance GY (s) and is the inverse of the impedance GZ(s). In the case of displacements
as the output, it can also be called the receptance:

GY (s) =
X (s)
F(s)

=
1

ms2 + cs+ k
= G−1

Z (s) (receptance) (3.23)

This is often also just called ’the transfer function of the system’, since it can be used to
calculate output of the system to any harmonic input.

We can again transform the transfer function GY (s) of the MSHO into a more general form
of a second order system by using the same substitutions as in (3.2):

GY (s) =
1
m

s2 + 2ζω0s+ω2
0

(3.24)

Note that the roots of the numerator of GY (s) are equal to the eigenvalues (3.6) of the system,
which are also called the poles of the transfer function.

The receptance GY (s) of the MSHO is plotted in Fig. 3.6 for different damping ratios ζ.
For low excitation frequencies ω≪ ω0 we can ignore the dynamics of the system, since the
system approximately behaves like a spring in static equilibrium with a displacing force at
every point in time:

X (ω≪ω0)≈
1
k

F(ω≪ω0) (3.25)

s→ jω. This seems to be common practice in control theory literature, without really being specifically mentioned
a lot. Structural dynamics and signal analysis literature more often uses jω of the Fourier transform. For sake of
consistency and not having to switch around between the two when switching topics, I will stick to s with s = jω
in this thesis.
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Figure 3.6: The receptance GY (s) of the MSHO
with different damping ratios ζ.

Figure 3.7: The accelerance GA(s) of the MSHO.

Remark
This is a similar assumption as when we assume rigid bodies for the analysis of the dynamics
of robot manipulators. It is important to realise that there is no such thing as a rigid mechanical
structure.

Every structure will start to behave like a flexible body as soon as the excitation frequen-
cies approach the eigenfrequencies of the structure. The structural dynamics of mechanical
components inside the control loop can be safely ignored as long as the bandwidth of the
controller is much lower than the first eigenfrequency of the mechanical structures.

As soon as we need high control bandwidth for high-performance systems that either need
to be very quick or very precise, we either have to be careful that the mechanical structures
are still stiff enough to ignore their dynamics, or we have to consider their strucutral dynam-
ics in the control design.

Increasing the input frequency initially causes a phase delay, depending on the damping
ratio ζ, and then a large amplification of the output around the damped resonance frequency
ωd . The response reaches exactly 90◦ phase delay at the undamped eigenfrequency ω0 and
then approaches 180◦ phase delay for higher frequencies, while the amplitude response ap-
proaches zero. This is caused by the system being dominated by its inertia for higher fre-
quencies ω≫ω0:

X (ω≫ω0)≈
1

ms2
F(ω≫ω0) . (3.26)

The damping ratio ζ influences the height of the resonance peak and also moves the
peak slightly to lower frequencies for higher damping ratios. A high damping ratio might
be beneficial because of the lower amplitude response at the resonance. However, it also
causes the phase delay to affect lower frequencies, which might be unacceptable if we want
to design a high bandwidth system that follows the input as exactly as possible. Unstable
systems with negative damping ratios can easily be spotted by the phase delay decreasing
over the resonance frequency.

For this work, we will often design controllers using acceleration feedback. The admit-
tance for the acceleration response is called the accelerance GA(s) and can be obtained by
differentiating the receptance GY (s) twice:
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Response quantity Impedance Admittance

Displacement Dynamic stiffness GZ = F/X Receptance GY = X/F
Velocity (mechanical) Impedance F/Xs Mobility Xs/F
Acceleration Apparent mass F/Xs2 Accelerance GA = Xs2/F

Table 3.1: Common denotations in literature for impedance and admittance transfer functions,
adapted from [238].

GA(s) = GY (s)s
2 =

X (s)s2

F(s)
=

1
m s2

s2 + 2ζω0s+ω2
0

(accelerance) (3.27)

An overview for common denotations for impedance and admittance transfer functions is
shown in Tab. 3.1. The accelerance GA(s) for the MSHO is plotted in Fig. 3.7. For low
excitation frequencies we start off with zero amplitude and positive 180◦ phase shift. After
the resonance, the system is again dominated by its mass and follows the input force with 0◦

phase delay. This is a nice property, since we can make the MSHO perfectly follow a desired
acceleration for frequencies ω≫ω0, only requiring knowledge of the mass m. We will partly
use this in the following chapters for the control design of the voice coil actuator.

3.1.2 Multi Degree of Freedom Systems

We can create a multi degree of freedom (MDOF) system by just stacking multiple MSHOs
on top of each other. Fig. 3.8 shows an MDOF system with three MSHOs. We can model this
system by applying Newton’s second law of motion to each mass separately, resulting in a
system of three coupled ODEs:




m1 0 0
0 m2 0
0 0 m3





︸ ︷︷ ︸

M





ẍ1
ẍ2
ẍ3





︸ ︷︷ ︸

ẍ

+





c1 + c2 −c2 0
−c2 c2 + c3 −c3
0 −c3 c3





︸ ︷︷ ︸

C





ẋ1
ẋ2
ẋ3





︸ ︷︷ ︸

ẋ

+





k1 + k2 −k2 0
−k2 k2 + k3 −k3

0 −k3 k3





︸ ︷︷ ︸

K





x1
x2
x3





︸ ︷︷ ︸

x

=





f1
f2
f3





︸ ︷︷ ︸

f

,

(3.28)

with M being the mass matrix, C the damping matrix, K the stiffness matrix, x the vector
of the respective positions of the masses and f the vector of the input forces acting on each
mass. The resulting system of coupled ODEs has generally the same structure as the ODE of
the MSHO (3.1):

Mẍ +C ẋ + K x = f . (3.29)

We can analyze this system by generating the transfer functions resulting from a single input
force at the third mass f3 to the displacements at the three masses x = [x1 , x2 , x3]T . One
way to do this is by first computing the dynamic stiffness matrix GZ(s) using (3.21) for each
frequency of interest and then inverting each of these dynamic stiffness matrices to get the
receptance matrix GY (s) at each frequency, Alg. 1. However, this will only generate the data
points to plot the transfer functions, without a full mathematical relation between the inputs
and outputs. It is still a useful algorithm to keep in mind when working with data points
acquired from measured transfer functions instead of parameterized models.
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Figure 3.8: Three MSHO stacked on top of each other to create a 3 DOF mechanical oscillator.

Algorithm 1 Calculate GY (s)

ω= [frequencies of interest]

for i ≤ number of frequencies do
GZ(:, :, i) = −ω(i)2M + jω(i)C + K
GY (:, :, i) = GZ(:, :, i)−1

end for

A way to generate the transfer functions as parameterized mathematical functions from a
MC K model (3.29) is by first transforming it into a state space model:

ẋs = Asxs + Bsus

ys = Csxs +Csus
(3.30)

with
�

ẋ
ẍ

�

︸︷︷︸

ẋs

=

�

0 I
−M−1K −M−1C

�

︸ ︷︷ ︸

As

�

x
ẋ

�

︸︷︷︸

xs

+

�

0
M−1

�

︸ ︷︷ ︸

Bs

�

f
�

︸︷︷︸

us

�

x
�

︸︷︷︸

ys

=
�

I 0
�

︸ ︷︷ ︸

Cs

�

x
ẋ

�

︸︷︷︸

xs

+
�

0
�

︸︷︷︸

Cs

�

f
�

︸︷︷︸

us

(3.31)

and xs = [x1 , x2 , x3 , ẋ1 , ẋ2 , ẋ3] being the states, us the inputs, As the system matrix, Bs
the input matrix, Cs the output matrix and Cs the feedthrough matrix of the system.

We can then transform the state space model (3.30) into the frequency domain:

xs(s) s = Asxs(s) + Bsus(s)

ys(s) = Csxs(s) +Csus(s)
(3.32)

with xs(s) being the vector containing the Laplace transforms of the states xs(s) = [Xs1(s) , . . . ,
Xs6(s)]T , ys(s) the vector containing the Laplace transforms of the outputs which in this case
are the displacements of the three masses ys(s) = [X1(s) , X2(s), X3(s)]T and us(s) the vector
containing the Laplace transforms of the inputs which are the forces acting on the masses
us(s) = [F1(s) , F2(s), F3(s)]T . Rearranging the first line of (3.32) to

(Is− As) xs(s) = Bsus(s) (3.33)
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and multiplying with (Is− As)
−1 from the left hand side yields:

xs(s) = (Is− As)
−1 Bsus(s) . (3.34)

Finally, we can insert the above equation into the second equation of (3.32):

ys(s) =
�

(Is− As)
−1 Bs +Cs

�

︸ ︷︷ ︸

GY (s)

us(s) , (3.35)

which gives us the receptance matrix GZ(s) which relates all harmonic inputs us(s) to all
outputs ys(s):

GY (s) = (Is− As)
−1 Bs +Cs , (receptance matrix) (3.36)

Each entry GY,i, j(s) of the receptance matrix is a linear transfer function of the form:

GY,i, j(s) =
b0,i, js

n + b1,i, js
n−1 + · · ·+ bn−1,i, js + bn,i, j

a0sm + b1sm−1 + · · ·+ am−1s + am
, (general form) (3.37)

with b / a being the coefficients of the polynomials of the numerator / denominator respec-
tively, and n / m being the order of these polynomials.

Note that the denominator of all entries of GY,i, j(s) is always the same, because it is de-
termined by the characteristic equation (Is− As)

−1. The only difference between the transfer
functions of a multi-input-multi-output (MIMO) system is therefore their numerator.

We can calculate the roots of the numerator and denominator of the general transfer
function (3.37) and rearrange it to

GY,i, j(s) = Kzp

�

s− z1,i, j

� �

s− z2,i, j

�

. . .
�

s− zn,i, j

�

(s− p1) (s− p2) . . . (s− pm)
, (zero-pole form) (3.38)

with p being the roots of the denominator which are equal to the poles (and eigenvalues) of
the system, z being the roots of the numerator which are also called the zeros of the system,
and Kzp being a gain factor.

Using f3 as our only input, we are only interested in the third column of the receptance
matrix GY,1−3,3(s). The resulting transfer functions of the 3DOF harmonic oscillator are plot-
ted in Fig. 3.9a - 3.9c for a generic set of mi, ci, ki parameters of equation (3.28). As with
the MSHO, we can identify each stable pole by a resonance peak with a 180 ◦ negative phase
shift. The frequency at half of the 180 ◦ gives us the undamped eigenfrequency ω0,i of this
particular pole, while the broadness of the peak gives us information of the damping asso-
ciated with this pole. The zeros of the transfer function show up as anti-resonances with a
positive 180 ◦ shift. We can associate a frequency ωz,i and damping ratio ζz,i to each zero the
same way we have already done with the poles.

The only difference between the three shown transfer functions are the total gain and
placement of the zeros. Of note is the transfer function GY,3,3(s), which describes the dynamic
behavior between an input force and output measurement at the same DOF. In Experimental
Dynamics this transfer function is often called the driving point measurement. A special
property of these transfer functions is that their poles and zeros always alternate, causing
their phase to always stay between 0 ◦ and −180 ◦. As we will see later, this property simplifies
a lot of control problems by placing our feedback sensor (output) and actuator (input) in the
same collocated manner.

The general trend of the receptance transfer functions is also similar to that of the MSHO:
The amplitude starts of at a static gain and then begins to role off following a trend propor-
tional to ∼ 1/ω2. This general trend will continue to ’drag down" all resonance peaks caused
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Figure 3.9: A selection of receptance and accelerance matrix entries of a generically parameterized
3DOF mechanical oscillator.

by higher eigenfrequencies. Similarly, the acclerance transfer functions (Fig. 3.9d) also fol-
low the same trend as the MSHO: The amplitude starts of at zero and then stays on the same
level after the first resonance peak. This can easily cause all following resonance peaks to
stay within the same order of magnitude as the first one, even for real mechanical systems.

Remark
This already has some important consequences for the goal of this thesis:

• Since we want to improve the accuracy of robot manipulators by reducing their me-
chanical vibrations, it is important, and probably sufficient, to focus on the control
of the first few structural modes of the system. The contribution of higher frequency
modes scale down proportional to ∼ 1/ω2 and often do not contribute much to the
overall dynamic displacement error at the robots TCP.
This may of course still vary slightly depending on the real mechanical structure and the
excitation source causing the disturbance. However, for robot manipulators, the main
disturbance sources are torque-ripple and high jerk caused by their own motion. Both
of these disturbance sources excite the mechanical structure across a broad frequency
range.
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(b) Step response of GA,3,3(s).

Figure 3.10: Step response of the 3DOF mechanical oscillator with displacements or accelerations as
the output.

Factory equipment running at fixed rotational speeds or other external disturbance
sources that excite specific high frequencies might still cause vibration problems at the
TCP of the robot when they are close to higher eigenfrequencies of the system. This
unfortunately has to be investigated on a case by case bases to decide if specific higher
frequency modes need to be considered in the control system.
However, from my personal experience when investigating different types of robot ma-
nipulators, it has always been enough to focus on the first few modes to already achieve
a considerable accuracy improvement.

• This also simplifies our control problem a bit, since we only have to consider the dy-
namics of the first few modes in our controller. In practice, there is the problem of
control- and observer spillover which might cause the control system to become unsta-
ble, because of unmodeled system dynamics interacting with the controller. However,
this problem becomes way more manageable when using position feedback, since the
contribution of higher frequency modes to the measured displacement feedback scales
down so quickly. So even when we are not considering higher frequency dynamics,
which in theory might cause problems for our control system, their contribution often
quickly falls below the noise and resolution limit of the position sensors, making them
essentially unobservable for the control system.

• However, for the external active vibration damping approach we want to use accelera-
tion feedback. Here, we are not so lucky, since the higher frequency modes are usually
well visible within the spectrum of the acceleration senors and are therefore always
present in the control loop. This caused quite a lot of trouble to keep the control sys-
tem stable, since in practice we can not accurately model the entire system dynamics.
This will be discussed in more detail in section 5.1.5.

The difference between using a position or acceleration based output can be made more
clear by computing the corresponding impulse response, which are plotted in Fig. 3.10 for
the same set of generic parameters as before. The impulse response with displacements as
output is completely dominated by the first mode of the system (Fig. 3.10a), while the signal
clearly shows higher modes contributing to the overall response when using accelerations as
an output (Fig. 3.10b).
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3.1.3 Modal Analysis

To gain even further insight into the dynamics of mechanical structures, we can use a well
established tool called Modal Analysis. We begin by again trying to solve the eigenvalue
problem for a MDOF system described by a MC K model (3.29). For now, we ignore the
damping matrix C and want to analyze a dynamic system described by the system of ODEs:

Mq̈ + Kq = f . (3.39)

with q being a generalized vector containing all DOFs of the system (for the 3DOF mechanical
oscillator q = [x1 , x2 , x3]

T ).
The ansatz function to solve the system is again

q = φeλt (3.40)

with φ being a vector containing one constant for each DOF, which we will call the eigen-
vector from now on. Plugging the ansatz function above in the system of ODE’s (3.39) and
looking for the homogeneous solution results in the eigenvalue problem
�

λ2
i M + K
�

φi = 0 , with i = 1, . . . , n (3.41)

and n being the number of DOFs. Solving this eigenvalue problem yields n complex conju-
gated eigenvalue pairs λi = ± jω0,i that are associated with one eigenvector φi each. Similarly
to before, we can reconstruct the total solution by superimposing all eigensolutions:

q = φ1η1 +φ2η2 + · · ·+φnηn (3.42)

=
i=1
∑

n

φiηi (3.43)

with Φ = [φ1, φ2, . . . , φn] being the modal matrix including all eigenvectors and ηi being
the modal coordinates. We can write the above equation in short as

q = Φη (modal transformation) (3.44)

which is a spacial transformation from the modal domain defined by the modal coordinates
η into our original spacial domain defined by the initial set of DOFs in q .

We can use this transformation to decouple the system of ODEs (3.29), by plugging in
(3.44) and multiplying with ΦT from the left-hand side:

ΦT MΦ
︸ ︷︷ ︸

MM

η̈ + ΦT CΦ
︸ ︷︷ ︸

CM

η̇ + ΦT KΦ
︸ ︷︷ ︸

KM

η= ΦT f (3.45)

This can be further simplified by using the modal mass matrix MM , modal damping matrix
CM and modal stiffness matrix KM :

MM = Φ
T MΦ= diag
�

MM ,i,i

	

(3.46)

CM = Φ
T CΦ= diag
�

CM ,i,i

	

(3.47)

KM = Φ
T KΦ= diag
�

KM ,i,i

	

(3.48)

which are all diagonal matrices5. This means that we transformed our system of coupled
ODE’s (3.29) into a system of decoupled ODE’s (3.45) where each line can be solved inde-
pendently.

5A word on the validity of using the eigenvectors derived from a system without damping to transform a
MC K system with damping follows later.
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Note that this transformation depends on the eigenvectors φi, which can be scaled arbi-
trarily. A common way to deal with this is to scale the eigenvectors φi such that the modal
mass matrix MM is equal to the identity matrix I:

MM = Φ
T MΦ= I (3.49)

CM = Φ
T CΦ= diag
�

2ζiω0,i

	

(3.50)

KM = Φ
T KΦ= diag
¦

ω2
0,i

©

(3.51)

Transforming the system using these so called mass normalized eigenvectors causes each line
of (3.45) to become

η̈i + 2ζiω0,iη̇i +ω
2
0,iηi = φ

T
i f , (3.52)

which is the same as the ODE of the MSHO (3.3). This means that the dynamics of any
complex structure, that can be modeled using a linear MC K model, can be described by a
superposition of MSHOs. Each MSHO is thereby associated with one eigenfrequency ω0,i,
damping ratio ζi and eigenvector φi of the system, and are often just called the modes of the
system. Calculating the response of any MC K system to any dynamic load f can therefore
easily be done by first transforming the model into modal coordinates using (3.45), then
calculating the response ηi of each mode using (3.52)6 and then calculating the response of
the system in our coordinate system of interest using (3.44). This is often much more efficient
than calculating the response just using the initial MC K model, since the diagonalized model
(3.45) can be solved quite quickly.

A Word on Damping

Above, we used the eigenvectors of an undamped M K system to transform an MC K system
with damping. This is valid as long as the resulting modal damping matrix CM is still diago-
nal. Systems for which this is possible are called triple diagonalizable, meaning that one can
neglect the damping coupling between the modes at first order. This is true for systems with
small damping and when the eigenfrequencies are well separated [108]. Their eigenvectors
are independent of the amount of damping C and are always equal to the eigenvectors of the
undamped M K system [64].

When generating a MC K system numerically using for example a FE method, we can
usually generate the M and K matrices quite accurately. The accurate modeling of damping,
however, is still a matter of research and quite involved. In practice, there are two common
ways to model damping that still ensure that the resulting system is triple diagonalizable:

1. Designing the damping matrix C as a linear combination of the mass M and stiffness
matrix K :

C = αM + βK (Rayleigh damping) (3.53)

results in a diagonalizable damping matrix and is called Rayleigh damping [223]. α and
β are thereby weighting coefficients. Giving more weight to the mass matrix increases
the damping for lower frequency modes, while giving more weight to the stiffness
matrix will increase the damping of higher frequency modes.

6Note that the initial dynamic load is distributed to each MSHO/mode using the right-hand side term φT
i f .

Depending on how the load f is acting on the system, there might be cases where the vector f is orthogonal to
one or more eigenvectors φi . This results in φT

i f = 0, meaning that this specific mode does not get excited by
this load case. This ties into the concept of controllability and will be discussed together with mode shapes in the
following.
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2. Directly designing the modal damping matrix CM by first getting the M K matrices from
the FE model, calculating the eigenvectors φi, setting the damping ratios ζi of each
mode to a desired value and then transforming the desired modal damping matrix CM
back to the desired damping matrix C :

C = Φ diag
�

2ζiω0,i

	

ΦT (3.54)

This approach has the advantage of being able to specifically set the damping ratio of
each mode.

There are also more possible ways to model damping, like Caughey damping [72] or a lot
of non-linear approaches. However, for this work we will always operate within the linear
realm when applying Modal Analysis using the methods described above.

When measuring real systems using Experimental Modal Analysis, the above assumption
of triple diagonalizable systems is often still good enough. As we will see later, even for a
quite complex and highly damped structure like our walking robot LOLA, we still achieved
quite good results by just applying these linear methods.

Deriving the Receptance Matrix Using Modal Parameters

In section 3.1.2, we already derived the receptance matrix GY (s) in a more general way by
starting from the state space form. We can derive a physically more interpretable version of
it by transforming the diagonalized system (3.52) into the frequency domain:

H(s)is
2 + 2ζiω0,iH(s)is+ω

2
0,iH(s)ai = φ

T
i f (s) , with i = 1, . . . , n (3.55)

H(s)i being the Laplace transform of ηi, and the vector f (s) containing the Laplace transforms
of each force input f (s) = [F(s)1, F(s)2 , . . . , F(s)n]. Writing the resulting n equations in
matrix form and solving for ηi(s) gets us:

η(s) = diag

¨

1

s2 + 2ζiω0,is+ω2
0,i

«

ΦT f (s) , (3.56)

with the vector η(s) = [H(s)1, H(s)2 , . . . , H(s)n] containing the Laplace transforms of ηi.
Transforming this equation back into our original coordinates using the modal transformation
(3.44) yields

q(s) = Φ diag

¨

1

s2 + 2ζiω0,is+ω2
0,i

«

ΦT

︸ ︷︷ ︸

GY (s)

f (s) , (3.57)

which gets us the receptance matrix:

GY (s) = Φ diag

¨

1

s2 + 2ζiω0,is+ω2
0,i

«

ΦT . (3.58)

We can also compute every entry of the recaptance matrix GY,i, j(s) by using the sum

GY,i, j(s) =
n
∑

k=1

Φi,kΦ j,k

s2 + 2ζkω0,ks+ω2
0,k

. (3.59)

While equation (3.37) is a bit more general formulation of the receptance matrix that basi-
cally works for any kind of linear system, the above equation is based on the knowledge that
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Figure 3.11: A cantilever beam discretized by a mesh in order to create a MC K model.

we are modeling a mechanical structure that can be described by a MC K model. This gives
us a bit more insight into the mathematical structure of the transfer functions contained in
the recaptance matrix, since the nominator and denominator are not just polynomials with
a generic set of parameters ai and bi, but are based on a sum of weighted MSHO transfer
functions that are described by the modal parameters ω0,i, ζi and Φ.

The above equation is also a much more effective way to compute the receptance matrix
GY (s) than Alg. 1, since only one trivial inversion of a diagonal matrix is needed to compute
the modal parameters. We also do not need to include every single mode in the computation
of (3.59) and can decide to only include for example the first ten modes, if that results in a
sufficient accuracy of the computed receptance matrix. This idea will also be used for model
order reduction techniques shown in section 3.2.

Mode Shapes

The weighting factors of each term in the sum of equation (3.59) are determined by the
entries of the modal matrix Φ, which contains the eigenvectors φi. We can get a deeper look
into the physical meaning of the eigenvectors by looking at the change of a transfer function
described by (3.59), while changing the output DOF.

In order to visualize this better, we move on from the 3 DOF mechanical oscillator to a
generic cantilever beam, Fig. 3.11. The dynamics of such a mechanical beam structure can
be modeled by describing the continuous system using a set of nodes. In this case, each node
has three translational DOFs and the dynamic relationship between each DOF can again be
described using a MC K model, which can be derived using a FE model7.

Using this model and equation (3.59), we can now generate a set of transfer functions that
always have the same input force in z direction at the tip of the beam ftip, while moving the
displacement output z(x) of the transfer function along the middle line of the beam (orange
nodes in Fig. 3.11). The amplitudes of the resulting set of transfer functions Z(s, x)/Ftip(s)
are plotted as a heat map on the left in Fig. 3.12.

We can see how the the poles of each transfer function always stay at the same frequency
while shifting the output DOF along the orange middle line of the beam. The frequencies of
the zeros depend on the position of the input / output DOF and start to move between the
poles while moving the output DOF towards the input DOF. Directly at the input DOF, we
again have a driving point transfer function with alternating zero pole pairs.

Every time a zero matches a pole it is canceled out, which creates geometrical shapes of
the amplitudes along the eigenfrequencies of the transfer functions. Since the frequency of
the zeros are determined by the entries of the modal matrix Φ, these shapes correspond to the
eigenvectors φi, Fig. 3.12 right side. The eigenvectors are therefore also often called mode
shapes and can not only be used as mathematical basic building blocks to recreate the real

7I will not go into detail here how a FEM formulation works, since it is not necessary for a proper under-
standing of the results of this work. There is a lot of very good and detailed literature available, e.g. [292, 311].
In this case, I used the AMfe code of the Chair of Applied Mechanics to generate the MC K matrices of a generic
cantilever beam (thanks to Christian Meyer for helping me with AMfe).
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Figure 3.12: Visualizing the connection between the frequency and modal domain. Left: A set of
transfer functions with the input being fixed at the end of a generic beam (Fig. 3.11) and the output
being moved along the length of the beam x . The amplitudes are color coded. Right: Corresponding
mode shapes of the first three modes.

dynamic response of the system using (3.44), but also to interpret important properties of the
underlying system dynamics. For example, if we move the output (e.g. a sensor of a control
system) of a transfer function into the node of a specific mode shape, a zero will cancel out
the corresponding pole in the transfer function, causing the mode to be unobservable. In a
similar way, if we place an input (e.g. an actuator of a control system) in a node of a mode
shape, we are not going to be able to control this specific mode, making it uncontrollable.
Mathematically, this can also be expressed using the equation

φT
i f = 0 (3.60)

meaning that the load vector f is orthogonal to a specific mode shape φi. This can also be
interpreted as the right-hand side of equation (3.52) being zero, meaning the corresponding
MSHO of this mode can not be excited by this load case8.

Mode shapes can also be useful to identify weaknesses in a structure and develop simple
improvements to a mechanical design to avoid vibration problems. In the case of this can-
tilever beam example, we could easily increase the stiffness of the entire system by just fixing
the other end of the beam as well, since this will have a large restrictive impact on every sin-
gle mode shape of the system. This knowledge will also be of use for the vibration analyses
of our CROPS harvesting robot in section 4.2.1 and our walking robot LOLA in section 4.4.

State Space Modal Canonical Form

To conclude this subsection, let us have a look at the connection between the modal analysis
of a MC K model as shown above and the state space formulation. We have already seen that

8Note that in Fig. 3.12 we are only looking at transfer functions on the orange middle line of the beam
pointing into the z-direction. Since we modeled the beam as a three dimensional structure this also means we can
not observe the bending modes bending around the z axis, or torsional modes. Mathematically, the corresponding
modes will still show up in the receptance using (3.59), however, the poles will always stay canceled out by their
respective zeros at any point of the heat map in Fig. 3.12. When measuring the same system, we might still
see these modes in the measurement because of small sensor misalignments. This will show up as unexpected
spurious peaks consisting of a resonance followed very closely by an antiresonance in the transfer function,
caused by the corresponding zero / pole pair only almost canceling each other out. This might even happen in
simulation models when no damping is used due to numerical errors.
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we can transform a MC K model into the state space domain using (3.31). We can also do an
eigenanalysis starting from the eigenvalue problem

Asφs,i = λiφs,i . (3.61)

Note that because of the transformation (3.31), this eigenvalue problem has twice the size
than when we analyzed the MC K model using (3.41). After solving the eigenvalue problem
we can again use the resulting modal matrix Φs to transform the states of the system xs into
modal states ηs:

xs = Φsηs . (3.62)

This transformation can be applied to (3.31) to gain the modal canonical form (MCF) of the
state space model:

η̇s = Ãsηs + B̃sus

ys = C̃sηs + C̃sus
(modal canonical form) (3.63)

with

Ãs = Φ
−1
s AsΦs

B̃s = Φ
−1
s Bs

C̃s = AsΦs

C̃s = Cs .

(3.64)

Conveniently, the original inputs us and outputs ys stay unchanged under this transformation
and will still produce the same transfer functions. However, the internal states have changed
and the new system matrix Ãs is now diagonal and contains the eigenvalues λi of the system.
This is particularity useful for this work, since our main goal will be to increase the damping
of the robots structural dynamics. We can therefore just identify a state space model of the
original dynamics of the system, transform it into the MCF and then design the new closed-
loop dynamics by increasing the damping of the desired modes.

Provided that the original MC K model was triple diagonalizable, the resulting diagonal
system matrix will contain the eigenvalues as complex pairs λ j/ j+1 = −ζiω0,i ± jω0,i

q

1− ζ2
i :

Ãs =











−ζ1ω0,1 + jω0,1

q

1− ζ2
1 0 0 0 . . .

0 −ζ1ω0,1 − jω0,1

q

1− ζ2
1 0 0 . . .

0 0 −ζ2ω0,2 + jω0,2

q

1− ζ2
2 0 . . .

0 0 0 −ζ2ω0,2 − jω0,2

q

1− ζ2
2 . . .

...
...

...
...

. . .











(3.65)

As already mentioned, this makes the MCF quite useful since every system state has a phys-
ically interpretable meaning. Under the same condition, the eigenvectors φs,i resulting from
(3.61) contain the eigenvectors φi from the original MC K model:

φs,i =

� 1
λi
φi

φi

�

(3.66)

With the upper half of φs,i corresponding to the same eigenvector φi of the original MC K
model, however, scaled with the corresponding eigenvalue λi.
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Note that when we were solving the eigenvalue problem (3.41) for the MC K model,
we solved for the square of the eigenvalues λ2

i . With n DOF, we therefore got n eigenvec-
tors and corresponding squared eigenvalues λ2

i . When taking the root of each eigenvalue
we consequently can only get complex conjugated eigenvalue pairs that each correspond to
one eigenvector. This has the consequence that we can only solve problems with a damp-
ing matrix D that leads to a triple diagonalizable system and therefore complex conjugate
eigenvalue pairs.

When solving the eigenvalue problem (3.61) of the state space formulation, we can di-
rectly solve for each eigenvalue λi which will correspond to twice the amount of eigenvectors
of the original MC K model. For triple diagonalizable systems we will again get complex
eigenvalue pairs as shown in (3.65), however, this time with twice the amount of eigen-
vectors of which two φs,i are always the same and correspond to one complex conjugate
eigenvalue pair. Additionally, since we can now solve for the eigenvalues λi directly, we are
not limited to just triple diagonalizable systems. This makes the transformation of a MC K
model into the state space domain particularly useful to solve eigenvalue problems for system
with a non-proportional damping matrix D. The resulting eigenvalues λi then do not have to
be complex conjugated pairs anymore and the eigenvectors φs,i can be complex9. While this
is a very useful property of the state space domain, the assumption of a proportional damping
matrix D was always good enough for the topics covered in this thesis.

3.2 Flexible Multibody Simulation and Model Order Reduction

In order to create a model of a robot manipulator with flexible joints and links, we need to
build a flexible multibody simulation. As already described in the State of the Art section
2.1.2, there are two main approaches to do this.

Lumped Parameter Approach

The first one is a lumped parameter approach (see e.g. [191]), which just splits up each
structure in multiple rigid bodies that are also connected by flexible joints, Fig. 3.13a. The
needed spring stiffnesses can then simply be computed using classical beam theory

kR =
EJA

l
(rotational stiffness) (3.67)

kT =
GJT

l
(torsional stiffness) (3.68)

kA =
EA
l

, (axial stiffness) (3.69)

with JA and JB being the area- / torsional moment of inertia, E and G Young’s and shear
modulus, and A and l the area and length of one beam segment. The total length of the beam
is L = Nl, with N being number of segments.

The easiest way to introduce damping is by making it proportional to the stiffness of each
segment:

cR = αkR , (3.70)

with α being a tuning factor.
9This basically means that the entries of φs,i do not have to be either positive or negative, which correspond

to a phase of either 0◦ or 180◦ in the complex plane, but can also be complex and can therefore have an arbitrary
phase shift in respect to each other. The effect on the mode shape can be visualized by not letting each DOF start
at zero, but by animating them using their respective phase shift on their periodic path.
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Interface joints

Rigid bodies
Flexible joints

(a) Approximation of a link structure using a series of
simple rigid bodies and flexible joints.

Interface nodes

FE mesh

(b) FE model of a link structure with interface nodes.

Figure 3.13: Two approaches for the modeling of flexible links structures in multibody simulations.

The biggest advantage of this approach is its simplicity, since it can be easily implemented
in most rigid MBS frameworks that allow flexible joints. The flexible beam is then just another
series of small rigid bodies with flexible joints, with only the real robot joints at the beginning
and the end being actuated. The accuracy of this kind of model is acceptable when using a
large number of elements. The main disadvantage is that only simple beam geometries can
be modeled. The model will also loose accuracy for modes higher than about half of the
number of segments, while also significantly losing damping for the highest mode10.

Floating Frame of Reference and Model Order Reduction

A more sophisticated approach to model flexible links in a multi-body simulation framework
is called Floating Frame of Reference (FFR) [35, 243]. This method assumes large rigid body
transformations with small local deformations in the bodies. This is a reasonable assumption
for our problem, since the robot will undergo large motions when moving its links, while
the dynamic error caused by the dynamic deformation of the robot’s joints and links will be
relatively small11.

Since I will use this method mainly as a tool to investigate the effectiveness of external
stabilization approaches for robots, I will not go into too much detail here. The method is
already described very well in e.g. [35, 243] and a full understanding of its implementation
is not necessary to understand the results of this work.

The general idea of the FFR approach is to use an FE formulation to derive a MC K model
of all bodies, which is then added to a rigid multibody formulation. However, depending on
the mesh size, the FE model can be quite large, which can have a large impact on computation
time. In order to reduce the size of the individual MC K models, one can apply model order
reduction techniques. These methods aim to find a reduction basis R to reduce the system
matrices and force vector

RT MR
︸ ︷︷ ︸

MR

q̈ +RT KR
︸ ︷︷ ︸

KR

q = RT f
︸︷︷︸

fR

(3.71)

such that the dynamics at the interface nodes of interest are still replicated as accurately as
possible. Damping is often added after the M K model is reduced, using for example Rayleigh

10This actually caused quite a lot of trouble for modern control methods with acceleration feedback, since
these mostly could not handle an unmodeled high frequency mode with almost no damping. We were still stuck
using this approach in Simulink for the majority of my time at the chair, since the floating frame of reference
approach with reduced order models proposed by Matlab itself in [191] was faulty and could basically only
model the first mode of a beam correctly. This was fixed in the Matlab release 2020a.

11If one also wants to analyze large body deformations, then methods like Non-Linear Finite Elements for
Multibodies [109] or Absolute Nodal Coordinates [243] should be considered.
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damping (3.53).
In order to derive a suitable reduction basis R, the M K model is split up into remaining

master DOFs (index m) and condensed slave DOFs (index s):
�

Mmm Mms
Msm Mss

��

q̈m
q̈s

�

+

�

Kmm Kms
Ksm Kss

��

qm
qs

�

=

�

fm
fs

�

(3.72)

In order to couple the FE model with an MBS, the master nodes should be chosen where
boundary conditions and forces are defined in the MBS or any other node that might be of
interest, e.g. a node at a location with a sensor to create feedback for our external vibration
damping approaches. Sometimes, it its also beneficial to include nodes in the set of master
DOFs that experience large deformations, or are areas with concentrated mass and small
local stiffness [312].

There are multiple model order reduction techniques. The most simple one is the Guyan
Reduction Method [122, 133]: After choosing a suitable set of master DOFs, the reduction
basis for the Guyan reduction is associated with the displacement patterns created by a unit
displacement of the master coordinates. We first solve (3.72) for qs with fs = 0:

qs = −K−1
ss (Msmq̈m +Mssq̈s + Ksmqm) . (3.73)

The Gyuan Reduction Method then assumes that the dynamics between the condensed and
remaining DOFs can be correctly represented by only static modes. Meaning that all inertia
terms are set to zero, resulting in the reduction basis RGy

�

qm
qs

�

=

�

I
−K−1

ss Ksm

�

qm = RGyqm . (Guyan reduction basis) (3.74)

This method will retain an accurate solution for static problems, however, might not be very
accurate for dynamic solutions depending how much the dynamic modes of the substructures
contribute to the global dynamic behavior of the system. The dynamic representation of the
reduced model can be improved by retaining additional master nodes [59, 244]. The Guyan
reduction will also destroy the sparseness of the mass and stiffness matrices, which might
lead to a more expensive eigensolution [312].

Another reduction method that can retain a more accurate model of the dynamic behavior
of the system is the Hurty-Craig-Bampton Method [75]. The method also includes a set of
dynamic vibration modes in addition to the static modes. The transformation can be written
as
�

qm
qs

�

=

�

I 0
ψ Φ

��

qm
η

�

= RHCB

�

qm
η

�

, (Hurty-Craig-Bampton reduction basis) (3.75)

with Φ being the interior partition of the fixed-interface modal matrix,ψ the interior partition
of the constraint-mode matrix, and η a set of generalized coordinates representing the fixed-
interface normal modes [229]. The accuracy depends on the number of retained dynamics
modes for the reduction basis. In practice, there are often just the first few modes included
that are associated with natural frequencies below a certain frequency range of interest.

Since version 2020a, Matlab included a new usable flexible body block in their multibody
Simscape library. The block is based on the FFR approach with reduced order models as
described above. Matlab also recently added rudimentary FE modeling capabilities and the
Craig-Bampton reduction to their tool set. This simplified the modeling process for this thesis
significantly, since the entire modeling tool chain could be done within Matlab/Simulink. I
will explain the modeling process in more detail in section 4.1.
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3.3 Active Vibration Control

In this subsection, I want to give a brief overview of classical active vibration damping tech-
niques. I will not go into detail about standard control methods like PID, or notch- and
lead-lag filters. However, the following control methods are specific to active vibration con-
trol and might not be necessarily part of the standard repertoire of most readers. I will also
use these methods frequently throughout this theses. All of these methods are already very
well explained in more detail in for example [219]. I will only go into detail about the collo-
cated control problem, since this was a core decision of this thesis.

As an example system, I want to use the 3 DOF mechanical oscillator from section 3.1.2
again, Fig. 3.8. The dynamics of the system can be described in state space form using:

ẋ3DOF = A3DOF x3DOF + B3DOF u3DOF , (3.76)

with A3DOF and B3DOF being the system matrices as described in (3.30). The input of the
system is only acting on the third DOF

u3DOF =





0
0

fc + fd



 , (3.77)

with fc being the control force provided by our controller and fd an additional disturbance
force that we can use to test the closed-loop response of our controlled system.

Positive Position Feedback (PPF)

The first control method I want to talk about is Positive Position Feedback (PPF), which was
derived in [93] for the control of large space structures. As the name already suggests, the
controller utilizes position feedback, which is the position of the third DOF in our example:

yp =
�

0 0 1 0 0 0
�

x3DOF = x3 (3.78)

The control law in the Laplace domain is equal to a second order system:

Fc(s) =
gPPF

s2 + 2ζc,PPFωc,PPF s+ω2
c,PPF

· Yp(s) . (Positive Position Feedback) (3.79)

The natural frequency of the controller ωc,PPF is set equal to the natural frequency of the
system that is supposed to be damped. The damping ratio of the controller ζc,PPF can be set
somewhat arbitrarily. With lower damping ratios the controller will work more aggressively in
a narrower band, however, it also has to be placed more closely to the real natural frequency
of the system to work properly. A good starting value is ζc,PPF = 0.5 to get good performance
on a broader frequency range. The concept is similar to attaching a tuned-mass damper to
the structure to damp a specific mode. However, since the damper is implemented as a digital
control law, we can increase the effectiveness of the damper by increasing the control gain
gPPF .

The effect on the disturbance transfer function Gd(s) = X3(s)/Fd(s) for different amounts
of gain is shown in Fig. 3.14a. We can see that for a medium amount of gain (orange line), the
effect on the system dynamics indeed looks like an increase in damping for the first mode of
the system. Increasing the gain further reveals that the controller initially places a new zero-
pole pair at the designed natural frequency ωc,PPF . Increasing the gain of the controller then
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(a) Disturbance transfer function Gd(s) = X3(s)/Fd(s).
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Figure 3.14: The effects of a PPF controller on the 3 DOF mechanical oscillator system for different
amounts of control gain. ωc,PPF is set to the first structural eigenfrequency ω0,1 and ζc,PPF = 0.5, the
controller gain gPPF is increased.

causes the new pole pair to move to lower frequencies, while also pushing the original pole
pair of the system to higher frequencies. The new zero pair remains at the design frequency
ωc,PPF . For very high gains, the new pole pair becomes real and further gain very quickly
pushes one of the poles into the unstable region (not depicted). One side effect of the new
pole pair moving to lower frequencies is that the gain of the system gets increased, which is
equal to a decrease in overall stiffness of the system. This is also visible in the step response,
Fig. 3.14b, and might be undesirable behavior depending on the application.

The main advantage of PPF controllers is that they are simple to use and quite effective
in attenuating specific resonance frequencies. The only real system knowledge needed is a
good estimate of the frequencies of the system resonances that are supposed to be damped.
While they have an inherent stability limit, real systems usually already become unstable
with less gain anyway, because of issues like the amplification of sensor noise. Another
advantage is that since the transfer function of the PPF controller is a simple second order
system, the controller response naturally roles off for frequencies higher than the designed
controller natural frequencyωc,PPF and therefore can not interact with higher order dynamics
of the real system. The controller is also quite robust against unmodeled system and actuator
dynamics [93, 219, 245, 254].

Direct Velocity Feedback

While we will use a PPF controller as part of the control system of the stabilization unit,
we need other control strategies that work better with acceleration feedback for our active
vibration damping concept with proof-mass-actuators.

Let us first change the output of our 3 DOF mechanical oscillator to accelerations at the
third DOF:

yv,a =

�

ẋ
ẍ

�

=

�

0 I
−M−1K −M−1C

��

x
ẋ

�

+

�

0
M−1

�

u3DOF (3.80)

ya,3 =
�

0 0 0 0 0 1
�

yv,a (3.81)
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Figure 3.15: The effects of a DVF controller on the 3 DOF mechanical oscillator system for different
amounts of control gain.

which represents the acceleration measurement we would get from our real sensor. As the
name suggests, Direct Velocity Feedback (DVF), however, needs velocity feedback to work.
Consequently, we need to integrate the measured accelerations once for our control law:

Fc(s) = −
gDV F

s
· ya,3 . (Direct Velocity Feedback) (3.82)

The controller itself simply feeds the determined velocity back into the system with a negative
controller gain gDV F . This general control structure acts dissipatively and is similar to most
passivity based control approaches. The effect of increasing the gain on the disturbance
transfer function is shown in Fig. 3.15a. In theory, a DVF has no stability limit for a collocated
system. The controller will increase the damping first on the lower modes of the system until
these modes are over damped and become real. One of the real poles will than be pushed
towards lower frequencies (without ever becoming unstable) and the other one to higher
frequencies.

As we can see in Fig. 3.15b, the entire system can very effectively be damped with this very
simple control strategy, without effecting the overall stiffness of the system. The big disadvan-
tage of DVF is that one needs access to the velocity state of the system. This is often an issue,
since there are few sensors that can really directly measure velocity besides a laser Doppler
vibrometer. Usually, either a derivative filter has to be used on a position measurement, or an
acceleration measurement has to be integrated. The additional dynamics introduced by the
new filter then usually have a negative effect on the achievable system performance. Getting
the velocity from a derived position signal usually requires quite aggressive filter coefficients
to suppress the amplification of noise. Integrating an acceleration signal is a bit cleaner, how-
ever, still needs a high-pass filter to prevent signal drift, which might effect the control design
and system performance [32, 40, 104, 219]. Additionally, while the damping performance
of this very simple controller can be quite effective in a broad frequency range, it also slows
down the entire system response. This might be an undesirable effect if one wants to only
damp resonances, but still maintain a quick system response, which is usually the case.

Negative Acceleration Feedback

Another way to directly incorporate acceleration feedback into a simple control scheme for
active vibration damping is Negative Acceleration Feedback (NAF) [36, 219, 269, 296]. Similar
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Figure 3.16: The effects of a NAF controller on the 3 DOF mechanical oscillator system.

to the PPF controller, the control law is just a second order system

Fc(s) =
−gNAF

s2 + 2ζc,NAFωc,NAF s+ω2
c,NAF

·Ya(s) , (Negative Acceleration Feedback) (3.83)

however, with negative controller gain gNAF . The controller is designed in a similar way
to the PPF controller, by also setting the controller’s natural frequency ωc,NAF equal to the
resonance frequency that is supposed to be damped.

The effect of increasingly larger controller gains is plotted in Fig. 3.16a. The controller
behaves similar to the PPF controller. While the old and new pole pair are again pushed to
higher and lower frequencies respectively, they do not become real at any point and even
lose damping along the way. A collocated system with a NAF controller is theoretically stable
for any gain and also does not change its gain/stiffness. The big advantage of this controller
is that it directly uses acceleration feedback without the need of any additional filters. Of
course, actuator dynamics still have an influence on the system design, as we will see later.
In this case, the controller transfer function looks like the second derivative of a second order
system, meaning that the transfer function starts at zero and then converges to a constant
magnitude for frequencies higher than the controller natural frequency ωc,NAF . This con-
troller has the advantage of not effecting the overall gain of the system, however, it will
effect higher order dynamics.

The NAF controller can also easily be used to damp multiple modes by just adding to-
gether multiple NAF controllers tuned to the specific resonance frequencies:

Fc(s) =

� n
∑

i=1

−gNAF,i

s2 + 2ζc,NAF,iωc,NAF,is+ω2
c,NAF,i

�

· Ya(s) (3.84)

with n being the number of damped resonance peaks. An example of this is shown in 3.4.
3.16b.

This generally also works with the PPF controller. However, for the PPF controller one
should tune the controller chain by starting with the highest natural frequency, since the con-
troller gain of the higher controller will influence the gain of the lower controllers, because
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of the shape of the controller transfer function. The same is true for the NAF controller in
reverse, meaning the controller chain should be tuned starting from the lowest resonance
frequency [219].

3.4 Robot Joint Control

In this section, I will briefly go over the most common control concepts for robot joint
position- and torque control.

3.4.1 Position Control

For joint position control, most robot manufactures implement a decentralized cascaded P-
PI-PI motor controller [153, 248], Fig. 3.17. Each joint gets the desired planned joint angle
θd , which is then independently controlled by each joint controller on the motor angle θm.

The control plant for the cascaded joint position controller is basically just the individual
motor of the joint. The dynamics of the electrical system for most motors can be described as
a first order system:

I(s) =
1
R

L
R s+ 1

· (Um(s)− θ̇m(s)km
︸ ︷︷ ︸

Uind(s)

) , (electrical system) (3.85)

with L and R being the inductance and resistance of the electrical system, Um the voltage
supplied to the motor, km the motor constant and Uind the counter voltage caused by self-
inductance12.

The motor then drives the mechanical system following the dynamic equation

θ̈m(s) =
1
Jm
· (I(s)km
︸ ︷︷ ︸

τm(s)

+τdist(s)) , (mechanical system) (3.86)

with Jm being the motors area moment of inertia and τm the motor torque. With this simple
model, all other effects like friction/compliance in the drivetrain or gravity loads created
by the links are included in the disturbance torque τdist. This is fine for the design of the
controller, since all the control loops are essentially collocated on the motor DOF.

The first control loop is the current controller

Um(s) =
�

gP,I +
gI ,I

s

�

· (Id(s)− I(s)
︸ ︷︷ ︸

eI

+I f f (s)) , (current controller) (3.87)

with the PI gains gP,I and gI ,I . The controller receives the desired current Id from the pre-
ceding velocity controller and measures the motor current I . Additionally, we can utilize a
feedforward term I f f , which I will explain in more detail later.

The velocity controller works in the same way

Id(s) =
�

gP,v +
gI ,v

s

�

· (θ̇d(s)− θ̇m(s)
︸ ︷︷ ︸

eθ̇

+θ̇ f f (s)) . (velocity controller) (3.88)

12This model always fitted quite well for multiple measurements that we did on the joint modules of our
walking robot LOLA and harvesting robot CROPS. The self inductance Uind is not depicted in Fig. 3.17 for clarity
sake, since the effect is quite small and usually easily controllable
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Figure 3.17: Signal flow chart for a cascaded joint position controller.

The velocity θ̇m usually has to be determined by using the derivative of the measured position
θm. I indicated this in Fig. 3.17 with a simple derivative filter. However, in practice the
position is often measured using an incremental encoder. With these types of encoders, the
velocity can be determined by counting the number of encoder lines per seconds. This is a
relatively robust process that just needs a high frequency glitch filter to avoid errors caused
by skipped lines.

Finally, the position controller is usually just a proportional controller:

θ̇d(s) = gP,p · (θd(s)− θm(s)
︸ ︷︷ ︸

eθ

) . (position controller) (3.89)

The I part is omitted to avoid inducing additional oscillations caused by the integral action
of the controller on the position level. The cascaded controller still manages to converge the
steady state error to zero, because of the I part in the velocity controller. Since the position
controller produces a desired velocity θ̇d , the only state at which the position controller
produces a desired velocity of θ̇d = 0 is at a position error of eθ = 0. Because of the I part in
the velocity controller, the controller is able to reduce the steady state error on the velocity
level to zero and therefore also on the position level.

These types of cascaded controllers are very popular for motor control, because of their
simplicity and very strong tracking performance. The controller can easily be tuned by just
starting with the most inner loop, which then becomes the new control plant for the next
outer control-loop. Since the outer controllers produce the desired values for the inner con-
trollers, the dynamics of the inner closed-loops need to be fast enough to follow the dynamics
of the outer loops. A good rule of thumb is to design the control loops in such a way that
the closed-loop dynamics of the inner loop are about ten times faster than the dynamics of
the outer loop. This is an important aspect for cascaded control loops, which also has a large
influence of their ability to control robot joints with a flexible drivetrain and link, as I will
discuss in section 4.3.1.

Influence of the Feedforward Terms

The performance of this motor controller can be improved even further by utilizing the feed-
forward terms θ̇ f f and I f f . Let us change the control plant to a general second order system,
in order to investigate their influence:

x(s) =
g

s2 + 2ζω0 +ω2
0

· f (s) (second order system) (3.90)
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With i.d.

t

ex

1

0.1

With ẋd
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Figure 3.18: Influence of different feedforward terms on the cascaded control structure. Adapted
from my master’s thesis [45].

and use the controllers:

f (s) =
�

gP,a +
gI ,a

s

�

· ( ẍd(s)− ẍ(s) + ẍ f f (s)) (acceleration controller) (3.91)

ẍd(s) =
�

gP,v +
gI ,v

s

�

· ( ẋd(s)− ẋ(s) + ẋ f f (s)) (velocity controller) (3.92)

ẋd(s) = gP,p · (xd(s)− x(s)) (position controller) (3.93)

which is the same structure as shown in Fig. 3.17, but with the motor replaced with a second
order system and the current controller replaced with an acceleration controller.

Sticking to this structure, one might think that the best possible feedforward term for the
acceleration would be

ẍ f f (s) =
s2 + 2ζω0 +ω2

0

g
s

gP,as+ gI ,a

1
(Ts+ 1)2

· xd(s) (inverse dynamics) (3.94)

with the first term being the inverse control plant, the second one the inverse acceleration
controller and the last one a second order system with a very small time constant T to get
the denominator to the same polynomial order as the numerator and make the system im-
plementable. Ignoring the velocity and position control loop, this transfer function should
compute the perfect input for the acceleration controller for the system to exactly follow the
desired position xd .

The position error for different combinations of feedforward terms for the cascaded con-
troller is shown in Fig. 3.18b. We can see that just using the inverse dynamics (i.d.) feedfor-
ward term (3.94) will not effect the error at all (dark blue line, top graph), when all the other
controllers are also active. The reason for this is that the most significant contribution to the
error is already created earlier in the cascade: The position controller has to produce the
desired velocity for the following velocity controller. The position controller will be delayed
by its own dynamics to produce the desired velocity, which causes the velocity controller to
follow a delayed velocity profile. We can see this by comparing the desired trajectory Fig.
3.18a to the error in the top graph of Fig. 3.18b, which shows an almost exact match be-
tween the desired velocity and the position error profile. This behavior is always the same
and independent of the amount of control gain used. The only way to significantly reduce
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this error is by first feeding the planned velocity ẋp into the velocity feedforward term ẋ f f

(orange line, top graph)13.
This will usually reduce the error by one order of magnitude and make the new position

error look like the acceleration profile for the same reasons as explained above (blue line,
bottom graph). The only way to further reduce the error is now by also feeding the planned
acceleration ẍp into the acceleration feedforward term ẍ f f (orange line, bottom graph). Only
then can we achieve a nearly perfect controller by also adding the inverse dynamic term to
the feedforward term ẍ f f (dark blue line, bottom graph).

In practice, we observed the exact same behavior for the robot joint modules of our walk-
ing robot LOLA and harvesting robot CROPS, which I investigated in much more detail in
my master’s thesis [45]14. However, in order to correctly feed the planned velocity profile
into the cascaded control structure, we also needed to account for delays in the EtherCAT bus
communication. The procedure is described in more detail in our paper [268]. Unfortunately,
for the real controller, we can not directly feed the planned acceleration into the system, since
the real system uses a current controller. With the assumption that the motor acceleration is
somewhat proportional to the motor current, one can try to still feed the acceleration into the
current feedforward term using a gain factor I f f = gI , f f · θ̈p. However, in practice, this never
achieved any further improvements for us. This is probably because the torque on the motor
is completely dominated by friction from the drivetrain, with only little contributions from
the acceleration of the motor inertia. For the same reason, any form of inverse dynamics that
does not include a very good friction model also has very little use for this type of robot joint
position controller, when it is also operated with high gear ratios.

With our modified velocity feedforward, we achieved an average joint error in the 100µrad
range on the motor side, with a control bandwidth of 240Hz [268]. Assuming a rigid driv-
etrain, this would result in joint position errors in the 1µrad range for our humanoid robot
LOLA. This would certainly be a very impressive result and underlines the very good possible
tracking performance of these types of cascaded controllers. However, in reality the drive-
train and links of the robot are not perfectly rigid. I will discuss the influence of compliant
gears and flexible links on cascaded joint position controllers in section 4.3.1.

3.4.2 Torque Control

There are many books [248, 249] and papers [12–17, 260, 272] that deal with the general
structure of torque controlled joints and their various challenges in detail. A common prob-
lem in the past was for example that measured feedback from the joint position θ j was either
not available at all or only with poor quality absolute encoders. This led to various differ-
ent approaches attempting to estimate the actual joint position θ j using iterative methods to
solve models fed by the measured motor position θm. For this overview, I will use the most
recent publication of the DLR’s SARA IV robot [134] as a basis. In this work, they could avoid
this problem by just using high quality absolute encoders on the joint side, which allowed
them to directly incorporate measured joint position feedback into their control law, which
results in the most simple and intuitive version of a typical joint torque controller, Fig. 3.19.

Most publications will assume the control plant as a rigid multibody system described by
the generic mathematical model:

M(θ j)θ̈ j +C(θ j , θ̇ j)θ̇ j + g (θ j) = τ j +τdist , (3.95)

with the inertia matrix M(θ j), the damping matrix C(θ j , θ̇ j) consisting of Coriolis and cen-

13Joint trajectories are usually planned smoothly, with a known velocity and acceleration profile.
14The results are also partially published in our paper [268].
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Figure 3.19: Flow chart for a typical joint torque controller.

trifugal torques, the vector g (θ j) including gravitational loads, the joint torque τ j and addi-
tional disturbance torques τdist including unmodeled effects like friction.

The joint torque of a single joint is then often modeled as a simple linear spring-damper
pair, coming from the flexible drivetrain:

τ j = k j(θm − θ j) + c j(θ̇m − θ̇ j) (3.96)

with k being the drivetrain stiffness and c the viscous damping coefficient. This joint torque
τ j is then assumed to be measurable with a torque sensor15.

The drivetrain is then coupled to the mechanical system of the motor with the equation

Jmθ̈m +τ j = τm . (3.97)

The dynamics of the electrical system and its current controller are often just ignored. The
reason for this is that the motor torque can be easily computed using the motor constant
τm = Ikm and that the achievable bandwidth of the current controller is a lot higher than
the possible bandwidth of the torque controller. The motor torque is therefore equal to the
desired motor torque τm ≈ τm,d in the frequency range of interest16.

The most popular control laws for the torque controller are:

tm,d = τd + gP · (τd −τ j)− gD · τ̇ j (P with passive D controller) (3.98)

tm,d = τd + gP · (τd −τ j) + gD · (τ̇d − τ̇ j) (PD controller) (3.99)

tm,d = τd + gP · (τd −τ j) + gD · (τ̇d − τ̇ j) + gA · (τ̈d − τ̈ j) (PDA controller) (3.100)

15This is done differently depending on the publication. A lot of papers also assume that the measurable
joint torque is just the stiffness τ j = k j(θm − θ j). The reasoning being that the torque sensor will mechanically
measure the torque by measuring deformations on a purposefully flexible part of the drivetrain structure. This
assumes that the main flexibility in the drivetrain actually comes from the torque sensor itself. Any friction or
even viscous damping coming from the mechanical system is often completely ignored for the sake of getting
a simpler derivation of stability proofs. All these assumptions are just equally wrong considering how much a
typical robot joint is influenced by friction. However, for the sake of simplicity, I will also do the same here and
just assume that the drivetrain can be modeled and measured as described in (3.96). We did some experiments
in simulation on different possible combinations, e.g. using a measured torque τ j = k j(θm−θ j) while there is still
unmeasured viscous damping present in the mechanical system, and the influence was not that notable as long
as friction is ignored.

16This is a reasonable assumption. We can achieve a bandwidth of 2500Hz with the current controllers of
LOLA’s joint modules, while most published torque controllers of robot joints can achieve a bandwidth in the
10 Hz range. Meaning that the motor current and therefore the motor torque is basically perfectly controlled in
the frequency range of interest.
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All of these controllers first use a direct feedforward term of the desired joint torque τd with
a proportional controller17. The main difference between most proposed control laws is how
the D part is handled. In (3.98) a purely passive term is used, which is the easiest one to prove
stability for [19, 209]. However, a large passive gD gain will also slow down the controller
and its tracking performance. Using a D part to track a desired first derivative of the joint
torque τ̇ j (3.99) will generally improve the tracking performance, however, also requires a
smoothly planned desired torque τd and will be more sensitive to sensor noise.

In [134] it is even proposed to use a PDA controller (3.100) with the second derivative
of the desired torque τ̈d . The second derivative of the measured torque is determined using
the third derivative of the measured joint position τ̈ j = c jθ

(3)
j with a state observer. However,

while the tracking performance of a PDA controller is of course always superior in theory, it
is rather questionable if the controller can be tuned with any reasonable amount of gA gain
in the presence of modeling errors and noise.

Since the first controller (3.98) is probably the most relevant one in practice, I will use
this torque controller for any future analyses.

The gains of the controller can be derived such that

gP = JmJ−1
m,d (3.101)

gD = c jk
−1
j + cτ,d k−1

j , (3.102)

which shapes the closed-loop response of the system like a second order system with the
inertia Jm,d , stiffness k j and damping cτ,d . The bandwidth of the system can then be increased
by decreasing the desired inertia Jm,d . The authors of [19] could tune their controller with
Jm,d being about 1/5 of the original motor inertia Jm, until the system became unstable
because of the amplification of noise18. For our analysis in section 4.3.2, we used a factor
1/10 to account for improved hardware and sensors.

Impedance Control

A high bandwidth joint torque controller is one of the main assumptions of most control
methods discussed in Section 2.1.3. As already discussed earlier, with the current hardware
it is not really possible to achieve high enough bandwidth to implement complex modern con-
trol schemes for active vibration control using the robot joints. However, a reasonable control
strategy that is already implemented on most collaborative robots is Impedance Control (see
e.g. [134]), which uses another passive PD controller for the joint position:

τd = k j,d(θ j,d − θ j)− c j,d θ̇ j +τg(θ j) +τd,eff . (3.103)

The PD portion of the controller essentially acts like a desired joint stiffness k j,d and damping
c j,d , when interacting with the robot from the outside. This is one of the main advantages
of such a controller, since the robot can be tuned to behave rather softly when interacting
with its environment, which makes the robot safer for operation in close proximity to human
workers. In order to compensate the potentially bad tracking performance of a very soft
robot joint, the control scheme includes a gravity compensation term τg(θ j). The gravity
compensation can for example be computed by feeding the current joint angles θ j into a
rigid body model of the robot, which predicts the expected gravity loads τg(θ j) on each joint.

17Depending on how the model is derived, some people also use τ j as a feedback instead. We found very
little difference between using τ j or τd for the first feedback/-forward term in our simulations for any reasonable
parameters.

18This is of course not really different to directly tuning the PD gains, however, this gives us a nice base line
for our investigation in section 4.3.2
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Finally, another desired torque term τd,eff can be included to perform any form of additional
action, like pressing against a wall.

For high-precision tasks, the idea for this controller is to induce a sufficient amount of
damping in the robot’s joints through the passive −c j,d θ̇ j term, reducing the dynamic error of
the robot. The quasi-static accuracy would rely on a high fidelity model of the rigid body dy-
namics for the gravity compensation. The effectiveness of this approach will be investigated
in section 4.3.2.





Chapter 4

The Influence of Structural Dynamics on Robots

The main purpose of this chapter is to gain a better understanding of the influence of struc-
tural dynamics on the dynamics at the TCP of a robot. The knowledge gained in this chapter
is then used in chapter 5 to develop prototypes for the external vibration damping and exter-
nal stabilization approach for high-precision trajectory tracking.

Section 4.1 will show the development of a full simulation model of a robot manipula-
tor that includes all relevant effects like flexible links / -joints and torque-ripple at the joint
motors. The purpose of this model is not to exactly replicate the dynamic error of a real
robot, since that would be a quite involved task as I have already discussed in the State of
the Art section 2.1. However, the model is capable of reproducing the same type of errors
that are observable on a UR10 robot and is therefore useful to develop external stabiliza-
tion approaches by providing a realistic representation of the dynamic coupling between the
stabilization devices and the robot’s structural dynamics.

Section 4.2 investigates the influence of the pose dependent structural dynamics on the
driving-point dynamics at the TCP of the robot using the previously developed model and
experiments on our sweet pepper harvesting robot CROPS.

In section 4.3, I will discuss our results regarding the influence of structural dynamics
on the joint position- and torque-controllers of a robot manipulator. This is important, since
there might be undesirable interaction between the joint controller and driving-point dynam-
ics at the TCP of the robot, which is also influenced by the external stabilization approaches
developed in chapter 5. The second subsection is about the limitations of torque-controlled
robots regarding high-precision trajectory tracking and serves as another motivation for the
application of external stabilization devices.

The final section 4.4 is about the influence of structural dynamics on the control system
of our humanoid walking robot LOLA. This section is not absolutely necessary for the under-
standing of the external stabilization prototypes developed in chapter 5, however, it is still
another motivational example for the influence of structural dynamics on the performance of
a complex mechatronic system.

4.1 Simulation of a Robot Manipulator

In order to develop the prototypes for the external stabilization approaches investigated in
this thesis, a simulation environment was needed that is capable to model a fully flexible
robot manipulator with all relevant effects as described in section 2.1. The model also needed
to be easily modifiable in order to add new actuators at the end effector of the robot and to
efficiently test new control approaches for external stabilization. Matlab/Simulink provides
all of these features, while also having the great advantages of providing all the necessary
tools in the same software environment.

71
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Matlab’s Partial Differential Equation Toolbox gives rudimentary FEM functionality to mesh
and calculate MC K models for structures based on .stp files and simple material parame-
ters. Reduction methods like Craig-Bampton are also implemented within this toolbox.

The Simscape Multibody environment for Simulink allows a straight-forward implemen-
tation of multi body systems. Since 2019, this toolbox also includes flexible bodies based
on the lumped parameters approach described in section 3.2. In version 2020a, support for
reduced order models was also added.

While the provided functions are not as powerful as established structural dynamics tools
like Ansys, Abaqus or Nastran, they are sufficient enough to include the effects of flexible
links in a full robot manipulator model. The true strength of Matlab/Simulink is the easy
application of its powerful Control- and Linearization Toolbox on such a flexible multi body
model to develop new control approaches.

I want to stress here that the goal of this model is not to exactly replicate the behavior
of an existing robot manipulator like the UR10, Franka Panda, ABB IRB 4600 or our CROPS
robot, which were all available for testing during my time at the chair. As we will see later,
all of these robots show very different behaviors unique to their specific design, which would
be quite hard to model exactly, especially at the accuracy needed for this thesis. Instead, the
purpose of this model is to provide a simulation test bench of a generic robot manipulator
that includes all relevant effects. Since the external stabilization approaches investigated in
this thesis are supposed to work with as little prior knowledge about the underlying system
dynamics as possible anyway, it is not important that the developed simulation model exactly
matches the dynamic behavior of e.g. the UR10 robot.

In order to be useful as a test bench, the model has to be able to correctly depict the
dynamic interaction between the joint controllers and structural dynamics of a robot ma-
nipulator, as well as the dynamic interaction with an additional actuator system at the end
effector of the robot. This will be verified later by investigating if the model shows approxi-
mately the same effects as a real robot, like pose dependent structural dynamics. However,
without trying to exactly match the measurement results.

The following model was developed and further improved by my students and me during
most of my time at the Chair of Applied Mechanics. Most notably, my student assistant
OCHSENIUS helped with numerous testing activities during the early stages of the model,
especially since the support for flexible links in Simscape Multibody was not very good before
2019. He is also a co-author for our papers [47, 48], which both used an early version
of the model to investigate the influence of structural dynamics on cascaded joint position
control and external vibration damping approaches. Furthermore, my student PRAUTZSCH

contributed to the model by implementing and testing torque control methods in his semester
[216] and master’s thesis [217]. He is also the main author of our paper [218].

The model is implemented as Simulink library blocks, which are shown in more detail
in appendix F. The general structure of the model is shown in Fig. 4.1. The model consists
of joint & flexible link pairs, which can be linked together to form any kind of robot with a
tree-like structure using DH-parameters.

Flexible link models

The flexible links are implemented within Simscape Multibody. Historically, there are two
versions that are used throughout this thesis. The first model version is the lumped parameter
model as described in section 3.2. Matlab version 2019a also added the library blocks Flexible
Beams, which are based on the same approach and simplified the implementation effort. As
of the time of writing, there are a few blocks available based on the cross section of the
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Figure 4.1: Structure of the flexible robot manipulator simulation model developed during this thesis.

flexible beam. The beam can then be parameterized by simply using the geometry, density,
Young’s modulus and Poisson’s ratio. Damping can be specified using Rayleigh damping
as described in 3.1.2, or with proportional modal damping. The main disadvantage of the
lumped parameter model is that only very simple geometries are possible and that there is no
coupling between external forces and orthogonal DOFs, which might exist in more complex
structures.

The second method used in later versions of the model utilizes reduced order models
as described in the second part of section 3.2. As of Matlab version 2020a, the workflow
can be done completely in Matlab. First a M K model is created based on a .stp file and
basic material and mesh parameters using the createpde() function. The interface nodes
are then specified with the structuralBC() function. In this case, the interface nodes are
always at the connection points of the joints. Finally, the M K model can then be reduced
using the reduce() function by specifying a upper bound for the highest frequency mode in
the reduction bases. The resulting reference frame location-, mass- and stiffness matrices can
then be used in the Simscape Multibody block Reduced Order Flexible Solid. The damping can
be specified in the same way as in the Flexible Beams blocks.

Both approaches were tested on a simple fixed-free beam problem by comparing the static
solution to a constant force, as well as the driving-point transfer function at the tip of the
beam to the results generated in Ansys. In general, both approaches perform quite similar
if a high enough number of elements / large enough reduction basis is used. However, we
found that the reduced order model is a bit more accurate, while also more computationally
efficient when using more heavily reduced models [217]. More importantly, the reduced
order model is also capable of modeling more complex structures, while also being able to
correctly model the coupling of orthogonal DOFs. For these reasons, we always used the
reduced order model for later publications1.

Since most of the tests for the stabilization unit were done on the UR10, we also based
the simulation model on the DH- and inertia parameters of this robot, which are published at

1I will specify which model was used at the appropriate places. Since we always used quite simple structures
like the simple pipe shaped links of the UR10, there was no significant difference between the results of these
two approaches for the topics of this thesis.
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Figure 4.2: Robot model with flexible joints and links in Simulink/Simscape Multibody based on the
UR10.

e.g. [277]. In order to save computational costs, we only modeled the first two main links as
flexible bodies, since these have the largest contributions to the overall flexibility of the link
structures, Fig. 4.2.

The flexible multi body system is then driven by joint torques τ j produced by the joint
model.

Joint Model

All further models are implemented in Simulink. The joint model is a simple spring-damper
pair for each joint to model the drive train flexibility, as it is common practice in most publi-
cations concerned with the flexibility of robots. However, the model also considers the gear
ratio N , which is important to correctly model the weak coupling between the motor axis and
dynamics at the TCP of the robot, as we will see later:
�

Jm 0
0 0

��

θ̈m

θ̈ j

�

+

�

c j −c j N
−c j N c j N2

��

θ̇m

θ̇ j

�

+

�

k j −k j N
−k j N k j N2

��

θm
θ j

�

=

�

τm
τ j

�

. (4.1)

With Jm being the motor inertia, k j the joint stiffness and c j the viscous damping factor of the
joint. The model sends the joint torque τ j to the FMBS in Simscape and receives the current
joint position / velocity θ j , θ̇ j. The model is driven by the motor torque τm from the motor
model.

The gear ratio is set to N = 100 for all joints. The damping c j and stiffness k j parameters
are tuned by hand using torque measurements from the Franka Panda, which we acquired
during our investigation of torque controlled robots as discussed in section 4.3.2. The main
reason for this is that the Panda was the only robot available to us with a torque sensor, which
is the most sensible output to use for tuning such a model.

I already commented in section 2.1 that just using viscous damping is a gross oversimpli-
fication of the complex friction, stick-slip and backlash effects in a robot joint drivetrain. For
example my student Zimmermann tested multiple friction models for ABB in her master’s the-
sis [312] and achieved the best results with the more complex LuGre model. However, this
was still with the goal in mind to achieve the best possible modeling result for a robot control
system using the motors of the robot. The external stabilization approaches investigated in
this thesis have the great advantage that they are barely influenced by the complex dynamic
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behavior inside of the joint, which is one of the great strengths of this concept. Since the
use of any more complex friction models did not effect the development or end result of the
stabilization unit in section 5, I decided to refrain from using more complex friction models
in this thesis2.

Motor Model

The motor model is the basic BLDC motor model described in section 3.4 and uses identified
inductance and resistance parameters from the joint modules of our walking robot LOLA3.
During our measurements with an ABB IRB 4600 robot we also noticed that one of the most
significant excitation sources for robot joints is torque ripple / motor cogging. This is also
considered in this model as a rough approximation by adding an harmonic disturbance torque
to the motor torque τm:

τi,cog =
3
∑

n=1

Ac,n sin
�

θ̇mnt
�

, (4.2)

with τi,cog being the cogging torque from the i-th joint and Ac,n the amplitude of the n-th
cogging harmonics. The cogging frequency is proportional to the motor velocity θ̇m with n
higher harmonics. For this model, only three harmonics are considered. The amplitudes Ac,n
are tuned by hand to get similar relative error amplitudes at the TCP as in the measurements
performed on the UR10.

As discussed in section 2.1.2, the real disturbances acting on the drivetrain of the joint
are of course a lot more complex. However, since we only want to test the robustness and
performance of the external stabilization approaches developed in section 5 against any form
of disturbance acting on the motor side of the drivetrain, we do not need a more complex
model of these effects.

Joint Controller

The joint controller for most parts of this work is the industry standard cascaded P-PI-PI
motor position controller described in section 3.4. For our investigation of the influence of
structural dynamics on torque-controlled robots, we used the most recent torque-controller
published by [134] and described in section 3.4.2.

4.1.1 Verification Experiments

In order to verify that the model produces reasonable results, we let the model perform a 1 m
long horizontal trajectory from a completely retracted pose to a stretched out pose, Fig. 4.2.
The trajectory is planned with constant velocity in order to produce a high jerk motion at the
beginning and the end of the trajectory. While not very practically relevant, this is done to

2However, I would still strongly advise to consider better friction models, if one is truly interested in improv-
ing the general performance of joint position or torque controllers.

3With the motor model tuned using measurements from our walking robot LOLA, the joint model tuned with
data from the Franka Panda and the DH- and inertia parameters taken from the UR10 robot, this is starting to look
like Frankenstein’s robot model. However, I want to reiterate here again that the goal is to have a generic robot
model that is only able to represent the behavior of a robot realistically enough to develop external stabilization
methods. The goal is not to exactly model the behavior of a specific robot model. The most sensible approach to
me was therefore to use the best possible measurement data available to us to tune and verify subcomponents.
The reasoning being that a robot created from verified subsystems will show a realistic enough global dynamic
behavior to be useful.
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Figure 4.3: Simulation of a 1m long horizontal trajectory at 100 mm/s speed.

provoke high excitation forces at the beginning and the end to test the effectiveness of the
stabilization approaches under extreme conditions.

The simulated vertical path error at the TCP of the robot during this motion is shown in
Fig. 4.3. The blue line shows the result of the model without any additional error sources
like motor cogging. The model shows a short vibration response at the start due to the high
jerk at the beginning of the trajectory. The TCP then continuously sags downwards due to
the flexibilities in the system. At the end, the robot shows a large vibration response due to
the sudden stop at the end of the trajectory.

Comparing this to the actual measurements at the UR10 robot performing a similar trajec-
tory (Fig. 4.4a), we find that the model response is missing a lot of vibrations during motion4.
The real robot also does not continuously sag downwards.

Adding motor cogging to the robot model results in more similar behavior of the simulated
robot to the measurement (Fig. 4.3a orange line). We can also produce a similar raising
motion at the beginning of the trajectory by adding a random 2% error to the DH parameters
of the robot during trajectory planning (Fig. 4.3a green line). The sagging of the real robot
is still a bit more complex, showing multiple short plateaus during the trajectory. This is
probably a combination of multiple small manufacturing errors as well as effects like backlash
in the robot joints, which would be quite hard to model. However, the model now shows a
more similar error behavior at the TCP to the measurements from the real robot, which was
the goal of this model.

We can also analyse the error in a bit more detail by performing a continuous wavelet
transform (CWT) on the error data5. Fig. 4.3b shows the CWT of the simulated robot be-
fore the harsh stop at 10s. We can see how the vibration response is a superposition of the
particular response of the system to the excitation caused by motor cogging, and the har-

4The measurements are performed using highly precise eddy-current sensors measuring against a reference
surface. The procedure is explained in more detail in section 5.2. We do not perform a trajectory with constant
velocity to protect the robot, meaning that the measurement is missing the sudden stop at the end.

5A CWT is an advanced short time Fourier transformation (STFT), which gives information about the fre-
quency content in a signal over time. The problem with a normal STFT is that there is always a compromise
between time and frequency resolution, which is often particularly inconvenient for low frequency content. The
CWT offers a better compromise by having a frequency dependent time resolution. For more information see e.g.
[9, 225].
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Figure 4.4: Measurement of a 1m long horizontal trajectory at 100mm/s speed using the UR 10 robot
with eddy-current sensors at the TCP.

monic response from the first structural eigenfrequency. We can already see here that the
first eigenfrequency depends on the pose of the robot and starts at around 20Hz and then
continuously lowers to 10 Hz (we will analyse this in more detail in the following section).
The robot shows a particularly large response when one of the cogging frequencies hits the
first eigenfrqeuency. The response to higher eigenfrequencies is not visible in this diagram,
since we are looking at position data that only shows very low vibration amplitudes for high
frequency content.

The CWT of the measurement of the same trajectory on the real robot is shown in Fig.
4.4b. We can see that the real response is mostly dominated by the particular response of
the robot to the excitation of the cogging frequencies. This is probably because of the UR10
robot having more damping than our model, keeping the harmonic response well suppressed
during most of the motion. However, after second 6 of the motion, the second cogging
frequency comes close to the first eigenfrequency, causing a larger vibration response in that
particular part of the CWT. The change of the cogging frequencies is a bit different than in our
model, which is probably because of the UR10 robot having lower gear ratios than N = 100.
The cogging frequencies also do not have the same steep raise at the end of the trajectory,
since the UR10 trajectory was planned with significantly less jerk in the end.

For even lower speeds of the UR10 robot (e.g. 30mm/s shown in Fig. 4.5) all cogging
frequencies are well below the first eigenfrequency of the system up to 30 s. In this case,
a prediction of the error at the TCP using the motor angles of the robot with pure forward
kinematics could probably work quite well, since the system responds quite rigidly to the low
excitation frequencies6. For lower speeds, the dynamic accuracy of the robot could probably
significantly be improved by reducing motor cogging by e.g. using a better drive system.

The first eigenfrequency of the UR10 robot was determined by measuring the driving-
point transfer function at the TCP of the robot using impact measurements7. The pose of the
robot is gradually changed along the planned trajectory and the measurement is performed at
30 different poses. The resulting transfer functions are shown in the Campbell-like diagram

6We noticed something similar for the ABB IRB 4600 robot, which also showed a quite rigid response for low
speeds. However, this robot has a lower eigenfrequency due to its weight, which causes its structural dynamics
to be excited by the cogging frequencies at any reasonable speed.

7The procedure is explained in more detail in section 4.2.1.
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Figure 4.5: Measurement of a 1m long horizontal trajectory at 30 mm/s speed using the UR 10 robot
with eddy-current sensors at the TCP.
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Figure 4.6: Campbell diagram of the driving-point measurement at the TCP of the UR 10 robot in z
direction while moving the robot along a 1 m horizontal trajectory.

Fig. 4.6, which plots a heat map of these transfer functions depending on the current TCP
position of the robot. The first measured eigenfrequency shows quite similar behavior to
the simulation results. However, we will see in the following section that the higher-order
dynamics do not match as well. This is most likely because the measurements were performed
with the stabilization unit prototype attached to the robot, while the following simulation
results were generated with just the unloaded robot.

Although the model is not capable of perfectly reproducing the exact measured error
profile of the UR10 robot, it still clearly shows very similar behavior. As we will see later, the
model was very useful in the development of the stabilization unit, since we could test the
dynamic interaction between the additional actuator system and its controller with a generic
flexible robot.
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Figure 4.7: Repeated measurements of a 1 m long horizontal trajectory at 30 mm/s speed using the
UR 10 robot with eddy-current sensors at the TCP.

Repeatability

Let us finally also have a look at the repeatability of the UR10’s behavior. Fig. 4.7a shows
again the measured vertical path error during a 1 m long horizontal trajectory at 100 mms−1

speed. This time, we also measure the robot moving backwards with the same settings. Fig.
4.7b shows a zoom at the middle portion of the measurement, where the robot stops the
forward motion and starts to move backwards.

The test is repeated four times with the same starting conditions and settings. We can
see that even the dynamic behavior of the robot is very well reproducible up to about 50µm.
This is somewhat reassuring, since we are not dealing with chaotic phenomena, but clearly
systematic behavior. This indicates that, given a better understanding of the effects in the
drivetrain and other subcomponents, we might be able to reproduce this behavior using
sophisticated simulation models.

I want to stress here that it would not be enough to just measure this error profile to apply
a calibration method as described in section 2.1.1. This might reduce the quasi-static error,
as we have already seen before. However, there are still multiple problems regarding the dy-
namic error: First of all, a pure feedforward approach based on a measured error profile does
not take the dynamic interactions within the system into account. This means, if we would
use this error profile to compensate the error with the robot’s motors, we would change the
input of the system. Therefore, the dynamic error of the robot would respond differently to
the error profile measured before, which would probably strongly reduce the effectiveness
of this approach. In order to properly apply a feedforward based method, we would need a
model that is also capable of reproducing the correct response for all other possible inputs,
which is a much more involved task than just measuring the error profile once. More impor-
tantly, most robot joints would not be capable to follow such highly dynamic desired motions
anyway, since the control bandwidth of the joint controllers on the joint side is quite limited
(see section 4.3).
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4.2 Pose Dependent Structural Dynamics of Robot Manipulators

Apart from the very complex joint dynamics of a real robot, the pose dependent structural
dynamics is another challenging problem for high-precision robot control. We have already
seen this in the previous section in the CWT of the simulated horizontal trajectory Fig. 4.3b,
or the measured Campbell diagram of the UR10 robot Fig. 4.6. In this section, I want to give
a bit more detailed look at the pose dependent structural dynamics of the simulated model.
In subsection 4.2.1, I will show measurements of the structural dynamics of our CROPS robot
to verify that we can also find similar effects on a different type of robot manipulator.

Let us first have a look at a few Campbell diagrams for different trajectories of the simu-
lated model Fig. 4.8. The robot performs a horizontal, diagonal and vertical trajectory (Fig.
4.8a), with all of them being in the same plane parallel to the y-z-inertial coordinate axes.
Each trajectory is evenly split into 100 poses and the model is linearized at each pose to
generate the driving-point transfer function z̈TCP/ fTCP,z at the TCP of the robot. The output
acceleration z̈TCP and input force fTCP,z are measured in the inertial coordinate frame.

Fig. 4.8b shows the 100 linearized transfer functions for the horizontal trajectory in a
Campbell-like diagram depending on the distance of the TCP to the starting point of the
trajectory. We can see that the dynamics of the system significantly change depending on the
pose. The most dominant one is the first eigenfrequency, which starts at around 18 Hz and
then moves down to 8 Hz. In general, the frequency and change of the first eigenfrequency
is in the same ball park as the measured one of the UR10 in Fig. 4.6. We can also see a few
more changing eigenfrequencies between 10 Hz and 100Hz, however, with significantly less
amplitude than the first one. That is probably why there are no more eigenfrequencies visible
in the measured Campbell diagram Fig. 4.6: With the real system having a bit more damping,
these poles are probably too attenuated to show up in a simple impact measurement. The
next mode with high amplitude shows up at around 100Hz, which is also visible in both the
measurement and simulation. Overall, the global dynamic behavior of the model matches
quite well with the measurements. That is also thanks to the quite simple design of the
UR10 robot, since structures with similar topologies will always also show a similar dynamic
behavior. This is also why the structural dynamics of robots do not scale very well: Most
robot structures have a first eigenfrequency around 7−15Hz regardless of their size. A larger
robot might have more stiff components, however, it will also be heavier and still have a
tree like topology, bringing its eigenfrequencies again in the same range as most other robot
manipulators.

Since the desired control bandwidth of the stabilization system is around 50 Hz (see sec-
tion 1.1), we probably only have to deal with the first eigenfrequency for the horizontal
trajectory when using a robust control scheme. However, both the diagonal (Fig. 4.8c) and
vertical (Fig. 4.8d) trajectory show additional changing eigenfrequencies with significantly
higher amplitudes. This underlines the difficulty of the control problem: An additional sta-
bilization system at the TCP of the robot has to be either very robust against those changing
system dynamics, or somehow be able to adapt to them without requiring too precise knowl-
edge about the underlying system dynamics. Remember that we are able to reproduce similar
effects with our model, however, the exact dynamic behavior is still quite off (e.g. Fig. 4.4a
compared to Fig. 4.3a or Fig. 4.6 compared to Fig. 4.8b). Any kind of control scheme that is
based on precise system models is probably not very effective on the real robot, or will have
significant robustness issues8.

Control methods that rely on the control system of the robot itself will have to face even
harder obstacles, since they also have to deal with the quite complex dynamics of the driv-

8I will summarize our efforts to make modern control methods work in section 5.1.5.
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(b) Campbell diagram of the transfer function
z̈TCP/ fTCP,z for the horizontal trajectory.
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(c) Campbell diagram of the transfer function
z̈TCP/ fTCP,z for the diagonal trajectory.
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(d) Campbell diagram of the transfer function
z̈TCP/ fTCP,z for the vertical trajectory.

Figure 4.8: Demonstrating the pose dependent structural dynamics of the robot model via the driving-
point transfer function z̈TCP/ fTCP,z (measured in the inertial coordinate frame).

etrain and then additionally have to somehow properly control the structural dynamics of
the robot. Additionally, because of the usually quite high gear ratios, the dynamics of the
drivetrain and joint controllers have very little influence on the driving-point dynamics at the
TCP (which are the control plants for any external stabilization approach). We will see this
in the following experiments and also analyse the influence of the joint controllers in more
detail in section 4.3.1.

4.2.1 Verification Experiments on the CROPS Robot

To verify this behavior, and also to get some hands-on experience with the structural dynam-
ics of robot manipulators, my students and I did a series of experiments on our sweet pepper
harvesting robot CROPS. This subsection is based on our paper [46]. My student FUDERER

also did some preliminary work during his bachelor’s thesis [99].
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Figure 4.9: Our sweet pepper harvesting robot
CROPS in 9 DOF configuration [215].
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Figure 4.10: Assembly of one of the CROPS
robot’s joint modules. Adapted from [215].

The robot was initially developed at our Chair in 2012 during the European project Clever
Robots for Crops for the purpose of automated sweet pepper harvesting [29]. Since then,
the robot has further been utilized for the development of new methods for motion planning
and adaptive motion control of redundant manipulators in uncertain environments based on
tactile feedback [235, 267], estimation of joint torques [236] and teleoperation. In 2018 and
2019, we also did a new series of field tests to evaluate the harvesting performance of the
robot [123] and built a new gripper prototype [144].

The robot’s base is attached to one large prismatic joint for vertical movement and oth-
erwise consists of rotary joints [276], Fig. 4.9. The design of the joint modules is similar
to typical robot joints, utilizing harmonic drive gears and a breaks on the motor side [215],
Fig. 4.10. The joints are controlled using a decentralized joint position control scheme as
explained in section 3.4.1. The robot can be assembled in a 7 or 9 DOF configuration, thanks
to its modular design.

Experimental Setup

The robot is used in its 7 DOF configuration for the following experiments, Fig. 4.11. In
this configuration, the robot consists of three large rotatory joints for the positioning of the
TCP and three small joints for its rotation, making it quite similar to most industrial robot
manipulators. The base of the robot is attached to the first large linear joint.

To analyse the pose dependent dynamics of the robot, the poses are gradually changed
from a fully stretched out position to a completely retracted pose while rotating around the
z-axis of the inertial coordinate system, Fig 4.11. The vertical position of the first prismatic
joint is kept the same for all tests. An Experimental Modal Analysis (EMA) will be performed
at the three poses shown in Fig 4.11 with the specific joint angles:

Pose 1: θ2 = 0◦, θ3 = 0◦, θ4 = 0◦, θ6 = 0◦.
Pose 2: θ2 = 45◦, θ3 = −30◦, θ4 = −75◦, θ6 = −45◦.
Pose 3: θ2 = 90◦, θ3 = −60◦, θ4 = −150◦, θ6 = −90◦.

All tests are performed by measuring FRFs using a PCB impact hammer and Kistler triax
acceleration sensors with 100mV/g sensitivity and 6g of weight. We could also have used
sensors with higher sensitivity and less bandwidth, since we were mainly only interested in
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Figure 4.11: Experimental setup with the CROPS robot in 7 DOF configuration. Adapted from our
paper [46].

the frequency range of up to 100 Hz. However, sensors with higher sensitivity are usually also
significantly heavier and might influence the system response due to the added mass effect
[92]. The chosen sensors are a good compromise between weight and sensitivity for this
application.

Impact locations for the input measurements are near the TCP and between the third and
fourth joint of the robot, Fig. 4.11. Because of the high amount of measurements needed
for the following experiments, we preferred an impact hammer with 0.3 kg mass as excita-
tion source9. A Siemens LMS system with 24 channels is used for data acquisition, allowing
seven triax sensors to be used per measurement run. For the EMA, one measurement run is
performed per link and joint of the robot, resulting in overall 11 measurement runs with 77
measurement points for each pose, Fig. 4.11. The output acceleration sensors used for the
other tests are located near the TCP (a1) and between joint three and four (a2), Fig. 4.11.b.
The EMA is performed using the LMS Impact Testing sofware with the PolyMax algorithm
[214]. All further post-processing is done in Matlab.

Preliminary Tests

To setup the measurements, we first performed the typical initial tests. For the impact ham-
mer, we tested three different hammer tips, Fig. 4.12a. The metal tip will excite the highest
frequency range, however, with the least amount of energy in the frequency range of interest
below 100Hz. It will also often cause nearby sensors to reach overload during the impact,
making the ranging process between measurements quite cumbersome. The rubber tip is
able to excite the targeted frequency range best, however, falls below −10 dB right after the
100 Hz mark. In order to still have some margin for higher frequencies, we chose the vinyl
tip, giving the best compromise between bandwidth and input energy for the frequency range
of interest.

The impulse response of sensor a1 in the z direction after an impact at the TCP in the
same direction is shown in Fig. 4.12.b. Using a measurement window of 2 seconds provides
a good signal to noise-ratio, without having to apply any kind of extra windowing, which

9Such a light hammer will usually not be able to introduce enough energy for a reasonable response of a
larger industrial robot manipulator. These larger structures usually have to be excited using a much heavier
impact hammer or a shaker, which is more inconvenient to use. As we will see shortly, the small weight hammer
used for these experiments was good enough in this case.



84 4 The Influence of Structural Dynamics on Robots

tip force measurement with rubber
(orange) vinyl (orange) and metal

101 102 103

Frequency in Hz

0

0.05

0.1
A

PS
in

N
2

H
z

0 1 2
Time in s

−2

0

2

A
cc

.
in

g

(b) Time signal of sensor a1z .(a) Auto power spectrum of the hammer

101 102 103

Frequency in Hz

10−1

100

C
oh

er
en

ce

0.8

0.9

1

|a 1
,z

F 1
,z
|i

n
m N
s2

(c) Driving point FRF at the TCP
(blue) and coherence (orange).

(green).

Figure 4.12: Initial test measurements after an F1,z-impact to setup the EMA. Adapted from our paper
[46].

results in an acceptable frequency resolution of 0.5 Hz for the FRF measurements10.
A test driving-point measurement at the TCP in z-direction is shown in Fig. 4.12.c. The

measured FRF shows very good coherence after five averages, never dropping below 0.95
over the entire frequency range. The first mode appears to be around 10Hz, making the used
frequency resolution of 0.5Hz just about sufficient. We maintained the bandwidth for all
following measurements at 1024 Hz, however, all following FRF’s will be zoomed in on the
200Hz range, since we are mainly interested in this frequency range.

Repeatability and Influence of Temperature

Considering the complexity of the mechanical structure of a typical robot manipulator, the
first area of interest for us was the repeatability of FRF measurements using impact testing.
We tested this by taking a reference driving-point measurement at the TCP of the robot in all
directions for the three main poses. We then repeated the measurements after moving the
robot into a different pose and back into the reference pose using its control system. We did
another test measurement in the same poses, after leaving the robot turned off for a day in
a different pose. Fig. 4.13 shows a comparison of the three measured FRFs in z - direction
at the stretched out pose, showing a good agreement of the measurements between the pose
changes, indicating a very good repeatability of the measurements. This is also the case for
the other poses that we measured.

Since the robot joints of the CROPS robot significantly heat up during longer operation,
we also tested the influence of the temperature on the FRF measurements. We again com-
pared a reference measurement in multiple poses with cold robot joints to a second set of
measurements taken after the robot was in operation for 30 minutes. A selected result is
again shown Fig. 4.14. There is some visible change to the measured FRF, however, the
influence is overall not very significant over all test measurements.

Non-Linearity and Influence of the Joint Controller

Another issue I was concerned about is the possibility of non-linear behavior of the force to
acceleration transfer function at the TCP of the robot, which is the control plant for both

10The slow ’drift’ visible in the impulse response is caused by the robot being mounted on a very heavy
damped experimental table. The table is isolated from the building using four highly damped pneumatic springs.
However, the system still shows a slow reaction to an impact, basically reacting like a very heavy single harmonic
oscillator. The resonance frequency of the table’s suspension is low enough (< 0.5Hz) that it does not interfere
with the measurements performed here, with the first frequency of interest being the first resonance of the robot
at 10 Hz.
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stabilization approaches investigated in this thesis. To do simple test, we compared the same
FRFs as before, measured with a large and low amount of impact force, Fig. 4.15. We can
see that there is some non-linear behavior depending on the amount of input force, however,
mostly for higher frequency modes above 40Hz. The first two resonance peaks are mainly
unaffected. The reason for this will become more clear, when I discuss the mode shapes of
the system in the EMA section.

There are definitely some visible non-linearities for large differences in input forces, how-
ever, the pose dependent structural dynamics of the robot ultimately proved to be the much
larger challenge for any potential control approach. For all further measurements, we made
sure to check that the spectrum of the impact force was always similar.

Finally, we also tested the influence of the joint controller on the driving-point FRF at the
TCP of the robot by measuring again the same FRFs in the same poses, once with the breaks
engaged and once with the joint angles held by the joint controllers, Fig. 4.16. The controller
only seems to have an effect on the damping of the mode around 40Hz, which also seems to
be consistent with the mode shapes acquired with the following EMA. This behavior can also
only be observed for the completely stretched out pose.

Influence of the Pose on the TCP Dynamics

One of the main interests for these experiments was to measure the pose depended structural
dynamics of the robot at its TCP. In order to test this, we measured the driving-point mea-
surement at the TCP of the robot for all three directions for 60 poses in total, while gradually
changing the pose of the robot starting from pose 1 through pose 2 till pose 3. We started
with pose 1 and then increased the joint angles in the following increments:

∆θ2 = 1.5◦, ∆θ3 = −1.0◦, ∆θ4 = −2.5◦, ∆θ6 = −1.5◦.

The breaks were engaged for all measurements. The results are plotted in a Campbell-like
diagram by plotting the measured FRFs on a heat map depending on the current pose, Fig.
4.17.

It is quite obvious that the structural dynamics of the robot are significantly dependent on
its current pose. The first mode at 10Hz barely changes its frequency, however, it loses a lot
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of amplitude after passing the second main pose. The second mode starts around 13 Hz and
then gradually increases to 20Hz. The third mode starts at 40Hz and changes the most in
frequency. This mode also has two short nodes in the amplitude before the second and right
between the second and third main pose. The EMA revealed that these nodes also mark a
significant change in the corresponding mode shape. E.g. the mode shape of the third mode
starts as a bending mode in the y-z-plane mainly and then abruptly changes to a torsion
mode around the axis of the second joint right before the second main pose.

These measurements also highlight the complexity of the structural dynamics of a robot
manipulator. This poses a particular challenge for modern control methods, which often
depend on accurate models for robust performance.

Experimental Modal Analysis

Finally, the EMA is performed for the three main poses shown in Fig. 4.11. A good way
to check the quality of the identified model is by examining the synthesized FRFs produced
by the PolyMax algorithm, Fig. 4.18. The plot shows two FRF measured by an impact in
z-direction at the TCP to the a2 sensor in x- and z-direction, respectively. The synthesized
FRFs are plotted as dotted lines in the same color. Both FRFs show a very good agreement
with the measurement in amplitude and phase, which is also the case for all other transfer
functions measured for the EMA, indicating a good result of the EMA.

The acquired mode shapes are shown in Fig. 4.19. The first mode at 8.6Hz is a horizontal
bending mode in the x-y-plane caused by torsion of the "C"-shaped link between joints 2
and 3. This mode does not show up in the Campbell diagram (Fig. 4.17), since it can not
be excited by an impact in z-direction, making it uncontrollable for these kind of inputs.
The mode is mainly caused by the bending of the link between the first and second joint of
the robot and the "C"-shaped link between joint 2 and 3. The rest of the arm stays almost
completely rigid for this particular mode shape, and no bending of the joints is observed.

The second mode at 10Hz is the first bending mode in the y-z-plane. This mode is mainly
caused by bending of the large prismatic joint 1, with no actual deformation of the robot arm
itself. This is also why this mode does not change its frequency, but only loses amplitude
in the Campbell-diagramm Fig. 4.17: By gradually retracting the robot arm, the lever of the
impact excitation at the TCP with respect to the large linear joint is reduced. The joint itself
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is by far the heaviest part of the robot and basically behaves like a large beam that is excited
by a decreasing moment during the pose change of the robot arm. This causes the measured
mode to lose amplitude, but not frequency, since the mode is completely dominated by the
bending of the large prismatic joint.

The third mode at 13.6 Hz looks quite similar to the second mode and also yields a quite
high modal assurance criterion (MAC) of 91 %. However, this mode also involves a significant
amount of bending at the "C"-shaped link between joints 2 and 3, which moves out of phase
with the bending motion of the linear joint 1. The rest of the arm also stays rigid for this
mode.

Mode 5 and 6 are both bending modes in the x-y-plane and both have a node between
the small joints 5 and 6. The difference between these modes is again the additional bending
of the "C"-shaped link of mode 5.

Mode 6 at 42Hz is the second bending mode in the vertical direction and is the first
mode that actually involves bending of some of the robot’s joints around their motor axes.
Consequently, this is the first mode that can actually be influenced by the joint controller of
the robot, as we already observed in the test measurement shown in Fig. 4.16.

Modes 7 and 8 look like the third bending modes in the vertical and horizontal direction
respectively, with both having a vibration mode at the link between joints 3/4 and the link
between joints 5/6. Mode 9 is the first torsional mode around the y-axis.

The mode shapes of pose 2 and 3 are considerably harder to depict on paper, which is
why I will omit showing these. However, looking at these modes also does not really add
anything to the understanding of the underlying system behavior besides confirming the
same conclusions.

Discussion of Results

There are a few key takeaway points that can be made from the results of these experiments,
both for the goal of this thesis and for robot manipulators in general:

• Experimental Modal Analysis can be a very powerful tool to analyse the dynamic behavior
of a robot manipulator.
This is nothing new, similar works have for example been done in [41, 101, 137, 221,
283] for different types of robot manipulators. However, these works all have been
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done in a lot less detail, often only using one sensor per robot joint. This is good
enough if one is only interested in the eigenfrequencies and damping of the first few
modes. However, in order to derive sensible conclusions using the modes shapes, an
EMA should be performed with a lot more measurement points, as done here.
For the CROPS robot, we can clearly determine that the weakest component is the
"C"-shaped link between joints 2 and 3, which should be redesigned to improve the
dynamic behavior of the robot. The other main issue is the large linear joint 1, which
could be improved by also fixing the top or even middle portion of the beam to the
environment.

• The entire mechanical structure influences the dynamic behavior of the robot.
In this specific case, the 6th mode is the first one that actually involves torsion around
the joint axes. All earlier modes are basically completely dominated by deformation of
the link components. This would cause any model that only uses torsional springs in
the joints, which is still the most popular modeling approach for most robots, to not be
able to accurately model the structural dynamics of this robot.

• Every robot is different.
While the CROPS robot is completely dominated by deformations of its link compo-
nents, other robots will behave differently depending on their design. For example,
a sensitivity analyses of the ABB industrial robot that we investigated in [312, 313]
showed equal contributions of the links and joint components to the overall dynamic
behavior. Meaning that general statements such that ’only the drive train flexibilities
matter’ should be avoided. The structural dynamics of robot manipulators should al-
ways be investigated with as much detail as possible using high fidelity measurements
and models that include link and joint flexibilities. These models can then be reduced
if the analysis shows that only certain components are influencing the behavior of in-
terest.
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• Certain structural modes of the robot might be uncontrollable for its control system.
In the case of the CROPS robot this is actually rather extreme, since the first five modes
of the robot are basically uncontrollable by the robots own joints. We can also see this
in the controller test measurement of Fig. 4.16, where the controller only effects the
6th mode at 42 Hz. For example the second mode (Fig. 4.19.b) is caused completely by
the bending of the beam like structure of the first joint, with all other joints remaining
rigid. Inducing additional damping into the system via the joint controllers using for
example an impedance controller would not effect this mode at all.
If one is only interested in the position of the TCP, one could think of a control design
that moves the joint angles in such a way that the TCP is kept more stable. However,
that would require a very accurate model of the entire structural dynamics of the sys-
tem, including the dynamics of each joint with its drivetrain. As already discussed in
the State of the Art section 2.1, this is unfortunately still quite unfeasible with current
methods, especially because the control system would need to be able to precisely move
the entire robot with over 10 Hz bandwidth. This is again one of the main motivations
for the investigation of external robot stabilization approaches in this thesis.
Of course, this problem will not be as extreme for other industrial robots, however, we
found similar issues of uncontrollable modes with our UR10 and Franka Panda models,
as discussed in section 4.3.2.

4.3 Influence of Structural Dynamics on Robot Joint Control

After analyzing the structural dynamics of a robot manipulator more globally using an Ex-
perimental Modal Analysis in the previous section, I want to go into a bit more detail on the
influence of structural dynamics on robot joint control in this section. The main purpose of
the research shown in the following subsections was foremost to gain a more detailed un-
derstanding of the interactions between the joint control system, the flexible drivetrain and
flexible links of a robot manipulator. The second reason was to examine if there could be any
important interactions between external stabilization approaches applied at the TCP of the
robot and the robot’s own control system.

I will first summarize our research for position controlled robots in section 4.3.1, which
is more relevant to the development for external stabilization approaches, since most indus-
trial robot manipulators are still position controlled. For the sake of completeness, we also
performed some tests on torque-controlled robots, which I will summarize in section 4.3.2.

4.3.1 Joint Position Controllers

This subsection is based on our paper [47]. My student HUANG also did some preliminary
measurements in her semester thesis [129].

In order to gain a better understanding of the interactions between a position controlled
robot and its mechanical structures, I reduced the problem to a single position controlled
joint with a flexible joint and flexible link. The analysed model used a single link module as
described in section 4.1, however, the flexible beam was still based on the lumped parameter
approach. The results should be the same as using a reduced order model, since we used 20
elements to descretize the beam. The beam has a length of 1m, a cross section of 5× 5cm2

and the density of aluminum ρ = 2.7g/cm3.
A common P-PI-PI cascade is used for the joint position controller. However, the ELMO

motor drivers that we use in most of our robots also offer different setups for this control
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structure, Fig. 4.20. Since we can also measure the feedback on the joint side of our joint
test rig (Fig. 4.28) with absolute encoders, there are different possible combinations for the
feedback measurements:

(1) Motor feedback, which uses the motor angle θm as position and the motor angular ve-
locity θ̇m as velocity feedback. This is the most commonly used set up in practice.

(2) Dual feedback, which uses the joint angle θ j as position and the motor angular velocity
θ̇m as velocity feedback. The idea here is to bypass the compliance in the gear and
directly control the joint angle θ j.

(3) Joint feedback, which uses joint angle θ j and joint angular velocity θ̇ j as feedback.

We will see in the following why (2) dual feedback might be preferred over (3) joint feedback.

Fixed Motor Axis

Let us first gain a better understanding of the dynamics of the mechanical portion of the
system, without the joint controller interfering, by fixing the motor axis. The resulting system
is a flexible beam connected to a flexible gear, which is fixed to the environment.

The most important transfer function for the external stabilization approaches investi-
gated in this thesis is the driving-point measurement at the tip of the beam. In this case, the
input is a force at the tip (point A in Fig. 4.22) acting perpendicular to the beam and the
output are the accelerations at the same point in the same direction.

The driving-point transfer function is plotted in Fig. 4.21 with the same beam, but vary-
ing gear stiffnesses. We start with very low gear stiffness (blue line) and then increase the
stiffness by one order of magnitude per step. The increase of gear stiffness raises the stiffness
of all modes in the system, with the first mode being affected the most. The modal damping
of the system decreases in each step, since the viscous damping factor for the damping in the
joint and beam stays unchanged. The dynamics of the system converge to the dark blue line
in Fig. 4.21, after which a further increase of the gear stiffness does not visibly change the
system anymore.

This behavior can be explained by looking at the mode shapes of the system. The first
mode of the system with low gear stiffness is shown in Fig. 4.22a. The mode shape is dom-
inated by the deformation of the gear, since the beam is much stiffer than the joint and
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basically behaves like a rigid body11. The mode shape corresponding to a very high gear
stiffness is shown Fig. 4.22.b. The system now behaves like a fixed flexible beam that shows
no movement at the joint θ j = 0. A further increase in stiffness will not effect the system
dynamics anymore, since the beam will just be pinned more rigidly to the joint, which is why
the dynamics converge in Fig. 4.21. This is also why the first eigenfrequency raises so much
when changing the gear stiffness: The first mode shape changes very significantly from no
deformations to only deformations at the beam.

For the following analysis, we chose a relatively low gear stiffness (orange line in Fig.
4.21), causing the first mode shape to look like Fig. 4.22.a. Although it seems like that
the beam flexibility could be neglected in this case, since it is much stiffer than the joint
compliance, we will see in the following that there are still quite significant effects on the
closed loop system dynamics.

Motor Feedback

The motor axis is now no longer fixed, but controlled by a P-PI-PI cascaded joint position
controller with motor feedback, Fig. 4.20 (1). The resulting closed-loop transfer function
from desired motor angle θd to motor angle θm is shown in Fig. 4.23. Let us vary the P-gain
of the first P position controller in the cascade in order to analyse the influence of the control
system. We start off again with very low P-gain (Fig. 4.23, blue line) and increase the gain by
one order of magnitude per step. The pole caused by the velocity PI-controller stays at 5 kHz.
The pole of the position controller12 moves to higher frequencies as its gain is increased,
causing the dynamics of the position control loop to be faster, improving the overall band-
width of the closed-loop system on the motor angle θm. As the pole of the position controller
approaches the velocity controller’s pole, the pole looses damping, develops a resonance peak
and eventually becomes unstable.

This can be explained by looking again at the structure of a cascaded controller, Fig. 4.20.
Increasing the P-gain of the position controller causes the outer position control loop to react

11Note that this is only true for the first mode, all higher modes show deformations of both the beam and the
joint.

12The pole only has 90 ◦ phase delay, since it is only a P-controller on the position level.
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faster, improving the overall bandwidth of the motor axes control. However, the position
controller produces the desired velocity θ̇d for the following velocity controller. Consequently,
as soon as the dynamics of the position controller are faster than the dynamics of the velocity
control loop, the latter can not keep up anymore and the system becomes unstable.

This is already a well known fact for cascaded control structures that are applied to a
collocated control problem: The time constant of the position control loop Tpos has to be
larger than the time constant of the velocity control loop Tvel, which also has to be larger
than the time constant of the current control loop Tcur in order for the system to be stable:

Tpos > Tvel > Tcur . (4.3)

The structural dynamics of the mechanical system basically do not influence the closed-loop
dynamics at all, which can be explained by looking at the root-locus plot, Fig. 4.24. The
dynamics of the mechanical system are shown in black13. The large gear ratio of N = 100
causes the mechanical system to only be very weakly coupled to the motor axes. Thanks to
the collocated nature of the control problem, a very low amount of gain is already enough
to push all poles of the mechanical system to their corresponding zeros, canceling each other
out in the closed-loop transfer function Fig. 4.23 14.

A cascaded joint position controller can therefore easily be tuned to achieve a well be-
haved, first order system-like behavior with high bandwidth for the controlled motor axis θm
(see e.g. the orange line in Fig. 4.23), without the dynamics of the mechanical system be-
ing any concern for stability or performance. However, although the motor angle θm can be
controlled very precisely, the actual variable of interest is the joint angle θ j after the flexible
gear, since this variable gives a better description of the behavior of the whole robot.

The transfer function from the desired angle θd to the joint angle θ j is shown in Fig. 4.25.
We again increase the position controller’s P-gain in the same way as before. The transfer
function shows resonances at the same frequencies as the eigenfrequencies of the chosen

13Note that the poles should all follow a straight line, since the beam has the same amount of modal damping
for all poles. The ’bend’ above 1.5 · 105 1/s is an approximation error caused by the discretization of the lumped
parameter method. This will only effect very high frequency behavior above 10 kHz, which is not shown in the
other plots and not relevant to the effects discussed in this subsection.

14See also Appendix A for a bit more general discussion about collocated and non-collocated control.
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mechanical system (orange line in Fig. 4.21). The first mode is almost unaffected by any
reasonable amount of gain for the position controller. In practice, while very large bandwidth
is possible for the controlled motor axis, this basically reduces the usable bandwidth to below
10 Hz, if one does want to avoid exciting unnecessary vibrations of the beam structure. The
overall bandwidth at the joint angle θ j is also limited by antiresonances, which correspond
to the resonance frequencies of the fixed beam (dark blue line in Fig. 4.21).

For example, a desired joint angle θd at 12 Hz can easily be controlled on the motor axis
(e.g. with a tuning like the orange line in Fig. 4.23), but will also excite the first mode of the
mechanical system. The mode shape looks like in Fig. 4.22a, since we have chosen a relatively
low gear stiffness. This causes the system to respond with large vibration amplitudes at the
TCP of the beam, deteriorating the precision of the system without being noticed at the
measured motor angle θm. A desired angle θd at 40Hz will still be very well controlled on the
same system, however, the joint angle will show no movement θ j = 0. The beam will again
vibrate with large amplitudes, this time following the mode shape of the fixed beam Fig.
4.22.b. The control system will be unaware of both of these effects, since it only measures
the motor angle θm.

Note that increasing the gear stiffness will push the resonance peaks in Fig. 4.25 towards
their corresponding antiresonances. However, the antiresonances themselves will stay un-
changed, since the modes of the fixed beam are uncontrollable for a position based controller
acting on the motor axis. The structural dynamics of the mechanical system will therefore
barely be influenced by the controller. This means that the driving-point transfer function at
the tip of the beam (Fig. 4.21) will always look the same, regardless of the motor axis being
fixed or controlled by a cascaded controller with any reasonable amount of gain.

Dual Feedback

Let us next have a look at the dual feedback variation, which closes the position loop with
feedback from the joint axis θ j instead. For this analysis, we increased the stiffness of the gear
such that the system corresponds to the green line in Fig. 4.21 with the first eigenfrequency
at 30 Hz. The resulting closed-loop transfer function from the desired angle θd to the joint
angle θ j is shown in Fig. 4.26.
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Figure 4.28: Joint test rig. Adapted from our
paper [47].

The poles and zeros from the mechanical system now show up in the position control
loop, since the loop has been closed behind the flexibility of the gear, making the control
problem non-collocated. We start with very low amounts of P-gain for the position controller
and only raise it slowly. The bandwidth improves slightly, however, higher P-gains also cause
the resonance of the first mode of the mechanical system to raise and ultimately become
unstable as soon as the pole is affected by the phase lag of the position controller.

This means that the time constant of the position control loop Tpos now also has to be
larger than the time constant of the mechanical system Tmech, which is set by the eigenfre-
quency of the first structural mode of the system:

Tpos > Tvel and Tpos > Tmech . (4.4)

Since the position loop is closed behind the compliance of the gear, we try to enforce a higher
joint stiffness by raising the P-gain of the position controller. This will only work as long as
the enforced stiffness is lower than the actual stiffness of the gear. As soon as the dynamics
of the mechanical system are no longer able to follow the enforced dynamic of the closed
joint position loop, the system becomes unstable. This can also be seen in the driving-point
transfer function at the tip of the beam, Fig. 4.27. For low gain of the position controller
the system behaves exactly the same as with a fixed motor axis (see Fig. 4.21 green line).
By further increasing the gain of the position controller, the system loses damping without
changing its stiffness. The system becomes unstable, as soon as we are theoretically enforcing
a higher stiffness on the global dynamics.

The achievable bandwidth (e.g. 1 Hz for the green line in Fig. 4.26) on the joint side is
actually worse than for pure motor feedback, even though we are now directly controlling
the joint angle θ j and using a gear with higher stiffness. Dual position feedback might still be
useful, when a slow moving system with low control bandwidth is acceptable. The positive
trade off would be higher steady state precision, since the controller is now able to directly
control the joint angle and compensate for static sag of the robot caused by gravity loads on
the joints15.

15This controller would, however, still not be able to compensate for sag caused by the flexibilities of the links,
since the controller has no way to measure the state of the links themselves.
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This was also one of the main motivations for torque controlled joints, since these types of
controllers can enforce stability by measuring the torque on the motor side (using the current
measurement) and the torque on the joint side with a torque sensor.

Joint Feedback

For a joint position feedback controller, the velocity loop is now also closed behind the com-
pliance of the gear by using the joint velocity θ̇ j as feedback. Consequently, the dynamics of
the velocity loop now also have to be slower than the dynamics of the mechanical system in
order to be stable. The position loop again also has to be slower than the velocity loop:

Tpos > Tvel > Tmech . (4.5)

In practice, this setup is basically unusable, since the the poles of the cascaded controller
should also be well separated to ensure stability. The achievable closed-loop bandwidth
would therefore be even lower than with dual feedback, which is already questionably low
even for a system with high gear stiffnesses.

Test Rig Measurements

In order to verify the above findings, we performed the same tests on our joint test rig Fig.
4.28. The test rig consists of an elbow joint of our humanoid robot LOLA, using a custom
BLDC motor with a harmonic drive gear (gear ratio N = 100). The joint is connected to an
aluminum beam with length of 0.5 m and a 1kg steel weight attached to its end.

In practice, the real system is far more limited than in simulation, where we could use
quite extreme tunings to make the interconnections within the system more obvious. On
the test rig, we can achieve a bandwidth of 2kHz for the current controller and 80Hz for
the velocity controller. The achievable bandwidth of the velocity controller is mainly limited
by noise, since the velocity has to be generated by counting the lines per second of the
incremental encoder. This is still more robust than differentiating a measured position signal,
however, it is also quite sensitive to miscounts caused by skipped lines. Nevertheless, we can
still observe the same type of effects as in the simulation.

The beam is moved into a horizontal position for all tests to keep the joint loaded and min-
imize the influence of backlash in the gear on the measurements. The transfer functions are
measured using multi-sine excitation signals 16. The superimposed sine waves use Schroeder
phases to minimize their crest factor. Meaning that the maximum peak of the signal is kept
as low as possible, while maximizing the amplitude of each contributing sine wave [234].

Fig. 4.29 shows the closed-loop transfer function from the desired angle θd to the motor
angle θm for motor feedback. In general, we can observe the same behavior as simulated in
Fig. 4.23: When increasing the position gain in small steps, the pole of the position controller
moves to higher frequencies, improving the control bandwidth. However, this also causes
the resonance at the pole of the velocity controller to loose damping and consequently raise.
Increasing the position gain further will again provoke instability of the velocity controller.
On the real system this is visible by the joint performing limit cycle vibrations with large
amplitudes, which is probably because of the backlash in the gear.

16We favor multi-sine excitations for complex mechatronic systems. Measuring a step response is out of the
question, since it will put unnecessarily high stress on the system. Sweep excitations distribute the excitation
energy too broadly in the frequency domain and will produce unusable signal-to-noise ratios, since the input
signal has to go through the entire electrical system, the drivetrains with a lot of friction, the mechanical structures
and back through the noisy sensors. Multi-sine can improve the signal-to-noise ratio by only using e.g. 5 discrete
excitation frequencies for each measurement run, concentrating the input energy on those frequencies. This
procedure is a good compromise between using a faster sweep excitation and going through each excitation
frequency one by one.
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Figure 4.29: Closed-loop transfer function for
motor feedback on the test rig while slowly in-
creasing the position controller gain step wise.
Adapted from our paper [47].

100 101 102

Frequency [Hz]

−90

−90
180

100

|θ
J
θ

d
|
[d

B
]

∠
θ

J
θ

d
[◦
]

10−2

−180

0

10−1

101

Figure 4.30: Transfer function from desired an-
gle θd to joint angle θJ for motor feedback on
the test rig while slowly increasing the position
controller gain step wise. Adapted from our pa-
per [47].

The transfer function from the desired angle θd to the joint angle θ j with the same position
P-gains is shown in Fig. 4.30. Similar to the simulation results in Fig. 4.25, there is basically
no difference on the joint side between the amounts of gains used for the controller with
motor feedback. We can see the first eigenfrequency of the mechanical system at 20Hz and
an antiresonance at 37 Hz, which was confirmed to be the eigenfrequency of the fixed beam
in Ansys by my student HUANG in her semester thesis [129].

We also tested dual feedback on the test rig, which we could tune to a usable bandwidth
of about 1 Hz. For higher gains, the system was a lot less robust and could be made unstable
by impacting the beam with an external disturbance. With a bandwidth below 1 Hz we could
reduce the error on the joint side to about eθ , j = 0.5 mrad for slow trajectories. Which is quite
impressive for a joint side controller, however, the low reaction time of the controller due to
the low control bandwidth necessary to remain stable made this type of controller basically
unusable for our humanoid walking robot LOLA17.

Conclusions

The main takeaway points of the above investigations can be summarized as follows:

• There is barely any coupling between a joint controller with motor feedback and the
structural dynamics of the mechanical system. This is mainly due to the high possible
bandwidth of a collocated controller applied to the motor axis and the typically high
gear ratios (N ≤ 100) common in robotics applications. Since most industrial robots
are still position controlled on the motor axis, we do not have to worry about any bad
interactions between the robot’s control system and an external stabilization approach,
which will apply a reaction force to the TCP of the robot in order to reduce the error at
the tool.

17I will refrain from showing error plots here, since this is only anecdotal evidence anyway. The amount of
error for dual feedback, and also the stability limit, depends heavily on the structure attached to the joint. We
had much trouble tuning a stable dual feedback controller for the 26 joints of LOLA during my master’s thesis
[45], since the load on the gears is much larger and the structure is also significantly more complex. We were
able to tune a dual feedback controller such that the robot was able to walk. However, all limbs showed very
large vibration amplitudes during walking, such that we deemed this type of controller unsafe for our walking
robot.
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• The structural dynamics of the joint and the substructure of the fixed beam are also
very clearly visible in the transfer function from the desired angle θd to the joint angle
θ j (Fig. 4.25 and Fig. 4.30). This might make it viable to use the popular Transmis-
sion Simulator technique from the field of frequency based substructuring [21, 238] to
identify robot joint dynamics: An easily predictable structure like a simple beam could
be attached to a robot joint test rig with an acceleration sensor at the tip. Then, the
transfer function from the motor angle to the joint angle and accelerations at the tip
of the beam are measured. The dynamics of the easily predictable beam structure can
then be removed from the measured system dynamics in postprocessing, only leaving
the dynamics of the joint including the dynamics at the interface between the beam
and the joint structure. These kind of models could then be used to enhance a flexible
multi body simulation of a robot.

• While direct joint position feedback is possible using the common cascaded control
structure with an absolute encoder on the joint side, it is only really usable using dual
feedback. The possible bandwidth is also significantly lower than using a motor side
feedback controller. However, the system might be a bit more precise. The tuning of
these controllers is also quite involved, since now the dynamics of the entire structure
of the robot contributes to the control plant.

4.3.2 Joint Torque Controllers

As described in the State of the Art section 2.1.3, the most common approach for higher
precision robotics is to use quite involved model based methods using torque controlled robot
joints. The external stabilization approaches investigated in this thesis are designed for motor
position controlled robots. The main reason for this is that the vast majority of industrial
robots still work this way. Furthermore, as we have seen in the previous subsection, a motor
position controlled robot is actually beneficial to an external stabilization approach, since
there is very weak coupling between the structural dynamics of the robot at its TCP and the
motor controller. This reduces the complexity of the problem, since we do not also have to
consider the control system of the robot itself.

Since external stabilization approaches are kind of an antithesis to using the robot’s own
motors and control structure for high-precision applications, I still wanted to have a little
bit deeper look at the capabilities and limitations of torque controlled robots. Although
this subsection is not needed to understand the development of the external stabilization
prototypes in the following chapters, it is still beneficial for the motivation of the topic of this
thesis.

The content of this subsection is based on our paper [218] with my student PRAUTZSCH as
the main author. PRAUTZSCH also did some preliminary work for our results in his semester
[216] and master’s thesis [217].

For the following analysis, we exchanged the joint controller of our robot model to the
first torque controller (3.98) discussed in 3.4.2.

Torque Measurements and Model Tuning

Since we had the Franka Panda available for measurements, we used the possibility of mea-
suring the desired torque τd to actual joint torque τ j transfer function to tune our model
with data from a real torque controlled robot. Unfortunately, Franka does not disclose how
their torque controller works with only the input & output data being available. For the mea-
surements, we put the Panda robot in a simple pose shown in Fig. 4.31. A desired harmonic
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Figure 4.31: UR10 in a singular pose. Adapted
from our paper [217].
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Figure 4.32: Frequency response of desired to
measured torque at joint 1. Comparison of
experimental data to tuned simulation result.
Adapted from our paper [217].

torque is then applied to the base joint 1 of the robot in discrete frequency steps. The re-
sulting transfer function to the actual joint torque τ j is shown in Fig. 4.32. In order to test
for non-linearities we repeated the measurement for different desired amplitudes. We can
see that there is non-linear behavior visible in the transfer function, which is probably due
to friction effects in the gear. With low desired torque amplitudes, the controller probably
has to deal with significant stick slip effects in the gear. For desired amplitudes higher than
5 Nm, the controller shows a nice constant amplitude in the closed-loop transfer function
for frequencies below 10 Hz and a resonance peak at 30Hz. This gives the system a usable
bandwidth of around 10Hz, which is also indicated in the manual data published by Franka
[98]. While the controller shows a flat amplitude and zero phase delay below 10 Hz, it only
achieves up to 80% of the desired torque amplitude. This is probably due to the rather cheap
hardware used in the Franka Panda, which will not support very high torque controller gains
for better performance. Fortunately, this is rather easily corrected by using a feedforward
factor of 1.25 for the desired torques τd .

This directly shows one of the biggest weaknesses of torque controlled robots, when they
are used with complex control schemes for high precision control which also have to consider
the structural dynamics of the links. We found in the introduction chapter 1 that we roughly
need a control bandwidth of about 50Hz for our application. This would just not be possible
with the torque controller of the Panda robot, since it is limited bandwidth would bottleneck
any kind of higher-level control system for high precision control.

As mentioned in section 4.1, we also used this opportunity to tune the joint model of
our robot simulation. For this we placed our UR10 model in the same pose (Fig. 4.31) and
linearized the same transfer function, Fig. 4.32 black line. The joint stiffness k j, -damping
c j, as well as the torque controller gains gP and gD were simply tuned by hand until we
achieved the best match with the data. The model matches quite well with the measured
transfer function and is even able to predict the close pole zero pair at 50Hz and 70Hz, which
belongs to the first structural mode of the simulation model with dominant contributions by
the flexible links.
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Figure 4.33: Simulated driving-point dynamics
(force to acceleration) at the tip of the beam in
direction of the joint rotation for different inner-
loop torque controller bandwidths.
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Figure 4.34: Simulated driving-point dynamics
(force to acceleration) at the tip of the beam for
an input force orthogonal to the joint axis (full
lines) and parallel to the joint axis (dotted lines).

Flexible Joint with Flexible Beam Model

Let us next analyse the influence of the torque controller on the driving-point dynamics at
the tip of the same simple beam model. Fig. 4.34 again shows the driving-point transfer
function at the tip of the beam, with the input force ftip acting orthogonally to the motor
axis. The response of the system with a fixed motor axis is plotted with a black dotted line
as a reference. In theory, one of the great advantages of the torque controller is that we
can enforce any kind of joint stiffness and damping on the robot joint via the stiffness k j,d
and damping c j,d as gains of an impedance controller. While the cascaded position controller
with joint position feedback (Fig. 4.27) becomes unstable as soon as we enforced a higher
stiffness on the joint than the mechanical system itself, we can easily increase the stiffness and
damping of the system beyond that limit using a torque controlled impedance scheme (Fig.
4.33 orange line). However, the impedance controller still has to go through the lower-level
torque controller, which needs to provide sufficient enough bandwidth for this to work. The
orange and blue line in Fig. 4.33 both use the same impedance gains. The torque controller
of the orange line has a bandwidth of 1 kHz (Jm,d = 0.001 · Jm) and is stable, while the torque
controller of the blue line has a bandwidth 100Hz (Jm,d = 0.1 · Jm) and is unstable.

In section 3.4.2, I mentioned an inertia ratio of Jm,d = 0.1 · Jm already being a very op-
timistic upper estimate of the capabilities of modern torque controllers. For our model, this
results in a bandwidth of 100 Hz, which already makes it quite difficult to enforce any bene-
ficial effect on the structural dynamics of the robot model using an impedance controller. We
have seen in Fig. 4.32 that the usable bandwidth of the torque controller of the Franka Panda
is even lower at 10Hz.

Another problem for the single joint / -beam system is that the joint controller can only
influence structural modes of the beam which produce torques around the joint axis. We
can test this by again applying different impedance controllers to the single joint system and
linearizing the transfer function at the tip of the beam for two different input force directions.
Fig. 4.34 shows the effect on the driving-point transfer function for an input force orthogonal
to the joint axis in full lines. The system behaves as expected and we can increase the
damping and stiffness of the modes for this transfer function. However, the transfer function
produced by an input force parallel to the joint axis (dotted lines) is not affected at all by any
setting of the controller. This is because this transfer function only includes modes that do
not produce torques around the joint axis, and are therefore uncontrollable by any kind of
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Figure 4.36: Horizontal path error in the y-
direction at the TCP of the simulated robot.
Adapted from our paper [217].

joint torque. We will later see that this can also affect a larger robot with 6+ DOFs.

Flexible Robot Model

Let us move on to the more complex robot simulation model, which is the same as described
in section 4.1, only with torque controlled joints. To also have a look at other directions,
we will this time concentrate on the horizontal path error (y-direction) of the robot, Fig.
4.35. The robot again moves along the same 1m long horizontal test trajectory with constant
velocity and high jerk at the beginning and at the end.

The horizontal path error for different model types are shown in Fig. 4.36. The errors for
a model with flexible joints, but rigid links are plotted with dotted lines. We can see that the
motor controlled robot (blue dotted lines) shows a static error at the end due to sag coming
from the flexible links and large vibration amplitudes from the high jerk at the end of the
motion. The torque controlled robot (orange dotted lines) compensates the static error with
its gravity compensation and does not show any vibrations, since the joint flexibilities are
included in the torque-controller.

The motor controlled model with flexible links (Fig. 4.36 blue full line) shows larger
vibration amplitudes at the beginning and the end, as well as a larger static error due to the
additional flexibility from the flexible links. The torque controlled model (Fig. 4.36 orange
full line) also shows large vibration amplitudes at the beginning and a non-zero static error
at the end. The static error is now larger, since the rigid model for the gravity compensation
does not include the sag caused by the flexibilities of the links. The additional vibration
issues of the torque controlled robot can be understood better by again taking a look at
the Campbell diagram plotting the driving-point transfer functions dependent on the current
pose, Fig. 4.37.

The left Campbell diagram shows the motor position controlled robot as a reference. We
can see that there are two low frequency modes for the driving-point transfer function in
y-direction of the TCP. The first one starts at 17Hz and then moves down to 8 Hz. The second
one starts at 22 Hz and then moves up to 40 Hz towards the end. The middle Campbell dia-
gram shows the same transfer function with a torque controller and high stiffness impedance.
We can see that the controller is able to increase the overall stiffness of the system, however,
with still quite high vibration amplitudes.
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TCP a long a horizontal trajectory. Adapted from our paper [217].

A better idea to reduce unwanted structural vibrations is actually to reduce the stiffness
of the impedance. This way, the mechanical damping of the robot becomes more dominant
and less damping is also required from the impedance controller to achieve a high modal
damping, and therefore lower vibration amplitudes. The performance of such a controller is
shown in the right diagram of Fig. Fig. 4.37. This time, the first mode is basically completely
attenuated. However, the second mode is not effected at the beginning at 22Hz and then only
becomes effectively damped after about 10cm of traveled distance. This is also the reason
why the horizontal path error of the torque controlled robot with flexible links (Fig. 4.36
orange full line) still shows large vibration amplitudes at the beginning of the trajectory.

This is happening for the same reason as for the simple flexible beam model (see Fig.
4.34). Fig. 4.38 shows the UR10e robot in a singular position with the first and fifth joint
axis being in parallel. In this position, the robot is not able to exert a force at its TCP in the
y-direction and therefore influence its structural dynamics. Fig. 4.39 shows the driving-point
transfer function in x- and y-direction for fixed motor axis (full lines) as a reference and
with an applied impedance controller with a large amount of desired joint damping (dotted
lines). For the transfer function in the y- direction, the impedance controller is able to very
effectively damp the first mode of the system. However, for the x-direction there is no effect
of the controller on the structural dynamics of the robot, since this is the direction causing
the singularity of this particular pose.

In practice, a robot will always avoid passing through singular poses. However, as shown
in the Campbell diagram Fig. 4.37, it is already problematic when the robot moves close to
a singular position, since the robot would still need very high joints torques to effect the
almost singular direction at the TCP. This is why the robot is not able to properly reduce the
vibrations caused by the second mode at the beginning of the trajectory, regardless of the
applied control scheme.

In section 4.2.1, we have also already seen with the analyses of the CROPS robot that
a robot does not necessarily need to be near a singular pose to experience uncontrollable
structural mode shapes. Every structural mode that does not create a torque around the joint
axes of the robot will be uncontrollable. For the CROPS robot this is actually the case for the
first five modes, because of its unique mechanical design.
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Figure 4.39: Simulated driving-points (force to
acceleration) at the TCP for the fixed-motor and
torque controlled case at the singularity pose of
Fig. 4.38. Adapted from our paper [217].

Franka Panda Experiments

For the last part of this of this section about torque controlled robots, let us have a short look
at a few measurements regarding the path accuracy of the Franka Panda robot.

The first important fact to note here is that the Panda specifies a maximum desired
impedance joint stiffness of the three main joints of k j,d,max = 600 Nm rad−1. The GUI of
the robot actually only allows half of this, which is a quite low joint stiffness compared to
the typical stiffness of a harmonic drive gear18. The usual strategy for high-precision tracking
with torque controlled robots is to use a very high desired impedance stiffness to compensate
for any error in the gravitation compensation. This is clearly not possible with the Panda
robot. Additionally to the torque controller bandwidth of 10 Hz, the impedance gains are
probably also limited by the usual implementation issues like sensor noise. This means that
the Panda relies entirely on the accuracy of its gravity compensation for its tracking per-
formance, because of the quite low possible impedance stiffness. On the other hand, the
robot should be able to suppress the structural vibrations of the robot quite well using a low
impedance stiffness and a high impedance damping19.

Fig. 4.40a shows the measured vertical path error of the Franka Panda robot along a
80 cm horizontal trajectory moving at 42 mms−1. The error is again measured using highly
precise eddy-current sensors. The trajectory is measured three times with different desired
impedance stiffnesses. We can see that the robot is actually able to suppress any form of
higher frequency vibrations quite effectively for the first half of the trajectory. However,
vibrations appear in the second half of the trajectory for all stiffnesses. The CWTs of the
measured error data show, that the frequencies of these vibrations are all almost the same
with the same amplitude for all cases. The base frequency starts at about 1Hz and then
follows an almost perfect exponential rise up to 5 Hz. There is also a clear second order
excitation visible. These are probably also torque ripple issues that can have many causes20.

18E.g. a small sized harmonic drive gear of size 20 with a gear ratio over N ≥ 80 typically has a stiffness in the
region of 2 · 104 Nm rad−1 [278]. For comparison, the maximum load of the Panda is 3kg, which would cause a
sag of 10 cm with a single joint with 300Nm rad−1 stiffness and the load at 1 m distance.

19The maximum possible impedance damping is specified with c j,d,max = 50Nms rad−1, which is quite large
compared to the maximum possible impedance stiffness.

20Unfortunately, without knowing the exact working of the Panda’s torque controller, there is little point in
trying to interpret these issues.
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(a) Measured vertical path error at the TCP of the
Franka Panda robot along an 80cm horizontal trajec-
tory with 42 mms−1.
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Figure 4.40: Vertical path error of Franka Panda robot with different desired impedance stiffnesses.
Measured at the TCP with eddy-current sensors.

The quasi-static error is, as expected, quite a bit higher than that of the UR10. The main
issues here is probably that the gravity compensation would need to be better calibrated for
the load on the robot (in this case a 500g gripper). We can also see that the vertical path
error rises upwards for higher desired impedance stiffnesses k j,d . This is expected behavior,
since higher impedance stiffnesses should cause less sag. Unfortunately, the robot seems to
try to follow a wrong trajectory. This is again probably because of using slightly wrong DH
parameters due to manufacturing tolerances, which effects trajectory planning as well as the
gravity compensation scheme.

Discussion of Results

The Franka Panda is a bit of an unfair example, since the robot is not designed for high
precision applications, but for a low-cost entrance into the field of collaborative robotics (and
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it does a good job for that purpose). However, it nevertheless showcases the general problems
that torque controlled robots still face when they are applied to high-precision applications:

• Any kind of control system that tries to incorporate the flexibilities of the links will be
bottlenecked by the low-level torque-controllers bandwidth. In the case of the Panda
robot 10Hz is way too low for any higher-level control system to actively damp the
structural dynamics of the robot21. Similar findings have also been reported in [183,
184], where the authors failed to apply a LQR controller tuned in simulation to a hu-
manoid walking robot without considering the bandwidth of the torque controllers.

• The achievable gains for a higher-level impedance controller will also be further limited
by the typical implementation issue like sensor noise and signal delay from the required
absolute encoders on the joint side. This is probably why the Franka Panda can only
achieve quite low desired impedance stiffnesses. In [97] and [116] it is argued that the
bandwidth of the low-level controller inversely relates to the achievable impedance of
the high-level controller.

• The comparatively low achievable impedance stiffnesses mean that the robot has to rely
completely on its gravity compensation for accurate tracking. However, the underlying
model usually only includes rigid links and can be quite unreliable for multiple reasons,
as we have seen above.

• It still can be a quite effective strategy to use a low impedance stiffness combined with
high impedance damping to achieve higher modal damping to reduce the dynamic
tracking error due to structural vibrations. However, this approach, as any other control
strategy using the robots joint motors, will only be able to affect structural modes that
actually create torques around the motor axis of the robot. Any other structural mode
will be uncontrollable, as we have seen with the CROPS robot in section 4.2.1. This
might be somewhat circumvented with good mechanical design of the robot by making
sure that there are no dominant structural modes that are uncontrollable. However, the
robot will still have trouble to control the dynamics at the TCP of the robot close to a
singular position, because of the very high joint torques needed.

While the control strategies developed for high-precision control with torque-controlled robots
are certainly promising, the current hardware limitations do not allow for their implemen-
tation on real robots at the time of writing. Especially with 20µm TCP tracking precision at
50 Hz bandwidth as required for this thesis.

As we will see in the next chapters, external stabilization approaches avoid most of the
above issues and also do not need very precise models of the robot’s structural dynamics to
achieve very high tracking accuracy.

21The highest closed-loop bandwidth of joint torque-controllers known to me are achieved by the quadrupedal
robot ANYmal from ANYbotics. The torque controllers can achieve a bandwidth of up to 70Hz, however, only for a
small desired torque amplitude of 1Nm. For a desired amplitude of 10 Nm the bandwidth reduces to 20Hz [131].
This is also probably due to only having to move the relatively small and lightweight legs of the quarduped.
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Robots
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Figure 4.41: Old (left) and new (right) mechanical design of LOLA with the old and new torso
assembly. Adapted from our paper [240].

During my time at the chair, we also noticed a significant influence of structural dynamics
on the control system of our biped walking robot LOLA. While this thesis is mainly concerned
with robot manipulators, I still want to include our findings in the main body of my thesis,
since they can further improve the understanding of the influence of structural dynamics
on the performance of complex mechatronic systems. It was also the first time that such
experiments were published for biped walking robots, which also makes it worthwhile to
showcase these results again here.

This section is based on the experimental results that we performed on the old version of
LOLA in [52] and on the new version in [50]. I also did some preliminary works regarding
LOLA’s decentralized joint position control system in my master’s thesis [45].

System Overview

LOLA is a humanoid biped walking robot that is actuated by 26 position controlled brushless
DC motors. The goal for the mechanical design was to keep the structures of the robot as
stiff and lightweight as possible. Most components are cast out of aluminum, resulting in an
overall weight of 60 Kg for the robot at a height of 176cm.

Both the hands and feet of the robot include a six-axis force/torque sensor each to mea-
sure the ground reaction forces. An inertial measurement unit (IMU) is installed at the middle
of the torso to measure the upper body inclinations ϕm =

�

ϕx ,ϕy

�T
. The old version of the

robot included a single aluminium backbone pipe in the upper body (Fig. 4.41, left), which
also mounted the IMU. As we will see later, this component was especially critical for the
robot vibration problems.

The robot recently got upgraded for multi-contact applications [240], which significantly
improved the upper body mechanical design based on our findings of our first EMA performed
in [52], Fig. 4.41. This upgrade also added two DOFs and two force/torque sensors to the
arm extremities, which were already included in the initial description of the robot above.
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wid , ẇid λ f ,d
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Figure 4.42: The control structure of LOLA with
the two main feedback loops. Adapted from our
paper [52].
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with 0.75 m/s. Adapted from our paper [52].

The hierarchical control structure of the robot is shown in Fig. 4.42. A Walking Pattern
Generator first calculates trajectories ωid , ω̇id for the feet and center of mass (COM) based
on simple dynamic models under the assumption of an ideal world. The ideal contact wrench
Λid is then calculated using the trajectory of the COM [239]. Inaccuracies of the planning
models and unexpected disturbances from the environment are then compensated by two
subsequent control loops that adapt the ideal trajectories.

The Balance Controller uses measured IMU inclination data to modify the planned contact
wrench Λid in order to keep the upper body upright. The total wrench is then distributed to
the feet, which results in separate desired wrenches λ f ,d for both feet.

Afterwords, the Hybrid Position/Force Controller uses the measured wrench at each foot
λ f ,m to control the desired wrenches λ f ,d by further adapting the desired pose of the robot
[265]. The final modified trajectories ωmod , ω̇mod are then sent to the decentralized joint
position controllers via inverse kinematics [268].

The joint position controllers are the same cascaded P-PI-PI controllers described in sec-
tion 3.4.1. The motor angles θm are measured using incremental encoders. The motor
torques are transmitted the robot joint with harmonic drive gears with high gear ratios of
N ≤ 100. The joint angles can also be measured using absolute encoders on the other side of
the gears.

Structural Vibrations on the Joint Level

We first noticed the influence of LOLA’s structural dynamics on her performance when we
optimized her joint controllers and real-time communication architecture to achieve a better
bandwidth for her low-level control hardware [268].

When directly controlling the motor axis of her joints, we were able to achieve a relatively
high control bandwidth of 240Hz. A walking test showed that, when we scale the errors mea-
sured at the motor axis up to the joint side after the gear, we should expect joint positioning
errors in the µ rad range (Fig 4.43, blue line). However, when measuring the actual errors at
the joints using our additional absolute encoders, we found a significantly larger error at the
joints (Fig. 4.43, red line). This is mainly due to the flexibility of the harmonic drive gears
used in the joint modules of LOLA which deform under load.

We first see a static deflection of the gears when the robot is standing on the ground, which
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is caused by initializing the robot after hanging on a rope without touching the ground. While
walking, we can see different vibration frequencies depending on whether the corresponding
leg is in contact with the ground. This is caused by a change of boundary conditions on her
mechanical structure during the contact/non-contact phase of the legs, which consequently
causes the structural dynamics of the robot to respond with different vibration frequencies
while operating in a closed loop with the joint and walking/balancing controllers of LOLA.
This already indicates relatively complex interactions between the robots structural dynamics,
its control system and the environment. As already described in section 3.4.1, we tried to
incorporate the absolute position feedback from the joint side into the cascaded joint position
control scheme. However, these efforts only proved to be stable up to 1 − 2 Hz bandwidth,
which made it unusable for robust walking during more extreme balancing scenarios.

We ended up staying with a well tuned motor position controller that guarantees fast and
robust control of the motor angles θm, accepting that the joint angles are not exactly correct.

Influence on the Balancing Controller

We noticed another issue related to the structural dynamics of the robot when tuning the
balancing controller. The two main feedback loops for LOLA’s balancing controller rely on
sensor feedback of the force/torque sensors and IMU data, Fig. 4.42. However, these control
loops are significantly influenced by the structural dynamics of the robot, since both loops are
non-collocated. E.g. the balancing controller (2) measures the current inclination ϕm, ϕ̇m
using the IMU at the torso and controls the desired contact forces at the feet. This control
loop includes the dynamics of the entire mechanical structure of LOLA between input and
output, which is not yet considered in the control design.

For example, let us assume that the current vertical force at the foot is too low. This will
cause the force control loop (1) to increase the vertical velocity of this foot, which then in-
creases the contact force. However, this motions also excites the structural resonances of the
robot, which causes vibrations at the IMU and consequently undesired feedback of structural
dynamics through the inclination feedback (2). In practice, this means that the bandwidth of
the current cascaded balancing controller needs to be lower than the first structural eigenfre-
quency of the robot in order to guarantee robust and stable operation of the control system.

In order to verify these assumptions, we performed a closed-loop identification of LOLA’s
feedback loop plants using the robot’s own sensors and actuators. For the identification, both
feedback loops are active to prevent the robot from tilting over. We then added a multi-
sine excitation to the desired vertical foot velocities in LOLA’s control software, for the same
reasons as already explained in section 4.3.1. The measurements were performed in a range
from 1−100 Hz in 4 second runs with 20 sine waves each, resulting in a frequency resolution
of 0.25Hz for the identified transfer function.

The measured open-loop transfer functions between the vertical velocities at the feet and
the measured inclination rate at the IMU are shown in Fig. 4.45. As expected, there are
several high resonance peaks in the measured plant. With this knowledge, the controller
could be improved by placing notch filters near these resonances 22.

However, since the structural dynamics of the robot also change during motion, we found
that the most reliable way to improve the performance of the balancing controller was by
upgrading the mechanical design of the robot. We therefore performed an EMA on the old
design of the robot to find weaknesses in the structure, as well as to confirm our findings of
the open-loop transfer function in Fig. 4.45.

22The controllers and tuning procedures are explained in much more detail in the dissertation of my colleague
SYGULLA [266].
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Figure 4.44: New mechanical design of LOLA with the measurement setup.

Experimental Modal Analysis of the Old Design

The experimental setup for the EMA is shown in Fig. 4.44. The setups were the same for
the measurements on the old and new design. In both cases, we hung a shaker from the
ceiling and excited the robot at the knee from the side and the front. The input signal was a
logarithmic sweep for 20 seconds up to 30 Hz, which puts more energy in the lower frequency
range of interest. The input force was measured using an impedance sensor.

For the response measurements we again used the same triax acceleration sensors with
dimensions of 12.5×12.5×12.5 mm, 6.7grams of weight and a sensitivity of 100 mV/g. These
sensors are again a compromise between measurement range, size and weight, since we
needed to be able to place the sensors inside of the structure of the robot.

The measurement points for the measurements on the old design can be seen in Fig.
4.48a (blue points). Since, at the time, we suspected the main weakness to be the upper
body, we placed most sensors in that region. We placed two sensors on each arm, one on
each shoulder, one on the upper part of the backbone pipe (close to the IMU), one on the
lower part of the backbone pipe and four sensors around the pelvis. One pelvis-sensor was
placed next to the pelvis rotation motor, one near the pelvis adduction motor and two next
to the left and right hip rotation motors each. The purpose of these pelvis sensors was to
determine the influence of the deformation of the joints in this region on the overall dynamic
behavior of the structure. This overall makes 14 measurement points with 3 measurement
directions each. The data was again acquired using the Siemens LMS system.

During the measurements, LOLA stands on the ground in her typical starting position.
The motor angles are actively held in place by the joint controllers, however, the balancing
controllers (1) and (2) are turned off. For the measurement, we used as much force as
possible at the shaker, without risking any damage to the components. The excitation caused
large vibration amplitudes of over a centimeter at the arms. This is necessary to obtain
clean results, since low vibration amplitudes would be quite dominated by non-linear friction
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Figure 4.46: Measured FRF from the excitation
force in I y -direction at the knee to the accelera-
tion measured in Ix -direction at the upper back-
bone pipe. Adapted from our paper [52].

effects in the high number of joints of the robot.
An exemplary FRF is shown in Fig. 4.46 (blue line), which is the most important transfer

function for us from the shaker input to the spine of the robot. The measurement shows very
good coherence up to 30Hz, capturing the first few resonances very well. The synthetization
result from the PolyMax algorithm also shows a very good match to the measured data. This
good result also shows that, while the structure is highly damped, it still behaves like a linear
mechanical structure.

The identified mode shapes are shown in Fig. 4.48a. The first mode at 6.5Hz is mainly a
rotation around the Iz-axis, which is also why it does not show up in the measured open-loop
transfer function Fig. 4.45. The control loops of the balancing controller only use the IMU
inclinations around the I x- and I y-axis, which makes this mode unobservable23.

The second mode at 9.7 Hz is a motion in the I y-Iz-plane. The shoulders rotate to the
right, while the hip rotates to the left, bending the backbone pipe in the process. All other
structures stay rigid in respect to each other. This confirms our previous assumption that the
weakest point of the structure is located in the upper body and is most likely the backbone
pipe itself. This mode also matches the first resonance peak in the measured open-loop
transfer function Fig. 4.46.

The third mode at 13.8 Hz can also clearly be seen in both open-loop transfer functions.
The hips rotate around the Iz-axis, while the shoulders rock to the left and right with the
arms staying rigid in respect to them.

Mode four at 15.7 Hz is dominated by torsion of the hip around the Iz-axis and is the first
mode that also includes bending of the arms. The shoulders and hip stay parallel to each
other, which means that the backbone mounting the IMU does not get deformed. For this
reason, this mode is also only barely visible in Fig. 4.45.

The fifth mode at 24.8 Hz again mainly involves torsion of the backbone pipe, while it
now also includes bending at the arms. The sensor near the IMU at the backbone pipe also
barely moves during this mode. This indicates that the IMU is quite close to a node of this
mode shapes, which is the reason for the antiresonance at this frequency in Fig. 4.45.

The sensors placed around the pelvis always stay rigid with respect to each other during
all shown modes, which means that there is no deformation of these joints involved in those

23We were actually a bit lucky here, since otherwise this resonance would have limited the bandwidth of the
balancing controller even sooner.
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(a) FRF from the input at the shaker to the output
acceleration at the lower right corner of the torso in
vertical direction.
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(b) FRF from the input at the shaker to the output
acceleration at the left elbow in vertical direction.

Figure 4.47: Exemplary measured FRFs with the synthesized model and coherence (after upper-body
redesign).

mode shapes.

Experimental Modal Analysis of the New Design

After LOLA’s upper body was redesigned for multi-contact applications [240], we redid the
same measurements to verify any improvements of the new design. The redesign completely
replaced the old backbone pipe of the robot by a more rigid box-like assembly, which now
houses the IMU. The torso is also now attached to the hip by a particularly stiff stainless steel
mounting flange (Fig. 4.41, right). The arms of the robot were changed to add one additional
DOF and one force/torque torque sensor at each of the hands. The rest of the robot remained
unchanged. Overall, the robot’s DOFs increased by 2 to 26, the height to 1.76 m (+1.21 %)
and mass to 68.2kg (+7.74%). The redesign is explained in more detail in [240]. A video
showcasing the new hardware upgrades is published at [301] and a video showcasing her
multi-contact capabilities at [302].

The EMA was performed in exactly the same way as before, however, with a different
placement of sensors. For these measurements we were also interested in the motion of the
legs, using one more measurement run with a total of 18 sensors, Fig 4.48b.

The worst quality measurement is shown in Fig. 4.47a. The measurement still shows good
coherence at the resonances peaks. However, the bad signal-to-noise ratio at around 13 Hz
caused the PolyMax algorithm to miss-identify an antiresonance. Since we are only interested
in the modal parameters of the system, this is not a concerning problem. The peaks are all
well fitted and the phase after the miss-identified antiresonance still follows the correct path.
Most other measurements are of higher quality, as depicted in Fig. 4.47b.

The resulting mode shapes of the EMA are shown in Fig. 4.48b. The first mode is basically
unchanged and only slightly increased its eigenfrequency from 6.5Hz to 6.9 Hz (+6.1 %). This
is because the mode is almost completely caused by the twisting of the legs, with the upper
body staying rigid and rotating around its yaw axis. The old design probably also contributed
a bit more to this mode by torsion of the backbone pipe, which is why this mode is now
slightly improved.

The more important second mode increased its eigenfrequency significantly from 9.7Hz
to 11.6Hz by 19.6 %. The new mode now shows barely any movement in the torso and is only
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(a) Mode shapes before the redesign. Adapted from our paper [52].
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(b) Mode shapes after the redesign.

Figure 4.48: Front and top view of the first five mode shapes before and after the redesign with their
respective eigenfrequency and damping ratio. Adapted from our paper [50].

dominated by large motion in the arms. This is exactly what we wanted to achieve, since the
transfer paths from the IMU at the center of the torso to the force/torque sensors in the feet
are now significantly more rigid.

The same is also true for the third and fourth mode, which are only different combinations
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of arm and leg motions, while the torso and hip stay rigid relative to each. The first deforma-
tion in the upper-body can be seen in the fifth mode at 23 Hz. While the torso still behaves
rigidly, there is now a relative motion between the torso and the hips caused by torsion of the
hip joint. This is also why this mode is the only one that decreased in eigenfrequency: Since
this mode was also dominated by the torsion of the hip joint in the old design, the additional
torso weight reduced the natural frequency of this specific mode shape. This is comparable
to adding weight to a single harmonic oscillator, with the hip joint being the spring and the
torso being the mass.

The mechanical structure also lost a significant amount of damping due to the redesign,
e.g. from 3.5 % to 1.6% for the second mode. This is probably because of the new design
being a new clean assembly that replaced a lot of old rivet connections which had started to
deteriorate over the years.

Discussion of Results

Performing an EMA was again a very helpful tool to identify weaknesses in the structure. In
this case, the main problem was the single backbone pipe of the old design that got replaced
by a better torso assembly in the new one. This again showed that the flexibilities of the
link structures can have a significant influence on the performance of a robot, even a biped
walking machine. The state of the art for biped walking robots is still to model the robot
as a rigid multi body system, which can cause significant vibration problems by ignoring the
flexibilities of the system in the control design, as was shown here.

For example, by upgrading the torso assembly, we also lost a significant amount of damp-
ing in the mechanical structure. This caused the joint controllers of the robot to excite the first
mode of the structure, causing very large vibration amplitudes in the arms and legs during
operation. The PI-velocity portion of the cascaded joint position controllers had to be tuned
more aggressively by my colleague SYGULLA in order to add more damping to the system,
making it stable again. The effects on the control system are explained in much more detail
in his dissertation [266].

While it was possible to improve the performance of the robot’s balancing controller by
placing notch filters near the resonances of the open-loop transfer function, we assume that
we could reach an even better performance by also considering the changing structural dy-
namics of the robot during motion. While walking, LOLA’s structural dynamics probably
depend significantly on the current pose, which might have a large effect on the open-loop
control plant Fig. 4.45. The effect is likely even more pronounced than on robot manipula-
tors, since the robot is also constantly changing its boundary conditions with the environment
during walking. This should be even more significant during multi-contact scenarios, where
the robot can have any number of hands or feet in contact with the environment. Having
a better understanding of how the structural dynamics of the robot behave during walking
would definitely further improve our ability to design better control strategies with even
higher bandwidths.



Chapter 5

Stabilization of Robot Manipulators

After gathering the necessary tools and insights about the influence of structural dynamics
on the performance of robot manipulators in the previous chapter, I will describe our efforts
to develop external stabilization devices for high-precision trajectory tracking in this chapter.

Section 5.1 will be about the external vibration damping approach using a proof-mass
actuator near the TCP of the robot. After discussing the actuator and controller design, the
system’s performance is tested in simulation and on the CROPS robot’s using experiments.
At the end of this section I will also briefly discuss the potential of using modern control
methods for this approach.

The external stabilization approach is discussed on section 5.2. With again the actuator
and controller design being discussed first and the performance of the system being tested in
simulation and experiments on the UR10 robot in the later subsections.

5.1 External Vibration Damping of Robot Manipulators

The idea of the external vibration damping approach is to use acceleration feedback at the
TCP of the robot to employ active vibration damping techniques via a control force produced
by a proof-mass actuator. The assumption being that actively damping the structural dynam-
ics of the robot will reduce the dynamic error at the TCP while tracking a trajectory. This
approach will of course not be able to also influence the quasi-static tracking error of the
robot. However, the quasi-static error could also be improved by applying absolute calibra-
tion methods to the robot as described in section 2.1.1. The quasi-static error was also less
of an issue for the manufacturing process of the industry project which motivated this thesis.

Some preliminary results of the topics discussed in this section are published in our papers
[48] and [49].

5.1.1 Actuator and Controller Design

The actuator consists of a voice coil and a permanent magnet, Fig. 5.1. This is a common
setup for force transmitters like shakers. However, usually the permanent magnet is also
connected to leaf springs. The main function of the springs is to hold the permanent magnet
in place, when the actuator is turned off and to prevent drift of the permanent magnet during
operation, keeping it near the center of its motion range. The disadvantage of such springs
is that the actuator acts like a single harmonic oscillator as described in section 3.1.1. The
actuator will therefore have a resonance frequency determined by the mass of the permanent
magnet and stiffness of the leaf springs.

We will see in the following that it is beneficial to tune the actuator eigenfrequency as
low as possible to achieve the best force transmission behavior. However, this also means
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Figure 5.1: Proof-mass actuator attached near the end effector of a robot with control structure.

that the mechanical system has to be tuned and designed in advance and will not be easily
changeable later, without exchanging mechanical components like the leaf springs. It is also
quite hard to introduce a beneficial amount of viscous damping into the actuator dynamics
by just using mechanical components, which usually means that the actuator resonance has
quite a high peak.

I therefore wanted to retain some flexibility for the actuator design by omitting the me-
chanical springs and instead using a position controller for the permanent magnet position
(Fig. 5.1). This has the advantage of being able to directly influence the actuator dynamics
with the position controller. However, it also increases the systems complexity, since we now
also need position feedback from the permanent magnet. Additionally, a secondary function
of the usual leaf springs is to guide the permanent magnet within the voice coil. This func-
tion must now be realized with additional guide rails that glide on ball bearings in order to
prevent the actuator from jamming, which has the disadvantage of introducing friction into
the system.

The purpose of the actuator is to introduce a control force fu near the TCP of the robot,
which will be used by an higher-level vibration damping controller with acceleration feed-
back. The actuator is attached as close as possible to the TCP of the robot and will be able
to transmit a force along the direction of motion of the permanent magnet. By applying a
voltage to the voice coil, the resulting magnetic field will apply a force fVCA to the magnet.
The inertia force created by the acceleration of the magnets mass mVCA will then be equal to
the reaction force fu at the robot.
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Actuator Model and Controller

In order to model the system, let us start with the equilibrium of forces acting on the per-
manent magnet, which includes the inertia forces from its own mass mVCA, viscous damping
cVCA coming from the contact with the guide rails1 and the voice coil force fVCA:

mVCA ẍVCA + cVCA ẋVCA = fVCA . (5.1)

The control law for the actuator is a simple PD controller using the permanent magnets
position xVCA as feedback:

fVCA = gP,x(xVCA,d − xVCA) + gD,x( ẋVCA,d − ẋVCA) + fu,d + fVCA,g , (5.2)

with gP,x and gD,x being the proportional and derivative gain of the PD position controller, re-
spectively. fu,d is the desired force that the actuator is supposed to transfer to the robot and is
generated by the higher level active vibration controller. fVCA,g is a gravitation compensation
term, which I will explain later.

Inserting the control law into equation of motion of the VCA (5.1), we get the closed-loop
dynamics of the system:

mVCA ẍVCA + cVCA ẋVCA = gP,x(xVCA,d − xVCA) + gD,x( ẋVCA,d − ẋVCA) + fu,d + fVCA,g . (5.3)

There are two transfer function of interest in the system. The first one is the position transfer
function, which we can get by setting the other two inputs fu,d and fVCA,g to zero

mVCA ẍVCA + (cVCA + gD,x) ẋVCA + gP,x xVCA = gD,x ẋVCA,d + gP,x xVCA,d (5.4)

and then solve for the transfer function in the Laplace domain with the desired position
xVCA,d(s) as the input and the actual position xVCA(s) as the output:

xVCA(s)
xVCA,d(s)

=
gD,x s + gP,x

mVCAs2 + (cVCA + gD,x)s + gP,x
(position transfer function) (5.5)

The other transfer function of interest is the force transfer function. We can again first set the
other two inputs xVCA,d and fVCA,g to zero and rearrange to

mVCA ẍVCA + (cVCA + gD,x) ẋVCA + gP,x xVCA = fu,d , (5.6)

which already looks like a mechanical single harmonic oscillator with stiffness gP,x and vis-
cous damping (cVCA + gD,x).

The reaction force transferred to the robot can be approximated as the inertia force at
the permanent magnet fu ≈ mVCA ẍVCA. Transforming the above equation into the Laplace
domain with accelerations as the output gives

mVCA ẍVCA(s) + (gD,x + cVCA) ẍVCA(s)
1
s
+ gP,x ẍVCA(s)

1
s2
= fu,d . (5.7)

We can now solve for the product mVCA ẍVCA(s), which is equal to the reaction force fu applied
to the robot. Finally, dividing by the desired force fu,d(s) gives us the force transfer function
of the actuator:

mVCA ẍVCA(s)
fu,d(s)

=
fu(s)

fu,d(s)
=

s2

1 +
(cVCA+gD,x )

mVCA
s +

gP,x
mVCA

(force transfer function) (5.8)

1We will see later that the friction at the guide rails is actually quite significant, despite using ball bearings.
Modeling the friction at the ball bearings as viscous damping is again a substantial simplification. However, using
ball bearings at least significantly reduces more complex effects like stick slip or surface friction.
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(b) Position transfer function.

Figure 5.2: Transfer behavior of the position controlled voice coil actuator with mVCA = 1 kg, cVCA =
10 N/s, ω0,d = 2π ·0.7 Hz and ζd = 1. With and without a lowpass filter at the measured position xVCA
with cutoff at ωLP = 2π · 10Hz.

Controller Design

The force and position transfer functions of the position controlled voice coil actuator are
plotted in Fig. 5.2 (blue lines). We can see that the force transfer function behaves like a
mechanical single harmonic oscillator with

ω0,d =

√

√ gP,x

mVCA
, (5.9)

ζd =
cVCA + gD,x

2mVCAω0,d
. (5.10)

The PD position controller can therefore be tuned by choosing a desired lower bandwidth
limit ω0,d and damping ratio ζd and by then solving the above equations for the needed
controller gains gP,x and gD,x .

From the force transfer function Fig. 5.2a (blue line) it is obvious that we get the best force
transfer behavior by choosing the desired actuator eigenfrequency ω0,d as low as possible
and a desired damping ratio of ζd = 1 to prevent unnecessary oscillations. The actuator has
infinite force bandwidth in theory. However, in practice, the bandwidth is limited by the
lower level current controller, since the desired VCA force is scaled with the motor constant
and then sent as a desired current to the current controller (see Fig. 5.1).

The desired actuator eigenfrequency ω0,d also cannot be set arbitrarily low for two rea-
sons: For one, by setting the ω0,d very low, the virtual actuator stiffness gP,x also becomes
very low. This might cause the static equilibrium with the gravity force acting on the mass to
be below the physical range limit of the actuator. However, the static equilibrium should be
in the middle of the displacement range of the actuator to guarantee the maximum possible
range of motion for the permanent magnet. This can be done by compensating the gravita-
tional pull with the feedforward term fVCA,g = mVCA g in the control law (5.2) and setting the
desired position xVCA,d to the middle of the actuator range2.

2In practice, this still sets a lower limit for the possible desired actuator eigenfrequency ω0,d . By decreasing
the virtual stiffnesses gP,x , the control system needs a very accurate value for the gravitation compensation to
keep the magnet in the middle of the actuator range.
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The second limiting factor is the friction at the guiding rails of the actuator. As the virtual
stiffness gP,x decreases, the inherent friction of the guiding rails (modeled as viscous damping
cVCA here) will become more dominant, increasing the overall damping ratio of the system.
In practice, this effect can become so large that negative gD,x is needed to keep the desired
damping ratio at ζd = 1. This is in theory not an issue, however, as the friction becomes
more dominant in its contribution to the overall system dynamics, the assumption of viscous
damping cVCA becomes even less valid. Although we are using ball bearings on the real
system, very low virtual stiffnesses gD,x will cause the system dynamics to be significantly
impacted by non-linear friction and stick-slip effects, degrading the actuator’s force transfer
performance.

The performance of the system is therefore dependent on how well friction can be avoided
in the mechanical design of the actuator in order to achieve a low actuator eigenfrequency
ω0,d . The system shown in Fig. 5.2a is already quite optimistic with an actuator eigenfre-
quency ω0,d at 0.7Hz. We can see that with a damping ratio at ζd = 1, the phase only
comes close to zero near 10 Hz, giving the actuator an effective lower bandwidth limit of also
around 10 Hz for the higher level damping controller. This could be improved by reducing
the damping ratio ζd , however, this will cause the actuator to develop a resonance peak in
the position- and force transfer function, which might be excited by any form of jerk at the
robot and again degrade system performance.

The main goal of the position controller is to keep the permanent magnet oscillation
around the middle of the actuator range and to prevent drift of the actuator. We have already
seen that we might need quite high gD,x gains to achieve a damping ratio of ζd = 1, which
might be problematic due to sensor noise. However, thanks to the low desired actuator
eigenfrequency ω0,d , we can also apply a relatively aggressive lowpass filter to the position
feedback. The red lines in Fig. 5.2 show the position- and force transfer functions with a
lowpass filter cutoff frequency at 10 Hz, which barely effects the system performance and
allows for much higher gD,x gains, even in the presence of noise.

For the following simulation results, the actuator dynamics will be considered by applying
the force transfer function with the lowpass filter (Fig. 5.2a red line) after the vibration
controller output.

5.1.2 Simulation Results

In this subsection, I will again use the position controlled UR10 based simulation model
with two flexible links to investigate the effectiveness of the vibration damping controllers
discussed in section 3.3. The model performs the same 1m long horizontal benchmark trajec-
tory as before with a speed of 100 mm/s at the TCP, Fig. 5.3. The trajectory is again planned
with a constant velocity, causing high jerk in the beginning and the end, to test the robustness
of the vibration damping controllers.

The transfer function of interest is the driving point transfer function in the y-direction at
the TCP, since it shows two pose dependent modes in the frequency range below 50 Hz. We
have seen in Fig. 4.8b that the second mode does not show up in the driving point transfer
function in the z-direction. The reason for this is that the second mode is dominantly a
bending motion around the inertial z-coordinate, which is therefore unobservable with this
specific transfer function. In order to control this mode, we therefore need an actuator in
the y-direction at the TCP. In theory, this actuator could also control the first mode, however,
we would need unnecessarily high forces since the first mode is dominantly a bending mode
around the inertial x-axis. The first mode is consequently much easier to control by using a
second actuator in the z-direction at the TCP of the robot. For the following analysis, I will
therefore apply one controller in the z-direction for the first mode and a second controller in
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the y-direction for the second mode.

Vibration Controllers

The following active vibration controllers (Fig. 5.1 green box) will be applied at the TCP
with the accelerations ÿTCP / z̈TCP as the feedback input and the force fTCP,y / fTCP,z as the
controller output:

• The first one is the direct velocity feedback controller (3.82) with a gain factor of gDVF,y/z =
1 · 103 Nsm−1 for both controllers acting in y- and z-direction at the TCP of the robot.
To generate the needed velocity feedback, the acceleration measurements at the TCP of
the robot are integrated and filtered with a high-pass filter with a corner frequency at
0.8Hz to reduce drift from the integration of noise.
The stability of the controller is limited by the bandwidth of the lower level current
controller, sensor noise and maximum force of the actuator. In this case, the first bottle
neck is the maximum actuator force, which is set to fmax = 80N similar to the voice
coil actuator used for the experiments. The gain is tuned such that the actuator force is
only allowed to reach the maximum value for a short moment.

• The second controller is the negative acceleration feedback controller (3.83). The con-
troller is tuned by looking at the closed-loop driving point transfer function ÿTCP

fTCP,y
, Fig.

5.4. The controller damping is set to ζNAF,y/z = 0.5 for both controllers and the con-
troller eigenfrequencies are set to ωNAF,y = 2π · 22Hz and ωNAF,z = 2π · 18Hz to damp
the first and second mode at the initial starting pose of the robot. The controller eigen-
frequencies are held constant during the test trajectory.
As we have already seen in section 3.3, increasing the gain of both NAF controllers
will decrease the magnitude at the targeted eigenfrequencies. However, after a cer-
tain amount of attenuation, the controller will push new resonance peaks to lower and
higher frequencies (Fig. 5.4 dark blue line). Especially the lower resonance peak might
become a problem, since lower frequency resonances will cause higher displacement
amplitudes compared to higher frequency resonances. The controllers are therefore
tuned such that there is only a small amount of side resonance created by the con-
troller at gNAF,y/z = 5 · 104 Nm−1 (Fig. 5.4 green line).

• The third controller is the same negative acceleration feedback controller as the second
one. However, the controller eigenfrequencies ωNAF,y/z now track the pose depended
eigenfrequencies during motion of the robot3.

Closed-Loop Dynamics at the TCP

The closed-loop dynamics of the controllers can again be analyzed by plotting the driving
point transfer function ÿTCP/ fTCP,y over the traveled distance of the TCP along the desired
trajectory, Fig. 5.5.

We can see in Fig. 5.5b that the velocity feedback controller achieves the highest amount
of attenuation, while also needing the least amount of tuning effort. The NAF controller
with constant controller eigenfrequencies (Fig. 5.5c), performs a bit worse for the second
structural eigenfrequency of the robot.

3In practice, the second controller could be tuned by measuring a single transfer function at an important
point of the trajectory. The third controller would need to perform a test run over the desired trajectory in order
to first identify the correct eigenfrequencies over the entire range of motion.



5.1 External Vibration Damping of Robot Manipulators 119

x

z

y

d
fTCP,yÿTCP
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Figure 5.3: The UR10 model following a hori-
zontal trajectory with two vibration controllers
acting at the TCP in the y- and z-direction.
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The NAF controller with pose dependent controller eigenfrequencies (Fig. 5.5d) performs
slightly better than the NAF controller with constant controller eigenfrequencies for the sec-
ond structural mode of the robot. However, it actually performs slightly worse for the first
one by creating a bit higher side resonance around 0.1 s. This is probably caused by the
controller eigenfrequncies moving closer to each other during this part of the trajectory, ef-
fectively increasing the gain on for the lower frequency NAF controller and therefore also the
peak for its side resonance.

Note that the important take-away from this is that all three of these controllers are able
to effectively introduce damping into the TCP dynamics and therefore improve the system’s
behavior. The performance of all of these controllers could be arbitrarily improved in the
simulation by performing a bit of parameter optimization for the gains, or even making the
gain factors for the second NAF controller dependent on the current pose. However, these
kind of exercises have little purpose without also precisely modeling the other bandwidth
limiting effects like sensor noise, signal delay, or friction in the actuator. Nevertheless, it is
still interesting to note that the DVF controllers seems to be the most effective ones, while
also being the most simple controller to tune.

Effect on the Horizontal Path Accuracy

The horizontal path accuracy of the simulation model following the test trajectory without
any external vibration damping controller is shown in Fig. 5.6a. We can see in the CWT of the
horizontal error (Fig. 5.6b) that both structural eigenfrequencies of the robot are regularly
excited by either the high jerk of the robot motion or torque-ripple frequencies crossing them.

The performance of the different external vibration damping controllers are shown in
Fig. 5.7-5.9. We can see that all three of them are capable to basically completely attenuate
the structural dynamics response of the robot on the position level, with the DFV controller
again producing slightly better results. All controllers produce a relatively low control ef-
fort to achieve this, with only a short peak of high forces needed for the large stopping jerk
at the end of the trajectory. We can also see that the NAF controller with variable control
eigenfrequencies is slightly better in the end than the NAF controller with constant eigen-
frequencies, since the former is tuned better to the changing system dynamics of the robot.
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(a) Reference, without external vibration damping.
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(b) With direct velocity feedback controller. gDVF,y/z =
1·103 Nsm−1 and a high-pass filter atωHP = 2π·0.8 Hz.
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(c) With negative acceleration feedback controller.
gNAF,y/z = 5 · 104 Nm−1, ζNAF,y/z = 0.5 and constant
controller eigenfrequencies ωNAF,y = 2π · 22 Hz and
ωNAF,z = 2π · 18 Hz.
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(d) With negative acceleration feedback controller.
gNAF,y/z = 5 ·104 Nm−1, ζNAF,y/z = 0.5 and variable con-
troller eigenfrequencies with ωNAF,y tracking the sec-
ond structural eigenfrequency of the robot and ωNAF,z

tracking the first eigenfrequency.

Figure 5.5: Campbell diagrams of the ÿTCP/ fTCP,y transfer function during a straight horizontal tra-
jectory with the flexible UR10 simulation model and different active vibration controllers applied.

However, the difference is quite small, such that it might be questionable if the tuning effort
would be worth it in practice. This also shows that the NAF controller is quite robust against
changing system dynamics, since it also performs quite well by just using constant controller
eigenfrequencies.

These results also reveal a major issue for the external vibration damping approach: If the
subject robot is affected by a lot of torque-ripple (like the UR10, see Fig. 4.4b), the external
vibration controller will only damp the structural dynamics response of the system. However,
since torque-ripple originates on the motor axis behind the typically large gear ratios of the
joint drivetrains, it can not be affected by the external forces created at the TCP of the robot.
The result is basically a rigid response of the robot following the disturbance oscillations on
its motor axis according to its forward kinematics.
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Figure 5.6: Simulated horizontal path error at the TCP of the UR10 simulation model along a 1 m
horizontal trajectory with 100 mms−1 without external vibration damping controller.
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(b) CWT of the horizontal path error.

Figure 5.7: Simulated horizontal path error at the TCP of the UR10 simulation model along a 1 m
horizontal trajectory with 100 mms−1 with direct velocity feedback controllers.

On the other hand, what these simulation results have shown is that structural dynam-
ics of a robot manipulator can be very effectively and easily attenuated using an external
vibration approach. We have seen in section 2.1 and 4.3 that this would otherwise be a very
difficult task for a control system that only uses the robots joint motors as inputs. External
vibration damping might therefore still be an attractive alternative for robot manipulators
that are less affected by torque-ripple and more affected by structural vibration issues.

An example for a robot that shows major issues due to its structural dynamics and link
flexibilities is our CROPS robot, as already shown in section 4.2.1. The effectiveness of the
external vibration damping approach is therefore tested on the CROPS robot in the following
subsection.



122 5 Stabilization of Robot Manipulators

Time [s]

0

2

1

H
or

.
pa

th
er

ro
r
[m
]

0 2 4 6

−1

8 10 12

·10−3

0

−40

−80

80

40

f T
C

P,
y
[N
]

Uncontrolled
Controlled

(a) (Top) Horizontal path error. (Bottom) Control
force output.

Time [s]

Fr
eq

ue
nc

y
[H

z]

M
ag

ni
tu

de
[m
]

10−3

102

0 4 8 12

10−4

100

101

1062

(b) CWT of the horizontal path error.

Figure 5.8: Simulated horizontal path error at the TCP of the UR10 simulation model along a 1m
horizontal trajectory with 100 mms−1 with negative acceleration feedback controllers with constant con-
troller eigenfrequencies.

Time [s]

0

2

1

H
or

.
pa

th
er

ro
r
[m
]

0 2 4 6

−1

8 10 12

·10−3

0

−40

−80

80

40

f T
C

P,
y
[N
]

Uncontrolled
Controlled

(a) Horizontal path error. (Bottom) Control force out-
put.

Time [s]

Fr
eq

ue
nc

y
[H

z]

M
ag

ni
tu

de
[m
]

10−3

102

0 4 8 12

10−4

100

101

1062

(b) CWT of the horizontal path error.

Figure 5.9: Simulated horizontal path error at the TCP of the UR10 simulation model along a 1m
horizontal trajectory with 100 mms−1 with negative acceleration feedback controllers with variable con-
troller eigenfrequencies.

5.1.3 Experiments with the CROPS Robot

The actuator for the test with the CROPS robot is built following the design shown in Fig.
5.1. The magnet of the voice coil actuator is guided by two guide rails with ball bearings
(Fig. 5.10b), with the moving assembly having a total mass of about mVCA = 1kg. The
displacement of the inertial mass xVCA is measured using a Micro Epsilon triangulation laser
sensor. The total possible displacement is 6 cm. Another triangulation laser sensor is attached
to the actuator to measure the vertical path error at the TCP. A PCB 1 g acceleration sensor
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(a) The CROPS robot with an voice coil actuator for
external vibration damping.
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(b) Close up of the voice coil actuator.

Figure 5.10: Test setup for external vibration damping on the CROPS robot.

is used to measure the acceleration feedback for the external vibration damping controller.
The entire assembly is mounted on an aluminum block, making the total mass of the actuator
assembly about 4kg.

The current for the voice coil is controlled using an ELMO motor driver with a PI controller
as described in the last section. The ELMO controller clock rate is 10kHz. The external
vibration damping controller is implemented on a dSpace Microlab-Box and runs at 5kHz. The
Microlab-Box is the central controller that reads the acceleration signal through an analog
lowpass filter with a built in ICP circuit, as well as the laser sensor via an analog connection.
The desired current is also sent via a 10 V analog connection to the ELMO4.

Actuator Dynamics

The force transfer function of the actuator is verified by measuring the transfer function from
the desired force fVCA,d to the acceleration ẍVCA of the permanent magnet with an additional
acceleration sensor. The acceleration at the magnet is then proportional to the output force
fu of the higher level vibration damping controller.

The measurement of the transfer function is shown in Fig. 5.11, with the actuator being
mounted on a heavy and isolated experimental table. As already mentioned, the guide rails
introduce quite of a lot damping into the system (5.11 blue line). This can be somewhat
mitigated by using a negative gD,x gain for the PD position controller of the actuator (5.11
red line). The virtual stiffness gP,x is set as low as possible without causing too many issues
with stick-slip effects at the guide rail bearings. The overall achievable lower bandwidth limit
is about 5Hz and the upper limit is set at 80Hz due to the tuning of the current controller. The
current controller could be tuned more aggressively, however, since we are only interested
in a frequency range of up to 50Hz this would only introduce more noise into the system
without any other benefit.

The actuator mostly behaves as expected. However, the high amount of friction intro-
duced by the guide rails caused some problems, as I will discuss in the following. This is
most likely due to the high number of balls used in the ball bearings, which are also lubri-

4See also appendix B for more details and advantages of using a setup with a dSpace Microlab-Box and ELMO
motor driver with analog connections.
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cated with quite viscous grease.

Noise Sensitivity

Before we have a look at the experiments, I want to shortly touch on the issue of noise
sensitivity, which will be relevant for the following results. In the above simulation section,
the DVF controller seemed to perform slightly better than the NAF controller, without having
a clear idea about how much gain is possible with each controller in practice. A good way
to estimate the amplification of noise of each controller, which is one of the main limiting
factors in a real mechatronic system, is the sensitivity transfer function from an additional
disturbance at the input to the controller output.

Fig. 5.12 shows the linearized sensitivity transfer functions for a single DVF and NAF
controller applied to the z-direction at the TCP of the simulation model. Both controllers are
tuned such that they achieve a −10 dB attenuation at the first structural eigenfrequency of
the UR10 simulation model. We can see that the DVF controller has a consistently higher
amplification of noise over a broad frequency range, while performing the same as the NAF
controller at the targeted first structural eigenfrequency of the robot around 18 Hz. This can
be explained by the DVF control structure broadly damping the entire system dynamics by
just increasing the overall damping in the system, while the NAF controller can be specifically
tuned to only affect the resonance frequency of interest.

By calculating the noise amplification factor as described in Appendix B for these specific
sensitivity functions, we find that the DVF has an almost three times higher noise amplifica-
tion than the NAF controller, while performing essentially the same. Assuming that the real
system will get unstable as soon as a certain amount of noise amplification is present in the
control-loop, this suggests that the DVF controller will actually perform slightly worse than
the the NAF controller, because of the lower amounts of possible controller gains.

Closed-Loop Dynamics at the TCP

The closed-loop dynamics are measured the same way with hammer impacts as described in
section 4.2.1. The robot is again moved through the same poses from completely stretched
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(a) Reference, without external vibration damping.
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(b) With direct velocity feedback controller.

Pose

Fr
eq

ue
nc

y
[H

z]

M
ag

ni
tu

de
�

m N
s2

�

100

1 2 3

10−1
101

102

(c) With negative acceleration feedback controller,
damping the first two eigenfrequencies.
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(d) With tuned mass damper for the first eigenfre-
quency.

Figure 5.13: Campbell diagrams of the vertical driving point transfer function at the CROPS TCP
z̈TCP/ fTCP,z . The transfer functions are recorded for 30 poses changing according to Fig. 4.11. The
controllers are all re-tuned for each pose for best performance.

out to a completely retracted position as shown in Fig. 4.11. The resulting Campbell-diagrams
are shown in Fig. 5.13.

It should be noted that the additional 4 kg of mass at the robots TCP already has quite
a significant effect on the uncontrolled structural dynamics, Fig. 5.13a. Compared to the
measurements in Fig. 4.17, the first mode’s eigenfrequency is now changing with the pose
and the modes over 30Hz are already quite attenuated by the high amount of inertia added
to the TCP of the robot.

Three different control strategies are tested:

• The first one is again the velocity feedback controller.

• The second one is the negative acceleration feedback controller. However, this time we
are only controlling the z-direction at the the TCP of the robot. The controller is still
tuned to attenuate the first two eigenfrequencies starting at 8 and 12 Hz, by using the
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sum of two NAF controllers (3.84).

• The third controller uses the actuator as a tuned mass damper. For this controller, no
acceleration feedback is used. The actuator is simply tuned with the gP,x and gD,x gains
to have the same actuator eigenfrequency as the first structural eigenfrequency of the
robot. The actuator therefore acts like a passive tuned mass damper with variable
stiffness.

For the closed-loop measurements, the controllers are re-tuned for each robot pose to asses
the best possible performance on the real systems. Meaning that for the DVF- and NAF
controller the controller gains are increased until the system becomes unstable. The gains
are then slightly reduced for the measurements. The controller eigenfrequencies for the NAF-
and tuned mass damper controller are also set to the structural eigenfrequency of the current
pose of the robot.

The results are plotted in Fig. 5.14. As expected, we can see that the DVF controller actu-
ally performance slightly worse than the NAF controller on the real system, most likely due
to the higher noise amplification. The DVF controller is capable of attenuating the first two
resonance peaks by up to −15 dB, with a bit worse performance once the robot passes the sec-
ond main pose. The NAF controller performs constantly better with a maximum attenuation
of up to −30 dB for the earlier poses.

The tuned mass damper controller is only able to attenuate the first structural eigenfre-
quency by design. A disadvantage of this approach is that, while being the most simple one,
there is no active control over the amount of attenuation, which is determined by the mass
of the permanent magnet. The tuned mass damper is actually able to attenuate the first
structural eigenfrequency the best, which is visible by the thin blue line following the first
eigenfrequency in Fig. 5.13d. However, the attenuation is so large that we get the typical two
side resonances. The lower frequency side resonance is especially problematic, since lower
frequencies will cause higher displacement amplitudes.

The tuned mass damper controller is therefore an even simpler alternative to the NAF
controller. However, the main disadvantages are that the amount of attenuation has to be
tuned by the mass of the permanent magnet in advance and that the controller can only
attenuate one structural eigenfrequency at once. The main benefit is that the system does
not need a higher-level active vibration damping controller with acceleration feedback to
work, which reduces system complexity.

Step Response

For the next experiment, the CROPS robot performs a vertical trajectory of about 500mm
length at a constant velocity of 80mm/s, Fig. 5.14a. The trajectory has a high jerk at the
end, which acts like a step excitation on the TCP. Since the displacement can not be directly
measured for this trajectory, we are going to have a look at the measured residual accelera-
tions at the TCP, Fig. 5.14b - 5.14d. The acceleration signal is lowpass filtered in post with a
cutoff frequency at 20 Hz to reduce the high frequency accelerations in the signal, since the
low frequency content is more relevant for the actual mechanical displacements at the TCP.

We can see that the NAF controller performs better than the DVF controller, as we would
expect according to the closed-loop transfer function measurements in Fig. 5.13. The tuned
mass damper controller performs the worst, because of its lower frequency side resonance.

While the NAF and DVF controller are able to significantly reduce high amplitude oscil-
lations at the high jerk points of the trajectory, they do not significantly reduce the residual
vibration during the middle part of the trajectory. This is also observable when performing a
more typical horizontal test trajectory, where neither controller has any significant effect on
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(a) Test setup for the step response trajectory.
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(b) Residual accelerations measured at the TCP with
a direct velocity feedback controller.
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(c) Residual accelerations measured at the TCP with
a negative acceleration feedback controller.
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(d) Residual accelerations measured at the TCP with
a tuned mass damper controller.

Figure 5.14: Step response experiment with the CROPS robot. The residual vibrations are measured
at the TCP and lowpass filtered with a cutoff frequency at 20Hz to have a better view on the lower
frequency vibrations.

the path accuracy of the robot. This is initially rather surprising, since the CROPS robot ac-
tually has very little torque-ripple and should be a prime example for this external vibration
damping approach.

The reason for this little effect during more typical motions is that there is actually only
very little force needed to damp small structural vibrations. We can also see this in the
simulation results in e.g. Fig. 5.9, where the control forces are very small outside of the
high jerk points of the trajectory. This is a problem for the actuator, since it has to create
rather small forces very precisely to damp the relatively low amplitude vibrations during
normal operation. However, small actuator forces also mean that the friction at the actuator
plays a larger role in the dynamics of the actuator, as I have already discussed above. This
greatly degrades the force transmission of the actuator due to unmodeled friction and stick-
slip effects at the guide rails. This is rather unfortunate, since the external vibration damping
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approach seems to be quite effective for the CROPS robot in general, however, fails to produce
good results for low amplitude disturbances and therefore high-accuracy applications, which
is the purpose of this thesis.

Trajectory Tracking with External Disturbance

While this series of experiments was not effective to reduce the CROPS dynamic path track-
ing error during normal operation due to the limitations of the actuator, I still wanted to
test the performance of the external vibration approach for a slightly different scenario that
might not be too uncommon in practice: Most industrial robots are usually operated in larger
assembly lines or factory environments that have a lot of environmental disturbances. Since
a robot manipulator is just a large beam-like structure, it is quite susceptible to transferring
disturbance forces from the base of the robot to its TCP, degrading its dynamic accuracy.

The test setup shown in Fig. 5.15a is designed to replicate this problem. The robot per-
forms a horizontal trajectory of about 1m length with a velocity of 65 mm/s. Additionally a
shaker is placed next to its mounting table, causing a broadband disturbance force fdist of up
to 20 Hz, simulating environmental disturbance forces.

Fig. 5.15b - 5.15d shows the vertical tracking error measured with a Micro Epsilon trian-
gulation sensor against a reference surface for the three same control approaches. We can
see that even a light disturbance can cause quite large dynamic error amplitudes (gray lines).
As expected, the NAF controller again performs the best at attenuating the larger vibration
amplitudes.

It is also notable that the vertical path error of the CROPS robot is quite a lot less repeat-
able than the path error of e.g. the UR10 (cf. Fig. 4.7). This is probably due to the robot
operating with 7 DOFs and the path planning algorithm always choosing a slightly different
null space while moving backwards and forwards.

5.1.4 Discussion of Results

The results for the external vibration damping approach are a bit mixed. The simulation
results did show that it is quite simple to effectively control the pose dependent structural
dynamics of a robot manipulator with very little knowledge about the underlying system
dynamics, which is a great advantage over most control strategies proposed for flexible robots
(cf. section 2.1.3). Both the NAF, and the even simpler DVF, controller are very robust against
modeling errors, thanks to the collocated control problem created by using both acceleration
feedback and force input near the TCP of the robot.

However, even in simulation, the external vibration damping approach has its limitations
when the robot experiences a lot of torque-ripple, which can not be effectively attenuated by
an external force acting at the TCP.

When applying the external vibration damping approach to our CROPS robot, we achieved
a maximum attenuation of up to −30dB. This is actually a quite common result for structural
vibration damping controllers applied to real systems, regardless of the underlying control
strategy (cf. section 2.3). The reason for all of these control strategies applied to different
problems all performing quite similar also became evident for this application: It is quite
hard to build a force actuator that can both produce very high forces and still be very precise,
since friction will start to degrade the actuator performance for small, precise motions. The
accuracy of actuators is often within 1% of their maximum output value for this reason, even
for more expensive hardware.

I am confident that we could achieve better results in regards of reducing the dynamic
tracking error during normal operation by downsizing the actuator and redesigning the guid-
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(a) Test setup for the step response trajectory.
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(b) Residual accelerations measured at the TCP with
a direct velocity feedback controller.
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(c) Residual accelerations measured at the TCP with
a negative acceleration feedback controller.
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(d) Residual accelerations measured at the TCP with
a tuned mass damper controller.

Figure 5.15: Step response experiment with the CROPS robot. The residual vibrations are measured
at the TCP and lowpass filtered with a cutoff frequency at 20Hz to have a better view on the lower
frequency vibrations.

ing mechanism to reduce friction. The system would then no longer be able to effectively
damp high jerk situations as shown in Fig. 5.14. However, these are not really relevant in
practice, since most robots will plan a trajectory with as little jerk as possible anyway. Unfor-
tunately, we were not able to build a second better prototype for the active vibration damping
approach due to time restrictions in the project5.

It might also be interesting to test a two stage system, with a larger actuator for the
attenuation of high vibration amplitudes during high jerk and an additional smaller actuator
for structural vibrations during normal operation.

Overall, the external vibration damping approach still seems to have potential to deal
with tracking issues of robot manipulators which are specifically due to structural vibrations
and will most likely be easier to implement, and more robust, than using the robots own

5and Covid-19...



130 5 Stabilization of Robot Manipulators

x

z

y

Start

Stop

fTCP,z

z̈TCP

flexible beams

Figure 5.16: Simplified 2D robot model
with three flexible beams using the lumped-
parameter approach.

Vertical TCP position [m]

Fr
eq

ue
nc

y
[H

z]

M
ag

ni
tu

de
�

m N
s2
�

101

−0.5 0 1.8

10−2

101

102

ω0,1

ω0,2

ω0,3

Figure 5.17: Campbell diagram of the driving
point transfer function of the simplified 2D robot
model in z-direction at the TCP over a vertical
trajectory.

control system. The obvious downside is that this approach can not deal with the quasi-static
error of the robot. This would either need to be dealt with by applying an absolute calibration
method to the robot as described in section 2.1.1, or by adding additional actuators at the
TCP that can compensate sag.

Appendix C describes the first version of such a stabilization system which used voice
coil actuators to damp the dynamic error and a BLDC motor driven positioning system to
compensate the quasi-static error.

5.1.5 A Word on Modern Control Methods

Until now, I only discussed classical vibration damping methods for the external vibration
damping approach. The main reason for this is that this thesis was partially funded by an
industry project and classical control methods have a better proven track record when applied
to real systems. However, as a researcher, I was of course also interested in looking into any
benefits that might be provided by modern control methods.

For this purpose, I supervised two student theses: The first one being the master’s thesis
of HARDER [125], who investigated Pole Placement, LQR and H∞ controllers. The second
one is the semester thesis of BODEIT [54], who investigated MPC, Sliding Mode Control,
Eigenstructure Assignment, as well as Pole Placement with variable observer models.

This subsection is a short summary of our findings, which are documented in more de-
tailed in their respective student theses.

Robot Model

Both theses used a simplified 2D version of the flexible robot model (Fig. 5.16), which was
also the basis of our papers [48, 49]. The model consists of a 2D robot with 3 DOFs. All links
are modeled as flexible beams, with the first two links being modeled as hollow rectangular
magnesium beams with a 50x50 mm2 outer and 45x22.5 mm2 inner cross section and a length
of 1m. The third link has a length of 20cm and the same profile. The links are modeled using
the lumped-parameter approach described in section 3.2. The flexible joint model is the same
as described before.
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The robot performs a vertical test trajectory shown in Fig. 5.16. The driving point transfer
function of interest is again in z-direction at the TCP. The corresponding Campbell-diagram
without an external vibration damping controller is shown in Fig. 5.17. It is interesting to
note that the structural dynamics behave quite similar to the UR10 robot model (cf. eg. Fig.
5.5a), although this robot model is of larger size and uses a different material for the beams.
The reason for this is again the bad scalability of structural dynamics. Two tree like structures
with similar morphology will always behave quite similar regardless of material and size.

The control problem is the same as before: Use acceleration feedback at the TCP z̈TCP
and the collocated force fTCP,z as the control variable to damp the structural dynamics of the
robot during the test trajectory. We did not consider the actuator dynamics for the following
results and just assumed that the control force can be directly applied from the controller
output. However, all controllers needed to be designed such that the control force does not
exceed the maximum control force of fmax = 80 N.

Pole Placement, LQR and H∞ Controller

The Pole Placement-, LQR- and H∞ controllers were all designed ’by the book’ using the
corresponding Matlab toolboxes6. Modern control methods often require an observer model
to recreate the necessary states of the system. In this case, we only use one acceleration sensor
to generate the required states. In order to also test the robustness of these controllers, we
decided to design them using one observer model linearized at the initial starting pose of the
robot. Fig. 5.18a shows the full linearized model in blue. In practice, a full model can rarely
be used, since it is quite unlikely to get a precise model of higher-order dynamics. It is also
often not necessary to control a lot of higher modes in the system. In our case, we decided to
include the first five modes into the observer model.

The general goal of all controllers was to increase the modal damping of the closed-loop
system. We designed the desired poles by transforming the system matrix into the state space
modal canonical form (3.65) and equally increasing the modal damping of all desired poles.
We deliberately chose to not increase the eigenfrequencies of the closed-loop system to keep
the performance more comparable to the classical approaches7. The controllers were then
tuned such that they achieved the best performance over the entire trajectory of the robot,
while also remaining stable.

Fig. 5.18b - d show the performance of these controller compared with a NAF controller,
which is also only tuned at the first pose (NAF const.), and a second NAF controller, which is
tuned to follow the changing eigenfrequencies (NAF variable). The NAF controllers are both
designed for the first three eigenfrequencies of the robot. The plots Fig. 5.18b - d each follow
the amplitude of the first, second and third eigenfrequency as shown in Fig. 5.17.

It immediately becomes apparent that the modern controllers all perform worse than
the classical NAF controllers. The main reason for this is the lack of robustness of modern
control methods, which heavily rely on precise observer models. Since we only designed the
observer for the initial pose, there is an increasing mismatch between the observer and the
real system dynamics when the robot starts moving upwards. In order to keep the controllers
stable over the entire trajectory, we had to significantly reduce the desired damping ratios.
Unfortunately, there is still no clear consensus about when and how modern control methods
become unstable due to observer-plant mismatch.

In his semester thesis [54], my student BODEIT later also tried to use observer models
which were updated along the robot trajectory to stay as close as possible to the changing

6Since I did not end up using these methods on the real prototype, I will not dive into the theory of these
controllers. Modern control methods are very well established and we closely followed the common frameworks
provided by books like [251, 261] and the corresponding Matlab toolboxes.

7Also, increasing the eigenfrequency of the desired closed-loop poles made the controllers even less robust.
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Figure 5.18: Comparison of the performance of modern control methods as external vibration damp-
ing controllers applied to the simplified robot model. Fig. (b) to (d) each follows one eigenfrequency
shown in Fig. 5.17. Adapted from my student HARDER’s master’s thesis [125].

dynamics of the system. Also with only unsatisfying results. The main reason for this is
probably a second issue related to acceleration feedback: As we can see by the height of the
amplitude peaks in Fig. 5.18a, the unmodeled higher-order system dynamics still contribute
significantly to the overall system dynamics. This is a consequence of using accelerations
as feedback, since an accelerance transfer function will remain roughly at the same order
of magnitude for higher frequencies. This makes the control system quite susceptible to
observer- and control-spillover due to unmodeled system dynamics. The larger contribution
of the higher frequency resonance peaks make it much more likely for unforseen interactions
to occur between unmodeled system dynamics and the control system. In contrast, a position
feedback based control system is easier to handle, since the contribution of higher-order
dynamics will quickly decrease for higher frequencies (see e.g. Fig. 3.9c). It is therefore much
safer to ignore unmodeled higher-order system dynamics of a receptance. Unfortunately,
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as explained earlier, we had to use acceleration feedback for our application for practical
reasons.

MPC, Sliding Mode Control, Receptance/Accelerance Based Eigenstructure Assignment

Together with BODEIT, we also investigated further modern control methods, which I want
to quickly summarize in the following:

• Model Predictive Control
The MPC framework does not perform very well for systems with high frequency dy-
namics. Even when we tried to control a simple flexible beam, we needed to use a
MPC update rate of 104 Hz to keep the system stable. Unfortunately, since MPC is
very computationally intensive, this also meant that this controller would not be real-
time capable. Additional issues arise when using acceleration feedback, since the MPC
framework does not seem to handle systems with direct feedthrough very well. There
are in fact very little publications available that try to use MPC for active vibration con-
trol. One of the only ones seems to be [211], which uses a laser vibrometer as feedback
on a simple beam test rig and does only achieve a vibration attenuation of about −6dB
at the resonance peaks.

• Sliding Mode Control
A sliding mode controller also becomes quite difficult to tune when dealing with higher-
order systems, because of the large amount of parameters in the sliding-variable8. The
controller worked quite well on a single flexible beam assuming full system knowledge.
However, in our experience, the sliding mode controller was very unrobust when using
reduced order models for the controller design or if there was any kind of unmodeled
disturbance acting on the system.

• Receptance/Accelerance Based Eigenstructure Assignment
Receptance based eigenstructure assignment (RBEA, see e.g. [222]) was stable on the
robot model. However, it needed position feedback to work, meaning we had to inte-
grate the acceleration feedback twice. This is an undesirable processing step which also
does not deal well with noise in practice. Additionally, RBEA will modify the stiffness of
the system in order to place the closed-loop poles. This has the effect of trying to hold
the TCP of the robot in place when moving the robot arm. Instead, we also tested Ac-
celerance Based Eigenstructure Assignment (ABEA) with acceleration feedback, which
will modify the inertia of the system to place the closed-loop poles. This will no longer
affect the quasi-static motion of the robot. However, ABEA has to deal with the same
stability issues as the other modern methods, when using acceleration feedback. When
placing the desired closed-loop poles by only increasing the modal damping, the con-
troller will not modify the inertia of the system. This makes the controller significantly
more robust, however, also quite similar to a simple direct velocity feedback controller.

Conclusions

All of the these methods worked very well in simulation when controlling simple systems with
a low number of states and full system knowledge. Unfortunately, the task of controlling a
time variant system with a high number of states and acceleration feedback seems to be
quite difficult for most modern control methods for the above mentioned reasons. When we
started to assume that we do not have full system knowledge, most methods stopped working

8Even using a simplified beam model with only three modes and therefore six states.
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at all or performed significantly worse than the more simple classical control methods when
applied to the robot model. Additionally, at this stage, we only worked with a simplified 2D
robot model and did not even incorporate actuator dynamics, signal delay or sensor noise
into the control system.

Considering all of these issues, and the high amount of effort needed to get these methods
to work even in simulation, I decided to not proceed to implement them on the real system.

5.2 External Stabilization of Robot Manipulators

While the external vibration damping approach showed some promise in the previous sec-
tion, it is questionable if the required path accuracy target of 20µm can be achieved via this
method. Especially if the robot is affected by a lot of torque-ripple.

As explained in Appendix C, with the UR10 robot we achieved better results using the
external stabilization approach, which uses an additional set of actuators to stabilize the tool
against any disturbances coming from the robot. However, the first version of our stabi-
lization unit prototype used positioning tables moved by spindles, which were significantly
affected by backlash and friction, and only achieved a 50 % reduction of the vertical path
error. We tried to address these problems with the second version of the stabilization unit, by
designing the entire actuator system in-house.

I will again start by explaining the actuator and controller design in subsection 5.2.1.
Simulation results are discussed in subsection 5.2.2 and the experiments performed on the
UR10 robot are shown in subsection 5.2.3.

The results of this section are also partially published in our paper [51].

5.2.1 Actuator and Controller Design

The underlying manufacturing process that motivates this thesis is affected the most by ver-
tical disturbances in the z-direction (see Fig. 5.19) and inclination errors around the y-axis.
The second prototype of the stabilization unit was therefore designed to stabilize these two
DOFs.

Inspired by In-Body-Image-Stabilization systems (IBIS, see section 2.2), we used a plate
as the stabilized platform, which is connected to the housing via two sets of springs, Fig.
5.19. The first set of springs kz is aligned with the z-direction the stabilized platform. The
second set of springs kϕ is attached to the corners of the platform, with the distance dϕ to its
center of mass.

This setup allows us to design the mechanical system of the actuator for both desired
DOFs as decoupled single harmonic oscillators. Moving the plate in the z-direction will only
engage the vertical springs kz for small displacements9, since a vertical motion is orthogonal
to the horizontal springs kϕ (see also Fig. 5.20.d for a more detailed view). In the same way,
a rotation around the y-axis will only engage the horizontal springs kϕ, since the motion
caused at the attachment points of the vertical springs kz by a rotation ϕy is orthogonal to
their alignment.

The platform is actuated by two vertical forces fL and fR, which have the distance of d f to
the center of mass of the stabilized platform. The equations of motion of the two stabilized

9This is quite valid here, since we are trying to stabilize the load in the 10µm range.
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Figure 5.19: Concept of the stabilization unit.

DOFs z and ϕy are therefore:

mSPz̈ + cSP,z ż + 2kzz = fSU , (5.11)

JSPϕ̈y + cSP,ϕϕ̇y + 2kϕϕy = τSU , (5.12)

with the actuator forces at the stabilization unit

fSU = fL + fR , (5.13)

τSU = 2d f ( fL − fR) . (5.14)

The mechanical system of the actuator can therefore be designed as a single harmonic oscil-
lator using the mass mSP of the stabilized platform and vertical spring stiffnesses kz for the
z DOF, and the area moment of inertia JSP and the horizontal spring stiffnesses kϕ for the
rotational DOF ϕy . The mechanical system will also be affected by some amount of damping
cSP,z/ϕ, however, as we have learned from the actuator for the external vibration damping
approach (see section 5.1.4), it is beneficial to minimize the damping due to friction as much
as possible.

The controller of the stabilization unit will use a measured position reference from the
process surface to stabilize the platform. For a position based control system, it would be ben-
eficial to design the mechanical system as stiff as possible, since the dynamic terms coming
from the inertia and damping in equation (5.11) and (5.12) would play a smaller role. E.g.
tuning the mechanical system with an eigenfrequency at 100Hz would simplify the control
design for the desired control bandwidth of 50 Hz, since the system behaves quasi-statically
and is completely dominated by the stiffness term. This would also reduce the influence of
non-linear friction and stick-slip effects, since even for small displacements the system would
need to mainly work against the linear stiffness of the spring. However, such a stiff system
would also require very high control forces in order to move the platform.

Another disadvantage of using a very high spring stiffness is that the control system needs
to be able to control the high frequency actuator resonance and provide the high actuator
forces with high control gains, which are also more prone to instability due to the amplifica-
tion of noise. This can somewhat be circumvented by using a simple feedforward model to
determine the high control forces for quasi-static motions without feedback. However, even
though the required model is quite simple, it still needs to be very accurate to not negatively
influence the precision of the positioning system.

In our case, we performed a few preliminary tests on a simplified 1 DOF system to deter-
mine that an actuator eigenfrequency of 20Hz is a good compromise for our application.
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(c) Side view: Lorenz actuator. (d) Front view: Mechanical system.

(b) Back view: Mechanical system.(a) Front view: Lorenz actuators.
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Figure 5.20: Mechanical design and Lorenz actuators of the second version of the stabilization unit.
Adapted from our paper [51].

Mechanical Design

The final mechanical design of the second stabilization unit prototype is shown in Fig. 5.20.
The stabilized platform has a mass of mSP = 0.2kg and is attached to the housing via four
springs as described above, Fig. 5.20.d. The stiffnesses of the vertical kz and horizontal
springs kϕ are chosen such that both DOFs have an eigenfrequency of 20Hz.

The platform is pulled via a fifth spring on three ceramic bearing balls to only allow
motion within the plane of the stabilized platform, Fig. 5.20.b. The fifth spring is again
aligned orthogonally to the plane of motion, such that it does not contribute to the dynamics
of the system for small displacements. In order to block all further undesired DOFs, a guide
pin is attached to the front and back of the platform respectively. The guide pins glide in
linear guides (not depicted in the figures) which only allow vertical displacements in the
z-direction and rotations ϕy around the guide pin around the y-axis. This setup is again
a compromise between mechanically blocking all unnecessary DOF and reducing friction
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Figure 5.21: Mechanical design and Lorenz actuators of the second version of the stabilization unit.
Adapted from our paper [51].

as much as possible, which is both important to simplify the control problem as much as
possible10.

The control forces fL and fR are realized with two Lorentz actuators. The actuators con-
sists of three magnets each, which are embedded in the stabilized platform, Fig. 5.20.d. The
housing holds four custom wound coils for each side, Fig. 5.20.a and 5.20.c. Each actuator
is capable of producing a peak force of 70N and continuous force of 20 N. The maximum
displacement of the system is zmax = ±2.5 mm, which results in a maximum needed static
force of ∼ 10 N 11, when pushing the load against the full gravitational pull.

For the following studies, the tool is replaced by a dummy tool, which holds two Micro
Epsilon eddy current sensors, which have a measurement range of 3 mm and a resolution of
3µm [258]. The sensors measure the left zL and right zR distance to a reference surface and
have distance of dEC = 30mm between each other.

Controller Design

In order to design the controller, the stabilization unit is modeled in Simulink/Simmechanics
and attached to the same flexible UR10 model as used in previous sections, Fig. 5.22. This
step is important for the controller design, since we can asses the influence of the dynamic
interaction between the robot’s structural dynamics and joint controllers with the control
system of the stabilization unit.

The final control structure is shown in Fig. 5.21. First, the measurement signals of the left
zL and right zR eddy current sensors are transformed into the DOFs of the stabilization unit:
�

z
ϕy

�

=

�

0.5 0.5
1/dEC −1/dEC

�

︸ ︷︷ ︸

Φ

�

xL
xR

�

. (5.15)

Since the equations of motion for both DOFs are completely decoupled from each other
(5.11)(5.12), we can design the control law for each DOF separately. Let us start by applying

10I really want to stress here that experience has shown that it is very important to have a good mechanical
and actuator design which simplifies the underlying control problem. There are a lot of powerful control methods
that can achieve amazing things, however, all of them have their limitations, especially when faced with multiple
bottlenecks from the rest of the mechatronic system. It is very unlikely that a control system can perform well,
when the controller has to compensate for bad mechanical design with a lot of friction, stick-slip or backlash,
a slow bus-communication system with a lot of delay and lost packages, high amount of sensor noise, slow
controller clock-rates, unnecessarily complicated actuator dynamics, etc.

11An actuator eigenfrequency of 20 Hz at 0.2kg mass results in a vertical stiffness of 2kz = 3.16 · 103 N/m.
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a simple P-controller to the z-DOF (5.11):

fSU(s) = gP,z · (z(s)− zd(s)) , (5.16)

with zd being the desired distance to the reference surface and gP,z the controller gain. Fig.
5.23 shows the closed-transfer function for the z-DOF. We can see even for very low gP,z
gain (blue line) that the structural dynamics of the robot are barely visible in the closed-loop
transfer function. The reason for this is that the control problem that we are investigating
here is collocated with both the controller output fSU and feedback z acting on the same
DOF, which causes structural dynamics of the robot to show up as alternating pole-zero pairs
in the closed-loop transfer function. Applying a simple P controller to this kind of control
plant will cause the poles created by the dynamics of the structure to be pushed on their
respective zeros with increasing amounts of gain, canceling out their dynamic contribution
to the closed-loop transfer function. This is a very useful property when applying a collocated
control problem to a dynamic structure [219]12. In our case, we can see that very little gain
is already enough that only the pole-zero pair of the first structural mode is still barely visable
in the closed-loop transfer function (Fig. 5.23 blue line).

Increasing the gain further will cause the structural dynamics of the robot to completely
cancel out, and only the pole caused by the the actuator dynamics (acting like a single har-
monic oscillator) will be pushed to higher frequencies (Fig. 5.23 orange line). This will also
cause the pole to further lose modal damping, because of the very low damping in the me-
chanical system. This is by design, since we want to avoid as much friction as possible in
the actuator system. However, this leaves us with another problem: The very high resonance
peak basically makes this kind of controller unusable, because of the very high amplitude
oscillations in the step response of the system.

The control plant now acts like a simple single harmonic oscillator with very little damp-
ing. In theory, this kind of plant could be very easily controlled by using a PID controller, with
the D part damping the high resonance peak. However, the amount of D gain needed for this
to work would be so high that the system would never work in the presence of sensor noise.

In order to reduce the resonance peak, we can instead modify the control plant with a

12See also Appendix A.
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PPF controller as described in section 3.3 (3.79):

fSU(s) = gP,z · (z(s)− zd(s)) +
gPPF

s2 + 2ζc,PPFωc,PPF s+ω2
c,PPF

· z(s) , (5.17)

with the PPF controller eigenfrequency ωc,PPF set to the resonance frequency caused by the
controller gain gP,z. The PPF damping ratio is again set to ζc,PPF = 0.5 and the PPF gain gPPF
is increased until a suitable amount of damping is achieved.

The disadvantage of this approach is that the gain of the PPF controller will stack on the
P controller and cause the steady state solution to overshoot (Fig. 5.23 green line). However,
this can easily be fixed by adding an I part to the P controller to ensure steady state accuracy:

fSU(s) =
�

gP,z +
gI,z

s

�

·(z(s)− zd(s)) +
gPPF

s2 + 2ζc,PPFωc,PPF s+ω2
c,PPF

·z(s) (SU z controller)

(5.18)

The controller for the inclination ϕy can be designed in the exact same way.
Note that not a lot of gI,z gain is needed to achieve a stable controller with a usable

bandwidth of around 2Hz for precise tracking (Fig. 5.23 dark blue line). This might appear
way too low at first glance, however, the goal of the tracking controller is not to be able to
quickly track a desired distance zd . For our application the desired distance zd and inclination
ϕy will almost always be set to a constant value and would only sometimes need to follow
a relatively slow trajectory. The important property of the controller is its capability to reject
disturbances coming from the robot, which we will investigate in the Simulation Results
subsection 5.2.2.

Noise Sensitivity

However, let us first have a short look at two other important properties of this control ap-
proach. The first one is the noise sensitivity of the controller (5.18). The sensitivity function
of the controller from a disturbance at the feedback zn to the output of the controller fSU is
shown in Fig. 5.24 as the blue line. Let us compare the same sensitivity function to a PID
controller that achieves the same amount of damping (Fig. 5.24 orange line).

We can see that the sensitivity function of the PID controller is significantly higher the
sensitivity function of the SU z controller (5.18) in the higher frequency range. However, the
higher frequency range is needed, since the micro controller has to operate with a sufficiently
high enough clock-rate (in our case 5 kHz) to ensure the proper operation of the real discrete
control system13.

The high slope at higher frequencies of the PID controller’s sensitivity function could be
reduced by tuning the cut-off frequency of the lowpass filter (see pole at around 300 Hz) of
the D part to lower frequencies. However, this would also negatively impact the damping
capabilities of the PID controller. The lowpass filter of the PID controller of the sensitivity
function shown in Fig. 5.24 is already tuned an the verge of affecting the PID controllers
performance.

Using these sensitivity functions, we can calculate the noise amplification factor of both
of these controllers (see Appendix B) and find that the PID controller has a 100 times higher
noise amplification than the SU z controller derived in (5.18).

This high noise amplification factor is the main reason why we were not able to apply a
PID controller on the real system to damp the high resonance peak of the actuator system.

13See Appendix B for more details about typical application issues of real control systems.
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We also tried to apply other control strategies to damp the actuator resonance, however, none
were as successful as the controller shown in (5.18)14.

Scalability

In the following experiments, we will only stabilize a relatively low load of 0.2 kg. Let us
therefore also investigate if this external stabilization approach is also scalable to higher
stabilized masses. Fig. 5.25 again shows the closed-loop transfer function for the z DOF with
a stabilized load of now 10 kg. The blue line shows the same transfer function with low P gain
as in Fig. 5.23 with a stabilized mass of mSP = 0.2kg. The orange line shows the closed-loop
transfer function with the same amount of low P gain, however, with much higher stabilized
mass of mSP = 10 kg 15. The stiffness of the actuator kz is again designed to achieve a 20 Hz
actuator eigenfrequency.

We can see that the heavier system has much further separated zero-pole pairs for the
first and second eigenmode of the robots structural dynamics. However, applying the same
amount of high P gain as before basically causes the system to almost behave exactly the
same as before, with only the first pole-zero pair barely not canceling out (cf. Fig. 5.25 green
line with Fig. 5.23 green line).

This suggests that the external stabilization approach would in theory work for any
amount of reasonable stabilized mass mSP. However, it should be noted that higher con-
trol forces would of course be needed to still achieve the same performance. This could be
addressed by reducing the actuator eigenfrequency and therefore the amount of stiffness and
actuator forces needed to move the system. This is probably fine, since the heavy system
already needs quite high forces to be moved and the main motivation to use a high actuator
eigenfrequency was to keep the linear stiffness forces more dominant than the non-linear
friction effects.

14Even using the loop-shaping method for an H∞ controller, which in theory allows to directly shape the
sensitivity function, did not achieve better results on the real system.

15Note that the maximum load of the UR10 is also 10 kg. The real system would be even heavier, when
accounting for the weight of the actuator system.
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Figure 5.26: Campbell-diagram of the transfer function from a disturbance at the motor torque τm,2
of the second joint of the robot to the displacement at the stabilized load z.
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Figure 5.27: Campbell-diagram of the transfer function from a disturbance at the motor torque τm,2
of the second joint of the robot to the accelerations at the stabilized load z̈.

5.2.2 Simulation Results

Let us assess the performance of the system in simulation by letting the flexible UR10 model
again perform the same 1m long horizontal test trajectory with 100mm/s speed. The robot
again performs a high jerk stop after 10s.

Disturbance Rejection

As already mentioned in the previous subsection, the designed controller only has a relatively
low tracking bandwidth of 2Hz (see Fig. 5.23 dark blue line). However, the more important
property of the controller is its capability to stabilize the payload against external distur-
bances coming from the robot. We can quantify this by looking at the transfer function of
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Figure 5.28: Simulation of the tracking performance for the vertical z-DOF and inclination ϕy -DOF
at the stabilized tool during a 1 m long horizontal test trajectory with 100mm/s speed.

a disturbance acting on e.g. the motor torque of the second joint of the robot τm,2 to the
displacements z measured at the tool attached to the stabilization unit.

A Campbell-diagram of a set of these liniearized transfer functions, while following the
trajectory shown in Fig. 5.22, is shown in Fig. 5.26b. Fig. 5.26a shows a reference with the
actuators being blocked and the control system turned off.

We can see that by turning the stabilization on, the displacements z at the stabilized tool
are almost completely decoupled from any disturbance acting on the second joint over the
entire frequency range. Even at the resonance frequencies, the response is attenuated by
almost two orders of magnitude.

We can get a better assessment of the performance in the higher frequency range by also
looking at the same transfer function, but with accelerations z̈ as the output, Fig. 5.27. Which
reveals the same results for the higher frequency region.

This suggests that, while the control system is only capable of following a change in
desired distance zd with a bandwidth of 2Hz, the stabilized load is actually almost completely
decoupled from any disturbance acting on the robot, which is ultimately the goal for a good
high-precision tracking performance.

Tracking Performance

We can verify this assumption by looking at the tracking performance of the stabilization
unit shown in Fig. 5.28. The uncontrolled reference (blue line) is simulated by blocking all
the DOFs of the stabilization unit and turning the stabilization controllers off. We can see
that the stabilization unit is capable of a large reduction of the tracking error from a RMSE
of 2.43mm to 14.6µm for the vertical path error and a RMSE of 2.05 ◦ to 0.0011 ◦ for the
inclination error, which is a reduction of two orders of magnitude in both cases.

The system is very robust against any kind of disturbances coming from the robot and
barely interacts with its structural dynamics thanks to its collocated control design. Neither
the torque-ripple from the joint motors, nor the large jerk excitation at the end of the tra-
jectory effect the system. It is important to stress here that no model or any other prior
knowledge about the robots dynamic behavior was required to design and tune the system.
This suggests that a similar performance should be possible on the real system, as long as the
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rest of the mechatronic system is build thoroughly enough.

5.2.3 Experiments on the UR10 Robot

The real system is shown in Fig. 5.29. The control system as shown in Fig. 5.21 is again
run on a dSpace Microlab Box with a clock rate of 5kHz. The desired forces for the left fL
and right fR Lorentz actuator are again scaled with the motor constant and sent as desired
currents via an 10V analog connection to the PI current controller running on ELMO motor
drivers at 10kHz clock rate.

The PI current controllers on the ELMOs are tuned with a bandwidth of over 100Hz, such
that for our application

fL/R,d
1

km
= IL/R,d = IL/R =

1
km

fL/R , (5.19)

which is also why I neglected the current controller for the control design in the previous
subsection.

The eddy current sensors also send the measured position feedback zL/R via a 10 V analog
connection to the Microlab Box.

Controller Tuning

The measured closed-loop transfer functions for both DOFs of the stabilization unit are shown
in Fig. 5.31. The blue line with low P gain shows that the actuator system has its eigenfre-
quency at the desired value of around 20Hz for both DOFs. The system is also well decoupled,
as there is only one pole visible in both transfer functions. We can also see that the system
has barely any damping because of the low-friction design of the actuator, which would cause
an amplification of two orders of magnitude at the resonance peak without any additional
control.

The tuning of the controllers works in the same steps as described in the previous sub-
section. The P gain is increased until the system starts to oscillate on the verge of instability.
This is caused by the increased P gain pushing the resonance peak to higher frequencies and
further decreasing the modal damping of the system. The PPF controller is then applied to
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Figure 5.31: Measured closed-loop transfer function of the stabilization unit.
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Figure 5.32: Measured tracking performance for the vertical z-DOF and inclination ϕy -DOF at the
stabilized tool during a horizontal test trajectory with 30mm/s speed.

this oscillation frequency to add damping. This process can be repeated a second time to
further increase the bandwidth of the tracking controller. The final step is then the addition
of the I part to ensure steady state precision.

The orange lines in Fig. 5.31 show the closed-loop transfer function after the tuning
procedure. The achievable tracking bandwidth is even higher than in the simulation with
about 20 Hz, which is thanks to the second tuning step. After the controller gains are found,
the system can be safely turned on and off with the same gains without becoming unstable.

Tracking Performance

Fig . 5.32a shows the tracking performance for the z-DOF during the different steps of the
tuning procedure. We can see how each tuning step gradually improves the tracking perfor-
mance of the controller. I want to stress here again that most of the tracking improvement
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Figure 5.33: Measured tracking performance for the vertical z-DOF and inclination ϕy -DOF at the
stabilized tool during a horizontal test trajectory with 1 m/s speed.

does not come from the higher bandwidth tracking performance of the controller, but from
the better disturbance rejection capabilities of the system as we have seen earlier.

For the test at 30mm/s trajectory speed the system is able to reduce the RMSE from
0.36 mm to 2.49µm for the vertical path error and the RMSE of the inclination error from
0.26 ◦ to 0.0025 ◦. Similar to the simulation results, this also corresponds to a reduction of
the error by two orders of magnitude on the real system.

For the second test with a far quicker trajectory velocity of 1m/s (Fig. 5.33), we get similar
results: The RMSE of the vertical path error is reduced from from 0.36mm to 3.33µm and
the RMSE of the inclination error is reduced from 0.26 ◦ to 0.0033 ◦.

The maximum error peaks of the vertical path error are in both cases below 15µm, which
meets the specifications for the path precision set in the introduction of this thesis. With
a maximum displacement range of 5 mm and a precision of 15µm, the stabilization unit
achieves a precision of 0.3 % relative to its actuation range, which is significantly better than
most tracking systems discussed in the State of the Art chapter 2.2. This is especially impres-
sive considering that the stabilization unit is also attached to a moving robot and constantly
exposed to dynamic disturbances coming from the robot.

The performance of the system is pretty much only limited by the noise floor of the eddy
current sensors. Looking at the spectra of the vertical path and inclination error, Fig. 5.34,
reveals that the system actually significantly undercuts the set goal from the introduction at
−75dB. This suggests that the maximum error peaks in e.g. Fig. 5.32a are just caused by
sensor noise and that the physical displacement error of the system is actually even better
than this. Lowpass-filtering the vertical path error of the 30mm/s test at 100Hz gives a
maximum vertical error of 3µm, which is exactly the claimed resolution of the Micro Epsilon
eddy current sensors.

5.2.4 Discussion of Results

These are quite impressive results compared to most stabilization and tracking systems dis-
cussed in the State of the Art section 2.2 and 2.3. The better tracking systems usually achieve
a precision of 1% relative to their maximum motion range, while the second version of the
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Figure 5.34: Step response experiment with the CROPS robot. The residual vibrations are measured
at the TCP and lowpass filtered with a cutoff frequency at 20Hz to have a better view on the lower
frequency vibrations.

stabilization unit accomplishes a relative precision between 0.3% to 0.06%. The better ac-
tive vibration damping systems usually achieve a maximum attenuation between −30 dB to
−40dB at the resonance peaks. The stabilization unit manages to evenly attenuate most of
the error spectrum, with an attenuation of the lower portion of the dynamic error spectrum
by up to −70dB (Fig. 5.34a).

The great advantage of using a stabilization unit with collocated sensor feedback at the
TCP is that we do not need any significant knowledge about the underlying system dynamics
of the robot itself. We also do not need to interface with the robot in any way. This makes
this approach easily adaptable to other robot manipulators and also way easier to employ in
an industrial setting in general.

However, while we got around having to use precise models of the robot’s structural
dynamics, the systems performance heavily relies on good sensor feedback from the relative
motion at the robot’s TCP. Acquiring this feedback is by no means a trivial task. In our case,
we used two highly precise eddy-current sensors to measure position feedback relative to the
process surface. However, depending on the application, this might not be as easily possible.

We already did some preliminary tests to get around this issue. In his semester thesis
[253], my student SLIMAK investigated the use of a Kalman filter to generate the needed
position feedback based on acceleration measurements at the TCP. This still worked well by
reducing the maximum error peaks at the stabilization unit from 1 mm to 70µm. However,
failed it to achieve our 20µm requirement. It was also an issue to eliminate drift from the
fused sensor data over longer periods of operation. The drift issue might be circumvented
by only controlling the dynamic error with the stabilization unit using acceleration feedback,
while compensating the quasi-static error via an absolute compensation of the robot.



Chapter 6

Conclusions

The purpose of this thesis was to investigate external active vibration damping and stabiliza-
tion approaches for high-precision applications of robot manipulators.

This goal was mainly motivated by a R&D project with Boeing Research & Development,
which required us to improve the path tracking error of a UR10 robot from 1 mm to below
20µm as a proof-of-concept. At these small displacements, the tracking error at the TCP of
a robot is largely influenced by dynamic oscillations produced by the response of the robot’s
structural dynamics to excitation sources like torque-ripple at the individual robot joints.

The Influence of Structural Dynamics on Robots

For this reason, I first focused on gaining a better understanding of the influence of the
structural dynamics of a robot manipulator on the performance of its control system.

We first built a detailed simulation model of a generic robot manipulator in Simulink as
a development platform. The model includes the possibility of using position- or torque-
controlled joints, disturbance sources like motor-cogging, flexible drivetrains and flexible
links. The subcomponents of the model were verified using measurements from our hu-
manoid walking robot Lola for the motor models and torque measurements of a Franka Panda
robot to estimate stiffness and damping parameters for the flexible drivetrain. The global be-
havior of the model was then verified using measurements from a UR10 robot. The overall
goal being to obtain a robot model with realistic global behavior depicting all relevant effects,
however, without trying to exactly replicate the dynamics of our specific UR10 robot. Never-
theless, the model still showed great agreement with the measured driving points dynamics
at the TCP of the UR10 robot for the first structural eigenfrequency.

We then used this model, as well as an experimental modal analysis of our harvesting
robot CROPS, to investigated the pose dependent structural dynamics of robot manipulators.
The main results being that the dynamics of a robot’s mechanical system heavily depends on
its current pose. Depending on the robot’s mechanical design, there might also be several
structural modes which can not be influenced by the robots own joint controllers.

We also tested the influence of motor position controlled robot joints on the structural
dynamics at the robot’s TCP. We found no noteworthy dynamic interactions, because of the
typically high gear ratios used for industrial robots. This is an important result, since we
consequently did not have to deal with any disruptive interactions between the robot’s own
control system and an external stabilization device mounted at its TCP.

Finally, we also investigated the influence of structural dynamics on position- and torque-
controlled robot joints. We first tried to directly control the joint position of a robot joint
test rig by closing the position-loop of a typical cascaded P-PI-PI motor controller using an
absolute encoder mounted on the joint side of the gear. For this specific case, the achievable
control bandwidth of such a joint position controller was about 2 Hz. We also found that
the possible performance of this control setup is heavily influenced by the dynamics of the
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flexible drivetrain and link. The typical approach to improve this behavior is to use a torque-
controlled robot joint. We also investigated these type of robots with our robot simulation
and measurements from a Franka Panda robot. One of the issues of using passivity based
methods with a joint impedance controller to damp the structural response of a robot is that
there are still certain poses at which the robot can not control the dynamics at the TCP.
However, the main issue for these robots regarding high-precision path tracking is that their
achievable torque-control bandwidth is still quite limited at about 10 Hz. Considering that
we need to attenuate up to 50Hz of the UR10’s error spectrum, these low joint controller
bandwidths will bottleneck any kind of higher-level control system, regardless of the specific
control method.

This was one of the main reasons why we decided very early on in the R&D project with
Boeing that we can not use the robot’s own control system to achieve the required 20µm
tracking precision. Another reason was the sheer complexity of acquiring an accurate high-
fidelity model of a robot’s pose dependent structural dynamics, which would be needed for
most control methods proposed by the literature for high-precision robot control.

External Active Vibration Damping

The external vibration damping approach utilizes a proof-mass actuator mounted near the
TCP of the robot to generate a control force via the inertia of the moving actuator mass.
A single acceleration sensor was used for feedback to keep the control problem collocated.
Using acceleration feedback also has the advantage of not needing a reference point for the
feedback measurement.

Usually, a proof-mass actuator is built using a set of mechanical leaf springs to guide
the mass and keep it from drifting away. However, this way the actuator eigenfrequency is
determined by the mechanical design of the actuator. In order to stay more flexible, I decided
to not use leaf springs for our design of the proof-mass actuator. Instead, the actuator mass
was guided using ball bearings and the mechanical spring was replaced by a PD controller.
This way, the actuator dynamics could be tuned using the appropriate controller gains. The
actuator achieved a usable force transfer bandwidth of 5 to 80 Hz. With the lower bandwidth
limit being caused by limitations due to friction and the higher bandwidth limit by the lower-
level current controller.

We first tested classical control approaches like direct velocity feedback (DVF), a negative
acceleration feedback (NAF) controller with constant controller eigenfrequencies and a NAF
controller with pose dependent controller eigenfrequencies. All of them performing quite
similar in simulation. On the real system, the NAF controller performed the best by being
slightly more robust to sensor noise, achieving a maximum attenuation of up to −30dB of
the pose dependent structural dynamics of the CROPS robot. The controllers were also able
to significantly reduce the settling time of a step response excited by a sudden stop of the
robot. The NAF controller again performed the best by reducing the settling time from c.a.
2 s to below 0.15 s. These results are comparable to the achievements of state of the art
active vibration damping systems used in other application. Our system was also able to
significantly reduce the dynamic oscillations caused by an additional external disturbance at
the base of the robot during a horizontal trajectory.

However, the system failed to reduce the dynamic path tracking error of the CROPS robot
during normal, undisturbed operation. The reason for this is that actually quite low and pre-
cise actuator forces are needed to further attenuate the structural dynamics during normal
motions. The system is very capable of reducing large disturbances, however, is not precise
enough to also attenuate small forces. This is a common problem in active vibration damping,
where the better force actuators usually reach a precision of about 1 % relative to their max-
imum force. Below this limit, non-linear effects like friction and stick-slip start to effect the
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performance of the actuator. This is probably also the reason why most of the better active
vibration damping approaches reach a maximum attenuation of −30 dB to −40 dB, regardless
of the used control method.

The most promising way to increase the performance of our system would therefore be
to improve the accuracy of the proof-mass actuator. This could be done by again using low-
stiffness spring leafs as guides instead of ball bearings to reduce friction. Another way could
be to incorporate friction models in the actuator controller. However, the field of friction
compensation is still a heavily researched topic. Instead of trying to improve the actuator, we
could also use an additional smaller sized actuator that can be designed to be more precise
by downsizing the maximum actuator force. The control system would then use the large
size actuator to reduce large disturbances like sudden trajectory changes, and the smaller on
would attenuate the structural dynamics during normal operation.

Finally, we also tested modern control methods like pole placement, LQR, H∞, MPC,
sliding mode control and receptance- or accelerance based eigenstructure assignment. How-
ever, our efforts of implementing these controllers never made it past the simulation stage.
The main issue was their heavy reliance on accurate observer models for the control design.
Without assuming perfect knowledge of the system dynamics at every possible pose, most of
these methods were not robust enough because of the pose dependent structural dynamics
of a robot manipulator. Many controllers were also quite sensitive to control- and observer-
spillover, which was amplified by our reliance on acceleration feedback.

The external vibration damping approach overall showed promising results to effectively
attenuate the structural dynamics of a robot manipulator. However, for high precision path
tracking there are also other issues that have to be compensated. This approach could work
well as a final addition to a robot manipulator that compensates the quasi-static error via an
absolute calibration and only has little issues with motor-cogging. An active vibration system
could then further improve the robots tracking performance by also reducing the dynamic
error caused by structural dynamics. Another way to effectively employ this system would be
in combination with another positioning system. The active vibration system would then re-
duce the higher frequency dynamic error and the slow positioning system would compensate
the quasi-static error.

The first version of our stabilization unit prototype was based on this approach. However,
the dynamic error of the UR10 robot is heavily dominated by motor-cogging frequencies
below 10 Hz. These excitation frequencies are lower than the first structural eigenfrequency
of the robot. Meaning that the main portion of the dynamic error of the UR10 is caused by the
robots mechanical structure rigidly following the motor-cogging error produced on the motor
side of the joints. Because of the commonly large gear ratios used in robot manipulators,
there is no way for a proof-mass actuator attached near the robot’s TCP to affect this type of
error.

External Stabilization

The second version of the stabilization unit completely relied on a fast and precise mechan-
ical positioning system, which stabilized a dummy tool against any external disturbances
transferred through the robot’s structure.

The system was inspired by in-body-image-stabilization (IBIS) systems commonly used to
stabilize camera sensors. With the main difference being that our system also had to precisely
track a desired trajectory, while actuating a higher stabilized mass. The system also needed
to perform well on a moving robot without provoking any undesirable dynamic interactions
between the robot and the stabilization system. The accuracy requirement of 20µm tracking
precision is also way more ambitious than for common IBIS systems.
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Learning from our previous prototypes, we made sure that the mechanical design avoids
non-linear friction effects as much as possible. The system was designed to stabilize one
translational and one rotational DOF. The stabilized platform is mounted to the frame using
five springs. Their arrangement ensures that both DOFs are decoupled and respectively act
like a simple mechanical single harmonic oscillator (MSHO) with very little damping. All
other DOF are mechanically blocked. The stabilized platform is actuated by two custom
designed Lorentz-actuators, with position feedback being measured via two highly precise
eddy-current sensors at the TCP relative to the process surface.

This setup again ensured that the control problem is collocated. We used our simulation
model to verify that only very little control gain is needed to cancel out the entire dynamic
contributions of the robot’s structural dynamics. We further tested in simulation that this is
also the case for higher stabilized loads of up to 10kg. This indicates a good scalability of this
approach, however, higher stabilized loads would also require more powerful actuators.

This simplified the control problem of the stabilization unit to two decoupled MSHO with
low amount of damping. The controller of the stabilization unit is a combination of a PI
controller with a positive position feedback (PPF) controller. The PPF controller is needed
to introduce enough damping into the system. This approach was preferred to other control
methods, because of the PPF controller’s relatively low amplification of noise.

The tracking controller achieved a usable control bandwidth of 20Hz on the real proto-
type. This is lower than the goal of 50Hz, however, the desired motions relative to the process
surface are usually quite simple and slow. The important property of the control system is
the robustness against external disturbances transferred through the structure of the robot
to the stabilized tool. The controller proved to be very robust in both the simulation and
experimental results.

Mounted on a UR10 robot, the system was capable of reducing the vertical path error at
the TCP from 1 mm to below 15µm, with further analyses indicating that the real precision
is in the region of 3µm. The error spectrum was attenuated by up to −90 dB for the quasi-
static error and up to −70dB for the dynamic error. The system achieves a relatively even
attenuation of the error up to 100 Hz. The stabilization unit only performed slightly worse
at very high trajectory speeds of 1 m/s, while still being capable of keeping the maximum
tracking error below 20µm. The system also proved to be very robust against additional
external disturbances, like hitting on the robot during operation.

These are very good results that even surpass the performance of most state of the art
stabilization systems. However, it is important to keep in mind that the system heavily relies
on precise sensor feedback and high controller clock rates. We also ensured to keep signal
delay as low as possible by only using analog communications between the central controller
and motor drivers.

Outlook

The active vibration damping approach showed some promise by being able to effectively at-
tenuate the structural dynamics of a robot manipulator. However, it is not able to also affect
other common sources of error, like sag or oscillations induced by low frequency motor-
cogging. External active vibration damping for robot manipulators will therefore probably
remain a promising, but niche application.

The external stabilization approach proved to be a very capable alternative to achieve a
high precision tracking performance with robot manipulators.

As we have seen through the early stages of this thesis, it is still extremely difficult to
further improve the precision of large industrial manipulators by relying on their own control
system and motors. The reasons for this are the low achievable bandwidths of the joint
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controllers, as well as the very challenging non-collocated control problem of trying to use
the joint motors of a robot to precisely control the motion at the TCP in the 10µm range.
These type of controllers usually need very precise models of the entire transfer path from the
motor torque to the motion at the TCP, which involves quite complex effects in the drivetrains,
flexible joints and flexible links.

For this reason, I am of the firm believe that an additional stabilization device is currently
one of the very few feasible approaches to achieve a path tracking precision in the 10µm
range with robot manipulators.

However, the stabilization unit developed in this thesis was just a small proof-of-concept
device and still has further room of improvement. The main issue is the heavy reliance on
precise position feedback at the TCP. This constraints the current stabilization unit to applica-
tions where the measurement of this feedback is actually possible. We already did some pre-
liminary tests using acceleration feedback in combination with a Kalman filter with promising
results. However, these sensor fusion approaches are still in need of further investigation.

The next issue is the scalability of the system to higher stabilized loads and the use of
more DOFs. We tested in simulation that higher loads should be possible for the control
concept, however, it might still be an issue to generate the needed control forces. Actuating
more DOFs will also make it more difficult to mechanically decouple all stabilized DOFs. A
new stabilization unit with more DOFs will therefore probably have to decouple these via
its control system. All of these issues are currently being addressed in a follow-up project
between the Chair of Applied Mechanics and Boeing Research & Technology.





Appendix A

Collocated and Non-Collocated Control with a 3 DOF
Mechanical Oscillator
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Figure A.1: The base of a 3 DOF mechanical oscillator (cf. Fig. 3.8) follows an arbitrary path in the
z-y-plane. A control force fc can be applied to the third m3, which also causes a reaction force on the
second mass m2. Alternatively, a non-collocated control forces fnc can also be applied between the
first and second mass. The distance d3,m between the third mass and a desired path can be measured.

In this appendix, I will apply a simple collocated and non-collocated control strategy to
the 3 DOF mechanical oscillator introduced in section 3.1.2. The intention is to give a bit
more insight on why collocated control of dynamic structures is much more simple than
non-collocated control. A good discussion about this topic can for example also be found in
[219].

Control Problem

The exemplary control problem is shown in Fig. A.1. The base of the 3 DOF mechanical
oscillator is now no longer fixed to the ground, but follows an arbitrary trajectory in the z-
direction, while also oscillating in the y-direction. The 3 DOFs of the mechanical oscillator
are still only movable in the y-direction. While the system is moving, we want to keep a
desired distance d3,d of the third mass m3 to a planned path, which is a measurable feedback
input d3,m.

The mass and stiffness parameters of the system (3.28) are given as:

m1 = 5 kg k1 = 2 · 104 N/m

m2 = 2 kg k2 = 5 · 103 N/m

m3 = 1 kg k3 = 1 · 103 N/m

(A.1)
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The damping matrix C of the system (3.28) is calculated using Rayleigh damping (3.53) with
α= 0.1 s−1 and β = 1 · 10−5 s.

For the collocated control problem, we apply a control force fc to the same mass m3 from
which we also measure the feedback. Since we have to generate the control force from within
the system, there is also a reaction force acting on the second mass m2. This setup is very
similar to the stabilization unit discussed in section 5: The first two DOFs can be seen as a
representation of the structural dynamics of the robot, while the third DOF is the actuator
with the stabilized payload.

For the non-collocated control problem, we instead apply a control force fnc between the
first and second mass of the system. The control force therefore no longer acts on the same
DOF as where we are measuring the feedback d3,m. This setup can be similarly interpreted as
the dual feedback joint position control method discussed in section 4.3: The motor torque
is the non-collocated control force fnc applied to the motor inertia represented by m2. The
spring k3 and damper c3 represent the compliance of the gear and the mass m3 can be seen
as the inertia of the robot arm. The feedback d3,m would then be the joint position feedback
measured on the link side of the gear.

Collocated Control

The collocated controller is just a simple proportional gain:

fc = gP,c ·
�

d3,d − d3,m

�

with fnc = 0 . (A.2)

This can be interpreted as adding a virtual spring with stiffness gP,c between the third mass
m3 and the new boundary condition d3,d

1. Note that the mechanical harmonic oscillator
still only has three masses and therefore three DOF. However, instead of being completely
fixed on the left- and the right-hand side, both boundary conditions are variable. The system
therefore still only has three poles and two zeros.

Let us now analyze the performance of such a simple controller by step wise increasing
the controller gain gP,c (and therefore the virtual stiffness). The closed-loop transfer function
between the desired d3,d and measured distance d3,m is shown in Fig. A.2. Since input and
output are acting on the same DOF, the resulting transfer function is a series of alternating
poles and zeros (cf. Fig. 3.9c). We can see that by simply increasing the controller gain, the
first and second pole of the system are pushed towards their corresponding zeros, while the
third pole simply increases in frequency and loses some modal damping. This can be seen
even better in the corresponding root-locus plot, Fig. A.3.

With gP,c = 1 · 105 Nm−1 the two lower frequency pole-zero pairs almost cancel out and
the third mass basically starts to behave like a single harmonic oscillator with a single spring
being attached to the desired distance d3,d as a boundary condition. The resulting eigenfre-
quency approaches ω0,3 =

Æ

gP,c/m3 with the closed-loop dynamics only being influenced by
the controller gain and the third mass, ignoring the dynamics of the rest of the system. Fur-
ther increasing the controller gain gP,c will only cause the third mass to more tightly follow
the desired distance d3,d and the system to lose further modal damping, since the viscous
damping of the system remains unchanged while the overall stiffness is increasing.

This can easily be interpreted as the increasing virtual stiffness gP,c - which attaches the
third mass to the desired distance d3,d on the right-hand side - overpowering the spring
stiffness k3 on the left-hand side of the third mass, which consequently weakens the coupling

1With d3,m just being a different way of expressing the position x3 of the third mass. It should also be noted
that it is not exactly the same, since the force created by the virtual spring does not only act on the third mass
m3, but also on the second mass m2 due to the reaction force created by the actuator being placed between those
two masses. However, as we will see in the following, this makes no difference in terms of stability.
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of the third mass to the rest of the mechanical oscillator system. A lower spring stiffness k3
would therefore cause this behavior to emerge earlier for lower virtual stiffnesses gP,c, with
the control system needing lower control gains and control forces to decouple the third mass
from the rest of the system dynamics. A low stiffness of the actuator system is therefore a
desirable property from a control perspective, which has some influence on the mechanical
design of the stabilization unit in section 5.1.1.

In theory, we could increase the closed-loop bandwidth of the control system by just con-
tinuing to increase the controller gain gP,c with the system always remaining stable. Note
that this can be done by designing the controller without any knowledge about the under-
lying system dynamics, which underlines the simplicity and strength of a collocated control
setup. However, we would still need to deal with the increasing loss of modal damping by
inducing additional damping via the control law. Additionally, in practice, the mechatronic
system must be able to implement such a high virtual stiffness, which requires adequate con-
troller clock-rates, low sensor noise, low system delay, high control forces and sufficiently fast
actuator dynamics2.

Non-Collocated Control

Let us now apply the same control law to the second mass of the system instead:

fnc = gP,nc ·
�

d3,d − d3,m

�

with fc = 0 . (A.3)

In contrast to the collocated control law (A.2), it is difficult to find a physical analogy to
this non-collocated control approach. We are taking the feedback d3,m from the right-hand
side of the third mass, however, the resulting force is acting on the second mass. This can
be somewhat loosely interpreted as trying to enforce a stiffness gP,nc on the third mass by
pushing on the second mass with the mechanical stiffness k3 in between. Another analogy
would be to try to balance an inverted pendulum with its base on your fingertip, while also
trying to precisely follow a desired path with the other end of the pendulum.

Let us do the same analysis by again step wise increasing the control gain gP,nc while
having a look at the closed-loop transfer function, Fig. A.4. Since input and output are no

2See the following Appendix B for a brief discussion about more practical aspects of real control systems.
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longer collocated, we do no longer have an alternating series of zeros and poles (cf. Fig.
3.9b). Instead of pushing all poles to higher frequencies as before, already a small amount of
gain causes the first and second pole to rapidly approach each other, while only the third pole
slowly moves towards the only zero. At a gain of slightly above gP,nc = 2.5 · 103 Nm−1, both
poles approach the same frequency and the first pole becomes unstable. Further increasing
the control gain gP,nc will cause both poles modal damping to increase rapidly, while their
frequency remains the same with the system continuing to be unstable. This can again better
be visualized with a root-locus plot, Fig. A.5.

As we are trying to enforce a higher stiffness between the third mass and the desired
distance d3,d by pushing an the second mass, the system becomes unstable as soon as the
mechanical compliance k3 is no longer able to sustain the faster dynamics that we are trying
to force through it. Note that we can still achieve a stable system with low closed-loop
bandwidth. If we additionally induce damping via the control law to reduce the resonance
peaks, we could still achieve a desirable closed-loop performance, however, with a quite
slowly reacting system. This is a similar conclusion as with the dual feedback joint position
control approach analyzed in section 4.3, where a low closed-loop control bandwidth could
be an acceptable trade-off for higher accuracy via the joint side feedback.

For simultaneously precise and fast control performance with a non-collocated control
setup, more modern control approaches are needed which take the underlying system dy-
namics into account for the control design. However, while this would not be very difficult
for a simple academic example as shown here, this becomes increasingly harder for more
complex real systems. The performance of such control methods often heavily rely on the
quality of the identified system model, which is not an easy task if we want to achieve fast
and precise non-collocated control of a complex mechatronic system like a robot manipulator.
I go into more detail about the challenges of acquiring a high quality robot model in section
2.1.2 and 4.1. I also give a brief discussion about the limitations of modern control methods
in respect to external vibration damping of robot manipulators in section 5.1.5.
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Mechanical Single Harmonic Oscillator Test Rig
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Figure B.1: Mechanical single harmonic oscillator test rig.

This appendix is based on the bachelor’s thesis of my student MAICHER [181]. The goal
of his thesis was to control a simple mechatronic system in order to investigate the influence
of typical implementation issues like sensor noise, actuator limits and limited controller clock
rates on different types of controllers.

In practice, simulations are useful to investigate control problems and test different con-
trol designs. However, rarely can these designs be directly implemented on real mechatronic
systems, without significantly retuning the control parameters with often varying results.
MAICHER showed in his bachelor’s thesis that he could achieve the exact same performance
for multiple types of controllers with the same controller gains in simulation and on the real
micro controller. He admittedly only did this with a very simple system, however, his results
were still very useful to me for the design of multiple prototypes and the general evaluation
of control approaches. Which is why I want to summarize our results in this appendix.

The test rig is shown in Fig. B.1. The idea was to build a mechanical single harmonic
oscillator, which has a very simple linear model as already described in Section 3.1.1. The test
rig consists of a voice coil actuator (VCA), which can apply a force f to a cylindrical magnet
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Figure B.2: Signal flow charts for the real and simulated system.

with mass mMag = 668 g. The VCA can apply a continuous stall force of fc = 24.07 N and peak
force of fp = 72.2N. The force constant is k f = 20.57 N/A. The magnet is attached to the
outer frame using four springs with the spring constant kS = 11.01N/m. The displacement
of the mass is measured using a laser-triangulation sensor. The chassis of the test rig is
connected to ground to reduce sensor noise.

The current of the VCA is controlled using an ELMO motor driver with a PI controller at
10 kHz. The position controller is implemented on a dSpace MicrolabBox at 5kHz. The desired
current for the ELMO and the measured position are sent via 10V analog connections, Fig.
B.2a.

System Model

The system was modeled using a second-order system by measuring the step response. We
measured the applied current for the input, however, used the force constant k f to model the
receptance of the mechanical system:

GY (s) =
1.99 · 10−5

1
2182 s2 + 2 · 0.15 · 1

218 s+ 1

m
N

, (B.1)

which corresponds to a natural frequency of ω0 = 218rad/s, damping ratio of ζ = 0.15,
total stiffness of k = 75.38N/mm and a mass of m = 1.58kg. The stiffness and mass of the
system are higher than expected. The additional inertia of the system can be explained by the
additional weight of the spring assembly. It is also not clear how much the springs themselves
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contribute to the overall inertia of the system1.
The measured system and model response are plotted in Fig. B.3. The model matches

the real system behavior quite well for larger amplitudes. For lower amplitudes, unmodeled
friction effects like stick-slip start to affect the system response. This would make it quite
difficult to control the system precisely with low desired amplitudes. However, the model is
good enough to control large desired motions, as we will see in the following.

To simulate the system, all controllers were implemented as discrete controllers directly
applying a control force to the identified system model (B.1). The reason for ignoring the
actuator dynamics in this case is that we can achieve a bandwidth for the current controller
of over 2kHz, which is way beyond the achievable bandwidth of any higher-level position
controller. We also found the force constant of k f = 20.57N/A to be quite accurate. Meaning
that f ≈ fd for this application. In order to still consider the actuator limit, we included the
corresponding peak force limit of fp = 72.2 N in our simulation, Fig. B.2b.

In the following, I will discuss a few important effects that can cause instability of the real
system. We included these effects in our simple simulation model to design different types
of controllers. The controllers were then implemented on the dSpace MicrolabBox with the
exact same control parameters.

Numerical Integration and Discrete Controllers

The first effect that one should be aware of is the influence of numerical integration on
simulation results. This is important for the design phase of simulation, since the numerical
integration scheme itself can produce an unstable system response for a theoretically stable
system. In general, the time step size of the numerical integration has to be small enough to
still be able to depict the highest natural frequency of the simulated system. This critical step
size varies depending on the exact integration scheme [124]. E.g. for the central difference
method the simulation sampling frequency must be at least twice as high as the highest
natural frequency in the system2. It is also generally recommended to keep the step size at

1This already underlines the difficulty of predicting system models just using data sheet information. Even
with such a simple system we would be quite off with a system model only based on the known stiffness of the
springs and weight of the sub components.

2In my experience, I would also recommend to always use fixed step-size methods to simulate actively con-
trolled systems, since variable step-size integration schemes can keep unstable systems stable by inducing addi-
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least ten times lower than the stability limit to ensure numerical accuracy [74].
More relevant for the practical application of controllers is the influence of discrete con-

trollers on their closed loop stability. In order to be used on micro-controllers, control al-
gorithms have to be implemented recursively using for example the Tustin transformation
[208]. As the closed-loop control bandwidth ωcb starts to approach the sampling frequency
of the discrete controller ωcs, the system response will start to be affected by the time-delay
of the sampling process, which will cause the closed-loop system to lose damping [65]. In
[179], it is recommended to use the following controller sampling frequency:

• ωcs = 30 ·ωcb to 20 ·ωcb for an accurate approximation of a continuous controller.

• ωcs = 5 ·ωcb to 20 ·ωcb will cause a discrete controller to visibly lose damping, however,
is still mostly usable.

• ωcs < 5 ·ωcb will cause most discrete control systems to become unstable.

In Fig. B.4, a discrete and continuous PID controller are simulated for our system. The
discrete controller behaves almost the same for ωcs = 50 ·ωcb, however, significantly loses
damping for ωcs = 5 ·ωcb.

Thankfully, the controller sampling frequency is less of a problem these days with even
cheap micro-controllers being able to achieve quite high clock rates. However, it is still
important to keep in mind that surprisingly high clock-rates are needed to get a similar
performance to a continuous controller.

Actuator Dynamics and -Limit

The next limiting factor for most real mechatronic systems is the power of their actuators,
which can have a large impact on the possible control bandwidth3. As also discussed in
section 5.1.1, the dynamics and limitations of the actuators play a very important role for
the achievable performance of a mechatronic system. In the case of our MSHO test rig, we
did not have to consider additional dynamics, since the control plant is the actuator itself.
The very fast dynamics of the current controller can be neglected as already discussed above.
Meaning, we only have to consider the actuator limit of fp = 72.2N in this case.

This was actually the most significant limiting factor for this test rig, causing almost all
control methods to perform very similar with respect to the achievable settling time for a
controlled step response. The actuator limit can be considered in the controller design by
looking at the controller sensitivity function

Gcs(s) =
fd(s)
xd(s)

=
GC(s)

1+ GC(s)GY (s)
, (B.2)

which can be used to check the produced control force fd to a desired position xd . The
inclusion of actuator limits into the control design was also one of the main driving factors in
the development of modern control techniques such as LQR.

Noise

Another very important factor is the amplification of sensor noise. This can again be esti-
mated by using the controller sensitivity function Gcs(s), since the measurement noise also

tional numerical damping due to their specific integration algorithms.
3E.g. moving a 1 kg mass with 1kHz bandwidth by 1 mm needs peak forces of ∼ 1.5 · 105 N.
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acts directly on the input of the controller. The standard deviation of the amplified noise at
the controller output σn, fd

can be estimated by using the integral

σ2
n, fd
=

∫ ωnb

−ωnb

|Gcs( jω)|2φn(ω) dω , (B.3)

with ωnb being the bandwidth of the noise and φn(ω) the power spectral density function
of the measurement noise. The noise amplification gain gn can than be defined as the ratio
between the standard deviation of the measurement noise and noise at the controller output
[237]:

gn =
σn, fd

σn
. (B.4)

As a rough rule of thumb, the standard deviation of the noise at the controller output σn, fd

should be kept below a third of the continuous force limit of the actuator to avoid noise peaks
triggering a safety shut-down after a few seconds4.

The bandwidth of the noise arriving at the control system will be half of the controller
sampling frequencyωnb = 0.5·ωcs. As we have seen above, the controller sampling frequency
ωcs will usually be quite high in order to ensure a proper approximation of a continues con-
trol system. However, this also means that high frequency noise contained in the otherwise
unused high bandwidth of the controller sampling system will significantly contribute to the
overall standard deviation of the noise and therefore noise peaks at the controller output
(B.3). It is therefore good practice to add a lowpass filter to any controller to ensure a roll-off
of the controller transfer function after the desired controller bandwidth ωcb, see Fig. B.5.
This has the additional advantage of reducing any undesired interaction of the controller
with unmodeled higher order system dynamics, which is especially a problem for modern
controllers that rely on accurate system models.

The amplification of noise also has additional implications for the tuning of the PI current
controller. We neglected to model the current controller because of the very high achievable
control bandwidth. However, this does not mean that the current controller should be tuned
to perform as fast as possible. Because of the limited actuator power, the possible closed-loop
bandwidth of any position controller will be significantly lower than the possible bandwidth
of the current controller. The current controller has to be fast enough to not negatively affect
the overall system performance. However, tuning the controller any faster than that has no
additional benefits for the system. In fact, an unnecessarily aggressive current controller
will just add additional high frequency noise to system, potentially reducing the possible
bandwidth of the higher-level position controller. In this case, we tuned the current controller
such that the settling time of the step response was five times faster than the achievable
settling time of the best position controller.

Signal Delay

Another important topic for the implementation of control systems I want to mention here
is signal delay. We avoided this issue for this test rig, since all communication between the
dSpace MicrolabBox and ELMO motor driver was handled using analog 10 V signals.

Analog communication has the advantage of being the fastest way to send signals, since
there is very little additional processing involved. However, analog signals will be more sus-
ceptible to noise than digital communication interfaces. Digital bus communication solutions

4Noise peaks hitting the higher peak force limit will trigger an immediate shut-down for most motor drivers
and should be avoided at all cost. If there is no such safety feature in the control system, such a high amplification
of noise will usually cause instability quite quickly by high frequency noise being cut of by the physical limit of
the actuator, which is usually an unconsidered non-linearity for most control systems.
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have an advantage for large control systems that need to handle a lot of different signal
communications between a large number of member devices, however, can also introduce
significant signal delay. Similar to discrete controllers, the additional signal delay will cause
the closed-loop system to lose damping and can lead to instability5.

Example: PID Controller

In order to test whether we could achieve comparable results in the simulation as for the real
test rig, MAICHERT designed multiple control approaches in simulation, while also modeling
all the limiting factors discussed above. In the following, I want to quickly showcase his
results for a simple PID controller as an example.

The transfer function of a PID controller is:

GPID(s) =
�

gp +
gDs

TDs+ 1
+

gI

s

�

· (xd(s)− xm(s)) , (B.5)

with gP , gD, gI being the gains of the PID controller respectively and TD the time constant
for a first order filter needed to implement the D-part on a real system. The controller gains
are tuned in simulation using the Ziegler-Nichols method [310], which yields the controller
gains:

gP = 14280 N/m

gD = 42.84 Ns/m with TD = 2.5 · 10−4 s

gI = 1.09 · 106 N/ms

The exact same gains are applied to the simulated and real system. The results are shown in
Fig. B.6. As we can see, both the test rig and simulated system behave exactly the same.

5It depends on the application if one should use analog signals or digital buses to communicate between
devices. In my experience, CAN bus is basically unusable for high-performance control systems that need a lot of
control bandwidth. On the other hand, more modern bus systems like EtherCAT can work quite a lot better, which
is used for our harvesting robot CROPS and humanoid robot LOLA. However, we still needed to implement a delay
compensation to improve the tracking performance of LOLA’s joint controllers [268]. Since we needed to achieve
a very high control bandwidth with the prototypes shown in this work, I decided to use analog communication
signals as much as possible to reduce any kind of additional delay.
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Conclusions

MAICHNER also tested PI-, I-PD, model based feedforward-, internal model-, positive position
feedback- and posicast-controller. The simulation was always capable to give a very good
prediction of the real behavior of the system for all feedback based controllers. However,
for the model-based controllers the simulation results where less accurate. This is probably
because the identified model used for the controller design does not perfectly match the real
system, as seen in Fig. B.3. The simulation was also very usable to predict stability limits due
to the amplification of noise or sensor delay.

These results underline how important it is to also consider sensor noise, signal delay
and actuator dynamics / -limits in a simulation model to make proper predictions about the
possible performance of the control system.
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First Version of the Stabilization Unit

Proof-mass
actuators

Dummy
mass

BLDC
motors

Positioning
tables

Figure C.1: First prototype of the stabilization unit. Two proof-mass actuators for the attenuation of
high frequency vibrations. Two BLDC motors drive two positioning tables via spindles to compensate
the quasi-static error.

The first version of the stabilization unit was part of a short project with Boeing Research
& Technology in 2017 which was supposed to develop a working proof-of-concept prototype
in a short period of time. The general idea of the prototype was to attenuate the dynamic
error of the robot via active vibration damping methods using proof-mass actuators, Fig. C.1
(1). The quasi-static error was then supposed to be compensated with BLDC motor driven
positioning tables, Fig. C.1 (2) and (3).

The main issue of this setup was that the dynamic error of the UR10 is still dominated by
lower frequency vibrations caused by the transfer of torque-ripple. As we have seen in section
4.1.1, these excitation frequencies are mostly below the first structural eigenfrequency of
the UR10 robot. This means that active vibration damping techniques which attenuate the
structural dynamics of the robot are mostly ineffective in reducing these lower frequency
vibrations. Additionally, the positioning system was also not designed to compensate errors
above 1 Hz, since one of the main assumptions was that the dynamic error is purely caused
by the excitation of the robots structural dynamics.
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System Performance

With the proof-mass actuators mostly being ineffective in this specific case, we still tried to
use the positioning system to compensate as much of the error as possible.

The control setup was similar to the one for the second version of the stabilization unit
(see section 5.2): A laser sensor was used to measure position feedback from the process
surface. A simple PI controller was then employed on a dSpace MicroLab Box to keep the
vertical path error at zero. The desired position for the motors was then send via CAN-Bus to
ELMO motor drivers to move the motors. The motors then moved two positioning tables via
spindles to move the process tool.

Fig. C.2 shows the measured vertical path error with the stabilization unit mounted on
a UR10 robot performing a horizontal trajectory. The tool is stabilized just using the PI
controlled BLDC motors, with the proof-mass actuators turned off. The system is able to
compensate the quasi-static error quite well, reducing the RMSE from 0.53mm to 61.6µm.
The spectrum of the measured vertical path error is shown in Fig. C.3. The system is able to
reduce the dynamic error below 10Hz by −5 to −10dB.

Conclusions

This is still a quite respectable results for a first prototype that only uses the positing system,
which was not designed initially for highly dynamic motions. The key take-away points from
this first prototype were:

• Specifically for the UR10 robot, the proof-mass actuators can only provide very little
benefit via active vibration damping methods, since the main source of error is the
direct transfer of low frequency torque-ripple through the robot’s kinematic chain to
the TCP.

• A position based stabilization system can reduce the quasi-static and dynamic error.
However, the actuator system needed to be improved for better performance.

• The first bottleneck of the system was the quite unreliable and slow CAN-bus communi-
cation between the higher-level dSpace MicroLab Box and the lower-level ELMO motor
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drivers. We addressed this for the second version of the stabilization unit by only using
direct analog communication between devices.

• The spindles of the used positioning tables claim a positioning tolerance of 5µm. How-
ever, this is only true when moving the spindle in one direction. The mechanical system
still experiences a significant amount of backlash when changing directions, which had
a quite significant impact on the dynamic performance of the positioning system. We
therefore made it a top priority for the second stabilization unit to reduce friction, back-
lash and other deteriorating effects of the new mechanical system as much as possible.

• The noise levels of the used laser sensors where quite high and were also quite sensitive
to EMI. We therefore used more precise eddy-current sensors for the new version of the
stabilization unit.
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Student List

In this appendix, I will give a list of all students I had the pleasure to work with during
my time at the Chair of Applied Mechanics. I am happy to say that I did not have a single
noteworthy bad experience with any of them and was very fortunate to supervise some truly
outstanding students. The following list is in somewhat chronological order and will list their
contributions to either this thesis or other projects I had the pleasure to work with them on:

• AHMED EL MAHMOUDI was hired as a student assistant for the first R&D project with
Boeing Research & Technology in 2017 and helped a lot during the first conceptual design
phase, as well as CAD design, testing and reporting of the first version of the stabiliza-
tion unit. He later was also hired as a Ph.D. student and research assistant at the Chair
of Applied Mechanics and became my office mate for the rest of my time at the chair. I
am truly thankful for the time that we spend together and could not have wished for a
better office partner.

• MIRZA BEGH was also hired in 2017 as a student assistant for the same project with
Boeing Research & Technology. He helped implementing the controller for the first ver-
sion of the stabilization unit on the dSpace Microlab Box, as well as tuning of the ELMO
motor drivers, and performed many tests on the final prototype. He later moved on to
start his Ph.D. in electrical engineering in Finland.

• MAHMUT FEVZI DOGAN was the third student assistant hired for the first version of the
stabilization unit in 2017 and mainly helped with the CAD design of the first prototype.

• JULIEN KAMMERER was hired in 2017 to help with performing harvesting field tests in a
green house with our harvesting robot CROPS. The project was in cooperation with the
Gewächshauslaborzentrum Dürnast of the TUM School of Life Sciences. Afterwards,
he developed a new gripper prototype for the harvest of sweet peppers in his semester
thesis [143]. The new gripper was also tested in the field in a second project with the
Gewächshauslaborzentrum Dürnast. The data gathered in both projects are part of our
paper [123].

• LEONARDO VON LERCHENFELD was also hired in 2017 as a student assistant to help with
the CROPS field tests.

• YILON SUN was briefly hired as a student assistant in 2017 to help with the program-
ming of the PyFBS toolbox. He then moved on to start his Ph.D. at the Chair of Micro
Technology and Medical Device Technology.

• JAN NALIVAIKA was hired in 2017 as a long term student assistant helping with multiple
of my and other colleagues’ projects.

• FRANCESCO TRAINOTTI did his semester thesis about the development of a proper FRF
acquisition procedure for experimental dynamic substructuring under my supervision
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in 2017 [273]. Although his thesis was about an unrelated topic for my later research
topic, his results were still very useful to get experimental measurement experience in
general. He later became a valuable long term student assistant for the Chair of Applied
Mechanics and also started his Ph.D. in 2020 at our chair.

• SEBASTIAN FUDERER did his bachelor’s thesis about the modal analysis of a robot ma-
nipulator in 2018 [100]. The data gathered during his thesis was used as a basis of our
paper [46], which he co-authored. He later also helped with the measurements for the
first modal analysis of our biped walking robot LOLA [52].

• LORENZ BAYERLEIN did his bachelor’s thesis about an active vibration damping test rig
in 2018 [38]. His thesis was helpful to get a first feeling about the typical implementa-
tion issues for active vibration damping techniques.

• STEFAN QIU did his bachelor’s thesis in 2018 about a first version of the proof-mass
actuator [220] shown in section 5.1.1. While the prototype of the final proof-mass
actuator is quite different from the initial tests performed by QIU in his bachelor’s thesis,
his results were still very useful to test some early ideas for the actuator system.

• MARVIN OCHSENIUS was hired as a student assistant in 2018 to help in the first stages
of the development of the Simulink robot model shown in section 4.1. He was also a
co-author for our papers [48] and [47].

• CHENHONG HUANG did her semester thesis about the influence of structural dynamics
on a position controlled robot joint test rig in 2018 [129]. Her measurement results
were partially used for our paper [47] and section 4.3.1 in this thesis.

• STEFANIE ZIMMERMANN did her master’s thesis about the dynamic modeling of robot
manipulators for accuracy evaluation in 2018 [312]. Her thesis was in cooperation
with ABB and used modeling techniques for flexible links in Dymola that we also later
incorporated in our Simulink model (see section 4.1). She later also main-authored our
paper [313] based on her master’s thesis. She then moved on to work for ABB Robotics
for two years and recently started to do her Ph.D. in Sweden.

• ELIAS SANIEWSKI did his semester thesis about developing a flexible multi body sim-
ulation in Simulink in 2019 [231]. This semester thesis was in a bit of an awkward
spot, since Matlab did not yet had the new ’reduced order model’ block for Simulink
released and just provided a paper about a possible implementation of reduced order
flexible bodies [191]. The method provided in this paper, however, did not produce
very accurate results for higher order dynamics. The semester thesis of SANIEWSKI was
still quite useful, since we learned a lot about the application of multi body systems in
Simulink.

• RAPHAELA ALLGAYER was hired in 2019 as a student assistant to help me with the trans-
lation of the ’Experimental Vibration Analysis’ course’s script from German to English.
She helped a lot by translating and transferring the old CoralDraw based figures to
Inkscape.

• MARIE HARDER did her master’s thesis about the simulation of external vibration damp-
ing approaches for flexible robot manipulators in 2019 [125]. HARDER showed in her
thesis that modern control methods like pole placement, LQR or H∞ control struggle
quite a bit to produce good results compared to classical vibration damping methods
under the assumption that there is not perfect model knowledge available. I discuss her
results briefly in section 5.1.5.



171

• TOM PRAUTZSCH did his semester thesis about the simulation of torque controlled
robots in Simulink in 2019 [216]. He then continued his work in 2020 with his mas-
ter’s thesis [217], which also looked into the influence flexible links on the structural
dynamics of torque controlled robots. The results of his master’s thesis are partially
published in our paper [218], which he main-authored. Section 4.3.2 is also partially
based on this paper. PRAUTZSCH was also of great help by cleaning up our flexible robot
simulation model in Simulink.

• TOMAS SLIMAK was initially hired as a student assistant in 2019 to work on CAN-bus
communication with dSpace. He later helped me to develop the second version of the
stabilization unit for our second industry project with Boeing Research & Technology
Europe. Afterwards, he was of great help during the follow up project about sensor
fusion. He also did a semester thesis about using different sensor setups for the control
of the stabilization unit [253] and is a co-author of our paper [51]. He now started his
Ph.D. at the Chair of Applied Mechanics and develops a third version of the stabilization
unit in cooperation with Boeing Research & Technology Europe.

• JENS BODEIT expended on HARDERS master’s thesis by also looking into the feasibility of
advanced control methods like MPC, sliding mode, or receptance based eigenstructure
assignment for active vibration damping of robot manipulators in his semester thesis in
2020 [54]. Unfortunately, these methods also showed unsatisfactory results compared
to classical control methods. I also briefly discuss his results in section 5.1.5.

• TAREK SENJAB was hired as a long term student assistant in 2020 and supported me for
various industry projects like a beneficiary projects sponsored by BOEING.

• LUKAS MAICHER did his bachelor’s thesis about the control of a single harmonic oscilla-
tor test rig in 2020 [181]. His results were very useful to expand our general knowledge
about the implementation of control systems and I summarize his results in Appendix B.
He now started to work as a student assistant for the new project with Boeing Research
& Technology Europe under the supervision of TOMAS SLIMAK.

• NIKLAS HAIN started his semester thesis about the comparison of game engines for
flexible multi body simulations in cooperation with Boeing Research & Technology Europe
in 2021. The supervision of the thesis is now carried over by TOMAS SLIMAK.
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Appendix F

Simulink Flexible Robot Simulation Library

This appendix presents the Simulink libraries and models that were developed by my students
and I during my time at the chair. Most notably did PRAUTZSCH extend the library to also
include torque control schemes in his semester- [216] and master’s thesis [217]. He also
already did a very good job of cleaning up and documenting the library. This appendix is
therefore just copied from the appendix of his master’s thesis [217].

The reader is referred to the figure captions for more information on the corresponding
block, model or library. Only a selection of the implemented models and custom blocks are
presented. The figures below, however, should provide a sufficient overview. The MATLAB &
Simulink release used for this thesis is R2020a.
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